Supplementary information

Supplementary Table S1. Studies comparing LUR models with other exposure models for estimation of NO₂

Study, country, pollutant average	Exposure models compared	Methods of	Comments		
		comparison			
Buteau et al, 2017	NO ₂ (daily averages)	Levels of	Maximum differences in NO ₂ for given		
Canada; Predictions made for 96 postal		agreement	days:		
codes	Nearest-monitor vs IDW	ICC=0.81	74 ppb		
(Buteau et al. 2017)	Nearest monitor vs LUR	ICC=0.60	108 ppb		
Hennig et al, 2016;	LUR vs CTM (4809 cohort addresses)	Difference of -7.4	Better R ² when CTM method restricted to		
Germany;	LUR vs CTM at NO ₂ sites (Background	± 4.9 ug/m3	local traffic areas only.		
Predictions for 4809 cohort addresses.	& traffic-all sites)	R ² =0.55			
(Hennig et al. 2016)					
Wang et al, 2015;	LUR (ESCAPE) vs DM (NO ₂)	R ² =0.47-0.85			
The Netherlands;					
Predictions for 1058 cohort addresses.					
(Wang et al. 2015)					
De Hoog et al, 2014;	LUR vs DM	R ² =0.19-0.89	Pearson R ² varied substantially between		
Predictions for 13 ESCAPE cohort		B-A plots, no	the 13 LURs from 13 different countries		
addresses (total n=112971).		ICCs reported			
(de Hoogh et al. 2014)					
Sellier et al, 2014;	LUR vs AQMS	R ² =0.46-0.76	Difficult to draw overall comparisons as		
France;	LUR vs TAG	R ² =0.73-0.87	individual R ² were provided by distance		
Predictions for 776 addresses.	LUR vs DM	R ² =0.77-0.87	from AQMS and type of area		
(Sellier et al. 2014)					
Wu et al, 2011;	LUR vs DM (CALINE4) (NOx)	R ² =0.49			
California, US;	LUR vs AQMS (NO ₂)	R ² =0.57			

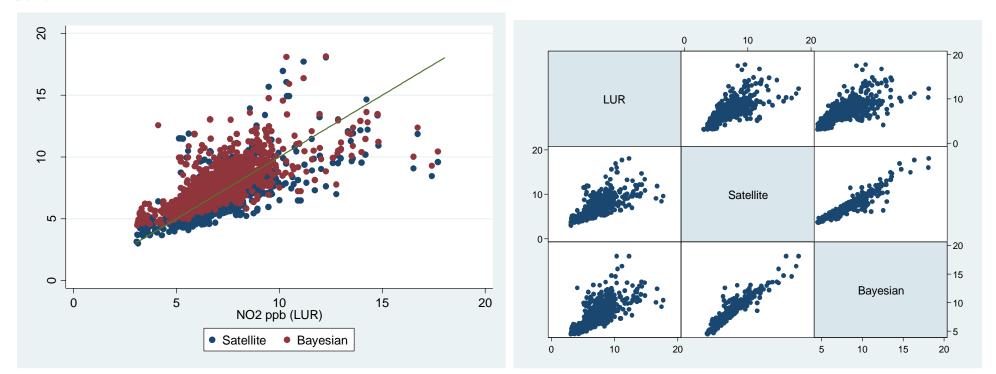
Predictions for >81,000 addresses.	LUR vs AQMS (NOx)	R ² =0.46	
(Wu et al. 2011)	LUR vs traffic density (NO ₂)	R ² =0.27	
Beelen et al, 2010;	LUR vs DM (NO ₂)	R ² =0.55	Good agreement at mid-range but larger
The Netherlands;	DM vs validation sites (NO ₂)	R ² =0.77	differences at high and low concentrations.
Predictions made at N =69 975 grid points	LUR vs validation sites (NO ₂)	R ² =0.47	Perhaps due to coarse category for
(Beelen et al. 2010)			"industrial land use" used in LUR
Marshall et al, 2008;	LUR vs IDW (NO ₂)	R ² =0.52	LUR produced lowest estimates. Attributed
Canada; Predictions for 56,099 postal codes.	LUR vs DM (CMAQ) (NO ₂)	R ² =0.49	to postcode centroids not located along
(Marshall et al. 2008)	LUR vs AQMS (nearest) (NO ₂)	R ² =0.54	roads, hence leading to under-estimation.

AQMS Air Quality Monitoring Station DM Dispersion model CTM Chemical transport model TAG Temporally adjusted geostatistical model

Supplementary Table S2. LUR variables and sources of data

	GIS Data source	Variable Description	Buffer size (m)	SYDNEY NAME	ESCAPE NAME	Calc/units
Land use	Australian Bureau	Residential - Mesh Block	100, 300, 500, 700,	Resmb		Proportion of
	of Statistics (ABS)		1000, 2500, 5000			land area
Land use	ABS	Industrial - Mesh Block	100, 300, 500, 700,	Indmb		Proportion of
			1000, 2500, 5000			land area
Land use	ABS	Commercial - Mesh Block	100, 300, 500, 700,	Commmb		Proportion of
			1000, 2500, 5000			land area
Land use	ABS	Parkland - Mesh Block	100, 300, 500, 700,	Openmb		Proportion of
			1000, 2500, 5000			land area
Land use	ABS	Water - Mesh Block	100, 300, 500, 700,	Openmb		Proportion of
			1000, 2500, 5000			land area
Land use	ABS	Park/Water/Agric - Mesh Block	100, 300, 500, 700,	Openmb		Proportion of
			1000, 2500, 5000			land area
Population	ABS	Population within buffers	100, 300, 500, 700,			Number
Density			1000, 2500, 5000			
Dwelling	ABS	Dwellings within buffers	100, 300, 500, 700,			Number
density			1000, 2500, 5000			
Distance to	Geoscience	Distance to Coast				m
coast	Australia					
Altitude	Geoscience	Altitude - SRTM 1 arc second derived	NA	Elevation		m
	Australia	DEM				

Traffic	Zenith_plus_local	Traffic intensity on nearest road	N/A	TRAFNEAR	TRAFNEAR	vpd
Traffic	Zenith_plus_local	Distance to nearest road	N/A	DISTINVNEAR1, DISTINVNEAR2	DISTINVNEAR1, DISTINVNEAR2	m ⁻¹ , m ⁻²
Traffic	Zenith_plus_local	Product of traffic count on nearest road & inverse of distance to nearest road & distance squared	N/A	INTINVDIST, INTINVDIST2	INTINVDIST, INTINVDIST2	vpd/m; vpd/m2
Traffic	Zenith_plus_local	Traffic intensity on nearest major road	N/A	TRAFMAJOR	TRAFMAJOR	vpd
Traffic	Zenith_plus_local	Distance to nearest major road	N/A	DISTINVMAJOR1, DISTINVMAJOR2	DISTINVMAJOR1, DISTINVMAJOR2	m ⁻¹ , m ⁻²
Traffic	Zenith_plus_local	Product of traffic intensity on nearest major road & inverse of distance to nearest major road & distance squared	N/A	INTMAJORINVDIST, INTMAJORINVDIST2	INTMAJORINVDIST, INTMAJORINVDIST2	vpd/m; vpd/m2
Traffic	Zenith_plus_local	Traffic load of major roads in buffer (sum of (traffic intensity*length of all major road segments))	25, 50, 75, 100, 300, 500, 700, 1000	LOADMAJ	TRAFMAJORLOAD	Sum of (count*length) major roads
Traffic	Zenith_plus_local	Traffic load of all roads in buffer (Sum(traffic counts*length) all segments)	vpd	LOAD	TRAFLOAD	vpd
Traffic	Zenith_plus_local	Heavy Traffic intensity on nearest road	vpd	HEAVYTRAFNEAR	HEAVYTRAFNEAR	vpd
Traffic	Zenith_plus_local	Product of heavy traffic intensity on nearest road & inverse of distance to nearest rd & distance squared	vpd/m, vpd/m2	HEAVYINTINVDIST, HEAVYINTINVDIST2	HEAVYINTINVDIST, HEAVYINTINVDIST2	vpd/m, vpd/m2
Traffic	Zenith_plus_local	Heavy traffic intensity on nearest major road	vpd	HEAVYTRAFMAJOR	HEAVYTRAFMAJOR	vpd


Traffic	Zenith_plus_local	Heavy Traffic load of major roads in buffer (sum of (heavy traffic intensity*length of all major road segments))	25, 50, 75, 100, 300, 500, 700, 1000	HEAVYLOADMAJ	HEAVYTRAFMAJORL OAD	vpd/m
Traffic	Zenith_plus_local	Heavy Traffic load of all roads in buffer (sum of (heavy traffic intensity*length of all road segments))	25, 50, 75, 100, 300, 500, 700, 1000	HEAVYLOAD	HEAVYTRAFLOAD	vpd/m
Traffic	NSW Land & Property Information (LPI)	Weighted Road Density	25, 50, 75, 100, 300, 500, 700, 1000			
Traffic	LPI	Road Length of all roads in buffer	25, 50, 75, 100, 300, 500, 700, 1000	ALLROAD	ROADLENGTH	m
Traffic	LPI	Road Length of minor roads in buffer	25, 50, 75, 100, 300, 500, 700, 1000	MINROAD	Not in ESCAPE	m
Traffic	LPI	Road length of major roads in buffer	25, 50, 75, 100, 300, 500, 700, 1000	MAJROAD	MAJORROADLENGTH	m
Other NO2 Sources	National pollutant inventory (NPI)	Number of Oxides of Nitrogen sources in buffers	50, 75, 100, 150, 200, 300, 500, 700, 1000, 2500, 5000, 10000		Not in ESCAPE	

Supplementary Table S3. Summary statistics for NO₂/NOx passive sampler concentrations (ppb) by site type

Site type (n)	Mean	Cls	SD	Min	Max	25th%	75th%	
NO ₂	NO ₂							
Overall (n=46)	9.0	8.1-9.9	3.1	3.7	17.3	7.1	10.4	
Traffic (n=16)	11.6	9.9-13.2	3.4	6.0	17.3	8.7	13.6	
Urban background (n=24)	7.7	6.9-8.4	1.8	4.8	12.4	6.0	8.4	
Urban Background <100 m to main road (n=4)	8.5	7.7-9.3	1.2	7.1	9.8	7.7	9.4	
Regional (n=2)	5.3	2.2-8.4	2.2	3.7	6.9	4.5	6.1	
NOx	NOx							
Overall (n=46)	17.1	14.9-19.4	7.9	6.6	43.4	12.4	18.2	
Traffic (n=16)	24.1	19.7-28.5	9.0	12.4	43.4	17.0	31.2	
Urban background (n=24)	13.2	11.7-14.7	3.7	6.6	24.0	11.1	15.0	
Urban Background <100 m to main road (n=4)	17.0	15.8-18.2	1.2	15.5	18.2	16.3	17.9	
Regional (n=2)	9.4	5.6-13.2	2.8	7.4	11.4	8.4	10.4	

Supplementary Table S4. Comparison of measurements by passive samplers vs fixed site monitors

Period	Passive sampler	Regulatory fixed site	Comments
		monitor	
Winter (July 2013 period)			Excluded due to duplicates exceeding 30% variability and because OEH monitored data was missing for 4 days of the period
Summer (Dec 2013)	5.5	8.5	
Autumn (Mar 2014)	9.2	10.4	

Supplementary Figure S1. Scatter plots of a) LUR vs Sat-LUR (blue) and vs BME (red) NO₂ estimates; b) Scatter plot matrix (ppb)