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Abstract

We define a comonad cohomology of track categories, and show that it is related via a
long exact sequence to the corresponding (S,O)-cohomology. Under mild hypotheses,
the comonad cohomology coincides, up to reindexing, with the (S,0)-cohomology,
yielding an algebraic description of the latter. We also specialize to the case where the
track category is a 2-groupoid.
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1 Introduction

One of several models for (oo, 1)-categories, a central topic of study in recent years
(see, e.g., [4]) is the category of simplicial categories; that is, (small) categories Y
enriched in simplicial sets. If the object set of Y is O, we say it is an (S,O)-category.

One may analyze a topological space (or simplicial set) X by means of its Postnikov
tower (P"X)>° ,, where the n-th Postnikov section P" X is an n-type (thatis, has trivial
homotopy groups in dimension greater than n). The successive sections are related
through their k-invariants: cohomology classes in H"t(P"~1X; 7, X).

Since the Postnikov system is functorial (and preserves products), one can also
define it for a simplicial category Y: P"Y is then a category enriched in n-types, and
its k-invariants are expressed in terms of the (S,O)-cohomology of [11].
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A long-standing open problem is to find a purely “algebraic” description of Post-
nikov systems, both for spaces and for simplicial categories. For the Postnikov sections,
there are various algebraic models of n-types—and thus of categories enriched in n-
types—in the literature, using a variety of higher categorical structures. However, the
problem of finding an algebraic model for the k-invariants is largely open. For this pur-
pose, we need first an algebraic formulation of the cohomology theories used to define
the k-invariants. This leads us to look for an algebraic description of the cohomology
of a category enriched in a suitable algebraic model of n-types.

We here realize the first step of this program, for track categories—that is, categories
enriched in groupoids. In the future we hope to extend this to the cohomology of n-
track categories—that is, those enriched in the n-fold groupoidal models of n-types
developed by the authors in [6] and [17].

In [5] the authors introduced a cohomology theory for track categories (which
generalizes the Baues—Wirsching cohomology of categories—see [3]), and showed
that it coincides, up to indexing with the corresponding (S, O)-cohomology. This was
then used to describe the first k-invariant for a 2-track category.

A direct generalization of this approach is problematic, because of the difficulty
of defining a full and faithful simplicial nerve of weak higher categorical structures.
Instead, we use a version of André—Quillen cohomology, also known as comonad
cohomology, since we use a comonad to produce a simplicial resolution of our track
category (see [1]). We envisage a generalization to higher dimensions, using the n-fold
nature of the models of n-types in [6] and [17].

Our main result (see Corollaries 5.6 and 5.8) is that under mild hypotheses on a
track category X (always satisfied up to 2-equivalence), the comonad cohomology of
X (Definition 5.4) coincides, up to a dimension shift, with its (S,O)-cohomology. This
follows from Theorem 5.5, which states that any track category X has a long exact
sequence relating the comonad cohomology of X, its (S,0)-cohomology and the
(S,0)-cohomology of the category X of objects and 1-arrows of X. When the track
category X is a 2-groupoid, its (S,O)-cohomology coincides with the cohomology of
its classifying space.

1.1 Notation and conventions

Denote by A the category of finite ordered sets, so for any C, [A°P, C] is the category
of simplicial objects in C, while [A, C] is the category of cosimplicial objects in
C. In particular, we write S for the category [A°P, Set] of simplicial sets. We write
c(A) € [A°P,C] for the constant simplicial object on A € C.

For any category C with finite limits, we write Gpd C for the category of groupoids
internal to C—that is, diagrams in C of the form
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satisfying the obvious identities making the composition m associative and every ‘1-
cell’ in X invertible.

For a fixed set O, we denote by Catp the category of small categories with object
set O (and functors which are the identity on O). In particular, a category Z enriched
in simplicial sets with object set O will be called an (S, 0)-category, and the category
of all such will be denoted by (S,0)-Cat. Equivalently, such a category Z can be
thought of as a simplicial object in Catp. This means C has a fixed object set O in
each dimension, and all face and degeneracy functors the identity on objects.

More generally, if (V, ®) is any monoidal category, a (V,0)-category is a small
category C € Catp enriched over V. The category of all such categories will be
denoted by (V,0)-Cat. Examples for (V, ®) include S, Top, Gp, and Gpd, with ®
the Cartesian product. When V = Gpd, we call Z in Trackp := (Gpd,O)-Cat atrack
category with object set O (see Sect. 4.1 below).

Another example is pointed simplicial sets )V = Sy, with ® = A (smash product).
We can identify an (S,, O)-category with a simplicial pointed O-category.

1.2 Organization

Section 2 provides some background material on the Bourne adjunction (Sect. 2.1),
internal arrows (Sect. 2.2), modules (Sect. 2.3), (S,0)-cohomology (Sect. 2.4) and sim-
plicial model categories (Sect. 2.5). Section 3 sets up a short exact sequence associated
to certain internal groupoids (Proposition 3.5), and Sect. 4 introduces the comonad
used to define our cohomology, and shows its relation to (S,0)-cohomology (The-
orem 4.9 and Corollary 4.10). Section 5 defines the comonad cohomology of track
categories, and establishes the long exact sequence relating the (S,O)-cohomologies
of X and of X and the comonad cohomology of X (Theorem 5.5). Section 6 special-
izes to the case of a 2-groupoid, showing that in this case (S, O)-cohomology coincides
with that of the classifying space (Corollary 6.4). The long exact sequence of Corollary
6.5 recovers [16, Theorem 13].

2 Preliminaries

In this section we review some background material on the Bourne adjunction, the
internal arrow functor, modules, (S,O)-cohomology, and simplicial model categories.

2.1 The Bourne adjunction

Let C be a category with finite limits and let SpIC be the category whose objects are
the split epimorphisms with a given splitting:

q
(A ? B) (1)
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Define R : Gpd C — SplC by

d
RX = (X ;ﬁ: Xo).

q
Let H : SplC — GpdC associate to Y = (A =——= B) the object
t

pr
9 q m q e
HY : AxAxAHAXA?A
-

A

q
of Gpd C, where A x A is the kernel pair of g, A = (Id4, Id4) is the diagonal map,
and

q q q q q
m = (prg,pry) :AXAXA=Z(AXA)Xa(AXxA) > AxA

with pr; m = pr; m; (i =0, 1), where m;, pr; are the two projections. Note that HY
is an internal equivalence relation in C with ITo(HY) = B. Consider the following
diagram

GpdC — X o [A™ ¢
HT lR Dec T+ 2)
splC Aug[A™, C)

-

n

where Aug[AOP, C] is the category of augmented simplicial objects in C, + is the
functor that forgets the augmentation, the décalage functor Dec ( obtained by for-
getting the last face operator) is its right adjoint, and nX is the nerve of the internal
equivalence relation associated to X, augmented over itself, with Ner H = +n.

Diagram (2) commutes up to isomorphism—that is, there is a natural isomorphism
a : DecNer = nR. Since + — Dec, this implies that H 4 R (see [7, Theorem 1]).

q pro
Given X € SplC asin (1), we have RHX = (Ax AZ=—=A). The unit  :
A
X — RHX of the adjunction H 4 R is given by

q
A—>8B 3
Il\L ! lt
q pro
A X A

|
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where #; is determined by

A Id

so that
prot1 =tq, priti=1d, and #t = (t,t) = At. (@)

This show that n = (¢, ¢1) is a morphism in SplC.
Finally, if w is the counit of the adjunction H 4 R, and  that of + - Dec, then
for any X € GpdC the following diagram commutes:

Ner

Ner HRX Ner X
| -
+nRX 7
- HMNer X
2l P
+ Dec Ner X

Thus u = P Ner u where P - Ner.

2.2 The internal arrow functor

Let U : GpdC — C be the arrow functor, so UY = Y| for Y € Gpd(C, and
assume C is (co)complete with commuting finite coproducts and pullbacks. For any
X € C let X5, X; be two copies of X, with F : X;[[ X, — X the fold map and
LX € GpdC the corresponding internal equivalence relation, so (LX) = X [ [ X;

F F
and (LX) = (X5 ] X;) x (X5 I X;). Then X ][ X, =—= X isan objectof SpIC
i
and

LX:H(XSUXt:FX) 5)

Iy

(cf. Sect. 2.1), where i1 is the coproduct structure map. Therefore,

(X, L1 X0 x (Xs 1] X0)

= (XyxxXo) [ Xgxx X)) [ (XexxXo) [T (X xx X0) =X [[ Xge [ [ X5 [ X1

(0)

where X3 = Xoxx X5, X = XoxxXy, Xis = XexxXs, and Xy = Xy xx X,
Under the identification (6) the face and degeneracy maps of LX are as follows:
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so includes X [ [ X; into X5 [ [ X¢r; do sends X5 and X, to X, and X,s and
X to Xs;and dp sends Xy and X to X, and X;; and X;; to X;.

To see that L is leftadjointto U, given f : X — Y1 = UY,its adjointf: LX > Y
is given by f1 : X5 [ [ Xgr [[ Xss [ [ Xss — Y1 (determined by sodo f 1 Xgs — Y1,
f Xy — Y, fot: X, — Yi,andsodof : Xy — Y1), and fo ¢ X 1[X: = Yo
(determined by d,f : Xy — Yo and d|f : X; — Yp). Here 7 : X;; — Xy, is the
switch map, with t o T = 1d.

Conversely, given g : LX — Y with g1 : Xgs [[ X5 [ [ Xrs ][ Xrr — Y1 and go :
Xs [ X: — Yo, its adjoint § : X — Y|, has g9 determined by dof : X; — Yo and
di f : Xy — Yy, while g; is determined by sody f : X5 — Y1 and sod) f : Xy — Y

(where f : X5 — Y is the composite X, S Xy, LT Xse 11 Xes LT Xt LN Y1).

2.3 Modules

Recall that an abelian group object in a category D with finite products is an object
G equipped with a unit map o : * — G (where * is the terminal object), and inverse
map i : G — G, and a multiplication map i : G x G — G which is associative,
commutative and unital. We require further that

pno(d,i)oA = o ocy, (7)

where A : G — G x G is the diagonal, and c, the map to .

Definition 2.1 Given an object X in a category C, we denote by (Gpd C, X() the
subcategory of Gpd C consisting of those Y with Yo = X (and groupoid maps
which are the identity on Xg). For X € (Gpd(C, Xy), an X-module is an abelian
group object M in the slice category (GpdC, X¢)/X. Since the terminal object of
D = (GpdC, Xg)/X isldy : X — X, and the product of p : M — X with itself in

P
Disppr =pp2: M x M — X,aunit map for p : M — X is given by a section
o : X — M (with po = Id), and the multiplication and inverse have the forms

23 i

P
M x M M M

M
X X,
respectively. Note that (7) applied to p : M — X implies that
pndd,i)o Ay = op, (@)

P
for diagonal Ay : M — M x M ando : X — M the zeromapof p: M — X.
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Remark 2.2 Suppose that X = HY, for H : SpIC — GpdC as in Sect.2.1 and

q
Y= (Xo=—=my) €SplC. O]
t

q
Thus X1 = X¢ X Xo, and an X-module M — X is given by

q
M Pl Xo X Xo

dolldl prO\L\Lprl
Id

Xo ——> Xo

q
with p; = (dp, d1). Note that the fiber M (a, b) of p; over each (a, b) € Xg x Xo is
an abelian group, with zero o1 (a, b), and the zero map ¢ : X — M is given by

q
Xo X Xo d M, h Xo x Xo
prol lpr> A doudl > 50 Prol lpf1> A
Xo Xo Xo

with p1¢1 = Id. Thus for Y as in (9), the adjointdA) € Homsy ¢y/ray (Y, R(M)) is
the composite

X()%-XO X X()L—Ml
i A
0 Xog ———=X)

t

where n = (1, t) is the unit of the adjunction H - R, as in (3).

Definition 2.3 The idempotent map in SplC

tq
Xo —— Xo

ql Tt ql T,
o 4>Id o
induces an idempotent e = H(tg) : X = H(Y) — X inGpdC (for Y asin (9)).
Note thateg = tq and ey = (eg, eo). We therefore obtain an idempotent operation e
on HomGpdC/X(X’ M), taking f : X — M to fe: X — M. We write fe = e(f).
This sends (a, b) € Xox4Xo to f(tqa,tqb). Let e*M be the pullback
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o) / (10)

in Gpd C. If we denote the fiber of p’ at (a,b) € X| by (e*M);(a, b), we have
(e*M)i(a,b) = (a,b)XqamMi(ta, tb), which is isomorphic under ri(a, b) to
M (ta, tb). The unit map ¢’ of e*M is given

X oe
S T
M —"— s M (11)
Id o ip
X———X

(o2

X M
where is the unit of p : M — X, so in particular
™ ¢ :

014x, =50 : Xo = M;. (12)

Thus for each (a,b) € X; we have o'(a,b) = ((a,b), (ce)(a,b)) =
((a,b),o(tqa, tqb)).

The multiplication (e*M)xx,(e* M) M—/l> (e*M)1 on ((a,b),m), ((a,b),m")
by
wi(((a, b), m), ((a, b),m")) = ((a, b), wi(m, m"), (13)

so identifying (¢* M) x x, (e*M)1 with X|x x, (M1 xx, M), wehave ;| = (Id, p11).
Finally, the zero map of ¢*M is given on ((a, b), m) € (¢*M); by

o1pi((a,b),m) = o{(a, b) ={(a, b), o (tqa, tgb)} = {(a, b), opi(m)}
since p(m) = (tqa, tgb). Thus Oy, = o{p; = (Id, op) = (Id, Opy).

2.4 (S,0)-Categories

In [9, §1], Dwyer and Kan define a simplicial model category structure on (S,0)-Cat,
also valid for (S,,0)-Cat (see Sect. 1.1 and [15, Prop. 1.1.8]), in which a map
f X — Y isafibration (respectively, a weak equivalence) if for each a, b € O, the
induced map f, p) : X(a, b) — Y(a, b) is such.
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The cofibrations in (S,0)-Cat or (S,,O)-Cat are not easy to describe. However,
for any K € Catp, the constant simplicial category ¢(K) € [A”, Catp] = (S,0)-Cat
has a cofibrant replacement defined as follows:

Recall that a category ¥ € Catp is free if there exists a set S of non-identity
maps in Y (called generators) such that every non-identity map in Y can uniquely be
written as a finite composite of maps in S. There is a forgetful functor U : Catp —
Graphy to the category of directed graphs, with left adjoint the free category functor
F : Graphp — Catp (see [13] and compare [9, §2.1]). Both U and F are the identity
on objects.

Similarly, an (S,0)-category X € (A%, Catp] = (S50)-Cat is free if for each
k € A, Xy € Catp isfree, and the degeneracy maps in X send generators to generators.
Every free (S,O)-category is cofibrant (cf. [9, § 2.4]). Moreover, for any K € Catp,
a canonical cofibrant replacement F,/C for ¢(K) in (S50)-Cat = (A%, Catp]
(Sect. 1.1) is obtained by iterating the comonad FU : Catp — Catp (so
FoK = (FU)"t'K). The augmentation F,K — K induces a weak equivalence
FoK =~ ¢(K) in[A”, Catp] = (S,0)-Cat. If L is pointed, F K is a (S,, O)-category.

More generally, if X is any (S,0)-category, thought of as a simplicial object in
Catp, its standard Dwyer—Kan resolution is the cofibrant replacement given by the
diagonal Diag F,X of the bisimplicial object F,X € [A%” Catp] obtained by
iterating FU in each simplicial dimension.

Definition 2.4 The fundamental track category of an (S,0)-category Z is obtained by
applying the fundamental groupoid functor 7; : S — Gpd to each mapping space
Z(a,b) (see [12, §1.8]. When Z is fibrant, A := 7;Z has a particularly simple
description: for each a, b € O, the set of objects of A(a,b) is Z(a, b)y, and for
x,x" € Z(a, b)o, the morphism set (A(a.b))(x,x") is {t € Z(a,b); : dot =
x,d\t = x'}/~, where ~ is determined by the 2-simplices of X. Since 77; commutes
with cartesian products for Kan complexes, it extends to (S,0)-Cat (after fibrant
replacement).

A module over a track category A € (Gpd,O)-Cat is an abelian group object M
in (Gpd,0)-Cat /A (see Sect.2.3). For example, given a (fibrant) (S,0)-category Z,
for each n > 2 we obtain a 77; Z-module by applying 7,,(—) to each mapping space
of Z.

For each track category A € (Gpd,O)-Cat, A-module M and n > 1, we have a
twisted Eilenberg—Mac Lane (S, 0)-category E = EA(M, n) over A, withm, E = M
andm; E =0 for2 <i #n (see[10, §1] and [11, §1.3(1v)]).

Given A € (Gpd,0)-Cat, a A-module M, and an object Z € (S,0)-Cat equipped
with a twisting map p : m1Z — A, the n-th (S,0)-cohomology group of Z with
coefficients in M is

HEo(Z/ Ay M) == [Z, EA(M, n))(S0)cat /B A
= 70 MAPSO)-cat/BA (Z, EA(M, n)),

where mapsoy.cat/a(Z,Y) is the sub-simplicial set of map )., (Z,Y) con-
sisting of maps over a fixed base A (cf. [11, §2]) Typically, A = 7,Z, with p a
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weak equivalence; if in addition Z ~ BA, we denote Hgy(Z/A; M) simply by
Ho(A; M).

2.5 Simplicial model categories

Recall that a simplicial model category M is a model category equipped with functors
X+~ X®K and X — XX natural in K € S, satisfying appropriate axioms (cf.
[14, Definition 9.1.6]).

For example, S itself is a simplicial model category, with X ® K = X x K
and XK = map(K, X), where map(K, X) € S has map(K, X), := Homg(K X
Aln], X). Similarly, (5,0)-Cat is also a simplicial model category (see [9, Proposition
7.2]).

Definition 2.5 Let M be a simplicial model category. The realization |X| of X €

op

[A™, M] is defined to be the coequalizer of the maps

¢
[ Xe®Alnl—= [] X, ® A[n],
(0:[n]—[k])eA ¥ n>0

where on the summand indexed by o : [n] — [k], ¢ is the composite of 0% @ 1 Ak :
X ®A[n] — X,, ® A[n] with the inclusion into the coproduct, and 1 is the composite
of 1y, ® 0y : X ® Aln] — X ® A[k] with the same inclusion (see [12, §VIL3]).

Similarly, if X € [A, M] is a cosimplicial object in M, its total object Tot X is
the equalizer of

®
1—[ (Xn)A[n] - s 1_[ (Xk)A[n]
[n]leOb A V¥ (o:[n]—[k]ea

with ¢ and v defined dually (cf. [14, Def. 18.6.3]).
The following is a straightforward generalization of [8, XII 4.3]:

Lemma2.6 If M = [A”, D] is a simplicial model category and X € [A”, M] =
[A%™, D], then Diag X = |X| and map ,,(Diag X, K) = Tot map ((X, K).

3 Short exact sequences

We now associate to any internal groupoid of the form X = HY (cf. Sect. 2.1) and
X-module M a certain short exact sequence of abelian groups (see Proposition 3.5).
When C = Catp, this can be rewritten in a more convenient form (see Proposition
5.3); however, in this section we present it in a more general context, which may be
useful in future work. A similar short exact sequence appears in [19, Theorem 3.5] for
C an algebraic category (with a different description of the third term). When C = Gp,
it reduces to [16, Lemma 6], though the method of proof there is different.
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q
Definition 3.1 Let X = H (X9 =——= mg) , with dX¢ the discrete internal groupoid
t

on X(. We define j: dXop — X to be the map

AXO
Xo ——— Xox4¢Xo

i

in (Gpd C, X¢). Consider the pullback

Mt oy

L

Xy ——X

in GpdC/X, where dy = d; = A1 : (j*M)| — X, since dX¢ is discrete. Because
(14) induces

G*M) —— My (15)

Xo — XoXxsX0 = X
J1=4%, a4

(a pullback in C), we shall denote (j*M); by j M.
We shall use the following abbreviations for the relevant Hom groups:

Hom (o, 1*j¥M1) = Home)z, ((T0 ~> 70), (t*jiMy 2> m0)),

Hom(Xo, jiMy) =  Home,x, (Xo —> Xo)), (jiMi =5 Xo)), y
Hom(Xy,e*M) :=  Homgx, (X1 <> X1)), (((¢*M); 25 X1))), 1
Hom(X, e*M) := Homgpac/x (X 2 X), ("M 2 X)).

Definition3.2 In the situation described in Sect. 3.1, given a map
Xo ———= jiM,

\ / in C/Xo, we have p1ki f = Ax, M f = Axyeo = e1Ax,,
ep=tq X A
0

since the square
e
Xo——> Xo

Axol leo (17)
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commutes. Now let v : Xg — (¢*M); be given by

Xo ki f
\
(e*M); ——= M, (18)
Axoe():eleo \L \L
o o1

X) ——=Xi

where p1ki f = Ax A f = Ax,e0 = e1Ax, = eje1 Ay, by (14) and (17).
Since ey = tq, the following diagram commutes:

Xo — 7 0
lz
v Xo (19)

J/AX()

(M) —— X
P1

so v induces (v,v) : X1 = Xox4Xo — (e*M)1xx,(e*M);. In the notation of
(16), we may therefore define ¥ : Hom(Xy, jM|) — Hom(Xy, e*M;) by letting
M (f) : X1 — (¢*M); be the composite

X1 B (@ Myxx (M) S (@ My <y (M) s M) (20)

where i : e*M — ¢*M is the inverse map for the abelian group structure on e*M.

Lemma 3.3 The map © = (eg, 1) lands in Hom(X, e*M), for ey = tq and ¥ as
in (20).

Proof By (8) we have o{p; = p}(Id, i) Ay, > SO

v Al Lo iy i 3
Xo —> (M) —> (" M) 1 xx, (e"M)| —> (" M) xx, (" M),

elk\ lp'
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commutes, as does

Axy

Xo X
vl l(v,v) (22)
(€M) ———— (" M) x x,(e* M),
A(e*M)l

so by (21), (22), (12), and the definition of ¥ (f) we see that
91(f)Ax, = p1(Id, i) (v, V) Ax, = gje1Ax, = o1 Ax,e0 = spe0  (23)
By (13), for each (a, b) € Xox4Xo (with tqa = tqb) we have
U1(f)a, b) = ((tqa, tqa), pi(ky fa, irky fb)), (24)
so dy1(f)(a,b) = tga = egpry(a,b) and d{91(f)(a,b) = tqgb = eypr;(a,b).

Thus
dit(f) = eopr; (25)

fori = 0, 1. Thus (23) and (25) show that

s
X, — 2D emy,

pro \upr|> Axy d lldi> s (26)

Xg ——— Xo

commutes. Now, given (a, b, ¢) € Xox4Xox4Xo (Withtga =tqb = tqgc), we have
d@1(f)(a,b) x 91(f)(b, ¢)) = ((tqa, tqa), pi(ky fa,itky fb) o wi(ky fb, irki fc))

while 91 (f)c"(a, b, c) = 91(f)(a, c) = ((tqa, tqa), u1 (k1 fa, i1k fc)), where we
denoted by ¢” : X1xx,X1 — X and ¢’ : (¢*M)1xx,(e*M); the compositions.
Since w1 is a map of groupoids, by the interchange rule we see that

witky fa,itky fb) o ui (ki fb,irtky fo) = pi(ki fa, itk fc)

where o the groupoid composition.
Finally, p] o 91(f) = ey, 50 (ep, ¥1(f)) is indeed a morphism in GpdC/X. O
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Definition 3.4 The pullback

M M

rl l)\ 7)

dmy ——— dXg
dr

in Gpd C/dmp gives rise to a pullback

i
1 jEMy —— M,
rll J/xl (28)
) ﬁ- Xo
in C, so we may define
& : Hom(mo, t*j{ M) — Hom(Xo, ji M) (29)

0 %—t*]f‘Ml

by sending \ / , to the map £(f) given by
Id

hifaq M,

Xo J1
\ / G
tq Al
Xo

Proposition 3.5 Given X = H(Y) € GpdC as in (9) and M € [(GpdC, X¢)/X]ab,
there is a short exact sequence of abelian groups

0 — Hom(mo, *j{ M) £ Hom(Xy, j*M1) LA Hom(X, e*M) — 0,

in the notation of (16), where & is as in (29) and v is as in Lemma 3.3.

Proof We first show that Im& C kerd: Given f' : my — t*jfM; in
Hom(mg, t* j{My), the map £(f’) € Hom(Xo, j*M;) is given by the composite

X0—>7T()i>t ]ile —)]1*M1
By (24) and (30), for each (a, b) € X| we have

N1(E(f)(a, b) = ((tqa, tgb), pi(kily f'q(a), ivkily f'q (D))}

Since g (a) =g (b), we have 91 (§(f"))(a, b) = ((tqa, tqb), 0), which is the zero map
of Homgpgc,x (X, e*M). This shows that Im & C ker 9.
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Given g’ : Xo — j{M; (asin (30)) in ker 91, for all (a, b) € X| we have

9(g)(a, b) = {(tqa, tqa), p1(kig' (@), itk1g' (b)) = {(1qa, tqb), 0}.

Thus k1 g’ pro(a, b) = k1g'a = k1g’b = k1g’ pri(a, b), so that

kig'pro = kig'pri. (3D
. Pro q . . . .
Since X1 —=< Xo ——mp 1is a coequalizer, it follows from (31) that there is
pr

amap f : mg — M, with fg = kig/, and thus f = fqt = kig't,s0o p1f =
p1kig't = Ax,hg't = Ax,tqt = Ax,t. Hence there is f : mg — jiMy defined by
fTt:my — M; x Xo into the pullback (15). Since A f = ¢, there is also a map
f'imo — t*jiM; defined by fTId: o — JjiMy x g into the pullback (28).

By (31) and the above we have k1g’ = fq = k; fq. Since ki is monic, this
implies that g’ = fg, and since f = I f/, also g’ = [1 f'q = 91(f’). This shows that
ker o € Im&. In conclusion, ker ¥ = Im &.

To show that £ is monic, assume given f, g € Hom(mo, t* M) with& f =£g.
Then /1 fq = l1gq, which implies that

hf = hg, (32)

since g isepic. Also, p1kil1 f = Ax,yts1 f and p1kil1g = Ax,ts18,s0by (32) we have
Axots1f = Axyts1g and therefore s1 f = gproAx,tsif = qproAx,tsig = s18.
By the definition of t* j" M as the pullback (28), together with (32) this implies that
f = g. Thus £ is a monomorphism.

To show that ¥ is onto, assume given ¢ € HomGpd c/x (X, e*M) (sothat p’o¢p =
e). The adjoint of ¢ in Homgy, ¢y (Y, R(e*M)),forY asin (9), is given by acommuting
triangle in Spl C:

TT0 P Xo
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The adjoint ¢ of (g, #) is given by postcomposing with the counit of H 4 R, so ¢ is
the horizontal composite in:

Xox4Xo L— (e*M)lxd(/)(e*M)l s (e*M)

Ax, Q?Vouprl pro u 1771; A my, dj ud{> 5§

Xo Z (e*M), o Xo
1
34
\ / 34
o X()XqX() Id
proupn

By Sect. 2.1, the counit w is wi{((a, b), m), ((a, b), m")} = ((a, b), m o m’). Since
fitq = Atq by (4),) by (33) we have pig = t11q = Atq = Aey.

We have a map g : X9 — (¢*M); into the pullback square of (18) given by
o1j1Ttitq : Xo — M; x X;. This in turn defines g’ : Xg — j*(e*M)y, given by
another pullback:

)

Xo ————— X
0 g

We define g;m : Xo — j*M into the pullback (15)by oy j1 Ttq : Xo — M| x Xy,
since Ax,tq = p101 j1. By the definitions of g, gjwl ,and ¢, for each (a, b) € X| we
have 13‘(g}wl)(a, b) = {(tqa, tqb), Ml(gﬁw1 (a), ilklg}ul (b))}, while by (34) we have:

¢(a,b) = {(tqa, tgb), m((tqa, tqb), kigy, (@), (tqa, tqb), ki gy, (b)}
= ((tqa, 1gb), g}y, (@) o i1k1 gy, (b)),
with g}m (a) oitky g}m (b) € Mi(tqa, tgb). By the Eckmann—Hilton argument, the
abelian group structure on M| (tqga, tgb) is the same as the groupoid structure, so

S, (@) o irkigy, (b) = pi(kigyy, (@), itkig),, (b)). We conclude that 9 (g')(a, b) =
¢(a, b) foreach (a, b) € X1, 0 ¥ (g’) = ¢, as required. m]

We now rewrite the map ¥ of Proposition 3.5 in a different form (see Lemma 3.7).
This will be used in Proposition 5.3 in the case C = Catp:
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Definition 3.6 Given X = H(Y) € GpdC as in (9), we define a map
9" Home,x, (Xo, ji M1) — Homgpac,x (X, M) (35)

as follows: the pullback square (15) implies that a map Xo — jl*Ml_ is given by
[ Xo — My with p f = Ax,. We then define ¢ (f) : X1 — My by 9 (f)(a,b) =
o(a,b) o f(b) — f(a)oo(a,b), where o is the groupoid composition in M and the
subtraction is that of the abelian group object M. This gives rise to a map

D
X, 2(f) M,

p”’l TAXO d(,l T

Xo — Xo

in SplC, where for each (a, b) € X, with doz?/‘(f)(a, b) = (Idopp)(a,b) = a we
have

H(f)Axy(a) = F(f)(a,a) =o(a,a)f(a) — fla)o(a,a) = Oy = o(a,a) = so(a).

Here 0 Ax, = so : Xo — M) because (o, 1d) : X — M is amap of groupoids. Thus
we have a map in Homspc/rpy (Y, R(M)) given by the composite

f F(f)

Xo X1 My
ql Tt proi TAXO dOJ/ TS()
0 ; Xo W Xo

By Sect. 2.1 this corresponds to the map ¥’ (f) in Homgpge x (X, M) with 9/ (f)o =
Id. and ¥/(f)1 = 9 (f). We define

Id !
¢ : Homgpgc/x (X — X), M5 x)) - Homgpac/x (X = X), M2 X))
(36)
as follows. By Sect. 2.1, an element of Homgpqc/x ((X - X), (M LA X)) is deter-

mined by the map
8

X1 My

Prol TAXO dol Tso (37)

Xo — Xo
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in Spl C. We associate to this another map in SplC:

X, #(2) oM,

Prol TAXO d(’)l T " (38)

Xo Xo

€0

where a(g) into the pullback square of (18) is given by ¥, Tey : X1 — My x X3,
with ¥ (a, b) = o (tqa, a)g(a, b)o (b, tgb). Note that, since p1(m) = (dpm, dym):

p1V¥g(a, b) = pyoi(tqa, a)pig(a, b)pio (b, 1qb) = (t1qa, a)(a, b)(b, tqb) = ey (a, b).
We may check the commutativity of (38), using (11). The map (e, dj(g)) in (38)
then defines an element ¢ (g) in Homgpg C/X((Xi> X), (e*M LN X)).

Lemma 3.7 For ¢’ asin (35) and ¢ as in (36), the diagram

1 eas A oY
Homex, (X — X), (j*M — Xo) ——— Homgpgc/x (X, M)
j/“q)* l¢ (39

1q g 9
Home, x, (X — X), (j*M = X¢) ——— Homgpac/x (X, e* M)

commutes, with vertical isorzzorphisms, where (tq)*(Id, f) = (tq, f ) for (Id, f) €
Homg, x, (Xo, JiMy) and f(a) = o(tqa,a) f(a)o(a, tqa).

Proof For each (a, b) € X; we have 0'(Id, f)(a,b) = o(a, b) f(b) — f(a)o(a,b),
SO
¢¥'(d, f)(a,b) = o(tqa,a){o(a,b) f(b) — f(a)a(a,b)}o(tqb, b)
= o(tqa,a)o(a,b) f(b)o(b,tqb) — o (tqa,a) f(a)o(a, b)o (b, tgb)
= f®) = f@ = 9(f)(a,b) = ¥(tq)*(d, f)(a, b)
Thus (39) commutes. The map (g)* is an isomorphism, with inverse sending (¢, g) :

Xo — €*jiMy to (Id, 8) : Xo — jMi, where g(a) = o(a,tqa)g(a)o(tqa, a).
The map ¢ is an isomorphism by construction. O

4 Comonad resolutions for (S, ©)-cohomology
We now define the comonad on track categories which is used to construct functorial
cofibrant replacements, yielding a formula for computing the (S, O)-cohomology of a

track category. This will provide crucial ingredients (Theorem 4.9 and Corollary 4.10)
for our main result, Theorem 5.5.
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4.1 Track categories

Track categories, the objects of Trackp = Gpd(Catp) of Sect.1.1, are strict 2-
categories X with object set O (and functors which are identity on objects) such that
for each a, b € O the category X(a, b) is a groupoid. The double nerve functor
provides an embedding N(y) : Trackp — [A2” | Set]

The lower right corner of N(2)X (omitting degeneracies), appears as follows, with
the vertical direction groupoidal, and the horizontal categorical:

— XuXx,, X1 —= O

1A

_—
XuxoXiy ———= X1 — O
> E— -~
I I i
Xioxo X0 —= Xio ——= O

There is a functor ITy : Trackpy — Catp given by dividing out by the 2-cells: that
is,(IToX)o = O and (I[IpX); = g X1, where X is the groupoid of 1- and 2-cells in
X and g : Gpd — Set is the connected component functor.

Definition 4.1 We say X € Trackp is homotopically discrete if, for each a, b € O,
the groupoid X (a, b) is an equivalence relation, that is, a groupoid with no non-trivial
loops.

Remark 4.2 By taking nerves in the groupoid direction we define
I : Trackp = Gpd(Catp) — [A”, Catp] = (S,0)-Cat (40)

If F: X - Y inTrackp is a 2-equivalence (so for each a,b € O, F(a,b) is
an equivalence of groupoids), I F' is a Dwyer—Kan equivalence of the corresponding
(S,0)-categories. In particular, if X € Trackp ishomotopically discrete, and d ITp X is
atrack category with only identity 2-cells), this holds for the obvious F : X — dITpX.

4.2 The comonad /C
Taking C = Catp in Sect. 2.2 yields a pair of adjoint functors
L : Catp = Gpd(Catp) = Trackp : U.

Let Graphy be the category of reflexive graphs with object set O and morphisms

do
—_—

which are identity on objects (where a reflexive graph is a diagram X; 4, Xo

-
S0
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with dpso = d1sp = 1d). There are adjoint functors F : Graphy = Catp : V, where
V is the forgetful functor and F is the free category functor. By composition, we obtain
a pair of adjoint functors

LF : Graphp = Trackp : VU, 4D

and therefore a comonad (K, ¢,8), L = LFVU : Tracko — Trackp, where ¢ is
the counit of the adjunction (41), § = LF(n)V U, and n the unit of the adjunction
(41). For each X € Trackp we obtain a simplicial object I, X € [Anp, Trackp] with
K, X = K™ X and face and degeneracy maps given by

8 = Kl K" X - K"X and o; = KIsK" ™ K"l X — K2,

The simplicial object /(o X is augmented over X via e : £, X — X, and K X is a
simplicial resolution of X (see [20]).

Remark 4.3 The augmented simplicial object VU (e X) YU yux s aspherical

(see for instance [20, Proposition 8.6.10]).

Remark 4.4 Given X € Catp by (5) we see that LX is a homotopically discrete
track category (Definition 4.1), with [IoL X = X. There are two canonical splittings
ITyLX = X — (LX) = X ][ X;, given by the inclusion in the s or in the ¢ copy of
X.Since KY = L(FVUY) foreach Y € Trackp, the same holds for Y.

Furthermore, since FVUY is a free category, so is [1opY = FVUY. Since
F preserves coproducts (being a left adjoint), (KY)9 = FVUY|[FVUY =
F(VUY]]VUY) and, using (6), (KY); = F(VUY][VUY][]VUY]]VUY).
Thus both (KY)o and (KY); are free categories. Similarly, (KY), is a free category
foreachr > 1.

4.3 The comonad resolution

Let 1 : [A™, Trackp] — [A”, (S,0)-Cat] be the functor obtained by applying
the internal nerve functor / of (40) levelwise in each simplicial dimension—so for
X € Trackp, TK.X € [A”, (S,0)-Cat]. Similarly, N : (S,0)-Cat — [AZ”, Set]
is obtained by applying the nerve functor in the category direction; applying this
levelwise to 1Ko X yields

W =NIKX e[A*" Set]. (42)

Below is a picture of the corner of W, in which the horizontal simplicial direction is
given by the comonad resolution, the vertical is given by the nerve of the groupoid
in each track category, and the diagonal is given by the nerve of the category in each
track category.
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N\
\

(K2X)11% (k2x)50 (K2 X)11 (KX)11 % (kx),0 (KX)11
/ (K2X)11 %0 (K2X)11 7 >(KX)11xo (KX)1
o / o /
(K2X)1 (KX)1
/ (K2X)10x0 (K2X)10 % (KX)10x0 (KX)10
I 17 L W
(K2X)10 (KX)10
o o 43)

Note that the augmentation € : K, X — X induces a map in [A3Up, Set]:
W — NIcX. (44)

Now let Z = W® be W thought of as a simplicial object in [AZ” Set] along the
direction appearing diagonal in the picture, that is

Z e [A%, 1A%, Set]], (45)

with Z; the constant bisimplicial set at O, Z; given by

(K3 X1 X 13010 (K31 —= (K2x01 *(2X010 (K201 === (KX)11 x(kcx),9 K11

I I I

(31 (K2X)1 (KX
(K3X)19 (K2X)10 (KX)10
with
- k
ZkZZIXZo"'XZQZlv (46)

for each k > 2.
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By applying the diagonal functor Diag : [A%”, Set] — [A™, Set] dimensionwise
to Z (viewed as in (45)), we obtain DiagZ € [AOP, [AOP, Set]].

To show that DiagZ is an (S,O)-category, we must show that it behaves like the
nerve of a category object in simplicial sets in the outward simplicial direction: this
means that (DiagZ)g is the “simplicial set of objects”—and indeed it is the constant
simplicial set at O. Similarly, (DiagZ); is the “simplicial set of arrows”.

Since Diag preserves limits, by (46) we have

—_— ~ e ~ e k .
(DiagZ); = Diag Z; = Diag Z1 XDiagz," * - X Diagz, Diag Z1

= (DiagZ); X (Diagz),” " * ¥ (Diag2)o (DiagZ);.

for each k > 2. Thus DiagZ is 2-coskeletal, with unique fill-ins for inner 2-horns
(the composite) so it is indeed in (S,O)-Cat, and the map (44) induces a map « :
DiagZ — IX for I asin (40).

Lemma 4.5 For Z and Diag Z as above, a : DiagZ — 1X is a Dwyer—Kan equiva-
lence in (S,0)-Cat.

Proof We need to show that, for eacha, b € O

(DiagZ)(a, b) — X(a,b) 47)

is a weak homotopy equivalence. Note that (DiagZ)(a, b) is the diagonal of

-~ (K3X)11(a, b) =% (K2X)11(a, b) == (KX)11 (@, b) 48)

I W W

- (K3 X)10(a, b) == (K2X)10(a, b) == (KX)10(a, b),

and we have a map from (48) to the horizontally constant bisimplicial set

© Xi1(a, b) = Xn1(a, b) == X11(a, b) (49)

H w I

- X10(a, b) == Xi0(a, b) == X10(a, b)

inducing the map (47) on diagonals.

We shall show that this map of bisimplicial sets from (48) to (49) is a weak equiva-
lence of simplicial sets in each vertical dimension. The corresponding map of diagonals
(47) is then a weak equivalence by [12, Prop.1.7].

Consider first vertical dimension 1. We must show that the map of simplicial sets

(KeX)11(a, b) — cXi1(a, b) (50)
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is a weak equivalence, where cXi(a, b) denotes the constant simplicial set at
X11(a, b). Note that Wi = (VUW); for each W € Trackp, where U is the internal
arrow functor and V is the underlying graph functor (with (VY); = Y foreach Y €
Catp), so Wii(a, b) = (VUW)(a, b) and thus (K¢X)11(a,b) = (VUK.X)1(a, b)
foreacha, b € O.

By Remark 4.3, the simplicial object VUK, X is aspherical, so (VUK¢X)1(a, b)
is, too, and is thus weakly equivalent to c(VU X)1(a, b) = cX11(a, b). Thus (50) is a
weak equivalence.

In vertical dimension 0, from the vertical simplicial structure of (48) we see

(KeX)10(a,b) — cXyo(a, b) (G

is a retract of (50), so it is also a weak equivalence.
In vertical dimension 2, we must show that

KeX)11(a, b) X1, x)10(a,b) KeX)11(a, b) — cX11(a, b) Xex 9,0 cX11(a, b)
(52)
is a weak equivalence. This is the induced map of pullbacks of the diagram

a. B.
(KeX)11(a, b) —— (Ko X)10(a, b) <—— (Ko X)11(a, b)

N

3
cXi1(a, b) —2— cXyo(a, b) <——— cXy1(a, b)

in S. By the above discussion, the vertical maps in (53) are weak equivalences.
By definition of /C there is a pullback

(KeX)11(a, b) ——= (KeX)10(a, b)
agi iv (54)
(KeX)10(a, b) —= o (KeX)10(a, b)

in S, where
V: (KeX)10(a, b) = ITy(KeX)10(a, b) [ [ Mo (KeX)10(a, b) — Mo(KeX)10(a, b).

is the fold map. To see that V is a fibration, let Y, = ITo(JCeX)10(a, b). For any
commuting diagram

Akl —2—= v, 1]7.

jJ iv

Aln] ,64> Y.
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in S, « factors through i; : Yo <> Y, [[Ys (r = 1, 2), since Ak[n] is connected, so

AK[n]

commutes, and thus Vi;8 = 8 andi,fj = i;Va = i;Vi,o' = i;a’ = a.

The maps d; and 9} are fibrations, since they are pullbacks of such by (54). The
bottom horizontal maps in (53) are fibrations since their target is discrete. We conclude
that the induced map of pullbacks (52) is a weak equivalence.

Vertical dimension i > 2 is completely analogous. O

Lemma 4.6 For any X € Trackp, DiagN 1K X is a free (S,0)-category (see Sect.
2.4).

Proof By Remark 4.4, for each track category I, X the nerve in the groupoid direction
is a free category in each simplicial degree. Thus for Z := N IK,X, DiagZ is also a
free category in each simplicial degree. By Sect. 4.2, the degeneracies o; : K"T!1X —
KC"*2X are given by 0; = K'LF()VUK"™, where n : Id — VULF is the unit
of the adjunction. Therefore, o; sends generators to generators and so the same holds
for the degeneracies of DiagZ, so it is a free (S, 0)-category. O

Corollary 4.7 For any X € Trackp, DiagN I C.X is a cofibrant replacement of IX
in (5,0)-Cat.

Proof By Lemma 4.5, the map DiagZ — IX is a weak equivalence. O

We now show how to use the comonad resolution of a track category to compute
its (S,0)-cohomology:

Proposition 4.8 For X € Trackp, let Z = NIKX and let M be a Dwyer—Kan
module over X. Then

H{G'(IX; M) = 7 mapse).cary1x DiagZ, Kx (M., n)). (55)

Proof Let ¢ : Diag FoX — IX be the Dwyer—Kan standard free resolution of Sect.
2.4. Then, by definition,

Hs"o_i(IX; M) = m; map(s’o)_Cat/,X(Diag?.X, Kx(M,n)), (56)
where Cx (M, n) is the twisted Eilenberg—Mac Lane (S, O)-category of Sect. 2.4.

By Corollary 4.7, « : DiagZ — I X is a cofibrant replacement for /X, so given a
commuting diagram

% Diag?.X
i"’
DiagZ ————IX,
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there is a lift ¢ : DiagZ — Diag F,X with ¢3 = « and ¥ a weak equivalence.
Hence

i mapso)-cat /1 x (DiagZ, Kx (M, n)) = m; map(Svo)_Cat/,X(Diag?.X, Kx(M,n))

Thus (55) follows from (56). O

Theorem 4.9 Let X € Trackp, and M a module over X; then for each s > 0,
H{y(IX; M) =m*C® for the cosimplicial abelian group

C* = m map(S’O)_Ca,/X(TIC.X, M). (57

Proof Since DiagZ = Diag 1K, X, by Proposition 4.8 and Lemma 2.6 we have

HEG (IX; M) = 7 maps0).car /1 x (DiagZ, Kx (M, n)

_ (58)
= m; Tot map[AZOP,Cat@]/IX(I’C'X’ Kx (M, n)).

the homotopy spectral sequence of the cosimplicial space
W* = map 50).cat [Ke X, Kx (M, n))
(see [8, X6]) has E5" = 5w, W*® = 7, Tot W* with
E}' = mmap(IKSX, Kx (M, n)) = HAS' (1K X; M).
Here we used the fact that /KC* X is a cofibrant (S, O)-category, since it is free in each
dimension and the degeneracy maps take generators to generators.

By Remark 4.4, IKX°X is homotopically discrete, so IX°X — [dITHK*X is a
weak equivalence. Hence 7X° X is a cofibrant replacement of I dI7p/C* X, and so

HIS'IK X M) = HIS' (1 dTTpK* X; M). (59)

Recall from [2, Theorem 3.10] that Hg,(dC; M) = ng (C, M) for any category C
and s > 0, where Hgy, is the Baues—Wirsching cohomology of [3]. Hence if C is
free, Hgo(dC; M) =0 foreachs > 0, by [3, Theorem 6.3].

If n # t, it follows from by (59) that Ef” = Hélgt(IICSX; M) = 0, since Tyl K* X
is a free category, so the spectral sequence collapses at the E|-term, and

H{o(IX; M) = my_sTot W* = n'm, map(IK. X, Kx (M, n)). (60)

Since 7, map(TlC.X, Kx(M,n)) = H(?S(’)) (I dIMyKe X, M), this is independent of n.

We deduce from (60) that H§O(IX; M) = m5C*® for C*® asin (57). O
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Corollary 4.10 For any X € Trackp, X-module M, and s > 0 we have

~

H3o(I dXo; j*M) = n°C°, (61)
where C* is the cosimplicial abelian group w1 Map(s©).cat/x (I(KeX)o, j*M).

Proof Let Z = N1 d(]CeX)o. Then DiagZ — IXp is a cofibrant replacement, by
Corollary 4.7. Therefore, by Lemma 2.6:

Hsn(;i((l dXo; j*M) = m; maps)-cat /1 dXO(Diang Kx, (j*M,n))

=T Totmap[Azop ](Td(K:.X)(),]*M)

,Catp

The homotopy spectral sequence for W* = mapso).cat (Id(KeX)o, Kx,(j*M, n))
again collapses at the E|-term, since (*X)¢ is a free category, yielding (61). O

5 (S,0)-cohomology of track categories and comonad cohomology

We now use the comonad of Sect. 4.2 to define the comonad cohomology of a track
category, rewrite the short exact sequence of Proposition 3.5 for C = Catp, in terms
of mapping spaces, and use it to prove our main result, Theorem 5.5.

5.1 Mapping spaces

Givenmaps f : A — B and g : M — B in a simplicial model category C, we let
mapc (A, M) be the homotopy pullback

mapc, g (A, M) ———— map¢ (A, M)

J{ ig*

{f} ———————=map¢(A, B)

If A is cofibrant and g is a fibration, so is g«. Moreover, if & : B — D is a trivial
fibration, so is Ay : map(A_, B) — map(A, D).
Thus we obtain a map h. : mape, (A, M) — mapc,p(A, M) defined by

mapc/B(A, M) mapg(A, M)
) P mape (4, B) N\
Ty
mapC/D(A, M) \maic(A, M)
{hf} map¢ (A, D)
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Since &, is a weak equivalence, so is hy .
When C = Trackp, we will use this construction several times for X = HY as in
(9) and e*M, j*M, and t* j*M be as in (10), (14), and (27), respectively:

(i) The diagram

P

{Idx} map(X, X) map(X, M)

| Jo i

{g} —— map(X, dmo) g map(X, M)

induces a map g : MaPrpey,/x (X, M) — maPre s dmy (X, M), where M is a
track category over dmp via the map g : X — dmg, which is a weak equivalence
(since X is homotopically discrete) and a fibration (since dmg is discrete). Hence
g« 1s a weak equivalence.

(i) The diagram

{Axo} —— map(dXo, X) <——— map(dXo, j*M)

i i b

{Axyt} — map(dmg, X) <——— map(dmno, 1*j*M)

induces * : Maprack, / ax, (X0, J*M) — MaPrcky, s dr, (A0, 17 M).
Since g*t* = e*, we have a diagram

{Ax,t} map(dmg, X) map(dmg, t*j*M)

! o 0

{Axot} —— map(dXo, X) <——— map(drno, e*j*M)

(pke)«

inducing ¢* : maprrac, / dmy (700, 1% j*M) — MaPrraek, / dr, (A0, € j*M).
(iii) The diagram

{ldx} —— map(X, X) <2 map(X, M)

| | L

. A .
{7} map(dXg, X) map(dXy, j*M)

induces j* : mapraek, /x (X2 M) = mapriaa, / ax, (Xo. j*M).
(iv) The diagram

{g} ———— map(X, dmnp) L L — map(X, M)

| E Jor

{gj1} = (1dany} —— map(dmo, dmo) <——— map(dro, *j* M)

@ Springer



D. Blang, S. Paoli

induces 7 : Maprrack, jary (Xs M) — MaPreacic,, jan, (@70, ¥ j*M). Since t* is a
trivial fibration, r* is a weak equivalence.
(v) The diagram

{Idx} — map(X, X) < map(X, M)

| ’ -

{e} ————map(X, X) <——— map(X, e* M)
Py

induces €* : mapryer,, /x (X, M) — mapr,q, x (X, e*M). Moreover, e : X —
X is a weak equivalence (since X is homotopically discrete), so e* is, too.
(vi) Using the fact that g.e™ = ¢4 (since ge = qtq = q), we have

e} —— map(X, X) < map(X, ¢* M)

| - -

{q} ——— map(X, dmp) <— map(X, M)
which induces g}, : mapreci, /x (X, €M) — Maprrcc,, dry (X M), and

e

MaPTracke /X (X, M) MAPrracky, /X (X, e*M)

zi\; / 62)
* q's

MaPtyack, /dmo (X, M)

commutes, since g/ e* = gs.
(vii) Finally, the diagram

e} — = map(X, X) =~ map(X, e*M)

| o

{jtq} —— map(dXo, X) map(dXo, e* j* M)

induces (7)* : MaPryaci,/x (X, €M) — mapr,q.,/ax, (dXo, €*j*M).

Lemma5.1 Foranymap f : A — B in Catp, with A free, there is an isomorphism
1 MapPy,aek, /5 (As M) = Hgo(A; M) = Homcary, (A, M).

Proof Since A is free, c(A) € sO-Cat = (S5,0)-Cat is cofibrant, and is its own
fundamental track category. A module M, as an abelian group object in Trackp /B,
is an Eilenberg—Mac Lane object E® (M, 1), which explains the first equality. By
[18, II, §2], the n-simplices of the cosimplicial abelian group mapy,,, /g (A, M) are
maps of categories over B of the form ¢ : A ® A[n] — M, where A ® A[n]
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is the coproduct in Catp of one copy of A for each n-simplex of A[n]. Since
Mo = B, mapr,q, (A, M)o is the singleton {f}. The non-degenerate part of
mapTrackO/B(A, M)y is Homca, (A, My), so the 1-cycles are Homcat, /5 (A, M1).
Since M, and thus mapr.,, (A, M), is a 1-Postnikov section, the 1-cycles are
equal to 771 MapPrae, /5 (A, M). O

Lemma5.2 For X € Trackp of the form HY and M an X-module, the diagram

*

J Id .
1 MaPrrger,, /x (X, M) ———— Homear,,/x, ((Xo — Xo), (jiM1 — Xo)

I, ey

Homcaig m (0, 1*j M1) —— Homearo /x, ((Xo X Xo), (e*jEMy — Xo))

(63)
commutes, and there is an isomorphism
2\ . A
 : Homeate,/x, (X0 = X0), (€ jiM1 => Xo))
. A
—  Homcat/x, (Xo => Xo), jiM1 => X0))
such that wq™* = &, for & as in (29).
Proof We have a commuting diagram
J .
MAPrracky, /X X, M) ——— MAPrracky, / dXo (dXo, j*M)
e | E
_ 2% .
q* InapTracko/X (X, €*M) - mapTrack@/dX() (dXo, e*]*M)
i 7. (64)
mapTrackO/dno (X, M) 7"

ﬁi

MaPrack e, /dmg (dmo, t*j*M)

in which the vertical maps are weak equivalences by Sect. 5.1. Applying 71 yields

*

J .
Tl mapTracko/X(X’ M) ————m MAaPrrack, / dXo (dXo, j*M)

| |
. de .
T mapTrack(g/dno (drmo, I*J*M) Z’ T mapTrack@/dXo ((dXO —0) dX()), e*]*M)
(65)
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with vertical isomorphisms. By Lemma 5.1,

. N d , Py
T MaPr e, s ax (X0, j* M) = Homeary, /x, ((dXo — dXo), (jiMy => dXo))
s mapTracko/an(ana t*J*M) EHOI'nCatO/Jm(”O» t*jl*Ml)a
1 MaPrracky, / dxo (X0, €¥j* M) = Homcar, /x, (X0, ¢t ji M1).

Hence from (65) we obtain

*

J 1d .
1 MaPreaek,, /x (X, M) ———= Homcat,,/x, (Xo = Xo), (j{ M1 — Xo))

uzi xJ,

. d .
Homcat, /7, (7m0, t* ji M1) —Q Homcat,, /x, ((Xo — Xo), (e*jiM1 — Xo))

The right vertical map x in (65) sends f:Xo— JiMy to fe: Xo — e*jiMy,
where f is given by Id T f into the pullback (15) defining j*M;. We now rewrite

1d .
x : Homeat, /x, (X0 = Xo), (jy M1 — Xo))

. A
— Homeary, /%, (X0~ Xo), (€*j*M 25 X))

in a different form, in order to show that it is an isomorphism. Note that the map

of groupoids p = (p1,Id) : M — X satisfies p;(m) = (do(m), 01(m)) for all
do

m € My, where M = M, : Xo . Thus the map f = IdTf into (15) has
01

p1f = j = Ax, sopf(a) = (a,a) = (df(a),d1f(a)), and thus f takes X¢

to [[,ex, M(a, a). Similarly, a map g : Xo — €*j*M; into the pullback defining

e*j*M; is given by gTeg : Xo — M; x Xo with Ax,epeg = Ax,e0 = p18,

s0 g : Xo = [lsex, M(tqa, tqa). For each a € X there is an isomorphism o :

M(a,a) — M(tqa,tqa) takingm € M(a,a) too(tqa,a) om oo (a,tqa), whose

inverse @~ ! : M(tqa,tqa) — M(a, a) takes m’ to o(a,tqa) om’ oo (tqa,a).

Given f : Xo — [], M(a, a), there is a commuting diagram

f

Xo [IM(a,a)

l |

Xo — [[M(tqa,tqa)
a

so that X(f) = (eo, feo) = (eg, wf). Thus yx is an isomorphism with inverse given
by x " '(g) = (Id, ™ 'g).
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Finally, the isomorphism

. A.” . )\'
w :Homcar, /x, ((dx,), (g*1*jF M1 —> X0)) — Homcary/x, ((19), (jiM1 => Xo))

sends & to w(h) = ljvh, where the maps /1 and v; are given by

1 k
G M e My — > jEM, M,

w’{ lxq J{Al J/Pl (66)

Xo 70 . Xo X1

Define f’ in Homcat,, /x, (X0 14, Xo), (j*M M, Xop)) by tqT f into the pullback
(15). Thus p1 f = Ax,tg, which also implies p1 f = Ax,(tq)(tq). It follows that
there is a map f” making the following diagram commute

Xo f
f//

. kilivy
gt M ————= M,

q N{J/ J/Pl

Xo——— X1
0 Axotq

We claim that f" = ljvy f” = o (f"). In fact, k1 f' = f = kilyv1 f”, while by (66)
we have A1 f' = tq = tqtq = tqA|f" = tAjvi f” = Ailjvr f”. Together these
imply that ' = lyv; f”, as claimed. Thus w is surjective.

Assume given h, g € Homca,/x,(Xo, ¢*t* jyM1) with w(h) = w(g), (i.e.,
livth = Livig). Then kiljvih = kiljvig and A{h = tq = A{g, so h = g. This
shows that w is injective, and thus an isomorphism.

To see that wg™ = &, Let h € Homcay,,/x, (7m0, t* j{M7) be given by fT1d :
mo — Mp x mo in the pullback (27). Then kj/1h = f and A’lh = 1Id, and so
p1fq = prkilithg = Ax,tA\hq = Ax,tq = Ax,(tq)(tq). Hence there is a map h’
making

Xo fa
x
kil
gt j* My ahm - M,
q A’{J/ \LPI
X
0 Axot 1
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commute, and &' = g*h, so that w(g*h) = w(h') = ljvik’. Moreover, kiljvih' =
fq = kilihg and

Ax i juih' = Axghilivih’ = pikilivih’ = p1 fq = Ax,tqtq = Ax,tq

so Muih' = qAx i jvih’ = qAxytq = q = A hq, since gAx,t = Id and
AMh = Id. This implies that vih’ = hg. We deduce that wg*(h) = lihq = &(h),
sowg* =&. O

Proposition 5.3 Forany X = HY as in (9) and X-module M, there is a short exact
sequence

J* .
0 — 71 MaPrrge, /x (X, M) — 71 MaPraqi, s ax, (@ Xo, j* M) 67)

19/
— HomTrack@/X (X,M)— 0

Proof This follows by taking C = Catp in Proposition 3.5, together with (39) and
the top right corner of (63) identified with 771 mapy,c, ; ax, (X0, j*M). O

Let X € Trackp and M € [(Trackp, Xo)/X]ap and
KX € [A”, (S,0)-Cat /IX]

be as in Sect. 4.3. Note that the augmentation e : X — X can be thought of as a map
to the constant simplicial object, so a compatible sequence of maps &, : K, X — X
in Trackp allowing us to pull back M to e M.

Definition 5.4 For each X € Trackp and M € [(Trackp, X¢)/X]ap, the comonad
cohomology of X with coefficients in M is defined by

Hé(X, M) =nr’ HomTracko/X(Koxy M).

Theorem 5.5 Assume given X € Trackp and M € [(Tracko, Xo)/X]ap. Then there
is a long exact sequence of abelian groups

o= HE(IX; M) — HE (I dXo; j*M) — HE(X, M) —
— HIS'UIX; M) — -

Proof By Remark 4.4. K,, X is homotopically discrete for each n, and we can choose

a splitting ITo/C, X I, KX to K, X an, ITHKC, X, because K, X = LA with
A=FUVX,_1 andg, : A; ][] As —> A (see Sect. 2.2). By Proposition 5.3 there is
a short exact sequence of cosimplicial abelian groups

J* .
0 =71 MaPrrack, /x TKe X, M) — 711 MaPrracy, sax, (1d(KeX)o, j*M) —
g HomTracko/X(’C.X, M) —0
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where we use the augmentation &, : Co X — X to pull back M to ¢ M.
We therefore obtain a corresponding long exact sequence

Jx .
— T MaPre, x Ko X, M) = 78711 MaPrraey, jax, (Ko X)o, j*M) —
— 7’ HomTracko/x(/C.X, M) — --.

By definition, 7* Homrrack, /x (Ke X, M) = Hj (X, M), with
70 MaPrek, x T X, M) = Hio(1X; M)

and 757 MaPT,ck,/ dxo (d(KeX)o, j*M) = Hgo(IdXo; j*M) by Theorem 4.9 and
Corollary 4.10. O

Corollary 5.6 For X € Trackp with X afree category and M € [(Trackp, Xo)/Xlab
HISN(IX; M) = HE(X, M) (68)
foreachn > 1.

Proof Recall from [2, Theorem 3.10] that Hg,(/dXo; j*M) = Hg\*,:,l(IXo, J*M),
and, since X is free, Hé’&l(lXo, j*M) = 0 by [3, Theorem 6.3]. Thus the long
exact sequence of Theorem 5.5 yields (68) for each n > 1. O

Lemma 5.7 There is a functor S : Trackp — Trackp such that (sx)o is a free
category, for each X € Trackp, with a natural 2-equivalence sy : S(X) — X

Proof Given X € Gpd C and amap fy : Yo — Xy in C, consider the pullback

Y ————=Yy x Y

h i J/ Jox fo (69)

X, —— X x X
P Gy 70770

in C. Then there is X (fy) € Gpd C with (X(fo))o = Yo and X(fy))1 = Y1, such that
(fo, f1) : X(fo) — X is an internal functor.

Now let ex, : FVXo — Xo be the counit of the adjunction ' 4 V of Sect.
4.2, and let SX := X(ex,), where (ex,) € Trackp is the construction (69). Then
(SX)o = FV Xy is a free category, and there is a map sx : SX — X in Trackp. We
wish to show that it is a 2-equivalence.

Since sy is the identity on objects, to it suffices to show that for each a, b € O, the
map sx(a, b) : S(X)(a, b) - X(a, b) is an equivalence of categories. The pullback

(X)) ————= FVXy x FVXg

SXI\L lsxo XeX, (70)
X1 Xo X Xo
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in Cat induces a pullback of sets

{S(X)(a,b)}y ———— {FVXo(a,b) x FVXq(a, b)}1
{sx(a,b)}i \L \LSX() XEX(
{X(a,b)})) ————— {Xo(a, b) x Xo(a, b)}1

Thus for each (¢, d) € {FV Xo(a, b) x FV Xy(a, b)}1, the map {sx(a, b)}(c,d) isa
bijection. Thus sy (a, b) is fully faithful. Since (FV X¢); — Xo1 is surjective, as is
(FVXo)(a,b) - Xo(a, b), sx(a, b) is surjective on objects, so it is an equivalence
of categories. O

We finally use our previous results to conclude that the (S,O)-cohomology of a
track category can always be calculated from a comonad cohomology.

Corollary 5.8 For X € Trackp, and M an X -module, HS”SI(IX; M) = Hp(S(X), M)
for eachn > 1, where S(X) is as in Lemma 5.7.

Proof By Lemma 5.7 the map sy : S(X) — X is a 2-equivalence in Tracke, since
(sx)o = €x, 1is bijective on objects. Hence Isy is a Dwyer—Kan equivalence in
(50)-Cat, so Hyo(IX; M) = H{,(IS(X); M). By Lemma 5.7, SX satisfies the
hypotheses of Corollary 5.6, so also HS"gl (IS(X); M) = HE(S(X), M). O

6 The groupoidal case

A 2-groupoid is a special case of a track category in which all cells are (strictly)
invertible. The category of such is denoted by 2-Gpdy = Gpd(Gpdp), with i :
2-Gpdp < Trackp the full and faithful inclusion.

For X € 2-Gpdpy and W = NIK,X € [A%", Set] asin Sect. 4.3, let § =
WO e [A™, [A¥", Set]] be W thought of as a simplicial object along the horizontal
direction. Thus for each i > 0, §; is the bisimplicial set

K+ X (ki+x) 50 Kt ——=

I f

c==——0Z=—0a

K1) xo (K1 X)) (K1)
(KH*1X)10 xo (K1 X) 19 (K1 X)10

Applying Diag : [A2" Set] — [A”, Set] = S dimensionwise to WD we obtain
Diag$ € [A”, [A”, Set]], with

Diag(3) W = Diag DiagS = Diag DiagZ (71
for Z := W® e [A”, [A%", Set]] asin (45).
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Definition 6.1 The classifying space of X € 2-Gpdy is BX = Diag Ny X, where
N@) : 2-Gpdpp — [AZOP, Set] is the double nerve functor.

Remark 6.2 By Lemma 4.5, DiagZ — IX is a Dwyer—Kan equivalence, where we
think of DiagZ as an (S,0)-category by the discussion preceding the Lemma 4.5.
Conversely, we may also think of /X as a bisimplicial set (implicitly, by applying
the nerve functor in the category direction), with (DiagZ)g = (IX)g = ¢(O) (cf.
Sect. 1.1). Moreover, (TagZ)j — (IX); is a weak homotopy equivalence for all
j > 0. Hence DiagZ — IX induces a weak homotopy equivalence of diagonals
Diag DiagZ >~ Diag I X. Since Diag I X = Diag No)X = BX, by (71) we have

BX =~ Diag®w. (72)
The cohomology groups of X € 2-Gpdy with coefficients in an X-module M are

defined to be H""(BX, M) = m; map[Aop’Set](BX, K(M, n)). By (72) this can be
written as

7 mapy yor g (Diag® W, (M, n)).

Lemma 6.3 Given C € Catp, with NC € § viewed as a discrete (S,O)-category, and
M be a C-module, we have H" (BC, M) = Hg(NC; M) for eachn > 0.

Proof Since NC is adiscrete (S,O)-category, we see that mapso)-cat (NC, K(M, n)),
is mapg(NC, K(M, n)), so Hy(C; M) = momapg(NC, K(M, n)) = H"(BC, M).
O

Proposition 6.4 For X € 2-Gpdy and M an X-module, H*(BX, M) = Hg,(X; M)
foranys >0

Proof By (71) and Lemma 2.6

mapg(Diag® W, K(M, n)) = mapg(Diag Diag$, K(M, n))
= Tot mapg(Diags$, (M, n)).

Therefore, the homotopy spectral sequence for W*® = map yor g, (Diag$, K(M,n)),
with E5" = 751, W*® = m,_; Tot W*, has E}"' = 7, map((DiagS$),, K(M, n)). But
(DiagS); = Diag IK*!X ~ ITHIC**!' X, since K*1 X is homotopically discrete,
sO

E}' = H" ' (BIITK* ' X, M) = H{G' (T TToK* T X3 M),
by Lemma 6.3. Since KSTLX s free, by [2, Theorem 3.10] we have

E}' = HiG (IS Xy M) = Hiy T (T KSH X, M) = 0
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for n # t. Thus the spectral sequence collapses at the Ej-term and

H*(BX, M) = my_s Tot W* = n°m, W* = n* 1, mapg(DiagS, K(M, n)). (73)
Since (Diag$); — IIToC* 1 X is a weak equivalence for all s > 0,

T map[Aop,Set](TagS, K(M, n)) = H’(BDiagS, M) = H*(B I [THyK, X, M)

Thus HS(BX, M) = 7°HY(B I 1)K, X, M) by (73). On the other hand, in the
proof of Theorem 4.9 we showed that Hg(X; M) = JTSHgO(I ITHKC X ; M), while
by Lemma 6.3 we have H(B IT)KoX, M) = H{y(I [ToKoX; M). It follows that
H*(BX, M) = Ho(X; M). o

From Theorem 5.5 and Proposition 6.4 we deduce:

Corollary 6.5 Any X € 2-Gpd» and X-module M have a long exact sequence
— H"(BX,M) — H"(BXy, j*M) - H(X, M) — H"™ "' (BX, M) — --- .

Remark 6.6 A 2-groupoid with a single object is an internal groupoid in the category
of groups, equivalent to a crossed module. It can be shown that in this case the long
exact sequence of Corollary 6.5 recovers [16, Theorem 13].
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