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Abstract

This thesis introduces various control system designs for wave energy converters. It describes
optimal conditions for maximizing the energy absorbed from wave energy converters. Feed-
back realisation of complex-conjugate control and velocity-tracking control are used to create
these conditions. Also, passive loading control and latching control , which correspond to
non-optimal conditions, are both discussed here. Several different ways of overcoming the
non-causal problem of optimal conditions are also discussed. Firstly, prediction of wave
elevation or excitation force can be used to solve the non-causal problem. Several predictive
approaches’ performances are compared. A new approach, called multi-steps predictive
identification, has been shown that have better performance than other approaches. Secondly,
the prediction error method, which is used to find a constant approximation of a model’s
performance can be also used to overcome the non-causal problem. The most important aim
of this project is to maximize absorbed energy. The design of a Power Takeoff (PTO) device
of a wave energy conversion system here involved direct optimization of the parameters of
a mechanical network using the Nelder–Mead method can be linked to power absorption
performance. Approximate transfer functions are realized with different admittances are here
compared. Real ocean data sets were tested in terms of admittances. Their advantages and
disadvantages of each method are presented in this thesis.
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Chapter 1

Introduction

1.1 Background to wave energy resources

As the world’s demand for primary energy sources continues to rise, associated prices are
also increasing sharply. In addition, safety and environmental protection requirements have
correspondingly become more stringent. As a result, resources such as oil, natural gas and
coal will be increasingly replaced by renewable energy sources, e.g., wind, solar, and wave
energy; wave energy in particular may have the potential to satisfy the majority of future
energy demands.

Wave energy has several advantages over other renewable energy sources. The potential
usable wave power worldwide has been estimated to be greater than 2TW [17, 94]. Com-
paring solar and wind energies with wave energy, it is clear that the latter is much more
spatially concentrated than the former. With solar energy ideally being converted to wind
energy, power flow intensity can be up to 0.5kW/m2 perpendicular to the direction of the
wind (solar radiation creates temperature differences in the atmosphere, creating air pressure
differences; essentially, wind is the result of air pressure differences). In comparison, when
wind energy is converted to wave energy, power flow intensity can be up to 2− 3kW/m2

perpendicular to the direction of wave propagation; in other words, the power intensity of
the latter is considerably greater [24]. A key example is wind and wave energy development
in Ireland. About 6.4× 10−3TWh has been generated of a total practical annual capacity
from wind energy of 6.7TWh[20, 53]; on the other hand, the total annual resources that can
be practically obtained from wave energy is 14TWh, but to date none of this has been used
to generate power[20]; this reflects the most common situation worldwide. Indeed, whilst
wind and solar energy conversion devices have been extensively developed, due to its high
cost and control complexities, wave energy technology has not been widely implemented.
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1.1 Background to wave energy resources

However, its high energy potential means that wave energy is, nevertheless, still competitive.
Figure 1.1 presents the available wave power levels worldwide.

Figure 1.1 Global distribution of wave power in kW/m[51]

Wave energy conversion produces low amounts of carbon over its life-cycle[73], and
also can reduce CO2 emissions to levels that will satisfy the Kyoto Protocol[24]. The other
advantage of wave energy is that the supply of energy available from this source is far
more consistent, and can thus be predicted more easily than for other forms of renewable
energy[24]. It lasts throughout the year, and is not easily affected by other elements. Any
country which has significant lengths of coastline may use this technology, which has
considerable future potential. Wave energy is essentially undeveloped at present, and its huge
potential for the future is one of the motivations for this report.

1.1.1 Principles and Classification of Wave Energy Converters (WECs)

WECs do not have a long history. In fact, the first recorded WEC was built by P. Wright
in 1898 [79], but it was not until the 1970s that their development become widespread
when the oil crisis motivated increased WEC development. Many concepts for wave energy
converters have been designed and tested [16], and WECs can accordingly be classified in
many different ways, such as via their operating position, operating principles, and means of
reaction [French].

One widely used concept is that of the WEC based on the oscillating water column
(OWC). The basic concept of the OWC is presented in the following figure1.2. It can
be seen from figure1.2 that an OWC is usually positioned on the shoreline [101]. As the
incident waves oscillate inside the chamber the air inside is accordingly compressed and
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1.1 Background to wave energy resources

uncompressed, causing it to flow. This air flow is used to provide a unidirectional rotational
motion of the turbine [79, 83], which allows for the generation of electricity. More details
can be found in [40, 79, 83].

Figure 1.2 The basic concept of the oscillating water column [95]

The other popular device is based on the overtopping principle. The basic principle
behind an overtopping device is the conversion of wave and tidal kinetic energy to potential
energy. This potential energy can then be converted into electricity by a turbine. A simple
representation of the overtopping device is given in figure1.3 below:

Figure 1.3 Structure of an overtopping device [95]

As can be seen from figure1.3, waves overtop both sides of the ramp, allowing water to
be stored in the reservoir. The turbine will operate when the reservoir releases water. The
potential energy of the water pushes the turbine, after which the former returns to the sea.
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1.1 Background to wave energy resources

The advantage of overtopping devices is their insensitivity to tidal height [79, 89]. They can
also protect the harbour in which they are installed with their ramp [79].

However, the most common type of WEC is the heaving buoy. There are three such types
of devices: one is called the Archimedes Wave Swing (self-reacting device) [18]; the second
is the Bottom-referenced Heaving Buoy; and the third is the Linear Heaving Buoy. These
devices are illustrated in the following figure1.4:

Figure 1.4 Structures of the three different types of heaving buoy [95]

It can be seen that the self-reacting device consists of distinct sections, namely the
mooring on the sea bed and the floating section on the surface. The latter can undergo two
motions: pitching and heaving. The advantage of this type of device is that it can operate
offshore in the deep sea [95].

The central device in figure1.4 is the bottom-referenced heaving buoy. The difference
between this and the self-reacting device is that the heaving buoy connects directly to the
seabed. As perfect heaving motion is difficult to obtain in the real world, the device is
constrained to a vertical motion for convenience [79], and is usually only operated in shallow
water. This thesis will focus on the bottom-referenced heaving buoy.

The linear heaving buoy has been described by Yemm [102]. It is called the Pelamis, and
is constructed from several structures. It usually floats on the sea surface and undergoes two
types of motion, similar to the self-reacting device. Waves act on the Pelamis, driving the
connection arm between each of the structures in order to capture energy. The advantage
of the Pelamis is that several separate floating buoys can be connected together with one
mooring line. It is also suitable for deep-sea usage [95].
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1.1 Background to wave energy resources

1.1.2 Power and Energy Flow Transmission

As the bottom-referenced heaving buoy is the subject of this thesis, an understanding of
power flow transmission between incident waves and the heaving buoy is important and
worth pursuing. This transmission can be classified as intercepted power, absorbed power,
useful power, and reaction power.

The intercepted power can be seen as the incident wave power that is intercepted by the
buoy. The generation process of intercepted power can be described as follows. First, incident
waves hit the buoy. The incident power (excitation power) so produced can be categorised
as intercepted power, Froude-Krylov power, and diffraction power. All the incident power
returns back to the waves if there is no PTO (power take-off) device connected. Froude-
Krylov power and diffraction power are associated with the non-causality of excitation
force, and will be discussed in detail in chapter 2. Note that the radiation power equals the
intercepted power if there is no PTO device. It is generated when the buoy pushes water out
of the way [47].

The absorbed power can be seen as a part of intercepted power. Given that radiation
power is equal to the intercepted power if there is no PTO connected, some of the radiation
power is converted to absorbed power via the PTO; however, not all of the absorbed power
can be used. The absorbed power can itself be classified as either useful power or reaction
power, as some power will be lost in the active elements of the PTO. For example, one might
consider a PTO constructed of a simple mass-spring-damper system. The mass and spring of
the PTO can be seen as active parts, and do not themselves absorb power from waves. All
useful power is absorbed by the PTO damper, which can be seen as the passive part of the
construction.

Figure 1.5 Power transmission from waves to WEC
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1.1 Background to wave energy resources

The relationship between intercepted power, absorbed power, useful power, and reaction
power is shown in the figure1.5.

However, maximising useful energy is the object of this project. Energy is the amount of
work performed by a force, and is equal to the integral of power over time. Hence, the energy
relationship between the waves and WEC can be represented as per figure1.6. Note that
maximising useful energy is the key point, and so only the relationship between absorbed
energy, reaction energy, and useful energy will be analysed.

The absorbed energy is the sum of the reaction energy and the useful energy. The energy
flow from the sea to the active elements is defined as ES2A, whilst that from the sea to the
passive elements is defined as ES2P. Conversely, the energy flow from the active elements to
sea is defined as EA2S, and that from the active elements to the passive elements is EA2P. A
”−” sign indicates that energy is ”absorbed”, whilst a ”+” sign indicates energy ”delivery”.
The relationships between the above can be expressed as per the following equations:

EAbs = |EA2S|− |ES2A|− |ES2P| (1.1)

ERec = |EA2S|+ |EA2P|− |ES2A| (1.2)

EUse =−|EA2P|− |ES2P| (1.3)

EAbs = ERec +EUse (1.4)

Figure 1.6 Energy flow from waves to a PTO
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1.2 Motivation and Previous Work

WECs rely on efficiency control, or would otherwise become essentially passive devices, and
unsuitable for use under a variety of sea conditions. Control can be classified across different
stages according to power flow.

There are several important elements that could effect the economy of a system used for
wave energy conversion. The size of the WEC should be minimised, which can reduce the
buoy’s cost and the complexity of its structure. The dip surfaces of WEC systems should be
smooth to reduce viscous losses. WECs should be able to undergo various types of motion in
order to follow wave direction. Various other control designs can be used to protect WECs,
which can help avoid damage due to severe weather. [10, 23, 26, 29]. All of the above
controls can be classified as physical controls, that is, they are only associated with the
physical elements of the WEC.

All of these factors are aimed at maximising the absorbed power. Many research projects
have been conducted in the attempt to discover the means by which wave energy absorption
can be maximised, with a particular focus on WECs consisting of oscillating systems
[21, 23, 26]. Various optimal conditions have been introduced, all of which express the
relationship between the velocity of buoy oscillation and the force produced by the wave
within the frequency domain. One of the strategies for control is that of complex-conjugate
control [23], [38], [42], which optimises conditions for absorbing energy by making the
optimal load impedance equal to the complex conjugate of the intrinsic impedance. An
alternative control strategy, known as phase control, requires the oscillation velocity to be in
phase with the excitation force [23], [38]. Phase control is also called latching control. As
the name implies, latching control consists of a locking and releasing motion of the energy
conversion device that is directly related to the peak and trough of the wave. This aims to
synchronise the wave force in phase with the velocity of the device [2, 58, 59]. Recently,
another control method has been developed, which is called model predictive control (MPC),
which has been used to solve the constrained optimisation problem. The velocity and force
of WECs can be directly involved with control design [45]. All of these control designs can
be classified as PTO controls.

However, in irregular waves, the optimal control problem becomes non-causal because
the excitation force is not directly generated by the wave [22]. This means the calculation of
the excitation force requires information regarding the future elevation of the waves. Several
early results in wave energy research have demonstrated the importance of wave prediction.

7



1.3 Thesis Layout

Accurate wave prediction was introduced in [58] to aid control in order to gain con-
siderable improvements at lower wave spectral frequencies. The controller can adjust the
accumulator’s internal pressure, causing the valve to open and close more accurately when
using wave prediction. As mentioned earlier, the flow velocity was more stable and faster.
Korde argued that the energy conversion device could extract more useful power with lower-
frequency waves; as a result, smaller devices may be considered for use in low sea states
(that is, where the sea looks calm and smooth). This means precision wave prediction could
be extremely helpful in reducing the energy conversion device’s size while still extracting
more power.

In 2010, short-term wave prediction [36] was described in the literature. One approach
to wave elevation prediction is via a time series that is only dependent on past history.
Autoregressive models could offer accurate predictions for low-frequency sea waves up
to two wave periods in the future. In [37], the authors not only focus on short-term wave
prediction but also on that of wave excitation force.

On the other hand, several different causal approximations have been reported [38, 74],
where the power absorption performance of the WEC is only slightly reduced compared to
non-causal conditions.

The last control classification is that of useful power delivery. Wave power is converted
to useful power via WECs. Then, useful power has to be converted to electricity and be
delivered to the power grid, for which voltage control, power storage, and frequency have to
be considered. More details can be found in reference [56].

A new method has been applied in this thesis to optimise the restricted complexity
PTO mechanism for wave energy conversion. Mechanical network realisation with Brune
Synthesis has been considered, whereas most researchers focus on mathematical notions to
represent the PTO mechanism regarding wave energy conversion. The concept of mechanical
network realisation with Brune Synthesis is used to make the mathematical notions of PTO a
reality through physical constructions. The design of a restricted complexity PTO via direct
optimisation of the parameters of a mechanical network will be presented.

1.3 Thesis Layout

This thesis includes the following sections: chapter 2 describes the physical model and
different types of waves. A degree of background into harmonic waves and real ocean waves
will be given. As a wave spectrum can be used analyse the main characteristics of waves,
several spectra are presented in this chapter. The advantages and disadvantages of these
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spectra are discussed. A literature review of mechanical oscillation is given in chapter 2. The
oscillating buoy and associated models considered in this thesis are then presented. The time
domain and frequency domain of a dynamic wave energy conversion model will be given for
the purpose of analysis.

Control design criteria are introduced in chapter 3, and the concept of the optimal control
condition is discussed; the causality and non-causality of optimal conditions has also been
analysed. Implementations of different control designs are also described in chapter 3.

As mentioned above, the excitation force is non-causal and requires information on future
wave elevation; hence, the means by which to predict wave elevation is described in chapter
4. Three system identifications, namely least squares, long-range predictive, and multi step
predictive, are introduced. Simulated wave elevations, as generated with different wave
characteristics, have been tested with these three identifications. Comparisons of different
predictive approaches will be presented in this chapter.

The model approximation and various numerical simulation results are introduced in
chapter 5. The complex conjugate of intrinsic impedance is required for the control design,
and hence, the prediction error method will be utilised to obtain the complex conjugate
of intrinsic impedance calculations. However, model approximation is another solution to
overcoming the non-causal problem. A second-order system approximation will be calcu-
lated using the prediction error method and partial fraction decomposition. Hydrodynamic
parameters will also be collected in this chapter, where different order polynomials will be
used to fit the hydrodynamic data, and will be used to control system disturbance excitation
force calculations. Finally, system approximation results will be inserted into the control
systems based on two optimal control conditions.

Chapter 6 focuses on the results of the simulations and mechanical network realisation.
Numerical optimisation to design a restricted complexity PTO mechanism for wave energy
conversion will be presented in this chapter. The Nelder–Mead method (Matlab command
′ f minsearch′) will be used for numerical optimisation. Control designs introduced in chapter
3 will be tested with simulation data. The design of the PTO based on the numerical
optimisation of the parameters of a mechanical network will be presented. Two control
structures for a PTO realised via Brune Synthesis were obtained, and will be compared with
a simple mass-spring-damper system.

In chapter 7, real wave data collected in three locations will be analysed. Wave spectra
from different locations will be compared, and the wave elevations at these locations will
be presented. As mentioned in chapter 4, three system identifications will be compared and
tested with simulation data, and the real wave data will also be tested. Finally, real wave data
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will be entered into the control designs introduced in chapter 6; these will be compared in
order to examine the influence of different wave spectra and elevations.

Chapter 8 gives the conclusions to the work carried out in this thesis and, additionally,
a number of future recommendations. Any weaknesses in the experiments and associated
possible solutions will be described in chapter 8.

1.4 Contributions

Contributions associated with this thesis are as follows:

1. Multi step predictive identification advantages have been verified:

Least squares and long-range predictive identifications have been widely used. How-
ever, least squares identification predicts K steps ahead values based on only one step
ahead estimators, which is poor for several steps ahead prediction. Long-range predic-
tive identification can be used to predict several steps ahead based on the investigation
of the whole prediction horizon [84]. However, disturbances or errors may accumulate
from previous recursive calculations. Multi step predictive identification can provide a
cost function for each prediction step. There are no disturbances or errors that may
accumulate in these calculations. Prediction results calculated by multi step predictive
identification has obvious advantages.

2. The prediction error method has been used for model approximation and reduction:

The prediction error method has been used for model approximation. The method
does not consider the model mismatch or the likelihood of the corresponding statistical
model, such as the least squares or maximum likelihood method. It is used for
estimating the parameters of a dynamic model based on recorded observations [61].
Model approximation is used to overcome the non-causality problem.

In the other hand, the system model order, as reduced by the prediction error method,
can fit an optimal model with 97.94% accuracy. It shows better performance than
partial fraction decomposition, which is described in references [75] and [38]. Partial
fraction decomposition, which reduces system model order by ignoring components
of the numerator and denominator, does not have a particularly significant effect
on the system. In contrast, prediction error method reduces system model order by
considering the accuracy of the predictions based on given observations. Reduction
models have been inserted in complex conjugate and velocity-tracking control loops.

10



1.5 Publication

3. Brune synthesis and the Nelder–Mead method have been used for numerical optimisa-
tion to design a restricted complexity power take-off mechanism:

The Nelder–Mead method has been used to optimise impedance. The advantage of
the Nelder–Mead method is that can be used to find a local minimum of a function
without requiring any derivative information [63, 85].

Brune Synthesis has been used to obtain restricted complexity control for WECs
with different structures. One solution to constructing physical reality corresponds to
systems of differential equations. Two control impedances, as calculated by Brune
Synthesis, have been compared with a simple mass-spring-damper system. They
can absorb a little more absorbed energy than the mass-spring-damper system using
simulation data; however, they show significant improvement using real ocean wave
data that contains a low wave spectrum.

1.5 Publication

• Fu, Xiaoxing and Lecchini-Visintini, Andrea, Optimisation of restricted complexity
control for wave energy conversion. In Control (CONTROL), 2016 UKACC 11th

International Conference on, pages 1–5. IEEE.
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Chapter 2

Waves and oscillating system description

2.1 Introduction

Wave energy is available to any country with a coastline. Ocean wave investigation and
analysis are extremely important for extracting wave energy data. Harmonic waves and
irregular waves will be described in section 2.2, where their characteristics will be analysed
and the connection between them examined. The simulation of irregular waves, as based
on the Pierson-Moskowitz spectrum, will be described. A wave energy conversion (WEC)
system consisting of a single oscillating buoy is used to extract wave energy data from ocean
waves. In section 2.3, an analysis of an oscillating buoy in irregular waves will be discussed,
and the different forces that act on the buoy will be described; the power generated by these
forces will also be described in this section.

2.2 Ocean wave description

In this section, two types of waves and their characteristics in relation to wave energy, and
thus the focus of this study, will be presented. Simulations of ocean waves, as based on the
Pierson-Moskowitz spectrum, will also be given in this section.

Firstly, the frequency domain and time domain of a signal have to be distinguished and
analysed. For any signal presented in the time domain, there is an equivalent frequency
domain expression. A Fourier transform can be used to decompose a time domain signal into
the frequency domain, whilst its inverse can be used to reconstruct the original time domain
signal.

12



2.2 Ocean wave description

Harmonic Waves

The harmonic wave is a simple staring point in the simulation studies of ocean waves. As
mentioned in chapter 1, a bottom-referenced heaving buoy will be used in this thesis. Only
a unidirectional wave propagating at one frequency will be measured by such a a buoy.
Harmonic waves can be seen as continuous, sinusoidal signals. The wave elevation η(t) in
the time-domain can be obtained as follows:

η(t) = Asin(ωt +φ) (2.1)

where A is the wave amplitude, φ is the phase, and ω is the frequency [31].

Real Ocean Waves

Harmonic waves were introduced in the previous section. However, the waves observed in
the ocean are, clearly, far more random than this simplistic model suggests. As wave period
and wave height change continuously, real ocean waves are considered to be a stochastic
processes. Assuming real waves, or so-called irregular waves, can be seen as superpositions
of regular waves of different frequencies, then irregular waves can be calculated by recalling
eq(2.1), as below:

η(t) =
∫

∞

0
Asin(ωt +α)dω (2.2)

where α is the phase angle and A is the wave amplitude. The distribution of irregular
wave elevations is assumed to be Gaussian around the zero mean [70].

However, wave elevation is usually measured as discrete data. Discrete measurements
with digital processing can be used more easily and more intuitively than analogue processing.
The discrete time domain of wave elevation can be presented as follows:

η(t) =
N−1

∑
i=1

A(i)sin(ω(i)t +φ(i)) (2.3)

where N is number of measurements. Further details and applications of the discrete time
domain of wave elevation will be presented in section 2.2.4.

So, proceeding with the assumption that irregular waves can be seen as a superposition
of regular waves of different frequencies, it can be further understood that wave spectral
density is important in distinguishing a wave’s characteristics [67]. The wave spectral density
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function is represented by the symbol S(ω). Wave spectral density is the energy per unit area
of a wave’s surface for each of the wave components of the whole wave system [67].

The wave power spectral density is defined as follows [70]:

S(ω) = lim
T→∞

1
2πT

|ΞT (ω)|2 (2.4)

where T is the wave period and is equal to 2π

ω
. The ΞT (ω) is the Fourier transform of wave

elevation:

ΞT (ω) =
∫ T

−T
η(t)e− jωtdt (2.5)

Sea State Parameters

Apart from the wave spectrum, various other parameters are useful in defining a wave’s
characteristics. The spectral moments are the key points used to calculate wave spectrum
characteristics, which include average wave height, average period, and so on. The spectral
moments method obtains values according to a Fourier spectrum[99]. The nth spectral
moment is[67]:

mn =
∫

∞

0
ω

nS(ω)dω (2.6)

And the zeroth moment can be given as:

m0 =
∫

∞

0
S(ω)dω (2.7)

As shown in the above equation, the zeroth moment is the variance of the wave spectrum[99].
A significant wave height is an important parameter by which one can characterise a sea

wave. It is defined as the mean wave height of the top one-third highest waves[23]. It can
also be defined as four times the square root of the zeroth moment, which can be expressed
as:

Hs = 4
√

m0 (2.8)

Following this, the other important parameter is the zero crossing period, which can be
calculated as follows:

14



2.2 Ocean wave description

Tz = 2π

√
m0

m2
(2.9)

Eq(2.9) is also used to represent the mean period of all waves in the entire record.
Furthermore, the energy period is important for power calculations, and is given by:

Te = 2π
m−1

m0
(2.10)

In equation2.10, the wave is assumed to be a regular wave that has the same significant height
and same power density in any one period.

2.2.1 Spectrum analysis

As mentioned above, irregular waves are the superposition of a number of harmonic waves
whose amplitudes can be derived from the wave energy spectrum, which can be used to
analyse the main characteristics of waves. It constitutes several of the parameters introduced
in the previous section, such as the significant wave height, the zero crossing period, the peak
period or the energy period, and so on.

There are four main types of wave spectrum. One is called the Pierson-Moskowitz
(PM) spectrum. It is used to describe the relationship between wave energy distribution and
frequency. It assumes that if the wind blows for a long time over a large area, then wave
motion will achieve equilibrium with the wind. For further information, key publications in
the literature describing PM spectra are available [76, 77, 90]. However, the PM spectrum
only works for fully developed seas (a fully developed sea occurs when the energy input
from the wind balances the energy output by waves breaking [88]). The JONSWAP spectrum
is another type of spectrum that can be used with fetch limitations (the location of waves may
have particular physical characteristics that do not allow the waves to fully develop [92]),
such as low frequency and narrow-band swells. More details on JONSWAP spectra can be
found in [13, 46, 46]. There are two other spectra can be seen as specific cases of a PM
spectrum. One is the Bretschneider spectrum, which can be considered as a two-parameter
PM spectrum [5–7]. The other one is the Ochi-Hubble spectrum [71, 72]. It can also be seen
as a specific case of a three-parameter PM spectrum. Both types can be used with irregular
waves with certain fetch limitations. Spectral expressions are given in table2.1:
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2.2 Ocean wave description

2.2.2 Simulation of the Pierson-Moskowitz Spectrum and Irregular
Waves

Some real sea wave records are given in reference [67], which were collected from the west
coast of Ireland. The sampling frequency is given as fs = 1.28Hz. In addition, the PM
spectrum function related to significant wave height Hs and zero crossing period Tz can be
given as:

S(ω) =
0.11H2

s Tz

2π
(
ωTz

2π
)−5 exp[−0.44(

ωTz

2π
)−4] (2.11)

Nolan [69] suggested that the spectrum be divided into 512 equally spaced frequency
components, where the starting frequency is 0.3rad/s, and the interval, dω , is equal to
0.00625rad/s, so the maximum frequency is 3.5rad/s. The choice of dω was discussed in
[67]. The increase in dω may cause the mean frequency, the standard deviation of the peak
frequency, and the mean magnitude of the peak frequency to change significantly. The divide
interval dω = 0.00625rad/s has been verified as being appropriate for dividing wave spectra
to simulated wave records[67].

A time series for the wave elevation can be simulated with the spectrum eq(2.11). Hence,
the time domain wave elevation can be expressed with the discrete function eq(2.3). The
time series-based sea wave elevation, η(t), can be simulated via the spectrum’s frequencies
as follows:

η(t) =
512

∑
i=1

A(i)sin(ω(i)t +φ(i)) (2.12)

with

A(i) =
√

2S(ω(i))d(ω) (2.13)

where φ(i) are the random phase angles which are distributed between 0 and 2π . A is wave
amplitude, and changes with frequency, ω .

The reason the Pierson-Moskowitz spectrum has been chosen here is that this is the
simplest method by which one can calculate the wave spectrum, and because it can deal
with two-wave conditions: unidirectional seas and fully developed (input wind energy in
equilibrium with output wave energy) seas. The direction of the waves is not important in this
instance, as the WEC system which is utilised in this study moves in the vertical direction
only [67].
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2.2 Ocean wave description

The significant wave height Hs is set to be 6 meters, and the zero crossing period Tz is set
to be 6 seconds in this thesis, which are close to the wave conditions found for the Irish coast
[66]. Simulation results can be achieved using these parameters:
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Figure 2.1 Simulation of sea surface elevation

The total duration time of the above figure is 0 to 1/ fs ×200 = 78s. The PM spectrum
plotted from the equation defined by Hs = 6m and Tz = 6s is presented as follows:
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Figure 2.2 PM spectrum simulation plot

The changing values of the significant wave height and zero crossing period will affect
the spectrum and wave elevation. A comparison, using different H1/3 and Tz, is given in

18



2.2 Ocean wave description

the figure2.3 and 2.7. A comparison of the different values of Hs and how they affect the
spectrum is shown below as follows (H1 = 6m,H2 = 9m,H3 = 12m):
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Figure 2.3 PM spectra with different Hs values

As can be seen in figure 2.3, as the significant wave height Hs increased, the spectral
density value also increased; however, the peak frequencies are not affected and so Hs is
directly proportional to the power spectrum Sω .

Sea wave elevations with different significant wave heights Hs are illustrated in figure2.4,
2.5, and 2.6:
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Figure 2.4 Sea elevation with Hs equals to 6m

According to figure2.4, 2.5, and 2.6, the overall sea elevation increases slightly as the
Hs value increases. Wave elevations shown in figure2.4, 2.5, and 2.6 correspond to those in
eq(2.11) and eq(2.12). Wave elevation is proportional to significant wave height.
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Figure 2.5 Sea elevation with Hs equals to 9m
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Figure 2.6 Sea elevation with Hs equals to 12m

Further to this, the influence of the remaining important parameter, the zero crossing
period, can be investigated through figure 2.7. Figure 2.7 presents spectra that are affected by
different zero crossing periods Tz, where T1 = 6s,T2 = 8s and T3 = 10s. As the zero crossing
period Tz increases, the spectral density value also increases. The relationship between the
zero crossing period Tz and the power spectrum Sω is more complex than that for significant
wave height.

On the other hand, as zero crossing period Tz increases, the peak frequency decreases.
The peak frequency can be defined as the inverse of the frequency corresponding to the
maximum value in the power spectrum S(ω)max, which is obtained as per the following:

S(ω =
2π

Tp
) = S(ω)max (2.14)

Wave elevations are affected by different zero crossing periods Tz as illustrated in the
figure2.8, 2.9, and 2.10.
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Figure 2.7 PM spectrum with different Tz values
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Figure 2.8 Sea elevation variation with Tz equals to 6s
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Figure 2.9 Sea elevation variation with Tz equals to 8s
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Figure 2.10 Sea elevation variation with Tz equals to 10s

Each wave component’s period becomes slightly longer as the zero crossing period Tz

increases.

2.3 Oscillating buoy and its model

The following section presents the relationship between the wave force and wave energy
converter, which has been constructed using data from an oscillating buoy. The way in which
each force acts on the WEC is described in detail. Furthermore, the dynamic equation of the
WEC is expressed in both the time and frequency domains. In addition, the power delivered
by each force is also given.

2.3.1 WEC dynamic model in the time domain

The linear model consists of an oscillating body and PTO system that is used to analyse the
motion of the WEC. The construction of the system can be illustrated as figure2.11. The
dynamic equation for the system shown in figure2.11 can be expressed as:

fex = ma+ fr + fs + fv + fpto (2.15)

where fex is the excitation force, fr the radiation force, fs the net buoyancy force, fv the
viscous force, and fpto is the control force.

The excitation force, fex, is caused by the dynamic pressure resulting from the incident
wave [42]. In other words, the excitation force is not generated directly by the incident
wave. The excitation force includes the Froude-Krylov force and the diffraction force; the
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2.3 Oscillating buoy and its model

Buoy

m
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F ex(t)

x(t)

Sea level

Sea bed

F r(t )

F PTO(t)

Figure 2.11 Oscillating body and PTO system for a WEC

Froude-Krylov force is caused by the oscillating body immersed in the pressure field of
the undisturbed waves [27], whilst the diffraction force is generated by the scattering of
diffracted waves by the oscillating body [62].

The excitation force can be modelled in the time domain as follows [22]:

Fex(t) =
∫

∞

−∞

hex(τ)η(t − τ)dτ

=
∫ t

−∞

hex(τ)η(t − τ)dτ +
∫

∞

t
hex(τ)η(t − τ)dτ (2.16)

Due to the non-causality of the system, t > 0, the result of Fex(t), is equal to
∫ t
−∞

hex(τ)η(t −
τ)dτ +

∫
∞

t hex(τ)η(t − τ)dτ , otherwise, the value of Fex(t) is equal to
∫ t
−∞

hex(τ)η(t − τ)dτ .
For this reason, Fex(t) depends on future values of wave elevation η(t), where hex(t) is the
excitation coefficient and η(t) is the wave elevation.

The second force is expressed as the radiation force. It is created by the relative oscillating
wave of the buoy, the concept of which was introduced in chapter 1. The time domain
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2.3 Oscillating buoy and its model

expression for the radiation force is given in [23, p. 138-141], and can be given as:

Fr(t) =−
∫ t

−∞

hr(τ)v(t − τ)dτ −Ma(∞)a(t) (2.17)

Falnes states that the above linear system is causal [22]. This is because the input, v(t)

(velocity of the oscillating body), is the actual cause of the radiation force. hr(τ) is the
radiation impulse response function [24]. Ma(∞) is the added mass, which is the weight of
the buoy’s surface water when the buoy is deformed. Water on the buoy’s surface is lifted
from troughs to crests [23, p. 50]. Thus the added mass will change with time.

The net buoyancy force is presented as Fs(t), which is defined as the restoring force; this
changes with the oscillating body’s motion [65] at different sea levels. As a result, the net
buoyancy force can be seen as the difference between the gravitational and total buoyancy
forces [44]. It can also be considered as a spring force in the mass-spring-damper system, as
shown in figure2.11. The net buoyancy force is given as:

Fs(t) =−Ksx(t) (2.18)

where Ks is the constant of buoyancy. This can also be seen as the stiffness coefficient, which
depends on density, ρ , gravity, g, and water plane area, Sw. The equation above can also be
written as:

Ks = ρgSw (2.19)

However, eq(2.19) is an approximation, whereby the buoy’s water plane area is assumed
to be constant [23]. The net buoyancy force can be seen as the spring effect of the spring-
damper-mass system.

The force, Fv(t), from damping losses excluding radiation and PTO damping, is assumed
to be linear. The force lost in the time domain is:

Fv(t) =−Kvẋ(t) (2.20)

where Kv is the viscous coefficient. Actually, the losses are not just from fluid losses, but
also from mechanical losses. Viscous losses are proportional to velocity, whereas mechanical
losses result from friction within the PTO system or buoy. Nevertheless, Fv(t) is, for
convenience, referred to as viscous force.
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2.3 Oscillating buoy and its model

In the mass-spring-damper system, the viscous force and the radiation force can be
assumed to generate a damping effect when acting together.

The dynamic equation for the WEC system in the time domain can be expressed as
follows, which combines eq(2.16), (2.17), (2.18), and eq(2.20):

mẍ+Ma(∞)ẍ+
∫

∞

0
hr(τ)v(t − τ)dτ +Kvẋ(t)+Ksx(t) =

∫
∞

−∞

hex(τ)η(t − τ)dτ +Fpto(t)

(2.21)

2.3.2 Frequency domain dynamic model

A Fourier transform can be used to transform the time domain equation (2.21) into the
frequency domain. The frequency domain is simpler to deal with than the time domain
function, and each term can be analysed in detail; in particular, the characteristics of the
radiation force can be analysed. The frequency domain can be obtained by performing each
term of eq(2.21) with the Fourier transform:

( jω)2mX( jω)+ jωHr( jω)X( jω)+( jω)2Ma(∞)X( jω)+ jωKvX( jω)+KsX( jω)

= Fex( jω)+Fpto( jω)

(2.22)

where Fex( jω) is equal to:

Fex( jω) = Hex( jω)Ξ( jω) (2.23)

Hex( jω) and Ξ( jω) are the Fourier transforms of the excitation coefficient, hex(t), and wave
elevation, η(t), respectively.

X(ω) represents the Fourier transform of the displacement x(t).
In fact, the radiation force should be written as follows:

Fr( jω) = jωZr( jω)X( jω) (2.24)

However, the inverse Fourier transform of the radiation impedance, Zr( jω), cannot be
obtained because it is not equal to zero when the frequency tends to infinity. The radiation
impedance is usually decomposed into real and imaginary parts:

Zr(t) = B( jω)+ jωMa( jω) (2.25)
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2.3 Oscillating buoy and its model

where the real part, B( jω), is called the radiation resistance and the imaginary part, Ma( jω),
is called the added mass. Ma(∞) is the added mass at infinite frequency. Note that Ma( jω)

does not tend to 0 in the limit ω → ∞ [23, p. 140]. This singularity has to be removed by
separating Ma( jω) from the radiation impedance, so the related radiation impedance can be
expressed as:

Hr( jω) = B( jω)+ jω[Ma( jω)−Ma(∞)] (2.26)

B( jω) tends to zero as jω tends to infinity. The impedance, Hr( jω), will tend to zero as the
frequency approaches infinity. The singularity, Ma(∞), can then be removed. Finally, the
radiation force in the frequency domain can be found using eq(2.25) and eq(2.26):

Fr( jω) =−Zr( jω)V ( jω) =− jωHr( jω)X( jω)− ( jω)2Ma(∞)X( jω) (2.27)

The second term of the radiation force is proportional to acceleration. Korde notes that
an immersed body produces both radiated and evanescent waves [48] as a response to the
real and imaginary parts of the radiation force.

The natural frequency is changed due to the fact that there is an added mass. m∞ is the
inverse Fourier transform of Ma(∞). The velocity reaches a maximum when the frequency
equals the natural frequency [65]. Under the condition, the values of Ma( jω) and B( jω) are
quite small, when compared to the mass of the buoy and the net buoyancy force. The natural
frequency can be expressed as follows [65]:

ω0 ≈
√

Ks

m+m∞

(2.28)

The related radiation impedance, Hr( jω), can be separated as per eq(2.27). Hence,
eq(2.22) can be expanded as:

−ω
2(m+Ma( jω))X( jω)+ jωB( jω)X( jω)+ jωKvX( jω)+KsX( jω)

= Fex( jω)+Fpto( jω) (2.29)

The relationship between the displacement and sum of the excitation and the PTO forces
can be expressed as follows:

X( jω)

Fex( jω)+Fpto( jω)
=

1
jω[B( jω)+Kv]−ω2[m+Ma( jω)]−Ks

(2.30)

26



2.3 Oscillating buoy and its model

The velocity V ( jω) is the merely the differential of X( jω) with respect to time, so:

V ( jω) = jωX( jω) (2.31)

Hence, the velocity response of the sum of the excitation force and the PTO force can be
expressed as per eq(2.30):

V ( jω)

Fex( jω)+Fpto( jω)
=

jωX( jω)

Fex( jω)+Fpto( jω)
=

1
B( jω)+Kv + jω[m+Ma( jω)− Ks

ω2 ]

(2.32)

Finally, the intrinsic impedance can expressed as:

Zi( jω) = B( jω)+Kv + jω[m+Ma( jω)− Ks

ω2 ] (2.33)

The PTO force is used to make the oscillating body of the WEC more efficient, and can
be expressed as a function of impedance and velocity:

Fpto( jω) =−Zpto( jω)V ( jω) (2.34)

where Zpto( jω) is the PTO impedance or load impedance. The generalised PTO complex
impedance function can be expressed as follows:

Zpto( jω) = Rpto( jω)+ jXpto( jω) (2.35)

where Rpto( jω) is the load resistance, and Xpto( jω) is the load reactance [23].
The load reactance, Xpto( jω), can be decomposed into different parts which correspond

to the linear model order. If the PTO force is used in a linear model with a constant numerator,
then:

Xpto( jω) =
kpto( jω)

jω
(2.36)

Hence, the PTO force in the frequency with a first-order numerator is:

Fpto( jω) =−Rpto( jω)V ( jω)−
kpto( jω)

jω
V ( jω) (2.37)
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2.3 Oscillating buoy and its model

In the case of a second-order numerator, Xpto( jω) can be written as:

Xpto( jω) = jωb( jω)+
kpto( jω)

jω
(2.38)

The PTO force in a model with a second-order numerator can then be expressed as:

Fpto( jω) =− jωb( jω)−Rpto( jω)V ( jω)−
kpto( jω)

jω
V ( jω) (2.39)

The PTO force is usually set by convention to act in the opposite direction to the excitation
force. Hence, the value of R( jω) can affect the absorbed power. The absorbed power is
negative when the value of R( jω) is greater than zero. In contrast, the absorbed power is
positive, which means all absorbed power has been lost.

There is another impedance called the net impedance, which is the combination of the
intrinsic impedance and the PTO impedance. The excitation is:

Fex( jω) = Zi( jω)V ( jω)+Zpto( jω)V ( jω) (2.40)

therefore, the relationship between the velocity and the excitation force can be shown to be:

Fex( jω)

V ( jω)
= Zi( jω)+Zpto( jω) = Znet( jω) (2.41)

The excitation force is the only external input to the WEC system, and the velocity is the
only output from the system.

2.3.3 Power transmission in the frequency domain

The equation giving the balance of forces in the frequency domain is given in eq(2.29).
The average power of the WEC system, which is delivered by the excitation force, can be
calculated using the following equation:

Pex( jω) =
1
4
(Fex( jω)V ( jω)∗+Fex( jω)∗V ( jω)) =

1
2

Re{Fex( jω)V ( jω)∗} (2.42)

By recalling eq(2.40), the excitation force can be expressed as:
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2.4 Chapter summary

Pex( jω) =
1
2

Re{Znet( jω)}|V ( jω)|2

=
B( jω)+Kv +Rpto( jω)

|B( jω)+Kv + jω[m+Ma( jω)− Ks
ω

2
]+Zpto( jω)|2

|Fex( jω)|2 (2.43)

where the excitation force, Fex( jω), is given as Hex( jω)Ξ( jω).
The average radiation power can be expressed as:

Pr( jω) =
1
2

Re{(Fr( jω)V ( jω)∗}= 1
2

B( jω)

|Zi( jω)+Zpto( jω)|2
(2.44)

The average viscous power can be shown to be:

Pv( jω) =
1
2

Re{(Fv( jω)V ( jω)∗}= 1
2

Kv

|Zi( jω)+Zpto( jω)|2
(2.45)

Finally, the average PTO power can be expressed as:

Ppto( jω) =
1
2

Re{(Fpto( jω)V ( jω)∗}= 1
2

Rpto( jω)

|Zi( jω)+Zpto( jω)|2
(2.46)

The average PTO power can also be expressed as:

Ppto( jω) = Pex( jω)−Pr( jω)−Pv( jω) (2.47)

Note that there is no average net buoyancy force power because Re{ jω · Ks
ω2}= 0. More

details concerning the average PTO power are introduced in the next section, where it will be
explained how this can be maximised.

2.4 Chapter summary

Harmonic waves were introduced in section 2.2.1. Real ocean waves have been assumed to
be the superpositions of harmonic waves at different frequencies. The power spectrum is the
key to analysing wave power, and hence different wave power spectra have been analysed
and simulated.

In section 2.4, the actions of irregular waves on the WEC system have been presented.
Each force that acts on the oscillating buoy has been analysed. Dynamic equations for the
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2.4 Chapter summary

WEC system have been expressed in the time and the frequency domains. Finally, the power
transmission of the WEC system was presented in the frequency domain.

However, power transmission requires prior knowledge to control the WEC system
effectively. The means by which the absorbed power can be maximised will be given in
chapter 3.
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Chapter 3

Control of wave energy converter

3.1 Chapter overview

Power transmission was described in the last chapter. Here we consider the absorbed power,
which is dependent on frequency. The relationship between velocity and force has presented
in section 2.3.2. The main objective of this chapter, however, is to gain an understanding
of the optimal conditions that enable the maximum absorption of energy. However, optimal
frequency domain conditions have a number of limitations when they are used for real-time
control. Firstly, frequency domain optimal conditions do not consider physical constraints.
Secondly, the non-causality of control can not been considered in the optimal frequency
domain conditions, and hence the time domain function will be used for non-causal analysis.
This chapter will focus on the non-causality of control. Optimal conditions, based on the
frequency domain in order to maximise the absorption of energy, will be introduced in section
3.2, whilst the causality and non-causality of optimal conditions will be analysed in section
3.3. Several control methods for the bottom-referenced heaving buoy will be presented in
section 3.4.

3.2 Optimal conditions for maximising absorption energy

Falnes presents a one-degree oscillating system as having the optimal phase conditions when
at resonance with a wave [23], or in other words when the frequency of the waves is the same
as the natural frequency of oscillation of the buoy. Additionally, optimal phase conditions
can be obtained when the excitation force is in phase with the buoy oscillation velocity. This
process will be discussed below.

31



3.2 Optimal conditions for maximising absorption energy

3.2.1 Optimal condition expressed in complex amplitude with a simpli-
fied model

Assume the excitation force’s oscillation is harmonic, and can thus be represented in the time
domain as:

Fex(t) = Re{F̂exe jωt}= Fex cos(ωt +ϕ) (3.1)

where ϕ is the angle between the excitation force in the complex amplitude, F̂ex, and its real
part in the complex plane. The excitation force can be rewritten as:

F̂ex = Fexe jϕ (3.2)

where we assume the viscous force is not considered, and the radiation force is considered
to be linear for convenience. The PTO force is given as:

F̂pto = Fptoe jϕ (3.3)

The dynamic equation for an oscillating system can be described as:

F̂pto + F̂ex = jωmv̂+Bv̂+(Ks/ jω)v̂ (3.4)

The impedance complex function of the PTO force is given in eq(2.32). Hence, the above
equation can be written in response to the velocity and the excitation force:

v̂ =
F̂ex

jωm+B+ Ks
jω +Zpto

=
F̂ex

(B+Rpto)+ j(ωm+Xpto −Ks/ω)
(3.5)

The power absorbed from the PTO device can be written as:

Ppto =
1
2

Rpto|v̂|2 =
(Rpto/2)|F̂ex|2

(B+Rpto)2 +(ωm+Xpto −Ks/ω)2 (3.6)

The maximum value of Ppto can be calculated by taking the derivative of Rpto. The
maximum is obtained when ∂Ppto

∂Rpto
is equal to zero, such that the optimal value of Rpto can be
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3.2 Optimal conditions for maximising absorption energy

found as:

Rpto = {B2 +(ωm+Xr −Ks/ω)2}
1
2 (3.7)

In addition, the second term of the denominator of absorbed power, Ppto, is always
greater than or equal to zero. In order to obtain the maximum value for absorbed power, the
denominator should be kept as small as possible. Hence, ωm+Xpto −Ks/ω is set equal to
zero, and the optimal value of Rpto can be obtained from eq(3.7):

Rpto,opt = B (3.8)

Finally, the maximum value of absorbed power can determined by simplifying eq(3.6):

Ppto,max =
|F̂ex|2

8Rpto
(3.9)

The relationship between the velocity and the excitation force becomes [23]:

v̂ =
|F̂ex|
2Rpto

(3.10)

It can be shown from eq(3.10) that one of the optimal conditions for maximising the absorbed
power is when the excitation force is in phase with the buoy’s oscillation velocity.

3.2.2 Optimal conditions in the complex amplitude and frequency do-
main using the full model

As mentioned, the effects of viscous force were ignored in the previous section. Nevertheless,
the power absorbed can usually be decomposed into two parts in the oscillating system. One
is useful power, Pu, whilst the other is the viscous power, or lost power, Pv.

Assuming a useful resistance, Ru, is given, the useful force, Fu, can be expressed as:

Fu =−RuV (3.11)

Also, the average excitation power can be calculated using eq(3.1):

Pex =
1
2

Re{F̂exv̂∗}= 1
2

FexV cosϕ (3.12)

33



3.2 Optimal conditions for maximising absorption energy

where V is the amplitude and ϕ is the phase difference between the velocity v̂ and F̂ex.
The average radiation power is:

Pr =
1
2

Re{F̂rv̂∗}=
1
2

BV 2 (3.13)

The average viscous power can be given as:

Pv =
1
2

Re{Kvv̂v̂∗}= 1
2

KvV 2 (3.14)

Hence, the useful power can be expressed as:

Pu =
1
2

RuV 2 (3.15)

It also can be expressed in terms of the average power as:

Pu = Pex −Pr −Pv

=
1
2

FexV cosϕ − 1
2

BV 2 − 1
2

KvV 2 (3.16)

It is clear that the excitation power maximum, Pex,max, can be obtained when ϕ = 0,
which means the excitation force is in phase with the velocity. Finally, the control force has
to be designed in order to achieve the desired velocity value:

∂Pu

∂V
=

∂

∂V
[
1
2

FexV cosϕ − 1
2
(B+Kv)V 2] = 0 (3.17)

Assuming ϕ is equal to 0, the magnitude of the velocity can be calculated as:

V =
Fex

2(B+Kv)
cosϕ =

Fex

2(B+Kv)
(3.18)

Figure3.1 shows the average excitation power in proportion to the velocity. The total
power lost (the sum of the radiation power and the viscous power) is proportional to the
square of the velocity; the useful power also has a similar relationship with velocity, in
that it will increase as the velocity increases and then decrease because the total power lost
increases. This relationship can be described as figure3.1 [23]:
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0 ∣û∣

P u ,max

P r

P v

P u

∣F̂ ex∣
2 (B+K v)

P ex=
1
2
∣F̂ ex∣⋅∣û∣cos (φ)

P

P u

Figure 3.1 Relationship between useful power and excitation power[23]

Finally, the maximum average useful power can be obtained as:

Pu,max =
F2

ex
8(B+Kv)

(3.19)

Note that Ru,opt = B+Kv can be obtained from eq(3.6), (3.7) and (3.8). The optimal
condition is defined by the velocity and the excitation force, as discussed above. The other
condition, as defined by Fu, will be discussed later. Newton’s second law has been applied in
eq(2.32) and (2.33), so the oscillating system can be described by:

F̂ex + F̂u = Ziv̂ (3.20)

where Zi is used to express the complex function ω . It can also be written as Zi = Zi( jω) =

Ri( jω)+ jXi( jω).
To this point, optimal conditions for maximising wave energy have been discussed in

terms of complex amplitudes, which is because a harmonic force is only considered in one
frequency. However, more general expressions of optimal conditions will have to be capable
of dealing with more than one frequency. Hence, in the following section, the optimal
conditions will be expressed in the frequency domain.

35



3.2 Optimal conditions for maximising absorption energy

The useful force can be expressed as:

Fu( jω) =−Zu( jω)V ( jω) (3.21)

By recalling eq(3.15), the frequency domain for the useful power can be presented as:

Pu( jω) =−1
2

Re{F̂uv̂∗}

=
1
2

Re{Zu( jω)}|V ( jω)|2 (3.22)

The above equation can be written by inserting eq(3.20) into eq(3.21) as follows:

Pu( jω) =
1
2

Re{Zu( jω)} |Fex( jω)|
|Zi( jω)+Zu( jω)|2

=
1
2

Ru( jω)

|Zi( jω)+Zu( jω)|2
|Fex( jω)|2

=
1
2

Ru( jω)

[Ri( jω)+Ru( jω)]2 +[Xi( jω)+Xu( jω)]2
|Fex( jω)|2 (3.23)

The denominator of eq3.23 takes its the optimal value when Ru( jω) is equal to Ri( jω), and
when the imaginary part Xu( jω) is equal to −Xi( jω). The calculation process is the identical
to that for eq(3.6), eq(3.7) and eq(3.8). Hence, the optimal condition for maximising the
useful power can be found when the load impedance is equal to the complex conjugate of the
intrinsic impedance:

Zu,opt( jω) = Z∗
i ( jω) (3.24)

This is called the complex conjugate control.
The average useful power in the frequency domain can be expressed as eq3.25 by recalling

complex amplitudes, as given in eq(3.19):

Pu,max( jω) =
|Fex( jω)|2

8Ru( jω)
(3.25)

where Ru( jω) = B( jω)+Kv( jω). With complex conjugate control, as given by eq(3.24),
the other optimal condition can be obtained as follows:

Vopt( jω) =
Fex( jω)

2Ru( jω)
(3.26)
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3.3 Causality and non-causality of optimal conditions

This is used to express the relationship between velocity and excitation force, and is hence
called the phase control.

3.3 Causality and non-causality of optimal conditions

The optimal conditions for maximising the amount of power absorbed were given in the
previous section. However, only complex amplitudes and the frequency domain for the
optimal conditions have been discussed to this point as they are not particularly useful for
causality and non-causality analysis. Indeed, to conduct such an analysis, the time domain
function has to be considered in order to analyse the causality and non-causality of the
control.

One of the optimal conditions has been given eq3.26. Supposing there is no loss in the
viscous force, Fv, then eq(3.26) can be written as:

V ( jω) =
Fex( jω)

2B( jω)
(3.27)

Falnes introduced this as the phase control that can be used to find the optimal velocity [23],
as the velocity should have the same phase as the excitation force under this condition. The
frequency domain of the above condition should be transferred to the time domain because
of the causality analysis, where the time domain of the phase control can be given as follows:

v(t) =
∫ t

−∞

hv(τ) fex(t − τ)dτ (3.28)

where hv(t) is the reverse Fourier transform of the real function:

hv(t) = F−1{ 1
2B( jω)

} (3.29)

where 2B( jω) is the radiation resistance, and is a real, even function that is non-causal due
to the properties of the Fourier transform, hv(t) = hv(−t) as this gives negative values for the
time.

The other optimal condition is given by eq(3.24), which is called the reactive (complex
conjugate) control. It is given as follows:

Fpto( jω) =−Z∗
i ( jω)V ( jω) (3.30)
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3.3 Causality and non-causality of optimal conditions

It can be seen that finding the optimal PTO impedance is the object of the condition.
The time domain of the reactive control is:

fpto(t) =−
∫ t

−∞

h f (τ)v(t − τ)dτ (3.31)

and is non-causal, which can be proved through a similar process to that of the phase control.
h f (t) is equal to:

h f (t) = F−1{Z∗
i ( jω)} (3.32)

and:

Z∗
i ( jω) = Zi(− jω) (3.33)

Hence:

h f (t) = F−1{Zi(− jω)}= zi(−t) (3.34)

zi(t) is causal because radiation is a causal process. Hence, h f (t) can be shown to be
anti-causal (it becomes zero when t is greater than 0).

Causal reactive control

In the case of causal control, the PTO impedance should represent the only frequency. All
PTO coefficients are constant. This is different from the non-causal control that responds
to all frequencies, as causal control means no future information regarding the velocity or
excitation force is required.

The frequency, as mentioned previously, is chosen when under optimal conditions. The
frequency is usually chosen from the peak of the power spectrum [9], as indicated by ωp.
The reason for choosing this frequency is that the maximum power is contained in waves of
this frequency.

Assuming a mass-spring-damper system is used in the PTO device, the control force is
given as per eq(3.30). The complex conjugate of the intrinsic impedance can be decomposed
into mass, spring, and damper terms, and the PTO impedance can now be said to depend on
constant coefficients; the description now becomes one of a second-order system. The choice
of these coefficients is important because they can effect the control force.

38



3.4 Different control methods

The control force can be written as:

Fpto( jωp) =−(m+Ma,p)V̇ ( jωp)+BpV ( jωp)− ks,pV ( jωp/ jω) (3.35)

where the added mass, Ma,p, is independent of the peak frequency. Bp still used to represent
the radiation resistance, but this value does not change with frequency. The last term of the
equation can be seen as the spring effect.

Non-causal reactive control

In non-causal control, the PTO impedance should respond to every frequency of a polychro-
matic excitation force:

Fpto( jω) =−[m+Ma(ω)]V̇ ( jω)+B( jω)V ( jω)+
ks( jω)

ω
V ( jω) (3.36)

The singularity Ma(∞) has to be removed by separating Ma(ω) from the radiation
impedance, as per eq(2.26). Hence, eq(3.36) can be rewritten as:

Fpto( jω) =−[m+Ma(∞)]V̇ ( jω)+H∗
r ( jω)V ( jω)− ks( jω)

jω
V ( jω) (3.37)

3.4 Different control methods

Optimal conditions were discussed in chapter 3.2. These can be utilised in real-time control,
though the method by which this may be achieved has different approaches. The causal
and non-causal control will also be discussed in terms of their implementation in real-time
control. Several control solutions that use impedance matching will be compared. These
adjust the PTO impedance by tuning the value of the damper, mass or spring to achieve
optimal conditions. In addition, purely passive control and latching control will be introduced
that relate to the phase control.

3.4.1 Implementations under two different sets of optimal conditions

The optimal conditions described in chapter 3.2 were expressed in the frequency domain. In
the natural world, sea waves are irregular and can be constructed from the superposition of
many regular waves, as described in chapter 2.1. This means that real waves contain many
ideal waves at different frequencies. These have been proved to be non-causal, which means
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3.4 Different control methods

further information regarding the velocity of the oscillating system or the excitation force is
required. However, these cannot be directly implemented in practice.

The non-causality problem has to be overcome somehow. One way by which to tackle
this problem is through the appreciation that the future value of the velocity or excitation
force of a wave can be predicted. The second option is that regular waves can be used instead
of irregular waves, for which there is no need for any attempt at prediction. The last solution
is to approximate the non-casual transfer function by a presumed causal equivalent. Three
control structures will be given in the following section to demonstrate how they copel with
the non-causal problem.

Velocity-tracking construction

Falnes introduced two possible approaches to overcoming the non-causality of the control
[23]. The first of these is called the velocity-tracking construction for the phase control, the
block diagram for which can be given as follows:

1
Z i ( jω)

+
+

1
2B( jω)

Controller
-
+

F ex( jω)

F PTO( jω)
V opt( jω)

V ( jω)

WEC

Figure 3.2 Block diagram for a velocity-tracking construction

As illustrated in figure3.2, where the excitation force is determined through a transfer
function 1

2B( jω) , the optimal velocity can be obtained; it can be seen as a reference signal. The
controller shown in the block diagram is used to determine the different between the feedback
signal, V (t), and the reference signal, Vopt(t). This corresponds to the phase control:

Vopt( jω) =
Fex( jω)

2B( jω)
(3.38)
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The non-causal problem can be overcome by approximating the transfer function, 1
2B( jω) ,

to a constant value. The non-causality of B( jω) has already been demonstrated. The other
option is to predict the future value of the excitation force.

There are various possibilities for the type of controller that can be used in figure3.2. One
simple example is the P controller, the PI controller or the PID controller.

The time domain for eq3.52 can be given as follows:

v(t) =
∫

∞

−∞

hv(τ) fex(t − τ)dτ (3.39)

where the hv(t) is equal to F−1{ 1
2B( jω)}. This has been discussed for eq(3.28) and eq(3.29).

fex(t) is determined as the product of the wave elevation and the excitation coefficient.
In [97], a second-order model of the oscillating system has been identified in the time

domain:

fex(t)+ fpto(t) = Mv̇(t)+Hrv(t)+Ks

∫ t

0
v(τ)dτ (3.40)

This is the complete dynamic equation that was introduced in chapter 3.3. The non-causal
term B( jω) has been simplified through its simple representation as the constant B. In the
result, the velocity of the oscillating system and the excitation force have a proportional
relationship, which can be given as follows:

v(t) =
fex(t)
2B

(3.41)

The reference velocity can be directly implemented with the excitation force. The non-causal
problem B( jω) has been overcome with constant B.

There are various options available for use as the system controller in this case. A simple
proportional controller can be used to impose the reference velocity. The control force then
becomes:

fpto(t) = Bv(t) (3.42)

A proportional integral control can also be used to track the difference between the
desired velocity and the real velocity. The control force is then given as follows:

fpto(t) = Bv(t)−M(t)v̇(t) (3.43)
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The complex-conjugate control can be translated to a PID controller, which has been
introduced in the causality of the optimal condition. The control force can then be expressed
as:

fpto(t) =−Mv̇(t)+Bv(t)− kpto(t)
∫ t

0
v(τ)dτ (3.44)

where the kpto = ks.
Fusco also presented the internal model control that can be used in the controller [39].

He introduced the oscillating system, which is nonlinear due to the hydro-viscous force when
the system is immersed in the ocean, where the velocity of the oscillating system will vary
depending on the wave elevation.

The velocity-tracking control has been proven to absorb much more power than the
uncontrolled model [57]; however, it requires the design of a low-level control. Several such
designs have been introduced in the literature [34, 96, 98], some of which have been proven
to have suitable performances [44]. The solution to overcoming the non-causal issue has also
been given in reference [23, 74]. The authors of this work noted that a causal approximation
based on one frequency has to be varied depending on different sea states.

Feedback realisation for complex conjugate control

The other optimal condition for maximising the absorbed power is called the reactive control
or complex conjugate control. It is given as follows:

Fpto( jω) =−Z∗
i ( jω)V ( jω) (3.45)

It also contains the non-causal problem, but again this issue can be overcome through
one of various solutions that can be implemented in real time. The feedback realisation for
the control is used to solve the problem.

The construction of the feedback control can be demonstrated through the figure3.3. The
block Z∗

i ( jω) in the figure3.3 is the complex-conjugate of the intrinsic impedance Zi( jω).
It supplies the feedback from the velocity of the oscillating system. The inverse Fourier
transform of Z∗

i ( jω) is equal to zi(−t), as shown in eq(3.33). The time domain of the
complex-conjugate control can be expressed as:

fpto(t) =−
∫ t

−∞

h f (τ)v(t − τ)dτ (3.46)
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1
Z i ( jω)

+
-

F ex( jω)

F PTO( jω)
V ( jω)

WEC

Z i
∗
( jω)

Figure 3.3 Block diagram for feedback implementation of complex-conjugate control.

where the h f (t) is anti-causal. This means that the control force, fpto(t), depends on
some future value of the velocity. This cannot be implemented in real time in practice, and
hence different causal approximations for the complex-conjugated control have been used to
overcome the non-causal problem.

One approach to overcoming the non-causal issue has been through the attempt to predict
the future value of the velocity. This approach was introduced by Korde [57] and Fusco [33],
where the control force is given as the convolution of the reaction force and the future value
of the velocity, and can be expressed as follows [39]:

fpto(t) =−
∫ −∞

t
zi(−τ)v(t − τ)dτ (3.47)

This has been further decomposed as follows:

fpto(t) =−(m+m∞)v̇(t)+
∫

∞

0
hr(τ)v(t + τ)dτ +Kvv(t)−Ks

∫ t

−∞

v(τ)dτ (3.48)

where the second term in eq(3.48) has been demonstrated to be anti-causal, due to the fact
that future information for the velocity is required.

The mass term, the viscous term and the spring term combined together become a PID
force:

fPID(t) =−(m+m∞)v̇(t)−Kvv(t)+Ks

∫ t

−∞

v(τ)dτ (3.49)
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However, this force can not be implemented in real-time control because the order of the
numerator is higher than the denominator of the transfer function of the derivative term, or
the so-called added mass term. One way to solve the problem is to multiply a high-frequency
pole by the denominator of the transfer function.

The remainder of eq(3.48) depends on the future value of the velocity. However, the
radiation force term includes the radiation resistance term and the added mass term. The
radiation resistance term is given as:

∫ T

−T
F−1{B(ω)}(τ)v(t − τ)dτ (3.50)

where T is the time in seconds into the future. The resistance term can be seen as the damper
that requires passive loading.

The added mass term can be combined with the spring and the mass terms of the PID
force that produce the reactive force. The reactive force is generated by the spring effect and
the mass, and has been described in chapter 2. This will generate the reactive power flow
which will be discussed in chapter 6.

The other approach to overcoming the non-causal issue can be obtained by reviewing the
velocity-tracking control, where the oscillating system can be approximated via a second-
order model. This method can be also used in the feedback control. The associated second-
order dynamic system is described by eq3.35. The control force generated by the feedback
control is given as follows:

Fpto( jω) = MptoV ( jω) · jω +RptoV ( jω)+
KptoV ( jω)

jω
(3.51)

where Mpto is equal to the negative value of m+m∞, and Kpto should be equal to the negative
value of Ks. The optimal value of Rpto is equal to the radiation resistance B introduced in
section 3.2.1. The non-causal part of the radiation resistance, B, has been described by a
second-order approximation. Hence, the control force is also causal, and can thus be used in
real time in practice.

Korde presented the PID control force by a high-frequency pole in a method that can
achieve significant improvements [57]. It is worth pursuing the PID control in this case
by comparing with the system without a controller. Korde also used a recursive auto-
regressive predictor to determine future values for the velocity of an oscillating system
in a method that can overcome the non-causal problem arising from the inverse Fourier
transform of Z∗

i ( jω) . Nevertheless, the performance with the AR predictor does not confer
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any additional advantages. Korde did point out that the longer prediction horizon may
improve the performance of the system, however, and this will be discussed in the prediction
chapter. However, the causal approximation has also been discussed in eq3.51; the variety
of frequencies in a real wave do not need to be considered and, further, there is no need to
consider the design of a lower-level controller such as a velocity-checking control. Feedback
realisation for complex conjugate control will be used in the following chapters of thesis.

Feedforward implementation of optimal conditions

Another control construction is the implementation of optimal conditions that allow for
the maximisation of absorbed power, as described in reference [64]. This is called the
feedforward implementation of control, and is based on the integration of the phase control
and the reactive control. The frequency domain for the control can be described as follows:

Fpto( jω) =−Z∗
i ( jω)

2B( jω)
Fex( jω) (3.52)

where it can be seen that the numerator on the right-hand side of the equation is based on the
complex conjugate control. The velocity can be calculated from the phase control.

The block diagram for the feedforward implementation is as follows:

1
Z i ( jω)

+
-

Z i
∗
( jω)

2B( jω) F ex( jω)

F PTO( jω) V ( jω)

WEC

Figure 3.4 Block diagram for the feedforward control

The time domain for the control force is:

fpto(t) =−
∫

∞

−∞

h(τ) fex(t − τ)dτ (3.53)
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which assumes the future wave elevation is known by noting η−L(t), which is the value
of the wave elevation measured L metres away from the system. The excitation force at time
t +LT can be expressed as:

fex(t +LT ) =
∫

∞

−∞

hL(τ)η−L(t +LT − τ)dτ (3.54)

where the causal approximation can be implemented by setting a larger L. The |hL(t)|
approximates to zero with t < LT under the above conditions [64]. Now, the excitation force
has the causal approximation:

fex(t +LT ) =
∫

∞

LT
hL(τ)η−L(t +LT − τ)dτ (3.55)

Feedforward control is similar to feedback reactive control. Naito and Nakamura proved
performance results of feedforward control are much better than no control case with simu-
lation data [64]. However, feedforward control may accumulate any errors in the real-time
control process.

All of the above control constructions are based on either the the phase control or the
reactive control. They all require the PTO device to supply reactive power; in other words,
they can be classified as either being reactive controllers or complex-conjugate controllers.
The comparison of the power absorbed by each of the different control constructions will be
investigated in chapter 5.

The complex-conjugate and phase control is good for any wave. There is no doubt
that they can achieve optimum amplitudes by supplying reactive power, though physical
constraints are not considered in this thesis, otherwise the size, velocities and forces of the
WECs may influence control performance.

3.4.2 Implementations without optimal conditions

In the previous section, control methods under optimal conditions have been introduced.
However, it should also be noted that there are a number of other types of controllers that do
not generate reactive power in an oscillating system.

Passive loading control

A basic control assumption is that control force is generated by purely passive loading. The
frequency domain for the control force can be given as:
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Fpto( jω) =−Ropt( jω)V ( jω) (3.56)

It can be seen here that the control force is proportional to the velocity. The optimal setting
for the control resistance was introduced in reference [43], where Hals noted that the optimal
control resistance is equal to the absolute value of the intrinsic impedance of the system. The
optimal control resistance is thus given by:

Ropt( jω) =
√

Ri( jω)+Xi( jω) (3.57)

where Ri is the resistance part, and Xi the reactance part, of the intrinsic impedance. The
PTO device that contains the damper is purely passive, which means that there is no other
component that generates reactive power flow. Passive loading control is the easiest control
method by which to achieve this objective; however, it can nevertheless be seen as a starting
point and reference for wave energy absorption. The block diagram for passive loading
control is shown in the following figure:

1
Z i ( jω)

+
-

F ex( jω)

F PTO( jω)

V ( jω)

WEC

Ropt( jω)

Figure 3.5 Block diagram for passive loading control

Latching control

Latching control is defined as an active method which to achieve the optimal phase between
the excitation and the velocity. The optimal phase can be obtained by locking the buoy at
zero velocity and releases it at rest of time [25, 54, 68]. It may be considered an alternative
means of phase control. In addition, it is an improved solution to the passive loading control.
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It can operate in latching and unlatching state with proper timing, with the result that the
velocity of the oscillating system will be in phase with the excitation force.

Compared with phase control, latching control locks the damper of the PTO when the
velocity equals zero, and releases it at the trough or crest of the wave. As a result, the
excitation force remains in phase with the velocity, which corresponds to phase control. It
only contains the passive loading during the unlatching stage so that no reactive power will be
produced, which is analogous to passive loading control. Whilst it does not produce reactive
power, the velocity amplitude will nevertheless remain at zero during the latching stage. The
average value of the velocity will be less than the velocity produced under phase control.

The difficulty in implementing the latching control in an effective manner is that it
determines the proper timing of the unlatching. The correct time at which to carry out any
unlatching can easily be determined when considering only regular waves, as the appropriate
instant can be straightforwardly obtained when the next period of the wave elevation is
accurately known. Fusco also noted that the timing for the unlatching can be calculated as
the half of the wave period, as the velocity increases from zero to a maximum over this time
interval.

Another limitation of latching control was raised in [3]. The buoy moves with a freely
oscillating motion with a passive damper during the unlatching time interval. As discussed in
chapter 2.2.1, if the control damper is quite small, the buoy oscillates at its natural frequency,
eventually becoming stable after just a few oscillations. The solution to the problem is to
chose a large damper, or force the velocity of the system to be in phase with an excitation
force whose frequency is lower than the natural frequency of the system.

The control force for the latching control is given by the following:

FPTO( jω) =−[Rpto +H( jω)RL]V ( jω) (3.58)

H( jω) presents two states of control. H( jω) = 0 indicates the system in its unlatched state,
and H( jω) = 1 indicates the control during the latching time interval. RL has a very large
resistance, which will be added to the control force and will lock the system during latching
instants. The block diagram for latching control is shown in figure 3.6.

Latching control is easily implemented, and has no need for any reactive power flow
through the machinery; furthermore, it is good for high waves sea state. As mentioned
earlier, physical constraint is not considered in this thesis, otherwise latching control could
be designed with physical constraints so as to protect the WECs.
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Latching device

Figure 3.6 Block diagram for latching control

3.5 Chapter summary

This chapter proposes different optimal control conditions for wave energy conversion.
The objective of control is to absorb the maximum amount of power from the waves as
mechanically possible; however, the efficiency of the WEC also has to be considered.

The analysis and derivation process for optimal control conditions was introduced in
section 3.2.1. The dynamics equation described in there is based on a simple mass-damper-
spring system. The optimal condition that relates the velocity of the oscillating system to the
excitation force is also described in section 3.2.1, where it has been shown that these are in
phase when at the optimal resistance. The maximum absorption of power can be obtained
under this condition.

In section 3.2.2, a full model for the WEC system has been given. The optimal rela-
tionship between the velocity and the excitation force has been found to be when the two
are in phase, which is identical to the findings in section 3.2.1. This optimal condition is
called the phase control, or amplitude control. Additionally, another optimal condition has
been determined to occur when the maximum useful power has been obtained. The optimal
control impedance is equal to the complex conjugate of the intrinsic impedance. This is
called the complex conjugate control, or reactive control.

However, optimal control conditions cannot be implemented directly in real time as they
are non-causal. The difference between causal and non-causal has been discussed in section
3.3, where the reasons for the non-causality of the oscillating system have been presented.
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Possible solutions to approximating a non-causal situation with a causal one have also been
described.

Real-time implementations of the optimal conditions have been introduced in section
3.4.1 that obtain the maximum absorbed power for different constructions. Solutions for
overcoming non-causality problem of the velocity-tracking construction, the feedback con-
struction, and the feedforward construction are very similar. They deal with the issue of
non-causality by estimating either the future value of the velocity or the excitation force.
Also, the system can be approximated with a second-order transfer function to overcome
non-causality. The feedback construction will be used in the following chapters due to
its construction is simple. However, the velocity-tracking construction may be good for
system with significant non-linearities. The lower level controller of the velocity-tracking
construction can be designed to be robust to model uncertainties [39]. The velocity-tracking
construction could one of the future researches.

In contrast, there are some other non-optimal controls have been presented in section
3.4.2. One such control is called passive loading control, and contains only a linear damper
in the PTO device. The optimal value of the damper is equal to the absolute value of the
intrinsic impedance. However, for various reasons there is little point in investigating this
mechanism in detail, and is only used here as a point of comparison with the other controllers.

The last control described in this chapter was that of latching control. The latching control
pursues the optimal phase between the velocity and the excitation force. This last control
and phase control have this characteristic in common. Several limitations were discussed in
previous section and not give in detail.
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Chapter 4

Prediction of wave elevation

4.1 Chapter overview

As the requirements for overcoming non-causality were discussed in the previous chapter,
the present chapter will consider possible solutions to solving this problem. As discussed
previously, system approximations and predictions of the velocity of a wave energy conver-
sion system or the excitation force can be used in this manner; however, prediction methods
will be the subject of this chapter. The velocity of the oscillating system is the differential
of the wave elevation. The prediction should be based on the wave elevation, which can be
investigated using a time series.

The predictive approaches used to predict future wave elevations based on present and
past values will be presented in this chapter. It is assumed that all values of wave elevation
are collected at the same position, though this assumption is only for convenience. There
are some other approaches that can measure the wave elevation more precisely; for example,
Belmont and Tedd showed how one or more observers can be fixed around the WEC system
at a given distance (or distances), and the WEC obtains the real future values from these
observers [4, 93]. On the other hand, these methods require external measurement devices
which may result in significant additional cost. In addition, the dynamic model becomes
numerically complex, as discussed in reference [35].

Three different prediction approaches will be analysed and investigated in this chapter. A
brief review of the Pierson-Moskowitz (PM) spectral method will be given in section 4.2.1,
which has been used to estimate wave elevation in the past. The least-squares prediction
method, which is based on the one step ahead model, will be introduced in section 4.3. The
long-range predictive identification method, which is based on the autoregressive model, will
be described in section 4.4. The last method that will be considered is multi-step predictive
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identification, which will be described in section 4.5. A comparison of these three methods
will be given in section 4.6, and a summary of the chapter will be given in section 4.7.

4.2 Wave description and the control force

Waves were simulated using the Pierson-Moskowitz Spectrum, which was described in
section 2.1.6. It can be assumed that the waves are collected at the same location. Different
values for the sampling frequency and significant wave heights will be examined. Prior to
this, however, a brief introduction to the control force will be given because the non-causal
kernel forms part of the control force.

4.2.1 Wave description

The objective of the proposed solutions is that of predicting wave elevation. Information
about the waves is contained in the wave spectrum. This is used to express how energy is
distributed across different frequency components of the wave. It is important to distinguish
the characteristics of the wave that may be useful in judging sea states or locations. However,
the PM spectrum, which was introduced in section 2.1.5, will be used in this section.

The PM spectrum is constructed using several parameters that can be extracted from
information from the waves. One of these parameters is the significant wave height Hs, which
was defined in section 2.1.4, and is the average value of the one-third highest waves. It
can be also calculated using the zeroth moment, that is, the variance of the wave spectrum.
The zero-crossing period, Tz, is another important parameter. As defined in section 2.1.4,
this only relates to the 0th and 2nd spectral moments. It is not linearly proportional to the
peak frequency. The peak frequency is also used to describe the PM spectrum with another
expression related to the equation shown in table2.1; it is expressed in terms of the majority
of the wave’s energy being concentrated around this frequency. A change in peak frequency
affects the maximum spectrum value with the same significant wave height, Hz. Fusco also
briefly described a high energy wave’s peak frequency ωp as being located at a low frequency
and the spectrum of the wave having a narrower spread [33]. The simulation is based on the
simulated wave data. However, the fact of the wave energy being concentrated around the low
frequencies can also be demonstrated by the PM spectrum simulation. If the significant wave
height takes the same value, an increase of peak frequency will result in a flatter spectrum
being obtained. As mentioned earlier, the high energy peak frequency ωp is located at a low
frequency. Hence, the low frequency will be the key object of interest.
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4.2 Wave description and the control force

Two PM spectrum expressions, each based on different parameters, will be presented in
the following section. It should be assumed that the significant wave height, Hz, is fixed at 6
meters herein.

One PM spectrum expression which is based on the PM spectrum equation defined by
the peak frequency ωp in table2.1 gives spectra as follows:
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Figure 4.1 Wave spectra calculated using PM spectrum with ωp = 0.3rad/s

where the peak frequency is calculated as:

ωp = 2π/Tp (4.1)

The other PM spectrum expression based on the PM spectrum equation can be defined
by Hs and Tz in table2.1 and gives spectra as follows:
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Figure 4.2 Wave spectra calculated by PM spectrum with Tz = 10s
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4.2 Wave description and the control force

Two more spectra, calculated using different parameter values obtained from each of the
two PM expressions, are compared in the figure below:
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Figure 4.3 Wave spectra calculated using PM spectrum with ωp = 0.6rad/s and 1rad/s

PM spectra with different zero-crossing periods are illustrated in the figure below:
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Figure 4.4 Wave spectra calculated by PM spectrum with Tz = 6s and 3s

As shown in fig4.3, the spectral density decreased as the peak frequency ωp increased. In
contrast, the spectral density increased as the zero-crossing period Tz increased, as presented
in fig4.4. Also, the peak frequency decreased as the zero-crossing period Tz increased. It will
be of interest to investigate the relationship between the zero-crossing period Tz and the peak
frequency ωp. This relationship between peak frequency ωp and zero-crossing period Tz can
be obtained using PM spectrum defined by ωp and PM spectrum defined by Tz which shown
in table2.1:

ωp = (
8

5T 4
z
)

1
4 (4.2)
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4.3 Least-squares system identification and prediction

The effects of the zero-crossing period Tz and the peak frequency ωp on predictions will
be given later in this section.

4.3 Least-squares system identification and prediction

The time domain for the wave elevation was discussed in section 2.2.4. The real wave
elevation has been simulated as a superposition of regular waves with different frequencies.
The wave elevation equation was given in eq(2.12):

η(t) =
n

∑
i=1

A(i)sin(ω(i)t +φ(i)) (4.3)

where A is the wave amplitude and n is the number of frequency components. The different
frequencies can be obtained by dividing the range of frequencies by a constant interval.
Hence, each wave represents a unique frequency with random noise, φ .

The autoregressive model has been used because it can deal with time series. The AR
model is used to determine the next output value given previous output values [60]. The
linear difference equation for wave elevation can be expressed as:

η(t) = a1η(t −1)+a2η(t −2)+ . . .+anη(t −n)+φ(t)

=
n

∑
i=1

(aiη(t − i))+φ(t) (4.4)

where φ is a random process with zero mean, and ai are the autoregressive coefficients [19].
This can also be written as:

η(t) = Y (t)θ +φ(t) (4.5)

where:

θ = [a1 a2 . . . an]
T (4.6)

Y (t) = [η(t −1) η(t −2) . . . η(t −n)] (4.7)

Y (t) can be regarded as the signal output vector, n is the model order and θ represents the
vectors of the AR coefficients.
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4.3 Least-squares system identification and prediction

It is assumed an estimated autoregressive model can be based on past data of the same
order as eq(4.4):

η(t) = â1η(t −1)+ â2η(t −2)+ . . .+ ânη(t −n)+ φ̂(t) (4.8)

where âi are the estimated autoregressive coefficients, and φ̂(t) are the innovations. The
estimated value of η(t) is given by its past processes:

η̂(t) =
n

∑
i=1

(âiη(t − i)) (4.9)

Hence, the residual [19] between eq(4.8) and eq(4.9) may be obtained:

η(t)− η̂(t) = φ̂(t) (4.10)

Supposing a given model in which the values of the coefficients in vector θ are unknown,
there are several methods that can be used to find estimated values for the coefficients with
measured outputs, which include the Yule-Walker, Burg and least-squares methods [19].
Details of the least-squares estimation method will be presented in the following section.

The cost function of the LS coefficient estimation can be calculated using the residual,
which has been previously obtained:

J(θ) =
N

∑
t=1

(η(t)− η̂(t|t −K))2 (4.11)

where N is the number of observed output data and K is the number of predictive steps
used for model identification; K is set to be equal to one, which gives a one step ahead LS
estimation. η̂(t|t −1) is the one step ahead predicted output, as based on past measurements:

η̂(t|t −1) = [η(t −1) η(t −2) . . . η(t −n)] · θ̂

= Y (t)θ̂ (4.12)

The coefficient vector, θ̂ , can be estimated via the LS method. Initially, a matrix called
the autoregressive design matrix is constructed using past measurement vectors at different
times, and is given by eq4.13:
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4.3 Least-squares system identification and prediction

Θ =


η(t) · · · η(t −n+1)

η(t +1) · · · η(t −n)
... . . . ...

η(t +N −1) · · · η(t +N −n)

 (4.13)

then, the estimated coefficient vector, θ̂ , can be expressed as follows:

θ̂ = [ΘT
Θ]−1

Θ
T

η (4.14)

here, η represents the measured outputs vector, and N is the number of outputs:

η = [η(t +1), η(t +2), . . . , η(t +N)]T (4.15)

The coefficient vector, θ̂ , which is calculated from eq(4.14), can minimise the difference
between the observed data, η(t), and the estimated data, η̂(t|t −1). The optimal value of the
coefficient vector, θ̂ , for one step ahead prediction can thus be obtained.

Note that η(t) is linear and a Gaussian process, and hence is time reversible. An estimated
autoregressive model for future wave elevation can be obtained as follows:

η̂(t +K|t) =
n

∑
i=1

âiη̂(t +K − i|t) (4.16)

where K is used to represent the prediction steps. η̂(t +K|t) represents the estimate at a time
t +K, given observations up to time t.

The one step ahead predictor can be calculated in a straightforward manner by shifting
eq(4.12) by one step, with the estimated coefficient vector obtained from eq(4.14):

η̂(t +1|t) = [η(t) η(t −1) . . . η(t −n+1)] · θ̂ (4.17)

The two- and three-step predictors are is obtained as:

η̂(t +2|t) = [η̂(t +1|t) η(t) . . . η(t −n+2)] · θ̂ (4.18)

η̂(t +3|t) = [η̂(t +2|t) η̂(t +1|t) . . . η(t −n+3)] · θ̂ (4.19)
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The four-step predictor is obtained as:

η̂(t +4|t) = [η̂(t +3|t) η̂(t +2|t) . . . η(t −n+4)] · θ̂ (4.20)

Finally, the K-step predictor can be calculated in a similar manner:

η̂(t +K|t) = [η̂(t +K −1|t) η̂(t +K −2|t) . . . η̂(t +K −n|t)] · θ̂ (4.21)

Note that the algorithm introduced here is based on an off-line estimation; in other words,
it requires a set of data from the past. The larger the dataset that can be provided, the more
accurate the estimation that can be obtained. However, it would require a certain amount of
time for the model to read this past dataset, and it could not be adapted during the control
run.

4.4 Long-range predictive identification and prediction

The previous section introduces the means by which the K-steps ahead predictor can be
implemented based on the standard one step ahead estimator. However, the wave elevation
requires long-range prediction, which means several steps ahead are required. On the other
hand, the one step ahead prediction given by the least-squares algorithm cannot predict
several steps ahead simultaneously. It is obvious that the LS algorithm may not be an
appropriate approach to predicting wave elevation.

An alternative approach by Shook [84], which has been mentioned previously, is called
the long-range predictive identification. As the name implies, it is used to deal with the K

steps ahead predictor and investigates the entire prediction horizon. The cost function of the
long-range predictive estimated coefficient is:

J(θ) =
N

∑
t=1

N2

∑
K=1

(η(t)− η̂(t|t −K))2 (4.22)

where the K range is [1,2, . . . ,N2] and represents the entire prediction horizon, and N is
the number of measurement samples. The primary calculation is based on the least-squares
method.

Clarke [14, 15] and Rossiter [80] summarised a recursive formula for the above equation:

â[K+1]
j = (â[K]

j+1 − â[K]
1 â[1]j ) (4.23)
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4.4 Long-range predictive identification and prediction

where j ranges from 1 to the order of the model, n. Note that the square bracket is used to
denote the prediction steps of the predictive model. The K steps ahead predictive equations
can be represented as follows:

η̂(t|t −K) = â[K]
1 η(t −1)+ â[K]

2 η(t −2)+ . . .+ â[K]
n η(t −n) (4.24)

The initial values of â are calculated based on eq(4.15) and eq(4.17). This formula only
calculates the coefficient vector recursively instead of using the Y (t) signal output matrix to
reduce the complexity of the predictor.

Each step for the estimated model equation can be considered by recalling eq(4.24):

η̂(t|t −1) = [η(t −1) η(t −2) . . . η(t −n)] · θ̂

= â[1]1 η(t −1)+ â[1]2 η(t −2)+ . . .+ â[1]n η(t −n) (4.25)

η̂(t|t −2) = [η̂(t −1|t −2) η(t −2) . . . η(t −n)] · θ̂2

= â[2]1 η(t −1)+ â[2]2 η(t −2)+ . . .+ â[2]n η(t −n) (4.26)
...

η̂(t|t −N2) = [η̂(t −N2+1|t −N2) η̂(t −N2|t −N2−1) . . . η(t −n)] · θ̂2

= â[N2]
1 η(t −1)+ â[N2]

2 η(t −2)+ . . .+ â[N2]
n η(t −n) (4.27)

The first estimated coefficient vector, θ̂ , can be calculated using the least-squares method
[84]. Note that θ̂ in eq(4.25) is equal to θ̂ in eq(4.12); however, θ̂2 in eq(4.26) and eq(4.27)
are not the same as θ̂ in eq(4.25) in the long-range predictive model. The new θ̂2 is calculated
by the cost function, eq(4.22).

A more general estimated model can be used to express eq(4.25) to eq(4.27) as follows:

Ĥ = A ·Hpast (4.28)

where,

Ĥ =


η̂(t|t −1)
η̂(t|t −2)

...
η̂(t|t −N2)

 ,Hpast =


η(t −1)
η(t −2)

...
η(t −n)

 ,A =


â[1]1 · · · â[1]n

â[2]1 · · · â[2]n
...

...
...

â[N2]
1 · · · â[N2]

n

 (4.29)
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It can be seen from eq(4.29) that estimated coefficients can be calculated with the recursive
formula, eq(4.23). Then, they are multiplied by the same past-values array [η(t −1)η(t −
2) · · ·η(t −n)] to obtain the estimate, η̂(t).

The prediction process for LRPI is similar to that for the LS method. The AR model is
time-reversible, as discussed earlier. The one step ahead predictive equation can be calculated
by shifting eq(4.25) one step ahead:

η̂(t +1|t) = [η(t) η(t −1) . . . η(t −n+1)] · θ̂2

= â[1]1 η(t)+ â[1]2 η(t −1)+ . . .+ â[1]n η(t −n+1) (4.30)

The two step ahead predictor can be obtained using the same process:

η̂(t +2|t) = [η̂(t +1|t) η(t) . . . η(t −n+2)] · θ̂2

= â[2]1 η(t)+ â[2]2 η(t −1)+ . . .+ â[2]n η(t −n+1) (4.31)

Finally, the N2 steps predictor is equal to:

η̂(t +N2|t) = [η̂(t +N2−1|t +N2−2) η̂(t +N2−2|t −N2−3) . . . η(t −n+3)] · θ̂2

= â[N2]
1 η(t)+ â[N2]

2 η(t −1)+ . . .− â[N2]
n η(t −n+1) (4.32)

where the superscript on the coefficient is used to represent which step ahead prediction it is
relevant to.

A generalised predictive model can be used to express eq(4.30) to eq(4.32):

Hpredict = A ·H (4.33)

where,

Hpredict =


η̂(t +1|t)
η̂(t +2|t)

...
η̂(t +N2|t)

 ,H =


η(t)

η(t −1)
...

η(t −n+1)

 ,A =


â[1]1 · · · â[1]n

â[2]1 · · · â[2]n
...

...
...

â[N2]
1 · · · â[N2]

n

 (4.34)
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4.5 Multi-step predictive identification and prediction

The LRPI method contains recursive calculations within the prediction process. The disad-
vantage of recursive calculations is that any disturbances or errors will accumulate during
the process. The prediction model calculations that are based on this method may not be
sufficiently accurate for long-term predictions. Haber [41] and Rossiter [81] both discuss
another method of estimation for long-range prediction models which is called the Multi
Steps Ahead Predictive Identification method.

The main idea behind the MSPI method is very similar to that of LRPI. Their identification
process investigates not just one step, but the entire prediction horizon. The main difference
with MSPI is that each step in the prediction horizon has an individual model [41]. As a
result, the cost function can be written individually for the individual prediction steps, as
compared to LRPI:

J(θ1) =
N

∑
t=1

(η(t)− η̂(t|t −1))2 (4.35)

J(θ2) =
N

∑
t=1

(η(t)− η̂(t|t −2))2 (4.36)

...

J(θN2) =
N

∑
t=1

(η(t)− η̂(t|t −N2))2 (4.37)

Each cost function can be calculated by referring to the standard one step least-squares
estimate, eq(4.12). The current output signal, η̂(t|t −K), (where K ∈ (1,2, . . . ,N2)) can be
estimated from the estimated coefficient vectors, θ̂1, θ̂2, . . . , θ̂N2, as:

η̂(t|t −1) = [η(t −1) η(t −2) . . . η(t −n)] · θ̂1

= â(1)1 η(t −1)+ â(1)2 η(t −2)+ . . .+ â(1)n η(t −n) (4.38)

η̂(t|t −2) = [η(t −2) η(t −3) . . . η(t −n−1)] · θ̂2

= â(2)1 η(t −2)+ â(2)2 η(t −3)+ . . .+ â(2)n η(t −n−1) (4.39)
...

η̂(t|t −N2) = [η(t −N2) η(t −N2−1) . . . η(t −N2−n+1)] · θ̂N2

= â(N2)
1 η(t −N2)+ â(N2)

2 η(t −N2−1)+ . . .+ â(N2)
n η(t −N2−n+1)

(4.40)
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Solutions for estimated coefficients in eq(4.38), eq(4.39), and eq(4.40) may be expressed
as follows:

η(t)

η(t −1)
...

η(t −N)


︸ ︷︷ ︸

Θ1

=


η(t −1) η(t −2) · · · η(t −n)

η(t −2) η(t −3) · · · η(t −n−1)
...

...
...

...
η(t −N −1) η(t −N −2) · · · η(t −N −n)


︸ ︷︷ ︸

Θ1

=


â(1)1

â(1)2
...

â(1)n

 (4.41)


η(t)

η(t −1)
...

η(t −N)


︸ ︷︷ ︸

Y

=


η(t −2) η(t −3) · · · η(t −n−1)
η(t −3) η(t −4) · · · η(t −n−2)

...
...

...
...

η(t −N −2) η(t −N −3) · · · η(t −N −n−1)


︸ ︷︷ ︸

Θ2

=


â(2)1

â(2)2
...

â(2)n

 (4.42)

and:
η(t)

η(t −1)
...

η(t −N)


︸ ︷︷ ︸

Y

=


η(t −N2) η(t −N2−1) · · · η(t −N2−n+1)

η(t −N2−1) η(t −N2−2) · · · η(t −N2−n)
...

...
...

...
η(t −N2−N) η(t −N2−N −1) · · · η(t −N2−N −n+1)


︸ ︷︷ ︸

ΘN2

=


â(N2)

1

â(N2)
2
...

â(N2)
n


(4.43)

where:

θ̂1 =


â(1)1

â(1)2
...

â(1)n

 , θ̂2 =


â(2)1

â(2)2
...

â(2)n

 ,and θ̂N2 =


â(N2)

1

â(N2)
2
...

â(N2)
n

 (4.44)

Note that the bracket in â(K)
n is also used to denote the predictive steps of the prediction model.

The main difference between MSPI and LRPI can be described as follows: in MSPI,
there is no relationship between each â(K)

n . They do not follow the recursive formula,
eq(4.23). In contrast, each â[K]

j of LRPI follows the recursive relationship eq(4.23).

62



4.5 Multi-step predictive identification and prediction

Hence, the bracket is used instead of the square bracket for clarity. Calculations of θ̂1, θ̂2,
and θ̂N2 are based on the least-squares method, eq(4.14):

θ̂1 = [ΘT
1 Θ1]

−1
Θ

T
1 Y (4.45)

θ̂2 = [ΘT
2 Θ2]

−1
Θ

T
2 Y (4.46)

θ̂N2 = [ΘT
N2ΘN2]

−1
Θ

T
N2Y (4.47)

It can be seen that no recursive calculation has been used in multi steps predictive
identification. Estimated coefficients are calculated directly with the least-squares method.

The past and present data have been evaluated via the previous equation. The K steps
ahead predictor can be obtained, as based on the current data and past data. The one step
ahead predictor can be obtained by shifting eq(4.38) one step ahead:

η̂(t +1|t) = [η(t) η(t −1) . . . η(t −n)] · θ̂1

= â(1)1 η(t)+ â(1)2 η(t −1)+ . . .+ â(1)n η(t −n) (4.48)

The two steps ahead predictor can be obtained by shifting eq(4.39) two steps ahead:

η̂(t +2|t) = [η(t) η(t −1) . . . η(t −n)] · θ̂2

= â(2)1 η(t)+ â(2)2 η(t −1)+ . . .+ â(2)n η(t −n) (4.49)

Finally, the K steps ahead predictor can be obtained when K = N2:

η̂(t +N2|t) = [η(t) η(t −1) . . . η(t −n)] · θ̂N2

= â(N2)
1 η(t)+ â(N2)

2 η(t −1)+ . . .+ â(N2)
n η(t −n) (4.50)

All of these predictors can be estimated at the same time due to the measured output
signals [η(t) η(t −1) . . . η(t −n+1)] being the same. This is different from the LRPI
method, as this observes the entire prediction horizon. The MSPI method is expected to
provide better results than LRPI. Each step predictor is calculated with the least-squares
method rather than the K steps recursive calculation in LRPI.

The major drawback of the MSPI method is that it is much more computationally
expensive than the LRPI method. Parameters or called coefficients increase as the prediction
horizon increases. Several models have to be calculated simultaneously; however, each
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4.6 Comparison of different predictive approaches

model calculated with the least-squares method can be expected to give higher accuracy
results when compared to the recursive least-squares method.

4.6 Comparison of different predictive approaches

The predictive approaches that have been introduced previously can be tested with simulated
wave datasets. A different setting for the peak frequency and the significant wave height
can simulate different sea states through the PM spectrum. Wave spectra with different peak
frequencies have been described in section 4.2.1.

In the beginning, a standard has to be set by which to judge the performance of the
predictive approaches. A method called Efron’s Pseudo-R-squared has been used to measure
the predictions’ accuracies. Lave and Efron proposed different datasets that can be measured
in standard regression and analysis of variance. The equation is presented as follows [12, 49]:

R(K) = 100 · (1− ∑
N
t=1(y(t +K)− ŷ(t +K|t))

∑
N
t=1(y(t +K)− ȳ(t +K|t))

) (4.51)

where N is the number of observations, y(t+K) is the measured wave elevation and ŷ(t+K|t)
is the estimated wave elevation, which is computed via different predictive approaches. The
bar above y indicates the mean wave elevation. The equation measures the difference between
measured data and estimated data, which is expressed as a percentage. 100% of R(K) means
that the K steps ahead estimated wave elevation corresponds perfectly to the measured wave
elevation.

A low-pass filter is used in an attempt to focus on the high-energy region of the wave
spectrum[33]. Hence, the application of a low-pass filter to the wave signal should be
considered.

Case 1

We assume the significant wave height to be 6 meters and that the zero-crossing period is 10
seconds. omega ranges from 0.03 to 3.23 rad/sec. The PM spectrum is presented in fig4.5,
and a comparison of the prediction accuracy of the LS, LRPI and MSPI methods is given in
the figure4.6.

Where the prediction steps have been set to 15 and the sample frequency to 2.5641. As
the figure4.6 shows, the three prediction methods have similar performances over the first
few steps. The differences become apparent after 6 steps. With six steps ahead prediction
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Figure 4.5 PM spectrum with H1/3 = 6m and Tz = 10s
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Figure 4.6 The prediction accuracy with H1/3 = 6m and Tz = 10s

(≈ 1.95sec), three of the prediction methods can obtain more than 85% prediction accuracy.
In the last, the estimated wave elevation calculated by the MSPI method obtained only 34%
prediction accuracy with 15 steps ahead prediction (≈ 5.85sec). The LRPI method can
obtain about 23% prediction accuracy which with 15 steps ahead prediction (≈ 5.85sec),
whilst the LS method can obtain about 20% prediction accuracy which with 15 steps ahead
prediction (≈ 5.85sec). Hence, the MSPI method has the best performance of the three
methods. LRPI performs better than the LS method, the latter being based on the one step
ahead estimation. As shown in fig4.6, a longer prediction horizon and the differences in the
predicted accuracies between the three prediction methods will be presented. Any disturbance
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4.6 Comparison of different predictive approaches

or error will accumulate in the recursive calculations (LS and LRPI) for the longer prediction
horizon. These performance results meet the expectations discussed in previous sections.

A comparison of measured and estimated wave elevations is also given in the figure4.7,
4.8, and 4.9:
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Figure 4.7 Wave elevation estimation with the LS method
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Figure 4.8 Wave elevation estimation with the LRPI method
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Figure 4.9 Wave elevation estimation with the MSPI method
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4.6 Comparison of different predictive approaches

Case 2

As can be seen from fig4.6, the most energy is stored in the spectrum over the range 0.3rad/s

to 1.2rad/s. It is interesting to investigative the performance of predictive approaches under
these conditions. The significant wave height and the zero-crossing period are kept the same
as before. Assuming an ideal band-pass filter is applied to the wave signal, a lower cut-off
frequency of 0.3rad/s and a higher cut-off frequency of 1.2rad/s will be applied. Hence,
a comparison of the predictive accuracy of the three prediction approaches can be given as
follows:
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Figure 4.10 The prediction accuracy including an ideal band-pass filter over the range
0.3rad/s to 1.2rad/s

It can be seen from the figure4.10 that the performance of the prediction approaches has
greatly improved. All the prediction approaches can obtain 80% accuracy with 13 steps ahead
prediction (≈ 5.07sec). In comparison, prediction accuracy dies away quickly after five steps
ahead prediction (≈ 1.95sec) in the instance of 0.03 to 3.23 rad/sec. The LS prediction
method can only obtain 20% accuracy with 10 steps ahead prediction (≈ 3.9sec) with a
spectrum in the 0.03 to 3.23 rad/sec range. The LRPI prediction method’s performance
was almost identical to that of the LS method, with 10 steps ahead prediction shown in
fig4.6. Even the MSPI can only obtains 30% accuracy with 10 steps ahead prediction, as per
fig4.6. In fig4.10, the MSPI method can still be seen to have the greatest prediction accuracy
compared to the other two methods. The performance of LRPI is slightly better than that of
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4.6 Comparison of different predictive approaches

LS. High-frequency wave components have been filtered out in fig4.10. The lesser influence
of wave non-linearity results in a better prediction accuracy in fig4.10 [91].

The time domains of the estimated wave elevation and estimated wave elevation with
different prediction approaches are given as:
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Figure 4.11 Wave elevation estimation using the LS method
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Figure 4.12 Wave elevation estimation using the LRPI method
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Figure 4.13 Wave elevation estimation using the MSPI method
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4.6 Comparison of different predictive approaches

All of the estimated wave elevations almost overlap with the measured wave elevations.
Estimated wave elevations fit the measured wave elevations much better than those in figs4.7,
4.8, and 4.9.

Case 3

Assuming the same PM spectrum has been used, and an ideal low-pass filter with a cut-off
frequency equal to the peak frequency of 0.48rad/s, a comparison of the prediction accuracy
for the three prediction approaches can be given as follows:
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Figure 4.14 The prediction accuracy with an ideal low-pass filter

The MSPI method obtained more than 99.5% prediction accuracy with 13 steps ahead
prediction (≈ 5.07sec). The prediction accuracies of the LS method and LRPI methods die
out very quickly for the 13 steps ahead prediction; also, the LRPI method does not show
any particular benefit compared to the LS method. However, they both still obtain 98.9%
prediction accuracy for 13 steps ahead prediction, but the prediction accuracy of the MSPI
method is, clearly, significantly better than these latter two methods, however. On the other
hand, the result shown in fig4.14 demonstrates that prediction methods that use high-energy
waves show better performance.

As expected, the estimated wave elevations should be very close to the measured wave
elevations with the low-pass filter in place:
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Figure 4.15 Wave elevation estimation using the LS method
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Figure 4.16 Wave elevation estimation using the LRPI method
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Figure 4.17 Wave elevation estimation using the MSPI method

Case 4.1 and 4.2

Reviewing section 4.2.1, different values of the zero-crossing period and the peak frequency
can effect the PM spectrum. As a result, the prediction accuracy should change as well.
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4.6 Comparison of different predictive approaches

Wave spectra calculated from PM spectra with zero-crossing periods equal to 6s and 3s

should be compared:
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Figure 4.18 Wave spectra calculated from PM spectra with Tz = 6s and 3s

It can be seen from fig4.18 that the peak frequency of the PM spectrum with Tz = 6s is
lower than the that with Tz = 3s. Also, the spectral distribution of the wave spectrum with
Tz = 6s is much narrower than the spectrum with Tz = 3s. As mentioned earlier, the majority
of the wave energy is concentrated over the low-frequency wave components. Prediction
methods show better performance with high energy waves, as demonstrated earlier.

The prediction accuracies of the three prediction methods with 6s and 3s zero-crossing
periods are compared below:
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Figure 4.19 Prediction with a 6s zero-crossing period

If the zero-crossing period decreases to 3s, then the prediction accuracies of three
prediction approaches can be given as figure4.20:
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Figure 4.20 Prediction with a 3s zero-crossing period

The prediction accuracy was found to decrease as the value of the zero-crossing period
decreased. The MSPI method was found to obtain 10% accuracy with 13 steps ahead
prediction and the 6s zero-crossing period wave spectrum. In contrast, the MSPI method
obtained 0% accuracy with 13 steps ahead prediction and the 3s zero-crossing period wave
spectrum. The other two prediction methods show worse prediction accuracies than the
MSPI method. This is a consequence of the results obtained in section 4.2.1. The peak
frequency was found to increase when the value of the zero-crossing period decreased, as
shown in fig4.18. Hence, the wave spectrum with the higher frequency cannot produce the
same prediction accuracy as the one with the lower frequency.

Case 5.1 and 5.2

In section 4.2.1, PM spectra with different peak frequencies were presented. As mentioned
earlier, the prediction accuracy can be affected by a change in peak frequency. A comparison
of spectra with different peak frequencies is given in fig4.21.

It can be seen from fig4.21 that the wave spectral distribution with ωp = 0.6rad/s is
more concentrated at the lower frequencies than the one with ωp = 1rad/s. Also, the wave
spectrum value with ωp = 0.6rad/s is larger than that for ωp = 1rad/s. The prediction
methods can be expected to show better prediction accuracy with ωp = 0.6rad/s.

The prediction accuracies of the three prediction approaches with a 0.6rad/s peak
frequency are shown in figure4.22.
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Figure 4.21 Wave spectra calculated with PM spectra with ωp = 0.6rad/s and 1rad/s
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Figure 4.22 Prediction with a 0.6rad/s peak frequency

Also, the prediction accuracies of the three prediction approaches with the 1rad/s peak
frequency are given in figure4.23.

Following fig4.22 and fig4.23, the prediction accuracy decreased when the peak frequency
increased. It can be seen from fig4.22 and fig4.23 that the prediction accuracy obtained with
the 0.6rad/s wave spectrum is considerably better than the one at 1rad/s. All prediction
methods can obtain about 50% accuracy with 13 steps ahead prediction. In contrast, they
can only obtain about 0% to 10% accuracy with 13 steps ahead prediction. The prediction
accuracy again shows that the majority of the energy is stored in the low-frequency region.
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Figure 4.23 Prediction with a 1rad/s peak frequency

4.6.1 Model Order Selection

As mentioned in section 4.3, any present estimated wave elevation depends on past obser-
vations and coefficients. The number of coefficients will affect the accuracy of the present
estimated wave elevation. The number of coefficients also relates to the model order in the
autoregressive model. The choice of model order has to be considered carefully, as too large
value for the model order may make the model overly complex, whilst too small value may
unnecessarily reduce the accuracy of the estimated model. Usually, maximum likelihood
is used to choose the order of a model by statisticians. However, this is only choosing the
highest possible order for a model that seems to fit observations well; this may still make the
model too complex and unwieldy.

Fusco proposed the Akaike information criterion (AIC) and Bayesian information crite-
rion (BIC) to find the appropriate order for the autoregressive model[36].

The AIC criterion was introduced by Akaike in 1974 [1]:

AIC = log(∥J∥)2 +(n+1)
2
N

(4.52)

where J is the prediction error between the measured data and the estimated data, n is the
model order or the number of coefficients, and N is the number of observations. Akaike
suggested maximising the value of the likelihood function for each model, after which the
most suitable model order can be chosen with the minimum AIC value [82].
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The BIC criterion was described by Schwarz in 1978 [82]. BIC is closely related to AIC;
the only difference is that it generally penalises free parameters (N) more strongly than AIC.
It may be given as follows:

BIC = log(∥J∥)2 +(n+1)
log(N)

N
(4.53)

Assuming the significant wave height and the zero-crossing period are fixed at 6 meters
and 6s, the prediction steps K vary from 1,5,10,20,40. The wave signal with an ideal
band-pass filter has been discussed previously. The results are given as follows:
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Figure 4.24 AIC and BIC with one step and five steps ahead prediction
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Figure 4.25 AIC and BIC with 10 steps and 20 steps ahead prediction

As figures4.24, 4.25, and 4.26 show, the performances of AIC and BIC are very similar.
Most models return accurate predictions with a large order ranging from 15 to 40. However,
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Figure 4.26 AIC and BIC with 40 steps ahead prediction

AIC and BIC cannot obtain accurate predictions when the number of prediction steps is
larger than 20.

The choice of range of frequencies will affect the prediction accuracy of the prediction
method, as demonstrated previously. If an ideal low-pass filter at 0.48rad/s is applied to the
wave signal, the results for AIC and BIC can be obtained as figure4.27, 4.28 and 4.29:
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Figure 4.27 AIC and BIC with one step and five steps ahead prediction

It can be seen that the performance of AIC and BIC has been improved greatly. Predictions
with one and five steps ahead were found to return good results with model orders larger
than 10. Orders larger than 15 are needed in the previous case. The AIC and BIC can still
return accurate predictions with K larger than 20 when the model order is larger than 20.
They even have acceptable prediction accuracies when the model order is larger than 30 and
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Figure 4.28 AIC and BIC with 10 steps and 20 steps ahead prediction
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Figure 4.29 AIC and BIC with 40 steps ahead prediction

prediction steps are larger than 40. Model order can be reduced greatly for short-time (one to
five steps) predictions. Mid-range time (10 to 20 steps) predictions can be dealt with through
reduced-order AR models. Only long-time predictions require high-order AR models.

Hence, eq(4.51) should be recalled to investigate the effects of changing the model
order. The model order will be chosen from 10,20, and 30, and the results for each will be
compared.

Case 6

The prediction accuracies of different prediction approaches with model order 10 are shown
in figure4.30:
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Figure 4.30 Prediction accuracy of prediction approaches with model order 10

Case 7

The prediction accuracy for a model order of 20 is given as figure4.31:
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Figure 4.31 Prediction accuracy of prediction approaches with a model order of 20

Case 8

The prediction accuracy for a model order of 30 is given as figure4.32:
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Figure 4.32 Prediction accuracy of prediction approaches with a model order of 30

The prediction accuracy increases as the model order increases. These three methods can
obtain an overall 20% prediction accuracy after 5s with a model order of 10. A prediction
horizon of 5s is almost equal to 13 prediction steps. The MSPI prediction accuracy increased
by more than 20% when the model order was increased from 10 to 20. Also, the LS and
the LRPI prediction accuracies increased by 10% in the same situation. The prediction
accuracies of the three prediction methods with model orders of 30 were significantly
increased compared to the previous cases. The three prediction methods can obtain 65%
accuracy with 13 steps ahead prediction. The results of the comparisons presented in fig4.30,
fig4.31,and fig4.32 were entirely expected based on the AIC and BIC values. As mentioned
earlier, the most suitable model order can be chosen with the minimum AIC value and BIC
values. As shown in fig4.27, 4.28, and 4.29, the AIC and BIC values decreased as model
order n increased. In conclusion, an increase in model order can improve the performance of
all three prediction approaches. However, a suitable model order should be chosen via AIC
and BIC values to avoid excessive model complexity.

Table 4.1 Performance Table 1 (measured at 5s)

Low-pass filter comparison
Pred Acc Case 1 Case 2 Case 3

LS 21.5% 87.7% 98.9%
LRPI 23.1% 88.2% 98.9%
MSPI 30% 89.1% 99.8%

79
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Table 4.2 Performance Table 2 (measured at 5sec)

Different wave spectrum comparison
Pred Acc Case 4.1 Case 4.2 Case 5.1 Case 5.2

LS 4.2% 4.2% 55.3% 14.7%
LRPI 6.3% 8.4% 55.8% 14.7%
MSPI 14.7% 12.6% 57.9% 24.2%

Table 4.3 Performance Table 3 (measured at 5sec)

Different model order comparison
Pred Acc Case 6 Case 7 Case 8

LS 22.5% 32.6% 65.1%
LRPI 23.3% 32.7% 66.1%
MSPI 27.5% 44.3% 66.1%

4.7 Chapter summary

The main objective of this chapter was to find an efficient predictive approach. Accurate
wave elevation prediction is important for maximising the absorbed wave power, as discussed
in chapter 3.

Section 4.2 gives a brief review of wave characteristics. How changes to the significant
wave height and the zero-crossing period can affect the PM spectrum was also examined.

The simple least-squares system identification was introduced in section 4.3. The autore-
gressive model was used to simulate the wave elevation. The calculation process for the LS
method was presented, and a recursive least-squares method has been described that reduces
the complexity of the model.

Long-range predictive identification was proposed in section 4.4 due to various limitations
in the simple least-squares method. Prediction usually requires more than one step ahead.
Long-range predictive identification can be used to find the best estimated coefficient vector
in order to observe the entire prediction horizon.

Another prediction approach was introduced in section 4.5 called multi-step predictive
Identification. It also observes the entire prediction horizon in a similar manner to the LRPI
method. The difference is that the MSPI method calculates the estimated coefficient vector
for each prediction step; it also calculates each estimated coefficient vector simultaneously,
which can increase efficiency.

The comparison of these prediction approaches was given in section 4.6. Performance
tables for these prediction approaches are reported in table4.1, 4.2, and 4.3.
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4.7 Chapter summary

It has been shown that the MSPI method can obtain the best performance in terms of
wave elevation prediction. The LRPI method obtained a prediction performance that was
somewhat worse than that of MSPI. As expected, the simple LS method gave the worst results.
The prediction performances have been judged on the basis of the associated prediction
accuracies. The prediction accuracy was also tested using different wave conditions, which
were based on the PM spectrum. The majority of the wave energy is located in the low
frequency range of the spectrum, and so the prediction accuracy can be improved using a low
frequency range. In addition, the model order is another efficient way by which to improve
the prediction accuracy of the prediction approach; however, a larger model order value
may make the prediction model too complex. The choice of model order can be considered
through the AIC and BIC criteria.

System approximation is an another way to overcome non-causality. The next chapter
will give details regarding system approximation. Real-time control will be based on a system
approximation that will be given in chapter 6.
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Chapter 5

Model approximation

5.1 Chapter overview

The system time domain equation was given in eq(2.21). It includes an integro-differential
term that is difficult to analysis. Hence, Prony’s approximation method was introduced in
reference [38]. This method is used to approximate the whole system as per eq(2.21), which
allows for an analysis.

The design of controllers in chapter 2 relies on the approximation transfer function
obtained from reference [38]. The controller chosen for this thesis uses a complex conjugate
control, which is closely connected to the approximation transfer function. The method
to find the approximation of the intrinsic impedance is of vital importance, and hence two
different methods to address this issue will be presented in section 5.2.1. One is referred to
as the prediction error method; the other is the direct inverse of the approximation transfer
function, which was obtained from reference [38]. Comparisons of these methods will also
be made.

The other motivation for the model approximation is to overcome the non-causality
problem. As mentioned in chapter 3, there are two possible solutions for overcoming non-
causality. One is the prediction of the velocity of a wave energy conversion system or the
excitation force that can be used to overcome the problem, as described in the previous
chapter. The other is a system approximation.

A second-order system approximation is given in section 5.3. This second system
approximation can reduce the complexity of the system whilst maintaining most of its
performance. The prediction error method will again be used, and the results compared with
the partial fraction decomposition obtained from references [38] and [75].
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5.2 Impedance Approximation

The hydrodynamic parameter collection will then be introduced in section 5.4. The key
point here is to calculate the disturbance of the control system. The excitation force will be
set as such a disturbance. Polynomials are used to represent the hydrodynamic data supplied
by reference [38]. The hydrodynamic data itself will be collected by a software suite called
the Tracer. Matlab figure tools can easily fit these data with different order polynomials.

Finally, two optimal conditions for maximising the absorbed energy will be tested in
section 5.5. Constant approximations will be used in velocity-tracking control and complex-
conjugate control.

5.2 Impedance Approximation

The time domain equation of the model was given in chapter 2 as follows:

mẍ+Ma(∞)ẍ+
∫

∞

0
hr(τ)v(t − τ)dτ +Kvẋ(t)+Ksx(t) =

∫
∞

−∞

hex(τ)η(t − τ)dτ +Fpto(t)

(5.1)

Then, taking the Laplace transform, the above equation can be rewritten as:

s[m+Ma(∞)]V (s)+Hr(s)V (s)+
Ks

s
V (s)+KvV (s) = Fex(s)+Fu(s) (5.2)

where s = jω . The particular emphasis here is on the relationship between the velocity and
the force. Hence, eq(5.2) is rewritten as follows:

V (s)
Fex(s)+Fu(s)

=
1

s[m+Ma(∞)]+Hr(s)+ Ks
s +Kv

(5.3)

The intrinsic mechanical impedance of the floating system is obtained as the denominator,
which comes from the previous equation, eq(5.3) [32]:

Zi(s) = s[m+Ma(∞)]+Hr(s)+
KS

s
+Kv (5.4)

Then, the velocity response equation can be simplified to:

V (s)
Fex(s)+Fu(s)

=
1

Zi(s)
(5.5)

The example WEC system with specific parameters can be found in reference [38]. The
radiation impedance, Hr( jω), can only be simulated numerically for certain frequencies with
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5.2 Impedance Approximation

the WAMIT hydrodynamic software. A sixth-order approximation of the system is also given
in reference [38]. It can be seen as the plant of the control system:

1

Ẑi(s)
=

1.8×10−6s5 +4.86×10−6s4 +7.128×10−6s3 +4.716×10−6s2 +1.296×10−6s
s6 +2.7s5 +5.44s4 +6.748s3 +6.408s2 +3.784s+0.96

(5.6)

Two optimal control conditions were presented in section 3.2.2. One is the velocity-
tracking control; the other is a complex conjugate control, and both can be related to intrinsic
impedance. Hence, there are three impedance approximations that will be pursued.

Intrinsic impedance

The inverse of the intrinsic impedance is given by eq(5.6). Firstly, the approximation of the
intrinsic impedance, Ẑi(s), should be calculated; this will be presented in section 5.2.1.

Control impedance

One of optimal control conditions is that of complex conjugate control, which was introduced
in section 3.2. The expression for this is given by:

Fu( jω) =−Ẑu,opt( jω)V ( jω) =−Ẑ∗
i ( jω)V ( jω) (5.7)

Hence, the Laplace transform of eq(5.7) is:

Fu(s) =−Ẑu,opt(s)V (s) =−Ẑi(−s)V (s) (5.8)

The approximation for the control impedance will be presented in section 5.2.2.

Optimal non-causal impedance

The other optimal control condition is called velocity-tracking control. It is used to express
the optimal relationship between the velocity and the excitation force:

Ẑr,opt( jω) =
Fex( jω)

V ( jω)
=

1
2(B( jω)+Kv)

=
1

Ẑi( jω)+ Ẑi(− jω)
(5.9)

The Laplace transform of optimal non-causal impedance is:
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5.2 Impedance Approximation

Ẑr,opt(s) =
1

Ẑi(s)+ Ẑi(−s)
(5.10)

More details of the optimal non-causal impedance approximation will be given in section
5.2.3.

5.2.1 Approximation of intrinsic impedance

The prediction error method is one solution by which to determine a finite-order approxima-
tion of the intrinsic impedance, Zi(s). The Matlab command tfest can be used to estimate the
model using the prediction error method.

The cost function of the optimal Zi( jω) and different order approximation, Ẑi( jω), can
be written as:

J(Ẑi) =
∫

∞

−∞

∥(Zi( jω)− Ẑi( jω))∥2 (5.11)

The higher the order of Ẑi( jω), the greater the accuracy of the transfer function that will
be obtained. Transfer functions with different orders will be tested; their comparison is given
as follows, which uses different approximation orders, with n = [4,6,7,8]:
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Figure 5.1 Fourth-order approximation of intrinsic impedance
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Figure 5.2 Sixth-order approximation of intrinsic impedance
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Figure 5.3 Seventh-order approximation of intrinsic impedance
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Figure 5.4 Eighth-order approximation of intrinsic impedance

The accuracy of the system is determined via Efron’s pseudo R-squared method, given in
section 4.6, as follows:

R( jω) = 100 · (1− ∑
N
s=1(Zi( jω)− Ẑi( jω))

∑
N
s=1(Zi( jω)− Ẑi( jω))

) (5.12)

where the bar of Ẑi( jω) is the mean value of Ẑi( jω). The accuracy of the estimate for
he intrinsic impedance of order 4 that can be achieved is 62.74%. The intrinsic impedance
transfer function of order 6 would be expected to show better performance; however, the
accuracy of this latter intrinsic impedance was found to be only 30.66%. The order 7
estimated intrinsic impedance has also been tested, giving an accuracy of 93.19%. Finally,
the accuracy of the estimated intrinsic impedance of order 8 was found as 97.63%. It can be
seen that the intrinsic impedance of higher order n can achieve greater accuracy, with the
exception of the intrinsic impedance of order 6. The reason for this anomaly might be due to
the search curves having many local minima [61].

The approximate transfer function of Zi(s) is:

Ẑi(s) =
1×109(1.126s7 +3.947s6 +8.332s5 +12.77s4 +12.98s3 +10.31s2 +4.467s+0.628)

s8 +13.35s7 +2286s6 +7394s5 +1.282×104s4 +1.268×104s3 +6279s2 +837s+0.0218
(5.13)
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5.2 Impedance Approximation

5.2.2 Approximation of control impedance

The optimal condition for the complex conjugate control can be satisfied with the following
transfer function:

Fu(s) =−Ẑi(−s)V (s) (5.14)

The approximated intrinsic impedance, Ẑi(s), was determined via eq(5.13). Hence, the
approximated complex conjugate of the intrinsic impedance, Ẑi(−s), can be processed.

The approximated complex conjugate of intrinsic impedance, Ẑi(−s), can be obtained
via eq5.13 as follows:

Ẑi(−s) =
1×109(−1.126s7 +3.947s6 −8.332s5 +12.77s4 −12.98s3 +10.31s2 −4.467s+0.628)

s8 −13.35s7 +2286s6 −7394s5 +1.282×104s4 −1.268×104s3 +6279s2 −837s+0.0218
(5.15)

The non-causality of the control impedance, Ẑi(s), has thus been overcome. It should be
compared with the fifth-order non-causal approximated complex conjugate of the intrinsic
impedance:

Ẑi(−s) =
s6 −2.7s5 +5.44s4 −6.748s3 +6.408s2 −3.784s+0.96

−1.8×10−6s5 +4.86×10−6s4 −7.128×10−6s3 +4.716×10−6s2 −1.296×10−6s
(5.16)

This is calculated directly by inverting eq(5.6) as follows:

Ẑi(s) =
s6 +2.7s5 +5.44s4 +6.748s3 +6.408s2 +3.784s+0.96

1.8×10−6s5 +4.86×10−6s4 +7.128×10−6s3 +4.716×10−6s2 +1.296×10−6s
(5.17)

Note that the fifth-order non-causal approximated function cannot be used directly in
phase control; however, it is given in figure5.5 for comparative purposes.

A comparison of two different approximated complex conjugate of intrinsic impedances
is given as fig5.5. It can be seen from fig5.5 that the two approximated complex conjugate of
intrinsic impedances are very close.

The complex conjugate condition is given as:

Zu,opt(s) = Ẑi(−s) (5.18)
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Figure 5.5 The comparison of Ẑi(−s)

Calculated results from this subsection will be used in the simulation presented in section
5.5.2. The order of eq(5.15) will be reduced in section 5.3 with the causal approximation.

5.2.3 Approximation of optimal non-causal impedance

As discussed in sections 3.3 and 3.4, the non-causality of the B( jω) has been demonstrated.
The frequency domain of the optimal phase control can be written as follows, using eq(3.26):

V ( jω) =
Fex( jω)

2(B( jω)+Kv)
(5.19)

The intrinsic impedance was given in eq(5.4), as follows:

Zi( jω) = jω[m+Ma(∞)]+Hr( jω)+
KS

jω
+Kv (5.20)

The radiation impedance without a singularity, jωMa(∞), was described in section 2.3
as follows:
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5.2 Impedance Approximation

Hr( jω) = B( jω)+ jω[Ma( jω)−Ma(∞)] (5.21)

Hence, eq(5.19) can be rewritten as follows:

V ( jω) =
Fex( jω)

Zi( jω)+Z∗
i ( jω)

(5.22)

Now, the excitation force and velocity are only related to the intrinsic impedance and its
complex conjugate.

Assuming an optimal relationship between the velocity and the excitation force is called
the optimal non-causal impedance, Zr,opt . The reason that can be seen from eq(5.22), the
mass term, is that the net-buoyancy coefficients have been negated by the characteristics of
the complex conjugate; in other words, only the radiation impedance affects the relationship
between the velocity and the excitation force.

The approximation of the optimal radiation impedance will be useful for further compari-
son with the constant approximation, which will be introduced in the next section. This is the
fundamental principle that explains why a second-order approximation function can be used
to overcome the non-causality problem, and further why the optimal radiation impedance is
key to velocity-tracking control. The simulation results for the velocity-tracking control will
be given in section 5.5.1. The optimal non-causal impedance is given by:

Zr,opt( jω) =
1

2(B( jω)+Kv)
(5.23)

The Laplace transform of eq(5.23) is:

Zr,opt(s) =
1

2(B(s)+Kv)
=

1
Zi(s)+Zi(−s)

(5.24)

Hence, the transfer function of Zr,opt(s) can be calculated with the approximation transfer
function, eq(5.15), as follows:

Ẑr,opt(s) =
1×10−12(3.24s10 +2.041s8 +9.634s6 +8.078×10−16s5 −3.765s4 +1.68s2)

4.752×10−7s8 +3.224×10−6s6 +1.664×10−6s4 +7.534×10−7s2

(5.25)

It can be shown from eq(5.25) that the order of the numerator is larger than that of the
denominator, which means that this cannot be implemented as a real-time control. The
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5.2 Impedance Approximation

prediction error method with approximation has to be used to solve this problem. A fourth-
order approximated transfer function can be obtained as follows:

Ẑr,opt(s) =
−3.31×10−15s3 −4×10−4s2 −9.744×10−15s−4.851×10−5

s4 +3.869×10−11s3 +21.21s2 +2.425×10−10s+93.62
(5.26)

The fourth-order approximate transfer function can achieve 99.64% accuracy compared to
eq(5.25).

The comparison of the approximation transfer function and the estimation dataset is given
as follows:
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Figure 5.6 Magnitude comparison of fourth-order approximated transfer function and estima-
tion dataset
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Figure 5.7 Comparison of the phase of the fourth-order approximated transfer function and
estimation dataset
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It can be seen from figure5.6 that the magnitudes of the approximated transfer functions
completely coincide with each other. The phase of the estimation dataset is shown in figure5.7.
The figure5.7 shows the phase is 0 over most of the frequencies that are neglected.

5.3 Causal approximation and model order reduction

The authors of references [75] and [38] noted some of the components of the intrinsic
impedance may not have a significant affect on the WEC system. Hence, the second-order
approximated mode mentioned in chapter 3; this can be used to overcome the non-causality
of the system. Detail regarding the second-order approximation will be given in the following
section. The application will be verified with two different control constructions.

In the first, the optimal relationship between the velocity and the excitation force was
presented in the previous section with the optimal non-causal impedance, Zr,opt , which
was given in eq5.26. The estimated frequency domain of the optimal non-causal impedance,
Ẑr,opt( jω), was given in fig5.6 and fig5.7. The value of Ẑr,opt( jω) is very small, and is
essentially constant between 0rad/s to 2rad/s. It was also shown in chapter 4 that most
of the wave’s energy is stored is in the low-frequency sea state. A constant approximation
of Ẑr,opt( jω) crosses most values of Ẑr,opt( jω) in the low frequency range, and so is worth
pursuing later [38].

Note that the PEM was used to estimate the control impedance in the previous subsection.
The dynamic function of the WEC system was given in eq5.2. The relationship between the
velocity and the sum of the excitation and the control force is given in eq(5.6) as a sixth-order
approximation. The PEM can also be used to approximate and reduce the order of the inverse
of the estimated intrinsic impedance. The second-order approximated transfer function can
be calculated with an order of n = 2; for the WEC system, this is as follows:

1

Ẑi,2nd(s)
=

1.934×10−6s+1.024×10−7

s2 +0.9774s+1.499
(5.27)

The prediction accuracy was determined by eq(5.12) as 97.94%. The comparison of
the bode diagram of the sixth-order transfer function and that of the second-order transfer
function is given in figure5.8.

The other method used to estimate the second-order transfer function, which can be
found in references [75] and [38], is shown in here for comparison. The initial sixth-order
WEC model remains the same as eq(5.6); however, it has to be written in a partial fraction
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Figure 5.8 Comparison of the bode diagram with the sixth- and second-order transfer func-
tions, as calculated with PEM

decomposition, as below:

Ẑi(s) =
n

∑
k=1

Rk

s−Pk
(5.28)

where Rk are the residuals and Pk are the poles of the inverse intrinsic impedance [38, 75].
The particular case of eq(5.6) with partial fraction decomposition can be written as follows
[38]:

1

Ẑi(s)
=

1.8×10−6s(s2 +1.1s+0.4)(s2 +1.6s+1.8)
(s2 +1.2s+0.4)(s2 +1.4s+1.6)(s2 +0.1s+1.5)

(5.29)

The poles are calculated from the denominator, s2 +0.1s+1.5, which is much smaller than
for the other four. The other two components of the denominator do not have a particularly
significant effect on the WEC system and can thus be ignored [75], [38]; then, only the
second-order denominator will have been kept. The numerator only keeps the first-order
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5.3 Causal approximation and model order reduction

term required to make the estimated transfer function reasonable. Hence, eq(5.29) has been
reduced in order, giving the following:

1

Ẑi,2nd(s)
=

1.8×10−6s
s2 +0.1s+1.5

(5.30)

The comparison of the bode diagrams of the sixth-order and second-order transfer
functions is given in figure5.9.
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Figure 5.9 Bode diagram of the sixth- and second-order approximation, as calculated without
PEM

The comparison of the sixth-order transfer function and two different second-order
estimated transfer functions is given in fig5.10.

It can be seen from fig5.10 that the second-order estimated transfer function calculated
with PEM is very similar to the sixth-order transfer function. From a practical perspective, the
magnitude of the second-order estimated transfer function (PEM) has the better performance
of the two.
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Figure 5.10 Bode diagram of the sixth-order and two different second-order approximations

A second-order model of the oscillating system was introduced in section 3.4. It is similar
to a mass-spring-damper system with mass M̂, damping B̂ and stiffness K̂. The time domain
of the second-order model can be expressed as follows, with the excitation force and the
control force:

fex(t)+ fpto(t) = M̂v̇(t)+ B̂v(t)+ K̂
∫ t

−∞

v(τ)dτ (5.31)

The Laplace transform of the intrinsic impedance of the second-order model can be expressed
as follows:

1

Ẑi,2nd(s)
=

1

M̂s+ B̂+ K̂
s

(5.32)

The transfer function of the estimated intrinsic impedance is given as:

Ẑi,2nd(s) = M̂s+ B̂+
K̂
s

(5.33)
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5.3 Causal approximation and model order reduction

The second-order approximated intrinsic impedance, which is calculated using PEM,
is given in eq(5.27). The values of mass M̂, damping B̂ and stiffness K̂ are calculated as
follows:

M̂ =
1

1.934×10−6 B̂ =
0.9774

1.934×10−6 K̂ =
1.499

1.934×10−6 (5.34)

The estimated control impedance transfer function is the complex conjugate of eq(5.33),
which is:

Ẑ∗
i,2nd(s) =−M̂s+ B̂− K̂

s
(5.35)

The estimated optimal non-causal impedance transfer function is given as follows, which
is :

Ẑr,opt(s) =
1

2B̂(s)
(5.36)

However, the non-causal kernel, B̂, becomes a constant value and the viscous coefficient, Kv,
has been ignored. The optimal condition is given in eq(5.36), which demonstrates that the
excitation force is proportional to the velocity. The value of Ẑr,opt(s) is given as 9.8936−6, as
calculated using PEM.

The second-order approximated intrinsic impedance calculated using the method provided
by references [75] and [38] is given in eq(5.30). The values of mass M̂1, damping B̂1 and
stiffness K̂1 can be calculated as follows:

M̂1 =
1

1.8×10−6 B̂1 =
0.1

1.8×10−6 K̂1 =
1.5

1.8×10−6 (5.37)

The value of Ẑ1r,opt(s) was found to be 9.0006−6.
As mentioned previously, constant approximations of Ẑr,opt(s) cross the most common

value of Ẑr,opt(s) in the low frequency range. The constant value Ẑr,opt(s) = 9.8936−6

and Ẑ1r,opt(s) = 9.0006−6 can be compared with the fourth-order approximated optimal
non-causal impedance which shown in figure5.11.

It can be seen from fig5.11 that the constant value Ẑr,opt(s) = 9.8936−6 is closer to the flat
part of the fourth-order approximated optimal non-causal impedance. It should be expected
that the constant value Ẑr,opt(s) has better performance than the constant value Ẑ1r,opt(s).
Simulation results will be discussed in section 5.5.
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Figure 5.11 Phase comparison of fourth-order approximation and two constant approxima-
tions

5.4 Hydrodynamic Parameters

The control plant of control system was given in eq(5.6). Similarly, the controller of the
complex conjugate control was also given in eq(5.35). Eq(5.36) can be used as a reference
input for the velocity-tracking input. However, disturbances to the two systems have not been
previously introduced. The excitation force will be used as the disturbance to the control
system, as discussed in the following section.

The hydrodynamic dynamic coefficients used in this thesis are is based on those in
reference [38]. The important hydrodynamic coefficients, such as the excitation coefficient,
Hex, and the radiation coefficient, Hex, are generated through the WAMIT software [50].
WAMIT requires various parameters relating to the floating buoy, such as the radius of the
heaving cylinder, the height of the cylinder, and the mass of the buoy. It also requires the
value of the distance between the sea bed and the centre of gravity of the buoy. However, no
further detail will be given in this thesis.

The oscillation system with WEC, which is described in Fusco’s paper, is connected to
the sea bed. It moves with wave’s heave direction. Also, the external force acts on the buoy
in a vertical direction.

The Tracer [55] software is used to capture coefficients from reference [38]. It tracks a
graphic and converts it to a set of data. The accuracy of this method depends on the accuracy
of the graphic and the number of data used to express the graphic. For example, a set of
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5.4 Hydrodynamic Parameters

coefficients were captured from a diagram in reference [38] using the Tracer. The set of
coefficients can be plotted as a digital diagram using Matlab. If the new digital diagram of
the set of coefficients and the original diagram in reference [38] were superimposed, this
would mean the differences between the captured coefficients from the Tracer and actual
coefficients used by reference [38] were very small.

The author of reference [38] gave the bode diagram of the excitation coefficient. The
Tracer is used to convert a diagram to two sets of data. One set of data is used to represent
the frequency, ω . The other represents the phase or magnitude.

The excitation force was introduced in chapter 2, and is the disturbance to the control
system. Also, the time domain of irregular waves was given by eq(2.12). Hence, the time
domain of the excitation force is given as follows:

Fex(t) =
n

∑
i=1

A(i)|Hex(ω(i))|sinω(i)t +φ(i)+∠Hex(ω(i)) (5.38)

The frequency response of the excitation coefficient can be calculated (along with its
phase and magnitude), and is given as follows:

Hex(ω) = |Hex(ω)|(cos∠Hex(ω)+ j sin∠Hex(ω)) (5.39)

The magnitude of the excitation coefficient, |Hex(ω)|, and phase, ∠Hex(ω), can be
calculated separately.

Note that the transfer function for Hex is not required. Hence, the Matlab figure tool,
Basic Fitting, can be used to obtain a polynomial function.

Different orders of polynomials can be chosen within Matlab to be fit to the collected
dataset. The magnitude curve, as fit with different order polynomials, can be illustrated as
follows:

It can be seen from figure5.12 that the seventh-order polynomial provided an excellent fit
to the data, and is given as follows:

|Hex(ω)|=−5909.2ω
7 +61936ω

6 −2.3279×105
ω

5 +2.9547×105
ω

4 +2.7453×105
ω

3

−8.8359×105
ω

2 +47066ω +8.0081×105 (5.40)

The phase curve fit can be obtained through a similar method with third- and fourth-order
polynomials, which are shown as follows:
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Figure 5.12 Magnitude curve fits using different order polynomials
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Figure 5.13 Phase curve fits with different order polynomials

The fourth-order polynomial can be seen to provide a good fit to the data. It is given as
follows:

∠Hex(ω) =−0.0253ω
4 +0.02046ω

3 +0.0621ω
2 −0.0085ω −0.0014 (5.41)

The frequency response of the radiation coefficient can be obtained in a similar manner.
Note that the estimated intrinsic impedance given in the previous section can be ignored with
this calculation. More details regarding the use of the excitation will be given in chapter 6.
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5.5 Causal approximations tested with two control meth-
ods

5.5.1 Test with velocity-tracking control

The block diagram for the velocity-tracking construction has been given in section 3.4. The
constant approximation is used instead of the non-causal block, 1

2B( jω) , which is shown in
fig3.2. A simple PID controller can be used in the controller block. The excitation force can
be calculated using eq(5.38). The velocity-tracking control is given as per fig5.14:

1
Z i (ω)

+
+

1

2 B̂

Controller- +

f ex(t)

f PTO(t)
vopt (t)

v (t )

WEC

Figure 5.14 Block diagram of the velocity-tracking construction

The absorbed energy with Ẑ1r,opt(s) is given as follows:

0 50 100 150 200 250 300 350 400
−8

−6

−4

−2

0

2

4

6
x 10

8

Time[s]

Ab
sor

bed
 En

erg
y[k

g(m
/s)^

2]

Time Series Plot:

Figure 5.15 The energy absorbed by the velocity-tracking construction
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5.5 Causal approximations tested with two control methods

The absorbed energy with Ẑr,opt(s) is given as follows:
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Figure 5.16 The energy absorbed by the velocity-tracking construction

The maximum energy absorbed by Ẑr,opt(s) is −7.444×108kg · (m/s)2. The maximum
energy absorbed by Ẑ1r,opt(s) is −6.745×108kg · (m/s)2. It can be seen from the absorbed
energy with Ẑr,opt(s) that it gains a little extra performance compared to Ẑ1r,opt(s). Perfor-
mance results meet general expectations, and it can seen that the constant approximations
can successfully reduce the model order from fourth-order optimal non-causal impedance.

5.5.2 Test with complex conjugate control

The block diagram for the feedback construction was also been given in section 3.4, and is
called the complex conjugate control. The constant approximation of mass M̂, damping B̂

and stiffness K̂ are used instead of the non-causal block, Z∗
i ( jω), which is shown in fig3.3.

Also, the eighth-order approximation control impedance, eq(5.15), has been reduced to
second-order. M̂ and K̂ should be negative. The complex conjugate control with constant
approximation is given in fig5.17.

The absorbed energy with different sets of constant approximations M̂1, B̂1, K̂1, M̂, B̂, K̂

are given in figure5.18 and 5.19.
The energy absorbed with M̂, B̂, and K̂ also shows better performance than the one

calculated by the partial fraction decomposition. The maximum energy absorbed can reach
more than −7.351×108kg · (m/s)2 which presented in figure5.19. In contrast, the maximum
energy absorbed by M̂1, B̂1, and K̂1 is −6.363×108kg · (m/s)2 which shown in figure5.18.
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Figure 5.17 Block diagram of the feedback control
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Figure 5.18 The energy absorbed by the feedback construction
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Figure 5.19 The energy absorbed by the feedback construction

5.6 Chapter summary

Several objectives were addressed in this chapter. Firstly, the approximation of the intrinsic
impedance was introduced in section 5.2.1. For real-time control, the time domain dynamic
equation for the WEC system has to be converted to the Laplace domain. The intrinsic
impedance is used to express the relationship between the velocity and the excitation force
with the control force. A sixth-order approximation of the inverse of the intrinsic impedance
has been given from reference [38]. However, the complex conjugate control requires the
complex conjugate of the intrinsic impedance, and so the approximation of the intrinsic
impedance has to be calculated. This method is called the prediction error method, which can
be used to find an eighth-order approximation for the intrinsic impedance; the eighth-order
approximated transfer function can fit estimated data with 97.63% accuracy. In addition, the
optimal non-causal impedance has been obtained. This is used to express the relationship
between the optimal velocity and the excitation force. A fourth-order approximated transfer
function with 99.64% accuracy was finally obtained.

A second-order approximated transfer function for the WEC system is presented in
section 5.3. The non-causality of optimal non-causal impedance has been overcome by
using a constant value. The different means by which to approximate the second-order
transfer function of the WEC system have been compared. One such way, mentioned in
reference [75], is to directly remove certain components of the denominator. The poles of
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the components of the denominator are very small, and may not have any significant effect
on the WEC system. On the other hand, the prediction error method is used to calculate the
second-order approximation again. The bode diagram of the second-order approximation
with the prediction error method is better than the one that removes the components of the
denominator.

The approximation for the excitation coefficient is presented in section 5.4, and is the
key element of the excitation force. The Tracer software described in this section was used
to capture coefficient data from reference [38].

The energy absorbed from the velocity-tracking and complex-conjugate controls with
second-order approximations has also been given. The energy absorbed with the second-
order approximation calculated by the prediction error method is higher than that where
components of the denominator are removed.
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Chapter 6

Control approaches and mechanical
implementations

6.1 Chapter overview

As discussed in chapter 3, the optimal control condition for maximising the absorbed power
of the WEC system is critical for the obvious reason that it can increase system efficiency.

The different control methods and their implementations are described in section 6.2.
Specifically, purely passive resistive control, complex conjugate control, and phase control
are compared. The power absorbed from each control method will be compared to allow
their different performances to be evaluated. The performance results can help to choose the
most appropriate control method for mechanical realisation.

Optimal control impedance is used to extract the maximum absorbed power from the
wave through the WEC system. Transfer functions for extracting the maximum absorbed
power have already been discussed in section 5.2. The best fit for the transfer function can
be found using the Nelder-Mead method, which is described and simulated below.

Following this, in section 6.4, the design of the power take-off (PTO) device for the WEC
system will be introduced. The physical mechanical impedance of the PTO approximates
the ideal optimal frequency domain expression of the the PTO; this is based on the complex
conjugate control, which will be further discussed [30]. Some control constructions with
a mass term on the design of a restricted-complexity PTO through the direct optimisation
of a suitable design criterion will be presented. The Brune Synthesis is used to realise the
admittance of the system.
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6.2 Comparison of absorbed energy using different con-
trol methods

As mentioned in chapter 3, several control methods can be used in the WEC system to absorb
energy. These can be classified in numerous ways, depending on the construction of the
control system. In addition, the causal approximated function was introduced in chapter 5.
A comparison of the energy absorbed using different control methods is presented in the
following section.

The complete dynamics of an oscillating body for wave energy conversion can be
expressed as:

mẍ(t) = Fex(t)−Fr(t)−Fs(t)−Fv(t)+Fu(t) (6.1)

An oscillating body of mass m for wave energy conversion is constrained to oscillate vertically.
Assuming the vertical displacement is x(t), the oscillating body, as acted on by external
forces, can be used to construct a dynamic system, as shown in eq(6.1). The entire oscillating
body system for wave energy conversion is given in Figure2.11.

The model, as expressed in the time domain, eq(6.1), can be rewritten in the frequency
domain as follows:

jω[m+Ma(∞)]V ( jω)+Hr( jω)V ( jω)+
Ks

jω
V ( jω)

+KvV ( jω)

= Fex( jω)+FPTO( jω) (6.2)

where V ( jω) is the buoy movement speed. The controllable force from a PTO device is
called the control force or PTO force, as shown in fig2.11. The control force, FPTO( jω), can
also be assumed to be a function of position and its derivatives; this can be shown in the
frequency domain as follows:

FPTO( jω) =−Zu( jω)V ( jω) (6.3)

The velocity response to the excitation force plus the control force can be rewritten using
eq(6.2):

V ( jω)

Fex( jω)+FPTO( jω)
=

1
Zi( jω)

(6.4)
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where Zi( jω) is the intrinsic mechanical impedance of the floating system.
The power derived from the external force that passes through the floating system has to

be considered. As discussed previously, the floating system can simply be considered to be a
mass-spring-damper system. The power absorbed in the frequency domain can be expressed
as:

Ppto( jω) =
1
2

ℜ{Zpto( jω)}|v̂|2 (6.5)

The relationship between the excitation force, the control force and the velocity can be
expressed in the frequency domain as per eq(3.20). Thus, in this instance the equation6.5 can
be rewritten in the frequency domain as [23, p. 203]:

Ppto( jω) =
1
2

ℜ{Zpto( jω)} |Fex( jω)|
Zi( jω)+Zpto( jω)

=
1
2

Ru( jω)

|Zi( jω)+Zpto( jω)|2
|Fex( jω)|2 (6.6)

Following the equation above, the optimal conditions have already been established, as
per section 3.2:

Zpto( jω) = Z∗
i ( jω)≡ Zpto,opt( jω) (6.7)

The purpose of this project is to maximise wave energy. The total energy is the most
important criterion by which to evaluate the effectiveness of a WEC system. The total energy
is equal to the integral of the time-averaged power:

E =−
∫

∞

−∞

Fpto(t)v(t)dt (6.8)

Converting the equation above to the frequency domain using the frequency convolution
theorem [23, p. 37] gives the following equation:

E =− 1
2π

∫
∞

−∞

Ppto(ω)dω

=− 1
2π

∫
∞

−∞

Fpto(ω)V (−ω)dω

=− 1
2π

∫
∞

−∞

Fpto(ω)V ∗(ω)dω

=− 1
2π

∫
∞

−∞

Zpto(ω) ·V (ω) ·V ∗(ω)dω
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=− 1
2π

∫
∞

−∞

Zpto(ω)V (ω)2dω (6.9)

The relationship between Fpto and Fex is:

Fpto( jω) =
Zpto( jω)

Zpto( jω)+Zi( jω)
Fex( jω) (6.10)

and the velocity is:

V ( jω) =
1

Zpto( jω)+Zi( jω)
Fex( jω) (6.11)

The spectra expression of Fpto can be provided by combining the two equations above, as
follows:

ΦFpto,V ( jω) =
Zpto( jω)

Zpto( jω)+Zi( jω)
· 1

Zpto( jω)+Zi( jω)

·Fex( jω) ·Fex( jω)

=
Zpto( jω)

|Zpto( jω)+Zi( jω)|2
ΦFex( jω) (6.12)

where ΦFex( jω) = S( jω)|Hex( jω)|2 is the spectrum of the excitation force and S( jω) is the
Pierson-Moskowitz spectrum.

Finally, the total energy converted by the WEC can be expressed as follows:

E =− 1
2π

∫
∞

−∞

Zpto( jω)

|Zpto( jω)+Zi( jω)|2
ΦFex( jω) (6.13)

6.2.1 Passive loading control

Passive loading control was introduced in section 3.4, and is the most basic control assump-
tion of the WEC. The optimal load resistance is set to be:

Ropt( jω) =
√

Ri( jω)+Xi( jω) (6.14)

and

Zi( jω) = Ri( jω)+ jXi( jω) (6.15)
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The eighth-order approximation of the intrinsic impedance was calculated in section 5.2.
The magnitude and phase of the eighth-order approximation are shown in figs6.1 and 6.2.

The relationship between Ropt(ω) and frequency is given in fig6.3. Ropt(ω) can be taken
to be a constant value for a given, specified frequency of irregular waves. This specified
frequency can be set to be the peak frequency of the wave spectrum, as discussed in chapter
2.

0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

14
x 10

7

M
ag

ni
tu

de
 (a

bs
)

Bode Diagram

Frequency[rad/s]  (rad/s)

Zi(w), 8th order

Zi,opt(w)

Figure 6.1 Comparison of magnitudes of the eighth-order approximation and the optimal
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The construction of the passive loading control is as follows:

(−1.8s5+4.86s4−7.128s3+4.716s2−1.296s)×10−6

s6−2.7s5+5.44s4−6.748s3+6.408s2−3.784s+0.96

+
+

f ex( t)

f PTO(t)
v (t )

WEC

Ropt(ω)

Figure 6.4 The construction of the passive loading control

The energy absorbed using the passive loading control can be determined as follows:

E =− 1
2π

∫
∞

−∞

Fpto(ω)V (−ω)dω

=− 1
2π

∫
∞

−∞

Ropt(ω)|V (ω)|2dω (6.16)
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The relationship between absorbed energy with time is:
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Figure 6.5 The energy absorbed using the passive loading control against time

The absorbed energy achieved by this system is around −9.998×10−7kg · (m/s)2.

6.2.2 Velocity-tracking control

Velocity-tracking control is used to deliver the optimal velocity. The optimal relationship
was given in section 5.2, and is as follows:

Zr,opt( jω) =
1

2(B( jω)+Kv)
(6.17)

The Laplace transform of eq(6.17) is:

Zr,opt(s) =
1

2(B(s)+Kv)
=

1
Zi(s)+Zi(−s)

(6.18)

The second-order approximated transfer function for the intrinsic impedance was also
given in section 5.3. Hence, the constant approximated value of Zr,opt( jω) is 9.8936−6. The
controller plant was described by eq(5.6), where the lower level controller could be any given
controller. Two different lower level controllers will be compared in the following section.

PID control

A PID controller can be used as a lower level controller to track the optimal velocity. The
construction of the velocity-tracking control is as follows:
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Figure 6.6 The construction of the velocity-tracking control using a PID controller
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Figure 6.7 The energy absorbed by the velocity-tracking construction using a PID controller

The energy absorbed by the velocity-tracking control using a PID controller is shown in
fig6.7. It can be seen that the energy absorbed from the velocity-tracking control is much
higher than that for the passive loading control. It can achieve −6.33×108kg · (m/s)2.

IMC control

An internal model control (IMC) was introduced in reference [39], which could also be used
instead of the previous PID control. The energy absorbed by the IMC controller will be given
for comparison. More details about the IMC can be found in reference [39].
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Figure 6.8 The energy absorbed by velocity-tracking using an IMC controller

The energy absorbed by velocity-tracking using an IMC controller is around −6.386×
108kg · (m/s)2, which is slightly greater than that absorbed by the PID controller, at −6.33×
108kg · (m/s)2.

6.2.3 Approximate complex conjugate control

Approximate complex conjugate control was described in section 3.4.1. The ideal situation
is that the control impedance equals the complex conjugate of the intrinsic impedance. The
frequency domain of the control force is given as follows:

Fpto( jω) =−Z∗
i ( jω)V ( jω) (6.19)

Complex conjugate control can be implemented via eq(6.19); there is no need to calculate
the optimal velocity for the system. The construction of complex conjugate control is given
in fig6.9.

The energy absorbed by the complex-conjugate control construction is given in fig6.10.
The maximum absorbed energy extracted from the feedback control construction is −6.58×
108kg · (m/s)2. Thus, it can absorb more energy compared to the other control construc-
tions and, certainly, more than the IMC control. Moreover, the complex conjugate control
construction is simpler than the others, so complex conjugate control has been chosen for
simulation in the following section.
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6.3 Maximizing absorbed wave energy from a wave energy converter
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Figure 6.9 The construction of the feedback control
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Figure 6.10 The energy absorbed by the feedback control

6.3 Maximizing absorbed wave energy from a wave energy
converter

The optimal complex conjugate of the intrinsic impedance was calculated in section 5.2 using
eq(5.16) as follows:

Zpto( jω) = Z∗
i ( jω)

∼=
s6 −2.7s5 +5.44s4 −6.748s3 +6.408s2 −3.784s+0.96

−1.8×10−6s5 +4.86×10−6s4 −7.128×10−6s3 +4.716×10−6s2 −1.296×10−6s
(6.20)
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6.3 Maximizing absorbed wave energy from a wave energy converter

And the bode plot of Zpto( jω) is as follows:
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Figure 6.11 Bode plot of load impedance

Eq(6.20) was shown to be non-causal in chapter 3. Hence, it can be approximated via the
Nelder–Mead method to gain a causal approximation.

A cost function, (J(.)), has been proposed to calculate the difference between the optimal
control impedance, Zpto(s), and the approximated control impedance, G(s):

J(G(s)) =
∫

∞

−∞

|Zpto(s)−G(s)|2 (6.21)

where G(s) is the different approximated transfer functions used to determine the control
impedance; the Matlab code fminsearch can be used to calculate the cost function above.

The Nelder–Mead method

As mentioned earlier, the Matlab function fminsearch can be used to calculate the cost
function. The Nelder-Mead simplex method is the inside algorithm of the Matlab command
fminsearch. The theory underlying the Nelder-Mead simplex method will be presented in
the following section. However, the calculation of the cost function only relies on the the
Matlab command fminsearch.
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6.3 Maximizing absorbed wave energy from a wave energy converter

The Nelder–Mead method can be used to find the local minima of a function without
requiring any derivative information [63, 85].

The Nelder–Mead method is first used to construct an initial simplex. The simplex is
N-dimensional and contains N + 1 test variables. It compares the value of the objective
function with each test variable. It essentially searches for a new test variable to replace one
of its earlier test variables, the concept being to replace the worst-preforming test variable
with a new variable on the midpoint of the line [63] between the best-performing and the
second best performing test variables. If the value of the function with the new test variable
is smaller than the current best test variable, then another new test variable is found along the
extension line between the worst preforming variable and the midpoint; the new test variable
should move away from the worst variable. By contrast, if the value of the function with the
new test variable is larger than the second-worst performing variable, then the search would
move towards the worst variable.

The processes above can be classified by the four steps described in reference [78]. The
first step is called the reflection, which creates a new variable that is reflected through the
centroid of the best, the worst, and the second-worst variables. If the value of the function
using this new variable is between the best and the second-worst variable, then the iteration
process stops. The second step is called the expansion. It is used to find a new variable when
the value of the function is smaller than the function with the best variable. The third step
is called the contraction and is the opposite of the expansion step. The last step is called
shrinking. The worst and the second-worst variables shrink towards the best variable.

The first-order approximated transfer function for the control impedance can be obtained
by recalling the cost function, eq(6.21), as follows:

Ẑpto,1st(s) =
4.742×104s−7.332×105

s
(6.22)

The first approximated transfer function with second-order numerators can be calculated
using the Nelder–Mead method:

Ẑpto,2nd(s) =
−5.264×105s2 +4.742×104s−7.418×105

s
(6.23)

The second-order approximated transfer function with third-order numerators can be
obtained using the same process:

Ẑpto,3rd(s) =
−4.048×104s3 −5.248×105s2 +0.804×104s−7.419×105

0.1003s2 + s
(6.24)

116



6.3 Maximizing absorbed wave energy from a wave energy converter
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Figure 6.12 Comparison between the different order approximated transfer functions using
the Nelder-Mead method

The comparison of the bode diagram of the transfer functions eq(6.22), (6.23), and (6.24)
set out above with the optimal control impedance given as eq(6.20) in fig6.12.

However, establishing the approximated transfer functions eq(6.22), (6.23), and (6.24)
are not the objective of this project. Rather, it is to maximise the total energy converted by
the WEC. In order to do this, the cost function, eq(6.13), should be recalled:

J(E) =− 1
2π

∫
∞

−∞

Ẑpto(s)
|Ẑpto(s)+Zi(s)|2

ΦFex(s) (6.25)

which relates to eq(6.13). The previous different order approximated transfer functions can
be assumed to be the initial transfer functions for eq(6.25).

The Nelder-Mead method is again used to improve the accuracy of the first-order approx-
imated transfer function. The comparative result is given in fig6.13.
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Figure 6.13 Comparison of first-order transfer functions using the Nelder-Mead method

The cost function using the first-order transfer function was found to be −5.7377e6. The
new first-order transfer function is given as follows:

Z̃pto,1st(s) =
9.89×104s−7.436×105

s
(6.26)

If eq(6.23) is substituted into eq(6.25), then the new first-order approximated transfer
function with second-order numerator can be calculated using the Nelder-Mead method:

Z̃pto,2nd(s) =
−4.076×105s2 +8.244×104s−7.407×105

s
(6.27)

The comparison of two first-order approximated transfer functions are given in fig6.14.
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Figure 6.14 Comparison of second-order transfer functions using the Nelder-Mead method

The cost function J2nd(E) for the second-order transfer function is equal to −7.1532e6.
The new second-order transfer function with third-order numerator can be directly found

using the same method. Hence, the new second-order transfer function can be calculated
using eq(6.25) and is obtained as follows:

Ẑpto(s)3rd =
−4.374e4s3 −4.776e5s2 +8272s−7.416e5

0.1007s2 + s
(6.28)

The result is given in fig6.15. The cost function, J3rd(E), is the smallest of all the cost
functions; its value is −7.1853e6. It means the cost function J3rd(E) closest to the optimal
system.
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Figure 6.15 Comparison of the third-order transfer functions using the Nelder-Mead method

6.4 Mechanical network realisation for WEC

6.4.1 Background and introduction to mechanical network realisation

Mechanical network realisation will be introduced in this section via a one-degree of freedom
floating system for wave energy conversion, which is one type of mechanical one-port
network. The inerter was introduced as the mass element with an applied force that is
proportional to the relative acceleration across the terminal networks [87, 100]. Mass is
an element of an ideal mechanical one-port network [86], assuming that such a network
consists of elements such as springs, masses, and dampers. Similarly, the electrical system
involves an inductor, resistance , and capacitor. The force-current analogy is used to present
the relationship between them, and was introduced in reference [86] as follows:
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6.4 Mechanical network realisation for WEC

f orce ↔ current

velocity ↔ voltage

spring ↔ inductor

damper ↔ resistor

mass ↔ capacitor

The reason for the mass-capacitor analogy is that this follows Newton’s Second Law. It
defines one terminal as the centre of mass, and the other as a fixed point in the inertial frame.
Hence, the mass can be seen as a grounded capacitor.

An RLC circuit can be used to express the relationship presented in section 6.4.1. The
equation of the inductor is given as follows:

di
dt

=
1
L
(v2 − v1) (6.29)

where L is the inductance and v1,v2 it the voltage across the inductance.
The capacitor is given as:

i =C
d(v2 − v1)

dt
(6.30)

where C is the capacitance.
The last element of the RLC circuit is the resistor, which is given as follows:

i =
1
R
(v2 − v1) (6.31)

where R is the resistance.
The corresponding mechanical system is a mass-spring-damper system. It includes a

spring, mass, and damper with the following definitions:

dF
dt

=
1
k
(v2 − v1) (6.32)

F = m
d(v2 − v1)

dt
(6.33)

F = c(v2 − v1) (6.34)
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6.4 Mechanical network realisation for WEC

where the F is the force, k is the stiffness, v is the velocity, m is the mass and c is the load
resistance.

Hence, it can be seen that the force acting on the mass can be expressed as follows:

F = a(v̇2 − v̇1) (6.35)

where a is called the inertance, in units of kilograms, and v̇ is the acceleration. The stored
energy in the inerter is also given as follows:

E =
1
2

a(v2 − v1)
2 (6.36)

As mentioned in reference [86], the inerter can be seen as a kind of mass. However, it has
to meet several requirements. Firstly, the inerter device should have a small mass, and this
is independent of the required value of the inertance. Secondly, there is no need to connect
the mechanical ground. Thirdly, it has a finite linear travel. The last condition is that inerter
should satisfy any motion and direction. An inerter could be one solution to the realisation of
a mechanical network.

The mass term is used in the WEC power take-off device, which may have two basic
connections [100]:

S1 S2 S3

k c k kc
c

b

b

Figure 6.16 WEC power take-off devices: S1 basic ideal, S2 parallel idea with mass term, S3
serial idea with mass term

The force given by the above configurations can be given as follows:

S1 : Fu(s) = (
k
s
+ c)V (s) (6.37)

S2 : Fu(s) = (
k
s
+ c+bs)V (s) (6.38)
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6.4 Mechanical network realisation for WEC

S3 : Fu(s) = (
k
s
+

1
1
bs +

1
c

)V (s) (6.39)

where S2 is a basic parallel connection with the mass term, and S3 is a basic serial connection.
There are several different connections that can be obtained using the above basic

connection. They can produce different order Laplace transforms, and can be written as
follows:

S4 S5

k k

k b

k b

b

b
c

c

Figure 6.17 Configurations S4 and S5

S6 S7S6

k k

k b
k b

k a k ac

c

b b

Figure 6.18 Configurations S6 and S7

The forces given by the above configurations can be shown as follows:

S4 : Fu(s) = (
k
s
+

1
s
kb
+ 1

cs +
1
b

)V (s) (6.40)

S5 : Fu(s) = (
k
s
+

1
1

kb
s +bs

+ 1
c

)V (s) (6.41)
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6.4 Mechanical network realisation for WEC

The forces given by the S6 and S7 configurations are given as follows:

S6 : Fu(s) = (
k
s
+

1
s
kb
+ 1

ka
s +c+bs

)V (s) (6.42)

S7 : Fu(s) = (
k
s
+

1
1

1
ka
s +bs

+ 1
kb
s +c

)V (s) (6.43)

These correspond to second-, third-, fourth- and fifth-order transfer functions.
Note that the S1 configuration, eq(6.37), can be used to express the spring-damping

system. The S2 configuration can be used to express the mass-spring-damping system. It has
been shown that non-causality can be overcome with a second-order model in section 5.3,
which means that such a system can easily deal with a WEC system. It is worth pursuing
high-order transfer functions with mass that may potentially improve the performance of the
control.

6.4.2 Mechanical network realisation for WEC systems and simulation
results

The wave energy conversion system has a similar structure to a suspension strut, the latter
being one example of mechanical network realisation [86, 100]. Maximum power absorption
from the WEC system requires the excitation force and velocity to be in phase. This is
also the case for the optimal performance of a suspension strut with a mass term. However,
in a suspension strut all elements are passive; the design of mechanical networks for PTO
includes some active elements that are negative.

A typical oscillating system for the WEC was given in section 2.3.1. Hence, a basic
model for the PTO device that includes a mass term is shown in fig6.19. The equation of
motion in the Laplace-transformed domain is:

ms2z = Fex(s)−Fr(s)−Fs(s)−Fv(s)− sY (s)z (6.44)

where m is the buoy’s mass, k is the spring stiffness, c is the damper, and b is the mass.
The mechanical admittance, Y (s), is the PTO impedance, Zpto(s). The optimal control

is a fifth-order transfer function, which is given in eq(6.20). The simple spring-damper
system with a mass does not meet the requirements for optimal control, and more complex
configurations should be considered in the following discussion. Firstly, a general form of a
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Sea level

x (t )

Buoy

  m

F ex(t )

F r(t)

F PTO(t)

bckY (s)

Sea bed

Figure 6.19 PTO device includes mass term

real rational function can be considered as follows:

Y (s) = k
a0s2 +a1s+1

s(d0s2 +d1s+1)
(6.45)

Secondly, [86] the Brune Synthesis can be introduced to realise the admittance of eq(6.45).
The first step of the Brune Synthesis is to remove the imaginary axis poles and zeroes of
eq(6.45) [8, 86]. An increased complexity impedance with a mass term can be considered.
Thus, eq(6.45) can be rewritten as:

Y (s) = k
a0s2 +a1s+1

s(d0s2 +d1s+1)
+ms =

k
s
+

k(β2s+β3)

d0s2 +d1s+1
+ms (6.46)

and the second term of eq(6.46) can be decomposed as follows:

d0s2 +d1s+1
k(β2s+β3)

=
d0

β2k
s+

β1s+β2

β2k(β2s+β3)
(6.47)

=
d0

β2k
s+

β1

β 2
2 k

s+
β4/(β

2
2 k)

β2s+β3
(6.48)

=
d0

β2k
s+(kβ3 +

β4ks
β1s+β2

)−1 (6.49)
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6.4 Mechanical network realisation for WEC

where β1 equals to a0d1 −a1d0, β2 is equal to a0 −d0, β3 equals to a1 −d1, and β4 equals to
β 2

2 −β1β3.
Eq(6.48) and eq(6.49) give the admittance, Y (s), which is used to replace the mass-spring-

damper of the PTO device in fig6.19. The system with admittance in eq(6.48) can be used to
provide the following model: [86]:

c2

b1

c1k

b

Figure 6.20 System with admittance6.48

and the system with admittance in eq(6.49) provides the following model, as shown in
figure 6.21:

c4

b2
c3k

b

Figure 6.21 System with admittance6.49
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Each element of the model can be calculated as shown below [86]:

c1 =
kβ 2

2 β3

β4
c2 =

kβ 2
2

β1
b1 =

kβ 3
2

β4
(6.50)

c3 = kβ3 c4 =
kβ4

β1
b2 =

kβ4

β2
(6.51)

To consider the potential benefit of the mass term utility, simple spring-damper and
mass-spring-damper systems can be compared; the maximisation of useful energy is the
objective in this section. The energy absorbed is a combination of useful energy and reactive
energy.

Eabs = Euse f ul +Ereactive (6.52)

The approximated transfer functions calculated by the Nelder-Mead method are used in
the following for convenience. The first-order transfer function of the PTO impedance of the
simple spring damper is given by eq(6.26):

Zpto(s)SD =
9.89e4s−7.436e5

s
(6.53)

The spring damper system can be given as:

Zpto(s)SD =
cs+ k

s
(6.54)

Hence, the optimal values of spring stiffness, k =−7.436e5kg/s2, and the damper constant,
9.89e4KNsm−1, can be obtained.

For the mass-spring-damper system with a positive real admittance of Y (s), the transfer
function of the PTO impedance of the system is given as follows:

Zpto(s)MSD =
−4.076×105s2 +8.244×104s−7.407×105

s
(6.55)

The value of each element of the mass-spring-damper system can be calculated using
eq(6.55) as follows:

b =−4.075e5kg k =−7.407e5kg/s2 c = 8.244e4KNsm−1
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6.4 Mechanical network realisation for WEC

Note that the parameters b and k are negative, and thus correspond to active elements,
while the damper with the positive parameter c is the passive element absorbing energy.

The PTO realisation of impedance eq(6.55) is given as per fig6.22.

ck

b

F PTO

F

v1=v

v 2=0

Figure 6.22 System with admittance6.55

where v1 and v2 are used to denote the velocities at the terminals, and F denotes the force
acting on the PTO. The control force, FPTO, is equal to F though with the opposite sign.

The other optimised second-order approximated transfer function was given in eq(6.28)
as follows:

Zpto(s)MSD2 =
−4.374e4s3 −4.776e5s2 +8272s−7.416e5

0.1007s2 + s
(6.56)

The mass, b, and stiffness, k, can also be estimated using eq(6.56) and eq(6.45) as follows:

b =−4.931e5kg k =−7.407e5kg/s2 a0 = 7.02e−2

a1 =−5.04e−2 d0 = 0 d1 = 8.54e−1 (6.57)

The other elements of the systems using eq(6.48) and eq(6.49) are given as follows:

c1 =−43.842kNsm−1 c2 = 103.488kNsm−1

b1 = 2.818e5kg c3 =−76.066kNsm−1

c4 = 17.956kNsm−1 b2 = 8.483e5kg
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The block diagram for the simple spring-damper system can be illustrated as follows:

1
Z i(ω)

+
+

c

- -

f ex(t)

f PTO(t)

v (t )

WEC

k
s

Figure 6.23 Block diagram of proposed spring-damper system

For comparison, the block diagram for the approximate complex conjugate control
(spring-damper with mass) can also be given, as per figure 6.24:

1
Z i(ω)

+
+

c

- -

f ex( t)

f PTO(t)

v (t )

WEC

k
s

b⋅s

-

Figure 6.24 Block diagram of proposed complex conjugate control

This approach consists of the wave excitation force acting on the system. The velocity is
generated by the combination of the wave excitation force and the PTO through a feedback
complex conjugate control. The useful force, Fu, is generated by the positive damper
resistance multiplied by the velocity of the buoy.
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6.4 Mechanical network realisation for WEC

The real-time solutions with admittances eq(6.48) and eq(6.49) are presented below,
whilst the block diagram of the control with admittance6.48 is also shown in fig6.25. The
construction of the control with admittance6.48 is similar to the complex conjugate control.
However, there is another force, Fi, acting on the system that is generated by damper c1 and
inerter b1. Moreover, the force Fi moves in the opposite direction to the useful force, Fu.

1
Z i(ω)

+
+- -

f ex(t )

f PTO(t)

v (t )

WEC

k
s

b⋅s

-

+
- c2 +

- b1⋅s

c1

Figure 6.25 Block diagram of proposed control with admittance6.48

The block diagram for the proposed control with admittance6.49 is given as follows:

1
Z i(ω)

+
+- -

f ex(t )

f PTO(t) v (t )

WEC

k
s

b⋅s

-

+
- c4 b2⋅s

-

c3

Figure 6.26 Block diagram of proposed control with admittance6.49

It has a similar construction to the admittance in eq(6.48). The force Fi acts on the system,
which is generated by the damper c3 and inerter b2.

By recalling eq(6.52), the absorbed energy is the sum of the reactive and useful energies.
The absorbed energy is used to denote the energy absorbed from the sea by the PTO. The
useful energy is used to denote the energy absorbed by the energy-absorbing element in each
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6.4 Mechanical network realisation for WEC

design. The reactive energy is the energy produced by all other elements of the PTO. The
energy has a negative sign, which corresponds to negative work being done by the PTO. The
useful energy produced is always negative, whilst the reactive and absorbed energy can be
positive or negative.

The absorbed energy extracted by these control systems is given in fig6.27.
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Figure 6.27 The absorbed energy extracted by the feedback control with the spring-damper
system
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Figure 6.28 The absorbed energy extracted by the complex conjugate control with the
mass-spring-damper system

The absorbed energy extracted by the mass-spring-damper system can achieve a maxi-
mum of −6.58×108kg · (m/s)2, while the absorbed energy extracted by the simple spring-
damper system can only achieve −2.72×108kg · (m/s)2. The mass-spring-damper system
using a mass (or inerter) can achieve 241.9% more absorbed energy than the SD system.
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6.4 Mechanical network realisation for WEC

Systems with more complex configurations, such as admittance6.48 and admittance6.49
that are based on second-order approximated transfer functions with third-order numerators
are expected to achieve better performances than the mass-spring-damper system. The
absorbed energy extracted by these systems is given in fig6.29 and fig6.30.
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Figure 6.29 The absorbed energy extracted by the feedback control with admittance6.48
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Figure 6.30 The absorbed energy extracted by the feedback control with admittance6.49

Both these systems are found to achieve an absorbed energy equal to −6.64×108kg ·
(m/s)2 due to the fact that they are both based on the same second-order approximated
transfer function, eq(6.28). The absorbed energy is not dependent on its particular realisation,
but rather on their PTO impedances. They achieve a slightly better performance than the
mass-spring-damper system.
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6.4 Mechanical network realisation for WEC

The other objective is to compare the maximum amount of useful energy that can be
extracted by the different control systems. The useful energy comparison is as follows:
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Figure 6.31 The useful energy extracted by the feedback control with the spring-damper
system
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Figure 6.32 The useful energy extracted by the complex conjugate control with the mass-
spring-damper system

The useful energy extracted by the SD system is −2.74× 108kg · (m/s)2, whilst that
extracted by the mass-spring-damper system is −6.88×108kg · (m/s)2. The absorbed energy
extracted by admittance6.48 and admittance6.49 are identical; however, the amount of useful
energy absorbed by each is different. The system with admittance6.48 absorbs a useful
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Figure 6.33 The useful energy extracted by the complex conjugate control with admit-
tance6.48
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Figure 6.34 The useful energy extracted by the complex conjugate control with admit-
tance6.49

energy of −6.9×106kg · (m/s)2, while the control system with admittance6.49 achieves a
useful energy of −8×106kg · (m/s)2, that is, about 16% more than the admittance6.48.

The reactive energy for each system should be compared. The reactive energy from the
SD system, which is generated by the spring term, is given in fig6.35. The reactive energy
from the mass-spring-damper system is generated by the spring term and mass term. The
reactive energy is given in fig6.36.
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Figure 6.35 The reactive energy extracted by the feedback control with the SD system
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Figure 6.36 The reactive energy extracted by the feedback control with the mass-spring-
damper system

The reactive energy from the system with admittance6.48 is more complex. It combines
with the spring term, the mass term, and the force, Fi, that acts on damper c1 and mass b1.
The reactive energy is given in fig6.37.

The reactive energy from the system with admittance6.49 is similar to the system with
admittance6.48. The force, Fi, acts on damper c3 and mass b1 such as to give the extra
reactive energy. The total reactive energy can thus be given in figure6.38.

The system with admittance6.49 produces the most reactive energy of all the systems
considered. Accordingly, it has the highest level of useful energy.
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6.4 Mechanical network realisation for WEC
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Figure 6.37 The reactive energy extracted by the feedback control with admittance6.48
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Figure 6.38 The reactive energy extracted by the feedback control with admittance6.49

The impedance eq6.53 produces the least useful energy, followed by the realisation of
fig6.22, fig6.20, and the realisation of fig6.21. However, a large improvement in energy
absorption can be obtained by increasing the complexity of the PTO design.

On the other hand, with respect to the basic impedance eq6.55, a small improvement
in energy absorption can be obtained by increasing the complexity of the PTO design; this,
however, spends more reactive energy. However, the realisation of fig6.20 is preferable to
the realisation of fig6.21, since the former produces less reactive energy but with the same
absorbed energy.
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6.5 Chapter summary

Table 6.1 Performance Table of Different Control Methods

Absorbed Energy
The passive loading control −9.998×10−7kg · (m/s)2

The velocity-tracking control (PID) −6.33×10−8kg · (m/s)2

The velocity-tracking control (IMC) −6.386×10−8kg · (m/s)2

The approximate complex-conjugate control −6.58×10−8kg · (m/s)2

Table 6.2 Performance Table of Mechanical Network Realisation for WEC systems

Absorbed Energy Useful Energy
The spring-damper system −2.72×10−8kg · (m/s)2 −2.74×10−8kg · (m/s)2

The mass-spring-damper system −6.58×10−8kg · (m/s)2 −6.88×10−8kg · (m/s)2

Admittance eq6.48 −6.64×10−8kg · (m/s)2 −6.9×10−8kg · (m/s)2

Admittance eq6.49 −6.64×10−8kg · (m/s)2 −8×10−8kg · (m/s)2

6.5 Chapter summary

A comparison of the absorbed energy with different control methods was given in section
6.2. The performance table for different control methods was given in table6.1. The non-
optimal passive loading control was presented in section 6.2.1, and was subsequently used
as a reference because it is convenient for modelling and simulation. The velocity-tracking
control was introduced in section 6.2.2. It was used as a controller to track the error
between the desired velocity and the real velocity. The PID and IMC (internal model control)
controllers developed in reference [39] were used for comparative purposes. The complex
conjugate control was given in section 6.3.3. This absorbed the most energy of all the control
methods, and hence the design of the PTO followed the complex conjugate control.

The Nelder–Mead method fminsearch was introduced in section 6.2, which was used to
find the approximated transfer functions for the control impedance. The cost function for the
maximum absorbed energy was also presented in this section. The Nelder–Mead method
was used to find a local minimum for the cost function J(G(s)) for the control impedance.
The different order approximated transfer functions were then tested in order to draw a
comparison in this regard. The bode diagram of approximated transfer functions was used
to judge the performance. The higher order approximated transfer functions were shown to
achieve better performance. The criterion J(E) was then minimised with respect to different
order approximated control impedances.

The mechanical network realisation for WEC was presented in section 6.4. The wave
energy conversion system has a similar structure to a suspension strut [86, 100], though
with the caveat that in a suspension strut, all elements are passive. The design of the
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6.5 Chapter summary

mechanical networks for PTO includes a number of active elements. There are several
mechanical network realisations given in this section. An inerter could be one solution for
mass realisation. They can be expressed with different order transfer functions. A simple
second-order transfer function with a mass term can deal with complex conjugate control,
and thus overcome the problems associated with non-causality. More complex configurations
with masses are worth pursuing. Hence, an increased complexity impedance with two
different mechanical network realisations was given for comparison.

The spring-damper system, mass-spring-damper system, and systems with complexity
admittances were used for simulations in section 6.4.2. The performance table for these
systems for WEC is given in table6.2. A comparison of the absorbed energy extracted
by these admittances was also given in this section. Note that the approximate complex-
conjugate control is the same as the mass-spring-damper system. Hence, the absorbed
energy for the approximate complex-conjugate control shown in table6.1 and the absorbed
energy of the mass-spring-damper system have the same value. The control systems with
admittances6.48 and 6.49 achieved the greatest absorbed energy of all the control systems,
which can be seen in table6.2. However, the control system with admittance6.48 spends
less reactive energy compared to that with admittance6.49, so it can be said that the control
system with admittance6.48 has the best overall performance.
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Chapter 7

Test with real ocean data

7.1 Chapter overview

First, real dataset will be described in section 7.2. Power spectra and wave elevations will
also be presented. Secondly, real ocean data will be tested with the predictors introduced
in chapter 4. The performance of the predictors in a real ocean will be discussed. Finally,
the controllers proposed in chapter 6 will be tested with real ocean data in section 7.4. The
energies absorbed and energies produced by teh associated impedances will be discussed in
terms of their use with real ocean data.

7.2 Description of real ocean data and wave spectrum

The Irish Marine Institute has provided real wave data sets from two different locations
[52]. One of the datasets was collected from Berth, which is located on the west coast
of Ireland; the longitude and latitude of this location is 54◦33

′
N, 10◦08

′
W. Datasets were

collected in 2012. The sampling frequency used was 1.28Hz, with data consisting of two
30-minute record sets collected each hour. This means that each dataset contains 2304 data.
The second data were also collected in Galway Bay near Berth, at a longitude and latitude
of 53◦13

′
N, 9◦16

′
W. This buoy also collected two 30 minute record sets each hour with a

sampling frequency of 1.28Hz, again for the year 2012. The last buoy was located at Pico
Island, which is in the Atlantic Ocean. The longitude and latitude of Pico Island is 38◦33

′
N,

28◦34
′
W. Data also consists of two 30 minute record sets for each hour with a sampling

frequency 1.28Hz, though these were collected in 2008. Galway Bay has low energy sea
states as a fact of its location; the other two locations contain very high energy waves [35].
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7.2 Description of real ocean data and wave spectrum

A wave spectrum is the most important tool by which one can analyse the main character-
istics of waves. Wave energy is distributed across different wave frequencies, and the reader
is referred to the details of wave spectra that were introduced in chapter 2. A wave spectrum
contains several important parameters. One is significant wave height, Hs, whilst a second is
the peak period, Tp. The third is the zero-crossing period, Tz.

As mentioned above, real-world data for the first location at Berth was recorded for every
half-hour period. Four dataset records will be given. Each wave spectrum for each half hour
is given as per the following:

Figure 7.1 Wave spectra measured from 12 : 00 to 13 : 30

A wave spectrum is measured and estimated by the W@ves21 software [11]. The
spectrum has been estimated using three different spectrum methods. The measured spectrum
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7.2 Description of real ocean data and wave spectrum

is shown with a solid red solid line, whilst the Pierson-Moskowitz spectrum is shown by a
green line. The second method is the Bretschneider method, which is shown with a blue line,
whilst the third method is the Ochi-Hubble spectrum (3− param), which is shown with a
purple line. More details about these wave spectra can be found in section 2.2.3.

Table 7.1 Main wave characteristics (Berth)

Time 12 : 00 12 : 30 13 : 00 13 : 30
Hs(m) Tz(s) Tp(s) Hs(m) Tz(s) Tp(s) Hs(m) Tz(s) Tp(s) Hs(m) Tz(s) Tp(s)
2.19 6.48 13.34 2.16 6.49 12.82 2.54 6.89 12.78 2.18 5.97 14.40

Significant wave characteristics for Berth are reported in the table 7.1. The dataset
collected at 13 : 00 has the highest significant wave height, Hs, and zero crossing period, Tz.
It can be seen from figure 7.1 that this dataset alo has the biggest wave spectrum. Real wave
datasets in the time domain are given as follows:
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7.2 Description of real ocean data and wave spectrum

Figure 7.2 Wave elevations measured from 12 : 00 to 13 : 30

The second location is at Galway Bay. Each dataset contains 2304 data points due to the
sampling frequency. The wave spectrum for each time interval is given below:

Figure 7.3 Wave spectra measured from 00 : 00 to 01 : 30
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7.2 Description of real ocean data and wave spectrum

Table 7.2 Main wave characteristics (Galway Bay)

Time 00 : 00 00 : 30 01 : 00 01 : 30
Hs(m) Tz(s) Tp(s) Hs(m) Tz(s) Tp(s) Hs(m) Tz(s) Tp(s) Hs(m) Tz(s) Tp(s)
0.35 2.48 4.90 0.39 2.48 4.66 0.44 2.47 3.99 0.45 2.56 4.53

The main wave characteristics for each wave dataset, including Hs, Tz and Tp, are given
in table7.2.

A comparison of the datasets collected at 00 : 00 and 00 : 30 shows that each have
the same zero crossing period though with different significant wave heights. The power
spectrum measured at 00 : 00 is smaller than the one measured at 00 : 30, which can be shown
using eq(2.11). The significant wave height collected at 01 : 30 is the highest; however, the
zero crossing period collected at 01 : 30 is the highest. Hence, the spectrum for 01 : 30 is
ultimately not the highest of the three.

Wave elevations measured in the Galway Bay area can be illustrated as follows:
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7.2 Description of real ocean data and wave spectrum

Figure 7.4 Wave elevations measured between 00 : 00 and 01 : 30

The significant wave height measured in Galway Bay is smaller than that of Berth. Real
wave elevations collected in Galway Bay are also smaller than those at Berth. Comparisons
of these data are given in fig7.2 and fig7.4.

The last real wave collection location was at Pico Island in the Atlantic. Each dataset
contains 2304 data, again as a consequence of the sampling frequency of 1.28Hz. The wave
spectrum for each measured time interval is similar to that of Berth:

Figure 7.5 Wave spectrum measured between 00 : 19 and 01 : 49
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7.2 Description of real ocean data and wave spectrum

The main wave characteristics, including Hs, Tz and Tp, for Pico Island are as follows:

Table 7.3 Main wave characteristics (Pico)

Time 00 : 19 00 : 49 01 : 19 01 : 49
Hs(m) Tz(s) Tp(s) Hs(m) Tz(s) Tp(s) Hs(m) Tz(s) Tp(s) Hs(m) Tz(s) Tp(s)
1.50 7.52 12.49 1.59 7.76 12.87 1.59 8.09 12.84 1.45 7.97 15.08

The dataset measured at 00 : 49 has the same significant wave height as the one measured
at 01 : 19; however, the zero crossing period collected for the former is slightly smaller, and
hence the wave spectrum measured at 00 : 49 is considered to be the slightly larger of the
two.

Wave elevations measured at Pico Island are shown as following:
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7.3 Real waves tested with prediction methods

Figure 7.6 Wave elevation measured from 00 : 19 to 01 : 49

Comparing the wave elevations measured in the three different locations, the highest
average significant wave height was found in Berth. Accordingly, overall wave elevations
measured in Berth are the highest of the three locations; in contrast, the average significant
wave height measured in Galway Bay is the lowest of the three locations. The lowest wave
elevations are presented in fig7.4.

7.3 Real waves tested with prediction methods

As mentioned in chapter4, predictions of either the velocity of a wave energy conversion
system or the excitation force can be used to overcome the non-causality problem. Simulation
data has been tested with three different prediction methods in chapter4. Multi-step predictive
identification has been shown to be a better prediction method than the least-squares system
and long-range predictive identifications. However, real wave data collected in the above
three locations is the main point that will be considered in this section.

7.3.1 Berth

Real wave elevations measured in Berth are presented in fig7.2. A comparison of prediction
accuracies for the LS, the LRPI and the MSPI methods for the time periods from 12 : 00 to
12 : 30 and 12 : 30 to 13 : 00 are given in figure7.7.

Here, the prediction steps have been set to 10, the sample frequency to 1.28Hz and the
model order is 12. Each time interval contains 2304 data points; however, only 500 points
from each dataset have been used for both convenience and figure clarity. Note that these
500 data points can be divided into identification and validation data. The first 100 data are
used for system identification, whilst the rest are used for validation. It can be seen from
fig7.11 that wave elevations start from 100×0.78 = 78s, and end at 500×0.78 = 390s. As
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Figure 7.7 Comparison of prediction accuracies from 12 : 00 to 12 : 30

figure7.7 shows, the results of the two comparisons over different time intervals show similar
performances. In the first few steps, the three prediction method results are almost identical,
with their differences only starting to become apparent after 1.5 seconds. MSPI performs
better than the other two methods. LRPI shows better performance than the LS method, the
latter being based on the one step ahead estimation. Real wave elevations and estimated wave
elevations generated by the three different methods in the time period 12 : 00−12 : 30 are
shown below:
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Figure 7.8 Real wave elevation and estimation using the LS method (12 : 00)
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Figure 7.9 Real wave elevation and estimation using the LRPI method (12 : 00)
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Figure 7.10 Real wave elevation and estimation using the MSPI method (12 : 00)

Real wave elevations measured in the 12 : 30− 13 : 00 time period and the estimated
wave elevations generated by the three different methods are shown below:
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Figure 7.11 Real wave elevation and estimation using the LS method (12 : 30)
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Figure 7.12 Real wave elevation and estimation using the LRPI method (12 : 30)
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Figure 7.13 Real wave elevation and estimation using the MSPI method (12 : 30)

As mentioned in section4.6, the model order in the autoregressive model can affect the
accuracy of the prediction. By increasing the model order from 12 to 24 at the same time
and location, a comparison of the subsequent prediction accuracies can be given as follows:
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Figure 7.14 Comparison of prediction accuracies from 12 : 00 to 12 : 30 using a model order
of 24
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7.3 Real waves tested with prediction methods

As fig7.14 shows, prediction accuracy can reach greater than 25% after 7.8 s in the
12 : 00− 12 : 30 period with a model order of 24. In fig7.7, all prediction methods gain
only a 10% prediction accuracy after 7.8 s in the 12 : 00−12 : 30 period with a model order
of 12. Similarly, a more than 20% predication accuracy can be achieved after 7.8 s in the
12 : 30−13 : 00 period with a model order of 24. However, all the prediction methods only
achieve around 10% prediction accuracy in the 12 : 30−13 : 00 period with a model order
of 12. This shows that larger model orders can achieve higher prediction accuracies.

Real wave and estimated wave elevations generated by the three different methods for
the time period between 12 : 00 and 12 : 30 with a model order of 24 are shown below:
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Figure 7.15 Real wave elevation and estimation using the LS method (12 : 00)
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Figure 7.16 Real wave elevation and estimation using the LRPI method (12 : 00)
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Figure 7.17 Real wave elevation and estimation using the MSPI method (12 : 00)
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Figure 7.18 Real wave elevation and estimation using the LS method (12 : 30)

50 100 150 200 250 300 350 400
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Sampling instant[Ts=0.78s]

Wav
e el

eva
tion

[m]

Long range prediction

 

 
Real data
Estmiation data

Figure 7.19 Real wave elevation and estimation using the LRPI method (12 : 30)
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Figure 7.20 Real wave elevation and estimation using the MSPI method (12 : 30)

7.3.2 Galway Bay

Real wave elevations measured in Galway Bay have also been presented in fig7.4. The wave
spectrum measured for Galway Bay is much smaller than that recorded for Berth, and so a
comparison of prediction accuracies is particularly worth pursuing. The prediction accuracy
of the wave elevations measured by the LS, the LRPI and the MSPI methods in the time
period between 00 : 00−01 : 00 is given in fig7.21:
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Figure 7.21 Comparison of prediction accuracies between 00 : 00 and 00 : 30

The predicted accuracy of wave elevations measured in Galway Bay is slightly lower
than those measured in Berth, most likely as a consequence of the predictors showing better
performance when fitting higher wave spectra. Note that the prediction step is 10 and the
model order is 12.

Real wave and estimated wave elevations generated using the three different methods in
the time period 00 : 00−01 : 00 and a model order of 12 are shown in the following figure:
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Figure 7.22 Real wave elevation and estimation using the LS method (00 : 00)
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Figure 7.23 Real wave elevation and estimation using the LRPI method (00 : 00)
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Figure 7.24 Real wave elevation and estimation using the MSPI method (00 : 00)
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Figure 7.25 Real wave elevation and estimation using the LS method (00 : 30)
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Figure 7.26 Real wave elevation and estimation using the LRPI method (00 : 30)
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Figure 7.27 Real wave elevation and estimation using the MSPI method (00 : 30)

As the figures7.22, 7.23, 7.24, 7.25, 7.26, and 7.27 show, wave elevations for this region
are much smaller than those collected in Berth, which is because the significant wave heights
of the these waves are the smaller of the two. It can be seen from the previous figures that
estimated wave elevations do not follow real wave elevations particularly well.

As mentioned before, increasing the model order can increase the associated prediction
accuracy, so consequently the prediction accuracy of wave elevations measured in the Galway
Bay with a model order of 24 are given in fig7.28.

Prediction accuracies measured for the 00 : 00 time interval with this higher model order
achieve approximately 10% greater prediction accuracy after 4s. However, the 00 : 30 time
interval with a model order of 24 did not achieve any improvement compared with the same
measurement using a model order of 12.
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Figure 7.28 Comparison of prediction accuracies between 00 : 00 and 00 : 30
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7.3 Real waves tested with prediction methods

Comparisons of real wave and estimated elevations computed with a model order of 24
can be illustrated as follows:
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Figure 7.29 Real wave elevation and estimation using the LS method (00 : 00)
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Figure 7.30 Real wave elevation and estimation using the LRPI method (00 : 00)
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Figure 7.31 Real wave elevation and estimation using the MSPI method (00 : 00)
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Figure 7.32 Real wave elevation and estimation using the LS method (00 : 30)
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Figure 7.33 Real wave elevation and estimation using the LRPI method (00 : 30)
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Figure 7.34 Real wave elevation and estimation using the MSPI method (00 : 30)
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7.3.3 Pico

The significant wave height and zero crossing period measured at Pico Island are both slightly
smaller than those measured at Berth. Hence, the prediction accuracies calculated using the
three prediction methods for Pico island are expected to be fairly similar to those calculated
for Berth; the prediction accuracy calculated for Pico Island between 00 : 19 and 01 : 19 with
a model order of 12 is shown in fig7.35:
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Figure 7.35 Comparison of prediction accuracies between 00 : 19 and 01 : 19

As shown in fig7.35, the prediction accuracy calculated for Pico Island is better than
that determined for Galway Bay whilst being slightly worse than that calculated for Berth
which, given the significant wave heights and zero crossing periods, is essentially as expected.
Real wave elevations and estimated elevations related to the above sea states can be given as
follows:
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Figure 7.36 Real wave and estimated wave elevations using the LS method (00 : 19)
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Figure 7.37 Real wave and estimated wave elevations using the LRPI method (00 : 19)
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Figure 7.38 Real wave and estimated wave elevations using the MSPI method (00 : 19)

50 100 150 200 250 300 350 400
−1.5

−1

−0.5

0

0.5

1

Sampling instant[Ts=0.78s]

Wa
ve 

ele
vat

ion
[m]

LS(K=1) recursive calculation based on K=1 

 

 
Real data
Estmiation data

Figure 7.39 Real wave and estimated wave elevations using the LS method (00 : 49)
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Figure 7.40 Real wave and estimated wave elevations using the LRPI method (00 : 49)
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Figure 7.41 Real wave and estimated wave elevations using the MSPI method (00 : 49)

The model order used for the three prediction methods was increased to 24. The prediction
accuracies that were calculated for the Pico Island data for this same time period as above
but using the higher model order are given in fig7.42.
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Figure 7.42 Comparison of prediction accuracies between 00 : 19 and 01 : 19
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The prediction accuracies calculated with a model order of 24 show slightly better
performances compared with the model order of 12. The higher model order achieved a more
than 10% increase in prediction accuracy for the 00 : 19−00 : 49 time period, and a more
than 10% increase in prediction accuracy for the 00 : 49−01 : 19 time period.

Real wave elevations and estimated wave elevations computed with a model order of 24
were as follows:
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Figure 7.43 Real wave and estimated wave elevations using the LS method (00 : 19)
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Figure 7.44 Real wave and estimated wave elevations using the LRPI method (00 : 19)
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Figure 7.45 Real wave and estimated wave elevations using the MSPI method (00 : 19)
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Figure 7.46 Real wave and estimated wave elevations using the LS method (00 : 49)
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Figure 7.47 Real wave and estimated wave elevations using the LRPI method (00 : 49)
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Figure 7.48 Real wave and estimated wave elevations using the MSPI method (00 : 49)

To summarise, prediction accuracy is clearly affected by the wave spectrum. The average
wave spectrum measured in Berth was the largest of the three locations considered. Corre-
spondingly, the prediction accuracy determined for this location showed the best performance.
By comparison, the average wave spectrum measured in Galway Bay was the lowest of
the three locations, and consequently it is hardly surprising that prediction accuracy for
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this location was the worst of the three locations. Indeed, with the average wave spectrum
measured for Pico Island being only slightly smaller than that of Berth, the fact that the
prediction accuracy thus determined was worse than that for Berth but better than that for
Galway Bay is entirely expected.

7.4 Restricted complexity control tested with real wave data

In section 6.5, restricted complexity controllers were introduced. The one normal (spring-
damper-mass) impedance and two increased complexity impedances that were tested with
simulated data have been compared. Parameters for the PTO impedance given by eq(6.55)
and eq(6.56) have been optimised using the Nelder-Mead method. Two increased complexity
impedances with the realisation of fig6.20 and the realisation of fig6.21 have been given.
The results of these comparisons are given in section 6.4.2. The two increased complexity
impedances obtain only a marginal improvement of about 3% compared to the normal
complexity impedances. However, this apparent failure does not necessarily translate to the
real world, and hence the real wave data collected from the three different locations will be
tested instead of the simulation data generated by the PM spectrum in the following section.

7.4.1 Berth

For Berth, datasets containing 480 data points have been used for calculations. The significant
wave height and zero-crossing period in the 12 : 00− 12 : 30 period were 2.18831 m and
6.476 s, respectively. A comparison of the absorbed energies comparison extracted from
the mass-spring-damper impedance and two increased complexity impedance models are
illustrated in fig7.49.
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Figure 7.49 Absorbed energies extracted from the feedback control model using three
admittances
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As mentioned in section 6.4.2, the absolute value is the sum of the absolute values of the
useful and reactive energies, which are also given in fig7.50 and fig7.51.
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Figure 7.50 Useful energies extracted from the feedback control model using three admit-
tances
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Figure 7.51 Reactive energies extracted by the feedback control model using three admit-
tances

Finally, the useful energy that can be obtained can be determined as −1.885× 108

J, whilst the absorbed energy can be obtain can be determined as −1.753× 108 J when
considering the mass-spring-damper impedance.

The two increased complexity impedances show identical performances when evaluated
in terms of the real wave data. They each obtained −1.774× 108 J absorbed energy and
−1.898×108 J useful energy.
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The other real wave dataset collected in Berth for the 12 : 30−13 : 00 time period has
also been tested. A comparison of the results for the mass-spring-damper and two increased
complexity impedance models is given as follows:
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Figure 7.52 Absorbed energies extracted by the feedback control using three different kinds
of admittance
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Figure 7.53 Useful energies extracted by the feedback control using three different kinds of
admittance

The mass-spring-damper admittance is represented by the dash-dot line in the fig-
ureB1230abs, 7.53, and 7.54. The admittance 6.48 is represented by a dotted line, and
the admittance 6.49 is represented by a solid line. The mass-spring-damper admittance can
achieve −2.464× 108 J of absorbed energy, as shown in fig7.52. Both admittances 6.48
and 6.49 achieved −2.518× 108 J absorbed energy. The useful energy extracted by the
mass-spring-damper admittance is −2.612× 108 J, whilst the useful energy extracted by
the admittances 6.48 and 6.49 are the same at −2.629× 108 J. Also, as shown in fig7.54,
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Figure 7.54 Reactive energies extracted by the feedback control using three different kinds
of admittance

the reactive energy spent in the mass-spring-damper admittance is greater than that of the
two increased complexity admittances. This was due to the fact that increased complexity
impedances can absorb more of the absorbed energy and spend less reactive energy, and this
is reflected in the Berth data for the 12 : 30−13 : 00 period.

7.4.2 Galway Bay

For Galway Bay, the wave spectrum is much smaller than for either of the other two locations.
The working performances of the three admittances are worth investigating and comparing.
In the 00 : 30−01 : 00 time period, the significant wave height and the zero-crossing period
are 0.38873 m and 2.477 s, respectively. A comparison of the results for the normal and two
increased complexity impedances are given in figure7.55, 7.56, and 7.57:
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Figure 7.55 Absorbed energies extracted by the feedback control using three different
admittances
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Figure 7.56 Useful energies extracted by the feedback control using three different admit-
tances
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Figure 7.57 Reactive energies extracted by the feedback control using three different admit-
tances

The two increased complexity impedances show much better performance than the normal
impedance. In fig7.55, the two increased complexity impedances can obtain −6.432×106

J. By contrast, the normal impedance can only achieve −4.267×106 J. In other words, the
increased complexity impedance can achieve about 66.34% more energy than the normal
impedance. The useful energy obtained by the increased complexity impedances is also much
greater than for the normal impedance, with the former achieving −2.932×107 J whilst the
latter achieved only −7.299× 106 J. However, the two increased complexity impedances
expend much more reactive energy compared to the mass-spring-damper. A comparison of
these results is presented in figure7.57.
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The other set of real data measured in Galway Bay was recorded during the 00 : 00−00 :
30 time period. The significant wave height and the zero-crossing period are 0.34778 m and
2.482 s, respectively. The energies extracted with each of the three admittances are illustrated
in the following figures:
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Figure 7.58 Absorbed energies extracted by the feedback control using three different
admittances
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Figure 7.59 Useful energies extracted by the feedback control using three different admit-
tances

The absorbed energy extracted by the increased complexity impedances was equal to
−1.036× 107 J, whilst that extracted by the normal impedance was −7.496× 106 J. The
useful energy extracted by the increased complexity impedances was almost three times
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Figure 7.60 Reactive energies extracted by the feedback control using three different admit-
tances

greater than the normal impedance, with the former achieving −3.719×107 J and the latter
only −1.56×107 J. However, the increased complexity impedances expend more reactive
energy than the mass-spring-damper impedance.

7.4.3 Pico

Pico Island has a similar wave spectrum to Berth. During the 00 : 19−00 : 49 time period, the
significant wave height and zero crossing period were 1.49896 m and 7.519 s, respectively.
A comparison of the results of the energy extractions are given as follows:
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Figure 7.61 Absorbed energies extracted by the feedback control using three different
admittances
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Figure 7.62 Useful energies extracted by the feedback control using three different admit-
tances
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Figure 7.63 Reactive energies extracted by the feedback control using three different admit-
tances

The absorbed energies extracted by the two increased complexity impedances were
identical at −9.59×107 J, whilst the absorbed energy extracted by the mass-spring-damper
impedance was found as −9.441×107 J. The useful energy captured by the two increased
complexity impedances is −1.005×108 J, whilst that captured by the normal impedance
was −9.762×107 J. However, the increased complexity impedances showed different per-
formances for the Pico Island data. They expend a little more reactive energy than the
mass-spring-damper impedance. As can be seen from fig7.63, the mass-spring-damper
impedance expended more reactive energy than the increased complexity impedances in
Berth.
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Furthermore, the dataset recorded for the 00 : 49−01 : 19 time period was also tested
with these three impedances. The significant wave height and the zero crossing period of the
real wave dataset were found as 1.59321 m and 8.094 s, respectively. A comparison of the
results of the energy extractions is given as follows:
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Figure 7.64 Absorbed energies extracted by the feedback control using three different
admittances
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Figure 7.65 Useful energies extracted by the feedback control using three different admit-
tances

The absorbed energy extracted by the increased complexity impedances is −1.251×108

J, whilst the normal impedance only achieved −1.19×108 J. The useful energies extracted
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7.4 Restricted complexity control tested with real wave data

by each of the three admittances are shown in fig7.65. The mass-spring-damper impedance
achieved −1.248×108 J useful energy, whilst the increased complexity impedances based
on eq(6.48) only obtained −1.515×108 J useful energy, and −1.937×108 J, as based on
eq(6.49). A comparison of the reactive energies is given as follows:
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Figure 7.66 Reactive energies extracted by the feedback control using three different admit-
tances

It can be seen that the reactive energy extracted by the increased complexity impedances is
still slightly greater than that by the normal impedance. The increased complexity impedance
based on eq(6.48) can thus be said to be preferable as it produced less reactive energy and
absorbed the most absorbed energy.

The absorbed and useful energies captured by the three different impedances are re-
ported in table7.4. It can be seen from table7.4 that all the absorbed energies reported for
the increased complexity impedances are greater than the absorbed energies for the mass-
spring-damper impedance. Furthermore, the useful energies produced by the two increased
complexity impedances are greater than the useful energies produced by the mass-spring-
damper impedance. In the majority of cases, the absorbed energies and useful energies
produced by the two increased complexity impedances 6.48 and 6.49 are identical. These
results are different than the results found using the simulated data, as reported in chapter 6.
Only the result derived for the time period between 00 : 49−00 : 19 for Pico Island is similar
to the result obtained from the simulation data. In this case, impedance 6.48 shows a better
performance than impedance 6.49.
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Table 7.4 Performance Table with real ocean data

Normal impedance Impedance6.48 Impedance6.49
Abs (×108J) Useful (×108J) Abs Useful Abs Useful

Berth 12 : 00 -1.753 -1.885 -1.774 -1.898 -1.774 -1.898
Berth 12 : 30 -2.464 -2.612 -2.518 -2.692 -2.518 -2.692

Galway 00 : 00 -0.075 -0.156 -0.1036 -0.3719 -0.1036 -0.3719
Galway 00 : 30 -0.0427 -0.073 -0.0643 -0.2932 -0.0643 -0.2932

Pico 00 : 19 -0.9441 -0.9762 -0.959 -1.005 -0.959 -1.005
Pico 00 : 49 -1.19 -1.248 -1.251 -1.515 -1.251 -1.937

7.5 Chapter summary

Real wave data collected from three different locations has been investigated. In section 7.2,
wave spectra measured using different methods in three locations have been compared. Real
wave data also proves the relationship between significant wave height, zero crossing period,
and the wave spectrum. Real wave datasets collected at Berth and Pico Island have similar
wave characteristics, in particular their significant wave heights and zero-crossing periods.
In the associated results, they show similar wave spectra. By contrast, the significant wave
height and zero-crossing period measured for the Galway Bay dataset were much smaller
than those found for the other two locations.

Wave predictors have been tested with the simulation data given in chapter 4; in this
chapter, real wave data sets were tested using the same predictors. The MSPI method once
again shows the best performance compared to the LRPI and LS methods when using real
wave datasets. The other conclusion obtained from section 7.3 is that the larger the wave
spectrum, the better the predictive performance that can be obtained. Wave spectra have the
highest value in Berth. In the associated results, predictors that use the MSPI method can
obtain the best prediction accuracy. By contrast, the Galway Bay data shows the smallest
wave spectrum, and the predictors here achieve the worst prediction accuracy of all three
datasets.

In section 7.4, the normal (mass-spring-damper) impedance and two increased complexity
impedances have been tested with real wave datasets. They show considerably different
results compared to the analogous results obtained from the simulation data. Admittances
6.48 and 6.49 have different useful energies and reactive energies using the simulation data.
However, they show exactly the same results when tested with real wave datasets. In the
Berth data, admittances 6.48 and 6.49 can extract a small additional amount of useful and
absorbed energy compared to the normal admittance; they also expend less reactive energy.
In the Galway Bay data, admittances 6.48 and 6.49 were capable of achieving considerably
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7.5 Chapter summary

greater absorbed and useful energies compared with the normal case. In addition, they
expended much more reactive energy. In the Pico Island data, the useful and absorbed
energies extracted by admittances 6.48 and 6.49 show similar performances and results to the
Berth data. They extract a little more energy than the normal case, but expend more reactive
energy. In the 00 : 19 time period, admittances 6.48 and 6.49 produce the same useful and
reactive energies, in contrast to the 00 : 49 time period at Pico Island where admittance 6.48
produced less useful and reactive energy than admittance 6.49. However, admittance 6.48
still achieved the same absorbed energy as admittance 6.49. The sign and value of each
element of admittances 6.48 and 6.49 can change with different values of significant wave
height and zero-crossing period.
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Chapter 8

Conclusion and further work

8.1 Conclusion

The objective of this thesis was to optimise the parameters of a PTO impedance to improve
the energy absorbed by a WEC system. The WEC system was proposed in reference [38],
which supplied the parameters describing a WEC system, whilst an internal model control
(IMC) was used to maximise the absorbed energy.

In chapter 2, wave generation was introduced. Wave energy was also described in this
chapter. Several wave spectra have been discussed: the Pierson-Moskowitz spectrum was
simulated with wave records supplied by reference [67], and wave elevations were simulated
with the Pierson-Moskowitz spectrum. Various important wave characteristics, such as
significant wave height and zero crossing period, were described and compared with spectra
described by different wave characteristics in this chapter. A WEC dynamic model was
the key point addressed in section 2.3. The forces acting on an oscillating body were also
analysed. The power transmission of the WEC system was based on the frequency domain
of external forces.

In chapter 3, the most important objective was to discover the optimal conditions for
maximising absorption energy. Two optimal conditions were introduced in this chapter.
One was that of complex conjugate control, whilst the other was velocity-tracking control.
Complex conjugate control was used to find the complex conjugate of the intrinsic impedance.
The control impedance is equal to the complex conjugate of the intrinsic impedance, and
allows the maximum absorption of energy with the WEC system. Velocity-tracking control
was used to track the optimal relationship between the optimal velocity and the excitation
force. A feedback control construction was used to minimise the error between the optimal
velocity and the measured velocity. Problems arising due to causality and non-causality were
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discussed, and several possible solutions were examined to address their associated problems;
for instance, the prediction of wave elevation or excitation force could be one such solution.
The other solution discussed was that of using a constant approximation to optimal conditions
to instead address the problem via non-causal conditions. Several different control methods
were presented in section 3.4, some of which were described by two optimal conditions.
Additionally, although they are not considered either of the two optimal conditions, passive
loading control and latching control have also been described.

The prediction of wave elevation and excitation force is one of the possible solutions to
overcoming non-causality. The prediction of wave elevation was the main consideration of
chapter 4, for which three different system identifications were described. The least-squares
(LS) system identification is the simplest method as it predicts the future wave elevation
based on only one past data, but unfortunately is too simplistic to meet the requirements of
wave elevation prediction. The second method proposed to solve this problem was that of
long-range predictive identification (LRPI), which predicts future wave elevation based on
several past data. However, a new method called multi step predictive identification (MSPI)
was also introduced at this point. It can achieve more accurate results than either of the above
two methods because it identifies each future data with an individual model. A comparison of
the predictive accuracy of these three methods supported the proposal that MSPI showed the
best performance, and that LS had the worst performance, of the three models. It also proved
that the majority of the energy in a wave is stored in a low frequency sea state. Prediction
accuracy was also found to be related to model order. Higher order models were found to
achieve more accurate predictions. The Akaike information criterion (AIC) and Bayesian
information criterion (BIC) were used to choose a suitable order for a given model.

A further means of overcoming the non-causal problem was proposed in chapter 5 . Firstly,
the prediction error method was used to find the different order approximated transfer function
of the intrinsic impedance. A highly accurate eighth-order approximated transfer function
of complex conjugate of intrinsic impedance, and a fourth-order approximated optimal
non-causal impedance was found. A second-order approximated model was introduced in
section 5.3. A constant impedance was found to express the relationship between velocity
and the excitation that could overcome the non-causal problem of the optimal non-causal
impedance. Furthermore, this model showed the absorption of more energy compared to
the normal model. "The Tracer" software was also introduced in this chapter to capture
hydrodynamic coefficients from reference [38]. Hydrodynamic coefficients can be used for
excitation force calculations, with the excitation force subsequently used as a disturbance to
the control system. Control systems that used constant approximations were compared in
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section 5.5, with the observation that constant approximations calculated by the prediction
error method performed better than those calculated by partial fraction decomposition.

Chapter 6 represents the main contribution by this thesis. The different control methods
introduced in chapter 3 were compared using simulation data. The complex conjugate control
achieved the greatest absorbed energy and hence was chosen as the control system. The
Nelder–Mead method (′ f minsearch′) was used to maximise the absorbed wave energy based
on the maximum absorbed energy cost function. Three different order control impedances
were obtained. Different realisations of the control impedances were calculated using Brune
Synthesis. Control impedances can be decomposed into their active parts and passive parts,
with the useful energy being generated by the passive parts and the active part generating
reactive energy. The WEC systems with increased complexity impedances were found to
absorb a small amount of additional absorbed energy compared with the spring-damper
and mass-spring-damper systems; however, much more useful energy was obtained by the
increased complexity impedance models. In conclusion, PTO realised with impedance 6.48
is preferable to that realised with impedance6.48. Realisation of impedance6.48 expends less
reactive energy but the same absorbed energy.

In chapter 7, 16 sets of real ocean data were collected from three locations. The main
wave characteristics for each dataset, namely significant wave height and zero crossing
period, were reported in this chapter. The wave spectrum was measured using the W@ves21
software. Three spectrum-estimation methods were used to estimate these spectra. The wave
elevations of all real ocean datasets have been reported. The findings may be summarized by
saying that Galway Bay has low energy states whilst Berth and Pico Island have high energy
states. Furthermore, two datasets for each location were tested using three different prediction
methods. Datasets collected in Galway Bay were found to have the worst prediction accuracy.
By contrast, datasets collected in high energy states have better prediction accuracies. In
addition, multi step predictive identification was still found to have the best prediction
performance compared with least-squares system identification and long-range predictive
identification. Least-squares system identification did not give better predictive performance
than the other two methods. Real ocean datasets were tested with a mass-spring-damper
impedance and increased complexity impedances. The results obtained using real wave
datasets were considerably different to the simulation data results. Impedance6.48 produces
identical useful and reactive energies as impedance6.49 with most of the real wave datasets.
It was only in the 00 : 49−01 : 19 time period for the Pico Island data that impedance6.48
produced less useful and reactive energy than impedance6.49, though it did still show the
same absorbed energy.
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8.2 Further work

Several directions for further research can be explored based on the work carried out in this
thesis. One possible future research direction could be based on different wave spectra. The
Pierson-Moskowitz spectrum can only simulate a single peak spectrum. Other methods,
such as the Bretschneider spectrum and Ochi-Hubble spectrum can be used to simulate
double-peak spectra. Control with impedances 6.48 and 6.49 may show better performance
when using a double-peak spectrum.

Control with impedances 6.48 and 6.49 in chapter6 expends considerable reactive energy.
The design of penalty functions for optimal control of the wave energy converter system
could be a possible solution to reducing reactive energy expenditure. It would be interesting
to examine the design of a penalty function for the wave energy converter system.

The third possible direction for future research might focus on the physical realisation of
impedances 6.48 and 6.49. Optimised PTO mechanical networks include various active and
passive parts that correspond to negative and positive values of the impedance parameters.
The realisation of the active parts may represent a rich area for future research.
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Appendix A

Test with real ocean data

1 %%================Real data (spectrum)================%%

2 fileID=fopen('BerthB2012-05-16T12h00Z-sprctrum.txt'); %

Real wave spectrum data collected in BerthB at 12:00

16/5/2012.

3 % fileID=fopen('BerthB2012-05-16T12h30Z-sprctrum.txt'); %

Real wave spectrum data collected in BerthB at 12:30

16/5/2012.

4 % fileID=fopen('Pico2008-09-01T00h19-spectrum.txt'); % Real

wave spectrum data collected in Pico at 00:19 1/9/2008.

5 % fileID=fopen('Pico2008-09-01T00h49-spectrum.txt'); % Real

wave spectrum data collected in Pico at 00:49 1/9/2008.

6 % fileID=fopen('GalwayBayDirectional2012-05-01T00h00Z-

spectrum.txt'); % Real wave spectrum data collected in

GalwayBay at 00:00 1/5/2012.

7 % fileID=fopen('GalwayBayDirectional2012-05-01T00h30Z-

spectrum.txt'); % Real wave spectrum data collected in

GalwayBay at 00:30 1/5/2012.

8
9 D = textscan(fileID,'%f %f %f %f %u8 %f',...

10 'Delimiter',',','EmptyValue',-Inf);
11 fclose(fileID);
12 column2 = D{2};

13 column1 = D{1};

14 y_data1=column2(1:end)'; % Wave spectrum data
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15 x_data1=column1(1:end)'; % Frequency

16 Xq1=0.025: (0.58-0.025)/479:0.58; % Wave spectrum interval(

relates to section 2.2.2)

17 Xq=2*pi.*Xq1; % Converting Hz to rad

18 Vq = interp1(2*pi.*x_data1,y_data2,Xq); % Returning

interpolated values

19 plot(Xq,Vq) % Plotting freq against real wave spectrum

20 xlabel('Frequency[rad/s]'); ylabel('Wave spectrum[m^2 s/rad]

');

21
22 %%==Excitation force coefficient Hex phase estimatation==%%

23 u = Xq; % Giving freq omega w

24 p1 = -0.025396;

25 p2 = 0.20462;

26 p3 = 0.06207;

27 p4 = -0.0084896;

28 p5 = -0.0013623;

29 y_phase=p1*u.^4+p2*u.^3+p3*u.^2+p4*u.^1+p5;
30 %Computing phase of the excitation coefficient which follows

eq5.41

31
32 %%Excitation force coefficient Hex magnitude estimatation%%

33 p11 = -5909.2;

34 p21 = 61936;

35 p31 = -2.3279e+05;

36 p41 = 2.9547e+05;

37 p51 = 2.7453e+05;

38 p61 = -8.8359e+05;

39 p71 = 47066;

40 p81 = 8.0081e+05;

41 y_mag = p11*u.^7+p21*u.^6+p31*u.^5+p41*u.^4+p51*u.^3+p61*u

.^2+p71*u.^1+p81;

42 %Computing magnitude of the excitation coefficient which

follows eq5.40
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43 y_new = (y_mag).*(cos(rad2deg(y_phase))+1i*sin(rad2deg(

y_phase)));

44 %Creating excitation coefficient which follows eq5.39

45
46 %%============Real wave elevation data================%%

47 fileID=fopen('BerthB2012-05-16T12h00Z.txt');
48 % fileID=fopen('BerthB2012-05-16T12h30Z.txt');

49 % fileID=fopen('Pico2008-09-01T00h19.txt');

50 % fileID=fopen('Pico2008-09-01T00h49.txt');

51 % fileID=fopen('GalwayBayDirectional2012-05-01T00h00Z.txt');

52 % fileID=fopen('GalwayBayDirectional2012-05-01T00h30Z.txt');

53
54 C = textscan(fileID,'%f %f %f %f %u8 %f',...

55 'Delimiter',',','EmptyValue',-Inf);
56 fclose(fileID);
57 column2 = C{2};

58 x_data=0.01*column2(1:480)'; % Converting wave elevation cm

to meter

59 Y= fft(x_data(1:480)).*(y_new); % DFT of excitation force

which follows eq5.38

60 F_ex = ifft(Y,'symmetric'); % Excitation force

61
62 %%=====Frequency response of intrinsic impedance Zi=====%%

63 Zi_hat = tf([1.8e-06 4.86e-06 7.128e-06 4.716e-06 1.296e

-06 0], [1 2.7 5.44 6.748 6.408 3.784 0.96]); %

Given in eq5.6

64 Zi=1/Zi_hat; % Intrinsic impedance (it is the inverse of

Zi_hat)

65 Zi_jw = freqresp(Zi,Xq);

66
67 for j=1:size(Zi_jw,3)

68 Zi_jw1(j)=Zi_jw(:,:,j); % Frequency response of Zi

69 end

70
71 %%=Frequency response of optimal control impedance Zpto=%%
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72
73 Zpto_opt=tf([1 -2.7 5.44 -6.748 6.408 -3.784 0.96],[-1.8e

-06 4.86e-06 -7.128e-06 4.716e-06 -1.296e-06 0]); %

Optimal control impedance from eq5.16

74 Zpto_jw = freqresp(Zpto_opt,Xq);

75
76 for j=1:size(Zpto_jw,3)

77 Zpto_jw1(j)=Zpto_jw(:,:,j); % Frequency response

of Zpto

78 end

79
80 sysg=frd(Zpto_opt,Xq);
81 %Computing frequency response data model for optimal control

impedance Zu

82
83 %%================Computing Phi_Fex===================%%

84 phi=Vq.*abs((y_new)).^2; % Computing phi_Fex from eq6.13

85 E_int= (Zpto_jw1./abs(Zpto_jw1+Zi_jw1).^2.*phi);

86 % Computing the total energy from eq6.13

87
88 %%=========Computing frequency response of omega======%%

89 s1=tf([1 0],[0 1]);

90 S_1 = freqresp(s1,Xq);

91
92 for j=1:size(S_1,3)

93 S1(j)=S_1(:,:,j); %Frequency response of omega

94 end

95
96 %%=Initial numbers of estimated control impedance Zpto=%%

97 a0=1e3*rand;
98 b0=1e3*rand;
99 c0=1e3*rand;

100 d0=1e3*rand;
101 e0=1e3*rand;
102
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103 %%==============Computing eq6.22=======================%%

104 err1=@(k1) trapz(Xq,abs(Zu_jw1-(fmineq(k1(1),k1(2),S1))).^2)

; % Returns the approximate integral of cost fun eq6.21

105 format short,[k1,fval1] = fminsearch(err1,[a0 b0]);

106 % Starts at the point a0 and b0 and attempts to find a local

minimum k1 of the function described in err1

107 sys1=tf([k1(1,2) k1(1,1)],[1 0]); % Obtains eq6.22

108
109 %%==============Computing eq6.26=======================%%

110 err11=@(k11) trapz(Xq,-1./2./pi.*(fmineq(k11(1),k11(2),phi,

Zi_jw1,S1)))));

111 % Returns the approximate integral of cost fun eq6.25

112 nonlcon1 = @fq1; %Defining optimization constraints in @fq1

: make sure the system to be stable.

113 format short,[k11,fval11] = fmincon(err11,[k1(1,1) k1(1,2)

],[],[],[],[],[],[],nonlcon1);

114 % Attempts to find a local minimum k11 of the function

described in err11 with initial values k1(1,1) and k1

(1,2)

115 sys11=tf([k11(1,3) k11(1,2) k11(1,1)],[1 0]); % Obtains eq6

.26

116
117 %%===========Computing eq6.23=====================%%

118 err2=@(k2) trapz(Xq,abs(Zpto_jw1-(fmineq(k2(1),k2(2),k2(3),

S1))).^2);

119 % Returns the approximate integral of cost fun eq6.21

120 format short,[k2,fval2] = fminsearch(err2,[a0 b0 c0]);

121 % Starts at the point a0, b0 and c0 and attempts to find a

local minimum k2 of the function described in err2

122 sys2=tf([k2(1,3) k2(1,2) k2(1,1)],[1 0]); % Obtains eq6.23

123
124 %%==============Computing eq6.27=======================%%

125 err22=@(k22) 2.*real(trapz(omega1,-1./2./pi.*((fmineq(k22

(1),k22(2),k22(3),phi,Zi_jw1,S1,0)))));

126 % Returns the approximate integral of cost fun eq6.25
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127 nonlcon2 = @fq2; %Defining optimization constraints in @fq2

: make sure the system to be stable.

128 format short,[k22,fval22] = fmincon(err22,[k2(1,1) k2(1,2)

k2(1,3)],[],[],[],[],[],[],nonlcon2);

129 % Attempts to find a local minimum k22 of the function

described in err22 with initial values k2(1,1), k2(1,2),

and k2(1,3)

130 sys22=tf([k22(1,3) k22(1,2) k22(1,1)],[1 0]); % Obtains eq6

.27

131
132 %%==============Computing eq6.24=======================%%

133 err3=@(k3) trapz(Xq,abs(Zpto_jw1-(fmineq(k3(1),k3(2),k3(3),

k3(4),k3(5),S1))).^2); % Returns the approximate integral

of cost fun eq6.21

134 format long,[k3,fval3] = fminsearch(err3,[a0 b0 c0 d0 e0]);

% Starts at the point a0, b0, c0, d0 and e0 and attempts

to find a local minimum k3 of the function described in

err3

135 sys3=tf([k3(1,4) k3(1,3) k3(1,2) k3(1,1)],[k3(1,5) 1 0]); %

Obtains eq6.24

136
137 %%==============Computing eq6.28=======================%%

138 err33=@(k33) 2.*real(trapz(omega1,-1./2./pi.*((fmineq(k33(1)

,k33(2),k33(3),k33(4),k33(5),phi,Zi_jw1,S1)))));

139 % Returns the approximate integral of cost fun eq6.25

140 nonlcon3 = @fq3; %Defining optimization constraints in @fq3

: make sure the system to be stable.

141 format long,[k33,fval33] = fmincon(err33,[k3(1,1) k3(1,2) k3

(1,3) k3(1,4) k0(1,5)],[],[],[],[],[],[],nonlcon3);

142 % Attempts to find a local minimum k33 of the function

described in err22 with initial values k3(1,1), k3(1,2),

k3(1,3), k3(1,4), and k3(1,5)

143 sys33=tf([k33(1,4) k33(1,3) k33(1,2) k33(1,1)],[k33(1,5) 1

0]); % Obtains eq6.28

144
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145 %%=====Calculating elements of spring-damper system====%%

146 [num1,den1] = tfdata(sys11,'v'); % Returns the numerator and

denominator of eq6.53

147 k1=num1(1,2); % Returns value k in figure 6.23

148 c=num1(1,1); % Returns value c in figure 6.23

149
150 %%=====Calculating elements of spring-damper system====%%

151 [num2,den2] = tfdata(sys22,'v'); % Returns the numerator and

denominator of eq6.55

152 k2=num2(1,3); % Returns value k in figure 6.24

153 c0=num2(1,2); % Returns value c in figure 6.24

154 b0=num2(1,2); % Returns value b in figure 6.24

155
156 %%=Calculating each elements of admittances eq6.48 and eq6

.49=%%

157 [num3,den3] = tfdata(sys33,'v'); % Returns the numerator and

denominator of eq6.56

158 K=num3(1,4); % Returns value k in eq6.57

159 d_1=den3(1,2); % Returns value d1 in eq6.57

160 b=num3(1,1)/d_1; % Returns value b in eq6.57

161 a_0=(num3(1,2)-b)/K; % Returns value a0 in eq6.57

162 a_1=num3(1,3)/K; % Returns value a1 of eq6.57

163 beta1=a_0*d_1; % Returns value beta1 in eq6.47

164 beta2=a_0; % Returns value beta2 in eq6.47

165 beta3=a_1-d_1; % Obtains value beta3 in eq6.47

166 beta4=beta2^2-beta1*beta3; % Returns value beta4 in eq6.47

167 c_1=K*beta2^2*beta3/beta4; % Returns value c1 in figure 6.25

168 c_2=K*beta2^2/beta1; % Returns value c2 in figure 6.25

169 b_1=K*beta2^3/beta4; % Returns value b1 in figure 6.25

170 c_3=K*beta3; % Returns value c3 in figure 6.26

171 c_4=K*beta4/beta1; % Returns value c4 in figure 6.26

172 b_2=K*beta4/beta2; % Returns value b2 in figure 6.26
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Appendix B

BerthB2012-05-16T12h00Z-spectrum

0.025,4.2756E-5,357.2,70.2,-2.00,1.90
0.030,1.1798E-4,66.1,69.6,0.86,1.67
0.035,6.8575E-4,75.9,78.6,1.10,1.65
0.040,3.1122E-4,324.8,71.2,-0.49,1.47
0.045,1.3878E-3,268.6,57.4,1.73,2.83
0.050,2.9089E-3,260.2,67.3,0.98,1.85
0.055,4.3178E-3,296.7,76.2,0.80,1.44
0.060,1.0514E-2,350.2,68.5,-1.04,1.76
0.065,5.0540E-2,355.8,45.4,-1.26,4.03
0.070,2.1763E-1,0.0,25.4,-2.22,11.76
0.075,5.9156E-1,358.6,27.9,-1.08,11.71
0.080,5.7408E-1,0.0,32.2,-2.46,9.26
0.085,1.0000E+0,358.6,20.5,2.53,20.02
0.090,6.1879E-1,353.0,31.1,-1.84,5.07
0.095,3.4130E-1,351.6,29.2,6.38,10.95
0.100,4.8920E-1,358.6,28.8,-3.98,9.66
0.110,2.8508E-1,344.5,36.9,-0.83,3.81
0.120,2.3340E-1,327.7,36.9,0.77,3.85
0.130,2.1653E-1,324.8,34.1,-0.03,5.78
0.140,8.8921E-2,320.6,38.7,-0.34,2.94
0.150,7.5396E-2,316.4,41.3,-0.31,3.14
0.160,8.5863E-2,312.2,38.6,-0.48,3.80
0.170,5.1303E-2,317.8,41.6,-1.21,3.78
0.180,4.3937E-2,308.0,47.6,-0.10,2.71
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0.190,5.0037E-2,312.2,45.1,0.01,2.15
0.200,4.2214E-2,312.2,39.8,-0.46,3.94
0.210,2.6649E-2,310.8,52.7,-0.41,2.63
0.220,2.7052E-2,293.9,42.0,-0.51,4.02
0.230,2.6782E-2,274.2,43.1,0.10,3.13
0.240,2.1279E-2,261.6,48.0,0.39,2.71
0.250,4.3067E-2,258.8,43.6,-0.11,2.67
0.260,3.2064E-2,254.5,39.6,0.88,3.96
0.270,2.1494E-2,251.7,41.5,0.52,3.37
0.280,2.5477E-2,260.2,35.7,1.11,5.57
0.290,2.3993E-2,244.7,44.5,0.70,3.06
0.300,2.4848E-2,240.5,38.9,1.29,3.49
0.310,1.7249E-2,240.5,45.3,0.78,2.89
0.320,1.4407E-2,240.5,46.8,0.79,3.05
0.330,1.3300E-2,255.9,45.1,0.66,3.22
0.340,1.1563E-2,244.7,42.4,0.17,4.35
0.350,1.1620E-2,244.7,52.0,0.71,2.31
0.360,8.6517E-3,236.3,51.1,0.95,2.39
0.370,9.1409E-3,253.1,45.4,-0.27,3.21
0.380,5.0166E-3,265.8,49.6,-0.49,3.14
0.390,4.4493E-3,227.8,58.4,0.35,2.09
0.400,4.4272E-3,216.6,48.8,1.39,3.32
0.410,4.3613E-3,226.4,50.8,0.96,2.45
0.420,5.3002E-3,227.8,43.3,1.43,3.84
0.430,4.8928E-3,226.4,40.1,0.17,3.83
0.440,3.3460E-3,230.6,44.3,-0.07,2.89
0.450,3.7351E-3,244.7,48.3,-0.04,2.60
0.460,3.6610E-3,251.7,47.0,-0.03,2.26
0.470,2.5288E-3,237.7,50.2,0.34,2.16
0.480,2.6986E-3,213.8,45.0,0.71,3.78
0.490,2.4055E-3,234.8,51.5,0.71,2.40
0.500,2.4664E-3,237.7,52.8,0.26,2.13
0.510,1.5110E-3,236.3,55.2,0.49,1.70
0.520,1.8363E-3,240.5,45.5,0.51,2.47
0.530,1.7207E-3,239.1,49.7,-0.22,2.25
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0.540,2.1017E-3,218.0,52.7,0.77,2.53
0.550,2.9528E-3,225.0,49.2,1.21,2.67
0.560,1.8090E-3,222.2,52.8,0.61,2.07
0.570,1.4089E-3,219.4,51.7,0.74,2.24
0.580,1.6867E-3,220.8,47.7,0.21,2.74
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Appendix C

BerthB2012-05-16T12h00Z

0, 55, 14, 3
0, 52, 1, -28
0, -2, -17, -13
0, 16, -45, 7
0, 50, -49, 0
0, 8, -29, 0
0, -1, -41, 4
0, 36, -53, -25
0, -12, -23, -59
0, -82, 11, -26
0, -60, 19, -11
0, -26, 23, -21
0, -5, 30, -10
0, -2, 26, -1
0, 8, -4, 10
0, 26, -37, 26
0, 37, -31, 31
0, 10, -18, 19
0, 4, -10, -4
0, -4, 22, -5
0, -10, 29, -1
0, -21, -1, 5
0, 21, -24, 10
0, 20, 29, -18
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0, -20, 49, 7
0, 10, -8, 15
0, 0, -13, 12
0, 7, 5, 10
0, 19, 16, -2
0, 28, -3, 17
0, 16, -41, 23
0, 21, -32, -8
0, -47, 13, -45
0, -98, 54, -14
0, -68, 79, -2
0, -39, 59, 5
0, 28, 6, 35
0, 67, -2, 9
0, 20, -17, -10
0, 5, -56, 11
0, 29, -35, 3
0, 4, -25, -3
0, -7, -24, 14
0, 17, -37, 40
0, 109, -57, 24
0, 79, -32, -28
0, 6, -44, -47
0, -41, -62, -73
0, -92, -9, -74
0, -133, 65, -42
0, -144, 62, 8
0, -50, 65, 39
0, 44, 89, 34
0, 86, 72, 10
0, 78, 33, -8
0, 74, -18, -5
0, 48, -35, -8
0, 23, -12, 17
0, 4, 12, 24
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0, -32, 0, 10
0, -38, -33, 21
0, -14, -50, 0
0, -23, -14, 0
0, -27, 12, 33
0, 10, 14, 25
0, 26, 25, 30
0, 60, -1, 22
0, 37, -31, -41
0, -57, -54, -54
0, -82, -51, -4
0, -64, -10, 21
0, -31, 25, 17
0, -23, 34, 5
0, 43, 37, -13
0, 79, 47, -24
0, 42, 23, -3
0, 31, -19, 21
0, 36, -44, 27
0, 80, -43, -16
0, 9, -19, -62
0, -65, 2, -23
0, -64, -19, 7
0, -43, -29, 28
0, -27, -2, 24
0, -48, 28, -7
0, -34, 47, -23
0, -2, 54, -29
0, 10, 80, -25
0, 21, 75, -43
0, 43, 52, -10
0, 52, 11, 36
...
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