
Real Time and Performance Management Techniques

in SSD Storage Systems

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Muhammed Ziya Komsul

Department of Engineering

University of Leicester, UK

July, 2016

Abstract

Flash-based storage systems offer high density, robustness, and reliability for embed-
ded applications; however the physical nature of flash memory means that there are
limitations to its usage in high reliability applications. To increase the reliability of
flash-based storage systems, several RAID mechanisms have been proposed. How-
ever, these mechanisms permit the recovery of data onto a new replacement device
when a particular device in the array reaches its endurance limit and they need regular
garbage collection to efficiently manage free resources. These present concerns with
response time as when a garbage collector or a device replacement is underway, the
flash memory cannot be used by the application layer for an uncertain period of time.
This non-determinism in terms of response time is problematic in high reliability sys-
tems that require real-time guarantees. Existing solutions to garbage collection only
consider single flash chip but ignore architectures where multiple flash memories are
used in a storage system such as RAID. Traditional replacement mechanisms based
on magnetic storage mediums do not suit specifications of flash memory. The aim of
this thesis is to improve the reliability of the SSD RAID mechanisms by providing
guaranteed access time for hard real-time embedded applications.

Investigating the hypothesis, a number of novel mechanisms were proposed with
the goal of enhancing data reliability in an SSD array. Two novel mechanisms solve the
non-determinism problem caused by garbage collection without disturbing the reliabil-
ity mechanism unlike existing techniques. The third mechanism is device replacement
techniques for replacing elements in the array, increasing system dependability by pro-
viding continuous system availability with higher I/O performance for hard real-time
embedded applications.

A global flash translation layer with novel garbage collection mechanisms, on-line
device replacement techniques, and their associated controllers are implemented on
our FPGA SSD RAID controller. Contrary to traditional approaches, a dynamic pre-
emptive cleaning mechanism adopts a dynamic cleaning feature which does not dis-
turb the reliability mechanism. In addition to this the garbage collection aware RAID
mechanism is introduced to improve the maximum response time of the system further.
On-line device replacement techniques address limitations of the device replacement
and thus provide more deterministic response times. The reliability, real-time and per-
formance of these mechanisms via trace-driven simulator for number of synthetic and
realistic traces are also evaluated.

The contribution of this thesis is as follows: the presentation of novel mechanisms
that enable the real-time support for RAID techniques in SSD devices, the development
of a number of mechanisms that enhance the performance and reliability of flash-based
storages, the implementation of these controllers, and the provision of a complete test
bed for investigating these behaviours.

Acknowledgements

Firstly, I would like to express my sincere appreciation to my supervisor, Alistair
McEwan, for guiding me throughout this project, for encouraging my research, for his
patience, motivation, and enormous knowledge. His valuable suggestions to this study
helped me in all the time of research and writing of this thesis. Without his valuable
suggestions the research work would have not been possible.

I am also thankful to Turkey Minister of National Education for funding and sup-
porting my research.

I also thank my colleagues : Irfan Mir, Muhammad Fayyaz, Jing and Ioannis for
the stimulating discussions and precious comments on my research.

Last but not the least, I would like to thank with love to my wife Hatice for stand-
ing beside me throughout my career with love and my little girl Zeynep Kubra for
being such a good little baby during my study. I would also say thank to my mother,
mother-in-law, father-in-law and to my brothers and sisters for supporting me spiritu-
ally throughout the Ph.D. research.

Declaration of Authorship

I hereby declare that this thesis is my own work and that has completed during the
period of registration. To the best of my knowledge, it does not contain previously
published material written by another person. None of this work has been submitted
for another degree at the University of Leicester or any other University.

Some parts of this thesis appeared in the following conjoint publications where I
have made substantial contributions:

• A. A. McEwan and M. Z. Komsul, Reliability and Performance Enhancements
for SSD RAID, Microprocessors and Microsystems, Available online 18 Novem-
ber 2016, ISSN 0141-9331, http://dx.doi.org/10.1016/j.micpro.2016.11.012.

• A. A. McEwan and M. Z. Komsul, "Pre-Emptive Garbage Collection for SSD
RAID," 2016 Euromicro Conference on Digital System Design (DSD), Limas-
sol, IEEE, Aug 2016, pp. 356-363.

• M. Z. Komsul, A. A. McEwan and I. Mir, "A real-time hot swapping technique
for SSD RAID systems," 2016 International Conference on Applied System In-
novation (ICASI), Okinawa, IEEE, 2016, pp. 1-4.

• A.A. McEwan and M.Z. Komsul." On-Line Device Replacement Techniques for
SSD RAID". In Digital System Design (DSD), 2015 Euromicro Conference on,
Funchal, IEEE, Aug 2015, pp. 438-444.

• M.Z. Komsul, A.A. McEwan, and I.F. Mir. "An FPGA-based Development Plat-
form for Real-time Solid State Devices". In Information Science, Electronics
and Electrical Engineering (ISEEE), 2014 International Conference on, volume
2, Sapporo, IEEE, April 2014 pp. 1198-1203.

Contents

1 Introduction 1

1.1 Motivation . 4

1.2 Problem Statement . 5

1.2.1 Research Questions . 5

1.3 Scope and Objectives . 6

1.4 Methodology . 7

1.5 Thesis Contribution . 8

1.6 Thesis Overview . 9

2 NAND Flash-based Storage Systems 12

2.1 Overview of Flash Memory . 13

2.2 Flash Translation Layer . 14

2.2.1 Address Mapping . 15

2.2.2 Garbage Collection . 18

2.2.3 Wear Levelling and Bad Block Management 20

2.3 Flash-based SSD Architecture . 20

2.4 Parity-based RAID systems . 22

2.5 Write Types in RAID . 24

2.6 Real-Time Systems . 26

2.7 Summary . 28

i

3 Real-time Support Issues for Flash Memory Storage Systems 29

3.1 Introduction . 29

3.2 Unpredictable Performance on Garbage Collection 31

3.3 Reliable and High Performance NAND Flash-based Storage 33

3.4 Current Challenges and Solutions 35

3.4.1 Real-Time Support Concerns in Real-Time FTLs with RAID . 38

3.4.2 Real-Time and Performance Concerns of the Reliability En-

hancement Mechanisms . 40

3.5 Summary . 43

4 Dynamic Pre-emptive Garbage Collection 45

4.1 Introduction . 45

4.2 Pre-emptive Garbage Collection . 47

4.3 Limitations of PGC with SSD RAID 50

4.4 System Architecture . 53

4.5 Dynamic Pre-emptive Garbage Collection 54

4.5.1 Dynamic Garbage Collection 54

4.5.2 Pre-emptive mode controller 61

4.6 Summary . 63

5 Garbage Collection aware RAID Mechanism 65

5.1 Introduction . 65

5.2 GC-aware RAID mechanism . 66

5.2.1 Address Mapping Tables . 67

5.2.2 GC-aware Read Operation 68

5.2.3 Serialised Garbage Collection 69

5.2.4 GC-aware Random Writes 72

5.2.5 GC-aware Sequential Writes 78

ii

5.2.6 WCET Analyses . 80

5.2.7 On-line Parity Migration . 81

5.3 Summary . 85

6 On-line Device Replacement Techniques 87

6.1 Introduction . 87

6.2 Architectural Design . 89

6.3 Proactive Hot-Swapping . 90

6.4 Coordinated Data Migration . 95

6.5 Cost-Effective Parity Redistribution 97

6.6 Semi-Hybrid RAID . 102

6.7 Summary . 104

7 Testbed and Results 106

7.1 Introduction . 106

7.2 DiskSim Simulator . 107

7.3 Experimental Platform . 108

7.4 Simulator and Workloads . 112

7.5 Simulation results . 114

7.5.1 Dynamic Pre-emptive Garbage Collection Mechanism 114

7.5.2 Garbage Collection-aware RAID Mechanism 119

7.5.3 On-line Device Replacement Techniques 126

7.6 Summary . 131

8 Conclusions and Discussions 133

8.1 Final Evaluation of Results . 133

8.2 Review of Contributions . 137

8.2.1 Dynamic PGC Mechanism 139

iii

8.2.2 GC-aware RAID Mechanism 140

8.2.3 On-line Device Replacement Techniques 142

8.2.4 Development Platform . 144

8.3 Future Work . 145

8.3.1 Next target: Determining Real Estate Efficiency on FPGAs . . 145

8.3.2 Improving Performance under Sequential Writes 147

8.4 Final Remarks . 147

References 149

A Development Platform Structure 163

A.1 Default SSD configuration . 163

A.2 SSD Array Configuration . 164

A.3 System Topology . 165

A.4 Synthetic Workload Generator Configuration 166

A.5 Uneven Parity Redistribution and Page Allocation 166

A.6 Dynamic Threshold Calculation . 167

A.7 PGC Mode Controller . 168

A.8 GC Efficiency Function . 169

iv

List of Tables

3.1 Maximum response times of existing real-time FTLs 39

5.1 Changes in the page status table in NvSRAM for a random update

operation . 76

5.2 WCET comparison of existing mechanism with GARM 80

7.1 Default flash array parameters . 112

7.2 Default parameters of synthetic traces 112

7.3 Characteristics of realistic workloads 112

8.1 Comparison of presented techniques with existing real-time and relia-

bility enhancement mechanisms . 137

v

List of Figures

2.1 Internal structure of flash memory 13

2.2 Architectural system design of flash memory 14

2.3 Page level address mapping . 16

2.4 Block level address mapping . 17

2.5 Steps of a generic GC . 18

2.6 SSD internal architecture . 20

2.7 RAID 5 structure . 23

2.8 Random update operation in parity-based RAID 25

3.1 Garbage collection . 31

3.2 Pathological performance behaviour of individual SSDs taken from

reference [34] . 32

3.3 Pathological performance behaviour of multiple SSDs with RAID

taken from reference [34] . 33

3.4 Device replacement operation . 40

4.1 Pre-emption point in PGC, taken from reference [17] 48

4.2 PGC state diagram, taken from reference [17] 49

4.3 The effects of PGC over the reliability mechanism 51

4.4 Architectural design of the PGC with RAID 53

4.5 Dynamic GC triggering thresholds adjustment 56

vi

4.6 Initiation/Postponing of GC requests 57

4.7 Behaviour of PGC with RAID . 61

4.8 Benefits of the global pre-emptive mode controller 62

5.1 Real-time read operation . 69

5.2 State diagram of serialised GC . 70

5.3 Random new write operations with an ongoing GC on non-GARM . . 73

5.4 Random new write operations with an ongoing GC on GARM 73

5.5 Random new write operations with multiple ongoing GCs on non-GARM 74

5.6 Random new write operations with multiple ongoing GCs on GARM . 75

5.7 GC-aware random update operation for a partial stripe 75

5.8 GC-aware random update operation for a full stripe 77

5.9 Comparison of sequential write and forced random write techniques in

a flash-based array with an ongoing GC 78

5.10 Parity migration states . 81

5.11 OPM with a free stripe . 84

5.12 OPM with a partial stripe . 84

5.13 OPM with a full stripe . 85

6.1 Architecture block diagram . 89

6.2 Example read operation involving a failed block during rebuilding . . 91

6.3 State transactions of a device in the hot-swapping technique 92

6.4 Comparison of erasure limits of SSD RAIDs with a 4 bit ECC taken

from reference [8] . 93

6.5 A comparison of device replacement techniques 96

6.6 Parity redistribution of Diff-RAID 98

6.7 Comparison of parity redistribution for a partial stripe 99

6.8 Comparison of parity redistribution for a full stripe, Case 1 100

vii

6.9 Comparison of parity redistribution for a full stripe, Case 2 101

6.10 Semi-hybrid RAID after the second replacement 103

6.11 Semi-hybrid RAID after the third replacement 103

7.1 Experimental platform for a real-time and reliable SSD storage system 109

7.2 SSD age distributions by varying probability of read access. Probabil-

ity of read accesses: a (0.2), b (0.4), c (0.6) 115

7.3 SSD age distributions with the financial trace 116

7.4 Normalized total number of erasures performed in the array with the

financial trace . 117

7.5 Comparison of number of requests arrived during downtime period . . 118

7.6 Comparison of average response times 119

7.7 Performance improvements of GARM for synthetic workloads. Aver-

age response times are depicted with different parameters of synthetic

workloads. (a) Request size. (b) Inter-arrival time. (c) Read ratio (d)

Sequentiality. 120

7.8 Performance improvements of GARM for realistic embedded system

workloads. (a-b) Average response time. (c) Maximum response time. 123

7.9 The changes in age distributions of SSDs with a GARM by enabling

and disabling the OPM . 124

7.10 Average response time of traces by varying inter-arrival time 127

7.11 Average read response time of RAID schemas after different device

replacement points . 128

7.12 Device replacement times for parity redistribution 129

7.13 Write amplification (random write workloads) 130

8.1 An FPGA-based SSD development platform 146

viii

List of Abbreviations

API Application Programming Interface

BER Bit Error Rates

Diff-RAID Differential RAID

DRAM Dynamic Random Access Memory

DRT Device Reconstruction Task

DiskSim Disk Simulator

ECC Error Correction Code

EEPROM Electrically Erasable Programmable Read-Only Memory

FTL Flash Translation Layer

FPGA Field Programmable Gate Array

GARM Garbage collection Aware RAID Mechanism

GC Garbage Collection

GFTL Guaranteed Flash Translation Layer

HDD Hard Disk Drive

I/O Input/Output

LBN Logical Block Number

LPN Logical Page Number

MLC Multi Level Cell

ix

NvSRAM Non-volatile Static Random Access Memory

OPMM On-line Parity Migration Mechanism

PC Personal Computer

PBN Physical Block Number

PGC Pre-emptive Garbage Collection

PPN Physical Page Number

RAID Redundant Array of Independent Disk

RAM Random Access Memory

RFTL Real-time Flash Translation Layer

RTL Register Transfer Level

SLC Single Level Cell

SRAM Static Random Access Memory

SSD Solid State Drive

TLC Triple Level Cell

UBER Uncorrectable Bit Error Rate

WCET Worst Case Execution Time

x

List of Symbols

tread time taken to read a page

twrite time taken to write a page

tcopy time taken to copy a page

ter time taken to erase a block

GCcost time taken to reclaim a block

Bvalid number of valid pages in a block

U(er) the maximum execution time for read

U(ew) the maximum execution time for write

N f ree number of free blocks in the flash chip

Tso f t soft threshold level for Preemptible Garbage Collection

Thard hard threshold level for Preemptible Garbage Collection

Th(x, y) threshold ratios for a given device (x=Tso f t, y=Thard)

n the number of devices in the array

m stripe unit size of an array

GCD dynamic garbage collection

PH high priority garbage collection

PL low priority garbage collection

AGEC current ageing ratio of a device

xi

AGEO optimal ageing ratio of a device

FBP free block percentage of a device

PT
L garbage collection triggering threshold for PL

PT
H garbage collection triggering threshold for PH

PT
M medium threshold level

GCE garbage collection efficiency function

Pi parity percentage of ith device

h PH factor

p length of period to trigger GCD

Di ith stripe unit of data D

DP parity data of stripe D

GCpool devices those number of free blocks below the soft threshold

np number of devices that have number of free blocks below the

hard threshold

h PH factor

t′Dx access time of writing Data x

FT H hot-swapping indicator flag

FHB semi-hybrid RAID indicator flag

FDR device replacement completion indicator flag

xii

Chapter 1

Introduction

An embedded system is a computing system that consists of hardware and software

components. It is designed to perform dedicated functions within a larger electrical

system [1]. A core inside a processor is the heart of an embedded system. The word

size of the processor core can vary from 8-bit to 64-bit. Microwave ovens, cell phones,

calculators, digital watches, cruise missiles, heart monitors, laser printers, radar guns,

washing machines, digital cameras, traffic lights, remote controls, bread machines, and

fax machines are some examples of embedded systems. A modern car is an example

of a large embedded system which comprises a number of embedded controllers with

dedicated functions. In such high-integrity embedded systems, requirements are get-

ting more complex with time and resource constraints.

In general purpose computing systems, there are mainly two permanent storage

types — Hard Disk Drive (HDD) and flash. HDDs are usually preferred as primary

storages in Personal Computers (PCs) and servers. High-integrity embedded systems

have strict constraints on storage mediums such as shock-resistance, energy consump-

tion and size. Disks are not well suited to these constraints as they include mechan-

ical parts. In comparison to HDD, Solid State Drives (SSDs) have no moving parts,

consume less energy, are more robust against mechanical failures in the presence of

1

shocks/jerks and require less memory access time. In addition, the gradual decrease

in flash memory price has increased the demand for use in embedded systems [2, 3].

The rationale behind the decrease cost is the use of higher density flash technology

such as Multi Level Cell (MLC) and Triple-Level Cell (TLC) which provide increased

capacity compared to the Single Level Cell (SLC). Due to SSD’s several advantages,

it is used as a primary massive storage medium in many embedded systems. Examples

of these massive storage embedded systems are smart phones, tablets, digital cameras,

and space applications [4–7].

While flash offers many advantages, a number of concerns still exist in flash based

technology. These concerns affect its reliability and performance such as endurance

limit, non-deterministic access time, and a higher number of bit errors in aged flash de-

vices. Unlike HDDs, the lifespan of a flash cell depends on the amount of erase/write

operations as these slowly wear out flash cells. The wear-out of flash cells causes data

corruption when a cell exceeds its lifetime/endurance limit [8, 9]. To overcome the

problem of bit-error rate, NAND1 flash memory uses Error Correcting Codes (ECCs).

However, ECCs are limited to single-bit error correction in SLC based flash memories.

ECCs are insufficient for MLC and TLC devices and are not applicable for compo-

nent failures due to the limited size of the metadata area (a place where the ECCs

are usually stored) of a page. Conventionally, Redundant Array of Independent Disk

(RAID) systems have been used to provide protection against the chip, block, and page

level failures [10]. However, the RAID system is not directly applicable to flash arrays

because of the risk of simultaneously wearing out of array elements [8].

To address this problem, several flash based RAID mechanisms have been pro-

posed which enhance reliability of the system by protecting the flash memory against

the chip-level failures in high integrity systems [8, 11]. These RAID techniques offer

significant improvements to the reliability of flash storage systems but it does not meet
1A flash memory has two types - NOR and NAND. Both types are discussed in Chapter 2

2

the real-time requirements of embedded systems. These developed mechanisms re-

quire a regular garbage collection (GC) (which is managed by a flash translation layer

(FTL)) to efficiently manage free resources. In addition, these mechanisms also re-

quire a device replacement process, when a particular element in an array reaches its

endurance limit. Due to garbage collection and device replacement processes, embed-

ded software application cannot access flash memory for an uncertain amount of time.

This non-deterministic response time is not acceptable for highly reliable embedded

systems where guaranteed response time is essential.

Current and future space applications demands flash based storage system in order

to enhance the mission return. One such application of the flash based storage system is

the spirit rover [12] which demands a real-time and reliable storage system. Due to the

limited connectivity with the ground station and electrical power outages, it is required

to store science data on-board the rover. Contrary to Random Access Memory (RAM)

based storage system, data is stored in non-volatile memory which requires a lesser

amount of electrical power and can be download at any time. Furthermore, running

tasks demand to store data in real-time. A delay in the data storage/retrieval may cause

a task to miss its deadline. This behaviour consequently affects the overall mission

return. In this thesis, a novel flash based RAID storage architecture with real-time

support is proposed, designed and developed. This mechanism supports the reliability

as well as stringent real-time requirements of the high integrity embedded systems. It

provides guaranteed access time to the application layer in case of ongoing garbage

collection and device replacement process, thus improving system throughput.

The above mechanism is designed for use in high integrity systems but in general,

it can be used for any embedded system. For example, a number of mobile multime-

dia applications that require guaranteed access time and high performance can benefit

from the proposed approach such as mobile data compression applications. These ap-

plications play an important role in mobile multimedia as they reduce the performance

3

overhead of the data transfer as well as reducing the storage capacity. It is highly

important for these types of applications to have high performance storage with real-

time support [13]. In addition, another example can be given as large-scale sensor

network applications such as the TinyDB project [14]. It includes a number of nodes

in a network which are able to transmit and store sensor data. Transmitted data have to

be stored in a storage with a real-time fashion where deterministic response time and

continued storage availability are necessary.

1.1 Motivation

Although flash-based storage systems offer a number of advantages for embedded ap-

plications; flash memory has limitations to its usage in high reliability applications as

consequences of garbage collection (GC) and limited lifetime of flash cells (which re-

quires device replacement). These cause non-deterministic response times and perfor-

mance degradation which are problems for high reliable systems that require real-time

access guarantees.

The motivation behind this research is threefold:

I. Demand of highly reliable and real-time NAND flash-based SSD storage sys-

tems is continuously increasing. Examples of these applications are aircraft,

spacecraft, autonomous vehicles and robotic systems.

II. Traditional real-time garbage collections are limited to a single memory and are

not compatible with the SSD RAID techniques [15–18]. Currently, in SSD RAID

systems, no solution exists which can address the problem of deterministic re-

sponse time, while simultaneously maintaining its high reliability feature.

4

III. Existing solutions for device replacement mechanisms are limited to magnetic

devices and ignores inherent features of flash memory such as deterministic fail-

ure and garbage collection [19–21].

1.2 Problem Statement

In this thesis, two main problems of flash-based RAID storage systems are addressed.

• Firstly, the non-deterministic response time issue caused by garbage collection

in parity-based RAID is addressed.

• Secondly, the off-line device replacement problem in reliability enhancement

mechanisms along with RAID techniques is considered.

These research problems are further elaborated in Section 1.2.1.

1.2.1 Research Questions

The main research questions of the thesis are listed below:

I. Can the existing real-time garbage collection mechanisms for single flash mem-

ory adapt to the RAID techniques where the devices in the array are strictly

controlled by the reliability mechanisms?

II. How can a real-time GC mechanism be developed without (or minimally) dis-

turbing reliability mechanisms in the RAID array?

III. How can the downtime of flash-based RAID storages be improved further with

the real-time GC mechanism?

IV. Can the Worst Case Execution Time (WCET) of the real-time GC mechanisms be

reduced further by utilizing the concurrency of parity-based RAID architectures?

5

V. How can unpredictable GC delays in flash based RAID architectures be com-

pletely avoided without disturbing the reliability mechanisms?

VI. Can the existing HDD-based on-line device replacement techniques be fully

adapted to flash-based mechanisms?

VII. How can continuous system availability be provided when a device replacement

is required for the reliability mechanism?

VIII. How can the performance overhead of device replacement techniques be reduced

in SSD RAID?

IX. How can the experimental results be tested and validated?

1.3 Scope and Objectives

The scope of the thesis is limited to the algorithms and data structures of a flash file

system for high integrity embedded system where limited system resources are avail-

able. Embedded and raw NAND flash based SSDs are mainly considered throughout

this thesis.

The main objectives of this research are:

• To assess existing approaches/methods/architectures for SSDs through investi-

gation of the current state of the art.

• To propose a suitable reliable and real-time mechanism for SSDs to use on-board

high integrity embedded systems.

• To analyse, evaluate, test and demonstrate the proposed mechanism through sim-

ulation.

6

1.4 Methodology

The research has started by exploring existing real-time techniques in flash memory

architectures. A number of real-time techniques were examined in terms of their adap-

tation to the existing reliability mechanisms. Then their limitations were determined,

and their pros and cons were compared. As a result of these reviews, it was revealed

that the existing mechanisms were not fully efficient and unable to meet the real-time,

performance and reliability requirements. Thus, a novel real-time and reliable SSD

storage architecture was designed and implemented.

The research work was based on the spiral method [22]. The model provides a high

amount of risk analysis. In the spiral model it is important to split the research work

into different levels to minimise the risk of failure.

The work in this thesis follows several iterations of the predefined levels of the

spiral model. The spiral methodology has four main phases: (I) planning phase; where

all requirements of the research are gathered, (II) risk analyses phase; where a process

is undertaken to identify risk and alternative solutions, (III) engineering phase; which

includes development, implementation and testing, and finally (IV) evaluation phase;

which includes review of the process and the next iteration plan. The main tasks are

described below to achieve the research goals of this thesis:

I. Identify the research objects.

II. Develop the real-time and performance enhancement mechanisms.

III. Implement these mechanisms into software design.

IV. Develop a debug environment to simulate software design.

V. Analyse the simulation results.

7

1.5 Thesis Contribution

The limitations and features of flash based storages — which were discussed previously

— invoke interest on researching flash technologies and their different aspects. The

bottlenecks of the technology limit its usage in many application areas especially due

to its real-time support issues. The contributions of this thesis are listed below:

I. A novel real-time dynamic pre-emptive garbage collection technique for SSD

RAID is proposed with two novel components including dynamic garbage col-

lection and pre-emptive mode controller. It does not only provide real-time sup-

port with higher performance to the storage but also maintains the age distribu-

tion ratios of reliability mechanisms.

II. A novel garbage collection aware RAID mechanism is proposed. It further im-

proves the WCET and the performance of the system compared to the published

techniques. Also an on-line parity migration feature is integrated to maintain

reliability mechanisms for the garbage collection aware RAID mechanism.

III. A novel on-line device replacement framework for SSD RAID including four

novel techniques— proactive hot swapping, coordinated data migration, on-line

parity redistribution, and semi hybrid RAID. These techniques can replace aged

devices in the array in such a way that provides continuous system availability

thereby providing deterministic response time. Also the performance overhead

of the RAID reconstruction process is reduced.

IV. The proposed mechanisms and techniques are validated by developing a test-bed

for a reliable and real-time SSD-based storage system including RAID controller,

Global FTL layer, and dynamic page allocation. It provides accurate timing of

Inputs/Outputs (I/Os) requests to the NAND flash memory and enables to test

correctness of the proposed mechanisms.

8

1.6 Thesis Overview

The structure of the thesis is carefully organized from its motivational part to the final

research outcome. In this chapter a brief introduction to the subject matter, motivations

behind this thesis, a research aim considering existing research challenges, and the

contribution of the research are presented. The rest of the chapters are partitioned into

three main parts— (1) background study and literature review, (2) contribution of this

thesis to the specific research questions and (3) conclusion and future work.

The next two chapters present the background information and previous work, es-

pecially studies that address challenges in the area of reliable SSD storage systems in

hard real-time applications. Chapter 2 presents the basics of flash memory, flash trans-

lation layer and its main components. It introduces parity RAID systems and some

important phenomena about them such as write types. It also presents basics of the

real-time systems and importance of the deterministic response time. The current chal-

lenges and trends in flash memory architectures are presented in Chapter 3. It presents

real-time support, performance and reliability issues of flash based storages with re-

spect to high integrity systems. This chapter discusses the limitations of the current

solutions and highlights the research gap.

The following four chapters present the contribution of this thesis in the area of

real-time support and performance of NAND flash-based SSD storage systems. Chap-

ter 4 presents a dynamic pre-emptive GC mechanism for an existing real-time GC to

provide real-time access guarantees without ignoring the strict age control mechanism

of SSD RAID via the dynamic garbage collection component of the mechanism. Also,

another component of the mechanism — pre-emptive mode controller — is introduced

to coordinate ongoing GC operations with a holistic view of the system. It improves the

real-time efficiency and performance of the system by globally coordinating the state

of each garbage collector in the array. Although the mechanism provides real-time

9

access guarantees for SSD RAID, the enhancement in the WCET and performance of

the system are limited due to not benefiting from the concurrent system architecture

effectively. Therefore, a novel real-time GC mechanism for SSD RAID systems is

introduced in following chapter (i.e. Chapter 5).

Chapter 5 presents a novel GC-aware RAID mechanism (GARM) which further

improves the WCET and performance of the system considering the wearing out prob-

lem of flash memory. It provides deterministic response times for I/Os even where there

is an active GC operation in the array with the help of its serialised garbage collection

feature. The mechanism is evaluated under various types of scenarios such as partial

and full stripe writes and read operations in existence of serialised GC. Moreover, the

effects of the GARM on the reliability enhancement mechanisms are investigated. An

on-line parity migration feature is integrated in the GARM to keep ageing ratios of

elements which are affected by initially assigned parity percentages. It aims to main-

tain the reliability enhancements techniques while offering deterministic response time

with a dynamic page allocation approach.

Chapter 4 and 5 focus on GC as a non-deterministic problem of SSD RAID archi-

tectures. However, the device replacement operation in SSD RAID systems prevents

the whole product from being suitable for real-time system due to its non-deterministic

behaviour. Therefore, in the following chapter (i.e. Chapter 6) this problem is ad-

dressed to make the system fully compatible for real-time applications. Chapter 6

presents an SSD RAID framework incorporating several novel techniques to improve

the efficiency of the replacement process for hard real-time applications — a proactive

hot swapping technique, a data migration technique that coordinates operations with

the garbage collector, and a parity redistribution mechanism. To utilize the benefits

of hot swapping, a semi hybrid RAID mechanism is also introduced that enhances

performance when there is no active device replacement process.

10

The development of test-bed for a reliable and real-time SSD-based storage system

is presented in Chapter 7. For accurate timing of disk requests a NAND flash SSD

simulator is designed as an extension of the Microsoft SSD simulator. Global Flash

Translation Layer (FTL) layer, dynamic page allocation schema, the RAID controller

and address mapping techniques are implemented on the test bed. Also, results of

experiments are presented to support the mechanisms described in previous chapters

along with a number of synthetic and realistic (captured) traces.

Finally, Chapter 8 discusses the final outcomes of this thesis along with the next

target of the study. The results are analysed against the objectives and the research

challenges which are explained in Chapter 1. Finally, the possible future directions are

pointed to exploit the outcomes of this thesis.

11

Chapter 2

NAND Flash-based Storage Systems

This chapter presents a background study of flash-based storage systems. NAND flash-

based storages—also known as SSD—are a non-volatile type of memory. Flash mem-

ory has a number of properties that make it a useful storage medium for high reliability

systems when compared to conventional storage devices such as HDDs. These proper-

ties include higher performance, low power consumption, shock resistance, and small

physical size. Despite these issues, HDDs have been used as primary devices in PCs

and laptops due to their low cost and high storage capacity.

This chapter is organized as follows: Section 2.1 presents the basics and over-

all structure of flash memory. Next, the structure and main components of the flash

transition layer are discussed in Section 2.2. Design architecture and current research

aspects of flash-based SSD architectures are described in Section 2.3. After introduc-

ing parity-based RAID mechanisms in Section 2.4, the characteristics of workload in

terms of random and sequential access are described in Section 2.5. Section 2.6 defines

the basics of real-time systems. Finally, a summary is given in Section 2.7.

12

2.1 Overview of Flash Memory

Flash memory is a type of Electrically Erasable Programmable Read-Only Memory

(EEPROM). It retains data even when there is no power. It consists of a number of

transistors with an oxide layer located among them. Flash memory stores data in a

way that values of the cells in the oxide layer either change from high (1) to low (0),

or vice versa, once a datum is loaded into it.

There are two distinct types of flash memory—NOR and NAND. NOR-based flash

memories benefit from fast random reads, but suffer from slow write and erase opera-

tions. Due to its fast random access feature, they are commonly used for holding live

data such as for code execution. On the other hand, NAND-based flash memories are

more suitable for use as medium or long-term storage in embedded systems because of

their fast write and higher storage density features. Only NAND-type flash memory is

considered in this thesis.

Figure 2.1: Internal structure of flash memory

Flash memory consists of multiple blocks, with each block containing of certain

number of pages, as shown in Figure 2.1. A page is logically divided into two parts:

a data area, for storing actual data, and a metadata area, for keeping metadata of the

related page such as ECCs, logical block address, logical page address, and page status

flag (valid, invalid or free). The size of the data area varies between 512-4096 bytes,

while the size of the metadata varies between 16-128 bytes.

13

The granularity of the erase and read/write operations differ from each other in

flash memory. The erase operation must be performed at the block level but the read

and write operations are performed at the page level. Writing a page size datum from

a register to a physical flash page takes typically 200-700 µsec. However, erase opera-

tions are considerably slower compared to write operations, and typically take around

1.5-3.0 msec as they involve erasing the whole block. The fastest operation in flash

memory is the read operation which takes around 20-50 µsec. Due to the physical

features of flash memory, each flash cell has a limited number of erase operations,

typically between 10,000 and 100,000.

2.2 Flash Translation Layer

Figure 2.2: Architectural system design of flash memory

14

Due to flash memory’s inherited features, special algorithms and data structures are

required to manage I/O operations over flash memory. An architectural design for flash

memory is shown in Figure 2.2 as a block diagram.

Given I/Os from the application layer, it can not directly communicate with raw

flash memory. There are two ways of adapting flash memories: first, the FTL [23] and,

second, flash-specific file systems such as JFFS [24] and YAFFS [25].

Flash devices can be used as normal block devices by eliminating their complicated

internal structure with the help of an FTL [23]. Unlike HDDs and volatile memories

(such as Dynamic RAM (DRAM)), flash memory-based storage has the erase-before-

write feature. Blocks cannot be overwritten and must be erased before they can be

re-used. A flash page can be in one of three different states including valid, invalid

and free. If there is no data written into a page, then it is considered to be a free page.

A write operation to a free page changes its state to valid. Flash memories do not

perform update-in-place as in HDDs; instead, the previous page is marked as invalid

and the new data is written to a new physical page location. To keep changes between

logical and physical addresses, an address mapping table needs to be managed. Also,

invalid pages must be reclaimed when the system suffers from a lack of free space.

These operations are handled by the FTL layer. FTL performs four different prin-

ciple tasks including garbage collection to reclaim invalid pages, address mapping to

keep the link between the logical and physical addresses, wear levelling for extending

the life of the flash memory, and bad block management to manage expired blocks.

These components will be detailed in following sections.

2.2.1 Address Mapping

The address mapping algorithms of the FTL are divided into three categories: page

level, block level, and hybrid mapping. The techniques retain a table that keeps the

15

changes between the logical page number (LPN) and physical page number (PPN).

The table is usually stored in two different locations: Static RAM (SRAM) memory

for faster access, and the metadata area of each physical page to retain the table when

there is no power. Once the file system starts up, the table in the dynamic memory is

constructed by reading all the metadata areas of each page.

The page level mapping technique has been widely used in number of FTL designs

due to the reduced complexity of its structure and faster access times [18, 26]. Once

a read operation is given from the host with an LPN, the FTL finds its corresponding

physical location by checking the address table stored in SRAM. If an update request

arrives at the storage system then the mapping table first invalidates the previous phys-

ical address and assigns a new PPN for the request.

Figure 2.3: Page level address mapping

Figure 2.3 illustrates an example of an update operation in a page level address

mapping algorithm. An update instruction is given to the FTL with LPN 4. First, the

FTL finds its associated PPN (5) by checking the mapping table. Second, if the LPN

16

is already linked with an PPN, then it locates a new PPN (8) for the LPN, thereby

updating the mapping table and invalidating the previous PPN (5).

Although the page level mapping offers a faster and easier way to keep changes in

the PPN, it suffers from a large memory overhead due to the size of the mapping table.

The size of the mapping table increases with the capacity of the flash memory, which

requires a bigger size SRAM. To address this problem, block level address mapping

techniques have been used in number of studies [27, 28].

Figure 2.4: Block level address mapping

An example of a write operation in block level mapping is illustrated in Figure 2.4.

Each logical block number (LBN) is linked to a physical block number (LBN). If a

write request is assigned to the FTL with an LPN (9), the FTL calculates its LBN and

offset, which defines the page location in the corresponding PBN. It then finds the

physical block location and target page within the block with the help of the offset.

Although block level mapping reduces the size of the mapping table, it causes

slower access and requires more complex architecture compared to page level mapping.

17

To address this, hybrid mapping techniques have been studied in the literature [29–31].

The purpose of these approaches is a balanced trade-off between page and block level

mapping. Generally, hybrid mapping techniques use block level mapping to find the

PBN and page level mapping to find the PPN within the PBN. The LPN is also stored

in the metadata area of the corresponding physical page.

To be consistent with the previous reliability enhancement mechanism [11] and to

provide simplicity and efficient garbage collection, the presented mechanism is based

on the page level mapping schema. It is also noted that the page level address mapping

technique is most suitable for efficient garbage collection as it does not require an

expensive merge operation between the blocks [32].

2.2.2 Garbage Collection

In case of applying an update-in-place policy of magnetic devices on flash memory-

based storage, each update operation leads an additional block erase operation, which

significantly slows down system performance to an unacceptable level. To overcome

this problem, flash memory allows an out-of-place update where the updated data is

located to a new (free) place, invalidating the old data. After a period of time, flash

memory may suffer from a lack of free space due to invalid pages. To reclaim the

invalid spaces, garbage collection needs to be performed by the FTL.

Figure 2.5: Steps of a generic GC

The steps of a typical GC process are illustrated in Figure 2.5. The GC first selects

a victim block based on a selection algorithm. Usually the selection of the victim

18

block is decided by the greedy approach, which chooses the block that has the most

number of dirty pages among the flash memory blocks. Second, the GC copies all valid

pages from the victim block to a free block and updates the indexing information in

the address mapping table according to the new physical locations of the valid pages.

Once all pages have been transferred, the block is erased and it becomes a free block.

There are two main types of GC mechanism according to their triggering tech-

niques [33]. The first is idle time-based, where cleaning takes place in the background.

This technique significantly reduces the performance overhead of the cleaning process

as it is triggered when idle time is detected in the workload. However, the detection

of an idle time period requires a complex algorithm, and some workloads do not even

have sufficient idle time periods for cleaning. Therefore, threshold-based cleaning was

adopted, where cleaning is triggered based on the amount of free space remaining. It

has a simpler design architecture and has predominantly been used in existing FTL

layers. However, it may cause long and non-deterministic delays as once cleaning is

triggered, incoming requests have to wait until it is over. A number of FTL mecha-

nism were proposed to address this performance and non-deterministic behaviour of

the flash memory [15–18, 34].

Garbage Collection in Main Memory

In computer science, garbage collection is also used for main memory (RAM) man-

agement. If objects in the memory are not being used anymore by the corresponding

program then the garbage collector reclaims such spaces to provide more free memory

space for new programs to be executed [35]. The main difference between flash mem-

ory’s GC and main memory’s GC is that while the erase operation is handled in page

level in main memory, it is not possible to reclaim invalid/dirty pages without erasing

the whole block in the GC of flash memory. Thus, the time cost of flash memory GC

is considerably more expensive than that of main memory.

19

2.2.3 Wear Levelling and Bad Block Management

Flash memory has a limited number or erasure cycles per block of between 10,000 and

100,000, as mentioned earlier. Excessive usage of the same blocks shortens the average

life of the flash memory in general. To prevent this, FTL uses wear-levelling to dis-

tribute erasure operations evenly across flash memory blocks [23]. The main purpose

of the wear-levelling techniques is to distribute total erase operations evenly across the

memory block to prolong the lifetime of the flash memory. To handle this, hot/cold data

separation/identification techniques are principally applied [36]. Hot data—which are

accessed more frequently than the cold data—are placed into less aged blocks while

cold data are placed into more aged blocks to balance the age of memory blocks.

Moreover, the FTL can detect the bad blocks which occur due to manufacturing

defects or natural wearing out. When a memory block becomes unreliable, the bad

block management component of the FTL detects them by applying checksum tech-

niques. After that, these blocks are marked as bad and removed from the mapping table

to prevent any access to them.

2.3 Flash-based SSD Architecture

Figure 2.6: SSD internal architecture

20

Figure 2.6 illustrates the internal architecture of a generic flash-based SSD. It

mainly consists of:

I. Flash packaging (commonly thought of as “the flash chip”) for storing persistent

data. Flash packages can be accessed in parallel within an SSD architecture,

which improves the SSD performance by improving the throughput;

II. A buffer (which can be thought of as a cache) for holding data relevant to recent

read and write requests;

III. A processor to handle management operations;

IV. Volatile memory to support the processor with storage of address mapping tables

and other system data;

V. A bus, or buses, connecting the flash packaging with the control components.

The FTL is located between the SSD and the host system interface. It may be

commonly thought of as the combination of the control software, processor, buffers,

and volatile memory, although in practice there is overlap in these components with

the SSD. Although a generic architecture was presented here, most off-the-shelf SSD

products hide their internal designs for commercial reasons.

The current research trends regarding SSDs usually focus on these aspects: per-

formance, reliability, endurance, capacity and cost. Multichannel parallelism of flash

packages is widely used to improve both the system performance and reliability in

SSD architectures [37–40]. To improve the storage capacity and reduce the system

cost, MLC technology can offer benefits over SLC devices as they offer higher storage

densities. However, MLC devices suffer from greater unreliability—particularly when

the flash device ages—than SLC due to a lower erase endurance [41, 42].

Overall reliability of MLC flash-based storage systems suffer significantly from

high Bit Error Rates (BER). One approach to enhance reliability in the case of BER is

21

the use of EEC. This is parity-style data that is stored in the metadata of each page of

memory, and is used to cross-check, or repair, the data it relates to at the point where

data is read. However, there are limits as to how much it can improve reliability as the

potential to repair is limited. For this reason it is not ideal to use it as a sole mechanism

when reliability is particularly crucial. MLCs also do not lend themselves to ECC

techniques as the size of the metadata areas is limited.

Conventionally, RAID systems have been widely used to provide data protection

against chip-level failure, and to improve integrity of storage [8, 43–46]. However,

RAID can not be directly applied to SSD arrays because of the risk of wearing out

individual devices in the array simultaneously [8]. The problem is addressed using a

RAID architecture that enhances reliability by protecting against component failures

using a load imbalancing technique [8, 11]. This enhances reliability, but ignores the

deterministic response time requirements of hard real time systems—due to uncoordi-

nated garbage collection [15] and off-line device replacement [47].

For understanding design parameters better, the building blocks of RAID systems

are explained in following section.

2.4 Parity-based RAID systems

RAID techniques are applied across multiple drives or chips in order to prevent data

loss in case of a disk failure. The data is allowed to use the redundancy inherent to the

RAID system. The main aim of RAID is to provide data redundancy and faster access

for I/Os over multiple storage devices. There have been several RAID techniques in-

troduced in the literature. RAID 0, for example, stripes the data evenly across multiple

devices to enhance system performance but ignores the reliability.

On the other hand, parity-based RAID levels such as RAID 4 and RAID 5 reserve a

chip/drive to store redundant data. In case of a device failure, the data can be recovered

22

with the help of redundant data. In particular, RAID 5 evenly stripes the redundant data

across the devices while a device is donated to the store all redundant data in RAID 4.

Figure 2.7: RAID 5 structure

RAID 5, for example, can be implemented with multiple devices, as shown in

Figure 2.7, but at least three devices are required. Data from the host is stored in the

internal buffer of the RAID controller, which then breaks down the data (A) into data

stripe units (A1, A2, A3) according to striping granularity and generates a parity stripe

unit (AP) by simply exclusive ORing (XORing) the data stripe units. The striping

granularity can be at both the block level or page level. The parity knowledge of each

stripe is evenly distributed across the devices in the case of RAID 5.

In case of a data failure on Device 1 in Figure 2.7, the RAID rebuilding process

triggers the following steps: the controller detects all the logical stripe units for the

corresponding stripe and reads them from their locations (Device 2, 3 and 4). Then,

by XORing these stripe units, the failed data can be logically reconstructed. After

calculating the failed data, new space is allocated—usually within a spare device—and

the calculated data is relocated to this new device. This process is repeated for each

failed stripe unit until the whole set of failed data is recovered.

23

2.5 Write Types in RAID

Flash-based SSD storage handles I/Os in a quite different way from HDDs. The main

reason behind this is that SSDs do not experience seek time when accessing the physi-

cal location of the data as it does not contain a moving cluster head. Therefore, there is

no performance variety between random and sequential access on a single flash mem-

ory. However, HDDs contain a moving cluster head to access the physical location of

the data, which makes them slower in the case of random access I/Os to memory.

Although random access to the single flash memory does not produce additional

performance overhead for single flash, it is handled in a quite different way in flash

based RAID architectures. There are two types of write operation in parity RAID-

based systems: full stripe write and partial stripe write. If data is written across all

devices in the array, then it is considered to be full stripe write. It is also known as

a sequential write in RAID-based storage [8]. It does not require additional read or

update operations as the whole stripe is being updated.

However, parity-based RAID systems do not perform well with partial stripe writes

which are also known as random writes. If the number of stripe units is less than n-1,

then it is called as a partial stripe write. Any changes in a chunk of stripes requires

additional update operations in parity data to the corresponding stripe. To calculate

the new parity, some stripe units need to be read; these operations lead to the system

suffering performance overhead.

For example, to update data B1 in the stripe illustrated in Figure 2.8, the RAID

controller needs to carry out the following steps:

• Read BP and B1 to calculate the new parity

• Calculate new parity B′P

• and write new data B′1 and updated parity B′P to the array

24

Figure 2.8: Random update operation in parity-based RAID

When any of the data stripe units are updated in a logical stripe, the parity data

has to be updated. Therefore, the controller first reads the old data stripe unit B1 and

the old parity data BP. Then, the new parity stripe unit B′P is calculated by XORing

them. Finally, the updated parity data B′P and the updated stripe unit (B′1) are written

into their new physical locations. The time cost for update data B1 can be calculated

as (2 × tread) + (2 × twrite), where tread and twrite give the read and write cost of a page of

flash memory, respectively. Because of the parity update overhead of random writes,

parity-based RAID techniques show lower performance.

The number of GCs in flash memory is highly affected by the type of workload.

For instance, random writes and update operations of small size increase the need for

GC significantly [48]. Thus, random write-dominant workloads suffer from signifi-

cant performance overheads due to triggering the GC more frequently. These types

of workload slow down the GC because of the need to copy more valid pages during

the GC [18]. There have been a number of techniques proposed to eliminate this per-

formance overhead, such as hot/cold data separations [49, 50]. The garbage collector

also blocks all incoming request to the memory for a non-deterministic time. This is

problematic for real time systems where guaranteed response times are required. The

basics of real-time systems is described in following section.

25

2.6 Real-Time Systems

In a real-time system the execution time of the task is as important as the correctness of

the results [51]. Hardware and software architectures must be designed to meet these

requirements. The real-time system does not actually mean the system itself offers high

performance. The important criterion is to meet the time constraints of the system.

Examples of real-time applications can be found in control systems, transaction and

multimedia systems such as spaceship control, vehicle simulation, data acquisition and

image processing.

Real-time applications handle a variety of tasks in different time periods. The pe-

riod might be fast for one application whilst being slow for another. For instance, the

period for engine control might be measured on the millisecond timescale, while a

timescale of seconds might be suitable for scientific data acquisition.

Types of Real-Time Systems

Real-time systems can be grouped into two categories, namely hard and soft real-

time systems. The system has to respond to each task within a defined time period

in hard real-time systems. If the real-time system does not response to a hard real-

time task before its deadline, the system fails. Missile guidance and anti-lock breaking

systems are examples of hard real-time systems.

On the other hand, the system will not fail if applications miss their deadlines in

soft real-time systems. The execution deadline is also important for these systems, but

failure to meet them might be tolerable. Examples of soft real-time applications are

data acquisition systems and operating systems.

Characteristics of Real-Time Tasks

Real-time tasks fall into two main categories: Synchronous and asynchronous.

Synchronous events are predictable as they occur periodically and with precise timing,

such as the video and audio recording in a camcorder. On the other hand, asynchronous

26

events are completely unpredictable, such as I/O requests arriving at the memory. The

arrival time of the request can not be estimated. It is quite challenging to provide a

deterministic response time for asynchronous real-time tasks.

Challenges in Real-Time Systems

One of the most important concepts of a real-time system is predictability. All tasks

in real-time systems should be completed before a particular, predetermined amount of

time. If one of these tasks exceeds its predetermined execution time, it could cause

unreliable results or even a system crash, depending on the type of real-time system.

Therefore, the prediction of execution time for each task is of vital importance for real-

time systems [52]. Also, real-time systems are required to detect and correct internal

and environmental failures. This mechanism is crucial for such systems where the user

cannot easily reach the system, such as in space craft and satellite applications.

Moreover, many real-time applications have multiple events arriving indepen-

dently. In the existence of concurrent architectures and a single processor, a scheduling

algorithm is needed to define the priority assigned to these events. It is challenging to

develop a real-time scheduler for such types of applications.

This section shows the importance of the deterministic performance behaviour of

a system for hard real time applications. Each component of the system is required

to respond in a predefined time period to prevent hard real time applications failing.

One of the core components of such systems is storage which has a significant effect

on response time of the system. A sole flash based storage does not meet the core

requirement of the hard real time applications. Therefore, a well designed mechanism

is required to develop real time flash storage.

27

2.7 Summary

A background study of flash memory technology is presented in this chapter. A generic

FTL and its architectural design were reviewed. It emerges the crucial role of FTL

design with its main components including; address mapping, garbage collection, wear

levelling, and bad block management.

One of the important role of the FTL layer is to reclaim invalid spaces in the mem-

ory which is called garbage collection. It was revealed that garbage collection causes a

long and non-deterministic time delay which is problematic for high integrity systems

where deterministic response time is necessary.

Next, internal architecture of a generic SSD storage system was presented. The

SSD architectures were discussed in terms of performance, reliability, endurance, ca-

pacity and cost. Current RAID techniques to enhance the performance and reliability

of the SSD architectures were investigated. Conventional HDD-based RAID can not be

directly applied to SSD arrays because of the risk of wearing out individual devices in

the array simultaneously. This problem is addressed using RAID architectures which

enhances reliability, but ignores the deterministic response time requirements of hard

real time systems.

For better understating of design parameters, real time systems were reviewed in-

cluding their types and some common challenges in real time systems. It is observed

that predictability of access time for I/Os is highly important requirement for hard real

time applications and the SSD RAID architectures do not meet the requirement— due

to uncoordinated garbage collection and off-line device replacement.

To conclude, flash memory based storages offer a number of advantages but real-

time support issues of the memory limits its usage in hard real time applications. These

issues need to be addressed to improve the reliability of flash based storages for hard

real time applications.

28

Chapter 3

Real-time Support Issues for Flash

Memory Storage Systems

This chapter presents real-time support issues for NAND flash-based SSD storage ar-

chitectures. Generally, existing real-time garbage collectors—based on partial or pre-

emptive cleaning policies—were proposed to provide deterministic response times for

single flash memory units for a non-deterministic cleaning process. However, they do

not particularly suit the reliability mechanism inherent to multiple devices used in a

RAID mechanism with a strict age distribution policy. Moreover, it is clear that cur-

rent reliability enhancement techniques for SSD RAID [8,11] have serious deployment

issues for hard real-time systems, especially when device replacement is required.

3.1 Introduction

Conventionally, RAID systems have been used to provide protection against chip-level

failure [10]. An array of memory components is used to enhance both reliability and

performance by providing concurrent access to members of the array. Parity-based

RAID levels (such as RAID 4 and RAID 5) have been widely used to enhance data

29

reliability. These RAID techniques reserve an element of the array to keep redundant

data, and thus failures can be corrected at the chip, block or page level when an uncor-

rectable multi-bit error occurs, as described in Chapter 2.

However, the RAID system cannot be directly applied to flash arrays because of

the risk of the wearing out of the elements of the array simultaneously [8]. To address

this problem, a number of RAID-based flash storage architectures have been proposed

that enhance system reliability by protecting the flash memory against chip-level fail-

ures in high integrity systems [8, 11]. They are based on an uneven parity distribution

technique to prevent the simultaneous wearing out of the chips’ components.

These RAID techniques offer significant improvement to the reliability of flash

storage systems but it does not meet the (sometimes strict) requirements of real-time

systems, where guaranteed response times are often necessary. This is primarily due to

two main reasons: first, the erase-before-write characteristic of the flash memory and

the management of resources as they are used; second, these techniques require devices

to be taken off-line while components are replaced, so consequently these devices are

of limited use in hard real-time systems.

The aim of this chapter is to present the real-time support concerns—in terms of

non-deterministic response time—in NAND flash-based SSD storage systems based

on parity-based RAID techniques. In addition, to point out the inherent problems of

RAID in SSD storage systems, existing studies in the literature are also discussed from

the perspective of hard real-time applications.

This chapter is organized as follows: serious issues with flash memory regarding

garbage collection that cause unpredictable response times are discussed in Section

3.2. Following this, reliability concerns of flash memory and possible solutions to

these concerns are discussed in Section 3.3. Section 3.4 presents current solutions and

their limitations related to SSD RAID systems. Finally, summary of the chapter is

presented in Section 3.5.

30

3.2 Unpredictable Performance on Garbage Collection

Figure 3.1: Garbage collection

This section discusses non-deterministic behaviour of GC. The basics of GC have

already been presented in Chapter 2. An example of a typical GC process is illustrated

in Figure 3.1. The FTL first selects a victim block based on a selection algorithm.

The GC then copies all valid pages from the victim block (block A) to an empty block

(block B) and updates indexing information in the address mapping table according to

the new physical locations of the valid pages. Once all pages have been transferred,

the block is erased and becomes a free block.

Since a generic GC is non-interruptible and includes an expensive erase operation

(nearly 1.5 ms), it significantly degrades I/O performance and reduces the lifetime of

the flash cells. If an instruction is assigned to the flash memory while there is an on-

going GC, the instruction has to wait until GC is over since the internal register and

memory channel are occupied by the GC operation in traditional FTL mechanisms.

This causes an unwanted latency and non-deterministic response time, which is a bot-

tleneck for high reliability applications where guaranteed access time is required.

31

The time cost of GC for a victim block is calculated based on the formula below:

GCcost = (Bvalid × tcopy) + ter (3.1)

GCcost is calculated by considering the number of valid pages in a victim block

(Bvalid), the time taken to copy a page (tcopy), and the time penalty, or cost, for a block

erasure (ter), as stated in Equation 3.1. Although time costs are static in the formula,

Bvalid can vary depending on the usage pattern of the victim block. Since GC is non-

interruptible, and a request overlapping with an ongoing GC has to wait until it is over,

the response time of the request becomes unpredictable. Moreover, in some cases,

FTLs adopt a bulk cleaning policy where the GC is not only triggered for a single

block, but a number of blocks are involved in the GC until a certain amount of free

space is generated [53]. This further enlarges the problem.

Figure 3.2: Pathological performance behaviour of individual SSDs taken from refer-
ence [34]

Moreover, a recent study reveals that performance variability of the flash based

devices are more in RAID systems compared to that of single SSDs due to an un-

coordinated garbage collection mechanism [34]. Figure 3.2 and Figure 3.3 show the

throughput changes with different types of workloads in a MLC based single SSD de-

vice and multiple SSDs in a RAID architecture, respectively (the sub figures inside

32

Figure 3.3: Pathological performance behaviour of multiple SSDs with RAID taken
from reference [34]

main figures represent enlarged version of the first 20 seconds of the main figures). It

is clear that the performance variability is significantly increased with the usage of SSD

in RAID architecture. The performance variability is significantly reduced via glob-

ally coordinating the cleaning operation in reference [34] but it only considers system

performance and fails to provide deterministic access time for storage.

Since the unpredictable performance on garbage collection can be tolerable for soft

real-time applications, commercial off-the-shelf SSDs have been designed to provide

improved performance and reliability ignoring the deterministic response time capa-

bility [54–56].

3.3 Reliable and High Performance NAND Flash-based

Storage

One of the most important issues when using SSD devices in high reliability envi-

ronments is the fact that they physically wear out over time—normally related to the

number of times parts of the device are erased—meaning that data stored on the device

33

will become unreliable over time. This failure characteristic is different to traditional

magnetic media that typically fail non-deterministically.

One approach to enhancing reliability in the case of wear-out is the use of EEC

[57–59]. This is parity-style data that is stored in the metadata of each page of mem-

ory, and is used to cross-check, or repair, the data it relates to at the point where the

data is read. For SLC-based flash memory Hamming codes are used, but these are not

sufficient for MLC-based flash memory [60]. Moreover, high capability ECCs have

been proposed for MLC-based flash memories which build on more complex algo-

rithms and consume more power, such as Reed-Solomon [61], EVENODD [62], and

Row-diagonal Parity [63]. However, there are limits to how much they can improve

reliability as the potential to repair is limited, and therefore more powerful ECCs are

needed for next generation flash memories [41].

For these reasons, it is not ideal to use EECs as the sole mechanism when reliability

is crucial. Where storage capacity is an issue, MLC technology can offer benefits over

SLC devices. However, MLC devices suffer from greater unreliability—particularly

when the device ages—than SLC devices due to lower erase endurance.

Recent advances in storage technology have applied RAID technology to SSD stor-

age in order to improve reliability, data integrity, and system performance [45, 46, 64,

65]. In particular, RAID 0-based redundancy has been studied with SSDs to provide

enhanced performance [45]. Using a log structured approach — where data is not

updated in its same physical location, a new copy is appended at the end of log by

updating its connection link — , not only the performance but also the lifespan of the

SSD RAID storage is improved [46]. To minimise the performance overhead of ran-

dom workloads and improve system dependability, the delayed partial parity update

schema has been proposed which improves the performance of the system up to 38%

compared to traditional RAID-5 [64]. Moreover, a configurable RAID mechanism for

SSDs has also been presented [65] to reduce parity data overheads thereby reducing

34

the read and write costs up to 84% and 56% compared to RAID 5 and RAID 6. Fur-

thermore, an adaptive RAID algorithm and an efficient RAID mechanism have been

patented to improve system reliability [66] and performance [67].

Common RAID techniques, such as RAID 4 and RAID 5, hold parity data to recon-

struct original data in case of block errors [68]. However, the use of these techniques

with SSDs reveals the problem of simultaneously wearing out all devices. In a typical

disk-based RAID environment, data is stored across a number of devices, with one of

the devices being used to store parity. When a particular device fails, the remaining

devices can be used to calculate and logically reconstruct the data that was stored on

the failed device. However in an SSD environment, components will typically wear

out at the same rate, thus rendering all elements of the array unreliable at the same

time. This problem was first stated in reference [8].

In previous works, RAID-based architectures were presented that enhanced the re-

liability of SSD storage systems by mitigating this problem [8, 11]. This was achieved

by guaranteeing wear imbalance between each component in the array, thereby ensur-

ing they do not reach their endurance limits simultaneously. This is achieved using two

primary techniques: the first is an uneven parity distribution that ensures erases across

components are distributed unevenly; the second is a device copy/swap algorithm that

moves data around and manages lifespan as components reach their endurance lim-

its. Although maximum reliability is achieved by only random writes, reference [11]

shows improved reliability for both sequential and random writes via a forced random

write mechanism, as presented in [69].

3.4 Current Challenges and Solutions

A number of works have been conducted to improve the efficiency and reliability

of NAND flash-based SSD storage systems over the past decades. Multi-chip paral-

35

lelism and RAID technologies have been used with SSDs to improve their throughput

[38–40, 43–46]. On the other hand, to improve the data reliability of flash-based stor-

ages, there have been many mechanisms investigated including wear levelling, ECCs,

erasure codes, flash file systems, hot-cold data identification, load balancing, parity-

based RAID, and real-time garbage collection mechanisms [15–18, 24, 25, 49, 70–75].

One of the main aims of commercial products is to increase the I/O bandwidth with

multichannel architectures, which enables the interleaving of data over multiple flash

chips [55, 56]. Moreover, to exploit internal parallelism of flash-based storage, several

techniques have been introduced in the literature [37, 76]. However, these techniques

mainly focus on enhancing system performance, ignoring guaranteed upper bounds of

I/O access latency and data reliability.

In the last decade, various techniques have been introduced proposing various sys-

tem architectures in order to overcome the non-deterministic behaviour of the flash

memory [15–18]. In particular, the real-time aspects of flash memory first studied

by [15] propose that real-time garbage collection by using a garbage collector thread

for each real-time task. It guarantees free space for incoming real-time tasks to be

executed without an unpredictable GC delay. It is based on a page address mapping

technique. However, it requires file system support to predict bounded access time,

which limits its usage.

Choudhuri et al. [16] proposed a real-time FTL (the term real-time FTL is some-

times referred to in this thesis as real-time GC) that guarantees an upper bound for

I/O operations in NAND flash, called GFTL. A partial block cleaning policy is applied

with the help of extra free blocks in order to reduce the upper bound cost of write

operations. The GFTL always keeps extra blocks for write operations to be executed.

It uses a 1:1 block mapping between logical and physical blocks. If a corresponding

block is full then data is stored in a write queue which always has to be available.

36

The key algorithm of GFTL is partial block cleaning. The partial block cleaning

policy divides the GC process into a number of partial steps. The time length of each

step should not be longer then the longest atomic operation of flash memory, which is

the erase operation. Also, the time length is equal to the period time for real-time tasks.

It introduces three main phases for garbage collection, namely read, write and block

erase. Although it provides upper bounds for real-time tasks, it needs an extra copy

operation which increases average system response time and the number of physical

write operations.

Moreover, Qin et al [18] proposed a real-time flash translation layer called RFTL to

guarantee a worst-case response time. RFTL uses a distributed partial garbage collec-

tion policy similar to GFTL. However, RFTL not only focusses on worst-case response

time but also considers the average response time of the system.

The main difference between GFTL and RFTL is the method by which garbage

collection is achieved. GFTL retains a global GC queue for the whole memory, while

GC is scattered over logical blocks in RFTL. A hybrid-level mapping technique is

adopted in RFTL. Every logical block corresponds to three different physical blocks,

namely the primary block, the replacement block and the buffer block. The primary

block is the first block used for a write operation. When it becomes full, all incoming

requests are handled using the buffer block. The replacement block is used when GC

is triggered, as the purpose of freeing a block is that valid pages need to be moved. The

functionality of the blocks can be changed dynamically depending on the requirements

of the mechanism.

Moreover, to remove the unpredictable latency of GC, a pre-emptive GC (PGC)

mechanism has been proposed in [17]. Unlike RFTL and GFTL, the mechanism does

not require additional memory to offer predictable access times, which makes it at-

tractive for embedded systems where system resources are limited. Two types of pre-

emptive mechanisms are offered, a semi pre-emptive GC, which is only available at

37

predefined pre-emption points, and fully pre-emptive GC, which enables immediate

suspension of GC to serve requests. Since the flash technology does not fully support

suspending ongoing requests, the feasibility of the fully preemption GC mechanism is

discussed in reference [17]. More details regarding PGC will be given in Chapter 4.

On the other hand, a method guaranteeing real-time access to flash memory has

been patented [77], the research into which also investigated this problem at the single

chip level. Moreover, garbage collection-related performance and reliability issues of

flash memory-based devices that ignore the non-deterministic access time have been

addressed in a number of patents [78, 79].

3.4.1 Real-Time Support Concerns in Real-Time FTLs with RAID

Although real-time FTLs offer a guaranteed response time and enhanced system perfor-

mance for I/Os in the existence of active GC, they only consider the non-determinism

problem at the single chip level, not on flash storage with multiple chips with RAID

architecture. This creates a number of real-time support concerns on a storage system

with RAID architecture.

First, if a real-time garbage collector is allowed free rein over erase operations

while garbage collecting, this would affect the strict management of the lifespan of

each SSD in the array that is conducted to provide enhanced reliability. An uncon-

trolled cleaning would result in unwanted ageing ratios, which reveals a reliability

problem for mechanisms where strict control over ageing ratios of flash memories are

necessary. One of the key points in developing an efficient GC mechanism is to de-

termine an optimum threshold level for the cleaning process, especially for the GC

mechanisms which are triggered based on remaining free space [80]. However, it is

challenging to provide an optimum threshold level for an efficient cleaning mecha-

nism as it is highly dependent on incoming workload weights. Also, the experimental

38

Table 3.1: Maximum response times of existing real-time FTLs

Technique WCET

GFTL [16] ter+max {U(ew), U(er)}

RFTL [18] max {ter+ U(ew), U(er)}

PGC [17] ter+max {(Uew), U(er)}

results—which will be presented in Chapter 4—indicate that there is no "optimum

threshold" for each concurrent unit of the array to maintain the reliability mechanism.

Second, since real-time FTLs only focus on the problem at the single chip level,

the improvement in WCET is limited because there is no way that an I/O can avoid

the erase operation of the GC in the proposed techniques. The main idea of exist-

ing techniques is to partition or pre-empt the GC process. As the GC can only be

portioned/pre-empted at the granularity of the atomic operations of the flash memory,

none of the existing proposed techniques present a means of avoiding the most expen-

sive atomic operation of flash memory, namely the erase operation. In the worst-case

scenario, a request has to wait for an erase command to finish, which is nearly ten

times more expensive than a write operation, limiting the improvement in WCET and

significantly reducing system performance. For the request to be serviced takes U(ew)

or U(er), which represents the maximum execution time for the write and read opera-

tions, respectively. As illustrated in Table 3.1, all WCETs have inherently expensive

ter costs (time taken for an erase operation).

To maintain the reliability enhancement mechanisms while offering a deterministic

access guarantee to flash-based storage, a dynamic GC triggering mechanism could be

a possible solution. Depending on the current ageing level of the devices in the array,

GC operations can be postponed or triggered in advance. WCET and the performance

of the storage mechanism can be further improved by benefiting from concurrent sys-

tem architecture and redundant data of the parity-based RAID mechanisms.

39

3.4.2 Real-Time and Performance Concerns of the Reliability En-

hancement Mechanisms

Figure 3.4: Device replacement operation

Reliability enhancement mechanisms require devices to be taken off-line while

components are replaced—consequently, these devices are of limited use in hard real-

time systems. This presents serious deployment issues for hard real-time applications.

The device replacement and copy/swap operations of the reliability mechanism of

reference [11] are illustrated in Figure 3.4. The upper level of the diagram (Replace-

ment 1) represents the system during the first device replacement process, and the lower

level (Replacement 2) represents a later state of the system—during the second device

replacement process, along with actual parity distributions and ageing levels of each

device, based on the parity ageing formula in reference [8]. In the first replacement

40

process, the most aged device (SSD 5) needs to be changed with a hot spare device

(SSD 7) when it reaches its endurance limit; however the need to actively ensure that

an uneven parity distribution is still maintained, and that the correct device ageing is

achieved for subsequent replacements. This is achieved using a copy/swap operation

involving SSDs 1, 2, and 6. At this point, the least aged device (1) is taken off-line

(and remains off-line until the next replacement process begins), and is replaced with

device 6. The effect of this is that the age distribution between device 1 and the next

youngest active device (2) is allowed to increase. In any subsequent device replacement

operation, devices 1 and 6 are swapped back.

Furthermore, parity data has to be redistributed as part of a replacement process.

In this example, the parity assignment across the devices is (80%, 19%, 1%, 0%, 0%),

which means that device 5 holds 80% of the parity, device 4 holds 19%, and so on.

When device 5 is replaced by device 7, 61% of the parity needs to be moved from

device 7 to device 4 in order that it becomes the most parity-dense; a similar domino

effect subsequently ripples down the system. As a result, all the parity data on the most

aged device is first reconstructed on device 7 and then shifted to other devices. These

operations necessarily increase the write amplification factor and device replacement

time. Write amplification refers to the additional writes caused by operations such as

garbage collection and wear levelling, and is formulated as the ratio of the total number

of write operations performed to the write operations requested by the host [81]. This

presents limitations in hard real-time environments.

Device replacement mechanisms are usually triggered when idle time periods or

low density streams are detected in a workload. The garbage collection technique

could be using the idle time detection approach, and therefore there will be potential

overlap between the garbage collection process and the swapping operation in the target

device, which will slow down the I/O rate further when replacing a device. To provide

an on-line and efficient RAID reconstruction mechanism, a number of studies have

41

been conducted based on traditional magnetic hard disks such as [19–21]. Although

they offer on-line reconstruction, these are not fully compatible with solid state RAID

systems. For example, these only focus on the replacement process in case of a sudden

(non-deterministic) device failure. However, unlike magnetic hard disks, the failure

of solid state devices due to wearing out can be predicted using the number of erase

operations performed and thus an expensive reconstruction operation can be replaced

with a low cost data migration process.

There have been several techniques proposed to replace solid state devices in

case of failure. Differential RAID (Diff-RAID) [8] increases the reliability of the

SSD RAID by distributing parity data unevenly across the elements in an array. It

also provides a device replacement which shifts parity according to the next parity

assignment—however a significant difference is that it applies a reconstruction method

based on magnetic devices and therefore increases write amplification and device re-

placement time due to additional parity movement operations. To reduce the parity

data overheads, a configurable RAID mechanism for SSDs is presented in [65]. The

mechanism stores less important data using RAID 0 (which does not provide redundant

data for recovery in case of failure) while more important data is stored using parity

based RAID levels. Although this reduces performance overheads incurred from par-

ity data, it does not provide a replacement policy for a complete device failure—only

partial levels of data recovery.

To guarantee average I/O latency while migrating data, reference [82] presents a

control-theory approach which dynamically adjusts the speed of data migration by

periodically measuring I/O performance of the magnetic storage devices. Thus it mi-

grates the majority of data during idle time periods or low density streams. Also,

reference [83] presents an idle time detection method that achieves zero impact on

the foreground application whilst rebuilding the RAID. The garbage collector tech-

nique presented in the reliability mechanism in [11] also use this idle time detection

42

approach and so there would be a potential overlap between garbage collection and the

replacement operation.

Since the failure characteristic of flash memory is different to that of traditional

magnetic media, which typically fail non-deterministically, a proactive device replace-

ment strategy can be proposed, where the performance overhead of device reconstruc-

tion can be replaced with an efficient data migration mechanism.

3.5 Summary

In this chapter, existing real-time support and reliability mechanisms for flash based

storages were reviewed and analysed. First, the real time support concerns in flash-

based SSD storage systems have been presented. It was revealed that flash based

SSD systems do not meet the real-time constraint of the hard real-time systems due

to the unpredictable GC performance. To address the non-determinism problem of

flash memory, a number of real time GC mechanisms are exploited to provide guaran-

teed access. However, they only consider single flash memory ignoring architectures

of multiple flash memories based storage system where it is required to strictly control

the ageing rate of multiple devices. It was also observed that the performance vari-

ability for multiple memory devices storage system is more in comparison to a single

memory device due to uncoordinated GC.

Then reliability concerns in flash based storages and their possible solutions were

discussed. Two possible solutions were revealed: ECCs and RAID mechanisms. It

was concluded that RAID mechanism is more capable of achieving a certain level

of reliability especially for the massive storage systems where new technologies of

flash memory are required. Especially the parity based RAID mechanisms with a load

imbalancing techniques offer improved reliability compared to the traditional RAID

mechanisms which have the high possibility of simultaneous device failure. In addi-

43

tion, a number of existing approaches aimed at providing online and efficient RAID

reconstruction based on traditional magnetic hard disks. However, online reconstruc-

tion mechanisms are not fully compatible with SSD RAID systems. Furthermore, these

mechanisms only focus on the offline replacement process, which is inefficient.

44

Chapter 4

Dynamic Pre-emptive Garbage

Collection

This chapter introduces a dynamic pre-emptive garbage collection (Dynamic PGC)

mechanism into the reliability enhancement mechanism. It dynamically adjusts the

existing pre-emptive garbage collection [17] with due consideration for the optimum

age distribution percentages of SSDs in the RAID array according to the reliability

mechanism. The proposed mechanism provides deterministic access guarantees for I/O

without ignoring the reliability mechanism. It also improves the real-time efficiency of

the system by dynamically synchronizing the GC modes of each device in the array.

For the rest of this thesis, the term SSD is should be considered interchangeable with

the terms flash device, device, and flash based storage.

4.1 Introduction

GC operation has a significant negative impact on the performance and lifetime of flash

storage. GC causes non-deterministic response times, which presents bottlenecks for

real-time applications. Also, GC operation includes an erase operation, which reduces

45

the lifetime of the flash cells as they physically wear out. Therefore, the flash block

that is going to be garbage collected needs to be chosen carefully.

A recent enhanced GC mechanism included the pre-emptive GC mechanism, where

incoming requests are served at predefined pre-emption points of a GC process [17].

The algorithm consists of two GC triggering threshold levels to distinguish the priority

of the GC process over I/O requests. This mechanism clearly identifies the upper

bounds for operations on a single NAND chip. However, it is challenging to set suitable

thresholds for pre-emptive GC where the flash memory is being used in a reliable

concurrent architecture, such as the reliability mechanisms in a RAID array where strict

management over the ageing ratios of the elements in the array is required. Since each

element has a different workload weight due to an unevenly assigned parity percentage

in the RAID mechanism, it is expected that a stable threshold level would deviate from

the targeted ageing distribution ratio for each SSD, and thus the reliability mechanism

may be disturbed.

In previous studies it has been noted that the number of GCs required is highly

affected by the types of workload. For instance, random writes and update operations

of small sizes increase the number of GC operations significantly [48]. Also, these

workloads slow down the GC due to a high number of valid pages being copied during

the GC [18]. The reliability mechanism focuses, in particular, on workloads which

mainly consist of random writes, which themselves increase the number of cleaning

operations performed.

The contribution of this chapter can be summarised as follows: the dynamic pre-

emptive garbage collection is proposed for SSD RAID. It has two main components.

First is dynamic garbage collection which not only considers the age distribution per-

centages of the reliability mechanism, but also adjusts the threshold levels for efficient

GC operation to reduce the associated timing cost. Second, a pre-emptive mode con-

troller is presented to coordinate ongoing GC operations with a holistic view of the

46

system. This pre-emptive mode controller reduces the down time of the array during

erase operations, thereby causing fewer I/Os operations to be delayed.

The chapter is structured as follows: In Section 4.2, the fundamentals of existing

PGC are discussed, followed by an empirical demonstration of the limitations of the

PGC over the reliability mechanism in Section 4.3. The architectural design of the

mechanism is discussed in Section 4.4. To address the associated limitations, a dy-

namic pre-emptive garbage collection for flash RAID array is proposed in Section 4.5.

Finally, chapter is summarised in Section 4.6.

4.2 Pre-emptive Garbage Collection

GC is a non-interruptable process used to reclaim invalid spaces in flash memory which

creates bottlenecks for real-time applications. To eliminate this behaviour, a set of work

has recently been presented in the literature which proposes a pre-emptive GC schema

that permits I/Os to be serviced by pre-empting active GC [17]. A GC process includes

number of atomic flash operations such as read, write and erase. The mechanism only

allows for the suspension of the cleaning operation between such operations, and thus

it is referred to as semi-PGC. The study also explores the feasibility of a fully pre-

emptive GC by assuming a flash memory that supports suspend/resume commands for

atomic flash operations. In this study, only semi-PGC is considered as it is realizable,

and will be referred to merely as PGC for the remainder of this thesis.

Figure 4.1 illustrates possible pre-emption points for any given GC operation.

Firstly, valid pages from the selected block are copied into an available free block.

A page copy operation consists of reading, transferring, and writing a page and updat-

ing the corresponding mapping table. The page movement cost can be eliminated if

both blocks are located on same flash chip. After migrating all valid data, invalid pages

are subsequently reclaimed with an erase command.

47

Figure 4.1: Pre-emption point in PGC, taken from reference [17]

PGC provides two different pre-emption points, which are denoted by A and B and

are illustrated in Figure 4.1. If there is a request in the queue, then a higher priority is

given to the request over the partial GC process and it is serviced immediately. Pre-

emption point A is located just before the write operation while point B is positioned

between page copy operations. At point B, any kind of I/O request can be serviced,

but at point A only write requests are allowed if flash memory supports pipelining

commands of the same type, because the page buffer is already occupied at point A

by a read operation to complete the copy operation. However, at point B, the memory

buffer is free and can therefore be used for any type of instruction.

States of PGC

To prevent the system crashing due to lack of free memory space as a result of

continuous pre-emption on cleaning, the PGC offer a number of states. The states

differ from each other in terms of their permission level regarding the GC. Figure 4.2

illustrates the state diagram of those states. The states of PGC are defined as:

• state 0: GC disable

• state 1: GC enable with PGC schema

• state 2: GC enable with PGC but page consuming operations not permitted

• state 3: GC enable but all requests are prohibited except high priority requests.

48

Figure 4.2: PGC state diagram, taken from reference [17]

Initially flash memory starts with state 0 where a GC operation is not allowed as

there are still plenty of free locations in the memory. I/O can be served without any

delay in this state. If the number of free blocks in the flash chip, (N f ree) decreases below

the soft threshold, (Tso f t), the PGC changes its state from 0 to 1. If N f ree becomes larger

than Tso f t, the state is changed back from 1 to 0. PGC is activated in state 1. GC can be

suspended to serve incoming requests in this state. All I/O requests have higher priority

over the partial GC operations. However, if N f ree decreases under the hard threshold,

Thard, this indicates the quantity of N f ree is at a critical level and GC is immediately

required and the system goes into state 2. In state 2 all memory-consuming requests—

especially write and update—are prohibited. Only read requests can be served as these

do not occupy free memory locations. However, if a high priority write request arrives

in state 2, the system changes from state 2 to 3 to allow this request to be served.

In state 3, ongoing GC is finished, and then high priority requests are handled. After

49

finishing the cleaning process in state 3, the system will switch to state 1 or 2 according

to the number of free blocks generated.

The PGC offers an upper bound for I/O response time for a single flash memory

unit. In the worst-case scenario, if the host request encounters an erase operation of

the GC process, which is the longest atomic process in flash, it will need to wait until

this finishes and then the given host request (write or read) can be handled. Thus, the

time penalty for these operations is calculated as the sum of the erase latencies, with

maximum time being taken to serve the given request.

4.3 Limitations of PGC with SSD RAID

One of the key points for an efficient cleaning mechanism is the determination of an

optimum threshold level for initiating cleaning. This is particularly true of the PGC,

which provides deterministic response times without the need for additional memory

space. However, the mechanism does not provide an optimum threshold level for clean-

ing as it is highly dependent on incoming workloads. Also, the following experiments

indicate that there is no optimum threshold for each unit of the array in order to main-

tain the reliability mechanism.

To experimentally observe the effects of the PGC on the ageing ratios of the de-

vices in the array, ageing tests were conducted with a realistic workload (financial) by

using the MSR SSD simulator [37]. As the reliability mechanism is performed using

maximum reliability enhancement with random write-dominant traces, the financial

trace [84] was chosen. The experiments were based on an SSD array incorporating

five devices based on the redundancy mechanism where parity data is distributed un-

evenly across the devices in the array [11].

Figure 4.3a illustrates the trends in erase counts and age distribution percentages

by varying threshold levels for the financial workload. The thresholds levels refer to

50

Th1 Th2 Th3

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

E
ra

se
C

ou
nt

S S D1 S S D2 S S D3 S S D4 S S D5

(a) Normalized erase counts of SSDs by
varying GC triggering thresholds

Th2 Th3 Optimum

10

20

30

40

50

A
ge

in
g

C
yc

le
(%

)

S S D1 S S D2 S S D3 S S D4

(b) Comparison of SSD age distributions
varying GC triggering thresholds and with
optimal age distribution

Figure 4.3: The effects of PGC over the reliability mechanism

the percentage of free space remaining in the corresponding memory component. The

threshold levels were chosen as Th1 (3, 2), Th2 (5, 3), and Th3(8, 5) for the pre-emptive

GC, where the first ratios (3, 5, 8) represent the threshold level for a lower priority GC

(Tso f t), while the GC tasks gain a higher priority after exceeding the second ratios (2,

3, 5) (Thard), as discussed in Section 4.2. The normalized total erase counts of each

SSD increase from Th1 to Th3 as expected. It can be noted that the threshold levels

have a considerable impact on the total erase count of the devices, especially for the

device which holds the most parity data.

However, the age distributions of SSDs are not same as expected optimum ageing

levels, which are calculated based on the ageing formula in [8] according to assigned

parity distribution ratios (80%-S S D5, 19%-S S D4, 1%-S S D3, 0%-S S D2, 0%-S S D1).

Figure 4.3b shows the variation between the desired ageing levels and the realistic

ageing distributions of each SSD with the financial trace under preemptible GC schema

with same parity distribution percentages. It is clear that the ageing cycle of each SSD

in the array is different from the that of the optimum case. For instance, S S D4 suffers

13% more wear than its optimum level, while SSD 1 suffers 21% less wear at Th2.

51

This could possibly increase the chance of data loss in the array for further device

replacement operations and thus the reliability enhancement would not be maintained.

The diversity in the ageing level of the SSDs is due to following reasons:

• Optimum reliability is achieved with pure random writes, where a parity data

block wears n − 1 times faster than that of an actual data block (where n is

the number of devices in the array). In fact, realistic random write-dominant

traces not only consist of pure random writes but also include a small portion

of sequential (full stripe) and large size random writes—the data size can be

between single stripe unit size, (m kB), and full stripe size, (m × (n − 1) kB).

For example, the average request size of the financial trace was measured as 3.6

kB but the standard deviation of I/Os was 6.6 kB where m is equal to 4 kB.

The figures show that realistic traces not only consist of pure random writes but

also includes a number of different sizes write operations. As the size of the

data write instruction increases, the ageing impact factor of the parity chunks

degrades from (n − 1) to 1.

• Garbage collection triggering thresholds affect the number of erasure operations,

as seen in Figure 4.3a, and so an uncoordinated cleaning process affects the

ageing distribution.

To create the wear imbalance for SSDs in the array for sequential write requests,

a forced random write mechanism is presented in reference [69]. This mechanism

converts sequential writes into random writes and creates an additional parity for each

random write. The mechanism achieves better reliability for sequential writes, but

the performance of the system degrades in the presence of sequential writes as the

response time increases and becomes non-deterministic due to the forced random write

mechanism. Also, the mechanism does not provide an optimum cleaning threshold for

the reliability mechanism.

52

To address this problem, a dynamic pre-emptive garbage collection is presented

with two main components. First, a dynamic garbage collection (referred to as GCD)

mechanism is presented which not only provides a guaranteed response time to the

system but also considers the age distribution percentages of the reliability mecha-

nism. Second, to improve the downtime of the PGC in SSD RAID, the pre-emptive

mode controller is presented whereby the garbage collector can enter varied modes of

operation. The term downtime is used to refer to the total amount of time that the

garbage collector consumes (across the array) during erase operations.

4.4 System Architecture

Figure 4.4: Architectural design of the PGC with RAID

53

Conventional FTL techniques usually allocate an independent and identical

garbage collector for each device in an array, each of which has its own channel and

internal register, as in reference [26]. Unlike conventional approaches, the presented

mechanism has to meet requirements of reliability and real-time attributes. To main-

tain consistency with the reliability mechanism, the architecture first presented in ref-

erence [85] was adopted, as illustrated in Figure 4.4. This includes SSDs for storing

data, memory components (SRAM, NvSRAM) for metadata, and storage management

components based on Field Programmable Gate Arrays (FPGA). The FPGA-based

management component includes two main blocks.

The first main block is the RAID controller. The RAID controller is responsi-

ble for partitioning the actual data into chunks and generating the redundant data for

associated data chunks. The second main block is the global flash translation layer.

This manages flash-specific operations in the array. It has two main blocks: address

mapping, dynamic pre-emptive garbage collection (labelled as Dynamic PGC). To dy-

namically reconfigure the management components, the global FTL layer analyses the

metadata information in each device. More details will be given about the system ar-

chitecture in Chapter 7. The dynamic PGC has two main components which will be

explained in the following section.

4.5 Dynamic Pre-emptive Garbage Collection

In this section two main components of Dynamic PGC are explained as follows:

4.5.1 Dynamic Garbage Collection

Definition 4.5.1 High Priority Garbage Collection (PH)

If cleaning is urgently required in a device due to a lack of free space then high

priority collection is triggered where all I/Os to the memory are blocked by the GC.

54

Definition 4.5.2 Low Priority Garbage Collection (PL)

Low priority collection can be interrupted by incoming requests at pre-emption

points and so provide response time bounds for I/Os.

The dynamic garbage collector adjusts triggering thresholds using metadata (num-

ber of erasures, and device usage in terms of valid, invalid, and free space) on each

device. Two types of cleaning are employed, depending on priority levels—high (PH),

and low (PL). The definitions of these are given in Definition 4.5.1 and Definition 4.5.2.

The dynamic garbage collector adjusts triggering thresholds for both types of cleaning

to maintain the age distribution ratios with minimal deviation from the optimum levels

for random write-dominant traces. It also has the ability to postpone garbage collection

if the cleaning process involves high levels of data migration (due to a large amount of

valid pages in the victim block).

Definition 4.5.3 Most aged device

The device that handled the most write operations in SSD storage and thus contains

the highest BER.

Definition 4.5.4 Current ageing ratio (AGEC)

The current ageing ratio of a device shows the current ageing level of a device with

respect to the most aged device in the array. It is calculated as the ratio of the current

erasure number of the corresponding device to the that of the most aged device.

Definition 4.5.5 Optimal ageing ratio (AGEO)

The optimal ageing ratio of a device shows the desired ageing level of a device

with respect to the most aged device in the array for the maximum reliability in terms

of prevention of simultaneous failure. It is calculated based on the ageing formula

presented in reference [8] with initially assigned parity distribution percentages.

55

Figure 4.5: Dynamic GC triggering thresholds adjustment

Figure 4.5 shows the algorithm used to adjust garbage collection triggering thresh-

olds for low priority cleaning. It periodically adjusts these thresholds and the current

ages of each device. The erase count of the most aged device (see Definition 4.5.3) is

considered as a metric to measure the period. The length of the period is configurable

and can be initially assigned by the user. If period f lag is high, indicating that the pe-

riod length is completed, than the evaluation process is started to adjust the thresholds.

Before serving each free space-consuming operation, the garbage collector checks the

free block percentage for each target device (denoted FBP in Figure 4.5). If it lies

between the two triggering thresholds (PT
L> FBP> PT

H) it compares the current ageing

ratio of the corresponding SSD, AGEC (see Definition 4.5.4), with its optimal level,

AGEO (see Definition 4.5.5). If this is not optimum, it changes the ageing speed of

the device by adjusting the threshold level; the PT
L is decreased if the current ratio is

greater than its optimum level, and increased if it is less than its optimum level.

However, the higher GC threshold level may cause an earlier cleaning process on a

block with a high number of valid pages. This causes the following bottlenecks:

• More valid pages in the victim block causes more data migration and thus the

completion time of the cleaning process is prolonged.

• Less invalid spaces will be reclaimed and the GC efficiency might be quite low.

56

To address these problems, a new feature is introduced which is able to delay GC

if cost efficiency—in terms of time taken to completion—is relatively low. Details of

initiating/postponing the cleaning process may be explained as follows:

Initiation/postponement of GC requests

Figure 4.6: Initiation/Postponing of GC requests

Figure 4.6 shows the decisions to initiate/postpone a garbage collection request.

If the amount of free space in the corresponding memory is higher than the trigger-

ing threshold, PT
L , then GC is disabled. However, if it is lower, the evaluation process

is started. In the second step of the algorithm, FBP is compared with PT
H to define

whether an urgent cleaning is required or not. If it is not required, the GCD checks as

to whether or not cleaning should continue or be postponed. If the free block ratio is

tending towards PT
H then postponing cleaning would result in long delays due to en-

tering high priority cleaning levels. To prevent this, a medium threshold level (PT
M) is

introduced. Before postponing a cleaning process, GCD checks if the free block per-

centage is greater than this medium threshold. If it is lower, then pre-emptive collection

is triggered as the free block ratio is nearing high priority levels. If it is greater than the

medium threshold, the GCD further checks the efficiency of cleaning the victim block.

The victim block is determined based on a greedy approach, i.e., selecting the block

with the highest amount of invalid pages among sealed blocks (blocks with no free

57

pages). The efficiency function (GCE) determines the efficiency of cleaning the dirt-

iest block based on the amount of invalid and the total number of pages in the victim

block. If the proportion of the invalid pages is low—when the number of invalid pages

is less than the predefined threshold—it is considered a high cost cleaning process and

is postponed. In the case of a low cost cleaning—where the number of invalid pages

is high—then the partial tasks of low priority cleaning are generated and inserted into

the I/O queue of the storage device.

As the performance overhead of high priority cleaning is much higher and its com-

pletion time is non-deterministic compared to low priority, high priority cleaning is

avoided as much as possible, only being initiated when the system is starved due to a

free space shortage. For this reason, the threshold for high priority cleaning (PT
H) is set

as low as is practical. Dynamic threshold calculations for both low and high priority

cleaning are described in following section.

Thresholds Calculation

GCD calculates low priority thresholds for a given device i using three parameters:

the existing low priority threshold ratios of device i (denoted PT
L .i), the current age ratio

of device i (denoted AGEC.i), and the optimum age ratio of device i (denoted AGEO.i).

The purpose of these calculations is to establish where the low priority threshold for

each device needs to be moved in order to adjust the ageing speed of the given device

by increasing or decreasing the activation of low priority garbage collection.

(AGEO.i) =
(Pi × (n − 1)) + (100 − Pi)
(Pn × (n − 1)) + (100 − Pn)

(4.1)

The parameters used in the equations are calculated as follows. PT
L .i is the ratio

of the amount of free space to total space for device i required to trigger low priority

garbage collection. AGEC.i is calculated as the ratio of the current erasure number of

the ith device to the that of the most aged device (defined here as device n where n

58

also represents the total number of devices). AGEO.i represents the age ratio of the

ith device to the most aged device for the optimum case, which is calculated based

on the ageing ratio equation used in reliability enhancement mechanisms as shown in

Equation 4.1. In the equation Pi and Pn represents the parity percentage of devices i

and n (most aged) respectively.

(PT
L)′i = PT

L .i + (AGEO.i − AGEC.i) (4.2)

The threshold calculation (Equation 4.2) for devices other than device n (i.e., the

oldest) takes into account the difference between the AGEC.i and AGEO.i. The dif-

ference between them is summed with the current threshold ratio (PT
L .i) to calculate

the new threshold ((PT
L)′i). For example, if AGEC4 (arbitrarily chosen) is measured as

0.465, then AGEO4 will be 0.461 (the target optimum ratio). This figure shows that

device 4 has aged faster than its optimum level. If user set the initial value of (PT
L)4

as 0.1, the (PT
L)′4 will be calculated as 0.096. The new threshold is decreased and thus

the ageing speed of the device is reduced. For clarity, (PT
L)′4 then replaces (PT

L)4 as the

current threshold ratio in the second iteration.

(PT
L)′n = PT

L .n − (
n−1∑
i=1

(AGEO.i − AGEC.i)) (4.3)

However, Equation 4.2 will be ineffectual for the most aged device (devicen). This

is because AGEC.n and AGEO.n are always equal to each other as the most aged device

is used as a reference point to calculate the ageing proportion of each device in the

array. It is important to adjust this threshold to obtain optimum ageing levels. Thus,

Equation 4.3 is introduced, which considers the overall ageing trends each of the de-

vices in the array to change the threshold level of device n (PT
L .n). If the overall trend is

high, then (PT
L)′n is also increased to adjust the ageing speed to obtain ideal ratios. For

example, if the overall trend (
n−1∑
i=1

(AGEO.i − AGEC.i)) is measured as (-0.02), it shows

59

that either the ageing speed of the most aged device is slow or the rest of the devices

have increased ageing speeds. Equation 4.2 is able to slow down the ageing speed

of the corresponding device, but clearly this will not work for the most aged device.

Equation 4.3 speeds up the ageing speed of the most aged device. taking the current

PT
L .n as 0.1, then the new ratio of the threshold (PT

L)′n will be 0.12, which will increase

the triggering threshold and reduce the ageing speed for the most aged device.

PT
H = h × PT

L (4.4)

0 < PT
H < PT

M < PT
L < 0.5 (4.5)

On the other hand, PT
H is calculated based on PT

L and the PH factor, which is a

predefined user variable and denoted h in Equation 4.4. The equation indicates that

the PT
H is proportional to PT

L and changes dynamically with the updating of PT
L . The

relationship between the thresholds and their bounds are given in Inequality 4.5.

Initially the same threshold level is assigned to each device. When the most aged

device, which retains the majority of the parity data, reaches a predefined age level

then the current age ratio of all other devices in the array is calculated. The garbage

collector periodically updates these calculations, and assigns updated threshold levels

to each individual device until the most aged device reaches its endurance limit. The

period of updates is dependent on the number of erasure operations performed on the

oldest device, being performed every p number of erasure operations. The value of p

is configurable; a higher value decreases the ageing deviations from optimum levels,

but the total number of erasures increases as well.

This dynamic garbage collection maintains the reliability enhancement mechanism

by dynamically adjusting cleaning thresholds. Dowtime and performance related is-

sues of the PGC are addressed in following section with a pre-emptive mode controller.

60

4.5.2 Pre-emptive mode controller

Pre-emptive garbage collection provides more deterministic response times for a single

device. However, its usage in a RAID array can result in an increased number of

requests arriving during erase operations, and consequently the performance of the

array suffers. This is because, in a RAID array, an individual pre-emptive garbage

collector does not have a global view of the array, but read and write operations must,

due to the nature of RAID mechanisms, affect the whole array.

For a RAID mechanism which uses an uneven parity distribution mechanism, it is

normal that devices which retain more parity data will be garbage collected more in the

case of random write-dominant workloads. Therefore, if pre-emptive garbage collec-

tion is naively applied on the RAID mechanism, different devices can be in different

garbage collection states because of their varied workload rates. In this section, a tech-

nique is presented whereby the mode of the garbage collector is controlled in order to

ameliorate this problem and improve real-time efficiency.

Figure 4.7: Behaviour of PGC with RAID

61

An example of the problem stated above is presented in Figure 4.7. A RAID array

incorporating five flash-based devices was assumed, where Device 5 holds the most

parity data. When write operation Dx arrives from the host, Device 5 is in a state where

garbage collection is enabled, and the others are in a state where it is disabled. The

writing of stripe Dx3 overlaps the ongoing erase operation on Device 5, but not on the

other stripes. This means that the rate determining step of writing Dx will be based on

the erase times of Device 5. The same problem is true for any overlapping requests,

as further shown by request Dy—even though the request arrives when Device 5 is

not being garbage collected. This scenario is highly probable within the reliability

technique, particularly in the case of random write-dominant traces.

To eliminate this problem, the pre-emptive mode controller makes decisions about

garbage collection by taking a view of the system as a whole. It considers all devices in

the array when selecting a garbage collection state for an individual device. The goal

of the pre-emptive mode controller is to reduce the downtime of the system garbage

collection by dynamically coordinating the states of each garbage collector.

Figure 4.8: Benefits of the global pre-emptive mode controller

62

The effects of the pre-emptive mode controller can be seen in Figure 4.8. Unlike

naive pre-emptive garbage collection, the proposed mode controller changes the state

of the garbage collector by taking into consideration not only the individual device but

other devices in the system. Initially, garbage collection is disabled across all devices

as there is sufficient free space. When space on a given device falls below the soft

threshold, then garbage collection may be enabled for that device; however, the mode

controller also checks the other devices, and forces them to perform garbage collection

if they have some free blocks. The resultant parallel cleaning operation minimises the

amount of cleaning that might need to be done when the system is in a state where it

cannot respond to I/O requests. Downtime is reduced, and the rate determining step

for any delayed I/O operation reduces accordingly, as shown in Figure 4.8.

However, forced mode changes can result in an overly aggressive early cleaning

on a block with a large number of valid pages (i.e., a small number of invalid pages).

This can reduce the lifetime of a device more quickly and increase the cleaning cost

as more valid pages are migrated. To overcome this, the mode controller checks the

efficiency of cleaning a particular device before forcing the garbage collector to initiate

a cleaning process. This reduces the number of unnecessary erases.

4.6 Summary

In the first part of the chapter, a number of ageing tests were conducted to experi-

mentally observe the effects of the existing pre-emptive real time garbage collection

mechanism. The results showed that the existing mechanisms have undesirable effects

on the reliability while providing deterministic response times for access.

In the second part of the chapter, a novel real-time dynamic pre-emptive GC mech-

anism was proposed for SSD RAID arrays. The proposed mechanism offers determin-

istic access times that meet the storage demands of hard real-time embedded systems

63

thereby increasing system throughput. In addition, it incorporates strict age distribu-

tion management to maintain a highly reliable SSD storage system. The dynamic GC

component of the mechanism dynamically adjusts the thresholds levels for each SSD

to achieve the optimum ageing distribution ratios for the reliability mechanism. It peri-

odically updates garbage collection triggering thresholds for each device in the array to

change their ageing speed considering current and optimum ageing levels of devices.

A new feature of GC efficiency function is introduced, which automatically delays the

cleaning process based on the cleaning cost. In addition, this efficiency feature en-

hances the lifespan and performance of the systems while simultaneously minimising

limitations of the dynamic pre-emptive GC.

Although, the dynamic GC component of the mechanism offers enhanced reliabil-

ity, it ignores real time efficiency and performance aspects of the system. To enhance

these aspects, a new component of the pre-emptive mode controller was incorporated in

the proposed dynamic pre-emptive GC mechanism. The pre-emptive mode controller

globally coordinates garbage collection states of each device with a holistic view of the

system. The pre-emptive mode controller reduces the down time of the array during

erase operations, thereby causing fewer write operations to be postponed compared to

other published techniques.

64

Chapter 5

Garbage Collection aware RAID

Mechanism

This chapter presents real-time and reliability enhancements for flash-based RAID ar-

chitectures that, firstly, provide deterministic response times using a GC-aware data

allocation and, secondly, it maintains the reliability of the storage system by strictly

controlling ageing ratios of devices in the array using an on-line parity migration fea-

ture. The mechanism and components are explicitly expressed in a diagrammatic way.

Throughout this thesis, the term GARM is used to reflect the unique real-time mecha-

nism used to provide deterministic response times for flash-based RAID architectures.

The term "random writes" is used to refer to partial stripe writes while "sequential

writes" refers to full stripe writes, as described in Section 2.5. The terms are inter-

changeable as used throughout this thesis.

5.1 Introduction

The contribution of this chapter can be summarised as follows: a novel mechanism is

explored that enhances data reliability in a SSD array for both random and sequential

65

workloads. The mechanism solves the non-deterministic problem in flash-RAID sys-

tems and provides guaranteed access time for I/O operations. It also strictly manages

the parity distribution percentages across the devices in the array, thereby maintaining

the reliability mechanism of the storage system.

The chapter is structured as follows: in Section 5.2, the details for GC-aware RAID

mechanisms are explained. The mechanism is evaluated under all possible types of

I/Os in case of ongoing garbage collections in the array. First, the effects of the mech-

anism under all types of read operations are presented in Section 5.2.2. Next, a novel

serialised garbage collection policy is explained in Section 5.2.3. Then GC-aware ran-

dom and sequential write operations are presented in Section 5.2.4 and Section 5.2.5,

respectively. Section 5.2.6 presents the WCET analysis of the mechanism compared

to the existing techniques. The on-line parity migration feature of the mechanism is

discussed in Section 5.2.7. Finally, the chapter is summarised in Section 5.3.

5.2 GC-aware RAID mechanism

The reliability enhancement mechanism offers significant improvement to the reliabil-

ity of flash storage systems but it does not meet the (sometimes strict) requirements

of real-time systems where guaranteed response times are often necessary. This is pri-

marily due to the erase-before-write characteristic of the flash memory and the man-

agement of resources as they are used. This non-deterministic behaviour should be

eliminated for high-reliability flash storage systems.

In the previous chapter a real-time dynamic pre-emptive GC for flash-based RAID

was proposed but its real-time improvements over concurrent architectures are limited.

However, the GARM provides guaranteed response times for I/O operations by elim-

inating them from being blocked by an ongoing GC operation. The proposed mecha-

nism can achieve higher bandwidths and lower the WCET over the existing real-time

66

garbage collection schemes by reallocating the target device or using the benefit of re-

dundant data to service incoming requests. These techniques require an additional and

more complex address mapping schema compared to the dynamic PGC. Details of the

address mapping tables used in the architectures are as follows:

5.2.1 Address Mapping Tables

The mechanism contains two levels of mapping scheme. The first level of address

mapping is managed by the RAID controller is named the stripe mapping table and

keeps the link between the logical address of the request and its corresponding devices.

For example, given a write request from the host, the RAID controller breaks the data

into page stripes, generates the parity and determines the target devices. In existing

RAIDs, stripe units are linearly placed in an array regardless of the internal status of

the devices. However, the mechanism dynamically allocates GC-free devices 1 to the

incoming write requests and creates the stripe mapping table. It is a page level striping

where the size of stripe and parity units are equal to the page size of flash memory.

Second, the FTL records an address mapping table between the logical address and

physical location. A separate page-level mapping table is adapted for each device in

the array. Details of the page level mapping has been described in Section 2.2.1.

The address mapping tables described above are stored in SRAM memory. Sepa-

rate SRAMs for each flash-based device have been proposed to store address mapping

tables. Also, a NvSRAM is introduced to store part of metadata in the architecture.

NvSRAM maintains the status of all flash pages (valid, invalid or free) of all devices

in the array. The mechanism is examined under all types of I/Os with ongoing GC

processes in the array. Read and write features of the mechanism are described in

following sections.
1Here GC-free device refers a device with no ongoing GC for current I/O request

67

5.2.2 GC-aware Read Operation

Definition 5.2.1 Overlapped Stripe Unit

If a stripe unit of the I/O operation is blocked by an ongoing cleaning process in

the RAID array, this stripe unit is referred to as an overlapped stripe unit.

Parity-based RAID techniques have the ability to recover data in the instance of a

single device failure. GARM utilizes the redundant data in the RAID array to calculate

overlapped stripe unit (see Definition 5.2.1). If a read operation needs to access a

device with ongoing GC, the data is treated as a failed data by the controller. When the

host sends a read request to the flash array, the GARM follows these steps:

1. Check the stripe mapping table to find target devices of the array for the read

2. If there is an ongoing GC amongst the target devices then read the rest of stripe

units, including the parity stripe unit, from the stripe instead of waiting to finish

the ongoing GC process in the victim device

3. Recalculate the failed data on the victim device by XORing the remaining chunks

in the stripe.

For a real-time read operation, the mechanism simply avoids sending a command

to the victim device. For example, assume that there is an active GC process within

Device 3 when a read request for D2 and D3 is assigned, as shown in Figure 5.1.

Normally, to read the data from Device 3, the request has to wait until Device 3’s GC

process completes. However, the GARM is aware of the ongoing GC process in Device

3 and therefore does not send a read command to this device. Instead, it reads the rest

of the stripe units (D1, D2, D4) including the parity data (DP) and calculates the data

D3 by XORing D1, D2, D4, and DP. This operation has only the calculation overhead,

which is negligible. The mechanism offers higher performance and guaranteed access

68

Figure 5.1: Real-time read operation

times for a read operation even when there is an ongoing GC process in the array. This

technique can be applied to both random and sequential read operations.

Although the mechanism provides deterministic response time for read operations,

it is not applicable if multiple garbage collectors are activated in the same time period.

This is because the parity technique used in the reliability is mechanism only able

to recover a single blocked data at a time. Therefore, a novel serialised GC feature

is introduced where it is guaranteed that there can be only single garbage collector

activated at a time in the memory array where each device has its own garbage collector.

5.2.3 Serialised Garbage Collection

The garbage collection process has a significant impact on the response time of the

storage. There are many ways to implement GC operations over a flash RAID array.

To achieve guaranteed performance, the serialised GC technique is proposed.

69

Figure 5.2: State diagram of serialised GC

The RAID mechanism keeps a parity bit per stripe to recover data in case of data

failure in RAID 5. The benefit of the redundant data is utilized to eliminate the non-

deterministic feature of the GC process. The main idea behind the technique is that

there can be only one garbage collector active in the array of flash-based devices in

order to combine the benefit of redundant data with random I/O operations. The se-

rialised GC ensures that only a single garbage collector is activated in the array at a

time. It globally schedules garbage collectors across the array to achieve this target.

While providing this, it has to make sure that none of the devices fails due to lack of

free pages as a consequence of serialised cleaning policy. Therefore a number of GC

states are introduced as showed in Figure 5.2. It is shown in the form of a finite Moore

state machine (same model is adapted for each state diagram throughout the thesis).

The system can be in one of four states of GC:

70

• No GC: Garbage collector is not activated in any device.

• Serialised GC: Garbage collector can be enabled but it is only allowed for a

single device at any given time in the array.

• Prioritised GC: Serialised GC is enabled but another device has higher priority

for cleaning.

• Normal GC: GC can be served on multiple devices in the array at the same time.

Traditional GC techniques on RAID architecture usually have two states: No GC

and Normal GC. To switch state from No GC to Normal GC, each device in the ar-

ray internally initiates its garbage collector once the number of free blocks exceeds a

predefined threshold or idle time is detected. This threshold is used to change state

from No GC to serialised GC, and is referred to as the soft threshold. In the design,

whenever the number of free blocks on a device decreases below the soft threshold, it

is added to the GC pool (GCpool). The GCpool flag is set high and the state is changed

to the serialised GC state. Devices in the GCpool are cleaned in such a way that only

one device permitted for cleaning. Devices in the GCpool has same probability of being

cleaned. If there are no devices left in GCpool after employing serialised GC state the

system changes back to No GC state.

However, the situation might arise where more than one device has to activate the

garbage collector during same time period. To prevent the system deadlock in this

scenario, two more threshold levels are defined. The first, the hard threshold level,

indicates that the level of the free space in the corresponding device is critically low.

For example if only a single device reaches the hard threshold then the state changes to

the prioritised GC state. In this state more time is allocated to clean it up by increasing

its priority level. This state is quite useful for RAID arrays where a member of the

array is expected to be cleaned more frequently than others due to its parity ratio, such

71

as the reliability mechanisms and RAID 4 where parity distribution percentages are

(80,19,1,0,0) and (100,0,0,0,0) respectively.

Moreover, the circumstance might arise where there are multiple devices simulta-

neously exceeding the hard threshold. In this case, the system changes state to Normal

GC, where multiple GC is allowed in parallel, as in the conventional technique. After

producing enough free pages the state changes back Serialised GC or prioritised GC

depending on the number of devices which exceed the hard and soft thresholds.

The serialised GC is only initiated when there is more than a single device in the

GCpool, which indicates the devices need to be cleaned, though not urgently. Unless

multiple devices request GC at the same time, the GARM operates as a normal reactive

GC where there is no shift (suspend) operation required for a single GC. The controller

checks the GCpool for every page-consuming request. If there are multiple devices from

the array in the pool, then the controller schedules all GC requests according to their

priority levels. This operation is iterated until a device has a large enough number of

free blocks. Then, the device is removed from the pool and the controller reschedules

GC processes with the devices that still remain in the pool. If there is only one device

left in the pool, then the system goes back to the No GC state.

5.2.4 GC-aware Random Writes

When there is a random write request, the RAID controller does not allocate all the de-

vices of the array to serve the request. For random writes it is guaranteed that there will

always be a device that will not be busy with the write operation. GC-aware random

write is presented to utilise this feature to eliminate the overhead of the uninterrupted

GC process for random writes.

The technique categorizes the random write operations into two main groups: a

new random write and an update operation. A new random write refers a random write

72

that targets a free stripe in the array. An update operation indicates a write operation

which targets fully or partially filled stripes.

GC-aware New Random Write

The effects of the GARM with new random write operations for a given flash array

are examined with respect to time. The response times of two different random write

operations, (Dx and Dy), are examined over both a standard mechanism (non-GARM)

and GARM. The mechanisms are evaluated under two different scenarios including

single and multiple ongoing GC processes.

Figure 5.3: Random new write operations with an ongoing GC on non-GARM

Figure 5.4: Random new write operations with an ongoing GC on GARM

73

In the first case, a random write operation Dx with three stripe units is given to

RAID array with 5 devices. The response time of the operation, (tDx), becomes quite

expensive due to the latency of the stripe unit, (Dx3), which is targeting Device 4 with an

ongoing GC process in the RAID mechanism, as shown in Figure 5.3. In the example,

the system’s resources are not effectively utilized because of the lack of communication

between the FTL layer and the RAID controller. However, the GARM cost-effectively

locates the overlapped stripe unit across one of the available devices in the array, as

shown in Figure 5.4. With the GARM, it can be clearly seen that the access time

of data Dx, (t′Dx), is significantly improved and became deterministic by dynamically

locating the overlapped stripe unit (Dx3) to a GC-free device of the array (Device 5). It

also ensures that a device does not contain a multiple member of a same logical stripe

to maintain reliability.

Figure 5.5: Random new write operations with multiple ongoing GCs on non-GARM

In the second example, write data (Dy) is delayed due to two GC processes by

Device 2 and Device 5, as shown in Figure 5.5. There are two overlapped stripped

units, (Dy1 and Dy4). The GARM can relocate an overlapped stripe unit to a GC-free

device with the help of the serialised GC. The GC process on Device 5 is shifted to a

later time when the GC process has completed in Device 2 as depicted in Figure 5.6.

74

Figure 5.6: Random new write operations with multiple ongoing GCs on GARM

Therefore, overlapped stripe unit Dy1 can be relocated to an available device (Device

1) and Dy4 is guaranteed not to be blocked by an ongoing GC process since the GC

operation on Device 5 is shifted. As a result, the response time of the data Dy (t′Dy) is

significantly improved with the GARM.

GC-aware Random Update Operation

A partial update operation to a stripe lead parity recalculation process in parity-

based RAID systems as explained in Section 2.5. The GARM considers usage patterns

(partial or full) in the targeted stripe for a real-time update operation.

Figure 5.7: GC-aware random update operation for a partial stripe

75

Firstly, real-time update for a partial stripe operation is investigated. Figure 5.7

illustrates the changes when the host sends a random update request to stripe unit D1

and D2. The GARM first checks whether the target devices for the update operation

have an active GC operation, or otherwise. Here, the target device of data D2 has an

active GC process. In this instance, the mechanism allocates a GC-free device for the

update request D2 instead of waiting to finish the expensive GC process. To assign a

device for the overlapped stripe unit, the controller checks the stripe mapping table to

find an appropriate device which does not contain any member of the stripe; the usual

update operation is then started. The controller reads D3 to calculate new parity D′P.

Then it writes the new data D′2 to Device 1, the new data D′1 to Device 2 and an updated

parity D′P to Device 5 while invalidating D1, D2 and DP. Also, the stripe mapping table

is updated according to the changes in device numbers of the stripe.

To invalidate the overlapped stripe unit without accessing its physical page location,

the benefits of the page status table is used which is stored in NvSRAM memory.

Existing FTL techniques usually store status information about a page in its metadata

area. To invalidate a page, physical access to flash memory is required. However, the

technique described here stores a part of the metadata in NvSRAM to keep the status

of all pages in the array and thus physical access to the invalidated page is not required.

Table 5.1: Changes in the page status table in NvSRAM for a random update operation

LPN Device ID Status (Before) Status (After)

100 0 00 10

100 3 10 11

In the system architecture, NvSRAM is partitioned into n sections where n is the

number of devices in the array. 2-bits in NvSRAM are reserved for each page in the

array. The least significant bit represents whether a particular page is a valid or invalid,

and the second bit indicates if it is free to use or not. The status of D2 is illustrated

76

before and after the update operation in table Table 5.1. The update operation for a

partial stripe can be employed without any performance overhead.

Figure 5.8: GC-aware random update operation for a full stripe

A random update operation over a full stripe is depicted in Figure 5.8. A scenario

is considered where one of the target devices of the update request is engaged with a

GC process. Also, there is no available device to relocate the overlapped stripe unit

as all devices in the array already store a member of the stripe. To overcome this, the

overlapped stripe behaves as a new random write.

For example, let us assume that there are five flash devices in the array and a GC

process is active in Device 3 when the update request arrives. First, the controller

calculates new parity D′P. Then stripe data D′2 and the updated parity are stored in

Device 2 and Device 5, respectively. Since the Device 3 is blocked by an ongoing

GC process, the controller locates the D′3 to a new device. Moreover, the overlapped

stripe unit (D′3) behaves as a different random write because a device cannot retain

more than a single stripe unit for a logical stripe. The data D′3 is placed on Device 1

and its associated parity is updated accordingly on a different stripe. This operation

causes an extra write operation (DP1) and results in the performance overhead of an

77

update operation. However, compared to a long GC process which includes an erase

operation, this most certainly has the lower impact on system performance.

5.2.5 GC-aware Sequential Writes

Until now, it has been assumed that a given workload only consists of random writes.

A sequential write to a flash array updates the whole stripe to prevent creating a wear

imbalance and thus reducing the reliability of the system. Parity blocks wear the same

as data blocks in the case of sequential writes. However, random writes have the ability

to imbalance write traffic across the devices of a flash array. This provides an opportu-

nity to differentiate the age of the devices in the array to prevent simultaneous wearing.

It may be noted that maximum reliability is provided with a workload which only con-

sists of random writes [8]. It is also known that many realistic workloads are dominated

by random writes [86].

Figure 5.9: Comparison of sequential write and forced random write techniques in a
flash-based array with an ongoing GC

This mechanism offers a guaranteed response time for random writes and any type

of read operation, as discussed in the previous section. To utilise the benefit of ran-

dom writes, previous work in the literature has discussed a technique which converts

78

a sequential write into random writes [87]. This technique is adapted with GARM by

relocating partitioned random writes onto GC-free devices.

Figure 5.9 illustrates an example of a sequential write, an existing forced-random

write and a GC-aware forced random write with an ongoing GC process in figure sec-

tions a, b and c, respectively. The aim of the existing forced random write technique

is to create a wear-imbalance among the devices in the array for new and update data

requests. As illustrated in Figure 5.9(b), there is an extra write operation to the parity

device (Device 5) compared to the sequential write in Figure 5.9(a).

In the existing forced random write approach, it is assumed that the sequential write

is divided into two equal random writes. First, two data stripes (D1 and D2) and a partial

parity data (DP1) are written to same stripe. Second, data D3 and D4 are written with

full parity knowledge (DP) of D1, D2, D3 and D4 while invalidating the partial parity

(DP1). Although the existing forced random write technique offers enhanced reliability

compared to the sequential write, it still suffers from non-deterministic access latency

due to ongoing GC in Device 4.

Therefore, the existing forced random write technique is further improved for adop-

tion in the GARM. With the knowledge of the ongoing GC process, the second part of

stripe D is located across one of the GC-free devices as illustrated in Figure 5.9(c).

In the example, Device 2 stores multiple data stripes which belong to same stripe.

To be able to reconstruct data D in case of failure in Device 2, the mechanism needs to

keep two partial parities (DP1 and DP2) for stripe D. Also, all indexing information is

updated in the stripe mapping table. The GC-aware forced random write scheme not

only increases system reliability but also provides guaranteed access times for sequen-

tial workloads.

79

5.2.6 WCET Analyses

One of the bottlenecks of flash-based storage is performance variability. When a re-

quest experiences a long latency due to a GC process, the response time will be non-

deterministic, as explained in Chapter 2. The technique facilitates significantly reduced

WCET compared to the existing solutions described in the literature. In this section,

the worst-case response time of the GARM is analysed.

Table 5.2: WCET comparison of existing mechanism with GARM

Technique WCET

GFTL [16] ter+max {U(ew), U(er)}

RFTL [18] max {ter+ U(ew), U(er)}

PGC [17] ter+max {(Uew), U(er)}

GARM max {U(ew), U(er)}

The proposed mechanism is examined using the same terminology used in the ex-

isting literature for consistency [16–18]. U(ew) and U(er) denote the upper page write

and page read bounds on the flash memory, respectively. These variables depend on

several factors, such as the type of address mapping table used, the method by which

metadata is stored, and the existence, or otherwise, of the buffer.

The WCETs are compared in Table 5.2 through various techniques. There are

two important states that need to be considered. The first is where the WCET of the

mechanism is of serialised and prioritised GC states, where only one GC is enabled at

any given time over the RAID array in order to relocate an overlapped stripe unit. If

the system changes state to Normal GC due to a lack of free pages, then the WCET

of the mechanism would be increased. Existing techniques [16, 17] do not take this

scenario into account, thus the WCET of the mechanism presented has been analysed

over all GC states except Normal GC. Second, it should be noted that previous FTL

mechanisms have only proposed solutions at the single device level. The work reported

herein is, to the best of my knowledge, the first and only study that investigates the

80

WCET of flash-based storage at the multi-device level. The benefit of multi-device

architecture is utilized with RAID.

The underlying principle behind existing techniques is to partition or preempt the

GC process. As the GC can only be portioned/preempted at the granularity of the

atomic operations of the flash memory, none of the existing techniques propose solu-

tions to avoid the most expensive operation, that of erase. In the worst-case scenario,

a request would have to wait for an erase command to finish, which is nearly 10 times

more expensive than a write operation. As showed in Table 5.2, all WCETs include

expensive ter except for GARM.

The GARM significantly reduces the WCET by ensuring that none of the instruc-

tions is blocked by an ongoing GC process. Therefore, all requests can be directly

serviced, with a cost of only U(ew) or U(er).

5.2.7 On-line Parity Migration

Figure 5.10: Parity migration states

81

While the GARM offers guaranteed performance for incoming requests, its use is

not well-suited to existing reliability mechanisms, where the ages of the devices in the

array are strictly controlled by initially assigned parity distribution percentages. When

there is no garbage collector active, the GARM does not disturb these initially assigned

parity percentages; However, the proposed mechanism redirects incoming I/O requests

to GC-free devices in the case of an active GC in the target device of an array, which

results in degenerate parity distributions. Since the most aged device performs more

GC then the other devices, its default parity percentage decreases whilst that of the

others increases.

It is critical to maintain the system’s reliability while guaranteeing access time

for high reliability applications. To control parity distribution percentages, four main

parity migration states will now be presented. Parity migration states are illustrated in

Figure 5.10. The system can be in one of the following parity distribution states:

• S1: Garbage collector disabled and parity migration not required.

• S2: Garbage collector enabled on the most aged device. All its parities are

redirected to the second most aged device.

• S3: Garbage collector enabled on any other device. All their parities are redi-

rected to the most aged device.

• S4: Garbage collector disabled but parity migration is required.

The states are defined with inputs of GC flag, parity migration flag and GC device

ID. The GC flag refers to the cleaning status of the storage; it becomes high if the

garbage collector is activated in any device in the array. The GC device ID indicates

the device number that is cleaning at any given moment. Finally, the parity migration

flag shows whether a parity migration operation is required (1) or not required (0).

Outputs of each state produce different parity distribution percentages.

82

Conventional SSD-based RAID mechanisms have only one state, S0, where sta-

ble parity percentages (Pn,Pn−1,..,P2,P1) are assigned and not changed until a device

replacement process is required, where n is the number of devices in the array. In order

to take the control of the migration of the parities in case of an active cleaning process,

two more states are introduced: S2 and S3. S2 indicates that the most aged device

is performing a cleaning operation, and S3 indicates a cleaning process on any other

device in the array. Furthermore, to reinstate the current parity levels to the default

values (80,19,1,0,0), an on-line parity migration (OPM) is introduced in state 4.

If the GC flag becomes high for the most aged device (GC device ID=n) in the array,

incoming parities targeted at the most aged device (n) are then redirected to the second

most aged device (n-1). In this case, the parity distribution percentages of the S2 can be

assigned as (0,Pn+Pn−1,..,P2,P1). Otherwise, if the cleaning process is required on any

of the other devices in the array, then all parities targeting those devices are redirected

to the most aged device during the cleaning period to reduce changes in the default

parity distribution. Although the state of S3 helps to recover the parity ratio of the

most aged device back to its desired level, it may not fully recover this percentage.

Therefore, an additional state is introduced: the on-line parity migration state, S4.

The changes in parity distribution are usually led by the GC of the proposed mech-

anism. Therefore, after each serialised GC period, the OPM checks the parity distribu-

tions on the devices. If these amounts are not comparable with the initial distribution

percentages, then the parity migration flag becomes high and the OPM is activated.

The OPM first calculates the amount of parity data that needs to be migrated and

determines the devices which have different parity amounts than their default values.

The migration progress is operated from a source device, which has extra parity than its

default percentage, towards the target device, that has less parity than its initial value.

The parity migration of OPM is investigated under all cases of a target stripe. A

stripe can be in one of the following states: free, partially or fully occupied by valid

83

Figure 5.11: OPM with a free stripe

Figure 5.12: OPM with a partial stripe

data. Whenever a write operation arrives at a free stripe when the system is in state S3

or S4, the OPM relocates the parity data on the target device as shown in Figure 5.11.

In the second case, if a write operation targets a partial stripe and the target parity

device is free, then the OPM invalidates the old parity data and relocates new parity

on the new target device as shown in Figure 5.12. These operations do not cause any

additional time delay to write requests.

In the worst-case scenario, however, if the targeted parity device contains a data

block which is associated with parity and if the data is not updating this parity, then the

data and new parity need to be swapped, as illustrated in Figure 5.13. This operation

costs an additional copy (read+transfer+write) latency to the write request. The OPM

continues until the parity migration flag becomes low, when all required parities are

migrated, or the GC flag becomes high.

84

Figure 5.13: OPM with a full stripe

5.3 Summary

In this chapter a novel real-time GC-aware RAID mechanism was proposed. Unlike ex-

isting published techniques, the proposed mechanism completely avoids performance

variability caused by garbage collection in flash-based RAID architecture. This indi-

rectly improves Worst Case Execution Time and performance of the system.

The proposed mechanism was discussed under all possible I/O scenarios including

random and sequential write / read operations over free, partial and full stripes of array.

To read data from the device with active garbage collection, an intelligent read feature

was introduced which uses the parity data to rebuild blocked data due to garbage col-

lection. For random write operations, the proposed new feature of dynamic allocation

policy, dynamically allocates the stripes of the incoming data to GC-free devices in

the array. For sequential writes, where all elements of the array need to be accessed, a

new feature of enhanced forced random write was proposed which converts sequential

writes into random writes and dynamically locates them over the array.

Another issue in case of simultaneously multiple cleaning processes in an array,

the existing architectures cannot serve real-time read requests as parity data only ca-

pable to rebuild single blocked data at a time. Therefore, a new feature of serialised

garbage collection was introduced in the proposed architecture, which ensures single

85

garbage collector active at any time. This feature provides a number of different states

to globally organise GC operations across the array.

To maintain the reliability mechanisms while offering deterministic response time,

a new feature of on-line parity migration was proposed. The age control techniques of

the reliability mechanisms are defined by initially assigned parity percentages for each

device. Therefore, the on-line parity migration keeps the initially assigned parity ratios

among the devices in an array and thus the reliability mechanism is maintained.

In conclusion, the proposed garbage collection-aware RAID mechanism provides

a number of novel features to address the real time and reliability concerns of the flash

memory for high integrity systems.

86

Chapter 6

On-line Device Replacement

Techniques

This chapter presents techniques that allow for the replacement of aged devices in an

SSD array in such a way that the system provides continuous system reliability and de-

terministic response times during the replacement process. The performance overhead

of the reconstruction process is also improved using a novel data migration policy. The

techniques also consider device replacement time and utilization of redundant data in

old devices to improve the device replacement time and system performance further.

6.1 Introduction

In previous work, a novel RAID-based architecture was presented to enhance the re-

liability of an SSD storage system by mitigating the problem of rendering the whole

array unreliable at the same time [11]. It achieves this by guaranteeing wear imbal-

ance between each component in the array and thereby ensuring they do not reach

their endurance limits simultaneously. This is achieved using two primary techniques.

The first is an uneven parity distribution that ensures erases across components are

87

distributed unevenly, and the second is a device copy/swap algorithm that moves data

around and manages lifespan as components reach their endurance limits. However

the limitation of this architecture is that this copy/swap operation requires the array to

be taken off-line. Whilst this mechanism significantly enhances the reliability of the

storage, it restricts its usage in hard real-time systems as it is not able to serve requests

during the replacement period. The extent of the downtime depends on the amount of

data and parity that needs to be moved. Furthermore, it does not consider flash-specific

operations such as garbage collection and metadata management, both of which may

affect the real-time characteristics of a system. The limitations of the device replace-

ment with regards to the reliability mechanisms were discussed in Chapter 3.

The contribution of this chapter is an SSD RAID framework incorporating several

novel techniques to improve the efficiency of the replacement process in SSD RAID for

hard real-time applications: a proactive hot-swapping technique, a data migration tech-

nique that coordinates operations with the garbage collector, and a parity redistribution

technique. To utilize the benefits of hot-swapping, a semi-hybrid RAID technique is

also introduced that enhances performance when there is no active device replacement.

Definition 6.1.1 Write Amplification Factor

The write amplification factor is used to calculate the ratio of the additional write

operations which are caused due to internal management components of flash memory

such as garbage collection, wear levelling and data migration.

The proactive hot-swapping technique increases system availability and facilitates

guaranteed response times as the storage does not need to go off-line while replacing a

device. The data migration technique exploits the internal operations of flash memory

to reduce performance overheads during device replacement. The parity redistribution

technique ensures that parity percentages are redistributed across the devices during

the replacement process, reducing the write amplification factor (see Definition 6.1.1)

88

and device replacement time. Finally, the semi-hybrid RAID technique utilizes valid

redundant data on old devices to improve the I/O performance of the system for read

operations during once a device replacement is over.

The chapter is structured as follows: Section 6.2 presents the architectural design

of the system. Section 6.3 presents proactive hot-swapping, Section 6.4 presents the

approach to data migration, and Section 6.5 presents the parity redistribution technique.

Section 6.6 presents the semi-hybrid RAID architecture into which these enhancements

have been incorporated. A summary of the chapter is given in Section 6.7.

6.2 Architectural Design

Figure 6.1: Architecture block diagram

The architecture of the system and its internal relationships are illustrated as a

block diagram in Figure 6.1 and is based on reference [88]. It consists of the SSDs,

89

memory components to store metadata information (SRAM and NvSRAM), and the

management components. The management component consists of three main blocks.

The first block—labelled Device Replacement—contains the proactive hot-

swapping, the coordinated data migration, and the parity redistribution. It monitors

the Global FTL in order to make decisions about activating or deactivating these func-

tions. According to the outputs of these functions, the RAID controller effectively

relocates both the incoming requests and the partial replacement tasks across the array.

Also, it may suspend or reschedule these operations according to their priority levels

to avoid possible overlaps.

The second block is referred to as a Global FTL as it takes a holistic view of the

whole array, rather than a view of a specific SSD device. The third block—the RAID

controller—provides the primary RAID functionality via the semi-hybrid RAID and

the dynamic stripe mapping function. The semi-hybrid controller dynamically recon-

figures components in the array, and the global view of the array, after device replace-

ment in order to improve read performance. More details will be given about these

blocks in Chapter 7.

6.3 Proactive Hot-Swapping

If an individual device reaches its endurance limit, and therefore shows a high bit error

rate, data integrity becomes unreliable. Therefore, the device is considered expired and

in need of reconstruction by the RAID controller. On-line RAID reconstruction gen-

erates additional I/O to the storage and so reduces the system’s performance. To elim-

inate the overhead of this on-line reconstruction, a proactive real-time hot-swapping

technique is introduced that facilitates on-line migration of the data from the old de-

vice to the hot spare device before the old device reaches a critical bit error rate.

90

Figure 6.2: Example read operation involving a failed block during rebuilding

Incoming write requests targeting the failed device do not detrimentally affect per-

formance significantly as they are relocated to the hot spare device, and only the stripe

mapping table needs to be updated. However, reading data from the failed device

causes extra I/O interaction with the storage. For example, Figure 6.2 illustrates a log-

ical stripe with a failed data D1. A read operation to D1 triggers the following steps:

1. The read operation D arrives and metadata indicates that D1 has failed;

2. Read D2, D3, D4, and parity DP;

3. Calculate D1 using D2⊕D3⊕D4⊕DP;

4. Write reconstructed D1 to the hot spare device.

When a data read request targets the failed device, it costs n − 2 more reads and an

extra write operation (where n represents the number of devices in the array), thereby

slowing down the average response time. In order to reduce this overhead, the proactive

technique starts data migration before the old device reaches its endurance limit.

91

A device with proactive hot-swapping can be in one of the following states:

• S0:Enable: The device is accessible to all I/O instructions.

• S1:Read Only: The device is only accessible to read instructions.

• S2:Disable: The device is not accessible to any I/O.

Figure 6.3: State transactions of a device in the hot-swapping technique

Conventional hot-swapping techniques have only adopted state S0 and S2. Initially,

all devices are configured to be in a state of enable. To change the state of a device from

enable to disable, its ageing level, which is proportional to the number of erasures per-

formed, is considered. Unlike existing techniques, the new technique introduces the

read only state, as shown in Figure 6.3. A number of input flags are considered to

change the state of devices including FT H, FHB, and FDR. FT H becoming high when the

corresponding device crosses the triggering threshold for hot-swapping. The hybrid

flag (FHB) indicates whether the old device will participate in the new RAID configura-

tion for the semi-hybrid RAID or not. Finally, the device replacement flag (FDR) shows

if the device replacement process is active or not.

To change the state from enable to read only, only FT H is considered. If FT H be-

come high (1), then the device is marked to be swapped and the device replacement

92

flag (FDR) is set as high (1). After migrating all valid data in the old device, FDR be-

comes low (0) and the technique checks the hybrid RAID flag, (FHB). If it is high then

the device always stays at the read only state, otherwise its state changes to disable.

When a given device is in the read only state, the controller only permits read

instructions to this device. Any other life-consuming operations—specifically write

and update—are redirected to a hot spare device. A read operation on the old device

can be served from the old device itself without rebuilding and migrating, and therefore

does not introduce a performance overhead.

Hot-Swapping Triggering Threshold

The BER of flash memory-based storage grows proportionally to the number of era-

sures that storage has performed, as discussed in Chapter 2. The effects of BER are re-

duced by introducing wear levelling, which evenly spreads the wear (and BER) across

the memory. SSDs basically use ECC—which are usually implemented in hardware—

to correct bit errors. Even after applying ECCs, there might be some error bits left

in the memory, which are called the Uncorrectable Bit Error Rate (UBER). A device

reaches its endurance limit when the UBER reaches an unacceptable level. [8, 11].

Figure 6.4: Comparison of erasure limits of SSD RAIDs with a 4 bit ECC taken from
reference [8]

93

The reliability techniques prolong the lifetime of the storage by providing addi-

tional redundancy, as shown in Figure 6.4. It is clear that the life of SSDs with Diff-

RAID is extended a few 1000s of cycles without a high ratio of data loss probability.

The ratio of the data loss probability is considered as the metric by which to trigger

the hot-swapping technique, which is also proportional to the number of erasures per-

formed. A level of 0.0001 and under can be tolerable for the application within the

scope of the research [8]. Therefore, it is defined as the triggering threshold for hot-

swapping. There is an obvious trade-off between the system reliability and the lifetime.

Starting hot-swapping at an earlier point will reduce the data loss probability, whilst at

the same time reducing the average lifespan of the corresponding device.

The hot-swapping trigger threshold is also important for system performance. A

late triggering point would result in worse system performance as the BER/UBER rate

also proportionally rises. To correct these errors, either ECC or RAID reconstruction

would need to be performed. However, the performance overhead of the correction of

bit errors by ECCs can be ignored as they are rapidly handled at hardware level [89].

Moreover, the ratio of the UBER which triggers the expensive RAID reconstruction

are relatively low in their overall effect on system performance.

Completion Time

The completion time of on-line rebuilding is important in terms of the reliability of

the system. This is because if an additional device failure happens while the rebuilding

is underway, it leads to non-recoverable data loss. To reduce the completion time, an

idle time detection approach is commonly used, triggering the reconstruction process

when idle or low density usage patterns are detected or predicted.

The presented technique reduces this probability of simultaneous failure in multiple

devices as it starts the data migration before the given device fails. Because of this, the

device replacement time is not as strict as it is in other on-line RAID reconstruction

mechanisms. However, there will generally be some data which is not updated during

94

the data migration process (as it has not been accessed) and will have to be migrated

before next device replacement operation is underway. To address this, a cold data

migration operation is introduced where not only incoming write operations to the old

device triggers the data migration, but also the cold data in the old device are partially

migrated to the new device based on an idle-time detection approach. Each cold data

page migration process costs the sum of the read, write, and transfer latencies of the

data. This technique is discussed in the following section in detail.

6.4 Coordinated Data Migration

Cold data migration or on-line reconstruction operations are usually triggered when

there is an idle time or low density workload pattern detected. The garbage collec-

tor is also based on an idle time detection technique, and is a common cleaning ap-

proach [33]. The possibility exists that the idle time period is not sufficient for com-

pleting both garbage collection and migration operations when the device replacement

process has to be completed within a certain period. Therefore, when the migration

operation overlaps with an ongoing garbage collection process in the target device, the

performance of the system degrades.

In the first case of Figure 6.5, an idle time-triggered on-line reconstruction tech-

nique is illustrated on a magnetic disk RAID array. It is clear that to minimise the

performance overhead of rebuilding, the device reconstruction tasks (DRTs) are trig-

gered when an idle time period is detected. However, the existing technique does not

work well with SSD RAID mechanisms where garbage collection is also based on idle

time detection as it slow downs the I/O performance and increases the completion time

of the device replacement, as shown in the second case of Figure 6.5. This is because

the controller is not aware of internal operations in flash memory-based storage.

95

Figure 6.5: A comparison of device replacement techniques

Whenever the technique detects an idle time period, DRTs are inserted in the I/O

queue of the corresponding memory. Since the device replacement time must be as

short as possible to avoid non-recoverable data lose in case of additional device fail-

ure, a higher priority is given to the DRTs over system I/O instructions. However,

flash memory-based storage requires regular background cleaning operations, which

consume relatively long periods of time. Also, when GCs are initiated then they block

all incoming requests to the memory component until they complete. It is obvious that

the completion and response time of DRTs, and therefore I/Os, would be affected by

an uncoordinated cleaning processes.

A coordinated data migration process is introduced to interleave these overlapping

requests. It monitors the ongoing garbage collection processes in the array with the

help of the Global FTL. If garbage collection and device replacement functions want

96

to access the target device during the same idle time period, the technique reschedules

them depending on their priority levels to guarantee system response time.

Generally, idle time-based cleaning mechanisms do not initiate a cleaning process

due to lack of free space, as in threshold-based mechanisms. Therefore, they have

a lower priority compared to that of threshold-based mechanisms and thus shifting

cleaning operations to later time periods may not incur the same starvation of free

space as in threshold-based cleaning policies.

If the target device is running out of free space, and consequently has to immedi-

ately garbage collect, then GC takes a higher priority; otherwise, the DRT maintains

a higher priority. Case 3 in Figure 6.5 shows that the technique can considerably en-

hance the performance of the system by avoiding potential conflicts as no I/O block is

inadvertently delayed.

Idle Time Detection

Since improving the efficiency of idle time detection is not in the scope of this

study, a basic idle time detection function—which is also used in the baseline reliability

mechanism in reference [87]— is adopted. To detect an idle time in the storage, the

last access time of the corresponding memory is stored in a register. If there is not

any request assigned to the memory after a predefined time period this is considered

as an idle time and idle time triggered techniques are invoked. If an instruction arrives

before this time period elapses, then the system does not invoke idle time operations

and serves the request.

6.5 Cost-Effective Parity Redistribution

Unlike traditional RAID levels, SSD-based RAID mechanisms such as Diff-RAID [8]

and flash-RAID [11] allow a parity redistribution operation during a device replace-

ment process. These mechanisms require strict control over the parity distribution per-

97

centages of the devices to maintain the ageing ratio between devices at specific levels.

Any unmanaged changes in the percentages affects their reliability mechanisms.

Figure 6.6: Parity redistribution of Diff-RAID

The parity redistribution method in Diff-RAID has two main steps, as illustrated

in Figure 6.6. First, the old device (5) is replaced with the new one (6). Since the

replacement process migrates (or reconstructs) the data on the new device, all parity

data stored on the old device is also migrated. However, this leads to undesired parity

distribution percentages in the system—for instance, in this example, (19%, 1%, 0%,

0%, 80%). To restore the parity ratios to the desired levels of (80%, 19%, 1%, 0%,

0%), Diff-RAID redistributes the parity data on the new device (6) to the other devices

in the array. However, this operation has two main bottlenecks:

1. It increases the write amplification factor and replacement time by performing

extra parity movement to the new device.

2. The parity redistribution step requires additional data movement between the

new device and other devices in the array, which further slow downs the perfor-

mance of the system.

98

In order to address these problems, a cost-effective parity redistribution technique is

presented. The main idea behind this technique is to replace a device without requiring

additional data movement among devices by considering the default parity assignment

percentages. The technique redistributes the parity data of the old device during the

execution of actual writes (hot data migration) or during a cold data migration period

along with the proactive hot-swapping.

Parity redistribution with hot data migration

The cost-effective parity redistribution technique is compared with the that of Diff-

RAID under conditions of hot data migration by considering a number of scenarios.

These scenarios differ from each other with regards to the status of target stripe (full or

partial stripe) and the location of the actual and the parity data in the stripe.

Figure 6.7: Comparison of parity redistribution for a partial stripe

In the first scenario, given an actual write (D3 in Figure 6.7) targeting the old device,

the technique does not directly relocate the updated parity (P′D) to the hot spare device.

Instead, it determines a target device (device 2) for parity data based on the initially

assigned parity distribution ratios. If the target device does not include a member of

99

the logical stripe, then updated parity (D′P) can locate the target device without any

performance overhead, as illustrated in Figure 6.7. However, the same scenario would

result in an extra write operation and an additional stripe unit migration with Diff-

RAID’s parity redistribution technique, as shown in Figure 6.7. This increases both the

performance overhead and the write amplification of the system.

Figure 6.8: Comparison of parity redistribution for a full stripe, Case 1

Secondly, in case of an update operation on data whose parity is located on the old

device, the technique performs only a swap operation between the updated parity and

the data block, and so does not incur a performance overhead similar to the previous

case, as shown in Figure 6.8. A similar scenario results in an additional write (D′P) to

the hot spare device in Step 1 and an additional stripe unit swap in Step 2.

In the last case, if a parity needs to be redistributed in the case of a full stripe write

then the technique requires two steps, as illustrated in Figure 6.9. This is because

to ensure that a single device does not include multiple members of a logical stripe,

the destinations for all stripe elements are updated accordingly. In the first step, the

cost-effective technique updates the stripe unit (D3) and calculates the new parity (D′P)

100

Figure 6.9: Comparison of parity redistribution for a full stripe, Case 2

but does not directly locate it onto the spare device, as in the case of Diff-RAID. It

defines the target device and, if there is already a member of the logical stripe (D0)

present, then it is migrated to the hot spare device. After this operation is completed,

the updated parity (D′P) can then be located to the target device. By comparison with

Diff-RAID, the new mechanism does not perform with improved performance, but the

write amplification is improved in this scenario.

Parity redistribution with cold data migration

To redistribute the parity data in a cold data migration period, the technique first

determines the type of the data (actual write or parity) by inspecting the dynamic stripe

mapping table. If it is actual data, then the technique directly relocates it to the new

device. Otherwise, the same procedures as hot data migration are followed. The only

difference between them is that if a swap operation is required between a parity and a

data block, it does not incur a performance overhead as it is triggered during an idle

time period.

101

As a result, the technique directly migrates the parity data of the old devices to

the correct target devices with the proactive hot-swapping schema, and therefore it

reduces the write amplification factor and improves the I/O response time. Also, it

satisfies the parity assignment ratios with minimal parity movement and therefore does

not inadvertently contribute to increased ageing.

6.6 Semi-Hybrid RAID

Proactive hot-swapping initiates data migration from an ageing device to a new device

before endurance limits become critical. Once the replacement process is complete,

there are two copies of valid pages: one in the old device, and one in the new device,

as a result of the coordinated data migration described in Section 6.4 as metadata has

not been updated to invalidate old pages. This is a typical RAID 1 redundancy model,

and may be exploited to improve read performance. In order to exploit this improved

read performance further, in this section a semi-hybrid RAID architecture is presented.

Here, when a device replacement is started, the technique configures old and new de-

vices in a manner similar to RAID 1 which improves read performance and the data

reliability of the system by keeping a copy of original data in a different device. In

doing so, the old device is not immediately discarded and is instead retained for a

period of time in order to service some (non-ageing) read requests. The architecture

is referred to semi-hybrid RAID as it is effectively imposing a RAID 1 configuration

over a device and its replacement in a manner that is transparent to the SSD RAID

architecture of the system.

This gives rise to a more complicated hardware and metadata architecture over time

as the array is used, as each device may be shadowed by a single older device that is

used to service read requests; however, the benefit is that a higher throughput of read

requests can be serviced, particularly in the presence of the idle time detection.

102

Figure 6.10: Semi-hybrid RAID after the second replacement

Figure 6.11: Semi-hybrid RAID after the third replacement

Figure 6.10 and Figure 6.11 illustrate an example of the semi-hybrid RAID system

after the second and third device replacement processes, respectively. These diagrams

have two different RAID mechanisms superimposed and co-existing. The SSD RAID

system consists of devices 3, 2, 1, 6, and 7 after the second replacement. The semi-

RAID 1 mechanism consists of the old devices, 5 and 4, which in this case have been

replaced, shadowing the replacement devices 6 and 7. When, for instance, a replace-

ment operation is initiated for device 3, and it is to be replaced by device 8, it is consid-

ered removed from the SSD RAID array and device 8 is imported into the array in its

place, as shown in Figure 6.11. Devices 3 and 8 then form an individual semi-RAID 1

103

configuration. In this semi-hybrid RAID model, it is therefore possible—depending on

the age of the SSD RAID array—that each individual device in the array is shadowed

by its own RAID 1 partner old device.

The old device in a semi-RAID 1 array is then used to handle some of the incoming

read requests. When data is updated, it is always written to the new device in the semi-

RAID 1 array and the metadata is updated to reflect the location of that new data in

the array; however, before this data is updated, the version stored in the old device is

still valid to be read from. Therefore, when a read request comes in, the semi-hybrid

RAID array technique checks to see if the old device retains a current valid copy; this

incurs only a very minimal performance overhead as the metadata status table is stored

in local NvSRAM. If the old device retains a valid copy of the data it may be read,

otherwise the new device is read.

This concurrent architecture has several benefits. In particular, it increases the

available idle time for each of the idle time detection techniques as data can be read

from an old device whilst a new device is garbage collecting, or cold data migrating.

6.7 Summary

In this chapter, techniques were presented to enhance the real time and performance

capabilities of device replacement mechanism for SSD RAID arrays. The presented

novel techniques aim to improve the efficiency of the replacement process via flash

aware management operations for hard real-time applications.

The proposed proactive hot swapping technique predicts and initiates swapping in

advance. Thus maintaining system availability and reducing performance overhead in

case of on-line reconstruction of the RAID array. This eliminates non-deterministic

behaviour and improved performance for hard real-time embedded systems.

104

To improve system performance further during the replacement process, a new

garbage collection aware data migration technique was proposed. This technique pre-

vents possible collision between data migration of device replacement and garbage

collection when both are triggered based on idle time detection methods.

Contrary to the existing techniques, a new cost effective parity redistribution tech-

nique was proposed, which offers improved system write capability and performance.

Parity redistributions of existing techniques are expensive due to the additional data

migration operations to achieve desired parity distribution ratios. In addition, the pro-

posed technique reduces the parity redistribution steps, which further enhances the

system write capability and performance.

Finally, a new semi hybrid RAID technique was proposed which improves the read

performance of the system after the completion of the device replacement. As the

proactive mechanism does not allow the old devices to be expired, therefore devices

are reconfigured at RAID level to improve read performance of the system.

In conclusion, the proposed on-line device replacement framework eliminates non-

deterministic device replacement behaviour in SSD RAID. In addition, due to the on-

line real-time replacement, it indirectly increases the system availability. In addition,

it provides greater system performance in comparison to existing mechanisms.

105

Chapter 7

Testbed and Results

In this chapter, the implementation of a testbed for a reliable and real-time SSD-based

storage system is presented to investigate the effectiveness of the mechanisms pre-

sented in Chapters 4, 5 and 6. Also, the results of experiments are presented to support

the use of mechanisms presented in these chapters, along with a number of synthetic

and realistic (captured) traces. For accurate timing of disk requests, the NAND flash

SSD simulator is designed as an extension of the Microsoft SSD simulator [37] which

is derived from Disk Simulator (DiskSim) [90], a well known, validated and trace-

driven disk simulator.

7.1 Introduction

The presented enhancement mechanisms are mapped in software architecture to build

a real-time and reliable SSD storage system. These mechanisms are based on the SSD

RAID mechanism which itself is based on unique parity distribution across the SSD

array, unlike RAID 4 and RAID 5.

The contribution of this chapter can be summarised as follows: an architecture is

presented that offers (1) deterministic response times for I/O using novel mechanisms,

106

regardless of workload characteristics; (2) high performance by exploiting the holistic

view of the storage system; (3) a user-configurable software architecture that allows

real-time operations by the host system.

The architecture is suitable for building a real-time and reliable SSD-based storage

systems. It is evaluated under various synthetic and realistic workloads that include dif-

ferent ratios of random and sequential writes. The experimental results show a reduced

WCET, improved performance and reliability compared to existing systems regardless

of workload characteristics whilst maintaining the reliability mechanisms.

The chapter is structured as follows: in Section 7.2, general information regarding

the DiskSim simulator is presented. Section 7.3 presents a software-based experimen-

tal platform for a real-time and reliable storage system. Section 7.4 presents simula-

tion parameters and workload characteristics. The experimental results are presented

in Section 7.5. Finally, the chapter is summarized in Section 7.6.

7.2 DiskSim Simulator

DiskSim is a trace-driven, accurate and efficient disk system simulator which has been

widely used in number of research projects studying storage subsystem architectures

[90]. It is a highly-configurable simulator and was written in C. It not only simulates

disks, but also includes many secondary system components such as controllers, buses,

device drivers, request schedulers, and disk cache components. It supports evaluation

for both realistic and internally generated synthetic workloads. Its accuracy is widely

evaluated against various hard disk drives from different manufacturers, such as Atlas

III, and 10K from Quantum, Cheetah and Barracuda disk drives from Seagate, and

Ultrastar 18 ES from IBM [90]. The performance behaviour of a system is modelled

rather than involving actual write or read operations for I/O in the simulator.

107

Although it was designed to simulate HDDs, an SSD extension has been developed

by a group at Microsoft Research to simulate an idealized SSD that is parametrised by

NAND flash characteristics such as read, write, erase latency, number of chips, blocks

and pages, reserved number of free blocks, and so on [37]. It has been used extensively

in the literature to study different flash memory-related mechanisms [91–94].

7.3 Experimental Platform

Many embedded applications use microcontrollers for the implementation of physical

systems but these are not suitable for high-integrity systems due to their performance

issues caused by huge interconnectivity. Nowadays, use of FPGAs is a growing trend

in high-integrity systems which can seamlessly meet the demands of high reliability,

high performance and guaranteed timing behaviour [95]. FPGAs exploit design con-

currency to increase throughput. In addition, on-chip integration of computing modules

within a single FPGA make the scheme more reliable and performance efficient.

FPGA based designs are less expensive and do not require expensive fabrication as

compared to Application Specific Integrated Circuits (ASICs). The performance of the

FPGA based designs is nearly equal to ASIC [96]. The achieved performance helps

real-time applications to execute in a deterministic way. A number of instructions need

to be executed before a microcontroller can access data from memory. However, an

FPGA already retains a memory with a direct access bus which improves its throughput

significantly. There are various types of FPGAs—Flash, SRAM, and Anti-fuse. Both

the flash and anti-fuse based FPGAs can only accommodate small to medium size

designs. On the other hand, SRAM based FPGAs are available in large logic density

and can accommodate large designs within a single FPGA but are vulnerable to Single

Event Upsets [97–99].

108

To utilize the benefits of the FPGA based system architectures outlined above and

keep consistent with the reliability enhancement mechanism [87], the presented mech-

anisms were adapted on an SRAM based FPGA.

Figure 7.1: Experimental platform for a real-time and reliable SSD storage system

The experimental platform of the system and its internal communication paths are

illustrated as a block diagram in Figure 7.1. It consists of the solid state devices, mem-

ory components to store metadata information (SRAM and NvSRAM), test drivers, and

the FPGA-based management component. The FPGA-based management component

consists of three main blocks.

The first block in the management part is referred to as a Global FTL as it takes

a holistic view of the whole array, rather than a view of a specific SSD device. It is

mainly responsible for the real-time garbage collection functionality and address map-

ping of the storage system. Two novel real-time garbage collection mechanisms were

developed, including Dynamic PGC and GARM, which were presented in Chapters

Chapter 4 and Chapter 5, respectively. The Dynamic PGC includes two main areas of

109

functionality including the dynamic garbage collection to enhance the reliability and

pre-emptive mode controller to improve real-time efficiency and performance of the

system. The GARM has three main areas of functionality including GC-aware data

locating and serialised GC to improve WCET and performance of the system, while

on-line parity migration improves the system reliability.

Global FTL also includes address mapping management. The system is based on

page-level striping, where each logical address is mapped to a physical address loca-

tion. SRAM is used for storing address mapping tables for each individual device in

the array. Moreover, to reduce the performance overhead of metadata operations, the

Global FTL stores the status (valid, invalid, or free) of all pages in the array into NvS-

RAM, with an individual partition for each of the devices in the array. Global FTL also

manages statistical information for each device in the array, including the number of

erasures performed, the number of free blocks in each device, and so on.

The second block of the device under test — labelled Device Replacement — con-

tains the proactive hot-swapping mechanism, the coordinated data migration mecha-

nism, and the parity redistribution mechanism as presented in Chapter 6. It monitors

the Global FTL in order to make decisions regarding the activation or deactivation of

these functions. According to the outputs of these functions, the RAID controller effec-

tively relocates both the incoming requests and the partial replacement tasks across the

array. Also, it may suspend or reschedule these operations according to their priority

levels to avoid possible overlaps.

The third block—the RAID controller—provides the primary RAID functionality

via parity distribution and the dynamic stripe mapping function. The parity distribution

manages the parity ratio of each device according to initially assigned parity percent-

ages. A basic counter is used to manage the parity distribution ratios. For example,

given parity percentages of (80,19,1,0,0) in the instance of five devices in the array, first

80% of parity data of p new writes (where p represents the length of the period) are

110

located to the nth device, while the next 19% and 1% of the parity data of new writes

are located on the (n−1)th and (n−2)th devices, respectively. Software implementation

of the mechanism is depicted in Appendix A.5.

The RAID controller also manages the dynamic page allocation process. Tradi-

tional RAID levels, such as RAID 4 and RAID 5, linearly map the actual data and

parity to the devices. However, unlike traditional RAID levels, the dynamic stripe map-

ping function keeps track of links between the logical addresses and the corresponding

physical locations of the stripe units, which were intentionally created to provide an

uneven parity distribution. This component also plays an important role when a page

needs to be dynamically located in a GC-free device, as explained in Section 5.2.

To analyse the presented techniques under a number of different scenarios, a test

driver block is presented in the experimental platform, as illustrated in Figure 7.1. It

mainly consists of two types of input. First, configuration files to set up the system

including the device, array and component configurations. The device and array con-

figurations enable us to set parameters relating to the flash memory and the RAID array,

respectively. The main parameters and their default values will be given in the follow-

ing section. On the other hand, the component configuration provides an opportunity

to enable/disable various features of the presented techniques or for the user to set ini-

tial parameters of the techniques, such as the value of the period to adjust dynamic

threshold levels of the pre-emptive GC mechanism.

Moreover, the test drivers give the opportunity to test the device under a number

of synthetic and realistic traces. More details regarding the parameters of the syn-

thetic workload and characteristics of the realistic traces will be given in the following

section. Simulation results are gathered into a file to be analysed for each experiment.

111

Table 7.1: Default flash array parameters

Parameter Value

Reserved free blocks 15%

Minimum free blocks 5%

Flash chip elements 1-2

Blocks per plane 2048

Pages per block 64

Page size 4 kB

Page read latency 0.025 ms

Page write latency 0.200 ms

Block erase latency 1.5 ms

Redundancy Schema Taken From [11]

Stripe unit size 4 kB

Table 7.2: Default parameters of synthetic traces

Parameter Value

Request Size () 4 kB

Inter-arrival Time 3 ms

Probability of read access 0.2

Probability of sequential access 0.2

Table 7.3: Characteristics of realistic workloads

Workload Read % Avr. Inter-arrival time (ms) Request Size (kB)

Postmark 30 0.92 ∼4

Boot 92 3.32 ∼4

Financial 8 3.77 ∼4

7.4 Simulator and Workloads

The default parameters of the SSD array are given in table Table 7.1. The default

parameter file for an SSD is presented in Appendix A.1. The experimental SSD array

consists of five initial devices. Also additional spare devices are initiated when it is

required. The default storage system topology is given in Appendix A.3 Since the

112

reliability mechanism is based on page-level striping, the stripe unit size is set with a

page size of 4 kB. Other default parameters of the array are given in Appendix A.2.

Experiments were conducted using a mixture of realistic and synthetic workloads in

order to analyse the WCET, performance and reliability of the proposed mechanisms.

Usage characteristic parameters required for the synthetic traces were set with default

values as shown in table Table 7.2. For synthetic workloads, some parameters were

varied including the probability of sequential access, inter-arrival time of requests,

and the sizes of the requests. The synthetic trace runs until the most aged devices

reaches its predefined endurance limit for the ageing experiments. For the performance

experiments the mechanisms are tested with average of 100,000 synthetic I/Os.

For realistic traces, two types of captured traces for embedded systems were used

to analyse the WCET and performance of the mechanisms. They are captured by the

Flashmoon tool [100] that enables the monitoring of embedded NAND flash memory

I/O requests. Also, a well-known, random write-dominant server trace (financial [84])

was chosen to conduct ageing tests.

Characteristic features of the realistic traces are given in Table 7.3. Overall they

contain a small request size, which also makes the reliability mechanism work close

to its optimum reliability level. In particular, Postmark is a benchmark which aims

to generate the behaviour of a file system. It is a write-dominant workload. On the

other hand, boot benchmark is captured I/O operations to NAND flash memory during

the kernel boot process. As one might expect, it is read-dominant and instructions are

relatively light in terms of inter-arrival rate. Financial trace is a captured server trace

and includes a high enough number of write requests (nearly 4 million) [84].

For performance evaluation, the entire flash-based storage was first filled with valid

data before conducting performance experiments in order to perform a fair perfor-

mance and WCET analyses of the mechanisms.

113

7.5 Simulation results

In these experiments, the data reliability and performance of an SSD-based storage sys-

tem is evaluated after adapting the presented mechanisms including the Dynamic PGC,

GARM and device replacement techniques presented in Chapters 4, 5, and 6, respec-

tively. Each time, one of these was evaluated by disabling the others to independently

measure real improvements for each of the mechanisms. The comparison is drawn

between the proposed mechanism and state-of-art studies such as PGC [17], the relia-

bility mechanisms [8, 11], or a standard flash RAID without enabling any techniques

with the parameters presented in Section 7.4.

This section can be categorized as follows. Reliability and performance evaluation

of the dynamic pre-emptive GC is presented in Section 7.5.1. Section 7.5.2 presents the

performance, WCET, and reliability evaluations of the GARM. Finally, improvements

of the device replacement techniques are presented in Section 7.5.3.

7.5.1 Dynamic Pre-emptive Garbage Collection Mechanism

The reliability and performance analysis of the dynamic pre-emptive GC is evaluated.

The parameters by which the SSD array is defined are illustrated in Table 7.1. PH factor

(h) is set at 2% and PT
M is set at 1% of the total number of blocks. The default values of

the synthetic traces used in the experiments are given in Table 7.2. To create a variety

of workload scenarios with synthetic traces, an exponential and normal distribution is

used for varying request sizes and inter-arrival times of requests. The main part of

the software implementation of the presented techniques can be found in appendices

Appendix A.6, Appendix A.7 and Appendix A.8.

Reliability Analysis

Two techniques are evaluated and compared: PGC-RAID, the pre-emptive GC [17]

with the reliability mechanism of [11] which is considered as a base case; and Dynamic

114

PGC, the dynamic pre-emptive GC mechanism for SSD-RAID systems, as described in

Section 4.5. Also, the optimal ratios for the age distribution percentages of the SSDs

in an array for an optimum reliability level which is calculated based on the ageing

formula in reference [8] with initially assigned parity ratios of 80%,19%,1%,0%,0%

for 5 SSDs. It is only drawn for comparison purposes.

SSD1 SSD2 SSD3 SSD4
20

25

30

35

40

45

A
ge

in
g

C
yc

le
(%

)

PGC-RAID Dynamic PGC Optimal

(a)

SSD1 SSD2 SSD3 SSD4
20

25

30

35

40

45

A
ge

in
g

C
yc

le
(%

)

PGC-RAID Dynamic PGC Optimal

(b)

SSD1 SSD2 SSD3 SSD4
20

25

30

35

40

45

A
ge

in
g

C
yc

le
(%

)

PGC-RAID Dynamic PGC Optimal

(c)

Figure 7.2: SSD age distributions by varying probability of read access. Probability of
read accesses: a (0.2), b (0.4), c (0.6)

Figure 7.2a, b and c illustrate the ageing characteristics of each mechanism with

varying read access probabilities; these cause write access probabilities to vary also as

the probability of an access is the sum of both. It can be clearly seen that Dynamic PGC

shows improvement in ageing distributions of devices compared to PGC-RAID for all

cases. For example, the age distribution of SSD 3 is 7% closer to its optimum ageing

level. As the probability of read access increases, Dynamic PGC performs slightly

better in terms of tending towards optimum levels.

115

SSD1 SSD2 SSD3 SSD4

10

20

30

40

50

A
ge

in
g

C
yc

le
(%

)

PGC-RAID Dynamic PGC Optimal

Figure 7.3: SSD age distributions with the financial trace

Furthermore, the techniques were evaluated and compared with a random write-

dominant realistic trace. Dynamic PGC essentially eliminates the deviation in the age

distribution levels of the reliability mechanism when coordinating PT
L and PT

H as illus-

trated in Figure 7.3. The ageing ratio of SSD 4 is much closer to the optimum level

compared to PGC-RAID (by nearly 10%). Also, the ageing ratio of SSD 1 is 19%

closer to its optimum level. This is because the Dynamic PGC has raised thresholds

for SSD 1 while lowering them for SSD 5 when the deviation in age distribution was

detected. SSD 5 does not appear on Figure 7.3 because it is the most aged and ref-

erence device to calculate the ageing cycles of other devices and its ageing cycles are

equal to 100% for all experiments.

Garbage collection directly affects device lifetime due to erase operations. To ob-

serve its effect over the lifetime of the storage, it is compared with existing techniques

using constant thresholds for pre-emption. Threshold 2 (Th2) is set with a soft level

of 5% and a hard level of 3%, and threshold 3 (Th3) is set with a soft level of 8% and

a hard level of 5%. Only optimal GC triggering threshold levels for PGC are con-

sidered for the experiments [17]. A higher threshold level than Th3 will increase the

number of erasures which negatively affects the lifetime of the flash memory. Also a

lower threshold than Th1 will increase probability of entering normal GC state where

response time becomes non-deterministic. Figure 7.4 illustrates that the Dynamic PGC

116

0.2

0.4

0.6

0.8

1

1.2

0.96 0.99 1

N
or

m
al

iz
ed

E
ra

su
re

C
ou

nt
s

PGC-RAID (Th2) PGC-RAID (Th3) Dynamic PGC

Figure 7.4: Normalized total number of erasures performed in the array with the finan-
cial trace

has a slightly higher erase count than PGC-RAID. It has 4% more erasure operations

than PGC-RAID with threshold 2, and no tangible difference with threshold 3. While

the threshold levels increase for PGC-RAID, the erasure count continues to rise.

Also, it was found that reducing the period of the Dynamic PGC for calculating

thresholds helps ensure that the age distribution tends towards optimum levels, im-

proves the age distributions further towards the optimum level but has a detrimental

effect on device lifetime.

Overall, the results demonstrate that the Dynamic PGC improves the age distribu-

tions of devices (which is necessary for the reliability mechanism to be effective) along

with offering upper bounds for I/O response, with minimal impact on device lifespan

with the help of dynamic garbage collection component of the proposed mechanism.

Downtime and Performance Analyses

The real-time efficiency of the mechanisms was evaluated using a number of syn-

thetic traces by varying the probability of read access as 0.2, 0.3, and 0.4. Overall,

average inter-arrival time was measured as 1.2 milliseconds (ms) for the experiment.

Also, the threshold for the GCE function is defined as 15% of total pages in a block.

117

0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

Prob. of Read AccessN
or

m
al

iz
ed

nu
m

be
ro

fd
ow

nt
im

e
re

qu
es

ts

PGC-RAID Dynamic PGC

Figure 7.5: Comparison of number of requests arrived during downtime period

Figure 7.5 shows the amount of I/O requests (arriving during downtime) of each

mechanism with varying probability of read ratio of I/O requests. For a short proba-

bility of read (0.2), the Dynamic PGC shows improvement in a number of downtime

requests by 40% over PGC-RAID. As the probability of read access increases, the

Dynamic PGC exhibits further improvement.

Moreover, the performance characteristics of each mechanism were analysed for

the same traces of Figure 7.5. The Dynamic PGC shows improved average response

times compared to PGC-RAID in all cases. However, the mechanism only shows a

limited performance improvement of up to 3% compared to PGC-RAID as illustrated

in Figure 7.6 due to the characteristics of the workload.

Overall, simulation results demonstrate that the Dynamic PGC not only provides

real-time access guarantees, but also maintains the reliability mechanism. It also re-

duces the downtime of the array during erase operations, thereby causing fewer write

operations to be postponed compared to PGC mechanism.

118

0.2 0.3 0.4

0.2

0.4

0.6

0.8

1

Prob. of Read Access

N
or

m
al

iz
ed

av
er

ag
e

re
sp

on
se

tim
es

(m
s)

PGC-RAID Dynamic PGC

Figure 7.6: Comparison of average response times

Although the Dynamic PGC offers real-time access guarantees with minimal

changes to the age distribution mechanism, the mechanism still suffers from a long

maximum response time. Also, its performance enhancement is limited compared to

the existing PGC mechanism (which showed only up to 6% improvement). To ad-

dress these limitations, GARM was presented, and is analysed considering a number

of different workloads in the following section.

7.5.2 Garbage Collection-aware RAID Mechanism

In this section the performance, WCET and reliability of the GARM were evaluated

with number of synthetic and realistic traces.

A number of different GC algorithms were examined including a non-GARM,

which was described in Section 5.2 and is considered to be the baseline implemen-

tation; GARM, which is presented in Section 5.2; and naive pre-emptive GC [17]. All

these techniques are adapted with the reliability mechanism of reference [11]. The

non-GARM and PGC mechanism uses the normal reactive GC scheme for cleaning,

119

where GC is only initiated according to the internal status of the flash chip in the array,

and is not coordinated. However, the GARM mechanism considers a holistic view of

the storage when initiating/postponing a cleaning operation.

A mixture of realistic and synthetic workloads were used to examine the presented

technique. For synthetic workloads, some parameters are varied, including the prob-

ability of sequential access, inter-arrival time of requests, and the size of the request.

The entire memory was filled with valid data before conducting performance experi-

ments in order to perform fair performance analyses of the mechanisms.

Performance Analysis

4 8 10
0

1

2

3

4

Request Size (kB)

A
ve

ra
ge

re
sp

on
se

tim
e

(m
s)

GARM non-GARM

(a)

1 3 5
0

0.2

0.4

0.6

0.8

1

Inter-arrival time (ms)

A
ve

ra
ge

re
sp

on
se

tim
e

(m
s)

GARM non-GARM

(b)

0.3 0.5 0.7
0

0.2

0.4

0.6

Probability of Read Access

A
ve

ra
ge

re
sp

on
se

tim
e

(m
s)

GARM non-GARM

(c)

0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

Probability of Sequential Access

A
ve

ra
ge

re
sp

on
se

tim
e

(m
s)

GARM non-GARM

(d)

Figure 7.7: Performance improvements of GARM for synthetic workloads. Average
response times are depicted with different parameters of synthetic workloads. (a) Re-
quest size. (b) Inter-arrival time. (c) Read ratio (d) Sequentiality.

120

Synthetic workloads:

The non-GARM and the GARM schemes were examined under a number of syn-

thetic workloads.

First, evaluation was started on the performance of the GARM under various syn-

thetic workloads. Incoming requests are not aware of ongoing cleaning operations in

the baseline GC schema and thus they have to wait until GC finishes although the mech-

anism dynamically relocates them across the available elements. Figure 7.7 illustrates

the performance improvements of the GARM schema under synthetic workloads.

Request size:

In this experiment, the request size was varied as 4, 8, and 10 kB. These values

were selected because the reliability mechanism achieves maximum efficiency with

partial stripe writes, which enables the creation of the desired age imbalance among the

devices. Figure 7.7a shows the improvements in performance of the GARM schema for

different request sizes. For a small request size (4 kB), response time is improved by a

factor of three. As the request size increases, further improvements are observed. For

a large request size (10 kB), the response time significantly decreases. This is because

the mechanism is not affected by an increase in the number of cleaning processes.

I/O arrival rate:

A similar enhancement was observed with respect to varying the arrival rate of I/O

requests. The inter-arrival time was varied between 1 and 5 ms in the experiments

conducted. In Figure 7.7b demonstrates that GARM is minimally affected by changes

in high arrival rates. However, the system response times for the baseline substantially

increase with respect to the request arrival rate.

Read Ratio:

Writing a page is expensive compared to a read operation in flash memory. Also,

further delay is incurred by the cleaning process, which is proportionally related to the

121

number of write operations requested. Thus the mechanisms were evaluated with a

number of traces by varying the read/write ratios in the traces. In Figure 7.7c, a sig-

nificant improvement in average response time was observed with a number of traces

by varying the read ratio. The mechanism provides a 50% better response time for a

read-dominant trace (read ratio 0.7) compared to the baseline mechanism. It further

improved the performance with a write-dominant workload by a factor of nearly three.

Sequentiality:

GC overhead increases due to random workloads as they produce more invalid

pages due to additional parity update operations. The mechanism is evaluated by vary-

ing the sequentiality of requests. Figure 7.7d illustrates the enhancement in average

response time. For example, for a 40% sequential workload the mechanism improves

the system response time by a factor of more than three compared with the baseline

mechanism. Also, it can be seen that performance levels of the mechanism remain

constant for all levels of sequentiality.

It can be observed from the performance evaluation with synthetic workloads that

the GARM improves the performance, regardless of workload characteristics. Also, it

was noted that the mechanism shows better performance improvements with workloads

that cause more cleaning operations (e.g., fewer small request sizes, fewer large inter-

arrival times, more random access, and fewer read access).

Realistic workloads:

Performance evaluations of the non-GARM, PGC and GARM mechanisms are ex-

amined under captured embedded traces—postmark and boot. Characteristic features

of these traces are given in Table 7.3.

Figure 7.8 shows the improvement of system performance for realistic workloads.

For a write-dominant workload, (postmark), the average response time is improved by

a factor of nearly 13 compared to the baseline system, as shown in Figure 7.8a. Also,

an improvement was observed in average response time by 18% compared to the PGC

122

postmark
0

0.5

1

1.5

A
ve

ra
ge

re
sp

on
se

tim
e

(m
s)

GARM PGC non-GARM

(a)

boot
0

2

4

6
·10−2

A
ve

ra
ge

re
sp

on
se

tim
e

(m
s)

GARM PGC non-GARM

(b)

postmark boot
0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

M
ax

R
es

po
ns

e
Ti

m
e

GARM PGC non-GARM

(c)

Figure 7.8: Performance improvements of GARM for realistic embedded system work-
loads. (a-b) Average response time. (c) Maximum response time.

mechanism. For a read-dominant workload (boot), the mechanism enhances in system

performance by 26% and 2% compared to the baseline and the PGC mechanisms,

respectively as shown in Figure 7.8b.

Moreover, maximum response times of the architectures were evaluated. The

GARM shows a 61% and 73% better maximum response time compared to the PGC

mechanism for postmark and boot workloads, respectively, as illustrated in Figure 7.8c.

It can be seen that response times are significantly improved compared to the baseline

mechanism for both workloads because the mechanism eliminates the long delay aris-

ing from the cleaning process by dynamically disturbing data stripe units.

123

Reliability Analyses

Possible negative effects of the GARM mechanism on the parity distribution ra-

tios were discussed in Section 5.2.7. To overcome these limitations, an on-line parity

migration was presented.

In this section, age distribution ratios of the GARM mechanism are analysed by

enabling/disabling the OPM feature presented in Section 5.2.7. The reliability mech-

anism has strict control over the lifespan of each element in the array. The proposed

reliability mechanism applies an (80%, 19%, 1%, 0%, 0%) parity configuration for

first two device replacements and then applies a (80%, 5%, 5%, 5%, 5%) parity con-

figuration onwards in the case of a five element SSD array.

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number Of Replacements

A
ge

(%
of

C
yc

le
s)

(a) SSD age distributions of GARM disabling the OPM

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Number Of Replacements

A
ge

(%
of

C
yc

le
s)

SSD-Pos1 SSD-Pos2 SSD-Pos3 SSD-Pos4 SSD-Pos5

(b) SSD age distributions of GARM enabling the OPM

Figure 7.9: The changes in age distributions of SSDs with a GARM by enabling and
disabling the OPM

124

A number of ageing tests were conducted with a write-dominant synthetic trace by

using the Microsoft SSD simulator [37]. The default values of the parameters used for

the synthetic trace are given in Table 7.2.

The results show that when the most aged device reaches its normalized endurance

limit, it contains 26% less parity data than its desired level, as shown in the case when

on-line parity migration is disabled in Figure 7.9a. Most of these parities are migrated

to the second most aged device in the array, which is 42.5 % more aged than its opti-

mum ageing level due to the dynamic data allocation of the GARM.

To observe the effects of degenerate parity distribution throughout other device

replacement iterations, the expected ageing ratio for each of the devices were calcu-

lated for 10 iterations considering ageing ratios at the first device replacement point,

as depicted in Figure 7.9a. The figures demonstrate that second most aged device has

exceeded its critical ageing ratio by 60% several times at replacement points 1, 3, 4,

6 and 9. Also, during the first device replacement point, the age of the second device

was observed to be 80%, such that the probably of data loss is significantly higher [8].

Moreover, the ages of second most aged devices fluctuate with GARM while it is sta-

ble after the third device replacement with respect to the default reliability mechanism

which is illustrated with solid lines on figures.

The same experiment was conducted enabling the feature of OPM. It is clear that

the OPM almost completely eliminates the negative effects of GARM by redistributing

parity data, as depicted in Figure 7.9b. It recovers the average parity distribution ratios

back to their optimum levels with a minimal performance overhead. The results show

that the OPM keeps the default parity distribution percentages of the SSDs in the array

and thus maintains the reliability enhancement of the mechanism.

Overall, the results show that the presented techniques outperform existing mecha-

nisms in terms of average response time and maximum response time for various types

of workloads. The architecture not only provides deterministic response times but also

125

maintains the reliability mechanism against simultaneous device failure. The on-line

parity migration maintains the initially assigned parity ratios among the devices in the

array and thus the reliability enhancement of the mechanism is not disturbed.

The GARM mechanism successfully addresses the root cause of non-deterministic

behaviour of the flash memory, which is garbage collection. However, some problems

regarding the flash RAID array still remain (e.g., the requirement for off-line device

replacement), which makes this unsuitable for real-time applications where determin-

istic response time and continuous system availability are required. To address this,

a number of presented on-line device replacement mechanisms are investigated in the

following section.

7.5.3 On-line Device Replacement Techniques

Experiments were conducted only with synthetic traces (as published captured traces

are not sufficient to age devices to the desired levels) to analyse performance, device

replacement time, and write amplification. Usage characteristic parameters required

for the traces were set with a request size of 4 kB, an inter-arrival time of 3 ms, and a

probability of read access of 0.2 as default. The results of the performance evaluation,

device replacement time, and write amplification experiments are presented as follows.

Performance Analyses

Two different performance evaluations are given. Firstly, system response times are

measured during the replacement process to evaluate the efficiency of the proactive hot-

swapping and coordinated data migration techniques. Secondly, the read performance

of the system is evaluated with the semi-hybrid RAID once a device replacement is

completed. Inter-arrival times of requests are varied over a normal distribution for

three experiments, with average times of 2.0, 3.0, and 4.2 milliseconds (ms). A basic

126

idle time detection for garbage collection and device replacement tasks is employed,

as presented in Section 6.4.

2.0 3.0 4.2
0.5

1

1.5

2

2.5

Average inter-arrival time (ms)

A
ve

ra
ge

R
es

po
ns

e
Ti

m
e

(m
s)

Online RAID Proactive Proactive-GC

Figure 7.10: Average response time of traces by varying inter-arrival time

Figure 7.10 illustrates the performance characteristics of three techniques: On-

line RAID— the on-line reconstruction of Section 6.4, Proactive—the proactive hot-

swapping without garbage collection of Section 6.3, and Proactive-GC—the proac-

tive hot-swapping with garbage collection of Section 6.4. For a short inter-arrival

rate (2 ms), proactive hot-swapping exhibits an improvement in response time by 16%

over basic on-line reconstruction. As the inter-arrival time increases, proactive hot-

swapping exhibits further improvements in average response time. Moreover, further

improvement in response time is exhibited by proactive hot-swapping with garbage

collection. For an inter-arrival time of 3 ms, the average response time during the

replacement process further improves by 19% over proactive hot-swapping without

garbage collection. For longer inter-arrival times, improvement in average response

time decreases because the idle time periods of the trace are long enough to reduce the

performance overhead of overlaps between the garbage collection and partial device

replacement tasks. For shorter inter-arrival times (2 ms), the proactive techniques do

127

2 5
0

20

40

60

80

Device Replacement Iterations

A
ve

ra
ge

R
ea

d
R

es
po

ns
e

Ti
m

e
(µ

s)

Proactive Semi-hybrid RAID

Figure 7.11: Average read response time of RAID schemas after different device re-
placement points

not exhibit significant differences due to the limited number of idle time periods in the

workload.

Figure 7.11 shows a comparison of read performances for Proactive—proactive

hot-swapping using the parity distribution of reference [11] and the Semi-hybrid RAID

of Section 6.6 after two and five device replacements. The size of read operations was

fixed at 8 kB and the probability of read access configured as 0.4. Results exhibit only

marginally better performance in the semi-hybrid. However, the read performance of

the semi-hybrid RAID can be further improved with a lower parity percentage on the

most aged device. Typically the most aged device holds 80% parity and 20% data, and

so the amount of data migration is low when device replacement is triggered. As the

percentage of data migrated to the new devices increases, the possibility of incoming

read requests hitting back-up devices in the semi-hybrid architecture rises, and so lesser

parity percentages will improve the hit rate and consequently performance.

128

Device Replacement Time Analyses

2.1 3.1 4.7

20

40

60

80

100

120

Average inter-arrival time (ms)

N
or

m
al

iz
ed

D
ev

ic
e

R
ep

la
ce

m
en

tT
im

e

Diff-RAID Proactive-CE

Figure 7.12: Device replacement times for parity redistribution

Figure 7.12 presents the results of comparing device replacement times for

Proactive-CE—the on-line cost-effective parity distribution of Section 6.5 to that of

Diff-RAID [8]. Default configuration parameters are used, and inter-arrival times var-

ied. Results are normalized to enable direct comparisons. The cost-effective parity

distribution technique exhibits a speed-up of 34% over Diff-RAID due to proactive

hot-swapping. As the inter-arrival time increases so do the performance benefits due

to co-ordination of idle time periods.

Write Amplification Analyses

Two different garbage collection triggering approaches are used to measure write

amplification. The first is idle time-based, where cleaning takes place in the back-

ground. The second is threshold-based, where cleaning is triggered based on the

amount of free space remaining. Both employ a greedy policy which selects the dirtiest

blocks to clean.

129

Idle-time GC Threshold GC
0

0.5

1

1.5

2

2.5

W
ri

te
A

m
pl

ifi
ca

tio
n

Fa
ct

or

Diff-RAID Proactive-CE

Figure 7.13: Write amplification (random write workloads)

Figure 7.13 presents the write amplification factors for both Diff-RAID and

Proactive-CE—the cost-effective parity distribution with proactive hot-swapping of

Section 6.5 with both garbage collection approaches.

Under both garbage collection approaches, the cost-effective parity distribution

technique exhibits improved write amplification, with the idle time approach exhibit-

ing the largest percentage improvement; Diff-RAID exhibits an amplification factor of

nearly 3, whilst cost-effective parity distribution shows a factor of only 2.

Overall, simulation results demonstrate that non-deterministic behaviours of the

device replacement in reliability enhancement mechanisms successfully eliminated

via proactive device replacement technique that provides continues system availabil-

ity while replacing a device. Also GC-aware data migration enhances I/O response

time during device swapping. The results also indicate the on-line parity redistribution

technique improves write capability and replacement time compared to other exist-

ing works. Moreover, the semi-hybrid RAID improves read performance after device

replacement is complete.

130

7.6 Summary

In this chapter, implementation of the proposed real-time and reliable flash-based stor-

age architecture was presented. This architecture incorporates all the proposed mecha-

nisms and techniques presented throughout this thesis. First, the Dynamic PGC mech-

anism for SSD RAID was analysed and tested. The results showed that the proposed

mechanism provides deterministic response time while ensuring non-disturbed parity

ageing levels of the devices. Second, the proposed GC-aware RAID mechanism was

tested. The results showed that it improves the WCET for the PGC with the help of pro-

posed features of serialised GC and GC-aware read/write. In addition, the Global FTL

component of the architecture further improves the performance of Dynamic PGC and

GARM by benefiting holistic view of the whole storage array. Thirdly, on-line device

replacement framework was analysed and tested. This on-line replacement mecha-

nism offers SSD specific device replacement with deterministic response time which

improve the system performance and write efficiency.

In comparison to the existing, proposed mechanisms/techniques are also quantita-

tively analysed. Dynamic Garbage Collection of the Dynamic PGC improves the sys-

tem reliability in terms of the optimum aging ratios by up to 19% in comparison to the

existing pre-emptive GC mechanism. In addition, the pre-emptive mode controller of

the Dynamic PGC reduces down time of storage up to nearly 50%. The garbage collec-

tion aware RAID shows up to 73% better WCET as compared to the existing real-time

GC mechanisms for a number of synthetic and realistic workloads. It also improves

the system performance up to 50% and 26% compared to the baseline mechanism,

where GC is not coordinated, for synthetic and realistic traces, respectively. Finally,

the results on the device replacement demonstrate that the average I/O response time is

improved by up to 39% while simultaneously offering system availability. In addition,

new semi-hybrid RAID feature improves read performance by an average of 8%.

131

Contrary to the existing mechanisms, the proposed mechanisms and techniques

showed promising results. This is the first ever SSD storage system which simulta-

neously meet the demands of real-time and reliability. In general, the architecture is

suitable to all embedded applications but most suitable to meet the demands of real-

time and reliable SSD storage systems.

132

Chapter 8

Conclusions and Discussions

In this thesis, the real-time support and performance concerns in SSD-based storage

systems were investigated. The motivation behind this thesis was to investigate novel

enhancements in NAND flash-based SSDs. The system reliability and the performance

of flash-based devices has become a major challenge for hard real-time applications

due to the non-deterministic behaviour of the management components. Unpredictable

performance in the system can be partially solved by various proposed real-time GC

schemas, but they do not present reasonable explanations for the research question

which were proposed in Chapter 1. The real-time support and performance issues

were addressed in this thesis with a number of novel mechanisms including real-time

garbage collectors and on-line device replacement techniques.

8.1 Final Evaluation of Results

A number of research questions were shaped as result of the research challenges pre-

sented in Chapter 1. These questions considered as benchmarks by which to solve

the stated issues of storage systems and thus these questions need to be answered to

show that the outcomes of the thesis are assessed. The answers to the each of the orig-

133

inal questions is confirmed on the contributions made by this thesis, as presented in

previous chapters. Here, the answers to the research questions are summarised:

I. Can existing real-time garbage collection mechanisms be adapted to work

with RAID techniques where the devices in the array are strictly controlled

by the reliability mechanisms?

The answer to this question is yes, but after a few modifications. The solution

to this question is presented in Chapter 4 with a number of enhancements over

the naive pre-emptive GC mechanism. Chapter 3 explained real-time support

issues of flash memory and the limitations of the existing real-time techniques

regarding reliability mechanisms. To experimentally observe these limitations,

a number of experiments were conducted and are presented in Chapter 4. To

address these limitations, Dynamic PGC was presented which minimise devia-

tions of the age distribution ratios and show higher system performance in the

reliability mechanisms.

II. How can a real-time GC mechanism be developed without (or by minimally)

disturbing the reliability mechanisms in the RAID array?

This can be possible with a dynamic GC component of the Dynamic PGC mech-

anism which not only considers the remaining free space in the memory but also

the current ageing level of devices in the array when triggering a cleaning pro-

cess. It does not fully eliminate the deviation in the reliability mechanism, but it

is significantly reduced.

III. How can the downtime of flash-based RAID storage be improved further

with the real-time GC mechanism?

In Chapter 4, it is emphasised that the existing real-time mechanism has several

deployment issues over RAID architecture. To address these limitations, the pre-

134

emptive mode controller component of the Dynamic PGC was introduced to im-

prove the real-time efficiency of the PGC mechanism. It reduces the down time

of the array during erase operations, thereby causing fewer write operations to

be postponed compared to other published techniques and thus the performance

of the system, is further improved.

IV. Can the WCET of the real-time GC mechanisms be reduced further by uti-

lizing the concurrency of parity-based RAID architecture?

The answer is yes. The existing real-time mechanisms do not present an architec-

ture that completely avoids I/O requests from being blocked by GC operation.

They usually adopt a partial or pre-empted GC mechanism where the longest

atomic operation involved in WCET calculation is as highlighted in Chapter 3.

The mechanism, which is called GARM, provides reduced WCET compared to

the existing mechanisms by benefiting from the concurrency of the architecture.

V. How can unpredictable GC delays in flash-based RAID architectures be

completely avoided without disturbing the reliability mechanisms?

To completely avoid the long latency of the GC with RAID, a number of fea-

tures are introduced into the GARM including GC-aware write and read and a

serialised GC. The GC-aware write feature of the mechanism dynamically al-

locates incoming requests across the GC-free devices, and for read operations

redundant data is utilized with the help of the serialised GC.

VI. Can the existing HDD-based on-line device replacement techniques be fully

adapted to flash-based mechanisms?

The answer to this question is no. The main reason for this answer is due to the

characteristics of device failure in an HDD are different to those of an SSD-based

device. The failure due to wearing out of flash cells in an SSD is deterministic,

135

while an HDD failure will be non-deterministic. Therefore, SSD-specific on-line

device replacement techniques are required.

VII. How can continuous system availability be provided when a device replace-

ment is required for the reliability mechanism?

To provide continuous system availability for the reliability mechanisms, a

proactive hot-swapping technique is proposed in Chapter 6. It does not allow the

most aged device to be failed, but instead triggers on-line data migration when

the device is nearing its endurance limit, thus maintaining system availability.

VIII. How can the performance overhead of the device replacement techniques be

reduced in SSD RAID?

HDD-based device replacement techniques do not provide an efficient replace-

ment technique for SSD-based RAID systems because they are not aware of the

inherited features of flash memory, such as garbage collection. To improve the

efficiency of the replacement process, two techniques were proposed. First, a

coordinated data migration that avoids possible overlap between GC and data

migration. Second, a semi-hybrid RAID configuration was presented to improve

the system performance further once device replacement is completed.

IX. How can the proposed mechanisms & systems be tested and validated?

An FPGA-based system architecture was adapted in the software simulator. To

build this environment, a number of design components were implemented in-

cluding dynamic page allocation, uneven parity distribution, Global FTL, and so

on. The experiments were conducted using both synthetic and realistic traces.

To compare the results, a baseline scenario was also simulated.

136

Table 8.1: Comparison of presented techniques with existing real-time and reliability
enhancement mechanisms

Features GFTL RFTL PGC Diff RAID Flash RAID [11] Dynamic PGC 1 GARM 1

WCET Low 2 Low Low None None Low Very Low

Additional
Memory for GC 3

Yes Yes No No No No No

Online Device
Replacement

None None None Not Supported Not Supported Yes Yes

Random I/O
Performance

Normal High High High High High Very High

Sequential I/O
Performance

Normal High High High Low High High

Protection No No No
Single

Device Failure

Single

Device Failure

Single

Device Failure

Single

Device Failure

Age Distribution
Protection

No No No No No Yes Yes

Min Device 1 1 1 3 4 4 4

Memory Overhead
for Mapping 4

No No No No Yes No Yes

Storage
Overhead

No No No Parity
Parity +

a spare device

Parity +

a spare device

Parity +

a spare device

Write
Amplification 5

None None None High High Low Low

8.2 Review of Contributions

The literature review revealed that RAID-based reliability enhancement mechanisms

have serious non-deterministic behaviour which limit their usage in hard real-time ap-

plications. Existing real-time GC mechanisms can effectively be used in single flash

memory, but they are not fully adoptable with system designs where flash memory is

used in a concurrent architecture such as RAID with strictly managed age distribution

mechanisms. Moreover, existing GC techniques in flash RAID architecture generally

focus on reliability and performance problems, ignoring the deterministic response

time of the system.
1Here it is considered the complete product, with the on-line device replacement mechanism
2The terms low, normal and high refers rough comparison of the mechanisms for a given feature.

Please see Chapter 7 and relevant papers for detailed experimental comparisons.
3This shows that additional memory blocks are required for guaranteed access time for I/Os, or not.
4It shows either mechanism requires additional memory for special mapping techniques such NvS-

RAM memory used in the architecture.
5Only the write amplification factor of the device replacement process is considered.

137

In this thesis, the current real-time support and performance concerns in SSD-based

RAID arrays were addressed effectively by introducing real-time garbage collectors

mechanisms (Dynamic PGC and GARM) and on-line device replacement techniques

for SSD RAID. The findings of this research were gathered in a form of final product

as real-time and reliable flash-based storage device. Table 8.1 presents a comparison

between the presented techniques (Dynamic PGC and GARM with the on-line device

replacement support) with existing real-time and reliability enhancement mechanisms.

The table clearly shows that the GARM outperforms the existing techniques in terms of

WCET with higher performance and by maintaining the age distribution percentages.

Moreover, PGC RAID could be seen as an alternative to the GARM when the memory

overhead of the address mapping table is considered.

To achieve the research goal, the existing real-time solutions for an SSD array were

first investigated. It was revealed that the existing techniques were not efficient for the

architecture where flash-based devices are used in an array with a reliability enhance-

ment technique for number of reasons. The first reason was that GC is triggered with a

free rein across the array, which caused deviations in the strict age control mechanism

of the reliability techniques. Second, the techniques were not capable of eliminat-

ing the performance overhead of the most expensive atomic operation (erase) in the

cleaning process, and thus they did not provide a reduced WCET nor higher perfor-

mance. Moreover, it was revealed that the reliability enhancement mechanisms host

serious non-deterministic behaviours when a device replacement is required. These

limitations were motivation for the development of novel real-time garbage collection

mechanisms and device replacement techniques. The development of the mechanism-

s/techniques was followed by implementation in an FPGA-based SSD RAID architec-

ture for evaluation. A detailed review of the thesis contributions is presented in the

following sections.

138

8.2.1 Dynamic PGC Mechanism

The research work investigated existing real-time GC mechanisms. Since the PGC

mechanism does not require additional memory blocks to provide a deterministic ac-

cess guarantee, it was used in an SSD array with uneven parity redistribution ratios.

To experimentally observe its effect on the reliability techniques, a number of experi-

ments were conducted with a realistic trace. Based on the results, it was noted that the

ratios were significantly disturbed by the uncoordinated GC mechanism. To address

this limitation, a dynamic PGC mechanism was presented with two main components

including Dynamic GC and pre-emptive mode controller.

Dynamic GC

The existing real-time GC techniques were only triggered based on remaining free

space in corresponding memory. However, this creates a problem for the system where

a strict age control mechanism is required. Since the PGC mechanism offers static GC

and there is no optimal GC triggering threshold for the optimum age distribution of the

reliability enhancement mechanisms, a dynamic GC technique was developed.

Dynamic GC dynamically adjusts the GC triggering thresholds by not only con-

sidering the remaining free space, but also the current and optimum age levels. This

achieved a dynamically changing ageing speed for the corresponding memory and thus

the deviation in age distribution was minimised in the array. Moreover, to increase the

GC efficiency and avoid additional erase operations, a new feature of GC efficiency

is proposed, which only permits cleaning of blocks with a certain number of invalid

pages.

Pre-emptive Mode Controller

Continuous PGC may result in a lack of free space that may ultimately result in a

system crash. To prevent this, the PGC mechanism offers number of states to define

priority of GC over I/Os. These states are only changed depending on the amount of

139

free space left in the memory. Once the PGC is applied to a RAID array with an uneven

parity distribution, it was found that uncoordinated PGC could result in an increase in

the downtime period and reduced performance.

To address this problem, a pre-emptive mode controller was introduced. If the

mechanism changes the GC state of a device in an array, it also checks other devices to

trigger GC if their GC efficiency is relatively high. This encourages parallel cleaning

in the array and thus reduces any downtime periods caused by cleaning and improves

the system performance further.

8.2.2 GC-aware RAID Mechanism

Although the Dynamic PGC mechanism offers a deterministic response time by con-

sidering the reliability mechanisms, it was found that the mechanism was not fully

efficient in several of its aspects. First, the improvement in WCET is limited, and there

is no way to eliminate the overhead of the erase operation. Second, the mechanism

considered the age distribution mechanism while triggering/postponing GC operations

but the mechanism was not effectively reaching the target ratios, especially in the case

of sequential write-dominant operations.

To benefit from concurrent system architecture further and to address these limita-

tions, a GC-aware RAID mechanism was introduced with a number of new features:

GC-aware Read/Write, a serialised GC, and an on-line parity migration.

GC-aware Read/Write

The mechanism dynamically locates incoming I/O requests to be non-blocked by

an ongoing GC operation. Two separate features were presented for random and se-

quential GC-aware writes. Since a random write does not occupy all the devices in the

array, chunks of the random write are dynamically located to GC-free devices. Thus,

non-deterministic latency of GC is eliminated.

140

For sequential writes, a new forced random write feature was adopted, which is

similar to that of the reliability mechanism. However, as opposed to the existing tech-

nique, each piece of partial write behaved as a new random write so as not to be blocked

by a cleaning process.

For both random and sequential GC-aware read operations, the mechanism utilized

existing parity data in the case of an active GC on a target device. The target device with

a GC is considered as a failed device in the RAID mechanism, and a reconstruction

mechanism was proposed to calculate the actual data.

If multiple GC processes are activated simultaneously on different devices of the

array then the mechanism cannot provide a deterministic response time for I/Os, es-

pecially for read requests. This is because the parity techniques used in the reliability

mechanism are only available to reconstruct a single device and data across multiple

devices, so with an ongoing GC cannot be readable in a deterministic way. Therefore,

a serialised GC feature was introduced.

Serialised GC

The serialised GC feature of the GARM was presented to permit single active

garbage collector on the array at any given time. It was developed as the core feature of

the mechanism to provide a deterministic access guarantee for I/Os. One of the bottle-

necks of the mechanism is that a system failure may result from not producing enough

free space, especially for the sequential-dominant traces. Although the research scope

was defined to address random-dominant traces, to improve system dependability fur-

ther and eliminate this bottleneck, a number of serialised GC states were defined. The

states were defined as No-GC, serialised GC, prioritised GC and Normal GC.

On-line Parity Migration

One of the thesis research goals was to maintain the reliability mechanism while of-

fering a real-time access guarantee to the system. The reliability mechanism is tightly

coupled with the age distribution ratios of the array devices, which is directly related

141

to parity distribution ratios. It was observed that the GARM disturbed these ratios due

to its GC-aware read/write features in the existence of an ongoing GC mechanism. To

address this, a new on-line parity migration feature was incorporated to the mecha-

nism. The OPM balances the parity distribution ratios towards the optimum levels by

migrating parity between the devices with only a minor performance overhead. The

GARM was achieved to maintain the parity distribution ratios required for the reliabil-

ity enhancement with the help of the OPM feature.

8.2.3 On-line Device Replacement Techniques

After developing solutions to the non-deterministic behaviour of GC for flash memory-

based devices, further investigations were carried out on the reliability mechanism.

It was revealed that the reliability enhancement mechanisms have serious reliability

issues for high integrity systems. Particularly during a device replacement process,

the system needs to go off-line until the device reconstruction is completed, which

significantly effects system availability and creates non-deterministic behaviour. The

literature review indicates that existing on-line device replacement mechanisms are

based on HDDs, which cannot be effectively adopted on SSD RAID mechanisms. To

address this, a number of on-line device replacement techniques were designed for an

SSD RAID framework.

Proactive Hot-Swapping

Once a flash memory exceeds its endurance limit then the data it stores cannot be

considered reliable due to a high BER rate. To replace the device with a spare, an

expensive reconstruction is necessary in parity-based RAID techniques. Moreover, the

system has to stay off-line while replacing the expired device in the existing reliability

enhancement mechanisms.

142

To address this bottleneck, a proactive hot-swapping technique was introduced.

Since the failure of flash-based devices due to wearing out can be predictable, the

mechanism starts data migration from an almost-expired device to the new one. Thus,

an expensive data reconstruction process can be replaced with a proactive migration

process whilst still providing continuous system availability.

Coordinated Data Migration

On-line rebuilding or cold data migration are usually initiated when there is an

idle time or low density workload pattern detected. The default garbage collector of

the reliability mechanism is also based on an idle time detection technique. This may

result in performance overheads due to a possible overlap between the GC and the

migration of data.

To overcome this, a coordinated data migration mechanism was introduced. It

globally monitors the garbage collectors in the array via the Global FTL layer. If

GC and device replacement functions attempt to access the target device in the same

idle time period, the technique reschedules them depending on their priority levels to

guarantee a response time.

Cost-efficient Parity Redistribution

Unlike other RAID techniques, the reliability enhancement mechanisms require

parity redistribution during device replacement. It was noted that their device replace-

ment techniques do not directly redistribute the parity data due to the reconstruction

process. This increases the number of extra physical writes (write amplification) and

the device replacement time.

To address this issue, a cost-efficient parity redistribution mechanism is presented

which directly relocates the parity data from the most aged device to the other devices

in the array according to target ratios. It improves device replacement time while

reducing the write amplification effect.

143

Semi-hybrid RAID

To improve the system performance further using the concurrent architectural de-

sign of the system, a semi-hybrid RAID was presented. The proactive hot-swapping

technique initiates data migration before the device reaches its endurance limit. After

the migration process, there will be two valid copies of the same data on two indepen-

dent devices, which is analogous to a RAID 1 architecture. The redundant data can be

utilized to improve the read performance of the system. Semi-hybrid RAID configures

the new and old device as RAID 1 whilst adding the new device to the default RAID

configuration. Since the old device is not allowed to update its data, it can only serve

non-modified data after replacement; hence the term semi-hybrid RAID.

8.2.4 Development Platform

In this thesis, a software-based test methodology was presented to develop a config-

urable and flexible debug environment for the design of a real-time and reliable SSD

storage system. Each component of the design architecture was mapped into the well-

known and validated Microsoft DiskSim simulator. The existing simulator was ex-

tended to meet the requirements of the system architecture. Global FTL with real time

GC mechanisms, on-line device replacement techniques, dynamic address mapping,

dynamic page allocation and the specific RAID controller with uneven parity distribu-

tions were implemented in the simulator.

To evaluate the system under a number of the different scenarios both synthetic

and realistic traces were used. For synthetic workloads, some parameters were varied,

including probability of sequential access, inter-arrival time of requests, sizes of the

requests with distribution functions to produce traces similar to a realistic scenario.

Moreover, a number of realistic traces were used from embedded and server applica-

144

tions. To conduct fair performance analyses, the entire memory was filled with valid

data for the performance experiments.

This test environment was developed to validate the system against existing solu-

tions in terms of data reliability for real-time applications and performance. By con-

trast, the novel flash based RAID storage architecture with real-time support presented

in this thesis produced outstanding results.

This thesis mainly presents practical solutions for current real-time support, relia-

bility and performance concerns in SSD RAID storage systems. On the other hand, a

number of research points need further investigation, such as measuring the implemen-

tation cost of each of the presented techniques on a system-on-chip design. Investiga-

tion of these points would considerably lengthen the time required for any potential

research work. Brief guidelines to such research are discussed in this section.

8.3 Future Work

8.3.1 Next target: Determining Real Estate Efficiency on FPGAs

For embedded system designs it is of considerable importance to determine implemen-

tation costs in terms of the number of gate counts they will consume. To measure this,

the mechanism first needs to be mapped into a system-on-chip by converting them

to Register Transfer Level (RTL). One of the ways to implement these RTL are by

utilizing a synthesizable hardware description language such Verilog or VHDL. As

a first step toward this aim, a simulation environment was implemented to analyse

the RTL designs in order to investigate real-time support issues of flash-based mecha-

nisms [101]. The simulation platform also allows for synthesizing the RTL design and

for determining consumed hardware resources.

145

Figure 8.1: An FPGA-based SSD development platform

The proposed system architecture to determine real estate efficiency of the pre-

sented techniques is presented in Figure 8.1. It mainly consists of two parts: hard-

ware and software. These techniques can be mapped into the FPGA to be synthe-

sized. The FPGA communicates with the memories—for storing the actual data and the

metadata— application layer through the software part. The software part helps to test

the mechanism with different types of workload whilst eliminating complicated inter-

nal architecture via device protocols and Application Programming Interfaces (APIs).

The main part of the architecture has already been developed, and initial simulations

were conducted without real-time support techniques. The next task is to develop the

Register Transfer Level (RTL) design of the presented mechanisms/techniques and to

determine their cost efficiency in terms of the hardware resources they consume.

146

8.3.2 Improving Performance under Sequential Writes

Pure sequential writes lead to two main bottlenecks for the proposed mechanisms, as

discussed in this thesis. First, the reliability mechanism is significantly affected as it

reduces the wear imbalance among the elements of the array. Second, once a pure

sequential write arrives at an array, its chunks occupy each device, which prevents the

GARM mechanism from working properly. To address these problems, forced random

feature was proposed. However, the forced random write has some drawbacks. First, it

reduces the overall response time, thereby reducing concurrent access to the memory.

Second, since each randomized write causes an additional parity write, the write ampli-

fication factor would significantly increase in the case of a sequential write-dominant

workload. Since there is a trade-off between system reliability and performance, the

forced random write mechanisms needs further investigation.

8.4 Final Remarks

The aim of this thesis was to propose a suitable flash based RAID storage architecture

with real-time support. Although some existing real-time mechanisms were proposed

to provide deterministic performance for a single flash memory unit, they were not

fully compatible with an architecture where multiple flash memories are used in a

concurrent architecture design such as RAID. Furthermore, the reliability enhancement

mechanisms for SSD RAID have further non-deterministic behaviour, especially when

a device replacement operation is performed. These were the motivations to explore

different aspects of flash-based RAID storage systems.

In this thesis, three novel mechanisms were introduced to address real-time sup-

port issues of SSD RAID systems. These mechanisms were developed and tested in

a validated SSD simulator. The mechanisms consist of a number of features which

147

provide deterministic access guarantees to the storage and improve the system perfor-

mance regardless of the workload characteristics. Moreover, they achieve increased

system availability, improved efficiency of the device replacement in terms of the per-

formance, replacement time and reduced write amplification.

To conclude, the research goals of the thesis— a reliable and real-time mechanism

for SSDs to use on-board high integrity embedded systems—have been achieved. The

experimental results show promising results for the proposed novel GC mechanisms

and the device replacement techniques compared to existing studies in the literature.

This research work is one in a group of studies that are intended to provide some en-

hancement to high integrity storage systems. It also creates a new perspective towards

reliable storage systems for hard real-time applications.

148

References

[1] J. Ganssle and M. Barr, Embedded Systems Dictionary. CMP Books, 2003.

[2] P. Bondyopadhyay, “Moore’s Law Governs the Silicon Revolution,” Proceed-

ings of the IEEE, vol. 86, pp. 78–81, Jan 1998.

[3] X. Lin and M. Chan, “An Opposite Side Floating Gate FLASH Memory Scal-

able to 20 nm Length,” in IEEE International 2002 SOI Conference, pp. 71–72,

Oct 2002.

[4] R. Chen, Y. Wang, J. Hu, D. Liu, Z. Shao, and Y. Guan, “Unified Non-volatile

Memory and NAND Flash Memory Architecture in Smartphones,” in 2015 20th

Asia and South Pacific Design Automation Conference (ASP-DAC), pp. 340–

345, Jan 2015.

[5] M. Helm, J.-K. Park, A. Ghalam, J. Guo, C. wan Ha, C. Hu, H. Kim,

K. Kavalipurapu, E. Lee, A. Mohammadzadeh, D. Nguyen, V. Patel, T. Pekny,

B. Saiki, D. Song, J. Tsai, V. Viajedor, L. Vu, T. Wong, J. H. Yun, R. Ghodsi,

A. d’Alessandro, D. Di Cicco, and V. Moschiano, “19.1 A 128Gb MLC NAND-

Flash Device Using 16nm Planar Cell,” in 2014 IEEE International Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), pp. 326–327, Feb

2014.

149

[6] M. Durna, H. Urhan, O. Turhan, O. Kozal, and M. Gurun, “A New Genera-

tion On-Board Computer and Solid State Data Recorder suitable for SpaceWire

Platforms,” in 3rd International Conference on Recent Advances in Space Tech-

nologies, pp. 429–432, IEEE, June 2007.

[7] M. Caramia, S. Di Carlo, M. Fabiano, and P. E. Prinetto, “Flash-memories in

Space Applications: Trends and Challenges,” in IEEE 7th East-West Design &

Test Symposium (EWDTS), pp. 429–432, 2009.

[8] M. Balakrishnan, A. Kadav, V. Prabhakaran, and D. Malkhi, “Differential

RAID: Rethinking RAID for SSD Reliability,” ACM Transactions on Storage

(TOS), vol. 6, pp. 4:1–4:22, July 2010.

[9] N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi,

E. Goodness, and L. R. Nevill, “Bit Error Rate in NAND Flash Memories,” in

2008 IEEE International Reliability Physics Symposium, pp. 9–19, April 2008.

[10] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,

“RAID: High-performance, Reliable Secondary Storage,” ACM Computer Sur-

vey, vol. 26, pp. 145–185, June 1994.

[11] I. Mir and A. McEwan, “A Reliability Enhancement Mechanism for High-

Assurance MLC Flash-Based Storage Systems,” in 2011 IEEE 17th Interna-

tional Conference on Embedded and Real-Time Computing Systems and Appli-

cations (RTCSA), vol. 1, pp. 190–194, Aug 2011.

[12] NASA, “Lesson(s) Learned: MER Spirit Flash Memory Anomaly: NASA

Lessons (August, 2004).” Available: http://llis.nasa.gov/lesson/

1483. (Last accessed: 21.11.2016).

150

http://llis.nasa.gov/lesson/1483
http://llis.nasa.gov/lesson/1483

[13] C.-H. Chen, C.-T. Chen, and W.-T. Huang, “The Real-Time Compression Layer

for Flash Memory in Mobile Multimedia Devices,” Mobile Networks and Appli-

cations, vol. 13, no. 6, pp. 547–554, 2008.

[14] S. Madden, W. Hong, J. Hellerstein, and K. Stanek, “Tinydb: A declar-

ative database for sensor networks (August, 2003).” Available: http://

telegraph.cs.berkeley.edu/tinydb/. (Last accessed: 21.11.2016).

[15] L.-P. Chang, T.-W. Kuo, and S.-W. Lo, “Real-time Garbage Collection for Flash-

memory Storage Systems of Real-time Embedded Systems,” ACM Transactions

on Embedded Computing Systems, vol. 3, pp. 837–863, Nov. 2004.

[16] S. Choudhuri and T. Givargis, “Deterministic Service Guarantees for NAND

Flash Using Partial Block Cleaning,” in Proceedings of the 6th IEEE/ACM/IFIP

International Conference on Hardware/Software Codesign and System Synthe-

sis, CODES+ISSS ’08, pp. 19–24, 2008.

[17] J. Lee, Y. Kim, G. Shipman, S. Oral, and J. Kim, “Preemptible I/O Scheduling

of Garbage Collection for Solid State Drives,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, vol. 32, pp. 247–260, Feb

2013.

[18] Z. Qin, Y. Wang, D. Liu, and Z. Shao, “Real-Time Flash Translation Layer for

NAND Flash Memory Storage Systems,” in 2012 IEEE 18th Real Time and

Embedded Technology and Applications Symposium, pp. 35–44, April 2012.

[19] M. Holland, G. Gibson, and D. Siewiorek, “Fast, On-line Failure Recovery

in Redundant Disk Arrays,” in The Twenty-Third International Symposium on

Fault-Tolerant Computing, 1993. FTCS-23. Digest of Papers, pp. 422–431,

IEEE, June 1993.

151

http://telegraph.cs.berkeley.edu/tinydb/
http://telegraph.cs.berkeley.edu/tinydb/

[20] J. Y. B. Lee and J. C. S. Lui, “Automatic Recovery from Disk Failure in

Continuous-Media Servers,” IEEE Transactions on Parallel and Distributed

Systems, vol. 13, pp. 499–515, May 2002.

[21] L. Tian, D. Feng, H. Jiang, K. Zhou, L. Zeng, J. Chen, Z. Wang, and Z. Song,

“PRO: A Popularity-based Multi-threaded Reconstruction Optimization for

RAID-structured Storage Systems,” in Proceedings of the 5th USENIX Con-

ference on File and Storage Technologies, pp. 277–290, USENIX Association,

2007.

[22] B. Boehm, “A Spiral Model of Software Development and Enhancement,” IEEE

Computer Journal, vol. 21, pp. 61–72, May 1988.

[23] Intel, “Understanding the Flash Translation Layer (FTL) Specification,” tech.

rep., Dec. 1998.

[24] D. Woodhouse, “JFFS: The Journalling Flash File System,” in Ottawa Linux

Symposium, vol. 2001, 2001. (Last accessed: 21.11.2016).

[25] A. One, “YAFFS: Yet Another Flash File System (2002).” Available: http:

//www.yaffs.net/. (Last accessed: 21.11.2016).

[26] A. Gupta, Y. Kim, and B. Urgaonkar, “DFTL: A Flash Translation Layer Em-

ploying Demand-based Selective Caching of Page-level Address Mappings,”

ACM SIGPLAN Notices - ASPLOS 2009, vol. 44, pp. 229–240, Mar. 2009.

[27] A. Ban, “Flash File System Optimized for Page-mode Flash Technologies,”

Aug. 10 1999. US Patent 5,937,425.

[28] Y. Wang, D. Liu, M. Wang, Z. Qin, Z. Shao, and Y. Guan, “RNFTL: A Reuse-

aware NAND Flash Translation Layer for Flash Memory,” ACM SIGPLAN No-

tices - LCTES ’10, vol. 45, pp. 163–172, Apr. 2010.

152

http://www.yaffs.net/
http://www.yaffs.net/

[29] H. Cho, D. Shin, and Y. I. Eom, “KAST: K-Associative Sector Translation for

NAND flash memory in real-time systems,” in Proceedings of the Conference

on Design, Automation and Test in Europe, DATE ’09, pp. 507–512, European

Design and Automation Association, 2009.

[30] Z. Qin, Y. Wang, D. Liu, Z. Shao, and Y. Guan, “MNFTL: An Efficient Flash

Translation Layer for MLC NAND Flash Memory Storage Systems,” in Pro-

ceedings of the 48th Design Automation Conference, DAC 2011, pp. 17–22,

ACM, 2011.

[31] S. J. Kwon and T.-S. Chung, “An Efficient and Advanced Space-management

Technique for Flash Memory Using Reallocation Blocks,” IEEE Transaction on

Consumer Electronics, vol. 54, pp. 631–638, May 2008.

[32] J. Lee, A. Kim, M. Park, J. Choi, D. Lee, and S. H. Noh, “Real-time Flash Mem-

ory Storage with Janus-FTL,” in Proceedings of the 27th Annual ACM Sympo-

sium on Applied Computing, SAC ’12, pp. 1799–1806, 2012.

[33] E. Gal and S. Toledo, “Algorithms and Data Structures for Flash Memories,”

ACM Computing Surveys (CSUR), vol. 37, pp. 138–163, June 2005.

[34] Y. Kim, J. Lee, S. Oral, D. Dillow, F. Wang, and G. Shipman, “Coordinating

Garbage Collection for Arrays of Solid-State Drives,” IEEE Transactions on

Computers, vol. 63, pp. 888–901, April 2014.

[35] R. Jones, A. Hosking, and E. Moss, The Garbage Collection Handbook: The

Art of Automatic Memory Management. Chapman & Hall/CRC, 2011.

[36] J. Liu, S. Chen, T. Wu, and H. Zhang, “A Novel Hot Data Identification Mecha-

nism for NAND Flash Memory,” IEEE Transactions on Consumer Electronics,

vol. 61, pp. 463–469, November 2015.

153

[37] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Pani-

grahy, “Design Tradeoffs for SSD Performance,” in USENIX 2008 Annual Tech-

nical Conference, ATC’08, pp. 57–70, USENIX Association, 2008.

[38] E. H. Nam, B. Kim, H. Eom, and S. L. Min, “Ozone (O3): An Out-of-

Order Flash Memory Controller Architecture,” IEEE Transactions on Comput-

ers, vol. 60, pp. 653–666, May 2011.

[39] S. Jose and C. Pradeep, “Design of a Multichannel NAND Flash Memory

Controller for Efficient Utilization of Bandwidth in SSDs,” in 2013 Interna-

tional Multi-Conference on Automation, Computing, Communication, Control

and Compressed Sensing (iMac4s), pp. 235–239, IEEE, March 2013.

[40] B. He, J. Yu, and A. Zhou, “Improving Update-Intensive Workloads on Flash

Disks through Exploiting Multi-Chip Parallelism,” IEEE Transactions on Par-

allel and Distributed Systems, vol. 26, pp. 152–162, Jan 2015.

[41] E. Deal, “Trends in NAND Flash Memory Error Correction, Cyclic Design

(June, 2009).” Available: http://www.cyclicdesign.com/index.

php/ecc-trends-in-nand-flash. (Last accessed: 21.11.2016).

[42] L. M. Grupp, A. M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P. H. Siegel,

and J. K. Wolf, “Characterizing Flash Memory: Anomalies, Observations, and

Applications,” in 42nd Annual IEEE/ACM International Symposium on Mi-

croarchitecture, 2009. MICRO-42, pp. 24–33, Dec 2009.

[43] K. Park, D.-H. Lee, Y. Woo, G. Lee, J.-H. Lee, and D.-H. Kim, “Reliability

and Performance Enhancement Technique for SSD Array Storage System Using

RAID Mechanism,” in 9th International Symposium on Communications and

Information Technology, pp. 140–145, Sept 2009.

154

http://www.cyclicdesign.com/index.php/ecc-trends-in-nand-flash
http://www.cyclicdesign.com/index.php/ecc-trends-in-nand-flash

[44] B. Mao, H. Jiang, S. Wu, L. Tian, D. Feng, J. Chen, and L. Zeng, “HPDA:

A Hybrid Parity-based Disk Array for Enhanced Performance and Reliability,”

ACM Transactions on Storage, vol. 8, pp. 4:1–4:20, Feb. 2012.

[45] S. Rizvi and T.-S. Chung, “Data Storage Framework on Flash Memory Based

SSD RAID 0 for Performance Oriented Applications,” in The 2nd Interna-

tional Conference on Computer and Automation Engineering (ICCAE), vol. 1,

pp. 126–128, Feb 2010.

[46] Y. Oh, J. Choi, D. Lee, and S. H. Noh, “Improving Performance and Lifetime of

the SSD RAID-based Host Cache Through a Log-structured Approach,” in Pro-

ceedings of the 1st Workshop on Interactions of NVM/FLASH with Operating

Systems and Workloads, INFLOW ’13, pp. 5:1–5:8, ACM, 2013.

[47] A. McEwan and M. Komsul, “On-Line Device Replacement Techniques for

SSD RAID,” in 2015 Euromicro Conference on Digital System Design (DSD),

pp. 438–444, IEEE, Aug 2015.

[48] F. Chen, D. A. Koufaty, and X. Zhang, “Understanding Intrinsic Characteris-

tics and System Implications of Flash Memory Based Solid State Drives,” ACM

SIGMETRICS Performance Evaluation Review - SIGMETRICS ’09, vol. 37,

pp. 181–192, June 2009.

[49] J.-W. Hsieh, T.-W. Kuo, and L.-P. Chang, “Efficient Identification of Hot Data

for Flash Memory Storage Systems,” ACM Transactions on Storage, vol. 2,

pp. 22–40, Feb. 2006.

[50] S. Lee, D. Shin, Y.-J. Kim, and J. Kim, “LAST: Locality-aware Sector Transla-

tion for NAND Flash Memory-based Storage Systems,” ACM SIGOPS Operat-

ing Systems Review, vol. 42, pp. 36–42, Oct. 2008.

155

[51] J. A. Stankovic, “Misconceptions about Real-time Computing: A Serious Prob-

lem for Next-generation Systems,” Computer, vol. 21, pp. 10–19, Oct 1988.

[52] R. Oshana, Software Engineering for Embedded Systems: Methods, Practical

Techniques, and Applications. Newnes, 2013.

[53] S. J. Kwon, A. Ranjitkar, Y.-B. Ko, and T.-S. Chung, “FTL Algorithms for

NAND-type Flash Memories,” Design Automation for Embedded Systems,

vol. 15, no. 3, pp. 191–224, 2011.

[54] “Intel X25-E Extreme SATA Solid-State Drives, DataSheet (Jan, 2008).”

Available: ftp://download.intel.com/design/flash/NAND/

extreme/extreme-sata-ssd-product-brief.pdf. (Last ac-

cessed: 01.05.2016).

[55] “Samsung SSD White Paper (2013).” Available: http://www.samsung.

com/semiconductor/minisite/ssd/download/overview.

html. (Last accessed: 21.11.2016).

[56] Micron, “Nand Flash 101: An Introduction to NAND Flash and How to Design

It In to Your Next Product,” tech. rep., 2010.

[57] Y. Yong-Tae and S.-K. Jo, “Memory System and Wear-leveling Method Thereof

based on Erasures and Error Correction Data,” Jan. 5 2016. US Patent 9,229,805.

[58] A. Kosuge, J. Hashiba, T. Kawajiri, S. Hasegawa, T. Shidei, H. Ishikuro,

T. Kuroda, and K. Takeuchi, “Inductively-powered Wireless Solid-state Drive

(SSD) system with Merged Error Correction of High-speed Non-contact Data

Links and NAND Flash Memory,” in 2015 Symposium on VLSI Circuits (VLSI

Circuits), pp. C128–C129, June 2015.

156

ftp://download.intel.com/design/flash/NAND/extreme/extreme-sata-ssd-product-brief.pdf
ftp://download.intel.com/design/flash/NAND/extreme/extreme-sata-ssd-product-brief.pdf
http://www.samsung.com/semiconductor/minisite/ssd/download/overview.html
http://www.samsung.com/semiconductor/minisite/ssd/download/overview.html
http://www.samsung.com/semiconductor/minisite/ssd/download/overview.html

[59] E. Zhou, Y. Lu, N. Xiao, Y. Ou, Z. Chen, and X. Bao, “A theoretical analysis of

lifespan impact on flash memory imposed by erasure code,” in 2015 IEEE Inter-

national Conference on Networking, Architecture and Storage (NAS), pp. 361–

362, Aug 2015.

[60] C. Kim, C. Park, S. Yoo, and S. Lee, “Extending Lifetime of Flash Memory

Using Strong Error Correction Coding,” IEEE Transactions on Consumer Elec-

tronics, vol. 61, pp. 206–214, May 2015.

[61] B. Chen, X. Zhang, and Z. Wang, “Error Correction for Multi-level NAND Flash

Memory Using Reed-Solomon Codes,” in IEEE Workshop on Signal Processing

Systems, pp. 94–99, Oct 2008.

[62] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Efficient Scheme

for Tolerating Double Disk Failures in RAID Architectures,” IEEE Transactions

on Computers, vol. 44, pp. 192–202, Feb 1995.

[63] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong, and S. Sankar,

“Row-diagonal Parity for Double Disk Failure Correction,” in Proceedings of

the 3rd USENIX Conference on File and Storage Technologies, FAST’04, pp. 1–

1, USENIX Association, 2004.

[64] S. Im and D. Shin, “Flash-Aware RAID Techniques for Dependable and High-

Performance Flash Memory SSD,” IEEE Transactions on Computers, vol. 60,

no. 1, pp. 80–92, 2011.

[65] J.-W. Hsieh and M.-X. Liu, “Configurable Reliability Framework for SSD-

RAID,” in Non-Volatile Memory Systems and Applications Symposium

(NVMSA), pp. 1–6, IEEE, Aug 2014.

157

[66] J. Colgrove, J. Hayes, B. Hong, and E. Miller, “Adaptive RAID for an SSD

Environment,” Mar. 29 2012. US Patent App. 12/892,894.

[67] J. Kim, J. Lee, J. Choi, D. Lee, and S. Noh, “Efficient RAID Technique for

Reliable SSD,” Dec. 25 2014. US Patent App. 14/377,159.

[68] S. Chen and D. Towsley, “The Design and Evaluation of RAID 5 and Parity

Striping Disk Array Architectures ,” Journal of Parallel and Distributed Com-

puting, vol. 17, no. 1-2, pp. 58 – 74, 1993.

[69] A. McEwan and I. Mir, “An Embedded FTL for SSD RAID,” in 2015 Euromicro

Conference on Digital System Design (DSD), pp. 575–582, IEEE, Aug 2015.

[70] L.-P. Chang and T.-W. Kuo, “An Efficient Management Scheme for Large-scale

Flash-memory Storage Systems,” in Proceedings of the 2004 ACM Symposium

on Applied Computing, SAC ’04, pp. 862–868, ACM, 2004.

[71] E. Stott and P. Cheung, “Improving FPGA Reliability with Wear-Levelling,” in

2011 International Conference on Field Programmable Logic and Applications

(FPL), pp. 323–328, Sept 2011.

[72] R. Micheloni, R. Ravasio, A. Marelli, E. Alice, V. Altieri, A. Bovino, L. Crippa,

E. D. Martino, L. D’Onofrio, A. Gambardella, E. Grillea, G. Guerra, D. Kim,

C. Missiroli, I. Motta, A. Prisco, G. Ragone, M. Romano, M. Sangalli, P. Sauro,

M. Scotti, and S. Won, “A 4Gb 2b/cell NAND Flash Memory with Embedded 5b

BCH ECC for 36MB/s System Read Throughput,” in 2006 IEEE International

Solid State Circuits Conference - Digest of Technical Papers, pp. 497–506, Feb

2006.

158

[73] Q. Huang, S. Lin, and K. Abdel-Ghaffar, “Error-Correcting Codes for Flash

Coding,” IEEE Transactions on Information Theory, vol. 57, pp. 6097–6108,

Sept 2011.

[74] Y.-H. Chang and T.-W. Kuo, “A Reliable MTD Design for MLC Flash-memory

Storage Systems,” in Proceedings of the Tenth ACM International Conference

on Embedded Software, EMSOFT ’10, pp. 179–188, ACM, 2010.

[75] T. Xie and Y. Sun, “PEARL: Performance, Energy, and Reliability Balanced

Dynamic Data Redistribution for Next Generation Disk Arrays,” in IEEE Inter-

national Symposium on Modeling, Analysis and Simulation of Computers and

Telecommunication Systems, pp. 1–8, Sept 2008.

[76] S. Y. Park, E. Seo, J. Y. Shin, S. Maeng, and J. Lee, “Exploiting Internal Paral-

lelism of Flash-based SSDs,” IEEE Computer Architecture Letters, vol. 9, pp. 9–

12, Jan 2010.

[77] K. Leung, W. Smith, and S. Wilheim, “Method and Apparatus for Analysis of

User Traffic within a Predefined Area,” Apr. 15 2014. US Patent 8,699,370.

[78] J. Bennett, “Memory System having Persistent Garbage Collection,” Dec. 26

2012. EP Patent App. EP20,100,786,789.

[79] R. Goss and M. Gaertner, “Selection of Units for Garbage Collection in Flash

Memory,” Apr. 9 2013. US Patent 8,417,878.

[80] Y. Qin, D. Feng, J. Liu, W. Tong, and Z. Zhu, “DT-GC: Adaptive Garbage Col-

lection with Dynamic Thresholds for SSDs,” in 2014 International Conference

on Cloud Computing and Big Data (CCBD), pp. 182–188, IEEE, Nov 2014.

[81] X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, and R. Pletka, “Write Amplifi-

cation Analysis in Flash-based Solid State Drives,” in Proceedings of SYSTOR

159

2009: The Israeli Experimental Systems Conference, SYSTOR ’09, pp. 10:1–

10:9, ACM, 2009.

[82] C. Lu, G. A. Alvarez, and J. Wilkes, “Aqueduct: Online Data Migration with

Performance Guarantees,” in Proceedings of the 1st USENIX Conference on File

and Storage Technologies, FAST ’02, p. 21, USENIX Association, 2002.

[83] R. Golding, P. Bosch, C. Staelin, T. Sullivan, and J. Wilkes, “Idleness is Not

Sloth,” in Proceedings of the USENIX 1995 Technical Conference Proceedings,

TCON’95, pp. 17–17, USENIX Association, 1995.

[84] “Storage - UMass Trace Repository (June, 2007).” Available: http://

traces.cs.umass.edu/index.php/Storage/Storage.

[85] I. Mir and A. McEwan, “A High Performance Reconfigurable Flash Manage-

ment Framework,” in 2014 International Conference on Information Science,

Electronics and Electrical Engineering (ISEEE), vol. 2, pp. 1216–1220, IEEE,

April 2014.

[86] S. Kavalanekar, B. Worthington, Q. Zhang, and V. Sharda, “Characterization of

Storage Workload Traces from Production Windows Servers,” in IEEE Interna-

tional Symposium on Workload Characterization, pp. 119–128, Sept 2008.

[87] I. Mir, Reliability Management Techniques in SSD Storage Systems. PhD thesis,

University of Leicester, 2013.

[88] A. McEwan and I. Mir, “Age Distribution Convergence Mechanisms for Flash

Based File Systems,” Journal of Computers (JCP), Academy Publisher, vol. 7,

pp. 988–997, April 2012.

[89] S. Tanakamaru, S. Hosaka, K. Johguchi, H. Takishita, and K. Takeuchi, “Un-

derstanding the Relation Between the Performance and Reliability of NAND

160

http://traces.cs.umass.edu/index.php/Storage/Storage
http://traces.cs.umass.edu/index.php/Storage/Storage

Flash/SCM Hybrid Solid-State Drive,” IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. PP, no. 99, pp. 1–12, 2015.

[90] J. S. Bucy, J. Schindler, S. W. Schlosser, and G. R. Ganger, “The Disksim Simu-

lation Environment Version 4.0 Reference Manual (cmu-pdl-08-101),” Parallel

Data Laboratory, p. 26, 2008.

[91] Y. Cai, Y. Luo, E. Haratsch, K. Mai, and O. Mutlu, “Data Retention in MLC

NAND Flash Memory: Characterization, Optimization, and Recovery,” in 2015

IEEE 21st International Symposium on High Performance Computer Architec-

ture (HPCA), pp. 551–563, Feb 2015.

[92] Y. Lu, J. Shu, J. Guo, S. Li, and O. Mutlu, “High-Performance and Lightweight

Transaction Support in Flash-Based SSDs,” IEEE Transactions on Computers,

vol. 64, pp. 2819–2832, Oct 2015.

[93] Y. Winata, S. Kim, and I. Shin, “Enhancing Internal Parallelism of Solid-state

Drives while Balancing Write Loads Across Dies,” Electronics Letters, vol. 51,

no. 24, pp. 1978–1980, 2015.

[94] C. Wang and S. Baskiyar, “Extending Flash Lifetime in Secondary Storage,”

Microprocessors and Microsystems, vol. 39, no. 3, pp. 167 – 180, 2015.

[95] J. Thomson, High Integrity Systems and Safety Management in Hazardous In-

dustries. Butterworth-Heinemann, 2015.

[96] I. Kuon and J. Rose, “Measuring the Gap Between FPGAs and ASICs,” IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems,

vol. 26, pp. 203–215, Feb 2007.

161

[97] N. Battezzati, L. Sterpone, and M. Violante, Reconfigurable Field Pro-

grammable Gate Arrays for Mission-critical Applications. Springer Science

& Business Media, 2010.

[98] P. Adell and G. Allen, Assessing and Mitigating Radiation Effects in Xilinx FP-

GAs. Pasadena, CA: Jet Propulsion Laboratory, California Institute of Technol-

ogy, 2008.

[99] F. L. Kastensmidt, G. Neuberger, L. Carro, and R. Reis, “Designing and Testing

Fault-tolerant Techniques for SRAM-based FPGAs,” in Proceedings of the 1st

Conference on Computing Frontiers, pp. 419–432, ACM, 2004.

[100] P. Olivier, J. Boukhobza, and E. Senn, “Flashmon v2: Monitoring Raw NAND

Flash Memory I/O Requests on Embedded Linux,” ACM SIGBED Review - Spe-

cial Issue on the 3rd Embedded Operating System Workshop, vol. 11, no. 1,

pp. 38–43, 2014.

[101] M. Komsul, A. McEwan, and I. Mir, “An FPGA-based Development Plat-

form for Real-time Solid State Devices,” in 2014 International Conference on

Information Science, Electronics and Electrical Engineering (ISEEE), vol. 2,

pp. 1198–1203, IEEE, April 2014.

162

Appendix A

Development Platform Structure

A.1 Default SSD configuration

ssdmodel_ssd SSD {

/ / t h i s i s a p e r c e n t a g e o f r e s e r v e d t o t a l pages i n t h e s s d

Reserve pages percentage = 15 ,

/ / min p e r c e n t a g e o f f r e e b l o c k s needed . i f t h e f r e e

/ / b l o c k s drop below t h i s , c l e a n i n g k i c k s i n

Minimum free blocks percentage = 5 ,

/ / a s i m p l e read −modify−e r a s e −w r i t e p o l i c y = 1 (no l o n g e r s u p p o r t e d)

/ / t h i s i s out−of−p l a c e w r i t e p o l i c y = 2

Write policy = 2 ,

/ / random = 1 (n o t supp) , g r e ed y = 2 , wear−aware = 3

Cleaning policy = 2 ,

/ / number o f p l a n e s i n each f l a s h package (e l e m e n t)

Planes per package = 1 ,

/ / number o f f l a s h b l o c k s i n each p l a n e

Blocks per plane = 2048 ,

/ / how t h e b l o c k s w i t h i n an e l e m e n t a r e mapped on a p l a n e

/ / s i m p l e c o n c a t e n a t i o n = 1 , p lane − p a i r s t r i p p i n g = 2 (n o t t e s t e d) ,

/ / f u l l s t r i p p i n g = 3

Plane block mapping = 3 ,

163

/ / copy−back e n a b l e d (1) o r n o t (0)

Copy back = 0 ,

/ / how many p a r a l l e l u n i t s a r e t h e r e ?

/ / e n t i r e elem = 1 , two d i e s = 2 , f o u r p lane − p a i r s = 4

Number of parallel units = 1 ,

/ / we use d i f f a l l o c a t i o n l o g i c : c h i p / / p l a n e

/ / each gang = 0 , each elem = 1 , each p l a n e = 2

Allocation pool logic = 1 ,

/ / e l e m e n t s a r e grouped i n t o a gang

Elements per gang = 1 ,

/ / s h a r e d bus (1) o r s h a r e d c o n t r o l (2) gang

Gang share = 1 ,

/ / when do we want t o do t h e c l e a n i n g ?

Cleaning in background = 1 ,

Flash chip elements = 2 ,

Page size = 4 ,

Pages per block = 64 ,

/ / Cchanging t h e no of b l o c k s from 16184 t o 16384

Blocks per element = 2048 ,

/ / Changing t h e Chip x f e r l a t e n c y from p e r s e c t o r t o p e r b y t e

Chip xfer latency = 0 . 0 0 0 0 0 5 ,

Page read latency = 0 . 0 2 5 ,

Page write latency = 0 . 2 0 0 ,

Block erase latency = 1 . 5 ,

} / / end o f SSD spec

A.2 SSD Array Configuration

disksim_logorg org0 { / / L o g i c a l O r g a n i z a t i o n o f t h e SSD a r r a y

Addressing mode = Dynamic , / / dynamic s t r i p e mapping i s a d a p t e d

Distribution scheme = Striped ,

Redundancy scheme = Flash−RAID , / / t h e p a r i t y d i s t r i b i t i o n s o f t h e r e l i a b i l i t y mechanism

Components= Whole ,

/ / d e v i c e s i n t h e a r r a y

devices = [ssd0 . . ssd4] ,

Stripe unit = 4 , / / s t r i p e u n i t s i z e kB

164

RMW vs . reconstruct = 0 . 5 , / / t h i s i s a t h r e s h o l d r a t i o t o c a l c u l a t e t h e new p a r i t y e i t h e r u s i n g t h e o l d ←↩

d a t a o r new d a t a .

Parity stripe unit = 4 ,

}

A.3 System Topology

instantiate [ssd0 . . ssd4] as SSD

instantiate [bustop] as BUSTOP

instantiate [busHBA0 . . busHBA4] as BUSHBA

instantiate [ctlrHBA0 . . ctlrHBA4] as CTLR0

instantiate [driver0] as DRIVER0

/ / sys tem t o p o l o g y

topology disksim_iodriver driver0 [

disksim_bus bustop [

disksim_ctlr ctlrHBA0 [

disksim_bus busHBA0 [

ssdmodel_ssd ssd0 []

] / / end of bus0

] , / / end o f HBA0

disksim_ctlr ctlrHBA1 [

disksim_bus busHBA1 [

ssdmodel_ssd ssd1 []

] / / end of bus1

] , / / end o f HBA1

disksim_ctlr ctlrHBA2 [

disksim_bus busHBA2 [

ssdmodel_ssd ssd2 []

] / / end of bus2

] , / / end o f HBA2

disksim_ctlr ctlrHBA3 [

disksim_bus busHBA3 [

ssdmodel_ssd ssd3 []

] / / end of bus3

] , / / end o f HBA3

disksim_ctlr ctlrHBA4 [

disksim_bus busHBA4 [

ssdmodel_ssd ssd4 []

] / / end of bus4

] / / end of HBA4

165

] / / end of b u s t o p

] / / end of d r i v e r 0 (and sys tem t o p o l o g y)

A.4 Synthetic Workload Generator Configuration

disksim_synthgen { / / g e n e r a t o r 0

Storage capacity per device = 222822 ,

devices = [org0] ,

Blocking factor = 4 ,

Probability of sequential access = 0 . 2 ,

Probability of local access = 0 . 0 ,

Probability of read access = 0 . 2 ,

Probability of time−critical request = 0 . 0 ,

Probability of time−limited request = 0 . 0 ,

Time−limited think times = [normal , 3 0 . 0 , 100 .0] ,

General inter−arrival times = [uniform , 3 . 0 , 3 . 0] ,

Sequential inter−arrival times = [uniform , 3 . 0 , 3 . 0] ,

Local inter−arrival times = [exponential , 0 . 0 , 0 . 0] ,

Local distances = [normal , 0 . 0 , 40000 .0] ,

Sizes = [exponential , 0 . 0 , 3 . 0]

} / / end o f g e n e r a t o r 0

] / / end of g e n e r a t o r l i s t

A.5 Uneven Parity Redistribution and Page Allocation

i f ((! (curr−>flags & READ)) | | (! (curr−>flags & READ) & ps [preblkno] . first_dev==null)) { / / make s u r e i t i s new ←↩

w r i t e

i f (counter<0.8∗par) { / / 80% of new p a r i t y t o t h e second most aged d e v i c e

partsperstripe=n ; / / i d o f t h e most aged d e v i c e f o r p a r i t y (i n i t i a l l y 0)

paritycounter [partsperstripe] + + ;

i f (counter<(0 .8∗par) / 4) { / / d e f i n e f i s t d e v i c e o f t h e a c t u a l d a t a

temp−>devno = table [(n+1)] . devno ;

}

e l s e i f ((0 . 8∗par) /4 <=counter & counter<(0 .8∗par) ∗2 /4) {

temp−>devno = table [(n+2)] . devno ;

}

e l s e i f ((0 . 8∗par) ∗2/4 <=counter & counter<(0 .8∗par) ∗3 /4) {

166

temp−>devno = table [(n+3)] . devno ;

}

e l s e i f ((0 . 8∗par) ∗2/4 <=counter & counter<(0 .8∗par) ∗4 /4) {

temp−>devno = table [n+ 4] .devno ;

}

}

e l s e i f (counter<0.99∗par & counter>=0.8∗par) { / / 19% of new p a r i t y t o t h e second most aged d e v i c e

partsperstripe=n+1;

paritycounter [partsperstripe] + + ;

i f ((0 . 8∗par) <=counter & counter<(0 .8∗par) + ((0 . 1 9∗par) ∗1 /4)) { / / d e f i n e f i s t d e v i c e o f t h e a c t u a l ←↩

d a t a

temp−>devno = table [(n)] . devno ;

}

e l s e i f ((0 . 8∗par) + ((0 . 1 9∗par) ∗1 /4) <=counter & counter<(0 .8∗par) + ((0 . 1 9∗par) ∗2 /4)) {

temp−>devno = table [(n+2)] . devno ;

}

e l s e i f ((0 . 8∗par) + ((0 . 1 9∗par) ∗2 /4) <=counter & counter<(0 .8∗par) + ((0 . 1 9∗par) ∗3 /4)) {

temp−>devno = table [(n+3)] . devno ;

}

e l s e i f ((0 . 8∗par) + ((0 . 1 9∗par) ∗3 /4) <=counter & counter<(0 .8∗par) + ((0 . 1 9∗par) ∗4 /4)) {

temp−>devno = table [n+ 4] .devno ;

}

}

e l s e { / / 1% of new p a r i t y t o t h e t h i r d most aged d e v i c e

partsperstripe=n+2;

paritycounter [partsperstripe] + + ;

i f ((0 . 8∗par) <=counter & counter<(0 .8∗par) + ((0 . 1 9∗par) ∗1 /4)) { / / d e f i n e f i s t d e v i c e o f t h e a c t u a l ←↩

d a t a

temp−>devno = table [(n)] . devno ;

}

e l s e i f ((0 . 8∗par) + ((0 . 1 9∗par) ∗1 /4) <=counter & counter<(0 .8∗par) + ((0 . 1 9∗par) ∗2 /4)) {

temp−>devno = table [(n+1)] . devno ;

}

e l s e i f ((0 . 8∗par) + ((0 . 1 9∗par) ∗2 /4) <=counter & counter<(0 .8∗par) + ((0 . 1 9∗par) ∗3 /4)) {

temp−>devno = table [(n+3)] . devno ;

}

e l s e i f ((0 . 8∗par) + ((0 . 1 9∗par) ∗3 /4) <=counter & counter<(0 .8∗par) + ((0 . 1 9∗par) ∗4 /4)) {

temp−>devno = table [n+ 4] .devno ;

}

}

}

A.6 Dynamic Threshold Calculation

vo id dynamic_threshold () {

u n s i g n e d i n t low ;

i n t i ;

f l o a t opt=0;

167

ssd_t ∗s ;

f o r (i = 0 ; i < 5 ; i++) / / dynamic t h r e h o l d c a l c u l a t i o n f o r 5 a r r a y d e v i c e

{

s = getssd (i) ;

i f (s−>devno==0)

{

opt= 0 . 2 9 ; / / optimum age l e v e l

s−>dt = s−>dt+(opt−s−>agingratio) ;

}

e l s e i f (s−>devno==1)

{

opt= 0 . 2 9 ; / / optimum age l e v e l

s−>dt = s−>dt+(opt−s−>agingratio) ;

}

e l s e i f (s−>devno==2)

{

s−>dt = s−>dt+(opt−s−>agingratio) ;

opt= 0 . 3 0 ; / / optimum age l e v e l

}

e l s e i f (s−>devno==3)

{

s−>dt = s−>dt+(opt−s−>agingratio) ;

opt= 0 . 4 6 ; / / optimum age l e v e l

}

e l s e i f (s−>devno==4) / / most aged d e v i c e

{

s−>dt = s−>dt−(totalgap) ;

}

totalgap+=s−>agingratio−opt ;

i f (s−>dt<MT) / / minimum boundary f o r t h r e s h o l d

{

s−>dt=MT ;

}

e l s e i f (s−>dt> 0 . 5) / / max boundry f o r t h r e s h o l d

{

s−>dt= 0 . 5 ;

}

}

A.7 PGC Mode Controller

s t a t i c vo id ssd_access_complete_element (ioreq_event ∗curr) / / e f t e r each a c c e s s o f t h e memory t h e mechanism ←↩

ch e ch s e i t h e r c l e a n i n g has s t a r t e d o r n o t

{

168

ssd_t ∗currdisk , ∗s1 ;

i n t elem_num , i ;

ssd_element ∗elem ;

ioreq_event ∗x ;

ssd_element_metadata ∗metadata ;

plane_metadata ∗pm ;

currdisk = getssd (curr−>devno) ;

elem_num = currdisk−>timing_t−>choose_element (currdisk−>timing_t , curr−>blkno) ;

metadata = &(getssd (curr−>devno)−>elements [elem_num] . metadata) ;

ASSERT (elem_num == curr−>ssd_elem_num) ;

elem = &currdisk−>elements [elem_num] ;

pm = &metadata−>plane_meta [0] ;

/ / a l l t h e r e q s a r e ove r

i f (ioqueue_get_reqoutstanding (elem−>queue) == 0) {

elem−>media_busy = FALSE ;

}

ssd_complete_parent (curr , currdisk) ;

addtoextraq ((event ∗) curr) ;

ssd_activate_elem (currdisk , elem_num) ;

i f (pm−>clean_in_progress) / / i f c l e a n i n g i s invoked a f t e r an o p e a r t i o n t h e n t h e mechanism a c t i v a t e o t h e r ←↩

d e v i c e s t o check f o r c l e a n i n g

{

f o r (i = 0 ; i < n ; i++)

{

s1 = getssd (i) ;

i f (currdisk−>devno==s1−>devno) / / i f i t i s c u r r e n t d e v i c e s k i p i t

{

i++;

c o n t i n u e ;

}

ssd_activate_elem (s1 , elem_num) ;

}

}

}

A.8 GC Efficiency Function

s t a t i c do ub l e ssd_clean_blocks_greedy (i n t plane_num , i n t elem_num , ssd_t ∗s , i n t period) {

f o r (i =0; i <s−>params .pages_per_block−1; i ++) {

i n t j ;

usage_table ∗entry ;

169

/ / g e t t h e b u c k e t o f b l o c k s wi th " i " v a l i d pages

entry = &(table [i]) ;

/ / f r e e a l l t h e b l o c k s wi th " i " v a l i d pages

f o r (j = 0 ; j < entry−>len ; j ++) {

i n t blk = entry−>block [j] ;

i n t block_life = metadata−>block_usage [blk] . rem_lifetime ;

/ / i f t h e b l o c k i s a l r e a d y dead , s k i p i t

i f (block_life == 0) {

c o n t i n u e ;

}

/ / c l e a n on ly t h o s e b l o c k s t h a t a r e s e a l e d .

i f (ssd_can_clean_block (s , metadata , blk)) {

c o n t i n u e ;

}

i f (s−>Current_Threshold>s−>Medium_threshold) / / / / Make s u r e t h a t c u r r e n t low p r i o r i t y t h r e s h o l d i s n o t b i g g e r ←↩

t h a n medium t h r e s h o l d

{

c o n t i n u e ;

}

i f (s−>params .pages_per_block∗GCE_factor>i) / / / / Make s u r e t h a t t h e r e a r e n o t many v a l i d pages i n t h e b l o c k

{

c o n t i n u e ;

}

/ / f i n a l l y h e r e t h e b l o c k can be c l e a n e d .

/ / i n vo ke c l e a n i n g

cost += _ssd_clean_block_fully (blk , metadata−>block_usage [blk] . plane_num , elem_num , metadata , s) ;

}

}

}

170

	Introduction
	Motivation
	Problem Statement
	Research Questions

	Scope and Objectives
	Methodology
	Thesis Contribution
	Thesis Overview

	NAND Flash-based Storage Systems
	Overview of Flash Memory
	Flash Translation Layer
	Address Mapping
	Garbage Collection
	Wear Levelling and Bad Block Management

	Flash-based SSD Architecture
	Parity-based RAID systems
	Write Types in RAID
	Real-Time Systems
	Summary

	Real-time Support Issues for Flash Memory Storage Systems
	Introduction
	Unpredictable Performance on Garbage Collection
	Reliable and High Performance NAND Flash-based Storage
	Current Challenges and Solutions
	Real-Time Support Concerns in Real-Time FTLs with RAID
	Real-Time and Performance Concerns of the Reliability Enhancement Mechanisms

	Summary

	Dynamic Pre-emptive Garbage Collection
	Introduction
	Pre-emptive Garbage Collection
	Limitations of PGC with SSD RAID
	System Architecture
	Dynamic Pre-emptive Garbage Collection
	Dynamic Garbage Collection
	Pre-emptive mode controller

	Summary

	Garbage Collection aware RAID Mechanism
	Introduction
	GC-aware RAID mechanism
	Address Mapping Tables
	GC-aware Read Operation
	Serialised Garbage Collection
	GC-aware Random Writes
	GC-aware Sequential Writes
	WCET Analyses
	On-line Parity Migration

	Summary

	On-line Device Replacement Techniques
	Introduction
	Architectural Design
	Proactive Hot-Swapping
	Coordinated Data Migration
	Cost-Effective Parity Redistribution
	Semi-Hybrid RAID
	Summary

	Testbed and Results
	Introduction
	DiskSim Simulator
	Experimental Platform
	Simulator and Workloads
	Simulation results
	Dynamic Pre-emptive Garbage Collection Mechanism
	Garbage Collection-aware RAID Mechanism
	On-line Device Replacement Techniques

	Summary

	Conclusions and Discussions
	Final Evaluation of Results
	Review of Contributions
	Dynamic PGC Mechanism
	GC-aware RAID Mechanism
	On-line Device Replacement Techniques
	Development Platform

	Future Work
	Next target: Determining Real Estate Efficiency on FPGAs
	Improving Performance under Sequential Writes

	Final Remarks

	References
	Development Platform Structure
	Default SSD configuration
	SSD Array Configuration
	System Topology
	Synthetic Workload Generator Configuration
	Uneven Parity Redistribution and Page Allocation
	Dynamic Threshold Calculation
	PGC Mode Controller
	GC Efficiency Function

