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Abstract

Development of Flexible Parametric Models for Competing Risks
and Tools to Facilitate in the Understanding and Communication
of Cancer Survival

S. Islam

In population-based cancer studies, researchers are often only interested in cancer-
specific survival to determine variations in the impact of cancer in different pop-
ulation groups. In such cases, the net survival measure is usually reported. How-
ever, this is of little relevance for patients as it does not consider the probability of
dying from other causes before dying from cancer, otherwise known as competing
risks. Therefore, alternative measures that take this into account are required for
a better representation of cancer survival in the real-world. Measures estimated
from within this framework provide a more meaningful interpretation for patients
which can be communicated to facilitate treatment-related decisions.

Differences in interpretation between various cancer survival measures, and when
they are appropriate, has led to some confusion amongst non-statisticians. This
motivates the development of publicly available tools to improve understanding
and communication. Thus, an aim of this thesis is to develop an interactive web-
tool to aid interpretation of various important cancer survival measures that are
commonly reported.

Although not a new concept, many often fail to account for competing risks when
it is necessary for a study. Even when accounted for, many apply the theory, or
report analyses incorrectly. Recently, efforts have been made to make competing
risks methods more accessible for researchers from within the increasingly popular
flexible parametric modelling framework. However, much work is yet to be done,
especially as cancer registry datasets are becoming larger with more detailed co-
variate information. This means that models are increasing in complexity and
more computationally efficient methods are required. With this in mind, the pri-
mary aim of this PhD is to further develop competing risks methods from within
the flexible parametric modelling framework. Particular focus is on obtaining
predictions with less computational effort that facilitate communication of risk
when interest is in prognosis.
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Chapter 1

Introduction

1.1 Aims of PhD

As the analysis of more detailed survival data increases in complexity, alternative

approaches to traditional methods, such as the Cox proportional hazards model,

are required. This is to ensure that methods remain accessible for researchers

who are interested in obtaining clinically meaningful predictions which, in turn,

facilitate communication of complex analyses. Hence, this thesis further develops

the use of flexible parametric models which have become an increasingly popular

choice for the analysis of large population-based data. As a result of the increas-

ing complexity behind the interpretation of cancer survival measures derived from

such models, these measures are commonly misreported. There are also various

cancer survival statistics that are estimated which depend on the research ques-

tions and what is of primary interest. For example, in large population-based

cancer studies, often it is only of interest to estimate cancer-specific mortality.

However, others, especially patients, will want information on their overall mor-

tality and the risk of dying from a multitude of things, which include cancer. The

latter refers to competing risks theory which is also covered in detail in this thesis.

To reduce such confusion, resources are required to help distinguish between and

identify appropriate measures in relation to what is of interest for the audience.

This motivates the development of necessary tools that facilitate the interpreta-

tion of various, more complex measures for researchers and non-researchers alike.
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Therefore, a further aim of this PhD is to develop a publicly available tool to

facilitate interpretation which will hopefully address this issue.

A further consequence in the emergence of “big data”, is the importance of de-

riving computationally efficient methods. Many existing methods require compu-

tationally intensive approaches, which, when implemented in practice, are often

impractical in larger datasets. Therefore, there is a need for more computationally

efficient methods for obtaining predictions which are useful for communicating

risk.

In this thesis, all the above issues are approached when competing risks are

present. Competing risks methods are becoming more widely used in population-

based studies, as well as in clinical trials, especially as cause of death information

becomes more reliable and available. Focus is on the application of methods in

population-based studies, although all methods introduced and discussed in this

thesis are also relevant for clinical trial data and smaller observational studies.

1.2 What is survival analysis?

Survival analysis is deeply rooted in the history of actuarial science and demog-

raphy which date back to the seventeenth century, thus forming one of the oldest

branches of statistics. Subjects are essentially observed through time from an

initial state to an event of interest. For example, in the context of actuarial

science, motivated by the construction of classical life tables, a subject’s time-to-

death from birth is studied. It was not until the mid-twentieth century that these

methods were advocated for medical applications in a commentary by Berkson

and Gage [1950] on calculating survival rates for cancer. In this instance, the
2



“survival time”, or time-to-death, of a patient is studied from when they were

diagnosed with cancer [Balakrishnan, 2014]. In this thesis, methods for analysing

time-to-death following a cancer diagnosis using cancer registry data are explored.

1.3 Competing risks in cancer registry data

Large population-based cancer studies involve the analysis of registry data. One

area of particular interest is on quantifying mortality associated with the cancer

under study. These studies are particularly useful as they allow the monitoring

and evaluation of the effectiveness of patient care after obtaining estimates rep-

resentative of a whole population [Dickman and Adami, 2006].

Competing risks is central to the analysis of cancer registry data. Researchers

are primarily interested in death from the cancer of interest, however, in reality,

patients can also potentially die from other causes. This is a topic in survival

analysis that has become of greater interest in recent decades. Despite a revival

in methodological development and application in medical research, competing

risks, as a concept, is not a new one since work in this area can be traced as far

back as the mid-18th century. This is found in the seminal paper by Bernoulli

[1760], which studied the impact of smallpox-related mortality in Europe. How-

ever, the work conducted by Nightingale [1863] & Farr [1864] in analysing hospital

data on mortality and recovery of male patients is presented as a better represen-

tation of much of the research conducted in the modern era on competing risks.

In fact, Beyersmann and Schrade [2017] even argued that their work surpasses

many recently published research articles. Inaccuracies and misinterpretation

that arise from many competing risks analysis is well documented [Austin et al.,

2016; Austin and Fine, 2017a]. The lack in availability of useful and easy to
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obtain predictions after a competing risks analysis can partly be attributed to in-

accuracies in interpretation present in many of these publications. This motivates

the need to develop and better communicate methods that are more accessible

for researchers, which, together with appropriate predictions, will facilitate in the

accurate reporting and communication of competing risks analyses.

1.4 Rate or risk?

When it comes to modelling competing risks data in epidemiological studies, it

is vital for the researcher to consider the research question before determining

the correct approach to use for analysis. As highlighted above, many published

articles often incorrectly report a competing risks analysis and this stems from

an inherent misunderstanding behind the purpose and application of appropriate

methods. A researcher must first determine the purpose of their analysis - is it

to determine the effect of a new treatment on changes in the rate of deaths due

to cancer, or on changes in the risk of dying of from cancer? In other words,

is interest in determining the aetiological effects or effects on prognosis. In fact,

regardless of what one might be interested in, many have suggested that, to truly

understand why a covariate impacts the probability of dying from, for example

cancer, inference on both scales should be made [Wolbers et al., 2014; Latouche

et al., 2013; Andersen et al., 2012; Lambert et al., 2017; Austin et al., 2016].

This is because, essentially, the risk of dying from cancer will depend on both the

mortality rate due to cancer and the mortality rate due to other causes. Therefore,

inference on both rate and risk due to a specific cause of death is also advocated

and forms the main underlying message of research proposed throughout the

thesis. To facilitate this, competing risks methods on both scales from within

the flexible parametric modelling framework (introduced in chapters 5 and 6) are
4



proposed. This extends on competing risks methods previously introduced for

the flexible parametric modelling framework by Hinchliffe and Lambert [2013]

and Lambert et al. [2017].

1.5 Illustrating methods via US SEER colorectal data

A central theme of this thesis is the development of methodology in the presence

of competing risks with particular focus on application to large population-based

cancer registry data that contain cause of death information. Therefore, to illus-

trate various methodology introduced in this thesis, US Surveillance, Epidemiol-

ogy and End Results (SEER) program public colorectal dataset is used [Institute,

2014]. The dataset contains survival information on 45,318 female patients aged

between 55 and 84 years old diagnosed with colorectal cancer from 1998 to 2013.

Information on whether the patients were at localised, regional, or distant stage

colorectal cancer at diagnosis is also included. Analyses will include time-to-death

from a total of 3 causes: death from colorectal cancer, other causes, and heart

disease. Follow-up time is restricted to 120 months from diagnosis. This data is

used for illustration purposes in chapters 5 - 10 and in the Statistics in Medicine

research article in appendix C.

1.6 Outline of thesis

Chapter 2 details some background theory in the area of survival analysis which

includes several basic assumptions that are often made in survival data, such as

censoring and independence between events. These are embedded in the core of

key survival measures, the derivations of which are also introduced and linked

through useful mathematical relationships. Non-parametric approaches for sum-

marising survival data are also derived. As these are unbiased and make no
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distributional assumptions, they are used throughout the thesis as a compara-

tor to evaluate the fit of proposed methods to the data. However, in order to

make comparisons between two or more covariate groups, or for the inclusion

of continuous covariates, semi-parametric or parametric modelling approaches

are preferred. In chapter 3, some of the more popular regression modelling ap-

proaches are described, namely, the famous Cox proportional hazards model. The

proposed flexible parametric modelling framework is also introduced.

This thesis focuses on quantifying cancer-specific survival in the presence of com-

peting risks which is often approached in large population-based cancer stud-

ies without relying on cause of death information. The commonly reported net

survival concept is discussed in chapter 2 and the complexities in interpreting

this measure is highlighted. The complexities of interpreting net survival leads

into the motivation behind the newly developed online tool, “InterPreT Cancer

Survival”, which is introduced in chapter 4. To communicate the public release

of the web-tool, the paper provided in appendix B has been submitted to Can-

cer Epidemiology which is currently under review. Impact of InterPreT Cancer

Survival is also shown through Google Analytics user summary statistics in ap-

pendix A.

The main focus of much of the research carried out during the PhD, however, is in

the development of competing risks methods for cancer registry data when cause

of death information is available. Competing risks theory is formally introduced

in chapter 5, the core of which is based on the estimation of the cause-specific cu-

mulative incidence function as opposed to the usually reported survival function.

This can be calculated using one of two approaches. The first approach is based
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on inferring covariate effects on the rate of dying from a particular cause, which is

detailed in chapter 5. This includes the proposal of a new numerical integration

approach for calculating the cause-specific cumulative incidence function which

is an improvement of the approach described initially by Hinchliffe and Lambert

[2013] within the flexible parametric modelling framework. The second approach

is introduced in chapter 6 where interest is in making inferences directly on the

risk of dying from a particular cause. A new direct flexible parametric modelling

approach which simultaneously estimates each cause-specific cumulative incidence

function is introduced using a full likelihood function. In chapter 7, this approach

is evaluated through a simulation study which compares performance against the

more popular Fine & Gray model. Further comparisons are also made and some

advantages of the model are highlighted using the US SEER colorectal dataset

described in section 1.5 above. A Statistics in Medicine methods paper introduc-

ing this approach has been published, access of which is provided in appendix C

[Mozumder et al., 2018].

The remainder of the thesis extends on the flexible parametric modelling ap-

proaches proposed in chapters 5 and 6. The flexible parametric approach for

directly estimating each cause-specific cumulative incidence function simultane-

ously is extended for cure models in chapter 8. This is followed by chapter 9,

which proposes further predictions beyond typically reported measures, such as

the hazard ratio, that are available after fitting flexible parametric models de-

scribed in chapters 5 and 6. These can be presented to facilitate the reporting

and interpretation of competing risks analyses. The restricted mean lifetime es-

timate is introduced for both approaches along with obtaining an estimate of the

expected number of years lost before some time due to a particular cause of death.
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Methods proposed in this thesis have all been implemented within the newly de-

veloped user-friendly Stata command stpm2cr. This is introduced in chapter 10,

which outlines syntax and other useful features, such as predictions that are easily

obtainable post-estimation. The first version of stpm2cr has already been pub-

lished in the Stata Journal, access of which is provided in appendix D [Mozumder

et al., 2017]. Since its initial release, the command has also been extended as a

wrapper for fitting flexible parametric models on the cause-specific hazards scale

as described in chapter 5. This includes estimation of each cause-specific cumu-

lative incidence functions using the alternatively proposed numerical integration

approach in section 5.6.3. To implement this, stpm2cr calls the stpm2cifgq.ado

program, the code of which is provided in appendix E. Computational time gains

of adopting these newly proposed methods using stpm2cr are also highlighted in

preceding chapters.

Finally, chapter 11 concludes with some general discussion on research carried

out in this thesis. This includes an overview of the methods proposed, some

limitations, and potential future work/extensions.
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Chapter 2

Background to Survival Analysis

2.1 Outline

The fundamental principles embedded in the analysis of survival data are explored

in this chapter. Basic concepts are introduced alongside key terminology, which,

together, lay the foundation of research conducted in this thesis.

2.2 Introduction

The analysis of survival data is a problem approached in a number of disci-

plines including engineering and demography. Here, we focus on its application

to medicine, more specifically, in cancer registry data. In this case, a patient is

typically followed through time from the start of a study until the event of interest

is observed. This is often contextualised either as the survival time, or time-to-

death of a patient, where the start of the study is normally from when the patient

was first diagnosed with the cancer, and the event of interest is death from cancer.

There are some key distinctive features of a survival analysis. Primarily, the

rate at which an event occurs over time is of interest and is often distinguished

between different groups such as sex. For example, consider a large population-

based cancer study. To monitor the impact of cancer on survival, an individual’s

probability of survival, transformed from the underlying rate (see section 2.4),

is calculated. However, the cancer may lead to a consistently lower survival in
9



males compared to females, and so, to indicate this, the survival probability is

calculated separately in each sex group. In other instances, it may be of interest

to see if there are differences in cancer survival between other explanatory vari-

ables, such as deprivation groups. Another important feature is that individuals

may not always experience the event of interest during the period of observation.

These are referred to as “censored” events. In other survival data, “truncation”

may also be present. This refers to studies where individuals are included based

on some condition that occur prior to the event of interest. For example, only

patients who experience recurrence of a disease prior to death are included in a

study.

2.3 Censoring & truncation

In most cancer (and other) survival data, censored events are commonly recorded

when the study ends. Consequently, the time at which they experience the event

of interest (i.e. death from cancer) is not recorded. Alternatively, an individual

may be lost during follow-up time due to, for example, emigration. These are

referred to as right-censored observations since the event occurs after (or to the

right of) the censoring time. Alternatively, it is possible for individuals to enter

a study having already experienced the event of interest at some (unknown) time

before (or to the left of) the censoring time. These are known as left-censored

observations and are less common in cancer survival data and so, in this thesis,

only right censoring is considered. Interval-censoring is another mechanism that

is mentioned here for completeness. This is similar to left censoring except that

the censoring time is identified to be contained within a time range. This may

be present, for example, when the recurrence of a disease is observed in a patient
10



between two routine check-up appointments after receiving treatment [Crowder,

2012].

2.3.1 Right censoring

Right censoring can be characterised as either “Type I” or “Type II’. The lat-

ter applies mostly in engineering where, for example, the study ends when the

event of interest, or failure, is observed in a pre-determined number of, say, tur-

bine engines. Type I censoring, on the other hand, is more likely to be encoun-

tered in medical studies where the patient’s survival time exceeds follow-up time

[Moeschberger et al., 1997]. This can be illustrated when analysing differences in

10-year survival between different prognostic variables using registry data which

contains information on patients diagnosed with prostate cancer. In this case,

follow-up time is restricted to 10 years after diagnosis, so patients who do not

die from cancer or other causes within the first 10 years, are censored. “Admin-

istrative censoring” is another type of right censoring but is instead determined

by calendar time rather than follow-up time and is the most common type of

censoring encountered in observational studies.

2.3.2 Non-informative censoring

A further distinction can be made between random and non-random censoring

processes. Random censoring can be observed in a number of ways. One way in

which this can occur is when an individual experiences some other terminal event

before the event of interest. For instance, returning to the prostate cancer study,

a patient may die from something else before they die from the cancer itself and

therefore their cancer-specific survival time remains unknown. In literature, this

special case is considered as a competing risk problem due to complications intro-

duced through potential associations between the “competing” events of failure
11



[Crowder, 2012]. Approaches have been introduced to specifically handle and in-

corporate censoring of this kind in a survival analysis (see chapter 5). A further

example of random censoring may include patients who are lost during follow-up

due to migration to another country. However, in some instances, censoring due

to migration is unlikely to be entirely random as there may be some individuals

who relocate dependent on factors related to the disease. For example, if patients

with a terminal disease enters the later stages, some may migrate in search of

alternative/better treatment, or simply choose to move back to their country of

origin for comfort.

Particularly in medical applications, censored events that arise out of a ran-

dom process is defined as “non-informative censoring” which is a key assumption

for an unbiased survival analysis. Generally, administrative censoring are non-

informative since they are considered to be encountered due to factors unrelated

to the study or event of interest - given that the duration of the study is fixed

beforehand. However, there may be scenarios where this condition does not hold,

i.e. there is “informative censoring”, leading to bias that invalidate the analysis

if not accounted for using appropriate methods (Collett [2003], Ch 14). Informa-

tive censoring is present if the loss to follow-up of an individual is associated with

factors related to the study. Take, for example, a cancer patient randomised to

an experimental treatment group in a clinical trial. If the patient is withdrawn

due to severe side effects as a result of the treatment, the censoring is considered

to be informative. Another case of informative censoring that commonly occur,

is in competing risks. This is when a cancer patient dies from other causes before

the cancer itself. In the case of informative censoring, death from the “compet-

ing” cause (e.g. due to cardiovascular disease), may be due to adverse effects

12



from cancer treatment. Relevant methods to account for competing risks data is

formally introduced and discussed in chapter 5.

2.3.3 Independent and identically distributed censoring

Another important assumption for the censoring mechanism in survival data is

the independence between the censoring time and actual survival time of an indi-

vidual. In other words, if hypothetically, after the censoring time, we could still

observe an individual’s actual survival time (which will always be unobserved),

it would be representative of the survival times of another individual in the pop-

ulation still in the study at the time of censoring. Therefore, it is said that the

censoring times and survival times are independent of each other and identically

distributed [Maller, 1996]. Of course, especially in cancer studies, because both

the event of interest and censoring due to death from a competing event cannot

be observed, this assumption is not testable.

2.3.4 Left-truncation (delayed-entry)

An additional feature of survival data, often confused with censoring, is trunca-

tion. Different types of truncation can be identified under similar categories to

the various censoring mechanisms, i.e. left, right and interval truncation. We

focus here on left truncation which is more commonly present alongside right

censored data. Left-truncation may be observed when patients become under ob-

servation at times that are not necessarily equal to the origin time of the study.

An alternative example of left-truncation within epidemiological studies, often

referred to as delayed entry, is when age is used as the time-scale in a survival

analysis. In this case, the patient will become at risk at the age that they, for

example, are diagnosed with the disease under study [Cheung et al., 2003]. In any

case, adjusting analyses for left-truncated data is trivial and can be done by just
13



incorporating the time of entry into the likelihood. Period analysis is a further

example of delayed entry which is introduced and described in section 4.3.3.

2.4 Key mathematical relationships for survival data

An important calculation central to modern analysis of survival data is borrowed

from methodology in early life tables which is now familiarly recognised as the

“survival function”. This is calculated as the complement of the “cumulative dis-

tribution function” as well as from a direct transformation of the “cumulative

hazard function” and by extension, the “hazard function”. These are quantities

embedded at the core of survival analysis and are defined below.

Let us begin by defining a non-negative random variable, T , which contains a

specific survival time, t. T follows a probability distribution that take the form

of an underlying probability density function, f(t). This gives the unconditional

instantaneous probability that an event, such as death from any-cause, occurs

within an infinitesimally small time interval, (t,∆t), such that,

f(t) = lim
∆t→0

P (t ≤ T < t+ ∆t)
∆t (2.1)

The sum of these infinitesimally small time periods over the entire probability

distribution of T yields the cumulative distribution function, better known in

medical literature as the (all-cause) cumulative incidence function, F (t). F (t) is

interpreted as the probability that the observed event time, T , is less than some

value of t, which is usually the end of the study period, such that,

F (t) =
∫ t

0
f(u)du = P (T < t) (2.2)
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Conversely, the complement of the all-cause cumulative incidence function, F (t),

gives the probability that the observed survival time, T , is greater than or equal

to some value of t, otherwise known as the observed (or all-cause) survival func-

tion, S(t),

S(t) = 1− F (t) = P (T ≥ t) (2.3)

Finally, central to modern survival analysis, is the (all-cause) hazard function,

h(t). The hazard function is the rate of failure between an infinitesimally small

time period between t and ∆t, given that the individual has not experienced the

event of interest by time t. Mathematically, this is expressed as,

h(t) = lim
∆t→0

P (t ≤ T < t+ ∆t|T ≥ t)
∆t

= lim
∆t→0

P (t ≤ T < t+ ∆t)
∆t

1
P (T ≥ t)

(2.4)

and using equations 2.1, 2.2 and 2.3, we have,

h(t) = f(t)
S(t) =

d
dt{1− S(t)}

S(t) (2.5)

⇒ h(t) = d
dt{− logS(t)} (2.6)

It is better to define the hazard function in the context of the study. For example,

in cancer, “hazard” refers to “(total) mortality”, thus giving the instantaneous
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rate of dying from any cause by time t given that they are still alive up to time

t. Two key terms commonly used (and often confused) in a survival analysis

are “rates” and “probabilities”. The hazard function is a rate which quantifies

instant failure whereas, in contrast, the cumulative incidence function, which is

a probability, quantifies failure over a longer time period, (0, t) [Crowder, 2012].

Another quantity featured heavily in survival analysis, is the cumulative haz-

ard function, H(t), which is obtained by integrating the hazard rate over the

entire distribution of t such that,

H(t) =
∫ t

0
h(u)du (2.7)

Then, by re-arranging equation 2.6 and substituting equation 2.7, we can re-write

the survival function, S(t) in terms of the cumulative hazard function H(t),

S(t) = exp (−H(t)) (2.8)

and is a relationship often referred to in methods for analysing survival data (see

chapter 3).

2.5 Net survival

In chapter 1, the idea of competing risks was briefly discussed which is explored

in further details and formally introduced in chapter 5. Competing risks is usu-

ally present in cancer data since patients are at risk of dying from a multitude

of causes other than the cancer before dying from the cancer of interest under

study. To allow researchers to quantify the cancer-specific survival, approaches
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that account for these competing risks are required. To do so, techniques that

are exclusive for the analysis of competing risks data can be used and are out-

lined in chapter 5. This approach is useful when researchers wish to quantify

the impact of cancer on prognostic outcome in the presence of these “competing

risks”. Alternatively, researchers may only be interested in measuring and com-

paring cancer-specific mortality of patients from different population groups. In

this case, if mortality between the competing events and cancer is assumed to

be independent, then it is possible to essentially ignore deaths from other causes

and estimate the net survival of patients in a hypothetical world where death can

only be due to the cancer of interest. Reference to some hypothetical scenario is

clearly not ideal from the patient’s, or health-practitioner’s perspective, however,

its use is merited at the population level. For example, net survival is useful

for making fair comparisons of cancer survival between two different countries,

or contrasting cancer mortality in older patients with younger patients. This is

because estimating net survival adjusts for differences that may be present due

to other cause mortality.

The two most common approaches for estimating net survival is done by ei-

ther using cause of death information to calculate cancer-specific survival, or by

calculating relative survival.

2.5.1 Cause-specific survival

Analysing cause of death is a method that can be used to determine factors that

contribute only to cancer mortality. In this case, deaths attributed directly to

the cancer of interest are recorded as events and deaths from all other causes are

censored, thus allowing for the estimation of cancer-specific survival. As long as
17



the assumption of independence holds between deaths due to cancer and deaths

due to other causes, conditional on a set of covariates, then cause-specific survival

can be interpreted as net survival. Estimating cause-specific survival relies on the

accurate classification on the cause of death, however, in registry-based popula-

tion studies, information on the cause of death obtained from death certificates

can often be unavailable, or in most cases, unreliable [Eloranta et al., 2013].

Misclassification of death can occur in many instances that may lead to the over-

estimation or underestimation of cause-specific survival since indirect causes of

cancer mortality is not taken into account. For example, a particular type of

cancer diagnosed in patients can progress and spread from one organ to another.

As a result, the cause of death is inaccurately recorded as cancer of an organ

which had developed from the initially diagnosed cancer [Dickman et al., 2004].

The unreliability of the cause of death recorded on death certificates is further

corroborated by a study carried out in Welch and Black [2002] on deaths amongst

surgically treated cancer patients that occurred within the first month of diag-

nosis [Dickman and Adami, 2006]. They managed to find that 41% of deaths

were not attributed to the actual cancer, which is unusual as it is unlikely to

assume that such a high proportion of individuals were considered to have died

of causes other than the cancer that put them under the knife. A more plausible

explanation could be that the recorded cause of death did not accurately reflect

the actual cause.

Even when accurate information is recorded on the cause of death, there may

be cases when the patient dies due to adverse secondary effects of cancer treat-

ment. Since death is categorised into two groups; one where death is either
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entirely due to the cancer of interest, or entirely due to other causes, it is not

possible to define a death as partially due to the cancer which may be the case

when death is caused by secondary effects of treatment.

2.5.2 Relative survival

Due to the difficulties associated with estimating net survival using cause-specific

information as outlined above, estimation using the relative survival approach is

preferred and more common in population-based cancer survival studies. Unlike

cause-specific survival, in addition to capturing mortality that is directly related

to the cancer, relative survival also incorporates mortality that relates indirectly

to cancer, all without the reliance on cause of death information [Eloranta et al.,

2013].

Relative survival is calculated as the ratio of the observed all-cause survival in

patients diagnosed with cancer compared to the expected all-cause survival in a

comparable disease free population which is estimated using life tables and ob-

tained from national mortality statistics. Patients are matched on factors such

as age, sex and year of diagnosis and other feasible covariates can be included

like socio-economic status. Relative survival also provides a measure of excess

mortality which, in a theoretical world where you can only die from cancer, is

equivalent to the cancer-specific mortality, λ(t). This tells us how much higher

the mortality rate is in patients with the cancer compared to the expected mor-

tality rate, h∗(t), in the general population. The total all-cause hazard, h(t), is

thus expressed as follows,

h(t) = h∗(t) + λ(t) (2.9)
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Using the inverse relationship in equation 2.6, all respective hazard functions

can be expressed in terms of their corresponding survival functions. These are

combined using equation 2.9 to formulate a formal mathematical expression for

relative survival,

exp
(
−
∫ t

0
h(u)du

)
= exp

(
−
∫ t

0
h∗(u)du

)
exp

(
−
∫ t

0
λ(u)du

)
(2.10)

S(t) = S∗(t)R(t) (2.11)

⇒ R(t) = S(t)
S∗(t) (2.12)

Therefore, the relative survival function, R(t), is the ratio of the overall all-cause

survival function, S(t), and the expected survival function, S∗(t). If the mortality

rate for those with cancer was the same as those from the general population,

then R(t) = 1 since λ(t) = 0. This indicates that no “excess” mortality is present

in the population as a consequence of having the cancer. In a less likely scenario,

it is possible that R(t) > 1 where those with cancer have a lower mortality rate

than expected leading to negative excess mortality. This possibility may occur

in instances where cancer patients are selected only if they are well enough to

undergo a particular surgical procedure which may make them healthier than a

similarly aged group in the general population [Royston and Lambert, 2011].
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The interpretation of relative survival is not very straight-forward and is de-

pendent on whether one is willing to make certain assumptions. Relative survival

can be interpreted as either:

(1) A ratio of the overall survival for cancer patients to the overall survival

of a comparable general population matched in most cases for age and

sex.

(2) Or, as net survival, i.e. survival in the hypothetical scenario where the

cancer of interest is the only possible cause of death.

If we choose to interpret relative survival as a ratio, then no assumptions are

required. If however, we choose to interpret relative survival as net survival, two

important assumptions are needed [Eloranta, 2013]

(1) The estimates of expected survival are appropriate i.e. the non-cancer

mortality of cancer patients is accurately reflected by the mortality rates

in the population life table given that they are stratified by appropriate

covariates.

(2) There is conditional independence between cancer related and non-cancer

related mortality i.e. other than the factors adjusted for in estimation,

no other factors will be related to both cancer and non-cancer mortality.

It is important to note that, although relative survival is usually interpreted as net

survival, the two are not equivalent [Dickman and Coviello, 2015; Pohar Perme

et al., 2012]. For instance, for i = 1, . . . , n individuals, where relative survival is

calculated as a ratio of the marginal observed survival to the marginal expected

survival and net survival is calculated as the average of the individual specific

relative survival, it follows that,
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relative survival︷ ︸︸ ︷
1
n

∑n
i=1 Si(t)

1
n

∑n
i=1 S

∗
i (t)
6= 1
n

n∑
i=1

Si(t)
S∗i (t)︸ ︷︷ ︸

net survival

(2.13)

The ratio on the right-hand side of equation 2.13 is equivalent to equation 2.12,

which is sometimes estimated within a relative survival model (see section 4.2).

Marginal relative survival estimates are obtained with particular interest in the

variation, for example, between different age groups, and, under certain assump-

tions, it can be interpreted as marginal net survival. Although marginal relative

survival is considered only as an estimate of marginal net survival as shown above,

Lambert et al. [2015] showed that the difference between them is in fact negligible.

Nevertheless, the relative survival estimate is not perfect and should therefore be

interpreted with caution by carefully considering the assumptions that are also

involved.

2.6 Non-parametric estimation

There are two main approaches for estimating the survival function, or cumula-

tive hazard function, from survival data. One approach is to define a particular

distribution for the probability density of T with some modelling assumptions

(see chapter 3). The other is based on calculations that do not require these

assumptions which are described below.

2.6.1 The Kaplan-Meier estimate

Suppose that we have an independent and identically distributed right-censored

random sample of n observed survival times, ti, for i = 1, . . . , n individuals. In

addition to the assumption of independence, the random sample of censored times
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is also assumed to be non-informative, which were discussed previously in sections

2.3.2 and 2.3.3. Under these assumptions, an estimate of the survival function,

S(t), can be obtained using the product-limit estimator, otherwise known as the

Kaplan-Meier estimator [Kaplan and Meier, 1958].

The Kaplan-Meier estimator is a step function constructed from a series of time

intervals, each of which contains a single observed ordered death time statistic,

t(j), where j = 1, . . . ,m. Let nj denote the number of individuals who are con-

sidered to still be at risk (i.e. those who are still alive) up to, but not including,

time tj and let dj be the number of individuals who die at time tj. Then an

individual’s instantaneous rate of surviving an infinitesimally small time period,

(tj,∆tj), is approximately equal to,

1− dj
nj

(2.14)

where,

ĥ(t) = dj
nj

(2.15)

is the estimated (observed) hazard function which represents an individual’s in-

stantaneous mortality rate.

Finally, if deaths are independent between individuals, the Kaplan-Meier esti-

mate of the survival function at time t, ŜKM(t), can be written as the product of

all the instantaneous survival probabilities such that,
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ŜKM(t) =


1 if t < t(1)

l∏
j=1
{1− dj

nj
} t(l) ≤ t < t(l+1)

(2.16)

for l = 1, . . . , r, where t(l) to t(l+1) is the lth interval over time. It also follows that,

if the largest observation time, t(r), in the study is censored, then the Kaplan-

Meier estimate, ŜKM(t), is undefined beyond time t. Otherwise, the death time

for the last survivor would be known had they not been censored. On the other

hand, in the case that the death time is known for the largest observation time,

i.e. they are not censored, then the number of people who are still alive up to

time t(r), is equal to the number of people who die at time t(r). It thus follows

that ŜKM(t) = 0 for t ≥ t(r) [Collett, 2003; Moeschberger et al., 1997].

2.6.2 The Nelson-Aalen estimate

In section 2.4, a key relationship between the hazard function, h(t), and survival

function, S(t), was identified through equations 2.7 and 2.8. Similarly, using these

equations, an estimate of the cumulative hazard function, ĤKM(t), is obtained

through the Kaplan Meier estimate of the survival function, ŜKM(t), where,

ĤKM(t) = − log
(
ŜKM(t)

)
= −

l∑
j=1

log
(

1− dj
nj

) (2.17)

Alternatively, based on individual survival times, t(j), the cumulative hazard func-

tion can also be obtained using the Nelson-Aalen estimate [Aalen and Johansen,

1978]. This, in comparison to the Kaplan-Meier estimate, is shown to perform
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marginally better in smaller samples [Moeschberger et al., 1997]. The Nelson-

Aalen estimate, ĤNA(t) is calculated as the sum of all instantaneous mortality

rates, dj
nj
, at the death times for each individual through every interval, t(l) to

t(l+1), such that,

ĤNA(t) =
l∑

j=1

dj
nj

(2.18)

Based on the Nelson-Aalen estimate above, using the relationship in equation 2.8,

in a discussion led by Cox [1972], Breslow suggested an estimate for the survival

function which is an alternative to the Kaplan-Meier estimate in equation 2.16

where,

ŜNA(t) =
l∏

j=1
exp

(
−dj
nj

)
(2.19)

2.6.3 Smoothing of the (cumulative) hazard function

As implied by equation 2.6, the hazard function is only well-defined if the survival

function is differentiable with respect to t [Klein et al., 2016]. However, since

the Kaplan-Meier estimate, Ŝ(t), is a step function, obtaining a proper estimate

of the hazard function is difficult. To avoid “irregular” estimation of the hazard

function, some smoothing techniques are required. One method that is commonly

highlighted is to estimate the hazard function by kernel function smoothing of

the Nelson-Aalen estimator [Andersen et al., 1996]. Alternatively, parametric

modelling techniques can be combined with splines to obtain smooth and more

flexible predictions of the baseline (log-) cumulative hazard function (see section

3.6).
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2.7 Discussion

This chapter lays the foundation on which methods of survival analyses are built

and introduces some basic notation. The survival and hazard functions are cen-

tral to quantifying the impact of a disease in a population, namely cancer, and

can be used to determine the process at which this occurs over time.

A distribution-free approach for summarising the survival time of individuals in

a sample was introduced via the Kaplan-Meier estimate for the survival function,

and the Nelson-Aalen estimate for the cumulative hazard function. Both of these

approaches require smoothing techniques to remove irregularity in the hazard

estimates. Alternatively, the (cumulative) hazard function can be parametrised

through the imposition of some distributional assumptions which are explored

in chapter 3. The Kaplan-Meier estimate is also derived as a non-parametric

maximum likelihood estimator. The maximum likelihood approach is detailed in

section 3.3 for the estimation of parametric survival regression models. Chapter

5 introduces an alternative non-parametric estimate in the presence of competing

risks which is derived as the product integral of Nelson-Aalen estimators [Aalen

et al., 2008].

In the absence of competing causes of death, relative survival was introduced

as an estimate of net survival. This measure can be modelled from within an

extension of the flexible parametric framework as outlined in section 4.3. This

approach operates in a hypothetical scenario where the only cause of death is

only from the cancer under study. However, in reality patients will be at risk

of dying from other causes before they die from cancer and is of interest from a
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prognostic perspective. Analysis and modelling under the presence of competing

risks is discussed in chapters 5 and 6.
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Chapter 3

Modelling Survival Data

3.1 Outline

This chapter outlines a number of modelling approaches for analysing survival

data. By imposing some distributional assumptions, for example, the exponential,

Weibull, or Gompertz distribution, smooth estimates of the hazard function are

calculated. Models described here are estimated by likelihood-maximisation.

3.2 Introduction

Researchers often favour semi-parametric or parametric regression models as they

offer an insight into the relationship between important patient characteristics

and survival quantities. For instance, in cancer data, a set of explanatory vari-

ables may be collected, and the association between these indicate some effect

on mortality. Variables commonly include the age and sex of the patient, and

disease characteristics such as grade of tumour, or stage of cancer at diagnosis.

Non-parametric methods are generally considered to be more useful for the com-

parison between binary, or categorical variables with two or more groups of sur-

vival times. However, without categorising continuous variables, such as age, into

groups, analysis using such methods become unsuitable. There are also usually

many more variables that could affect the survival experience of a cancer patient

and as registry data becomes more detailed, comparisons between these groups
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using non-parametric methods significantly increases complexity and computa-

tional intensity. On the other hand, adjusting for various potential explanatory

variables using statistical regression modelling techniques is more convenient and

researchers are able to easily obtain useful quantities to aid interpretation. Some

of these are detailed throughout this thesis and discussed in detail in chapter 9.

Explanatory variables in survival models are usually used to quantify differences

on the hazard function. This allows us to calculate individual hazard, and using

standard relationships described in chapter 2, alternative predictions with par-

ticular covariate patterns can be obtained. Contrasts can then be made between

these predictions which could be in the form of relative or absolute differences.

Regression model estimation by maximising the likelihood function is introduced

using the Newton-Raphson method. Commonly used distributions for obtaining

smooth estimates for the hazard function are described along with the famous

Cox proportional hazards model and the increasingly popular Royston-Parmar

flexible parametric model.

3.3 Maximum likelihood estimation

Survival probability models for P (T ≥ t) can be estimated using the theory of

maximum likelihood estimation. The likelihood function for censored (or trun-

cated) data can be constructed by incorporating the information given by each

individual observation. Suppose that, for each individual i = 1, . . . , n, we have

a pair of random variables, (Ti, δi). Ti can either represent the failure time, Xi,

or (non-informative right-) censoring time, Ci, such that, Ti = min(Xi, Ci), and

δi = I(Xi < Ci) is the censoring indicator, where δi = 1 if the individual’s failure
29



time is observed, or δi = 0 if the individual is right-censored/alive. Therefore,

the likelihood function is expressed as,

L =
n∏
i=1

P (ti, δi) =
n∏
i=1

[
(f(ti))δi (S(ti))1−δi

]
(3.1)

Intuitively, for example, at the end of a cancer study, if the patient is alive/censored

at time ti (δi = 0), then the ith contribution to the total likelihood is the survival

probability, S(ti). Conversely, if the patient dies during the study, then the ith

contribution to the total likelihood is the probability that the patient dies at the

observed time ti, h(ti)S(ti) = f(ti).

Using equation 3.1, it can be shown that the Kaplan-Meier estimate defined in

section 2.6.1 can also be derived as a non-parametric maximum likelihood estima-

tor (details omitted here, see Kaplan and Meier [1958]). Primarily, the likelihood

is maximised for building parametric survival models, such as those introduced

in this thesis. Alternatively, by deriving the partial likelihood, semi-parametric

models can be fitted.

3.3.1 The Newton-Raphson method

The problem of maximisation for parametric models is approached using the

methods outlined by Gould and Poi [2010]. Here, the likelihood function, L, in

equation 3.1 is more formally introduced through a parameter vector, θ, and a

matrix of the joint distribution of observed survival data Z = (z1, z2, . . . , zn).

Therefore, given that the random variables z1, z2, . . . , zn are independent and

identically distributed, the likelihood function can also be written as,
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L(θ; Z) (3.2)

The above is maximised to find the values θ̂ such that,

L(θ̂; Z) = max
θ∈Θ

L(θ; Z) (3.3)

Equivalently, the log-likelihood, lnL(θ̂; Z) , is usually maximised. This is more

convenient since the expectations of sums are easier to calculate and, more im-

portantly, to facilitate numerical computation and model convergence.

A solution to equation 3.3 for θ̂ can be obtained analytically where,

δ lnL(θ; Z)
δθ

|θ=θ̂ = 0 (3.4)

However, an easier approach would be to obtain a numerical solution for θ̂ by

finding the roots of the gradient vector where,

g(θ̂; Z) = 0 (3.5)

In Gould and Poi [2010], the roots to the above problem is found by using an

iterative technique called the Newton-Raphson algorithm. Therefore, to find

a vector θ̂ such that lnL(θ̂; Z) is maximised, the following iterative steps are

implemented,

(1) Begin with a vector of initial values, θi
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(2) Calculate gradient vector g(θi) = δ lnL(θi)
δθi

(3) Calculate the slope of the gradient vector, i.e. the Hessian, H(θi) =

g′(θi) = δ2 lnL(θi)
δθ2

i

(4) Calculate a new set of values, θi+1, such that,

θi+1 = θi + {−H(θi)}−1g(θi) (3.6)

(5) Repeat steps (2) - (4) until convergence criteria is met.

In Stata, when programming using ml, by default, convergence is achieved when

the tolerance for criteria (i) is met and the tolerance for either (ii) or (iii) is also

met as follows,

(i) g(θi)H(θi)−1g(θi)′ < 1× 10−5

(ii) |θi+1 − θi| ≤ 1× 10−4

(iii) lnL(θi+1; Z)− lnL(θi; Z) = 0

3.4 Probability distributions for survival data

3.4.1 The exponential distribution

The most simple distributional assumption for the hazard function is that it re-

mains constant over time, i.e. h(t) = λ. Under this assumption, it can be shown

that the survival times follow an exponential distribution since,

S(t) = exp (λt) (3.7)

and using the relationship in equation 2.5 we have that,

f(t) = S(t)h(t) = λ exp (λt) (3.8)
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which is the probability density function for the exponential distribution.

3.4.2 The Weibull distribution

The assumption of a constant hazard rate over time is restrictive and unrealistic

in medical applications. For cancer studies in particular, it is more sensible to

allow this to vary over time as it is expected that the hazard, or mortality rate,

will change dependent on the progression of the disease.

As a more flexible form of the hazard function, the two-parameter Weibull dis-

tribution is often chosen such that,

h(t) = λγtγ−1 (3.9)

and,

S(t) = exp (−λtγ) (3.10)

which leads to the probability density function for the Weibull distribution,

f(t) = λγtγ−1 exp (−λtγ) (3.11)

where λ and γ are the scale and shape parameters. It follows that, for γ = 1,

constant hazard rates can be accommodated and is equivalent to the probability

density function for the exponential distribution. Otherwise, if γ > 1, the hazard
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Figure 3.1. Various hazard functions for survival times that follow a Weibull
distribution.

function is monotonically increasing and if γ < 1, it is monotonically decreasing.

This is illustrated in figure 3.1. Due to the simple derivation of the survival and

hazard functions, the Weibull distribution is a popular choice for fitting para-

metric models. In this thesis, parametric models are fitted using a generalisation

of the Weibull distribution, which is more flexible and is introduced later in this

chapter in section 3.6.

3.4.3 The Gompertz distribution

Another alternative flexible distribution was introduced by Gompertz [1825] for

modelling mortality. The associated hazard and survival functions which result

in the probability density function for the Gompertz distribution are as follows,

h(t) = λ exp (γt) (3.12)
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S(t) = exp {λ
γ

(1− exp (γt))} (3.13)

f(t) = λ exp (γt) exp {λ
γ

(1− exp (γt))} (3.14)

It also follows that when γ = 0, the Gompertz distribution assumes constant haz-

ards and is equivalent to the survival times following an exponential distribution.

Similar to the Weibull distribution, the hazard function under the Gompertz

distribution is also either a monotonically increasing or decreasing function as

illustrated in figure 3.2.
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3.5 Cox proportional hazards regression model

When modelling survival data, the researcher is interested in quantifying differ-

ences in survival or mortality between different groups of survival data. For in-

stance, in population-based cancer studies, distinctions may want to be made be-

tween demographic variables such as age or socio-economic status, factors which

may lead to different effects on the impact of the cancer on survival. These

explanatory variables are incorporated as covariates in a regression model to ex-

plore their contribution to the response variable, which, in this thesis relates to

the survival time of cancer patients.

An extremely popular approach for modelling survival data and adjusting for

covariates is to employ the Cox proportional hazards model. The Cox model is

composed of both a non-parametric component, which relates to the baseline haz-

ard function, h0(t), and a parametric component relating to the relative hazard

function. The combination of both of these components are represented by the

relationship of a vector of covariates, x, to the hazard function, h(t | x), where,

h(t | x) = h0(t) exp
(
βTx

)
(3.15)

and β is a vector of estimated regression coefficient parameters which quantifies

the effect of the covariates on the relative hazard [Aalen et al., 2008].

3.5.1 The proportional hazards assumption

A core principle underlying the Cox model, is the proportional hazards assump-

tion. This can be demonstrated by comparing two groups. Let’s say we want to
36



compare the mortality of cancer patients who are least deprived to those that are

most deprived. If the relative difference in the cancer mortality (or hazard) of

patients who are least deprived is said to be proportional to the cancer mortality

of the most deprived patients, then the relative difference over time will remain

constant. A consequence of this is that survival function will never cross over

time. In other words, the survival will either be consistently worse (or better)

than the reference group. Mathematically, this is represented as follows,

hleast(t) = Ψhmost(t) (3.16)

where Ψ is constant. Through a simple re-arrangement of the equation above, Ψ

just becomes the value of the (relative) hazard ratio comparing the mortality of

the least deprived to the most deprived patients. Applying this same principle

to the Cox model in equation 3.15 yields a similar result. In this case, let x = 1

represent the most deprived group. Then the hazard function for the most de-

prived becomes,

hi(t | x = 1) = h0(t) exp (β) (3.17)

and if x = 0, then,

hi(t | x = 0) = h0(t) (3.18)

Therefore, for a vector of covariates, x, the hazard ratio, i.e. relative change from

the baseline hazard function when x = 0, is
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HR = h(t | x = 1)
hi(t | x = 0) = h0(t) exp (β)

h0(t) = exp (β) = Ψ (3.19)

where the estimated parameter coefficients for each covariate, β, are the log-

hazard ratios [Collett, 2015].

3.5.2 The partial likelihood

Due to the fact that the baseline hazard function, h0(t), is left completely unspec-

ified and not estimated, ordinary maximum likelihood estimation cannot be used.

Instead, Cox [1975] describes a partial likelihood which is maximised to estimate

the associated parameters, β, without specifying the baseline hazard rate. Given

that there are no ties , the partial likelihood for i = 1, . . . , n individuals is written

as,

L(β) =
n∏
i=1

 exp
(
βTxi

)
∑
ζ∈R(ti) exp (βTxζ)

δi (3.20)

where the product is taken over all of the death times, ti, and R(ti) represents

the number of patients that are still alive just before ti. δi is the censoring

indicator for ith individual where δi = 1 if they die at time ti, or δi = 0 otherwise

[Pintilie, 2006]. Maximisation of the partial likelihood can be obtained using the

Newton-Raphson procedure as described in section 3.3.1.

3.5.3 The Breslow estimator

An undefined baseline hazard function has its advantages in that there is no risk

in the misspecification of the underlying baseline distribution. However, due to

the unspecified baseline hazard, it is difficult to obtain prediction of functions
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that allow simple transformations to provide estimation of conditional and abso-

lute measures which facilitate interpretation of model parameters [Royston and

Parmar, 2002]. Furthermore, in many cases, such as that of the competing risks

scenario (see chapter 5), it is of interest to estimate the cause-specific cumulative

incidence function. However, this requires calculation of the cumulative baseline

hazard function, which is of course not possible using the partial likelihood ap-

proach where this is not estimated as part of the model. Breslow [1972] suggested

an alternative approach which provides an estimator for the cumulative baseline

hazard function, therefore allowing predictions of these quantities of interest, such

as the baseline survival or cumulative incidence function. For the case of no co-

variates, we have what is also referred to as the Nelson-Aalen estimate which was

defined in equation 2.18. However, in the presence of covariates, an estimate of

the cumulative baseline hazard function, using the estimated parameters, β̂, is

obtained such that,

Ĥ0(t) =
r∑
j=1

 δj∑
ζ∈R(tj) exp

(
β̂Txζ

)
 (3.21)

Similarly, as pointed out in section 2.6.3 for the Nelson-Aalen estimate with no

covariates, the estimate of the cumulative baseline hazard is a non-differentiable

step function with jumps at the event times, tj. Therefore, in this thesis, flexible

parametric modelling techniques, which incorporate restricted cubic splines, are

adopted in order to obtain smooth predictions of the (log) cumulative baseline

hazard function. These class of models are described in the proceeding section.
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3.6 Royston-Parmar flexible parametric models

Parametric methods are necessary for survival data since smooth estimates of

the cumulative baseline hazard function are required for clinically plausible pre-

dictions. These may include absolute or relative differences in hazard rates or

cumulative incidence functions between different covariate groups.

As also discussed in the previous section, the Cox model assumes proportional

hazards, which may not always be an appropriate assumption to make. In fact,

in the context of cancer survival studies, the effect of age on cancer mortality

will vary over time. The variation in the effect of treatment over time is another

example. In this case, a cancer treatment may work really well in reducing mor-

tality in the short run, but over time, this effect may disappear as the cancer

reasserts itself. Using methods such as those proposed by Sauerbrei et al. [2007],

the Cox model has been extended to incorporate non-proportional hazards of

covariate effects. However, these methods are complex and, especially for large

cancer registry datasets, are significantly more computationally intensive making

prediction an arduous and slow task. In contrast, incorporating time-dependent

effects and modelling non-proportionality in parametric models is trivial. For

example, in this thesis, a spline-based approach is adopted to represent the rela-

tionship between time and a covariate [Durrleman and Simon, 1989].

3.6.1 A generalisation of the Weibull distribution

In section 3.4.2, the functional form of the hazard rate was shown to be either

a monotonically increasing or decreasing function. However, the hazard rate for

cancer is expected to rapidly increase early on as the sickest patients die, with it

steadily decreasing over time as we are left with the “healthiest” patients which
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may lead to a turning point in the hazard function. Standard parametric models

such as the Weibull distribution (or indeed the exponential and Gompertz dis-

tributions) are often unable to capture these more complex underlying baseline

hazard functions which could contain one or more turning points [Rutherford

et al., 2015b]. To better capture and represent the behaviour of real world data,

a range of flexible parametric models on a variety of scales were introduced by

Royston and Parmar [2002]. This method is described based on a generalisation

of the Weibull distribution on the log-cumulative hazard scale. Let’s begin with

the cumulative hazard function under the Weibull distribution,

H(t) = λtγ1 (3.22)

where γ1 is a parameter for time. Then by taking the logarithm of this function

we have,

lnH(t) = ln λ+ γ1 ln t = γ0 + γ1 ln t (3.23)

which consists of a constant, γ0, and a linear function of log-time, γ1 ln t. By in-

troducing a covariate vector, x, and a vector of co-efficient parameters, β, where

lnH0(t) = γ0 + γ1 ln t is the baseline log-cumulative hazard function, equation

3.23 can be generalised to a survival model such that,

lnH(t | x) = lnH0(t) + xβT (3.24)
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Royston and Parmar [2002] introduce a class of functions that extend equation

3.23 which provides flexibility and more accurately captures complex shapes of

the cumulative hazard function. A natural consequence of modelling on the (log)

cumulative hazard scale, is that lnH0(t) is always a monotonically increasing

function. It is also known that, over-time, the cumulative hazard is generally a

non-linear function of time and techniques must be applied in order to incorpo-

rate this behaviour. Common family of functions that are often used do this are

fractional polynomials and splines [Royston and Altman, 1994; Durrleman and

Simon, 1989]. In this thesis, and as proposed by Royston and Parmar [2002],

restricted cubic splines are used to model the log-cumulative baseline hazard

function.

Cubic splines are constructed from some number of piecewise third-order poly-

nomials which pass through M points spaced across the time-scale. These pre-

defined points are often referred to as knots, and to ensure smooth fitted functions

through these points, some continuity constraints are imposed. The first of these

continuity constraints ensure that the estimated cubic spline functions join at the

knots. The second forces the first derivative, or gradient, of the estimated func-

tions to agree at the knots, which smooth out any bumps or sudden changes in

the direction of the function. Finally, they are also forced to agree at the second

derivative such that the rate of change in the gradient is consistent between these

points. An additional constraint is introduced for restricted (or natural) cubic

splines which requires that the estimated spline function is linear before the first

knot and after the last knot [Royston and Lambert, 2011]. Although the choice

in the position of these knots can be treated as unknown and approached using

Bayesian methods, in this thesis, the number of knots is chosen by the analyst
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[DiMatteo et al., 2001]. A common argument against this approach is that this

choice can be subjective and arbitrary. However, Rutherford et al. [2015b] and

Hinchliffe and Lambert [2013] have shown in a number of sensitivity analyses that

it has very little impact on obtained predictions given that the number of knots

is sensible.

At time t = 0, as expected, we must have that the cumulative hazard func-

tion, H(t), is equal to 0. Therefore, the restricted cubic spline function is usually

calculated on the log-time scale since, by definition, as t → 0 we also have that

H(t) → 0. Furthermore, log-time has a natural relationship with the Weibull

cumulative hazard function when written in logarithmic form (see equation 3.23)

[Mozumder et al., 2017].

Given a vector of M knots, m and a vector of M − 1 parameters, γγγ, with M − 1

degrees of freedom, the restricted cubic spline function, s(ln(t);γγγ,m), can be

specified through a general link function, g(·), along with a vector of covariates,

x, such that,

ln(H(t | x)) = g(F (t|xi)) = s(ln(t);γγγ,m) + βββTx

= γ0 + γ1z1 + · · ·+ γ(M−1)z(M−1) + βββTx
(3.25)

Where z1, · · · , z(M−1) are the basis functions of the restricted cubic splines and

are defined as,

z1 = ln(t) (3.26)
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zj = (ln(t)−mj)3
+ − φj(ln(t)−m1)3

+ − (1− φj)(ln(t)−mM)3
+, j = 2, · · · ,M − 1

where,

φj = mM −mj

mM −m1
(3.27)

and

(u)+ =


u, if u > 0

0, otherwise
(3.28)

Usually, M knots are placed at equally spaced centiles of the distribution of

the uncensored log-survival times including two boundary knots at the 0th and

100th centiles. The choice of the position and number of knots is subjective,

which is used as an argument for a drawback of the flexible parametric modelling

framework. However, others have explored this through a variety of sensitivity

analyses of the knots and it has been shown to have very little influence on ob-

tained predictions [Hinchliffe and Lambert, 2013; Rutherford et al., 2015a].

Equation 3.25 is equivalent to a proportional hazards model since the covari-

ates, x, are independent of t. However, the Royston-Parmar models can be

easily extended for time-dependent effects to model non-proportionality. This

is done by fitting interactions between the associated covariates and the spline
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functions. Using this interaction, a new set of knots, me, are introduced, which

represent the eth time-dependent effect with associated parameters αααe. If there

are e = 1, · · · , E time-dependent effects, equation 3.25 can be extended for mod-

elling non-proportional cumulative hazards where,

ln(H(t | x)) = η(t) = s(ln(t);γγγ,m0) + xβββT +
E∑
l=1

s(ln(t);αααl,ml)xl (3.29)

The spline function for each time-dependent effect, s(ln(t);αααe,me), can be unique

and generally requires fewer knots to the baseline spline function, s(ln(t);γγγ,m0)

[Bower et al., 2018]. This extends the original approach proposed by Royston

and Parmar [2002]. Furthermore, similar to the sensitivity analysis conducted

by the authors mentioned above, the choice of the number and position of these

knots has shown to have little influence and has been explored more extensively

for time-dependent effects by Bower et al. [2018].

As outlined in section 3.3, parametric survival models can be estimated using

maximum likelihood estimation. Thus, it follows that the log-likelihood function

required for the maximisation problem to estimate the log-cumulative hazard

model in equation 3.29 is,

lnL =
n∑
i=1

[δi ln (f(ti)) + (1− δi) ln (S(ti))]

=
n∑
i=1

[δi ln (h(ti)) + ln (S(ti))]
(3.30)

As discussed in section 2.3.4, appropriate adjustment is required for left-truncated

data. This is achieved by fitting delayed-entry models that condition on survival
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up to a time t0, since, when there is left-truncation, patients are not considered

to be at risk until some time after time 0. In other words, instead of calculating

the probability of survival from time 0 to t, as in equation 2.3, the following is

considered,

P (T > t | T > t0) = S(t)
S(t0) (3.31)

which is the probability of surviving up to time t given survival up to time t0.

Therefore, equation 3.30 is extended for estimating delayed-entry models by re-

placing observed survival, S(t) with conditional survival, S(t)
S(t0) , such that,

lnL =
n∑
i=1

[
δi ln (h(ti)) + ln

(
S(ti)
S(t0i)

)]

=
n∑
i=1

[δi ln (h(ti)) + ln (S(ti))− ln (S(t0i))]
(3.32)

Delayed-entry models are commonly used to account for period analyses, an ex-

ample of which is given within a relative survival context and discussed further

in section 4.3.3.

The models described above can be used when interest is in one survival outcome.

However, these methods must be adapted when competing risks are present and

interest is in modelling all competing causes of death. These are defined and

introduced in chapters 5 and 6. When cause of death information is not avail-

able, and the researcher would like to compare the impact of cancer in different

population groups, estimating relative survival, as discussed in section 4.3, is
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of interest. The log-cumulative hazard model described above is extended for

modelling relative survival in chapter 4.

3.7 The delta method

The delta method is an intuitive approach to estimate the variance for a non-linear

function of a set of estimated parameters. This procedure is applied to obtain

confidence intervals for parameters that are estimated after fitting extensions

of flexible parametric models for competing risks, as introduced in subsequent

chapters. After fitting any flexible parametric model with a vector of covariates,

x, a vector of estimated coefficient parameters, β̂̂β̂β, and the associated variance-

covariance matrix, V(β̂̂β̂β), is obtained. The delta method is, in essence, based on

a Taylor series expansion of a non-linear transformation of the (differentiable)

function, G(β̂̂β̂β | x). The variance-covariance matrix of G(β̂̂β̂β | x) is therefore ap-

proximated by,

V(G(β̂̂β̂β | x)) = G′(β̂̂β̂β | x)V(β̂̂β̂β)G′(β̂̂β̂β | x)T (3.33)

where, G′(β̂̂β̂β | x), is a matrix of derivatives with respect to β̂̂β̂β. This can either be

obtained analytically, as is done in section 5.6.3, or numerically by utilising the

predictnl command in Stata.

3.8 Discussion

This chapter introduces some regression modelling techniques for analysing sur-

vival data, estimation of which is obtained via the Newton-Raphson method. The

Cox proportional hazards model is the most recognisable and widely adopted

approach in survival analysis for clinical data, but does not come without its
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own drawbacks. Fitting these models are based on hazard ratios, however, to

facilitate communication, it may be of interest to produce absolute differences

between hazard rates. This presents some difficulties since the baseline hazard is

not estimated as part of the modelling procedure and non-parametric methods

are required to obtain these predictions. This can be computationally intensive

and impractical for many large cancer studies that contain observations in the

hundreds of thousands. Furthermore, to relax the proportionality assumption

complex techniques need to be used to introduce time-dependent effects further

adding to computational burden.

The Royston-Parmar flexible parametric model is advocated throughout this the-

sis as an alternative to the Cox proportional hazards model. These models are

based on the log-cumulative baseline hazard scale which make it easy to obtain

more useful predictions that facilitate interpretation of analyses. Time-dependent

effects are easy to incorporate using restricted cubic splines, and the increase in

model complexity is offset with the ability to obtain simple predictions based on

transformations of the log-cumulative baseline hazard.

In chapters 5 and 6 of this thesis, extensions of the Royston-Parmar flexible

parametric model are described for competing risks data with cause of death

information. In chapter 4, an extension for modelling relative survival is also

introduced in the absence of cause of death information.
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Chapter 4

InterPreT Cancer Survival: An Interactive Prediction

Tool to Communicate Cancer Survival Statistics

4.1 Outline

This chapter focuses on the development and release of the online INTERac-

tive PREdiction Tool for Cancer Survival, or, “InterPreT Cancer Survival”

(https://interpret.le.ac.uk). Motivation of this educational tool, aimed at

health-care professionals and cancer epidemiologists, is outlined as well as the

intended impact of release to the public domain. The measures reported and

statistical methods implemented to obtain such measures are detailed. Future

potential extensions of the tool are also discussed.

4.2 Introduction

The most basic summary of patient survival is quantified via the all-cause survival

function (equation 2.3) which measures total mortality. However, it is seldom re-

ported as it does not distinguish between patients who die of the cancer and

patients who may have died from other causes. This is important since indi-

viduals diagnosed with cancer come from a wide age-range, and the effect of

other-cause mortality will vary hugely by different age groups. For instance, it is

expected that a high proportion of older patients will naturally die from causes

other than the cancer of interest, which is not reflected in the all-cause survival

measure. Cancer is also generally known to be a disease of old age where it is
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expected that those who are older will experience worse cancer prognosis com-

pared to younger patients due to differences in other-cause survival. Therefore,

as often is the case with population-based cancer studies, interest is in estimating

mortality specific to the cancer of interest that adjusts for mortality from other

causes so that fair comparisons can be made, for example, between a young and

old age group. This is quantified using net survival, a measure that was briefly

introduced in section 2.5. Crude probabilities of death are the net survival ana-

logue to the cause-specific cumulative incidence function introduced in chapter 5

for competing risks data. Both of these measures are interpreted in an equivalent

way to each other as they attempt to estimate the same thing.

The net survival measure is often reported in large population-based cancer stud-

ies to fairly compare cancer survival over time and between different population

groups which may vary in mortality from other causes. In such studies, net

survival is also usually age standardised to give averages over the whole study

population. This is sometimes referred to in literature as marginal net survival

which was discussed briefly using equation 2.13. Although age standardisation

is useful for reporting a single aggregated summary statistic and making com-

parisons, it hides variation in net survival across age that exists for most cancers

[Morris et al., 2011; Holmberg et al., 2012]. Essentially, net survival is used as a

cancer-specific estimate which removes other cause mortality and therefore does

not represent individual patient survival in the real-world. In order to present in-

formation that is more relevant for the patient, real-world, or crude, probabilities

of death in the presence of dying from other competing causes is more appropriate

which is obtained using the methods described in section 4.3.2 [Lambert et al.,

2010b; Feuer et al., 2012]. Both net survival and crude probabilities are obtained
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using an extension of the flexible parametric modelling framework introduced in

section 3.6.

4.3 Flexible parametric relative survival models

As discussed in section 2.5.2, net survival is commonly estimated using a rel-

ative survival approach. Flexible parametric relative survival models are used

extensively in large population-based studies to obtain predictions that quantify

cancer patient survival [Quaresma et al., 2014; Walters et al., 2013; Gunnarsson

et al., 2016]. In section 3.6, the class of models described by Royston and Parmar

[2002] were introduced with restricted cubic splines to allow for more flexibility to

better capture and represent the behaviour of real-world datasets. These models

were later extended by Nelson et al. [2007] for relative survival which incorporates

expected mortality rates obtained from population life tables.

Equation 2.12 shows that the relative survival function can be derived as a ratio

of the all-cause survival, S(t), to expected survival, S∗(t). This is represented

on the hazard scale by equation 2.9 which, re-written in terms of the cumulative

excess hazards, Λ(t), becomes,

Λ(t) = H(t)−H∗(t) (4.1)

Therefore, relative survival is estimated by extending equation 3.29 for modelling

the log-cumulative excess hazards model with non-proportional excess hazards

such that,
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ηi(t) = ln [Λi(t | xi)] = s (ln(t) | γi,m0) + xiβ +
E∑
l=1

s (ln(t) | αl,ml) xil (4.2)

where xi is a vector of covariates, s (ln(t) | γ,m0) are baseline restricted cubic

splines with M − 1 degrees of freedom and s (ln(t) | αl,kl) are time-dependent

restricted cubic splines with E time-dependent effects.

4.3.1 Relative survival

The linear predictor, ηi(t), in equation 4.2 is transformed to obtain the relative

survival function where,

Ri(t) = exp (− exp (ηi(t))) (4.3)

Finally, estimation of the log-cumulative excess hazards model is done by max-

imisation of an extension of the log-likelihood function in equation 3.30 to relative

survival by substituting in equations 2.11 and 2.9 where,

lnL =
n∑
i=1

[δi ln (λ(ti) + h∗(ti)) + ln (S∗(ti)R(ti))]

=
n∑
i=1

[δi ln (λ(ti) + h∗(ti)) + ln (S∗(ti)) + ln (R(ti))]
(4.4)

However, since, S∗(ti), does not depend on any unknown model parameters, this

can be excluded from the log-likelihood such that only the following function

needs to be maximised,

lnL =
n∑
i=1

[δi ln (λ(ti) + h∗(ti)) + ln (R(ti))] (4.5)
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In order to maximise the log-likelihood function in equation 4.5, data needs to be

imported on expected mortality rates, h∗(ti), for each individual which typically

consist of age, sex, calendar year and other variables such as region and depriva-

tion. This data can be found in a population mortality file, normally from the

National Statistics Office, and enables us to calculate expected survival probabil-

ities for each individual in the study stratified by variables which are assumed to

depend on expected survival [Royston and Lambert, 2011; Dickman et al., 2013].

4.3.2 Crude probability of death

Consistent with the methods described by Lambert et al. [2010b], crude probabil-

ities of death can be calculated after fitting a flexible parametric relative survival

model. Crude probability of death due to any cause (i.e. 1 minus all-cause sur-

vival), Fall(t), can then be broken down into the crude probability of death due

to cancer, Fcancer(t), and crude probability of death due to other causes, Fother(t),

by using numerical integration over observed survival and the appropriate corre-

sponding hazard function,

Fcancer(t) =
∫ t

0
S(u)λ(u)du (4.6)

Fother(t) =
∫ t

0
S(u)h∗(u)du (4.7)

Fall(t) = Fcancer(t) + Fother(t) =
∫ t

0
S(u)h(u)du (4.8)
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where the excess hazard function, λ(t), and total hazard function, h(t) are calcu-

lated by transforming from their respective survival functions as shown in equa-

tion 2.10. Since the relative survival function, R(t), is estimated from the log-

cumulative excess hazards model using equation 4.3, and the expected survival

function, S∗(t), is calculated using available population life tables (see example in

section 4.6.2), the all-cause survival function, S(t), can be easily obtained using

the relationship in equation 2.11.

Presenting crude probabilities allow us to quantify what proportion of a patient’s

observed, or all-cause, mortality is due to the actual cancer itself, and how much

is likely due to other causes. Crude probabilities of death are therefore used as a

prognostic measure for making treatment-related decisions at the individual-level

or for planning future health-care services.

4.3.3 Period analysis

As previously stated, relative survival is used for the comparison of different pop-

ulation groups. This is usually reported over a time-period. For example, relative

survival probabilities are given at 1-, 5- and 10-years after diagnosis. In a typ-

ical (relative) survival analysis, usually all available information on the survival

experience of patients diagnosed with cancer are included. So, if relative survival

is to be reported at 5 years since diagnosis, information on a mixture of patients

diagnosed recently and over 5 years ago may be included. However, the survival

experience of those diagnosed recently is likely to be different to patients diag-

nosed more than 5 years ago due to advancements in medicine. As such, it is likely
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that cancer patients diagnosed recently are likely to have a better survival expe-

rience over-time as they would have been receiving better health-care. Therefore,

reporting estimates from analyses based on patients that were diagnosed at least

5 or 10 years ago, means that the cancer survival probability is underestimated.

Furthermore, it is likely that cancer registry data will be published a year or two

later after the study. This leads to a further time-lag between cancer diagnosis

and evaluation [Royston and Lambert, 2011; Talbäck et al., 2004].

In order to obtain more up-to-date estimates on long-term cancer patient sur-

vival, the period survival analysis approach is adopted, as first introduced by

Brenner and Gefeller [1996]. This approach restricts analysis to the survival ex-

perience in the most recent years (defined as a period window) and so, those

diagnosed more early on in calendar time with a short-term survival are excluded

from the analysis [Jansen et al., 2013]. This concept is better illustrated using

the schematic in figure 4.1.

Essentially, all patients who potentially contribute some data to the analysis

within a specified recent time period are included. For example, as shown in

figure 4.1, only the survival experience of patients from 2013 to 2016, as rep-

resented by the horizontal solid lines, for a cohort of cancer patients diagnosed

between 1998 and 2016 are included. The survival times of these patients are left-

truncated (see section 2.3.4) with risk-times that are defined by the start of the

period window, which, in this case, is 2013. For example, patient 1 was diagnosed

in 2011 which is before the start of the period window. In a standard survival

analysis their whole survival experience is included from 2011 to 2015. However,
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Period window

Patient 1

Patient 2

Patient 3

Patient 4

Patient 5

1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
Year

Year of diagnosis
Year of death/censoring

Figure 4.1. A schematic illustrating which portion of a patient’s survival
experience is included under a period analysis approach with a period window
from 2013 to 2016.

under the period analysis approach as illustrated in figure 4.1, only the patient’s

recent survival experience starting from 2013 is included. This same method

applies to a patient diagnosed many years in the past, like patient 5. Rather

than excluding the whole survival experience of this patient from 2000 to 2015,

the survival experience that falls within the recent period window is included

i.e. from 2013 to 2015. Patients in the data similar to patient 3 who die or are

censored outside of the defined period window are completely excluded. On the

other hand, if the patient is both diagnosed and censored/dies within the period

window, e.g. patient 4, then their whole survival experience is included and the

risk-time does not change. The risk-times at which the 5 patients represented in

figure 4.1 contributes to the analysis under a standard and period approach is

summarised in table 4.1.

56



Risk times
Standard Period

Patient 1 (0,4) (2,4)
Patient 2 (0,10) (9,10)
Patient 3 (0,10) -
Patient 4 (0,3) (0,3)
Patient 5 (0,15) (13,15)

Table 4.1. The risk-time interval of each patient shown in figure 4.1 under
both a standard analysis and a period analysis with a period window from 2015
to 2018.

In this chapter, period analysis is approached by artificially left-truncating pa-

tients who contribute some information on survival during the defined period of

interest as discussed in the above example. Delayed entry models that account

for left-truncated data are fitted by conditioning on survival up to the entry time,

t0i, i.e. the start of the period window, as shown in equation 3.32.

4.4 Communication of cancer survival in the media

In recent years, there have been a number of high-profile population-based can-

cer studies which reported net (or relative) survival for analyses. For example,

the work by Quaresma et al. [2014], has gained a significant amount of attention

from the press which include The Daily Mail, The Guardian and the BBC as

well as heavily featuring in public campaigns by Cancer Research UK [Borland,

2016; Weaver, 2010; Cancer Research UK; Triggle, 2014]. In summary, the study

introduces an all-cancer net survival index, a weighted average of all the survival

estimates for every combination of age, sex and cancer which was compared at

1, 5 and 10 years since diagnosis during different calendar periods between 1971

and 2011 in England & Wales. The key result that attracted public attention and

continues to feature in many media articles, is the all-cancer net survival index

of 49.8% after 10 years from diagnosis for all ages from 15 to 99 years old at

diagnosis. “Half of cancer sufferers ‘live a decade”’ and “Twice as many patients
57



now survive cancer for ten years after diagnosis” are just some headlines which

have referenced the study due to the attractive nature of this single summary

statistic [Triggle, 2014; Borland, 2016]. Statements like “50% survive for at least

a decade” are continually used which of course is concerning since it insinuates

that patients have a 50% chance of being alive 10 years after diagnosis. Claims

like these are inaccurate to say the least and it is clear that the measure reported,

i.e. net survival, is completely misunderstood.

A further issue with these articles, and in others, is the failure to acknowledge

important differences between all-cause survival, net survival and crude probabil-

ities of death. The word “net” is usually omitted which means that it is not even

clear exactly what kind of measure is being presented. In fact, when a “survival

probability of 50%” is reported without mention of the exact type of measure, in

scientific literature, and by definition (section 2.4), this would be interpreted as an

all-cause survival probability. Arguably, when interpreting and reporting survival

probabilities, at least once in a document, it is necessary to give a full description

(including assumptions) of the statistic. Thereafter, it may be acceptable to re-

port results specifying the exact measure that has been used to quantify the data.

Evidently, despite warnings from researchers, the media continues to extract

results from studies that report survival at a population-level, and incorrectly

communicate it to the public consequently misleading their readers. The prob-

lem also extends to information presented on web pages aimed at patients and

further demonstrates the extent to which these survival measures are misunder-

stood due to inaccurate, or, incomplete definitions [Cancer Research UK, 2014;
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Office for National Statistics, 2017; American Statistical Society of Clinical On-

cology, 2016]. So what can be done to improve understanding of these survival

measures and introduce more relevant statistics for the patient?

4.5 The use of interactive tools to aid communication of cancer

survival

In recent years, there have been an increasing number of research evidence that

support the use of interactive tools that aid risk communication. For instance,

Trevena et al. [2006] conducted a systematic search to explore the impact and

effectiveness of alternative communication tools on understanding risk. They

concluded that, presenting information in alternative formats, which included

computer-based approaches, substantially increased understanding on individual

risk. Understanding was also enhanced if tools were made interactive which in-

clude features that allow the user to control and navigate through graphs by

making input alterations.

Many also have supported and advocated the view that, when information is

presented as natural frequencies, as opposed to conditional probabilities, it is

more likely that health statistics will be better understood by physicians and

non-statisticians [Gigerenzer, 2008; Gigerenzer and Edwards, 2003; Trevena et al.,

2006; Naik et al., 2012]. For example, consider 100,000 people tested for HIV, of

which, 100 actually have HIV, and 99,900 do not. With the help of figure 4.2,

calculating the probability of those who do not have HIV given that they test

positive (i.e. false positive results) is straight-forward using natural frequencies

( 999
98 + 999 = 91

100). This calculation is evidently much easier to understand as

opposed to the usual way in which conditional probabilities are calculated using
59



Tested
(100,000)

HIV
(100)

No HIV
(99,900)
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(98)
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(2)

Positive
(999)

Negative
(98901)

Figure 4.2. Calculating probabilities using natural frequencies for 100,000
people tested for HIV.

percentages [Gigerenzer et al., 2007].

The explanation and presentation of probabilistic predictions over-time, such as

cancer survival, is also discussed in detail by Spiegelhalter et al. [2011] where the

potential of visualisations with interactive features is highlighted. Others also

claim benefits of using interactive visualisations and infographics over static ones

[Bostrom et al., 2008; Strecher et al., 1999]. In particular, Bostrom et al. [2008]

discuss how incorporating interactivity in visual data displays help users that

may often find themselves overwhelmed by complexities in some visualisations.

Although there are several on-line tools that can be identified which present

health statistics by applying techniques discussed above, there is still a massive

shortage of tools that allow interactive comparisons and contrast between differ-

ent measures [Rabin et al., 2013]. For example, tools such as “PREDICT” and
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“Adjuvant! Online” present user-friendly applications which mainly function as

prognostic tools to predict the outcome of Breast cancer patients and only the

latter attempts to represent risk through individualised cancer-specific estimates

[Ravdin et al., 2001; Wishart et al., 2010]. Feuer et al. [2012] introduce the Cancer

Survival Query System (CSQS) which provides crude mortality estimates to en-

sure information is presented at the individual-level as much as possible in terms

of event-based probabilities. However, the CSQS tool is not publicly available

and also lacks interactivity which, as discussed above, has been shown to be a

powerful medium for explaining complex statistics. The lack of interactivity in a

lot of web applications means that it is difficult to distinguish between different

measures of survival or make comparisons between groups. Therefore, InterPreT

offers physicians and epidemiologists a dynamic interactive tool which emphasises

the reporting of individual-based estimates. Interactive functions further enable

easy comparison between other survival measures which facilitates the user’s un-

derstanding of the differences in interpretation of these statistics. Estimates are

further illustrated through a variety of metrics to broaden the canvas on which

these complex survival measures are displayed.

4.6 InterPreT Cancer Survival

4.6.1 Data-driven documents (D3)

Many tools exist that allow users to create interactive visualisations of data within

the web-environment which combine a variety of technologies. At the core are Hy-

pertext Markup Language (HTML) for structuring the web-page, Cascading Style

Sheets (CSS) for web-page aesthetics and JavaScript for creating interactive con-

tent [Flanagan, 2006; Lie and Bos, 2005]. The co-operation of such technologies

are made possible through the document object model (DOM) which is a native
61



representation behind every web-page that allows for reference and manipulation

of online content. Bostock et al. [2011] introduces Data-Driven Documents, or,

d3.js, as a “representation-transparent approach to visualisation for the web”.

D3.js is a tool which is available as a JavaScript library that combines the above

triad of technologies, including additional ones, such as scalar vector graphics

(SVG), for creating dynamic interactive visualisations.

In recent years, d3.js has gained significant prominence as evidenced by its

regular use, for example, in numerous New York Times articles, an organisation

championed for developing online, data-driven interactive presentations that en-

hance user-engagement [Royal, 2010; Carter, 2012; Ashkenas et al., 2012]. Its

use has also been extended to many applications in statistics which attempt to

communicate and break-down complicated concepts through rich and dynamic

illustrations that are easily manipulated by the user. This is exemplified by Yau

[2011], author of FlowingData, through various engaging interactive visualisations

of statistical concepts using d3.js and Kristoffer Magnusson’s visualisations on

Bayesian inference and interpretation of confidence intervals [Magnusson, 2014,

2015].

Therefore, to achieve a similar impact to some of the example interactive data vi-

sualisations highlighted above, the d3.js library was used to build an educational

online interactive tool for cancer survival called InterPreT Cancer Survival.

The tool primarily focusses on the correct interpretation of commonly reported

cancer survival measures facilitated through the use of dynamic interactive graph-

ics allowing users to make contrasts between the various measures.
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Cancer Site Females Males
Melanoma 76238 64551
Lung 223523 316936
Colon 160522 166323
Rectum 74389 116312
Breast 660538 -
Prostate - 521517

Table 4.2. Number of observations in each dataset for each cancer site by sex.

4.6.2 Data

The InterPreT Cancer Survival web-tool uses English cancer registry data ob-

tained from the National Cancer Registration and Analysis Service (NCRAS) run

by Public Health England. The data contains information on age, sex and sur-

vival in days for patients diagnosed with 6 different cancers from 1995 to 2013.

Table 4.2 summarises the number of patients within each subset of the data for

each cancer by sex. Analysis was restricted to patients aged 40 to 90 years old

at diagnosis.

Expected mortality rates, for calculating expected survival, were extracted from

a 2009 English population mortality file stratified by age, sex and calendar year

provided by the Cancer Survival Group at the London School of Hygiene and

Tropical Medicine, a short extract of which is detailed in table 4.3.

In reference to table 4.3, the 1-year expected mortality rate for males aged 60

in 2009 is 0.0086883. The expected probability of survival for 1-year is then

calculated as a simple transformation of the expected mortality rate where,

exp(−0.0086883) = 0.9913493. The expected survival probabilities are calcu-

lated for each cancer patient in the NCRAS dataset matched appropriately by

age, sex and calendar year. Thus, expected survival gives the chance of being alive
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Country Calendar year Sex Age Rate
England 2009 Males 55 .0056783
England 2009 Males 56 .0061676
England 2009 Males 57 .0067035
England 2009 Males 58 .0072954
England 2009 Males 59 .0079537
England 2009 Males 60 .0086883
England 2009 Males 61 .0095097
England 2009 Males 62 .0104304
England 2009 Males 63 .0114642
England 2009 Males 64 .0126249
England 2009 Males 65 .0139277

Table 4.3. An extract of the 2009 English population mortality life table
which provides expected mortality rates for Males aged 55 to 65 years old.

for a person of the same calendar year, age and sex in the general population who

are assumed to not have the cancer of interest.

4.6.3 Fitting the model

Cancer survival measures presented in InterPreT were obtained after fitting

flexible parametric relative survival models as described in section 4.3. Log-

cumulative excess hazards model equivalent to equation 4.2 were fitted individu-

ally for males and females with age at diagnosis as the only included covariate.

Restricted cubic spline derived variables for age with 4 degrees of freedom were

included, 5 degrees of freedom for the baseline restricted cubic splines and 3 de-

grees of freedom for the time-dependent splines were used continuous non-linear

effect of age. Thus, the hazard ratio of age is assumed to vary over time since

diagnosis. The model was intentionally kept fairly simple in order to allow the

user to explore uncomplicated comparisons between various survival measures

for educational purposes. A more accurate model that better reflects a patient’s

true prognosis would require inclusion of relevant disease characteristics that are

related to the disease process. Such variables, for example, may include stage at

diagnosis and the grade of the tumour.
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4.6.4 Obtaining model parameters from Stata

The relative survival models introduced in this chapter for use in the web-tool are

implemented and fitted via Stata using the stpm2 command which is commonly

used for cancer survival analyses [Lambert and Royston, 2009]. However, as

mentioned above, InterPreT Cancer Survival was developed within the web-

environment using technologies that are not readily integrated with Stata. There-

fore, it was necessary to create a dataset that exported predictions of the various

cancer survival measures obtained from the fitted models. However, cancer stud-

ies often produce data with observations that typically exceed the hundreds of

thousands. This means that exporting individualised predictions for each obser-

vation that differ by every combination of covariates sex and age for each cancer

site becomes computationally inefficient. To overcome this, model parameters,

such as estimated model coefficients, the number and placement of the baseline

and time-dependent splines and location of the knots for the non-linear effect of

age, were exported into a .json file - the native format for datasets which are

easily manipulated within JavaScript using d3.js. Not only is this better for

efficiency, but also allows for more flexibility in data manipulation and extends

the scope of the functional capabilities in InterPreT.

4.6.5 Interactive features

The web-tool presents cancer survival information in language that is accessible

for users from all backgrounds. With this theme in mind, throughout the tool’s

interface, cancer survival measures are interpreted “out of 100” in simple language

to allow the user to easily distinguish between the various metrics (figure 4.3).

Summary probability tables are presented for survival and crude probabilities

of death as shown in figures 4.4 and 4.5 respectively. These provide an overall
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Figure 4.3. Screenshot of easy-to-understand interpretation for net survival
using natural frequencies from InterPreT Cancer Survival.

Figure 4.4. Screenshot of a table summarising the survival probabilities for
a 65 year old female melanoma patient at 1, 5, and 10 years after diagnosis
from InterPreT Cancer Survival.

snapshot on different measures of survival at 1, 5 and 10 years from diagnosis. As

a visual representation of these natural frequencies, people charts are available

for net, all-cause and expected survival (figure 4.6) and crude probabilities of

death (figure 4.7). By default, these are illustrated for patients 5 years after

diagnosis which can be changed by the user for 1 to 10 years from diagnosis

using the input box directly above as highlighted by the box in figures 4.6 and

4.7. Alternatively, typical line charts are available for representing the various

cancer measures on both survival and mortality as well as stack charts for crude

probabilities of death which is more common in literature [Lambert et al., 2011;

Yu et al., 2010; Andersen, 2013].

All plots are dynamic and probabilities are displayed over 10 years on mouse-over.

Users may select or de-select cancer measures of interest for specific comparisons
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Figure 4.5. Screenshot of a table summarising the crude probabilities of
death due to other causes, all-causes and cancer for a 65 year old female
melanoma patient at 1, 5, and 10 years after diagnosis from InterPreT Cancer
Survival.

Figure 4.6. Screenshot of people charts for all-cause, expected and net sur-
vival probabilities for a 65 year old female melanoma patient at 5 years after
diagnosis from InterPreT Cancer Survival.

of interest. A fix check-box is also available to save statistics for a particular

set of patient characteristics which can be used to visually contrast against other

patients with different characteristics as illustrated in figure 4.8. A slider from

40 to 90 years old allows the user to change the age of the patient which instan-

taneously updates the plots, facilitating observations on the changes in cancer

survival for older or younger patients. The tool also has drop-down menus for

switching between the 6 different cancer sites, and between the survival and crude
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Figure 4.7. Screenshot of people charts for crude probabilities of death due to
other causes, all-causes and cancer for a 65 year old female melanoma patient
at 5 years after diagnosis from InterPreT Cancer Survival.

Figure 4.8. Screenshot of a line chart of survival probabilities for a 79 year
old male melanoma (solid lines) patient compared to a 79 year old female
melanoma patient (dashed lines) from InterPreT Cancer Survival.

probabilities of death.

Conditional probabilities may also be displayed by dragging the y-axis across time

(figure 4.9). Despite being a relatively simple measure to obtain, it is in fact an

especially useful and powerful interactive component of the InterPreT Cancer

Survival web tool. As highlighted by Bostrom et al. [2008], the portrayal of
68



Figure 4.9. Screenshot of a line chart of survival probabilities for an 85 year
old female melanoma patient if they were still alive 3 years after diagnosis
InterPreT Cancer Survival.

changes in risk under different “what if” scenarios is one of the many advantages

of introducing interactive features in visualisations [Strecher et al., 1999]. For

example, in this particular case, by dragging the y-axis, the user can explore the

scenario of “what if I was still alive after x years, how would my survival proba-

bility change?”.

4.7 Using the tool to understand differences between various

measures

InterPreT is catered towards understanding differences in interpretation between

various cancer survival measures. Net measures are commonly confused with and

misinterpreted as real-world probabilities. For example, net survival is often in-

correctly reported as observed survival, or misinterpreted as the crude probability

of death due to cancer by presenting it as a patient’s actual risk of dying from

their cancer. This, in fact, is a common misconception and a distinction needs
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to be made with the crude probability of death due to cancer, which is more

appropriate for extracting a patient’s actual risk of dying from cancer.

Figure 4.10. Illustration of a fixed net survival curve for a 45 year old female
breast cancer patient compared to an 85 year old female breast cancer patient
using InterPreT Cancer Survival.

In this example, a 45 year old female breast cancer patient’s net probability of

survival is compared with an 85 year old patient. Using the net survival plot

drawn in InterPreT Cancer Survival, accompanied with the text descriptions

shown in figure 4.10, we can clearly see that, 80 out of 100 45 year old female

breast cancer patients are likely to still be alive 10 years after diagnosis. Whereas,

for 85 year olds, 45 out of 100 female breast cancer patients are likely to still be

alive. It is important to note here that these are extrapolated estimates for the

85 year old patient beyond 5 years since diagnosis. This is because the data only

includes information on those aged between 40 to 90 years old, therefore, after 5

years since diagnosis, the survival of the patient is extrapolated However, these
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probabilities are net probabilities and excludes the possibility of dying from any-

thing else. It therefore refers to some hypothetical scenario where cancer is the

only cause of death. To see how and why this differs from their actual risk of

dying from cancer, i.e. their crude probability of death due to cancer, we switch

to the stack charts which can be accessed by choosing probabilities in terms of

mortality from the drop down menu (see figure 4.11). For 45 year old female

cancer patients, we can now visualise their crude probability of death due to any

cause and how this is partitioned into their probability of dying because of can-

cer and other causes. Younger patients, as we would expect, are naturally less

likely to die from other causes (2 out of 100), therefore it is not surprising that

their net probability of death, i.e. 1 - net survival, happens to be similar to their

crude probability of death due to cancer. The distinction is more apparent as

we drag the slider across for older patients. This allows us to see that, as we

increase the age of patients, we begin to see a larger proportion dying from other

causes, which is represented by the quickly increasing area of the partition for

other causes. In contrast, the crude probability of death due to cancer increases

at a slower pace compared to the net probability of death since, in reality, a lot

of these older patients are more likely to die of other causes first. Consequently,

as we get to 85 year old patients, a clear difference is observed between the net

probability of death and crude probability of death due to cancer. Indeed, the

actual, real-world probability of dying from cancer is lower (38 out of 100) and

a higher proportion of the patient’s mortality is attributable to other causes (51

out of 100). This can also be observed by switching to the people charts where a

similar demonstration can be made (see figure 4.12).
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(a) 45 year old female (b) 60 year old female

(c) 70 year old female (d) 85 year old female

Figure 4.11. Screenshots of crude probability of death stacked plots for fe-
male breast cancer patients at different ages. Orange area refers to the crude
probability of death due to cancer and the blue area refers to the crude proba-
bility of death due to other causes. The black line compares the net probability
of death (1 minus net survival)

4.8 Evaluation: Cancer Research UK patient sounding board

To evaluate the tool’s suitability for patient-use and gather perspectives on the

availability and usage of the interactive tool, with the assistance of Cancer Re-

search UK, a patient sounding board was consulted.

Overall, patients were keen on the availability of such tools that health-care pro-

fessionals had access to. This meant that they could themselves grasp some un-

derstanding on the cancer statistics that they were presented with as opposed to

relying on the vague explanations usually provided. Ease in the use of InterPreT

was a feature that stood out to the patients and the interactivity of being able

to see the change in survival across age and easily make comparisons was well

received. Although some patients agreed that the tool was an informative way to
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(a) 45 year old female (b) 60 year old female

(c) 70 year old female (d) 85 year old female

Figure 4.12. Comparison of crude probability of death due to cancer (orange)
and due to other causes (blue) for female breast cancer patients at various ages
5 years after diagnosis. Green people represent patients that are still alive 5
years after diagnosis.

communicate death and present information that they wanted available, others

pointed out that this perspective may change because of the language of inter-

pretation behind these measures. For example, “crude probabilities of death” is

the metric that is most appropriate for a patient when determining their prog-

nostic outcome and making treatment decisions. However, this terminology was

considered to be unsuitable for patient communication due to the use of the word

“death”, since more positive language, such as “survival” or “alive”, are preferred.

Presenting cancer statistics as death probabilities is viewed as undesirable, which,

in this case is unavoidable due to an awkward interpretation on the survival scale

[Cronin and Feuer, 2000]. In this respect, the language used in other aspects

of the tool has been tailored in consideration of how a patient may react to the

information and directly affected users are given resources for support. This also
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potentially motivates for an alternative version of the web tool, solely targeted

towards patient-use.

4.9 Release

InterPreT Cancer Survival was publicly released under the Linux, Apache,

MySQL and Python (LAMP) stack environment and is available at

https://interpret.le.ac.uk. Following release, the web-tool received national

coverage in an article by the Daily Mail, gaining exposure to over 2 million readers

[Matthews, 2017]. Since October 2017, usage statistics obtained from Google

Analytics indicate that there are, on average, approximately 15 new users every

week. In addition, there has been global interest in the interactive application

with a high proportion of visitors from North America. A snapshot of the Google

Analytics user summary statistics can be found in appendix A. A paper (appendix

B) has also been submitted to the Cancer Epidemiology journal to communicate

the release of InterPreT Cancer Survival which is currently under review.

4.10 Discussion

InterPreT Cancer Survival was introduced and described in this chapter as a

useful educational tool for understanding the differences between the interpreta-

tion of various cancer survival statistics. In its current form, the user can make

simple contrasts between males and females, whilst also visualising the change

in survival, or probability of death, for younger/older patients. By dragging the

axis, the user can also ask useful questions, such as, “how will my chances of

survival change if I was still alive 5 years after diagnosis?”, a functionality that

has proved to be popular with patients and epidemiologists alike. However, since

the tool only, at present, incorporates age and sex as covariates in the flexible
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relative survival model, the measures cannot be used to accurately describe the

prognosis of any individual patient. This is because a cancer patient’s true prog-

nostic outcome will depend on other important disease characteristics, which, for

example, would also include the stage of their cancer, or grade of the tumour

at diagnosis. With this in mind, it is intended that a future version based on a

validated prognostic model with appropriate covariates will be developed.

As highlighted, although InterPreT Cancer Survival does not, in its current

form, have an underlying (validated) prognostic model, the tool is designed to

be used by those from a non-statistical background to understand various cancer

survival measures that are available. This provides an educational platform which

targeted users, e.g. health-care professionals or epidemiologists, can refer to in

order to help them communicate the meaning behind such measures. For exam-

ple, if a health-care professional wishes to better understand the interpretation

of important cancer survival results reported from a study, and how they can be

communicated, reference can be made to the web-tool. In addition, particularly

for a tool solely focussed towards epidemiologists, uncertainty in the predictions

will also need to be incorporated as this is important particularly for older pa-

tients when fewer are left at risk towards the end of follow-up time. However,

since currently only a single tool is available for both patients and epidemiolo-

gists to use, reporting uncertainty in estimates is more difficult as it may lead

to confusion amongst patients. This motivates further for a separate tool for pa-

tients, where more thought is needed on how to best visually present uncertainty

in cancer survival statistics in a way that is easily understood.

Finally, there are also further plans to maintain and update InterPreT Cancer
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Survival with more recent English cancer registry data in collaboration with

Public Health England. Furthermore, there is the potential to adapt InterPreT

Cancer Survival for US data provided by the North American Association of

Central Cancer Registries (NAACCR) which would require incorporating infor-

mation on race. This is because large, consistent and persistent racial disparities

have been observed in the US and is therefore imperative that survival is esti-

mated by race [Hoffman et al., 2001; Howlader et al., 2010].
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Chapter 5

Analysis of Survival Data in the Presence of Competing

Risks

5.1 Outline

This chapter and chapter 6, introduces methods for analysing survival data when

competing risks are present and cause of death information is available. Par-

ticular focus here is on modelling cause-specific hazards in the presence of com-

peting risks for which non-parametric and equivalent Cox proportional hazard

regression modelling techniques are described. Either separate models can be

fit for the cause-specific hazards, or, by way of data duplication, these can be

fitted simultaneously using a single model. Extension to the flexible parametric

framework is proposed by fitting separate models for each cause-specific hazards.

The cause-specific cumulative incidence function is calculated using the Gauss-

ian quadrature method for numerical integration. This is shown to have several

computational advantages and is easy to adapt for evaluating double integrals as

required for the estimation of restricted mean lifetimes introduced in chapter 9.

The flexible parametric approach for direct inference on the cause-specific cumu-

lative incidence function using subdistribution hazards is described in the next

chapter.
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5.2 Introduction

To understand more about patient prognosis and disease impact, estimating the

probability of death in the presence of other causes is required. Partitioning the

probability of death to distinguish between various competing causes of death is

becoming of more interest in large population-based studies. This is especially so

since the quality of cancer registry data continues to improve and more accurate

and detailed cause of death information is recorded. Estimating this measure is

a more accurate depiction of a patient’s “real-world” outcome following a cancer

diagnosis as it takes into account the risk of dying from something else before

their cancer. For example, it allows patients, or doctors, to determine how much

of an effect a new treatment will have on reducing the impact of cancer on the

probability of being alive. Presenting such a measure is more important for older

patients since they are naturally at a higher risk of dying from other causes. Re-

porting alternative measures, such as the net probability of death (or 1 minus net

survival), does not take this into account, therefore usually over-estimating the

probability of dying from the cancer and underestimating the probability of all-

cause death. Therefore, it is important to partition out the probability of dying

from other causes to truly determine how much a change in treatment or clinical

practice will affect that prognosis of cancer patients. The difference between net

measures, and measures that partitions the probability of death due to cancer

from death due to other (competing) causes is explored in section 4.7.

The measure that is usually of interest for partitioning probabilities of death

due to a particular cause, is known as the cause-specific cumulative incidence

function. From a statistical modelling perspective, this is typically obtained by
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either (1) estimating all the cause-specific hazard functions, or (2) transforming

using a direct relationship with the subdistribution hazard function for the cause

of interest. The choice of model on which to make our statistical inference de-

pends on the research question to be answered. Wolbers et al. [2014] along with

others, highlight that, if interest lies in prognosis, direct inference on the cause-

specific cumulative incidence function is most useful. On the other hand, for

more aetiological-type research questions, regression models on the cause-specific

hazards are more important [Sapir-Pichhadze et al., 2016; Noordzij et al., 2013;

Koller et al., 2012]. Contrasts between the cause-specific hazard function and

subdistribution hazard function for a particular cause are highlighted in section

6.3.1 and the scale on which to make inferences on are further discussed in sections

6.2 and 11.3.1.

5.3 The multi-state model

As discussed in section 2.3.2, in typical survival data, the time to a particular

event after entering a study is analysed with the assumption of non-informative

censoring. In the context of a cancer study, this can be represented as a simple

two-state model which has an initial transient state, “alive”, and an absorbing

state which corresponds to “death (from any cause)”. The process from the “alive”

state to the absorbing state, “death (from any cause)”, does not depend on the

patient’s previous history and is represented by a transition intensity which is

equivalent to the (all-cause) hazard function, h(t), as specified in equation 2.4

(see figure 5.1). The transition probability, i.e. the complement of the (all-cause)

survival function, is obtained non-parametrically via the standard Kaplan-Meier

estimate, or with covariates using standard regression modelling techniques out-

lined in chapter 3.
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alive
death

(from any
cause)

h(t)

Figure 5.1. Two-state model in the absence of competing risks where tran-
sition occurs from an “alive” state to the absorbing state, “death (from any
cause)”.

However, when censoring is “informative”, alternative methods are adopted to

account for any bias that may occur as discussed in section 2.3.2. In this thesis,

since focus is on the real-world implication of a cancer diagnosis on prognosis,

death from other causes must also be considered. This situation is analysed un-

der competing risks theory where, in general, an individual may experience a

“competing event” which affects the outcome of interest. In cancer studies and

applications discussed in this thesis, these competing events represent death from

causes other than the cancer of interest, the experience of which means that death

from the cancer under study is not observed. Figure 5.1 is extended in figure 5.2

to accommodate competing risks with k = 1, . . . , K transition rates from the

initial “alive” state to the kth absorbing state that correspond to dying from a

particular cause, D = k, where k = 1 is death from cancer. These transition

rates are referred to as cause-specific hazards, hcsk (t),

hcsk (t) = lim
∆t→0

P (t < T ≤ t+ ∆t,D = k|T > t)
∆t (5.1)

which gives the instantaneous mortality rate from a particular cause k given that

the patient is still alive at time t in the presence of all the other causes of death.

Equation 5.1 can also be written as,
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hcsk (t) = f ∗k (t)
S(t) (5.2)

where S(t) is the all-cause survival function and f ∗k (t) is the cause-specific sub-

density function such that,

f ∗k (t) = lim
∆t→0

P (t < T ≤ t+ ∆t,D = k)
∆t (5.3)

which is the instantaneous probability of dying from a particular cause k. Note

that this is called a “sub”-density as it is an improper function that integrates to

less than 1.

The cause-specific survival function can be obtained through its standard re-

lationship with the cause-specific hazard function where,

Scsk (t) = exp
(
−
∫ t

0
hcsk (u)du

)
(5.4)

However, this cannot be interpreted as a typical survival probability, since it does

not account for the fact that individuals may die from other competing causes

of death before time t. As these individuals who die from competing events are

removed from the risk-set, it will affect the probability of dying from the cause k.

In fact, Putter et al. [2007] states that equation 5.4 can only be interpreted in the

usual way if the distribution of the competing causes of death and the censoring

distribution are independent (see section 2.3.3). However, the all-cause survival,
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alive
death

from cause
k = 1

hcs
1 (t)

death
from cause
k = 2

hcs
2 (t)

Figure 5.2. Three-state model in the presence of competing risks where tran-
sition occurs from an “alive” state to one of K = 2 absorbing states that
correspond to a particular cause of death.

S(t), can still be obtained through its relationship with all k cause-specific sur-

vival functions, Scsk (t),

K∏
k=1

Scsk (t) = exp
(
−
∫ t

0
hcs1 (u)du

)
× . . .× exp

(
−
∫ t

0
hcsK(u)du

)

= exp
(
−

K∑
k=1

∫ t

0
hcsk (u)du

)

= S(t)

(5.5)

which can be interpreted as the probability of not dying from any of the k causes.

Alternatively, to maintain a direct relationship with the cause-specific cumulative

incidence function, the subdistribution hazard function for cause k is estimated.

This is interpreted differently to the cause-specific hazard and is introduced in

chapter 6. In this chapter, focus is on the cause-specific hazards, hcsk (t).
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5.4 Non-parametric estimation of cause-specific hazards

In the absence of competing risks, the transition probability in a two-state model

from the “alive” state to the absorbing state, “death (from any cause)”, can be

estimated by the complement of the Kaplan-Meier estimator derived in equation

2.16. However, when competing risks are present, interpretation of the Kaplan-

Meier estimate changes. The Kaplan-Meier estimator only describes the experi-

ence of a single event of interest whilst all other (competing) events are ignored.

For example, if the researcher is only interested in the cancer-specific transition

probability, the single absorbing state must at least be split into k = 2 states

that correspond to death due to cancer and death due to other causes as shown

in figure 5.2. However, a naive Kaplan-Meier approach ignores the transition

probability from “alive” to “death due to other causes” and only calculates the

transition to ‘death due to cancer”. This leads to an over-estimation of the actual

probability of dying from the cancer of interest since death from other causes is

not properly taken into account [Pintilie, 2006; Collett, 2003].

To correctly estimate transition-specific probabilities, Kalbfleisch and Prentice

[1980] proposes calculating the (cause-specific) cumulative incidence function.

For general use in multi-state models, this is described by Aalen and Johansen

[1978] as a matrix form of the Kaplan-Meier estimate with k absorbing states

and is sometimes referred to as the empirical transition matrix estimator. How-

ever, especially in the competing risks setting, it is more commonly known as the

Aalen-Johansen estimate [Aalen et al., 2008].
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5.4.1 The Aalen-Johansen estimate

As in section 2.6.1, assume that there are a series of time intervals, each of which

contains a single observed ordered death time statistic, t(j), for the jth individual,

where j = 1, . . . ,m. Thus, similar to equation 2.15, the cause-specific hazard for

cause k is calculated as the ratio of the number of individuals who die at time

tj from a particular cause k, dkj, to the observed number of individuals that are

still alive, nj, up to, but not including time tj, such that,

ˆhcsk (t) = dkj
nj

(5.6)

This gives the instantaneous rate of dying from a particular cause k. In other

words, this quantity represents the transition from the “alive” state to one of the

k = 1, 2 absorbing states as illustrated in figure 5.2. Following a similar derivation

to the Nelson-Aalen estimator in equation 2.18, the cause-specific Nelson-Aalen

estimator is obtained. This is estimated as the sum of the cause-specific hazards

until time t such that,

ĤNA
k (t) =

l∑
j=1

ˆhcsk (tj) =
l∑

j=1

dkj
nj

(5.7)

for l = 1, . . . , r, where t(l) to t(l+1) is the lth interval over time. The Nelson-Aalen

estimator of overall cumulative hazard function then becomes,

ĤNA(t) =
k∑
i=1

ĤNA
i (t) (5.8)

From equation 5.2 and using the relationship defined in equation 2.2, it follows
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that the cause-specific cumulative incidence function can be expressed as a func-

tion of all the cause-specific hazards in the form,

Fk(t) =
∫ t

0
S(u)hcsk (u)du (5.9)

which can be estimated non-parametrically by,

F̂AJ,k(t) =
l∑

j=1
ŜKM(tj−1)dkj

nj
(5.10)

where ŜKM(tj−1) is the Kaplan-Meier estimate of the all-cause survival function

defined in equation 2.16. dkj
nj

is the increment at time tj of the Nelson-Aalen

estimate for the cause-specific cumulative hazard function in equation 5.7. By

summing the product of all event times up to time t, the Aalen-Johansen es-

timator of the cause-specific cumulative incidence function, F̂AJ,k(t), is derived.

Since F̂AJ,k(t) requires information on death times for all causes, it is not possible

to estimate the cause-specific cumulative incidence function by solely using the

cause-specific (cumulative) hazards for a single cause.

5.4.2 Example

An example of summarising competing risks data using the Aalen-Johansen es-

timate is presented using US SEER colorectal data as described in section 1.5.

In this example, calculation is contrasted against use of the Kaplan-Meier esti-

mator. Aalen-Johansen estimates are obtained within Stata/IC 15.0 using the

command stcompet [Coviello and Boggess, 2004]. For illustration purposes, in

order to demonstrate difference in calculations for the two estimates, a subset of

the first 20 patients in the data is used. This is summarised in table 5.1.
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Patient Age Stage Event time Event
1 82 Distant 2 Other Causes
2 82 Localised 1 Other Causes
3 78 Distant 5 Colorectal Cancer
4 70 Localised 127 Alive/Censored
5 66 Regional 104 Alive/Censored
6 69 Distant 47 Colorectal Cancer
7 72 Localised 0.5 Other Causes
8 61 Localised 116 Alive/Censored
9 61 Localised 54 Alive/Censored
10 80 Regional 0.5 Colorectal Cancer
11 78 Regional 76 Alive/Censored
12 79 Regional 0.5 Colorectal Cancer
13 80 Localised 50 Other Causes
14 79 Localised 1 Colorectal Cancer
15 84 Distant 1 Heart Disease
16 79 Localised 24 Heart Disease
17 63 Localised 18 Alive/Censored
18 76 Localised 9 Alive/Censored
19 71 Regional 179 Alive/Censored
20 68 Localised 92 Other Causes

Table 5.1. Survival/censoring times (in months) for 20 female colorectal can-
cer patients and the cause of death.

Using the data in table 5.1, the Kaplan-Meier estimate for the survival function

is obtained for each cause. These are “cause-specific” in the sense that only the

number of events for the cause of interest is included in the calculations for the

survival function. All other events are treated as non-informative censored obser-

vations (see section 2.3.2). Table 5.2 lists the number of individuals at risk, nj, at

the start of the interval tj and the number of deaths due to the event of interest,

dj. These are used in equation 2.16 to calculate the Kaplan-Meier estimate of

the “cause-specific” survival function, ŜcsKM(tj−1). From these estimated Kaplan-

Meier survival functions for each cause at 180 months, the probability of death

due to colorectal cancer, other causes and heart disease are 1− 0.6950 = 0.3050,

1− 0.5812 = 0.4188 and 1− 0.8550 = 0.1450 respectively. However, as discussed
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Time interval nj dj Ŝcs
KM (tj−1)

Colorectal cancer
(0,0.5] 20 0 1.0000
(0.5,1] 20 2 0.9000
(1,5] 17 1 0.8471
(5,47] 13 1 0.7819
(47,180] 9 1 0.6950
Other causes
(0,0.5] 20 0 1.0000
(0.5,1] 20 1 0.9500
(1,2] 17 1 0.8941
(2,50] 14 1 0.8302
(50,92] 8 1 0.7265
(92,180] 5 1 0.5812
Heart disease
(0,1] 20 0 1.0000
(1,24] 20 1 0.9500
(24,180] 10 1 0.8550

Table 5.2. Calculating Kaplan-Meier estimates of the survival function for
three causes of death for female colorectal cancer patients.

in section 2.3.2 and above, in the presence of competing risks, the assumption

of non-informative censoring is no longer valid. In this case, the cause-specific

cumulative incidence functions, F̂k(t), must be obtained which can be calculated

via the Aalen-Johansen estimator in equation 5.10. These calculations are sum-

marised in table 5.3 alongside the Kaplan-Meier estimate of the all-cause survival

function where death times from all-causes are included.

From table 5.3, the all-cause survival function across all death times at 180 months

is calculated as 0.3360. In comparison, the all-cause survival at 180 months ob-

tained using the “naïve” Kaplan-Meier estimate of the survival function for cause-

specific death times is 1 − (0.3050 + 0.4188 + 0.1450) = 0.1312. The difference

between the two estimates highlights that, in the presence of competing risks,

the Kaplan-Meier estimator does not correctly calculate cause-specific survival
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Time interval nj d1j d2j d3j ŜKM (tj−1) ˆF1(t) ˆF2(t) ˆF3(t)
(0,0.5] 20 0 0 0 1.0000 0.0000 0.0000 0.0000
(0.5,1] 20 2 1 0 0.8500 0.1000 0.0500 0.0000
(1,2] 17 1 1 1 0.7000 0.1500 0.1000 0.0500
(2,5] 14 0 1 0 0.6500 0.1500 0.1500 0.0500
(5,24] 13 1 0 0 0.6000 0.2000 0.1500 0.0500
(24,47] 10 0 0 1 0.5400 0.2000 0.1500 0.1100
(47,50] 9 1 0 0 0.4800 0.2600 0.1500 0.1100
(50,92] 8 0 1 0 0.4200 0.2600 0.2100 0.1100
(92,180] 5 0 1 0 0.3360 0.2600 0.2940 0.1100

Table 5.3. Aalen-Johansen estimates of cumulative incidence functions for
cancer ( ˆF1(t)), other causes ( ˆF2(t)) and heart disease ˆF3(t) and the Kaplan-
Meier estimate of the all-cause survival function, ŜKM (t)

probabilities. This is because, the complement of the Kaplan-Meier estimate for

the kth cause only estimates the probability of death if death can only be from

cause k and the individual cannot die from any other cause. Furthermore, it

assumes that an individual can die from any cause, but does not consider the fact

that, if all individuals died from cause k, death from other competing causes may

never be observed [Collett, 2003]. This interpretation of the complement of the

Kaplan-Meier estimator for the kth cause is incompatible with competing risks

data and leads to an over-estimate of the all-cause (and cause-specific) cumulative

incidence function. The Aalen-Johansen estimator for the cause-specific cumula-

tive incidence function is therefore more appropriate as it takes death from other

causes into account in the calculations. At 180 months, this is now 0.2600, 0.2940,

and 0.1100 for the probabilities of death due to cancer, other causes and heart

disease respectively. These estimates are then used to correctly obtain the all-

cause survival function where, 1−(0.2600+0.2940+0.1100) = 0.3360 as expected.
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Age group n(%)
55 ≤ x < 65 12396(27.35)
65 ≤ x < 75 15096(33.31)
x ≥ 75 17826(39.34)

Table 5.4. Age categories for female patients diagnosed with colorectal cancer.

When summarising survival data, it is also important to distinguish between the

effect of different explanatory variables on outcome. For example, age at diag-

nosis is generally considered to have a considerable effect on the cause-specific

cumulative incidence function due to other causes. In fact, the magnitude of bias

in the Kaplan-Meier estimate of the survival function for the kth cause of death is

also dependent on how large this effect is on the competing events. Note that, as

discussed previously, non-parametric techniques are more appropriate for binary,

or discrete variables (please refer to introduction in chapter 3). Therefore for the

purposes of this example, age is categorised into the groups shown in table 5.4.

Returning back to the full dataset, figure 5.3 compare the Aalen-Johansen esti-

mate of the cause-specific cumulative incidence function to the complement of

the Kaplan-Meier estimate for cause k. These are illustrated for the youngest

age group (55 to 64 year olds) on the top row and the oldest age group (over 75

years old) on the bottom row. Estimates are calculated for death from colorec-

tal cancer, other causes and heart disease. Overall, in figure 5.3, as expected,

and shown in the above example, the complement of the Kaplan-Meier curve

for each of causes, over-estimates the cumulative incidence in comparison to the

Aalen-Johansen estimate. However, what is important to notice here, is how the

difference in the effect of age on the cause-specific cumulative incidence function
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Figure 5.3. Comparison of the Aalen-Johansen (AJ) estimate of the cause-
specific cumulative incidence function and the complement of Kaplan-Meier
estimate for cause k (1 - KM) for 55 to 64 year olds (top row) and 75+ year
olds (bottom row) female colorectal cancer patients.

for the competing events determines how much the complement of the Kaplan-

Meier curve over-estimates the probability of death. For instance, because the

probability of death due to other causes and heart disease for the youngest age

group on the top row in figure 5.3 are lower in comparison to the oldest age group

on the bottom row in figure 5.3, the complement of the Kaplan-Meier curve is

not over-estimated as much. Therefore, this illustrates that, when the effect of

competing causes of death is more important, it is expected that the difference

between the Aalen-Johansen estimate and the complement of the Kaplan-Meier

estimate will be larger.

As previously discussed, although non-parametric approaches require no distri-

butional assumptions for survival data, these methods become infeasible for the

inclusion of continuous explanatory variables such as age. In such cases, like in
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the example above, age must be categorised into groups so that estimates can be

obtained for the cause-specific cumulative incidence function. In addition to this,

as more variables are included, the number of cross-comparisons between var-

ious groups substantially increase which further complicate analyses, rendering

such methods impractical. Therefore, as argued in chapter 3, survival regression

models are often preferred as they are more accessible for researchers.

5.5 Modelling the cause-specific hazard function

For the inclusion of continuous covariates and/or for evaluating the effect of var-

ious explanatory covariates on the cause-specific hazards, the cause-specific Cox

proportional hazards regression model in section 3.5 for competing risks data is

usually fitted [Holt, 1978; Prentice et al., 1978; Prentice and Breslow, 1978]. As-

suming proportionality of the cause-specific hazards, the model for the kth cause,

with k = 1, . . . , K, given a vector of covariates, x, is,

hcsk (t | x) = h0k(t) exp
(
βTk x

)
(5.11)

where h0k is an unspecified, non-negative baseline cause-specific hazard function

and βk is a vector of coefficients for cause k. Setting up the survival data to fit

separate models in the presence of competing risks requires coding an indicator

variable for death times in relation to the cause of interest. Deaths from the other

K − 1 causes, excluding cause k, are treated as censored events. For instance,

based on the same 20 patients as in table 5.1, table 5.5 provides an example of

how the data is structured for fitting K separate cause-specific hazards models by

creating new column indicator variables, “Cancer”, “Other causes” and “Heart

disease”. Since the cause-specific hazard is estimated by removing individuals
91



Patient Age Stage Event time Event Cancer Other causes Heart disease
1 82 Distant 2 Other Causes 0 1 0
2 82 Localised 1 Other Causes 0 1 0
3 78 Distant 5 Colorectal Cancer 1 0 0
4 70 Localised 127 Alive/Censored 0 0 0
5 66 Regional 104 Alive/Censored 0 0 0
6 69 Distant 47 Colorectal Cancer 1 0 0
7 72 Localised 0.5 Other Causes 0 1 0
8 61 Localised 116 Alive/Censored 0 0 0
9 61 Localised 54 Alive/Censored 0 0 0
10 80 Regional 0.5 Colorectal Cancer 1 0 0
11 78 Regional 76 Alive/Censored 0 0 0
12 79 Regional 0.5 Colorectal Cancer 1 0 0
13 80 Localised 50 Other Causes 0 1 0
14 79 Localised 1 Colorectal Cancer 1 0 0
15 84 Distant 1 Heart Disease 0 0 1
16 79 Localised 24 Heart Disease 0 0 1
17 63 Localised 18 Alive/Censored 0 0 0
18 76 Localised 9 Alive/Censored 0 0 0
19 71 Regional 179 Alive/Censored 0 0 0
20 68 e Localised 92 Other Causes 0 1 0

Table 5.5. An example of structure based on a subset of data where dummy
variables are created for each cause of death which are used to fit separate
cause-specific hazards models.

from the risk-set when they die from a particular cause, the model in equation

5.11 can be fitted using the same estimation procedure (and partial likelihood)

as in section 3.5. To show this, consider an extension of the partial likelihood in

equation 3.20 for all n individuals with K competing causes such that,

L(β) =
n∏
i=1

K∏
k=1

 exp
(
βTk xi

)
∑
ζ∈R(ti) exp (βTk xζ)

δik (5.12)

If the ith individual dies due to cause k then, δik = 1, otherwise, δik = 0. The

above function factorises to,

L(β) = L1(β)× . . .× LK(β) =
K∏
k=1

Lk(β) (5.13)
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where,

Lk(β) =
n∏
i=1

 exp
(
βTk xi

)
∑
ζ∈R(ti) exp (βTk xζ)

δik (5.14)

Therefore, the partial likelihood for each cause k, Lk(β), can be estimated for K

separate cause-specific Cox regression models to single row cause-specific survival

data as shown in table 5.5 given that the parameters βk are distinct. Since the

partial likelihood for each cause k is derived only as a function of the partial

likelihood for all-causes in equation 5.13, analysis is incomplete if the approach

is not applied to all K competing causes. This is also apparent in section 5.4.1

where the relationship in equation 5.9 shows that the cause-specific cumulative

incidence function cannot be estimated without obtaining all cause-specific haz-

ards. However, it is also possible to obtain the cause-specific cumulative incidence

function by fitting the standard Cox proportional hazards model in equation 5.11

by treating all-causes as events. The all-cause survival function can then be pre-

dicted and used for equation 5.9 along with the appropriate cause-specific hazard

function. This way, fitting cause-specific Cox proportional hazards models for

all-causes can be avoided, especially if K > 2.

5.5.1 Predicting the cause-specific cumulative incidence function

Following maximisation of the partial likelihood(s) in 5.12 for fitting all K cause-

specific Cox regression models, the cause-specific cumulative incidence function

for a vector of covariates, x, can be calculated using the relationship defined in

5.9. This is done by replacing the non-parametric quantities in equation 5.10

with their model predicted counterparts such that,
93



F̂k(t | x) =
l∑

j=1
Ŝ(tj−1 | x)ĥcsk (tj | x) (5.15)

Let equation 5.11 be expressed as predicted cause-specific hazard contributions

at observed ordered death times tj for j = 1, . . . ,m. Then the cause-specific

cumulative incidence function in equation 5.15 becomes,

F̂k(t | x) =
l∑

j=1
Ŝ(tj−1 | x)h0k(tj) exp

(
βTk x

)
(5.16)

and,

Ŝ(t | x) =
l∏

j=1
{1−

K∑
k=1

ĥcsk (tj | x)} (5.17)

for l = 1, . . . , r, where t(l) to t(l+1) is the lth interval over time and t(r) is the

largest observation time in the study. Finally, let,

Ĥ0k(t | x) =
l∑

j=1
h0k(tj) (5.18)

which is the Breslow estimate of the cause-specific baseline cumulative hazard

function as defined in equation 3.21. Since the baseline cumulative hazard func-

tion is obtained non-parametrically, extending to non-proportional hazards is

difficult as including time-dependent effects is more complicated.

5.5.2 Example

Cox proportional hazards models for colorectal cancer, other causes, and heart

disease were fitted to the US SEER dataset described in section 1.5. All other
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Covariate HR 95% CI
Cancer:
Age (Linear) 1.030 [ 1.028 1.032 ]
Stage at diagnosis
Localised - - -
Regional 4.237 [ 3.987 4.503 ]
Distant 27.225 [ 25.636 28.911 ]
Other causes:
Age (Linear) 1.083 [ 1.080 1.088 ]
Stage at diagnosis
Localised - - -
Regional 0.996 [ 0.939 1.056 ]
Distant 2.771 [ 2.561 2.998 ]
Heart disease:
Age (Linear) 1.113 [ 1.106 1.120 ]
Stage at diagnosis
Localised - - -
Regional 0.981 [ 0.897 1.073 ]
Distant 1.398 [ 1.199 1.630 ]

Table 5.6. Estimated hazard ratios (HRs) and associated 95% confidence
intervals (CI) from 3 separate Cox proportional hazards model for death from
cancer, other causes and heart disease. Continuous linear age and stage at
diagnosis are included as covariates.

causes of death, excluding the cause of interest, are coded as censored events

as shown in table 5.5. Continuous age and stage at diagnosis were included as

covariates for all K = 3 cause-specific models. Follow-up was restricted to 120

months from diagnosis.

Table 5.6 gives the estimated cause-specific hazard ratios and their respective 95%

confidence intervals for continuous age and each stage at diagnosis group (with

localised stage as the reference) that is associated with each cause-specific Cox

proportional hazards model. These are interpreted as the effect of each variable

on the rate of dying from each of the K = 3 causes of death, regardless of the

occurrence of the other K − 1 causes of death.
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In general, mortality rate (from any cause) will always be higher for older pa-

tients. This is reflected in the cause-specific Cox proportional hazards model for

cancer, other causes and heart disease. For example, the mortality rate due to

cancer for female patients with localised stage cancer at diagnosis increases by 3%

every year. In comparison, the effect of age on the mortality rate for other causes

or heart disease is higher, which is expected as this is a natural consequence of

old age.

Estimated hazard ratios from the cancer-specific Cox model further shows that

the rate of dying from cancer increases with the severity of stage at diagnosis.

This is not surprising since patients are expected to have a worse prognosis if

they are at a later stage at diagnosis due to the extent of disease progression.

However, the hazard ratios from the other cause-specific models indicate that

there is only a significant increase in the rate of deaths due to other causes or

heart disease if the patient is at the most severe (distant) stage at diagnosis.

Otherwise, there is no significant effect of the less severe stages on the mortality

rate due to other causes or heart disease. This increase in rate unique to distant

stage patients could be attributed to possible side-effects that arise out of more

intensive treatment-related procedures, comorbidities associated with later stage,

or the misclassification of the cause of death [Lee et al., 2012; Dasgupta et al.,

2013]. For example, previous research has shown that heart disease that arise

after cancer treatment may be a direct result of the damage caused by the treat-

ment itself [Aleman et al., 2014]. There is also evidence that chemotherapy, and

other targeted therapies, have an association with cardiovascular complications

[Chen et al., 2012; Bowles et al., 2012]. Furthermore, as modern treatment for
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cancer improves, so does survival, which means they are left to suffer the con-

sequences of possibly aggressive anti-cancer therapy on varying degrees of direct

and indirect cardiovascular complications [Curigliano et al., 2016].

The relationship derived in equation 5.16 is used to obtain cause-specific cumula-

tive incidence functions from each separate cause-specific Cox proportional haz-

ards model for cancer, other causes and heart disease. These are stacked in figure

5.4 for 70 year old female patients at each of the stage at diagnosis groups. Each

of the segments represent the probability of death due to cancer, other causes,

or heart disease and the total of these partitioned probabilities of death give the

probability of dying from any cause. For example, for regional stage 70 year old

female patients, at 120 months, the probability of death due to cancer, other

causes, and heart disease is approximately 0.32, 0.13 and 0.05 respectively. The

all-cause probability of death is therefore approximately 0.32+0.13+0.05 = 0.50.

Similarly the all-cause probability of death for 70 year old localised stage female

patients is 0.31 and 0.91 for distant stage patients. Since the probabilities of death

calculated from the cause-specific Cox proportionals hazards models depends on

all cause-specific hazards (see equation 5.15), inferences cannot be made on the

effect of the covariates on the cause-specific cumulative incidence functions i.e.

probability of dying from a cause. If the effect of age, or stage at diagnosis on

the cumulative incidence is of interest, approaches that model the subdistribution

hazard is required. These are introduced and explored in chapter 6.
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Figure 5.4. Cause-specific cumulative incidence predictions obtained from
separate cause-specific Cox proportional hazards models for cancer, other
causes and heart disease. Estimates are obtained for female patients aged
70 years old at diagnosis by stage group at diagnosis.

5.5.3 The Lunn-McNeill approach

As opposed to fitting models separately, Lunn and McNeil [1995] describe two

methods that apply a “data duplication” method that allows for the joint esti-

mation of parameters in a single model for all K competing risks. In this thesis,

only one of the the methods is introduced, referred to as “Method B”. The main

difference between the two is that, “Method A” assumes a constant hazard ratio

over time between the baseline hazard function for deaths due to cancer and the

competing causes of death. In cancer data, this is an unrealistic assumption, since

it is expected that the sickest patients will have a higher risk dying from their

cancer earlier on in follow-up time. However, for those that are still alive, possibly

due to the after effects of anti-cancer treatment, or quite simply, old age, they

will become more likely to die from causes other than their cancer. Therefore,
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in cancer data, we want to be able to model different baseline hazard functions.

For this reason, “Method B” is preferred which is also adopted by Hinchliffe and

Lambert [2013] for the flexible parametric modelling of cause-specific hazards

(see section 5.6.2). Details on “Method A” are omitted here, but can be found in

Klein and Moeschberger [2003], Chapter 9.

Adopting the Lunn-McNeill approach (for both methods) requires augmenting

the data in the sense that the original dataset is duplicated, or, “stacked” K = 3

times. This leads to 3 entries for each individual patient. The next step is to

create a dummy variable for each of the causes of death and another dummy

variable that indicates the cause of death. Table 5.7 demonstrates how the data

is structured for the first 5 patients listed in table 5.1. Patients 1 and 2 are at

risk from dying from each of the 3 causes for 1 month and 2 months and then

dies from other causes. Patient 3 is at risk from dying from either one of 3 causes

for 5 months and then dies from their cancer. Finally, patients 4 and 5 are at risk

of dying from either one of the 3 causes for 127 and 104 months, however, they

are still alive at the end of their entire respective follow-up time and is therefore

censored. The patient’s age and stage at diagnosis is repeated for each duplicated

entry.

Based on the augmented dataset, a single cause-specific Cox proportional haz-

ards model is fitted for all 3 causes simultaneously by stratifying for each cause

of death such that the following partial likelihood is maximised,
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Patient Age Stage Cancer Other causes Heart disease Event indicator Time
1 82 Distant 1 0 0 0 2
1 82 Distant 0 1 0 1 2
1 82 Distant 0 0 1 0 2
2 82 Localised 1 0 0 0 1
2 82 Localised 0 1 0 1 1
2 82 Localised 0 0 1 0 1
3 78 Distant 1 0 0 1 5
3 78 Distant 0 1 0 0 5
3 78 Distant 0 0 1 0 5
4 70 Localised 1 0 0 0 127
4 70 Localised 0 1 0 0 127
4 70 Localised 0 0 1 0 127
5 66 Regional 1 0 0 0 104
5 66 Regional 0 1 0 0 104
5 66 Regional 0 0 1 0 104

Table 5.7. An example extract of the data after it has been stacked using
the Lunn-McNeill approach (“Method B”).

L(β) =
n∏
i=1

K∏
k=1

 exp
(
βTxi + θTk xi

)
∑
ζ∈R(ti) exp (βTxζ + θTk xζ)

δik (5.19)

where θTk is a vector of regression coefficients for each of the causes of death and

the interaction, θTk x, represents covariate effects that vary for each of the causes of

death. βTx are the shared effects for allK causes. Fitting a single (stratified) Cox

proportional hazards model based on this Lunn-McNeill approach yield equivalent

estimated hazard ratios to those obtained from separate models for each causes

that are fitted on non-duplicated data. Some argue that stacking the data is

useful as it allows for modelling shared effects between the competing causes of

death and therefore advocate this approach [Geskus, 2016]. However, here it is

argued that fitting separate models on the original data is better as it is easier

for researchers to understand. This is discussed further in section 5.6.1.
100



5.5.4 Comparison with Aalen-Johansen estimates

As an assessment of how well the cause-specific Cox regression modelling ap-

proach fits the data, cause-specific cumulative incidence function estimates are

contrasted against the non-parametric method. To enable such comparisons, the

cause-specific Cox proportional hazards model in table 5.6 is re-fitted using cat-

egorised groups for age as summarised in table 5.4. Figure 5.5 compares the

Aalen-Johansen estimates of the cause-specific cumulative incidence function to

those obtained from the cause-specific Cox proportional hazards model. These

are presented for the the oldest age group (patients above 75 years old) and by

each stage group at diagnosis.
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Figure 5.5. Comparison of the Aalen-Johansen (AJ) estimate of the cause-
specific cumulative incidence function and predictions obtained from cause-
specific Cox proportional hazards models. Estimates are obtained for female
patients over 75 years old at diagnosis by each stage group at diagnosis.
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Evidently, there is a noticeable disagreement between the two estimated curves.

This can be explained by the strong assumption of proportional hazards imposed

by the cause-specific Cox modelling approach. In other words, the effect of both

the age group and stage at diagnosis on the cause-specific hazards, is assumed to

be constant over the whole follow-up period. The fact that such a disagreement is

observed between the model and Aalen-Johansen estimates of the cause-specific

cumulative incidence function, suggests that time-dependent effects must be con-

sidered to model non-proportionality. On the other hand, some of the differences

between the two curves could also be due to an interaction between age and stage

at diagnosis which is entirely plausible. This is because it is likely that the effect

of a more severe stage at diagnosis on the risk of dying from cancer will be greater

in older patients compared to younger patients.

Of course, including time-dependent effects in Cox regression models is not im-

possible. Kalbfleisch and Prentice [1980] in fact describes an incorporation of

time-dependent variables for modelling hazard ratios that vary over time in a

Cox model. However, many have argued that doing so is a computationally

arduous task, especially for large datasets that are common for cancer studies

[Altman and De Stavola, 1994]. This argument is echoed throughout this thesis

where the computational efficiency in the implementation of methods is consid-

ered to be of great importance. Therefore, as an alternative, and as was argued

in section 3.6, the flexible parametric modelling approach is preferred. As well

as the ease at which time-dependent effects can be included, users of the model

can easily obtain estimates of the cause-specific baseline (log-cumulative) haz-

ards. This is particularly advantageous for applications in prognostic modelling

where the performance of models, through a process called external validation,

102



is required using an explicit estimate of the baseline hazard function [Royston

and Altman, 2013]. Cause-specific cumulative incidence functions are also easier

to obtain with time-dependent effects within the flexible parametric modelling

framework, because the baseline cause-specific hazard is also modelled as part of

the likelihood. However, at the time of writing this thesis, there are no apparent

available user-friendly software (particularly in Stata) that allow prediction of the

cause-specific cumulative incidence function after fitting a Cox model with time-

dependent effects. Furthermore, obtaining useful probabilities between various

covariates patterns from prognostic models requires an estimate of the baseline

hazard function [van Houwelingen, 2000]. Some useful predictions, as a conse-

quence of being able to obtain an estimate of the baseline hazard function in the

presence of competing risks, are introduced in chapter 9.

5.6 Flexible parametric modelling of the cause-specific hazard

function

In a similar way to the extension of the standard Cox proportional hazards model

to competing risks, the flexible parametric approach for modelling cause-specific

(log-cumulative) hazards is described. Like the Cox modelling approach, these

models can also either be fitted separately for each cause of death, or together in

a single model by augmenting the data as illustrated in section 5.5.3. Currently,

the latter approach is more popular and was only recently introduced in the flex-

ible paramatric modelling framework by Hinchliffe and Lambert [2013].

Inference on cause-specific log-cumulative hazards is introduced first. Using a

similar expression to the partial likelihood which allows for separate cause-specific

Cox proportional hazards models to be fitted, the log-likelihood from equation
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3.30 for all causes can be expressed as the sum of K terms such that,

lnL =
n∑
i=1

K∑
k=1

[
(hcs(tik))δik (S(ti))

]
=

K∑
k=1

lnLk (5.20)

where subscripts k are introduced in contrast to equation 3.29 to denote param-

eters that are derived separately for each cause. Therefore, K separate cause-

specific log-cumulative hazard models can be fitted where,

ln(Hcs
k (t|xk)) = ηcsk (t) = sk(ln(t);γγγk,m0k) + xkβββTk +

Ek∑
l=1

sk(ln(t);αααlk,mlk)xlk

(5.21)

Alternatively, as mentioned above, cause-specific log-cumulative hazards models

for all causes can be fitted simultaneously using the Lunn-McNeill data augmen-

tation method as described by Hinchliffe and Lambert [2013]. By duplicating

the data as illustrated in table 5.7, a single flexible parametric non-proportional

(log-cumulative) hazards model for all K causes can be fitted with,

ln(H(t | x)) = η(t)

=
K∑
k=1
{sk(ln(t);γγγk,m0k) + xβββT + xkβββTk +

Ek∑
l=1

sk(ln(t);αααlk,mlk)xlk}

(5.22)

where Ek is the number of time-dependent effects for cause k. However, Hinchliffe

and Lambert [2013] do not consider, or recommend the use of the shared param-

eters, xβββT . Therefore, the single model fitted on augmented data are equivalent

to fitting separate cause-specific models as shown in equation 5.21.
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5.6.1 To stack, or not to stack?

In this thesis, it is argued that the ability to express covariate patterns separately

for each cause of death is more attractive. As explained for the equivalent Cox

proportional hazards model stratified by cause of death, xβββT in equation 5.22,

represents shared covariate effects across all causes, and the interaction between

the kth cause of death and the covariates, xkβββTk , allow for different covariate ef-

fects on each cause. Modelling shared covariate effects across all causes is seldom

applied because, in most cases, these effects will vary for each cause. Therefore,

there is little motivation for fitting a single model to all k causes simultaneously

since including such interactions whilst allowing for shared effects is unnecessary.

Furthermore, from the researcher’s perspective, an advantage of fitting separate

models is that they are easier to understand compared to fitting a single model

where interactions are created between covariates and causes of death. These

interactions make interpretation confusing and obtaining useful predictions cor-

rectly in the presence of potential shared effects is more complicated. In contrast,

output from separate models is more familiar which allows researchers to focus on

determining the complex relationship between covariates on each cause of death.

In addition to this, especially when fitting these models in Stata using the com-

mand stpm2, there is more of a potential for models to be misspecified as several

things must be considered. For example, by default, knot locations are calculated

in the same position for each of the causes of death being model. This may not

always be sensible as the distribution of observed survival time for each cause

will differ. However, the user may overcome this by specifying the knot locations

themselves and make them equivalent to those calculated from separate models.

Regardless of how the knots are specified, the user must also always remember to

exclude baseline spline variables and suppress the constant in the single flexible
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parametric model for simultaneously modelling all cause-specific hazards. This is

important for obtaining equivalent estimated coefficients to when separate mod-

els are fitted so that interpretation is not complicated further for researchers.

Another disadvantage of fitting models on stacked data, is that the models are

more complicated and thus likely to lead to potential issues in convergence.

5.6.2 Trapezoid method of the Reimann sum approximation for the

cause-specific cumulative incidence function

Through its relationship with all cause-specific hazards, as shown in equation

5.9, the cause-specific cumulative incidence function can be calculated after fit-

ting cause-specific log-cumulative hazards models for all causes of death. This

requires evaluating an integral over the whole follow-up period from 0 to t. Since

the integral cannot be obtained analytically, numerical approximation techniques

must be applied.

Following the combined flexible parametric modelling of cause-specific (log- cu-

mulative) hazards for all causes, as described by Carstensen [2004], Hinchliffe

and Lambert [2013], implements the trapezoidal method of Reimann summation

as an approximation to the integral in equation 5.9. This approach was also

adopted by Lambert et al. [2010a] for evaluating a similar integral for calculating

crude probabilities of death within the flexible parametric relative survival mod-

elling framework (see equation 4.6). As detailed in section 2.4, by definition of

the (cause-specific) probability sub-density function, f ∗k (t), the sum of these at

infinitesimally small time periods over a longer time interval, equals the cause-

specific cumulative incidence function, Fk(t). In other words, this is equivalent

to the area under the cause-specific probability sub-density curve. Therefore, to
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calculate an approximation to the cause-specific cumulative incidence function

at time t, the interval from 0 to t is first split into a sufficiently large number

of smaller intervals, t1, . . . , tΩ, with equal lengths where Ω is usually equal to at

least 1000. Then, if Ω = 1000, for a particular pattern of a vector of covariates,

x, a prediction is obtained for f̂ ∗k (tω | x) = S(tω | x)hcsk (tω | x) at each time

interval, t1, . . . , t1000. Finally, an approximation for the cause-specific cumulative

incidence function is obtained by using the trapezoid rule such that,

Fk(t | x) =
∫ t

0
f ∗k (u | x)du ≈

Ω∑
ω=1

tω − tω−1

2
(
f̂ ∗k (tω | x)

)
(5.23)

Confidence intervals for Fk(t | x) are approximated using the delta method for

the integrand f̂ ∗k (tω | x) at each time interval, tω − tω−1. For this, the derivatives

for f̂ ∗k (tω | x) are obtained numerically using the predictnl command in Stata

for use in equation 3.33 to calculate the variance-covariance matrix of the esti-

mated sub-density function.

The trapezoidal rule is considered only as an accurate approximation for pe-

riodic, or uniform measures [Weideman, 2002]. Generally, cause-specific prob-

ability sub-density functions for survival data are non-periodic in nature since

the cause-specific cumulative incidence function can only be monotonically in-

creasing which eventually plateaus. Instead, methods that consider non-uniform

lengths between two points, tω and tω−1, are preferred as a more accurate ap-

proximation for probability (sub)-density functions. Such a method includes the

Gauss-Legendre quadrature approach which better approximates integration of

probability (sub-)density functions similar to the Gamma and Normal [Lange,

2010; Crowther and Lambert, 2014]. Further to this, the Gaussian quadrature
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method is more computationally efficient since much fewer split intervals are re-

quired for smooth functions in contrast to the trapezoidal rule. Furthermore,

evaluating double integrals using this approach is more intuitive and less compli-

cated in comparison to the trapezoidal rule adopted by Hinchliffe and Lambert

[2013]. This is utilised later in sections 9.5.1 and 9.5.2 for obtaining restricted

mean lifetime estimates. Therefore, the Gauss-Legendre numerical approxima-

tion technique is proposed in this thesis for evaluating the integral to obtain the

cause-specific cumulative incidence function. Adapting this approach is substan-

tially more computationally efficient which leads to important implications when

many predictions are needed. A comparison of computational time between the

two approaches for many predictions demonstrating this is provided in section

5.6.4.

5.6.3 Gauss-Legendre quadrature approximation of the cause-specific cumulative

incidence function

The Gauss-Legendre quadrature approximation method for evaluating the in-

tegral to calculate the cause-specific cumulative incidence function is adopted.

In addition, obtaining useful predictions to communicate prognosis, such as re-

stricted mean lifetimes, (introduced in section 9), is less complicated since shared

covariate effects between different causes of death do not need to be considered.

Furthermore, calculating restricted mean lifetimes requires evaluating a double

integral, the approximation of which is more trivial if done using the Gauss-

Legendre quadrature method. The use of the Gaussian quadrature method also

widens the scope for other predictions to be easily obtained with significantly less

computational time. Advantages in computational time will be exemplified in
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section 5.6.4. For these reasons, the Gauss-Legendre quadrature approach is pre-

ferred for calculating the cause-specific cumulative incidence function after fitting

separate cause-specific flexible parametric models for all causes of death.

With the general Gaussian quadrature rule, the integral of any polynomial func-

tion, g(x), over the interval [−1, 1] can be evaluated. This performs best for

integrals that can be approximated by a polynomial function of degree 2m − 1,

where m is a pre-determined number of points, otherwise known as nodes, or

abscissae. Hence, this integral can be evaluated for,

∫ 1

−1
g(x)dx =

∫ 1

−1
W (x)g(x)dx (5.24)

where, W (x), is a known weighting function. Here, the integral, i.e. the cause-

specific cumulative incidence function, is calculated using Gauss-Legendre quad-

rature, withW (x) = 1. With this, based on a set of pre-defined number of nodes,

x′i, and associated Lagrange polynomials of degree m, Pm(x), weights, w′i, for

i = 1, . . . ,m, are obtained such that,

w
′

i = 2
(1− x′2i ) (P ′m(x′i))

2 (5.25)

and are provided by Abramowitz and Stegun [1964]. Therefore, equation 5.24 is

approximated by,

∫ 1

−1
g(x)dx ≈

m∑
i=1

w′ig(x′i) (5.26)

109



However, for survival data, the cause-specific cumulative incidence function is

evaluated over an interval [0, t]. Therefore, to apply the Gaussian quadrature

rule in equation 5.24, the integral of the cause-specific probability sub-density

function, f ∗k (x), over [0, t] must be changed to an interval over [−1, 1] such that,

Fk(t) =
∫ t

0
f ∗k (x)dx = t− 0

2

∫ 1

−1
f ∗k

(
t− 0

2 x+ t+ 0
2

)
(5.27)

Therefore, the cause-specific cumulative incidence function at t1, . . . , tΩ different

time-points over an interval [0, tω] is approximated by applying Gaussian quad-

rature rules with W (x) = 1 such that,

Fk(tω) =
∫ tω

0
f ∗k (x)dx ≈ tω − 0

2

m∑
i=1

w′if
∗
k

(
tω − 0

2 x′i + tω + 0
2

)
(5.28)

A drawback of the Gaussian quadrature method is that, the number of points,

m, that should be chosen for optimal approximation is not obvious. Instead,

increasing values of m are used until the desired level of approximation within a

certain level of accuracy is achieved.

Confidence intervals are calculated using the delta method introduced in section

3.7, where derivatives of the integrand, f̂ ∗k (tω | x), are evaluated analytically. This

is a significant improvement on the way that confidence intervals are calculated

by Hinchliffe and Lambert [2013] where derivatives are obtained numerically for

the delta method. This requires more computational effort and the time at which
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it takes to obtain cause-specific cumulative incidence functions with confidence

intervals using the two methods is compared in the next section.

5.6.4 Comparative examples

In order to illustrate differences between the two numerical approximation meth-

ods for evaluating the integral in the cause-specific cumulative incidence function,

both single, and separate flexible parametric models for all causes are fitted. So,

with covariates age group and stage at diagnosis, and assuming proportional

log-cumulative hazards, table 5.8 compares coefficients estimated from a single

flexible parametric that jointly models all causes of death to estimates obtained

from separate cause-specific flexible parametric models. Four degrees of freedom

are used for the baseline (log-cumulative) hazards for cancer, other causes and

heart disease. Estimates from both approaches, as expected, are similar at least

to the third or fourth decimal place.

Cause-specific cumulative incidence functions are obtained for both modelling

approaches using numerical approximation techniques as proposed by Hinchliffe

and Lambert [2013] and in section 5.6.3 respectively. The former is implemented

in the stpm2cif Stata package and the latter is available as a post-estimation

option after fitting cause-specific flexible parametric models using the stpm2cr

wrapper introduced in chapter 10. As mentioned in the previous section, par-

ticular advantages lie in the computational time of obtaining such predictions,

especially with confidence intervals. For example, time taken to obtain estimates

of the cumulative incidence functions for cancer, other causes and heart disease

for female patients aged over 75 years old with regional stage cancer at diagnosis
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Separate models Single model
Covariate Coefficient 95% CI Coefficient 95% CI
Cancer -3.511 [ -3.574 -3.447 ] -3.511 [ -3.575 -3.448 ]
65 to 74 year olds 0.223 [ 0.178 0.269 ] 0.223 [ 0.178 0.269 ]
75+ year olds 0.572 [ 0.528 0.615 ] 0.571 [ 0.528 0.614 ]
Regional 1.448 [ 1.387 1.509 ] 1.449 [ 1.388 1.509 ]
Distant 3.328 [ 3.268 3.388 ] 3.332 [ 3.272 3.392 ]
Other causes -3.718 [ -3.806 -3.631 ] -3.721 [ -3.808 -3.633 ]
65 to 74 year olds 0.727 [ 0.634 0.820 ] 0.727 [ 0.634 0.820 ]
75+ year olds 1.527 [ 1.441 1.612 ] 1.525 [ 1.440 1.611 ]
Regional 0.005 [ -0.054 0.064 ] 0.005 [ -0.054 0.065 ]
Distant 1.049 [ 0.970 1.127 ] 1.054 [ 0.975 1.132 ]
Heart disease -4.989 [ -5.157 -4.822 ] -4.994 [ -5.161 -4.827 ]
65 to 74 year olds 1.045 [ 0.867 1.224 ] 1.045 [ 0.867 1.224 ]
75+ year olds 2.089 [ 1.924 2.254 ] 2.086 [ 1.921 2.252 ]
Regional -0.007 [ -0.096 0.082 ] -0.005 [ -0.094 0.084 ]
Distant 0.366 [ 0.213 0.519 ] 0.376 [ 0.223 0.529 ]

Table 5.8. Estimated coefficients from a single flexible parametric model for
cause-specific hazards on augmented data and from separate models without
duplicating data. Age group and stage at diagnosis are included covariates
with 4 degrees of freedom for the baseline (log-cumulative) hazards.

in Stata IC/15.0 are compared. Calculating these predictions using the trapezoid

rule described by Hinchliffe and Lambert [2013] took 4.82 seconds, however, the

Gauss-Legendre quadrature approach was clearly faster, taking just 0.54 seconds.

This is mainly down to the fact that the derivatives used in the delta method for

the latter approach has been calculated analytically. Doing so is preferred over the

numerically derived derivatives for calculating confidence intervals which requires

more computational effort. Furthermore, by re-programming the delta method

in this way, obtaining confidence intervals for predictions that make relative or

absolute contrasts becomes easier.

Computational gains in making predictions using the Gauss-Legendre quadrature

approach also paves the way for efficiently calculating other useful predictions.

One of these is calculating standardised cause-specific cumulative incidence func-

tions. This requires prediction of the cause-specific cumulative incidence for each
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patient in a study population, which are then all averaged. As a computationally

intensive process, a more efficient method such as the Gauss-Legendre quadrature

approach, is clearly advantageous. For example, say there are 500 patients in a

study. Then 500 individual predictions for each exposure group would need to be

made. These are then averaged to obtain a standardised estimate of the cause-

specific cumulative incidence function. To demonstrate the difference in times

that would be taken to do this, the two approaches for calculating 500 individ-

ual predictions were timed. In total, calculating estimates for the cause-specific

cumulative incidence function 500 times using the approach developed in section

5.6.3 took approximately 2 minutes and 30 seconds. In contrast, calculating the

same 500 predictions using the approach described by Hinchliffe and Lambert

[2013] took a considerably longer time of approximately 11 minutes.

The predicted cause-specific cumulative incidence functions are illustrated in fig-

ure 5.6 and are compared when using various number of split intervals for each

numerical integration approach. It shows that a much smaller number of split

intervals/nodes is needed for an accurate approximation of the cause-specific cu-

mulative incidence functions using the Gauss-Legendre approach (50) compared

to the trapezoidal rule (500). In fact, the Gauss-Legendre approach will always

be more accurate regardless of the number of intervals, however, for a smoother

function, a reasonable number must be used, in which case, 50 is sufficient. On

the other hand, choosing the number of intervals requires more caution using the

trapezoidal rule because, if enough is not used, then the cause-specific cumulative

incidence function could be underestimated. A further important distinction be-

tween the two approaches is that changing the number of nodes for the Gaussian

quadrature method does not change the accuracy in prediction. This is evident
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in the top row of figure 5.6 which shows consistently accurate predictions in com-

parison to the Aalen-Johansen estimates. On the other hand, this stability is not

achieved with the trapezoidal approach which is also evident on the bottom row

of figure 5.6. The accuracy in prediction using this method is dependent on the

number of split intervals.
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Figure 5.6. Comparison of the Aalen-Johansen (AJ) estimate of the cause-
specific cumulative incidence function and predictions obtained from flexible
parametric models. The top row model estimates are obtained using the Gauss-
legendre quadrature approach and the bottom row show model estimates using
the trapezoidal rule. Model estimates are shown for varying nunbers of split
intervals. Estimates are obtained for female distant stage patients over 75 years
old at diagnosis.

The top row in figure 5.7 shows estimated cause-specific cumulative incidence

functions for all stage at diagnosis groups for female patients aged over 75 years

old using the Gauss-Legendre quadrature numerical approximation approach with
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50 nodes. It can be seen that there is still some disagreement with the Aalen-

Johansen estimates of the cause-specific cumulative incidence functions. However,

as discussed in section 3.6 and again pointed out in section 5.5.4, the proportion-

ality assumption can be easily relaxed under the flexible parametric approach

by including time-dependent effects. Therefore, time-dependent effects for age

and stage groups at diagnosis are included with 3 degrees of freedom, and these

predictions are illustrated in the bottom row of figure 5.7. A slightly better agree-

ment with the Aalen-Johansen estimates are now observed, especially for distant

stage patients, however, there is still some disagreement. This may likely be due

to a missed interaction effect between age group and stage and diagnosis, or, par-

ticularly in the case of distant stage patients, due to various comorbidities that

lead to a late cancer diagnosis.

5.7 Discussion

This chapter formally introduces modelling survival data in the presence of com-

peting risks. A non-parametric estimate of the cause-specific cumulative incidence

function is derived, also known as the Aalen-Johansen estimator. This is shown to

be a more appropriate estimate for describing competing risks data over the com-

plement of the Kaplan-Meier estimate. The cause-specific cumulative incidence

function can be calculated as a function of the all-cause survival function and the

cause-specific hazard function for the event of interest. Alternatively, the cause-

specific cumulative incidence function can be obtained directly by transforming

the subdistribution hazard using standard survival relationships. Concepts and
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Figure 5.7. Comparison of the Aalen-Johansen (AJ) estimate of the cause-
specific cumulative incidence function and predictions obtained from cause-
specific flexible parametric models for cancer, other causes and heart disease.
Models are fitted by assuming proportion (log-cumulative) hazards on the top
row, and on the bottom row models are fitted with time-dependent effects for
non-proportion hazards. Estimates are obtained for female patients aged over
75 years old at localised, regional and distant stage diagnosis. 50 nodes are
used for the Gauss-Legendre quadrature method.

approaches for modelling the subdistribution hazard are described in further de-

tail in the next chapter. Focus in this chapter was on modelling the cause-specific

hazards.

For the inclusion of continuous covariates, cause-specific hazards regression mod-

els were described. Cause-specific hazard models can either be fitted separately

for each cause of death, or in a single model by augmenting the data. Here, it

is argued that fitting single models with interactions on expanded data is unnec-

essary and modelling shared effects between different causes of death is rarely

done in practise. Separate models are more familiar to researchers which make
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them easier to interpret and the absence of potential shared effects allow making

available more useful post-estimation predictions less complex.

The flexible parametric model for the (log-cumulative) cause-specific hazards is

proposed as an alternative to the cause-specific Cox proportional hazards model.

Modelling within this framework is preferred because of similar arguments dis-

cussed in section 3.6. Previously, Hinchliffe and Lambert [2013] developed an ap-

proach, with user-friendly software, for estimating the cause-specific cumulative

incidence function. Predictions are made after augmenting the data and fitting a

single flexible parametric model for all cause-specific hazards simultaneously. To

obtain these, the trapezoidal rule is adopted to numerically evaluate the analyti-

cally intractable integral in the cause-specific cumulative incidence function. This

method comes with some drawbacks, particularly in terms of computational inten-

sity. Instead, an improved, more computationally efficient method for numerical

integration is described, namely, the Gauss-Legendre quadrature method. This

alternative approach for evaluating the integral in the cause-specific cumulative

incidence function is computationally quicker, which widens the scope for making

other predictions that are more computational intensive. For instance, obtaining

standardised estimates require making a number of predictions for each observa-

tion in the dataset. Using the trapezoidal rule consumes a significant amount of

computer memory to do this, and is sometimes not possible if the user does not

have sufficient RAM. On the other hand, using the Gauss-Legendre approach does

not require near as much memory as the trapezoidal rule, so obtaining standard-

ised measures is much quicker. Furthermore, the restricted mean lifetime estimate

introduced in section 9.5.2 requires evaluation of a double integral, which, under

the trapezoidal rule, is complex. In contrast, adaptation to the Gauss-Legendre
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quadrature numerical approximation approach simplifies this problem. Another

major difference between the software by Hinchliffe and Lambert [2013], and the

one developed as part of the methods proposed in this chapter, is the way in

which confidence intervals are obtained. The derivatives required for the delta

method are calculated numerically in stpm2cif, whereas, here, derivatives are

obtained analytically leading to further gains in computational time.

Due to the lack of a direct relationship with the cause-specific hazards, inference

on the effect of covariates on the cause-specific cumulative incidence function

cannot be made. Covariates effects can only by inferred in terms of the rate of

deaths due to a specific cause. Therefore, caution must be taken when inter-

preting these models, ensuring that no inferences are made on prognosis, which,

instead, will require modelling the subdistribution hazards for a particular cause.

These methods are described and explored further in the next chapter.
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Chapter 6

Direct Likelihood Inference of the Cause-specific

Cumulative Incidence Function: A Flexible Parametric

Modelling Approach

6.1 Outline

In chapter 5, flexible parametric survival models for competing risks data by

way of estimating all (log-cumulative) cause-specific hazard functions was intro-

duced. This chapter introduces survival models for competing risks data that

estimate the subdistribution hazard function for all k causes directly. The di-

rect relationship between the subdistribution hazard function and cause-specific

cumulative incidence function is described followed by common modelling ap-

proaches. Estimating the (log-cumulative) subdistribution function within the

flexible parametric modelling framework is proposed and is adapted for the full

likelihood as a direct function of the cause-specific cumulative incidence function

and implemented in user friendly software. The software is formally introduced

in chapter 10.

Developed methods are illustrated using SEER colorectal data introduced in sec-

tion 1.5. A user-friendly command, stpm2cr, was also written for easy imple-

mentation of the methods described. The first version of the software has already

been released on the SSC archive and the paper in appendix D communicating

use of the command has been published in the Stata Journal.
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6.2 Introduction

In the absence of competing risks, the effect of covariates on the (all-cause) hazard

function translates to the direction of effect on the (all-cause) survival function.

However, when competing risks are present, as discussed in chapter 5, the effect

of covariates on the cause-specific cumulative incidence function is not equiva-

lent to effects on the cause-specific hazards. For instance, consider an alternative

treatment that leads to reduction in the cancer-specific mortality rate, but has

no effect on the mortality rate for other causes. Now, although it is expected that

this treatment will lead to a decrease in the probability of dying due to cancer,

since more patients survive due to the new treatment, the probability of dying

due to other competing causes will increase. Therefore, despite the alternative

treatment having no effect on the cause-specific hazard for other causes, it would

still be that it leads an increase in effect on the probability of dying (cumulative

incidence) due to other causes. This is just one out of many examples where it is

expected that the effect of a variable on the cause-specific hazard would be dif-

ferent to the effect on cumulative incidence [Austin et al., 2016; Wolkewitz et al.,

2014; Lau et al., 2009; Wolbers et al., 2014]. In this situation, competing risks

models for the cause-specific hazards is useful for aetiological research questions.

For example, to understand if a specific covariates leads to a decrease in the mor-

tality rate from a particular cause [Wolbers et al., 2014; Bhaskaran et al., 2013].

However, from a patient’s perspective, and for the purpose of prognosis, it may

be of more interest to understand the effect of covariates on the actual probability

of dying from a specific cause e.g. “will taking this treatment reduce my risk of

dying from the cancer?”. Any potential increase, or decrease, in the occurrence
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of an event could arise out of either a direct, or indirect covariate effect. For

instance, younger patients are more likely to be diagnosed with less aggressive

cancers, which mean they survive longer and, are now naturally at an increased

risk of dying from other causes, or, alternatively, patients may die from other

causes first before the cancer, quite simply, because of an increased risk due to

old age. Approaches for modelling the cause-specific hazard treat those who die

from competing causes as censored. This means that these models focus more on

those who are still alive which could paint a misleading picture on actual progno-

sis. For example, a treatment may reduce the rate of cancer deaths, however, it

is possible that the risk of dying from other causes is much stronger, especially in

older patients. Therefore, the impact of reducing deaths due to cancer will actu-

ally be lower than what was initially anticipated. A similar issue also applies for

younger patients, who may survive longer because of the treatment which reduce

the mortality rate due to cancer, or experience more adverse effects, both of which

would lead to an increase in the risk (and rate) of dying from other causes. Hence,

in this case, to assess whether a population truly benefits from a new treatment,

modelling the cause-specific cumulative incidence function is important to infer

the effects on actual risk. This is especially useful from a health economical per-

spective [Dignam et al., 2012]. Evidently, if only cause-specific models are fitted,

inferences cannot be made about increases, or decreases in actual risk and fur-

ther requires the strong, untestable assumption of independence between causes

of death to interpret the cause-specific cumulative incidence function. On the

other hand, this assumption is avoided by modelling the subdistribution hazard

function as a measure of risk [Lau et al., 2009].

As a supplement to competing risks analyses, and for use when prognosis is of
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interest, models for directly estimating the cause-specific cumulative incidence

function are explored. This is achieved by transforming the subdistribution

hazard function which maintains a direct one-to-one correspondence with the

cause-specific cumulative incidence function. The popular Fine & Gray model is

described and contrasted against modelling from within the flexible parametric

modelling framework. Interpretation of the flexible parametric log-cumulative

subdistribution hazards model is compared with cause-specific log-cumulative

hazards models. The usefulness of fitting models on both scales is highlighted

which allows the researcher to draw inferences on both the rate and risk of a

patient.

6.3 The subdistribution hazard function

Gray [1988] introduces the subdistribution hazard function for cause k, hsdk (t),

which offers a direct relationship with the cause-specific cumulative incidence

function. This has the following mathematical formulation,

hsdk (t) = lim
∆t→0

P (t < T ≤ t+ ∆t,D = k|T > t ∪ (T ≤ t ∩D 6= k)
∆t

=
d
dt

[Fk(t)]
1− Fk(t)

= f ∗k (t)
1− Fk(t)

(6.1)

where f ∗k (t) is the sub-density function for cause k defined in equation 5.3. Note

that, the cause-specific cumulative incidence function, Fk(t), is not a proper cu-

mulative distribution function and is instead referred to as a subdistribution

function since limt→∞ Fk(t) < 1 [Andersen et al., 2012]. Furthermore, it should

also be noted that 1 − Fk(t) = P (D 6= k) + Ssdk (t) 6= Scsk (t), such that, Ssdk (t),

is the sub-survivor function for cause k. The subdistribution hazard function for

cause k, hsdk (t), is interpreted as the instantaneous rate of failure at time t from
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cause k amongst those who are still alive, or have died from any of the other

K − 1 competing causes excluding cause k [Andersen and Keiding, 2012].

6.3.1 Distinguishing between subdistribution and cause-specific hazards

An important distinction between the cause-specific hazards and subdistribution

hazard for cause k is found within the risk-set. The risk-set for the cause-specific

hazards is described in the conventional epidemiological sense, i.e. those who

have died from any of the k causes of death, are no longer considered to be at

risk. In contrast, the risk-set for the subdistribution hazard for cause k considers

patients who have died from any of the K − 1 competing causes, excluding cause

k, to still be at risk from dying of the cause of interest, k. A detailed description

and comparison of the risk-sets for the cause-specific hazard and subdistribution

hazard for cause k is provided by Lau et al. [2009]. Evidently, the risk-set as-

sociated with the subdistribution hazard function is unrealistic since, of course,

those who have died from other causes excluding the cause of interest, i.e. cancer,

cannot still be at risk. This has led to some discussion on the usefulness of the

subdistribution hazard function [Andersen et al., 2012; Beyersmann et al., 2007;

Grambauer et al., 2010]. However, a benefit of this construct is that it maintains

a direct link to the cause-specific cumulative incidence function and has been

used in regression models so that we can identify a relationship between covari-

ates and prognosis for cause k. An alternative link function is also introduced in

section 6.6.3 which may have a more meaningful interpretation in contrast to the

subdistribution hazard function.

6.3.2 Relationship with cause-specific cumulative incidence function

In chapter 5 the cause-specific hazard function was introduced and its relationship

with the cause-specific cumulative incidence function was determined through
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equation 5.9. Here we focus on the direct relationship of the cause-specific cu-

mulative incidence function with the subdistribution hazard function. This is

derived using the usual survival transformation of the cumulative subdistribution

hazard function for cause k, Hsd
k (t), such that,

Fk(t) = 1− exp
[
−Hsd

k (t)
]

and Hsd
k (t) =

∫ t

0
hsdk (u)du (6.2)

This shows that a one-to-one correspondence exists between estimation of the

subdistribution hazard for a specific cause and the cause-specific cumulative in-

cidence function.

6.4 Relationship with the cause-specific hazard function

A useful relationship between the subdistribution hazard and cause-specific haz-

ard was highlighted by Beyersmann and Schumacher [2007] in a letter regarding

an article by Latouche et al. [2007]. This is derived by equating equations 5.9

and 6.2. This implies the following relation between the cause-specific hazards

and the subdistribution hazards for cause k,

hcsk (t) = hsdk (t)
1 +

[∑K
j=1 Fj(t)

]
− Fk(t)

1−∑K
j=1 Fj(t)

 (6.3)

Thus, using the subdistribution hazard functions for all K causes, we can also

obtain the cause-specific hazard functions for all K causes. Beyersmann et al.

[2012] further discuss some important considerations of the equation above. High-

lighted in particular, is the nature of the weight applied to hsdk (t). As this weight

is a function of time, it follows that, if the cause-specific hazard, hcsk (t), assumes

proportional hazards, then this assumption cannot simultaneously hold for hsdk (t)
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and vice versa [Beyersmann et al., 2009]. In other words, it is never possible for

the proportional hazards assumption to hold on both scales. If the proportional-

ity assumption does not hold on either scale, then models must take into account

time-dependent effects to avoid misspecification. Implications of not taking into

account non-proportionality are explored in section 7.3.

6.4.1 Other non-parametric estimators for the cause-specific cumulative

incidence function

In addition to the Aalen-Johansen estimate of the cause-specific cumulative inci-

dence function derived in equation 5.10, Geskus [2011] describes two alternative

and mathematically equivalent representations. One is based on the subdistribu-

tion hazard, which uses the product-limit formula, and the other estimates the

cause-specific cumulative incidence function directly without hazards, referred to

as the empirical cumulative distribution function. Mathematical derivation of the

latter is omitted in this thesis, however, the former is introduced below, elements

of which are applied later for the models derived in section 6.5.

The product-limit estimate of the cause-specific cumulative incidence function

is formulated in a similar way to the standard Kaplan-Meier estimate in equation

2.16. However, the difference between the two is that the former assumes that

the deaths from the cause of interest occurs first and ignores individuals who die

from causes other than the one of interest. These individuals are included in the

risk-set up to the time that they would have been censored had they not died

from the competing cause of death. In reality, if the censoring is not adminis-

trative, the censoring time will not be known as this is never observed. Instead,
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an estimate of the censoring distribution is obtained by using the observed cen-

soring pattern. To calculate the missing censoring times for those that had died

from a competing cause of death, Ruan and Gray [2008] proposes a multiple im-

putation method. Instead of performing a multiple imputation, Geskus [2011]

introduces time-dependent weights on the individuals who remain in the risk-set

that have died from other competing causes. The weights are time-dependent

because they include individuals who have died from other competing causes in

the risk-set with their influence decreasing over time as the probability of being

censored increases. Hence, the estimate of the complement of the cause-specific

cumulative incidence function based on the subdistribution hazard for cause k,

ĥsdk , for l = 1, . . . , r, where t(l) to t(l+1) is the lth interval over time, is,

F̂
PL

k (t) =
l∏

j=1
{1− ĥsdk (tj)} =

l∏
j=1
{1− dkj

n∗j
} (6.4)

where n∗j is an augmentation on the observed number of individuals at risk, nj,

by the sum of i = 1, . . . , n individuals with weights, wi(tj), for those who have

died from other competing causes at time tj. The weights for each individual i

are defined as,

ŵi(tj) =



1 if still at risk at tj

Ĝ(tj)
Ĝ(tκ) if had a competing event at tκ < tj

0 otherwise

(6.5)

where Ĝ(t) is the product-limit estimate of the censoring distribution with cj

number of individuals censored within the interval j such that,
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Ĝ(t) =
l∏

j=1
{1− cj

nj
} (6.6)

and Ĝ(tj)
Ĝ(tκ) is the probability that the time to right censoring C is not observed by

time tj given that the individual dies from a competing cause of death at time tκ.

The weights are applied to each individual who die from a competing cause. To

do this, the data is split into a certain number of points over follow-up time. As

this is usually done at every time an individual dies from the cause of interest,

splitting the data in this way can occupy a large amount of computer memory

[Lambert et al., 2017].

As mentioned above, since the Aalen-Johansen estimator is equivalent to the two

alternative approaches, it is continued to be used as a non-parametric comparator

against model estimates of the cause-specific cumulative incidence function.

6.5 Regression models for the subdistribution hazard using

time-dependent weights

6.5.1 Fine & Gray model

The most commonly adopted approach for modelling the subdistribution hazard

for cause k is described by Fine and Gray [1999]. This is derived in a similar way

to the cause-specific Cox proportional hazards model in that it assumes propor-

tionality of covariate effects on the subdistribution hazards. Therefore, the Fine

and Gray [1999] model of the subdistribution hazard for cause k is,

hsdk (t|x) = hsd0,k(t) exp
[
xβββsdk

]
(6.7)
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where βββsdk are log-subdistribution hazard ratios for cause k.

A key difference between the two regression models in equation 6.7 and equa-

tion 5.11 is in the interpretation of the parameters exp (βββcsk ) and exp
(
βββsdk

)
. The

hazard ratios give us the association on the effect of a covariate on the cause-

specific mortality rate and subdistribution hazard ratios give the association on

the effect of a covariate on the probability of death i.e. prognosis. Further details

on interpreting these regression coefficient parameters is provided by Wolbers

et al. [2014].

Model parameters in equation 6.7 are also maximised using a partial likelihood

function similar to the one derived in equation 5.14 adapted for the risk-set of the

subdistribution hazard. However, due to the nature of this risk-set, as discussed

in section 6.4.1 for the product-limit estimator, an estimate of the unobserved

censoring distribution for individuals who die from other competing causes must

be obtained. Fine and Gray [1999] approached this problem by applying inverse

probability censoring weights to obtain an unbiased weighted score function of

the partial likelihood. The corresponding weighted partial likelihood for cause k

is,

Lk(β) =
n∏
i=1

 wi(ti) exp
(
βTk xi

)
∑
ζ∈R(ti) wiζ(ti) exp (βTk xζ)

δik (6.8)

with time-dependent weights, wi(t), for each individual i as derived in equation

6.5.
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A Fine & Gray model is fitted with covariates age group and stage at diag-

nosis assuming proportional subdistribution hazards. Estimated subdistribution

hazard ratios and associated 95% confidence intervals are provided in table 6.1.

Fine & Gray Model Cause-specific Cox PH Model
Covariates SHR 95% CI HR 95% CI
Cancer
65 to 74 year olds 1.181 [ 1.130 1.234 ] 1.244 [ 1.189 1.302 ]
75+ year olds 1.460 [ 1.398 1.525 ] 1.743 [ 1.669 1.820 ]
Regional 4.155 [ 3.912 4.413 ] 4.248 [ 3.997 4.514 ]
Distant 20.616 [ 19.428 21.876 ] 27.092 [ 25.512 28.771 ]
Other causes
65 to 74 year olds 1.930 [ 1.759 2.118 ] 2.063 [ 1.880 2.264 ]
75+ year olds 3.657 [ 3.359 3.982 ] 4.565 [ 4.191 4.972 ]
Regional 0.811 [ 0.765 0.859 ] 1.003 [ 0.945 1.064 ]
Distant 0.766 [ 0.710 0.826 ] 2.741 [ 2.534 2.966 ]
Heart disease
65 to 74 year olds 2.644 [ 2.212 3.161 ] 2.840 [ 2.375 3.396 ]
75+ year olds 6.285 [ 5.330 7.411 ] 8.027 [ 6.804 9.469 ]
Regional 0.803 [ 0.735 0.878 ] 0.991 [ 0.906 1.083 ]
Distant 0.374 [ 0.323 0.434 ] 1.381 [ 1.185 1.611 ]
Table 6.1. Subdistribution hazard ratios (SHRs) estimated from separate
Fine & Gray models and hazard ratios (HRs) estimated from separate cause-
specific Cox proportional hazards (PH) models with associated 95% confidence
intervals. Reference groups for age and stage at diagnosis are the youngest age
and localised stage groups respectively.

The subdistribution hazard ratio for each cause of death gives the association

between covariates age and stage groups at diagnosis and the cause-specific cu-

mulative incidence function. For example, from the cancer-specific model, a sub-

distribution hazard ratio for distant stage patients of 20.62 indicates that those

with the most severe stage at diagnosis are associated with an increased risk of

dying from cancer. However, because of the awkward definition in the risk set, it

is difficult to make inferences on quantitative effects. The subdistribution hazard

ratios from the Fine & Gray model for other causes and heart disease shows that

those with a more severe stage at diagnosis are associated with a decreased risk
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of dying from other causes or heart disease. This is because patients at an earlier

stage at diagnosis are healthier and therefore more likely to live longer and die

from other causes before their cancer. On the other hand, patients at a later

stage are unlikely to live as long and die from other causes.

As previously highlighted and to reiterate, because subdistribution hazard ratios

are difficult to interpret, these are not considered a useful measure to present.

However, the advantage lies in the fact that modelling on this scale allows the

researcher to translate the direction in the effect of the covariate to the risk of

dying from a particular cause. Hence, estimates obtained from the Fine & Gray

model give the researcher a different perspective to those obtained from the cause-

specific Cox proportional hazards models. The two should not be compared as

they both quantify different effects and therefore, can be used together to pro-

vide a more complete picture on how covariates indirectly and directly impact

when competing risks are present [Latouche et al., 2013; Wolbers et al., 2014;

Wolkewitz et al., 2014]. This can especially be seen with the different effects

that stage at diagnosis has on mortality rate compared to risk on the competing

causes of death. As discussed in section 6.2, the estimated hazard ratios from

the Cox model, which presented alongside the subdistribution hazard ratios in

table 6.1, are interpreted as the effect of the covariate on the mortality rate. In

this case, the estimated hazard ratios for the competing causes of death indicate

that, although there is only a significant increase in the mortality rate for those

with distant stage cancer at diagnosis, there is no significant increase/decrease in

mortality rates for regional stage cancer patients compared to the localised stage

patients. On the other hand, the estimated subdistribution hazard ratios show

that there is in fact a decrease in risk of dying from either competing causes of
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death (other causes and heart disease). This is explained by the effect of a very

high rate of dying from cancer for patients with a more severe stage at diagnosis

which leaves fewer patients at risk who die from the competing causes.

A disadvantage of Fine & Gray models, is that, if separate models are to be

fitted on each k cause-specific cumulative incidence functions, there are no con-

straints to ensure that the sum of the estimated cumulative incidence functions

are less than or equal to 1. This is evident for the model fitted in table 6.1.

For example, the cause-specific cumulative incidence functions are stacked for

localised, regional and distant stage cancer patients from the oldest age group in

figure 6.1. As illustrated, for the case of the distant stage cancer patients, the

sum of the cumulative incidences exceed 1, which indicates that one or more mod-

els for a particular cause of death do not appropriately capture the data. This

issue is likely to arise in situations when very high mortality towards the end of

follow-up time is observed and when models are misspecified, for example, by not

accounting for non-proportional subdistribution hazards. This, alternatively can

be accounted for in flexible parametric models as shown in section 3.6, or by esti-

mating each cause-specific cumulative incidence function using all cause-specific

hazards, which will always sum to be less than or equal to 1.

6.5.2 Fitting models with time-dependent weights estimated parametrically

Geskus [2016] discussed choosing appropriate weight functions when the subdis-

tribution hazard is not the same for every individual. This is when the assumption

that covariates do not affect the death times from a particular cause of death does

not hold. In other words, censoring times will not be independent of the distribu-

tion of death times. Alternatively, the censoring weights, wi(t), can be calculated
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Figure 6.1. Cause-specific cumulative incidence predictions obtained from
separate Fine & Gray models for cancer, other causes and heart disease. Esti-
mates are obtained for female patients aged over 75 years old at diagnosis by
stage group at diagnosis.

based on some covariates, x, using a regression model instead of the product-limit

estimate in equation 6.4. Although the latter is unbiased, it is possible that a

more efficient estimator of the censoring weights can be calculating by allowing

variation by appropriate covariates.

Lambert et al. [2017] extend on the approach described by Geskus [2011] by

proposing that the time-dependent censoring weights that vary by covariates

are calculated parametrically. To incorporate these time-dependent weights, the

time-scale is split into a number of intervals for the individuals who die from com-

peting causes that exclude the cause of interest. After augmenting the data and

applying the derived weights, standard flexible parametric models, particularly

those introduced in section 3.6, may be applied. The log-likelihood for fitting a

standard flexible parametric model was derived in equation 3.30. In the presence
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of competing risks for the cause of interest k = 1 with no censoring, and in terms

of the subdistribution hazards, the (log-)likelihood is,

lnL =
n∑
i=1

δi1 ln
(
hsd1 (ti)

)
− (1−

K∑
j=2

δij)Hsd
1 (ti)−

K∑
j=2

δijH
sd
1 (t∗i )

 (6.9)

where t∗ is the end of potential follow-up time. In reality, censoring is present and

the risk-set in the likelihood must be augmented by the weights derived previously

in equation 6.5. However, instead of obtaining these non-parametrically, a flexible

parametric model is used. After applying the estimated censoring weights, the

(log-)likelihood becomes,

lnL =
n∑
i=1

δi1 ln
(
hsd1 (ti)

)
− (1−

K∑
j=2

δij)Hsd
1 (ti)−

K∑
j=2

δij
∑

ζ∈R(ti)
(Hsd

1 (tiζ)−Hsd
1 (ti(ζ−1)))


(6.10)

Finally, the time-scale after a competing cause of death is split into a finite

number of intervals with constant weights within each interval. The appropriate

number of intervals for efficient parameter estimates were assessed by Lambert

et al. [2017]. They concluded that, if enough split-points were used, which did not

necessarily have to be very fine, there was negligible bias. Fitting these models

is omitted in this thesis, however, they will give similar model estimates to those

obtained from the Fine & Gray model in table 6.1 [Lambert et al., 2017].

Instead of restructuring the data, or having to think about the most optimal

approach for estimating censoring weights, parametric models can be fit simulta-

neously for all cause-specific cumulative incidence functions using the full likeli-

hood. These models are proposed and introduced below for the flexible parametric
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modelling framework and a research article introducing these was also published

in Statistics in Medicine (appendix C) [Mozumder et al., 2018].

6.6 Direct parametric models for the cause-specific cumulative

incidence function

As discussed in section 6.5.1, in the presence of competing risks, modelling co-

variate effects on the cause-specific cumulative incidence function is usually done

via the Fine & Gray model for the subdistribution hazard function [Fine and

Gray, 1999; Fine, 2001]. However, these were introduced only for modelling a

single cause of death and it is sometimes of interest to model all causes of death

for obtaining an understanding of the overall impact of a covariate on outcome.

Although it is not uncommon to find Fine & Gray models fitted separately for

each cause of death, in general, these cannot simultaneously hold. This is be-

cause, especially if the models are misspecified, there is the possibility that the

sum of all cause-specific cumulative incidence functions may exceed 1, as demon-

strated in figure 6.1. The same issue also applies for fitting flexible parametric

models using censoring weights calculated parametrically as described in section

6.5.2. Despite this, if follow-up time is restricted, which is usually the case for

population-based studies, and without inappropriate extrapolation, such models

can be useful practically [Latouche et al., 2013].

Modelling the cause-specific cumulative incidence function by restructuring the

data and applying time-dependent weights as mentioned previously, is a compu-

tationally intensive process. This approach is also complicated by the inclusion

of weights which are required to correctly estimate the censoring distribution.

Alternatively, Jeong and Fine [2006] investigated a direct parametric inference
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approach and define a likelihood which allows researchers to model all the cause-

specific cause-specific simultaneously. This method does not require calculating

weights for an unobserved censoring distribution as this is modelled directly as

a part of the likelihood. Furthermore, the data does not need to be restruc-

tured which leads to significant gains in computational time, especially for larger

datasets and more complicated models.

6.6.1 Likelihood construction

As described by Jeong and Fine [2006], parametric methods can be used to di-

rectly model the cause-specific cumulative incidence function for all k causes,

Fk(t|xk) (k = 1, · · · , K), without the requirement of indirect specification through

the cause-specific hazards. This is achieved by maximising the following likeli-

hood for direct inference on the cause-specific cumulative incidence function,

L =
N∏
i=1


 K∏
j=1

[
hsdj (ti|xi)(1− Fj(ti|xi))

]δij1−
K∑
j=1

Fj(ti|xi)
1−

∑K

j=1 δij
 (6.11)

In contrast, parametric inference on K competing causes of death under the

cause-specific hazards approach was,

L =
N∏
i=1

 K∏
j=1

[
S(ti|xi)hcsj (ti|xi)

]δij [S(ti|xi)]1−
∑K

j=1 δij

 (6.12)

where the censoring indicator, δik, tell us whether an individual died from any

cause k (δik = 1), or not (δik = 0) and S(ti|xk) is the overall survival function.

Here, it is argued that modelling the above likelihood under the flexible para-

metric modelling approach offer some advantages over the Fine & Gray model.
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For instance, in section 7.3, the flexible parametric approach that simultaneously

models all cause-specific cumulative incidence functions is shown to be less com-

putationally intensive compared to the Fine & Gray approach. One of the major

reasons for this is that it does not require the calculation of time-dependent

weights for the censoring distribution for K separate models. This gain in com-

putational efficiency is especially useful when analysing larger datasets that are

common for population-based cancer studies. Furthermore, under the approach

proposed in section 3.6, a more flexible shape for the underlying cause-specific

cumulative incidence function, whilst simultaneously modelling for more complex

time-dependent effects, is possible in contrast to the Jeong & Fine approach which

uses a more simple parametric (Gompertz) distribution.

In addition to the above, other useful comparative predictions to aid interpre-

tation in flexible parametric models is trivial since the baseline cumulative inci-

dence function is predicted as part of the likelihood in the model and is easily

extractable as part of the linear predictor for further calculations involving the

cause-specific cumulative incidence functions. A more thorough exploration on

the types of predictions that are possible and the introduction of useful measures

is provided in chapter 9.

Other methods for directly modelling the cause-specific cumulative incidence

function also makes it easy to incorporate alternative link functions. For ex-

ample, Gerds et al. [2012] proposes the proportional odds model for the cause-

specific cumulative incidence function and makes the argument that this has the

attractive property of simpler parameters with a more useful odds-ratio interpre-

tation in comparison to a subdistribution hazards model. However, there are still

136



some issues in interpretation that remain which will be discussed in more detail

section 6.6.3. Incorporating such alternative link functions on the cause-specific

cumulative incidence function is easy to implement using the flexible parametric

modelling approach [Lambert et al., 2017].

6.6.2 Flexible parametric regression model for the cause-specific cumulative

incidence function

Like the Cox model, the Fine & Gray model estimates covariate effects but does

not specifically model the underlying baseline rates. Following on from similar

arguments made in previous chapters and in section 6.6, the flexible parametric

survival model is proposed for directly estimating covariate effects on the cause-

specific cumulative incidence function and the underlying baseline. This is done

using the likelihood introduced in equation 6.11 simultaneously for all K causes.

The model is described in a similar way to the cause-specific flexible parametric

log-cumulative hazards model in equation 5.21, except, here, the log-cumulative

subdistribution hazards is modelled. Restricted cubic splines are calculated sepa-

rately for each cause of death k, sk(ln(t);γγγk,mk), with M − 1 degrees of freedom

where sk represents the spline function for cause k. This consists of a vector of

M knots, m, and a vector of M − 1 parameters, γγγ. Thus, we end up with the

following log-cumulative subdistribution hazards model with covariates xk,

ln(Hsd
k (t|xk)) = sk(ln(t);γγγk,mk) + xkβββk

= γ0k + γ1kz1k + · · ·+ γ(M−1)kz(M−1)k + xkβββk
(6.13)

Where z1k, · · · , z(M−1)k are the basis functions of the restricted cubic splines and

are defined as follows:
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z1k = ln(t) (6.14)

zjk = (ln(t)−mjk)3
+ − φjk(ln(t)−m1k)3

+ − (1− φjk)(ln(t)− nMk)3
+, j = 2, · · · ,M − 1

where,

φjk = nMk − njk
nMk − n1k

(6.15)

and

(u)+ =


u, if u < 0

0, otherwise
(6.16)

As discussed in section 3.6, a natural advantage of these models is that we can

easily extend to incorporate time-dependent effects to model non-proportionality.

This was achieved by fitting interactions between the associated covariates and

the spline functions. Using this interaction, a new set of knots, mek, are intro-

duced which represent the eth time-dependent effect for cause k with associated

parameters αααek. If there are e = 1, · · · , Ek time-dependent effects, we can extend

the cause-specific log-cumulative subdistribution hazards model in equation 6.13

to,
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ln(Hsd
k (t|xk)) = ηk(t) = sk(ln(t);γγγk,m0k) + xkβββk +

Ek∑
l=1

sk(ln(t);αααlk,mlk)xlk

(6.17)

In this approach, the spline function for the various time-dependent effects can

be different and requires fewer knots to the baseline spline function [Bower et al.,

2018]. This is an extension on the original approach proposed by Royston and

Parmar [2002]. Furthermore, as mentioned previously, the choice of the number

and position of these knots has shown to have little influence and is explored

more extensively by Bower et al. [2018]. Since all K causes are modelled, it is

also possible to specify different time-dependent effects for the each of the cause-

specific cumulative incidence flexible parametric regression models.

6.6.3 Link functions and interpretation

In equation 6.13, a log-cumulative subdistribution hazards model with covariates

for each cause k, xk, can be derived through a general link function, g(·), for

the cause-specific cumulative incidence function, Fk(t|xk). Through this general

function, similar transformations, as described by Royston and Parmar [2002] for

the survival function, can be applied to the cause-specific cumulative incidence

function. Lambert et al. [2017] detail various link functions that are available for

the cause-specific cumulative incidence, but in this chapter, focus is particularly

on the complementary log-log and logit link functions.

The log-cumulative subdistribution hazards regression models are specified through

the complementary log-log link function which has the following form,
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g(Fk(t|xik)) = ln [− ln(1− Fk(t|xk))] = ln(Hsd
k (t|xk)) (6.18)

and the subdistribution hazard function for each cause k and the cause-specific

cumulative incidence function are defined as follows,

hsdk (t|xk) = d [sk(ln(t);γγγk,mk)]
dt

exp (sk(ln(t);γγγk,mk) + xkβββk) (6.19)

Fk(t|xk) = 1− exp (− exp [sk(ln(t);γγγk,mk) + xkβββk]) (6.20)

where the βββk’s are log-subdistribution hazard ratios.

Alternatively, Gerds et al. [2012] argued that, specifying regression models on

the cause-specific cumulative incidence function through a logit link function,

logit(u) = ln
(

u

1− u

)
, is advantageous due to simpler interpretation of the pa-

rameters as odds ratios. Thus, the general link function becomes,

g(Fk(t|xk)) = logit (Fk(t|xk)) (6.21)

and the cause-specific cumulative incidence function is,

Fk(t|xk) = exp [sk(ln(t);γγγk,mk) + xkβββk]
1 + exp [sk(ln(t);γγγk,mk) + xkβk]

(6.22)

The logit link model above describes the probability of dying from the competing

cause k in relation to the probability of surviving the competing cause k, which

includes those that are still alive and those that have already died from one of

the other k − 1 competing events. Due to this, Gerds et al. [2012] determines
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that the logit link models still suffers from similar interpretation issues to the

subdistribution hazards.

Another alternative discussed by Gerds et al. [2012] and Lambert et al. [2017],

that is not described here, is the use of a log-link function. These are not used

very often in practise, however, have a useful interpretation since the parameters

are cumulative incidence ratios. An advantage of the log-cumulative subdistribu-

tion hazards model described above with a complementary log-log link, is that

such ratios can still be obtained post-estimation and presented graphically.

6.7 Discussion

The non-parametric time-dependent weights described in the section 6.4.1 for

fitting Fine & Gray models are complex and computationally intensive. This is

especially not ideal for large cancer registry datasets and is difficult to extend to,

for example, stratified analysis, or time-dependent effects [Ruan and Gray, 2008].

In particular, applying the time-dependent weights incorporated into the partial

likelihood for estimating the unobserved censoring distribution requires splitting

the data at every death time for the cause of interest. As mentioned, this requires

a significant amount of computer memory, and in turn, computational time.

Alternatively, one may restructure the data, as described by de Wreede et al.

[2011], and calculate time-dependent weights that depend on covariates using a

flexible parametric model [Lambert et al., 2017]. Standard software can then be

used for fitting parametric survival models to estimate the cause-specific cumu-

lative incidence function and include additional complexities, for example, time-

dependent effects. However, the same issues in computational time highlighted
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above also applies here. Therefore, in this chapter, a flexible parametric model

for simultaneously estimating all cause-specific cumulative incidence functions di-

rectly via the full likelihood is proposed.

The direct flexible parametric models described in section 6.6 suffer from sim-

ilar issues previously highlighted for the Fine & Gray model. This is the absence

of a natural constraint to ensure that the sum of all cause-specific cumulative

incidences are less than or equal to 1. This issue was highlighted by reviewers

during the peer review process for publication of the Statistics in Medicine paper

(appendix C). However, as mentioned, situations where the sum exceeds one is

unlikely to be observed since studies are follow-up time is usually limited to, for

example, 5 or 10 years since diagnosis. Later it is shown that, this issue can some-

what be overcome by modelling using an alternative link function as described

in section 6.6.3, or, in the case of an extended follow-up time, modelling cure on

one (or more) cause-specific cumulative incidence functions (chapter 8). Finally,

in general, one must be aware of the dangers of interpreting the subdistribution

hazard rate, or ratio. Many often misinterpret this measure as having quantita-

tive effects on the risk of dying from a particular cause. Even though the exact

interpretation of the subdistribution hazard ratio is unclear, and arguably not

useful, it still allows direct translation of the direction in covariate effects on the

cumulative incidence function.

In the next chapter, the methods introduced in section 6.6 are illustrated using

US SEER colorectal data. A simulation study is also carried out for evaluating

performance in different dataset sizes and sensitivity to selecting the number of
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knots. Further useful predictions, available post-estimation, are demonstrated

which can be obtained by using the predict command after stpm2cr.
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Chapter 7

Evaluating the Flexible Parametric Approach for Directly

Estimating the Cause-specific Cumulative Incidence

Function

7.1 Outline

The first part of this chapter describes a simulation study for evaluating the

performance of the flexible parametric approach for simultaneously modelling all

cause-specific cumulative incidence functions (see section 6.6).

The remainder of content consists of illustrations of particular features of the

direct flexible parametric approach through the US SEER colorectal dataset.

Methods are compared with the Fine & Gray model and visualising appropriate

fit to the data is assessed by contrasting against Aalen-Johansen estimates. It

is further demonstrated that, by easily incorporating time-dependent effects, the

shape of the underlying cause-specific cumulative incidence function can be more

accurately captured.

7.2 Simulation

7.2.1 Motivation

To demonstrate that, like the Fine & Gray model, unbiased estimates are ob-

tained with good coverage, a simulation study was carried out. A common area

of concern around the use of flexible parametric models was explored, which is
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in the choice of the number of knots, or degrees of freedom, for the restricted

cubic splines. It is expected that the results of this simulation will echo what has

already been shown in previous simulation studies regarding the use of restricted

cubic splines in flexible parametric survival models [Hinchliffe and Lambert, 2013;

Bower et al., 2018; Rutherford et al., 2015a]. During peer review of the Statistics

in Medicine methods paper (see appendix C), a reviewer argued that, due to the

lack of a monotonic constraint on the restricted cubic spline function, there was

potential for convergence issues. This would occur in situations when the subdis-

tribution hazard approached 0 which could drive the optimiser to search in the

wrong direction, leading to negative estimated subdistribution hazard functions.

To prove that restricted cubic splines were in fact robust enough to handle such

a scenario, a simulation study was required to demonstrate good performance of

the models when subdistribution hazards had an asymptote at 0.

7.2.2 Simulating competing risks data

Beyersmann et al. [2009] provide guidelines on simulating competing risks data

based on choosing k = 1, . . . , K baseline cause-specific hazard functions. These

can be used to calculate the subdistribution hazard function for the kth cause us-

ing the proportional subdistribution hazards model in equation 6.7. Alternative

approaches for specifying the baseline cause-specific and subdistribution hazards

are also described. This involves choosing the baseline subdistribution hazard for

a cause k instead and then choose K − 1 cause-specific baseline hazard functions

excluding cause k. For example, for 3 causes of death, the baseline subdistribu-

tion hazard for cause 1 and the cause-specific hazard for causes 2 an 3 would be

chosen. Models are then determined for the cause-specific hazards after which

the algorithm detailed by Beyersmann et al. [2009] for simulating competing risks
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data can be carried out.

For this simulation study, however, an alternative method was adopted for sim-

ulating the data in the presence of competing risks which combines a series of

techniques. The first step of this approach is to choose baseline subdistribution

hazard functions for each of the K causes generated from a two-parameter mix-

ture Weibull distribution based on the following equation,

hsdk (t) = λ1kγ1kp exp (−λ1kt
γ1k) + λ2kγ2kt

γ1k−1(1− p) exp (−λ2kt
γ2k)

p exp (−λ1ktγ1k) + (1− p) exp (−λ2ktγ2k) exp (xβββk)

(7.1)

which assumes a proportional effect on the subdistribution hazard scale between

the covariates, x, that allows for a complex function with one or more turning

points [Crowther and Lambert, 2013]. Deciding on the choice of appropriate

functions depends on the fulfilment of particular constraints as highlighted by

Haller [2014]. These include:

• Non-negative hazard functions for all k causes at t > 0.

• The subdistribution hazard, hsdk (t), must converge to 0 and the cumulative

subdistribution hazard, Hsd
k (t), must not converge to infinity for t −→∞.

• Since the subdistribution hazard for cause k and the cause-specific hazard

are equal before the first competing cause of death, these must converge

to the same value for t −→ 0.

Then, by applying the relationship highlighted in equation 6.3, as derived by

Beyersmann et al. [2009], the subdistribution hazard function for cause k is

transformed to obtain the corresponding cause-specific hazard functions. Finally,

based on each of these transformed cause-specific hazards, the methods outlined
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by Crowther and Lambert [2013] can be implemented for generating the survival

times for each competing cause. This is combined with a censoring distribution

which can be simulated using an appropriate distribution, for instance, the expo-

nential distribution. After combining the simulated censoring and survival times

for each cause, the first occurring time to death/censoring is chosen for each

observation.

7.2.3 Design overview

The design of the simulation study is summarised below:

(1) Subdistribution hazard functions for 2 causes of death were chosen. The

complexity in the shape of the subdistribution hazard functions for both

causes were formulated under the mixture Weibull distribution with the

assumption of proportionality induced using equation 7.1. The shape,

γ1 and γ2, scale, λ1 and λ2 and mixture, p1 and p2, parameters were

chosen for each cause such that the subdistribution hazard functions for

both causes tended to an asymptote of 0 (see figure 7.1), which addresses

concerns raised by reviewers as discussed in section 7.2.1. Furthermore,

subdistribution hazards were chosen such that the sum of both cumula-

tive incidence functions would be close to 1. The subdistribution hazard

for cause 1 was simulated from a mixture Weibull distribution with pa-

rameters λ1,1 = 0.6, γ1,1 = 0.5, λ1,2 = 0.01, γ1,2 = 0.35 and p1 = 0.5, and

λ2,1 = 0.01, γ2,1 = 0.8, λ2,2 = 0.7, γ2,2 = 1.45 and p2 = 0.5 were chosen as

parameters for the subdistribution hazard for cause 2. The subdistribu-

tion hazard function for cause 2 was chosen with a turning point, which is

commonly observed in cancer data where there is higher mortality earlier

in follow-up time. No proportionality assumptions between the different
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causes are made and only the effect of covariates for each cause k were

considered to be proportional in step (3).

(2) A binary covariate X was simulated, where X = 1 if Uniform(0, 1) < 0.5

and X = 0 if Uniform(0, 1) > 0.5

(3) The binary covariate was assumed to have a proportional effect with a

log-subdistribution hazard ratio of -0.5 for cause 1 and 0.2 for cause 2.

(4) Survival times were generated from K = 2 cause-specific hazard func-

tions following the approach described in section 7.2.2, which were trans-

formed from pre-specified subdistribution hazard functions for each cause.

A censoring distribution was simulated from an exponential distribution

with λ = 0.1, and therefore mean equal to 10. Survival and censoring

times were combined and an indicator variable for status was generated,

choosing the minimum time to death, or censoring time. Administrative

censoring was also imposed to restrict follow up time to 5 years.

(5) A separate Fine & Gray model for each cause and a single log-cumulative

proportional subdistribution hazards flexible parametric model for both

causes with 3, 4, 5, 6 and 9 degrees of freedom were fitted to each of the

1000 simulated datasets containing 200, 500 and 5000 observations.

(6) From each model, log-subdistribution hazard ratios and the cause-specific

cumulative incidence function for cause 1 were obtained to determine bias,
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along with their respective standard errors to calculate root-mean-square-

error and 95% confidence intervals for inspecting coverage.

An important point to note here is that, to our knowledge at the time of writing

this thesis, there were no readily available Stata software for calculating confi-

dence intervals for obtained cause-specific cumulative incidence functions from

standard proportional subdistribution hazard models. This was the case when

either fitting Fine & Gray regression models using stcrreg or by using stcox

after restructuring the data using stcrprep. To overcome this issue, data was

restructured and time-dependent weights were calculated according to the ap-

proach described by [Geskus, 2011] in R (see section 6.5.2). The coxph package

was then used on the restructured data with time-dependent weights to fit equiva-

lent proportional subdistribution hazard models. Confidence intervals could then

be obtained using the standard coxph command in R for the failure function which

were imported back into Stata for the simulation.

7.2.4 Results

Table 7.1 summarises log-subdistribution hazard ratios for cause k = 1 with as-

sociated standard errors from 1000 replicated datasets with 200, 500 and 5000

observations. Simulating under the above parameters generated a mean of 22%

right-censored individuals for 200 and 5000 observations and 23% for 500 observa-

tions and a mean of 28% failures from cause 1 for 200, 500 and 5000 observations.

To assess model performance, the bias, i.e by observing differences between the

model log-subdistribution hazard ratio and a true log-subdistribution hazard ra-

tio equal to -0.5, the coverage and root mean square error are presented. All

models converged for N = 5000, however, for N = 500, 99%, 97.4% and 97.8% of

models converged for 5, 6, and 9 degrees of freedom respectively. For N = 200,
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Figure 7.1. Subdistribution hazards (SDH) simulated from a mixture Weibull
distribution with paramaters λ1,1 = 0.6, γ1,1 = 0.5, λ1,2 = 0.01, γ1,2 = 0.35
and p1 = 0.5 for the SDH for cause 1 and λ2,1 = 0.01, γ2,1 = 0.8, λ2,2 = 0.7,
γ2,2 = 1.45 and p2 = 0.5 for cause 2

most models converged for 4 degrees of freedom (96%) and the least models con-

verged for 9 degrees of freedom (79.2%).

Overall, for models that converge, it is clear that under both the Fine & Gray and

flexible parametric approach, we get negligible bias, indicating that all models,

irrespective of the number of degrees of freedom used for the baseline restricted

cubic splines, are unbiased. For example, figure 7.2 compares estimated sub-

distribution hazard ratios obtained from the Fine & Gray model to the flexible

parametric model with 4 and 6 degrees of freedom showing very good agree-

ment with only negligible differences. Good coverage is also demonstrated in all

models. Finally, a marginally lower root mean square error is observed in all of

the log-cumulative subdistribution hazard flexible parametric regression models

in comparison to the Fine & Gray approach. This demonstrates that, overall,
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Figure 7.2. Comparison of estimated subdistribution hazard ratios (SHR)
for cause 1 from the Fine & Gray (FG) model and the log-cumulative subdis-
tribution hazards flexible parametric model (FPM). Predictions are obtained
and plotted from 1000 simulated datasets for N = 200, 500, 5000.

estimates are obtained with a slightly lower bias and more precision under the

flexible parametric approach over the standard method.

Similarly, also in table 7.1, we have the bias, coverage and root mean square

error for the cause-specific cumulative incidence function at 1, 3 and 5 years since

diagnosis. Again, there is negligible bias in the estimates from all models, good

coverage is consistently shown over time and a similar root mean square error

across all models is observed. Overall, this simulation concludes that, regardless

of the number of degrees of freedom used for the baseline restricted cubic splines,

the parameters are stable across all models and any differences between them are

negligible.

However, it must be noted that convergence issues do arise in smaller simulated
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datasets for 200 and 500 observations. Non-convergence especially arise when

more complicated models are fitted i.e. more degrees of freedoms are used. For

example, as detailed in table 7.1, for N = 200 where models have 9 degrees of

freedom, only 79.2% models converged. However, 96% models converged when

only 4 degrees of freedom were used. This suggests potential over-fitting of the

models to the data since, since, when using 3 to 4 degrees of freedom in the sim-

ulation with 200, or 500 observations leads to very few to no models that did not

converge.
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7.3 Illustrative comparisons

The above simulation study shows that the approach described in section 6.6 has

negligible bias compared to the standard Fine & Gray approach therefore demon-

strating that both methods are very similar. It is further shown that the method

performs well as long as an appropriate number of degrees of freedom are chosen,

which is particularly important in smaller datasets. To supplement simulation

results, in this section, advantages of the model are highlighted through the use

of the US SEER colorectal dataset described in section 1.5. Illustrating meth-

ods through examples based on actual data facilitate practical demonstration of

the implementation of techniques which allow the shape of the data to be more

accurately captured in comparison to conventional methods. Some of the model

features discussed in section 6.6 are also demonstrated.

Analysis is restricted to the oldest age group (75 years and over) where com-

peting risks are more likely to have an impact. This is to facilitate understanding

the differences between models, the interpretation of model parameters and the

effect of covariates on cause-specific risk.

7.3.1 Proportional (log-cumulative) subdistribution hazard model

Using the example dataset, parameter estimates obtained from the flexible para-

metric modelling approach can be shown to be equivalent to the Fine & Gray

approach when assuming proportionality. To illustrate this, a log-cumulative pro-

portional subdistribution hazards model was fitted simultaneously for all three

causes of death, i.e. cancer, other causes and heart disease with stage at diagnosis

as the only included covariate. Four degrees of freedom were used for the baseline
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restricted cubic splines. Estimated subdistribution hazard ratios were compared

with the equivalent Fine & Gray models fitted separately for all causes of death.

Log-CPSDH FPM Fine & Gray Model Adjusted Log-CPSDH FPM
Covariates SHR 95% CI SHR 95% CI SHR 95% CI
Cancer 0.057* [ 0.053 0.062 ] 0.056* [ 0.052 0.060 ]
Regional 3.435 [ 3.159 3.734 ] 3.485 [ 3.208 3.786 ] 3.486 [ 3.206 3.790 ]
Distant 14.391 [ 13.246 15.635 ] 14.954 [ 13.753 16.261 ] 15.151 [ 13.949 16.456 ]
Other causes 0.104* [ 0.098 0.110 ] 0.103* [ 0.097 0.109 ]
Regional 0.777 [ 0.722 0.836 ] 0.774 [ 0.720 0.832 ] 0.769 [ 0.715 0.828 ]
Distant 0.355 [ 0.319 0.396 ] 0.524 [ 0.470 0.585 ] 0.487 [ 0.439 0.540 ]
Heart disease 0.047* [ 0.043 0.051 ] 0.046* [ 0.042 0.050 ]
Regional 0.758 [ 0.682 0.844 ] 0.766 [ 0.689 0.853 ] 0.762 [ 0.685 0.848 ]
Distant 0.206 [ 0.170 0.250 ] 0.308 [ 0.254 0.374 ] 0.305 [ 0.253 0.368 ]

Table 7.2. Subdistribution hazard ratios (SHRs) estimated from sepa-
rate Fine & Gray models alongside SHRs estimated from proportional log-
cumulative subdistribution hazard flexible parametric models (log-CPSDH
FPM) with associated 95% confidence intervals. Reference group for stage
at diagnosis is localised stage at diagnosis.
*Estimated baseline subdistribution hazard rate for cause k in FPM.

There is an apparent disagreement between the estimated subdistribution haz-

ard ratios from both methods and their associated 95% confidence intervals in

table 7.2. This can partially be explained by the assumption of proportionality

of the effect of stage at diagnosis for all 3 causes being made on the competing

causes of death in the flexible parametric models. In contrast, the Fine & Gray

models fitted for each cause of interest separately estimate the censoring distri-

bution using time-dependent weights. Therefore, no assumptions are made about

covariate effects on the cause not being modelled. Consequently, the assumption

of proportional effects over all causes of death made in the flexible parametric

approach is not equivalent to the Fine & Gray model for each cause of interest. In

fact, because the proportionality assumption is relaxed for the competing risks,

it is expected that the Fine & Gray model parameter estimates would be more

reasonable and better reflect the proportional effect of covariates on the cause of

interest being modelled.
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Figure 7.3. A comparison of cause-specific cumulaive incidence functions pre-
dicted from a single “unadjusted” and 3 separate “adjusted” log-cumulative
subdistribution hazards flexible parametric model(s) (-CSDH FPM) against
those obtained from 3 separate Fine & Gray (FG) models. Predictions are
obtained for female patients aged over 75 years old with distant stage cancer
at diagnosis.

To obtain comparable estimates for the cause of interest whilst assuming propor-

tional effects, and in order to demonstrate the reason for the differences observed

in table 7.2, 3 separate log-cumulative proportional subdistribution hazards mod-

els are fitted. Non-proportional effects are incorporated on stage at diagnosis

using restricted cubic splines with 3 degrees of freedom in the other competing

events (see equation 6.17). These “adjusted” estimates are also compared in

Table 7.2 which is labelled “Adjusted log-CPSDH FPM”. Following this adjust-

ment, good agreement between all subdistribution hazard ratios and their 95%
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confidence intervals is now observed. The estimated cause-specific cumulative in-

cidence functions from both models are illustrated in figure 7.3. The Fine & Gray

model and adjusted log-CSDH FPM are now very similar as they yield similar

estimates and very good agreement between the curves is observed.

7.3.2 Including time-dependent effects

Generally, it is expected that the effect of stage on mortality will be stronger

shortly after diagnosis compared to later on in time, indicating that proportional

subdistribution hazards may not be a reasonable assumption. For example, pa-

tients diagnosed with less severe stage at diagnosis are likely to survive longer,

therefore, their risk of dying from other causes or heart disease will be higher.

To relax the assumption of proportionality, time-dependent effects are included

to allow the effect of stage at diagnosis to vary over time for all K causes of

death using restricted cubic splines with 3 degrees of freedom. To assess whether

estimates are accurate, model predictions are compared with empirical estimates

of the subdistribution hazards for cause k using the Aalen-Johansen estimate for

the cause-specific cumulative incidence function. Figure 7.4 shows that this im-

proves the fit of the estimated cause-specific cumulative incidence functions from

the log-cumulative non-proportional subdistribution hazards flexible parametric

model, or, “Non-PSDH FPM”, now achieve an almost perfect agreement with the

Aalen-Johansen estimates.

Including time-dependent effects mean that models are more complex and inter-

pretation becomes difficult. However, due to the ease at which post-estimation

predictions can be obtained after fitting log-cumulative subdistribution hazard
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Figure 7.4. A comparison of Aalen-Johansen (AJ) estimates of each k cause-
specific cumulative incidence functions with those obtained from the “adjusted”
log-cumulative proportional subdistribution hazards flexible parametric models
(-CPSDH FPM) and from a non-proportional (log-cumulative) subdistribution
hazards flexible parametric model (Non-PSDH FPM). Predictions are obtained
for female patients aged over 75 years old at each stage at diagnosis group.

models using predict after stpm2cr (see chapter 10), these can be communi-

cated graphically. For example, figure 7.5 presents subdistribution hazard ratios

for patients with regional and distant stage at diagnosis compared to those with

localised stage at diagnosis. Both cancer-specific subdistribution hazard ratios

illustrate that, at the beginning of follow-up time, the association between a more

severe stage at diagnosis and increase in the risk of dying from cancer is much

higher compared to patients with the least severe stage at diagnosis. However,

this association becomes weaker over time. The corresponding cause-specific cu-

mulative incidence functions are presented in figure 7.6.
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Figure 7.5. Subdistribution hazard ratios obtained after fitting a non-
proportional log-cumulative subdistribution hazards flexible parametric model.
Predictions are made for female patients aged over 75 years old with those with
localised stage at diagnosis as the reference.

7.3.3 The log-cumulative odds model

As discussed in section 6.6.3, other link functions, such as the logit link, can

also be incorporated. Subdistribution hazard ratios are difficult to interpret for

researchers, however, estimating parameters as odds ratios provide a useful al-

ternative. To illustrate estimation and interpretation of such parameters, first

a log-cumulative proportional odds model for all causes of death equivalent to

the the log-cumulative proportional subdistribution hazards flexible parametric

model from section 7.3.1 are fitted.

Table 7.3 present estimated odds ratios with their associated 95% confidence in-

tervals, calculated as shown in equation 6.21. These arguably have a simpler
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Figure 7.6. Stacked cumulative incidence functions for cancer, other causes
and heart disease predicted from a log-cumulative non-proportional subdistri-
bution hazards model for female patienst aged over 75 years old at each stage
group at diagnosis.

Log-CPO FPM
Covariates OR 95% CI
Cancer 0.052* [ 0.048 0.056 ]
Regional 3.951 [ 3.626 4.306 ]
Distant 29.673 [ 27.423 32.108 ]
Other causes 0.111* [ 0.104 0.118 ]
Regional 0.767 [ 0.711 0.827 ]
Distant 0.404 [ 0.379 0.432 ]
Heart disease 0.049* [ 0.045 0.053 ]
Regional 0.741 [ 0.666 0.824 ]
Distant 0.224 [ 0.198 0.255 ]

Table 7.3. Odd ratios estimated from proportional log-cumulative odds flexi-
ble parametric models (log-CO FPM) with associated 95% confidence intervals.
Reference group for stage at diagnosis is localised stage at diagnosis.
*Estimated baseline log-odds for cause k in FPM.

interpretation compared to the subdistribution hazard ratios and is instead in-

terpreted as the ratio between the odds of dying from a particular cause [Gerds

et al., 2012]. For example, patients with distant stage cancer at diagnosis have
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a 29.67 times higher odds of dying from cancer compared to patients with lo-

calised stage cancer at diagnosis. On the other hand, only the direction in the

effect of a covariate on risk can be inferred from the subdistribution hazard ratio

and not on the magnitude of association. However, as also mentioned in section

6.6.3, similar to the subdistribution hazard, interpretation is still awkward as the

denominator in equation 6.21 still includes those who may have died from other

causes excluding the cause of interest k. Alternatively, adopting the log-link may

offer an easier interpretation of the model parameters as this leads to estimates

of relative risks which are often preferred by researchers [Lambert et al., 2017].

Like in section 7.3.2, to more accurately capture the shape of the data, time-

dependent effects can be easily included to relax the proportional odds assump-

tion. As shown in figure 7.7, these give almost identical predicted cause-specific

cumulative incidence functions compared to those obtained from the equiva-

lent log-cumulative non-proportional subdistribution hazard flexible paramet-

ric model. For non-proportional models with more complex parameters, as be-

fore, interpretation is easier by presenting predictions graphically. For the non-

proportional log-cumulative odds model, cumulative odds can be obtained post-

estimation. These are illustrated in figure 7.8 on the log-scale with their respective

95% confidence intervals. For female patients aged over 75 years old with localised

stage cancer at diagnosis, at 120 months since diagnosis (ln(120) = 4.79), the cu-

mulative log-odds of dying from other causes is highest. As severity of stage

increases, the cumulative log-odds of dying from cancer increases.
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Figure 7.7. Comparison of predicted cause-specific cumualtive incidence
functions obtained from a non-proportional log-cumulative odds (log-CO) flex-
ible parametric model (FPM) and a non-proportional log-cumulative subdis-
tribution hazards (log-SDH) FPM for female patients aged over 75 years old
for each stage at diagnosis.

7.3.4 Transforming to cause-specific hazard functions

After fitting a log-cumulative subdistribution hazard regression model for all k

causes simultaneously, the cause-specific hazard functions can be estimated us-

ing equation 6.3 since the subdistribution hazard functions for all K causes are

modelled. The dataset restricted to the oldest age group is again modelled and in

figure 7.9, the cause-specific hazards derived from a standard flexible parametric

cause-specific hazard regression model, as described in section 5.6.3, are compared

to the cause-specific hazards calculated from a log-cumulative subdistribution

hazards regression model using equation 6.17. Both models use 4 degrees of free-

dom for the baseline effect and stage at diagnosis is the only included covariate.

Proportional subdistribution hazards are assumed for the estimates presented in

the top row of figure 7.9. As expected, following the discussion in section 6.4,
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some disagreement is observed between the cause-specific hazards estimated di-

rectly and those obtained using the relationship with the subdistribution hazard

for cause k in equation 6.3.

Time-dependent effects are now included to relax the proportionality assump-

tion in both models for stage at diagnosis with 3 degrees of freedom. These are

represented in the plots on the bottom row in figure 7.9 which now show good

agreement between the cause-specific hazards estimated from both models. In

fact, there is such a good agreement between them that it makes it difficult to

distinguish between the two curves.
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7.4 Computational time gains

In order to demonstrate the gain in computational efficiency in Stata using the

methods proposed in section 6.6, comparisons in time taken to fit models for all

competing events were made with the Fine & Gray approach and the weighted

flexible parametric approach described in section 6.5. Models were fitted using

the Stata commands, stpm2cr, stcrreg and stpm2 (with time-dependent cen-

soring weights calculated using stcrprep) respectively. Equivalent models were

fitted on the full dataset for all 3 causes of death as described in section 1.5 with

stage at diagnosis and the age groups defined in table 5.4 as covariates. Propor-

tional subdistribution hazards were assumed in all 3 approaches, and for both
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flexible parametric approaches, 4 degrees of freedom were used for the baseline

restricted cubic spline functions. For the weighted flexible parametric subdistri-

bution hazards models, time-dependent censoring weights were estimated by a

flexible parametric model. The flexible parametric model for the censoring dis-

tribution was adjusted for covariates age group and stage at diagnosis with 5

degrees of freedom for the baseline spline functions. Data was split at every 0.25

years after competing events.

A single model for simultaneously estimating all cause-specific cumulative in-

cidence functions was only required for stpm2cr, however, 3 separate models

needed to be fitted to estimate each cause-specific cumulative incidence function

using stcrreg and stpm2 on the augmented dataset. Fitting the single model for

all competing causes of death took only 15 seconds. In contrast, fitting 3 separate

models for each competing event using stcrreg took a total of approximately 9

minutes and to estimate censoring weights by splitting the data using stcrprep,

it took a total of 22 minutes. Models were fitted on a computer with 16 gigabytes

of RAM and an Intel Core i5 3.4 GHz processor.

Clearly, fitting models for subdistribution hazards for each of the competing

causes of death is tremendously quicker in Stata using stpm2cr. As also discussed

in section 5.6.4, fitting the weighted flexible parametric model for the subdistribu-

tion hazard posed similar issues in terms of computational memory requirements.

For example, to fit models on the full dataset which initially contained 45061 ob-

servations, after splitting the data for calculating the time-dependent censoring

weights at every 0.25 years, the resulting expanded dataset contained over 15

million observations. Therefore, sufficient computer memory must be allocated
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in order to be able to fit such models when the dataset is large. In this case,

over 8 gigabytes of RAM was necessary for running stcrprep on this dataset.

Alternatively, by using wider splits, for example, every 1 year, computational

time will be much quicker.

7.5 Discussion

When interest is in quantifying covariate effects directly on cause-specific risk,

modelling within the flexible parametric framework offer many advantages over

the typically adopted Fine & Gray model. Most importantly, there are signifi-

cant gains in computational time for fitting such models in Stata to large datasets

that exceed the tens and hundreds of thousands (see section 7.4). Such gains in

computational efficiency also extends to the calculation of confidence intervals

for post-estimation predictions. This is achieved by making use of the delta

method described in section 3.7, as opposed to adopting computationally ineffi-

cient bootstrapping approaches. This is common for obtaining confidence inter-

vals for cause-specific cumulative incidence functions estimated from the Fine &

Gray approach. Furthermore, as was apparent when conducting the simulation

study in section 7.2, standard user-friendly software (especially in Stata) is often

unavailable for obtaining such confidence intervals for estimated cause-specific

cumulative incidence functions.

Lambert et al. [2017] previously proposed modelling on the subdistribution haz-

ard scale from within the flexible parametric modelling framework by calculating

time-dependent censoring weights parametrically. However, this requires a sig-

nificant amount of computational effort as the data must be expanded in order

to calculate the censoring weights which is impractical in larger cancer registry
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datasets (see section 7.4). On the other hand, this can be improved by using

wider splits so that expansion of the data is not as large. Without the need

for expanding the data, or estimating the censoring distribution, a direct like-

lihood flexible parametric approach is adopted for modelling each cause-specific

cumulative incidence function simultaneously, as proposed in chapter 6.6. This

chapter has presented an evaluation of this proposed flexible parametric model

and displayed some key features offered as a result of this approach which is

demonstrated through illustrative examples. In particular, as a consequence of

obtaining an estimate for the subdistribution hazards for all k causes, the cause-

specific hazards can also be obtained via the relationship in equation 6.3.

In this thesis, and in parallel with recommendations by other authors, inferring

covariate effects on both the cause-specific hazard rate and the cumulative inci-

dence, or risk, is encouraged [Lambert et al., 2017; Austin et al., 2016; Wolbers

et al., 2014; Wolkewitz et al., 2014; Latouche et al., 2013; Andersen et al., 2012].

This is facilitated through the methods derived in this thesis which are unified

within a single package stpm2cr. This makes it significantly easier to fit flexible

parametric models on either scale and obtaining predictions is straight-forward

using the predict command post-estimation. In addition to this, further compar-

ative relative and absolute predictions can be obtained that facilitate reporting

and interpretation of competing risks analyses which can often be complicated.

Other predictions can also be obtained that have a useful interpretation, such

as the estimation of restricted mean lifetime. Such predictions are introduced in

chapter 9.
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In the next chapter, the log-cumulative subdistribution hazards flexible para-

metric model is extended for cure models. Fitting such models are appropriate

when the cancer-specific cumulative incidence function reaches a plateau over a

reasonably long enough follow-up time. Such a situation would be apparent in

previous examples if follow-up time is extended beyond 120 months. For exam-

ple, the cancer-specific cumulative incidence function presented in figure 7.6 has

already started to plateau which indicates that patients are no longer dying due

to cancer. This could either be due to everyone having already died, or be dy-

ing quickly from one of the other competing causes. In this case, modelling the

“cure proportion” amongst cancer patients may be of interest. These concepts

are formally defined in the following chapter.
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Chapter 8

Modelling the Cure Proportion

8.1 Outline

When the cause-specific cumulative incidence function plateaus for the cause of

interest, it may be appropriate to model the cure proportion. Previously, cure

models in the presence of competing risks have been designed for the cause-

specific and relative survival frameworks. The main focus in this chapter, is

on the extension of existing cure models for the flexible parametric competing

risks approach based on the subdistribution hazards as proposed in section 6.6.

Obtaining an estimate on the probability of patients “bound-to-die” from the

cause of interest amongst those that are still alive is also detailed.

8.2 Introduction

The primary interest of cancer survival studies typically involve time to death

after a period of 5 to 10 years since diagnosis and is commonly modelled using

the Cox proportional hazards regression model (section 3.5), or using flexible

parametric modelling techniques as proposed in this thesis (section 3.6). Alter-

natively, in a cause-specific survival analysis, when analysing long-term survival

over a considerably long enough follow-up time, some patients diagnosed with

cancer may not experience the event, i.e. die from cancer. These patients would

be considered to be in remission or “statistically cured” from the cancer. There-

fore, in the presence of competing risks, estimating the proportion of patients
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that are in remission, otherwise known as the “cured proportion”, may be of

equal primary interest [Boag, 1949; Jeong and Fine, 2006, 2007]. This concept,

along with “statistical cure”, is introduced formally in section 8.3. Standard cure

models can be used to estimate and analyse such a proportion by either adopting

a mixture, or non-mixture modelling approach. These are introduced in sections

8.3.1 and 8.3.2 respectively.

For population-based cancer studies, when cause of death information is not avail-

able, or unreliable, relative survival approaches are preferred which incorporate

expected mortality to estimate the cure proportion. Early methods in this setting

are based on parametric mixture models, such as those proposed by Berkson and

Gage [1952] which extended on the revolutionary work on cure models by Boag

[1949]. More recent developments involve the proposal of a parametric approach

for the mixture model as described by De Angelis et al. [1999] and Lambert et al.

[2007] later extends this to the non-mixture model. However, a limitation of

these approaches is that the underlying distributions are not flexible enough to

capture complex hazard functions with one or more turning points. In particular,

these struggle to accurately capture those hazard functions which initially have

very high (excess) mortality commonly observed in older patients. Alternatively,

a flexible parametric relative survival cure modelling approach was described by

Andersson et al. [2011] which is a special case of the non-mixture model. These

models are derived in section 8.4.1. Eloranta et al. [2014] further describe esti-

mation of the cure proportion by partitioning the all-cause probability of dying

into crude probabilities of death due to cancer and other causes after fitting a

flexible parametric relative survival cure model.

170



In this thesis, focus is on developing methods in the presence of competing risks

when cause of death information is available. Jeong and Fine [2006] discuss mod-

elling the cause-specific cumulative incidence function using an improper distri-

bution within the direct parametric approach for simultaneously modelling all k

causes which was later extended for regression analysis [Jeong and Fine, 2007].

Adopting such a distribution is argued to be more consistent with the definition of

the cause-specific cumulative incidence function in the presence of competing risks

(see section 6.3). Therefore, the direct parametric regression modelling approach

proposed by Jeong and Fine [2007] advocates parametrisation of the cause-specific

cumulative incidence function using a Gompertz distribution, which incorporates

an asymptote on the cumulative (sub)distribution function that can be less than

1. This is an implementation of a simple cure model that inadvertently estimates

the cure proportion at the asymptote of the cause-specific cumulative incidence

function.

Alternatively, as a solution to the constraint problem for simultaneously mod-

elling each k cause-specific cumulative incidence functions (see discussion in sec-

tion 6.7), Shi et al. [2013] estimates an asymptote for the cause of interest which

is then used to estimate the cumulative incidence functions for the other com-

peting causes. However, this leads to a loss in the one-to-one correspondence

between the subdistribution hazard for cause k and the cause-specific cumulative

incidence function.

As discussed above, Jeong and Fine [2006] proposes direct parametrisation on the

cause-specific cumulative incidence function using an improper Gompertz distri-

bution. However, this is not flexible enough for capturing more complex shapes
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of the hazard function. Therefore, in this chapter, flexible parametric models for

directly estimating the cause-specific cumulative incidence functions in the pres-

ence of competing risks are extended for estimating the cure proportion. This

further develops ideas described for flexible parametric cure models within the

cause-specific and relative survival framework which adopt a non-mixture ap-

proach [Andersson et al., 2011, 2014]. At the time of writing, no literature could

be found on the use of non-mixture models in the presence of competing risks

based on the subdistribution hazard function. A useful mathematical property

as a consequence of estimating cure for the models described in section 6.6, is the

imposition of an asymptote for the cancer-specific cumulative incidence function

to estimate cure. This may be of interest to model for certain scenarios in com-

peting risks, for example, when a patient survives their cancer over an extended

period of time and is effectively “cured”. In such a situation, a plateau in the

cancer-specific cumulative incidence function will be observed. However, the pa-

tient would still be at risk of dying from other competing causes of death which

could still be modelled in the usual way. This further motivates extension of the

methods proposed in section 6.6 for estimating the cure proportion for a cause of

interest and is introduced in section 8.4.2.

8.3 Modelling the cure proportion

Sometimes, it might be sensible to expect that an individual will never experience

the event of interest and therefore be “cured” or “immune” from ever experiencing

that particular event. A common example of this is when modelling the recur-

rence of cancer is of interest. In this situation, some patients may end up “cured”

from their cancer and never have a recurrence. In any instance, modelling cure

is based on the estimation of a “cure proportion”. After the point at which there
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is cure, or patients no longer experience an event, the hazard rate becomes 0 and

the survival (or failure) curve will plateau. This will occur at the cure proportion.

In the relative survival setting, cure occurs when the all-cause mortality of can-

cer patients, h(t), becomes the same as the expected mortality rate of a pop-

ulation assumed to be cancer-free, h∗(t). In other words, the excess mortality,

λ(t) = h(t) − h∗(t), equals 0 after a certain point in time. If this is observed,

then the relative survival will remain constant, therefore reaching a plateau. The

patients who remain alive after this point are referred to as being “statistically

cured” [Andersson et al., 2011, 2014]. Note that this definition does not translate

into the fact that patients are cured medically from the cancer. Rather, it is that

the cancer patients no longer have a higher mortality compared to the general

population who are assumed to not have cancer. Defining the cured population

in this way insinuates that patients become “immortal” as the relative survival

curve remains constant for time to infinity, never reaching 0. This results from

the assumption that patients cannot die from causes other than the cancer when

operating within the relative survival framework.

The meaningfulness of the above definition of the cured proportion is questioned

in the context of patient survival. For example, patients are expected to even-

tually die from other competing causes of death, which will only increase when

patients no longer die due to the cancer. Therefore, rather than assume patients

are “immune” from dying from other causes, for more relevant estimates of the

cure proportion, cure models in the presence of competing risks are considered

[Eloranta et al., 2014]. In the presence of competing risks, the cure proportion
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is estimated at, for example, when the cancer-specific cumulative incidence func-

tion plateaus and the cause-specific hazard, or subdistribution hazard function,

approaches 0. This can be assessed by plotting the non-parametric estimate of

the cause-specific cumulative incidence function.

Ultimately, choosing within which framework one wishes to estimate the cure

proportion depends on the research question and aim of the study. A simple

schematic is presented in figure 8.1 as a quick reference to aid the researcher’s

decision on which framework for estimating cure is most appropriate for the study.

The cure proportion can be modelled using either the mixture model, or the

non-mixture model. Extensions proposed in this chapter are based on the latter

in the presence of competing risks by building on previous work in cure models

within the flexible parametric modelling framework. However, for completeness,

the mixture cure model is also described.
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8.3.1 Mixture models

A mixture model includes, as the name suggests, a mixture of two distributions,

one that represents the survival (or failure) for the “uncured” group and another

that represents the cure proportion [Maller, 1996]. Mixture models were first

proposed by Boag [1949] for estimating the cured proportion of breast cancer pa-

tients using maximum likelihood estimation. Tsodikov et al. [2003] describes the

mixture model as a representation of an improper (all-cause) survival function.

This can also be formulated in the presence of competing risks which models the

improper cumulative incidence for the cause of interest, k = c, such that,

1− Fc(t) = πc + (1− πc)(1− F0c(t)) (8.1)

where πc is the “cure proportion” for the cause of interest, e.g. cancer, which is

the probability that an individual will not die from cancer and instead will die

from other causes. 1−πc gives the probability of dying from the cause of interest

in the presence of competing risks, otherwise known as the “uncured” population

and F0c(t) is the cause-specific cumulative incidence function for the “uncured”

patients [Lambert et al., 2007]. Focus in this thesis, however, is on the extension

of flexible parametric non-mixture cure models for competing risks.

8.3.2 Non-mixture models

Tsodikov et al. [2003] and later, Lambert et al. [2007], describe the non-mixture

model which estimates an asymptote for the survival (or failure) function of the

cure proportion in the cause-specific and relative survival frameworks respectively.

Here, the non-mixture model is described within the competing risks framework.

In the presence of competing risks, the asymptote is modelled on the cause of
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interest. As before, let k = c specify the cause on which cure is assumed. In this

instance, cure is assumed to be for death from cancer. Therefore, the cancer-

specific survival function can be written as,

Sc(t) = 1− Fc(t) = πFX(t)
c (8.2)

where FX(t) is a distribution function. Note that the “uncured” proportion can

be estimated from the above non-mixture model since it can also be written as a

mixture model such that,

Sc(t) = πc + (1− πc)
(
πFX(t)
c − πc
1− πc

)
(8.3)

The non-mixture cure model in equation 8.2 can be modelled with covariates using

the usual maximum likelihood estimation procedures as described in section 3.3.

8.4 Flexible parametric cure models in the presence of competing

risks

8.4.1 Log-cumulative excess hazards scale

An extension of the flexible parametric relative survival approach, introduced in

section 4.3, for modelling the cure proportion is proposed by [Andersson et al.,

2011]. In this framework, as discussed above, cure is observed when the excess

hazard function, λ(t), reaches 0, leading to constant cumulative excess hazards.

Therefore, to model this plateau, and thus the cure proportion, the log-cumulative

excess hazards from the relative survival model in equation 4.2 is constrained to

be linear with a zero slope after the last knot. This is achieved by calculating

the spline variables backwards, so that knots are specified in reverse. The linear
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spline variable is then constrained to equal 0. The spline basis functions, zj, from

equation 3.26 are now defined as,

z1 = ln(t) (8.4)

zj = (ln(t)−mj)3
+ − φj(ln(t)−mM)3

+ − (1− φj)(ln(t)−m1)3
+, j = 2, · · · ,M − 1

where,

φj = mM −mj

mM −m1
(8.5)

Therefore, the (non-proportional) log-cumulative excess hazards model in equa-

tion 4.2, extended for modelling the cure proportion, becomes,

ηc(t) = ln [Λc(t | xi)] = γ0 +γ2z2 +· · ·+γ(M−1)z(M−1) +xβ+
E∑
l=1

s (ln(t) | αl,ml) xil

(8.6)

with the linear spline variable, γ1 constrained to zero so that γ1z1 = 0. The

corresponding relative survival function, R(t), is now,

R(t) = exp (− exp (ηc(t))) (8.7)

which can also be written as a special case of the non-mixture model in equation

178



8.2 such that,

Rc(t) = πexp(γ2z2+···+γ(M−1)z(M−1)+
∑E

l=1 s(ln(t)|αl,ml)xil) (8.8)

where, π = exp (− exp (γ0 + xβ)), is the cure proportion. Hence, the constant

parameters, γ0 and β, are used to model the cure proportion and time-dependent

parameters model the distribution function, FX(t).

In the presence of competing risks, Eloranta et al. [2014] derives the (crude)

probabilities of death due to cancer and other causes after fitting the flexible

parametric relative survival cure model in equation 8.6. These probabilities are

obtained using similar relationships outlined in section 4.3.2 such that,

Fc,cancer(t) =
∫ t

0
S∗(u)Rc(u)λc(u)du (8.9)

Fc,other(t) =
∫ t

0
S∗(u)Rc(u)h∗(u)du (8.10)

Note that, a cause-specific log-cumulative hazards cure model can also be fit by

adapting equation 8.6. This is done by setting the expected mortality to be equal

to 0 so that, from the relationship in equation 4.1, the log-cumulative excess

hazards cure model simplifies to a log-cumulative hazards one.

8.4.2 Log-cumulative subdistribution hazards scale

In the competing risks scenario, cure would occur in a situation where the cause-

specific cumulative incidence function is constant after a certain point in time
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t. The plateau in the cause-specific cumulative incidence function can be due to

several reasons. The more interesting scenario is when the cause-specific hazards

becomes 0, which means that, by the relationship in equation 6.3, the subdis-

tribution hazard is also 0 for that cause. On the other hand, this plateau can

also be observed due to other reasons, for example, when everyone has died from

other causes, and there are no patients left who are at risk for the cause of inter-

est. In this case, we want to avoid estimating cure when everyone has died from

something else and should only be estimated if we know there are patients who

are still at risk at any given time.

By adapting the approach described by Andersson et al. [2011] and outlined

in section 8.4.1, the cure proportion can be estimated from within the flexible

parametric log-cumulative subdistribution hazards model as defined in equation

6.17. This is done in a similar way, but in this case, it is the log-cumulative

subdistribution hazards that is forced to plateau after the last knot. To do this,

as before, an adjustment must be made to the calculation of the spline variables.

The first spline is a linear function of log-time and by calculating the splines

backwards, the function is forced to be linear after the last knot in the same way

as equation 8.6. Since the subdistribution hazard function for cause k on which

the plateau is modelled on needs to be evaluated whilst simultaneously modelling

all other causes, the final knot must be specified at some (arbitrary) point after

the final observed time of death. Finally, when the plateau for this cause-specific

cumulative incidence function is estimated, the level of it will depend on the cu-

mulative incidence function for all other competing events [Eloranta et al., 2014].

Adapting the methods of Andersson et al. [2011] with the above adjustment
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to a specific cause k = c on which cure is observed, the flexible parametric cure

model with a complementary log-log link for a cause-specific cumulative incidence

function is defined as,

Fc(t|xc) = 1− (1− πc)exp[γ2cz2c+···+γ(M−1)cz(M−1)c+
∑E

i=1 sc(ln(t);αααic,mic)xic] (8.11)

where,

1− πc = 1− exp (− exp(γ0c + xcβββc)) (8.12)

Therefore, the constant parameters, γ0c and xc are used to model the cure pro-

portion for cause k = c. Here, a constraint is imposed on the linear spline, γ1c,

such that it is equal 0. The remaining k 6= c competing causes of death are

modelled using restricted cubic splines defined in a standard flexible parametric

model which do not estimate cure.

8.4.3 Example

In order to fit cure models, it must be reasonable to assume cure on the observed

dataset over a considerably long follow-up time. Therefore, follow-up time was

extended to 180 months and analysis was restricted to colorectal cancer patients

with regional stage at diagnosis, where cure is considered to be a reasonable as-

sumption. This results in a dataset containing survival information on 17,506

female colorectal cancer patients. Age group at diagnosis according to the cat-

egories in table 5.4 was the only included covariate in the model. To assess the

appropriateness of the cure assumption for cancer, the Aalen-Johansen empirical
181



0.00

0.20

0.40

0.60

0.80

1.00

P
ro

ba
bi

lit
y 

of
 d

ea
th

0 30 60 90 120 150 180
Months since diagnosis

55-64 yr olds (Model)

65-74 yr olds (Model)

75-84 yr olds (Model)

55-64 yr olds (AJ)

65-74 yr olds (AJ)

75-84 yr olds (AJ)

Aalen-Johansen vs. Cure Model

0.00

0.20

0.40

0.60

0.80

1.00

 

0 30 60 90 120 150 180
Months since diagnosis

55-64 yr olds

0.1

0.2

0.3

0.4

0.5

65-74 yr olds

0.1

0.2

0.3

0.4

0.5

75-84 yr olds

0.1

0.2

0.3

0.4

0.5

Placement of Last Knot

Figure 8.2. Cause-specific cumulative incidence functions obtained using the
Aalen-Johansen (AJ) estimator compared against those obtained after fitting
a non-proportional log-cumulative subdistribution hazards flexible parametric
cure model (left). The last knot is placed at various times (in months) af-
ter the last observed event time to assess sensitivity to the estimates of the
cancer-specific cumulative incidence function (right). Estimates are obtained
for female patients with regional stage cancer at diagnosis.

estimates were compared against the cancer-specific cumulative incidence func-

tions estimated from a non-proportional log-cumulative subdistribution hazards

cure model within each age group. Cure was estimated for patients who died

from colorectal cancer. Four degrees of freedom were used for the baseline re-

stricted cubic spline functions and the proportionality assumption was relax by

allowing age group at diagnosis to vary over time using restricted cubic splines

with 3 degrees of freedom. The estimated cancer-specific cumulative incidence

functions are provided in the left plot in figure 8.2 for each age group. It can be

seen that, after approximately 150 months since diagnosis, the curve plateaus at

around 30%, 33 % and 37% for the 55-64, 65-74 and 75-84 year olds respectively.

In comparison to the Aalen-Johansen (empirical) estimates, the cancer-specific
182



0.00

0.20

0.40

0.60

0.80

1.00
C

ur
e 

pr
op

or
tio

n

54 57 60 63 66 69 72 75 78 81 84
Age at diagnosis

95% CIs

Change in the Cure Proportion over Age

Figure 8.3. Estimates of the cure proportion over individual age years at diagnosis.

cumulative incidence function predicted from the model slightly underestimates

the cure proportion. However, over follow-up time a good agreement is observed

between the Aalen-Johansen and model estimates, and overall, cure looks reason-

able.

As explained in section 8.4.2, to estimate cure on the cause of interest and force

a plateau, the last knot, mM , must be placed outside the last observed event

time. To assess the sensitivity of the knot placement to the estimate of the

cancer-specific cumulative incidence function in the above model, the last knot

was placed at different lengths outside of the last observed event time. These

were at 0.1, 0.2, 0.3, 0.4 and 0.5 months after the last observed event time of 180

months since diagnosis. The corresponding cancer-specific cumulative incidence

functions for each age group are presented in the plot on the right in figure 8.2.
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As observed, there is little difference between the estimates, however, a deviation

from the plateau is evident as the last knot is placed further away from the last

event time. Therefore, one should be careful with how far the last knot is placed.

It is in fact optimal to place the last knot as close to the last observed event time

as possible to ensure that the plateau is enforced within follow-up time and to

avoid inappropriate extrapolation.

A particular advantage of the flexible parametric modelling approach is the ability

to model (non-linear) continuous covariates. Predictions at individual covariate
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values can then be presented to aid interpretation and visualise changes in, for

example, the cure proportion for every unit increase in the covariate. An example

of this is illustrated by extending the model above with the inclusion of continuous

age at diagnosis. A non-linear effect of age is also incorporated using restricted

cubic splines with 3 degrees of freedom. This is also allowed vary over time using

time-dependent restricted cubic splines with 3 degrees of freedom. Predictions of

the cure proportion are obtained at every age for patients aged between 55 to 84

years old and illustrated in figure 8.3 with their corresponding 95% confidence

intervals. From the plot, it is shown that the cure proportion is marginally

higher in older patients. For example, the cure proportion for patients aged 55

years old at diagnosis is 0.30 and for patients aged 84 years old at diagnosis

the proportion increases to approximately 0.40. Of course, this figure may have

an unusual clinical interpretation since it shows that older patients supposedly

have a higher cure proportion compared to younger patients. However, this may

arise as a consequence of the increased risk of dying from other causes for older

patients. Hence, the plateau in this instance occurs sooner for older patients

predominantly because many are dying from other causes. Therefore, in the

presence of competing risks, it is important to incorporate clinical knowledge

to determine whether in fact fitting cure models are appropriate. In general,

for older patients, estimating the cure proportion may not be appropriate and

instead, such models would be more appropriate for younger cancer patients who

are more likely to experience cure from the cancer in long-term, as opposed to

just be at an increased risk of dying from other causes.
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8.5 An alternative prediction to facilitate communication of cure

models in the presence of competing risks

A useful prediction from the model introduced in section 8.4.2, is the estimate of

the proportion of patients that will eventually die, or are bound-to-die, from can-

cer, or other causes, of those that are still alive. It should be noted, however, that

this is a measure at the population-level and individual patients are not specified

to a particular group. Where a plateau is observed for a particular cause, e.g.

cancer, the cancer-specific cumulative incidence function will no longer increase

beyond a given point in time and allows estimation of the proportion of patients

bound-to-die of cancer amongst those that are still alive [Eloranta et al., 2014].

Using these quantities, patients can be partitioned into two separate groups which

are separated by the summation of those that are bound-to-die from cancer and

the cause-specific cumulative incidence function for death from competing causes

over follow-up time. The two groups, i.e. patients who will ultimately die from

their cancer where k = 1, Palive,can(t), and those who will die from competing

causes where k = 2, · · · , K, Palive,oth(t), can be calculated as follows.

Palive,can(t) = Pbtd,can(t)− F1(t) (8.13)

Palive,oth(t) = 1− F2(t)− · · · − FK(t)− Pbtd,can(t) (8.14)

where Pbtd,can(t) is the proportion of those bound-to-die from cancer on which

cure is assumed. Note that, since it is assumed that cure is reached by the end

of follow-up time, then it follows that the cure proportion is equal to those who
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are bound-to-die from cancer up to time tmax, i.e. Pbtd,can(t) = F1(tmax) = πc.

These are a useful summary measure of patient prognosis as they vary by time

and is conditional on the patients surviving to different points in time. This

further complements the communication of direct flexible parametric models for

the cause-specific cumulative incidence functions when interest primarily lies in

answering more prognostic-related research questions.

8.5.1 Example

It was shown above that predictions introduced by Eloranta et al. [2014] after

fitting flexible parametric cure models on the log-cumulative excess hazards scale

can also be obtained for the competing risks cure model in section 8.4.2. Above

the stacked cause-specific cumulative incidence functions, figure 8.4 also partitions

patients still alive into two different groups as represented by the dashed-line. For

example, for patients aged between 65-74 years old, at 50 months after diagnosis,

approximately 33% have died and 7% are alive and bound to die from cancer.

The remaining 60% that are alive are not bound to die from their cancer but

from other causes or heart disease. At approximately 150 months since diagnosis,

as the point of cure is approached, it is expected that about 57% of patients will

have died and the remaining 43% that are alive, are almost all bound to die from

causes other than their cancer. Beyond this point, it is almost certain that the

patients that remain alive will only die due to other causes or heart disease.

8.6 Discussion

This chapter focuses on the development of models for estimating the cure pro-

portion in the presence of competing risks. Note that, in general, the biological

definition embedded within cure models will not be appropriate and may not be

relevant for some cancers where patients experience high mortality. However, the
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mathematically attractive nature of applying an asymptote to estimate cure can

be useful only when the assumption of cure is appropriate [Lambert et al., 2007].

In other words, this would be when a plateau is observed on the cumulative in-

cidence function for the cause of interest.

To date, very little literature can be found on estimating the cure proportion

in the presence of competing risks that incorporate cause of death information

using maximum likelihood estimation. Eloranta et al. [2014] show how to esti-

mate cure in the presence of competing risks, however, this is done after fitting

a flexible parametric relative survival cure model. Alternatively, Nicolaie et al.

[2018] recently describe a vertical modelling approach for competing risks data

that incorporate a cure proportion using the EM algorithm to estimate param-

eters. More commonly, the competing risks mixture model described by Larson

and Dinse [1985] is applied for estimating cure. Jeong and Fine [2006], on the

other hand, proposes direct modelling of each cause-specific cumulative incidence

function using an improper Gompertz distribution which contains the cure model

for long-term follow up times by definition. This is a simple parametric model,

which may not be appropriate for capturing more complex shapes of the (sub-

distribution) hazard function that are often observed in large cancer registry data.

The ideas proposed by Jeong and Fine [2006] are extended for a more flexible

parametric distribution by modelling the cure proportion using the flexible para-

metric competing risks approach proposed in section 6.6 of this thesis. This is

extended for modelling cure by adapting the non-mixture model described by

[Andersson et al., 2011]. A limitation of this approach is that the choice in the

position at which the last boundary knot is placed outside of the last event time,
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is an arbitrary one. However, it was shown that, if the last knot is placed not too

far after the last observed event time, it has very little impact on the estimate of

the cause-specific cumulative incidence function.

Following on the continued theme in this thesis to make developed methods acces-

sible for researchers, the flexible parametric competing risks cure model has been

made available within the stpm2cr package on the log-cumulative subdistribution

hazards scale (see chapter 10).
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Chapter 9

Beyond the Subdistribution Hazard Ratio: Comparative

Predictions and Estimating Restricted Mean Lifetime

9.1 Outline

This chapter moves beyond reliance on presenting the cause-specific hazard and

subdistribution hazard ratios. The restricted mean lifetime estimate is also pre-

sented as an alternative to the cause-specific cumulative incidence function. Other

useful predictions are introduced along with some examples that illustrate how

they can be used to facilitate the interpretation and reporting of competing risks

analyses.

9.2 Introduction

As data becomes larger and more complex, so does the interpretation of asso-

ciated model parameters. An advantage of fitting flexible parametric models

for simultaneously estimating each k cause-specific cumulative incidence func-

tions in competing risks data, is the ease at which post-estimation predictions

can be obtained to aid interpretation. This is particularly advantageous when

the proportional subdistribution hazards assumption does not hold and time-

dependent effects must be included to more accurately capture the shape of the

data. However, suppose a researcher did choose to fit a Fine & Gray model

with time-dependent effects. In such cases, usually only subdistribution hazard
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ratios are reported at different time points (e.g. at 1, 5 and 10 years from di-

agnosis), or plots of the subdistribution hazard ratios are presented. However,

presenting other predictions to facilitate interpretation is computationally diffi-

cult and expensive, especially when differences between groups of patients are of

interest since the baseline subdistribution hazard must first be estimated non-

parametrically. This is not the case for flexible parametric models in general,

since the baseline (log-cumulative) subdistribution hazard function is estimated

as part of likelihood estimation.

This chapter details some useful predictions which are obtainable after fitting

a log-cumulative subdistribution hazards model. These are most useful after fit-

ting more complex models, for example, when including time-dependent effects, or

obtaining predictions at individual values for continuous covariates. To illustrate

predictions which facilitate interpretation of more complex model parameters, a

non-proportional log-cumulative subdistribution hazards model is fitted.

9.3 A typical competing risks analysis

The dataset used in this chapter to illustrate the use of further predictions that

facilitate communication of a competing risks analysis only includes information

on patients with localised or regional stage at diagnosis. Patients with distant

stage cancer are excluded due to a very high effect on mortality (see, for example,

table 7.2) which leave only a few patients at risk towards the end of follow-up

time. As most of these deaths are due to the cancer, the effect of competing causes

of death is small and therefore, less interesting practically. For distant stage pa-

tients, when adjusting for other covariates, like age, it may also lead to unstable

estimates at the tails and cause some model convergence issues. This usually
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means that some complex interactions have been missed that must be considered

in the model, for example between stage and age. This will complicate analyses

and interpretation, however, here, models are kept as simple as possible to focus

on illustrating some predictions obtainable after fitting the models introduced in

section 6.6.

After excluding distant stage patients, information on 35,508 female patients aged

between 55 to 84 years old remain. Follow-up time is restricted at 120 months.

Covariates continuous age and stage at diagnosis are included in the direct flexi-

ble parametric model for simultaneously estimating all 3 cause-specific cumulative

incidence functions. Four degrees of freedom were used for the baseline restricted

cubic splines and a non-linear effect of age was included using restricted cubic

splines with 3 degrees of freedom. Since generally, as shown in section 7.3.2, the

effect of stage on mortality is stronger shortly after diagnosis compared to later

in time, proportional subdistribution hazards is not a reasonable assumption.

Therefore, time-dependent effects were also included to allow the effect of stage

at diagnosis and non-linear continuous age to vary over time for all 3 causes of

death using 3 degrees of freedom. With the inclusion of time-dependent effects

on non-linear age, spline-by-spline interactions are required.

Due to complex interactions between the covariates and the time-dependent re-

stricted cubic spline variables it is difficult to directly interpret estimated model

parameters. Instead, subdistribution hazard ratios are presented alongside their

associated cause-specific cumulative incidences for specific covariate patterns.

These are plotted in figures 9.1 and 9.2.
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Figure 9.1. Subdistribution hazard ratios for deaths from cancer, other
causes and heart disease obtained from the non-proportional log-cumulative
subdistribution hazards model with non-linear continuous age and stage at di-
agnosis. Estimates are obtained for female patients aged 60, 70 and 80 years
old at diagnosis comparing regional stage patients to localised stage patients
at diagnosis.

A single subdistribution hazard ratio is usually reported after fitting a propor-

tional subdistribution hazards model i.e. the Fine & Gray model. However, with

the inclusion of time-dependent effects, interpretation is more difficult as this ra-

tio will vary over time. Therefore, to show how the subdistribution hazard ratio

varies over the whole follow-up period, it is better to plot these as illustrated in

figure 9.1. These are obtained for 60, 70 and 80 year old patients which compare

regional stage patients at diagnosis to those with localised stage at diagnosis. For

80 year old patients with regional stage at diagnosis, at approximately 30 months

since diagnosis, the subdistribution hazard rate of death due to cancer is 7 times
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higher in comparison to localised stage patients at diagnosis. This translates to

a much higher risk of dying due to cancer in regional stage patients compared

to localised stage patients as illustrated later in figures 9.2 and 9.3. However,

the relative difference in the effect of stage on the subdistribution hazard rate of

death due to cancer reduces over time which means that the rate of change in

the respective cumulative incidence function also decreases over time (see figure

9.2). For example, at 120 months since diagnosis, the subdistribution hazard

rate is now approximately only 1.5 times higher for regional stage patients. For

the younger patients (60 and 70 year olds), the relative difference at 30 months

since diagnosis is slightly lower where regional stage patients have a 5.25 and

6.8 times higher subdistribution hazard rate of death due to cancer respectively.

However, the effect of stage at diagnosis on the subdistribution hazard rate does

not decrease as much as for 80 years olds where, at 120 months since diagnosis, it

is only approximately 2.4 and 2.1 times higher for 60 and 70 year regional stage

patients respectively.

In the first few months after diagnosis for other causes and heart disease, the

subdistribution hazard ratios show a higher subdistribution hazard rate of death

for those with a more severe stage at diagnosis. Various factors could explain

this peak which may be due to either misclassification in the cause of death for

patients diagnosed with cancer at a later stage, or, due to an incidental diagnosis

of the cancer. In such cases, the patient is actually less likely to die from other

causes or heart disease and more likely to die from the cancer. After the first 5

months, the effect of a more severe stage at diagnosis on the subdistribution haz-

ard rate of death due to other causes and heart disease is in the opposite direction

to the subdistribution hazard ratios for deaths due to cancer. For example, at 120
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months since diagnosis, for 60 year old patients with regional stage at diagnosis,

the subdistribution hazard rate of death due to other causes and heart disease

are approximately 0.53 and 0.58 times the subdistribution hazard rate due to

localised stage at diagnosis respectively. The relative difference between the two

stage groups for 70 and 80 year olds are also similar.
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Figure 9.2. Cause-specific cumulative incidence functions obtained from the
non-proportional log-cumulative subdistribution hazards model with non-linear
continuous age and stage at diagnosis. Estimates are obtained for female pa-
tients aged 60, 70 and 80 years old at diagnosis by localised and regional stage
group at diagnosis.

Researchers often prefer reporting subdistribution hazard ratios that provide p-

values and tests for significant differences between groups which are easily ob-

tained through regression parameters. However, due to the awkward definition

behind the risk-set of a subdistribution hazard, many often misinterpret esti-

mated parameters as also providing the magnitude in the effect of covariates on
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risk. Instead, various authors suggest presenting cumulative incidence functions

for the cause of interest which may be easier to understand for those from a non-

technical background [Latouche et al., 2013; Austin and Fine, 2017b].

Since the cause-specific cumulative incidence functions for all K causes of death

are simultaneously estimated as part of the model fitted above, these can be illus-

trated in the form of a stacked plot. This is shown in figure 9.2, which stacks the

cause-specific cumulative incidence functions for the 3 causes of death which will

be different at every age. This is illustrated separately for the two stage groups

for patients aged 60, 70 and 80 years old at diagnosis. This shows that, for both

stage groups, the probability of death due to all-causes increases as patients get

older. For example, for localised stage patients at diagnosis, the probability of

dying from any cause at 120 months after diagnosis is 18%, 32% and 60% for 60,

70 and 80 year old patients at diagnosis respectively. However, by partitioning

for each cause of death, for older patients, a larger proportion of the all-cause

probability of death is observed to be due to heart disease and other causes. In

fact, at 120 months since diagnosis, the probability of dying from cancer for 60,

70 and 80 year old patients is 8%, 9% and 11% respectively which are all quite

similar and show only a marginal increase for older patients. For regional stage

patients at diagnosis, a similar situation also occurs, however, the contribution

of the competing causes of death on the all-cause probability of death is lower as

the patient gets older, and the effect of a more severe stage at diagnosis on the

probability of dying from cancer is higher.
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9.4 Estimating comparisons between two covariate groups

Researchers are often interested in comparing different groups of patients and

whether any observed differences are in fact significant. In general, there is an

over-reliance on the use of hazard ratios and is usually reported as the sole effect

measure for describing differences in, for example, treatment effects [Spruance

et al., 2004; Blagoev et al., 2012; Uno et al., 2014]. To better interpret the con-

tribution of each cause of death to total mortality and differences in risk between

two covariate groups (with confidence intervals), researchers may prefer to present

risk ratios, or absolute risk differences as introduced below [Irwig, 2007; Zhang

and Fine, 2008]. These offer a way to express differences in the effect of covariates

on risk visually rather than through text explanations which may be difficult to

follow. Furthermore, the delta method, as described in section 3.7 can be used

to obtain confidence intervals.

In the context of a competing risks analysis, reporting other measures such as ab-

solute risks provide more information on the impact of different covariate effects

on the cause of interest and competing causes of death over the more commonly

reported subdistribution or cause-specific hazard ratio [Austin and Fine, 2017a].

These predictions are easily obtainable after fitting flexible parametric models

such as the non-proportional log-cumulative subdistribution hazards model from

section 9.3, some of which are exemplified below. Presented together, they provide

effective interpretation of a competing risks analysis thus facilitating communi-

cation.

197



0.00
0.05
0.10
0.15
0.20
0.25
0.30

R
is

k 
di

ffe
re

nc
e

0 30 60 90 120
 

Cancer
 

0.02
0.00

-0.02
-0.04
-0.06
-0.08
-0.10

 

0 30 60 90 120
Months since diagnosis

Other causes
60 year olds

0.01
0.00

-0.01
-0.02
-0.03
-0.04
-0.05

 

0 30 60 90 120
 

Heart disease
 

0.00
0.05
0.10
0.15
0.20
0.25
0.30

R
is

k 
di

ffe
re

nc
e

0 30 60 90 120
 

Cancer
 

0.02
0.00

-0.02
-0.04
-0.06
-0.08
-0.10

 
0 30 60 90 120

Months since diagnosis

Other causes
70 year olds

0.01
0.00

-0.01
-0.02
-0.03
-0.04
-0.05

 

0 30 60 90 120
 

Heart disease
 

0.00
0.05
0.10
0.15
0.20
0.25
0.30

R
is

k 
di

ffe
re

nc
e

0 30 60 90 120
 

Cancer
 

0.02
0.00

-0.02
-0.04
-0.06
-0.08
-0.10

 

0 30 60 90 120
Months since diagnosis

Other causes
80 year olds

0.01
0.00

-0.01
-0.02
-0.03
-0.04
-0.05

 

0 30 60 90 120
 

Heart disease
 

Figure 9.3. Predicted absolute risk differences with associated 95% confi-
dence intervals (long dashed line) for deaths due to cancer, other causes and
heart disease. Estimates are obtained for female patients aged 60, 70 and 80
years old at diagnosis comparing patients with regional stage at diagnosis to
those with localised stage at diagnosis.

9.4.1 Absolute risk differences

Estimating the absolute difference in risk between two covariate groups is easily

obtainable after adopting either one of the two approaches proposed in sections

5.6.3 and 6.6 of this thesis. These are the Gauss-Legendre quadrature numer-

ical approximation approach to evaluate the integral for estimating the cause-

specific cumulative incidence function after fitting flexible parametric models on

the (log-cumulative) cause-specific hazards scale for each cause k, or the direct

log-cumualtive subdistribution hazards flexible parametric modelling approach

for estimating all k cause-specific cumulative incidence functions simultaneously.

In this example, obtaining absolute risk differences is illustrated for the latter

after fitting the model in section 9.3.
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The absolute risk difference between patients with regional and localised stage

cancer at diagnosis can be estimated as follows,

F̂k(t | age = 60, regional)− F̂k(t | age = 60, localised) (9.1)

where, for example, F̂k(t | agek = 60, regional) is the predicted kth cause-specific

cumulative incidence function for 60 year old patients with regional stage can-

cer at diagnosis. These can be easily obtained post-estimation after fitting the

above model with 95% confidence intervals using the delta method, which was

introduced in section 3.7 (see section 10.4 for details on stpm2cr post-estimation

predictions).

Figure 9.3 presents absolute risk differences for patients aged 60, 70 and 80 years

old between the two stage at diagnosis groups. These are obtained for each of

the 3 causes of death, cancer, other causes and heart disease along with their

associated 95% confidence intervals using the delta method. At all ages, the esti-

mated absolute risk differences show that, those with a more severe stage cancer

at diagnosis are more likely to die from cancer over the whole follow-up period.

On the other hand, those with a more severe stage at diagnosis are more likely

to die from cancer and therefore, less likely to die from other causes and heart

disease. However, there is only a significant difference in risk due to other causes

and heart disease between the two stage groups after approximately 30 months.

The fact that no significant difference is found before this may possibly be due

to the misclassification of the cause of death that arise in the presence of multi-

ple co-morbidities. It is generally expected that deaths in the short-term will be

cancer-related for those with a more severe stage at diagnosis. However, as many
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of these patients undergo more aggressive cancer treatment, these deaths, which

are actually due to the cancer, may have been instead recorded as a death due

to other causes.

9.4.2 Relative contribution to total risk
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Figure 9.4. Predicted relative contributions to total mortality for deaths due
to cancer, other causes and heart disease. Estimates are obtained for female
patients aged 60, 70 and 80 years old by both stage groups at diagnosis.

Hinchliffe and Lambert [2013] showed that, after fitting a flexible parametric

model on the cause-specific (log-cumulative) hazards scale and obtaining each

of the K cause-specific cumulative incidence functions (see section 5.6.2), other

useful relative measures can be obtained. One of such measures is the relative

contribution of the risk of dying from a cause k to total mortality. At a given

time t, this is calculated as,

F̂k(t | xk)∑K
k=1 F̂k(t | xk)

(9.2)

200



The risk ratio is a useful measure that clinicians can use to communicate patient

prognosis, since it indicates how much of their future risk of dying at time t is

likely to be due to the cancer.

Figure 9.4 shows estimated relative contributions to total mortality for patients

aged 60, 70 and 80 years old with localised and regional stage at diagnosis. For

patients with regional stage at diagnosis, the relative contribution of dying from

cancer to total mortality is highest between approximately 30 to 40 months since

diagnosis for all 3 ages. After this time, the relative contribution of dying from

cancer decreases. A similar trend is also observed for patients aged 60 and 70

years old with localised stage cancer at diagnosis, but with a lower relative con-

tribution of dying from cancer to total mortality. For 80 year old patients with

localised stage cancer at diagnosis, on the other hand, there is a decreasing rela-

tive contribution in the probability of dying from cancer over the whole follow-up

period. For the 80 year old patients, in both stage groups, over-follow up time,

there is a more substantial change in the impact of cancer. For example, for 80

year old patients with localised stage cancer at diagnosis that die at the start of

follow up time, the probability that this is due to the cancer, other causes and

heart disease is approximately 0.41, 0.39 and 0.20. However, for those that die

at 120 months, the probability that it was due to cancer, other causes and heart

disease is approximately 0.20, 0.58 and 0.22 respectively. The impact of cancer

on death also plays more of a role in younger patients compared to older patients.

For instance, the probability that dying at 120 months for 60 year old patients

with localised stage at diagnosis was due to cancer, other causes and heart disease

is approximately 0.40, 0.45 and 0.15 respectively.
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9.5 Estimating restricted mean lifetime and expected number of

years lost

Royston and Parmar [2013] proposes estimation of the restricted mean survival

time, otherwise known as the restricted mean lifetime, as another useful alterna-

tive to the hazard ratio, particularly when the proportional hazards assumption

does not hold [Royston and Parmar, 2011; Karrison, 1987]. This is essentially the

average survival of a patient from time 0 to time t which can also be estimated

as the area under the survival curve with bounds 0 to t.

Formally, in the absence of competing risks, the restricted mean lifetime at t = t∗,

µ(t∗), of a random variable T is equal to the expectation of min(T, t∗). As men-

tioned above, this is also equivalent to the area under the (all-cause) survival

curve up to t∗ which is evaluated as the integral of S(t) over 0 to t∗. Therefore,

µ(t∗) = E(min(T, t∗)) =
∫ t∗

0
S(u)du (9.3)

which is interpreted as the average number of years (or months) lived before time

t∗. This is useful, for example, when communicating to the patient the expected

number of years they will live in the next t∗ years having been diagnosed with

localised stage colorectal cancer. In addition to this, Andersen [2013] proposes

calculation of the expected number of years (or months) lost before time t∗ such

that,

L(0, t∗) = t∗ −
∫ t∗

0
S(u)du (9.4)
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In the presence of competing risks, Andersen [2013] shows that the (total) number

of years lost, L(0, t∗), can be decomposed such that an estimate of the number

of years lost due to cause k can be obtained [Beltrán-Sánchez et al., 2008]. It

follows that since,

S(t) = 1−
K∑
k=1

Fk(t) (9.5)

then the restricted mean lifetime in equation 9.3 can be calculated after obtain-

ing estimates for each cause-specific cumulative incidence function through the

following integral,

µ(t∗) = E(min(T, t∗)) =
∫ t∗

0
S(u)du

=
∫ t∗

0
1−

K∑
k=1

Fk(u)du

= t∗ −
∫ t∗

0

K∑
k=1

Fk(u)du

(9.6)

Equation 9.4 can also be written as a sum of the integral of each predicted cause-

specific cumulative incidence function such that,

L(0, t∗) = t∗ −
∫ t∗

0
S(u)du =

K∑
k=1

∫ t∗

0
Fk(u)du (9.7)

and,

Lk(0, t∗) =
∫ t∗

0
Fk(u)du (9.8)
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which gives the expected number of years lost due to cause k before time t∗.

Partitioning in this way is particularly useful for communicating to patients, for

example, the effect of various cancer treatments. For instance, a new treatment

regimen may lead to a reduction in the expected number of years lost due to can-

cer. However, at the same time, for certain covariate groups, it may also lead to

an increase in the expected number of years lost due to other causes. Therefore,

it provides a complete picture on the impact of different covariates on prognosis

and is a useful measure which clinicians can use to help communicate individual

risk to patients.

A similar measure is also commonly estimated and reported within the relative

survival framework which is usually referred to as the number of life years lost, or

the loss in expectation of life. These measures are instead calculated based on a

comparison of the life-expectancy of cancer patients to a comparable population

group who are assumed to be cancer-free [Andersson et al., 2013; Chu et al., 2008;

Burnet et al., 2005].

9.5.1 Estimation on the (log-cumulative) subdistribution hazard scale

Each k cause-specific cumulative incidence functions are estimated simultaneously

via the flexible parametric approach described in section 6.6. Therefore, all that is

required to obtain the restricted mean lifetime in equation 9.6, is to evaluate the

integral over the sum of all cause-specific cumulative incidence functions. This

can be numerically approximated using the Gauss-Legendre quadrature approach

introduced in section 5.6.3. Instead, here the integrand is the cause-specific cumu-

lative incidence function, Fk(t). Due to the sum rule in integration, the integral
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for the restricted mean lifetime in equation 9.6 can also be expressed as,

∫ t∗

0

K∑
k=1

F̂k(u)du =
K∑
k=1

∫ t∗

0
F̂k(u)du (9.9)

and therefore, the expected years lost before time t∗ due to cause k can be esti-

mated by approximating the following integral,

Lk(0, t∗) =
∫ t∗

0
Fk(x)dx ≈ t∗ − 0

2

m∑
i=1

w′iFk

(
t∗ − 0

2 x′i + t∗ + 0
2

)
(9.10)

the sum of which can be used to also estimate the restricted mean lifetime in

equation 9.6. The associated 95% confidence intervals are obtained using the

delta method with analytically derived derivatives which do not require much

computational effort. These are calculated by applying the Leibniz rule for dif-

ferentiation under the integral sign such that,

d

dx

(∫ t∗

0
Fk(x)dx

)
=
∫ t∗

0

d

dx
Fk(x)dx (9.11)

Figure 9.2 presented stacked estimated cumulative incidences for cancer, other

causes and heart diseases from the model in section 9.3. The corresponding

restricted mean lifetime is thus calculated as the white area in figure 9.2, which is

estimated using equation 9.6. This is illustrated in figure 9.5 for 60, 70 and 80 year

old patients with regional stage at diagnosis where the red dashed line represents

living the entire time up to time t∗. In this plot, interest is in observing how far

the estimates deviate from the reference line. The further the estimates deviate

from this line, the more life-months are lost. The expected number of months lost
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before time t∗ due to cancer, other causes and heart disease is similarly calculated

as the area corresponding to each cause of death in figure 9.2 and is estimated

using equation 9.10. This is essentially a partitioning of the average number of

months lost due to any cause (t∗ minus average number of months lived before

time t∗) into the different causes of death which is illustrated in figure 9.6. These

estimates provide a useful interpretation from the patient’s perspective as an

alternative to communicating prognosis as probabilities of death which are not

always so easily understood which was also highlighted in chapter 4. For example,

using figures 9.5 and 9.6, it is shown that 70 year old patients with regional stage

at diagnosis are expected to live an average of approximately 82 months in the

first 120 months since diagnosis, while 27 months were lost due to the cancer,

8 months were lost due to other causes and 3 months were lost due to heart

disease. However, interpretation of both measures is difficult and the relation

between them is unclear, particularly when presented graphically and if figures

9.5 and 9.6 are not interpreted together. Therefore, deciding how to present such

measures will require more careful consideration. In particular, the x-axis changes

in figure 9.6 since it refers to the expected number of months lost before a certain

point in time which is not cumulative on previous time-points. Thus many may

mistake this as a time-scale as defined in typical survival plots and there is a

danger that figure 9.6 could be misinterpreted as a cumulative measure, which it

is not. It is also important to highlight that, although the restricted mean lifetime

measure is intuitively attractive, interpretation and results highly depends on the

choice of t∗ [Royston and Parmar, 2011; Andersen, 2017; Zhao et al., 2016] . In

general, it has been suggested that a rule should be pre-specified for choosing t∗

according to the clinical relevance and aim of the study [Uno et al., 2014].
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Figure 9.5. Predicted restricted mean lifetime estimates for 60, 70 and 80
year old patients with regional stage at diagnosis with 95% confidence intervals
(dashed line)

9.5.2 Estimation on the (log-cumulative) cause-specific hazards scale

In a similar way, equations 9.10 can be evaluated from predicted cause-specific cu-

mulative incidence functions that are obtained from cause-specific log-cumulative

hazard flexible parametric models using the method in section 5.6.3. Again, the

integral in equation 9.10 is evaluated using the Gauss-Legendre numerical approx-

imation approach. However, estimation in this case is slightly more complicated,

since this requires evaluation of the following double integral,

∫ t∗

0
Fk(x)dx =

∫ t∗

0

∫ x

0
f ∗k (u)dudx (9.12)

This presents a major computational advantage of adopting the Gauss-Legendre
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Figure 9.6. Predicted expected number of months lost before time t∗ due to
cancer, other causes and heart disease for 60, 70 and 80 year old patients with
regional stage at diagnosis. 95% confidence intervals are also provided (dashed
line).

quadrature approach for numerical integration over the trapezoidal rule previ-

ously used to estimate the cause-specific cumulative incidence function (see sec-

tion 5.6.2). For example, as shown in figure 5.6, accurate estimation using the

trapezoidal rule requires at least 500 split time intervals. This means that eval-

uating the double integral in equation 9.12 leads to 500 × 500 = 250, 000 split

time intervals. On the other hand, for the equivalent scenario illustrated in figure

5.6, to obtain appropriate stability in estimation, using 50 nodes in the Gauss-

Legendre numerical approximation approach is sufficient. This requires signifi-

cantly less computational effort where calculation over 50× 50 = 2500 number of

points is required. Thus, by using the Gauss-Legendre numerical approximation

for the double integral, equation 9.12 leads to,
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∫ t∗

0
Fk(x)dx = t∗ − 0

2

m∑
i=1

w′iFk


x∗︷ ︸︸ ︷

t∗ − 0
2 x′i + t∗ + 0

2


= t∗ − 0

2

m∑
i=1

w′i

x∗ − 0
2

m∑
j=1

w′jf
∗
k

(
x∗ − 0

2 u′i + x∗ + 0
2

)
(9.13)

where u′i are the nodes for the inner integral in equation 9.12. Equation 9.13 is

then used to obtain estimates of the restricted mean lifetime and expected num-

ber of years (or months) lost before time t∗ due to cause k. Finally, as before,

analytically derived derivatives for the delta method is obtained using the Leibniz

rule in equation 9.11 to calculate associated 95% confidence intervals.

Figures 9.7 and 9.8 show restricted mean life estimates and expected number

of months lost due to cancer, other causes and heart disease before time t∗.

These were obtained after fitting a (log-cumulative) cause-specific hazards flexi-

ble parametric models using the approach described in section 5.6.3. Estimates

are contrasted against those that are obtained from the equivalent model fitted on

the log-cumulative subdistribution hazards scale simultaneously for all k causes

in section 9.5.1. From figure 9.8, some disagreement is observed between the

estimates from the two models, which is more apparent in the patients aged 60

and 70 years old. This is a result of the issue highlighted in section 9.3 regarding

important interactions that must be included when simultaneously modelling all

k cause-specific cumulative incidence functions. In this instance, this is the inter-

action effect between age and stage at diagnosis on the risk of dying from different

causes, which has not been included and is evidently important for younger pa-

tients. For example, the effect of a more severe stage at diagnosis on the risk of
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dying from cancer in younger patients will decrease over-time. This is because

these patients are likely to generally be healthier at diagnosis compared to pa-

tients that are older. Therefore, since this interaction has not been included (to

keep the model simple for the purposes of illustration), the effect of a more se-

vere stage at diagnosis is over-estimated later in follow-up time in comparison to

the estimates obtained from the flexible parametric model on the log-cumulative

cause-specific hazards scale. On the (log-cumulative) cause-specific hazards scale,

effectively, each cause of death is modelled separately and so different interaction

effects for each cause do not need to be considered.
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line) with those predicted on the log-cumulative subdistribution hazards scale
(solid line). Estimates obtained for 60, 70 and 80 year old patients with regional
stage at diagnosis
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Figure 9.8. Predicted expected number of months lost before time t∗ due
to cancer, other causes and heart disease for 60, 70 and 80 year old patients
with regional stage at diagnosis. Those obtained from a flexible parametric
model on the log-cumulative cause-specific hazards scale (dashed line) are con-
trasted against those obtained on the log-cumulative subdistribution hazards
scale (solid line).

9.6 Discussion

This chapter highlights some of the predictions available that aid in the communi-

cation of competing risks analyses. These are useful especially after fitting more

complex models that incorporate time-dependent effects. Due to the awkward

interpretation of subdistribution hazard ratios, to interpret differences between

covariate groups, several predictions based on the cumulative incidence, or risk,

are proposed. This includes the relative contribution to total risk, risk differences

and restricted mean lifetime estimates. Further demonstrated is a particular ad-

vantage of fitting flexible parametric models. This is the ability to easily include

continuous covariates in the model, for example age, and obtain predictions post-

estimation at individual covariate values.
211



The restricted mean lifetime (or survival time) contains a dimension of time and

has therefore been proposed by many as a very useful alternative to the hazard

ratio, particularly when the proportionality assumption does not hold [Karrison,

1987; Royston and Parmar, 2011; Uno et al., 2014; Zhao et al., 2016]. This extends

to competing risks analysis where it is especially attractive since the restricted

mean lifetime estimate is much easier to interpret compared to the more awk-

ward subdistribution hazard ratio. Furthermore, this has a useful decomposition

which provides the expected number of years or months lost due to a specific

cause [Andersen, 2013]. Interpretation of the restricted mean lifetime, however,

is highly dependent on the appropriate choice of t∗ for the restricted interval as

it could otherwise lead to misleading results. This is something researchers must

be aware of prior to analysis, and it is recommended that the choice of t∗ should

always be pre-specified as part of the research question.

Further comparative predictions in relation to the restricted mean lifetime es-

timate can be obtained on both log-cumulative cause-specific hazards and sub-

distribution hazards scales. For example, Royston and Parmar [2013] describes

the calculation of the difference in restricted mean lifetime between two covariate

groups which can also be obtained from the models proposed in this thesis. Sim-

ilarly, the difference between the expected number of years lost due to a cause

k can also be estimated. These facilitate, for example, treatment decisions for

patients who wish to evaluate differences in impact on future prognosis. Further-

more, these predictions can be extended for conditional restricted mean lifetime

estimates and expected years lived before time t∗. This can be done simply by
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dividing the estimate by the total all-cause survival function as shown in equa-

tion 3.31. Confidence intervals for these predictions can be easily obtained using

the delta method described in section 3.7. This is computationally quick as the

derivatives required for the delta method are obtained analytically and computed

directly in Mata (see section 10.4.3).

It is also important to note here that many studies often mistakenly infer that

the relative quantitative effect of a covariate on the cause-specific cumulative

incidence function is equivalent to the quantitative effect of a covariate on the

subdistribution hazard ratio due to cause k [Austin and Fine, 2017b]. To deter-

mine this, is incorrect as one may infer only that the direction in the relative

effect of a covariate on risk is the same as it would be for that same covariate on

the subdistribution hazard ratio. In other words, the magnitude of the relative

effect for the same covariate is not necessarily the same on the cause-specific cu-

mulative incidence function, as it is on the subdistribution hazard rate of death.

This is because the baseline effect on each cause-specific cumulative incidence

function will be different. On the other hand, the relative (or absolute) difference

in the magnitude of two different covariate effects on risk can be inferred from

the size of effect on the subdistribution hazard rate of death for cause k. For

example, if the effect of stage is higher in comparison to the effect of age on the

subdistribution hazard rate of death due to cause k, then this can also be inferred

for the risk of dying from cause k.

A large portion of work carried out throughout the PhD has heavily centred on

the importance of translating proposed methods into practise by making them ac-

cessible for researchers. Therefore, a significant amount of time was allocated for
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developing software in Stata for easy implementation of all methods developed as

part of this thesis. As such, in the next chapter, the user-friendly Stata command,

stpm2cr, is introduced which allows the user to easily fit models on both scales

using convenient syntax. Furthermore, obtaining predictions (with confidence in-

tervals) is trivial using the post-estimation command, predict. Computational

efficiency is also maximised by coding programs within Mata.
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Chapter 10

Introducing stpm2cr for the Translation of Competing

Risks Methods into Practice

10.1 Outline

This chapter introduces stpm2cr - a command that has been written for imple-

mentation of the methods proposed throughout this thesis. A version has already

been released, which is available from the Boston College Statistical Software

Components (SSC) archive, and an article has also been published in the Stata

Journal (see appendix D) [Mozumder et al., 2017]. stpm2cr can be installed in

Stata using the command ssc install stpm2cr.

10.2 Introduction

There are a number of different tools available in Stata that allow estimation

of the cause-specific cumulative incidence function in the presence of competing

risks. An empirical, non-parametric estimate of the cause-specific cumulative

incidence function can be obtained using the user-written command stcompet

which applies the Aalen-Johansen approach described in section 5.4.1 [Coviello

and Boggess, 2004]. Alternatively, regression models can be fitted on either the

cause-specific hazards or subdistribution hazards scale, the choice of which relates

to the research question to be answered (see section 6.2) [Sapir-Pichhadze et al.,

2016; Noordzij et al., 2013; Koller et al., 2012].
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If interest is in aetiology, as introduced in chapter 5, cause-specific (proportional)

hazards regression models can be fitted from within a typical semi-parametric

Cox model using stcox in Stata. However, after stcox, there is no easy way

for obtaining cause-specific cumulative incidence functions themselves, which is

necessary for competing risks analyses. The most popularly applied method for

modelling covariate effects on the cause-specific cumulative incidence function

is the Fine & Gray model [Fine and Gray, 1999] and is available through the

stcrreg command. However, each cause must be modelled individually, par-

ticularly for obtaining predictions that allow the researcher to get a complete

understanding of the impact of the disease on prognosis. Furthermore, in Stata,

software is currently unavailable for the estimation of confidence intervals after ob-

taining estimates of the cause-specific cumulative incidence function using stcox

or stcrreg. Instead, these must be obtained using computationally intensive

bootstrapping simulation techniques, which is impractical for larger population-

based datasets.

In this thesis, the use of parametric methods using the full-likelihood is pro-

posed for obtaining smooth estimates of the baseline log-cumulative subdistri-

bution hazard function for a particular cause, which can easily extend to in-

corporate non-proportional effects. Such competing risks models, including the

semi-parametric models above, can be fit using the user-written stcrprep com-

mand which restructures the data and calculates appropriate weights as detailed

in section 6.5.2. Standard Stata survival analysis commands can then be used to

fit computationally intensive competing risks models, such as the Fine & Gray

model, more quickly and also allows flexible parametric models for the cause-

specific cumulative incidence function to be fitted [Lambert et al., 2017].
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A significant portion of the work conducted during the PhD has involved the

continued translation of developed methodology into user-friendly software. This

motivated the development of the stpm2cr command which adopts the full likeli-

hood approach described in section 6.6. Fitting flexible parametric models for the

cause-specific cumulative incidence function using stpm2cr in this way is com-

putationally quicker than fitting models with stcrprep since the restructuring

of data and the calculation of time-dependent censoring weights is not required

(see section 7.4). An additional advantage of these models is that we are able to

model all cause-specific cumulative incidence functions simultaneously with co-

variate effects modelled on all competing causes. This facilitates the estimation

of useful predictions to accompany the reporting of competing risks analyses as

discussed in chapter 9.

10.3 The command

stpm2cr is an estimation command and shares most of the features of standard

Stata estimation commands. The current version of stpm2cr allows the user to

fit the flexible parametric models described in section 6.6 on the log-cumulative

subdistribution hazards scale. The syntax of the command is as follows:

stpm2cr
[
equation1

][
equation2

]
...
[
equationN

] [
if
] [

in
]

, events(varname)
[

censvalue(#) cause(numlist) model(string) level(#) alleq noorthog eform

oldest mlmethod(string) lininit maximise_options
]

Where equation1, equation2, . . . , equationN are the equations for each competing

event. Note that at least two equations must be specified. The syntax of each

equation is:
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causename:
[

varlist
]
, scale(scalename)

[
df(#) knots(numlist) tvc(varlist)

dftvc(df_list) knotstvc(numlist) bknots(knotslist) bknotstvc(numlist) noconstant

cure
]

This allows the user to easily specify potentially different covariate effects sep-

arately for each cause. However, usually, if a covariate is associated with the

increase/decrease in the risk of dying from a particular cause, it is also likely to

have some sort of direct/indirect effect on the risk of competing causes of death.

Therefore, it is recommended that the same covariates are included in all equa-

tions for each cause of death. On the other hand, being able to specify separate

equations for each cause of death means that the restricted cubic spline variables

are calculated separately for each cause of death. Hence, the knot positions are

placed in relation to the distribution of the event times specific to that particular

cause.

10.3.1 Maximising the direct likelihood

Direct flexible parametric models for simultaneously estimating all cause-specific

cumulative incidence functions is based on maximising the full likelihood in equa-

tion 6.11. As outlined in section 3.3.1, the maximisation problem for flexible

parametric models is approached by using the Newton-Raphson iterative tech-

nique. The Newton-Raphson algorithm for maximising the likelihood in equation

6.11 for the flexible parametric models described in section 6.6 is as follows:

(1) A vector of initial values, θik, is obtained by regressing Aalen-Johansen

estimates of each cause-specific cumulative incidence function estimated

using stcompet. These are regressed with the baseline restricted cubic

spline variables and any other covariates that are included in the model

for each cause k.
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(2) The gradient vector, gk(θik), and the slope of the gradient vector, i.e. the

Hessian, H(θik) are calculated analytically for each cause of death.

(3) A new set of values, θi+1,k, are calculated such that,

θi+1,k = θik + {−H(θik)}−1g(θik) (10.1)

(4) The above steps are initialised and repeated using the moptimize() com-

mand in Mata until the convergence criteria set out in section 3.3 is met.

10.3.2 Fitting the models

Rather than fitting a model to each cause-specific cumulative incidence function

separately, as is done for stcrreg, maximising the full likelihood in equation 6.11

allows the user to instead model all cause-specific cumulative incidence functions

simultaneously. As for other typical survival models in Stata, the data must be

stset first before using stpm2cr. All events must be specified in the failure

option of stset. For example, for preparing the data used to fit the models in

section 7.3, the following needs to be ran before stpm2cr,

. stset survmm, failure(cause == 1, 2, 3) id(id) exit(time 120)
id: id

failure event: cause == 1 2 3
obs. time interval: (survmm[_n-1], survmm]
exit on or before: time 120

17,826 total observations
133 observations end on or before enter()

17,693 observations remaining, representing
17,693 subjects
10,451 failures in single-failure-per-subject data

818,092.5 total analysis time at risk and under observation
at risk from t = 0

earliest observed entry t = 0
last observed exit t = 120

As a demonstration of fitting models using stpm2cr, the code used to fit the

model in section 7.3.2 is presented:
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. stpm2cr [cancer: stage2 stage3, scale(hazard) df(4) tvc(stage2 stage3) dftvc(3)] ///
> [other: stage2 stage3, scale(hazard) df(4) tvc(stage2 stage3) dftvc(3)] ///
> [cvd: stage2 stage3, scale(hazard) df(4) tvc(stage2 stage3) dftvc(3)] ///
> , events(cause) cause(1 2 3) cens(0) eform
Generating Spline Variables for Cause 1
Generating Spline Variables for Cause 2
Generating Spline Variables for Cause 3
Note: Causes have been coded as ´cancer = 1 other = 2 cvd = 3´. If incorrect, please ensure
equations are specified in the same order as the indicator(s) in events().
Obtaining Initial Values
Starting to Fit Model
Log likelihood = -34039.548 Number of obs = 17,693

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cancer
stage2 3.241146 .1646054 23.15 0.000 2.934062 3.58037
stage3 15.45134 .7454869 56.74 0.000 14.05717 16.98378

_rcs_c1_1 2.482036 .0802523 28.12 0.000 2.329625 2.644419
_rcs_c1_2 1.130287 .0250373 5.53 0.000 1.082265 1.18044
_rcs_c1_3 .9233394 .009921 -7.42 0.000 .9040979 .9429903
_rcs_c1_4 1.044851 .0045436 10.09 0.000 1.035984 1.053794

_rcs_stage2_c1_1 1.188742 .0473173 4.34 0.000 1.099527 1.285196
_rcs_stage2_c1_2 1.031302 .0270628 1.17 0.240 .9796006 1.085732
_rcs_stage2_c1_3 1.109736 .0157782 7.32 0.000 1.079238 1.141095
_rcs_stage3_c1_1 .9964291 .0347674 -0.10 0.918 .9305641 1.066956
_rcs_stage3_c1_2 1.173669 .0276261 6.80 0.000 1.120753 1.229083
_rcs_stage3_c1_3 1.070813 .0135477 5.41 0.000 1.044587 1.097698

_cons .0552199 .0024371 -65.63 0.000 .050644 .0602093

other
stage2 .9243154 .0505607 -1.44 0.150 .8303456 1.02892
stage3 1.172529 .0743414 2.51 0.012 1.035512 1.327676

_rcs_c2_1 3.537674 .136137 32.83 0.000 3.280665 3.814818
_rcs_c2_2 .9327893 .0206785 -3.14 0.002 .8931281 .9742117
_rcs_c2_3 .886791 .0087416 -12.19 0.000 .8698222 .9040908
_rcs_c2_4 .9909186 .0038863 -2.33 0.020 .9833307 .998565

_rcs_stage2_c2_1 .8690621 .0455325 -2.68 0.007 .7842492 .9630472
_rcs_stage2_c2_2 1.05698 .031357 1.87 0.062 .9972741 1.120261
_rcs_stage2_c2_3 1.045787 .0142562 3.28 0.001 1.018216 1.074106
_rcs_stage3_c2_1 .4810719 .0219884 -16.01 0.000 .4398495 .5261576
_rcs_stage3_c2_2 1.286823 .0339487 9.56 0.000 1.221976 1.355112
_rcs_stage3_c2_3 1.065307 .0119185 5.65 0.000 1.042201 1.088925

_cons .0794991 .0030597 -65.79 0.000 .0737229 .0857279

cvd
stage2 .8969145 .0703649 -1.39 0.166 .7690816 1.045995
stage3 .6501166 .0717764 -3.90 0.000 .5236172 .8071766

_rcs_c3_1 3.310769 .1740549 22.77 0.000 2.986615 3.670105
_rcs_c3_2 .9485564 .0278919 -1.80 0.072 .8954347 1.00483
_rcs_c3_3 .9130615 .0120868 -6.87 0.000 .8896765 .9370613
_rcs_c3_4 .9923582 .0056784 -1.34 0.180 .981291 1.00355

_rcs_stage2_c3_1 .8582831 .0611504 -2.14 0.032 .7464224 .9869074
_rcs_stage2_c3_2 1.028067 .0404952 0.70 0.482 .9516837 1.11058
_rcs_stage2_c3_3 1.007287 .0182547 0.40 0.689 .9721366 1.043709
_rcs_stage3_c3_1 .5271021 .0383377 -8.80 0.000 .4570717 .6078621
_rcs_stage3_c3_2 1.280742 .0517157 6.13 0.000 1.183288 1.386222
_rcs_stage3_c3_3 1.055407 .0168982 3.37 0.001 1.022801 1.089051

_cons .038257 .0020898 -59.74 0.000 .0343728 .0425802
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As shown above, an equation is specified for each cause within the square brack-

ets along with their respective options. These are similar to those used for

stpm2 where df(4) implies 3 internal knots [Lambert and Royston, 2009]. The

tvc(stage2 stage3) and dftvc(3) options states that the effect of the stage2

and stage3 variables are allowed to be time-dependent using restricted cubic

splines with 2 internal knots (i.e. 3 degrees of freedom). Overall, there are 13

parameters being estimated for each cause in the model. For example, for cancer,

in addition to the baseline covariate effects (2) and the constant parameter, there

are 4 derived restricted cubic spline variables for the baseline log-cumulative sub-

distribution hazard (_rcs_c1_1-_rcs_c1_4) and 3 derived splines for the time-

dependent effect for each stage group, stage2 (_rcs_stage2_c1_1-_rcs_stage2_c1_3)

and stage3 (_rcs_stage3_c1_1-_rcs_stage3_c1_3). The estimated subdistri-

bution hazard ratios are displayed for each cause and their 95% confidence inter-

vals.

In a time-dependent model, parameter estimates become more complex and are

not very useful when interpreted on their own. Instead, it is better to obtain

predictions between groups for specific covariate patterns as relative and/or ab-

solute differences over time by using predict. Predictions that are obtainable

post-estimation is shown in section 10.4.

10.3.3 Cure models

For data with long-term follow-up time, for example, over 10 to 15 years, a plateau

for a specific cause may be observed in the data. In this case, as discussed in chap-

ter 8, it will be of interest to estimate this plateau, otherwise known as the cure

proportion. This involves forcing a plateau in the equation for the cause-specific
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cumulative incidence function on which cure is assumed using the approach de-

scribed in section 8.4.2. Implementing this using stpm2cr is straightforward and

only requires the user to simply specify the cure option in the equation for the

cause of interest (usually cancer) such that,

. stpm2cr [cancer: stage2 stage3, scale(hazard) df(4) tvc(stage2 stage3) dftvc(3) cure] ///
> [other: stage2 stage3, scale(hazard) df(4) tvc(stage2 stage3) dftvc(3)] ///
> [cvd: stage2 stage3, scale(hazard) df(4) tvc(stage2 stage3) dftvc(3)] ///
> , events(cause) cause(1 2 3) cens(0) eform
Generating Spline Variables for Cause 1
Generating Spline Variables for Cause 2
Generating Spline Variables for Cause 3
Note: Causes have been coded as ´cancer = 1 other = 2 cvd = 3´. If incorrect, please ensure
equations are specified in the same order as the indicator(s) in events().
Obtaining Initial Values
Starting to Fit Model
Log likelihood = -34292.209 Number of obs = 17,693

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

cancer
stage2 3.516753 .1503483 29.41 0.000 3.234084 3.824128
stage3 14.94725 .6333025 63.83 0.000 13.75615 16.2415

_rcs_c1_1 2.410241 .0836884 25.34 0.000 2.251672 2.579978
_rcs_c1_2 .8787193 .0089822 -12.65 0.000 .8612897 .8965017
_rcs_c1_3 1.023823 .0079066 3.05 0.002 1.008443 1.039437
_rcs_c1_4 1 (omitted)

_rcs_stage2_c1_1 1.218055 .054079 4.44 0.000 1.116543 1.328796
_rcs_stage2_c1_2 1.015612 .0156358 1.01 0.314 .9854244 1.046725
_rcs_stage2_c1_3 1 (omitted)
_rcs_stage3_c1_1 1.133247 .0429047 3.30 0.001 1.0522 1.220538
_rcs_stage3_c1_2 1.108102 .0141817 8.02 0.000 1.080652 1.13625
_rcs_stage3_c1_3 1 (omitted)

_cons .1228039 .0045804 -56.23 0.000 .1141467 .1321177

other
stage2 .9313244 .050883 -1.30 0.193 .8367496 1.036589
stage3 .9771283 .063095 -0.36 0.720 .8609698 1.108958

_rcs_c2_1 3.543484 .1363805 32.87 0.000 3.286016 3.821125
_rcs_c2_2 .931369 .0206291 -3.21 0.001 .8918018 .9726918
_rcs_c2_3 .8860512 .0087337 -12.27 0.000 .8690978 .9033353
_rcs_c2_4 .9900817 .0037644 -2.62 0.009 .982731 .9974874

_rcs_stage2_c2_1 .8703356 .0456153 -2.65 0.008 .7853701 .9644932
_rcs_stage2_c2_2 1.056054 .0313233 1.84 0.066 .9964122 1.119266
_rcs_stage2_c2_3 1.045237 .0142775 3.24 0.001 1.017625 1.073598
_rcs_stage3_c2_1 .474924 .0216317 -16.35 0.000 .4343639 .5192714
_rcs_stage3_c2_2 1.295539 .0339114 9.89 0.000 1.23075 1.363738
_rcs_stage3_c2_3 1.069083 .011692 6.11 0.000 1.046411 1.092246

_cons .0797081 .0030662 -65.75 0.000 .0739194 .0859501

cvd
stage2 .9036296 .0708299 -1.29 0.196 .7749436 1.053685
stage3 .5460292 .0607361 -5.44 0.000 .439071 .6790426

_rcs_c3_1 3.315543 .1743382 22.80 0.000 2.990864 3.675468
_rcs_c3_2 .9473493 .0278424 -1.84 0.066 .8943212 1.003522
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_rcs_c3_3 .9124368 .0120885 -6.92 0.000 .8890487 .9364402
_rcs_c3_4 .9916458 .0055644 -1.50 0.135 .9807995 1.002612

_rcs_stage2_c3_1 .8595202 .0612638 -2.12 0.034 .7474552 .9883869
_rcs_stage2_c3_2 1.027058 .0404614 0.68 0.498 .9507398 1.109503
_rcs_stage2_c3_3 1.006649 .0183039 0.36 0.715 .9714061 1.043171
_rcs_stage3_c3_1 .5222937 .0378382 -8.97 0.000 .4531568 .6019786
_rcs_stage3_c3_2 1.287565 .051568 6.31 0.000 1.190359 1.392709
_rcs_stage3_c3_3 1.057434 .0164682 3.59 0.000 1.025644 1.090208

_cons .0383473 .0020938 -59.72 0.000 .0344554 .0426788

To fit the cure models in section 8.4.2, the last knot is constrained to be equal to

zero which forces a plateau on the cumulative incidence function. This is shown

in the output above where the parameters for _rcs_c1_4, _rcs_stage2_c1_3

and _rcs_stage3_c1_3 are constrained to equal to one.

The adaptation of useful predictions to facilitate communication of such cure

models shown in section 8.4.2 is available post-estimation. This is done using

the predict command with the cure option after stpm2cr (see section 10.4 and

appendix D for further details).

10.3.4 Using stpm2cr as a wrapper for models on the cause-specific hazards

scale

In this thesis, modelling from within a flexible parametric approach on the (log-

cumulative) cause-specific hazards scale is proposed which allows the user to easily

incorporate time-dependent effects using restricted cubic splines. A user-written

post-estimation command, stpm2cif, after using stpm2 on stacked data has been

made available which applies the integration method outlined in section 5.6.2

[Hinchliffe and Lambert, 2013; Lambert and Royston, 2009; Lambert et al., 2011;

Royston and Parmar, 2002]. However, in section 5.6.3, an alternative numerical

integration approach was proposed which presents significant computational gains

(see section 5.6.4). This has been made available post-estimation after using the
223



stpm2cr command as a wrapper for fitting each k cause-specific log-cumulative

hazards flexible parametric model by specifying the model(csh) option,

. stpm2cr [cancer: stage2 stage3, scale(hazard) df(4) tvc(stage2 stage3) dftvc(3)] ///
> [other: stage2 stage3, scale(hazard) df(4) tvc(stage2 stage3) dftvc(3)] ///
> [cvd: stage2 stage3, scale(hazard) df(4) tvc(stage2 stage3) dftvc(3)] ///
> , events(cause) cause(1 2 3) cens(0) eform model(csh)

Model cancer

Log likelihood = -16647.429 Number of obs = 17,693

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
stage2 3.284051 .1633125 23.91 0.000 2.979069 3.620256
stage3 19.15243 .9157861 61.75 0.000 17.43906 21.03413

_cancer_rcs1 2.656966 .088333 29.39 0.000 2.489356 2.83586
_cancer_rcs2 1.098448 .0253021 4.08 0.000 1.04996 1.149176
_cancer_rcs3 .9053342 .0104745 -8.60 0.000 .8850356 .9260984
_cancer_rcs4 1.039569 .0053715 7.51 0.000 1.029094 1.050151

_cancer_rcs_stage21 1.183492 .0480744 4.15 0.000 1.092921 1.281568
_cancer_rcs_stage22 1.034863 .0281666 1.26 0.208 .9811041 1.091568
_cancer_rcs_stage23 1.114602 .0169632 7.13 0.000 1.081846 1.14835
_cancer_rcs_stage31 1.101103 .040801 2.60 0.009 1.023969 1.184047
_cancer_rcs_stage32 1.143746 .0290209 5.29 0.000 1.088257 1.202064
_cancer_rcs_stage33 1.080219 .015296 5.45 0.000 1.050652 1.110619

_cons .0600776 .0025962 -65.07 0.000 .0551986 .0653878

Note: Estimates are transformed only in the first equation.

Model other

Log likelihood = -11184.227 Number of obs = 17,693

exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
stage2 1.053519 .0557469 0.99 0.324 .9497323 1.168648
stage3 2.310213 .1472582 13.14 0.000 2.038893 2.617637

_other_rcs1 3.815803 .1476619 34.61 0.000 3.537094 4.116473
_other_rcs2 .8951488 .0206881 -4.79 0.000 .8555056 .9366291
_other_rcs3 .8588812 .0093823 -13.93 0.000 .8406877 .8774685
_other_rcs4 .990496 .0055109 -1.72 0.086 .9797535 1.001356

_other_rcs_stage21 .9497043 .0503371 -0.97 0.330 .8559969 1.05367
_other_rcs_stage22 1.011932 .031644 0.38 0.704 .9517736 1.075893
_other_rcs_stage23 1.034425 .0162226 2.16 0.031 1.003114 1.066715
_other_rcs_stage31 .704971 .0392706 -6.28 0.000 .6320549 .786299
_other_rcs_stage32 1.102026 .0423443 2.53 0.011 1.022081 1.188224
_other_rcs_stage33 .99836 .0242141 -0.07 0.946 .9520115 1.046965

_cons .0878931 .0033208 -64.36 0.000 .0816197 .0946488

Note: Estimates are transformed only in the first equation.

Model cvd

Log likelihood = -6174.1359 Number of obs = 17,693
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exp(b) Std. Err. z P>|z| [95% Conf. Interval]

xb
stage2 1.015932 .0764465 0.21 0.834 .8766244 1.177377
stage3 1.268967 .1404288 2.15 0.031 1.021535 1.576332

_cvd_rcs1 3.652115 .193359 24.47 0.000 3.292138 4.051453
_cvd_rcs2 .8946706 .0273764 -3.64 0.000 .8425912 .949969
_cvd_rcs3 .878054 .013235 -8.63 0.000 .8524933 .9043811
_cvd_rcs4 .9839632 .0078471 -2.03 0.043 .9687028 .999464

_cvd_rcs_stage21 .936633 .0678946 -0.90 0.366 .8125828 1.079621
_cvd_rcs_stage22 .9851711 .0411382 -0.36 0.721 .907753 1.069192
_cvd_rcs_stage23 .9960004 .0216857 -0.18 0.854 .9543914 1.039423
_cvd_rcs_stage31 .7416735 .0695606 -3.19 0.001 .6171342 .8913451
_cvd_rcs_stage32 1.189159 .0769267 2.68 0.007 1.047552 1.349908
_cvd_rcs_stage33 1.043275 .0453576 0.97 0.330 .9580584 1.136072

_cons .0439121 .0023345 -58.79 0.000 .0395669 .0487346

Note: Estimates are transformed only in the first equation.
. range tempvar 0 120 100
(17,726 missing values generated)
. forvalues i = 1/3 {

2. predict cif_stage`i´, cif at(stage`i´ 1) zeros timevar(tempvar)
3. }

Like for the models on the (log-cumulative) subdistribution hazards scale, the

user does not need to include the same variables in each cause-specific model.

Whether this is in fact always appropriate was discussed in section 10.3.

The corresponding cause-specific cumulative incidence functions are then ob-

tained by using the cif option for predict. Figure 10.1 shows that estimates for

the cause-specific cumulative incidence function obtained using either stpm2cif,

or predict after stpm2cr show almost perfect agreement. Furthermore, as de-

tailed in section 5.6.4, computation is much quicker when calculating confidence

intervals using the delta method with analytically derived derivatives. This will

lead to further computational gains when adapted for obtaining more computa-

tionally intensive predictions with their associated confidence intervals. These

could include, for example, standardised predictions, which are calculated for

every individual in the data and then averaged, or other useful comparative pre-

dictions.
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Figure 10.1. A comparison of estimated cause-specific cumulative incidence
functions with those obtained from a non-proportional (log-cumulative) haz-
ards flexible parametric model for cancer, other causes and heart disease fitted
using stpm2cr and stpm2cif. Predictions are obtained for female patients
aged over 75 years old at each stage at diagnosis group.

10.4 Post-estimation

10.4.1 Syntax

Predictions available after fitting a modelling using stpm2cr are briefly described

below along with syntax. Further details on each prediction is detailed in Mozumder

et al. [2017] (see appendix D). Note that, regardless of whether models do, or do

not include time-dependent effects, the syntax of obtaining predictions does not

change.

predict newvarname
[

if
] [

in
] [

, at(varname #
[
varname #

]
) cause(numlist)

chrdenominator(varname #
[
varname # ...

]
) chrnumerator(varname #

[
varname

# ...
]
) ci cif cifdiff1(varname #

[
varname # ...

]
) cifdiff2(varname #
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[
varname # ...

]
) cifratio csh cumodds cumsubhazard cured rml(nodes)

shrdenominator(varname #
[
varname # ...

]
) shrnumerator(varname #

[
varname

# ...
]
) subdensity subhazard survivor timevar(varname) uncured xb zeros

deviance dxb level(#)
]

10.4.2 Estimating restricted mean lifetime

In sections 9.5.1 and 9.5.2, estimation of restricted mean lifetimes was intro-

duced after fitting a flexible parametric model on either the cause-specific (log-

cumulative) hazards or (log-cumulative) subdistribution hazards scale. Since all

K cause-specific cumulative incidence functions are obtainable after fitting either

models in stpm2cr, the predict command can be used with the rml() option to

obtain both restricted mean lifetime estimates and the expected number of years

(or months) lost before time t∗ due to each cause. These estimates are calculated

at each time point, t∗, for the time variable specified in timevar(). For instance

predictions can be obtained by,

. range tempvar 12 120 10
(17,816 missing values generated)
. predict lost_stage2, at(stage2 1) zeros rml(100) timevar(tempvar) ci
Calculating predictions for the following causes: 1 2 3
Calculating restricted mean lifetime

An extract of the obtained restricted mean lifetime estimates with expected num-

ber of months lost before each time point in tempvar due to cancer are sum-

marised in table 10.1. The stub _rml is added to the new variable name to

distinguish the restricted mean lifetime estimates from the expected number of

months lost due to cause k.

Similarly, these can also be obtained after fitting models on the log-cumulative
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Months since diagnosis, t∗ µ(t∗) Lower 95% CI Upper 95% CI
(tempvar) (lost_stage2_rml) (lost_stage2_rml_lci) (lost_stage2_rml_uci)
12 8.691 8.522 8.860
24 15.101 14.815 15.386
36 20.447 20.056 20.839
48 25.118 24.622 25.615
60 29.276 28.674 29.879
72 32.996 32.288 33.703
84 36.310 35.500 37.121
96 39.238 38.328 40.149
108 41.794 40.787 42.800
120 43.992 42.891 45.092
Months since diagnosis, t∗ L1(0, t∗) Lower 95% CI Upper 95% CI
(tempvar) (lost_stage2_c1) (lost_stage2_c1_lci) (lost_stage2_c1_uci)
12 2.611 2.452 2.770
24 7.006 6.749 7.263
36 12.163 11.818 12.507
48 17.706 17.274 18.138
60 23.472 22.950 23.994
72 29.391 28.775 30.006
84 35.427 34.716 36.139
96 41.564 40.754 42.373
108 47.787 46.877 48.697
120 54.087 53.075 55.100

Table 10.1. An extract of the predictions obtained after using the rml() and
timevar(tempvar) options for predict. The expected number of months lost
before each time-point in tempvar due to cancer where k = 1, L1(0, t∗), is
shown with stub _c1 and the restricted mean lifetime estimate, µ(t∗), is shown
with stub _rml. Associated 95% confidence intervals are also provided with
stubs _lci and _uci.

cause-specific hazards scale using stpm2cr with the model(csh) option. As com-

putation is more intensive, due to the evaluation of the double integral as illus-

trated in chapter 9, predictions are calculated in Mata with analytically derived

derivatives for the delta method.

10.4.3 The delta method

For the communication of uncertainty in predictions, it is important to obtain

their associated 95% confidence intervals. However, this can be a computation-

ally intensive process, especially for large population-based datasets. Simula-

tion approaches, such as the bootstrap approach, is often employed which is
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impractical for datasets with observations that can exceed the hundreds of thou-

sands. However, obtaining confidence intervals using the delta method through

Stata’s predictnl command significantly reduces computational time and pro-

duces equivalent estimates [Hinchliffe and Lambert, 2013].

As mentioned previously, the flexible parametric approach provides an estimate

for the baseline cause-specific or subdistribution hazard function. This allows the

calculation of confidence intervals using the predictnl command in Stata which

obtains derivatives for the delta method numerically. Although obtaining confi-

dence intervals in this way is quick for simple estimates, for more complicated pre-

dictions, such as standardised or comparative estimates, this can become a more

computationally intensive process. However, the estimation of cause-specific cu-

mulative incidence functions and restricted mean lifetime from cause-specific log-

cumulative hazards flexible parametric models are evaluated over a large number

of split time intervals. Therefore, the computation of associated 95% confidence

intervals can take much longer, even using predictnl. Therefore, to speed up

computation, a Mata program for the delta method was written with analyt-

ically derived derivatives. This significantly improves computational time and

opens up further potential for extending to the estimation of uncertainty in com-

parative or standardised predictions. The program, stpm2cifgq.ado, written for

implementing the Gaussian-Legendre Quadrature numerical integration approach

for obtaining cause-specific cumulative incidence functions and restricted mean

lifetime estimates, as described in sections 5.6.3 and 9.5.2, is provided in appen-

dix E. The associated Mata program for the delta method is embedded within

stpm2cifgq.ado.
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10.5 Discussion

Particular focus throughout this PhD was on the development of user-friendly

software for the effective translation of complex competing risks methods pro-

posed in this thesis into practice. As a result, as introduced in this chapter,

the stpm2cr command is written, which, in its currently released version, fits

log-cumulative subdistribution hazards flexible parametric regression models as

described in section 6.6. This is available publicly on SSC and a Stata Journal

(appendix D) has also been published communicating its release and detailing

syntax.

At present, as detailed in section 10.3.1, initial values are obtained using stcompet

which is a computationally time intensive process. Due to this, particularly for

larger datasets, it may take longer than necessary to fit models using stpm2cr.

Alternatively, initial values can be obtained from cause-specific log-cumulative

hazards flexible parametric models with no included covariates. Obtaining initial

values in this way will be significantly quicker, especially for datasets with obser-

vations in the hundreds of thousands. This is an option that will be incorporated

into stpm2cr at some later stage.

Since its first release, stpm2cr has been extended further as a wrapper for fitting

k cause-specific flexible parametric models on the (log-cumulative) hazards scale

as proposed in section 5.6.1. Following this, in post-estimation using predict,

cause-specific cumulative incidence functions using the method in section 5.6.3

can be obtained. This makes it computationally easier to obtain restricted mean

lifetime estimates which can be extended further for other related predictions such

230



as absolute differences similar to those introduced for the cause-specific cumula-

tive incidences in chapter 9. Restricted mean lifetime estimation has also been

made available for direct flexible parametric models on the log-cumulative sub-

distribution hazard scale. Furthermore, there is also a potential for estimating

standardised predictions for both cause-specific cumulative incidence functions

and restricted mean lifetime estimates. This is a post-estimation prediction op-

tion that is to be included in the future.

In summary, stpm2cr unifies fitting models on either the (log-cumulative) cause-

specific hazards or subdistribution hazards scale within the flexible parametric

modelling framework into a single command line with user-friendly syntax. The

ability to specify a separate equation for each cause of death is a particularly

attractive feature as it is constructed in a way that is easy for the user to under-

stand interpretation of different parameters. Researchers are also able to easily

fit models on either scales without having to switch between competing risks

packages. Predictions post-estimation using the predict command to facilitate

the communication of more complex models is also available. These are easy to

specify and aids in the reporting of competing risks analysis.
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Chapter 11

Discussion

11.1 Outline

This chapter concludes the thesis with a comprehensive discussion on some of the

methodological developments in competing risks and implementation within the

flexible parametric modelling framework. Limitations of proposed methods are

outlined, followed by suggestions on various future extensions to supplement the

research conducted throughout this PhD.

11.2 Introduction

Previously, Hinchliffe and Lambert [2013] and Lambert et al. [2017] have intro-

duced competing risks methods within the flexible parametric modelling frame-

work on both the (log-cumulative) cause-specific and subdistribution hazards

scale. This thesis details further advancement of these competing risks methods

and improves on the computational efficiency in the implementation of these ap-

proaches in Stata. This is to facilitate the application of competing risks methods

in increasingly larger and more detailed population-based cancer data. In com-

parison, traditional semi-parametric approaches, such as the Fine & Gray model,

require much computational effort, and as models increase in complexity through

the inclusion of time-dependent effects and interactions, other useful predictions

are required to facilitate the interpretation of model parameters. Estimating un-

certainty is also not straightforward for these models as computationally intensive
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non-parametric bootstrapping techniques must be applied. What’s more, obtain-

ing predictions that aid interpretation is unavailable using standard software in

Stata. In fact, estimating cause-specific cumulative incidence functions alone after

fitting cause-specific Cox proportional hazards model in the presence of compet-

ing risks is not immediately obvious using currently available Stata commands.

Therefore, to ensure accessibility and the ease at which proposed methods within

the flexible parametric modelling framework can be translated into practice, var-

ious predictions post-estimation have been made available. These can be used to

aid in the interpretation and reporting of competing risks analyses.

A summary of the research carried out, which include developments in methodol-

ogy for competing risks, is provided below. A number of limitations are presented

to provide a balanced evaluation of proposed methods in this thesis and is followed

by some suggestions on potential future research based on the work carried out

so far. The thesis is brought to a close with some final thoughts and conclusions.

11.3 Summary of research

Following an outline of the aims set out to be achieved in this thesis, an intro-

ductory non-technical background was provided to familiarise the reader with the

history of competing risks theory in survival analysis with an application to can-

cer registry data. Chapter 2 set the foundations of a standard survival analysis

by introducing fundamental concepts and key mathematical relationships. Ap-

proaches for modelling survival data were explored in chapter 3 with particular

focus on the flexible parametric modelling framework. The maximum likelihood

estimation procedure is described which forms the basis of proposed competing

risks methods introduced later in the thesis.
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The issue of continued misinterpretation of commonly reported cancer survival

measures obtained from population-based cancer studies is raised in chapter 4. In

such cases, the net, or relative survival measure is usually reported, the interpre-

tation of which is not so straightforward and is often misunderstood as a “real-

world” measure that informs prognosis. This motivated for the development of

an interactive web-tool called InterPreT Cancer Survival. The potential use-

fulness of this educational tool is described in detail and some important features

are highlighted which make it an attractive medium for communicating complex

cancer survival statistics to those from non-statistical backgrounds. The success

of InterPreT is reflected by national media coverage in a Daily Mail article with

exposure to over 2 million readers and an invited interview on BBC Radio Le-

icester. Since its release, and as a result of media attention, to date, the website,

https://interpret.le.ac.uk, has had over 25,000 visitors from different coun-

tries across the globe and continue to receive an average of 15 new users every

week. Aside from the UK, a large number of users have been attracted from

countries such as Sweden, Norway, Australia, Canada and the US. The tool has

also been presented at a variety of national and international conferences which

has led to interest from the US who wish to adapt a similar version of the tool

to data provided by NAACCR. The tool has further contributed to an improved

understanding of the net survival measure in some cancer charities, which is often

misinterpreted when provided as information to patients. For instance, following

a demonstration of InterPreT Cancer Survival at the Public Health England

Cancer Services, Data and Outcomes Conference in 2017, Prostate Cancer UK

acknowledged the need to rethink their understanding of net survival.
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Crude probabilities of death, which is the analogue of the cumulative incidence

function for the relative survival framework, is introduced in chapter 4. This mea-

sure is useful when cause of death information is not available, but the researcher

still wishes to obtain useful estimates to inform patients on prognosis. However,

the main focus of the thesis is on the development of competing risks methodology

when cause of death is available. As an introduction to competing risks theory,

fundamental principles were detailed in chapter 5 and the foundations on which

much of the developed methods are built on was set. In particular, this chapter

proposed an alternative approach for estimating the cause-specific cumulative in-

cidence functions using all cause-specific hazards within the flexible parametric

modelling framework. The advantages of fitting models on individual-level data

over the currently adopted stacked approach was highlighted. This was facili-

tated by the proposal of adopting the Gaussian-Legendre quadrature numerical

approximation integration method after fitting flexible parametric models on the

(log-cumulative) cause-specific hazards scale. This yields a significant computa-

tional improvement on the trapezoidal numerical integration approach initially

proposed by Hinchliffe and Lambert [2013] and facilitates easy calculation of com-

parative predictions on risk. Furthermore, to speed up calculation of confidence

intervals, which is generally a computationally intensive process, derivatives re-

quired for the delta method are derived analytically and implemented in Mata.

This has many implications, especially for calculating uncertainty in other useful

predictions such as those introduced in chapter 9.

However, interest in this thesis is on extending flexible parametric models for

directly estimating cause-specific cumulative incidence functions on the (log-

cumulative) subdistribution hazards scale. Motivation for modelling on this scale
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is presented in chapter 6 and an approach proposed by Jeong and Fine [2007]

for direct parametrisation on the cumulative incidence is detailed. This is ex-

tended for flexible parametric models which simultaneously models all cause-

specific cumulative incidence functions using the full likelihood function. Advan-

tages of modelling in this way over the previously proposed approach described

by Lambert et al. [2017] which requires augmenting the data and calculating

time-dependent censoring weights are discussed. In particular, are the computa-

tional time gains as discussed in section 7.4. This newly developed approach was

evaluated against standard models, such as the Fine & Gray model, through a

simulation study and an illustrative example in chapter 7. For long-term follow-

up time, it may be that the cumulative incidence function for the cause of interest

is observed to plateau in which case it would be of interest to estimate the cure

proportion. Therefore, the flexible parametric model proposed in section 6.6 was

extended for estimating the cure proportion in chapter 8. Some useful predic-

tions after fitting such models are also introduced. The methods proposed in

chapters 6 and 8, including the simulation and example detailed in chapter 7 has

led to a publication in Statistics in Medicine (appendix C). With the inclusion of

time-dependent effects, the awkwardness in the interpretation of subdistribution

hazard ratios increases further and alternative measures are required to facili-

tate correct reporting of competing risks analyses. Therefore, in chapter 9, other

useful predictions are advocated, mostly on the cumulative incidence, which is

preferred as it allows the researcher to present information that make inferences

on the effect of covariates on the risk of dying from a particular cause. As dis-

cussed earlier in the thesis in chapter 4, communicating probabilities to patients

is not easily understood and is therefore avoided when discussing prognosis. As

an alternative measure which offers a more attractive interpretation, estimates
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of restricted mean lifetime and expected number of years (or months) lost due

to a certain cause before a certain time are presented. Section 9.5.1 and 9.5.2

show that these are easily obtainable after fitting flexible parametric models on

both scales by using the Gaussian-Legendre numerical approximation technique

described in section 5.6.3 for evaluating the integral of the cumulative incidence

function. The delta method can then be used to obtain associated confidence

intervals.

The lack in application of appropriate competing risks methods is commonly

attributed to the unavailability of user-friendly software which make them inac-

cessible. Furthermore, these methods are considered to be more complex than

typical approaches, making it difficult to correctly implement and interpret. In

fact, it has been shown that there are many published articles that have either

misspecified a competing risks analysis, or, completely ignored the presence of

the effect of competing risks [Austin and Fine, 2017b]. With this in mind, and

to ensure accessibility of the competing risks approaches proposed in this thesis,

chapter 10 introduced a user-friendly command, stpm2cr, which has been made

available for researchers. A paper describing stpm2cr has already been pub-

lished in the Stata Journal, and an initial version of the command has been made

available for download from SSC (appendix D). Between September 2016 and

February 2018, the stpm2cr command has been downloaded 520 times showing

that there is a general interest for implementing proposed methods in practice by

other researchers. The current version only allows for the models described in 6.6

to be fitted, however, as shown in section 10.3.4 and appendix E, it has already

been extended for models on the log-cumulative cause-specific hazards scale and

for obtaining restricted mean lifetime estimates. This will be made available in
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an updated version of stpm2cr at some point in the future. It is anticipated

that providing users with simple syntax to seamlessly fit models on both scales,

along with the availability of useful predictions post-estimation, interpretation

and reporting of competing risks analyses will vastly improve.

11.3.1 Cause-specific hazards or subdistribution hazards scale?

When analysing competing risks data, estimating the cause-specific cumulative

incidence function is of interest. This can be estimated by either using all k

cause-specific hazard functions (see equation 5.9), or by using the direct rela-

tionship with its associated subdistribution hazard for the cause of interest as

shown by equation 6.2. Estimation on both of these scales have been considered

in this thesis within the flexible parametric modelling framework. The choice of

which scale to estimate the cause-specific cumulative incidence function on has

made for discussion in many articles which focus on which is most appropriate

for a competing risks analysis. Of course, each approach have their own advan-

tages and disadvantages. For example, the risk-set of cause-specific hazards is

defined in the usual epidemiological sense and is thus easier to interpret for re-

searchers. On the other hand, although definition of the risk-set is unusual, and

interpretation on the subdistribution hazards scale is awkward, it maintains a

one-to-one correspondence with the cause-specific cumulative incidence function

which is lost when instead estimating using (all) cause-specific hazards. As a

result, one is able to infer covariate effects directly on risk of death rather than

on the rate of dying from a particular cause. The latter is arguably of more im-

portance from a patient’s point of view. Ultimately, the choice of which scale to

model on boils down to what the research question intends to answer and which

decisions the study aims to influence. Is the purpose of the study to determine
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public health decisions on health-care policy, or is it geared more towards helping

patients make decision on treatments that have the most positive impact on their

prognosis? The former is concerned with aetiology and the latter, of course, is

more relevant for prognosis. Although in this thesis focus is mostly on the de-

velopment of competing risks methodology that are relevant from the patient’s

perspective, i.e. prognosis, to echo what has already been proposed by others, in-

ferring covariate effects on all cause-specific hazard rates and on all cause-specific

cumulative incidence functions is recommended [Latouche et al., 2013]. This is

seen as the most rigorous approach towards achieving a complete understanding

on the overall impact of cancer.

11.4 Limitations of research and methods

To provide a balanced evaluation of proposed methods and research outlined

in this thesis, it is important to consider and acknowledge any limitations. A

discussion of some of these are provided below.

11.4.1 InterPreT Cancer Survival

Much of the feedback on InterPreT Cancer Survival highlighted the need to

incorporate other relevant disease characteristics in order to better capture the

impact of cancer on prognosis. For example, disease progression will depend on

the stage of cancer at diagnosis and grade of the tumour. This is something that

has been acknowledged, and analysis has intentionally been restricted for only

age and sex covariates to keep the model simple. At present, the tool is intended

for educational purposes, and to facilitate understanding, comparisons between

a few patient characteristics are allowed. Therefore, interactive features are not

over-complicated and users can make simple comparisons to make understanding

of the various cancer survival measures easier.
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Due to the lack of current publicly available interactive web-tools for commu-

nicating risk, there is very little literature on the efficacy of web-based interactive

graphics on the improvement in the understanding of risk [Trevena et al., 2013].

Therefore, it is uncertain whether making such tools available for the public im-

proves or in fact, hinders their understanding of various cancer survival measures.

Although the InterPreT Cancer Survival has been positively received by the

public, which include both patients and other cancer epidemiologists, it is yet to

be seen whether making such a tool publicly available contributes to the better

interpretation of cancer survival statistics. The problem of what to present and

communicate to patients is paradoxical in nature due to the awkwardness in in-

terpretation of prognostic-relevant measures on the survival scale. Hagerty et al.

[2005] reviewed literature specifically in relation to the communication of patient

prognosis in the context of cancer care. It was found that, patients in the early

stages of their cancer welcome detailed information on their prognosis which are

available publicly. However, impact of prognosis communication is unclear for

patients with advanced cancers, since prognosis in such cases are not so openly

discussed. Therefore, the appropriate communication of prognosis in such cases

is not obvious and requires further evaluation.

11.4.2 Directly modelling all cause-specific cumulative incidence functions

simultaneously

A common problem present in all direct regression models for the cause-specific

cumulative incidence function is that the sum of all probabilities may exceed

1 for certain covariate patterns. This is particularly problematic in the oldest

age groups where patients are at a higher risk of dying from competing causes
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of deaths leading to a very high overall probability of death. This issue is also

present in the flexible parametric modelling approach for the cause-specific cu-

mulative incidence function introduced in section 6.6. In most instances, this

problem is avoided if models are not misspecified, for example, by adjusting for

all appropriate covariates with any potential interactions and by including time-

dependent effects. However, in some situations models may fail to converge even

when specified correctly, but this will depend on the use of better initial values for

the optimiser so that it does not lead to negative subdistribution hazard functions.

As an informal assessment of misspecification of the models, we can compare the

cause-specific hazards derived from our approach to standard cause-specific haz-

ard regression modelling techniques by allowing for appropriate model complexity

on both scales. However, in many datasets, the all-cause cumulative incidence

function will not get close to one, since, in many studies, follow-up is usually

restricted. Shi et al. [2013] offer a solution to the constraint problem by mod-

elling a baseline asymptote for one cause-specific cumulative incidence function,

with the remaining cumulative incidences expressed as a function of this plateau.

However, the limitation of this is that the one-to-one correspondence between the

covariate effects and cause-specific cumulative incidence function is lost, defeating

the purpose of analysis on this scale. Alternatively, a non-linear constraint can

be imposed to ensure that the all-cause cumulative incidence function is indeed

always bounded by 1 [Madsen et al., 1999].

11.4.3 Why model all k cause-specific cumulative incidence functions?

If interest is only in the covariate effects on one cause, it is not imperative to

model all cause-specific cumulative incidence functions as this may unnecessarily
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complicate the analysis. In these cases, a single Fine & Gray model may suffice

or model the cause-specific cumulative incidence function using time-dependent

weights [Lambert et al., 2017]. On the other hand, it is argued that there is

an advantage to understanding covariate effects on all cause-specific cumulative

incidence functions to get a fuller understanding on the impact of a given covariate

on overall risk. For example, a treatment may reduce the risk of dying from cancer

for female patients, however, in male patients, although risk of dying from cancer

is reduced, it may lead to a higher increase in the risk of dying from heart disease.

11.4.4 The flexible parametric modelling framework

A potential criticism of the flexible parametric modelling approach is the need to

specify the positioning and number of knots. However, this has been shown to

have little influence on the cause-specific cumulative incidence function through

sensitivity analyses and other similar studies have also been carried out on the

sensitivity of knots [Hinchliffe and Lambert, 2013; Bower et al., 2018; Rutherford

et al., 2015a]. An additional concern in the use of splines is that there are no

formal constraints to ensure monotonicity of the cumulative incidence function.

Although, in theory, there is a potential that we may observe non-monotonicity

in the modelling process because of the lack of constraints, in practise, this is

rarely a problem in larger datasets. This is demonstrated in the simulations with

5000 observations where all models converged. In our simulation for 200 and 500

observations, there is a lack of convergence in a small proportion of models which

increases with the number of degrees of freedom (see table 7.1). These issues

in convergence are potentially avoidable through a more refined choice in initial

values used in the estimation process. Therefore, when fitting flexible parametric

models to smaller data, it is recommended that fewer degrees of freedom are used
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for the restricted cubic splines.

In smaller simulated datasets, where N = 200, 500, some models struggled to

converge under the direct flexible parametric models for the cause-specific cumu-

lative incidence function. Since the likelihood is evaluated at the last observed

time for either cause, the reason for non-convergence was mainly attributed down

to insufficient follow-up time for a specific cause which led to inappropriate extrap-

olation. Other possible reasons for convergence issues in these smaller datasets,

as mentioned in section 7.5, may be due to the lack of events for a given cause

towards the last observed follow-up time and over-fitting models. Sometimes

non-convergence can be resolved by choosing more sensible initial values by in-

corporating weights towards the end of follow-up time, which is easier to do on a

real single dataset instead of in a simulation study with multiple simulated data.

However, this may not always provide a solution. Such issues may revert back

to the lack of a constraint on the sum of all cause-specific cumulative incidence

functions to be less than (or equal to) 1. In general, when fitting flexible para-

metric models for the cumulative incidence on smaller data, such as clinical trial

data, it is recommended that fewer degrees of freedom are used for the restricted

cubic splines. However, this thesis concentrates on the implementation of meth-

ods in population-based data which usually contain observations well above 5000.

Therefore, as demonstrated by the simulation in section 7, fitting such models to

large data show excellent performance regardless of the choice in the number of

degrees of freedom, and convergence issues are less problematic when follow-up

is restricted.
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11.5 Future work and extensions

Much of the research presented in the thesis focuses on developing competing risks

methods with particular relevance to patient prognosis. Some useful predictions

have already been proposed in this thesis as an alternative to the subdistribution

hazard ratio, however, there is still much scope for further work in the develop-

ment of competing risks models to inform patient decisions.

11.5.1 Even more useful predictions

Repeatedly highlighted throughout this thesis, are advantages of adapting com-

peting risks methods for the flexible parametric modelling framework. In par-

ticular, is the ease at which further comparative predictions can be obtained.

Calculating uncertainty is also easier for such predictions through use of the

delta method with analytically derived derivatives. A potential area for future

work, is to make available comparative predictions between restricted mean life-

time estimates, for example, differences in restricted mean lifetime. Furthermore,

conditional measures can be estimated which have an attractive interpretation for

informing patients on future prognosis. For example, patients may want to know

their risk of dying from cancer in the next 3 years given that they have already

survived 5 years since their initial diagnosis. In this case, the 3 year cause-specific

cumulative incidence function, conditional on survival to 5 years since diagnosis,

can be estimated. Conditional estimates and comparative predictions between

restricted mean lifetimes can be easily incorporated for the flexible parametric

on both scales (with confidence intervals), as existing code in stpm2cr is easily

generalisable to accommodate such post-estimation prediction options without

much computational effort.
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From within the causal inference framework, Gran et al. [2015] discuss the use of

population average effects in multi-state models as a useful summary measure.

This is similar to standardised survival curves obtained after fitting a flexible

parametric survival, or relative survival model, and we can extend this to compet-

ing risks models by estimating a standardised cause-specific cumulative incidence

function. Simply, this is calculated using an average of the cause-specific cumu-

lative incidence function for each patient or subject, with appropriate weights,

to summarise the risk for a certain group. It is also possible to obtain adjusted

cause-specific cumulative incidence functions for a particular set of covariate val-

ues and may also be extended to calculate standardised restricted mean lifetimes

building on the methods developed in section 9. Reporting standardised estimates

from competing risks models is presented with the problem of how this quantity

is to be interpreted and is something that will require particular focus and discus-

sion. However, obtaining standardised predictions using the improved integration

method proposed in section 5.6.3 with associated 95% confidence intervals using

analytically derived derivatives for the delta method will make estimation com-

putationally easier.

11.5.2 Prognostic models in the presence of competing risks

As discussed in the introduction of chapter 6.2, when the researcher is interested

in patient prognosis, modelling on the subdistribution hazards scale is more ap-

propriate. These models enable inference on the effect of covariates on the risk

of death, particularly the risk of dying from each of the competing events. This

provides potential scope for developing a prognostic model which implements the

flexible parametric subdistribution hazards model. Using this approach allows si-

multaneous modelling of all causes and enables us to produce relevant predictions
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that will be of most interest at the patient individual level. Building such models

lead to further issues that could be explored, for example, attending to poten-

tial model selection issues that may arise when developing the prognostic model.

For example, when starting with several thousand subjects, almost everything

becomes statistically significant and standard model selection techniques such as

AIC and BIC will lead to models that are overly complex. Appropriate interac-

tions could be also be tested and compared with the main effects model to see how

much of a difference they make to individual level predictions. Clinical relevance

of including these interactions and covariates that have a small influence on the

prognostic model could be assessed along with the importance of including them

in the final model. Model validation of the developed prognostic model will be

implemented using cross-validation techniques to assess performance. As current

tools for developing and validating prognostic models usually assume proportional

hazards, one could also explore validation of using non-proportional hazards with

flexible parametric models. The Prognosis Research Strategy (PROGRESS) se-

ries highlight some important issues in model validation, some of which must be

explored as part of the process for developing prognostic models in the presence

of competing risks [Steyerberg et al., 2013]. Research in this area can also lead to

guidance on the development of prognostic models in large datasets and how to

deal with some of the model selection issues that are present in flexible parametric

models.

11.5.3 Proposed extensions for InterPreT Cancer Survival

The InterPreT Cancer Survival web-application has attracted interest inter-

nationally, with cancer registries in Norway, Sweden and the US keen on adapting

a similar version that provide insights based on their data. These, of course, will
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need to be extended for appropriate covariates that are related to local disparities

in cancer survival. For example, in the US information on race is required as large

and consistent disparities between different race groups have been previously ob-

served.

The development of competing risks methods proposed in sections 5.6.3 and 6.6

could potentially lead to an extension of InterPreT Cancer Survival as a risk

prediction tool to inform patients on the impact of their cancer diagnosis on

prognosis. Therefore, a future version, “InterPreT+”, has the potential to be-

come the first publicly available fully interactive cancer risk prediction tool that

would contain more clinically relevant information thus providing a better insight

into a patient’s prognosis. This would be more complex and contain additional

features that improve on similar prognostic tools, for example PREDICT for

breast cancer, has far more inputs which can be changed and selected [Wishart

et al., 2010]. However, more thought will be required on how these should be

presented to ensure sensible use.

11.6 Final conclusions

The management and quality of cancer registry data is constantly improving,

which means that researchers now have access to much more reliable cause of

death information than ever before. This poses great opportunity for answering

more inquisitive research questions on the impact of cancer on prognosis which

is useful from the patient’s perspective. If specific interest is in prognosis, the

application of competing risks theory is required, which have also gained promi-

nence in recent times due to advancements in cancer care and treatment. As a

result of improved health-case, patients are living longer and therefore, their risk
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of dying from other (competing) causes must be considered. However, literature

on competing risks methods remain inaccessible and there is still confusion on

which models to fit and when. Therefore, more guidance must be provided, ac-

companied with user-friendly software for the implementation of competing risks

methods to ensure that they are used more often and analyses are correctly re-

ported.

Furthermore, with the occurrence of “big data” and more detailed covariate in-

formation, models are increasing in complexity. This results in complex model

parameters that are difficult to interpret. Therefore, obtaining predictions that

facilitate the communication of meaningful results to those from non-statistical

backgrounds vastly increases in importance. This motivates the need for the im-

plementation of methods which make it easy to obtain predictions post-estimation

for interpreting results of such analyses. For larger datasets with observations

that can exceed the hundred of thousands in particular, methods that consume

the least amount of computational effort as possible is becoming of more vital

importance.

As previously mentioned, as models are increasing in complexity, so does the

interpretation of important cancer survival measures. Various cancer survival

statistics are available which are usually reported, each of which depend on the

research question of interest. However, these are often misunderstood, and many

often confuse measures that are only appropriate at the population-level for be-

ing relevant at the individual patient level, especially in terms of prognosis. To
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directly address this issue, tools are required that attempt to clear up misunder-

standing behind commonly reported cancer survival statistics and aid interpre-

tation. As researchers, it is our responsibility to develop such tools and make

them publicly available, like InterPreT Cancer Survival, that aid the commu-

nication of commonly reported cancer survival measures to help patients better

understand their prognosis.
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Appendix B

Draft paper for InterPreT Cancer Survival submitted to

Cancer Epidemiology

Appendix B contains a draft of the paper titled “InterPreT Cancer Survival: A

dynamic web interactive prediction cancer survival tool for health-care profes-

sionals and epidemiologists” submitted to Cancer Epidemiology which is under

review.
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Abstract  
 

Background: There are a variety of ways for quantifying cancer survival with each measure 
having advantages and disadvantages. Distinguishing these measures and how they should be 
interpreted has led to confusion among scientists, the media, health care professionals and 
patients. This motivates the development of tools to facilitate communication and 
interpretation of these statistics. 
Methods: “InterPreT Cancer Survival” is a newly developed, publicly available, 
online interactive cancer survival tool targeted towards health-care professionals and 
epidemiologists (http://interpret.le.ac.uk). It focuses on the correct interpretation of 
commonly reported cancer survival measures facilitated through the use of dynamic 
interactive graphics. Statistics presented are based on parameter estimates obtained from 
flexible parametric relative survival models using large population-based English registry data 
containing information on survival across 6 cancer sites; Breast, Colon, Rectum, Stomach, 
Melanoma and Lung. 
Results: Through interactivity, the tool improves understanding of various measures and how 
survival or mortality may vary by age and sex. Routine measures of cancer survival are 
reported, however, individualised estimates using crude probabilities are advocated, which is 
more appropriate for patients or health care professionals. The results are presented in 
various interactive formats facilitating understanding of individual risk and differences 
between various measures. 
Conclusions: “InterPreT Cancer Survival” is presented as an educational tool 
which engages the user through interactive features to improve the understanding of 
commonly reported cancer survival statistics. The tool has received positive feedback from a 
Cancer Research UK patient sounding board and there are further plans to incorporate more 
disease characteristics, e.g. stage. 
 
Keywords: cancer survival, flexible parametric survival model, crude probability of death, net survival, interactive 
web-tool. 
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1. Introduction 

Researchers are often interested in quantifying patient survival after a cancer diagnosis in the 

entire population. This is explored in large population-based studies to monitor and evaluate 

effectiveness of patient care to give estimates representative of the whole population [1]. 

Often, survival in the hypothetical scenario where the cancer of interest is the only possible 

cause of death, i.e. net survival, is estimated. This allows comparison of survival over time 

between different population groups which may vary in mortality from other causes. 

 

Net survival is usually age standardised to give averages over the whole study population. 

Although age standardisation is useful for reporting a single aggregated summary statistic and 

making comparisons, it hides variation in net survival across age that exists for most cancers 

[2, 3]. 

 

Another consequence of reporting (standardised) net survival, is the tendency to misinterpret 

it as observed survival. Net survival is a cancer-specific estimate which removes other cause 

mortality and therefore does not represent individual patient survival in the real-world. 

However, despite these warnings, when communicated to the public, this is often not 

portrayed [4]. To present information that is more relevant for the patient, the real-world, or 

crude, probability of death in the presence of dying from other competing causes is more 

appropriate [5]. 

 

To support the use of interactive tools that aid risk communication, Trevena et al. [6] 

conducted a systematic search to explore impact and effectiveness of alternative 

communication tools on understanding risk. They concluded that, presenting information in 
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alternative formats, which included computer-based approaches and interactivity (i.e. features 

that allow the user to control and navigate through graphs by making input alterations), 

substantially increased comprehension of individual risk. Many also advocate presenting health 

statistics as natural frequencies, as opposed to probabilities or conditional probabilities, as 

they are better understood by physicians and non-statisticians [7, 8, 9]. Although there are 

several online tools which present health statistics this way, there remain a shortage of tools 

that allow interactive comparisons between different measures [10]. We introduce 

InterPreT as an educational tool for physicians and epidemiologists and to facilitate 

communication of cancer statistics to patients and the general public.  

 

2. Material & Methods 

2.1 Data 

InterPreT uses English cancer registry data obtained from the National Cancer Registration 

and Analysis Service (NCRAS) run by Public Health England. The data contains information on 

age, sex and survival in days for patients diagnosed with 6 different cancers from 1995 to 2013. 

Analysis was restricted to patients aged 40 to 90 years old at diagnosis. English population 

mortality life tables, stratified by age, sex and calendar year were obtained from the Cancer 

Survival Group at the London School of Hygiene and Tropical Medicine 

(http://csg.lshtm.ac.uk/tools-analysis/uk-life-tables). 
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2.2 Cancer Survival Measures 

Pohar Perme et al. [11] summarise the different metrics available on cancer survival and 

concludes that, when interest is in patient health-related decisions, crude mortality 

probabilities are more appropriate [12, 13]. However, researchers are sometimes interested 

in making unbiased comparisons in cancer-specific survival between different populations 

which can potentially differ in terms of the mortality associated with other causes. In this case, 

net survival is of interest. An overview of the methods and model implemented to obtain 

predictions reported in InterPreT are summarised below. 

 

2.2.1 Net survival  

Net survival is interpreted as the survival probability in the hypothetical world where one can 

only die from the cancer of interest. It can be estimated in either a cause-specific, or relative 

survival framework. The relative survival approach is more popular in large population based 

cancer studies and has been applied in many scenarios using a flexible parametric relative 

survival modelling approach. 

 

2.2.2 Expected survival 

Expected survival, 𝑆𝑆𝑖𝑖∗(𝑡𝑡), is calculated directly from population mortality life tables matched by 

age, sex and year from expected mortality rates, ℎ𝑖𝑖∗(𝑡𝑡). Hence, expected survival gives the 

chance of being alive for a person of the same calendar year, age and sex in the general 

population (who are assumed to be free of the cancer under study). 
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2.2.3 Observed survival 

Observed survival, 𝑆𝑆𝑖𝑖(𝑡𝑡), is the probability that a patient is still alive at time 𝑡𝑡 following a cancer 

diagnosis, where they are at risk of dying from cancer or any other causes. This is the most 

basic summary on patient survival, however, it does not distinguish mortality due to cancer 

from mortality due to other causes. 

 

2.2.4 Relative survival 

Relative survival, 𝑅𝑅𝑖𝑖(𝑡𝑡), can be interpreted as net survival under certain assumptions [14]. The 

first involves conditional independence between deaths associated with the cancer of interest 

and non-cancer related mortality. The second requires that expected mortality rates, reflecting 

the non-cancer mortality, are appropriate for the cancer study population and are stratified by 

relevant covariates. It is calculated as a ratio between observed survival and expected survival, 

i.e., 𝑅𝑅𝑖𝑖(𝑡𝑡) = 𝑆𝑆𝑖𝑖(𝑡𝑡) 𝑆𝑆𝑖𝑖∗(𝑡𝑡).⁄  

 

2.2.5 Crude probability of death 

The crude probability of death partitions all-cause probability of death into death due to cancer 

and other causes. This measure has a real-world interpretation and is useful for treatment-

related decisions at the individual-level or for planning future health-care services. 

 

2.2.6 Conditional survival 

Conditional survival probabilities are also presented for all the above measures. This gives the 

probability of survival, or death, given that the patient has already survived 𝑡𝑡 years after 

diagnosis. 
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2.3 Statistical methods 

2.3.1 Period analysis 

Relative survival is often reported over a time-period, for example, they can be given at 1-, 5- 

and 10-years after diagnosis. In a typical relative survival analysis, all available information on 

the survival experience of patients diagnosed with cancer are usually included. For instance, if 

relative survival is reported at 5 years since diagnosis, information on a mixture of patients 

diagnosed recently and over 5 years ago would be incorporated. However, the survival 

experience of patients diagnosed recently is likely to be different to those diagnosed more than 

5 years ago due to factors such as advancements in cancer treatment. As a result, cancer 

patients diagnosed recently are likely to have an improved survival experience over-time due 

to better health-care. Therefore, reporting estimates from analyses based on patients that 

were diagnosed at least 5 or 10 years ago are subject to the underestimation of cancer survival 

probabilities. Furthermore, it is likely that cancer registry data will be published a year or two 

later after the study. This leads to a further time-lag between cancer diagnosis and evaluation 

 

In order to obtain more up-to-date estimates on long-term cancer patient survival, the period 

survival analysis approach is adopted, as first introduced by Brenner and Gefeller [15]. This 

approach restricts analysis to the survival experience in the most recent years (defined as a 

period window) and so, those diagnosed more early on in calendar time with a short-term 

survival are excluded from the analysis [16]. 

 

2.3.2 Flexible parametric relative survival models 

A standard approach beyond the Cox model for survival analysis was introduced by Royston 

and Parmar [17] which allow for more flexibility and better capture the behaviour of real-world 
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datasets. Using expected mortality rates, these models were later extended for relative survival 

which are used extensively in large population-based studies to obtain predictions that 

quantify cancer patient survival [18].  

 

We calculate crude probabilities of death after fitting a flexible parametric relative survival 

model and therefore partition crude probability of death due to any cause (i.e. 1 minus 

observed survival), 𝐹𝐹𝑎𝑎𝑎𝑎𝑎𝑎,𝑖𝑖(𝑡𝑡), into the crude probability of death due to cancer, 𝐹𝐹𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖(𝑡𝑡), and 

crude probability of death due to other causes, 𝐹𝐹𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒,𝑖𝑖(𝑡𝑡)[19]. 

 

Flexible parametric relative survival models are fitted to the data using the stpm2 command 

in Stata [20]. Individual models are fitted for each sex with continuous age at diagnosis as the 

only included covariate. This is assumed to have a non-linear effect using restricted cubic 

splines. Models were also fitted under a period analysis, where up-to-date estimates were 

obtained using a period window of 01 January 2013 to 31 December 2015 [21]. Only the model 

parameters and details about the number and location of knots for the spline variables are 

exported and stored on the online servers, thereby preserving the privacy of sensitive 

information. Further details of the models can be found at 

http://interpret.le.ac.uk/methods.php. 

 

2.4 Development 

2.4.1 Data-driven documents (D3) 

Many tools exist that allow users to create interactive visualisations of data within the web-

environment which combine a variety of technologies. At the core are Hypertext Markup 

Language (HTML) for structuring the web-page, Cascading Style Sheets (CSS) for web-page 
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aesthetics and JavaScript for creating interactive content [22, 23]. The co-operation of such 

technologies are made possible through the document object model (DOM) which is a native 

representation behind every web-page that allows for reference and manipulation of online 

content. Bostock et al. [24] introduces Data-Driven Documents, or, d3.js, as a 

“representation transparent approach to visualisation for the web”. D3.js is a tool which is 

available as a JavaScript library that combines the above triad of technologies, including 

additional ones, such as scalar vector graphics (SVG), for creating dynamic interactive 

visualisations. 

 

Using the increasingly popular d3.js library, the educational online interactive tool for cancer 

survival, InterPreT Cancer Survival was developed. The tool’s primary focus is on 

the correct interpretation of commonly reported cancer survival measures facilitated through 

the use of dynamic interactive graphics allowing users to make contrasts between the various 

measures. 

 

2.4.2 Interactive Features 

The web-tool presents cancer survival in a language that is accessible for users from various 

backgrounds. Statistics are interpreted as natural frequencies, i.e. “out of 100”, to allow users 

to distinguish between the various metrics. Summary probability tables are presented 

providing a snapshot of survival at 1, 5 and 10 years after diagnosis. A visual representation of 

these natural frequencies are available using people charts for all measures. By default these 

are illustrated for patients 5 years after diagnosis, but can be changed by users for 1 to 10 years 

from diagnosis. Alternatively, line charts are available on both survival and mortality as well as 

stack charts for crude probabilities of death. 
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All plots are dynamic and probabilities are visible on mouse-over. Users may select or de-select 

cancer measures of interest for specific comparisons. A fix check-box is also available to save 

statistics for a particular set of characteristics to enable visual comparisons with other patient 

groups. A slider allows the user to change the age of the patient which instantaneously updates 

the plots, facilitating observations on the changes in cancer survival for older or younger 

patients. 

 

Conditional probabilities may also be displayed by dragging the 𝑦𝑦-axis across time (figure 1). 

The presentation of conditional probabilities is a particularly useful and powerful interactive 

component of the InterPreT Cancer Survival web-tool from a prognosis point of 

view. As highlighted by Bostrom et al. [25], the portrayal of changes in risk under different 

“what if” scenarios is one of the many advantages of introducing interactive features in 

visualisations [26]. For example, in this particular case, by dragging the 𝑦𝑦-axis, the user can 

explore the scenario of “what if I was still alive after 3 years, how would my survival probability 

change?”       

 

3. Results: An illustration of using InterPreT to distinguish between net and 

crude measures 

InterPreT is catered towards understanding differences in interpretation between various 

cancer survival measures. For example, net survival is often incorrectly reported as observed 

survival, or misinterpreted as the crude probability of death due to cancer. Understanding 



   

11 
 

these differences is demonstrated using InterPreT. We encourage following the example 

below using the tool online. 

 

We begin by choosing a 45 year old female with breast cancer and focus on comparing their 

net probability with an 85 year old patient. Using the plot and text descriptions in InterPreT 

(see figure 2), we can see that, 80 out of 100 45 year old women with breast cancer are likely 

to still be alive 10 years after diagnosis. Whereas, for 85 year olds, 45 out of 100 women are 

likely to still be alive. However, these probabilities only take into account the chance of dying 

from cancer and excludes the possibility of dying from anything else. It therefore refers to some 

hypothetical scenario where cancer is the only cause of death. To see how and why this differs 

from their actual risk of dying from cancer, i.e., their crude probability of death due to cancer, 

we switch to stack charts by choosing probabilities in terms of mortality from the drop down 

menu (see figure 3). For 45 year old female cancer patients, we can visualize their crude 

probability of death due to any cause and partition this into the probability of dying of cancer 

and other causes. Younger patients are naturally less likely to die from other causes (2 out of 

100 by 10 years), therefore it is not surprising that their net probability of death, i.e., 1 minus 

net survival, is similar to their crude probability of death due to cancer. The distinction is more 

apparent as we drag the slider across for older patients. As the patient’s age is increased, we 

see a larger proportion dying from other causes, as represented by the increasing area of the 

partition for other causes. In contrast, the crude probability of death due to cancer increases 

more slowly compared to the net probability of death since, in reality, a lot of these older 

patients are more likely to die of other causes. As we get to 85 year old patients, a clear 

difference is observed between the net probability of death and crude probability of death due 

to cancer. The real-world probability of dying from cancer is lower (38 out of 100) and a higher 
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proportion of the patient's mortality is attributable to other causes (51 out of 100). This can 

also be observed by switching to the people charts where a similar comparison can be made 

(see figure 4). 

 

4. Discussion 

This paper introduces an interactive online tool, InterPreT, which aims to communicate 

complicated, commonly reported cancer survival statistics to professionals such as clinicians 

and epidemiologists. The primary purpose is to aid communication and interpretation of these 

measures and facilitate easy comparisons across different patient characteristics through 

interactive features. Although aimed primarily towards clinicians and epidemiologists, as the 

tool is publicly available, patients will also have access to InterPreT to aid their 

understanding of various metrics that describe the impact of their diagnosed cancer. 

Therefore, a disclaimer has been placed to highlight the intended use of InterPreT, offering 

advice on support and sources of further information.  

 

Due to the lack of current publicly available interactive web-tools for communicating risk, there 

is very little literature on the efficacy of web-based interactive graphics on the improvement 

in the understanding of risk [27]. Therefore, it is uncertain whether making such tools available 

for the public improves or in fact, hinders their understanding of various cancer survival 

measures. Although InterPreT Cancer Survival has been positively received by the 

public, which include both patients and other cancer epidemiologists, it is yet to be seen 

whether making such a tool publicly available contributes to the better interpretation of cancer 

survival statistics. The problem of what to present and communicate to patients is paradoxical 

in nature due to the awkwardness in interpretation of prognostic-relevant measures on the 
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survival scale. Hagerty et al. [28] reviewed literature specifically in relation to the 

communication of patient prognosis in the context of cancer care. It was found that, patients 

in the early stages of their cancer welcomed detailed information on their prognosis which are 

publicly available. However, impact of prognosis communication is unclear for patients with 

advanced cancers, since prognosis in such cases are not so openly discussed. Therefore, the 

appropriate communication of prognosis in such cases was not obvious and requires further 

evaluation.  

 

4.1 Cancer Research UK patient sounding board 

To evaluate the tool’s suitability for patient-use, a Cancer Research UK patient sounding board 

was consulted. Overall, patients were keen on also having access to tools available to health-

care professionals. This meant that they could themselves grasp some understanding on the 

cancer statistics that they were presented with as opposed to relying on the vague 

explanations usually provided. Ease in the use of InterPreT was a feature that stood out to 

the patients and the interactivity of being able to see the change in survival across age and 

easily make comparisons was well received. Although some patients agreed that the tool was 

an informative way to communicate death and present information that they wanted available, 

others pointed out that this perspective may change because of the language of interpretation 

behind these measures. For example, “crude probabilities of death” is the metric that is most 

appropriate for a patient when determining their prognostic outcome and making treatment 

decisions. However, this terminology was considered to be unsuitable for patient 

communication due to the use of the word “death”, whereas more positive language, such as 

“survival” or “alive”, are preferred. Presenting cancer statistics as death probabilities is 

undesirable, which, in this case is unavoidable due to an awkward interpretation on the survival 
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scale [29]. In this respect, the language used in other aspects of the tool has been tailored in 

consideration of how a patient may react to the information and directly affected users are 

given resources for support. This also potentially motivates for an alternative version of the 

web-tool, solely targeted towards patient-use. 

 

4.2 Conclusion 

We have developed an interactive online educational tool to facilitate interpretation of a 

variety of cancer survival statistics. However, InterPreT currently only includes basic 

patient characteristics in the model such as age and sex. In order to operate as a complete 

prognostic prediction tool with patient relevant predictions, other important disease 

characteristics, such as stage at diagnosis and grade of tumour, need to be included in the 

model. Therefore, a future version targeted towards patients incorporating further 

information may be developed and validated for accurate and more relevant predictions on 

patient prognosis whilst remaining fully interactive. 
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Figures 
 

 
Figure 1: Screenshot of a line chart giving conditional survival probabilities. Plot represents probabilities of survival for an 85 

year old female breast cancer patient if they were still alive 3 years after diagnosis after dragging the 𝒚𝒚-axis. 

 
 

 
Figure 2: Screenshot of the "InterPreT Cancer Survival" tool page. Illustration of a fixed net survival curve for a 45 year old 

female breast cancer patient compared to an 85 year old female breast cancer patient.  
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(a) 45 year old female patient 

 

(b) 60 year old female patient 

 
  

(c) 70 year old female patient 

 

(d) 85 year old female patient 

 
  
Figure 3: Screenshots of crude probability of death stacked plots for female breast cancer patients at different ages. Orange 

area refers to the crude probability of death due to cancer and the blue area refers to the crude probability of death due to 
other causes. The black line compares the net probability of death (1 minus net survival). 

 
 

(a) 45 year old female patients 

 

(b) 60 year old female patients 

 
  

(c) 70 year old female patients 

 

(d) 85 year old female patients 

 
  

Figure 4: Screenshots of people charts illustrating the crude probability of death. Comparison of crude probability of death 
due to cancer (orange) and due to other causes (blue) for female breast cancer patients at various ages 5 years after 

diagnosis. Green people represent patients that are still alive 5 years after diagnosis.     



Appendix C

Statistics in Medicine research article

The research paper titled “Direct likelihood inference on the cause-specific cumu-

lative incidence function: A flexible parametric regression modelling approach”

was published in Statistics in Medicine and is available via the DOI link below:

https://doi.org/10.1002/sim.7498
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Appendix D

Stata Journal paper for stpm2cr

The paper titled “A flexible parametric competing-risks model using a direct like-

lihood approach for the cause-specific cumulative incidence function” introduces

the stpm2cr package and was published in the Stata Journal and is available via

following link:

http://www.stata-journal.com/article.html?article=st0482

The package, stpm2cr, is also available from the Boston College Statistical Soft-

ware Components (SSC) archive which can be installed using the command ssc

install stpm2cr in Stata.
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Appendix E

Code: stpm2cifgq.ado

Appendix E contains code for the program stpm2cifgq.ado. This was written

for estimating cause-specific cumulative incidence functions and restricted mean

lifetime after fitting k cause-specific log-cumulative hazard flexible parametric

models using stpm2cr as a wrapper.
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*! version 1.1 06Dec2017 

 

// Incorporating RML 

program define stpm2cifgq, rclass 

  

 version 15.0 

 syntax newvarlist (min=1 max=1), ///   

  TIMEvar(string) AT(string) MODELnames(string) /// 

  [ /// 

  NODES(int 100) RMLat(numlist >=0 integer)) HAZard CONtrast(string) 

CONDitional(int 0) ///  

  quadopt(string) CI GRAPHrml CIF /// 

  ] 

  

 if "`rmlat'" == "" & "`graphrml'" !="" { 

  di in red "Cannot use graphrml option without specifying a numlist in 

rmlat()" 

  exit 198 

 } 

  

 local newvarname `varlist' 

  

 local cifopt 

 if "`cif'" != "" { 

  local cifopt "`cif'" 

 } 

  

 local minT = `conditional' 

  

 // parse models 

 local models `modelnames' 

 local modelN = wordcount("`modelnames'") 

 tokenize `modelnames' 

 forvalues i = 1/`modelN' { 

  local model`i' ``i''  

 } 

 

 if "`quadopt'" == "" { 

  local quadopt "leg" 

 } 

  

 //some outside mata model storing stuff 

 foreach model in `models' { 

  qui estimates restore `model' 

   

  tempvar touse_`model' 

  quietly gen `touse_`model'' = e(sample) 

  quietly count if `touse_`model'' == 1 

  local Nobs_`model' `r(N)' 

   

  if "`e(noconstant)'" == "" { 

   local xbcons_`model' = [xb][_cons] 

  } 

   

  //code to extract (in order of specification in varlist) the 

covariates to predict at 

  tokenize `at' 

  local varsList = e(varlist) 

  local Nvars wordcount(e(varlist))*2 

  local varval_`model' 

  foreach var in `varsList' { 

   if strpos("`at'" ,"`var' ") != 0 { 

    forvalues i = 1(2)`=`Nvars'' { 

     local j = `i' + 1 

     if "`var'" == "``i''" {   

      local varval_`model' "`varval_`model'' 

``j''" 

     } 



    } 

   } 

   else { 

    local varval_`model' "`varval_`model'' 0" 

   } 

  } 

 } 

  

 tokenize `at' 

 local Natvars wordcount("`at'") 

 local atList 

 forvalues i = 1(2)`=`Natvars'' { 

  local atList "`atList' ``i''" 

 } 

  

  

 

 // generate time variable 

 local t `timevar' 

 local lnt = ln(`t') 

 tempvar touse_time 

 qui gen `touse_time' = 1 if `t' !=. 

 qui replace  `touse_time' = 0 if `t' == . 

 

 // get nodes and weights for numerical integration 

 qui set matsize `nodes' 

 tempname knodes kweights 

 gaussquad, n(`nodes') `quadopt' 

 matrix `knodes' = r(nodes)' 

 matrix `kweights' = r(weights)' 

  

 mata stpm2cifgq_mata() 

  

 if "`rmlat'" != "" { 

  matrix rownames RML = `rmlat' 

  matrix roweq RML = time 

  local coleqnames 

  foreach name in `modelnames' { 

   local coleqnames `coleqnames' ll_`name' 

   matrix colnames RML = `coleqnames' 

  } 

  matrix coleq RML = model 

   

  if "`ci'" != "" { 

   local coleqnames 

   foreach name in `modelnames' { 

    local coleqnames `coleqnames' ll_`name' ll_`name'_lci 

ll_`name'_uci 

   } 

   matrix colnames RML = `coleqnames' 

    

  } 

  mat li RML 

  return matrix RML = RML 

  return matrix rml_Nt = RML_Nt 

   

 } 

  

end 

 

//== Main structure for mata 

==================================================================== 

mata 

 

struct vars_structure { 

  

 real scalar    modelN, 

       Nt, 



       t0, 

       Mnodes, 

       minT, 

       rml, 

       ciopt, 

       cifopt 

  

 string scalar   touse_time, 

       newvarname 

  

 real matrix    t, 

       lnt, 

       nodesi, 

       weightsi, 

       z, 

       v, 

       xb, 

       CIF, 

       CIF_lci, 

       CIF_uci, 

       rmlT, 

       LL, 

       LL_lci, 

       LL_uci, 

       test 

  

 string matrix   models, 

       atList 

  

 transmorphic matrix  rcsbaseoff, 

       dfbase, 

       dftvc, 

       orthog, 

       hastvc, 

       knots, 

       tvcknots, 

       hascons, 

       tvcnames, 

       Ntvc, 

       Rmatrix, 

       Nvarlist, 

       hasvarlist, 

       Xrcstvc,   

       Xdrcstvc, 

       Xrcsbase, 

       Xdrcsbase, 

       X, 

       Xdrcs, 

       Nparameters, 

       betacov, 

       betarcs, 

       beta, 

       touse_model, 

       Nobs_model, 

       V, 

       varlist, 

       varlistval, 

       rcsxb, 

       drcsxb, 

       eta, 

       st, 

       ht, 

       st_all, 

       Ft, 

       xbcons, 

       u, 

       logu, 

       Ftmat, 



       A12_k 

} 

 

void function stpm2cifgq_mata() { 

 

 struct vars_structure scalar Q 

  

 Q = stata_transfer() 

  

 if(Q.cifopt) { 

  for(t=1;t<=Q.Nt;t++) { 

   tstar = "cif" 

   time_index = "time" + strofreal(t) 

   asarray(Q.st_all, (time_index, tstar), J(Q.Mnodes,1,1)) 

    

   for(m=1;m<=Q.modelN;m++) { 

    modelstr_index = Q.models[1,m] 

   

 genSplines(Q,ln(Q.z[,t]),modelstr_index,time_index,tstar) 

   

 genDerivSplines(Q,ln(Q.z[,t]),modelstr_index,time_index,tstar) 

    genEta(Q, tstar, time_index, m) 

    genSurvFuncs(Q, Q.z[,t], tstar, time_index, m) 

   } 

   genCIF(Q, tstar, time_index, t) 

    

   if(Q.ciopt) { 

    deltaMethod(Q, tstar, time_index, t) 

   } 

  } 

  if(Q.ciopt) genCI(Q, Q.Nt, "cif") 

  exportCIF(Q) 

 } 

  

 if(Q.rml) { 

  for(t=1;t<=cols(Q.rmlT);t++) { 

   time_index = "rmltime" + strofreal(Q.rmlT[,t]) 

   for(i=1;i<=rows(Q.v);i++) { 

    tstar = "rml_"+strofreal(i) 

    asarray(Q.st_all, (time_index, tstar), J(Q.Mnodes,1,1)) 

     

    for(m=1;m<=Q.modelN;m++) { 

     modelstr_index = Q.models[1,m] 

     genSplines(Q,asarray(Q.logu, 

time_index)[,i],modelstr_index,time_index,tstar) 

     genDerivSplines(Q,asarray(Q.logu, 

time_index)[,i],modelstr_index,time_index,tstar) 

     genEta(Q, tstar, time_index, m) 

     genSurvFuncs(Q, asarray(Q.u, time_index)[,i], 

tstar, time_index, m) 

    } 

     

    genCIF(Q, tstar, time_index, t) 

   } 

   if(Q.ciopt) { 

    deltaMethod(Q, "rml", time_index, t) 

   } 

  } 

   

  for(m=1;m<=Q.modelN;m++) { 

   modelstr_index = Q.models[1,m] 

   genRML(Q, m) 

  } 

  if(Q.ciopt) genCI(Q, Q.rmlT, "rml") 

  st_matrix("RML_Nt", Q.rmlT') 

 } 

  

  



} 

 

//Get what we need from Stata 

function stata_transfer() { 

 struct vars_structure scalar Q 

  

 Q.newvarname = st_local("newvarname") 

  

 //store time 

 Q.touse_time = st_local("touse_time") 

 Q.t = st_data(.,st_local("t"),Q.touse_time) 

 Q.lnt = ln(Q.t) 

 Q.Nt = rows(Q.t) 

  

 Q.minT = strtoreal(st_local("minT")) 

  

 //calculate new timepoints at nodes for integration 

 Q.Mnodes = strtoreal(st_local("nodes")) 

 Q.z = J(Q.Mnodes,Q.Nt,.) 

 Q.nodesi = st_matrix(st_local("knodes")) 

 Q.weightsi = st_matrix(st_local("kweights")) 

 Q.t0 = Q.minT 

  

 Q.atList = tokens(st_local("atList")) 

  

 for(i=1;i<=Q.Nt;i++) { 

  Q.z[,i] = (((Q.t[i] :- Q.t0):/2):*Q.nodesi') :+ ((Q.t[i] :+ Q.t0):/2) 

 } 

  

 Q.rml = st_local("rmlat") != "" 

 Q.cifopt = st_local("cifopt") != "" 

 Q.rmlT = strtoreal(tokens(st_local("rmlat"))) 

 Q.u = asarray_create() 

 Q.logu = asarray_create() 

  

 Q.ciopt = st_local("ci") != ""  

  

 if(Q.rml) { 

  

  Q.v = J(Q.Mnodes,cols(Q.rmlT),.) 

  for(i=1;i<=cols(Q.rmlT);i++) { 

   for(j=1;j<=Q.Mnodes;j++) { 

    Q.v[j,i] = ((Q.rmlT[i] :- Q.t0):/2):*Q.nodesi[j] :+ 

((Q.rmlT[i] :+ Q.t0):/2)  

   } 

  } 

   

  umat = J(Q.Mnodes, rows(Q.v),0) 

  for(t=1;t<=cols(Q.rmlT);t++) { 

   time_index = "rmltime" + strofreal(Q.rmlT[,t]) 

   for(i=1;i<=rows(Q.v);i++) { 

    for(j=1;j<=Q.Mnodes;j++) { 

     umat[j,i] = ((Q.v[i,t] :- Q.minT):/2):*Q.nodesi[j] 

:+ ((Q.v[i,t] :+ Q.minT):/2) 

    } 

   } 

   asarray(Q.u, time_index, umat) 

   asarray(Q.logu, time_index, log(umat)) 

  } 

   

 } 

   

 Q.modelN = strtoreal(st_local("modelN")) 

  

 Q.models = J(1,Q.modelN,"") 

 Q.dfbase = asarray_create() 

 Q.dftvc = asarray_create("string", 2) 

 Q.rcsbaseoff = asarray_create() 



 Q.orthog = asarray_create() 

 Q.hastvc = asarray_create() 

 Q.knots = asarray_create("string", 2) 

 Q.tvcknots = asarray_create() 

 Q.hascons = asarray_create() 

 Q.tvcnames = asarray_create() 

 Q.Ntvc = asarray_create() 

 Q.Rmatrix = asarray_create("string", 2) 

 Q.Nvarlist = asarray_create() 

 Q.hasvarlist = asarray_create() 

 Q.touse_model = asarray_create() 

 Q.Nobs_model = asarray_create() 

 Q.X = asarray_create() 

 Q.Xdrcs = asarray_create() 

 Q.Nparameters = asarray_create() 

 Q.beta = asarray_create() 

 Q.betarcs = asarray_create("string", 2) 

 Q.betacov = asarray_create() 

 Q.V = asarray_create() 

 Q.varlist = asarray_create() 

 Q.varlistval = asarray_create() 

 Q.xbcons = asarray_create() 

  

  

  

 //store information for each model 

 for(m=1;m<=Q.modelN;m++) { 

     

  model_string = st_local("model"+strofreal(m)) 

  Q.models[1,m] = model_string 

  modelstr_index = Q.models[1,m] 

   

  stata("qui estimates restore "+modelstr_index) 

  

  //store all of these in asarray with modelstr_index  

   

  asarray(Q.touse_model, modelstr_index, 

st_local("touse_"+modelstr_index))  

  asarray(Q.Nobs_model, modelstr_index, 

strtoreal(st_local("Nobs_"+modelstr_index))) 

  asarray(Q.rcsbaseoff, modelstr_index,st_global("e(rcsbaseoff)") != "") 

  asarray(Q.orthog, modelstr_index, st_global("e(orthog)") != "") 

  asarray(Q.hascons, modelstr_index, st_global("e(noconstant)") == "") 

   

  if(Q.hascons) asarray(Q.xbcons, modelstr_index, 

strtoreal(st_local("xbcons_"+modelstr_index))) 

  

   

  //baseline stuff 

  if(!asarray(Q.rcsbaseoff, modelstr_index)) asarray(Q.knots, 

(modelstr_index,"baseline") , strtoreal(tokens(st_global("e(ln_bhknots)")))) 

   

  if(asarray(Q.orthog, modelstr_index) & !asarray(Q.rcsbaseoff, 

modelstr_index)) 

asarray(Q.Rmatrix,(modelstr_index,"baseline"),st_matrix("e(R_bh)")) 

  else asarray(Q.Rmatrix,(modelstr_index,"baseline"),J(0,0,.)) 

   

  asarray(Q.Nvarlist, modelstr_index 

,cols(tokens(st_global("e(varlist)"))))    

  asarray(Q.hasvarlist, modelstr_index, asarray(Q.Nvarlist, 

modelstr_index)>0)     

  asarray(Q.dfbase, modelstr_index, st_numscalar("e(dfbase)"))  

 

  //tvc stuff 

  asarray(Q.hastvc, modelstr_index, st_global("e(tvc)") != "")  

   

  if(asarray(Q.hastvc, modelstr_index)) { 

    



   asarray(Q.tvcnames, modelstr_index, 

tokens(st_global("e(tvc)"))) 

   asarray(Q.Ntvc, modelstr_index, cols(asarray(Q.tvcnames, 

modelstr_index))) 

    

    

   for(j=1;j<=asarray(Q.Ntvc, modelstr_index);j++) { 

    tvc_index = asarray(Q.tvcnames, modelstr_index)[j] 

     

    asarray(Q.knots, (modelstr_index, 

tvc_index),strtoreal(tokens(st_global("e(ln_tvcknots_"+tvc_index+")"))))  

    asarray(Q.dftvc, (modelstr_index, tvc_index), 

st_numscalar("e(df_"+tvc_index+")")) 

     

    if(asarray(Q.orthog, modelstr_index)) asarray(Q.Rmatrix, 

(modelstr_index, tvc_index) ,st_matrix("e(R_"+tvc_index+")")) 

    else asarray(Q.Rmatrix,(modelstr_index, 

tvc_index),J(0,0,.)) 

     

   } 

  } 

   

  //get X matrix    

  covariates = J(1,0,"") 

  drcsvars = J(1,0,"") 

  if(asarray(Q.Nvarlist, modelstr_index)>0) { 

   covariates = covariates, tokens(st_global("e(varlist)"))  

   asarray(Q.varlist, modelstr_index, covariates) 

   asarray(Q.varlistval, modelstr_index, 

tokens(st_local("varval_"+modelstr_index))) 

  } 

  if(!asarray(Q.rcsbaseoff, modelstr_index)) { 

   covariates = covariates, tokens(st_global("e(rcsterms_base)")) 

   drcsvars = drcsvars, tokens(st_global("e(drcsterms_base)")) 

  } 

  if(asarray(Q.hastvc, modelstr_index)) { 

    for(j=1;j<=asarray(Q.Ntvc, modelstr_index);j++) { 

     tvc_index = asarray(Q.tvcnames, modelstr_index)[j] 

     covariates = covariates, 

tokens(st_global("e(rcsterms_"+tvc_index+")")) 

     drcsvars = drcsvars, 

tokens(st_global("e(drcsterms_"+tvc_index+")")) 

    } 

  } 

  asarray(Q.X, modelstr_index, 

st_data(.,covariates,asarray(Q.touse_model,modelstr_index))) 

   

  if(asarray(Q.hascons, modelstr_index)) asarray(Q.X, modelstr_index, 

(asarray(Q.X, modelstr_index),J(asarray(Q.Nobs_model, modelstr_index),1,1))) 

  asarray(Q.Xdrcs, modelstr_index, 

st_data(.,drcsvars,asarray(Q.touse_model,modelstr_index))) 

    

  //get parameter coefficients 

  asarray(Q.Nparameters, modelstr_index, cols(asarray(Q.X, 

modelstr_index))) 

  parameterN = asarray(Q.Nparameters, modelstr_index) 

  varlistN = asarray(Q.Nvarlist, modelstr_index) 

  asarray(Q.beta, modelstr_index, st_matrix("e(b)")'[1..parameterN,1]) 

  asarray(Q.betacov, modelstr_index, st_matrix("e(b)")'[1..varlistN,1]) 

   

  if(!asarray(Q.rcsbaseoff, modelstr_index)) { 

   put = asarray(Q.beta, 

modelstr_index)[(varlistN+1)..(varlistN+asarray(Q.dfbase, modelstr_index))] 

   asarray(Q.betarcs, (modelstr_index, "baseline"), put)  

  } 

   

  if(!asarray(Q.rcsbaseoff, modelstr_index)) df = asarray(Q.dfbase, 

modelstr_index) + 1 



  else df = 1 

  if(asarray(Q.hastvc, modelstr_index)) { 

   for(j=1;j<=asarray(Q.Ntvc, modelstr_index);j++) { 

    tvc_index = asarray(Q.tvcnames, modelstr_index)[j] 

    put = asarray(Q.beta, 

modelstr_index)[(varlistN+df)..(varlistN+asarray(Q.dftvc, (modelstr_index, 

tvc_index))+df-1)] 

    asarray(Q.betarcs, (modelstr_index, tvc_index), put)   

    df = df + asarray(Q.dftvc, (modelstr_index, tvc_index)) 

   } 

  } 

 

  asarray(Q.V, modelstr_index, 

st_matrix("e(V)")[1..parameterN,1..parameterN]) 

   

   

   

  

 } 

  

 if(!asarray(Q.rcsbaseoff, modelstr_index)) Q.Xrcsbase = 

asarray_create("string", 4) 

 if(asarray(Q.hastvc, modelstr_index)) Q.Xrcstvc = asarray_create("string",4) 

  

 if(!asarray(Q.rcsbaseoff, modelstr_index)) Q.Xdrcsbase = 

asarray_create("string", 4) 

 if(asarray(Q.hastvc, modelstr_index)) Q.Xdrcstvc = 

asarray_create("string",4) 

  

 Q.xb = J(Q.Mnodes,Q.modelN,0) 

 for(m=1;m<=Q.modelN;m++) { 

  modelstr_index = Q.models[1,m] 

  var_index = asarray(Q.Nvarlist, modelstr_index) 

  for(k=1;k<=var_index;k++) { 

   for(j=1;j<=Q.Mnodes;j++) { 

    x = strtoreal(asarray(Q.varlistval, modelstr_index)[,k]) 

    b = (asarray(Q.betacov, modelstr_index)[k,]) 

    Q.xb[j,m] = Q.xb[j,m] + b*x 

   } 

  } 

  if(asarray(Q.hascons, modelstr_index)) {  

   Q.xb[,m] = Q.xb[,m] :+ asarray(Q.xbcons, modelstr_index)  

  } 

 } 

  

 Q.eta = asarray_create("string", 3) 

 Q.rcsxb = asarray_create("string", 3) 

 Q.drcsxb = asarray_create("string", 3) 

  

 Q.st = asarray_create("string", 3) 

 Q.ht = asarray_create("string", 3) 

 Q.Ft = asarray_create("string", 3) 

 Q.st_all = asarray_create("string", 2) 

 Q.CIF = J(Q.Nt,Q.modelN,0) 

  

 Q.LL = J(cols(Q.rmlT),Q.modelN,0) 

 Q.Ftmat = asarray_create("string", 2) 

  

 Q.A12_k = asarray_create("string", 3) 

  

  

 return(Q) 

 

} 

 

void function genSplines(struct vars_structure scalar Q, lnt, modelstr_index, 

time_index, tstar)  

{  



  

 if(!asarray(Q.rcsbaseoff, modelstr_index)) { 

  if(asarray(Q.orthog, modelstr_index)) asarray(Q.Xrcsbase, 

(modelstr_index,"baseline",time_index,tstar),rcsgen_core(lnt,asarray(Q.knots, 

(modelstr_index,"baseline")),0,asarray(Q.Rmatrix,(modelstr_index,"baseline")))) 

  else asarray(Q.Xrcsbase, 

(modelstr_index,"baseline",time_index,tstar),rcsgen_core(lnt,asarray(Q.knots, 

(modelstr_index,"baseline")),0)) 

 } 

 

 if(asarray(Q.hastvc, modelstr_index)) { 

   for(j=1;j<=asarray(Q.Ntvc, modelstr_index);j++) { 

    tvc_index = asarray(Q.tvcnames, modelstr_index)[j] 

     

    if(asarray(Q.orthog, modelstr_index)) 

asarray(Q.Xrcstvc,(modelstr_index,tvc_index,time_index,tstar),rcsgen_core(lnt,asarr

ay(Q.knots, 

(modelstr_index,tvc_index)),0,asarray(Q.Rmatrix,(modelstr_index,tvc_index)))) 

    else 

asarray(Q.Xrcstvc,(modelstr_index,tvc_index,time_index,tstar),rcsgen_core(lnt,asarr

ay(Q.knots, (modelstr_index,tvc_index)),0)) 

   } 

 } 

  

} 

 

 

void function genDerivSplines(struct vars_structure scalar Q, lnt, modelstr_index, 

time_index, tstar)  

{  

   

 if(!asarray(Q.rcsbaseoff, modelstr_index)) { 

  if(asarray(Q.orthog, modelstr_index)) asarray(Q.Xdrcsbase, 

(modelstr_index,"baseline",time_index,tstar),rcsgen_core(lnt,asarray(Q.knots, 

(modelstr_index,"baseline")),1,asarray(Q.Rmatrix,(modelstr_index,"baseline")))) 

  else asarray(Q.Xdrcsbase, 

(modelstr_index,"baseline",time_index,tstar),rcsgen_core(lnt,asarray(Q.knots, 

(modelstr_index,"baseline")),1)) 

 } 

 

 if(asarray(Q.hastvc, modelstr_index)) { 

   for(j=1;j<=asarray(Q.Ntvc, modelstr_index);j++) { 

    tvc_index = asarray(Q.tvcnames, modelstr_index)[j] 

     

    if(asarray(Q.orthog, modelstr_index)) 

asarray(Q.Xdrcstvc,(modelstr_index,tvc_index,time_index,tstar),rcsgen_core(lnt,asar

ray(Q.knots, 

(modelstr_index,tvc_index)),1,asarray(Q.Rmatrix,(modelstr_index,tvc_index)))) 

    else 

asarray(Q.Xdrcstvc,(modelstr_index,tvc_index,time_index,tstar),rcsgen_core(lnt,asar

ray(Q.knots, (modelstr_index,tvc_index)),1)) 

   } 

 } 

   

  

} 

 

function genEta(struct vars_structure scalar Q, tstar, time_index, modelindex) 

{ 

 

     

 m = modelindex 

 modelstr_index = Q.models[1,m] 

 asarray(Q.rcsxb, (modelstr_index, time_index, tstar), J(Q.Mnodes,1,0)) 

 asarray(Q.drcsxb, (modelstr_index, time_index, tstar), J(Q.Mnodes,1,0)) 

  

 if(!asarray(Q.rcsbaseoff, modelstr_index)) { 



  el = asarray(Q.rcsxb, (modelstr_index, time_index, tstar)) + 

asarray(Q.Xrcsbase, 

(modelstr_index,"baseline",time_index,tstar))*asarray(Q.betarcs, (modelstr_index, 

"baseline")) 

  asarray(Q.rcsxb, (modelstr_index, time_index, tstar), el) 

  el2 = asarray(Q.drcsxb, (modelstr_index, time_index, tstar)) + 

asarray(Q.Xdrcsbase, 

(modelstr_index,"baseline",time_index,tstar))*asarray(Q.betarcs, (modelstr_index, 

"baseline")) 

  asarray(Q.drcsxb, (modelstr_index, time_index, tstar), el2) 

 } 

 

  

  

 if(asarray(Q.hastvc, modelstr_index)) { 

  for(j=1;j<=asarray(Q.Ntvc, modelstr_index);j++) { 

   tvc_index = asarray(Q.tvcnames, modelstr_index)[j] 

 

   for(k=1;k<=cols(Q.atList);k++) { 

    if(Q.atList[,k]==tvc_index) { 

     el = asarray(Q.rcsxb, (modelstr_index, time_index, 

tstar)) + asarray(Q.Xrcstvc, (modelstr_index,tvc_index,time_index, 

tstar))*asarray(Q.betarcs, (modelstr_index, tvc_index))*1 

     asarray(Q.rcsxb, (modelstr_index, time_index, 

tstar), el) 

     el2 = asarray(Q.drcsxb, (modelstr_index, 

time_index, tstar)) + asarray(Q.Xdrcstvc, (modelstr_index,tvc_index,time_index, 

tstar))*asarray(Q.betarcs, (modelstr_index, tvc_index))*1 

     asarray(Q.drcsxb, (modelstr_index, time_index, 

tstar), el2) 

    } 

   } 

    

    

  } 

 } 

 

 asarray(Q.eta, (modelstr_index, time_index, tstar), asarray(Q.rcsxb, 

(modelstr_index, time_index, tstar)) :+ Q.xb[,m]) 

 

} 

 

function genSurvFuncs(struct vars_structure scalar Q, time, tstar, time_index, 

modelindex) 

{ 

 m = modelindex 

 modelstr_index = Q.models[1,m] 

 asarray(Q.st, (modelstr_index, time_index, tstar), exp(-exp(asarray(Q.eta, 

(modelstr_index, time_index, tstar))))) 

 asarray(Q.ht, (modelstr_index, time_index, tstar), 

(1:/time):*asarray(Q.drcsxb, (modelstr_index, time_index, 

tstar)):*(exp(asarray(Q.eta, (modelstr_index, time_index, tstar)))))  

 asarray(Q.st_all, (time_index, tstar), asarray(Q.st_all, (time_index, 

tstar)):*asarray(Q.st, (modelstr_index, time_index, tstar))) 

  

} 

 

function genCIF(struct vars_structure scalar Q, tstar, time_index, t) 

{ 

  

  

  

 for(m=1;m<=Q.modelN;m++) { 

   

  model_string = st_local("model"+strofreal(m)) 

  Q.models[1,m] = model_string 

  modelstr_index = Q.models[1,m] 

   



  asarray(Q.Ft, (modelstr_index, time_index, tstar), asarray(Q.st_all, 

(time_index, tstar)):*asarray(Q.ht, (modelstr_index, time_index, tstar))) 

   

  if(tstar=="cif") { 

   tminus = (Q.t[t]:-Q.minT):/2 

   Q.CIF[t,m] = tminus:*(Q.weightsi*(asarray(Q.Ft, 

(modelstr_index, time_index, tstar)):/1)) 

  } 

   

 } 

  

  

} 

 

function genRML(struct vars_structure scalar Q, modelindex) 

{ 

 m = modelindex 

 modelstr_index = Q.models[1,m] 

  

 tempFt = J(Q.Mnodes, Q.Mnodes, .) 

 CB = J(Q.Mnodes,1,.) 

  

 A = J(Q.Mnodes,rows(Q.v),.) 

 for(t=1;t<=cols(Q.v);t++) { 

  A[,t] = ((Q.weightsi' :* (Q.v[,t] :- Q.minT)):/2) 

 } 

  

 

 for(t=1;t<=cols(Q.rmlT);t++) { 

  time_index = "rmltime" + strofreal(Q.rmlT[,t]) 

  tminus = (Q.rmlT[t]:-Q.minT):/2 

   

  //construct master Ft matrix 

  for(c=1;c<=rows(Q.v);c++) { 

   tstar = "rml_"+strofreal(c) 

   tempFt[,c] = asarray(Q.Ft, (modelstr_index, time_index, tstar)) 

  }    

  CB = (Q.weightsi*tempFt') 

  done = CB*A[,t] 

  asarray(Q.Ftmat, (modelstr_index, time_index), done) 

  Q.LL[t,m] = tminus:*(asarray(Q.Ftmat, (modelstr_index, time_index))) 

 } 

 st_matrix("RML", Q.LL) 

} 

 

//Delta Method Main 

void function deltaMethod(struct vars_structure scalar Q, pred, time_index, t)  

{ 

  

 for(m=1;m<=Q.modelN;m++) { 

  modelstr_index = Q.models[1,m] 

   

  //CIF 

  if(pred=="cif") {  

   tstar = "cif" 

   

   A12 = J(1,asarray(Q.Nparameters, modelstr_index),.) 

   St_all = asarray(Q.st_all, (time_index, tstar)) 

   logSt_k = log(asarray(Q.st, (modelstr_index, time_index, 

tstar))) 

   ht_k = asarray(Q.ht, (modelstr_index, time_index, tstar))  

 

   rcs_index = 1 

   Ntvc_index = 0 

   tvcrcs_index = 1 

   tminus = (Q.t[t]:-Q.minT):/2  

    

   for(k=1;k<=asarray(Q.Nparameters, modelstr_index);k++) {  



    if(k<=asarray(Q.Nvarlist, modelstr_index) | 

(k==asarray(Q.Nparameters, modelstr_index) & asarray(Q.hascons, modelstr_index))) { 

     if(k==asarray(Q.Nparameters, modelstr_index) & 

asarray(Q.hascons, modelstr_index)) {  

      x_k = 1 

      

     } 

     else { 

      x_k = strtoreal(asarray(Q.varlistval, 

modelstr_index)[1,k]) 

     } 

      

     eval = St_all :* ht_k :* x_k :* (logSt_k :+ 1) 

     A12[1,k] = tminus:*(Q.weightsi*(eval)) 

      

    } 

    else if (k>asarray(Q.Nvarlist, modelstr_index) & 

k<=(asarray(Q.Nvarlist, modelstr_index) +  asarray(Q.dfbase, modelstr_index) )){ 

     eval = St_all :* ht_k :* asarray(Q.Xrcsbase, 

(modelstr_index,"baseline",time_index,tstar))[,rcs_index] :* (logSt_k :+ 1) 

     A12[1,k] = tminus:*(Q.weightsi*(eval)) 

     rcs_index++ 

    } 

    else { 

      

     if(k==(asarray(Q.Nvarlist, modelstr_index) +  

asarray(Q.dfbase, modelstr_index))+1) { 

      Ntvc_index = 1 

     } 

     else if (k==(asarray(Q.Nvarlist, modelstr_index) +  

asarray(Q.dfbase, modelstr_index) + (asarray(Q.dftvc, (modelstr_index, 

tvc_index)))*Ntvc_index)+1) { 

      tvcrcs_index = 1 

      Ntvc_index++ 

     } 

     tvc_index = asarray(Q.tvcnames, 

modelstr_index)[1,Ntvc_index] 

     for(j=1;j<=cols(Q.atList);j++) { 

      if(Q.atList[,j]==tvc_index & 

strtoreal(asarray(Q.varlistval, modelstr_index)[1,j]) != 0) { 

       eval = St_all :* ht_k :* 

(asarray(Q.Xrcstvc, (modelstr_index,tvc_index,time_index, tstar))[,tvcrcs_index]) 

:* (logSt_k :+ 1) 

       A12[1,k] = 

tminus:*(Q.weightsi*(eval)) 

       tvcrcs_index++ 

      } 

      else if (strtoreal(asarray(Q.varlistval, 

modelstr_index)[1,j]) == 0 | Q.atList[,j]!=tvc_index ) {  

       x_k = 0 

       eval = St_all :* ht_k :* x_k :* 

(logSt_k :+ 1) 

       A12[1,k] = 

tminus:*(Q.weightsi*(eval)) 

       tvcrcs_index++ 

      } 

     } 

    } 

   } 

   asarray(Q.A12_k, (modelstr_index, time_index, pred), A12) 

  } 

   

   

  //RML 

  if(pred=="rml") { 

    

   mat_eval = asarray_create()    

    



   CB = J(Q.Mnodes,1,.) 

    

   A = J(Q.Mnodes,rows(Q.v),.) 

   for(c=1;c<=cols(Q.v);c++) { 

    A[,c] = ((Q.weightsi' :* (Q.v[,c] :- Q.minT)):/2) 

   } 

    

   tminus = (Q.rmlT[t]:-Q.minT):/2 

    

   rcs_index = 1 

   Ntvc_index = 0 

   tvcrcs_index = 1 

   A12 = J(1,asarray(Q.Nparameters, modelstr_index),.) 

    

   //construct master Ft matrix 

   for(k=1;k<=asarray(Q.Nparameters, modelstr_index);k++) { 

    param_index = "parameter_" + strofreal(k) 

    tempFt = J(Q.Mnodes, Q.Mnodes, .) 

    templogSt_k = J(Q.Mnodes, Q.Mnodes, .) 

    tempmat_k = J(Q.Mnodes, Q.Mnodes, .) 

    x_k = J(Q.Mnodes, Q.Mnodes, .) 

    for(c=1;c<=rows(Q.v);c++) { 

     tstar = "rml_"+strofreal(c) 

      

     tempFt[,c] = asarray(Q.Ft, (modelstr_index, 

time_index, tstar)) 

     templogSt_k[,c] = log(asarray(Q.st, 

(modelstr_index, time_index, tstar))) 

     tempmat_k[,c] = tempFt[,c]:*(1 :+ templogSt_k[,c]) 

      

     if(k<=asarray(Q.Nvarlist, modelstr_index) | 

(k==asarray(Q.Nparameters, modelstr_index) & asarray(Q.hascons, modelstr_index))) { 

      if(k==asarray(Q.Nparameters, 

modelstr_index) & asarray(Q.hascons, modelstr_index)) {  

       x_k[,c] = J(Q.Mnodes, 1, 1) 

      } 

      else { 

       x_k[,c] = J(Q.Mnodes, 1, 

strtoreal(asarray(Q.varlistval, modelstr_index)[1,k])) 

      } 

      tempmat_k[,c] = tempmat_k[,c]:*x_k[,c] 

       

     } 

     else if (k>asarray(Q.Nvarlist, modelstr_index) & 

k<=(asarray(Q.Nvarlist, modelstr_index) +  asarray(Q.dfbase, modelstr_index) )){ 

      x_k[,c] = asarray(Q.Xrcsbase, 

(modelstr_index,"baseline",time_index,tstar))[,rcs_index] 

      tempmat_k[,c] = tempmat_k[,c]:*x_k[,c] 

      if(c==rows(Q.v)) rcs_index++ 

     } 

     else { 

       

      if(k==(asarray(Q.Nvarlist, modelstr_index) 

+  asarray(Q.dfbase, modelstr_index))+1) { 

       if(c==1) Ntvc_index = 1 

      } 

      else if (k==(asarray(Q.Nvarlist, 

modelstr_index) +  asarray(Q.dfbase, modelstr_index) + (asarray(Q.dftvc, 

(modelstr_index, tvc_index)))*Ntvc_index)+1) { 

       "check if you see this, not sure for 

more than 1 tvc" 

       if(c==1) tvcrcs_index = 1 

       if(c==1) Ntvc_index++ 

      } 

      tvc_index = asarray(Q.tvcnames, 

modelstr_index)[1,Ntvc_index] 

      for(j=1;j<=cols(Q.atList);j++) { 



       if(Q.atList[,j]==tvc_index & 

strtoreal(asarray(Q.varlistval, modelstr_index)[1,j]) != 0) { 

        x_k[,c] = (asarray(Q.Xrcstvc, 

(modelstr_index,tvc_index,time_index, tstar))[,tvcrcs_index]) 

        tempmat_k[,c] = 

tempmat_k[,c]:*x_k[,c] 

        if(c==rows(Q.v)) 

tvcrcs_index++ 

       } 

       else if 

(strtoreal(asarray(Q.varlistval, modelstr_index)[1,j]) == 0 | 

Q.atList[,j]!=tvc_index ) {  

        x_k[,c] = J(Q.Mnodes, 1, 0) 

        tempmat_k[,c] = 

tempmat_k[,c]:*x_k[,c] 

        if(c==rows(Q.v)) 

tvcrcs_index++ 

       } 

      } 

     } 

     

    } 

     

    asarray(mat_eval, param_index, tempmat_k) 

    CB = (Q.weightsi*asarray(mat_eval, param_index)) 

    A12[1,k] = CB*A[,t] 

     

   }   

   asarray(Q.A12_k, (modelstr_index, time_index, pred), 

tminus:*A12) 

  

  } 

 

   

 } 

 

} 

 

void function genCI(struct vars_structure scalar Q, time, pred) { 

 

 if(pred=="cif") { 

  Q.CIF_uci = J(time, Q.modelN,.) 

  Q.CIF_lci = J(time, Q.modelN,.) 

  for(m=1;m<=Q.modelN;m++) { 

   modelstr_index = Q.models[1,m] 

   for(t=1;t<=time;t++) { 

    time_index = "time" + strofreal(t) 

 

    G = asarray(Q.A12_k, (modelstr_index, time_index, 

"cif"))  

    Var = G*asarray(Q.V, modelstr_index)*G' 

    theta = invnormal(1-(1-95/100)/2)*sqrt(diagonal(Var)) 

     

    Q.CIF_uci[t,m] = Q.CIF[t,m] + theta'  

    Q.CIF_lci[t,m] = Q.CIF[t,m] - theta'  

     

   } 

    

  } 

 } 

  

 if(pred=="rml") { 

  

  Q.LL_uci = J(cols(time), Q.modelN,.) 

  Q.LL_lci = J(cols(time), Q.modelN,.) 

  for(m=1;m<=Q.modelN;m++) { 

   modelstr_index = Q.models[1,m] 

   for(t=1;t<=cols(time);t++) { 



     

    time_index = "rmltime" + strofreal(time[,t]) 

     

    G = asarray(Q.A12_k, (modelstr_index, time_index, 

"rml"))  

     

    Var = G*asarray(Q.V, modelstr_index)*G' 

     

    theta = invnormal(1-(1-95/100)/2)*sqrt(diagonal(Var)) 

     

    Q.LL_uci[t,m] = Q.LL[t,m] + theta'  

    Q.LL_lci[t,m] = Q.LL[t,m] - theta'  

 

     

   } 

    

  } 

   

  LL_mat = J(cols(time), Q.modelN*3, .) 

  for(i=1;i<=(Q.modelN*3);i=i+3) { 

   j = ((i-1)/3) + 1 

   i_lci = i+1 

   i_uci = i+2 

   LL_mat[,i] = Q.LL[,j] 

   LL_mat[,i_lci] = Q.LL_lci[,j] 

   LL_mat[,i_uci] = Q.LL_uci[,j] 

  } 

  st_matrix("RML", LL_mat) 

  st_matrix("RML_Nt", time') 

   

 } 

  

 

} 

 

function exportCIF(struct vars_structure scalar Q) 

{ 

 

 for(m=1;m<=Q.modelN;m++) { 

 

  modelstr_index = Q.models[1,m] 

   

  (void) st_addvar("double",Q.newvarname+ "_" + modelstr_index) 

  st_store(.,Q.newvarname+ "_" + modelstr_index,Q.touse_time,Q.CIF[,m]) 

   

  if(Q.ciopt) { 

   (void) st_addvar("double",Q.newvarname+ "_" + modelstr_index + 

"_lci") 

   st_store(.,Q.newvarname+ "_" + modelstr_index + 

"_lci",Q.touse_time,Q.CIF_lci[,m]) 

    

   (void) st_addvar("double",Q.newvarname+ "_" + modelstr_index + 

"_uci") 

   st_store(.,Q.newvarname+ "_" + modelstr_index + 

"_uci",Q.touse_time,Q.CIF_uci[,m]) 

  } 

    

 } 

  

} 

 

 

//=================================================================================

=====================================================// 

// rcsgen_core function - calculate splines with provided knots 

 

real matrix rcsgen_core( real colvector variable, /// 

       real rowvector knots,   /// 



       real scalar deriv,|   /// 

       real matrix rmatrix   /// 

      ) 

{ 

 real scalar  Nobs, Nknots, kmin, kmax, interior, Nparams 

 real matrix splines, knots2 

 

 //==========================================================================

============================================================// 

 // Extract knot locations 

 

 Nobs  = rows(variable) 

 Nknots  = cols(knots) 

 kmin  = knots[1,1] 

 kmax  = knots[1,Nknots] 

 

 if (Nknots==2) interior = 0 

 else interior = Nknots - 2 

 Nparams = interior + 1 

  

 splines = J(Nobs,Nparams,.) 

 

 //==========================================================================

============================================================// 

 // Calculate splines 

 

 if (Nparams>1) { 

  lambda = J(Nobs,1,(kmax:-knots[,2..Nparams]):/(kmax:-kmin)) 

  knots2 = J(Nobs,1,knots[,2..Nparams]) 

 } 

 

 if (deriv==0) { 

  splines[,1] = variable 

  if (Nparams>1) { 

   splines[,2..Nparams] = (variable:-knots2):^3 :* 

(variable:>knots2) :- lambda:*((variable:-kmin):^3):*(variable:>kmin) :- (1:-

lambda):*((variable:-kmax):^3):*(variable:>kmax)  

  } 

 } 

 else if (deriv==1) { 

  splines[,1] = J(Nobs,1,1) 

  if (Nparams>1) { 

   splines[,2..Nparams] = 3:*(variable:-knots2):^2 :* 

(variable:>knots2) :- lambda:*(3:*(variable:-kmin):^2):*(variable:>kmin) :- (1:-

lambda):*(3:*(variable:-kmax):^2):*(variable:>kmax)   

  } 

 } 

 else if (deriv==2) { 

  splines[,1] = J(Nobs,1,0) 

  if (Nparams>1) { 

   splines[,2..Nparams] = 6:*(variable:-knots2) :* 

(variable:>knots2) :- lambda:*(6:*(variable:-kmin)):*(variable:>kmin) :- (1:-

lambda):*(6:*(variable:-kmax)):*(variable:>kmax)   

  } 

 } 

 else if (deriv==3) { 

  splines[,1] = J(Nobs,1,0) 

  if (Nparams>1) { 

   splines[,2..Nparams] = 6:*(variable:>knots2) :- 

lambda:*6:*(variable:>kmin) :- (1:-lambda):*6:*(variable:>kmax) 

  } 

 } 

 

 //orthog 

 if (args()==4) { 

  real matrix rmat 

  rmat = luinv(rmatrix) 

  if (deriv==0) splines = (splines,J(Nobs,1,1)) * rmat[,1..Nparams] 



  else splines = splines * rmat[1..Nparams,1..Nparams] 

 } 

 return(splines) 

} 

 

end 

 

 

//=== Gaussian quadrature program borrowed from stgenreg 

=============================================================== 

program define gaussquad, rclass 

        syntax [, N(integer -99) LEGendre CHEB1 CHEB2 HERmite JACobi LAGuerre 

alpha(real 0) beta(real 0)] 

         

    if `n' < 0 { 

        display as err "need non-negative number of nodes" 

                exit 198 

        } 

        if wordcount(`"`legendre' `cheb1' `cheb2' `hermite' `jacobi' `laguerre'"') 

> 1 { 

                display as error "You have specified more than one integration 

option" 

                exit 198 

        } 

        local inttype `legendre'`cheb1'`cheb2'`hermite'`jacobi'`laguerre'  

        if "`inttype'" == "" { 

                display as error "You must specify one of the integration type 

options" 

                exit 198 

        } 

 

        tempname weights nodes 

        mata gq("`weights'","`nodes'") 

        return matrix weights = `weights' 

        return matrix nodes = `nodes' 

end 

 

mata: 

        void gq(string scalar weightsname, string scalar nodesname) 

{ 

        n =  strtoreal(st_local("n")) 

        inttype = st_local("inttype") 

        i = range(1,n,1)' 

        i1 = range(1,n-1,1)' 

        alpha = strtoreal(st_local("alpha")) 

        beta = strtoreal(st_local("beta")) 

                 

        if(inttype == "legendre") { 

                muzero = 2 

                a = J(1,n,0) 

                b = i1:/sqrt(4 :* i1:^2 :- 1) 

        } 

        else if(inttype == "cheb1") { 

                muzero = pi() 

                a = J(1,n,0) 

                b = J(1,n-1,0.5) 

                b[1] = sqrt(0.5) 

    } 

        else if(inttype == "cheb2") { 

                muzero = pi()/2 

                a = J(1,n,0) 

                b = J(1,n-1,0.5) 

        } 

        else if(inttype == "hermite") { 

                muzero = sqrt(pi()) 

                a = J(1,n,0) 

                b = sqrt(i1:/2) 

        } 



        else if(inttype == "jacobi") { 

                ab = alpha + beta 

                muzero = 2:^(ab :+ 1) :* gamma(alpha :+ 1) * gamma(beta :+ 

1):/gamma(ab :+ 2) 

                a = i 

                a[1] = (beta - alpha):/(ab :+ 2) 

                i2 = range(2,n,1)' 

                abi = ab :+ (2 :* i2) 

                a[i2] = (beta:^2 :- alpha^2):/(abi :- 2):/abi 

                b = i1 

        b[1] = sqrt(4 * (alpha + 1) * (beta + 1):/(ab :+ 2):^2:/(ab :+ 3)) 

        i2 = i1[2..n-1] 

        abi = ab :+ 2 :* i2 

        b[i2] = sqrt(4 :* i2 :* (i2 :+ alpha) :* (i2 :+ beta) :* (i2 :+ 

ab):/(abi:^2 :- 1):/abi:^2) 

        } 

        else if(inttype == "laguerre") { 

                a = 2 :* i :- 1 :+ alpha 

                b = sqrt(i1 :* (i1 :+ alpha)) 

                muzero = gamma(alpha :+ 1) 

    } 

 

        A= diag(a) 

        for(j=1;j<=n-1;j++){ 

                A[j,j+1] = b[j] 

                A[j+1,j] = b[j] 

        } 

        symeigensystem(A,vec,nodes) 

        weights = (vec[1,]:^2:*muzero)' 

        weights = weights[order(nodes',1)] 

        nodes = nodes'[order(nodes',1)'] 

        st_matrix(weightsname,weights) 

        st_matrix(nodesname,nodes) 

} 

                 

end 
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