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Abstract

Cloud computing is an emerging Internet-based computing paradigm that aims
to provide many on-demand services, requested nowadays by almost all online
users. Although it greatly utilises virtualised environments for applications to
be executed efficiently in low-cost hosting, it has turned energy wasting and
overconsumption issues into major concerns. Many studies have projected that
the energy consumption of cloud data-centres would grow significantly to reach
35% of the total energy consumed worldwide, threatening to further boost the
world’s energy crisis. Moreover, cloud infrastructure is built on a great amount
of server equipment, including high performance computing (HPC), and the
servers are naturally prone to failures.

In this thesis, we study practically as well as theoretically the feasibility of
optimising energy consumption in multi-cloud systems. We explore a deadline-
based scheduling problem of executing HPC-applications by a heterogeneous set
of clouds that are geographically distributed worldwide. We assume that these
clouds participate in a federated approach. The practical part of the thesis has
focused on combining two energy dimensions while scheduling HPC-applications
(i.e., energy consumed for execution and data transmission). It has consid-
ered simultaneously minimising application rejections and deadline violations,
to support resource reliability, with energy optimisation. In the theoretical part,
we have presented the first online algorithms for the non-preemptive scheduling
of jobs with agreeable deadlines on heterogeneous parallel processors.

Through our developed simulation and experimental analysis using real parallel
workloads from large-scale systems, the results evidenced that it is possible to
reduce a considerable amount of energy while carefully scheduling cloud applica-
tions over a multi-cloud system. We have shown that our practical approaches
provide promising energy savings with acceptable level of resource reliability.
We believe that our scheduling approaches have particular importance in rela-
tion with the main aim of green cloud computing for the necessity of increasing
energy efficiency.
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Chapter 1

Introduction

1.1 Cloud Computing and Energy Concern

A cloud computing1 system, in simple terms, is an Internet-based computing

system that aims to provide many on-demand services, requested nowadays

by almost all online customers. Rather than constructing a costly data-centre,

equipped with many servers and storage devices, etc., for processing and manag-

ing applications, cloud computing can handle not only application deployment

and hosting but also required devices (particularly, high performance comput-

ing (HPC) servers) to be delivered through the Internet as services. Such over-

whelming services and supports are obviously derived from a magnificent and

powerful infrastructure. Typically, cloud infrastructure is built upon a large

number of servers, including HPC and massive storage devices, that need huge

energy supplies.

The advent of cloud computing, although it greatly supports virtualised environ-

ments for applications to be executed efficiently in low-cost hosting, has turned

energy wasting and overconsumption issues into major concerns. As a worrying

1The word cloud is a metaphor for the Internet, hence, cloud computing refers to Internet-
based computing [100]

1
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manner, many studies (some of them are discussed in [90]) have projected that

the energy consumption of cloud data-centres would grow significantly to reach

35% of the total energy consumed worldwide [114], threatening to further boost

the world’s energy crisis [99]. These studies have emphasised the importance of

making cloud infrastructures energy efficient, and this has mostly motivated us

to carry out this thesis.

A recent study [54] reports that cloud data-centres consume approximately up

to 3% of the total energy consumption around the world, and the consumption

is projected to grow significantly to 1012.02 billion kWh by 2020 [114]. Another

study [49] (cited in [90]) also estimates that a typical data-centre consumes

about 27, 048 kWh per day and this amount is equivalent or even more to what

2,500 households would consume in the EU. Such a huge amount of energy is

probably due to the notable growing demand for cloud services in many sectors,

such as the evolution of eScience, gaming systems, social big data analysis, and

data mining applications. Moreover, a figure depicted in [112] estimates that

the majority of energy in a typical cloud data-centre is consumed by server

computing activities, while less than 50% is needed for all other components

such as storage and cooling systems. This has also motivated us to focus on the

server component in our proposed solution in general.

In Section 2.1 and Section 2.2, we extend our discussion regarding cloud com-

puting infrastructures and their energy issues. However, in the next sections, we

will narrow the discussion down, focusing on energy optimisation by efficiently

utilising a set of cloud resources, toward explaining our research problems.

1.1.1 Utilisation of Cloud Resources

A cloud computing system depends principally on sharing computing resources

from one or more data-centres. This has brought the efficient utilisation of

2
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cloud research under the spotlight that raises the necessity of (1) addressing

energy overconsumption issues and of (2) supporting the reliability of resource

utilisation as cloud resources are naturally prone to failures [103]. We attempt

in this thesis to handle these two points.

Concerning the energy overconsumption issue, many pioneering researchers have

devoted their studies, surveyed in [73], to improving the utilisation of cloud re-

sources. To a large extent, the core factors behind efficient resource utilisation

are the high capabilities of virtualisation techniques [101] as well as the flexi-

bility of dynamically adjusting voltage and frequency of processors [65]. These

techniques provide an effective way to save energy as virtualisation enables a

reduction of the number of active physical machines (relying on Virtual Machine

Migration and Consolidation techniques [73]) and, in turn, sharing bounded re-

sources by virtually creating further machines or CPUs to potentially handle

large workloads. Dynamic Voltage and Frequency Scaling (DVFS), however,

enhances the energy efficiency of executing a workload that is considered in

this thesis, discussed in detail in Section 2.2.1. The idea of DVFS is to reduce

the supplied voltage for a processor as much as possible while the desired per-

formance, represented by an execution time bound, is still achievable [65]. In

this setting, determining the critical frequency when scheduling a task depends

mainly on measuring the status of resource utilisation.

1.1.2 Multi-Cloud Computing and Cloud Federation

Multi-cloud computing has come on the technological scene to further augment

and expand the shared pool of cloud resources for even more efficient services.

It intuitively follows the distributed computing system that goes beyond the

capability of a single cloud system in providing critical services, such as backup

3
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and disaster recovery. Here, we devote particular attention to a cloud feder-

ation system that fundamentally gathers different cloud providers (with het-

erogeneous infrastructures) to cooperate for many purposes, such as improving

cloud services, increasing productivity, and meeting complex customer demands,

etc. [88]. For instance, cloud customers may benefit from the federation of cloud

resources so as to have more flexible features for mitigating the economic prob-

lem of vendor lock-in, gaining better performance with probably cheaper cost

[80].

Cloud federation is still an emerging computation paradigm and many ap-

proaches with strategic visions have been suggested, surveyed in [75], such as

InterCloud vision [32], Cross-Cloud federation approach [38], Multi-Cloud ap-

proach [21], and Federated Cloud Management [89]. Broadly speaking, the

federative pool of cloud resources are ordinarily designed from a heterogeneous

set of cloud providers, owned by either one vendor (such as amazon web ser-

vices (AWS) cloud computing [8], and some deployed open source cloud systems

with distributed data-centres that support AWS API, e.g., Open-Nebula [93],

Eucalyptus [50], CloudStack [42], and Nimbus [91]); or multiple vendors (e.g.,

Open Cirrus testbed2 [92]). In this thesis, the considered framework assumes

the latter design (i.e., a federated heterogeneous set of clouds owned by different

providers) with promoting the following particular goals of cloud federation:

• allowing the execution of workloads across multiple providers; and

• optimising the overall energy consumption federation wide.

In the next section, we explain our intention for optimising energy consumption

in multi-cloud systems as the main goal. We will firstly shed light on the problem

we want to solve, focusing on scheduling cloud applications, and then detail our

research objectives.

2Open Cirrus is a federated heterogeneous multi-clouds system that consists of more than
10 cloud sites across the globe [12].

4



Chapter 1. Introduction 5

1.2 Scheduling Approach for Energy

Optimisation: Problem and Objectives

In line with green cloud computing that recognises the necessity of increasing

energy efficiency and minimising global warming as well as air pollution [29],

this thesis aims to study practically as well as theoretically the feasibility of

optimising energy consumption in multi-cloud systems. It attempts to find ap-

propriate solutions to the problem of scheduling cloud applications, focusing

ultimately on minimising the wasted energy and/or overconsumption. The pur-

pose of our practical study is to estimate the amount of energy that one can

reduce, depending on several realistic energy parameters, whereas, the theoret-

ical study helps to understand how far the produced energy consumption of a

given algorithm is from the optimum.

In particular, we consider a deadline-based scheduling problem of distributing

HPC-applications over a decentralised multi-cloud system consisting of cloud

data-centres that are geographically located in different places around the world.

We assume that these clouds are heterogeneous, belonging to different vendors,

and participate in a federated approach for sharing the execution of workloads

with the goal of optimising the overall energy consumption worldwide. However,

this assumption does not mean that this study is not applicable to non-federated

systems, e.g., clouds, grids or any other computing clusters. Our approach

can be applied to any decentralised system with different clusters of clouds in

different locations where there is an issue of scheduling scientific workflows in

an energy-efficient way over the whole system. To be more specific, we explain

in some detail the main objectives of this thesis, as follows.

First of all, cloud infrastructures are fundamentally data-centres, which often

demand high energy usage to permanently operate [23]. Thus far, many com-

mon solutions devoted to efficiently scheduling and/or running HPC-workloads

5
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have focused on minimising energy usage at a single cloud, but not across mul-

tiple clouds. To bridge this gap, we aim to propose an efficient scheduling ap-

proach for optimising energy consumption over a global scale as in multi-cloud

computing.

Secondly, to tackle energy-aware application scheduling over geographically dis-

tributed clouds (owned by different providers), it is important to pay crucial

attention to the energy consumed by dataset transmission. To our knowledge,

this has not been addressed in the literature yet. In addition to accounting

for the energy consumption from both processing and dataset transmission

while performing global scheduling, one faces a natural trade-off between energy

minimisation and conflicting objectives such as quality-of-service optimisation.

Hence, we try to handle, in our proposal, both energy dimensions (i.e., en-

ergy consumed for execution and data transmission) along with combining two

conflicting objectives.

As consequences, the major part of this thesis has been devoted to examining

our energy optimisation algorithms for scheduling HPC-applications. These al-

gorithms are applied to decentralised cloud systems taking the energy usage of

dataset transmissions into account. The optimisation supports the combination

of two conflicting objectives, minimising both energy consumption and applica-

tion deadline violation caused by resource failures. The latter objective reflects

an important aspect of the quality that makes the proposed scheduling robust.

In a sense, our scheduling algorithms attempt to execute cloud applications in

a robust manner within cloud data-centres, such that the state of executing

applications would remain normal during unforeseen technical failures of cloud

servers.

Although we consider minimising application deadline violation, which is an

6
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essential objective in the context of scheduling cloud applications for satisfy-

ing Service-Level Agreement (SLA)3, we should mention that the core parts

of this thesis as well as the main contribution fall within the scope of energy

optimisation in the first place.

1.3 Thesis Contributions and Publications

The prime problem addressed in this thesis is a feasible optimisation of energy

consumption in distributed cloud systems, which is in fact one of the core targets

of green cloud computing. Our attempts to tackle this problem have already

made us contribute to the field of energy-aware scheduling of cloud applications

over multi-cloud systems. The novelty of our contributions as far as this the-

sis is concerned lies broadly in two proposals. The first proposal presents two

technical approaches for practically scheduling HPC-applications that consist

of dependent tasks. The second proposal presents theoretically the first online

algorithms for the non-preemptive scheduling of tasks with agreeable deadlines

on heterogeneous parallel processors. These online algorithms rely on the use

of competitive analysis to measure the produced energy cost of the considered

scheduling method. In the following list, we describe briefly our main contribu-

tions:

• an energy-aware global scheduling algorithm with best-effort (EGSBE) for

allocating HPC-applications to participating clouds, based on DVFS and

the cost of computational-execution [6] as well as dataset transmission;

• an energy-aware local scheduling algorithm (ELS) for mapping each task

to required resources [5].

3Service-Level Agreement (SLA) is a commitment contract between parties (e.g., service
provider and requester) that often includes aspects such as availability, quality, robustness,
responsibilities

7
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• an energy-aware global scheduling algorithm (EGSAR) with advance-

reservation for allocating HPC-applications to participating clouds, based

on DVFS and the cost of computational-execution as well as dataset trans-

mission [5];

• an interdependent decision-making algorithm (referred to as combination

rate strategy) to address conflicting objectives using a statistical approach

[5];

• another decision-making algorithm (referred to as preference rate strategy)

to optimise energy consumption based on setting an upper limit for the

allowed energy consumption [5];

• a developed prototype multi-cloud simulation tool MCST4 to mimic run-

ning HPC-workloads for analysis and evaluation.

• an implementation of an existing scheduling algorithm CMMS [84] for

comparison purposes [6, 5].

• theoretical algorithms for non-preemptive scheduling of tasks with dead-

line constraints on heterogeneous processors [7].

In greater detail, we outline our contributions in three points, as follows.

The best-effort and the advance-reservation scheduling approaches:

Proposing and experimentally evaluating these two different approaches for op-

timising the overall energy consumption, accompanied with the minimisation

of application rejection/violation cases, when scheduling HPC-applications over

a geographically distributed heterogeneous clouds system. These approaches

depend on our proposed local scheduler for scheduling application tasks locally

in cloud resources using the dynamic voltage and frequency scaling to reduce

4The API documentation of our MCST simulation has been made publicly available at
http://www.cs.le.ac.uk/people/ayya1/MCSTdoc/index.html
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energy consumption. Furthermore, these approaches comprise a suggestion of

two strategies for scheduling decisions: Preference Rate which needs to be pre-

defined, and Combination Rate that works dynamically, aiming to address con-

flicting objectives using a statistical approach. The novel contribution here is

to precisely schedule applications that consist of dependent tasks, based on a

combination of resource occupation and two energy dimensions: energy con-

sumed for execution and data transmission. Our practical evaluation includes a

comparison with an existing scheduling algorithm CMMS [84] besides a number

of experiments conducted to widely assess the outcomes.

The multi cloud simulation tool: Presenting a prototype simulation tool

developed to evaluate our best-effort and advance-reservation scheduling ap-

proaches. The MCST is entirely implemented in Java, and it provides an envi-

ronment to abstractly represent distributed multi-cloud systems as well as HPC-

applications to analyse the scheduling process of tasks and/or HPC-applications

for energy efficiency.

Non-preemptive scheduling on heterogeneous processors: Presenting

and analysing a non-preemptive online scheduling problem for allocating inde-

pendent tasks with deadline constraints to heterogeneous processors. This prob-

lem fundamentally represents a non-preemptive version of the classical speed-

scaling scheduling problem that was studied by Yao et al. [118] but on parallel

processors.

In addition to the contributions discussed previously, it is worth mentioning

that the major contents of this thesis have been peer-reviewed and published in

three conference papers, as listed below:

9
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• Aeshah Alsughayyir and Thomas Erlebach. “Energy Aware Scheduling

of HPC Tasks in Decentralised Cloud Systems”. In: 24th Euromicro In-

ternational Conference on Parallel, Distributed, and Network-Based Pro-

cessing, PDP 2016, Heraklion, Crete, Greece, February 17-19, 2016. 2016,

pages 617–621

• Aeshah Alsughayyir and Thomas Erlebach. “A Bi-objective Scheduling

Approach for Energy Optimisation of Executing and Transmitting HPC

Applications in Decentralised Multi-cloud Systems”. In: Proceedings of

the 16th International Symposium on Parallel and Distributed Computing,

ISPDC 2017, 3-6 July 2017, Innsbruck, Austria. (To appear). 2017

• Aeshah Alsughayyir and Thomas Erlebach. “Online Algorithms for Non-

preemptive Speed Scaling on Power-Heterogeneous Processors”. In: Pro-

ceedings of the 11th Annual International Conference on Combinatorial

Optimization and Applications, COCOA 2017, December 16-18, 2017, in

Shanghai, China. (To appear). 2017

1.4 Thesis Structure

Following this introductory chapter, an overview of the essential concepts and

background related to the most important aspects of the thesis are explored in

Chapter 2, including a review of the main relevant work. The practical part of

this thesis is then introduced in three chapters as follow:

• Chapter 3 presents firstly the considered system model that covers the

structure of our multi-cloud and HPC-application models. Next, it fo-

cuses on explaining the design and implementation of the proposed pro-

totype simulation MCST that depends principally on the discrete-event

10
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method. The chapter will then give a discussion on the most relevant

existing software simulations, explaining how our tool differs from them.

• Chapter 4 proposes the best-effort scheduling method (i.e., non-advance-

reservation style) for optimising the energy consumption when executing

dependent HPC tasks by a decentralised multi-cloud system. In conjunc-

tion with energy optimisation as the main objective of this thesis, the

proposed scheduling method supports maximising the resource reliability

by the reduction of rejected/violated application cases. A preliminary

version of this scheduling method has been published in [6], which con-

centrates on only optimising the computing-energy consumption.

• Chapter 5 proposes a comparable scheduling method with the best-effort

for the same objectives. However, this scheduling method follows the

advance-reservation style (i.e., needs to ensure that the time frame of

an application is scheduled within the resource capacity, taking into ac-

count already occupied and reserved resources) when allocating HPC-

applications to clouds for execution. The core parts of this chapter, in-

cluding most of the conducted experiments, have been published in [5].

In Chapter 6, we investigate theoretically a simplified form of our scheduling

problem, relying on competitive analysis. It proposes a non-preemptive schedul-

ing approach of jobs with deadline constraints on heterogeneous processors,

published in [7]. In conclusion, Chapter 7 summarises our contributions, details

the limitations of the proposed approach, and finally explores some prospective

outlooks for improving/extending our work.

11
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Relevant Background and Related Work

Many different practical as well as theoretical approaches have been suggested

to address energy-aware scheduling problems that arise in distributed cloud

systems or at the parallel processors level. In line with them, this thesis par-

ticularly contributes to the development of federated multi-cloud systems for

energy efficiency. To clarify the novelty of our contributions, which include a

technical method that has been experimentally examined using a simulation

tool and also a theoretical based approach, this chapter begins with giving an

overview of the essential concepts and definitions related to three important

aspects of this thesis, organised in three sections as follows.

The first section provides a brief discussion of cloud computing infrastructure

and its types in a wider context. The second section focuses on defining energy

efficiency within the common cloud systems. It includes a discussion on the main

power components in the cloud environment, and more importantly, it sheds

light on the existing energy saving techniques. In the third section, some basic

knowledge about the scheduling problem including some related concepts at an

abstract level of the problem are reviewed in terms of the complexity theory

perspective. Following that, this chapter further discusses the most relevant

12
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work in terms of the decentralised environment and energy-aware scheduling,

as well as a comparison with the latest theoretical speed-scaling work.

2.1 Cloud Computing Infrastructure

A cloud computing system can be defined as an Internet-based development that

aims to provide on-demand services. Its underlying framework is represented in

different forms, one of which is the Infrastructure as a Service (IaaS) that we

generally consider in this thesis. The innovative idea of IaaS was established in

2006 by Amazon Web Services [17], under the name of Elastic Compute Cloud

(EC2), as an investment in their free or unused resources. In principle, IaaS is

dedicated to dealing with hardware, software, servers, storage, and many other

infrastructure components that are typically hosted by providers who take the

responsibility of handling the affairs of regular maintenances and/or backup re-

quirements. One of IaaS’s advantages is that it provides a practical environment

for treating requests that need highly scalable resources. This specific environ-

ment can be effortlessly customised on-demand, offering a tangible benefit to

both end-users and service providers.

A multi-cloud system intuitively follows the distributed computing system that

combines some features of centralised and decentralised computing systems. To

clarify the architecture behind distributed multi-cloud systems, Table 2.1 gives

a general comparison between centralised and decentralised computing systems,

in terms of their pros and cons. Here, a distributed computing system, at an

abstract level, can be defined as a system that consists of a set of individual

computing nodes (i.e., clouds in the context of this thesis) that communicate via

a network, in a collaborative way, to solve a single large problem. This system

mostly follows a master/slave architecture, where unidirectional control over one

or more nodes is done by a single master node [106]. Two of the key advantages

13
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Centralised Decentralised

• A central computing node controls all
devices and performs complex compu-
tations.

• Multiple computing nodes responsible
for all processing.

P
ro

s

• A simple system to implement and
manage.

• Has no single point of failure.

• Has no concerns about any communi-
cation problems

• Enables distributing work and deci-
sions which allows better performance.

• Highly private and secure. • Highly distributed and scalable.
• Has a single point of failure. • A complex system to implement and

manage.

C
o
n

s • Limited scalability. • Synchronisation/communication
among distributed nodes is critical.

• All nodes have no view of the entire
state at all times.

• Security is an issue especially when us-
ing public network.

Table 2.1: Pros and cons of centralised and decentralised computing sys-
tems [78].

of the distributed computing system are its considerably good performance and

power of computation. Big Data Hadoop, Google web services, Nebula, World

Wide Web, etc., are examples of distributed computing systems.

The system architecture, followed in this thesis, is a distributed decentralised

multi-cloud computing system. It represents a cooperative model of sharing

resources that belong to different administrative clouds where these resources

are mostly highly dispersed. This architecture, the so-called inter-cloud, is

proposed with many different models, e.g. [104, 66, 31, 108], to serve as a fed-

erated approach to expand the resource pool and achieve great benefits with

minor effort. In fact, the establishment of resource sharing between various

Infrastructure Providers (InPs) would improve system performance, reduce the

requirement to build more data-centres, enable the use of heterogeneity among

multiple data-centres, and exploit the spare capacity in each data-centre espe-

cially during times of reduced demand. Thus, it is mooted that the future of the

cloud computing system will likely be paying particular attention to the decen-

tralised computing systems [84]. This has motivated us to consider primarily the

14
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distributed decentralised multi-cloud computing system as a promising model

for our approach.

2.2 Energy Efficiency in the Cloud System

The efficient use of energy in the cloud system is aimed at reducing the amount

of energy required to operate the cloud infrastructure including a large number

of HPC servers and massive storage devices, etc., as well as in the connected

inter-cloud for data transmission activities. Although cloud computing brought

better solutions for Information Technologies (ITs) and individual users by pro-

viding convenient services and environments for applications to be executed

efficiently in low-cost hosting in addition to all its other desirable features, it

has turned energy wasting and overconsumption issues into major concerns.

Further, there is an increasing need for cloud computing in multiple sectors,

e.g., the evolution of eScience, Gaming systems and eCommerce. They are

driven by high performance applications such as scientific computing, design

and manufacturing, and big data applications such as in social data analysis

and data mining applications. The changes in both sides of the equation – the

demand of high-performance ubiquitous cloud computing, and the supply of

distributed infrastructures – have a huge effect on energy demand and usage.

Thus, two of the challenges faced by the next generation of high performance

computing are power consumption and resource pool capacity. Concerning the

power consumption problem, the desired goal of designing computing systems

has been expanded to not only focus on improving the performance but to also

support energy optimisation. These changes seem to threaten Moore’s law by

slowdown, after about 50 years of life [46].

Narrowing the discussion down to the main components responsible for the

overall energy consumptions in a cloud environment, we briefly review the power
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consumption aspects of these components and their supported energy-saving

techniques, as follows.

• The server is the major energy component in data-centres due to its

processors and memories. For instance, the processor itself in a high-

performance server consumes a significant amount of energy, accounting

for up to 50% of the total energy consumption, which puts it in the first

place, followed by the memory in the second place [55]. The annual energy

consumption by a single high-performance 300-Watt server is 2628 KWh

[23]. Regarding the energy efficiency, reducing the processor’s energy con-

sumption has the additional advantage of positively affecting the energy

efficiency of other components such as the memories and buses [87]. Fur-

ther, the recent energy-aware memory chip architectures utilise some spin

down states to manage the energy consumed by the memory. The applied

energy saving techniques for servers and processors include: deactivat-

ing the idle devices (also known as dynamic shutdown servers), Dynamic

Voltage and Frequency Scaling (DVFS), virtualisation which supports mi-

gration and consolidation, and energy optimisation algorithms in general.

We extend the discussion about the relevant energy-saving techniques for

the computing server in more detail in Section 2.2.1.

• The network for the data communication includes the connectivity within

the data-centre among various components e.g. servers and storage de-

vices, and that between different data-centres of the same cloud. The main

network components include switches, routers, and links. The network

within the data-centre consumes about 30% of the total computational

energy consumption [57]. The applied energy-saving techniques include:

sleep mode, green routing, adaptive link rate, and virtual network em-

bedding, and utilising technologies such as commodity electrical network

elements, optical technology and hybrid network technology.

16



Chapter 2. Relevant Background and Related Work 17

• The cooling system is an important component that is used to keep the

whole data-centre elements and equipment at the right temperature by

removing the heat produced by computational devices to avoid any dam-

age and disruption. Thus, data-centre operators try to achieve this at all

costs. Due to the need for a continuous, efficient and reliable cooling sys-

tem, it is expected that this system will consume a relatively high amount

of power to operate at such a level. Using renewable energy resources and

building data-centres in cold areas are two of the approaches used to have

a green cooling system.

2.2.1 Energy-Saving Techniques

Many studies have been conducted to investigate various energy management

and saving techniques at hardware and software levels. We focus, in this sec-

tion, on the existing software techniques for optimising the energy consumed by

computing servers and processors, as follows.

Dynamic Voltage and Frequency Scaling (DVFS) is a technique that allows the

processor to run at adjustable levels of frequency and voltage in a way that

enables the dynamic management of the dissipated power, where the lower the

voltage is the more frequency is sacrificed. As a dominant energy-saving tech-

nique, DVFS is applied in different models and environments [67]. Furthermore,

the processor can support either discrete or continuous levels of frequencies [85].

When using the latter, the required frequency is chosen from a given range, e.g.,

[fmin, fmax] where fmin > 0 is the minimum frequency and fmax is the maximum

frequency; the chosen frequency, f , can take on infinitely many uncountable val-

ues from this range. However, in practice, the current processors only support

a finite number of discrete frequency levels. This number is subject to increase,

supported by technologies such as Intel SpeedStep and AMD PowerNow. To
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expand further, [47] give a general review of DVFS technique along with the

consumption of the static and dynamic energy.

Broadly speaking, DVFS technique is highly effective in optimising, on the fly,

both the frequency and the voltage, and it becomes increasingly significant in

reducing energy loss and waste up to 34% at a single server CPU as discussed

in [11] (cited in [83]). Although scaling down the CPU frequency could reduce

the power consumption while meeting the targeted performance requirements of

the application, some low frequencies can result in higher energy consumption if

the computation takes a long time to complete. Therefore the power reduction

using DVFS is not always optimal, and scaling well the frequency in accordance

with specific requirements (e.g., demanding a high-performance computation or

cutting energy costs/bills) is very complex and requires efficient algorithms to

be managed.

Changing the state of idle servers is a Dynamic Energy Management (DEM)

mechanism that can be equipped for considerable energy optimisation. Race

to idle is a suggested technique, which combines speed scaling and power-state

by turning the processor state to sleep after tasks have been executed at a

high speed [1]. This technique has been studied and implemented by IBM [40].

However, there are some issues regarding the impact of the server off/on cycle

on component reliability due to wear-and-tear [40].

The virtualisation technique with its high capabilities is, to a large extent, the

core factor behind efficient resource utilisation. It is the process of creating

virtual machines on the intended physical resources. This technique provides

an effective way to save energy as it enables a reduction in the number of active

physical machines (relying on Virtual Machine Migration and Consolidation

techniques [73]). This technique, in turn, enables the sharing of bounded re-

sources by virtually creating further machines or CPUs to potentially handle a

huge number of computational workloads.
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The algorithmic techniques for optimising energy in computing devices have

been incorporated to manage and adjust the processor speed and/or the server

state whenever appropriate to maximise their energy saving, for example, using

a heuristic approach with the energy-aware scheduling of tasks/applications

subject to deadline constraints. Many different approaches have been studied

and applied to different platforms and environments, e.g., [20, 19, 67].

2.2.2 Data Computing and Transmission Energy

Consider an application appm which is submitted to a service provider (an orig-

inal cloud in the inter-cloud system). We focus, in this thesis, on two aspects of

the energy consumed by appm: the execution activities and the dataset trans-

mission between clouds (if the original cloud is not the executer one). These

aspects are discussed as follows.

Energy of execution activities: The energy consumption of a processor is

affected by both execution activities Edynamic, i.e., dynamic energy and leakage

current, and static energy use Estatic. As previously mentioned, the processor

energy consumption can be controlled by employing the DVFS technique, where

the lower the processor frequency is, the less instantaneous energy it consumes,

but it incurs a longer execution time.

The conventional energy consumption metric of a single-core CPU running at

frequency f is ECPU = β + αf 3 where β represents Estatic and αf 3 represents

Edynamic [41, 111, 53]. Thus, heterogeneous processors have different values of

β and α. In this study, we adapt this formula to calculate the energy consumed

by multi-core processors, discussed in Section 4.1.2.

Energy of dataset transmission: Data transmission is the transfer process

of data as digital (electromagnetic) signals via a communication channel from

19



Chapter 2. Relevant Background and Related Work 20

one point to another over a network. The channel can be a wireless commu-

nication channel that carries signals like radio-wave or micro-wave; or a wired

communication channel such as copper cables that carry electrical voltage sig-

nals, or fiber-optic cables that carry, e.g., light or infrared pulses. In multi-cloud

computing system, data transmission is performed via the Internet.

In spite of the increasing use of data transmission by various cloud computing

services, attention has not often been paid to the energy used in transmitting

the data. Specifically, there are two types of data transmitting energy: one

between various clouds in the inter-cloud network, and the other between each

data-centre and the connected front-end computers (users). It is found that the

latter type consumes even larger amounts of energy than storing the data with

regular access [13]. In this study, we consider the optimisation of data transmit-

ting energy between clouds combined with the computing energy consumption.

While the computing energy and the data transmitting energy dominate the

total energy consumed by a typical data-centre, it is impossible to confirm with

certainty that the transmitting energy consumption and the computing energy

consumption are always of the same order of magnitude or if one uses always

more energy than the other. However, this mainly depends on the type of appli-

cations (tasks). For example, a video stream task would need an amount of data

transmitting energy more than the required amount of computing energy and

vice versa with a decryption task of a small data-size but a large computing-size.

2.3 Scheduling Concepts

The scheduling problem represents the process of making the decision of assign-

ing a task (job), to be carried out, to one or more processors (or computational

resources, in general). The problem involves a set of elements: a task that in-

cludes a set of operations with/without specified characteristics, resources such
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as machines, constraints such as time limits (deadlines), and an objective that

represents the optimisation criteria with regard to some constraints and task

characteristics [117].

2.3.1 Definitions

Before delving into our scheduling approaches, it is first necessary to under-

stand various scheduling problems by distinguishing between some relevant con-

cepts. These include task characteristics, e.g., preemptive or non-preemptive;

problem constraints, e.g., online or offline; and scheduling styles, e.g., advance-

reservation or best-effort (non-advance-reservation).

Preemptive scheduling represents the variant in which the execution of a job

can be interrupted and resumed later on the same processor (no migration) or

on an arbitrary processor (if migration is allowed). However, in non-preemptive

scheduling once a job starts its execution, it must be run to completion without

interruption. The difference between offline and online scheduling is distinguish-

able by whether the input instance (tasks) is known in advance (offline) or not,

i.e. it is just presented when the scheduling is due (online).

Furthermore, there are two scheduling modes: best-effort scheduling and advance-

reservation scheduling. In the best-effort scheduling mode, the scheduling deci-

sion is made depending on the instant status of the resources, and there is no

guarantee of their availability. Applying this mode with some deadline-based

task scheduling can be highly critical when a high number of parallel tasks need

to be executed at the same time. However, the advance-reservation scheduler

depends principally on the actual available slots for a given period of future

time. It needs to ensure that the time frame of a task/application is scheduled

within the resource capacity, considering both occupied and reserved resources.
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2.3.2 Robust Scheduling Under Uncertainty

The scheduling under uncertainty problem, i.e., dealing with unknown param-

eters or unavailable information, is a very common and widespread concern in

many models, especially when the objective is to optimise a scheduling process

in distributed systems. Such optimisation is normally associated with uncer-

tain timing parameters (e.g., resource availability with respect to time, process-

ing times, makespan (expected performance), and deadline constraints, etc.,)

and/or quality parameters like resource reliability or budget constraints [35,

98]. These parameters are always susceptible to unexpected deviations. Unlike

the scheduling optimisation problem in a deterministic model, uncertainties in

process scheduling require a systematic method and metrics to calculate in order

to control the desire performance.

The scheduling approaches presented in this thesis have mainly three classes of

uncertainties as follows:

• Uncertainty in processing times that ensure meeting the deadline. This

applies to only our Best-effort approach, introduced in Chapter 4

• Uncertainty in successfully executing applications, where cloud resources

are subject to unexpected failures.

• Uncertainty in optimising the overall energy consumption with tight ap-

plication deadlines.

The literature on scheduling techniques under uncertainties conceptually con-

centrates on either: (1) enabling scheduling modifications on time whenever

unexpected deviations occur, or (2) designing a robust approach that generates

policies to be considered prior to the scheduling process. These two techniques

are known as reactive scheduling and preventive scheduling respectively [62].
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Approaches, in reactive scheduling, may include dynamic repair and reschedul-

ing solutions to address uncertain parameters. Preventive scheduling that is

followed by this thesis, however, includes several different methods to deal with

the problem of uncertainty, such as stochastic based approaches, fuzzy program-

ming, sensitivity analysis, and robust optimisation which is the relevant method

to this thesis [86].

Robust scheduling, in the context of this thesis, aims to design a preventive

scheduling to optimise energy consumption on the one hand, and to minimise

the effects of unexpected resource failures that may violate application deadlines

on the other hand, while maintaining the desired level of schedule performance.

We propose specific robustness metrics to measure the utilised resources, while

minimising energy consumption, in our multi-cloud system, attempting to bal-

ance utilisation over distributed heterogeneous clouds, introduced in Section 4.2.

Our probability measurement relies on the standard deviation (SD), which is one

of the most widely used metrics for assessing the robustness of a schedule [86].

In the remaining parts of this thesis, we will refer to our proposed criteria as

Preference Rate Strategy (PRS) and Combination Rate Strategy (CRS).

2.3.3 Scheduling Complexity

In computational complexity theory, many computational problem are in the

complexity class P (if it is possible to find their optimal solution in polynomial

time), NP-complete, or NP-hard. The classification into the latter class needs to

be proved by starting from scratch, which is very difficult, or by using an already

proved NP-complete problem, which is called reduction. For some NP-hard

problems, computing an optimal solution can work in reasonable time for very

small instances based on exact optimisation techniques such as integer linear

programming or branch-and-bound. However, for some real-world combinatorial

optimisation problem instances that arise in practice, using a greedy approach
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or a heuristic approach is practically possible to solve them without ensuring

an optimal solution.

In the context of scheduling, it is shown that many scheduling problems are

NP-hard, and getting solutions close to optimal is of interest by developing

polynomial time algorithms [97]. Further, when they are considered as decision

problems, it is proved that many scheduling problems are NP-complete [27].

For the scheduling problem of this study, we use a heuristic approach and the

competitive analysis technique to find a good solution and measure its quality.

We give further discussion regarding the competitive analysis technique in the

next section.

2.3.4 Online Speed-Scaling and Competitiveness

The theoretical study of online algorithms aims to measure the quality (expected

cost) of the solution produced by an algorithm on any input sequence, by the use

of competitive analysis approach [25]. This approach is regarded as pessimistic,

since it considers the worst-case measurement. In other words, it is the approach

in which the performance of the online algorithm is compared to the performance

of its optimal offline algorithm OPT , where the online algorithm ALG is c-

competitive if for all finite input sequence I, ALG(I) ≤ c ·OPT (I) [25]. In the

speed-scaling problem, the DVFS is used to minimise the energy consumption

by means of dynamically adjusting the speed at which a processor runs, where

the rate of energy consumption is higher at higher speeds. The rate at which

the energy is consumed is called the power. It can be represented by a function

f(s) = sα, for some constant α > 1, that maps the speed s to the rate of energy

consumption. We refer to such functions as standard power functions.

The analysis of the scheduling problem that we consider at the level of HPC-

applications subject to the deadline and precedence constraints is very difficult.
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Thus, in Chapter 6 we set off from a non-preemptive version of the classical

speed-scaling scheduling problem that was studied by Yao et al. [118]. This ini-

tial attempt of the analysis represents a step towards bridging the gap between

the theoretical and the practical perspective of our problem and estimating how

far from the optimal the used allocation method possibly is.

The scheduling problem of minimising the total energy consumption on a single

processor using speed scaling was first posed by Weiser et al. [113] who studied

different heuristics experimentally. The pioneering work by Yao et al. [118]

analysed algorithms for speed scaling on a single processor with the objective of

minimising the total energy consumption. Each job is identified by its release

time, its deadline, and its work. It must be scheduled during the interval be-

tween its release time and its deadline, and preemption is allowed. The speed

of the processor can be adjusted arbitrarily at any time. They presented a

polynomial-time optimal algorithm for the offline problem and two online algo-

rithms, Optimal Available (OA) and AVerage Rate (AVR). They showed that

the competitive ratio of AVR is at most αα2α−1. In the theoretical part of this

study, introduced in Chapter 6, we use a non-preemptive variation of AVR to

schedule the jobs that are assigned to a processor.

2.4 Related Work and Comparison to the State

of the Art

The task-scheduling problems taking into consideration energy-efficiency have

been a hot subject of extensive technical and analytical research. Many technical

approaches have been surveyed recently in [96, 73, 90] and other analytical

approaches are reviewed in [14, 56].

25



Chapter 2. Relevant Background and Related Work 26

Regarding our technical approach, the biggest difference between all the existing

approaches and ours is that we consider:

• the energy cost of transferring datasets when globally scheduling applica-

tions/tasks over geographically distributed clouds; and

• the occupation rate of cloud resources as a factor to minimise application

deadline violations.

The novelty here as far as this thesis is concerned is to precisely schedule whole

applications or individual dependent tasks, based on a combination of resource

occupation and two energy dimensions: energy consumed for tasks execution

and data transmission. Apart from considering transmission energy, many ap-

proaches have been suggested to address the objective of minimising energy

consumption from different perspectives such as data-centre management ar-

chitecture [60, 94], scheduling workflows [68], reservation in mobile networks

[109], or scheduling tasks in mixed-criticality systems [65].

In this section, we limit our discussion to the closely relevant approaches in

terms of applying their scheduling in decentralised systems, e.g., [102, 9, 66,

107, 84], or considering the energy consumption problem for scheduling HPC

applications/tasks in cloud computing systems, e.g., [68, 116, 71]. Table 2.2

summarises in detail these approaches. Following that, this section will focus

on the theoretical approach of the speed-scaling problem. Here, we present the

current state of the art in homogeneous and heterogeneous parallel processors

settings to highlight our theoretical contribution.
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    Feature Support  

    DAG-apps  

    Migration   

    Virtualisation    

    Rescheduling     

    Consolidation      

    DVFS       

 

Environment 

Optimisation  

Objective/s 

Optimisation 

Method/s 

Offline       Evaluation 

Method  Online        

A 

- Decentralised 

- Heterogene-

ous multi-

clouds system. 

Minimising execu-

tion energy, dataset 

transmission ener-

gy consumption 

subject to the dead-

line constraint. 

Set of heuristic 

scheduling algo-

rithms with best-

effort (EGSBE), 

and advance-

reservation (EG-

SAR). 

*  *   *  * 

Our own simula-

tion of multi-

clouds system. 

B 

- Decentralised 

- Heterogene-

ous multi-

processors 

network. 

Minimising com-

munication and 

load transfer over-

heads. 

Load scheduling/ 

balancing algo-

rithm called ELI-

SA.  

*    *  *  

Their own simula-

tion of a multi-

processor system. 

C 

- Decentralised 

- Heterogene-

ous Grid sys-

tem. 

Minimising com-

munication and 

load transfer over-

heads. 

Load balancing 

algorithms: 

- LBA for small 

size Grids. 

- Modified ELI-

SA for large-scale 

Grids. 

*    *  *  

Their own simula-

tion of a multi-

processor system. 

D 

- Decentralised 

- Heterogene-

ous Grids and 

clouds system. 

Optimised schedul-

ing performance 

(e.g. job slowdown, 

job waiting time) 

and overheads (e.g. 

generated/ trans-

ferred messages) 

Community 

aware scheduling 

algorithm 

(CASA). 

*    *  *  
The MaGateSim 

simulator. 

E 

- Decentralised 

- Heterogene-

ous Grids and 

clouds system. 

Optimised schedul-

ing performance 

and execution en-

ergy consumption. 

Cooperative 

Scheduling Anti-

load balancing 

Algorithm for 

Cloud (CSAAC). 

*   * *  *  

Extended version 

of MaGateSim 

simulator. 

F 

- Decentralised 

- Heterogene-

ous multi-

clouds system. 

Optimised schedul-

ing performance 

(e.g. task execution 

time). 

Cloud Min-Min 

Scheduling 

(CMMS) algo-

rithm. 

*     *  * 

Their own simula-

tion environment 

of IaaS clouds 

system. 

G 

- Centralised 

- Heterogene-

ous clouds sys-

tem. 

Optimising 

makespan, execu-

tion and cooling 

energy consump-

tion, and deadline 

violations 

MultiObjective 

Evolutionary Al-

gorithms 

(MOEAs). 

 *      * 

Their own simula-

tion environment 

of a data-centre. 

H 
A heterogene-

ous cloud data-

centre. 

Optimising execu-

tion energy con-

sumption 

A heuristic 

scheduling algo-

rithm 

*  *   *   
CloudSim  

simulation. 

I 
A heterogene-

ous cloud data-

centre.  

Optimising a bi-

objective function 

of either energy 

consumption or 

makespan. 

A Multi-Heuristic 

Resource Alloca-

tion (MHRA) al-

gorithm. 

*     *  * 

A private cloud 

hosted by the 

Barcelona Super-

computing Centre 

(BSC) consists of 

two types of com-

puting nodes. 
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    Feature Support  

    DAG-apps  

    Migration   

    Virtualisation    

    Rescheduling     

    Consolidation      

    DVFS       

 

Environment 

Optimisation  

Objective/s 

Optimisation 

Method/s 

Offline       Evaluation 

Method  Online        

J 

- Centralised 

- Heterogene-

ous data-

centres system. 

Minimising carbon 

emissions or max-

imising profit sub-

ject to the deadline 

constraint. 

Set of heuristic 

scheduling poli-

cies. 

*  *  *   * 

Their own simula-

tion of 8 data-

centres. 

K 
- Centralised 

- Data-centres 

system. 

Minimise energy 

cost and carbon 

emissions subject 

to the deadline 

constraint. 

A heuristic work-

flow scheduling 

Algorithm. 

*  *   *  * 
CloudSim 

Simulation. 

 

References of the mentioned works
A Our approach, presented in Chapters (3-6)
B [9] - Anand et al. (1999)
C [102] - Shah et al. (2007)
D [66] - Huang et al. (2013)
E [107] - Thiam et al. (2013)
F [84] - Li et al. (2012)
G [68] - Iturriaga et al. (2016)
H [116] - Wu et al. (2014)
I [71] - Juarez et al. (2016)
J [53] - Garg et al. (2009)
K [36] - Cao et al. (2013)

Table 2.2: A summarised comparison between the relevant approaches to
this thesis

2.4.1 Scheduling in Decentralised Systems

There has been a lot of research on addressing scheduling problems in decen-

tralised computing systems [9, 102, 66, 107, 84, 105]. Their optimisation meth-

ods, in general, are applied at different levels ranging from high-performance

processor systems up to decentralised cloud or grid systems.

At the processor system level, Shah et al. [102] suggest a modification of the

Estimated Load Information Scheduling Algorithm (ELISA) [9] for reducing the

communication delay and load transfer cost among multiple processors, the so-

called Modified ELISA scheduling algorithm (MELISA), in addition to a Load
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Balancing on Arrival scheduling algorithm (LBA). Unlike LBA, MELISA seems

to scale better to large systems. The similarity among these algorithms (ELISA,

MELISA and LBA) is that they are all applied at the level of the processor

network systems. However, ELISA is not efficiently applicable in heterogeneous

grid-based systems, in contrast to MELISA [102].

At high-level systems, using rescheduling, Huang et al. [66] introduce a Commu-

nity Aware Scheduling Algorithm (CASA) as a decentralised dynamic schedul-

ing approach. It is comprised of five heuristic sub-algorithms that work in two

phases: the job submission phase and the dynamic scheduling phase. In addi-

tion, CASA has been extended by a Cooperative Scheduling Anti-load balancing

Algorithm for Cloud (CSAAC) in [107]. CSAAC applies a consolidation mecha-

nism for energy-efficient scheduling. Thereby, the slowest task is migrated from

an overloaded host to the host with minimum energy consumed and best execu-

tion time. From our perspective, adopting the iterative rescheduling method to

address our problem may affect the scheduling efficiency due to the large cost

and the even larger overhead of transferring large datasets (for task dependen-

cies).

In an anti-rescheduling manner, the Cloud Min-Min Scheduling (CMMS) al-

gorithm, proposed by Li et al. [84], is applied to multi-cloud systems and

inspired by the popular min-min algorithm. The CMMS scheduler maintains

the dependency constraints with every scheduling step, since it partitions HPC-

applications to schedule each task individually. It relies on pulling information

about resource status from participant clouds in order to select a cloud that of-

fers the minimum estimated earliest finish time for each mappable (ready) task.

Then, it allocates all mappable tasks according to their minimum estimated

finish time. The CMMS scheduling approach [84] is similar to ours in terms of

scheduling HPC-applications in decentralised multi-cloud system, but different

in terms of the main objective towards performance optimisation. We imple-

ment the CMMS for comparison purposes with our proposed global schedulers,
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i.e. EGSBE and EGSAR (discussed in Chapter 4 and Chapter 5 respectively).

Sotiriadis et al. [105] propose an algorithmic structure of four collaborating al-

gorithms (ICMS), applied in the inter-clouds system, to serve requests for web

services. Their approach models a set of interconnected clouds each of which can

have more than one data-centre that consists of a set of machines called hosts.

In their approach, a service request with specified requirements that cannot be

fulfilled locally is distributed to interconnected clouds where the first responder

that is able to carry out the request is chosen. Here, each request for job delega-

tion is iteratively distributed until a successful delegation is achieved. Further,

the number of iterations is set by default to 3, where the job is terminated in

the case of continuous Service Level Agreement (SLA) mismatching. When the

job is assigned to the chosen host based on some performance criteria beside the

SLA matchmaking, a VM is created and then allocated to the host (machine).

The performance can be affected by the percentage of the machine that is ded-

icated to the VM. Regardless of the energy inefficiency of this approach, it has

many limitations regarding the lack of its applicability to schedule HPC tasks

because of the extensive sharing of physical machine (high use of virtualisation)

that accordingly reduce the execution performance.

Sotiriadis et al. [104] evaluate some pre-2012 works that apply a meta-scheduler

in highly dynamic settings. Their evaluation aims to check the applicability of

the existing approaches to the inter-cloud framework in terms of a set of re-

quirements that are suggested as needs for inter-cloud systems. Specifically,

a candidate work should provide a good support for unpredictability manage-

ment, heterogeneity, geographical distribution, variation of job requirements,

SLA compatibility and rescheduling. From this perspective, our approach can

be seen as a high candidate that supports some requirements. More precisely,

the global scheduler supports resource heterogeneity, geographical distribution

and variation of job requirements, and the SLAs can be enabled at some point.
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To complete the picture of the decentralised system, an efficient communication

or remote resource monitoring method is needed to keep a reasonable level of

consistency between distributed entities without directly accessing the remote

resources. To this end, there are several mechanisms for remote resource moni-

toring that can be integrated with the scheduling policies (meta-schedulers) in

inter-cloud systems. For example, Huang and Wang [64] propose a push and

pull (P&P) model that extends the common monitoring method from grid and

cluster computing that is called the push model and the pull model. In the grid

and cluster computing, there is a producer that produces the resource status

and a consumer that consumes the information from the producer. In the pull

model, the consumer pulls the resources status from the producer and if any

update occurs in the producer side it triggers the push model to push the new

resources status to the consumer. The P&P model exploits the advantages from

both push model and pull model and enables adjustment to be made between

the two models as well as the number of updates to be modified according to

the user’s needs. This model is adopted in [84], discussed above, as well as in

this thesis.

The message passing mechanism, proposed by Bessis et al. [22], is another com-

munication method to cope with the drawbacks of the traditional solutions, e.g.,

flooding of the message-exchange system. In this mechanism, a requester sends

query messages to all connected entities and receives messages only from avail-

able entities. This is to optimise the energy efficiency for message exchanging in

the inter-cloud network. However, from our perspective, both request messages

and response messages are mainly very small in size, and so their transmission

cost may be negligible. This mechanism is adopted by Sotiriadis et al. [105],

discussed above.
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2.4.2 Green Scheduling in Multi-Cloud System

Energy-aware scheduling, generally, aims to solve a scheduling problem while

considering energy-consumption minimisation, including different objectives and

constraints, e.g., in approaches like [76, 74], and more are surveyed in [19]. The

following concentrates on the most relevant work applying the DVFS energy-

saving technique.

Like in our technical approach, Iturriaga et al. [68] consider the scheduling

of HPC workflows (dependent tasks) with deadline constraints and also the

conceptual use of scheduling levels: global and local. The global scheduling is

applied to a distributed cloud system – their cloud system is centralised while

ours is decentralised – to assign workflows to data-centres, whereas the local

scheduling is for mapping tasks to machines. They use offline MultiObjective

Evolutionary Algorithms (MOEAs) with the objective of optimising makespan,

energy consumption, and deadline violations. Here, deadline violation can be

accidentally caused by resource failures (e.g., when servers or network commu-

nications are down for maintenance) or by imprecise scheduling decisions due

to the distributed environment. The latter is not expected to occur by our

AR-scheduler, since we adopt a token-based reservation schedule, discussed in

Chapter 5. However, in the case of our BE-scheduler, see Chapter 4, we tried,

to some extent, to cope with such problem by utilising our proposed Combi-

nation Rate Strategy (CRS) to minimise deadline violations by considering the

resource occupation rate. It should be mentioned that the dynamic environ-

ment with non-guaranteed resource availability is prone to deadline violation,

especially with respect to the dependency constraints where data transmission

over an inter-cloud network can be time consuming.

Wu et al. [116] propose a heuristic scheduling algorithm for heterogeneous com-

puting environments, aiming to minimise power consumption without influenc-

ing the performance in order to satisfy the SLA. In their approach, the minimum

32



Chapter 2. Relevant Background and Related Work 33

and maximum frequencies need to be specified with submitted tasks as well as

the SLA. For a given task, the scheduler repeatedly creates and assigns VMs

from servers that remain within the required performance range until the task

requirement is satisfied. If the requirement is still not satisfied, the scheduler

turns on idle servers (if they exist) as required to continue the creation and as-

signment process of VMs. Their method clearly has associated overhead costs

when the scheduling fails. On top of this, creating or destroying VMs consumes

non-trivial energy, as Juarez et al. [71] demonstrated. Additionally, providing

thresholds for the required frequency, particularly the maximum one, may limit

the performance, which seems critical for deadline-based applications. Com-

pared to their method, our approach differs in that our local scheduler (ELS),

introduced in Chapter 4, determines the best possible frequency to execute each

task from the whole range of frequencies that is supported by the processors. We

rely on both the provided computing volume per VM and the required number

of machines for each task, while ensuring not to violate the deadline constraint

of the whole application in the case of AR mode, and each task in the case of

BE mode.

A scheduling approach for optimising a bi-objective function of either energy

consumption or makespan was proposed by Juarez et al. [71] for heterogeneous

cloud systems. They provide a combined cost function with a weighting factor

α that indicates the user preference of either choosing energy-efficiency or exe-

cution time. Their heuristic algorithm ranks tasks of a given Directed Acyclic

Graph (DAG) by estimating the required energy. This is to determine indepen-

dent subsets of tasks as a preparation step before allocating resources. In their

method, the consumed energy is estimated by multiplying the task processing

time by the proportional mean power. Compared to this, our energy model

utilises DVFS where task execution time is multiplied by its instantaneous

consumed energy, which comprises both the static and the dynamic energy.

The decision of our global scheduler relies on one of the proposed strategies:
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preference rate or combination rate strategy, see Section 4.2. The latter aims

to minimise applications/tasks deadline violations caused by resource failures

alongside energy optimisation.

Garg et al. [53] suggest scheduling policies that can be applied in heterogeneous

data-centres that belong to a single cloud provider. These policies represent cen-

tralised meta-schedulers and rely on periodically updated information from both

cloud sites and users whenever assigning a workflow to a cloud site. Policies

such as minimising carbon emissions or maximising profit are used according

to the objectives of the cloud provider. They also design a DVFS-based lo-

cal scheduler whereby the energy consumption can be minimised within their

data-centres by scaling up/down the frequency of the processors from a dis-

crete range of speeds. For a submitted application, the scheduler chooses the

frequency based on a pre-calculated value at the meta-scheduler level, called

optimal frequency fopt = 3

√
β
2α

. In the case that fopt does not belong to the

discrete range of supported frequencies, the allocated machines run at the near-

est frequency to fopt. However, this speed may not be the optimal one to meet

the application deadline and, in such a case, the scheduler needs to increase

the speed and try to find a free slot to execute the application, in a reschedul-

ing manner. In our approach, the local scheduler calculates the best speed, in

terms of minimising energy while meeting the deadline, to execute each task

in the application without any future update to such speed. We expect that

our greedy method can produce better results, in terms of avoiding deadline

violation and reducing energy consumption, than executing at a lower speed

first before increasing the speed later.

In a similar vein, Cao et al. [36] propose a heuristic workflow scheduling algo-

rithm for a centralised cloud system that functions in three steps. The first step

decides the workflow acceptance. The second step uses the DVFS technique

to minimise energy subject to the deadline constraints, by choosing an optimal

frequency for each task. They adopted the calculation of the optimal frequency
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from [53]. The third step performs a backward task allocation to the VMs in

order to minimise the VM overhead by reusing them whenever it is possible as

well as reducing machine idle time when appropriate. This is like our approach

in utilising the DVFS technique in the first two steps. However, their mecha-

nism for allocating VMs would not be beneficial for our best-effort scheduling

scenario, since backward allocation cannot be applied due to the non-reservation

manner where the scheduling decision relies on the instantaneous state of the

resources. On the other hand, it can be integrated with our AR approach as a

local scheduling policy.

2.4.3 Performance Evaluation in Cloud Computing

In the previous section, we have reviewed concisely some relevant scheduling

approaches in the area of the multi-cloud environment. As a wider discus-

sion, this section will give a brief synopsis regarding the performance evaluation

of scheduling problems (i.e., non-functional requirements) in general. To our

knowledge, after having a wider look and review at the literature on the ideal

methods used to evaluate the performance of a schedule, we imagine that there

seems no universal consensus among researchers on an ideal metric or analyt-

ical technique for performance evaluation. Experiments to verify the desired

performance can be carried out in a number of different techniques, including

(1) analytical modeling, (2) measurement data, or (3) software simulation based

approaches [70], discussed in some details as follows:

• Analytical modeling technique seems efficient in providing prompt answers

as well as in helping to understand the interactions between involved pa-

rameters. However, this technique is often constrained by assumptions

and simplifications that may make the outcomes too far from reality or
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practice. A queuing theory model is a well-known example of this tech-

nique, see [69], and also an example of applying this technique on cloud

computing [110].

• Measurement data technique is usually applied by collecting data from a

real environment, typically by on-site visit and/or gaining a remote access

to the organisation’s resources (e.g., a cloud data-centre). It effectively

helps to discover unpredictable interactions between involved parameters,

and always provide trusted and highly accurate results. In contrast to

these positive aspects, this technique faces several challenges, notably, (1)

it can be affected by the environment changes, and (2) it is not flexi-

ble for controlling parameters/variables and has to adapt to the existing

configuration only.

• Software simulation technique, as compared to the measurement tech-

nique, is considered less expensive in terms of required equipment or the

time needed to conduct the experiment. The drawbacks of this technique

are that it is sometimes hard to test/debug the implementation of the

simulation in the case of encountering accidental failures or in the case

of obtaining inaccurate results. Another drawback (that is in line with

the analytical modelling technique) is that simulation always works under

many assumptions and simplifications, especially when defining so-called

object-entities. We will give a further discussion on software simulation

tools used for cloud computing in Section 3.3.

However, no best technique can be identified as the choice among those three

methods depends on the considered framework of the approaches. Here, a

framework describes aspects like field of the study, complexity of the approach,

accessibility, and capability of observing system performance, etc. To clar-

ify more, practical approaches that involve critical models/applications nor-

mally need to be measured, with respect to their objectives, using complex
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metrics or simulations, whilst objectives of other normal approaches (e.g., non-

critical/non-commercial approaches) can be well-evaluated using some specific

metrics. These specific metrics are often constrained by assumptions, and they

allow one to assess the effects of parameters that are associated with the per-

formance (e.g., time) from specific or limited angles. The evaluation method

followed by this thesis is based on software simulation, discussed in Chapter 3,

and that is due to two factors:

• (1) the measurement and analysis techniques on multi-cloud environments

are physically impossible or too expensive to conduct; and

• (2) for best assessment of performance evaluation of cloud computing on

real large-scale distributed platforms, software simulation comes first [52],

as it enables to virtually experiment with proposals with an easy way of

controlling variables and parameters.

Concerning the available metrics for performance evaluation, many researchers

have studied different criteria, such as: job slowdown, job waiting time, and

generated/transferred messages [66, 68]; task execution time [84]; energy usage

[116, 71, 53, 36, 68]; makespan [68, 71]; deadline violation [68]. Additionally,

many other quantity-metrics also exist that focus on the cost, throughput, time

of allocation and release of resources, delay in service and productivity, number

of I/O operations in the network, etc. The considered metrics in this thesis have

been developed on top of our proposed energy model (cf. Section 4.1.2) and the

level of resource utilisation (cf. Section 4.2).

2.4.4 Speed-Scaling on Parallel Processors

The classical problem of minimising the energy consumption on a single speed-

scaling processor considered by Yao et al. [118] (cf. Section 2.3.4) has been
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extended to various other objectives such as minimization of energy plus flow

time [81, 61]. An overview of known results up to 2016 can be found in the

recent surveys by Bampis [14] and Gerards et al. [56]. The known results that

are most relevant to this thesis are those that consider speed scaling for energy

minimisation of jobs with release times and deadlines on both homogeneous and

heterogeneous parallel processors. Such problems have mostly been studied in

the preemptive case, and much less is known about the non-preemptive case.

On homogeneous parallel processors, a number of studies have been conducted

on the preemptive case [2, 18, 4, 59] and some on the non-preemptive case [15,

43]. Albers et al. [4] show that the minimum energy scheduling problem with

arbitrary release times and deadlines on m parallel processors allowing preemp-

tion is NP-hard even for unit size jobs but polynomial for unit size jobs with

agreeable deadlines. They propose an offline algorithm for arbitrary size jobs

with agreeable deadlines called Classified Round Robin (CRR). Their algorithm

produces an approximation ratio of αα24α. They also adapt CRR to the on-

line scenario and achieve a competitive ratio of αα24α for unit-size jobs with

arbitrary release times and deadlines, and for arbitrary size jobs with agreeable

deadlines.

Later, Bell and Wong [18] show that, for arbitrary size jobs with arbitrary

deadlines, CRR is no longer constant competitive. They present a variation

called Dual-Classified Round Robin (DCRR) that has a competitive ratio of

24α((logP )α + αα2α−1) when applying AVR on each processor, where P is the

ratio between the maximum and minimum job size. Greiner et al. [59] present a

randomizedBα-approximation algorithm and a randomized 2( α
α−1

)eαBα-competitive

online algorithm, where Bα is the α-th Bell number. They use generic reductions

from multi-processor to single-processor algorithms.

The problem with preemption and migration has been considered by Albers
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et al. [2] for jobs with arbitrary size and arbitrary release times and dead-

lines. They give an optimal offline algorithm and propose two online algorithms

OA(m) and AVR(m), adapted from OA and AVR. They show that OA(m) and

AVR(m) produce competitive ratios of αα and (2α)α/2 + 1, respectively. For

homogeneous non-preemptive speed scaling, Cohen-Addad et al. [43] propose a

((wmax

wmin
)α(5

2
)α−1B̃α((1 + ε)(1 + wmax

wmin
))α)-approximation algorithm for the offline

problem of minimum energy scheduling, where B̃α is the generalised Bell num-

ber. Bampis et al. [15] tackle the offline problem for both agreeable and general

instances. They obtain ratio (2 − 1
m

)α−1 for agreeable instances and a ratio

dependent on the number of processors for arbitrary instances. Their proposed

algorithms follow the idea of converting a given preemptive solution into a fea-

sible non-preemptive one. They also show that the ratio between the optimal

non-preemptive schedule and the optimal preemptive one can be Ω(nα−1).

On heterogeneous parallel processors, the speed-scaling problem has recently

been studied in both preemptive [3] and non-preemptive [16] cases. Albers et

al. [3] study the online version of the problem with migration and propose a

((1 + ε)(αα2α−1 + 1))-competitive algorithm called H-AVR. It aims to assign

work in each time interval (slot) according to the AVR schedule, and for each

interval it creates an offline (1 + ε)-approximate schedule based on maximum

flow computations.

Bampis et al. [16] tackle the offline non-preemptive version of the fully het-

erogeneous speed scaling problem, where the work of a job can be processor-

dependent. They improve the approximation ratio of (wmax

wmin
)α(5

2
)α−1B̃α((1 +

ε)(1 + wmax

wmin
))α for the homogeneous case from [43] by a factor of (5

2
)α−1(wmax

wmin
)α

while handling the fully heterogeneous case. Their proposed B̃α((1 + ε)(1 +

wmax

wmin
))α-approximation algorithm combines (i) a B̃α(1 + ε)α-approximation al-

gorithm for the preemptive, non-migration speed scaling problem on fully het-

erogeneous processors; and (ii) a (1 + wmax

wmin
)α-approximation algorithm for the

non-preemptive speed-scaling problem applied on a single processor. Although
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Type Problem Ratio
O

n
li
n
e

• S | rj, dj, wj = 1, pmtn, no-mig | E αα24α [4]
• S | agreeable, pmtn, no-mig | E αα24α [4]
• S | rj, dj, pmtn, no-mig | E 24α((logP )α + αα2α−1) [18]
• S | rj, dj, pmtn, no-mig | E 2( α

α−1
)αeαBα (randomized) [59]

• S | rj, dj, pmtn,mig | E αα [2]

• S∗ | rj, dj, pmtn,mig | E (1 + ε)(αα2α−1 + 1) [3]
• S∗ | rj, dj − rj = x, δj = δ | E 3αm+1(ααm

m 2αm−1 + 1)3αm+1(ααm
m 2αm−1 + 1)3αm+1(ααm
m 2αm−1 + 1)

• S∗ | agreeable | E 5αm+12αm(ααm
m 2αm−1 + 1)dlogDeαm+1dlog T eαm+15αm+12αm(ααm
m 2αm−1 + 1)dlogDeαm+1dlog T eαm+15αm+12αm(ααm
m 2αm−1 + 1)dlogDeαm+1dlog T eαm+1

O
ffl

in
e • S | agreeable, pmtn, no-mig | E αα24α [4]

• S | agreeable | E (2− 1
m

)α−1 [15]
• S | rj, dj | E (mα( m

√
n))α−1 [15]

• S | rj, dj | E Bα (randomized) [59]

• S∗ | rj, dj | E B̃α((1 + ε)(1 + wmax

wmin
))α [16]

Table 2.3: Known and new (in bold) results for speed-scaling on parallel
processors. S stands for homogeneous and S∗ for heterogeneous processors

the general case of the non-preemptive scheduling problem is NP-hard even on a

single processor, the special case with agreeable deadlines can be solved in poly-

nomial time for a single processor as there is an optimal preemptive schedule

that does not use preemption, as observed e.g. in [10].

Table 2.3 shows known results for minimum energy speed scaling problems for

jobs with release times and deadlines on both homogeneous (S) and heteroge-

neous (S∗) parallel processors, including our results (in bold, discussed in details

in Chapter 6). The problems are identified using an adaptation of the standard

three-field notation of Graham et al. [58]. The previously known results do

not cover the online problem of non-preemptive speed-scaling on heterogeneous

processors, which is considered in this thesis.

2.5 Summary

In this chapter, we have presented the concepts and definitions that are most

relevant to our study, which merges the fields of decentralised multi-cloud sys-

tems and scheduling problems for the main goal of energy optimisation while

respecting deadline constraints and resource reliability.
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Specifically, this chapter has provided an overview of IaaS and reviewed the

energy-efficiency issue of operating the cloud infrastructure. Definitions of some

important concepts for scheduling problems have been provided, and a distinc-

tion has been drawn between preemptive and non-preemptive scheduling, online

and offline scheduling, and best-effort and advance-reservation scheduling styles.

The chapter also included a discussion on the most related work in terms of

scheduling in a decentralised environment and energy-aware scheduling, as well

as a comparison of our results to the latest speed-scaling results from a theoret-

ical perspective. In the next chapter, we will present in detail our system model

that is implemented in a prototype tool for analysis and evaluation.
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Chapter 3

A Simulation-Based Framework for
Analysis and Evaluation

Cloud infrastructures are fundamentally data-centres, which often demand high

energy usage to permanently operate [23]. Thus far, many common solutions

suggested to efficiently schedule and/or run HPC-workloads have focused on

minimising energy usage at a single cloud, but not across multiple clouds. To

estimate the potential energy reduction on a global scale as in multi-cloud com-

puting (i.e., geographically distributed in different locations around the world),

we have built up a software simulation that mimics running HPC-workloads on

a multi-cloud environment.

Before delving into our simulation, we devote the first part of this chapter to

define the considered system model, including the abstract structure of our

multi-cloud and HPC-application models. In the second part, we focus on the

design and implementation of the proposed tool that depends principally on the

discrete-event simulation technique. Here, we give some technical discussion on

how our simulation can be used, and what the main functionalities/features are

that one can exploit to analyse the scheduling results. We discuss, in the last

part of this chapter, the relevant existing software simulations, explaining how

our tool differs from them.
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3.1 Proposed Models

The proposed system model suggests mainly a heterogeneous computing schedul-

ing mechanism that becomes sufficiently important with the growth of many

cloud services around the world. From an environmental improvement perspec-

tive, this model offers sharing multi-cloud resources that are controlled by dif-

ferent vendors for generally reducing computational energy consumption. Addi-

tionally, our model allows local energy aware scheduling of homogeneous cloud

resources to reduce possible energy consumption. Concerning cloud applica-

tions, we model a generic HPC-workflow structure for parallel and distributed

applications. This application model is typically composed of a set of dependent

tasks (jobs), such that tasks may require the outputs from other tasks, allowing

to abstractly design applications ranging from normal e-commerce web appli-

cations to high scale scientific applications [52]. Here, each task requires com-

putation as well as data transmission activities. Furthermore, our application

model intuitively implies the support of applications that consist of independent

tasks. The main characteristics of the proposed multi-cloud model as well as

the considered application model are discussed in more detail in Sections 3.1.1

and 3.1.2.

3.1.1 Multi-Cloud Model

In this research context, we consider a decentralised multi-cloud system that

consists of a number of geographically distributed heterogeneous clouds, owned

by different providers as illustrated in Figure 3.1. These clouds participate in a

federated approach (cf. Section 1.1.2). The system, from the top level, consists

of a set C of decentralised clouds, where C = {c1, · · · , ck}, k ∈ N. Each cloud

cj has a homogeneous data-centre, characterised by six parameters as described

in Table 3.1. The manager server msj of each cloud relies on three components:
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HPC-applications
(represented as DAG)

Cloud (c ) Manager Server

Global Scheduler
(introduced in 
chapters 4 & 5)

Local Scheduler
(introduced in 
chapter 4)

Resource Controller
(implemented in 
our simulation)

Cloud (c )

Clouds are globally 
connected via 
Internet network

Cloud (c )     .  .  . Cloud (c )

Cloud users

Submitting applications

Multi-cloud System

1

1

2 k

Figure 3.1: Proposed model representing distributed heterogeneous multi-
cloud structure, which includes two scheduler components, discussed in detail

in the mentioned chapters

.

Parameter Description
msj manager server
nSj number of servers
nCPUj number of physical proces-

sors per server
capacity(scj) number of virtual machines

per server
[fminj

, fmaxj ] minimum and maximum fre-
quencies of a processor

βj and αj processor power parameters

Table 3.1: Cloud parameters of a homogeneous data-centre.

a global scheduler, a local scheduler, and a resource controller. The latter acts as

a resource checker, and is also responsible for query messages with participating

clouds.

44



Chapter 3. A Simulation-Based Framework for Analysis and Evaluation 45

A B

C

D

E

F

G

Task Computing size CPUs EST LFT

A (entry) 10 100 1 782.25

B (entry) 10 200 1 782.25

C 31 3000 782.25 3204.12

D 10 500 782.25 1641.62

E 14 1000 1563.5 2735.37

F 6 600 2657.25 3204.12

G (exit) 10 300 3204.12 3985

Application specification

Calculated time ranges for the 
start and finish task’s execution

𝑒𝑡𝑚 =
𝑣𝑡𝑚

0.0128
,    𝑆𝑇𝑀 = 1, 𝐷𝐿𝑚 = 3985

Figure 3.2: An example of a simple DAG application, consisting of 7 tasks

3.1.2 HPC-Application Model

Consider the left part of Figure 3.2, it illustrates the structure of applications

followed in this thesis as a directed acyclic graph (DAG). Here, an application

appm = (Vm, Em, STm, DLm) consists of a set Vm of dependent tasks such that

Vm = {t1, · · · , tq}, q ∈ N and a set Em of directed edges, each representing

a data dependency between two tasks. The sets of direct predecessors and

successors of a task ti are denoted by pred(ti) and succ(ti), respectively. STm is

the start time of appm, and DLm is the deadline. The original cloud of appm is

denoted by oappm , indicating the receiving cloud of the first submission of appm.

There are two distinguished tasks in Vm, namely, entry and exit tasks, where

both can be multiple in the application. As shown in Figure 3.2, a task ti is

considered entry (see the task A or B), if its pred(ti) is ∅, meaning that it

has no predecessors, and exit (like the task G in Figure 3.2) if its succ(ti) is

∅. Each task ti(nti , vti , EST ti , LFT ti) ∈ Vm is defined by four parameters as
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follows: nti is the required number of VMs, vti is the computing volume per

VM, EST ti is the task’s earliest start time, and LFT ti is the task’s latest finish

time. As a guide for the global scheduler, EST ti and LFT ti of each task are

calculated using (3.1) and (3.2), relying on start time STm and deadline DLm

of the submitted application.

EST ti =

 STm if ti is entry

maxtm∈pred(ti)(EST tm + etm) otherwise
(3.1)

LFT ti =

 DLm if ti is exit

mintm∈succ(ti)(LFT tm − etm) otherwise
(3.2)

Here, etm = vtm
f

is the execution time of tm at the minimum speed in a list of

speeds that contains only the maximum speed of each cloud.

Figure 3.2 exemplifies a simple DAG application, consisting of 7 tasks, on which

the variables EST ti and LFT ti can be calculated. Given such application spec-

ifications with the assumption that the maximum speed f to compute etm is

0.0128, STm = 1, and DLm = 3985, see the left part of Figure 3.2, we calculate

the time ranges to start and finish executing each task using (3.1) and (3.2),

such that all the tasks must be scheduled within their defined ranges.

3.2 MCST: Prototype of a Multi-Cloud

Simulation Tool

Software simulation is generally used to analyse techniques that are physically

impossible or too expensive to conduct. Rather than evaluating cloud comput-

ing on real large-scale distributed platforms that are time-consuming, simula-

tion enables to virtually experiment proposals with easy control of changing
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variables and parameters, allowing to gain good insight into the analysis and

outcomes [52]. This has prompted us, since the beginning of the study, to use

software simulation for better assessment of our approach.

We introduce, in this section, the technical details of our multi-cloud simulation

tool (MCST) that has been developed on top of a well-known discrete event-

based library called SimJava [63]. The MCST has been implemented entirely

in Java using the Eclipse Modelling Framework (EMF)1 and Java-8. It requires

only Java Runtime Environment (JRE) 7 or later to be installed. The SimJava

library supports the basic functionalities for building up a simulation system2,

such as the abstract creation of system entities (e.g., Cloud, Server) and links

between them as well as the scheduling/processing of events using a simulation

clock. In particular, MCST relies on four main classes of the SimJava library

as follows:

• eduni.simjava.Sim entity : A class to be extended for defining system en-

tities each of which runs concurrently in its own thread. For instance,

the declaration of our cloud-entity as a Java class begins with public class

CloudEntity extends Sim entity {..}. To practically simplify the simula-

tion process, we break our cloud model (discussed in Section 3.1.1) into

just three entities: Source, Server and Cloud. These top level entities are

sufficient to simulate the behaviours of the proposed system model. Thus,

we abstract away the unnecessary low-level entities that are related to the

cloud infrastructures in general (e.g., VMs or services), but insignificant

in the context of this thesis.

• eduni.simjava.Sim port : A class for defining ports upon which two Sim entity

can be connected.

1Eclipse modelling Project http://www.eclipse.org/emf/, (2017).
2Simjava documentation is available at http://www.icsa.inf.ed.ac.uk/research/

groups/hase/simjava/
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• eduni.simjava.Sim event : A class for defining events to be sent between

entities.

• eduni.simjava.Sim system : the kernel class, i.e., responsible for control-

ling entities, queueing, events, time, and report generation. It offers many

runtime functionalities, essentially sim clock() to get the current running

simulation time, run() to launch the simulation, and running() to check

if the simulation is still up.

In the following sections, we give more technical discussions regarding the design

and implementation, configurations, and execution flows of MCST.

3.2.1 Structural Model and Implementation

A structural model of the MCST classes, represented using UML class diagram

notation, is shown in Figure 3.3. It consists of four packages (jobTracer, models,

scheduling and simulation) and 26 classes, see the API-documentation3 of the

public methods generated by Javadoc. These packages define the main compo-

nents of the tool, explained in some detail as follows:

• jobTracer : This package consists of classes that are responsible for (1)

parsing parallel workload logs to generate HPC-applications using App

and Task classes. (2) determining the path of the critical tasks in the

application in order to set precisely the time-frame to each task including

the deadline.

• models : It consists of classes for defining the structure of our HPC-

application as well as multi-cloud system. The latter structure appears

as a hierarchy, organised by the class Sky at the top to the virtual CPU

3The API documentation of MCST is available at http://www.cs.le.ac.uk/people/

ayya1/MCSTdoc/index.html
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Figure 3.3: Class diagram of the MCST main classes

Initialised Reserved Scheduled Processing Completed 

Violated Cancelled Rejected 

Globally Controlled by SM server-manager of a cloud

1

2

3

4

5

6 7

8

Figure 3.4: Task’s states and defined transitions in our application model
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class CPUv at the bottom. As a side note, the class Sky does not make

our cloud model centralised, but instead, it just defines the global network

between clouds. It implements our solution for computing the cost of data

transmission between clouds. For modelling HPC-applications, the class

App has an attribute container typed over class Task . Here, each Task

has predecessors and successors lists for defining task dependency. The

behaviour of a task is structurally defined in the class TStatus , which is

expressed by 8 possible states to be changed during runtime. To illustrate

more, Figure 3.4 describes the allowed transitions between these 8 states

as the initial state must begin with Initialised, controlled by the origi-

nal cloud oapp. The transitions to the states (Reserved, Rejected) occur

during the global scheduling process (i.e., between participating clouds),

while the rest (Scheduled, Processing, Completed, Violated) occur during

the local scheduling process that is managed by the chosen (or executor)

cloud. The transition to state Cancelled can happen in both the global

(i.e., once a decision on which cloud is going to execute the submitted

application is made, the unchosen clouds by the global scheduler will re-

ceive a request to cancel their reserved resources) and the local (i.e., once

a token reservation period becomes invalid, occurs with e.g. a delay of the

arrival datasets) scheduling process.

• scheduling : The classes in the scheduling package define simulation con-

figurations (shown in Table 3.2), scheduling polices and their decision

strategies, introduced in Section 4.2.

• simulation: This package consists of classes responsible for (1) implement-

ing simulation entities using SimJava [63], and for (2) the generation of

logs and statistical reports.
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Property Description

IS DISTRIBUTED A boolean property to specify the way of sending applica-
tions from source entity (representing e.g. end-users) to the
clouds. If it is true, the applications will be submitted to all
clouds in the multi-cloud system equally one-by-one. The
false case means that all applications will be sent randomly
to only a single cloud from the multi-cloud system.

RESOURCE DECISION
MODE

MCST supports two modes of deciding the best available
resources offered by clouds during scheduling process in
terms of reducing energy consumption. These modes are:
[LowestEnergyMode = 1] or [CombinationMode = 2].
The latter mode is also motivated by minimising appli-
cation rejections, which combines dynamically estimated
energy usages along with resource occupation rates, intro-
duced in Section 4.2.

DARRIVAL GAP TIME This is to set the default waiting gap time (or delay) be-
fore the arrivals of submitted applications to participating
clouds.

SCHEDULING MODE MCST supports two scheduling modes that are: [BestEf-
fortBased=false] or [ReservationBased=true]. We discuss
these two modes in detail in Chapters 4 and 5 respectively.

INCLUDE COMMUNIC
ATION COST

A boolean property to either include (or exclude) energy
cost that is consumed by data transmission between clouds.

RANGE ACCEPTED
COST

This is a preference factor that can be chosen as any fraction
in the range [0,1) for determining the acceptable energy
costs. It will be taken into account if the simulation is
running under [Lowestenergymode].

DTOKEN DEFAULT DUR
ATION

Default setting for the validity time of a given token reser-
vation, such that the reserved resources will be released
automatically if the token-ID becomes invalid.

DTASK EXECUTION
GAP TIME

Default delay time to be set for assigning and releasing
tasks to/from CPUs.

SPEEDOF NETWORK
SIGNAL

The assumed speed of the network signal in km/s.

DDEADLINE EXTENSION A preference percentage for extending the deadline of the
application.

DSERVER DOWN A preference percentage for simulating sudden unavailable
resources, for evaluating the reliability of the proposed
scheduling algorithms.

DV FREQUENCY SCAL
ING

A boolean property to either enable (or disable) dynamic
voltage and frequency scaling (DVFS) feature.

Table 3.2: The main configurations and options for managing the process
of MCST, defined in the class IUScheduler

3.2.2 Simulation Stages and Execution Flows

In order to use MCST one would need to install the tool packages into the

workspace and then include them in the Java classpath of the application

51



Chapter 3. A Simulation-Based Framework for Analysis and Evaluation 52

project. Then, the only required coding is to make three main changes in

the static class RunSim as follows:

• Setting the configurations according to Table 3.2 for the considered sce-

nario.

• Initialising two object instances from class Sky (i.e., representing multi-

cloud model) and class App (i.e., representing HPC-applications in a DAG

structure).

• Compiling and running class RunSim as a Java application.

Specifically, the execution of MCST is composed of two main stages after set-

ting the scheduling configuration, described in the Java code fragment in List-

ing 3.1. This code gives a brief example of how to get started with the main

method to run MCST. As a preparation stage, MCST requires generating HPC-

applications from real workload-logs [95, 51]. Here, actual tasks (or jobs) of

the applications are executed in the HPC-environment which would mimic a

cloud’s operation. These actual tasks allow to exemplify requirements of real

applications, including task’s dependencies. As a side feature, MCST provides

a generic interface for parsing different formats of workload-logs4, including

LLNL-Thunder, LLNL-Atlas, LLNL-uBGL, and ANL-Intrepid.

The first stage of using MCST begins with initialising a set of HPC-applications

(i.e, applications that have been generated from logs) that are assumed to be

submitted for execution as well as declaring the characteristics of a set of cloud

instances, including the communication’s specifications between them, see lines

23-30 in Listing 3.1. This stage enables evaluating each application as well as

cloud instance with regard to the consumed energy for computational and I/O

4Logs of Real Parallel Workloads from Production Systems: http://www.cs.huji.ac.

il/labs/parallel/workload/logs.html
5http://www.cs.le.ac.uk/people/ayya1/MCST/index.html
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1 package scheduling;

2 ...

3 public class RunSim {

4
5 private void mainSim(

6 String strOutFolder ,

7 String strApplications ,

8 int iNumberOfApplications ,

9 int iNumberOfTasks ,

10 int iDecisionMode ,

11 double dPreferenceRange ,

12 double dTaskExEGap ,

13 double dDeadlineExt ,

14 boolean isDV_Freqency_Scaling ){

15
16 /*

17 * Set configurations */

18 IUScheduler.RESOURCE_DECISION_MODE = iDecisionMode;

19 IUScheduler.DDEADLINE_EXTENSION =dDeadlineExt;

20 IUScheduler.DV_FREQUENCY_SCALING=isDV_Freqency_Scaling;

21 ...

22
23 /*

24 * Initialise Sky object and applications from job tracers */

25 Sky sky = new Sky ();

26 sky.InitialiseDefaultInstances ();

27
28 ArrayList <App > apps =

29 new GenerateJobs(iNumberOfTasks , strApplications ).

30 loadApplications(iNumberOfApplications );

31
32 /*

33 * Initialise Sim_system and main entities */

34 Sim_system.initialise ();

35 new Source(sky , apps);

36
37 /*

38 * Run Sim and generate reports */

39 Sim_system.set_trace_detail(true , true , true);

40 Sim_system.run();

41 new GReport(apps , sky);

42 new TracingPerformance (). toExcel(sky.getClouds ());

43 } }

Listing 3.1: The main class used for running MCST tool

data transmission activities (i.e., how much energy one could reduce by utilising

all available resources from all clouds).

The second stage (lines 32-42 ) focuses on report generation for analysis after

launching MCST, see Figure 3.5 as an example of a generated report. Here,

MCST optionally allows to generate specific logs for tracing the simulation’s

execution and getting better insights into the results. For example, it enables

printing out the run time states of all clouds, describing utilised resources, when

a specific application is being rejected or failed to execute.
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Friday, June 23, 2017 6:16 PM

1   Logs recorded on: Thu Jun 08 06:11:36 BST 2017
2   
3   
4   # Applications have been distributed [one-by-one] to the existing clouds
5   # Scheduling algorithm is based on [Best-Effort-Based]
6   # Decision strategy for choosing the best resource is based on [Combination-Mode]
7   # DV Frequency scaling is ON
8   
9   

10   
11   #####  Cloud details
12   
13   WestUSA - has 32000 CPUs,  original to 6 application(s) and the total consumed energy 

is 104434.100042212
14   Germany - has 32000 CPUs,  original to 8 application(s) and the total consumed energy 

is 3288.917080918172
15   Japan - has 32000 CPUs,  original to 7 application(s) and the total consumed energy is 

24112.417878562675
16   India - has 32000 CPUs,  original to 5 application(s) and the total consumed energy is 

375620.9665991755
17   Brazil - has 32000 CPUs,  original to 8 application(s) and the total consumed energy is 

988.4131033600548
18   
19   ###>> Total consumed energy over all Clouds without communications: 

508444.81470422837<<###
20   -----------------------------------------------------------
21   
22   
23   
24   
25   ##### Overall details of the all submitted applications
26   
27   # Total Communication Cost : 59798.39054904605
28   # Total Executed Computing Volume : 218849.75919999994
29   # Total Penalty : 0.0
30   # Successfully executed : 50 out of 50
31   # Violated : 0
32   # Rejected : 0
33   
34   
35   
36   
37   ## app: 1 ##
38   ----------------------------------------------------
39   Start time : 1010.0
40   Deadline : 2776.266666666664
41   Communication Cost : 0.0
42   Penalty Cost : 0.0
43   Original Cloud : WestUSA
44   Total Number of tasks : 64
45   No. accomplished tasks : 64
46   is accomplished? : true
47   is reservation cancelled? : false
48   is capacity violated? : false
49   is rejected? : false
50   
51   # tasks details-------------------
52   taskID: 65537  iCPUs: 3888  Computing-size=1.4928 EST=1010.0

LST=2568.9333333333307 EFT=1217.3333333333333 LFT=2776.266666666664
isEntry=true - isCritical=true - isExit=false status COMPLETED Freq: 0.00495
sim_Time from: 1010.2 to: 1311.7757575757576  eEn 0.0  ComputingSize 
1.4928  no. CPUs 3888  Executor-Cloud-Name WestUSA

53   taskID: 65538  iCPUs: 3888  Computing-size=0.043199999999999995
EST=1217.3333333333333 LST=2776.266666666664 EFT=1223.3333333333333
LFT=2782.266666666664 isEntry=false - isCritical=true - isExit=false status 
COMPLETED Freq: 0.00495 sim_Time from: 1217.5333333333333 to: 

-1-

Figure 3.5: An example of a statistical report generated by our tool
(MCST). It mainly shows the energy consumptions by each cloud after
scheduling and executing 50 HPC-applications over 5 distributed clouds. For
more details, please see similar generated reports which have been made pub-

licly available5.
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3.3 Comparison to Existing Tools

The existing simulation techniques can be broadly classified into either continu-

ous or discrete-event simulation. We follow the latter, in a sense, as our MCST

does not simulate any event continuously (e.g., no time loop for assigning a

task to CPUs for execution) but simulates scheduling all events to run once at

a specific time. In this section, we limit the discussion to only event-based sim-

ulation frameworks, designed for studying cloud computing systems in general.

The closely related (non-commercial) tools we are aware of are GridSim [30],

CloudSim [34], NetworkCloudSim [52], WorkflowSim [39], GreenCloud [79], and

DynamicCloudSim [28]. Apart from GreenCloud [79], the core of all these tools,

including ours, is SimJava [63], a basic discrete event simulation tool. Figure 3.6

describes the sequential extensions between these tools, inherited originally from

SimJava [63] as a kernel-based framework.

Cloud simulators, to leverage experiments on medium and large scaled dis-

tributed environments, have been examined with different objectives and poli-

cies. They essentially allow to elaborate complex scenarios by concentrating on

a certain component under different conditions. The historical beginning of the

available tools was with grid simulators, such as GridSim [30] and SimGrid [37],

for modelling and scheduling scientific applications over heterogeneous grid re-

sources to address and evaluate performance problems. Following this, some

of the grid simulation frameworks have been extended to support the require-

ments of cloud environments, including the model of virtualised resources and/or

multi-layer services (e.g., IaaS). For example, the first version of CloudSim [34],

which is one of the popular cloud computing frameworks, was an extension of

GridSim [30].

The well-known CloudSim [34] is a self-contained toolkit that supports some

basic features for modelling resource virtualisation (e.g., virtual machines and
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Figure 3.6: The sequential extensions between the related simulation tools
to our MCST, that are inherited originally from SimJava [63]

CPUs) in data-centrers, allowing to implement/analyse scheduling policies for

allocating tasks to virtual machines. It has been widely extended by many

recent cloud simulators, including CloudAnalyst [115] and EMUSIM [33]. Nev-

ertheless, the extensions that are most relevant to this thesis are: Network-

CloudSim [52], WorkflowSim [39], and DynamicCloudSim [28].

Helping simulation tools like CloudAnalyst [115] and EMUSIM [33] are designed

to analyse different patterns of requests for cloud applications, containing in-

formation such as user and cloud locations, and capacity of cloud resources.

The key idea behind such simulators is to assist users to accurately model their

applications and to roughly estimate the performance/cost of their applications

in a cloud provider. More specifically, EMUSIM as an example, derives in-

formation from application behaviours using emulation techniques to generate

a model, describing the expected performance in a cloud provider. This de-

scriptive model is then used to accurately specify application requirements as a

simulation model.

For simulating and observing specified aspects of cloud behaviours, our tool

MCST has in common with NetworkCloudSim [52], WorkflowSim [39], Dynam-

icCloudSim [28], and particularly GreenCloud [79] the capability of schedul-

ing applications over cloud resources to measure e.g., performance and/or en-

ergy consumption. However, each one of these simulators considers different
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Feature MCST A B C D E F

Parser for real archive workflow logs X X X
* modelling of heterogeneous multi-cloud system X �
* modelling of complex HPC applications (dependent tasks) X X � X X X
* Energy model for calculating the cost of application computation X � X
* Energy model for calculating the cost of data transmission X X
* Energy saving based on DVFS X � X
* Implementation of global schedulers over distributed multi-
clouds based on token-reservation and best-effort modes

X

* Combination of conflicting objectives while scheduling X
* modelling of application violation X X X
* modelling of application rejection X

Supporting task execution, and scheduling algorithms, e.g.,
Round-Robin, MinMin [24], MaxMin [26], or any other heuristics

X X X X X X X

Energy saving based on dynamic shutdown server X
Precise models for local network in data-centres X X
Support for task clustering X
Random assignment of new VM to a host X
Dynamic changes of VM performance X X
Performance properties (MIPS, bandwidth or memory) X X X X
Performance property (file I/O) X

* Required feature in our approach.
� Feature is not fully implemented, but tool provides abstract classes to be extended.
A GridSim [30]
B CloudSim [34]
C NetworkCloudSim [52]
D WorkflowSim [39]
E GreenCloud [79]
F DynamicCloudSim [28]

Table 3.3: Comparison between the closely related simulation tools with
our MCST

problem scenarios, aiming to address and achieve different objectives. For in-

stance, the focus of NetworkCloudSim [52] and WorkflowSim [39] is ultimately

on enhancing the measure of cloud performance by simulating a precise lo-

cal network of data-centres and more realistic cloud applications, respectively.

DynamicCloudSim [28] also share with them the enhancement of measuring

cloud performance by modelling more critical factors, such as the cost of (1)

file I/O, (2) dynamic changes to the performance of VMs, and (3) resource fail-

ures during task execution. In contrast, the scheduling approach presented in

GreenCloud [79] focuses on energy optimisation for both servers and network

activities within a single cloud-infrastructure. This, to some extent, is close

to one of our objectives. In spite of it, GreenCloud [79] does not support the

model of heterogeneous multi-cloud systems nor of complex HPC-applications.

It is an extension of the NS2 network simulator, implemented in C++, and one
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of its drawbacks is that it can handle only small cloud resources, i.e., it has an

exponential time complexity when simulating large data-centres.

In Table 3.3, we give a specific comparison between the relevant tools and our

MCST. The features mentioned in this table that are supported by our tool are

discussed throughout the thesis, e.g. modelling the energy formula and imple-

menting the global schedulers are discussed in Chapters 4 and 5. However, the

purpose of showing this table here is to make it clear why MCST has not been

developed upon more recent tools than SimJava [63], particularly GridSim [30]

or GreenCloud [79]. In a time-restricted experiment, these tools are difficult to

use effectively without a major effort in terms of customising and/or modifying

such relevant tools correctly. The main requirements to simulate our scheduling

approach are not completely supported by these tools, see the rows that begin

with (*) in Table 3.3. None of the mentioned tools straightforwardly supports

our desired features, essentially modelling multi-cloud entities in a heteroge-

neous environment, such that clouds are owned by different vendors and each

cloud has different characteristics of data-centres. Hence, we have concluded

that integrating our tool with a fine-grained basic tool like simJava [63] is even-

tually an adequate solution to precisely evaluate our approach in less time and

effort.

3.4 Summary

In this chapter, we have presented the Multi Cloud Simulation Tool (MCST)

as a prototype developed to evaluate our approach. The MCST is entirely im-

plemented in Java, and it provides an environment to abstractly represent dis-

tributed multi-cloud systems as well as HPC-applications to analyse the schedul-

ing process of tasks and/or HPC-applications for energy efficiency. In particular,

our tool provides the following main functionalities:
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• parsing and loading applications from logs of real large-scale systems [95,

51];

• declaration of the characteristics of clouds and the specification of their

communications; and

• generation of different reports for analysis.

Additionally, we have explained that none of the relevant tools straightforwardly

supports our desired features, essentially defining our multi-cloud system, which

results in the need of developing our own simulation for better and more precise

evaluation. To estimate the amount of energy that could be efficiently reduced

while scheduling HPC-applications over distributed multi-clouds, we introduce

in the next chapter energy aware scheduling algorithms that rely on the best-

effort scheduling style.
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Chapter 4

Energy Optimisation with Best-Effort
Scheduling Mode

Conforming to the main orientations of green cloud computing for the necessity

of increasing energy efficiency to address some environmental problems (e.g.,

global warming), we investigate the problem of scheduling HPC-applications

over a set of clouds, participating in a federated approach (cf. Section 1.1.2).

This scheduling follows the best-effort style (i.e., non-advance-reservation style)

when allocating tasks to clouds and/or machines for execution. It exploits

the possibility of sharing cloud resources from different vendors as well as the

elasticity of dynamically adjusting voltage and frequency of processors (DVFS)

(cf. Section 2.2.1) for energy optimisation.

This chapter presents a deadline-based scheduling method for optimising the

energy consumption when executing dependent HPC tasks by a decentralised

multi-cloud system. The optimisation involves a non-trivial amount of energy

consumed by the execution of tasks and the transmission of their datasets, if

applicable, between clouds. A preliminary version of this method that focuses

on only optimising the computing-energy consumption has been published in [6].

Along with energy efficiency as the major objective of this thesis, the proposed
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scheduling method supports maximising the resource reliability by the avoidance

of rejected/violated application cases.

The chapter is structured as follows. In Section 4.1, we present the problem

under consideration in terms of the multi-cloud system model, scheduling model

and energy model followed by the problem formulation. We then introduce,

in Section 4.2, two different decision strategies for choosing the best available

resources, that are offered by a set of clouds. These are Preference Rate to

optimise energy consumption based on setting an upper limit for the allowed

energy consumption, and Combination Rate to address conflicting objectives

using a statistical approach. Section 4.3 presents our proposed energy aware

scheduling algorithms as two of the prime contributions of this thesis: EGSBE

for scheduling tasks among all participating clouds, and ELS for allocating each

task to suitable machines in a local datacenter. After that, we evaluate the

proposed approach using our simulation (MCST) in Section 4.4. Finally, the

chapter ends with a brief summary in Section 4.5.

4.1 Scheduling and Energy Models

In Section 3.1, we have introduced the proposed system model, including the

considered cloud as well as application structures, for our approach. The model

suggests sharing the execution of HPC-applications by distributed and decen-

tralised clouds that participate in a federated approach. To make such partic-

ipation serviceable, essentially for energy optimisation, we present, in the next

section, a scheduling framework based on the best-effort mode. The framework

consists of two dynamic schedulers: global for assigning application tasks to

clouds, and local for mapping tasks to CPUs. Both schedulers are constrained by

application/task deadlines while optimising energy consumption. Considering

energy models, we propose two formulas for calculating energy consumptions:
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one for estimating the execution cost of a task in a cloud, and the second for esti-

mating the cost of transmitting a dataset between clouds, see Sections 4.1.2 and

4.1.3, respectively. The main objective of the proposed best-effort scheduling

approach is explained formally in Section 4.1.4.

4.1.1 Scheduling Framework

As illustrated previously in Figure 3.1, a cloud site has a global scheduler, a local

scheduler, and a resource controller that are managed by the cloud’s manager

server. Here, each manager server has mainly four queues for controlling tasks

based on the task’s status (described in Figure 3.4) as follows:

• Unprepared tasks queue: This is the first stop of all tasks, where the status

of these tasks is Initialised.

• Ready tasks queue: It contains a list of tasks that are waiting for replies of

delegation requests from other clouds until the global scheduling decision

is made. The status of all of these tasks is also Initialised. However, these

tasks are considered ready as the executions of all of their predecessor

tasks have been successfully performed.

• Delegated tasks queue: This queue contains a list of the globally scheduled

tasks, but the executer cloud (that has received the disk image of such

delegated tasks as a kind of notification for accepting the offer) is waiting

to receive the outputs of all the predecessors of the delegated task from

other clouds. The status of these tasks, in this queue, is Scheduled.

• Task scheduling queue: It hosts all tasks that have been accepted, and are

under processing by local resources. The status of these tasks is Process-

ing.
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Consider the following scenario to illustrate the role of the main components of

each cloud: The manager server ms1 receives a submitted application from a

user before partitioning it into tasks while maintaining the dependencies among

them. The global scheduler relies on one of the suggested scheduling strate-

gies (discussed later in Section 4.2) that analyses the information about local

and remote resources as well as the task’s requirements to decide to which

cloud each task will be allocated. The information about local resources is ob-

tained directly through the local resource controller, while the information about

remote resources is obtained by communicating with other manager servers

ms2, · · · ,msn, where each of them is in turn related to a resource controller.

Then, the local scheduler of the chosen cloud decides which servers/processors

are allocated to each task based on the utilised scheduling policy and consid-

ering the requirements of the task. In a little more detail, the process of the

global and local schedulers for allocating tasks is illustrated in three steps in a

self-contained figure, see Figure 4.1. With regard to the communication among

multiple clouds, we adopt a pull and push (P&P) model [64] as the resource

monitoring mechanism (cf. Section 2.4.1). The broadcasting of the delegation

request messages from the original cloud to all participating clouds represents

the pull operation, and the notification messages from the executer cloud to the

original cloud (either of task rejection, failure, or successful execution) represent

the push operation.

4.1.2 Energy Formula for Application Execution

In our energy-modelling context, specifically for execution activities, the focus

is on the processor only as it is one of the main critical components of the entire

cloud system in terms of energy consumption [55]. All of the other important

components (e.g., memory or disk drives) are beyond the scope of this thesis.

In Section 2.2.2, we have explained the basic formula for computing the energy
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Figure 4.1: Overview of the proposed best-effort approach, described in
three steps

consumption by a single-core processor that supports DVFS. In this thesis,

we adopt an extension of this traditional energy formula to support multi-core

processors, as follows.

Assume that p is a multi-core processor, supporting DVFS, and COp is the

set of available cores in p, where |COp| > 0. If all cores COp run at the same

frequency f , the traditional formula (discussed in Section 2.2.2) can be modified

to:

Ep = β + x(αf 3) (4.1)
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where x is the number of active cores in p. Here, x has no impact on the static

energy of the actual physical processor (represented by β), but it affects directly

the dynamic energy [77]. In our energy model, we assume a little more complex

case in which the active cores of a processor are allowed to run simultaneously

at different frequencies, as in [82, 48]. In this case the system has a set of

identical clocks, one for each core, to allow varying performance among the

cores. This might occur if each core is assigned to different tasks that need to

be executed at different frequency. If core co ∈ COp runs at frequency fco, the

energy metric for the multi-core processor p becomes: Ep = β +
∑

co∈COp
αf 3

co.

Thus, our proposed formula to compute the total energy consumption Ecj by a

set of servers S in the cloud site cj is expressed as follows:

Ecj =
∑
s∈S

( ∑
p∈P (s)

(
(βj +

∑
co∈COp

αjf
3
co)Dp

))
(4.2)

where P (s) is the set of processors of server s, Dp denotes the active time of

processor p, and fco denotes the frequency level at which core co ∈ COp for

some processor p runs.

Furthermore, we calculate the estimated energy consumption by a particular

task t as follows. Assume that nt is the number of VMs assigned to t such that

each VM occupies one core, and these VMs run at frequency f . Then, the total

energy consumption by task t can be expressed as:

Et = (β +N(αf 3))× ceil(nt
N

)× et (4.3)

where et = vt
f

is the execution time of task t at frequency f , N is the number

of cores per processor, and ceil(nt

N
) represents the estimated number of physical

processors that are assigned to t.
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Figure 4.2: Energy consumption vs. frequency

However, due to the convexity of the mentioned energy metric, not all lower fre-

quency levels are useful for minimising the energy consumption. We can define

a useless frequency f as a frequency at which the processor, when executing

a fixed volume of computation, always dissipates an amount of energy that is

larger than the amount of energy dissipated at the frequency m that minimises

the amount of energy, and if f belongs to the interval [fmin,m). Figure 4.2

shows an example of the energy consumption per unit of computation of a dual-

core processor with α = β = 60 and a frequency range [0.17, 2.5], where the

interval of the useless frequencies is [0.17,m). Despite the fact that these useless

frequencies may have an instantaneous energy consumption that is lower than

that of higher frequencies, they always need more energy in total for executing

a task than some higher frequency that finishes the task sooner.

Thus, we eliminate useless frequencies as follows. For each frequency f , we

compute the amount of energy consumed by a processor for one unit of compu-

tation on each core, which is given by Energy = β+(x∗αf3)
f

for a processor with x

cores. We then remove all frequencies that are smaller than the frequency that

minimises this energy. This elimination, where applicable, helps to reduce the

computation time of the scheduling method that selects a suitable frequency for

executing a task.
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4.1.3 Energy Formula for Data Transmission

The computation of transmission energy depends mainly on the cost of wired

connections through which the dataset of a given size is transmitted. The link

cost combines the total consumption of the Internet nodes and cooling, the

transmission lines, and amplifiers [44]. When a non-original cloud (i.e., not

oappm) executes an application appm, the datasets, including the input and the

disk image, need to be transmitted to the executer cloud. Once the execution

of appm is completed, the output will also need to be transmitted back to the

oappm .

Estimating the energy consumption of data transmissions through the Internet

is notoriously difficult, and available estimates vary by several orders of magni-

tude [44, 45]. We adopt an estimate of 0.2 kWh for the transmission of 1 GB

as this value lies in the middle region of the range of reported estimates. Fur-

thermore, to account for the effect that transmissions over longer distances are

likely to require more hops and thus more energy, we assume that the energy

consumption of a data transmission also depends linearly on the distance over

which the data is being transmitted. We make the assumption that a typical

transmission to which the rate of µ = 0.2kWh/GB applies is a national trans-

mission over a distance of 500 km, so that the energy cost of a transmission

over a distance D can be obtained by multiplication with the factor D/500 km.

In general, if a more accurate estimation of transmission energy costs is avail-

able for a given scenario, it can be incorporated into our simulation MCST in

a straightforward way.

We assume that all datasets of an application will be sent through the same

link. Given a set A of delegated applications whose datasets need to be sent

from oappm to the executor cloud, we estimate transmission energy Tcj as:
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Tcj =
∑

appm∈A

(µ× dataSizeappm ×
linkLGappm

500 km
) (4.4)

where dataSizeappm denotes the total size of the disk image, the input and

output, and linkLGappm expresses the link-length used for the transmission.

4.1.4 Problem Formulation

We consider a set of applications A, submitted over time to different specified

cloud sites in a multi-cloud system, where A = {app1, . . . , appL}, L ∈ N. Cloud

cj may receive y applications, where 0 ≤ y ≤ L. The submission of appm is

unknown beforehand. Each cloud can accept a received appm if the deadline

can be met, or reject it otherwise. If the appm gets accepted for scheduling, it

will be either executed successfully or violated. Our objective is to primarily

optimise the total energy consumption of all accepted applications in the entire

multi-cloud system with the avoidance of rejections and application violation

cases.

We attempt to minimise the overall energy usage Etotal that includes (1) the

computing energy usage Ecj , (2) the dataset transmission energy cost Tcj and

(3) the penalty cost for rejecting/violating applications PN cj by cloud cj. Here,

the penalty cost PN for rejecting/violating an application appm is PN =∑
t∈appm

Et, where Et is calculated by equation (4.3) at the highest performance

among all clouds. Thus, the objective function is as follows.

Minimise: Etotal =
∑

cj∈C(Ecj + Tcj + PN cj)

Subject to:

(1) endT imeappm ≤ DLm ∀ appm ∈ A where appm is accepted

(2) fminj
≤ fco ≤ fmaxcj ∀ co in servers of cj ∈ C
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By this objective function, a scheduling policy that rejects all applications would

have
∑

cj∈C Ecj =
∑

cj∈C Tcj = 0, but it gets a very high
∑

cj∈C PN cj . The

policy that executes all applications at the highest cloud performance would

tend to have a very low penalty but a high
∑

cj∈C Ecj . The scheduling policy

which will have a better objective value is the one that finds a good balance.

4.2 Schedule Decision Strategies

Consider a situation where we are given two lists of numerical values offered

by a set of clouds, and the goal is to pick a cloud that optimises these values,

taking into account the priority of sorting these two lists. In this research

context, these two lists represent offers from clouds for scheduling and executing

a particular submitted application, such that the first list collects the estimated

energy consumptions, while the second list collects the occupation rates of all

clouds’ resources. To give more clarification, we exemplify these two lists with

values offered by 5 clouds as illustrated in Figure 4.3. Here, picking a cloud

by focusing on only a single list (e.g., a list that collects the estimated energy

consumptions), and by finding the minimum value (e.g., cloud B that offers

1.0001 in Figure 4.3) may not lead to the optimal energy optimisation over time.

Instead, taking cloud resources that are occupied by the other applications into

consideration is very critical.

When the differences between the values of the estimated energy consumptions

that are offered by clouds are negligible (e.g., the first three values in the first list

in Figure 4.3), it makes obvious sense to select a set of clouds that offer similar

minimum values, and then consider the rates of their resource occupations as

the next priority. This is concisely described in Figure 4.3 as the differences

between clouds (B, E, D) in the first list seem very minor, but become significant

in clouds (A, C). This means picking any cloud from (B, E or D) would make
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occupation

1.0001 Cloud E 95

1.0002 Cloud D 88

1.0005 Cloud A 15

35 Cloud C 75

78 22

Clouds are sorted by their 
offers using the first list

Minor differences 
between values

The differences 
became critical

Cloud D: minimises approximately the values of both lists.
Cloud B: minimises the values of the first list only.

Figure 4.3: An illustrative example explaining abstractly the form of the
clouds’ offers. It represents some assumed values, in two lists, offered by 5

clouds.

almost no difference in terms of reducing energy consumption. However, when

considering resource reliability at the level of the whole multi-cloud system over

time, Cloud D offers the best choice as it also minimises the occupation rate

(e.g., see the value 15 in the second list), meaning that it has less chance of

running out of resources.

In this thesis, we propose two decision strategies: preference and combination

rate strategies for finding the best available resources, introduced in the next

subsections. These strategies depend on some pre-defined configurations in our

simulation (MCST), including RESOURCE DECISION MODE and RANGE

ACCEPTED COST, which were explained briefly in Table 3.2.

4.2.1 Preference Rate Strategy (PRS)

Assume that the first and the second lists, shown in Figure 4.3, represent the

offers from a set of clouds such that the first list collects the estimated en-

ergy value (eEnergyV alue) and the second list collects the occupation rate

(occupRt). Here, PRS minimises primarily the energy consumption based on a

given preference factor Rt that can be chosen as any fraction in the range [0,1).

This factor needs to be defined in MCST using RANGE ACCEPTED COST.
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The idea is to determine the acceptable energy costs by assigning the minimum

energy value min(eEnergyV alue) provided as the lower bound, while choosing

min(eEnergyV alue) + (min(eEnergyV alue)× Rt) as the upper bound. Only

clouds whose eEnergyV alue lies in this range are then considered, and the

strategy then minimises occupRt among their offers.

Intuitively, if the given factor Rt is 0, PRS would always choose the cloud that

gives the minimum energy immediately without considering occupRt. Accord-

ingly, the applications will be executed at the minimum offered energy con-

sumption. To be more precise, consider the descriptive example in Figure 4.3,

the PRS will choose Cloud B when setting Rt = 0. On the other hand it would

choose Cloud D as a better decision when expanding the range of the accept-

able eEnergyV alue by setting e.g. Rt = 0.05, such that the upper bound would

be 1.0001 + (1.0001 × 0.05) = 1.0501, allowing to minimise occupRt from the

determined range (i.e., 1.0001, 1.0002, and 1.0005).

4.2.2 Combination Rate Strategy (CRS)

Unlike PRS, CRS aims to simultaneously satisfy the minimisation of both the

estimated eEnergyV alue and occupRt. The strategy is inspired by two statisti-

cal analysis concepts that are the standard deviation SD and the coefficient of

variation RSD, which are commonly used as metrics for assessing the robust-

ness of a schedule [86]. They effectively suit our approach as the SD of a set

of values e.g. eEnergyV alue expresses how much the proposed energy values

differ from their mean value, and this helps to understand the amount of their

dispersion, while, the RSD gives us a ratio scale that allows us to compare two

different (non-unified) distributions based on their dispersion. To avoid any

ambiguity, let us consider that the SD of a set Energy = {en1, · · · , ena} can

be calculated by (4.5):
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SD =

√∑
eni∈Energy|eni − Energy|2

a
(4.5)

where Energy is the mean of the data set Energy, calculated by Energy =∑
en∈Energy en

a
. The coefficient of variation RSD is the ratio of standard deviation

to the mean Energy, and can be expressed as: RSD = SD/Energy.

To pick the best cloud based on this strategy, the CRS forms two lists eEnergyList

and occRtList with all proposed eEnergyV alue and occupRt. Here, the RSD

of each list represents the amount of dispersion between the elements such that

low dispersion would refer to very similar offered values, which may make no

difference when choosing any element. High dispersion, however, means that it

is important to consider each element as there is a clear difference between the

elements.

Having the RSD from eEnergyList and occRtList, it makes sense to use these

lists to determine a weight for each objective in a weighted sum, such that:

• the first weight is RSD(eEnergyV alue)
RSD(eEnergyV alue)+RSD(occupRt)

, and

• the second weight is RSD(occupRt)
RSD(eEnergyV alue)+RSD(occupRt)

.

We then compare the value of these two derived weights to determine the higher

weight hw as well as the lower weight lw. Therewith, the defined hw will be

given to the set of items that are highly dispersing (i.e., either list eEnergyList

or occRtList that has a higher RSD), and accordingly the lower weight lw will

be given to the other list. These weights (hw and lw) as well as the RSDs of

both lists (eEnergyList and occRtList) are calculated dynamically each time

CRS is applied, and after collecting cloud responses for scheduling each task.

Assuming that eEnergyV alue has a higher weight hw, the CRS will choose the

cloud with minimum combined rate from the list: {(eEnergyWeight1 ∗ hw +
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Cloud

Energy Resource occupation rate
Combined energy

&

occupation rates
eEnergyValue

Energy 

weight

Energy weight 

* 0.696058981
occupRt

Occupation 

weight

Occupation weight

* 0.303941019

B 1.0001 0.008621492 0.006001067 95 0.322033898 0.097879311 0.103880378

E 1.0002 0.008622354 0.006001667 88 0.298305085 0.090667152 0.096668819

D 1.0005 0.008624941 0.006003467 15 0.050847458 0.015454628 0.021458095

A 35 0.301722057 0.210016348 75 0.254237288 0.07727314 0.287289488

C 78 0.672409156 0.468036432 22 0.074576271 0.022666788 0.49070322

Mean 23.20016 59

Standard Deviations 33.98810262 37.74254893

Coefficient of variation 1.46499432 0.639704219

Given percentage 0.696058981 0.303941019

Table 4.1: An example describing how our proposed combination rate strat-
egy (CRS) can be applied.
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Figure 4.4: Applying the CRS strategy to the example presented in Fig-
ure 4.3, which results in the choice of Cloud D as the best option.

OccupationWeight1 ∗ lw), · · · , (eEnergyWeighta ∗ hw+OccupationWeighta ∗

lw)}, where eEnergyWeighti is eEnergyV aluei
eEnergyV alue1+···+eEnergyV aluea , OccupationWeighti

is occupRti
occupRt1+···+occupRta , and a is the number of received offers.

Table 4.1 explains explicitly how CRS can be applied based on the descriptive

example shown in Figure 4.3, which results in the choice of Cloud D as the best

option, visualised in Figure 4.4. More precisely, the second (eEnergyV alue) and

the fifth (occupRt) columns give the offer values from the 5 clouds, the same

values shown in Figure 4.3, and also the mean, SD and RSD of these values.
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From the calculated RSDs of both columns (1.46499432 and 0.639704219 in

Table 4.1), we define hw and lw as explained, and then assess the dispersions of

the offer values, expressed by the ratio of SDs to the mean of the offer values.

The column (i.e., either the eEnergyV alue or the occupRt) that has the higher

RSD will take the hw, whereas the lw will be given to the other column.

For example, in Table 4.1, the RSD of occupRt is 0.639704219 which is lower

than the RSD of eEnergyV alue that is 1.46499432. Accordingly, the column

eEnergyV alue has taken the hw that is 0.696058981, while the lw (0.303941019)

is given to the column occupRt, see the last row. The last column combines the

considered energy weights as well as the considered occupation weights based

on the given hw and lw, such that the cloud that gives the minimum value in

this column is chosen.

4.3 Scheduling Algorithms

Before presenting the proposed scheduling algorithms, we first explain the gen-

eral scheduling process. It is dynamic, and follows the best-effort (non-advance-

reservation) style. In this style, the scheduling decision is made depending on

some instant information about all available resources in the entire multi-cloud

system. The given offers have no guarantee for the resource’s availability. The

scheduling process starts when a submitted application is accepted. The ac-

ceptance decision is made through estimating the execution time of the whole

application by calculating the total execution time of its critical tasks at the

highest performance among all clouds. The execution time must be less than or

equal to the submitted deadline DLm, otherwise the application will be rejected.

The deadline dti for each task is calculated as a guide for the global scheduler

as follows: dti = LFT ti where LFT ti is calculated using (3.2).
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The task ti of an accepted application is considered as a ready task for schedul-

ing only if it has no predecessors (i.e., an entry task) or all its predecessors

have been successfully executed. If ti is ready, then the preparation for its

scheduling happens by broadcasting the delegation requests that are sent by

the manager-server of the original cloud to all other manager-servers in the

multi-cloud system. There are two types of replies for a delegation request, as

follows.

• A positive reply implies a delegation acceptance, to which a task bidding

information is appended, i.e., the estimated energy consumption for both

execution and data transmission as well as the occupation rate.

• A negative reply, however, means that the delegation request is rejected.

It occurs if either the task’s deadline cannot be met by any means or

the available resources are not enough. Also, there is a possibility that

a task may not receive any positive reply even from the local resource,

which means that the violation of its deadline is inevitable and the whole

application will be violated in turn.

Broadly, after assessing the possible scheduling decision, the task can be allo-

cated either to local resources of oti or to remote resources in another cloud.

The output data of a successfully executed task is called the dataset and its

volume is represented by dSetti . The dataset is necessary for all successors of

ti to be ready for scheduling and execution.

There are particular time periods (delays) that occur throughout the scheduling

time of an application before starting the execution of each task and after a

successful execution. These are:

• The time required to transfer the disk image of task ti from oti to the

chosen cloud, dImagetransferti , where this time is equal to zero if oti is the

executer cloud.
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• Inner delay time, innDelayti , is the time taken to transfer dImageti si-

multaneously to a set of computing nodes that are allocated to ti.

• Data set transfer time, dSettransferti , is the time taken to transfer datasets

from all of ti’s predecessors from one or more data-centres to another.

This occurs if the scheduler allocated ti to a different cloud from the one

in which ti’s predecessors are executed.

• Delay time of notifying oti about a successful execution of ti. It is denoted

by endNotify ti .

• The transfer time of the output data of a delegated exit task ti,

exitOutputtransferti , from the executer cloud to oti .

We assume here that the datasets that are required to execute a given task can

be transferred to its allocated cloud only after successfully transferring its disk

image to that cloud. It is also worth mentioning that the energy transmission

cost that is attached to each task for being delegated does not include the cost

of a successful-execution notification which is negligible.

4.3.1 EGSBE: Energy-Aware Global Scheduling Based

on the Best-Effort Mode

The EGSBE schedules each task of an application to the cloud that offers the

best option, which minimises the energy while meeting the deadline, including

the option of scheduling it on the local cloud resources. Specifically, it relies on

information about the resource status, i.e., the occupation rate occupRt in ad-

dition to the estimated energy consumption eEnergyV alue that consists of the

computation and communication energy consumption. The steps of obtaining

the information from all clouds for scheduling task t are shown by Algorithm 1

in lines 1-4. The scheduler will allocate tasks to their original cloud ot (if their
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deadlines can be satisfied) unless another cloud offers a lower amount of energy

consumption. In lines 5 and 6, if the deadline of a task can be met by a cloud

ci, the cloud offer will be added to the set offers.

Algorithm 1 EGSBE
Energy-aware global scheduling with best-effort.

Inputs: t is a ready task to be scheduled by ot. Each t has a computing volume
vt and deadline dt

C = {c1, · · · , ck}, k ∈ N is a set of connected clouds
PRS (preference) and CRS (combination) are rate strategies.

Outputs: A globally scheduled t in ci, the best cloud found.

Begin
1: offers := ∅ is a set of offers provided from all ci
2: for each msi cloud manager server ∈ C do
3: offer ← msi.getOffer(t)
4: offer .eEndT imet(msi) :=offer .EAT t(msi) + (vt/offer .F requency)
5: if offer .eEnergyV alue > 0 and offer .eEndT imet(msi) +

possibleDelayt(msi) ≤ dt then
6: offers← offers ∪ { offer }
7: if offers== ∅ then
8: set t.app.isRejected=true
9: else if offers .size == 1 then

10: set chosenCloud(t,offers(1)), i.e., the available offer is one, and hence
schedule task t to it directly.

11: else
12: bestOffer← applyDecisionStrategy (offers, CRS (or PRS )). Note, the

CRS and PRS rely on the two values provided from each offer that are:
offer .eEnergyV alue and offer .occupRt, discussed in Section 4.2.

13: set chosenCloud (t, bestOffer)
End

The ability of meeting the deadline of task t is estimated for cloud msi by com-

puting the summation of eEndT imet(msi) and possibleDelayt(msi), see line 5.

The latter is the delay that is associated with each task for being scheduled to

a specified cloud. It may consist of one or more particular periods of time, as

illustrated earlier in this section. Specifically, the possibleDelay(ot) of the origi-

nal cloud includes only the innDelay(ot), whereas the possibleDelayt(msi) of all

non-original clouds includes innDelayt(msi) in addition to either endNotify t(msi)

or exitOutputtransfert(msi)
.
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Then, in lines 7-13, there are two cases: scheduling t to the chosen cloud (i.e.,

line 10 describes the case if only one valid option is available and line 13 for

more than one options) or rejecting it as there is no cloud that is able to meet its

deadline. The latter implies that the deadline of the whole application cannot

be met, and the application is rejected in turn, see line 8.

Algorithm 2 ELS
Energy-aware local scheduling.

Inputs: Task t(nt).
capacity(Sc) the capacity of servers in this cloud.
The list of all servers.

Outputs: Allocating the required machines to t.

Begin
1: Rn := nt
2: form the list of all active servers activeServersList
3: sort the activeServersList in ascending order of their free capacity.
4: for each server s ∈ activeServersList do
5: form the list of processors that have free capacity CPUsList
6: sort the CPUsList in ascending order of their free capacity.
7: for each processor p ∈ CPUsList do
8: allocate a number of VMs that fulfill Rn if available, or equal to the

number of free VMs otherwise.
9: reduce Rn value by the number of allocated VMs.

10: if Rn = 0 then
11: break
12: if Rn > 0 then
13: activate ceil(Rn/capacity(Sc)) idle servers.
14: allocate the remaining number of required VMs that is equal to Rn.
15: start executing the task t.
End

4.3.2 ELS: Energy-Aware Local Scheduling Algorithm

For each task t in the application app, the ELS algorithm is responsible for

assigning t to servers, processors, and cores that will execute it, according to

the schedule computed by Algorithm 2. The ELS is triggered whenever there

is an immediate arrival of a delegated task, or the execution of a task ti is due
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to start. The app will be violated if t has failed to execute (e.g., by not getting

enough resources at run time), leading to cancelling the execution/scheduling

of all of its tasks.

The goal of Algorithm 2 is to choose the resources in a way that helps minimising

the computing energy consumption. Thus, it initially tries to utilise as many

active servers as possible, in line 4, so as to reduce the cost of activating idle

servers. It also utilises the active processors that have free virtual capacity in

order to minimise the static energy consumption, see lines 5-9. In other words,

balancing the load among the servers (of homogeneous resources) may not add

a considerable advantage to energy minimisation as having more active servers

for load-balancing means to consume extra static energy.

4.4 The Evaluation of the Proposed Schedulers

This section presents the experiments1 conducted to evaluate the proposed best-

effort scheduling approach, concentrating on measuring its effects on the poten-

tial energy saving. In particular, we focus on examining the following five points:

• Making a broad comparison with an existing scheduling algorithm CMMS

[84] that has been implemented in our simulation MCST for evaluation

purposes. Similar to our best-effort scheduling, CMMS applies to multi-

cloud systems but its objective is different in that it always attempts to

find a cloud that offers the minimal earliest finish time. To make a fair

comparison with our scheduling, we have only modified CMMS to take

into consideration the deadline constraint.

• Measuring the overall rate of energy that one could potentially reduce by

applying the proposed schedulers on different workloads of applications,

1The details of our experiments, including all the results, have been made publicly avail-
able http://www.cs.le.ac.uk/people/ayya1/MCST/index.html
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compared with the upper bound of the topmost energy consumption when

all clouds run at the highest performance (i.e., under the highest CPU fre-

quencies). We use the general objective function cost (cf. Section 4.1.4) to

give a fair comparison that includes application rejection and/or violation

cases.

• Measuring, more optimistically, the potential energy reduction when the

penalty of our suggested objective function is 0 (i.e., in the case where

no application rejection and/or violation cases occur during their schedul-

ing/executions). This approximately gives us the topmost rate of energy

that can be reduced using the energy saving techniques considered in this

thesis. We also investigate the influence of such energy reduction when

assuming different percentages for extending application deadlines.

• The effectiveness of the proposed strategies, PRS and CRS, for differ-

ent workloads of applications with respect to (i) the average reduction of

energy and (ii) the number of HPC application rejections and violations.

• The effect of the proposed strategies, PRS and CRS, on the utilisation of

cloud resources over time.

4.4.1 Configurations and Input Applications

In order to evaluate our scheduling algorithms, we have built a configurable pro-

totype tool (MCST) that simulates a decentralised multi-cloud system (cf. Chap-

ter 3). The simulation experiments use five distributed clouds around the world.

The characteristics of these clouds including approximate distances between

them are shown in Table 4.2 and Table 4.3. The energy parameters in Table 4.2

are obtained from the previous work by Garg et al. [53]. In each cloud site,

we assume the capacity of VMs per server is twice the number of its physical

processors, and all the processors support 5 levels of frequency in [fmin, fmax],
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Data Total Performance CPU parameters
center #VMs (TFLOP/s) α β fmax
WestUSA 32000 0.0072 7.5 65 1.8
Germany 32000 0.0096 60 60 2.4
Japan 32000 0.012 4.5 90 3.0
India 32000 0.0128 4.0 90 3.2
Brazil 32000 0.0128 4.4 105 3.2

Table 4.2: Specification of the five clouds used in our simulation.

— WestUSA Germany Japan India Brazil
W — 9094.4 8632.4 13365.2 9058.6
G 9094.4 — 9058.5 6759.7 9442.2
J 8632.4 9058.5 — 5965.9 17389.8
I 13365.2 6759.7 5965.9 — 16201.9
B 9058.6 9442.2 17389.8 16201.9 —

Table 4.3: Approximate distances in km between the cloud data-centres.

Category Max. nti # applications # tasks in each app
Low-load 8696 200 64
Mid-load 11384 200 64
High-load 16384 200 64

Table 4.4: Three categories of parallel workload applications.

where fmin is 37.5% of fmax (we adopt this percentage from [53]). For the speed

of the network signal between these five clouds, we assume that the data travel

at a rate of 200, 000 km/s.

Table 4.4 describes three categories of parallel application workloads extracted

from different logs of real large-scale systems (i.e., LLNL-uBGL-2006-0, LLNL-

Thunder-2006-0, LLNL-Atlas-2006-0, and ANL-Intrepid-2009-1) [95, 51]. The

task dependencies are inferred, as in [84], from the provided start and finish

times of executing jobs in each log. All tasks of appm are CPU-bound. The

applications are submitted to the multi-cloud system at different times, and the

gap interval between each two consecutive application submissions is equal to

1000 seconds.

To evaluate the EGSBE and ELS algorithms with both PRS and CRS strategies,
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we consider the highest frequency mode as an upper bound of energy usage.

It models the case when the objective of the cloud providers is to offer their

services at the highest performance. It is also applied with PRS (referred to as

PRS.HF mode) and CRS (referred to as CRS.HF mode) to attempt minimising

energy usage. We assume that Rt is equal to 0.01 for the PRS strategy to allow

choosing the cloud that gives the minimum energy immediately without much

consideration of occupRt.

In addition to the general objective function as a metric (cf. Section 4.1.4),

the rate of total energy usage is calculated to compare the different scheduling

strategies by

∑
cj∈C

(Ecj +Tcj )∑
appm∈A′

∑
t∈appm

(nt·vt) . Here, Ecj and Tcj are the amount of energy

usage by cloud cj for execution and transmission activities, A′ is the set of appli-

cations that are successfully completed, and (nt · vt) is the computing volume of

the executed task t that belongs to a successfully completed application appm.

4.4.2 Effect of the Proposed Schedulers on Energy

Optimisation

In Figure 4.5, Figure 4.6, and Table 4.5, we report the main results obtained

by running our simulation (MCST) 15 times independently. Each run is per-

formed based on a specific scheduling strategy (i.e., either PRS, CRS, PRS.HF

or CRS.HF) in addition to CMMS, and uses 200 HPC-applications, each consist-

ing of 64 tasks, as inputs from one of the workload categories (low-load, mid-load

or high-load), described in Table 4.4. The assumed deadline to execute these

applications is calculated by their estimated execution time eExecT imeappm ,

extended by 20%, i.e., DLm = eExecT imeappm +(eExecT imeappm×0.2), where

the DLm is the application deadline.

Unsurprisingly, increasing workload categories from low to high would increase

linearly the required amount of energy. However, in Figure 4.5, Figure 4.6,
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Figure 4.5: Different scheduling strategies with various workload categories
vs. the objective function.

we pay specific attention to the comparison between PRS/CRS and CMMS,

and also between PRS and PRS.HF as well as between CRS and CRS.HF to

figure out how much the proposed solutions could reduce energy consumption.

Additionally, these figures show differences between the two suggested schedul-

ing strategies themselves, PRS and CRS, explaining which of them gives better

results depending on the mentioned workload categories. Comprehensively, Fig-

ure 4.5 illustrates the overall cost achieved by PRS, CRS, PRS.HF, CRS.HF,

and CMMS using the objective function (cf. Section 4.1.4) that considers the

penalty costs for application rejection/violation cases. Figure 4.6, however,

gives more details from the same conducted experiments but it concentrates

on the rate of energy usage. Apart from CMMS, Figure 4.7 gives other details

regarding the unsuccessful cases of executing applications that have occurred

when applying PRS, CRS, PRS.HF, and CRS.HF. The values obtained from
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Figure 4.6: Different scheduling strategies with various workload categories
vs. the rate of energy usage.

these experiments are broken down in Table 4.5.

Observing the different energy costs, shown in Figure 4.5, the overall impact of

the proposed schedulers on energy optimisation is positively clear. In compar-

ison with the CMMS algorithm, our scheduling (CRS) allows one to efficiently

reduce the total amount of energy in all cases of workloads by an average of ap-

proximately 29% without sacrificing desired performance, expressed by meeting

application deadlines. Furthermore, both strategies, PRS and CRS, allow to

consume less energy than PRS.HF and CRS.HF, in all loads of application cat-

egories, by an average of about 11.8% and 15.8%, respectively. Moreover, there

appears to be a clear difference between PRS and CRS in the total energy cost,

such that PRS outperforms CRS in the low-load case only by roughly 8.3%.

However, CRS performs slightly better than PRS in both mid and high-loads

by about 1.9% and 0.3%, respectively.
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Figure 4.7: Different scheduling strategies with various workload categories
vs. the number of failed applications.

Figure 4.6 also illustrates different energy rates obtained by PRS, CRS, PRS.HF,

CRS.HF, and CMMS for executing application tasks as well as transmitting

their datasets between clouds. The significant point here is that while CRS did

consume higher energy rate than PRS in low-load case, it efficiently executes

all the submitted applications with no failed cases, compared to 4 violated

applications by PRS, see Figure 4.7. Additionally, CRS performs better than

PRS, in the mid and high-load applications, as it has consumed a lower energy

rate by about 7.9% and 6.2% respectively. This points out that using the

size of the workloads as a factor to determine the difference between PRS and

CRS is not accurate, meaning that analysing more deeper factors regarding the

specification of the submitted applications is significant.

Having a deeper look into the results, shown in Figure 4.5 and Table 4.5, we

could estimate the amount of energy that has been reduced by each of the con-

sidered energy saving methods, i.e., DVFS as well as sharing globally available
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Computing Energy cost in GWh Unexe-
Strategies vol. TFLOP Computing Transm. Penalty cuted

L
o
w

-L
o
a
d PRS 5756605 2155186 3718 2045 4

PRS.HF 5743162 2492222 1624 3510 3
CRS 5759295 2351578 4955 0 0
CRS.HF 5759295 3037271 3925 0 0
CMMS 5759295 3279559 2326 0 0

M
id

-L
o
a
d PRS 9686959 10980076 2062 29066356 38

PRS.HF 12409219 21449248 3340 24360068 29
CRS 15903788 16599582 4976 22649335 43
CRS.HF 24064282 30806849 5959 14342824 24
CMMS 27044606 47764229 18374 13293320 64

H
ig

h
-L

o
a
d PRS 10509191 17298988 1095 57590138 63

PRS.HF 14624576 31660135 8199 50819699 49
CRS 11676748 18017073 7326 56568605 62
CRS.HF 17365642 35375942 10976 49299236 51
CMMS 24695519 58743425 11346 42069656 85

Table 4.5: Details of the energy usage and other values obtained from
scheduling three different workloads vs. different strategies, based on the

best-effort mode.

clouds resources. Since all PRS, CRS, PRS.HF, and CRS.HF rely on our global

scheduler EGSBE for reducing energy consumption (i.e., by exploiting the avail-

able resources from other heterogeneous clouds), and only PRS and CRS apply

DVFS while the CPU frequencies in both PRS.HF and CRS.HF are set at the

maximum, we could measure how much the DVFS has positively affected the

overall reduction by taking the average of the comparison between PRS with

PRS.HF, and also CRS with CRS.HF. In Figure 4.8, we illustrate these differ-

ences, pointing out that an average reduction of about 11% is caused by DVFS.

Moreover, comparing PRS.HF and CRS.HF with CMMS indicates the possible

reduction of about 20% that could be obtained by only the global scheduler as

these three scheduling strategies do not enable DVFS. As mentioned earlier in

this section, the total reduction obtained by applying the two saving methods,
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Figure 4.8: An estimation, based on the results presented in Figure 4.6,
to break down the overall reduction of the consumed energy into the two
considered energy saving methods: DVFS and sharing globally the available
cloud’s resources. The table above also summarises the comparison between
the scheduling strategies in terms of the energy reduction according to the

objective function.

as compared to CMMS, is around 29%. However, from this conducted experi-

ment (see, Table 4.4), we cannot conclude, in absolute terms, that the idea of

utilising globally the available resources from other clouds would always out-

perform the DVFS in saving energy or even vice versa. These energy saving

techniques are always affected by many variables, mainly applications deadlines

as well as resource availability. In any case, the focus in our approach is to

take the total reduction by both saving techniques regardless of which one may

outperform the other.
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Figure 4.9: Different scheduling strategies with 50 submitted applications
from the mid-load category vs. the extension of application deadlines in in-

crements of 20%.

Another experiment was conducted to determine the possible energy reduction

that could be obtained when the penalty of the considered objective function

(cf. Section 4.1.4) is 0, i.e., in the case of having no rejection/violation cases

during the schedule and/or the execution of the submitted applications. Al-

though this experiment gives more optimistic estimation, it shows a little more

accurate result as it does not include any amount of energy wasted by the par-

tial execution of violated applications. In other words, consider a submitted

application where some of its tasks have been successfully executed but, later

on, a successor of one of the successfully executed tasks has failed to execute.

Such an application is considered violated, and the penalty for it (i.e., based

on our objective function) is calculated at the level of the application, which

includes the cost for both the successfully executed as well as the unexecuted

tasks.
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To get zero penalty cost, the experiment is performed on 50 submitted applica-

tions instead of 200, resulting in no rejection/violation cases occurring during

running our simulation (MCST). These applications are randomly chosen from

the mid-load category (see Table 4.4), and then successfully executed by MCST

15 times based on PRS, CRS and the highest performance mode (CRS.HF) as

shown in Figure 4.9. For each scheduling strategy, we extend the deadline to

execute these applications in increments of 20%, starting from the tight deadline

(i.e., no extension is applied). From Figure 4.9, we observe that the use of the

proposed scheduling strategies can offer reducing energy up to 27% in the case

of tight deadlines. In addition, further energy reduction seems to be achievable

by extending application deadlines up to 40%, but no significant reduction is

expected from 60% extension onward.

4.4.3 Impact of the Proposed Scheduling Strategies on

Resource Utilisation

Figure 4.10 and Figure 4.11 depict the utilisation of all clouds in the system

when allocating tasks that belong to 200 high-load submitted applications by

running PRS and CRS, respectively. Here, we can observe the behaviours of

resource occupation in the multi-cloud system. PRS always exploits heavily

the cloud that gives the lowest energy (e.g., see India and WestUSA for the

tasks 1 - 937), causing in some cases the applications scheduled later to be

allocated to less efficient clouds. As CRS tries to balance the level of resource

utilisation over all clouds, it chose the most efficient clouds in a balanced way

since the beginning and utilised the worst one (i.e., Brazil) when it was forced

to do so because of the lack of resources, see Figure 4.11. Note that the global

scheduler over heterogeneous clouds shows a better energy performance with

load-balancing strategy (CRS) at some level of high resource utilisation. This
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Figure 4.10: Resource utilisation with preference rate Strategy PRS.

is, in fact, opposite to what the local scheduler ELS attempts to do where its

goal is not to balance the load but to occupy the active servers to the maximum.

4.4.4 Discussion and Experiment Findings

In the following three points, we briefly discuss the main findings observed by

our experiments, presented in this chapter.

• There appears to be a considerable amount of energy wasted by clouds

that focus only on providing high performance services for executing HPC-

applications as suggested by CMMS. Without affecting the desired per-

formance, represented by meeting the specified deadlines to execute ap-

plications, such a problem of wasting energy can be, with a great chance,

addressed. Based on our observation, using DVFS as well as sharing
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Figure 4.11: Resource utilisation with combination rate strategy CRS.

globally cloud resources as techniques for saving energy while scheduling

HPC-applications based on best-effort style allows us to reduce a signifi-

cant amount of energy that could reach approximately 29% compared with

the consumption of the high performance. According to the conducted ex-

periments in this chapter, this percentage can be roughly broken down into

10% and 19% for DVFS and sharing globally cloud resources respectively.

However, the focus in this thesis is to consider the total reduction by both

saving methods, while scheduling HPC-applications, regardless of which

one may give better reduction than the other.

• Considering the overall reduction of energy, CRS gives better results than

PRS for medium to high load of 200 applications. Whereas PRS seems

generally better with low load applications, and also with a certain number

of medium load applications (i.e., less than 200) that particularly do not

mostly occupy all cloud resources. From this observation, we derive that
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– regardless of the size of the workloads – if the overall level of resource

occupations over all participating clouds is below average, balancing cloud

resources by CRS would not be of such importance, and hence, applying

PRS may give more efficient results. On the contrary, CRS probably fits

in well with the high levels of resource occupations as balancing com-

prehensively all cloud resources helps to keep clouds from running out of

resources. Accordingly, an intelligent decider for applying dynamically the

proper strategy (i.e., either PRS or CRS) based on the kind of workload,

cloud resources, and application deadlines is important. This dynamic

decider might lead to achieving further energy optimisation.

• Assume a negotiational approach for submitting HPC-applications be-

tween cloud’s users and cloud’s providers to be settled before accepting

user’s submissions. For example, cloud’s users can specify a deadline con-

straint for executing their applications through the cloud interface, and

thereafter, cloud providers can suggest a set of extensions to be made

with some extra discount offers as a next option to choose from, allowing

cloud’s users to rethink about their specified deadlines. For applying such

a negotiational approach when scheduling HPC-applications based on the

proposed best effort mode, the deadline extension to execute the appli-

cations as a pre-defined constraint is suggested to be set up to 40% as

there appears to be a very minor benefit whenever extending the deadline

longer than 50%.

4.5 Summary

The energy consumption of multi-cloud systems that focus on providing high

performance services for executing HPC-applications can be efficiently reduced

without affecting the desired performance. Hence, in this chapter, we have
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introduced and evaluated a proposed energy aware scheduling approach that

follows the best-effort scheduling mode. The approach takes advantage of the

possibility of sharing multi-cloud resources for executing dependent HPC tasks

as well as the adoption of dynamic voltage and frequency scaling (DVFS), as

two levels of energy saving techniques. The suggested best-effort scheduling

approach analyses: (1) the available resources from all clouds, and (2) the en-

ergy costs for executing as well as transmitting HPC tasks between clouds. It

comprises two strategies for scheduling decisions: Preference Rate which needs

to be pre-defined, and Combination Rate that works dynamically, aiming to

address conflicting objectives using a statistical approach.

We have conducted several experiments using various parallel application work-

loads extracted from different logs of real large-scale systems. The results have

confirmed the possibility of saving some wasted energy of approximately 29.9%

compared to clouds that are not concerned about energy consumption (e.g.,

clouds that adopt the CMMS algorithm) but concentrate on offering high per-

formance services only. We have also given a detailed comparison between the

proposed strategies, PRS and CRS, depending on three different workloads of

applications as well as the utilisation of cloud resources over time. Both strate-

gies produce mixed results, and it was difficult to determine the absolute best in

all cases, including the size of workload, occupied level of cloud resources, and

constraint deadline of applications. Nevertheless, achieving further energy op-

timisation is still possible if a dynamic decider that could determine the proper

strategy (i.e., either PRS or CRS) at a specific state of the multi-cloud system

is applied.

As an alternative approach to the best-effort mode for scheduling HPC-applicat-

ions between clouds, we investigate in the next chapter the effect of the global

scheduling part using advance-reservation mode on the overall energy optimisa-

tion accompanied with the minimisation of application rejection/violation cases.
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Chapter 5

Energy Optimisation with Advance-
Reservation Mode

In an analogous approach to scheduling HPC-applications using the best-effort

mode, presented in Chapter 4, this chapter presents a comparable scheduling

technique but based on the advance-reservation mode. In principle, dynamic

scheduling with the advance-reservation mode, using the token technique, de-

pends on the actual available slots for a given period of future time. This

scheduling technique needs to ensure that the time frame of an application is

scheduled within the resource capacity, taking into account already occupied

and reserved resources. Apart from the case of unexpected resource failures,

this scheduling technique is not expected to violate deadlines when executing

an already scheduled application due to time or resource conflicts.

This chapter introduces the second original contribution to optimising energy

consumption when scheduling HPC-applications over a distributed multi-cloud

system, published in [5]. It proposes EGSAR, a token-based reservation algo-

rithm as a novel energy-aware scheduling for allocating a submitted application

to the best cloud in the system. EGSAR supports minimising application vio-

lation cases based on the proposed CRS strategy (cf. Section 4.2). It considers

gathering two energy costs when globally scheduling an application, which are:
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(i) execution energy at the CPU level and (ii) dataset transmission energy (if

applicable) at the network level. The proposed advance-reservation scheduling

approach depends on ELS (presented in Section 4.3.2) for scheduling applica-

tion tasks locally in cloud resources (i.e., mapping tasks to machines) using the

dynamic voltage and frequency scaling to reduce energy consumption.

The chapter will refer frequently to four shared parts with Chapter 4 as follows:

• The energy model, in Section 4.1, for calculating the energy consumption

by executing and transmitting HPC-applications. It includes a formal

explanation of our main aims, represented by an objective function, see

Section 4.1.4.

• The suggested preference and combination rate strategies (PRS and CRS),

in Section 4.2, for choosing the best available resources, that are offered

by a set of clouds. PRS allows us to optimise energy consumption based

on setting an upper limit for the allowed energy consumption, and CRS

attempts to address conflicting objectives using a statistical approach.

• The local scheduler ELS algorithm proposed for mapping application tasks

to CPUs, introduced in Section 4.3.2.

• Experiment setup and configurations that are defined in Section 4.4. They

primarily include (1) the declaration of a number of cloud instances as

well as the characteristics of their resources. (2) Different loads of HPC-

applications instances that were generated from real parallel workload

applications.

However, the new parts are organised into four sections as follows. An illus-

trative scheduling scenario and problem formulation are given in Section 5.1.

The proposed algorithms are explained in Section 5.2, and then evaluated in
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Section 5.3. In Section 5.4, we give a detailed comparison between the best-

effort and the advance-reservation scheduling approaches before summarising

the chapter.

5.1 Definition and Illustration of Scheduling

Problem

As mentioned previously in Section 3.1, the system model considered in this the-

sis focuses on a decentralised multi-cloud system, consisting of geographically

distributed heterogeneous clouds that participate in a federated approach. Fol-

lowing this model, we present our scheduling framework based on the advance-

reservation mode, which includes the global and the local schedulers. Unlike

our best-effort approach for distributing and scheduling tasks to clouds, intro-

duced in Chapter 4, the global scheduler here works at application level, i.e.,

distributing and assigning the whole application to a cloud. Specifically, as we

consider advance-reservation scheduling of dependent tasks, it would not be ef-

ficient to schedule them separately to different clouds. This is due to the fact

that the advance-reservation is always reliable in executing applications within

the reserved time window, and no violation is expected if no failure occurs in

machine/resources. Hence, a poor reliability in meeting application deadlines is

highly expected when executing globally each (dependent) tasks as sending/re-

ceiving datasets (outputs of predecessors) via the global communication is not

always guaranteed to be on-time. Thus, the more reliable method is to schedule

each whole application to one cloud. The local scheduler for mapping appli-

cation tasks to CPUs, however, is the same as in the best-effort approach, see

Section 4.3.2.
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Figure 5.1: Overview of the proposed advance-reservation approach, de-
scribed in three steps.

Figure 5.1 gives an overview of our token-based scheduling, illustrating the role

of global and local schedulers when they receive a submitted application. Con-

sider the cloud A that receives an application app with its specific requirements

for execution, i.e., A becomes the ‘original cloud’ for app. The global scheduler

(manager server) in A broadcasts query-messages to all participating clouds

(i.e., to B and C ) as well as checking the local resources via its resource con-

troller. In response to such queries, the local resource controller of each cloud

provides a provisional reservation PR that consists of (1) estimated execution

energy, (2) estimated energy for data transmission and (3) resource occupation

rate, see B in Figure 5.1. These PRs are then analysed by the original cloud
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A, using the EGSAR algorithm, for deciding which cloud provides the best op-

tion for executing app. Assume B is the chosen cloud (see the bottom left of

Figure 5.1). In this case, A will send messages to release PRs from all uncho-

sen clouds, and concurrently it sends the whole application app to the chosen

cloud B. Here, the local scheduler of B applies the scheduling algorithm ELS

(discussed in Section 4.3.2) for mapping tasks to machines, taking into account

app’s requirements and its precedence constraints.

Scheduling Framework. Our framework for scheduling submitted applica-

tions permits energy optimisation, in the first place, without affecting the de-

sired performance. However, it is required that the deadline DLm can be met by

at least one participating cloud. In general, each submitted appm can be either

scheduled and then executed successfully, violated, i.e., scheduled but failing to

get enough resources at execution time, or rejected.

The framework relies on the energy model, introduced in Section 4.1, for calcu-

lating the cost of executing appm and transmitting its data. On top of this, it

applies the two scheduling strategies (preference-rate and combination-rate) for

deciding the cloud that provides the best option, discussed in Section 4.2. Each

cloud, including oappm , that meets DLm should provide a provisional reservation

(PR), consisting of:

i Estimated processing energy for all ti.

ii Estimated data transmission energy for the input, the output and the disk

image of appm.

iii Resource occupation rate from STm to DLm.

Given a set of PRs, the preference-rate strategy first selects a subset of this set

by checking the maximum allowable energy of (i) and (ii) of each PR provided,
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then it gives priority to (iii). Combination-rate strategy, however, analyses (i),

(ii) and (iii) of all provided PRs by dynamically adjusting the priority between

estimated energy and occupation rate. Along with energy optimisation, it aims

to avoid violation cases that may be caused by unexpected resource failures.

An application appm is rejected if all clouds provide a negative PR. This means

all clouds in the system do not have enough resources to schedule appm due to

either their capacity limit or a tight DLm.

Problem Formulation. The main objective of the proposed advance-reservation

scheduling approach is the same as in the best-effort scheduling approach that

is explained formally in Section 4.1.4. Both rely on the general objective func-

tion cost to give a fair comparison between potential energy consumption and

penalty that includes the cost of application rejection and/or violation cases.

5.2 EGSAR: Energy-Aware Global Scheduling

with Advance Reservation

As described in Figure 5.1, EGSAR takes as input a submitted application

and a set of provisional reservations PRs from participating clouds to pick the

best PR provided. It is triggered by oappm upon the arrival of all the responses

from clouds. The positive responses offer the ability of scheduling the submitted

application while meeting its deadline. Each PR consists of both eEnergyV alue

(representing estimated energy cost for executing the submitted application plus

the cost of transmitting its dataset) and occupRt and has a limited token period

of validity starting from the time of response, which enables a cloud provider

to release its resources by cancelling its PR if no confirmation is received from

oappm within the allowed time.
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Algorithm 3 EGSAR
Energy-aware global scheduling with advance-reservation.

Inputs: app is a submitted application to oapp
C = {c1, · · · , ck}, k ∈ N is a set of connected clouds
PRS (preference) and CRS (combination) are rate strategies.

Outputs: A globally scheduled app in ci, the best cloud found.

Begin
1: PRs := ∅ is a set of provisional reservations provided from all ci
2: for each msi cloud manager server ∈ C do
3: pr ← msi.makeReservation(app) expanded in Algorithm 4
4: if pr.eEnergyV alue > 0 and pr.Token.isV alid then
5: PRs← PRs ∪ {pr}
6: if PRs == ∅ then
7: set app.isRejected=true
8: else if PRs.size == 1 then
9: set chosenCloud(app, PRs(1))

10: else
11: set pr ← applyDecisionStrategy (PRs, CRS (or PRS))
12: chosenCloud (app, pr)
13: removeFrom (PRs, pr)
14: releasePR (app, PRs)
End

The pseudo code presented in Algorithm 3 and 4 gives a high-level view of our

EGSAR algorithm, which is performed based on one of the two proposed strate-

gies: PRS or CRS (cf. Section 4.2). This algorithm has been implemented in

our simulation (MCST), see Section 3.2 for more technical details. A participat-

ing cloud that is able to schedule an application will provide a PR, consisting

of a positive estimation of eEnergyV alue for processing and transmitting the

dataset, see lines 1-5 of Algorithm 3. A negative eEnergyV alue, however,

means that the provider cloud cannot satisfy the application’s deadline, and

thus the returned pr will not be added in the list PRs. In lines 6-9, the algo-

rithm determines the output of either rejecting app if none of the clouds can

schedule it (i.e., PRs == ∅), or selecting a cloud immediately if only one posi-

tive option is found (i.e., PRs.size == 1). If more than one cloud can execute

the app, the decision, based on either PRS or CRS, of which cloud will execute
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Algorithm 4 makeReservation

Inputs: appm(Vm, Em, STm, DLm).
Outputs: A provisional reservation PR that should have a valid token

Begin
1: PR.eEnergyV alue := 0 and PR.occupRt := 0 for initialising PR.
2: CPUcap := is the processors capacity of this cloud.
3: for i := 1 to q do
4: Thr := CPUcap− nti

5: update EST ti according to its scheduled pred(ti).
6: P := is the number of used processors at EST ti .
7: bestIntvl := ∅
8: if Thr < 0 then
9: PR.eEnergyV alue := 0, and then return PR.

10: if Thr ≥ P then
11: inPeak := false and startAv := EST ti .
12: else
13: inPeak := true.
14: get all overlapping tasks and form list of start and end points PT = {pt1, · · · , ptb},

excluding any start point pt where pt ≤ EST ti .
15: for j := 1 to b do
16: if ptj is a start point then
17: P = P + nptj
18: if inPeak = false and (P > Thr or ptj = LFT ti) then
19: try to schedule ti in [startAv, ptj ] and get its f
20: if f is the minimum frequency in this cloud then
21: bestIntvl := [startAv, ptj ] then break
22: else if [startAv, ptj ] is longer than bestIntvl then
23: bestIntvl := [startAv, ptj ]
24: inPeak := true
25: else
26: if ptj is an end point then
27: P = P − nptj .
28: if inPeak = true and P ≤ Thr then
29: inPeak := false and startAv := ptj .
30: if bestIntvl 6= ∅ then
31: schedule ti to bestIntvl.
32: calculate the estimated energy consumption Eti .
33: PR.eEnergyV alue = PR.eEnergyV alue + Eti

34: else
35: PR.eEnergyV alue := 0, and then return PR.
36: if ¬ isOriginalToThisCloud(appm) then
37: calculate the estimated energy for transmitting dataset Tappm

using (4.4).
38: PR.eEnergyV alue = PR.eEnergyV alue + Tappm

39: calculate PR.occupRt by dividing the total number of required CPUs for all occupied/re-
served tasks in cloud resources between the start and finish times of executing appm by
CPUcap.

40: generate unique token and associate it with PR.
41: return PR.
End
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it is described in lines 11-12 of Algorithm 3. In lines 13-14, all unchosen clouds

are notified to release their pr.

The aim of Algorithm 4 is to reserve the required number of processors for

all tasks in the submitted application appm at the best possible interval found

within the range of the EST and the LFT of each task while minimising the

energy usage. These EST and LFT are calculated using (3.1) and (3.2) respec-

tively, such that the start time STm (i.e., equal to the submission time) will be

assigned to EST ti of all entry tasks, whereas the specified deadline DLm with

the submitted application will be assigned to EST ti of all exit tasks. Never-

theless, for each non-entry task tj, the EST tj will be adjusted just before tj is

getting scheduled according to the actual finish time of all its pred(tj), see line

5 of Algorithm 4.

Considering closely Algorithm 4, if the reservations for all tasks have been made,

the algorithm will return a provisional reservation PR that should have a valid

token associated with the appm in line 41, it returns a negative PR (expressed

by PR.eEnergyV alue = 0) in line 9 or 35, otherwise. The main loop, line

3, goes over all tasks of appm, and for each task ti, the algorithm attempts to

determine all the peaks within the cloud resources between the times (EST ti

and LFT ti), see lines 4-14. Here, each peak represents a top time point pt

of resource utilisation, associated with occupied/reserved resources by all the

overlapping tasks that belong to different applications, such that after pt the

level of resource utilisation will get down. In lines 15-29, the algorithm checks

the possibility of scheduling ti between each two consecutive peaks at which

ti can be executed. During checking these peaks, it remembers the previous

possible scheduling option, as each time it attempts to find a slower frequency

as a better option. If ti can be scheduled, its estimated energy cost will be

calculated to be added to PR.eEnergyV alue as shown in lines 30-33. If the

current cloud is not the original for appm, the cost of transmitting the dataset

of appm from the original cloud to the current one will be calculated using (4.4),
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and then adding this cost to PR.eEnergyV alue as shown in lines 36-38. In

lines 39 and 40 the algorithm calculates the PR.occupRt, and then generates

a token to be associated with the successful reservation. Finally, the algorithm

will return the PR to Algorithm 3 as shown in line 3.

5.3 Experimental Evaluation

This section presents the experiments1 conducted to evaluate the proposed

schedulers, concentrating on three aspects:

• Measuring the effect of the proposed schedulers on the energy saving based

on the general objective function cost (i.e., the total of energy usage plus

penalty for rejected/violated applications). It gives the average reduction,

depending on different application workloads, compared with the total

energy obtained by running all clouds at the highest performance (i.e.,

under the highest CPU frequencies)

• Comparing the advance-reservation scheduling with an existing scheduling

algorithm CMMS [84] that aims to choose a cloud that offers the mini-

mal earliest finish time regardless their expected energy consumption. We

have slightly modified the CMMS to take into consideration the deadlines

constraint of submitted applications as well as to make a provisional reser-

vation with an estimated early finish time for each application, in order

to make a valid comparison.

• Measuring the impact of resource failures (i.e., failures that may occur

accidentally in the cloud system) on already scheduled applications. This

is to get a rough idea of how our proposal can contribute to providing a

reliable scheduler.

1The details of our experiments, including all the results, are available at http://www.cs.
le.ac.uk/people/ayya1/MCST/index.html
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In addition, this section will discuss the effectiveness of the proposed strategies,

PRS and CRS that are introduced in Section 4.2, for different workloads of

applications with respect to (i) the average reduction of energy and (ii) the

number of HPC application rejections and violations.

5.3.1 Configurations

In this experiment, we have used the same configurations that were defined for

evaluating the best-effort scheduling approach, presented in Section 4.4. More

precisely, the simulation (MCST) experiments use a decentralised multi-cloud

system of five worldwide distributed clouds, and the characteristics of these

clouds including approximate distances between them are shown in Table 4.2

and Table 4.3. Furthermore, we have made the same assumptions, mainly:

• the capacity of VMs per server is double the number of its physical pro-

cessors in each cloud site and all the processors allow to change frequency

among 5 levels ranging between [fmin, fmax], where fmin is 37.5% of fmax

(we adopt this percentage from [53]);

• the HPC-applications are submitted to the original cloud at different

times, and the gap interval between each two consecutive application sub-

missions is equal to 1000 seconds. In addition, all tasks of these applica-

tions are CPU-bound; and

• the formula (

∑
cj∈C

(Ecj +Tcj )∑
appm∈A′

∑
t∈appm

(nt·vt)) is defined to calculate the rate of the

total energy usage by all clouds in the system, allowing to compare the re-

sults obtained by the two proposed scheduling strategies. The Ecj and Tcj

are the amount of energy usage by cloud cj for execution and transmission

activities, A′ is the set of applications that are successfully completed, and

(nt · vt) is the computing volume of the executed task t that belongs to a

successfully completed application appm.
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Figure 5.2: Different scheduling strategies with various workload categories
vs. the objective function.

For defining HPC-applications as input to MCST, we have also used the logs

of parallel application workloads shown in Table 4.4. We assume the dead-

line to execute a submitted appm is calculated by its estimated execution time

eExecT imeappm , extended by 20% in the case of loose deadline, and by 0.1% for

tight deadline. For example, the loose deadline DLm is calculated as DLm =

SubmissionT imeappm + eExecT imeappm + (eExecT imeappm × 0.2), where the

SubmissionT imeappm is assumed to be equal to the start time STm.

Similar to our way of evaluating the EGSBE and ELS algorithms, the highest

frequency mode is considered as an upper bound of energy usage to assess

how much the EGSAR algorithm can optimise energy consumption. We apply

the highest frequency mode with both strategies, PRS (referred to as PRS.HF

mode) and CRS (referred to as CRS.HF mode). For the PRS strategy, Rt is

also assumed to be 0.01, which allows to pick the cloud that offers the lowest

energy immediately without taking occupRt into consideration.
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Computing Energy cost in GWh Unexe-
Strategies vol. TFLOP Computing Transm. Penalty cuted

L
o
w

-L
o
a
d PRS 5759295 2204252 33321 0 0

PRS.HF 5759295 2811659 67137 0 0
CRS 5759295 2296750 123360 0 0
CRS.HF 5759295 3037514 199609 0 0
CMMS 5759295 3287565 721576 0 0

M
id

-L
o
a
d PRS 14788565 16842446 117473 22686841 23

PRS.HF 22924935 35265693 190969 16629230 16
CRS 15940101 16052168 181244 22634057 21
CRS.HF 23343210 34999483 180379 16737415 16
CMMS 22123895 41307065 698839 18103817 16

H
ig

h
-L

o
a
d PRS 14550372 21007754 101307 53460288 44

PRS.HF 20483726 36198549 90839 48199162 38
CRS 15023757 13216840 187977 55089309 43
CRS.HF 20691843 36881432 167611 47581003 38
CMMS 20282422 33641959 639189 50198049 39

Table 5.1: Details of the energy usage and other values obtained from
scheduling three different workloads vs. different strategies, based on the

advance-reservation mode.

5.3.2 Effect of the Proposed Schedulers on Energy

Optimisation

Figure 5.2 and Table 5.1 show the total energy cost achieved by PRS, CRS,

PRS.HF, CRS.HF, and CMMS according to the proposed objective function

that is applied on the various workloads with loose deadlines. The majority of

the submitted applications have been successfully executed, and all of the rest

have been rejected, i.e., no violated application cases occurred. For all cases of

application workloads, our scheduling, relying on both PRS and CRS, enables to

efficiently optimise energy consumption as compared with CMMS that focuses

on selecting clouds that only offer earliest finish time for executing applications

without looking at energy cost. The average energy reduction that could be
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Figure 5.3: Different scheduling strategies with various workload categories
vs. the rate of energy usage. The deadlines of executing all these applications

have been extended based on loose deadlines.

gained without sacrificing desired performance is roughly 31.3%, calculated by

comparing the results obtained from CRS vs. CMMS.

On the one hand, it is clear from Figure 5.2 that PRS and CRS produce a lower

energy cost than PRS.HF and CRS.HF in all cases by an average of about 19.3%

and 23.1%, respectively. On the other hand, the chart shows a considerable

difference in the total energy cost of PRS and CRS, with PRS being smaller

than CRS by about 7.5% in the low-load case. However, CRS produces total

energy cost less than the one by PRS by about 1.97% with mid-load and about

8.15% with high-load. This indicates that whenever the workload gets heavier

the CRS strategy produces better results in terms of total energy cost.

Considering the rate of the energy consumed by executing tasks and transmit-

ting datasets depending on the loose deadline, shown in Figure 5.3, the differ-

ence between PRS, CRS, PRS.HF, CRS.HF, and CMMS is still evident with the
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Figure 5.4: Different scheduling strategies with various workload categories
vs. the number of rejected applications. The deadlines of executing all these

applications have been extended based on loose deadlines.

various workload categories. Despite the fact that CRS computed more volume

than PRS due to a lower number of rejected applications with both mid-load

and high-load, as shown in Figure 5.4, it has a lower rate of energy usage than

PRS by an average of about 24.8%. Moreover, PRS.HF and CRS.HF produced

different rates of energy usage, although they rejected the same number of appli-

cations with the different workload categories. The values obtained from these

experiments are broken down in Table 5.1.

To estimate the potential energy reduction that one could obtain in the case of

no rejection/violation cases occurring during scheduling or executing submitted

applications, we have performed an experiment similar to the one presented in

Figure 4.9 but based on the advance-reservation mode. The idea is to estimate

a little more precise cost of energy consumption by having 0 penalty in the

objective function (cf. Section 4.1.4). This experiment was conducted on 50
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Figure 5.5: Different scheduling strategies with 50 submitted applications
from the mid-load category vs. the extension of application deadlines in in-

crements of 20%.

submitted applications that were randomly chosen from the mid-load category

(Table 4.4). All these applications have been successfully executed 15 times,

by our simulation (MCST), based on the strategies (PRS, CRS and the highest

performance mode CRS.HF), such that for each scheduling strategy, we extend

the deadline in increments of 20%, starting from 0% to 80%. The result is

shown in Figure 5.5, which indicates the significant effect on reducing energy

consumption by PRS and CRS if the deadline of the submitted applications is

allowed to be extended up to approximately 40%.

5.3.3 Impact of the Resource Failures on Scheduled

Applications

To evaluate the robustness of our scheduling, with respect to resource relia-

bility, against unforeseen technical failures on cloud servers, we simulate our
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Figure 5.6: Number of violations vs. percentage of down servers.

advance-reservation approach in scenarios where a percentage of servers (grow-

ing in increments of 6%) become unavailable at runtime. For each execution,

the failures are triggered from time 0, and stay in a failed state until the end

of the simulation. Figure 5.6 shows the number of violations occurring due to

the increased number of unavailable servers in all cloud sites for inputs with

loose and tight deadlines. The experiments are performed on 40 submitted ap-

plications that are randomly mixed from the low-load and mid-load categories.

In the case of loose deadlines CRS achieved a number of violations lower than

PRS by an average of 36.1%, while it was about 51.4% lower in the tight dead-

lines case. This reflects the positive effect of the dynamic consideration of our

robustness metric CRS as compared to PRS.

5.3.4 Discussion and Experiment Findings

The experimental results illustrate that scheduling HPC-applications, focusing

on optimising overall energy consumption, is affected by several interdependent

factors. The affecting elements we want to shed light on are the kinds of ap-

plications in terms of their requirements and the status of resource occupation

when an application is received for scheduling. In general, scheduling an appli-

cation to a cloud that appears better at the submission time may not lead to
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the best energy saving result over time. Specifically, in the case of high-load

applications, CRS produces better energy savings than PRS due to the dynamic

technique of balancing the workloads among all clouds when applicable.

In Figure 5.7 and Figure 5.8, we depict the utilisation of cloud resources when

scheduling 200 applications from the high-load category (Table 4.4) based on

PRS and CRS, respectively. As observed from the performance of the best-effort

scheduling, explained in Section 4.4.3, the PRS often starts picking clouds that

offer minimum energy without balancing the level of resource utilisation over

all clouds as the CRS always tries. These behaviors are generally identical

with the advance-reservation scheduling mode, consider closely Japan for the

submissions (1 - 28) in Figure 5.7 vs. Germany in Figure 5.8. Here, Japan seems

to consume lower energy than Germany as the latter has a higher α, recall the

characteristics of these clouds in Table 4.2. Thus, PRS has first exploited Japan

until the performance of this cloud has reached just above 80%, whereas, the

maximum utilisation by CRS over all clouds has reached a percentage that is

lower by 10%. The main benefit of balancing the utilisation of cloud resources by

CRS is the possibility of avoiding the forced cases of choosing inefficient clouds,

i.e., in the case of not having enough resources by efficient clouds. However,

if the level of resource utilisation over all clouds is not high, i.e., at or below

50%, applying PRS instead of CRS is certainly suggested. In the following

list, we summarise our main findings of scheduling HPC-applications using the

advance-reservation mode.

• The best energy cost saving of about 23%, based on our objective function,

is obtained by CRS compared to its upper bound CRS.HF.

• None of the strategies (i.e., PRS or CRS) proves itself to be the best with

any submitted workloads in terms of energy efficiency, where PRS shows

better results with low-load compared to CRS.
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Figure 5.7: Resource utilisation with preference rate Strategy PRS.
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Figure 5.8: Resource utilisation with combination rate strategy CRS.

• Deadline violation cases of applications can be reduced for both tight and

loose deadlines with CRS being better than PRS by an average of 43%.
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• As we use token-based reservation, the looseness of deadlines of the sub-

mitted applications is a crucial factor impacting on the number of appli-

cation rejections.

5.4 Comparison with the Best-Effort Approach

Since the practical experiments conducted to evaluate both the best-effort (cf. Sec-

tion 4.4) and the advance-reservation (cf. Section 5.3) approaches have used the

same configuration as well as the same application inputs (cf. Section 2.2.2) by

our simulation (MCST), it should be valid to compare their overall outputs for

more critical evaluations. As the local scheduler of both approaches is the same,

the comparison here will concentrate on the global scheduling parts only that

aim to find the best participating cloud to execute a task (by the best-effort) or

an application (by the advance-reservation). In particular, we concisely discuss

which of the proposed global scheduling approaches generally outperforms the

other in terms of the following three points:

• The overall energy optimisation as well as the scheduling efficiency repre-

sented by the avoidance of application rejections and violations.

• The utilisation of the network between clouds, expressed by the number of

messages that are generated by MCST as SimJava events (cf. Section 3.2).

• The effect of extending application deadline on the rate of energy reduc-

tion.

Besides, we have made the comparison relying on the proposed strategies (PRS

and CRS, introduced in Section 4.2) and the three workload application cate-

gories (low, mid and high, presented previously in Table 4.4).
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In order for the comparison of energy consumption to be fair between the pro-

posed scheduling approaches, the overall energy rates are considered, which are

computed after finishing the run of the simulation (MCST). Each energy rate

is the total amount of energy (for executing application tasks as well as trans-

mitting their datasets between clouds) divided by the total computing volumes

of all applications that have been successfully executed. More specifically, we

compare the energy rates obtained by two separate experiments, reported on

Figure 4.6 and Figure 5.3, as these experiments have been conducted based on

the same given 200 HPC-applications. As an illustration, Figure 5.9 describes

the energy rate of the comparison between the global scheduling approaches,

based on the strategies PRS and CRS. It clearly shows that both scheduling

modes, the best-effort and the advance-reservation, give slight differences in the

low and mid workloads. In the high workload, however, the advance-reservation

outperforms the best-effort in both strategies, PRS and CRS, by approximately

20% and 65% respectively. As a result, Figure 5.9 reveals that applying the

scheduling based on the CRS and the advance-reservation mode is generally

better for energy optimisation, as they would enable to either produce a better

or slightly different outcomes than could be obtained by the best-effort mode

and/or the other strategy PRS.

In addition, the advance-reservation scheduling mode provides more efficient

results in terms of minimising application rejections/violations, see the number

of unsuccessfully executed applications out of the 200 submissions in Table 5.2.

While reserving and then releasing cloud resources for specific token times often

has a consequence on accurately determining the best available clouds, this

technique seems better than the attempt of using unguaranteed cloud resources

(i.e., without making prior reservations) for minimising application rejection

and/or violation cases. Additional insight concerning the potential avoidance

of rejecting applications or failing to execute scheduled tasks by applying the

CRS strategy can be deduced from the results in Figure 4.7 and Figure 5.4.
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Figure 5.9: Comparison between the best-effort and the advance-
reservation scheduling modes in the rate of energy usage based on the pref-

erence and combination rate strategies.

Rejection Violation Total
Low-PRS.BE 0 4 4
Low-CRS.BE 0 0 0
Low-PRS.AR 0 0 0
Low-CRS.AR 0 0 0
Mid-PRS.BE 8 30 38
Mid-CRS.BE 18 25 43
Mid-PRS.AR 23 0 23
Mid-CRS.AR 21 0 21
High-PRS.BE 34 29 63
High-CRS.BE 40 22 62
High-PRS.AR 44 0 44
High-CRS.AR 43 0 43

PRS Preference Rate Strategy.

CRS Combination Rate Strategy.

BE Best-effort scheduling mode.

AR Advance-reservation scheduling mode.

Table 5.2: Comparison between the best-effort and the advance-reservation
scheduling modes in the number of rejected and violated applications based

on the preference and combination rate strategies.

115



Chapter 5. Energy Optimisation with Advance-Reservation Mode 116

271458

251366

233304

54562 50338 45586

79.60%

79.70%

79.80%

79.90%

80.00%

80.10%

80.20%

80.30%

80.40%

80.50%

80.60%

0.E+00

5.E+04

1.E+05

2.E+05

2.E+05

3.E+05

3.E+05

Low-load Mid-load High-load

To
ta

l n
u

m
b

er
 o

f 
m

es
sa

ge
s

Application categories

Best-effort Advance-reservation Difference

Figure 5.10: Comparison between the best-effort and the advance-
reservation scheduling modes in the network utilisation, represented by the

number of messages that are generated by MCST as SimJava events.

To help understand the difference between the best-effort and the advance-

reservation scheduling modes in the utilisation of the global network (i.e., be-

tween participating clouds), we have identified the total number of messages that

are sent between clouds for a complete run of our simulation (MCST), includ-

ing query messages and messages for sending datasets, using SimJava.Sim event.

Clearly, the advance-reservation would utilise the global network much less than

the best-effort as the latter attempts to find the best cloud for executing each

task, i.e., not the whole application as in the advance-reservation. The results

shown in Figure 5.10 estimate that the difference could approximately reach

80%. This could suggest that applying the advance-reservation over an ineffi-

cient global network (e.g., one that has a weak performance or only supports

some limited speeds) is much better than using the best-effort.

Comparing the effect of extending application deadlines on reducing energy

consumption, between the proposed scheduling modes, we concisely show the

overall differences in Figure 5.11, obtained from Figure 4.9 and Figure 5.5.
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Figure 5.11: Comparison between the best-effort and the advance-
reservation scheduling modes in the percentage of energy reduction based

on the preference and combination rate strategies.

Broadly, the advance-reservation allows to reduce roughly 70% of energy when

extending application deadlines to 60%, compared to just 30% by the best-effort,

in the case of applying PRS strategy. Additionally, Figure 5.11 points out that

extending application deadlines while following the best-effort scheduling mode

often tends to be less effective compared with the advance-reservation mode

that offers a considerable energy reduction.

5.5 Summary

The aim of this chapter was first to present a reservation based scheduling

approach for executing HPC-applications by a multi cloud system, and then

compare it with the previous proposed scheduling approach (i.e., the best-effort

approach introduced in Chapter 4). We have explained the shared parts between

the two approaches, particularly, the local scheduler ELS that aims to allocate
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HPC-tasks to CPUs. The main original parts of this chapter, however, have

focused on presenting and evaluating the global scheduler over distributed clouds

(EGSAR) that relies on the token reservation based technique.

The conducted experiments using our simulation (MCST) have shown that the

reservation based scheduling approach using the suggested strategies can reduce

energy consumption by (1) an average of 21% as compared to the upper bound,

determined by the highest performance possible in the cloud-system, and (2)

a better average of 31.3% as compared to the existing algorithm CMMS [84].

The results have revealed that a significant issue in energy aware scheduling is

that a designed mechanism that depends only on the absolute minimum energy

value to execute an application may not necessarily produce the best overall

energy saving in all cases. In general, a considerable amount of energy can be

saved with HPC-applications that have flexible deadlines, nearly a reduction of

70%, if the applications allow extension to be applied up to 60%. Furthermore,

the results have shown that there is an interdependency between using one of

the proposed strategies for scheduling decisions and the characteristics of the

submitted applications.

Importantly, the overall impression gained from the comparison between the

best-effort and the advance-reservation scheduling approaches has indicated that

the latter offers better results in terms of:

• reducing energy consumption; and

• offering more reliable scheduling, expressed by the avoidance level of ap-

plication rejections and violations.

Thus far, the focus of the suggested approaches was on the technical aspects.

Therefore, in the next chapter, we will shift our focus to the theoretical aspects.

Specifically, we will analytically study a simplified version of the energy-aware
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scheduling problem, the so-called speed-scaling scheduling problem, based on

the competitive analysis approach (cf. Section 2.3.4).
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Chapter 6

Non-Preemptive Scheduling on Power-
Heterogeneous Processors

As mentioned in Section 2.3.4, one of our concerns in this thesis is to apply

the theoretical analysis to the proposed energy-aware online scheduling meth-

ods (EGSBE and EGSAR), which allows us to deeply understand the results

from different angles. Generally, here we investigate a simplified form of the

scheduling problem under consideration using a different study approach. The

scheduling problem considered in the previous two chapters, for allocating HPC-

applications while minimising the energy consumption subject to deadline and

precedence constraints, is very difficult to be analysed due to its complications.

For example, in cloud computing, jobs with various requirements need to be dis-

patched to servers in a data-centre, where different servers may have different

power functions, or in a federated cloud system with different data-centres. We

thus, in this chapter, consider a simplified form of the problem that captures

some of the main aspects to draw an analogy with our energy-aware scheduling

problem in multi-cloud systems that are:

• heterogeneous parallel processors, where the exponent α of the power func-

tion can be different for different processors;
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• non-preemptive jobs (tasks) that have release time, work, and deadline;

• online scheduling style; and

• the objective is to find a feasible schedule that minimises the total energy

consumption by all processors.

It is worth mentioning that precedence constraints are not considered, nor arbi-

trary release times and deadlines, in this simplified form of the problem as they

will make the analysis even more complex and challenging. Consequently, we

aim to analyse a non-preemptive online scheduling problem for allocating inde-

pendent tasks with deadline constraints to heterogeneous processors. This prob-

lem fundamentally represents a non-preemptive version of the classical speed-

scaling scheduling problem that was studied by Yao et al. [118] but on parallel

processors.

This chapter presents the first online algorithms for the non-preemptive schedul-

ing of jobs with agreeable deadlines on heterogeneous parallel processors, pub-

lished in [7]. The following section shows the problem definition. In Section 6.2,

we observe that a variation of AVR can be used to schedule jobs with agree-

able deadlines non-preemptively on a single processor. In Section 6.3, we first

show that the non-preemptive speed scaling problem for heterogeneous pro-

cessors can be solved optimally by a simple greedy algorithm if all jobs are

identical (i.e., have the same release time, deadline, and work). From this we

obtain a 5αm+12αm(ααm
m 2αm−1 +1)-competitive algorithm for jobs with agreeable

deadlines whose interval lengths and densities differ by a factor of at most 2.

For jobs with equal interval lengths and equal densities, the competitive ra-

tio improves to 3αm+1(ααm
m 2αm−1 + 1). In Section 6.4, we extend the result

to arbitrary jobs with agreeable deadlines and obtain a competitive ratio of

5αm+12αm(ααm
m 2αm−1 + 1)dlogDeαm+1dlog T eαm+1, where D is the density ratio

and T is the interval-length ratio.
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6.1 Problem Definition

We study non-preemptive online scheduling of jobs with release times and dead-

lines on heterogeneous processors with speed scaling. There are m processors

P1, . . . , Pm. The power function of processor Pi, 1 ≤ i ≤ m, is fi(s) = sαi for

some constant αi > 1. Without loss of generality, we assume α1 ≤ · · · ≤ αm.

There are n jobs J1, . . . , Jn. Each job Jj has a release time rj, a deadline dj, and

work (size) wj. The time period from rj to dj is called the interval of job Jj,

and dj−rj is called the interval length. The density of job Jj is δj =
wj

dj−rj . Jobs

arrive online at their release times. Jobs with the same release time arrive in

arbitrary order. Each job must be scheduled non-preemptively on one of the m

processors between its release time and deadline. The speed of each processor

can be changed at any time, and a processor running at speed s performs s units

of work per unit time. Our objective is to find a feasible schedule that minimises

the total energy consumption of all m processors. The total energy consump-

tion E(Pi) of processor Pi is the integral, over the duration of the schedule,

of the power function of its speed, i.e., E(Pi) =
∫ H

0
fi(si(t))dt, where si(t) is

the speed of processor Pi at time t and H denotes the time when the schedule

ends, i.e., when all jobs are completed. The objective value is the total energy

cost,
∑m

i=1 E(Pi). We refer to the scheduling problem with this objective as

minimum energy scheduling.

We assume that the jobs have agreeable deadlines, i.e., a job with later release

time also has a later deadline. Formally, if job Ji arrives before job Jj, then

di ≤ dj must hold. This assumption is realistic in many scenarios and helps

to schedule the jobs assigned to a processor non-preemptively. Let the density

ratio D =
max δj
min δj

be the ratio between maximum and minimum job density, and

let the interval-length ratio T =
max dj−rj
min dj−rj be the ratio between maximum and

minimum interval length.
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6.2 Non-Preemptive AVR

Our algorithms decide for each job on which processor it should be run and then

each processor uses some local scheduling method to determine a schedule for

the jobs allocated to it. For the latter problem we adapt the AVR algorithm that

was proposed for online preemptive scheduling by Yao et al. [118]. AVR works

as follows. We call a job Jj active at time t if rj ≤ t ≤ dj. At any time t, AVR

sets the speed of the processor to the sum of the densities of the active jobs.

Conceptually, all active jobs are executed simultaneously, each at a speed equal

to its density. On an actual processor, this must be implemented using preemp-

tion, i.e., each of the active jobs runs repeatedly for a very short period of time

and is then preempted to let the other active jobs execute.

To get a non-preemptive schedule for jobs with agreeable deadlines, we mod-

ify AVR as follows to obtain NAVR (non-preemptive AVR): The speed of the

processor at any time t is set in the same way as for AVR, i.e., it is equal to

the sum of the densities of all active jobs (even if some of these jobs have com-

pleted already). However, instead of sharing the processor between all active

jobs, the jobs are executed non-preemptively in the order in which they arrive,

which is the same as earliest deadline first (EDF) order because we have agree-

able deadlines. We remark that the idea of a transformation of AVR schedules

into non-preemptive schedules for jobs with agreeable deadlines was already

mentioned in [15] in the context of offline approximation algorithms.

An example comparing AVR and NAVR on an instance with 3 jobs is shown in

Figure 6.1. Each job is shown as a rectangle whose width is its interval length

and whose height is its density. AVR shares the processor at each time among

all active jobs. NAVR uses the same speed as AVR at any time, but dedicates

the whole processor first to J1, then to J2, and finally to J3.
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Figure 6.1: AVR and NAVR schedules for an example with 3 jobs

Observation 1. For scheduling jobs with agreeable deadlines on a single proces-

sor, the schedule produced by NAVR is non-preemptive and feasible. It has the

same energy cost as the schedule produced by AVR.

Proof. The schedule produced by NAVR is clearly non-preemptive. It completes

all jobs because the total amount of work that is executed is the same as that

of AVR as the processor speed is set to the same value in both schedules at

all times. For this reason the energy cost is also the same for both schedules.

It cannot happen that NAVR starts a job Jj before its release time rj because

AVR executes until time rj only jobs that arrive before Jj and have deadline

before dj. Therefore, those jobs contain sufficient work to occupy the processor

until time rj. It cannot happen that NAVR finishes a job Jj after its deadline dj

either because all the jobs executed by NAVR until job Jj finishes are jobs that

the AVR schedule executes by time dj. Therefore, the speed of the processor is

sufficiently large to complete Jj by its deadline dj.

To analyze our algorithms for minimum energy scheduling, we will compare the

schedule produced by our algorithms with the optimal schedule that uses AVR

(or equivalently NAVR for jobs with agreeable deadlines) on each processor and

does not use migration. By reformulating Lemma 8 in [3] for NAVR instead of

AVR, we get:
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Lemma 6.1. For instances with agreeable deadlines, there exists a schedule that

uses NAVR on each processor and uses energy at most (max1≤i≤m{ρi}+1)OPT ,

where ρi is the competitive ratio of AVR on processor Pi.

Let OPTA denote the energy cost of the optimal NAVR schedule (or equivalently

the optimal AVR schedule) for a given instance of minimum energy scheduling

with agreeable deadlines, and OPT the energy cost of an optimal schedule. By

Lemma 6.1 and the result that AVR is αα2α−1-competitive for a single processor

with power function sα [118], we get the following corollary.

Corollary 6.2. OPTA ≤ (ααm
m 2αm−1 + 1)OPT

6.3 Jobs with Small Density Ratio and Interval-

Length Ratio

In this section we consider minimum energy speed scaling on heterogeneous

processors for job sets where the density ratio and the interval-length ratio are

small.

6.3.1 Jobs with Equal Release Time, Deadline, and Den-

sity

Let us first consider the special case where all the jobs are identical, i.e., all jobs

have the same release time, the same deadline, and the same density. We show

that a simple greedy algorithm for allocating the jobs to processors, combined

with NAVR on each processor, produces an optimal schedule.

In the proof we will need the following auxiliary result that shows that the

extra power required by increasing the speed of a processor by δ grows with the

current speed of the processor.
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Algorithm 5 Allocation of n identical jobs to m processors

for i← 1 to m do
Li ← 0 ; /* load on processor Pi */

end
while not all jobs allocated do

Jj ← next job ; /* the job has density δ */

for i← 1 to m do
Zi ← (Li + δ)αi − Lαi

i ; /* power increase on Pi */

end
imin ← argmini Zi ; /* smallest power increase */

Limin
← Limin

+ δ ; /* assign job Jj to processor Pimin
*/

end

Lemma 6.3. Let α > 1, let x, y be real values satisfying 0 ≤ x ≤ y, and let

δ > 0. Then (x+ δ)α − xα ≤ (y + δ)α − yα.

Proof. Consider the function g(x) = (x + δ)α − xα. Its derivative is g′(x) =

α(x + δ)α−1 − αxα−1, which is positive for x ≥ 0. This implies that g(x) is

monotone increasing for x ≥ 0, showing that g(x) ≤ g(y) for 0 ≤ x ≤ y.

For the given instance with identical jobs, our algorithm assigns the jobs one

by one as they arrive, always picking a processor that minimises the increase in

power needed to accommodate the extra job. See Algorithm 5 for the pseudo-

code.

Lemma 6.4. Algorithm 5 produces an optimal schedule for identical jobs with

respect to energy.

Proof. Let r be the common release time, d the common deadline, and δ the

common density of the jobs. First, observe that if k jobs are assigned to a

processor Pi, then the optimal schedule for these k jobs will be to run Pi at

speed kδ from time r to time d and complete the jobs one by one in arbitrary

order, with a total energy usage of (d− r)(kδ)αi for Pi.
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Now, for 1 ≤ i ≤ m, let ki be the number of jobs allocated to Pi by the algorithm,

and let oi be the number of jobs allocated to Pi by the optimal solution. Let

ALG denote the total energy cost of Algorithm 5, and OPT the total energy

cost of the optimal schedule. We have

ALG = (d− r)
m∑
i=1

(kiδ)
αi

and

OPT = (d− r)
m∑
i=1

(oiδ)
αi .

Assume that ALG > OPT . Then there must be at least one Pi with ki > oi

and at least one Ph with kh < oh. Consider the last job, say job Jj, that the

algorithm allocated to Pi. At the time the algorithm allocated Jj to Pi, the

load of Ph was some k′h ≤ kh. As the algorithm allocated Jj to Pi and not to

Ph, we know that

(k′hδ + δ)αh − (k′hδ)
αh ≥ (kiδ)

αi − (kiδ − δ)αi .

If we change the optimal schedule by moving one job from Ph to Pi, the energy

cost of that schedule increases by d− r multiplied with

(oiδ + δ)αi − (oiδ)
αi − ((ohδ)

αh − (ohδ − δ)αh) .

By Lemma 6.3, we have

(oiδ + δ)αi − (oiδ)
αi ≤ (kiδ)

αi − (kiδ − δ)αi

and

(ohδ)
αh − (ohδ − δ)αh ≥ (k′hδ + δ)αh − (k′hδ)

αh .
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This gives:

(oiδ + δ)αi − (oiδ)
αi − ((ohδ)

αh − (ohδ − δ)αh)

≤ (kiδ)
αi − (kiδ − δ)αi − ((k′hδ + δ)αh − (k′hδ)

αh) ≤ 0 .

As we started with the optimal schedule, the change in energy cannot be nega-

tive, so the new schedule must have the same energy cost and again be optimal.

The total difference between the numbers of jobs allocated to each processor

by the optimum and the algorithm,
∑

i |oi − ki|, has decreased by two in this

operation of moving one job in the optimal schedule from Ph to Pi. Hence, this

operation can be repeated, without increasing the energy cost, until the optimal

schedule and the schedule produced by the algorithm are identical. This proves

that the schedule produced by the algorithm is optimal.

6.3.2 Jobs with Equal Interval Length and Density

We propose an online algorithm for the case where the interval length dj − rj
is the same for all jobs, and where every job has the same density δ. Note

that jobs with equal interval length automatically have agreeable deadlines. To

simplify the presentation, we assume w.l.o.g. that dj − rj = 2 for 1 ≤ j ≤ n.

Algorithm 6 assigns each job to one of the m processors and executes NAVR

(cf. Section 6.2) on each processor. Jobs that are released within a time interval

[C,C + 1) for integer C ≥ 0 are treated independently from the jobs released in

all other such intervals.

Note that Algorithm 6 allocates the jobs arriving in the time period [C,C+1] to

processors in the same way as Algorithm 5 would allocate them if they had the

same release time. Furthermore, all these jobs are active in the whole interval

[C + 1, C + 2). Lemma 6.4 thus implies the following lemma.
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Algorithm 6 Allocation of jobs with equal interval length and density

C ← 0 ; /* current time period is [C,C + 1) */

while not all jobs allocated do
for i← 1 to m do

Li ← 0
end
while next job Jj has rj < C + 1 do

for i← 1 to m do
Zi ← (Li + δ)αi − Lαi

i ; /* power increase on Pi */

end
imin ← argmini Zi ; /* smallest power increase */

Limin
← Limin

+ δ ; /* assign job Jj to processor Pimin
*/

end
C ← C + 1

end

Lemma 6.5. Consider the allocation that Algorithm 6 produces for jobs arriving

in the time period [C,C + 1). Then the energy use for those jobs alone in the

time period [C + 1, C + 2) is less than or equal to the optimal energy cost that

any AVR schedule for the same jobs incurs in that period.

Let ALGC be the total energy cost of Algorithm 6 in the time interval [C,C+1),

and let OPTA
C be the total energy cost of the optimal AVR schedule in the time

interval [C,C + 1).

For the schedule of the algorithm, let AC be the total energy cost incurred

during the time period [C,C + 1) for jobs that are released in the time interval

[C − 1, C), assuming that these are the only jobs being executed. Let kC,i be

the number of jobs that are released in [C − 1, C) and assigned to Pi by the

algorithm. Note that we have AC =
∑m

i=1(kC,iδ)
αi . Furthermore, by Lemma 6.4

we have that AC is the minimum possible energy cost incurred by jobs released

in [C − 1, C) during the time interval [C,C + 1) in any AVR schedule. As the

same jobs also execute during [C,C + 1) in the optimal AVR schedule, plus

possibly some further jobs released in [C − 2, C − 1) or [C,C + 1), we have

AC ≤ OPTA
C .
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As all jobs have dj − rj = 2, the jobs that are executed by the algorithm at

some point in the time period [C,C + 1) are released in one of the intervals

[C − 2, C − 1), [C − 1, C) or [C,C + 1). Therefore, the total number of jobs

allocated to machine i whose execution overlaps [C,C + 1) is at most kC−1,i +

kC,i + kC+1,i. Thus, we have

ALGC ≤
m∑
i=1

(kC−1,iδ + kC,iδ + kC+1,iδ)
αi

≤
m∑
i=1

(3δmax{kC−1,i, kC,i, kC+1,i})αi

≤ 3αm

m∑
i=1

max{(kC−1,iδ)
αi , (kC,iδ)

αi , (kC+1,iδ)
αi}

≤ 3αm

m∑
i=1

((kC−1,iδ)
αi + (kC,iδ)

αi + (kC+1,iδ)
αi)

= 3αm(AC−1 + AC + AC+1)

The total energy cost of Algorithm 6 can then be bounded by:
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ALG =
∑
C≥0

ALGC

≤
∑
C≥0

3αm(AC−1 + AC + AC+1)

≤ 3αm
∑
C≥0

(AC−1 + AC + AC+1)

≤ 3αm+1
∑
C≥0

AC

≤ 3αm+1
∑
C≥0

OPTA
C

= 3αm+1OPTA

≤ 3αm+1(ααm
m 2αm−1 + 1)OPT

where the last inequality holds by Corollary 6.2. Hence, Algorithm 6 is 3αm+1(ααm
m 2αm−1+

1)-competitive.

6.3.3 Interval Lengths and Densities Within a Factor of

Two

We now consider the case where both the interval length and the density are

allowed to vary by a factor of at most two for all the jobs. Here, as we explore the

competitive ratio only with the big-O notation analysis, having a different factor

e.g. 3, 1.4, etc. rather than 2 would not affect the big-O notation where the

competitive ratio will be the same but with a different constant. Thus, choosing

the factor of two is a standard choice as long as optimising the constant factor

is not considered. In Section 6.4, we will handle the general case by classifying

jobs into groups such that each group satisfies this property.
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Algorithm 7 Allocation of jobs with interval length
in [y, 2y] and density in [x, 2x]

C ← 0 ; /* current time period is [C,C + y
2
) */

δ ← x ; /* treat all jobs as if their density was x */

while not all jobs allocated do
for i← 1 to m do

Li ← 0
end
while next job Jj has rj < C + y

2
do

for i← 1 to m do
Zi ← (Li + δ)αi − Lαi

i ; /* power increase on Pi */

end
imin ← argmini Zi ; /* smallest power increase */

Limin
← Limin

+ δ ; /* assign job Jj to processor Pimin
*/

end
C ← C + y

2

end

Assume that the interval lengths of all jobs are in [y, 2y] and the densities of all

jobs in [x, 2x]. The algorithm, shown as Algorithm 7, assigns each job to one

of the m processors. It treats the jobs as if their density was equal to δ = x

and proceeds in time periods of length y
2
. Jobs arriving in each time period

are handled independently of the jobs arriving in other time periods. On each

processor, the allocated jobs are scheduled using NAVR.

Algorithm 7 allocates the jobs arriving in the time period [C,C+ y
2
) to machines

in the same way as Algorithm 5 would allocate them if they were identical jobs

with density δ. Furthermore, all these jobs are active in the whole interval

[C + y
2
, C + y) because their interval length is at least y.

Lemma 6.6. Consider the allocation that Algorithm 7 produces for jobs arriving

in the time period [C,C + y
2
). Then the energy use for those jobs alone in the

time period [C+ y
2
, C+y) is at most 2αm times the optimal energy cost that any

AVR schedule for the same jobs incurs in that period.

Proof. Let J be the set of jobs arriving in [C,C + y
2
). Note that their densities

are in [x, 2x]. Let J ′ denote the set of jobs obtained from J by setting the
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density of every job to δ = x. Note that all the jobs in J or J ′ are active

in the whole interval [C + y
2
, C + y). Let ALG(J ′) denote the energy cost of

the jobs in J ′ in the interval [C + y
2
, C + y) for the allocation produced by the

algorithm, and let OPTA(J ′) denote the optimal energy cost of the same jobs

in the optimal AVR schedule. Define ALG(J) and OPTA(J) similarly for J

instead of J ′. Lemma 6.4 implies that ALG(J ′) = OPTA(J ′). Furthermore,

we clearly have OPTA(J ′) ≤ OPTA(J). For the algorithm to execute the jobs

using their real densities instead of density δ = x it needs to increase the speed

of every processor by at most a factor of 2. Therefore, ALG(J) ≤ 2αmALG(J ′).

In summary, we have ALG(J) ≤ 2αmOPTA(J).

Let ALGC be the total energy cost of the algorithm in the time interval [C,C+

y
2
), and let OPTA

C be the total energy cost of an optimal AVR schedule in the

time interval [C,C + y
2
).

For the schedule of Algorithm 7, let AC be the total energy cost incurred during

the time period [C,C+ y
2
) for jobs that are released in the time interval [C− y

2
, C).

Let KC,i be the set of jobs that are released in [C − y
2
, C) and assigned to Pi by

the algorithm. Note that we have AC = y
2

∑m
i=1(
∑

Jj∈KC,i
δj)

αi . Furthermore,

by Lemma 6.6 we have that AC ≤ 2αmOPTA
C .

As all jobs have interval length in [y, 2y], the jobs that are executed by the

algorithm at some point in the time period [C,C + y
2
) are released in one of the

five intervals [C − 2y, C − 3y
2

), [C − 3y
2
, C − y), [C − y, C − y

2
), [C − y

2
, C), or

[C,C+ y
2
). Therefore, the jobs allocated to processor Pi whose interval overlaps

[C,C+ y
2
) are all contained in UC,i = KC− 3y

2
,i∪KC−y,i∪KC− y

2
,i∪KC,i∪KC+ y

2
,i,

and the speed of the processor Pi in the interval [C + y
2
, C + y) is at most
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∑
Jj∈UC,i

δj. Therefore, we have :

ALGC ≤ y

2

m∑
i=1

(
∑

Jj∈UC,i

δj)
αi

≤ y

2

m∑
i=1

(
∑

Jj∈KC− 3y
2 ,i

δj + · · ·+
∑

Jj∈KC+
y
2 ,i

δj)
αi

≤ y

2

m∑
i=1

(5 max{
∑

Jj∈KC− 3y
2 ,i

δj, . . . ,
∑

Jj∈KC+
y
2 ,i

δj})αi

≤ y

2
5αm

m∑
i=1

(
max{(

∑
Jj∈KC− 3y

2 ,i

δj)
αi , . . . , (

∑
Jj∈KC+

y
2 ,i

δj)
αi}
)

≤ y

2
5αm

m∑
i=1

(
(

∑
Jj∈KC− 3y

2 ,i

δj)
αi + · · ·+ (

∑
Jj∈KC+

y
2 ,i

δj)
αi

)
≤ 5αm(AC− 3y

2
+ AC−y + AC− y

2
+ AC + AC+ y

2
)

The total energy cost of Algorithm 7 can then be bounded as follows, where the

sums over C ≥ 0 are to be interpreted as sums over multiples of y
2
, i.e., over the

values C = uy
2

for all non-negative integers u:

ALG =
∑
C≥0

ALGC

≤
∑
C≥0

5αm(AC− 3y
2

+ AC−y + AC− y
2

+ AC + AC+ y
2
)

≤ 5αm
∑
C≥0

(AC− 3y
2

+ AC−y + AC− y
2

+ AC + AC+ y
2
)

≤ 5αm+1
∑
C≥0

AC

≤ 5αm+1
∑
C≥0

2αmOPTA
C

= 5αm+12αmOPTA

≤ 5αm+12αm(ααm
m 2αm−1 + 1)OPT
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Here, the fourth inequality follows from Lemma 6.6 and the last inequality holds

by Corollary 6.2. Thus, we get the following theorem.

Theorem 6.7. Algorithm 7 is 5αm+12αm(ααm
m 2αm−1 + 1)-competitive for jobs

with agreeable deadlines and density ratio at most two and interval-length ratio

at most two.

6.4 Arbitrary Interval Lengths and Densities

In this section, we consider jobs with arbitrary interval lengths and densities,

we only require that the jobs have agreeable deadlines. Recall that D denotes

the density ratio and T the interval-length ratio. Let ∆ = maxj δj denote the

maximum job density, and let Λ = maxj(dj − rj) be the maximum interval

length. For ease of presentation, we assume that the algorithm knows ∆ and Λ,

but we will mention later how the algorithm can be adapted to work without

this assumption.

The interval lengths of all jobs are in [Λ/T,Λ] and their densities are in [∆/D,∆].

We classify the jobs into groups such that within each group the interval lengths

and densities vary only within a factor of two. Then, each group is scheduled

independently of the others using a separate copy of Algorithm 7, but of course

all the jobs run on the same set of processors. A job is classified into group

gt,d if its interval length is in [Λ/2t,Λ/2t−1] and its density in [∆/2d,∆/2d−1],

where t ∈ {1, . . . , dlog2 T e} and d ∈ {1, . . . , dlog2De}. Jobs that lie at group

boundaries can be allocated to one of the two relevant groups arbitrarily. The

algorithm for assigning jobs to processors is shown as pseudo-code in Algo-

rithm 8.

Let `(gt,d, i, t
′) be the load (sum of densities of active jobs) of group gt,d on

processor Pi at time t′, and let Agt,d be the total energy cost for group gt,d,

assuming that it is the only group running. Let H denote the time when the
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Algorithm 8 Allocation of jobs with arbitrary interval lengths and densities

Run a separate copy of Algorithm 7 for each group gt,d.

while not all jobs allocated do
Jj ← next job
determine group gt,d of Jj
pass Jj to the copy of Algorithm 7 for group gt,d

end

schedule ends, i.e., the deadline of the last job, and let OPT (gt,d) denote the

energy cost of the optimal schedule for gt,d. We have:

Agt,d =
m∑
i=1

∫ H

0

(`(gt,d, i, t
′))αidt′ (6.1)

From Theorem 6.7, we get:

Agt,d ≤ 5αm+12αm(ααm
m 2αm−1 + 1)OPT (gt,d) (6.2)

The number of groups used by Algorithm 8 is bounded by dlog2 T edlog2De. Let

ALG be the total energy cost of the algorithm. We can bound ALG as follows,

where the sums over t, d (or maxima taken over t, d) are to be understood as

sums (or maxima) over all pairs t, d with 1 ≤ t ≤ dlog2 T e and 1 ≤ d ≤ dlog2De:
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ALG =
m∑
i=1

∫ H

0

(∑
t,d

`(gt,d, i, t
′)
)αi

dt′

≤
m∑
i=1

∫ H

0

(
dlog T edlogDemax

t,d
{`(gt,d, i, t′)}

)αi

dt′

=
m∑
i=1

∫ H

0

dlog T eαidlogDeαi

(
max
t,d
{`(gt,d, i, t′)}

)αi

dt′

≤
m∑
i=1

∫ H

0

dlog T eαidlogDeαi

(∑
t,d

(`(gt,d, i, t
′))αi

)
dt′

=
∑
t,d

m∑
i=1

∫ H

0

dlog T eαidlogDeαi(`(gt,d, i, t
′))αidt′

≤ dlog T eαmdlogDeαm
∑
t,d

m∑
i=1

∫ H

0

(
`(gt,d, i, t

′)
)αi

dt′

≤ dlog T eαmdlogDeαm
∑
t,d

5αm+12αm(ααm
m 2αm−1 + 1)OPT (gt,d)

≤ dlog T eαm+1dlogDeαm+15αm+12αm(ααm
m 2αm−1 + 1)OPT

Here, the fourth inequality follows from (6.1) and (6.2), and the last inequality

follows from the fact that OPT (gt,d) ≤ OPT and therefore
∑

gt,d
OPT (gt,d) ≤

dlog T edlogDeOPT . Thus, we get:

Theorem 6.8. For non-preemptive minimum energy scheduling of jobs with

agreeable deadlines on heterogeneous processors, the competitive ratio of Algo-

rithm 8 is at most 5αm+12αm(ααm
m 2αm−1 + 1)dlogDeαm+1dlog T eαm+1.

In case Λ and ∆ are not known in advance, we adapt the algorithm as fol-

lows. Let `0 and δ0 be the interval length and density, respectively, of the

job that arrives first. The algorithm stores these values. A job with inter-

val length ` and density δ is then assigned to group gt,d with t = dlog2(`/`0)e

and d = dlog2(δ/δ0)e, and passed to the copy of Algorithm 7 for that group.

If the arriving job is the first of its group gt,d, a new copy of Algorithm 7 is
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started for that group. The number of groups is now bounded by (dlog2 T e +

1)(dlog2De + 1). The resulting competitive ratio is 5αm+12αm(ααm
m 2αm−1 +

1)(dlogDe+ 1)αm+1(dlog T e+ 1)αm+1.

6.5 Summary

In this chapter, we have investigated non-preemptive online scheduling of jobs

with agreeable deadlines on heterogeneous speed-scalable processors. We have

first shown that the problem can be solved optimally by a simple greedy al-

gorithm if all jobs are identical (i.e., have the same release time, deadline,

and work). NAVR is used to schedule the jobs that have been allocated to

a processor non-preemptively. From this we have obtained an algorithm with a

competitive ratio of at most 5αm+12αm(ααm
m 2αm−1 + 1), for the case where the

densities of the jobs differ only within a factor of two and the same holds for

their interval lengths. For jobs with equal interval lengths and equal densities,

the competitive ratio improves to 3αm+1(ααm
m 2αm−1 + 1).

For arbitrary jobs with agreeable deadlines, we have presented an algorithm

that classifies the jobs based on density and interval length and allocates the

jobs in each class to processors by selecting the processor with the smallest

energy cost increase. Our algorithm achieves a competitive ratio of at most

5αm+12αm(ααm
m 2αm−1 + 1)dlogDeαm+1dlog T eαm+1 for job instances with agree-

able deadlines, density ratio D, and interval-length ratio T . This bound is inde-

pendent of the number of processors. We believe that it is possible to improve

the competitive ratio by modifying the algorithm or tightening the analysis.
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Chapter 7

Conclusion and Future Work

This thesis has explored a deadline-based scheduling problem of executing HPC-

applications by a decentralised multi-cloud system for energy optimisation. It

is motivated by the fact that a cloud data-centre consumes a huge amount of

energy – estimated to be equivalent to what 25,000 households would consume

[72] – that is expected to increase significantly in the near future, and therefore,

maintaining that cloud computing being environmentally sustainable is quite

significant. For a wider understanding of our considered scheduling problem,

this thesis has explored the feasibility of optimising energy consumption from

two different perspectives:

• a technical perspective presented in three chapters (3, 4, and 5) based on

our developed multi-cloud simulation tool MCST for evaluation and deep

insights into outcomes; and

• a theoretical perspective, presented in Chapter 6, that relies on the use of

competitive analysis to measure the produced energy cost of the consid-

ered scheduling problem (i.e. minimum energy scheduling). The problem

here represents a simplified form of the energy-aware scheduling problem

in multi-cloud systems.
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Our exploration commenced with experimentally investigating two different

scheduling approaches for executing HPC-applications by a set of clouds, par-

ticipating in a federated approach, that are: the best-effort (presented in Chap-

ter 4) and the advance-reservation (presented in Chapter 5) approaches. The

goal of these proposed approaches was not only minimising the overall energy

consumption, but considering along with it, the possibility of maximising re-

source reliability by mitigating the occurrence of application violations/rejec-

tions. Both of these approaches attempt to exploit the potential of sharing

distributed cloud resources worldwide as well as the elasticity of dynamically

adjusting voltage and frequency of processors (DVFS) for energy optimisation

in two scheduling levels: a global level (i.e., between participating heteroge-

neous clouds) for finding the cloud that gives the best offer, and a local level

in each cloud (i.e., between the cloud’s homogeneous resources) for mapping an

application’s tasks to machines (i.e., CPUs). In relation to the global scheduling

level, we studied two strategies for choosing the best available resources, offered

by a set of clouds, that are the preference and combination rate strategies (PRS

and CRS). These strategies aim to optimise energy consumption in general,

however, the latter strategy allows us to combine a conflicting aim with energy

minimisation, as it also attempts to maximise the reliability of cloud resources.

The evaluation sections of the suggested scheduling approaches (presented in

Chapter 4 and Chapter 5) have been primarily devoted to:

• comparing our scheduling methods with the existing scheduling algorithm

CMMS [84] that aims to select a cloud that offers the minimal earliest

finish time;

• measuring the amount of energy that one could potentially reduce com-

pared with the upper bound of the topmost energy consumption when

all clouds run at the highest performance (i.e., under the highest CPU

frequencies);
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• understanding the effect of the proposed strategies, PRS and CRS, on (1)

the average reduction of energy, (2) the number of application rejection-

s/violations, and (3) the utilisation of cloud resources over time; and

• giving a detailed comparison between the proposed scheduling approaches,

i.e., the best-effort vs. the advance-reservation regarding several aspects,

such as energy optimisation, scheduling efficiency, network utilisation, and

the effect of extending application deadlines on the rate of energy reduc-

tion.

The second concern in this thesis, introduced in Chapter 6, was to explore and

perform the theoretical analysis of the proposed energy-aware online scheduling

problem, which can help to deeply understand the outcomes from a different

aspect. In fact, the problem of scheduling HPC-applications in multi-cloud sys-

tems is naturally very difficult, due to the complexity of online scheduling, par-

ticularly when combining two conflicting objectives of minimising energy con-

sumptions and application rejections, and/or when handling various constraints

such as application deadlines and tasks dependencies. As such problems would

be even harder when considered theoretically, we have, therefore, considered a

simplified form of the problem that captures some of the main aspects to draw

an analogy with our energy-aware scheduling problem in multi-cloud systems.

In a nutshell, we have analysed a non-preemptive online scheduling problem for

allocating independent tasks with deadline constraints to heterogeneous proces-

sors. This problem fundamentally represents a non-preemptive version of the

classical speed-scaling scheduling problem that was studied by Yao et al. [118]

but on parallel processors.

In the remainder of this chapter, we conclude the thesis by presenting a brief

summary of our achievements, followed by a list of research limitations that we

are aware of. Then, we finally end this thesis by giving some possible research

directions in relation to our main research objectives.
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7.1 Summary of Contributions and

Achievements

The major contribution of this thesis to the scope of energy-aware scheduling of

cloud applications has been in proposing some possible solutions that have been

examined practically and theoretically. The achieved results from the proposed

scheduling solutions (some of them have been published in [6, 5, 7]) evidenced

that it is possible to reduce a considerable amount of energy while carefully

scheduling cloud applications over a multi-cloud system. These scheduling so-

lutions obviously have particular importance in relation with the main aim of

green cloud computing for the necessity of increasing energy efficiency.

The technical part of this thesis – it covers the experimental aspects of the

two scheduling modes that are the best-effort and the advance-reservation –

has focused on combining two energy dimensions while scheduling HPC appli-

cations (i.e., energy consumed for execution and data transmission). It has

considered simultaneously minimising application rejections and deadline vio-

lations, to support resource reliability, with energy optimisation. The practical

outcomes of this part are concisely summarised below.

• Approaches to the scheduling of HPC-applications with the goal of en-

ergy optimisation should not focus on just the single parameter of energy

consumption but incorporate different parameters, ranging from CPU us-

age levels to data transmissions at network level. In multi-cloud systems,

optimal scheduling for energy efficiency that relies on resource utilisation

needs to pay special attention to resource reliability.

• The energy consumption of multi-cloud systems that focus on provid-

ing high performance services for executing HPC-applications can be effi-

ciently reduced without affecting the desired performance.
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• Scheduling an application to a cloud that appears better at the submission

time may not lead to the best energy saving result over time. In particular,

balancing the workloads among all clouds is sometimes important, which

helps to avoid some cases where applications scheduled later need to be

forcibly allocated to less efficient clouds.

In the theoretical part of this thesis, we have presented the first online algo-

rithms for the non-preemptive scheduling of jobs with agreeable deadlines on

heterogeneous parallel processors, published in [7]. We have used NAVR to

schedule the jobs that have been allocated to a processor non-preemptively.

The performed analysis and the eventual outcomes, achieved from this part, are

concisely summarised below.

• Initially, we have explained that the problem can be solved optimally by a

simple greedy algorithm if all jobs are identical (i.e., have the same release

time, deadline, and work). From this we have obtained an algorithm with

a competitive ratio of at most 5αm+12αm(ααm
m 2αm−1 +1), for the case where

the densities of the jobs differ only within a factor of two and the same

holds for their interval lengths.

• For agreeable jobs with equal interval lengths and equal densities, the

competitive ratio improves to 3αm+1(ααm
m 2αm−1 + 1).

• For arbitrary jobs with agreeable deadlines, we have presented an algo-

rithm that classifies the jobs based on density and interval length and al-

locates the jobs in each class to processors by selecting the processor with

the smallest energy cost increase. Our algorithm achieves a competitive

ratio of at most 5αm+12αm(ααm
m 2αm−1 + 1)dlogDeαm+1dlog T eαm+1 for job

instances with agreeable deadlines, density ratio D, and interval-length

ratio T . This bound is independent of the number of processors.
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We believe that it is possible to improve the competitive ratio by modifying the

algorithm or tightening the analysis.

7.2 Limitations and Assumptions

While our research problems, explained in Section 1.2, have been experimentally

tackled, including a theoretical study of a simplified form of the problems, the

proposed solutions and assumptions have two general limitations that we are

aware of, reported concisely as follows.

First of all, our designed prototype simulation tool MCST is too abstract to

represent the underlying characteristics of a real multi-cloud infrastructure that

should support a typical interconnection network model (i.e., precisely simulate

communication between geographically distributed clouds, and also communi-

cation within cloud data-centres). Therefore, the overall energy cost achieved in

this thesis may not be quite realistic as some important energy parameters were

not considered, such as the energy cost for activating idle servers. However,

to simplify our simulation tool for gaining clear insights, we had to abstract

away many unnecessary characteristics that seem closely related to the cloud

infrastructures (e.g., memory or services), but unimportant in the context of

this thesis.

Second of all, although the calculation of energy consumption of data transmis-

sions through the Internet is a major challenge (as explained in Section 4.1.3)

and no accurate solution is available, to our knowledge, we have made a rational

assumption to linearly estimate the energy cost of a transmission over a given

distance based on a typical transmission using a fixed rate of µ = 0.2kWh/GB

(obtained from [44]) over a distance of 500 km. Nevertheless, if a better solution

for calculating transmission energy costs is obtainable that fits our scenarios,

it can be straightforwardly implemented into our simulation tool MCST. In
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addition, our assumption here is limited to covering transmission energy costs

between distributed clouds, but not within the local interconnection network of

cloud resources. However, since we assume that each cloud has a single data-

centre site, the energy consumption of data transmissions from one server to

another through the local network should be negligible compared to the energy

consumption of the servers and of data transmissions between data-centres.

7.3 Future Work

There still remain many areas and directions for achieving further energy opti-

misations by intelligently scheduling HPC-applications over distributed multi-

cloud systems. We discuss below our main interesting future work that can be

organised into two categorises: (1) improving our system model in a way that

would address some of the limitations, reported in Section 7.2, and (2) inventing

more features as supplements to the best-effort/advance-reservation scheduling

solutions in addition to improving our theoretical approach. This future work,

apart from providing new insights into theoretical aspects, would generally pro-

mote the suggested approaches of this thesis not only for energy efficiency, but

also for enhancing the reliability of cloud resources.

7.3.1 Extension of the Considered System Model

According to the main limitations of the suggested scheduling approaches in

this thesis, reported in Section 7.2, extending our system model (discussed in

Section 3.1) to consider a more realistic multi-cloud environment is highly rec-

ommended for future work. This would help to cover more real-world appli-

cations and to see how various scenarios can affect the energy efficiency. A

typical extension of the current system model should ideally support handling
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the complex requirements of modelling: (1) SLAs, (2) cloud applications, and

(3) the interconnection network within a cloud data-centre.

In general, future research can concentrate on figuring out more accurately the

impact of scheduling different types of real cloud applications under different

requirements (mainly, dependent vs. independent tasks and preemptive vs. non-

preemptive tasks) on energy efficiency. A possible categorisation of application

workloads, presented in [79], can be adopted which depends broadly on the size

of computational execution as well as the size of required data transmission, as

follows.

• Computationally Intensive Workloads : This category includes applica-

tions that need a high amount of energy for computational activities (e.g.,

HPC-applications), but a low amount of energy for data transmission be-

tween cloud resources in both networks (the global between clouds and

the local between cloud resources).

• Data-Intensive Workloads : This category focuses on applications that do

not require high computational activities, but usually utilise the network

heavily for transmitting application datasets. A typical example of this

kind of applications can be seen in online large video streaming.

• Balanced Workloads : This category covers applications that need a high

amount of energy to execute cloud applications as well as to transmit their

datasets.

As each application from this categorisation would obviously need a particular

energy saving technique to ideally optimise the overall energy consumption,

this may highlight the importance of applying a specific scheduling solution

according to the application type.

Another interesting direction for future research is to empirically evaluate our

proposed algorithms by implementing them in a federated system testbed like
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Open Cirrus [92]. This testbed consists of loosely-coupled distributed sites each

of which is owned and managed by a different participant (e.g., HP, Intel, Yahoo,

etc.). The objective could be to understand the behaviours of the main critical

parameters that are mostly in relation with wasting energy and/or raising the

energy consumption unnecessarily.

7.3.2 Elaborating and Enriching our Scheduling

Approaches

Our evaluations in Sections 4.4 and 5.3 have revealed that there is an interde-

pendency between using one of the proposed strategies (i.e., PRS and CRS) for

scheduling decisions and the characteristics of the submitted applications under

a certain level of resource occupation. As a consequence, we intend to further

optimise energy consumption by designing an adaptive algorithm that can dy-

namically adjust the decision strategy (if needed) based on the given scheduling

problem.

In Chapter 4, the proposed best-effort approach makes scheduling decisions by

assessing cloud offers that have no guarantee for their available resources. This

bold decision usually results in violating the execution of some already sched-

uled applications. Thus, it would be interesting to develop a smart predictor

(e.g., using a data mining approach) that helps in enhancing the precision of

the best-effort scheduling decision so as to predict whether a submitted applica-

tion would be violated or not in advance. Here, the minimisation of application

violation cases by such a predictor has two advantages. Firstly, it gives a better

chance for applications to get executed by other clouds, and second, it helps in

saving wasted energy that would be consumed by partially executing applica-

tions before their deadlines get violated.
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For the advance-reservation approach, introduced in Chapter 5, a potential in-

vestigation of energy efficiency can be carried out. The idea is to design a

rescheduling mechanism, relying mainly on the release of resource reservations,

that may help in optimising further the energy consumption as well as applica-

tion rejection cases. To be more precise, further energy reduction here could be

gained by expanding the time frame that probably enables a further reduction of

the CPU frequencies that have already been set for executing application tasks.

Minimising application rejection cases is feasible, because the more scheduled

applications are shifted to some earlier possible times (meaning that application

executions would finish at some earlier times), the higher the level of resources

that are available early, which in turn helps to accept more applications.

Concerning the theoretical approach, introduced in Chapter 6, one possible

direction for improving the ratio could be to consider how the method of dis-

patching jobs can be combined with another scheduler on each processor instead

of NAVR (explained in Section 6.2). It would also be interesting to prove lower

bounds on the best possible competitive ratio. An open problem is to drop the

assumption of agreeable deadlines and consider the online heterogeneous speed

scaling problem without preemption for jobs with arbitrary release times and

deadlines.
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cumaru Maheswaran, Albert I. Reuther, James P. Robertson, Mitchell

D. Theys, Bin Yao, Debra A. Hensgen, and Richard F. Freund. “A Com-

parison of Eleven Static Heuristics for Mapping a Class of Independent

Tasks onto Heterogeneous Distributed Computing Systems”. In: J. Par-

allel Distrib. Comput. 61.6 (2001), pages 810–837 (cited on page 57).

[27] Peter Brucker. Scheduling Algorithms. 5th. Springer-Verlag Berlin Hei-

delberg, 2007. isbn: 978-3-540-69516-5 (cited on page 24).

[28] Marc Bux and Ulf Leser. “DynamicCloudSim: Simulating heterogeneity

in computational clouds”. In: Future Generation Comp. Syst. 46 (2015),

pages 85–99. url: https://doi.org/10.1016/j.future.2014.09.007

(cited on pages 55–57).

[29] Rajkumar Buyya, Anton Beloglazov, and Jemal H. Abawajy. “Energy-

Efficient Management of Data Center Resources for Cloud Computing:

https://doi.org/10.1109/iNCoS.2012.16
https://doi.org/10.1109/iNCoS.2012.16
https://doi.org/10.1109/iNCoS.2012.16
https://doi.org/10.1109/MC.2004.217
https://doi.org/10.1109/MC.2004.217
https://doi.org/10.1109/MC.2004.217
https://doi.org/10.1016/j.future.2014.09.007


Bibliography 154

A Vision, Architectural Elements, and Open Challenges”. In: CoRR

abs/1006.0308 (2010) (cited on page 5).

[30] Rajkumar Buyya and M. Manzur Murshed. “GridSim: a toolkit for the

modeling and simulation of distributed resource management and schedul-

ing for Grid computing”. In: Concurrency and Computation: Practice

and Experience 14.13-15 (2002), pages 1175–1220 (cited on pages 55, 57,

58).

[31] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N. Calheiros. “InterCloud

Utility-Oriented Federation of Cloud Computing Environments for Scal-

ing of Application Services”. In: Algorithms and Architectures for Par-

allel Processing, 10th International Conference, ICA3PP 2010, Busan,

Korea, May 21-23, 2010. Proceedings. Part I. 2010, pages 13–31. doi:

10.1007978-3-642-13119-6_2. url: httpsdoi.org10.1007978-3-

642-13119-6_2 (cited on page 14).

[32] Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg,

and Ivona Brandic. “Cloud computing and emerging IT platforms: Vi-

sion, hype, and reality for delivering computing as the 5th utility”. In:

Future Generation Comp. Syst. 25.6 (2009), pages 599–616. doi: 10.

1016/j.future.2008.12.001. url: https://doi.org/10.1016/j.

future.2008.12.001 (cited on page 4).

[33] Rodrigo N. Calheiros, Marco Aurélio Stelmar Netto, César A. F. De

Rose, and Rajkumar Buyya. “EMUSIM: an integrated emulation and

simulation environment for modeling, evaluation, and validation of per-

formance of Cloud computing applications”. In: Softw., Pract. Exper.

43.5 (2013), pages 595–612. url: https://doi.org/10.1002/spe.2124

(cited on page 56).

https://doi.org/10.1007978-3-642-13119-6_2
httpsdoi.org10.1007978-3-642-13119-6_2
httpsdoi.org10.1007978-3-642-13119-6_2
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1002/spe.2124


Bibliography 155

[34] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De

Rose, and Rajkumar Buyya. “CloudSim: a toolkit for modeling and sim-

ulation of cloud computing environments and evaluation of resource pro-

visioning algorithms”. In: Softw., Pract. Exper. 41.1 (2011), pages 23–50

(cited on pages 55, 57).

[35] Louis-Claude Canon and Emmanuel Jeannot. “Evaluation and Optimiza-

tion of the Robustness of DAG Schedules in Heterogeneous Environ-

ments”. In: IEEE Trans. Parallel Distrib. Syst. 21.4 (2010), pages 532–

546 (cited on page 22).

[36] Fei Cao and Michelle M. Zhu. “Energy-Aware Workflow Job Scheduling

for Green Clouds”. In: 2013 IEEE International Conference on Green

Computing and Communications (GreenCom) and IEEE Internet of Things

(iThings) and IEEE Cyber, Physical and Social Computing (CPSCom),

Beijing, China, August 20-23, 2013. 2013, pages 232–239. doi: 10.1109/

GreenCom-iThings-CPSCom.2013.58. url: https://doi.org/10.

1109/GreenCom-iThings-CPSCom.2013.58 (cited on pages 28, 34, 37).

[37] Henri Casanova. “SimGrid: A Toolkit for the Simulation of Applica-

tion Scheduling”. In: First IEEE International Symposium on Cluster

Computing and the Grid (CCGrid 2001), May 15-18, 2001, Brisbane,

Australia. 2001, pages 430–441 (cited on page 55).

[38] Antonio Celesti, Francesco Tusa, Massimo Villari, and Antonio Puliafito.

“How to Enhance Cloud Architectures to Enable Cross-Federation”. In:

IEEE International Conference on Cloud Computing, CLOUD 2010, Mi-

ami, FL, USA, 5-10 July, 2010. 2010, pages 337–345. doi: 10.1109/

CLOUD.2010.46. url: https://doi.org/10.1109/CLOUD.2010.46

(cited on page 4).

[39] Weiwei Chen and Ewa Deelman. “WorkflowSim: A toolkit for simulating

scientific workflows in distributed environments”. In: 8th IEEE Inter-

national Conference on E-Science, e-Science 2012, Chicago, IL, USA,

https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.58
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.58
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.58
https://doi.org/10.1109/GreenCom-iThings-CPSCom.2013.58
https://doi.org/10.1109/CLOUD.2010.46
https://doi.org/10.1109/CLOUD.2010.46
https://doi.org/10.1109/CLOUD.2010.46


Bibliography 156

October 8-12, 2012. 2012, pages 1–8. url: https://doi.org/10.1109/

eScience.2012.6404430 (cited on pages 55–57).

[40] Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian

Wang, and Natarajan Gautam. “Managing server energy and operational

costs in hosting centers”. In: Proceedings of the International Conference

on Measurements and Modeling of Computer Systems, SIGMETRICS

2005, June 6-10, 2005, Banff, Alberta, Canada. 2005, pages 303–314.

doi: 10.1145/1064212.1064253. url: http://doi.acm.org/10.1145/

1064212.1064253 (cited on page 18).

[41] Yiyu Chen, Amitayu Das, Wubi Qin, Anand Sivasubramaniam, Qian

Wang, and Natarajan Gautam. “Managing server energy and operational

costs in hosting centers”. In: Proceedings of the International Conference

on Measurements and Modeling of Computer Systems, SIGMETRICS

2005, June 6-10, 2005, Banff, Alberta, Canada. 2005, pages 303–314.

url: http://doi.acm.org/10.1145/1064212.1064253 (cited on

page 19).

[42] CloudStack. https : / / cloudstack . apache . org/. [Online; accessed

September-2017]. 2010 (cited on page 4).

[43] Vincent Cohen-Addad, Zhentao Li, Claire Mathieu, and Ioannis Milis.

“Energy-Efficient Algorithms for Non-preemptive Speed-Scaling”. In: Ap-

proximation and Online Algorithms - 12th International Workshop, WAOA

2014, Wroc law, Poland, September 11-12, 2014, Revised Selected Papers.

2014, pages 107–118. doi: 10.1007/978- 3- 319- 18263- 6_10. url:

http://dx.doi.org/10.1007/978-3-319-18263-6_10 (cited on

pages 38, 39).

[44] Vlad C. Coroama and Lorenz M. Hilty. “Assessing Internet energy in-

tensity: A review of methods and results”. In: Environmental impact

assessment review 45 (2014), pages 63–68 (cited on pages 67, 144).

https://doi.org/10.1109/eScience.2012.6404430
https://doi.org/10.1109/eScience.2012.6404430
https://doi.org/10.1145/1064212.1064253
http://doi.acm.org/10.1145/1064212.1064253
http://doi.acm.org/10.1145/1064212.1064253
http://doi.acm.org/10.1145/1064212.1064253
https://cloudstack.apache.org/
https://doi.org/10.1007/978-3-319-18263-6_10
http://dx.doi.org/10.1007/978-3-319-18263-6_10


Bibliography 157

[45] Vlad C. Coroama, Daniel Schien, Chris Preist, and Lorenz M. Hilty. “The

Energy Intensity of the Internet: Home and Access Networks”. In: ICT

Innovations for Sustainability. 2015, pages 137–155. doi: 10.1007/978-

3-319-09228-7_8. url: https://doi.org/10.1007/978-3-319-

09228-7_8 (cited on page 67).

[46] Rachel Courtland. “The end of the shrink”. In: IEEE Spectrum 50.11

(2013), pages 26–29. issn: 0018-9235. doi: 10 . 1109 / MSPEC . 2013 .

6655835 (cited on page 15).

[47] D. Dharwar, S. S. Bhat, V. Srinivasan, D. Sarma, and P. K. Banerjee.

“Approaches Towards Energy-Efficiency in the Cloud for Emerging Mar-

kets”. In: 2012 IEEE International Conference on Cloud Computing in

Emerging Markets (CCEM). 2012, pages 1–6 (cited on page 18).

[48] Zhihui Du, Rong Ge, Victor W. Lee, Richard W. Vuduc, David A. Bader,

and Ligang He. “Modeling the Power Variability of Core Speed Scal-

ing on Homogeneous Multicore Systems”. In: Scientific Programming

2017 (2017), 8686971:1–8686971:13. doi: 10.1155/2017/8686971. url:

https://doi.org/10.1155/2017/8686971 (cited on page 65).

[49] Enerdata. Global Energy Statistical Yearbook 2014. https://yearbook.

enerdata.net/. [Online; accessed 28-September-2017] (cited on page 2).

[50] Eucalyptus. http://open.eucalyptus.com/. [Online; accessed September-

2017]. 2009 (cited on page 4).

[51] Dror G. Feitelson, Dan Tsafrir, and David Krakov. “Experience with

using the Parallel Workloads Archive”. In: J. Parallel Distrib. Comput.

74.10 (2014), pages 2967–2982. url: http://dx.doi.org/10.1016/j.

jpdc.2014.06.013 (cited on pages 52, 59, 81).

https://doi.org/10.1007/978-3-319-09228-7_8
https://doi.org/10.1007/978-3-319-09228-7_8
https://doi.org/10.1007/978-3-319-09228-7_8
https://doi.org/10.1007/978-3-319-09228-7_8
https://doi.org/10.1109/MSPEC.2013.6655835
https://doi.org/10.1109/MSPEC.2013.6655835
https://doi.org/10.1155/2017/8686971
https://doi.org/10.1155/2017/8686971
https://yearbook.enerdata.net/
https://yearbook.enerdata.net/
http://open.eucalyptus.com/
http://dx.doi.org/10.1016/j.jpdc.2014.06.013
http://dx.doi.org/10.1016/j.jpdc.2014.06.013


Bibliography 158

[52] Saurabh Kumar Garg and Rajkumar Buyya. “NetworkCloudSim: Mod-

elling Parallel Applications in Cloud Simulations”. In: IEEE 4th Inter-

national Conference on Utility and Cloud Computing, UCC 2011, Mel-

bourne, Australia, December 5-8, 2011. 2011, pages 105–113. url: https:

//doi.org/10.1109/UCC.2011.24 (cited on pages 37, 43, 47, 55–57).

[53] Saurabh Kumar Garg, Chee Shin Yeo, Arun Anandasivam, and Rajku-

mar Buyya. “Energy-Efficient Scheduling of HPC Applications in Cloud

Computing Environments”. In: CoRR abs/0909.1146 (2009). url: http:

//arxiv.org/abs/0909.1146 (cited on pages 19, 28, 34, 35, 37, 80, 81,

104).

[54] Gartner’s Strategic Technology Trends for 2017. 2016. url: http://

www.gartner.com/technology/home.jsp (cited on page 2).

[55] Neven Abou Gazala. “Power management techniques for conserving en-

ergy in multiple system components”. PhD thesis. University of Pitts-

burgh, 2008 (cited on pages 16, 63).

[56] Marco E. T. Gerards, Johann L. Hurink, and Philip K. F. Hölzenspies.

“A survey of offline algorithms for energy minimization under deadline

constraints”. In: J. Scheduling 19.1 (2016), pages 3–19. doi: 10.1007/

s10951-015-0463-8. url: http://dx.doi.org/10.1007/s10951-

015-0463-8 (cited on pages 25, 38).

[57] Imran Ghani, Naghmeh Niknejad, and Seung Ryul Jeong. “Energy sav-

ing in green cloud computing data centers A review”. In: Journal of

Theoretical and Applied Information Technology 74.1 (2015) (cited on

page 16).

[58] Ronald L Graham, Eugene L Lawler, Jan Karel Lenstra, and AHG Rin-

nooy Kan. “Optimization and approximation in deterministic sequencing

and scheduling: a survey”. In: Annals of discrete mathematics 5 (1979),

pages 287–326 (cited on page 40).

https://doi.org/10.1109/UCC.2011.24
https://doi.org/10.1109/UCC.2011.24
http://arxiv.org/abs/0909.1146
http://arxiv.org/abs/0909.1146
http://www.gartner.com/technology/home.jsp
http://www.gartner.com/technology/home.jsp
https://doi.org/10.1007/s10951-015-0463-8
https://doi.org/10.1007/s10951-015-0463-8
http://dx.doi.org/10.1007/s10951-015-0463-8
http://dx.doi.org/10.1007/s10951-015-0463-8


Bibliography 159

[59] Gero Greiner, Tim Nonner, and Alexander Souza. “The Bell Is Ringing

in Speed-Scaled Multiprocessor Scheduling”. In: Theory Comput. Syst.

54.1 (2014), pages 24–44. doi: 10.1007/s00224- 013- 9477- 9. url:

https://doi.org/10.1007/s00224-013-9477-9 (cited on pages 38,

40).

[60] Jordi Guitart. “Toward sustainable data centers: A comprehensive energy

management strategy”. In: Computing 99.6 (2017), pages 597–615. doi:

10.1007/s00607-016-0501-1. url: https://doi.org/10.1007/

s00607-016-0501-1 (cited on page 26).

[61] Anupam Gupta, Ravishankar Krishnaswamy, and Kirk Pruhs. “Scalably

Scheduling Power-Heterogeneous Processors”. In: Automata, Languages

and Programming, 37th International Colloquium, ICALP 2010, Bor-

deaux, France, July 6-10, 2010, Proceedings, Part I. 2010, pages 312–

323. doi: 10.1007/978-3-642-14165-2_27. url: https://doi.org/

10.1007/978-3-642-14165-2_27 (cited on page 38).

[62] Willy Herroelen and Roel Leus. “Robust and reactive project scheduling:

a review and classification of procedures”. In: International Journal of

Production Research 42.8 (2004), pages 1599–1620 (cited on page 22).

[63] Fred Howell and Ross Mcnab. “simjava: A Discrete Event Simulation

Library For Java”. In: In International Conference on Web-Based Mod-

eling and Simulation. 1998, pages 51–56 (cited on pages 47, 50, 55, 56,

58).

[64] He Huang and Liqiang Wang. “P&P: A Combined Push-Pull Model

for Resource Monitoring in Cloud Computing Environment”. In: Cloud

Computing (CLOUD), 2010 IEEE 3rd International Conference on. 2010,

pages 260–267. doi: 10.1109/CLOUD.2010.85 (cited on pages 31, 63).

https://doi.org/10.1007/s00224-013-9477-9
https://doi.org/10.1007/s00224-013-9477-9
https://doi.org/10.1007/s00607-016-0501-1
https://doi.org/10.1007/s00607-016-0501-1
https://doi.org/10.1007/s00607-016-0501-1
https://doi.org/10.1007/978-3-642-14165-2_27
https://doi.org/10.1007/978-3-642-14165-2_27
https://doi.org/10.1007/978-3-642-14165-2_27
https://doi.org/10.1109/CLOUD.2010.85


Bibliography 160

[65] Pengcheng Huang, Pratyush Kumar, Georgia Giannopoulou, and Lothar

Thiele. “Energy efficient DVFS scheduling for mixed-criticality systems”.

In: 2014 International Conference on Embedded Software, EMSOFT 2014,

New Delhi, India, October 12-17, 2014. 2014, 11:1–11:10. url: http:

//doi.acm.org/10.1145/2656045.2656057 (cited on pages 3, 26).

[66] Ye Huang, Nik Bessis, Peter Norrington, Pierre Kuonen, and Béat Hirs-
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ing models. New York: Chapman and Hall/CRC., 2016 (cited on page 36).

[70] Raj Jain. The art of computer systems performance analysis - techniques

for experimental design, measurement, simulation, and modeling. Wiley

professional computing. Wiley, 1991. isbn: 978-0-471-50336-1 (cited on

page 35).

http://doi.acm.org/10.1145/2656045.2656057
http://doi.acm.org/10.1145/2656045.2656057
https://doi.org/10.1016/j.future.2011.05.006
https://doi.org/10.1016/j.future.2011.05.006
https://doi.org/10.1016/j.future.2011.05.006
https://doi.org/10.1145/1067309.1067324
https://doi.org/10.1145/1067309.1067324
http://doi.acm.org/10.1145/1067309.1067324
http://doi.acm.org/10.1145/1067309.1067324
https://doi.org/10.1109/CCGrid.2016.34
https://doi.org/10.1109/CCGrid.2016.34
https://doi.org/10.1109/CCGrid.2016.34


Bibliography 161

[71] Fredy Juarez, Jorge Ejarque, and Rosa M Badia. “Dynamic energy-aware

scheduling for parallel task-based application in cloud computing”. In:

Future Generation Computer Systems (2016) (cited on pages 26, 28, 33,

37).

[72] James M. Kaplan, William Forrest, and Noah Kindler. Revolutioniz-

ing Data Center Energy Efficiency, McKinsey & Company, July 2009.

https : / / www . sallan . org / pdf - docs / McKinsey _ Data _ Center _

Efficiency.pdf. [Online; accessed September-2017] (cited on page 139).

[73] Tarandeep Kaur and Inderveer Chana. “Energy Efficiency Techniques in

Cloud Computing: A Survey and Taxonomy”. In: ACM Comput. Surv.

48.2 (2015), 22:1–22:46. doi: 10.1145/2742488. url: http://doi.acm.

org/10.1145/2742488 (cited on pages 3, 18, 25).
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