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Abstract 

Background 

Methods for estimating air pollutant exposures for epidemiological studies are becoming more 

complex in an effort to minimise exposure error and its associated bias. While land use regression 

(LUR) modelling is now an established method, there has been little comparison between LUR and 

other recent, more complex estimation methods. Our aim was to develop a LUR model to estimate 

intra-city exposures to nitrogen dioxide (NO2) for a Sydney cohort, and to compare those with 

estimates from a national satellite-based LUR model (Sat-LUR) and a regional Bayesian Maximum 

Entropy (BME) model. 

Methods 

Satellite-based LUR and BME estimates were obtained using existing models. We used methods 

consistent with the European Study of Cohorts for Air Pollution Effects (ESCAPE) methodology to 

develop LUR models for NO2 and NOx. We deployed 46 Ogawa passive samplers across western 

Sydney during 2013/2014 and acquired data on land use, population density, and traffic volumes for 

the study area. Annual average NO2 concentrations for 2013 were estimated for 947 addresses in 

the study area using the three models: standard LUR, Sat-LUR and a BME model. Agreement 

between the estimates from the three models was assessed using interclass correlation coefficient 

(ICC), Bland-Altman methods and correlation analysis (CC). 

Results  

The NO2 LUR model predicted 84% of spatial variability in annual mean NO2 (RMSE: 1.2 ppb; 

cross-validated R2: 0.82) with predictors of major roads, population and dwelling density, heavy 

traffic and commercial land use. A separate model was developed that captured 92% of variability in 

NOx (RMSE 2.3 ppb; cross-validated R2: 0.90). The annual average NO2 concentrations were 7.31 

ppb (SD: 1.91), 7.01 ppb (SD: 1.92) and 7.90 ppb (SD: 1.85), for the LUR, Sat-LUR and BME 

models respectively. Comparing the standard LUR with Sat-LUR NO2 cohort estimates, the mean 

estimates from the LUR were 4% higher than the Sat-LUR estimates, and the ICC was 0.73. The 

Pearson’s correlation coefficients (CC) for the LUR vs Sat-LUR values were r=0.73(log-transformed 

data) and r=0.69 (untransformed data). Comparison of the NO2 cohort estimates from the LUR 

model with the BME blended model indicated that the LUR mean estimates were 8% lower than the 

BME estimates. The ICC for the LUR vs BME estimates was 0.73. The CC for the logged LUR vs 

BME estimates was r=0.73 and for the unlogged estimates was r=0.69. 

Conclusions 
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Our LUR models explained a high degree of spatial variability in annual mean NO2 and NOx in 

western Sydney. The results indicate very good agreement between the standard LUR, national-

scale sat-LUR, and regional BME models for estimating NO2 for a cohort of children residing in 

Sydney, despite the different data inputs and differences in spatial scales of the models, providing 

confidence in their use in epidemiological studies.  

Keywords 

Land use regression; Bayesian; satellite; air pollution; exposure assessment; comparison 
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Background 

Methods for estimating air pollution exposures in epidemiological studies have evolved substantially 

over the last 15 years, from simple measures such as assigning concentrations from the nearest air 

quality monitor, to models with increasing complexity and computational requirements. This has 

been driven by the need to reduce exposure misclassification and hence improve the validity of the 

estimation of air pollution – health response functions. There are several factors that influence the 

selection of the optimal approach to exposure modelling. These include the nature of the pollutant, 

its temporal and spatial distribution and the nature of the health effect being assessed. These 

factors also influence the choice of appropriate epidemiological study design (Baxter et al. 2013). 

Notwithstanding all these considerations, it will always be important to select exposure estimation 

methods that are most reliable and accurate (Baxter et al. 2013; Brauer et al. 2008; Sellier et al. 

2014). 

Land use regression (LUR) has been widely used to estimate concentrations of NO2, NOx, PM10 

and PM2.5 (Hoek et al. 2008; Ozkaynak et al. 2013; Ryan and LeMasters 2007). LUR modelling 

gained popularity for estimating NO2 and NOx because of the availability of relevant land use data 

and the ease with which empirical data for NO2 and NOx could be collected from multiple locations 

using passive samplers. It has been used to estimate pollutant concentrations in various geographic 

settings ranging from very local scales, including a previous study in a 50 km2 area of Sydney, 

Australia (Rose et al. 2011), to intra-city scales in Canada (Crouse et al. 2009; Henderson et al. 

2007; Jerrett et al. 2007), the US (Gonzales et al. 2012; Jerrett et al. 2013), Europe (Beelen et al. 

2013), the UK (Briggs et al. 2000), and Asian cities (Chen et al. 2010; Choi et al. 2017; Gurung et 

al. 2017).  

Recent enhancements to LUR modelling include the incorporation of data obtained by satellite 

monitoring, which allows pollutant estimation over very large areas, for instance, national or 

continental scales (Bechle et al. 2015; de Hoogh et al. 2016; Hoek et al. 2015; Hystad et al. 2011; 

Knibbs et al. 2014; Novotny et al. 2011; Vienneau et al. 2013; Young et al. 2016), and even globally 

(Larkin et al. 2017). As LUR modelling alone does not incorporate data on chemical transformation, 

such as the formation of secondary and tertiary pollutant formation (de Hoogh et al. 2016), and is 

considered less suitable for modelling background concentrations at large scale, the incorporation 

of satellite data mitigates this limitation of LUR models. However, the disadvantages of relying on 

satellite data is the need for high-level technical expertise for data manipulation and the need to 

deal with missing satellite data. Furthermore, satellite-based models in the absence of other 

predictor data, may underestimate variability of ground based measurements as they are less able 
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to capture small scale spatial variation especially near point or linear sources of pollution (Geddes 

et al. 2016; Kharol et al. 2015; van Donkelaar et al. 2015).  

Dispersion and chemical transport models (CTMs) are other common methods for assigning air 

pollution exposures (HEI 2010; Ozkaynak et al. 2013). Dispersion modelling utilises data from 

emissions inventories, meteorological data, knowledge of air chemistry and relatively complex 

mathematical modelling. While these models can provide high temporal resolution they may lack the 

fine spatial resolution needed to describe the distribution of exposure to NO2 and NOx, which have 

steep spatial gradients.  

In an effort to reduce the uncertainty associated with these individual approaches, recent work has 

sought to combine or “blend” separate exposure model estimates with varying spatial and temporal 

resolutions (Akita et al. 2014; Buteau et al. 2017; Hanigan et al. 2017). Hanigan et al (2017) used a 

Bayesian Maximum Entropy (BME) model to blend estimates from an Australian LUR model using 

satellite data sat-LUR (Knibbs et al. 2014), a CTM (Cope et al. 2014), and measurements from fixed 

site regulatory monitors, to produce NO2 estimates for Sydney. The BME model resulted in a 6% 

improvement in Root Mean Square Error (RMSE) compared to the sat-LUR model and 16% 

improvement compared to the CTM model. Hence, this ensemble approach to estimation offers 

promise of incremental improvements in model precision. However, the improved predictive power 

gained through the Bayesian approach comes at the cost of substantially greater complexity and, 

hence, the need for more computer and human resources.   

The aims of this study were two-fold: 1) to develop a standard LUR model to estimate NO2 at the 

residential addresses of children in the Childhood Asthma Prevention Study (CAPS) cohort in 

Sydney (Garden et al. 2018); and 2) to compare those LUR model estimates with estimates from a 

national satellite-based LUR model (Sat-LUR) and a regional Bayesian Maximum Entropy (BME) 

model. 

The CAPS cohort is a birth cohort (n=616), recruited from six maternity hospitals in south-west and 

western Sydney, between 1997 and 1999. The children underwent clinical and respiratory 

assessments at 1.5, 3, 5, 8, 11.5 years (Marks et al. 2006; Toelle et al. 2013) and 14 years. 

Previous analyses investigating the association between weighted road density, as a marker of 

traffic related air pollution, and respiratory and allergic outcomes in this cohort found that weighted 

road density within 100m of the home address, was associated with an increased risk of house dust 

mite allergy and allergic rhinitis (Hansell et al. 2014). For future exposure-response analyses of this 

cohort, we aimed to apply more accurate air pollution estimates by developing a standard NO2/NOx 

LUR model. 
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Our second aim to compare NO2 cohort estimates calculated from the three different spatial models 

is important, especially for settings where there may be limited capacity to develop more complex 

exposure models. To do this, we assessed the agreement between three estimates of NO2 for each 

cohort address, derived from the standard LUR model and two alternative models: a national sat-

LUR model (Knibbs et al. 2014); and an ensemble BME regional model (Hanigan et al. 2017). While 

a number of studies (Table S1) have compared pollutant estimates derived from different hybrid 

models, to our knowledge there are no studies that have examined the agreement between three 

such models with substantially varying spatial scales.  

Methods 

Study area and site selection 

Sydney is a coastal city located on the eastern seaboard in the state of New South Wales, Australia. 

Greater Sydney (Greater Capital City Statistical Area as defined by the Australian Bureau of 

Statistics (ABS)) covers an area of 12,368 km2, and is fringed by the Central Coast to the north, 

national parks to the south and the Blue Mountains to the west (City of Sydney 2018). In 2017 it had 

a resident population of 5.1 million people, and a population density of 407 persons/km2, although 

the built urban area, estimated at 4,064 km2, supports a density of 1,237 persons/km2 (City of 

Sydney 2018). The study area for development of the LUR comprised the western half of the urban 

area of Sydney, covering 3122 km2. The home addresses of the members of the CAPS cohort at 

time of recruitment were all within this study area. (Figure 1). Over the fourteen years of cohort 

follow-up, some cohort members moved to new addresses outside the study area, for which we did 

not attempt to estimate exposures. 

We followed methods from the European Study of Cohorts for Air Pollution Effects (ESCAPE) study 

for site selection, measurement and development of the LUR models (Beelen et al. 2013; Eeftens et 

al. 2012). NO2 and NOx were measured at 46 sites that were chosen to represent: 1) the range in 

pollutant concentrations likely to occur in the study area; 2) the likely range in predictor variables; 

and 3) the geographic extent of the study cohort addresses. Where possible, sites were located 

outside or close to cohort members’ houses. Sites ranged from urban background sites with very 

low expected traffic counts and away from industry, to sites along major roads. The busiest of these 

roads recorded >73,000 vehicles per day (vpd) whereas quiet back streets were estimated to have 

less than 500 vpd. We categorised sites according to the ESCAPE protocol, but were mindful that 

Australian cities exhibit quite different geographical traits to European cities; they are generally 

larger in area and have lower population and dwelling densities, tend not to be subject to street 

canyon effects except for in central business districts, and are more reliant on personal vehicle use. 

We categorised the sites a priori based on local knowledge: 18 sites as traffic sites, 26 as urban 
background sites, and two sites as regional sites. Traffic sites were over-sampled given that traffic 
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is a major contributor to NO2/NOx in the Sydney metropolitan region contributing 62% of NOx 

emissions (NSW EPA 2012). One site was co-located for comparative purposes with an Office of 

Environment & Heritage (OEH) regulatory monitor in Prospect, a western Sydney suburb.  

 

Figure 1. Study area, NO2/NOx passive sampler sites by site type 

NO2 and NOx measurements 

We used Ogawa passive diffusion samplers (Ogawa and Co. FL, USA) to measure NO2 and NOx at 

the 46 sites. The samplers were placed in situ for two weeks in each of three seasonal 

measurement periods as per the ESCAPE study protocol: 22 July-5 August, 2013 (winter-cold 

season); 28 November-12 December 2013 (summer-hot season); and 18 March-1 April, 2014 

(autumn-intermediate period). Duplicate samplers were randomly assigned and deployed at 11-13% 

of sites, varying by round. One pair of duplicate samplers was placed at the OEH fixed site monitor 

during each round of testing. Measurements were excluded when variability between duplicate 

samplers at the same sites exceeded 30%. Two field blanks and two laboratory blanks were also 

deployed per round. All samplers were simultaneously deployed and collected over an 8-10 hour 
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day across the study area to minimise the influence of meteorological impacts. Most samplers were 

placed on telegraph poles at a height of 2.2m to avoid tampering. However 3 samplers were placed 

under awnings at cohort dwellings. Samples were refrigerated until sent by courier to Edith Cowan 

University, Western Australia, for spectrophotometer analysis by the same laboratory used for the 

Perth LUR NO2/NOx analysis (Dirgawati et al. 2015). The detection limits were 2.0 ppb (3.76 µg/m3) 

for NO2 and 3.4 ppb (6.39 µg/m3) for NOx. ESCAPE Excel calculation sheets for NO2 and NOx 

concentration calculations were used, taking into account local temperature, relative humidity and 

field blank results. 

Annual average concentrations for NO2 and NOx were calculated from the three measurement 

periods, after correcting for temporal variation, according to ESCAPE Study methods. For each site 

the measured concentration was adjusted by using data from a continuously operating regulatory 

monitoring site at Prospect (within the study area). In summary, the site concentrations were 

adjusted by subtracting the difference between the annual average concentration at the reference 

site and the measured concentration at the reference site for the relevant two week monitoring 

period (Cyrys et al. 2012; ESCAPE Study 2010). This allowed us to use data for all sites, even 

where data for only two of the three measurement periods were available.  

Latitude and longitude coordinates for each site were assigned using Google maps. 

Predictor variables 

Data for the potential predictor variables were collated from various sources (Supplementary Table 

S2). Buffers of varying sizes were calculated to represent the density of specific classes of land use, 

population and dwelling density, and traffic counts on all roads within each buffer. ArcGIS 10.3 

(ESRI, Redlands, CA, USA) was used to create the geographic variables and buffers and to 

calculate distance based variables (eg distance to main roads). The software R 3.2.1 (using the 

packages raster, rgeos, rgdal) was used to create and process some of the variables ie combined 

traffic variables, population and household densities, land use densities. All spatial datasets were 

converted to WGS 84/UTM zone 56S (EPSG:32756) for consistent projection in metres. 

Land use data from the Australian Bureau of Statistics (ABS) at mesh-block level was extracted 

(ABS 2011). A mesh-block (MB) is the smallest statistical area available in the hierarchical ABS 

Australian Statistical Geography Standard 1270.0.55.001 (ASGS 2011) and represents around 30-

60 dwellings. The ABS assigns each MB a land use category based on the planning designation for 

the majority of land in that area. ABS land use data were collapsed from nine land use types to four 

(residential, industrial, commercial and open) for LUR model development. 
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Data on resident population and number of dwellings was obtained from the 2011 ABS Census 

(ABS 2011), and the population and number of dwellings in each MB were divided by the MB area 

to create density variables. 

Elevation data were obtained from GeoScience Australia and comprised Digital Elevation Models 

(DEM) using SRTM 1 second data (approximately 30 m resolution) from the Shuttle Radio 

Topography Mission (SRTM) conducted by NASA with Space Shuttle Endeavour over 11 days in 

2000, where 80% of the Earth’s surface topography was mapped (Gallant et al. 2011). The DEM-S 

(smoothed digital elevation model) was used to extract the elevation at each of the sampling sites. 

Traffic data were obtained from two sources: the Zenith traffic model and the NSW Lands and 

Property Information (LPI). The Zenith traffic model was built using all available traffic count data 

from Roads & Maritime Services (RMS), the NSW government authority with responsibility for all 

primary (highways, motorways, arterial/main, sub-arterial/main), and some secondary roads 

(distributor roads) together with data from local councils for local roads where available (Zenith 

Traffic Model 2014). The Zenith model combines the traffic count data with data from road and rail 

networks, land use data, household travel surveys (destination and purpose of journey), to estimate 

traffic counts for all of the Greater Sydney Metropolitan Area (GSMA) for non-local roads and a 

small proportion of local roads. Zenith modelled traffic data were used to calculate many of the 

traffic related variables (Table S2). 

To capture local roads in our traffic GIS layer, we combined the Zenith traffic modelled data with 

road network data from the LPI to obtain a representative layer of traffic counts for all roads. These 

two sources of traffic data were combined in ArcGIS to assign a traffic count to all roads. Where 

counts were missing, local roads were assigned a count of 500 vehicles per day (vpd) and a count 

of 20 vpd for heavy vehicles. Major roads were defined as roads with counts >5000 vpd, consistent 

with the ESCAPE study. Where counts for heavy vehicles were missing for major roads, they were 

assigned a count of 500 heavy vpd.  

LUR model development 

Multiple regression modelling was conducted separately for NO2 and NOx. The measured NO2 and 

NOx readings were the outcome variables in the regression models. Models were built using a 

standardised stepwise forward selection procedure, in accordance with the ESCAPE methodology 

(Beelen et al. 2013). Univariate analyses were conducted to identify the variable contributing most 

(highest adjusted R2) to the variation in the pollutant. The remaining variables were then separately 

added to the model to determine the model with the next highest adjusted R2. Variables were added 

and retained in the model in accordance with ESCAPE criteria (Table 1 (footnote)). We excluded 

variables from the model when they had >75% zero values. Variables with different buffer sizes 
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were added to the model as indicated above. There were 135 potential predictor variables 

considered in the regression models. 

Diagnostic tests used to select the final models included: 1) variance inflation factor (VIF) was 

required to be < 3, representing a lack of collinearity between the variables; 2) an examination of 

influential observations using Cook’s distance (D) >0.8; and 3) an examination of Moran’s I test for 

heteroscedasticity, normality and spatial autocorrelation of residuals (testing the assumption of 

independence). If the final models resulted in Cook’s D values >0.8, the relevant sites were 

sequentially removed from the model and the relative changes in variable parameter estimates, the 

p values of the variables and the model adjusted R2 were examined to determine the changes in the 

model structure. For each of the sites, we also considered type and nature of the site eg whether a 

site might represent heavy traffic because of its location, and thus the value of retaining the site in 

model development. 

LUR model validation 

We used “hold-out” validation to check the robustness of our models (Dirgawati et al. 2015; Gulliver 

et al. 2013; Johnson et al. 2010; Wang et al. 2012; Wang et al. 2016). Hold-out validation is 

considered to be an improvement on leave-one-out cross-validation (LOOCV) validation which has 

been found to overestimate the explanatory power of LUR models when the number of sample sites 

is small (Wang et al. 2012). Hold-out validation withholds specified randomly selected subsets of 

sampling sites as “training” datasets and develops models based on a smaller number of sites. Due 

to the relatively small number of sampling sites in our study, we ran three separate hold-out 

modelling procedures as a sensitivity analysis, first with-holding 10% of data points (10-fold), then 

25% (4-fold) and finally 50% (2-fold) of data points. We used the R3.2.1 statistical package for this 

analysis. The RMSE represents the absolute difference between predicted and measured 

concentrations and so is an indicator of reliability of the LUR prediction model.  

Back and forward extrapolation of annual average concentrations 

LUR models were used to estimate annual average concentrations of NO2 and NOx at the cohort 

addresses for the study period, July 2013-June 2014. To avoid over-extrapolation of pollutant 

estimates at the cohort addresses, we restricted or “truncated” values for the predictor variables to 

those observed at the field monitoring sites, when running the models (de Hoogh et al. 2014; 

Dirgawati et al. 2015; Wang et al. 2012).  

These cohort estimates were then adjusted both backwards (pre-2013) and forwards (post-2013) in 

time using the mean of the average annual concentrations from five fixed site regulatory monitors 

located within the study area (Prospect, Liverpool, Chullora, St Mary’s, Richmond), and using 2013 
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as the base year. The cohort estimates were adjusted by the difference in concentration between 

2013 (base year) and the year of interest which was dependent on when the cohort participants 

were tested.  

NO2 predictions at the CAPS cohort addresses and comparison with sat-LUR estimates and 
BME model estimates 

In brief, the national Sat-LUR used NO2 data from fixed site regulatory monitors from around 

Australia (n=68) as the outcome variable, and satellite derived NO2 estimates from the Ozone 

Monitoring Instrument (OMI) from the Aura satellite, land use, and traffic data as predictor variables 

(Knibbs et al. 2014). Generalised estimating equation (GEE) models were used to develop annual 

models for 2006-2011, but for this study were updated with 2013 data (satellite and fixed monitor 

data). The Sat-LUR model was validated using passive sampler NO2 data (including data from this 

study) and was found to predict 58% of variability across all sites and 69% variability at the urban 

near-traffic and background sites in two capital cities (Sydney and Perth) (Knibbs et al. 2016). 

Bayesian maximum entropy (BME) modelling uses Bayesian analyses to blend different sources of 

data with varying temporal and spatial resolutions, with the objective of garnering all data into a 

blended estimate which is improved and more precise (ie smaller uncertainties). The BME model 

used in this analysis combined NO2 estimates from the Sat-LUR model, a Chemical Transport 

Model (CTM) and regulatory fixed site monitors. The predictive BME model was built using 2011 

data, but validated using the NO2 passive sampler data collected in 2013-14 for our standard LUR 

model, and then adjusted for seasonal differences. This was due to an absence of alternative 

independent data from 2011. Of note, NO2 data from the fixed site monitors showed only minimal 

change during the period 2011-2014. The BME reported 6% and 16% improvements in root mean 

square error (RMSE)  compared with the Sat-LUR and CTM models respectively, when compared 

using a Sydney wide study area for that analysis (Hanigan et al. 2017).  

We estimated NO2 concentrations for all CAPS cohort addresses within a 15 km radius of the 

passive sampler sites using the LUR model, the Sat-LUR and BME model. This study area of 3122 

km2 encompassed all of the CAPS cohort addresses at time of recruitment and represented an area 

for which we could confidently estimate exposures using the model. For the LUR model the 

explanatory regression variables were calculated for each geocoded address and the estimates 

made using the NO2 and NOx regression equations. For the model agreement analysis, estimates 

using the Sat-LUR model and the BME model were calculated as follows: the Sat-LUR estimates 

were based on the centroids of each mesh-block (smallest geostatistical area used in the Australian 

census) and assigned to each cohort geocode; the BME model estimated NO2 concentrations for 

centroids on a 100 x100 m grid. All three models were used to estimate NO2 concentrations during 

2013 to enable agreement comparison.  
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As the NO2 concentrations were log normally distributed, we used the natural logarithm of the values 

to conduct the following agreement analyses: visual examination of agreement using scatter plots 

and calculated Pearson’s correlation coefficients as commonly reported in the past; and Bland-

Altman plots and calculation of the intra-class correlation coefficients (ICC) (Shrout and Fleiss inter-

rater reliability test) to estimate relative and absolute agreement. The Bland-Altman plots and ICC 

calculations are the most appropriate statistical tools for assessing agreement between two 

methods (Giavarina 2015; Koo and Li 2016), but have been seldomly applied for comparing LUR 

and other model estimates (Buteau et al. 2017; de Hoogh et al. 2014). 

SAS (version 9.4; SAS Institute Inc., Cary, NC, USA) was used to conduct the regression analyses, 

diagnostic tests, and ICC. The LUR model was used to produce NO2 and NOx estimates for 250 x 

250 m gridpoints across the study area, and these were mapped for visual presentation purposes 

using R software version 3.2.1.  

 

Results 

Figure 2 shows the distribution of NO2 and NOx concentrations, as measured by the Ogawa passive 

samples, classified by site type. NO2 concentrations ranged from 3.8 to 17.6 ppb (7.1 to 33.1 µg/m3) 

and NOx ranged from 6.5 to 43.4 ppb (12.2 to 81.6 µg/m3) (Figure 2; Supplementary Table S3).  

       

Figure 2.  NO2 and NOx concentrations by site type 

All Ogawa samplers returned readings above the detection limit. Five pairs (29%) of duplicate NO2 

readings were excluded as they had > 30% variability. One of these pairs included a cracked 
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sampler and two other pairs included samplers that had been incorrectly installed. Supplementary 

Table S4 shows the NO2 concentrations measured by the Ogawa passive samplers that were co-

located with the OEH fixed site chemiluminesence monitor. The winter readings could not be 

assessed due to four days of missing data at the OEH sites. The summer readings were 3.0 ppb 

lower on the Ogawa passive sampler (5.5 ppb passive sampler vs 8.5 ppb regulatory monitor); and 

autumn readings were 1.2 ppb lower on the Ogawa sampler (9.2 ppb sampler vs 10.4 ppb monitor). 

Traffic variables, particularly those related to heavy traffic and major roads, population density within 

5 km, dwelling density within 100 m, and commercial land use were the strongest predictors of NO2 

and NOx in each LUR model (Table 1). The best NO2 LUR model had an R2=0.84 and RMSE= 2.35 

µg/m3. Moran’s test (p=0.97) indicated that there was no spatial autocorrelation. The best LUR 

model for NOx had an R2=0.916 and RMSE=4.35 µg/m3. Moran’s test (p=0.96) indicated that there 

was no spatial autocorrelation.     

For the NO2 and NOx models, one and four sites respectively, were found to have Cook’s D values 

>0.8. These were sequentially removed from the model but the model structures and estimates did 

not change substantially (<10%) with exclusion of any of the sites. Thus, all sites were retained in 

the model. 

Validation of the models 

In all three “hold-out” scenarios the estimated R2 and RMSE were similar to the estimates in the 

initial model (Table 2). This lends support to the reliability of the selected models.  

Figure 3 (a, b) illustrates the NO2 and NOx spatial predictions over the study area estimated by the 

LUR models. Expanded views of part of the study area incorporating the suburban centres of 

Parramatta and Liverpool are provided to illustrate the variation in pollutant estimates. 

Comparison of standard LUR estimates with satellite-LUR estimates for the CAPS cohort 
addresses  

Table 3 provides summary statistics for the estimated NO2 concentration at the CAPS cohort 

addresses according to the LUR, the Sat-LUR and the BME models. 

There was good agreement between the NO2 LUR and both the Sat-LUR NO2 and BME model 
estimates. The ICC for comparison of all three methods was 0.93. The Bland-Altman plots (Figure 

4) and the scatterplots (Figure 5 and Supplementary Fig S1 (untransformed values)) illustrate that 

the three sets of model estimates showed very good agreement, although there was greater 

variability in the estimates at higher NO2 concentrations. The scatter plots also showed that both the 

Sat-LUR and BME model estimates were higher than the LUR estimates at lower NO2 

concentrations and lower than the LUR estimates at high NO2 concentrations.  
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Table 1. LUR models for NO2 and NOx for Western Sydney, 2013-2014 

Pollutant predictors** Coefficient Standard 
Error 

Standardised 
coefficient* 

P VIF Increm-
ental R2 

NO2       

Intercept 5.7295 1.0983 16.5454    

Product of traffic intensity on nearest major 
road & inverse distance to the road 
(vpd/metre) a  

0.0015 4.079 x 10-4 1.9094 0.039 2.31 0.49 

Population density within 5000 m (number of 
people)f 

3.91 x 10-5 6.99 x 10-6 2.0419 <0.0001 1.09 0.65 

Dwelling density within 100 m (number) 0.0653 0.0173 1.4682 <0.0006 1.34 0.73 

Heavy traffic intensity on nearest road (vpd) b 0.0012 2.401 x 10-4 2.6114 0.001 2.26 0.80 

Commercial land use within 700 m 
(proportion of land area within buffer 
distance) 

9.96 x 10-6 3.00 x 10-6 1.3523 0.002 1.36 0.84 

NOx       

Intercept 23.6982 3.554 30.9472 <0.0001 0  

Length of major roads within 75m buffer 
(metres) c 

43.3518 6.9328 5.2753 <0.0001 1.69 0.58 

Product of heavy traffic intensity on nearest 
road & inverse distance to nearest road 
(vpd/metre)d 

0.0558 0.0073 7.0991 <0.0001 2.04 0.70 

Dwelling density within 100 m (number) 0.1116 0.0329 2.6182 0.0016 1.42 0.79 

Elevation (square root) (m) -1.770 0.3326 -3.8857 <.0001 1.27 0.84 

Heavy traffic intensity on nearest major road 
(vpd) e 

0.0012 2.671 x 10-4 3.3809 0.0001 1.46 0.88 

Commercial land use within 500 m 
(proportion of land area within buffer 
distance) 

3.42 x 10-5 9.37 x 10-6 2.7218 0.0008 1.32 0.90 

Population density within 5000 m (number of 
people) 

4.039 x 10-5 1.344 X10-5 2.1078 0.0047 1.17 0.92 

** Variables added and retained in the models when: 1) absolute increase in adjusted R2 >1%; 2) coefficients 
in the pre-specified expected direction and, 3) direction of effect of the coefficients of the retained variables 
did not change with addition of the new variable.* Predictor variables in the final model were used to 
generate standardised predictor variables (and coefficients) by subtracting the mean for each variable from 
each value for that variable and dividing by the standard deviation (SD). 

a Intmajorinvdist (ESCAPE name)  
b Heavytrafnear  
c Majroad75  
d Heavyintinvdist  
e Heavytrafmajor  
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Table 2. Results from hold-out cross validation of NO2 and NOx LUR models 

Hold out 
validation 

% data points 
used for 
training dataset 

Adjusted R2 RMSE 

NO2 model  0.84 2.35 
10-fold  10% 0.82 2.41 

4-fold  25% 0.85 2.37 

2-fold 50% 0.85 2.33 

NOx model  0.92 4.35 
10-fold  10% 0.90 4.51 

4-fold  25% 0.90 4.68 

2-fold 50% 0.85 6.56 

 

Table 3. Summary statistics for NO2 (ppb) estimated for the CAPS cohort addresses by the 
LUR, Sat-LUR and BME model 

Model N Mean Median SD Min Max 25% 75% 
LUR 947 7.3 7.3 1.9 3.1 17.7 6.1 8.2 

Sat-LUR  947 7.0 6.7 1.9 3.6 18.0 5.8 7.9 

BME 947 7.9 7.7 1.9 4.5 18.1 6.6 8.9 

 

Mean estimates from the LUR were 4% higher than the Sat-LUR estimates (95%CI: 3% to 6%). The 

limits of agreement indicating where 95% of the values for the fold difference between the two 

estimates lie, were 0.7 (lower limit) and 1.52 (upper limit) (antilog values of Figure 4a). The ICC for 

the LUR vs Sat-LUR was 0.73. The correlation between the LUR and Sat-LUR (log values) was 

r=0.73 and for the unlogged estimates was r=0.68. 

The mean estimates for the LUR model were 8% lower than the BME estimates (95%CI: -9.5% to -

7%). The lower and upper limits of agreement were between 0.64 and 1.31 fold difference, 

respectively (antilog values of Figure 4b).  The ICC for the LUR vs BME estimates was 073. The 

correlation between the LUR and the BME estimates (log value) was r=0.73 and for the unlogged 

estimates was r=0.69. 
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Figure 3 Surface maps of LUR (a) NO2 and (b) NOx concentrations, for western Sydney 
and expanded view (Parramatta and Liverpool), 2013-2014 

    

     

Figure 4. Bland-Altman plots of level of agreement (log ppb) 

a) NO2 concentrations 

b) NOx concentrations 
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Figure 5. Scatter plots of estimates from a) LUR vs Sat-LUR (blue) and BME (red) NO2; b) 
Scatter plot matrix; c) LUR vs Sat-LUR NO2; d) LUR vs BME NO2; (all log ppb) 
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We developed standard LUR models with high spatial predictive capability of 84% and 91% for NO2 

and NOx respectively, for an area covering around 75% of the built urban area of Sydney. We also 

show that estimates from the standard LUR models that we developed specifically for the study 

area agree well with estimates from more complex models incorporating both satellite and CTM 

data developed for much larger areas.  

The validity of our models, 84% and 91% for NO2 and NOx, respectively, compare well with the 

better predictive models from the European ESCAPE study (Beelen et al. 2013), North America 

(HEI 2010) and those reported in reviews of LUR modelling (Hoek et al. 2008; Ryan and LeMasters 

2007). For example, the ESCAPE NO2 models explained 55 to 92% (median 82%) of the variation 

in NO2 and 49 to 91% (median 78%) in NOx, across 36 study areas in Europe (Beelen et al. 2013).  

In Australia, only three previous LUR NO2 models have used empirical ground based 

measurements; one in a small study area in Sydney (Rose et al. 2011), one for Perth, a 

metropolitan city on Australia’s west coast (Dirgawati et al. 2015); and a recent model for Brisbane, 

a tropical city in northern Australia ((Rahman et al. 2017). The earlier Sydney model, incorporating 

fixed site monitored data and a simpler traffic measure (weighted road density), developed for a 

much smaller area (50 km2) in northern Sydney, explained 80% of the overall variation in NO2 (Rose 

et al. 2011). However, it was uncertain whether this model could be extrapolated across Sydney 

due to its small scale. We also updated the current study using traffic counts as a model input. The 

Perth LUR model reported predictions of 69% and 75% in NO2 and NOx variability, respectively, 

across the metropolitan Perth area (Dirgawati et al. 2015). The Brisbane models explained 64% and 

70% of variability in NO2 and NOx concentrations respectively, but are not directly comparable to 

the Sydney models as they estimated daily pollutant concentrations using short-term and long-term 

monitoring campaigns, and sample sites were restricted to schools and EPA monitoring sites which 

may not represent the full range of expected concentrations (Rahman et al. 2017). 

Annual mean NO2 and NOx concentrations in Sydney (9.2 ppb NO2, 17.1 ppb NOx) were almost 

twice as high as for Perth (5.3 ppb NO2 and 9.9 ppb NOx). Our mean concentrations for NO2 were 

similar to those in ESCAPE models from Scandinavia and Hungary and Erfurt, Germany, but 

substantially lower than for England and other European countries, albeit sampling for the ESCAPE 

models occurred between 2008-2011 (Beelen et al. 2013). 

Slightly different predictors were chosen for our NO2 model compared with the NOx model, which is 

expected given that NOx is a primary pollutant and NO2 a secondary pollutant formed by reaction of 

NOx with oxygen in the atmosphere. As a consequence these two pollutants have different scaled 

spatial contrasts (Karner et al. 2010). The slightly different predictors for each model are consistent 

with the ESCAPE models for various cities (Beelen et al. 2013). Nevertheless, the nature of the 

predictors was similar for both pollutant models in that the main predictors related to: heavy traffic, 
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population density, dwelling density, and commercial land use, and each model included at least 

two traffic variables. We found commonality in the final variables selected in our model and the 

previous small-area Sydney LUR model (Rose et al. 2011), which included two traffic density 

variables, population density (within 500 m) and commercial land use (within 750 m). The Perth 

LUR models reported traffic intensity on the nearest road, household density, industrial land use, 

and road length within 50 m the main predictor variables for both NO2 and NOx (Dirgawati et al. 

2015). In Europe, the most consistently chosen explanatory variables across the 36 ESCAPE study 

areas included small-scale traffic and population and household density (Beelen et al. 2013). Our 

models demonstrate that variables reflecting traffic density (including heavy traffic on main roads) 

and distance to roads, are the strongest predictor variables for NO2 and NOx pollution in Sydney. 

This is not surprising, given that traffic contributes approximately 62% of NOx emissions in Sydney 

(NSW EPA 2016). Related to this finding, the results from the passive samplers substantiated the a 

priori categorisation of sampling sites and demonstrated that NO2 and NOx concentrations were 

greatest at the traffic sites, lowest at regional sites representative of the urban-rural fringe, and 

midway between the two categories at the urban background sites which were representative of 

suburban backstreets. 

We report good agreement between the NO2 cohort exposure estimates derived from our LUR 

model and the estimates derived from both the national Sat-LUR model and the BME model for our 

study area. There was little difference between the mean estimates for the three methods, with this 

difference being much lower than the precision for passive sampler analysis. The Sat-LUR model 

however, resulted in slightly lower mean and median estimates than did the LUR model, which may 

be a function of the location of the regulatory measurement sites used as the outcome variable for 

Sat-LUR model building, which in Sydney are at “background” locations. For all summary measures 

the two methods were highly comparable. Both models included traffic variables as major predictors 

of NO2. We conclude that, at least in the present setting, the choice among the alternative models 

should be made on the basis of availability of data and feasibility, as all three models yield similar 

findings. From a broader perspective, the choice of application of a specific exposure model for 

epidemiological purposes will also be guided by the spatial extent of participants and study design. 

The BME model estimated slightly higher mean, minimum and maximum NO2 concentrations than 

the LUR model, however the mean difference between estimates from the two models was very 

small. The small differences might be due to the different spatial resolution for pollutant estimation: 

the Sat-LUR method was based on centroids of each mesh-block whereas the BME model 

estimated concentrations for centroids of 100 x 100 m grids. The BME model also incorporates 

information from the CTM model, which is reliant on pollutant inventory data, and thus likely to 

represent industrial source contribution of NO2 differently to the industrial land use density data 

used for LUR and Sat-LUR model development.  
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One key feature of our study is that it compares estimates from models applied at different spatial 

scales. Even when using just one model method such as LUR, use of varying spatial scales for the 

same area can reveal different patterns with sometimes poor transferability (Marcon et al. 2015), 

particularly for pollutants with strong spatial gradients. Our results indicate that the variation in 

spatial scale of the three models does not appear to be a substantial limitation in the context of this 

study, seen by the good model(s) agreement and similar summary statistics for the estimates. 

However, our study found that the models with lower spatial resolution (Sat-LUR and BME), tended 

to predict higher concentrations at background sites compared with the LUR and the difference in 

spatial gradients may have contributed to the small variation in NO2 estimates. The higher 

concentrations estimated by the Sat-LUR and BME models might be explained by the fact that the 

standard LUR relies on local knowledge of the study area characteristics for site selection so as to 

maximise the range of measured pollutant concentrations. Hence, theoretically it is better placed to 

capture minimum and maximum concentrations. Understanding how the potential biases at the 

lower and upper ends of our NO2 exposure range might impact on the exposure-response 

coefficients in epidemiological analyses is important. We will test this by applying all three estimates 

to the CAPS cohort. 

To date we have found no other studies of NO2 estimation that have compared agreement, using 

appropriate agreement statistics, between LUR models and separately developed models using 

satellite data or Bayesian methods, that might indicate whether this finding is generalizable to other 

countries or areas. In Supplementary Table S1 we summarise results from studies (Beelen et al. 

2010; Buteau et al. 2017; de Hoogh et al. 2014; Hennig et al. 2016; Marshall et al. 2008; Sellier et 

al. 2014; Wang et al. 2015; Wu et al. 2011) that have compared LUR estimates of NO2 with other 

modelled NO2 estimates (dispersion modelled including CTMs), or with measured concentrations 

(nearest monitor measurement; inverse distance weighted measurement). It reports correlations for 

the various comparisons which range from R=0.19 to 0.89, and includes at least two previous LUR 

comparison studies that underscore the influence of local characteristics in model development. 

Comparison of LUR vs CTM NO2 estimates in Germany reported better R2 when the CTM method 

was restricted to local traffic areas only (Hennig et al. 2016). A Dutch study reported good 

agreement at the mid-range of concentrations estimated by LUR versus dispersion modelling and 

versus validation sites, but larger differences at the ends of the concentration range, suggesting the 

differences might be due to the coarse categorisation for the industrial land use variable used in the 

LUR (Beelen et al. 2010).  

A limitation of all but two (Buteau et al. 2017; de Hoogh et al. 2014) of these comparative studies is 

that they have used correlation coefficients to describe the agreement between methods, rather 

than reporting agreement statistics such as Bland-Altman ICC statistics or Bland Altman plots. 
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Strong correlation does not inherently imply good agreement, as two methods might be highly 

correlated but concentrations may not agree well (Giavarina 2015; Koo and Li 2016). 

Limitations of our LUR model development are the relatively small number of sample sites (n=46), 

compared to some studies. However, our separate hold-out validation analyses demonstrated the 

robustness of both the NO2 and NOx models, with the adjusted R2 found to be high and similar 

between different hold-out iterations of 10%, 25% and 50%, indicating that the smaller sample size 

is unlikely to have unduly influenced model estimates. It is also possible that the measurement of 

NO2/NOx during three seasons using the passive samplers did not fully capture the annual variation 

in pollutant concentrations, however, we sought to adopt sampling methods which were consistent 

with most other LUR studies (Beelen et al. 2013; Hoek et al. 2008; Ryan and LeMasters 2007).  

The number of variables in our final NOx model (n=7) is another potential weakness, given the 

number of sample sites is relatively low and the number of predictor variables is large. Our NOx 

model with seven predictor variables may be over-specified, however our models are consistent 

with ESCAPE models where the number of model variables ranged from 2-7. Furthermore, the 

incremental R2 of the NOx model was 0.84 and 0.88 with four and five predictor variables 

respectively, reflecting good variance explained with a lower number of variables and variables 

were only retained in the model if VIF<3. 

Strengths of our LUR model development include the use of a standardised and previously tested 

method (ESCAPE) that allows comparison of our results with a local Perth model and a large 

number of European models, whilst also acknowledging variation in local environmental and 

geographic conditions. Our hold-out validation is a second strength of the study, demonstrating 

robustness of the model irrespective of the number of samples used for model building and 

validation. A further strength is the use of agreement statistical analyses to report on comparison 

between the methods. In this study we used Bland-Altman statistics and determined the intra-class 

correlation coefficient whereas most previous studies have reported Pearson correlation 

coefficients, which are a measure of correlation rather than agreement (Giavarina 2015).  

Conclusion 

Our study is the first, as far as we are aware, to compare agreement between NO2 estimates from a 

standard LUR to a national LUR model using satellite estimates and a Bayesian blended model. We 

reported strong agreement as well as small absolute differences between our LUR model and both 

of the other models, despite the different data inputs and differences in the spatial scales of the 

models. Our study reaffirms the place for standard LUR model methods, not only, but particularly, 

where it may be challenging to apply more complex exposure models because of data gaps and/or 

a lack of computational resources. Further work is required to determine whether this good 
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agreement holds true for other pollutants, especially for particulate matter concentrations. Our study 

cannot indicate which of the methods is the most valid as there is no gold standard method, 

however, it demonstrates that any of our tested exposure methods can be used to assign annual 

average NO2 exposures for epidemiological analyses in Sydney. It also indicates that the LUR 

model might be generalisable to other areas within Australia, both urban and non-urban, although 

this will require validation in both rural settings as well as other cities. We will apply the three sets of 

model estimates for exposure-response analyses for the CAPS cohort to determine their impact on 

the effect estimates.  
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