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Abstract

We live in the Information Age. In this age technological industry allows individuals
to explore their personalized needs, therefore simplifying the procedure of making
decisions. It also allows big global market players to leverage amounts of information
they collect over time in order to excel in the markets they are operating in. Huge
and often incomprehensive volumes of information collected to date constitute the
phenomenon of Big Data. Big Data is a term used to describe datasets that are
not suitable for processing by traditional software. To date, the commonly used
way to get value out of Big Data is to employ a wide range of machine learning
techniques. Machine learning is genuinely data-driven. The more data are available
the better, from statistical point of view. This enables creation of an existing range
of applications for broad spectrum of modeling and predictive tasks.

Traditional methods of machine learning (e.g. linear models) are easy to imple-
ment and give computationally cheap solutions. These solutions, however, are not
always capable to capture the underlaying complexity of Big Data. More sophisti-
cated approaches (e.g. Convolution Neural Networks in computer vision) are show
empirically to be reliable, but this reliability bears high computational costs. A
natural way to overcome this obstacle appears to be reduction of Data Volume(the
number of factors, attributes and records). Doing so, however, is an extremely
tedious and non-trivial task itself.

In this thesis we show that, thanks to well-known concentration of measure effect,
it is often beneficial to keep the dimensionality of the problem high and use it to
your own advantage. Measure concentration effect is a phenomenon that can only
be found in high dimensional spaces. One of theoretical findings of this thesis is
that using measure concentration effect allows one to correct individual mistakes
of Artificial Intelligence(AI) systems in a cheap and non-intrusive way. Specifically
we show how to correct AI systems errors with linear functional while not changing
their inner decision making processes. As an illustration of how one can benefit from
this we have developed Knowledge Transfer framework for legacy AI systems. The
development of this framework is also an answer to a fundamental question: how a
legacy ”student” AI system could learn from ”teacher” AI system without complete
retraining. Theoretical findings are illustrated with several case studies in the area
computer vision.
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Preface

This thesis is a product of 4 years long journey I had a privilege and pleasure to

take at the Department of Mathematics in the University of Leicester. Being an

externally funded industrial project, this work was motivated initially by real-life

problems arising from various computer vision applications. Later, however, it has

become clear that these problems lead to interesting theoretical generalizations.

This interface made the work particular interesting and rewarding for the author.

The main focus of this work is in dealing with high-dimensional data and challenges

associated with it.

This thesis consists of 4 chapters. In the introductory Chapter 1 we discuss what

does Big Data mean in the modern world as well as what challenges does it bring.

Not only Big Data brings its challenges and issues, it also brings benefits if used

correctly.

Chapters 2 and 3 discuss sources of errors in Big Data Analytical Systems. These

errors are exemplified with two most commonly used approaches to deal with large

volumes of data in presence of uncertainty: machine learning and dimensionality

reduction. In particular, it contains an overview of machine learning problem state-

ment1 and description of issues one has to face when dealing with big volumes of

data. We also give a brief introduction to Curse and Blessing of Dimensionality

terms.

Chapter 4 contains main theoretical body of the work. In includes separation

theorems and computational algorithms that are built on these theorems. We also

show what place do these approaches take in the context of modern Artificial In-

telligence theory. In addition, we show what practical applications do these results

find in the field of modern computer vision.

1Problem statement is adopted from [85]
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Chapter 5 demonstrates how results from Chapter 4 can be used in real world

applications. Several case studies are included here. These examples are arranged

in the order of increasing complexity.
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Notation

Throughout the thesis the following notational agreements are used

• N is the set of natural numbers;

• R denotes the field of real number;

• Rn stands for the n-dimensional real space; unless stated otherwise symbol n
is reserved to denote dimension of the underlying linear space;

• let x ∈ Rn, then ‖x‖ is the Euclidean norm of x: ‖x‖ =
√
x2

1 + · · ·+ x2
n;

• if x, y are two non-zero vectors from Rn then ∠(x, y) denotes the smallest angle
between these vectors;

• the symbol | · |Rn is reserved to denote an arbitrary norm in Rn;

• Sn−1(R) denotes an n − 1-sphere of radius R centred at 0: Sn−1(R) = {x ∈
Rn| ‖x‖ = R };

• µ is the normalized Lebesgue measure on Sm−1(1): µ(Sm−1(1)) = 1;

• Bn(R) denotes a n-ball of radius R centered at 0: Bn(R) = {x ∈ Rn| ‖x‖ ≤ R};

• V(Ξ) is the Lebesgue volume of Ξ ⊂ Rn;

• Dn−1(R) stands for a (n − 1)-disc in the n-ball Bn(R) corresponding to its
largest equator, and Dn−1

δ (R) is its δ-thickening;

• Let f : [0, 1]d → R be a continuous function, then

‖f‖2 = 〈f, f〉 =

∫
[0,1]d

f(x)f(x)dx,

denotes the L2-norm of f ;

• ”iid” stands for ”independent and identically distributed”;

• M is an i.i.d. sample equidistributed in Bn(1);

• M is the number of points in M, or simply the cardinality of the set M.
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Chapter 1

Introduction

Every day massive amounts of data are created. These data have to be captured,

stored, analyzed and processed. While the amount of data collected has a potential

to help to ”spot business trends, prevent diseases, combat crime and so on” [28],

it also gives rise to new challenges in data analysis. Big Data is the term used

to describe datasets that are too large or complex for traditional data processing

software. Big Data gives rise to new challenges which are often referred as the 5V

of Big Data [40]:

1. Volume. This characteristic refers to sheer quantity of data. In this con-

text, Big Data is synonymous to volumes of data processing which are beyond

the ability of current state-of-the art tools and methods [45]. The data here

includes not only the actual data samples at hand but also the parameters

required to identify and describe the data samples.

2. Variety. Variety refers to datasets which have broad range of data types and

formats. Examples are the datasets including simultaneous combinations of

e.g. business transactions, information from social media platforms, sensors

readings, and other heterogeneous streams of data.

3. Velocity. The velocity parameter of Big Data points to extraordinary speed

with which data are generated and delivered.

4. Veracity. Veracity refers to uncertainty that is associated with the data. Ex-

amples include incorrect or noisy measurements, incomplete and missed data.
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5. Value. Value is an indicator of costs and gains that Big Data bears. Examples

of costs are, for example, infrastructural costs. Without an adequate infras-

tructure it is very hard to store and process large amounts of data. Gains can

be exemplified as increasing understanding of customers needs for companies,

improved health care and security.

Systems that have characteristics of Big Data already exist. Despite the fact that

building these systems rises very serious challenges, they find a lot of applications

in modern world. For example, governments can process Big Data for learning how

electorate responses on government’s actions. Big Data is collected in banking and

securities domains. Applications of Big Data systems in these domains include card

fraud detection, tick-level market data analysis and credit risk analysis. In media

sphere Big Data is stored and analyzed on order to better understand customer

insights. If done correctly, this allows one to give good content recommendations

and deliver right content to a right target audience.

There is another area where Big Data systems only start finding its applications:

video surveillance domain1. CCTV cameras deployed world wide are natural source

of Big Data. It combines at least 4 out of 5 V’s described above: Volume, Variety,

Velocity and Value [17]. Recent progress in data storage development and network-

ing interfaces allows one to address most of these challenges. Video from its sources

can be quickly delivered, compressed and stored. However, to date there are no

efficient ways to analyze video streams coming from these cameras. Effectively, if

some information is to be found in a video stream, either a person has to seat and

watch it in real-time, or hundreds hours of CCTV footage has to be looked through

almost in manual mode. Of course, nowadays CCTV footage is only recorded if

there is movement happening, but this almost does not help to solve the problem.

If a camera is installed in a public space(e.g. public transport, shopping malls, etc.)

then this approach is not helpful at all: there is always something happening.

During the past 2-3 years the market has started seeing new products created

specifically to address this type of issue. Companies developing these solutions aim

1The first CCTV system was installed in year 1942 in Germany [23]. Back then it was used to
observer launch of V-2 rockets and had extremely limited amount of installations. First widely-
deployed cameras were used by the police to fight crime and by businesses that were prone to theft.
To date there are about 250 million CCTV cameras installed world-wide [48] and about 6 million
cameras in the UK alone.
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to provide highly efficient(in terms of processing speed and power consumptions)

solutions at a low price. Low price, low power consumption and high processing

performance will allow the deployment of these products in each CCTV camera at

almost no additional cost. Usually the main goal these companies are trying to

achieve is to make CCTV footage analysis easier by only recording valuable pieces

of video streams. Since it is not enough to switch on recording when something

is happening, one has to analyze what is happening. Scene analysis may include

people detection and tracking (including both full human figure and face detection),

car detection, object recognition (including face or number plates recognition).

There is also hidden complexity in this task: the signal coming from cameras is

always in RAW format. In this context RAW image means raw signals coming from

camera sensors, Bayer pattern or mosaic pattern. All three are used interchangeably

here. This means that before anyone is able to perform any computer vision task,

one has to transform incoming images from RAW to RGB format. In order to get

correct colors in the scene, besides bayer pattern interpolation, one also has to do

color and gamma correction and automatic white balance setting . If colors are not

set up properly, computer vision algorithms are not guaranteed to work adequately.

Let us exemplify some particular difficulties appearing in computer vision sys-

tems:

1. Pixelwise image processing tasks (Automatic White Balance(AWB) setting,

image quality adjustment). In this task for a standard High Definition image

one deals with almost 6 million pixels at a time. In this kind of task, operations

on pixels are supposed to be done in real-time mode. For example, tasks of

AWB setting and image quality adjustments are done on the camera’s side

therefore creating serious challenges for on-camera algorithms.

2. Object detection in live video streams. A video stream is a sequence of still

images (frames) that are often received at a high frames per second (FPS)

rate. Practically, the complexity of this task is at least FPS times more than

the image processing task. One of the difficulties in these tasks is the number

of proposals being tested for each frame. In some applications the number of

proposals can be up to several hundred thousands. There is added complexity

as well: in the majority of video processing applications requirements are very
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high. For example, computer vision systems are often installed on autonomous

cars where mistakes made by this kind of systems may lead to injuries and

casualties.

3. Object recognition. A natural extension for object detection in live video

streams task. Not only does it include the complexity of a previous task, but

also has its own: the number of identities. For example, in a face recognition

task one face has to be recognized among thousands of others. Combined with

high precision requirements for biometric systems this makes the problem of

object recognition a Big Data task.

As we can see, smart CCTV footage analysis employing computer vision tech-

niques certainly a Big Data task with at least 4 of 5 Vs associated with it. Given

the complexity of the task, different types of errors in these systems are not un-

common. While, errors in performing the pixelwise image processing task come at

almost no price, errors made in scene analysis may have different consequences. If

the computer vision system is used on a CCTV camera, false or missed detections

may lead to false alarms. However, if a computer vision system is installed on an

autonomous car, bad decisions made by an artificial intelligence vision system may

lead to driver death [35].

While any system works well, almost no one asks why does it work well. How-

ever, should any problem occur, where intelligent systems are to be blamed, serious

discussions on how does one avoid these and similar in the future arise. The very

general question here is why do these artificial intelligence systems malfunctions

happen? Of course, there is no simple answer. However, some clues can be found

if one looks closer at how these systems work. Almost any decision being made in

this kind of systems is based on many parameters, often thousands of them. As

was said, quite often there are serious requirements for processing performance of

these systems. That means that one has to sacrifice the complexity of decision mak-

ing systems in order to get higher processing speeds. What happens next is that

not always a simpler system is capable of understanding the underlying logic of the

relationships between that many parameters.

As we can see, big data volumes and number of parameters (also called dimen-

sionality) involved into a decision making process cause problems that somehow
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need to be addressed. There are two fundamental ways to do it. The first and the

simplest one is to eliminate the problem itself: do not use systems that rely on Big

Data. The second way is to accept that Big Data is a reality and try to do something

to address some of the issues described above. In this thesis we chose the second

path. Therefore, the main goal of this thesis is to develop tools and methods

that benefit from high dimensionality rather than suffer from it.

The following steps were identified as crucial for achieving the goal of the

thesis.

1. Investigate how measure concentration effects can be used in various computer

vision applications.

2. Develop and investigate usability of multilayer Artificial Intelligence system’s

correctors proposed by the authors in [31].

3. Develop a practical approach for knowledge transfer between two Artificial

Intelligence systems. Usability of the approach developed must not depend on

the structure and nature of computations in the Artificial Intelligence system

being corrected.

Methods. This thesis makes use of the following domains of knowledge: linear

algebra, statistics, data mining, machine learning framework, including Discrimi-

nant Analysis, Support Vector Machines and Artificial Neural Networks. Software

development has mainly been done in the Matlab environment. Also, the following

third-party software packages were used: libsvm [16], liblinear [71]. The computer

vision framework which was used as a playground for experiments was developed in

Apical Ltd.

The novelty of this work is in demonstration of how measure concentration

effects can be used in practical computer vision applications, including the devel-

oped theory and algorithms of knowledge transfer between two artificial intelligence

systems.

The applicability of the developed approaches has been tested in a series

of practical computer vision tasks. However, applicability is not restricted to the

computer vision domain only. Suggested algorithms of knowledge transfer can be

implemented for and deployed in any Big Data system that make any sort of decisions
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based on a large number of variables. The only requirement is that one must have

access to/simulate internal variables of such AI systems, and these variables, if

combined together, are elements of some topological vector field.

Practical and applied testing of developed approaches has been done during

my work in Apical Ltd.(now ARM Ltd.) in years 2013-2017.

Structure of the thesis. In Chapter 2 we outline major sources of errors and

uncertainty in Big Data Analysis Systems. In the same chapter we describe issues

one has to face when dealing with high dimensional data. This will be described in

Section 2.4. Dimensionality reduction techniques are described in Chapter 3.

Chapter 4 consists of theoretical body of the work. The main result are answers

to the questions stated above: how can one make use of high dimensionality? Why

can it be beneficial to keep the dimensionality of a problem high rather than trying

to reduce it? We also answer one practical question, specifically: how can measure

concentration be used to improve existing computer vision systems?

In Chapter 5 several case studies are described. The main goal of these case

studies is to show how theoretical tools developed in Chapter 4 can be used in

practice in various computer vision applications. For example, in Sections 5.1 and

5.2 we see which techniques are applicable for solving low dimensional data problems.

Section 5.3 describes practical methods of benefiting from measure concentration

effects in the computer vision domain.

We now describe the authors contribution to the results presented. General

vision, ambition and planning of the work is to be attributed to many of senior

colleagues whom I had pleasure to work with. Theorems, statements, and proofs

is a joint endeavor with my supervisor. It is very difficult to disentangle individual

efforts from the final results. However, all experiments and numerical simulations,

as well as result analysis have been done solely by myself.
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Chapter 2

Source of errors in Big Data

Analysis Systems

2.1 Machine learning problem statement

The general model for learning from examples can be described with three compo-

nents [85]:

1. A generator G of random vectors x ∈ Rn drawn randomly from a fixed but

unknown probability distribution function F (x)

2. A supervisor S that returns an output value to every input vector x, according

to conditional distribution function F (y|x)

3. A learning machine capable of implementing a set of functions f(x, α), α ∈ Λ,

where Λ is a set of parameters.

The selection of the desired function is based on training set with l independent and

identically distributed examples drawn according to F (x, y) = F (x)F (y|x):

(x1, y1), . . . , (xl, yl). (2.1)

The problem of learning is to chose particular function f(x, α), α ∈ Λ that approx-

imates supervisor’s response in the best way. In order to chose this function one

has measure the loss L(y, f(x, α)) between the response y of the supervisor and the

response f(x, α) provided by the learning machine. Consider the expected value of
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the loss, given by a risk functional :

R(α) =

∫
L(y, f(x, α))dF (x, y). (2.2)

The goal is to find a function f(x, α0) that minimizes the risk functional R(α)

in the situation where joint probability F (x, y) is unknown and the only available

information is the training set.

This definition of a learning problem is very broad and it includes many specific

problems. However, there are three main types of problems: the problem of pattern

recognition, regression estimation and density estimation.

In pattern recognition the supervisors output can take only two values y = {0, 1}.

Let f(x, α), α ∈ Λ, be a set of indicator functions. Consider the following loss

function:

L(y, f(x, α)) =

0 if y = f(x, α),

1 if y 6= f(x, α).

(2.3)

Equation 2.2 determines the probability of different answers given by the supervisor

and the indicator function f(x, α). The case of different answers is called classifica-

tion error.

The problem is to find function that minimizes the probability of classification

error when the probability measure F (x, y) is unknown, but the data (2.1) are given.

In regression estimation the supervisor’s response is a real value and the set

f(x, α), α ∈ Λ, is a set of real functions. This set contains regression function

f(x, α0) =

∫
ydF (y|x).

The regression function is the one that minimizes (2.2) with the following loss func-

tion:

L(y, f(x, α)) = (y − f(x, α))2. (2.4)

Thus the problem of finding regression estimation is the problem of minimizing

the functional (2.2) with the loss function (2.4) when the distribution F (x, y) is

unknown but the data (2.1) are given.

Lastly, consider the problem of density estimation from the set of densities
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p(x, α), α ∈ Λ. For this problem we consider the following loss function:

L(p(x, α)) = − log p(x, α). (2.5)

The desired density minimizes risk functional (2.2) with the loss function (2.5).

The general setting of a learning problem is described as follows. Let the

probability measure F (z) be defined on the set Z. Consider the set of functions

Q(z, α), α ∈ Λ. The goal is to minimize the risk functional

R(α) =

∫
Q(z, α)dF (z), α ∈ Λ, (2.6)

where the probability measure F (z) is unknown, but an i.i.d. sample

z1, . . . , zl (2.7)

is given.

In order to minimize functional (2.6) with an unknown distribution function

F (z), the following inductive principle can be applied.

1. The risk functional R(α) is replaced by empirical risk functional :

Remp =
1

l

l∑
i=1

Q(zi, α), (2.8)

constructed on the basis of the training set (2.7).

2. One approximates the function Q(z, α0) that minimizes risk (2.6) by the func-

tion Q(z, al) minimizing the empirical risk (2.8).

This principle if called empirical risk minimization inductive principle (ERM prin-

ciple).

The ERM principle is quite general. The classical method of solution of specific

learning problems are realizations of the ERM principle for a specific loss func-

tion. For example, for the regression problem one has the following functional to be

minimized:

Remp(α) =
1

l

l∑
i=1

(yi − f(xi, α))2,
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which forms the least squares method. This gives a brief introduction into the

machine learning problem statement, including the pattern recognition problem.

2.2 Issues of Machine Learning

In practical applications there are several problems associated with minimization of

risk functional (2.6). These problems are common for many domains where machine

learning techniques are used. These problems include:

1. A lot of real world problems are ill-posed (see Appendix B);

2. Minimization of risk functional (2.6) for high dimensional data often involves

heavy computations and takes a lot of time;

3. High dimensional data often causes iterative algorithms to stick in local min-

ima;

4. Training of machine learning systems on high dimensional data often leads to

overfitting.

There is a lot of research dedicated to solving some of these problems. While

some of them can partly be solved by scaling up the amount of resources available

for training, others (e.g. local minima sticking, overfitting) are more fundamental.

Another problem is that the outcome of the function (2.6) minimization is random.

There are several factors contributing to this randomness:

1. Functional (2.6) minimization is an iterative process. At each iteration pa-

rameters get updated. During the initialization, however, the parameter set is

often drawn from some distribution [64];

2. Learning machines are often trained with mini-batches of data [66]. These

mini batches are chosen randomly from the training set and therefore cause

random fluctuations of the risk functional (2.6). Also, division of the dataset

into training and test sets is random.

These two factors are fundamental constraints of machine learning systems. Due

to the amount of parameters being optimized, machine learning systems will always
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make mistakes. For avoiding mistakes completely, one has either to have an amount

of data representing every possible situation or to spend significant amounts of time

sampling the function space f(xi, α).

2.3 Specific issues of Machine Learning in Com-

puter Vision domain

A particular domain, where machine learning techniques are widely used is computer

vision. In the computer vision domain the general definition of a machine learning

problems given by (2.6) is also suitable, except that vectors xi in (2.1) are replaced

with images Ii:

(I1, y1, . . . , Ii, yi). (2.9)

One thus aims to minimize the following empirical functional using the least squares

method:

Remp(α) =
1

l

l∑
i=1

(yi − f(Ii, α))2.

To date state of the art methods for minimizing this risk functional for a wide

range of computer vision tasks are methods based on convolutional neural networks

(CNN). In recent years this approach has proved itself to be a very efficient tool

in visual image recognition tasks [51, 62, 79, 38]. Despite this fact, there are may

hidden difficulties in application of this approach:

1. The problem of CNN training is ill-posed (see Appendix B);

2. Extremely long training times: sometimes it takes weeks for an optimization

process to converge. That means that one is not able to sample the function

space f(xi, α) quickly enough;

3. High requirements for training set (2.9): to train a large CNN one has to have

millions of images. For example, as of 2017 the ImageNet dataset [62] contains

at least 10 million images. It is extremely hard to ensure that the training set

is balanced correctly;

4. High probability to get stuck in a poor local minimum.
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5. Due to the amount of parameters CNNs are prone to overfitting;

6. Lower efficiency of training of deep architectures [38].

All in all, despite the amount of model parameters, state of the art Learning Ma-

chines are still prone to errors.

There is a lot of research dedicated to solving some of these problems. Several

techniques have been developed and applied in order to improve stability of the

training process and reduce overfitting. However, some of these techniques intro-

duce even more randomness into the training process. For example, the Dropout

technique [15] prohibits some gradients to propagate back to the network. Choice

of gradients that are nullified at each iteration is random.

The dimensionality of the data in computer vision tasks is also a problem. In

practical applications RGB images are normally rescaled to a standard size N×N 1.

Given that each pixel has three components, one has to deal N ×N ×3-dimensional

data. Not only can visual data have such a big dimensionality: a lot of real world

problems also do.

While there is not much that can be done against the complexity of the training

process, it is possible to reduce complications introduced by the high dimensionality

of the data. In what follows we will briefly discuss difficulties associated with high

dimensional data and classical methods of dimensionality reduction.

2.4 High dimensional data issues

As it was pointed out before, dealing with high-dimension data has its own compli-

cations. In this chapter we will be discussing those problems.

1. Any dimensionality higher than 4 is very hard to imagine and therefore do

quick in-mind evaluations of ideas .

2. Visualization difficulties [75][44]. Any visualizations requires data projection

to a low dimensional space, therefore, the higher the dimensionality of the

space we project from, the more information is lost.

1Typical values of N would be something like 80 or 256
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3. Computational difficulties. Large numerical and categorical descriptions of

entities in large amount of machine learning tasks are computationally hard

to deal with.

4. The concept of the distance is changing as the dimensionality grows. This will

be discussed in Chapter 4.

5. Attribute correlation issues. When dealing with high dimensional data we can

often meet highly correlated attributes. This issue leads to unstable or non

robust models [83].

6. If the process of data acquisition is expensive, then having insufficient data

easily leads to overfitting [60].

7. Trade-off between accuracy and computational complexity. In high dimen-

sional data mining applications we often have to reject complicated and ex-

pensive solutions in order to get something reasonable in terms of performance

[73].

Even though the list shown here is relatively short and not domain specific, it

still reflects the most common and general problem we face in high dimensional data

analysis.

2.5 Curse of dimensionality

Curse of dimensionality refers to cases that arise when trying to analyze huge

amounts of data. Most often this term is mentioned when we speak about hun-

dreds and thousands of dimensions. The expression was first introduced by Richard

E. Bellman [11, 12].

Curse dimensionality phenomena can be met in different areas of knowledge and

can mean many things.

The basic example is NP-hardness. Solutions for some problems can be eas-

ily found in two dimensions. However, same problem becomes NP-hard for any

dimensionality higher than 2.

In Combinatorics we can meet the problem when dealing with discrete variables.

If one wants to consider all possible combinations in order to find the best one,

20



then even for n binary variables we have to check 2d combinations. The problem

quickly gets unsolvable if the number of possible states for each variable grows and

the number of variables increases.

Another ”curse” of dimensionality refers to data sampling problem. As dimen-

sionality grows, data points become sparser and sparser. In this case one needs more

and more data to avoid overfitting. This is also a problem because many machine

learning algorithms rely on nearest neighbor idea and proximity of data points.

In optimization we face the problem when minimized variable depends on hun-

dreds of thousands of variables. Generally speaking, the problem is that the land-

scape of the target function is very complicated and in general case cannot be an-

alyzed analytically. Therefore any solutions found can be too sensitive to the data

configuration. As optimization often starts from random initial conditions, it im-

possible to analyze how far found solution is from an optimal one.

In Machine Learning the aim is to minimize risk functional (2.6). However, often

object’s nature and relationships between different parameters of the object are so

complicated that it takes enormous amount of data to build a good and reliable

model. Problem tends to get more complicated when the number of samples at

hand is insufficient. As it was mentioned by Gordon F. Hughes in [43], the predictive

power of the models may reduce as the number of dimensions grows. This is known

as Hughes phenomenon.

One of the most obvious ways to avoid listed issues is to reduce dimensionality of

the problem. This has proven to be beneficial in many cases [87][59][27]. In Chapter

3 we review some of these techniques and use cases they are useful in.
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Chapter 3

Dimensionality reduction

Dimensionality reduction techniques allow to decrease the number of variables when

data are high dimensional. Operating in a reduced feature space has several advan-

tages, which include:

1. Reduction of the number of calculations required;

2. Models built in a lower dimensional space are more robust;

3. Some of these techniques allow to leave only most valuable dimensions along

which data have the biggest variance;

4. In low dimensional spaces (e.g. 2D, 3D) visualization becomes possible.

The very basic dimensionality reduction techniques include:

1. Missing values ratio. The idea of the method is to remove columns from the

dataset which contain too many missing values. The step can be explained by

that assumption that fairly often these columns do not contain very much use-

ful information. However, this method is very limited, because many datasets

do not contain any missing values (e.g. computer vision and speech recognition

tasks)

2. Low variance filter. This method is very similar to the previous one. Here

we remove columns with low variance assuming that some columns with very

small data variability also do not contain very much useful information. The

main drawback of this method, as we shall see later, is that this assumption

often does not hold.
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3. High correlation filter. This method relies on an assumption that two different

features with high correlation are likely to contain similar information and one

of them can be removed.

4. Binary decision trees [68]. Being classifiers in the first place, the induce proce-

dure for binary decision trees has an interesting byproduct: having a decision

tree at hand we can see which variables appear more informative than the

others and therefore assume that latter are less important and therefore can

be removed.

5. Backward Feature Elimination [36]. In this algorithm we first calculate the

error of the model with all features in place. Then we remove features one

by one, retraining the model each time and observing the new error. Features

causing the smallest error increase are removed.

6. Forward feature construction [36]. The idea is to follow the process opposite

to Backward Feature Elimination.

It is worth noticing that the latter two algorithms can be applied effectively

in only two cases. Either building of a classifier is cheap in terms of time and

computation resources required or the dataset is small. Otherwise, these two

methods are not feasible due to time limitations.

The list above illustrates only the simplest dimensionality reduction algorithms pos-

sible. Jaap van den Herik, Laurens van der Maaten and co-authors published a

comprehensive classification of dimensionality reduction algorithms including more

sophisticated ones [84].

3.1 Full spectral Techniques

Here we discuss a set of techniques that are based on dataset correlation matrix

analysis.

Principal components analysis

Principal component analysis (PCA) [42, 63] is a statistical procedure that takes a

dataset as input and makes an orthogonal transformation of this dataset. Variables
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of the dataset are transformed into a set of linearly uncorrelated variables. These

variables are called principal components.

PCA can also be thought as fitting an N -dimensional ellipsoid to data. When

the ellipsoid is fit, its axis represent the principal components of the data. There-

fore, removing relatively small axes (principal components) from the data we loose

relatively small amounts of information. The procedure of principal components

calculation is sensitive to the initial data scaling. By writing down the process of

finding principal components we shall see why this is the case.

Let us define the data matrix X. Rows and columns of this matrix stand for

observations and features respectively. We assume that each column is transformed

so that in the new coordinates it has zero empirical mean. As we say about orthog-

onal transformation, we use some matrix W to project the original dataset into a

different space. Let k be the number of rows in W , then each new component of the

transformed dataset is obtained by multiplying each column of transposed X by a

row wk = (w1, . . . , wp)(k). As a result, we get new set of features T:

T = XW. (3.1)

It is important to note that while applying this transformation we aim to keep

the maximum possible variance of data along the given dimensions. The first column

w1 satisfies the following condition:

w1 = arg max
||w||=1

‖wTXTXw‖
wTw

. (3.2)

Since XTX is a matrix, not a vector, the quantity above can be viewed as a

Rayleigh quotient. It is a known result that the maximum possible value of this

quotient is the maximum eigenvalue of the XTX which is achieved when x is the

maximum eigenvector.

Further components can be found by subtracting the first k−1 components from

X:

X̂k = X−
k−1∑
s=1

Xx(s)x
T
(s). (3.3)

After this we repeat the same process of maximizing the Rayleigh quotient for
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the matrix X̂k. It appears that the final transform can be made up of all eigenvectors

of the matrix W = XTX. Therefore, the final PCA transformation is described by

T = XW. (3.4)

PCA is a very useful tool for visualization. Once the data is projected to a 2D

or 3D orthogonal space it can be visualized and analyzed. However, there are a few

caveats with PCA. The following assumptions are usually made when one is using

PCA:

1. Being linear in nature, PCA assumes that there is an effective linear dimen-

sionality reduction transformation exists for the dataset;

2. The directions that have the maximum variance are the most informative ones.

In addition to providing a useful dimensionality reduction tool, PCA has several

drawbacks that may require special consideration in application. First and foremost,

the size of the covariance matrix is obviously proportional to the dimensionality of

the data. This makes this approach infeasible in very high dimensional spaces.

Secondly, as was mentioned before, PCA assumes that dimensions with the highest

variance are the most useful ones. However, this is not always the case. For example,

we mention the so called ”data cake”, which is depicted in Figure 3.1.

The last but not the least, rules for dimensions pruning are heuristic. For ex-

ample, in the Kaiser-Guttman criterion we calculate the mean of all eigenvalues Me

and leave only directions with corresponding eigenvalues greater than Me.

Kernel PCA

Kernel PCA is a reformulation of the classical PCA approach. The difference is

that while PCA involve construction of covariance matrix, Kernel PCA constructs a

kernel matrix [7]. After matrix is constructed, this approach is similar to PCA

- calculate the eigenvectors of the kernel matrix and build a lower dimensional

embedding of data if one is required.

Speaking more formally, Kernel PCA computes a kernel matrix K of the data-

points xi:
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Figure 3.1: Example of where the direction with the highest variance is not the most
useful one.

kij = κ(xi,xj), (3.5)

where κ is a kernel function [78]. Kernel PCA has pretty much the same weaknesses

as classical PCA does: the size of kernel matrix is proportional to the number of

points and the data manifold structure is not taken into account during dimension-

ality reduction.

Isomap

The principal component approach takes into account pairwise distances, but no

information about dataset distribution is used. Therefore, if data are located on

some curved manifold, PCA may consider two points to be close according to Eu-

clidean distance calculations. However, if we take the form of the manifold data are

distributed across, it might appear that points are located further from each other.

The example of this situation is so called Swiss Roll [47] depicted in Figure 3.2.

Isomap [47] techniques addresses this issue. Isomap is working not with Euclidean

distance, but with geodesic distance. Geodesic distance is the distance measured

between two points over the manifold. A further idea is to build a connected graph

in which a point has connection only with the nearest N points. After the graph is

constructed, the geodesic distance can be calculated as a shortest path between two

points in this graph. After distances are obtained, the classical PCA approach can

be used for further dimensionality reduction. Therefore, the main goal of Isomap is
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Figure 3.2: Swiss Roll dataset.

to embed some knowledge about the data manifold into a distance matrix.

However, if we further think about the graph construction process, we will see

that in some cases Isomap will build a graph that does not adequately show the

manifold structure. This is referred to as topological instability [8]. There are several

approaches that aim to deal with this problem. For example, one can remove points

that violate local graph linearity [1]. By dataset nature or after points were removed

holes may appear in data. These kind of problems were also addressed in [54]. The

third potential issue for Isomap is dealing with non-convex datasets, where is might

be difficult to capture to general structure of the data manifold [82].

Diffusion Maps

Diffusion maps [52, 6] repeat Isomap in terms of building a data graph, but in this

method a different approach to the distance calculation is used. In this approach

we define a Markov random walk on the graph of the data. For each point we then

count the number of times its neighborhood was visited and accept this counter as

a measure of proximity between data point and its neighborhoods. This is called

the diffusion distance. The advantage of this approach is that during similarity

matrix construction more information about the graph structure is used. This type

of distance if more robust than the geodesic distance used in Isomap.

Speaking more formally, we first construct a data graph with edges wij, where i
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and j are indices of the data points. The matrix W contains the weights of edges

in this graph which are defined as follows:

wij = e−
‖xi−xj‖

2

2σ2 . (3.6)

Since the weights of those edges are later used in the Markov random walk

process, weights are supposed to represent the probability of visiting each edge and,

therefore, have to add up to 1. Now we construct a new matrix P which is formed

as follows:

pij =
wij∑
k wik

. (3.7)

Then after t steps the elements of the diffusion matrix are defined as follows:

D(t)(xi,xj) =

√√√√∑
k

(p
(t)
ik − p

(t)
jk )2

ψ(xk)
, (3.8)

where ψ(xk) = mi∑
j mj

,mi =
∑

j pij. It has been shown in [52] that a low dimensional

representation Y that approximates D(t)(xi,xj) as well as possible is formed by d

non trivial principal eigenvectors of the following problem:

Pv = λv. (3.9)

Since the data graph is fully connected and therefore each point is connected

with itself, the largest eigenvalue is trivial and equal to 1. Therefore the next d

eigenvectors give the following low-dimensional representation:

Y = {λ2v2, λ3v3, . . . , λd+1vd+1}. (3.10)

3.2 Sparse Spectral Techniques

All techniques described before aim to solve a simple eigenvalue problem. The

following class of techniques solves a generalized (sparse) eigenvalue problem which

has the following form:
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Pv = λBv. (3.11)

Local Linear Embedding (LLE)

Local linear embedding [74] is somewhat similar to Isomap, but in contrast to this

method it aims to preserve only the local structure of the data. This is achieved

in the following way: take a point xi and try to reconstruct this point as a linear

combination of its k neighbors. These operations assume that the data manifold

is locally linear. Since the reconstruction surface is linear, weights obtained during

plane fitting procedure are preserved under affine transformations. Therefore, any of

these coefficients are preserved under any linear operator A. In other words, such a

transformation preserves local geometry of the manifold, and weights wi. Therefore,

finding a lower dimensional data representation Y leads to the minimization of the

following cost function:

φ(Y) =
∑
i

‖y2 −
k∑
j=1

wijyij‖2 subject to ‖y(k)‖2 = 1 for ∀k. (3.12)

It was shown in [74] that vectors yi minimizing the cost function can be found

by computing non-trivial eigenvectors of the following product:

(I−W)T (I−W). (3.13)

where W is n×n sparse matrix, whose entries are set to 0 if the i-th and j-th points

are not connected in the data graph and the weight of the edge connecting them,

otherwise.

Laplacian Eigenmaps

In Laplacian Eigenmaps [10] we also minimize a cost function, but this function

is based on distances between nearest neighbors. Therefore, the function that is

minimized is

φ(Y) =
∑
ij

‖yi − yj‖wij. (3.14)
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Hessian Local Linear Embedding

This method is essentially a variation of the Local Linear Embedding method de-

scribed earlier in this section. The idea here is to minimize the curvature of the

manifold data points are embedded in.Hessian LLE [22] starts from taking k nearest

data points for each data point xi using Euclidean distance. Again, the manifold is

assumed to be locally linear.

Local Tangent Space Analysis

Local Tangent Space Analysis [88] is a technique that describes local properties of

the high-dimensional data using the local tangent space of each data point. The

main idea is that if local linearity of the manifold is assumed, there exists a linear

mapping from a high-dimensional datapoint to its local tangent space and hence

there exists a linear mapping from the corresponding low-dimensional datapoint to

its low-dimensional tangent space [88].

3.3 Non-convex Techniques

Sammon Mapping

The main weakness of the PCA approach is that it tries to retain large pairwise

distances between distant points. While retaining them, PCA does not retain small

pairwise distances. Quite often these small pairwise distances are more important

for understanding of the data geometry. One of the approaches that address this

issue is Sammon Mapping technique [76].

Sammon mapping uses weighted distance calculation. Contribution of each pair

is weighted by inverse value of distance dij between two points. This type of scaling

allows equal contribution to the cost function for both large and small pairwise

distances. More formally the cost function is defined as:

φ(Y) =
1∑
ij dij

∑
i 6=j

(dij − ‖yi − yj‖)2

dij
, (3.15)

where dij is a pairwise distance between two points. The minimization of this cost

function is usually done by a pseudo-Newton method [18].
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Figure 3.3: Autoencoder basic structure. Structure has equal number of inputs and
outputs, middle layer represents input entity encoded.

Multilayer Autoencoders

Multilayer Autoencoders are essentially multilayer neural networks which have spe-

cial structure. To start with, the number of inputs and outputs are equal in this

structures and equal D. The number of layers is odd and middle layer has d di-

mensions and d < D. Then the idea is to minimize the mean-squared error between

input and output. When the network is trained the middle layer with d dimensions

represents an effective low dimensional representation of input data. The generic

structure of autoencoder is shown in Figure 3.3.

The left part of the autoencoder is called the encoder and right part is called the

decoder. Mathematically, the encoder maps the input to a lower dimensional space:

φ : X → F, (3.16)

where F is a lower dimensional space, X is the input.

The decoder part does the opposite:

ψ : F → X. (3.17)

Therefore, mathematically, the task of building an autoencoder can be seen as

arg min
φ,ψ
‖X − (ψ ◦ φ)X‖2. (3.18)

Autoencoders have found many successful applications in data mining. For ex-
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ample, they were used for building various image denoising algorithms. The idea is

that a distorted signal is given as input and a clean signal is given as output. Then

the autoencoder is trained for noise reduction. [86].

Autoencoders are not used only as a dimensionality reduction tool. This tech-

nique finds a lot of applications if different areas of computer vision. For example,

autoencoders were used to generate natural language image descriptions [50, 72].

3.4 Random projections

Random projection is another dimensionality reduction technique used in machine

learning. This methods maps a high dimensional data point to a lower dimensional

one. The reduced dimensionality of the space allows us to perform faster calculations

[2] on the data and get smaller and more robust models.

This method has been successfully applied in many applications including im-

age and text processing [29, 70], compressive sensing [20], manifold learning, graph

embedding [34] and dimensionality reduction.

The reason why the random projection method is a useful dimensionality reduc-

tion tool can be found in Johnson–Lindenstrauss lemma [49]: a small set of points

in a high-dimensional space can be embedded into a space of lower dimensionality

so that the pairwise distance between any two points is nearly preserved.

Suppose, we have an M ×N matrix F whose rows contain M observations and

columns contain N predictors. Let us also introduce a linear operator P which maps

points described in F in a space of lower dimensionality. Lets say, its size will be

Mp ×N . Therefore, the described operator maps our feature from feature space S

to a space SL:

P : S → SL. (3.19)

Now we can get projected features by using the following equation:

Fp = (PFT )T . (3.20)

It has been shown in [49] that such transformation introduces a limited distor-

tion to the metric, which can be described by the following inequality (named the
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Johnson–Lindenstrauss lemma):

(1− ε)||u− v||2 ≤ ||P (u)− P (v)||2 ≤ (1 + ε)||u− v||2. (3.21)

In this inequality ε is a number from the interval (0, 1).

There are several things to note. First, the projection matrix P is not orthogonal,

which can introduce significant distortions to the dataset. In some cases orthogonal-

ization can be very expensive. However, as it was shown in [39], in high dimensional

spaces two randomly chosen vectors are almost orthogonal, which makes P TP close

to the identity matrix.

Another important problem is choosing the matrix P . There are several ap-

proaches to handle this. One can generate matrix P using the Gaussian distribution

[3]. The first row is sampled from the Gaussian distribution. The second row is

chosen to be orthogonal to the first one and so on. A matrix generated in this way

will have the following properties:

1. Spherical symmetry: F and Fp have the same distribution;

2. Orthogonality: The rows of P are pairwise orthogonal;

3. Normality: The row of P have unit length.

Another way to chose the matrix P was shown in [2]. One can use the following

procedure:

Ri,j =
√

3


+1 with probability 1

6
,

0 with probability 2
3
,

−1 with probability 1
6
.

Projection matrices generated with this algorithm allow one to use integer cal-

culations.

3.5 The blessing of dimensionality

So far we have emphasized difficulties which are caused by high dimensionality of

a certain problem. However, there are theoretical benefits associated with high
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dimensionality. Some important advantages of having data in high dimensional

space will be discussed later. Now we will turn our attention to the well-known

phenomenon called concentration of measure. We will briefly discuss known results

which will partly be used in Chapter 4.

Concentration of measure term was first introduced by V. Milman. This is an

important principle that finds many applications in different fields of combinatorics,

functional and discrete analysis, statistics, probability theory, geometry, and statis-

tical physics. Informally it says that ”a random variable that smoothly depends on

the influence of many independent random variables (but not too much on any of

them) is essentially constant” [81]. A slightly different way to look at this statement

is as follows: a function that depends on many variables does not deviate from some

typical value, e.g. its mean or some other constant.

Let us give a few non-formal examples. Say, if we toss a coin once then the

result is unpredictable: both heads and tails have equal probability. However, if we

toss a coin large number of times(e.g. 10000), the result becomes highly predictable.

Specifically, we can say that that number of tails will be somewhat around 5000. This

is the simplest example of measure concentration phenomenon. Another example of

this phenomenon is as follows. Our world consists of microscopic particles governed

by laws of quantum and statistical physics [21]. Nevertheless, macroscopic properties

determined by the ensembles of these particles are very deterministic. The reason for

this is that possibilities observed on microscopic scale concentrate in a very narrow

range. Similar examples can be found in computer science. Randomized algorithms

that depend on many parameters will have (almost) constant execution time and

memory consumption. On the other hand, even though parameters in a random

algorithm are drawn at random, it is very likely that many runs of this algorithm

will show almost deterministic result.

There are classical results that concern the same phenomenon: the central limit

theorem, the law of large numbers and the theory of large deviations. The law of

large numbers roughly says that if th same experiment is conducted many times,

the average of the outcome will tend to concentrate around experiment’s expected

value. The central limit theorem says that ”properly” normalized sums of random

variables tend to normal distribution. Finally, the theory of large deviations studies
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remote tails of random sequences. It says that the probability of an extreme ”tail”

events decreases with the exponential rate.

Despite the theoretical value of these results, the practical application of these

theories is difficult since:

1. They are assymptotic limit laws applied in the infinite limit case. Most of

practical applications concern the finite case;

2. These results say almost nothing about the rate of convergence.

Speaking more formally, we want to be able to answer the following question:

given the random variable X with its mean value E[X], what is the probability that

X deviates far from E[X]?

Markov’s inequality can serve as a basis for answering this question. Markov’s

inequality states the following fact:

P [X ≥ ε] ≤ E[X]

ε
. (3.22)

To see that this is true, imagine we have a non-negative function f(x) and let us

introduce the following function:

s(x) =

ε if f(x) ≥ ε,

0 if f(x) < ε.

Let µ be a measure and since 0 ≤ s(x) ≤ f(x), we have the following:

∫
X

f(x)dµ ≥
∫
X

s(x)dµ = εµ({x | f(x) ≤ ε}).

Therefore,

µ({x | f(x) ≤ ε}) ≤ 1

ε

∫
X

f(x)dµ =
E[X]

ε
.

The latter proves Markov’s inequality. Furthermore, let Xc = |X −E[X]| and φ(x)

denotes non-negative, non-decreasing function, then the following is also true:

P [Xc ≥ ε] ≤ P [φ(Xc) ≥ φ(ε)] ≤ E[φ(Xc)]

φ(ε)
. (3.23)
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If we take φ(ε) = ε2, we obtain Chebyshev’s inequality:

P [|X − E[X]| ≥ ε] ≤ V ar[X]

ε2
.

Chernoff inequality allows one to obtain best possible bound for a tail probability,

while using Markov’s inequality. Let now φ(ε) = eλε. Then Markov’s inequality

becomes:

P [X ≥ ε] ≤ e−λεE[eλX ]. (3.24)

For λ > 0 one can choose value of λ to minimize the upper bound 3.24. The Cher-

noff’s inequality leads us to Hoeffding’s inequality for sum of independent random

variables. Let X1, . . . , Xn be independent random variables such that Xi takes its

values in [ai, bi]. Let S =
∑N

i=1(Xi − E[Xi]), then:

P [S > ε] ≤ e
− 2ε2∑N

i=1
(bi−ai)2 . (3.25)

Another famous inequality is Minkowski’s inequality. The best known form of

this inequality is triangle inequality for Lp norms of vectors of random variables.

Let X1 and X2 be two real-valued random variables, then for q > 0 we have the

following:

E[|X1 +X2|q]1/q ≤ E[|X1|q]1/q + E[|X2|q]1/q, (3.26)

which has the more general form:

EX [|EY [Z]|q]1/q ≤ EY [(EX [|Z|q])1/q], (3.27)

where Z = f(X, Y ), f is a real-valued measurable function, EX [Z] = E[Z|Y ] and

EY [Z] = E[Z|X].

One more inequality we will be referring to is the Brunn-Minkowski inequality.

Here we consider sets A,B ⊂ Rn. We also define Minkowski sum of A and B as the

set of all vectors in Rn formed by sum of individual elements of A and B:

A+B = {a+ b | a ∈ A, b ∈ B}. (3.28)
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Similarly, for c ∈ R, let cA = {ca | a ∈ A}. We also denote V(A) the Lebesgue

measure of A ⊂ Rn. The Brunn-Minkowski inequality states the following:

V((1− λ)A+ λB)1/n ≥ (1− λ)V(A)1/n + λV(B)1/n. (3.29)

The last statement we consider is so called Isoperemtric theorem. Consider the

set A ⊂ Rn. Now we introduce set At which will be called t-enlargement of A:

At = {x ∈ Rn | d(x,A) < t}, (3.30)

where d(x,A) denotes the distance from x to set A. We define the surface area of

A as:

V(∂A) = lim
t→0

V(At)− V(A)

t
. (3.31)

Also, if B = {x ∈ Rn | ‖x‖ ≤ 1} (the unit open ball), then taking 3.28 into account,

we have:

At = A+ tB. (3.32)

Now we can turn our attention to Isoperemetric theorem.

Theorem 1 (Isoperemetric theorem, [80]) Let A ⊂ Rn be such that V(A) =

V(B). Then, for any t > 0, V(At) ≥ V(Bt).

Proof. Using 3.29, we have the following:

V(At)
1/t = V(A+ tB)1/t

≥ V(A)1/t + tV(B)1/t

= V(B)1/t(1 + t) = V(Bt)
1/t.

The statements above are examples how measure concentration effect can be

quantified in several ways. There are several other techniques developed that help

to prove the concentration of measure phenomenon, which include:

1. The Martingale approach [58, 5, 41];

2. The entropy method and logarithmic Sobolev inequalities [53, 57];

3. Transportation-cost inequalities [53, 33];
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4. Talagrand’s inequalities for product measures [58, 81].

In the next chapter we will show how specific concentration effects influence

performance of Machine Learning systems in computer vision applications. We will

see how to make use of these effects to develop new Machine Learning technologies

that not only are free from difficulties imposed by high dimensionality, but also are

taking advantage of it.
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Chapter 4

Blessing of dimensionality in

Pattern Recognition

4.1 Statistical properties of high-dimensional data

Definition 1 A system of vectors h1, h2, . . . , hm ∈ Rn, i = 1, 2, . . . ,m is said to be

linearly dependent iff there exist c1, c2, . . . , cm, ci ∈ R, i = 1, 2, . . . ,m such that

h1c1 + h2c2 + . . .+ cmhm = 0, (4.1)

and at least one of c1, c2, . . . cm is not equal to zero.

The same can be written in vector-matrix notation. Let H = (h1, h2, . . . hm) be

an n×m matrix formed by h1, h2, . . . , hm.

∃c ∈ Rm, c 6= 0 : Hc = 0, (4.2)

where

H = (h1h2 . . . hm)

is an n×m matrix formed by h1, . . . , hm.

Definition 2 A system of vectors h1, h2, . . . , hm ∈ Rn, i = 1, 2, . . . ,m is said to be

linearly independent if it is not linearly dependent:

Hc 6= 0∀c ∈ Rm, c 6= 0. (4.3)
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A simple fact follows from Definition 2

Proposition 1 Consider a system of vectors h1, h2, . . . , hm and let H = (h1, h2, . . . hm).

Let |.|Rn be a norm on Rn. Then the system h1, h2, . . . , hm is linearly independent

iff there exists an ε > 0 such that

|Hx|Rn > ε ∀ x ∈ Sm−1(1). (4.4)

Proof. Suppose that the system h1, h2, . . . , hm is linearly independent. Hence (4.3)

holds, and given that x 6= 0 for all x ∈ Sm−1(1) we thus obtain that |Hx|Rn > 0 for

all x ∈ Sm−1(1). Since |.|Rn is continuous and Sm−1(1) is compact we conclude that

|.|Rn takes it minimal and maximal values on Sm−1(1). Let

ε = min
x∈Sm−1(1)

‖Hx‖Rn .

The minimum |.| on Sm−1(1) is separated from 0 since otherwise there will exist an

x ∈ Sm−1(1) such that Hx = 0. Thus (4.4) holds.

Let us now show that (4.4) implies (4.3). For any c ∈ Rm, c 6= 0 there is an

x ∈ Sm−1(1) and an α ∈ R, α 6= 0 such that c = αx. Hence |Hc|Rn = |α||Hx|Rn >

|α|ε > 0, which automatically assures that (4.3) holds. �

Quantification of linear independence

Standard notions of linear dependence and independence are not always easy to

assess numerically when the values of ε in (4.3) are small. Furthermore, checking

that for a given system of vectors h1, h2, . . . hm and some ε, and all x ∈ Sn−1(1), the

following holds:

|Hx|Rn > ε (4.5)

may not always be feasible or desirable. Two ways to relax and quantify the con-

ventional notion of linear independence follow from Proposition 1. These are 1) the

values of ε in (4.4), and 2) a possibility of introducing the finite measure on Sm−1(1)

that determines a proportion of Sm−1(1) which satisfy (4.4).

Definition 3 Let h1, h2, . . . hm be a system of m normalized vectors from Rn: |hi|Rn =

1, i = 1, 2, . . . ,m. We will say that the system is (ε, θ)-linearly independent (almost
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linearly independent) with respect to µ if

µ({x ∈ Sm−1(1) | |Hx|Rn ≥ ε}) ≥ 1− θ. (4.6)

Similarly, one can formulate a quantification of linear dependence:

Definition 4 Let h1, h2, . . . hm be a system of m normalized vectors from Rn: |hi|Rn =

1, i = 1, 2, . . . ,m. We will say that the system is (ε, θ)-linearly dependent (almost

linearly dependent) with respect to µ if

µ({x ∈ Sm−1(1) | |Hx|Rn ≤ ε}) ≥ 1− θ. (4.7)

Notice that definitions of almost linear dependence and almost linear independence

introduced in Definitions 3, 4 are consistent with conventional notions in the sense

that the latter can be viewed as limiting cases of the former. Indeed, if µ is a surface

area then setting θ = 0 in Definition 3 and picking ε small enough one obtains the

equivalent of Definition 2.

The above probabilistic quantification of linear independence has significant im-

plications for data representation in applications. As we shall see in the next sections

two seemingly exclusive extremes are likely to hold in higher dimensions. First of

all, almost all points of an n-ball concentrate in an ε-thickening of an n − 1 disc.

This means that for m sufficiently large a family of randomly and independently

chosen vectors h1, h2, . . . , hm becomes almost linearly dependent. Yet, the values of

m for which almost linear independence persists may be exponentially large. Fur-

thermore, the latter situation holds with probability close to one. In other words,

the number of almost orthogonal vectors grows exponentially with dimension. More

formal statements are provided in Propositions 2, 3 below.

4.2 Measure concentration revisited

We begin with the following statement

Proposition 2 Let B(R) be an n-ball of radius R in Rn, and 0 < σ < R be a
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non-negative number. Then, for n� 1 the following estimate holds:

V(Bn(R))− V(Bn(R− σ))

V(Bn(R))
> 1− e−

nσ
R . (4.8)

Proof. Noticing that V(Bn(R)) = CnR
n where Cn is a constant independent on R

we conclude that

V(Bn(R))− V(Bn(R− σ))

V(Bn(R))
= 1− (R− σ)n

Rn
= 1−

(R− σ
R

)n
.

The following inequality holds for all 0 < x < 1:

(1− x)
1

e
< (1− x)

1
x <

1

e
. (4.9)

With respect to the right part of (4.9), (1−x)
1
x < e−1, we notice that (1−x)

1
x <

e−1 ⇔ 1 − x < e−x. The function y = e−x is strictly convex on R, and y = 1 − x

is its first-order Taylor approximation at x = 0. Thus that (1− x)
1
x < 1

e
holds true

0 < x < 1 is the consequence of the strict convexity of the exponential e−x.

In order to see that the left part of (4.9) holds as well, consider the following

chain of equivalent inequalities for 0 < x < 1:

(1− x)e−1 < (1− x)
1
x ⇔ e−x < (1− x)1−x ⇔ −x < (1− x) ln(1− x). (4.10)

Again, y = (1−x) ln(1−x) is strictly convex on (−∞, 1), and y = −x is its first

Taylor approximation at x = 0. Thus the left part of inequality is a consequence

of the strict convexity of (1 − x) ln(1 − x). Also see Figure 4.1 for an additional

illustration.

Using (4.9) one can show that
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[
e
(

1− σ

R

)−1
]−nσ

R

<
(

1− σ

R

)n
< e−

nσ
R . (4.11)

To show this, one puts x = σ/R in inequality 4.9. Thus we get:

(
1− σ

R

)
e−1 <

(
1− σ

R

)R
σ
< e−1.

Exponentiating all members with the power of nσ
R

, one obtains 4.11. Moreover, for

σ/R sufficiently small we obtain

(
1− σ

R

)n
∼ e−

nσ
R .

with accuracy estimate following from (4.9). �

In accordance with Proposition 2 the volume of n-ball of Radius R, for n suffi-

ciently large is concentrated in a thin layer around its surface. Furthermore, in this

thin layer the volume of an n-ball is concentrated around the largest equator of the

corresponding n− 1 sphere, Sn−1(R).

Proposition 3 Let Bn(R) be an n-ball of radius R in Rn, and 0, σ < R. Let

Dn−1
σ (R) be a σ-thickening of an (n− 1)-disk Dn−1(R). Then

V(Bn(R))− V(Dn−1
σ (R))

V(Bn(R))
< e−

nσ2

2R2 .

Proof. Consider

V(Bn(R))− V(Dn−1
σ (
√
R2 − σ2))

V(Bn(R))
= 1−

(
1− σ2

R2

)n
2
.

Using (4.9) we obtain

1−
(

1− σ2

R2

)n
2
> 1− e−

nσ2

2R2

and the result follows from

V(Bn(R))− V(Dn−1
σ (R)) ≤ V(Dn−1

σ (
√
R2 − σ2)).

�
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In high dimension the volume of the ball is concentrated in a thin layer near the

sphere. Therefore, the estimate of the volume of the disk automatically provides

an estimate of the surface of the corresponding waist of the sphere. Let us produce

this estimate explicitly. The proportion of Sn−1(1) belonging to the cap (shaded

part of the sphere in Fig. 4.2) equals the proportion of the solid ball that lies in

the corresponding spherical cone (cf. [24], Fig. 11). The latter consist of two parts:

one is the cone of height δ and radius of the base
√

1− δ2. The volume of the

second part can be bounded from above by the half of the volume of the ball with

radius
√

1− δ2. If we use the Stirling formula for the volume of high-dimensional

ball Vn(R) ∼ 1√
nπ

(
2πe
n

)n/2
Rn then we obtain that the fraction of the waist of the

width 2δ is 1− (1 +O(δ/
√
n))e−

nδ2

2 . Indeed

Vn(R) =
πn/2

Γ(n
2

+ 1)
Rn, Vn(R) = 2π

(
R√
n

)2

Vn−2(R),

Vn(R) = R
√
π

Γ(n+1
2

)

Γ(n+1
2

+ 1
2
)
Vn−1(R).

(4.12)

The estimate now follows from

Γ(x) = xx−
1
2 e−x
√

2π

(
1 +

1

12x
+R2(x)

)
,

where the reminder R2(x) can be bounded as

|R2(x)| ≤
1 + 1

6
π2

2π3x2
(4.13)

(see (3.11) from [13] for details). This estimate improves the textbook estimate

1− 2e−
nδ2

2 for large n [24].

The concentration effect described in Proposition 3 implies that in high di-

mensions nearly all independently and randomly drawn vectors will belong to a

δ-thickening of a set of vectors that are linearly dependent: the n− 1-disc Dn−1(R).

On the other hand a set of n− 1 vectors with probability close to one spans almost

all vectors. We note that the latter property holds for systems of n − k, k > 1

vectors too which follows immediately from [4]:

Theorem 2 (Theorem 3.1 in [4]) Let Ek be a k-dimensional subspace of Rn, and
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(a) Covering of an n-ball

(b) V ∼√
2π
n+1RVn−1(R)

(c) V = 1
n+1δVn−1(R) (d) V = δVn−1(R)

Figure 4.2: Illustration to the estimate of the 2δ-width of the waist of the sphere.
For (b), n � 1. More accurate estimate with evaluation of the reminder can be
extracted from (4.12), (4.13).
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denote by µ((Ek)ε) the Haar measure on the sphere S(1) of the set of points within

a geodesic distance smaller than ε of Ek. We write k = λn. Fix 0 < ε < π/2 and

0 < λ < 1. The following estimates hold as n→∞

(i) If sin2 ε > 1− λ, then

µ((Ek)ε) ' 1− 1√
nπ

√
λ(1− λ)

sin2 ε− (1− λ)
e
n
2
u(λ,ε).

(ii) If sin2 ε < 1− λ, then

µ((Ek)ε) '
1√
nπ

√
λ(1− λ)

(1− λ)− sin2 ε
,

where u(λ, ε) = (1− λ) log 1−λ
sin2 ε

+ λ log λ
cos2 ε

.

Since nearly all vectors in Bn(1) are concentrated in an ε-disc it is interesting

to know how many pairwise almost orthogonal vectors can be found in this set. It

turns out that this number is exponentially large. Detailed analysis and derivations

are provided in the next section.

4.3 Almost orthogonality in high dimensions

Select two small positive numbers ε and θ. Let us generate randomly and indepen-

dently N vectors x1, . . . , xN on Sn−1(1). We are interested in the probability P that

all N random vectors are pairwise ε-orthogonal, i.e. |(xi, xj)| < ε for i, j = 1, . . . , N

and i 6= j. For which N is this P > 1− θ?

Propositions 2 and 3 suggest that for n � 1 almost the entire volume of n-

ball Bn(1) is concentrated in ε-thickening of its largest equator. Moreover, for an

arbitrarily chosen point p on the surface of Bn(1) almost all points of the ball belong

to the set DCn−1
ε (1) comprising of the difference of Dn−1

ε (1) the following estimate

holds:

| cos(∠(p, x))| ≤ ε∀x ∈ DCn−1
ε (1).

this property means that the vector p is almost orthogonal to nearly all remaining

points in Bn(1).
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Another way of looking at this could be as follows. In accordance with Propo-

sition 2, almost all points of the ball B are concentrated around a ε-thickening of

the surface. At the same time they are also concentrated in Dn−1
ε (1). The length of

such points, x, satisfy 1− ε ≤ ‖x‖ ≤ 1, and hence

| cos(∠(p, x))| ≤ |p
Tx|

1− ε
≤ ε

1− ε
.

Let us determine the number of independent vectors which are pairwise ε-

orthogonal with probability 1− θ. The volume taken by all vectors that are almost

orthogonal to a given vector on a unit sphere can be estimated from Proposition 3.

Consider the following products:

P (ε,N) =
N∏
k=1

(1− ke−
nε2

2 ). (4.14)

The value of P (ε,N) is an estimate from below of the probability of a set of

N + 1 independent random vectors to be pairwise ε-orthogonal. Indeed, for one

vector h1 the fraction of vectors which are not ε-orthogonal to h1 is evaluated as

e−nσ
2
. Therefore, for k vectors h1, h2, . . . , hk, the fraction of vectors which are not ε-

orthogonal to h1, h2, . . . , hk is at most ke−nσ
2
. The probability to select randomly a

vector hk+1, which is ε-orthogonal to h1, h2, . . . , hk is higher than 1−ke−nσ2
. Vectors

are selected independently, therefore we have the estimate (4.14).

The value of P (ε,N) in (4.14) can be estimated as follows. For Ne−
nε2

2 < 1:

P (ε,N) > (1−Ne−
nε2

2 )N ∼ e−N
2e−

nε2

2 . (4.15)

According to (4.15), if P (ε,N) is set to be exceeding a certain value, 1 − θ,

the number of pairwise almost orthogonal vectors in Bn(1) will have the following

asymptotic estimate: for

N ≤ e
ε2n
4

[
log

(
1

1− θ

)] 1
2

(4.16)

all random vectors h1, h2, . . . , hk are pairwise ε-orthogonal with probability P >

1− θ.

Estimate (4.15) of (4.14) can be refined if we apply log to the right hand size of
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(4.14).

logP (ε,N) =
N∑
k=1

log
(

1− ke−
nε2

2

)
, (4.17)

and estimate the above sum using the integral

J(z) =

∫ z

0

log(1− xr)dx =
rz − 1

r
log(1− rz)− z, r = e−

nε2

2 . (4.18)

Since logP (ε,N) is monotone for e
nε2

2 > N ≥ 1 we can conclude that J(N+1) ≤

logP (ε,N) ≤ J(N). Furthermore, given that

log(1− x) ≤ − 2x

2− x
for all x ∈ [0, 1], (4.19)

the following holds:

J(z) =
2z(rz − 1)

rz − 2
− z (4.20)

for all rz ∈ [0, 1]. Hence

2(N + 1)(r(N − 1)− 1)

r(N + 1)− 2
− (N + 1) ≤ P (ε,N) = log(1− θ). (4.21)

Multiplying both sides by r(N + 1)− 2 we have

r(N + 1)2 − log(1− θ)r(N + 1) + 2 log(1− θ) ≤ 0, (4.22)

and solving this for N gives us the following estimate

N ≤

√
log2(1− θ)

4
+ 2 log

1

1− θ
e
nε2

2 +
log(1− θ)

2
. (4.23)

Notice that the refined estimate (4.23) has asymptotic exponential rate of order

e
nε2

4 (with respect to dimensionality n) which is identical to the one derived in (4.16).

Estimates (4.23), (4.16) derived above suggest that, for θ sufficiently small a

set of N randomly and independently chosen vectors in Bn(1) will be pairwise ε-

orthogonal with probability 1− θ for
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Figure 4.3: Measure concentration in high dimensions. Panel (a) shows histogram
of angles between a randomly chosen feature vector in the set of ”faces” and the rest
of the vectors in the class. Panel (b) shows histogram of angels between a randomly
chosen feature vector in the set of ”non-faces” (negatives) and the rest of vectors in
this class.

N < e
ε2n
4 θ

1
2 . (4.24)

Measure concentration effects

So far measure concentration effects have been discussed for idealized objects such

as Sn−1(R) and Bn(R). The phenomenon, however, broadly applies to other objects

whose geometric and formal description is not limited to the former.

In order to illustrate this point we analysed a database of HOG feature vectors

[19] containing representations of images of faces1 as well as the negatives (non-

faces). Each feature vector has 1920 components, and hence belongs to Rn with

n = 1920. Vectors of each classes have been centered and normalized so that they

belong to the hypercube [−1, 1]n. Fig. 4.3 shows distributions of angles between a

randomly chosen vector (1-st) and that of the rest in their respective classes. As

one can see from this figure, the angles concentrate in a vicinity of π/2 which is

1The database has been developed by Apical LTD.
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consistent with our derivations for points in Bn(1).

Another interesting effect of measure concentration is exponential growth of the

lengths of chains of randomly chosen vectors which are pairwise almost orthogonal.

In order to illustrate and assess validity of our estimates (4.16), (4.23) the following

numerical experiments have been performed. A point is first randomly selected in a

hypercube [−1, 1]n of some given dimension. The second point is randomly chosen in

the same hypercube. These two points correspond to two vectors randomly drawn in

[−1, 1]n. If the angle between the vectors was within π/2±0.037π/2 then the vector

was retained. At the next step a new vector is generated in the same hypercube,

and its angles with the previously generated vectors are evaluated. If these angles

are within 0.037π/2 of π/2 then the vector is retained. The process is repeated

until the chain of almost orthogonality breaks, and the number of such pairwise

almost orthogonal vectors (length of the chain) is recorded. Results are shown in

Figure 4.4. Red line corresponds to the conservative theoretical estimate (4.16),

green curve shows refined estimate, (4.23), and box plot shows lengths of pairwise

almost orthogonal chains as a function of dimension. The value of θ was set to 0.1

for both theoretical estimates, and our choice of precision margins π/2 ± 0.037π/2

corresponds to ε = cos(0.963π/2) = 0.0581. As we can see from this figure our

empirical observations are well aligned with theoretical predictions.

Approximation of a constant: dimensionality blowup

Another illustration of measure concentration and orthogonality effects belongs to

the field of function approximation. Let suppose we want to approximate a given

continuous function defined on interval [0, 1] be linear combinations of the following

type:

fN(x) =
N∑
i=1

ciφ(ai, σi, x), (4.25)

where the function φ is defined as follows:
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Figure 4.4: Lengths N of pairwise almost orthogonal chains of vectors that are inde-
pendently randomly sampled from [−1, 1]n as a function of dimension, n. For each n
20 pairwise almost orthogonal chains where constructed numerically. Boxplots show
the second and third quartiles of this data for each n, red bars correspond to the
medians, and blue stars indicate means. Red curve shows theoretical bound (4.16),
and green curve shows refined estimate (4.23).

φ(a, σ, x) =


0, x > a+ σ/2,

1, a− σ/2 ≤ x ≤ a+ σ/2,

0, x < a− σ/2.

For simplicity we suppose that this function is a constant on a defined interval:

f(x) = 1 ∀ x ∈ [0, 1].

A linear combination of φ(ai, σi, x) can approximate any continuous function on

[0, 1]. Furthermore, the chosen function f can be represented by just a single element

with a = 0.5, σ = 0.5 : f(x) = φ(0.5, 0.5, x). Since we make no assumptions about

these parameters, we approximate the function f with linear combinations (4.25) in

which values of ai, σi were chosen randomly on the interval [0, 1] and the values of

ci were chosen as follows

c1, c2, . . . , cN = arg min
c1,c2,...,cN

∫ 1

0

(f(x)− fN(x))2dx. (4.26)
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Figure 4.5: Errors of approximation of f(x) = 1 be linear combinations of
fN(x), (4.25).

In order to evaluate the performance of approximation as a function of N the

following iterative procedure has been used. In the first step the values of a1 and

σ1 are randomly drawn from the interval [0, 1]. This is followed by finding the value

c1 in accordance with (4.26). Next values of a1, σ1 are drawn randomly from the

interval [0, 1], followed by finding an optimal pair of weights c1, c2. The L2 error of

approximation is recorded at each step. The process is run until N = 500.

Fig. 4.5 presents 20 different error curves corresponding to different growing

systems of functions {φ(ai, σi, .)}Ni=1. Even though the problem is both simple and

has an explicit solution, the performance of such an approximation scheme is far

from being ideal. One can see a big initial drop in error for values of N < 100.

However, after this value the error decays very slowly and later the rate of the error

almost stalls.

One potential explanation of this effect is as follows. Fig. 4.6 shows functions

f(x) − fN(x) for N = 5, 50 and 500 along a single typical curve from Fig. 4.5. It

is clear from the picture that error functions become more patchy and spiky as N

grows. The individual spikes are randomly distributed in [0, 1] and its thickness

converges to zero. To compensate for this kind of error one needs to be able to gen-

erate very narrow φ(ai, σi, .) which, in addition, have to be placed in a right location.

However, in accordance with (4.16) one needs to accumulate an exponential number

of functions to overcome this effect. This is reflected in a very slow convergence rate

at the end of the process.
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Figure 4.6: Error function f(x)− fN(x) for N = 5 (panel (a)), N = 50 (panel (b))
and N = 500 (panel (c)).
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4.4 Stochastic separation theorems

In this section we consider an important consequence of the above result: stochastic

separation theorems as developed in [31]. These theorems will be used in Section

4.5 and that is why their presentation is included here.

Let us consider a basic example where points are randomly equidistributed on

the unit ball Bn(1) in Rn.

Definition 5 Let X and Y be subsets of Rn. We say that a linear functional l on

Rn separates X and Y if there exists a t ∈ B such that

l(x) > t > l(y)∀x ∈ X, y ∈ Y. (4.27)

Let M be i.i.d sample drawn from the equidistribution on the unit ball Bn(1).

We begin with evaluating the probability that a single element x randomly and

independently selected from the same equidistribution can be separated from M

by a linear functional. This probability denoted as P1(M, n), is estimated in the

theorem below.

Theorem 3 ([31]) Consider an equidistribution in a unit ball Bn(1) in Rn, and let

M be an i.i.d. sample from the distribution. Then

P1(M, n) ≥ max
ε∈(0,1)

(1− (1− ε)n)
(

1− ρ(ε)n

2

)M
, ρ(ε) = (1− (1− ε)2)

1
2 . (4.28)

The proof of this theorem is mostly contained in the following lemma

Lemma 1 ([31]) Let y be random point from an equidistribution on a unit ball

Bn(1). Let x ∈ Bn(1) be a point inside the ball with 1 > |x| > 1− ε > 0. Then

P
(〈 x
|x|
, y
〉
< 1− ε

)
≥ 1− ρ(ε)n

2
. (4.29)

Proof. Recall that [55] V(Bn(r)) = rnV(Bn(1)) for all n ∈ N r > 0. The point x

is inside spherical cap Cn(ε):

Cn(ε) = Bn(1) ∩
{
ξ ∈ Rn

∣∣∣〈 x|x| , ξ〉 < 1− ε
}
. (4.30)
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The volume of this cap can be estimated from above [9] as

V(Cn(ε)) ≤ 1

2
V(Bn(1))ρ(ε)n. (4.31)

The probability that the point y ∈ M is outside of Cn(ε) is equal to 1 −

V(Cn(ε))/V(Bn(1)). Probability (4.29) immediately follows from (4.31). �

Let us now return the proof of the theorem. If x is selected independently from

the equidistribution on Bn(1) then the probabilities that x = 0 or that it is on the

boundary of the ball are 0. Let x 6= 0 be an interior of Bn(1). According to Lemma

1, the probability that a linear functional l separates x from a point y ∈M is larger

than 1 − 0.5ρ(ε)n. Given that points of the set M are i.i.d. in accordance to the

equidistribution on Bn(1), the probability that l separates x from M is no smaller

than (1− 0.5ρ(ε)n)M .

On the other hand

P (1 > |x| > 1− ε |x ∈ Bn(1)) = (1− (1− ε)n).

Given that x and y ∈M are independently drawn from the same equidistribution

and that the probabilities of randomly selecting the point x exactly on the boundary

of Bn(1) or in its centre are zero, we can conclude that

P1(M, n) ≥ (1− (1− ε)n)(1− 1/2ρ(ε)n)M . (4.32)

Finally, noticing that (4.32) holds for all ε ∈ (0, 1) including the value of ε

maximizing the rhs of (4.32), we can conclude that (4.28) holds true too. �

Remark 1 ([31]) For ρ(ε)n small enough the term (1− ρ2

2
)M can be approximated

as (1− ρ2/2)M ≈ e−M
ρ2

2 . Thus Equation (4.28) becomes

P1(M, n) & max
ε∈(0,1)

(1− (1− ε)n)e−M
ρ2

2 , ρ(ε)� 1. (4.33)

For example, for dimensionality n = 50, ε = 1/5 and ρ = 3/5, (4.33) becomes:

P1(M, 50) & 0.99998e(−4×10−12M).
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For M ≤ 109 this estimates gives P1(M, 50) & 0.996. Therefore in dimension 50 or

higher a randomly chosen point is linearly separable from a set of 109 points with

probability 0.996.

Remark 2 ([31]) If x is an element from sample M then the probability p that x

is separable from all other points in the sample is bounded below by P1(M, n).

Remark 3 ([31]) Let x ∈ M be a given query point. This query point determines

the value of ε = 1 − ‖x‖ as the least ε-thickening of the unit sphere containing x.

With probability 1 the values of ε belong to the open interval (0, 1). Let p ∈ (0, 1) be

the desired probability that x is separated from the rest of the sample M. It is clear

that the estimate P1(M, n) ≥ p holds for M from some interval [1,M ]. Interestingly,

for n large enough, the maximal number M is exponentially large in dimension n.

Indeed, let us fix the values of ε ∈ (0, 1) and p ∈ (0, 1). Then we find the estimate

of the maximal possible sample size for which P1(M, n) ≥ p remains valid:

max{M} ≥ ln(p)

ln
(

1− ρ(ε)n

2

) − ln(1− (1− ε)n)

ln
(

1− ρ(ε)n

2

) .

Using
x

x− 1
≤ ln(1− x) ≤ −x

we conclude that

max{M} ≥
(

1

ρ(ε)

)n
C(n, ε),

where

C(n, ε) = 2

(
| ln(p)|

(
1− ρ(ε)n

2

)
− | ln(1− (1− ε)n)|

)
.

Observe that for any fixed ε ∈ (0, 1) there is an N(ε) large enough such that C(n, ε) ≥

| ln(p)| for all n ≥ N(ε). Hence, for n sufficiently large the following estimate holds:

max{M} ≥ en ln(ρ(ε)−1)| ln(p)|. (4.34)

Equation (4.34) can be viewed as a separation capacity estimate of linear functionals.

This estimate links the level of desired performance specified by p, the maximal

size of the sample, M , and parameters of the data, n and ε.
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4.4.1 Extreme points of a random finite set

So far the question of separability of a single random point x, drawn from equidis-

tribution on Bn(1), from i.i.d. sample M has been discussed. However, in practice

the data or a training set are fixed. It is important to know if the point linear sepa-

rability property formulated in Theorem 3 persists in one form or another when the

test point x belongs to the sample M itself. The question is then if the probability

PM(M, n) that each point y ∈M is linearly separable fromM\{y} is close to one

in high dimensions? If such a property holds then one can conclude that in high

dimensions all points of some setM are vertices (extreme points) of the convex hull

of M and none of y ∈ M is a convex combination of other points. The fact that

this is the case follows from Theorem 4.

Theorem 4 ([31]) Consider an equidistribution in a unit ball Bn(1) in Rn, and let

M be i.i.d. sample from this distribution. Then

PM(M, n) ≥ max
ε∈(0,1)

[
(1− (1− ε)n)

(
1− (M − 1)

ρ(ε)n

2

)]
. (4.35)

Proof of Theorem 4. Let P : F → [0, 1] be a probability measure and Ai ∈ F , i =

1, . . . ,M . It is known that

P (A1 ∨ A2 ∨ . . . ∨ AM) ≤
M∑
i=1

P (Ai). (4.36)

The probability that a test point y is in the ε-vicinity of the boundary of Bn(1)

is 1 − (1 − ε)n. Fix y ∈ M and construct spherical caps Cn(ε) for each element in

M\ {y} as specified by (4.30) but with x replaced with corresponding points from

M\{y}. According to (4.36) and Lemma 1, the probability that y is in any of these

caps is no larger than (M − 1)ρ(ε)n

2
. Hence the probability that a point y ∈ M is

separable fromM\{y} is larger or equal to (1− (1− ε)n)
(

1− (M −1)ρ(ε)n

2

)
. Given

that points of M are drawn independently and that there are exactly M points in

M, the probability that every single point is linearly separable from the rest satisfies

(4.35). �

Remark 4 ([31]) Note that employing (4.36) one can obtain another estimate of

PM :
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PM(M, n) ≥ 1−M(1− P1(M, n)). (4.37)

We can utilize this estimate together with (4.34) and estimate the maximal size of the

sample from below. Indeed, if we require that PM(M, n) ≥ q for some probability

q, 0 < q < 1, then it is sufficient that P1(M, n) > p, where 1 − p = 1
M

(1 − q).

Using | ln p| > 1− p in (4.34) , we get that that PM(M, n) > q if M ≤ M̃ for some

maximal value M̃ , that satisfies the inequality

M̃ ≥ en ln (ρ(ε)−1) 1− q
M̃

.

Immediately from this inequality we get the explicit exponential estimate of the

maximum of M̃ from below:

max{M̃} ≥ e
1
2
n ln ρ(ε)−1√

1− q. (4.38)

4.4.2 Two-functional (two-neuron) separation in finite sets

In the previous section we have provided estimates of the probabilities that a single

linear classifier or a learning machine can separate a given point from the rest of data

and showed that two disjoint weakly compact subsets of a topological vector space

can be separated by small networks of perceptrons. Let us now see how employing

small networks may improve probabilities of separation of a point from the rest of

the data in high dimensions. In particular, we will consider the case of a two neuron

separation in which the network is a simple cascade comprised of two perceptrons

followed by a conjunction operation.

Before, however going any further we need to clarify and adjust the notion of

separability of a point from a finite dataset by a network so that the question makes

some practical and theoretical sense. Consider for example a problem of separating

a test point by just two perceptrons. If one projects the data onto the 2D plane so

that the projections of the test point and any other point from the rest of the data

do not coincide, then the problem always has a solution. This is illustrated with

the diagram in Fig. 4.7. According to this diagram any given point an arbitrary

but finite dataset could be cut out from the rest of the data by just two lines that
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1 

2 

Figure 4.7: Two-neuron separation in finite sets. Every point can be separated by
a sufficiently acute angle or highly correlated neurons: Point 1 is separated from
other points by an acute angle (dashed lines). Point 2 is separated by a right angle
(non-correlated neurons), but cannot be separated by a linear functional (i.e. by a
straight line).

intersect at a sufficiently acute angle. Thus two hyperplanes {x|l1(x) = θ1} and

{x|l2(x) = θ2} whose projections are already constitute the two-neuron separating

cascade. The problem here is that because the angle is acute, the weights of the linear

functionals are highly correlated. This implies that the robustness of such a solution

is low and small perturbations in these coefficients can lead to the loss of separation.

This motivates the alternate solution where the coefficients are uncorrelated and two

hyperplanes are (almost) orthogonal.

Let us now analyze the problem of separation of a random i.i.d. finite sampleM

drawn from an equidistribution in Bn(1) from a point x drawn independently from

the same distribution. Formally, we are interested in the probability P1(M, n) that

a two-neuron cascade with uncorrelated synaptic weights separates x from M. An

estimate of this probability is provided in the next theorem.

Theorem 5 ([31]) Consider an equidistribution in a unit ball Bn(1) in Rn, and let

M be an i.i.d. sample from this distribution. Then

P1(M, n) ≥ max
ε∈(0,1)

(1− (1− ε)n)×

(
1− ρ(ε)n

2

)M
e

(M−n+1)

[
ρ(ε)n

2

1− ρ(ε)
n

2

]
×(

1− 1

n!

(
(M − n+ 1)

ρ(ε)n

2

1− ρ(ε)n

2

)n)
.

(4.39)
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Estimation (4.39) may look complicated compared to (4.28). It is different by

only two factors. The first factor

(
1− 1

n!

(
(M − n+ 1)

ρ(ε)n

2

1− ρ(ε)n

2

)n)
is close to one for (M − n+ 1)ρ(ε)n

2
< 1 and n sufficiently large. The second factor

e
(M−n+1)

[
ρ(ε)n

2

1− ρ(ε)
n

2

]
is more important. It compensates for the decay of the probability of separation

keeping the right hand side of (4.39) close to 1 over large interval of values of M .

Remark 5 Comparing the performance of single vs two-neuron separability in terms

of the probabilities P1(M, n) involves taking the maximum of

P1(M, n, ε) = (1− (1− ε)n)
(

1− ρ(ε)

2

)M
, (4.40)

and

P1(M, n) ≥ max
ε∈(0,1)

(1− (1− ε)n)×
(

1− ρ(ε)n

2

)M
e

(M−n+1)

[
ρ(ε)n

2

1− ρ(ε)
n

2

]
×

(
1− 1

n!

(
(M − n+ 1)

ρ(ε)n

2

1− ρ(ε)n

2

)n) (4.41)

with respect to ε over (0, 1). In some situations, when the testing point is already

given, the probabilities P1 are no longer relevant since the value of ε corresponding to

the testing point is fixed. In this cases one needs to compare P1(M, n, ε) defined by

(4.40) and (4.41) instead. Performance of the corresponding separation schemes are

illustrated with Fig. 4.8. Notice, that two-neuron cascade significantly out-performs

the single neuron one over the large interval of values of M .

Remark 6 ([31]) The probability PM(M, n) that each point from M can be sepa-

rated from other points by two uncorrelated neurons can be estimated like in Remark

4: PM(M, n) ≥ 1−M(1− P1(M, n)).

60



1

0.8

0.6

0.4

0.2

0

1 2 3 4 5 6 7 8 9 M x 10
7

P
1

0

Figure 4.8: Illustration to Remark 5. Blue line shows an estimate of the rhs of (4.41)
as a function of M at ε = 1/5, ρ(ε) = 3/5, and n = 30. Red line depicts an estimate
of the rhs of (4.40) as a function of M for the same values of ε, ρ(ε), and n.

Equidistribution in an ellipsoid

Let points in the set M be selected by independent trials taken from the equidis-

tribution in a n-dimensional ellipsoid. Without loss of generality, we present this

ellipsoid in the orthonormal eigenbasis.

En = {x ∈ Rn|
n∑
i=1

x2
i

c2
i

≤ 1} (4.42)

where ci are the semi-principal axes. The linear transformation

(x1, . . . , xn) 7→
(x1

c1

, . . . ,
xn
cn

)
transforms the ellipsoid into the unit ball. The volume of every set in the new co-

ordinates scales with the factor 1/(
∏

i ci). Therefore the ratio of two volumes does

not change, and the equidistribution in the ellipsoid is transformed into the equidis-

tribution in the unit ball, hyperplanes are transformed into hyperplanes and the

property of linear separability is not affected by nonsingular linear transformation.

Thus the following corollaries hold:
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Dimension, n 2 5 10 20 30

Ball
(theoretical estimate) 3.7 · 10−5 0.0364 0.4096 0.9455 0.9975

Cube
min: 4 · 10−4 0.0089 0.2580 0.9408 0.9986

median: 4 · 10−4 0.0110 0.2737 0.9469 0.9992
max: 5 · 10−4 0.0137 0.2847 0.9511 1.0

Gaussian
min: 5 · 10−4 0.0122 0.1403 0.7559 0.9792

median: 10 · 10−4 0.0153 0.1568 0.7698 0.9817
max: 0.0014 0.0183 0.1778 0.7836 0.9848

Figure 4.9: Numerical and theoretical estimates of P1(M, n) for various distributions
and n. Left panel, top row: theoretical estimate of P1(M, n) for equidistributions
in n-balls derived in accordance with (4.28) in the statement of Theorem 3. Left
panel, rows 2, 3: numerical estimates F1(M, n) of P1(M, n) for both normal and
equidistribution in an n-cube for various values of n. Right panel: solid circles
show the values of theoretical estimates P1(M, n), triangles show empirical means
of F1(M, n) for the samples drawn from equidistribution in the cube [−1, 1]n, and
squares correspond to empirical means of F1(M, n) for the samples drown from
the Gaussian (normal) distribution. Whiskers in the plots indicate maximal and
minimal values in of F1(M, n) in each group of experiments.

Corollary 1 ([31]) Let M be formed by a finite number of i.i.d. trials taken from

the equidistribution in a n-dimensional ellipsoid En (4.42), and let x be a test point

drawn independently from the same distribution. Then x can be separated from M

be a linear functional with probability P1(M, n):

P1(M, n) ≥ (1− (1− ε)n)
(

1− ρ(ε)n

2

)M
Corollary 2 ([31]) Let M be formed by a finite number of i.i.d. trials taken from

the equidistribution in a n-dimensional ellipsoid En. With the probability
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Figure 4.10: Illustration to Remark 5. Blue line shows an estimate of the rhs of
(4.41) as a function of M at ε = 1/5, ρ(ε) = 3/5, and n = 30. Red line depicts an
estimate of rhs of (4.40) as of function of M for the same values of ε, ρ(ε), and n.
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P1(M, n) ≥
[
(1− (1− ε)n)

(
1− (M − 1)

ρ(ε)n

2

)]M
each point y from the random set M can be separated from M \ {y} by a linear

functional.

Equidistribution in a cube and normal distributions

It is well known that, for n sufficiently large, samples drawn from an n-dimensional

normal distribution [55] concentrate near a corresponding n-sphere. Similarly, sam-

ples generated from an equidistribution in an n-dimensional cube concentrate near

a corresponding sphere too. In this respect, one might expect that the estimates

derived in Theorems 3,4 and 5 hold for these distributions too, asymptotically in n.

Numerical experiments below illustrate that it is indeed the case.

The experiments are described as follows. For each distribution (normal distri-

bution in Rn and equidistribution in the n-cube [−1, 1]n) and a given n an i.i.d.

sample M of M = 104 vectors was drawn. For each vector y in this sample the

functional ly(x) = 〈y, x〉 − |y|2 was constructed. For each y ∈ M and x ∈ M, 6= y

the sign of ly(x) was evaluated, and the total number N of instances when ly(x) < 0

for all x ∈ M, x 6= y was calculated. The latter is a lower bound estimate of the

number of points inM that linearly separable from the rest in the sample. This was

followed from deriving the values of the success frequencies, F1(M, n) = N/(M−1).

For each n the experiment is repeated 50 times. Outcomes of this experiment are

presented in Fig. 4.9. As we can see from Fig. 4.9 despite that the sample are

drawn from different distributions, for n > 30 these differences do not significantly

affect point separability properties.

One trial non-iterative learning

Basic model of linear separation of a given query point y ∈ M from any other

x ∈M from any other x ∈M , x 6= y is

ly(x) =
〈 y

|y|, x
− |y|

〉
< 0 for x ∈M \ {y}. (4.43)
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Deriving these functionals is a genuine one-shot procedure and does not require

iterative learning. The construction, however, assumes that the distribution from

the sampleM is drawn is close in some sense to an equidistribution in the unit ball

Bn(1).

In more general cases, e.g. when sampling from the equidistribution is an ellip-

soid, the functionals ly(x) can be replaced with Fisher linear discriminants:

ly(x) =
〈 ω(y,M)

|ω(y,M)|
, x
〉
− c, (4.44)

where

ω(y,M) = Σ−1
(
y − 1

M − 1

∑
x 6=y

x
)
,

Σ is the non-singular covariance matrix of the sampleM, and c is a parameter. The

values of c could be chosen as c =
〈

ω(y,M)
‖ω(y,M)‖ , y

〉
. The procedure of generating the

separating functional ly(x) remains non-iterative, but it does require knowledge of

the covariance matrix Σ.

Note, that if M is centered at 0 then 1
M−1

∑
x 6=y x ' 0, and (4.44) reduces to

(4.43) after the corresponding Mahalanobis transformation: x 7→ Σ−1/2x. If the

transformation x 7→ Σ−1/2x transforms ellipsoid from which the sampleM is drawn

into the unit ball then (4.44) becomes equivalent to (4.43), and separation properties

of Fisher discriminants (4.44) follow in the same way as stated in Corollaries 1 and

2.

In addition, or as an alternative, whitening or decorrelation transformations

could be applied toM too. If the covariance matrix Σ is singular or ill-conditioned,

projecting the sample M onto relevant principal components may be required.

4.5 Knowledge transfer between legacy Artificial

Intelligence systems

We will now see how theoretical results developed in this chapter so far can be used

to answer the fundamental question: how do we transfer knowledge between two AI

systems?
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4.5.1 K-tuple separation theorems

Let the set

M = {x1, . . . ,xM}

be an i.i.d. sample from a distribution in Rn. Pick another set

Y = {xM+1, . . . ,xM+k}

from the same distribution at random. What is the probability that there is a linear

functional separating Y from M?

Below we provide three k-tuple separation theorems: for an equidistribution

in Bn(1) (Theorem 6 and 7) and for a product probability measure with bounded

support (Theorem 8). These two special cases cover or, indeed, approximate a broad

range of practically relevant situations including e.g. Gaussian distributions (reduce

asymptotically to equidistribution in Bn(1) for n large enough) and data vectors in

which each attribute is a numerical and independent random variable.

The aim of this section is to show that theoretical results detailed in previous

sections can be employed to develop a novel framework for automated, fast, and non-

destructive process of knowledge creation in pre-trained AI systems. We will focus

here on demonstrating capabilities rather than on creating a full-scale solution. For

the purposes of this demonstration, we will assign a dedicated AI system to operate

as an expert or an arbiter. The problem is related to the fundamental Big Data

scalability challenge described in Chapter 1.

Theorem 6 Let M = {x1, . . . ,xM} and Y = {xM+1, . . . ,xM+k} be i.i.d. samples
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from the equidistribution in Bn(1). Then

P1(M,Y) ≥ max
δ,ε

(1− (1− ε)n)k
k−1∏
m=1

(
1−m

(
1− δ2

)n
2

)(
1− ∆(ε, δ, k)

n
2

2

)M
,

∆(ε, δ, k) = 1−

[
(1− ε)

√
1− (k − 1)δ2

√
k

− (k − 1)
1
2 δ

]2

.

Subject to :

δ, ε ∈ (0, 1)

1− (k − 1)δ2 ≥ 0

(k − 1)(1− δ2)
n
2 ≤ 1

(1− ε)
√

1− (k − 1)δ2

√
k

− (k − 1)
1
2 δ ≥ 0.

(4.45)

Proof of Theorem 6. Given that elements in the set Y are independent, the proba-

bility p1 that Y ⊂ Bn(1) \Bn(1− ε) is

p1 = (1− (1− ε)n)k.

Consider an auxiliary set

Ŷ =

{
x̂i ∈ Rn | x̂i = (1− ε) xM+i

‖xM+i‖
, i = 1, . . . , k

}
.

Vectors x̂i ∈ Ŷ belong to the sphere of radius 1 − ε centered at the origin (see

Figure 4.11, (b)). According to proof of Proposition 3 and estimate (4.14), the

probability p2 that for a given a given δ ∈ (0, 1) all elements of Ŷ are pairwise

δ/(1− ε)-orthogonal, i.e.

|cos (x̂i, x̂j)〉| ≤
δ

1− ε
for all i, j ∈ {1, . . . , k}, i 6= j, (4.46)

can be estimated from below as:

p2 ≥ p1

k−1∏
m=1

(
1−m

(
1− δ2

)n
2

)
= (1− (1− ε)n)k

k−1∏
m=1

(
1−m

(
1− δ2

)n
2

)
,
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Figure 4.11: Illustration to the proof of Theorem 6. Panel (a) shows xM+1, xM+2

and xM+3 in the set Bn(1)\Bn(1−ε). Panel (b) shows x̂1, x̂2, and x̂3 on the sphere
Sn−1(1 − ε). Panel (c): construction of h3. Note that ‖h3‖ = ‖x̂3‖(1 − 2δ2)1/2 =
(1−ε)(1−2δ2)1/2. Panel (d) shows simplex formed by orthogonal vectors ĥ1, ĥ2, ĥ3.
Panel (e) illustrates derivation of functionals l and l0.
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for (k − 1)(1 − δ2)
n
2 ≤ 1. Suppose now that (4.46) holds true. Let δ be chosen

so that 1 − (k − 1)δ2 ≥ 0. If this is the case than there exists a set of k pairwise

orthogonal vectors

H = {h1,h2, . . . ,hk}, 〈hi,hj〉 = 0, i, j ∈ {1, . . . , k}, i 6= j,

such that (Figure 4.11, (c))

‖x̂i−hi‖ ≤ (i− 1)
1
2 δ, ‖hi‖ = (1− ε)(1− (i− 1)δ2)

1
2 , for all i ∈ {1, . . . , k}. (4.47)

Finally, consider the set

Ĥ =

{
ĥi ∈ Rn | ĥi = (1− ε)(1− (k − 1)δ2)

1
2
hi
‖hi‖

, i = 1, . . . , k

}
.

The set Ĥ belongs to the sphere of radius (1 − (k − 1)δ2)
1
2 , and its k elements are

vertices of the corresponding k − 1-simplex in Rn (Figure 4.11, (d)).

Consider the functional:

l(x) =

〈
h̄

‖h̄‖
,x

〉
−

(1− ε)
√

1− (k − 1)δ2

√
k

, h̄ =
1

k

k∑
i=1

ĥi.

Recall that if e1, . . . , ek are orthonormal vectors in Rn then ‖e1 +e2 + · · ·+ek‖2 = k.

Hence
∥∥∥∑k

i=1 ĥi

∥∥∥ =
√
k(1− ε)

√
1− (k − 1)δ2, and we can conclude that l(ĥi) = 0

and l(hi) ≥ 0 for all i = 1, . . . , k. According to (4.47), ‖x̂i −hi‖ ≤ (k− 1)
1
2 δ for all

i = 1, . . . , k. Therefore the functional

l0(x) = l(x) + (k − 1)
1
2 δ =

〈
h̄

‖h̄‖
,x

〉
−

(
(1− ε)

√
1− (k − 1)δ2

√
k

− (k − 1)
1
2 δ

)
(4.48)

satisfies the following condition: l0(x̂i) ≥ 0 and l0(xM+i) ≥ 0 for all i = 1, . . . , k.

This is illustrated with Figure 4.11, (e).

The functional l0 partitions the unit ball Bn(1) into the union of two disjoint

sets: the spherical cap C

C = {x ∈ Bn(1) |l0(x) ≥ 0} (4.49)
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and its complement in Bn(1), Bn(1)\C. The volume V of the cap C can be estimated

from above as

V(C) ≤ ∆(ε, δ, k)
n
2

2
,

∆(ε, δ, k) = 1−

[
(1− ε)

√
1− (k − 1)δ2

√
k

− (k − 1)
1
2 δ

]2

.

Hence the probability p3 that l0(xi) < 0 for all xi ∈M can be estimated from below

as

p3 ≥
(

1− ∆(ε, δ, k)
n
2

2

)M
.

Therefore, for fixed ε, δ ∈ (0, 1) chosen so that
(1−ε)
√

1−(k−1)δ2
√
k

− (k − 1)
1
2 δ ≥ 0, the

probability p4(ε, δ) that M can be separated from Y by the functional l0 can be

estimated from below as:

p4(ε, δ) ≥ (1− (1− ε)n)k
k−1∏
m=1

(
1−m

(
1− δ2

)n
2

)(
1− ∆(ε, δ, k)

n
2

2

)M
.

Given that this estimate holds for all feasible values of ε, δ, statement (4.45) follows.

�

Figure 4.12 shows how estimate (4.45) of the probability P1(M,Y) behaves, as

a function of |Y| for fixed M and n. As one can see from this figure, when k exceeds

some critical value (k = 9 in this specific case), the lower bound estimate (4.45) of

the probability P1(M,Y) drops. This is not surprising since the bound (4.45) is a)

based on rough, L∞-like, estimates, and b) these estimates are derived for just one

class of separating functionals l0(x). Furthermore, no prior pre-processing and/or

clustering was assumed for the Y . An alternative estimate that allows us to account

for possible clustering in the set Y is presented in Theorem 7.

Theorem 7 Let M = {x1, . . . ,xM} and Y = {xM+1, . . . ,xM+k} be i.i.d. samples

from the equidistribution in Bn(1). Let Yc = {xM+r1 , . . . ,xM+rm} be a subset of m

elements from Y such that

β2(m− 1) ≤
∑

rj , rj 6=ri

〈xM+ri ,xM+rj〉 ≤ β1(m− 1) for all i = 1, . . . ,m. (4.50)
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Figure 4.12: Estimate (4.45) of P1(M,Y) as a function of k for n = 2000 and
M = 105.

Then

P1(M,Yc) ≥ max
ε

(1− (1− ε)n)k
(

1− ∆(ε,m)
n
2

2

)M
∆(ε,m) = 1− 1

m

(
(1− ε)2 + β2(m− 1)√

1 + (m− 1)β1

)2

Subject to :

(1− ε)2 + β2(m− 1) > 0

1 + (m− 1)β1 > 0.

(4.51)

Proof of Theorem 7. Consider the set Y . Observe that ‖xMi
‖ ≥ 1− ε, ε ∈ (0, 1),

for all i = 1, . . . , k, with probability p1 ≥ (1− (1− ε)n)k. Consider now the vector ȳ

ȳ =
1

m

m∑
i=1

xM+ri ,

and evaluate the following inner products

〈
ȳ

‖ȳ‖
,xM+i

〉
=

1

m‖ȳ‖

〈xM+ri ,xM+ri〉+
∑
rj , j 6=i

〈xM+ri ,xM+rj〉

 , i = 1, . . . ,m.

According to assumption (4.50),

〈
ȳ

‖ȳ‖
,xM+i

〉
≥ 1

m‖ȳ‖
(
(1− ε)2 + β2(m− 1)

)
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Figure 4.13: Estimate (4.51) of P1(M,Y) as a function of k for n = 2000 and
M = 105. Red stars correspond to β1 = 0.5, β2 = 0. Blue triangles stand for
β1 = 0.5, β2 = 0.05, and black circles stand for β1 = 0.5, β2 = 0.07.

and, respectively,

1

m
(1 + (m− 1)β1) ≥ 〈ȳ, ȳ〉 ≥ 1

m

(
(1− ε)2 + β2(m− 1)

)
Let (1− ε)2 + β2(m− 1) > 0 and (1− ε)2 + β1(m− 1) > 0. Consider the functional

l0(x) =

〈
ȳ

‖ȳ‖
,x

〉
− 1√

m

(
(1− ε)2 + β2(m− 1)√

1 + (m− 1)β1

)
. (4.52)

It is clear that l0(xM+ri) ≥ 0 for all i = 1, . . . ,m by the way the functional is

constructed. The functional l0(x) partitions the ball Bn(1) into two sets: the set C

defined as in (4.49) and its complement, Bn(1) \ C. The volume V of the set C is

bounded from above as

V(C) ≤ ∆(ε,m)
n
2

2

where

∆(ε,m) = 1− 1

m

(
(1− ε)2 + β2(m− 1)√

1 + β1(m− 1)

)2

.

Estimate (4.51) now follows. �

Examples of estimates (4.51) for various parameter settings are shown in Fig.

4.13. As one can see, in absence of pairwise strictly positive correlation assumption,

β1 = 0, the estimate’s behavior, as a function of k, is similar to that of (4.45).

However, presence of moderate pairwise positive correlation results in significant

boosts to the values of P1.
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Remark 7 Estimates (4.45), (4.51) for the probability P1(M,Y) that follow from

Theorems 6, 7 assume that the underlying probability distribution is an equidistri-

bution in Bn(1). They can, however, be generalized to equidistributions in ellipsoids

and Gaussian distributions (cf. [31]).

Note that proofs of Theorems 6, 7 are constructive. Not only they provide

estimates from below of the probability that two random i.i.d. drawn samples from

Bn(1) are linearly separable, but also they present the corresponding separating

functionals explicitly as (4.48) and (4.52), respectively. The latter functionals are

similar to Fisher linear discriminants. Whilst having explicit separation functionals

is an obvious advantage from practical view point, the estimates that are associated

with such functionals do not account for more flexible alternatives. In what follows

we present a generalization of the above results that accounts for such a possibility as

well as extends applicability of the approach to samples from product distributions.

The results are provided in Theorem 8.

Theorem 8 Consider the linear space E = span{xj−xM+1 | j = M+2, . . . ,M+k},

let the cardinality |Y| = k of the set Y be smaller than n. Consider the quotient space

Rn/E. Let Q(x) be a representation of x ∈ Rn in Rn/E, and let the coordinates

of Q(xi), i = 1, . . . ,M + 1 be independent random variables i.i.d. sampled from a

product distribution in a unit cube with variances σj > σ0 > 0, 1 ≤ j ≤ n − k + 1.

Then for

M ≤ ϑ

3
exp

(
(n− k + 1)σ4

0

2

)
− 1

with probability p > 1− ϑ there is a linear functional separating Y and M.

Proof of Theorem 8. Observe that, in the quotient space Rn/E, elements of the set

Y = {xM+1,xM+1 + (xM+2 − xM+1), . . . ,xM+1 + (xM+k − xM+1)}

are vectors whose coordinates coincide with that of the quotient representation of

xM+1. This means that the quotient representation of Y consists of a single element,

Q(xM+1). Furthermore, dimension of Rn/E is n− k + 1. Let R2
0 =

∑n−k+1
i=1 σ2

i and

Q̄(x) = E(Q(x)). According to Theorem 2 and Corollary 2 from [32], for ϑ ∈ (0, 1)
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and M satisfying

M ≤ ϑ

3
exp

(
(n− k + 1)σ4

0

2

)
− 1,

with probability p > 1− ϑ the following inequalities hold:

1

2
≤ ‖Q(xj)− Q̄(x)‖2

R2
0

≤ 3

2
,

〈
Q(xi)− Q̄(x)

R0

,
Q(xM+1)− Q̄(x)

‖Q(xM+1)− Q̄(x)‖

〉
<

1√
2

for all i, j, i 6= M + 1. This implies that the functional

`0(x) =

〈
Q(x)− Q̄(x)

R0

,
Q(xM+1)− Q̄(x)

‖Q(xM+1)− Q̄(x)‖

〉
− 1√

2

separates M and Y with probability p > 1− ϑ. �

4.5.2 Artificial Intelligence Knowledge Transfer Framework

In this section we show how Theorems 6, 7 and 8 can be applied for developing

a novel one-shot AI knowledge transfer framework. We will focus on the case of

transfer knowledge between two AI systems, a teacher AI and a student AI, in

which input-output behavior of the student AI is evaluated by the teacher AI. In

this setting, assignment of AI roles, i.e. student or teaching, is beyond the scope of

this manuscript. The roles are supposed to be pre-determined or otherwise chosen

arbitrarily.

General setup

Consider two AI systems, a student AI, denoted as AIs, and a teacher AI, demoted

as AIt. These legacy AI systems process some input signals, produce internal rep-

resentations of the input and return some outputs. We further assume that some

relevant information about the input, internal signals, and outputs of AIs can be

combined into a common object, x, representing, but not necessarily defining, the

state of AIs. The objects x are assumed to be elements of Rn.

Over a period of activity system AIs generates a set S of objects x. Exact

composition of the set S could depend on a task at hand. For example, if AIs is an

image classifier, we may be interested only in a particular subset of AIs input-output

data related to images of a certain known class. Relevant inputs and outputs of AIs
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Figure 4.14: AI Knowledge transfer diagram. AIs produces a set of its state represen-
tations, S. The representations are labeled by AIt into the set of correct responses,
M, and the set of errors, Y . The student system, AIs, is then augmented by an
additional “corrector” eliminating these errors.

corresponding to objects in S are then evaluated by the teacher, AIt. If AIs outputs

differ to that of AIt for the same input then an error is registered in the system.

Objects x ∈ S associated with errors are combined into the set Y . The procedure

gives rise to two disjoint sets:

M = S \ Y , M = {x1, . . . ,xM}

and

Y = {xM+1, . . . ,xM+k}.

A diagram schematically representing the process is shown in Fig. 4.14. The

knowledge transfer task is to “teach” AIs so that with

a) AIs does not make such errors

b) existing competencies of AIs on the set of inputs corresponding to internal

states x ∈M are retained, and

c) knowledge transfer from AIt to AIs is reversible in the sense that AIs can

“unlearn” new knowledge by modifying just a fraction of its parameters, if

required.

Two algorithms for achieving such transfer knowledge are provided below.

75



4.5.3 Knowledge Transfer Algorithms

Our first algorithm, Algorithm 1, considers cases when Auxiliary Knowledge Transfer

Units, i.e. functional additions to existing student AIs, are single linear functionals.

The second algorithm, Algorithm 2, extends Auxiliary Knowledge Transfer Units to

two-layer cascades of linear functionals.

The algorithms comprise of two general stages, pre-processing stage and knowl-

edge transfer stage. The purpose of the pre-processing stage is to regularize and

“sphere” the data. This operation brings the setup close to the one considered in

statements of Theorems 6, 7. The knowledge transfer stage constructs Auxiliary

Knowledge Transfer Units in a way that is very similar to the argument presented

in the proofs of Theorems 6 and 7. Indeed, if |Yw,i| � |Sw \ Yw,i| then the term

(Cov(Sw \ Yw,i) + Cov(Yw,i))−1 is close identity matrix, and the functionals `i are

good approximations of (4.52). In this setting, one might expect that performance

of the knowledge transfer stage would be also closely aligned with the corresponding

estimates (4.45), (4.51).

Remark 8 Note that the regularization step in the pre-processing stage ensures

that the matrix Cov(Sw \ Yw,i) + Cov(Yw,i) is non-singular. Indeed, consider

Cov(Sw \ Yw,i) = 1
|Sw\Yw,i|

∑
x∈Sw\Yw,i(x− x̄(Sw \ Yw,i))(x− x̄(Sw \ Yw,i))T

= 1
|Sw\Yw,i|

(∑
x∈Sw\Yw(x− x̄(Sw \ Yw,i))(x− x̄(Sw \ Yw,i))T +∑

x∈Yw\Yw,i(x− x̄(Sw \ Yw,i))(x− x̄(Sw \ Yw,i))T
)
.

Denoting d = x̄(Sw \ Yw,i)− x̄(Sw \ Yw) and rearranging the sum below as

∑
x∈Sw\Yw(x− x̄(Sw \ Yw,i))(x− x̄(Sw \ Yw,i))T =∑
x∈Sw\Yw(x− x̄(Sw \ Yw) + d)(x− x̄(Sw \ Yw) + d)T =∑
x∈Sw\Yw(x− x̄(Sw \ Yw))(x− x̄(Sw \ Yw))T+

2d
∑
x∈Sw\Yw(x− x̄(Sw \ Yw))T + |x ∈ Sw \ Yw|ddT

=
∑
x∈Sw\Yw(x− x̄(Sw \ Yw))(x− x̄(Sw \ Yw))T + |x ∈ Sw \ Yw|ddT

we obtain that Cov(Sw \ Yw,i) is non-singular as long as the sum
∑
x∈Sw\Yw(x −

x̄(Sw \ Yw))(x − x̄(Sw \ Yw))T is non-singular. The latter property, however, is

guaranteed by the regularization step in Algorithm 1.
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Remark 9 Clustering at Step 2.a can be achieved by classical k-means algorithms

[56] or any other method (see e.g. [26]) that would group elements of Yw into clusters

according to spatial proximity.

Remark 10 Auxiliary Knowledge Transfer Units in Step 2.b of Algorithm 1 are

derived in accordance with standard Fisher linear discriminant formalism. This,

however, need not be the case, and other methods such as e.g. Support Vector

Machines [85] could be employed for this purpose there. It is worth mentioning,

however, that support vector machines might be prone to overfitting [37] and their

training often involves iterative procedures such as e.g. sequential quadratic mini-

mization [65].

Furthermore, instead of the sets Yw,i, Sw \ Yw,i one could use a somewhat more

aggressive division: Yw,i and Sw \ Yw, respectively.

Depending on configuration of samples S and Y , Algorithm 1 may occasionally

create knowledge transfer units, `i, that are “filtering” errors too aggressively. That

is some x ∈ Sw\Yw may accidentally trigger non-negative response, `i(x) ≥ 0, and as

a result of this their corresponding inputs to As could be ignored or mishandled. To

mitigate this, one can increase the number of clusters and knowledge transfer units,

respectively. This will increase the probability of successful separation and hence

alleviate the issue. On the other hand, if increasing the number of knowledge transfer

units is not desirable for some reason, then two-functional units could be a feasible

remedy. Algorithm 2 presents a procedure for such an improved AI Knowledge

Transfer.
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Algorithm 1 Single-functional AI Knowledge Transfer

1. Pre-processing

(a) Centering. For the given set S, determine the set average, x̄(S), and generate
sets Sc

Sc = {x ∈ Rn |x = ξ − x̄(S), ξ ∈ S},
Yc = {x ∈ Rn |x = ξ − x̄(S), ξ ∈ Y}.

(b) Regularization. Determine covariance matrices Cov(Sc), Cov(Sc\Yc) of the sets
Sc and Sc \Yc. Let λi(Cov(Sc)), λi(Cov(Sc \Yc)) be their corresponding eigen-
values, and h1, . . . , hn be the eigenvectors of Cov(Sc). If some of λi(Cov(Sc)),
λi(Cov(Sc \ Yc)) are zero or if the ratio maxi{λi(Σ(Sc))}

mini{λi(Σ(Sc))} is too large, project Sc
and Yc onto appropriately chosen set of m < n eigenvectors, hn−m+1, . . . , hn:

Sr = {x ∈ Rn |x = HT ξ, ξ ∈ Sc},
Yr = {x ∈ Rn |x = HT ξ, ξ ∈ Yc},

where H = (hn−m+1 · · ·hn) is the matrix comprising of m significant principal
components of Sc.

(c) Whitening. For the centered and regularized dataset Sr, derive its covariance
matrix, Cov(Sr), and generate whitened sets

Sw = {x ∈ Rm |x = Cov(Sr)−
1
2 ξ, ξ ∈ Sr},

Yw = {x ∈ Rm |x = Cov(Sr)−
1
2 ξ, ξ ∈ Yr},

2. Knowledge transfer

(a) Clustering. Pick p ≥ 1, p ≤ k, p ∈ N, and partition the set Yw into p
clusters Yw,1, . . .Yw,p so that elements of these clusters are, on average, pairwise
positively correlated. That is there are β1 ≥ β2 > 0 such that:

β2(|Yw,i| − 1) ≤
∑

ξ∈Yw,i\{x}

〈ξ,x〉 ≤ β1(|Yw,i| − 1) for any x ∈ Yw,i

(b) Construction of Auxiliary Knowledge Units. For each cluster Yw,i, i = 1, . . . , p,
construct separating linear functionals `i:

`i(x) =
〈
wi
‖wi‖ ,x

〉
− ci,

wi = (Cov(Sw \ Yw,i) + Cov(Yw,i))−1 (x̄(Yw,i)− x̄(Sw \ Yw,i))

where x̄(Yw,i), x̄(Sw \Yw,i) are the averages of Yw,i and Sw \Yw,i, respectively,

and ci is chosen as ci = minξ∈Yw,i

〈
wi
‖wi‖ , ξ

〉
.

(c) Integration. Integrate Auxiliary Knowledge Units into decision-making path-
ways of AIs. If, for an x generated by an input to AIs, any of `i(x) ≥ 0 then
report x accordingly (swap labels, report as an error etc.)

In Chapter 5 we illustrate the approach as well as the application of the proposed

Knowledge Transfer algorithms in a relevant problem of a computer vision system

design for pedestrian detection in live video streams.
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Algorithm 2 Two-functional AI Knowledge Transfer

1. Pre-processing. Do as in Step 1 in Algorithm 1

2. Knowledge Transfer

(a) Clustering. Do as in Step 2.a in Algorithm 1

(b) Construction of Auxiliary Knowledge Units.

1: Do as in Step 2.b in Algorithm 1. At the end of this step first-stage
functionals `i, i = 1, . . . , p will be derived.

2: For each set Yw,i, i = 1, . . . , p, evaluate the functionals `i for all x ∈
Sw \ Yw,i and identify elements x such that `i(x) ≥ 0 and x ∈ Sw \ Yw
(incorrect error assignment). Let Ye,i be the set containing such elements
x.

3: If (there is an i ∈ {1, . . . , p} such that |Ye,i|+ |Yw,i| > m) then increment
the value of p: p← p+ 1, and return to Step 2.a.

4: If (all sets Ye,i are empty) then proceed to Step 2.c.
5: For each pair of `i and Yw,i∪Ye,i with Ye,i not empty, project orthogonally

sets Yw,i and Ye,i onto the hyperplane `i(x) = 0 and form the sets Li(Yw,i)
and Li(Ye,i) :

Li(Yw,i) =
{
x ∈ Rm | x =

(
Im −

wiw
T
i

‖wi‖2

)
ξ + ciwi

‖wi‖ , ξ ∈ Yw,i
}
,

Li(Ye,i) =
{
x ∈ Rm | x =

(
Im −

wiw
T
i

‖wi‖2

)
ξ + ciwi

‖wi‖ , ξ ∈ Ye,i
}
.

6: Construct a linear functional `2,i separating Li(Yw,i) from Li(Ye,i) so that
`2,i(x) ≥ 0 for all x ∈ Yw,i and `2,i(x) < 0 for all x ∈ Ye,i.

(c) Integration. Integrate Auxiliary Knowledge Units into decision-making path-
ways of AIs. If, for an x generated by an input to AIs, any of the predicates
(`i(x) ≥ 0) ∧ (`2,i(x) ≥ 0) hold true then report x accordingly (swap labels,
report as an error etc.).
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Chapter 5

Case studies

In this chapter we look at several case studies and experiments that were done

during the evaluation of ideas described in this thesis. In the Section 5.1 and 5.2

we will see how a complicated task of visual scene recognition can be mapped into

a lower dimensional space and how one solves these tasks by employing simplest

classification techniques.

In Section 5.3 we illustrate how ideas from Chapter 4 can be used to transfer

knowledge between two or more AI systems.

5.1 Low dimensional data - simple classifiers

In this section we demonstrate how a visual scene recognition problem can be solved

with simple techniques. To illustrate this idea we decided to use a binary decision

tree as a classifier. The binary decision tree, being one of the simplest technique

for understanding, remains very popular nowadays and finds a lot of applications

in computer science domains. Among the main advantages of using binary decision

trees we can name the following:

1. Binary trees are easily interpreted. Having a decision tree at hand one can

easily follow the process of decision making with the full understanding of

which variables were important for decision making.

2. The process of decision trees building is fast.
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3. Ease of implementation. The process of binary decision tree implementation

is fairly simple and there are not many places where errors can be made.

4. Ability to model non-linearities. Even though decision tree are not unique in

being able to model non-linearities, still, going back to 1), these non-linearities

can be explained in a natural language.

5. The decision process is fast and cheap. Indeed, each node of the decision tree

contains only a binary function that usually just compares two numbers.

6. Some implementations easily handle irrelevant attributes. We will cover this

later on.

7. Often one does not need to worry about data normalization.

Even though the list of advantages is quite extensive there are some disadvantages

in this approach:

1. Ease of overfitting. One can easily overfit the model to noise. This happens

due to the nature of the classifier building process. As we shall see later, it

is always possible to fit a classifier to any data at hand and get 100% at test

time.

2. On the other hand, it is still very easy to underfit your data. These two

disadvantages originate from the fact that you are fully responsible for making

early enough stop in the process of classifier building.

3. Quite often decision trees are extremely sensitive to data. Slight changes in

the dataset can lead to a significant changes in decision tree structure.

4. This kind of algorithm is greedy by nature. To find the best sub-optimal

solution you have to apply full search techniques and check the whole grid of

points distributed across the data space.

The idea behind the algorithm is very simple yet very powerful: we are query-

ing the data. At a time we ask one question that allows us to extract maximum

information needed to make a decision. We now give a more formal definition for
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such things as ”question”,”maximum information” and ”decision”. Suppose we have

data in the following form:

(x, c) = (x1, x2, . . . , xn, c) (5.1)

where xn are attributes and c is a target variable. Target values contains task-specific

labels for instances: in medicine it can be positive of negative result of medical test;

in finance it can be binary prediction for stock of whether it is going to rise or fall;

in computer vision the task might be to tell whether or not the object of interest is

in the frame. To be more specific let us take one practical task from the computer

vision domain and set up the task in the following form: on the given picture decided

into several dozens of regions mark those which contain patches of grass or sky. This

task arises in the domain of image processing in digital cameras when one need to

transform raw sensor signals to a RGB image. This task has a lot of stages and

one of these stages is the one called Auto White Balance (AWB) setup. Consider a

situation when someone takes pictures of landscapes in strong light on a sunny day

in the middle of summer. Frames containing large patches of green grass or blue

sky or both are not unusual in these circumstances. Every grass stem reflects sun

rays, and since the relative amount of grass is large, such reflection gives rise to an

additional source of light in the scene. This light, however, can easily be confused

with reflection from a gray object under artificial light in standard (R/G, B/G)

color metrics. Such confusion decreases reliability and correctness of Automatic

White Balance (AWB) decisions in these situations. Furthermore, it suggests that

using mere raw (R/G, B/G) data are hardly sufficient for producing correct AWB

decisions. A similar scenario occurs in the presence of large areas of blue sky in

images. Even though true color representation may be distorted in such images it

is nevertheless desirable to be able to correctly represent true colors of objects in

these scenes using AWB settings. For the time being we restrict ourselves only with

grass detection. Them, recalling that we have target variable c, we say that for this

task c to be in one of {grassy;non−grassy}. Each node in the binary tree contains

some attribute name and some threshold value that attribute is be tested against.

The tree is built by splitting the initial training set into subsets according to the

attribute name and value. This process continues recursively until some stopping
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criteria is reached. After this each area is classified as follows:

c(area) =

grassy if Ng
Ng+Nng

> c0

non-grassy otherwise,

where Ng is the number of grassy points in the subset and Nng is the number of

non-grassy points in the subset and c0 is some threshold value. Now we shall discuss

the criteria we use for splitting sets into subsets. There are several metrics available

nowadays. Among the most populars are so called ID3 [67] and C4.5 [69]. For

simplicity of implementation we will choose ID3.

The process of constructing decision tree with the ID3 algorithm can be de-

scribed as follows. Let x = (x1, x2, . . . , xn) be the vector of attributes taking values

in R, (x1,i, x2,i, . . . , xn,i) be the training set, S be the initial training set which is

to be recursively split as the algorithm proceeds. Also, for each attribute we intro-

duce the set of thresholds {tj,1, tj,2, . . . , tm,1} that are equally spaced in the interval

[minxj maxxj]. With each threshold we associate two sets: S+
j,k = {x ∈ S|xj > tj,k}

and S−j,k = {x ∈ S|xj < tj,k}. Obviously, that S = S+
j,k ∪ S

−
j,k and in this sense

thresholds tj,k split the initial training set S into to disjoint subsets with respect to

attribute value xj and a set of thresholds associated with this attribute.

For the sets S, S+
j,k and S−j,k we should introduce the measure that reflect how

much variability is there in the subsets. For this purpose we will use Shannon

entropy [77]:

H(S) = −
∑

c∈C p(c, S) log2 p(c, S),

H(S+
j,k) = −

∑
c∈C p(c, S

+
j,k) log2 p(c, S

+
j,k),

H(S−j,k) = −
∑

c∈C p(c, S
−
j,k) log2 p(c, S

−
j,k).

Obviously, when this measure is equal to zero then the subset contains object

of only one class. Also we specify the conditional entropy H(S|tj,k) in the following

way:

H(S|tj,k) =
|S+
j,k|
|S|

H(S+
j,k) +

|S−j,k|
|S|

H(S−j,k) (5.2)

and Relative Information Gain RIG(S|tj,k):
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RIG(S|tj,k) =
H(S)−H(S|tj,k)

H(S)
(5.3)

Algorithm 1 The algorithm for constructing binary decision trees can now be de-

scribed as follows:

1. Consider initial set S;

2. Create a set of thresholds {tj,k} ;

3. For every tj,k calculate RIG(S|tj,k) ;

4. Create a node with attribute xl being a decision variable, and xl < tl,m, xl ≥ tl,m

being its corresponding branching conditions; split the initial set S into two sets

S+
l,m and S−l,m

5. Remove tl,m from the list of thresholds and repeat this procedure recursively for

each subsequent subsets S+
l,m and S−l,m until a stopping condition is met

S+(w) = {x ∈ S|α(w, x) > 0},

S−(w) = {x ∈ S|α(w, x) ≤ 0},
(5.4)

where the function α

α(w, x) = w0 + w1x1 + w2x2 + · · ·+ wnxn, (5.5)

α : Rp × Rn → R. (5.6)

As a simple illustration we consider how algorithm works for a synthetic dataset

that has only two attributes: x1 and x2. Let the dataset be the one that is depicted

on the Figure 5.1. As we can see, dataset consists of points of two classes, marked

with blue and green rectangles on the figure. The initial set S is the entire white

rectangle containing all the points. Following step 2) of the Algorithm 1 we create

a set of 10 thresholds t1,j and t2,j for attributes x1 and x2 which values lie in in the

region [0, 40]. Suppose that maximum RIG value is achieved at t1,14 (red line on

Figure 5.1). This completes step 4. Proceeding to step 5, we split initial set S into

S+
1,14(on the right from the red line) and S−1,14(on the left from the red line). These

steps are repeated until some stopping condition in each branch is met.

84



Figure 5.1: Points that belong to different classes are marked with crosses and circles
respectively. The solid curve is the conditional entropy, H(S|tj) plotted as a function
of the threshold values, tj.

Considering this fairly simple synthetic dataset gives us initial intuition about

the algorithm routines. Let us consider a real life dataset for the problem of AWB

described above. For this problem dataset S consists of 6 variables. This variables

are 1) average R/G value, 2) average B/G value, 3) variance of R/G value, 4)

variance of B/G value, 5) Illumination of scene (lux value) 6) Intensity variation.

The overall number of training points available was about 22000.

Some examples with results of algorithm can be seen on Figure 5.2.

As it was mentioned before, binary decision trees use one variable at a time,

sometimes effectively eliminating useless parameters. Therefore one can look at the

tree and to some extent estimate the usefulness of each parameter in the training

set by simply counting the number of occurrences for each of them. As we see from

the figure, some parameters seem to be less useful than others. For example such

parameters as RGV and BGV are used less then color and texture characteristics.

Recall that we use RIG value which is essentially telling us how much information

we get if we know the value of this parameter alone. At this point natural question

arises: could this be that this parameter is useless when used alone in the node

of the tree? Could this be that combining parameter with any other increase its

informativeness? We now proceed to a next part of this work which is aiming to

investigate this question.
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Figure 5.2: Examples of grass detection. Left column: source images. Right column:
probability/likelihood maps.

5.2 Low dimensional data - more advanced clas-

sifier

As it was discussed early on, in classic binary tree approaches only one parameter

is used at a time. This may lead to the situation when some parameters are ignored

or almost not being used. What if we try to use more than one parameter at

a time? The most obvious way to combine two parameters is to take its linear

combination, then test this combination against some threshold value. Considering

linear combination of only two parameters at a time is an equivalent to a projection

any given dataset into 2D space. After this we consider the following set of linear

combinations:

V = ω1xi + ω2xj (5.7)

where ω1 and ω2 are coefficients, xi and xj, i 6= j, are two features taken from

the dataset. By doing this we try to find the best projection that maximizes RIG.

As for the xi and xj, we take all possible 2D projection of the feature space. This

strategy does some improvement on the given training set. These steps can be

summarized into 2.
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Algorithm 2 The algorithm for constructing binary decision trees can now be de-

scribed as follows:

1. Consider initial set S

2. Consider all possible 2D projections of S

3. Create a set of thresholds {tj,k}

4. For every tj,k calculate RIG(S|tj,k)

5. Determine tl,m = arg maxj=1,...,n;k=1,...,M RIG(S|tj,k) ;

6. Create a node with attribute xl being a decision variable, and xl < tl,m, xl ≥ tl,m

being its corresponding branching conditions; split the initial set S into two sets

S+
l,m and S−l,m;

7. Remove tl,m from the list of thresholds and repeat this procedure recursively for

each subsequent subsets S+
l,m and S−l,m until a stopping condition is met;

Examples of improvements that were achieved with this approach can be found

in Figure 5.3.

Low dimensional data - binary trees in the original ND space with mod-

ified entropy criterion

So far we have seen how simple classifiers can be applied for solving low dimensional

classification problems. However, even looking at this kind of classifiers we could

name several disadvantages of those approaches. First is the minor one: this type

of classifiers work best for cases when data are presented as a set of categorical

features, which is not the case in many applications. The second disadvantage is

more important: training and testing performance are very sensitive to the training

data. Let us look at the example on the picture below. On the Fig. 5.4 we can see

a very narrow drop marked with an arrow. Initially it may look as a very attractive

point to apply a split procedure. However, there are two possible reasons for this

drop. The first one is that there is a gap between data points which is good for

us, because we can get a lot of discrimination between data points by splitting the

set at this point. However, this drop can also be caused by a data sensitivity. It
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Figure 5.3: Examples of grass detection. White patches in the second and third
columns stand for high grass probability in the current zone. First column from the
left : source images. Centre column: probability/likelihood maps of grass obtained
with ID3 algorithm. Third column: probability/likelihood maps of grass obtained
with using of binary trees with combined attributes in nodes. We may see from the
first row of this figure that the number of Positive-Negatives detections was reduced.
From the second row we may conclude that the number of Negative-Positive detec-
tions has also been reduced. Moreover, we registered these improvement for nearly
75% of all images in our testing set.

is possible that the drop can be eliminated by just slightly varying dataset. In this

case splitting dataset in this point leads us to overfitting problem. Another problem

that arises later, when we try to apply this classifiers in high dimensional spaces is

a computational one. If we try to use this classifier in a high dimensional space we

may end up overfitting our model again. However, if we try to use projections, we’ll

quickly be overwhelmed by the number of combinations we need to check.

The next problem is the discontinuity of goodness measure. This is partly related

to the overfitting problem described before. Discontinuity itself does not allow us

to use optimization methods for finding local minima. This makes it impossible to

move away from greedy algorithms and necessity to check all points in order to get

suboptimal solution.

Let us consider how we can avoid partly this kind of issues. For the sake of

simplicity let us return to a univariate case. With each point of i = (xi, ci) =

(x1,i, x2,i, ..., xn,i, ci) of the original data we associate an auxiliary integrable and non-

negative smearing function fχi : Rn → R≥0. Speaking about candidate functions we
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Figure 5.4: Points that belong to different classes are marked with crosses and circles
respectively. Solid curve is the conditional entropy, H(S|tj) plotted as a function of
the threshold values, tj.
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could use:

Gaussian :
1√

(2π)n|Σ|
e(−

1
2

(x−xi)
TΣ−1(x−xi)),

Inverse multiquadric :
1√

1 + (x− xi)TΣ−1(x− xi)

Delta− function : δ(x1 − xi1)δ(x2 − xi2) · · · δ(xn − xin),

where Σ is a positive definite symmetric matrix, and |Σ| is the determinant of Σ.

Having defined fχi we introduce

D(S) =
∫
S

∑N
i=1 fχi(x)dx

Dc(S) =
∫
S

∑N
i=1 fχi(x)Ic(χi)dx,

where Ic(χi) is the indicator function:

Ic(χi) =

 1, c = ci,

0, c 6= ci.

Finally we define pf (c, S)

pf (c, S) =
Dc(S)

D(S)
,

Hf (S) = −
∑

c∈C pf (c, S) log2 pf (c, S),

Hf (S|tj,k) =
D(S+(tj,k))

D(S)
Hf (S

+(tj,k))

+
D(S−(tj,k))

D(S)
Hf (S

−(tj,k))

and

RIGf (S|tj,k) = (Hf (S)−Hf (S|tj,k))/Hf (S). (5.8)

Note thatD(S), Dc(S), pf (c, S) ≥ 0,
∑

c pf (c, S) = 1, D(S+(tj,k))+D(S−(tj,k)) =

D(S). Replacing RIG with RIGf in Algorithm 1 gives rise to the proposed modi-

fication.

The following characterizations of the newly introducedRIGf (S|·) are immediate

Proposition 4
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P1) Let fχi(·) be piece-wise continuous for all i ∈ {1, . . . , N}, then RIGf (S|·) is

continuous. If fχi are continuous then RIGf (S|·) is differentiable.

P2) Let fχi(·) be the delta-function: fχi(x) = δ(x1 − xi1)δ(x2 − xi2) · · · δ(xn − xin),

then

RIG(S|tj,k) = RIGf (S|tj,k) for all tj,k.

P3) Let fχi(·) be the indicator-function 1S, then

RIGf (S|tj,k) = const for all tj,k.

Properties P2), P3) are straightforward. Property P1 follows from that piece-wise

continuity (continuity) implies that pf (c, S
+(tj,k)), pf (c, S

−(tj,k)), D(S+(tj,k)), and

D(S−(tj,k)) are continuous (differentiable). Hence so are the functions Hf (S|tj,k)

(with respect to tj,k) and, consequently, RIGf (S|tj,k).

According to the Proposition, using “broad” identical fχi flattens the shape of

RIGf (S|·), RIGf (S|·) with fχi concentrated at χi resembles (in the limit) the shape

of RIG(S|·). Figure 5.5 shows how Hf (S|·), derived for fχi Gaussian, compares to

H(S|·) for a randomly drawn data sample S (represented by o,+ in the figure). The

function RIGf (S|·), obviously, is just a scaled and translated version of Hf (S|·).

Note that Hf (S|·) is a quite smooth curve, which agrees with property P1 in Propo-

sition 4. Hence one can use a range of standard optimization methods to infer the

optimal values of tj,k. It is also clear that Hf (S|·) (and RIGf (S|·)) may still have a

number of local minima. These can, however, be addressed by starting optimization

procedures from various initial conditions. While this approach may increase the

total number of calculations in total, it is generally more advantageous than direct

search especially when nominal dimensionality of the data is high.

As we’ve seen this introducing smearing function allows us to reduce the number

of local minima and therefore makes it possible to apply optimization techniques

to decision trees inducers. It is also possible to use all features is decision trees

node when making a decision, which is also supposed to increase the robustness of

the classifier since the decision made in tree nodes are less sensitive to data points

removal.
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Figure 5.5: Points that belong to different classes are marked with crosses and
circles. Solid curve shows conditional entropy curve. Dotted curve shows smoothed
version of the same curve. Solid line that is perpendicular to parameter boundary
axis indicates minimal value for the smoothed continuous version.
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Note that the number of local minima may be controlled by the width of the

smearing functions fχi . Fig. 5.6 shows how the shape of Hf (S|tj,k), changes with

the width of fχi for fχi Gaussian.

Now, let us get back to the general multivariate case. The procedure described

before can be easily extended to the general case in a very straightforward way.

Indeed, consider splitting criterion (5.4), (5.6) and let

Hf (S|w) =
D(S+(w))

D(S)
Hf (S

+(w))

+
D(S−(w))

D(S)
Hf (S

−(w)),

RIGf (S|w) = (Hf (S)−Hf (S|w))/Hf (S). (5.9)

The following property of RIGf (S|w) is now immediate.

Proposition 5 Suppose that for every value of w the set

A(w) = {x ∈ S|α(x,w) = 0}

is an n − 1 dimensional manifold, and it is such that that for any ε > 0 there is a

δ > 0: ‖w1 − w2‖ < δ implies that maxx∈A(w1) dist(A(w2), x) < ε. Furthermore, let

fχi be continuous. Then RIGf (S|·) is differentiable.

Conclusion

In previous two sections we briefly studied the problem of basic scene recognition

using simple statical tools available. We have shown that sometimes complicated

task of scene recognition can be transfered to a low dimensional domain and suc-

cessfully solved there. This approach may prove to be useful in scenarios when we

are for example restricted in computational recourses available. Also, this kind of

calculations does not require a lot of power consumption and implemented in silicon

this type of solution may consume not more than several milliwatts. Even though

we were able to reduce this problem to a low dimensional space, we will not be that

lucky every time. For example, the problem of object detection and recognition

can not be easily reduced to low dimensional one without sacrificing detection or

recognition performance too much.
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Figure 5.6: Dependence of Hf (S|tj,k) on the width of fχi (Gaussian, and σ is the
corresponding width parameter). Solid blue curve depicts the original H(S|tj,k).
Thick red solid curve shows H(S|tj,k) for σ = 0.05. Dotted line corresponds to the
case of σ = 0.01, and dashed line stands for σ = 0.0001.
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panel) for a randomly drawn sample of two-attribute dataset. The number of classes
is 2. The number of local minima is drastically reduced in the lower panel.
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In high dimensional space this gets significantly worse. For example, the attempt

to use one parameter at a time as it was described in section — will quickly lead

to overfitting if though one may observe a very good training set performance.

Of course, binary decision trees with smooth entropy criterion will address this

issues to some extent, but the optimization procedure may easily stuck on a local

minima if σi is not chosen carefully. One can apply different method for hyper

parameter optimization(see e.g. [46], [25]). Indeed, these methods can easily be

applied to a relatively small dimensional tasks and technically there is nothing wrong

in applying these methods in high dimensions. However, as volume(dimensionality

and number of entries) grow, these methods may quickly become unpractical due to

time constrains.

5.3 Knowledge transfer in Artificial Intelligence

systems

Let us now show how ideas developed in section (4.5) can be used in practical

computer vision applications for correcting errors of existing AI systems.

Let AIs and AIt be two systems developed, e.g. for the purposes of pedestrian

detection in live video streams. Technological progress in embedded systems and

availability of platforms such as e.g. Nvidia Jetson TX2 made hardware deployment

of such AI systems at the edge of computer vision processing pipelines feasible. These

AI systems, however, lack computational power to run state-of-the-art large scale

object detection solutions such as e.g. ResNet [38] in real-time. Here we demonstrate

that to compensate for this lack of power, AI Knowledge Transfer can be successfully

employed. In particular, we suggest that the edge-based system is “taught” by the

state-of-the-art teacher in a non-iterative and near-real time way. Since our building

blocks are linear functionals, such learning will not lead to significant computational

overheads. At the same time, as we will show later, the proposed AI Knowledge

Transfer will result in a major boost to the system’s performance in the conditions

of the experiment.
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Figure 5.8: Knowledge transfer diagram between ResNet and HOG-SVM object
detectors.

Definition of AIs and AIt and rationale

In our experiments, the teacher AI, AIt, was modeled by a deep Convolutional

Network, ResNet 18 [38] with circa 11M trainable parameters. The network was

trained on a “teacher” dataset comprised of 5.2M non-pedestrian (negatives), and

600K pedestrian (positives) images. The student AI, AIs, was modeled by a linear

classifier with HOG features [19] and 2016 trainable parameters. The values of these

parameters were the result of AIs training on a “student” dataset, a sub-sample of

the “teacher” dataset comprising of 55K positives and 130K negatives, respectively.

This choice of AIs and AIt systems enabled us to emulate interaction between edge-

based AIs and their more powerful counterparts that could be deployed on larger

servers or computational clouds.

Moreover, to make the experiment more realistic, we assumed that internal states

of both systems are inaccessible for direct observation. To generate sets S and Y

required in Algorithms 1 and 2 we augmented system AIs with an external generator

of HOG features of the same dimension. We assumed, however, that covariance

matrices of positives and negatives from the “student” dataset are available for

the purposes of knowledge transfer. A diagram representing this setup is shown in

Figure 5.8. A candidate image is evaluated by two systems simultaneously as well

as by a HOG features generator. The latter generates 2016 dimensional vectors of
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HOGs and stores these vectors in the set S. If outputs of AIs and AIt do not match

the corresponding feature vector is added to the set Y .

Error types

In this experiment we consider and address two types of errors: false positives (Type

I errors) and false negatives (Type II errors). The error types were determined as

follows. An error is deemed as false positive if AIs reported presence of a correctly

sized full-figure image of pedestrian in a given image patch whereas no such object

was there. Similarly, an error is deemed as false negative if a pedestrian was present

in the given image patch but AIs did not report it there.

In our setting, evaluation of an image patch by AIt (ResNet) took 0.01 sec on

Nvidia K80 which was several orders slower than that of AIs (linear HOG-based

classifier). Whilst such behavior was expected, this imposed technical limitations

on the process of mitigating errors of Type II. Each frame from our testing video

produced 400K image patches to test. Evaluation of all these candidates by our

chosen AIt is prohibitive computationally. To overcome this technical difficulty we

tested only a limited subset of image proposals with regards to these error type.

To get a computationally viable number of proposals for false negative testing, we

increased sensitivity of the HOG-based classifier by lowering its detection threshold

from 0 to −0.3. This way our linear classifier with lowered threshold acted as a filter

letting through more true positives at the expense of large number of false positives.

In this operational mode, Knowledge Transfer Unit were tasked to separate true

positives from negatives in accordance with object labels supplied by AIt.

Datasets

The approach was tested on two benchmark videos: LINTHESCHER sequence [30]

created by ETHZ and comprised of 1208 frames and NOTTINGHAM video [14]

containing 435 frames of live footage taken with an action camera. In what follows

we will refer to these videos as ETHZ and NOTTINGHAM videos, respectively.

ETHZ video contains complete images of 8435 pedestrians, whereas NOTTINGHAM

video has 4039 full-figure images of pedestrians.
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Figure 5.9: True positives as a function of false positives for NOTTINGHAM video.

Results

Performance and application of Algorithms 1, 2 for NOTTINGHAM and ETHZ

videos are summarized in Fig. 5.9 and 5.10. Each curves in these figures is produced

by varying the values of decision-making threshold in the HOG-based linear classifier.

Red circles in Figure 5.9 show true positives as a function of false positives for the

original linear classifier based on HOG features. Parameters of the classifier were set

in accordance with Fisher linear discriminant formula. Blue stars correspond to AIs

after Algorithm 1 was applied to mitigate errors of Type I in the system. The value

of p (number of clusters) in the algorithm was set to be equal to 5. Green triangles

illustrate application of Algorithm 2 for the same error type. Here Algorithm 2

was slightly modified so that the resulting Knowledge Transfer Unit had only one

functional `2. This was due to the low number of errors reaching stage two of the

algorithm. Black squares correspond to AIs after application of Algorithm 2 (error

Type I) followed by application of Algorithm 2 to mitigate errors of Type II.

Figure 5.10 shows performance of the algorithms for ETHZ sequence. Red cir-

cles show performance of the original AIs, green triangles correspond to AIs sup-

plemented with Knowledge Transfer Units derived using Algorithm 2 for errors of

Type I. Black squares correspond to subsequent application of Algorithm 2 dealing

with errors of Type II.
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Figure 5.10: True positives as a function of false positives for ETHZ video.

In all these cases, supplementing AIs with Knowledge Transfer Units constructed

with the help of Algorithms 1, 2 for both error types resulted in significant boost to

AIs performance. Observe that in both cases application of Algorithm 2 to address

errors of Type II has led to noticeable increases of numbers of false positives in the

system at the beginning of the curves. Manual inspection of these false positives

revealed that these errors are exclusively due mistakes of AIt itself. For the sake of

illustration, these errors for NOTTINGHAM video are shown in Fig. 5.11. These

errors contain genuine false positives (images 12, 23-27) as well as mismatches by

size (e.g. 1-7), and look-alikes (images 8,11,13,15-17).
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Figure 5.11: False Positives induced by the teacher AI, AIt.

101



Conclusion

As we have seen earlier in this thesis, high dimensionality bring uncertainty. This

uncertainty appears because very often the underlying complexity of an object, that

is being analyzed, is too high. In this case one has to employ more and more

sophisticated machine learning techniques. More sophisticated techniques also bear

additional costs: quite often the efficiency of the training process is reduced and more

and more data are required to achieve good level of generalization. To achieve a

good level of generalization in a task where relationships between objects parameters

are complicated one has to increase the amount of parameters in order to increase

descriptive power of a model. The latter increases training and evaluation time by

a substantial margin.

Unfortunately, collecting more and more data and employing more sophisticated

techniques does not guarantee that there will no errors in these systems.

We have shown, however, how does one take advantage of the high dimensionality

of a problem. The key is to use concentration of measure effects: a phenomena that

only can be found in high dimensional spaces. Theoretical findings in Chapter

4 allowed to establish the following fact. If the dimensionality of a problem is

sufficiently high, one can remove individual errors of an AI system with almost no

additional costs. In particular, thanks to the separations theorems in [31], these

individual errors can be removed by linear functionals. The beauty of this approach

is that, with very high probability, the overall performance of an AI system will not

be hurt. Also, these linear functionals do not change the decision making process

in AI system being corrected. If errors corrected with this approach are highly

correlated, then the overall risk of errors in the corrected system is reduced.

The main consequence of these results is that it is clear now that errors correction

in non-linear systems is a linear problem.
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We also proposed a framework for instantaneous knowledge transfer between

AI systems whose internal state used for decision-making can be described by ele-

ments of a high-dimensional vector space. The framework enables development of

non-iterative algorithms for knowledge spreading between legacy AI systems with

heterogeneous non-identical architectures and varying computing capabilities. Fea-

sibility of the framework was illustrated with an example of knowledge transfer

between two AI systems for automated pedestrian detection in video streams.

In the basis of the proposed knowledge transfer framework are separation theo-

rems (Theorem 6 – 8) stating peculiar properties of large but finite random samples

in high dimension. According to these results, k < n random i.i.d. elements can be

separated form M � n randomly selected elements i.i.d. sampled from the same dis-

tribution by few linear functionals, with high probability. The theorems are proved

for equidistributions in a ball and in a cube. The results can be trivially general-

ized to equidistributions in ellipsoids and Gaussian distributions. Generalizations

to other meaningful distributions is the subject of future work.
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Appendix A

A very brief history of Machine

Learning

This brief overview of the history of Machine learning tools was adopted from [85].

It is believed that the mathematical analysis of the learning process began when

F. Rosenblatt suggested the first model of a learning machine, called the perceprtron.

In 1957 perceptron algorithm was invented. The algorithm was designed to solve

pattern recognition problems. In the simplest case this is a problem of separation

of data points of two different categories. A separation rule is supposed to be built

using given examples.

In Rosenblatt’s model the perceptron has n inputs x = (x1, . . . , xn) ∈ X ⊂ Rn

and one of two possible outputs y = {−1, 1}. Outputs and inputs are related through

the following dependency:

y = sign{(ω · x)− b}.

From a geometrical perspective this functional divides space into two regions.

The space it divided by a linear function and parameters ω and b fully define it.

The goal of the learning process is to find suitable coefficients for a perceptron(or

neuron).

In a more complicated case the output of one neuron can be input for a neuron

in the next layer. Even though each neuron has only one output, this output can be

sent to multiple neurons. While in the simplest case one neuron separates the space

into two regions, a multilayer perceptron (Figure A.1) is capable of forming several
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Figure A.1: Multilayer perceptron structure.

regions bounded by piecewise linear functions. Learning this kind of model means

finding appropriate coefficients for all neurons in this structure.

Back then it was unclear how to train such models. Specifically, it was unclear

how to find appropriate coefficients for this net of neurons. Rosenblatt’s idea was

to initialize coefficients of first layers randomly and fix them. This leaves only one

set of trainable parameters: parameters of the output neuron. In this case initial

neuron’s input space X is translated into a new a one Z.

The following algorithm was proposed. Let

(x1, y1), . . . , (xl, yl)

be the training data presented in the initial input space X. Then

(z1, y1), . . . , (zl, yl)

will be training data in a transformed space Z. Elements of the training data are

fed into the network one by one. Let ω be the coefficient vector of the last neuron

in this set. Then the algorithm has the following steps

1. If a given example (xk, yk) if classified correctly, the coefficient vector of the

last neuron is not changed.

2. If a given examples is not classified correctly, the coefficients vector is changed
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according to the following rule:

wt+1 = tt + ykzk

3. The initial state of the vector is zero, i.e.

w1 = 0

Using this update rule perceptron has demonstrated the ability to generalize on

simple examples.

In 1962 Novikoff proves the first perceptron theorem [61]. Given the following

conditions

1. the norm of training vectors is bounded by some constant R: |z| ≤ R;

2. the training data can be separated with margin ρ:

sup
ω

min
i
yi(zi · ω) > ρ;

3. the training sequence must be presented to perceptron a sufficient number of

times,

theorem states that after at most

N ≤ R2

ρ2

steps a separating hyperplane will be constructed. This theorem is very important

because it connects generalization capabilities of the perceptron with the number of

errors on the training set.

Using the same technique it is possible to prove that if the data are separable,

then after a finite number of steps the perceptron is able to separate an infinite se-

quence of data. Moreover, if one supplies the perceptron with the following stopping

rule: learning process is stopped if

mk =
1 + 2 ln k − ln θ

− ln(1− ε)
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Figure A.2: Sigmoid function.

elements of the training data do not change the decision rule, then the perceptron

will stop the learning process during the first

l ≤
1 + 4 ln R

ρ
+ ln θ

− ln(1− ε)

[R2

ρ2

]
steps.

In this case the decision rule will have error rate less than ε with the probability

1− θ.

The next step in constructing a general type of learning machine was done in 1986

when so-called back-propagation technique for finding the weights simultaneously

for all neurons in the net was used.

In 1986 several authors proposed a method for simultaneous construction of the

vector of coefficients for all neurons in perceptron called back-propagation algorithm.

The idea of the method is simple: substitute the discontinuous sign {(w · x) − b}

with a continuous sigmoid approximation:

t = S{(w · x)− b}

where S(−∞) = −1 and S(∞) = 1 (see Figure A.2 for illustration). This substi-

tution makes composition of neurons a smooth function and therefore for any fixed

argument it has a gradient with respect to all of parameters of the neurons. Once

gradients are calculated, one can apply gradient-based techniques for constructing a

function that approximates the desired function. It is obvious, that a gradient-based

technique can only find local minima.

108



Appendix B

Ill-posed problems

Under some circumstances the problem of solving operator equations

Af = F, f ∈ F

is ill-posed. Even if there exists a unique solution to this problem, a small deviation

on the right-hand side of this equation (Fσ instead of F , where ‖Fσ − F‖ can be

arbitrary small) can cause large deviation in the solution. In this case functions fσ

that minimize the functional

R(fσ) = ‖Af − Fσ‖2

do not guarantee the desired approximation level for the final solution, even if σ is

close to zero. It was initially thought that real-life problems can not be ill-posed.

However later it appeared that a lot of them are. It was discovered that if instead

of the functional R(f) one minimizes another so-called regularized functional

R∗(f) = ‖Af − Fσ‖2 + γ(σ)Ω(f),

where Ω(f) is some functional and γ(σ) is an appropriately chosen constant (this

constant is adjusted according to the noise level σ), then it is possible to obtain a

solution that converges to a desired one as σ tends to zero. For our discussion it is

important that a lot of computer vision tasks may be ill-posed.
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