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Abstract

Nicholas Jarman

Multistability, synchronization, and self–organization in networks of

nonlinear systems with changing graph topologies

Complex network structures appear in myriad contexts. From social networks to computer

networks, protein and transport networks, and neuronal networks of the mammalian brain.

Furthermore, many of these networks share common structural properties. Are there general

underlying mechanisms for the emergence of certain complex network structures? One such

shared principle is the mutual relationship between structure and function in self-organising

networks. Understanding their emergence can be decomposed into two simpler problems:

(1) How does structure effect dynamics? (2) How do dynamics shape the structure? Con-

cepts of nonlinear systems theory provide a tool-set for stability analysis of dynamics on a

network. Here, stability analysis is applied to the problem of how a small change in network

structure effects the dynamics. Two connectivity configurations are considered; the directed

chain and the directed cycle, distinguished by a single edge. Their linear stability is first

analysed, followed by the stability of interconnected nonlinear oscillators. Stability analysis

reveals radical changes in the patterns of dynamics; while the directed chain possess only one

stable solution (synchronization), the directed cycle possesses multistabiliy (synchronization

and rotating waves). This capacity for multistability is realised by the extremal properties

of the directed cycle; the slow decal of oscillations in the coupling dynamics resonates with

the dynamics of the individual oscillators. This result is generalised to networks that con-

tain modular structures and heterogeneous dynamics. For applications of evolving network

structures, systems theory is limited. Computational modelling, on the other hand, provides

an efficacious alternative. A well-established driving mechanism for network structure evo-

lution is adaptive rewiring; adaptation of structure to function. Computational modelling

reveals a synergy between spatial organisation and adaptive rewiring. Emergence of modu-

lar small-world network structures are more pronounced, and evolution more robust, than
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in models without spatial organisation. However, studies employing adaptive rewiring have

been frustrated by the need to explicitly specify dynamics. To address this, explicit dynam-

ics are replaced by an abstract representation of network diffusion (information transfer or

traffic flow): shortcuts are created where traffic flow is intense, while annihilating underused

connections - like pedestrians define walkways in parks. The resulting networks are a family

of small-world structures; networks may be modular or centralised. Moreover, at the critical

point of phase transition of network structure, hierarchical structures emerge - like those

found in the brain. This thesis therefore serves to help bridge the gap between dynamical

systems theory and computational modelling in the field of complex network theory; the

importance of connectivity on dynamics, as detailed in systems theory, is captured using

graph diffusion, and applied in the context of computational modelling. This successfully

reduces the highly complex problem of complex network emergence to a much simpler one,

namely, patterns of connectivity. In doing so, the generality of this machinery provides a

more lucid understanding for the self-organisation of complex network structures across a

broad range of contexts.
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3.5 Synchronization output errors ỹj := yj − yj−2, j = 2, . . . , n, for σ = 1.5 and

different lengths of the chain. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.6 Bifurcation diagram for directed rings of FHN oscillators. The guaranteed

synchronization (analytical) region in the parameter space corresponds to

global asymptotic synchronization that is guaranteed by the semi-passivity

argument, the synchronization (numerical) is the domain where numerical

simulations found synchronization to be registered for every set of random

initial conditions. The co-existence region shows the domain of parameter

values in which both fully synchronous and rotating wave solutions have been

found. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6



3.7 Proportion of samples that yield a rotating wave solution. Red curve shows

the boundary the rotating wave is stable determined by Floquet multipliers. . 81

3.8 Proportion of samples that yield a rotating wave solution for all mode types. 82

3.9 (a) The y dynamics over one oscillation. (b) The periodic y dynamics in the

time interval [0, T ]. The z dynamics show the same type of time shifted and

periodic behavior as the y dynamics. . . . . . . . . . . . . . . . . . . . . . . . 83

3.10 Solutions of the auxiliary system characterized in the parameter domain of

period time, delay, and coupling strength (T, τ, σ) presented as a surface for

T a function of pairs (τ, σ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.11 Solutions of the auxiliary system characterized in the parameter domain of

period time and delay (T, τ) for given coupling strengths: (a) σ = 0.95. (b)

σ = 6.75. Dashed lines indicate solutions that satisfy relation . . . . . . . . . 87

3.12 Two coupled cycles and their y-dynamics; in red the y-dynamics of the first

cycle, and in green the y-dynamics of the second cycle. . . . . . . . . . . . . . 92

3.13 Modular network architecture specified by (3.61) . . . . . . . . . . . . . . . . 94

3.14 Proportion of samples yielding rotating wave solutions in the (N, σ) plane

(identical oscillators). The horizontal axis shows the values of σ; the vertical

axis shows the values of N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.15 Proportion of samples that yield solutions resembling rotating waves in the

(N, σ) plane (heterogeneous oscillators). The horizontal axis corresponds to

the values of σ, vertical axis stands for the values of N . . . . . . . . . . . . . 101

3.16 Proportion of samples that yield a nearly fully synchronous solution in the

(N, σ) plane (heterogeneous oscillators). The horizontal axis corresponds to

the values of σ; the vertical axis stands for the values of N . . . . . . . . . . 102

3.17 Proportion of samples that we were unable to relate to either of the classes

(rotating wave or fully synchronous state). The horizontal axis corresponds

to the values of σ; the vertical axis stands for the values of N . . . . . . . . . 102

4.1 Cost functions of spatial distance: linear in blue, exponential in green, loga-

rtihmic in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.2 Evolution of A, the clustering coefficient values C averaged over five runs;

and B, the average shortest path length values L averaged over five runs; for

the non–spatial and spatial rewiring processes, regular lattice on the sphere,

and random network. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7



4.3 (a) Evolution of the clustering coefficient; and (b), the average shortest path

length; for the non–spatial and spatial rewiring processes, regular lattice on

the sphere, and random network. Individual runs in blue and their average

value in red. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.4 (a) Evolution of the spatially–weighted clustering coefficient vaues Cw aver-

aged over five runs; and (b), the network wiring cost values M averaged over

five runs; for the non–spatial and spatial rewiring processes, regular lattice

on the sphere, and random network. . . . . . . . . . . . . . . . . . . . . . . . 122

4.5 (a) Evolution of the spatially–weighted clustering coefficient values Cw; and

(b), the network wiring cost values M ; for the non–spatial and spatial rewiring

processes, regular lattice on the sphere, and random network. Individual trials

in blue and averaged value of five runs in red. . . . . . . . . . . . . . . . . . . 123

4.6 Linear correlation coefficient ρ between edge betweenness and spatial distance

averaged over five runs versus rewiring iterations. (a) The full course of

rewiring; and (b), early course of rewiring. . . . . . . . . . . . . . . . . . . . . 126

4.7 Scatter plots of edge betweenness versus spatial distance. Betweenness values

presented here were obtained by uniformly randomly selecting 4% of nodes

from the combined five runs and plotting the betweenness values of all their

connections. Rows top to bottom for rewiring steps, 1, 0.75 × 103, 1.5 ×

104, 5× 104, 3× 105, columns are for different rewiring processes. . . . . . . 127

4.8 Evolution of the value of the modularity Q. (a) The average of five runs; and

(b), the individual runs; for the non–spatial and spatial rewiring processes,

regular lattice on the sphere, and random network. Individual runs in blue

and their average values in red. . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4.9 Permuted adjacency matrices that correspond to the module structure of the

non–spatial, linear, exponential, and logarithmic rewiring processes. A point

with coordinates (i′, j′) is white if i′, j′ are are the permuted indices of nodes

i, j that are connected; otherwise it is black. . . . . . . . . . . . . . . . . . . 129

4.10 Final community structure of one run of the linear rewiring process. (a) and

(b) show opposite hemispheres. Nodes are coloured according to the module

to which they belong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.11 Final community of the logarithmic rewiring process. (a) and (b) show oppo-

site hemispheres. Nodes are coloured according to the module to which they

belong. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8



4.12 Clustering coefficient, C, and average shortest path length L, for (a), (b),

non–spatial; (c), (d), linear; and (e), (f), exponential cost functions as func-

tion of edge density. Maximum, average, and minimum values from the five

independent runs are shown, along with values for the corresponding random

and regular graphs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.13 Small–worldness measure Σ averaged over five runs for non–spatial, linear,

and exponential rewiring processes as a function of edge density. . . . . . . . 135

4.14 The small-world index S as a function of decreasing random rewiring proba-

bility p: Coloured lines indicate values of heat kernel parameter τ , black line

indicates the Watts-Strogatz algorithm. . . . . . . . . . . . . . . . . . . . . . 144

4.15 As functions of decreasing p along the horizontal axis: A clustering coefficient

C; B global efficiency E, with upper right region magnified in subplot. . . . . 146

4.16 Along the vertical axis is the global efficiency E as a function of random

rewiring probability p along the horizontal axis: Coloured lines indicate values

of heat kernel parameter τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

4.17 The average modularity Q as a function of decreasing random rewiring prob-

ability p: Coloured lines indicate values of heat kernel parameter τ . . . . . . 148

4.18 Single trial. Example modular SWN. Adjacency matrices mapped to an n-

by-n grid where rows (and columns) represent vertices and white indicates

the existence of an edge. Rows and columns of adjacency matrices have been

permuted to visualise the modules, in accordance with [127]. a: (τ, p) =

(ε, 0.1); b: (τ, p) = (1, 0.3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

4.19 The average π - maximum component of PageRank vector normalised by its

mean - as a function of decreasing random rewiring probability p: Coloured

lines indicate values of heat kernel parameter τ . . . . . . . . . . . . . . . . . . 150

4.20 A bar-plot graph where the height of individual bars are the average number

of vertices having degree dv. Coloured bars indicate values of heat kernel

parameter τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

4.21 Single trial. Example centralised SWN. Adjacency matrices mapped to an

n-by-n grid where rows (and columns) represent vertices and white indicates

the existence of an edge. Rows and columns of adjacency matrices have

been permuted to visualise the modules, in accordance with [127]. a: depicts

(τ, p) = (8, 0.5667); b: depicts (τ, p) = (δ, 0.5667). . . . . . . . . . . . . . . . . 152

4.22 In the plane τ along the horizontal axis and random rewiring probability p

along the vertical axis: a: depicts the modularity index Q; b: depicts π, the

maximum component of PageRank vector normalsied by its mean value. . . . 154

9



4.23 a: For τ = 0.5. Along the horizontal axis random rewiring probability p.

Along the vertical axis are Q the modularity index (left), and π is the max-

imum component of PageRank vector normalised by its mean value (right).

b: Single trial. Example centralised SWN. Adjacency matrix mapped to

an n-by-n grid where rows (and columns) represent vertices and white in-

dicates the existence of an edge. Rows and columns of adjacency matrices

have been permuted to visualise the modules, in accordance with [127]. Pair

(p, τ) = (5, 0.522). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

4.24 For four single trials, (a)–(d), where in each the pair (p, τ) = (5, 0.522), the

adjacency matrix permuted to visualise the modules, in accordance with [127].156

10



List of Tables

4.1 Column wise τ . Row wise: a assortativity coefficient; c maximised core-

periphery statistic. Values presented are averages over trials. . . . . . . . . . 150

The following table describes the significance of various abbreviations and acronyms used

throughout the thesis. The page on which each one is defined or first used is also given.

Acronyms that are used in some places to abbreviate the names of certain white matter

structures are not in this list.

Abbreviation Meaning Page

CGS Connection Graph Stability 27

MSF Master Stability Function 27

KYP Kalman-Yacubovich-Popov 36

FHN FitzHugh-Nagumo 59

SWN Small-world network 95

WS Watts-Strogatz 95

ER Erdös-Rényi 123

11



Chapter 1

Introduction

Synchronization is the phenomenon of spontaneous order, events occurring in complete

unison. For instance, the flocking or birds of the schooling of fish are examples of how a large

number of individuals may act in unison [125]. In these cases, an advantage of synchronizing

their movement serves as a defence from predators. In other contexts, such as neuronal

networks, synchronization of neurons is a well-established mechanism for communication

and information processing [1; 107; 136]. At a larger scale, populations of neurons are

responsible for functions such as circadian rhythm [124] - our (almost) 24 hour day-night

cycle -, and synchronized pacemaker neurons are responsible for regulating heartbeats [157].

However, synchronization is not always advantageous, for example, epilepsy is the syn-

chronized discharge of a large number of neuronal cells in the brain [148; 106]. In ecology,

synchronization of species’ reproduction cycles may be undesirable for prey [86; 68].

Synchronization is not restricted to biological organisms, indeed, inanimate objects may

also exhibit synchronizing behaviour. Christiaan Huygens first reported the synchroniza-

tion of inanimate objects in 1665 where he found that two pendulum clocks coupled by a

wooden structure would always synchronize [123]. This later proved revolutionary in naval

navigation. More remarkably, highly complex inanimate objects also synchronize, such as

that of chaotic signals, for the secure transmission and receiving of radio signals [35]. More

recently, this has evolved into more sophisticated means of secure communication: image

processing, pattern recognition, etc. And in other domains, the synchronization observed in

fish schools and bird flocks can be applied to swarm technologies; large numbers of robots

working collectively.

However, many real world systems are typically not restricted to just one emergent

behaviour. When a system exhibits multiple stable states, we call it multistable. More-

over, complex systems may switch from one behaviour to another, such as switching from
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synchronised motion to periodic. The simplest form of multistabiltiy is bistability in a one-

dimensional space, i.e., two stable equilibrium points and one state variable. For example,

in the pluripotency gene regulatory network, a stable state of self-renewal is destabilised by

random fluctuations resulting in cellular differentiation [98].

Similarly to synchronization, multistability plays an important role in brain dynamics

[80]. The human brain, for instance, is well-documented to exhibit many different stable

states, from the low frequency oscillations of rest state [19; 151], the brain can switch to

uncorrelated activity [49; 48], or phase-synchronised activity [152], such as in the case of

travelling waves.

Dynamic stability, and instability, can provide flexibility in brain networks, allowing for

multiple patterns, and to switch between them. However, in the case of ambiguity, i.e., com-

petition of multible stable states, we may experience multistable perception; spontaneous

alternation between two or more perceptual states that occurs when sensory information is

ambiguous [81]. For example, the work of M. C. Escher was strongly influenced by mul-

tistable perception, in which we see a dissociation of dynamic perception from constant

sensory stimulation.

The concept of self-organisation follows naturally from synchronization and multistabil-

ity, since, in its most basic form, it is a non-equilibrium phase-transition. In other words, at

a critical threshold of instability, a systems state may move from one basin of attraction to

another. When the individuals of a complex system approach a critical threshold of instabil-

ity, a kind of “tipping point”, they reorganise themselves to accommodate those conditions.

Self-organization, or spontaneous order, can therefore be considered as the emergence of

global patterns arising from the coordination of local interactions in a dynamical system.

From an initially less ordered state, without external stimuli, random fluctuations (or per-

turbations) can trigger amplifying feedback processes that over time increase the degree of

order to a convergent state.

Self-organization occurs in many contexts, from computer science [100] and economics

[156; 89] to neuroscience [82; 27]. In neuronal systems, local cues and local interaction are

particularly important for development. In the initial stages of development of the neural

plate or tube (neuroectoderm), self-organisation is in response to the local mechanics of dif-

fusible proteins [102]. In later stages, for instance axonal growth, axonal growth cones that

guide their migration are directed, in part, by local chemical cues [7]. Following the exuber-

ant growth of axons [69], to ensure the proper formation of functional circuitry, neuronal

branches and connections are selectively pruned [99].

The result of self-organisation is a highly ordered complex global structure. The degree

of complexity in the structure, and the continued evolution and adaptation cannot be ex-
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plained by genetic “blueprints” alone [34], ongoing biophysical processes must clearly play

an important role.

The resulting patterns of activity display coordinated collective behaviour; neurons or

populations of neurons can generate through their combined activity complex patterns and

behaviour that far exceed the capacity or capability of any individual neuron. For example,

the notion of self-organising polychronous neuronal groups (PNG) [73]; reproducible time-

locked but asynchronous firing patterns for which the number of coexisting patterns vastly

exceeds the number of individual neurons. Such patterns are hypothesised to underpin

memory and learning, functions that have seemingly little or no limit.

The study of self-organization in the brain may therefore provide valuable insight into

the processes of brain growth, development, maintenance, and learning. Moreover, how

disruptions to these processes can to lead to brain diseases [90], such as schizophrenia [126],

Parkinsons [47], Alzheimers [160], autism [11; 129], epilepsy [15], dyslexia [158], among

others.

Processes in the brain - structural and functional - take place over multiple time-scales

[115]. Typically, on what we may consider a fast time-scale, in the range of milliseconds, we

observe the functional activity [21], whereas on slower time-scales, ranging anywhere from

millisecond time-scale to years, we can observe evolving structural connectivity [137; 25].

At the level of neuronal cells, electrical polarization maintained by a voltage gradient

across the cells membrane rapidly depolarises, causing a ‘spike. This is the most basic

unit of activity in nervous systems, called a neuronal action potential, and occurs in time-

scales ranging from sub-millisecond, for sodium-based action potentials, up to approximately

100 milliseconds, for calcium-based ones [10; 84]. Communication between neuronal cells

also spans multiple time-scales: electrical coupling (conductance) between neighbouring

neuronal cells via gap junctions allows for sub-millisecond communication; whereas chemical

coupling via axonal propagation of action potentials ranges from sub-millisecond to 100s of

milliseconds [3].

The time-scale of activity is also affected by the spatial-scale that it spans. At the scale

of individual neurons, the time-scale for propagation of an action potential depends upon

several spatial factors. For example, the extent to which an axon is myelinated (a layer of

insulating lipids); the greater the thickness of myelination, the greater the conduction veloc-

ity [155; 122]. At greater spatial scales, interactions between large populations of neurons

may be characterized by frequency specific brain functional networks ranging over classi-

cal frequency bands δ, θ, α, β, and γ [76; 29]. For example, task-related activity shows

that over long-ranges, functional correlations exist predominantly between high-frequency

activity, compared to resting state in which short-range local functional correlations are pre-
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dominantly high-frequency and low-frequency functional correlations dominate long-ranges

[9].

Over all time- and spatial-scales, patterns of activity are shown to reflect the underlying

structural (anatomical) connectivity on slow time-scales, however, significantly less so on

faster time-scales [66]. Studies that have explored the relationship between function and

structure have found that, across all time- and spatial-scales, the relationship between ac-

tivity and structure typically obeys the (Hebbs) postulate, that “what fires together wires

together” [64]. This simple notion prescribes how structural connectivity changes in adap-

tation to the activity patterns, and that typically, pairwise correlations in activity promotes

structural connections.

This influence of activity on structure is observed over multiple time-scales [161]; on a

relatively fast time-scale, synaptic plasticity takes place, where the strengths of connections

change depending on growth and retraction of synaptic boutons. On a slower time-scale,

there is rewiring of brain connectivity through growth of axonal spines and somatic dendrites

[31; 77]. On the slowest time-scale, there is axonal rewiring; operating over the lifespan, and

varying over different phases, e.g., exuberance of connections in early development [69], and

pruning in the maturing brain [30].

It is clear that, on the one hand, structural connectivity is key to understanding activity

in neural systems, but on the other, understanding activity patterns is key to answering the

question of how complex patterns of connectivity emerge. How these two distant processes,

yet operating in seeming harmony, give rise to self-organization remains relatively unknown.

This problem of self-organisation of complex network structures is not limited to the

mammalian brain, in fact, complex network structures are found across myriad contexts.

From social networks to computer networks, protein and transport networks [56; 112; 17].

Moreover, despite having no connection to one another, many of these different networks

share the same structural properties. This raises the question: Are there general underlying

mechanisms for the emergence of certain complex network structures?

To answer such a complex problem, it often helps to decompose the problem into smaller,

simpler ones. Here, the complex problem of self-organisation is first rephrased as the mu-

tual interplay between the dynamics of structure and function [128]. Then this problem is

decomposed into two simpler ones: the effects network structure has on dynamics; and the

effects dynamics have on evolving network structures. These two problems typically require

very different tools. Determining dynamics from the underlying connectivity is a common

problem in the field of mathematics and control theory, whereas more complex problems

such as network evolution cannot yet be solved with as much rigour, instead, computational

models may serve to help shed greater insight.
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Mathematical formalizations in the context of brain dynamics are particularly useful as

they allow verifiable connections to be made between different scales and different levels of

description of configurations of neural models [38], and ultimately unifying over such scales

concepts and principles.

For instance, the dynamics of individual neurons can be described by sets of coupled

ordinary differential equations (ODE). One such example is the Hodgkin-Huxley model

of the squid giant axon, where state variables represent cell membrane potential, firing

rate, and ion channel conductances [65]. This model is considered a “bottom-up” model

of neural dynamics since the coupled ODE’s describe observed physical processes. On the

other hand, an example of a “top-down” model of neural dynamics is the Izhikevich neuron

model [71; 70], which derives its differential equations from mathematical objects, such as

attractors. Attractors can capture characteristics of neuronal activity, such as steady state,

periodic, or chaotic behaviour, for example, a regular firing neuron can be described by a

limit cycle attractor. In the Izhikevich model, a saddle-node bifurcation on a limit cycle

represents the rest potential and bifurcating generation of an action potential.

An important tool for assessing systems on larger spatial-scales, graph theory enables

us to model certain properties of structural and functional networks present in the brain by

reducing regions, populations of, or individual neurons to vertices of a network, and struc-

tural or functional connections to weighted and directed edges connecting them [9]. Neural

systems may therefore be characterised by interconnecting such ODEs describing the indi-

vidual dynamcis of neurons, or populations of. Commonly, in networks with dynamic units,

it is of interest to understand how synchronization can be determined from the connectivity

structure and coupling strength. Many methods exist that aim to determine the minimum

sufficient coupling strength for global synchronization [117; 159; 14; 121], and this has been

extended to cases of partial synchronization in networks [140; 120], and to networks with

coupling delays [140; 143], and recently, to networks with heterogeneous dynamics [114].

By applying concepts learnt from graph-theoretic models to the brain, new light may

be shed on the basic principles underlying adaptive cognitive processes: schizophrenia has

been understood as a cognitive disorder based on the breakdown of large-scale cortico-

cerebellar-thalamo-cortical circuits [126], or more generally, the inability to integrate neu-

ronal processes in different brain regions, a syndrome termed dysconnectivity [150]. Epilepsy

is understood to arise from higher than the normal mean node degrees [118], and autism is

thought to arises from accentuated segregation and attenuated integration of connectivity

[129].

In this thesis, stability analysis is applied to the problem of how a small change in

network structure effects the dynamics. In particular, two basic and extreme topologies,
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which any network will contain as a subgraph, and that differ by only a single edge. For a

system with n states Ai, i = 1, . . . , n: the directed chain such that A1 → A2 → . . . → An;

and the directed cycle (simple cycle), such that A1 → A2 → . . .→ An → A1.

In contrast to the simple stability properties of the directed chain, the eigenspectrum

of the simple cycle reveals that it possesses extremal properties. Namely, the simple cycle

with the equal rate constants has the slowest decay of the oscillations among all first order

kinetic systems with the same number of states.

Considering the unique extremal properties of the simple cycle in a linear system, this

sensitivity to perturbations is investigated for nonlinear systems connected in a simple cycle

configuration. FitzHugh-Nagumo (FHN) nonlinear oscillators are interconnected with equal

coupling strengths to form a simple cycle. In addition to the fully synchronous state, the

simple cycle of FHN oscillators exhibits a second stable solution. The small perturbations

of the simple cycle do not always decay; the slow oscillatory relaxation of the simple cycle

resonates with the nonlinearity of the individual dynamics and generates a regime in which

the perturbations persist. In particular, the individual oscillators are phase-locked produc-

ing a rotating wave solution. The simple cycle of nonlinear oscillators therefore possesses

multistability. In contrast, nonlinear oscillators coupled in the directed chain configuration

exhibit only one stable solution, namely, synchronization. This profound difference in the

stability diagram of the two systems arises as the result of a small change in the underlying

connectivity - the addition/removal of a single edge for any arbitrarily large (finite) number

of coupled oscillators.

This result is then generalised to the case of more complex network structures - modular

networks. In particular, densely interconnected modules of FHN oscillators are connected

via feedforward connections forming a directed cycle of modules. The multistability found

in the simple cycle is preserved, furthermore, phase-locked rotating waves solutions are

more prominent, i.e., they are stable for a larger domain of coupling strength parameter

as compared to the case of the simple cycle. This result is further generalised to hetero-

geneous dynamics, i.e. individual FHN oscillators are non-identical in their parameters.

The modular structure serves to minimise the destabilising effects of heterogeneity in the

dynamics allowing for an overall global stability. The message is clear - connectivity is key

to determining patterns of dynamics.

For applications of evolving network structures, systems theory is limited. Computa-

tional modelling, on the other hand, provides an efficacious alternative. By taking arrays of

differential equations describing neural activity as vertices, and coupling functions as con-

nections, or graph edges, computational modelling allows one to observe emerging complex

patterns of dynamics far beyond such tractable solutions as synchronization, or periodic
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solutions. The resulting data obtained from such simulations can then be analysed using a

large array of tools, for example, statistical or signal analyses. In addition, computational

modelling gives one the ability to manipulate certain components not feasible in in vivo and

in vitro experiment. And furthermore, provide insight into processes that operate on large

time-scales that are not possible to examine directly, and even allow predictions of patterns

of functional activity to be made [25].

To address the problem of how dynamics shape structure, a rule for structural changes

dependent on function must be established. Such a rule, for which network structure adapts

to patterns of synchronization, known as adaptive rewiring, was first proposed over a decade

ago by [59]. Since then, there have been several studies that have aimed to deepen the

understanding of network evolution in response to patterns of dynamics [58; 59; 91; 150; 127].

However, missing from these studies was any notion of spatial organisation, a potentially

significant factor as many real-world networks are spatially organised.

Here, spatial bias is introduced in the mechanism of adaptive rewiring. It is found that

a clear synergy between spatial organisation and adaptive rewiring exist. In particular, spa-

tially biased adaptive rewiring gives rise to more pronounced modular small-world structures

as compared to network evolution without spatial organisation. Moreover, self-organisation

in a spatially organised system is more robust to parameter changes that would otherwise

(in the case of no spatial organisation) destabilise the emergence of complex network struc-

tures. In particular, previous reports of network vulnerability to low connectivity densities

show how below a certain threshold networks fail to self-organise [150].

However, studies of adaptive rewiring have been frustrated by the need to explicitly

specify dynamics [58; 59; 91; 150; 127; 75]. As we will show, the stability of solutions

can be determined from the underlying connectivity. Therefore, taking connectivity as the

driving force behind complex network emergence, we may remove the need to define explicit

dynamics. To an extent, this renders the influence of dynamics on structural evolution as

essentially impotent.

The graph heat kernel describes diffusion on graphs [92] (information transfer or traffic

flow), and we propose it as a generic model of dynamics. Adaptive rewiring in response

to graph diffusion is effectuated by creating shortcuts where traffic flow is intense, while

annihilating underused connections - like pedestrians define walkways in parks. One ad-

vantage of utilising graph diffusion is that it is well-formulated, it can therefore bridge the

gap between mathematical formalisation and computational analysis. Moreover, is a highly

simplified, and tractable description of ongoing processes on the graph. Furthermore, it is

easily parametrised; the diffusion rate biases between local and global connectivity struc-

tures, where the later approaches a process of preferential attachment.

18



We therefore propose a highly abstract model of network evolution that is a blend of

mathematical formalisation and computational modelling. We are able to show that a very

simple process, graph diffusion, can explain the ubiquitous and robust emergence of a wide

class of small-world networks, including modular, centralised, and hierarchical.

In Chapter 2 we introduce some basic concepts of nonlinear systems theory and review

methods for stability analysis. In particular, we briefly introduce the Connection Graph

Stability method [14], the Wu-Chua conjecture [159], the master stability function [117], the

semi-passivity argument [121], and for periodic solutions the Floquet multipliers [88; 83].

In Chapter 3 we apply some of these methods, complimented by numerical simulations.

Stability methods are applied to two different network coupling configurations, along with

numerical simulations, to study the effects on dynamics by a small change in connectivity.

In particular, we consider how a small change - the addition of a single edge - in network

structure has dramatic effects on patterns of dynamics. Following this, the result is extended

to a more general case of network structure, and numerical simulations support the result

for the case of non-identical oscillators.

In Chapter 4 the problem of network evolution in response to dynamics is investigated

using computational modelling. A simple model of adaptive rewiring in a spatially organised

system reveals that the importance of connectivity structure extends to the spatial domain.

Following this, a more general model of network self-organisation is proposed, one in which

explicit dynamics are replaced by graph diffusion.

In Chapter 5 the thesis is concluded, including also future directions of research.
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Chapter 2

Dynamical Systems Theory

2.1 Preliminaries: Nonlinear systems theory

The main objective of this chapter is to introduce the reader to the methods of stability

analysis of nonlinear dynamical systems. However, first the reader must be familiar with

some basic concepts in nonlinear systems theory. Hithereto, the first part of this chapter is

dedicated to reviewing those concepts central to stability analysis. Much of what is presented

can be found in [28; 83; 50; 40], and the reader is directed to these texts for a more in depth

introduction to the topic.

The concepts introduced are primarily restricted to the class of time-invariant nonlinear

systems. In particular, those that are linear with respect to input, also known as control-

affine systems. Control-affine systems are typically linear in the actions but nonlinear with

respect to the state and form an important family of nonlinear systems. Such a system may

be expressed in the compact vector form

Σ =

 dx
dt = f(x) + g(x)u

y = h(x)
(2.1)

where x ∈ X ⊂ Rn are the state variables, u ∈ U ⊂ Rm is the set of all admissible inputs,

and y ∈ Y ⊂ Rm is the output controlled by the function h. Functions f : Rn → Rn and

g : Rn → Rn×m are assumed to be continuously differentiable, denoted by C∞, vector fields,

and h assumed to be a C∞ mapping.

Naturally arising as a solution set to such a system are manifolds. A manifold is a

topological space with the property that it is locally Euclidean. Denote a manifold M ⊂ Rn,

then for any point p ∈ M , a neighbourhood U of p is homeomorphic to a Euclidean space.

Two topological spaces are diffeomorphic if there exists a continuous function mapping
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from one to the other, and it admits an inverse that is also continuous. Denote a continuous

mapping as ψ and its inverse ψ−1, then one can define a coordinate chart in a neighbourhood

U of p as the ordered pair (U,ψ). This allows for a manifold M to be expressed in terms of

Euclidean coordinates. On a smooth manifold the mapping ψ must be a diffeomorphism.

Considering the system Σ (2.1) having multiple state variables, a vector map associates

a particular point x = (x1, . . . , xn) on a manifold M ⊂ Rn with the vector in Rm.

f(x1, . . . , xn) =


f1(x1, . . . , xn)

f2(x1, . . . , xn)
...

fm(x1, . . . , xn)

 . (2.2)

A vector field is an assignment of a vector to each point in a subset of space, i.e. a vector

field f(x) on Rn is the mapping which assigns to every point p ∈ M a tangent vector f(p)

in the tangent space to M . A vector mapping, f , is a global diffeomorphism if for all x there

exists an inverse f−1 and both f and f−1 are C∞ functions.

An important object, the Jacobian matrix generalises the gradient of a scalar valued

function. For a multivariate function f , it is the matrix of partial derivatives, defined as

follows.

Definition 2.1.1. (Jacobian matrix) Let f : Rn → Rm with input vector x ∈ Rn and

output vector f(x) ∈ Rm. The Jacobian matrix J of f is the m × n matrix of partial

derivatives:

J =

[
∂f

∂x1
· · · ∂f

∂xn

]
=


∂f1
∂x1

· · · ∂f1
∂x1

...
. . .

...

∂fm
∂x1

· · · ∂fm
∂xn

 . (2.3)

If n = m then the Jacobian is a square matrix, and thus one can take the determinant.

The determinant of the Jacobian gives information about the local behaviour of the function

f evaluated at the point x0. The determinant of the Jacobian plays an important role in

the remainder of this section, as it provides an important condition on the existence of a

continuous inverse, otherwise known as the Inverse Function theorem.

The Implicit Function theorem and Inverse Function theorem allow one to find partial

derivatives of an implicitly defined multivariable function. The Implicit Function theorem

provides conditions under which a relationship of the form f(x, y) = 0 can be rewritten as

a function y = g(x) locally, where g(x) is an unknown, and hence implicit function. The

purpose of the Implicit Function theorem is, therefore, that while we may not know the

form of the function y = g(x), the theorem asserts its existence, providing that for every x

we have a unique y such that f(x, y) = 0 is satisfied. In particular, the Implicit Function
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theorem is central to the existence of a function we will refer to later as the zero dynamics.

The purpose of the Inverse Function Theorem is that it is central to the result of coordinate

transformations, discussed later in this section. Moreover, it can be used to imply the

Implicit Function theorem.

Theorem 2.1.1 (Implicit Function Theorem). Let A be an open set of Rn+m and let f :

A→ Rn. Let (x0, y0) be a point in A such that f(x0, y0) = (0, 0). Then, if the Jacobian of

f evaluated at (x0, y0) is nonsingular, i.e. the matrix

∂F

∂y
=


∂f1
∂y1

· · · ∂f1
∂yn

...
. . .

...

∂fn
∂y1

· · · ∂fn
∂yn

 (2.4)

has nonzero determinant, then there exists an open neighbourhood A0 ⊂ A and a unique

mapping g : Rn → Rm such that

f(x, g(x)) = 0 (2.5)

for all x ∈ A0.

The Inverse Function function theorem is deduced from the Implicit Function theorem

and provides sufficient conditions which guarantee the existence of a locally-defined function

f−1 for the function f .

Theorem 2.1.2 (Inverse Function Theorem). Let f : Rn → Rn be a continuously differen-

tiable map on the open set A ∈ Rn and let x0 ∈ A be a point in A. Suppose the Jacobian

of f evaluated at x0 is nonsingular. Then there exists an open set B ∈ Rn that contains

the point f(x0), i.e. f is a continuous mapping from A to B, and there exists a continuous

inverse f−1 from B to A, f : A→ B, and f−1 : B → A.

One immediate consequence of Inverse and Implicit function theorems is the local anal-

ysis of stability. For instance, the Hartman-Grobman theorem asserts that the behaviour of

a dynamical system near a hyperbolic equilibrium point - a fixed point without any center

manifold - is qualitatively the same as the behaviour of its linearisation near this equilibrium

point, provided that no eigenvalue of the linearisation has its real part equal to zero. Essen-

tially, the theorem deals with the local behaviour of dynamical systems in the neighbourhood

of a hyperbolic equilibrium point and shows the effectiveness of linearisation.

Theorem 2.1.3 (Hartman-Grobman Theorem). Let f : Rn → Rn be a smooth map of the

dynamical system

ẋ = f(x). (2.6)
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Suppose the map has a hyperbolic equilibrium point x0. That is, f(x0) = 0 and the Jaco-

bian matrix of f at x0 has no eigenvalue with real part equal to zero. Then there exists

a neighbourhood U of the equilibrium point x0 and a homeomorphism h : U → Rn such

that h(x0) = 0 and such that in the neighbourhood U the flow of ẋ = f(x) is topologically

conjugate by a smooth map X = h(x) to the flow of its linearisation Ẋ = AX.

The Lie Derivative

Possibly the most significant result we describe in this chapter is the Lie derivative. The

space of vector fields with respect to a Lie derivative is called a Lie algebra and appears

in myriad contexts, playing important roles in harmonic analysis, algebraic topology and

geometry, combinatorics, number theory, finite group theory, and of course, differential

geometry. For a full introduction to Lie derivatives, in addition to [40] one should also

consider [50; 41]. In particular, here we review the notes by [62].

The role of the Lie derivative is to determine relationships between the motion of points

along a vector field with respect to another vector field. Every vector field on a manifold

defines infinitesimal motion. If the vector field is differentiable, then it is an infinitesimal

diffeomorphism. A key property of the Lie derivative is that it is coordinate invariant, and

so it is defined on any abstract differentiable manifold.

Consider a smooth vector field v on the manifold M , and let f : M → R define a smooth

real-valued function on M . For a point p ∈M the vector field v for a given function f takes

the value v[f ](p) and the collection of such maps for points p ∈M defines the tangent space

TMp.

In a local neighbourhood of the point p, the coordinates are denoted xµ(p) for µ =

1, . . . , n, and the local neighbourhood of the vector space denoted vµ. The components of

vµ in the coordinate system xµ are given by

v[f ] = vµ
∂

∂xµ
∈ TM (2.7)

for the vector field v without reference to a function in the tangent space TM .

Given two vector fields v and w it is possible to define a new vector field using the Lie

bracket. The Lie bracket is the binary operation (product) on v: [v, v] ≡ v × v → v that

satisfies the following properties for smooth vector fields v1, v2, v3:

1. The operator is skew commutative: [v1, v2] = −[v2, v1].

2. The operator is bilinear over R : [αv1 + βv2, v3] = α[v1, v3] + β[v2, v3], where α, β ∈ R.

3. The operator satisfies the Jacobi Identity: [v1, [v2, v3]] + [v2, [v3, v1]] + [v3, [v1, v2]] = 0.
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In terms of the components, for local coordinates xµ we have

[v1, v2]µ = vν1
∂vµ2
∂xν
− vν2

∂vµ1
∂xν

. (2.8)

Thus, using the Lie bracket, one yields that[
∂

∂xmu
,

∂

∂xnu

]
= 0. (2.9)

The vector fields ∂/∂xµ associated to the coordinates xµ all commute with each other.

For any smooth vector field v on M there exists a smooth map σ : R → M called an

integral curve. The integral curve of a vector field v is simply the path taken if one were

place a particle in the vector field; the derivative of the curve with respect to time is precisely

the value of the vector field at that point. A particular integral curve is selected once an

initial point p ∈M is chosen, and maps to a point σt(p) = m for some time t ∈ R.

A flow, on the other hand, is the smooth map σt : R ×M → M . The flow gives no

additional information than what an integral curve tells us, but provides a different way of

looking at the same thing. For a given time t ∈ R the flow is the set of all points σt(p) for

all p ∈M , i.e., for a particular time t, the flow maps each p to σt(p). Denote for time t ∈ R

and point p ∈M , then the flow σt(p) on the vector field v is defined as

σ̇t = v(σt(p)). (2.10)

Since σt is a map M → M then the components of σµt with respect to the local coordi-

nates xµ are such that the Taylor expansion for t small

σµt (p) = xµ(p) + tvµ(p) +O(t2). (2.11)

The Lie derivative of function f on a vector field v is the amount of change of f with

respect to v. Considering the change of f along the flow σt, one can consider the difference

f(σt(p)) − f(p), i.e., the difference between f at the point p and f at the translated point

σt(p). This difference gives a measure of the change of f in the direction of the flow of v.

The Lie derivative of the function f : M → R is denoted Lvf and can be seen as the

infinitesimal

Lvf(p) = lim
t→0

1

t
[f(σt(p))− f(p)] (2.12)

for any point p ∈M and map σt the flow of v.

Using the Taylor expansion of σt at the point p one can see then that the function f at

the point point σt(p) may be expressed similarly

f(σt(p)) = f(p) + tvµ
∂f

∂xµ
(p) +O(t2). (2.13)
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Therefore, in the local coordinate system xµ we have

Lvf = vµ
∂f

∂xµ
. (2.14)

Determining the Lie derivative of a vector field is less simple than over the flow. Consider

the vector field w. To calculate the Lie derivative of w with respect to a vector field v one

cannot simply repeat the above in taking the difference. This is because for the flow σt on

v, the vectors w(σt(p)) and w(p) are in different tangent spaces: w(σt(p)) ∈ TMσt(p) and

w(p) ∈ TMp. Hence, it is not possible to simply subtract one from the other. Instead, one

must map w(σt(p)) ∈ TMσt(p) into a vector in the tangent space TMp. This can be achieved

using an induced map.

Let Φ : M → M be a map from M onto itself. For a given point p ∈ M the induced

map may be written

DpΦ : TMp → TMΦ(p). (2.15)

Now, in order to map w(σt(p)) ∈ TMσt(p) into a vector in the tangent space TMp, define

the induced map

Dσt(p)σ−t : TMσt(p) → TMp (2.16)

that is, going in the reverse along the flow σt from initial point σt(p). The Lie derivative

may therefore be defined for vector field w on vector field v as

Lvw(p) = lim
t→0

1

t

[
Dσt(p)σ−t(w)− w(p)

]
(2.17)

for any point p ∈M and flow σt of vector field v.

In the coordinates of the vector field

Dσt(p)σ−t(w)[f ] = wν(σt(p))
∂σµ−t
∂xν

(σt(p))
∂f

∂xµ
(p). (2.18)

Taking the Taylor expansion of wν(σt(p)) and
∂σµ−t
∂xν , and recalling that the coordinate

components commute (
[
∂
∂xµ ,

∂
∂xν

]
), then

wν(σt(p)) = wν(p) + tvρ
∂wν

∂xρ
(p) +O(t2)

∂σµ−t
∂xν

= δµν − t
∂vµ

∂xν
(p) +O(t2).

Therefore, the components of the Lie derivative Lvw are given by

(Lvw)µ = vν
∂wµ

∂xν
− wν ∂v

µ

∂xν
(2.19)

which are simply the local coordinate components of the commutator [v, w], the Lie bracket

of v and w.
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The expansion of (2.19) for components x = (x1, . . . , xn) for 1 ≤ µ, ν ≤ n,

Lvw(p) = [v, w](p) =


∂w1

∂x1
· · · ∂w1

∂xn
...

. . .
...

∂wn

∂x1
· · · ∂wn

∂xn




v1

...

vn

−


∂v1

∂x1
· · · ∂v1

∂xn
...

. . .
...

∂vn

∂x1
· · · ∂vn

∂xn




w1

...

wn

 .

(2.20)

Thus,

Lvw = [v, w]. (2.21)

For repeated Lie Derivatives, we may use the following notation: Lv(Lvw(x)) = L2
vw(x).

As the purpose of Lie derivatives is to be defined on abstract manifolds, it may be helpful

for the reader to understand them in a physical context. A very intuitive description of the

Lie derivative is provided by [50] in the context of fluid flow, for which Lie derivatives arise

naturally, and recall that description here:

Consider a stationary fluid flow σt(p) in some volume. A function f is said to be dragged

along by the fluid flow, or Lie derived by the vector field v that generates the flow, if the

value of f is constant on a fluid element, that is, constant along a fluid trajectory p(t) for a

point p ∈M at time t:
d

dt
f [p(t)] = v · 5f = 0. (2.22)

The Lie derivative of a function f is therefore the directional derivative of f along v, defined

by

Lvf = v · 5f. (2.23)

In other words, it is the rate of change of f measured by a comoving observer. Consider

next a vector that joins two nearby fluid elements, two points p1(t) and p2(t) that move

with the fluid: Call the connecting vector λw = p2(t)−p1(t). Then λw is said to be dragged

along by the fluid flow. A vector field w is Lie derived by v if, for small λ, λw is dragged

along by the fluid flow. This requires that the equation

p1(t) + λw(p1(t)) = p2(t) (2.24)

be satisfied to the order O(λ). Taking the derivative of both sides of the equation with

respect to t at t = 0, we have

σt(p1) + λv · 5w(p1) = σt(p2) = v[p1 + λw(p1)]

= σt(p1) + λw · 5σt(p1) +O(λ2)

which holds if and only if

[v, w] ≡ v · 5w − w · 5v = 0. (2.25)
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The commutator [v, w] is the Lie derivative of w with respect to v, written

Lvw = [v, w]. (2.26)

Then w is Lie-derived by v when Lvw = 0. The Lie derivative Lvw compares the change

in the vector field w in the direction of v to the change that would occur if w were dragged

along by the flow generated by v.

Definition 2.1.2. (Relative degree) A control affine nonlinear system Σ (2.1) is said to

have relative degree r at the point x0 if for smooth vector fields f, g and smooth map h the

following are satisfied:

1. LgL
k
fh(x) = 0 for all x in a neighbourhood of x0 and all k < r − 1.

2. LgL
r−1
f h(x0) 6= 0

where Lkfh(x) is the k-th order Lie derivative of h along f .

In other words, where y = h(x) is the output, the relative degree can be seen to be

ẏ =
dh

dt
=
∂h

∂x

∂x

∂t
= Lfh(x)

ÿ = L2
fh(x)

...

dr−1y

dtr−1
= Lr−1

f h(x)

dry

dtr
= Lrfh(x) + LgLf

r−1h(x)u.

As with linear systems, the relative degree can be understood to be the lowest order

derivative of y that is explicitly dependent on u, i.e. the number of times the output

function must be differentiated so that the input appears explicitly.

Definition 2.1.3. (Zero-output dynamics) Consider the system Σ (2.1) with the restriction

that y = 0, then

ẋ = f(x) + g(x)u

0 = h(x)

are called the zero-output dynamics.

Distributions and Frobenius Theorem

Using the Lie derivative, we may now review a central theorem for nonlinear systems theory,

the Frobenius theorem, which relates integrability to foliation. Using the concept of foliation,
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a geometric tool for understanding manifolds, the Frobenius theorem asserts conditions for

integrability of a manifold. To state the theorem, both concepts of integrability and foliations

must be clearly understood. For a more comprehensive description, one should consider [43],

as much of the following can be found there.

Every smooth manifold M has a tangent bundle TM , which consists of the tangent

space TMp at all points p ∈M . The tangent bundle is the collection of all tangent vectors

TM = {(p, v) : p ∈ M,v ∈ TMp}. A distribution is a subset of the tangent bundle

of a manifold satisfying certain properties. Distributions are used to build up notions of

integrability, and specifically of a foliation of a manifold.

If the vector field v is non-vanishing, i.e., zero nowhere, then the set of all integral curves

are connected, immersed 1-dimensional submanifold of M . For those unfamiliar, the two

following definitions should make clear.

Definition 2.1.4. A topological space X is pathwise-connected if and only if for every two

points x, y ∈ X, there is a continuous function f from [0, 1] in X such that f(0) = x and

f(1) = y.

Roughly speaking, a space X is pathwise-connected if, for every two points in X, there

is a path connecting them.

Definition 2.1.5. An immersion is a differentiable function between differentiable man-

ifolds whose derivative is everywhere injective. Explicitly, f : M → N is an immersion

if

Dfp : TMp 7→ TNf(p). (2.27)

The introduction of distributions and foliations are a generalisation to connected, im-

mersed m-dimensional submanifolds, i.e., they allow for integration on m-dimensional ab-

stract manifold.

Let v1, . . . , vm be a set of vector fields on the manifoldM , and let ∆p = span{v1(p), . . . , vm(p)}

be the subspace TMp, the tangent space of a point p ∈M .

Definition 2.1.6. (Distribution) A m-dimensional distribution on M is the assignment

of an m-dimensional subspace ∆p ⊂ TMp at each point p ∈ M : it is the span set of m

linearly independent (smooth) vector fields such that ∆p = span{v1(p), . . . , vm(p)}. The

m-dimensional distribution ∆ is the collection of all ∆p for all p ∈ M . The set of smooth

vector fields {v1, . . . , vr} is called a local basis of ∆.

In other words, a distribution ∆ on M is a map which assigns to each point p ∈ M , a

subspace of the tangent space to M at p.
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Definition 2.1.7. An immersed submanifold S is an integral manifold of the distribution

∆ if TSp = ∆p for all p ∈ S.

Immersed submanifolds are important in that the distribution can be said to be integrable

if each point of M is an integral manifold of ∆. However, there are distributions for which

no integrable manifold exists. To ensure that a manifold is integrable, one must consider

the previously discussed Lie bracket, in particular, the Lie bracket of the two vector fields

v, w is [v, w] = vw−wv. Then, for a given distribution ∆, if any two vector fields v, w with

vp, wp ∈ ∆p for all p in some neighbourhood U , then if [vp, wp] ∈ ∆p is satisfied, then the

manifold is integrable. In other words, the distribution ∆ is involutive; the distribution ∆

is its own inverse.

Definition 2.1.8. (Involutive Distribution) A distribution ∆ on M is involutive if for every

point p ∈ M there exists a local basis {v1, . . . , vm} of the distribution in a neighbourhood

of p such that for all 1 ≤ i, j ≤ m, [vi, vj ] (the Lie bracket of the two vector fields) is in the

span of {v1, . . . , vm}. That is, if [vi, vj ] is a linear combination of {v1, . . . , vm}. Normally,

this is written as [∆,∆] ∈ ∆.

Theorem 2.1.1. (Frobenius Theorem) A nonsingular distribution is completely integrable

if and only if it is involutive.

The Frobenius Theorem gives necessary and sufficient conditions for the existence of a

foliation by maximal integral manifolds each of whose tangent bundles are spanned by a

given family of vector fields (satisfying the integrability condition) in much the same way

as an integral curve may be assigned to a single vector field.

Coordinate transformation: Normal form

Now, using the definition of relative degree and the Frobenius theorem, in particular, a

system Σ is said to have relative degree {1, . . . , 1} at x = 0 if its Lie derivative Lgh(0)

is nonsingular, and that a nonsingular distribution is completely integrable if and only if

it is involutive. Then, if the distribution spanned by the vector fields g1(x), . . . , gm(x) is

involutive, then it is possible to find n−m real valued functions z1(x), . . . , zn−m(x), defined

locally near, and vanishing at, x = 0. This result, along with the m components of the

output function y = h(x) provide a new set of coordinates commonly known as the normal

form [28] (or Isidori’s normal form).
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z

 = Φ(x) =



h(x)

Lfh(x)
...

Lr−1
f h(x)

ϕ1(x)
...

ϕn−r(x)


. (2.28)

The ϕi(x) functions are obtained as the solution to the partial differential equation:

Lgϕ(x) = 0. (2.29)

As long as the relative degree is well defined, i.e. no singular points, then the existence

of ϕi(x) satisfying this equation is guaranteed. This coordinate transformation produces

the Byrnes-Isidori normal form:

y1 = h(x)

ẏ1 = y2

ẏ2 = y3

...

ẏr−1 = yr

ẏr = a(z, y) + b(z, y)u

ż1 = q1(z, y)

...

żn−r = qn−r(z, y)

where a =
[
Lrfh(x)

]
x=Φ−1(z,y)

, b =
[
LgL

r−1
f h(x)

]
x

= Φ−1(z, y), and qi = [LfΦi(x)]x=Φ−1(z,y).

In compact vector form, these new coordinates (z, y)

ż = q(z, y)

ẏ = a(z, y) + b(z, y)u

where the matrix a(z, y) is nonsingular for all (z, y) near (0, 0).

Restricting the output function y = 0 yields the zero dynamics of the system. The

existence of the zero dynamics are guaranteed locally if the system has relative degree

{1, . . . , 1} at x = 0. In the normal form, these zero dynamics are characterised by the

equation

ż = q(z, 0). (2.30)
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For the case of when the inverse system is used as a controller to constrain the system

to a constant value, then the stability is completely determined by the internal dynamics of

the system.

Definition 2.1.9. Consider the system Σ (2.1). Suppose Lgh(0) is nonsingular. Then the

system is said to be:

1. minimum phase if its zero dynamics are asymptotically stable in a neighbourhood of

z = 0;

2. weakly minimum phase if there exists a C1 positive definite functionW (z) withW (0) =

0, such that
∂W (z)

∂z
q(z, 0) ≤ 0 (2.31)

in a neighbourhood of z = 0.

In addition, minimum phase can be defined globally if the normal form is global, and

moreover weakly minimum phase can be defined globally if the minimum phase is defined

globally.

Periodic Orbit Theory

A linear system ẋ = Ax can have a closed orbit but they won’t be isolated. Consider periodic

solution x(t), then so is cx(t) periodic for any constant c 6= 0. Hence, x(t) is surrounded by

a one-parameter family of closed orbits. For the case of nonlinear systems, the problem is

much less trivial.

Let us begin by first understanding under which conditions a periodic solution cannot

exist entirely within a given region. One way to prove a particular system has no periodic

solution is to employ a Lyapunov function; if a Lyapunov function exists then closed orbits

are forbidden.

Consider a system ẋ = f(x) with a fixed point x0. Suppose that we find a continuously

differentiable, real-valued and positive semi-definite function V (x) where V (x0) = 0 at

x0 = 0, and its derivative V̇ < 0. Then x0 is globally asymptotically stable for all initial

conditions, x(t) → x0 as t → ∞. Such a function is known as a Lyapunov function, which

is described in greater detail in subsection 2.2.1.

If the solution is periodic, then the trajectory of V does not approach the fixed point x0,

which contradicts the condition V̇ < 0 since such a condition ensures monotonic trajectory

down the graph of V (x) toward x0. Thus, if a Lyapunov function exists, then no periodic

solution can exist.
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An alternative method for ruling out the existence of periodic orbits is Dulac’s criterion.

In particular, it provides sufficient conditions for the non-existence of periodic orbits in

simply connected regions of the plane.

Let ẋ = f(x) be a continuously differentiable vector field defined on a simply connected

subset R of the plane. A region R of the plane is said to be simply connected if every closed

loop within R can be shrunk to a point without leaving R, i.e. R has no holes.

Theorem 2.1.2. (Dulac’s criterion) Let R be a simply connected region in R2 and consider

a planar dynamical system in R given by

ẋ = f(x, y) (2.32)

where f is a continuously differentiable, real-valued function in R. Suppose that there exists

a C1 function ϕ(x) in R, called the Dulac function, such that

5 · ϕ(ẋ+ ẏ) (2.33)

has a definite sign in R. Then, the dynamical system (2.32) cannot have any periodic orbits

in R.

In other words, if 5ϕẋ has one sign throughout R, then there are no closed orbits lying

entirely in R.

Proof. Suppose there is a closed orbit C lying entirely in the region R. Let A denote the

region inside C. Then, Green’s theorem yields∫ ∫
A

5 · (ϕẋ)dA =

∮
C

ϕẋ · ndl (2.34)

where n is the outward normal and dl is the element of the arc length along C

Consider first the left hand side double integral. It must be nonzero, since 5· (ϕ(ẋ+ ẏ))

has one sign in R. One the other hand, the right hand side line integral must equal zero,

since (ẋ + ẏ) · n = 0 everywhere, by the assumption that C is a trajectory (the tangent

vector ẋ+ ẏ is orthogonal to n). This is a contradiction since no such C can exist.

Consider now the problem of showing the existence of a periodic orbit. The Poincaré-

Bendixon theorem provides sufficient conditions for the existence of a periodic solution en-

tirely within a given region.

Let ẋ = f(x) be a dynamical system and consider a trajectory γ : t 7→ x(t). A positive

limit point is a point x for which there exists a sequence t1, t2, . . . ,→∞ such that

lim
n→∞

x(tn) = x. (2.35)
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The concept of the negative limit point is defined similarly. The ω-limit set of a trajectory

γ, denoted ω(γ), is defined as the set of all positive limit points of that orbit. Similarly, the

α-limit set is the set of all negative limit points.

The importance of the ω-limit set lies in the fact that trajectories in a bounded region

of the plane will spiral inward to the ω-limit set. The Poincaré-Bendixon theorem tells us

that ω(γ) will either contain a fixed point or it will be a closed orbit of the flow.

Definition 2.1.10. A limit cycle γ of a dynamical system in the plane is a periodic orbit

which is the α- or ω-limit set of a trajectory γ′ other than γ. If a limit cycle γ is the ω-limit

set of every other trajectory in a neighbourhood of γ, then γ is said to be an ω-limit cycle

of stable limit cycle. Likewise, if γ is the α-limit set of neighbouring trajectories, γ is said

to be an α-limit cycle or unstable limit cycle.

Strogatz [144] defines limit cycles informally as closed orbits such that nearby trajectories

are either attracted to or repelled by the limit cycle.

The first main result of this section is the Liénard theorem which asserts the existence

and uniqueness of a periodic orbit. Any second-order differential equation of the form

ẍ+ f(x)ẋ+ g(x) = 0 (2.36)

is referred to as a Liénard equation. For there to exist a unique and stable limit cycle, f

and g must satisfy a number of conditions.

Theorem 2.1.3. (Liénard’s Theorem) Suppose that f(x) and g(x) satisfy the conditions:

1. f(x) and g(x) are continuously differentiable for all x;

2. g(−x) = −g(x) for all x (i.e., g(x) is an odd function);

3. f(−x) = f(x) for all x (i.e., f(x) is an even function);

4. g(x) > 0 for all x > 0;

5. The odd function F (x) =
∫ x

0
f(u)du has exactly one positive zero at x = a, is negative

for 0 < x < a, is positive and nondecreasing for x > a, and F (x)→∞ as x→∞.

Then the system (2.36) has a unique, stable limit cycle surrounding the origin in the phase

plane.

Having established the existence of a unique and stable limit cycle, it follows to strengthen

the property of stability to asymptotic stability. This is achieved by showing that the limit

cycle is closed. If the limit cycle is closed, then by definition at least one trajectory converges

to the limit cycle as time goes to infinity. The Poincaré-Bendixon theorem asserts that in
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a given trapping region - a closed and bounded set containing x(t) for all time t - there

exists just one stable limit cycle that is closed. In doing so, all trajectories beginning inside

the trapping region must asymptotically converge to the closed limit cycle as time goes to

infinity.

Theorem 2.1.4. (Poincaré-Bendixon Theorem) Suppose that:

1. R is a closed, bounded subset of the plane;

2. ẋ = f(x) is a continuously differentiable vector field on an open set containing R;

3. R does not contain any fixed points; and

4. There exists a trajectory C that is “confined” in R, in the sense that it starts in R

and stays in R for all future time.

Then either C is a closed orbit, or it spirals toward a closed orbit as t→∞. In either case,

R contains a closed orbit.

When applying the Poincaré-Bendixon theorem it is relatively easy to satisfy conditions

(1)-(3), however, it is not so easy to satisfy the last; to show the existence of the confined

trajectory C. The standard method is to construct a trapping region R, i.e. a closed

connected set such that the vector field points inward everywhere on the boundary of R.

Then, all trajectories in R remain in R for all future time.

2.2 Methods for stability analysis on networks

The next step to consider are the various methods used for determining the stability of

solutions. Most commonly is the solution for synchronization, however, we also consider

stability of periodic solutions. Here we review some of the more common methods, these

include the Connection Graph Stability (CGS) method [14], the Wu-Chua conjecture [159],

the Master Stability Function (MSF) [117], and semi-passivity [121]. For periodic solutions

we consider the field of Floquet theory; an eigenvalue based approach known as the Floquet

multipliers.

In Chapter 3 we encounter problems of stability analysis of both synchronization and

periodic solutions and therefore make use of the methods presented here, in particular,

arguments of semi-passivity, and numerical analysis of Floquet multipliers. Throughout

this section we assume that: (i) dynamical systems on a graph are identical; (ii) systems

are coupled via the same component. In addition, we assume that solution manifolds are

invariant. A less important condition is that the graph is a connected component, i.e. has

one zero eigenvalue.
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The main question to address in this section regards the coupling gain, otherwise known

as the coupling strength or coupling coefficient, for which a solution is stable.

2.2.1 Stability of synchronization

A central and classical tool in the stability analysis on nonlinear systems is the Lyapunov

stability criterion. The strength of Lyapunov stability, is that it can determine the stability

of an equilibrium point without the need to solve the state equation. Consider the system

ẋ = f(x, u) (2.37)

for state x ∈ X ⊂ Rn and input u ∈ U ⊂ Rm, and the function f is assumed to be Lipschitz

continuous. The stability of this system is concerned with its zero dynamics ẋ = f(x, 0).

For initial condition x(0) = x0 the condition of Lipschitz continuity ensures the existence of

a unique solution f∗

f∗(x) = f(x). (2.38)

An equilibrium point is therefore a point x∗ ∈ X for which f∗(x∗) = 0. A sufficient condition

for the stability of this point is given by the Lyapunov stability criterion.

Definition 2.2.1 (Lyapunov function). A system (2.37) has a real-valued, non-negative,

and C0 function V : X → R defined for all u ∈ U , x ∈ X, t ≥ 0 called a Lyaponuv function

if it is non-increasing along all trajectories such that,

V (x(t))− V (x(0)) ≤ 0. (2.39)

Theorem 2.2.1 (Lyapunov stability criterion). A system (2.37) has a stable equilibrium

point x∗ if there exists a Lyapunov function V such that V (x) > 0 except for V (x∗) = 0 and

dV

dt
≤ 0. (2.40)

Moreover, the equilibrium point is asymptotically stable if

dV

dt
< 0. (2.41)

Here, Lyapunov stability of an equilibrium point means that solutions starting close to

the equilibrium remain close, while asymptotic stability means that solutions converge to

the equilibrium.

Corollary 2.2.1. A system (2.37) has an unstable equilibrium point x∗ if there exists a

real-valued, non-negative, and C1 function V : X → R defined for all u ∈ U , x ∈ X, t ≥ 0

such that V (x) > 0 except for V (x∗) = 0 and

dV

dt
> 0. (2.42)
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Connection Graph Stability

The Connection Graph Stability (CGS) method provides a lower bound, or threshold, on

the coupling strength for a given configuration of coupled oscillators to synchronize [12].

The CGS method relates synchronization to the coupling configuration by considering the

coupling threshold for two oscillators and relating this to properties of graph structure. In

this case, the graph property of concern is the maximum (shortest) path length.

The main step in the CGS method is to choose a path lij from the coupling configuration

between all pairwise vertices i, j in the graph. Then, for each edge ek, the summed length

of all paths including ek are calculated. The coupling constant that guarantees complete

synchronization is proportional to this sum.

Consider a network of linearly coupled (identical) oscillators

ẋi = f(xi) +

n∑
j=1

εij(t)Hxj , i = 1 . . . , n (2.43)

where xi is the m-dimensional vector of state variables for the n oscillators i = 1, . . . , n,

G = {εij} is the symmetric n × n matrix Laplacian (zero sum rows) that describes the

coupling configuration and the coupling strengths between all pairwise oscillators, and H is

the n×m matrix output function describing which variables couple the oscillators.

Theorem 2.2.2. The synchronization manifold of the system 2.43 is globally asymptotically

stable if

εk(t) >
a

n
bk(n,m) (2.44)

for all k = 1, . . . ,m and for all t. Here, a = 2ε∗2 is double the coupling strength sufficient

for global synchronization of two coupled oscillators (ε∗2 is the minimum coupling strength

between two oscillators s.t. ‖Hx2 − Hx1‖2 is a global Lyapunov function). The quantity

bk(n,m) =
∑n
j>i; k∈lij |lij | is the sum of all chosen paths lij which pass through an edge k

belonging to the coupling configuration.

The first step of the method is to determine the value of the parameter a and to prove

that two coupled oscillators completely synchronize when their coupling strength exceeds

a. The value of a will vary for different oscillators, and for certain oscillators there will

exist an upper bound, ā, on the parameter a, such that exceeding ā results in destabilizing

behaviour. Usually one takes for lij the shortest path from vertex i to vertex j. However,

sometimes a different choice of path can lead to lower bounds on coupling strength needed

for synchronization. This is achieved‘by redistributing the chosen paths that pass though

the most loaded edge. What always matters for synchronization is the “weakest link”, i.e.

the link having the maximum traffic load. This edge is a bottle neck for synchronization as
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the whole network requires the coupling strength ε∗ = maxk εk to synchronize all oscillators

of the network.

An advantage of the CGS method is that is does not require calculation of eigenvalues.

Methods that require calculation of eigenvalues of the coupling matrices, together with the

dynamics of the oscillators, can be computationally expensive. The CGS method therefore

can have applications to larger graphs, or to networks whose configuration is not static, but

changing over time, requiring repeated recalculation.

Wu-Chua Conjecture

Similarly to the CGS method, the Wu-Chua [159] conjecture relates synchronization to

the coupling configuration by considering the coupling threshold for two oscillators to syn-

chronize. In particular, the coupling strength needed to synchronize an array of coupled

oscillators is inversely proportional to the smallest absolute value non-zero eigenvalue of the

Laplacian matrix. Assuming the graph is strongly connected, and eigenvalues are ordered

as 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λn, then coupling strength is proportional to 1/λ1.

Conjecture 2.2.1 (Wu-Chua). Consider two arrays of coupled systems of n1 cells and n2

cells, respectively.

ẋ =


f(x1, t)

...

f(xn1
, t)

+ α1(G1 ⊗D)x (2.45)

˙̃x =


f(x̃1, t)

...

f(x̃n2
, t)

+ α2(G2 ⊗D)x̃ (2.46)

where G1 and G2 are n1-by-n1 and n2-by-n2 matrices, respectively, (n1, n2 ≥ 2) and α1, α2

are real numbers. Assume that G1 and G2 are real symmetric matrices having zero row

sums such that all eigenvalues are nonpositive and 0 is an eigenvalue of multiplicity 1, i.e.,

undirected, connected graph.. Let µ1 and µ2 be the least negative nonzero eigenvalues,

called the algebraic connectivity, of matrices G1 and G2, respectively. Suppose µ1 andµ2 are

related as follows:

µ1 × α1 = µ2 × α2. (2.47)

Then, Array (2.45) globally synchronizes if and only if Array (2.46) synchronizes.

In other words, this can be seen that if for some α1 the Array 2.45 globally synchronizes,

then for α2 = µ1α1

µ2
the Array 2.46 also globally synchronizes. A weakness of this method,
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however, is that it does not accommodate desynchronizing bifurcations, such as the short

wavelength bifuarcation, and is limited in the number of coupled systems [117].

Master Stability Function

A more robust method for stability analysis is the Master Stability Function (MSF) [117].

Whereas the CGS method and Wu-Chua conjecture are vulnerable to desynchronizing bifur-

cations, the MSF predicts regions of spatial-mode instabilities, for instance changes in the

size of the network such as the case of a particular coupling scheme having an upper limit

on the number of oscillators for stable synchrony. The MSF achieves this by assessing the

maximum Lyapunov exponent (MLE), λmax, of the variational equations of a given system

as a function of the eigenvalues of the coupling configuration.

The spectrum of Lyapunov exponents for a deterministic dynamical system characterises

the rate of separation, or contraction, of trajectories in a multi-dimensional phase space. The

size of this spectrum is equal to the dimensionality of the phase space where each exponent

corresponds to a vector in the tangent space of the phase space. Let x̃ denote the separation

of two trajectories x1, x2 in phase space. The two trajectories converge or diverge in time t

with the rate

|x̃(t)| ≈ expλt |x̃(t0)| (2.48)

for t ≥ t0 and where λ is a Lyapunov exponent describing the exponential separation or

contraction in the direction of the initial separation x̃(0) in the phase space.

The MLE is the absolute greatest Lyapunov exponent in the spectrum. It describes the

average exponential rate of separation of two initially close trajectories. Equation (2.48) is

solved for λ as follows

λ ≈ 1

t
log
| ˜x(t)|
|x̃(0)|

. (2.49)

For infinitesimal separation x̃, the Jacobian matrix provides the following formula for λ

in the infinite limit of time,

λ(x̃0) = lim
t→∞

1

t
log
‖Jtx̃(0)‖
‖x̃(0)‖

(2.50)

= lim
t→∞

1

2t
log(n̂J>t Jtn̂) (2.51)

where Jt = J(f(x̃(t))) is the Jacobian matrix of the variational dynamics, n̂ is the normal

vector in the direction of the initial separation such that n̂ = x̃(0)/‖x̃(0)‖, and J>t Jt is the

Cauchy-Green strain tensor matrix which describes how linearised neighbourhoods deform

over a flow.

To calculate the MLE is not a trivial exercise as this requires assesing the eigenvalues of

the corresponding Jacobian matrix of the systems dyanmics. In fact, there is no such ana-
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lytical method for calculating them, since the Jacobian matrix is typically neither diagonal

nor diagonlisable. To determine the MLE requires numerical methods, such as Oseledec’s

multiplicative ergodic theorem, or Householder’s transformation. This is beyond the scope

of this thesis; the reader may wish to consult [36] for a more comprehensive description.

By the Perron-Frobenius theorem, the behaviour of the matrix Jt in the infinite limit of

time can be described by its leading eigenvalue and eigenvector. Let λ1 denote the leading

eigenvalue of matrix Jt, then,

λmax = lim
t→∞

1

t
log(λ1(x̃(0), t)) (2.52)

Therefore, contraction or expansion of two trajectories can be generalised to neighbour-

hoods of a trajectory using the eigenvalues of the Jacobian matrix evaluated at a point in

the flow with infinitesimal motion. Stability, then, of a trajectory can be considered as the

deformation of its neighbourhood as it moves along the flow of the vector field.

A positive maximum Lyapunov exponent indicates chaotic motion; initially infinitesi-

mally close trajectories diverge at an exponential rate. On the other hand, a negative MLE

indicates stability of fixed points. However, this criteria does not guarantee that there does

not exist some unstable invariant manifold or local instability of an attractor.

Consider a network of n oscillators. Let xi ∈ Rm be the vector of dynamical variables

of the i-th oscillator. Functions f : Rn → Rn and h : Rm → Rm are smooth functions

that describe individual oscillator dynamics and the output function, respectively. Let L

be the Laplacian matrix for coupling configuration G, and σ the coupling strength. Let

x = (x1, . . . , xn), F (x) = (f(x1), . . . , f(xn)), H(x) = (h(x1), . . . , h(xn)), then system Σ

(2.1) may be expressed in the following matrix form

ẋ = F (x) + σL⊗H(x) (2.53)

where ⊗ is the Kronecker product; the matrix operator which given two arbitrarily sized

matrices yields a block matrix, as follows,

A⊗B =


a11B · · · a1mB

...
. . .

...

an1B · · · anmB

 (2.54)

for n × m matrix A and arbitrary size matrix B. If matrix B has dimensions p × q then

A⊗B has dimension np×mq.

Linearisation of (2.53) around the synchronous state is obtained by taking the Jacobian

functions Df and Dh, the Jacobian of F and H, respectively. Let ς = (ς1, . . . , ςn) be the
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collection of variations. Then

ς̇ = [In ⊗Df(x) + σL⊗Dh(x)]ς (2.55)

where In is the n × n identity matrix. Assuming the coupling matrix L is nonsingular,

then there exists an orthonormal set of eigenvectors such that L = Q−1ΓQ for diagonal

matrix of eigenvalues Γii = γi. Assuming L is connected, order the eigenvalues such that

0 = γ1 < γ2 ≤ γ3 ≤ · · · ≤ γn. Multiplication of (2.55) on both left hand sides by Q ⊗ Im
yields the block diagonal matrix Θ satisfying

Θ̇ = [In ⊗Df(x) + σΓ⊗Dh(x)]Θ (2.56)

where each block m×m block θi, Θ = diag(θ1, . . . , θn, can be expressed using the eigenvalues

λi in the following

θ̇i = [Df(x) + σγiDh(x)]θi (2.57)

and θi corresponds to the mode of ςi corresponding to the i-th eigenvector. This is possible

since the diagonalisation of σL in the second term of Equation (2.55) has no affect on the

identity matrix In, in the first term.

The block associated to the eigenvalue γ1 corresponds to the dynamics on the syn-

chronous manifold, whereas the other ones correspond to orthogonal modes, i.e. transversal

to the synchronization manifold.

Calculate the maximum Lyapunov exponent λmax for the generic variational equation,

called the Master Stability Equation

θ̇i = [Df(x) + (α+ iβ)Dh(x)]θi (2.58)

as a function of α and β.

The Lyapunov (or Floquet) exponent λmax is the associated MSF, and as a function of

α and β, λmax yields a surface over the complex plane for which regions of stability and

instability are found. For a given coupling strength σ, the sign of λmax at the point in

the complex plane σµk describes the stability of that eigenmode. If all the eigenmodes are

stable, then the synchronous state is stable at that coupling strength.

The main advantage of the MSF is that it predicts regions of stability, and hence also

regions of instability. Changes in coupling strength and network size may cause a desyn-

chronizing bifurcation. The MSF is capable of predicting such bifurcations where the CGS

and Wu-Chua methods do not. Another advantage of the MSF is that is is less dependent

on the dynamics f and h than the CGS and Wu-Chua method, since the size of regions
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of stability depend also on the spread of the eigenvalues. If the eigenvalues of the graph

Laplacian are more spread out, then it is more likely that the synchronous state will be

unstable. Moreover, if the graph is undirected and connected, then all eigenvalues are real,

and the spread is simply the ratio of the largest and smallest nonzero eigenvalues γn/γ2.

Dissipative and Passive Systems

Here we briefly review the concepts of dissipative and passive systems, and the reader is

directed to the texts [8; 28] for a more comprehensive description. Applied to state-space

representations of nonlinear systems, passivity allows for interpretation of notions such as

available, stored, and dissipated energy in terms of Lyapunov functions [28]. Intuitively,

if the rate of change of the stored energy of some system (of the form (2.1)) is less than

the total energy supplied externally, known as the supply rate, then the total energy of the

system is said to dissipate. Notions of storage function and supply rate allow the dissipation

of energy to be represented as a function of the input and output of the system. Moreover,

the storage function shares with the Lyapunov function the property of positive definiteness

of the state variable and, under an additional condition, can be treated as a Lyapunov

function. Treating the storage function as a Lyapunov function then allows for properties

of stability of equilibria to be determined.

Let w be a real-valued function defined on U × Y , called the supply rate. Assume that

for any u ∈ U and any x0 ∈ X the output y(t) = h(Φ(t, x0, u)) of system (2.1) is such that

w(s) = w(u(s), y(s)) satisfies ∫ t

0

|w(s)|ds <∞, ∀t ≥ 0. (2.59)

Definition 2.2.2 (Dissipativity and Storage Function). A system Σ (2.1) with supply rate

w is said to be dissipative if there exists a continuous non-negative function V : X → R

called the storage function, such that for all u ∈ U , x(0) = x0 ∈ X, t ≥ 0

V (x(t))− V (x(0)) ≤
∫ t

0

w(u(s), y(s))ds (2.60)

where x = Φ(t, x0, u).

The stored energy V (x(t)) of Σ (2.1) at any time t ≥ t0 is less than or equal to the

sum of the stored energy V (x(0)) at time t = 0 and the total energy
∫ t
t
w(u(s), y(s))ds

supplied externally. This inequality is called the dissipation inequality, and it expresses the

concept that if rate of change of the stored energy is less than the supply rate, then energy

is dissipated, i.e. there is no internal creation of energy, and so the system absorbs more

energy than it supplies. In determining whether a given system is dissipative or not, one
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must consider its available storage; the largest amount of energy that can be extracted given

initial conditions x0.

Definition 2.2.3 (Available storage). The available storage, denoted Va, of a system Σ

(2.1) with supply rate w is given by the function Va : X → R,

Va(x) = sup
u∈U
t≥0

{
−
∫ t

0

w(s)ds

}
. (2.61)

If Va(x) is continuous, then it is itself a storage function.

The available storage Va(x) is the supremum over a set of numbers containing zero and

hence is necessarily non-negative.. If a system Σ (2.1) is dissipative with respect to the

supply rate w = (u(s), y(s)), then the available storage is finite for each x ∈ X. Moreover,

for all possible storage functions V (x), the following inequality holds

0 ≤ Va(x) ≤ V (x) (2.62)

for each x ∈ X.

This is formulated in the following theorem.

Theorem 2.2.3. Consider the system Σ (2.1) with supply rate w and available storage

function Va(x). Then Σ is dissipative with respect to the supply rate w if and only if the

available storage Va(x) is uniformly bounded, i.e. Va(x) <∞ for all x ∈ Rn. Furthermore,

if Va(x) is uniformly bounded, then any possible storage function satisfies

0 ≤ Va(x) ≤ V (x) (2.63)

for each x ∈ X.

Proof. [8] Suppose Va(x) <∞ for all x ∈ Rn. Since Va(x) is the supremum over all w, then

it follows that

Va(x(t0)) ≥ Va(x(t1))−
∫ t1

t0

w(u(s), y(s))ds (2.64)

and thus Va(x) is finite and hence a storage function. This then proves that the system Σ

is dissipative for supply rate w.

Conversely, suppose that Σ is dissipative. Then there exists V ≥ 0 such that for all w,

V (x(0)) +

∫ T

0

w(u(s)y(s))ds ≥ V (x(T )) ≥ 0 (2.65)

and it follows that

V (x(0)) ≥ sup
u∈U
T≥0

{
−
∫ T

0

w(u(s), y(s))ds

}
= Va(x(0)) (2.66)

proving finiteness of Va, as well as Va(x) ≤ V (x).
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The theorem therefore states that Σ (2.1) is dissipative if and only if the available storage

(maximally extractive energy) is finite for all initial conditions. This result is not necessary

to show for all initial conditions provided the system Σ (2.1) has the property of reachability.

Definition 2.2.4 (Reachability). Consider system Σ (2.1). For smooth functions f, g, h,

piecewise continuous input u ∈ U , and initial state x(0) = x0 ∈ X denote the set of initial

states R(0) ⊂ Rn. Then, the set of possible reachable states is

R([0, r]) := {X(t, x0, u)|x0 ∈ R(0), t ∈ [0, r], u ∈ U} (2.67)

Therefore, for all x ∈ R ⊂ X for initial condition x0 ∈ R(0) one needs only to check for

the initial state x0 that the available storage Va(x0) is finite. Conversely, if the system Σ

(2.1) is dissipative, then its available storage is finite for each x ∈ X. Note that by linking

dissipativity with the existence of the function Va, attention to the dissipation inequality

has changed to finding a solution of an optimization problem.

Lemma 2.2.1. Assume system Σ (2.1) is reachable from x0 ∈ X. Then Σ is dissipative if

and only if Va(x0) <∞.

The supply rate for dissipative systems can be any function defined on the input and

output space that satisfies (2.59). For the case where the supply rate w is defined as the

bilinear inner product of the input u and output y,

w = 〈u, y〉 = y>u, (2.68)

the dissipative system is known then as a passive system.

Definition 2.2.5 (Passivity). A system Σ (2.1) is said to be passive if it is dissipative with

supply rate w (2.68), and the storage function V satisfies V (0) = 0. In other words,

V (x(t))− V (x(0)) ≤
∫ t

0

y>(s)u(s)ds (2.69)

The two limiting cases of passive systems are lossless and strictly passive systems. The

former may be interpreted as the case in which no energy is lost from the system, while the

latter that the maximal amount of energy is extracted.

Definition 2.2.6 (Lossless system). A passive system Σ with positive definite storage func-

tion V is said to be lossless if for all u ∈ U , x0 ∈ X, t ≥ 0,

V (x(t))− V (x(0)) =

∫ t

0

y>(s)u(s)ds. (2.70)

Definition 2.2.7 (Strictly passive). A passive system Σ with positive definite storage func-

tion V is said to be strictly passive if there exists a positive definite function S : X → R

such that for all u ∈ U , x0 ∈ X, and t ≥ 0

V (x(t))− V (x(0)) =

∫ t

0

y>(s)u(s)ds−
∫ t

0

S(s)ds. (2.71)
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With the supply rate defined as in (2.68), one can relate the passivity of a system to

Lyapunov stability. Setting the input u = 0, then the supply rate becomes non-positive,

and hence the change in the storage function over time is less than 0. It can therefore be

seen that the system Lyapunov stable.

Lemma 2.2.2. Let V ⊂ C∞ be a storage function of system Σ (2.1) and assume that the

supply rate w satisfies

w(0, y) ≤ 0,∀y ∈ Rm. (2.72)

Let x = 0 be a minimum of V (x). Then x = 0 is locally asymptotically stable for the unforced

system (u = 0) and V(x) = V (x)− V (0) is a local Lyapunov function.

To establish a more general relation between passivity and Lyapunov stability, conditions

on zero-state detectability and observability are needed. This is needed because stability is

not always ensured by passivity; stability is not guaranteed for a passive system of multiple

states.

Definition 2.2.1. (Zero-state detectability and observability A system (2.1) is zero-state

observable if for any x ∈ X,

y(t) = h(φ(t, t0, x, 0)) = 0, ∀t ≥ t0 ≥ 0⇒ x = 0. (2.73)

The system is locally zero-state observable if there exists a neighbourhood Xn of 0, such

that for all x ∈ Xn, (2.73) holds. The system is zero-state detectable if for any x ∈ X,

y(t) = h(φ(t, t0, x, 0)) = 0, ∀t ≥ t0 ≥ 0⇒ lim
t→∞

φ(t, t0, x, 0) = 0, (2.74)

and the system is locally zero-state detectable if there exists a neighbourhood Xn of 0, such

that for all x ∈ Xn, (2.74) holds.

Theorem 2.2.1. (Passivity and stability) Let a system Σ be passive with a C1 storage

function V (x). Then the following properties hold:

1. If V (x) is positive definite, then the equilibrium x = 0 of Σ with u = 0 is Lyapunov

stable.

2. If Σ is zero-state detectable, then the equilibrium x = 0 of Σ with u = 0 is Lyapunov

stable.

3. If in addition to either 1 or 2, V (x) is radially unbounded, then the equilibrium x = 0

is globally stable.
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If the system Σ is strictly passive with positive definite storage function, then the equi-

librium x = 0 with u = 0 is asymptotically stable.

One of the most important properties of passive systems relates to the Kalman-Yacubovich-

Popov (KYP) property. In particular, if a given system posses the KYP property, then it is

passive. The KYP property is defined as follows:

Definition 2.2.2. (Kalman-Yacubovich-Popov (KYP) property) Recall the control affine

system Σ (2.1). System Σ is said to have the KYP property if there exists a C1 nonnegative

function S(x) : Rn → R+, with S(0) = 0 such that

LfS(x) =
∂S(x)

∂x
f(x) ≤ 0,

LgS(x) =
∂S(x)

∂x
g(x) = h>(x),

for each x ∈ Rn.

Proposition 2.2.4. A system Σ with the KYP property is passive with storage function

S(x). Conversely, a passive system with C1 storage function has the KYP property.

A basic property of passive systems, which makes passive systems very attractive from a

stabilization point of view, is that they are stabilisable by the following simple output-input

feedback control law.

Theorem 2.2.5 ([28]). Suppose Σ is passive with positive definite storage function V , and

suppose that Σ is locally zero-state detectable. Let φ : Y → U be any smooth function such

that φ(0) = 0 and y>φ(y) > 0 for each nonzero y. The control law

u = −φ(y) (2.75)

asymptotically stabilizes the equilibrium x = 0. Moreover, if V is proper - if the preimage of

every compact set is compact-, then the control law (2.75) globally asymptotically stabilizes

the equilibrium x = 0.

It follows that for all passive systems the output feedback u = −y will stabilise the

system.

We are interested in the stability properties of linearly interconnected system. Another

fundamentally important property of passive system is that any linear interconnection of

passive systems is also passive. Let us demonstrate this principle with two systems Σ1 and

Σ2 as defined in (2.1).

Theorem 2.2.2. Consider two systems Σ1 and Σ2,

Σ1 =

 ẋ = f1(x1) + g1(x1)u1

y1 = h1(x1).
(2.76)
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Σ2 =

 ẋ = f2(x2) + g2(x2)u2

y2 = h2(x2).
(2.77)

defined similarly as (2.1). Assume that they are each passive, and that they are intercon-

nected by linear and symmetric input functions

u1 = −γ(y1 − y2), u2 = −γ(y2 − y1) (2.78)

for some γ ≥ 0. Then both systems are passive. Moreover, assume that both systems

are zero-state detectable, and their storage functions V1(x1) and V2(x2) are C1. Then the

equilibrium (x1, x2) = (0, 0) of both interconnections is stable.

Proof. If systems Σ1 and Σ2 are each passive, then there exists storage functions V1(x1) and

V2(x2) such that

Vi(xi(t))− Vi(xi(0)) ≤
∫ t

0

y>i (s)ui(s)ds, i = 1, 2 (2.79)

where x1, x2 are the state variables of V1 and V2, respectively. Denote x = [x>1 , x
>
2 ]>, and

define V = V1(x1) + V2(x2) and note that V is positive definite and V (0) = 0 and satisfies

the dissipation inequality

V (x(t))− V (x(0)) ≤
∫ t

0

(y>1 (s)u1(s) + y>2 (s)u2(s))ds. (2.80)

Notice also the result of symmetric coupling u1 and u2

y>1 u1 + y>2 u2 = −y>1 y1 + 2y>1 y2 − y>2 y1 ≤ 0. (2.81)

Clearly, the function V is compact and radially unbounded and one obtains that

Vi(xi(t))− Vi(xi(0)) ≤ 0. (2.82)

Thus the function V is bounded for all t ≥ 0 and the system is passive.

If systems Σ1 and Σ2 are zero-state detectable, then by Theorem 2.2.1 the equilibrium

(x1, x2) = (0, 0) is Lyapunov stable.

By induction, this result may be generalised to any finite number of systems Σk, each

having positive definite storage function Vk.

Semi-passive systems

We now consider a weakened version of passive systems called semi-passive systems. Semi-

passivity briefly describes the notion that the state trajectories of some system of the form

Σ (2.1) remain oscillatory but bounded provided that the supply rate is also bounded. A

consequence, provided systems are diffusively coupled, is that any coupling configuration can
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be shown to possess ultimately bounded solutions. Moreover, when the coupling strength is

sufficiently strong, then it can be shown analytically that all systems asymptotically synchro-

nise. In this section we introduce the concept of semi-passive systems and the machinary for

determining the critical coupling strength for which in an array of diffusively coupled semi-

passive systems asymptotically synchronize. The reader is directed to the texts [121; 142]

for a more comprehensive description of the topic, and from which we review these notions.

In Chapter 3 we apply the argument of semi-passivity to an array of diffusively coupled

FitzHugh-Nagumo oscillators [46].

Definition 2.2.3. The system Σ (2.1) is called Cr-semi-passive is there exists a Cr-smooth,

r ≥ 0 nonnegative function V : Rn → R+ and a function H : Rn → R1 such that for

any initial conditions x(0) and any admissible input u ∈ C0 ∪ L∞ the following dissipation

inequality holds

V (x(t))− V (x(0)) ≤
∫ t

0

(y>(s)u(s)−H(x(s)))ds (2.83)

for all 0 ≤ t < Tu,x0 , where for the set

B := {∃ρ > 0||x| ≥ ρ} (2.84)

the function H is non-negative for x 6∈ B, i.e., H(x ≥ ρ) ≥ 0.

By the introduction of the functionH, it is clear that semi-passive systems are a weakened

version of passive systems, however, there are two important properties to note. The first

is that for large enough |x|, semi-passive systems behave in the same way as passive ones.

Hence, a semi-passive system that is interconnected by a feedback of the form u = φ(y)

satisfying y>φ(y) ≤ 0 has ultimately bounded solutions, i.e. for all initial conditions state

trajectories converge in finite time to a compact set and remains there for all future time.

The second is that like passive systems, linearly interconnected semi-passive systems are

also themselves semi-passive.

A stronger definition is that of strict semi-passivity. Strictly semi-passive systems posses

the property that solutions are ultimately bounded, i.e., solutions do not depend upon initial

conditions.

Definition 2.2.4. The system Σ (2.1) is called Cr-strictly semi-passive if it is passive

and there exists function H : Rn → R1 such that for any initial conditions x(0) and any

admissible input u ∈ C0 ∪ L∞ the following equality holds

V (x(t))− V (x(0)) =

∫ t

0

(y>(s)u(s)−H(x(s)))ds (2.85)

for all 0 ≤ t < Tu,x0
and where the function H is strictly positive outside the ball B (2.84),

i.e., H(x ≥ ρ) > 0.
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It is beyond the scope of this thesis to assess the stability of non-linear feedback functions

g(x), h(x), so consider the system Σ (2.1) for which the functions g(x) and h(x) are linear

functions given by the vectors B,C ∈ Rm, then it may be written

ẋj = f(xj) +Buj (2.86)

yj = Cxj

for which 1 ≤ j ≤ k denotes each system, and as before xj ∈ X ⊂ Rn denotes the state

variable, uj ∈ U ⊂ R the input, and yj ∈ Y ⊂ R the output.

Assume k many systems are diffusively coupled where the coupling of systems is given

by the matrix

Γ =



∑k
j=2 γ1j −γ12 · · · −γ1k

−γ21

∑k
j=1,j 6=2 γ2j · · · −γ2k

...
...

. . .
...

−γk1 −γk2 · · ·
∑k−1
j=1 γkj

 (2.87)

for coupling strength γij between systems i and j. The feedback is written in the compact

matrix form

u = −Γy. (2.88)

It is well-established that the matrix Γ is positive semi-definite. This can be seen from

the fact that Γ is constructed as the Laplacian matrix which takes the quadratic form

x>Γx =
∑

(i,j)∈E

x>Γ(i, j)x =
∑

(i,j)∈E

γij(xi − xj)2 (2.89)

where E is the set of edges such that γij > 0 corresponds to the existence of the edge

(i, j) ∈ E, the edge set E of the network. Hence the matrix Γ is positive semi-definite.

Proposition 2.2.6. Consider k diffusively coupled systems of the form Σ (2.86) closed by

the feedback (2.88). Assume also that each system is semi-passive. Then, the solutions of

all connected systems are ultimately bounded.

Proof. [142] Let the j-th system be semi-passive with storage function V (xj), where xj is

the state of the j-th system. Denote W (x) =
∑k
j=1 V (xj) where x = col(x1, . . . , xk). Then,

Ẇ (x) =

k∑
j=1

V̇ (xj) ≤
k∑
j=1

y>j uj −H(xj) = −y>Γy −
k∑
j=1

H(xj) ≤ 0, (2.90)

outside some ball in Rnk. Note that the quadratic term y>Γy is nonnegative since Γ is

semi-positive definite. This directly implies that the solutions of the interconnected systems

are bounded and exist for all t ≥ t0.
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The property that any interconnection of semi-passive is also semi-passive, as shared

with passive systems, naturally extends to the case of heterogeneous passive systems, i.e.

non-identical dynamics. For the case of non-identical semi-passive systems interconnected,

then their state trajectories remain bounded since the sum of their storage functions is

simply a superposition.

Once boundedness of solutions is established, one may then consider the problem of es-

tablishing conditions guaranteeing synchronization. Recall the normal form transformation.

Then, assuming each system has relative degree (1, . . . , 1), then the matrices (5h(x))>g1(x)

and (5h(x))>g2(x) are nonsingular in the neighbourhood of the origin, in this case it is the

condition that the matrix CB is non-singular. Recall also the Frobenius theorem, such that

if the distribution spanned by the matrix g(x) is involutive, then one can find n−m change

of coordinates into the (Isidori) normal form [28].

Consider k semi-passive systems described by system Σ (2.86) transformed into normal

form

żj = q(zj , yj) (2.91)

ẏy = a(zj , yj) + bj(zj , yj)uj (2.92)

for j = 1, . . . , k, and where functions q, a, bi are smooth

Theorem 2.2.7 ([142]). Consider the k systems (2.91) and assume that:

1. The functions q, a, bi (1 ≤ i ≤ m) are continuous and locally Lipschitz.

2. Each system

żj = q(zj , yj)

ẏy = a(zj , yj) + bj(zj , yj)uj

is strictly semi-passive.

3. There exists a C2-smooth positive definite function V0 : Rm → R+ and a positive

number α ∈ R such that the following inequality is satisfied

(5V0(zi − zj))>(q(zi, yi)− q(zj , yj)) ≤ −α‖zi − zj‖2 (2.93)

for any 1 ≤ i, j ≤ k and for all zi ∈ Rm and yi ∈ R.

4. The matrix b1(z1, y1) + · · ·+ bm(zm, ym) is positive definite:

b1(z1, y1) + · · ·+ bm(zm, ym) > 2βIm, β > 0. (2.94)

49



Then for all positive semi-definite matrices Γ all solutions of the closed-loop system (2.91)

with coupling (2.88) are ultimately bounded. Order the eigenvalues λi of Γ such that 0 =

λ1 ≤ λ2 ≤ · · · ≤ λk. Then there exists a positive number λ̄ such that if λ2 ≥ λ̄ then there

exists a globally asymptotically stable subset of the diagonal set

A = {yj ∈ R, zj ∈ Rm|yi = yj , zi = zj , i, j = 1, . . . , k}. (2.95)

Therefore, one can see that in Theorem 2.2.7 that synchronization is determined in a

similar way as for the previous method, the Wu-Chua conjecture [159]. That is, the prob-

lem of determining stability of synchronization relates to two properties of the system: (i)

assumptions of the individual oscillators; and (ii) the eigenvalues of the coupling configu-

ration. One advantage of the semi-passivity argument over such other method of stability,

is that it is robust to desynchronizing bifurcations. If follows that for any given network

topology, for a coupling strength sufficiently strong such that λ2 exceeds the threshold λ̄,

then synchronization of all oscillators is guaranteed.

For the case where the input and output functions B and C are given by the functions

g and h, respectively, additional conditions are required

To check whether the inequality (2.93) of Theorem (2.2.7) is satisfied, one may consider

the convergence property of the system.

Definition 2.2.8 (Demidovich convergence). [142; 116] Consider the system

ż = q(z, w(t)) (2.96)

where the external signal w(t) is taking values from a compact set W ⊂ R. The system is

said to be convergent if:

1. All solutions z(t) are well-defined for all t ∈ (−∞,+∞) and for all initial conditions

z(0).

2. There exists a unique globally asymptotically stable solution zw(t) on the interval

t ∈ (−∞,+∞) from which it follows that

lim
t→∞

‖z(t)− zw(t)‖ = 0 (2.97)

for all initial conditions.

According to Demidovich [116] there exists a simple sufficient condition that guarantees

convergence.

Theorem 2.2.8 ([142]). If there exists a square symmetric and positive definite matrix

P such that all eigenvalues λi(Q) of the matrix symmetric Q,

Q(z, w) =
1

2

[
P

(
∂q

∂z
(z, w)

)
+

(
∂q

∂z
(z, w)

)
P

]
(2.98)
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are negative and separated from zero, i.e. ∃δ > 0 such that

λi(Q) ≤ −δ < 0, (2.99)

for i = 1, . . . ,m and for all z ∈ Rm, w ∈ W, then the system (2.96) is convergent.

This completes the introduction of stability by semi-passivity to the extent needed for

our application in Chapter 3.

2.2.2 Stability of periodic solutions: Basic Floquet theory

Previously we have introduced coordinate transformation of the state-space representation.

Now, we consider another type of coordinate transformation, one that transforms a time-

variant system into a time-invariant one. This is particularly helpful for the stability analysis

of periodic solutions. The main result in this section is the introduction of the concept of

Floquet stability, an efficient method for studying the stability of periodic solutions. For a

more comprehensive decription of stability analysis of periodic systems the reader is directed

to the texts [36; 153; 113], from which the following section reviews.

Definition 2.2.5. (Poincaré Map) Consider ẋ = f(x) with periodic solution x̄(t). Construct

an (n− 1)-dimensional transversal Γ to a corresponding closed orbit Θ. Let a be the point

where Θ intersects Θ. For an orbit φ(x0) starting at x0 ∈ Γ close to a, the phase flow with

return to Γ. The first return or Poincaré map P : U ⊂ Γ→ Γ is defined by

P (x0)− φ(τ ;x0). (2.100)

Notice that a is a fixed point of the map P . P reduces the study of the stability of a periodic

orbit x̄(t) to the stud of the stability of a fixed point a.

Definition 2.2.6. (Stability of Periodic Orbits) The periodic solution x̄(t) (the closed orbit

Θ) is stable if for each ε > 0, there exists δ such that

‖x0 − a‖ < δ ⇒ ‖Pn(x0)− a‖ < ε. (2.101)

Definition 2.2.7. The periodic solution x̄(t) is asymptotically stable if it is stable and if

there exists a δ > 0 such that

‖x0 − a‖ < δ ⇒ lim
n→∞

Pn(x0) = a. (2.102)

The stability of the fixed point a may now be assessed by considering the linearisation

of P . The linearisation of the discrete map P at the fixed point a is given by the matrix

∂P
∂x0

(a). If the moduli of all eigenvalues of this matrix are less than one, the the fixed point

a is stable.
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To construct a Poincaré map analytically is not in general an easy task. This becomes

particularly difficult for high-dimensional systems, hence, for practical problems numerical

methods are generally needed. Closely related to stability by the Poincaré section is Floquet

theory, the main result of this section. Floquet theory differs from the Poincaré section

in that solutions are analytical, i.e., no such transversal to the orbit need be constructed.

Floquet theory is therefore not limited by the high dimension of a given system.

When one wises to transform a periodic system into a time-invariant one, we call this

the Floquet problem. For a given T -periodic system, the Floquet problem is the finding

of an invertible state-space coordinate transformation such that in the new coordinates the

system is time-invariant and T -periodic. In the new basis, the state after one period is

described by a constant matrix. In this new basis

ẋ(t) = A(t)x(t) (2.103)

with periodic solution x̄(t) = x̄(t+T ). The Floquet problem becomes finding a time-invariant

T -periodic invertible state-space transformation of the form:

Consider the linear continuous and T -periodic system

ẋ(t) = A(t)x(t) (2.104)

x(0) = x0

where A(t) = A(t+ T ) is continuous over [0, T ]. Under assumptions of Lipschitz continuity,

the Picard-Lindelöf theorem states that a solution x(t) exists and is unique if and only if it

satisfies

x(t) = x(0) +

∫ t

0

A(τ)x(τ)dτ. (2.105)

This result is achieved by a series of “Picard iterates”, which we denote as xk, that are

convergent such that the solution is the limit of the sequence. In particular, the k-th Picard

iterate may be written

xk(t) = x0 +

∫ t

t0

A(τ)xk−1(τ)dτ. (2.106)

Consider the Peano-Baker series that takes the derivative of each Picard iterate in the

convergent series. In doing so, the solution x(t) can be written in terms of the state-transition

matrix

x(t) =

[
I +

∫ t

t0

A(τ1)dτ1 +

∫ t

t0

A(τ1)

∫ τ1

t0

A(τ2)dτ2dτ1 + . . .

]
x0 (2.107)

where

Φ(t, t0) := I +

∫ t

t0

A(τ1)dτ1 +

∫ t

t0

A(τ1)

∫ τ1

t0

A(τ2)dτ2dτ1 + . . . (2.108)
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is the state-transition matrix. This matrix is unique, and now the solution x(t) can be

written in the more compact form

x(t) = Φ(t, t0)x0. (2.109)

Alternatively, starting from a generic initial condition x(τ) at time τ , the solution is

obtained as:

x(t) = Φ(t, τ)x(τ)

Φ(τ, τ) = I.

Therefore, for any given τ , the matrix Φ(τ, τ) is the principal fundamental matrix which

is the unique solution of the matrix initial value problem

ẋ(t) = A(t)x(t)

x(τ) = x0.

It can be seen that periodicity of the system involves the double periodicity of the matrix

Φ(t, τ) such that

Φ(t+ T, τ + T ) = Φ(t, τ). (2.110)

Properties of the transition matrix:

1. ∂
∂τΦ(t, τ) = −Φ(t, τ)A(τ).

2. Φ(t, τ) = Φ(t, σ)Φ(σ, τ), ∀t, τ, σ.

3. Φ(t, τ) is non-singular for all t, and:

Φ−1(t, τ) = Φ(τ, t). (2.111)

Without loss of generality, we can assume τ = 0, and denote Φ(t, t0) = Φ(t) such that

Φ̇(t) = A(t)Φ(t). (2.112)

Lemma 2.2.3. If Φ(t) is a fundamental matrix solution, then for some constant and non-

singular square matrix B, the matrix Υ(t) = Φ(t)B is also a fundamental matrix solution.

Proof.

Υ̇(t) = Φ̇B = AΦB = AΥ. (2.113)

Moreover, since the matrices Φ and B are non-singular, then it follows that

(ΦB)−1 = B−1Φ−1 = Υ−1 (2.114)

and so the matrix Υ is also non-singular.
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Theorem 2.2.9. Let A(t) be a T -periodic matrix. If Φ(t) is a fundamental matrix then so

is Φ(t+ T ) and there exists a non-singular matrix B such that

1. Φ(t+ T ) = Φ(t)B for all t,

2. det(B) = exp
(∫ T

0
tr(A(s))ds

)
.

Since matrix B is constant then setting t = 0 such that B = Φ−1(0)Φ(T ), and taking

initial conditions Φ(0) = I, then

B = Φ(T ). (2.115)

The transition matrix over one period defines an important matrix, called the monodromy

matrix

Ψ(t) = Φ(t+ T, t). (2.116)

The monodromy matrix Ψ(t) relates the value of the state at time t to the value after

one period T ,

x(t+ T ) = Ψ(t)x(t). (2.117)

The eigenvalues of the monodromy matrix are called characteristic multipliers and is

hence a central tool in the stability analysis of periodic systems since its eigenvalues deter-

mine how perturbations of the periodic orbit grow or decay.

Definition 2.2.9 (Characteristic multipliers and exponents). The eigenvalues ρ1, . . . , ρn of

B are called the characteristic multipliers for Φ̇(t) = A(t)Φ(t). The characteristic exponents

or Floquet multipliers are the µ1, . . . , µn satisfying

ρ1 = expµ1T , ρ2 = expµ2T , . . . , ρn = expµnT . (2.118)

Note that µj for j ∈ N may be complex.

These characteristic multipliers satisfy the following properties:

1. For B = Φ(T ) and Φ(0) = I,

det(B) = ρ1ρ2 · · · ρn = exp

(∫ T

0

tr(A(s))ds

)
. (2.119)

2. Since the trace is the sum of the eigenvalues

tr(B) = ρ1 + ρ2 + · · ·+ ρn. (2.120)

3. The characteristic exponents are not unique since if ρj = expµjT , then ρj = exp(µj+2πi/T )T .
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4. The characteristic multipliers ρj are an intrinsic property of the equation Φ̇(t) =

A(t)Φ(t) and do not depend on the choice of the fundamental matrix.

Consider a nonsingular matrix Q. Then there exists a complex matrix A0 such that

Q = expA0 . Moreover, the matrix A0 is not unique: for any integer k,

expA0+2πikI = expA0 exp2πik I = eA0 . (2.121)

Now, we may state the main result, the Floquet theorem. The main result here is to

find a constant matrix, i.e. time invariant matrix, representation for the system dynamics.

Theorem 2.2.10. If the T -periodic system ẋ(t) = A(t)x(t) has fundamental matrix solution

Φ(t, τ), then it also has as solution Φ(t+ T, τ). Moreover, if A0 is such that Ψ(τ) = expA0 ,

then there exists a non-singular T -periodic matrix P (t) such that

Φ(t, 0) = P (t) expA0t . (2.122)

Proof. Let Ψ(t) = Φ(t + T ) be the monodromy matrix. Then Ψ is also a fundamental

matrix solution. It follows that there exists a non-singular and constant matrix B called

the Floquet multiplier matrix such that Φ(t+ T ) = Φ(t)B. Since matrix B is non-singular,

then one can find a matrix Q such that expTQ = B for period T . Consider now the matrix

P (t) defined for all t such that P (t) = Φ(t) exp−Qt. It remains to be shown that the matrix

P (t) is periodic with period T .

P (t+ T ) = Φ(t+ T ) exp−Q(t+T ) = Φ(t) exp−QT exp−Qt

= Φ(t) exp−Qt = P (t).

This completes the introduction of stability analysis of periodic solutions by Floquet

multipliers. In Chapter 3 we employ the use ot the software DDE-Biftool [44], that provides

numerical analysis of stability of periodic behaviour by Floquet multipliers, to the study of

diffusively coupled FitzHugh-Nagumo osccilators [46] exhibiting periodic motion.

Conclusion

In the first section we introduced core concepts on nonlinear system needed in order to study

stability properties. In the second section, we reviewed some popular methods for studying

the stability properties of a system of identical oscillators.

For stability of the synchronous state we described the Connection Graph Stability [12],

the Wu-Chua conjecture [159], Master stability function [117], semi-passivity argument [121].
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The semi-passivity argument is an extension of the classical dissipativity and passivity meth-

ods for analysing stability of synchronization [28] and generalises well to systems of non-

identical oscillators. These methods, however, are limited by more complex equilibria. For

stability of periodic solutions we briefly introduce Floquet theory, the attraction of solutions

to a limit cycle. In the next chapter, we apply stability methods of semi-passivity and Flo-

quet multipliers to determine regions of stability for synchronization and periodic solutions,

in particular rotating waves.
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Chapter 3

Small Changes In Topology

May Have Big Consequences On

Activity

3.1 Introduction

Understanding the dynamics of interconnected systems of nonlinear ordinary differential

equations is arguably amongst the oldest and inspiring problems. Objects of this type

occur in a broad range of fields of engineering and science [145]. Significant progress has

been made in this area with regards to general laws governing the emergence of various

synchronous states, see e.g. [119] and references therein; and the presence of intricate

dependencies between network topologies, properties of individual nodes and dynamics in

networks have now been elucidated by many authors [57; 121; 132; 120; 13; 14]. Despite

this progress, however, a few fundamental questions remain, including the question, how a

specific configuration of network topology and weights may affect the overall behaviour of

the network. This problem is closely related to the fundamental question of how a change

in network topology may influence the behaviour of systems.

This issue is critical for understanding patterns of activity [52]. It is well known that a

sufficiently strong diffusive coupling will lead to synchronization in a large assemble of non-

linear systems [121]. However, it has been shown that small changes in topology can have a

dramatic affect on this relation between coupling strength and synchronization: [14] showed

that shortcuts in otherwise regular lattices significantly reduce the critical coupling strength

needed for achieving globally asymptotically stable synchronization. Hence, networks with
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shortcuts can be considered more efficient that regular ones in terms of resources spent such

as the total number of connections and their strength needed to reach and maintain syn-

chronization. Understanding the problem of how the network topology affects its dynamics

is a huge theoretical and practical challenge if considered in its full generality.

In this chapter, we consider two basic and extreme network topologies which any net-

work will contain as a subgraph: the directed chain and the directed cycle. These two

configurations are closely related, differing only by one edge.

These two network motifs may constitute basic building blocks for arbitrary network

topologies. On large scales, directed chains and directed cycles may take complex forms,

such as large scale feedforward and feedback loops in the V1 visual processing region of the

brain [93]. Feedforward connections may transfer information from one region to another,

for example the transfer of visual information into behavioural responses. On the other

hand, feedback loops may give rise to attentional mechanisms that go beyond the capacity

of feedforward topologies, such as visual awareness.

Feedback loops are of great importance in the mammalian nervous system. Recent

computational studies revealed that cycles could be important on their own for sustaining

coherent oscillatory network activity [54]. Moreover, on a much smaller spatial scale, pos-

itive feedback loops are responsible for action potential generation of individual neurons.

If a neuron is depolarized sufficiently to raise the membrane potential above a threshold

level, a positive feedback process is initiated, and the neuron generates an action potential.

Associative memory networks have been suggested as models of various parts of the mam-

malian brain in which there is substantial recurrent feedback, including area CA3 of the

hippocampus and parts of the prefrontal cortex [85]. In reinforcement learning, the network

output is not constrained by a teacher, but evaluative feedback in network performance is

provided in the form of reward or punishment [146].

To better understand the role that these two simple network topologies play, we begin

by first considering them in their most basic form; a system of linear equations. Then, we

extend to the highly non-trivial case of coupled nonlinear systems. Finally, we finish this

chapter by considering a more generalised network structure, and hence better model for

natural systems, that of a directed cycle with modular subgraphs.

3.2 Preliminaries: Circulant matrices

First, let us introduce some basic concepts of circulant matrices that will be of use later in this

chapter. Circulant matrices are on their own a special class of matrix, and carry with them

a special set or properties. In particular, the main result we present is the diagonalisation
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of circulant matrices. This result will aid later analysis of such graph configurations. This

section is a review of [133], for which the reader is directed for a more comprehensive

discussion on circulant matrices.

Consider the complex n-row vector

v = (v0, . . . , vn−1) ∈ Cn

and define a shift operator T : Cn → Cn by

T (v0, . . . , vn−2, vn−1) = (vn−1, v0, . . . , vn−2).

Then, a circulant matrix may be defined as follows.

Definition 3.2.1. The circulant matrix V = circ{v} associated to the vector v ∈ Cn is the

n × n matrix whose rows are given by iterations of the shift operator acting on v; its k-th

row is T k−1v, k = 1, . . . , n:

V =



v0 v1 · · · vn−2 vn−1

vn−1 v0 · · · vn−3 vn−2

...
...

. . .
...

...

v2 v3 · · · v0 v1

v1 v2 · · · vn−1 v0


. (3.1)

We denote by Circ(n) the set of all n× n complex circulant matrices.

The ordered n-tuples of complex numbers can be viewed as the elements of the inner

product space Cn with the following basis. Define for l = 0, . . . , n− 1,

xl =
1√
n

(1, εl, ε2l, . . . , ε(n−1)l) ∈ Cn (3.2)

where ε = e
2πi
n is the primitive n-th root of unity. Introduce a special case of the Vander-

monde matrix

E =
1√
n



1 1 · · · 1 1

1 ε · · · εn−2 εn−1

...
...

. . .
...

...

1 εn−2 · · · ε(n−2)2 ε(n−2)(n−1)

1 εn−1 · · · ε(n−1)(n−2) ε(n−1)2


.

The n-th root of unity, where n is a positive integer, satisfies εn = 1. An n-th root of

unity is primitive if it is not a k-th root of unity for k smaller: εk 6= 1, k = 1, 2, . . . , n − 1.

Note that the matrix E is unitary, i.e., E−1 = Ē> or E∗E = EE∗ = I, where I is the

identity matrix. Non-singularity of matrix E can be seen by the calculation that
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detE = n−
n
2

∏
0≤i<j≤n−1

(εj − εi) 6= 0.

This result is realised using the Leibniz formula for square Vandermonde matrices.

Since E is non-singular, then the {xl} form an orthonormal basis for Cn, to be denoted

by x.

Definition 3.2.2. The (polynomial in the indeterminate X) representer PV of the circulant

matrix V is

PV (X) =

n−1∑
i=0

viX
i.

Theorem 3.2.1. If v = (v0, . . . , vn−1) ∈ Cn and V = circ{v}, then

detV =

n−1∏
t=0

n−1∑
j=0

εjlvj

 =

n−1∏
l=0

PV (εl).

Proof. We view the matrix V as a self-map Ve,e of Cn. For each integer l, 0 ≤ l ≤ n− 1, let

λl = v0 + εlv1 + · · ·+ ε(n−1)lvn−1 = PV (εl).

A calculation shows that V xl = λlxl. Thus λl is an eigenvalue of V with normalised

eigenvector xl. Since, by ref eq, {x0, x1, . . . , xn−1} is a linearly independent set of vectors

in Cn, the diagonal matrix with the corresponding eigenvalues is conjugate to V and we

conclude that detV =
∏n−1
l=0 λl.

Corollary 3.2.1. All circulant matrices have the same ordered set of orthonormal eigen-

vectors {xl}.

Now we reach the main result of this section, diagonalisation of circulant matrices.

Theorem 3.2.2. All elements of Circ(n) are simultaneously diagonalised by the unitary

matrix E; that is, for V in Circ(n),

E−1V E = DV (3.3)

is a diagonal matrix and the resulting map

D : Circ(n)→ Dn

is a C-algebra isomorphism and where Dn is the space of all diagonal matrices.

Proof. The n×n matrix E represents the linear automorphism of Cn that sends the unit vec-

tor el to the unit vector xl, where el is the standard orthonormal basis; ei = (δi,0, . . . , ei,n−1),

0 ≤ i ≤ n − 1, where δi,j is the Kronecker delta. If V is a circulant matrix, and DV is the

diagonal matrix with entries given by the ordered eigenvalues of V : λ0, . . . , λn−1, then (3.3)

holds.
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Corollary 3.2.2. The inverse of an invertible element of Circ(n) also belongs to Circ(n).

Proof. If V is a non-singular circulant matrix, then DV is invertible, and D−1
V = DV −1 .

3.3 Leaders do not look back, or do they?

To begin, we study the points of equilibria of the two configurations in their linear form. A

system of linear first-order differential equations used to describe a dynamical system allows

for the calculation of the eigenvalues and eigenvectors. Points of equilibrium correspond to

eigenvectors associated with the zero eigenvalue. The number of points of equilibria is equal

to the multiplicity of the zero eigenvalue. The eigenvalues of such systems describe stability

of points of equilibrium, and moreover, the rate at which solutions decay or grow towards

or from solutions of equilibrium.

3.3.1 Minimal properties of the directed chain

The simple chain is the configuration of n systems and n− 1 edges, where each system has

directed edge to the next, i.e., system i has directed edge to system i+1 for i = 1, . . . , n−1.

For the case of n finitely many systems coupled with arbitrary weights qij > 0, qij ∈ R,

the system has a single asymptotically stable equilibrium. The first eigenvalue is zero, with

multiplicity one, all other eigenvalues are negative.

Theorem 3.3.1. Let Tn be a lower triangular matrix or order n,

Tn =


a11 0 · · · 0

a21 a22
. . .

...
...

. . . 0

an1 · · · ann

 . (3.4)

Then, the determinant of matrix Tn is equal to the entries along the main diagonal of Tn,

det(Tn) =

n∏
i=1

aii. (3.5)

To prove this results, first we must introduce the definition of a cofactor expansion of a

matrix determinant and how this relates to triangular matrices

Definition 3.3.1. (Cofactor) Let A be a square n × n matrix with entries (aij) for 1 ≤

i, j ≤ n. Denote Mij as the minor matrix obtained by deleting the i-th row and j-th column

of matrix A. Then, the i, j-th cofactor of matrix A is,

Cij = (−1)i+jaij det(Mij). (3.6)
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Using this definition, the determinant of matrix A can be expressed by the sum of

cofactors

det(A) =

n∑
j=1

C1j =

n∑
i=1

Ci1. (3.7)

For (lower) triangular matrix Tn, this becomes

det(A) = C11 (3.8)

since C1j = 0 for all j > i.

Lemma 3.3.1. For the i-th row (or j-th column), the determinant of lower (or upper)

triangular matrix Tn is Cii (or Cjj).

Proof. Theorem (3.3.1) is proven by method of induction.

Begin by taking the base case for n = 2,

Tn =

 a11 0

a21 a22


and so

det(T2) = a11a22.

For finite and arbitrary n, assume that

det(Tn) =

n∏
i=1

aii.

To take the inductive step, expand matrix Tn across the (n+ 1)-th row so that,

Tn+1 =


[Tn]

0
...

0

a(n+1)1 · · · a(n+1)n a(n+1)(n+1)


Using the cofactor expansion to express the determinant of matrix Tn+1, and using

Lemma (3.3.1), then

det(Tn+1) =

n+1∑
i=1

Ci(n+1) = C(n+1)(n+1)

= (−1)2(n+1)a(n+1)(n+1) det(M(n+1)(n+1))

= a(n+1)(n+1) det(Tn) (3.9)
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Using Theorem (3.3.1), we can easily determine the eigenvalues of matrix K, where K

is the directed chain. The characteristic polynomial of matrix K is

det(K − λI) =

n∏
i=1

(qii − λ).

Therefore, the first eigenvalue is zero, since q11 = 0, and all other eigenvalues are negative

(and real), since qii < 0 for i = 2, . . . , n. Hence, for all initial conditions, the states of all

systems asymptotically converge to the state of system leading system.

3.3.2 Extremal properties of the directed cycle

The case of the directed cycle is much less trivial than the directed chain. Indeed, there

is a small change in topology from the simple chain; it is the closure of the chain by the

addition of an edge from the n-th vertex to the first. It is defined as a closed walk with

no repetitions of vertices and edges, other than the starting (and ending) vertex. However,

by no means does it lead to a small change in the stability properties of the equilibria. In

this section recall the work presented in [61], in which all linear systems satisfying a simple

condition are considered. All original Figures and proofs can be found in [61; 60]. In doing

so, it is shown that the directed cycle with equal weights, referred to as the simple cycle,

exhibits extremal behaviour, contrary to the asymptotic stability of the directed chain. In

particular, for all matrices satisfying the condition that its column sums are all zeros, the

simple cycle has the slowest decay of oscillations, i.e. perturbations take the longest time

to decay. An important consequence of this extremal property of the simple cycle is that

not only transients in the cycle decay very slowly but also that the overall behaviour of

transients becomes extremely sensitive to perturbations.

Consider the following system of linear first-order differential equations

Ṗ = KP (3.10)

where P = col(p1, p2, . . . , pn) ∈ Rn, and a matrix K = (kij), where

kij =

 qij if i 6= j

−
∑
m,m 6=i qmi if i = j.

, (3.11)

Off-diagonal entries kij , i 6= j, of K represent connection weights, from agent j to agent

i in the network. The matrix K is also related to the Laplacian matrix for an associated

directed adjacency matrix. Denote Din as the diagonal matrix of in-degrees, such that

Dii =
∑
j aij , we then define the Laplacian matrix of an associated directed matrix as,

L = Din −A. (3.12)

63



Thus, for an associated directed network, L = −K>.

System (3.10) is known as the master equation and is commonly used to describe the

temporal evolution of first-order kinetic systems with finite number of states. In this case

the variables pi can represent concentration, probability, or population of these states, in

other words, a first–order differential equation that describes the probability that a system

will occupy one of it’s states at time t.

Consider the simple simplex

∆n =

{
P |pi ≥ 0,

∑
i

pi = 1

}
. (3.13)

∆n is forward invariant under the dynamics (3.10) as it preserves non-negativity and observes

the “conservation law”
∑
i pi = constant, following from the fact that K has zero column

sums. Therefore, any solution P (·; t0, P0) of (3.10) starting from P0 = P (t0) ∈ ∆n remains

in ∆n for all t ≥ t0. This invariance can be used to prove certain important properties of

K and its associated system (3.10), such as the existence of an equilibrium P ∗.

Let Φ : ∆→ ∆ be a continuous mapping from ∆ to itself. According to Brouwer’s Fixed

Point Theorem, every continuous function from a convex subset of a Eulidean space onto

itself, has a fixed point [131]. Therefore, since ∆ is compact and convex, then there exists

a point P ∗ such that P ∗(t) = P ∗(t0) for all t ≥ t0.

Also, forward invariance of ∆, in combination with fixed point P ∗, asserts the existence

of a zero eigenvalue. This is shown by contradiction.

Lemma 3.3.2. Matrix K has a leading zero eigenvalue λ, i.e., eigenvalue λ is not purely

imaginary.

Proof. Using Gershgorin’s circle theorem, all eigenvalues of matrix K are contained within

the union of discs Di, where discs are defined by,

Di = {λ ∈ C|‖λ− qii‖ ≤
∑
j 6=i

|qji|}. (3.14)

Since matrix K has zero column sums, then,∑
j 6=i

|qji| = |qii|, i = 1, . . . , n,

and so we can locate the eigenvalues to be contained within the discs

Di = {λ ∈ C|‖λ− qii‖ ≤ |qii|}. (3.15)

Since off-diagonal entries of matrix K are all nonnegative, qij ≥ 0 for all i 6= j, then it

follows that the largest eigenvalue to be contained within the union of discs Di is λ0 = 0.
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(a) (b)

Figure 3.1: The imaginary axis (Im) in the vertical, and the real axis (Re) in the horizontal.

(a) Example of Gershgorin discs where the maximum eigenvalue is zero. (b) Zoom of (a).

Moreover, assuming K is irreducible (i.e. it is strongly connected, the Perron-Frobenius

theorem asserts that eigenvalue λ0 is unique. Therefore, all Gershgorin discs are contained

in the left half-plane, with one disc touching the imaginary axis at zero, as shown in Figure

3.3.2. Therefore, there cannot exist any purely imaginary eigenvalues.

Alternately, this result can also be deduced from the forward invariance of ∆n in com-

bination with the assumption of a positive equilibrium P ∗.

Proof. Assuming no zero eigenvalue, hence exclude its corresponding eigenvector. Then,

consider K on the invariant hyperplane
∑
i pi = 0. If K has a purely imaginary eigenvalue

λ, then there exists a 2D K-invariant subspace U , such that in this subspace K has two

conjugated eigenvalues, λ and λ̄ = −λ. Restriction of exp(tK) on U is a one parametric

group of rotations. For the positive equilibrium P ∗ the intersection (U + P ∗) ∩ ∆ is a

convex polygon. It is forward invariant with respect to (3.10) since U is invariant, P ∗ is an

equilibrium and ∆ is forward invariant. However, a polygon in a plane cannot be invariant

to the one-parametric semigroup of rotations exp(tK) (t ≥ 0). This contradiction proves

the absence of purely imaginary eigenvalues.

Theorem 3.3.2. For every nonzero eigenvalue λ of matrix K

|=λ|
|<λ|

≤ cot
π

n
. (3.16)

65



As this theorem is central to the results of this chapter, the proof, as originally stated in

[60; 61] is also included here for the benefit of the reader; understanding the following proof

will aid in understanding the underlying mechanisms for the main results of this chapter.

Proof. Let us assume that system (3.10) has a positive P ∗ ∈ ∆n: for all i = 1, . . . , n, pi∗ > 0

and

∑
j

qijpj∗ =
∑
i

qjipi ∗ . (3.17)

Systems with non-negative equilibria may be considered as limits of the systems with

positive equilibria.

Let λ be a complex eigenvalue of K and let U be a 2D real subspace of the hyperplane∑
i pi = 0 that corresponds to the to the pair of complex conjugated eigenvalues (λ, λ̄). Let

us select a coordinate system in the plane U +P ∗ with the origin at P ∗ such that restriction

of K on this plane has the following matrix

K =

 <λ −=λ

=λ <λ.

 . (3.18)

In this coordinate system, the solution of (3.10) is

P ∗ = exp(tK)P0∗ (3.19)

where

exp(tK) =

 < cos(t=λ) −= sin(t=λ)

= sin(t=λ) < cos(t=λ).

 . (3.20)

The intersection A = (U + P ∗) ∩ ∆n is a polygon. Since ∆n has n faces, each face

(n− 2)-dimensional, then A has no more than n sides.

Let the polygon A have m vertices vj for j = 1, . . . ,m. Move the origin of A to P ∗ and

enumerate anti-clockwise the vectors xi = vi−P ∗ Figure (3.2). Each pair of vectors xi, xi+1

modulo m form a triangle with angles αi, βi, and γi, where βi is the angle between xi and

xi+1, modulo m.

The Sine theorem provides the relation of angles

|xi|
sinαi

=
|xi+1|
sin γi

(3.21)

modulo m.

Several elementary identities and inequalities hold:
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γi 

βi 

αi 

xi 

δ 
Kxi 

αi+1 

γi–1  

xi+1 

P
*
 

Figure 3.2: The polygon A is presented as a sequence of vectors xi. The angle βi between

vectors xi and xi+1 and the angles αi and γi of the triangle with sides xi and xi+1 are

shown. In the Figure, rotation goes anticlockwise, i.e. =λ < 0. In this case, the polygon

A is invariant with respect to the semigroup exp(tK) (t ≥ 0) if and only if δ ≤ αi for all

i = 1, . . . ,m, where δ is the angle between the vector field Kx and the radius-vector x.

0 < αi, βi, γi < π;
∑
i

βi = 2π; αi + βi + γi = π;∏
i

sinαi =
∏
i

sin γi (the closeness condition) (3.22)

These conditions (3.22) are necessary and sufficient for the existence of a polygon A with

these angles which is star-shaped with respect to the origin.

A star-shaped polygon is a polygonal region in the plane that contains a point from

which the entire polygon boundary is visible: there exists a point z such that for each point

p of A the segment zp lies entirely within A. The set of all points z with this property (that

is, the set of points from which all of A is visible) is called the kernel of A.

Let us consider anticlockwise rotation (=λ < 0, Figure (3.2)). The case of clockwise

rotation differs only in notations. For the angle δ between Kxi and xi, sin δ = −=λ,

cos δ = −<λ, and tan δ = =λ
<λ .

For each point x ∈ U + P ∗ (x 6= P ∗), the straight line {x + εKx | ε ∈ R} divides the

plane U + P ∗ in two half-plane (Fig. 3.2, dotted line). Direct calculation shows that the

semi-trajectory {exp(tK)x | t ≥ 0} belongs to the same half-plane as the origin P ∗ does.

Therefore, if δ ≤ αi for all i = 1, . . . ,m then the polygon A is forward-invariant with

respect to the semigroup exp(tK) (t ≥ 0). If δ > αi for some i then for sufficiently small

t > 0 exp(tK)xi /∈ A because Kxi is the tangent vector to the semi-trajectory at t = 0.
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Thus, the polygon A is forward-invariant with respect to the semigroup exp(tK) (t ≥ 0)

if and only if δ ≤ αi for all i = 1, . . . ,m. The maximal δ for which A is still forward-

invariant is δmax = mini{αi}. We have to find the polygon with m ≤ n and the maximal

value of mini{αi}. Let us prove that this is a regular polygon with n sides. Let us find the

maximizers αi, βi, γi (i = 1, . . . ,m) for the optimization problem:

min
i
{αi} → max subject to conditions (3.22). (3.23)

The solution of this problem is that all αi are equal. To prove this equality, observe that

mini{αi} < π
2 under conditions (3.22) (if all αi ≥ π

2 then the polygonal chain A cannot

be closed). Let mini αi = α. Let us substitute in (3.22) the variables αi which take this

minimal value by α. The derivative of the left hand part of the last condition in (3.22) with

respect to α is not zero because α < π
2 . Assume that there are some αj > α. Let us fix

the values of βi (i = 1, . . . ,m). Then γi is a function of αi, γi = π − βi − αi. We can

use the implicit function theorem to increase α by a sufficiently small number ε > 0 and to

change the non-minimal αj by a small number too, αj 7→ αj − θ; θ = θ(ε). Therefore, at

the solution of (3.23) all αj = α (j = 1, . . . ,m).

Now, let us prove that for solution of the problem (3.23) all βi are equal. We exclude γi

from conditions (3.22) and write βi + α < π; 0 < βi, α;

m log sinα =
∑
i

log sin(βi + α). (3.24)

Let us consider this equality as equation with respect to unknown α. The function log sinx

is strictly concave on (0, π). Therefore, for xi ∈ (0, π)

log sin

(
1

m

m∑
i=1

xi

)
≥ 1

m

m∑
i=1

log sinxi

and the equality here is possible only if all xi are equal. Let α∗ ∈ (0, π/2) be a solution of

(3.24). If not all the values of βi are equal and we replace βi in (3.24) by the average value,

β = 2π
m , then the value of the right hand part of (3.24) increases and sinα∗ < sin(β + α∗).

If we take all the βi equal then (3.24) transforms into elementary trigonometric equation

sinα = sin(β + α). The solution α of equation (3.24) increases when we replace βi by the

average value: α > α∗ because sinα∗ < sin(β + α∗), α ∈ (0, π/2) and sinα monotonically

increases on this interval. So, for the maximizers of the conditional optimization problem

(3.23) all βi = 2π
m and αi = γi = π

2 −
π
m . The maximum of α corresponds to the maximum

of m. Therefore, m = n. Finally, max{δ} = π
2 −

π
n and

max

{
|=λ|
|<λ|

}
= cot

π

n
.
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Remark 3.3.1. It is important to note that the bound given in Theorem 3.3.2 is sharp.

Indeed, let K define a directed cycle with uniform weights q, e.g.

K =



−q 0 0 · · · 0 q

q −q 0 · · · 0 0

0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0 0

0
. . . q −q 0

0 0 · · · 0 q −q


.

The eigenvalues of K are

λk = −q + q exp

(
2πki

n

)
, k = 0, 1, . . . , n− 1,

cf. [37], with i =
√
−1 the imaginary unit. Thus λ1 = cot πn . Note that for large n,

cot
π

n
≈ n

π
,

which means that oscillations in a simple cycle with a large number of systems decay very

slowly.

An important consequence of this extremal property of a simple cycle is that not only

transients in the cycle decay very slowly but also that the overall behaviour of transients

becomes extremely sensitive to perturbations. This, as we show in the next sections, gives

rise to resonances and bistabilities if neutrally stable nodes in (3.10) are replaced with the

ones exhibiting oscillatory dynamics.

Coupled nonlinear oscillators

Linear systems give valuable insight into the local behaviour of nonlinear systems. However,

they remain an approximation. Unlike linear systems, a nonlinear system may have multiple

equilibrium points, some of which may be stable and some unstable. In this section we

consider the problem of nonlinear oscillators coupled in the directed chain and directed

cycle configurations. Indeed, the linear systems predict well the stability of equilibria in

each configuration. However, as we will discuss in this section, the nonlinearity of individual

oscillators can give rise to more complex solutions than described by linear systems. In

particular, this section demonstrates that small changes in topology - the addition of a single

edge - can give rise to entirely different solutions, and even multi-stability. In this section

we review the work presented in [61]. From here on, we use as nonlinear oscillators the

FitzHugh-Nagumo (FHN) neuron. The FHN neuron is one of the simplest models of spiking
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dynamics of a neuron; a generalization of the Van der Pol oscillator and a two-dimensional

reduction of the Hodgkin-Huxley model of spike generation in squid giant axons. The model

is given by the following set of differential equations żj = α (yj − βzj)

ẏj = yj − γy3
j − zj + uj ,

(3.25)

j = 1, 2, . . . , n with parameters α, β, γ chosen as

α = 8
100 , β = 8

10 , γ = 1
3 .

In the FHN model, the variables have no direct physiological interpretation. However, for the

parameters that we use, as stated above, the qualitative behaviour of the y and z dynamics

are similar to that of the voltage and gating variables, respectively, in the Hodgkin-Huxley

equations.

Networks are constructed by diffusively coupling the FHN neurons

uj = σ

n∑
l=1

qjl(yl − yj) (3.26)

with constant σ ∈ R, σ > 0, being the coupling strength. For convenience, let

y = (y1, . . . , yn), u = (u1, . . . , un), x = (y, z),

and x(·;x0, σ) denote a solution of the coupled system with the coupling strength σ and

satisfying the initial condition x(0) = x0. The topology of network connections in (3.26)

is characterized by adjacency matrix A, with entries qij . We consider two configurations,

the simple chain - the directed chain with all connection weights equal to one - and the

simple cycle - the directed cycle with all connection weights equal to one. We assume the

interaction weights qjl to be identical and, without loss of generality, we have set these

weights of interaction to 1. Consider the case of the simple cycle, then the adjacency matrix

appears as

A =



0 0 · · · 0 1

1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0

0 · · · 0 1 0


.

At the first glance, the connectivity pattern specified by A differs from that specified by

matrix K in (3.11). Yet, if coupling (3.26) is rewritten in the vector-matrix notation then

the following identity holds

u = σ(A− In)y , −σLy. (3.27)
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As remarked before, the network Laplacian matrix

L = Diag

∑
j 6=l

qjl

−A = In −A

relates to K as L = KT .

In what follows we will employ the notions of semi-passivity and strict semi-passivity as

first reported in [121] and described in Chapter 2.2.

3.3.3 Synchronization in the simple chain

The simple behaviour of the simple chain investigated for linear first-order differential equa-

tions is extended to the more general case of nonlinear systems. We show that the property

of a single asymptotically stable equilibrium is satisfied for sufficiently strong coupling.

Boundedness of solutions in coupled system

For the case of finitely many systems, coupled in the directed chain configuration, we show

that solutions are bounded by the invariant box argument. Consider the box Bz,y = {y, z ∈

R||z| ≤ 15
8

√
3, |y| ≤ 3

2

√
3}. Denote these bounds as |y| ≤ by and |z| ≤ bz. It can easily be

calculated that at the boundaries of this box, for all coupling strengths σ > 0, the vectorfield

of the system does not point outward. Therefore, the box is a positively invariant set, i.e.

solutions of the coupled system starting within the box never leave.

In Figure 3.3, the phase portrait and corresponding nullclines for the FHN dynamics

of a single neuron are shown within the invariant box Bz,y. At the boundaries of Bz,y

black arrows point inward; the vector field does not point outward, it is forward invariant.

This can be shown by assessing the vector field at the boundaries. Forward invariance is

guaranteed if the following are satisfied:

ż (bz, |y| ≤ by) ≤ 0

ż (−bz, |y| ≤ by) ≥ 0

ẏ (|z| ≤ bz, by) ≤ 0

ẏ (|z| ≤ bz,−by) ≥ 0.

Consider the ”top” of the box, i.e., upper boundary on z:

ż (bz, |y| ≤ by) = α(y − βbz) ≤ 0 (3.28)

is satisfied for

y ≤ βbz =
3

2

√
3 = by. (3.29)
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Figure 3.3: In blue are the vectors of the phase portrait; the tractories of the system (ż, ẏ)

for initial conditions taken over a discrete grid. In red the z nullclines: z = 1
β y. In green

the y nullcline: z = y − γy3. In black the box Bz,y =
{
y, z ∈ R||z| ≤ 15

8

√
3, |y| ≤ 3

2

√
3
}

for

which the system (ż, ẏ) is forward invariant.

Moreover, inside the box, i.e., not including the boundaries, the vector field points away

from the boundary, i.e., the vector field is strictly negative, ż < 0. Forward invariance of

the box Bz,y is assured by repeating this for the other boundaries.

This result is easily extended to the system of two coupled FHN neurons in the directed

chain configuration. Consider the dynamics of two coupled systems in the leader-follower

configuration:

 ż1 = α (y1 − βz1)

ẏ1 = y1 − γy3
1 − z1

(3.30)

 ż2 = α (y2 − βz2)

ẏ2 = y2 − γy3
2 − z2 + σ(y1 − y2)

(3.31)

(3.32)

As coupling is only in the y variable, we need only show that trajectories of the coupled

system y2 are bounded from the right and left of Bz,y. The following must be satisfied:
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ẏ2 (|z| ≤ bz, by) ≤ 0

ẏ2 (|z| ≤ bz,−by) ≥ 0.

Assuming system (y1, z1) begins inside the box Bz,y, then for σ > 0,

ẏ2 (z, by) = (1− σ)by − γb3y − z + σy1 ≤ 0 (3.33)

is satisfied for |z| ≤ bz. Similarly for the lower boundary on y, y ≥ −by, ẏ2 ≥ 0.

The semi-passivity argument introduced earlier, and which we employ in the next sec-

tion, cannot be applied to the directed chain. The reason for this, is that the directed chain

is not strongly connected. Whereas the semi-passivity argument proves ultimate bounded-

ness, i.e. convergence to some compact set, the invariant box argument does not guarantee

convergence, only that solutions are bounded within. One advantage of the invariant box

argument, however, is that it needs no assumption on network topology. Therefore, we can

extend the property of boundedness to infinitely many systems, but this serves no purpose

here.

Sufficient conditions for synchronization

First we consider the dynamics of two coupled systems in the leader-follower configuration

as described in Equation (3.30).

Theorem 3.3.1. Consider the system of coupled FHN oscillators (3.30) in which the pa-

rameter σ is chosen so that

σ > 1.

Then solutions of the system asymptotically synchronize for all values of initial conditions.

Proof. In accordance with the invariant box argument, if x0 ⊂ Bz,y initial conditions within

the invariant box, solutions of the coupled system exist and are bounded for all t > 0. Define

the errors

z̃ = z1 − z2, ỹ = y1 − y2,

so that

˙̃z = α (ỹ − βz̃)

˙̃y = ỹ − γ(y3
1 − y3

2)− z̃ − σỹ.

Consider the Lyapunov function

V = 1
2

(
1
α z̃

2 + ỹ2
)
,
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then, using the equality

1

4
(y1 − y2)2(3(y1 + y2)2 + (y1 − y2)2) = (y2

1 + y2
2 − 2y1y2)(y2

1 + y2
2 + y1y2)

= y4
1 + y4

2 − y1y
3
2 − y3

1y2

= (y1 − y2)(y3
1 − y3

2)

we find that

V̇ =
1

σ
z̃ ˙̃z + ỹ ˙̃y

= −βz̃2 + (1− σ)ỹ2 + γỹ(y3
1 − y3

2)

= −βz̃2 + (1− σ)ỹ2 +
γ

4
ỹ2(3(y1 + y2)2 + (y1 − y2)2)

Thus if σ > 1 we have V̇ ≤ 0 and the chain of FHN neurons synchronizes.

Generalizing two coupled systems to a directed chain of n oscillators, we observe that

the Laplacian matrix of this configuration is

L =



0 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1
. . .

...
...

. . .
. . .

. . . 0

0 · · · 0 −1 1


.

The matrix L has only real eigenvalues; a simple zero eigenvalue and n − 1 eigenvalues 1.

The only type of stable correlated oscillations we can find in the chain are the completely

synchronous oscillations. These synchronous oscillations will emerge for values of the cou-

pling strength σ for which the chain of 2 FHN oscillators synchronize. Thus the conditions

for synchronization are independent of the size of the network (i.e. the length of the chain).

Numerical simulations below illustrate this statement.

Figure 3.4 shows the outputs of two FHN oscillators and the synchronization output error

for σ = 1.5. Figure 3.5 shows the results for longer chains; Even though the convergence to

the synchronous state is slower for longer chains, the oscillators in the chains always end up

in synchrony.

3.3.4 Synchronization in the simple cycle

As with the simple chain, the extremal property of the simple cycle investigated for linear

first-order differential equations is extended to the more general case of nonlinear systems.

We show that the damped oscillations and slow decay resonate with nonlinear systems. This
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(a) (b)

Figure 3.4: Synchronization of two FHN oscillators for σ = 1.5. a. Outputs of FHN

oscillator 1 (leader, black) and FHN oscillator 2 (follower, red). b. Synchronization output

error ỹ := y1 − y2.

(a) n = 10 (b) n = 50

(c) n = 100 (d) n = 150

Figure 3.5: Synchronization output errors ỹj := yj − yj−2, j = 2, . . . , n, for σ = 1.5 and

different lengths of the chain.
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has a profound affect; in the case of linear first-order differential systems the simple cycle

is extremely sensitive to perturbations, for the case of nonlinear systems coupled in the

configuration of the simple cycle, the internal dynamics of nonlinear systems resonate with

small perturbations giving rise to bistabilities of system dynamics

Boundedness of solutions in the coupled system

Lemma 3.3.3. The solutions of the ring network of FHN neurons are ultimately bounded

uniformly in x0, σ ∈ R≥0. That is, there is a compact set Ω ∈ R2n such that for all x0 ∈ R2n,

σ ∈ R≥0

lim
t→∞

dist (x(t, x0, σ),Ω) = 0.

Proof. We being begin with establishing that the FHN neuron is strictly semi-passive (see

also [142]).

Let S(zj , yj) = 1
2

(
α−1z2

j + y2
j

)
be the storage function. Then

Ṡ = −H(zj , yj) + yjuj

with H(zj , yj) = βz2
j + y2

j

(
γy2

j − 1
)
. Noticing that

βz2
j + y2

j

(
γy2

j − 1
)

= βz2
j + dy2

j + γy4
j − y2

j − dy2
j

= βz2
j + dy2

j +
(√

γy2
j − d+1

2
√
γ

)2

− (d+1)2

4γ

(3.34)

we can conclude that H(zj , yj) is positive for all zj , yj such that

βz2
j + dy2

j >
(d+1)2

4γ . (3.35)

Assigning the value of d = β in (3.35) ensures that H(zj , yj) is positive outside the ball

z2
j + y2

j ≤
(β+1)2

4βγ .

Now consider V (z, y) = S(z1, y1)+. . .+S(zn, yn). Then the strict semi-passivity property

of the FHN neurons implies

V̇ ≤ −H(z1, y1)− . . .−H(zn, yn)− σyTLy.

Notice that the matrix L+LT is the Laplacian matrix of the undirected ring, which is known

to be positive semi-definite. Hence

yTLy = 1
2y
T (L+ LT )y ≥ 0,

and consequently

V̇ ≤ −H(z1, y1)− . . .−H(zn, yn).
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Therefore, setting the value of d in (3.34) equal to αβ results in

V̇ ≤ −
n∑
j=1

βz2
j + βαy2

j + n (αβ+1)2

4γ = −βαV + n (αβ+1)2

4γ .

Noticing that the function V is radially unbounded, positive-definite, we invoke the Com-

parison Lemma (see e.g. [83]) in order to conclude that solutions of the coupled system are

bounded and converge asymptotically to a compact set of which the size is independent of

the parameter σ.

Sufficient conditions for synchronization

Suppose now that the n-th oscillator is feeding back its output to the input of 1-st, that

is the network topology is that of the directed ring. As we shall see later the presence of

such extra connection has a drastic effect on the system’s performance with respect to the

coupling strength needed to maintain stable full-state synchrony. This is reflected in the

statement of the theorem below.

Theorem 3.3.2. Consider the system of coupled FHN oscillators (3.25), (3.26), and let

λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of the symmetrized Laplacian of the network 1
2 (L +

LT ). Then solutions of the coupled system asymptotically synchronize providing that

σλ2 > 1

Proof. Consider the new variables

z̃ = Lz, ỹ = Ly

where L the Laplacian matrix of the ring, i.e.

z̃ =


z̃1

z̃2

...

z̃n

 =


z1 − zn
z2 − z1

...

zn − zn−1

 and ỹ =


ỹ1

ỹ2

...

ỹn

 =


y1 − yn
y2 − y1

...

yn−1 − yn

 .

It is clear that the systems are synchronized if and only if

z̃ = 0 and ỹ = 0.

Observe that 1 /∈ range(L), hence there exist no vectors z and y such that

Lz = 1 and Ly = 1.

This means that the projections of (z, y) via L take values in the set

Ω := {(z̃, ỹ) ∈ R2n|z̃ ⊥ 1, ỹ ⊥ 1}.
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Thus all synchronization errors z̃ and ỹ are orthogonal to 1.

Consider the function V : Ω→ R+:

V = 1
2

(
1
α z̃

T z̃ + ỹT ỹ
)
.

From the discussion on synchronization in the chain it follows that

V̇ ≤ −βz̃T z̃ + ỹT (I − σL)ỹ − ỹTWỹ

where

W =
γ

4


(
3(y1 + yn)2 + ỹ2

1

)
. . . (

3(yn+1 + yn)2 + ỹ2
n

)
 ,

which is positive semi-definite, hence

V̇ ≤ −βz̃T z̃ + ỹT (I − σL)ỹ

For all vectors ỹ ⊥ 1 the following inequality holds true:

ỹT (σL− I)ỹ = ỹT (σ 1
2 (L+ LT )− I)ỹ ≥ (σλ2 − 1)ỹT ỹ

where λ2 = λ2( 1
2 (L+LT )) is the smallest non-zero eigenvalue of 1

2 (L+LT ). An application

of LaSalle’s invariance principle, cf. [94], implies that the synchronization errors z̃ and ỹ

converge to zero asymptotically.

Corollary. For the network of n coupled FHN oscillators, solutions globally asymptotically

synchronize if the following inequality holds:

σ

(
1− cos

(
2π

n

))
> 1

Proof. Note that 1
2 (L+LT ) is the Laplacian matrix of the undirected ring, which has a simple

zero eigenvalue with corresponding eigenvector in span(1). According to the properties of

the spectrum of circulant matrices, cf. [37], we know that the second smallest eigenvalue λ2

of the symmetrized Laplacian 1
2 (L + LT ) equals the real part of the smallest (in absolute

value) non-zero eigenvalue of L, which we denote as R(λ2(L)). Then if

σλ2( 1
2 (L+ LT )) = σR(λ2(L)) > 1,

we have V̇ < 0, i.e. V is a Lyapunov function on Ω. Note that

λ2(L) = 1− e
2πi(n−1)

n

from which the result immediately follows.
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3.3.5 Numerical analysis: Synchronization and rotating waves

The results in the previous sections show that, on the one hand, when a system has a

directed ring topology and the number of systems in the ring grows then their relative

dynamics becomes more and more under-damped (Theorem 3.3.2). On the other hand, in

accordance with Corollary 3.3.4, estimates of attraction rates of the diagonal synchronization

manifold rapidly diminish to zero for increasing number of systems. The latter results are,

however, sufficient and thereby conservative. To get a clearer view of the network dynamics

we performed an exhaustive numerical exploration of the system dynamics for various values

of coupling strengths σ as well as the network sizes n.

We construct a grid (n, σ) for number of systems n = 2, . . . , 20 and coupling strength

σ = {0.05, 0.1, 0.15, . . . , 10}. For each (n, σ) 100 sets of initial conditions are drawn uniformly

randomly from the domain |yi(0)| ≤ 3
2

√
3 and |zi(0)| ≤ 15

8

√
3, which can be shown to

be positively invariant for both connectivity configurations (i.e. the directed chain and

the directed cycle). The MATLAB numerical solver ode45 was used with relative and

absolute error tolerances of order 10−5 to integrate dynamics for a maximum of 20,000 time

steps. At regular intervals of 1000,20000,...,20,000 time steps, we interrupt integration to

check for synchronization or rotating wave solutions. After 20,000 time steps, if neither

synchronization nor a rotating wave solution is detected, we register ‘no solution’.

Synchronization is identified in terms of the absolute error between the states of neigh-

bouring systems averaged over a 1000 time step window being less 2× 10−5. In case of no

synchronization, we investigated the existence of rotating waves of Mode Type 1. Rotating

waves are defined as periodic solutions where all systems take identical orbits with constant

non-zero and equal phase shifts between neighbouring oscillators. The mode type describes

the group velocity of the wave; for a periodic wave, Mode Type 1 describes the case where

the period of a rotating wave having non-zero wave velocity equals the period of individual

oscillators. Identical orbits are identified if the absolute difference between the time shifted

orbits - so that orbits are in-phase - of neighbouring systems averaged over the period of

the orbit is less than 10−4. Constant and equal phase shifts (for a Mode Type 1 rotating

wave) are identified if the maximum from all absolute differences between n times the phase

shifts between pairwise neighbouring systems and period T is less than a tolerance of 102,

i.e, maxi |nφi(t)− T | < 10−2 for phase shift φi(t) between systems i and i+ 1 at time t.

The results of this exploration are summarized in Figure 3.6. This figure shows that in

addition to regions corresponding to mere full asymptotic synchronization there is a wide

range of parameter combinations (growing with the system’s size) for which the system

admits an asymptotically stable rotating wave solution. The larger is the number of systems,
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Guaranteed synchronization (analytical)

Synchronization (numerical)

Co-existence

Figure 3.6: Bifurcation diagram for directed rings of FHN oscillators. The guaranteed syn-

chronization (analytical) region in the parameter space corresponds to global asymptotic

synchronization that is guaranteed by the semi-passivity argument, the synchronization

(numerical) is the domain where numerical simulations found synchronization to be regis-

tered for every set of random initial conditions. The co-existence region shows the domain

of parameter values in which both fully synchronous and rotating wave solutions have been

found.

the larger values of the coupling parameter σ are required to maintain global stability of the

fully synchronous state.

Two solid curves approximate boundaries between the parameter domains correspond-

ing to analytically determined globally asymptotically stable full-state synchrony, and a

partition of numerically determined globally asymptotically stable full-sate synchrony; The

first region corresponds to synchronization registered for every set of random initial con-

ditions during numerical simulations, whilst the second region corresponds to, in addition

to synchronization registered for every set of random initial conditions during numerical

simulations, where Floquet stability analysis of solutions of the auxiliary system indicated

existence of a locally asymptotically stable rotating wave solution

The first (lower) curve - separating analytical and numerical synchronization - was deter-

mined previously in the semi-passivity argument. The second (upper) curve - partitioning

numerically determined globally asymptomatic synchronization - is determined from a local

stability analysis (using Floquet theory) of the rotating wave solution. Details of the second
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Figure 3.7: Proportion of samples that yield a rotating wave solution. Red curve shows the

boundary the rotating wave is stable determined by Floquet multipliers.

are provided in the following section.

Figure (3.7) shows for each σ and n the proportion of initial conditions that yield a

rotating wave solution of Mode Type 1 whilst Figure (3.8) shows for all mode types, i.e.

rotating waves that resonate with individual systems period of oscillation. For low coupling

σ and for increasing number of systems n, rotating wave solutions are found more often. This

suggests a larger basin of attraction for the rotating wave than that for synchronization, and

that this basin grows with increasing n and decreasing whilst at the same time the basin

of attraction for synchronization shrinks. The relative sizes of basin of attraction result in

higher or lower likelihoods for the systems to converge to a certain solution given uniformly

random initial conditions.

Local stability analysis of the rotating wave

Here, we consider only the rotating wave having mode type one - the period of the rotating

wave equals the periodicity of the oscillators. Similar analysis can also be performed for

other mode types.
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Figure 3.8: Proportion of samples that yield a rotating wave solution for all mode types.
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(a) (b)

Figure 3.9: (a) The y dynamics over one oscillation. (b) The periodic y dynamics in the time

interval [0, T ]. The z dynamics show the same type of time shifted and periodic behavior as

the y dynamics.

Suppose that n identical coupled systems have a non-constant, T -periodic solution x for

constant T > 0, and for which the orbit of each subsystem is identical and time shifted by

some constant τ = T
n :

x1(t) = x2(t+ τ) = x3(t+ 3τ) = · · ·

· · · = xn−1(t+ (n− 1)τ) = xn(t+ (n− 1)τ) = x1(t+ nτ) = x1(t+ T ). (3.36)

We refer to this as the rotating wave solution. An example of a rotating wave solution for

k = 5 coupled FHN oscillators in the ring configuration is presented in Figure 3.9,

Recall Equation (3.25) with xj = (yj , zj). If we restrict the coupled dynamics of the FHN

oscillators to the rotating wave manifold, then using the periodicity of the rotating wave

solution, substitution of Equation (3.36) into the dynamics of each coupled FHN oscillator

(3.25) yields n identical uncoupled delay differential equations (DDE’s) of the form

ẋ1(t) = f(x1(t)) + σBC

(
x1

(
t− (k − 1)

k
τ

)
− x1(t)

)
...

ẋn(t) = f(xn(t)) + σBC

(
xn

(
t− (n− 1)

n
τ

)
− xn(t)

)
.

Thus the rotating wave solution can only exist if the auxiliary system

ṡ(t) = f(s(t))− σBC[s(t)− s(t− τ∗)], τ∗ := T − τ =
n− 1

n
T, (3.37)

has a non-constant, T -periodic solution:

s(t) = s(t+ T )∀t ∈ R. (3.38)
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For stability analysis of the rotating wave solution, define errors around the rotating wave

solution, such that all error are zero on the rotating wave manifold and non-zero elsewhere.

The errors are defined between neighbouring systems as the time delayed differences,

ej(t) = xj+1(t+ τ)− xj(t), j = 1, 2, . . . , n, mod n. (3.39)

The time derivative of the error equations (3.39) provides the error dynamics: the evo-

lution of the errors in time

ėj(t) = ẋj+1(t+ τ)− ẋj(t) = f(xj+1(t+ τ))− f(xj(t))

+ σ(xj(t+ τ)− xj−1(t))− σ(xj+1(t+ τ)− xj(t)),

substitution of error equations yields

ėj(t) = f(ej(t) + xj(t))− f(xj(t))− σ(ej+1(t)− ej(t)).

Thus, the system of error dynamics,


ė1(t)

ė1(t)
...

ė1(t)

 =


f(e1(t) + x1(t))− f(x1(t))

f(e2(t) + x2(t))− f(x2(t))
...

f(en(t) + xn(t))− f(xn(t))

− σ(L⊗BC)


e1(t)

e2(t)
...

en(t)

 . (3.40)

Here ⊗ is the Kronecker (tensor) product. Substitution of the rotating wave solution

into equation (3.40) yields the equilibrium of all zeros. However, this solution includes time

delays, and will therefore be difficult to analyse stability properties. Substitution of the

rotating wave solution in terms of the auxiliary system variable s(t) into equation (3.40),

on the other hand, provides an expression of the error dynamics without time delays in

coupling.

Notice that

f(ej(t) + xj(t))− f(xj(t)) ≈ ej(t)J(f(xj(t))) (3.41)

where J(·) is the Jacobian,

J(s(t)) :=

−αβ α

−1 1− 3γs2
2(t)

 (3.42)

where s2(t) denotes the second component of s(t). Thus, linearisation of the error dynamics

(3.40) yields
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ė1(t)

ė1(t)
...

ė1(t)

 =


e1(t)J(f(x1(t)))

e2(t)J(f(x2(t)))
...

en(t)J(f(xn(t)))

− σ(L⊗BC)


e1(t)

e2(t)
...

en(t)

 .


ė1(t)

ė1(t)
...

ė1(t)

 =




J(f(x1(t)))

J(f(x2(t)))

. . .

J(f(xn(t)))

− σ(L⊗BC)




e1(t)

e2(t)
...

en(t)

 .

Substitution of the auxiliary function s(t), such that,

s(t) = x1(t) = x2(t+ τ) = · · · = xn(t+ (n− 1)τ),

yields the variational equation around the rotating wave solution


ξ̇1(t)

ξ̇2(t)
...

ξ̇n(t)

 =




J(s(t))

J(s(t− τ))

. . .

J(s(t− (n− 1)τ))

− σ(L⊗BC)




ξ1(t)

ξ2(t)
...

ξn(t)

 . (3.43)

Note that T -periodicity of the system (3.37) implies the linear error system to be T -

periodic.

For the local stability analysis we computed periodic solutions of the auxiliary system

(3.37) for pairs (n, σ). The periodic solutions are determined using numerical continuation

methods that are available in the numerical software package DDE-Biftool [44]. For the

interested reader, we briefly describe the non-trivial process of obtaining periodic solutions

by numerical continuation.

Figure (3.10) characterizes solutions of the auxiliary system in the parameter domain

(T, τ, σ). For the auxiliary system in which parameter T and τ are allowed to vary con-

tinuously, a solution that describes the dynamics of a rotating wave solution satisfies the

relation T
τ (n − 1) = n. However, for the solutions we obtained, parameters T and τ have

not been varied continuously. Therefore, we choose the solution that satisfies the following

the inequality

∣∣∣∣Tτ (n− 1)− n
∣∣∣∣ < ε. (3.44)

To maintain accuracy of approximation of the auxiliary system to n coupled FHN oscil-

lators, the error ε must be small. For our stability analysis we took ε = 0.01.
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Figure 3.10: Solutions of the auxiliary system characterized in the parameter domain of

period time, delay, and coupling strength (T, τ, σ) presented as a surface for T a function of

pairs (τ, σ).

Figures (3.3.5) and (3.3.5) show two cross sections of the surface in Figure (3.10) for

coupling strengths σ = 0.95 and σ = 6.75, respectively. Dashed lines identify solutions that

satisfy relation (3.44) and hence map solutions of the auxiliary system to an integer number

n of coupled FHN oscillators on the rotating wave manifold.

The stability of those periodic solutions of the auxiliary system are assessed by computing

the Floquet multipliers of the corresponding linearised error system (3.43) (with the stability

package included in DDE-Biftool). Recall that if all Floquet multipliers except one at 1

have modulus strictly smaller than 1, then the zero solution of the linearised error system is

asymptotically stable, which implies the rotating wave solution to be locally asymptotically

stable. The red line in Figure 3.6 (and Figure 3.7) is defined by the crossing of (at least)

one multiplier with the boundary of the unit disc in C.

Numerical continuation

Numerical continuation is the method for determining solutions of a parametrized non-linear

equation. Beginning from an initial solution, the software DDE-Biftool computes a solution

component - a path of solutions - of a non-linear equation for changes in the free parameter.

Initial conditions include an initial solution in order to construct a path of solutions.
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Figure 3.11: Solutions of the auxiliary system characterized in the parameter domain of

period time and delay (T, τ) for given coupling strengths: (a) σ = 0.95. (b) σ = 6.75.

Dashed lines indicate solutions that satisfy relation

We choose as our initial solution the steady state solution of the auxiliary system with

zero coupling strength and non-zero delay. For zero coupling strength the auxiliary system

reduces to the original FHN equation. A constant c is added to the auxiliary system (3.37)

such that

 ṡ1

ṡ2

 =

 α(s2 − βs1)

s2 − γs3
2 − s1 + c

 (3.45)

where as before α = 8
100 , β = 8

10 , and γ = 1
3 .

A steady state solution is found by satisfying that the nullclines s1 = 1
β s2 and s1 =

s2−γs3
2+c intersect on one of the outer extreme branches of the cubic s2-nullcline (depending

on the sign of the constant).

Numerical continuation of the steady state solution with the added constant c as the free

parameter leads to a Hopf bifurcation. The problem therefore becomes: find c for which

a Hopf bifurcation occurs. The occurrence of a Hopf bifurcation describes the emergence

of a periodic solution; a local bifurcation in which a fixed point of a dynamical system

loses stability, as a pair of complex conjugate eigenvalues (of the linearisation around the

fixed point) cross the complex plane imaginary axis. Under reasonably generic assumptions

about the dynamical system, a small-amplitude limit cycle branches from the fixed point.

Equivalently, a Hopf bifurcation occurs when the Jacobian has zero trace and non-zero

positive determinant. The Jacobian (3.42) has trace

trJ(s) = 1− 3γs2
2 − αβ
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which equals zero for s2 = ±
√

1− αβ, and determinant,

detJ(s) = −αβ(1− 3γs2
2) + α

which is greater than zero for s2 =
√

1− αβ.

The Hopf point therefore occurs at the intersection of the s1 and s2 nullclines for which

s2 =
√

1− αβ. Thus the constant c is determined,

c = (
1

β
− 1)s2 + γs3

2 = ±0.5437. (3.46)

Numerical continuation of system (3.45) with free parameter c produces a solution com-

ponent for which a periodic solution exists where parameter c is equal to zero, i.e. no added

constant, and hence a solution in the form of the auxiliary system (3.37).

Recall Liénard’s Theorem and the Poincaré-Bendixon Theorem in Chapter 2, we know

therefore that this periodic solution is unique and asymptotically stable, since it is a closed

and isolated limit cycle. Since the periodic solution is asymptotically stable, small pertur-

bations must decay. Thus, we may perform numerical continuation of the periodic solution

with the coupling strength σ as the free parameter making it non-zero. We now have the

ability to traverse the full domain of periodic solutions (T, τ, σ) (period, delay, coupling

strength). Finally, for any chosen periodic solution, the stability is determined by the Flo-

quet multipliers. Performed as a separate step from the continuation method.

Unique, stable and closed limit cycle

Let us here prove that the periodic solution for (3.45) for which parameter c = 0, and also

coupling and delay are zero, i.e., the original FHN system equations (3.25), is a closed and

isolated stable limit cycle and therefore a unique asymptotically stable one. We do this using

Liénard’s theorem for uniqueness and existence of a limit cycle, and the Poincaré-Bendixon

theorem to ensure the limit cycle is closed, i.e. asymptotic stability.

Recall that

Theorem 3.3.3. (Liénard’s Theorem) Suppose that f(x) and g(x) satisfy the conditions:

1. f(x) and g(x) are continuously differentiable for all x;

2. g(−x) = −g(x) for all x (i.e., g(x) is an odd function);

3. f(−x) = f(x) for all x (i.e., f(x) is an even function);

4. g(x) > 0 for all x > 0;

5. The odd function F (x) =
∫ x

0
f(u)du has exactly one positive zero at x = a, is negative

for 0 < x < a, is positive and nondecreasing for x > a, and F (x)→∞ as x→∞.
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Then the system (number) has a unique, stable limit cycle surrounding the origin in the

phase plane.

Proof. A two-dimensional system of the form

C
dV

dt
= −I(V, n) (3.47)

dn

dt
=
n∞(V )− n
τn(V )

(3.48)

describes a relaxation oscillator and can always be written in Liénard form

V̈ + f(V )V̇ + g(V ) = 0 (3.49)

using a diffeomorphism.

First solve Equation (3.25) for z,

z = φ(y)− ẏ (3.50)

where φ(y) = y − γy3 and substitute into the z-dynamics (3.25),

ż = α(y − β(φ(y)− ẏ))

= α(y − β(y − γy3 − ẏ)). (3.51)

Take the time derivative of the y-dynamics (3.25),

ÿ = φ′(y)ẏ − ż (3.52)

where φ′(y) = 1− 3γy2, and substitute in the above expression for ż

ÿ = (1− 3γy2)ẏ − α(y − β(y − γy3 − ẏ))

= ((1− 3γy2) + αβ)ẏ − α((1− β)y + βγy3) (3.53)

and so we obtain in Liénard’s form:

ÿ + (3γy2)− 1 + αβ)ẏ + α((1− β)y + βγy3) (3.54)

where f(y) = 3γy2 − 1 + αβ, and g(y) = α((1− β)y + βγy3).

Functions f(y) and g(y) clearly satisfy conditions (1)-(4) of Liénard’s Theorem.

F (y) =

∫ y

0

(u2 − 936

1000
)du =

1

3
y3 − 936

1000
y. (3.55)
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The function F (y) is odd. F (y) = 0 for y =
√

(3( 936
1000 )) = a. F (0 < y < a) < 0, and

F (y > a) > 0 and is non-decreasing. Finally, F (y)→∞ as y →∞.

Therefore, the periodic solution is unique and stable.

To show that the orbit is closed, and thus satisfy the Poincaré-Bedixon Theorem, recall

the Poincaré-Bedixon Theorem.

Theorem 3.3.4. (Poincaré-Bendixon Theorem) Suppose that:

1. R is a closed, bounded subset of the plane;

2. ẋ = f(x) is a continuously differentiable vector field on an open set containing R;

3. R does not contain any fixed points; and

4. There exists a trajectory C that is “confined” in R, in the sense that it starts in R

and stays in R for all future time.

Then either C is a closed orbit, or it spirals toward a closed orbit as t→∞. In either case,

R contains a closed orbit.

Proof. To show that the obit is confined, construct a trapping region R, i.e. a closed

connected set such that the vector field points inward everywhere on the boundary of R,

then all trajectories of R are confined.

By the previous semi-passivity argument we know that all trajectories inside the ball

z2 + y2 ≤ (β + 1)2

4βγ
(3.56)

remain inside this ball for all future time.

Since every closed orbit must encircle a fixed point, the region R is a ring-shaped region,

with this fixed point at the center of the ring, but outside of the region R. This fixed point

is unstable.

This fixed point corresponds to the intersection of the two nullclines of the y and z

dynamics for c = 0. This intersection occurs at the point

(z, y) =

(
0,±

1− 1
β

γ

)
. (3.57)

The fixed point (y, z) = (0, 0) has two real negative eigenvalues

tr(J) = 1− y2 − αβ = 1− αβ > 0, (3.58)

det(J) = −αβ(1− y2) + α = α(1− β) > 0. (3.59)
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tr(J)2 − 4det(J) = 1 + 2αβ + α2β2 − 4α > 0 (3.60)

and hence is an unstable node.

Therefore, we have an asymptotically stable limit cycle. The fact that the limit cycle is

asymptotically stable allows small perturbations. Thus, we compute the solution component

for the DDE by numerical continuation of free parameter σ. Numerical continuation of σ

from zero to (positive) non-zero yields a stable periodic solution that corresponds a rotating

wave solution.

Two coupled cycles of oscillators

Given the size of the region of where multiple solutions co-exist, and the resilience to a

coherent state; does the extremal property of the simple cycle give rise to further, more

complex phenomena when two simple cycles are diffusively coupled via an undirected link

between an oscillator in each cycle?

For a total of 2k coupled systems, two cycles are constructed with systems 1, . . . , k in

the first simple cycle and systems k+ 1, . . . , 2k in the second, and coupled via systems i and

j such that i ∈ 1, . . . , k and j ∈ k + 1, . . . , 2k. Clearly the synchronization manifold exists,

as does the rotating wave solution in the form of two synchronized rotating waves,

x1(t) = xk+1(t) = x2(t+ τ) = xk+2(t+ τ) = . . .

. . . = xk−1(t+ (k − 2)τ) = x2k−1(t+ (k − 2)τ) = xk(t+ (k − 1)τ) = x2k(t+ (k − 1)τ).

A full description of the phenomena of two coupled cycles is beyond the scope of this

work, however, as a motivation for further study, we present a brief example.

We take (n, γ) = (10, 0.75), which for a simple cycle, lies in the region of co-existence

of synchronization and rotating wave solutions. We observe in Figure (3.12) a stable state

in which the trajectories of all systems in the first cycle (in red) are attracted to the syn-

chronization manifold, whilst all trajectories of systems in the second cycle (in green) are

attracted to the rotating wave solution. There is a clear competition of each cycle to attract

the other to its own dynamical regime. The two diffusively coupled oscillators from each

cycle periodically perturb each other, which prevents asymptotic convergence of systems to

either the synchronization manifold or the rotating wave solution. The basin of attraction of

each of these solutions is necessarily greater than the size of perturbation, since the system

trajectories appear bounded to neighbourhoods close to their respective solutions. Clearly,
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Figure 3.12: Two coupled cycles and their y-dynamics; in red the y-dynamics of the first

cycle, and in green the y-dynamics of the second cycle.

the extremal properties of the simple cycle can give rise to multiple regimes of complex

patterns of dynamics when embedded into larger network structures.

3.4 Multi-Stability of coherent dynamics in directed net-

works with modular topology

In this work we develop and generalize these results in the following two directions. First,

instead of directed cycles we consider networks with modular structure. Such networks

comprise of diffusively and undirectly coupled groups of nodes (modules). These groups

are linked by directed connections forming a directed cycle. We show that, remarkably,

the spectrum of the network Laplacian for such modular structures is closely related to

that of individual isolated modules and the corresponding ring or cycle. Similar to our

previous work [61] as discussed in the previous chapter, we hypothesise that rotating wave

solutions are likely in such networks. In addition, rotating wave solutions are expected to

occur for a greater domain of initial conditions and increased range of parameter values in

the directed cycle of modules than in the directed cycle of simple oscillators. Numerical

simulations confirm this hypothesis. Second, in addition to nodes with identical dynamics,

we numerically investigate the case in which individual oscillators differ; their parameters are

randomly sampled from a distribution centered at fixed nominal values. We observe that,

provided that coupling within individual modules is strong enough, solutions resembling
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rotating waves emerge in this system, too. In this section we review the work presented in

[141].

3.4.1 Network definition

As previous, we consider a network of FitzHugh-Nagumo (FHN) (3.25) [46] oscillators. Now

for the label of individual nodes, j = 1, 2, . . . , n, n = M × N , M,N ∈ N will be specified

later. Similarly as previous, parameters α, β, γ are chosen as

α = 8
100 , β = 8

10 , γ = 1
3 .

At a later stage we will allow the case in which the values of these parameters are different

for each node. Variable uj corresponds to the network coupling.

The coupling uj is supposed to satisfy

uj = −
n∑
l=1

Γjl(σ, µ)yl (3.61)

where the matrix Γ(σ, µ) = {Γjl(σ, µ)} is:

Γ(σ, µ) = σΓr(N)⊗B + IN ⊗ µΓm(M). (3.62)

In (3.62) matrix B is defined to be

B =


1 0 · · · 0

0 0
. . .

...
...

. . .
. . . 0

0 · · · 0 0

 ,

Γm(M) is the M ×M symmetric matrix:

Γm(M) =


M − 1 −1 · · · −1

−1 M − 1
. . .

...
...

. . .
. . . −1

−1 · · · −1 M − 1

 (3.63)

corresponding to the interconnections within each module, and matrix Γr(N) is the N ×N

matrix corresponding to the ring/cycle structure:

Γr(N) =



1 0 · · · 0 −1

−1 1 0 · · · 0

0
. . .

. . .
. . .

...
...

. . . −1 1 0

0 · · · 0 −1 1


. (3.64)
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Figure 3.13: Modular network architecture specified by (3.61)

Parameters σ ∈ < and µ ∈ < are the inter-modular and the intra-modular coupling

strengths, respectively. The values of σ, µ are supposed to be constant and non-negative.

A diagram illustrating the connectivity pattern of the class of networks considered is

shown in Fig. 3.13. This network may be viewed as a simple cycle of “super-nodes”, each

corresponding to fully connected modules of identical nodes. Parameters M and N in (3.63),

(3.64) are hence, respectively the numbers of elements in each modules and the “length” of

the cycle formed by the modules. Notice that the coupling matrix Γ(σ, µ) is diffusive but

not symmetric.

For convenience, let

y = (y1, . . . , yn), u = (u1, . . . , un), x = (y, z),

and x(·;x0, σ, µ) denote a solution of the coupled system with the coupling strength σ and

satisfying the initial condition x(0) = x0.
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3.4.2 Extremal properties of the modular cycle

Boundedness of solutions of the coupled system in forward time Here we demon-

strate the existence and boundedness of solutions of the coupled system and discuss obser-

vations regarding parameters M , N , σ, µ that can be related to coherent dynamics of the

system.

As is always the case in the analysis of interconnected nonlinear systems, determining

the fact that their solutions are defined for all t ≥ 0 and are bounded in forward time is

crucial. For the class of systems considered the following statement holds:

Lemma 3.4.1. Consider system (3.25)–(3.64). Solutions of the system are ultimately

bounded uniformly in x0, σ, µ ∈ <≥0. That is, there is a compact set Ω ∈ <2n such that for

all x0 ∈ <2n, σ, µ ∈ <≥0

lim
t→∞

dist (x(t, x0, σ, µ),Ω) = 0.

Proof. We first show that FHN oscillators are strictly semi-passive (see also [142]). Let

S(zj , yj) = 1
2

(
α−1z2

j + y2
j

)
be the storage function. Then

Ṡ = −H(zj , yj) + yjuj

with H(zj , yj) = βz2
j + y2

j

(
γy2

j − 1
)
. Noticing that

βz2
j + y2

j

(
γy2

j − 1
)

= βz2 + dy2 + γy4 − y2 − dy2 =

βz2 + dy2 +
(√

γy2 − d+1
2
√
γ

)2

− (d+1)2

4γ

(3.65)

we conclude that H(zj , yj) is positive for all zj , yj such that

βz2
j + dy2

j >
(d+1)2

4γ . (3.66)

Given that the value of d in (3.66) can be chosen arbitrarily then assigning d = β, ensures

that H(zj , yj) is positive outside the ball

z2
j + y2

j ≤
(β+1)2

4βγ .

Hence the FHN oscillators are strictly semi-passive.

Next we consider V (z, y) = S(z1, y1)+ . . .+S(zn, yn). The strict semi-passivity property

of the FHN neurons implies

V̇ ≤ −H(z1, y1)− . . .−H(zn, yn)− yTΓ(σ, µ)y.

Denoting A = µΓm(M), D = σB, and noticing that both D and A are symmetric, we can
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conclude that

Γ(σ, µ) + Γ(σ, µ)T =

2A+ 2D −D 0 · · · 0 −D

−D 2A+ 2D −D 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . . 0 −D 2A+ 2D −D

−D 0 · · · 0 −D 2A+ 2D


which, according to the Gershgorin circle theorem, is positive semi-definite. Hence

yTΓ(σ, µ)y = 1
2y
T (Γ(σ, µ) + Γ(σ, µ)T )y ≥ 0

and consequently

V̇ ≤ −H(z1, y1)− . . .−H(zn, yn).

Therefore, setting the value of d in (3.65) equal to αβ results in

V̇ ≤ −
n∑
j=1

βz2
j + βαy2

j + n (αβ+1)2

4γ = −βαV + n (αβ+1)2

4γ .

Noticing that the function V is radially unbounded and positive-definite, we invoke the

Comparison Lemma (see e.g. [83]) and conclude that solutions of the coupled system are

bounded and converge asymptotically to a compact set of which the size is independent of

parameters σ, µ.

Spectral properties of coupling matrix

Lemma 3.4.2. Consider matrix Γ(σ, µ) specified by (3.62) - (3.64), and let us denote

a = µM, bj = σ
1− ωj−1

N

M
,ωN = exp

(
2πi

N

)
dj =

1

2

√
a2 +M2b2j + (2M − 4)abj .

The spectrum of Γ(σ, µ) is

λ1 = 0,

λj =
a+Mbj

2
− dj ,

λN−1+j =
a+Mbj

2
+ dj ,

λ` = a

(3.67)

where j = 2, . . . , N and ` = 2N, 2N + 1, . . . , NM .
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Proof. Denote the k × k Fourier matrix by

F ∗k =
1√
k



1 1 1 · · · 1

1 ωk ω2
k · · · ωk−1

k

1 ω2
k ω4

k · · · ω
2(k−1)
k

...
...

...
...

1 ωk−1
k ω

2(k−1)
k · · · ω

(k−1)(k−1)
k


where

ωk = exp

(
2πi

k

)
and ∗ denotes the complex conjugate transpose (note the left hand side of the equation

defining Fk), cf. [37]. Note that F is unitary.

Denote

F = FN ⊗ FM ,

then, by Theorem 5.6.4 of [37],

F ∗ΓF = diag (W1, . . . ,WN )

with Wj being M ×M matrices, j = 1, . . . , N .

We have

F ∗(σΓr(N)⊗B)F = σF ∗NΓr(N)FN ⊗ F ∗MBFM

with

F ∗nΓr(N)Fn = Λr =



0

1− ωN
1− ω2

N

. . .

1− ωN−1
N


with entries of Λ being the eigenvalues of Γr(N),

F ∗MBFM =
1

M


1 · · · 1
...

...

1 · · · 1


and

F ∗(IN ⊗ µΓm(M))F = IN ⊗ µF ∗MΓm(M)FM

with

F ∗MΓm(M)FM = M


0

1

. . .

1
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being the matrix with eigenvalues of Γm(M) on its diagonal. Thus

W1 = µM


0

1

. . .

1

 ,

Wj = W1 + σ
1− ωj−1

N

M


1 · · · 1
...

...

1 · · · 1

 , j = 2, . . . , N.

Denoting µM = a and σ
1−ωj−1

N

M = bj , we obtain the characteristic polynomials of the

blocks W1, . . . ,WN :

p1(λ) = det(λIM −W1) = λ(λ− a)M−1

and

pj(λ) = det(λIM −Wj) = (λ2 − (a+Mbj)λ+ abj)(λ− a)M−2

for j = 2, . . . , N . Thus Γ(σ, µ) has the following eigenvalues:

λ1 = 0,

λj =
a+Mbj

2
− 1

2

√
a2 +M2b2j + (2M − 4)abj ,

λN−1+j =
a+Mbj

2
+

1

2

√
a2 +M2b2j + (2M − 4)abj ,

λ` = a

with j = 2, . . . , N and ` = 2N, 2N + 1, . . . , NM .

A statement that is very similar to Lemma 3.4.2 can be formulated for the symmetrized

coupling matrix 1/2(Γ(σ, µ)+Γ(σ, µ)T ). In this case the values of bj in (3.67) will be replaced

with <(bj).

According to Lemma 3.4.2 the spectrum of Γ(σ, µ) contains one zero eigenvalue, the

eigenvalues µM of isolated modules, and complex eigenvalues

a+Mbj
2

± 1

2

√
a2 +M2b2j + (2M − 4)abj .

Let us consider the eigenvalue λN :

a+MbN
2

− 1

2

√
a2 +M2b2N + (2M − 4)abN .

Note that

bN =
σ

M
(1− ωN−1

N ) =

σ

M

(
1− cos

(
2π
N − 1

N

)
− i sin

(
2π
N − 1

N

))
.
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That is, for N large the absolute value of bN approaches zero, and hence λN approaches

zero, too. Expressing λN as a function of bN results in

λN = bN +O(‖bN‖2) (3.68)

and hence for N sufficiently large

=(λN )

<(λN )
' =(bN )

<(bN )
=

sin
(
2πN−1

N

)
1− cos

(
2πN−1

N

) = cot
( π
N

)
.

This observation, for modular networks of which the connectivity is determined by (3.62)–

(3.64), is strikingly consistent with the extremal properties of simple cycles [61]. This

motivates our expectation that behaviour previously observed for simple cycles (such as

prevalence of rotating wave solutions) will also be observed for networks with the modular

architecture discussed here.

Note also that according to (3.68) the values of λN and <(λN ), for N sufficiently large,

scale with M . This suggests that achieving fully synchronous state in modular systems may

require proportionally larger values of coupling strength σ as compared with the simple

cycles of the same lengths. This is exactly what we observed in our numerical experiments

of which the summary is presented below.

Co-existence of synchronization and rotating waves The previous sections show

that, on the one hand, when the number of modules in the network grows, their relative

dynamics becomes more and more under-damped. In order to confirm our intuition and at

the same time to explore the behaviour of the system for heterogeneous nodes, we performed

an exhaustive numerical exploration of the system dynamics for various values of coupling

strengths σ, µ and N , M .

We considered networks with both identical and non-identical nodes. For networks with

identical nodes we investigated the influence of the number of elements in each module, M ,

on the prevalence of rotating wave solutions. The methodology of numerical analysis was

similar to the one reported in [61]. Results are provided in Fig. 3.14. Red lines show the

values of critical coupling strength corresponding to rotating wave solutions in simple cycles

[61]. Note that the boundaries of rotating wave solutions in these diagrams appear to stretch

along the σ-axis with M .

For the case of heterogeneous dynamics we numerically determined the regions of prac-

tical stability of the two solution types: rotating waves, and synchronization. Note that the

systems are not identical, hence one can only expect the systems to converge to a solution

that is resembling that of a rotating wave or a synchronized state. For fixed parameters

M , the size of each module, and intra-modular coupling strength µ, the parameters N , the
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(a) (b)

(c)

Figure 3.14: Proportion of samples yielding rotating wave solutions in the (N, σ) plane

(identical oscillators). The horizontal axis shows the values of σ; the vertical axis shows the

values of N

100



Figure 3.15: Proportion of samples that yield solutions resembling rotating waves in the

(N, σ) plane (heterogeneous oscillators). The horizontal axis corresponds to the values of σ,

vertical axis stands for the values of N

size of the cycle, and σ, the inter-modular coupling strength were varied. Parameters M

and µ are chosen as: M = 2, 5, 10, and µ = 6. For each pair of these parameter values, the

parameters N = 3, 4, . . . , 15 and σ = 0.05, 0.5, 1, 1.5, . . . , 5 are considered. For each possi-

ble pair of parameter values (N, σ), the dynamics of coupled FHN oscillators are initiated

independently, 25 times. Results of our numerical investigation for M = 5 and µ = 6 are

summarized in Figs. 3.15 – 3.17. Simulations performed for other parameter values were

similar to the ones presented.

We considered the effect of how parameters of the network topology such as modularity

and the presence of cycles, influences the dynamics of collective behaviour in the system.

We showed that if connectivity within isolated modules is diffusive with relatively strong

coupling, multiple coherent and orderly dynamic regimes co-exist in the system state space.

In addition to a nearly fully synchronous state, an attracting rotating wave solution occurs.

Prevalence of one solution type over the other is determined by the combination of the cycle

length, inter- and intra-modular coupling strengths, and the number of elements in each

modules. The results persist even when the dynamics of individual nodes are not identical.

3.5 Conclusion

In the first part of this chapter, Leaders do not look back, or do they?, we considered the

problem of how network topology influences the dynamics of collective behaviour in the

101



Figure 3.16: Proportion of samples that yield a nearly fully synchronous solution in the

(N, σ) plane (heterogeneous oscillators). The horizontal axis corresponds to the values of σ;

the vertical axis stands for the values of N

Figure 3.17: Proportion of samples that we were unable to relate to either of the classes

(rotating wave or fully synchronous state). The horizontal axis corresponds to the values of

σ; the vertical axis stands for the values of N
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system. We approached the problem by studying how “closing” a chain of interconnected

systems with directed coupling by a directed feedback from the last element in the chain to

the first may affect the dynamics of the system. Two general settings have been investigated.

In the first we analysed the behaviour of a simple linear system. We showed that the simple

cycle with equal interaction weights has the slowest decay of the oscillations among all linear

systems with the same number of states. In the second setting we considered directed rings

and chains of identical nonlinear oscillators. For directed rings, a lower bound σc for the

connection strengths that guarantee asymptotic synchronization in the network is found to

follow a pattern similar to that of a simple cycle. Furthermore, numerical analysis revealed

that, depending on the network size n, multiple dynamic regimes co-exist in the system’s

state space. In addition to the fully synchronous state, for sufficiently large networks an

asymptotically stable rotating wave solution emerges. The emergence of the rotating wave

is a phenomenon that persists over a broad range of coupling strengths and network sizes,

and can be viewed as a form of extreme sensitivity of the network dynamics to removal or

addition of a single connection. The result confirms the significance of shortcuts in networks

with large numbers of nodes.

Getting back to the question if leaders should look back. To stay in sync we advise a

leader either not to look back at all or to look back just a few links; Looking back too far

induces oscillations that destroy the coherent state.

In the second part of this chapter, Multi-Stability of coherent dynamics in directed net-

works with modular topology, we considered the effect of how parameters of the network

topology such as modularity and the presence of cycles, influences the dynamics of collec-

tive behaviour in the system. We showed that if connectivity within isolated modules is

diffusive with relatively strong coupling, multiple coherent and orderly dynamic regimes co-

exist in the system state space. In addition to a nearly fully synchronous state, an attracting

rotating wave solution occurs. Prevalence of one solution type over the other is determined

by the combination of the cycle length, inter- and intra-modular coupling strengths, and

the number of elements in each modules. The results persist even when the dynamics of

individual nodes are not identical.
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Chapter 4

Emergence of Complex Network

Structures

4.1 Introduction

In this chapter, we turn our attention to network structures more complex than previously

discussed, and how they arise as a process of self-organisation. Particular attention is paid to

the emergence of small-world network (SWN) structures. In addition, modular, centralised,

and hierarchical structures are also considered.

Before considering such complex structures, as we have done in the previous chapter, it

is helpful to first understand more basic ones. Two such basic network structures - often

used to characterise more complex ones - are the regular and random networks.

A regular network is one that possesses a form of isotropy; vertices have equal degree

and typically local connectivity structures for each vertex are identical. For example, the

4-regular lattice is the network in which vertices are embedded on a grid, and each vertex

connects to its four nearest neighbours. Such a graph possesses a high degree of segregation

- densely connected cliques of vertices -, yet a poor degree of integration - the likelihood

is low that there exists a relatively short sequence of edges connecting any two randomly

chosen vertices.

In contrast, a strongly opposing network structure is the random network. The classical

Erdös-Rényi [45] network is constructed from the set of vertices V by adding each pair

i, j ∈ V to the edge set with some probability p, i.e., with probability p, (i, j) ∈ E. Such a

random graph possesses a high degree of integration, yet a low degree of segregation.

A complex network structure, the SWN, is considered as the reconciliation of such regular

and random ones. In the classic Watts and Strogatz (WS) algorithm [154], a SWN is obtained
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by randomly rewiring a certain proportion of edges of an initially regular network. Thereby,

the network largely maintains segregation, while the rewiring creates shortcuts that enhance

the networks integration.

SWN structures are ubiquitous in nature and man-made systems; SWNs can be found

in protein [4] and ecological networks [105], social networks [149], the mammalian brain

[63; 139; 25], and the World Wide Web [147]. As the WS algorithm demonstrates how

these properties may be reconciled in a very basic manner, the WS algorithm may have a

justifiable claim to be considered a common principle underlying the emergence of SWNs in

these different physical contexts. However, the rewiring of the WS algorithm compromises

any existing order, rather than to develop order over time. Hence, the WS algorithm does

not fit easily to the self-organisation and maintenance found in adaptive systems.

It remains that the emergence of SWNs in nature and man-made systems is not yet

fully understood. In this chapter, we aim to provide further insight into the process of self-

organisation of SW, modular, centralised, and hierarchical network structures. In Section

4.3 we consider the role that space plays in network self-organisation. Using coupled logistic

maps to model large populations of neurons, network connectivity evolves in response to

both patterns of activity and the distance separating them. The effect of spatial bias is

shown to promote emergence of modular and SW structures, and moreover, emergent order

is organised in space, for instance, segregated cliques of vertices are spatially local. In

addition, spatial bias reveals that the spatial organisation and the cost of long distance

connections improves the robustness of self-organising processes; self-organisation is shown

to be robust to low connectivity densities (edge sets with small cardinality).

In Section 4.4 we aim to generalise network self-organisation by removing explicit dy-

namics. In previous studies, SWN structures have been shown to robustly emerge through

rewiring according to the ongoing dynamics on the network, however, the claim to univer-

sality has been frustrated by need to explicitly specify the dynamics. Here we take a more

general approach and replace explicit dynamics with an abstract representation of network

diffusion using heat kernels. Heat kernels capture network-specific interaction between ver-

tices and as such they are, for the purpose of this article, a generic model of network diffusion.

We therefore propose, essentially, that patterns of activity play a “lesser” role in network

structure evolution than previously thought. In particular, that patterns of activity are

the product of the underlying connectivity (network diffusion) and noise. Accordingly, in a

computational model, network structure evolution is in response to the product of patterns

of connectivity, and varying degrees of noise. In contrast with the random rewirings in

the WS algorithm, here, noise (random rewirings) have the function of perturbing possible

equilibrium network states, akin to the Boltzmann machine.
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4.2 Preliminaries: Characterising graph structure

In this Section we review some of the network measures used to characterise specific prop-

erties of a given networks structure. Often a collection of measures are needed in order

to understand the structure of a network. (Almost all) Measures used in this thesis are

discussed in [127] and implemented using the MATLAB scripts they provide.

Notation

In what follows we consider graphs that are undirected. A graph is an ordered pair G =

(V,E) where V is the set of vertices and E is a subset of V × V called the edges. If X is

a finite set, then |X| denotes its cardinality. The total number of vertices and edges in the

graph are |V | = n and |E| = m, respectively. Two vertices u, v ∈ V are called adjacent if

(u, v) ∈ E. The adjacency matrix of a graph G is a square n × n matrix A with entries

auv = 1 if (u, v) ∈ E, and auv = 0 otherwise. For undirected graphs A is symmetric. It is

typically the case that auu = 0, i.e. no self–loops. The degree dv of a vertex v is the number

of vertices adjacent to vertex v: dv =
∑
u∈V, u6=v avu. The matrix D is the diagonal matrix

of degrees having entries Duv = du if u = v and 0 otherwise. For a given set of n vertices V

the complete graph is denoted as Kn and its edge set is denoted as EKn . The compliment

of an edge set E, denoted as Ec, is Ec = EKn \ E.

A graph G = (V,E) is called directed if for at least one pair of vertices i, j ∈ V , (i, j) 6=

(j, i), i.e., if (i, j) ∈ E then (j, i) 6∈ E, or vice versa. Here, without loss of generality we

use the convention that row-wise entries of the adjacency matrix A correspond to out-going

edges, while column-wise entries correspond to in-coming edges. To take the converse, take

the transpose of matrix A. Directed graphs have two degrees, the in-degree and the out-

degree, that are not necessarily equal. The in-degree of vertex v is din
v =

∑
u∈V, u6=v avu

while its out-degree is dout
v =

∑
u∈V, u6=v auv.

Statistical characterisation of graph structure

Clustering coefficient (C) provides a measure of network segregation. It is calculated for

each vertex as the fraction of its adjacent vertices that are also pairwise adjacent, i.e. where

a triangle is the fully connected sub-network of three vertices, it is the number of triangles

that share a vertex, divided by the degree of that vertex. The mean clustering coefficient

for the network hence reflects, on average, the prevalence of clustered connectivity around

individual nodes [127].

Denote as a candidate triangle pivoting on node i each pair of nodes adjacent to i, and

as an actual triangle pivoting on i each pair of nodes adjacent to i that are themselves
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connected. The clustering coefficient Ci for vertex i is then the ratio of the number of

actual triangles pivoting on i to the number of candidate triangles pivoting on i. .

The number of triangle sub-networks pivoting on node i - pairwise vertices adjacent to

node i that are themselves connected - is calculated as

ti =
1

2

∑
j,h∈N

aijaihajh.

The clustering coefficient C for the network is the average of Ci over vertices i,

C =
1

n

∑
i∈N

Ci =
1

n

∑
i∈N

2ti
ki(ki − 1)

. (4.1)

Weighted clustering coefficient (Cw) provides a geometrical measure of segrega-

tion (also referred to in Chapter 4 as spatially localised clustering or spatial clustering) by

combining edge weights - possibly spatial distance - with clustering. It uses a weighted

adjacency matrix in which weight is inversely proportional to distance. the weight of an

edge is a linearly decreasing function of edge lengths in [0, π] normalised to the range [0, 1].

The weighted clustered coefficient Cwi for vertex i is calculated as the sum over all

triangles centred on i of the geometric mean of the three edge weights, divided by the

degree of vertex i. The weighted clustering coefficient Cw for the network is the average of

Cwi over i.

A weighted triangle is determined as the cubic root of the product of the three weighted

edges that make a triangle centred on a given vertex. The sum of all triangles pivoting on

a given node i is

twi =
1

2

∑
j,h∈N

(wijwihwjh)
1/3

for edge weights wij .

Thus, the weighted clustering coefficient is calculated as

Cw =
1

n

∑
i∈N

Cwi =
1

n

∑
i∈N

∑
j,h∈N 2twi

ki(ki − 1)
(4.2)

Average shortest path length (L), also known as the characteristic path length, pro-

vides a measure of network integration. A path of length l connecting two given vertices

i and j is a sequence of vertices i = i0, i1, . . . , il = j with edges ek = (ik, ik+1) connecting

successive pairs of vertices. The average shortest path length of the network is the average

over all pairs i and j (i 6= j) of the length of the shortest path connecting i and j. For

disconnected pairs of nodes the path length is infinite. Such pairs are excluded from cal-

culation of the average shortest path length. However, the connectivity densities we have

107



used are above the corresponding percolation threshold and thus guarantee that all vertices

belong to a single connected component.

A path of length l between nodes i and j is a sequence of vertices ηi↔j = (i = i0, . . . , il =

j) with aik,k+1
= 1. Let lij be the length of the shortest path between i and j. The average

shortest path length is the mean value over all pairwise nodes, calculated as

L =
1

n(n− 1)

∑
i∈N

∑
j∈Ni

lij . (4.3)

For disconnected pairs of nodes lij is undefined, however, such pairs are excluded in the

MATLAB program computation to allow a result.

Global efficiency (E), closely related to the average shortest path length, provides the

average inverse shortest path length between all pairs of vertices in the network [95]. Unlike

the average shortest path length, the global efficiency may be meaningfully computed on

disconnected networks, as paths between disconnected nodes are defined to have infinite

length, and correspondingly zero efficiency. More generally, the characteristic path length is

primarily influenced by long paths (infinitely long paths are an illustrative extreme), while

the global efficiency is primarily influenced by short paths. Some authors have argued that

this may make the global efficiency a superior measure of integration [2].

For all pairwise shortest paths dij =
∑
auv∈gi↔j auv, define the global efficiency E as

E =
1

n

∑
i∈N

Ei =
1

n

∑
i∈N

∑
j∈N,j 6=i d

−1
ij

n− 1
(4.4)

Modularity (Q) describes the degree to which a network may be partitioned into non-

overlapping communities of vertices [109]. An optimization problem, solutions are not nec-

essarily unique. Partitions are defined such that non-overlapping communities maximize the

number of within-community edges and minimize the number of between-community edges.

Various algorithms have been suggested for finding optimal or near-optimal partitions. We

use Newman’s community structure detection algorithm [110]:

For a given network partition of modules M , the modularity index Q is given by

Q =
∑
u∈M

euu −(∑
v∈M

euv

)2
 (4.5)

where euu is the proportion of all edges that connect vertices within a module and euv is

the expected proportion edges that connect vertices in module u with vertices in module v

for an equivalent random network. An optimal modular structure for a given network is one

that maximizes the value Q.

Small–worldness (Σ) provides a single value involving both clustering coefficient and

average shortest path length. The measure of small–worldness is calculated as the normalised
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ratio of clustering coefficient and average shortest path length, where C and L are normalised

by the values of clustering coefficient Crand and average shortest path length Lrand calculated

for a random network. The measure of small-worldness was proposed by [67] as a method

for determining network canonical equivalence; however, this measure has been criticised

by [127] for yielding false positives with highly segregated but poorly integrated networks.

However, in combination with other measures, we can safely use this simple measure.

Calculated as the normalised ratio of the clustering coefficient to the average shortest

path length:

Σ =
C/Crand

L/Lrand
, (4.6)

for C the clustering coefficient and L average shortest path length of a network, normalised

respectively by the corresponding quantities Crand and Lrand for a corresponding random

network.

Alternatively, the measure of small-worldness [67] may be modified by replacing the

average shortest path length with the global efficiency, such that Σ becomes

ΣE =
C

Crand
× E

Erand

where E and Erand are the global efficiency of a given network and of a corresponding

equivalent random network, respectively. By this definition, the small-worldness index is

robust to isolated vertices. Moreover, it is influenced more by shorter path lengths, whereas

Σ is more influenced by longer path lengths.

Edge betweenness (EB) provides a measure of the centrality of a given edge in a

network. Each edge is assigned a value equal to the fraction of all shortest paths in the

network that include that edge. High betweenness edges have a considerable effect on the

integration of the network through their effect on the average shortest path length.

Calculated for each edge as the fraction of shortest paths in the network which pass

through the edge. Let Huv be the number of shortest paths that connect nodes u and v,

and let Huv(i, j) be the number of shortest paths between nodes u and v that includes the

edge between i and j.

Then, the edge betweenness value for the edge between i and j is calculated as

EB =
∑
u,v∈N
u 6=v

Huv(i, j)

Huv
. (4.7)

Network wiring cost (M) is a measure we define and use in Section 4.3 to measure the

spatial localisation of edges. It is calculated as the normalised average edge length. Small

M corresponds to high spatial localisation and vice versa.
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The normalised average edge length for all edges of the network is

M =
1

π
∑
i∈N ki

∑
i∈N

∑
j∈Ni

dij (4.8)

where π is the maximum edge length that connects two vertices on the shortest arc along

the great circle for the network embedded on a unit sphere. A network wiring cost value

of 1 indicates an average edge length of π, of zero indicates an average edge length of zero,

and of 1
2 indicates the expected value for randomly distributed edge lengths.

Assortativity coefficient (a) describes the “assortative mixing” of vertex degrees, i.e.

the preference for high-degree vertices to attach to other high-degree vertices.

The assortativity coefficient [108]

a =
l−1
∑

(i,j)∈L kikj −
[
l−1
∑

(i,j)∈L
1
2 (ki + kj)

]2
l−1
∑

(i,j)∈L
1
2

(
k2
i + k2

j

)
−
[
l−1
∑

(i,j)∈L
1
2 (ki + kj)

]2 (4.9)

Maximised coreness statistic (c) measures the extent to which a network may be

well-partitioned into two non-overlapping groups of vertices, a core and a periphery group.

The original conception of this measure can be found in [20]. The intuition of the core-

periphery partition is to label the network into two subgroups; the core group cannot be

divided into exclusive subgroups, while the whole network can be seen as just one group, to

which all vertices belong to the core group, but to greater and lesser extents. The coreness

statistic c is the optimization of ρ,

ρ =
∑
i,j

aijδij

δij =

 1 if ci = CORE or cj = CORE

0 otherwise

where aij represents an edge, ci refers to the label of vertex i, and δij represents an edge

in the idealised core/periphery structure, where the idealised core/periphery partition is

computed using a version of Kernighan-Lin algorithm for graph partitioning in community

detection [110].

PageRank centrality vector (π), is a variant of eigenvector centrality. It is defined

as the stationary distribution achieved by instantiating a Markov chain on a graph. The

PageRank centrality of a given vertex, then, is proportional to the number of steps (or

amount of time) spent at that vertex as a result of such a process [127]. PageRank cen-

trality takes into account global communication patterns, mediated by longer path lengths

and patterns of convergence and divergence, whereas some of the more common centrality

measures, such as closeness and betweenness centrality, do not [138].
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A defining feature of the PageRank centrality is how it differs form the eigenvector

centrality: PageRank centrality allows for random ‘jumps’ in the network. Motivated by a

person navigating web pages, they follow directed edges - web page links - to progressive

web pages. Spontaneously that person may ‘jump’ to another web page without following

a web page link, i.e. they navigate from one vertex to another where there may be no

edge connecting them. For derivation of the PageRank vector consider the original Google

Pagerank [23].

In Section 4.4 we denote as π the (normalised) maximum component of the PageRank

vector. The mean value of the components of a PageRank vector for a given network of n

vertices is 1
n . For convenience we normalise π by this mean value.

4.3 Spatially constrained adaptive rewiring in cortical

networks creates spatially modular small-world struc-

tures

In a highly simplified model of cortical network, [59] showed that rewiring of an initially

random network in response to a model of spontaneous cortical activity adaptive rewiring

- gives rise to a modular small-world structures. This effect was further explored in a series

of studies [128] that demonstrated a symbiotic relationship between structure and function.

This means that not only the structure is created by the activity patterns, but the the

structure created by the patterns is optimal for sustaining them. On a random underlying

connectivity structure, nonlinear neural mass models have been shown to exhibit modu-

lar functional connectivities. The presence of functional modules will gradually, through

activity-dependent synchrony-favouring rewiring, enable the emergence of similar modules

in the underlying structural connectivity.

The advantage of simple models is their application to uncovering universal principles.

A simple model is “detail invariant” - that is, robust across a range of potential constraints,

whereas findings arising in detailed models may not be robust to changes in those details.

Following the success of adaptive rewiring, over a period of 10 years further steps have

been taken to improve the realism through a series of computational studies. These in-

clude model neurons [91], pruning [150], and growth by preferential attachment [58]. The

resulting rewiring scenarios showed, not only greater realism but also increased efficiency

and robustness of the symbiosis of activity and structure. Despite previous developments

of the adaptive rewiring model, there remains an important limitation to the applicability

as a model of real, biological cortices: adaptive rewiring is missing any notion of metric
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space. Embedding this process into a metric space may allow models to incorporate realistic

characteristics of cortical networks, such as metabolic cost and wiring length [97].

4.3.1 Dynamics: Coupled maps

The evolving networks we study in this section have n = 500 nodes and E undirected edges,

with E = κn(n−1)
2 where κ ∈ (0, 1] is the connection density; κ takes the value of 0.1, i.e.

10% connectivity density, except for our study of dependence on connection density where

it ranges from 2.5% to 5%. Previous non–spatial implementations of the adaptive rewiring

process with κ = 0.1 were found to yield small–world structure [59; 58; 128; 150].

The n nodes of the network are assigned positions on a unit sphere that are approximately

evenly distributed over the surface with sufficient accuracy for our purpose. To distribute

the n points on a sphere, we use a simple iterative algorithm based on repulsion. Beginning

from an initial set of points drawn randomly from a uniform distribution over the sphere,

on each iteration the point “most central” is selected, all other points are then repelled by

a linearly dampening force function. Individual approximations of evenly distributed points

on the sphere are used for independent runs.

As reference points for network structure, we also apply the above network measures to

a random network and a regular type network on the sphere, with the same n and κ as our

evolving networks. The random graph is generated by selecting E pairs of vertices uniformly

at random from all possible pairs and connecting each pair with an edge [111]. Note that

the graph will (with very high probability) be connected if E � log (n)
n [18], which is the

case for all networks we study here. The regular type network is constructed such that each

node is connected to its k = κn nearest neighbours on the unit sphere. Note that, unlike

the ring–like regular networks used by [154], it is not the case that Lregular � Lrandom for

our regular networks because of the spherical geometry and the relatively high connectivity

density of our networks.

The dynamics upon which rewiring is based is a well–established class of dynamical

systems, that of coupled maps [79; 5]. On these networks, the nodes are assigned identical

nonlinear maps f : [−1, 1] → [−1, 1]. The states of the nodes are updated iteratively using

the following diffusive coupling scheme:

xi(t+ 1) = f(xi(t)) +
ε

|Ni|
∑
j∈Ni

[f(xj(t))− f(xi(t))], (4.10)

for i = 1, 2, . . . , n, ε is the coupling strength, Ni denotes the set of neighbours of node i, i.e.

the set of all nodes that connect to node i, and |Ni| is the cardinality of the set Ni, i.e. the

number of neighbours to node i. Connections are undirected, i.e. i connects to j if and only
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if j connects to i. Function f is the logistic map

f(y) = 1− αy2

with parameter α ∈ [0, 2]. As demonstrated in Figure 2 of [128], the logistic map can be

considered as a reduced model, constructed using a Poincaré section, of a chaotic model

of neuronal population activity [22]. Since we are interested in population activity, this

map was preferred as a model over others, such as [130], that represent individual neuron

spiking activity. It is easy to verify that for ε ∈ [0, 1], x(0) = (x1(0), . . . , xn(0)) ∈ [−1, 1]n

implies x(t) ∈ [−1, 1]n for all t ≥ 0 so the dynamics are well-defined in forward time. The

parameters used in this study are α = 1.7, for which the dynamics y(t + 1) = f(y(t))

are chaotic, and ε = 0.4 which previous studies have shown to yield modular small–world

structure in non–spatial networks of this size [150].

4.3.2 Stability of synchronization

The stability of the synchronization manifold for coupled logistic maps can be assessed by

linearising the transverse stability of the synchronization manifold

Rewrite Equation (4.10) as

xi(t+ 1) = (1− ε)f(xi(t)) +
ε

|Ni|
∑
j∈Ni

f(xj). (4.11)

Denote the vector x(t) = (x1(t), . . . , xn(t))>, then Equation (4.11) can be written as

x(t+ 1) = (1− ε)F (x(t)) + εNF (x(t)) (4.12)

where F (x(t)) = (f(x1(t)), . . . , f(xn(t)))>, N = AD−1 for A the adjacency matrix, and

D the diagonal matrix of vertex degrees. Assuming that the network is connected, i.e.,

there exists a path between any pairwise vertices, then matrix mathcalN has the following

properties:

1) Matrix N has all row sums equal to one, i.e., N1 = 1 for 1 = (1, . . . , 1)> the n-vector

of all ones.

2) All eigenvalues of N are contained within a unit disc in the complex plane. This can

be shown using Gershgorins circle theorem [55].

3) There exists a zero eigenvalue, such that its corresponding eigenvector is in the set

span(1, . . . , 1), i.e., N1 = 01.

4) The zero eigenvalue of matrix N is unique, and all other eigenvalues are strictly greater

than 0.
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The eigendecomposition of matrix N is NU = UΛ, where U is the n× n matrix whose

columns contain the eigenvectors of N and Λ is the diagonal matrix of eigenvalues having

entries Λii = λi. Order the entries of matrix Λ such that 0 = λ1 < λ1 ≤ λn. Assuming ma-

trix U is nonsingular (invertible), then substitute in the eigendecomposition representation

of matrix N into Equation (4.12),

x(t+ 1) = (1− ε)F (x(t)) + εUΛU−1F (x(t)). (4.13)

Define new coordinates z(t) = U−1x(t) to obtain

z(t+ 1) = (1− ε)U−1F (Uz(t)) + εΛU−1F (Uz(t)). (4.14)

To assess stability of the synchronization manifold, like in Section 2.2, consider those

perturbations transverse to the synchronization manifold. In that respect, if systems are

synchronized, then denote s(t) = x1(t) = x2(t) = · · · = xn(t) as the synchronized solution.

In other words, it is the solution of the system,


s(t+ 1)

...

s(t+ 1)

 =


f(s(t))

...

f(s(t))

 . (4.15)

In addition, since Λ11 = 0, then the first column of U is the eigenvector 1. Therefore,

U−1


s(t)

...

...

s(t)

 =


s(t)

0
...

0

 . (4.16)

Linearisation of Equation (4.14) around the synchronization manifold


s(t)

...

s(t)

 =: S(t) (4.17)

yields

z̃(t+ 1) = (1− ε)(I ⊗Df(s(t)))z̃(t) + ε(Λ⊗Dfs(t)))z̃(t) (4.18)

where ⊗ is the Kronecker product, and Df is the Jacobian of f .

Since we have ordered the entries of matrix Λ, such that
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Λ =


1

λ2

. . .

λn

 (4.19)

then it follows that

z̃1(t+ 1) = Df(s(t))z̃1(t) (4.20)

are deviations in the direction of the synchronization manifold, and

z̃k(t+ 1) = (1− ε+ ελk)Df(s(t))z̃k(t) (4.21)

for k = 2, . . . , n, are deviations transverse to the synchronization manifold.

Stability, then, is determined by the values ε and λn (since λn ≥ λk, k = 2, . . . , n− 1).

However, stability analysis is not performed in the following description of simulations.

In the following computational simulations, graph topologies change many thousands of

times. It is therefore not computationally plausible to calculate the eigenvalues for each

new graph topology.

4.3.3 Adaptive rewiring: Spatial bias

The network rewiring procedure uses a cost function so as to favour edges of low cost over

edges of high cost when rewiring. This cost function,

R(i, j, t) = γij(t)S(dij),

is the product of an activation cost γij(t) and a spatial cost function S(dij) . The activation

cost, γij(t), is the distance between the states of two nodes i and j at time t.

γij(t) = |xi(t)− xj(t)|.

The spatial cost, S(·), is a monotonic function of dij , the distance between nodes i and

j defined as the length of the shortest arc on the sphere connecting i and j. We consider

the following spatial cost functions:

S(D) ⊂



D linear

exp(D)− 1 exponential

(concave up)

log
(

D
Dmin

+ 1
)

logarithmic

(concave down)
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Figure 4.1: Cost functions of spatial distance: linear in blue, exponential in green, logartih-

mic in red.

for Dmin = mini,j∈N ,i6=j dij , the minimal pairwise distance amongst all nodes on the sphere.

We will refer to the adaptive rewiring function, and the corresponding process of rewiring,

by the spatial cost function used, e.g. logarithmic cost function will refer to the adaptive

rewiring function with a logarithmic cost function of distance. Likewise, the logarithmic

rewiring process will refer to the rewiring process equipped with a logarithmic cost function.

For ease of comparison, Figure 4.1 is presented with S scaled such that the ranges of the

spatial cost functions are equal. The ordering of node pairs induced by R, and hence the

outcomes of Steps 2.2 and 2.3, are invariant to scaling of the image of S.

For N = {1, 2, . . . , n} the set of nodes, R : N ×N → R0+ , (R0+ the set of non–negative

real numbers), we define the following rewiring process:

Step 0: Generate a random graph with n nodes and E edges.

Step 1: Take x(0) ∈ [−1, 1]n randomly from a uniform distribution and iterate the dynamics

described in Equation (4.10) for t = 0, 1, 2, . . . , T − 1.

Step 2: Rewiring:

i. select a pivot node p ∈ N randomly from a uniform distribution

ii. determine the rewiring candidate

c = arg minj∈N\{p}R(p, j, T )
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iii. go to Step 3 if c ∈ Np. If c /∈ Np, update the graph by creating an edge between

p and c and removing the edge between p and c = arg maxj∈Np R(p, j, T ).

Step 3: Repeat from Step 1 until 3× 105 iterates have been reached.

In the case of ties in Steps 2.2 and 2.3, i.e. multiple candidates to rewire to or disconnect

from, the rewiring candidate is chosen at random.

A minimal number of time steps T is needed in order to minimise the effect of initial

transient activity after rewiring; T needs to be sufficiently large such that the choice of x(0)

has minimal bias on the results. The relation between dynamics and structure during the

rewiring stage is thus, effectively, independent of initial conditions. The value of T = 1000

as used in this study has previously shown to be sufficient for this purpose [128].

For comparison we include as a baseline the previously mentioned rewiring process of

[59], i.e. the non-spatial cost function in which spatial distance has no influence on the costs

of rewiring and thus S(D) is constant. Without loss of generality we take S(D) ≡ 1.

Across all versions of adaptive rewiring, rewiring is based on non–spatial preferences; it

was conceived in analogy to Hebbian learning. Hebbian learning relies on two mechanisms;

the first is that synapses are strengthened according to correlated deviations from the mean

firing rate [134]. The second is that synaptic plasticity is competitive, where some synapses

are strengthened, others are weakened [137]. Our rewiring function uses similar mechanisms.

The mechanism for rewarding synchrony is the activation cost γij(t). Even though, rather

than synchrony over a window of time, this mechanism follows instantaneous synchrony,

it was shown in [128] that according to this mechanism, the evolving architecture reflects

the long-term patterns of activity. The method of conservative rewiring then allows for

competition among nodes.

4.3.4 Results

The network measures are reported for rewiring processes under the given cost functions.

The network structure is sampled every 500 iterations of the algorithm, starting from the

initial random network and ending after 3×105 iterations. We conduct five such runs for each

cost function (linear, exponential, logarithmic, and non–spatial). Independent instances of

the random and regular type networks are constructed for each of the five runs.

This section is organised as follows: First we discuss the obtained topological structure

and show all rewiring processes to yield small–world architecture, and then the effect of cost

functions on spatial localisation of edges and clustering. This is followed by an examination

of the relationship between edge betweenness and edge length. Then we report on the
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degree of spatial modularity of the emergent small–world network. Finally, we report on the

dependence of small–world emergence on connectivity density.

Topological small–worldness

Figures (4.2(a)) and (4.2(b)) show the evolution of the clustering coefficient C and average

shortest path length L for the non–spatial and spatial rewiring processes averaged over five

runs. As shown in Figure (4.2(a)), the non–spatial and all spatially constrained adaptive

rewiring processes yield a network that is clustered: for the final network structure, adaptive

rewiring processes yield values of C that are greater than that of the regular lattice. Fig-

ure (4.2(b)) shows that the values of L for final network structure for the non–spatial and

spatially constrained adaptive rewiring processes are less than that of the regular lattice,

whilst exhibiting a modest increase over that of the random network. There is, on the whole,

little difference between the final C and L values for the non–spatial and spatial processes.

We may therefore conclude that, like the non–spatial rewiring process, the spatially biased

rewiring ones successfully reach small–world topology. Furthermore, considering the evolu-

tion of the average values of C and L, the linear and exponential rewiring processes show

faster initial rates of increase than the non–spatial and logarithmic ones. This suggests that

factoring in specific spatial constraints of a linear or exponential type may facilitate reaching

a small–world topology in the system.

Figures (4.3(a)) and (4.3(b)) show the evolution of C and L for individual runs of the

rewiring processes. The linear and exponential cost functions lead to rewiring processes that

exhibit less variability between runs than the logarithmic and non-spatial ones throughout

the full course of rewiring. Factoring in spatial constraints of a linear or exponential type

therefore enhances the consistency of the small–world construction.

Spatial localization

Figures (4.4(a)) and (4.4(b)) show the evolution of the spatially weighted clustering coeffi-

cient Cw and the network wiring cost M for the non–spatial and spatial rewiring processes

averaged over the five runs. The edge weight set is defined by a linear relation:

wij =

 1− dij
π , if aij = 1,

0, otherwise.

Zero distance corresponds to a weight of 1 and the maximum distance π corresponds to

a zero weight. We see from Figure (4.4(a)) that all spatially biased rewiring processes yield

values of weighted clustering coefficient Cw for final network structure that are well above

the value of the non–spatial process, which in turn is still considerably greater than the
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(a)

(b)

Figure 4.2: Evolution of A, the clustering coefficient values C averaged over five runs; and

B, the average shortest path length values L averaged over five runs; for the non–spatial

and spatial rewiring processes, regular lattice on the sphere, and random network.
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(a)

(b)

Figure 4.3: (a) Evolution of the clustering coefficient; and (b), the average shortest path

length; for the non–spatial and spatial rewiring processes, regular lattice on the sphere, and

random network. Individual runs in blue and their average value in red.
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random network on the sphere. In particular, the linear and exponential rewiring processes

yield values of Cw for final network structure that are greater than the regular lattice and,

thus, yield small–worlds with higher degrees of spatial clustering than the regular lattice.

The final value of Cw for the logarithmic rewiring process, however, is slightly less than

that of the regular type lattice. In Figure (4.4(b)), as one would expect, since connections

in a regular lattice are optimal for spatial localisation, the regular lattice has the lowest

value of M amongst all the spatial rewiring processes. However, those of the linear and

exponential rewiring processes are close to that of the regular lattice. On the other hand,

the logarithmic rewiring process yields values of M for final network structure that are well

above the values for linear and exponential ones. The value of M for the non–spatial process

is approximately equal to that of the random one, and corresponds to an average edge length

of π
2 , as one would expect, this being the average distance between randomly chosen points

on the sphere.

Spatially biased rewiring processes that have a linear or exponential cost function of

distance, therefore, facilitate spatial localisation and spatial clustering better than ones with

a logarithmic cost function. Furthermore, considering the evolution of the average value of

Cw and M , the linear and exponential rewiring processes exhibit similar initial rates of

change and drive the network to a spatial small–world more rapidly than the logarithmic

one.

Figures (4.5(a)) and (4.5(b)) show the evolution of Cw and M for individual runs of

the rewiring process. Similar to Figures (4.3(a)) and (4.3(b)), the linear and exponential

rewiring processes exhibit less variation for values of Cw and M than the logarithmic and

non-spatial ones. Therefore, arguably the linear and exponential rewiring processes are most

consistent in reaching a spatially localised and spatially clustered small–world topology.

We may conclude that spatially biased rewiring processes with linear or exponential cost

functions produce spatially localised and clustered small–world topologies and achieve this

more effectively, quickly, and consistently that the logarithmic–based process.

Edge betweenness and distance relationship

To investigate the relation between topological and spatial structure of the network, we

focused on the evolving relationship between edge betweenness and spatial distance.

Figure (4.6(a)) shows the linear correlation coefficients ρ between edge betweenness and

edge length for all edges generated by our models. For the non–spatial rewiring process, as

one would expect, there is no correlation between edge betweenness and spatial distance. As

for the spatially biased rewiring processes, the linear and exponential cost functions yield

similar time–courses for ρ throughout the full course of rewiring. The time–course shows
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(a)

(b)

Figure 4.4: (a) Evolution of the spatially–weighted clustering coefficient vaues Cw averaged

over five runs; and (b), the network wiring cost values M averaged over five runs; for

the non–spatial and spatial rewiring processes, regular lattice on the sphere, and random

network.
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(a)

(b)

Figure 4.5: (a) Evolution of the spatially–weighted clustering coefficient values Cw; and (b),

the network wiring cost values M ; for the non–spatial and spatial rewiring processes, regular

lattice on the sphere, and random network. Individual trials in blue and averaged value of

five runs in red.
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an initial peak followed immediately by a trough and then a plateau. For the logarithmic

rewiring process the correlation between edge betweenness and distance is much weaker and

even exhibits a slightly negative trough prior to a gradual increase to a small positive value.

Scatter plots of edge betweenness and spatial distance at selected rewiring iterations

reveal in more detail the evolving relation between topological and spatial structure. We

uniformly randomly selected 4% of the nodes from the combined five runs and plotted for

all of their connections their values of edge betweenness against spatial distance at five

different moments during the rewiring process: the initial moment; the moment when the

peak occurs for the linear and exponential rewiring processes; the moment when the trough

occurs for the linear and exponential rewiring processes; at the start of the plateau of the

linear and exponential rewiring processes; and the final moment. The 2nd, 3rd, and 4th

moments sampled are indicated in Figure (4.6(b)) by vertical lines.

In Figure 4.7:

• Row 1 depicts the initial random structure.

• In Row 2 the linear and exponential rewiring processes exhibit a positive slope in

their scatter plots whilst the non–spatial and logarithmic rewiring processes do not;

all rewiring processes show the emergence of a small number of edges with somewhat

higher values of edge betweenness.

• In Row 3 edges of even higher betweenness appear; for the linear and exponential

rewiring processes, predominantly the short–range edges yield the greatest values of

betweenness, while for the non–spatial and logarithmic rewiring processes, edges with

high betweenness are present over the full range of edge lengths.

• In Row 4 the linear and exponential rewiring processes show what appears to be

a newly emerged order; edges of still higher betweenness appear that are long–range,

while long–range edges that are of low betweenness disappear. For the non–spatial and

logarithmic rewiring processes, edges with high betweenness mostly remain of random

edge length. (An apparent excess of high betweenness edges at mid–range lengths

for the non–spatial process is merely because, given the geometry of the sphere, such

distances are most common).

• In Row 5 the scatter plots show a strong resemblance to those in Row 4. Only the

logarithmic rewiring process shows noticeable change: there are now more long–range

high betweenness edges but still many short–range ones, and still many long–range

edges of low betweenness.
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We see that for the non–spatial case, there is, as one would expect, no trend in the

correlation between edge betweenness and edge length. The linear and exponential rewiring

processes show that after the initial trough, edges of high betweenness and large distance

are present throughout the remaining course of rewiring (but not necessarily the same edges

throughout). For the linear and exponential rewiring processes the network is strongly

affected by the spatial constraint and quickly comprises mostly short–range edges of low

betweenness along with a few long–range edges of high betweenness. By contrast, in the

logarithmic rewiring process, network structure is not affected by spatial constraints to such

an extent and spatial localisation proceeds more slowly.

Spatial modularity

We now examine the degree of modularity in our networks and the spatial organisation of

the modules.

Figures (4.8(a)) and (4.8(b)) show the evolution of the modularity values Q for the non–

spatial and spatial rewiring processes averaged over five runs, and for individual runs, respec-

tively. As shown in Figure (4.8(a)), all rewiring processes yield a highly modular network.

The spatially biased rewiring processes yield values of Q for final network structure that are

greater than that of the non–spatial one. In addition, the initial rates of Q for the linear

and exponential rewiring processes are greater than those of the non–spatial and logarithmic

ones. Figure (4.8(b)) shows the evolution of Q for individual runs of the rewiring processes.

As with previous measures we see that the linear and exponential rewiring processes exhibit

less variability than the non–spatial and logarithmic ones. Linear or exponential cost func-

tions therefore provide a mechanism that achieves a modular network structure to a greater

extent, more rapidly, and with less variability compared to the non–spatial or logarithmic

rewiring processes.

Figure 4.9 shows the adjacency matrices of the final network structure when columns

and rows are permuted such that the connections between nodes within the same module

are represented as blocks along the diagonal. We see that for all cases a modular network

structure emerges: densely connected subsets of nodes and a sparse connectivity between

those subsets. For individual runs, both the linear and exponential rewiring processes are

more consistent between runs than the non–spatial and logarithmic ones. For all spatial

rewiring processes, but more so for linear and exponential than for logarithmic ones, there

exist more modules and there is less variation between the sizes of modules, compared to

the non–spatial rewiring process.

To show how the modular structure corresponds to the spatial organisation of the net-

work, Figures 4.10 and 4.11 represent typical networks resulting from the linear and log-
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(a)

(b)

Figure 4.6: Linear correlation coefficient ρ between edge betweenness and spatial distance

averaged over five runs versus rewiring iterations. (a) The full course of rewiring; and (b),

early course of rewiring.
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Figure 4.7: Scatter plots of edge betweenness versus spatial distance. Betweenness values

presented here were obtained by uniformly randomly selecting 4% of nodes from the com-

bined five runs and plotting the betweenness values of all their connections. Rows top to

bottom for rewiring steps, 1, 0.75×103, 1.5×104, 5×104, 3×105, columns are for different

rewiring processes.
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(a)

(b)

Figure 4.8: Evolution of the value of the modularity Q. (a) The average of five runs; and

(b), the individual runs; for the non–spatial and spatial rewiring processes, regular lattice

on the sphere, and random network. Individual runs in blue and their average values in red.
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(a) Non–spatial. (b) Linear.

(c) Exponential. (d) Logarithmic.

Figure 4.9: Permuted adjacency matrices that correspond to the module structure of the

non–spatial, linear, exponential, and logarithmic rewiring processes. A point with coordi-

nates (i′, j′) is white if i′, j′ are are the permuted indices of nodes i, j that are connected;

otherwise it is black.
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arithmic rewiring processes with nodes coloured according to the module they belong to.

The exponential case yields results very similar to the linear one, hence for illustration we

only present the case of the linear rewiring process. For the case of the linear rewiring

process we see very little spatial overlap of communities of nodes. This is contrasted with

the logarithmic rewiring process where modules are less clearly separated. Therefore, for

the linear and exponential rewiring processes, modular topology indeed corresponds to a

spatially modular structure, while this is not so clear cut for the logarithmic one.

These results show that the linear and exponential rewiring processes give rise to spatially

modular small–worlds, while the logarithmic small-worlds are less spatially modular. We

remark that the modularity algorithm [110] does not always find the partition into modules

that maximises Q. However we trust the modularity results for the rewiring processes

because, as Figure 4.9 shows, the adjacency matrices have a clear block–diagonal structure.

In addition, we used an alternative algorithm for modularity, the Louvain algorithm [16],

and obtained similar results. A case where the algorithm [110] performs poorly, however,

is the regular graph. While the algorithm consistently gave a modularity value of around

0.3610, calculation of Q using spatially modular partitions shown in Figures (4.9(b)) and

(4.9(c)) gave values of 0.4538 and 0.4219 respectively for the regular graph; substantially

higher than the value of 0.3610 found by the algorithm.

Dependence of small–world emergence on connection density

Edge density had been found in non–spatial networks to have a critical threshold; as edge

density falls below this threshold the development of a high clustering coefficient becomes

first unreliable and then fails altogether [150]. Since adding spatial constraints was shown to

reduce the variability of the rewiring process, we hypothesize that the localizing tendency of

the spatial cost functions shall reduce this threshold by promoting spatially localised clusters

as occurs in the regular network limiting case. Accordingly, we investigated the dependence

of rewiring processes on the parameter of edge density.

We performed simulations of the linear, exponential, and non–spatial rewiring processes

with connectivity densities in the set {2.5, 2.75, 3, . . . , 5}, using the same procedure as pre-

vious. The minimum, maximum, and average values of C and L after 3 × 105 rewiring

iterations are presented in Figure 4.12 as functions of connectivity density.

For non–spatial rewiring, a connectivity density threshold of approximately 4% was re-

quired for networks of this size to achieve self–organised clustering (Figure (4.12(a))). Below

this, the clustering coefficient drops off, until, at a connectivity density of approximately

3%, it reaches that of a random network. This result confirms what was previously observed

[128]. The average shortest path length increases gradually as edge density decreases and at
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(a)

(b)

Figure 4.10: Final community structure of one run of the linear rewiring process. (a) and

(b) show opposite hemispheres. Nodes are coloured according to the module to which they

belong.
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(a)

(b)

Figure 4.11: Final community of the logarithmic rewiring process. (a) and (b) show opposite

hemispheres. Nodes are coloured according to the module to which they belong.
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the same rate as that of the random network but offset to a somewhat higher level. Below

3% the non–spatial rewiring process remains, essentially random (Figure (4.12(b))).

On the other hand, the linear and exponential rewiring processes share a threshold

for self–organised clustering that is considerably lower than the non–spatial one. Simi-

larly, reduced threshold is also observed for the average shortest path length of the lin-

ear and exponential rewiring processes (Figures (4.12(c))-(4.12(f))); at 2.5% connectiv-

ity these processes still yield small–world networks. Furthermore, preliminary data for

κ ∈ {0.01, 0.0125, 0.015, . . . , 0.025} indicates that C for the linear and exponential rewiring

processes decreases gradually while remaining above that of the random network; there is no

sudden phase transition of network structure toward random structure. Therefore, the linear

and exponential adaptive rewiring processes yield small–world architecture for connectivity

densities well below that required by the non–spatial adaptive rewiring process.

Thus, the linear and exponential adaptive rewiring processes yield small–world networks

for connectivity densities well below that required for the non–spatial adaptive rewiring

process. For κ = 0.1, our small–world networks differed from the classic small–world example

of WS based on the ring lattice in that it was not the case that Lregular � Lrandom. However

as κ approaches 0.025 we have Lregular � L & Lrandom since Lregular/Lrandom increases more

than L/Lrandom, and hence our small–world networks more resemble the classic example of

WS.

This point is illustrated in Figure 4.13 by the small–worldness measure Σ, as a function

of connectivity density. The initial trend of Σ for the three rewiring processes for decreasing

connectivity density is the same with Σ increasing. However, below a connectivity density of

4.25%, the value of Σ for the linear and exponential rewiring processes continues to increase

while that for the non–spatial rewiring process begins to decrease until it reaches the value

of one, that of the random network. In sum, for locally biased rewiring, the small–world

effect is more pronounced in sparser networks. The critical threshold of edge density for

self–organised clustering in a non–spatial adaptive rewiring regime is indeed reduced when

adaptive rewiring becomes locally biased.

4.4 “Go with the flow’; Self-organisation of small-world

network

In the myriad contexts for which SWN structures are observed, the patterns of activity on

those networks can vary greatly - the activity of a community of neurons translates poorly

to the activity of a community of people. If indeed there exist underlying principle(s), then
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(a) Clustering coefficient for non–spatial cost

function.

(b) Average shortest path length for non–

spatial rewiring process.

(c) Clustering coefficient for linear rewiring

process.

(d) Average shortest path length for linear

rewiring process.

(e) Clustering coefficient for exponential

rewiring process.

(f) Average shortest path length for exponen-

tial rewiring process.

Figure 4.12: Clustering coefficient, C, and average shortest path length L, for (a), (b), non–

spatial; (c), (d), linear; and (e), (f), exponential cost functions as function of edge density.

Maximum, average, and minimum values from the five independent runs are shown, along

with values for the corresponding random and regular graphs.
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Figure 4.13: Small–worldness measure Σ averaged over five runs for non–spatial, linear, and

exponential rewiring processes as a function of edge density.

we may safely assume that such principle(s) are robust to particular patterns of activity.

It is well established that patterns of dynamics on networks, such as synchronization or

rotating waves as discussed in the previous chapter, may be determined from the underlying

connectivity structure. Approached in its full generality, determining patterns of dynamics

is too complex for current methods. It remains that if individual dynamics are well defined

and for all time, and all information of connectivity is given, then it follows that it is possible

to determine even the most complex patterns of dynamics.

Applying this rationale to the model of adaptive rewiring provokes the notion that activ-

ity and structure play a mutual role, a symbiotic relationship [128]. If patterns of activity

are a determined solution on a given connectivity structure, then structural evolution in re-

sponse to adaptive rewiring is also determined. The emergence of modular SWN structures

as reported in [59; 75] can then be seen as a type of attracting network structure.

We motivate a model of SWN self-organisation by the principle of adaptive rewiring

[59], however, we aim to achieve a greater level of simplicity and abstractness void of specific

patterns of activity that allows it to be made applicable to a universal class of systems. In [59]

synchronization of agents governs network evolution; agents that are synchronised become

connected, while asynchronised agents become disconnected. We hypothesize that in the [59]

dynamics regime, the likelihood of any given pairwise agents being synchronised is related

to the diffusion properties in the graph. Graph (or network) diffusion may be considered

to represent “convergence rates” between pairwise vertices at a given time. We hypothesize

that pairwise agents having higher convergence rates also have a higher likelihood that they

are in the same state, i.e. synchronized. Therefore, the process of adaptive rewiring can be

applied to these likelihoods of vertices being synchronised, as opposed to the actual patterns

of dynamics.
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We propose that in self–organising systems the network structure adapts to its use,

creating shortcuts where network diffusion (traffic flow or information transfer) is intensive

while annihilating underused connections - like pedestrians define walkways in parks. As in

the Watts–Strogatz algorithm, rewirings will be random for some proportion p, representing

noise perturbation of the rewiring process, but for the proportion 1 − p, they will be in

adaptation to the ongoing diffusion process in the network. We show that with progressive

adaptive rewiring, SWNs always emerge from initially random networks for almost any value

of p: diffusion solutions cause the contraction of clusters while a random factor integrates

clusters.

In networks adapting to their diffusion, changes in structure generally occur at a slower

rate than the diffusion itself. The proportion of these two rates is expressed by τ , which we

call the diffusion rate. As with p, SWNs emerge for almost any value of τ . The diffusion

rate biases local or global connectivity structures. Depending on this bias, either modular

or centralised SWN structures emerge. Moreover, at the critical point of phase transition,

there exists a network structure in which the two opposing properties of modularity and

centrality are balanced. This characteristic is observed, for instance, in the human brain

[6; 39; 135]. We call such a structure hierarchical. In sum, adaptation to network diffusion

represents a universal mechanism for the self–organisation of a family of SWNs, including

modular, centralised, and hierarchical ones.

4.4.1 Preliminaries: Network diffusion

Here we will provide a formal definition of network diffusion, an algorithm for adaptive

rewiring, and a description of a set of computational simulations to demonstrate the role of

adaptive rewiring in the generation of small-world networks.

Normalised Laplacian matrix

The Laplacian matrix of the graph G is L = D − A. The normalised Laplacian matrix, L,

is more appropriate for dealing with irregular graphs,

L = D−1/2LD−1/2 = I −D−1/2AD−1/2 (4.22)

with the convention that D−1
uu = 0 for du = 0.

All eigenvalues of L are real (since L is symmetric real) and confined to the interval [0, 2],

in accordance with Gershgorin circle theorem [55], and relate well to other graph invariants,

such as random walks (or Markov chains), in a way that the eigenvalues of the Laplacian

matrix and adjacency matrices often fail to do [33].
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Definition 4.4.1. (Transition matrix) For a graph G, the transition matrix P contains the

probabilities of traversing to any given vertex from some initial vertex:

Pij =

 1/di if (j, i) ∈ E

0 otherwise
(4.23)

or, more compactly,

P = AD−1 (4.24)

where D is the diagonal matrix of out-degrees, Duv = dout
u if u = v and 0 otherwise.

Using the compact representation of the transition matrix P (4.24), we formulate the

following lemma.

Lemma 4.4.1. Consider a connected undirected graph G. Let P be the corresponding tran-

sition matrix (random walk matrix or Markov chain), and let L be the corresponding nor-

malised Laplacian matrix. Then, matrices P and L share the same, albeit shifted by 1,

spectrum of eigenvalues and closely related eigenvectors.

Proof. Let matrix P have eigenvalues ωi and eigenvectors ui. Consider the normalised

Laplacian matrix L of graph G, and substitute in the transition matrix P such that,

L = I −D−1/2AD−1/2 = I −D−1/2PD1/2. (4.25)

Let λi be an eigenvalue of L with eigenvector vi such that

(I −D−1/2PD1/2)vi = Lv = λivi, (4.26)

then, multiplication on both left hand sides yields

(D1/2 − PD1/2)vi = λiD
1/2vi

PD1/2vi = (1− λi)D1/2vi. (4.27)

Therefore, 1 − λi is an eigenvalue of P with eigenvector D1/2vi. Moreover, ωi = 1 − λi
and ui = D1/2vi.

While L incorporates information of the connectivity of vertices, this information is only

local; it fails to provide any global connectivity metric.

Graph kernels: Network diffusion

The introduction of a graph kernel h solves this problem by providing a similarity metric

between all pairwise vertices of a given graph: h describes the degree of similarity between

any two vertices v1, v2 ∈ V with fine distinctions in the degree to which v and v1 are distant
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from each other in the graph. A crucial condition for the existence of a graph kernel is that

h must be positive definite and symmetric. A more detailed description of graph kernels

may be found in [87].

The simplest measure of similarity on a graph G is the shortest path length d(i, j). The

shortest path length, however, does not define a positive definite kernel since it violates

positive definiteness for non-adjacent vertices having zero path length [87]. The global

efficiency is robust to non-adjacent vertices, however as with the shortest path length, the

global efficiency is sensitive to the insertion and/or deletion of individual edges. A more

robust similarity measure is needed.

Random walks are more robust to changes in the graph edge set. In a random walk a

path is generated such that each successive edge traversed is chosen uniformly randomly.

More specifically, the sequence of vertices vk, vk+1 is achieved by traversing the edge ek with

probability 1/dk, the inverse of the degree of vertex vk. A compact representation of this

process is provided by the transition matrix. Raising the transition matrix to the power T ,

gives the matrix, denoted as PT , whose i, j element describes the probability of a random

walker starting from j being found at i at time T . Unfortunately, PT is not guaranteed to

be positive definite or symmetric, and hence fails to qualify as a graph kernel.

A class of kernels, diffusion kernels, address these problems. A particular case of the

Gaussian Radial Basis Function kernel, the diffusion kernel is positive definite and sym-

metric, and is constructed in such a way to be robust to changes in the edge set. It is

the solution of the diffusion equation, where space is defined by the graph Laplacian - the

discretisation of the Laplacian operator, the second order differential operator.

The physical meaning of the diffusion kernel h is clear: h describes how heat, gases, etc.,

introduced at vertex v0, diffuse with time in a homogeneous, isotropic medium. However,

a graph is typically not an isotropic medium. This motivates the use of the normalised

Laplacian, as opposed to the unnormalised Laplacian, as described above.

Network diffusion is formally represented by the exponential heat kernel of the graph (cf.

Theorem 10.11 in [33]).

Definition 4.4.1. Let L be the normalised Laplacian matrix for an n × n real symmetric

matrix and t ≥ 0. The exponential heat kernel of L, denoted by h(t), is the symmetric and

positive definite n× n matrix,

h(t) = e−tL =

∞∑
k=0

(−t)k

k!
Lk. (4.28)

In particular h(0) = I, the identity matrix.
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Properties of the exponential heat kernel

One of the most important properties of the heat kernel is the role of which the time

parameter t plays.

Lemma 4.4.2. For a graph G with vertex set V = {1, 2, . . . , n}, the entry akij of the matrix

Ak obtained by taking the k-th power of the adjacency matrix A equals the number of walks

of length k between pairwise vertices i and j.

Proof. By method of induction, take as the base case k = 1, and thus aij is 1 if {i, j} ∈ E.

So the statement is true for k = 1. Now assume the statement holds true for k and then

prove for the case k + 1. Since Ak+1 = Ak · A, then, ak+1
ij =

∑n
l=1 a

k
il · alj . Whenever

{i, j} 6∈ E, aij = 0 and vice versa, and so it follows that akil · alj represents the number of

length k + 1 walks between vertices i, j that are constructed from length k walks between

pairwise vertices i, l joined by the edge {l, k}. In particular, all walks of length k+1 between

pairwise vertices i, j are of this form for some vertex l. Thus, ak+1
ij =

∑n
l=1 a

k
il · alj indeed

represents the total number of length k+ 1 walks between pairwise vertices i, j. This proves

the statement for k + 1, and by the principle of induction, therefore proves the statement

for all natural numbers k.

Coefficients (−t)k
k! in Equation (4.28) therefore allow for biasing of path lengths in the

construction of h(t), where for small t shorter paths carry greater weight and longer paths

carry lesser weight, and vice versa for large t. In our simulations we use the parameter

τ = t.

The exponential growth of a matrix Ak as k → ∞ is controlled by the eigenvalue of A

with greatest absolute value. The Perron-Frobenius theorem describes the properties of the

leading eigenvalue and of the corresponding eigenvectors when A is a non-negative square

real matrix.

Lemma 4.4.3. Assuming the square n× n real and symmetric matrix X is diagonalisable

by some orthogonal matrix Q, such that X = QΛQ−1, then

h = e−tX = Qe−tΛQ−1

where e(·) is the matrix exponential operator and t ∈ R.

Proof. Consider the Taylor series expansion of the matrix exponential operator e(·) acting
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on matrix X,

e−tX =

∞∑
k=0

(−t)k

k!
Xk

= I − tX +
t2

2!
X2 − · · ·

= I − tQΛQ−1 +
t2

2!
(QΛQ−1)2 − · · ·+ (−t)k

k!
(QΛQ−1)k + · · ·

= I − tQΛQ−1 +
t2

2!
QΛ2Q−1 − · · ·+ (−t)k

k!
QΛkQ−1 + · · ·

= Q

[
I − tΛ +

t2

2!
Λ2 − · · ·+ (−t)k

k!
Λk + · · ·

]
Q−1

= Qe−tΛQ−1.

Theorem 4.4.1. The matrix h(t) as t → ∞ can be expressed by the leading eigenvector

associated with the zero eigenvalue of L:

lim
t→∞

h(t) = qq>.

Proof. Since L is real and symmetric, there exists an orthonormal matrix Q such that L =

QΛQ−1 where Q is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues.

From Lemma 4.4.3, substitution of this eigendecomposition into the Taylor expansion yields

h(t) = Qe−tΛQ−1. Let Λii = λi and order the eigenvalues such that 0 = λ0 ≤ λ1 ≤ · · · ≤

λn−1. If G is connected, then L has one simple zero eigenvalue λ0. Thus, in the infinite

limit

lim
t→∞

e−tΛ = B

where matrix B is

B =


1

0

. . .

0

 ,

since e−tλ0 = 1 for all t ∈ R and limt→∞ e−tλk = 0 for k = 1, . . . , n− 1.

Therefore,

lim
t→∞

h(t) = QBQ−1 = qq>

where q is the first column of Q, called the leading (or principle) eigenvector associated with

the zero eigenvalue. Note that matrix Q is unitary, i.e., Q−1 = Q>, thus yielding the result

qq>.
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The matrix qq> allows one to express analytically the behaviour of h(t) as t→∞; it is

the projection onto the eigenspace corresponding to λ, called the Perron projection.

If G is regular - all vertices have equal degree d = dv for all v ∈ V - then, L = 1
dL.

Corollary 4.4.1. If G is regular, then q ∈ span{1, . . . , 1}, hence limt→∞ hL(t) = 1
n11

>,

where hL(t) = e−tL.

Proof. Consider the combinatorial Laplacian L and notice that D = diag(A1>). Denote q

as the eigenvector associated with the zero eigenvalue λ0. Let q = span{1, . . . , 1}, then

Lq = diag(A1>)1> −A1> = 0.

Thus, in the infinite limit of t,

lim
t→∞

hL(t) = qq> =


1 · · · 1
...

...

1 · · · 1

 .

Assuming G is irregular, as is often the case in evolving networks, then the leading eigen-

vector q is not consistent for the heat kernel constructed using the combinatorial Laplacian

matrix L and normalised Laplacian matrix L.

Corollary 4.4.2. if G is irregular, then q ∈ span
{√

d1, . . . ,
√
dn
}

, thus limt→∞ hL(t) =

1
1D1>

D1/21>1D1/2, where hL(t) = e−tL.

Proof. For the normalised Laplacian matrix L, denote its leading eigenvector as q associated

with the zero eigenvalue λ0. Let q = D1/21>, then

Lq = D−1/2LD−1/2q = D−1/2L1> = 0

since 1> is the eigenvector of L associated to λ0.

Alternately, noting that since D = diag(A1>) and D1> = A1>, then

Lq = (I −D−1/2AD−1/2)D1/21>

= D1/21> −D−1/2A1>

= D1/21> −D−1/2D1>

= D1/21> −D1/21>

= 0.

Hence, q = span
{√

d1, . . . ,
√
dn
}

.
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To describe hL(t) in the infinite limit of t, one must normalise the eigenvector q: q =

q
1q = D1/21>√

1D1>
.

Therefore,

lim
t→∞

hL(t) = qq>

=
1

1D1>
D1/21>1D1/2

=
1∑
j dj


d1

√
d1d2 · · ·

√
d1dn

√
d2d1 d2

...
...

. . .
√
dnd1 · · · dn

 .

The use of L over L in construction of the heat kernel becomes apparent for G irregular.

AssumingG is irregular, then the off-diagonal entries of h(t) as t→∞ are proportional to the

square root of the vertex degrees. Thus, for t taken arbitrarily large, irregularities in L also

appear in h(t), i.e. information of network structure is still contained in h(t). This property

does not hold if we were to replace L with L in the construction of h(t). Indeed, denote the

heat kernel constructed using L as hL(t), then for G regular, limt→∞ hL(t) = 1
n11>. Note

also, that for α > 0 where α may be taken arbitrarily small, h(α) 6= I, i.e. off-diagonal

entries of h(α) are nonzero, and hence h(α) contains information of network structure. This

property holds for both the use of L and L in construction of the heat kernel.

4.4.2 Adaptive rewiring: In response to network diffusion

Consider an undirected graph with number of vertices n and number of edges m. For

convienience we take m = 2ρn(n − 1), where ρ = log(n)
n , i.e. twice the critical connection

density for which a random Erdös–Rényi (ER) graph is connected with probability one

[45; 18].

We consider self–organisation starting from a random network. The network is progres-

sively rewired, with probability p at random and with probability 1 − p according to the

current network diffusion. The process can be described in algorithmic form:

Step 0: Generate an undirected random graph G of the Erdös–Rényi type.

Step 1: Select a vertex v uniformly randomly from all non–zero degree vertices v ⊂ {u ∈

V |du 6= 0 and du 6= n− 1}.

Step 2: Delete the edge (v, u1) and add the edge (v, u2) where vertices u1 and u2 are selected

by the following criteria: With probability p go to 2i, otherwise go to 2ii,
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i. Vertices u1 and u2 are uniformly randomly selected from the sets u1 ∈ {u ∈

V |(v, u) ∈ E} and u2 ∈ {u ∈ V |(v, u) ∈ Ec}.

ii. For adjacency matrix A (of graph G), calculate the heat kernel h(t) for t = τ ,

where τ is a chosen parameter. Vertices u1 and u2 are chosen such that, for all

u ∈ V and u 6= v,

u1 : hvu1(t) ≤ hvu(t) for all (v, u) ∈ E

u2 : hvu2
(t) ≥ hvu(t) for all (v, u) ∈ Ec

where huv(t) is the u, v entry in matrix h(t). In case of ties u1, u2 are chosen arbitrarily.

Step 3: Repeat from Step 1 until k edge rewirings have been made.

All simulations are performed using MATLAB R2014. In Step 3 we take k = 4m;

simulations without upper limit on k show sufficient convergence after only m rewirings.

We simulate 100 independent trials for each pair (τ, p). In analysing the networks generated

by the algorithm all measures used are provided by the Brain Connectivity Toolbox [127].

Note that for τ � 1 the heat kernel approaches the matrix 1
1D1>

D1/21>1D1/2 and so

rewiring biases toward high degree vertices, hence, adaptive rewiring approaches a process

of preferential attachment.

4.4.3 Results

Networks obtained by adaptive rewiring are described according to measures of small-world

structure, modularity, centrality, and criticality.

Small-World Structure

The small-worldness index S provides a canonical measure of the degree to which a network

is small-world [67]. Here, we take a slightly modified version, in which the normalised

clustering coefficient (C) is multiplied by the normalised global efficiency (E), such that

S = C
Cr
× E

Er
, where Cr and Er are measures of C and E for an equivalent Erdös-Rényi

(ER) random graph, i.e. with equal n and m. In doing so, S is also defined on disconnected

networks.

For random graphs, S = 1 and so the greater the (positive) deviation of S from one,

the greater the degree of small-worldness. For comparison, we include the average small-

worldness values for networks constructed by the Watts-Strogatz algorithm (100 indepen-

dently constructed networks for each p = 0, 1
500 ,

2
500 , . . . , 1).

In Figure (4.4.3) we observe for networks the average small-worldness index S as a

function of random rewiring probability p. A striking result is that SWN emergence is
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Figure 4.14: The small-world index S as a function of decreasing random rewiring probability

p: Coloured lines indicate values of heat kernel parameter τ , black line indicates the Watts-

Strogatz algorithm.

observed for all sample values of τ nonzero, no matter how small or large. Moreover, for

all nonzero τ a greater maximum small-worldness is achieved than with the Watts-Strogatz

algorithm.

The degree of network adaptation to network diffusion, 1−p, for which maximum small-

worldness is obtained depends on the rate of diffusion: local diffusion, τ = ε, 1, requires

small p, i.e. small degree of random rewiring, while more global diffusion, τ = 8, δ, requires

larger p.

Clustering and Path length

The emergence of small-world structure can be seen as the result of significant increases in

clustering, seen in Figure (4.15(a)), while simultaneously, a comparably disproportionately

less decrease in efficiency, Figure 4.15(b). As the random rewiring probability p approaches

0, there is a breakdown in integration, as seen by a final low value of global efficiency in

Figure 4.15(b). This is reflected in the values of small-worldness for which the values of S

for all τ nonzero decay as p goes to zero.

Interestingly, In Figure 94.15(b)) for τ = 8, δ and p between 0.6 and 1 the network

achieves a greater degree of efficiency than an equivalent random ER one. This is despite
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an increase in segregation, seen by the clustering coefficient, over the same interval. Impor-

tantly, this indicates that random ER networks are not optimally efficient networks, as they

may be improved by a small degree of ordering. Intuitively, a random ER network may be

made more efficient with relative ease if connections are intelligently rewired with the aim of

improving efficiency, however, here connections are rewired in a process of self-organization,

based on generic factors of the network. Therefore, improved efficiency is an attracting

structure of self-organization for those pairs of (τ, p).

Modular Structure

The modularity indexQ is an optimised statistic of network partitioning into non-overlapping

communities. The value Q is calculated as the proportion of intra-modular connections mi-

nus the expected proportion of inter-modular connections for an equivalent ER random

network under the same community structure.

In Figure (4.4.3). we observe the average modularity index Q as a function of random

rewiring probability p. We observe that modularity can be switched on or off by choice of

pair (τ, p). This is discussed in further detail in the section Critical Network Structure. For

τ = ε, 1 networks emerge with near-maximal degrees of modularity as p→ 0. On the other

hand, for τ = 8, δ and over all p ∈ [0, 1] emergent networks posses no community structure,

i.e. modularity is switched off. In fact, we see a lesser degree of modularity than in an

equivalent random ER network.

In Figure (4.18) we present the adjacency matrices from a randomly chosen trial with

pairs (τ, p), where p is chosen dependent on τ so that the values of small-worldness S are

at maximum. In both Figure (4.18(a)) and Figure (4.18(a)) where (τ, p) = (ε, 0.1) and

(τ, p) = (1, 0.3), respectively, emergent modules are relatively uniform with a dense intra-

connectivity and sparse inter-connectivity.

Centralised Structure

Properties of centrality are characterised using the measures of Page–Rank, and for pairs

(τ, p) where p is chosen dependent on τ such that S is at maximum, the degree, assortativity,

and maximised coreness statistic.

The PageRank centrality vector, a variant of eigenvector centrality, is defined as the

stationary distribution achieved by instantiating a Markov chain on a graph. The PageRank

centrality of a given vertex, then, is proportional to the number of steps (or amount of time)

spent at that vertex as a result of such a process [127]. PageRank centrality takes into

account global communication patterns, mediated by longer path lengths and patterns of

convergence and divergence, whereas some of the more common centrality measures, such
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(a)

(b)

Figure 4.15: As functions of decreasing p along the horizontal axis: A clustering coefficient

C; B global efficiency E, with upper right region magnified in subplot.
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Figure 4.16: Along the vertical axis is the global efficiency E as a function of random

rewiring probability p along the horizontal axis: Coloured lines indicate values of heat

kernel parameter τ .

as closeness and betweenness centrality, do not [138]. We denote as π the (normalised)

maximum component of the PageRank vector. The mean value of the components of a

PageRank vector for a given network of n vertices is 1
n . For convenience we normalise π by

this mean value.

In Figure (4.4.3) we observe the average PageRank value π as a function of random

rewiring probability p. As with modularity, we see that centrality can be switched on or off

depending on the choice of τ . For τ = 8, δ emergent network structures exhibit values of

π considerably (positively) far from that of the ER networks, indicating large deviations of

the maximum component from the mean of the PageRank vector. Therefore, there exists

at least one vertex having a significantly higher likelihood of being traversed in a random

Markov chain than all others. On the other hand, for τ = ε, 1 and over all p ∈ [0, 1] emergent

networks posses no such central vertices, i.e. centrality is switched off. In fact, we see a

lesser degree of centrality than in an equivalent random ER network.

In accordance with Figure (4.4.3), by choice of pair (τ, p) emergent networks are either

modular or centralised. The phase transition of network structure is discussed in the section

Critical Network Structure.

In Figure (4.4.3) the degree distribution of vertices is Gaussian for τ = ε, 1 and log-normal
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Figure 4.17: The average modularity Q as a function of decreasing random rewiring proba-

bility p: Coloured lines indicate values of heat kernel parameter τ .

for τ = 8, δ. Moreover, for τ = 8, δ there emerge vertices having remarkably high degrees

(> 70).

In Figure(4.21) we present the adjacency matrices from a randomly chosen trial with

pairs (τ, p), where p is chosen dependent on τ so that the values of S are at maximum. In

both Figure (4.21(a)) where (τ, p) = (8, 0.5667), and Figure (4.21(b)) where and (δ, 0.5667),

we observe a small subset of hub vertices connecting to many peripheral vertices.

The assortativity coefficient a describes the “assortative mixing” of vertex degrees, i.e.

the preference for high-degree vertices to attach to other high-degree vertices. In Table

(4.1) row a, a strong negative correlation for τ = 8, δ indicates that vertices of a high degree

typically connect to vertices of a low degree. For τ = ε, 1 an approximately zero correlation

indicates no preference of connections between vertices of varying degrees.

The maximised coreness statistic c measures the extent to which a network may be well-

partitioned into two non-overlapping groups of vertices, a core and a periphery group. In

Table (4.1) row c, for τ = 8, δ values close to one indicate that the network may be well-

partitioned into non-overlapping groups of core and peripheral vertices. For τ = ε, 1 values

close to zero indicate no such core-periphery partition.

In sum, we note that for τ = 8, δ networks emerge as centralised, with a strong core,

and that those core vertices connect to a high number of peripheral vertices. For τ = ε, 1,
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(a)

(b)

Figure 4.18: Single trial. Example modular SWN. Adjacency matrices mapped to an n-

by-n grid where rows (and columns) represent vertices and white indicates the existence

of an edge. Rows and columns of adjacency matrices have been permuted to visualise the

modules, in accordance with [127]. a: (τ, p) = (ε, 0.1); b: (τ, p) = (1, 0.3).
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Figure 4.19: The average π - maximum component of PageRank vector normalised by its

mean - as a function of decreasing random rewiring probability p: Coloured lines indicate

values of heat kernel parameter τ .

networks exhibit none of these properties.

τ 0 ε 1 8 δ

a -0.0219 0.0259 0.0905 -0.4689 -0.5094

c 0.2482 0.0491 0.1317 0.8770 0.9066

Table 4.1: Column wise τ . Row wise: a assortativity coefficient; c maximised core-periphery

statistic. Values presented are averages over trials.

Critical Network Structure

Now let us take a closer look at the transition between modularity and centrality, and show

that at the phase transition of network structure, the two seemingly opposing properties are

reconciled. Properties of modularity are characterised by Q while properties of centrality

are characterised by π.

In Figure (4.22), for parameters τ in [4.5, 5.5] with increments of 0.05 and p as previous,

we present Q (Figure (4.22(a)), and π (Figure (4.22(b))). In the domain (τ, p) there is a

broad region of high modularity where both τ and p are low, and a broad region of high

centrality in the remainder. Where the domain of modularity ends, the domain of centrality
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Figure 4.20: A bar-plot graph where the height of individual bars are the average number

of vertices having degree dv. Coloured bars indicate values of heat kernel parameter τ .

begins: The system exhibits a critical transition from decentralised (modular) to centralised

structure as a function of the pair (τ, p). The phase transition region between the two is

relatively sharp with respect to both τ and p.

In Figure (4.23(a)) we fix τ = 0.5 and take Q and π as a function of p ∈ [0.4, 0.6]

with uniform spacing 0.002. As previous we take the average of 100 trials. It is clear that

modularity and centrality are opposing properties, however, at the boundary of modularity

and centrality, where they intersect at around p = 0.52, there is a small domain of p for

which networks are a blend of both modular and central structure: each of Q and π are

considerably large, indicating the presence of both network properties. Furthermore, the

value of small-worldness for pair (τ, p) = (5, 0.522) is S = 5.32, indicating the network is

also small-world.

In Figure(4.23(b)) we present from one trial with pair (τ, p) = (5, 0.522) the adjacency

matrix permuted to visualise the modules. We observe a competition between modular and

centralised structure: The simultaneous existence of densely connected communities (decen-

tralised) and a core of high degree vertices connecting to many low degree peripheral vertices

(centralised). In Figure (4.24) we present four additional randomly sampled networks for

pair (τ, p) = (5, 0.522). These additional figures support the notion that centrality and

modularity are opposing, that at the point of phase transition they are reconciled, and that
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(a)

(b)

Figure 4.21: Single trial. Example centralised SWN. Adjacency matrices mapped to an n-by-

n grid where rows (and columns) represent vertices and white indicates the existence of an

edge. Rows and columns of adjacency matrices have been permuted to visualise the modules,

in accordance with [127]. a: depicts (τ, p) = (8, 0.5667); b: depicts (τ, p) = (δ, 0.5667).
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this is critical, i.e. they are competitive. Under the same parameters, all adjacency matrices

exhibit some degree of both centrality and modularity: emergent networks may appear as

more centralised (Figures (4.24(a)) and (4.24(b))), or more modular (Figure (4.24(c))), or

a blend of the two (Figure (4.24(d))).

4.5 Conclusion

In the first part of this chapter, Spatially constrained adaptive rewiring in cortical net-

works creates spatially modular small-world structures, we aimed to understand the princi-

ples whereby the large-scale information processing architecture of the cortex takes shape

– in particular, the observation that this structure consists of a large number of efficiently

connected clusters: a modular small-world. In the cortex, this architecture exists within

an essentially sheet–like structure, in which the modules are spatially segregated, and their

links are long-range connections. We propose that this network structure, and its spatial

layout, take shape in a process through which neural connections are rewired in response

to the patterns of dynamic synchronization in ongoing neural activity. In a highly simpli-

fied model of the functional architecture, starting from a random initial network structure,

a modular small world network gradually emerges when connections are attached and de-

tached, depending on the presence or absence of pairwise synchrony between activity in the

nodes.

Previous adaptive rewiring models have considered synchrony as the only rewiring crite-

rion irrespectively of the information processing architecture of the brain [59; 91; 75; 128].

Here we consider networks endowed with metrics, a definition of distance between nodes,

and study the effect on the outcome of adaptive rewiring. We study the effect of local bias

on the rewiring of connections in a highly simplified model process. Doing so allows us

to consider the effect of biological constraints such as metabolic costs and wiring length.

Factoring in a preference for spatially local rewiring is cause for the modular small world

structure to be reached with greater robustness, compared to rewiring based on synchrony

alone. The resulting network, moreover, consists of spatially segregated modules, in which

within–module connections are predominantly of short range and their interconnections are

of long range. The spatially biased rewiring process, therefore, might be considered as a

principle for how the large–scale architecture of the cortex is formed.

In our current, highly abstract model, a locally biased Hebbian–like adaptive rewiring

process is applied to a network consisting of 500 nodes evenly distributed on a sphere.

Rewiring depended on the factors of synchrony between pairwise unit activity and the spatial

distance between nodes. The procedure extends the adaptive dynamical rewiring process of
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(a)

(b)

Figure 4.22: In the plane τ along the horizontal axis and random rewiring probability p

along the vertical axis: a: depicts the modularity index Q; b: depicts π, the maximum

component of PageRank vector normalsied by its mean value.
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(a)

(b)

Figure 4.23: a: For τ = 0.5. Along the horizontal axis random rewiring probability p. Along

the vertical axis are Q the modularity index (left), and π is the maximum component of

PageRank vector normalised by its mean value (right). b: Single trial. Example centralised

SWN. Adjacency matrix mapped to an n-by-n grid where rows (and columns) represent

vertices and white indicates the existence of an edge. Rows and columns of adjacency

matrices have been permuted to visualise the modules, in accordance with [127]. Pair

(p, τ) = (5, 0.522).
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(a) (b)

(c) (d)

Figure 4.24: For four single trials, (a)–(d), where in each the pair (p, τ) = (5, 0.522), the

adjacency matrix permuted to visualise the modules, in accordance with [127].
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[59] with a function that biases rewiring such that spatially local connections are more likely.

We considered three functions to specify the costs of a given wiring length: logarithmic,

linear, and exponential.

For 10% connectivity, all versions of the locally biased rewiring process preserve the

phenomenon of small–world emergence found in the non–spatial one. Furthermore, the linear

and exponential ones yielded networks that are spatially organised such that topologically

segregated regions correspond to spatially segregated regions, with these regions being linked

by long-range connections; that is to say, a spatially modular small–world.

Locally biased adaptive rewiring improves the robustness of network evolution from ran-

dom to small–world topology. Non–spatial adaptive rewiring processes are subject to a

minimum connectivity density threshold, below which the rewiring process does not achieve

self–organised clustering [150]. Locally biased adaptive rewiring processes that have a lin-

ear or exponential cost function, however, achieve self–organised clustering for connectivity

densities considerably lower than this threshold.

The measure of edge betweenness in relation to spatial distance enables us to relate hub

nodes - nodes that participate in a relatively high proportion of shortest paths - with connec-

tions that are spatially long–range (since hub nodes can be inferred from high betweenness

edges). Previously, anatomical network hub nodes appeared random in functional networks

due to observed disparity between structural and functional connectivity [150]. Now, how-

ever, we see hub nodes connect spatially distant regions.

We conclude that a locally biased adaptive rewiring function equipped with a linear or

exponential cost function is capable of generating a spatially modular small–world network.

Thus, spatially constrained adaptive rewiring schemes are sufficient to explain both the

emergence of topological connectivity structure and spatial distribution of large-scale cortical

architecture.

In the second part of this chapter, “Go with the flow’; Self-organisation of small-world

network, we proposed a principle of network self-organisation that relies only on ongoing

network diffusion; over time, the network is rewired adaptively, rendering it conform to the

patterns of diffusion. With some probability p, this process is perturbed by random rewiring.

For almost any proportion of random noise rewiring small-world structure emerged. For a

broad range of p, the networks reached higher degrees of SWN structure than those in the

Watts and Strogatz algorithm [154].

The optimal proportion of noise rewiring depends on the diffusion rate τ . The value of τ

biases for local or global connectivity structures in the network. Depending on this bias, a

family of SWNs emerges. For small τ , i.e. local diffusion, networks emerge as modular. For

large τ , i.e. global diffusion, emergent network structures are centralised. For intermediate
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values of τ and p there is a critical transition point at which network structures emerge that

blend modularity and centrality. We may call these “hierarchical” [103].

Such networks are desirable for natural information processing systems like the human

brain, in which a core of centralised components represents a global workspace and the

decentralised modules represent autonomous client systems [6; 39; 135]. The criticality of

these architectures renders them all but robust. At the level of the neuro-anatomy of the

brain, it would probably involve dynamic maintenance to keep these architectures at the

critical point. As a property of functional architecture, the criticality would render cogni-

tion extremely flexible, enabling rapid switching between centralised and modular processes

[101].
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Chapter 5

Conclusion

The purpose of this thesis was to further understand self-organisation in network structure,

in particular, in the context of the brain.

Functional and anatomical structures in the brain are non-trivial [63; 139; 25; 53]. A

structure we have assigned particular attention to is the small-world network, classically

known for reconciling opposing properties of segregation and integration [154]. Complex

network structure is highly unlikely to emerge by chance. Moreover, small-world networks

are observed in myriad contexts besides the brain, such as ecological networks [105], social

networks [149], protein networks [4], the Boston subway [96], and the World Wide Web [147].

This suggests that there may exist some universal underlying principle for their emergence.

In the quest for a universal principle, we consider two very different approaches: the

mathematical analysis of dynamics on a given network, and the computational modelling of

network structure evolution. Network dynamics and structural evolution have been shown

to play a mutual role in network self-orgainisation [127], i.e. activity and structure are

symbiotically related.

In Chapter 2 we introduced some basic concepts of nonlinear systems theory [40]. This

foundation is necessary for the study of stability of solutions of a dynamical system. Under-

standing the dynamics of interconnected systems of nonlinear ordinary differential equations

is arguably amongst the oldest and inspiring problems. Objects of this type occur in a broad

range of fields of engineering and science [119]. We reviewed methods for stability analysis,

in partiuclar, for synchronous solutions the Connection Graph Satbility method [14], Wu-

Chua conjecture [159], Master stability function [117], semi-passivity argument [121], and

for periodic solutions the Floquet multipliers [88; 83]. In the following Chapter we apply

methods of semi-passivity and Floquet multipliers to a study of change in network topology.

This is complemented with numerical simulations. While analytical solutions for stability
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analysis provide a great deal of insight, they may at times be conservative, i.e., provide

bounds for which synchronization is guaranteed, however the true bounds may exist for a

larger domain of parameter space. This is when numerical simulations become useful, even

when analytical solutions exist.

In Chapter 3 we study how small changes in network structure can effect stability prop-

erties in a system of coupled oscillators. We chose as nonlinear dynamics the FitzHugh-

Nagumo oscillator [46], a generalisation of the van der Pol equation for a relaxation os-

cillator. Individual oscillators were then diffusively coupled into two configurations, the

directed chain and directed cycle. The directed chain and the directed cycle differ by just

one connection; the directed cycle is obtained by the addition of an edge that closes the

directed chain. The choice of directed cycle is motivated by its extremal properties. Among

all linear systems satisfying the condition that the transposed Laplacian matrix has all zero

column sums, the directed cycle with equal connection weights is the most sensitive to dis-

turbances, i.e. perturbations take the longest time to decay. We applied from Chapter 2

previously discussed stability analysis methods of semi-passivity and Floquet multipliers in

addition to numerical simulations. In doing so, in changing from one configuration to the

other we see a profound bifucation of equilibria. For the case of the directed chain there

exists an asymptotically stable fixed point, the synchronization manifold. The directed cy-

cle, however, exhibits multi-stability; both a fixed point - synchronization - and a periodic

solution, called a rotating wave, are stable. The extremal properties of the directed cycle

configuration therefore create resonances with nonlinear systems. The emergence of periodic

behaviour is thus the result of initial perturbations from the synchronous manifold (initial

conditions) not decaying, but instead resonating, eventually into a stable periodic solution.

In natural systems, such a multistability may have use as a switch, from periodic motion to

stationary motion, and vice versa. One such example of feedback mechanisms generating

periodic motion is the generation of quadrupedal gaits, the order of movement of four legs

[51].

In the second part of Chapter 3 (Multi-Stability of coherent dynamics in directed networks

with modular topology), we generalise the directed cycle configuration to one of modules

directionally coupled in a cycle. We show that if connectivity within isolated modules is

diffusive with relatively strong coupling, multiple coherent and orderly dynamic regimes co-

exist in the system state space. In addition to a nearly fully synchronous state, an attracting

rotating wave solution occurs. Moreover, the rotating wave solutions are shown by numerical

simulation to occur with greater frequency than in the previous case of individual oscillators

in the directed cycle.

In Chapter 4 we turn our attention toward a more general setting. In Section 4.3 we
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consider a computational model of a network of brain regions. Regions are modelled by the

chaotic dynamics of the logistic map. The logistic map is an interesting dynamical system,

since diffusively coupled arrays exhibit more complex patters of dynamics than a single map

is capable [78]. The logistic map may also represent a model of neural population dynamics,

as demonstrated in Figure 2 of [128]. The key aim of this section was to expand upon

previous studies of adaptive rewiring [59], in particular, to incorperate space into a model of

adaptive rewiring. Adaptive rewiring was concieved as an abstract model of brain evolution

and the mutual role of activity and structure [128]; structure adapts to activity, while activity

is influenced by structure. Many studies have strengthened this model [91; 128; 59; 150].

Missing from this model was any notion of space, arguably a very important factor in brain

network structure, in particular in minimsation of wiring cost [32], organisation [26], and

trade-offs between spatial cost and funtion [24].

By incorporating space as a cost function of distance in the adaptive rewiring a number

of interesting results were found. To begin, we investigated several cost functions of dis-

tance, over increasing distance the cost increased exponentially, linearly, and logarithmically.

Network measures clearly demonstrated that a logarithmic cost of distance failed to yield

similar complex structures as seen in the brain, i.e. the failure for modular and small-world

network structure to emerge. Linear and exponential cost functions of distance on the other

hand showed improved emergence of these network structures; networks more consistently

and with greater pronunciation emerged as modular and small-world as compared to the

original adaptive rewiring model without any dependency on space.

Possibly the most interesting result, was the improved robustness of network self-organisation

under the contraint of reduced connectivity density, i.e. fewer edges. In [150], network con-

nectivity was investigated, and it was shown that for reduced connectivity there existsed

a threshold for wich emergence of modular small-world structure failed, and the network

remained random. It was suggested in [150] that this fragmentation of network structure

may explain schizophrenia; schizophrenia is often characterized as a reduced clustering and

increased integration. With the addition of spatial cost on adaptive rewiring, this thresh-

old was found to be significantly lower, allowing for modular small-world networks to self-

organise for networks having much fewer edges. This suggests an alternative explanation

for the occurrence of schizophrenia: a disruption to the metabolic cost of connections in the

brain such that connection organisation is to a lesser degree influenced by spatial distance.

Following this, in Section 4.4 we present the key result of this thesis: the synthesis of

mathematical formalization and computational modelling to understanding network self-

organisation. As we have demonstrated in Chapter 3, due to dynamic sensitivities to the

underlying connectivity structure, it is not (yet) feasible to analytically characterize general
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patterns of dynamics on an evolving network. This issue is in part addressed in this section,

in which this very complex problem is reduced to a problem of estimating the likelihood

of solutions: we consider the solution of synchronization and estimate the likelihood of

systems synchronizing by considering the degree of graph diffusion (traffic flow or information

transfer) between all pairwise vertices. Systems with higher degrees of diffusion are deemed

to have a higher likelihood, and vice versa. This estimation for systems to synchronize is

applied to the adaptive rewiring rule described in Section 4.3 in the way that vertices with

a higher likelihood of synchronizing are wired together and those with a low likelihood have

their edge removed.

The model has two key parameters: a time parameter representing the diffusion rate that

can bias between local and global connectivity structures, and a random parameter used in

the rewiring process that determines if the network rewires according to diffusion patterns or

randomly. Numerical simulations showed that biasing toward local structures in the rewiring

process produce modular structures, while biasing toward more global structures produce

centralised structures. The degree of randomness in the rewiring process was shown to be

related to the diffusion rate, in that optimal small-world structures were for pairs of diffusion

rate and random rewiring. Interestingly, there exists a phase transition of network structure,

from modular to centralised. At the transition between these two structures there exists a

critical network structure in whcih the network was a blend of both. Such a structure can

be considered “hierarchical” [103], and may be desirable for natural information processing

systems like the human brain [6; 39; 135].

While we only considered one class of solutions as a criteria for rewiring - synchronization

-, we were able to achieve self-organisation of highly complex network structures. In reducing

the complexity of a problem, it may become detail invariant, and one can better understand

the basic principles that underlie the process in its many manifestations. To this end, we can

conclude that optimization of patterns of communication is a basic and universal principle

of complex network structure emergence.

The study of brain network self-organisation is one that can be approached from many

directions. To name a few: biological, chemical, physical, psychological, mathematical, and

computational. This makes the problem both highly challenging but also very interesting.

One may wish to put their effort into just one field, however, they may limit themselves

in their scope of addressing the problem of self-organisation. These different fields can at

times find emphasis to particular scales of space, time, and realism in brain network growth

and development. On the smallest spatial scale, a chemical approach may be limited to

the molecular level, such as the ion diffusion through gates in the cell membrane and the

feedback processes leading to spike generation. A biological approach may be of a higher
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spatial scale, such as the anatomy of axons and the growth cones that guide them, yet this is

a slow temporal scale. A psychological scale may record activity patterns on the millisecond

scale, yet on the global brain spatial scale. Considering the realism, mathematics may

reduce a process to an abstract one that characterises bifucations of nonlinear dynamics

describing cell action potentials [71]. While on the other hand, computational modelling

of a large array of simple neurons, such as integrate and fire, can capture the large scale

activity patterns observed in real networks.

5.1 Future work

Let us briefly describe studies for future work.

Adaptive rewiring and brain pathology One study concerns the application of spa-

tially biased adaptive rewiring to brain pathology. Consider the computational model de-

scribed in Section 4.3. It would be interesting, and rewarding, to connect spatial cost

functions of distance to brain pathologies. The results presented suggest that schizophrenia

may arise from a weaker than normal metabolic cost over distance. Other such pathologies

that may be targeted in this study include autism, which is understood to arise as the result

of over-localisation; compared to normal brain structure, one with autism exhibits increased

segregation and weakened integration, resulting in improved processing of information at

the expense of poor communication.

Adaptive rewiring in weighted networks This project is currently in the writing stage

with the aim to publish in 2017. This study is an extension of the original adaptive rewiring

model [59]. It concerns the evolution of networks having weighted edges, and how the set

of weights affects the structures that emerge. A wide range of distributions are considered,

including exponential, normal, log-normal, and power-law, from which a set of weights are

drawn. In previous studies, coupling has been uniform, and in the model presented in

Section 4.3, spatial distance is incorporated into the rewiring phase of the model. In this

model, however, edge weighting is incorporated in the evolution of dynamics.

Adaptive rewiring and the heat kernel for directed and weighted networks A

study, with the aim of two publications in 2017, is to extend the model of adaptive rewiring

in response to graph diffusion presented in Section 4.4 to one of directed and one of weighted

networks. In particular, in Section 4.4 we considered the heat kernel for undirected and bi-

nary graphs. However, many real world networks are better described by directed and/or
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weighted graphs. For instance, the neural network of the mammalian brain has many differ-

ent means of communication, among which but not limited to, are directed axonal-synaptic

connections. Such connections are not binary, nor are they necessarily bi-directional. In ad-

dition, connection weights may also be considered negative, describing inhibitory synapses.

The aim of this study is to extend the result of self-organisation by diffusion to directed

and weighted networks, however, we begin by addressing each individually.

The study of weighted networks is a relatively simple extension of the model since the

definition of the heat kernel is almost unchanged. Since the weight matrix is symmetric,

definitions of the normalised graph Laplacian remains almost unchanged:

L = In −D−1/2
w WD−1/2

w (5.1)

where In is the identity matrix, W is the weight matrix such that Wij = wij if Aij = 1 where

wij is a nonzero weight drawn randomly from some distribution and Wij = 0 otherwise, and

D
−1/2
w is the diagonal matrix of degrees Dii =

∑
jWij . We hypothesise that for certain

pairs of parameters (τ, p) (the diffusion rate and probability of random rewiring) emergent

structures should reflect the previously described model for weighted adaptive rewiring.

However, it is not yet understood how changes in the pair (τ, p) will effect network evolution

for the different connection weight distributions.

In the study of directed networks, the normalised Laplacian matrix takes a different form.

Considering the definition for the normalised Laplacian in [33], we formulate the normalised

Laplacian for directed adjacency graph G with non-symmetric adjacency matrix A

L = In −D−1/2
in AD

−1/2
out

where Din and Dout are the diagonal matrices of in- and out-degrees, respectively. For

undirected k-regular graph L is equal to the ordinary graph Laplacian. One may then

calculate the heat kernel - the solution for heat diffusion on the graph -, denoted as h(t), as

h(t) = exp(−tL) . (5.2)

The next step is the rewiring criteria: since L is non-symmetric, then so is h(t). The

column-wise entries of h(t) correspond to the diffusion flow from a given vertex to another.

In the emergent network structures we consider the motifs, specific patterns of connectivity.

Preliminary results suggest that this may provide an answer for the emergence of feedforard

loops, a widely observed network motif in brain networks [104].

Adaptive rewiring and memory: Rewiring Izhikevich’s polychronous neuronal

groups It is hypothesiszed in [42; 74] that higher-order processing in the brain, such as
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memories or experience, may be represented by patterns of temporal coding. In a small-

scale network model, comprising excitatroy and inhibitory neruorns with delay synatpic

coupling and synaptic weight update by Spike-Time Dependent PLasticity (STDP) [137],

[73] proposes as a model of temporally coded memory, computational units called Poly-

chronous Neuronal Groups (PNG’s): certain persistent spike-timing patterns that emerge

and re-occur with millisecond precision, despite statistically highly unlikely probability of

repetition.

The priincipal result of [73] are the number of emergent PNG’s; the number of PNGs

that emerge far exceeds the number of neurons in the network, possibly explaining the rich

diversity of activity and memory capacity in the cortex. This is the result of competitive

synaptic plasticity. STDP can select matching conduction delays and give rise to the spon-

taneous formation of neuronal groups, i.e. self-organization of neurons into neuronal groups

[74].

A limitation of this study however is the choice of neuron model. Individual neurons

are modelled by the Izhikevich spiking neuron model [71; 72], capable of producing 20

fundamental neuro-computational features of biological neurons while at a computational

cost comparable to that of an integrate-and-fire neuron. Despite these advantages, the

neuron model is a piecewise continuous one, and therefore, standard stability analysis of

nonlinear systems, as discussed in this thesis, do not apply.

A drawback of the model lies in the rigidity of the network structure. STDP must select

the ‘best fitting’ set of connections - which neurons have a connection and their specific delay

value - from an initially random configuration. For future study we aim to demonstrate that

if network structure is allowed to change in response to activity, if the network is adaptively

rewired, that a more efficacious structure may self-organize, i.e. one that has an increased

capacity for PNG’s without requiring more resources. We aim to characterize the improved

efficiency of the network structure through a series of network measures and understand

how, and which, topological properties of a network structure self-organize to promote the

emergence of PNG’s. Achieving this goal will provide valuable insight into the network

properties optimal for memory formation and storage.

To address this problem, we introduce structural plasticity in the form of connection

rewiring. Studies include pruning of connections whose weight depresses to zero. When a

connection is pruned, a new connection replaces it. We hypothesise that over time network

structure and delay values self-organize in such as way to maximise the number of emergent

PNG’s.

Preliminary results have already given many answers to this problem. One result in

particular is interesting, since it relates well to our study of spatially dependent adaptive
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rewiring, as discussed in Section 4.3. When forming a new connection the question arises

of what delay value should the new connection take? We have found that compared to

assigning random delay values to new connections, the process of adaptively rewiring of

connections is more efficient, in terms of the total number of edge rewirings and the number

of emergent PNG’s, when delays are spatially dependent.
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