Isolation and Characterization of

Clostridium perfringens

Bacteriophages and Optimization of

 Electro-Transformation Parameters
for Clostridium difficile

Thesis submitted for the degree of

Doctor of Philosophy
at the University of Leicester by

Ali ABDULKAREEM Ali

Department of Infection, Immunity, and Inflammation

University of Leicester, Leicester, UK

September 2017

Abstract
 Isolation and Characterization of Clostridium perfringens Bacteriophages and Optimization of Electro-Transformation Parameters for Clostridium difficile

By
Ali Abdulkareem Ali

Clostridium perfringens (C. perfringens) is responsible for a variety of diseases in humans and animals. Clostridium difficile (C. difficile) is the leading cause of antibioticassociated diarrhoea. The available treatments for infections caused by both pathogens are not effective. Bacteriophage (phage) therapy is a promising treatment strategy to tackle and treat any infections or diseases caused by C. perfringens or C. difficile. The aim of this study was to isolate bacteriophages that infect C. perfringens and characterize them, and to optimize electroporation parameters for C. difficile with the end goal being to be able to genetically modify C. difficile phages.

Five phages that infect C. perfringens were isolated and characterized from environmental samples. Two phages were sequenced and annotated, one was found to be a Podovirus and the other a Siphovirus. The Podovirus is a strictly lytic phage that does not possess any undesired genes such as the transduction gene, antibiotic resistance gene, and toxin genes.

The endolysin of the Podovirus was cloned, expressed, and purified. The muralytic activity of the enzyme was confirmed by a zymogram. This endolysin has the ability to completely lyse 85.7 \% of the tested Clostridium perfringens strains.

A series of electroporation experiments were carried out using many experimental settings and varying parameters in order to deliver engineered phage and plasmid DNA genome to C. difficile. The electroporation refractory C. difficile R076 was treated with a cysteine protease inhibitor E- 64 and lysostaphin to facilitate electroporation. E-64 was able to reduce the thickness of the C. difficile surface layer proteins. The treatment with lysostaphin resulted in cell lysis. Unfortunately, all the attempts made to optimize the electroporation protocol for C. difficile were unsuccessful as no cells were transformed. However, the experimental observations provide a strong foundation for further work to develop an effective electro-transformation protocol for C. difficile.

Acknowledgements

I would like to gratefully acknowledge my supervisor Professor Martha Clokie for her continued guidance and support throughout my PhD project. Her invaluable encouragement and patience during the practical work and the writing up period were crucial in allowing me to complete this project. I would also like to thank the Iraqi ministry of higher education and scientific research for funding my project.

Furthermore, I would like to thank my friends Ananthi, Anisha, Ahmed, Bander, Depesh, Faizal, Guillermo, Jaspreet, Janet, Jinyu, Lamiaa, Mohammed, Neda, Peter, Saroa, Thekra, Tolis, Wafaa and everyone in the phage laboratory for the friendly atmosphere that they created and for their continuous support.

Among all my friends, I would particularly like to thank Christopher Turkington for sharing his experience with me, and for the unforgettable jokes and discussions we had while we were working late. Also, a big thank you to the expert technician Natalie Allcock of the Transmission Electron Microscopy unit for her helpful training and assistance.

Finally, I want to thank my family and my friends back home for their support and reassurance during my studies here at Leicester. Special thanks go to my wife for her understanding and patience.

Contents

Abstract i
Acknowledgements ii
Contents iii
List of Figures x
List of tables xx
List of abbreviation xxii
Chapter 1. Introduction 1
1.1 Background 1
1.1.1 Clostridium difficile (C. difficile) 1
1.1.2 Clostridium perfringens (C. perfringens) 2
1.2 Hypothesis 3
1.3 Research Aims 4
Chapter 2. Literature review 5
2.1 Introduction to C. difficile and C. perfringens 5
2.1.1 C. difficile and C. perfringens history 5
2.1.2 C. difficile and C. perfringens infections and pathogenicity 5
2.1.3 Toxin mechanism of action 12
2.1.4 C. difficile and C. perfringens treatment 13
2.1.5 Genotyping of C. difficile and C. perfringens 14
2.2 Introduction to Bacteriophages 15
2.2.1 Bacteriophages 15
2.2.2 Phages life cycle 18
2.2.3 Uses of phages 22
2.2.4 Phage therapy 23
2.2.5 C. difficile \& C. perfringens and phage therapy 25
2.2.6 Phages endolysin 26
2.2.7 The structure of endolysins 27
2.2.8 Zymography 30
2.2.9 Modified phages and phage engineering 31
2.3 Clostridial species and molecular studies 32
2.3.1 Background 32
2.3.2 Conjugation 33
2.3.3 Transposon mutagenesis 35
2.3.4 The ClosTron 35
2.3.5 Homologous recombination 38
2.3.6 Electroporation 39
Chapter 3. General Methods 38
3.1 Media, buffers, solutions, and enzymes 38
3.1.1 Media 38
3.2 Bacterial strains 38
3.2.1 C. difficile source and culture methods 38
3.2.2 C. difficile cryogenic stock 38
3.2.3 C. perfringens source and culture methods 39
3.2.4 E. coli strains and culture methods 41
3.3 C. perfringens genotyping (toxin typing) 45
3.3.2 C. perfringens toxin typing 45
3.4 Colony forming unit CFU 45
3.5 C. perfringens growth curve 46
3.6 Phage related methods 46
3.6.1 C. difficile phages CDHM1 and CDHM3 46
3.6.2 C. perfringens phages 47
3.7 Phage cryo-stock preparation 47
3.8 Spot test (determining phage stock titre) 47
3.9 Plaque assay 47
3.10 Phage concentration 48
3.10.1 Phage concentration by ultra-centrifugation 48
3.10.2 Phage concentration by polyethylene glycol (PEG) 48
3.10.3 Phage DNA extraction 49
3.10.4 Determination of DNA concentration by Qubit 50
3.11 Protein related work 50
3.11.1 Cleaning PCR products 50
3.11.2 Plasmid extraction 51
3.11.3 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 52
Chapter 4. Isolation and Characterization of C. perfringens phages 54
4.1 Introduction 54
4.1.1 Rationale behind the environmental isolation of C. perfringens phages 54
4.1.2 C. perfringens toxin typing 54
4.1.2 Host ranges of phages 55
4.1.3 Phage one-step growth curve 55
4.1.4 Phage cocktails 56
4.2 Aims of the study 57
4.3 Material and methods 58
4.3.1 Phage isolation 58
4.3.2 Phage Transmission Electron Microscopy (TEM) 59
4.3.3 Pulsed-Field Gel-Electrophoresis (PFGE) 60
4.3.4 Phage host range 61
4.3.5 Phage one-step growth curve 61
4.3.6 Phage genome sequencing and annotation 62
4.4 Results 64
4.4.1 Isolation of environmental C. perfringens strains 64
4.4.2 C. perfringens toxin typing 70
4.4.3 Isolation of temperate C. perfringens phages (induction of temperate phages) 76
4.4.5 Morphology of the isolated phages (TEM analysis) 87
4.4.6 Optimization of TY medium to be used in spot tests and in the isolation of new phages 88
4.4.7 Pulsed-field gel-electrophoresis 90
4.4.8 Host range 91
4.4.9 C. perfringens growth curve 94
4.4.10 CPAP1 one-step growth curve 96
4.4.11 Genome sequencing and annotation of C. perfringens phages 98
4.5 Discussion 108
4.5.1 Toxin typing 108
4.5.2 Isolation of temperate C. perfringens phages (induction of temperate phages) 108
4.5.3 Isolation of C. perfringens free phages by enrichment culture 108
4.5.4 Optimization of TY medium 109
4.5.5 Morphology of the isolated phages 109
4.5.6 Plaque morphology 110
4.5.7 Pulsed-field gel-electrophoresis (PFGE) 110
4.5.8 Host ranges 110
4.5.9 Phage one-step growth curve 110
4.5.10 Genome sequencing and annotation 111
4.6 Conclusion 111
4.7 Future work 112
Chapter 5: Cloning, Expression, Purification and Assessment of Phage Endolysin as a Potential Antimicrobial for the Treatment of C. perfringens Infection 113
5.1 Introduction 113
5.1.1 Novel antimicrobials 113
5.1.2 Phages endolysins 114
5.1.3 C. perfringens phages endolysins 115
5.1.4 Endolysin mode of action 118
5.2 Aims and objectives 118
5.3 Material and methods 119
5.3.1 Bioinformatics analysis of the phage CPAP1 endolysin gene 119
5.3.2 Cloning of endolysin 119
5.3.3 Preparation of competent E. coli cells 121
5.3.4 Transformation of E. coli BL21 with the recombinant plasmid 121
5.3.5 Expression of recombinant endolysin 122
5.3.6 Purification of recombinant endolysin 123
5.3.7 Removing the GST tag 124
5.3.8 Zymography 125
5.3.9 Lysis assay 126
5.4 Results 127
5.4.1 Bioinformatics analysis of CPAP1 127
5.4.2 Cloning, expression, and purification of recombinant endolysin 128
5.4.3 Removing the GST tag 129
5.4.4 Zymography 130
5.4.5 Lysis assay 131
5.5 Discussion 132
5.6 Conclusion 133
5.7 Future work 134
Chapter 6. Optimization of electro-transformation parameters for C. difficile 135
6.1 Introduction 135
6.1.1 C. difficile infection and phage therapy 136
6.1.2 Genetic manipulation of C. difficile 136
6.1.3 Electro-transformation of C. difficile 137
6.1.4 C. difficile cell wall 137
6.1.5 Cysteine protease inhibitors 140
6.1.6 Lysostaphin 140
6.1.7 Aims and objectives 141
6.2 Materials and methods 142
6.2.1 Phage DNA preparation 142
6.2.2 Plasmid DNA preparation 142
6.2.3 Electroporation of C. difficile using different transmembrane pulses 142
6.2.4 Culturing of C. difficile outside the anaerobic chamber and weakening its biofilm 144
6.2.5 Treatment of C. difficile with cysteine-protease E-64 inhibitor and lysostaphin 145
6.2.6 Extraction of C. difficile surface layer protein 146
6.2.7 Electroporation of enzymatically treated C. difficile 146
6.3 Results 147
6.3.1 Empirical optimization of C. difficile electroporation parameters 147
6.3.2 Culturing C. difficile outside the anaerobic chamber 163
6.3.3 Enzymatic treatment of C. difficile 164
6.4 Discussion 169
6.5 Conclusion 170
6.6 Future work 171
Chapter 7. General Discussion 172
7.1 Introduction 172
7.2 C. perfringens phages and their endolysins as potential therapeutic agents 173
7.3 Optimization of electroporation protocol for C. difficile 175
7.4 Suggestion for future work 176
7.5 conclusion 176
8. Bibliography 178
9. Appendices 220
9.1 Appendix 1 - Media and antibiotics 220
9.2 Appendix 2 - Buffers, solutions, and enzymes 223
9.3 Appendix 3 - Oligonucleotides 225
9.4 Appendix 4 - Lysis caused by induction lysates 227
9.5 Appendix 5 - Environmental samples for the isolation of C. perfringens strains 229
9.6 Appendix 6 - Electroporation settings 232
9.7 Appendix 7- Sequences of CPAP1 and CPAS1 phages 244
9.7.1 CPAP1 (F42) phages' sequence 244
9.7.2 CPAS1 (F43) phages’ sequence 249

List of Figures

Figure 1. Diagram of bacteriophage (myovirus) structure. ... 16
Figure 2. Morphology of different bacteriophages, scale bars of 50nm. A) A filamentous phage belonging to Inoviridae. B) Droplet shaped phage from the Guttaviridae. C) Acidianus filamentous phage belonging to the Lipothrixviridae. D) Phage T4 from the Myoviridae family. E) Phage CPP1 belonging to the Siphoviridae family. F) Phage P22 belonging to the Podoviridae family (Orlova, 2012). ... 17

Figure 3. The two possible phage lifecycles (Campbell, 2003). Both phage life cycles start with the attachment of the phage to the bacterial surface. Penetration of phage's nucleic acid follows, and one of the two life cycles start at this point. Phage nucleic acid will either integrate into the bacterial chromosome and start the lysogenic life cycle, or hijack the host cellular machinery to produce new phages and eventually lyse the host cell, the latter being the lytic life cycle. 19

Figure 4. RecA-dependent SOS response. SOS response is a DNA repair system, which involves approximately 40 genes. When there is no DNA damage, these genes are repressed by the presence of the LexA repressor bound in their operators (upper part of the figure). In the case of DNA damage, the RecA protein is expressed and cleaves the LexA, resulting in the expression of SOS genes. Adapted from www.esf.edu/chemistry/nomura/fch532... 21

Figure 5. Basic structure of endolysins of phages that infect Gram-positive bacteria. Most of these lysins consist of a C -terminal cell wall binding domain (right) and an N -terminal enzymatically active domain connected by a short linker. According to the type of bond that the catalytic domain is able to cleave, these endolysins are divided into five types (left) (Fischetti, 2008) .28

Figure 6. Chrystal structure of endolysin of Listeria monocytogenes temperate phage PSA. The cell wall binding domain (CBD) of the PSA endolysin is shown in orange (upper part) and the enzymatically active domain (EAD) is shown in blue (lower part). A small linker (L) connecting CBD \& EAD is shown in grey. The yellow sphere is the catalytic Zn^{2+} (Korndörfer et al., 2006). .29

Figure 7. Schematic diagram of bacterial conjugation. The cell in the upper left is a donor F^{+}cell, the origin of transfer oriT is shown as a red dot on the F plasmid. Conjugation starts when the donor cell attaches to the recipient cell by the F pili and forms a DNA transfer bridge. One strand of the conjugative plasmid is then transferred to the recipient cell in a linear fashion. Following this, the recipient cell will synthesize the complementary strand of the plasmid and will become an F^{+}cell. Adapted from http://science-tuition.co.uk/wp-content/uploads/2013/11/bacterial_conjugation.jpg..... 34

Figure 8. Basic structure of the ClosTron. The ClosTron consists of four basic parts separated by a restriction site. The application specific module (modified group II intron and reverse transcriptase genes), Gram-positive and Gram-negative origins of replication, with optional origin of transfer, and a selection marker (antibiotic resistance gene). Adapted from http://clostron.com/pMTL80000.php.

Figure 9. Schematic diagram of a modular plasmid pMTL80000. Most of the available modules are shown in this diagram. Four restriction sites are separating each module, allowing the construction of many Clostridium-E. coli shuttle plasmids which have different host range and functionality (Heap et al., 2009b). 37

Figure 10. Hypothetical structure of pores formed by electroporation. A. Membrane fluctuation. B. Invagination of the outer layer of cytoplasmic membrane. C. Hydrophobic pore, the immediate precursor of the hydrophilic pore. D. Hydrophilic pore that allows the passage of ions and molecules. E. Composite pore with protein molecule at the inner edge. F. Composite pore with macromolecule passing through. .40

Figure 11. Complexity and thickness of C. difficile cell envelope. A. C. difficile cell envelope. The outer layer is decorated by the cell wall proteins family. SlpA, S-layer, and cell wall binding proteins are shown at the top, while the peptidoglycan and the glycopolymers can be seen in the middle. The plasma membrane is shown beneath the peptidoglycan layer. B. Organization of the proteins domains shown in A. Black boxes refer to the secretion signals of N -terminal. The black arrows refer to the post-secretion cleavage sites of the SlpA and CwpV . The sorting motifs location and sequence are shown above CD2831 and CbpA. (Kirk et al., 2017a).

Figure 12. The pMTL82151 plasmid map. The plasmid map was generated using the PlasMapper software (Dong et al., 2004). The pMTL82151 is an E. coli - C. difficile shuttle plasmid. It is 5254 bp in size and a chloramphenicol/thiamphenicol resistance marker.

Figure 13. A pMTL84151 plasmid map. The plasmid map was generated using the PlasMapper software (Dong et al., 2004). The pMTL84151 is an E. coli - C. difficile shuttle plasmid. It is a C. difficile specific expression plasmid that possesses the native C. difficile pCD6 promotor. It is 6297bp in size and has a chloramphenicol/thiamphenicol resistance marker.

Figure 14. C. perfringens colonies on TSC agar. The colonies are circular with entire or undulated margins and have an elevated (convex) centre. The plates A, B, C, D, E, and F belong to C. perfringens strains number $55,58,59,63,3$, and 51 respectively. 67

Figure 15. Gel electrophoresis images showing C. perfringens specific 16s rDNA amplification. A PCR product of 270 bp can be seen with each successful amplification. The DNA ladders used are either the Bioline GeneRuler 1 kb (image A, right part of image B, images C and D) or the New England BioLab 100bp DNA ladder (left part of
image B). Samples correspond to the following strains: (A) C. perfringens strains 1-29. (B) C. perfringens strains 30-57. (C) C. perfringens strains 56-69. (D) C. perfringens strains 70-78. 68

Figure 16. Amplification of bacterial 16 s rDNA region. This amplification was of unknown black colonies that were repeatedly negative for C. perfringens specific 16 s rDNA amplification. The DNA ladder used was a Bioline GeneRuler 1 kb . The PCR products of $\sim 1800 \mathrm{bp}$ were sequenced and the blast of sequences revealed that these colonies belong to: Enterococcus (1), Pseudomonas (2, 3, 4 and 9), Bacillus (5 and 6), and Proteus (7 and 8) species.69

Figure 17. Sampling locations and the toxin genotypes of C. perfringens strains isolated in these locations. Faecal and soil samples were collected from a limited number of locations. Type A C. perfringens is dominant in and around Leicester. Only one strain of type E C. perfringens was found; it was isolated in south Leicester. 71

Figure 18. A representative electrophoresis image of multiplex PCR products of different C. perfringens toxin types. The New England BioLab 100bp DNA gene ruler and the 1 kb Bioline GeneRuler can be seen in the left- and right-most lanes respectively. Each lane displays the results of the amplification of 3 genes, these being the Alpha toxin gene (α) that is 324 bp , the enterotoxin (cpe) gene 485 bp , and the beta $2(\beta 2)$ toxin gene 584 bp . Type A C. perfringens has the α toxin gene only (e.g. CP1). C. perfringens type A variants possess cpe and $\beta 2$ toxins in addition to the main α toxin. For example, CP4 and CP13 have the cpe toxin, while CP15 and CP16 have the $\beta 2$ toxin. CP35 (not shown here) has both cpe and $\beta 2$ toxins in addition to the α toxin. No toxin β, iota (1), and epsilon (ε) genes were detected by the multiplex PCR 72

Figure 19. Electrophoresis of individual PCR products to detect C. perfringens β, , and ε toxins. The New England BioLab 100bp DNA gene ruler was used to determine the size of PCR products amplified from iota and epsilon toxins. Additionally, the 1 kb Bioline GeneRuler was used with the beta toxin. A: 317bp sized PCR product amplified from the beta toxin gene which was only detected in C. perfringens strain 72 . B: 446bp product amplified from the iota toxin gene; only C. perfringens strain 41 had this gene. C: 396bp product amplified from epsilon toxin gene, found only in C. perfringens strain 71. 73

Figure 20. The number of each different toxin genotype of 78 environmental C. perfringens strains (69 were isolated in this study). Type A was dominant among the isolated environmental C. perfringens strains. Subtype A that has the enterotoxin gene (cpe), the beta2 toxin gene, or both enterotoxin and beta2 toxin genes were also isolated. No type B C. perfringens strain was isolated. Only one strain was assigned for each of the types C, D, and E. 74

Figure 21. Number of susceptible C. perfringens strains to each induction lysate. As identified by the presence of lysis. The induction lysate of C. perfringens strain 11 was able to produce lysis on seven indicator strains 78

Figure 22. Number of induced lysates that each C. perfringens strain is sensitive to. Five induction lysates produced lysis on C. perfringens strain 3. ... 79

Figure 23. Morphology of five phages isolated from environmental faecal samples as shown by transmission electron microscopy. The scale bar represents 200nm. All the isolated phages belong to the Caudovirales order. The upper two images show the isolated Podoviridae CPAP1 and CPAP2. The other three images show the isolated Siphoviridae CPAS1, CPAS2, and CPAS3

Figure 24. Plaque morphology of the isolated stable phages on a TY double layer medium. CPAP1 produces medium clear plaques. CPAP2, CPA1, CPAS2, and CPAS3 produce medium sized hazy plaques.

Figure 25. CPAP1 plaques morphology on both TS and TY double layer. The two plates on the left show plaques with a double lysis zone on TS agar. The other two plates on the right show plaques with one lysis zone on TY agar. 83

Figure 26. Morphology of six phages isolated from environmental faecal and soil samples, as shown by transmission electron microscopy. The number under each image refers to the isolated C. perfringens strain. TEM analysis revealed that all the isolated unstable phages are also tailed phages belonging to the Caudovirales order. Two phages could be isolated on CP1. Phage 10 and phage 16 belong to the Podoviridae family, while the other three phages (phages 2, 3, and 13 belong to the Siphoviridae family. On strain CP1, one short myovirus belonging to the Myoviridae family and one siphovirus were isolated

Figure 27. The C. perfringens strain 16 lysogen. Phage 16 was able to switch to lysogenic growth and integrate itself into CP16.85

Figure 28. Plaque morphology of the isolated unstable free phages using a TS double layer. The upper four plates show the plaque morphology of the unstable phages isolated on C. perfringens strains 1,2 , and 3 . The three other plates show the plaque morphology of the unstable phages isolated on C. perfringens strains 10 and 16. The phages were numbered same as their indicator strains.

Figure 29. Morphological differences between plaques arise from the initial enrichment lysate and after five rounds of purification of the same phage on the TS double layer. The plaques produced by the initial enrichment lysate of CPAP1 are visualized on the upper four plates. On the left is the control plate which has confluent C. perfringens growth. The other three plates represent the net, one fold, and two fold dilutions of the initial lysate. The enigmatic appearance of the latter plates results from the presence of different bacterial metabolic products in the initial enrichment lysate. This made it difficult to determine whether a phage was present in the tested faecal sample or not. The lower four plates show the plaques morphology of CPAP1 after 5 rounds of purification. 89
Figure 30. Plaque morphology on TY double layer. The plaques can easily be seen on the TY double layer plates90
Figure 31. Pulsed-field gel-electrophoresis of phage CPAP1's DNA. It shows that the size of the phage DNA is $\sim 18.5 \mathrm{~kb}$. 91

Figure 32. Phage host range against environmental C. perfringens strains. The figure illustrates the percentage of each phage's ability to grow (produce plaques) or to cause lysis from without on 42 C. Perfringens environmental strains.94

Figure 33. The growth curve of C. perfringens strain 42 in TS broth as measured by CFU testing. The log phase started at the second hour post inoculation. Initial inoculum was taken from TS agar plate 95

Figure 34. The growth curve of C. perfringens strain 42 in TY broth as measured by CFU testing.95

Figure 35. The growth curve of C. perfringens strain 42 as measured by optical density. The \log phase started between the first and second hour post inoculation at OD of ~ 0.2, and ended at 5.5 hours post inoculation at OD of 1.445

Figure 36. CPAP1 growth curve at MOI of 10. The adsorption time and the latent period are each 20 minutes. The whole cycle took 100 minutes. The burst size is about 137 (136.585) phages per infected bacterial cell 97

Figure 37. This illustrates the burst size of the CPAP1 phage (phages released from each infected bacterial cell) to be about 137 phages. The average of the actual PFU/ml of three time points from the latent period were taken as the baseline, then the relative phage concentration for the following time points were calculated by dividing the actual PFU/ml for that time point by the calculated baseline $\mathrm{PFU} / \mathrm{ml}$ 98

Figure 38. This shows the position of phage CPAP1 ORFs. The direction of the arrows indicates the transcription direction. Nineteen genes are on the positive strand, while the last three are on the negative strand.

Figure 39. The results of the alignment of the CPAP1 genome and that of a previously identified C. perfringens phage, phi24R. The top image shows the CPAP1 genome while the bottom one represents the phi24R genome. Although there is a high level of similarity across each genome, there are also major differences between the two, as represented by the red squares highlighting regions of the genomes. It can be seen that at ~ 13700 bp into the genomes of CPAP1 contains a large insertion distinct from the region in phi24R. In Phi24R, this region contains a putative zinc carboxidase gene not found within CPAP1.

Figure 40. Alignment of CPAP1 amino acids sequence with phi24R and CPS1 endolysins sequences. There is a difference in the primary structure of the endolysins of the three
phages. There are seven amino acids out of 212 that are different between CPAP1 and phi24R, and 44 amino acids out of 213 are different between CPAP1 and CPS1. 102

Figure 41. Comparison of two C. perfringens phages (phi24R and CPS1) endolysins with CPAP1 endolysin. The BLAST of endolysin amino acid sequence against the protein conserved domains showed that despite the differences in these enzymes primary structure, they have a similar catalytic and cell binding domains. 104

Figure 42. A circular genome map showing the putative function of each of the ORFs of the Podovirus phage CPAP1 (18.390 kB). The black outer circle represents the nucleotides' size ($1=1 \mathrm{~kb}$). The blue markers represent the location of ORFs within the genome, labelled with their function. 105

Figure 43. A circular genome map showing the putative function of each of the ORFs of the siphovirus phage CPAS1 (152.340 kB). The black outer circle represents the nucleotide size $(1=1 \mathrm{~kb})$. The blue markers represent the location of ORFs within the genome, labelled with their function.

Figure 44. The overall structure of endolysin Psm encoded by Cerfringens phage SM101. The Psm endolysin consists of two domains, the N-terminal catalytic domain (upper part of the image) and the C-terminal cell wall binding domain (CBD) SH3_3, which consists of SH3N and SH3C (lower part of the image). The catalytic domain is linked to the CBD by 7 amino acids residue (Tamai et al., 2014a). 117

Figure 45. The structure of the pLEICS-02 plasmid. The plasmid has a GST-tag and an ampicillin/carbenicillin resistance gene as a selection marker. 120

Figure 46. Recognition amino acids sequence and the cleavage site of TEV protease. This figure shows the 7 amino acids sequence is incorporated at the end of the tag, this is the site at which the TEV protease specifically acts. Adapted from http://www.sigmaaldrich.com/catalog/product/sigma/t4455?lang=en\®ion=GB 124

Figure 47. Alignment of the CPAP1 endolysin amino acids sequence with endolysin sequences of six C. perfringens phages. The CPAP1 endolysin has different percentages of similarities with other C. perfringens phages endolysins; 97% with $\Phi 24 \mathrm{R}, 80 \%$ with CPS 1 phage, 57% with ФСР340, 57% with ФСР39-O, 55% with ФСР26F, and 54% with CPV1 127

Figure 48. Gel electrophoresis image of a gradient PCR showing a successful amplification of endolysin gene and the adapter sequence. (633bp) compatible with pLEICS-02 plasmid. A range between $56-58^{\circ} \mathrm{C}$ annealing temperatures gave a PCR product, which was used for endolysin cloning by the PROTEX service. 128

Figure 49. SDS-PAGE image shows the purified recombinant endolysin after it was cleaned by anionic exchange. The first lane on the left is a wide range protein standard (New England Biolabs, UK). (1) eluted protein before cleaning. (2) control of un-induced
E. coli culture. (3-12) are the 50 kB (approximately) GST-tagged recombinant endolysin obtained after cleaning with the AKTA purifier. This purification yielded 0.5 ml fractions.

Figure 50. SDS-PAGE image shows the recombinant endolysin after it was cleaved by the TEV enzyme and cleaned by an AKTA purifier. (1-6) show two bands, a $\sim 24 \mathrm{kDa}$ of the endolysin only and $\sim 50 \mathrm{kDa}$ of the GST-tagged endolysin. Lanes ($5 \& 6$) show three bands, a 26 kDa band of the GST tag only, $\sim 24 \mathrm{kDa}$ band of the endolysin, and $\sim 50 \mathrm{kDa}$ of the GST-tagged endolysin. ($7 \& 8$) are wide range protein standard (New England Biolabs). 130

Figure 51. The muralytic activity of recombinant endolysin in a zymogram. (A) The clearance caused by the lysozymes (positive control), protein standard on the left and a clearance band at $\sim 14.3 \mathrm{kDa}$. Part B shows the clearance caused by the purified, cleaned recombinant endolysin. protein standard on the left of the image and clearance bands on lanes 1 and 2 (highlighted with an arrow on the right hand side of the image) at $\sim 24 \mathrm{kDa}$,. The recombinant protein has renatured in a buffer that had $20 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$, and 50 mM NaCL pH 7.2 131

Figure 52. The lysis of seven strains treated with the phage endolysin. All the strains were completely lysed except for the C. perfringens number 7 strain (the first two columns on the left), which was partially lysed. An untreated C. perfringens culture of each strain was used as a control (black columns). 132

Figure 53. Complexity and thickness of C. difficile cell envelope. 139

Figure 54. Structure of the synthetic cysteine protease inhibitor E-64. (Dang et al., 2010). Above is a schematic of the chemical structure of E-64. 140

Figure 55. The viability of C. difficile ribotype 076 with varying amounts of phiCDHM1 DNA concentrations. Survival of the ribotype 076 cells using Ut of 2.5 kV for 5.2 milliseconds (exponential decay pulse) and DNA concentrations between $1-10 \mu \mathrm{~g} / \mathrm{ml}$. The experiment was performed twice; once with pre-pulse incubation on ice and the other at room temperature. No significant difference found between the conditions.

Figure 56. The viability of C. difficile ribotype 076 with ranging pulse durations. The survival rate of C. difficile ribotype 076 cells using 2.5 kV , pulse durations between 7.8 26.2 millisecond (exponential decay pulse), with a phiCDHM1 DNA concentration of $5 \mu \mathrm{~g} / \mathrm{ml}$. The experiment was performed once with pre-pulse incubation on ice. No significant difference found between the conditions. 149

Figure 57. Viability of C. difficile ribotype 076 cells with differing pulser voltages. Shown are the survival of cells when challenged with pulse duration of 5.2 ± 0.1 milliseconds (exponential decay pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 DNA, pre-pulse incubation on ice, and different voltages (1.3-2.25kV). A) Shows cells' survival rate when $1.3-1.75 \mathrm{kV}$
was used. B) Shows cells' survival rate when $1.8-2.25 \mathrm{kV}$ was used. No significant difference found in any of the conditions. 150

Figure 58. Viability of C. difficile ribotype 076 cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was performed using 2.5 kV , pulse duration of 5.2 ± 0.1 milliseconds (exponential decay pulse), pre-pulse incubation on ice, and different DNA concentrations of plasmid pMTL82151. No significant difference was found with any changes in DNA concentrations 151

Figure 59. Viability of C. difficile ribotype 076 cells with varying plasmid DNA concentrations \& electroporation parameters. The electroporation was performed using 2.5 kV , a pulse duration of 10.3 millisecond (exponential decay pulse), pre-pulse incubation on ice, and varying concentrations of plasmid pMTL82151 DNA. No significant difference found in the CFU values in any of the conditions shown. 152

Figure 60. Viability of C. difficile ribotype 076 cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 3 kV for 5.3 milliseconds (exponential decay pulse), pre-pulse incubation on ice, and different concentrations of plasmid pMTL82151 DNA. No significant difference found between the different conditions used, though a one \log drop in $\mathrm{CFU} / \mathrm{ml}$ can be seen. 153

Figure 61. Viability of C. difficile ribotype 076 cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 2.5 kV for 5.2 ± 0.1 milliseconds (exponential decay pulse), pre-pulse incubation at room temperature, and different concentrations of plasmid pMTL82151 DNA. No significant difference found in the CFU/ml values in any of the conditions shown. 154

Figure 62. C. difficile ribotype 076 survival rates cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 2.5 kV for 10.3 milliseconds (exponential decay pulse), pre-pulse incubation at room temperature, and different concentrations of plasmid pMTL82151 DNA. Approximately a one log drop in CFU can be seen. 155

Figure 63. C. difficile ribotype 076 survival rates cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 3 kV for 5.3 milliseconds (exponential decay pulse), pre-pulse incubation at room temperature, and different concentrations of plasmid pMTL82151 DNA. Approximately a two \log drop in CFU/ml can be seen 155

Figure 64. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration of 5.3 ± 0.1 milliseconds (exponential decay pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 DNA, prepulse incubation on ice, and different voltages (1.3-2.25kV). A) Shows cells' survival rate
when 1.3-1.75kV was used. B) Shows cells' survival rate when $1.8-2.25 \mathrm{kV}$ was used. No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown. ... 156

Figure 65. Viability of C. difficile ribotype 220 cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 2.5 kV , pulse duration of 5.3 milliseconds (exponential decay pulse), pre-pulse incubation on ice, and different concentrations of plasmid pMTL82151 DNA. No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown. 157

Figure 66. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration of 5 milliseconds (square wave pulse) with 5 seconds rest between each pulse, $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL84151 DNA, pre-pulse incubation on ice, and different voltages (1.72.25 kV). No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown. 158

Figure 67. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration of 4.1 milliseconds (square wave pulse) with 5 seconds rest between each pulse, $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL83151 DNA, pre-pulse incubation on ice, and different voltages (22.25 kV). No significant difference found in the CFU values in any of the conditions shown. 159

Figure 68. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration of 5.1-5.2 milliseconds (time constant pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 DNA, pre-pulse incubation on ice, and different voltages ($1.6-3 \mathrm{kV}$). No significant difference found in the CFU/ml values in any of the conditions shown

Figure 69. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration between 5.3-7.3 milliseconds (time constant pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 DNA, pre-pulse incubation on ice, and different voltages ($1.7-2.5 \mathrm{kV}$). No significant difference found in the CFU values in any of the conditions shown.

Figure 70. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration between 5.5-6.8 milliseconds (time constant pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL84151 DNA, pre-pulse incubation on ice, and different voltages $(1.6-3 \mathrm{kV})$. No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown. 162

Figure 71. The tolerance of C. difficile ribotype 076 to transmembrane pulse. The black column represents the $\mathrm{CFU} / \mathrm{ml}$ of a control C. difficile ribotype 076 which did not receive a pulse. 1. The grey column represents the $\mathrm{CFU} / \mathrm{ml}$ of C. difficile ribotype 076 after one pulse using 3 kV and a pulse duration of 5.3 milliseconds. 2. The dark grey column
represents the $\mathrm{CFU} / \mathrm{ml}$ of C. difficile ribotype 076 after one pulse using 3 kV and a pulse duration of 26.2 milliseconds. 3. Represents the $\mathrm{CFU} / \mathrm{ml}$ of C. difficile ribotype 076 after two pulses using 2.5 kV and a pulse duration of 5.2 milliseconds. No bar is seen as the value of $\mathrm{CFU} / \mathrm{ml}$ is zero indicating no survival. 163

Figure 72. The ability of FTG and BHIS-Na broths to support C. difficile growth outside the anaerobic chamber. The black bars represent CFU $/ \mathrm{ml}$ of C. difficile R 076 when it is cultured inside the anaerobic chamber. The grey bars represent $\mathrm{CFU} / \mathrm{ml}$ of C. difficile R076 when it is cultured outside the anaerobic chamber with agitation at $220 \mathrm{rpm} . . .164$

Figure 73. The effect of E-64 cysteine protease inhibitor treatment on the C. difficile R076 outer layer protein thickness. The figure shows the reduction of surface layer proteins of C. difficile R076 as a result of the E-64 treatment. Both the LMW (35 kDa) and the HMW (49 kDa) protein concentration was reduced. A. Is a protein ladder (New England Biolabs). B. Shows the cell wall extract of untreated (control) C. difficile R076. C. Illustrates the bands of LMW and HMW of C. difficile R076 treated with 500 mM , final concentration of E-64. D. Shows the bands after treatment with 250 mM inhibitor. E. Shows the bands after treatment with 100 mM inhibitor. 165

Figure 74. Treatment of C. difficile ribotype 076 with the E-64 protease inhibitor. The black column represents the CFU/ml of a control C. difficile ribotype 076 cultured inside the anaerobic chamber. The grey column represents the CFU/ml of E-64 treated C. difficile ribotype 076 cultured outside the anaerobic chamber with agitation at 220 rpm . The blue column represents the mean of CFU/ml of three pulse durations. E-64 treated C. difficile ribotype 076 was electroporated using 2.5 kV and pulse durations of $9,12.8,25.3$ milliseconds, $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 and with pre-pulse incubation at room temperature.

Figure 75. Treatment of C. difficile ribotype 076 with lysostaphin. The black column represents the CFU/ml of E-64 treated C. difficile ribotype 076. The grey column represents the CFU/ml of lysostaphin treated C. difficile ribotype 076 by incubation with the enzyme in SMP buffer for an hour 167

Figure 76. Electroporation of enzymatically treated C. difficile ribotype 076. The black column represents the CFU/ml of E-64 \& lysostaphin treated C. difficile. 1. The grey column represents the $\mathrm{CFU} / \mathrm{ml}$ of the culture after electroporation using 2.5 kV and a 25.4 milliseconds pulse duration. 2. The dark grey column represents the $\mathrm{CFU} / \mathrm{ml}$ of the culture after electroporation using 1.25 kV and a 49.6 milliseconds pulse duration..... 168

List of tables

Table 1. Number of deaths caused by C. difficile infection in Wales between 1999 and 2016. The non-residents and neonates deaths are excluded from these data. Source: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriage .8
Table 2. Quarterly counts of CDI in England for patients aged 2 years and over between 2007 and 2016 (Trust apportioned cases only). 9

Table 3. Animal and human diseases caused by C. perfringens. The figure shows the main human and animal diseases caused by C. perfringens and the main toxin(s) produced by each toxin type (Li et al. 2013)

Table 4.C. perfringens toxin-types.Type A produces alpha toxins. Type B produces alpha, beta and epsilon toxins. Type C produces alpha and beta toxins. Type D produces alpha and epsilon toxins, and type E produces alpha and iota toxins (Li et al. 2013).............. 11

Table 5. The Isolated C. perfringens phages. Five phages which are able to grow on their indicator strains are listed below.
 47

Table 6. Composition of optimized tryptose-yeast extract medium 59
Table 7. The percentage, number, source, toxin produced, and potential of each of theisolated C. perfringens toxin type to cause diseases75

Table 8. Lysis caused by the induction lysate of 17 environmental C. perfringens strains on 27 environmental C. perfringens strains, all of which are alpha and alpha variant toxin types. Each induction lysate was able to produce lysis on at least one indicator strain. 77

Table 9. Key dimensions of the five C. perfringens phages isolated in this study. The values in the table represent the mean of 5 measurements87

Table 10. Host range of the isolated phages on 42 environmental strains of C. perfringens.

Table 11. Ability of each phage to cause lysis from without on 42 C. perfringens environmental strains. The experiment was repeated twice; each time, three replicates of each dilution were spotted on the bacterial lawn. CPAP1 and CPAP2 can bind to a total of 11 and 15 C. perfringens strains respectively out of 42 strains................................. 93

Table 12. The predicted function of CPAP1 ORFs by the top BLAST hits. Five ORFs encode structural proteins while four ORFs encode enzymes. Thirteen ORFs encode proteins with unknown functions

Table 13. All the media and antibiotics used during the study are listed here. 220

Table 15. Oligonucleotides used in this study. .. 225
Table 16. Lysis caused by the induction lysate of 17 C. perfringens strains on 27 indicator C. perfringens strains. Each induction lysate was able to produce lysis on at least one of the indicator strain. .. 227

Table 17. Environmental samples and C. perfringens strains. Source, location of collection, and toxin types. ... 229

Table 18. Shows electroporation of C. difficile ribotype 076 with phage phiCDHM1 genome using different DNA concentrations and pre-pulse incubation. (Exponential decay pulse). 232

Table 19. Shows electroporation of C. difficile ribotype 076 with phage phiCDHM1 genome using different pulse duration at ice pre-pulse incubation. (Exponential decay pulse)

Table 20. Shows electroporation of C. difficile ribotype 076 with two plasmids using different field strength, pulse duration and DNA concentrations. (Exponential decay pulse)

Table 21. Shows electroporation of C. difficile ribotype 220 with pMTL82151 using different field strength and pulse duration at Ice pre-pulse incubation. (Exponential decay pulse)

Table 22. Electroporation of C. difficile ribotype 220 with pMTL82151 using different DNA concentration at room temperature pre-pulse incubation (exponential decay pulse).

Table 23. Shows electroporation of C. difficile ribotype 220 with pMTL84151 using different field strength and pulse duration at ice pre-pulse incubation. (Square wave pulse)
Table 24. Shows electroporation of C. difficile ribotype 220 with pMTL82151 and pMTL84151 using different field strength, DNA concentration and pulse duration at ice pre-pulse incubation. (Time constant pulse)
241

List of abbreviation

APS Ammonium persulfate
BA Brucella agar
BHI Brain heart infusion
BLAST Basic local alignment search tool

BRIG Blast Ring Image Generator
CFU Colony forming unit
CM Cytoplasmic membrane
EB Electrical breakdown

FA Fastidious Anaerobic
GIT Gastro-intestinal tract

GST Glutathione S-transferase
HMW High molecular weight
LB Lysogeny broth
LMW Low molecular weight
MOI Multiplicity of infection
MW Molecular weight
NE Necrotic enteritis
ORF Open reading frames
PBS Phosphate buffered saline
PCR Polymerase chain reaction
PEG Poly-ethylene glycol
PFGE Pulsed field gel electrophoresis
RAST Rapid Annotation using Subsystem Technology

REA Restriction endonuclease analysis
SDS Sodium dodecyl sulfate
SLP Surface layer protein
SM Sodium magnesium
SMP Sodium magnesium phosphate
TBE Tris-Borate-EDTA
TE Tris-EDTA
TEM Transmission electron microscope
TEV Tobacco Etch Virus
TGY Trypticase glucose-yeast
TS Tryptose-sulfate
TSC Tryptose-sulphate Cycloserine
TY Tryptose-yeast

Chapter 1

Introduction

Chapter 1. Introduction

1.1 Background

1.1.1 Clostridium difficile (C. difficile)

C. difficile is the leading cause for bacterial-derived nosocomial antibiotic-associated diarrhoea globally. It is both a health and economic burden with a high morbidity and mortality rate associated with C. difficile infection (CDI), along with a high cost incurred for antibiotic treatment, relapses, and prolonged hospitalisation (Segar et al., 2017, Barkin et al., 2017, Messick et al., 2017). One of the reasons for the success of C. difficile infection is that it produces spores that can resist common antiseptics used to decontaminate surfaces. These spores are able to retain their infectivity for months and spread CDI by the faecal-oral route or through patients touching contaminated surfaces, including the hands of healthcare staff (Joshi et al., 2017, Ananthakrishnan, 2011). In general, CDI starts following antibiotic treatment for another condition that results in dysbiosis. Dysbiosis is a term that describes the imbalance of the microbiota inside or on the body, such as the intestinal microbiota. The impaired functional and structural conditions of the intestinal microbial community allow C. difficile to establish the infection (Bibbo et al., 2014, Carding et al., 2015).

The current treatment of CDI is the use of antibiotics. Antibiotic treatment has many disadvantages such as the high cost of certain antibiotics, the fact that this therapy is only partially effective, and does not prevent infection from reoccurring (Surawicz et al., 2013, Winston et al., 2016, Liubakka et al., 2016, Nayak et al., 2017). Moreover, the development of multiple-antibiotic resistance mechanisms by C. difficile necessitates the identification of adjuvant or alternative treatments (Hutton et al., 2017). One of these is faecal transplantation, an inexpensive and effective treatment for recurrent CDI (Brumbaugh et al., 2017).

To address this resistance, the interest in using phage therapy against CDI has been renewed. Phage therapy provides local dose amplification and targets the pathogen in a highly specific manner. However, no strictly lytic C. difficile phages have been described yet, thereby making it difficult to exploit C. difficile phages for therapeutic purposes. Lysogenic phages are considered unsuitable for therapy, particularly due to their potential
roles in horizontal gene transfer (transduction ability) (Hargreaves et al., 2014, Nale et al., 2016b).

The potential advantages of integrase defective C. difficile phages is that given that they are not able to integrate with the bacterial chromosome, they could, in theory, proceed with lytic growth and destroy the C. difficile cells. On the other hand, the disadvantage of the integrase gene deletion is that the phage is no longer able to persist as a prophage integrated in C. difficile chromosome. Consequently, no lysis will occur when the prophage free C. difficile spores germinate, as it does not have a prophage which can switch to lytic growth.

1.1.2 Clostridium perfringens (C. perfringens)

C. perfringens causes a wide range of diseases in both humans and animals. Similar to other members of the Clostridium genus, it produces spores that spread the infections (Talukdar et al., 2017). In England and Wales, C. perfringens causes 80-95\% of gas gangrene cases and has been involved in human gastroenteritis outbreaks every year between 1992 and 2013 (Public health England, 2013). Gas gangrene is a serious traumatic and post-surgical wound infection that becomes fatal if it is not treated at the correct time (Sudharsanan et al., 2017, Harmsen et al., 2016). Globally, C. perfringens also causes massive economic losses by causing broiler chickens enteritis. This disease occurs when intestinal health is impaired, which allows C. perfringens to flourish and produce toxins. Broiler chicken enteritis has a financial implication of $\$ 6$ billion a year (Broom, 2017).

The gas gangrene infection is treated by the resection or surgical debridement of the infected part of the body and antibiotic administration (Harmsen et al., 2016, Wormald et al., 2016). Both human enteritis and broiler chicken enteritis are treated with antibiotics, however, new antimicrobials are particularly needed due to the development of multipleantibiotic resistance by C. perfringens. Ideally, the antimicrobials which have no influence on the useful commensals of the host's gut microbiota are the ones required to treat C. perfringens infections (Skrivanova et al., 2016, Gaucher et al., 2017). Thus, any therapy that can lyse vegetative cells as soon as spores start to germinate into vegetative cells will prevent the infection in an effective manner.

Phage therapy has been used to control infections with C. perfringens. Many C. perfringens phages have been isolated; some of these are temperate, such as phages

Ф3626 and Ф8533 (Zimmer et al., 2002a), ФСР39O and ФCP26F (Seal et al., 2011), ФS9 and ФS63 (Kim et al., 2012), and phiSM101 (Nariya et al., 2011). Others are virulent C. perfringens phages, such as ФCP24R (Morales et al., 2012), ФCPV1 (Volozhantsev et al., 2011), and ФCPV4 \& ФZP2 (Volozhantsev et al., 2012). The lytic C. perfringens phages have proved to be effective against C. perfringens in-vivo (Miller et al., 2010, Caly et al., 2015). Few studies have focused on the use of the phage endolysin instead of using the whole phage to overcome the complications that may accompany phage therapy (Caly et al., 2015), such as the endolysin of Ф3626 (Zimmer et al., 2002b).

The isolation and characterisation of new phages helps in understanding their diversity and how they interact with their host. It can also broaden the knowledge of their biology, thereby potentially opening new research fields. The activity of phages and phage-derived endolysins can be further explored when new phages are isolated, and when new phage cocktails are formulated. In order to treat a particular pathogen effectively, there is the requirement for phages with wide host ranges and strong lytic activity. Therefore, the isolation of new phages is important in order to increase the collection of phages and therefore be able to target more strains of particular pathogenic species.

1.2 Hypothesis

C. difficile phages can be designed to have superior properties to their parent wild type phages. In theory, integrase defective phage will only grow in a lytic manner and lyse the infected C. difficile cells. A construct that is able to disrupt C. difficile toxin genes can also be inserted in the phage genome; this improvement can be beneficial for therapeutic purposes.
C. perfringens phages can be isolated from the environment and be useful for therapeutic purposes. Phage endolysins can also be useful in the control and prevention of C. perfringens related infections. Moreover, phage-derived endolysins can be used to control or prevent C. perfringens growth.

1.3 Research Aims

The first major aim of this project was to optimise the electroporation parameters for C. difficile in order to allow for the genetic manipulation of C. difficile phages. The second aim was to isolate and test the effectiveness of C. perfringens phages and their endolysins as antimicrobials to treat C. perfringens infections. The major objectives needed to fulfil these aims are listed below; all were attempted and are described in the relevant chapters, while both the context and background are introduced in this chapter.

1. Empirically optimizing electroporation parameters to transform C. difficile with engineered phage nucleic acids. (Chapter 6)
2. Treatment of C. difficile with high concentrations of cysteine protease inhibitor and lysostaphin to diminish the surface layer protein and facilitate electroporation. (Chapter 6)
3. Isolate and characterize C. perfringens from environmental samples including soil, animal faeces, and sediments. (Chapter 4)
4. Induce phage from the newly isolated C. perfringens strains and also exploit them as a host to isolate lytic bacteriophages. (Chapter 4)
5. Characterize the isolated phages according to their host-infectivity, morphology and genome characteristics. (Chapter 4)
6. Clone, express, and purify the C. perfringens phage endolysin, and determine the effect of this enzyme on the growth of C. perfringens strains. (Chapter 5).

Chapter 2

Literature review

Chapter 2. Literature review

2.1 Introduction to C. difficile and C. perfringens

2.1.1 C. difficile and C. perfringens history

The Clostridium bacterial genus consists of Gram-positive, anaerobic spore-forming rod species that are spread throughout the environment. Most of these species are nonpathogenic saprophytes. However, the most known potent toxins are produced by five members of this genus including C. difficile and C. perfringens (Johansson, 2006, Milton et al., 2017, Orrell et al., 2017, Watts et al., 2017).
C. difficile was first isolated in 1935 and called Bacillus difficile. It was first identified as the etiological agent of antibiotic-associated pseudomembranous colitis in 1978 and is currently a leading cause of nosocomial infection with a high rate of morbidity and mortality (Hall et al., 1935, Bartlett et al., 1978, Liubakka et al., 2016).
C. perfringens was first isolated in 1892 from a gas gangrene wound and named Bacillus aerogenes capsulatus; this was changed to Bacillus perfringens, then Clostridium welchii and is now known as Clostridium perfringens. It causes many animal and human diseases (Johansson, 2006, Li et al., 2013).

2.1.2 C. difficile and C. perfringens infections and pathogenicity

The ubiquitous presence of C. perfringens and C. difficile spores in the environment and as a commensal in the intestine of mammals, birds and reptiles may account for the high rate of transmissibility. Additionally, the pathogenesis and disease of these organisms initiates upon contact, ingestion or disruption of normal gut flora as a result of antibiotic use for the treatment of infections other than CDI. (García et al., 2011, Hensgens et al., 2012, Dubberke et al., 2011, Sekulovic et al., 2016, Goldenberg et al., 2017).

Both pathogens incur both a health and economic burden, causing animal diseases along with hospital and community acquired human infections with a high rate of morbidity and mortality (Buzby et al., 1997, Abou Chakra et al., 2014, Collery et al., 2016, Hwang et al., 2012, Keessen et al., 2013, Vaishnavi et al., 2011, Vernacchio et al., 2006, Carter et al., 2014, Winston et al., 2016).
C. difficile causes hospital and community acquired antibiotic-associated diarrhoea that range from mild diarrhoea to deadly pseudomembranous colitis with high rates of morbidity and mortality (Hwang et al., 2012, Mattila et al., 2013, Carter et al., 2014). The bacterium C. difficile produces three types of toxins; A, B, and the binary toxin AB (Sun et al., 2015). In addition to pseudomembranous colitis, C. difficile can cause extraintestinal infections in anatomic areas both near and away from the colon. Infections in the vicinity of the colon area include peritonitis, intra-abdominal abscesses, and abdominal wound infections. Bacteraemia, brain abscess, and foot infection (chronic osteomyelitis) are infections found in areas that are distal from the colon (García-Lechuz et al., 2001).

Between 2007 and 2011, C. difficile has caused approximately 10,258 deaths in England and Wales, and was a participating factor in another 12,687 deaths. Most CDI deaths (91%) occurred in elderly people (85 years of age and over) (Porter et al., 2015). Tables 1 and 2 show CDI infections and the registered deaths caused directly by it, and as an underlying disease.

Between January 2013 and February 2017, C. difficile caused outbreaks in France, as a nosocomial infection in elderly people and as a community acquired infection in young adults. Before that, in 2011, C. difficile resulted in about half a million infections in the U.S with 29,000 deaths; a similar rate was recorded in Europe (Lessa et al., 2015, Leffler et al., 2015, Cassir et al., 2017).
C. perfringens causes a variety of diseases for human and animals (Table, 3), all of which depend on the organisms prolific ability of being able to produce approximately 18 toxins. These diseases include tissue toxicity diseases, enteritis and enterotoxaemia (Li et al., 2013, Ferreira et al., 2016). C. perfringens can be classified into five groups; $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ and E (Table,4), this depending on the ability of being to produce one or more of the main four toxins produced by this pathogen, these being alpha (α), beta (β), epsilon (ε) and iota (1) (Petit et al., 1999, Dave, 2017).
C. perfringens causes 80-95\% of gas gangrene cases in England and Wales. It has also been the cause of many human gastroenteritis outbreaks between 1992 and 2013, with an average of 14.28 outbreaks per year (2-38). The reported cases in these outbreaks ranged between 23-748 infections (Public health England, 2013). Although the illness lasts for only one day, it has a serious effect on infants and elderly people and results in diseases
such as intestinal necrosis, haemorrhaging and perforation of the intestine at varying levels (Kosloske et al., 1985).
C. perfringens is the etiologic agent of necrotic enteritis (NE) in chickens, which has emerged as a significant economic problem in the poultry industry (Abid et al., 2016). Large amount of research has described the use of microbes and microbial products including bacteriophages and its endolysin as novel alternatives for the treatment and prevention of NE (Caly et al., 2015, Seal, 2013).

Number of deaths caused by CDI mentioned by gender																		
Years	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Male	18	:	24	36	24	33	34	51	145	187	148	134	98	69	69	52	39	33
Female	38	:	40	53	59	55	70	119	254	274	233	234	138	86	108	59	69	46
Number of deaths caused by CDI as underlying cause mentioned by gender																		
Male	11	:	12	19	10	19	22	29	59	83	72	55	51	32	34	18	13	12
Female	20	:	17	28	36	35	39	64	118	120	129	129	67	50	57	24	37	20

Table 1. Number of deaths caused by C. difficile infection in Wales between 1999 and 2016. The non-residents and neonates deaths are excluded from these data. Source: https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriage

Date	April to June 2007	July to September 2007	October to Decembe r 2007	January to March 2008	April to June 2008	July to Septemb er 2008	October to December 2008	January to March 2009	April to June 2009	July to Septemb er 2009	October to December 2009
Total CDI	16,864	13,419	12,248	12,967	10,883	8,948	7,907	8,357	6,854	6,407	6,002
Date	January to March 2010	April to June 2010	$\begin{aligned} & \text { July to } \\ & \text { Septembe } \\ & \text { r } 2010 \end{aligned}$	October to December 2010	January to March 2011	April to June 2011	July to September 2011	October to December 2011	January to March 2012	April to June 2012	July to September 2012
Total CDI	6,341	5,981	5,909	4,984	4,833	4,967	4,994	4,350	3,711	3,656	3,870
Date	October to Decembe r 2012	January to March 2013	April to June 2013	July to September 2013	October to Decembe r 2013	January to March 2014	April to June 2014	July to September 2014	October to December 2014	January to March 2015	April to June 2015
Total CDI	3,756	3,412	3,386	3,671	3,298	3,007	3,449	3,979	3,366	3,398	3,652
Date	July to Septemb er 2015	October to December 2015	January to March 2016								
Total CDI	4,011	3,534	2,942								

Table 2. Quarterly counts of CDI in England for patients aged 2 years and over between 2007 and 2016 (Trust apportioned cases only). Source: https://www.gov.uk/government/statistics/clostridium-difficile-infection-annual-data

Type	Major toxin(s)	Human disease(s)	Animal disease(s)
A	Alpha-toxin	Human myonecrosis (gas gangrene).	Gas gangrene in sheep, cattle and horses. Alpha-toxin, CPE
	Human food poisoning, non-food born Gl diseases.	Enteritis in dogs, pigs, horses, foals and goats.	
	NetB	Not reported.	Necrotizing enteritis in

Table 3. Animal and human diseases caused by C. perfringens. The figure shows the main human and animal diseases caused by C. perfringens and the main toxin(s) produced by each toxin type (Li et al. 2013).

Toxin produced				
Type	Alpha	Beta	Epsilon	lota
A	+	-	-	-
B	+	+	+	-
C	+	+	-	-
D	+	-	+	-
E	+	-	-	+

Table 4.C. perfringens toxin-types.Type A produces alpha toxins. Type B produces alpha, beta and epsilon toxins. Type C produces alpha and beta toxins. Type D produces alpha and epsilon toxins, and type E produces alpha and iota toxins (Li et al. 2013).

The following section will give an overview of the types of diseases associated with C. perfringens. Type A C. perfringens causes fatal septicaemia and malignancy in immunocompromised patients (Cochrane et al., 2015, Landi et al., 2017). Also caused by type A strains is gas gangrene, which is the most serious form of C. perfringens human infection (Kumar et al., 2017). Food poisoning is caused by C. perfringens as a result of the production of the theta toxin, and the enterotoxin (CPE) respectively (Hifumi et al., 2013, Nagahama, 2013, Yelland et al., 2014). Type A C. perfringens can also cause haemorrhagic diarrhoea in dogs, and necrotizing enteritis in foal (Gohari et al., 2017).

The C. perfringens minor $\beta 2$-toxin is a variant of the main C. perfringens beta toxin, and is responsible for the enterotoxaemia syndrome in both humans and animals (Serroni et al., 2017). Some type A and type C strains of C. perfringens produce this toxin (Lee et al., 2014, Lee et al., 2012). The $\beta 2$-toxin helps in the toxin typing of type A variants of C. perfringens along with the CPE toxin (Finegold et al., 2017).

Necrotic enteritis toxin B -like (NetB) is a pore-forming toxin considered as a virulence factor responsible for the pathogenesis of necrotic enteritis (NE). NetB producing type A C. perfringens causes NE in chickens (Mishra et al., 2017).

Type B and C strains of C. perfringens that are able to produce delta toxins (β-barrel-pore-forming toxins) cause a lethal intestinal infection in animals (Seike et al., 2017).

Type B and D C. perfringens strains cause neurological disorders in animals, human brain lesions (multiple sclerosis) and livestock enteritis/enterotoxaemia as a result of epsilon toxin production (Wioland et al., 2014, Rumah et al., 2013, Li et al., 2017).

The type C strain of C. perfringens that produces beta toxins causes necrotic enteritis in mammalian species (Bhatia et al., 2014). On the other hand, type E C. perfringens causes haemorrhagic enteritis in calves as a result of the production of α and \mathfrak{l} toxins (Billington et al., 1998).
C. perfringens can also cause fulminant pancreatic sepsis and fatal liver abscesses (Stuckle et al., 2017, Cherenfant et al., 2009). Additionally, only one case of spondylodiscitis caused by C. perfringens has ever been reported (Seller et al., 2016).

2.1.3 Toxin mechanism of action

C. difficile produces three toxins; toxin A (TcdA), toxin B (TcdB), and the binary toxin CDT which is produced by certain C. difficile strains associated with more severe CDI (fulminant colitis) (Smits et al., 2016, Nakamura et al., 2014). TcdA and TcdB are large glucosyltransferase toxins that are similar in structure and activity. Their primary structure consists of a two-domain, single-chain proteins which have the ability to attach to and penetrate the host cell and catalyze the transfer of glucosyl to the cellular cytoskeleton actin-regulatory GTPases. Subsequently, GTPases are de-activated, resulting in a disorganization of the cell cytoskeleton and thus eventually leading to cell death (Stiles et al., 2014, Just et al., 2005, Young et al., 2014, Chandrasekaran et al., 2017). Similarly, CDT is an ADP-ribosyltransferase that consists of the CDTa enzymatic domain, and CDTb which is the cell-binding domain. The latter is involved in receptor mediated endocytosis and the enzyme will catalyse the ribosylation of globular actin once it is inside the cell resulting in cell death (Gerding et al., 2014).

The C. perfringens Alpha toxin is a phospholipase consisting of two domains - a membrane binding domain and a catalytic domain that disrupts the membrane integrity and cause cytolysis and cell death (Sakurai et al., 2004, Manni et al., 2017). The beta toxin also has a binding and an intra-membrane catalytic domain, and acts by causing a pore in the cytoplasmic membrane (Seike et al., 2016). The epsilon toxin is another poreforming toxin with a much more powerful membrane destruction ability than the alpha and beta toxin, as it has three catalytic domains which can form an oligomeric pore on the cell surface through membrane-associated proteins. However, the epsilon toxin's
exact mechanism of action is not completely understood (Popoff, 2011, Stiles et al., 2013, Khalili et al., 2017). The iota toxin has a binding-translocation and catalytic domain; it is an ADP-ribosyl-transferase that acts similarly to the C. difficile toxin (Chellapandi et al., 2016, Papatheodorou et al., 2016).

2.1.4 C. difficile and C. perfringens treatment

The treatment of CDI is recommended by medical guidelines to be stratified depending on the severity of the infection. Metronidazole is used for mild to moderate disease states, thereafter if metronidazole gives a poor outcome, vancomycin is administered (Surawicz et al., 2013, Löfmark et al., 2010, Khanna et al., 2017). Although fidaxomicin has been used for CDI treatment, it is effective only when used at the early phase of infection, as patients with previous or prolonged CDI do not respond to it. Moreover, fidaxomicin does not prevent CDI relapses. Another disadvantage is the high cost of fidaxomicin pills; they cost $\$ 2800$ which is significantly higher than vancomycin which costs $\$ 680$ and metronidazole which cost $\$ 22$ for a 10-day treatment (Spiceland et al., 2016, Surawicz et al., 2013). CDI treatment options are limited and new medication is urgently required (Postma et al., 2015). In fact, most recently, cadazolid has been suggested to treat CDI (Caspers et al., 2017). Moreover, faecal transplantation (FT) is an inexpensive and effective method to treat recurrent CDI. However, the presence of an underlying bowel disease attenuates its success (Brumbaugh et al., 2017). Additionally, despite the fact that the use of probiotics (microbial preparations) for the prophylaxis against CDI has been suggested, it is not recommended by the recent clinical practice guidelines (Goldenberg et al., 2017). Finally, the use of anti-TcdA and anti-TcdB antibodies to neutralize C. difficile toxins has been shown to be effective in the reduction of CDI recurrence in a pre-clinical model of CDI (Hernandez et al., 2017).

The disadvantages of antibiotic treatment include partial effectiveness, the high cost of treatment associated with certain antibiotics, the high levels of CDI relapse after successful antibiotic treatment, the need for faecal microbiota transplantation to prevent relapse of CDI and the development of antibiotic resistance (Surawicz et al., 2013, Winston et al., 2016, Liubakka et al., 2016, Nayak et al., 2017). It is apparent that a novel therapy is needed to decrease, replace or compliment the use of antibiotics in the treatment of CDI. Phage therapy has shown promising potential as an antibacterial to treat CDI (Ivarsson et al., 2015, Hegarty et al., 2016, Hutton et al., 2017). The details of the use of phage therapy to treat CDI are reviewed in section 2.2.4.

There is only one treatment available for human C. perfringens gas gangrene; the resection and prolonged multiple-antibiotic treatment upon the early diagnosis of infection. This management can save a patient's life (Wormald et al., 2016). Examples of these treatments include resection arthroplasty, pancreatectomy, resection of infected soft tissue, above the knee resection of lower limb and long period antibiotic administration (Garcia-Jimenez et al., 2016, Cherenfant et al., 2009, Carretero et al., 2016, Ying et al., 2013). Chicken NE caused by C. perfringens is currently treated by antibiotics (Jayaraman et al., 2017). Vaccination against the NetB C. perfringens toxin have also proved efficient in the prevention of NE, as 55% of orally vaccinated chickens remained healthy (Mishra et al., 2017).

2.1.5 Genotyping of C. difficile and C. perfringens

Genotyping of C. difficile strains helps in the understanding of their epidemiology and pathogenesis. Ribotyping is currently used, while pulsed field gel electrophoresis (PFGE) and restriction endonuclease analysis (REA) have been used before. Ribotyping of C. difficile strains is an important process which allows for the discrimination between them. Particular ribotypes cause more severe CDI than others; for instance, The R027 ribotype causes a more severe disease than others, and is involved in the worse clinical outcome (Huber et al., 2013). Ribotyping also allows for the identification of the genetic relatedness between C. difficile strains which are isolated from different areas and sources. For example, C. difficile R078 is found in different geographic areas and can be isolated from a variety of animal species. It has a high genetic relatedness with the human C. difficile R078, which may suggest a zoonotic potential for this lineage (Alvarez-Perez et al., 2017). Nevertheless, whole genome sequencing provides more information than ribotyping (Huber et al., 2013).

Determining C. perfringens strains' genetic variability helps with the comprehension of the pathogenicity and epidemiology of virulent and non-virulent isolates (Lacey et al., 2016). Many methods have been described for C. perfringens typing, like multi-locus sequence typing, bacteriocin typing, serotyping, bacteriophage typing, plasmid profiling, ribotyping and macro-restriction with pulsed-field gel-electrophoresis, and multi-locus variable-number tandem repeat analysis (MLVA) (Lacey et al., 2016, Mahony, 1974, Stringer et al., 1980, Yan, 1989, Eisgruber et al., 1996, Schalch et al., 2003). Toxin typing has both epidemiological and diagnostic importance, as the pathogenicity, the destruction of cells and lesions produced are connected with the type of toxins produced.

In both early and recent C. perfringens genotyping studies, the presence of one or more toxin genes has been used to type C. perfringens (Sawires et al., 2005, Li et al., 2017, Silva et al., 2016, Afshari et al., 2015, Khan et al., 2014, Cooper et al., 2013, Oakley et al., 1953, McDonel, 1980, Songer, 1996, Razmyar et al., 2014). Nevertheless, other methods have different purposes and benefits. The multi-locus variable-number tandem repeat analysis, and multi-locus sequencing typing are usually used to evaluate the genetic relationship between bacterial strains. Bacteriocin typing is used to identify certain strains in outbreak conditions, while serotyping is useful for diagnostic and vaccination studies. In addition, bacteriophage typing is used to distinguish between C. perfringens strains, and plasmid profiling is used to determine the connection between strains that have caused outbreaks. Finally, ribotyping is used to distinguish between strains and for diagnostic purposes (Zhu et al., 2017, Pitt et al., 1995, Gillis et al., 2017, Yan, 1989, Eisgruber et al., 1996, Durovic et al., 2017). The toxin type of a given C. perfringens strain announces the potential pathogenicity and disease that it causes. However, the susceptibility to phage infection cannot be related to the toxin type as it does not reveal the genetic relationship (differences or relatedness) between C. perfringens strains.

2.2 Introduction to Bacteriophages

2.2.1 Bacteriophages

Bacteriophages (phages) are viruses that infect and lyse bacteria (Figure, 1). They are the most numerous organism and are ubiquitous in the environment (Carvalho et al., 2017). About 96% of existing bacteriophages are tailed phages that belong to the Caudovirales order, which includes three families: Myoviridae (contractile tail), Podoviridae (short tail) and Siphoviridae (non-contractile long tail) (Kaliniene et al., 2017). Filamentous, cubic, and polymorphic phages belong to the same order and are classified into 10 small families. They comprise of about 3.6% of the existing bacteriophages. Figure 2 shows examples of phage morphologies (Ackermann, 2006, Orlova, 2012).

Figure 1. Diagram of bacteriophage (myovirus) structure.
(Adapted from http://www.bacteriophagetherapy.com)

Figure 2. Morphology of different bacteriophages, scale bars of 50 nm . A) A filamentous phage belonging to Inoviridae. B) Droplet shaped phage from the Guttaviridae. C) Acidianus filamentous phage belonging to the Lipothrixviridae. D) Phage T4 from the Myoviridae family. E) Phage CPP1 belonging to the Siphoviridae family. F) Phage P22 belonging to the Podoviridae family (Orlova, 2012).

2.2.2 Phages life cycle

Phages have two life cycles; the lytic cycle which ends by the lysis of the bacterial host cell and the lysogenic cycle, where the phage nucleic acid is integrated in the bacterial chromosome and persists till the cell is lysed (Figure, 3) (Campbell, 2003).

Both phage lifecycles start with the phage recognition of and binding to the bacterial cell. This reversible adsorption process is achieved by the receptor-binding proteins that protrude from the distal part of phage's tail as tail-spikes or tail-fibres. Some of these fibres have enzymatic activity and are able to depolymerise the polysaccharides of the bacterial cell wall (Prokhorov et al., 2017). This reversible binding is followed by a base plate structural re-arrangement that triggers the contraction of tail-fibres. Binding becomes irreversible once the tail-fibres contract and bend toward the host cell wall, and the proximal region binding to the membrane structures on the host cell surface. The infection proceeds to the next step with the ejection of the phage nucleic acid, starting with the penetration of the tail tube into the host cell periplasm. During penetration, the virus uses a variety of lysins and carbohydrates de-polymerases. A transmembrane channel for phage DNA delivery is formed after the tail-fibre fuses with the host cytoplasmic membrane. Phage DNA is then ejected into host cytoplasm through this channel (Latka et al., 2017, Hu et al., 2015).

Figure 3. The two possible phage lifecycles (Campbell, 2003). Both phage life cycles start with the attachment of the phage to the bacterial surface. Penetration of phage's nucleic acid follows, and one of the two life cycles start at this point. Phage nucleic acid will either integrate into the bacterial chromosome and start the lysogenic life cycle, or hijack the host cellular machinery to produce new phages and eventually lyse the host cell, the latter being the lytic life cycle.

The phage choice of lytic or lysogenic growth can depend on the population density. Lytic growth is favoured when the host population is high, while lysogenic growth is dominant when the number of host cells is low and a large number of phages are infecting the same host cell. However, the mechanism of this growth pattern is unknown (Zeng et al., 2010). In the case of the temperate lambda (λ) phage that infects E. coli, it can grow in a lytic manner and cause cell lysis producing hundreds of virus progeny. Alternatively, it can switch to lysogenic growth which starts once phage DNA is integrated into the bacterial chromosome. The regulation of the lysogenic state and the switching to lytic growth for the λ phage is controlled by the repressor cl gene and the adversary cro gene. The cl gene halts the expression of bacteriophage genes and maintain the lysogenic state. Conversely, the cro gene promotes the expression of the lytic growth genes (Oppenheim et al., 2007).

The rate of prophage induction varies according to the surrounding environmental conditions. Prophages can switch to lytic growth when the host is under stress, such as that caused by exposure to ultra violet light or other DNA damaging chemicals or stimuli. The mechanism involved in this process is termed the SOS response, where the RecA protein cleaves the lexA repressor to activate a variety of DNA repair strategies. RecA protein can also cleave the cl repressor and provoke lytic growth (Figure, 4) (Gandon, 2016, Ptashne, 2004).

The prophage induction can be spontaneous in the absence of an external inducing factor. This phenomenon participates in bacterial evolution and fitness. The integration of prophages and the subsequent activity of prophages, prophage-like elements, cryptic prophages, and phage remnants within the host cell genetic circuitry has been shown to be involved in bacterial evolution. These mobile genetic elements can carry and transfer a variety of virulence and fitness genes by horizontal gene transfer. For example, the cholera and shiga toxins can be carried and transported by prophage release (Nanda et al., 2015, Ventura et al., 2009, Waldor et al., 1996, Neely et al., 1998, Brown et al., 2006).

Figure 4. RecA-dependent SOS response. SOS response is a DNA repair system, which involves approximately 40 genes. When there is no DNA damage, these genes are repressed by the presence of the LexA repressor bound in their operators (upper part of the figure). In the case of DNA damage, the RecA protein is expressed and cleaves the LexA, resulting in the expression of SOS genes. Adapted from www.esf.edu/chemistry/nomura/fch532

2.2.3 Uses of phages

Since their discovery, phages have been used in the control of bacterial population and as a bacterial transformation tool (Abedon, 2018). For instance, the use of the gateway cloning system allows the cloning of multiple DNA fragments of different sizes in parallel using the same recombination enzyme. The system depends on the highly specific excision and integration reactions of phage λ both out of and into the E. coli genome (Reece-Hoyes et al., 2018). Examples of biocontrol include the use of phages to control the growth of bacteria that cause potato spoilage and to treat Salmonella enterica (Choi et al., 2017, Wei et al., 2017). Following this, the use of phage was expanded to include using phage-derived enzybiotics, such as the use of the phage endolysin which is able to lyse the phytopathogen Agrobacterium tumefaciens (Attai et al., 2017).

Phages have also been used for diagnostic purposes; many phages were engineered to detect the presence of particular pathogens by inserting a reporter bioluminescence or fluorescence genes. Thus, visual bioluminescence or fluorescence will appear upon the infection of a pathogen. These reporter phages have been used to detect E.coli 0157:H7 (Hall et al., 2012), where the E. coli 0157:H7 reporter phage was able to detect titres as low as $5 \mathrm{CFU} / \mathrm{ml}$ in the tested samples (Zhang et al., 2016). Mycobacterium tuberculosis has also been detected from septum samples directly by a reporter phage (Jain et al., 2012). Moreover, glass slide agglutination tests were successfully developed for the detection of Campylobacter jejuni and Campylobacter coli using the phage receptorbinding proteins (Javed et al., 2013).

Phages have also been used for drug delivery. The Clustered Regularly Interspaced Short Palindromic Repeats (CRISPER-cas9) gene was successfully inserted in phage genome so as to treat multi-antibiotic resistant Staphylococcus aureus. The inserted CRISPER-cas9 gene was programmed to target and cleave the antibiotic resistance genes in a sequence specific manner. It was also programmed to destroy the Staphylococcus plasmids that carry the antibiotic resistance gene to prevent the spread of antibiotic resistance to non-virulent Staphylococci. This method allows the manipulation of complex bacterial communities in a sequence specific manner (Bikard et al., 2014).

Phage display technique involves the bio-engineering of phage genomes to express a variety of peptides in their capsid (Carnazza et al., 2010). This technology has been used for the prevention of oral diseases, such as the blocking of Streptococcus gordonii
adherence to the salivary pellicle (Cukkemane et al., 2014). It has also been used for the production of nanobodies against Acinetobacter baumannii for immunotherapy (Payandeh et al., 2014). A variety of constructs can be inserted into phage genomes; the resulting phage-expressed peptides will have a high binding specificity and affinity to many ligands (O'Sullivan et al., 2016). Consequently, phage display technology is applicable in many disciplines, such as the dispersion of clinically important biofilm like E. coli (Lu et al., 2007, Ivanova et al., 2017), vaccine delivery to combat bacterial and viral pathogens (Gao et al., 2010), and increased agriculture and animal yield (Carvalho et al., 2017, Ivanova et al., 2017).

2.2.4 Phage therapy

Phage therapy is the use of phages to treat bacterial infections. The emergence of multiple antibiotic resistant pathogens continues, and the absence of new antibiotic to treat these pathogens have urged researchers to look for other treatment options. Phage therapy is a promising treatment option, particularly since phages have been used in the treatment of bacterial infections since their discovery in 1915 (Dufour et al., 2017). After the discovery and success of antibiotics, phage therapy was ignored in the west while it was continually used in Eastern Europe and the former Soviet Union. However, the progressive development of multiple antibiotic-resistance by bacteria together with the banning of certain antibiotics and the insufficient development of novel antimicrobials has revived interest in phage therapy (Nakonieczna et al., 2015, Carvalho et al., 2017, Chanishvili, 2012). Lytic phages have the potential to be used to treat bacterial infections with multi-drug resistance as they lyse bacterial host cells at the end of their life cycle (Cisek et al., 2017).

Phages are harmless to humans and animals as they do not infect human and animal cells, but only bacteria, in a highly specific manner, thus phages can be selected to target pathogens and not the commensal organisms within the human flora (Carvalho et al., 2017). Additionally, they are non-toxic, self-replicating and can disperse through biofilms (Szafranski et al., 2017). Lastly, the process of bacteriophage production is cost-effective, fast and simple in comparison with antibiotics (Loc-Carrillo et al., 2011).

However, there are difficulties brought about by the use of phages as a therapeutic agents, including the clearance of phages by both innate and adaptive immune response, especially for intravenously delivered phages (Cisek et al., 2017). The transmission of
virulent genes by horizontal gene transfer is another disadvantage, such as the transfer of shiga stx-1 enterotoxin gene between E. coli strains by phage transduction, and the transfer of tetracycline resistance gene to Enterococcus gallinarum (Petridis et al., 2006, Mazaheri Nezhad Fard et al., 2011). Temperate phages can incorporate CRISPR genes in their genome and transfer it to new bacterial cells, providing the new lysogens with the ability to resist further infection with another phage, such as C. difficile phiCF5. This phage encodes a spacer in the CRISPR arrays that has identical matches to C. difficile 630 prophages phiCD38-2 and phiCD6356 (Hargreaves, 2013). Furthermore; phage virulence genes can encode for additional toxins and turn non-pathogenic strains to pathogenic ones (Saunders et al., 2001). Some strains of different bacterial species depend on a particular phage-encoded toxin to cause a specific disease; for example the shiga toxin producing E. coli, Clostridium botulinum, Corynebacterium diphtheriae, and Vibrio cholerae. Other bacterial species harbour a large number of prophages, each of which encodes a fitness or virulence factor that contribute to the lysogens fitness (Brüssow et al., 2004). Similar to antibiotics, phages can cause fast and enormous bacterial destruction, an adverse immune response in the human body may occur as a result of the release of bacterial cell wall fragments (endotoxin) such as the immunogenic lipopolysaccharides of Gram-negative bacteria, which can then cause toxin shock (Górski et al., 2012, Hagens et al., 2004, Rosenfeld et al., 2006). The high specificity of phage tropism towards bacterial strains can be considered as both an advantage and disadvantage of phage therapy. Although phages target a particular strain of bacteria, which does not affect the other commensal flora, they are unlikely to infect all the strains of a given species. Therefore, a combination of phages (phage cocktails) are is required (Loc-Carrillo et al., 2011, Hyman et al., 2010a).

The power of phage therapy in the treatment of infections with multi-drug resistance bacteria has been demonstrated in several animal models and humans (Henry et al., 2013, Nilsson, 2014). They have been suggested to treat a variety of bacterial infections as listed; a clinical trial with mice gave a promising result with regards to treating pulmonary infection with Burkholderia cepacia (Semler et al., 2014), treatment of localized and systemic infections caused by Staphylococcus aureus, and infant meningitis caused by Cronobacter sakazakii (Tamariz et al., 2014), additionally infections caused by Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Enterococcus faecalis, Actinomyces naeslundii, Veillonella spp., Neisseria spp., Lactobacillus spp. and

Streptococcus spp. have been shown to be counteracted with the use of phages (Szafranski et al., 2017). The use of phages has also been suggested for the control of food-borne diseases such as enteric infection caused by Campylobacter jejuni and Campylobacter coli (Kittler et al., 2014). Phage therapy has yielded promising results for the treatment of infections of Psuedomonas aeruginosa (Sahota, 2016), for the prevention of Listeria monocytogenes infection by the biocontrol of this bacteria in both water and food (Leverentz et al., 2003, Guenther et al., 2009), and for the treatment of adherent invasive E. coli, but has been less encouraging for E. coli O157:H7 (Galtier et al., 2017, Sabouri et al., 2017).

2.2.5 C. difficile \& C. perfringens and phage therapy

Gastro-intestinal tract (GIT) infections with multi-antibiotic resistant bacteria poses a serious health problem. The resistance to and the ability of antibiotics to alter intestinal normal flora promoting the onset of disease has driven research to look for alternative treatments. Many in-vivo studies have demonstrated that phage therapy has potential to treat such infections, including C. difficile and C. perfringens. However, it worth noting that a high titre of phage taken orally should be delivered to the infection site as the phage titre can be reduced by the patient's gastro-intestinal tract and immune response (Nakamura et al., 2014, Petit et al., 1999, Tenover et al., 2012, Osman et al., 2013, Zelasko et al., 2017).

In contrast to aerobes, little research efforts by comparatively fewer researchers has been done on C. difficile phages in comparison with their counterparts that infect other pathogenic bacteria. This fact is a consequence of the technical obstacles that generally accompany work with anaerobes and particularly with C. difficile (Hargreaves et al., 2014). However, the treatment of C. difficile infection (CDI) with phage in an artificial colon environment system revealed that the viability of C. difficile vegetative cells can be significantly reduced compared with the untreated system. Consequently, the production of toxins TcdA and TcdB was also reduced. Moreover, the lysogenization of phiCD27 used in the system can downregulate the expression of C. difficile pathogenicity locus as a result of phage expressed repressor proteins' effect. Although the total number of aerobic and anaerobic normal flora of the phage treated system was not significantly reduced compared with the antibiotic treated artificial system, C. difficile was not completely terminated from the phage treated system (Meader et al., 2010, Meader et al., 2013, Govind et al., 2009). Moreover, phages can prevent C. difficile colonisation in the

Galleria mellonella larvae intestine and highly reduce C. difficile biofilm formation. Additionally, the prophylactic oral administration of phage cocktails to Galleria mellonella larvae could prevent the disease when the larvae was challenged with C. difficile. Phage treatment has also reduced the colonization of C. difficile and subsequently elongated the life span of artificially infected larvae, as confirmed by assessing the larvae-survival rate and colonization levels. Moreover, the effect of in-vitro phage addition before and after biofilm formation was assessed using turbidity test, viable count, and scanning electron microscopy. The phage addition could prevent biofilm formation when added before the bacteria. Phages could also penetrate the already established C. difficile biofilm (Nale et al., 2016a). Lastly, the use of phage cocktails invitro to control C. difficile growth has shown a potential for the treatment of CDI (Nale et al., 2016b).

Similarly, little is known about C. perfringens phages and their in-vivo effects on C. perfringens-associated diseases. However, the use of phage has been suggested to control C. perfringens-associated enteritis in animals in countries that complied with terminating the use of antibiotics as nutrition additives, where necrotic enteritis began to cost about 2 billion dollars a year (Seal, 2013, Stanley et al., 2014). The oral admission of phage can control necrotic enteritis in broiler chickens and significantly decrease the mortality rate (Miller et al., 2010).

2.2.6 Phages endolysin

Phage-derived endolysins are peptidoglycan hydrolases enzymes that are expressed during the late phase of the phage lytic life cycle (Maciejewska et al., 2017, Stoffels et al., 2017). They have been successfully used as an alternative for antibiotics in the treatment of both Gram-negative and Gram-positive bacteria for many reasons. These include their ability to react with both the vegetative cells and the germinating spores, their distinct independent activity mode and the lack of their parents specific bacterial tropism, which give them a wider target range of strains within the same bacterial species. They exhibit a high level of bacterial lysis at considerably low concentrations within a short time. Moreover, the development of endolysins resistance is rare, as peptidoglycan is essential to the survival of bacteria, which make these enzymes a propitious antimicrobial agent. More recently, endolysins have been immobilized and incorporated into nanoparticles, so as to be used on surfaces as an anti-microbial (Van Tassell et al., 2017, Oliveira et al., 2015, Wu et al., 2017, Yang et al., 2012, Thandar et al., 2016).

Endolysins have been shown to be effective against Gram-positive bacteria (Gerstmans et al., 2016) like Enterococcus faecalis (Swift et al., 2016), Bacillus anthracis (Yang et al., 2012), Streptococci (Schmelcher et al., 2015), Bacillus cereus group and Clostridium genus (Nakonieczna et al., 2015).

Endolysins have been used for the treatment of wound bacterial infections (Abouhmad et al., 2016), Vibrio parahaemolyticus (Wang et al., 2016), multi-drug resistant Acinetobacter baumannii (Thandar et al., 2016), Paenibacillus larvae (Oliveira et al., 2015), the control of biofilm forming pathogens (Kaistha et al., 2016) and Streptococcus pneumoniae (Diez-Martinez et al., 2015).

Endolysin can also be used for DNA extraction purposes. They have been successfully used to prepare a Staphylococcus aureus DNA sample for real-time PCR. Endolysins were shown to take and take less time than DNA extraction using the lysostaphin method, thereby accelerating the detection of Staphylococcus aureus by PCR (Hu et al., 2016).

The endolysin derived from the C. difficile phage $\Phi C D 27$ is considered as a candidate medication for the treatment of CDI, as it is able to lyse C. difficile in-vitro (Dunne et al., 2014). Similarly, the endolysin derived from phages that infect C. perfringens has shown potential towards most of the C. perfringens strains and the high activity and specificity of the enzyme indicate that it can be developed to control C. perfringens growth (Tamai et al., 2014a, Gervasi et al., 2014a). Details about C. perfringens phages endolysins are reviewed in section 5.1.3.

2.2.7 The structure of endolysins

The endolysins encoded by phages that infect Gram-positive bacteria are usually between 250-400 amino acids in length. The majority of them have a modular structure consisting of a C-terminal binding domain which determines the host specificity of the enzyme and an N -terminal hydrolase domain that cleaves the peptidoglycan layer of bacterial cell wall (Figures 5 and 6). However, the endolysin encoded by the prophage of Streptococcus dysgalactiae subsp. equisimilis SK1249 has a cell wall binding domain located between two enzymatically active domains (Fischetti, 2008, Oechslin et al., 2013, Dunne et al., 2016).

Catalytic Domain

Cell Binding Domain

1. Endo- β - N -acetylglucosaminidase
2. N -acetylmuramidase
3. Endopeptidase
4. N -acetylmuramoyl-L-alanine amidase
5. γ-D-glutaminyl-L-lysine endopeptidase

Binds to a cell wall substrate (usually a carbohydrate) that appears to be essential for bacterial survival

Figure 5. Basic structure of endolysins of phages that infect Gram-positive bacteria. Most of these lysins consist of a C-terminal cell wall binding domain (right) and an N -terminal enzymatically active domain connected by a short linker. According to the type of bond that the catalytic domain is able to cleave, these endolysins are divided into five types (left) (Fischetti, 2008).

Figure 6. Chrystal structure of endolysin of Listeria monocytogenes temperate phage PSA. The cell wall binding domain (CBD) of the PSA endolysin is shown in orange (upper part) and the enzymatically active domain (EAD) is shown in blue (lower part). A small linker (L) connecting CBD \& EAD is shown in grey. The yellow sphere is the catalytic Zn^{2+} (Korndörfer et al., 2006).

In contrast, endolysins encoded by phages that infect Gram-negative bacteria are smaller (150-200 amino acids) and usually lack the cell wall binding domain, comprising of an active hydrolase domain only (Cheng et al., 1994). However, in the case of Gp110 of a Salmonella phage, there is an uncharacterised domain at the C-terminal of the enzyme with unknown functions (Rodriguez-Rubio et al., 2016). Another exception is found with the endolysins of two Pseudomonas aeruginosa phages KZ144 and EL188, which have a modular structure of an N -terminal cell wall binding domain and a C -terminal catalytic domain. This structural module is the opposite of the Gram-positive endolysins' modular structure (Briers et al., 2007). In another study, the crystal structure of endolysin of the Salmonella typhimurium phage SPN1S showed that the enzyme consists of both a large and small domain. The latter two modular domains have a groove between them with a possible binding site in it (Park et al., 2014).

2.2.8 Zymography

Zymography is a method by which the enzymatic activity of a protein can be detected, identified and even quantified with the use of sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS_PAGE) and the suitable substrate embedded in the gel. A number of clinically important enzymes are routinely detected by zymography (Wilkesman et al., 2017), such as the matrix metalloproteinase (MMP) activity (Nyati et al., 2017), the identification and confirmation of the presence of cysteine protease 30 in the Tritrichomonas foetus parasite (Gould et al., 2017), and the bacteriolytic activity of LytFM proteins produced by the house dust mite Dermatophagoides pteronyssinus (Tang et al., 2017). It is thus unsurprising that this method has recently received a large amount of interest (Wilkesman et al., 2017).

Zymography has also been used to determine the muralytic activity of bacterial and phage derived proteins. For example, it has confirmed the peptidoglycan hydrolase activity of resuscitation promoting factors that are involved in the re-activation of dormant Mycobacterium marinum (Iakobachvili, 2015), and the bacteriolytic activity of the putative endolysin derived from Enterococcus faecalis phage (Uchiyama et al., 2011).

2.2.9 Modified phages and phage engineering

Genetic engineering has been used to modify bacteriophages and improve their properties, increase their lytic action and overcome the obstacles which accompany the use of some natural phages as a therapeutic agents (Krylov, 2001). The in-vivo and invitro studies on the modified temperate and virulent phages have further emphasized the preference of using them over antibiotic (Moradpour et al., 2011).

Various techniques have been used for phage engineering, including homologous recombination which has been used to delete, insert, and replace genes within the phage genome, such as the insertion of the luxAB gene in the genome of Listeria monocytogenes phage for diagnostic purposes. However, this method only allows for the targeting of one loci at a time due to low recombination rates (Pires et al., 2016, Loessner et al., 1996). Bacteriophage recombineering of electroporated DNA (BRED) is another method employed to engineer phage genomes, and has been used to engineer Mycobacterium spp. phages, E. coli phages, and Salmonella enterica phages (Marinelli et al., 2008, Fehér et al., 2012, Shin et al., 2014). Moreover, in-vivo recombineering using phage lambda recombinase has been used to engineer E. coli phages (Oppenheim et al., 2004, Sharan et al., 2009).

Clustered regularly interspaced short palindromic repeats and their associated cas gene (CRISPR-Cas) system has been used to enhance the selection of recombinant T7 E.coli phage after the homologous recombination process. In brief, the unessential 1.7 gene was deleted by homologous recombination. Then, the lysate (mixture of recombineered and wild type T 7 phages) was propagated on an E. coli strain that harbours the required constructs to encode the modified CRISPER-Cas spacer components. The modified CRISPER-Cas was able to target and cleave the 1.7 gene. Thus, only the recombineered phage was able to grow. In this method, the CRISPER-Cas was used for the counter selection of recombineered phage (Kiro et al., 2014).

In-vitro re-factoring of phage genomes has been used to re-design the phage T7 genome. The overlapping region between genetic segments was eliminated and the genes were divided into six sections (Chan et al., 2005). Whole genome synthesis and assembly from synthetic oligonucleotides is another way of in-vitro phage genome engineering. E. coli phage phiX174 ($\sim 6 \mathrm{kB}$ genome) was in-vitro synthesized and electroporated back to E. coli in order to recover the modified phage (Smith et al., 2003).

Saccharomyces cerevisiae (S. cerevisiae) was used instead of bacterial cells for the invivo recombineering of E. coli phages genomes, as the recombineering processes was toxic for E. coli and due to the fact the genomes had a large size. In this method, the phage genome is delivered to the yeast using a S. cerevisiae-bacteria shuttle vector and maintained stably there. Then, it can be engineered using a plasmid which carries a homologous sequence. E.coli phages T3 (38208bp) and T7 (39937bp), and Klebsiella phage K11 (41181bp) were modified using this method (Ando et al., 2015, Lu et al., 2012). Again, this process also requires the extraction of the recombineered phage genome, and deliver it back to the propagation bacterial host.

The constraints of the three methods is the difficulty of manipulating a large-sized phage genome in-vitro, and the need for highly competent bacterial cells and a highly effective transformation protocol, as both the in-vitro modified and the yeast recombineered phage nucleic acid has to be delivered back into bacterial host cells so as to obtain a viable phage progeny. This explains why E. coli and Pseudomonas aeruginosa phages are nearly the only phages that have been engineered in this way (Pires et al., 2016).

2.3 Clostridial species and molecular studies

2.3.1 Background

The following section offers an overview of the molecular studies carried out on Clostridial species until now. Most of these studies have focused on the transformation of different clostridium species in the context of anaerobic production or anaerobic degradation, such as the production of ethanol by Clostridium autoethanogenum from factories' waste fluids (Liew et al., 2017), the production of butanol by Clostridium saccharoperbutylacetonicum (Herman et al., 2017), bio-mass degradation (Hahnke et al., 2014), the production of ethanol, hydrogen, and different types of acids (Ellis et al., 2014, Peterson et al., 2014), fatty acid production (Cheng et al., 2014) and the production of acetone and butanol (Cooksley et al., 2012). The study of the genes that regulate these processes has been another discipline of focus (Bengelsdorf et al., 2016).

Most of these industrial modifications are dependent on the knock-in of genes by either a single crossover event or by disrupting the coding sequence using the ClosTron. These genes utilize different substrates and metabolic pathways to give the same product. Thus, the mutant bacterial strain will be left with the desired metabolic pathway of production.

In the 90s the number of generated mutants of Clostridial species was disappointingly low (Heap et al., 2009a). The genetic manipulation of C. difficile was hindered by the lack of a mature transformation system. However, the first specific C. difficile expression vector was developed in 2002 (Purdy et al., 2002), and was followed by the construction of ClosTron, which facilitates the direct mutagenesis in a variety of Clostridium species (Heap et al., 2007, Heap et al., 2010).

Thereafter, the construction of nine Clostridium-E. coli shuttle vectors was accomplished. These shuttle plasmids have a variety of replicons and selection markers separated by restriction sites. A total of 400 plasmids can be constructed using different combinations of these components. These constructs are suitable for certain hosts and applications (Heap et al., 2009b).

2.3.2 Conjugation

Bacterial conjugation is a process of a conjugative plasmid DNA transfer by cell to cell contact from a donor bacterial cell to a recipient one. For example, a donor E. coli cell specific F pili is responsible for the formation of the conjugation-bridge. F pili is encoded by the conjugative F plasmid. The plasmid DNA transfer starts at a definite point in the plasmid DNA and proceeds in a linear manner (Figure, 7) (Holmes et al., 1996, Birge, 2006). Conjugation with donor E. coli has been used to transform C. difficile strains with DNA of ClosTron, semi-suicide, and expression plasmids (Faulds-Pain et al., 2013, Heap et al., 2007, Heap et al., 2009b). C. difficile strains differ widely in their conjugation efficiency, with C. difficile R20291 being refractory to plasmid transfer by conjugation. However, the heat treatment has improved the conjugation efficiency of C. difficile R20291 (up to 10^{-4} trans-conjugant/ $\mu \mathrm{l}$ of plasmid DNA) (Kirk et al., 2016).

Figure 7. Schematic diagram of bacterial conjugation. The cell in the upper left is a donor F^{+}cell, the origin of transfer oriT is shown as a red dot on the F plasmid. Conjugation starts when the donor cell attaches to the recipient cell by the F pili and forms a DNA transfer bridge. One strand of the conjugative plasmid is then transferred to the recipient cell in a linear fashion. Following this, the recipient cell will synthesize the complementary strand of the plasmid and will become an F^{+}cell. Adapted from http://science-tuition.co.uk/wp-content/uploads/2013/11/bacterial_conjugation.jpg.

2.3.3 Transposon mutagenesis

Transposon are mobile DNA units able to insert and excise themselves in another DNA molecule. They are also able to catalyze DNA inversion or deletion reactions (Birge, 2006). They are self-replicating genetic elements, which participate in the dissemination of antibiotic resistance genes by horizontal gene transfer. Transposons are transferred from cell to cell rapidly, and the process of transfer is much like the one of E. coli F^{+}plasmid (Harper, 2010). Transposon mutagenesis has been used to create a large number of mutants in the hyper-virulent C. difficile R20129 using the conjugative transposon Tn916 (Mullany et al., 2012, Dembek et al., 2015).

2.3.4 The ClosTron

Group II introns are ribozymes; a self-splicing RNA-protein complex (RNP) (Costa et al., 2016). TargeTrons are a genomic knockout tool based on the mobile group II introns taken from Lactococcus lactis. TargeTron can de-activate the gene by insertion, in a sitespecific manner (Liu et al., 2015).

ClosTron is a Clostridium TargeTron. Simply, the ClosTron construct includes two parts, in addition to the fundamental components of any plasmid such as an antibiotic marker, origin/s of replication, multiple cloning site, and origin for transfer (Figures 8 and 9). The first part is a PCR mutated Lactococcus lactis group II intron gene that has the target gene recognition sequence (homologous sequence) attached. The second part is a reverse transcriptase gene. The first part produces a single strand of RNP (spliced group II introns and the recognition sequence), which recognises and inserts itself into the bacterial chromosome inside the gene to be knocked-in. The second part expresses the reverse transcriptase and builds the complementary DNA. Thus, the gene is then permanently knocked-in (Kuehne et al., 2012, Heap et al., 2009b).

Figure 8. Basic structure of the ClosTron. The ClosTron consists of four basic parts separated by a restriction site. The application specific module (modified group II intron and reverse transcriptase genes), Gram-positive and Gram-negative origins of replication, with optional origin of transfer, and a selection marker (antibiotic resistance gene). Adapted from http://clostron.com/pMTL80000.php.

Figure 9. Schematic diagram of a modular plasmid pMTL80000. Most of the available modules are shown in this diagram. Four restriction sites are separating each module, allowing the construction of many Clostridium-E. coli shuttle plasmids which have different host range and functionality (Heap et al., 2009b).

In 2010, the host range of the ClosTron was increased to include C. beijerinckii and C. difficile ribotype 027 "epidemic strain" and can currently transfer DNA to C. difficile,
C. acetobutylicum,
C. beijerinckii,
C. botulinum,
C. perfringens,
C. sporogenes, C.
pasteurianum, C. ljungdahlii, C. autoethanogenum and even Geobacillus thermoglucosidasius (Heap et al., 2010, Minton et al., 2016).

2.3.5 Homologous recombination

Homologous recombination (HR) is a process by which DNA sequence is exchanged between two double stranded DNA molecules that have homologous sequences of DNA, such as two copies of the same chromosome or any DNA molecules that share the same sequences. HR is involved in the double stranded DNA repair by correcting the errors that occur during DNA replication, like correcting damaged replication forks. During meiosis, HR generates new combinations of DNA sequences to ensure genetic variability in the off-spring. HR's mechanism is dependent on a recombinase enzyme that catalyzes the recognition of homologous sequences and the subsequent homologous end-joining reaction (Alberts et al., 2002, Li et al., 2008). The HR based mutagenesis laboratory technique has become an important and widely used genome editing method (Mohanta et al., 2017, Carter, 1986).

Aside from the gene knock-in integration of whole plasmids and the ClosTron, system another method is homologous recombination-based gene excision. Until 2011, almost all the clostridium spp. mutations by homologous recombination was achieved by a single crossover event using a suicide plasmid where the whole plasmid backbone was incorporated in the bacterial chromosome. Examples of these mutations include the inactivation of the sorbitol gene in C. acetobutylicum (Wilkinson et al., 1994), the formation of butyrate and acetate by C. acetobutylicum (Green et al., 1996), the inactivation of regulator genes in C. difficile (O'connor et al., 2006), and the silencing of spolIE and $\operatorname{sig} F, \operatorname{sig} G$, and sigE genes in C. acetobutylicum (Bi et al., 2011, Jones et al., 2011, Tracy et al., 2011). Only a few C. perfringens mutants were created by double crossover, such as the excision of C. perfringens alfa and theta toxins (Awad et al., 1995).

After 2011, double crossover events were accomplished for C. difficile. This process is firstly dependent on the creation of a uracil auxotrophic and fluoroorotic acid (FOA) resistant mutant. This facilitates the manipulation of the target genes by homologous recombination where the heterologous pyrE gene from C. sporogenes is used as a counter selection and negative selection marker. The second step is the restoration of uracil prototrophy by the repair of the pyrE gene (Ng et al., 2013, Minton et al., 2016).

2.3.6 Electroporation

2.3.6.1 Definition and hypothesis

The process of increasing cytoplasmic membrane permeability to macromolecules and ions by using short intensive electric pulses is called electroporation. Introducing DNA into a cell by applying an electric pulse on it is also called electroporation (Rubinsky, 2010, Bennett et al., 2014). However, the exact mechanism by which the increase in membrane permeability occurs is not known. This phenomenon has been studied extensively through the use of computer simulation (molecular dynamic simulations). The aforementioned research revealed that the presence of free ions can strengthen the transmembrane pulse and improve the electroporation process. Having said that, these free ions can also hinder pore resealing (Sridhara et al., 2014, Nickoloff, 1995).

The electroporation hypothesis posits that a strong, short electric pulse causes the transmembrane voltage $\mathrm{U}_{(\mathrm{t})}$ (where U is the voltage magnitude and (t) is the elapsed time of the voltage ($\mu \mathrm{Sec} .-\mathrm{mSec}$) in the membrane). The transmembrane voltage can in turn cause a rearrangement (breakdown) in the cytoplasmic membrane (CM) which results in the formation of pores also referred ot as "temporary aqueous pathways", for the hypothesized CM fluctuation, where the outer layer of the CM is invaginated into the membrane to form a hydrophobic pore (Nickoloff, 1995, Chizmadzhev et al., 1979, White, 1978). The hydrophobic pore is suggested as an instant precursor for the hydrophilic pore, while the latter is considered as the first pore with a radius of 1 nm minimum, which allows the passage of ions and molecules (Abidor et al., 1979, Litster, 1975, Taupin et al., 1975, Weaver, 1993). The second hypothesized pore structure is a composite pore, containing one protein or more at the pore's verge (Weaver et al., 1992). The last pore structure is also a composite pore but with a charged large molecule incorporated in the hydrophilic pore (Figure, 10) (Tsoneva et al., 1990).

Figure 10. Hypothetical structure of pores formed by electroporation. A. Membrane fluctuation. B. Invagination of the outer layer of cytoplasmic membrane. C. Hydrophobic pore, the immediate precursor of the hydrophilic pore. D. Hydrophilic pore that allows the passage of ions and molecules. E. Composite pore with protein molecule at the inner edge. F. Composite pore with macromolecule passing through.

2.3.6.2 Factors that affect electroporation

Successful macromolecule delivery by electroporation depends on pulse density, pulse duration, number of applied pulses, type of nucleic acid used for transformation and how it interacts with the CM and on bacterial strain (Rols et al., 1998, Jirásková et al., 2005, Li, 2008, Ackermann et al., 2001, Wagstaff et al., 2016). Many studies have emphasized the role of the Gram-positive bacterial cell wall as a physical barrier confronting the passage of DNA by electroporation, and have described a successful transformation protocol after a cell wall treatment, such as that of Lactococcus lactis after treatment with lysozyme (Powell et al., 1988). Many electroporation studies on Clostridium revealed that the characteristic of the strain to be electro-transformed is a crucial condition to the success of electroporation (Ackermann et al., 2001).

The C. difficile cell wall consists of a thick de-acetylated peptide-glycan (PG) layer that has unique cell wall glycopolymers (CWGs) bounds to the surface layer (S-layer) protein lattice surrounding the whole PG (Figure, 11). The S-layer is composed of SlpA and an additional 28 proteins (Brüggemann et al., 2009, Kirk et al., 2017a). There are two distinct proteins in the S-layer which, a high molecular weight (42-50 kDa) protein and a low molecular weight ($22-38 \mathrm{kDa}$) protein (Cerquetti et al., 2000). The abovementioned cell wall complexity and thickness represent a physical barrier that confronts the passage of DNA by electroporation.

Figure 11. Complexity and thickness of C. difficile cell envelope. A. C. difficile cell envelope. The outer layer is decorated by the cell wall proteins family. SlpA, S-layer, and cell wall binding proteins are shown at the top, while the peptidoglycan and the glycopolymers can be seen in the middle. The plasma membrane is shown beneath the peptidoglycan layer. B. Organization of the proteins domains shown in A. Black boxes refer to the secretion signals of N -terminal. The black arrows refer to the post-secretion cleavage sites of the SlpA and CwpV . The sorting motifs location and sequence are shown above CD2831 and CbpA. (Kirk et al., 2017a).

The electric pulse has two roles in electroporation. Firstly, it causes the formation of pores, secondly, it provides a regional impose to transport molecules and ions through the pore. Depending on the cell size, a range of $1-10 \mathrm{kV} / \mathrm{cm}$ is required to cause electrical breakdown (EB) to the CM of isolated cells (Nickoloff, 1995). As EB starts, nonspecific molecular and ionic exchange between the inner cell and the surrounding medium occurs. Whether cells can survive these events or not depends on cell kind, cell volume (the ratio between extra to intracellular magnitude), field intensity (can cause cell rupture) and medium chemical structure (Nickoloff, 1995, Weaver et al., 1996).

2.3.6.3 Advantages and applications

Electroporation has many advantages compared with chemical and biological methods; it is relatively easier, faster, more efficient, and can be used to transform a wide range of different cell types (Chang et al., 1992, Jordan et al., 2008, Deng et al., 2017).

Electroporation has become widely used in biotechnology to deliver a variety of molecules (DNA, RNA, proteins and chemicals for therapeutic purposes) into different cell types (Bacteria, fungi, mammalian and plant cells) (Coletti et al., 2017, Yang et al., 2017, Prpar Mihevc et al., 2017, Han et al., 2017, Jaeger et al., 2017, Liu et al., 2017).

2.3.6.4 Disadvantages

The disadvantages of electroporation include the short lasting effects (nanoseconds) and intensive pulses that lead to the electroporation of the cellular organelles. It has been noticed that the endocytotic vesicle membrane of B16 F1 mouse melanoma cells became permeable when exposed to such a pulse. The endocytotic vesicle releases lucifer yellow and uptakes propidium iodide as a result of the penetration of the electric field into the cell interior (Napotnik et al., 2010). This effect takes place if the dielectric permittivity of the organelle membrane is lower than that of the cell membrane, or the conductivity of the organelle interior is higher than that of the cytosol, as is the case with mitochondria (Kotnik et al., 2006).

The disadvantages also include the high cost of certain electroporator devices. The electroporation applications in molecular biology require a wide range of "pulse amplitude, pulse duration, number of pulses, pulse repetition rate, and pulse shape". Such a device is difficult to obtain and usually costs a lot of money (Reberšek et al., 2011).

2.3.6.5 Clostridium species and electroporation

Electroporation has been successfully used to transform different Clostridium species with plasmid DNA. Different transformation efficiencies (TE) were obtained for each species, and for each plasmid within the same species. For example, Clostridium thermocellum with TE of $1.5 \times 10^{3} \mathrm{CFU} / \mu \mathrm{g}, 1.0 \times 10^{3} \mathrm{CFU} / \mu \mathrm{g}$, and $0.85 \times 10^{3} \mathrm{CFU} / \mu \mathrm{g}$ for pNW33N-adh, pNW33N-pdc, and pNW33N-pdc-adh plasmids respectively (Kannuchamy et al., 2016), Clostridium pasteurianum with TE of $1.2 \times 10^{2} \mathrm{CFU} / \mu \mathrm{g}$ (Kolek et al., 2016), Clostridium beijerinckii with TE of $7.44 \times 10^{3} \mathrm{CFU} / \mu \mathrm{g}$ (Oh et al., 2015), Clostridium ljungdahlii with TE of $3.8 \pm 0.2 \times 10^{3}$ with pMTL82151 and 3.1 ± 1.8 X 10^{3} with pMTL83151 (Leang et al., 2013), and many others.

Only one report has described a protocol to transform C. difficile by electroporation. Ackermann et al. (2001) were able to transform one non-toxigenic C. difficile strain out of eight. However, the optimized electroporation parameters of this protocol are not reproducible with other C. difficile strains, and the success rate is 82% with the same strain. It is clear that this fact is due to the complex stratified structure of the thick C. difficile envelope reviewed in section 2.3.4.2.

During the optimization of the electroporation of C. difficile ribotypes 076 and 220, an attempted was made to obtain the C. difficile strain used in Ackermann's study. Although authors were contacted by email, there has not been any reply.

Chapter 3

General methods

Chapter 3. General Methods

3.1 Media, buffers, solutions, and enzymes

3.1.1 Media

All media, buffers and enzymes used throughout this study are listed in Appendix 1. Prestige Medical Autoclave, England was used to autoclave all the media and buffers at $121^{\circ} \mathrm{C}, 15 \mathrm{psi}$ (1 bar) for 15 minutes.

3.2 Bacterial strains

3.2.1 C. difficile source and culture methods
C. difficile ribotypes 220 and 076 were kindly provided by Prof. Clokie. C. difficile ribotype 220 harbours the CDHM1 and CDHM3 bacteriophages as prophages. These two phages are able to infect and lyse the relatively important clinical C. difficile strains, including the hypervirulent R027 (Hargreaves, 2013). C. difficile ribotype 076 is susceptible to infection with many bacteriophages, and was used as a factory to propagate the bacteriophages.
C. difficile was routinely cultured on a blood agar plate (Appendix, 1). This plate was then incubated at $37^{\circ} \mathrm{C}$ for 24-48 hours under anaerobic conditions; 5-10\% Hydrogen, 10\% Carbon dioxide and 80-85\% Nitrogen inside an anaerobic chamber (miniMACS anaerobic workstation) (Don Whitely Scientific, UK).

Typically, from the blood plate, one colony was inoculated in to 5 ml of pre-reduced Fastidious Anaerobic broth (FA) (Appendix, 1) inside a bijou tube (Sterilin, UK) and incubated anaerobically overnight ($8-16$ hours) at $37^{\circ} \mathrm{C}$. The growth curves of C. difficile ribotypes 076 and 220 were already done separately by (Rashid, 2016) and (Hargreaves, 2013) respectively. The next day, $500 \mu \mathrm{l}$ of FA culture was inoculated in 50 ml of prereduced brain heart infusion BHI broth. After the BHI culture reached the \log phase (0.20.3 OD at 550 nm), it was used for spot tests, plaque assays, CDHM1 phage propagation and for the preparation of C. difficile cells for electroporation.

3.2.2 C. difficile cryogenic stock

1.4 ml of FA overnight culture was centrifuged at room temperature for 5 minutes at 13,000xg (Eppendorf, Germany). Glycerol taken from a cryo-preservation vial (Abtec,

UK) was used to re-suspend the pellet after decanting the supernatant. The suspension was dispensed back to the cryo-vial and stored at $-80^{\circ} \mathrm{C}$.

3.2.3 C. perfringens source and culture methods

3.2.3.1 Sampling for the isolation of C. perfringens and C. perfringens phages

Environmental soil samples and faeces samples from a variety of animals and soils were collected from different sites in and around the Leicester area, as well as from Iraq (three samples only). 60 Samples were collected from Melton Mowbray farms, Ansty (Gorse Hill City Farm), Bradgate Park, Desford (Tropical Birdland), Blaby, Lutterworth Road farms, Astley (Walton Lodge Farm), Water Mead Park and Abbey Park, in Leicestershire (United Kingdom). 21 out of the 81 samples were kindly provided by Julian Clokie (soil, pigs, dogs and duck faeces).

Environmental faecal samples were obtained from chickens ($\mathrm{n}=9$), cows ($\mathrm{n}=5$), sheep ($n=5$), horses ($n=5$), rabbits ($n=4$), a turkey ($n=1$), a fish ($n=1$), ducks ($n=9$), parrots ($n=3$), dogs $(\mathrm{n}=3)$, sediment $(\mathrm{n}=2)$, ostriches $(\mathrm{n}=2)$, a lamb $(\mathrm{n}=1)$, deer $(\mathrm{n}=2)$, a swan $(\mathrm{n}=1)$, an unknown sample taken from the side of the road $(\mathrm{n}=1)$ and soil samples $(\mathrm{n}=6)$.

The pigs faeces ($n=7$), soil ($n=2$), and duck sample ($n=3$) were kindly provided by Julian Clokie. Other soil samples ($\mathrm{n}=9$) were kindly provided by Mahananda Chutia (Appendix, 5). Samples were stored at $4^{\circ} \mathrm{C}$ until processing. Nine C. perfringens strains, which were kindly provided by Prof. Martha Clokie and which were isolated from outside Leicestershire, 69 C. perfringens strains were isolated out of the 81 collected samples (Appendix, 5).

3.2.3.2 Isolation of C. perfringens strains

C. perfringens strains were isolated by enrichment culture in tryptose-sulphate cycloserine (TSC) broth supplemented with $400 \mu \mathrm{~g} / \mathrm{ml}$ cycloserine (Appendix, 1) (Erickson et al., 1978).

Approximately $1 \mathrm{~cm}^{3}$ of faeces or soil samples were suspended in 10 ml of (TSC) broth and incubated anaerobically overnight at $37^{\circ} \mathrm{C}$. The culture was then centrifuged at 3000xg for 5minutes (Beckmann coulter, UK) at room temperature, and $10 \mu \mathrm{l}$ of the supernatant was streaked on to TSC agar (Appendix, 1) and incubated anaerobically overnight at $37^{\circ} \mathrm{C}$.

The next day, half of one distinct large black colony was used for the amplification of the C. perfringens specific 16 s rDNA gene by PCR. The other half was used to prepare a cryogenic stock. It was suspended and thoroughly mixed using a pipette in $100 \mu \mathrm{l}$ of ultrapure distilled water and boiled at $99^{\circ} \mathrm{C}$ for 10 minutes. The mixture was left for 5 minutes to cool down, then centrifuged at 16000xg for 5minutes. The supernatant containing the bacterial DNA was used as a template for PCR. A pair of specific primers for C. perfringens 16s rDNA (Skånseng et al., 2006) (Appendix, 3) was used to confirm that the isolated strain is C. perfringens. The PCR reaction mix's volume was $25 \mu \mathrm{l}$ and contained: DNA template, $0.4 \mu \mathrm{M}$ of each primer, $250 \mu \mathrm{M}$ of dNTPs, 1 X buffer, and 0.5 unit/ $25 \mu \mathrm{l}$ of BioTaq polymerase (Bioline, UK). Cycler conditions were: initial denaturation step at $95^{\circ} \mathrm{C}$ for 5minutes, 35 cycles of $95^{\circ} \mathrm{C}$ for 30 seconds, $56^{\circ} \mathrm{C}$ for 20 seconds, $72^{\circ} \mathrm{C}$ for 1 minute, and a final extension step of $72^{\circ} \mathrm{C}$ for 5 minutes. The 260 bp PCR product was visualised on a 1\% agarose gel (Fisher scientific, UK) prepared in 1X TAE buffer, stained with medori green DNA stain (Geneflow, UK), and a 1kb or 100bp DNA ruler (New England Biolabs, UK) was used to determine the product's size. Electrophoresis was carried out in a 1X TAE buffer by using 90volts for one hour (BioRad, UK). Gel images were taken using a gel dock (Bio Rad, UK).

Amplification of bacterial universal 16 s rDNA was performed for the colonies, which were repeatedly negative for the C. perfringens specific 16 s rDNA . A pair of primers for universal bacterial 16s rDNA amplification (Turner et al., 1999) (Appendix, 3) was used. The PCR reaction mix's volume was $25 \mu \mathrm{l}$, and contained: DNA template, $0.2 \mu \mathrm{M}$ of each primer, $250 \mu \mathrm{M}$ of dNTPs, 1 X buffer, and 0.5 unit $/ 25 \mu 1$ of BioTaq polymerase (Bioline, UK). Cycler conditions were: initial denaturation step at $95^{\circ} \mathrm{C}$ for 5 minutes, 30 cycles of $95^{\circ} \mathrm{C}$ for 30 seconds, $55^{\circ} \mathrm{C}$ for 90 seconds, $72^{\circ} \mathrm{C}$ for 2 minutes, and final extension step of $72^{\circ} \mathrm{C}$ for 10 minutes. The PCR product was purified from the gel using a mini-elute Kit (Qiagen, UK). The product was sent for sequencing to GATC Biotech. When the sequence was returned, a BLAST search against the NCBI sequence collection was carried out using the nucleotide blast software available online at:
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastn\&PAGE_TYPE=BlastSear ch\&LINK LOC=blasthome).

3.2.3.3 C. perfringens culture and cryogenic stock preparation

The other half of the same isolated colony which was confirmed by C. perfringens specific 16 s rDNA PCR to be C. perfringens strain was inoculated in a pre-reduced tryptose sulphate (TS) broth (Appendix, 1) and incubated anaerobically for 2-2.5 hours at $37^{\circ} \mathrm{C}$ (Figure, 33 in section 4.4.9) to prepare a cryo-stock. 1.4 ml of TS broth culture was centrifuged at room temperature for 5 minutes at 13,000xg (Eppendorf, Germany). Glycerol taken from a cryo-preservation vial was used to re-suspend the pellet after decanting the supernatant. The suspension was dispensed back into the cryo-vial and stored at $-80^{\circ} \mathrm{C}$.
C. perfringens was routinely cultured on a tryptose-sulphate agar (TSA) plate (Appendix, 1). The plate was incubated at $37^{\circ} \mathrm{C}$ for $12-24$ hours under anaerobic conditions.

TS broth was used to prepare a liquid C. perfringens culture for both a plaque assay and spot test. A loospful of the colony was inoculated in a pre-reduced TS broth. The exponentially growing bacteria was ready after 2-2.5 hours (Figure 33 in 4.4.9). The CFU after 2.5 hours was around $10^{8} \mathrm{CFU} / \mathrm{ml}$, reaching $10^{9} \mathrm{CFU} / \mathrm{ml}$ after about another hour and began declining after the fifth hour post inoculation. The reason for using TS broth instead of Tryptose-Yeast extract is that C. perfringens grows much faster in the former. It was not used for experiments requiring optical density calculation because of the black colour produced at the early stage of C. perfringens growth. Therefore, the optimized tryptose- yeast-extract (TY) broth (see 4.3.1.4) was used instead as it doesn't develop the black colour.

3.2.4 E. coli strains and culture methods

E. coli DH5 α In-Fusion® HD Cloning (Clontech, USA) was used to amplify the backbone of plasmids pTML82151 (Figure, 12) and pMTL84151 (Figure, 13), which were used in the optimization of the electro-transformation of C. difficile R220. pTML82151 is a semi-suicide vector for C. difficile. It has a Gram-negative origin of replication in E. coli and a Gram-positive origin of replication derived from C. pasteurianum, which allow the replication of the plasmid at a very low level inside C. difficile. Plasmid pMTL84151 is a C. difficile specific expression plasmid that possesses the native pCD6 promotor (Heap et al., 2009b). E. coli DH5a has also used to amplify pLEICS-02, which has the recombinant endolysin gene of the CPAP1 phage. The
expression of recombinant endolysin was performed in E. coli BL21 DE3 (Agilent Technologies, UK).
E. coli strains were grown in Luria Bertani agar (LB agar) and lysogeny broth (LB broth) (Appendix, 1). E. coli DH5 a that harbours the pMTL82151or pMTL84151 was streaked from a cryo-stock on LB agar supplemented with $30 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol (Appendix, 1) and incubated aerobically at $37^{\circ} \mathrm{C}$ overnight. The plate could be stored at $4^{\circ} \mathrm{C}$ and used for up to two weeks. A loopful of colonies were inoculated in 10 ml of LB broth supplemented with $30 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol, and incubated aerobically overnight with agitation at 220 rpm using the Innova ${ }^{\circledR} 44$ (New Brunswick scientific, USA) shaker incubator. The following day, the amplified plasmid was extracted as described in section 3.11.2 and used for C. difficile transformation.

Figure 12. The pMTL82151 plasmid map. The plasmid map was generated using the PlasMapper software (Dong et al., 2004). The pMTL82151 is an E. coli - C. difficile shuttle plasmid. It is 5254 bp in size and a chloramphenicol/thiamphenicol resistance marker.

Figure 13. A pMTL84151 plasmid map. The plasmid map was generated using the PlasMapper software (Dong et al., 2004). The pMTL84151 is an E. coli - C. difficile shuttle plasmid. It is a C. difficile specific expression plasmid that possesses the native C. difficile pCD 6 promotor. It is 6297bp in size and has a chloramphenicol/thiamphenicol resistance marker.
E. coli $\mathrm{DH} 5 \alpha$ that harbours the pLEICS-02 was streaked from a cryo-stock on LB agar supplemented with $150 \mu \mathrm{~g} / \mathrm{ml}$ of carbenicillin (Appendix, 1) and incubated aerobically overnight. The plate could be stored at $4^{\circ} \mathrm{C}$ and used for up to two weeks. loopful of colonies were inoculated in 10 ml of LB broth supplemented with $150 \mu \mathrm{~g} / \mathrm{ml}$ carbenicillin and incubated aerobically overnight with agitation at 220rpm using the Innova® 44 (New Brunswick scientific, USA) shaker incubator. The following day, the amplified plasmid was extracted as described in 3.11 .2 and used for the transformation of E. coli BL21.

3.3 C. perfringens genotyping (toxin typing)

3.3.2 C. perfringens toxin typing

C. perfringens strains were toxin-typed using multiplex PCR as described by (van Asten et al., 2009). Six pairs of specific primers that amplify the 5 essential C. perfringens toxins, plus the Beta 2 toxin (Appendix, 3) were used to detect the presence of one or more toxin and classify the isolated strains accordingly (van Asten et al., 2008, van Asten et al., 2009, Baums et al., 2004b, Meer et al., 1997). A volume of $1 \mu 1$ of the extracted DNA was used as a template for PCR. The primers were used at a final concentration of $0.2 \mu \mathrm{M}$, with the exception of the Beta 2 primers, whose concentration was $0.4 \mu \mathrm{M}$. The PCR mix of (Qiagen, UK) was ready to use. The multiplex PCR was carried out using the following conditions; 15 minutes initial denaturation step at $95^{\circ} \mathrm{C}, 40$ cycles of 30 seconds denaturation at $94^{\circ} \mathrm{C}, 90$ seconds annealing at $53^{\circ} \mathrm{C}, 90$ seconds extension at $72^{\circ} \mathrm{C}$, and 10 minutes final extension at $72^{\circ} \mathrm{C}$. The reaction was repeated using a $57^{\circ} \mathrm{C}$ annealing temperature. A 3\% agarose gel (BioLine, UK) was used to help separate between the amplicons, as the difference in size between them ranged from 52 to $109 \mathrm{bp} .1 \mu \mathrm{l}$ of distilled water was used as a negative control. A New England BioLab 100bp DNA gene ruler and Bioline 1 kb GeneRuler were used to determine the PCR products' size.

All the C. perfringens strains tested by multiplex PCR were negative for beta, iota and epsilon toxins. A separate PCR reaction was carried out to detect the presence of these toxin genes by using three pairs of primers (Appendix, 3) (Gharaibeh et al., 2010, Perelle et al., 1993, Kadra et al., 1999).

3.4 Colony forming unit CFU

CFU counts were performed as described by (Lee, 2008) with some modification. Serial dilutions (down to 10^{-8}) of bacterial liquid culture were prepared using a TY broth in a 96 wells microtiter plate. $10 \mu \mathrm{l}$ of each dilution was spotted in duplicate on a
segmented $3.7 \% \mathrm{BHI}$ agar 120 mm square plate, allowed to dry and incubated anaerobically overnight at $37^{\circ} \mathrm{C}$.

The next day, CFU was calculated as separate colonies became visible; to do this, the following equation was used:
$C F U / m l=$ the average colonies count of duplicate $10 \mu l$ spotsX100Xdilution factor

3.5 C. perfringens growth curve

One C. perfringens colony was inoculated in 50 ml of pre-reduced TY broth and incubated anaerobically overnight at $37^{\circ} \mathrm{C}$. The next day, $500 \mu \mathrm{l}$ of the liquid culture was added to 49.5 ml of pre-reduced TY broth. Both CFU and OD at 550 nm were taken at the inoculation time. A colony forming unit was performed and O.D at 550 nm (Multicell changer, Jinway) was taken at different time points. These time points were 1, 2, 3, 4, 5, 6,12 , and 24 hours. 50 ml of TY broth was used as a blank.

3.6 Phage related methods

3.6.1 C. difficile phages CDHM1 and CDHM3

These phages were kindly provided by Prof Martha Clokie. Both phages are temperate, long tail myoviruses and have a 54 kb DNA genome. CDHM3 is able to infect and lyse hypervirulent C. difficile strains such as R027 and R078, while CDHM1 can be easily propagated to a high titre.

3.6.2 C. perfringens phages

Five phages were isolated from environmental samples collected during this project (Table, 5).

Phage lab name	Isolation CP strain	Name	Isolation source
F42	CP42	CPAP1	Cow faeces
F43	CP40	CPAS1	Cow faeces
F44	CP40	CPAS2	Cow faeces
F56	CP56	CPAS3	Turkey faeces
F65	CP65	CPAP2	Soil sample

Table 5. The Isolated C. perfringens phages. Five phages which are able to grow on their indicator strains are listed below.

3.7 Phage cryo-stock preparation

The isolated purified phage lysates were mixed with a 50% glycerol solution at a ratio of 1:1 (25% final glycerol concentration) inside a cryo-vial and stored at $-80^{\circ} \mathrm{C}$. The final $\mathrm{PFU} / \mathrm{ml}$ in the cryo-stock was: CPAP15 X 10^{10}, CPAP2 8 X 10^{5}, CPAS1 1×10^{6}, CPAS2 7×10^{6}, and CPAS3 4×10^{5}.

3.8 Spot test (determining phage stock titre)

A spot test (small drop plaque assay) (Mazzocco et al., 2009) was used with modifications to determine the phage concentration (plaque forming unit $\mathrm{PFU} / \mathrm{ml}$). $500 \mu \mathrm{l}$ of exponentially growing C. perfringens was mixed with 8 ml of TY soft agar and calcium-magnesium salt (Appendix, 1), and poured onto a 120 mm square 1% TY agar plate. The plate was left to solidify for five minutes. Serial dilutions of the phage preparation were made $\left(10^{-1}-10^{-8}\right)$ and $10 \mu \mathrm{l}$ was spotted in duplicate on the overlay agar. The plate was incubated overnight anaerobically at $37^{\circ} \mathrm{C}$. The next day, the $\mathrm{PFU} / \mathrm{ml}$ was determined by the following equation:

PFU /ml = the average count of duplicate $10 \mu \mathrm{l}$ spots $X 100 \mathrm{X}$ dilution factor

3.9 Plaque assay

A plaque assay (double agar layers) (Kropinski et al., 2009), with a few modifications, was used to propagate and get a high C. perfringens phage titre, which is required for further experiments. $500 \mu \mathrm{l}$ of exponentially growing C. perfringens host was mixed with
$250 \mu \mathrm{l}$ of lysate of the phage to be concentrated in a 15 ml falcon tube. One tube was prepared for each 120 mm square plate; usually, 20 plates were prepared at a time. Then, 4 ml of Tryptose-yeast extract TY soft agar and 4 ml of salt solution (overlay agar) (Appendix, 1) were added to the tube. This tube was then inverted a few times and poured onto 120 mm square 1% TY agar plate (Oxoid, UK). The double layered plates were left to dry for 5minutes in order to allow them to solidify, after which they were incubated anaerobically at $37^{\circ} \mathrm{C}$ for between $9-15$ hours. For the circular 90 mm plates, $200 \mu \mathrm{l}$ of culture was mixed with $100 \mu \mathrm{l}$ of phage lysate and 1.5 ml from both the soft agar and salt was added.

The plates were scraped after the incubation was over using an L shaped scraper into 50 ml falcon tubes and were incubated at $4^{\circ} \mathrm{C}$ for more than 5 hours. The tubes were centrifuged at 12000 xg for 5 minutes and the supernatant that contained the phage was filter-sterilized using a $0.22 \mu \mathrm{~m}$ filter (Miller ${ }^{\circledR}$ Millipore, UK). The resulting phage lysate was titrated by a spot test and stored at $4^{\circ} \mathrm{C}$ for further use.

3.10 Phage concentration

3.10.1 Phage concentration by ultra-centrifugation

Phage lysate was cleaned by tube dialysis in order to remove any remaining media. It was then aliquoted in 5 ml inside dialysis membranes and immersed in a beaker with 2 litres of sodium magnesium buffer (SM) pH 8 (Appendix, 1). The beaker was placed on a magnetic stirrer overnight at $4^{\circ} \mathrm{C}$. The buffer was replaced once during the incubation.

The following day, the phage lysate was transported to 6 tubes and ultra-centrifuged at $117,000 \mathrm{xg}$ for three hours at $4^{\circ} \mathrm{C}$ (Sorvall-Discovery, Hitachi). The tubes were taken out of the centrifuge and the upper part of the lysate was aspirated with extreme care, as vibration can re-mix the packed phages. Approximately 1 ml of the lysate was left in each tube. The phage titer was determined by a spot test (counting plaque forming unit PFU) and stored at $4^{\circ} \mathrm{C}$ to be used in further experiments.
3.10.2 Phage concentration by polyethylene glycol (PEG)

Phage lysate was concentrated by PEG as described by (Nale et al., 2012), with some modifications, after which it was transported to a 50 ml falcon tube. Sodium chloride was dissolved in the phage lysate to achieve 1 M , and after one hour of incubation in ice, the tubes were centrifuged at 3500 xg for 10 minutes and the supernatant was filtered using
$0.22 \mu \mathrm{~m}$ filter into a new tube. $10 \% \mathrm{w} / \mathrm{v}$ of PEG8000 (Fisher scientific, Belgium) was gradually added with continuous stirring until it dissolved. The treated lysate was incubated overnight at $4^{\circ} \mathrm{C}$. During incubation, the PEG was precipitated and the clean phage remained in the solution.

The next day, the tube was centrifuged at 15000 xg for 20 minutes at $4^{\circ} \mathrm{C}$, and the supernatant was discarded. The pellet was re-suspended with 1 ml of SM buffer and 1 ml of chloroform was added. The tube was then centrifuged at 4000 xg for 15 minutes at $4^{\circ} \mathrm{C}$. The top aqueous solution was collected, filtered using the $0.22 \mu \mathrm{~m}$ filter, and the phage titre was determined by a spot test.

Alternatively, the chloroform washing step was not performed. Instead, the pellet was re-suspended in SM buffer and transferred to a 2 mL sterile tube. $2 \mathrm{M} \mathrm{KCL} \mathrm{V:V} \mathrm{was} \mathrm{added}$, after which the mixture was incubated on ice for 20minutes. The tube was centrifuged at $12,000 \mathrm{xg}$ for 10 minutes at $4^{\circ} \mathrm{C}$ in order to precipitate the PEG solution slowly, while the free phage remained in the supernatant. Finally, the supernatant with clean, concentrated phage was pipetted into a new tube (Colombet et al., 2012).

3.10.3 Phage DNA extraction

Phage DNA was extracted by the phenol/chloroform/isoamyl alcohol method using the ultra-centrifugation concentrated phage lysate. 1 ml of the lysate was transported into an eppendorf tube. $12.5 \mu \mathrm{l}$ of 1 M magnesium chloride was added, after which the tube was gently mixed. The mixture was treated with $10 \mu \mathrm{l}$ of $30 \mathrm{mg} / \mathrm{ml}$ DNaseI and $2 \mu \mathrm{l}$ of $100 \mathrm{mg} / \mathrm{ml}$ RNase H (New England Biolabs, U.K). The tube was then briefly vortexed and incubated overnight at $37^{\circ} \mathrm{C}$.

The following day, the mixture was filtered with a $0.22 \mu \mathrm{~m}$ filter into a new tube. Universal bacterial 16s rDNA PCR was performed to detect any contamination with the bacterial genome (Appendix, 3). The following reagents were added in this exact sequence; $40 \mu \mathrm{l}$ of 0.5 M Ethylene Di-amine Tetra-acetic Acid (EDTA), $5 \mu \mathrm{l}$ of $10 \mathrm{mg} / \mathrm{mL}$ proteinase K (Fisher Scientific, UK), and $50 \mu \mathrm{l}$ of 10% Sodium dodecyl sulphate (SDS). The mixture was vigorously vortexed and incubated at $55^{\circ} \mathrm{C}$ for one hour; the tube was vortexed twice, every 20 minutes during the incubation. Then, an equal volume of phenol/chloroform/isoamyl alcohol (25:24:1 $\mathrm{v} / \mathrm{v} / \mathrm{v}$) was added and the tube was inverted several times and centrifuged at 15000 xg for 15 minutes at $4^{\circ} \mathrm{C}$. The aqueous layer on top
containing the DNA was retained, and the addition of an equal volume of phenol/chloroform/isoamyl alcohol and centrifugation was repeated.

The aqueous layer was transported into a new tube and the DNA was precipitated by the addition of two volumes of ice-cold isopropanol and $1: 10$ volume of 3 M sodium acetate pH 7.5 . The tube was incubated in ice for 30 minutes and centrifuged at 21000 xg for 20 minutes at $4^{\circ} \mathrm{C}$. The entire liquid was removed carefully using a pipette and 1 ml of 70% ethanol was added to wash the pellet. Following this, the isopropanol was carefully removed, and the DNA pellet was briefly air-dried and dissolved in $50 \mu \mathrm{l}$ of 5 mM Trisacetate $\mathrm{pH} 8-8.5$. DNA concentration was determined using a Nano-Drop 1000 spectrophotometer (Thermo-scientific, USA), and stored at $-20^{\circ} \mathrm{C}$.

3.10.4 Determination of DNA concentration by Qubit

The concentration of DNA preparations for sequencing was determined using a Qubit 3 Fluorometer (Invitrogen, Malaysia). The DNA sample was diluted 200 times and two standards (high $10 \mathrm{ng} / \mu \mathrm{l}$ and low $0 \mathrm{ng} / \mu \mathrm{l}$) were used to calibrate the machine. After that, the DNA sample reading was taken. The following equation was used:

$$
\text { DNA concentration } \frac{n g}{\mu l}=\text { the value given by the Qubit } X \frac{200}{\text { Sample volume }}
$$

3.11 Protein related work

3.11.1 Cleaning PCR products

PCR products for both sequencing and cloning were cleaned up using ISOLATE II PCR and a gel kit (Bioline, UK). The silica membrane of the cleaning column can bind DNA in the presence of a chaotropic agent. The manufacturer instructions were followed to clean the PCR product. Briefly, a 2:1 ratio of binding buffer to PCR product was used ($80 \mu \mathrm{l}$ of binding buffer was added to $40 \mu \mathrm{l}$ the PCR product) and the mixture was transported to a silica column placed in a 2 ml collection tube. Then, it was centrifuged (eppendorf 5418, Germany) at $11000 x$ for 30 seconds at room temperature, the flowthrough was discarded and $700 \mu \mathrm{l}$ of the washing buffer supplemented with the kit was loaded to wash the silica membrane. Another centrifugation was carried out at 11000 xg for 30seconds at room temperature, after which the flow-through was decanted. The silica membrane was dried by centrifugation at 11000xg for 1minute at room temperature. The PCR products were eluted using the elution buffer provided with the kit; $30 \mu \mathrm{l}$ of elution buffer was added directly onto the silica membrane and the column was incubated for

1 minute at room temperature. Then, it was centrifuged at 11000 xg for 1 minute at room temperature. The cleaned DNA was stored at $-20^{\circ} \mathrm{C}$ for further use.

3.11.2 Plasmid extraction

Plasmids for both protein expression and optimization of C. difficile electrotransformation parameters were extracted using the GeneElute Plasmid Miniprep Kit (Sigma-Aldrich, USA). Briefly, $1-5 \mathrm{ml}$ of recombinant E. coli cells harboring the plasmid of interest were grown in LB broth (3ml for pLEICS-02, 5 ml for pMTL82151, and 3 ml for pMTL84151) and harvested by centrifugation at $12,000 \mathrm{xg}$ for 1 minute at room temperature. The supernatant was decanted and the pellet was re-suspended with $200 \mu \mathrm{l}$ of re-suspension solution supplemented with RNase provided with the kit. The mixture was vortexed until it became homogenized, as incomplete suspension of cells causes poor plasmid recovery. The mixture was transported to a 1.5 ml micro-centrifuged tube and the cells were lysed by the addition of $200 \mu 1$ of the lysis solution provided by the kit. The mixture was immediately mixed after the addition of the lysis buffer with 6 to 8 gentle inversions, until it became viscous and clear. This had to be done immediately, as prolonged alkaline lysis can permanently destroy plasmids.

The cell debris was precipitated by the addition of $350 \mu 1$ of the Neutralization/Binding solution provided with the kit. The mixture was mixed with 4 to 6 inversions and the debris were pelleted by centrifugation at 12000 xg for 10 minutes at room temperature. Consequently, proteins, chromosomal DNA lipids, and cell debris were in the cloudy viscous precipitate, while the plasmid was in the clear supernatant.

During the 10 minutes of the last step centrifugation, the binding column was inserted in a 2 ml micro-centrifuge tube and prepared with the addition of $500 \mu \mathrm{l}$ of column preparation solution that maximizes the binding with the plasmid. Then, it was centrifuged at 12000xg for 30-60seconds and the flow-through was discarded. The clear supernatant from the previous step was loaded in the prepared column and centrifuged at 12000xg for 30-60seconds, and the flow-through was once again discarded. The column was washed twice with $500 \mu \mathrm{l}$ and $750 \mu \mathrm{l}$ of both the optional washing and the washing solutions respectively.

Thereafter, the column was transported to a fresh 2 ml tube and the plasmid was eluted with the appropriate elution liquid (biology grade distilled water for the electrotransformation experiment). The extracted plasmid was stored at $-20^{\circ} \mathrm{C}$ for further use.

3.11.3 Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)

The analysis of proteins was carried out by running them through a 12% SDS-PAGE and subsequently staining them with Coomassie brilliant blue (Fisher Bioreagents, Belgium) in order to visualize them. A pre-stained protein standard P7712 (New England Biolabs, UK) was used alongside with the proteins to confirm their sizes. SDS-PAGE was used to visualise the effect of the cysteine protease inhibitor treatment on C. difficile surface layer proteins in comparison with untreated cells. It was also used to visualise the recombinant endolysin of phage CPAP1, and in a zymography experiment where 0.2% of a peptidoglycan substrate was embedded in the resolving gel. The SDS-PAGE was conducted as described by (Fagan et al., 2010).

3.11.3.1 Preparation of resolving and stacking gels

A resolving gel (12% polyacrylamide) and stacking gel (5% polyacrylamide) were prepared as described by (Fagan et al., 2010). The resolving gel consists of 3.4 ml distilled water, 2.5 ml of 1.5 M Tris- HCl (ChemCruz, USA) pH 8.8 , and 4 ml of 30% (W/V) Acrylamide/Bis-acrylamide Protogel (National Diagnostics, England), 100 μ l of 10\% sodium dodecyl sulphate (SDS) (Fisher scientific, USA), $50 \mu 1$ of 10% ammonium persulfate (APS) (BioRad, USA), and $10 \mu \mathrm{l}$ of $\mathrm{N}, \mathrm{N}, \mathrm{N}^{\prime}, \mathrm{N}^{\prime}$-Tetramethylethylenediamine TEMED (Sigma, China). The stacking gel consists of $833 \mu \mathrm{l}$ of 30% (W/V) Acrylamide/Bis-acrylamide Protogel (National Diagnostics, England) $50 \mu 1$ of 10% SDS (Fisher scientific, USA), $25 \mu 1$ of 10% APS (BioRad, USA), and $5 \mu 1$ of TEMED (Sigma, China). Both gels were prepared at the same time; the APS and TEMED were added before pouring the gel.

The gel casting apparatus (BioRad, USA) was assembled as instructed by the manufacturer. The resolving gel was prepared and 4 ml was pipetted between the glass plates of the gel casting apparatus (two gels were prepared each time). Thereafter, 0.5 ml of 96% ethanol was overlaid on each of the gels, so as to exclude the oxygen and give a straight top edge for the resolving gel. The gel was left to polymerise for half an hour. After that, the ethanol was poured out and the gel was briefly allowed to dry. Then, the APS and the TEMED were added to the stacking solution and mixed briefly before the mixture was pipetted onto the resolving gel so as to fill the remaining space between the casting glasses. A comb was gently inserted to make the sample loading space. The gel was left for half an hour to solidify and be ready for use. Finally, it was placed in a MiniPROTEIN Tetra system running tank (BioRad, USA).

3.11.3.2 Preparation of protein samples for electrophoresis

A 5X loading buffer (Genecopoeia, USA) consisting of 250 mM Tris $\mathrm{HCl}, \mathrm{pH} 6.8$, 10% SDS, $30 \% \mathrm{v} / \mathrm{v}$ Glycerol, 10 mM DTT, $0.05 \% \mathrm{w} / \mathrm{v}$ bromophenol blue was used to prepare the samples for electrophoresis. $5 \mu 1$ of the 5 X loading buffer was added to $20 \mu \mathrm{l}$ of the protein sample in a small eppendorf tube, and $15-25 \mu 1$ of the mixture was loaded in the gel, depending on the comb used.

3.11.3.3 Running the protein

The 10X running buffer in which the gel was to be immersed during electrophoresis consists of: 1.92 M glycine (Fisher Bioreagents, USA), 250mM Tris-base (Fisher Bioreagents, Belgium), and 1% SDS (Fisher scientific, USA). The running buffer was diluted with distilled water to 1 X before it was used. The gap between the two gels was filled with 130 ml of running buffer, and the electrophoresis tank was filled to the marked level of two gels within the gel tank (500 ml of the running buffer were added).

After the pre-stained protein standard and protein samples were loaded, the electrophoresis tank was connected to the power unit PowerPac basic (Bio-Rad, USA). The electrophoresis was performed at 160 volt for 1 hour.

3.11.3.4 The staining and de-staining of the SDS-PAGE gel

After the electrophoresis was completed, the gel was placed in a plastic container and washed with distilled water twice. During each wash, the gel was immersed into distilled water as much as possible, and heated in the microwave for 30seconds until the water became warm. The washing steps were performed to get rid of the SDS.

The gel was then stained with Coomassie brilliant blue stain. The stain was added to a point where the gel was fully immersed (approx. depth of 1.5 cm). The gel was then left overnight on a rocker shaker (Joint Biomedical workshops, University of Leicester) at room temperature. The next day, the stain was removed and the gel was washed with distilled water (without heating), until there was no stain coming out of the gel. Lastly, it was de-stained overnight with distilled water rather than a de-staining buffer, while being left on a rocker shaker at room temperature.

Chapter 4

Isolation and characterization of C. perfringens phages

Chapter 4. Isolation and Characterization of C. perfringens phages

4.1 Introduction

4.1.1 Rationale behind the environmental isolation of C. perfringens phages

Although very little work has been carried out on phages that target C. perfringens, there is a clear need for novel antimicrobials to treat this pathogen. Despite the standard care that includes surgery and antibiotic treatment, C. perfringens human infections are still associated with high mortality rate (Hifumi et al., 2018). Usually, phages are found in high abundance in the environment that their bacterial hosts inhabit (Suttle, 2005). C. perfringens spores are found throughout the environment, and C. perfringens vegetative cells are present inside animal intestines as both commensals and pathogens (Pruteanu et al., 2013, Aziminia et al., 2016). Most of the isolated C. perfringens phages were obtained from environmental samples; for instance ФСР39О and ФСР26F were isolated from chicken offal washes and chicken faeces (Seal et al., 2011), ФCP24R was isolated from raw sewage water (Morales et al., 2012), ФCPV1 was isolated from chicken faeces (Volozhantsev et al., 2011), and ФCPV4, ФZP2, and ФCP7R were isolated by screening sewage water, faeces, and soil samples (Volozhantsev et al., 2012). C. perfringens phages are likely to be isolated from environmental samples such as soil and animal faeces.

4.1.2 C. perfringens toxin typing

The pathogenicity of C. perfringens and the tissue destruction caused by this pathogen correlates with the type of toxin that it produces. The prevalence of different types of C. perfringens strains can also be monitored by the detection of the toxin genes that they possess. Thus, toxin genotyping has both epidemiological and diagnostic importance (Razmyar et al., 2014, Yonogi et al., 2016), and during the last two decades, it has been used for the genotyping and detection of C. perfringens strains (Brzychczy-Wloch et al., 2017, Chukwu et al., 2016, Sabry et al., 2016, Park et al., 2015, Gurjar et al., 2008, Badagliacca et al., 2010, Baums et al., 2004a, Petit et al., 1999, van Asten et al., 2009, Yoo et al., 1997). The other C. perfringens genotyping methods have been previously used are illustrated in section 2.1.5.

4.1.2 Host ranges of phages

In order to decide whether a phage is a therapeutic candidate, it must be able to infect and lyse a wide range of strains that belong to the same pathogenic species. However, more characterisation and insight is required to make this decision (Hyman et al., 2010b).

There is significant variation in phage host ranges. Certain phages can infect one strain only, the isolation strain, some phages can infect a few bacterial strains within the same species, while other phages have the ability to infect many species, some of which belong to different genera (Ross et al., 2016).

Given that C. perfringens infection often begins from the location of new traumatic or surgical wounds, or in-patients with cancer (immune-compromised), urogenital and gastrointestinal problem after contamination with the spores (Finsterer et al., 2007, Hugelshofer et al., 2012), it is important to screen the isolated phages against the environmental C. perfringens strains, as they are the source of infection.

4.1.3 Phage one-step growth curve

The lifecycle of lytic phages has multiple sequential steps; the adsorption of phage onto a susceptible bacterial cell, phage nucleic acid injection (or entry), the latent period during which the phage proteins and nucleic acid are synthesized and assembled, and the virion release after cell lysis. Thus, the virulent phage life cycle has three phases; adsorption, a latent period, and phage release. The number of phages released per one cycle is termed as the burst size, and the time elapsed during all these steps is known as the phage generation time (Hyman et al., 2009). The temperate phages' lifecycle differs from the lytic cycle in that temperate phages are able to integrate and insert their genomes into the bacterial chromosome. Thus, the phage DNA remains in the bacterial chromosome as a prophage and replicates along with it, allowing the host cell to survive in a lysogenic state. The prophage leaves the host chromosome under particular conditions and proceeds with the lytic cycle (Griffiths, 2002).

The determination of a given phage growth kinetic can be considered as a baseline indicator for its therapeutic potential and how effective it would be to control the growth of the host bacterial population. The phage burst size and the time required for the phage to cause cell lysis can be determined by a one-step growth curve. It also helps to assess the phenotypic differences that may occur between phage strains on the same host cell,
as related phages can have markedly different lytic efficiency on the same host bacteria (Anfasa et al., 2017).

4.1.4 Phage cocktails

Often, single phage treatments only reduce the bacterial growth rate, and fail to completely lyse bacterial cells due to the development of phage resistance. To overcome this, phage cocktails can be used to increase the efficacy of phages in reducing pathogen growth both in vitro and in-vivo. For example, C. difficile phage cocktails have proved to be highly effective both in delaying the appearance of infection symptoms in-vivo and completely lysing their host in-vitro (Nale et al., 2016b).

However, it is worth noting that the efficiency of phage cocktails is dependent on the phages and the specific pathogen under study. For example, phage cocktails have shown to be highly effective against Pseudomonas aeruginosa and Staphylococcus aureus, whereas cocktails of phages that target some Escherichia coli and Proteus spp. strains have been found to be ineffective. This may in part be due to the small number of phages used in the cocktails; for this reason, more phages need to be isolated and added to the phage library (Bernasconi et al., 2017, Ozkan et al., 2016).

4.2 Aims of the study

In order to isolate and characterise phages that infect C. perfringens, the following aims were followed:

1. Isolate C. perfringens environmental strains.
2. Toxin type the isolated C. perfringens environmental strains.
3. Isolate C. perfringens free phages.
4. Induce the temperate phages from C. perfringens strains.
5. Characterise the isolated phages to determine:
a. Morphology by visualising under Transmission Electron Microscope.
b. Genome size by Pulsed-Field Gel Electrophoresis (PFGE)
6. Determine the therapeutic prospect of the isolated phages by:
a. Comparing the host range against the isolated C. perfringens strains.
b. Exploring the physiological properties such as the burst size and the latent period.
a. Sequencing the genome of isolated phages that show potential as a therapeutic agent, annotating the sequence and looking for the presence of virulence genes, transduction genes and other undesired genes.

4.3 Material and methods

4.3.1 Phage isolation

4.3.1.1 Isolation of free phages from environmental samples by enrichment culture

Free phages were isolated by culture enrichment of the environmental samples of soil and faeces. To do this, $\sim 1 \mathrm{~cm}^{3}$ of faeces or soil sample was suspended in 10 ml of TS broth supplemented with $400 \mu \mathrm{~g} / \mathrm{ml}$ cycloserine (Oxoid, UK). $100 \mu 1$ of exponentially growing TS broth culture of C. perfringens (Figure 33 in section 4.4 .9), $50 \mu \mathrm{l}$ of $0.8 \mathrm{MgCl}_{2}$, and $0.2 \mathrm{CaCl}_{2}$ were added and incubated anaerobically overnight at $37^{\circ} \mathrm{C}$.

The next day, the culture was centrifuged at 5000 xg for 5 minutes at room temperature. Then, the supernatant was filtered through $0.22 \mu \mathrm{~m}$ (Millipore, UK) and used in a spot test against the isolated C. perfringens strains. Whenever a plaque appeared, the upper soft layer of the double layer was scraped and suspended in SM buffer and incubated overnight at $4^{\circ} \mathrm{C}$. The next day, it was centrifuged at 5000 xg for 5 minutes, filtered using a $0.22 \mu \mathrm{~m}$ filter, and finally used in a plaque assay to purify the phage.

4.3.1.2 Temperate phage induction

In order to isolate temperate phages that have virulent activity on C. perfringens strains, 17 C. perfringens strains were induced using both mitomycin C (M) (Fisher Scientific, UK) and norfloxacin (N) (Sigma Aldrich, UK), as described by (Raya et al., 2008, Nale et al., 2012, Mahony, 1977), with a few modifications. $500 \mu 1$ of exponentially growing TS broth culture of C. perfringens strains was added to 50 ml of a pre-reduced TY broth. Mitomycin C or norofloxacin were added to a final concentration of $3 \mu \mathrm{~g} / \mathrm{ml}$ as recommended by (Mahony, 1977). The tubes were then incubated anaerobically for 8 hours at $37^{\circ} \mathrm{C}$. Thereafter, they were centrifuged at 3500 xg for 10 minutes and the supernatant was filtered through $0.22 \mu \mathrm{~m}$ filters and stored at $4^{\circ} \mathrm{C}$. Part $(20 \mu \mathrm{l})$ of the supernatant was visualised under transmission electron microscope to look for the presence of phages. The remaining supernatant was used to test for the presence of temperate phages with lytic ability on 27 lawns of C. perfringens strains, using both spot tests and plaque assays. Both norfloxacin and mitomycin C controls were used; serial dilutions of $3 \mu \mathrm{~g} / \mathrm{ml}$ of each antibiotic were prepared and added to bacterial growth on plates, along with the induction lysate.

4.3.1.3 Phage plaque purification

Individual plaques were picked and suspended in $500 \mu \mathrm{l}$ of TY broth inside an eppendorf tube. This tube was then incubated for 5 hours at $4^{\circ} \mathrm{C}$ before being centrifuged at 5000 xg for 5 minutes and filtered through a $0.22 \mu \mathrm{l}$ filter. The filtered phage was purified a further round by plaque assay. In total, five rounds of purification were carried out, after which a clonal stock of the purified phage was prepared.

4.3.1.4 Optimization of tryptose-yeast extract medium

Following the isolation of the first stable phage, CPAP1, the model system was used to further optimise the tryptose-yeast extract-peptone medium system. A new doublelayer medium without sulphur was required to carry out both a spot test and plaque assay. Then the composition of Tryptose-yeast extract-peptone agar, broth and soft agar was optimized (Table, 6).
$\left.\begin{array}{|llll|}\hline \text { Component } & \begin{array}{l}\text { Tryptose-yeast } \\ \text { extract agar in } \\ 1 \text { litre (grams) }\end{array} & \begin{array}{l}\text { Tryptose-yeast extract Tryptose-yeast extract } \\ \text { broth in 1 liter (grams) }\end{array} \\ \hline \text { soft agar in 1 liter } \\ \text { (grams) }\end{array}\right\}$

Table 6. Composition of optimized tryptose-yeast extract medium.

4.3.2 Phage Transmission Electron Microscopy (TEM)

4.3.2.1 Washing phage lysate with ammonium acetate

1.5 ml of phage lysate was centrifuged at 21000 xg for 1 hour at $4^{\circ} \mathrm{C}$. Then, 1.4 ml was gently aspirated and 1 ml of ammonium acetate $(0.1 \mathrm{M}, \mathrm{pH} 7.5)$ was added to the $100 \mu \mathrm{l}$ left from the lysate. This washing step was repeated three times. Following this, the sample was stained and examined by electron microscope.

4.3.2.2 TEM examination

Negative staining with 0.1% uranyl acetate was used to visualise phages by TEM. Electron microscope grids (Agar scientific, UK) were coated with 0.25% pioloform and left for 1 hour to dry. They were then carbon coated and glow discharged (Quorum Technology, UK) for 30seconds in the presence of argon gas to make the carbon upper layer hydrophilic.

After preparing the grids, $4 \mu \mathrm{l}$ of the phage sample was placed on the carbon side of the coated grids and allowed to stand for 2-5minutes. Then, any un-adsorbed sample was removed via removal with filter paper. Immediately after blotting the sample away, the grids were washed with two drops of distilled water and blotted to remove the excess water. Thereafter, $10 \mu \mathrm{l}$ of the uranyl stain was added in two instalments and left to stand for a few seconds. The grid was blotted again to remove the excess stain. The grids were examined by TEM (JEOL JEM-2100, UK) under 80kv voltage, and images were taken with a Gatan 2kx2k digital camera and iTEM software. Between 30 to 40 fields were examined in each preparation (Van Regenmortel et al., 2000).

4.3.3 Pulsed-Field Gel-Electrophoresis (PFGE)

4.3.3.1 Preparation of plugs

The approximate phage genome size was determined using PFGE. $100 \mu \mathrm{l}$ of 10^{11} $\mathrm{PFU} / \mathrm{ml}$ phage stock was incubated overnight at $37^{\circ} \mathrm{C}$ with $1.4 \mu \mathrm{~g} / \mathrm{ml}$ DNaseI (New England Biolabs, U.K.) and $3 \mu \mathrm{~g} / \mathrm{ml}$ RNase H (New England Biolabs, U.K.). Agarose plugs of phage were prepared by adding $40 \mu \mathrm{l}$ of $2 \% \mathrm{w} / \mathrm{v}$ warm molten agarose (Lonza, U.K.) dissolved in 0.5X Tris-Borate-EDTA (TBE) at pH 8 to a $40 \mu \mathrm{l}$ of nuclease treated phage stock in an eppendorf tube. They were then mixed and transported into a plug mould. The plugs were left to set for half an hour at room temperature and then incubated for 3hours at $4^{\circ} \mathrm{C}$. They were then digested by incubating with 1 ml of lysis buffer (100 mM EDTA, 100 mM Tris- $\mathrm{HCl}, 1 \%$ SDS and $0.5 \mathrm{mg} / \mathrm{ml}$ proteinase K (Fisher Scientific, UK), pH 9.0) overnight in a $55^{\circ} \mathrm{C}$ water bath. The next day, the plugs were washed three times in a 1 XTris-EDTA buffer (TE) pH 8.0 to remove excessive lysis buffer.

4.3.3.2 PFGE procedure

Pulsed-field certified agarose gels 1% (BioRad, USA) were prepared by dissolving 2.5 g of agarose in 250 ml of 0.5 X TBE buffer in a beaker and heating this in a microwave.

The agarose was left to cool down and poured into an assembled PFGE tank-comb and allowed to solidify. Then, the plugs were carefully taken out of the TE buffer and inserted in the PFGE gel wells. 2 mm of PFEG markers (New England Biolabs, UK) were inserted into one of the gel's empty wells. All the wells were sealed with more agarose. A BioRad CHEF-DR® III System PFGE (BioRad, USA) machine was filled with 2litres of 0.5 X TBE buffer and the run was performed with the following conditions; $6 \mathrm{v} / \mathrm{cm}$ for 16 hours at $14^{\circ} \mathrm{C}$, initial switch time 5 seconds, final switch time 13 seconds, and at a 120degree angle.

The following day, the tank was carefully removed and the gel was gently placed on to the backplane into staining tray. The gel was flooded with 200 ml of 0.5 XTBE buffer with ethidium bromide $(1 \mu \mathrm{~g} / \mathrm{ml})$ for 30 minutes on a rocker. Thereafter, the gel was visualised under ultra violet light using a Syngene box (Syngene, UK).

4.3.4 Phage host range

The host range of the isolated C. perfringens phages was determined by using spot tests (3.8) against 42 environmental C. perfringens strains (CP1 to CP42 strains). Only the neat and first dilution of each phage stock 10^{-1} was used. It was also tested against two C. difficile strains (ribotypes 076 and 220). Whenever a clearance was observed, further plaque assays with dilutions up to 10^{-6} were used to observe single plaques.

4.3.5 Phage one-step growth curve

A multiplicity of infection (MOI) of 10 was used for the virulent phage CPAP1 onestep growth curve, the other sequenced phage is temperate. The following equation was used to calculate the MOI:

$$
\text { MOI (for equal volumes) }=\frac{\text { Number of phages }}{\text { Number of bacteria }}
$$

One-step growth experiments were conducted as described by Ellis and Delbruck (1939) with some modifications. In brief, 1 ml of $10^{10} \mathrm{PFU} / \mathrm{ml}$ phage lysate was added to 9 ml of exponentially growing C. perfringens $\left(10^{8} \mathrm{CFU} / \mathrm{ml}\right)$ (see 4.4.10) in a 15 ml falcon tube. 1 ml of SM buffer was added to the control tube. The test and control tubes were incubated anaerobically at $37^{\circ} \mathrm{C}$ for 15 minutes. The tubes were then centrifuged at 3500 xg for 5 minutes and the pellet was then re-suspended in a pre-reduced TY broth and $10 \mu \mathrm{l}$ was immediately taken (three replicates) for a plaque assay. Thereafter, plaque assay was carried out at time points of $20,30,40,50,60,70,80,90,100$, and 110 minutes. The
average of plaques numbers at each time point was used to draw the one-step growth curve.

The burst size was determined as described by (Hyman et al., 2009). In brief, the highest $\mathrm{PFU} / \mathrm{ml}$ obtained at the end of the growth curve (post-rise) was divided by the pre-rise $\mathrm{PFU} / \mathrm{ml}$ count (the baseline during the latent period).

The burst size per infected cell was also calculated using the increase in phage numbers at each time point (relative concentration). The actual $\mathrm{PFU} / \mathrm{ml}$ count at each time point was divided on the baseline $\mathrm{PFU} / \mathrm{ml}$ to obtain the relative concentrations. Then, the relative concentration of each time point was plotted against that point. The burst size per infected cell was the value that meets the peak of the curve on Y axis. The protocol is available online at:
http://www.sas.upenn.edu/LabManuals/biol275/Table_of_Contents files/13-
PhageGrowth.pdf .
4.3.6 Phage genome sequencing and annotation

The genomes of three phages, CPAP1 (DNA concentration 4.3ng/ $\mu \mathrm{l}$), CPAS1 ($15.7 \mathrm{ng} / \mu \mathrm{l}$) and CPAS2 ($6.2 \mathrm{ng} / \mu \mathrm{l}$) were sequenced using Miseq Illumina. The reads were trimmed using the sickle software and assembled using the SPAdes software. The prediction of open reading frames (ORFs) was done using PROKKA. All this work was kindly carried out by Dr Andrew Millard of the University of Leicester. The Rapid Annotation using the Subsystem Technology server (RAST) available online at http://rast.nmpdr.org/rast.cgi was also used to confirm the PROKKA prediction of the ORFs. The function of predicted ORFs was assigned using the basic local alignment search tool (BLAST) available online at https://blast.ncbi.nlm.nih.gov/Blast.cgi. Moreover, the Blast Ring Image Generator (BRIG) was used to draw the circular map of each genome; these figures were kindly produced by Dr. Nathan Brown of the University of Leicester. Finally, pairwise sequence alignment (protein) was used.

The genome of CPAP1 was originally found to be in two contigs, one of which is very short (418bp). The blast of this short sequence gave 99% similarity to the E. coli gene. However, foreign genes can be incorporated into a phage's genome and remain integrated. Four primers were used to fill the gap and close the contigs (Appendix, 3). These primers were designed to have a very similar annealing temperature, then, one PCR
run was conducted using the same cycler conditions. The PCR reaction mix's volume was $50 \mu \mathrm{l}$, containing: DNA template, $0.5 \mu \mathrm{M}$ of each primer, $200 \mu \mathrm{M}$ of DNTPs, 1X high fidelity buffer, and 1 unit/ $50 \mu 1$ of Phusion high fidelity polymerase (New England Biolabs, UK). Cycler conditions were: initial denaturation at $98^{\circ} \mathrm{C}$ for 30 secs, 35 cycles of $98^{\circ} \mathrm{C}$ for $10 \operatorname{secs} ; 59^{\circ} \mathrm{C}$ for $30 \operatorname{secs} ; 72^{\circ} \mathrm{C}$ for 90 secs, with a final extension of 10 min at $72^{\circ} \mathrm{C}$.

No PCR product was obtained, as the short sequence was indeed shown to contain a contaminating DNA piece that did not belong to the phage CPAP1 genome. In order to make sure that the second small contig (E. coli sequence) did not belong to CPAP1, a pair of primers (Appendix, 3) was designed to amplify it using the phage nucleic acid as template. The PCR reaction mix's volume was $50 \mu \mathrm{l}$, and contained: phage DNA as a template, $4 \mu \mathrm{M}$ of each primer, $250 \mu \mathrm{M}$ dNTPs, $3 \mathrm{mM} \mathrm{MgCl2}$,1 X PCR buffer and 0.5 unit $/ 50 \mu \mathrm{l}$ of BioTaq polymerase (Bioline, UK). Cycler conditions were: initial denaturation at $95^{\circ} \mathrm{C}$ for $5 \mathrm{mins}, 30$ cycles of $95^{\circ} \mathrm{C}$ for 30 seconds, $55^{\circ} \mathrm{C}$ for 30 seconds, $72^{\circ} \mathrm{C}$ for 60 seconds, with a final extension of 10 mins at $72^{\circ} \mathrm{C}$. The PCR gave no product, confirming that the second contig did not belong to the phage genome.

The genome of CPAS1 was found in one of the contigs. The sequence result of CPAS2 genome revealed that there was a mixture of two phages in the sample. Although six rounds of plaque purification were carried out for CPAS2, it was still mixed with another phage. Further plaque purification work is required for CPAS2 in order to separate the two phages, after which the nucleic acid can be extracted and the two genome sequenced.

4.4 Results

4.4.1 Isolation of environmental C. perfringens strains

C. perfringens environmental strains were isolated by enrichment culture as described in section 3.2.3.2. 69 C. perfringens strains were isolated out of the 81 environmental samples. The C. perfringens isolation rate from all collected samples was high (85.2\%). All C. perfringens colonies on TSC agar had a characteristic distinct black colour, as a result of sulphur reduction (Figure, 14). The colony morphology is circular with entire or undulated margins and elevated (convex) centre. However, the black colour was not enough to confirm that the isolated strains were C. perfringens because in addition to this species, Proteus Spp., Pseudomonas Spp., Enterococcus Spp., and Bacillus Spp. can all form black colonies on TSC agar. Thus, it was essential to confirm results by the amplification of C. perfringens specific16s rDNA region and the analysis of the PCR product ($\sim 270 \mathrm{bp}$) (Figure, 15). The black colonies which were repeatedly negative for the C. perfringens specific 16s rDNA were analysed by the amplification of the bacterial 16 s rDNA region and analysis of the PCR product ($\sim 1800 \mathrm{bp}$) (Figure, 16).
C. perfringens was not found in faecal samples taken from adult pigs, rabbits, and fish (seven pig faecal samples, four rabbit faecal samples, and one fish faecal sample were tested). C. perfringens strains were isolated from soil samples along with faecal samples from chickens, sheep, cows, horses, dogs, ducks, lambs, ostriches, deer, swans, turkeys and parrots.

Figure 14. C. perfringens colonies on TSC agar. The colonies are circular with entire or undulated margins and have an elevated (convex) centre. The plates A, B, C, D, E, and F belong to C. perfringens strains number $55,58,59,63,3$, and 51 respectively.

Figure 15. Gel electrophoresis images showing C. perfringens specific 16s rDNA amplification. A PCR product of 270bp can be seen with each successful amplification. The DNA ladders used are either the Bioline GeneRuler 1 kb (image A, right part of image B, images C and D) or the New England BioLab 100bp DNA ladder (left part of image B). Samples correspond to the following strains: (A) C. perfringens strains 1-29. (B) C. perfringens strains 30-57. (C) C. perfringens strains 56-69. (D) C. perfringens strains 70-78.

Figure 16. Amplification of bacterial 16 s rDNA region. This amplification was of unknown black colonies that were repeatedly negative for C. perfringens specific 16s rDNA amplification. The DNA ladder used was a Bioline GeneRuler 1 kb . The PCR products of $\sim 1800 \mathrm{bp}$ were sequenced and the blast of sequences revealed that these colonies belong to: Enterococcus (1), Pseudomonas (2, 3, 4 and 9), Bacillus (5 and 6), and Proteus (7 and 8) species.

4.4.2 C. perfringens toxin typing

78 C. perfringens strains (55 strains were isolated from samples collected from Leicestershire (Figure, 17), and 23 from samples provided by colleagues) were tested for the presence of the main toxin genes with multiplex PCR developed by van Asten et al. (2009) (Figure, 18). Additional individual PCRs were carried out to detect the presence of β, ε, and i toxins, as all the isolates were negative for these toxin genes by multiplex PCR (Figure, 19).

Figure 17. Sampling locations and the toxin genotypes of C. perfringens strains isolated in these locations. Faecal and soil samples were collected from a limited number of locations. Type A C. perfringens is dominant in and around Leicester. Only one strain of type E C. perfringens was found; it was isolated in south Leicester.

Figure 18. A representative electrophoresis image of multiplex PCR products of different C. perfringens toxin types. The New England BioLab 100bp DNA gene ruler and the 1 kb Bioline GeneRuler can be seen in the left- and right-most lanes respectively. Each lane displays the results of the amplification of 3 genes, these being the Alpha toxin gene (α) that is 324 bp , the enterotoxin (cpe) gene 485 bp , and the beta $2(\beta 2)$ toxin gene 584 bp . Type A C. perfringens has the α toxin gene only (e.g. CP1). C.perfringens type A variants possess cpe and $\beta 2$ toxins in addition to the main α toxin. For example, CP4 and CP13 have the cpe toxin, while CP15 and CP16 have the $\beta 2$ toxin. CP35 (not shown here) has both cpe and $\beta 2$ toxins in addition to the α toxin. No toxin β, iota (1), and epsilon (ε) genes were detected by the multiplex PCR.

Figure 19. Electrophoresis of individual PCR products to detect C. perfringens β, , and ε toxins. The New England BioLab 100bp DNA gene ruler was used to determine the size of PCR products amplified from iota and epsilon toxins. Additionally, the 1 kb Bioline GeneRuler was used with the beta toxin. A: 317bp sized PCR product amplified from the beta toxin gene which was only detected in C. perfringens strain 72. B: 446bp product amplified from the iota toxin gene; only C. perfringens strain 41 had this gene. C: 396bp product amplified from epsilon toxin gene, found only in C. perfringens strain 71.

The results revealed that type A is dominant among our collection of C. perfringens environmental isolates, with 96.1% percentage (64 out of 78), most of which only include the major C. perfringens toxin, the alpha toxin. Only one strain was assigned for each of the C (strain 72), D (strain 71), and E (strain 41) types. No type B strains were isolated (Figure, 20). The toxin type of each strain is shown in Appendix 5.

Figure 20. The number of each different toxin genotype of 78 environmental C. perfringens strains (69 were isolated in this study). Type A was dominant among the isolated environmental C. perfringens strains. Subtype A that has the enterotoxin gene (cpe), the beta 2 toxin gene, or both enterotoxin and beta 2 toxin genes were also isolated. No type B C. perfringens strain was isolated. Only one strain was assigned for each of the types C, D, and E.

The distribution of toxin types within C. perfringens isolates shown in Figure 17 can help to predict the diseases that can be caused by these types in each area based on our isolated collection. The north-western quarter of Leicestershire only has type A, which can solely produce the α toxin; in other words only gas gangrene, septicaemia, and chicken necrotic enteritis can arise from an infection from C. perfringens in this area. The other areas have a combination of A-subtypes, C, D, and E. Consequently, many types of diseases can arise as a result of a C. perfringens infection (Table, 7). These diseases were reviewed in section 2.1.2.

C. perfringens toxin genotype	Toxin produced			Source	Potential diseases	
					Human	Animals
Type A (comprises 96.1% of all the isolated strains)	α	82		Chicken, cow, deer, dog, duck, horse, lamb, sediment, sheep, soil, swan, turkey, and unknown	Gas gangrene Haemolysis	Gas gangrene and haemolysis
	$\alpha+$ cpe	7.7	6	Dog, duck, and soil	Food poisoning (Enteritis)	Enteritis, Haemorrhagic Diarrhoea
	$\alpha+\beta 2$	5.1	4	Dog, duck, swan, unknown	Enteritis	Necrotizing enteritis
	$\begin{aligned} & \alpha+\beta 2 \\ & + \text { cpe } \end{aligned}$		1	Sheep	Enteritis	Enteritis
Type B	$\alpha+\beta+\varepsilon$	0	0	-----------	Enteritis, Enterotoxemia Multiple sclerosis	Enteritis Neurological disorder
Type C	$\alpha+\beta$	1.3	1	soil	Human enteritis Necroticans	Necrotizing enteritis
Type D	$\alpha+\varepsilon$	1.3	1	soil	Not reported	Enterotoxemia
Type E	$\alpha+1$	1.3	1	soil	Not reported	Enteritis

Table 7. The percentage, number, source, toxin produced, and potential of each of the isolated C. perfringens toxin type to cause diseases
4.4.3 Isolation of temperate C. perfringens phages (induction of temperate phages)

Both mitomycin $\mathrm{C}(\mathrm{M})$ and norofloxacin (N) were able to induce prophages from C. perfringens at a concentration of $3 \mu \mathrm{~g} / \mathrm{ml}$. Zones of lysis were observed in several cases, but no individual plaques were obtained after scraping the lysis zone, re-suspending it and carrying out a second round of both spot tests and plaque assay. There is a high level of prophage carriage in the C. perfringens strains examined, as all the induced strains gave lysis when tested on different C. perfringens strains from our collection (Table, 8).

Indicator strain																		
Phage induced from	CP1		CP2		CP3		CP4		CP5		CP6		CP7		CP8		CP9	
	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N
CP1	X	X	-ve	-ve	Iysis	lysis	-ve	lysis	lysis	Y	Y							
CP2	-ve	-ve	X	X	lysis	lysis	-ve	-ve	-ve	-ve	lysis	Iysis	lysis	lysis	Iysis	lysis	-ve	-ve
CP3	-ve	-ve	-ve	-ve	X	x	-ve											
CP4	-ve	-ve	ve	-ve	-ve	-ve	x	x	-ve									
CP5	-ve	X	X	-ve														
CP6	-ve	X	x	-ve	-ve	-ve	-ve	-ve	-ve									
CP7	-ve	x	X	-ve	-ve	-ve	-ve											
CP8	-ve	x	X	-ve	-ve													
CP9	-ve	x	x															
CP10	-ve																	
CP11	-ve	-ve	-ve	-ve	lysis	lysis	-ve	lysis	lysis									
CP12	-ve																	
CP13	-ve																	
CP14	-ve	-ve	-ve	-ve	Iysis	Iysis	-ve											
CP15	-ve	-ve	-ve	-ve	Iysis	Iysis	-ve	Iysis	Iysis									
CP16	-ve	lysis	lysis	-ve	-ve													
CP17	-ve																	
Indicator strain																		
Phage	CP10		CP11		CP12		CP13		CP14		CP15		CP16		CP17		CP18	
induced from	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N
CP1	-ve																	
CP2	-ve	Ilysis	lysis															
CP3	-ve	Iysis	lysis															
CP4	-ve																	
CP5	-ve	lysis	Iysis															
CP6	-ve																	
CP7	-ve																	
CP8	-ve																	
CP9	-ve																	
CP10	X	X	-ve															
CP11	Iysis	Iysis	X	x	lysis	lysis	-ve											
CP12	-ve	-ve	-ve	-ve	x	x	-ve	Ilysis	Iysis									

CP13	-ve	-ve	-ve	-ve	-ve	-ve	X	X	-ve									
CP14	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	X	X	-ve							
CP15	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	-ve	-ve	X	X	-ve	-ve	-ve	-ve	-ve	-ve
CP16	-ve	x	X	-ve	-ve	-ve	-ve											
CP17	-ve	-ve	-ve	-ve	lysis	lysis	lysis	lysis	-ve	-ve	-ve	-ve	-ve	-ve	X	X	-ve	-ve
Indicator strain																		
Phage	CP19		CP20		CP21		CP22		CP23		CP24		CP25		CP26		CP27	
induced from	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N
CP1	-ve	-ve	-ve	-ve	-ve	-ve	lysis	Iysis	-ve									
CP2	-ve																	
CP3	-ve	-ve	Lysis	lysis	-ve													
CP4	lysis	lysis	Lysis	lysis	-ve	-ve	lysis	lysis	-ve									
CP5	-ve	-ve	Lysis	lysis	-ve	lysis	lysis											
CP6	-ve	lysis	lysis	-ve	-ve													
CP7	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	-ve	-ve
CP8	-ve	lysis	lysis	lysis	lysis	lysis	lysis	-ve	-ve	-ve	-ve							
CP9	-ve	lysis	lysis	-ve														
CP10	-ve	lysis	lysis	-ve	-ve													
CP11	lysis	lysis	-ve	-ve	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	-ve	-ve	-ve	-ve	lysis	lysis
CP12	-ve	lysis	lysis	-ve	-ve	-ve	-ve	-ve	-ve									
CP13	-ve	-ve	Lysis	lysis	-ve													
CP14	-ve	lysis	lysis	-ve														
CP15	-ve																	
CP16	-ve	-ve	-ve	-ve	lysis	lysis	-ve											
CP17	-ve	lysis	lysis	-ve	-ve													

Table 8. Lysis caused by the induction lysate of 17 environmental C. perfringens strains on 27 environmental C. perfringens strains, all of which are alpha and alpha variant toxin types. Each induction lysate was able to produce lysis on at least one indicator strain.

Interestingly, the induction lysate of C. perfringens number 11 (CP11) has produced lysis on 7 strains of our C. perfringens collection out of 27 (Figure, 21). No lysis was produced on CP11 by the other 16 induction lysates. This may be due to encoding a large number of prophages that can cause lysis to many C. perfringens strains as well as protect the 11 lysogen from co-infection with other phages. Although there were another 8 strains which did not show lysis, the induction lysates of these strains caused lysis for only a few lawns of C. perfringens (2-5 strains) (Figure, 22).

Number of susceptible C. perfringens strains for each induction lysate

Figure 21. Number of susceptible C. perfringens strains to each induction lysate. As identified by the presence of lysis. The induction lysate of C. perfringens strain 11 was able to produce lysis on seven indicator strains.

Number of induction lysates for each indicator C. perfringens strain

Figure 22. Number of induced lysates that each C. perfringens strain is sensitive to. Five induction lysates produced lysis on C. perfringens strain 3.

4.4.4 Isolation of free C. perfringens phage by enrichment culture

Five phages were isolated from faecal samples by enrichment culture; they were named CPAP1, CPAP2, CPAS1, CPAS2, and CPAS3 (Figure, 23). The podovirus CPAP1 produced medium clear plaques on a TY double layer, while the other podovirus, CPAP2, produced medium sized hazy plaques. The isolated siphoviruses CPA1, CPAS2, and CPAS3 produced medium hazy plaques (Figure, 24). The phages were purified and clonal stocks were prepared for them and stored at $-80^{\circ} \mathrm{C}$, as described in section 3.7.

Figure 23. Morphology of five phages isolated from environmental faecal samples as shown by transmission electron microscopy. The scale bar represents 200 nm . All the isolated phages belong to the Caudovirales order. The upper two images show the isolated Podoviridae CPAP1 and CPAP2. The other three images show the isolated Siphoviridae CPAS1, CPAS2, and CPAS3.

Figure 24. Plaque morphology of the isolated stable phages on a TY double layer medium. CPAP1 produces medium clear plaques. CPAP2, CPA1, CPAS2, and CPAS3 produce medium sized hazy plaques.

The double layer media can alter the plaques' morphology. The CPAP1 phage was able to produce two plaque morphologies on TS double layers, medium plaques and medium with a surrounding faint circle. The second plaques' morphology was dominant on TS media. Further purification rounds were carried out separately for each plaque, indicating that the sample has two different phages or a satellite phage. However, both morphologies were observed during the purification of each plaque. The TEM images revealed the presence of podovirus in both plaques, and the DNA sequencing was decisive as it confirmed that the DNA preparations of both plaques belong to the same phage. The CPAP1 plaque morphology on TY double layer was uniform, and were clear, mediumsized plaques (Figure, 25).

Figure 25. CPAP1 plaques morphology on both TS and TY double layer. The two plates on the left show plaques with a double lysis zone on TS agar. The other two plates on the right show plaques with one lysis zone on TY agar.

Another 6 C. perfringens phages were isolated (Figure, 26). Unfortunately, the purification rounds for each could not be completed. Interestingly, phage number 16 was able to enter lysogenic state (Figure, 27) and stay inside CP16.

Figure 26. Morphology of six phages isolated from environmental faecal and soil samples, as shown by transmission electron microscopy. The number under each image refers to the isolated C. perfringens strain. TEM analysis revealed that all the isolated unstable phages are also tailed phages belonging to the Caudovirales order. Two phages could be isolated on CP1. Phage 10 and phage 16 belong to the Podoviridae family, while the other three phages (phages 2, 3, and 13 belong to the Siphoviridae family. On strain CP1, one short myovirus belonging to the Myoviridae family and one siphovirus were isolated.

Figure 27. The C. perfringens strain 16 lysogen. Phage 16 was able to switch to lysogenic growth and integrate itself into CP16.

The other five phages could not be passaged for more than three passages (two plaque purification rounds and an initial isolation round). These phages were able to grow and produce plaques to a high titre on a C. perfringens lawn (Figure, 28). Thereafter, the phage progeny from the third passage lost their infectivity and could not be passed any more.

The lysate of the original isolation and of the second passage (first plaque purification round) were tested alongside with the progeny of the third passage. The first and second passages lysates were still able to grow and produce plagues on the C. perfringens indicator strain, whereas the third passage lysate were not. This may be due to the development of phage resistance by C. perfringens, or to mutations which may have occurred in these phages.

There was no relationship between the type and the location of environmental samples, and the type of isolated phages. Both podoviruses and siphoviruses were present in soil and faecal samples taken from different locations.

Figure 28. Plaque morphology of the isolated unstable free phages using a TS double layer. The upper four plates show the plaque morphology of the unstable phages isolated on C. perfringens strains 1,2 , and 3 . The three other plates show the plaque morphology of the unstable phages isolated on C. perfringens strains 10 and 16 . The phages were numbered same as their indicator strains.

4.4.5 Morphology of the isolated phages (TEM analysis)

TEM analysis revealed that all the isolated stable phages are tailed phages belonging to the Caudovirales order (Figure, 23). Two of them belong to the Podoviridae family (CPAP1 and CPAP2), and the other three phages (CPAS1, CPAS2, and CPAS3) belong to the Siphoviridae family. The morphological difference between the two families is in the length of the non-contractile tail (Fokine et al., 2014).

The two Podoviruses varied in size and tail length. CPAP1 has a head diameter of ~ 51 nm and $\sim 35 \mathrm{~nm}$ tail length, while CPAP2 has a head diameter of $\sim 129 \mathrm{~nm}$ and $\sim 58 \mathrm{~nm}$ tail length. The three siphophages also varied in head size and tail length; they differ slightly in the head diameter (between $85-90 \mathrm{~nm}$). The tail length varied largely with a range of $306-445 \mathrm{~nm}$ (Table, 9).

Phage	Head diameter nm	Tail length nm
CPAP1	$\sim 51 \mathrm{~nm}$	$\sim 35 \mathrm{~nm}$
CPAP2	$\sim 129 \mathrm{~nm}$	$\sim 58 \mathrm{~nm}$
CPAS1	$\sim 90 \mathrm{~nm}$	$\sim 306 \mathrm{~nm}$
CPAS2	$\sim 85 \mathrm{~nm}$	$\sim 339 \mathrm{~nm}$
CPAS3	$\sim 88 \mathrm{~nm}$	$\sim 445 \mathrm{~nm}$

Table 9. Key dimensions of the five C. perfringens phages isolated in this study. The values in the table represent the mean of 5 measurements.

For sequencing, the type of phage helped in anticipating whether there was any contamination with DNA from another phage type, and also helped in blasting the new sequence against the same family database.
4.4.6 Optimization of TY medium to be used in spot tests and in the isolation of new phages

The use of a TY double layer has overcome the difficulties of distinguishing plaques incurred for the black colour produced by C. perfringens on a TS double layer demonstrated in Figure 29.

The use of the TY double layer has allowed for a confluent C. perfringens growth and very clear plaques when there was a phage in the tested enrichment samples. The titration of phages by spot test has also become available, as it was previously performed by plaque assay (Figures 29 and 30).

Figure 29. Morphological differences between plaques arise from the initial enrichment lysate and after five rounds of purification of the same phage on the TS double layer. The plaques produced by the initial enrichment lysate of CPAP1 are visualized on the upper four plates. On the left is the control plate which has confluent C. perfringens growth. The other three plates represent the net, one fold, and two fold dilutions of the initial lysate. The enigmatic appearance of the latter plates results from the presence of different bacterial metabolic products in the initial enrichment lysate. This made it difficult to determine whether a phage was present in the tested faecal sample or not. The lower four plates show the plaques morphology of CPAP1 after 5 rounds of purification.

Figure 30. Plaque morphology on TY double layer. The plaques can easily be seen on the TY double layer plates.

4.4.7 Pulsed-field gel-electrophoresis

The approximate size of the phage CPAP1 genome is around 18.5 kb , as shown by PFGE (Figure, 31). Phages CPAS1 and CPAS2 were sent for sequencing right after their isolation, therefore the PFGE step was not necessary. The other two phages, CPAS2 and CPAP3, were unable to show bands because of their low titre; they cannot be propagated
to a titre higher than 10^{6}. CPAS2 and CPAS3 were sent for sequencing, but the genome preparations failed the quality control.

Figure 31. Pulsed-field gel-electrophoresis of phage CPAP1's DNA. It shows that the size of the phage DNA is $\sim 18.5 \mathrm{~kb}$.

4.4.8 Host range

The isolated phages were tested against 42 environmental C. perfringens strains using spot tests to determine their host range (Figure, 32). These strains included two strains of toxin type A which has the α toxin and enterotoxin (CP4, and CP13), three strains of toxin type A which have α and $\beta 2$ toxins (CP15, CP16, and CP25), as well as strain CP35 of toxin type A which has α, enterotoxin, and $\beta 2$ toxins. The other 36 C. perfringens strains are type A with the main α toxin only. The results showed that Podoviruses CPAP1 and

CPAP2 are able to infect and lyse C. perfringens strains 6 and 2 respectively, out of the tested 42 strains. Unfortunately, the Siphoviruses are unable to infect and lyse any of the tested C. perfringens strains, apart from their isolation strain (Table, 10).

Both CPAP1 and CPAP2 are able to cause lysis from without to C. perfringens strains 11 and 15 respectively. Lysis from without is a term used to describe bacterial lysis caused by the attachment of a high number of phages to a bacterial cell resulting in lysis without the production of phage progeny (Abedon, 2011). Both the virulent phages CPAP1 and the CPAP2 can attach to environmental C. perfringens strains 11 and 15 respectively (isolated from different areas and representing toxin type A and three variants of type A that possess toxins $\beta 2$, cpe, or both, in addition to the main α toxin. In contrast to the podoviruses, the siphovirus CPAS1 was unable to cause lysis from without to any of the tested strains. CPAS2 and CPAS3 caused lysis to strains 1 and 4 respectively (Table, 11). The ability of each phage to infect and lyse or to cause lysis from without is demonstrated in Figure 32. In total CPAP1, CPAP2, CPAS1, CPAS2, and CPAS3 can attach to $\sim 40.5 \%$, $\sim 40.5 \%, \sim 2.4 \%, \sim 4.8 \%$, and $\sim 9.5 \%$ of the tested C. perfringens strains (Figure,32).

Phages				CPAP2	CPAS1
Sensitive CP strain	CPAP1	CPAS2	CPAS3		
CP21		+			
CP23	+				
CP26	+				
CP27	+				
CP28	+				
CP40	+		+		
CP42	+				
CP56					
CP65		+			

Table 10. Host range of the isolated phages on 42 environmental strains of C. perfringens. CPAP1 is able to produce plaques on 6 . perfringens strains, while CPAP2 was able to produce plaques on two C. perfringens strains. In contrast, the Siphoviruses were only able to grow on their isolation strain. The experiment was repeated twice; each time, three replicates of each dilution were spotted on the bacterial lawn.

Phages			CPAS1	CPAS2	CPAS3
CP strain	CPAP1	CPAP2			
CP 1	+	+			+
CP 2	+	+			+
CP 3	+	+			
CP 5	+	+		+	
CP 6		+			
CP 7		+			
CP 8		+			
CP 9	+	+			
CP 13	+	+			
CP 16	+	+			
CP 21		+			+
CP 22	+				+
CP 23		+			
CP 24		+			
CP 25	+	+			
CP 26	+	+			
CP 27					
CP 28					
CP 34	+				
CP 40			Indicator strain	Indicator strain	
CP 42	Indicator strain				
CP 56					Indicator strain
CP 65		Indicator strain			

Table 11. Ability of each phage to cause lysis from without on 42 C. perfringens environmental strains. The experiment was repeated twice; each time, three replicates of each dilution were spotted on the bacterial lawn. CPAP1 and CPAP2 can bind to a total of 11 and 15 C. perfringens strains respectively out of 42 strains.

Figure 32. Phage host range against environmental C. perfringens strains. The figure illustrates the percentage of each phage's ability to grow (produce plaques) or to cause lysis from without on 42 C. Perfringens environmental strains.

4.4.9 C. perfringens growth curve

The growth curve of C. perfringens strain 42 was carried out in order to determine the starting and ending time points of the exponential growth phase. C. perfringens grows faster in TS broth (Figure, 33) than in TY broth when inoculum from TS agar plate is used. Both the optical density and colony forming unit $/ \mathrm{ml}(\mathrm{CFU} / \mathrm{ml})$ at which the exponential growth phase occurs were taken for TY broth culture. The OD cannot be taken for TS broth because of the black colour produced as a result for sulphur reduction. These values are required in order to calculate the MOI for further experiments. This curves shows that the \log phase started between the $1^{\text {st }}$ and $2^{\text {nd }}$ hour post inoculation at OD550 nm of ~ 0.2 and $\mathrm{CFU} / \mathrm{ml}$ of about 2×10^{7}, and ended after 5.5 hours post inoculation at OD550 nm of 1.445 and CFU/ml of 7×10^{9}. The CFU dropped sharply
after the end of the \log phase to reach 4×10^{8}, while the stationary phase started at the $6^{\text {th }}$ hour post inoculation and lasted for another 13 hours (Figures 34 and 35).

Figure 33. The growth curve of C. perfringens strain 42 in TS broth as measured by CFU testing. The log phase started at the second hour post inoculation. Initial inoculum was taken from TS agar plate.

C. perfringens 42 Growth curve

Figure 34. The growth curve of C. perfringens strain 42 in TY broth as measured by CFU testing.

The log phase started between the second hour post inoculation at $\mathrm{CFU} / \mathrm{ml}$ of $2 \mathrm{X} 10^{7}$, and ended at 5.5 hours post inoculation at CFU of $7 \mathrm{X} \mathrm{10} 0^{9}$. Initial inoculum was taken from TS broth culture.
C. perfringens 42 growth curve (OD550nm)

Figure 35. The growth curve of C. perfringens strain 42 as measured by optical density. The log phase started between the first and second hour post inoculation at OD of ~ 0.2, and ended at 5.5 hours post inoculation at OD of 1.445.

4.4.10 CPAP1 one-step growth curve

In order to obtain CPAP1 growth parameters that aid in assessing the time required for growth and the average number of progeny from each lytic lifecycle (in-situ amplification ability), a one-step growth curve was carried out. The data collected from this experiment also helped in the determination of CPAP1's ability to control C. perfringens strain 42 growth as reviewed in section 4.1.3.

The CPAP1 one-step growth curve of revealed that the overall time of one cycle is 100 minutes. Both the adsorption time and the latent period are 20minutes, and the burst size is 136.585 virions per cell (Figure, 36). This size was also calculated by determining
the relative concentration of the phage at each time point, which was found to be ~ 137 (Figure, 37).

Phage CPAP1 Growth Curve at MOI=10

Figure 36. CPAP1 growth curve at MOI of 10. The adsorption time and the latent period are each 20 minutes. The whole cycle took 100 minutes. The burst size is about 137 (136.585) phages per infected bacterial cell.

CPAP1 Burstsize

Figure 37. This illustrates the burst size of the CPAP1 phage (phages released from each infected bacterial cell) to be about 137 phages. The average of the actual PFU/ml of three time points from the latent period were taken as the baseline, then the relative phage concentration for the following time points were calculated by dividing the actual $\mathrm{PFU} / \mathrm{ml}$ for that time point by the calculated baseline $\mathrm{PFU} / \mathrm{ml}$.

4.4.11 Genome sequencing and annotation of C. perfringens phages

The CPAP1 and CPAS1 genomes were successfully sequenced (Appendix, 7). The result of the CPAS2 sequence revealed the presence of two phages in the sample. Further work is required to separate these two phages and sequence them along with CPAP2 and CPAS3.

4.4.11.1 Phage CPAPI

CPAP1 is a virulent phage, it has a double stranded linear DNA which is 18.390 kb in size and has a G+C content of 28.6%. 22 ORFs were identified, 19 on the positive strand (Figure, 38) and 3 on the negative strand. All the predicted ORFs functions are listed in Table 12. Both PROKKA and RAST predicted the same exact number and location of ORFs, except for $3 ; 11,17$, and 21 were at the same location but differed in size. The blast of these 3 ORFs prediction by both PROKKA and RAST agreed with the function
of ORF 11 and 21 as a hypothetical protein, and disagreed on ORF17. RAST predicted ORF 17 to start 21 nucleotides earlier and stop at the exact nucleotide predicted by PROKKA. According to DNA BLAST, RAST predicted ORF17 as a guanine nucleotide exchange factor (100% identity to Poecilia formosa with 0.001 E-value) while PROKKA predicted ORF 17 as a hypothetical protein (84% identity to C. perfringens phage phi24R with 2e-17). However, the blast of amino acids of ORF17 gene product predicted by both PROKKA and RAST gave 53% identity, uniquely for the phi24R phage.

Figure 38. This shows the position of phage CPAP1 ORFs. The direction of the arrows indicates the transcription direction. Nineteen genes are on the positive strand, while the last three are on the negative strand.

ORF	Start	Stop	$\begin{aligned} & \text { Gene } \\ & \text { (bp) } \end{aligned}$	Stra nd	Product name	Group	Top blast	\% iden tity
1	215	370	51	+	Hypothetical protein		Phi24R	96
2	378	587	69	+	Hypothetical protein		Phi24R	99
3	556	1296	246	+	Hypothetical protein		Phi24R	98
4	1317	3626	769	+	DNA polymerase	Phage replication	Phi24R	100
5	3628	4650	340	+	DNA encapsidation protein	Packaging protein	Phi24R	99
6	4757	5338	193	+	Hypothetical protein		Phi24R	97
7	5392	5628	78	+	Hypothetical protein		Phi24R	97
8	5774	6028	84	+	Hypothetical protein		Phi24R	98
9	6033	7133	366	+	Major head protein		Phi24R	93
10	7146	8138	330	+	Hypothetical protein		Phi24R	95
11	8131	9690	482	+	Lysozyme peptidase		Phi24R	97
12	9687	10934	415	+	Tail protein		Phi24R	99
13	10936	11574	212	+	N -acetylmuramoyl-Lalanine amidase		Phi24R	97
14	11574	11747	57	+	Hypothetical protein		Phi24R	100
15	11778	12680	300	+	Connector		Phi24R	99
16	12640	13344	234	+	Lower collar protein		Phi24R	93
17	13334	13615	93	+	Hypothetical protein		Phi24R	53
18	13616	15334	572	+	Hypothetical protein		Phi24R	63
19	15327	17156	609	+	Pre-neck appendage		Phi24R	96
20	17524	17171	117	-	Hypothetical protein		Phi24R	99
21	17697	17539	32	-	Hypothetical protein			Non
22	18209	18003	68	-	Hypothetical protein		Candidatus woesebacte ria	47

Table 12. The predicted function of CPAP1 ORFs by the top BLAST hits. Five ORFs encode structural proteins while four ORFs encode enzymes. Thirteen ORFs encode proteins with unknown functions.

Nineteen of the predicted ORFs have a significant amino acid similarity (93-100 \%) with zero E-values with phage phi24R isolated by Morales et al. (2012), nine of them with a known function. One ORF has a 53 \% similarity with an E-value of 7e-22, while only two ORFs have no similarity with C. perfringens phi24R. The alignment of the two genomes using the Geneious software revealed that there are two areas of mismatch between them (Figure, 39).

Figure 39. The results of the alignment of the CPAP1 genome and that of a previously identified C. perfringens phage, phi24R. The top image shows the CPAP1 genome while the bottom one represents the phi24R genome. Although there is a high level of similarity across each genome, there are also major differences between the two, as represented by the red squares highlighting regions of the genomes. It can be seen that at $\sim 13700 \mathrm{bp}$ into the genomes of CPAP1 contains a large insertion distinct from the region in phi24R. In Phi24R, this region contains a putative zinc carboxidase gene not found within CPAP1.

The alignment of amino acid sequences of the CPAP1 endolysin with the phi24R and CPS1 endolysins shows a difference in their primary structures (Figure, 40). Despite these, the three endolysins have similar catalytic and cell wall-binding domains (CBD). Both domains of each enzymes begin and end at the same amino acid number, as demonstrated by the BLAST against the conserved protein domains (Figure, 41).

```
CPS1 mkigirdghspnckgaialrdeqacmrilcrevievlekhghevvycgsnartengelse 60
CPAP1 MKIGIRDGHSPNCKGAIGLRDEQSCMRVLCKEVIEILEKHGHEVVYCGSNASTQNGELSE 60
\Phi24R mkigirdghspnckgaiglrdeqscmrvlckevieilekhghevvycgsdastqnselse 60
    *****************.*****:***:**:****:*************:* * :*.****
CPS1 ginkansnnvdifislhmdvskehkangtcsfvakearksirdiaqrlvdnfetlglqnr 120
CPAP1 GVRKANNSNVDIFISLHMNSFN-GQAQGTEALVTVGARNSIKEIASRLCKNFASLGLVNR 119
\Phi24R gvrkannsnvdifislhmnsfn-gqaqgtesliavgarnsikeiasrlcknfaslglvnr 119
    *:.*** ..********** : : :* :** : : : : ** :** : :**.** .** :*** **
CPS1 gvresnyremrevnapniifetmfcdnlhdinevwsptpyekmallianaidptikenel 180
CPAP1 GVKEVNLYEMKNVKAPNIIFETMFCDNPHDINEVWSPTPYEKMALLIANAIDPTIKENEL 179
\Phi24R gvkevnlyemknvkapniifetmfcdnehdinevwsptpyekmallianaidptikenel 179
    **:* * **::*:************* ********************************
CPS1 yrvVvqyfnskedaencqqeiakrwycfvegcn 213
CPAP1 YRVVVQYFNSKEDAENCQQEIAKRWYCFVEECN 212
\Phi24R yrvvvqyfnskkdaencqqeiakrwycfveecn 212
    ***********:****************** **
```

Figure 40. Alignment of CPAP1 amino acids sequence with phi24R and CPS1 endolysins sequences. There is a difference in the primary structure of the endolysins of the three phages. There are seven amino acids out of 212 that are different between CPAP1 and phi24R, and 44 amino acids out of 213 are different between CPAP1 and CPS1.

Five ORFs producing structural proteins were identified. ORF9 encodes the major head protein, ORF 12 encodes the tail protein, ORF 15 encodes the connector protein, ORF 16 encodes the lower collar protein, and ORF 19 encodes the pre-neck appendage protein. Four ORFs producing enzymes were identified as well; ORF 4 encodes DNA polymerase, ORF 5 encodes DNA the encapsidation enzyme, ORF 11 encodes lysozyme peptidase, and ORF 13 encodes N -acetylmuramoyl-L-alanine amidase (endolysin). Thirteen ORFs encode proteins with unknown functions. Figure 42 shows a circular map of the CPAP1 genome.

Figure 41. Comparison of two C. perfringens phages (phi24R and CPS1) endolysins with CPAP1 endolysin. The BLAST of endolysin amino acid sequence against the protein conserved domains showed that despite the differences in these enzymes primary structure, they have a similar catalytic and cell binding domains.

Figure 42. A circular genome map showing the putative function of each of the ORFs of the Podovirus phage CPAP1 (18.390 kB). The black outer circle represents the nucleotides' size $(1=1 \mathrm{~kb})$. The blue markers represent the location of ORFs within the genome, labelled with their function.

4.4.11.2 Phage CPAS1

CPAS1 is a temperate phage which has a double stranded linear DNA and is 152.340 kB in length with a G+C content of 33.24%. 226 ORFs were identified, and many of their functions were predicted. However, the phage has genes with no similarity to any of the known genes. The blast of the FASTA sequence revealed that there is no similarity between CPAS1 and any of the sequenced C. perfringens phages. Figure 43 shows the circular map of the phage CPAS1.

Figure 43. A circular genome map showing the putative function of each of the ORFs of the siphovirus phage CPAS1 (152.340 kB). The black outer circle represents the nucleotide size $(1=1 \mathrm{~kb})$. The blue markers represent the location of ORFs within the genome, labelled with their function.

4.5 Discussion

4.5.1 Toxin typing

In the areas where C. perfringens strains were isolated (limited number of areas in Leicestershire), the gas gangrene, food poisoning, and broiler chicken enteritis are the main diseases that can be caused by C. perfringens, as type A is dominant in my collection. A rare enteritis caused by types C, D, and E may also arise in these areas. The absence of types B C. perfringens from my collection potentially excludes the involvement of C. perfringens in cases of neurological disorders, multiple sclerosis, and enteritis that may occur in these areas.
4.5.2 Isolation of temperate C. perfringens phages (induction of temperate phages)

No temperate phage was isolated by induction. However, prophages could be induced from C. perfringens strains by both mitomycin C and norofloxacin. The induction results showed a high level of prophage carriage in my C. perfringens collection. This is one of the factors enabling C. perfringens' resistance to phage infection. Superinfection exclusion is the prevention of secondary infection with another (closely related) phage provided by an already established infection (Beperet et al., 2014).

4.5.3 Isolation of C. perfringens free phages by enrichment culture

Five phages were isolated directly from faecal samples. CPAP1 is a virulent (strictly lytic) phage while CPAS1 is a temperate phage. The other three phages were not sequenced. Lytic phages are preferred over temperate phages as antimicrobial agents as the former cannot insert their genome in the bacterial chromosome, and will always lyse their bacterial host cell and kill it (Guenther et al., 2009). Temperate phages are not suitable for therapeutic purposes as a result of their integration ability (Sahota, 2016).

These five phages are an addition to the already globally isolated C. perfringens phages. They can be tested on more C. perfringens strains to establish the possibility of using them to prepare a phage cocktail (containing phages isolated in different studies). Further study into each of these phage endolysins will also increase knowledge regarding said endolysins structure and efficiency. An endolysin cocktail composed of a combination of structurally different proteins (in terms of both binding and catalytic domains) may have the ability to lyse all known C. perfringens strains. It can also allow for the exploration of the use of their binding domains for diagnostic purposes.
C. perfringens strains $1,2,3,10$, and 13 exhibited a distinct pattern of resistance to phage infection; it was possible to pass the environmental phages three times only, afterwards, the phages from the third passage lost their infectivity. This pattern occurred with five phages. This resistance may be a result of phage mutations, change in the bacterial receptors (phage attachment site), or C. perfringens possibly has the ability to tag the phage DNA. Subsequently, the naive bacterial cells which have never been exposed to the phage may become able to recognize and destroy phage nucleic acids upon entry. Similar results were found with C. difficile temperate phages which were able to produce plaques only once on C. difficile 630 and could not be passed any further (Nale, 2013).
C. perfringens strain 16 showed some lysogens after the third passage (Figure 26). Some phages possess the integrase gene which enables them to integrate their genome into bacterial DNA and enter the lysogenic lifecycle. The phage DNA might be integrated into the C. perfringens genome, as has been documented for C. perfringens previously (Zimmer et al., 2002a).

4.5.4 Optimization of TY medium

The TY double layer was optimized to be used in a spot test and for the isolation of new phages. The new media enables the accurate visualization of plaques during enrichment for phage isolation. The TY double layer represents an improved media system for the isolation of C. perfringens phages.

The inconsistent C. perfringens lawn (obtained from testing faecal enrichment lysate) was a result of the presence of different bacterial metabolic products, such as bacteriocins and lysozymes. These products originated from the microbial communities present in the faecal sample used for the enrichment culture. In bacterial communities, different bacterial species compete using a variety of mechanisms. The growth of a given species can be impaired as a result (Hibbing et al., 2010).

4.5.5 Morphology of the isolated phages

All the isolated phages belong to two families, Podoviridae and Siphoviridae. Only one short tail myovirus was induced from the C. perfringens lysogen. It was unable to produce plaques on any C. perfringens strains and could not be purified.

There is a significant difference between the diameter and tail length of the two podoviruses, as shown by the TEM. While the three siphophages were very similar in head size, there was a large difference in tail length.

4.5.6 Plaque morphology

Although the podovirus produced small and medium clear plaques and the siphovirus produced medium sized hazy plaques, the low number of isolated phages cannot be used to establish a relation between the phage particle morphology and the plaques produced.

CPAP1 is able to produce two different plaque morphologies on two different mediums. This indicates that the type of nutrients provided for bacterial growth dictates the bacterial growth pattern, and subsequently the bacteria's ability to support phage growth. Moreover, this indicates that the phage may behave differently in-vivo.

4.5.7 Pulsed-field gel-electrophoresis (PFGE)

PFGE helps in the sequencing process as it provides a preliminary assessment of a phage's genome size. The genome size of the CPAP1 phage was assessed to be about 18.5 kB before it was sequenced.

4.5.8 Host ranges

The results of host range analysis revealed that the podovirus CPAP1 has a wider host range than the other isolated phages, which makes it a good candidate as a therapeutic agent, especially if used in a phage cocktail. Each of the podoviruses CPAP1 and CPAP2 can bind to the surface of approximately 40.4% of the C. perfringens environmental strains isolated in this study, which reflects the presence of a common receptor. Further study of these phages' tail fibre proteins which are presumably involved in the attachment of phages to C. perfringens' surface may be useful for diagnostic purpose.

Unfortunately, the three siphoviruses have a very narrow host range, and cannot infect and lyse any of the tested C. perfringens strain apart from their isolation strain. However, phages with a narrow range often infect bacterial strains that other phages cannot (Hargreaves, 2013). Thus, CPAS3 may be useful in a phage cocktail as it can only infect C. perfringens strain 65 , which has not been infected by any other phage.

4.5.9 Phage one-step growth curve

The time required for a phage lifecycle to take place and the number of phages produced from each cycle are important parameters to estimate the magnitude of the in-
situ amplification capacity of the phage. The result of the CPAP1 one-step growth curve revealed that it has a high burst size, resulting in the production of a large number of phage progeny at the site of infection. This can be an advantage if the phage is used to treat infections at physiologic sites where the immune system has limited accessibility, such as the cerebrospinal fluid or intestines. However, in the case of systemic infections, this can be a disadvantage. The high number of phages produced in a relatively short time (110 minutes) will result in rapid cell lysis, consequently triggering an adverse immune response (severe hypersensitivity reaction).

4.5.10 Genome sequencing and annotation

The annotation of the CPAP1 genome revealed that it is a virulent phage as it does not appear to encode a lysogeny control or integrase gene. In contrast, the annotation of the CPAS1 genome revealed that it is a temperate phage. CPAP2, CPAS2, and CPAS3 are still to be sequenced.

Fortunately, CPAP1's genome does not have any bacterial toxin genes, antibiotic resistance genes, and transduction genes, meaning that it is a safe therapeutic agent. Given that phages can participate in the dissemination of bacterial toxin genes, and antibiotic resistance through phage-mediated transduction (Colavecchio et al., 2017, Rossmann et al., 2015), CPAP1 is a good candidate for phage therapy.

CPAS1 is not favourable as a therapeutic agent. Temperate phages have a 10 - 100 times larger ability of transduction in comparison with virulent phages (Saye et al., 1990, Saye et al., 1987). This is another reason why strictly lytic phages should be used for therapeutic purposes.

4.6 Conclusion

Among the C. perfringens strains collected from a limited number of locations in Leicestershire, toxin type A and its' variant (with cpe, beta or both toxins in addition to the main alpha toxin) is the dominant toxin type in our collection. All C. perfringens strains in this collection have a high level of prophage carriage, as all the induced strains could cause lysis on at least one of the indicator strains. They also have the ability to resist phage infection. This is explained by both their ability to develop resistance against phages which could grow and produce plaques three times on them, and the low number of isolated phages (5 phages out of 81 environmental samples).

Five phages were isolated; the C. perfringens Podoviruses have a wider host range than the Siphoviruses, along with a higher number of receptors on the surface of C. perfringens, as it was able to cause lysis from without for multiple C. perfringens strains.

Only one strictly lytic phage was isolated. The genome characteristics, host range, and biological parameter of this phage signify that it is a good candidate for phage therapy. The genome sequence of this phage also revealed that it is closely related to the phi24R lytic phage, as they have 95% similarity.

4.7 Future work

1. Isolation of more C. perfringens phages and determine their potential as a therapeutic agents for the treatment of C. perfringens infections.
2. Assessing the potential of using antibiotic with phage cocktails in the control of C. perfringens growth.

Chapter 5

Cloning, Expression, Purification and Assessment of Phage Endolysin as a Potential Antimicrobial for the Treatment of
C. perfringens Infections

Chapter 5: Cloning, Expression, Purification and Assessment of Phage Endolysin as a Potential Antimicrobial for the Treatment of C. perfringens Infection

5.1 Introduction

The progressive development of antibiotic resistance as a result of its excessive and irresponsible use has become a global public healthcare problem. In Europe, about 25000 people die every year due to infection from multi-antibiotic resistant bacteria. Moreover, the situation is worse in the developing countries. At this rate of resistance development, it is estimated that by 2050, around 10 million people worldwide will die yearly because of infections from multi-antibiotic resistant bacteria (Rai et al., 2017). Recently, politicians, physicians, and researchers have been urged to look for novel antimicrobials options (Dufour et al., 2017).

5.1.1 Novel antimicrobials

Recently, researchers have been focusing on the rehabilitation of old compounds that are known to be therapeutically safe. This achieved by improving said compounds to have a new mechanism of action. The analogue of the old robenidine, an anti-coccidial drug, is an example (Ogunniyi et al., 2017).

New chemotherapeutics belonging to the old oxazolidinone class of chemical antibacterials have recently been described. These new compounds represent an effective choice for the treatment of serious Gram-positive infections (Karpiuk et al., 2017).

Moreover, the application of nanotechnology to develop an effective antimicrobial is a promising discipline. These new nano-antimicrobials could revolutionise the health sector, the safety and possibility of using them alone or in combination with antibiotics is currently under study (Rai et al., 2017).

Phage therapy is yet another promising approach. Recent studies have shown that phages can be used in biocontrol, the development of new molecules that have clinical applications, and in nanomedicine utilizing phage display technology (El-Shibiny et al., 2017, Dufour et al., 2017).

5.1.2 Phages endolysins

Phage endolysins are effective novel antibacterial agents. They have been successfully used to treat a variety of bacterial infections, as reviewed in section 2.2.6. Moreover, their ability to successfully control or clear pathogenic bacteria from different anatomic sites of empirically infected laboratory animals has been shown. Endolysins also have other uses such as bio-preservation, elimination of biofilm and diagnosis purposes (Gunathilaka et al., 2017).

There are many advantages of using endolysins as antibacterial agents. These include their rapid mode of action, wide host range within the bacterial species, a very low concentration is required to lyse high bacterial concentration regardless of their antibiotic sensitivity profile, novel mode of action, and the low possibility of developing resistance, as to date, no resistance against endolysins has been reported, and it is not expected to occur. This fact is due to the extracellular use of endolysin where there are a limited number for resistance mechanisms. Most of the antimicrobials' resistance mechanisms act inside the cell. More recently, engineered phage endolysin has been described to have successfully treated bacterial infection such as skin infection with Staphylococcus aureus (Totte et al., 2017, Oliveira et al., 2015, Borysowski et al., 2006, Donovan et al., 2009, Spratt, 1994).

However, there are disadvantages associated with endolysin therapy. Non-clinical studies have shown these to include the immunogenicity and the liberation of proinflammatory substances as a result of the rapid bacterial lysis. However, all data regarding safety and effectiveness obtained from non-clinical studies are still to be confirmed by clinical trials (Borysowski et al., 2006). Another disadvantage is that the mass production and purification of endolysins is usually hindered by their low solubility, and many display lower lytic activity in comparison with their activity during phage infection (Fernandes et al., 2012). Moreover, the exogenous endolysin activity can be blocked by the bacterial outer membranes such as the lipopolysaccharide (LPS) surrounding the Gram-negative bacteria cell wall, which prevents the access of exogenously added endolysin to the target murine (Gerstmans et al., 2016, Briers et al., 2014). Furthermore, the rapid release of pyogenes and lipopolysaccharides as a result of the fast endolysin action can lead to adverse immune responses and toxin shock (Shen et al., 2013, Górski et al., 2012, Hagens et al., 2004, Rosenfeld et al., 2006, Borysowski et al., 2006).

The development of a chimeric endolysin by fusing the catalytic domain of the Streptococcus phage endolysin with new cell binding domains to extend the host range has been shown. This chimeric endolysin is able to lyse Streptococcus and Staphylococcus bacterial strains (Dong et al., 2015). The lipopolysaccharide (LPS) surrounding the Gram-negative bacteria cell wall is a physical barrier that prevents the access of exogenously added endolysin to the target murine. As a consequence, Artilysins was developed in order to overcome this major hurdle and use endolysin as an antibacterial to treat Gram-negative bacterial infection. This is an engineered endolysin able to penetrate the LPS and lyse many pathogens, including Pseudomonas aeruginosa and Acinetobacter baumannii (Briers et al., 2014, Gerstmans et al., 2016).

The native endolysin of Streptococcus pyogenes (S. pyogenes) phage PlyC is able to control intracellular infections caused by S. pyogenes. It can cross the epithelial cells' cytoplasmic membrane (CM) in a dose-dependent manner and lyse the intracellular S. pyogenes. PlyC's ability to traverse CM potentiates its engineering for other functionalities (Shen et al., 2016). With further investigation, endolysins can truly be engineered to treat infections caused by Gram-negative bacteria and intracellular bacterial infections (O'Sullivan et al., 2016).

5.1.3 C. perfringens phages endolysins

Although strictly lytic phages have been isolated for C. perfringens, there are some limitations that accompany their use to control or eliminate C. perfringens infection in comparison with the use of endolysins. These include resistance to phage infection, the presence of bacterial toxins within the phage lysate, the transduction ability of phage and the subsequent dispersion of bacterial virulent genes (Gunathilaka et al., 2017, Wang et al., 2016, Gupta et al., 2011).

Endolysins encoded by C. perfringens phage phiSM101 employ two modular domains, a cell wall binding domain at the C-terminal (tandem repeated SH3_3 domains, SH3N and SH3C) and a catalytic domain at the N-terminal (Figure, 44). These endolysins have the ability to lyse most C. perfringens strains (Tamai et al., 2014a). There is a variation in the lysis potential of different C. perfringens endolysins, as demonstrated by a few studies. Some were able to lyse all the tested strains while others lysed most of them (Gervasi et al., 2014a, Zimmer et al., 2002a, Gervasi et al., 2014b). This variation may be due to differences in the enzyme cell wall binding domains, at the central SH3-3
domain of the C-terminal which is responsible for the enzyme specificity. However, further investigation in this area is required (Fischetti, 2010, Schmelcher et al., 2012, Gervasi et al., 2014a).

Figure 44. The overall structure of endolysin Psm encoded by C. perfringens phage SM101. The Psm endolysin consists of two domains, the N -terminal catalytic domain (upper part of the image) and the C-terminal cell wall binding domain (CBD) SH3_3, which consists of SH3N and SH3C (lower part of the image). The catalytic domain is linked to the CBD by 7 amino acids residue (Tamai et al., 2014a).

5.1.4 Endolysin mode of action

The endolysin enzyme is expressed by double-stranded bacteriophages at the end stage of the lifecycle. It can reach, bind, and cleave the peptidoglycan in a site-specific manner through the pores in the cytoplasmic membrane made by the holin enzyme. Subsequently, the host cell is lysed and progeny virions are released (Borysowski et al., 2006). Holins are small proteins that accumulate at the cytoplasmic membrane, resulting in membrane permeability to the folded endolysin. The holin activity is regulated by anti-holin protein inhibitors (Wang et al., 2000). Holins have been studied for their potential as antimicrobial agents (Veiga-Crespo et al., 2007). For instance, the lambda phage holin has the potential for cancer treatment as it can disrupt the eukaryotic membrane integrity, as demonstrated in a mouse model (Agu et al., 2006).

Interestingly, purified recombinant endolysins can cause rapid cell lysis when applied externally. Moreover, the binding domain at the C-terminal is not always necessary for the endolysin activity, as has been shown with a number of endolysins. Moreover, species specificity and the mode of action of endolysins make them an interesting therapeutic agent (Borysowski et al., 2006, Mayer et al., 2011).

5.2 Aims and objectives

In order to determine the potential of phage's endolysin to control or prevent the growth of C. perfringens, the following aims were set:

1. Clone and express the predicted endolysin gene of phage CPAP1, and purify the expressed protein.
2. Confirm the peptidoglycan amidase activity of the purified protein by zymography.
3. Determine the ability of the purified endolysin to lyse C. perfringens strains by lysis assay.

5.3 Material and methods

5.3.1 Bioinformatics analysis of the phage CPAP1 endolysin gene

The annotation of CPAP1 predicted ORF13 as a N--acetylmuramoyl-L-alanine amidase gene. The nucleotides sequence of ORF13 was translated to an amino acids sequence online using ExPASy available at http://web.expasy.org/translate/, and the molecular weight (MW) of CPAP1 Endolysin was also determined by ExPASy available at http://www.sciencegateway.org/tools/proteinmw.htm (Gasteiger et al., 2003). The predicted amino acids sequence was identified as an endolysin via a comparison with the available proteins sequences online, using BLASTp against the non-redundant protein database (Altschul et al., 1990). The functional domain of the predicted protein was searched against the Pfam database (Bateman et al., 2004) available online at http://pfam.xfam.org/. The Clustal omega (multiple sequence alignment) (Sievers et al., 2011) available at https://www.ebi.ac.uk/Tools/msa/clustalo/ was used to compare CPAP1 with other endolysins belonging to C. perfringens phages.

5.3.2 Cloning of endolysin

CPAP1 endolysin was cloned in to the pLEICS-02 plasmid which has a glutathione Stransferase (GST) tag (Figure, 45). The GST-tag facilitates the purification of the expressed endolysin by the column method. The cloning was carried out by the University of Leicester PROTEX service, department of molecular and cell biology which is available at http://www2.le.ac.uk/departments/molcellbiol/facilities/protex. The ORF13 of the CPAP1 phage was amplified with a pair of primers (Appendix, 3) with an adapter sequence (homologous sequence) compatible with the plasmid pLEICS-02 cloning site. The primers were designed according to the PROTEX instructions available online at http://www2.le.ac.uk/colleges/medbiopsych/facilities-and-services/cbs/protex/primers. The PCR was carried out using the following conditions: A 30second initial denaturation step at $98^{\circ} \mathrm{C}, 34$ cycles of 10 seconds denaturation at $98^{\circ} \mathrm{C}, 30$ seconds annealing at $57^{\circ} \mathrm{C}$, 25 seconds extension at $72^{\circ} \mathrm{C}$, and a 10 minute final extension at $72^{\circ} \mathrm{C}$. The PCR reaction mix's volume was $50 \mu \mathrm{l}$ and contained: DNA template, $0.5 \mu \mathrm{M}$ of each primer, $200 \mu \mathrm{M}$ of dNTPs, 1 X buffer, and 1 unit/50 $\mu \mathrm{l}$ of phusion DNA polymerase (New England biolabs, UK). The PCR product was visualized using 1% agarose gel (BioLine, UK). The product was cleaned and sent to the cloning service.

After receiving the construct, it was sequenced using plasmid-based primers pGEX 3^{\prime} and pGEX 5 ' (Appendix, 3). Then, the sequence was searched for any possible mutation or incorrect insertion before starting the expression.

Figure 45. The structure of the pLEICS-02 plasmid. The plasmid has a GST-tag and an ampicillin/carbenicillin resistance gene as a selection marker.

5.3.3 Preparation of competent E. coli cells

Competent E. coli BL21 cells were prepared by the rubidium chloride method as described by (Green et al., 2013), with modifications. E. coli BL21 was streaked onto LB agar and incubated aerobically overnight at $37^{\circ} \mathrm{C}$. The following day, one colony was inoculated in 5 ml of LB broth inside a 50 ml falcon tube with a loosened cap. The tube was incubated overnight at $37^{\circ} \mathrm{C}$ with agitation at 220 rpm using an Innova® 44 (New Brunswick scientific, USA) shaker incubator. After that, 2 ml of the prepared culture was inoculated in 200 ml of fresh LB broth in a 500 ml flask and incubated aerobically at $37^{\circ} \mathrm{C}$ with agitation at 220 rpm . When the OD_{600} of the culture reached $0.3-0.4$, it was chilled on ice for 15 minutes. Then, the culture was transferred into a 50 ml sterile polypropylene tube and centrifuged at 4500 xg for 15 minutes at $4^{\circ} \mathrm{C}$. The supernatant was discarded and the tube was placed on ice. Following this, the pellet was carefully re-suspended in 0.4 volume of the culture (20 ml for each 50 ml of cells) of pre-chilled transformation buffer 1 (TFB1). The TFB1 buffer consisted of 30 mM potassium acetate (Sigma-Aldrich, USA), 100 mM RbCl 2 (Sigma, Germany), 10 mM of aqueous CaCl_{2} (Fisher Scientific, UK), 50 mM MnCl 2 (Sigma-Aldrich, USA), and $15 \% \mathrm{v} / \mathrm{v}$ glycerol (VWR Chemicals, Belgium). The pH was adjusted to 5.8 using diluted acetic acid (Fisher Scientific, UK).

The suspended cells were incubated on ice for an hour, then were centrifuged at 4500xg for 15 minutes at $4^{\circ} \mathrm{C}$ using an Avanti J-E centrifuge (Beckman Coulter, USA). After that, the supernatant was discarded and the tube was placed on ice. The pellet was carefully re-suspended in 0.02 volume of the culture (1 ml for each 50 ml of cells) of a prechilled transformation buffer 2 (TFB2). The TFB2 buffer consisted of $10 \mathrm{mM} 3-\mathrm{N}$ morpholino propane-sulfonic acid (MOPS) (Sigma, USA), $75 \mathrm{mM} \mathrm{CaCl}_{2}$ (Fisher scientific, UK), 10 mM RbCl 2 (Sigma, Germany), and $15 \% \mathrm{v} / \mathrm{v}$ of glycerol (VWR Chemicals, Belgium). The pH of the buffer was adjusted to 6.5 with the use of diluted NaOH (Fisher scientific, UK). The cell suspension was then incubated on ice for 15 minutes. After that, aliquots of $100 \mu \mathrm{l}$ in 2 ml sterile conical bottomed, screw capped tubes were prepared (Sarstedt, Germany), snap frozen in liquid Nitrogen and stored at $80^{\circ} \mathrm{C}$.

5.3.4 Transformation of E. coli BL21 with the recombinant plasmid

The PCR product of endolysin gene amplification was cleaned and sent for cloning as described in section 3.11.1. The construct that had the recombinant endolysin gene was amplified inside E. coli $\mathrm{DH} 5 \alpha$ and extracted as described in section 3.11.2.

The success of the aforementioned steps thus far was confirmed by sending the construct to the PNACL service (The Protein Nucleic Acid Chemistry Laboratory (College of Medicine, Biological Sciences and Psychology) available at http://www2.le.ac.uk/colleges/medbiopsych/facilities-and-services/cbs/PNACL/dnasequencing, to eliminate any probability of mutation that may have happened in the pLEICS-02 plasmid. The pGEX'5 and pGEX'3 primers (Appendix, 2) were used by the PNACL unit.

Thereafter, the recombinant endolysin construct was transformed into competent E. coli BL21 (DE3) to express the endolysin protein. Briefly, $100 \mu \mathrm{l}$ aliquot of the competent E. coli BL21 (DE3) was taken from $-80^{\circ} \mathrm{C}$ and placed on ice. $1 \mu 1$ of the extracted plasmid was added to the cells and left on ice for one hour. Then, a $42^{\circ} \mathrm{C}$ heat shock was performed for one minute, after which the tube was immediately placed on ice for another minute. $300 \mu \mathrm{l}$ of LB broth was added and it was incubated for 1 hour at $37^{\circ} \mathrm{C}$ with agitation at 220 rpm , to enhance the recovery of bacterial cells.

After the incubation was over, $100 \mu \mathrm{l}$ of the mixture (bacteria + plasmid) was plated on LB agar supplemented with $150 \mu \mathrm{~g} / \mathrm{ml}$ of carbenicillin (Melford biolaboratories, UK) to select the transformant cells. Serial dilutions up to 10^{-2} were prepared and $100 \mu \mathrm{l}$ of each was plated on LB broth. The plates were incubated aerobically overnight at $37^{\circ} \mathrm{C}$. The next day, transformant colonies containing the recombinant plasmid were ready.

5.3.5 Expression of recombinant endolysin

5 ml of LB broth was poured on to plates that had moderate growth of transformant E. coli BL21, and the colonies were mixed and suspended in the LB brother using a spreader loop. The cell suspension was then added to 500 ml of LB broth supplemented with $150 \mu \mathrm{~g} / \mathrm{ml}$ carbenicillin (Melford Biolaboratories, UK) in a 1litre flask. The expression incubation settings were carried out as described by (Oliveira et al., 2015), with modifications. The flask was incubated at $37^{\circ} \mathrm{C}$ with agitation at 120 rpm until the OD_{620} reached 0.5 (0.485 was used). The Isopropyl β-D-1-thiogalactopyranoside (IPTG) (Melford biolaboratoris, UK) inducer was then added to a final concentration of 0.5 mM to start the expression of the endolysin. The flask was further incubated at $16^{\circ} \mathrm{C}$ overnight (12-15 hours) with agitation at 150 rpm . The next day, the culture was centrifuged at 5000xg for 20minutes at $4^{\circ} \mathrm{C}$ using an Avanti J-E centrifuge (Beckman Coulter, USA).

After the expression was completed, the pelleted cells were suspended with 50 ml of suspension-lysis buffer that contained 25 mM Tris-HCL (CemCruz, USA), 150 mM NaCl (Fisher scientific, UK), pH 7.4. Then the following were added to the cell suspension, DNase (Invitrogen, UK) to a concentration of $50 \mu \mathrm{~g} / \mathrm{ml}, \mathrm{MgCl}_{2} 5 \mathrm{mM}$ (Acros organics, USA) and one tablet of protease inhibitor cocktail (Roche, Germany). The bacterial suspension was placed on ice and sonication was carried out. This sonication was carried out using a 9.5 mm diameter probe at 60% of the maximum power of the sonicator (Sanyo, UK) for 20 seconds for each pulse, for 7 pulses (cycles) with a minute rest (cooling intervals) between them to prevent the denaturation of the expressed protein as a result of the high temperature. After sonication, the lysate was centrifuged at 15000 xg for 20minutes at $4^{\circ} \mathrm{C}$ using an Avanti J-E centrifuge (Beckman Coulter, USA) to remove debris. The supernatant was filtered with $0.22 \mu \mathrm{M}$ filter to further remove the debris.

5.3.6 Purification of recombinant endolysin

Glutathione sepharose resin (GE Healthcare, Sweden) was used to purify the recombinant endolysin by column affinity chromatography. 1 ml of the resin was added to the purification column. After a moment, the column was calibrated with 30 ml of binding buffer (25 mM Tris-HCL (ChemCruz, USA) and 1 M NaCl (Fisher scientific, UK), pH 7.4 .

The clear lysate from the expression step was diluted $1: 1$ with the binding buffer and passed through the column. This step was repeated two more times to allow all the GST tagged endolysin to bind. After the sample was passed three more times through the column, the column was washed with 30 ml of the binding buffer to get rid of the unwanted proteins.

The recombinant protein was eluted with 5 ml of elution buffer. This buffer consisted of 50 mM Tris-HCL (ChemCruz, USA), 10mM reduced L-Glutathione (Sigma-Aldrich, UK), and 5mM dithiothreitol (D.T.T) (Biomedicals, USA) pH 8. All the buffers and samples were allowed to pass through the purification column via gravity flow. The purified protein was further cleaned by an-ion exchange using an AKTA purifier (GE healthcare, Sweden) so as to remove both the elution buffer and any unwanted proteins. The purified protein concentration was then measured by using the Nano-Drop 1000 (Thermo-scientific, USA) machine

5.3.7 Removing the GST tag

The purified recombinant protein was cleaved to remove the GST-tag using the Tobacco Etch Virus (TEV) protease (Sigma-Aldrich, UK). The TEV protease is an enzyme that strictly cleaves at a 7 amino acids recognition sequence. This recognition sequence is incorporated at the end of a tag's sequence to enable the removal of the tag from the recombinant proteins (Figure, 46) (Miladi et al., 2012, Stols et al., 2002). The cleavage was carried out according to the manufacturer's instructions. Briefly, 5 ml of protein fractions were dialysed overnight at $4^{\circ} \mathrm{C}$ in 2 litres of Tris buffer (25 mM Tris- HCl (ChemCruz, USA), 150 mM NaCl (Fisher scientific, UK), and 14 mM 2-mercaptoethanol (Sigma-Aldrich, UK) pH 8.0. The dialysis was carried out to replace the buffer with TEV buffer and to remove the reduced L-glutathione which will affect the subsequent binding of the cleaved GST tag in the purification column.

The next day, the dialysed 5 ml protein was diluted $1: 1$ with 50 mM Tris- HCl (final concentration of 25 mM) and 300 mM NaCl (final concentration of 150 mM). $75 \mu \mathrm{l}$ of TEV protease added to the diluted protein and the mixture was incubated overnight at $4^{\circ} \mathrm{C}$. The digested protein was then passed through a newly prepared affinity purification column (1 ml of Glutathione sepharose resin was added). The GST tag was bound to the column and the endolysin passed through. The purified tag-free protein was further cleaned by an-ion exchange using an AKTA purifier (GE healthcare, Sweden) to clear out and remove both the TEV nuclease and any unwanted proteins left in the sample. The flow through was used for the zymography and lysis experiment described in sections 5.3.8 and 5.3.9.

Figure 46. Recognition amino acids sequence and the cleavage site of TEV protease. This figure shows the 7 amino acids sequence is incorporated at the end of the tag, this is the site at which the TEV protease specifically acts. Adapted from http://www.sigmaaldrich.com/catalog/product/sigma/t4455?lang=en\®ion=GB

5.3.8 Zymography

In order to prove that the purified recombinant protein has muralytic activity, zymography was carried out as described by (Mukamolova et al., 2006), with modifications. SDS-PAGE was carried out using a 12% polyacrylamide gel supplemented with $0.2 \% \mathrm{w} / \mathrm{v}$ of lyophilized Micrococcus lysodeikticus ATCC No. 4698 (Sigma-Aldrich, USA) as a substrate for the enzyme. 20 mg of the substrate was added to 9.7 ml of the SDS-PAGE gel (3.4 ml distilled water, 2.5 ml of 1.5 M Tris- HCl (ChemCruz, USA) $\mathrm{pH} 8.8,4 \mathrm{ml}$ of 30% (W/V) Acrylamide/Bis-acrylamide Protogel (National Diagnostics, England), and $100 \mu \mathrm{l}$ Of 10% SDS (Fisher Scientific, USA), without the addition of ammonium persulfate (APS) solution and the $\mathrm{N}, \mathrm{N}, \mathrm{N}$ ', N^{\prime} Tetramethylethylenediamine (TEMED). A nylon Pasteur pipette was used to homogenise the mixture. After this, $50 \mu 1$ of 10% APS (BioRad, USA), and $10 \mu 1$ of TEMED (Sigma, China) were added to the gel. The stacking gel was prepared as described in section 3.11.3.1 and was overlaid on the running gel. A comb of suitable size was used.

Endolysin aliquots with different concentrations (8.216, 8.907, 10.790, and 11.832 $\mathrm{mg} / \mathrm{ml}$), along with a pre-stained protein standard and a lysozyme solution from chicken egg white (Sigma-Aldrich, USA) as a positive control were loaded in the gel, as described in 3.11.3.2. The sample buffer used to prepare the endolysin for electrophoresis consisted of 0.313 M Tris-HCl pH $6.8,10 \%$ SDS, 0.01% bromophenol blue, 50% glycerol and 100 mM DTT. The lysozyme control was prepared prior to use by dissolving 10 mg in 1 ml of 10 mM Tris-HCL pH 8 . Electrophoresis was performed at 150 volt for 1 hour using a PowerPac basic (BioRad, USA).

After running the samples using a 1 X running buffer described in 3.11.3.3, the gels were rinsed and washed briefly (20minutes with slow shaking at room temperature on a rocker) with distilled water. Then, the gels were washed at room temperature for 3hours with a renaturation buffer consisting of $20 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$ (Fisher scientific, UK), and 50 mM NaCL (Fisher scientific, UK) pH 7.2 , supplemented with 2% triton X100 (Fisher scientific, USA), to remove the SDS and allow for renaturation. This buffer was changed every hour. Thereafter, the gels were incubated overnight at $37^{\circ} \mathrm{C}$ using the same renaturation buffer but without triton X100.

The following day, the gels were stained for 2 hours with slow agitation at room temperature with methylene blue $0.1 \mathrm{w} / \mathrm{v}$ (Sigma-Aldrich, USA) prepared in 0.01 M
potassium hydroxide (FSA laboratory supplies, England). Then, it was de-stained with distilled water and slowly agitated at room temperature until the clearance became visible.

5.3.9 Lysis assay

A lysis assay was carried out in order to determine the ability of endolysin to lyse C. perfringens strains. The experiment was conducted as described by (Zimmer et al., 2002b) with modifications. Briefly, C. perfringens was grown in TY broth until it reached \log phase ($\mathrm{OD}_{550} \sim 0.2$), it was then aliquoted in 1.8 ml aliquots into 2 ml micro-centrifuge tubes. After that, C. perfringens cells were harvested by centrifugation at 10000xg for 10 minutes at $4^{\circ} \mathrm{C}$ (Thermo-Scientific, Germany). The pelleted cells were washed twice with 1.8 ml of pre-reduced phosphate buffered saline (PBS) (Oxoid, England) pH 7.5 and re-suspended with 1.6 ml of pre-reduced TY broth, inside the anaerobic chamber. CFU was performed for each tested C. perfringens strain, after which the culture was distributed across a 96 microtiter plate ($290 \mu \mathrm{l}$ per well). A diluted endolysin stock was mixed with the cell suspension to a $300 \mu \mathrm{l}$ total reaction volume in the microtiter plate. A final concentration of 2,1 , and $0.5 \mu \mathrm{~g} / \mathrm{ml}$ of endolysin was used with three repeats for each concentration.

TY broth was used as a negative control to exclude any contamination. An untreated culture of each tested C. perfringens strain was also set to monitor the normal growth and ensure that the reduction in the CFU in the treated wells is the result of endolysin treatment. The CFU of the treated strains was taken after one hour of anaerobic incubation at $37^{\circ} \mathrm{C} .10 \mu \mathrm{l}$ of each culture was directly spotted on the TY agar, while another $10 \mu \mathrm{l}$ was suspended in $90 \mu \mathrm{l}$ PBS that was kept at room temperature to prevent further cell growth. A serial dilution was made and $10 \mu 1$ of each dilution was spotted on TY agar.

5.4 Results

5.4.1 Bioinformatics analysis of CPAP1

The amino acid sequence of CPAP1 endolysin has 97% similarity with the endolysin of phage phi24R and 80% similarity with phage CPS1 (Figure 41 in 4.4.11). It also has between $54-57 \%$ similarities with endolysin genes of another $6 C$. perfringens phages endolysin (Figure, 47).

ФСР340	mkialrgghspnckganvlrdeqscmwaladevekvltshghtvvrcettlsneredvrq	60
Ф39-0	mkialrgghspnckganvlrdeqscmwaladevekvltshghtvvrcettlsneredvrq	60
CPS1	mkigirdghspnckgaialrdeqacmrilcrevievlekhghevvycgsnartengelse	60
CPAP1	MKIGIRDGHSPNCKGAIGLRDEQSCMRVLCKEVIEILEKHGHEVVYCGSNASTQNGELSE	60
Ф24R	mkigirdghspnckgaiglrdeqscmrvlckevieilekhghevvycgsdastqnselse	60
CPV1	miigsrtghskkclgavslrnewecmnilerevnkilkahghtiidcnssastengelse	60
ФCP26F	miigsryghsencrgakglrdevdamkplhfefkkimeqyghtiidccsnantqngelse	60
ФСР340	gakkg--yncdmfislhmnasd-grgngteawvarsarssikeiasrlcknyatlglqnr	117
Ф39-0	gakkg--yncdmfislhmnasd-grgngteawvarsarssikeiasrlcknyatlglqnr	117
CPS1	ginkansnnvdifislhmdvskehkangtcsfvakearksirdiaqrlvdnfetlglqnr	120
CPAP1	GVRKANNSNVDIFISLHMNSFN-GQAQGTEALVTVGARNSIKEIASRLCKNFASLGLVNR	119
Ф24R	gvrkannsnvdifislhmnsfn-gqaqgtesliavgarnsikeiasrlcknfaslglvnr	119
CPV1	gcrkanaqhidiflsyhmnaskdhkghgtecwvhpnarasckeiasrissnlsklgfynr	120
ФCP26F	garkanaqildlfiswhgnk---gggqgceawiannsra--kpyaermcknfsslgfknr * .*. *:*:* * : : * : :* : *.*: .* .**: **	115
ФСР340	gvke-knywemtdtncpniifetmfcddkhdi-diwastswdklarlianaidpniplek	175
Ф39-0	gvke-knywemtdtncpniifetmfcddkhdi-diwastswdklarlianaidpniplek	175
CPS1	gvre-snyremrevnapniifetmfcdnlhdinevwsptpyekmallianaidpti---k	176
CPAP1	GVKE-VNLYEMKNVKAPNIIFETMFCDNPHDINEVWSPTPYEKMALLIANAIDPTI---K	175
Ф24R	gvke-vnlyemknvkapniifetmfcdnehdinevwsptpyekmallianaidpti---k	175
CPV1	gvkt-gllyemknvnapniiietcfcdnekdi-giwsptpyevmarhianaldpsipiee	178
ФCP2 6F	gvkysdkyyemrninapniifetlfldsekdi-siwspipyevmarylanaidpniplek	174
	: ** : : **:**** : ** :*: $: ~: ~: * ~: * * *: * * * ~$	
ФСР340	eqdyyrvavqrfkskedaekakqrisselgyycfteki- 213	
Ф39-0	eqdyyrvcvqrftnkedaekaqqrisnelgyycfaeki- 213	
CPS1	enelyrvvvqyfnskedaencqqeiak--rwycfvegcn 213	
CPAP1	ENELYRVVVQYFNSKEDAENCQQEIAK--RWYCFVEECN 212	
Ф24R	enelyrvvvqyfnskkdaencqqeiak--rwycfveecn 212	
CPV1	kpkrwqvrvyaftskeeaqkysdritkelkaynvveei- 216	
ФCP2 6F	eqdyyrvcvqrftnkedaekaqqrisnelgyycfaeki- 212	
	: . : :* * *..*: :*: . . .*:. * ..*	

Figure 47. Alignment of the CPAP1 endolysin amino acids sequence with endolysin sequences of six C. perfringens phages. The CPAP1 endolysin has different percentages of similarities with other C. perfringens phages endolysins; 97% with $\Phi 24 \mathrm{R}, 80 \%$ with CPS1 phage, 57% with ФСР340, 57% with ФСР39-О, 55% with ФСР26F, and 54% with CPV1.

The structural analysis of CPAP1 endolysin using Pfam domain analysis showed that it belongs to the amidase- 3 (N-acetylmuramoyl-L-alanine amidase) family. It is composed of 212 amino acids. Moreover, the molecular weight of this endolysin is 23.884 kD , as determined by ExPASy online and shown on SDS-PAGE.

5.4.2 Cloning, expression, and purification of recombinant endolysin

The CPAP1 endolysin was cloned as described in 5.3.2. A gradient PCR was carried out to amplify the coding sequence (Figure, 48); annealing temperatures ranging between $56-58^{\circ} \mathrm{C}$ annealing temperatures gave a PCR product. The analysis of the recombinant plasmid sequence revealed that no mutation occurred in the insert.

Figure 48. Gel electrophoresis image of a gradient PCR showing a successful amplification of endolysin gene and the adapter sequence. (633bp) compatible with pLEICS-02 plasmid. A range between $56-58^{\circ} \mathrm{C}$ annealing temperatures gave a PCR product, which was used for endolysin cloning by the PROTEX service.

After the expression and purification of the recombinant endolysin, it was analysed by SDS-PAGE. The GST-tagged endolysin bands were approximately 50kB in size (Figure, 49). Although the enzyme was successfully expressed and purified, further optimization for both the expression and purification processes is required so as to produce more pure endolysin with higher final yields.

Figure 49. SDS-PAGE image shows the purified recombinant endolysin after it was cleaned by anionic exchange. The first lane on the left is a wide range protein standard (New England Biolabs, UK). (1) eluted protein before cleaning. (2) control of un-induced E. coli culture. (3-12) are the 50 kB (approximately) GST-tagged recombinant endolysin obtained after cleaning with the AKTA purifier. This purification yielded 0.5 ml fractions.

5.4.3 Removing the GST tag

The endolysin enzyme has an N -terminal catalytic domain, as reviewed in 2.2.7. The GST tag was removed as described in section 5.3.7 to free the catalytic domain of the enzyme. After the cleavage of the tag, the solution was column purified again using a binding buffer without reduced L-glutathione to keep the tag bound to the column while the endolysin passed and accumulated in the flow through.

The result revealed that the recombinant protein was partially cleaved as two bands were obtained; one had a molecular weight of approximately 24 kDa , which is the endolysin, and the other weighed approximately 50 kDa , which is the tagged endolysin (Figure, 50). It seems that the high concentration of protein resulted in a partial cleavage of the tag and in the passage of the un-cleaved protein through the column. This result suggests that the cleavage conditions need further optimization.

Figure 50. SDS-PAGE image shows the recombinant endolysin after it was cleaved by the TEV enzyme and cleaned by an AKTA purifier. (1-6) show two bands, a $\sim 24 \mathrm{kDa}$ of the endolysin only and $\sim 50 \mathrm{kDa}$ of the GST-tagged endolysin. Lanes ($5 \& 6$) show three bands, a 26 kDa band of the GST tag only, $\sim 24 \mathrm{kDa}$ band of the endolysin, and $\sim 50 \mathrm{kDa}$ of the GST-tagged endolysin. ($7 \& 8$) are wide range protein standard (New England Biolabs).

5.4.4 Zymography

After cleaving the GST tag and cleaning the recombinant protein with an AKTA purifier, the solution was filter sterilized and used for zymography. The result confirmed that the recombinant endolysin of the C. perfringens phage has muralytic activity, as it was able to hydrolase the cell wall substrate of Micrococcus lysodeikticus supplemented in the polyacrylamide gel. The activity was confirmed as a clearance band occurred when using a renaturation buffer of 7.2 pH (Figure, 51).

Figure 51. The muralytic activity of recombinant endolysin in a zymogram. (A) The clearance caused by the lysozymes (positive control), protein standard on the left and a clearance band at $\sim 14.3 \mathrm{kDa}$. Part B shows the clearance caused by the purified, cleaned recombinant endolysin. Protein standard on the left of the image and clearance bands on lanes 1 and 2 (highlighted with an arrow on the right hand side of the image) at $\sim 24 \mathrm{kDa}$,. The recombinant protein has renatured in a buffer that had $20 \mathrm{mM} \mathrm{KH}_{2} \mathrm{PO}_{4}$, and 50 mM NaCL pH 7.2.

5.4.5 Lysis assay

The ability of the recombinant endolysin to lyse C. perfringens strains (CP7, CP14, CP28, CP41, CP53, CP65, and CP73) was assessed using a lysis assay. Seven strains were treated with the enzyme, and the results revealed that it was able to stop the growth of six C. perfringens strains and completely lyse them. Only one strain was not completely terminated (Figure, 52).

The endolysin has a wider host range in comparison with the parent phage. While the endolysin parent phage could propagate on six C. perfringens strains, the derived endolysin could lyse another seven C. perfringens strains that the parent phage could not propagate on or cause lysis from without.

Figure 52. The lysis of seven strains treated with the phage endolysin. All the strains were completely lysed except for the C. perfringens number 7 strain (the first two columns on the left), which was partially lysed. An untreated C. perfringens culture of each strain was used as a control (black columns).

5.5 Discussion

In this chapter, we identified and proved that the ORF13 of the CPAP1 phage encodes N -acetylmuramoyl-L-alanine amidase. This enzyme is expressed by C. perfringens phage CPAP1. The recombinant CPAP1 endolysin has the potent ability to completely lyse most of the tested C. perfringens strains, making it a candidate medication for C. perfringens treatment.

The ability of C. perfringens strain number 7 to partially resist the lysis caused by endolysin reinforces the need of using an endolysin cocktail. Such a cocktail with the ability to completely lyse known C. perfringens strains would definitely provide a strong case for the prophylactic use against gas gangrene if administered early after traumatic injury (via a spray or ointment). It may also be able to treat the systemic infection (upon early diagnosis), gas gangrene, and all other types of intestinal infections caused by C. perfringens, as it lyses C. perfringens strains regardless of which toxin-type they are.

In order to confirm endolysin's suitability to treat these infections, a clinical trial should be carried out. The laboratory settings can determine the outcome of the
interactions between the enzyme and the bacteria under optimum conditions for both. However, the infection environment has many factors which may possibly affect the bacteria and the enzyme positively or negatively. For example, the different bacterial metabolic products which are produced by other microorganisms at the site of infection, gut microbiota (and other wound contaminants) may inhibit, block or lyse the enzyme, as well as provoke or inhibit the growth of C. perfringens. The immune response against the enzyme as an antigen is another example.

The conditions of the expression and purification of the C. perfringens phage endolysin was optimized as described in 5.2.5 and 5.2.6. These conditions can possibly be used to express and purify other C. perfringens phage endolysins. The lytic activity of the recombinant endolysin was confirmed with a zymogram.

The study of interactions between endolysin and growing C. perfringens cells in TY broth using direct CFU/ml can uncover any ability of these strains to resist lysis caused by endolysin, if there is any resistance found. It can also uncover the ability of C. perfringens strains grown in the presence of this enzyme by forming a biofilm to physically hide the bacteria away and keep it out of the enzyme's reach. While the turbidity reduction test can show the time required for an endolysin to lyse C. perfringens strains in a suspension buffer, the bacteria will not have any metabolic activity inside the buffer used in turbidity test due to the presence of oxygen and the absence of essential nutrients.

5.6 Conclusion

The findings of this chapter show that the recombinant endolysin can be used for the treatment of local and intestinal infection caused by C. perfringens. However, more characterisation is required, as explained in the discussion. It can also be used as a prophylactic agent to prevent gas gangrene by covering the burns and traumatically injured areas of the body with the enzyme.

The endolysin has a wider host range than the parent phage; this highlights the potential of endolysin as a novel antimicrobial agent. It can act at a pH and temperature similar to that of blood and can thus be used to treat the systemic infections caused by C. perfringens upon early diagnosis. However, further studies are needed to determine the time required by the immune system to clear the endolysin from the circulation.

5.7 Future work

1. Clone, express, and purify the endolysin of more C. perfringens phages.
2. Determine the host range (lytic spectrum) of these endolysins on a large number of C. perfringens strains.
3. Determine the ability of endolysins to prevent spore germination.
4. Determine the minimum inhibitory concentration of endolysins.
5. Determine the specificity of these endolysins by testing their lytic ability on different bacterial species. This is particularly important when treating intestinal infections.
6. Test the lytic activity of endolysins in different media, pH and temperature so as to determine their lytic activity in different conditions that mimic the infection environment (intestine, skin, and blood stream).
7. Assess the stability of these endolysins in different suspension liquids after long storage at room temperature and at $4^{\circ} \mathrm{C}$.
8. Determine the in-vivo activity of the endolysins using animal models for both local and systemic infections.
9. Test the ability of endolysin cocktails to lyse all the isolated C. perfringens strains.

Chapter 6

Optimization of electrotransformation parameters
for C. difficile

Chapter 6. Optimization of electro-transformation parameters for C. difficile

6.1 Introduction

In the first part of this chapter, we test the hypothesis stating that by using a wide range of both transmembrane voltage and pulse durations (Ut), it is possible to transform C. difficile by electroporation. Using our understanding of electroporation mechanism and considering the successful electro-transformation of Clostridium species other than C. difficile, we applied variable parameters. Changes in each parameter value in every experiment setting were decided depending on the effect (role) of that particular parameter. These parameters were changed in the context of gradually increasing the damage caused by Ut (the thermal electric effect) to the C. difficile physical barriers, in order to determine an interval at which this damage remains reversible and the DNA can pass through into the cell. After applying many settings, it became obvious that the reasons for the unsuccessful transformation is due to the complex structure of the C. difficile physical barriers (thick peptidoglycan and surface layer proteins) which restrict the passage of DNA into C. difficile, and the biofilm production which prevents physical contact between the DNA and C. difficile cells.

In the second part of this chapter, we test the hypothesis that by preventing biofilm formation and diminishing the thickness of C. difficile physical barriers, the cells may become susceptible for transformation. Considering our understanding of the processes of biofilm formation, surface layer proteins formation, and the peptidoglycan bonds, we used different treatments and growth conditions to prepare C. difficile for electroporation.
C. difficile grows in a biofilm which enables it to resist a variety of environmental stresses such as oxygen stress, antibiotics, and immune defence systems (Dapa et al., 2013). Biofilm prevents direct physical contact between bacterial cells and the environmental stress factors by providing an enclosed environment (Beloin et al., 2008, Watnick et al., 2001). Similarly, the presence of C. difficile cells in a biofilm prevents the contact of these cells with the DNA that is used to transform these cells. C. difficile was grown with agitation to disperse cells and prevent biofilm formation.
C. difficile has a thick protein coat mainly consisting of two proteins, the high molecular weight and the low molecular weight proteins. These two proteins result from the cleavage of the precursor protein SlpA inside the cell. Consequently, these two proteins reassemble on the cell surface to form a proteinaceous lattice layer on the cell surface (Calabi et al., 2002, Fagan et al., 2009, Dang et al., 2010). A cysteine protease inhibitor (reviewed in detail in section 6.1.5) was used to prevent the cleavage of the surface layer protein precursor SlpA into high and low molecular weight proteins, and thus to diminish the outer protein layer so as to facilitate the passage of DNA by electroporation.

Lysostaphin (reviewed in detail in 6.1.6) was used to increase the diameter of the normally existing tiny pores in the peptidoglycan layer. The diameter of pores in E.coli range between 16-24 \AA (Bonardi et al., 2011).

6.1.1 C. difficile infection and phage therapy

The CDI number has largely grown in the last decade with increased incidence of multi-antibiotic resistance C. difficile strains in Europe. The development of this resistance can be attributed to the sub-inhibitory doses of the antibiotic in the lumen, the ability of C. difficile to grow in a biofilm, the heterogenicity of metronidazole resistance, the presence of proteins in the intestine which helps the bacterial DNA repair, and the mutation in the vancomycin binding site (Mirecka, 2017). A new antimicrobial agent that does not affect the gut microbiota or participate in the dissemination of antibiotic resistance is urgently required (Kirk et al., 2017b). Consequently, interest in phage therapy has been renewed (Garneau et al., 2017). The use of C. difficile phage combinations has demonstrated potential to treat CDI, as it was able to terminate C. difficile culture in-vitro and delayed the onset of symptoms in-vivo using an animal model. However, few studies have focused on the use of phage therapy to treat CDI, mainly because all the isolated C. difficile phages are temperate (Nale et al., 2016b). Yet, there is no record of a strictly lytic C. difficile phage in the literature.

6.1.2 Genetic manipulation of C. difficile

Currently, C. difficile genetic manipulation is dependent on conjugation as the only available method to transform C. difficile with plasmid DNA. The transformation efficiency varies among C. difficile strains, with C. difficile ribotype 20291 being refractory to transformation (Kirk et al., 2016).

The optimization of the electroporation parameters for microorganisms which are difficult and laborious to transform by conventional methods provides an additional tool to genetically manipulate these microorganisms. Electroporation has a higher efficiency in comparison with chemical transformation (Deng et al., 2017).

Since highly effective transformation protocols have been described for E. coli and Pseudomonas aeruginosa, phages that infect these species are almost the only engineered viruses, as the in-vitro modified phage nucleic acid needs to be delivered back into bacterial host cells so as to obtain a viable phage progeny (Pires et al., 2016). Electroporation has been successfully used to deliver whole phage DNA to E. coli (Planelles et al., 1999, Inoue et al., 2016).
C. difficile phages can be genetically improved to be used for CDI treatment. It is worth investigating the effects of the deletion of the phage integrase gene, how integrative the phage remains and how the lytic activity is affected. The properties of phages can also be improved by the insertion of genes that can disrupt C. difficile toxin genes. In order to accomplish this, a potent C. difficile genetic transformation system is required to deliver the engineered genetic material back to the bacterium.

6.1.3 Electro-transformation of C. difficile

There is only one report for the transformation of C. difficile by electroporation by Ackerman et al. (2001). The study states that the most important factor for the successful electro-transformation of C. difficile is strain characteristic. Another important factor is the type of nucleic acid used. This conclusion was reached given the outcome of the experiments, as only one strain out of nine was transformed in that study, and the transformation efficiency varied (using the same settings) with different plasmid types.

6.1.4 C. difficile cell wall

The C. difficile cell wall (Figure, 53) consists of a thick de-acetylated peptideglycan (PG) layer that has unique cell wall glycol-polymers (CWGs) bound to a surface layer (S-layer) of protein lattice surrounding the whole PG. The S-layer has an unusual structure; it is composed of two distinct proteins, a high molecular weight ($42-50 \mathrm{kDa}$) protein and a low molecular weight ($22-38 \mathrm{kDa}$) protein, and an additional 28 other proteins (Brüggemann et al., 2009, Kirk et al., 2017a, Cerquetti et al., 2000). These proteins are expressed at a very high level and have the ability to form two dimension arrays. There is a variability in the molecular weight of these two proteins between
different C. difficile strains. Consequently, they present on SDS-PAGE between 22kDa and 55 kDa (Dawson et al., 2009). The above-mentioned cell wall complexity and thickness represents a physical barrier that inhibits and limits the passage of DNA by electroporation.

The Bacillus spp. S-layer protein differs from the C. difficile S-layer; it is composed of two similar thick protein layers consisting of a high molecular weight protein. The S-layer of Bacillus spp. does not have a low molecular weight protein (Leduc et al., 1977).

Figure 53. Complexity and thickness of C. difficile cell envelope.
A) The C. difficile cell envelope. The outer layer is decorated by the cell wall proteins family. SlpA, S-layer, and cell wall binding proteins are shown at the top. In the middle, the peptidoglycan and the glycopolymers are shown. The plasma membrane is shown beneath the peptidoglycan layer. This complicated structure can explain why C. difficile is refractory to transformation. B) Organization of the protein domains are shown. Black boxes refer to the secretion signals of N -terminal. Black arrows refer to the post-secretion cleavage sites of the SlpA and CwpV . The sorting motifs location and sequence are shown above CD2831 and CbpA (Kirk et al., 2017a).

6.1.5 Cysteine protease inhibitors

Proteases play an important role in the regulation of biological processes through the degradation of enzymes and protein molecules that are involved in these processes (Domsalla et al., 2008, Vicik et al., 2006). The HMW and LMW proteins of the C. difficile cell wall are generated by the cleavage of the surface layer protein precursor SlpA by a cysteine protease Cwp84. This process can be inhibited using a cysteine protease inhibitor E-64 (Figure, 54). Thus, the SlpA precursor will be produced and trapped inside the bacterial cell. Consequently, the thick surface protein layer will become thinner (de la Riva et al., 2011, Dang et al., 2010).

Figure 54. Structure of the synthetic cysteine protease inhibitor E-64. (Dang et al., 2010). Above is a schematic of the chemical structure of E-64.

6.1.6 Lysostaphin

Lysostaphin is an antimicrobial enzyme that is able to cleave the penta-glycine bridge found in the peptidoglycan of Staphylococci. It was previously thought to be a bacteriocine that helps Staphylococci to compete and survive in the presence of other bacterial species in the environment (Bastos et al., 2010). However, it was recently found that lysostaphin plays an important role during Staphylococcus aureus division. It allows the cell to divide through the cleavage of the cell wall peptidoglycan (Raulinaitis et al., 2017).

Lysostaphin has been used to optimize electroporation parameters for Staphylococcus carnosus and C. perfringens because of the penta-glycine peptidase activity that it possesses (Gao et al., 2014, Lanckriet et al., 2009). It may also help in the optimization of electroporation parameters for C. difficile.

6.1.7 Aims and objectives

In this chapter, we will test the hypothesis that an electroporation protocol can be optimized and used for the genetic manipulation of C. difficile phages in order to improve and manipulate their properties as therapeutic agents. The following objectives are set:

1. Empirically optimize electroporation parameters to transform C. difficile ribotypes R076 with phage DNA, and R220 with plasmid DNA. This can be achieved by:
a. Using varying transmembrane pulses.
b. Reducing the biofilm formation by culturing C. difficile with agitation.
c. Diminishing the physical barriers (surface layer protein and peptide glycan) by the treatment of bacteria with cysteine protease inhibitor (E-64) and lysostaphin.

6.2 Materials and methods

6.2.1 Phage DNA preparation

Phage phiCDHM1 was ultra-centrifuged at 30,900 RPM for 3 hours at $4^{\circ} \mathrm{C}$ using an ultra centrifuge (Sorvall-Discovery SE/Kendro laboratory products, Hitachi, Japan). Phage DNA was extracted by the phenol/chloroform/isoamyl alcohol method as described in 3.10.1. The extracted DNA was concentrated using a SpeedVac savant (Thermo-Scientific, UK) vacum drier and DNA concentration was determined. The DNA was stored at $-20^{\circ} \mathrm{C}$ to be used in the optimization of electroporation of C. difficile R076, as it is the propagation strain of phiCDHM1.

6.2.2 Plasmid DNA preparation

E. coli strains that harbor the plasmids pMTL82151 and pMTL84151 (Heap et al., 2009b) were grown on Luria Bertani broth, (Fischer scientific, U.K) supplemented with $30 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol (Sigma, Germany), aerobically overnight at $37^{\circ} \mathrm{C}$ in a shaker incubator using the Innova® 44 (New Brunswick scientific, USA) incubator. The plasmid was extracted using a mini-prep kit (Sigma Alderich, USA) as described in 3.11.2. The extracted plasmid DNA was concentrated using a vacuum drier and the DNA concentration was determined. The DNA was stored at $-20^{\circ} \mathrm{C}$ to be used in the optimization of electroporation of C. difficile R220, as it harbours phiCDHM1 as a prophage.
6.2.3 Electroporation of C. difficile using different transmembrane pulses

6.2.3.1 Preparation of C. difficile cells for electroporation

C. difficile R076 was chosen as it is susceptible to infection with 10 of the isolated phages (phiCDHM1, phiCDHM2, phiCDHM3, phiCDHM5, phiCDHM6, phiCDHM10, phiCDHM11, phiCDHM13, phiCDHM15, and phiCDHM16) available from Professor Clokie's laboratory. The success of the optimization of R076's electroporation would make the genetic manipulation of all these 10 phages possible.

R220 was chosen because it harbours the CDHM1 and CDHM3 bacteriophages as prophages; these phages can be engineered by homologous recombination using the semisuicide plasmids pMTL82151. The engineered prophage can be induced from R220 as described by (Hargreaves, 2013).

Electroporation was conducted as described by (Ackermann et al., 2001) with modifications. C. difficile was grown on blood agar as described in section 3.2.1, but $100 \mu 1$ of FA culture was inoculated in to 1 ml of pre-reduced and pre-warmed BHI broth. The tube was incubated anaerobically for 12 hours at $37^{\circ} \mathrm{C}$. It was then centrifuged at 3000 xg for 20 minutes at $4^{\circ} \mathrm{C}$. The pellet was washed once with 10 ml of a cooled prereduced electroporation buffer (sodium magnesium phosphate [SMP] buffer consisting of aqueous magnesium chloride, 0.2 g , sucrose $92.4 \mathrm{~g}, 70 \mathrm{ml}$ of 100 mM tri sodium phosphate in 1litre, pH 7.4). The pellet was re-suspended gently in the SMP buffer without vortexing and centrifuged again at 3000 xg for 20 minutes at $4^{\circ} \mathrm{C}$. Finally, the pellet was re-suspended in 5 ml of cooled pre-reduced SMP buffer incubated in ice for half an hour. Volumes of 0.8 ml or 0.4 ml of cell suspension was used for the electroporation experiment. The setting was repeated but at room temperature without cooling the SMP buffer on incubation in ice.

6.2.3.2 Setting the transmembrane pulse (Ut)

A BIORAD E. coli Pulser (USA) was used to transform C. difficile by electroporation. A wide range of pulse durations were used ($1-2.5 \mathrm{kV} / \mathrm{cm}$ and $5-50.1 \mathrm{mSec}$.). The field intensity $(\mathrm{kV} / \mathrm{cm})$ and the time constant of the pulses $\left(\mathrm{U}_{\mathrm{t}}\right)$ were calculated using the following equation, as instructed by the BioRad guide available online at http://www.biorad.com/webroot/web/pdf/lsr/literature/4006174B.pdf

$$
\text { Field intensity } \mathrm{kV} / \mathrm{cm}=\frac{\text { Voltage }(\mathrm{kV})}{\text { Cuvatte gap }(\mathrm{cm})}
$$

$$
\text { Pulse duration }(\text { msec. })=\text { Capacitance }(\mu \mathrm{F}) \times \operatorname{Resistance}(\Omega)
$$

Two different cuvettes were used; the first was with a 2 mm gap and $1 \mathrm{~cm}^{2}$ electrode, and the second was a cuvette with a 4 mm gap and $2 \mathrm{~cm}^{2}$ electrode (Gene Flow, UK).

6.2.3.3 Electroporation

0.8 ml or 0.4 ml of C. difficile cells were transported into the electroporation cuvette and the DNA was added at different concentrations $(1-10 \mu \mathrm{~g} / \mathrm{ml})$. The experiment was carried out with pre-pulse incubation at room temperature and with incubation on ice. After electroporation was performed the cuvette was incubated for 10 minutes on ice. This
step was excluded when the experiment was carried out at room temperature. Thereafter, 4.8 ml of a pre-reduced Trypticase glucose-yeast extract (TGY) broth (Appendix, 1) maintained at room temperature was inoculated with the cell suspension and incubated anaerobically for 3 hours at $37^{\circ} \mathrm{C}$ to recover the electroporated cells, as described by (Ackermann et al., 2001). After the incubation was completed:

1. For phage DNA, $500 \mu 1$ of bacterial suspension was mixed with 8 ml of BHI soft agar and poured onto brain heart infusion agar square plates. 10 plates were prepared for each 4.8 ml electroporated bacterial suspension. $5 \mu \mathrm{l}$ of the extracted phage DNA used for the electroporation experiment was directly spotted on a bacterial lawn as a control to make sure that it does not contain any intact virion. The plates were incubated anaerobically for 24 hours at $37^{\circ} \mathrm{C}$. Post incubation, the plates were then examined for the presence of plaques.
2. For plasmid DNA, bacterial suspension was poured onto 4 circular plates (1.2 ml per plate); two Brucella agar plates and 2plates of TGY agar circular plates (Appendix, 1) supplemented with $15 \mu \mathrm{~g} / \mathrm{ml}$ thiamphenicol (Appendix, 1). These were incubated anaerobically for $48-72$ hours at $37^{\circ} \mathrm{C}$.

The retrieved colonies on TGY and Brucella agars were sub-cultured twice onto TGY and Brucella agars respectively before the extraction of DNA and the running of a PCR to establish the presence of plasmid. An un-shocked bacterial suspension was used as a control.
6.2.4 Culturing of C. difficile outside the anaerobic chamber and weakening its biofilm

Both C. difficile ribotypes 076 and 220 grow in a biofilm. This is confirmed by the presence of visual viscous cloudy clumps of bacterial aggregations in FA broth surrounded by a clear broth.

Different broths were used for the culturing of C. difficile outside the anaerobic chamber. BHI-glucose Na-thioglycollate (BHIS-Na) (3.7\% BHI (Oxoid, UK), 0.5% yeast extract (Oxoid, UK), 1.5% glucose (Fisher scientific, UK) and 0.1% sodium thioglycollate (Sigma-Aldrich, UK) pH7.4. The BHI, yeast extract and Na-thioglycollate were autoclaved in 480 ml of distilled water. Then, the glucose was dissolved in 20 ml of distilled water and filter sterilized onto the autoclaved BHIS-NA.

Fluid thioglycollate (FTG) broth was also used to culture C. difficile outside the anaerobic chamber (1.5% tryptone (Oxoid, UK), 0.5% yeast extract (Oxoid, UK), 0.55% glucose (Fisher Scientific, USA), 0.05% sodium thioglycollate, 0.25\% sodium chloride (Fisher Scientific, USA), 0.0001% resazurin (Sigma-Aldrich, USA), 0.05% L-cysteine (Sigma-Aldrich, USA) pH7.2, available online at http://www.oxoid.com/uk/blue/prod_detail/prod_detail.asp?pr=cm0173\&cat=\&sec=1\& $\mathrm{c}=u k \& l a n g=e n$.
C. difficile was grown with agitation at 120 rpm outside the anaerobic chamber at $37^{\circ} \mathrm{C}$ for 1 hour. A control culture was grown inside the anaerobic chamber and the CFU of both were compared. Two 15 ml tubes of both FTG and BHIS-Na broths were pre-reduced overnight inside the anaerobic chamber. Starting from the FA culture, $150 \mu \mathrm{l}$ of the C. difficile overnight culture (cells at stationary phase) was inoculated in all tubes. One tube of FTG and one of BHIS-Na broth were left in the anaerobic chamber at $37^{\circ} \mathrm{C}$ for 1hour as a control. The other FTG and BHIS-Na broths were sealed with para-film and incubated outside the anaerobic chamber at $37^{\circ} \mathrm{C}$ with agitation at 120 rpm . After 1 hour of incubation, $\mathrm{CFU} / \mathrm{ml}$ was carried out for the all the tubes as described in section 3.4.

6.2.5 Treatment of C. difficile with cysteine-protease E-64 inhibitor and lysostaphin

In order to diminish the surface layer protein of C. difficile and make pores in the peptidoglycan, the culture was treated with cysteine protease inhibitor E-64 (SigmaAldrich, UK) and lysostaphin (Sigma-Aldrich, UK). A stock solution of $5 \mathrm{mg} / \mathrm{ml}$ $(13.9899 \mathrm{mM})$ of E-64 was prepared and used to a final concentration of $100 \mathrm{mM}, 250 \mathrm{mM}$, and 500 mM . After the treatment with cysteine inhibitor, lysostaphin was used to help make pores in the peptidoglycan. $1 \mathrm{mg} / \mathrm{ml}$ stock solution of lysostaphin was prepared and added to the E-64 treated C. difficile cells at a final concentration of $10 \mu \mathrm{~g} / \mathrm{ml}$.
C. difficile was grown as described in section 6.2.4, $150 \mu \mathrm{l}$ of FA culture was inoculated in 15 ml of BHIS-Na (a control tube was also prepared) and the E-64 was added to the test tube only at the same time of inoculation. The tubes were sealed with para-film and transported to a shaker incubator. After 1 hour of incubation at 120 rpm and $37^{\circ} \mathrm{C}$, lysostaphin was added to the test tube only. The mixture was mixed by inversion and washed twice with a pre-reduced SMP buffer by centrifugation at 3500 xg for 10 minutes. The pellet of the final washing step was re-suspended in pre-reduced SMP buffer and was then ready for electroporation.

6.2.6 Extraction of C. difficile surface layer protein

The extraction of the surface layer protein was conducted as described by (Fagan et al., 2010). Briefly, 5 ml of each of the E-64 treated C. difficile R076 culture and of the control (untreated) culture in the BHIs-Na broth were transported into 15 ml tubes. Then, the tubes were centrifuged at 3500 xg for 15 minutes at room temperature. The pellet was re-suspended in $500 \mu 1$ of PBS and washed two more times. After the last washing step, the PBS was completely drained from the tube. The pellet was re-suspended in $50 \mu \mathrm{l}$ of low pH glycine-HCL (Acros Organics, USA) pH 2.2 , and incubated at room temperature for 20 minutes with gentle interval agitation. The suspension was then transported into eppendorf tubes and centrifuged at a speed of $21,000 \mathrm{xg}$ for 10 minutes at $4^{\circ} \mathrm{C}$. The supernatant containing the cell wall surface layer proteins was carefully transferred to new tubes and neutralized with 2μ l of 2 M Tris-base (Fisher scientific, UK). Thereafter, the protein concentration was analyzed by SDS-PAGE as described in 3.5.3.

6.2.7 Electroporation of enzymatically treated C. difficile

No ice incubation was used throughout the experiment. The C. difficile culture was used for electroporation right after the enzymatic treatment. $\mathrm{CFU} / \mathrm{ml}$ was taken before starting electroporation. Thereafter, $800 \mu \mathrm{l}$ of the treated cells were transferred into the electroporation cuvette and $5 \mu \mathrm{~g}$ of plasmid DNA was added. Cells were mixed with the DNA by inversion a few times. The electroporation was carried out using voltage magnitudes $0.625,1.250,2$ and $2.5 \mathrm{kV} / \mathrm{cm}$ as the successful electroporation of other Clostridium species was carried out using the last two voltages. The 0.625 and 1.25 $\mathrm{kV} / \mathrm{cm}$ were used to allow achieve a very long pulse duration without having an "Arch". Variable pulse duration was used for each of these voltages. A 2 mm gap cuvette with a $1 \mathrm{~cm}^{2}$ electrode area was used.

The electroporated cells were instantly inoculated in to 5 ml of a pre-reduced BHISNa broth maintained at room temperature and $10 \mu 1$ was used to perform the CFU count. After 2hours of incubation, thiamphenicol was added to the final concentration of $15 \mu \mathrm{~g} / \mathrm{ml}$ and the tubes were further incubated for an hour. The purpose of the addition of antibiotic was to select for the transformed cells and kill any untransformed cell. Thereafter, one ml of the culture was poured on a Brucella agar plate supplemented with $15 \mu \mathrm{~g} / \mathrm{ml}$ thiamphenicol, hemin and vitamin K1. The electroporated cells were distributed on the agar surface using a plastic spreader (5 plates for each tube). During the 48-72 hours of anaerobic incubation at $37^{\circ} \mathrm{C}$, the plates were monitored for the appearance of
any transformant colonies. Colony PCR using M13 primers was performed to confirm the presence of the plasmid.

6.3 Results

6.3.1 Empirical optimization of C. difficile electroporation parameters

In order to optimize electroporation conditions, one should consider changing the main parameters that are crucial for the success of electro-transformation. These parameters include the composition of buffer used, electric field strength, pulse duration, DNA type and concentration, and the treatment of cells prior to electroporation (Deng et al., 2017, Oh et al., 2015, Rols et al., 1998).

The electroporation parameters were set to deliver increasing field strength and pulse duration (Appendix, 6). C. difficile was refractory to transformation despite all the changes in the experiment settings shown in appendix 6 . The viability of cells after electroporation was very high, as shown in the following figures, revealing the ability of C. difficile to survive the electrical and thermal stresses caused by the transmembrane pulse. Figures 55 and 56 shows the viability of C. difficile R076 after electroporation using different voltages and pulse durations. Phage CDHM1 DNA was used in these attempts.

Figure 55. The viability of C. difficile ribotype 076 with varying amounts of phiCDHM1 DNA concentrations. Survival of the ribotype 076 cells using Ut of 2.5 kV for 5.2 milliseconds (exponential decay pulse) and DNA concentrations between $1-10 \mu \mathrm{~g} / \mathrm{ml}$. The experiment was performed twice; once with pre-pulse incubation on ice and the other at room temperature. No significant difference found between the conditions.

Figure 56. The viability of C. difficile ribotype 076 with ranging pulse durations. The survival rate of C. difficile ribotype 076 cells using 2.5 kV , pulse durations between 7.8 26.2 millisecond (exponential decay pulse), with a phiCDHM1 DNA concentration of $5 \mu \mathrm{~g} / \mathrm{ml}$. The experiment was performed once with pre-pulse incubation on ice. No significant difference found between the conditions.

The large genome size of phiCDHM1 (54,279bp) is an important factor that affects the success of C. difficile ribotype 076 transformation by electroporation. It was decided to use a plasmid DNA as it is much smaller. Plasmids pMTL82151 (5254bp) and pMTL84151 (6297bp) were used. Different experimental settings were applied including different voltages, pulse durations, DNA concentrations, and pre-pulse incubations. The rate of C. difficile ribotypes 076 and 220 cells survival after electroporation was very high. Figures $57,58,59,60,61,62$, and 63 show the viability of C. difficile ribotype 076 after electroporation, while figures $64,65,66,67,68,69$, and 70 show the viability of C. difficile ribotype 220 after electroporation.

Figure 57. Viability of C. difficile ribotype 076 cells with differing pulser voltages. Shown are the survival of C. difficile cells when challenged with pulse duration of 5.2 ± 0.1 milliseconds (exponential decay pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 DNA, pre-pulse incubation on ice, and different voltages (1.3-2.25kV). A) Shows cells' survival rate when $1.3-1.75 \mathrm{kV}$ was used. B) Shows cells' survival rate when $1.8-2.25 \mathrm{kV}$ was used. No significant difference found in any of the conditions.

Figure 58. Viability of C. difficile ribotype 076 cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was performed using 2.5 kV , pulse duration of 5.2 ± 0.1 milliseconds (exponential decay pulse), pre-pulse incubation on ice, and different DNA concentrations of plasmid pMTL82151. No significant difference was found with any changes in DNA concentrations.

Figure 59. Viability of C. difficile ribotype 076 cells with varying plasmid DNA concentrations \& electroporation parameters. The electroporation was performed using 2.5 kV , a pulse duration of 10.3 millisecond (exponential decay pulse), pre-pulse incubation on ice, and varying concentrations of plasmid pMTL82151 DNA. No significant difference found in the CFU values in any of the conditions shown.

Figure 60 . Viability of C. difficile ribotype 076 cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 3 kV for 5.3 milliseconds (exponential decay pulse), pre-pulse incubation on ice, and different concentrations of plasmid pMTL82151 DNA. No significant difference found between the different conditions used, though a one \log drop in $\mathrm{CFU} / \mathrm{ml}$ can be seen.

Figure 61. Viability of C. difficile ribotype 076 cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 2.5 kV for 5.2 ± 0.1 milliseconds (exponential decay pulse), pre-pulse incubation at room temperature, and different concentrations of plasmid pMTL82151 DNA. No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown.

Figure 62. C. difficile ribotype 076 survival rates cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 2.5 kV for 10.3 milliseconds (exponential decay pulse), pre-pulse incubation at room temperature, and different concentrations of plasmid pMTL82151 DNA. Approximately a one \log drop in CFU can be seen.

Figure 63. C. difficile ribotype 076 survival rates cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 3 kV for 5.3 milliseconds (exponential decay pulse), pre-pulse incubation at room temperature, and different concentrations of plasmid pMTL82151 DNA. Approximately a two \log drop in CFU/ml can be seen.

Figure 64. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration of 5.3 ± 0.1 milliseconds (exponential decay pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 DNA, prepulse incubation on ice, and different voltages (1.3-2.25kV). A) Shows cells' survival rate when $1.3-1.75 \mathrm{kV}$ was used. B) Shows cells' survival rate when $1.8-2.25 \mathrm{kV}$ was used. No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown.

Figure 65. Viability of C. difficile ribotype 220 cells with varying plasmid DNA concentrations \& electroporation parameters. This electroporation was carried out using 2.5 kV , pulse duration of 5.3 milliseconds (exponential decay pulse), pre-pulse incubation on ice, and different concentrations of plasmid pMTL82151 DNA. No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown.

Figure 66. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration of 5 milliseconds (square wave pulse) with 5 seconds rest between each pulse, $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL84151 DNA, pre-pulse incubation on ice, and different voltages (1.72.25 kV). No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown.

Figure 67. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration of 4.1 milliseconds (square wave pulse) with 5 seconds rest between each pulse, $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL83151 DNA, pre-pulse incubation on ice, and different voltages (22.25 kV). No significant difference found in the CFU values in any of the conditions shown.

Figure 68. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration of 5.1-5.2 milliseconds (time constant pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 DNA, pre-pulse incubation on ice, and different voltages ($1.6-3 \mathrm{kV}$). No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown.

Figure 69. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration between 5.3-7.3 milliseconds (time constant pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 DNA, pre-pulse incubation on ice, and different voltages ($1.7-2.5 \mathrm{kV}$). No significant difference found in the CFU values in any of the conditions shown.

Figure 70. Viability of C. difficile ribotype 220 cells with varying voltage settings \& electroporation parameters. This electroporation was carried out using a pulse duration between 5.5-6.8 milliseconds (time constant pulse), $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL84151 DNA, pre-pulse incubation on ice, and different voltages $(1.6-3 \mathrm{kV})$. No significant difference found in the $\mathrm{CFU} / \mathrm{ml}$ values in any of the conditions shown.

Applying all these Uts has not affected the viability of C. difficile cells. Even when a Ut of 3 kV and 5.3, a 26.2 milliseconds pulse duration was used, the viability of cells was only slightly reduced (Figure, 71). In order to determine the ability of C. difficile cells to survive the electrical stress caused by the transmembrane pulse, two consecutive pulses of 2.5 kV for 5.2 milliseconds were applied. None of the cells survived.

Figure 71. The tolerance of C. difficile ribotype 076 to transmembrane pulse. The black column represents the CFU/ml of a control C. difficile ribotype 076 which did not receive a pulse. 1. The grey column represents the $\mathrm{CFU} / \mathrm{ml}$ of C. difficile ribotype 076 after one pulse using 3 kV and a pulse duration of 5.3 milliseconds. 2. The dark grey column represents the CFU/ml of C. difficile ribotype 076 after one pulse using 3 kV and a pulse duration of 26.2 milliseconds. 3. Represents the CFU/ml of C. difficile ribotype 076 after two pulses using 2.5 kV and a pulse duration of 5.2 milliseconds. No bar is seen as the value of $\mathrm{CFU} / \mathrm{ml}$ is zero indicating no survival.

6.3.2 Culturing C. difficile outside the anaerobic chamber

The C. difficile biofilm formation was highly reduced by culturing the cells with agitation. This was confirmed by the disappearance of viscosity when the cell pellet was re-suspended with 5 ml of SMP buffer prior to electroporation. On the other hand, the cells suspension of C. difficile grown without agitation remained viscous. Two liquid media were tested to be used for culturing C. difficile outside the anaerobic chamber. C. difficile was unable to grow in the FTG broth outside the anaerobic chamber. However, the FTG broth could support the growth of C. difficile inside the chamber up to 10^{4} cell $/ \mathrm{ml}$ after being pre-reduced for 24 hours. The BHIS-Na broth was able to support the growth of C. difficile outside the anaerobic chamber. The $\mathrm{CFU} / \mathrm{ml}$ was slightly different between the cultures inside and outside the anaerobic chamber when BHIS-Na was used (Figure, 72). However, BHIS-Na needed to be pre-reduced for 24 hours inside the anaerobic chamber before it became as efficient as shown.

Figure 72. The ability of FTG and BHIS-Na broths to support C. difficile growth outside the anaerobic chamber. The black bars represent $\mathrm{CFU} / \mathrm{ml}$ of C . difficile R 076 when it is cultured inside the anaerobic chamber. The grey bars represent $\mathrm{CFU} / \mathrm{ml}$ of C. difficile R076 when it is cultured outside the anaerobic chamber with agitation at 220 rpm .

6.3.3 Enzymatic treatment of C. difficile

6.3.3.1 Treatment of C. difficile with cysteine protease inhibitor E-64

The cysteine protease inhibitor was able to reduce the thickness of surface layer protein at the concentrations of 100,250 , and 500 mM (Figure, 73). Although this treatment could not lead to a successful transformation, the survival of electroporated cells was much lower (three to four folds less) then it was before electroporation. This treatment does not affect the growth of C. difficile, as the $\mathrm{CFU} / \mathrm{ml}$ was slightly different than the control (untreated) cell count (Figure, 74).

Figure 73. The effect of E-64 cysteine protease inhibitor treatment on the C. difficile R076 outer layer protein thickness. The figure shows the reduction of surface layer proteins of C. difficile R076 as a result of the E-64 treatment. Both the LMW (35 kDa) and the HMW (49 kDa) protein concentration was reduced. A. Is a protein ladder (New England Biolabs). B. Shows the cell wall extract of untreated (control) C. difficile R076. C. Illustrates the bands of LMW and HMW of C. difficile R076 treated with 500 mM , final concentration of E-64. D. Shows the bands after treatment with 250 mM inhibitor. E. Shows the bands after treatment with 100 mM inhibitor.

Figure 74. Treatment of C. difficile ribotype 076 with the E-64 protease inhibitor. The black column represents the $\mathrm{CFU} / \mathrm{ml}$ of a control C. difficile ribotype 076 cultured inside the anaerobic chamber. The grey column represents the CFU/ml of E-64 treated C. difficile ribotype 076 cultured outside the anaerobic chamber with agitation at 220 rpm . The blue column represents the mean of $\mathrm{CFU} / \mathrm{ml}$ of three pulse durations. E-64 treated C. difficile ribotype 076 was electroporated using 2.5 kV and pulse durations of $9,12.8$, 25.3 milliseconds, $5 \mu \mathrm{~g} / \mathrm{ml}$ plasmid pMTL82151 and with pre-pulse incubation at room temperature.

6.3.3.2 Treatment of C. difficile with lysostaphin

The lysostaphin has the ability to lyse the C. difficile R076 strain after incubation in an SMP buffer for 1hour, as the CFU/ml was reduced by about 50% after treatment (Figure, 75). Thus, the incubation of C. difficile R076 for an hour with $10 \mu \mathrm{~g} / \mathrm{ml}$ step was replaced with one washing step with the enzyme. The CFU/ml of E-64 treated C. difficile culture was slightly reduced when washed with $10 \mu \mathrm{~g} / \mathrm{ml}$ of lysostaphin. The CFU $/ \mathrm{ml}$ of C. difficile culture treated with both enzymes was reduced by approximately 4 fold after electroporation (Figure, 76).

Figure 75. Treatment of C. difficile ribotype 076 with lysostaphin. The black column represents the CFU/ml of E-64 treated C. difficile ribotype 076 . The grey column represents the $\mathrm{CFU} / \mathrm{ml}$ of E-64 and lysostaphin treated C. difficile ribotype 076, after the treatment with E-64, the cells were incubated with lysostaphin in SMP buffer for an hour.

Figure 76. Electroporation of enzymatically treated C. difficile ribotype 076. The black column represents the $\mathrm{CFU} / \mathrm{ml}$ of E-64 \& lysostaphin treated C. difficile before electroporation. 1. The grey column represents the $\mathrm{CFU} / \mathrm{ml}$ of the culture after electroporation using 2.5 kV and a 25.4 milliseconds pulse duration. 2. The dark grey column represents the $\mathrm{CFU} / \mathrm{ml}$ of the culture after electroporation using 1.25 kV and a 49.6 milliseconds pulse duration.

6.4 Discussion

All the available specific C. difficile phages which have been isolated to date and characterised in order to develop therapeutic agents are temperate phages. No lytic phages have been isolated (Horgan et al., 2010, Dei, 1989, Fortier et al., 2007, Goh et al., 2005, Govind et al., 2006, Mahony et al., 1985, Mayer et al., 2008, Meessen-Pinard et al., 2012, NAGY et al., 1991, Nale, 2013, Sell et al., 1983, Sekulovic et al., 2016, Shan et al., 2012) However, these types of phages are of limited value as therapeutic agents (Gill and Hyman, 2010; Meader et al., 2010), as reviewed in 2.2.4. Having said that, the genetic manipulation of phage genome has extended the therapeutic potential of phage therapy. For example, genetically modified temperate phages have been used to treat multiple antibioticresistant E. coli. A phage was engineered to deliver a functional CRISPR-cas to target the antibiotic resistance gene. Thus, the bacteria became sensitive to the antibiotic (Lin et al., 2017, Yosef et al., 2015). However, a sophisticated transformation method is required to accomplish phage engineering.

As mentioned above, in order to be able to improve the properties of C. difficile temperate phages, it is necessary to develop a sophisticated transformation method. Electroporation of engineered phage genome is a possible method, given that it is a spore forming organism, competent cells of C. difficile cannot be prepared. In this chapter, we attempted to empirically optimize a C. difficile electro-transformation protocol with the intention of using it for the genetic manipulation of C. difficile phages, so as to improve their properties.

Although the transformation of C. difficile was not accomplished, the experimental observations provides a baseline for further work. It has been confirmed that classical electroporation cannot transform C. difficile, at least for the ribotypes 076 and 220.

Changing the main factors (reviewed in 2.3.6.2) leading to a successful electroporation had no influence on the viability of C. difficile cells. For instance, applying a pulse (Ut) of 3 kV for short (5.3 milliseconds) or long (26.2 milliseconds) pulse durations (Figure 71 in results) has only slightly decreased the viability of C. difficile cells, while similar conditions reduced the viability of E. coli cells by $25-30 \%$ (Dower et al., 1988). Cell wall treatment is important for the success of electroporation.

The importance of enzymatic treatment can be explained by comparing the viability of an enzymatically treated culture to an untreated culture. The $\mathrm{CFU} / \mathrm{ml}$ was almost
always the same after electroporation without enzymatic treatment, while it was reduced by 4 fold (around 50%) using the same pulser settings with an enzymatically treated culture. Moreover, applying an intensive trans-membrane pulse (Ut) at $2.5 \mathrm{kV} / \mathrm{cm}$ for a 5 m. Sec pulse duration had no effect on the survival of the culture. In contrast, applying two consecutive Ut with the same settings resulted in the death of all culture cells. This observation suggested that the presence of the cell wall (peptidoglycan and surface protein layer) enables the cells to survive both the thermal and electrical stress caused until a threshold point, after which the cell will be broken down (Figure 71 in the result section 6.3.1).

The treatment of C. difficile with a cysteine protease inhibitor (up to 500 mM) diminished the Slp, but did not affect the growth rate. This allows further treatment with higher concentrations of the enzyme to accomplish a thinner surface protein layer.

Ackerman et al. (2001) used two washing steps to highly pack the cells and eliminate biofilm. These washing steps were not sufficient to eliminate the C. difficile R076 and R220 biofilms (the biofilms of both ribotypes can be seen as cloudy viscous clumps surrounded by a clear broth). Despite the fact that the cells were highly packed and difficult to re-suspend, the final cells suspension was still viscous. This viscosity (clumping of C. difficile cells) represents an extra physical barrier and provide C. difficile cells with extra protection due to the sticking together of cells. Reducing the biofilm formation by culturing C. difficile with agitation will disperse the cells and expose them to the DNA, thereby increasing the possibility of electroporation success.

6.5 Conclusion

1. The nature of the C. difficile cell wall is the main reason for the failure of electroporation. The thick peptidoglycan layer and surface layer protein confront the passage of DNA into C. difficile cells.
2. This procedure is worthwhile in the context of improving phage characteristics. The delivery of in-vitro engineered phage DNA will save a lot of time, money, and effort. However, it can become laborious, time-consuming, and costineffective if developed to transform C. difficile with plasmid DNA. The transformation of C. difficile by conjugation is cost-effective in comparison with the enzymatic treatment required for the preparation of C. difficile for electroporation.
3. Lysostaphin is able to partially lyse C. difficile R 076 as noted during the optimization of C. difficile electroporation. It may therefore be potentially suitable for therapeutic purposes.

6.6 Future work

Further optimization is required, which may result in the successful electroporation of C. difficile. This optimization includes:

1. Treating C. difficile with a higher concentration of E-64 (more than 500 mM). This treatment will reduce the surface layer protein thickness more than the 500 mM has done.
2. Treating C. difficile with lower concentrations of lysostaphin. A lower concentration of lysostaphin (less than $10 \mu \mathrm{~g} / \mathrm{ml}$) will reduce the lysis of C. difficile cells and weaken the peptidoglycan layer.

Hypothetically, the enzymatic treatment mentioned above will significantly weaken C. difficile cells. In order to assess whether cells have been weakened, a one fold decrease in CFU/ml caused by enzymatic treatment should be observed. The experiment must be carried out after a decrease of CFU/ml by one-fold or more will occur.
3. Using a new buffer that does not contain magnesium ions and replacing the sucrose with D-glucosamine. The absence of ions from the buffer will allow for the use of a higher field strength without having an Arch. D-glucosamine can increase the transformation efficiency by 30%, as it increases both the DNA uptake and the cytoplasmic membrane stability under pulse stresses (Igawa et al., 2014). The presence of D-glucosamine in the electroporation buffer will help maintain the integrity of the cytoplasmic membrane. If electroporation is optimized for C. difficile, it can be used to deliver the engineered phage genome.
4. In-vitro engineering the phage DNA. This can be achieved by the amplification of the phage DNA in three or more parts with restriction sites enable the subsequent ligation. The amplification of the first part will stop at the beginning of the gene to be deleted, and the amplification of the second part will start at the end of gene to be deleted. Thus, the integrase gene and any undesired gene can be excluded during the amplification. Then, the amplified parts can be ligated.
5. Transforming C. difficile with the engineered phage DNA.
6. Characterizing the improved phage progeny properties to establish whether it has the potential as a therapy for CDI.

Chapter 7

General Discussion

Chapter 7. General Discussion

7.1 Introduction

C. perfringens is a Gram-positive, anaerobic, spore-forming bacterium. The spores are responsible for the environmental survival of C. perfringens and the spread of infections. These infections include facial myonecrosis and chicken enteritis. Considering the difficulties involving the treatment of human facial myonecrosis and the problems associated with the long term administration of antibiotics after the resection of the infected part of the body, along with the threat of economic loss as a result of chicken enteritis, which is treated by antibiotics; it is clear that there is a need for new medication to control these infections. Several non-antibiotic treatments have been used to treat chicken enteritis, such as vaccination and the administration of monoclonal antibodies to the intestine. Phage therapy is a good candidate for the treatment of C. perfringens infections. Although it has its own limitations it has been successfully used to control chicken enteritis. Moreover, it has many advantages in comparison with antibiotics.

It has been shown that phages inhabit the sites where their bacterial hosts are available (Hargreaves, 2013). C. perfringens is found in soil (Voidarou et al., 2011), and in animal faecal samples (Goldstein et al., 2012). C. perfringens phages have been isolated from environmental sources such as poultry faeces, chicken offal wash and intestinal contents (Seal et al., 2011, Volozhantsev et al., 2011).

In this study, environmental C. perfringens strains have been isolated by the enrichment culture method. A similar approach was used by (Goldstein et al., 2012). The strain with the potential to cause diseases have been assessed by determining the toxin genes that they carry. Lytic and temperate phages that are able to grow in a lytic manner on C. perfringens were isolated using these strains. The new phages were characterised and investigated in terms of their potential as therapeutic agents. Moreover, the potential of using a recombinant endolysin derived from a C. perfringens lytic phage as a therapeutic agent for C. perfringens infection was explored.

Similar to C. perfringens, C. difficile is a Gram-positive spore-forming anaerobic bacterium that causes antibiotic-associated diarrhoea. C. difficile infection is spread by the ingestion of these spores. However, the diarrhoea starts after the disruption of gut
microbiota by antibiotics usually used to treat another illness. CDI is treated by antibiotics, which provokes further disruption of the gut microbiota. The emergence of hyper-virulent C. difficile strains with multiple-antibiotic resistance ability has resulted in the poor outcome or failure of antibiotic treatment. It has also highlighted the need for new medication. Although several non-antibiotic therapies have been used to treat CDI, such as faecal transplantation and probiotics, phage therapy is a good candidate for the treatment of CDI as it does not affect the microbiota and targets C. difficile in a specific manner. One limitation of C. difficile phage therapy is that all the isolated C. difficile phages to date are temperate phages which express the integrase gene. In order to improve the properties of C. difficile phages, an efficient transformation system is required.

In this study, we attempted to optimize an electroporation protocol in order to allow for the genetic manipulation of C. difficile phages to improve their properties. Unfortunately, all the attempts to transform C. difficile failed. Despite the failure of these attempts, the experiment observations provide baseline information for further work to optimize the protocol.

In the context of Clostridium spp. phage therapy, we isolated C. perfringens phages and attempted to improve the properties of already isolated C. difficile temperate phages by the optimization of the electroporation protocol for their genetic manipulation. Both of which contribute towards the development of phages for therapeutic purposes. Despite the failure of the empirical optimization of electroporation, further work in the future built on these findings may yield positive results.
7.2 C. perfringens phages and their endolysins as potential therapeutic agents

Many C. perfringens lytic and temperate phages have been isolated and characterized, and their potential as therapeutic agents to control C. perfringens infection has been examined (reviewed in 1.1.2 and 2.2.5). This is the case with the lytic phages ФCP24R (Morales et al., 2012), ФCPV1 (Volozhantsev et al., 2011), and ФCPV4 \& ФZP2 (Volozhantsev et al., 2012) and the temperate phages Ф3626 and Ф8533 (Zimmer et al., 2002a), ФCP39O and ФCP26F (Seal et al., 2011), ФS9 and ФS63 (Kim et al., 2012), and phiSM101 (Nariya et al., 2011). Few studies have examined the C. perfringens phagederived endolysin as a therapeutic agent to overcome the complication that may accompany whole phage particles (Caly et al., 2015), such as that seen with the study into the endolysin of Ф3626 (Zimmer et al., 2002b).

In this study, the isolated C. perfringens phages contributed towards the current collection of phages by increasing the total number and the diversity of the collection. The new phages isolated in this study can be used with other isolated C. perfringens phages to prepare phage cocktails for the treatment of C. perfringens infections. They also provide a new source for endolysin genes which can be expressed and examined individually or in cocktails as therapeutic agents.

It has been shown that lytic phages are favourable for phage therapy (Sahota, 2016, Thanki, 2016). They have proved to be effective against C. perfringens in-vivo (Miller et al., 2010, Caly et al., 2015). In this study, we isolated a strictly lytic C. perfringens podovirus phage which is desirable for phage therapy. Both the relatively wide host range of this phage ($\sim 14.3 \%$) and its burst size (~ 137 phage/cell) makes it a suitable candidate to be used in the preparation of a phage cocktail.

It has been shown that temperate C. perfringens phages can be induced using Ultraviolet irradiation (Zimmer et al., 2002a, Kim et al., 2012), and by spot testing (Seal et al., 2011, Volozhantsev et al., 2011). In this study, we attempted to induce bacteriophages from environmental C. perfringens strains using mitomycin-C and norfloxacin. Our results found a high level of prophage carriage, as all the induction lysates of C. perfringens strains gave lysis when investigated via spot tests. However we could not recover any of the induced phages. This was in part due to our inability to identify environmental C. perfringens strain susceptible to infection by these induced prophages thus no propogation could be performed. Furthermore, there it was possible that C. perfringens strains we worked with have the ability to resist phage infection via phage defence mechanisms. The prophage's super infection exclusion genes can protect the lysogen from infection with other phages (Canchaya et al., 2003).

Additionally, the lytic activity of endolysins derived from C. perfringens phages has been assessed. Some endolysins were able to completely lyse all the tested C. perfringens strains, while others could only partially lyse them (Tamai et al., 2014b, Zimmer et al., 2002b, Gervasi et al., 2014a).

In this study, we expressed and purified the endolysin of C. perfringens phage CPAP1 and assessed its lytic activity. Although one of tested C. perfringens strains was partially lysed, all the other strains were completely lysed. The partial lysis of one of the tested
strains may be due to a difference in the binding affinity of the enzyme binding domain or to a difference in the cell wall structure of this particular strain.

This endolysin shares the same modular structure with phiCP24R (Morales et al., 2012), comprising of a single N-terminal catalytic domain and C-terminal binding domains. Both endolysins belong to the amidase-3 family. The majority of the endolysins of phages that infect Gram-positive bacteria have a modular structure comprising of a Cterminal binding domain and an N-terminal catalytic domain (Fischetti, 2008, Oechslin et al., 2013, Dunne et al., 2016).

7.3 Optimization of electroporation protocol for C. difficile

Electroporation is the process of introducing DNA into a cell by applying short and intensive electric pulses to the cell (Rubinsky, 2010, Bennett et al., 2014). It has been successfully used to deliver an engineered phage genome to E. coli (Planelles et al., 1999, Inoue et al., 2016). In this study, we have attempted to empirically optimize an electrotransformation protocol for C. difficile in order to deliver engineered phage genome in the context of phage therapy.

It has been shown that successful molecular uptake by electroporation is affected by the presence of a cell wall. The pore formation which takes place in the cytoplasmic membrane as a result for the transmembrane pulse does not occur in the cell wall. Consequently, the molecular uptake by cells which have a cell wall is much lower in comparison to cells which do not possess a cell wall. For example, the uptake of external molecules by a Chlamydomonas strain lacking a cell wall is eight times higher than the Chlamydomonas strain with the cell wall (Azencott, 2003).

It has also been shown that the cell wall provides cells with structural strength that protects cell from the lethal effect of electroporation and increase cell viability. The successful delivery of molecules by electroporation is usually accompanied with a reduction in cell viability (Azencott, 2003).

The results obtained in this study suggest that the C. difficile cell wall is the main obstacle preventing the uptake of DNA and the success of C. difficile electroporation. Our empirical experiments' observations suggest that the different transmembrane pulses used to optimize an electroporation protocol are unable to disrupt C. difficile cell wall without enzymatic treatment. Further cell wall treatment is required to diminish both the
peptidoglycan and the surface protein layers. This may result in a successful electroporation as the cells will become more fragile, and the chance of large pore formation will increase. Subsequently, DNA uptake may occur.

Unfortunately, the effect of each electroporation parameter could not be determined as there was no transformation. Transformation efficiency is required in order to assess the role of each parameter such as field strength, pulse duration, type and number of pulses, DNA concentration, buffer composition, and pre-pulse incubation condition. However, the role of each parameter in increasing the transformation efficiency can be determined if the electroporation has been successfully performed.

7.4 Suggestion for future work

1. Isolation of more C. perfringens phages and determine their potential as a therapeutic agents in cocktails and in combination with antibiotic for the treatment of C. perfringens infections.
2. Cloning of more endolysins of C. perfringens phages, determining their minimum inhibitory concentrations, their ability to prevent spore germination, their stability in different suspension liquids after long storage at room temperature and at $4^{\circ} \mathrm{C}$, and the ability of endolysin cocktails to lyse all the isolated C. perfringens strains.
3. Examine the effect of further cell wall treatment on the viability of C. difficile cells in order to optimize electro-transformation parameters for C. difficile.

7.5 conclusion

Our attempts to optimize electro-transformation protocol which could provide a method of engineering C. difficile phages have failed. This failure is in part due to the complex structure of C. difficile cell wall, and to our inability to identify a C. difficile strain susceptible for electro-transformation.

Lytic C. perfringens phages can be isolated from environmental samples and they have a promising characteristics as a therapeutic agents to treat C. perfringens infections. Phage derived endolysins also have a potential to treat these infections as they possess a considerable lytic activity against C. perfringens strains.

Overall, further work is required to optimize C. difficile electro-transformation protocol. The development of such a protocol enables the improvement of C. difficile
phages in the context of CDI phage therapy. Increasing the current collection of C. perfringens phages and their endolysins enables the preparation of phages and endolysin cocktails for the treatment of C. perfringens infections.

8. Bibliography

Abedon, S. T., 2011. Lysis from without. Bacteriophage, 1, 46-49.

Abedon, S. T., 2018. Phage Therapy: Various Perspectives on How to Improve the Art. Methods Mol Biol, 1734, 113-127.

Abid, S., Azeem, T., Chaudhary, Z., Rehman, Z., Umar, S., 2016. Emeging Threat Of Necrotic Enteritis in Poultry and its Control Without Use of Antibiotics: A Review. JAPS: Journal of Animal \& Plant Sciences, 26

Abidor, I., Arakelyan, V., Chernomordik, L., Chizmadzhev, Y. A., Pastushenko, V., Tarasevich, M., 1979. Electric breakdown of bilayer lipid membranes: I. The main experimental facts and their qualitative discussion. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 104, 37-52.

Abou Chakra, C. N., Pepin, J., Sirard, S., Valiquette, L., 2014. Risk Factors for Recurrence, Complications and Mortality in Clostridium difficile Infection: A Systematic Review. PLoS One, 9, e98400.

Abouhmad, A., Mamo, G., Dishisha, T., Amin, M. A., Hatti-Kaul, R., 2016. T4 lysozyme fused with cellulose-binding module for antimicrobial cellulosic wound dressing materials. J Appl Microbiol, 121, 115-125.

Ackermann, G., Tang, Y., Henderson, J., Rodloff, A., Silva Jr, J., Cohen, S., 2001. Electroporation of DNA sequences from the pathogenicity locus (PaLoc) of toxigenic < i> Clostridium difficile</i> into a non-toxigenic strain. Molecular and cellular probes, 15, 301-306.

Ackermann, H.-W., 2006. Classification of bacteriophages. The bacteriophages, 635, 816.

Afshari, A., Jamshidi, A., Razmyar, J., Rad, M., 2015. Genotyping of Clostridium perfringens isolated from broiler meat in northeastern of Iran. Vet Res Forum, 6, 279-284.

Agu, C. A., Klein, R., Schwab, S., Konig-Schuster, M., Kodajova, P., Ausserlechner, M., Binishofer, B., Blasi, U., Salmons, B., Gunzburg, W. H., Hohenadl, C., 2006. The cytotoxic activity of the bacteriophage lambda-holin protein reduces tumour growth rates in mammary cancer cell xenograft models. J Gene Med, 8, 229-241.

Alberts, B., Johnson, A., Lewis, J., Walter, P., Raff, M., Roberts, K. 2002. Molecular Biology of the Cell 4th Edition: International Student Edition. Routledge.

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., Lipman, D. J., 1990. Basic local alignment search tool. J Mol Biol, 215, 403-410.

Alvarez-Perez, S., Blanco, J. L., Harmanus, C., Kuijper, E., Garcia, M. E., 2017. Subtyping and antimicrobial susceptibility of Clostridium difficile PCR ribotype 078/126 isolates of human and animal origin. Vet Microbiol, 199, 15-22.

Ananthakrishnan, A. N., 2011. Clostridium difficile infection: epidemiology, risk factors and management. Nat Rev Gastroenterol Hepatol, 8, 17-26.

Ando, H., Lemire, S., Pires, D. P., Lu, T. K., 2015. Engineering modular viral scaffolds for targeted bacterial population editing. Cell systems, 1, 187-196.

Anfasa, F., Siegers, J. Y., van der Kroeg, M., Mumtaz, N., Stalin Raj, V., de Vrij, F. M. S., Widagdo, W., Gabriel, G., Salinas, S., Simonin, Y., Reusken, C., Kushner, S. A., Koopmans, M. P. G., Haagmans, B., Martina, B. E. E., van Riel, D., 2017. Phenotypic Differences between Asian and African Lineage Zika Viruses in Human Neural Progenitor Cells. mSphere, 2.

Attai, H., Rimbey, J., Smith, G. P., Brown, P. J. B., 2017. Expression of a Peptidoglycan Hydrolase from Lytic Bacteriophages Atu_ph02 and Atu_ph03 Triggers Lysis of Agrobacterium tumefaciens. Appl Environ Microbiol, 83.

Awad, M. M., Bryant, A. E., Stevens, D. L., Rood, J. I., 1995. Virulence studies on chromosomal α-toxin and Θ-toxin mutants constructed by allelic exchange provide genetic evidence for the essential role of α-toxin in Clostridium perfringens-mediated gas gangrene. Molecular microbiology, 15, 191-202.

Azencott, H. R. 2003. Influence of the cell wall on intracellular delivery by electroporation and acoustic cavitation. Ph. D. Georgia Institute of Technology.

Aziminia, P., Pilehchian-Langroudi, R., Esmaeilnia, K., 2016. Cloning and expression of Clostridium perfringens type D vaccine strain epsilon toxin gene in E. coli as a recombinant vaccine candidate. Iran J Microbiol, 8, 226-231.

Badagliacca, P., Di Provvido, A., Scattolini, S., Pompei, G., Di Giannatale, E., 2010. Toxin genotyping of Clostridium perfringens strains using a polymerase chain reaction protocol. Vet Ital, 46, 113-118, 107-112.

Barkin, J. A., Sussman, D. A., Fifadara, N., Barkin, J. S., 2017. Clostridium difficile Infection and Patient-Specific Antimicrobial Resistance Testing Reveals a High Metronidazole Resistance Rate. Dig Dis Sci, 62, 1035-1042.

Bartlett, J. G., Chang, T. W., Gurwith, M., Gorbach, S. L., Onderdonk, A. B., 1978. Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. New England Journal of Medicine, 298, 531-534.

Bastos, M. D., Coutinho, B. G., Coelho, M. L., 2010. Lysostaphin: A Staphylococcal Bacteriolysin with Potential Clinical Applications. Pharmaceuticals (Basel), 3, 1139-1161.

Bateman, A., Coin, L., Durbin, R., Finn, R. D., Hollich, V., Griffiths-Jones, S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L., 2004. The Pfam protein families database. Nucleic acids research, 32, D138-D141.

Baums, C. G., Schotte, U., Amtsberg, G., Goethe, R., 2004a. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Veterinary microbiology, 100, 11-16.

Baums, C. G., Schotte, U., Amtsberg, G., Goethe, R., 2004b. Diagnostic multiplex PCR for toxin genotyping of Clostridium perfringens isolates. Veterinary microbiology, 100, 11-16.

Beloin, C., Roux, A., Ghigo, J.-M., 2008. Escherichia coli biofilms. Bacterial Biofilms. Springer 249-289.

Bengelsdorf, F. R., Poehlein, A., Linder, S., Erz, C., Hummel, T., Hoffmeister, S., Daniel, R., Durre, P., 2016. Industrial Acetogenic Biocatalysts: A Comparative Metabolic and Genomic Analysis. Front Microbiol, 7, 1036.

Bennett, W. D. \& Tieleman, D. P., 2014. The Importance of Membrane Defects • Lessons from Simulations. Accounts of Chemical Research.

Beperet, I., Irons, S. L., Simón, O., King, L. A., Williams, T., Possee, R. D., LópezFerber, M., Caballero, P., 2014. Superinfection exclusion in alphabaculovirus infections is concomitant with actin reorganization. J Virol, 88, 3548-3556.

Bernasconi, O. J., Dona, V., Tinguely, R., Endimiani, A., 2017. In vitro activity of three commercial bacteriophage cocktails against multidrug-resistant Escherichia coli and Proteus spp. strains of human and non-human origin. J Glob Antimicrob Resist, 8, 179-185.

Bhatia, B., Solanki, A. K., Kaushik, H., Dixit, A., Garg, L. C., 2014. B-cell epitope of beta toxin of Clostridium perfringens genetically conjugated to a carrier protein: expression, purification and characterization of the chimeric protein. Protein Expr Purif, 102, 38-44.

Bi, C., Jones, S. W., Hess, D. R., Tracy, B. P., Papoutsakis, E. T., 2011. SpoIIE is necessary for asymmetric division, sporulation, and expression of $\sigma \mathrm{F}, \sigma \mathrm{E}$, and $\sigma \mathrm{G}$ but does not control solvent production in Clostridium acetobutylicum ATCC 824. J Bacteriol, 193, 5130-5137.

Bibbo, S., Lopetuso, L. R., Ianiro, G., Di Rienzo, T., Gasbarrini, A., Cammarota, G., 2014. Role of microbiota and innate immunity in recurrent Clostridium difficile infection. J Immunol Res, 2014, 462740.

Bikard, D., Euler, C. W., Jiang, W., Nussenzweig, P. M., Goldberg, G. W., Duportet, X., Fischetti, V. A., Marraffini, L. A., 2014. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol, 32, 1146-1150.

Billington, S. J., Wieckowski, E. U., Sarker, M. R., Bueschel, D., Songer, J. G., McClane, B. A., 1998. Clostridium perfringens type E animal enteritis isolates with highly conserved, silent enterotoxin gene sequences. Infection and immunity, 66, 45314536.

Birge, E. A., 2006. Bacterial and bacteriophage genetics. Springer.

Bonardi, F., Halza, E., Walko, M., Du Plessis, F., Nouwen, N., Feringa, B. L., Driessen, A. J., 2011. Probing the SecYEG translocation pore size with preproteins conjugated with sizable rigid spherical molecules. Proceedings of the National Academy of Sciences, 108, 7775-7780.

Borysowski, J., Weber-Dabrowska, B., Gorski, A., 2006. Bacteriophage endolysins as a novel class of antibacterial agents. Exp Biol Med (Maywood), 231, 366-377.

Briers, Y., Volckaert, G., Cornelissen, A., Lagaert, S., Michiels, C. W., Hertveldt, K., Lavigne, R., 2007. Muralytic activity and modular structure of the endolysins of Pseudomonas aeruginosa bacteriophages $\varphi \mathrm{KZ}$ and EL. Molecular microbiology, 65, 1334-1344.

Briers, Y., Walmagh, M., Van Puyenbroeck, V., Cornelissen, A., Cenens, W., Aertsen, A., Oliveira, H., Azeredo, J., Verween, G., Pirnay, J.-P., 2014. Engineered endolysin-based "Artilysins" to combat multidrug-resistant gram-negative pathogens. MBio, 5, e01379-01314.

Broom, L., 2017. Necrotic enteritis; current knowledge and diet-related mitigation. World's Poultry Science Journal, 73, 281-292.

Brown, N. F., Wickham, M. E., Coombes, B. K., Finlay, B. B., 2006. Crossing the line: selection and evolution of virulence traits. PLoS pathogens, 2, e42.

Brüggemann, H. \& Gottschalk, G., 2009. Clostridia: molecular biology in the postgenomic era. Horizon Scientific Press.

Brumbaugh, D. E., De Zoeten, E. F., Pyo-Twist, A., Fidanza, S., Hughes, S., Dolan, S. A., Child, J., Dominguez, S. R., 2017. An Intragastric Fecal Microbiota Transplantation Program for Treatment of Recurrent Clostridium difficile in Children is Efficacious, Safe, and Inexpensive. J Pediatr.

Brüssow, H., Canchaya, C., Hardt, W.-D., 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiology and Molecular Biology Reviews, 68, 560-602.

Brzychczy-Wloch, M., Ochonska, D., Piotrowska, A., Bulanda, M., 2017. Gas Gangrene of Different Origin Associated with Clostridium perfringens Type A in Three Patients Simultaneously Hospitalized in a Single Department of Orthopedics and Traumatology in Poland. Pol J Microbiol, 65, 399-406.

Buzby, J. C. \& Roberts, T., 1997. Economic costs and trade impacts of microbial foodborne illness. World Health Stat Q, 50, 57-66.

Calabi, E., Calabi, F., Phillips, A. D., Fairweather, N. F., 2002. Binding of Clostridium difficile surface layer proteins to gastrointestinal tissues. Infection and immunity, 70, 5770-5778.

Caly, D. L., D'Inca, R., Auclair, E., Drider, D., 2015. Alternatives to Antibiotics to Prevent Necrotic Enteritis in Broiler Chickens: A Microbiologist's Perspective. Frontiers in Microbiology, 6.

Campbell, A., 2003. The future of bacteriophage biology. Nature Reviews Genetics, 4, 471-477.

Canchaya, C., Proux, C., Fournous, G., Bruttin, A., Brüssow, H., 2003. Prophage genomics. Microbiology and Molecular Biology Reviews, 67, 238-276.

Carding, S., Verbeke, K., Vipond, D. T., Corfe, B. M., Owen, L. J., 2015. Dysbiosis of the gut microbiota in disease. Microbial ecology in health and disease, 26, 26191.

Carnazza, S. \& Guglielmino, S., 2010. PHAGE DISPLAY AS A TOOL FOR
SYNTHETIC BIOLOGY. 79.

Carretero, R. G., Brugera, M. R., Vazquez-Gomez, O., Rebollo-Aparicio, N., 2016. Massive haemolysis, gas-forming liver abscess and sepsis due to Clostridium perfringens bacteraemia. BMJ Case Reports, 2016, bcr2016218014.

Carter, G. P., Larcombe, S., Li, L., Jayawardena, D., Awad, M. M., Songer, J. G., Lyras, D., 2014. Expression of the large clostridial toxins is controlled by conserved regulatory mechanisms. Int J Med Microbiol.

Carter, P., 1986. Site-directed mutagenesis. Biochemical Journal, 237, 1.

Carvalho, C., Costa, A. R., Silva, F., Oliveira, A., 2017. Bacteriophages and their derivatives for the treatment and control of food-producing animal infections. Crit Rev Microbiol, 1-19.

Caspers, P., Locher, H. H., Pfaff, P., Diggelmann, S., Rueedi, G., Bur, D., Ritz, D., 2017. Different Resistance Mechanisms for Cadazolid and Linezolid in C. difficile found by Whole Genome Sequencing Analysis. Antimicrob Agents Chemother.

Cassir, N., Fahsi, N., Durand, G., Lagier, J. C., Raoult, D., Fournier, P. E., 2017. Emergence of Clostridium difficile tcdC variant 078 in Marseille, France. Eur J Clin Microbiol Infect Dis.

Cerquetti, M., Molinari, A., Sebastianelli, A., Diociaiuti, M., Petruzzelli, R., Capo, C., Mastrantonio, P., 2000. Characterization of surface layer proteins from different Clostridium difficile clinical isolates. Microbial pathogenesis, 28, 363-372.

Chan, L. Y., Kosuri, S., Endy, D., 2005. Refactoring bacteriophage T7. Molecular systems biology, 1.

Chandrasekaran, R. \& Lacy, D. B., 2017. The role of toxins in Clostridium difficile infection. FEMS Microbiol Rev, 41, 723-750.

Chang, D. C., Chassy, B. M., Saunders, J. A., Sowers, A. E., 1992. Guide to electroporation and electrofusion. Academic Press.

Chanishvili, N., 2012. Phage therapy-history from Twort and d'Herelle through Soviet experience to current approaches. Bacteriophages, 83, 1 .

Chellapandi, P. \& Prisilla, A., 2016. Structure, Function and Evolution of Clostridium botulinum C2 and C3 Toxins: Insight to Poultry and Veterinary Vaccines. Curr Protein Pept Sci.

Cheng, W., Chen, H., Yan, S., Su, J., 2014. Illumina sequencing-based analyses of bacterial communities during short-chain fatty-acid production from food waste and sewage sludge fermentation at different pH values. World J Microbiol Biotechnol.

Cheng, X., Zhang, X., Pflugrath, J. W., Studier, F. W., 1994. The structure of bacteriophage T7 lysozyme, a zinc amidase and an inhibitor of T7 RNA polymerase. Proceedings of the National Academy of Sciences, 91, 4034-4038.

Cherenfant, J., Nikfarjam, M., Mathew, A., Kimchi, E. T., Staveley-O’Carroll, K. F., 2009. Completion Pancreatectomy for Treatment of a Clostridium perfringens Pancreatic Infection. Archives of Surgery, 144, 368-370.

Chizmadzhev, Y. A., Arakelyan, V., Pastushenko, V., 1979. 248-Electric breakdown of bilayer lipid membranes III. Analysis of possible mechanisms of defect origination. Bioelectrochemistry and Bioenergetics, 6, 63-70.

Choi, I. Y., Lee, J. H., Kim, H. J., Park, M. K., 2017. Isolation and Characterization of a Novel Broad-host-range Bacteriophage Infecting Salmonella enterica subsp. enterica for Biocontrol and Rapid Detection. J Microbiol Biotechnol, 27, 21512155.

Chukwu, E. E., Nwaokorie, F. O., Coker, A. O., Avila-Campos, M. J., Solis, R. L., Llanco, L. A., Ogunsola, F. T., 2016. Detection of toxigenic Clostridium perfringens and Clostridium botulinum from food sold in Lagos, Nigeria. Anaerobe, 42, 176-181.

Cisek, A. A., Dabrowska, I., Gregorczyk, K. P., Wyzewski, Z., 2017. Phage Therapy in Bacterial Infections Treatment: One Hundred Years After the Discovery of Bacteriophages. Curr Microbiol, 74, 277-283.

Cochrane, J., Bland, L., Noble, M., 2015. Intravascular hemolysis and septicemia due to Clostridium perfringens emphysematous cholecystitis and hepatic abscesses. Case reports in medicine, 2015.

Colavecchio, A., Cadieux, B., Lo, A., Goodridge, L. D., 2017. Bacteriophages Contribute to the Spread of Antibiotic Resistance Genes among Foodborne Pathogens of the Enterobacteriaceae Family - A Review. Front Microbiol, 8, 1108.

Coletti, L., Battaglia, V., De Simone, P., Turturici, L., Bartolozzi, C., Filipponi, F., 2017. Safety and feasibility of electrochemotherapy in patients with unresectable colorectal liver metastases: A pilot study. Int J Surg.

Collery, M. M., Kuehne, S. A., McBride, S. M., Kelly, M. L., Monot, M., Cockayne, A., Dupuy, B., Minton, N. P., 2016. What's a SNP between friends: The influence of single nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile strain 630 and derivatives. Virulence, 1-15.

Colombet, J. \& Sime-Ngando, T., 2012. Use of PEG, Polyethylene glycol, to characterize the diversity of environmental viruses. Microbial Ecology, 58, 728-736.

Cooksley, C. M., Zhang, Y., Wang, H., Redl, S., Winzer, K., Minton, N. P., 2012. Targeted mutagenesis of the< i> Clostridium acetobutylicum</i> acetone-butanol-ethanol fermentation pathway. Metabolic engineering, 14, 630-641.

Cooper, K. K., Bueschel, D. M., Songer, J. G., 2013. Presence of Clostridium perfringens in retail chicken livers. Anaerobe, 21, 67-68.

Costa, M., Walbott, H., Monachello, D., Westhof, E., Michel, F., 2016. Crystal structures of a group II intron lariat primed for reverse splicing. Science, $\mathbf{3 5 4}$.

Cukkemane, N., Bikker, F. J., Nazmi, K., Brand, H. S., Veerman, E. C., 2014. Identification and characterization of a salivary-pellicle-binding peptide by phage display. Arch Oral Biol, 59, 448-454.

Dang, T. T., Riva, L. d. 1., Fagan, R. P., Storck, E. M., Heal, W. P., Janoir, C., Fairweather, N. F., Tate, E. W., 2010. Chemical probes of surface layer biogenesis in Clostridium difficile. ACS chemical biology, 5, 279-285.

Dapa, T. \& Unnikrishnan, M., 2013. Biofilm formation by Clostridium difficile. Gut Microbes, 4, 397-402.

Dave, G. A., 2017. A rapid qualitative assay for detection of Clostridium perfringens in canned food products. Acta Biochim Pol, 64, 207-213.

Dawson, L. F., Stabler, R. A., Wren, B. W., 2009. Comparative genomics of Clostridium difficile. Clostridia: Molecular Biology in the Post-genomic Era, 143.
de la Riva, L., Willing, S. E., Tate, E. W., Fairweather, N. F., 2011. Roles of cysteine proteases Cwp84 and Cwp13 in biogenesis of the cell wall of Clostridium difficile. J Bacteriol, 193, 3276-3285.

Dei, R., 1989. Observations on phage-typing of Clostridium difficile: preliminary evaluation of a phage panel. European journal of epidemiology, 5, 351-354.

Dembek, M., Barquist, L., Boinett, C. J., Cain, A. K., Mayho, M., Lawley, T. D., Fairweather, N. F., Fagan, R. P., 2015. High-throughput analysis of gene essentiality and sporulation in Clostridium difficile. MBio, 6, e02383-02314.

Deng, Y., Zhang, X., Zhang, X., 2017. Recent advances in genetic modification systems for Actinobacteria. Appl Microbiol Biotechnol, 101, 2217-2226.

Diez-Martinez, R., De Paz, H. D., Garcia-Fernandez, E., Bustamante, N., Euler, C. W., Fischetti, V. A., Menendez, M., Garcia, P., 2015. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother, 70, 1763-1773.

Domsalla, A. \& Melzig, M. F., 2008. Occurrence and properties of proteases in plant latices. Planta medica, 74, 699-711.

Dong, Q., Wang, J., Yang, H., Wei, C., Yu, J., Zhang, Y., Huang, Y., Zhang, X. E., Wei, H., 2015. Construction of a chimeric lysin Ply187N-V12C with extended lytic activity against staphylococci and streptococci. Microb Biotechnol, 8, 210-220.

Dong, X., Stothard, P., Forsythe, I. J., Wishart, D. S., 2004. PlasMapper: a web server for drawing and auto-annotating plasmid maps. Nucleic acids research, 32, W660W664.

Donovan, D., Becker, S., Dong, S., Baker, J., Foster-Frey, J., Pritchard, D., 2009. Peptidoglycan hydrolase enzyme fusions for treating multi-drug resistant pathogens. Biotech International, 21, 6.

Dower, W. J., Miller, J. F., Ragsdale, C. W., 1988. High efficiency transformation of E. coli by high voltage electroporation. Nucleic acids research, 16, 6127-6145.

Dubberke, E. R. \& Burnham, C.-A. D., 2011. Clostridium difficile: Methods and Protocols. Clinical Infectious Diseases, 52, 964-965.

Dufour, N. \& Debarbieux, L., 2017. [Phage therapy: a realistic weapon against multidrug resistant bacteria]. Med Sci (Paris), 33, 410-416.

Dunne, M., Leicht, S., Krichel, B., Mertens, H. D., Thompson, A., Krijgsveld, J., Svergun, D. I., Gomez-Torres, N., Garde, S., Uetrecht, C., Narbad, A., Mayer, M. J., Meijers, R., 2016. Crystal Structure of the CTP1L Endolysin Reveals How Its Activity Is Regulated by a Secondary Translation Product. J Biol Chem, 291, 4882-4893.

Dunne, M., Mertens, H. D., Garefalaki, V., Jeffries, C. M., Thompson, A., Lemke, E. A., Svergun, D. I., Mayer, M. J., Narbad, A., Meijers, R., 2014. The CD27L and CTP1L endolysins targeting Clostridia contain a built-in trigger and release factor. PLoS Pathog, 10, e1004228.

Durovic, A., Widmer, A. F., Frei, R., Tschudin-Sutter, S., 2017. Distinguishing Clostridium difficile Recurrence From Reinfection: Independent Validation of Current Recommendations. Infect Control Hosp Epidemiol, 1-6.

Eisgruber, H., Wiedmann, M., Stolle, A., 1996. Plasmid profiling for strain differentiation and characterization of Clostridium perfringens isolates. Journal of Veterinary Medicine, Series B, 43, 137-146.

El-Shibiny, A. \& El-Sahhar, S., 2017. Bacteriophages: The possible solution to treat pathogenic bacteria. Can J Microbiol.

Ellis, J. T., Sims, R. C., Miller, C. D., 2014. Microbial bioproducts from cheese whey through fermentation with wastewater sludge Clostridium isolates. Can J Microbiol, 1-5.

Erickson, J. E. \& Deibel, R. H., 1978. New medium for rapid screening and enumeration of Clostridium perfringens in foods. Appl Environ Microbiol, 36, 567-571.

Fagan, R. \& Fairweather, N., 2010. Dissecting the cell surface. Clostridium difficile: Methods and Protocols, 117-134.

Fagan, R. P., Albesa-Jové, D., Qazi, O., Svergun, D. I., Brown, K. A., Fairweather, N. F., 2009. Structural insights into the molecular organization of the S-layer from Clostridium difficile. Molecular microbiology, 71, 1308-1322.

Faulds-Pain, A. \& Wren, B. W., 2013. Improved bacterial mutagenesis by high-frequency allele exchange, demonstrated in Clostridium difficile and Streptococcus suis. Applied and environmental microbiology, 79, 4768-4771.

Fehér, T., Karcagi, I., Blattner, F. R., Pósfai, G., 2012. Bacteriophage recombineering in the lytic state using the lambda red recombinases. Microbial biotechnology, 5, 466-476.

Fernandes, S., Proenca, D., Cantante, C., Silva, F. A., Leandro, C., Lourenco, S., Milheirico, C., de Lencastre, H., Cavaco-Silva, P., Pimentel, M., Sao-Jose, C., 2012. Novel chimerical endolysins with broad antimicrobial activity against methicillin-resistant Staphylococcus aureus. Microb Drug Resist, 18, 333-343.

Ferreira, M. R., Moreira, G. M., Cunha, C. E., Mendonca, M., Salvarani, F. M., Moreira, A. N., Conceicao, F. R., 2016. Recombinant Alpha, Beta, and Epsilon Toxins of Clostridium perfringens: Production Strategies and Applications as Veterinary Vaccines. Toxins (Basel), 8.

Finegold, S. M., Summanen, P. H., Downes, J., Corbett, K., Komoriya, T., 2017. Detection of Clostridium perfringens toxin genes in the gut microbiota of autistic children. Anaerobe.

Finsterer, J. \& Hess, B., 2007. Neuromuscular and Central Nervous System Manifestations of Clostridium perfringens Infections. Infection, 35, 396-405.

Fischetti, V. A., 2008. Bacteriophage lysins as effective antibacterials. Current opinion in microbiology, 11, 393-400.

Fischetti, V. A., 2010. Bacteriophage endolysins: a novel anti-infective to control Grampositive pathogens. International Journal of Medical Microbiology, 300, 357362.

Fokine, A. \& Rossmann, M. G., 2014. Molecular architecture of tailed double-stranded DNA phages. Bacteriophage, 4, e28281.

Fortier, L.-C. \& Moineau, S., 2007. Morphological and genetic diversity of temperate phages in Clostridium difficile. Applied and environmental microbiology, 73, 7358-7366.

Galtier, M., De Sordi, L., Sivignon, A., de Vallee, A., Maura, D., Neut, C., Rahmouni, O., Wannerberger, K., Darfeuille-Michaud, A., Desreumaux, P., Barnich, N., Debarbieux, L., 2017. Bacteriophages targeting adherent invasive Escherichia coli strains as a promising new treatment for Crohn's disease. J Crohns Colitis.

Gandon, S., 2016. Why Be Temperate: Lessons from Bacteriophage lambda. Trends Microbiol, 24, 356-365.

Gao, J., Wang, Y., Liu, Z., Wang, Z., 2010. Phage display and its application in vaccine design. Annals of microbiology, 60, 13-19.
2014. Proceedings of the 2012 International Conference on Applied Biotechnology (ICAB 2012). Springer.

Garcia-Jimenez, A., Prim, N., Crusi, X., Benito, N., 2016. Septic arthritis due to Clostridium ramosum. Semin Arthritis Rheum, 45, 617-620.

García-Lechuz, J., Hernangomez, S., Juan, R. S., Pelaez, T., Alcala, L., Bouza, E., 2001. Extra-intestinal infections caused by Clostridium difficile. Clinical Microbiology and Infection, 7, 453-457.

García, S. \& Heredia, N., 2011. Clostridium perfringens: A dynamic foodborne pathogen. Food and Bioprocess Technology, 4, 624-630.

Garneau, J. R., Depardieu, F., Fortier, L. C., Bikard, D., Monot, M., 2017. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci Rep, 7, 8292.

Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., Appel, R. D., Bairoch, A., 2003. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic acids research, 31, 3784-3788.

Gaucher, M. L., Perron, G. G., Arsenault, J., Letellier, A., Boulianne, M., Quessy, S., 2017. Recurring Necrotic Enteritis Outbreaks in Commercial Broiler Chicken Flocks Strongly Influence Toxin Gene Carriage and Species Richness in the Resident Clostridium perfringens Population. Front Microbiol, 8, 881.

Gerding, D. N., Johnson, S., Rupnik, M., Aktories, K., 2014. Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut microbes, 5, 15-27.

Gerstmans, H., Rodriguez-Rubio, L., Lavigne, R., Briers, Y., 2016. From endolysins to Artilysin(R)s: novel enzyme-based approaches to kill drug-resistant bacteria. Biochem Soc Trans, 44, 123-128.

Gervasi, T., Horn, N., Wegmann, U., Dugo, G., Narbad, A., Mayer, M. J., 2014a. Expression and delivery of an endolysin to combat Clostridium perfringens. Appl Microbiol Biotechnol, 98, 2495-2505.

Gervasi, T., Lo Curto, R., Minniti, E., Narbad, A., Mayer, M. J., 2014b. Application of Lactobacillus johnsonii expressing phage endolysin for control of Clostridium perfringens. Lett Appl Microbiol, 59, 355-361.

Gharaibeh, S., Al Rifai, R., Al-Majali, A., 2010. Molecular typing and antimicrobial susceptibility of Clostridium perfringens from broiler chickens. Anaerobe, 16, 586-589.

Gillis, H. D., Lang, A. L. S., ElSherif, M., Martin, I., Hatchette, T. F., McNeil, S. A., LeBlanc, J. J., 2017. Assessing the diagnostic accuracy of PCR-based detection of Streptococcus pneumoniae from nasopharyngeal swabs collected for viral studies in Canadian adults hospitalised with community-acquired pneumonia: a

Serious Outcomes Surveillance (SOS) Network of the Canadian Immunization Research (CIRN) study. BMJ Open, 7, e015008.

Goh, S., Riley, T. V., Chang, B. J., 2005. Isolation and characterization of temperate bacteriophages of Clostridium difficile. Applied and environmental microbiology, 71, 1079-1083.

Gohari, I. M., Kropinski, A. M., Weese, S. J., Whitehead, A. E., Parreira, V. R., Boerlin, P., Prescott, J. F., 2017. NetF-producing Clostridium perfringens: Clonality and plasmid pathogenicity loci analysis. Infection, Genetics and Evolution.

Goldenberg, J. Z., Yap, C., Lytvyn, L., Lo, C. K., Beardsley, J., Mertz, D., Johnston, B. C., 2017. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. Cochrane Database Syst Rev, 12, CD006095.

Goldstein, M. R., Kruth, S. A., Bersenas, A. M., Holowaychuk, M. K., Weese, J. S., 2012. Detection and characterization of Clostridium perfringens in the feces of healthy and diarrheic dogs. Can J Vet Res, 76, 161-165.

Górski, A., Miedzybrodzki, R., Borysowski, J., Dabrowska, K., Wierzbicki, P., Ohams, M., Korczak-Kowalska, G., Olszowska-Zaremba, N., Lusiak-Szelachowska, M., Klak, M., 2012. 2 Phage as a Modulator of Immune Responses: Practical Implications for Phage Therapy. Advances in virus research, 83, 41.

Gould, E. N., Giannone, R., Kania, S. A., Tolbert, M. K., 2017. Cysteine protease 30 (CP30) contributes to adhesion and cytopathogenicity in feline Tritrichomonas foetus. Vet Parasitol, 244, 114-122.

Govind, R., Fralick, J. A., Rolfe, R. D., 2006. Genomic organization and molecular characterization of Clostridium difficile bacteriophage ФCD119. J Bacteriol, 188, 2568-2577.

Govind, R., Vediyappan, G., Rolfe, R. D., Dupuy, B., Fralick, J. A., 2009. Bacteriophagemediated toxin gene regulation in Clostridium difficile. J Virol, 83, 12037-12045.

Green, E. M., Boynton, Z. L., Harris, L. M., Rudolph, F. B., Papoutsakis, E. T., Bennett, G. N., 1996. Genetic manipulation of acid formation pathways by gene inactivation in Clostridium acetobutylicum ATCC 824. Microbiology, 142, 20792086.

Green, R. \& Rogers, E. J., 2013. Chemical transformation of E. coli. Methods in enzymology, 529, 329.

Griffiths, A. J., 2002. Modern genetic analysis: integrating genes and genomes. Macmillan.

Guenther, S., Huwyler, D., Richard, S., Loessner, M. J., 2009. Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready-to-eat foods. Applied and environmental microbiology, 75, 93-100.

Gunathilaka, G. U., Tahlan, V., Mafiz, A., Polur, M., Zhang, Y., 2017. Phage in urban wastewater have the potential to disseminate antibiotic resistance. Int J Antimicrob Agents.

Gupta, R. \& Prasad, Y., 2011. P-27/HP endolysin as antibacterial agent for antibiotic resistant Staphylococcus aureus of human infections. Current microbiology, 63, 39.

Gurjar, A. A., Hegde, N. V., Love, B. C., Jayarao, B. M., 2008. Real-time multiplex PCR assay for rapid detection and toxintyping of Clostridium perfringens toxin producing strains in feces of dairy cattle. Mol Cell Probes, 22, 90-95.

Hagens, S., Habel, A., Von Ahsen, U., Von Gabain, A., Bläsi, U., 2004. Therapy of experimental Pseudomonas infections with a nonreplicating genetically modified phage. Antimicrobial Agents and Chemotherapy, 48, 3817-3822.

Hahnke, S., Wibberg, D., Tomazetto, G., Puhler, A., Klocke, M., Schluter, A., 2014. Whole genome sequence of Clostridium sp. strain M2/40 isolated from a lab-scale mesophilic two-phase biogas reactor digesting maize silage and wheat straw. J Biotechnol.

Hall, I. C. \& O'TOOLE, E., 1935. Intestinal flora in new-born infants: with a description of a new pathogenic anaerobe, Bacillus difficilis. American journal of diseases of children, 49, 390-402.

Hall, M. P., Unch, J., Binkowski, B. F., Valley, M. P., Butler, B. L., Wood, M. G., Otto, P., Zimmerman, K., Vidugiris, G., Machleidt, T., Robers, M. B., Benink, H. A., Eggers, C. T., Slater, M. R., Meisenheimer, P. L., Klaubert, D. H., Fan, F., Encell, L. P., Wood, K. V., 2012. Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol, 7, 1848-1857.

Han, D., Byun, S. H., Kim, J., Kwon, M., Pleasure, S. J., Ahn, J. H., Yoon, K., 2017. Human cytomegalovirus IE2 protein disturbs brain development by dysregulating neural stem cell maintenance and the polarization of migrating neurons. J Virol.

Hargreaves, K. R. 2013. Isolation and Characterisation of Bacteriophages Infecting Environmental Strains of Clostridium difficile. Ph. D. Department of Infection, Immunity and Inflammation.

Hargreaves, K. R. \& Clokie, M. R. J., 2014. Clostridium difficile phages: still difficult? Frontiers in Microbiology, 5.

Harmsen, A. M., van Tol, E., Giannakopoulos, G. F., de Brauw, L. M., 2016. Clostridial Gas Gangrene of the Abdominal Wall After Laparoscopic Cholecystectomy: A Case Report and Review. Surg Laparosc Endosc Percutan Tech, 26, 278-281.

Harper, P. S., 2010. Practical Genetic Counselling 7th Edition. CRC Press.

Heap, J. T., Cartman, S. T., Pennington, O. J., Cooksley, C. M., Scott, J. C., Blount, B., Burns, D. A., Minton, N. P., 2009a. Development of genetic knock-out systems for clostridia. Clostridia: molecular biology in the post-genomic era. Caister Academic Press, Norfolk, United Kingdom, 179-198.

Heap, J. T., Kuehne, S. A., Ehsaan, M., Cartman, S. T., Cooksley, C. M., Scott, J. C., Minton, N. P., 2010. The ClosTron: Mutagenesis in Clostridium refined and streamlined. J Microbiol Methods, 80, 49-55.

Heap, J. T., Pennington, O. J., Cartman, S. T., Carter, G. P., Minton, N. P., 2007. The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods, 70, 452-464.

Heap, J. T., Pennington, O. J., Cartman, S. T., Minton, N. P., 2009b. A modular system for< i> Clostridium</i> shuttle plasmids. J Microbiol Methods, 78, 79-85.

Hegarty, J. P., Sangster, W., Ashley, R. E., Myers, R., Hafenstein, S., Stewart, D. B., Sr., 2016. Induction and Purification of C. difficile Phage Tail-Like Particles. Methods Mol Biol, 1476, 167-175.

Henry, M., Lavigne, R., Debarbieux, L., 2013. Predicting In Vivo Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary Infections. Antimicrobial Agents and Chemotherapy, 57, 5961-5968.

Hensgens, M., Keessen, E., Squire, M., Riley, T., Koene, M., de Boer, E., Lipman, L., Kuijper, E., 2012. Clostridium difficile infection in the community: a zoonotic disease? Clinical microbiology and infection, 18, 635-645.

Herman, N. A., Li, J., Bedi, R., Turchi, B., Liu, X., Miller, M. J., Zhang, W., 2017. Development of a High-Efficiency Transformation Method and Implementation of Rational Metabolic Engineering for the Industrial Butanol Hyperproducer

Clostridium saccharoperbutylacetonicum Strain N1-4. Appl Environ Microbiol, 83.

Hernandez, L. D., Kroh, H. K., Hsieh, E., Yang, X., Beaumont, M., Sheth, P. R., DiNunzio, E., Rutherford, S. A., Ohi, M. D., Ermakov, G., Xiao, L., Secore, S., Karczewski, J., Racine, F., Mayhood, T., Fischer, P., Sher, X., Gupta, P., Lacy, D. B., Therien, A. G., 2017. Epitopes and Mechanism of Action of the Clostridium difficile Toxin A-Neutralizing Antibody Actoxumab. J Mol Biol, 429, 1030-1044.

Hibbing, M. E., Fuqua, C., Parsek, M. R., Peterson, S. B., 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nature reviews. Microbiology, 8, 15.

Hifumi, T., Koido, Y., Takahashi, M., Yamamoto, A., 2013. Antitoxin treatment for liver abscess caused by Clostridium perfringens. Clinical and molecular hepatology, 19, 97-98.

Hifumi, T., Nakano, D., Chiba, J., Takahashi, M., Yamamoto, A., Fujisawa, Y., Kawakita, K., Kuroda, Y., Nishiyama, A., 2018. Combined therapy with gas gangrene antitoxin and recombinant human soluble thrombomodulin for Clostridium perfringens sepsis in a rat model. Toxicon, 141, 112-117.

Holmes, R. \& Jobling, M., 1996. Genetics: conjugation. Barons medical microbiology, 4.

Horgan, M., O'Sullivan, O., Coffey, A., Fitzgerald, G. F., van Sinderen, D., McAuliffe, O., Ross, R. P., 2010. Genome analysis of the Clostridium difficile phage ФCD6356, a temperate phage of the Siphoviridae family. Gene, 462, 34-43.

Hu, B., Margolin, W., Molineux, I. J., Liu, J., 2015. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc Natl Acad Sci U S A, 112, E4919-4928.

Hu, Y., Yang, H., Wang, J., Zhang, Y., Yu, J., Wei, H., 2016. Comparison between a chimeric lysin ClyH and other enzymes for extracting DNA to detect methicillin resistant Staphylococcus aureus by quantitative PCR. World J Microbiol Biotechnol, 32, 1.

Huber, C. A., Foster, N. F., Riley, T. V., Paterson, D. L., 2013. Challenges for standardization of Clostridium difficile typing methods. Journal of clinical microbiology, 51, 2810-2814.

Hugelshofer, M., Achermann, Y., Kovari, H., Dent, W., Hombach, M., Bloemberg, G., 2012. Meningoencephalitis with subdural empyema caused by toxigenic Clostridium perfringens type A. Journal of clinical microbiology, 50, 3409-3411.

Hutton, M. L., Cunningham, B. A., Mackin, K. E., Lyon, S. A., James, M. L., Rood, J. I., Lyras, D., 2017. Bovine antibodies targeting primary and recurrent Clostridium difficile disease are a potent antibiotic alternative. Sci Rep, 7, 3665.

Hwang, K.-E., Hwang, Y.-R., Seol, C.-H., Park, C., Park, S.-H., Yoon, K.-H., Park, D.S., Lee, M.-K., Jeong, E.-T., Kim, H.-R., 2012. Clostridium difficile Infection in Lung Cancer Patients. Japanese journal of infectious diseases, 66, 379-382.

Hyman, P. \& Abedon, S. T., 2009. Practical methods for determining phage growth parameters. Methods Mol Biol, 501, 175-202.

Hyman, P. \& Abedon, S. T., 2010a. Bacteriophage host range and bacterial resistance. Advances in applied microbiology, 70, 217-248.

Hyman, P. \& Abedon, S. T., 2010b. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol, 70, 217-248.

Iakobachvili, N. 2015. Mycobacterial resuscitation promoting factors: roles and mechanisms in infected macrophages. Ph. D. Department of Infection, Immunity and Inflammation.

Igawa, K., Ohara, N., Kawakubo, A., Sugimoto, K., Yanagiguchi, K., Ikeda, T., Yamada, S., Hayashi, Y., 2014. D-Glucosamine Promotes Transfection Efficiency during Electroporation. BioMed Research International, 2014.

Inoue, I., Ishikawa, Y., Uraoka, Y., Yamashita, I., Yasueda, H., 2016. Selection of a novel peptide aptamer with high affinity for TiO 2 -nanoparticle through a direct electroporation with TiO2-binding phage complexes. J Biosci Bioeng, 122, 528532.

Ivanova, K., Ramon, E., Hoyo, J., Tzanov, T., 2017. Innovative Approaches for Controlling Clinically Relevant Biofilms: Current Trends and Future Prospects. Curr Top Med Chem.

Ivarsson, M. E., Leroux, J.-C., Castagner, B., 2015. Investigational new treatments for Clostridium difficile infection. Drug discovery today, 20, 602-608.

Jaeger, D., Hubner, W., Huser, T., Mussgnug, J. H., Kruse, O., 2017. Nuclear transformation and functional gene expression in the oleaginous microalga Monoraphidium neglectum. J Biotechnol, 249, 10-15.

Jain, P., Hartman, T. E., Eisenberg, N., O'Donnell, M. R., Kriakov, J., Govender, K., Makume, M., Thaler, D. S., Hatfull, G. F., Sturm, A. W., Larsen, M. H., Moodley,
P., Jacobs, W. R., Jr., 2012. phi(2)GFP10, a high-intensity fluorophage, enables detection and rapid drug susceptibility testing of Mycobacterium tuberculosis directly from sputum samples. J Clin Microbiol, 50, 1362-1369.

Javed, M. A., Poshtiban, S., Arutyunov, D., Evoy, S., Szymanski, C. M., 2013. Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One, 8, e69770.

Jayaraman, S., Das, P. P., Saini, P. C., Roy, B., Chatterjee, P. N., 2017. Use of Bacillus Subtilis PB6 as a potential antibiotic growth promoter replacement in improving performance of broiler birds. Poult Sci, pex079.

Jirásková, A., Vítek, L., Fevery, J., Ruml, T., Branny, P., 2005. Rapid protocol for electroporation of < i> Clostridium perfringens</i>. J Microbiol Methods, 62, 125-127.

Johansson, A. 2006. Clostridium perfringens the causal agent of necrotic enteritis in poultry. Faculty of Veterinary Medicine and Animal Science, Department of Biomedical Sciences and Veterinary Public Health, Uppsala. Ph. D. Doctoral thesis, Swedish University of Agricultural Sciences, Uppsala.

Jones, S. W., Tracy, B. P., Gaida, S. M., Papoutsakis, E. T., 2011. Inactivation of σ F in Clostridium acetobutylicum ATCC 824 blocks sporulation prior to asymmetric division and abolishes σE and $\sigma \mathrm{G}$ protein expression but does not block solvent formation. J Bacteriol, 193, 2429-2440.

Jordan, E. T., Collins, M., Terefe, J., Ugozzoli, L., Rubio, T., 2008. Optimizing electroporation conditions in primary and other difficult-to-transfect cells. Journal of biomolecular techniques: JBT, 19, 328.

Joshi, L. T., Welsch, A., Hawkins, J., Baillie, L., 2017. The effect of hospital biocide sodium dichloroisocyanurate on the viability and properties of Clostridium difficile spores. Lett Appl Microbiol.

Just, I. \& Gerhard, R., 2005. Large clostridial cytotoxins. Reviews of physiology, biochemistry and pharmacology. Springer 23-47.

Kadra, B., Guillou, J., Popoff, M., Bourlioux, P., 1999. Typing of sheep clinical isolates and identification of enterotoxigenic Clostridium perfringens strains by classical methods and by polymerase chain reaction (PCR) 1. FEMS Immunology \& Medical Microbiology, 24, 259-266.

Kaistha, S. D. \& Umrao, P. D., 2016. Bacteriophage for Mitigation of Multiple Drug Resistant Biofilm Forming Pathogens. Recent Pat Biotechnol, 10, 184-194.

Kaliniene, L., Simoliunas, E., Truncaite, L., Zajanckauskaite, A., Nainys, J., Kaupinis, A., Valius, M., Meskys, R., 2017. Molecular analysis of Arthrobacter myovirus vB_ArtM-ArV1: we blame it on the tail. J Virol.

Kannuchamy, S., Mukund, N., Saleena, L. M., 2016. Genetic engineering of Clostridium thermocellum DSM1313 for enhanced ethanol production. BMC biotechnology, 16, 34.

Karpiuk, I. \& Tyski, S., 2017. Looking for the new preparations for antibacterial therapy. V. New antimicrobial agents from the oxazolidinones groups in clinical trials. Przegl Epidemiol, 71, 207-219.

Keessen, E. C., Hensgens, M. P., Spigaglia, P., Barbanti, F., Sanders, I. M., Kuijper, E. J., Lipman, L. J., 2013. Antimicrobial susceptibility profiles of human and piglet Clostridium difficile PCR-ribotype 078. Antimicrobial resistance and infection control, 2, 14.

Khalili, S., Jahangiri, A., Hashemi, Z. S., Khalesi, B., Mard-Soltani, M., Amani, J., 2017. Structural pierce into molecular mechanism underlying Clostridium perfringens Epsilon toxin function. Toxicon, 127, 90-99.

Khan, M., Nazir, J., Anjum, A. A., Nawaz, M., Shabbir, M. Z., 2014. Toxinotyping and antimicrobial susceptibility of enterotoxigenic Clostridium perfringens isolates from mutton, beef and chicken meat. Journal of Food Science and Technology, 16.

Khanna, S., Shin, A., Kelly, C. P., 2017. Management of Clostridium difficile Infection in Inflammatory Bowel Disease: Expert Review from the Clinical Practice Updates Committee of the AGA Institute. Clin Gastroenterol Hepatol, 15, 166174.

Kim, K.-P., Born, Y., Lurz, R., Eichenseher, F., Zimmer, M., Loessner, M. J., Klumpp, J., 2012. Inducible Clostridium perfringens bacteriophages WS9 and WS63.

Kirk, J. A., Banerji, O., Fagan, R. P., 2017a. Characteristics of the Clostridium difficile cell envelope and its importance in therapeutics. Microbial biotechnology, 10, 7690.

Kirk, J. A. \& Fagan, R. P., 2016. Heat shock increases conjugation efficiency in Clostridium difficile. Anaerobe, 42, 1-5.

Kirk, J. A., Gebhart, D., Buckley, A. M., Lok, S., Scholl, D., Douce, G. R., Govoni, G. R., Fagan, R. P., 2017b. New class of precision antimicrobials redefines role of Clostridium difficile S-layer in virulence and viability. Sci Transl Med, 9.

Kiro, R., Shitrit, D., Qimron, U., 2014. Efficient engineering of a bacteriophage genome using the type IE CRISPR-Cas system. RNA biology, 11, 42-44.

Kittler, S., Fischer, S., Abdulmawjood, A., Glünder, G., Klein, G., 2014. Colonisation of a Phage Susceptible Campylobacter jejuni Population in Two Phage Positive Broiler Flocks. PLoS One, 9, e94782.

Kolek, J., Sedlar, K., Provaznik, I., Patakova, P., 2016. Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation. Biotechnology for biofuels, 9, 14.

Korndörfer, I. P., Danzer, J., Schmelcher, M., Zimmer, M., Skerra, A., Loessner, M. J., 2006. The Crystal Structure of the Bacteriophage PSA Endolysin Reveals a Unique Fold Responsible for Specific Recognition of Listeria Cell Walls. J Mol Biol, 364, 678-689.

Kosloske, A. M., Ball, W. S., Umland, E., Skipper, B., 1985. Clostridial necrotizing enterocolitis. Journal of pediatric surgery, 20, 155-159.

Kotnik, T. \& Miklavčič, D., 2006. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophysical journal, 90, 480-491.

Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E., Johnson, R. P., 2009. Enumeration of bacteriophages by double agar overlay plaque assay. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions, 69-76.

Krylov, V., 2001. Phage therapy in terms of bacteriophage genetics: hopes, prospects, safety, limitations. Russian Journal of Genetics, 37, 715-730.

Kuehne, S. A. \& Minton, N. P., 2012. ClosTron-mediated engineering of Clostridium. Bioengineered, 3, 247-254.

Kumar, R. B. \& Alam, S. I., 2017. Effect of continuous sub-culturing on infectivity of Clostridium perfringens ATCC13124 in mouse gas gangrene model. Folia Microbiol (Praha), 62, 343-353.

Lacey, J. A., Johanesen, P. A., Lyras, D., Moore, R. J., 2016. Genomic diversity of necrotic enteritis-associated strains of Clostridium perfringens: a review. Avian Pathol, 45, 302-307.

Lanckriet, A., Timbermont, L., Happonen, L. J., Pajunen, M. I., Pasmans, F., Haesebrouck, F., Ducatelle, R., Savilahti, H., Van Immerseel, F., 2009. Generation of single-copy transposon insertions in Clostridium perfringens by electroporation of phage Mu DNA transposition complexes. Applied and environmental microbiology, 75, 2638-2642.

Landi, G., Gualtieri, G., Bello, I. S., Kirsch, D., 2017. A case of fatal Clostridium perfringens bacteremia and sepsis following CT-guided liver biopsy of a rare neuroendocrine hepatic tumor. Forensic Sci Med Pathol.

Latka, A., Maciejewska, B., Majkowska-Skrobek, G., Briers, Y., Drulis-Kawa, Z., 2017. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Appl Microbiol Biotechnol, 101, 3103-3119.

Leang, C., Ueki, T., Nevin, K. P., Lovley, D. R., 2013. A genetic system for Clostridium ljungdahlii: a chassis for autotrophic production of biocommodities and a model homoacetogen. Appl Environ Microbiol, 79, 1102-1109.

Leduc, M., ROUSSEAU, M., HEIJENOORT, J., 1977. Structure of the Cell Wall of Bacillus Species CIP 76-111. The FEBS Journal, 80, 153-163.

Lee, K. E., Lim, S. I., Shin, S. H., Kwon, Y. K., Kim, H. Y., Song, J. Y., An, D. J., 2014. Distribution of Clostridium perfringens isolates from piglets in South Korea. J Vet Med Sci, 76, 745-749.

Lee, K. W., Lillehoj, H. S., Park, M. S., Jang, S. I., Ritter, G. D., Hong, Y. H., Jeong, W., Jeoung, H. Y., An, D. J., Lillehoj, E. P., 2012. Clostridium perfringens alpha-toxin and NetB toxin antibodies and their possible role in protection against necrotic enteritis and gangrenous dermatitis in broiler chickens. Avian Dis, 56, 230-233.

Lee, P. S., 2008. Quantitation of microorganisms. Practical Handbook of Microbiology, 11-29.

Leffler, D. A. \& Lamont, J. T., 2015. Clostridium difficile infection. New England Journal of Medicine, 372, 1539-1548.

Lessa, F. C., Mu, Y., Bamberg, W. M., Beldavs, Z. G., Dumyati, G. K., Dunn, J. R., Farley, M. M., Holzbauer, S. M., Meek, J. I., Phipps, E. C., 2015. Burden of Clostridium difficile infection in the United States. New England Journal of Medicine, 372, 825-834.

Leverentz, B., Conway, W. S., Camp, M. J., Janisiewicz, W. J., Abuladze, T., Yang, M., Saftner, R., Sulakvelidze, A., 2003. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Applied and environmental microbiology, 69, 4519-4526.

Li, J., Adams, V., Bannam, T. L., Miyamoto, K., Garcia, J. P., Uzal, F. A., Rood, J. I., McClane, B. A., 2013. Toxin plasmids of Clostridium perfringens. Microbiology and Molecular Biology Reviews, 77, 208-233.

Li, J., Freedman, J. C., Evans, D. R., McClane, B. A., 2017. CodY Promotes Sporulation and Enterotoxin Production by Clostridium perfringens Type A Strain SM101. Infection and immunity, IAI. 00855-00816.

Li, S., 2008. Electroporation protocols: preclinical and clinical gene medicine. Humana Press.

Li, X. \& Heyer, W.-D., 2008. Homologous recombination in DNA repair and DNA damage tolerance. Cell research, 18, 99-113.

Liew, F., Henstra, A. M., Kpke, M., Winzer, K., Simpson, S. D., Minton, N. P., 2017. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab Eng.

Lin, D. M., Koskella, B., Lin, H. C., 2017. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World journal of gastrointestinal pharmacology and therapeutics, 8, 162.

Litster, J., 1975. Stability of lipid bilayers and red blood cell membranes. Physics Letters A, 53, 193-194.

Liu, X., Jiang, S., Fang, C., Li, H., Zhang, X., Zhang, F., June, C. H., Zhao, Y., 2017. Novel T cells with improved in vivo anti-tumor activity generated by RNA electroporation. Protein Cell.

Liu, Y. J., Zhang, J., Cui, G. Z., Cui, Q., 2015. Current progress of targetron technology: development, improvement and application in metabolic engineering. Biotechnol J, 10, 855-865.

Liubakka, A. \& Vaughn, B. P., 2016. Clostridium difficile Infection and Fecal Microbiota Transplant. AACN Adv Crit Care, 27, 324-337.

Loc-Carrillo, C. \& Abedon, S. T., 2011. Pros and cons of phage therapy. Bacteriophage, 1, 111-114.

Loessner, M. J., Rees, C. E., Stewart, G. S., Scherer, S., 1996. Construction of luciferase reporter bacteriophage A511::luxAB for rapid and sensitive detection of viable Listeria cells. Appl Environ Microbiol, 62, 1133-1140.

Löfmark, S., Edlund, C., Nord, C. E., 2010. Metronidazole is still the drug of choice for treatment of anaerobic infections. Clinical Infectious Diseases, 50, S16-S23.

Lu, T. K. \& Collins, J. J., 2007. Dispersing biofilms with engineered enzymatic bacteriophage. Proceedings of the National Academy of Sciences, 104, 1119711202.

Lu, T. K. T., Koeris, M. S., Chevalier, B. S., Holder, J. W., McKenzie, G. J., Brownell, D. R. 2012. Recombinant phage and methods. Google Patents.

Maciejewska, B., Roszniowski, B., Espaillat, A., Kesik-Szeloch, A., MajkowskaSkrobek, G., Kropinski, A. M., Briers, Y., Cava, F., Lavigne, R., Drulis-Kawa, Z., 2017. Klebsiella phages representing a novel clade of viruses with an unknown DNA modification and biotechnologically interesting enzymes. Appl Microbiol Biotechnol, 101, 673-684.

Mahony, D., 1974. Bacteriocin susceptibility of Clostridium perfringens: a provisional typing schema. Applied microbiology, 28, 172-176.

Mahony, D., 1977. Induction of bacteriocins from Clostridium perfringens by treatment with mitomycin C. Antimicrobial Agents and Chemotherapy, 11, 1067-1068.

Mahony, D., Bell, P., Easterbrook, K., 1985. Two bacteriophages of Clostridium difficile. Journal of clinical microbiology, 21, 251-254.

Manni, M. M., Valero, J. G., Perez-Cormenzana, M., Cano, A., Alonso, C., Goni, F. M., 2017. Lipidomic profile of GM95 cell death induced by Clostridium perfringens alpha-toxin. Chem Phys Lipids.

Marinelli, L. J., Piuri, M., Swigoňová, Z., Balachandran, A., Oldfield, L. M., van Kessel, J. C., Hatfull, G. F., 2008. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One, 3, e3957.

Mattila, E., Arkkila, P., Mattila, P. S., Tarkka, E., Tissari, P., Anttila, V.-J., 2013. Extraintestinal Clostridium difficile infections. Clinical Infectious Diseases.

Mayer, M. J., Garefalaki, V., Spoerl, R., Narbad, A., Meijers, R., 2011. Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range. J Bacteriol, 193, 5477-5486.

Mayer, M. J., Narbad, A., Gasson, M. J., 2008. Molecular characterization of a Clostridium difficile bacteriophage and its cloned biologically active endolysin. J Bacteriol, 190, 6734-6740.

Mazaheri Nezhad Fard, R., Barton, M. D., Heuzenroeder, M. W., 2011. Bacteriophagemediated transduction of antibiotic resistance in enterococci. Lett Appl Microbiol, 52, 559-564.

Mazzocco, A., Waddell, T. E., Lingohr, E., Johnson, R. P., 2009. Enumeration of bacteriophages using the small drop plaque assay system. Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions, 81-85.

McDonel, J. L., 1980. Clostridium perfringens toxins (type A, B, C, D, E). Pharmacology \& Therapeutics, 10, 617-655.

Meader, E., Mayer, M. J., Gasson, M. J., Steverding, D., Carding, S. R., Narbad, A., 2010. Bacteriophage treatment significantly reduces viable< $\mathrm{i}>$ Clostridium difficile</i> and prevents toxin production in an<i> in vitro</i> model system. Anaerobe, 16, 549-554.

Meader, E., Mayer, M. J., Steverding, D., Carding, S. R., Narbad, A., 2013. Evaluation of bacteriophage therapy to control Clostridium difficile and toxin production in an in vitro human colon model system. Anaerobe, 22, 25-30.

Meer, R. \& Songer, J. G., 1997. Multiplex polymerase chain reaction assay for genotyping Clostridium perfringens. American journal of veterinary research, 58, 702-705.

Meessen-Pinard, M., Sekulovic, O., Fortier, L.-C., 2012. Evidence of in vivo prophage induction during Clostridium difficile infection. Applied and environmental microbiology, 78, 7662-7670.

Messick, C. A., Hammel, J. P., Hull, T., 2017. Risk Factors that Predict Recurrent Clostridium difficile Infections in Surgical Patients. Am Surg, 83, 653-659.

Miladi, B., El Marjou, A., Boeuf, G., Bouallagui, H., Dufour, F., Di Martino, P., Elm'selmi, A., 2012. Oriented immobilization of the tobacco etch virus protease for the cleavage of fusion proteins. J Biotechnol, 158, 97-103.

Miller, R. W., Skinner, J., Sulakvelidze, A., Mathis, G. F., Hofacre, C. L., 2010. Bacteriophage therapy for control of necrotic enteritis of broiler chickens experimentally infected with Clostridium perfringens. Avian diseases, 54, 33-40.

Milton, A. A. P., Agarwal, R. K., Bhuvana Priya, G., Saminathan, M., Aravind, M., Reddy, A., Athira, C. K., Ramees, T., Sharma, A. K., Kumar, A., 2017. Prevalence and molecular typing of Clostridium perfringens in captive wildlife in India. Anaerobe, 44, 55-57.

Minton, N. P., Ehsaan, M., Humphreys, C. M., Little, G. T., Baker, J., Henstra, A. M., Liew, F., Kelly, M. L., Sheng, L., Schwarz, K., Zhang, Y., 2016. A roadmap for gene system development in Clostridium. Anaerobe, 41, 104-112.

Mirecka, A., 2017. Clostridium difficile infection a current therapeutic and epidemiological problem. Przegl Epidemiol, 71, 155-164.

Mishra, N. \& Smyth, J. A., 2017. Oral vaccination of broiler chickens against necrotic enteritis using a non-virulent NetB positive strain of Clostridium perfringens type A. Vaccine, 35, 6858-6865.

Mohanta, T. K., Bashir, T., Hashem, A., Abd Allah, E. F., Bae, H., 2017. Genome Editing Tools in Plants. Genes (Basel), 8.

Moradpour, Z. \& Ghasemian, A., 2011. Modified phages: novel antimicrobial agents to combat infectious diseases. Biotechnology advances, 29, 732-738.

Morales, C. A., Oakley, B. B., Garrish, J. K., Siragusa, G. R., Ard, M. B., Seal, B. S., 2012. Complete genome sequence of the podoviral bacteriophage PhiCP24R, which is virulent for Clostridium perfringens. Arch Virol, 157, 769-772.

Mukamolova, G. V., Murzin, A. G., Salina, E. G., Demina, G. R., Kell, D. B., Kaprelyants, A. S., Young, M., 2006. Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Molecular microbiology, 59, 84-98.

Mullany, P., Williams, R., Langridge, G. C., Turner, D. J., Whalan, R., Clayton, C., Lawley, T., Hussain, H., McCurrie, K., Morden, N., Allan, E., Roberts, A. P., 2012. Behavior and target site selection of conjugative transposon Tn 916 in two different strains of toxigenic Clostridium difficile. Appl Environ Microbiol, 78, 2147-2153.

Nagahama, M., 2013. Vaccines against Clostridium perfringens alpha-toxin. Curr Pharm Biotechnol, 14, 913-917.

NAGY, E. \& Földes, J., 1991. Electron microscopic investigation of lysogeny of Clostridium difficile strains isolated from antibiotic-associated diarrhea cases and from healthy carriers. Apmis, 99, 321-326.

Nakamura, I., Yamaguchi, T., Tsukimori, A., Sato, A., Fukushima, S., Mizuno, Y., Matsumoto, T., 2014. Fulminant colitis from Clostridium difficile infection, the epidemic strain ribotype 027, in Japan. J Infect Chemother, 20, 380-383.

Nakonieczna, A., Cooper, C. J., Gryko, R., 2015. Bacteriophages and bacteriophagederived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria. J Appl Microbiol, 119, 620-631.

Nale, J. Y. 2013. Isolation and Characterisation of Temperate Bacteriophages of the Hypervirulent Clostridium difficile 027 Strains. Ph. D. University of Leicester.

Nale, J. Y., Chutia, M., Carr, P., Hickenbotham, P. T., Clokie, M. R., 2016a. 'Get in Early'; Biofilm and Wax Moth (Galleria mellonella) Models Reveal New Insights into the Therapeutic Potential of Clostridium difficile Bacteriophages. Front Microbiol, 7, 1383.

Nale, J. Y., Shan, J., Hickenbotham, P. T., Fawley, W. N., Wilcox, M. H., Clokie, M. R., 2012. Diverse temperate bacteriophage carriage in Clostridium difficile 027 strains. PLoS One, 7, e37263.

Nale, J. Y., Spencer, J., Hargreaves, K. R., Buckley, A. M., Trzepinski, P., Douce, G. R., Clokie, M. R., 2016b. Bacteriophage Combinations Significantly Reduce Clostridium difficile Growth In Vitro and Proliferation In Vivo. Antimicrob Agents Chemother, 60, 968-981.

Nanda, A. M., Thormann, K., Frunzke, J., 2015. Impact of spontaneous prophage induction on the fitness of bacterial populations and host-microbe interactions. J Bacteriol, 197, 410-419.

Napotnik, T. B., Reberšek, M., Kotnik, T., Lebrasseur, E., Cabodevila, G., Miklavčič, D., 2010. Electropermeabilization of endocytotic vesicles in B16 F1 mouse melanoma cells. Medical \& biological engineering \& computing, 48, 407-413.

Nariya, H., Miyata, S., Tamai, E., Sekiya, H., Maki, J., Okabe, A., 2011. Identification and characterization of a putative endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Appl Microbiol Biotechnol, 90, 19731979.

Nayak, S. U., Griffiss, J. M., Blumer, J., O'Riordan, M. A., Gray, W., McKenzie, R., Jurao, R. A., An, A. T., Le, M., Bell, S. J., Ochsner, U. A., Jarvis, T. C., Janjic, N., Zenilman, J. M., 2017. Safety, tolerability, systemic exposure and metabolism of CRS3123, a methionyl-tRNA synthetase inhibitor developed for treatment of Clostridium difficile infections, in a Phase I study. Antimicrob Agents Chemother.

Neely, M. N. \& Friedman, D. I., 1998. Arrangement and functional identification of genes in the regulatory region of lambdoid phage H-19B, a carrier of a Shiga-like toxin. Gene, 223, 105-113.

Ng, Y. K., Ehsaan, M., Philip, S., Collery, M. M., Janoir, C., Collignon, A., Cartman, S. T., Minton, N. P., 2013. Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS One, 8, e56051.

Nickoloff, J. A., 1995. Animal cell electroporation and electrofusion protocols. Springer.

Nilsson, A. S., 2014. Phage therapy-constraints and possibilities. Ups J Med Sci, 119, 192-198.

Nyati, K. K., Prasad, K. N., Agrawal, V., Husain, N., 2017. Matrix metalloproteinases-2 and -9 in Campylobacter jejuni-induced paralytic neuropathy resembling Guillain-Barre syndrome in chickens. Microb Pathog.

O'connor, J. R., Lyras, D., Farrow, K. A., Adams, V., Powell, D. R., Hinds, J., Cheung, J. K., Rood, J. I., 2006. Construction and analysis of chromosomal Clostridium difficile mutants. Molecular microbiology, 61, 1335-1351.

O'Sullivan, L., Buttimer, C., McAuliffe, O., Bolton, D., Coffey, A., 2016. Bacteriophagebased tools: recent advances and novel applications. F1000Res, 5, 2782.

Oakley, C. L. \& Warrack, G. H., 1953. Routine typing of Clostridium welchii. The Journal of Hygiene, 51, 102-107.

Oechslin, F., Daraspe, J., Giddey, M., Moreillon, P., Resch, G., 2013. In vitro characterization of PlySK1249, a novel phage lysin, and assessment of its antibacterial activity in a mouse model of Streptococcus agalactiae bacteremia. Antimicrobial Agents and Chemotherapy, 57, 6276-6283.

Ogunniyi, A. D., Khazandi, M., Stevens, A. J., Sims, S. K., Page, S. W., Garg, S., Venter, H., Powell, A., White, K., Petrovski, K. R., Laven-Law, G., Totoli, E. G., Salgado, H. R., Pi, H., Coombs, G. W., Shinabarger, D. L., Turnidge, J. D., Paton, J. C., McCluskey, A., Trott, D. J., 2017. Evaluation of robenidine analog NCL195 as a novel broad-spectrum antibacterial agent. PLoS One, 12, e0183457.

Oh, Y. H., Eom, G. T., Kang, K. H., Choi, J. W., Song, B. K., Lee, S. H., Park, S. J., 2015. Optimized Transformation of Newly Constructed Escherichia coli-Clostridia Shuttle Vectors into Clostridium beijerinckii. Appl Biochem Biotechnol, 177, 226236.

Oliveira, A., Leite, M., Kluskens, L. D., Santos, S. B., Melo, L. D., Azeredo, J., 2015. The First Paenibacillus larvae Bacteriophage Endolysin (PlyPl23) with High Potential to Control American Foulbrood. PLoS One, 10, e0132095.

Oppenheim, A. B. \& Adhya, S. L., 2007. A new look at bacteriophage λ genetic networks. J Bacteriol, 189, 298-304.

Oppenheim, A. B., Rattray, A. J., Bubunenko, M., Thomason, L. C., Court, D. L., 2004. In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides. Virology, 319, 185-189.

Orlova, E., 2012. Bacteriophages and their structural organisation. InTech.

Orrell, K. E., Zhang, Z., Sugiman-Marangos, S. N., Melnyk, R. A., 2017. Clostridium difficile toxins A and B: Receptors, pores, and translocation into cells. Crit Rev Biochem Mol Biol, 1-13.

Osman, K. \& Elhariri, M., 2013. Antibiotic resistance of Clostridium perfringens isolates from broiler chickens in Egypt. Rev Sci Tech Off Int Epiz, 32, 841-850.

Ozkan, I., Akturk, E., Yeshenkulov, N., Atmaca, S., Rahmanov, N., Atabay, H. I., 2016. Lytic Activity of Various Phage Cocktails on Multidrug-Resistant Bacteria. Clin Invest Med, 39, 27504.

Papatheodorou, P. \& Aktories, K., 2016. Receptor-Binding and Uptake of Binary Actin-ADP-Ribosylating Toxins. Curr Top Microbiol Immunol.

Park, J. Y., Kim, S., Oh, J. Y., Kim, H. R., Jang, I., Lee, H. S., Kwon, Y. K., 2015. Characterization of Clostridium perfringens isolates obtained from 2010 to 2012 from chickens with necrotic enteritis in Korea. Poult Sci, 94, 1158-1164.

Park, Y., Lim, J. A., Kong, M., Ryu, S., Rhee, S., 2014. Structure of bacteriophage SPN1S endolysin reveals an unusual two-module fold for the peptidoglycan lytic and binding activity. Mol Microbiol, 92, 316-325.

Payandeh, Z., Rasooli, I., Mousavi Gargari, S. L., Rajabi Bazl, M., Ebrahimizadeh, W., 2014. Immunoreaction of a recombinant nanobody from camelid single domain antibody fragment with Acinetobacter baumannii. Trans R Soc Trop Med Hyg, 108, 92-98.

Perelle, S., Gibert, M., Boquet, P., Popoff, M. R., 1993. Characterization of Clostridium perfringens iota-toxin genes and expression in Escherichia coli. Infection and immunity, 61, 5147-5156.

Peterson, E. C. \& Daugulis, A. J., 2014. The use of high pressure CO -facilitated pH swings to enhance in situ product recovery of butyric acid in a two-phase partitioning bioreactor. Biotechnol Bioeng.

Petit, L., Gibert, M., Popoff, M. R., 1999. Clostridium perfringens: toxinotype and genotype. Trends Microbiol, 7, 104-110.

Petridis, M., Bagdasarian, M., Waldor, M. K., Walker, E., 2006. Horizontal transfer of Shiga toxin and antibiotic resistance genes among Escherichia coli strains in house fly (Diptera: Muscidae) gut. J Med Entomol, 43, 288-295.

Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J., Lu, T. K., 2016. Genetically engineered phages: a review of advances over the last decade. Microbiology and Molecular Biology Reviews, 80, 523-543.

Pitt, T. L. \& Gaston, M. A., 1995. Bacteriocin Typing. In Howard, J. \& Whitcombe, D. M. (eds.) Diagnostic Bacteriology Protocols. Totowa, NJ: Humana Press 5-14.

Planelles, L., Marañón, C., Requena, J. M. a., López, M. C., 1999. Phage recovery by electroporation of naked DNA into host cells avoids the use of packaging extracts. Analytical biochemistry, 267, 234-235.

Popoff, M. R., 2011. Epsilon toxin: a fascinating pore-forming toxin. Febs Journal, 278, 4602-4615.

Porter, R. J. \& Fogg, C., 2015. Faecal microbiota transplantation for Clostridium difficile infection in the United Kingdom. Clinical Microbiology and Infection, 21, 578582.

Postma, N., Kiers, D., Pickkers, P., 2015. The challenge of Clostridium difficile infection: overview of clinical manifestations, diagnostic tools and therapeutic options. International Journal of Antimicrobial Agents, 46, S47-S50.

Powell, I. B., Achen, M. G., Hillier, A. J., Davidson, B. E., 1988. A simple and rapid method for genetic transformation of lactic streptococci by electroporation. Applied and environmental microbiology, 54, 655-660.

Prokhorov, N. S., Riccio, C., Zdorovenko, E. L., Shneider, M. M., Browning, C., Knirel, Y. A., Leiman, P. G., Letarov, A. V., 2017. Function of bacteriophage G7C esterase tailspike in host cell adsorption. Mol Microbiol.

Prpar Mihevc, S., Pavlin, M., Darovic, S., Zivin, M., Podbregar, M., Rogelj, B., Mars, T., 2017. Modelling FUS Mislocalisation in an In Vitro Model of Innervated Human Muscle. J Mol Neurosci.

Pruteanu, M. \& Shanahan, F., 2013. Digestion of epithelial tight junction proteins by the commensal Clostridium perfringens. American Journal of PhysiologyGastrointestinal and Liver Physiology, 305, G740-G748.

Ptashne, M., 2004. A genetic switch: phage lambda revisited. Cold Spring Harbor Laboratory Press Cold Spring Harbor, NY:.

Purdy, D., O'Keeffe, T. A., Elmore, M., Herbert, M., McLeod, A., Bokori-Brown, M., Ostrowski, A., Minton, N. P., 2002. Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Molecular microbiology, 46, 439-452.

Rai, M., Ingle, A. P., Pandit, R., Paralikar, P., Gupta, I., Chaud, M. V., Dos Santos, C. A., 2017. Broadening the spectrum of small-molecule antibacterials by metallic nanoparticles to overcome microbial resistance. Int J Pharm.

Rashid, S. J. 2016. Understanding Clostridium Difficile and the Bacteriophages from the Environment. Ph. D. Department of Infection, Immunity and Inflammation.

Raulinaitis, V., Tossavainen, H., Aitio, O., Juuti, J. T., Hiramatsu, K., Kontinen, V., Permi, P., 2017. Identification and structural characterization of LytU, a unique peptidoglycan endopeptidase from the lysostaphin family. Sci Rep, 7, 6020.

Raya, R. 1. R. \& H'bert, E. M., 2008. Isolation of Phage via Induction of Lysogens. Methods in molecular biology (Clifton, NJ), 501, 23-32.

Razmyar, J., Kalidari, G. A., Tolooe, A., Rad, M., Movassaghi, A. R., 2014. Genotyping of Clostridium perfringens isolated from healthy and diseased ostriches (Struthio camelus). Iran J Microbiol, 6, 31-36.

Reberšek, M. \& Miklavčič, D., 2011. Advantages and disadvantages of different concepts of electroporation pulse generation. Automatika, 52, 12-19.

Reece-Hoyes, J. S. \& Walhout, A. J. M., 2018. Gateway Recombinational Cloning. Cold Spring Harb Protoc, 2018, pdb top094912.

Rodriguez-Rubio, L., Gerstmans, H., Thorpe, S., Mesnage, S., Lavigne, R., Briers, Y., 2016. DUF3380 Domain from a Salmonella Phage Endolysin Shows Potent NAcetylmuramidase Activity. Appl Environ Microbiol, 82, 4975-4981.

Rols, M.-P. \& Teissié, J., 1998. Electropermeabilization of Mammalian Cells to Macromolecules: Control by Pulse Duration. Biophysical journal, 75, 1415-1423.

Rosenfeld, Y. \& Shai, Y., 2006. Lipopolysaccharide (Endotoxin)-host defense antibacterial peptides interactions: role in bacterial resistance and prevention of sepsis. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758, 1513-1522.

Ross, A., Ward, S., Hyman, P., 2016. More is better: selecting for broad host range bacteriophages. Frontiers in microbiology, 7.

Rossmann, F. S., Racek, T., Wobser, D., Puchalka, J., Rabener, E. M., Reiger, M., Hendrickx, A. P., Diederich, A. K., Jung, K., Klein, C., Huebner, J., 2015. Phagemediated dispersal of biofilm and distribution of bacterial virulence genes is induced by quorum sensing. PLoS Pathog, 11, e1004653.

Rubinsky, B., 2010. Irreversible electroporation. Springer.

Rumah, K. R., Linden, J., Fischetti, V. A., Vartanian, T., 2013. Isolation of Clostridium perfringens type B in an individual at first clinical presentation of multiple sclerosis provides clues for environmental triggers of the disease. PLoS One, 8, e76359.

Sabouri, S., Sepehrizadeh, Z., Amirpour-Rostami, S., Skurnik, M., 2017. A minireview on the in vitro and in vivo experiments with anti-Escherichia coli O157:H7 phages as potential biocontrol and phage therapy agents. Int J Food Microbiol, 243, 5257.

Sabry, M., Abd El-Moein, K., Hamza, E., Abdel Kader, F., 2016. Occurrence of Clostridium perfringens Types A, E, and C in Fresh Fish and Its Public Health Significance. J Food Prot, 79, 994-1000.

Sahota, J. S. 2016. Investigations to underpin the development of bacteriophages as therapeutic agents to target pseudomonas aeruginosa infections in patients with cystic fibrosis. Ph. D. Department of Infection, Immunity and Inflammation.

Sakurai, J., Nagahama, M., Oda, M., 2004. Clostridium perfringens alpha-toxin: characterization and mode of action. Journal of biochemistry, 136, 569-574.

Saunders, J. R., Allison, H., James, C. E., McCarthy, A. J., Sharp, R., 2001. Phagemediated transfer of virulence genes. Journal of Chemical Technology and Biotechnology, 76, 662-666.

Sawires, Y. S. \& Songer, J. G., 2005. Multiple-locus variable-number tandem repeat analysis for strain typing of Clostridium perfringens. Anaerobe, 11, 262-272.

Saye, D. J., Ogunseitan, O., Sayler, G., Miller, R. V., 1987. Potential for transduction of plasmids in a natural freshwater environment: effect of plasmid donor concentration and a natural microbial community on transduction in Pseudomonas aeruginosa. Applied and environmental microbiology, 53, 987-995.

Saye, D. J., Ogunseitan, O., Sayler, G., Miller, R. V., 1990. Transduction of linked chromosomal genes between Pseudomonas aeruginosa strains during incubation in situ in a freshwater habitat. Applied and environmental microbiology, 56, 140145.

Schalch, B., Bader, L., Schau, H.-P., Bergmann, R., Rometsch, A., Maydl, G., Keßler, S., 2003. Molecular typing of Clostridium perfringens from a food-borne disease outbreak in a nursing home: ribotyping versus pulsed-field gel electrophoresis. Journal of clinical microbiology, 41, 892-895.

Schmelcher, M., Donovan, D. M., Loessner, M. J., 2012. Bacteriophage endolysins as novel antimicrobials. Future microbiology, 7, 1147-1171.

Schmelcher, M., Powell, A. M., Camp, M. J., Poh1, C. S., Donovan, D. M., 2015. Synergistic streptococcal phage lambdaSA2 and B30 endolysins kill streptococci in cow milk and in a mouse model of mastitis. Appl Microbiol Biotechnol, 99, 8475-8486.

Seal, B. S., 2013. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium. Poult Sci, 92, 526-533.

Seal, B. S., Fouts, D. E., Simmons, M., Garrish, J. K., Kuntz, R. L., Woolsey, R., Schegg, K. M., Kropinski, A. M., Ackermann, H.-W., Siragusa, G. R., 2011. Clostridium perfringens bacteriophages $\Phi С Р 390$ and $\Phi С Р 26 \mathrm{~F}$: genomic organization and proteomic analysis of the virions. Archives of virology, 156, 25-35.

Segar, L., Easow, J. M., Srirangaraj, S., Hanifah, M., Joseph, N. M., Seetha, K. S., 2017. Prevalence of Clostridium difficile infection among the patients attending a tertiary care teaching hospital. Indian J Pathol Microbiol, 60, 221-225.

Seike, S., Takehara, M., Kobayashi, K., Nagahama, M., 2016. Role of pannexin 1 in Clostridium perfringens beta-toxin-caused cell death. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1858, 3150-3156.

Seike, S., Takehara, M., Takagishi, T., Miyamoto, K., Kobayashi, K., Nagahama, M., 2017. Delta-toxin from Clostridium perfringens perturbs intestinal epithelial barrier function in Caco-2 cell monolayers. Biochim Biophys Acta.

Sekulovic, O. \& Fortier, L. C., 2016. Characterization of Functional Prophages in Clostridium difficile. Methods Mol Biol, 1476, 143-165.

Sell, T. L., Schaberg, D. R., Fekety, F. R., 1983. Bacteriophage and bacteriocin typing scheme for Clostridium difficile. Journal of clinical microbiology, 17, 1148-1152.

Seller, M., Burghardt, R., Rolling, T., Hansen-Algenstaedt, N., Schaefer, C., 2016. Clostridium perfringens: a rare cause of spondylodiscitis case report and review of the literature. British Journal of Neurosurgery, 1-3.

Semler, D. D., Goudie, A. D., Finlay, W. H., Dennis, J. J., 2014. Aerosol phage therapy efficacy in Burkholderia cepacia complex respiratory infections. Antimicrobial Agents and Chemotherapy, AAC. 02388-02313.

Serroni, A., Magistrali, C. F., Pezzotti, G., Bano, L., Pellegrini, M., Severi, G., Pancrazio, C., Luciani, M., Tittarelli, M., Tofani, S., 2017. Expression of deleted, atoxic atypical recombinant beta2 toxin in a baculovirus system and production of polyclonal and monoclonal antibodies. Microbial cell factories, 16, 94.

Shan, J., Patel, K. V., Hickenbotham, P. T., Nale, J. Y., Hargreaves, K. R., Clokie, M. R., 2012. Prophage carriage and diversity within clinically relevant strains of Clostridium difficile. Applied and environmental microbiology, 78, 6027-6034.

Sharan, S. K., Thomason, L. C., Kuznetsov, S. G., 2009. Recombineering: a homologous recombination-based method of genetic engineering. Nature protocols, 4, 206223.

Shen, Y., Barros, M., Vennemann, T., Gallagher, D. T., Yin, Y., Linden, S. B., Heselpoth, R. D., Spencer, D. J., Donovan, D. M., Moult, J., 2016. A bacteriophage endolysin that eliminates intracellular streptococci. Elife, 5, e13152.

Shen, Y., Koller, T., Kreikemeyer, B., Nelson, D. C., 2013. Rapid degradation of Streptococcus pyogenes biofilms by PlyC, a bacteriophage-encoded endolysin. J Antimicrob Chemother, 68, 1818-1824.

Shin, H., Lee, J.-H., Yoon, H., Kang, D.-H., Ryu, S., 2014. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC. Applied and environmental microbiology, 80, 374-384.

Sievers, F., Wilm, A., Dineen, D., Gibson, T. J., Karplus, K., Li, W., Lopez, R., McWilliam, H., Remmert, M., Söding, J., 2011. Fast, scalable generation of highquality protein multiple sequence alignments using Clustal Omega. Molecular systems biology, 7, 539.

Silva, R. O., Almeida, L. R., Oliveira Junior, C. A., Lima, P. C., Soares, D. F., Pereira, P. L., Silva, I. J., Lobato, F. C., 2016. ISOLATION AND GENOTYPING OF CLOSTRIDIUM PERFRINGENS FROM FREE-LIVING SOUTH AMERICAN COATI (NASUA NASUA). J Zoo Wildl Med, 47, 333-336.

Skånseng, B., Kaldhusdal, M., Rudi, K., 2006. Comparison of chicken gut colonisation by the pathogens< i> Campylobacter jejuni</i> and< i> Clostridium perfringens $</ \mathrm{i}>$ by real-time quantitative PCR . Molecular and cellular probes, $\mathbf{2 0}$, 269-279.

Skrivanova, E., Van Immerseel, F., Hovorkova, P., Kokoska, L., 2016. In Vitro Selective Growth-Inhibitory Effect of 8-Hydroxyquinoline on Clostridium perfringens versus Bifidobacteria in a Medium Containing Chicken Ileal Digesta. PLoS One, 11, e0167638.

Smith, H. O., Hutchison, C. A., 3rd, Pfannkoch, C., Venter, J. C., 2003. Generating a synthetic genome by whole genome assembly: phiX174 bacteriophage from synthetic oligonucleotides. Proc Natl Acad Sci U S A, 100, 15440-15445.

Smits, W. K., Lyras, D., Lacy, D. B., Wilcox, M. H., Kuijper, E. J., 2016. Clostridium difficile infection. Nature Reviews Disease Primers, 2, 16020.

Songer, J. G., 1996. Genotyping of<i> Clostridium perfringens</i> by Polymerase Chain Reaction is a Useful Adjunct to Diagnosis of Clostridial Enteric Disease in Animals. Anaerobe, 2, 197-203.

Spiceland, C. M., Khanna, S., Pardi, D. S., 2016. Outcomes With Fidaxomicin Therapy in Clostridium difficile Infection. J Clin Gastroenterol.

Spratt, B. G., 1994. Resistance to antibiotics mediated by target alterations. Science-AAAS-Weekly Paper Edition-including Guide to Scientific Information, 264, 388396.

Sridhara, V. \& Joshi, R. P., 2014. Evaluations of a mechanistic hypothesis for the influence of extracellular ions on electroporation due to high-intensity, nanosecond pulsing. Biochim Biophys Acta, 1838, 1793-1800.

Stanley, D., Wu, S. B., Rodgers, N., Swick, R. A., Moore, R. J., 2014. Differential responses of cecal microbiota to fishmeal, Eimeria and Clostridium perfringens in a necrotic enteritis challenge model in chickens. PLoS One, 9, e104739.

Stiles, B. G., Barth, G., Barth, H., Popoff, M. R., 2013. Clostridium perfringens epsilon toxin: a malevolent molecule for animals and man? Toxins (Basel), 5, 2138-2160.

Stiles, B. G., Pradhan, K., Fleming, J. M., Samy, R. P., Barth, H., Popoff, M. R., 2014. Clostridium and bacillus binary enterotoxins: bad for the bowels, and eukaryotic being. Toxins (Basel), 6, 2626-2656.

Stoffels, L., Taunt, H. N., Charalambous, B., Purton, S., 2017. Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J.

Stols, L., Gu, M., Dieckman, L., Raffen, R., Collart, F. R., Donnelly, M. I., 2002. A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif, 25, 8-15.

Stringer, M., Turnbull, P., Gilbert, R., 1980. Application of serological typing to the investigation of outbreaks of Clostridium perfringens food poisoning, 1970-1978. Journal of Hygiene, 84, 443-456.

Stuckle, C. A., Sonntag, C., Kulik, M., Nitschke, T., 2017. [Fulminant Course of a Clostridium Perfringens Infection with Pathognomonic CT finding]. Dtsch Med Wochenschr, 142, 747-751.

Sudharsanan, S., Vijayakumar, C., Manish, K., Elamurugan, T. P., Manwar, A. S., 2017. Anal Canal Gas Gangrene in Aplastic Anaemia: Rare yet Lethal Entity - A Caveat. Cureus, 9, e1469.

Sun, X. \& Hirota, S. A., 2015. The roles of host and pathogen factors and the innate immune response in the pathogenesis of Clostridium difficile infection. Mol Immunol, 63, 193-202.

Surawicz, C. M., Brandt, L. J., Binion, D. G., Ananthakrishnan, A. N., Curry, S. R., Gilligan, P. H., McFarland, L. V., Mellow, M., Zuckerbraun, B. S., 2013. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. The American journal of gastroenterology, 108, 478-498.

Suttle, C. A., 2005. Viruses in the sea. Nature, 437, 356-361.

Swift, S. M., Rowley, D. T., Young, C., Franks, A., Hyman, P., Donovan, D. M., 2016. The endolysin from the Enterococcus faecalis bacteriophage VD13 and conditions stimulating its lytic activity. FEMS Microbiol Lett.

Szafranski, S. P., Winkel, A., Stiesch, M., 2017. The use of bacteriophages to biocontrol oral biofilms. J Biotechnol.

Talukdar, P. K., Udompijitkul, P., Hossain, A., Sarker, M. R., 2017. Inactivation Strategies for Clostridium perfringens Spores and Vegetative Cells. Appl Environ Microbiol, 83.

Tamai, E., Yoshida, H., Sekiya, H., Nariya, H., Miyata, S., Okabe, A., Kuwahara, T., Maki, J., Kamitori, S., 2014a. X-ray structure of a novel endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Mol Microbiol, 92, 326337.

Tamai, E., Yoshida, H., Sekiya, H., Nariya, H., Miyata, S., Okabe, A., Kuwahara, T., Maki, J., Kamitori, S., 2014b. X-ray structure of a novel endolysin encoded by episomal phage phiSM101 of Clostridium perfringens. Molecular microbiology, 92, 326-337.

Tamariz, J. H., Lezameta, L., Guerra, H., 2014. Phagotherapy faced with Staphylococcus aureus methicilin resistant infections in mice. Revista peruana de medicina experimental y salud publica, 31, 69-77.

Tang, V. H., Stewart, G. A., Chang, B. J., 2017. Dermatophagoides pteronyssinus lytFM encoding an NlpC/P60 endopeptidase is also present in mite-associated bacteria that express LytFM variants. FEBS Open Bio, 7, 1267-1280.

Taupin, C., Dvolaitzky, M., Sauterey, C., 1975. Osmotic pressure-induced pores in phospholipid vesicles. Biochemistry, 14, 4771-4775.

Tenover, F. C., Tickler, I. A., Persing, D. H., 2012. Antimicrobial-resistant strains of Clostridium difficile from North America. Antimicrobial Agents and Chemotherapy, 56, 2929-2932.

Thandar, M., Lood, R., Winer, B. Y., Deutsch, D. R., Euler, C. W., Fischetti, V. A., 2016. Novel Engineered Peptides of a Phage Lysin as Effective Antimicrobials against Multidrug-Resistant Acinetobacter baumannii. Antimicrob Agents Chemother, 60, 2671-2679.

Thanki, A. M. 2016. Development of a phage-based diagnostic test for the identification of Clostridium difficile. Ph. D. Loughborough University.

Totte, J., de Wit, J., Pardo, L., Schuren, F., van Doorn, M., Pasmans, S., 2017. Targeted anti-staphylococcal therapy with endolysins in atopic dermatitis and the effect on steroid use, disease severity and the microbiome: study protocol for a randomized controlled trial (MAAS trial). Trials, 18, 404.

Tracy, B. P., Jones, S. W., Papoutsakis, E. T., 2011. Inactivation of σE and $\sigma \mathrm{G}$ in Clostridium acetobutylicum illuminates their roles in clostridial-cell-form biogenesis, granulose synthesis, solventogenesis, and spore morphogenesis. J Bacteriol, 193, 1414-1426.

Tsoneva, I., Tomov, T., Panova, I., Strahilov, D., 1990. Effective production by electrofusion of hybridomas secreting monoclonal antibodies against Hc-antigen of < i> Salmonella</i>. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 299, 41-49.

Turner, S., Pryer, K. M., Miao, V. P., Palmer, J. D., 1999. Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology, 46, 327-338.

Uchiyama, J., Takemura, I., Hayashi, I., Matsuzaki, S., Satoh, M., Ujihara, T., Murakami, M., Imajoh, M., Sugai, M., Daibata, M., 2011. Characterization of lytic enzyme open reading frame 9 (ORF9) derived from Enterococcus faecalis bacteriophage phiEF24C. Appl Environ Microbiol, 77, 580-585.

Vaishnavi, C., Singh, G., Singh, K., 2011. Cost-effective screening of pooled faecal specimens from patients with nosocomial diarrhoea for Clostridium perfringens enterotoxin. Indian journal of medical microbiology, 29, 56.
van Asten, A. J., Allaart, J. G., Meeles, A. D., Gloudemans, P. W., Houwers, D. J., Grone, A., 2008. A new PCR followed by MboI digestion for the detection of all variants of the Clostridium perfringens cpb2 gene. Vet Microbiol, 127, 412-416.
van Asten, A. J., van der Wiel, C. W., Nikolaou, G., Houwers, D. J., Gröne, A., 2009. A multiplex PCR for toxin typing of Clostridium perfringens isolates. Veterinary microbiology, 136, 411-412.

Van Regenmortel, M. H., Fauquet, C. M., Bishop, D. H., Carstens, E., Estes, M., Lemon, S., Maniloff, J., Mayo, M., McGeoch, D., Pringle, C., 2000. Virus taxonomy: classification and nomenclature of viruses. Seventh report of the International Committee on Taxonomy of Viruses. Academic Press.

Van Tassell, M. L., Ibarra-Sanchez, L. A., Hoepker, G. P., Miller, M. J., 2017. Hot topic: Antilisterial activity by endolysin PlyP100 in fresh cheese. J Dairy Sci.

Veiga-Crespo, P., Barros-Velázquez, J., Villa, T., 2007. What can bacteriophages do for us. Commun Curr Res Educ Top Trends Appl Microbiol Mendez-Vilas-Spain Formatex, 2, 885-893.

Ventura, M., Turroni, F., Lima-Mendez, G., Foroni, E., Zomer, A., Duranti, S., Giubellini, V., Bottacini, F., Horvath, P., Barrangou, R., 2009. Comparative analyses of prophage-like elements present in bifidobacterial genomes. Applied and environmental microbiology, 75, 6929-6936.

Vernacchio, L., Vezina, R. M., Mitchell, A. A., Lesko, S. M., Plaut, A. G., Acheson, D. W., 2006. Diarrhea in American infants and young children in the community setting: incidence, clinical presentation and microbiology. Pediatr Infect Dis J, 25, 2-7.

Vicik, R., Busemann, M., Baumann, K., Schirmeister, T., 2006. Inhibitors of cysteine proteases. Curr Top Med Chem, 6, 331-353.

Voidarou, C., Bezirtzoglou, E., Alexopoulos, A., Plessas, S., Stefanis, C., Papadopoulos, I., Vavias, S., Stavropoulou, E., Fotou, K., Tzora, A., Skoufos, I., 2011. Occurrence of Clostridium perfringens from different cultivated soils. Anaerobe, 17, 320-324.

Volozhantsev, N. V., Oakley, B. B., Morales, C. A., Verevkin, V. V., Bannov, V. A., Krasilnikova, V. M., Popova, A. V., Zhilenkov, E. L., Garrish, J. K., Schegg, K. M., 2012. Molecular characterization of podoviral bacteriophages virulent for Clostridium perfringens and their comparison with members of the Picovirinae. PLoS One, 7, e38283.

Volozhantsev, N. V., Verevkin, V. V., Bannov, V. A., Krasilnikova, V. M., Myakinina, V. P., Zhilenkov, E. L., Svetoch, E. A., Stern, N. J., Oakley, B. B., Seal, B. S., 2011. The genome sequence and proteome of bacteriophage ФСРV1 virulent for Clostridium perfringens. Virus research, 155, 433-439.

Wagstaff, P. G., Buijs, M., van den Bos, W., de Bruin, D. M., Zondervan, P. J., de la Rosette, J. J., Laguna Pes, M. P., 2016. Irreversible electroporation: state of the art. Onco Targets Ther, 9, 2437-2446.

Waldor, M. K. \& Mekalanos, J. J., 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science, 272, 1910.

Wang, I.-N., Smith, D. L., Young, R., 2000. Holins: the protein clocks of bacteriophage infections. Annual Reviews in Microbiology, 54, 799-825.

Wang, W., Li, M., Lin, H., Wang, J., Mao, X., 2016. The Vibrio parahaemolyticusinfecting bacteriophage qdvp001: genome sequence and endolysin with a modular structure. Arch Virol, 161, 2645-2652.

Watnick, P. I., Lauriano, C. M., Klose, K. E., Croal, L., Kolter, R., 2001. The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Molecular microbiology, 39, 223-235.

Watts, T. D., Johanesen, P. A., Lyras, D., Rood, J. I., Adams, V., 2017. Evidence that compatibility of closely related replicons in Clostridium perfringens depends on linkage to parMRC-like partitioning systems of different subfamilies. Plasmid, 91, 68-75.

Weaver, J. C., 1993. Electroporation: a general phenomenon for manipulating cells and tissues. Journal of cellular biochemistry, 51, 426-426.

Weaver, J. C. \& Barnett, A., 1992. Progress toward a theoretical model for electroporation mechanism: membrane electrical behavior and molecular transport. Guide to electroporation and electrofusion, 91-117.

Weaver, J. C. \& Chizmadzhev, Y. A., 1996. Theory of electroporation: a review. Bioelectrochemistry and Bioenergetics, 41, 135-160.

Wei, C., Liu, J., Maina, A. N., Mwaura, F. B., Yu, J., Yan, C., Zhang, R., Wei, H., 2017. Developing a bacteriophage cocktail for biocontrol of potato bacterial wilt. Virol Sin, 32, 476-484.

White, S., 1978. Formation of" solvent-free" black lipid bilayer membranes from glyceryl monooleate dispersed in squalene. Biophysical journal, 23, 337-347.

Wilkesman, J. \& Kurz, L., 2017. Zymography Principles. Methods Mol Biol, 1626, 3-10.

Wilkinson, S. R. \& Young, M., 1994. Targeted integration of genes into the Clostridium acetobutylicum chromosome. Microbiology, 140, 89-95.

Winston, J. A., Thanissery, R., Montgomery, S. A., Theriot, C. M., 2016. Cefoperazonetreated Mouse Model of Clinically-relevant Clostridium difficile Strain R20291. JoVE (Journal of Visualized Experiments), e54850-e54850.

Wioland, L., Dupont, J. L., Doussau, F., Gaillard, S., Heid, F., Isope, P., Pauillac, S., Popoff, M. R., Bossu, J. L., Poulain, B., 2014. Epsilon toxin from Clostridium perfringens acts on oligodendrocytes without forming pores, and causes demyelination. Cell Microbiol.

Wormald, J. C., Dindyal, S., Mellor, F., Behar, N., 2016. Adult necrotising enterocolitis-pig-bel disease: a Pacific disease in London. BMJ Case Rep, 2016.

Wu, X., Kwon, S. J., Kim, J., Kane, R. S., Dordick, J. S., 2017. Biocatalytic Nanocomposites for Combating Bacterial Pathogens. Annu Rev Chem Biomol Eng, 8, 87-113.

Yan, W., 1989. Use of host modified bacteriophages in development of a phage typing scheme for Clostridium perfringens. Medical laboratory sciences, 46, 186-193.

Yang, H., Wang, D. B., Dong, Q., Zhang, Z., Cui, Z., Deng, J., Yu, J., Zhang, X. E., Wei, H., 2012. Existence of separate domains in lysin PlyG for recognizing Bacillus anthracis spores and vegetative cells. Antimicrob Agents Chemother, 56, 50315039.

Yang, W. C., Hsu, T. C., Cheng, K. C., Liu, J. R., 2017. Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenoneremoving ability. Microb Cell Fact, 16, 69.

Yelland, T. S., Naylor, C. E., Bagoban, T., Savva, C. G., Moss, D. S., McClane, B. A., Blasig, I. E., Popoff, M., Basak, A. K., 2014. Structure of a C. perfringens enterotoxin mutant in complex with a modified Claudin-2 extracellular loop 2. J Mol Biol, 426, 3134-3147.

Ying, Z., Zhang, M., Yan, S., Zhu, Z., 2013. Gas Gangrene in Orthopaedic Patients. Case reports in orthopedics, 2013.

Yonogi, S., Kanki, M., Ohnishi, T., Shiono, M., Iida, T., Kumeda, Y., 2016. Development and application of a multiplex PCR assay for detection of the Clostridium perfringens enterotoxin-encoding genes cpe and becAB. J Microbiol Methods, 127, 172-175.

Yoo, H. S., Lee, S. U., Park, K. Y., Park, Y. H., 1997. Molecular typing and epidemiological survey of prevalence of Clostridium perfringens types by multiplex PCR. Journal of clinical microbiology, 35, 228-232.

Yosef, I., Manor, M., Kiro, R., Qimron, U., 2015. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proceedings of the National Academy of Sciences, 112, 7267-7272.

Young, V. B. \& Hanna, P. C., 2014. Overlapping Roles for Toxins in Clostridium difficile Infection. Journal of Infectious Diseases, 209, 9-11.

Zelasko, S., Gorski, A., Dabrowska, K., 2017. Delivering phage therapy per os: benefits and barriers. Expert Rev Anti Infect Ther, 15, 167-179.

Zeng, L., Skinner, S. O., Zong, C., Sippy, J., Feiss, M., Golding, I., 2010. Decision Making at a Subcellular Level Determines the Outcome of Bacteriophage Infection. Cell, 141, 682-691.

Zhang, D., Coronel-Aguilera, C. P., Romero, P. L., Perry, L., Minocha, U., Rosenfield, C., Gehring, A. G., Paoli, G. C., Bhunia, A. K., Applegate, B., 2016. The Use of a Novel NanoLuc -Based Reporter Phage for the Detection of Escherichia coli O157:H7. Sci Rep, 6, 33235.

Zhu, L., Zhou, W., Wang, T., Xiang, H., Ji, X., Han, Y., Tian, Y., Sun, Y., Liu, J., Guo, X., 2017. Isolation of Clostridium perfringens type A from wild bharals (Pseudois nayaur) following sudden death in Tibet, China. Anaerobe, 44, 20-22.

Zimmer, M., Scherer, S., Loessner, M. J., 2002a. Genomic analysis of Clostridium perfringens bacteriophage $\varphi 3626$, which integrates into guaA and possibly affects sporulation. J Bacteriol, 184, 4359-4368.

Zimmer, M., Vukov, N., Scherer, S., Loessner, M. J., 2002b. The murein hydrolase of the bacteriophage $\varphi 3626$ dual lysis system is active against all tested Clostridium perfringens strains. Applied and environmental microbiology, 68, 5311-5317.

Chapter 9

Appendices

9. Appendices

9.1 Appendix 1 - Media and antibiotics

Prestige Medical Autoclave, England was used to autoclave all the media and buffers under $121^{\circ} \mathrm{C}, 15 \mathrm{psi}$ (1bar) for 15 minutes. All the media in the following table were made up to 500 ml using distilled water, except for the semi-solid Brain Heart Infusion and the salt.

Table 13. All the media and antibiotics used during the study are listed here.

Media	Composition in 500ml	Manufacturer	Purpose
Blood agar (Brain heart infusion (BHI) 3.7\%, agar 5\%, and 7\% Blood agar)	BHI 18.5 g Agar 5 g 35 ml of defibrinized horse blood was added after the media is cooled.	Oxoid, UK Oxoid, UK Sigma-Aldrich, UK	Culturing C. difficile.
Fastidious Anaerobic broth (FA), 2.97\%	14.85 g FA	BioConnections, UK	Culturing $\quad C$. difficile.
Brain heart infusion agar, BHI 3.7\% and agar 1\%	18.5 g BHI broth 5 g Bacteriological agar	Oxoid, UK Oxoid, UK	For plaque assay and spot test of C. difficile phages.
BHI soft agar (BHI 3.7\% and agar 0.4 \%)	18.5 g BHI broth 2 g Bacteriological agar 250 ml Distilled water	Oxoid, UK Oxoid, UK	For plaque assay and spot test of C. difficile phages.
Salt (0.4 M MgCl2, 0.1 M CaCl 2)	$\begin{aligned} & 40.6 \mathrm{~g} \mathrm{MgCl}_{2} \\ & 0.75 \mathrm{~g} \mathrm{CaCl}_{2} \\ & 250 \mathrm{ml} \text { Distilled water } \end{aligned}$	Argos Organics, UK Fisher Scientific, UK	For plaque assay and spot test of $\quad C$. difficile and propagation of C. perfringens phages.
Brain heart infusion broth $\mathbf{3 . 7 \%}$	18.5 g BHI	Oxoid, UK	Culturing C. difficile and propagation of C. difficile phages.
$\begin{aligned} & \text { BHI - Sodium thio- } \\ & \text { glycolate broth } 3.7 \% \text { BHI } \\ & \text { and } 0.1 \% \text { Na-thiglycolate } \end{aligned}$	18.5 g BHI broth 0.5 g Na -thioglycolate	Oxoid, UK Sigma- Aldrich, UK	Culturing C. difficile outside the anaerobic chamber and recover electroporated cells.
Media	Composition in 500 ml	Manufacturer	Purpose
Brucella agar (BA) Supplemented with Hemin 0.0005\%, Vitamin K1, DHB 5\% and thiamphenicol $15 \mu \mathrm{~g} / \mathrm{ml}$	BA 22 g Hemin 2.5 mg Vitamin K1 $5 \mu 1$ 25 ml of DHB $221 \mu \mathrm{l}$ of $34 \mathrm{mg} / \mathrm{ml}$ thiamphenicol was added after the media has cooled.	Oxoid, UK Sigma-Aldrich, USA Santa Cruz Biotechnology Sigma-Aldrich,UK Sigma-Aldrich, UK	Selection of transformed C. difficile.
Trypticase-pepton glucose-yeast extract agar (Ackermann et al., 2001)	Trypticase 25 g Peptone 2.5 g Yeast extract 10 g Dextrose 2 g	BBL, France Oxoid, UK Oxoid, UK Fisher Scientific, UK Fisher Scientific, UK	Selection of transformed C. difficile.

	Sodium Thioglycolate 0.5 g Agar 5 g	Oxoid, UK	
Trypticase-pepton glucose-yeast extract broth	Trypticase 25 g Peptone 2.5 g Yeast extract 10 g Dextrose 2 g Sodium Thioglycollate 0.5 g 33.3 ml of $1.5 \mathrm{~g} / 100 \mathrm{ml}$ Trypsin was added into the broth just before using it.	BBL, France Oxoid, UK Oxoid, UK Fisher Scientific, UK Fisher Scientific, UK Fisher Scientific, USA	Recover Electroporated cells.
Fluid Thio-glycolate broth	Yeast extract 2.5 g Tryptone 7.5g Glucose 2.75 g Sodium thioglycollate 0.25 g Sodium chloride 1.25 g L-cystine 0.25 g Resazurin 0.5 mg	Oxoid, UK Oxoid, UK Fisher Scientific, UK Fisher Scientific, UK Sigma-Aldrich, USA Fisher Scientific, UK Sigma-Aldrich, USA	Culturing C. difficile outside the anaerobic chamber.
Lauria Bertani agar (LB) agar	$\begin{aligned} & 12.5 \mathrm{~g} \mathrm{LB} \\ & 5 \mathrm{~g} \text { Bacteriological agar } \\ & \text { chloramphenicol } \end{aligned}$	Fisher Scientific, UK Oxoid, UK Sigma-Aldrich, USA	Culturing E. coli.
Lysogeny Broth (LB) broth	12.5 g LB	Fisher Scientific, UK	Culturing E. coli.
Media	Composition in 500 ml	Manufacturer	Purpose
Tryptose-sulfate cycloserine agar (TSC), 4.6\% TSA, $400 \mu \mathrm{~g} / \mathrm{ml}$ of cycloserine.	23 g of TSA One vial of cycloserine (200 mg) was added after the media has cooled for the isolation of C. perfringens.	Oxoid, UK Bioconnections, UK	Isolation and culturing perfringens. C.
Tryptose-sulfate agar (TS), 4.6\% TSA.	23 g of TSA	Oxoid, UK	Culturing perfringens.$\quad C$.
Tryptose-sulfate broth, 1.5\% Tryptose, 0.5% yeast extract, 0.5% pepton, 0.1% Sodium metabisulphate, 0.1% Ammonium ferric citrate, and 400 $\mu \mathrm{~g} / \mathrm{ml}$ cycloserine. of	Tryptose 7.5g Yeast Extract 2.5 g Neutralized soy pepton 2.5 g Sodium metabisulphate 0.5 g Ammonium ferric citrate 0.5 g Cycloserine was added only for the isolation of C. perfringens	Fluka, USA Oxoid, UK Oxoid, UK Fluka, USA Sigma-Aldrich, Germany Bioconnections, UK	Isolation, Culturing C. perfringens and preparing cryostock.
Tryptose-sulfate soft agar, 1.5\% Tryptose, 0.5% yeast extract, 0.5% pepton, 0.1% Sodium metabisulphate, 0.1% Ammonium ferric citrate, and 0.4% agar.	Tryptose 7.5g Yeast Extract 2.5 g Neutralized soy pepton 2.5 g Sodium metabisulphate 0.5 g Ammonium ferric citrate 0.5 g Agar 2g	Fluka, USA Oxoid, UK Oxoid, UK Sigma-Aldrich, Germany Fluka, Germany Oxoid, UK	Plaque assay and spot test.

Tryptose-yeast extract agar, 1.5\% Tryptose, 0.5% yeast extract, 0.5% pepton, 0.5 sodium chloride, and 2\% agar.	Tryptose 7.5 g Yeast Extract 2.5 g Neutralized soy pepton 2.5 g Sodium chloride 2.5 g Agar 10g	Fluka, USA Oxoid, UK Oxoid, UK Fischer Scientific, UK Oxoid, UK	Culturing Perfringens. C.
Tryptose-yeast extract broth, 1.5\% Tryptose, 0.5% yeast extract, and 0.5% pepton, 0.5 sodium chloride.	Tryptose 7.5 g Yeast Extract 2.5 g Neutralized soy pepton 2.5 g Sodium chloride 2.5 g	Fluka, USA Oxoid, UK Oxoid, UK Fischer Scientific, UK	Culturing $\quad C$. Perfringens.
Tryptose-yeast extract soft agar, $\mathbf{1 . 5 \%}$ Tryptose, 0.5% yeast extract, 0.5% pepton, 0.5 sodium chloride, and 0.4% agar.	Tryptose 7.5 g Yeast Extract 2.5 g Neutralized soy pepton 2.5 g Sodium chloride 2.5 g Agar 2g	Fluka, USA Oxoid, UK Oxoid, UK Fischer Scientific, UK Oxoid, UK	Plaque assay and spot test of C. Perfringens phages.
Antibiotic	Composition in 500 ml	Manufacturer	Purpose
Chloramphenicol	Sigma-Aldrich, USA	$30 \mu \mathrm{~g} / \mathrm{ml}$	Amplify pMTL82151, pMTL84151 plasmids.
Thiamphenicol	Sigma-Aldrich, UK	$15 \mu \mathrm{~g} / \mathrm{ml}$	Selection of C. difficile mutants.
Cycloserine	Bioconnections, UK	$400 \mu \mathrm{~g} / \mathrm{ml}$	Isolation of C. perfringens.
Carbenicillin	Sigma-Aldrich, UK	$150 \mu \mathrm{~g} / \mathrm{ml}$	Amplify pLEICS-02 plasmid.

9.2 Appendix 2 - Buffers, solutions, and enzymes

Table 14. All buffers, solutions and enzymes used during this study are listed in this table.

Buffer	Composition	Manufacturer	Purpose
SMP buffer Sucrose (0.268M), MgCl2.6H2O (7 mM), Sodium phosphate (0.1M), pH 7.4.	92.4 g Sucrose 0.2 g MgCl 2.6 H 2 O 70 ml of 0.1 M (16.4 g of Sodium phosphate in 1 litre) The sucrose was dissolved in 200 ml DW and filtered into the above autoclaved 800 ml .	Fisher Scientific, UK Sigma-Aldrich, USA Sigma-Aldrich, USA Sigma-Aldrich, UK	Electroporation of C. difficile.
Sodium- Magnesium buffer (SM), pH 8.	Sodium chloride 5.8 g (0.1 M) MgSO4.7H2O 2 g (8 mM) 50 ml of 1 M TrisHCl Made up to 1 L with distilled H 2 O and Autoclaved.	Fisher Scientific, UK Fisher Scientific, UK Santa Cruz, USA	General phage suspension buffer and tub dialysis.
$2 \mathrm{M} \mathrm{NaCl}_{2} \mathrm{SM}$ buffer. pH 7.5	$\begin{aligned} & \mathrm{NaCl}_{2} 116.88 \mathrm{~g} \\ & (2 \mathrm{M}) \\ & \mathrm{MgSO} 4.7 \mathrm{H} 2 \mathrm{O} 2 \mathrm{~g} \\ & (8 \mathrm{mM}) \\ & 50 \mathrm{ml} \text { of } 1 \mathrm{M} \text { Tris- } \\ & \mathrm{HCl} \\ & \text { Made up to } 1 \mathrm{~L} \\ & \text { with distilled } \mathrm{H} 2 \mathrm{O} \\ & \text { and } \\ & \text { Autoclaved. } \end{aligned}$	Fisher Scientific, UK Fisher Scientific, UK Santa Cruz, USA	Loading buffer for protein purification and phage cleaning by Anion-exchange chromatography.
SM buffer without $\mathbf{N a C l}_{2}$, pH 7.5.	$\begin{aligned} & \text { MgSO4.7H2O } 2 \mathrm{~g} \\ & (8 \mathrm{mM}) \\ & 50 \mathrm{ml} \text { of } 1 \mathrm{M} \text { Tris- } \\ & \mathrm{HCl} \\ & \text { Made up to 1 L } \\ & \text { with distilled H2O } \\ & \text { and Autoclaved. } \end{aligned}$	Fisher Scientific, UK Santa Cruz, USA	Elution buffer for protein purification and phage cleaning by Anion-exchange chromatography.
0.5 M Ethylene-diamine-tetra acetic acid (EDTA)	EDTA 93.5 g Dissolved in 450 ml distilled $\mathrm{H}_{2} \mathrm{O}$ and autoclaved.	Sigma-Aldrich, USA	Phage DNA extraction and making up other solutions.

1 X TAE buffer	$\begin{aligned} & \text { Tris-HCl }(40 \mathrm{mM}) \\ & \text { Acetic acid }(20 \\ & \text { mM }) \\ & \text { EDTA }(2 \mathrm{M}) \mathrm{pH} 8 \end{aligned}$	Santa Cruz, USA Fisher Scientific, UK Sigma-Aldrich, USA	Used for agarose gel electrophoresis.
$5 \times$ TBE buffer	54g Tris-Base 27.5 g boric acid 20 ml 0.5M EDTA pH8 Up to 1L with H2O.	Fisher Scientific, UK Fisher Scientific, UK Sigma-Aldrich, USA	For pulsed-field gelelectrophoresis.
$1 \times$ TE buffer	100 mM EDTA 100 mM Tris- HCl (pH9) 1% SDS	Sigma-Aldrich, USA Santa Cruz, USA Fisher Scientific, UK	For pulsed-field gelelectrophoresis.
Lysis Buffer	$\begin{aligned} & 20 \mathrm{ml} 1 \mathrm{M} \text { Tris- } \\ & \mathrm{HCl} \\ & 20 \mathrm{ml} 10 \% \mathrm{SDS} \\ & 50 \mathrm{ml} 500 \mathrm{mM} \\ & \text { EDTA } \\ & 120 \mathrm{ml} \text { distilled } \\ & \mathrm{H} 2 \mathrm{O} \\ & \hline \end{aligned}$	Santa Cruz, USA Fisher Scientific, UK Sigma-Aldrich, USA	For pulsed-field gelelectrophoresis.
Solutions	Composition	Manufacturer	Purpose
Ammonium Acetate	$0.1 \mathrm{M}, \mathrm{pH} 7.5$	Fisher Scientific, UK	Washing phage lysate for TEM.
Sodium dodecyl sulphate	Vary	Fisher Scientific, Belgium	Making up solutions.
Enzyme	Concentration	Manufacturer	Purpose
Cysteine-protease inhibitor	Final concentration of		Diminish the surface protein layer of C. difficile.
Lysostaphin	Final concentration of		Increasing the area of osmosis pores in the peptide-glycan layers of C. difficile.

9.3 Appendix 3 - Oligonucleotides

Table 15. Oligonucleotides used in this study.

Name	Forward and reverse primers	Target	Expect ed produc t size (bp)	Source
CP 16s F	```5'- TGA AAG ATG GCA TCA TCA TTC AAC- 3'```	$\begin{aligned} & \mathrm{CP} \\ & \text { specific } \\ & \text { 16S } \\ & \text { rDNA } \end{aligned}$	260 bp	$\begin{aligned} & \text { (Skånsen } \\ & \text { get al., } \\ & \text { 2006) } \end{aligned}$
CP 16s R	```5'-GGT ACC GTC ATT ATC TTC CCC AAA- 3'```			
8F	5'- AGAGTTTGATCCTGGCTCAG -3'	Universal bacterial 16s rDNA	1-1.8 kb	(Turner et al., 1999)
1391R	5'- GACGGGCGGTGTGTRCA -3'			
CPAlpha F	5'- GCTAATGTTACTGCCGTTGA - ${ }^{\prime}$ '	cpa (atoxin)	324 bp	(van Asten et al., 2009)
CPAlpha R	5'- CCTCTGATACATCGTGTAAG -3'			
CPBetaF 3	5'- GCGAATATGCTGAATCATCTA -3'	$c p b(\beta-$toxin)	195 bp	(van Asten $e t$ al., 2009)
CPBetaR 3	5'- GCAGGAACATTAGTATATCTTC - ${ }^{\text { }}$			
$\begin{aligned} & \text { CPBeta2 } \\ & \text { F } \end{aligned}$	5'- AAA TAT GAT CCT AAC CAA Ma AA - ${ }^{\prime}$ '	$\begin{aligned} & \text { cpb2 (} \beta 2- \\ & \text { oxin) } \end{aligned}$	548 bp	(van Asten et al., 2008)
$\begin{array}{\|l\|l\|} \hline \text { CPBeta2 } \\ \hline \mathbf{R} \\ \hline \end{array}$	5'- CCA AAT ACT Yb TAATYGATGC -3'			
$\begin{aligned} & \text { CPEpsilo } \\ & \mathrm{nF} \end{aligned}$	5'- TGGGAACTTCGATACAAGCA -3'	etx (ε toxin)	376 bp	(Baums et al., 2004a)
CPEpsilo nR	5'- AACTGCACTATAATTTCCTTTTCC-3'			
CPIotaF	5'- AATGGTCCTTTAAATAATCC-3'	$\begin{aligned} & \text { Iap (1- } \\ & \text { toxin) } \end{aligned}$	272 bp	$\begin{aligned} & \text { (Meer et } \\ & \text { al., 1997) } \end{aligned}$
CPIotaR	5'- TTAGCAAATGCACTCATATT-3'			
CPEntero F	5'- TTCAGTTGGATTTACTTCTG-3'	cpe (enterotoxi n)	485 bp	(van Asten et al., 2009)
CPEntero R	5'- TGTCCAGTAGCTGTAATTGT-3'			
One	5' GGTAATAACTGGGGAATATGTCGA 3'	Close CPAP1 contig	?	This study
Two	5' CGACCATCACGGGTAATCATC 3'			
Three	5' ATGAATCCACAATTGTTACGCG 3'	Close CPAP1 contig	?	This study
Four	5' GTCTCTTAACACATCTCCGAGC 3'			
ECCF	5' CTCCATTACTGAGGCGTGGG 3'	E. coli contig	418 bp	This study
ECCR	5' AGTCTCGCGCGAACGTTC 3'			
β toxin F	5' AACTTAACTGGATTTATGTCTTCA 3'	$\begin{aligned} & \mathrm{CP} \beta \\ & \text { toxin } \end{aligned}$	317-bp	(Kadra et al., 1999)
β toxin R	5' ATAGTAGAAAAATCAGGTTGGACA 3'			
etx \mathbf{F} etx \mathbf{R}	5' TGGGAACTTCGATACAAGCA 3' 5' TTAACTCATCTCCCATAACTGCAC 3'	CP Epsilon toxin	396 bp	(Gharaib eh et al., 2010)
iA F	5' ACTACTCTCAGACAAGACAG 3'	CP Iota toxin	446 bp	(Perelle et al., 1993)
iA R	5' CTTTCCTTCTATTACTATACG 3'			

E. coli contig F	5' CTCCATTACTGAGGCGTGGG 3'	CPAP1 short contig	418 bp	This study
E. coli contig R	5' TTGAACGTTCGCGCGAGACT 3'			
CPAP1F	5' CACGATTCGACATATTCCCC 3'	CPAP1 long contig	3730bp	This study
CPAP1R	5' GGCAAACAAGCGCTGATATT 3'			
F42End \mathbf{F}	5'- TACTTCCAATCCATGAAAATAGGTATTAGAG ATGGACA-3'	CPAP1 Endolysi n	666 bp	This study
F42Endr	```5'- TATCCACCTTTACTGTCAATTACACTCCTCCA CAAAACA-3'```			
pGEX5 ${ }^{\text {6 }}$	5' CCG GGA GCT GCA TGT GTC AGA GG 3'	$\begin{aligned} & \text { pLEICS- } \\ & 02 \\ & \text { plasmid } \\ & \hline \end{aligned}$	687 bp	PROTEX service
pGEX3 ${ }^{\prime}$	5^{\prime} GGG CTG GCA AGC CAC GTT TGG TG 3'			

9.4 Appendix 4 - Lysis caused by induction lysates.

Table 16. Lysis caused by the induction lysate of 17 C. perfringens strains on 27 indicator C. perfringens strains. Each induction lysate was able to produce lysis on at least one of the indicator strain.

Indicator strain																		
Phage induced from	CP1		CP2		CP3		CP4		CP5		CP6		CP7		CP8		CP9	
	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N
CP1	x	x	-ve	-ve	Iysis	Iysis	-ve	Issis	Iysis	Y	Y							
CP2	-ve	-ve	x	x	Iysis	Issis	-ve	-ve	-ve	-ve	\|ysis	Yysis	Vsis	\|ysis	Iysis	Iysis	-ve	ve
CP 3	-ve	-ve	-ve	-ve	x	x	ve	-ve										
CP4	-ve	-ve	-ve	-ve	-ve	-ve	x	x	-ve	ve	-ve							
CP5	-ve	x	x	-ve														
CP6	ve	-ve	x	x	-ve	-ve	-ve	-ve	-ve	-ve								
CP7	-ve	x	x	-ve	-ve	-ve	-ve											
CP8	-ve	x	x	-ve	-ve													
CP9	-ve	x	x															
CP10	-ve																	
CP11	-ve	-ve	-ve	-ve	Iysis	Iysis	-ve	Iysis	Iysis									
CP12	-ve																	
CP13	-ve																	
CP14	-ve	-ve	-ve	-ve	lysis	lysis	-ve											
CP15	-ve	-ve	-ve	ve	Iysis	lysis	-ve	Iysis	Iysis									
CP16	ve	-ve	Ivsis	Ysis	-ve	-ve												
CP17	-ve	ve	-ve															
Indicator strain																		
Phage induced from	CP10		CP11		CP12		CP13		CP14		CP15		CP16		CP17		CP18	
	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N
CP1	-ve																	
CP2	-ve	Iysis	Iysis															
CP 3	-ve	Ysis	1ysis															
CP4	-ve																	
CP5	-ve	Ivsis	Iysis															
CP6	-ve																	
CP7	-ve																	
CP8	-ve																	
CP9	-ve																	
CP10	x	x	-ve															
CP11	IVsis	Iysis	x	x	Iysis	IVsis	-ve											
CP12	-ve	-ve	-ve	-ve	x	x	-ve	\|Ysis	Vssis									
CP13	-ve	-ve	-ve	-ve	-ve	-ve	x	x	-ve									
CP14	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	x	x	-ve							
CP15	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	-ve	-ve	x	x	-ve	-ve	-ve	-ve	-ve	-ve
CP16	-ve	x	x	-ve	-ve	-ve	-ve											
CP17	-ve	-ve	-ve	-ve	Iysis	Isis	Iysis	Iysis	-ve	-ve	-ve	-ve	-ve	-ve	x	x	-ve	-ve

Indicator strain

Indicator strain																		
Phage induced from	CP19		CP20		CP21		CP22		CP23		CP24		CP25		CP26		CP27	
	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N	M	N
CP1	-ve	-ve	-ve	-ve	-ve	-ve	lysis	Iysis	-ve									
CP2	-ve																	
CP 3	-ve	-ve	lysis	lysis	-ve													
CP4	lysis	lysis	lysis	lysis	-ve	-ve	lysis	lysis	-ve									
CP5	-ve	-ve	lysis	lysis	-ve	lysis	lysis											
CP6	-ve	lysis	lysis	-ve	-ve													
CP7	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	-ve	-ve
CP8	-ve	lysis	lysis	lysis	lysis	lysis	lysis	-ve	-ve	-ve	-ve							
CP9	-ve	lysis	lysis	-ve														
CP10	-ve	lysis	lysis	-ve	-ve													
CP11	lysis	Iysis	-ve	-ve	-ve	-ve	-ve	-ve	lysis	lysis	-ve	-ve	-ve	-ve	-ve	-ve	lysis	lysis
CP12	-ve	lysis	lysis	-ve	-ve	-ve	-ve	-ve	-ve									
CP13	-ve	-ve	lysis	lysis	-ve													
CP14	-ve	lysis	lysis	-ve														
CP15	-ve																	
CP16	-ve	-ve	-ve	-ve	lysis	lysis	-ve											
CP17	-ve	lysis	lysis	-ve	-ve													

9.5 Appendix 5 - Environmental samples for the isolation of C. perfringens

strains

Table 17. Environmental samples and C. perfringens strains. Source, location of collection, and toxin types.

N0	Strain number	Toxin type $\&$ toxin produced	Source	Place
1	CP 1	A, α	Chicken faeces	Melton Mowbray farms
2	CP 2	A, α	Chicken faeces	
3	CP 3	A, α	Soil	
4	CP 4	A, $\alpha+$ cpe	Soil	
5	CP 5	A, α	Sheep faeces	
6	CP 6	A, α	Sheep faeces	
7	CP 7	A, α	Sheep faeces	
8	CP 8	A, α	Cow faeces	
9	CP 9	A, α	Horse faeces	
10	CP 10	A, α	Chicken faeces	Iraq-Karbala province
11	CP 11	A, α	Chicken faeces	
12	CP 12	A, α	Soil	
13	CP 13	A, $\alpha+$ cpe	Dog faeces	Victoria park
14	CP 14	A, α	Dog faeces	
15	CP 15	A, $\alpha+\beta 2$	Dog pound	Samples in the fridge, Kindly Provided By Julian Clokie
16	CP 16	A, $\alpha+\beta 2$	Duck dropping	
17	CP 17	A, α	Sediments	
18	CP 18	A, α	Sediment	
19	CP 19	A, α	Duck dropping	
20	CP 20	A, α	Soil	
21	CP 21	A, α	Strains existed in the lab.	
22	CP 22	A, α		
23	CP 23	A, α		
24	CP 24	A, α		
25	CP 25	A, $\alpha+\beta 2$		
26	CP 26	A, α		
27	CP 27	A, α		
28	CP 28	A, α		
29	CP 29	A, α		
30	CP 30	A, α	Lamb faeces	Melton Mowbray farms Collection was conducted in different farms at different time.
31	CP 31	A, α	Ostrich faeces	
32	CP 32	A, α	Horse faeces	
33	CP 33	A, α	Sheep faeces	
34	CP 34	A, α	Horse faeces	
35	CP 35	A, $\alpha+\beta 2+$ cpe	Sheep faeces	
36	CP 36	A, α	Horse faeces	
37	CP 37	A, α	Unknown faeces from the road side	
38	CP 38	A, α	Chicken faeces	
39	CP 39	A, α	Ostrich faeces	

No	Strain number		Source	Place
40	CP 40	A, α	Cow Faeces (farm)	Walton lodge farm, Sutton Lane, Sutton Elms, Leicester LE9 6QF
41	CP 41	E, $\alpha+1$	Cow Faeces (farm)	
42	CP 42	A, α	Cow Faeces (farm)	
43	CP 43	A, α	Cow Faeces (stable cow with number on it's ear)	
44	CP 44	A, α	Duck Faeces	
45	CP 45	A, α	Duck faeces	
46	CP 46	A, α	Horse faeces	
47	CP 47	A, α	Deer faeces	Bradgate park
48	CP 48	A, α	Deer faeces	
49	CP 49	A, α	Duck faeces	
50	CP 50	A, α	Duck faeces	
51	CP 51	A, α	Duck faeces	Watermead park
52	CP 52	A, α	Swan faeces	
53	CP 53	A, α	Duck faeces	
54	CP 54	A, α	Chicken	Ansty (Gorse Hill City Farm)
55	CP 55	A, α	Chicken	
56	CP 56	A, α	Turkey	
57	CP 57	A, α	Parrot	Desford (Tropical Birdland)
58	CP 58	A, α	Soil Mix	
59	CP 59	A, α	Parrot mix	
60	CP 60	A, α	Blue and red Parrot	
61	CP 61	A, α	Duck	Water mead
62	CP 62	A, $\alpha+$ cpe	Soil	Kindly Provided By Julian Clokie
63	CP 63	A, α	Soil	
64	CP 64	A, α	Soil	
65	CP 65	A, $\alpha+$ cpe	Soil	
66	CP 66	A, $\alpha+$ cpe	Soil	
67	CP 67	A, α	Duck	
68	CP 68	A, α	Duck	
69	CP 69	A, $\alpha+$ cpe	Duck	
70	CP 70	A, α	Soil and sediment	Mahananda and Anisha's samples.
71	CP 71	D, $\alpha+\varepsilon+\beta 2$	Soil and sediment	
72	CP 72	C, $\alpha+\beta$	Soil and sediment	
73	CP 73	A, α	Soil and sediment	
74	CP 74	A, α	Soil and sediment	
75	CP 75	A, α	Soil and sediment	
76	CP 76	A, α	Soil and sediment	
77	CP 77	A, α	Soil and sediment	
78	CP 78	A, $\alpha+\beta 2$	Soil and sediment	
79	CP -ve		Pigs	Kindly Provided By Julian Clokie
80	CP -ve		Pigs	
81	CP -ve		Pigs	
82	CP -ve		Pigs	
83	CP -ve		Pigs	
84	CP -ve		Pigs	
85	CP -ve		Pigs	

No	Strain number	Source	Place	
$\mathbf{8 6}$	CP -ve		Fish	Iraq
$\mathbf{8 7}$	CP -ve		Rabbit	Ansty (Gorse Hill
$\mathbf{8 8}$	CP -ve	Rabbit	City Farm)	
$\mathbf{8 9}$	CP -ve		Rabbit	
$\mathbf{9 0}$	CP -ve	Rabbit		

9.6 Appendix 6 - Electroporation settings

Table 18. Shows electroporation of C. difficile ribotype 076 with phage phiCDHM1 genome using different DNA concentrations and pre-pulse incubation. (Exponential decay pulse).

C. Difficile ribotype	Pre-pulse incubation	voltage	Field intensity kV/cm	Time millisecond	DNA type	DNA concentration	Transformation Efficiency	CFU before pulse	CFU after pulse	Cuvette gap mm.
R 076	Room temp.	2.5 kV	1.25	5.2	phiCDHM1 genome	$1 \mu \mathrm{~g}$	Zero	10^{10}	10^{9}	2
R 076	=	2.5 kV	1.25	5.2	=	$2 \mu \mathrm{~g}$	Zero	$=$	$=$	2
R 076	=	2.5 kV	1.25	5.2	=	$3 \mu \mathrm{~g}$	Zero	=	=	2
R 076	=	2.5 kV	1.25	5.2	=	$4 \mu \mathrm{~g}$	Zero	10^{10}	10^{9}	2
R 076	=	2.5 kV	1.25	5.2	=	$5 \mu \mathrm{~g}$	Zero	=	=	2
R 076	=	2.5 kV	1.25	5.2	=	$6 \mu \mathrm{~g}$	Zero	=	=	2
R 076	$=$	2.5 kV	1.25	5.2	$=$	$7 \mu \mathrm{~g}$	Zero	=	=	2
R 076	=	2.5 kV	1.25	5.2	=	$8 \mu \mathrm{~g}$	Zero	=	=	2
R 076	=	2.5 kV	1.25	5.2	=	$9 \mu \mathrm{~g}$	Zero	=	=	2
R 076	$=$	2.5 kV	1.25	5.2	$=$	$10 \mu \mathrm{~g}$	Zero	$=$	=	2
R 076	Ice	2.5 kV	1.25	5.2	=	$1 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	2
R 076	=	2.5 kV	1.25	5.2	=	$2 \mu \mathrm{~g}$	Zero	$=$	$=$	2
R 076	=	2.5 kV	1.25	5.2	=	$3 \mu \mathrm{~g}$	Zero	=	=	2
R 076	=	2.5 kV	1.25	5.2	=	$4 \mu \mathrm{~g}$	Zero	=	=	2
R 076	=	2.5 kV	1.25	5.2	=	$5 \mu \mathrm{~g}$	Zero	=	=	2
R 076	$=$	2.5 kV	1.25	5.2	$=$	$6 \mu \mathrm{~g}$	Zero	$=$	$=$	2
R 076	=	2.5 kV	1.25	5.2	=	$7 \mu \mathrm{~g}$	Zero	=	=	2
R 076	=	2.5 kV	1.25	5.2	=	$8 \mu \mathrm{~g}$	Zero	=	=	2
R 076	$=$	2.5 kV	1.25	5.2	=	$9 \mu \mathrm{~g}$	Zero	=	=	2

Table 19. Shows electroporation of C. difficile ribotype 076 with phage phiCDHM1 genome using different pulse duration at ice pre-pulse incubation. (Exponential decay pulse)

C. Difficile ribotype	Pre-pulse incubation	voltage	Field intensity kV/cm	Time millisecond	DNA type	DNA concentration	Transformation Efficiency	CFU before pulse	CFU after pulse	Cuvette gap mm.
R 076	Ice	2.5 kV	1.25	7.8	phiCDHM1 genome	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	2, 4
R 076	=	2.5 kV	1.25	10.4	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	2, 4
R 076	=	2.5 kV	1.25	15.3	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	2, 4
R 076	=	2.5 kV	1.25	20.2	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	2, 4
R 076	=	2.5 kV	1.25	26.2	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	2, 4

Table 20. Shows electroporation of C. difficile ribotype 076 with two plasmids using different field strength, pulse duration and DNA concentrations. (Exponential decay pulse)

| C. Difficile
 ribotype | Pre-pulse
 incubation | voltage | Field
 intensity
 kV/cm | Time
 millisecond | DNA type | DNA
 concentration | Transformation
 Efficiency | CFU
 before
 pulse | CFU after
 pulse | Cuvette
 gap mm. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| R 076 | Ice | 1.3 | 0.65 | 5.2 | pMTL82151 | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.35 | 0.675 | 5.1 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.4 | 0.7 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.45 | 0.725 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.5 | 0.75 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.55 | 0.775 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.6 | 0.8 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.65 | 0.825 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.7 | 0.85 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.75 | 0.875 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.8 | 0.9 | 5.3 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.85 | 0.925 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.9 | 0.95 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 1.95 | 0.975 | 5.3 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 2 | 1 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |
| R 076 | $=$ | 2.05 | 0.1025 | 5.2 | $=$ | $5 \mu \mathrm{~g}$ | Zero | 10^{8} | 10^{8} | 2,4 |

R 076	$=$	2.1	105	5.3	$=$	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 076	$=$	2.15	10.75	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 076	$=$	2.2	1.1	5.1	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 076	$=$	2.25	1.125	5.2	=	$5 \mu \mathrm{~g}$	Zero	X, 10^{8}	$\mathrm{X}, 10^{8}$	2, 4
R 076	$=$	2.25	1.125	25.7	=	$5 \mu \mathrm{~g}$	Zero	X, 10^{8}	X,10 ${ }^{8}$	2, 4
R 076	$=$	2.35	1.175	5.1	pMTL84151	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
R 076	$=$	2.45	1.225	5.1	pMTL84151	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
R 076	=	2.5	1.25	5.2	pMTL82151	$1 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{10}$	2,4
R 076	$=$	2.5	1.25	5.3	pMTL82151	$2 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{10}$	2,4
R 076	$=$	2.5	1.25	5.3	=	2.2 g	Zero	10^{10}	10^{10}	2
R 076	=	2.5	1.25	5.3	=	$3 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{10}$	2,4
R 076	$=$	2.5	1.25	5.2	=	$3.3 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	2
R 076	$=$	2.5	1.25	5.3	=	$4 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{10}$	2,4
R 076	$=$	2.5	1.25	5.3	=	$4.4 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	2
R 076	$=$	2.5	1.25	5.3	=	$5 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{10}$	2,4
R 076	=	2.5	1.25	5.3	=	$5.5 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	2
R 076	=	2.5	1.25	5.3	=	$6 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{10}$	2,4
R 076	=	2.5	1.25	5.3	=	$6.6 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	2
R 076	=	2.5	1.25	5.3	=	$7 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{10}$	2,4
R 076	=	2.5	1.25	5.3	$=$	$8 \mu \mathrm{~g}$	Zero	X	X	2

R 076	$=$	2.5	1.25	5.3	$=$	$9 \mu \mathrm{~g}$	Zero	X	X	2
R 076	$=$	2.5	1.25	10.3	$=$	$3 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	4
R 076	$=$	2.5	1.25	10.3	$=$	$4 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	4
R 076	$=$	2.5	1.25	10.3	$=$	$5 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	4
R 076	$=$	2.5	1.25	10.3	$=$	$6 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	4
R 076	$=$	2.5	1.25	10.3	$=$	$7 \mu \mathrm{~g}$	Zero	10^{10}	10^{10}	4
R 076	$=$	3	1.5	5.3	$=$	$2 \mu \mathrm{~g}$	Zero	10^{10}	10^{9}	2
R 076	$=$	3	1.5	5.3	$=$	$3 \mu \mathrm{~g}$	Zero	10^{10}	10^{9}	2
R 076	$=$	3	1.5	5.3	$=$	$4 \mu \mathrm{~g}$	Zero	10^{10}	10^{9}	2
R 076	$=$	3	1.5	5.3	$=$	$5 \mu \mathrm{~g}$	Zero	10^{10}	10^{9}	2
R 076	=	3	1.5	5.3	$=$	$6 \mu \mathrm{~g}$	Zero	10^{10}	10^{9}	2
R 076	$=$	3	1.5	5.3	$=$	$7 \mu \mathrm{~g}$	Zero	10^{10}	10^{9}	2
R 076	$=$	3	1.5	5.3	$=$	$8 \mu \mathrm{~g}$	Zero	10^{10}	10^{9}	2

Table 21. Shows electroporation of C. difficile ribotype 220 with pMTL82151 using different field strength and pulse duration at Ice pre-pulse incubation. (Exponential decay pulse)

C. Difficile ribotype	Pre-pulse incubation	voltage	Field intensity kV/cm	Time millisecond	DNA type	DNA concentration	Transformation Efficiency	CFU before pulse	CFU after pulse	Cuvette gap mm.
R 220	Ice	1.3	0.65	5.2	pMTL82151	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2
R 220	=	1.35	0.675	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2
R 220	=	1.4	0.7	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	1.45	0.725	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	1.5	0.75	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	1.55	0.775	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	1.6	0.8	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	1.65	0.825	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	1.7	0.85	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	1.75	0.875	5.2	$=$	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	1.8	0.9	5.3	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2,4
R 220	=	1.85	0.925	5.3	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	1.9	0.95	5.4	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2,4
R 220	=	1.95	0.975	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	2	1	5.3	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4
R 220	=	2.05	1.025	5.4	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2, 4

R 220	$=$	2.1	1.05	5.2	$=$	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2,4
R 220	$=$	2.15	1.075	5.3	$=$	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
R 220	$=$	2.2	1.1	5.2	$=$	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	2,4
R 220	$=$	2.25	1.125	25.8	$=$	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4

Table 22. Electroporation of C. difficile ribotype 220 with pMTL82151 using different DNA concentration at room temperature pre-pulse incubation (exponential decay pulse).

C. Difficile ribotype	Pre-pulse incubation	voltage	Field intensity kV/cm	Time millisecond	DNA type	DNA concentration	Transformation Efficiency	CFU before pulse	CFU after pulse	Cuvette gap mm.
R 220	Room Temp.	2.5	1.25	5.2	pMTL82151	$1 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	2
R 220	$=$	2.5	1.25	5.3	=	$2 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	2
R 220	=	2.5	1.25	5.3	=	$3 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{9}$	2,4
R 220	$=$	2.5	1.25	5.3	=	$4 \mu \mathrm{~g}$	Zero	$10^{9} 10^{10}$	$10^{9}, 10^{9}$	2,4
R 220	$=$	2.5	1.25	5.3	=	$5 \mu \mathrm{~g}$	Zero	$10^{9} 10^{10}$	$10^{9}, 10^{9}$	2,4
R 220	$=$	2.5	1.25	5.3	=	$6 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{9}$	2,4
R 220	$=$	2.5	1,25	5.3	=	$7 \mu \mathrm{~g}$	Zero	$10^{9}, 10^{10}$	$10^{9}, 10^{9}$	2,4

Table 23. Shows electroporation of C. difficile ribotype 220 with pMTL84151 using different field strength and pulse duration at ice pre-pulse incubation. (Square wave pulse)

C. difficil e riboty pe	Pre- pulse incu batio n	Volta ge kV	Field streng th kV/cm	No. of pulse s	Interval betwee n pulses	Time millis econ d	DNA type	DNA concentration	Transformation Efficiency	CFU before pulse	CFU after pulse	Cuvette gap mm.
R 076	Ice	2.5	12.5	2	5 Sec	5	phiCDHM1	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	2 and 4
R 220	Ice	2	10	2	5 Sec .	4.1	pMTL84151	$5 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4
R 220	=	2.1	10.5	2	5 Sec .	4.1	=	$5 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4
R 220	=	2.2	11	2	5 Sec .	4.1	$=$	$5 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4
R 220	=	2.3	11.5	2	5 Sec .	4.1	=	$5 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4
R 220	=	2.4	12	2	5 Sec .	4.1	=	$5 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4
R 220	=	2.5	12.5	2	5 Sec .	4.1	=	$5 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4
R 220	=	1.7	8.5	2	5 Sec .	5	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
R 220	=	1.8	9	2	5 Sec .	5	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
R 220	=	1.9	9.5	2	5 Sec .	5	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
R 220	=	2	10	2	5 Sec .	5	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
R 220	=	2.1	10.5	2	5 Sec .	5	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
R 220	=	2.2	11	2	5 Sec .	5	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{7}	4
R 220	=	2.3	11.5	2	5 Sec .	5	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
R 220	=	2.4	12	2	5 Sec .	5	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
R 220	=	2.5	12.5	2	5 Sec .	5	=	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{8}	4

Table 24. Shows electroporation of C. difficile ribotype 220 with pMTL82151 and pMTL84151 using different field strength, DNA concentration and pulse duration at ice pre-pulse incubation. (Time constant pulse)

C. difficile ribotype	Pre-pulse incubation	Voltage (kV)	Field strength kV/cm	Time millisecond	DNA type	DNA concentration	Transformation efficiency	CFU before pulse	CFU after pulse	Cuvette Gap
220	Ice	1.7	8.5	6.7	pMTL82151	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{8}	4
220	$=$	1.8	9	5.8	$=$	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
220	$=$	1.9	9.5	5.9	$=$	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
220	$=$	2	10	5.3	$=$	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
220	$=$	2.1	10.5	6.2	$=$	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
220	$=$	2.2	11	6	$=$	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
220	$=$	2.3	11.5	7.3	$=$	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
220	$=$	2.4	12	6.8	$=$	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
220	$=$	2.5	12.5	6.5	$=$	$5 \mu \mathrm{~g}$	Zero	10^{9}	10^{9}	4
220	=	1.6	8	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	=	1.7	8.5	5.1	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	=	1.8	9	5.1	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	=	1.9	9.5	5.1	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2	10	5.1	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.1	10.5	5.1	$=$	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.2	11	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4

220	$=$	2.3	11.5	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.4	12	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.5	12.5	5.1	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	3	15	5.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	=	1.6	8	6	pMTL84151	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	1.7	8.5	6.5	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	1.8	9	6.8	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	1.9	9.5	6.4	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.1	10.5	6.3	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.2	11	5.5	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	=	2.3	11.5	6.7	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.4	12	6.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	=	2.5	12.5	6.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.6	13	6.4	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	=	2.7	13.5	6.6	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.8	14	6.2	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	=	2.9	14.5	6.6	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	3	15	5.9	=	$5 \mu \mathrm{~g}$	Zero	10^{8}	10^{8}	4
220	$=$	2.2	11	2.5	=	$4 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4
220	$=$	2.3	11.5	2.4	$=$	$4 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4

220	$=$	2.4	12	2.2	$=$	$4 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4
220	$=$	2.5	12.5	2.2	$=$	$4 \mu \mathrm{~g}$	Zero	10^{7}	10^{7}	4

9.7 Appendix 7- Sequences of CPAP1 and CPAS1 phages

9.7.1 CPAP1 (F42) phages' sequence

$>\mathrm{NODE}$ _1_length_18390_cov_1218.51_ID_1

TACGAGATAGGAGTCCGTCTCGTGGGCTCGGAGATGTGTTAAGAGACAGCTACACGATTC GACATATTCCCCAATTATTACCAGTAGGTAAAGCAGCACTCTATTTTAACAAATTGTTTA CAACTAAATCAATAAAAACCTTGAAATCATAGGTATAAAATGCTAGAATTATGTTAAGGG GAAATTATACCAAAATAAAAGAGAGGTGTCAAATTTGAAAGAATATATTGTAAAGCTTTC ACTAGATGAATTATGTACTATTGATTTATGTTTAGATACTAGAATGGTACAAGCTAAGAG CATTGATGAACTTGAGAAACTTTATGACCTAGCTAACAAGATAAGGGGAGTGGTGGATAG TGAGGAATAAACATAATATGGGATTAGAAACTTTTCACGCTGTAGTAGTTGAACCTTTTT ATTATGAATTAAATTCTAAAAATTATAATATTGGCGATGATATATTTGTAATTGATATCC TAGGTGATAAGTATTTTTTAGAGAGTGATGTTATAGACATCATACCACGTAAAAACGTTA GGAAGGTGAGAAAACATGGCAAGAAAAAGATTAACATTAAAAAGTAAGAAAAAGCAAATT GAGAAAAAGAACTTTGAAAAGCAATTTAACAAAGCTGTAAAAAATGGAGCTTATATCTAT TTAATGGACAAGGATATTCAAAAGAAAGCTATTAAATTATTAGGATATGATAAGTCTACA CTTAACATAATAGTTGATATGGCAAGAGATACAGACTATAAAAGAAATGCTGACAGGTTT GTTAAGAATGAACAGAAAAGAAAAGAAAAAGAAGAAAAAAGAAAAGAGAGAGAGAAAACA AAAGAACGCAAAAAGATAGTCGAAAATTTAAACAAATTAGATTTAACACATGAGAGTAAA CAAAAGATTATAAGTGACACACATTTAGGGTTATTAAAGTTTGTTGGGAAAGAAGATGCA GAGGAAAACATCAGAAAGGAATTAGTTAATAAAGTTACTGATTTATTTTTTGGTGAAGGT AGTGGTAAGGGAATATTAAAAGGAGCATTTCAAAGGAATTTACCAAAGGACAAAATAGAC AACTTTGTAAATGAAGTTAATAAATTTATTACGTCATCAAATGATGCTGTATCAAAAGTA TCTGATTTTTACGAAAATATAGATAAATACTTCGAGTTTATCTACGAAGAAAATATGGTT GAAAAAGGTTATTACACTCACGGGGTGCATGATGTTGAAATGGGTTATATATTAGAGGAC TTACTAGCGACATTTAAAACGGGATTGAAACAATAAAATATAAGGAAGTGGAATTAATGA ATAAACATTTAACATATGTCAACGAACATAGTTTAGAAGTAACTGAATATAGTAAAATAG ATAGTAGAGATTTAATATTTGACATTGAAACTTGTTACGTTGATGAAAAAATGTTAAATA AAGATTATCCACAAAAAGACAAGAAAAGAAAAGTTTGGGCGTTTGGATTAGGTGCTACAA ATACGAATAACGTAATATTCGGTTGTGATTTAGACGAGGCTTTTTATACCTTTCAAATGA TAGGATTTGAACAAGCTAAAAAAGAAAATATAAAGAAGAATAAAAATAAGAGAGTAATAA CTTTAAGTGTTGCTGTTCACAACGTTGCTTATGAAATTAGCTATATGCAATACTGGTTAA CTGATAATGGATTCACTTATGTTAATCCCAGCTTACAGACTAACGAATTAGGAATTAGTA GAACTATTGAGAACTTTAAACCAATGACTTTTTCTATAGTACAGACTGATAATGTTTATT ATGGGTTAGAAGTAAATTTACCTAACACTTTAGAACTTACTGACAAAGACGGTCATGTTA ATACTTTTAGCGTAAAGGTGAAGTTTTGGGATACTTTAAAAATAGTTCCATGTTCTTTAG ATAAGGCTTATAAATTTTGCAATAACTTAGATGAAATGTTTTATAAATTGAAAGAAGAGT TTAATTATGATAAGATAAGAGAAGATAATCATGTTTTAACAGATATTGAAAGAAGGTATC TTTATAATGATATCAGAATACTAAAAGAAGTTATAAATGATTATTTTTACAACTCACTTT TAAAGTTTGAATATAATGATGAAGAGATTTACATAAGTTCAAATTGTAAAACAAGTTCTT CAATATCATTTAAATCAGCTTTAGAGATAACATATTTTGAAGATAGAAACAAGAAAAAAG CTTTTATAAATCAATTTGAGATTGAGGAAAGACAGATGCTTTTAAGCAAAATGGCTAGGG AAATGGAGAATAAAAGTTATGAAGGTGGGTGGACATGGTACAACCCTAAAATAGTTAATA AAGTTGTAAAATGTAATGGGTCAAGCTTTGATATAAATTCAAGCTATCCATTTCAAGTTG AAAGTGCTTTATTACCTTATGGTATGCCAACTGAATACAAAGGATATGTTAAACCAGTTG ATGGTGAAGAAGTAGCAATTTATAATATAGGCTTTGATTATTTTAAACCTAAGAGTAAAG AGTATGAATTACAAATGATTAGATTAGGAGCAAAAAACTTTTCTGATACTGATTTACCTT TACTTTATAGAGATAAATTGAATATGGTTCTTATGAATGGTAATTCTTTTATTCATACTA ATATAATAGATGGCAGAGTTATTGAAATTTATCGCAACGGGTGTGAAAATTTATGCAATT ATAATATGAGTATTACAAGTGTAGAACTTGAACATTTAACAAAATATTATGATTTTGGTT ATTATGAAAATGTTGAGGTTGATGGTTTTTTATTTAAAGAAAAAGATAAGATTAAATTTA ATGGTTTAAAGTTTGGTACTAGCTTAGTATATAAAGCTGAAAAAGGTATTTTCTCAAACT TTGTAAATCATTTTTATAATTTAAAATCAGAAATAAAGCATAGAATAGATAAGGGTGAAA AGTTAGACGCTCAATATTCAGCAATAAAAACTATACTCAATTCTTTTTATGGTAAGTTTG GGACAAGAACTACACGTACAATAGACTATTTAGTAAAAAAAGATAAAATATTTACATTCG

ATAGAGGGGGTAAAGAGAAAAATTTAGAAAGGGTTAAAAAGTTAAAAAATGAAAAAAGAA GAAACCAAATTTTAGCAAGTGGACAATATATTGAAACTTATGAAAGTGAACCCTTTTATA AGCCCTTTGCTAGTTTTGTTACAGCATATGCTAGAGTATACCTTCAATCAATGATAATAG AAGGTTGTGGAGTTGAAAACTTTTTATACAGCGATACTGACAGCTTTTACTGTTCTATAC CTAAAGAAAAAGTAATTGAAGGTTTAAAGAAAATGGGTGTAGAAGTTCACCCTAACAATT TAGGAGCTATGGATAATGAGAAAAACTTTAAAGAGTTTAAAACCATAGGGGCTAAAAAGT ATATGCTTAGAACTAATGACGGTAAAATATCTTGTAAATGTGCTGGTGTACCAAAAGATG CACAAAAGATACTTTGTGATGAAGGCTTTGAAGAGTTTAAACTAGGTAAAGAAGTCAAGG GAAAACTAGCACAAATAAAATGTGATGGTGGTCTTGATTTAGTAGAAGTTCAATATATAA TAAAAGACTTAAGTTTAAGGAGGTAACATGGGTAAGTTTTTTGAAATAAAAGAGTTTATA GAAGAATATCCGAACCATTTAATACATTGTGTTATAGGGGCAAGGGGTGTCGGAAAATCA TACTCAACAAAAAGATTAATAATTGAAGAGTTTTTAGAATATGGCAAACAAGCGCTGATA TTAAGAAGATACAAAAATCAAGCTGAAAGTATGGCAACAACATACTTTACAGATGTATTA CAAAAGGAATTTCCAACTGTTGAATATGAGTTAAAGGGTGATATGGGATTTATAAACGGT GAACCATTTTGTTTATTTACAGGACTAAACGGAAATAGTTTAGCTAAAGGTTCATCATTT CCTAATGTTTATTATATTATTTATGAGGAAGTTATGCCGGAGCCTGGTGAGAAAACTATA AAAGATGAATATAAGAAATTAGAATCTATAATTGTAACAGTTGATAGATTTGAGGATAGA ATAGAAGTAATATGTGTTGGGAATAATACAAGTTATTACAATCCCATTTTTGATACTTTA AAGTTATATCCCTCAACTAAACCTAATAGAGTTGTCAAAAATGAACTTATGGCAATTAAA ACACTTGAAACACCCAAAGAGTTTAAAGAGTACGCCTTAAATTCTAAGGTTGGTAAGTTA ACTGTAATGAGTGGTTCATCACGTTATAATATAGATAATGAAAATATTAGTAATGATAGA TTTAACGTTTGTAGTAAAAAAGAATTATGGGACACCGATAAGTTAGAACCAGTTTTTAAG GTTCGTGTTGATGTAGACAAGGTAATTAAAATATGGAAATGTCAAAGTGATACAATGTTT TATTACTGGGTTGATAATCATAATAAAGGTAAATGTGACGAATACTTTTTAGATTTAGAT TACCAAACAGACGAAAATAAGCATATATCTTTATGTAATAAAGGGCTTATAAATAGAATC AATTTTAATAATAAGGTTGGTGCTGTTTTCTTTAATAATGCTGAAACAAAATTTTACTTT AATCAAATTGGATTATTTTTTAAAAAATAATGCAAAAAAGTGTTGACATAATATATAAAT GTAATGTATAATTAACTCATAAGGAAAAACAAACCAAAACAACAAAAATATTTAAAATTA AAGGAGAGATTTTAACATGAAAAAATTATCAATTTTCAATTTAGGGAACAACGTTTCAAG TGGGGTATATTTTAGATTAAAGGATAACAGAGAGAAAGCTGTTATAACTTTCTTAATCAA TAACATTGATGAGGTTGAACTAGATTTAGTTCACCCAGTAAAGTTAGCAGATGGTAGAGA AGTAAATGTTAAGTGTGTGGCTGAATTAGACAATGACTTGAAAGTAATTAAAGATACTTG CCCTTTATGTGGTGAAGGTTTCAAGATGTCAGAAAAGGTAGCTGTTAATGTTTATAACCA TACTACTAAGAGTGTACAAATTTGGCAACTAGGTAAGACTTTAATAGAAAAATTAATTTT CTTAGCTGAAAAAAGACCTGACCTTATTAATCACACTTATGAGGTAACAAGATTAGGGGC TAAGGGTGACACTAATACATCATATGAATTTGAGTATTTAGGTGCATCAGATAAGAAAGT ATTTGAAGGATTAGAGTTAATCAAAAAGAACGAAACAGTATATTATGAGGTTGGTGTTAC AGAGTTAGAAAACTTCTTAATTACTGGAGATGAAAAAATATTTGAAAGAAATAAATAATT TAAAGGTGGGTTAATTCCCACCTACTAAAATTAATATAGAGGTGAATAAAAATGGAAGGA AATAGAGAGTTAACAGAATTAGAAATCAGAAAGGAATTAGCTTTAGAAAAAGTTAATGAA AAGAGATTACAACTTAATAGAGTAGTTTCTTTTATAAATCAAGAAGAAAAAGAGTTTCCA AAATCTAAAGAACATGAGGCTGTAATGTTTGATACGCTTTTAACTTCTTTAGGAATAGAG TTTAAAGTAACTGAAACTAAAAAGAGAATAATATTTCAATTAGCATAATGTAAAGTATAC CCCCTTACTTAGCTATATAACGTAAATGATTAGGAAGTCACACGGTAGAACGTGCCTAGC ATTTTTCCACTTATGACCGTGGGCGTTGTATAGTGAAGTAAGGGGGTATAATATTTTGTA AGGAGGTTTTAAAATGAGTAAAGAAATGACTCTTGATGATGCCCTTTTAAGAATTGTTGA ATTAGAAGAAACTGTAGAAAATCAGAACAATGTAATCAGCACATTAAATTCTGAAAAGGA AACTAATTCAAAAGAAATTGCGAAACTTCAAAAAAGTAACATGGAATTATTCCTTAAAGT TACTAGCAAACCAAAGGAAGAAAATAATACTGAAATTAAAGAAAATAATGAGTCAAAAAT GGACAAGTTATTAAGAGAATGGGAGTGATAAAATGGCTGTAAAGGCAAACAAAGAAATCA TGGAGGCTTTTTTAGAAGAGGCAACCAAAGACACTAAAAAAGTTTTAAGTCAGGTAGATT TATCTGACAGTAGAGCTGTTTCAGATGCTTTATTCAATTATCAAGTTGTGAAAAATGAGT TTATAAGTTCCCTTATAAATAAAATATTTATGACTCAAATACATTCAAAAGTTTGGAAAA ATCCTTTAAAAATATTTCATGGTGGAATGGAAGAATACGGTTATACTATAGAAGACATGT ATGTTGAGGCATCACAAAAAGTTGGGTTTAAAGAACATTTTAATGGTGGTGATGATGTAA AGGATATAGTTGGTTCTTTAGTTCCTAAAGTTTACACTAATTACCTTTCTAGAAATTTTG

CCGATAAATACAAAATAACTATTTCAGATGTTCAATTAAAAACAGCTTTCAGAAATGAAT ATGGTGTAGCAAACTTAGTTAATAAATTATTAGAGGCTAATTTAAGGGGTGCTTATCGTG ATGAATATAAATATATGAAAAATATGTTTTTCAAATATTGTAGTGGACTAAGCAATCAAG ATGTTGGGTTAAGTGGTTCACCTACACAAACACAATATATTCAAGACTCTCAAGTTATTA AATTAAATGATGATGCAAATCTTGTAAAAAATCTTTGTAAATCATTAAAAGCTATGAATG ACAGGCTACAATTTGAAAGTGATAAATACAATAGCGCTAAAGTAATGCAATTTTCTTCAT TAAATGATTGTGTATTTATAACAACACCTGAAATGAAGGCTGAAATAGACGTTGATTATT TAGCAGATGTTTTCAACCTTTCAAAATCAGAGGTACAGCAAAGAATTATACTAATGGACG AACTACCAACAACTATTAAGAGTGGTGATACTGGGACTAATGCTCATAGCGGTGAAACTT GTATTGGAATGTTAGTTGATAAAGACCTTCTAAGATTTAAAGATTTTGTATTTGAAACAA GATATTTTAATAATCCAAACAACTTATCTACTAACTACTTTTTACACAAACAAGGTTTAT GTGGTATAGTTCCATTTTTAAATGCCATAATATACACTAAATCAACAGAATAGGAAGTGT GATAAATGGAAAAGTTAACTAATAAGGAAATTTACGATAAATTAATTTCAACCATGCCCA AGGATTTGGGCAACTCTTTTCCTTCTTATGAAGAGGCACTAAGGTTGAATTTAATAAATA TTGATATGAACAGTTTTATTGAAACTATATGCAATAAAATAGGAAAAATGTTATATATAG AACAACATTTTTCAAACCCTTTCAATGAGCTTTTTTATGGCGAAATGCCATTTGGTTATT CAATCGAGGAGTTGTTCTTAGAGGACTCAACTGTTCAATCATTACTAGAAGGTGATGAAA AAGAAGTTTTCAACTCTTCTTTACCAAGATTAAACGGGTTAGTTGCAAATAGTAGATTTG ACAAAAAAGTTAAAATGAGTCTTAGTGTTGAAAGATTAAAGTCAGCATTTTTAAAAGAGT TTGGACTATATGATTTAATATCTAAAATGTTATCTAATTTAAAAACTTCTATGAGTAAAG ATAAATACAAAGAAATAGAAAAAGCTTTAAAGGAATTTGCTAAGGGATTAGATTCTAACG GAGAAAACCTTAATTTTAAACAAGCTCCACATAAAGAAGTTGCAAGTTCAAACTTAATTG AGAGTATTGTAAAAATTGTAGAAGAATTCACTTTGCCAAGTGATAAATATAATCCTAGCA AATTTAATACACAATGCTTAAAAAGTGACATAATAATATTTGTGAAACCTGAAATTTACG CAAAATTAGTAAGTACAGATAGCATACTTTTAAGAGGTGAATATAATATTAAGTCAATTA GTGATTTACCAAATAACATTACTAATTTGGTATCAAATGAAACGATCAAGCCTATAGCTT TAATTATGGATAAAAGATTAATGTCTATAATGTTGAATTACAATGGATTAGATAGAATTG ACGACCCTAATAGTTTAACAACAAATTATTATTACTATGAAAATTATAGTCTACCAGTAA ATACTTTTTCAAATTTTGCAATTCTAACAAGTGAATAAAAACGTATATTTTTATTCTTTA CCTTATATTGACCCCTCATATCAGAACCTTTTTAACTTTAAAAGTATAAGTAATCAAAAT AATTATTTTTCTTCTAAAGTAGTGTGGGTGGGTCAATATAACATAAAGGTAGAGCCTTCA CGTGTAAGCTTAGTGGTAGACAAGCCTTACGGTTGGTTTATGGAGAATAATGTTAATTAT ATTTCAGCTTATGATACTAACATGAAAAATATTTATTATTTCATAGACGACTTTGTTTAT AAAACAGAAAACTCAACACTTTTAGTAATATCAGTTGATGTATTCCAAACCTATCAATTT GACTTTGAAATTTTAGAAAGTTTTGTTGATAGATGTCACGTTAATAGATGGGACGGTGAT AACCCAACGAATGAATACGAAACAGAAGATATTTCTTATGGTGAAAATATCATGCTAGAA TATGAAAAAATAGCTGATATGGGGCGTGGTGTTGTTGTCACTTCTACAGTACCTCTCGGA AAAGTTGAAACAAACGTTGGTGGTGGTTCTGACGGGACTGGTTCAGCAAGTGGTGATATA GCAAATGGTATTATATCAGCAAATGGACTTTTATTTGTAAAACAAGAAGAGGGTTTTGCA GAATATGGGGCATATTTTAATGGTGAATCTTTCAAAACTGGAGGTTATGGTGTAACAGAA AATTTCCAAACTAAATATTATAGACAACTTGAGCCTTTTCCAGTATCAGAAGAAAAAGCT AGTCAAGTCACCTATGATTTATTAAATAATGAGTTTGGAATACCAGTTAAAAACGCAATG TTAAAAGCTAATATAAATTTAAGTGATATTCCTATATATCAATTTGATGTTTGGGTATCA ATCGCATTTAACTATGGAATGGGTGGTTTAAGTGGATTAAATGCGTGGCAAATGTTTTTA GCTAATCCAAAGGACACTAAAAATATAGCGGCGGCAATCAAAAGCTTATCCGCCAACCCA AATAGAAGACAAAGAGAGGGAGCATTATTTGAAAGTGGTGTTTATCCCCAAAGACAAATT TTAAAGTATGGCCAAAATGGTCAAATAGTTGGATATACAGATGGTAAAGGTTGGTTGCCT AgTGGTAAAAAAGACGGTAAATATGTAGATAATGATGCTGGGACAAACTGGTTAATACCA ACAACTGGACAAATAAGTGCATATTACCCAACTTATCCAAGTGGCAACCCTCATAATGGT GTTGATATTGCAACCCCAACTGGTACACCAGTATATGCAAGTAAAGACGGAACTGTCATT AAAAGAAGAGAATTAACTACTAGCTATGGGAAATTTTTAATTATACAACATGGTGACTCC CAAGTTGTTTACGCTCATAATTCAGAGTTAAAAGTGAATGAAGGTGACACAGTAAAACAA GGACAATTAATTGCATTAAGTGGGAATACTGGAAACTCAAGTGGTGACCATTTACATTTT GAGATTAGAAACGAAAAGGGAACAGTTGTTGCAAATGGTGTTAAAACTGTTAACCCTATG CCAAATTATAAGGTGGGTGACAAAGTATGACGATAACTAATAAAGATTATGATACGTGGG AATCAAAAATGTATGGGTTACCATATGCTGTATATAGTTATTATATTGACTCTACCGTGG

CAGGTGAAAATACAGCTGTCATAGGTGCAAGTGGTGACAATGTTTTTAGCGTTGTTTACA CACCATTCCTTGATATTGCAGATTTAGAATTAGAAGAAATTCCATATGATAATAAAAGAT TTGGTAATATTTCTGAAATTAGACCCGAGATTAAAGCAAACCCCCACGTTTTCAGAATCA AAAAATTATTAAAAGGTTCAAAATTTGTCGGTGAGTTTGAAACTTACAAAGTAAAAAAGA GTGTTGGTGGTAAAAGAAATTGGAGAAATGAAAGTAAATTATATAATTATCCGTACACTT ATTTAATGCTAAGTGATGGTATAAATGACCCTATGATTTTAAAGCCTCAATTTTGTTCAA TTCCTACCTGTTCTGTTGGTATAAAATTATCTGTTTCAGACCGTTGTTCTTATGGTATAT TCGTACAAACTTATAAGGGTGATACAGACGGAATGACGGAAGCTTTGGTATCAAATGATG CACTTGAATTGCCTTGCACAAGTTCAGCATATGCAAATTGGGTTGCAACTTCAAAAAATC AGACAGCACAATCAATACAAAATACCGTAAACCAAACGATTTTAAATGATAAAATAGCGA AAAATAACATGAATTTAGGTATCGCAAATAGTGTTGTTGGGGGTGTTGCTAGTGCGTTTA CTGGTAATGTTGGGGGTGTAATAGATAGTGTCTTTGGTGGTGTTGGCTCATATATGGATA AAAAACATACAAATATGCAGAGTCAATTAACTAGGGAATCGGCTATCAGTTCAGCTTTAG CTACAGCAAACGACATGAGGTCAACACCTAATACTTTACTTAGTCAAGGGTCGAATATAA TTTATGGTTTGCGTAATGGTGGGCAAGAGTTAAGACTTTACCGTTATGGATTAACAGAAA GATACTATGAAAAGATTGGTGATTATTTTGCACAGTTTGGTTACAAGCAAAATAAAATGA TGGAAATTAATATTAATTCAAGATATTATTATAACTATATAAAAACAATAGGAATTAATA TAAAAACTAATAAAATTCCTAATAATTACTTAAATATCCTCAAAGGTATTTTTGACAATG GCACTACAATATGGCATATTGATAATGACGGTGTAGAGATTGGTAATTATTCAATGGATA ACAGGGAGGTATAAAATGAAAATAGGTATTAGAGATGGACATAGTCCAAATTGTAAGGGG GCTATTGGTTTACGTGATGAGCAATCATGTATGAGAGTTTTATGTAAAGAAGTCATAGAA ATATTAGAAAAACATGGTCATGAAGTGGTTTATTGTGGTAGTAATGCAAGTACACAAAAT GGTGAACTTTCAGAAGGTGTGAGAAAAGCTAATAATTCAAATGTTGATATATTTATTTCA TTACACATGAATAGCTTTAACGGACAAGCTCAAGGAACAGAGGCACTTGTTACAGTTGGA GCAAGAAATTCTATAAAAGAAATTGCATCAAGGTTATGCAAAAACTTTGCTAGTTTAGGT TTAGTAAATAGAGGTGTAAAAGAAGTTAATTTATATGAAATGAAGAACGTAAAAGCTCCT AATATAATATTTGAAACTATGTTTTGTGATAACCCTCATGACATAAATGAAGTGTGGTCA CCTACACCATATGAAAAAATGGCTTTACTAATTGCAAATGCTATTGACCCAACTATCAAA GAAAATGAACTTTATAGAGTTGTTGTTCAATATTTTAACAGCAAAGAAGATGCTGAAAAC TGTCAACAAGAAATTGCTAAAAGATGGTATTGTTTTGTGGAGGAGTGTAATTAATGCAAG AAATAATAAATATAATAAATAGTGTTGGTTTTCCAATTGTAGCATGTATGATAATGTTTA ATCAAAATAGCAAACTATCAAATGCAATTTCAGAACTTAACATAACATTAACAAAGATAC AATCAGATATTGACAGCTTAAAAAATAATCAAAAACAAGGGGAATAAATTTCCCCTTTTA AAAAAGGTGGTGATTATATGGGAAAAAGAAAATCTATAATATCTCAAAACCCTAACATTT TACTAAATGAAAATACAATATGTGATAACCAAACAAGGTTATTTTTACATTATAAACTTA TGGCTTGTAATAGGTTTAAGTGGGAGAACTTACCGACTGGATTAGAAAGTAGACATATTG AgGACTTTTTATTTGAAAATGGGCAATGTTTTTTCTTTAAAGATGATAAGTTGGGTTTAA TGTGTTTACCATGTCATGGTTTGGGTGATTTAAATATCTATGGTGATAATATCAAATTAA GCATAGTTTCAAGAAATGGCAAATATCAGAACATCTTAGAAGATGGGAAAGATGGTATAA AAATAAGAGCGAATGACTTATGTTTACCAACTTCTCATTTTATTTCCCATTATGCTCAAA AAATGGATGATATAGAAACAGTAATAAAAAGAAATTTAAAGCAACAAATGAAACCTTTCT TTGTTACAGCTACAAATAATAATTTATTGTCAGTAAAAAATATTGTGAATGATGTTGACA ATGGGAAAGAGGTTGTTATATTAGATAAGGATTTAGGAGAACAGGGGTTTGACGGTTTCA AGATGCTACAGACTGGTGTTATTTATTTAGTTGATAAATTAGAAGATGAAAGAAAAGCAG TCGAGAGTGAACTACTTTCATTTTTGGGTTTAGATAATGCTAATACAGAAAAAAGAGAGC GACTTCTAGTCGATGAAGTTAACGCTAATAATGAATACATTGAAACTAACTTAGATATGG AATATAAAACTAGGTTATTAGCTTGTAAAATGATAAATGAAAAATTCGGAACTAACATAA AAGTAACTAAGGTTGTTGATAGCTTTGGAGGTGATGAAGATGGCGAAGTACACACTAGAA TTAAGGACATTAGAGAATAATTTATTTGACTTTGATTATCCTTATTATGAAGAAGAGGCA AAATGTTACTTTGAGGAAAAATTTTTAAATCATTATTACTTTCATGAAATAGGATTTGAA ACTATAGCAAGGTTTAAACAACAATTAAGAGCATACTTTTTGAGAGTTATGCCATATTAT CAACAACTTTATGAAATAGAATTAAGATGTAAAGATATTGACTTTATGTTAAATAAAGAT TTGAAAGAAACTTTTATTCGAGAACTAGAAGAGAATGAAATAAATAATTTATTAACTTCA CAAAATGAAACTGGTAACACTTCTACAAATATAAATAATAATGAAAGCAATAACTCAAAT AATAATACAAAAGAAAGTTCGCTTGCCGATGGTGTATCGAGTTCAAAAATTGCTGACGGA TATTTAACAAATTCAAGTCAATCTACAGATACTTATGATGGTAATAGTAGTACAATAAGT

AAAACAGATAATAAGAGTAATTTAAATATAAATAATACTGGGGATAAAAACAACAAACAA AAAGAAAAAACAGAATTAATTTCCCAGGGTAATATTGGGGTAACTTCATCAGCTGAACTA AAAGAAAAATGGCAAAGTTGCTTAAATAACATAGATGAACAAATTATACTAGGCGCTAGA AgTTTATTTATGTATGTTTATTAGGGGTGAAATAATGATAATAATTGATAGAAATAAAAT AAAAGTTAATCAATTTGATACTTGTATTTTAGATTTAAATGTGTGTGGGTATAAATTACA AGAAGGTGATAAAATAGAATTTGTATTTAATTCTATAAAAGAAGAAAAAGAATTTAATGA TACTGATTTAATATTCCCAACTGATGAAAAAGGTTCATTTAATTATTCTGTAACAATATT ACAAAAAGGAATTATTAGAACTGAAATTATTAACAGTATATGTGAGGTGATATAGTTGAG TAAAATAACTGGTAAAGTTAATTATAAAGAAGTGCTAAGGGGTGATACTGGGTTTACATT TAAACCCCATGTTACGACAGACGGTATTTTATATTGGAGTAATAATGGGGATTTACCTAA CCCATTACCAGTTAATATAAAAGGAAAAGACGGTGACATTATTCAAAATGAATTAATTGA AAGTATAACAGATATAAATTTACATGAAATAGTTGATAATAAAATAATAAAATTATCAAA TATTAACTATTATGTTAACGGTAATGTTGAATTAAATAATTGTGAGAAGTTAGTTGGTAT TTCTCTAAGCACGATAAAAGGTAAAGCAGTCATAACATTCAATAAAGAAAATGTTATAAT AAAAAACATAAAATTTAAAAATACTACAATGTTATATAAATATGGTGGTAATATTATATT TGATAATTGTGAATTTGAAGATATTGAAAAAAGTTGTTTATTCATAAGGGGTGGAAACGC TGAATTTATAAATTGTAAATGTAAGAACATTGGAACAAATTTAAATGATGATTACACATA TTTAGGTGGTTTAGTTTATGCTGAAAATTGTGAGAGTTTAAATATATTTAATTGCATATG TAAAAATATACATGGTCAAGCCTGTGTAAGATTTACAAATCTTAATAAAATAAATGTTGA AAACTCTATATTTAATGAAACTAAATATAGAGCAATAGGCGGTTCACTTGAATATAATGA AACAATTGGTTTAATAAAAAATAATTCTTTTTTAAATATAGGTAAATTAAACGACCTTGA TGGTGTTGGCTGTAATGCAATTTATACTTATAGGGGTTCAAGTAAAATAGATATACTAAA TAATGTGTTTGTAAATGTTATTGAAAATGCAATAGAAGGTAATTATTTAAACATAAAAAA TAATTTATTTGATACTATAGGTTCAGAAAATTACACAACACCGTCAAAGGAGTGCATATG GGGTGATATAGAACACATTGAAATGAATCACTTTAAAAATATTAATTTATATCCTATAAA TAAAAGCTTAGGGGGTTTTACAATTAAAACCATAAACAATAATATATTTGAAAAAGGAGA TATATCAAAAACAAATGAAGCAATTAGATGCCTAAAGTTTAATGCAAACACAGTAATTTC AAACAATATATTAATAGGTTATGATTACTTATTAAAAATTGAAAATAATGTTTTGAATAA TAGTAAAGTTTTTATAAAAAATGATTATAATAAGACATTAAACCCTAAAGGTCATTATAA TAATGTTTATATACTTAAAAACAACTTAATAGAGTATAAAAATGACTATGAAAGTTTTAC TAAAATAAACGATATAAAGATAAATAATGCTAATTATGTCAGTTTCAATGATGGCATATT AAAACTAAGTCACAATAACACATATGACAGTTTTATATATAAAGAATTTAATGTAAAAAA TGATAATATAATAATGGTTAATTGTAACTTTATAGGTGAAAACAATGGTGGAATAAGAAT TGTTCCATACAATAATGATAAATGGGATTATGTAAATTGTAGAGAATACTATAAAGAATC TAATAATAATAAAGTTGATTTACATTTTACAACAGTAATGAATGGTAAATTTAGAATTGA AATAATAGACCAAAATTATGAAAAAGGTAAAGAGTATGAAATATCAAATATTGAAATAAC TTTAAAAGAAAATGGAGGTTTTATAAATGAATAATATCAATAAATTAAATCCTATCGACC TTAATTGTAGCATCTTTACAGTTTATGATTATACAGGGTTATCTATGCAAGAAATTTTAT GTCAATTCTTTAGTAAAATAAATGAATTGATTGACTCACAAAATCAAGTTATAGATTTAA CAAAATGGTTAGTTGGTCAAGGATTAAAAGAAGAAGTAGCCAAACAACTTAATCAATGGT TAATTGATGGTACTTTAGCTAACATAATAAATGAAACAGTATTCAGAGATTTAAATAATA AAATTAACTCTAATATAGAAAATATTAAAAACAATAAAAAAGAAATAGATAAACTAGTAA CAGTTTGGAATAACATTAAATGTTTTAATGTTGTTGATTTTGGAGCAATAGGTGATGGTG AAACCAACAACAATAAAGCCTTTGAAAATGCTATAAATTCATGTGTTGAAAATAGTGTAC GTGGTTTATTAATTCCAAGTGGAAAATTTTATATTACAGAGGGTATTAACACAAAGGGTG TAAAAATCATAGGAATGGGTGACCCCTATATTCCATTTTTAGAATGGGAATATACAAGAC CAAACTCAAAATTAGATGAATATAAAAAATATTTAAATAAATGTCGTGGTAGTATAATAA CATCAGATAAAAATATTAATATATTTACTAATGGTTTATATGCTGAAAATATCGGTATTT TTGGTAATAGAAGAGCATTATCTCAAAATGGTATAGGTCAAATGGACGGTGGGTTTGGTA ACTGGATTGAAATAGAAAAAGTTAAAATCCATGGATGTGGTAATAATGGTATTAACGCTG AATATGGTTTAATAACACCTATCATAAACCAATGTTGGATGTATCAAAATGGTAATAATG GAATAAGAATTGGTAAAAATAAAGGAACTTACACAGGAGAAACAAACGCCTTAATAATAG AAAAATGCTTTATTAATAGAAATGAAAGCCACGGCATTTACTTAGATGTTAAAGGTAGAG CATATTCTATTAAAAATAATGACTTAGAGCAAAATGGTGAAATGAGTGACCCCTTGAGAA ATAATAAAGGTACTGATTATAATGATATAGTTTATGGTTGTTATATGAAGGTTGAAGGTG AgGGTGGATTTACTAGTGGTTCAATAGATTTTAGTAATAACTATTCAGAGGAAACCTTAG

GTTTATTATACTTAGAAAGTCCTGATAATAAAATATGTCAAGGTGTAAAATTTGAATCTA ATATGTGGCGCCCTTATAATCAAGAATTATATTCAAATGGTTTACTACTAAAAGGTTGGA TTGAAGGCGTTAAAATTGGTAATAATAATATGTACGGTAGACATAAAGTAAGAGTTATCA ATGCAAATACTTATGGTATAGAAACTGACACAGATATAACAAACCCAGTATATAAAAATA AAAATATATCTATCGAAAAACATTATGACTATAATGGTACAATGGTTGACTTTAGAAGTA CTGGGAGAGTTGAAAAATATTCTATTGAAAATATGATACAATCAGCATCTTATGATGGTA GCACATATACCAACGTATATTTAAATAAACCTAGCGTTCCGTATGAATTACAAGAGGACG GACAAGGTAATAAATTAATTGGCACAACATTTTTAACATCTGACGGTACAAGTATCGGTT TAGTTGTCGACTTCTCATGGACTCATGGATTATTTAAAATAAGAAAAGACAGAACATCAT TAATCAAAACTGGTAACGCTAAGTTTATGGAGAATGGTGGATTTACAACAATAAATGGTG GTAATACACCAGTAAAAATCTATATAGACCATGACAACGAAATAGTAATTTTATAAAAGA AAAAGAGGGTTTATTTACCCTCTTTTATTCTTTCTTTTATATCCTCATAAAAGTCGATTT GTTTTTCTAGTTGATTTATGTTGTCGTAAGTGTCGCTATAGTTTTCAAAAAACATTTTCT CGTATGCTATTCTTGTATTAAGTTCTTGTATTCTTGTATTTAATAAATCATTTAATACAG TTTCTAAACCTTCCTTATCTTTACACTCATAATTTATGAAGTTATCAATAAATTTTTGTG TGTAGCGTGACCTTCTTAGTAATGTATAAATCATATCTAATTTGATTTTTCTGTCATAGT CTTCTAATAAAACACATCTTTTAGAATCTATTTTTATTAAATTTAATAATGTTTTGAATT TCATTTTTTAATCACCTCTTAATATAATATACAGCTTAAAAACATTACAAATAATAAGCT TGATATAATGAAAATTGAACTTGTTAAAAATGTATTGTTATATAAAAACATAAATGATAT ACCAACTAATATTCCCATAATAATGACTAATATTAATTGAATTAATTTTTTAATCAATGT TATCACCTCTTTACATAATATAAATAACCTAGAACGAATAAATTAAATAGTAACCAGTAA CATATTATTTTTAACACCCTAAAACCTCAATAATAAAATATAAATTATCTAAAACAATAA ATAATAAAATAAGAATTAATAAATTAATAAATCCATTTACATAATCCATAATATCACCTC TCTTAATTGATACTTTAATTATAACAAATTATGTTAAGCTAATCAATGCTTTTTATTGAT TTAGTTGTAAACAATTTGTTAACTAGAATGACAATAAAAAAGAGGCATAAAGCCTCTTGA ATTTAGTAAATGTATAATAAAGTTTCTATTTGTTCTTTTCTTGAATGTGCTATTTTGGAA TGTTTAAGTTCATCAGTTAAATATTTTAACATTCTTTCAATTCTTTGTGATAAATTATAA AACTCTTGATTAGATAAATTAGACCCTGTATAATAAAGTTCCTCAATTAATAAATTACAT CTCTTAATAACTCTGTCTATTTTACACATTTTAACCACTCCTTGTTTTGATTTGTTTTGT TTGTTCCTTATGTCTATATTATACCAAATTATGTTAAGCTATTCAATGCTTTTTATTGAT TTAGTTGTAAACAATTTGTTAACAGATAGTGCTGTTTTATCTACTGGTAATAACTGGGGA ATATGTCGAATCGTGTAGAGGGTCGAACAG

9.7.2 CPAS1 (F43) phages' sequence

>NODE_1_length_152340_cov_119.513_ID_1
TCTTA $\bar{A} C \overline{A T C A G T T T T G T A T G \overline{C T C C A ̄ G C C A T A T T A C \overline{C T A C C A T T T G A C T A T T A G C C C C T T ~}} \text { ITM }}$ GTATAGCGTTAGCACCATCTACTGCTGCTTTACTTTTGGTTGTAACTAAATTGGTGTGGT TAGTATTATCAGTTTTATAGTGTTCGGCTTTATTATTGGTTTCTTGTGAAGAAGCCTCAG TTCTAGCCTCTGCTCCATTTTGACCATTAGTCACCTTTGTACTTTCGCTATTTGCATGAG CGTTAGTATCATTGGCATAGTTATTCATTTTAGCTTGAGTTTCTTGATTAGATAGACCAA CACTATGATTCATAGCTTGTGTTTCAATAGCTTGTTTACTTGATAAATCATTTATCCCTT GTTGCAATAAATTTTGCGAATTTTGTATTGCTTGTCTATATGTAGCATCACTTTCAGTTC TTAATGTTTTTTCTAAAGCAATACTAACCACACCAATTTAGTTACAACCAAAAGTAAAGC AgCAGTAGATGGTGCTAACGCTATACAAGGGGCTAATAGTCAAATGGTAGGTAATATGGC TGGAGCATACAAAACTGATGTTAAGAATTTTGATGATGCTTGTAAAACTAAGGCTTTATC AGCTTTTGAACTTATGCAAAAACTTAATGATATGATGGCTCAAGTAGGGTTAGGATTAAA TTCAGCAGGATTGCCCAATCAATTCGACCCTAAACAACCTAGCGTACCTTTAAAACCAGG ATACCAATGGAAGAAAGATGGTGTCTTCTGGTCTGCTTGGAGTGAACATAGTATTGATCC GATATTACCTTCAAACAATCCAGTACAAGTTGACTATTCACCAGAAGCTAATGGACATGG TGGCAAAAAAGGAAATAAGGGTAGTAAAGGTAAAGGTTCTAAAAATGGTGAACATGTAGA TATTAAAGATATCGAAGACAAAATCGATGCTTACAAATCTTTACAGGATGCTATAGATGA TGTTAACAATGAATTAGAAATAACAAAAACTCTTGAAGAAAATGCTCAAGGTGTTAATAA GCTTCAATACATGAATAAAGAAATAAATCTTTATAAACAAAAGAAAGACGCTATAAATAA TTTAATAGCTGCCAAACAAAACGAAGGTAGATATTTAGAAGGTGTCTTAAAAAGCAATGG

CTTTAACGCTTCTAATGGTAATATATCTAACTACTATGATAGATTAAAACAAATAGAAGA TGAAGTTAATGCTATGGATAATTCCAATAAAGCTAAAGAACAAGCAATTAAGAATTTCAA AGATTTAAAAGAAAAAGCTGATAAATATTTTGAAATAACTTCTAAGGAATTACCTAAACT TAATAATGAATGGTATGCACTAGCTAAAACCATTAAAGAAGTTTCTGAAAAACAAGTTAA GTTAATGGGTGATACTGAAAGAGAAATGACTAACGTTGTTAAAAATCAAGTAGAAGAACG TAAAAAAGCTTTAGAGGATGAAACTTCTAAAATAAAAGAAGAATTAAAGAAACAAAGAGA TGAGTATAACAAGAAATATGACGATGAAAACTTTGAGAAAAACCTTAAAGAAAAGCAAGA TAAGTTAAATAAACTTAATGCTCAAATAGATTCTGTTAGAAGAGATATTTCATCTGAAGG ACAATCTAAACTTAAAGATTTGTTAAAACAAAAAGATGACCTTGAAAAAGAATTAAATAA CTTTATTAGAGATAGACAAAAAGATCAAGGCAATAAAGCTTTTGATGAACAAATGGATAA GTTAGATAAACATAAAGATGACAAAATAAAAGAAATGGAAAAGACTTATACTGATGAAAA AATAGCAGAATTAGCAAAAGGTATGATTCAAAAAGGATTTGTTGAAATAGAAGGTCATGT TATAAAACTTAGAGATGCTTTAAATGATTATTATAAAAAGAATGGCGAAGTATTTGCAGA TAGTAGTCTTAAAATGCAAGAATACATAGATAATCTTGAATTAACTAAGAAACTATATGG TGAATTAACTTCTATTAATAACAATCTAGGAGTATCAAGTTCTAATATTAGATATAACAG TGGTAACAATGTTGTACAAGCTATTCCAAAGGTTGCTTCATTTATGGCAATACCTCAAGG TAGCAAAAAGGCTAATATCAACATCAACACACATTTAAATGTTGGTTCAGTAAATAACGG AACAACAACTGATGATATCAAATCTATGTTAGATGAAAGAGATAGAAAAATTATTAATGA GATTAATGAACAACTTAATAGTTATTAATACGTTTTAGTGGTGTACGATAACACCACTTT AATATAAATAATATTGAATTAGTATCTGTATTAGTTGAATAATGTTTATATTAAAGTTTA GTAATGTTATAATTAGAGTATAACTATTGAAAGGAGTAATTTTAAATGGTGTATAGAACA TTACTAAATCCACAAATAGATTTTGTGTTTAAAAAGATATTTGGTACTGAAAAGAATAAA CCTATATTAATTAACTTTTTAAACGCAGTAATAAAACCAACAACTCCAATAAAAGATGTT GAAATTAAAAATAACGATATAGATAAAGACTTTGTAGAAGATAAATTTAGTAGATTAGAT GTAAAGGCTACAACTAGCAATAAGGAACATATAAATGTTGAAATCCAAGTAAAGAATGAA TACAACATGATACAAAGGACATTGTATTATTGGAGTAAAATGTATTCAGAACAAATACAA AATAGAGATAACTATAGTAAGTTAGAAAGAACTGTTTGTATAAACATATTGAATTTTAAA TACTTAAAAAATGATAAATATCATAATGCATATAGACTAAAAGAAATAACTTCAAATGAA GAGCTAACAGATCTTCAAGAAATACATTTCATTGAGTTACCTAAATTTAATGAAATAGGT AATAAAGAATATGTTGAAAATGTTGAAAAAATGGATGCTCTAGAAAAATGGTTAGAGTTC TTAGTTGAACCTGAAAGTAATACTGTAAGACAACTAGAATTAAGCAATGAAGAAATTAGA TTAGCAAAATCTGAATTATATAAGCTTAGTATGAATAGTGAAGAGAGAGAAAAATATAAT ATGAGAGAAAAAGCTATATATGATAGAATATCAGCTTTAGAAGGTGCAAGAGAAGAAGGT AAATTAGAAGTAGCTAAAAAACTATTAATAGCTAATGTAGATATGGATATCATAGTTTCT TCAACTGGATTAAGTGAAGATGAATTAATTAAAATAAAAAATGGATTATAGAATATGTTA AAGAAATATTTATAGAACTTAGATTAAATCTAGGTTCTTTTTTTATTGTAAAAAATTGAT TAAAATTGTGTTTTTAACTAAAAATTGATGTTATAAAATGCCGAAAAACCTAGTGTTTTA CAACATGAGTTTTTATAAAATTACTCAAAAATATATGAAAGGTGGTGGAATAATGCAATT TAGAAAATTCTATTTTGAATTCGATGGAAAGAAAAGTAAAGATAGAAATTTAAAAATGGT TGTAATTGATAATAAGGGTGAAGAGGATAAGTTTGGTGTGGAACAAGAGATAATTGAAGA AGATAATGGCACTGATACACCACTTTTTCTAGGTATTAAAAGAAAACCTCAATCTCTTAA AATATCTATTATGAAGATGAATAAATATAGTAGACCTTTACCATATACAGATAAGGAATT AGAAGAAATATGTAGGTGGTTATTTAAAAAAGAATATAAACCCCTAAAAGTTTATGACCA AACAGATTTAACTTATTATGTAATATTTACTAAGGGAACAGATTTCTTTAATTGTGCAAA AGAAGGTTATATCAATCTTGAAATGAGATTAAACGCACCTTACGGTTACAGTAATTTATT TAATAATGATTATTGGATTAAAGGCGAAAAAATAATAGATATTTATAATGGAAGTGATAT AGATAATTTTATATATCCTGACATTGAGTTTGAATTAAGAGATGATAGTACAGATTTAAC TATAAAAAACCTTTCATTGGGTGAAACTATGGAATTTAACAATCTTGTTAGCAATGACCA TATAATGATATACAATGAAGGATTAAAAGATATGGTTAGCTTAAAAGATAAAAGTAGAAA TATATTTCAACATAGTAATAAGAAGTTTATTAAATTGCAATATGGATTGAACAGAATACA GGTCAAAGGAAATTGTAGGATAAGATTTTTATATCAATATCCAATAGGATTTAAATAAGG AGGTGATATTTAATGTTTAGAGGTGTAAGCATAAATCCAAAAGATGATGAGCCTAAAGCT GTACTATATAAGAATAGAAGAGAAGAATTATGTGAGATTCCAAATGAATATATAGAATCT ATAGAATATAAACTTAGAGATTGTTTTACTATGACTTTAAGTGTTCCTTCTAAAGTTCAA AGAAGAGGAGAGACAATTGATAATCCTTTATTTGATAAGTTTAAACCTAAAAGACAAATT GTATATAATGGCGATAGATACGAGATATGTGGAGACTTCAAAGTGGAATCCAATAAGCAT

ATTAAGAAAAAGAAGTTTACAGCTAAATCTTTTGAAATAAATCTAAACAAGAAAGATGTT GCCGTACAAGAAGGAACTTTTCAATTATATAAGTCTAAAGATGATAAAATTGATGTTGAA GAGGGTGTTTTAAATTGGCTTGAAAATGAAACAAGTTGGAAAGTTGGCTATATTGATCCT AACGCAAAATCAACTATTGGTTTATTTAATGAAACTGTAGATATAGATTTATATAATAAT TTAAATGTTAAAGATGTTCAAGTAGATAAAGTTTTATTTGATAAAGATATTTATATTAAT ATCCCTAATCAAGCTCTTAATTTTAGTATTAAATATAATAATATTGTTAGTATGGATTCT AAAAGTAATGTAACTAAAACAGAAAACTATGAGCATAAGTTTGAAAATTTTGCAGAAGGA ATTAGACATATTAAAGCTTCATATAGCATTGATAATAGTTATAATACTGTAATTAGATAT GAATTCACATTAATTAATGGATTCGTAAAAAAAGAAGTTGAGAAATTTACATATTTACAA GGATTAGATGTCAATTTCAAAGATATTGCTTTAACGTATGAGACAGGGAATAAAGTAGAA AAAACTAAAACTAAATATAGGAGTTTTGAAAAAGGAATTCATCAATGGCTACCTTTTTTA AgAGACATGGTAGAGAAAGCATATGATTGCATATTCCAATTCGACACTATTAATAAGCTT GTGAATGTATATGATAGGCAAACTATGGGAAGAGATAATGGATTTTATCTATATTATGAC CAATATCTAATGAAAATTGATAAAGATTTAAAATCTGATGATATAGTAACTAGATTAGTT ATTGAAGGTAAAGATGGATTAAGTATAAATGGTGTAAATCCTTTGGGGACTAATTATATA GAAGATTTTACATATCTTTTAAAACAAGGAAACATAAGCGATGAATTACAAATATCCCTA CAAAGATATAATAATTATATAAATAAAGTTTTTGATGAGTGGGATTCATATAAAAAGAAA AAAGACGAAAAAAACAAACAAAGTATTTATATAGAATCAAAACTACAATTAGTTAGGGAT CAATTAGAAGTCAAAAAATCTATAAAAATAGCTTATATAAAAGCAGGAGAAGATAGAAGT TTTGAACAACAAATGGAATTCAAACAACTTGAAGCAGAAATAGAAGTATTAAATAATGAC TTAAATAGTCTTATAAAAACTTTAAATATATTAAAAGAGGATATTAAGAAATTAGATACT AATATGGGAAATTGCAATAGTTCATTAGATAAAAAAACAGCTAAAGATGAACAAGGGGTA ATTTTTAGCGAAGAAGATTTAAATGAATTGGATGAATGTATTTATTCACTTAGATTATCA GATGATTATTATACTGATGATAAAGAATTGTTCGATAATGCAAAAAGAGTATTGAATGAA AGAAATATGTTACCTATTGATTTTACAACAGATGTGGTTGGATTAACAAGACATCCTAGA GGTTGGAAAAACATCGTTAAATTAGGTGATGTAGCACATATTATAGATGGAGAAGAGGAA ATAGAAGGCGGAGAGGTCAGAATAACAGGATTTAAATATATTCCTTCAAGAGAAAATTCT CAAGCTAAAATATCGAATGTTGAATTTAATAATTCTAAGTTTGTATTACATGATTTAAAA ACAATAAGAAATATAAGTTTAAACAAAATAAATAGAAGTGCTAATGCTATAAATTTATAT AGAAATACATGGATAGATAGTTCTGTAGCAACTAATAACTTTAAAAATATTCAAAAGTAT GGGATTCAAGCTAATTCTATTCCAATAAAATGTAATGAAAATATAAATGAGCTAGATATT ACTGGCACTGGTGTTTGGTGTACAGATAAATCAGATAAAACAAATAAAAAACAATTTTAT ATGGGTGCTGGCTTTTTTGCAGTAACCAATGATAATTGGAAAACTTGTAAAACGGTTGCT GATGAAAAAGGATTAGTTGCAAAAAGTATTATAGGAACAGCGATATTAGGAGAAAGAATG AAATTAGTAAATCCTAATAAATCTATAAAGATAGATGATTATGGTATTAGTGTATATGAT TCTAGTAAAACACTTAGAGCAAGAGTAGGTATATATAGCATCAGAGGAGAAAATAAAAGT AGCTTAATTCTATATGATAAGAATGGGAAAGTTGTATTATCAGGAGATGGTATGTTACAA AATGATAGTTTAAATTTTTGTGATAATATAGATCAATCTCATCCTATGGAGTTTCCTATA TATTTATATAAAAACATAGAATTAAGAGAAGCAAAATTATTTTTACATTTATCTAAATAT AgAGTTGGATTTGAAGGTGTTGAAGCTGGTGGGTCTATAATTAAAACTACAAATATGAAT AGCGGAGTTTTTACTTACTTATCTAGTGCCTCCAAAACACAAATAGGTGGAGAAAATATA ACGATAAATAAAAGTGATATAGAGGATTTGTTAAATGATAAAAAACCTTCTATACAAATA GACAATAAACATTATCATTTAGAAGATAATCACAAACATGAATTACCTAATCATAATCAC GTAATTCAACTAGACAATCATAAACATGAATCAAAGTATAAAATTATTGAAACTACAATG CCAACTTCTATAGGCGTTTATGTTAATGATAAATTAGTTGCTTCAAATATAAATGAAGAT TGTAATATAGAAATATCTAAATTTTTAGAAACAAATAAATTAAATATTATAAAGATAACA ACTCAGACAAATGGTAGAGTAAATTGTTTGCTGTCATTGTCTGAGTTTATTAATTTTTAA GGAGGAATTTATTAATGGCAGAATTAAAAGTTATAACTCAAAAGTTAGAAAACAAAGATC ATGACCTTATCGGAGAAGTTAGAGGTGATGTAGATGTTAATATGGAAGCTTTAAACTTTC AAATAAATATTTTTGATAAAAATAAAGCGTTATCAGATAAAAATAAATTAAGAAATACAA TAAATGATTTTTATTACAACTATTTTAAACCAGCTTTAAAAGGAACTGAATGGGGATTCT TAGTTTTAGAACCTATATCAATAACTGGTGTTAGTAATACGGTAATTAAAATTGGAGATA AATTTGATAAAAAAGAAGGCGTACTAGCTATTAGTGCTATAGACGGAGACATTACCAAAG ATATTAAAATAACAGGTGAAGTAGATAGTAATAGAGTTGATAATTACAACCTTACTTATG AAATAAAAGATAGTGTTGGTAATAGTATGACTGTAATTAGAACCGTCACTGTAAGAACTA ATAATCCTCCAGTAATTAAAGGTATAGAACCAATGACAATTCAAGTTGGAGAAAACTTTA

ATCCAAGATTAGGCGTAACAGCAGAAGATACTGAAGATGGAAATTTAACAGATGAAATAA AAATAACAGGCATAGTAAATAATCAAATACCTAATGTTTACAATGTTACATATGAAGTTA CAGATAAAGATGGTAATTTAGTAAGCAATATAAGAGCTATTACAGTAGAAGAAAAGAAAA AAGAAACGGAAGAACATAAAGAGGTACAAGTTCTTCCTGAAAATCATGAGATAGCATAGT GTTATAAATAATATGCTAGGGGAAAGGAGGAAAGAATTTGAATAATTTAGAACAAATAGT TTGTCAGTATTACAAAGATAAAAATGGTAATCCAATGTCTTATCATATACGTAGAAAACA TCAGATTTCACCTAAAAATTATCAAATACAGCTCGATGGTATTCCAGATGAATATCGAGG AGTTGAAGTAATTGAACCAATAGGATTATATAGGGTTTATAATGCAGATGAAATAACAGA AAATAGTTATTGGGTTAGAGATGATGGAAATGTTTTCTTCCATGAATCAAGAGCATGTCA AAATGTTATGCTAGATTATTATAGTATAGGACTTCCTGTCGTTGGAGCTGGTAGAATATA TACTCTATTAGATGAAGAGGGGAATGTAATTGAAACTCTTGAGGATATATTAGAAAAAGG TAAAACCGTTATTGATGCCTTAAAAACAATGAGTGATGTTATAGTAGCAATAAATGATTT AAAAACATCAACTCATGAGGCTATAAAAGTTATTAGCACATTGGATGATACAATAGATAG AGGATATGAATTGTTGGCTAAGTTAAATGCTGTAGAATATATTCAAAGACCAGAGTTTAA TAGAACGGTAACGCAAATTAATGGAGATATTAAAAAAAATAAAGAAGATGCAGATATCAA TATAAAAAAGATAAATGACAATATTTCAAATATCAAAAAAAATATGAATAAACAATCATA TATATGTGACAATGAAGAGGATATTGGTGCATGTGTTAATAATGCTATTGCAGAGGGATA TAAAACAATTAAAATTCCAAGTGGACAATATAATTTAAATACTTCAATAATTTTAAAAAG TAATGTTGAGCTGTTTGGAGACAAAGATACAATAATCACAACAGACAAAAATATTCCGAT AATTACAACTTCAAAAATAAAAAATGATTGGATTAACACTTGTTATATTCACGATTTATG GTTAACCAACCACAATAAAGATTTACAATTTTATCATATGGATTTATGTAATGTTAATAT GACAAAAGTTGAAAGAGTTAGGATAGAAACTGATACTACCAACTCAACACATAATGTAGG AGGTATTACTGTATATTACAATGGAGATTATATAGGAGAAGGAGGAGCATATAGTCTTTG TATAGATAAGTGTGATTTAAGAAGTTCTTCTATATATCTAGGGATCACTGATTGTTACAT AAGTAAAACTAATATATGGGGAAAAAATAGAGATTTTGCACTATGGATAAATTCATCCTC ACAACAAATATCAGATTGTCAATTTGTTGGTGGACAAACATATGGTGCTATATATATAAA GAATAAAAATGATTATGATGTAGAAATATTAAAAATAAATAACTGTTATTTTGATGGAAG TTATGAGGGAATTCAAAGTGGAATAGGATTAAATGCACATAAGATGAGAAACTCTAATAT TTCAAATTGTAGTTTTTGGCATCAAAAAGATAGTGCCATGTATTTAAAAGATTGTTTTGG AGATACAATAACTAATTGTAATTTTAATCAAAATGGTAGCAATAATAAAACTCAAAATTC TAATAATGTACAAGATGGTATATACGATATTGTAGCCGAAGGTTTATTTCAAGCTAATAT TATATCTAATAACACACATAGTTGTAACGAAAGATTTTACATAAAACCTAAAATGTACGA CTTCAGTAGAGTAACAAGGTCTAGTGAATGTGTGTTTAGCAATAACATTATATTCAACAA TGGGCTTTATGATTCTGACAACCCAATTAAAGATGTTGATAATGTTAGAGGTAACAATAC TGTATTCTTTAATATAGGAACTTATAATAGTTGGTATGACATATCTTTACCTACCAATTT AAGTATTAATGGAGAATTTAAAGGTTTAGGAACATTGAACAATCTTAATTTTGGTGTAAA TATAGAACCTTCAGCAACATTTTTTGAAGGATATACTGGATTACCCGTAGATAAACATAT TTTAACTAGCCAAGGGTATATAGAAAGGTTTGCCGTATTGCTGGATAAAAGATTAGAAGT TGGAGATGCTGTGTTTACATTAAAAGTAAATGGACAAGATAAAGCAAGTATGAGATTGGG AAATTATCAATGGAACATATCCAATTTTACAAGATTCCATGTTAATGCTGGAGATGTGTT ATCTTTAGTTTGTAATACAAGTGGAGTAACTCAATCTTATAAGTGTAATGTCGTAGTAAC TATAAAACAATAGTTTAGTTAAAACATGTCTTTTAACTAAAATAAAATAAAATATAAAAA ATGTAAGGCTAAGGATTAATTTCTTTAGTCTTTTTTATATGTAATAAAAAATAAAAAGGA GATGTTTATATGTCAATAGTAATGAAATACAGATTTGATAATGATGACCATTGGGTGGGT ACAAATAATCCTGAATATATTGTAATTCATGATACAGGAAACTATGATGATACAGATGAA GGAAACGCAAATTATTTTTGTACAGGACATAGAAGAGCTTCAGCACATTATTTTGTTGAT GAAGATTCTATAACTCAAGTTGTTAGAGAACATGATAGTGCTTTTCATTGCGGTGATGGT TACGATAGATATGGTATAGGCAATAGAAATAGTATAGGAATAGAAATGTGCAAAACTAAA GGGGATATATCAGAACAAACTATTGAAAATACTTTATGGTTAGTTAAAGATATTCAAAAG AAATATGGAATACCAAATGAAAAGGTGTGCCGCCATTACGATGCTTCTCGTAAGATCTGT CCTCAAACTTTTTCACCTAATAATTGGGCTAGATGGTGGGATTTTAAAGCTAGATTAGAA GGGAATGAAATTCCACATGTTGAGACTATAAAAAAAGACAATCCTTCTTGCTTTTATGAA AGTGATATAACTAAGACTAATGCAACTATAGTTGGTGAAGGAAATATTCAAGTATTAGAT GATAAATGTAATCCAATAAAAGGTAGATATATTTCCAGTTTAGATAAAATATTTGTATTA GGAATTTATCCTTCATCTAAATTTATTGAAGTAATTTATCCAGGAGGAGATAAAAAATAT CATGCTTATATCTCTATAGATAATTATAGTAGAATAAGTTTTGATTATCATATGCAATAT

CAAAATGATGGTGGTGACACTTATGTTTGGTGGAGTTCTAAAGATGTAAATAAAACAAAT CATAATGAAATATTATCACCTAATAAAAAAGCCTCTCCAATGTATAGAGAAGGTGGATGG TTACGTATAACTTTTTATAGAGAAGATGGTACTCCAAGTGATGGGTATGTTAGATATGAA GGGCAACAATCAGAAAAATTCTATGAAAAAGCTAAAATAAAACAAGGTATAGTTAAAGTT GATAGTAATCTAAATGTTAGAGATGATGTAAATGGAAATATTATAGGTAAAGTATTTAAT AATGAAAGAGTCGCTATAGTATGGACTGAAACAGGTTGGTATTATATAGAATATGATACT TCACATGGTAAAAAAAGAGGCTATGTAGATGCTAATTATGTTGAAATAGAATAATATTGG AGGATTTAATATCCTCCTTTTAGATAATAATGGAGGTATTAAAGGTATTATGAACTTAGA AgCAGTCAAAAATGAATTAGACAATGGGGGAAGGTTTGTAGGGGAATATAAAGATATAAG TGAGTTAGTAAAATATCTAGAAAATATTAATTTGTCCTATAATTTCACACATAAAAAAAT AATTGAAATTTTTAAAATAAATAATGATTATATATGTGTTAAAGAAGGAATAAAAAGAAA GGATGTGGAATAAGGAATGGCAATGTATTTTATAAAAGATAGTTTGGTTGAAGACGATAT TAAATTACAAAATTCTTTGAAAGCTACCAAAGAATGTATAAAAGAAAATAATAAAAGTAT TAATTCAGCTTTAGATATAACAAATAAATATGCTGATAAACTTAAACAAAGTACAGAAAA AATTGAACTGCAATATGCTAATACATTAAATGACATCAATTTAAAAATATCGGACATAAC AATAAACAAAAAGAAAAAAATAATTTGTTTTTATACGGATGTAAATATTAATATAGAACA AGCTAAAAAAACAATTGGTAAAATTAAAAAGTTGGGAGCAGAGTATTTGTTGTTATCTAT ATCTATAAACAATAATTTATCATCAAATTCTCCTTCAAGATGGGTAGAAGATGAATATTC AATACAATTAATAAAATATGCTAAAGATATAGGATTAAAAGTGGCTTTAAAATGTCATAA TGTACCAACAGACGGTGATGGTACTAATAATTATAAACCTAACAATGCAGAAAAATGGTT TAAAAATTATAAAAAAATAGTTTTAGCACAAGCTGAAATTTCAAATAATGAAAATTTAGA ATATTTTCTTATAAGTAACGAGATGAAATCTGTTACAACGTTTGAATTTAAAGAATATTG GGTAGATATAATAAACACTATTAAGAATGAATATCCTAATTTAAAAATAGGAAGTTCTGT GAATTTACCGGAGGCAATGACATATTCTCTATTTAATAATTTAGATTTTTATGGATTTAA TTTATATCCTTGTTTAACAAAAAAAGGAATGAACTCTACAGATAAAGAAATAAGAAGTGC TTTTTACTATGATTTAGAGGGATATGAAAATATTCCATTTATTAGCAATATGAAGAAAAA TAATAAAGAAATTTGGATAACGGAAACTGGTTGTCAACCTAGAGAAAACGCATTAGAACA TCCAGCTAGTTGGAATGATAAAGCTAAGTATGATGAAAATGTTCAAGAGTTATACTATAA ATATATTTTTGAGATGTTTGGAAATATGCAATCTATTGAGGGGTTAGCGTTGTGGGTGTC AAACGAAATTGATCCTTTTACATTTATAGGAAAAAAAGCAGAAAAAATAGTTGAAAAATA TTTTGGAGGTGATCTATAATGTCGCTACCTAGTGATATTAAAATAGGGGGGTTACCAGCA TTGCATGAAGGAAATCATAATAGTAATGGTAATCCTCACAATCAATATGTTATTAAAGAT ATAGAATATTCGATTTCTCCAACTAATGAAATAAGTAATGCTTTTATATTGTACGAAGTT AATCTAAAAGAAGATTATCAAAAAGATAATATAATATTTACTATATCATCTTTAAATAAT GATAGTATTTCTATATTTAATTATACATCAGTTAATATTCCTAAATCTGATCCCCATATT GGTGTTAATGAAATTGTCCATTATGGGAATAGCCTATCAAAAAATGTCGGATATAAAGTT AATGGTAATAAAATATCAGTTTTTTTTATTAAAAATGATTTTAACTATTTAATACAAACT AATTTAATCAAGAGACAAAATACTTTAAATAAAGAAGAGATAGATATAGTATTTAAAGAT ACACAATTAAATGAAAAAATAAAGTTAAGCTATATTAACGAAAACAATTTTAATATTTTA ACTTTTCCTAAAGCAGAGAATAAGTACATGAAATTATTTGATATTGAAATCAAAAAAGAA TGGTCTGAGAAAACTATAAAATTTGATATATTAACAGATGAAGTGGATATTAACAATATA ACATATGGTACATATATTATAACCATAAAGAAAATATCTGAAAAATATATAATAGATTGT TTACTTATAAGCGGTGAACAATTAATTCCTCAAGATATCTGTTTTGCTGAAAATGGTGAA TATATAAGTTGTTATTTTTTAAATAGATTAAACAAAGATATATCATTTAATATTTTATCT CTATCAGGTGTATCTTTTAAAGAGTCTTATATATACTTAAACAATAATTTGTGTTATAAT GATAATATAAATAAGAAAGAATCTGTAAATTATAGATATGGTTACAATGTAATGCAACAT ATTTATACATTTGATGATTTAGGTAACAAAGTTGCAATAGGTGTACATTCGGATGGAAGT GTATATACTCAAAAAATAAAATAAAAAATATATTTAGAGGGGATATGATGTTTTTCATGA GAAAATTTTGTTTATTTTTAAAAGCTATACCAAAAACCATATATTTTAATTTTAAATATC TACCTATTAAACAAGCTATAAAATTACCAATATTAGTGTCTAATAGAGTATGGTTAATGA CTTCTAAAGGAAGAATAAATATATTAACAAAAGATATTAAATTTGGAATGATTAAAATTG GTTTTGGGGAAGTTGGATTGTTTGATCAAGTAAAATCGAGAAGTGTGTGGCATGTTGTAG GAGAAGTTATTTTTAAAGGTAAATGCAATATTGGACACGGTTCTAAAATATTAGTTGGGA AAGATGCTATTCTTGAATTTGGCAAAGATTTCGATATAAGCGCTCAAAGTCAAATAGCTT GTGAAAAACACATATCTTTTGGAGACAATTGCTTACTTTCATGGGATATATTAATTATGG ATACAGATTTTCATAAAATAAAAGATATTAATGGTAATATTATTAATCCTAAAAAAGATG

TTGTTATTGGTAATAATGTATGGATTGGTTGCAGAACTACTGTTTTAAAGGGTGTAAAAA TTAAAAACAATACTGTAATTGCAAGTGGGACAATGCTCACTAATTCATTTAACGATGAAA ATGTAATTATAGGAGGAAGCCCCAATAGGATTGTAAATAACAATGTTACATGGGAGTTTT AAAAAATAAAAAAGTATTAAAAGACTAAAGAATTAATCTTTAGTCTTTTTTATATGTAAT AAAAAAATAAAAGGAGATGTTTATATGGAAAATAAAACAGTATTAGTAAAAGAAAGATTA AAAAATCCCGCATTTTGGTTTGGTATGCTTGGTGTAATATTTAGTGCATCAGGAGTAGAT TTTAATACTTTAACTTCATGGGGATTATTAGGAAAAGCGCTATTGGATATATTAGAAAAT CCAGTTGCTATAGTTGCTATACTTATGGCGATGTATGGTATATGGAATAATCCAACGACT AAAGGATTTAAAGATATAAAATAAATTTACAATATAGAAAATATAGTAACAAACTATGTT CCTATATTTTAAAGATAATTAATAAATATCAATTCTGTTGAAATTTTGAATTTTAAACCA CCATCATATTATAATTTACTAGATTATAATAATGTTTGAATTTGATTTTTCAACAGAATT CATTTACATCTCATTAGGTAAATATTTTACAATTTAACTTCGTAAAATATAGATTTTGCG AAGAAAATATGTTATAATGTAGTAAAATAAAGATTAAAAATGAGGTGTTTAAGATGAAAT ATGAACAAAATATTAATGAAATAATATCAAACAATATATTCAATAGTAAAGATATGGATA ATTTGAATGATATATATAATAATTACGACAACTTGGGAGTTACTAGAGATTATGAAAATT ACATAGAACATATTTATATTTTTTATAATAAAATGAATATGTCTATAGATGAAATAGCGA ACATATACGAAAAAAATAAAAGAATTATCCAAATGTGGATTGAAGAATTAAAATTAGATA GCTTCAATTCTGATGAAAAAATGAATTTGAACGATAATTCAAACATACAATTAGAGTTGG ATAAAAAAGTTGGAATCAAAAAAATAGAGGAAAACAAATTGCCTAAAAGAGTTTATGATT TTATATCCTACTTAAAAAATATAAAAGAACAAAGTCCTAATACTATAAAAAATTATACAT ATGACTTAACATTATTATTTAAGTATCTAGTTGGAAGAAATCAAGATGTTGAAAATTATG ATAATGTTGGCATAGGATATGTTGATGATAACTTTATAAGAAGTATAACATTATCTGATT TATATGATTTTTTAAACTATGTAGAAGTAGATAGAAACAATAGTGCTTATGCAAAAGCTA GAAAAGTTGCTACTTTAAAATCTTTCTTTAAGTTTTTGAATGTAAAAATAAAAATAATAA ATGAAAATCCTACAATAGAATTGGAAACTCCAAAAATAAAGAAGAGACTTCCAGTTTATT TAACTTTAGATCAAAGTAAAAAAGTTTTAGAATCTATGAATAAAGGGAAGAAATACTATA GTAGAGATTATTGTATATTTGTACTATTTTTAAATTGTGGAATGAGATTATCTGAACTTT GTAATATAAAATTAAAGGATATAAAAGAAGATACTATAACAATTATAGGTAAGGGAGATA AAGAAAGAACAGTTTATTTAAACGAAGAATGTATAAAAGCAATTAATAATTATTTAAAAG ATAGAAAAGAATTAAATAATTACAATGAATATTTATTCTTATCAAAAAGAAAAACAAAGA TAACTGCAAGAGCTGTTGAAGATTTGGTGAAAAAGCATATAGAAAATGCAGGATTTAAGG ATAAGAAATATACTCCTCACAAACTTAGACATAGTGCAGCTACAATGTATTTGAAAGAAG GGGTGGATATAAGATTTATTCAAGAGATATTAGGACATGAAAATATATCTACAACTCAAA TATATACACATGTAGATGATGTAGAATTAAGAAAGATAGTGAATGATAGTCCATTATCAA AATAAAATAAATTTGAAAATTATTGAAGAATCAAGATTAATTTCTTGGTTCTTTTTTATT TATATAAAAAATATTAGAAAGGAAGCGTTTATGAGATATGGCTTTAAATATGGATAGGTT AAATAAGTTTTTAGATTATTTAGAATTAAAATATATAGATAATATTTCAAAGATTAAAAC ATATAGTACATCTGACAAGATTTCATTTCAAGATAAAGATGGATATTTGTATTTTCTTAA TATTCAAAATTTATCAACTTTATATAGAAGAAAAACTAAACCTGCAATATTTTTTCAACA TAATATTTATACTTATGACAATATTAATAATTATTTAAAATTAAATAATATTCCTTTGAA ATTGATGACTATAACTCCTAAGAATGCCATTTGTAAACTGAAATGGAAATGTTTAATTCA CGACGTAATATTCGATAGAAGTTGGAACGTTATAAAAAATGGTTCAATTCTTTGCCCAGT GTGTGAAAGAAATTCATTTAGAAAAAATAGGTGTCATAAAATTGAAGATATAGTTATAAG AGCCTTAAAGGATTATAATATTCAAATTTTAGATGATAGGTATATTAATAATGAAGAAAA ATTATCTTTTATATGTAACAAACACAAGGATAAAGGGATTCAACATAAAAGTTGGGGTGG AATGATATCAAAATCACATCCTTGCATTTATTGTTCTAAAGAAAAACAATTATCTAAAAT TAGATATTCACATGATGAATTTATAGAGAAAGTAAATAAAATACATGGTGATAAATATAA AgTTATATCTAATTATATTAAAGGTAGGGATCATATCAAAGTATATTGTAACAAATGTAA TAGTATTTTTTCTATTCGTGCAAGTCACTTATTAGAAGGACACGGTTGTGGATTGTGTAC AAAATCTATTGGTGAAGAAACTATAAAAAATATTCTAGATAGACATAAAATAAAATATAA AAGAGAATTTAGATTTAATGATTGTAGAAAAAGTAAACCTTTACCATTTGATTTTTATTT AGAAGATTATAATTTATGCATTGAGTATCAAGGAGTTCAACATTATAAGCCAGTTGAAAT TTTTGGTGGAATTGAGCAATTTAATAAACAAAAAGAAAACGATAGCTTTAAAAGAACTTA TTGTAAAACTCATAATATAAATTTGTTGGAAATACCTTATTTTGAAAGCAATATAGAAGA TATGCTATTAAATAAAATAAATACAAAGGAGGAATTCTAAATGACAAAAACTAATATAGA AAAAAATATGGTACGTGAAAGAGCTTTAAAGTTACCTGTGGTCACTGATGAAATGTACAA

TGAGTGTAACTATGAAAACAGAGAAATGGTGCAAGAATTTTTTGAAGTTAAGTCTCAATT AAGCAAAGATACTAGAACTCAATATAAATCTGGATTAAGACAATTTGTATATTGGTTACA TACTAGCTGTAATGATAAGCCTTTTCATAAAGTAAAGAAAAGAGATTTTGTAAGATATAT GAGCTATTTGGTTAATAGAGGGATGTCAAGTAGTGCTTTAAAATTTAAAAAATCATCTGT ATCATCTTTATGTGGATATATAGAAGATGTAGTATCAGAAGATGATGAAATGAAAGAATA TAAATCTTTTAGAAATTTTACAAAAGCATACAAAGATATACCTAGAAACTATGTTTATGA AAAAATTCCTATATCAGAAGAGGAATATAAAATATTGATAGATGCATTAATTGATGATGA AAATTATATGGGTGCTGCATGGGTTGCTTGTGCATTTAATTGTGGTGCAAGAAGAGGAGG TATTAGACAATTTGAATCATCAATAGCCGAACAAGAAATACCAGAGGGGAAAACTTTTGT TTATTCTAATTATGTAAGAGAAAAAGGTCGTGGTTCTGATGGTAAGAGAGTTCATTATAT GGTTAATGAAGAAGCTTTAAGATATATTAAGTTATGGCTAGAAAAAAGAGGATATAATCA TAAGTACATATTTACATGCAAATATAATGGAGAAATTCATATGATTAGCAGAGAATGGGC AAATGAATTTTGTGCCAATACTTTATCTGATATATTAGGTAGAAGGATAAATGCACATTT ATTTAAAGGTTCATGTATAACAAATCTTTTATCAAAGGGTAAAGATATAAAGGTTGTATC AAAATTTGTAGCGCAGCACAATAACATCTCGACTACCTCATCATTCTACGATCTTAGAAA TAATGATGAGGAAGCGAATCAATTATTTAGTTAAAACCTTCTAATCAAGTAAAATATTTG ACTTGAGAGGAGGTGACAACAATGGAAAAATTTATAATGGAGGCAATAGATAAACATGGT TTTCCGATTGTAATGTGCCTCTTAATAGGATATATAGCTTATAAAATAGTAACAGATAGA ATTAAAAAACAAGATGAAAGAATAGATAAAATGGAAAATCGTAATCAAGAAGATAGACAA TGTTTTTTAGATGAGATTACAGCTTTAAAATTAGAAAACAAAGAAGATAAACATATGTTT AAAGATGCTATGAATCTATTTAGAGAATCAGTTAATGAATTTAAAAGTTTTAATAAAGAG ATAAATTCAAAAGTTGATTCCATCCAAGATGATGTTAAGATCACTAAAGATGATATCACA GAAATAAAACAAATTATAGAATATAAAGCTAAAGAAAAATAAATTAAAAGAGTAGAAGAA AACTCTCCTACTCCCAATACAACAAAAGACAATATAAAAATTGTCATACTTATTATAATA TTTTTTATTGTTAAAGTCAAGGGTAGAATTATTAATTTAGTTCTACCCTATTTTTTTGCT TTTTTTATTTAGTCTTTCCTGTAGTACCAAATCCTCCCCTGTCTTCATTATTAAGTCTTT CAACTATATTAAATTCTATTTCAGGCATTGATTTTTGAATTCTAAATTGTCCTATTTTAT CACCTTTTCTTATCCAAGTACCCATGACAGTAACTTTATTACCTTCAATATTAACTTTTT CAGTTGTTTTTGCCATTGTACATTGTACTGGAAAATGCCACTGATCATTATCTCCTATAT ATGTATCATCCACAATACCAACGCTATTAGTCTGTATAACTCCCCAAGTTTTAAAAGTTG AGCTTCTAGGTGCTAAACACCCTTCCCATCCTTTAGGTAATTCTAAAGCAAATCCTAGAG GTATCATAGTATAACCCATATATGGTACAAACACATCTTTATTAGCATACACATCAATCC AATTTCCTTTAGTTATTTTCTCCATTTTAGTTGCTCCATCAAAATATTTAATTCTTAATT CCATAATTTATTATTCTCCTTTTCTATCTTGTAATATTTTTTTATTAACAGGGAGAATTA ATATCTCCCTTAAATATATTTATTATTTTAAATCTACTATATATTGATTCTCAGAACCAT ACATTGGATTTTCACATTTTTTATCTTTAATAAATTTACCACATATGATTTTGTCTAGGT ATGTAATTATTTCTTTGTTTTTAACTTCATCCCATTCATAACCTGTCCATAGATAAATGC TACAATCTGGAATTTCTTCTTTTACTTTTTTAACAATTCTAGTAGCTTCTTTAATATTAA ATGGTGCTAACGGTTCACCACCTAATACAGATAGTTTCTTGCTTTTCTTACATGTTTCAA CTACTAAATTGCAATCTAAATGATAGTTTTTGTCATATTCCCATGAACCTTTATTATGAC ATCCTTCACATCTATGTGGACAACCTTTAAACCAAATAGTAGTTCTAAGTCCATCTCCAT TTAGAATATCAAAATCTTGTATTCCTTCTCCTATATATTGTCCATAATGCACTACTCTAT TTTGGTTTTCTTGATATTTACCATCATTAACTCTTGTACTACCGTCAATTTCATAATAAC TTAAATATCCACACACTCTATCAACAACTATTAATTTTGTACTACCACAATGATTGCATT TAGGATTTTTAGGATCATATTCTGTTACTGTTTTACCACAATTTTTGCAAGTAATAGAAT CAAAGTTAACACCTTCATATAATCCTAATTTCATAGCTTTTCTAGTTGACTGACTAATTG CTTCAAGATTATGATTAATAGGATATTCAGTATAAACTATATGTCCTCCATTTGCTAAGT CAAACATAGGTTTTTCTATTTCCATCTTTTTGAATGGATTTATTTTAGCTGCTACATTAA CATGGAATGAATTCATATAATACTTTTTATCTGTAACTCCTGGTATTAAACCAAATTCTT CATAATCCTTATTTCTACAAGTTTCCGCATAACCTTCTGCTGGTGTAGAATATATAGCAA ATAATAATCCATATTTTTTTATAGCTTCATTTTTCCATTTATTAAAATGTTCTAATACTT CAATAGCAAAAGAATTATCCTCATGAATTTCTTTACCTGTCATTAATAAACTAGCTTCAT TTAAACCAATATATCCGTATGACCACGTAAAAGTTTTTATTGCTTTTTCAATAGTTTCTT CTGGTTTTAATTTAATGTGACAACCACCTTCACAGAAAAATAAAGGATTTGTAGATGCTT TAACATCTTTCATTCTATTATATGTCCATAAATGACCTTCTGTAGCTAGATCAAAACATC TTTTAACTTCTTTAAAATAAGCTTCTTTATTTCCTTTATATTTAATAGCTGGTTTAACTG

TATTAATAGTTATAGCTCCACAATTAGCTCTACCATTAAATATAGCTTTATCATTTTTAT CTAAAGGTTTTATTCCACCTTTTTCAAACCAAGGTGAAAGATACGCTCTACACATGTTTA CCCAATATCACTATTGGCACTGACTATATCTTCTCTCCGATTCACCACATCATCAACAAG CCCCTTCCTTCGAATTGGTGCTTATCTCCAACCCTACGCAATTACACTCATCATTGCTAG TCGATACACATTTATCAATTTATATAATAAATTGAATTTAGCACGGTCTCAACTTAATTA TATTTTATATTTATAAATAAGTCCTAACCGTTAGCATGATAAACAAATATCACACACCCT ATAAGCTAGGTTCAAGGGGTTTTACATGGGCTAGTAGATTACAAACCCATAGGTGCTAAC GCATATCCATACTTTTTCCACACTTCACCACACCAACCATTATCAAGTGATAAGAAATCA GGATATTCACGCTTACTTCTACATTCTATTGCTAATTTATATAAATCTTCATTTATTCCA CCTTTACCATGTATCTCTTCTCTATAAAAGAATACTAATTTAGGGAAAATAGCTGTTTGT CTATATTTACCACAACCTTTTAATCTAGTTTCTAATATAATCCTTGAAACCATTCTTGCC CAAAAACTTGTTCTATTACCGAAGGCAATAGTTTCAAAGGGTACTTGCATATTTGAATTA GATATAGAATTAAGTCTTGTTTCGATACCATTCCATCTTTTTCTAAAAGCTCTCTCAACA AAATTCATAGCTAACTTTTCTATTCTATCTTTAGGAACTAAATCTCCAACTTGCTCCGTA TAATATTCTATGGATTTATTATAAGCATTTTCTAAAGCATCCTCTAATACATGATCTATT TCATTTATTGTGAAACCACCATATTGATTTGCACTAGCTTCTAGTAGAACATCTGATAAA ACACCTAAATAAGCCTCTATGCAGTTTGCATCGTCATATTTTAAACCATTAATGATAGGA TTATTGTCAATAACATTCTTCATATCATATAGACAACAATTTATACCTTTAAAGAATCTA TCGGAAACATCATGGAATTTTATATCATTCTTTTTATGTGCTTCTGCTAAATGTTTGGGT AGTTCATGATTTAACATTTCATCTGTTATGTACATATCTAAAATTAAACCTTTTTTAGTG GCTATTAAGTCAGAATTTTTATTAGCGTTTTCTCTAGTTTGTTGATTTAAAATTCTTGTT GTTTCACTTCTCTTTGCTAAAGTTCTCTTATATTCTTGAACAGCTCTATAACCTTCATAT TTAATAGCTGTAGTTTTATCACCATTTTCCATTAATAAATTAACAACCTTACGTTCTATG TCTCTAACCGTTACCTTATCATTATCAAAATTAGTGTTCTCAATTTCTTTGGCTATCTTT TTAGCTATATGTTCTTTACCTTCAGCTTTCATAATAGCATTAACTATTTTATCCCTATTA AAGTTTACTTCTCTACCGTCTCTTTTAATTACTTTTAAATCTTTTATCATATATGTATAT TCCTCCAATATTTTATTTTATATGTTTCTTAGTTGATATTTAACGAATTGTCTTAATACT TCTATTTCTTCATAAGTTAGTGTTGGATTTTGTTCTAAATAATTTTTAAATTCATCTTCT ATACCCTTCTTTTCGGTTTGTCTAATTTCTTTTTGAAAGTTTCTTATATTTTCTTGATGA GAGTATAGTTTTTCTTTATCATAATCCTCTTTTAATATGTATTTATCTATCATAAAATCA ACCCCTTTTATTTTATTTGGACATACCCTTTAACATGAGGTTTACCCATGTTATTAACCC TTCTTCTATATTGATTTACACTTTCATCACCTTCTTTCGGTATTAGAACATCCAATCTAT TATAATTGTCAAAATGACTTCCTCCTCTATCTGCTACAGTAAATAAACCATAACCTTCGA GATAGATTTTAGTTCCTAGAGGATATACATTACTAGCAACTATTCCATACTGAAGAGGTT GTCCAGTACAAGTTACTGTATATCCTCCATTTTCATCTTTTGTATTCGTGTAAAAACTGA TTATAAAATCAATTTCTTCAACTTCTCCAGTTAGCCCTCTACCTGATATTTCTTCTTGTT TCTTTTGTTCCCTTAATTTCTCTTCATTTTGTTGTTTTAAACCTTCTCCAATCTCTTTTA ACATTTGTTGTTTCTTTAATTGTTCTGATTCTTCTTTAATTTTTTCAAACTTATTATCCT CTAAAGGATATTGGTTGTCTTGTATGTTCAACTTAAATTTATTATGTAAATTCGATTTAT CTAATACTTTATCTGTTATTCCTAGTAGAAGAGGTAAACAACACAAGACACTTACTATCC TTCTTTTCATTCAATCACCTCTTATATATCTATTCTTAATATTTCTTTAGACTCAATTTG ATGCCTTTTATCAAAAAACGCTGTAAAGTTTTCTCTATTATTAACATATACATTTGTGAA CATAATAATATCTAATTCCTCATTATAAAATAATATAGTATTCTTGGTAGGTTTTAACCA ATAACCATTTGATAACCATATTTCTACACTATCAAGTAACCCATCTTTCTTATATTGTTT TAATAATTCATATTTCTCCATTTATATCACCTCATAATAAAAAATATAACATTCTACTTC TTTGTTGTTATTATTAAAGATAACGTTGGTTGAGATAATTTTGTTAAATTTATTACTATT CAACCATTTTTGAATTTTCATTGTTACAAAAGTCTCATCTATTCCAGAAAAACATATCAC TTTCATTTTTAACTCCTATTCTTTTAATCAATTCTTTAATTTATTTTAATATGTCATACA ACCATAAGGGCAATATCCTTCATCATCAACAAATTCTTGATAAGCTGGTGAACCTTGAAA CTCTCCAACACATTCTTCATGATAATTATATATTAATTCAGTTCCACAACAATTGCAGAT ACTTTCTTTATTACAAAACGTATTTAATTTATCTTCTAAAAATTCTATGTATTGATCTTT ATTATTTGCTAATTCTTTTATTAATATATGTAATAAATATTCTCCATCTTCTTGATTTTC TTTTATTTCTAATATAGATTTAAATAATATATCTGGAAGCGTTGTTATGATTGGTGGATT CTTTAATTCTTTAAGCTCTAATATTAATTGATTTTGTTCTTCAAATTTTTCTTTAATTGT TATATCCTTTTCAAGTATTATATCTAAAGCTCCTTCCATAATTTGTTCCATATCTTTATT CTTTTCTTCTAATTCAAACATTTTTAAATCCCCTTTTGTTTATATATTTGTCTTTCGACA

TTTTTAATTATATACCTCTTTTTAAAATAAATCAATCATTTATTTAATTTATTTCAACAT TTAATGATTTTATATCCAACTTCATCAAATATTTCAGCTACTATGTGTCTATGGCAGAAA TCGTTGTTGGACTCATAACACAGTAAACATATGTTTACACCTTTATCTAATAAGCTTTGT ATTAAGAGTAGTGTATTCGCAGATTTGATATTATCTAATTCATCTAAAAACTTATTTCTA AAATCACTCTGAGATACTAAACCGTTTTTATATGCTTTTAATAAACCTTCTGAAGGTGCT AATTCTAATAATTCTTGAATCCCTTCTTTATAATAATTCATATGTGGCGGTCTTTTTCTA CATATCGCTACAGTAAAAGCATTTAACTGCTTCCATTTTCTCCAATTACCAAAATAACTT GTATATAATATTCCTTTACTCATGTTTAATCACCTCGCTTAAATCATTCATAAATAAGCA TATTATCCAACAGAAACAAGTTATTTTTAACGTACTAATATTTGATTGAAACCATACCAA TATCATACATAATACTTCTATGAATAAGAACAAGGTATTTAATCTCTTTATTATTTTATT CATTAATTTTACACCTCCCTTGGATCTATTCTTATAATAGTTTTATTTATCTTTTTAGCA TAATTAACACAATTACCAGTTCCACCTTTACTTCCATCCCATACTGCTATAACTATATCG GCTTTATCTACCATATACATATTCCTCTTCTGCATTTTAGCTGGATGGTATACTTCATTT TCTATTCCTTTTAAATGATACTTTTCCAATTCATCTACAAATGTAACATCATCAGCAATT AAAACTTGTTTATAATATCTATCTACATCTGTTTTATTAAACCATTTATTAGCTTGATTT TTAAATGGTATTGCTACCTCAAGAGTTATTCTTTTAGGATATTTAGCTCTTAATACTTCA CAACTTCTGAAGAACATTTGGTCTATACCTAATGCACCACCCTCTATGCAATTAATAGTT TCATTAGGATTTTCTTTTAATATATCTTCTACAGTTTGATAAAGCTTTAACATGATACGT TGATTCTTATCAGAATTCCAATTATATCCTCCTAAATTAGGATTTGAAGGTCTATGTCCT GTTACACAAACATTAATCATAATATGTATTCTCCTTTTATTTTATAAAATTATTTTCATT TACGAGTAAATTATTTTAGATATAACTTTAAACTATACTTAATTCCAATTCTTCAGCTTG TTGTAATAATTGAGCTGCTTGATCTTTTATAGACTGTATTTCTCTTCTTAATACATCTTT AGATATTTCTAAATGTAATTTATTATATGATATTAATTTACTTGTTTGGTATCTATTATT ATCAGTCATTATATAAGGATTAGGATCTTCCCACCATAATAATTTATATTCTATGTCTTC ATCTTTATAAATTAGATTTAATGAGACTATATCATTATATTTATTAATTCTTTGTAATGG CGTTGAATTATCAAATCCTTTATATTCTATCTTATCACTTAAATTTATATATGTATTAAT TTCCCCATTTTGTATGTATAAATCAGTAAATGATTCTACTGGAATGAACATTCCCTCACA ATTCTCAAAAATTAATTCAATCCCTAATAATTCTTTTGTATTTATTTGTTTGTTATCCAT ATTTGTATTACCCCACTTTGATTATTTTTATCTTTAAATTGTAGATTTTAAATAGATTAA TTATTTAATTTATTTTGAAATATAATGTCTACAAATAGCTTGTTTTGGTTAAAATATTGA CTATTTAGCCTTAATTTTACTCTTATTGTATCAATCTACGTTTAATTAATCATTTATATA CCATTTATTTCTTATTTCATTATAAGAGAATAATCTAAATTCATCATTTACCTTATCTAC AATTTCACGATTATTTAAAACATACTTACTAACACTATTTCTAGTTTTAAAACCTCTTCC ACTAACCACACTTTCTATTTCTTTGCCATCTTTAAGAGATTTAAAAGCTTCTTCAAAGCT ATATTGTTTTCTTTGAAGTGTAAATAATATAGCATCGCAAAAAGCTATACCGTTAAATAT TTCACCATTTTTAGTTTCTATAGATATAACTTTATGTGAACATTTTATAATATAGTTTTC ACTTTCCCAAGTTTCACCTTCTTTAATGTTTGTTATTACTTTTCTAAAAGTTAGTTCCTT TATATTCTTGGCTTCTATTTTTTCTAACATTTCCTCTGTCCAACTCCAATCTTCTATATC TATATCAATATTATAACCACCTGTAAAAATATCGGTTATTATAGCTTCTTTACCTTTTAG CGATTCCATATAACCACTGGCAAAAAATGCTCCTCCATATCTTTGCCCAACTTCTAAATC TTCTCTTATTTTAACTTTGTCTCCTACTTTTAACACTATCTATCAACTCCCATTATTTTA TTATTTAACTTTTGATTTTTGCTAATTCTAAAGTCTGAAGGTTTATAAAAATGTATTCCC ATAGTTGTATAAACGGTTAAATGCTCTTTTAAGTTTAATTGTGGCATACCTTCACAAAAT ATAGCAAATATTTTATTATCCTTTCTCAACGCTTTATTACTATAAGCTCCCTTAATATTC TTATTGGCTTGATAAACTTTAAATTTACACATAAATTCCTCCTAATACATCTCTCAATAA TAATACTAATTCTTTATCATTAAAAGATTTTATATTTGAATATTTGTTTTTAGAAACCCT TTTACTTATATTTTCTCGCCATTCTTGATATGTAATATTATTAGAATCTCTCGTAGATAA CCACATTCTTCTAAGTATGTCTTCATAATAATTAATCATTATTTACTCTCCTTATTTTAA TAATATCCATTTTCTCTTTCTTCTTCATTTTTAGGCTCTCTAAAACAAGTATTGAAATTA TCTGGTATTATATCATTATCCTTGAAAGCTTGGCTCATGTCTTTCCACTCTTGTTTAGAA TCTAAGAATACCTCCAATTCATTAATAAACATTGAATCCATTCCTTCATCATCTAAAAAT CCAACTATTACTTCTCCTAAACCACAAGTATTAAATTCATTTGATGTACCTTCCCATGTT TGCTTTTTATTTCTAATTTTCATTAATTATTCACTCCTTAATATAAATCTGATTCTTCAT CAATTTCATATGTAAATCTACCATCTATATTATTTAATATTCTTTCTTCTATGGATTCCA TATTCTTAACTACATCATATATAGTTTTATATTCTTCTTTTTTAAGTTGTTGCTTTAATA TGTATTTAAAAGCTTGTCTTAAAGTTGGATGATAAGTTATTTTCTTAATACCATATCTTT

CATTCTCTTTATGTTTAATTAACCATGTTCCTCTATTATATAATTGTTGTCATCTGATTT AATTATAAAATTATCTAATACTTTTAATTCCATTGTTATTTCTCCTTGCTACTAATTATT TTAAAAATATATTTATTAATAATATTGCTACTCCAACTAAAATCGGTAATATTATAGCTG AGTTTTTGATAGTAAAATCAATATCTTTCTTATCATTCTTATATTGAAATGCTACCCCAT CTAAATTTCCGAATAATTCTATTAAACAGTAAGTTCCTAATATTAATATTAAACCTTGTG TCATCATTTTAAATTCCTCCTTAATTATCTTTAATTATGTCAAATGGTTTGTCTGATTTT CCTTTAAAATACTTTTCTATCCATCTATAACCCTCCCCTTCATAGCTATATTCAAGTTCG CAATAATATTCCTCTTCATAACATTCATAGTAATTATCATATAACACATACGTTTTGAAA TGTTCACAATCGCGACACTTTTTATTTATACAATGTCCAATGAGTTTTTTAGCTTTTCTT TTATATCTTTTATTTTTCATTGTCTATATCTCCTATTACTTTTTCAAATTCTATAACCCA TACCCACGGATTGGCTTCCCAAGAATATTTATCTTCTTTAATTGTCATGTCCCATATATC AGCAAATCCAGTTTTATAGTTTATTTTATGATTAACTAAACTTCCCACATATTTTTGTTC ATCCTCAATCTTAGTACCAAATGGTTGACACCACGATTGTTTTTTAGCACCTTCTTTTTT AGCTTGTCCTTCATCTATATCTTGTAATTTTTCAACCTTAATACTTTTTACACTTAAAAA TATTCTCGCCAATTCTTTAGGCATGTGAATTGAAGGTCTCCATTTTATAGCACTATAATC CCAATTATCATTTTTAATTCCATCTGCTCGATAAATAATTATGCCTTGTTCTTCAATTTC CTCTGCATCATTCAACAAATCACCTTTAAACCACGTTTCTTTTACATAAAGAATATCACC TATTTTATAAGGTTGTTTTATATATTCAACAACATCTTTAAATTCTTTATCTACATATAC ACTACCTTCAGCATTAAGCGTATATAATCCATTCTTTTGTTTTTCTATGTATTTAGGTAA TTTAATAATTCTTCTAGTATAGATCTTTTTATTATCTAATATAGCTTTAACCATTTGTGT ATTAAATAAAATAGGTTTCATTTAATTATCACTCCTTAATTTAATATGTATTTGTTTTAT TAATTTTATAATGCTATCGTCGTACCTATTATAATTCTGTTAATATATATCATTATTTAT TGATAATTTGTAATCTTAATTCTAATTAAAACAGTTATTTTATAACCTTTTAATTCTTTA ATTTATTTTAAGAATTACTTCATTTCTTTAATTTGAATTGAAGCTTGATTGTACTTTTTC TTTCCCTTTCCTACATGCTTAACAAAAACTAGCTTCTTTTTCTTTTTATACCAGAATACT GTGTCATATTTCATTTTCTCATATTTGCTTATGTAATTTAATCTTTCCATGTCATTCTTA TAAAATTCTGTCTTTTTATTATCTTCATGAAATTCCTCTGGAGATTTATCAAATGTTGCT CTATTATCAACCCACATATTAATACTATTTATAATATCTTCTATTTTTAGTTTACCAAAC ATGGATTGTAAATCAGATGTTGTTTGTTTGTAAAATCTTCTGTCAATTTCATTTTGTTTT AACTTATTAAACAACTCTTTTTCATACTCATCTTGTTCTTGTTGTGAATCAAATACCTTG TTATTAGATAATTCGGTTTCATGTAACAAGATTGATCTTTCCAAGTCACACTCGCTAAGT TTATTGTTGTGATATACTTTCATTTCTTTTAAACAATTTAATGCAAATGAAATTTCTTTG GTTATTTCTCTTACGTCTCTATCTTTGTTCTTTTCTATGTATTCTTCTTGCTCTTTTTCT ATGTTAGATGCTACGTTTATTTCTTTCTCTCTCCATATATCAACTATATCGCCATTTCTT GTTATTCCTTTAAATCCTATTGTTGCTATTGTTTTATTGTTTTTATATTTTTCTTTTACT GTATCATAAAATTCTTTCATTGCTTTAAAATTACTAACATCTATATTGCTGCAATTAACA TTCTCCTTATCTCCATTTATATATGTAATAATAATTTGATATTTAATGCATTTTGCTTTA CTCATTTTCCTCTCTCCTTTTATATTGCTTTTGTTGTATTTTTGTGTTTCTCAACCTTAT GTCTTTATTATAATACCGTATTCATATAATGTCAATCATTTATTTAATTTATTTCAACAT TTTTCACAAAATAAAAACAGCCTAGATTTTACTCTAAGCTGCTCTCTTCTTGTAATAATT TCTTTAGAAATGTTTGCTTGCTTCTTACGTTACTTCTTGATATTGCATAATGTAAAGCTT TATTTTGACTACATAATATACATTTTTGTTTGGCTCTAGTTAACATAGTATATATCATCT CTTTATTTAATAAACTATAATGTGAATAATCTACTCCGCATATAACATATTTGAAACCAC TTCCTTGAGACTTATGTACAGTGATTGCATAACCAAGTTCTATTGAATTTAAATGTGATC СTTTTACAACCACTTCTCCTATATTTTCAAAATCTATGATTAATGTTCTATTGTCTGCAT CTACTTCTTTTATGATTCCTAAATTACCATTAAAAATAGGTGTATCTACTCCTTTAGTAT TAACTGTCTTGTAATTATTTTTTATATTTATAACTTTATCTCCCTCATATAATGAATATG GAGTTTTTGAACCTTCTAGTAAATTAATACATTTTGGCTTTTTGATTAATCCTTTCTTTC TTTTATTTATTATTTTTTGAACTTCTAAATTTATTTTATATGTACATGATTCCCCTCTAC TTTTCATAGGTACTAAAATTTGAAAATCCATAATATTATCTATATTACTCAATACTTCTT TGGTATAATCTATAATTTTATCAAAAGTTTCATTTTTATTGTTATATATATCTAAAATTA AATCCTTAATCTCCCCTCTTGTTTCAACTCCTGTAAATTTAGAATCAGTTATTTGTTCAT GATTACGAATCTTCATACTTTCTGTTATTATAGCACTTTTAGCAGCTTGTCTATGTATTT TTGTTAATGTAGCATGGGCAATTATATTACTATCTATTATATCTTGCATAACATTAGCTA CACCTATAGATTCTAATTGTCCAGTATCTCCTAACATTATCAGTTTTGAACCACTTTTAA TAGCTTGGATAAGTTTATAGAATAAATTACCGTCTACCATAGATAATTCATCTAATATAA

CTATATCTGTATCTAATTGATGTTTATAGTCATATGTAAAACCTTTTGATGGATTGTAAC CTAATAATCTATGTATCGTAAAACCTTCTTCTCCAGTAACATCTGTTAAATTAACACTAG CTTTACCACTTAAAGCAGTTTGGGAAAATTTATAATCTTTTAATGCAGCTAATACTCCAG CTACGGTAGATGTTTTACCAGTACCAGCAGAACCACTTAAAAGAACTACATTGTTTTCTA ATATTGTTTTTATAGCTTCTTTTTGTTCATCTGTATAATTCCACCCTTGTTCCTCTTCTT GATCTTTTATATCATTTAACCAATTATTATATTTAAAATTATTTGTTGCATTTTTTAATC TTAATAATTCTGTAGCTATGTTCTTTTCAAGATAATAATATTTTTTTAATCCTAATTTTG TTTTATCCTTATTACACCACATTTTGGTTTCTGACATTTCCTTAAAAGCCATATTGAGAT TATCTTCTGGTATTTCATAGCCTATATTATCCTCTATACATTCTAATAAATCATCTATAT CGACATAAGAATTCCCTTCCATAGCTTGAGATTTAAGATAGTATTCCATATATGCCTTTA TTCTATTAATTGAATACTCTTCACAACCTCCATTTAATGCTATTTCATCTGCTTTAGCCC AACCAATTCCATCAACATCATCTGCAATTAAATAAGGATTTTCTTTTATTTTTGCAATTA CAACATCTGGACTACCATAAGATTCAATAAGTTTATTAATCATATTAATAGTCAAACCAT AACTATCTAAATATACATAAGCAGAACTATAATCTTTTGTATTATTATATTTTTCTATTA TATTTAAAGCTGTTTTTGCACCTATTCCATTAACAGTACATAGTTTTTCAACATCCTCAT TTTCTATAATTTTTAAAGGATCTTCAAAACTATTGAATAAATTTTCTACTTGGTTTTTAG TTAAAATCTTATTGAGAAAAATTTTTTGGTTTTCAACCGAATCTAAATTTATATTTTTAC CTATATATATTAATTTATATTGCTTACCATATTTATCATCAATAATTTCATCAGCTATAA TGGTATATATTTCATTATGTTCTATTTCACACATATTCCCTGTTATTGTTATAGTTCCCC ATTTACTTACGTCTGGTTCACCTTGTAACACTTCTTCAACAAAAACAGAGAGTATTCCGT ACTCTCCATTATTGATTTTACTCTTTGGGAAAAGTTGTTTACTTAATTTTACTTTACATT TAATTCTATTTATATTATTATCCATATTAATCACCTTGTACCCTTTCACTTTGTAATGTT AAAATTCCATTTTCATCTATATCAAGTATTTTTTGAACTGTGTGTTGATAGATACTATTC TTATATTTTTTAGGTGCAAATTGATCCCCTCTTCTATAACCAGTAATCATTAATTTAGTA CCTCTTTTAAACCATGATTCTTCTAAAGTTGTTTTCTTATCTTCTTCTTCATCATATATA GAAATTTGTTTATCATAAAAAGTAAATTGACCACTATAAAATTTAACTGTTACTACACCC GTTGGTGTTAATAAAGCAACACTATGTTTATTTTTGTCTCTATCTAAAACAGTACCAACA ATCCTAGTTAGTTCAAACTTAGGATATTTCATTCCATTATGATAAGTGAAACCAACAATT CTGGCTTCTTCAGGTAACTCTGTAAAATTGCTAATTCCATATGTTTCTGTATCAACATTT ACTAATTCATGTTCACTGTAATAAAAATTCATTGAATCCATTTCCCATTTACTAATACCA CCTTGCATAAATTTATTTTTTAGTTGATTAAAACTATCATTGTTTAATAGATTTAAACAT TCTTTTGATTTATACCATTTAAAGAAAGGCTTCATTAACTCATCATAAGCTTTTTTAAAG CTGTATTTACGACTTGTTCCTAATGCTATACATACATTACCTTCATCATTATATATATAT CCTTTGTCCTCTCCCTCTTGCATTAAATATTCAAAATGCTCCATAAAGAAGTTGGTTATA TATTCAGTTTCTTCTTCATCTTCTCCTTGTAATATATACCATTTAATACTTTGTTTTTCT TCATCTTTAAAAAACGGTAAAGATTTAATATATTTATTAAAATTATATAATCTTATATAA TCTTTTAATTCAGTTGGGATAATCCCCATTTCTATAATTTTATCTATTGTACTTTCTCTA ATATCTAACTTTGCTTTTGGTGGATTTGTCATGGTAATATATTTTTCTAATAAATCTTTT CTATTTATATTACTAATATTATTGAAAGCTCCAGATTTAATTAGGGATATCATAGCACCA TTTGATACAATAGATTGTTGCTTTTCCTTACCATTAGAATCTACTACAGTTCTTTTAGTA AgTATCATTCTTTGATAAAAATCTTCTATAGAAGAATATGGTCTATTGTTTATTATGTCT GTAGCCATATTGTTATTTACGTTCATAATTCCTTTTAAACCAAACATTATTTCATTTTTA TTTTCTATAGGAGTAAATCCTTTTTCTGCTTCATTAATGTCTGGTAAAGATATTGTAATT CCTCTTTGCTGTAATTCTGATATGGCAGAAGCAACTTTACCATATTGAGTAGTTTTTTCT TTTGCTTTTATATCACTATCTTCTACTTCTTCTAGTTCTAAAGCCCCCGATTCAACAAGT AGAACAGATGTATTCCAATAAATAGAAGGGAAATATTTTATTAAATTTAATTGTTGTGCT AAAATCCAAGTATATTCAACTGAGTGAATGACACTGAATCCATAACCTTTTTGCATTGCT ATTTGCACATCCCATATGTAATCTAATAGTTTTTTAGAAGTTCCACATGCTTGTCCTTTT TCATAAAATAATTTATGTGCCTCTTCAAACTTATCACCTATTTTTTTAGCTACACCTTTT CTTAGAATATTAGATTCAACTACATTAAAATTAGATATATTTTTATCCATAGACATTAAC ATCATTCTTTCTTGAGTTGAACATACCCCATAATCTTGTGCTAGATGCTTTTCTACTATT GATATATCTTTTTCAGATAAACCAAAATCTTTCATTTCTTTATACCATTCATTTATATTT ATTTTATTTCTAACATATATATCCATAGGCTGATCTTTACCTTCCTCAGCCATTAATCTC ATTAAATTATTACCGTTCATAGCCTCTATAAAGTTTTTAGGTTTAATAGATTTTATAGCT TGTTCTCCTACTGGTGAGTCATATTGAAATGCAGAAATTAGTAATCCATCGCTTAATTGT GACCATAATTCTTCACTATCTCTATCTATAACGTCTGGATGTATATATTTATCATAGGTA

TTTCTTAAAGAATCTTGCCATTGAATTTTGTTATATTCTACTAACATCTCTAGTGTTTTT TGTATCATTGAGGCTGTTTTAGTATTAAGAAAGTCATATTTTAAATCTCCAACATATTCA CTATGATGTAAATCAAATTGTGATACTATTTCACCTGATGGAGTTCTCATTTTAGCATTA TGTTTAGTAAATTCTGAGTTAACGGGAAGTACTCCACAAGCATGTGATGATCTTTTATTA ATTAATCCTTCTATTCCTAAAGCTACTTCTAAAAGACTTCTTCCTTTTTTCTCTGACCAT TCATCTACTATGTTTTTAAATTCAGTTACAGGTTGTCTATTCTTTTTAGGATTGCCATAG TAACAATCACTAATTCCCCAAACTTTACCTCTTTCAACTGGAATTAATGAACTTAAATAT AAACCTATATCTCCATTAATTTTTAATCCTCTACAAGCTGTTTGTATAGCACTTTTTGCT GTTTCTGTACCAAAAGTACATACTCTAACTAAATCTCCACCTATACTTTGATAATATTTT TTAACGGCATCAAAAACTTTATTTCTTTTGTGTGATGGTATATCAATATCAATATCGGGA TAATCCGGACGCTCAGCACTAATGAATCTAAAATGAGGCATTTCTACACCTTGTTTTAAT GGATTTATTTGTGTAATTCCAACTAAATAATCAATAATATATCCACCAGCACTCCCTCTT CCTGGAGGAACTATTGCTTCAGCTTCATTCCAAATAATATCAATTATTTTTTCCATTGTA GTGAAATATCCAGATACAGGTTGTTGTTTAGCTTCAGATATACCCAATAATTCTTTACAT TCAATATTCATTCTTTCAAATACTTGATTATATTCTTGTTTATTTTTAATTCTTTTCTCT ATTCCATTAAAAGTTAAGTTAATTAAATATTGATTATAAATATTATCCTCACTTTCTATC ATTGCTTGTACATTATCGTAATCTTTAGCATATTCATATAATTCTTTATGTTTTTTCCAT GTAGACTTTGGAGGAATTGGAGTTAAAGGAATCTCTTGATCGTTAGCAAGATTATATCCT ATTACTTTATCTTGTATTTCATATGTATAATTAATAGCTTGTTCAAAATCTTGAACATCT AAATACCTCATATTTTTCATTAAATCTTCCATAGTAAAGAAATGTGTAGATTGATAAAAT TCTCCTACTTCCCTATTACTATTACCTTCTTCATTAGAAGTTAAGTACGCTTCATGAATG CTTTTATTATCCAATGTTAAATAATGTGAGTCAGTTGTAATTATATGTTTTAATCCATAT GCTTTTGCTATTTGGATTGCTTTATTGTTGAAATCTATTTGCTCTTGATTTAATGAAGGT TGTAATTCTATGTAAAAATCATCTTGTCCAAAAATTCCTATACACCACATAATAAAGTCA TCTATTTCATCTTTTATGTTTTCTTGTATTATTTCATCTTCGGTGTTTAATAAAGTGGTA ACAAGTCTAGGAAAATATCCTCCTAGACAAGCTGTAGAGCCTATTAAATGCCCTATATTA TCTCCTACTACTTCTTCAAAATCTGAATAATATGTAGGTACTCTATCCATGTTTTTAAAA TTAAACATTCTTAACCAAGCTCTAGTAGATAACTCTCTTAACATTCTATGTCCTTCATTA TCCTTCGCTAATAAAAGAAAATGATAAAAAGAAGTAGAATTACTATCATTTATTTCTTCT TTCATTGTCTCTTCATCTACTAAATAAATTTCATTACCTAAAATAACTTTAAAATCTTGA GGAATTTTACCTTCTTTTTTTAATTCTTCAACTGTTAATATGAATTCAATATGTCCACTT AAACTCTCATGATCCGTCAATGCTAATGCTTTTTGTCCTAAGCTACTGACATATATAATC ATATCTTTTATTTTATTTATTGAGTCTAATAAACGTAAGTTACTATAATCACTATGATTA TGTAAATGAACAAAATGTTCTTGTAGTTTTTGTATGTACTCTTTTGAAAATGGCATTATG TCTCACCTCTAAAATTCTATTTTTCTTCCTTCTGACACTTCAAAATCTATAATTTCTATT TGAGGATATTCTTTACCCTCCCATTCATTAATGTTAAATTTACCTATTATATTAAACTTT AATTTTTTAGGAGTTTTTTTACTTAAACCTCTAGTTGATTTTAAAATCATCTTGTTATAT ATATTTTCATTGGCGAAAAATTTAATGAAAGTTATTGTTTTATCTCCAATGGTTTTGTTG ATTCTAATAATATTCTTTTTAGCACCTAAAAGTTGTACTTCTTCTGGTTTTACATATATA TCAGTTATTGCAAATTGTGGCTCTTGTAATGTATTCCCCCACACATCTTTCCACTTACCT ATATCAATAATATTTTTAGGTTTTAATCTACCTACAGGCATTTCATAATCAACCCAATAA CAATCTTCTATTTTCATATCTTTTAGTAAATTATTGGTTGTTTGTACTAAATTGTTTATA TTACTTTTATTTATGTTGAAACCAAAAGCGTTATCATGTCCATTAATCCAATTAAATAAT TTAGTATTATTTAGGAATTCTTGGAGACTTTCAATAGAAGATAATTTATAATTTCTTCCA CTACCTCCATAAGTATCGCTTTCTTTTTGTCTAAGTAGTATTACAGGTCTTTTATATGTA CTTGCTAATTTGTTAGCAACCAATCCAGTAAAAGTTTTTTCTAATTCTTGTGTAATGTCA ACTATTATCATTTTATTGGCATCTAATTTTTCTTCGTTGATTTTATTATCTACTAACTCT ACACCTTTTTTTACTAATCTATCTTGTCTACCTTTTATATTTTTAATTTCTCTTGCCATA TATTTTTGTAAGGATTGTAATTCTATAGGAGGCTTTTCTTTTTCGCCTTTCTTCTTTCTA GGTTGATATTCTCTATCTTCTTTTGTGTTAATAAAAGCCTTAAAAACATCTGTTTTTTCC TCTAGCGTCCCCATTCTTACAACACCATTAATTAGTGGAGCTATTTTCCAACCAACATCT AAAATATTAAGCTTGTCTAGGTTATTTTTACTCATTATCTCTTTGATAAATAAATTACAA TTACCTTTATTTATTTTATTTAATCCATTTAATACTAAATATCTTGTTTCTGGATTTCTT AAATCCATATCATCTGCTATCATTCCAAGTGCAGCTAAATCTAAATAATTATCAGCTTTA TTAAATCCATATTTTCTATCAAATTCTTTTAGAAATTTATAAACAACTCCTACACCTGAT AATGTATTATTAGGATAATTTCCATCTTGACAATTAATAATTATAGTATTATCAATATCT

TTCCAATCTAAAGGATTAAAATTATGGTGGTCTAATATAAGAATATCTTTATCTTTTAAT TCTTTACATTGTTCCATATCACTACTACCAGCATCAGGTACAATCAATAAATCAAATTCA TAGTCTTTTAATCTATTAAGTATAATTCCATGCTCTTTATTTTTATGGATTGAAAAAGTT ATATCGTTATTAAAACCAATATCTCTTATGTAATTTATACATGAAGCTGCTGAAGAATAA CCATCAAAATCACTATCATCTATTACGTGTATTTTACTTCCATTTGTTAAATGCCAATAT AACATATTTAGTCCTCTATCCATGTTATTTAATAGCATTCCATCATAAACACAATCACTA TCTAAATTCATTAATTTATTAGGATCTTCTACACCCCTCTGTTGTAATAATGTATATAAT AAATTATCATTATTTAAACAATCTTTATTTTTATTTATAACTTTATATTGCATCTAAAAT СTCCTCTTCTAATTCATCTGTAGATTCTATTAAGAATCTTTCATTTAATAATTCTTCAAA AATATCTTGTCCTTTATCTATAGGAGCATCTTTGTAATCTATACGGTCATCCCAACAAAA GATAACTGATACATTACAATAGTTAATTAGCAATGACACTACTTTTTTTATTTTTTTAAT ATATTGAACAAATTCTTTATATTCTTTGGTATTCTTATATTCTGGTTTCAGATATTCTAG TCTATATTGTTTATCCCAAGCCAATATAACCTCATCTACACCTAAATAAAGAATTAAATC TCTTTGCTGCAAAGTAAAATTCATTGACATTGTTGCTAAACTAATATTATTATTTTGACC ATAAATACTCCCATATTTAAGAACCGATTTTTCACTCTCAAATAAAATAACTTTTCTTGT TTTTCTAATATTATTTTGGTTTTGATAAATACCATATAAATTCATTGCTGTTGGATAACG ATAAGTTAATCCTTGTATTGTAACTGGTATATATTTTTTACCTTGTTCAATTTCTCTCTG AAAAAAATTTCTACCCCTTATCCCTACTAAAGAACCATAAATATCTCTATGGGGAATAAT ACATTTGAATTGGTTAAAATAAAATTTAATACCAAAATAATCAGCTATATCTTCATGAAT TCCTTCTTTTTCCCATTCATCAGGATAATAATTATCAAATATACTCAATACATTCTCATT AAAAGAAGGTAGTTGTTTTATTTCTTTTTTTGTATTATGAAAGGTATGTTTTTTTAATAT TTCTAAATCTGTGTTATCAGTATGTATCTTTAATCCTATACTTCTTTTTTTATGTAAATC TATTCCCTTAATATCAGCTACATATTTAAAAGCTTCTGAAAACTCACAACATTTTACTTG TGATATTAAGTCATATAAGCTCATAGAACCACAGTTTGTATAACACATGAAACTTTTAGT ATCTGGATAAAACCATAGTTTATGTTTCTCCCCACAATGACATATTGTTTGAAAACGAAG ATTGCCTTGTTTATCTGGAATAGGTTCATTACTTCCCAGATCTTTCATTATCTTTTTTAC ATCTTCTGTGGTGATTTCTTTTAGTAATTCATCCCTATCCATCTATTTCATTCTCATCCT CCCTTTTAATTTCTATATCTATCTATATTAATTTGAGTGTATTTGTGGTCTGTACAAAAC ATATCTATAAAACGCATATTACCTAAATTCTGATAACCCCAAATCTTAACGTTTTTAATT CTTCCTCCTCTATTTTTATAGAAAGAATAACATACATTAGGTACTTTCCCCTCAATTAAT CCATTTCTTCTTTCTAATTGTTCTAATATAGGTTCTATTAAATCTAATTCTTTTTTTGTG GGTTCAAAAGTAACTAAACCAACATCAGCTTTGTTGGGTAAACTTCTAGCCCCCTTTACC GCTCTTTGATCTCTTATGTTATCTCTTCTAGCTTCATCTGTAGTTTGAGTAAAAGAAAAG AATGCGACATTAAATTTTTTAGCTATGTTTTTTATGTTTCTTGATAAGTTTAATAAGACT TGATCTTCTCTAGCTCCCATACCTCTAGTTTCTTGTATAAACTCAGATACTAAAGCATTA TTTAATTCTATGTAATCTAATGCAACTGCACAAATATTATATTCAGTAACATACTGTTCG ACTTTATACCATAAATATGTAATATCATAATCTTCTTCATCTATTAAAAATAACTTAGTT TTCTTTAGTATTTGAATAGCTCTATCAACTCTTTCTTCTTCTTCCTCTGTTAACTCATTC ATTCTGATTCTATCTTCATCTACACCTGATACAAAAGCCCACATCATAGGTTCAATTTCT TCATAAGTATCCATTTCTGTACCAATATACAAAGCACTATTTCCTATTGCTGCTTCATTC TTTTTAAAATCTTTAATTTCAAAATCCCAAATCTCTTCTGCTGTTATTTGTAATAATCTT TTAATAGCTACTCTTGTTTTCCCCATTCCACTATCTCTAGTCTCAAGATAAAAACCTTTT CTTCTCCATCCTCTAGTTATAGTATTAAAATATTGACTCTCTAAAGGAAAACCAAAATTA GGTTCTTGTTTTAATTGTTCTCTCAATTCCTCTGCATTGTCTCCACATTTTCTATCAGTT TCATCTTCTTCTACTATAAATCTTTTCTTAGATTCTAAGTTTTTTTTGTCGAAATACTCT AATAAATCTTTAATAGACATATTATCTAATCTTTCTAATTGTCCACTTGTTATATTTGCA TCTAGTTCATTCTTATCTAAAATTTCTCCTACATCCGTACCAGATTCAATTTTACTTCTT AATATAGACATTTTAATTACTGTATTATAATAGTAATCAAAATTAGCTAGATTAGAATCC TCTTTTAAACCTACAATCCATTCTACTCCATCAAAATCTTTTTCAAATATTTGAGCGTAG TCTATTGGTCTTGAATTATGTAAATATGTTTCTACATCTGCTAAAGTTATTTCTTCAGCA CCTTGTATAGCTAAATTATATATAGTTAAAAACAAAGTCTTGTGATATGGAGTAATAAAA TCTAACTCACTTAATTTATATTTTCTTGATTTTATTAACTGAGGTTGTTGCATTAAACAA CCTAAAATTTGCATTGAAGCTCTATTATCATAATATTTTTTTATTAATTTACTTTGTCTA CTACTCTTCATCTATTTCACTCCAATCAATGTCTATATTTAACTCATGTCGTTTAAATTC TTGCTTGTTATTGTTACTTACCTTAAATGTTTTAATTTTTTCTTGATTAACAAATAGCTC TGCTTTTTCTTCTAAATCAAATCTATTTTTATAATAATTTTTTGCCTTATCATAAAAATA

AGGAACTATTCCCAAACCTACATTATCCATTACAGAATTCTCTAATATTTCATAATAAAA TTTAAGAGTATATTTAATACCAGAATTAGTAAAATTATATTTACTTTTATAATCCTTAAT TTGACTTAACATTTGAATAGTAGGAGTATCAATTCTATAAATTTCACATATTGTTGTTAT TAGATTTTTATATTCCTCTAAATCTTCAAAACATTCTATGCAATAATAACTTCTACCATG TTTTATTGCATTTTCTTTTTCGTTTTTAGCACCACACTTTGGACATTTTACTAAACTCAA TCTTCTCTCCCCTTTTTAATGAAATAGAGGCTAAATAGCCCCTATCACCTATTCTTCTAA TTCATCTAATAAATCCTCAAGATCATCTAATATACACTTTAATGCTTCTAATTGCTTGTT TGTAGCTTCACTAACAGTAACATCTCCTAAATGTTCTTCTACAATTTCACCGTATTTATC TAATTCTTCTTCCCCTATTTCTTCTAAAGCTAAGTATTTTTCTTTTATTGTTTCTTTGAT TTCTTCTAATGTCATATCTTCTGTTTCATATATTTCTTGTTGTTCATCAAAAGATACACT TTCTAATCCTTTTTCATCTATTTCTCTTTGAATTCCTTCTACAATTACTTTTTCAAGATT CTCTGCTGTATATTCTGGAATAACTGTATCCATACATGTAAATCTACTTCTAGCAAAGAA ATCTTTTGTTTCTACTAAATATCCACTTGAAGGTATTTCATTTCCATTTTCATCTACGCC ATTTGATTGTAAGTAAATAACTATATCAGCATTATCTTTAATTGGATCAATGTTTCTTTT ATCTCCCTTTATAGTGTATTTATCTTTATCTTTATCATAAGATTCATGACCTAAGAACAT AACTGTATATCCAAGAGAAATAATACTATCTACCCAACTGTGCATTTCATCTTCATATGG TTGCCAAGCACCATATCCACCCTTAGCACTTGCTATGTCTCTAGCATCATATTTACTAGC CACATATTCTCTACAATATCTTCCGACATTTTCTATACCATCAATAATAAGAGTAATTTG TTCGCCTTGTTGTAGTAGTTTTACAAAGTTTTTACCCGCTAACTTTTTAGCATGTTTTCT TGCTTGACTCCAACTTCTAGTAGTTAACACCATAGCACCATGTACACCGTTCATTCCTTT TTCAAATGGCATAAATACTGGGTTTTTCATTCTTGAAGCTTGTAAAGTTTTTCCTAAGTT ATTACTTCCATAGACTACTATAACTTTTCCTCTTAAATCTGCTGATAGTTTAGAAACTTT TGCTTCACCTTTAAATTCTTTATTAAATAATGTTTGTAATTCATTTGATAACATATGTAT TTCTCTCCTTTAATCTTATATATTTTTAAATTTTGTTTGATTCTTTAATTTATTTTAAGA TAAGGAAGGAGATATTAAAACCTTCCTTATACCATTTTATGTATTTATTAGAATTTAGGT CTTCTTCTTTCAGTCTTTTCTGCTTTATCTTTTCCACCTCTTAATCCTGTTCCTTTTGAA CTTTCTTGTTTAGCCTTGTCCTCTTTTTCTTTTATATCTATAGCTCTTTCTTTTAATGCC TTTTCTATTGCTTCTTCTTCCCATTCCTTTTCATCATCTAAGACTTCTCCACCTGTAGCA ACAAGCTCATGTATTGTAGTTCTTTTTTCTTCGACTTTGGCTCTACCTAATGAACCACCC TTCTTTTTCTTTTCTAATATACTTATGTAATTTATATCTCCCCAGAAATTCATTGAATCT CCTTCGCTAACATTTTCTCTGATTTGTTCTGCAAAATCAAACTCACCTTCTTCATCTACC ACTGTACCAGCTATTAAAGTTATTGGGAAAGCTTTACCACCATAGCAAGGTACACATCCT TTAATCTTAACTCTTCCTGTTTCTTCTTCATCGTCACCATTTTTCTTAACTTCTTCTTCT ATTTCTTGAACATACATTTCTATATCAAATGTTGCTTTGTAATCTTCTTCTTTTATTTTG TTGTTTTCGTCAACATAGATATTTCCAAAACCTAAGTCTACTGAAATAACTGATTTACAC TCTTTTCCGTTCTCTGGAACAAATAACTCCTCTCTAAATTGTGGTGTGAAATCTCCTGAT CCATATACTCTTATTACTGCTGCTTCATCTTTGTCTTTAGCCATTGTTAAGTATTCTTCT TTTATAAATTTATTTAATGTTTCATAAGATTTTTTTACTTTTCCTTCTTTTGTTTTTTCA CCAACATAAACTTTTAATTTTACCTCAGCTTCTCCACAAGCTACTACTAATGATCCATTT ATGTATTTTCCATTATCACTTTTACCTTCTTTTAATTGATGTTCTTTAACTACTCCTACT AATTCTACCTTGTTCATTGCTGTTCTGTTTTCCATAATAAAAATCGCTCCTTTTAATCTT TTAATTTTTTTGTTTAATTCTTTGATTTATTTTAAGATAAGTTTTTGTTTTAAATTATCT CTCATACAATCAAGATAACCACACCTTTCTTTAAGGTTTTTTATGTCTTATGTCCTTCGA CAATATTAATTATATTACTTTTAATTTAACTTGTCAATCATTTATTTAATTTATTTCAAC ATTTTTTTTATAAATGATTGTTTATCTTTGGTATAATATTCCTCAAACTAGCCTATATTC TCCATTTCAGCTATTCCATCTAATTCTATAGTATATTTACCCTTTGAAGATAATTTAGCT AATTGTATAGTTGTAGTATTAATTTCTTTAATTTTACCATAATAATTAGCTTCATTGACT TTAACCCTTACAAAATCACCAATAGTATATTTCTTACCATCAAAAGTAATGCTTATTTCA ACTTTGTATTTCGATCTATTAATAGTTTTCTTAGATGATATGCTGTTAGCATGTACTTGG TCTGTACATAGTCTGTCTGATAATGGTACAGTTTTTCCAATGACATTGTTACGTGCTTCT TCATTAAAAATAGCTCCATAAATTTCTTCACGCCATCCATCATCACATTTTATAAATCCA ATTCTCACACAACATTCTAATAAAGCTTCTTTAGGTACAACTATAGGTGAATAATAATAT GGAGTTGAAACAGAATAAGTTTCACCCTCTAAAACCTTCTTAATTTTTGTAACTTCTCCT TGTCTGAGCATAATCCCGTTTCCTTTATAATTCTTAATAACCTTTAATTTTGTTCCTACT TTTAAATCTTCTATTTTCATCTTTTATCTCCTCTTATATCTATTAATTATTTAATTTATT TAAAATCTTAGATTTAAGCAAACTAAACCACATTATATTGTATATATGTATTATTATAAA

CACTATATGTTGTGTTAATTTAACCTTGATATAACTTAAACAACTCACTGATTTTCATTT TGTTTTGTTTTGCTAAATCTGTAACACATGAACATATATTATTAAACGTGCTACAACCAA CTTCTATTTCTAAATACTCTAATAAACTTGAATATGTTGGAATATATTTTTCTTCAAATA ATTCATCCATTTCAAAATCTTCTTTGTTCCAATCGTGTTCTTGCCAACATTTCAATTCTT TGTTATTAACTATTAATTTAGAATTTACTTTTCCTAAATTACTTCCACCACCTTGTCTCC ATCCACAATCTACCCAAGTGTTTTCAATATCTGGTTCTTCACATAATATTTTAAACTCTT CTTTAGTTAATTCGTGAATTGAAAATCTTTTACCTTTGTAAACCTCTTTAATTTGAATAC CCAATCTATTAAAGTCTTTGGATATATCTCCACTTGTTAATACCTCTACCATTTTTGTTT CCATAATTAAGTTCTCCTTTATATGTATTTAAAATAATTTTATTAACCAACCTAAAATTG CTATTGGTATAGTGAATTCAGCAAACACTAATCCAATTAATACATCATAAAGCATGGGTA TATTCTTACCAAACCATGATGATATGTAATCTACTGATAATCCTCCTACAATTCCGTTAA ATATTAAAGCCGCTAATATTATTCTTCCACCTAATTTATTAACCATAAATACACTACTCC TTCATATTGATAGCTTTTATTTGATTTTCATATATCTTATTTGTTTTCTCATTTTTATCT CTTAAATACTCTTTTAAATAAACTTTCATTTCAATTTCTAATAATTCTTGTTCCTTCTTA GATAACTCTCTGTCAAAAACCTTAGTTATATACAAATCGGCAAACGATGTATCTACAGTC ATTTTTGATGAATAGAAATAACCTTTTTCAGAAACCCAAACATCTCTTTTAAAAGTAAAA TCACCTTCTAATTGATTGAAACTAAATTTAGTATTAAATTTGTTGCTACTATCACACTCT AAAGCTAAACAACCTTCCCAAATTTTCATTGTTATTCCTCCTCTAATTCGAACATTTTTA AAAATTCATCTAAAGAAAAGCCTTTTTGATTACAGTCTTTCCATAAAGTATTACTTGTTA CTTCAATTTTAACTTGATCTTTGTCAAAAGATTTTAAAACCTCATTATACATCTTTATTA ATATTTGTAATTCTTCTTTGGTTTTTGGATAACAACCCTCCTCTCCTTTACCTGTAAAGT AATCGAAATAAAAATATACTATTTCATCTATTGGTGCTTCCAATCCTATTCTAAACATAT TATATATATTTGTTTCTTCATTTAATAAATCATAAACATAATCCTCCATACAGTCATACC AATCAAAAAGATTATCTATTTCTCTGTCAAAAAACTCAATAGCTAGTGATATATCCTCAA TTTCTTCATTTATTAATTCCTTACCTTCACATCTAAATATTGCTTTCATATTTATCTCCC CTCTATCCAATTAAAATATTAATCCCATTCATAATCATCTATTTCAATTTCTTTTTTACA ACTAGGGCATTTAATCTTTTCGCCAATCCAATCACATGGATAAACACTATGCATTAAATT TTCAAAATCATTATAAGATATTTCTATTTCATACTCACAATGAGGACAGTCAACCCTTAT GTCAGTTGGTCTTTGAATTATAGTTATTGTATTCATTATTTTATACCTCTCTTCTTATAT AATTCTTGAATAGATTTATATATTTAATTCTTTCTTTATGTTGTTTATTTCATTATTATA ATTTGTTAGCTGTTTATTTATTATCTTATTCCTTGCTTTTATTAATGCAATATAAACTCT TTCGGCTTCATTCTTTTCATCATTAAATAACAACTTCTCTTTCTTTCTTGAATTATTATC AGTAGTAAATAATAAATCTACACTTACTTTATATGTATCGTCTCCTTCTCTATACTCTTT CTTATTATAAAAATCATCAGCTTTTAATCTAACGATTTTCTTTTTTAATTCTTCTATTCT ATATAATTTCTTTTCTATATCTTCAACACTTTTCATCAGAATATAATCTCCTTTATTCTT TCAGATAATGGCTCTTCATTCTTCATAAAGCTTTCCATATCTTTTATTATATCTATATAA TCTTGTCTTATATTCTTCATCTCTTTATACATGGCTCTTGCATATATCTTTCTTGTATCT TCATCTATTCCTTCAAATATATCAATAAGTGGTTCGTCTCTAGATATATACAATGGTTCA TCTGTTGTTGTAAATGTAGAACCATATGATAAGTAATCAAAATATTCTACTCTTACTTTT ATTTCTTCTAATTTACATCCTTTTTTACTTATAGCTATAGCTTGTATCTTTTTATTTATT TCAGATAATAAGCTTTTATATTCTTTATAACATTCCAAAAACTTTCTTAAATATGTTGGT GTTTTAGATTCTAGGTCTTTTAGATATATTGTCTCTTCCATAAACTCATTTATATATATC ACATTTACTTTCCTTTCTTTGTTATATTTTTATAAAAAGTTAATTTTATTTAATTCTCAT CATATATGTATCCATTTATTCTGTTATAGGCTATGTCAAAATATTCATTATCCAATTCTA TTCCGATGAACTTCCTATTATTTTTTAAACAAGCTATACATGTAGAACCACTTCCCGCAA ATGGATCTAAAACTAAATCATTTTCATTAGTTAATCTTTGCACTAGCCATTCCATTACAG CTATTGGTTTTTGTGTAGGGTGTGAACCTAATTTCTTTTCGGATTTTGGAGTTATACCAC ATTTTATTTCAGGTCTTTCATAAGATTCATCTATCCTATTAAAAGTCCATTTTGCACCTT TCTTAACTGCCCAAACAGCAACTTCATAGTCAGTAATAAATCTTCTATCTCTATTCCTTG GCATAGGATTTGTTTTCTCCCATCTTATTAAATCCTTAATTTCAAATCCATTTTCTTCTA AAGCTTTAGTAATATTAGTCATATTCTTCCAATCATTAAAAATTACTATATTCCCACCCT TTTTAAGCAATGGTTGGGCTATTTCTATCCAACTTATTAAATCAAAATCTTTATCCCATT CACCAAAATCAATTCCAGCTCTCCCCATTGTTTTGAAATTGTTATCTCTTGAAATATTAT ATGGAGGATCTGTTATTATAGCATCTATACTTTCTTTTTTTATTTTTCTCATGACTTCTA ATGAATCACCTTTGTATAACTCATATTTCTCTGTTTTTATCATAATTTCAATTCTCCTTC CAATTTAATTCTTTAATTTATTTTAAAATGCGAATTTTATTTAATGTCAACTATTACTTT

TTCATCTTCTATATAACAAATATTTGTTGATTCATTTCTTGTTAATATCCTATCTATAAT CTTTTGAAGATCCCTTATATCATCTTCTGTTATATCACTTACTATATTGTCAAACCAACC TTCATACATATTATTTTCATACTCTCTTTCAAGAGCATCATCTAACATATCTTTAGCATC TATATTAGCTTTATATTGAGTTGTAGTATACACTCTATCAACTCTACTTTTATAATATTC AAAATCTCTTATAAGATCCTCTTTTGGTACTACATAACCGTCAACAAGAAGCATATCTTC ATCTTTTAATTCACTTAACTTTTTACTCATATTATTATCCTCTCCTTATTTTCTATACCA TTTGGGTAACAAATTATAAACCATTATAGTTAAATCTATTGGAAATAAAATTATATAACC TACTGACTTAAATAAACTAATAAATGGGTTTATAAGGTCATTTAAATATCCTTTAAAGCT ATGTTGATTAGGTATTAAGACATAATTTTTAGTTTCAAATATAATATAATTCTTCTTCCT TGCCCATTCTAAAAATATTTTATTAGCTTGTCTTTTATTCATAAATCAAACCTCTTTTAT AATCTTCTTTTCTCTATTCTAAACTTACCCTCTTCTCCATCTATGTATATATAATTATTA TCTACATAATATATAGTTCCTTTTCTACCTTTATGTAATATTGTTGTAACTATAATATCA TTGCCATAAAATTTGCCTTTAAATACTAGATCACCGACAATACATTCTTGTTTTAGTTCG AAATAGTCCCCCACTTTAAATCTATCTTCCTCAATTGGTAATGGTCTTAACTCCAGTATT TCTTTATAAGGTATTATATGTAACCCATCTTCACATTTAATAGCTATATTACTACGAGGA CTAAAATTTAATATTTGACCTATTATTCTATCCTCGTTTTTGCGAATACACAGATATCTA TTGTCTACTTTTATTCCAAACTCTTCATGTAACCATTCATCTTTTTTAATATTCTCCATT ATGTATCTCTCCATTCTTATAATATTAATCCTAAGATTATTAAACTAAATCCTATAATTA CTGTTTCTATTAATCCATATTTGCTATTACTAAATATCTTCTTTATCATGTTTTTGTCTC CCTATAACCAAAGCTGAAAAGAATTCGTTGTTATTTATTTGATATTGTATTTCTACTTCT TGTTTATCTTCTTGTAATATATTTACCTTTTCTATTAAATCTCTATAGAAATCTTCTACA TCTGAATTTACTATCATATACATTCCTTTTATTTTCATGATTTCACCAACCTTTTAATTA TTTAATTTATTTAAACTTATAGAATAGAAGAATTTTAATTATTCCTCCAAAGCACATTCT AATTCGTCCATAGCTTCATCATATTGTAGTTGGTTAAAAGTAATCTTATCTATATTATTA GCATTTATATATTCTAAACCTTTTTCTAAACAATCTTTGCATATATAATAATATGATGCT TCCTCATCTTCTAACCAAAACCTTGCTCCATTCTTATATTCATGATCTTTACAAAAAGAA CTTTCGCATACTGCACAAGTTTCACCATATAATTCATCAACTTTATTGTTGCAAATCTTA CATTTACACATATTTAAACACCCCCCACTCTATAATTTATTTTATATTAACATAATTTTG GTTAAATGTTAAGTTTTAATTAAAATCTTCTAGTATTTCTTGTAGGTTTCTAAAACTTCC ATCTTTCTTCTTTATATGTAATCTTAAATTTTTATATTCTTTAGCATAGTTTTGTTGTAT TTTTGATAATACCTCTTTCAATGCTAAAGTTGTTTCTTTACTATTAAACATTTCTATCTT ATCCATTGTTTATTGACCACCCTTTATCTCTTAAATACCCATAAAAATATTAAATACTAC TATTTTACCTTGTTATGGTTTAATTAAACTATATTCTATTTTCTTCTTTTAAAACTTCCT TAACTATATTGGGTATATTCTTACCTATAGTTCTTTTAATAATCTTTTCTTCAATATTTC CTATTAATTCAGGTTCTTCTTTCATAATATCTTGATAAGGTCTATCTTTAAGCTCTTTTA AGATTGTTCCCATATCTTCTATTGCAAAATCCTCTTTTAATAATCCTTCATCAACTAATT TATGTATTAATTTACTTACTCTAGCTTTGGTTAAAACTGACTTTATAGTTTCTATCACTT TTGAATCTACATTTGGATTCTTAGGCTTTTTCTGTTGCTGCACTTCTCTAAATTTATCAC TAACTAATTTAACGAAAACTTGTCTACCATGATTATCAAAATAGCTAACATTCTTAACTA CTATACCTTCACCAGTATTAGGTTTTTCTGTTAATTCTGATTTTCCCACAAAACTCATTA AATGTTCAAATGATATGTATTTTCCATAGTAAAAATATTGAACTGTTAATAATCCTAATC TCTGTGCTTCTGATTTAACTATTTCATCAGATAAATACATTTGCTTTTCGTCATCCCAAA TACTAAATAGATAAAATTTATAATAATTTTCTTCCTTATATATAACTTTATGCTTTACAC ACCATTCGCCAAAATATCTATAGTTTGGATTTAACTTTTCTTTGATTGGAACTATATTGC TTAAAACCCAATCATAATATCCTCTTAATCTATTTTCTTCAGTTAATAAATTATTTCTTG AATAACAACTTACTCCTAAAGTATTTTCATTGTCTATACAAAAACTTGCATTAGCACCAT CTATCTTTTCAGTTATTGAAATTATATCTCCTTCTTGGATTACTCCTTGAGTTGAACTTT TACCGTATCTCACTACATCAGTATATTTTTTAATTTCTTTCATATCTTACCTCTCCTTAT TTCAATCAATTATTTGATTTATTTTAAATATTCAATAAATAACAACATATTATTATTGGT ATTTTGTTAAGTATTTAATTTGTTTTATGAATGTTTTAATCATTATCATAGTTTTTATAT CCGTATGTTCTAATATATACAATATTATCTCCAAAACCGCCTCTGTTAAAATTATGTAAT TTATATATTGTCCCATATTATTTTTAACAAATTTTAACATACATTTTAATAATATTACCA TAAAAGTAATTATATCGTATTTTTGTTGTAAATTATCATATTCCCCCATTTTGACCTACC CTCTTATTAAATATATAATATTTAATAAGGGTAACGCTTGGTAGGTAGGGGTGGGCTTTT GTTGTTATCTGTATTCATTTTAAATTCTTTCTAATGTTCTTTACATTCTCTCATCATTCT TTCAAGTTCTAATTTTTGAATGTCTTTCTTGTAGTTATCAAATGTACTTCCAGTTCTATT

ACTCATTATCATTCCGTTCTTATCAAATTTAACCTTTGTTGGTACTAATAATATAACCTC ATCGTCTTTTAGATCTTCTCTCATTTCTAACCAGTCTTGCTTATAAGACTTATTCCAAAT ATCCATGTTAATCATATGTATTCAATTCCTTTCTTTTTATTAATTCTTTAATTTATTTTA ACTTCTGTCTACATTTATTATTATAGTATCATATTTATGTTATGTCAACAGTTTATTTAA TTTATTTTAACTTTTTTTATAAGACTTGTTCCCATATCTTATTAGGCTTTCTTCCTCTAC TCCTAATACACCTAAAATCTATATCTCTATATTTATGTATAAGCATTTTTCTCTTTAATT TGAAGTCATTTAACAGTTGACCTTTTACATCTATAACCTCTACATGTTTATCTGTATATG TAACTCTAAAATCAGCTTTATACTTTATAGGTCTAATAGCTTTATCTTTATATCTAAACT TCTCTTGCAATTCATACTCTGGTTGACATTCTATATTCTCAACAATTCCATCCTCTTTTA ACTTTAAAAGATATTCATAATACTCCATTTCCATAGTAGAATCCCATTTACGACCATATT TAACTTGTTTTTTATTATTATATTTGTTTATTGCCATATAATCTTCCTTTCTTAATGGTA GTCAAATGTTAATTCAACCACCATTTTTAATTAATACTTTAATTTATTTTAACTTTTAAT TCTCTTTAAAATTGCAGTTTTAATCTAACCACCATTCGTAAAACAACCACTCTAATCCTA TCACTATTAATAACATCAATATAAACATTCTCATATTTTACTTCTCTAAATTTGATTTAA CTCTATTTATAAAGTCTTTTGTTTCACTATAGATTATAAATAATAAAGTTGGTATAAATA GAGTAATTATACATCCAACAATTATTTTAGGTATTAAAAGACAAATAGAAATTATAAATA AATATGTCAATAGGATTATCGCAATATCTTTTGTTTTCTTCTTAACTTTATCAAAATTAA TACTCTTTCTTATAGCTCTTAAATATCTCCTCATATTAATCCACCTCTACGCTTGTTATT AAATCATTCTTAGATCTTGTATTATAGATAAAATTACCCATATTTCCACACTTCCCGTAA ACATAATCGAACCACATTGTATCGTCTTTAGGACTTATATCATCTAATAACACTCTAATC TCTTTACCTTTCTCAGTATGTATTGTAAATCTATCATCTTTAGTAACATCAATAATAGCT GCTACAACTTTAAATCCTTCATTAAGTTTAATTCCTATGTTCCCTTGCGTATTTCTACTG CTCTTAGAATTAATTCTTTCAGTATTAAATACTAATCCCTTACCTTCAGATGATAATATG AATATATCTTTATCTTTTTCTATGTAATCAATACTTATTAATTTACTATCTGTATTAAAA CAATTCATTAGTTTTTTATTATTAGACATAAATGATTTAATATTTACTTTAGCAACTTTT CCATTTTCAAATACAGAAGCTATATATCCTTTATTAGAATCATCTACAGAAACTGTCTTT ATAACTTCTTCTCCCTCTTCTAATTGAATTAATGAAGGTATAAACTGACCATATGCAGAA GGAGTTAAATCTTCTAATTCATATACTGGAATTTTGTATCTATTTGCCTTGTTAGTGAAT ATTAATAAAGTTGATTTGTTATTTGTTGCAATATCATCTATTATTATTTCTCCTTCTTTA ACCTTATGGTTATCTGATTGTTTTAAATGTTTTTTAATATAATTCTTAGTATATATAATT CTACAATTATAATCTTCTATTAAATCTTTGTCATTATAATCAAATAAATCATATGTAATC CCAGATATTCTTTCTCTTCCATAATTCTTCTTAACTCTCTCTAAATCATTTATTATTATT TTATTTATTTCATCTTTAGAATTAATTTTATTTATTAAATCATTAATTTCTGTCTTTAAT GTTTTAATAGCCATTAATTGTTTAGTTATATTTGTAGTATTTATATTTCTTAATTTCATA TTAGCTATATATTCAGCTTGAACACTATCTATATTAAAATAATCTTGTAAAGAAACAATT ATATTATTATCATCAGATTTCTTTATTATATCTATGGCTTTATCTACATCTGCTAATATT TTCTCAAGTCCTAATAACAAATGATACTTTTCTTTTTTTTGTTCGAGATCATAGCTTAAT ATTCTTTTTACTGTATCTTCTCTAAACTTTATCCATTCTTTTAAAATTTGAGGTATACCT AATACCATAGGTTTATCATGATTTATAACCGTAAAATTGCATGAAAAACTATCTTCTAAT GGAGTTAATTTATATAATTTTTTCATTAAAGAATCTATGTTTACATTCTTTTTGACATCT ATAGTTATGTTAAGTCCTTTTTTACCTGAATAATCATTAACATCTACAATATCTTTTATT TTACCGTCTTTAACCAATGTTATTATTGAATTAATAATTGATTCTCTAGTAGTTGTATAA GGTATTTCTGTGATTACTATTGAATTATTTTCTATATGATATTTGCATCTTATTTTAATT CCACCTTGCCCAGTATTATGTACCTTTTTTAGAGATGCTTCATCATATACTATATATCCC CCTGTAGTAAAATCAGGAATCATAACTTTTAATTCTTCTCCTTTTATTGCATGTATAGTA TTATCTATAACATCAGTTAAAGGAAATGGACAAATATTAGAAGCTATTCCTACAGCTATC CCTATGTTAGGTTGACATAAAATAGCAGGAAATGATACTGGTAATACCTCTGGTTCTAAT CTAGTATTATCATAGTTATCTTGCATATTTACAGCATCTTTGTTTATATTTGTTAAATAT TCTTGAGATATTGGTGCTAACCTCATTTCTGTATATCTTGCTGCCCCTGGTTGAATTTCT TTTGAAGTAATACTACCAAAGCTTCCCTTACCATCTATTAAGGGATAATTAACGCTATCA TTTGTTAATCTAACCATAGCTTGATAAACAGAACTATCACCATGAGGGGAAAACCTTAAA ACACTTCCTGACGCATTTATTGATTTAGTTCTATTTTTATTATGTTGAAGTCCATCTAAA TTCATTGACCACAAAATTCTTCTATGTATATTTTTATTTCCATCCCTAACATCTGGTATT GCTCTCTCTAATATTACATATTCAGCGTAATCCATGCAGTTTTTATTTAATAAATCGTGT AATTCTATTGCTTTCATTAATTGTTTCTCCCTTCAAAATGACTAAGTATATAATCTTTTC TTGGATTTACTTTTTCACCCATAAATAAATCTAGTGTCTTTAATGACTTTTCAACATCTT

TTAATGTTATTTGAGTTATGTTTTGATATCCTTCAGATAAACATAAAGCCATAGCTTCTG ATGATAATTCGGCTAATCCTTTTATATAATGTATTTCATATTTCTTATCTTTTAATTCAT TAGATAATAATTGTTGTAATTCATCATCATTGATAGCATAATATTCTTTATTGTTGCAAC TAACCTCATATTTAGGAGTTTCACATACATATATTCTTCCTTCTTTAATTAAAGTTGGAT TTAATGTTTGGAACATAGATAATAATAATGGTAGTATAGAACCTATTCCATCAAAATCCT GATCGACTATTATATATATCTTCGAATATCTTAAATTATTTATATCAAAAGTGTTTAAAT CTTTATTTTCCTTGCTTTTCACTTCAATCCCACAACCTAATGAACGTTGAACTCCTAAAA CAACATCATTCTTTAGAATCTTATCAAGTTTAGCTTTAAAACAATTTAATATCTTCCCCC TTAATGGATATAACGCATGTATATCTCCTCTTCCAGACATTAAACTCCCTAATGCAGATT GTCCTTCACATATACATAGAATATTTTCTTCTTTATTTTTGCTTTTACATTCTATTAAAT TAGGTATTTTTGAAGTAATAGTTACTTTTTCATTTAGTTTTTTCTTTAAGGCTTTTTTAT TAGCTTCTGATTTGCTATTAAAATTATGTACATCTATAATATGATTAGCGAACTTCTTGA ACTCTTGTGAATTTTCTAATTCAAAAAGTTCTAATAACTCTTGAACATATTGAATAGCTA TAGTCCTATATAATGGTTTTTCGGTAGATAGCTTGGTTTGATTAGCAAACTCTGATTTAA CACTCATAACATTACATATAAAACTAATACTATCTTCCACATCTACAATGCTTATACTAT CTGTTTTATTTTTAAATAATTTATTAGTTTTGCAATATTTGTTTATGTAATTTCTAACCC CTTCAAATATACCTCTATTTATTGTCCCTCCTTTTGGTAAAAAAGTTATGTTTAAAAATG ATTCTTGAACTGGTTCACTAGAAGTTGACATAACTAATTCATATCTATTTAATTCATCAT TTAATGTAAATTCTTTTTCTAAACCTATAACTTTAGCTGAAGTATTATTGTTTGTTATTG TGTCGAAATATTCTTCTATACTATCATAATGATACTCTTCATGTTCTTCGTCTCCAAATT CAAATATCATTTTAATTTTATTATTTGATCCAGCTAATTGATTCAATATTGTTTTAATTT GTTCCTTGTCATATTTATACTCTCCAAAAACATCTTCATCTAATTTAAAAGTTACATGAG TTCCAGTTATTCCAGTATCATTATCTTCTATTTTAAAATCTTCTTTAATTTCTCCTCCTT CTATAAAAGTCATACTACTTTTTATTTTTTCTCTATAAGATTCTATATGGAAATATTTAG AACAATAATTACTTACAGTTAATCCCAATCCATGCTCACCCGTTGTTATTTTACCATTTT CTCCATTTTCAAAGTTAGTACCTCCAAATAATATAAGTAAGAATATTTTATAATATGGAG TTCCATCATCTGATGTTAATTCTAAAGGAATTCCTCTTCCAGTATCTTTTATTGTTAAAG TTTGCATATCTTTATCAAGTTTTACTGTAACAATTCCCTTTTCAAAGTTATTATTTATTT CATCTGTAGCATTCGCCACTAATTCTTTTAATGGATGTATAAAATTGGCTTTACTTTCAA ACCAAACAGAAACATCTCTTCCTTTTTCTCTTTCACTAAGAACCCTAGCTTTATCTCTAT TATTCATCTGTGTTCCTCCTAAGCTATCTTTTTGTTGAAATCTATATCTTTTAATTCATT CTTTAATTTATTTAAACTATCGCTCTGTTTATACTTTAGTGGCTTATATCTATAACCATT ATTATTAAAAATATTTAAGTATTCTTCAGATAAATTCTGTATTACTATTTTAGATTGTTC TTCTACAATTTCTTTCATAGTTTTATTGCGAGTTTCAAAACCACAATTGCTAAATTCGTT ATGTATTTTATTTCTTGTTGTAACATCCCAAGCTATCAACCATTTTATTCCCTCATATGA TAAAGGTACGCTTCTACTTATTCTTTTATGGTGATTTTGTATTCTACAATTTATATTAAC CATTGGTCTTTTATGATCTTTTATAGTAAAACCTTTAATTCCAACAGTATTATCTTTTCT TCTTTTAGCGTTTTGAGTATTTTCAAAATTATCGGCAACTCTTAAATTTATTAATCTATT GTCTAATGGATTTCCATTAATATGATCCACAATAATATTATTATTTTTTTTGTCATAAAA CTCTAAACCACATTTAAAAATATTCATCAAAAACATTTGTCTACCATTGGTGTCAGGTTT ACTAATAAAAGGATACCCTCTACTATCCAACGCTAAAGTTCGATTTATATTCTGTAGGAG TTTTAAACCTTTTTCATCAACCAATACGTCATATCTTTTATTTTTCTTATATACTTCTAT ACTATATGTATTATTGTTAATTTGTTTATATTTATTATTAAAACCAGTTTTAGTTTTCTT GTTAAATTCTATAATTGCCACCTTTTCTTTGCAGCCACATGATTTCGGTGATCTAGTAAG CTTTTTAGTTAAATAATAATATGATTTATTTACTTCTTTACCACATTTGCATATACATCT AAAAGTAGGAATTCCTTTATCACTCTTACCTAGATATTTCATTGTATATAAATCTTCATA TTGTTTATTTTCAAATTGTGTATAATCTATCTTTGTCCCCATTTAATTCTCCCTTCTCCT ATTTTGACACTATATAATTAAAGTTTTCTTCATTATCTTTGGTAATTCTATTTTCATATT CACTCTTGGTTAAAAATCCATATTCAAAATATTTTGGATAGAAACCATCTCTTATTATTA GTTCTTCTAATTGCTTTTTATACACCTCTTCATTAATACTCTTAGGAAATTTTGTACAAT CTTTTAGATTTATTTCAGTAGAATATATTACTTGTCCATTGAGTTTAGCCCCATAATATA TTGTCATTTGATATATCACTTATTTCTCCTCCTAAACATAATACTCTTTCATATCATCTA ATCTTAAACAACCAAGTTGTCCACCTTTAACATCTATTCCACAATCTATATAAATTGTCC CTTTTCTATGTAATATAGTGTTTCTACCCTCTTCTATAGATTGAACTCTATTGTGTCCAC ATATTTGGATATAATGTTTATAAGGTTTTTCTTTGCCTATTGTATATCTATGCCATAAAA AATTATCACCTAACACATCAACTAAAGTTTCTAATTCATAACTATCACCATTAGGAGGAA

TATAAATTCCAGCATGAGATAATATATATTTATCTTCTAATACTACATATTTAGGTCTAC TTTTTAGATATTGATAAATAAATTGTTGTTGCTCTGGGGTTTTCATATTGAATTGTGTAT AGGTTTTAAATCCTCCATTACAATACCAACTATACCCATCTTCAAATCCATCCACATAGT CTATTAAAAATCCTTCATGATTTCCTTGTAATAAATGTATATTCTTATGTTTTAATATAT AGCCTAATATATTAAATGGTTGTTTCCCTCTATCAAATATATCTCCTAGAATATATAATT CATCATTATTTTGAAAATCAATAAGTTTTAACATCTTTAAAAACTTAGTATAATTCCCAT GAATATCACTCATAACATATGTACTCATTTTACTTCTCCTCTTTGTTATTATTTAATTTG TCTTTAATCTTGTTGATTACACTAGAAATTAAACACCATATTCCAAGTCCTATAAAAACT ATCAATAACAATATTAAACATATTATTGTTAACCAATCTTTAAGCGTTATAATTGTTACC ATCACTTTTCCTCCTTAACACATCTATAATATAGTTTTATAGTTCTTCTAATCCCCTTCT GCATTTGTTTAATAATTTTATTTCTTCTGTTGTATTCGATTATTATATCAGTAGGATCAT ATAAATTTATAGGTTTCTTCATCATATTTGCTATTTCTTTATATAAATTATCAACTTTAT TAATTAACTTCTTATCAACTGGAAAGACTTTGTATTTATCATATTTATCTTCTTGAAGAA AACAAATATCTCCATTATTATAAAAATAGATTTTTCCAAAACAATTCCTAAAAGCCAATA AACTTTTATTCTTATTCCATTTATCTCCTATTTTAATATTTCTTTGATATTTATTATGTA TTACAATAACTTCATCTTCATTTGAGACTATAAATTTATGTCTCTCACTTCTAATATTCA TTTCTATTTATCCTCCTTATTTATATGTATCCATAACGCTACAGCTATTATTATTTTTAA TATAGAATTACTCTTATAAACTTCGAATTGATTAAGCCATAAAACAAAATCTACTCCTAT GCTAACAAAGAAAAATAAACCTGCCCATTCACATAAACTTCTCATTGCCTTTTTAACATC ATTTTTAATTTTTGCTATTCTATCTATAATAATCACCTCTTATTCCAATATTTTACCTAT TATAAATAATCCTACATTCAATCCGACTATTGTTACACACGCAATAATACCGCTCCAAAT AgAATTATCATTTATAGTCCAATCTTTAACTAAATACATTAATATGATTGCAAATATACC CGATAACAACATAATGCTAAATTTACCAGTCGATATTAGGTCTTCTTTTAATTTTCTTTT CATAAGTAATCACCTCTTACTTACCTAAATTATAAAAATGGTATCTACATACTTGCTGAT ATTCTTCATCAACATTGCTACCTTCTACATTCACCATATCCCCTCTATGCACTGGTTTTC CATTTCTTAATAATAAATTATGTGTAGCTTTCTTATTACAATATCTACAAGTAGTTTTAA TCTCTTGAATATCTTCTGTGATAGATAATAGTTTAGATATCGAAGGGAATAAATCCCCTG TGTAACTACTTTTTAGACCATAACAAATTATAGGTGCTATTTCAGATAATTTAACTAAAG ATTCTATTTGTTTTACTGTTAAAAATTGAACTTCATCAATTAAAATTATGTCTAGGTCTA AAATTGGTTTATCTTTAAATATTAAACTAAGATCATCTATATTCTCATCAACTATGTAAC ACTTTAATTCCTCATTGGACATTCTCGACTTTATAACTCCACAATCCCTACTATCTTGCT TTGCTTTTATAATAAAGACACTATTACCATTAAACTTATACGTTTTTGCAGTAGAAATTA AGTTTAAACTTTTTCCACTGAACATTGTCCCATATTTAAAATAAATTTTATTATACATTC TATTCTCCTATCTTTGTTTTATTTCTTTTAATTTGACTTTAATTAATTTAGAAACTTCTT CAAGCTTATTTTGTATTTCACTAAAATCTATTTCAATTCTTTCTTTATTATTTTTTATAT TGTAATATTCATACATATTTATTCTACTTAAATTATCTTTTGCTTCTGAAATCTCATACT CTAAACTATCTATTCTATCTAAATACTTGAATTCTTCGGTTGTACTATCACTTAAATTAC TACTATTCCAATGTTTTTTAATACTCATTATTTTCACCTACTATTTTAAATCTATTTTGT AAAAATCCTCTTTCAACTCCATCATTACATATTACAAAACACCATTTTAAATCATCGTCT TGTATTTTGATATCGTAAATTTTATTTTTTGTAAGAAGAATCTTTTCTCTAGTTCCTTTT ATACATATTGCTTTATATTCCATCATTATCTCCACTTTTTCTTTAATTCTAATTCATTAT AATATTTAATAATATGATTCTTTATAATTTCTTCTAATTCATCTTTTTTCATGTTTTCAT ATTTATATAACAAAGCTTCATAAGGTTGATTTCTGTCTATATAGAAGAATTCTCCTATTT GGAACAACTTATATTTATAATCTATTCTACCTGCACCATATCCCTTACAATTAGCCCATT CTATAACACTAAAATTATATTTAAATCTTTTATTTTGATATGTAAAATGACCTTTCAAGT ATAATACCCTCCTTATATGTATTAATTATTTAATTTATTTAAAATTCTTGTTTTATATTT TATAATTTATTTTATTTTTTAGTTAAACCAATTAATTGTAGTGTGTATATAATTGTAGTT CCAAGTAAAGCCATCAAAATTATCATTACTAATCCAATAATTATTCTTATTATAAGTTCA TTACTTATGAATTTTTCTAACGTTTTCTCAAGACAATCTGCAATAACCAAAAATAAGAAT AAAATCCCTACAATTCCACCTATTGTTGAAAATCCTATAACAAAGACATAAAACACTCTT TGAAATATTTCCCAAAATGTTTGCATACATTCACCTCTCATTTGTCTTTAAATTTATACT GCAATTTTAATCCCAAAGATCCATAAAATATTCTGCAAATAAATTCATTCCTTCTTTATA TTTTTCTATTCTTTCTTTTTCAGTATCATAATCAAAATAGAAATTATCTCTTTCTATAAC ATATTTAAAAGCATATATCATCTTATCTAGGATATCATTCCATTCTTCCTCTCCACTTAA TTTAGAAGGATAACTCATTCGCTCCATGTTTCTATATTTCTCTAGTCTAGGTAATATGTA TTTCGCTAAAGTGAAATCTAAACTCCATAATTCGCTATCTTGTATTTTAGCTAATCTCTT

TTTCTTTGCTATTCTCTTATTCATTAATTTGCACTCTCCTTTATTCTGATAAATTATCTA CTTCTATATAGTCTATGTTTAAAATATACAAAACTTTCTGTACAATTTCATCTATGGTAT CACAACAATCTCCGACATATTCTCCGTCTAAATATACTGTTTCTCCATTACTAAATAACT TATGTTCCATCATATTTTTCCTCCATTTATTTAATTTATTTTTATATTTACTTAAAAGAT GTGTTTTATTTAGTTTTGTTTTTATGTATATAACAGAGAAATCAATCTCTGTTAGTTCAA ACATGGTCTTTGTTGATATTTAATAAATATATTTTTGATTGTATTTTTTAAAGCGTTACC CAAAGCAAAAGGAACTCCATTTGCAACTTGTTGCTGTTTATTATTTAAACTTCCAACAAC TTTAAAGTTTTTATCAAAGCCAGATAAAGCCAACGCTTCCGCTACACTTAAAATCCTATT GTATAATGGATGTAATATTTTTGATTTTCTAAAATTAGTTAATGTGCAACAAAGATCATT TAAATTTAACCTTCTATATCTATTACTGTGACACCCTTTCCCTCTTATTGGTTCTGGTAT GTCTTTAAAATTTCCTCCTTGTGGTATATATTTCATTTTTTCAATTGAACTTTCTTTACA TTTAGTTATATCATTAAAGTTATACCAATCAGATGTTACTTTACTTAAAGCTTCTTTTAC TAAATGTTTTTCGTTTGTTTCTTTTTCAAACTCTACTTCACCAATTATGCTTCCTACGAT AAATACTCTTTTTCTAATTGTATAGCCACCATAGTCACAATCCTTCATAATTTTATGTTT TATATTAAACTCATTTAAACATTCTTTTAAAGTATCATAATAAAAACCATTTTTTGCTGT AATGAAACTAGGTACATTTTCTATACCAAAAACTTTACAGCCACTTTCTGTAACTATTCT AATGTATTCTATAACTAAATCGCTTTCTTTGTGTCTTTCTATTCTGTCTTTGCTTCTATT TGCATTTGAGAAAGGTGTACATGGTATTCCACCTATGACTAAATCTATATTGTCACTATT AGACAATTTAAAATCATATATATCCATTTCTTTAATTTGCTTTCCTATATTCTCTCTATA ACTCATACATGCATCTTTCATTATATCTGTAGCAATTTTTATTTCAAAAAAATCATCTAA ATAAAATGGATAATCCAACATTCCACAACCTGAGAATAAAGAAGCAATATTTATTTTTTT AATTATTGTTTGTGATGTTTTATCTTTATTATTTTTTAATTTAACCTCTACTATTATTGA TTTGTCTAAAAGTTTTATATTTAAACATTCTCCATCTTTTATAGTGTTTTTTATCTTTTT ATTTCTTAAATCTATCAAACTTTTATATACTGATTTATTTCCTATTTTCTTTCTACTTAC TTTTAAACCATTTTTATCTTCTGATTTTATTATAAATATTTTTTTACTTTTATTTGAGAT CACATACTTATAATATGTTGCTACTTTTATATATTTGTGATTAAAGCTAAAAGTTAAACC TCTATTTGATGTTTTTATTTTATATTGAAAATTCACATAAATCACCTCACAAATATTATG AGCGGCACCACCTTAATTTTCAATATAATCTTTAAATATTTTTTTGAAATTTGTCTCTAA CATTGGAACTACGATTCCTCTTCCAGCTCTTTCATATAATTTAGAATTGGGCAGTCCCGC TCTTTTTGCCTTTATAAAATCTTCATCTTTAAATCCCTGACATCTCCAACATTCTAAAGG TGTCATTTTTCTAACTTTATCATTTATTCTTATTTTAGGTTGTCTATTACCCCCATTCAT AGAATTTAAAGTACAACAGATACCTTTTTGGTCATAAACTCTTCTATTACATTCATTTCC TTTGGTATTTAATAATCCTAAATATATTAGTTTGTGTTGTTTTTCACCATTATATATATC TATTGTATTTATGTATTTATCTTCACTTAAAAAATATGTATTATCAACTTCATTTTCTAA TATATCAGTTATGTATGTTTTTTTATTATTTGTTATTTGCATTTCAAAGGTTTTATCATC AACATCTTTTCTTATACTTATCATTATTACTCGTTCTCTGTTTTGTGGTACACCATAATC TTTGCCATTTAAAACCTTCCAATAATTATTGTATCCTATTTGCTCTAACGTTTCGCACCA CAAGTCAAATAACGGTTTATGTTTTTTACTAATTAGATTTTTAACATTTTCCATCATTAA ATATTTAGGTTTTTTATGTTTAATAATTCTTCTACACTCCCAAACTAAAGATGATTGAGT TCCAGATCCCTCTTCAAAACCAGCTTGTTGTCCAGCGTTAGAAATATTTTTACAAGGAAA CGAATATGTAAAGAAATCAAAATCTGGTAATTTATTTTCGTCTATAAGCCTAATGTCTCC AAAATTTTTATTTCTTATATGTGCTTCATATAATTTTCTCAAATCATCTTCTTTTCTAGG GATTTCAGATTTTCCAGTTGAAAAATTATAAGCTATATGCTTACTGTTAATTTCCTCTAA CATTTCTTTTTTTGTTTTATATTCAACCTTTTCATTATTATTATGTATTGAATCGTAAGC TATTATAGCATATTTATCCACATCCATTGTTCCAACAACTTCATAATCAACATTTATATT TCTTAATGCCATTGATTGACTACCTATTCCCGCAAATGCCTCAAAAACTTTTAATTTACC CAATAAACTTCAATCCTTTCTATGTTATTATTTATATAATTTATTTCAAAATATAATTAT TTTATTGCTATTATCCCTACAAAATTACACCATCTAAAAAATACTTCTACATCTTTGAAA CCAGAATTTTTCATTAATTTTATATTTTCATCTAGTGTATTTGGTGACATTACTCCTCTT ATTGCTTTAGCCTTGCCTATTACTTCAACTTCTGTAAGACCGTTGTCCATTTTAAAATCA TGATAAAGTTCTGTAAAGATTTCATCAAATTTCGCATTGCTACCTATTATTTTTTCTATA ATTATAAAAGCCCCTCCTATATTTAAACCTTCATATATTTTTTTTAATACTTTTAACCTT TTTCTTTTAGGTATAAACTGCATTGTTAATATAGAAGTTATAAAACTAGCATTATGTATT TTCACATCCTCATTACATATATCTGCATTTAATATTGAAATATTTTTATCTGTTTTATTT TCAACACTTTTTTCAATCATATCTATTGATTTATCTATTCCAAAATAATGCACTTCTTTT TCACTATGTCTTGGTATAATATTTTTAAAAACCTCACAGGTAGAAGATCCTATATCATAC

ATATTTGTTCCATTTTCTAAAAACCAATCCGACATTTCTGCTGTAATTTTATGAAATTCA TCATACATTGGTACAGATTTTCTAACATGCGAATCAAATATATTAGTTACTTGTTTGTCA AATTTAAAGTTTGCATTCTTGCTATATGTATTTTCATCAATTTTCATAATTGTCTTTATC CTCCCTTTTACTAAATTCTACTTCAGTATTACATTTTTTATTTGAATATTTTAAATATGT AACAACCCCTTTTCCTTCACCATAGACTTCATCATAATTGAAATCTGATTGCCAAATTAA TTTATTTCCACAATACCAACAGTCCATACTATCACCTCTTAATCTCTATTGTATATTTTA AATGACTTATCTAAATCTGATATTGTTGTAAATTCACTTCTAAATAAGCCTTTTATTATT ACTCTTCCTTCTTTATCAATATCTGTTATTACATATCTATCTCCAACTTTCATCCATTGG CAACAATCCACGTAATCTTTATCTATTAATTCTACAATATCATTTAACTTATATTTCATG GTTTATCCCTTCTTTAATTCTCTTTAAAATTAGATTTTTAATTAATACTTTAATTTATTT TAACAATATAAATATTTGTTAATCTACATATAATGAAATATAACCATTATTACCACCTCT TTTTTATTATTTGCTTTCCACAATTATTATATTACACCTTTGATTTCATATTGTCAATCA TTTATTTAATTTATTTCAACATTTTTTTTAGATTTAAAGACTGAAATATTTACAGCCCTT AAATAAACTCTTGTTTTATTTAAAACTTCTTTTATCTTCTATAAATATTGAATTGTTTTT TATAAAAATATTAGCATATTCACTATCAGCAACCATTTCTAATATAGTTTTAAAATCCTC TAAATGTTTTGTGGTTAAATTTTTATTTTCAACAATTTTATCTAATCCAGCTAATAATAC GATTTGTTCGCCTAATCCATAAGTATATATATCGCTTGGAATTAATTGAGTTATATTAAA TAATATTTTTCCATCAAATAATAATGATTTTTGATATAAATCTAAAATTTCTTGATAAAA AATCCATTGTTTACTTTTTATATTTTCGCCTTGTATGGGATTATACCCTTTAAATACTGT TGCTATATTATTAACCTTTTGAATATAATTCATGTAAAATACAGCTAATATTAAACATTG TCTATAAGTTAATTTTTCAAATACTTTTAACAAAAAATTAAACTCATCAGCATCTAAAAA GTCAACAAATCCAATGTTAGCCAACATATTTCCATAAAAAATTTGTTTCATTTCTTGAGA TTCTCTCTGACTGGCCACTACTATCGATTCAAAAACTTCTTCAGCATCTGTTTTACCATT AAGTTTCTCCTCAAAGAAATCATCTTTTCTTAATTCATCTCCATTATTTATACGTTCAGT TATTCTTTCTATAGAACTAACCATACAATTTTCAACCCTTTTCTTTTCCCATTCAGTTAA TTGACAAGGATCTATTTTCTCTGCTAATGCTTTTATAGTTTTTCCACAAACCGTTTTAGC TACTGTTCCAGATATACCAGTTGGATCTGATAATGCCATATTAACAACAAAAGCGATTCC CTCCTCAGCATATTCTTGAGTATTATCTATTATTTTTTTAGCGCCTTTCTTAATTTTCTT ACTATTCATATTTTCAATCTCCTATTTTTTATTTATCTAAATTATCCACATGATAATCTA AAAATATTATCTCGCCATCATTATAAGCTTCAGAACTTATTTCTACTCTTGGATCATAGT TATTATTCTCTGTTAAAACTTGACATTCAACTTTAGCTGAATTAAAATCTAAGTTATTTT CTTCCATTCCTTCTTTTATAAGTTTAATCACTTTATTTGAATATTCATCATCAATAATAT TTTCTAAAAAATTATTTAAAAATTTATCTAATTGCACTTTATATCACCTCTTTTTATATT ATACCATTATTACCCACTTTAAATAAATCGAATAATTTAATAAGTTTTATAAATATCTAA TTTCTATTTCTATATCTAATTCTTTGAAATGCTTTATAATTATTTCTCTAACCTTTCCCC ACTGTAATCTATCCAATCCACAACCAATCTTAGGTATAGCTAAATATTTTATATTATAAT CCTTACACATATGAGCCATATCTTCAATCGTAGGTTCTATGGTTTTATAAGTTGGCTTAC TCCAATAATTTTTTTTGGTTACTAAATTAAACACCATTTTATCAGAATTAGAATATGGAA TTACACATGGAAAGTTTAAATGATTTTCTTCAATCACTCTTTTACAATAGTTTTTCATTC CTCTAAATTGCTTATCAAATACTACAGCTATTCCTTTACCCATAGCACAATCTTGACTTA TACAATGTGCATAAGCATATTTTTTAGGGTCTAATTCAAATAAATTACCTTTCTTTTCAT TTAGTTTCATATTATCTACACTCCTTATATTCATTAAATTTATAACATACTCCATCCAAT ACAATATGACAATTTTCATTATCCATAATTAATCTTTCAGTTTCTATATCACCATCAAAC TGTATTAAGTGTTGTATTTCTTTTATGTATTCACTAAGCTTCATTAAATTTCATCTCCTT CAAAACTTACCTTATTTGAAGAATATCCAATATCACATAATTCTTCTATATTAAAAGTTC TTACATTTATTCCACTTTTACAATAACCATCTATAAAAGTAAATTCTATATCAAAATCTT CTAAATTTCTATCTTGTATTATCTTAATTAACTCTCTACCTTTCATTTTCTATTTCCTCC TACATTATATTCCAATTTCCATAAGCCCAATGACCTAACACTGTTCCACATTGTTTGCAT CTAACACTATATTCTTCTCTACATCCCCAATCTGTGTAATATTCATCATATTCTTCCATT TCTTTGCTGCCACATTTATCACACTTTAAAGGTGTTCCATCACTAGATATATACCCCATA TCAATACACCAATCTATATATTCATCAATAGATTTAAACATTATTATTCTACCTCCCGTA TTCTACTCATTAAATTTCTACAATATTACAATGTTCTTGATCTAAAATATCTTTTAACTT CTCAGTAGTTATGCTCAATTTAGATGCAATTCTATCTAATGCATTGGTTTTTATATATGG ACAACCATATGGCGGTAATTTGGGTATTGAAATTTCACCTATATCATAACCAAAGCTACC AGTTCCTCCAAATGCACCTTTTTTACACATATAAACTAAATAGCCATCTCTACCATCATT CCCATACGTTCTTCCTGTTGTTAAAAATGGACAATCTTTACAATTTTTTATTTCAAAATC

TAATGTTACTTTCATTATTCATTCTCCTTATAAACCATTTTATATTCTCTAATTGCTATA ACTCTTTTCATGTCAACAACTCTATCGTCTTCTTTAGAATATTCTCCTCCACAATCTAAC AATATATCTTTTCCTATAAGTTCTTTTATTTTATCATATGGTAGTTCATCAGATATTGTT AAATCACGTTTGTTTTCTATGGTTAATATATAACCATATCTACCATTCTTTTCTTGTGGT GTACGTGTATCTGACATTCCATAGTATATAAAACCACAAATTGTGACAAGTCCTATCAAT GTTACAATTTTATAAAATATATTATAAAATTTTTCTTTACTCATTATTACCCTCTTTAAT TATTTAATTTATTTTTCTTAAAATGTTACTTTTATTTACATATAATTACTTCATCAAAAT GTATTTTTATTTTACATCCACCATAATTTTCAAGAATATGTGGTTTATTTAACTCTCTTG TCCATGTATAAAAAGTTTCTAACCATAAATCTCTGTATTGTTTAGAATTTAAATATATTT CTTTTGGAAAATTCCTGTTTTCTTTATAAAATTTATTAATGATATTTATGCATTTTTGAG AAATATTCATATCTACTTTTATATCCACTACAAATCAAATCCTTTCTTTATCATATTATA AGTGGTTGATGTTAAACATCCATAATTACATTCTTGTTCTCTTATATAGTCACAACTAAA TTTCAACATATCTTTAATTATTAATTTGTTGTATTTATTACAAACATTACATAATTCTAC ATTATCATTTTCAATATTACATATTAAAAATCTATTGCTGCTTTTTGCATATCCTATTCT TATTAATTCATCTACAATTAAAGTTTTCATATTTGGATGTTTTCTTAATATATATTTGAC ATCTACATCGTCATATACACTTCTTCTTACTGCATAATAAGTGTCTTCAGATATTTTCAT AAGTTTAAAAGTTCTTTCTGATTTCTCATCTAAATAAGATTGCTTAGGTGAGTAGTTAAA GCATTCTCCTCCATTAAAGAATCCATATTCACTATCATAATATTTTTGTATGGTAATTTC TTTAAGATTACACATTCCTTCTTTATTATTTTTACAAATATCTAGTTCACATTTTACTCT CATAGCTTCCTCCTAAAACATATTCAATTAACTCATTGTTATTTATTCTGTAGTAACCTA TATCAGCATAATCATATCCTTGTATAAAATTATCTCTCCATATCTTTTCTTTTTGATTTA ATTCGACTAAATACCAAACTTTCCAATCTATATATTGATCTATAACCCTATTCATAATTC TTTTGGTTTCATCATCAAATGATACACCCTCTATAAGTTTTACTCCAAATATATCTGTAC TAGACCATGAAGCATAATGTAAATAACTATCTGGAATACATATACCATAAGTCCAACATT CCATTTGATTATCAAATAATAATCTTTTCTTTTGCTTTATGTATTCACATTGTATGTAAA ATAATATCTTTTGCAACTTTAAATTACTTATAGGTTTTTCTTTAGTTTCACAATAATTTA AAACATATTCTGATACATCCAAAACATCATAAATCATTTTAAAACATCCCCCAATTAGGA ATATATTTTAAATTATCTATATCATCTAAATTTATATAATTAATTATTCTAGTTGTTACC CCATCTTGATTAACTTTTGAAATATCCTGAAACTTAACATTTACTTCCCATATGTTTAAA TTGTTATCTATTTCTACATTAAAACCTATTATTCTGTTAAATTCCTTAATAAAGTTAGGA GCATATTTACATATATTTGAGCATATTAAAAAATTAGTTTCTCTACTCATCTGTATTTCT ACCTTGTTTTCATTAAAACCTAGTGCTGCTAACTTATAAGTTAACTTATTTAACTGTTCC ATAACCTTATTATATTTTTCTTCATCTTTCATATTAATTACCTACTCTCTTATTGTTGAT ACTAAATTATAAGTTGTTATAATAGTTATGACTGATGCCGAAATAGAATTACCTATAAAT ACATTGTCTTTAGACCAAATTCCTAATATTAATGATAATACGCTTAATAACCACATAGCT ATTACACCAATTATTGCTAATTTCATTGTTTTATCCTCCTAATTGTTCCATAATTCATAT GGGATTTTATTTCCAACTCTTATAACGGCTATTTCCTTTTCTTTATTAGAATCTATATCA TATCTATCTACTAATTTAGTATTAAAGCCATGTTCTTGATTATATTTAATTTCTGCTGTT TGATTAAAAACTTCCACTGTTTCTCCGTCAACCAAATATTTCTTCAATCCTAGATCAGAA GCTCCTCCACAAAAACCACCTGAAGCATATTCATTTTTTACTATGTAATACTTCCACATG CTTTTAGGACTATACCAAGGTTTTTCAATAACTATATATCCTATTATTAATTTCCCAGTT TCAACATCTCTAGCCATATGCCTATAGTCTTGTTGTTTATTCTCTTTGTCAAAAATTAGT ATGTTCATGATTATCTCTCCTTCTATTTAATTAAAATTTCCAATTTATTGCTTATTTTTA ATATTATTTAAGGCGTTTTTATATTCTTCGGTAAGTTTAATTGATATGTATATATGATTA ATTATATCAATATCCTCATCAAAATATTTCTTTGCTTTATCAATTGCATCATCCACATTA TCATATGAATATAATAAATTTAAATCATTGCCTCTTATATCATATTGAAACTCTATTTTT TCATTCTTTTCTAAATCGACACATATTTTCATAACATCGCCAATATCTATGTTTAACTGT TTGGAAATAGAACCAAATTGCAAATTATCAATTTTATTTTCCAAATATGCTTCTTTTATA AAATCTTCTATCATCCAAATATTTTTATTGTCCAATATCTATCATTCCTTTCATTTATTA TAAATATATTCTCTTTTATTTTCTAATCACTTCTTTCCCACTTTTTAAATCTTTAATTAT CTTTTGATATAATTCTTTAGCCTTAATTTGTGTTTTAAATTTATATTCTATCTCTTTTAA TCTATCTATTATATCTTCTTTTTGACTTATAAAGCCATTCAATATTTCTTTTTCTATTGG TATTTCATTTTGAAAAATACTCTTTAAGCTGTTTATTCTGAATTCAATATTATTCATATC TTCCCATAATTCTTTTCTTGATTTTTCATTTAACTTTACCATATGTATTATCACTTCTTT CATTTATTGTAAGATTTATTTTATTTATAGGTAATTAGCTTTAGTTTAATATTAGCTAAA TAATTATCTAAACTGAAACCAATTACCTAATATATCTAACAAGTTGGCAAGAACCACTCA

TTAATAAACTCTTCCTCAAACTCATCTCTAACCTTATGTCTTATCATAATTCCATCATTG ACTTTTGCTATTACTATGTATTCTTTCTCTGCTTCAACATCTTCCATAATCCCACTTAAC AAACATCTAAAATCATATCCATTCATGTGCTGTTTTAGATAAACAGATTCATTGTCATAG ATGAACCTTTCTAAATTAAGTTCCTTATTCTTTGTCTTACTAAAGAATTCCTCTGGATCT ATAAATATTTCATCATATATTTTAAAGTTTAAGTTTGTCATATGTATCTCCCTCTTCCAT TGTTCTTATTTATACCGAACTTATGTTCGTATTCATTATACCTATTTTTTATTTTGTTTG CAACTCTATCCAATAAATAAATTTTATAAAGCTAATGTTAATTCATACCAATCTTTTATT ATTCCAATCTCTATCTTATGTATAATATCTTTTTCAAACTCTCTTCCTTTAAGTTTGACT TTAGCAATAGTATCTTCTCTTTCTATTTTATCCTCTTTGAAAATCTCTCTATTATAAGCA TTATTTTTATACCAGACTAAAATCTCATTTATAAAACCTTCTTTAATATCATCTGAATGT AAGTATAAGTAATTCTTTAATTTATTTTTATTAAGCTCATGAGGGAATAACCCTCTAAGC TCTTTGATTTCATTATTAATTATTCTCACCACACTTTATTAAATTTCTTACAAGTTCTAA GACAGTCATTATACCTGTTCCTCCAGGAACTGGCGTGATATTTTTAAACAACGGATACAT ATCTCTTGATATATCACCATATAAACCATCATCAAGTCTAATTATTCCTACATCTATTGC TACTATTTTTGAAAAATCTTTAATTCTGCATTCACCAAAGAAATTTAAATCAAAATAATT AGCTTGTCCTATTGCACTAATAAAAATATCTGAATTTCTTATATGTTCCACCAATACATC TCTATCTGTTTTACTATTACAAATGGTTACCGTAGCACCTTTATTTATTAATAATTGTGC TAGTGGTTTGCCTACTATATTACTTCTTCCTACTATAACTACATTTTTACCTTCAACATT TATATTTTCATGTTCTAGGACTGTTATAATTCCTTTCGGAGTGCATGGAATAATTCCAGT TTCATCTCCTATCATTAATTTACCTTTATTCACATTAGTAAATCCATCTATGTCTTTGTT GGGATCTATAGCATTTATAACTTTTTCTTCACTTATGTGCTTAGGTAATGGTAGTTGTAC CATTATTCCTGTTACACATTTAGTTTTATTTAACATATCTATTATATTTAATAATTCCTC TTCAGATACACTCTCATCTAGTTTTATATGTTCGTAATCTATTCCTAATTCTTTGCATAA TTTACATTTATTATTAACATATAAGTTACTAGCTTGATTATCTCCTACTTGGATAAAAAT TCCTTTTATCTTGCTTAAATCCTTTTTCTTTAGCTCTTGTTTTATTTCTTCTCTTATCTT TTTACAATCTATTATCATTAGTTGTTCTCTCCTTCTAATCTTTCATAATCTTCTTCCATA CCATAGAATATAAGTTGTTTAGCATAAGGTAGTTTAGTTATTTCTTTGCAGAAACATTCT TGCCATTCATATTTTAATCTATGATTCTTTCTTTGAATTATGATATTTCTTAATACTGCA TAATTTAGATTTACTGTTCTAAGGTTTAAATAACTTTCTGAAAGTATTCTTTTAGCTGTA ACTAATATTGAATCCTTTTCTTGTTGGGTTGTTGCTTTAAAATAATGATCTCTTAATACA TTTAACTCTTTAATTAATTCATTTATTATTTTCCTCTCAAAATCACTATGCACTTCAAAC ATATTAACTTTTATTTCGGTTTTCTTATCAAATAATTTATGCATTGTGCTTGTACTATTA GCATTCGTTCCTATTTTATATGTATCAAACTCTGACCACCAATATCTAGGTGCGGTTATG TTTAACCACACTTGAATTTGTCTCATAAATTTACAATGTTCTGTTCCTGCTCCTATTAAC CTTTGAGCTAAATTCAAATCTTTTTCACCTATTACATCACCCTTTGTATCACTTAAACTC CAGCTATTTAAGGGGTGTCTCATTCCAAACAATGCTTCGTCAATTCCACTAACTTTTAAT ATTTCTACTTTCATATGTATTCCTCTCTATTCTTTGATTTATTTTTAAATATATGTTAAA ATTCTCTTAACATCTACTATTATACTCTCATCGCAACAAATGTCAATCAATTATTTAATT TATTTTAACATTTGTTATATTATTTACTAATTTTAATATTTCTAAGCCCTCTTTCATTTC TCTAATATATTCATCCATACTTTCATTAAGATAACTTACCTCTACTAAATTATTATCTAT GTAATATTCTTCTTTACCTCTATCATCATAAAATATGTATTTAATATTTGATCCGTTCAA ATCATAAGTTATTTCTACCATATTAATCACCTTTTTATTTTTTATCCACACACTTAAACA CCTTAAATCCAATATCTAAATTTTCTATTCCTTCTTTATCTTTATTCTCTTCCTTAATTT TTTCTCCAGCTCTTCTAATTCTTTCTTTACCAATTTCACAAATATTTTTATAACCATTTT TATACGCTTCACTTTTCTCATTACATAACTCAGGTAATTGAACCATTATAAACTTTCGAT TACCATTATCCTCTGAATTAAGTTGCATAGTTGCATGAGCTGTAGTGGCTGATCCTGAAA AAAAATCTAATATAACACAGTCATTATCTTCAATACTTATAATCCTTTTTATAAAATCTA ATTGCTTTGGATTATCGAATGGTGTATTAAATTCTTTTAACATAAAATTATCTGGTCTTT GATCATCTGACATTATTGACTTAGGTCTTTGCTTCATATTTTCTTTTAAATATCTTTTTA TTCTTGGAAGACTTCCATCTTCATGAAAATGTATTCTATTATCCTTTATTAATGCATTTA ACTTTTCTGTTGTGTATCTAAACCCCCCTGGTGGAATAGGATCATATTTATTAGTTAAAG GATTAAATATTGAAGTATTATTGCCATTTTTAACACCTCCTAAATCTCCTTTTTGATAAA TACCTCTTTCATCTATATACCAATAATTTGTAAAATCTATAAATCTAGGATATTTAGTTA AATTCTTCAACTCATTTGTTATTTCTTCTTTATTTAATCCCATTTTTTTTAATTCATTAA CCTTTTTTATATATTCTTCTATGTTATTTTTATCAACACTCCATTTATTATCACTATGTT TCTTTATTAATATATTAATATTTTTAGAATAAATCAAACAATATTCATGACTTACCGATA

CAAAAAGGCTTTGATTTTTAGAACTATTAGTATTTCTTATTATATTGGCAATAAAATTTC CTTCACCATAAATTTCATCACAAATTCTTTTTAAATTGCTAATTTCATTATCATCAATGC TAATAAATATCACTCCATCATCAGCCAATAAATCTCTAGCAACCTTAAGCCTAGGATACA TCATATTTAACCAATTTGTGTGTTTATCTTTTTTATTACCAAATTTATCATTGTATATAA ATTTTTTGCCACTATTATATGGCGGATCTATGTAAATCATTTTAATCTTGCCCGTATAAT CTTTTTTTAATAATTTCAAAATATCTAAATTATCACCCTCTATGTATAAATTTTCTGTGG TATTTGGATTTTTAGATTCTTCTTTACAAAATATTAGTTGTTTATTAGTTGTTTTATCTA CATCTAAAATAGAATTTGTCTTGCCTTTCCATATTAACTTAGGTGTATCATCTATTAATT CTTCCATTTGTCTTATTTTATTTATATTCATATTATCTCCTTTATTTAATTATTTTATAT TTCCTTAAAAGTATGATTTTAACTAAAATCTATTTTAGCATATGCAATTACTTCACTATT TTTATTAGCAAATAGTATATATCCATTTTTAACTTCTTCATAAGTATATATTTTAAATTT ACTATCTTTTGTATAATAATAATTCTTATCTATCCCTCCATTGTGTAGCTTATAAATATT TTCTTTTTCTTCTGAATCATTATTATTTAAAATAATATTTGCTATTAAATCTCTTTTTAA ATTATCTCTATATCTCAAATCATTATATGTAAAATAATTTCTAGTATATTTATTAATAAA CACCTTTTCTACACCTTTAAAATCTATTCTTTGGTTTATTTGATTTATAGAAATATCACC GCATCCAACAAGACAATTCTTAGGATCAATCTCGTGTTCTCTCATAATTACACCTCAATC TTTTAAAATTAATATTTACCTTCTTCAATTCTATAACTAACTATATATTTAGAATTTATA TTACAAAATTCCCCATCTATAAAAACTGAAATAACATCTTGTTCTTTTATTATATATTCA AAATCACTTATCAACTTTGATTCATCAGAAAAGTATCCATATTCACCTTTTCTCCCCAAT ATATCTATAAATTCTACAAAATATTTTGTGTTCATTCTACTCTACCTCCTTAATTAATTT CATCATACAATGACTATGCCCAGAATATAATTCATCACCTATTTTACATAAATGCTGCTT GCCTAATTCTACTTCTTCATGGCAATAATCACATAAATGTTCATCCCATTTATGTCTTTT AATTTGTTTCTTTTTAGATTTATCTATAGCCTTGAAAAATCTATTTAATTCTTCTTTGTC TAATTCTATATTTTTAAATATACTACTGGTTGCCATAATAACTACCTCCTTCTAACGTTC CAACTTCCTTTAAATACCATTCATGTAGTTTATCAAGTTTTTTCTTTTCTTTTTTATTTA ATGTATTTTGCCAAGATTTTGCTAAATAATTATTTAGCAATTTTGTATAGCTTATTATCA TATCATTTTAACCTCTTTATCTAAACCAATTTCTCCATATTTTTGTTAATTTCATATTCT TAAATCTTGATTGTTTTCCTTCACTTTTATTGAAACTATTTTCTTTATGGGGAATAAAAG ACTCGTTATCAATCTCTTTATTAATAGGTGTTTCATTTTTCTTTTCTTTTATATCTTTAT TATGTTTTATTATCTTTTTAACAACACCGTTACAAACTTTTTTGGCATGTTTCAGATCTT CTTCATCTACAATTATTTCAACTATTTTATCTATGTATAATTCATTTTGCTTTTTATCAT CATTATATTTGTATTTGACTCGATAATCTTTATTTTCTATTCTAATAGTTTCATTATCTC TAAGCTCTAAATCTGTAATTATGGTTTTAAACTCTTTGTATTTTACAAAATTACGACTCC TCCAAAACCATGTTCCCATAAAAGGTTTTGATATTGTCAATAAATTCTCATTTTGTTGTT TCTTATAAAATCTAAAACGTCTTGATTCTCTTTGTACTGTTAATATTTTCTTAAAAATCT CATCTTCAGTAGAATTTTTATCTAAAATATAACTTTTGTCATACCAATCATAAATATAAA AGGAGCTTTCATATCCCATATGATAATATTCTTTAACCACTTGTCCATAAACATGATATT GTATCATTTAAAATCATCCCCTTATTCTTTAAAAATAATAAAATCAATTAATATTGGTGA TAATATAAAAACTATAAATATACCTATAATTATTTTAAACACACTATTATTTCACATCCT ATTATTTAAAATTAATCATTTAATCAATGATATAAACATTATCATTTTTGCCATCTGAAT CAAACTCTTCTTTCCATATTTCCTTATATTCTTGTAGCGTTGATATACCTTCAACATCAC TCAATGTTAACTCACCTCCATTAAAAAAAATCCTTTTTATATATTTCTTTATCTTGATCT AATTGTTGTAATTTTTCTATTAATTCTTTAACCTTCATTTACACTTCCTCCTAATTTAAC AATGCAGTAATTCTTAAATTTTTGAATAAATGTTATGTTTTGCTTAATTACTTCTTTTCT CATTTCTTTTTGGTATTTTTCAATATCTTCTAAAAGTTTTTTTGATTTTTCTTTATGTAT TTCTTCAACTATTTTTGGCTTATCTAAATATATATTTATTCCTTTACTCCCACAATCAAT AATTTCTTTAATGTGATATCTTTTGTTATTATAACTCATACAGTCTCCACATTTATATTG AACACTAAGTCTTTCAAATTCATCTATACATTCTGTATTTAACGGTTTATATTCTACATT CAATTCATATATATCATCCTTATTTATATCAAGCTTATCGAAAGAAGTTATCTCTTTTAC CCTATAACAATATGGTATAAAATCCCTATCTATTATCTTATGAACACTATATTTTCTGCT TACTACTTTTTGTAATACTCTAATTTTCACTTGTATCTACTCCTTTATTCCAGTTCCATT ACAATATTTACATTTTACTTTCTTATCACTCCCTCTGATACTACCATTATAATCAACCAT ACTTTGCATTGCTTTTAATCTTCCAGTACCCAAGCAAAAAGGACATATACTTTTATTTGC AAAAGTATTTATTTTAATATTACTCATTATCTTTACACTCTCTTTCTATAACATCTTTTA CAAAATAACACCACGGAGATTGTCTTCTCTTTAAAATATCATCTAATTCTATTAATACAT CTTTATCAAAAGTATAGTCTTTATATTCCCAGCTTATAAGTTCTGAAAATAAGTCCCATT

CCTCATATCCATTATTATCAGCAATAATTTCATCTGCTTTTAAATCTATAAAATTAAATC CTTCTATCCTTTCTTCAAAAATCCATTCCTTCTTCTTTTCTATTAATTCTATTAACTCAT CTATATTACTAAATTGTCCTATATAACCTTTTGCTCCACCAAACATATCAGTGAAACTTT TTACTCCGAAAACTAAAAAATCTTTTTTCATACTTTATAATACACCTTCTCTTTCTTCTA TTTTAATATTACGAACATATGGCTGTCTTCTTAATAAATAATATCTATCATAAGCATCTT CTTCATGTGTATATTTTTCTATTTGTGTATTAATTTTTGATTCATAATAACTTCTAAATC CATAATCAATTATATATGTAATAACAAACTCTTTATTTTCTCTTGATTTTCTTCTTCTAA GTTGTAAAACGGGAATTTCGTTATTCTTTCTTCTTTTGTTACATTCATTAAATTCTATAT TTAAACTTGAAGTATTTATAGAAAAATAAGTTTGTTGTTCTCCATATTCTGTCATAGTCA TAGCCGTTATTTCTTTTTTATTATCAAATTCTCCTTCTCTTATGACTATTTTTATAGATG GTTTAGAATCACTTTCATATATCTTTCCTATGTTTTCTTTCTTTAATATTTGCCAAATCT TCATATAAAACAACCTTTCTACCAATTATTAATATTCTATTTTTAATCATTTCTTTTATC ATAACTAAAAAATACTGTATTATAATACTTATCAGATTTACAAATTTCGTTAAAAATATG AAAATCATCATTATAACTTTGATTATATATTTCAAAACCATTCTTTCTACCTAATTCAAT TATTGATGTTAACATTTTTATCCATGTATCGATATCTAATTCCATTTATATCTACTCCTT TATTAATTATTTATTTACAAATAAACTCTTGATTTTTACCATATATTTCTATATAATTGA GATATAAAATGATGGTGATACCTCAATGTAATTAATTTAAAAAAGTCTTTTCATTATCAC TTTCATTTTATATAGGAGACTGATGTTCATATCAGTCTCTTTTTACTTATTTTTGAAATA TTCTCCAATTTCTAACCAATTATTAAATCTTTCAAACTTATCACATTTTACATTATGAGG TTGCGTAAATAATAATCCTTTCCCACTAAACTTTTCTAAATTATGGACACCATCGTCAAT TAAATAATCACCTTTGAATATAGATTTATCACCAGTAAATATGTAATGTGATTTAGGTAT AAAAGGAAAGTTTTCTTGTAACCAATCAAATTTAGCTTTAAAGCTCATTCTACTTGCCAT TGCATCTGTTATAATATAAATATCATAATCTTCGCTTAATTCTTTTAATACTTCTTGAGA ATGCGGTACAACCTTTAAATCTCTATAAAACTTATGAAAAGAAAGTATATCATAAATCTT TTCTCCACAACAAGGTTTAACATATTGATGTATATTCCATGTTTTTATATCATCTACACA TAATTTATCTCCATATAGTTTATTATATGTATCTATCCATTTTGGTAATAATTCTGCTAA CACATCATCTTGATCTACCCCTATGATACCCTTTTTATTTCTTACCTCATTTTTAACTTC TCTCATTTGCATAATCAACATCTCCTTTTATTAGTTAATTATTTAATTTATTTCAATATT AATTAAAACTAACTTTTTTTATCTTCTTTCCCATATTTTAATTAAACAAAGAAAATCTTC ATTAAATTTAAAAACTTTTGATATGCTTATACTACATACTGATCCAGTTATAGTCATATT ATTTTTATAATTATCTAATGAATTGAAAACAACGCCATTATTATTTATTAACTTATTATT AGAAATAAGCCTTCTCTCTCCATTGACTAATTCAACGACCATTCCATTTCTTAAATCTTC TTTATTAAACATTTTATTATTCATAACTACTCCTCTAATAACTTCATTAAATCTTCCTCG ACAAATATTTTAACACCATCTTTAATAGCTTTATCTTTTTTACTACTTTTACTAGAATTG TTGGCAACTATTAAATAATCTAGTGATTTTTTGTATCCACTTTCAACTATGGCACCCAAT TCTTCTAATTTACTTTTTAACTCACTTTTCTTTAATGTGAATTTTCCTGTTGGATAAACT CTCATATCCTTTAATGTATTTTCTTTAGCTACAACTTCTATCTTTTCTTCTGTTACAAAG TTTATTCCATCTATAAAACTATTAACTAGATTTATATTGTCTTTGTTGTGAAACCAATCT ACTATGCTATTAGCAACTATTTCTCCACAATCCTTCATCTTTAATAAATCTTCTACTGTT AAGAAGTTCATTTTCAATAAAACTTCATCAAGGTTATTGCCCTCTATTGTTGAAATAGGC AATTCATTTACGTACTCTACTAATGTTTTTGCTGTTGTTTTACCTACATTTGGAATACCT AAAGCATATATAAAATTCTCTAATTTACATTCCTTAGACTTTTCTATATTTTTAACTAGA TTATTAAATGATTTAACGCCAAAACCTTCTAATCTTTTAATTTCTGTTTTATCTTGTAAT TTATAAATATCTTCAATGCTACTTAAATATCCTTTTTCAATAAACCTTTCTATTGTCTTT TCACTTAATCCTTCAATATTCATAGCATTTCTACTACAATAATGTTTTATCTTTTGAACT AATTGAGCTTTACAATTAGGATTTTCACACATTAAGAACTCAGCATTATCACTTATTTTT ATATTTGTCTCATGACCACATACTGGACATTTACTAGGTATTTCTAATGTGTCTGATTGA GTTAGATTTTCTCTGATTTGAGGTATTATTTGATTTGCTTTATAAACTGTGATTTTGTCT CCTAAACCTAGTTTAAATTTCTTCATTGTACTAACATTATGTAAAGTTGCTTTAGTTACT TCCGTACCATCTAATTCTACAAGATTAAATATTGCAACTGGAGTTATTACACCAGTTCTT CCTACTTGCCATTGTACTTCTTTTAATAATGTTTCTTCTTCCTCATCATAAAACTTAAAC GCCATTGAATGATTCGGATGATGTGCTGTATTACCTAATGATTCCCCATATGATTTATCG TCATAAGTAAATACTAATCCATCGATTGGAATTTGTTTTTTAGCAGCTAAACTTTTTAAT TCTTCGATATCCTTATTAAGATTATTTACTATTTTATAATCGACTACATCAAACCCTTGT TCTTCTAGCCATTTTAGTTCTTCTACTTTACTTATAAATTCTTTACCAAAGACGTTATAA GATAAAAACTTTACCTTTCTCTTTGCACAAATTTTACTATCTAGCTGTCTTACGCTACCT

GAAACTAAATTTCTAGGATTCTTATATTTCCCATTTTTATTAATCTCATTAAAGGTATTA TATGTTATTATAGATTCTCCTACTATATGTATTTTTCCTTTGTATTTAATCTTTTTGGGA ACATTAATATAAGTTTTAACATTATGAGTAATATCTTCACCTATTTCTCCATTACCCCTT GTGCTTCCTTCTATTAATTCACCATCTTCATATATTAAATCAGTAGTTAAACCATCTAAT TTAAGCATTCCTACGGCTTTTTTATTACCAATAAAGCTATTTAATTCATCTATATCTTGA GTTTTACCCAACGATCTTAAAATATATTCATGCTTAACTTTTTCTAATTTGCTTTTAACT TCATATCCAACATTAACAGAAGGTGAGTTATTTAAAACTATTCCAGTTTCTTTTTCTAAT TCTTTTAATCTATCAAGTTTAATATCCCATTCTTTATCACTCATAATAGTATTCGAAGTA TTATAATACATATCACTAGCCTCATTCAATTCAGATATTAAGCTTTTCATTTCTTTTATC TTATATTCACTTCTGTAACTTTCCATCTCATTCTTCCTCTCCTTTATTAATCTCCTTGGC TCTTTCGCATTTTTTACCACAATGCATACAGCCATTTTTCTTCTTATATATGCAATCACA AGTCATCAAATCAAAAGGACATACCTCTAAAACATCTCCTATCTTCTCTACTACATCAAG TCTTGGAAATTTCTCTCTGTCGTTTTCTAATCTTGATATTTTAGTAATGCTAGTTCCAAC TTCCTCAGCTAATTTTGATTGTGAATAATTTTTCATTTTTCTATACATCTTTATATTTTT AAAACTGATTTTACAATTACCCATAATAAAACTCATCTCCTATATGAATTAAATTCACTT TAATATTCTTTTTATTATATCATTATTTTTCGCAAAAAAATATGGTAATTTAAACCAAAA TACATATATTTTAAAAATATTTTGTCGTAATTATTCGCATTTGGTAAATAAATCTTGCGT ATAATTAAAATATGGTAACTGTCTTGCAAATCTACTTCCTTTTATCTTATACATAATTTC TCCAAAATGACCTCTAAATATTATAAAATCTTCGTCATTAACTCTTTCAAATTTATCATT AGGATAAATCTCTAAATGAGATAAAACTTGTTTCAAACTATACAACTCTTTCACTTTCAA ATTTCTCCTTAAAATATTCATAAAACTCATTATTATTCTTAAATGTTAAATCAGCTTTAA ATCCTCTTAACTCTTTTCCATCATGTTTCAATCTATATATAATATCTTTTATTTTATCTC CTCTTTTAAACATTCTATAAGCTCTTTTAAAAGGATTTACATCTATATAAACTGTTACAA TATTATATTTGTCTTTATTCTTCATGCTATCAATACCATGTCTATCAATAATGTAAAAAT CTTTATTAATTATATCTTCTTCCAAAACATAATATCTGTTATTATTAATAATTGTTTTTG CTATTGCTTTGTCAAATTCCTTGTCTGCTTGTTTATTATCAATAAATAGATGCGTACCTT TTTCATTAGGTCTTCTCGCTCTAGTAGTCCTTGAAACCACTTTTTCCTTCTTAAACTCCT TACAAAGTCTATCTACTGAATGATCTTTACCAGCAGAACTCTTAGCGACAACAAGAAATA ATTCTTTTTTCATATGTAACACCCCCTTTATGCAGCTATCTCTAAAACTTTATTTAAATT TTCTTTTTCTAATTGATTTATGTATATTCTTTTGTTTTTACCTAAGTTGTTATAAATATT CTTCACTTGGTAATCTTCCATAGATACTATTATTTTTAAATTACCAAACATTCTTGCTTG TACATTTTCTATGTTATCTGTCCATATCTCCTCCCCTAGAATAAAGTTTCTAGTTAATAA CTTTCTAATCTCTAATATACTTTTGGTTTCGTTTCCTTTTACATATGTTCTATATTTATG TATTATTCCTTTGTCTATTTTTAATAAATTAGTTCTCATAATAAAGCATCTCCTTATATG TATTAATTATTTAATTTATTTAAACTTTCTGAGTGCAAATTTATTCATCATTTTTCTTTT AACTTTACGCTCAGCTTTTCCTCTAAGGTATTGTTTAACCTCTTCATTACTCATTTCTTC AAATGGTTTATGTATCATAATGTTCTCTCCCTCATATGCAATATATTTTTTATTTCTCTT AACATCTATTAGTATAATACCAATTATACTAAATGTCAATTGAAACTTTAATTTATTTCA ACTTTTTTTGTACTTTCCAACCATTATCGTATGTTAAATTTAATGTATCACAGCATTCAT TAACTATAACTCTTGCATTATCTTCTAAAATATTACATCTTAAAATTGAATATTGATACT GTTCACAAAAATCTATTAGCTCTTTTATTTTATTTATACTCTTCTGTGGATTATACATTA TTTCTCACCTCTAATTTAATTAATACTTTGATTTATATTTAAAATATAAATCTGTAGGAA GGATATTACTCTATCCTACATTTTTTAATCTCTTCAAAATCTTCTAATGCCTTATTTCTT TCAGGATCATTATCTCCATAGTCTTCTCCGACAAAATAATAGCATAATACATTTTCTTTA TTGTTATTTATCCCAACTAATATTATTTGATGATTGTCATTTAATCCTTCTAAACATTCT ATAAAATCTTTAACTTCTTTGTTGATTGGATTATCATTATATTTAACTCTAAATTCTTTA TATCTTTGTTTTAAAGAATCAATATAATCCCAATCTACCTCATCTACAAAATATTTATAT ACTTTATCTAAATCTACTTTAAAGTCATACTGCATAAATTCACCTTCTTTCTTTAATACC ATATCATATCTTTACTATAATTGTCTAAATCTATTTTATAATAGTCTTTATTAGCTGGAC TTGGTATTATATATCTGGAATCTACAAATAAATTTTCATCCTCTTCTAAATCATAGCATA AACTATATCTATATTCATTCGATGCTTCATCATATACTATACACAATACATTATAATCAT ATCCATCACAAATAATACTAAATGGCAACTTATAATAGTTAGTGTTATAACTACTTGCCT TTCTAATATGATATTGATTTAAAAACTCATCATTCAACTTTAAATACATTTTATCTACAC CCCCTTTTTTAATAAATTAACTCAAATATCTCATTAGTATCGTTTATGTAAAAAATATCA TTGGCATGATACTTAATATACTTTTCATATGTATCACATCCTTTAGGAAGTTTATATTTA TCAAAATCTTTAAATGTTTCAAAACATAATCTTTTACATTGATCCTCTAAAGTTTCTCCG

TTTAATCTTTGTAATTTAATTTTTTTATTCATAATTATTATCCTTTCTTTTATTTTCAAC ATTTTATAAAACTATCAATTTATAAAGTTAAACTTCCTCATGATAAGATCTTTCATTTAA AAGTCTACCATCATCAACATCATAAATCTCACATTCTTTTTTTATGTAGGCAACTTACTA TACAATCATCCTTACCTTTGAATTTCCTCATTTTTTAACCTATATAAATAAATAATGTTA CAAAAAACAAAACTATTAATATGTAAATAATTCCCGCAACCAAACATCCAACTTTTATTG TTATTATAGCTATTAATAAAATCACAATCATTAATAATATAAATAATATTACATCCATCA TTACTCTCCATACATTTCACACATACAATTCTTTTCTACTAAATATAATATATCTTTTGG TGAATCCTCTTCCCACCAATCAAGAAATAATGTGCATACATACAAGTCTTTACCTTCTAT CTTTTCTCTATATTTACATCTGCTCATTAATATTCTCCTTACTTTAATTCTATAATATCT TTTTCATTAACCCAAACTATATATTGACATACTTTTAATCCGTATAATATTTGATCATCT TCCTTTTTTATTTTTGATATATTCGCTACAGTTCCCTTTGACACCTTTTCAAAATTACTA ACTATAATATCCTTTTGTAATTGTACCTTTACTCCAACTTTTAACATAATTATTCCTCCT TAAAATTCAAATTCTTCAGTAAGTTGATTAAACTTACATCTTTCGCATATTTCATCACCG TTTTCAAATAATTCAACTCTTAATCTTCCACAATTAATACACTCTTTATCTATGTAACCA TAACATTTACCTTTTTCTTTATCGACCATTATTAACTCCTCCCTTTTAAAAGCAAGTGCT TTAATTTCATAGAAACCATTACCAACATAGTCTGCTTCATAAAGATCATTTGCATTAAAA CCATAACTTAATAATTCATATTTATCTTCAACTTTTTCAAAATCAATCCTTACTTTTGTT CTACTTATATTTGTTCCTTTCTCTACAAAACCGAATTATTGGGGCTAAAATACTTCCTAT TCCTAATGCGATAAAAATATTCGTTAGTATTTCATTGAAATTCATTTTATTCCTCCTCGT AACATTCCCAACATAATACTCTATCTATATCTCCTGATCCACCCTCCTCTTCATTTAAAC ATTCTACGTCTCCACATAAAAATACAACTTCTTCTCTATGAAAATTTTCTTTACATTTAT CACATTTATACATAATAATTCTACTCTCCTCTATTCTTTAATTTATTTTTTATTTAAAAC AAGCAATTTATAGTGTTATATTTTATCTATAGCTTGTTTAATAGCTGAATAAACCCCTAT AGCATAACTCTCTTCCATATGGTCATAACCCCATATATCTTCTCCGACAACTAATTCTTT TGCTTTAGATAAACAATCTCTTAAATCATCTTTTAATTCATCTCTTTTTCTATCATAATC AGTATAAACACTCATGTTTAATCATCTCCTATTCTATTAATCCATCTTTGATTAATTCTA CTATTACATCCAAATCACATAGTTGCAATAAGCCTGTTCTTTTAGCCATAGCTAATATTT CAAATTTTCTAGTATGTATATTAACGACTAATCTAAATTCTGAACTATAACAACTTTTAA ATTCATAATAGTAATTATTTTCTCCATAATAATGTTCTCCTTCTTCACAATTATCTGGAT CTTCTATAAAACCATATTTCTCTAATTCTTTAAAATCTATATTGTCTTTTAACTTCATTA TTTATCCCTCCTGTTTTATATATTTATCCTCATTATTAAATTCTATATCTATTTTTAATC TAAGATATGCACAGAACAACATATTTTGTATTTGTAAATGTGAATACCCCTTATTGATCA ATTCTTTATAAAAAGGATATATTGATTTTATAAATTTATCTACATCTCTGCTTGTCTCAT CAGAAAATTGTTCTAATCCATTATTTATTTCTATAAAGTTTTCTTTCATATTATCTCCCT CCCATTCTTTTGTTAATAATTATCCCAACAACCTTGAGAATAACCTAAATCATATACTCT ATCCATTAATTTAACTCTCTTTATAGCTTTAGAATATGTATCTGCTGAAGTAAACTCTTT ACCATTTCTTTCTATACCAAAATAATTATTACCTTTCTTTATAACATCAAAGTTCCTTCC TTCAAAAATCATTTTTCTCATTTTATCACTTTAAAACACTTTTTCTATTCCTAACTCTCT CATCTTATCAAATATTTCTTTTTTAGTTCCTATAAAAACTGTTGATTTTGTTTCTTCATT TTTCAAAAACCATTCATCTTCATTAAAAAATGGTGAACCAATTTTCCAAACCGGATTTAT CGTATAGGATATTGAACCTTTCCTATACAAAGCTAAAACATCAAATTTCATCTAAATATC CTCTCTTTATATCTATTTTTCTATCACTTCTACTGACAATTTAATTCTACACTTGGCGTT TCCAAAATCATATATACTGTCTGGAGTTATTGAATATAAGCCTCTATTTGATGTACTTCT TTCATAGTCATAAGGTTTTCTTTTTATTATATTTATGAAAGTTTCTTTATCAACATCCCA GCAAAAACTATAACAATCACTACTATTAATTCCTTCAAATTCTAAATCAATACTTTTAGT CTTTAAATAGTCTTCCATTCTGCACACCCCTTAATTTTAAATAAAAATTCTATTTTATGA AGTTATAAATCAAATTTCATTTCTATCTCTCCTTTTCTAAATTTTCATTTTGATATATTA AAGTAGTGGCTGGAAAACTTATTTCCCCCACGTTACCTAAATTGTCTCTTTCTACCATTA CTGGTATATACTCAATTTTATATGTATAACCCTTTTCTTTTCTTTTATCAAATAATTTTT TTCTAGAAAAGAAATCCCTCATTAAATCTTTTTGTAATAACTTTAATGTAGATATTTTCA TATTCTCCTCCTTAAAATTTCAAAATCTTCGTTCATTACTTTACCTCTATTTATTGATTT TTTGAAATCTAGCAAACCAATAATATTCTCTGTCTTTATGCCATGATAAGGGATCATCGG ATTTTCTTACTTGCCCGTCACATATCCATCCTTCTTTAATCATTTCTTCAACATGTGACA TTCTCTCTTCTACACTTTCATATTTATACTCTTGAATTATAGTTTCTAATAGTTTTATTC CTTTACTCATTTTTATCCTCCAATTTTAGCATTTTTAATTTATTCTTTCTATTTAGTTAT TCTCTAATAAATCATCTTCATTTAATCCGCTATTTTTAAAGTCATTATATAATTCTTTTA

TTTCTTCTTGTGCCTTATCGAAATCAAACATACTAGAAGCGTGTAATTCAATGTTACATA TTGCCTCCCCTATAGTTTCTAATCCACAATCCTTTCCTATTTTTATAGCTCTTTTTAATT TCATAATATTATTCCTCCTAAAATTTAATTTACTTTAAATCTCCTCTTTTAAGCACTTCT AAAAACTTACATAATAGAATATTTCTTCATTGTTGAAATCAATATCTATTCCTAATTCTT TTAATTTATCTACATCTTCTTTAATGATTAATACTTGGTCATATTCTTTTTTATATTTGC TCTTATATCTAAAATAGTTTTCTAAATCCCAGTTATTATAAGTATAAAATAACTCTTTTT CTCTTATATCAGTTTCTCCACTCAATATAAAATAAAGATATTCATCTAAATCTAAACTAT CTTTTATTTCTCTAATCTTTTTAACTTTTCTAATATATTGATCTAGCATTATATATCACT CCATTTAATTAATCATCATAATACTCATCACCAAATTCTTCATAATCTGCAAATCCCCTA TTATATCCTTGCTTAAAAGCCCAATCCATTGCATTTACTTTATTTATTGCTTCAAATTTA GTCCTTGCTGGTGACACAACATTTTCAAAAATGCTATATTGAATTTCAAATCTCTCATTT GATTTTCTAATAACGTTAAAATATTTACCTTCATATACAATCTCTAATTCCATATCTTCT CCACCCCTTATTAAATTGCTACTGTAATTTTATACAATATTACATCTTTTATATTAGGAT TTTTACTGTACTCCCAAATTTCTAACATTAAATTATCTCCTTCTTTTCTCTCACAACCTT TAGAATATCTTCCTATTTTCTTTCCTTGAGATTGTAGTTCTTGTATTTTATTATCTAAAT TTTTTTCATTGTAAATTTTCCATATTTTTTCTCTAGCTATTTTTAATCTTTTTTGATAAT CTTTATATCTATTAAAACCCTTGATATAAGCTTCAATGCCCATTATTTCTCACCTCTATC AAATCCACAACCACCACCAGTTATTAATCCTTTGCTTTCTATCCACTCTATATAATCCAT TTAAGAATTCTTCTAATTCTTCATTAGTAAATTCTTTTCCATTTGCTTTGCTTATTGCTT GATCTAAAATTATTGTTGTTTTATCTATTAAAGTTTTTTCAATATTCTTATCTTGAGATA ATATGTATTCATATAGGCTTTGTATAACATATATATCTACATATCCTCCTAGAACACCAT CGAAATTTTCTTCCAAAAACTTATTTTTATATTTCCAATCATTGAAAAAACTATCATCGC TAATATCAATAAACTTTGTTCCCTTCCCTTTAAAAATTGCCAATTCCATACTTGTATAAT CATATATATTTTCTAATGTTTTTCTAGGTTCACAATAATGTGATGAAGAAGCTTGAATTG ACAATGTATAATCGCCTACTGATAAATGATTAAATAATCTATAACTACAACTGCTTTCTG TTGTTTTTAATAATTCTCTAAAATCTATCATTTTTTACACCTCTTATATGTATACTATAT GTATTTAATTCTAATTAAAATTTCCCATTTATTTATATTAAAAACATCTTCTTTTCTAAA GTAGGAAGATTATAGACTACTTATAATCCGTATTTTACTACGTTTCTATTTAATTTTTAA TTATGTACTGAAAATTATGCTTTTTGGAAGTTGTACTCACCTCCTATAGAGATACTATCT TGAATATCTCTATAGGAGGGAATAGTCCCTCCATAATCAAGTTTGATTGTTTCTGACTTT AATTCTTTTAGATAGACTATATATTTAACTATTTCTTCATCGTGTCTTTTGATGTGATTT AATATACTTATTGTCCAATTTAACTTATACCTTTCTAATATTTCCACTAAATTATCTTCA ATAAATTCTATCAATTGTGAATTATATTTATTAGACAACTTGGTAAAACAGGTTAACAAT GTAATCTTATTTTCTAAACTATCACTAGATACAAAATATTTCTTTTTTATATCCTCTAAA TTTTTTAACCTTTGTTGAATAACACTTTTTGATTCATTTTTAGCTATTGTTTTTTCAATC AAAAAATTTTCCATAAAAAGCTCTTGACTAAACTCTTTATCTATATTACAACTAAGCTTT TTTACTATAAAATTATCTAAATTATTCTTATTTTTTTTACTCTTATAGTCCCCCAATATT TTAACGATAGCCATATTTTAACACACCCCTATTTTGTTGCTTTTTTTACTTATTTTTCTT TTGTTACACCCTTTCAAAAAATCATTATGATTTAATCCATTAGCTTTACAAAAAGCTTCT AAATCCTCCATAACAGCCTCTCTTTCTTCTATTAAACCTTCAAAGAAATTTTCTATATCT ACTCCATTTTTGATCGCATATCTTATGTGTGAATCTATTCTTTCAATTTCATTAACTTTC TCTTCTATTATTTCTAAATTCTTTTCTTCTATAGATAATAGATTTAAAGATAATGCCGCT GCAACATTTATTTTCTTTCTATCTTTTGGGCTTATTTCCCCTATTTTTTCTTTTAATTTT CTTTTATCTAAAACCCTAATTTGTTCTAACATTGCCATACTTTCTTTTTGTAAACCTATG TATTCCCCGTCTAGTTTTACGTGTGTAGGAATCTTATTTTTGTTTACCTTTGTTGTTATT GGTGCAATTATTGTAGTAGGGCTATATCTGTTTCCTTTGTTGTTTTGAATTATTACAACT GGTCTCATCCCATATTGTTCGCAATCTTGAACTCCTTCTGGTTTTTCTCCAAGATTAGCA TAAAATACATCTCCTCTTTGACAATTTTTAATCATTGTTTCCATTTAAAATCGCTCCTTT TTATATTATTCTTTGTTGTATTAATCTCTTTATCTTATGTCTTTATTATACAATAGATAA TATTATTTGTCAATCAATTCTTTAATTTATTTTAACTTTTATCTATCGTAAATTATATGT AATAAATAAGCACCTACAAAAGAAGTAGATATTACCCCTAATAAATATATTATTGCAACT CCTAATATCGCCACGCCTGTTGTTAATCTATCTATTATATTTTCTTTGATTTTATCTCTC ATCAATTCCATATTTATCATCTCCTTTGATTATATATTAACATAAATATCACTATAAATC AACCAATTATTTAATTTATTTTAACATTTTATAAAATAAAAAGACTGATAGGAATTTTAT TTCCCATCAGTCCAATATTATTCTATTCCCATTTTCATCATAGTTATATTTCCCATATAT AATATCATCATCATTTGTAATTTTTATATATAGATCTTTTAATTTTAAAGCTATATTGTA

AGATTTTTTTAACTCATATTCTTCTATGACTTCTATAAAATCTTTCATATCTAATTTGTT CCATTTTTTAGTTCTTTTTATTTTTATAAGTGTATCTATTTCTGCATTTCTGAATAAATC TTTGGCTGGTATATATTCCCTATTAGCTTCTGTGAAAAAGTCTATTATACCTTTTCTTAT AGCCATCAAATCTATTACTTTACCTTTTGTAGATTTTAATATATACTCTGTGTCTATAAA TTCTTCTTCAGATATTTTATGGTAAGCTTTTTTACGCATATATTCTTGCTTATCAGCTTG AACTAAAACATCTAAAATTCTTTTGTCTATATTAATTTTCTTAACTACTTTAACATCTTC TAAGTTATTTTCATCTCGATTTGTTACGTTAATTATATAGTTATCCAAATCTATATCTTG CATTTTAAGATATCTTAATTCTTTATACTTAGATCCCTTTAATCCCAACCTTGCTAAAAG TACAATTGCAAATTCATGCACCGTAATAATTTCTGCCCTATCTTTTATTTTATCCCATAA AGCAAATAAATCATCTAAAGAAATATAGTTTTTTCTTATTTTTTCCTCGTTGATAATTGC TATTTCTCTTGTGTTCCAGTTTATGCAAGGGTTATAGGTTGGGTTTAAACCTGTTTCTAA TGCCCATTCTTCATAGCCGTTGATTAAGCTTTTTAATGAAGCTATTGTACTTAAATCTGT TGTCATTCTTGTTTTTATTATGCTTAATGCTTCCATTTCATTAAACATCGCCAAATCTTT ATCGTACATAACTTCAAGGTCATGTATGTGATTATTGAACATACTCCAATAATTTTGTTT TGTTGTATCTGCGTACCCTTGTTCTTCTAAGAATTTTATTTTATTTTTTGAAAAAGTATC TAAATTATTTATTTCTTTTAATGCTCTATTATAATCTACAATATAATTAGAAAACATAAA TAACCCTCCTTTGAATTTTATATTAAATCTCTAAAGAAATTATAAATATCACTGATAATA AAACTTTTATAATTTACTTTTAATTCTTTCATTTCATCTTTTAATATTATGGCGTTATTA ATCACATTTTTAATTAATTCATACTCTTCAAGGTCATCTAATTTATTCTTTCGTAAATAA CTCCATATTGCAAAATATCCTATCCAAATATTTTCACTTTTAAATATTTCCATTGTTTTG CTATCTACTTTTTTATCTTCTAATATCTCAAATATAGTGTTTACAATTCTTACGTAATTT TCAACACCAAAAATCATTATATTTCTACCTTCAATTTTTATTCTCTCATTTTTTTCTACA TATCTTAATCCTTTTTCAAAAACTTCATAGTGGGTTAGTTTTCCCATTTCTATAAATTCA TTTCTTGTCTTTGCTATTTGGTCATGTAAAATGCCTTTACTACCATTTACCTTCTTAATA AAAGTGTTATAATTATTATCTTGTATAGCTTTTATATATTGTTTACTAGATACATTTGCT AACATTTGTCTTCCAACGAATTTAGCAGCTCTTTCTGGTGTGATAATAGAAATATTTACA GGGAAGCCTTTAAAACTTTTTTCTACATCATACCCCTCATTATATAACTCATAGATAGCA GTATCTCTATGCCACCCATCAGTAAAGTCAACCACAGTATAATCTACTGCATCTATATCA TAATTTATTCTTATTCTCAGTTGTCTTTTATTTTCATCATATTCTACGTTTGCTACTTTA TCTTCTAAAAGTAAAATATTCAAACTTAATACGTCAGGAGGAAAATAATCTCCCTCTTTG ATCATTTTTTTAATTCCTTCTACGTTTGGTCTATTCAATGTTATTTCTTTTCTTATTGCC CCGTAGTTGGTTCTTGTTATAGTTGCTTCTCTTTGAGTAGCAAAATTATATCTTACTAAT CTTTCTTTTCTAGCCCTATATTGTTCATGGGGTTGCCAATAGGTACAACAATAAAAATCA TCACTATATTCATCTACATTGTCAAAAACTAAAACCATACTATCATCTTCTTTAAGATTA ACATAAGTTTCATATGCTCCTAGTTCATTTGTATTAAAATAGCTGCTTGGTTTAAATTGT TCTAAACCATAATTATATAACCCCTTTGCAATTGCTATTTGTTCATTTGTTTCCAAATCA CTTATATTTAACCCGTTTTCTTCGTTCATTACTTCATTAAAAACAAAAGGGGCTAATTTT TTCTTGATTAATTCATTTTTTACGGATCTATAAATTTTCTTTGTTTCATTAAAATCTATA GATCCCATGTATTTATATACATCAGATTCAAACTTTTGAACTTTATTATTCATTTGTAAC ACCTACCTTTTTATTTATTTTGTCCTTTTATGTCGTTTAATATGTTTTTATTATATCATT TTATATAATTTAAATCAATTACATTTATTATTTTAAGATAGAACCCCACCACCACAATAA GGTTCTATCTATTATCTATGATATATTAATTAAATTATATAAAACTTATGTATCCCCTCT TTGCTATTTATACATAGCTCTCCAAACTCTAATAAACAAGTTAGATGTTTAATAATATTG TCCACTGTTATTTCTAAAGTATCTAGTACAACTCGTACTGCATTTGGATATATAGTATAA TCCTCTACGCAACCTACTTTAATATCTCCCCTTACATTTTTATAAATTACCTCCTCGTGT AAATTTTCCTCCATGAATTCTTTAATTTTTTCCATCTTCTCCCATAACCTTTCCTTTTAA TAATAATTTAAATTTAATTAACATTTATTGAACAAAATAAGTATAGCATTTTCTTTTTAT TCAGACTATTGTTAAATTTAAAAATTATTCGCTTTTTTTCCACAAAATATTTATATTTAA CATTTTATGTAATATATTTTAATTATTATTTTATTTTTATTTAATGACAAATTAAAAACA TTTTTATAGTAACCTTCGAATATATTTTATTAAACACAGGTTGTGACATAAGTTTAAAAG AAGTTTGTTATTTTAATATATCGTTAAGAAAAACGAGAAAGAGAAATAAAATTCTAGCCT TCTTTTAAACTTATATTGATAATTAATTAGTTGCATTATCTTTTTTATTTTTTATATTCT TTAAAACTTTTATAAATTTTCTTTCGCTCTTTCTTCTATTTTTATTCATATTTTTTCTCT TTTCAGCTATCATAAAGTTGCATACCTTATTAAATTCTTTTAAAAAAGTATATTTATTTT CAACATAATCAAATGTAATTATTTTAAATTTTCCAGTTGGAGTTATTATTCTCTTAACTA ACTTTTGCTTTGCATTTACATTTAAAAGATATAAACAGCATACGTTTCCATCATTATCTA

CAAAGTTTGGAGATTTATTGAATATATCTTTGCTCGGTCTATTTATTATAGGAACTTCCT TACATCCAACATTGAATACAGATTTTATTTCAGATAGCTCCATTAAAAATCTAAGCCCTA GTGTTTGTAATAATTTTACTACAATATAAGAATCATATGATGCATTATGTAAATTTTCCT CTACAAAATCCATATCTAGCATACTTGCTACTGTCTCTAAAGAAATAGGAAAATTTACAC TAAAATATCTACTTAACCCCTTTTGCACATCTATATATTTTGCTTTGTATAAATGTTTAG GTGGATTTTTACCAAAGTAATACATTAAATGTTTTTTAAATATCTGTTCATCATCACATC CCCATGTTATTATTAAAGTTGCTTCTGATGAAGTTACAGACAGATCTTCTATAATTTTTT TAGTGGCATACTTAAAATTAATTCCCTCTTTTTCTAATTTTTCCGTGGTTATTCCTGTTA GTTTAGTTATTGACTTATGAATCTTTGTAGAAATATTTAAAGAACAGTAACTATTGGTTT TGTTTATTATGTTAGCATTATCATCAATTGAATATCCAGCTATTTGTATAACTTCATTTT TAAAACATTTTGCAAGACTTCTCTTTTTATCATAAACATGTCTTGGTAGAAGCATATTAA ATTCCATATCTAGTACGATATATCTCATAAATCATCCCTCCTTATTTAATTTTCTATATC TATATAGTATATGATTATGTAAATATAATTGCAAATTTTAAATAAAAGAAATATTTTATC AAAATATTATTATCTATGTATTAATTCTTGTATTAATTCCACATCCATAAGTTCTTTATG TTCGACATATTCAGGACTTTCAAATTTAACTGATAATTCTTCTTCAAAGTATTCTGTATG TGGAACATTGGTTATACCACTAAATTGTAAGTGGTCGTTATTAACATTACATATAAAATA AGCATTTTTACATTTTCTAGTTAAACAATCTCCATGAACTACTACCCCATTCATTCCTCT AATCATCATGTTTAATAATAAGAAAGGAATACATCTATCACTTAACTCTTCTACTACGGC GTATTGTAAATCTGGAGTATAATCAAAAGGCGAAAATTTTCTTCTATAATGATCCCAGTT CTTAATCATTATTCCCCCTGTACCAGCACAACATTCATAATATAAACCATTATTTTCTTC AACATCACTTATCTTTGTTAATAATGTTGCTACTGATTCTGGTGTAAAATCTTGTTTTTT ATTTTTTCTATCTGCGTGTTCCTCTTGGAAATACTCATAGAACCAATCAAAATCTACATT ATAATCGTTCGCTTCTAATAACTCTTTAAACATTTTTTCTCTTTTATCTTTATCATAAAG GATCTTCATAATTTTTTCTGGTGCTTGATAACTATCCTCTACTCCAAATATTTTATTGTA ATCTACCATCTTATTTATCTCCTCTCAACTTTAAAACTGACATTCTTAATAATTCTCTTT TAAAATTTTCACTATCTCCCAAACTTTGTTTTGCATACTCCATCGCAAAGTCATTTAAGA TTTTTTCTAGTTGATTATGTTTTTCTTCATAAAAACTCTCTCTTCTATAAATTTTTTCCT CTAGCTTTTCAGGTATGTACTCAAATTCTCCTCCACCCATAGCACTATTTTTTCTCATAA ATATCATCCTCTCTAATTTCCATAATGTTTAAATAAATTAAAGTTATTGTTGTTATATTA TTATAATATCATGCCCAAAACATTAAGTCAATCAATTATTTAATTTATTTCAACATTTAT TAAAATGTGCAATTTAAGAAGTTATACAAATAGATTTAAAAATAAAAAGCTGCCCTTAAT AGAACAACTTTTATAACTCTTTAACACTCTTCTTCATAATCATAAGTAGCTAATACATTT AAACCTGAAAAGCCAAATTCCTCTTTCAATACTTTCACCATAGTATAATTTAAAACCTCA TTATACTTTTCTTTGCAAATCTCTTTTGCTTTATTACATATGTCAACAAACTCTTCTTTG GTATATATCTTAGGATTGGTTAAATATTCATTATCCCAACCTACTCCATCTTCTAATCCT TCTTCTTCAAACATCATGCTTAATTTATATACATTCATTTTACTTATCTCCTTTACCTAA TTCATTTAAATCTATATTTACAGCCTTAGAACAGTCAATACATTCTATAATCTCAGCAAT ATATTTTTTATTTGCTCTCTACAAACTCTTTTAAATCTTCAATACTTTCAAACTATTCGT AAGTTAAATATCTATCAATATGTCTATAAGTTAATAATATTTTATTATCCATTTTAATAT CACTCCTTAATTTTTTAATATATTTTATCTAAGTTGCTTTTATTTATCAAGCCTCATCTT CTTGTAATACTAATTCATCACAATTACAACAATATATATTATCAAAAGAATCATCTATAT TACTTTTATCTACATCATATATCATAGACAGATTTTCTCCATATTTATCAACCCTTTGTT TTGCTGAAATACTTACATTTCTATAAAATTTAGATTTATTTCCACATTTAGAACATATTA AACATTCCTCCATATAATCCGCCTCCTTTTAAAATTCGGTTTTTAATCTAAATTTTTAAA ACTCTTTATTAATTTAGCCAGATCTTTCTCTTTAATAATATCTGTGCTTAAATCTAAAAT AACTCTATCTAATTCTATATTTAACTTAATATTATTCTTTTTGCAAAGCATATTTAAAAC AAATGCACTTGTTCTTTTATTACCATCTAAAAATATATGATTTTTAGTTATACTGAAAAC TAAATGAGCTATTTTATCTTCTAACTCTGGATATAATTCTAATCCGAAAACTTCTTGATT GCATCCTTCAATCGCACTTATTGCAAGATTTTCATCTTTAAAACCTACACCTACACCGCC AAACATTGTAACTAATTTCTTATTAATCTCATATAAATCGTTAATAGTTATAAGATTTTT TCTCATTACATGTCAGCCATCCTTTTATATAAATCAAAATTTTCATTGATTTCTGAGTCA ATTTCTTCATTAGTAATTTTTCTAGTTTTATCAAGTTCTTTTTGAATATCAAAATTATAT TTATACCCATATTCCTTTATAAAGTCTAAAACATCATTTAAACATATTTCTTTATTCATT TAAATCACTTCCCATCTTTATATATAATTATATTTTAACATTTATCTACTCTTTAAGCTA GATTTTTCTAACCTAAAGAGTAGATAAATGATTGATTTTATATACTTAAAAAATCTTGAA TCACCACTATTTTACCGCTATCACCCTTTTCTTGAATAGCAATTGTTTTATCTATAGAGT

AATCCTCTGTACTATTACCTCTTACTCTTAATATAATTTCTGTATCATCACTATAACTTT CTAATAAATCTCTTAATTCTCCAACTGTTGTTCTTGTCATTGTTAACTTCCTCCTTCAAT AACTTATTATCTTTATTCTAAAACATTATACCTTTATTTAAAATACTTATTTTATAACTT CTTCGACCTCATCTGGTGAAAATATCAACCTACCGTCGCATGTGTTTAATATGTAATATC CTAAGCATCCTGATCCTATATCTTTGTGCTTTTCTAAATAGTTGCTATCTATTACACAAG CTAATTTAAATATCTTTCCTTCTAATCCTGTTGCGAATTCTCTTACGCTTTCAGTATCTA AAACTCTAAATTCTCTTTTCATTTTAAAACTCAACTCCTTCTTAATTCTTTAATTTATTT AAACAAGCTTTATAAGTAAGAAACTTAAAGACTAAAGCTTTTATAGAGTTAAGATTTTAA CTCTTAGATATGTATTGGATTTATCTCAAATCCCTTCTACAATTATTATTATACTCTTAT TATATAAAATGTCAAGTAAAAATTTAATTTATTTTAACATTTTTATAAAATATCAGATTT AATTAGTTTTGAGTTATACATAATATGTCAGTCCATTGTTCAACTTTAGAAAACTTATCA AAAAGGTATTAATATTAATTGCCGTTTAAATGATAACTTTTCTATAGTGTAAGATCTACC ATTCTGTGAACCAATTTCTTACTTTTAGACAATTTAAAGTGTAAAGGTATTACTTCTAGA CAATTTTTAAAAATCTTTTATTAGAAAAACATACTAAAAAACTTATTTATACCTATATTA TTATTTATATTGTATCTACATTAGACTTAAATATAAAATCTATCAAAAACAAATAACTAC TAAGCTAAATTAATAATGGTATTTTTCTGTTAAGCAAGGATACGCAGCTTATAAAGAAAA AAAGAGGTATAAAACCTAAGTTTTGTACCTCTAATAATACGTTATATCTTAAATAAATTA ATTAAGTATGCTAGATCGTCAATGTTATTGCCTTTATAATAAATTCTAGGATTAACAATT AAAAATTTCTTTTCATAATCTTCAATCATCATCATTGCCTTTTCATTATTGACAAAAATA TTTAATAATTGGTTTTTAAACCTTGTAATGTTTTTCCCAGAATAACTATTGGTAAAATCT CTTAATTCCTGGATCGTGAATGGCTCAACATCTTGCATAAGTTCACATTTAGGATTCTTG CAAATTATATTATATTTATAATGTATAAATGGTAATAATTCTATAAATAAAGCTAATCTT TTATGTTCTCTAGCTGTACTATTGTTATATAACTCTTGTATAGATTCTTTAAAGATCCTA CTGTATTCTTGTTTATTATGTTTATCAACCTTACCAATAAAGCTTACTTTGTTGTTTATA GATACTGTTTTGTCTTCATTAATTGTTATAAGTTTATTCTCCTCCAAAGTATTCTTTGTT CTATAATACTCTTTTTGACTTAATTTTAATAAATCCATAAGATCACTCACCTTTATTAAT TCATATTTGTTTTGTTTAACTCTTTTCATTAATCTGTTATCTCCATACTTTAGATAAGTA CAAAGATATATAAATCTAAATATGTATTGTTTATCTAATTTACTAGGTAACTTTTTATAA AAATTAAAATAAAAATGCCCTAAGTTATGTAATATATTATTCTCAAAATCACTTTTCTCT CTAGTAAAATTAATTATATCTTTTATCTTTTCCTCTTCCTTAGCTGTTTTCACTGTATAG GTTCTATCTAATATCTCTCCAGTCTCGTTGTTTATTAATGTACATTCTATCATTCTATAT AACCATTCCTTTCTTAATATATCAATTCTCTTAATATTTGTTTATATACTTCTATGCCCT GTATGTATTTATTTTTATATTCATAAGGTATTTGCCTTAATCTATTCTCTCGTTGTTCAA TTTCAGATTCTACTTTATTAATTATATCTCTCCTATCTTTTCCAGATATTAAGGCTACTG TTACACCTTGTTTAATAGATTCTACTACATACCCCTTACTAAACTTTTTAAACTTTACTA AATACATTCAATCATTCCTTTCTAATATACCTTTATTTTGTTGTTTATAAGCTTATTGCT GCAATGTAACCACCTCCTAATAGTTAATATTTATATAAACGCCTAAAAGGTGGCAAAATA CCACCTAAAAAGCTATTATTGGTTAATTATTTAATTTATTTTAATATTATTGTTTTACTT CTTTAAACCTAGATTTTATAAAAACAGAAGTTTCTTTCCCTAAATCTAATACATAATAAT CCTCATTATTGTCTAATACTTTATATTTTTTGCCTTTCTTAATCCATCTTTCTACGCATT TGTCATTAATACATTCCACTATCATATTTTATACCTCAATTCTCTTTAAAATTGTAAATT TATATTCTATATAGATAAGTTTTCACCGTTGTTATAATTGTCTATATAAGTTTGTAGACA ATTATCAAAGTCTTTTCTATTGTTAAAAATATAAGTATAATCGCCAAGTTCTGGAATACT AAGTTCATATTTATTATTCTTATTATCTTCTATAGTCCACGCATTAGTAGAATATTCAGT GTATATTTCATCTTTAGAAATTCTTACCTCGTCAGTTGATTCTGTTAATACTTTAGTAAT TCTTAAAGGCTTTTTAACCATCTTATTTAAGTTGTTTGTATTCTCTATGTAAGTTGATAT CATATTGTTTAATTCTTCTTTACTATCAGCTTTTAGATCCCAATCTCCCATGATTGAAGG CGTAAACGTATATTCATTTGTAGAACTGTTTTCTAAGCTGTATGATCCATCTGAAAGCTC TCTGTAAGTTTCTTTTCCTTCATCTAGCTTAATGTCTTCAGTTGACTCTGTAAGCACCTT TACAAGTCTTACAGGTTGGTTATTACTTTGTTCTTGTTGTATTGCTAATGTAGGCTTTGT ATTAGCCTTAACGTTTTGCATATGGTTGCTTATTAGCATTCCTATTATAATTCCTACCAC TATTAATAAAGTTCCTGTTAATATATTTCTTGTTAATTTTAATTTATTCATTTTTATAAT CTCCTTTGTTGTATTGTATTGGTTAAAGTTTAAACCTTAATTTCTCTTTAATTCTTTAAT TTATTTTAAGATGTTATTGTAAGTATCCTAAAATCTTTGATTCTGAAGGAACACACATGA ATACTAAGTTAAACTTCTTATTATAAGATCCTTCAGTCTTTTTAACTGTTCCAGTTGATT CGTACACTACTGTACATTTTCCCTCATGTAACTCGTTAATGCTTTTTAAATTATCCATAT

TAAATTGACTCCTTTATATGTATATTTGAGGTTAACTTCCTCTTACAATATTATAATACC ATCTAATTAAAGCTTTGTCGATCAAAACTTTAATTTATTTTAACATTTATTAAAAGTTAA TATATATTAAATTAGAAAACCTTTCTACTTTACAATTATTAAATCTCTTAGACAATTGAT CGTAAACTTTATAAGTCTTTCCTACAAAAGGTAATTCAACTACTACTGTGTTGTTTGTTA AAGTTCTATAAATATCGCACTCTTTTATATTAAGATCCTTAACAGCTTCTTTAACCTTTA ATAAGGCTTTGCAAGTTCTTTTCTTTGTTATTGGTTGTTGTTCAAGTATTCTTTCGAACT CTAGTATATTTCTTTCAAATTCACTCATTTTCAACACTCCTCTTTTATTATTGGAAGTTT AACCCCTCCTGACAATATTAATTATAACAGATTCTAAATTATAAATCAACCATTTATTTA ATTTATTTCAACAATTAATATAATATTAAGTTATCTGTAAGTTTAATACATGTTTGTAGT TGTTGTTTAATCTCTTCTACTTCTTCCAGATCTCCGTCTTCTTGGAATGTTTTTAAGTCG TCTAACATATTAGTATAAGTATCAACAACGCATTTACTACCGTATTCCTTACCTATTAAA GCTATAACCTTTTTAAACTCTTTTAGAGTTTTGCACTCTGTAAGAATCTTTTTAAAGCCG TTTATACTTAAATGTTGTCCCATTCTTATATAATTAATGTTTATCTCTTGTAAATATGTA TTAACAAACTTTCTAAAAGCTTTATAACTGTTATCACTTCTTAATTTATTAACTGCATCA AAGAAGGTATCTTTGATAAATTGGTATAAACTTTCTGGATTTTTTAAGTCTTCTTTTTGG TTTTCTATTTCTACAGTTTCAGTATTAAAAGTTATAGATTTTAAATCTTCTACTAAATCG TCATATCCTTCATCACTTAAATAGTTGTATAGATTATCATTTAAAGTGATATTATTTTCT ATTACAGTATTCTTTAAGAAACTATAATAGTTATCGTCTTTAATTTCCTCTTTGGTTTCA CCAGATACTATTCTATCTGTTACATAATCGCAAACAAGATCAGTTAATAAATCATAATCA GTATCATTATTATTTGTACTTATAGCTTCATGTTTAGCTTTAAAGAAAACTGTATCAGCA TTATCAAAATAGTTTTTAGGATCATTGGCAACACTCGTAAAACTAATATCATCTAATTGT GTCTTAATGCTGCTTTCTATATCGTGTAAGCCTTTTAATATACATATAGAATCACTTTCT ACTATAGTTAATATACTGTCTTTTCTTCCTCTATACTTTCTATATGTTATTTGTAAAGCA TTATCATATTGTGCGTATTGTACTAGCTGTATATCCTTTATAGTACATTTAATAATTTGG CACATAGTAGATCCTAGAATGCTGCTATCACTTGCTACTATTGTGTATCTTTCGTTTAAT TTAATGTTTTCTAGTTTAGCCATCTTGACCACTCCTTAATATGTATTTGGTTTATATCTT CTCTACATTTATTATTATACTATAGAATAAGATATATTTCAATCATTTATTTAATTTATT TTGACATTTATTGTTTATATGAATTAGCATAAATATTTAATAACATATTATCTCTATTAT TTTTTATCTTGCATAAACATTTTACATATGAATTACAATTTGGTTTTATAATTAAAGTTT CTTTACTTTTACACATAATTGCTATTGCATTATTTGAAAAATACTCTTTATTATCTAATT TATCAATTAAAAAAGTATAATCTTTTAATAAATGTTTTGTAATTTCTGAATATTGTTTTT CAGTTACTTTTATAATTTCATTTATTTTCAAATCCTCTTCGGCAAATTTTCCTTCTTTTA TAATCTGATCGTATGTATGTTTCATTGTAAAATTACTTTCTTTTGGTATTAAAGTTTTTA TAATTAAATTTTTATTAGAAGTATCTATTGTTTCTATGTTGTCAATAATATCTTCCTCTT TTATTTCTTCATTAGCTTCTAATAAACTAATTTGTTCTACAAGTAAAATCAATGAGCTAA CCAGATGACCAACTAACTTTATTTCATATCCTCTTATATATTCTAAAATATCATTTAATT TATTTAATATCCAAACTTTCTTTGAAATTTTTATATTCTTTATCATATTAATAACTTTGT ATGTTTCTTTTTCTAATATATCTCTTTTATCTTCTATACAATTTTCATCCATATATTTAA GTTTGTTTATTATTTCTTTTCTTTTTTTTGTGATAGCTTTATTTCTATATTCTTCTTTTA ATTTCACTAAGTCTTTATATGTATAATTATCTAAGAAATAATTTATAATAGCTTTTAAAC TTTTGTTTGGTAAATTTTCTTCATTTCTAAATACAAATAATTCTTCACTGTATCCAGCTT CATCTTTGACATATATACAATTGTTTTTACTATACATTTGTATATCTTCTACACCTTCTT CTGAAGTTTCCTCATGATATAAGCTAAAGATCATTTTATTTTTTATAATTGTCTCTAAGT ATTCTAATTCATTGTTTTTTAATATGTATTTTACCATGTTAACCACTCCCTAATTAATTT AATCTCTATAATTATAATAACATATATACTTATAAATTTCAAGTAATTATTTAATTTATT TTAACATTTTAATTATTTTTTAGAAGCATTTTTATATTAGATGTAGAACTGTAATAGTAT AACATATTCCAGGTGTGTAGATAATTATATATAATAATGTAAGGATATCAAGTCGTGTTT ATATTTCTTATATAATAAGAAAGTTTATAGTTTAGTTAGTGTTAGATTAGATTTTTTCTA TCTTTTATAGATCATAAGAGTTCTTACATTATTATATATTATATAAGTGCTGCGTGGCTA TAGGTTTATATGGTTGTGTAAGGTTATAAGAGTGTTAGAGTTGTTTAGTGTGTATTAATA GTGTTTGTAAGTTGTTATAGCTCTATTGTAGTGTAATTAGATAGGTTAGAGTTGTTATTC AGGTTTGGTTGTATTGGTGTTTGCATCTGTTTCTAGTGTTATGTGTTGTTATAAAGTCCT AATTTCCGCCCTTTAACTTATGCACGAATTTTCATTTTAGGTCAAAAAAACGCCTATATA AAAGGAAATTTATTCCAGTAATAACCACTCATATTTTCCTATATTTTACATTTATATATA ATTCCAGTATGAGAGCAGAATAATTTTATTTTTATTCATTTTCCTAATTTTTACCAAATT TTCTTCGCAAAAACTGTATTTTACGCAGAATAATAGCCATTTTATGGTATCTATAGAGTG

CAAGGTGGGGGTATTTTTACAATATTTAGGGGATTTACTGGAAGAAAATGGGAACTAACA CTTCAACTTCCACACCAACTTTAAAAATTTTTACCTTAAATTCCACCTTTATTTATTAAC ATTCTATTTACATATTATTCATACTTTATTCATAAATTACCTATCTTTATTCGTAATGCG TTTCGTACAAACCTAGTTATATCAACGCTTAGAACCTATTTTGCTTTGCCCTATTTTTAC TATTTTACCCTACTTTACACCCTTCAAACACGCATGAACACTAGCTTAGAACGAATTCGA CTTAATCACAACTAAAACCAACTCTATTTTCACTCTATTAAACATAACTTTTTATTCGAT ATTCTCTATCATTTTAAATACTCCACCAATACAGCTTACGAAACACTATAAATTTTATTA CGAAGTATGTTTTAAAGCTATAAAAATGACAATAATTATAGTAAATAAGGAGGATTTACG ATGAGCAAACGAATGTTTTTAGATAATTTTGATAATACAAATGGTTATTTATACTTTGGA ACTCATGTATTTTCCATAGAATTGAGGCAATTAATACATATAGATCATGCAATAACACTA GAATTAAGAAATAAATATCCCTTCCTGACTAATATTCAGATAGCTAAAATAATAAATAGC CAGAATAAAATGAGTAATAATTAAATTTAGGTAAAAAAAGAGACTATATATCAATTTATA TAGTCTTTAAATATTATTTAATAAGCTTAAATTGTAATTATAAAAACAAATCAAAATGAT TAAAGTTATTATTAATAAAAGGTATCTTAATTATAAACCAATATTATAAATTTTATACAT ACCTAATCCTATAAATCTGCATTTTTCATTAAATCTTCAATATCTTTTTTAGTAATTTTC TTAATAGTTTTATTCTCAACATCTAAATAAATATTACTATATTTACTACCATTTCTACCT TTGTATATATCAGTTTTGTTTATAATCTCAAAGTCATTATTAATTTTAGATAAAGCTTTT TGAAGTTCTTTATTACCATTTTCATTGTCTACAAAAGTAATTCTAAGCTTTAACATATAT TAACCCTCCTTAAAATAAAAGAGCTACAATAATTATGCAACTCTTAATGTAATAAATATA ATGTTAATTAATCTAAATCAAAATCAAAATCAAATGCTGAATCATCAAGTTCTTCTATAA CGCTTTTTCTTGATATAATAGGTTTTTGTACTTTTTGCACCTTTTCTTCTGAATCAATAT CTGTATTAGTAGAAGAATACTTTGATTTAAAAATTACTTTTTGATTTATTGAAATACTAT TTTTCTCTCTATCCTCAAGTTCTTTCTCTAACTCTCTGAAAATACCAGTAGGTATCTCAC AACCACCTAATGCTATTAAATTTATTTCAGTAGATTTAGGATCTTCATTTTTATTAGATT TATTTAAAGTAGAGTAAAAAGTATCTTTAGCTATCACACTATCAGTAATTTCTTTTAAAT CATATCTATCTGTAATATTTGCACCACCATAAATACATATCATTTCATCTGGTAAAATAA AAACACTTTTATCTCTAGCTGATCTTAAAGCTTCATCAAATAATAAATCTCTATCAGGTA ATTCTAATATCATGCCATAGCCTTTAGCTGTTGTAATGTTTAAAAGGTCACTACTATCAA TAGAACCAAATTTAATTGTATGGTTGGTCATAGTGTATTCTTTATCAATCATAGTTACAA TTTCTTTGTTGATATCTAAAATATTTTTTCTCTTACCATTATAAGCAAATTTTATATCAT TAAGGTATCCATCGTTATATAAACTAAGAACATCTTCAAAACATTGTATAGCATTAACTA ATTGTTTGCTGCCTTCTTTTTTTGAAGGTATTACACCTACAACATTAATTATAATATGAG GTAAAACCTTTTTTATTGTTTTTACCGTCTTCTTAAAAGAACCACTACCAGTTCCTCCAC CCATACCAAGATAGATTAATATAGTTTTAAAATGGATAAAATCTTTAAAGAAATCCATTA ATCTCATTTCATCATTTTCAGCAAATTCATTAGCTAATTCTCTATTACTACCAGAACCAT CTGCACCATTAAATATAAAAGTATTTCCTTCCATTGCAAACTTTAAATTAGTCAAATCTC CATAACTTGAATTGATATATGCTGTAGAATAAATATTTTTATATCTTTTCATTGATTCAG CTAAGATATTTCCACATTGCCCCATTCCTAATGTTAATAAACTACTTCTATTCATTGATT CTCACTCCTTTAATTTCATCTAAATAATTTAAACCTTTGTCTGTTATATAATAAGTAGTA AGTTTTACTACTTTGACACCTTCTTTAATAAAACCTTCATTTTCTAAGACTTTTAAAGCT CTTGAAACGGTTGAAGGACTTATTTGTTTTTCCTTTGGTTTATTTTCATTGCATTTATTT AAAATAGCTTTCCTAGTCATACCTCTTATAGCTACAAGCCCTCTATTATTTTCTTTATCC ACGATGTTTTTTAATACTATACATGCATTACTATTTAAATATTTCATAAGCTCACCTCCT ATTTTTACTATTATAATCATATTTTATCACATAAAAGCATATAGTCAACAACTATTTTCC ATTTTTATCACATAAAATCATTTATAATCATGCTTTTATTATAGTATAATGCAACAAAAA AATATAAAAATAATAAAAAATGAATATAAAACTGCTTTAAATTCTAATATACTCTTATTA ATTCATATTTAATCATAAATATTCATATAAATTCACTTTTAGTCATATTAAATCTTATAA ATGCTATTTTTATGACTATATATGATTAAGATTGAACAAATAGGATTTAATATGAAAATT AATTCAAGACAAGATTCTATCTTAATTTATTTAATTCAAGATATTGTATTATCTTAAATT TTGTATTATAATTCAAGATAAGATTTTGAATAAGTAAGTAAAGTAGGAGGGGATTACTTT GGGAAATAAAATAACCGATATATCTTTTAGATATGTACCTACTGATGAAGAATGCACTAT AACTGGTGCTGAGATATCAAGAATTTTAAAATTAGATTCTCCACAAACTATATATGACTG GGCAAATGCTTTTTCTGACTATTTATCTATAAAGAAAGTAGACGGTAGATGGAAATTTAG TAAAAAATCACTAGATGAATTTAAGTTTATTCAATCATTAAGAAAAAAGAATTGGAGTTG GAATCAAATTAGAGAACATATAAGCAAAAGAGGTTTCCAATTTTCACAATATGATTCAGG ATTAATAGATCCTAATGATCCTATGGGATATGAAGCTTTAGCAATTCAAATCTCTATGAA

AAATGAATTAATGTTACAAAATTTCTTAAAAACTTTAAATCAGAGCTTAAATGTTAGAGA TCAATTATTGTTAGAAGCTATAGATGAACAAATGAAAAACGGATTATCCAGTGTAGTTGA ATTTGAAAATAGTAAGACTATAGACGAGTTAAAACAAACCAGAGAAGATTTAATGAAAAA TCTTAAAACAACAGTAGTTAATTCTCAAGATAAAATTTTGGAAGAGATTAATGTTAACCA AATAAAGGATTCAATTAAAGAAAATATTGATGGTAAAATAGAAAATTTATCAATAGATAT AATAAAAAAACTAGAAGAACAGAACCAAGCCCAAGCAAAAACAATTGAAAACCTAACTAA GCAATTAGAAAAAAGAGATACTGATATTTGCAATAGATTAAAAGAGTCTTTAGATAATCA AAAAAATCTTCAGCAACAAGTTAATGAAAAGAAGGGATTGTTTAAAAGAATATTTGGTTA ATGTGTTGTATAGTGTTAAATTATTCCTAGAAGGCTCTACAATCAATTTTAAATATTATG TAATGTAAATTGTTGTCTAAAACTAAAACCTCTTAGAAAGTCATTTAAAGGCGTTCTGAG AGGTTTGTTTATATATACAATATGATTAAATTAAATTTAGATAAAACTATTATACTATAT TTCTTTTCATAAAACATTAAATTAACCTAAAAGAGACTAAATTGGGAGTTAAAAGGGACA AAATTAGGAATGTAAATCATATTTCTTATAAAAAATCAAGAGTTTTCGACTAAAAAATGT AAAATTATATATATTTTTAAGAGATATTCATATCACTATTCCTAAAATTGTCCCTTTTAA AATGGTGTTCCCTAATTTTGTCCCCATTAGAACCTAAAATTGTCCCATTTCTTATTTATT AAATTAAGTATTATATATATTATAAATATAAATTTATTATTATATTATATTAAATAATAA TACTTTATATTTATATTTACCCATCAAAGAAATGGCTCTATATCTATTCTATAGCGATTT ATTAGGGACAGAATTAGGATTGACAGGGGACAAAATTAGGTTTATAATGGGACAAAATTA GGGAAAATGGGAGGGGATTATTATGAATAACAATAATTATTCTAATGCTATTTATAAATC TAATAAACTTATCGAATCGTGTTATAATTTAACCACAGCGCAAAATAGAATAATTTATCT AGCAATGACGAAATTAGAAAGTAGAATTTTAGAAAAAAACCTTAATATAAAACAAGTTGA AGATTTGATTTATAGAAGTTCATTTGATTTAATAGAAATAGATGTTGACACTTACAAAAA GACTTTTGGTATAAAAAGCAATAGTTTATATACCGAGTTAGAGAAGATTGCTACGGAGCT TTATGAATCAGAGATTTTATATGTAGACTCCAAAGAAAATTTTGTAAGAAAGAGATGGGT AATAACTTGTAGATATGACCATGACAAAAAAGGAATAGCACTACAATTTCATCCAGATTT AATTTCAGACTTATTAATTTTTAAATCCGAATATACAAAAATGATTTTTGATGAATTTGC CAGCAAAATAAAAAGAAAACATTCTTTTAGAACATATGAATTATGTAAACAATATGTAAA TTATGGCTATAGAGATTTTTATGTTGATGATTATAGATTTAAATTAGATTTAGATGATGG AGAGTATCCTGTTTTTAAAGATTTTAAAAAGAGAGTTATAGACACTTCCATTGATGAAAT TAATAAATATACAGACTTACAAATCGAATACAAAGAATTAGAAAGAAAGAAAAGAGCTGT AAATAAATTTAGATTTATCATAAAGAAAAGGGATTGTATGCAACTTAATATGTTTGATGA CAACAAGCCAGCTATAAATAATACAGACGGAGAACATGTTGTTAATATGTTGTCACATAT AATTAATAGACAAGTTAAACCTGGGGAAGCTAAAACAATATTATCTACAGCATTAACTGC AATAGAAATTTATCCTGATTTAAAAGAGAGAAATTTAGGTGTTGTTGATTATATTAAAGA GAAAATGATAGTGGTTAATCAATATATAACTTATAGCAAAAAGGAAATTAATTATATAGG GGCTTTAATTATAGCCTTGAAAAACAATTGGCAAAATACAGAAGTTGACAATTTAGTGAA TACTAATGTACAACTAAATAGTGATAGAGATTATAATTATGACAATTTAGAACAAATGCT TTTAGGTAACATGGATTATGATCCTAATTCTTTATACAAATAATATAAGATAATTTATCG ATATATTTTCTATAAACTCTTTAGACTGATTCTATTTTCAAGGATTAGTCTTTATTTTTT TTAGCAAAAAACACTTATCGGTATTTGGTCTATTTTAATCATACGTATCGGTAAATCGTC CATTCCATATCAATCAACAGATAAAATGCCGAGCATACATAACTAATCACAAAAATATCT AAACATAATATTCTCAATGTCAACCACAACACACTTATACGCCTGTCTAAGAAGTTTTAT AATTATTTAAGTATAATTTATCCTAAAGATTTTAATCTCCTCAGAACGCCTTTAAACAAT AAATAAAACTATATGAGAAAAAAATAATACTTATCGGTAATTAATCCACCATATAAACAG TCTATATAATTAAAACTTATAACAGATGATTTACCGATATAACTTTCAACGGTACTATGG TCAAAAAATGAGCTATATTTTAAATTTAGAAGCTCAGACTTATAATTTATCAATTCAAGC AAATAAATAAACAGAGTCTCATTTTTGCCACGAAACAATGCGACCTTAGAAGGGATGGAT AAGACTTGAAAAACTAAAAAATTGAAATAAATTAAATAATTAGTTGAAATTATAAAAAAT AAAGAGTAGAATAAAAAAGAACAAAACAAAAGCCAAAAAAGAAATAGCGTAGCGAACTCC TCTCTAGACAAATTAGCGTTTAGCGTTTTTGGCTTGAGAGAGAATATTTAGTATTTTATT ATATATTAGTATTTTATTACACCTCTGCGGGTATGGGTTTTTCCCATACTCAAATCTCAA AAATCACAATCTGAGTATGGGTTTTTCCCATACTCGTTAAAATGACACATTATAAAAATA TAAAGAAAGGGGAGATAAAATGAAGATTAATAAGGGGAGTAGTGTTATACCTAATGACCT TATTATTGGTGATGAAAGTATATTGAACCAGTATGGAGAAAAAGCTTTTTTAATAATGTT ATACATAAATATGCACAGAACTGGTTTTAATAAAGCTTATATATCTCTTGCAAATTGCAT AGAAGAGACAGGATATAAACTGAATGATACTAAAGGTAAAACGAACGATCAATTTAAAGA

TGTATTGAAAATGCTAATAAAAGATAAGAAAATCACTACAAATACAAATAGATTTAAGTT AAATGACTTAATAGTTTGTGAATTAGAAGAAATAAATAATAGCTTCTTTAAACTAGAACA ATATCAATATGATTGGATTATGAAATCTAAAACAAAATCTAAGAAGATAAATTTATTGAA ACTGTTTTGTTTAATAAAAGCTAGAATCTATAAAAGACAAAAAGATGAGGATATAAATGA TGGATTATATGAGGTAGGTTTTCCTTCCTACAAGGATATAAAAAATAATTGTTCTATTAG TGAGGGTAATATAAAAAAATATATTGATGAGTTAGTAAATTTAAAATTGATAAAATATGA TAATTTAGGACAAGTACATAACACTATAACAGGAGAGATAAAAGAATCTCGTAATACATA TGTAATATACAAAGATGGTTGGGAGAATGAATTAAATGGAGCAATGAGATTATATAAACA AAAGTTAAAAGAAGAAGGTTGGGTAGTAGTTAAAAAGAAATAATAAAAAAATGTTGAAAT AAATTAAATAAATGATTGACATTTTGAAATTAAAGGAGTAATATAATAAGTGTCATGAGG AATAACATCAATTTAAAGACCAATATAAGCTTGTGTTAGATGTTTTATAGAATAAGAGGA TAAATTATACTCTTAAAAATAAAATTGCTTACAAAGGCTTATAGAATAAAATAAAAGTAT TGTTAAAATAAATTAAAGAAATGGAGAGAATAAAATGCAGAATATTAAAGTTTCAGAATT AAAGAAACATCCAAAAAATGAGGAATTTTTTGATGATATTTATGGTGAAAAATGGGAGTC ATTTATAGAATCAGTAAAAAGAAGAGGAATAGTTGAGCCAATAGTAGTTACGCAAGATTT AATGATAGTAAGTGGACACCAAAGAGTGAGGGCTTGTGAAGAAATGGGGATATTAGAAAT ACCATGTAGGATAACTCATTATCCTGATTATGATGAAAAATTAAACAAAACAAAAGAAGA TATGATACTTGAAGATTTAATATCAACTAATATAATGCAAAGAGGTGTTGGAAATGTTAA TCCTATGAAAATGGCAAGATGTGTACAAGAATTAGAAAGAATAAAAGGAATTAGACGAGG GAGTGCTGGTAGATATAGAGGAAATCAAAATAAAAAATATAATCAATCAGAACTTGCTGA AGATTTACATATGTCACGACAACAACTTCAAGATTATAAAAAATTAACAAATCTTATACC TGAACTTCAACAAATGATTGAGAATGGTTCAATGAAAGCAACAGTAGGCTATAAAATATG GGCTAGAATGTCCACAGAAGAACAAGAGAAGTTTTTTAATAATATTGGTCGTGAAAAAAT TAAAACACTCACACAAAAGACTACAAAGGAATACATAGATAGGATAAAAAGTTTAAAAAA AGGTGTTAAATTAAGTAGTGGGTCAAAAAGAAAATCTATATCAAAATCAATAGAAAATCA TTTAATTGCAAGAAGTAAAGGGCATTGTGAAATTTGCGGGTATGGTGATTTAGATATGAT AAGTTTATTAGAAAAACATCATATTAAACCAGTTTCAGAAGGTGGACAAGATGAATTAGA AAATTTGATTATGATTTGTCCTAATTGCCATAAAACTATACATATTTTAAGAAATGAAAA GGAAAATAGTATTAAAGACAACATATTAAAGCATTTAAATTCACATATAAACAGTAAAAT GAAACTATACATATAAAGGAGAAATGACAATGAATAACAATTTACAAATATTTAAAAATG AACAATTTGGACAAGTTAGGACTTTATCTATTGAAGATAAACCTTATTTTGTAGGAAAAG ATATAGCGGAAATCTTAGGATATTCTAATCCAACTAAAGCGGTATCAATGCATTGTAAAA ATGGAATTAAAACAAAAGTTCCTACAAAGAATAGAAGCGAACATAGTAAAGCAAGAAATG CTCAAACAATGATTTTAATATCAGAAGATGATTTATATAAATTAATTCAAAAGTGCAAAA CTAAATCTAAAATATATAAAGATAATCTTATTGAATGGCTGGTAAATGAATCTCTTATTA GAGATAATGTTATGGTTTTAGAAACAAGAGATGAAATTGAATTTTTATATAAATTAGAAG AAGCACTCAAATCTTTTAATATTAAAGGAATAAAACAATACAAAATACTTACATATAGAA TTGATTATTATATACCTAAATTAAACATAGCAATAGAGTATGATGAAAATGATCATAAAC AATATACATATGAACAACATGAATTGCGACAAAAACAAATTGAAAAAGAATTAGGATGTA AATTTATAAGAGTTAGTGATAGTAAATCTGATGCTTACAATATTGGGGTTGTTATGAAAG AAATAATAAAAAGAGAGGTAGCATAAAAATGAATGAATTAAAAATATTTAATAATAAAGA TTTTGGAGAAATAAGGGTGATTAATAAAGAAGGAGAACCTTGGTTTGTAGGAAAAGATGT AgCTGAAAAATTAGGTTATAAAAATTGTAGTAGAGATATAAATAGACACGTTGATGAAGA AGATAGGCAAAACTACCAAAACGGTACTTTAGAAAGTAATAGAGGATTAATAATAATAAA TGAAAGTGGACTTTATAGTTTAATACTTTCTAGCAAATTACCAAACGCAAAGAAATTTAA AAGATGGGTTACATCGGAGGTTCTTCCTCAGATAAGGCAAACTGGAGGATATATACCTAC AAAAGAAGAAGATAGTGAAGAAGATATAATGGCGAAAGCATTAGTAATAGCTCAAAAAAC ACTTGAAAGAAAAAATGCAAGAATAAAGGAATTAGAACCAAAAGCTAAAGGATTTCAACA ATTCATGGATACTAATAATACTTATTCATGGGATATAGTTGCTAAGAATTTAGGTGTAGG TAGAAACACTATGTTATCTATATTAAGAGAAAATAAAATAATACAAACAGATGAATATTT TGATAATAGTGGTAGAAAACATAGGGGAGAAAGACATAATGTTCCTTATCAAGCTTATAT GAAATATTTTGATGTTAAATTTTTAATTAAAGGCGATAAAAGATATGCTAAAGTTTTAGT TAAAGCAGAGGGACAAGAATATTTAAGAAGAAAATTAGTAAAGTTAGGATACATAAAAGA AGCTGCATAATACATATTTACAAAATAAAAAATATAAATGAGAGAGGATAAAATACATAT GGGCAGAATGAAATTTAATAGTCAACAAGAGAAAGTCATTAACTTTAAGAAAGGAGCAGT TTGTGTTTTAGCTGCTGCTGGGAGTGGAAAGACGGCTTGTATAATAAATAGAATAAAGAG

ACTTGTAGAAGATGGTGTAAGTCAAGATAAAATATTAACAGTAACATTTACTAATAATTC TGGAAGTGATTTAAGAAAGAAATTGAAAAATGAATGTTTAGAAAATGTTCAAGTAGGTAC ATTCCATGCTATTTCGAAAAGAATATTAATGTCCGAGGGGATAGATGTATCTAAACAATT ACCAACTTATGAAATAGAAAATATATTTAAAAGAATAGATAAAAAAGCTAAATGTAAAGA AATAATGAGTTATATAGCCTTACAGAAAGTGTCTGGAAATAGTGTTATGGATATTGAGAG TGATAGTGAGAGTTACACTGTAGAAGACCTAAGAACGTATTATAAGGCTTATGAAGATTA TAAAAACTCTAAAAAAGCTTATGATTTTACAGATTGGATGTTACAAGCAATAAAAATATT AAAATCTGAAAGAGGAAAATATTATACTTTTGATTATATATTAGTAGATGAACAACAAGA TAATGATGTGGTACAAAATAGGTTAATAGATTTATTATGTCCTAGTGGAAATGTAATGGT GGTCGGAGACGTGAGACAAAGTATTTATAGTTTCAAAGGCAGTTCACCAAAATTATTTAT GAATTTTGATAAAAGATATGATAATGCAACAATATTAAACATGGATATTAACTATAGATC TTGTAACAATATCGTGCAAGGAGCTAATAACTTTATTAAAAAGTATTTAGGGGATTTTAA ATACTATTCAGATTCTATAGCTAATAATAAAAAAGATGGAAATATATCAAAGTTTTTCTC AATTACAAAAGAAGAAGAAGGGGAAAGAATAGCTAATTTAGTAGCTAAAGATATAGAAAA TGGTATGAAGCCAAGTGATATAGCAATATTATATAGACTTAATAAACAATCTTTTTACAT AGAAAACGAATTAAAGAGTAATGGAATAGATTATCACATAGAAGCTAATAATAATTTCTT CGAGAGAAAAGAAGTCAAAGCTATAGTATGTATGTTAAGGTTATTACAAGATCCAGAAGA TGATGGAGCATATGAATATTTATACAAATTAAGATGTCATCCTTTTAGTTTCATGAGTAA TAAATTATTAAGTGATATAGTTGATTTAGCTGCAAAGAAAGATATCTCATTGTTAGATGC TTCAATGTATGTTAGGTCAGCAAAAACATATGAGAGAAAGAATTTAGATAGTTTTATGGA TATATATGAGAGTTTATTATTACAAAAACAAAAAAGTAAAGATTTGTTAACCATAATTAA TAACATAATTAAATTATTTAGATTACAACAATACATAGAGCAAAATTATGAAGGTGATGA AATAGATGAAAGATTAGAGAGTTTAGAAGCTACTAAATCATTTGTAAGAAGTAATACGCT TGAGAGCTTCCTTAGATTTGTATATACTTCAGAAACCACCAAAAAGAAAACTAAAAGTAA TGAAGTGCAATTAATGACTATACATAAGAGTAAAGGATTAGAGTTTAAAAAGACATATGT ACTTGTTAATGATAATGATTTTCCAAGTAAAAAAGCTTTGGAATCTGATAATTTAGATGA AgAGGCGAGAATATTTTATGTTGGAGTTACTAGAGCTAAGGAAGATTTAGTTTTTAGTAC CATAGGCAATAAGAGTTTATTTGTAGAACAATATTTTAATTAAAATGTTGAAATAAATTA AATAAATGATTGATTTATTTTGGATTTAGTATTATAATAGTAGATGTAGAAGGGAGTGAC AATTATGTCAATGAGTTTTAAATACACAACTTGTAAAAATGAAGAGTTTGATAGTTGGAA TGGAAAATATATAACAGTCTATAATAGAGGAGCTATACATAAGGTTGTAACTAAAACAAA AgAAGAGTGTGAAAAGATTTTAGAAGACTTTTATGATTATATCTCTTTACATGAACAATA CTTTTGTACTGAAGGAATTGGAGAACCATATTATGACGATATGAAGGAAAAATGGATAGG AGAATCTTACATATTTTTAAAAGATAAAGAAGAATTTGATTTTTATAAAAAACTATATAA ACAATTTAAAGAAATGCAATGAAAAATATCAATATCTTAAAGGAGGTGAGATAATGAATT TATTAGAATCTTATATAAATATATCAAAAACCAATAATGTTAAAATAAATGATATAAATA ACATAAATCCAAAACAATTTGTTAATTGCATAGATAATATTCCTATAATATGTTATGAAG TTAATTATGTATATACTACAGTAAGAGGAAATAAAAAGAATGGAAACAAATATTTCTTAT TTAATTCTTTTAATCCTCAGATAAACATGAAAGAAAAATTAGATAAGTATATAGAAGATT TTAATAAAGAACATCCTAACAGGAAACTGTTAAATGTAAAGTTTCTTAACAGCAAATGCT TAGGATATATGACATTATAGTAGTCATATCACTTAAAGTTTCATTTGTATCAATCCTCGC TTAGAGGTTGCATAGTCTTAATAATCATTAACCATTTTTATTAAGGCGAAACAAGATTGG TTAAAGCGTAAAAAATTCACCACAATTTAATATTGGATTAATTAGTTTGATTGAGAAGGA TCGTGATAATTGGTTAATTAAAGAAAATTTTATCCTTATCGAGTTTAGGTAATAAATTTG ATAAGGAAGATGCGAAATGAAACCAATATTTAAAAAAGAAAAAGAATTTTTAGAAAGAAA TTTAGGAATAGAATTGCCAATGGATTGTTGGAGACATGGAAGTAAAATTTATTTAAATGG AgATAAAGATACAGTAATAATTGAATTTAAAGTTGAAAATCAAAAAATAAAAATCAAAAA GAACAAAATAAAAGAAGTATTAGAGAAATATAATAATAAAACTATAAAAGAAGAAATCCA AGAAAACAATGATAGATTAAATAATCTTATTGAAGAATCAATTAATAAAACCAAAGAATA CATACTTAATCATCCAAATAATAATATAAGATTAAGCCATAGTGGTGGAAAAGATTCTGA TGCAATGTGGTGGATATTACAAAAGGTTTTTAAAGACTTAAACATAAAAGATTATACTAT AGACTTTTTTAATACCACTAATGATACAGCTCAAACATATTTGCATATAAAACAAGATTT ACCACAAGATCATTTACAGATCAATAATCCTGAAAAGGGGTGGCATCAATGGTTAAAAGA AGATAAAAATTATTACCTACCTTCAGTAATGGTTAGAAATTGTTGTAGCACATATAAAGA AgGACAAGTTAAGAAGATATTAGATAAGAAAAAAGATTATTTGATATTTTTAGGAGCTAG AAAGTACGAGAGTGCAAAAAGAAGTAAATATGATTGGGATTTAAATGAAGCTTGGTTAAA

ATCACATCCAGGAAAGAAATTAAATGTACCAGAGAATTGGTTAAGGTTTTTACCTATAGT TAATTTCACCGATAAAGATGTTTGGTTATTAATACTTAGAGAAGGAATTAAGTATAATGA ACAATATAATGTTGGGTTCAATAGATGCGGCTGTCTTCTATGTCCATATTCAAGTGATTA TTCAGACTTATTAATAAAAGAAAACTATCCAAAACAATGGGAAAGATGGATGGACATAGT AGAGAAAAATTATGATTTATATGATGTAGAGAGAAGGTTAAAATGGACAAAACATGAATA TTGTGAATTAGGAAAATGGAAACAATCTACAAGCAAAGAATCCGAATACATAACTAAGAA AGCCACTCCCGAAAGAATTAAGGCTTTAGCTGAATTAAAAGGATGTAGCGAAGAAATGGC TATAAAATATTTTAAACAAGAATGTAAGTGTGGTAAGAAACTTAATCCTGATGAAATAGC TATGTATTTAAAGATATATGGAAGATATGAAGGACAAGAAGATAATAGAATATATTTATG TAAATCTTGTTTATGCGAAGAAATTGGAATAGATAAAAATACATATGCAGAAAAAGTAAA AGAATTTAGAAATCAAGGTTGCAATTTATTTTAAGGAGGACAAAATTATGAAAATTTATT ATGCTCATCATATGTGGAAGTATAATACAAAAGAAGAAAGAATGGAAATAGAGGCTATTA AAAAGATATTTCCAAATTCTAATATAATAAATCCAAATGGTTCTGTTATTGAGACAGGAA ATGAAGCTGAAGCTATGGAGCAATGTTTTAATTTTATAAGAGAATCGGATATTTTAATAT TTACAACATTAAATAATAAAATTTTTGGAAGAGGTGTTTATGATGAGATATCTTTGGCAT TGCAATTAGGAATGAAAGTATTTCTTTTAAAGGAAGATACCTTATTAAAAATAAATGATA TAAATAGTATATGTGAAATAATAATTGATAAAACAAAATCTAATAGAGAGTATGCAAAAT TATTGATATAAATTAAAGAATTAAGTTAAATTCGTGATTTTAAAGAGAATGAAATGGGAG ATGAAATGTAAAATGACTAGAAGGAAAACACATGAGGAATTTGTTAGAGAAGTAAAAGAA AgATACGGAGACGAATATGAAATTTTAGGGAAATATATTAATGCCCACTCTAAAATATTG GTAAAACATAATTGTAGAGAATGTGGTTATTATAAATGGGAGATTGAACCCAATAATTTG TTAACAGGTAGAGGATGTCCAATATGCAGTAAAGAAAAAAGAAAAAAGAAGCATATTGAA TTTGTCAATGAAATATTGAATAAATATGGGATGAGTATACTATTTTGGGGAAATATGTAA ATAGCCAAACAAAAATATTAGTTAAGCATAATTCAAGTAAATGTAATCATCATGAATGGG AAGTTTTACCGAGTAGCGTGTTGAGAGGCTATGGTTGTCCAGTATGCGGAGGATTAATTG CTAAGTTAGGTATCAACACCATCTGGGACACCGATAGATGGATGTGTGATCTCGGGGTTT CTGAAGAAGATGCTAAGAGGTATAAAAGTAAAAGTCAAAAGAAAATAATAGTCAAATGTC CAGATTGCGGCAGAGAAAAAAAGGTAGCATTAAATAAAATATATTATTATAAATCCATTT TTTGTTCATGTAGGGATGGGAAATCATACCCTGAGAAATTCATTATGAATTTATTGGAGC AATTAAATATTGATTTTGAAACAGAATATAAGCCACGATGGATTAATAATAAAAGATATG ACTTTTATATTTCCGAATTAGTTATGATTATAGAAACTCATGGGAAACAACATTATTCAA GTAAGACAACTTTTAAAAGTTGTGGAGGAAGGTCTTTTGAAGAAGAACAAATAAATGATA AATATAAAAAAGAAATGGCACTAAAGAATGGAATTAAGCACTATATCGAGTTGGATTGTA GGGAGAGTAATTTAGAATATATTAAAAACAACATATTAAATTCAGAGTTGAATAAACTGT TTGACTTATCAAAAATTGATTGGACAAGTTGTGCGGAATTTGCTAATTCTAGCATAGTAA AAAAAGCATGTGAATATTGGAACAATAGAAGTAAAGATGAGACAACAAGTGATGTTGGGA AGATATTTAGTTTACACTATAGTACAATATTAAATTACCTTAAAAGAGGAACTAGGTTAG GCTGGTGTAATTATAATCCTAAAGAAGAAAAGAAAAAGTGTGGTAGCAAATCGGGTAAAG CGAGTGGAAAAAGAGTTGAGATACTAAAAAATGGAAAAAGTTTAGGGATATTTGAATCTT GTCATGAATTAGAGAGACAAAGTGAAGAATTATTTAAAAAAGTGTTAAATTATAGTAAAA TAGCTTCTGTTTGCAGAGGTGAAAGAAACACATATAAAGGTTATCAATTTAAATATATAG AAAATGTAGCATAAATACATATTGTTTAAATAAATTAAATAATTGATATATAGAGGAGAA TAACAAATGAGAGCAGAAAACACATACATATTAAATTTAGAATCAGCATACATATATAAA GCACAATTAGAAGATGAAAAAATAGGATATAATACAAAGAAAAAGAAAAAAGATAAAGAT GGAAAAGATACGAAAGAGTTTTTATTCACTAAAGATGTCTTATATTCAGCAACAATTCCT TATAGTTTAGAAACTATAAGAGCTAATGAAAAATATCCTAATGAATGGAGAGAGGAGGAT AATAAATATTACACGGATTTATTTGTTAATGTTAACTTTACAAAGCACTATAAAGTTGAT GGGAAGAAAGAATTAGATGTTAAAAAGATAAGAAAACATCTTTATACAGAAGGATTTAAA ATAAATGGAATAAAATATAAAATGTTTAAGAGAGGGGGAAGTAAAGCAAGAACCGCAAGT GCTATATTTATAAAAGAGAAAATGTATAAAGACCTGTATGATAGATGTTTATTAGGATTA GAGTTTCCTGTAGGAGAGTATTGTGATTTAACTTCTAAAAATGCTTATATATCTTTAATA ATGTCTGGAATAATAGGAATAATTGATATAAAAAGAGAAGAAATTCTTATTATTGATGAT GTAATGGGTAAGGAAATGAAGGTTAAGGCTTCTGTAACAGAGAGAAATGAAGATAATGAA ATAGTAGTTAACCAGTATGAAGATTATCCAGTACAAAACAATATGACAGATGGACAAGGT TTATTAGATGAATCTGTTTTTGAAAAAAATGAAATAATCAAAGGACATTCAGTAGCATTA TTAAGAAATGACTTTACTAAGTGTGCAGCTTTTAATACTAAATTACAACAATATTATAAA

GAAAATAATATAACAAAAGTTTACGATATGTATAGAGGTTGGGTAGATAGTAAAGATATT AAGTTAGTTATAACTCCTTCTAGTTGTAAATTCTTAAAGTTTACCAATAAATTTAATTCT AAGAAAGAATGTTATTTACATTGGTGGTCACATATAGATTCAATGTTTGGTGTAGTTAAA ACAGATCATATAGGTAATTATGGTTATGCCAATAGATTGTCTTATCAAATGATAAACTCA TTAGAATTAAACTATGATGAAGTTAAAGAAATAGCTCAAGAAGAGATTAACTATATTAAA ATGCTAAAGAATAATTGTTTAATTGATGGATGTAACAATTTAAGTAAAAAGCAAAAAGAA AAAATAACAGAATTAAAAAATGATATGACATATTTCATGCATTACATAGGTAATAATAGT CTTGAATTATCGTCAGGTGAAATGATAAGTGATTTATTATCTGTAAATAGTGATTATAGG TTTACAAAGCAATTCAAAGATTATAAAAAAGAACAAATTAAAAACTACATAAAAGATGTT AgAACTGGTAAGGTAAGAATAACTAATTCGTTATATTCTATATTATTTTCATGTCCATAC ATTATGTTAAAACAAACCACACAAGAAGAGATGGTTACAGAAAGTATAAGTCATGGATGG GAAGTATACTGCCCTAGATTTGATAATAATAAAGAGTTATGCATGATAAGAAATCCACAA ATAAACAGTGGAAATATAGCTCATGTTACTAATACATATCATGATGAATATAAATGGTTT AATTTAAGCGACTTTGTAGTTATACTTAATACATATGATGTAGATGTTATGAATAGACTT CAAGGATGTGATTTTGATATAGATAGTGCTTTATTAATAGAACAACCTACAATAGTCTCT AAGGCTAAAGAATGTATGGATAAATATTATACGCCTATTAATGCTATAAAAGGTAAGACG GATTTAAAAAGAGATACACTTGAGGAATTAGCAGAATTAGATAATTATTTAGGACAATCT ACTAGAACAATAGGACAAATAGTAAATAAAAGTGCTATATGTAATGCTTATATGTGGCAC TATATAGCCAACAATGGAGATAAGGAACTTATACAAAAACTATATGATGCAAGTTCAATG TTATCATCATTTTCTCAAATAGCTATTGATATGGCTAAAAAAAGCTTTATGGATAACAAT GGTAAGAGAATGTCATTATTAATGGAGATGCAAAAAATAAATAAATGGAGAGTTAACGGC AAGAATATATTAGATTTTGATAAAGAAACATTAAAAGATGAAACTGGAAAAGAAAAAATA ATTAAGAAAATGATAGTACCTAAATTCTTTGGAGAGATAGCAGATAATAAGTTTAGAACA TTAAAACATTTGGATTGTGGAATGGATTATTTACAAGATGTTATGGATAATGAGTTGGGA AAAACTCTATCTACTAAATTAGTTGATATAAAAGACCTGTTACAAATTGGGAAAAACATA GAAGGAGAAAGAAGTAGAAAAGAACATTTGGATAAAACATTAGATATAATAGTTAAATGT AATAGAACAGTCAAATGGTGCAAAACACTTTCATGTAAAGAAAAATATGGGGAGAAGGCT AgATATACAATTAGCAGAAATGCCAAAAAGAAAGCTATTGAAGAATTAAGAGACATAAAT ATGTCCAATAAGACTTTTATGTTGATTCTTAAAAAAACTTTTGAAGTGTTACAAGAAGAT ACAGTTAAAAAGTTTTCAGATATGGTATCTTTAGTCCTAACATTATTATATAATACTAAT CAAAAATATTTTTTAAATTGCTTTAAAAGTAATAATATATTAGAAGATAAAGTATTAATT CTCGATACAGAAGGAGTAGAAAATATATTTGGAGATACATATAAAATAATTAAAAAGTGT AATAAAACAAAGGAAAATTCGTCAAAATAATTTTATATTAAAATCGTAACACCCTTCTAA TCTAGTGATACCAACGGTTGTGGCGATTTAGCTAAGAACCTTATGAATGGGGTATTATGG TAGAGTAAATAAAATTAAGTTTTTATTAATACTTCTACCGTGTGGTGAACGGAAAACTAC ACTCCTTTATGTATTATAACATTTTATTCTCTCTTTAGTTTGGGTAGCTTCTCTCATGGC TACCCTCATTAAAGAAAAATAAAAAATATAAATACATAGATAAATTAGTAATTAATAGCC GTAAGGCAAAACATATTTTAAAATAAATTAAATAATTAAAAGAGAGAAAAGGAGAAATGT AAAATGACAAAATTAGAATTAGTAAAAGGATTATCAGAAGAAACAGGATTAACTAGAAAA GAGGTTGAAGAAAGATTATCTTTTATAGATAAAGCTGTAGAATTTTCAACTAAAGTACCA GGAGTAAAGGTAAAATTAAGTAAATACTTTACAGTGGAAAGAAAGCATATTGAAGCAAAA ACAGGAGAAATGACTAGAGTAAATGAAAACGGAGTTAAGGTCAAAGTACCATACAGTACA GAAGCTCATGATGAATTATCTTTCAAAAAGACAACTGCTTCTAAAAGAGTTTAATACATA TTAAAGTTAGGGTAGCTTAATGTTATCCTAACTAATTTTAAGGAGAGAATATTATGAGAT TTAAATGTCAAACATATCATAAGTATGGAGAAGATGATAAATATCTAATAAATATTTACA ATGACAATATGCCTTGTTTTTTAAACATTGAGGATTTAGAGGATAATTTAGGTGTCTATA CTTCGTTAGAGGCTTTAATGGATGTTGAATGGTTAAAGAAACATAATATAGATTGGATAG AAGAAGATGGATTAATAATACCTATTGGTTTAATATCTTCTACTTATAATGGTATTGTAA ATTTAGAACAAGCTAAAATAATAAGAAACACTAGTTATTCTAATAATTTAAATGTTTATT GTAGTAAAAGATATATATCTTTATTTCCAAAATATTTAAGAATGTTAAAAAGATTGGAAG AAATAGAAGAGAAGTTTGAATCAGAAATAAAAGAATTTCAAAATTTATGAAATAAAGGAG AGAAATAGTGGTGAAAACTGAAACAAAATATTATTGTGGACACTGTGGAAGAAAAATAGA ATGTGGAGATACTTTTGCTATGATAGAAGAAACTCTATATACAATAGACAAGCATGGAGA CTTATATAAAAGTCCAACAATAGATAATAAAGATGTTTTTTGTATAAATTGTCACTCTAA AATCATGAAATTAGATGATAAATTTAATGAACTGTTAGAAAGTGCTGACGAATATTTAAA AGTTAAAAAATAATTAATTAAATCAACAGTTTTATTTAAAAATAAATCATATAAAAGAGG

GATTATTTGTGAATAAAAGACAGATTAAAAAGTTAATGAAAAGTAATCAGATTAAATTTA ACAAAATAAAACTAAATAAAGATGATGTTTTGGTAATAGATTTTGGAAAAGACTATTTTA GTGATTCGTGTATGCAAAAAATATGCAGTTGGATTCATGATAGTATATTCCCAAAGAACA AAATATTACCTTTACATGGAGGAATGTCTATAGGTGTAATAGAAAGAGGTGAATCAGGTG GCAGTAAGAACTAACTCTATTAAATTTTCCAAAGCTTCTATATCTCAAAATGAAGAGGGA GAATTTATTATAGAAGAAACTAAAAAAGATGAAATTATAGTAACCAACTTTACTAATGCA TTATTAGAATTTGCTGGAGTAGATGGTTTAGAAATATCTATTGGTAAGAAATCTGAAACT GTTTCAGAGGAATAATACATATTAAGGATTGGACTTATATTATATAAGCTGATACCAAGA AAAATAACTAAATGTGTGCGTAAGTTATTTTACCATTATGGTTTACGTTTGTCGGTTTAA AGTGTAATGCCATAAACTTCATTTTACCGTAATCCCACTAAGGCTATGAGTATTCAGGGA TATTTATTCCTCTGTATTTATCCTCAAATAAGTGTCAGTATAATTTCATGAAGTACAAGT GAAATGTGATAAGGATATAAACTGATTATCACTAAAAATCATATTGCCTTTAGCTAGGAT GTTGTCCGACCGTAAGCTAAGAAAGCTAGATTATAGGTGGGTAGTTAAGAGTATGAGATG AGTCTTATACTCTTTTTTATATTATGAATACATAGTTCAAAGGTAGAACGGTTGGCTGTT AACCAACTAATGAGAGTTCGATTCTCTCTGTATTCGCCAAAATATTATTTATATATATAC ACATTCCGCTACGTTGGAAAATGTATATATTTTTACAATTAACATTATAACAAAGTAAAA TCAATAATTCAAGAGAGGAAAGATAAAAAATGGGAGAAAAAAAGATAAAAGCATGGGATT TTTGCTGTAAAGCGTGCGGTAGAAAATTTTTAATGGAGAACTTAGAAAAGGATGGTTATG TAGATACTATTAAGCTTGGAAAAGTAGTCTATTGTCCTTGCTGCGATAAAGAAGAATATA TTCCAATGTAATTTTAACTAGGAGAGGATAAAATGGGAGAGATATTAAAGAGAAGAGATA ATGAAAGTGATTTAGAATACACTAAAAGAATTGTTTATGCTAAATTGGTAGATAAAACTA CCGATTTAGATTATTCAGAATTAAGTAATTTAATATATGATAAACCTTACAGCTCAGATG TAGCAAGAAGAATGTTCTACGGAATGAGAAAAATTTTTGAACTTATGGATAAAGAAGGCG TAAATTCTATAAGTGAGAATGAAATATTAAAGAAAATAGAAGAAAAATCATTAGAATTAG ATTTACAAAGAAAGAAATTACAAGCAACCAAACTTGAACTAAATAGAAATCAAAGAATTA AAAGTAGAAGAGAATTATTTTATGAAAATATAGGAGAGGAAATTGAGAGATTACCCCTTC CAAAGTTTGAAGAAGTGCCTATTAAAAAAGTAAATGGTGAATATTTATTATGTTGGGCTG ATTTGCATTATGGTGCTGATTTTATATCTGAAAACAATGAGTATTCAAGAGAAGAATGTA AAACTAGAATGCAAAGATTAGCTTCAAGAGTTAAAAATATGTGCATAGAAAAAGGTATTA ATAGCCTTCATGTTATAGGTCTTGGAGATGACATTCAAGGAATTCTTAGAATTTCTGATA CTCAAATAAATGATGTACCCGTTATGCAATCAGTTGTTGAAGTTAGTAGGCTAATAGCTC ATGTATTAAATGCAATTTCAAGTGTTTGTGATGTTACATATTATCATACTATGGCTAGCA ATCATAGCCAAACTAGACCTTTAACTGCTAAACCAGACTTAATTAAAGAAGATTTAGAAT TTGTTATAGGCAATTACATACATGATTTAGTAGAAAATAATGAAAGAATAGAAGTTAAAT TATCAGAAAAAGATTATCATTCATTTAGTATAGCTAGTCAACAAATATTAGCTTTACATG GACATCAAATAAAGAATATTAATAATGCAATTAAGGATTATTCAATGCAGCATAGAAAAT TTTATGACATAGTTCTTATGGGGCATCTACATGGTGGTCAACAAATGAGTGTAGGGGAAA GTGAAAATGGTAATAGTGAATTAGTAATAGTACCTTCTATAGTTGGAAGTGATCCATACT CAGATACTTTAAAGAAAGGTTCTAAGTCTATGGCTAAGTTATTTAAATTAGAAGAAGGTA ATGGAATAACTGAAAATTATACAATAGTTTTAAATTAGGAGAGAATAGATATGAATGAAA AGTTGTTAAAAAAATTAGAAAAAATAATTAAAGAAAATTATGATAATGAAGCTTGTGGAT ATACAGAAGAAAGGTCAGAGGGGAATTATAACGATGTATTCTCAGATGGTCAAGAAAATG GTAGAAGTTGGTTAGCTTATGAAATAGGTTGTTTATTAGGGATGAAATTAGCAGAGCCAA AAGAATCTGAATATAGTTGGGAATAATGAGGAGAATTAATATGAATATAGATTTTAAAGA GGAAATTTTAGAAAACGAAGATATAACTATAGTTGGTAATTCAGAAATGATTAAACAATT ATTATTTGATGTTACTAAAGATGTAGAATGTTTTGAATTAATTAGTAATGTTAGTATTTA TTCTAAGTATTTATCTTTGACTAGATTAGAGAATACTTTATTTATAGAAGATGTTCAAAA TGAAAAAGGTGATTTTATCTATATGGATACTGAAATGTTATGGATTGATGAAGAAGTTTT AAATGAAGCTTACAAGAGAGGACAAGAAAGTGCATTTTTAGAATGTAGAAATATAGTTAG TATATATTAAATACTTTAAATTTTGGATTTTATTTAAAATAATTAAAATAAAGTAAGAGG TGTTGTTTTATGAAAATTACAGAAACCATAAAATCTTTAAAAGAAGAAATTGAAGATTTA AAGAAACAATTAGAAGTTGTTGAAAGTGAAAGAGATCAGTTTAAAGAAATAGCTGATAGA AATGCCATTAAGTTAATGAAATATGAAAATATATCTGAAAAAGATATTATAGAAAGATTA AGAATGTACTAGGAGAGATGTATTATGAAAGAATTAAATACTATTCAAAAAAGAGAAAAG TTAAATAAAGTATTTGCTTCTGGAGAAAAAGGATATGGTGGAGCATATCATCAATATCAT ATTGAAGCTGTTGAAAAATATAATGGACTACCAGTATATACTACTACAATTAATTTTCAA

AAAGGGGCTAGAAAAGAAGAAAAATCTCAACATGGTGTAATTGATACTGATTTATTAGAG ATAGTAAGAGATAGATTACATTGTTTTCAACAAGGTGAATTTACATCAGAATATAATTAT CAAGCTTTAATCCATGTTGAAGAGGCTTTAATGTGGTTAAATAGAAGAGTCGAAGATAGA ATTGAGAGAAATGTATTAGGTGAAAATAAAAAATAATAAAAATAAATGAATGGAAGTCTA GGATTAATTTCTTAGGCTTCTCAATAATTATATATTGCAAAGATAATTATTAAGGTAATT ATGCTTGGAGTATATGATAATACTTCCAATAAATAAAAAATGGAGTGTGAGTGTGTTATG AATTGGAAAGAAGAATTATTAAACGCAAAGGAAGAAGTTGTTTATGTAAAATATAAACGA GGTGAAGGAGCTACATACACAGTAATAGAAAAATTATTAAATACTGATAAAGACCTGTGT GTATTATATTTAGGCAACTACTATATTGTAGAAGATATATTATCAAAATTATATAGTAAT AAAGATAAGAGAATTGAAAGTTTATTATGTAGTATCGAAAACAGAGAAATTATAGTTAAT TTAATAAATAATAAATGGCTAAAAATAGTTTGTACTAGATTGAAAAATGCAGATGAAAAC TTTAAAAGAGGTTTAAGATTTCATATAGGTATCGCAGATAATTCAGATTTTAGTATGCCT AAAATACTAAATCATTGTAAACAAAAAATAATAATAATGTCTGATGAAGACACAACATCT TTTAGAATAATTAACTCTGATAAAGTTAAAGAAAAGCTAAATAAAGATAAAAATCAAGAA TTATCTTTAACCCAAAGAATTAATAATTATAGAAAAAAGCTGTTTACCGAACTAGAGAAT ATACCCATGAATGATAAAACAACTATGACAAGAGAAAGAATTATAGATATGATTAGAAGT TTAGATCATATTGGAAGGTAGGTACTATTATGAAATTTATTAAAACAGCTTGGAGTATGA TGGAGAAACCAACTAAAAGATTATTATTATCAGGATTAATATTGATGATAGGTTTCTTAT TGGCTTTTATTAATGAATGGATATATGCTATTTGTTTATGTTTAGCATTAGCTAATGTAA TACATACTGGTTGGAAATATATGTTTAAAGAAGAATGGGAAGAATTTAAGTTAAAAGTTA AAGATAAAATAGAATCAGATAATATAAAACAATGATTTTAAAGAGAATGTAAAAAGATGA GGTGTGTAAAATGTATAATACAAATATTACAGATAGATTAAATAAAGGTATTGATAGAGC TAAAGAACTAAAATATAAAATTGTACATATAGAAATGAATAAAGATCAATTTAAAGATTT ATTATCAGAAGAAAATGGAAATAGAACAAATTGGGTAGTAGCCTTAGCTGATTATAAAGG TTATAAAATAATTGTTCGTGAAGACATGGAGAATCCAGAATGGGATAATAAAACACCTAT AAAACTTATCATTAAATCAAGTAAAAAGAAAATTAAAGATGATATTACTAGAGAAATTAA AAAATATATTGAATGTTAAATAATTTGAATTATAGGACACCTAATTAATAGGTGTCTTTT ATTGAGATTATTTTTAGAAAGGAGGAATATCTATTGGCAAAAGATAAAGAAATATATTAT TGTACTATGCAATTATCACCCAAATGTAAAAAAAACAATGGACTTTTAGATGAAAAGGAT TTTTATTCAACAGCTAATGAAGAAATATTTCATAACGGTAGACTCTCAATCTGTAAACAC TGTCTTAAAAAATTTGTTTATGAGGACAAAAAAATAAATTTAGATAAGTTTAAAAATATA TTACAAATATATGATATTCCTTTCTATGAAAAAGAATGGAATGCTTCATTGAATGGTTCT AAAGAGGTTTTAGGCTCTTATATGAGAATAGTTTATTTAAATTATAAAGACAAGCATTGG AAAGATGGAGATATAACCGATAAAAAACTTATATATGATGAAAGCGACATAGGAAAATTA TCTGAAAGAGAATTATTAAATAAATGGGGTTCTGGATTTTCATTGGATGAATTGCAATGG TTAGAAAATAATTATTATAATTGGACTACAAATACAGATTGTAAAAAATTTAATATACAA AAATTGGTTAAGCTCATATGTATTAAAGAATTAGATATTAGAATTGCTAGACAAAATGGA AAGCCAACAGATAAACTAGAAAAATCATTGCTTGAATTAATGAATAATTCTAATTTAACA CCAAAAACTATGAGTGCCATGAATGAAACTGATTCAGCTAAAAGATATGGGAAATGGTTG GAAGATATAGAACAAAATGAACCAGCGGAGTATTTCAAAGATAAAAGTATATATGAAGAT TTTGATGGTATAAAGGGTTATTTTGATAGGTTTATACTTAGACCATTAAAGAATTTGCTT ACTAACACTAGAGAATTTGACCATGAATTCAATGTTGAAGATGGTGAAGAATAATGGCTA GTTATAGTAATTATAAGAATAATCAACAAAAATATAAAAATAGCAACGATATGTCTAAGA GACCTATGCAAGTTATAACATCTGAGGATCTAAATGAACAATTCAAAGAAAAACTGATAA ATTGGACAACTTTTTATAGGAGAAACATTCATAGATTTGCAGAGCATTATTTAGGAATTC AATTACATCTATATCAAAAAATAATGCTTTATTTAATGCATTTAAGTCCACTTGTTATTC TATTATGTGCTAGAGGTATAGCTAAATCTTTTATAACAGCTTTATACGCATGTTGTGTTT GTATATTATATCCAAACAGTAAAATATTAGCTACAGCTTTAACCAAGAAGCAAGGTGGAT TATTAGTTACAGAGAAAATTCAAAAAGAATTGATGGTTATGTCTCCTAATTTACGGGGTG AGATCAAAGATATTAAAACCTCGCAAAATGCAATAGAGGTAGTATTTCATAATGGTAGTT CATTTATTGTTTCTACTGCCGATGATAAAGCTAGGGGATTGAGAAGTACATGCCTAATCA TAGATGAATTTAGATTAGTTAAAAAATCCAATATCGATGCAATTTTATCGCCAACTGAAA TAATAAGACAAGCACCTTATATTAAAAAATCCGAATACGCCCATTTAGCTGAAGAACCAA GAGAGATATATCTTAGTTCTGCCTATTATAAAAGTTCTTGGATATGGCAATTTATAATAG ATACAGTTAAAGATACATATAAAAAGAAAGCTATGATATTTGCTACAGATTATGCACTTA CGCTAAAACATGGAATACGTACAAAAAATCAATTATTAAGAGAAAGAAAAAAATTAGATA

GTGTTACTTTTGATATGGAATATAAAAATTTAATGATTGGCGGAAGTGATAATCAATATT ATACATTTGATTTATTATCTGAAGCTCAAACCATAGAAAAAGCATGGTATCCAAAAACAA TAGAAGAGTATTTTGCTTCAAAAGATAACAATAAATATAAAAGATTTGGTAATATCCCAA AACAAAAAGGTGAAGTAAGAATAGTATCTATGGATATAGCAATGTCAAAGTCAACAAAGA CAACTAAAAACGATAATTCAGTTATTAAATGTATCAGAGGACTATTAGTGCAAGATCACT ATGAAAGACAAGAAGTTTATACTGAAACATTTGAAGGTATAGATATAGATAGTCAAGCAA TTAGAGTAAGACAATTAATGGAAGACTTTAGTGCAGATTATTTTGTTTTTGATGCAAGAA CCTATGGAACAAACTTAACGGATAGTATGGCAAAGACTCTATATGATAAAGAGAGAGATA CAGAATATCCTCCAATAAAAGTTTTTAATAATGAAAATTTGGCAGATAGATGTAAAAATC CTAGTGCTGCACCTATAATGTGGGCATTCATAGGTAGCTCAAAGTCAAATCATCAAATGC ACACAACAATGCTAGGTAGTTTAATGAATAAAAAATATAAAATGTTAATTTCTCATACAA AATGTAGAGAAGCTTATTTAATGGATAAAAAAGAATATGAAGGTGGTTCTCCAGAATATA GAGCGTGGCTTGAATTAGCTTATATGCAATCTGATTTAACGTTAAATGAAATGATAAATC TTAAAAAGAATTATGTAGATGGAGGAAATATTAAATTAGAAGAACCATCAACTGGTACAA AGGATAGATATGTTTGTGCAGCTATGGGAAATTTGTTTATACAAGAAGAGTTTGAAACCA AATTAACAGCTAGAACTGTTACTTTTGATGAAGAAGATGATTATGTAATGTGGATATAGA ATGGAGGTGAATTTTATGACAGTAATTAAAGAAGGTGAACCAGGATTCGGTTATGATTAT GTGAATGATGGAATGCCAATTGCTTTTACGAGTGATTTGTTTACAGATGGTGTAACTAAT GAAGTTAGTATGGATACTATTAAACAATGGTTAGCTAGTCCTCAAAAATATAAAAAAGAA TTAGAGAAATATGCTATATATCAATACATAAGTAATGGAGATATATTCCAATTATTTGAT TTAATGAGGATATTACCTAAATTAAATTATAGCATTAAAACATTAAAGCTAAATAATAAA AATAATGAATATACTTTAGCTTGTAGAAGAGCTATGAAAGATATTAATCATAAAGAACTA ACTAGAGATATACTATCTCAAACAATATCGTCTGGTACTTTATGTGGTTTATGGGTGGGT GGTTCACCTAACAAAAAAGGCAAAAAGAATAAAATACAAGAAACTCCATATCCAATATTA TTTAATAACTTAGAATGTTTCTTTCCAGCTAGAAGAAAAAGAGGTAAATGGGCTATATGG TGTGATTTATCATATTTTGATGATATGGATGAAGATGATTATAAGCAAGGTTTATTTGAG GAATTAAATCCTTATATAAATGAAAAAATGTTAAATGATTATGCTAATGATCCTAATTGT AGATATATTGAGTTTCCTATTGAAAGAAGCATTTGCATTAGAACTCATGTTTTAAGAAGA AATCAAAGATTTGGTTTACCTTGGAATACTCCAGCTATAAAAGATATTAAACATCAAGAA AAATTAAAAAATCTTGAAAAAGTAGCTGCTAATAAAGTTATGAATGCAGTTAGTGTATTA ACTATAGGTAATGATAAAAATCCTGAAGATTATGGATGGAAAGCAGTTGGTAAAGTAGTT AGAAGTAATATTGCTAAAGATGTTAAAAGAGTTTTAAATACTAATAAAGATGGTGAAACT TCTGTGGTTATATTGCCTGAGTTTTGTGATTTTGAACAAAAAGCACCTCAGACAAATGTA TTAAATCCAGAGAAATTTCAATCTATTAATTCAGATATAGGGAATGACATAGGAATAGCT AGAACTTTAACCAATGGTCAAGGTGGTAATTATGCTAGTGCTAATTTAAATCTTGAGATT ATATATAATAGAATTTCTGAATTATTAGAGAGTATAGAAGTTGAAGTTTATAATAAGTTA TTTCAGATAATATTACCTTCTGATATAGGACAAGACTACTATTTAGAGTATGAGAAAGGT TATCCATTATCCACTACTGAAAAGGCTAAGATGTTTAAAGAATTACACATGTTAGGATAT TCATTGAAGCCATTAGTTGAATTATTGGGAGAGGATTTTGATGACTATGTAGAAAATTCT ATATATGAAATAGAAGAGATGGATTTAAGAGAGAAGATTAAACCTCCTATGTCTACTTAT ACTATGAGTGGCGATGAAGAAGTTGGTAAACCAAAAGGAGAACAATCAAATAATGACTCA ACTATAACAGTTGAAGAAAATGGTGGTAATAGTCAACCTAAACCTAGTGTTTAAGGTTGA TTTTTTATATTAAAAAAAAATAATAAAGAAAGGGGTTGACAATAGTTGGCTAAAAAAAGA TTTTATGAATTTAAAAATATAGCTAATAAAGATAGTGAACTTTATGTTTATGGTGAAATC TGCGGTGGAGCTGACAAATGGGATGAATCTGATGTTACATTTAAAGATTTCAAAGATACA TTAGAAAACATGACACAAGGTTCAACTTTAAATATGTATATTAATAGTCCAGGAGGTAGT GTTTTTACTACTCAATCAATAATAGCAATGTTAAGACGTGCTAAAGAAAATGGTATTAAA ATCAATGCTTACATAGATGGATTAGCTGCTTCATGTGGTTCATGGCTTCCAATGATAGCA GATGAAATATTTGTATATCCTCAATCAATAATGATGATACATAAACCTTTATGTGGAGTA TGGGGAAATGCAGATGAAATGAGAAAAGAAATAGAGGTTTTGGATAAAATTGAAAATGAT GTAATAATACCTCTATATATGGAAAGAGCAAAAGAAGGGGTAACAGAAGACATACTTAGA GAAAAAATGGCAAATGAAACTTGGCTAAGTGCTGACGAAATGCAAGAATTATTTAATGTT ACTTTATTAGCAGATGAAAGACAGATAGCTTGTTGTGTAGATAAAGAAATCTTTAATAAA TATGCTAATGTTCCAGAAGAACTATTAAAAATAGCAAATAAAGAAGATGATGGGGAAGAA TCTCCTAAAGAACCAGAACAAGCTAAAAACCAAGCTACCAAAGAATTAGAAGATAAAATA TCTAATTTAGAAGGTGAAGTAGGAAATCTTAAAAAAGAAAAAGAGGATTTAATTAAAAAT

AAAGAAGAAGTTTCAGAAAAATTAAATCAAGCTAATGAAAAAATTATAGCTTTAAATGAA GAAATTACTACCATGAAACCTTTAGTTGATGAATATGAAAAAATTAAAAAAGAAGAAGAG GTTAGATTAGAAGAAGATAAGTTAAAAGATTTAACTAATGAATATGAAAAGAAATTTAAT TCGTTAGGAGCTTCTAAGAAGTTTAAATCAGAAGAAGTTCAAAATCTATTAAAAGAAGCT GTAAAAGATTCTAATAAGAAAAATGAACTTAATTCTATTATAGTAAATCTAATTCAAATT AAAGATGAGAACAAAGTAAAAACAAAATCTATAGATAATAGTGCTAATATGGATAATTTA GTTCCTAATGATGAAAACGGTGCTAGTAAATATGGATTTAAATAATAAAAATAAATAAAA GAAATAGAAAGCGAGGAATTTATAAATGGCAAGTGAAGTATTAAAAGCGTTAATAAATCA AAAGGAAAAACATGTTGTTGGTTCATTAAACAACGCAGATATAAGAACAGTAAATCAAGG AGCTATAGCAGAGGCAGATATAGATAACTATATGATAGTTGAACTTGGTTTTAATGAAGA AGGAGAAAGAACATTTAAGCTATTATCAGATATAACTCATAAAGGTTATTTGGTAGCTTC TCCTGAAAACTATATGAAAGAACTAGGAGAAAATATCAGCGGTTTCTTTAATGGAAAAGG AGAAAGAGGAAGAATAGTGATACAAGATTTCGGAAAAAGATTTGAATGTTCTAATGTTGT TGCATCTGATGGTTCATCAGCAATTAAAAATGGTATGGAAGCTTATTTTGATCCAGAAAA GAAACAATTTATAGTAGATGTTAAAAAGAGTGATTCAAAGTTAGCAACTGCTGGTAATAA ATATATAGTTGTAGATGTTGAAGGTAACACTTTAGGCGGACAACAAACAATAAGACTAGA AgTGGCTATGTAATATAAAAAATAATAATAAGAAAGAGAGGAATTAATATATGCCAATAA AAAGAATGACAATAGACGAAAAATTAAAGAACTTAGGAGTTAGAGTTTTTGAAAATAAAA TGTTAATTCAAAAAATAGGAGAAGAAGAAGTAAATGTTGATGAAAAAGATTTCTTAGATA TTTGCGAAAAAACATGGGGACATGGAATGCCTTCAACTGAAAACTTAGAAAGATTTAATA AATTAATAGTGGAAACTGCGGAAACAATAGCAGAACCAAAAATAACAAAAATATTAAATC TTTTATCACAATATAAAAAAGTTGATATAGATGCCGTAGTTATGTATGATATACCAAAAA CAGCAAAGGGTAAAATTCTTTATGCTGCTAATGGTTCAGGAGTAGACTTAGTTAGAATAG GTGCTGAAGATACTAAGAAAATAGCAAAAAGAACTACTTTTGCTTATGGTGCTTATTATG AAATAACAAGTTTCTTAGCAGATCCAAAACAAGGATTCAAAGATGCTGTTACATTATTAG CTAACGCTAAAATAGAAAAATTCTTTGAATTAATGTTTGCTTGTATGAAAGAATCTATTA AGAATGCTGAAATACCAACTAATAACACTAAAGAAGGTTCAGGATTAAAATTAGCTGATT TCCAAAAAGTTGAAAATACAATGATAAGATTAGGTGGTGGAAGACCATTATTTGTTGCTG ATACTGCTTTAATTAATCATTTTGCAGACCAAATACCAACAACTCAAGCTGCATTATTAA CAGACGAAGTTAAAGATATGTTAAGAGAAGATTTAGTACCTTCAAAAATTTCTAAATCAA TAGCTATGACATTCCCTAATCCTTGGATTGATGATAAAAACTCTAAAGTTAAATTTAGTG TAAAACAAGGATTTATGTTCCCATCAAATGCTAAAGGCAAACCTTTTGGTATTACTGAAT ATGGTAACAGAAGAGAATATTCTAAGGTAGATACTGAAACAGAAAGAGTTGAACTTACTG TTAAGTTTGATGCTGACGTTACATTATTAAATGGTAGATACTTAGGTGTAATAGAAGACG ATTCAATAACACTTTAATTTAATTAAAGAGGTGGTTTAAAAGCCATCTCTTTTTATATTA TTTATTTTTAAAGGAGAGGATATAAAAATGGAAGAACAAATAATTTTAGAAAGACATAGA CCTACGCCATATGTAGTAAATTTTGAAAATAAAAGATATGAATGGTTAGGTGCTAAAAAT GGAGTACCTAGTACAAAAAAAGTACCAAGGGAAGTGTATGATTTTATAGCAATGGGTTCA TCAGCATTAGAAAGCGGAAAATTAGTGTTAAGCAAAAAAATGACTGATGATTTAGTAGAA GAATTAAAAGAAGAAATTCCAGATATTGAAAAATATGAAGTTAATGCCCTAACAAAAGAA GAAGTAGAAAAAATATTAAAAGGAAATTTAAAATCTATGGAAAAAGCATTTTCTGAAATA GAGGATTTTGGAACAAAACAATTCATATACAAGGTTGCTAAAGAAATAAAAATAGAAAAT TCAAATAAACAAAAAATGATTAAAGATTTAATAGGATCAGAATTATCAATAGAAGATTTA TTTGCAGAAGAATAATAAGGTGGTGAATTAATGAATAATACTACCTATGATGAAATATGG GAAACTTTTATAAGCGAATGTGGATATATTTTTAATGAAATACCTAAGAATGAAAAAATA ATAAAAAATATGATTAGGAATTCTATTGCTAAATATAATCAATTAGCTATTAAATATGGA ACCTTTAATGGCAATATTGTAAGCAATGATGAAACTGAAAAAATAAATACCAAACTTACA GATATTGAGCTACTTATATTAGCCAATATTATAGCTTATAATTTTGCAAAATTTAAATAT ACAGAATTTACAAGTTTATATAATGTTGTAGCTAAAGATTTAGGAATTAAAGATTATAAA GCTCAATGTGTCGCAAGAGAAAGAACCATTAAGGAATTTAAAAAAACATATTTATCTCTA ATTCAAGATAGTGATTTAGCTGAAAGGTTAGGTGATTAAATTGAAAACTTTTGATTATTA TGATTTTTCACCTAACGAAGCAAAAATTAATAGTGGAAAACTTATCTTTGAACAACATAT GTTAAAAGGTATTGAAGGCGAAGATGTTTTTATAAATGATGATAAGGAATCTACTAGAGT TTTAATTCAAAATACTTTAAATACAATGAATGAAAATAAAGAAGAAAGAAGTATTCAGGT AACTATGAATACAAAATTAAAAAGAGGAGATTACATTAAATATAAAGATAATAATGAAGA TGTAACTTATCTAATTATTAGCAGAGTAGATAATCATAAAGCTTATTTAAAAGCTAAAAT

GAGATATTGTAATCAAACTTTAATCTGTGAAGGACAACCATATCCCATTAAATGTATCGC AGACAACACAACTTATGGTACTAAGGGTGTCAAAGATAATAGTTATTATGAAGAAAGAGA CGATCGTCTTAAAGTATGGGTGCAAAAAAATGAGTGGACAGATAGATATAAAGAAAATAT GAGATTTATATTTGATAACAAAATTGTTTATGAAGTTACAAAAATAAATGGTGCTATATT AGATGGATTATATATTATGGAGATGATACTTAGTACATTAAAACCTGGATTAGATAAGCC TGAATTAAATATAGCTGAAAATGGAACTTTATTAGATGAGGTACAAGCAAATAATAAAGT TGAAAAACAACAAATAAATGAAGAAAAAACAGAAGAAGATGTAGAGCCTTCTATGGATTT AAATGTTAGTAAATTACATGGTGGAGAAAGTCTTAATATTAAAGTTCAACCAAAATCAGC AgAATTAAAAGTAATTGGTGAAAACATAATTACTGAAAAGGTTGAAGATGGATTATATAA GTTAACAGCTAAGGCAACTAAGAAACCTAATGTAGTTAAAGTATCTTTAATGTATAAGGA TAAGGAAATAGTTAAGAAGGGAATTCTGATTTATTAGAAGGGAGGAGATGTTTTAGTGAG TTATTATGCAGAACAATATAATAAAGATATTCCTCTTTCTAATAAAGCTACTATGAGTAT GAATATAAAAAGATATTTAGTAGATAGAATCAATAACGATCAAGACATAGTAAGATATTG CAGATATTTGACTAAAACACCTTTGTTGGAAATGGGAATTGATTATAAGGACAAAGTTGT TGAACAACCTGATTTAGATTGTGGATTATTAAAACCTTTAAGTGAACATAGAGATAAAGA TGGTAATTATACAGAATATACAGGTGTTGAAACTAGAGGGAAAATTCTTATTCCTTATGC TTTTGATAGTAATTTAATGGTAAAAGAACAATTATTTATATTTGTATCAAATAGCTATGC TGCTTTTAGTAATGTTTACAATACAGGAGAATACACATTTGATATAGTTATAACCTATAG CCCCACATACAATGTTTTAGATCCATATGGAGAGGAAAGAAGTTTAATGATAGTAGACAG AATATGCAGAATGTTTGATGATATGTACCCTGAAAAAAGTGAAGTTGCTGAAGATATAGG TGATGTTCAATTAAACATTAGAGCTATAGAGGAAAGAAAAGTTGGTACTAATGGCACTAT GGCTAGAGTAGTTAAAATTGTAGCTAAACCAATAACTAATAGGGAGTTGGTTAACCATGC TTAAAGATTATTTTGGACAAGCTGATTATATAGAAGGTATTGGAGAAATATATCCTATTA AAATAATAGAATATCAAGAATTTCAAGAATTAGCTCAAAGATATATAGCTATAGATAAAA GAGCATTGGAAATAGAATTAAAAGAAAAACTTGATATGAGTACATTAATGCTAGTTTTAA GTCAAATTAAAGCATATGAAATAGCTAATAATGATGATTATTTAGCATTAATGAATCCTG ATGATTTAGAACAATATCAAAGATTAAAAGAAGCTGAATATAAACTTAATATTGATGATT TTGTTAAAGTCTTAAAAATGGTTTTACATAAAGATGTTATTTATGATGAAGAAAATGTGA AATTCAAAATACAAGATGAGAATGTTTTATTAGACAGAGAAATAAATGAAAGTAATTTCG ATGATTTTAAAAATGTTGTAATGAGACAAAATTTATTATTTACACCTTTGTATTATGAAG ATCCTATTTTACAAAGTATCTTAATGAGTTTAAGAGAAAACAAATCACAAGAAGATGGTT CTCAATTTGATTTGGAAACAATATGTCAAGTTGTATCTAATGAAAAGAAAATACCACAAT ATGAATTAGAAAATTTTACTTATTACATGATTATTGCTGATTATACAAGATTAAGTGTTA TAGATAATCACGACTTAGGTAAACAAATACAATCAAGTGGTTTTGCTAATGAAGGTTTTA AGATACCAAGAAGAGATGAAATTATAAATCTTTATAAACATCCAGAAAGTACGATGATTG AGTTTAACTCCGAAGTTTATGACAAAGGGGACAAACTATAATTAAAAATAAATTAAATAA ATGAACAAAAGGAGGAATTTATTAATGGCAAATGCAACTCAAAAAGATTTATTACAAGGG TTAATTTCTACAACTACAGGAAATATAACTCTTATAGATCATGAAACAGGAATTCAATTA TATTCTAAAACTTTACAAGATATAGGAATAGATATAAAAGAAGATAATAAAAAATTACAA GGTGGTATAGGTAATCCGACTATATACTCATGGGGTGAAAATAGACAAATTGAAATCTCA TTAGAAGATGCTACTGCTAAATTAGACTTTACAGCAGCTAAATTCGGACAAATGCTACAA AAAGGTGAAGTTAAAGCTTTCCAAGAAGCACTTAAATATACTGCAAAGGGTGGTAAATTC ACATTATTACAAGAACCAGCTAAAGGTGTTAAACCACAAATGTTTAATATGGCAACTGGT GAGTTAATATCTGATGAACATGTTACTGTTTCAGGCAAAGAAGTAACTATATCAGAAGGT GTAACTGATGGCGATGTTTATGTAAATGGTTACGATATAACAGTAACAGATGCTTTATAT TTCGATATAGATGCTAGCAAATTTGCTAAGACATTTGAAGTCATCATATCAAATCCAGTT GTTTTAAGACAAGCTAATGGAACATTCAAAACTACATATATAAGACAATATAGATTCCCA AgTGGAAGACTAGAAGGTTCTATGAAAGATGATTTAAAATCTAAATCTGATGGTGGTAAA GTTTCTTCTAAGATAGAAATATTAAAACCTGAGAATTCCGACACAATGGGTAGAATCATG TTATTACCTTTAGAAACTTTTGGTAAATCTCAATTACAAGCTATGGGATTTTCAAAATAA AAAATATAATTGGAGGTGAAATATCCTCCTTTCTTATTAGAGTAATTATTCTTATAAGAA ATACTCTTAAATGATGATTATTGTAATAAGAAAAGTCATTAAATGAAGGATTTTATTTAA ATTAAAAAATAGAAGGAGAGGATTGTAAGTGTTAGAAAATTTAATTGCAAGTGAATATTT ATATGAGAATAAAGAATTTAAAATCAAAGTAAAAAATCTAACTGAGAGTGAAAAGTTAGA GTGGTATAAAAGAATGGAAGAAATGAAAGAAGCTAACGATGGAGAACTAAATAATGAAGA ATTACTTTACGATATGTATAGAGAATTAATTGTATGTGAAGGAGAAATGAATTTCAATGA

AATGTCTTTTGAGAATTTCTTAATATTTGTTAGTTCTGATTTTTTAACAGAAGTAGCCGA AGATATAAATAGATGTATGACTACTTTATATACAAGCATAATGAAAACTGGATTATTAAA TCAAAAGACTAAATTAGAAGAATTAGAAATGAATATGGCACTATTATTAGTTCAACAAAA ACTTAGCGATCAATTAACTTTAATACAAGAACAAACAAAACAAGAAAGATGGGTTAAATC TGAATTAAAGAGAATAAGAAATATAAAACCACATCCTGAATTAGATGAACTAAATAGAGT TAGTAGATGGGCTATATTCAAAACTAAATGGAAATTAAATAGAGAAATAAGAAGAAAAGA AAAATTACAACAAAAAGAGGGACAATAATGTTATGGATATTGATATAGATAACATAGAAG ATTTAGAAGAATTTATTGATAAATTTAATAATAGTGATTTAGAAGAAGTTTCTTTATCTG TTGGTGAAGATGTGGGAGATTTATTACACAAAAATATTAAAGAAATGGTTTATGAAGGGG CGTTTCAACCTCATTATTATGACAGAAGAGGAGAAAATGGTGGTTTTGGAGATAGAAGAA ATATAACTGTTACCCCTATTGGAAGTGGAGTAATCACGGTTGAAAATATAGCAAAGGGTA ATGAAAACGAACCATATGCAGATGCTAAAGGTGAAAGATTAGATGAAATAATTGAATATG GCGAAGATTATACATGGAATAGACAACCTAACGCCAGACCAGTGTTTGAATTTACTAAAG AAGAATTGGAAAGTGGAATATTAGAAGATATTTATAAAAGAAAATTAAAAAATATTGGTT ATGATATAGAATAAGCCATAATATTATATCCCTTTTTCTACAAGAATATACACTAGGTTT ATAAACTTAACAATTTATTAACAACTTTGTCACTTTTTCAAGACAAAAAATGTTATAATT AAGGTAAACAAGGAACAATTTAGCTAATGAAATTTCTTTAATTACATGAGTTTTACATGT TATCATATAAGTAAATATATGGAAATGAGGGAAGTGAAACTTTGTGGTTATAAAGAAATG GAATGGCAAAGCAAAATTGAAGGGGGGATATGACATGGCAACAATATCATTTATGAAAGA ATCTGTTATAGATAACAAAGCTGCTGATATTTTAATATCTCAAATGGAAAGAGCTAAGAA AATGCCAAAACATACATCTAATATAGATATAGAAGAAAACATGAGGGAAGGTAGAAGATT ATTAGCAAACTTGTTATCCAAGCGTCAGAAATAATTAATACATCAGAAGAGTTGTTGAAA GAGATACAAACAGATTTTAAATGTAATAGAGACGAAGACATAGAGCGATTTTTTAAAGTT TCATTGAAAAGAATGGAATCTAGTGATAAATCTAGGACTTATATCATTGTCGATAAAGAA GAACTTGAACAGAATGATAGAATTAAGGTTCTAGGATTTTATAGTTTAGCATCCCATAAT TTCAATGTAAAAGAAGGAACTAGCAAGAGCAAAGTAAAGAAATTAGATGGTTTTGATAAA AATGCAAAAAGTATTCAATGTTGGTTAATTGGTCAATTAGCAAAAAATGATAATTATGCT GATGAAATTACTGGTAGTGAAATAATGGAATTTGCAGAAGAATCAATACTACTATTGCAT AAACTTGCTGGTTTAAGGACTATATTAGTAGAATGCAAACATGAAGCGAAATTAATTAAA TTCTATGAAAATCATGGTTTTGAATTTTTACAAGAATCGACAGTAGATGGATTAATACAG ATGACCAAAACCGTTAATTCGTAAAGAACTTAGTATAATTGTTTACTAGGTTCTTTTTTA TTTAGAATTAATTGTTAACATTGTGTAAAAGTGGTATAATTATCTTAATAAATAAGATAA GGAGATGGATGTTGATTATGGAAACTTTAATAGATTTTGCTATAGTTATTGGTATCATAT TAATTATATGTTTTTTGATAAGTAAAAGTACAGATAAAGATATTGCTAAAAGAAAAAAAG AGGAAAAAGAAAATTATAAAAAACAAGGTTTAAACTTAGCGAATAGTTATTGGATTAAAC TATATTCTGGATTTAGAGAATATGGAATAAAAGAAGATGTTAAATTAATGTTATTTAAAG ATAGGATTATATTTAAAATAGACTATAAAGTAGAAAAAGAGATATTATTTAAAGATATAG AAGATTATAGAATTCAAACAGAGTCTCAATTAATAGAGAAAGCTTCTTTAATGAAAGTAG CTTGTTTTGGAGTTTTTGGTCTTGGTATGAAAGGAAAAGAAAAAGAATTAAATAAAGAAT ATGTCTATATAAGAGCCATTTATGAAGGTGAACAAGCTAATATTGTATTTGATAGAGGTA TAGGCGGAAATGAAGAAATTGTCCAAGAACTTCATAGATTAATAAAAGAATATAAAAATA TAAATATAGATAAAAATGTTGTAATTGAATAATATATGTACTAAGAAGCTATTTACTAGC TTCTTTTTTAATGTAATTATTTATTAATTTCTTTCTTATTATGAAATACTGGTTTTCTTT CTGACCTATCTAATTCTATTAAATCAGCTAAATCACAATTAAAATAGTCGCATAAAATAT CAATATGTTCTCTAACTATATGTTTATAGTTGTTACTGGCATAAGCACTTATTGTAGCTT GACGAATTCCTGTTGCTTTAGATAATTCCTTTTGAGTCATTCTATGTTCGGCTAATAACA TATGCAATTTCATTCTCATTAATATCACCTCAATTGTATTATAACTTATCTTAATAAAAA AATATACGTTTTTTTGAATTTTAATCCGAAAAACGTATTGACTTATACGAAAATCGGATT TATAATTAAACCATAGAAACAAATTAAAATAAAAAAATACATAATATGAGGTGGGTACAT ATGATTAATTTTAAAATATATGATGAAATATTTATAGATCCAGAGGAATTCTTTAGTAAG ACAAAGAATAAGGAACTTAATTTAGAAAGGTTCATCTATGACAATGAATCAGTTTATTTA AAACAGCATATGAACGGATATGATTTTAGATGTTTATTATTAGGCATAAAAGAAGATGTT GAAGCTGAGAAAGAATACATAACAGTTGCAAAAGTAAATGATGGAATTATGATAAGACAT AAGGTTCGAGATGAGTTTGAGGATATGGAAATCTGTAATGAGTGGATGGTGAAATGTAAT GCCTAAAAAGAAAACACATGAGGAGTTTATTAAAGAGATTAAAGATAAATATGGGAATGA GTATGAAGTTTTAGGTGAATATAAGGGTAATAAAACAAAAATATTAGTCAGACATAATTG

TAAAGAATGTAATTATCATGATTGGAATATTACACCAGATAATTTATTAAGAGGAAATGG ATGTCCAGTGTGTGGAAAAGAAATTAATAAAATAAACAATAAAGAGTTCCAAAGAATGTT TAAAGAAAAATATGGAAATGAATTCACGTTACTTGATGAATATAGGAGTAGCAGAGATAA AATGAGGATAAGGCATAATTGTGAATATTGTGGTAATCATATTAGAATTATGAGAGCTGA TTCTATACTAAAAGAACTGAAATGCAGAGTTTGCGAAGAACTAGAGTATAATGAAAAAAC TTTTAAAGAAAAACTTTCAAAGAAAGAAAGAGGCAGCTATGAATTAATAAGTGAATATAA GAATAAAAATACAAAGGTTCTGATAAGACATAAGTGTGGCTATTCCTGGAAGGTTGAACC AAGTGTAATTCTAGGCAATAGAGGATGTCCAAAATGTAACGGTGGTATTAAAAGCACACA TGAAGAATTTATACAAAAAATTCAGAATAGGTTTAAAAATTCTTATTCTATATTGGGAAC ATATGTTAATAATCATACTAAAATTAAAGTTAGGCACAATTGTAAGGAGTGTAAATTCAA TGAGTGGGAAATAAAACCATCAAGTTTGTTAAATGGGGCTGGTTGTCCTGTATGTGCCAA TCAAAAAGCGGTTCTAGGCATCAATACAATTTGGGATACAGATCGTTGGATGATTGATTT AgGTGTATCAGAAGTGGATGCTAAGAAGTATACACGTTGCAGCGGACAAAAGATTACGGT TAAATGTCCAGATTGTGGTAAGGAGAAGAAAAAACGAATAGCCAATATTTATAATGAAAT ATCAATTTCTTGTTCTTGTGGAGACGGTAAGAGCTATCCAGAAAAATTCGTATTTAATTT ACTTGAACAATTGGATGTAGAGTTCGAAACAGAATATAAACCTAGATGGATTGATAATAA AAGATATGATTTTCATATTAAAGACAATAATTGTATCATTGAAACACATGGGATGCAACA TTACGACAGTGGATTCGATAAAATTGGAGGTAGAGATTTAACTAAAGAACAACAAAATGA TAAATTCAAGAAAGAAATAGCCTTAAAGAATGATATAAAGCACTATATAGAGTTGGATTG TAGGGAGAGTAATATGGATTATATTAAGAACTCTATTCTTAATTCTGAATTAAATGATTT ATTTGATTTAAGCAATGTAGATTGGAACAAATGTGCTGAATTTGCTAATTCTAATAGGGT TAAAGAGGTATGCGAATATTGGAATACAAAGCAAGAAGATGAAACAACGACCGATTTAGA AGATAAATTTAAATTAACTCGAACAACTATAATTAAATACCTTAAAAAGGGAACTAAATT AgGGTGGTGTAATTATAATCCTAAAGAAGAAATGGAGAAATCAGGAAGAGCAATTGGTAA GAAAGTTGAAATATTCAAAGATGGACAAAGCTTAGGTGTATTTAAGTCATGTGCGGAGTT AGAAAGACAAAGTGAAAAATTATTTGGAGTTAAATTATTTAATCAATGTATTTCAGATAT TTGCAATGGTAAACAAAAACACCATAAAGGTTTCACTTTTAAATATGTAGATTAGCAAAT AgAGAGGGTTGATAAAATGCTTATAAGACTAACTAAAAATTATAACAATAAAAGAAATTC AAGAATTTATAACAAAGGTGAAGTTTTAGAGTGTGAAAATCTCTACAATGGAATACTAAT GATTAATAAGAGCAAAGATTATATATTAAGACAAGCTGTAGAAGTTGTTTGTTGTTAAGG GGTTGATAAATCATGAAGATTATTGATGTAGATAATAATGAAGCAACACAATATTTACAT GAGAAACTGGACATAGTAATTGAGAATGGATATATAAGCTTGGAAGATATAAGTATAATC TTAGATAATCTTGCCACAAGTTGTAGTGATGAAGAAAGACAAAGAATTAAGGAAGAAGAT GAAATTTATGAAGAAATGAAAAATAACTTTGGTAGATTTAATGAGGAGTGAAGAGTAATA ATAATATTACCTTTATATAGCTTGGACATAAAGTGTTTTAAATTATTGACAATACAATTA ATAATATATATAATTTAATTGTAAAGATAATTAATATCTTAGTCTCCGAAGTGTTACGGG ACGTAAATGTAGAATATAACACTATAGCGTGTTTTATCCTCCGAGAGAACGGGGATTTAA AATGTAGAATATTCTCATTAATTTTGTTTAGTCTCCGAAGTGTTACGGGACGTAAATGTA GAATATAACACTATAACCCTTTAGAGGGTTATTTTTGTATTTAGAGGTAAATTATATGTC TAAAATAAGAATATGTTCAATTAAACAAGAATTTTATGATTTATTTGATAATACTTGCGA ATTAGAGAAAAATGATAAGAGACCATGTTTAATAGTTTTGAAGTTAAAGTATAAAGGTAA GAAATATGATTTTGCAATTCCTTTTAGATCAAATATATATGGACAAGCAAAAAGGGAGGA ATACTTTCCATTACCACCAAGAAAAACAACCAAAAAAGGTAAAAAACATGGTTTACATTA TATAAAAATGTTCCCTATAATTAAAAGTTACATAAACTCATACTATTCAGAAAATAAAGA TAATGAAAATGATATAAGAAAAATAGAAAAAAACTTTAAAAAAATAGTTGATGAGGCTCA AGCATATCTTGAAAATTATGAAAATGGAACTAGGTATAATTATTGTGTTAATATAGATAA AGTTATTAAAGTAATTAATAATAACTTTATTATTCAACAAGAAGTTGCATTTACATCTAT TGAAAAAGAAAATAATAAATAGTACATATGAACTTAGTATAAATTGATTACTAAGTTCTT TTTATGTAATAATGAGAAAGAGATAGAAGTTGCAGCAACAGAATTATAATAATTAAATAT GAAAATAATGATAAAGAACTTAGATTTTAATATCTAGGTTCTTTTTTATGTAATAAAACG GGGAAAGGGGGAATTATATGTCTTTAAATCTATCATTCGGTGGAAAGTTAAATAAAGATA AgGTCTTACAACAACTTGAAAAAGATATTAAAAGTTTAAGTAAAAATTTAGGGGTTGAAT TAGAAAACGTATCTTTAAAAGATGTTGATAAAGCTACAAGTCAGATACAGAAGCAAATAA ATCAACTTAGTAAGAATATTAATTTAAACATAAGTAAAATTAGTTTAGGGAACAATGGAG CTTTACAAGATATTCAAAAACAAATTAACTCAGTACTAAAAGGTGAAAAGATAAACCTTG AAGTTAAGAATAATATAAAAGAAGTATCTAGTGAATTCGATGTTTTAGATAATAAACTTA

AAAATTCATTTTTAAAACAAGAGCAATACTTATCTCAATTAGAAAATAGACTTAACAAGA TAAAAGAAAGAAGTATTACTCAACATACCAAGAATGAAAATTATGATAATTCAAGAGATT TAAATTCTATACAAAATATACAAAATAGAATTAATGAAATCAAGGCTAAGAATATTAGAT TATCTCAAGAGGAGAAGAATTTACTTCAGCAACAACTAATTGAACTGGATGCGTACATAA AAAAAGAATCTAGTAAAAGTGATGAAATCAATAGAAGTACTAGATTTTTAACATCGCAAT TGAGAAGTTTAGAATCCTTAAAAATAAGAGTTGATAATCGTGGTGGCGGTGATAAAACTA AACAAAGTCAGTTATCCAGTGAACTTGAAAGACAGATTAACTCATATAAAAAACTAATAG AAGAAAATAAAATATTAGGTAGTGTAGAAAGACAACGTATACAAAAAACTACTAACGATA TGAAAGTTCAGACAAATGAATTAGTAAGATATCAATCTCAAATGAGTAATATCTTAGGAA GAATGAAGGATTACTTTATTGGGGGAAGTGTTATTGCTCTATCTGTCGGAACTTTAAAGG AAGCATTTAGTACAATACAAGAAGTTGATACGGCGTTAACTGATTTTCGTAAAGTTACAG ACCTAACAAAAAATGAATATTCAGAGTTTGTTGATTTTGCAAATGAAAAAGCTAAAGAGT TATCAGGTAGCACATCAGATTTTATTCAATCCACAGCAAACTTTATCCAAATGGGTTATC GAAATGTTAATGAAGCCAAAAAGTTAGCCGAAGACAGCCAAATTTATATGAATGTCGGTG AGTTAACACAAGAACAAAGTACAAAATCATTAATTACTATTTTAAAATCATTTAATTTAG AAGCTTCAAAATCAACAGAGATACTTGATAAAACCAATCAGGTAGCAAACGACTTCCCTA TCACTGTGGCTGGTTTAGCTGGAGGAATGTCTCGGGCGGGATCAGTTTTAAAGAATGCGT CCAATGATATAGATCAGTCAATAGCATTATTGACAGCAGCCAACACTTCTATACAAGATC CTATTCGTGTTTCAAATGGTTTAAAAAGTATAGCCCTCAACCTCGAAAAGGTTAAGATGA AAGCTGGTAAGGCAACACCTAAGTTACAAGATATGATGATGACATTAACAAAAGGTAGGG TAAGTTTAACAGATGTAAATGGAGAATTTAAATCAACCTATCAAATCATCAAAGATCTAG GAACAGTTTGGAATGATGGTACACTAAAAGCTAATGAAAAAGCACTTATTTTACAAGAGG TAGCTGGGAAACATCAGGCTAATGTATTGGCTTCTTTATTAAGTAATGCTAAAGATTTAG ATAAAATTTATGAGGATAGTAAAAACTCTGCTGGTTCGGCTTATTTAGAGAACCAAAGGT TCATGGATTCTATTAATGGTCGTTTAAATGCTTTGAAGGAGAATACTAAAGGGATTTTTC TTGATTTGTCAAACACTGATTTTTTAAAAGGAATAATAAGTGGGATAAATAGAGGAGTTA GTGCTTTAAGAGGATTAATTAAAGAATTTGGCGCGATTCCAAGCGTTATATCATTGGCTA GTGCCAGTATGACAACTTTAAACACGCAATTTAGAAAAATGGCTATAGATAAAAATTTGT TTGGCATTGGGAAAATTGAAGAATTATTTATTAGTAAACAATATGGATTAAACAATAAGA TAAAAGAACAAAGAGAATTAATCAAAGAAATAAAATTAACAAAAAATGCGCAGTTAGGAC TAAATAAGGCTACTCTTTCCTATGGAGTTAATTTGGGGAAAGTAAAGGGGAGTATAATTG CAACAAAAGCAGAACTTGGATTATTAAGGGTTGCAGCTACAGCAGCTCAAGCAGCTATTT CGTTTGGAGTTGGACTGGTAGTTTCATTTGCAATTGAAAAATTAGTGACTTTTATCGATA AACTCCATACAACTAGAGAAGAATTAAAACAATTAAATACGGATTTTTTTAGTGCTTCAA AACAGAGTAATGAAACAATTAGTAAAGCAGAAGAAAAATACTCAAAAATAAAAGAATTAC AAAATCAGTTAGCAAATACAAAAAATGAACAAGAAAAAATAGAATTGCAATCCGAATTAA ATAAACTTCAATCAGAGATGGTAACTCTATTGCCTCAAACTAAAAATGGATTGGACTCTC AgAATAATGCTATTGCTAATAATAATGCTCTTATCGAAGAATCTATAAGATTAAAAAAAG AAGAAAGAGAAGAATCGGCTAAAAAAATAGCACAAGAAAATAGTAAACATATGGATGTTT TTGATAAATATTTTGAAAATAAAAATAATTATCAAAATATGTCTTCAAACCCTTCTACTG GTTTAAACAAATTTCAAAAACTACTTTTAATGGGCACTGGGCATAATAGCGCTATTAAAA AAGCTGATACACAAGAGGTTAATAAAGAACTTCAAGAACAATTAGCAACGATAACAAGTA TTAAACAAGCTGTAGCTGATATGAAAGCTTCTAAAATGTCAGATATTGAAATTAAAGCAC AGTTTGGTGGAGTTGATGTTTTTGAAAAAATTAGAGAATTTGATAATTCACTTCAACAAA CTCAAACTACCGCTGATAACACTAAACCATCATTAGAAGGATTAACAAATCCACTTGATG CAATTAAAGAAAGTGCAACATCAGCAGCAGATGAATTAGATAAATTAGGCTCAAAATTCA ATAAACTTACTGGAAATATTGGCTTAGTACAATCAGCTATGTCAGAATTCCAAAAAACGG GAACATTATCAGCAAAAACAGTAGGTTCTATGTTGAATTCTGGGGATACTAGAGTTATAT CACTTTTGGCTGATAAAAATAAATTCATGGAGAATAGTATTGCTTTAGAAAAAACATTAA GAACTGAAAGTGATGCTACATATAGACAAGCAATACAAAATTCGCAAAATTTATTGCAAC AAGGGATAAATGATTTATCAAGTAAACAAGCTATTGAAACACAAGCTATGAATCATAGTG TTGGTCTATCTAATCAAGAAACTCAAGCTAAAATGAATAACTATGCCAATGATACTAACG CTCATGCAAATAGCGAAAGTACAAAGGTGACTAATGGTCAAAATGGAGCAGAGGCTAGAA CTGAGGCTTCTTCACAAGAAACCAATAATAAAGCCGAACACTATAAAACTGATAATACTA ACCACACCAATTTAGTTACAACCAAAAGTAAAGCAGCAGTAGATGGTGCTAACGCTATAC AAGGGGCTAATAGTCAAATGGTAGGTAATATGGCTGGAGCATACAAAACTGATGTTAAGA

