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Abstract

Multilevel Adaptive Radial Basis Function
Approximation using Error Indicators

Qi Zhang

In some approximation problems, sampling from the target function can be both

expensive and time-consuming. It would be convenient to have a method for

indicating where the approximation quality is poor, so that generation of new

data provides the user with greater accuracy where needed.

In this thesis, the author describes a new adaptive algorithm for Radial Basis

Function (RBF) interpolation which aims to assess the local approximation quality

and adds or removes points as required to improve the error in the specified region.

For a multiquadric and Gaussian approximation, one has the flexibility of a shape

parameter which one can use to keep the condition number of the interpolation

matrix to a moderate size. In this adaptive error indicator (AEI) method, an

adaptive shape parameter is applied.

Numerical results for test functions which appear in the literature are given for one,

two, and three dimensions, to show that this method performs well. A turbine

blade design problem form GE Power (Rugby, UK) is considered and the AEI

method is applied to this problem.

Moreover, a new multilevel approximation scheme is introduced in this thesis

by coupling it with the adaptive error indicator. Preliminary numerical results

from this Multilevel Adaptive Error Indicator (MAEI) approximation method are

shown. These indicate that the MAEI is able to express the target function well.

Moreover, it provides a highly efficient sampling.



Acknowledgements

During these three years and a half of my Ph.D. life, there has been happiness,
hesitations, excitements, frustrations and much more. I has learnt a lot from
this precious experiences and would like to express my sincere gratitude to many
people; people helped me to finish my Ph.D. degree and helped me to achieved
something if I had.

First and foremost, I would like to express my deepest gratitude to my parents.
Like the majority of Chinese people, I never took the chance to thank my parents
properly. I would like to salute and express my gratitude to my caring and loving
parents, Mr Minghua Zhang and Mrs Jinping Ma, for their fostering, support,
encouragement and patient since I was a child. I could not finish my degree
without their steady stream of support in many ways. I would like to dedicate
this thesis to my parents.

Secondly, I would like to express utmost gratitude to my supervisor, instructor and
mentor, Prof. Jeremy Levesley. Prof. Jeremy Levesley had provided continuous
support, patience, motivation and immense helpful advice of my Ph.D. study and
related research. Not only in the academic perspective, but also in many fields,
Prof. Jeremy Levesley provided many wise pieces of advice for me. I could not
think of a person whom could be a better tutor for me than Prof. Jeremy Levesley.

Thirdly, I would like to thanks my peer Ph.D. students; it was a great pleasure
to work with them. I would like to thank especially Mr Zhaonan Dong, known as
Peter Dong, and Mr Yangzhang Zhao. Peter was always ready to deliver helpful
and inspiring bits of advice wholeheartedly at request since we are aware each
other. To some extents, Yangzhang is my partner in research, and he is helpful
and motivated for all the time. It was wonderful to have Peter and Yangzhang as
my close friends.

Fourthly, I would like to thank Prof. Emmanuil (Manolis) Georgoulis as my sec-
onder advisor, and he has been a great source of learning for me and despite his
busy schedule, he always managed time for my research. I am also grateful to all
the staff members of the mathematics department and the administration of the
University for their help and making so many things easy for me.

Last but not least, I would like to thank GE Power (Rugby, UK) for their financial
support and technical support. The University of Leicester has a close cooperation
with GE Power (Rugby, UK), which provides great opportunities for researchers
to communicate and to get inspired. I would thank especially Dr. Andrew Pike
and Dr. Sarah Davis for their encouragement and support.

ii



Contents

Abstract i

Acknowledgements ii

List of Figures v

List of Tables viii

Abbreviations x

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Radial Basis Function . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 The RBF based adaptive methods . . . . . . . . . . . . . . . . . . 7
1.4 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.5 Main Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Radial basis functions 16
2.1 Scattered data interpolation problem . . . . . . . . . . . . . . . . . 16
2.2 Introductory concepts . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Radial basis function . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Radial basis function interpolation . . . . . . . . . . . . . . 21
2.4 Well-posedness of the RBF interpolation problem . . . . . . . . . . 25

2.4.1 Convergence and Error Bound . . . . . . . . . . . . . . . . . 26

3 Adaptive Error Indicator (AEI) Method 28
3.1 Adaptive RBF interpolation scheme . . . . . . . . . . . . . . . . . . 28
3.2 The error indicator function . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Adaptive data structure . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Adaptive point sets . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Adaptive shape parameters . . . . . . . . . . . . . . . . . . 36

3.4 Adaptive procedure achieved by using an error indicator . . . . . . 40
3.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.1 One dimensional function approximations . . . . . . . . . . 41

iii



Contents iv

3.5.1.1 The Runge function . . . . . . . . . . . . . . . . . 42
3.5.1.2 The hyperbolic tan function . . . . . . . . . . . . . 45
3.5.1.3 The shifted absolute value function . . . . . . . . . 48

3.5.2 Two dimensional function approximations . . . . . . . . . . 51
3.5.2.1 The modified Franke Function . . . . . . . . . . . . 51
3.5.2.2 The two-dimensional hyperbolic function . . . . . . 53
3.5.2.3 The two-dimensional exponential function . . . . . 57
3.5.2.4 The cone shape function . . . . . . . . . . . . . . . 60
3.5.2.5 The Lena picture . . . . . . . . . . . . . . . . . . . 64

3.5.3 Three dimensional function approximation . . . . . . . . . . 65
3.5.3.1 The 3D exponential function . . . . . . . . . . . . 67
3.5.3.2 The European call option . . . . . . . . . . . . . . 68
3.5.3.3 The Perdichizzi turbine case . . . . . . . . . . . . . 69

3.6 Robustness of the Adaptive Error Indicator Method . . . . . . . . . 74
3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4 Multilevel Adaptive Error Indicator (MAEI) Approximation 79
4.1 Multilevel RBF interpolation scheme . . . . . . . . . . . . . . . . . 79
4.2 The error indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Adaptive point sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 Multilevel algorithm achieved by using an error indicator . . . . . . 89
4.5 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5.1 One Dimensional Function Multilevel Approximation . . . . 91
4.5.1.1 The Runge Function . . . . . . . . . . . . . . . . . 91
4.5.1.2 The hyperbolic tan function . . . . . . . . . . . . . 95
4.5.1.3 The shifted absolute value function . . . . . . . . . 97

4.5.2 Two Dimensional Function Multilevel Approximation . . . . 100
4.5.2.1 The modified Franke Function . . . . . . . . . . . . 101
4.5.2.2 The two-dimension exponential function . . . . . . 102
4.5.2.3 The modified Rosenbrock function . . . . . . . . . 104

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5 Conclusion and Future Work 109
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Bibliography 115



List of Figures

1.1 Schematic of an multi-stage axial compressor turbine assembly in-
side a power generator. . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dimensions of blades in the cascade plant of an axial turbine. . . . 3
1.3 Cluster assignments and centroids for given data set X . . . . . . . 10
1.4 The final approximation error of f(x) = sin(x

2
) on [−2π, 2π] which

achieved by AEI method. . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1 Fill distance and Separation distance for this sample centers set. . . 20

3.1 Initial centers and indication points of an interval. . . . . . . . . . . 34
3.2 Initial centers and indication points of a square region, with n =

2j, j = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3 Examples of refinement in d = 2 cases. . . . . . . . . . . . . . . . . 36
3.4 Examples of coarsen in d = 2 cases. . . . . . . . . . . . . . . . . . . 36
3.5 Examples of levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Runge function with final RBF centers distribution, initial |X| = 13,

θrefine = 2.0(−5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 Runge function interpolation error for each iteration, Ntotal is the

total number of samples of the target function, with θrefine = 2(−8). 44
3.8 Graph of f(x) = tanh(60x − 0.1) function with final RBF cen-

ters distribution produced by the algorithm, with initial |X| = 13,
θrefine = 2.0(−5). The final number of centers used is 82. . . . . . . 46

3.9 tanh(60x−0.1) function interpolation error for each iteration, Ntotal

is the total number of samples of the target function, with θrefine =
2(−8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.10 Final center distribution (44 points) for approximating f(x) = |x−
0.04| with θrefine = 2.0(−5). . . . . . . . . . . . . . . . . . . . . . . . 48

3.11 Error convergence of the adaptive algorithm for f(x) = |x − 0.04|
and θrefine = 2.0(−8). . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.12 modified Franke function interpolation. . . . . . . . . . . . . . . . . 52
3.13 Centre distribution for adaptive interpolation for the modified Franke

function with θrefine = 5.0(−4). The number of points in this centre
set is 1318. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.14 Convergence of adaptive error indicator interpolation for the mod-
ified Franke function. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.15 Comparison between AEI method and RE method for the modified
Franke function. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.16 Interpolation of f(x, y) = 0.4 tanh(20xy) + 0.6, with θrefine = 5.0(−4). 55

v



List of Figures vi

3.17 Final node distribution for approximation of f(x, y) = 0.4 tanh(20xy)+
0.6 with θrefine = 5.0(−4). . . . . . . . . . . . . . . . . . . . . . . . . 55

3.18 Convergence of adaptive error indicator interpolation for the f(x, y) =
−0.4 tanh(20xy) + 0.6 function. . . . . . . . . . . . . . . . . . . . . 56

3.19 Comparison between AEI method and RE method for the f(x, y) =
−0.4 tanh(20xy) + 0.6 function. . . . . . . . . . . . . . . . . . . . . 57

3.20 Interpolation of f(x, y) = exp(−60((x− 0.35)2 + (y− 0.25)2)) + 0.2,
with θrefine = 5.0(−4). . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.21 Final node distribution for approximation of f(x, y) = exp(−60((x−
0.35)2 + (y − 0.25)2)) + 0.2, with θrefine = 5.0(−4). . . . . . . . . . . 58

3.22 Convergence of adaptive error indicator interpolation for the f(x, y) =
exp(−60((x− 0.35)2 + (y − 0.25)2)) + 0.2 function. . . . . . . . . . 60

3.23 Comparison between AEI method and RE method for the f(x, y) =
exp(−60((x− 0.35)2 + (y − 0.25)2)) + 0.2 function. . . . . . . . . . 60

3.24 Interpolation of f(x, y) =
√

(x2 + y2) + 0.2, with θrefine = 5.0(−4). . 61
3.25 Final node distribution for approximation of f(x, y) =

√
(x2 + y2)+

0.2, with θrefine = 5.0(−4). . . . . . . . . . . . . . . . . . . . . . . . 62
3.26 Error convergence of the AEI algorithm for f(x, y) =

√
(x2 + y2) +

0.2 with θrefine = 2.5(−5). . . . . . . . . . . . . . . . . . . . . . . . . 63
3.27 Error versus number of points for approximation of f(x, y) =

√
x2 + y2+

0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.28 Comparison between AEI method and RE method for f(x, y) =√

x2 + y2 + 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.29 The Lena picture from [14], 128× 128 = 16384 pixels . . . . . . . . 65
3.30 The approximation Smulti

X regenerated Lena picture with Ntotal =
3604 and |X| = 3603. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.31 The approximation Smulti
X regenerated Lena picture with Ntotal =

6703 and |X| = 6702. . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.32 The approximation Smulti

X regenerated Lena picture with Ntotal =
9711 and |X| = 9710. . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.33 Error convergence of interpolation results for f(x, y, z) = exp{−81/16[(x−
0.5)2 + (y − 0.5).2 + (z − 0.5)2]}/3. . . . . . . . . . . . . . . . . . . 68

3.34 Error versus points for adaptive interpolation of C(S, r, σ). . . . . . 70
3.35 Comparison between AEI method and uniform interpolation for this

turbine case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.36 Error function E(α1 = −1, Po1, ν). . . . . . . . . . . . . . . . . . . 73
3.37 Error function E(α1 = −0.5, Po1, ν). . . . . . . . . . . . . . . . . . 73
3.38 Error function E(α1 = 0, Po1, ν). . . . . . . . . . . . . . . . . . . . 74
3.39 Error function E(α1 = 0.5, Po1, ν). . . . . . . . . . . . . . . . . . . 74
3.40 Error function E(α1 = 1, Po1, ν). . . . . . . . . . . . . . . . . . . . 75

4.1 Sketch of the tree structure of data set Xj
i . . . . . . . . . . . . . . . 83

4.2 One example of the data structure in one dimensional case. . . . . . 85
4.3 n = 3, exampled 2D initial sample set X1

1, which M1 = X1
1, and

indication set Ξ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.4 One example of two dimensional data structure, Panel 1. . . . . . . 87



List of Figures vii

4.5 One example of two dimensional data structure, Panel 2. . . . . . . 88
4.6 One example of two dimensional data structure, Panel 3. . . . . . . 88
4.7 One example of two dimensional data structure, Panel 4. . . . . . . 89
4.8 Runge function multilevel adaptive error indicator approximation

with final sample points distribution, initial |X1
1| = 13 with θrefine =

2.0(−5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.9 The centers sets used in Runge function multilevel error indicator

approximation, with θrefine = 2.0(−5). . . . . . . . . . . . . . . . . . 94
4.10 Runge function approximation error for each level L, |ML| is the

total number of samples of the target function. θrefine = 2.0(−8). . . 94
4.11 Hyperbolic tan function approximation with final sample points dis-

tribution, initial |X1
1| = 13 with θrefine = 1.0(−5). . . . . . . . . . . . 97

4.12 The centers sets used in tanh(60x − 0.1) multilevel error indicator
approximation, with θrefine = 1.0(−5). . . . . . . . . . . . . . . . . . 97

4.13 Hyperbolic tan function approximation error for each level L, |ML|
is the total number of samples of the target function. θrefine = 1.0(−8). 98

4.14 f(x) = |x− 0.04| multilevel approximation with final sample points
distribution, initial |X1

1| = 13 with θrefine = 2.0(−5). . . . . . . . . . 99
4.15 The centers sets used in f(x) = |x− 0.04| multilevel error indicator

approximation, with θrefine = 2.0(−5). . . . . . . . . . . . . . . . . . 100
4.16 f(x) = |x − 0.04| multilevel approximation error for each level L,

|ML| is the total number of samples of the target function. θrefine =
2.0(−8). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.17 Final nodes distribution for multilevel approximation for the mod-
ified Franke function with θrefine = 5.0(−5). The number of total
sampled points is 1964. . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.18 Comparison of methods for the modified Franke function . . . . . . 103
4.19 The two-dimension exponential function multilevel adaptive error

indicator (MAEI) approximation result. . . . . . . . . . . . . . . . . 104
4.20 Final nodes distribution for multilevel approximation for the his

two-dimension exponential function with θrefine = 5.0(−5). The
number of total sampled points is 1796. . . . . . . . . . . . . . . . . 105

4.21 Comparison of methods for this two-dimension exponential function. 105
4.22 The modified Rosenbrock function multilevel adaptive error indica-

tor (MAEI) approximation result. . . . . . . . . . . . . . . . . . . . 106
4.23 Final nodes distribution for multilevel approximation for the mod-

ified Rosenbrock function with θrefine = 5.0(−5). The number of
total sampled points is 1717. . . . . . . . . . . . . . . . . . . . . . . 107

4.24 Comparison of methods for modified Rosenbrock function. . . . . . 107

5.1 Example of localized RBF interpolant. . . . . . . . . . . . . . . . . 113
5.2 Example of possible data structure for localized adaptive error in-

dicator RBF interpolation. . . . . . . . . . . . . . . . . . . . . . . . 113



List of Tables

1.1 Summary results of approximation of f(x) = sin(x
2
). . . . . . . . . 14

2.1 Examples of some radial basis functions. . . . . . . . . . . . . . . . 24

3.1 Iterative process of adaptive error indicator interpolation of Runge
function with θrefine = 2(−5). . . . . . . . . . . . . . . . . . . . . . . 43

3.2 Adaptive error indicator interpolation results of Runge function
with different θrefine. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Error indicator vs Residual sub-sampling for Rnuge function . . . . 45
3.4 Iterative process of adaptive algorithm interpolation of tanh(60x−

0.1), with θrefine = 2(−5). . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5 Adaptive error indicator interpolation results of tanh(60x − 0.1)

function with different θrefine. . . . . . . . . . . . . . . . . . . . . . . 46
3.6 Error indicator vs Residual sub-sampling for function tanh(60x −

0.1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.7 Iterative process of adaptive algorithm interpolation of |x − 0.04|,

with θrefine = 2(−5). . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.8 Adaptive error indicator interpolation results of f(x) = |x − 0.04|

function with different θrefine. . . . . . . . . . . . . . . . . . . . . . . 49
3.9 Error indicator vs Residual sub-sampling for function |x− 0.04|. . 49
3.10 κ(A)max for three one dimensional examples. . . . . . . . . . . . . . 50
3.11 Iterative process of AEI interpolation of modified Franke function,

with θrefine = 5.0(−4). . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.12 Adaptive algorithm interpolation results of modified Franke func-

tion with different θrefine. . . . . . . . . . . . . . . . . . . . . . . . . 53
3.13 Iterative process of AEI interpolation of f(x, y) = 0.4 tanh(20xy) +

0.6 function, with θrefine = 5.0(−4). . . . . . . . . . . . . . . . . . . 56
3.14 Adaptive algorithm interpolation results of f(x, y) = −0.4 tanh(20xy)+

0.6 with different θrefine. . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.15 Iterative process of AEI approximation of f(x, y) = exp(−60((x −

0.35)2 + (y − 0.25)2)) + 0.2 with θrefine = 5.0(−4). . . . . . . . . . . 59
3.16 Adaptive algorithm interpolation results of f(x, y) = exp(−60((x−

0.35)2 + (y − 0.25)2)) + 0.2 with different θrefine. . . . . . . . . . . . 59
3.17 Iterative process of AEI algorithm for f(x, y) =

√
(x2 + y2) + 0.2

with θrefine = 5.0(−4). . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.18 Adaptive algorithm interpolation results of f(x, y) =

√
(x2 + y2) +

0.2 with different θrefine. . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.19 Error in adaptive interpolation of Smulti

P with different θrefine. . . . . 65

viii



List of Tables ix

3.20 exp{−81/16[(x − 0.5)2 + (y − 0.5).2 + (z − 0.5)2]}/3 interpolation
results by error indicator. . . . . . . . . . . . . . . . . . . . . . . . . 67

3.21 exp{−81/16[(x − 0.5)2 + (y − 0.5).2 + (z − 0.5)2]}/3 interpolation
results by uniform centers. . . . . . . . . . . . . . . . . . . . . . . . 67

3.22 exp{−81/16[(x − 0.5)2 + (y − 0.5).2 + (z − 0.5)2]}/3 interpolation
results by uniform centers in [6]. . . . . . . . . . . . . . . . . . . . . 68

3.23 C(S, r, σ,K1 = 100, T = 1, t = 0) interpolation results. . . . . . . . 70
3.24 C(S, r, σ,K1 = 100, T = 1, t = 0) interpolation results by uniform

centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.25 Smulti

turbine adaptive error indicator interpolation results. . . . . . . . . 71
3.26 Smulti

turbine interpolation results by uniform centers. . . . . . . . . . . . 71
3.27 Adaptive error indicator interpolation results of Runge function

with different parameter settings, with θrefine = 2.0(−5). . . . . . . . 76
3.28 Adaptive error indicator interpolation results of Runge function

with different parameter settings, with θrefine = 2.0(−8). . . . . . . . 77
3.29 Adaptive error indicator interpolation results of modified Franke

function with different parameter settings, with θrefine = 1.0(−3). . . 77
3.30 Adaptive error indicator interpolation results of modified Franke

function with different parameter settings, with θrefine = 5.0(−4). . . 77

4.1 Multilevel approximation process for Runge function with θrefine =
2.0(−5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Comparison of methods for Runge function . . . . . . . . . . . . . . 95
4.3 Approximation process of MAEI scheme of tanh(60x − 0.1), with

θrefine = 1.0(−5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Comparison of methods for f(x) = tanh(60x− 0.1). . . . . . . . . . 98
4.5 Approximation process of multilevel scheme for |x − 0.04|, with

θrefine = 2.0(−5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.6 Comparison of methods for f(x) = |x− 0.04|. . . . . . . . . . . . . 101
4.7 Multilevel level approximation results of the modified Franke func-

tion with different θrefine. . . . . . . . . . . . . . . . . . . . . . . . . 102
4.8 Multilevel level approximation results of this two-dimension expo-

nential function with different θrefine. . . . . . . . . . . . . . . . . . 104
4.9 Multilevel level approximation results of this modified Rosenbrock

function with different θrefine. . . . . . . . . . . . . . . . . . . . . . . 106



Abbreviations

AEI = Adaptive Error Indicator

ARBF = Adaptive Radial Basis Function

CFD = Computational Fluid Dynamic

KdV = KortewegâĂŞde Vries

LOO = Leave One Out

MAEI = Multilevel Adaptive Error Indicator

MQ = Multiquadric

RBF = Radial Basis Function

RS = Residual Sub-sampling

VSK = Variably Scaled Kernels

x



Chapter 1

Introduction

1.1 Background

The multivariate interpolation problem appears in many branches of science re-

search and engineering. Let X ∈ Rd be a discrete set, where d > 1 with the real

number {fx}x∈X. The task is to construct a continuous or sufficiently differentiable

function S : Rd → R such that

S(x) = fx, x ∈ X, (1.1)

and one could say that the S interpolates the data {(x, fx),x ∈ X}. Interpolants

could be highly useful. One may need to approximate a function whose values are

known only at the given points, that is one is ignorant about function’s behaviour

outside X. Otherwise, the target function might be far too expensive to evaluate

at a large number of points. In this case the aim is to choose an interpolant

that is cheap to compute, which could provide as much as needed accuracy at

low computational cost. Then one can use the interpolant, the alternation of the

target function, for other purposes, for example, for calculating the derivative of

the target function.

Another application of interpolation could be data compression, where the initial

data {(x, fx),x ∈ X̃} exceeds the available storage capacity in certain algorithms.

1



Introduction 2

In this case, one needs to determine a subset of X̃, X and construct an interpolant

by it, then using this interplant to approximate the remaining values.

It is crucial to notice that in most cases X will consist of scattered points, in other

words its elements can be in irregular locations. Thus interpolation algorithms

that can cope with mesh-free data are needed. A mesh free method is a numerical

method used to construct a system of algebraic equations for the whole domain

of the approximation problem without using a pre-decided mesh for the domain

and/or boundary discretization. Mesh generation can be one of the most time-

consuming stages of any mesh-based numerical approximation methods.

There are many applications of multivariate interpolation, but the author prefer to

treat a particular application in some detail rather than provide a list. Therefore

the author consider the following interesting example of a turbine cascade case

which was originally studied in [74] by Perdichizzi.

In electric power generation, the operating condition for a turbine could typically

comes a wide envelope. The energy demand mainly determines the turbine load.

Figure 1.1 shows a multi-stage turbine inside a BrayTon cycle power generator.

The turbine output power is determined by the shaft rotational speed and axial

flow rate, which changes the blade incidence angle and the expansion ratio [10].

Figure 1.1: Schematic of an multi-stage axial compressor turbine assembly
inside a power generator.
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Furthermore, different pitch-chord ratios are commonly used in the various stage

of axial turbines with the same profile [74]. The pitch-chord ratio is key dimension

of the blade in a axial turbine. Figure 1.2 [74] shows could see two blades on the

cascade plant, and the ratio s/c is defined as the pitch-chord ratio.

Figure 1.2: Dimensions of blades in the cascade plant of an axial turbine.

Perdichizzi and Dossena [74] states that “in the aerodynamic development of a mul-

tistage turbine, the awareness of blade row performance in terms of loss of outlet

total pressure and secondary flow angle distribution is of extreme importance, both

for optimizing the design of the turbine and predicting the overall efficiency at part

loads for off-design conditions”. The information which GE Power (Rugby, UK) is

interested in, namely the change in stage efficiency with the operating conditions,

can be obtained by experiment and/or by computational fluid dynamic (CFD).

However, one single scattered data sample generated by this approach may take

many hours.

Therefore, the intention is to generated an interpolated function that describes

the relationship between profile efficiency (profile losses) and incidence angle at

different flow condition and pitch-chord settings. For more information about the

turbine efficiency, the author refers to [10]. In the study [74], the pitch-chord ratio
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keep constant in all the cases. There are three varying input variables that define

the design space, these three variables relate to the operating conditions of the

machine and are :

• Incidence angle, α1.

• Inlet total pressure, Po1.

• Fluid viscosity, ν.

The objective of this study is to find the optimal profile efficiency of this turbine

profile, in order words, maximizing the efficiency coefficient, which it is related to

the profile losses. In particular, the lower the loss coefficient the higher the effi-

ciency. In general, the loss coefficient function L(α1, Po1, ν) describes the efficiency

of this particular turbine.

Specifically, let (αj, Po1j , νj)
n
j=1 be the test conditions in one situation, and let the

corresponding observed loss coefficient be Lnj=1. Function S : R3 → R is needed

such that

S(αj, Po1j , νj) = Lj for j = 1, 2, · · · , n. (1.2)

Thence one sees the scattered data interpolation problem comes up spontaneously

as the one attempts to construct an approximation model for this turbine case

which describes its loss characteristic.

There are some multivariate approximation schemes. They are polynomial inter-

polation, tensor product methods, multivariate splines and finite element methods.

For a thorough overview of these methods, the author refer the reader to de Boor

[13], Franke [37] and Hayes [44]. Moreover, it is interesting to see the comparison

among these methods with the radial basis function interpolation. The report of

Franke [36] is designed for this comparison purpose; it has some numerical ex-

amples utilising some methods, including radial basis function and has provided

numerical results that radial basis function interpolation provides greater accuracy

than given comparisons when interpolating scattered data.
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1.2 Radial Basis Function

Radial basis function (RBF) methods are not bound together with a grid or a

mesh. This fall into the category of mesh free methods. A RBF approximation

takes the form:

S(x̄) =
∑
x∈X

αxφ(||x̄− x||), x̄ ∈ Rd, (1.3)

where φ : [0,∞) → R is a particular univariate function and the coefficients

(αx)x∈X are real numbers. There is no restriction on the norm ||.|| due to the

method itself and the user of the RBF interpolation can freely define the norm.

However, it is conventional to apply the Euclidean norm. Consequently, the ap-

proximation S is a linear combination of univariate functions, which the univariate

function φ translates the radial distance ||x̄−x|| into a real number with respect to

the given norm. For more details about RBF interpolation, please look in Chapter

2.

The author thinks that one of most attractive characteristics of the radial basis

function method is the uniqueness of the interpolant is often exists with rather less

strict conditions on the scattered data set. As straightforward as one could have,

the only restraints are there at least two scattered points and they are distinct to

each other. This condition is necessary for the unique interpolant.

Beside the above mentioned advantages that RBF has, it also has other advan-

tages [8, 19, 85]. Due to these advantages, the application of RBF methods have

been prosperous in last decades, Pena list some RBF applications (Table 1) in

[73]. Generally speaking, the desirable features of RBF methods are high-order

accuracy, easy implementation, mesh free and easy application in high dimension.

Below, the author would like develop and support this argument by summarising

some previous study and applications.

• High-order accuracy

In [36], it numerically states the good accuracy for interpolation cases. More-

over, Larson and Fornberg [31] state that the RBF based method is more

accurate than the standard second-order finite difference method and the
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Fourier-Chebyshev pseudospectral method when dealing with elliptic prob-

lems. Buhmann et al. [65] and Madych et al. [7] proved that infinitely

smooth RBF deliver spectral order of convergence which is more swift that

any polynomial order.

• Easy application in high dimension

Cecil et al. [11] demonstrated the example of solving the Hamilton Jacobi

equation up to 4 dimensions by using RBF. In [15], Levesley et al. propose a

multilevel algorithm based on directionally scaled tensor-product Gaussian

kernels on structured sparse grids for interpolation of high-dimensional func-

tions up to 10 dimensions. This algorithm is based on [38] which developed

by Georgoulis, Levesley and Subhan.

• Easy implementation

In [73], Pena demonstrates this point by providing a recipe-like algorithm

for pricing different financial options. It also shows that Greek (derivative of

options) are easy to calculate due to the form of the RBF interpolant. The

form of RBF interpolant, the summation of univariate function φ, and the

input of φ, the norm of two scattered points ||x̄− x||, together make it easy

to implement.

• Mesh free

RBF methods (interpolation, collocation, et cetera) only require a scattered

data set which does not require the specially designed mesh or grid which

contributes to easy implement and easy application in high dimension. This

feature make RBF method capable dealing with American option pricing

[22, 55] and the medical case which measures a tumour [2] where generating

pre-designed mesh is arduous. However, there could be some loose “mesh”

when fast evaluation is needed. Also, mesh free does not meaning whatever

scattered data sample could provide enough accuracy, especially in high di-

mensional cases. Some certain requirements for the scattered data set can

help contributing approximation accuracy. In Chapter 4, it shows a loosely

determined mesh which is totally decided by the algorithm and the error

indicator together.
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In this thesis, the multiquadric (MQ) RBF is a mainly used raidal basis function.

It is the first type of radial basis function that was introduced by Hardy in 1968

and presented in [42]. Hardly also summarised the development process of MQ

method over 1968 to 1988 in [43]. This MQ interpolation scheme has gained few

attention until 1979. Then a study conducted by Franke [34] and summarised in a

report [37] that concluded that the MQ method is the best method for scattered

data interpolation problem and he speculates the system matrix of this method is

invertible and that this method is well-posed. By that time, a theoretical consol-

idation still did not exist. Then Micchelli [69] proved that the system matrix of

the MQ method, and of also many other RBF methods, was invertible.

The first time that MQ RBF was applied to solve PDE problems was by Kansa

[53, 54]. After that, utilising MQ in solving PDE problem become common [12,

24, 59, 79]. The MQ method for solving PDEs and especially for the Black-Scholes

equations have been investigated in [47, 48, 49] by Hon et cetera. In [79], Sarra

and Kansa summaries the methods and properties for MQ methods. For another

commonly used RBF, the Gaussian RBF, please see [20, 30, 46].

1.3 The RBF based adaptive methods

Having above mentioned applications and advantages of radial basis function meth-

ods, one should notice that the locations or coordinates of the scattered data

points are crucial. Both the approximation quality (the result quality) and sta-

bility mainly depends on the distribution of scattered points X. In order to have

good approximation quality and stability, many methods have been constructed to

have the near optimal scattered points for the radial basis function interpolations.

These methods could be called adaptive methods. Their aims are choosing the

scattered data set X by various criteria. Much research [27, 28, 51, 66, 67, 87]

has been done on developing useful adaptive schemes and in [40] the authors sum-

marise them and classify them into different categories.

Based on the theoretical study [81] on the error estimates and condition number of

RBF interpolation and others numerical experiments, reaching a balance between
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stability and approximation accuracy is mostly the consequence of having a evenly

distributed or near evenly distributed scattered points in the domain, which the

author is interested in. In order to measure the uniformity of dataX in the domain

Ω, the ratio of the fill distance and separation distance is used, which is defined :

ρX,Ω =
qX
hX,Ω

, (1.4)

where qX is the separation distance and hX,Ω is the fill distance; for their definition

please see Chapter 2. A thinning algorithm is one of the adaptive algorithms that

removes points from scattered data set X. The objective of the thinning algorithm

is to achieve a subset of X that has a certain size and the subset should have good

uniformity. The algorithm below [26] generates a sequence of subsets,

X1 ⊂ X2 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X;

each of the subsets Xi is generated by the standard that removing a point x is

feasible if and only if the removed would maximizes the measurement of uniformity

ρX,Ω. The algorithm is the following

1. Given a scattered data set X, let Xn = X, i = n.

2. Choose a removable point x ∈ Xi.

3. Remove the point, Xi−1 = Xi \ {x}.

4. Set i = i− 1.

5. Stop if i = 2, otherwise return to Step 2.

In [28], the dual algorithm of the above thinning algorithm is proposed, it is an

adding algorithm. This adding algorithm iteratively adds a chosen point x into

Xi. The adding algorithm is below.

1. Set X0 = ∅, i = 0.

2. Choose a point suitable for inserting x ∈ X \Xi.
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3. Insert the point, Xi+1 = Xi ∪ {x}.

4. Set i = i+ 1.

5. Stop if i = n− 1, otherwise return to Step 2.

De Marchi, Schaback and Wendland [66, 67] have constructed a geometric greedy

algorithm which selects the near optimal scattered data set for RBF interpolation.

The geometric greedy algorithm is :

1. Let Ω ∈ Rd be a compact set, and letX1 = {x1}, where x1 is at the boundary

of Ω. Note, there is total n elements in setXn, that isXn = {x1,x2, · · · ,xn}.

2. For n ≥ 1, choose xn+1 ∈ Ω \Xn which has maximized the distance to Xn.

That is,

xn+1 = arg max{d(x,Xn) : x ∈ Ω \Xn},

where d(y,Xn) = max{||y − x||2 : x ∈ Xn}.

Then let

Xn+1 := Xn ∪ {xn+1}.

In [66], the optimal points are selected from 10000 random points on the square

[−1, 1]× [−1, 1]; the total number of the point that are inside the optimal set Xn

is decided by the user of this algorithm.

The K-Means Clustering algorithm, also known as Lloyd’s algorithm, is another

adaptive algorithm which is frequently applied in radial basis function neural

networks. It is easy to implement and has good performance [57]. Let X =

{x1,x2, · · · ,xn} be the data set and V = {v1,v2, · · · ,vk} be the set of k cluster-

ing centroids. The algorithm follows this procedure:

1. Randomly select k points from X as k cluster centroids.

2. Calculate the distance between each data point and cluster centroids.

3. Label the data point to the cluster whose distance from the cluster center is

minimum of all the cluster centroids.
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4. Recalculate the new cluster centroid using:

vi =
1

mi

mi∑
j=1

xj,

where mi stands for the number of points in ith cluster.

5. Recalculate the distance between each data point and new obtained cluster

centroids.

6. If no data point was reassigned then stop, otherwise repeat from Step 3.

Figure 1.3 shows the given data set X have been divided into 3 clusters which

achieve by K-means clustering algorithm. Each colour stands for one cluster and

the centroids are marked as black crosses.
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Figure 1.3: Cluster assignments and centroids for given data set X

In [41], in order to take the target function value at the scattered points f(X) into

consideration, not only the locations of these points X, it proposes the following

weighted sequence scheme:

1. Having the scattered data point set and its corresponding function values,

{(xi, f(xi)) : xi ∈ X}.
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2. Find xi that satisfying

x1 = arg max{f(x)||x||2 : x ∈ X}

3. Then for n = 2, 3, · · ·

xn = arg max
xj∈X\{x1,··· ,xn−1}

min
1≤k≤n−1

f(xj)||xj − xk||2.

[41] demonstrates an example of selecting 129 points from 40001 points in [−2π, 2π],

then using this selected 129 points to interpolate f(x) = sin(x
2
). It reported the

error is in 10−8 magnitude.

Common sense suggests that in order to represent a target function with some finite

discrete sampling points, more points are needed where the target function has

more oscillations and less point should be placed where the target function is more

regular. Driscoll and Heryudono [17] have developed the residual subsampling

method of interpolation, used in boundary-value and initial-value problems with

rapidly changing local features. Their method works as follows:

1. Approximates the unknown target function via RBF interpolation on uni-

formly distributed points.

2. Then the error is evaluated at intermediate points; this stage could be called

the indication stage.

3. When the error exceeds a pre-set refinement threshold, corresponding points

are added to the data set, and when the error is below a pre-set coarsening

threshold, corresponding point are removed from the data set.

By applying this method, a pre-set threshold is needed, which is decided according

to the user’s demand of accuracy. The algorithm automatically stops when there is

no adding or removing points, which means that the interpolant has reach the pre-

set accuracy. In this method, knowledge of the target function is assumed, at least
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the assumption that evaluation from the target function is very straight-forward

and of low-cost.

Behrens and Iske et al. [3] have combined an adaptive semi-Lagrangian method

with local thin-plate splines interpolation with leave-one-out (LOO) principle. The

local interpolation gives out the fundamental rule of adaptation and it is crucial for

approximation accuracy and computational efficiency. Naqvi [71] applied the LOO

principle to construct an error indicator in order to solve one dimensional time

dependent KortewegâĂŞde Vries (KdV) eaquation. In the BENCHOP project for

pricing financial options [83], Li considered time as one spatial dimensional and

applied the error indicator, which was also constructed by the LOO principle to

solve Black-Scholes equations in both one and two dimensions.

Having the above adaptive RBF interpolation methods in mind, one should be

aware that the thinning algorithm (adding algorithm) and the geometric greedy

algorithm only focus on the location of the scattered points X. The weighted

sequence scheme, residual subsampling method and the leave-one-out adaptive

interpolation method also take the function value f(xi),xi ∈ X into consideration

to construct the near optimal data set. All the above mentioned algorithms select

the “optimal” set X̂ from the scattered data set X which has considerable amount

of points in it.

1.4 Motivation

The author is aware that, in most applications, data is generated with no knowl-

edge of a function from which it was derived, so that an approximation model is

needed. When sampling from the target function is expensive and time-consuming,

a model that can indicate the location for generating the next samples and can

provide enough accuracy with as few as possible samples is very desirable. Such

examples include industrial processes, such as engine performance, where one ex-

periment for a different set of (potentially many) parameters might take hours or

days. The turbine profile efficiency study [74] that is discussed in Section 1.1 is

such a case.
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Adaptive radial basis function (ARBF) interpolation is suitable for such problems,

mainly due to its ease of implementation in the multivariate scattered data set-

ting. Moreover, it would be convenient to have a method for indicating where

the approximation quality is poor, so that the generation of new data provides

the user with greater accuracy where needed. By having this desirable method,

in expensive approximation applications, the user could save significant time and

resources.

1.5 Main Achievements

In this thesis, the author describe a new method for adaptive RBF interpolation

which could be a suitable solution for the kind of problems mentioned in the

Section 1.4. As the numerical examples show, the method can indicate the best

location to generate the next sample and can provide sufficient accuracy with fewer

samples than more established techniques.

The goal is achieved by the use of an error indicator, a function which indicates the

approximation quality at nodes inspected by the algorithm. The error indicator

compares a global RBF interpolant and a local RBF interpolant. The advantage

of this error indicator is that it requires no extra function evaluation and indicates

regions where the approximation error is high, so that it generates sets of points

which are good candidates for optimally reducing the global error. This is the

key differences between this method and the subsampling method in [17], which

needs to sample the target function at each indication stage. This method is called

adaptive error indicator (AEI) RBF interpolation.

The author also present some preliminary results achieved by a multilevel adaptive

error indicator (MAEI) RBF approximation method. This method is a hybrid

method of the multilevel level approximation and the adaptive error indicator

method using a domain decomposition approach.

The author has applied this error indicator adaptive (AEI) RBF interpolation

method to the same example f(x) = sin(x
2
) in [−2π, 2π] of [41]. By using a
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total 870 evaluations from the target function and a total of 721 in the final

approximation, the max error of interpolation is 2.1× 10−8. Figure 1.4 shows the

error distribution on the domain.
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Figure 1.4: The final approximation error of f(x) = sin(x2 ) on [−2π, 2π] which
achieved by AEI method.

Then the author applied the multilevel adaptive error indicator (MAEI) scheme

to approximate f(x) = sin(x
2
). By using a total 201 evaluations from the target

function, the max error of the MAEI approximationis 1.9× 10−8. Table 1.1 sum-

marizes the results of different approximation to the target function f(x) = sin(x
2
),

Ntotal stands for the total evaluation times from the target function.

Method Max Error Ntotal

weighted-sequence 4.0E(-8) 40001
AEI 2.1E(-8) 870
MAEI 1.9E(-8) 201

Table 1.1: Summary results of approximation of f(x) = sin(x2 ).

In terms of times of total evaluations from the target function, the multilevel adap-

tive error indicator (MAEI) approximation and the adaptive error indicator (AEI)

interpolation method can give massive savings when compared to the weighted-

sequence method while delivering the same level of approximation quality. In the

following part of the thesis, this point is developed with more numerical examples.

In Chapter 2, the basis definition of radial basis function and RBF interpolation

are introduced. Chapter 3 describes the error indicator adaptive interpolation
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(AEI) method and some numerical examples to demonstrate the ability of this

method. In Chapter 4, the author introduces preliminary results of the multilevel

adaptive error indicator interpolation (MAEI) method, also some numerical results

are shown. Chapter 5 summarises this thesis and point out some possible future

research directions.

1



Chapter 2

Radial basis functions

2.1 Scattered data interpolation problem

Definition 2.1 (Scattered data interpolation problem). Let X ∈ Rd, given the

data (xi, f(xi)), i = 1, ..., N , where f : Rd → R, the multivariate scattered data

interpolation problem is to find a function S : Rd → R such that S(xi) = f(xi); i =

1, ..., N where S is called the interpolant to the data.

The data set (xi, f(xi)) could also be called sample set, xi, i = 1, · · · , N , are the

locations of the scattered points, and f(xi) are the corresponding target function

values at these locations. The author will assume that these values are obtained

by sampling the target function f at data locations.

A convenient approach for solving the scattered data problem is to make the

assumption that the interpolant S(.) is a linear combination of certain basis func-

tions, φ(x,y), i.e.,

S(x) =
N∑
i=1

αiφ(x,xi) where x ∈ Rd. (2.1)

Solving the interpolation problem under this assumption

S(xi) = f(xi), i = 1, 2, · · · , N, (2.2)

16
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leads to the system of linear equations of the form

Aα = f, (2.3)

where the entries of the interpolation matrix A are given by

Aj,k = φ(xj,xk), where j, k = 1, 2, · · · , N, (2.4)

and α = [α1, · · · , αN ]T , f = [f1, · · · , fN ]T .

As long as the matrix A is non singular, the unique solution of the problem exists.

The non-singularity of the matrix A is guaranteed under some mild restrictions

i.e., constant shape parameters and usually by adding a low order polynomial [69].

Shape parameters are user decided parameters. The methods to decide the shape

parameters are introduced in Chapter 3. In this thesis, the radial basis functions

are applied to solve scattered data interpolation problem.

2.2 Introductory concepts

In this section, some concepts that are related to radial basis function interpo-

lation are introduced. For detail contents and a thorough description, please see

Fasshauer [21] and Wendland [85].

The πdm denotes the space of d-variate polynomials whose degree does not exceed

m. The dimension of the polynomial space πdm is stated as dim(πdm) =
(
m+d
d

)
.

Definition 2.2 (Condition of unisolvancy). The data sitesX ⊂ Rd withN ≥M =

dim(πdm) are called πdm -unisolvent if the zero polynomial is the only polynomial

from the space πdm that vanishes on all of them.

Example 2.1. Three collinear points in R2 are not π1
1-unisolvent since a linear

interpolant, i.e., a plane through three arbitrary heights at these 3 collinear points

is not uniquely determined. On the other hand, if a set of points in R2 contains 3

non-collinear points, then it is π1
1-unisolvent.
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Definition 2.3 (Positive definite matrix). A real symmetric N × N matrix A is

called positive semi-definite if its associated quadratic form is non-negative, i.e.,

N∑
j=1

N∑
k=1

λjλkAjk ≥ 0,

for λ = [λ1, · · · , λN ]T . If the only vector λ that turns the above quadratic form

into an equality is the zero vector, then A is called positive definite.

The positive definite matrix A has an inverse matrix A−1, because its determinant

is not zero.

Definition 2.4 (Positive definite function). A real valued continuous function

φ : Rd → R is positive definite on Rd if and only if it is even and

N∑
j=1

N∑
k=1

λjλkφ(xj − xk) ≥ 0,

for any N pairwise different points {x1, · · · ,xN} ⊂ Rd, and λ = [λ1, · · · , λN ]T .

The function φ is strictly positive definite on Rd if the only vector λ that turns

the above into the equality is the zero vector.

Definition 2.5 (Conditionally positive functions). A continuous real even func-

tion φ : Rd → R is said to be conditionally positive definite of order m on Rd if

and only if
N∑
i=1

N∑
j=1

λiλjφ(xi − xj) ≥ 0,

holds for all possible pairs (λ,X) of choices λ = [λ1, · · · , λN ] andX = {x1, · · · ,xN} ⊂

Rd satisfying the vanishing moment conditions

N∑
j=1

λjP (xj) = 0,

for all P ∈ πdm−1. It is not possible to list all of the analogues and generalizations

of positive definite functions but some of the properties of the positive definite and

conditionally positive definite functions are listed below (details can be found in

[82]).
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• If φ1, · · · , φN are positive definite and λj > 0, then Φ :=
∑N

j=1 λjφj is also a

positive definite function.

• Φ(0) ≥ 0.

• Any positive definite function is bounded. In fact

|φ(x)| ≤ φ(0).

• If φ is positive definite with φ(0) = 0, then φ ≡ 0.

• The product of two positive definite functions is positive definite.

Definition 2.6 (Fill distance). The fill distance corresponding to the data set X

in Ω is defined as

hX,Ω = sup
x∈Ω

min
xj∈X

||x− xj||2.

This is also called the covering radius. The geometrical interpretation of fill dis-

tance is the largest possible empty sphere amongst the points in this data set. It

is a measure of the data distribution and can indicate how well the domain Ω is

filled with the data in the set X. In Figure 2.1, it shows the fill distance of this

centers set.

Definition 2.7 (Separation distance). The separation distance is defined as

qX =
1

2
min
i 6=j
||xi − xj||2.

This is also called as packing radius. The geometrical interpretation of the sep-

aration distance is that no two balls of radius “qX” centered at each center will

overlap. In Figure 2.1, it shows the separation distance of this centers set.
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Figure 2.1: Fill distance and Separation distance for this sample centers set.

Definition 2.8 (Condition number). The condition number of a matrix A with

respect to any matrix norm ||.|| is defined as

κ(A) = ||A||||A−1||.

The condition number of an RBF interpolation matrix A depends on the separation

distance (see Definition 2.7) and the fill distance (see Definition 2.6) and provides

information on the numerical stability of the interpolation process. To do so one

has to investigate both the maximum and the minimum eigenvalues. A condition

number is used to quantify the sensitivity to perturbations of a linear system, such

as Equation 2.3, and to estimate the accuracy of a computed solution. Using the

2-norm, the matrix condition number is

κ(A) = ||A||2||A−1||2 =
σmax

σmin

, (2.5)

where σmax and σmin are the largest and smallest eigenvalues (in absolute size) of

the symmetric matrix A.
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A well-conditioned matrix will have a small condition number κ(A) ≈ 1, while

an ill-conditioned matrix will have a much larger condition number. A system of

equations, like Equation 2.3, is considered to be well-conditioned if a small change

in f results in small change in α, while small change in f could results in large

change in α in ill-conditioned equations. The reason the condition number should

be keep low is that, theoretically one less digit of accuracy will be obtained in the

computed solution as the condition number increases by a factor of 10.

2.3 Radial basis function

Over the last two decades, due to the numerous advantages RBF offer [8, 19, 85],

the application of RBF has had a fast development in many research fields. Pena

listed some RBF applications (Table 1) in [73].

2.3.1 Radial basis function interpolation

Definition 2.9 (Radial function). A function Φ : Rd → R is said to be radial if

there exist a univariate function φ : [0,∞) → R such that Φ(x) = φ(r), where

r = ||x|| and ||.|| is some norm on Rd (usually the Euclidean norm).

The definition can be explained as that for a finite set of distinct points X ⊂ Rd

called the centers, that the function value Φ(x),x ∈ X, solely depends on ||x||

but not on the coordinates of x. The function Φ is radially symmetric about the

origin. The reason that makes radial functions most useful for applications is the

fact that the interpolation problem becomes insensitive to the dimension d of the

space in which the data set lies. Instead of having to deal with a multivariate

function, whose complexity will increase with increasing space dimension d, one

can work with the same univariate function φ for all choices of d.

Given the centers set X = {xi, i = 1, · · · , N}, which is a set of distinct points in

Rd, and the function values f(xi), i = 1, · · · , N . The RBF approximation to the
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function f is of the form

S(x) =
N∑
i=1

αiφ(||x− xi||2). (2.6)

The coefficients, α, are determined by enforcing the interpolation condition

S(xi) = f(xi), (2.7)

at the center set X. Enforcing the interpolation condition at N centers results in

a N ×N linear system

Aα = f, (2.8)

where Aij = (φ(||xi − xj||2)), 1 ≤ i, j ≤ N .

The above linear system has to be solved for the coefficients α. The matrix A is

called the interpolation matrix or the system matrix and consist of the functions

serving as the basis of the approximation space. To evaluate the interpolant at

points Y = {yi, i = 1, 2, ...,M} using Equation 2.6, M ×N evaluation matrix H

is formed with entries

Hi,j = φ(||yi − xj||2), i = 1, · · · ,M. j = 1, · · · , N.

Then the interpolant is evaluated at the M points by the matrix multiplication

S(Y) = Hα.

Sometimes the assumption on the form Equation 2.1, for solving to the scattered

data interpolation problem (see Definition 2.1) is extended by adding certain poly-

nomials to the expansion, i.e., S(x) is now assumed to be of the form

S(x) =
N∑
i=1

αiφ(||x− xi||2) + P (x), (2.9)
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where x ∈ Rd and P ∈ πdm−1. Equation 2.9 can be written as

S(x) =
N∑
i=1

αjφ(||x− xi||2) +

q∑
j=1

βjpj(x), (2.10)

where the polynomials p1, · · · , pq form a basis for the q =
(
d+m−1

d

)
-dimensional

linear space πdm−1 of polynomials of total degree less than or equal to m − 1 in

d variables. The coefficients αi, i = 1, 2, · · · , n and βj, j = 1, 2, · · · , q, are to be

determined by the interpolation condition and the additional condition of Equation

2.12.

Enforcing the interpolation conditions S(xi) = f(xi), i = 1, ..., N , leads to a system

of N linear equations in N + q unknowns αi and βj , one usually adds the q

additional conditions to ensure a unique solution. Imposing the interpolation

conditions on the interpolant S(.)

N∑
i=1

αiφ(||xk − xi||) +

q∑
j=1

βjpj(xk) = f(xk), k = 1, · · · , N. (2.11)

Equation 2.11 is a linear system of N equations in N + q unknown variables in

coefficient vector α = [α1, · · · , αN ]T of the major part and β = [β1, · · · , βq]T of

the polynomial part of the interpolant. However, this leave the author with q free

coefficients to find, so some extra conditions are needed. Mimicking the natural

conditions for cubic splines gives the following additional condition:

N∑
i=1

αipj(xi) = 0, j = 1, 2, · · · , q, (2.12)

where p ∈ πdm−1 and m is the order of the basis function φ.

Combining the interpolation condition and side condition together, the system can

be written as A P T

P 0

α
β

 =

f
0

 , (2.13)

where

Aij = (φ(‖xi − xj)‖)), 1 ≤ i, j ≤ N,
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Pij = (pj(xi)), 1 ≤ i ≤ N, 1 ≤ j ≤ q,

0 = zero matrix ∈ Rq×q.

Schaback [80] discusses the solvability of the above system, which is guaranteed

by the requirement that rank(P ) = q ≤ N and

λ‖α‖2 ≤ αTAα (2.14)

for all α ∈ RN with Pα = 0, where λ is a positive constant. The last condition is a

condition on the function φ, and functions which satisfy this condition, irrespective

of the choice of the points in X, are called conditionally positive definite of order

m. The condition rank(P ) = q ≤ N is called πdm-unisolvent of X, because such

sets of polynomials are uniquely determined by their values on the set X.

Moreover, if the data come from a polynomial of total degree at the most m− 1,

then they are fitted exactly by the interpolant. As commented in [1], the addition

of polynomial terms does not improve greatly the accuracy of approximation for

non-polynomial functions.

The classical choice for radial basis function φ along with their order m are shown

in Table 2.1.

Name of RBFs φ(r) = Parameters Order m

Gaussians e−(cr)2
c > 0 m ≥ 0

Multiquadric (MQ) (1 + c2r2)
v
2 v > 0, v 6∈ 2N, c > 0 m ≥ dv

2
e

Inverse Multiquadric (IMQ) (1 + c2r2)
v
2 v < 0, c > 0 m ≥ 0

Table 2.1: Examples of some radial basis functions.
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2.4 Well-posedness of the RBF interpolation prob-

lem

Discussion of the existence of a unique solution to the above interpolation problem

is presented in below.

Theorem 2.10 (Bochner’s Theorem). A continuous function Φ ∈ C(Rd) is posi-

tive definite on Rd if and only if it is the Fourier transform of a finite non-negative

Borel measure µ on Rd, i.e.

Φ(x) = µ̂(x) =
1√

(2π)d

∫
Rd
e−ix

T ydµ(y), x ∈ Rd

Lemma 2.11. The Gaussian Φ(r) = exp(−α‖r‖2), α > 0, is positive definite on

Rd.

Proof. The above Lemma is true as the Fourier transform of the Gaussian is

essentially the Gaussian. For example, The Gaussian Φ(r) = exp(−‖r‖
2

2
), has

a Fourier transform

Φ̂(r) = (2)−d(απ)−
d
2

∫
Rd
e−
‖r‖2
4α e−ix

Twdw, (2.15)

this means that Φ is positive definite, and by Bochner’s Theorem: every positive

definite function is the Fourier transform of a positive function. If α = 1√
2
then

Φ̂ = Φ.

Definition 2.12 (Completely monotone). A function ϕ is completely monotone

on [0,∞) if :

1. ϕ ∈ C[0,∞).

2. ϕ ∈ C∞(0,∞).

3. (−1)lϕ(l)(r) ≥ 0 where r > 0 and l = 0, 1, · · ·

Theorem 2.13 (Micchelli). Let ϕ(r) = φ(
√
r) ∈ C[0,∞) and ϕ(r) > 0 for r > 0.

be such that ϕ′ is completely monotonic but not constant. Then for any set of N
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distinct centers {xj}Nj=1, then the N×N matrix A with entries Ajk = φ(||xj−xk||2)

is invertible.

For the MQ φ(r) =
√

(1 + c2r2) one has

ϕ(r) = φ(
√
r) =

√
(1 + c2r)

and

ϕ
′
(r) =

c2

2
√

1 + c2r
,

ϕ
′′
(r) =

−c4

4(1 + c2r)3/2
,

ϕ(3)(r) =
3c6

8(1 + c2r)5/2
,

ϕ(4)(r) =
−15c8

16(1 + c2r)7/2
,

... =
... ,

Thus

(−1)lϕ(l)(r) ≥ 0

and ϕ
′
(r) is completely monotone and the invertibility of the MQ interpolation

matrix A is proofed.

The proof of invertibility of Gaussian and MQ are directly taken from [85] and [79],

respectively.

2.4.1 Convergence and Error Bound

Schaback et al. used symmetric interpolation matrix to give the error bound [35]

and Fornberg et al. found the convergence rate of RBFs in 1-D of equally spaced

points [29]. Fornberg et al. also noted that the RBF interpolation error structure

oscillates around zero mean in their experiment (cos(wx)). A convergence analysis

of this adaptive algorithm appears not to be available in the literature. Before
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going any further, the author introduces some relevant and necessary definitions

needed in the analysis of convergence of this adaptive method in the future.

From the work of [65, 85], smooth RBFs, such as Gaussian, inverse multiquadratics

(IMQ) and MQ on native spaces have been known to converge exponentially [7, 65].

Furthermore, Gaussian basis functions have small native space with analytical

function [75], the proof of convergence were also given by Madych and Nelson

in [64] that was based on the fundamental work of [39]. Subsequently this has

been extended by [58, 69, 76, 77, 81].

The convergence in scattered data interpolation was proved by Wu in [86] and the

convergence rate of the RBFs method for the solution of PDEs was investigated

in [35, 84]. For the shape parameter, Driscoll and Fornberg showed some result of

convergence in both 1-D (converge to polynomial) and 2-D for smooth functions

when c tends to zero with small number of N [16]. At equidistant distribution

of center nodes, Platte and Driscoll applied the variable change, and found that

there was a connection between polynomials and Gaussian interpolation [18]. For

a polynomial interpolation, the rate of convergence can be denoted by the method

of classical approximation theory, such as the stability of the interpolation prob-

lem of the Runge phenomenon analysis, which indicates the optimal distribution

set of nodes. In a Hermite interpolation, the investigation of the rate of conver-

gence of the Hermite interpolation has been done by Luo and Levesley [56] with

a modification method of variational approach of Madych and Nelson [63, 64] by

a fixed conditional positive definite function.



Chapter 3

Adaptive Error Indicator (AEI)

Method

3.1 Adaptive RBF interpolation scheme

The backbone of most adaptive methods for solving approximation problems is a

cyclic process of three procedures:

· · · Solve — Estimate — Refine/Coarsen · · ·

and the cycle is terminated when a certain stopping criterion is achieved. In this

chapter, the author introduces an adaptive RBF method that follows this above

outline. In a scattered data approximation problem, the procedure “Solve” means

solutions are obtain by solving a system of a linear equations either by direct or

iterative methods in which the linear system is the RBF interpolation system.

Once some approximated solutions are known, the procedure “Estimate” gathers

information about errors, defined by the difference between the approximation and

the real target function values, at given check points. These errors are used as

criteria to decide whether the degrees of freedom must be added or reduced. Then

these decisions are passed along to the “Refine/Coarsen” stage, in the “Refine” stage

more samples are added and in the “Coarsen” stage some samples are removed.

28
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The error determines how close the approximate solution is to the known exact

solution. With that knowledge, convergence of the method can be guided and

unnecessary cycles can be avoided. However, in most cases, finding error estimates

can be very challenging. Rather than pursue rigorous error estimates for particular

problems, the author has taken the practical and effective step of using an error

indicator function to suggest where changes should be made. In other words, the

error indicator function can be used in the ”Estimate” stage to effectively estimate

the error at given check points.

This adaptive error indicator RBF interpolation method will be explained in the

following sections. In Section 3.2, the author define the error indicator function

and specify the refinement and coarsening rules. Section 3.3 gives the details

of adaptive data structure and adaptive shape parameters matching the error

indicator function. Section 3.4 summarise the procedure of adaptive error indicator

(AEI) interpolation. In Section 3.5, numerical results for one, two and three

dimensions are shown.

3.2 The error indicator function

In this section, the basic features of the error indicator function are explained.

Consider a function f : Rd → R, a real valued function of d variables, that is to be

approximated by SX : Rd → R, given the centers f(xi) : i = 1, 2, 3, ..., N , where

xi : i = 1, 2, 3..., N is a set of distinct points in Rd.

The approximation to the function f is of the form

SX =
N∑
i=i

αiφi(||x− xi||2) +

q∑
j=1

βjpj(x), (3.1)

where φi : R+ → R is a radial basis function, ||.||2 denotes the Euclidean norm on

Rd. This form of the approximation is different to the standard form in Chapter

2, in which the basis function φi is the same for all i. The author is leaving

ourselves the flexibility of changing the basis function, via a different choice of
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shape parameter, depending on the density of data points in a particular region.

The author will comment later on how to do this.

In this method, it generates a sequence of sets X0,X1, · · · , where it generate Xk+1

from Xk via a refinement and coarsening strategy which will be described below.

In contrast with e.g. Iske and Levesley [52], this method do not use a nested

sequence of points. The strategy for including or removing points depends on

an error indicator. The author follow the idea of Behrens et al. [3] who wished

to decide on the positioning of points in a semi-Lagrangian fluid flow simulation.

They compared a local interpolant with some known function and refined where

the error was large, and coarsened where small.

This error indicator is based on the principle that in a region which is challenging

for approximation, two different approximation methods will give significantly dif-

ferent results, when compared with regions where approximation is more straight-

forward. The first approximation method is the current interpolant Smulti
Xk

at level

k. The second approximation method will be via a polyharmonic spline interpolant

based on values of the approximation on a local set of points. Then a function

η(x) with domain in the current indication set, assigns a positive value to each

indication point ξ. This value indicates the local approximation quality at each

indication nodes, and serves to determine where the approximate solution Smulti
Xk

requires more accuracy at these specified indication nodes, and requires no extra

function evaluation. Below, the author gives the definition of the error indicator

which is proposed in this thesis.

Definition 3.1 (Error indicator 1). For k ≥ 0, let the indication set Ξk, cor-

responding to Xk, be a set of scattered points, at which one wants to know the

approximation quality.

The error indicator function η(ξ) is defined by

η(ξ) = |Smulti
Xk

(ξ)− Sps
Nξ

(ξ)|, ξ ∈ Ξk. (3.2)

The value Smulti
Xk

(ξ) is the multiquadric radial basis function approximation of the

target function at ξ by the center set X. The value Sps
Nξ

(ξ) is a polyharmonic spline
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radial basis function reconstruction which matches the target function value at ξ by

a scattered point set Nξ in a neighbourhood around ξ. The specified polyharmonic

spline depends on the dimension of the problem. Nξ is a subset of the current

centers set Xk. One could call Nξ the neighbourhood set of ξ, the elements in Nξ

are the M nearest neighbour points to ξ from the center set Xk. Then

Sps
Nξ

(v) = f(v) for v ∈ Nξ. (3.3)

For k = 0, the indication set Ξ0 is determined by X0, for k > 0, the indication

set Ξk is determined by Xk and Xk−1. The details of the relationship between Ξk

and Xk is explained in the algorithm flow steps.

The polyharmonic splines have the following form:

φd,k(r) =

{
r2k−d log(r), if d is even,

r2k−d, if d is odd,
(3.4)

where k is required to satisfy 2k > d.

For d = 1, with m = k = 3, the neighbourhood set of ξ is Nξ = {x1, x2, ..., xM}

and the local approximation is

Sps
Nξ

(x) =
M∑
i=1

αi(||x− xi||2)5 + β1 + β2x+ β3x
2, (3.5)

which is conditionally positive definite of order 3.

For d = 2, with m = k = 2, the neighbourhood set of ξ is Nξ = {x1,x2, ...,xM}

with x = (x1, x2) ∈ R2, and

Sps
Nξ

(x) =
M∑
i=1

αi(||x− xi||22) log(||x− xi||2) + β1 + β2x1 + β3x2, (3.6)

which is conditionally positive definite of order 2.
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For d = 3, with m = k = 3, the neighbourhood set of ξ is Nξ = {x1,x2, ...,xM}

with x = (x1, x2, x3) ∈ R3, and

Sps
Nξ

(x) =
M∑
i=1

αi(||x− xi||2) + β1 + β2x1 + β3x2 + β4x3 + β5x1x2+

β6x2x3 + β7x1x3 + β8(x1)2 + β9(x2)2 + β10(x3)2, (3.7)

which is conditionally positive definite of order 3. The M is specified in the nu-

merical examples. The length of the polynomial part in Sps
Nξ

will increase with the

increment of dimensional number d, this will increase the computational complex-

ity in high dimensions.

The error indicator defined above measures the deviation between a global approx-

imation and a local approximation at the point ξ. The intuition inside this method

is simple, when ξ lies in a smooth region of the function, two different approxima-

tion should give out similar results, then the error indicator η(ξ) is expected to be

small, whereas in the region of less regularity for f , or around discontinuities, the

error indicator η(ξ) is expected to be large.

The author try to present a error bound for this error indicator function η(ξ). The

error indicator is

η(ξ) = |Smulti
Xk

(ξ)− Sps
Nξ

(ξ)|,

η(ξ) = |Smulti
Xk

(ξ)− f(ξ) + f(ξ)− Sps
Nξ

(ξ)|,

η(ξ) ≤ |f(ξ)− Smulti
Xk

(ξ)|+ |f(ξ)− Sps
Nξ

(ξ)|. (3.8)

Fasshauer’s book [21] (Page 125) gives the error bound for stationary interpolation

of MQ RBF and polyharmonic splines RBF. They are :

|f(ξ)− Smulti
Xk

(ξ)| ≤ C1 exp(−K1/hXk,Ω),

|f(ξ)− Sps
Nξ

(ξ)| ≤ C2h
K2
Nξ,Ω

,
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where K1, K2, C1, C2 are constants. Then Equation 3.8 becomes

η(ξ) ≤ exp(−K1/hXk,Ω) + C1h
K2
Nξ,Ω

. (3.9)

Then the error indicator η(ξ), ξ ∈ Ξ is used to flag points ξ ∈ Ξ as “to be

refined” or its corresponding center x “to be coarsened” according to the following

definition.

Definition 3.2 (Refine and coarsen). Let θcoarse, θrefine be two tolerance values

satisfying 0 < θcoarse < θrefine. One refines a point ξ ∈ Ξ, and place it in Xrefine, if

and only if η(ξ) > θrefine, and one moves a point from the active center set X into

the coarse set Xcoarse, if and only if corresponding η(ξ) < θcoarse.

These two parameters θcoarse, θrefine should be specified according to the user’s need.

Thus one has two processes: coarsening where a coarse set Xcoarse is removed from

the current center set X, that is the new center set X is modified by replacing X

with X \ Xcoarse; refinement where a set of nodes Xrefine is added to the current

center set where the error is large, in other words, X is modified by replacing X

with X ∪Xrefine.

When applying this error indicator it require no extra evaluation of the target

function so that no extra cost is paid in finding where approximation is likely to

be poor. When function evaluation is very costly this is a very positive feature of

the method.

3.3 Adaptive data structure

3.3.1 Adaptive point sets

Now the author describes the relationship between the center set Xk and the

corresponding indication set Ξk. In one dimensional cases, the initial center set

X0 = {x1, x2, · · · , xn0} is a set of uniformly distributed nodes in the domain. For

k ≥ 0, the indication nodes in Ξk are the middle points of the current centers,
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that is Ξk = {ξi = 0.5(xi + xi+1), i = 1, 2, · · · , nk − 1}. The author gives out the

details of rules of refining and coarsening centers for d = 1:

• Each indication point is checked independently by the error indicator η for

addition to the center set according to Definition 3.2.

• The author defines the corresponding indication point for xi is ξi−1 for i =

2, · · · , n, all the corresponding indication points, one indication point for

one center in d = 1 cases, for center x is checked by error indicator η, then

follow Definition 3.2 to coarsen the appropriate centers.

Figure 3.1 shows the example of initial centers set X0, which are the black nodes,

and the corresponding indication set Ξ0, which are the red nodes. Note that the

first and last center are always left intact.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

Figure 3.1: Initial centers and indication points of an interval.

For two-dimensional cases d = 2, one follows the setting in [17]. They begin with a

coarse collection of non overlapping regular boxes in Rd that cover the domain Ω of

interest. Each initial box has an RBF center at its midpoint, and the author calls

such boxes center boxes and the centers consist of the initial center set X. Each of

the 2d child boxes arising from the natural subdivision (bisection) of a center box

is an indication box, and the center of each indication box is an indication point

ξ; these indication points form the indication set Ξ. The box structure implies a

quadtree, or octree data structure in two, and three dimensions [45].

Figure 3.2 shows the example of initial centers and indication set for a two dimen-

sional square. Note the four corner points are added, these points are always left
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alone in “Refine/Coarsen” stage. In order to initialize boxes for each boundary side

in the square case, one simply treats each side as an independent one dimensional

case. Figure 3.2 shows the indicator set (red nodes) corresponding to the equally

spaced points in the square (black nodes). The initial centers that consist of two

types : 1) the interior nodes and 2) the boundary nodes which include 4 vertices.

The red nodes are grouped to became the indication set Ξ0.

To summarize, the geometric data structure is nothing more than finding a set of

centers X, which more or less represent the domain Ω, and the indication set Ξ

which is finer than the set X.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
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0.6

0.8

1

x

y

Figure 3.2: Initial centers and indication points of a square region, with n =
2j , j = 1.

The interpolant Smulti
X is created using the current set of centers from the center set

X. The error indicator η (in this case, the interpolation error) of the interpolant

is then evaluated at the indication points Ξ, and adaptation decisions are made.

The author gives out the details of rules regarding refining and coarsening centers

for d = 2:

• That each center x has 2d sibling indication points. These 4 sibling indication

points are checked by error indicator η independently, then the addition is

constructed following Definition 3.2.



Adaptive Error Indicator Method 36

• For any center x whose all sibling indication points have error indicator value

η less than θcoarse, then this center x is removed according Definition 3.2.

The author gives a visible example of refinement and coarsening. Converting the

indication points where the error indicator values η are greater that θrefine described

as
⊗

into RBF centers as black dots, see Figure 3.3. Removing current center

(black dot in Figure 3.4 left corner) where error indicator value η at all of its

sibling indication points, described as
⊗

, are less than the threshold θcoarse.

Figure 3.3: Examples of refinement in d = 2 cases.

Figure 3.4: Examples of coarsen in d = 2 cases.

In Algorithm 1, the author gives the process how the centers set Xk and corre-

sponding indication set Ξk evolve according to the error indicator η.

In three dimensional cases, one can extend the two dimensional node scheme, the

relationship between center set Xk and indication set Ξk, k = 0, 1, 2, · · · following

the same principal as in two-dimensional cases and Algorithm 1.

3.3.2 Adaptive shape parameters

For the multiquadric RBF and the Gaussian RBF one has a free parameter c which

is named the shape parameter, which can be decided by the user. As one increases

c the φ(r) =
√

(1 + c2r2), the MQ basis function behaves more and more like the

function cr, so that one gets a sharp corner near r = 0.
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Algorithm 1 Calculate Xk, Ξk, k = 0, 1, 2, · · · in [−1, 1]2.

Initialization: n = 2j, j ∈ N, h = 2/n, k = 0.
For interior nodes
Inodes = (−1 + h/2 + rh,−1 + h/2 + sh), r, s = 0, 1, · · · , n− 1.

For boundary nodes
Bnodes = (−1 + h/2 + rh,±1), (±1,−1 + h/2 + rh), r = 0, 1, · · · , n− 1.
Pnodes = (±1,±1)

Initial center set X0 ← Inodes ∪ Pnodes ∪Bnodes.
endflag = true

while endflag do
k ← k + 1.
h← h/2.

Inodesnew ← Form squares centered at each node in Inodes with boundary
length hk. Put the vertices of each square into Inodesnew.

Bnodesnew ← Choose points on the boundary which are 0.5h away from the
current nodes in Bnodes. Add these to Bnodesnew.

Ξk ← Inodesnew ∪Bnodesnew
Use error indicator to decide the points at which to refine Xrefine ⊂ Ξk.
Inodes← Inodes ∪ (Xrefine ∩ Inodesnew).
Bnodes← Bnodes ∪ (Xrefine ∩Bnodesnew).

Use error indicator to locate the points need to be coarsen Xcoarse in Xk−1.
X∗k−1 ← Xk−1 \Xcoarse.
Xk ← X∗k−1 ∪ Inodes ∪Bnodes.

if thenXk
refine ∪Xk

coarse = ∅
endflag = flase

end if
end while

To keep the growth of the condition number of interpolation matrix κ(A) in a

moderate pace, one needs to keep the minimum eigenvalue σmin and the maximum

eigenvalue σmax in a moderate scale.

Gershgorin’s theorem [68] states that

|σmax − Aii| ≤
N∑

j=1,j 6=i

|Aij| (3.10)
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for X ∈ Rd and X = {xi, i = 1, · · · , N}. That is,

σmax ≤ N max
i,j=1,··· ,N

|Aij| = N max
xi,xj∈X

φ(||xi − xj||2). (3.11)

By the properties of positive definite functions,

σmax ≤ Nφ(0). (3.12)

Now, as long as the data X are not too wildly distributed, N grows as h−dX,Ω, which

is in a moderate pace and it is acceptable.

Then the remaining work for having a bound of κ(A) lies in finding the lower

bound for σmin. Different lower bound of σmin for different RBF are summarised

in [21].

For generalized multiquadric φ(x) = (1 + c2||x||22)β, β ∈ R \ N0, one has

σmin ≥ C(d, β, c)q
β−d/2+1/2
X exp(−2Md/(qXc)), (3.13)

where C(d, β, c) and Md are known constants. One sees that, for a fixed shape

parameter c, the lower bound for σmin goes to zero exponentially as the separation

distance qX decrease. Since one knows the condition number of interpolation

matrix κ(A) is the ratio of largest and smallest eigenvalues. Moreover, the growth

of σmin is of order N . Then, one sees that the condition number of interpolation

matrix κ(A) grows exponentially with decreasing separation distance. On the other

hand, if one keeps the separation distance fixed (normally achieved by keeping the

number of centersN fixed) and decreases the shape parameter c, then the condition

number κ(A) behaves in almost the same manner, which is exponential.

From the perspective of accuracy, one has the error bound for the multiquadric

interpolant [65]

|f(x)− Smulti
X | ≤ Kη

1
chX,Ω , (3.14)
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where K is a constant, c is the shape parameter, hX,Ω is the fill distances and

0 < η < 1. One sees that spectral convergence is achieved as either the fill

distance or the shape parameter go to zero.

Thus, it leads to the uncertainty principle from [80], that is that the good accuracy

is obtained by a small shape parameter and a small fill distance (centers close

together) while the small condition number requires the shape parameter and

separation distance be large (centers far apart). Apparently, both situations can

not occur at the same time. Moreover, there is not an ideal method in practical

and theoretical term for having the optimal shape parameter in applications. A

lot of researches have been done and some useful methods have been proposed for

selecting near optimal shape parameters [5, 9, 20, 23, 30, 32, 33, 60, 61, 62, 78].

Thus, in order to maintain the condition number of interpolation matrix κ(A) and

to achieve good approximation accuracy, an adaptive shape parameter is applied,

increasing the shape parameter as the distance between the centers decreases.

In this chapter, the basis functions in the interpolant in 3.1 will be

φi(r) =
√

(1 + (cir)2), (3.15)

so that a different choice of shape parameter will be used at each point x, i =

1, · · · , N , which is called the adaptive shape parameters. Here the author intro-

duces the two ways to have adaptive shape parameters :

• The shape parameter ci of each center xi is set to be a constant divided by

the distance to the nearest neighbour center, that is

ci =
C

min(||x− xi||)
x ∈ X. (3.16)

• In two and three dimensional cases, each center x in the initial centers set

X0 , which is at level l = 0, is assigned a shape parameter value c0. Every

center has 2d attached indication points, which these indication points are

at level l = 1. In order words, the centers are at level l, their indication
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points are at level l + 1. When ever an indication point ξ is converted into

center x, its shape parameter value is twice its parent’s value. Figure 3.5

shows one example of centers and indication points at different levels, the

black dots are centers and the red dots are indication points. Based on above

description, the shape parameter for centers at level l is

cl = 2lc0. (3.17)

Figure 3.5: Examples of levels.

3.4 Adaptive procedure achieved by using an error

indicator

In mind of above definitions and the relationship between Xk, Ξk and Nξ, the

adaptive error indicator (AEI) RBF approximation for target function f is achieved

by following procedure:

1. Center set Xk and its corresponding indication set Ξk are specified.

2. Global RBF approximation Smulti
Xk

is generated on the center set Xk, and the

neighbourhood sets Nξ for every ξ in Ξk are decided.
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3. The local RBF approximation Sps
Nξ

is generated for each ξ, and the error

indicator η(ξ) is computed.

4. The refinement set Xrefine and the coarse set Xcoarse are generated by error

indicator η(.) according to the Definition 3.2.

5. The center setXk is updated by adding the refinement setXrefine and deleting

the coarse set Xcoarse that is Xk+1 = {Xk ∪Xrefine} \Xcoarse.

6. When Xrefine ∪ Xcoarse = ∅, the algorithm terminates. Otherwise return to

the first step.

3.5 Numerical Results

In this section, the author shows the effectiveness of the error indicator in locat-

ing the worst errors, and in the corresponding refinement and coarsening strategy

to improve the error. The author does this to one dimensional and two dimen-

sional test functions and compare to results in the paper [17]. Three dimensional

examples including the Perdichizzi case have been tested.

3.5.1 One dimensional function approximations

For one dimensional test functions, the author sets the initial center set X0 to

be the uniformly distributed points in the interval [−1, 1] and the indication set

Ξ0 is the set of midpoints of X0, as explained above. The neighbourhood set Nξ

contains M = 4 points. The shape parameter c of each center is set as described

as in Equation 3.16, C = 0.75. The reason the author sets C = 0.75 is simply

because this settings works well, this setting could also be find in [17]. The author

also tried other settings, suck as C = 0.5, this setting also works. A test set T

containing 5001 equally spaced nodes is used to test the approximation quality:
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eX = maxt∈T |f(t)− Smulti
X (t)| and the root mean square value in eX, that is

RMS(eX(f)) =

√√√√ 1

NT

NT∑
i=1

|f(ti)− Smulti
X (ti)|. (3.18)

3.5.1.1 The Runge function

The author first consider a standard approximation problem, the Runge function

f(x) = (1 + 25x2)−1on [−1, 1].
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Figure 3.6: Runge function with final RBF centers distribution, initial |X| =
13, θrefine = 2.0(−5).

In Figure 3.6, one sees the final result obtained by adaptive interpolation, with

|X| = 13 initially, refinement threshold θrefine = 2.0(−5) = 2 × 10−5 and θcoarse =

θrefine/200. One observes that centers cluster near the boundaries where approx-

imation is more challenging due to the one-sided nature of the information, and

at the origin, where the target function changes more rapidly. Note that the final

maximum error is 1.4(−5) which is very close to θrefine suggesting that the error

indicator is working well. The largest condition number of during the iterative

process in this case is 3.1(+6).
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Table 3.1 presents the results of the adaptive process, which stops after 8 iterations.

The final interpolant Smulti
X has 83 centers and the whole process computed a

total of 85 evaluations of the target function. At each stage Nrefine, Ncoarse are

respectively the numbers of nodes to be added/removed from the center set, κ(A)

is the condition number of interpolation matrix A.

If one uses the full center set with 85 points to construct an interpolant one gets

L-infinity and root mean square errors 1.4(−5) and 1.4(−6) respectively, a small

improvement on the error with 83 centers.

It Ntotal |X| Ncoarse Nrefine eX(f) RMS(eX(f)) κ(A)

1 13 13 0 12 1.2(-2) 5.1(-3) 3.2(+3)
2 25 25 0 22 4.9(-4) 1.3(-4) 1.2(+4)
3 47 47 0 16 1.1(-4) 1.7(-5) 1.0(+5)
4 63 63 0 13 5.6(-5) 6.3(-6) 2.6(+5)
5 76 76 0 5 2.8(-5) 3.3(-6) 5.1(+5)
6 81 81 2 3 2.1(-5) 3.4(-6) 1.0(+6)
7 84 82 0 1 1.3(-5) 2.5(-6) 3.0(+6)
8 85 83 0 0 1.4(-5) 2.6(-6) 3.1(+6)

Table 3.1: Iterative process of adaptive error indicator interpolation of Runge
function with θrefine = 2(−5).

Table 3.2 shows results according to different θrefine, κ(A)max means the largest

κ(A) during the adaptive process.

θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

2.0(-5) 85 83 1.4(-5) 2.6(-6) 3.1(+6)
2.0(-6) 155 151 1.6(-6) 1.4(-7) 2.4(+7)
2.0(-7) 276 244 2.4(-7) 3.5(-8) 2.7(+9)
2.0(-8) 710 646 1.8(-8) 3.5(-9) 1.1(+11)

Table 3.2: Adaptive error indicator interpolation results of Runge function
with different θrefine.

Figure 3.7 shows how the error decreases with the number of points in the set

X, starting at 13, and finishing with 646 centers, Ntotal is the total centers that

were sampled from target function, staring at 13 and finishing with 710. The final

interpolant Smulti
X used 646 centers, with eX(f) = 1.8(−8) and RMS(eX(f)) =

3.5(−9). Using all the 710 centers, the interpolant Smulti
Ntotal

provide eNtotal
(f) =
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Figure 3.7: Runge function interpolation error for each iteration, Ntotal is the
total number of samples of the target function, with θrefine = 2(−8).

1.8(−8) and RMS(eNtotal
(f)) = 3.3(−9). The red nodes in Figure 3.7 are the

maximum values of the error indicator function at each iteration in absolute value,

so one can see that the error indicator is a good measure of approximation error

because the measured error (red line) tracks the approximation error (black line).

One sees a convergence rate |eX(f)|X|| < C × |X|−2.5.

The condition numbers at each iteration is below 1.1(+11) due to the application

of this adaptive shape parameter strategy. If one uses the adaptive interpolation

algorithm with a constant shape parameter in this example, the condition number

of the interpolation matrix increases to 5(+20) after one or two iterations. While

it has been observed that good approximation can be maintained with very large

condition numbers, any user would, quite reasonably, doubt that such poor con-

ditioning could lead to reliable results. The goal is to provide answers that users

can trust.

In [17], Driscoll and Heryudono use the residual sub-sampling method on the

same example. They record the number of centers X used in the final interpolant,

but the total numbers of function samples computed from the target function

is not reported. In Table 3.3, RS stands for residual sub-sampling method and
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AEI stands for adaptive error indicator method, it compares the results and the

resources needed, the Ntotal for residual sub-sampling method as implemented

by the author. One can see that residual sub-sampling achieves a better result

marginally, but with a much larger number of function evaluations. The author

emphasises that this applications include examples where function evaluation is

expensive.

Method eX(f) |X| Ntotal

RS 1.3(-5) 53 285
AEI 1.4(-5) 83 85
RS 8.9(-8) 284 4595
AEI 1.8(-8) 646 710

Table 3.3: Error indicator vs Residual sub-sampling for Rnuge function

3.5.1.2 The hyperbolic tan function

In this example, target function f(x) = tanh(60x − 0.1) is considered. Figure

3.8 shows the result of the adaptive error indicator approximation of this function

with θrefine = 2.0(−5), one sees how the error indicator distributes centers around

the steepest part of f .

Table 3.4 shows the adaptive process of interpolation with threshold θrefine =

2.0(−5). The adaptive approximation converges in 9 iterations with final 82 nodes

selected from 141 centers at which this method computes the target function.

The final interpolant Smulti
X has error eX(f) = 1.1(−5) and and RMS(eX(f)) =

1.8(−6). Using all the 141 centers, the interpolant Smulti
Ntotal

provide eNtotal
(f) =

3.2(−6) and RMS(eNtotal
(f)) = 1.3(−7). Thus, depending on the user, one can

have a more compact representation of the target function, guided by θrefine and

θcoarse, or for a more accurate approximation using all points at which the target has

been evaluated. The condition number grows fast during the first few iterations,

but never grows too large.

Table 3.5 shows results according to different θrefine, one could see the final results

eX(f) are close to the threshold θrefine.
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Figure 3.8: Graph of f(x) = tanh(60x− 0.1) function with final RBF centers
distribution produced by the algorithm, with initial |X| = 13, θrefine = 2.0(−5).

The final number of centers used is 82.

It Ntotal |X| Ncoarse Nrefine eX(f) RMS(eX(f)) κ(A)

1 13 13 0 12 7.2(-1) 1.7(-1) 3.2(+3)
2 25 25 0 22 5.3(-1) 9.7(-2) 1.2(+4)
3 47 47 6 22 2.6(-1) 3.7(-2) 4.7(+4)
4 69 63 25 20 5.3(-2) 6.1(-3) 4.5(+5)
5 89 58 26 17 2.1(-3) 1.7(-4) 2.3(+6)
6 106 49 0 24 1.5(-4) 6.1(-5) 2.2(+7)
7 130 73 1 10 1.2(-5) 2.1(-6) 7.1(+6)
8 140 82 1 1 1.1(-5) 1.8(-6) 9.3(+6)
9 141 82 0 0 1.1(-5) 1.8(-6) 9.7(+6)

Table 3.4: Iterative process of adaptive algorithm interpolation of tanh(60x−
0.1), with θrefine = 2(−5).

θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

2.0(-5) 141 82 1.1(-5) 1.8(-6) 2.2(+7)
2.0(-6) 232 141 1.8(-6) 2.4(-7) 2.6(+7)
2.0(-7) 320 238 2.0(-7) 3.7(-8) 1.1(+9)
2.0(-8) 726 595 1.7(-8) 2.1(-9) 8.1(+9)

Table 3.5: Adaptive error indicator interpolation results of tanh(60x − 0.1)
function with different θrefine.
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Figure 3.9 shows the adaptive process with θrefine = 2(−8), starting with 13 centers.

The algorithm stops with |X| = 595 and Ntotal = 726 in 38 iterations. The final

interpolant Smulti
X has eX(f) = 1.7(−8) and RMS(eX(f)) = 2.1(−9), while the

interpolant using all the available centers Smulti
Ntotal

gives L-infinity and root mean

square errors 3.4(−8) and 9.8(−10) respectively. The condition number at each

iteration is below 8.1(+9). One still see a convergence rate |eX(f)|X|| < C×|X|−2.5.

Figure 3.9: tanh(60x − 0.1) function interpolation error for each iteration,
Ntotal is the total number of samples of the target function, with θrefine = 2(−8).

Table 3.6 compares the results and the total number of function evaluations needed

for the error indicator algorithm and residual sub-sampling algorithm. In this

example the AEI algorithm achieves a better result with significantly less function

evaluation.

Method eX(f) |X| Ntotal

RS 2.5(-5) 129 441
AEI 1.1(-5) 82 141
RS 1.7(-7) 185 5617
AEI 1.7(-8) 595 726

Table 3.6: Error indicator vs Residual sub-sampling for function tanh(60x −
0.1).
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3.5.1.3 The shifted absolute value function

The final univariate example is f(x) = |x − 0.04|. Figure 3.10 shows the center

distributed around the derivative discontinuity of |x − 0.04|. The final RBF rep-

resentation uses 44 centers. Table 3.7 shows the adaptive process starting with

13 uniformly distributed centers and ending with 44 centers. The total number

of function evaluations was 121. The final interpolant Smulti
X has L-infinity and

root mean square errors 3.8(−5) and 2.7(−6) respectively, while using all the 121

centers one obtains uniform and root mean square errors 3.8(−5) and 6.0(−7)

respectively.
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Figure 3.10: Final center distribution (44 points) for approximating f(x) =
|x− 0.04| with θrefine = 2.0(−5).

Table 3.8 shows results according to different θrefine, one could see the final results

eX(f) are still close to the threshold θrefine in this non-smooth function.

Figure 3.11 shows the progress of the adaptive algorithm starting with 13 cen-

ters, and θrefine = 2.0(−8). The algorithm terminates after 27 iterations with

|X| = 81. The total number of points used Ntotal starts at 13 and stops at 459.

The final interpolant Smulti
X with 81 centers has maximum error eX(f) = 3.8(−8)
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It Ntotal |X| Ncoarse Nrefine eX(f) RMS(eX(f)) κ(A)

1 13 13 0 12 3.7(-2) 6.3(-3) 3.2(+3)
2 25 25 0 16 2.7(-2) 3.0(-3) 1.2(+4)
3 41 41 3 14 7.1(-3) 9.8(-4) 5.3(+4)
4 55 52 18 12 3.3(-3) 2.9(-4) 3.4(+5)
5 67 46 9 15 1.6(-3) 2.1(-4) 1.1(+8)
6 82 52 23 6 1.4(-3) 4.1(-5) 9.2(+6)
7 88 35 6 14 7.7(-4) 9.2(-5) 1.3(+7)
8 102 43 6 5 3.3(-4) 6.3(-6) 2.0(+7)
9 107 42 5 10 1.1(-3) 4.2(-4) 1.0(+9)
10 117 47 3 4 5.2(-5) 2.1(-6) 6.2(+7)
11 121 48 4 0 3.8(-5) 1.8(-6) 8.6(+7)
12 121 44 0 0 3.8(-5) 2.7(-6) 7.5(+7)

Table 3.7: Iterative process of adaptive algorithm interpolation of |x − 0.04|,
with θrefine = 2(−5).

θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

2.0(-5) 121 44 3.8(-5) 2.7(-6) 1.0(+9)
2.0(-6) 266 56 1.6(-6) 1.5(-7) 9.0(+10)
2.0(-7) 352 66 7.6(-7) 4.3(-8) 8.8(+11)
2.0(-8) 459 81 3.8(-8) 5.3(-9) 2.1(+13)

Table 3.8: Adaptive error indicator interpolation results of f(x) = |x − 0.04|
function with different θrefine.

and RMS(eX(f)) = 5.3(−9). The condition number at each iteration is be-

low 2.1(+13). The interpolant using all the available centers Smulti
Ntotal

gives L-

infinity error 3.8(−8) and the root mean square error 5.3(−10). The condition

numbers for this interpolation is 1.8(+13). One still sees a convergence rate

|eX(f)|X|| < C × |X|−2.5.

Table 3.9 compares the results and function evaluations required for the error

indicator algorithm and the residual sub-sampling algorithm.

Method eX(f) |X| Ntotal

RS 1.5(-5) 53 422
AEI 1.6(-6) 56 266
RS 4.1(-8) 74 2683
AEI 3.8(-8) 81 459

Table 3.9: Error indicator vs Residual sub-sampling for function |x− 0.04|.



Adaptive Error Indicator Method 50

Figure 3.11: Error convergence of the adaptive algorithm for f(x) = |x−0.04|
and θrefine = 2.0(−8).

For these three approximation problems, one sees from the results that the shifted

absolute value function f(x) = |x−0.04| is more difficult to approximate than the

Runge function and the hyperbolic tan function f(x) = tanh(60x − 0.1). Table

3.10 summaries the κ(A)max for these three functions with different θrefine.

The author observes that the κ(A)max for the shifted absolute value function is

larger than the one from other two functions for the same θrefine. That is the

κ(A)max might could be considered as an evaluation of the difficulty of the problem

in one dimensional cases, the more difficult the approximation problem is, the

larger the κ(A)max becomes.

|x− 0.04| tanh(60x− 0.1) (1 + 25x2)−1

κ(A)max, θrefine = 2.0(−5) 1.0(+9) 2.2(+7) 3.1(+6)
κ(A)max, θrefine = 2.0(−6) 9.0(+10) 2.6(+7) 2.4(+7)
κ(A)max, θrefine = 2.0(−7) 8.8(+11) 1.1(+9) 2.7(+9)
κ(A)max, θrefine = 2.0(−8) 2.1(+13) 8.1(+9) 1.1(+7)

Table 3.10: κ(A)max for three one dimensional examples.
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3.5.2 Two dimensional function approximations

Now three two-dimensional examples are considered, where the node refinement

scheme explained above is applied. The author sets j = 3 in the initialisation

step of Algorithm 1 to achieve the initial center set X0, with |X0| = 100, and its

indication set Ξ0. The neighbourhood set Nξ has M = 24 neighbours. A test grid

T of 101×101 uniformly spaced nodes on [−1, 1]2 is used to test the approximation

quality: eX(f) = maxt∈T |f(t) − Smulti
X (t)| and the root mean square value in eX,

that is RMS(eX(f)) as Equation 3.18. The shape parameter c of each center is set

as described as in Equation 3.16, C = 0.5, and θcoarse = θrefine/100.

3.5.2.1 The modified Franke Function

This test function (Figure 3.12)

f(x, y) = exp−0.1(x2+y2) + exp−5((x−0.5)2+(y−0.5)2)

+ exp−15((x+0.2)2+(y+0.4)2) + exp−9((x+0.8)2+(y−0.8)2) (3.19)

is a standard test function for a RBF approximation. The author adopts this

test function from Driscoll and Heryudono [17], they called this function modified

Franke function. With θrefine = 5.0(−4) only 14 iterations are needed to reach

the stopping criteria. The process is showed in Table 3.11. In this case one has

|X| = 1318 centers with L-infinity error 7.2(−4) and in the process all the condition

numbers are below 2.1(+7).

Figure 3.13 shows the final node distribution and demonstrates that the error

indicator locates points in regions of rapid variation.

Table 3.12 shows results according to different θrefine, κ(A)max means the largest

κ(A) during the adaptive process.

Figure 3.14 shows how the maximum and root mean square error decrease with

the pre-set threshold, and the number of points required to achieve the given

threshold. The red line stands the maximum error, the black line stands for the
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Figure 3.12: modified Franke function interpolation.

It Ntotal |X| Ncoarse Nrefine eX(f) RMS(eX(f)) κ(A)

1 100 100 0 280 4.9(-2) 8.9(-3) 1.5(+6)
2 380 380 1 370 2.1(-3) 2.3(-4) 2.5(+6)
3 750 749 0 185 2.2(-3) 1.2(-4) 6.4(+6)
4 935 934 0 153 1.3(-3) 1.0(-4) 1.0(+7)
5 1088 1087 0 98 1.4(-4) 8.2(-5) 1.5(+7)
6 1186 1185 0 65 7.4(-5) 7.1(-5) 1.7(+7)
7 1251 1250 0 42 7.2(-5) 6.5(-5) 1.9(+7)
8 1293 1292 0 13 7.2(-5) 6.4(-5) 2.1(+7)
9 1306 1305 0 5 7.2(-5) 6.4(-5) 2.1(+7)
10 1311 1310 0 3 7.2(-5) 6.4(-5) 2.1(+7)
11 1314 1313 0 3 7.2(-5) 6.4(-5) 2.1(+7)
12 1317 1316 0 1 7.2(-5) 6.4(-5) 2.1(+7)
13 1318 1317 0 1 7.2(-5) 6.4(-5) 2.1(+7)
14 1319 1318 0 0 7.2(-5) 6.4(-5) 2.1(+7)

Table 3.11: Iterative process of AEI interpolation of modified Franke function,
with θrefine = 5.0(−4).

pre-set threshold θrefine and the blue line stands for the root mean square error.

One sees a convergence rate |eX(f)|X|| < C × |X|−1.

In Figure 3.15, the author compares the adaptive error indicator (AEI) interpo-

lation and residual sub-sampling (RE) method on approximating the modified

Franke function. One could see clearly that AEI method could reach the desirable
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Figure 3.13: Centre distribution for adaptive interpolation for the modified
Franke function with θrefine = 5.0(−4). The number of points in this centre set

is 1318.

θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

1.0(-3) 697 697 2.2(-3) 1.7(-4) 6.1(+8)
7.5(-4) 907 907 1.4(-3) 9.9(-5) 1.1(+7)
5.0(-4) 1319 1318 7.2(-4) 6.3(-5) 2.1(+7)
2.5(-4) 2703 2702 6.3(-4) 3.8(-5) 7.6(+7)
1.0(-4) 6693 6692 2.1(-4) 1.3(-5) 3.4(+8)
7.5(-5) 8823 8820 1.1(-4) 8.4(-6) 5.8(+8)

Table 3.12: Adaptive algorithm interpolation results of modified Franke func-
tion with different θrefine.

accuracy with notable less evaluations from the target function.

3.5.2.2 The two-dimensional hyperbolic function

The second test function is f(x, y) = 0.4 tanh(20xy)+0.6 (Figure 3.16) on [−1, 1]2.

With θrefine = 5.0(−4) the algorithm took 8 iterations to reach the stopping criteria,

in Table 3.13, it shows the iterative process. A total of |X| = 2106 centers were

used to give an error eX(f) = 5.4(−5), Figure 3.17 shows the error indicator η has

the ability to locate more centers in the rapid variation sub-domain.
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Figure 3.14: Convergence of adaptive error indicator interpolation for the
modified Franke function.
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Figure 3.15: Comparison between AEI method and RE method for the mod-
ified Franke function.

Table 3.14 shows how the number of points needed by the algorithm varies with

the choice of θrefine. The higher level of accuracy is required, the larger Ntotal

becomes.

Figure 3.18 shows how the maximum and root mean square error decrease with
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Figure 3.16: Interpolation of f(x, y) = 0.4 tanh(20xy) + 0.6, with θrefine =
5.0(−4).
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Figure 3.17: Final node distribution for approximation of f(x, y) =
0.4 tanh(20xy) + 0.6 with θrefine = 5.0(−4).

the pre-set threshold, and the number of points required to achieve the given

threshold. The red line stands the maximum error, the black line stands for the

pre-set threshold θrefine and the blue line stands for the root mean square error.

One again sees the same convergence rate |eX(f)|X|| < C × |X|−1.
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It Ntotal |X| Ncoarse Nrefine eX(f) RMS(eX(f)) κ(A)

1 100 100 0 304 1.2(-1) 4.1(-2) 1.5(+6)
2 404 404 0 720 4.3(-2) 6.6(-3) 2.8(+6)
3 1124 1124 48 666 7.2(-3) 5.9(-4) 1.4(+7)
4 1790 1742 11 298 1.8(-3) 1.1(-4) 3.6(+7)
5 2088 2029 2 53 1.2(-3) 6.7(-5) 5.1(+7)
6 2141 2080 7 26 5.5(-4) 5.7(-5) 5.4(+7)
7 2167 2099 2 9 5.5(-4) 5.7(-5) 5.4(+7)
8 2176 2106 0 0 5.5(-4) 5.7(-5) 5.5(+7)

Table 3.13: Iterative process of AEI interpolation of f(x, y) = 0.4 tanh(20xy)+
0.6 function, with θrefine = 5.0(−4).

θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

1.0(-3) 1605 1561 4.2(-3) 1.6(-4) 2.9(+7)
7.5(-4) 1810 1776 2.8(-3) 1.1(-4) 3.7(+7)
5.0(-4) 2176 2106 5.4(-4) 5.6(-5) 5.5(+7)
2.5(-4) 3911 3840 2.3(-4) 2.8(-5) 1.4(+8)
1.0(-4) 9168 9080 1.2(-4) 1.1(-5) 7.5(+8)
7.5(-5) 12144 12078 1.4(-4) 9.4(-6) 1.4(+9)

Table 3.14: Adaptive algorithm interpolation results of f(x, y) =
−0.4 tanh(20xy) + 0.6 with different θrefine.

Figure 3.18: Convergence of adaptive error indicator interpolation for the
f(x, y) = −0.4 tanh(20xy) + 0.6 function.
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In Figure 3.19, the author compare the adaptive error indicator (AEI) interpolation

and residual sub-sampling (RE) method on approximating this target function.

One again sees clearly that AEI method could reach the desirable accuracy with

notable less evaluations from the target function.
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Figure 3.19: Comparison between AEI method and RE method for the
f(x, y) = −0.4 tanh(20xy) + 0.6 function.

The observant reader will notice that the final error may not decrease with the

choice of the error indicator, since having a decrease in θrefine in the last two rows of

Table 3.14, but an increase in maximum error. This may happen as the indicator

one uses is only that - an indicator. However, one could observe that the trend

is decreasing which the mean root square error is always decaying, so that in a

global sense a decrease of the threshold results in a decrease in errors.

3.5.2.3 The two-dimensional exponential function

In this example target function is f(x, y) = exp(−60((x−0.35)2+(y−0.25)2))+0.2

(Figure 3.20) in [−1, 1]2. Table 3.15 shows the approximation process, and in

Figure 3.21 shows how the error indicator puts more centers in the region where

the function changes rapidly.
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Figure 3.20: Interpolation of f(x, y) = exp(−60((x−0.35)2+(y−0.25)2))+0.2,
with θrefine = 5.0(−4).
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Figure 3.21: Final node distribution for approximation of f(x, y) =
exp(−60((x− 0.35)2 + (y − 0.25)2)) + 0.2, with θrefine = 5.0(−4).

Table 3.16 shows how the error of adaptive interpolation depend on the error

indicator. In the two previous examples, there is no big difference in |X| and

Ntotal. In this example, there is notable difference between |X| and Ntotal. With

θrefine = 7.5(−5), when using all the available centers to construct Smulti
Ntotal

one gets
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It Ntotal |X| Ncoarse Nrefine eX(f) RMS(eX(f)) κ(A)

1 100 100 0 224 5.3(-1) 4.1(-2) 1.5(+6)
2 324 324 9 247 8.8(-2) 5.7(-3) 1.9(+6)
3 571 562 122 153 5.7(-4) 4.2(-5) 4.0(+6)
4 724 593 10 68 2.6(-4) 3.3(-5) 5.7(+6)
5 792 651 3 67 2.6(-4) 3.4(-5) 7.5(+6)
6 859 715 0 59 2.6(-4) 3.3(-5) 1.1(+7)
7 918 774 0 66 2.6(-4) 3.3(-5) 1.3(+7)
8 984 840 1 43 2.6(-4) 3.3(-5) 1.6(+7)
9 1027 882 0 18 2.6(-4) 3.3(-5) 1.4(+7)
10 1045 900 0 13 2.6(-4) 3.3(-5) 1.5(+7)
11 1058 913 0 12 2.6(-4) 3.3(-5) 1.5(+7)
12 1070 925 0 4 2.6(-4) 3.3(-5) 1.4(+7)
13 1074 929 0 4 2.6(-4) 3.3(-5) 1.4(+7)
14 1078 933 0 0 2.6(-4) 3.3(-5) 1.4(+7)

Table 3.15: Iterative process of AEI approximation of f(x, y) = exp(−60((x−
0.35)2 + (y − 0.25)2)) + 0.2 with θrefine = 5.0(−4).

better approximation quality with 8.4(−5) and 9.8(−6) respectively for uniform

and root mean square error.

θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

1.0(-3) 594 476 2.6(-4) 4.5(-5) 8.4(+6)
7.5(-4) 776 650 2.6(-4) 3.8(-5) 1.3(+7)
5.0(-4) 1078 933 2.6(-4) 3.3(-5) 1.4(+7)
2.5(-4) 1660 1511 2.3(-4) 2.6(-5) 1.4(+7)
1.0(-4) 3483 3324 1.6(-4) 1.5(-5) 1.4(+8)
7.5(-5) 4516 4335 9.5(-5) 1.1(-5) 2.2(+8)

Table 3.16: Adaptive algorithm interpolation results of f(x, y) = exp(−60((x−
0.35)2 + (y − 0.25)2)) + 0.2 with different θrefine.

Figure 3.22shows how the maximum and root mean square error decrease with

the pre-set threshold, and the number of points required to achieve the given

threshold. It also suggest a converngence rate |eX(f)|X|| < C × |X|−1. In Figure

3.23, the author compares the adaptive error indicator (AEI) interpolation and

residual sub-sampling (RE) method on approximating this target function.
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Figure 3.22: Convergence of adaptive error indicator interpolation for the
f(x, y) = exp(−60((x− 0.35)2 + (y − 0.25)2)) + 0.2 function.
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Figure 3.23: Comparison between AEI method and RE method for the
f(x, y) = exp(−60((x− 0.35)2 + (y − 0.25)2)) + 0.2 function.

3.5.2.4 The cone shape function

In one-dimensional cases, the author finds that the shifted absolute value function

f = |x − 0.04| is difficult to approximate due to its derivative singularity at x =
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0.04. In this example the author explores the same singularity in two dimensions

f(x, y) =
√

(x2 + y2) + 0.2 (Figure 3.24).

Figure 3.24: Interpolation of f(x, y) =
√
(x2 + y2) + 0.2, with θrefine =

5.0(−4).

With θrefine = 5.0(−4) the AEI algorithm took 11 iterations to reach the stopping

criteria (see Table 3.17). A total |X| = 406 centers were used to give an error

eX(f) = 3.1(−3) and RMS(eX(f)) = 4.3(−5). All the condition number were

below 4.4(+6).

Figure 3.25 shows the final distribution of centers that generated by AEI algorithm.

Comparing 3.25 with Figure 3.21, one might think there are some redundant points

that in Figure 3.25. These points that in the domain are necessary because this

target function is more complicated than the two-dimensional exponential func-

tion. In order words, the curved plane is more complicated than the plain plane,

so the more complicated target function would use more points to approximated

with the same pre-setted threshold value.

Table 3.18 shows how the number of points need by the AEI algorithm varies with

the choices of θrefine. Figure 3.26 shows the process of the AEI algorithm staring

with 100 centers with θrefine = 2.5(−5). The black line is the maximum error, the
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It Ntotal |X| Ncoarse Nrefine eX(f) RMS(eX(f)) κ(A)

1 100 100 0 168 9.9(-2) 4.9(-3) 1.5(+6)
2 268 268 0 62 4.8(-2) 1.1(-3) 1.1(+6)
3 330 330 0 27 2.4(-2) 3.2(-4) 1.5(+6)
4 357 357 0 28 1.3(-2) 1.4(-4) 1.8(+6)
5 385 385 0 10 6.3(-3) 7.1(-5) 2.5(+6)
6 395 395 0 6 3.1(-3) 4.3(-5) 4.3(+6)
7 401 401 0 1 3.1(-3) 4.3(-5) 4.4(+6)
8 402 402 0 1 3.1(-3) 4.3(-5) 4.4(+6)
9 403 403 0 2 3.1(-3) 4.3(-5) 4.4(+6)
10 405 405 0 1 3.1(-3) 4.3(-5) 4.4(+6)
11 406 406 0 0 3.1(-3) 4.3(-5) 4.4(+6)

Table 3.17: Iterative process of AEI algorithm for f(x, y) =
√
(x2 + y2) + 0.2

with θrefine = 5.0(−4).
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Figure 3.25: Final node distribution for approximation of f(x, y) =√
(x2 + y2) + 0.2, with θrefine = 5.0(−4).

red line is the maximum error indicator value and the blue line is the root mean

square error.

One sees that the in the latter parts of the approximation process the error decays

much faster than in the beginning, demonstrating an acceleration of the accuracy

as the singularity becomes better resolved. Compared to Figure 3.11, there is no

bounce of the error and error indicator value, one could say in this case the error
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θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

1.0(-3) 269 269 6.3(-3) 9.6(-5) 1.9(+6)
7.5(-4) 350 350 6.3(-3) 9.0(-5) 2.2(+6)
5.0(-4) 406 406 3.1(-3) 4.3(-5) 4.4(+6)
2.5(-4) 712 712 1.6(-3) 2.1(-5) 1.0(+7)
1.0(-4) 1752 1752 7.8(-4) 9.6(-6) 4.4(+7)
7.5(-5) 2050 2050 7.8(-4) 1.2(-5) 5.6(+7)
5.0(-5) 3267 3267 3.9(-4) 5.4(-6) 1.5(+8)
2.5(-5) 6346 6346 1.9(-4) 2.6(-6) 4.2(+8)

Table 3.18: Adaptive algorithm interpolation results of f(x, y) =
√
(x2 + y2)+

0.2 with different θrefine.

indicator could track the error well. Also, one could see that the AEI method is

capable to cope with a singularity in the slope of target function.

In Figure 3.27, one sees how the maximum and root mean square error decrease

with the pre-set threshold and the number of points required to achieve the given

threshold. One sees, as in this two dimensional examples, the AEI method suggests

a convergence rate |eX(f)|X|| < C × |X|−1.. Figure 3.28 shows the comparison of

AEI and RE method on this cone shape function.

Figure 3.26: Error convergence of the AEI algorithm for f(x, y) =√
(x2 + y2) + 0.2 with θrefine = 2.5(−5).
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Figure 3.27: Error versus number of points for approximation of f(x, y) =√
x2 + y2 + 0.2.
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Figure 3.28: Comparison between AEI method and RE method for f(x, y) =√
x2 + y2 + 0.2.

3.5.2.5 The Lena picture

In the previous examples, the author has approximated functions with rapid varia-

tion or derivative singularities. These are conventional examples in which one has

seen that the adaptive error indicator RBF approximation method delivers good
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accuracy with the aim of minimising the number of function evaluation used. In

this case, the Lena picture (see Figure 3.29 left panel) is used as the target. Here

the function is a 128 × 128 pixel image, so is discrete, i.e. it has discontinuities

everywhere. The local RBF approximation is used to compute an approximation

to the image between the centers of the pixels (the author terms this an emulator

Smulti
P ); (Figure 3.29 right panel). This emulator is the target function.

Table 3.19 shows three approximation results and Figure 3.30, 3.31,3.32 show the

corresponding reconstructed images. In this case, one could see that adaptive error

indicator method could deal with this extremely complicated target function.
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Figure 3.29: The Lena picture from [14], 128× 128 = 16384 pixels
.

θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

2.0(-2) 3604 3603 6.4(-1) 7.5(-2) 6.6(+6)
1.5(-2) 6703 6702 5.3(-1) 5.3(-2) 1.6(+7)
1.2(-2) 9711 9710 3.1(-1) 3.9(-2) 2.6(+7)

Table 3.19: Error in adaptive interpolation of Smulti
P with different θrefine.

3.5.3 Three dimensional function approximation

One can extend the two dimensional node adaptation scheme to three dimensions.

It begins with the uniformly distributed centers X0 in [−1, 1]3. The corresponding

indication set Ξ0 for the centers set. It begins with |X0| = 208 and its indication

set Ξ0 and the neighbourhood set Nξ parameter M is set to 60.
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Figure 3.30: The approximation Smulti
X regenerated Lena picture with Ntotal =

3604 and |X| = 3603.

Figure 3.31: The approximation Smulti
X regenerated Lena picture with Ntotal =

6703 and |X| = 6702.

Figure 3.32: The approximation Smulti
X regenerated Lena picture with Ntotal =

9711 and |X| = 9710.

A test set T containing 25000 Halton nodes is used to test the infinity and root

means square errors. The shape parameter c of each center is set to be a constant

divided by its distance to the nearest neighbour as in Equation 3.16, C = 1, and

θcoarse = θrefine/1000. The author compare these results to those in [6].
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3.5.3.1 The 3D exponential function

This example is

f(x, y, z) = exp{−81/16[(x− 0.5)2 + (y − 0.5).2 + (z − 0.5)2]}/3. (3.20)

Table 3.20 shows the results of the adaptive interpolation. Figure 3.33 shows

how the maximum error changes with θrefine. The maximum error (black) tracks

the pre-set threshold value (red) well. The condition numbers observed in the

algorithm remain relatively small.

θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

5.0(-3) 333 333 3.6(-3) 6.1(-4) 7.4(+1)
1.0(-3) 665 665 1.3(-3) 1.4(-4) 1.5(+4)
5.0(-4) 1419 1419 5.6(-4) 5.8(-5) 5.6(+4)
1.0(-4) 6643 6643 1.7(-4) 1.4(-5) 4.1(+6)

Table 3.20: exp{−81/16[(x− 0.5)2 + (y− 0.5).2 + (z − 0.5)2]}/3 interpolation
results by error indicator.

Nuniform eX(f)

343 2.0(-2)
729 2.8(-3)
1728 1.4(-3)
6859 6.7(-4)

Table 3.21: exp{−81/16[(x− 0.5)2 + (y− 0.5).2 + (z − 0.5)2]}/3 interpolation
results by uniform centers.

Comparing the results in Table 3.20 to those in [6] (summarised in Table 3.22),

the AEI method provides much better accuracy with the same number of centers.

In Table 3.21 we see the results achieved with uniform centers. Comparing Table

3.20 and Table 3.21, the error indicator adaptive algorithm could still put more

centers at the area which it’s difficult to approximate, it still could provide much

better approximation quality with less centers.

In Figure 3.33 one sees the rate of decay of the error with the number of points.

This also suggest a convergence rate |eX(f)|X|| < C × |X|−1.
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Figure 3.33: Error convergence of interpolation results for f(x, y, z) =
exp{−81/16[(x− 0.5)2 + (y − 0.5).2 + (z − 0.5)2]}/3.

Nuniform eX(f) RMS(eX(f))

343 1.0(-2) 8.3(-4)
729 6.7(-3) 4.0(-4)
1728 4.3(-3) 2.0(-4)

Table 3.22: exp{−81/16[(x− 0.5)2 + (y− 0.5).2 + (z − 0.5)2]}/3 interpolation
results by uniform centers in [6].

3.5.3.2 The European call option

The Black Scholes equation is used to describe the change in price of an option

over time. The equation is:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0.

The value of a European call option C for a non-dividend-paying underlying stock

in terms of the Black Scholes parameters is:

C = N(d1)S −N(d2)K exp(−r(T − t)),

d1 =
1

σ
√
T − t

[
ln

(
S

K

)
+

(
r +

σ2

2

)
(T − t)

]
,
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d1 =
1

σ
√
T − t

[
ln

(
S

K

)
+

(
r − σ2

2

)
(T − t)

]
,

that:

• N(.) is s the cumulative distribution function of the standard normal distri-

bution.

• T − t is the time to maturity.

• S is the spot price of the underlying asset.

• K is the strike price.

• r he risk free rate (annual rate, expressed in terms of continuous compound-

ing).

• σ is is the volatility of returns of the underlying asset.

The European call option price C could be considered as function of 6 variables

C(S, r, σ,K, T, t), so the price of a one-year European call option priced at t = 0

for a fixed strike price K = K1 is C(S, r, σ,K1, T = 1, t = 0). Table 3.23

shows the interpolation to this function C(S, r, σ,K1 = 100, T = 1, t = 0) in

r = [0.01, 0.05], σ = [0.1, 0.3], S = [90, 110].

Figure 3.34 shows how the error behaves with respect to the number of points.

One sees the error indicator (red line) tracks the maximum error (black line) well.

The algorithm appears to give a convergence rate |eX(f)|X|| < C×|X|−1 as in the

previous example. The condition number remains of moderate size throughout

the algorithm, and the adaptive algorithm is many times better than the results

of using uniform data. Specially, Table 3.23 shows an adaptive interpolation using

1910 nodes which the L-infinity error is 7.7(−3) while Table 3.24 show an uniform

interpolation using 19683 nodes which the L-infinity is 1.1(−2).

3.5.3.3 The Perdichizzi turbine case

In the final example, the Perdichizzi turbine case which was described in Chapter 1

is discussed. In short, one needs to estimate the loss coefficient L(α1, Po1, ν) which
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θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

5.0(-3) 1910 1910 7.7(-3) 1.3(-3) 1.5(+6)
2.5(-3) 3595 3595 3.4(-3) 6.2(-4) 4.1(+6)
1.0(-3) 8914 8914 1.2(-3) 2.3(-4) 1.5(+7)
7.5(-4) 11985 11985 1.1(-3) 1.6(-4) 2.3(+7)
5.0(-4) 18283 18283 6.0(-4) 1.4(-5) 3.6(+7)

Table 3.23: C(S, r, σ,K1 = 100, T = 1, t = 0) interpolation results.

Nuniform eX(f)

2197 4.9(-2)
4096 3.7(-2)
9261 2.2(-2)
12167 1.8(-2)
19683 1.1(-2)

Table 3.24: C(S, r, σ,K1 = 100, T = 1, t = 0) interpolation results by uniform
centers.

Figure 3.34: Error versus points for adaptive interpolation of C(S, r, σ).

could used to improve the efficiency of this particular turbine. L(α1, Po1, ν) could

be evaluated at arbitrary set of points by experiment and/or CFD. Both methods

are expensive and time-consuming. So, the adaptive error indicator (AEI) is used

instead to build a surrogate model for the function L(α1, Po1, ν).

However, under the the condition of limited resources, only one uniform scattered
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data set is available, which is Nuniform of size 213 in the α1 = [−60, 60] degrees,

Po1 = [1.04 × 105, 2.6 × 105] Pa, ν = [6.92 × 10−6, 2.67 × 10−5] m2s−1 . As this

interested domain is small in ν when compared to Po1, then the author scales the

uniform set Nuniform into the cube [−1, 1]3 to have the scaled uniform set Nscaled.

The scaling is simply for the easy implementation reason. For the AEI method, the

author used this scaled uniform set Nscaled to compute an RBF approximation to

the function value between the centers, this is an emulator Smulti
turbine. This emulator

is the target function.

θrefine Ntotal |X| eX(f) RMS(eX(f)) κ(A)max

5.0(-3) 328 328 1.6(-2) 2.6(-3) 6.6(+4)
2.5(-3) 378 378 1.3(-2) 2.4(-3) 8.3(+4)
1.0(-3) 1140 1140 6.7(-3) 1.4(-4) 7.5(+5)
7.5(-4) 1438 1483 6.8(-3) 1.1(-4) 7.5(+5)
5.0(-4) 2397 2397 5.0(-3) 7.1(-4) 1.6(+6)

Table 3.25: Smulti
turbine adaptive error indicator interpolation results.

Nuniform eX(f)

343 2.4(-2)
512 2.1(-2)
1331 1.3(-2)
1728 1.1(-2)
2744 6.4(-2)

Table 3.26: Smulti
turbine interpolation results by uniform centers.

Table 3.25 shows the adaptive error indicator (AEI) approximation results to this

emulator. Table 3.26 shows the results achieved with uniform centers. Figure 3.35

compares the two method on this case. It is shown that adaptive error indicator

method delivers much better accuracy while using the same number of samples in

this industrial case.

If engineers and developers apply this adaptive error indicator (AEI) method on

this Perdichizzi turbine case, the saving of time and expenses which can be achieved

by running less experiments and simulations will definitely help to accelerate the

design process of this turbine.
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Figure 3.35: Comparison between AEI method and uniform interpolation for
this turbine case.

For the engineering interest, the author would like to show the error between the

approximation Smulti
X and the emulator Smulti

turbine while α1 is equal to a constant.

A test set T of 101 × 101 uniformly spaced nodes in (Po1, ν) is used to test the

approximation quality.

The error function E(α1 = c, Po1, ν) is defined :

E(α1 = c, Po1, ν) = Smulti
turbine(α1 = c, Po1, ν)

− Smulti
X (α1 = c, Po1, ν), where |X| = 2397.

Figure 3.36,3.37,3.38,3.39 and 3.40 show the error functions.
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Figure 3.36: Error function E(α1 = −1, Po1, ν).

Figure 3.37: Error function E(α1 = −0.5, Po1, ν).
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Figure 3.38: Error function E(α1 = 0, Po1, ν).

Figure 3.39: Error function E(α1 = 0.5, Po1, ν).

3.6 Robustness of the Adaptive Error Indicator

Method

This section explores the sensitivity of the AEI algorithm to the parameters that

need to be chosen in the algorithm. The user should be reassured that the Param-

eter Set 1 is proper for most cases.
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Figure 3.40: Error function E(α1 = 1, Po1, ν).

Section 3.1 to 3.3 describe the structure of the adaptive error indicator (AEI), the

components of which are:

1. The global interpolant Smulti
Xk

.

2. The local interpolant Sps
Nξ
.

3. The Algorithm 1 which generates the sample set Xk and corresponding in-

dication set Ξk.

In Section 3.5, the AEI method has been applied to different target functions

and the approximation results shows that, with the parameter choices made, the

algorithm delivers good approximations. The parameters chosen for the mentioned

experiments are referred as Parameter Set 1. The values of Parameter Set 1 is

summarised below:

1. The shape parameter at ith point, ci, in the global interpolant Smulti
Xk

, it is

set by Equation 3.16 ci = C1/di, where di is the distance to the nearest

neighbour. Then C1 = 0.75 for one dimensional cases, C1 = 0.5 for two

dimensional cases, C1 = 1 for three dimensional cases.
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2. The number of points M in set Nξ for the local interpolant Sps
Nξ
. In one

dimensional cases, M = 4. In two dimensional cases, M = 24. In three

dimensional cases, M = 60. There is no shape parameter for Sps
Nξ
.

Parameter Set 1 is not the optimal choice for parameters, since for different func-

tions f the optimal parameters choices might change. The author will show the

robustness of adaptive error indicator method by varying the parameters from

Parameter Set 1, and observing that the results do not change too much.

Table 3.27 shows the Runge function f(x) = (1 + 25x2)−1 approximation results

with different parameter settings with θrefine = 2.0(−5). Table 3.28 shows the

approximation results with different parameter settings with θrefine = 2.0(−8).

The approximation degrades as a result of increasing the shape parameter, at

the same time as the condition number decreases. This is what standard theory

suggests [79]. One also sees that a change in the indication set size beyond 5 makes

little difference. The number of points required is a reflection of the approximation

accuracy and this is governed by the choice of the shape parameter. The balance

here is between the magnitude of condition number that one is prepared to accept

and the accuracy. The adaptive shape parameter which described by Equation

3.16 in the AEI is crucial to keep the condition number small. Slight changes the

constant C in Equation 3.16 will not cause the condition number to grow rapidly.

The above numerical experiments could show that the AEI method is a stable

method.

Parameter settings Ntotal eX(f) RMS(eX(f)) κ(A)max

C1 = 0.5,M = 3 140 1.6(-5) 3.4(-6) 2.0(+7)
C1 = 0.5,M = 5 88 1.9(-5) 3.7(-6) 7.4(+6)
C1 = 1,M = 6 79 2.1(-5) 3.3(-6) 4.3(+5)
C1 = 1,M = 8 74 4.0(-5) 5.8(-6) 8.7(+5)

Table 3.27: Adaptive error indicator interpolation results of Runge function
with different parameter settings, with θrefine = 2.0(−5).

Table 3.29 shows the modified Franke function (two dimensional) approximation

results with different parameter settings with θrefine = 1.0(−3). Table 3.30 shows

the approximation results with different parameter settings with θrefine = 5.0(−4).
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Parameter settings Ntotal eX(f) RMS(eX(f)) κ(A)max

C1 = 0.5,M = 3 1346 2.3(-8) 8.3(-10) 1.8(+11)
C1 = 0.5,M = 5 814 1.6(-8) 9.1(-10) 1.5(+11)
C1 = 1,M = 6 1162 2.5(-8) 5.9(-9) 3.8(+10)
C1 = 1,M = 8 1211 1.9(-8) 5.3(-9) 4.0(+10)

Table 3.28: Adaptive error indicator interpolation results of Runge function
with different parameter settings, with θrefine = 2.0(−8).

Parameter settings Ntotal eX(f) RMS(eX(f)) κ(A)max

C1 = 2,M = 20 1128 1.7(-3) 2.7(-4) 3.0(+5)
C1 = 2,M = 30 851 2.2(-3) 3.4(-4) 2.1(+5)
C1 = 5,M = 35 1060 2.4(-3) 4.0(-4) 1.3(+5)
C1 = 5,M = 40 1019 2.4(-3) 4.4(-4) 1.3(+5)

Table 3.29: Adaptive error indicator interpolation results of modified Franke
function with different parameter settings, with θrefine = 1.0(−3).

Parameter settings Ntotal eX(f) RMS(eX(f)) κ(A)max

C1 = 2,M = 20 2180 8.3(-4) 1.1(-4) 8.1(+5)
C1 = 2,M = 30 1550 8.9(-4) 1.4(-4) 5.6(+5)
C1 = 5,M = 35 1713 7.3(-4) 1.8(-4) 3.1(+5)
C1 = 5,M = 40 1617 8.1(-4) 1.9(-4) 2.9(+5)

Table 3.30: Adaptive error indicator interpolation results of modified Franke
function with different parameter settings, with θrefine = 5.0(−4).

In these tables there is a strong correlation between the number of points and the

error once there are enough points in the indicator set. An increase in the shape

parameter leads to an increase in the error, and to a decrease in the condition

number, though less extreme than in one dimension.

These results are similar to the results generated by the adaptive error indicator

method with Parameter Set 1 and the effect of changes in parameters decrease

with increasing dimension.
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3.7 Summary

The adaptive error indicator (AEI) RBF interpolation method is motivated by the

problem that sampling is expensive. A new error indicator construed by a global

interploant and a local interpolant is developed and it is the crucial part of AEI

method. The adaptive shape parameter is also applied in this method in order

to keep the condition number of interpolation matrix in a moderate scale. By

numerical examples up to three dimensional problems, the adaptive error indica-

tor (AEI) RBF interpolation method has verified itself that it delivers accurate

approximations with as few as possible evaluations from the target functions.



Chapter 4

Multilevel Adaptive Error Indicator

(MAEI) Approximation

4.1 Multilevel RBF interpolation scheme

Multilevel approximation schemes, also known as multistep or multiscaled approx-

imation schemes, are appropriate tools [26, 52, 50, 70, 72] for multivariate scatted

data approximation problem, where the sample number N is extremely large and

the point in sample set X are unevenly distributed.

In [50], the multilevel level scheme starts with a decomposition of the data X into

a hierarchy

X1 ⊂ X2 ⊂ · · · ⊂ XL−1 ⊂ XL = X (4.1)

of nested subsets. The data hierarchy (4.1) is a priori computed in [26] by using a

thinning algorithm, a recursive point removal scheme. In (4.1), Delaunay triangu-

lation is used in a thinning algorithm in each coarsening stage and a criterion for

removal based on the separation distance and the fill distance which is discussed

in more detail in [27]. In this subsequent synthesis of data, a sequence S1, ..., SL

of approximations to f is then recursively computed by the following multilevel

interpolation scheme.

79
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Let S0 ≡ 0. For j = 1, ..., L, compute an interpolant ∆Sj : Rd → R to the

residual f − Sj−1 on Xj. Then let Sj = Sj−1 + ∆Sj. Altogether, the following L

interpolation problems are to be solved one after the other:

f |X1 = ∆S1|X1 ; S1 = ∆S1; (4.2)

(f − S1)|X2 = ∆S2|X2 ; S2 = S1 + ∆S2;

...
...

(f − SL−1)|XL
= ∆SL|XL

; SL = SL−1 + ∆SL.

That every Sj in Equation 4.2 interpolates f on Xj, that is :

Sj|Xj
= f |Xj

for 1 ≤ j ≤ L. (4.3)

Then the interpolant SL is the approximation for the target function. In [26, 50],

radial basis functions were applied to solve the interpolation problems in Equation

4.2.

In [52], Iske and Levesley proposed another multilevel approximation scheme with

a different hierarchy of data sets. This scheme construct a data hierarchy in

following form:

C1 ⊂ C2 ⊂ · · · ⊂ CL−1 ⊂ CL, (4.4)

where each Cj, 1 ≤ j ≤ L, represents a collection of clusters of X. In contrast to

[26, 50], the representing set Cj does not have to be subset of X.

This scheme begins with a decomposition of the domain Ω ⊂ Rd, the bounding

box of X, into a collection of different size cells in each level, each cell contains

a cluster of points of X. It is denoted as {ωn, 1 ≤ n ≤ N}j, 1 ≤ j ≤ L, N is

number of total points in X. Then ωjn denotes the nth cell in level j. For each

set {ωn, 1 ≤ n ≤ N}j, it generated xjωn , the cell center for each cell ωjn. Each cell

contains Xj
ωn points. To each xjωn a cell average value Sω(xjωn) of f or f − Sj is

assigned, where Sω(xjωn) is the polyharmonic spline RBF interpolant which satisfies

Sω|Xj
ωn

= f |Xj
ωn

or Sω|Xj
ωn

= f − Sj|Xj
ωn
.
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In [26, 50, 52], these multilevel approximation schemes target multivariate scat-

tered data approximation with a certain sample set X. Here, we present a new

multilevel approximation scheme with RBF which targets the kind of problem that

is discussed in previous chapter, which the sample set X needs to be decided by

the user and sampling from target function f is expensive and time-consuming.

4.2 The error indicator

This scheme generates a collection of sample setsX1,X2, · · · ,Xk where the method

generates Xk+1 from {X1,X2, · · · ,Xk} via a refinement strategy which will be de-

scribed below. In contrast with e.g. Iske and Levesley [50, 52], the collection of

sample sets is not necessarily a nested sequence. The strategy for sampling more

points depends on an error indication, which follows the idea in Chapter 3. In

a region where is challenging for the approximation, two different approximation

methods will give significantly different results, when compared with regions where

the approximation is more straight-forward.

The first approximation method is the current approximation SL as defined by

Equation 4.2. The second approximation method will be a RBF interpolant based

on values of the target function on all available sample points. Then a function

η(ξ) with domain in the current indication set, assigns a positive value ε to each

indication point. This value indicates the local approximation quality at each indi-

cation nodes and serves to determine where the approximate solution SL requires

more accuracy at these specified indication nodes, and requires no extra function

evaluation. Below, the author gives the definition of the error indicator which is

proposed in this chapter, which is modified version from Chapter 3.

The notation needs to be clarified: Xj
i denotes the jth set of centers at level i.

Definition 4.1 (Error Indicator 2). For L ≥ 1, that having the centers set at

different level

{X1
1,X

1
2, · · · ,X

n2
2 , · · · ,X1

L, · · · ,X
nL
L },



Multilevel Error Indicator Method 82

let the indication set ΞL, which corresponds to ML, be a set of scattered points,

at which one wants to know the approximation quality. Then η : ΞL → [0,∞).

The error indicator function η(ξ) is in the following form:

η(ξ) = |SL(ξ)− SML
(ξ)|, ξ ∈ ΞL. (4.5)

Here, |.| denotes the absolute value. The function SL(ξ) is the radial basis function

approximation of the target function at ξ as defined in Equation (4.2), which is

constructed by {∆SX1
1
,∆SX1

2
, · · · ,∆SX

n2
2
, · · · ,∆SX1

L
, · · · ,∆SX

nL
L
}. The function

SML
(ξ) is the radial basis function reconstruction which matches the target func-

tion value at ξ by a scattered point set ML. ML consists of the all the available

sample points at current level, that is

ML =
⋃

1≤i≤L,1≤j≤ni

Xj
i . (4.6)

By definition, the elements in ML are unique, and

SML
(v) = f(v) for v ∈ML. (4.7)

The indication set ΞL is determined by ML, the details of the relationship between

ΞL and ML are explained in the following algorithm.

One sees that the error indicator defined above measures the deviation between a

multilevel approximation and a global approximation at the point ξ. The intuition

inside this method is as simple as previous one, when ξ lies in a smooth region of

the function, the two different approximations should give similar results and the

error indicator η(ξ) is expected to be small, whereas in the region of less regularity

for f , or around discontinuities, the error indicator η(ξ) is expected to be large.

So, the significance η(ξ), ξ ∈ Ξ, are used to flag points ξ ∈ Ξ as “to be refined” or

not according to the definition below.

Definition 4.2. Let θrefine be a tolerance values satisfying θrefine > 0. One could

say a point ξ ∈ Ξ is classified into refine set Nrefine when η(ξ) > θrefine.
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These parameter θrefine should be specified according to the users’ need.

4.3 Adaptive point sets

In mind of the above definitions, the generation of the centers sets Xj
i for inter-

polants at different level will be described. That is, tree structure is applied for the

centers sets. In Figure 4.1, it shows the sketch of this tree structure of data sets.

In L = 1 level, it starts with one centers set X1
1. The following level centers set are

generated by the previous level centers sets, that is {X1
k, · · · ,X

nk
k } are generated

by {X1
1,X

1
2, · · · ,X

n2
2 , · · · ,X1

k−1, · · · ,X
nk−1

k−1 }.

Figure 4.1: Sketch of the tree structure of data set Xj
i .

The number of sets in each level nk, 2 ≤ k ≤ L, is decided by the error indicator,

we illustrate the relationship between one certain centers set at level k and its next

generation centers sets in level k + 1.

In one dimensional cases, the initial sample set X1
1 is a set of uniformly dis-

tributed nodes in the domain Ω, so M1 = X1
1. By above definition, M1 =

{m1,m2, · · · ,mT1}, and the indication set Ξ1 is the middle points of M1, that

is Ξk = {0.5(mi + mi+1), i = 1, 2, · · · , T1 − 1)}. Having M1 and Ξ1, we could

follow the algorithm below to generate next level centers set Xj
k+1, 1 ≤ j ≤ nk+1.

1. Mk is specified.

2. Ξk = {0.5(mi +mi+1), i = 1, 2, · · · , Tk − 1}.
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3. Evaluate the error indicator at current indication set, by having η(Ξk), Nrefine

is generated,

Nrefine = {ξ : η(ξ) > θrefine}.

4. Classify the points Nrefine into subsets {Nrefine1 , Nrefine2 , · · · , Nrefinenk+1
} ac-

cording to connectivity, that is points in each subset Nrefinei are connected

according their index.

5. Determine the interval for each subset Nrefinei , that is having the interval

[ai, bi] for Nrefinei . That is

ai = sup{m ∈Mk,m < αi}, where αi = inf Nrefinei ,

and

bi = inf{m ∈Mk,m > βi}, where βi = supNrefinei .

6. Find the points that

Ii = {m ∈Mk, ai ≤ m ≤ bi}

for 1 ≤ i ≤ nk+1.

7. Then Xi
k+1 = Nrefinei ∪ Ii for 1 ≤ i ≤ nk+1. Then Mk+1 is updated as in

Equation 4.6. That is

Mk+1 = ∪nk+1

i=1 Xi
k+1 ∪Mk.

Figure 4.2 shows one example of the one dimensional structure. In the first panel of

Figure 4.2, one has current all available center point Mk which are the black dots

and the corresponding indication set Ξk which are the red crosses. The second

panel shows after having the value of error indicator η(Ξk) and the indication

points that have large error (the remaining red crosses) are left. In third panel,

we have the set X1
k+1 (in red oval) and X2

k+1 (in blue oval) according to above

algorithm.
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Figure 4.2: One example of the data structure in one dimensional case.

In two dimensional cases, there is no natural ordering, so the author applies a

modified quadtree data structure to construct sample sets Xj
i for 1 ≤ i ≤ L, 1 ≤

j ≤ ni. Quadtree was originally proposed in [25], the author followed the idea and

modified it to fit the usage. In the domain Ω ∈ R2, it initially fills the domain Ω

with uniformly distributed nodes X1
1 = {x1,x2, · · · ,xN} that N = n× n, n ≥ 3 ,

that could be considered the domain Ω is divided by X1
1 into n− 1 sub domains,

which are squares, {�1,�2, · · · ,�n−1}, that in each �i consist 4 vertices and 5

indication points, that is

�i = {xi1, · · · ,xi4, ξi1, · · · , ξi5}. (4.8)

One example of this data structure in [−1, 1]2 is shown, see Figure 4.3, the domain

is fill by 4 squares�, each square� has 4 centers (black nodes) and 5 corresponding

indication points (red nodes).
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When k = 1, M1 = X1
1. For each Mk, the data structure has total Tk squares,

then the algorithm generates the middle points of each square edge and the center

point of each square �j, 1 ≤ j ≤ Tk as the indication set Ξk as showed in Figure

4.3, the black nodes set is X1
1 and the red nodes set is Ξ1.
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Figure 4.3: n = 3, exampled 2D initial sample set X1
1, which M1 = X1

1, and
indication set Ξ1.

Having above conceptions, we apply below algorithm to generateMk+1 andXj
k+1, 1 ≤

j ≤ nk+1.

1. Mk is specified.

2. The middle points of each square edge and the center point of each square

�j, 1 ≤ j ≤ Tk , are the points in indication set Ξk.

3. Evaluate the error indicator at current indication set, by having η(Ξk), Nrefine

is generated, Nrefine = {ξ : η(ξ) > θrefine}.

4. For each point in Nrefine, find its corresponding squares �refine that the point

belongs to, that is having the candidate squares �refine which has at least

one indication point in Nrefine. In order words,

�refine = {� : � ∩Nrefine 6= ∅}.
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5. Group the squares in �refine by connectivity, that is the squares in each group

�j
connected for 1 ≤ j ≤ nk+1 are connected one after another. In other words,

�j
connected stands for the jth set of connected squares. For each �connected, it

is

�connected = {� : ∀� ∈ �refine and ∃�i ∈ �refine,� ∩�i 6= ∅}.

Also, for �i,�j, i 6= j,�i ∈ �connected,�j ∈ �connected, there exists a path

goes from �i to �j that only passing through the elements inside �connected.

6. All the available nodes, Mk∪Ξk, that inside the connected squares �j
connected

make up the sets Xj
k+1 for 1 ≤ j ≤ nk+1. That is

Xj
k+1 = �j

connected, for j = 1, 2, · · · , nk+1.

7. Then Mk+1 is updated as in Equation 4.6, that is

Mk+1 = ∪nk+1

j=1 Xj
k+1 ∪Mk.
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Figure 4.4: One example of two dimensional data structure, Panel 1.
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Figure 4.5: One example of two dimensional data structure, Panel 2.
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Figure 4.6: One example of two dimensional data structure, Panel 3.

Figure 4.4, 4.5, 4.6, 4.7 show one example of two dimensional case. In Figure 4.4,

the current all available centers Mk (the black dots) and its 4 square � are given,

also the corresponding indication set Ξk (the red dots) is given.

Figure 4.5 shows the large error points (the red dots) that picked by the error

indicator η(Ξk) and its involved squares �1,�3,�4. In Figure 4.6, the connected
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Figure 4.7: One example of two dimensional data structure, Panel 4.

squares �1,�3,�4 make up the connected set �1
connected. In Figure 4.7, the points

that inside the red line loop constructs the set X1
k+1. Then all the black points in

Figure 4.7 make up the set Mk+1.

4.4 Multilevel algorithm achieved by using an er-

ror indicator

Having above sample set determination algorithm and the error indicator function,

one could summarise this multilevel adaptive error indicator (MAEI) approxima-

tion scheme for the target function f .

Let S0 ≡ 0. For Xj
i ⊂ Rd, 1 ≤ i ≤ L, 1 ≤ j ≤ ni, one could define a sub-domain

ΩXj
i

= [min(Xj
i [1]),max(Xj

i [1])]× · · · × [min(Xj
i [d]),max(Xj

i [d])],
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where Xj
i [k] denotes the kth dimensional value of Xj

i . Also the interpolant ∆SXj
i

is defined as below :

∆SXj
i
(x) =

 ∆SXj
i
(x), x ∈ ΩXj

i
,

0, x 6∈ ΩXj
i
.

(4.9)

For 1 ≤ i ≤ L, 1 ≤ j ≤ ni, compute an interpolant ∆SXj
i

: Rd → R to the

residual f−Si−1 on Xj
i , which the sample set Xj

i is generated by above mentioned

algorithms. Then let

Si = Si−1 +

ni∑
j=1

∆SXj
i
. (4.10)

Altogether, the following interpolation problems are to be solved one after the

other:

f |X1
1

= ∆SX1
1
|X1

1
; S1 = ∆SX1

1
; (4.11)

(f − S1)|X1
2

= ∆SX1
2
|X1

2
;

...

(f − S1)|Xn2
2

= ∆SX
n2
2
|Xn2

2
; S2 = S1 +

n2∑
j=1

∆SXj
1
;

...
...

(f − SL−1)|X1
L

= ∆SX1
L
|X1

L
;

...

(f − SL−1)|XnL
L

= ∆SX
nL
L
|XnL

L
; SL = SL−1 +

nL∑
j=1

∆SXj
L
;

Note that every interpolant Si in Equation 4.11 matches f on sample set Xi =⋃ni
j=1 X

j
i , i.e.,

Si|Xi
= f |Xi

, for 1 ≤ i ≤ L. (4.12)

In 4.11, we use multiquadric RBF, cubic RBF, polyharmonic splines RBF and

Gaussian RBF to construct interpolants.
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4.5 Numerical Results

The proposed multilevel approximation scheme has been implemented up to two

dimensional space. This method shows the effectiveness of this error indicator in

locating regions of large interpolation errors and in the multilevel RBF interpola-

tion method to improve the accuracy of the approximation. One dimensional and

two dimensional test functions have been tested by this method and compare to

results in the papers [17]. In these example cases, the multiquadric radial basis

function φ(r) =
√

(1 + c2r2) for the first level interpolant S1. The multiquadric

radial basis function has a free parameter c and the choice of this shape parameter

will be specified in below cases.

4.5.1 One Dimensional Function Multilevel Approximation

For one dimensional test functions, the author set the initial center set X1
1 to

be the uniformly distributed points in the interval [−1, 1] and the indication set

Ξk and following centers set X is generated by above algorithm. A test set T

containing 5001 equally spaced nodes is used to test the approximation quality:

eSL(f) = maxt∈T |f(t)−sL(t)| and the root mean square value in f(t)−SL(t), t ∈ T ,

that is RMS(eSL(f)).

4.5.1.1 The Runge Function

The author first redo a standard approximation problem in Section 3.5.1.1, the

Runge function f(x) = (1 + 25x2)−1 on [−1, 1]. The shape parameter c in the

multiquadric radial basis function for s1 is set to be

0.75× 2/(|X1| − 1)

as described in Chapter 3. In the following examples, the interpolant S1 follows

this setting. In the error indicator function, the interpolant that used all the

available sample points is Sps
ML

, the polyharmonic splines RBF is applied. As it is
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defined, that is

Sps
ML

(x) =

NML∑
i=1

αi(||x− xi||2)5 + β1 + β2x+ β3x
2. (4.13)

For the interpolants ∆Sgau

Xj
i

, 2 ≤ i ≤ L, 1 ≤ j ≤ ni, the Gaussian RBF is used. The

Gaussian RBF also has a shape parameter c, the author sets ci in ∆Sgau

Xj
i

in below

form:

cv =
C

hv
, (4.14)

where hv is the nearest distance between xv and other centers in setXj
i = {xw, wd =

1, 2, · · · , V j
i }, in this case we set C = 20.

Figure 4.8 shows the final approximation of the Runge function by this multilevel

approximation scheme, with |X1
1| = 13, refinement threshold θrefine = 2.0(−5).

Again, one observes that sample points cluster near the boundaries where approx-

imation is more challenging due to the one-sided nature of the information, and

at the origin, where the target function changes more rapidly. Note that the final

maximum error is 1.8(−5) which is below θrefine suggesting that the error indicator

is working well. The largest condition number of interpolation matrix in this case

is 3.3(+3).

Table 4.1 shows present the progress of the multilevel approximation process.In

Table 4.1, L stands for the level number, mL stands for the accumulated sample

set number and |ML| is the accumulated total sample point number. It has a

total of 4 levels and 7 sample sets X. The final approximation SL has total 43

sample points, that is the whole process computed a total of 43 evaluations of the

target function. κ(A)max stands for the largest condition number at each level of

approximation.

Figure 4.9 shows the total centers set that used in SL in different level, the y-axis

shows the level number L. In this case, the error indicator and the above algorithm

together generated these 7 centers set in 4 levels.
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Figure 4.8: Runge function multilevel adaptive error indicator approximation
with final sample points distribution, initial |X1

1| = 13 with θrefine = 2.0(−5).

L mL |ML| eSL(f) RMS(eSL(f)) κ(A)max

1 1 13 1.3(-2) 5.1(-3) 3.3(+3)
2 2 25 3.0(-4) 9.5(-5) 0.9(+1)
3 5 41 3.3(-5) 6.9(-6) 1.6(+2)
4 7 43 1.8(-5) 5.3(-6) 4.9(+1)

Table 4.1: Multilevel approximation process for Runge function with θrefine =
2.0(−5).

Figure 4.10 shows how the error decreases with the number of points in the set

ML, staring at 13, for θrefine = 2.0(−8), and finish with 143 points, the total

number of points that sampled from target function. The final approximation

SL used 143 centers, with eSL(f) = 1.9(−8) and RMS(eSL(f)) = 4.8(−9). The

red nodes in Figure 4.10 are the maximum values of the error indicator function

at each level in absolute value, so one can see that the error indicator is a good

measure of approximation error because the measured error (red line) tracks the

approximation error (black line). One sees a convergence rate |eML
(f)|ML|| <

C × |ML|−3.5.

In Chapter 3, the author used the adaptive error indicator (AEI) interpolation
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Figure 4.9: The centers sets used in Runge function multilevel error indicator
approximation, with θrefine = 2.0(−5).

Figure 4.10: Runge function approximation error for each level L, |ML| is the
total number of samples of the target function. θrefine = 2.0(−8).

method on the same example. The number of centers that used in the final inter-

polant and the total numbers of function samples computed from target function

were recorded. In [17], Driscoll and Heryudono use the residual sub-sampling

method also on this example, they record the number of centers used in the final

interpolant, but the total numbers of function samples computed from the target
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function is not reported.

Table 4.2 compares the results and the resources needed, eX(f) stands for the

maximum error of the approximation, the Ntotal stands the total evaluation num-

bers from the target function and Ntotal for sub-sampling method is implemented

by the author of this thesis. In Table 4.2, RS stands for residual sub-sampling

method, AEI stands for adaptive error indicator approximation and MAEI stands

for above described multilevel error indicator approximation scheme. In this case

for Runge function, we see the multilevel error indicator approximation outper-

forms the adaptive error indicator method and the sub-sampling method by a great

amount. The MAEI method provides the same level of accuracy with less total

evaluations from the target function than the AEI method and the RS method.

Method eX(f) Ntotal

RS 1.3(-5) 285
AEI 1.4(-5) 85
MAEI 1.8(-5) 43
RS 1.7(-7) 2491
AEI 1.8(-8) 710
MAEI 1.9(-8) 143

Table 4.2: Comparison of methods for Runge function

4.5.1.2 The hyperbolic tan function

This example considers f(x) = tanh(60x− 0.1). In the error indicator, the inter-

polant that used all the available sample points is Scub
ML

, the cubic RBF is applied.

For the interpolants ∆Smulti
Xj
i

, 2 ≤ i ≤ L, 1 ≤ j ≤ ni, the multiquadric RBF is used.

For the multiquadric shape parameter cv for ∆Smulti
Xj
i

, 2 ≤ i ≤ L, 1 ≤ j ≤ ni, is

setted as described in Equation 4.14. In this case, C = 1.

Table 4.3 shows the process of multilevel adaptive error indicator (MAEI) approxi-

mation with threshold θrefine = 1.0(−5). In this case, the multilevel approximation

converges at 8 levels with 12 sample sets which have total 139 evaluations from

the target function. The final approximation SL has error eSL(f) = 9.2(−6) and
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L mL |ML| eSmL (f) RMS(eSmL (f)) κ(A)max eSmL (f)κ(A)max

1 1 13 7.2(-1) 1.7(-1) 3.3(+3) 2.4(+3)
2 2 25 5.2(-1) 9.6(-2) 8.6(+4) 4.5(+4)
3 3 49 2.6(-1) 3.7(-2) 3.3(+5) 8.6(+4)
4 6 81 4.9(-2) 5.6(-3) 5.2(+5) 2.5(+4)
5 7 109 1.4(-3) 1.3(-4) 4.5(+5) 6.3(+2)
6 8 127 9.2(-6) 1.8(-6) 1.9(+5) 1.7
7 11 138 9.2(-6) 1.8(-6) 2.2(+4) 2.0(-1)
8 12 139 9.2(-6) 1.8(-6) 1.4(+2) 1.3(-3)

Table 4.3: Approximation process of MAEI scheme of tanh(60x − 0.1), with
θrefine = 1.0(−5).

RMS(eSL(f)) = 1.8(−6). Figure 4.11 shows how the error indicator distributes

centers around the steepest part of f .

One observes that the even the max condition number κ(A)max grows in the be-

ginning, the eSmL (f)κ(A)max is not growing as fast as the max condition number.

The eSmL (f)κ(A)max could be considered a upper bound for the approximation

error, one would like to see it is in moderate scale.

Figure 4.12 shows the total centers set that used in SL in different level. In this

case, the error indicator and the above algorithm together generated these 12

centers set in 8 levels. Level 7, has 3 centers sets, but these points are very close

and are not readily distinguishable from the figure.

Figure 4.13 shows the process with θrefine = 1(−8), staring with 13 sample points,

that is |M1| = |X1
1| = 13. The algorithm stops with total 50 sample sets and total

476 sample points in 12 level. The final approximation SL has eSL(f) = 1.0(−8)

and RMS(eSL(f)) = 2.7(−9). The largest condition number of interpolation ma-

trix is 9.6(+6). One sees a convergence rate |eML
(f)|ML|| < C × |ML|−2.5 for this

case.

Table 4.4 compares the approximation accuracy and the total number of function

evaluation needed by the adaptive error indication (AEI) algorithm, the residual

sub-sampling (RS) method and the multilevel adaptive error indicator (MAEI)

approximation . In this example, the multilevel scheme achieves a better result

with notably less function evaluations at the the lower eX(f) of 1.0(−8).
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Figure 4.11: Hyperbolic tan function approximation with final sample points
distribution, initial |X1

1| = 13 with θrefine = 1.0(−5).
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Figure 4.12: The centers sets used in tanh(60x−0.1) multilevel error indicator
approximation, with θrefine = 1.0(−5).

4.5.1.3 The shifted absolute value function

The final univariate example is f(x) = |x− 0.04|. In the error indicator function,

the interpolant that used all the available sample points is Smulti
ML

, the multiquadric

RBF is applied, the shape parameter ci of each center xi is set be a constant



Multilevel Error Indicator Method 98

Figure 4.13: Hyperbolic tan function approximation error for each level L,
|ML| is the total number of samples of the target function. θrefine = 1.0(−8).

Method eX(f) Ntotal

RS 2.5(-5) 441
AEI 1.1(-5) 141
MAEI 9.2(-6) 139
RS 1.7(-7) 5671
AEI 1.7(-8) 726
MAEI 1.0(-8) 476

Table 4.4: Comparison of methods for f(x) = tanh(60x− 0.1).

divided by the distance to nearest neighbour hi, that is

ci = 3/hi.

For the interpolants ∆Smulti
Xj
i

, 2 ≤ i ≤ L, 1 ≤ j ≤ ni, the multiquadric RBF is used,

and the shape parameter cv is set as in Equation 4.14 and the C = 1.5 for this

case.

Figure 4.14 shows the sample points clustered around the derivative discontinuity

of |x − 0.04| as expected. The final approximation representation SL used total

15 sample sets, Table 4.5 shows the approximation SL staring with 13 uniformly
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distributed sample points, and ending with 101 points. The final approximation

SL has L-infinity and root mean square errors 3.6(−5) and 6.9(−6) respectively.

Figure 4.15 shows the total centers set that are used in SL in different levels. In

this case, the error indicator and the above algorithm together generated these 15

centers set in 12 levels.

Figure 4.16 shows the progress of the multilevel approximation scheme staring

with |X1
1| = 13, and θrefine = 2.0(−8). The process terminates when the level L

reaches 22, with total 58 sample sets. The final approximation SL with total 426

sample points has maximum error eSL(f) = 3.6(−8) and RMS(eSL(f)) = 5.5(−9).

One again sees a convergence rate |eML
(f)|ML|| < C × |ML|−2.5 for this case.

Table 4.5 compares the results and function evaluations required for residual sub-

sampling method, the adaptive error indicator algorithm and this multilevel ap-

proximation scheme. In this example, the multilevel approximation scheme still

could deliver slightly better results with slightly less total evaluations from the

target function. The author would like to emphasis that the applications include

cases where function evaluation is expensive.
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Figure 4.14: f(x) = |x − 0.04| multilevel approximation with final sample
points distribution, initial |X1

1| = 13 with θrefine = 2.0(−5).
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L mL |ML| eSmL (f) RMS(eSmL (f)) κ(A)max

1 1 13 3.7(-2) 6.4(-3) 3.3(+3)
2 2 25 2.7(-2) 3.0(-3) 1.2(+4)
3 5 40 7.2(-3) 9.8(-4) 1.4(+4)
4 6 54 3.4(-3) 3.0(-4) 1.7(+4)
5 7 66 1.6(-3) 9.3(-5) 1.2(+4)
6 8 76 1.4(-3) 4.2(-5) 8.8(+3)
7 9 82 7.7(-4) 1.7(-5) 3.3(+3)
8 10 87 3.3(-4) 8.9(-6) 2.3(+3)
9 11 92 2.1(-4) 7.5(-6) 2.3(+3)
10 12 93 3.8(-5) 7.0(-6) 4.6(+1)
11 13 97 4.9(-5) 7.0(-6) 6.7(+3)
12 15 101 3.6(-5) 6.9(-6) 3.2(+2)

Table 4.5: Approximation process of multilevel scheme for |x − 0.04|, with
θrefine = 2.0(−5).
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Figure 4.15: The centers sets used in f(x) = |x−0.04|multilevel error indicator
approximation, with θrefine = 2.0(−5).

4.5.2 Two Dimensional Function Multilevel Approximation

The author now considers two two-dimensional examples, where the node adding

scheme explained above is applied. The author used uniformly distributed nodes

as X1
1 and |X1

1| = 121. A test set T of 101×101 uniformly spaced nodes on [−1, 1]2

is used to test the approximation quality: eSL(f) = maxt∈T |f(t)− SL(t)| and the
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Figure 4.16: f(x) = |x− 0.04| multilevel approximation error for each level L,
|ML| is the total number of samples of the target function. θrefine = 2.0(−8).

Method eX(f) Ntotal

RS 3.6(-5) 674
AEI 3.8(-5) 121
MAEI 3.6(-5) 101
RS 1.8(-7) 5638
AEI 3.8(-8) 459
MAEI 3.6(-8) 426

Table 4.6: Comparison of methods for f(x) = |x− 0.04|.

root mean square value in f(t)− SL(t), t ∈ T , that is RMS(eSL(f)).

In the following examples, the interpolant S1 is set to be the multiquadric inter-

polant Smulti
X1

1
, and the shape parameter c is set to be a constant and equal to 1 for

each node in this interpolant.

4.5.2.1 The modified Franke Function

The modified Franke function of Equation 3.19 is now considered. For the inter-

polants ∆Sgau

Xj
i

, 2 ≤ i ≤ L, 1 ≤ j ≤ ni, the Gaussian RBF is applied. The shape
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parameter cv for ∆Sgau

Xj
i

is set as

cv =
C

hv
, (4.15)

where hv is the nearest distance between xv and other centers in set Xj
i = {xv, w =

1, 2 · · · , V j
i }. In this case, C = 200. In the error indicator, the interpolant that

used all available sample points is Scub
ML

, the cubic RBF is applied.

With θrefine = 5.0(−5) only 5 iterations are needed to reach the stopping crite-

ria. Figure 4.17 shows the final nodes distribution and demonstrates that error

indicator locates more points in regions of rapid variation. In this case, we have

|ML| = 1964 nodes with eSL(f) = 8.8(−5). Table 4.7 shows results corresponding

to different values of θrefine.

Figure 4.18 compares the results of approximation methods for modified Franke

function, the y-axis is the total evaluation number from the target function and

the x-axis is the maximum error of the approximation. The red line stands for

multilevel error indicator approximation, the blue line stands for the adaptive error

indicator approximation and black line stands for residual sub-sampling method.

One could see clearly that the multilevel RBF approximation outperforms largely.

One sees that error decays approximately like |eML
(f)|ML|| < C×|ML|−1.5 for this

case, which |ML| is the total number of nodes that used in this approximation.

θrefine |ML| eSL(f) RMS(eSL(f))

5.0(-4) 990 4.8(-4) 8.1(-5)
2.0(-4) 1231 2.5(-4) 3.5(-5)
1.0(-4) 1554 2.4(-4) 1.7(-5)
5.0(-5) 1964 8.8(-5) 7.5(-6)

Table 4.7: Multilevel level approximation results of the modified Franke func-
tion with different θrefine.

4.5.2.2 The two-dimension exponential function

In this example, target function is f(x, y) = exp(−60((x−0.35)2+(y−0.25)2))+0.2

(Figure 4.19) in [−1, 1]2. For the interpolants ∆Smulti
Xj
i

, 2 ≤ i ≤ L, 1 ≤ j ≤ ni, the
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Figure 4.17: Final nodes distribution for multilevel approximation for the
modified Franke function with θrefine = 5.0(−5). The number of total sampled

points is 1964.

Figure 4.18: Comparison of methods for the modified Franke function

MQ RBF is applied. The shape parameter cv for ∆Smulti
Xj
i

is set as Equation 4.15,

which C = 50. In the error indicator, the interpolant that used all available sample

points is Scub
ML

, the cubic RBF is applied.

Table 4.8 shows how the multilevel approximation depend on the error indicator.
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Figure 4.20 shows how the error indicator puts more nodes in the region where

the function changes rapidly. Figure 4.21 compares the results of approximation

methods for this function. We could see clearly that the multilevel adaptive er-

ror indicator RBF approximation outperforms the residual sub-sampling method

largely and when higher accuracy level is needed the multilevel RBF approxi-

mation shows its ability. One again sees that error decays approximately like

|eML
(f)|ML|| < C × |ML|−1.5.

Figure 4.19: The two-dimension exponential function multilevel adaptive error
indicator (MAEI) approximation result.

θrefine |ML| eSL(f) RMS(eSL)(f)

5.0(-4) 1261 5.2(-4) 8.7(-5)
2.0(-4) 1543 1.8(-4) 2.2(-5)
1.0(-4) 1625 9.1(-5) 1.2(-5)
5.0(-5) 1796 8.1(-5) 6.0(-6)

Table 4.8: Multilevel level approximation results of this two-dimension expo-
nential function with different θrefine.

4.5.2.3 The modified Rosenbrock function

The third test function is the modified Rosenbrock function f(x, y) = (1 − x)2 +

5(y − x2)2 on [−1, 1]2, see Figure 4.22. For the interpolants ∆Sgau

Xj
i

, 2 ≤ i ≤ L, 1 ≤
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Figure 4.20: Final nodes distribution for multilevel approximation for the his
two-dimension exponential function with θrefine = 5.0(−5). The number of total

sampled points is 1796.

Figure 4.21: Comparison of methods for this two-dimension exponential func-
tion.

j ≤ ni, the Gaussian RBF is applied. The shape parameter cv for ∆Sgau

Xj
i

is set as

Equation 4.15, which C = 300. In the error indicator, the interpolant that used

all available sample points is Smulti
ML

, the MQ RBF is applied. The shape parameter

c for Smulti
ML

is simply set to constant 1.
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With θrefine = 5.0(−5) the algorithm took 4 levels to reach the stopping criteria. A

total of |ML=4| = 1717 nodes were used to give an error eSL(f) = 4.9(−5). Figure

4.23 shows how the error indicator puts more points near the boundaries where the

function value rapidly increases. Table 4.9 shows how the number of points needed

by the multilevel scheme varies with the choice of θrefine. Figure 4.24 shows the

comparison between RE, AEI and MAEI. This modified Rosenbrock function is

difficult to approximate due to its rapid change in the corner of the domain. One

could see multilevel level approximation could deliver better accuracy with less

total nodes applied. One still sees a convergence rate |eML
(f)|ML|| < C×|ML|−1.5

for this case.

Figure 4.22: The modified Rosenbrock function multilevel adaptive error in-
dicator (MAEI) approximation result.

θrefine |ML| eSL(f) RMS(eSL)(f)

5.0(-4) 942 6.2(-4) 1.5(-4)
2.0(-4) 1305 1.8(-4) 4.0(-5)
1.0(-4) 1521 9.8(-5) 1.6(-5)
5.0(-5) 1717 4.9(-5) 5.3(-6)

Table 4.9: Multilevel level approximation results of this modified Rosenbrock
function with different θrefine.
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Figure 4.23: Final nodes distribution for multilevel approximation for the
modified Rosenbrock function with θrefine = 5.0(−5). The number of total sam-

pled points is 1717.

Figure 4.24: Comparison of methods for modified Rosenbrock function.

In Section 4.1 4.2 4.3 and 4.4, the author has described the structure of the mul-

tilevel adaptive error indicator (MAEI) approximation scheme, the components

are:

1. The first level global interpolant Smulti
X1

1
.
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2. The interpolant ∆SXj
i
for following levels.

3. Then interpolant SML
which use all the available center.

4. Then algorithms that generating Xj
i , Mk and corresponding indication set

Ξk.

In MAEI method, when compared to AEI, there is more parameters to be user

defined. The user defined parameters in MAEI are:

1. The shape parameter c for ∆Smulti
1 .

2. The basis function type and its shape parameter for ∆SXj
i
, i = 2, · · · , L, j =

1, · · · , ni.

3. The basis function type and its shape parameter for SML
.

In this thesis, the author could not propose a parameter setting suited for all

the test functions. The multilevel adaptive error indicator (MAEI) approximation

scheme could deliver desirable accuracy with much less sources used, however, it

is not as robust as adaptive adaptive error indicator (AEI) method.

4.6 Summary

Still motivated by the kind of problem mention in Chapter 1, the author combines

the adaptive error indicator (AEI) RBF interpolation method and the multilevel

approximation scheme using a domain decomposition approach to have a new

method called multilevel adaptive error indicator (MAEI) RBF approximation

scheme. Presented preliminary numerical results have revealed that the funda-

mental idea of MAEI is useful and MAEI is more efficient than AEI.



Chapter 5

Conclusion and Future Work

5.1 Conclusion

The author has constructed a new adaptive algorithm via error indicator functions

for the radial basis functions (RBFs) method applied to interpolation problems.

Nodes can be added and removed based on residuals evaluated at a finer point

set. The author has proposed the use of an error indicator based the idea that

different approximation methods should give different results in regions where it

is difficult to approximate. The author compares the global RBF interpolant with

a local RBF interpolant to provide a quantitative measure of the approximation

error. The error indicator assigns a value to the current global interpolation and

this value describes the approximation quality. According to this error indicator

value, an area with poor approximation quality and an area with good quality are

determined. This detection process requires no unnecessary sampling form the

target function, so it provides a considerable saving in time especially where the

target function is costly to evaluate.

Applying this error indicator gives an adaptive interpolation algorithm, with the

following steps: “approximation - detect (achieved by error indicator) - refine/-

coarse - approximation”. On the examples the author has presented in one, two

and three dimensions, this adaptive algorithm provides an accuracy level which

may be pre-set by the user. One could observe in the examples how effective the

109
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indicator is in automatically clustering centers in regions of high variation of the

target function.

In order to deliver reliable approximation, the condition number of interpolation

matrix κ(A) should be kept to a moderate scale. In this thesis, an adaptive shape

parameter for the multiquadric RBF has been used and it was observed that, as

theoretically predicted, this is effective in keeping κ(A) to a reasonable size.

In the monograph of Buhmann [8], he mentioned there is still an open ques-

tion on existence and uniqueness of interpolant which every centers has different

shape parameters. In order words, there is yet not theoretical proof for the in-

vertibility of the interpolation matrix A where it is fitted with center-dependent

shape parameters. The application of adaptive shape parameter, also known as

centers-dependent shape parameters, regrettably jeopardizes the symmetry of the

interpolation matrix A. It breaks the proof of its non-singularity. From the prac-

tical prospective, nevertheless, one has observed a substantial benefit from using

the adapting the shaper parameters. Consequently, one sees the importance of

devoting more efforts into the direction of understanding this issue.

The numerical experiments have shown that the adaptive error indicator (AEI)

approximation provides a similar global accuracy to the RS method with fewer

evaluations of the target function. This is a desirable property, especially when

the target function is expensive to evaluate once. One might worry that the AEI

method could not reach the stop criteria for some cases, however, in previous

examples, the AEI method could always reach the stop criteria and deliver good

accuracy. In future work, the author would like to explore the adaptive θrefine and

θcoarse thresholds.

The author has shown that the choice of parameters in the approximation model

do not have a significant effect on the quality of the results, suggesting that the

method described is robust.

In Chapter 3, the author proposed the parameter setting for the AEI method

which is named Parameter Set 1. The adaptive error indicator RBF interpolation

method with Parameter Set 1 delivers good approximation ability and certain
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robustness for different approximation problems. In the future, one would like

to develop a technique for selecting more optimal parameters for the AEI while

maintaining an appropriate robustness.

The adaptive error indicator (AEI) RBF interpolation method discussed in Chap-

ter 3 is still a global method in the sense that all the selected centers are applied

to build the global interpolant Smulti
Xk

. The varying shape parameter based on the

nearest distance between adjacent neighbours is decisive. However, in some ex-

treme cases, such as with functions with very steep slopes, that global interpolant

with center-dependent shape parameters is not always reliable. Namely, the con-

dition number of interpolation matrix κ(A) is still large, which ruins the global

interpolation.

In addition to the ill-conditioning problem, the size of interpolation matrix A

grows with the number of centers. Consequently, it is impractical to solve this

large linear system with direct methods. One possible mitigation for this is to

apply indirect methods to solve this linear system.

The author also investigated the multilevel level approximation schemes and pro-

posed a new RBF multilevel adaptive approximation scheme via error indicators.

This multilevel adaptive error indicator (MAEI) method is a hybridization be-

tween adaptive error indicator (AEI) method and multilevel interpolation method

via a domain decomposition technique. This error indicator is a modified version

of the error indicator in Chapter 3. This method compares the current RBF ap-

proximation with a global RBF interpolant to provide a quantitative measure of

approximation error. The current RBF approximation is achieved by a multilevel

adaptive scheme, which consist of local approximations of residuals at certain sub-

domains. This error indicator also follows the idea that the deviation between

global and local approximations could indicate the error effectively.

The author also showed some preliminary approximation results achieved by this

multilevel adaptive approximation scheme. The author compared these results

with the residual sub-sampling (RE) method. It turns out that the multilevel

adaptive error indicator (MAEI) approximation provides the same accuracy with
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fewer evaluations from the target function compared with the adaptive error indi-

cator (AEI) interpolation.

The current MAEI method applies a MQ basis function in the first level interpo-

lation. In the rest levels, another basis function has been applied. Different basis

functions have been applied to different target functions based on the author’s

experiments and experiences. In order to improve the completeness of the MAEI

method, the automatic selection of basis function for different levels and different

target functions should be explored in the future.

5.2 Future Work

In the future, the author would like to merge local RBF interpolants with error

indicator to form the localised adaptive error indicator RBF interpolation. The

author believes the localised adaptive error indicator method will be highly promis-

ing solution to the approximation problem which target functions are with very

steep slopes. Figure 5.1 shows an example in two dimensional case of the local

RBF interpolant. Given a set of scattered data points and corresponding function

value, one would like to know the function value at one certain point x. The main

difference from global RBF interpolation is to use subset of total centers to build a

local RBF interpolant. The usage of relative small amount of centers to form the

local interpolant avoids a very large interpolation matrix. The local interpolant

is created by only a subset of RBF centers (the solid dots). As long as the local

interpolant is established, the function value at x can be compute by it.

The data structure for this localised adaptive error indicator RBF interpolation

could be inherited from [45], see Figure 5.2 for a example. In Figure 5.2, the solid

dot stands for the centers X and the red cross stands for the indication points Ξ.

The current approximated value at indication points are computed by the local

interpolant whose centers are inside the circle. The centers inside the circle could

be called as Ncircle. The error indicator still follows the idea that two different kind

of RBF interpolant give different approximations at the points where is difficult
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Figure 5.1: Example of localized RBF interpolant.

Figure 5.2: Example of possible data structure for localized adaptive error
indicator RBF interpolation.

to approximate. In order to decide the indication point ξ should turn into center
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or not, one computes the error indicator function at ξ, that is

η(ξ) = |Smulti
Ncircle

(ξ)− Sps
Ncircle

(ξ)|.

The author believes that this error indicator could measure the actual error and

guided us to have a series of local interpolants that could represent the unknown

target function well.

In multilevel adaptive error indicator (MAEI) approximation scheme, the author

would like to apply the error indicator that defined in Definition 3.1. In Chapter

3, it has showed the robustness of this error indicator.

Considering f −∆Si as target function, then apply AEI method to generate ap-

proximation ∆Si+1 for it. Repeat this step could generate ∆SX1 ,∆SX2 , · · · ,∆SXL
,

which ∆SXi
is defined as Equation 4.9 and the sub-domain Ωi is decided by the

error indicator in AEI method. Then

s =
L∑
i=1

∆SXi
,

is the multilevel adaptive level approximation for target function f .

The author conjectures that above mentioned points should be studied in the fu-

ture in order to improve the adaptive error indicator (AEI) method and multilevel

adaptive error indicator (MAEI) method.
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