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Abstract

In the financial area, a simple but also realistic means of modelling real data is

very important. Several approaches are considered to model and analyse the data

presented herein. We start by considering a random walk on an additive functional

of a discrete time Markov chain perturbed by Gaussian noise as a model for the

data as working with a continuous time model is more convenient for option prices.

Therefore, we consider the renowned (and open) embedding problem for Markov

chains: not every discrete time Markov chain has an underlying continuous time

Markov chain. One of the main goals of this research is to analyse whether the

discrete time model permits extension or embedding to the continuous time model.

In addition, the volatility of share price data is estimated and analysed by the same

procedure as for share price processes. This part of the research is an extensive case

study on the embedding problem for financial data and its volatility.

Another approach to modelling share price data is to consider a random walk

on the lamplighter group. Specifically, we model data as a Markov chain with a

hidden random walk on the lamplighter group Z3 and on the tensor product of

groups Z2 ⊗ Z2. The lamplighter group has a specific structure where the hidden

information is actually explicit. We assume that the positions of the lamplighters

are known, but we do not know the status of the lamps. This is referred to as a

hidden random walk on the lamplighter group. A biased random walk is constructed

to fit the data. Monte Carlo simulations are used to find the best fit for smallest

trace norm difference of the transition matrices for the tensor product of the original

transition matrices from the (appropriately split) data.

In addition, splitting data is a key method for both our first and second models.

The tensor product structure comes from the split of the data. This requires us

to deal with the missing data. We apply a variety of statistical techniques such as

Expectation- Maximization Algorithm and Machine Learning Algorithm (C4.5).

In this work we also analyse the quantum data and compute option prices for

the binomial model via quantum data.
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Chapter 1

Introduction

This thesis is based on the analysis of arbitrarily chosen groups of share prices with

relatively small data sizes (around 250 closing prices for each group). The share

price data were chosen arbitrarily from the Internet for BP day-by-day closing share

prices for four different financial years, (April to April) 2009-2010, 2010-2011, 2011-

2012, 2012-2013. We work with the log transformed data, i.e., logged data. The aim

of this thesis is to construct and analyse several models for the logged data:

(1) First model. We analyse daily share price data and construct our first model-

additive functional of a discrete Markov chain perturbed by Gaussian noise. There-

fore, we develop an additive functional of a discrete Markov chain perturbed by a

Gaussian noise model for the share price adjusted closing data in Chapter 2. The

intention was to find the model which on the one hand is not too complicated, and

on the other hand fits the data.

(2) Embedding problem. Our model is discrete time. However, financial deriva-

tives are better understood for continuous time models. Furthermore, there are

several other reasons why we considered the junction between the discrete time

model and the continuous time model [75], [84], [98]. Hence, one of main goals

of this research is to treat the discrete time model as a continuous time model.

Therefore, we analyse a so-called embedding problem, which is roughly equivalent

to asking whether the discrete time Markov chain can be treated as a continuous

time Markov chain observed at discrete times.

In the financial area, there are not only continuous time models, such as the

1



Chapter 1. Introduction 2

Black-Scholes and Levy process models, but also some discrete-models, such as the

Cox-Rubinstein model.

If the model is converted to a continuous time model (embeddable), this means

that the result (data) is observable each time. This is a plausible and important

methodology in the financial area.

If the model is a continuous time model, many existing formulae (such as option

pricing) are applicable to the model.

Additionally, for these analysis, the share prices of twenty different companies

for four different financial years are considered to check embbedability.

Overall, this part of research represents an extensive case study on the embedding

problem for financial data and its volatility. It demonstrates a real-world financial

application of the importance of the embedding problem.

(3) We also model the logged data as a Markov chain with a hidden random walk

on the so-called lamplighter group, which are wreath products of groups. Specifically,

the hidden random walk is constructed on the lamplighter group Z3 and on the tensor

product of the groups Z2 ⊗ Z2. Also, a biased random walk (as introduced [72]) is

constructed to fit the data.

(4) Finally, we compute the option price for a binomial model via quantum

data. In particular, we consider the quantum binomial model. The real novelty

is the analysis of the quantum data. We estimate the parameters of the quantum

two-step binomial market. We then find option prices for a multi-step quantum

binomial market.

Furthermore, to be consistent, we apply the same approach to the volatility

process as to the share price process. We were motivated partly by [35] and regime

switching GARCH-type models (e.g. [19]). It is well known that in the classical

Black-Scholes model (geometric Brownian motion model), the no arbitrage option

price depends solely on interest rate and volatility [35]. However, several studies on

the empirical estimation of the volatility show that the Black-Scholes model does

not provide a sufficiently good fit to the data. Although many models have been

constructed to incorporate the volatility variability [89], research in this area is still

ongoing.
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In the following section, we present some terminology that will be useful for a

better understanding of this work. Then, in the literature review in Section 1.2, the

embedding problem, random walk on groups and lamplighter group are examined.

Thereafter the algebraic and statistical methods used to derive our models are intro-

duced, respectively, in Section 1.2.2 and Section 1.2.3. Finally, overall thesis results

are presented in Section 1.3, and the outline of the thesis is given in the last section

of this chapter.

1.1 Basic Facts and Preliminaries

This section is devoted to terminology related to Markov chains and random walks

on groups and the embedding problem. Also, some statistical terminology and the

definitions of specified norms are given. We introduce the basic tools which are

useful to a better understanding of this research.

1.1.1 Trace Norm

Definition 1.1.1 (Trace). In linear algebra, the sum of the element on the main

diagonal is defined as the trace of an n-by-n square matrix A.

tr(A) = a11 + a22 + . . .+ ann =
n∑
i=1

aii

where ann is the entry on the nth row and the nth column of A.

The trace of a matrix is the sum of the eigenvalues and is invariant with respect

to a change in the basis. Also, a trace is defined only for only square matrices.

The matrix A with complex numbers A = (aij) is called a self-adjoint matrix if

aij = āji. When A has real numbers, its self-adjoint is also symmetric. We say that

a self-adjoint matrix A is non-negative if A has non-negative eigenvalues [86].

The trace also plays a central role in the distribution of quadratic forms. Regula-

tion via the trace norm (sum of singular values) is a well known method to estimate

low rank rectangular matrices [20].

Consider the problem of approximating a noisy target matrix Y with another

matrix X [60]. This problem frequently arises in practice. A common general scheme
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for solving such problems is to select a matrix X that minimizes some combination

of the complexity of X and the discrepancy between X and Y . The crux here is the

choice of the measure of complexity for X and the measure of discrepancy between

X and Y . The most common method used to measure the complexity of a matrix

is the use of the rank [56]. The trace norm is the convex envelope of the rank over

the unit ball of the spectral norm [51], [83]. Nowadays, the trace norm, rank norm

and maximum norm are used as an alternative method to measure complexity with

strong connections to maximum-margin linear classification [57].

Let us examine the properties of the trace [86]:

• If A ≤ B, then tr(A) ≤ tr(B).

That is, B − A has non-negative elements. This is also true when B − A is a

self-adjoint, non-negative matrix.

• The trace is a linear mapping where A and B are square matrices and c is a

constant:

tr(A+B) = tr(A) + tr(B),

tr(cA) = c tr(A).

• A matrix and its transpose have the same trace:

tr(A) = tr(Aᵀ).

• Trace of a product: The trace of a product is the sum of entry wise product

of elements:

tr(AᵀB) = tr(ABᵀ) = tr(BᵀA) = tr(BAᵀ) =
∑
i,j

aijbij.

• The matrices in the trace of a product can be switched where A is an m × n

and B is a n×m

tr(AB) =
m∑
i=1

(abii) =
m∑
i=1

n∑
j=1

(aij)(bji) =
n∑
j=1

m∑
i=1

(bji)(aij) =
m∑
j=1

(bajj)

tr(AB) = tr(BA)
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• Cyclic property: The trace is invariant under cyclic permutations:

tr(ABCD) = tr(BCDA) = tr(CDAB) = tr(DABC).

Arbitrary permutations are not allowed (tr(ABC) 6= tr(ACB)).

However, if the matrices are symmetric, the following permutation is allowed:

tr(ABC) = tr(AᵀBᵀCᵀ) = tr(Aᵀ(CB)ᵀ) = tr((CB)ᵀAᵀ) = tr((ACB)ᵀ) =

tr(ACB).

• If A is a square matrix with real or complex entries and λ1, . . . , λn are the

eigenvalues of A,

tr(A) =
∑
i

λi.

This follows from the fact that A is always similar to its Jordan form, an

upper triangular matrix having λ1, . . . , λn on the main diagonal. In contrast,

the determinant of A is the product of its eigenvalues:

det(A) =
∏
i

λi.

More generally,

tr(Ak) =
∑
i

λki .

Proposition 1.1.1. Let Ai, i = 1, . . . , n, 2 × 2 matrices and Ai = Aᵀ
i ≥ 0. Ai is

associated if E tr(A1 . . . An) ≥ tr(E(A1) . . . tr(E(An).

Proof:

A = (aij) then E[A] = (E[aij]) is the matrix with expectation of elements.

Ai ≥ 0 and A = Aᵀ
i . So,

E[A1 . . . An] ≥ E[A1] . . .E[An]

and taking the trace of both sides:

tr(E[A1 . . . An]) ≥ tr(E[A1] . . .E[An])
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then use the linearity of the expectation:

E[tr(A1 . . . An)] ≥ tr(E(A1) . . . tr(E(An).

1.1.2 Tensor Product

The term ”tensor product” refers to another way of constructing a big vector space

out of two (or more) smaller vector spaces. It is also called the Kronecker Product.

Let A and B be the matrices,

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

: · · · . . . · · ·

an1 an2 · · · ann

 and B =


b11 b12 · · · bm

b21 b22 · · · b2m

: · · · . . . · · ·

bm1 bm2 · · · bmm


and their tensor product is [6]

A⊗B =



a11b11 a11b12 · · · a11b1m a12b11 · · · a1nb11 · · · a1nb1m

a11b21 a11b22 · · · · · · ·

a11b31 a11b32 a11b33 · · · · · ·

: · · . . . · · · · ·

a11bm1 · · a11b1m · · · · ·

a21b11 · · · a22b11 · · · ·

: · · · · a22b1m · · ·

a31b11 · · · · · a31b11 · ·

: · · · · · · . . . ·

an1bm1 · · · · · · · annb1m


Proposition 1.1.2. A⊗B is a stochastic matrix if A,B are stochastic matrices.

A stochastic matrix has non-negative elements where the sum of the elements in

each row equals 1.

Let A = (aij), aij ≥ 0, j = {1, . . . , n} and B = (bkm), bkm ≥ 0, m =

{1, . . . , l} be stochastic matrices:
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∑
j aij = 1,

∑
m bkm = 1

We begin by taking their tensor product:

A⊗B =


a11B · · · · · ·

a21B · · · · · ·

:
. . . · · ·

an1B · · · aijB


(A⊗B)ik,jm = aijbkm ≥ 0

∑
j,m

(A⊗B)ik,jm =
∑
m

∑
j

aijbkm

= (
∑
j

aij)(
∑
m

bkm)

= 1

Specifically, consider the 2× 2 matrices:

A =

 a11 a12

a21 a22

 , B =

 b11 b12

b21 b22



⇒ A⊗B =


a11b11 a11b12 a12b11 a12b12

a11b21 a11b22 a12b21 a12b22

a21b11 a21b12 a22b11 a22b12

a21b21 a21b22 a22b21 a22b22


If A is a stochastic matrix:

a11 + a12 = 1 (1.1.1)

a21 + a22 = 1 (1.1.2)

and if B is a stochastic matrix:
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b11 + b12 = 1 (1.1.3)

b21 + b22 = 1 (1.1.4)

Let us examine the first row of the tensor product of the matrices A⊗B to show

that it is a stochastic matrix:

a11b11 + a11b12 + a12b11 + a12b12 = a11(b11 + b12) + a12(b11 + b12) = 1 (1.1.5)

1.1.1 and 1.1.3 are used to show the equation 1.1.5 is equal to 1. Further, it is

obvious that the sum of the each rows is equal to 1. Therefore, the tensor product

of the matrices A⊗B is a stochastic matrix.

Proposition 1.1.3. Tensor products are not symmetric, in general.

A⊗B 6= B ⊗ A

Proposition 1.1.4. Let X and Y be independent Markov chains with transition

matrices PX and PY , respectively. Then, the Markov chain Z = (X, Y ) has a

transition matrix P = PX ⊗ PY . Moreover, assume that PX = eQX , PY = eQY are

embeddable. Then, so is P = eQ with

Q = QX ⊗ I + I ⊗QY .

Proof:

Although the proof is known (for example, it follows from the properties of the

Kronecker sum): eA ⊗ eB = eA⊗B see e.g. [74]), we give the proof for the reader’s

convenience.

• Taylor series of exponential function: et = 1 + t+ t2

2!
+ t3

3!
+ · · ·

• A is a n× n matrix: eA = I + A + 1
2!
A2 + 1

3!
A3 + · · · =

∑∞
k=0

1
k!
Ak where I is

the n× n identity matrix and A0 = I.

• e(tA) = I + tA+ t2

2!
A2 + t3

3!
A3 + · · · .
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Let P t
X = etQX and P t

Y = etQY . Then, use the tensor product linearity and a

Taylor series of the exponential function of matrices:

lim
t↓0

P t
X ⊗ P t

Y − Ĩ
t

= lim
t↓0

etQX ⊗ etQY − Ĩ
t

= lim
t↓0

1

t
((I + tQX +O(t2))⊗ (I + tQY +O(t2))− I)

= lim
t↓0

1

t
(I ⊗ I + tI ⊗QY + tQX ⊗ I +O(t2)− Ĩ)

= I ⊗QY +QX ⊗ I

= QX ⊗ I + I ⊗QY

where I ⊗ I = Ĩ.

Example: Let PX =

 0.5 0.5

0.1429 0.8571

 and PY =

 0.8750 0.1250

0 1

.

Then, the Q matrices are computed through the algebraic approach of the em-

bedding problem (see Section 3.3 for details).

QX =

 −0.8009 0.8009

0.2289 −0.2289

 , QY =

 −0.1335 0.1335

0 0



QX ⊗ I =


−0.8009 0 0.8009 0

0 −0.8009 0 0.8009

0.2289 0 −0.2289 0

0 0.2289 0 −0.2289



I ⊗QY =


−0.1335 0.1335 0 0

0 0 0 0

0 0 −0.1335 0.1335

0 0 0 0

 .

Hence,

QX ⊗ I + I ⊗QY ==


−0.9343 0.1335 0.8009 0

0 −0.8009 0 0.8009

0.2289 0 −0.3624 0.1335

0 0.2289 0 −0.2289


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Also,

PX ⊗ PY =


0.4375 0.0625 0.4375 0.0625

0 0.5 0 0.5

0.1250 0.0179 0.75 0.1071

0 0.1429 0 0.8571



P = eQ ⇒ Q =


−0.9343 0.1335 0.8009 0

0 −0.8009 0 0.8009

0.2289 0 −0.3623 0.1335

0 0.2289 0 −0.2289


Therefore,

Q = QX ⊗ I + I ⊗QY .

Notice that by Proposition 1.1.4, the tensor product P = ⊗ni=1Pi of many small

embeddable matrices. Pi is embeddable; however, P is a large matrix for which the

embedding property is much harder to verify, in general, since there is no necessary

and sufficient condition. It would be interesting to compare the embeddability as

n→∞

Trace of the Tensor Product

Proposition 1.1.5.

tr(A⊗B) = tr(B ⊗ A) = tr(A) tr(B).

Proof:

tr(A⊗B) = (a11b11 + a11b22 + · · ·+ a11b1m) + · · ·+ (annb11 + · · ·+ annb1m)

= a11(b11 + · · ·+ b1m) + a22(b11 + · · ·+ b1m) + · · ·+ ann(b11 + · · ·+ b1m)

= (a11 + a22 + · · ·+ ann)(b11 + · · ·+ b1m)

= tr(A) tr(B).

Proposition 1.1.6. Let A,B ≥ 0. Then, tr(A⊗B) ≥ 0 and tr(A⊗ A) ≥ 0.
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Proof: Apply A = T−1DT and the triangle rule tr(ABC) = tr(BCA):

When A ≥ 0, tr(A) = tr(D), all eigenvalues are non-negative. So,

A,B ≥ 0⇒ tr(A), tr(B) ≥ 0

Therefore,

tr(A⊗B) = tr(A) tr(B) ≥ 0 and tr(A⊗ A) = (tr(A))2 ≥ 0

where A,B ≥ 0.

Proposition 1.1.7. Let A,B,C ≥ 0. Then,

tr(A⊗B ⊗ C) ≥ 0.

Proof of this proposition is clear by using tr(ABC) = tr(A) tr(B) tr(C).

Proposition 1.1.8. Let A1, · · · , A2r are 2×2, self-adjoint ( A = A∗ (equal to trans-

posed matrix)) and non-negative matrices (with non-negative eigenvalues). Then,

tr((A1 ⊗ A2)⊗ · · ·(A2r−3 ⊗ A2r−2)(A2r−1 ⊗ A2r)) ≥ 0

1.1.3 Markov chains

A Markov chain is defined by a countable state space S and a transition matrix

P . Also, an initial position (at time 0) has to be specified. Also, the probability of

moving from i to j is represented by Pij. Consider a sequence of random variables

(Xn) ≥ 0 that takes on a finite number of possible values on a countable state space

S; it can be said that the process is in state i at time n if Xn = i. Then, the state is

changed from state i to the next state j with a fixed probability Pij. This stochastic

process is called a Markov Chain if it has a Markov Property

P [Xn+1 = j|Xn = i;Xn−1 = in−1, , X1 = i,X0 = i0] = P (Xn+1 = j|Xn = i) =

Pij

for all states i0, i1, , in−1, i, j and all n ≥ 0.

In order to model the random variables XN , one has to find a suitable probability

space on which the random position after n steps can be described as the n-th
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random variable of a Markov chain. The usual choice of the probability space is

the trajectory space Ω = SZ+
equipped with the product σ-algebra arising from the

discrete one on S. An element ω = (x0, x1, x2, ) of Ω represents a possible evolution

(trajectory), that is, a possible sequence of points visited one after the other by the

Markov chain. Then, Xn is the n-th projection from Ω to S. This describes the

Markov chain starting at i, when Ω is equipped with the probability measure given

via the Kolmogorov extension theorem by

Px[X0 = x0, X1 = x1, , Xn = xn] = δx(x0p(x0, x1))p(xn−1, xn)

where δx(y) = 1 if x = y and p(., .) is the transition matrix.

The associated expectation is denoted by Ex. Also, the n-step transition prob-

ability, which is the probability of getting from i to j in n steps, is represented as

below:

P
(n)
ij = Pi[Xn = j],

Also, the (i, j)-entry of the matrix power P n, with P 0 = I (I is the identity matrix

over S) [96].

Definition 1.1.2. A Markov chain is irreducible if for every i, j ∈ S, there is some

n ∈ N such that P
(n)
ij > 0 [96].

This means that every state j ∈ S can be reached from every other state i ∈ S

with a positive probability. In this research, we shall always require that the state

space is infinite and all states communicate, i.e., the Markov chain is irreducible.

1.1.4 Random Walk on Graphs

Random walk on the n-cycle. Let’s take modulo n remainder set Ω = Zn =

{0, 1, · · · , n− 1}. And transition matrix is

P (x, y) =


1/2 if y ≡ x+ 1 (mod n),

1/2 if y ≡ x− 1 (mod n),

0 otherwise.
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The random walk on the n-cycle is the correlated Markov chain (Xt). The walker

can go one step clockwise or one step the other way at each cycle. The random walk

on the n-cycle is a simple case of an important type of Markov chain [12].

Graph. A graph G = (V,E) consists of a vertex set V and edge set E, where

the elements of E are unordered pairs of vertices: E ⊂ {{x, y} : x, y ∈ V, x 6= y}. V

is considered to be a set of dots where two dots x and y are joined by a line if, and

only if, {x, y} is an element of the edge set E. When {x, y} ∈ E, y is a neighbour

of x (also, x is a neighbour of y), and this relation is represented by x ∼ y. The

degree of a vertex x (deg(x)) is the number of neighbours of x [4].

A simple random walk on a given graph G = (V,E) can be defined as being the

Markov chain with a state space V and a transition matrix

P (x, y) =


1

deg(x)
if y ∼ x,

0 otherwise.

In other words, when the chain is at vertex x, it checks all the neighbours of x,

chooses one uniformly at random, and moves to the chosen vertex [12].

A finite graph is a graph G = (V,E) such that V and E are finite sets. A graph

is referred to as being connected if every pair of distinct vertices in the graph is

connected [4].

The graph G is referred to as being locally finite if every vertex has a finite

degree. Furthermore, G has a bounded geometry if it is connected with bounded

vertex degrees [96].

Example: A random walk on a graph G = (V,E) such that V = {1, 2, 3} and

E = {1↔ 2, 1↔ 3}

P (1→ 2) = P (1, 2) = 1
2
, d1 = 2

P (1→ 3) = P (1, 3) = 1
2
, d2 = 2

P (2→ 1) = P (2, 1) = 1, d3 = 1

P (3→ 1) = P (3, 1) = 1 d4 = 1.
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1.1.5 Random Walk on Groups

Groups. A group consists of set G with a binary operation ◦ on G satisfying the

following axioms [29]:

(i) Closure. For all a, b ∈ G, we have a ◦ b ∈ G.

(ii) Associativity. For all a, b, c ∈ G, we have (a ◦ b) ◦ c = a ◦ (b ◦ c).

(iii) Identity. There is an element e ∈ G satisfying e◦a = a◦ e = a for all a ∈ G.

(iv) Inverse. For all a ∈ G, there is an element a∗ ∈ G satisfying a◦a∗ = a∗◦a = e

(where e is as in the identity element and is unique).

A semi group is a set GS with a binary operation ◦ that satisfies the axioms

(i) and (ii) (closure and associativity), but which does not necessarily satisfy the

axioms (iii) and (iv) (identity and inverse).

We can define a random walk on a group G with increment distribution µ (which

is a probability measure on group (G, ◦)) as follows: it is a Markov chain with state

space G, and which moves by multiplying the current state on the left by a random

element of G selected according to µ. Equivalently, the transition matrix P of this

chain has entries [12]

P (g, hg) = µ(h).

If G is a group and S is a subset of elements, then S generates G as a semi group

if every element of G can be expressed as a product of elements from S. A group G

is finitely generated if it has a finite generating set.

Let us introduce the Cayley graphs to relate random walks on groups with ran-

dom walks on graphs, that is, graphs that encode the structure of discrete groups.

Suppose that the group G is finitely generated, and let S be a symmetric set of

generators of G. The Cayley graph Γ = (G,S) of G with respect to the generating

set S has vertex set G, and two vertices x, y ∈ G are connected by an edge if, and

only if, x−1y ∈ S. This graph is connected locally, finite, and regular (all vertices

have the same degree | S |). Notice that Cayley graphs are transitive in the sense

that they look the same from every vertex. If e ∈ S, then Γ = (G,S) has a loop at

each vertex [96].
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Branching Tree. A branching tree on a group τ with group operation ◦ is

defined recursively via generations Gn

Gn = {g ∈ τ : g = a ◦ s, a ∈ Gn−1, s ∈ S}.

G0 = S is the group generator. Let U ≡ ∪∞n=0Gn. We say that (a, b) ∈ E if

a, b ∈ U and there is a path b = a ◦ s1 ◦ · · · ◦ sk, where each si = S [29].

1.2 Literature Review

1.2.1 Embedding problem

Let P be an (n × n) estimated transition matrix associated with the logged data.

The question is whether P can have a representation P = eQ, where Q matrix is

transition rate matrix. This is referred to as an embedding problem. In here, the

matrix Q is the generator, the real generator, intensity matrix or true generator;

otherwise, matrix Q is neither a true generator nor an exact generator.

Elfving first proposed the embedding problem which is also known as Elfving’s

problem [22]. He gave certain associated necessary conditions, in particular observ-

ing that the eigenvalues of P must satisfy two conditions: (i) no eigenvalue other

than unity can have unit modulus (and so P must be aperiodic); (ii) every negative

eigenvalue must have an even (algebraic) multiplicity.

The problem had been revived by Chung in the more general context of countable

Markov chains [47]. From the form of the problem, we easily get the basic result that

a chain with a non-singular transition matrix P can be embedded in a continuous

time Markov process with a measurable transition function if, and only if, there

exists a real matrix P (which is actually Q-matrix) such that P = eQ.

This is not easy to apply for general matrices, although it provides a method of

determining whether a particular matrix is embeddable. It may, however, be used

to deal with the exceedingly simple case n = 2.

The only complete solution is known for n = 2 (Kendall, unpublished; formulated

in [33]), which states that a stochastic (2× 2) matrix P is embeddable if, and only
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if, det(P ) > 0 , and tr(P ) > 1, where tr(.) is the usual trace, i.e., the sum of

the diagonal elements of a matrix. However, we shall see later that when n > 2,

no simple necessary and sufficient condition of this sort is possible. In addition,

his propositions show that the set of embeddable matrices has a complex geometry

(except when n = 2), consisting of n2 − n+ 1 different parts, of which at most one

can be expressed in algebraic form. It therefore seems unlikely that any explicit

characterisation of this geometry can be given.

Runnenburg first considered the case n = 3 for the embedding problem in his

thesis then he obtained a necessary condition for embeddability [41]. Runnenburg

states that the Elfving’s problem can only be solved (P be a embeddable stochastic

matrix) if all eigenvalues belong to a defined region (Hn).

Cuthbert considered the Jordan canonical form to find conditions for embed-

dability and gave the simplification of the three-state case [39]. Also, Johansen

obtained a more explicit criterion with the expression for the logarithm of a 3 × 3

stochastic matrix P as a linear combination of powers of P [85]. Johansen left an

open question which is considered in [64] and some characterizations of embeddabil-

ity with a negative eigenvalues for 3× 3 stochastic matrices are found.

Later, Culver introduced conditions for the existence and uniqueness of the real

logarithm of a matrix [94]. Several of the theoretical results will be applied in the

case study in Chapter 3.

Previously, the embedding problem was treated as a problem of pure mathemat-

ics. Then, in the 1990s, the problem, which applies to rating transition matrices,

received increasing attention in the financial mathematics literature [75].

Notice that many authors in the financial literature assume that the solution to

the embedding problem is positive, that is the logged data comes from the continuous

time Markov process, and estimate its generator [73], [52]. For example, in credit

rating an approximate generator is obtained by assuming that the probability for

one rating to make more than one transition in one year is small.

Since the work of Jarrow et al., the use of credit rating transition matrices in

credit risk modelling has received increasing attention [73]. For example, Kijima and

Komoribayashi provide an improvement on the estimation procedure in [73], [53];
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Belkin, Suchower, and Forest Jr. propose a one-factor Markov process to model

credit rating transitions [3]; Kijima, from a technical perspective, explains how a

Markov chain model can lead to known empirical regularities such as memory in

rating changes and long-term reversion of rating [52]. In a useful note, Lando shows

how a transition matrix can be used to value credit derivatives such as a default

swap [11].

If a generator exists, it need not be unique. The first published example of

the uniqueness of a generator is given in [37]. Since then, many researchers have

considered uniqueness [39], [14], [5]. Notably, Israel et al. present a simple method

for finding a generator. They also identify a number of sufficient conditions under

which this method works, and discuss some further results on the existence and

uniqueness of generators. In addition, they develop an algorithm for searching a

valid generator when the simple method fails [75].

Bladt et al. applied the EM algorithm and a Markov chain Monte Carlo (MCMC)

procedure to the embedding problem for Markov chains [50]. In this paper, they

discuss the problems related to the estimation of maximum likelihood of the intensity

matrix based on a discretely sampled Markov jump process and demonstrate that

the maximum likelihood estimator can be found either by the EM algorithm or by

an MCMC procedure. It is possible that the maximum likelihood estimator does

not exist, but this problem can be overcome by using a penalized likelihood function

or an MCMC estimator with a suitable prior.

1.2.2 Algebraic Methods

In the thesis, a trace is applied to analyse the error in the embedding problem.

Also, it is useful as an expectation of a quantum probability. In addition, is used for

computing relative distance between two tensor products of stochastic matrices to

find best fit. The trace of a matrix is the sum of the eigenvalues and it is invariant

with respect to a change of the basis.

Additionally, tensor product is used while considering a random walk on lamp-

lighter group and embedding problem in order to compute the estimated transition

matrices of the splitting data (data is split into two parts “no small jump or small



Chapter 1. Introduction 18

jump” and “no big jump or big jump”). Also, the tensor product plays an important

role in quantum mechanics. The phrase “tensor product” refers to another way of

constructing a large vector space out of two (or more) smaller vector spaces. It is

also called the Kronecker Product. In mathematics, the tensor product, denoted

by ⊗, may be applied in different contexts to vectors, matrices, vector spaces, and

algebra, among many other structures or objects. In general, we use the tensor

products of matrices.

In this research, we consider a random walk on a directed Cayley graph with

directed graphs [96]. Specifically, let G = (V,E) be a directed graph, a simple

random walk on G is a Markov chain with a state space V and transition matrix

P (x, y) = 1/deg(x), if x → y (i.e., x is connected to y) and P (x, y) = 0 otherwise.

A random walk on a Cayley graph is considered a branching random walk or a

connected path on the branching tree starting at the origin and having a single

child at each generation. Specifically, we model data as a Markov chain with a

hidden random walk on a group. The hidden random walk is constructed on the

lamplighter group Z3 and on the tensor product of groups Z2⊗Z2. The lamplighter

group has a specific structure where the hidden information is actually explicit. We

assume that the positions of the lamplighters are known, but we do not know the

status of the lamps. This is referred to as a hidden random walk on the lamplighter

group. The biased random walk (as introduced in [72]) is constructed to fit the data.

Many researchers have studied these kinds of processes, in particular the spectral

analysis of the lamplighter random walk on an infinite path is considered in [96].

Also, the finite case has been treated and analysed via the probabilistic techniques

used for lamplighter processes on a complete graph and on the discrete circle in [61].

1.2.3 Statistical Methods

The tensor product structure comes from the splitting of the data into the “no

jump”, “small jump” and “big jump” groups and matching into the “no small jump-

small jump” and “no big jump-big jump” groups. Then, this requires to deal with

the missing data. Splitting data as (2×2)(2×2) helps to find the hedging to compute

the option price.
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Particularly, the transformed data Z is observable data which is considered to

be a hidden pair (X, Y ) to construct the tensor product structure. The key point

of this structure is Z, which is the maximum of the pair.

Z = max (X, Y )

Z represents the “no jump”, “small jump” and “big jump” group which is split

into two groups. Therefore, X represents the “no small jump-small jump” group

and Y represents the “no big jump-big jump” group. Also, Y (“no big jump-big

jump” group) is a complete dataset whilst X (“no small jump-small jump” group)

has missing values. Therefore, this requires to deal with the missing data.

The missing data is a significant issue in this case. Firstly, we present the

missing data and treatment methods. Then we introduce and apply the Expectation-

Maximization Algorithm as the parameter estimation method and Machine Learning

Algorithm (C4.5) as the imputation method in order to treat the missing values [2],

[40].

Missing Data Treatment

There is an important problem in data mining where the data is incomplete or a

certain amount of the data is missing or wrongly collected. Many methods are

applied to deal with this in various areas of research.

In statistics, missing data (values) occur when no data value is gathered for the

variable in an observation. Missing data occur because of a non-response in which

no information is provided for one or more parts, or indeed for their whole. In order

to decide how to treat the missing data, it is useful to know why the data is missing.

Missing data occur in research in economics, sociology, and political science be-

cause governments report critical statistics in an incomplete form [88]. Occasionally,

missing data can be a result of errors by the researcher (such as collecting data by

mistake, [26]).

Missing data can be categorized into various different types as per the generating

forms, as follows: missing completely at random, missing at random, and missing

not at random [46].
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Several techniques are considered to treat the missing data. Many of them, such

as case substitution, were developed to deal with missing data in sample surveys,

and have some drawbacks when applied in the data mining context. The others,

such as replacement of missing values by the attribute mean or mode, are very naive

and should be carefully used to avoid the introduction of bias. In the literature,

the appropriate methods are divided into the following three categories: (i) ignoring

and discarding data, (ii) parameter estimation and (iii) imputation [67].

The imputation technique is mostly associated with machine learning. Machine

learning systems are sophisticated systems used for both unsupervised and super-

vised machine learning, which include a generating model to predict values to al-

ternate the missing data. These predictive models rely on known information from

the dataset. When the observed data include information that is beneficial to the

prediction of missing data, and the imputation method considers the information to

maintain high precision.

Most common learning algorithms, such as multilayer perceptron (MLP, a type of

artificial neural network [70]), k nearest neighbours (KNN, ex: the option is defined

by the majority of the options of neighbours, [63]), self-organising maps (SOM, a

type of artificial neural network [18]) and decision tree (DT, a tree like a graph [76])

algorithms are considered to deal with the missing data in different research areas.

Also, they are applied for the same problem domains to examine robustness after

imputation [36]. MLP has been found to be useful in the prediction of missing data

for the dataset associated with thyroid disease [70]. Also, decision tree algorithms

are applied to deal with incomplete industrial datasets [44]. KNN outperforms for

handling the absent values in DNA micro arrays [63]. To treat the missing data

the KNN algorithm can be used as an imputation method via the C4.5 and CN2

algorithms [23]. Furthermore, the SOM algorithm is applied in various research

fields to treat missing data via the imputation method [18], [66], [92].

In addition, Rahman and Davis examined the performance of machine learn-

ing methods such as the imputation method to treat missing values [54]. They

then compared their results with traditional mean/mode imputation. All the ma-

chine learning methods (FURIA, [27], decision tree [76], KNN [13], K-mean cluster-
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ing [62]) outperformed the statistical method (Mean/Mode [69]) according to their

experimental results.

Moreover, two well-known machine learning methods, Autoclass (Bayesian un-

supervised learning method, [65]) and C4.5 (decision tree-based supervised learning

method, [40]), are applied in order to complete data with missing values [44]. If the

learning algorithm has a set of training examples and each example can be seen as

a pair, namely the input object and a desired output value (class), the algorithm

is considered a supervised learning algorithm. The algorithm analyses the training

set and builds a classifier that must be able to correctly classify both training and

test examples. A test example is an input object, and the algorithm must predict

an appropriate output value (the example must be assigned to a class).

The C4.5 algorithm constructs classifiers that are one of the main tools in data

mining. This kind of algorithm has an input and an output. In this algorithm, input

is a collection of cases. Each collection of cases belongs to one of a small number of

classes, and a fixed set of attributes describe their values. Also, output is a classifier.

The classifier exactly predicts the class to which a new case belongs.

The C4.5 algorithm produces classifiers signified as decision trees [40]. Let us

consider the details of decision trees with a given set of cases (T ). Firstly, the C4.5

algorithm generates an initial tree using a divide-and-conquer algorithm, such as:

• If all the cases in T are from the same class, the tree is a leaf marked as the

same as the most-repeated class in the set of cases.

• Otherwise, it needs to choose a test depending on one attribute with two or

more outcomes. This test is run for the root of the tree. The each outcome

of the test is one branch of the tree. The set of cases T is separated into

corresponding S1, S2, . . . based on the outcome for each case. Then the same

procedure is followed for each subset.

In the last step of the algorithm, there are many tests to consider. C4.5 considers

two searching principles in order to rank possible tests: information gain and gain

ratio. Information gain reduces to the smallest value of the total entropy of the

subsets Ti but it is biased if there are abundant outcomes; the gain ratio separates
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information gained by the information provided via the outcomes of the test.

The format of the test outcomes are determined via the types of attributes:

numeric or nominal. If there is a numeric attribute A, the threshold θ is found by

sorting the set of the cases T on the values of A ({A ≤ h,A > h}) and selecting the

split between successive values that maximizes the principle above. An attribute A

with discrete values has by default one outcome for each value, but an option allows

the values to be grouped into subsets with one outcome for each subset.

Moreover, most researchers consider missing data to be one of the most im-

portant statistical research issues. Statistical methods are considered to treat the

missing data, e.g., maximum likelihood techniques. The EM algorithm is one of the

maximum likelihood techniques used to analyse data with missing values [2]. This

is an important technique in parameter estimation in the instance of missing data in

comparison to imputation or the filling-in of missing values. Statistical imputation,

a less broadly researched area compared to statistical analysis with missing data,

encompasses methods (mean imputation, regression imputation, hot-deck imputa-

tion).

1.2.4 Motivation via Share Price Modelling

In econometrics and actuarial literature, share price modelling is based on the log

transformation, Wilkie model, the Granger approach of co-integration and the linear

time series approach [93], [1] [10], [78]. There are several known models, as follows:

Let St be the share price at time t and εt be the residual at time t.

Linear regression model: St = S0 + bt+ εt;

Linear regression model with general intercept: St = a+ bt+ εt;

Log-linear regression model: logSt = logS0 + bt+ ε′t where ε′t is the residual

in the logscale at time t;

Log-linear regression model with general intercept: logSt = a+ bt+ ε′t;

Difference model: Zt = St − St−1 = µ+ ηt;

Difference model on logscale: Z ′t = logSt − logSt−1 = µ′ + η′t;

In this research, we want to construct a realistic and uncomplicated model, so

we perform log transformation and regression analysis. In particular, we apply a



Chapter 1. Introduction 23

log-linear regression model and construct the Markov chains for the residuals (in

Chapter 2).

Furthermore, we review several well-known share price models. Generally, option

pricing methods are based on Brownian Motion or Levy processes assumptions.

The Black-Scholes model is as a solution to the stochastic differential equation:

dSt
St

= µ dt+ σ dWt (1.2.6)

where St is the share price process [16]. This is based on modelling a share price

process as a geometric Brownian motion. St is known to have continuous sample

paths.

The Black-Scholes-Merton model,

dSt
St

= µ dt+ a dNt (1.2.7)

which is a continuous time model of share prices, is used to model share prices as

per the stochastic differential equation where Nt is a Poisson process [77].

There is another continuous time model used to incorporate possible jumps,

dSt
St

= µ dt+ σ dWt + d{
Nt∑
j=1

ς̃j} (1.2.8)

where ς̃j are iid and Nt is a Poisson process with a rate λ [89]. Therefore,

Nt∑
j=1

ς̃j

is a compound Poisson process independent of the Brownian motion. Also, the

model gives the Black-Scholes model.

The well-known continuous time models for returns are considered above. In

the economic literature, discrete time models are known to be more convenient, and

which are generally based on regression analysis and the time series approach.

The geometric binomial model derived by Cox-Ross-Rubinstein converts the

Black-Scholes-Merton model into a discrete binary tree of prices [30]. The bino-

mial model is:

Sn = S0Y1 . . . Yn (1.2.9)
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where Yi are iid variables with two values. Option valuation is computed via appli-

cation of the risk neutrality assumption over the life of the option, as the price of

the underlying instrument evolves. The model defines the security price increasing

with a probability p and going down with probability q = 1 − p. Further, it does

not depend on the past.

In addition, several discrete time models are presented for option pricing with

arbitrage possibility [34]. The homogeneous Markov model in discrete time, the

homogeneous semi-Markov model in continuous time, and the non-homogeneous

semi-Markov model in continuous time are introduced in [34].

1.2.5 Quantum Finance

Quantum finance is an interdisciplinary research area. In this area, theories and

methods are developed and combined by physicists and economists in order to solve

problems in finance.

One recent trend in the growing area of quantitative finance is to apply tech-

niques borrowed from quantum physics to price derivatives. Principal amongst these

are path integrals, which were originally developed to describe the interactions of

elementary particles. Path integrals are essentially a means of adding together prob-

abilities, and date. Feynman used path-integral methods to reformulate the rules of

quantum physics [80]. Dash applied Feynman path integrals to financial modelling

and later many academics began to investigate ways in which path integrals could

be applied to the financial markets [42]. The reason was simple: the value of a

financial derivative depends on the “path” followed by the underlying asset. One of

the most effective ways to demonstrate this is to consider a type of derivative called

an option, of which there are two types. A call option is a financial contract issued

by one party to another that gives the buyer the right, but not the obligation, to

buy the underlying asset for a specified strike price at a future maturity date. The

seller or underwriter, normally working for a bank, charges the buyer a premium for

the option up front. If the value of the underlying asset is higher than the strike

price when the option matures, the buyer will presumably exercise their right to

buy the asset at the lower price and then sell it as its present value, resulting in an
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instant profit less the premium paid to buy the option in the first place. Also, a

put option is a similar contract that gives the buyer the right to sell the underlying

asset at its maturity for an agreed strike price.

Pricing an option is a complex mathematical problem that involves diffusion

processes such as Brownian motion, such as with the random movement of pollen

grains suspended in a liquid . Due to the unpredictable behaviour of the underlying

assets, the derivatives markets are similar.

The idea of developing a mathematical model for option pricing dates back to

1900 when Bachelier proposed a stochastic process to depict the evolution of stock

prices. Later, Fischer Black and Myron Scholes, with Merton, transformed deriva-

tives pricing by developing a pioneering formula for evaluating non-dividend paying

stock options [16].

A path integral description of the Black-Scholes model was developed by Baaquie

for quantum pricing [7]. Then, a quantum mechanical version of the Black-Scholes

equation was derived by Baaquie in order to describe the price of a simple, non-

dividend paying option.

In quantum mechanics,the state of a physical system can be represented by

a wave function (arbitrary function), |ψ >, and the expectation value of an ob-

servable that is described by an operator A that is given by the “inner product”

< ψ|A|ψ >,where |ψ > is the Hermitian conjugate of the wave function. In the

financial world the value of an option at a certain time, t, can by analogy be inter-

preted as the inner product < f |x >, where f is the option price and x is the price

of the underlying asset.

The evolution of the option value with time, f(t), can be written as |f(t) >=

etH |f(0), where H is the appropriate differential operator or Hamiltonian and f(0)

is the value of the option at t = 0. The path integral for the option then models

the stochastic process followed by the price of the underlying asset, in the same

way that the Feynman path integral for, say, an electron takes into account all its

possible trajectories. Using simple boundary conditions for the value of the option

at certain times, a self-consistent quantum system for the price of an option can be

determined.
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Other researchers, such as Ilinski, have taken a slightly different path integral

method which depends on quantum electrodynamics (QED) [45]. The financial mar-

ket is formulated using the QED model. Particles with positive and negative charges,

corresponding to securities and debts, respectively, interact quantum mechanically

with each other through electromagnetic fields.

On the other hand, other models such as Hull-White and Cox-Ingersoll-Ross,

have successfully used the same method in the classical setting with interest rate

derivatives [28], [31]. Khrennikov builds on the work of Haven and further bolsters

the idea that the market efficiency assumption made by the Black-Scholes-Merton

equation may not be appropriate [43], [15]. To support this idea, Khrennikov builds

on a framework of contextual probabilities using agents as a means of overcoming

any criticism of applying quantum theory to finance. Accardi and Boukas again

quantize the BlackScholesMerton equation, but in this case they also consider the

underlying stock to undergo both Brownian and Poisson processes [49].

Chen presents a quantum binomial options pricing model, simply abbreviated

as the quantum binomial model [102]. Chen’s quantum binomial options pricing

model is to existing quantum finance models what the Cox-Ross-Rubinstein classical

binomial options pricing model was to the Black-Scholes-Merton model: a discretized

and simpler version of the same result. These simplifications make the respective

theories not only easier to analyse but also easier to implement computationally.

1.3 Results

As stated, the thesis is an extensive case study of the financial data on

(i) General stochastic modelling of financial data,

(ii) The embedding problem,

(iii) Modelling of financial data as a random walk on the lamplighter group,

(iv) Treating the data as quantum data and fitting to the quantum binomial

market.

General stochastic modelling of financial data.

In this thesis, stochastic modelling of share prices is considered. Particularly,
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we construct our first model-additive functional of a discrete time Markov chain

perturbed by Gaussian noise.

First, we introduce the real data. The data is modelled by the log-linear re-

gression method that is popular in the actuarial literature [87]. After that, Markov

chains are constructed for residuals. We define the states of the Markov chains and

estimate their transition probabilities.

First the data is considered as a 2 × 2-state Markov chain (“stay” or “jump”).

Second, a 3 × 3-state Markov chain (“stay”, “small jump” or “big jump”) is con-

sidered. Third, the data is split into two parts (no small jump or small jump and

no big jump or big jump) and the tensor product of a 2 × 2-state Markov chain is

considered.

Moreover, the tensor product structure comes from the split of the data into “no

jump”, “small jump” and “no big jump” groups and matching into the “no small

jump-small jump” and “no big jump-big jump” groups. Then, this requires to deal

with the missing data. The missing data is a significant issue in the third case.

In Section 2.2, we study missing data. In the literature, the methods are divided

into the following three categories: (i) ignoring and discarding data, (ii) parameter

estimation, and (iii) imputation [67]. In order to treat the missing values, we apply

the Expectation-Maximization Algorithm [2] as the parameter estimation method

and the C4.5 machine learning algorithm [40] as the imputation method.

Note that our missing data comes from the construction, which can be seen as

a side-effect. However, by adding this structure, we greatly simplify the number of

parameters that need to be estimated. For example, the transition matrix in the

lamplighter group on Z4 will have 64 × 64 parameters, but on Z2 ⊗ Z2 this is only

4× 4. It is traditional in such research that by loosing certain features we can gain

new ones.

The approach of approximation/modelling data via the tensor product is new, as

far as we are aware. Because of this, the associated problems, such as the embedding

problem for the tensor product and the lamplighter group construction for the tensor

product, are also new.

Although the idea of exploiting the lamplighter group for such modelling was
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examined in [99], the tensor product in this research is entirely new.

Embedding problem.

We first analyse the problem via algebraic and perturbation approaches. For

the embedding the results for the case study were as follows (see Chapter 3 for the

relevant definitions and notations):

(i) Share prices, algebraic approach. According to the algebraic approach, the

exact generators do not exist for any constructed transition matrices or for any

transition matrices ((2×2), (3×3), (2×2)⊗(2×2)) in any financial year considered

(2009-2010, 2010-2011,2011-2012);

(ii) Volatility, algebraic approach. According to the algebraic approach, the exact

generator exists for several cases for volatility (2 × 2) transition matrices, and for

several cases for volatility (2× 2) ⊗ (2 × 2); however, the exact generator does not

exist for volatility (3× 3) transition matrices for the entire dataset.

(iii) Share prices, volatility, perturbation approach.

(2× 2) case. According to the perturbation approach, the exact generators exist

for the slightly perturbed (2 × 2) transition matrices for the entire financial data

and volatilities. The chosen parameter is δ = 0.1.

(3× 3) case. However, in this case of the perturbation parameter δ = 0.1, none

of the perturbed transition matrices have an exact generator. This suggests that

considering a larger number of states only makes things worse.

(2×2)⊗ (2×2) case. Surprisingly, for the small perturbation parameter δ = 0.1,

in roughly half of cases the perturbed transition matrices have an exact generator.

Overall, this study shows that using a continuous time model for volatility is

more stable than the original share prices. In addition, considering a small number

of carefully chosen states is more reliable.

Furthermore, the share prices of the twenty different companies for four different

financial years (2009-2010, 2010-2011, 2011-2012, 2012-2013) are considered in the

3-by-3 case of the embedding problem via an algebraic approach, indicating the

general conclusion that for most data, the Markov chains are not embeddable.

As a result, in general we could not embed the discrete time Markov chains in

the continuous time Markov chain. This means that the model we considered would
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be more appropriately treated as a discrete time model.

Modelling share prices via the random walk on the lamplighter group.

We consider a model as a Markov chain with a hidden random walk on a group.

The hidden random walk is constructed on the lamplighter group Z3 and on the

tensor product of groups Z2 ⊗ Z2. The lamplighter group has a specific structure

where the hidden information is actually explicit. We assume that the positions of

the lamplighters are known, but we do not know the status of the lamps. This is

referred to as a hidden random walk on the lamplighter group. Also, the biased

random walk is constructed to fit the data.

(i) For the randomly chosen datasets, the α-biased random walk on the lamp-

lighter group and α − λ- biased random walk, as defined in Section 4.1.2, provide

significantly better fits to the data. The smallest trace norm value is around 0.02.

(ii) The α-biased random walk on the tensor product of the lamplighter group

and α − λ- biased random walk, as defined in Section 4.1.3, provide a significantly

better fit to the data compared with other models. The smallest trace norm value

is around 0.01.

(iii) The random walk on the tensor product of the lamplighter group gives a

better approximation than the random walk on the lamplighter group.

(iv) Two different generators are chosen randomly for each case, and they produce

similar results (sensitivity).

(v) Two different methods (EM and machine learning) are used to deal with the

missing data, and they also yield close results (robustness).

(vi) Results are almost identical for share prices and their volatility.

Quantum Finance.

Although the quantum pricing model appears in [102], the analysis of the quantum-

type data and its application to option pricing is new.

We analyse the quantum data and compute the option price for a binomial model

via the quantum data (see Chapter 5 for the relevant definitions and notations):

(i) We need to work with eigenvalues of the Hermitian operator. More exactly,

we observe the eigenvalues of the operator H⊗n.

(ii) The original density matrix ρ is irrelevant to the computation of option price
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for the binomial model via quantum data; we only need the transformed density

matrix ρ̃ for computation. Thus, the main issue is to estimate high “u” and low “d”

jumps from H⊗n.

(ii) It appears that several famous statistics in statistical mechanics (Maxwell-

Boltzmann, Bose-Einstein and Fermi-Dirac) used in the machine learning-type al-

gorithm produce close results. These statistics do not greatly affect the estimation

of the parameters “u” and “d”.

Although the estimates of model parameters are not generally justified by the

traditional goodness of fit, we estimate trace norms to check which models better

fit the data.

1.4 Structure of the Thesis

This thesis is composed of six chapters and is organised as follows:

In Chapter 1, we introduce terminology related to the Markov chains and random

walks on graphs and groups. Also, we introduce our research and review the related

literature. Then overall thesis results are presented in Section 1.3.

In Chapter 2, we consider the stochastic modelling of share prices. At the be-

ginning of this chapter, we construct our first model - an additive functional of a

discrete time Markov chain perturbed by Gaussian noise. We then introduce details

of statistical methods used to derive the model. In Section 2.2 we discuss the tensor

product structure which arises from the splitting of the data into “no jump”, “small

jump” and “no big jump” groups and matching into the “no small jump-small jump”

and “no big jump-big jump” groups. This requires us to deal with missing data.

Therefore, we introduce and apply the Expectation-Maximization Algorithm and

C4.5 machine learning algorithm . Moreover, in the last section of this chapter, we

present a model to estimate the volatility of the share price data. This volatility

is analysed via the same procedure as for the share prices process in order to be

consistent.

In Chapter 3, we review the embedding problem. Then, “iff” and “necessary”

conditions of the embeddability are considered. In Section 3.3 we apply the embed-
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ding problem to real-world data to examine whether the transition matrices of the

share price and its volatility are embeddable into continuous time Markov chains.

First, the embedding problem is considered via an algebraic approach. Then, the

perturbation approach is used to consider the embedding problem if the algebraic

approach cannot solve the problem exactly. Also, random matrices are considered.

The results of these approaches are presented and compared.

In Chapter 4, the data are modelled as a Markov chain with a hidden random

walk on lamplighter group. The hidden random walk is constructed on the lamp-

lighter group on Z3 and biased random walks are considered in Section 4.1.2. Also,

in Section 4.1.3 we construct the random walk and biased random walks via the

tensor product of the lamplighter groups on Z2⊗Z2. At the end of this chapter, we

present all the simulated transition matrices by constructing the model as the simple

random walk and biased random walks on the lamplighter group to find the best fit

to the estimated transition matrices by maximum likelihood in order to compare we

calculate the trace error (norm) between the simulated matrices and the one based

on the data (share price and its volatility). The trace norm values are demonstrated

and compared for all cases in Section 4.2.

In Chapter 5, we compute option prices for the binomial model via quantum data.

First, we review the different statistics for both quantum and classical methods.

Also, we introduce classical and quantum binomial models. We consider the data

derived from the two-step binomial model. Then, we estimate the parameters of the

quantum model in order to analyse the quantum data. Finally, we compute option

price based on these parameters in a quantum multi-step binomial market.

In Chapter 6, our results are summarised to conclude this research. Finally, we

briefly discuss our future research and ideas.



Chapter 2

Stochastic Modelling and Fit to

Logged Data

This chapter is devoted to the stochastic modelling of share prices. In this chapter,

we have two main goals: the first is to construct our first model-additive functional of

a discrete time Markov chain perturbed by Gaussian noise; the second is to consider

details of the statistical methods used to derive the model.

We have reviewed several well-known models for share prices in order to choose

our model in Section 1.2.4. In this chapter, we introduce real-world data. The data

is first modelled by the log-linear regression method that is popular in the actuarial

literature [87]. After that, Markov chains are constructed for residuals. We define

the states of the Markov chains and estimate their transition probabilities.

First, the data is considered to be a 2×2-state Markov Chain (“stay” or ”jump”).

Second, a 3 × 3-state Markov chain (“stay”, “small jump” or “big jump”) is con-

sidered. Third, the data is split into two parts (no small jump or small jump and

no big jump or big jump) and a tensor product of a 2 × 2-state Markov Chain is

considered.

Moreover, the tensor product structure comes from the split of the data into

“no jump”, “small jump” and “no big jump” groups and matching into the “no

small jump-small jump” and “no big jump-big jump” groups. This then requires us

to deal with the missing data. The missing data is a significant issue in the third

case. In Section 2.2 we considered missing data. In the literature, the methods

32
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used in this regard are divided into the following three categories: (i) ignoring and

discarding data, (ii) parameter estimation, and (iii) imputation [67]. In order to

treat the missing values, we apply the Expectation-Maximization Algorithm [2] as

the parameter estimation method and the C4.5 machine learning algorithm [40] as

the imputation method.

Note that our missing data comes from the construction, which can be seen as

an associated side-effect. However, by adding this structure, we greatly simplify the

number of parameters that need to be estimated. For example, the transition matrix

in the lamplighter group on Z4 will have 64×64 parameters, whilst on Z2⊗Z2 this is

only 4×4. It is traditional in research that by loosing or neglecting certain features,

we can gain new ones.

Furthermore, in the last section of this chapter, we introduce a model to estimate

the volatility of share price data. This volatility is analysed using the same procedure

as for the share prices process.

2.1 Establishing Model on the Data

2.1.1 Data

The data used in this research consists of a share price dataset from ”British

Petroleum (London)”. British Petroleum, commonly known as BP is one of the

world’s largest energy corporations. The company is vertically integrated and op-

erates in the oil and gas industry, including exploration and production, refining,

distribution and marketing, petrochemicals, power generation and trading. It also

has renewable energy activities in bio-fuels and wind power [9].

The stock price data were chosen arbitrarily from the internet for BP’s day-

by-day closing share prices for four different financial years, 2009-2010, 2010-2011,

2011-2012, 2012-2013 (April to April). The datasets were obtained randomly from

the website http://uk.finance.yahoo.com. The datasets are adjusted daily for the

closing values (for cash dividends, the value of the dividend is deducted from the

last closing sale price of the share) of BP’s share prices for one financial year (from

April 2012 to March 2013) which is presented in Figure 2.1. (See Appendix for the
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other years.)

Figure 2.1: BP Share Prices Chart between April 2012 and April 2013: Showing the

daily change of BP share prices during the period from April 2012 to April 2013

2.1.2 Establishing the Model

Our first target model is

logSt = logS1 + bt+ Σt
i=1(Mi + σηi) (2.1.1)

where St is the daily share price process, S1 is the initial value of the share price, t

is the daily unit in a financial year, b is the slope of the share price, Mi is modelled

by the Markov chain, σ is the volatility of the residual, ηi are independent and

identically distributed Gaussian random variables, and i = {1, 2, · · · , t}.

This model is based on the idea of modelling the data as an additive functional

of a discrete time Markov chain perturbed by Gaussian noise. For option pricing, it

is much easier to work with a geometric random walk (i.e., Sn = S0e
Y1+···+Yn where

Yi are iid). However, the 3 × 3 transition matrices constructed for all the groups

within our data do not fit the geometric random walk model.

Let us consider the methods used to derive and analyse our first model:

In the literature, there are several econometric and actuarial transformations of

data such as the linear model, linear model with general intercept, log-linear model,

and the difference model.
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First we choose the log-linear model as an initial step to transform our data. This

is a popular choice for modelling data in the actuarial literature [87]. We denote a

constant from simple linear regression by a, and b is the slope of the share price.

Let us model the data (St) by our choice of log-linear regression:

logSt = a+ bt+ ε
′

t

where εt is the residual at time t. Also, ε
′

is the residual in the log-scale. Here,

a = logS1 and b is the slope of the share price, which is calculated by regression for

each data.

We assume that

Zt = ε
′

t − ε
′

t−1

are iid errors and N(0, 1)-Gaussian. Hence, by considering this we derive a simple

version of the model (2.1.1)

St = S0 exp (a+ bt+
t∑

k=1

Zk).

Now, our aims are to construct the Markov chains on the transformed data (Zt)

and to estimate the transition matrices of the Markov chains.

2.1.3 Estimating Transition Matrices

In this section, errors will not be iid. Two- and three-state Markov chains are

considered.We will later also consider the tensor product of two-state Markov chains.

We choose two states because we know the necessary conditions to solve the

embedding problem for two states. There are not any known necessary conditions

to find the exact solution for the embedding problem of three states. We choose

three states to avoid overcomplicated calculations and to capture the behaviour of

the data. Moreover, we use the tensor product of the Markov chains because tensor

products maintain the independence of each such tensor. We discuss the tensor

product and its properties in the Section 1.1.2.

We model Zi by Zi = Mi+σηi where ηi is iid, N(0, 1) and Mi are Markov chains.

We discretise the error Zt for all the data and then estimate the transition matrices
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by maximum-likelihood estimation (MLE).

Let us construct the Markov chain on the transformed data Zt.

Then, θj is defined such that:

θ1 =
a ∗ (Ma−Mi)

n

θ2 =
(Ma−Mi)

1 + a

where a is a fixed parameter, Ma (maximum jump) is the largest value of the

transformed data and Mi (minimum jump) is the minimum value of the transformed

data. We undertook some preliminary research as to the choice of a. Eventually, we

decided to choose the same a for all models for the comparison reasons. We aim to

find a with the largest embeddable proportion.

Specifically, a three-state Markov Chain is chosen in this research to avoid over-

complicated calculations whilst still being representative of the data’s behaviour.

Zt < θ1 (“no jump”, 0,Mi = 0)

θ1 ≤ Zt < θ2 (“small jump”, s,Mi = 1)

Zt > θ2 (“big jump”, b,Mi = 2)

Hence the value of the Markov chain is defined on the transformed data for each

data Zt, t = {1, . . . , n} as Mj = Zt, j = {1, 2, 3}.

By abuse of notation, the Markov chain Mi will have states: “no jumps”, “small

jump” and “big jump”.

Notice that Mi does not represent the approximate changes in Zi. This simplified

labelling is convenient and sufficient in our research.

Also, a two-state Markov Chain is chosen:

Zt < θ2 (“stay”, 0,Mi = 0)

Zt > θ2 (“ jump”, s,Mi = 1)

Then, the value of the Markov chain is defined on the transformed data for each

data Zt, t = {1, . . . , n} as Mj = Zt, j = {1, 2}.
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Then, we estimate the transition matrices on the state space S via a well-known

MLE method.

To estimate the transition probabilities pij,

pij = P{Xn=1 = j|X0 = i}, i, j ∈ S

We use MLE estimators and write the log likelihood function:

log p =
∑
i,j

nij log pij and
∑
j

pij = 1

p̂ij =
nij∑m
j=1 nij

where nij is the number of times that the process has been observed to go from

state i directly to state j and p̂ij is the MLE estimate of pij.

Notice that pij does not have a specific distribution. The joint likelihood is

defined by

L = L(x1 . . . , xn) =
n−1∏
t=1

pxt,xt+1

=
∏
i,j∈S

p
νi,j
i,j

where S is the state space and νi,j is the number of observed links i → j in the

sample x1, . . . , xn.

To derive p̂i,j we notice that the log likelihood is

logL =
∑
i,j

νi,j log pi,j

In addition we need to incorporate the constrains

Σjpi,j = 1 , j ∈ S

Consider the Lagrangian that incorporates the constrains

S = logL−
∑
i

λi

(∑
j

pi,j − 1
)

=
∑
i,j

νi,j log pi,j −
∑
i

λi

(∑
j

pi,j − 1
)
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Then,

0 =
∂S

∂pij
=
νi,j
pi,j
− λi

Together with the constrains

νi,j = λipi,j,
∑
j

pi,j = 1,

=⇒ νi,j = λipi,j,
∑
j

νi,j = λi,

=⇒ p̂i,j =
νi,j∑
j νi,j

.

that is, the MLE estimate of pi,j is the proportion of the number of links i→ j over

the number of all links from i.

In Table 2.1, estimated two-state and three-state transition matrices are illus-

trated in the second and third columns, respectively. The rows of the two-state

transition matrices are close, and the case looks to be independent. However, unlike

the previous case, in the 3× 3 case the rows are very different. This shows that the

original process is not a homogeneous random walk with independent increments (a

similar result was obtained in [98] for the 5x5 case).

2.2 Splitting the Data

The tensor product structure arises from splitting the data into “no jump”, “small

jump” and “big jump” groups and matching into the “no small jump-small jump”

and “no big jump-big jump” groups. This then requires us to deal with the missing

data. Splitting data as (2 × 2)(2 × 2) helps us to find the hedging to compute the

option price.

In particular, the transformed data Z is observable data which is considered a

hidden pair (X, Y ) needed to construct the tensor product structure. The key point

of this structure is Z, which is the maximum of the pair.

Z = max (X, Y )

Z represents the “no jump”, “small jump” and “big jump” group which is split

into two groups. Therefore, X represents the “no small jump-small jump” group

and Y represents the “no big jump-big jump” group.
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Cases 2× 2 transition matrices 3× 3 transition matrices

BP(2009-2010)

 0.8918 0.1082

0.8929 0.1071




0.2051 0.7436 0.0513

0.1429 0.7551 0.1020

0.1667 0.7500 0.0833



BP(2010-2011)

 0.8597 0.1403

0.8611 0.1389




0.4381 0.4762 0.0857

0.4310 0.4310 0.1379

0.2500 0.4444 0.3056



BP(2011-2012)

 0.8098 0.1902

0.8125 0.1875




0.0667 0.8667 0.0667

0.1140 0.7668 0.1192

0.1667 0.6667 0.1667



BP(2012-2013)

 0.9103 0.0897

0.9167 0.0833




0.2162 0.6757 0.1081

0.1327 0.7704 0.0969

0.1200 0.8000 0.0800


Table 2.1: Estimated transition matrices by MLE

Let us consider a basic example to clarify the tensor product structure:

Let Z = {s, s, s, 0, b, s, 0, 0, b, s, b, 0, s, 0} be transformed data where 0 is “no

jump”, s is “small jump” and b is “big jump” and, the data is split as follows:

X = {s, s, s, 0, ?, s, 0, 0, ?, s, ?, 0, s, 0}

Y = {0̂, 0̂, 0̂, 0̂, b, 0̂, 0̂, 0̂, b, 0̂, b, 0̂, 0̂, 0̂}

where 0 is “no small jump”, s is “small jump” and 0̂ is “no big jump”, b is “big

jump”. Also “?” represents the missing values.

Briefly, Y (“no big jump-big jump” group) is a complete dataset and X (“no

small jump-small jump” group) has missing values. Therefore, this requires us to

deal with the missing data.

The type of missing data and treatment methods used to deal with the missing

data are reviewed in the following section. Then, details of our selected methods,

the C4.5 and EM algorithms, are presented. Also, the results (estimating transition

matrices after dealing with the missing values) are illustrated at the end of this

section.
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2.2.1 Missing Data

Little and Rubin consider the missing data randomness to be one of three main

types as follows [46]:

• Missing completely at random (MCAR): This is the highest level of random-

ness. It occurs when the probability of an instance (case) having a missing

value for an attribute does not depend on either the known values or the miss-

ing data. In this level of randomness, any missing data treatment method can

be applied without risk of introducing bias to the data.

• Missing at random (MAR): When the probability of an instance having a

missing value for an attribute may depend on the known values, but not on

the value of the missing data itself;

• Not missing at random (NMAR): When the probability of an instance of hav-

ing a missing value for an attribute could depend on the value of that attribute.

Several techniques are considered to treat the missing data. Many of them, such

as case substitution, were developed for dealing with missing data in sample surveys,

and have some drawbacks when applied to the data mining context. The others,

such as replacement of missing values by the attribute mean or mode, are very naive

and should be used with due caution to avoid insertion of bias [46].

Specifically, these techniques to handle the missing data treatment can be divided

into three categories [46]:

• Ignoring and discarding data: There are two main ways to discard data with

missing values. The first is known as complete case analysis. It is available

in all statistical packages and is the default method in many programs. This

method consists of discarding all instances (cases) with missing data. The sec-

ond method is known as discarding instances and/or attributes. This method

consists of determining the extent of the missing data in each instance and at-

tribute, and deleting the instances and/or attributes with high levels of missing

data. Before deleting any attribute, it is necessary to evaluate its relevance to

the analysis. Unfortunately, relevant attributes should be kept even when they
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have a high number of missing values. Both methods, complete case analysis

and discarding instances and/or attributes, should be applied only if missing

data are MCAR, because missing data that are not MCAR have non-random

elements that can bias the results.

• Parameter estimation: Maximum likelihood procedures are used to estimate

the parameters of a model defined for the complete data. Maximum likelihood

procedures that use variants of the Expectation-Maximization algorithm [2]

can handle parameter estimation in the presence of missing data.

• Imputation: Imputation is a class of procedures that are intended to fill in

missing values with estimated ones. The objective is to employ known rela-

tionships that can be identified in the valid values of the dataset to assist to

estimate the missing values.

Specifically in this research, we apply the Expectation-Maximization Algorithm

[2] as the parameter estimation method and C4.5 machine learning algorithm [40] as

the imputation method in order to handle the missing data. C4.5 and EM are two

of the 10 data mining algorithms discussed in the IEEE International Conference

on Data Mining (ICDM) in December 2006 [100]. These algorithms are the most

significant data mining algorithms used within the research community. We start

with descriptions of these algorithms and apply them to treat our missing data.

C4.5 Algorithm

The C4.5 algorithm was developed by Quinlan and includes modelling missing vari-

ables with the supervised induction of a decision tree-based classifier [40], [44]. This

method estimates the possible value for the attribute of interest.

The classifier used by C4.5 is a decision tree which is built from root to leaves

by respecting Occams Razor, which state that given two equally likely solutions to

a given problem, the simpler is more likely to be correct (i.e., we should choose the

simpler solution).

In order to handle the missing data with machine learning, there are three main

points that need to be addressed:
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• Selecting the best candidate test.

• Dealing with instances that have missing values on the test variable.

• Proceeding with an instance that has to be tested against a variable which has

a missing value for the given instance.

Entropy is a common means of measuring impurity:

Entropy =
∑
i

−pi log2 pi

where pi is the probability of class i. It is computed as the proportion of class i

in the set. Entropy comes from information theory. The higher the entropy, the

greater the information content. We want to determine which attribute in a given

set of training feature vectors is most useful for discriminating between the classes to

be learned. Information gain tells us how important a given attribute of the feature

vectors is. We will use this to decide the ordering of attributes in the nodes of a

decision tree.

The C4.5 algorithm [40] uses the InfoGain or GainRatio tests. InfoGain is the

gain in entropy after a test splits data. It may be noted that for missing labels on

test columns, such instances will not produce any gain in information. Therefore, if

there are missing data and p is the fraction of instances with complete non-missing

values, the InfoGain can be computed as:

InfoGain = p ∗ (OldEntropy −NewEntropy) + (1− p) ∗ 0

= p ∗ (OldEntropy −NewEntropy).

After a test is selected, the instances are split into two or multiple groups (one

group for each node). To choose the node for the instance with the missing data

on the test variable, C4.5 proposes to send all instances with missing values to all

child nodes, but with their weight being equal to the proportion of instances from

that child node to the total non-missing instances. For example, consider a test

column ”Movement” with 15 instances having up, 35 instances having down and

three instances having missing value. Then, the three missing instances will be sent

to both ”up” and ”down” child nodes, with weights 15/50 for up and 35/50 for down
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nodes. At the prediction step, to deal with the instance of missing values on the

test variable, all the possibilities are searched but with the weights. A prediction is

made for each possible subnode. Finally, the class with the largest density value is

chosen for the prediction. Let us now consider the details of the C4.5 algorithm.

Briefly, the C4.5 algorithm follows these steps:

Step 1: Check if algorithm satisfies termination criteria

Step 2: Computer information-theoretic criteria for all attributes

Step 3: Choose best attribute according to the information-theoretic criteria

Step 4: Create a decision node based on the best attribute in step 3

Step 5: Induce (i.e., split) the dataset based on the newly created decision node in

step 4

Step 6: For all sub-datasets in step 5, call the C4.5 algorithm to get a sub-tree (recur-

sive call)

Step 7: Attach the tree obtained in step 6 to the decision node in step 4

Step 8: Return tree

In this research, the information-theoretic criteria is chosen as the InfoGain test.

Tree growing is terminated when all the instances covered by a specific branch are

pure.

In other words, C4.5 follows a probabilistic procedure to deal missing values in

the training data and test data. Each case of the training data is denoted by a

weight wi having output Oi for the value of an attribute. If the output is known and

has a value Oi, then wi = 1. Otherwise, other outcomes are denoted by a weight is

equal to 0. If the output is missing, the weight of any output Oj for that attribute

is the relative frequency of that output among all training cases whose outputs for

this attribute are known. The same procedure is used for the test data. In the case

of the training data, the target attribute cannot be a missing variable.

C4.5 directly exploits the predicted missing attribute values by using the values

of the target attribute (for discrete value attributes) to predict for test data. For
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this reason, the training data should have a specified value for the target attribute.

C4.5 does not deal with continuous variables as target classes. To handle this, for

continuous variables intervals would be used on the real line as classes. C4.5 needs

disconnected training data for all the candidate attributes in order to make any

predictions.

EM Algorithm

The Expectation Maximization (EM) algorithm is a well-known iterative algorithm

used for parameter estimation by maximum likelihood to deal with datasets with

missing or incomplete random variables [2], [91].

Let us summarize the idea of the EM algorithm with a simple example which

is about the outside temperature from your window for each of the 24 hours of

the day. This temperature is represented by x ∈ R24 and is dependent on season

θ ∈ {summer, fall, winter, spring}, where the seasonal temperature distribution

p(x|θ) is known. But what if we could only measure the average temperature y = x̄

for some day and we would like to estimate what the season θ is? Specifically, the

maximum likelihood estimate of θ is considered; that is, the value θ̂ that maximizes

p(y|θ). The EM algorithm iteratively alternates between making guesses about the

complete data x, and finding the θ that maximizes p(x|θ) over θ. Hence, the EM

algorithm attempts to find the maximum likelihood estimate of θ given [the data,

measurement or observation] y.

Each iteration of the algorithm usually includes two steps:

• The expectation step (E-step): The missing data are estimated given the

observed data and current estimate of the model parameters

• The maximization step (M-step): The likelihood function is maximized under

the assumption that the missing data are known.

The algorithm is run until the change of the estimated parameter reaches the chosen

threshold.

Let us analyse the steps to EM, breaking down the usual two-step description

into a five-step description [55]:
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Step 1: Let be m = 0 and make an initial estimate θ(m) for θ.

Step 2: Given the observed data y and pretending for the moment that your cur-

rent guess θ(m) is correct, formulate the conditional probability distribution

p(x|y, θ(m)) for the complete data x.

Step 3: Using the conditional probability distribution p(x|y, θ(m)) calculated in Step

2, form the conditional expected log-likelihood, which is called the Q function:

Q = (θ|θ(m)) =

∫
χ(y)

log p(x|θ)p(x|y, θ(m))dx

= EX|y,θ(m) [log p(X|θ)],

Step 4: Find the θ that maximizes the Q function; the result is our new estimate

θ(m+1).

Step 5: Let bem := m+1 and go back to Step 2. (The EM algorithm does not specify a

termination criterion; standard criteria are to iterate until the estimate stops

changing: ||θ(m+1) − θ(m)|| < ε for some ε > 0, or to iterate until the log-

likelihood l(θ) = log p(y|θ) stops changing: |l(θ(m+1) − l(θ(m))| < ε for some

ε > 0.)

The classical description of the EM algorithm has only two steps. The above

Steps 2 and 3 combined are referred to as the E-step for expectation, and Step 4 is

called the M-step for maximization.

2.2.2 Results

In this section, the tensor product structure is considered, which arises from the

splitting of the data into ‘the ‘no jump”, “small jump” and “no big jump” groups

and matching into the “no small jump- small jump” and “no big jump-big jump”

groups. Then, this requires us to deal with the missing data. After splitting, we

treat the missing data via the C4.5 and EM algorithms. Therefore, we have two

independent datasets, namely the “no small jump- small jump” and “no big jump-

big jump”. We assume that the transformed data are as Z = (X, Y ). X is for “no

small jump- small jump” and Y is for “no big jump- big jump” groups. Also, the Y
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Cases PX PY

BP(2009-2010)

 0.2419 0.7581

0.2449 0.7551

  0.9060 0.0940

0.9167 0.0833


BP(2010-2011)

 0.5319 0.4681

0.5652 0.4348

  0.8864 0.1136

0.6944 0.3056


BP(2011-2012)

 0.2333 0.7667

0.2344 0.7656

  0.7293 0.2707

0.6761 0.3239


BP(2012-2013)

 0.2787 0.7213

0.2296 0.7704

  0.9009 0.0991

0.9200 0.0800


Table 2.2: Transition matrices via EM Algorithm.

Cases PX PY

BP(2009-2010)

 0.2072 0.7928

0.3729 0.6271

  0.9060 0.0940

0.9167 0.0833


BP(2010-2011)

 0.3489 0.6511

0.6504 0.3496

  0.8864 0.1136

0.6944 0.3056


BP(2011-2012)

 0.0463 0.9537

0.3221 0.6779

  0.7293 0.2707

0.6761 0.3239


BP(2012-2013)

 0.1332 0.8668

0.3146 0.6854

  0.9009 0.0991

0.9200 0.0800


Table 2.3: Transition matrices via Machine Learning.
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Cases 2× 2 transition matrices 3× 3 transition matrices

BP(2009-2010)

 0.8190 0.1810

0.7755 0.2245




0.1176 0.8529 0.0294

0.1295 0.8705 0

0 1.0000 0



BP(2010-2011)

 0.9593 0.0407

0.9091 0.0909




0.2807 0.7018 0.0175

0.1960 0.8040 0

1.0000 0 0



BP(2011-2012)

 0.8159 0.1841

0.7115 0.2885




0.0357 0.9643 0

0.1161 0.8795 0.0045

0 1.0000 0



BP(2012-2013)

 0.8186 0.1814

0.8837 0.1163




0.0968 0.8387 0.0645

0.1200 0.8800 0

0 1.0000 0


Table 2.4: Estimated transition matrices for volatilities

(“no big jump-big jump group) is a complete dataset and the X (“no small jump-

small jump group) has missing values. Therefore, only this requires us to deal with

the missing data. After dealing with these missing values via the selected algorithms,

the appropriate transition matrices can be estimated. PX is the estimated transition

matrix of X and PY is the estimated transition matrix of Y . Table 2.2 and Table 2.3

illustrate the estimated transition matrices for the Markov chains.

2.3 Volatility

There are many methods that can be used to estimate volatility, and we apply the

simplified maximum likelihood estimator.

The suggested model is:

dSt = µSt dt+ σSt dBt (2.3.2)

where St is the daily share price, t is the daily unit in a financial year, µ is the mean,

σ is the volatility and {Bt, t ≥ 0} is standard Brownian motion [71].
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Cases PX PY

BP(2009-2010)

 0.1471 0.8529

0.1434 0.8566

  0.9680 0.0320

1.0000 0


BP(2010-2011)

 0.2954 0.7046

0.2054 0.7946

  0.9841 0.0159

1.0000 0


BP(2011-2012)

 0.0596 0.9404

0.1289 0.8711

  0.9755 0.0245

0.8571 0.1429


BP(2012-2013)

 0.1094 0.8906

0.1408 0.8592

  0.9595 0.0405

1.0000 0


Table 2.5: Transition matrices via EM Algorithm for volatilities.

The solution to the Black-Scholes equation ( 2.3.2) is a geometric Brownian

motion St = S0e
at+σBt , where a = µ − σ2/2. The solution is found from the Ito

formula

df(t, St) = f ′s dSt + f ′t dt+
1

2
f ′′ss( dSt)

2 (2.3.3)

which is applied to f(t, St) = lnSt. More exactly,

dlnSt =
1

St
dSt −

1

S2
t

( dSt)
2, (2.3.4)

where ( dSt)
2 = S2

t σ
2( dBt)

2 = S2
t σ

2 dt and by integration gives the solution.

OP (f(ST )|t, x) = e−ρ(T−t) − E[f(x)eN(a(T−t),σ2(T−t))] (2.3.5)

is at time t the option price of the option claim where N(.) is a standard normal

cumulative distribution function, a = ρ − σ2/2, ρ is the interest rate and σ the

volatility. It is well known that in the classical Black-Scholes model, the no arbitrage

option price depends on the interest rate ρ and volatility σ but not on drift µ.

However, several studies on empirical estimation of volatility show that the Black-

Scholes model does not provide a sufficiently good fit to data. However, many

models have been constructed to incorporate the volatility variability [89].

In this research, the volatility of the share price data is estimated and analysed

by the same procedure as for the share prices process. In order to estimate the

volatility, we set:
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σ̂∗t =

√√√√ 1

d− 1

t∑
j=t−d+1

(Sj − S̄t)2

where σ̂∗t is the estimated volatility and

S̄t =
1

d

t∑
j=t−d+1

Sj

σ̂∗t estimates the random volatility σSt in the Black-Scholes model. So,

σ̂ =
1

St
σ̂∗t =

1

St

√√√√ 1

d− 1

t∑
j=t−d+1

(Sj − S̄t)2.

After the estimation of the volatility we follow the same procedure (i.e., Markov

chains are constructed and the transition matrices are estimated.) for the estimated

volatility, such as share prices. (For details see Section 2.1.3.) We model σ̂∗t by

σ̂∗t = Mi+ iηi where ηi is iid, N(0, 1) and Mi are Markov chains. Then, we discretise

the error for all the data and then we estimate the transition matrices by maximum-

likelihood estimation (MLE). The Markov chain is constructed on the estimated

volatility σ̂∗t as the transformed share price data Zt in Section 2.1.3. Specifically,

two- and three-state Markov Chains are chosen for the volatility process, the same

as for the share price process.

The estimated transition matrices for two and three states are illustrated for

volatilities, respectively, in second and third columns in Table 2.4.

The tensor product structure is also considered regarding the volatility process.

Therefore, we need to follow the same splitting procedure (see Section 2.2) for the

volatility process. Then, we need to deal with the missing data after splitting the

data. After that, the transition matrices and their tensor products are estimated via

the C4.5 and EM algorithms. PX is the estimated transition matrix of X and PY is

the estimated transition matrix of Y via these algorithms. Table 2.5 and Table 2.6

illustrate the estimated transition matrices for the Markov chains. Note that as in

Table 2.4, Y is a complete dataset and so there is no error, i.e., PY are identical.

By contrast, PX has missing data and estimates of PX are different for different

methods.
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Cases PX PY

BP(2009-2010)

 0.0932 0.9068

0.1378 0.8622

  0.9680 0.0320

1.0000 0


BP(2010-2011)

 0.2285 0.7715

0.1793 0.8207

  0.9841 0.0159

1.0000 0


BP(2011-2012)

 0.1280 0.8720

0.1257 0.8743

  0.9755 0.0245

0.8571 0.1429


BP(2012-2013)

 0.1155 0.8845

0.0494 0.9506

  0.9595 0.0405

1.0000 0


Table 2.6: Transition matrices via Machine Learning for volatilities.

2.4 Conclusion

In this chapter, our first model was developed for our share price data namely that

of an additive functional of a Markov chain perturbed by Gaussian noise. Also,

several statistical techniques are considered, which were subsequently used to build

the model. In particular, missing data was incurred when we split the data into

two groups (the “no small jump-small jump” and “no big jump-big jump” groups).

Therefore, missing data treatment methods were considered. In particular, the C4.5

algorithm and EM algorithm were applied to handle our missing data. Transition

matrices for the Markov chains are estimated for these two groups of data after deal-

ing with the missing data, the results of which were then presented. In addition, the

volatility of the share price data was estimated and analysed by the same procedure

as for the share prices process.
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Embedding Problem

In this chapter we present the embedding problem and check the embeddability of

the estimated transition matrices for our dataset. It appears from our research that

the embedding of the discrete time Markov chains into the continuous time Markov

chains seems to be an even a bigger problem than the independence assumption.

Most of the results presented in this chapter are submitted in [82].

3.1 The origin of the problem

The embedding problem raised in the pure mathematics area at the beginning. Since

continuous time Markov chains are easier to handle in option pricing, it is desirable

to treat discrete time Markov chains as continuous time Markov chains as observed

at discrete times. Let P be an n×n real matrix with non-negative entries and with

row-sums 1, which is a time-homogeneous Markov transition matrix. The question

is how to find generator Q, an n × n real matrix with non-negative off-diagonal

entries and with row sums of 0, such that eQ = P .

Every discrete time Markov chain does not have an underlying continuous time

chain, and the necessary and sufficient conditions for this to be the case are unknown.

The conditions (real, non negative off-diagonal elements; zero row sums) must be

satisfied by a matrix to be a generator, which are known. Also, if Q is a generator

then all matrices P = eQ are stochastic matrices. However, the exact conditions

a stochastic matrix P must satisfy so that it can be written as P = eQ with Q a

51
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generator are not known. The subset of n × n embeddable matrices within the set

of all n×n stochastic matrices has a very complicated geometrical structure (except

if n = 2).

We give a real-world application of the importance of the embedding problem in

this part of the research.

In finance, one of the main research problems has became credit risk modelling

and credit derivatives pricing. The transition matrix is a milestone for this problem.

Given that empirically estimated matrices are mostly for a one-year period, there is a

need to recover a matrix generator so that one can obtain a transition matrix for any

arbitrary period of time, as often dictated by a valuation problem such as pricing a

default swap [75]. In this research, we are interested in identifying conditions under

which a true generator does or does not exist with real datasets.

We summarize how to estimate the transition rates for Markov chains: Suppose

that {Ct} , t ∈ R+, is a time homogeneous, continuous time Markov chain with a

finite state space κ = {1, . . . , K} under the same probability measure Q. Also, there

is a given transition matrix for C corresponding to time t = 1, which is denoted by

P = [pij(1)]1≤i,j≤K for every i, j = 1, . . . , K and every t ∈ R+ we have

pij(1) = Q{C1 = j|C0 = i} = Q{Ct+1 = j|Ct = i}

The embedding problem for C relative to Q can be stated as follows:

Find K ×K matrix ∧̂ with non-negative off-diagonal entries and with all rows

summing to 0, such that e∧̂ = P [90]. More clearly, ∧̂ = [λ̂ij]1≤i,j≤K , where λ̂ij ≥ 0

for every i, j = 1, . . . , K with i 6= j and

∧̂ij = −
∑
j 6=i

λ̂ij

where λ̂ij is the estimated transition matrix.

The embedding problem is an NP-hard [90] which is finding a K ×K matrix Λ̂

with non-negative off-diagonal entries and with all rows summing to 0, such that

eΛ̂ = P .

An NP-hard problem is a problem that is related to an NP-hard (non-deterministic
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polynomial-time hard) in computational complexity theory. This a class of prob-

lems that, informally, are “at least as hard as the hardest problems in NP” [90].

Cubitt et al. prove that any computationally efficient method of determining which

dynamical equations are consistent with a set of measurement data would solve the

P vs. NP problem.

3.2 An overview of known facts

In order to analyse the embedding problem, first the matrix logarithm is introduced,

and then the “iff” and “necessary” conditions of the embeddability are considered

in this part.

Matrix Logarithm:

Let us begin with the complex logarithm:

For z ∈ C \ {0} a logarithm of z is any w ∈ C such that ew = z.

z = |z|eiφ ⇒ w = logk z = log |z|+ i(φ+ 2kπ), k ∈ Z.

And the principal value (branch) of the logarithm:

z = |z|eiφ, |z| > 0,−π < φ < π ⇒ log z = log |z|+ iφ.

After that, we review the primary and non-primary matrix functions. Non-

primary matrix functions play a key role in the embedding problem. Let A ∈ Mn

where Mn is a class of n× n matrix. A has the Jordan canonical form A = SJS−1.

If f(t) is a scalar-valued function of a complex variable t such that f(λ) is defined

for each eigenvalue λ of A. f(t) is (k − 1)-times differentiable at each λ, where k is

the algebraic multiplicity of λ. Then

f(A) = Sf(J)S−1

f(J) is the direct sum of f(Jλ), and f(Jλ) has entries defined in terms of deriva-

tives of f(t) and is evaluated at λ for each Jordan block (Jordan block over a ring,

whose identities are zero and one) is a matrix composed of 0 elements everywhere ex-

cept for the diagonal, which is filled with a fixed element, and for the superdiagonal,

which is composed of ones [86]). Let us consider an example:
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J =

 λ 0

0 λ

 =⇒ f(J) =

 f(λ) f ′(λ)

0 f(λ)


f(A) is the primary matrix function associated with the stem function f(t).

Also, an arbitrary matrix function is not a primary matrix function if it cannot

be defined by way of a stem function.

In addition we need the power series:

log I + A = A− A2

2
+
A3

3
− A4

4
+ . . . , ρ(A) < 1

logA = (A− I)− (A− I)2

2
+

(A− I)3

3
− (A− I)4

4
+ . . . , ρ(A− I) < 1

Theorem 3.2.1. Let A ∈ Rn×n.

• A has a real logarithm if, and only if, A has an even number of Jordan blocks

of each size for every negative eigenvalue.

• If A has any negative eigenvalues then no primary logarithm is real [59].

Therefore, if P has a negative eigenvalue of odd algebraic multiplicity, P is not

embeddable.

Let us check the Theorem 3.2.1 on our dataset (see Table 2.1 for the estimated

transition matrices in Section 2.1.3):

For the 2009-2010 financial year, (1, 0.0425, 0.0010) are the eigenvalues of the

estimated transition matrix P . This has a real logarithm such that:

Q =


−1.3696 4.4204 −3.0508

0.0169 −1.5218 1.5049

2.1554 4.9955 −7.1509


For 2010-2011, (1,−0.0387, 0.2135) are the eigenvalues of the estimated transi-

tion matrix P . Then, no primary logarithm is real.

For 2011-2012, (1, 0.0001 + 0.0228i, 0.0001 − 0.0228i) are the eigenvalues of the

estimated transition matrix P . Then, no primary logarithm is real.

For 2012-2013, (1, 0.0821,−0.0155) are the eigenvalues of the estimated transi-

tion matrix P . Then, no primary logarithm is real.
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Theorem 3.2.2. For A ∈ Cn×n with no eigenvalues on R− = (−∞, 0] there is a

unique logarithm X of A (the principal logarithm, logA), all of whose eigenvalues

lie in the strip

{z : −π < Im(z) < π}.

If A is real then logA is real [59].

Proposition 3.2.1. If A has real distinct positive eigenvalues then logA is the only

real logarithm of A [5].

Iff conditions:

First, the iff conditions are a well-known practical condition for 2×2 matrices [33]:

Proposition 3.2.2. A stochastic 2× 2 matrix P is embeddable if, and only if,

det(P ) > 0,

or equivalently

tr(P ) > 1.

Here tr(.) is used to denote the sum of the diagonal elements. Traces and their

properties are considered in Section 1.1.1.

Proposition 3.2.3. A stochastic matrix P is embeddable if, and only if, P is in-

finitely divisible [33].

∀m ∈ N there exists a stochastic matrix Qm such that

P = Qm
m

which leads to the stochastic roots of stochastic matrices and links to discrete Markov

chains.

Let us continue with the criterion for embeddability for 3× 3 matrices.

Proposition 3.2.4. P is a 3 × 3 stochastic matrix and the eigenvalues of P are

1, λ1, λ2 such as |λ1|, |λ2| ≤ 1. Assume that one of the following conditions is satis-

fied:

• λ1 and λ2 are positive.
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• λ1 and λ2 are complex conjugate.

• λ ≡ λ1 = λ2 < 0 and P is diagonalizable. (There exists a real logarithm with

two 1× 1 Jordan blocks for λ.)

Then P is embeddable [33].

Let us check the Proposition 3.2.4 on our dataset (see Table 2.1 for the estimated

transition matrices in Section 2.1.3):

For the 2009-2010 financial year, (1, λ1 = 0.0425, λ2 = 0.0010) are the eigenvalues

of the estimated transition matrix P . This also satisfies the first condition of the

proposition.

However, for other financial years (2010-2011, 2011-2012, 2012-2013), none of

the conditions of the proposition are satisfied.

Proposition 3.2.5. P is a 3 × 3 stochastic matrix, det(P > 0), with eigenvalues

1, γeiδ, γe−iδ, where 0 < γ < 1, and 0 6 δ 6 π and P has a diagonal Jordan form.

Suppose that P has the spectral decomposition

P = Xdiag{1, γeiδ, γe−iδ}X−1.

Then,

• - if δ = 0, P is embeddable if, and only if,

Xdiag{0, log γ, log γ}X−1 is a Q- matrix;

• - if 0 < δ < π, P is embeddable if, and only if,

Xdiag{0, log γ + iδ, log γ − iδ}X−1 is a Q- matrix;

or

Xdiag{0, log γ + i(δ − 2π), log γ − i(δ − 2π)}X−1 is a Q- matrix;

• - if δ = π it is necessary for P to be embeddable that [38]

P = Xdiag{0, log γ, log γ}X−1 is a Q- matrix.
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Let us check the Proposition 3.2.5 on our dataset (see Table 2.1 for the estimated

transition matrices in Section 2.1.3):

For the 2009-2010 financial year, (1, 0.0010, 0.0425) are the eigenvalues of the

estimated transition matrix P , and det(P ) > 0. Let us compute γ:

(1, γeiδ, γe−iδ)⇒ γeiδ = 0.0010 and γe−iδ = 0.0425

So,

γ = 0.00652⇒ 0 < δ < π

The second condition of the proposition is satisfied. Then, we suppose that

P = Xdiag{1, γeiδ, γe−iδ}X−1, where

X =


1 0.7803 4.0800

1 −0.2831 −0.9613

1 1 1


Therefore, Q = Xdiag{0, log γ + iδ, log γ − iδ}X−1 and P is embeddable.

For all the other financial years (2010-2011, 2011-2012, 2012-2013) except 2009-

2010, the conditions of the proposition are not satisfied.

Proposition 3.2.6. Let P be a 3 × 3 stochastic matrix with distinct eigenvalues

(1, λ1, λ2).

• If λ1 and λ2 are positive then P can be embeddable if, and only if,

p
(2)
ij ≤ pij

(λ2
2 − 1) lnλ1 − (λ2

1 − 1) lnλ2

(λ2 − 1) lnλ1 − (λ1 − 1) lnλ2

, i 6= j.

• If eigenvalues are (1, λ, λ), 0 < λ < 1 then P can be embeddable if, and only

if, [85]

p
(2)
ij ≤ pij

λ2 lnλ2 − λ2 + 1

λ lnλ− λ+ 1
, i 6= j.

Here, p
(2)
ij denotes the (i, j)th element of P 2 [85].

Proposition 3.2.7. Let P be a 3× 3 stochastic matrix with eigenvalues (1, λ1, λ2).

If λ1 = e(α+iβ), λ2 = e(α−iβ), 0 < β < π, then P can be embeddable if, and only if,

p
(2)
ij (β(eα cos β − 1)− αeα sin β) ≥ pij(β(e2α cos 2β − 1)− αe2α sin 2β)

or

p
(2)
ij ((β − 2π)(eα cos β − 1)− αeα sin β) ≥ pij((β − 2π)(e2α cos 2β − 1)− αe2α sin 2β)
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where i 6= j [85].

Proposition 3.2.8. P is a 3 × 3 embeddable matrix with a negative eigenvalue λ,

then,

• P = Udiag(1, λ, λ)U−1

• P = P∞ + λ(I − P∞),

where

P∞ = lim
n
P n = Udiag(1, 0, 0)U−1,

P∞ is a stochastic matrix with identical rows and non-zero elements [64].

To understand this proposition, let us focus on the matrices:

P = P (λ, P∞) = P∞ + λ(I − P∞)

where

P∞ =


1

1

1

[ p1 p2 p3

]
,

p1 + p2 + p3 = 1, pi > 0, i = 1, 2, 3,

and

λ < 0, λ−min
i

pi
1− pi

.

Proposition 3.2.9. A stochastic matrix P (λ, P∞) is embeddable if, and only if,

there exists a stochastic Q matrix such as Q2 = P (λ, P∞) and one of the following

conditions holds [64]:

qij ≥ (1 +

√
|λ|
π

ln |λ|)pi,

qij ≤ (1−
√
|λ|

3π
ln |λ|)pi,

for all i 6= j.

Necessary conditions:

The embedding problem is introduced in [22], and the certain necessary condi-

tions are given by Elfving. Let us start the necessary conditions of the embeddability:
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Proposition 3.2.10. P is a stochastic matrix with distinct eigenvalues. If P is

embeddable, then

• P is non-singular

• P has no simple negative roots

• no eigenvalue λ of P is such that |λ| = 1 other than λ = 1.

Proposition 3.2.11. If a stochastic matrix P ∈ Rn×n is embeddable [33]

• if P k = (p
(k)
ij ), then pij = 0⇒ p

(k)
ij = 0, k = 2, 3, . . .

• det(P ) > 0.

The following proposition is needed to meet Runnenburg’s necessary condition

for embeddability.

Proposition 3.2.12. The eigenvalues µ1, . . . , µn of an intensity matrix Q, for n ≥

3, satisfy [41]

(
1

2
+

1

n
)π ≤ µj ≤ (

3

2
− 1

n
)π.

Only a finitely many admissible logarithms have to be investigated while search-

ing for a generator for P .

Proposition 3.2.13. λj(t) is eigenvalue of a stochastic matrix P . If P is embed-

dable (P (t) = eQt) at least one eigenvalue lies on the boundary curve of the region

Hn (λj(t) ∈ Hn). Hn is a heart-shaped region in the complex plane contained in the

circle, and is symmetric with respect to the real axis with a boundary for Imz ≥ 0

given by the curve [41]

x(t) + iy(t), 0 ≤ t ≤ π

sin 2π
n

x(t) = [exp(−t+ t cos
2π

n
)] cos (t sin

2π

n
)

y(t) = [exp(−t+ t cos
2π

n
)] sin (t sin

2π

n
)

The following proposition is proven in [14] from the general theory of Markov

chains.
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Proposition 3.2.14. If P is embeddable and pij > 0, pj,k > 0, then pik > 0 [14].

Proposition 3.2.15. If P is embeddable then
∏

i pii ≥ det(P ) [24].

Proposition 3.2.16. If P is embeddable and Q is the generator, then Λ(Q) ⊆ {z :

|z − log det(P )| ≤ − log det(P )} [39].

Proposition 3.2.17. If P 6= I is embeddable and

• there exist distinct indices i1, i2 such that for all k, pi1k = 0 then pi2k = 0,

• there exist distinct indices j1, j2 such that for all k, pkj1 = 0 then pkj2k = 0 [8].

3.2.1 Computing the candidate generator

Israel et al. suggested the use of the following representation

Q =
∞∑
n=1

(−1)n
(P − I)n

n

which is equal to Q = T−1(log J)T under the Jordan representation provided the

series exist. Motivated by the embedding problem, we assume that P ij = Pt is the

transition probability of the continuous time Markov chain [75].

They also stated the following:

Theorem 3.2.3. Let P be an n × n Markov transition matrix and suppose that

S < 1 (where S = ‖P − I‖ is the norm of the matrix P − I (e.g., the trace norm))

Then the series

Q = (P − I)− (P − I)2

2
+

(P − I)3

3
− (P − I)4

4
+ . . .

converges geometrically quickly and gives rise to an n×n matrix Q having row-sums

0, such that eQ = P exactly [75].

The problem has been extensively studied since the complete solution is known

only for a state space with two elements, or n = 2 [33]. The solution for a 2 × 2

stochastic matrix can be found via a so-called ergodic representation. Let

P =

 p11 p12

p21 p22


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so

P t = P∞ + λt(1− P∞) where

λ = det(P ) and P∞ =

 π1 π2

π1 π2


so

P t = etQ =

 π1 + π2λ
t π2 − π2λ

t

π2 − π1λ
t π1 + π1λ

t


=⇒ Q = lim

t→0
(P t − I)/t =

 π2 log(λ) −π2 log(λ)

−π1 log(λ) π1 log(λ)


So the necessary and sufficient condition for the existence of a continuous Markov

chain or generator Q such that P = eQ is det(P ) = λ > 0.

3.3 Results and Comparisons

In this section, we consider the dataset with our models. First the embedding

problem is considered via an algebraic approach. Then a perturbation approach

is used to consider the embedding problem if it cannot be solved exactly via the

algebraic approach. Also, random matrices are considered for comparison.

3.3.1 Embedding problem with our dataset

This section is devoted to an explanation of the algebraic and perturbation ap-

proaches and their applications to our estimated transition matrices. Let us start

with algebraic approach:

3.3.2 Algebraic Approach

Motivated by Israel et al.,

Q =
∞∑
n=1

(−1)n
(P − I)n

n

which is equal to Q = T−1(log J)/T under the Jordan representation, provided the

series exist. Motivated by the embedding problem, we assume that P ij = Pt is the

transition probability of the continuous time Markov chain.



Chapter 3. Embedding Problem 62

They also emphasise that, even if the series fail to converge or converge to a

matrix Q that is not a valid generator, this does not preclude the possibility that a

valid generator for P still exists [75]. Here we choose t = 1, then

eQ = P

from the definition

eQ =
∞∑
j=0

Qj

j
and P = TDT−1

so

eQ = P = TDT−1 and Q = T (logD)T−1

We analyse how this works with our dataset after an explanation of the perturbation

approach in Section 3.3.4.

3.3.3 Perturbation Approach

Perturbation theory is used to find an approximate solution to a problem which

can not be solved exactly by starting from the exact solution of a related problem

Q =
∑∞

n=1(−1)n (P−I)n
n

. This is exactly the case with our data. In our case, we

find that the algebraic approach does not give an exact solution to the transition

matrices.

Since our transition matrices are found up to the associated statistical error, it

is reasonable to introduce a perturbation to find the generators if the perturbed

transition matrices P̂ are embeddable:

P̂ −→ (1− δ)P + δB −→ Q

where B is embeddable.

P are the estimated transition probabilities of the Markov chains, and δ is a

parameter.

So, we are looking for suitable B matrices and a minimum value of the parameter

δ:

δ(B) = δ̂ = min {δ > 0 : (1− δ)P + δB is embeddable}

Example.
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B, δ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

B1 =

 1/2 1/2

1/2 1/2

 N N N N N N N N N

B2 =

 2/3 1/3

1/3 2/3

 Y Y Y Y Y Y Y Y Y

B3 =

 1 0

0 1

 Y Y Y Y Y Y Y Y Y

Table 3.1: Pertubated transition matrix might be embeddable.

In particular, for 2 × 2 transition matrices (we used 2 × 2 transition matrices

because we know the necessary and sufficient conditions to be embeddable), we

define

G2×2 = {B : B embeddable}

=

B =

 a ā

b̄ b

 : ab > āb̄, 0 6 a, ā 6 1, 0 6 b, b̄ 6 1


where ā = 1− a and b̄ = 1− b. Find with a given P transition matrix:

δP = min
B

min
δ
{δ > 0 : (I − δ)P + δB, embeddable}

Here, minB is the value of the embeddability not over matrices.

Let us show how this works with our data:

We do not consider the perturbation approach for all B matrices in G2×2. Rather,

we consider this just forG ⊆ G2×2

G =

B1 =
1

2

 1 1

1 1

 B2 =

 2/3 1/3

1/3 2/3

 B3 =

 1 0

0 1


and we get the table for δ ∈ (0, 1). To explain the choice of the set G we note

that B3 is theoretically the best, B1 is theoretically the worst and B2 is stable and

good in numerical implementations. In addition, we note that B1 is not exactly

embeddable.

In Table 3.1, Y shows that the pertubated transition matrix P̂ is embeddable

(det(P̂ ) > 0) with the B matrices and the parameter δ. Also, N shows that the
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pertubated transition matrices P̂ are not embeddable (det(P̂ ) < 0) with the B

matrices and the parameter δ. As a result, P̂ is embeddable with B2 and B3 for all

values of δ.

After that, we decided to check the perturbation with these two matrices with

0.01 grids instead of 0.1 in (0, 1) to find the value of the parameter δ. Then, we found

the transition matrix is embeddable when δ > 0.03, pertubated with B2. Also, it is

embeddable when δ > 0.01, pertubated with the B3 matrix. After that, we consider

0.001 grids to find the minimum value of the parameter δ more specifically. We

computed that the pertubated transition matrix P̂ is embeddable when δ > 0.010.

P̂ = (1−δ)P+δB3 is embeddable when δ > 0.010, which is the result of empirical

calculations.

Now, we will consider the situation theoretically:

P is not an embeddable transition matrix, such that

P =

 a ā

b̄ b


det(P ) < 0⇒ ā = 1− a and b̄ = 1− b⇒ a+ b < 1

Also, B =

 1 0

0 1

 is an embeddable matrix:

P̂ = (1− δ)P + δB

We want to compute δ when P̂ is embeddable. To find δ,

P̂ = (1− δ)P + δB = (1− δ)

 a ā

b̄ b

 + δ

 1 0

0 1


=

 (1− δ)a+ δ (1− δ)ā

(1− δ)b̄ (1− δ)b+ δ



det(P̂ ) = (1− δ)(a+ b− 2) + 1

If P̂ is embeddable, the determinant of the pertubated transition matrix should be

equal to or greater than zero. P is a transition matrix, so a+b cannot be greater than
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2 (0 6 a+ b 6 2). Also, a + b should be less than 1 because it is not embeddable.

Therefore, the parameter δ is found as follows:

δ > 1 +
1

a+ b− 2

Example. For matrix B2, a is equal to 0.6705 and b is equal to 0.2892 in our

estimated 2-by-2 transition matrix. The parameter computed as a result of the

theoretical approach is:

δ > 0.0387

Consequently, we can say that our previous empirical calculation supports theoret-

ical approaches.

Now, let us compute minimum value of the parameter δ with an arbitrary em-

beddable B matrix:

B =

 x x̄

ȳ y

 xy > x̄ȳ ⇒ x+ y > 1

Also, the transition matrix as above,

P =

 a ā

b̄ b


δ = δP = minB min {δ > 0 : (1− δ)P + δB is embeddable}

To find δ,

P̂ = (1− δ)P + δ = (1− δ)

 a ā

b̄ b

 + δ

 x x̄

ȳ y


=

 (1− δ)a+ δx (1− δ)ā+ δx̄

(1− δ)b̄+ δȳ (1− δ)b+ δy


det(P̂ ) = a+ b− 1 + δ(x+ y − a− b)

We know that if P̂ is embeddable, the determinant of the pertubated transition

matrix should be equal to or greater than zero.

det(P̂ ) > 0 ⇒ det(P̂ ) = a+ b− 1 + δ(x+ y − a− b) > 0

δ >
1− a− b

x+ y − a− b
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As a result, we compute δ such as the above where x+ y > 1 and x+ y− a− b > 0

for 2 × 2 matrices. If we consider with our dataset, a = 0.6705 and b = 0.2892.

Then, the parameters compute such that:

δ >
0.0403

x+ y − 0.9597

Furthermore, we take embeddable matrices B as empirical calculations and calculate

δ for each B matrix with Matlab. The perturbation of our transition matrix P is

embeddable if δ is greater than or equal to 1 with the B1 matrix. It is embeddable

if δ is greater than or equal to 0.0314 with matrix B2. Finally, the transition matrix

is pertubated by the B3 identity matrix which is embeddable when δ is greater than

or equal to 0.0107. As our aim is to compute minBδB when the transition matrix is

not embeddable (a+ b < 1), B3 is more suitable for this purpose than the others.

Lemma 3.3.1. If P1 and P2 are embeddable matrices, then P1+P2

2
is also an embed-

dable matrix.

Proof. We know the condition of embedding for 2× 2 matrices. Let,

P1 =

 a ā

b̄ b

 det(P1) > 0, a+ b > 1

P2 =

 x x̄

ȳ y

 det(P2) > 0, x+ y > 1

So,

P1 + P2

2
=

1

2

 a+ x ā+ x̄

b̄+ ȳ b+ y


det(

P1 + P2

2
) = a+ b+ x+ y − 2

Also, we know a+ b > 1, x+ y > 1

a+ b+ x+ y > 2

Then,
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det(
P1 + P2

2
) = a+ b+ x+ y − 2 > 0

This satisfies the condition for embedding 2× 2 matrices. Therefore, we can say

that if P1 and P2 are embeddable matrices, then P1+P2

2
is also an embeddable matrix

for 2× 2 matrices.

3.3.4 Applications of these approaches

In this section, the modelled share prices and volatility estimated from our real

dataset are considered in three cases in order to apply these approaches.

Case 1 : The data is considered to be a 2× 2-state Markov Chain (stay or jump)

because the existence condition of the generator is known.

Case 2 : A 3×3 Markov chain (“stay”, “small jump” or “big jump”) is considered.

Case 3 : The data is split into two parts (“no small jump” or “small jump” and

“no big jump” or “big jump”) and their tensor products are considered.

For the first and second cases, transition matrices for the Markov Chains are

estimated by MLE. However, in the last case, the transition matrices of the two

split Markov chains are estimated via the EM algorithm and C4.5 machine learning

algorithm in order to deal with missing values.

After estimating the transition matrices, their tensor product is computed. This

transition matrix is the transition matrix for Case 3.

Finally, Matlab is used to find the eigenvalues of the transition probability ma-

trices in order to obtain the generator Q matrices.

The estimated transition matrices for two and three states are illustrated in

Table 2.1 in Section 2.1.3. Also, the transition matrices and their tensor products

estimated via the EM algorithm and C4.5 are illustrated, respectively, in Table 2.2

and Table 2.3 in Section 2.2.2.

BP daily share prices for the 2009-2010 financial year are considered as an ex-

ample with all details. The results for other financial years are illustrated in tables

in each respective case.

Moreover, the share prices of the twenty different companies for four different

financial years (2009-2010, 2010-2011, 2011-2012, 2012-2013) are considered in the
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Cases Q matrices

BP(2009-2010)

 −0.7363 + 0.3395i 0.7363− 0.3395i

6.0761− 2.8020i −6.0761 + 2.8020i


BP(2010-2011)

 −0.9207 + 0.4401i 0.9207− 0.4401i

5.6506− 2.7014i −5.6506 + 2.7014i


BP(2011-2012)

 −1.1219 + 0.5959i 1.1219− 0.5959i

4.7926− 2.5457i −4.7926 + 2.5457i


BP(2012-2013)

 −0.4502 + 0.2800i 0.4502− 0.2800i

4.6012− 2.8616i 4.6012 + 2.8616i


Table 3.2: Q matrices of the 2-by-2 transition matrices for all financial years

3-by-3 case of the embedding problem via an algebraic approach in order to give a

general conclusion.

Case 1 (2× 2)

Algebraic Approach:

P is the transition matrix for the 2009-2010 financial year:

Pt =

 0.8918 0.1082

0.8929 0.1071


According to the existence condition for 2×2 stochastic transition matrices, det(P ) =

−0.0011 < 0, hence the exact generator does not exist. Applying the algebraic ap-

proach: According to the function eQ = P = TDT−1, the eigenvalue (D) and

eigenvector of P should be found

Q = T (logD)T−1 =

 −0.7363 + 0.3395i 0.7363− 0.3395i

6.0761− 2.8020i −6.0761 + 2.8020i


The matrix is even not the real matrix.

Table 3.2 shows that the exact generators do not exist for the other transition

matrices for all financial years for the share price process. Moreover, Table 3.3 shows

that the exact generators exist for the volatilities for all financial years except the

2012-2013 financial year. Therefore, we only consider the perturbation approach for

this financial year for volatilities in this case, and for all the estimated transition

matrices for the share price process.
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Cases Q matrices

BP(2009-2010)

 −0.5932 0.5932

2.5418 −2.5418


BP(2010-2011)

 −0.1282 0.1282

2.8635 −2.8635


BP(2011-2012)

 −0.4645 0.4645

1.7951 −1.7951


BP(2012-2013)

 −0.4653 + 0.5351i 0.4653− 0.5351i

2.2666− 2.6065i −2.2666 + 2.6065i


Table 3.3: Q matrices of the 2-by-2 transition matrices for volatilities

Perturbation Approach:

P is the same transition matrix for the 2009-2010 financial year with the algebraic

approach:

Pt =

 0.8918 0.1082

0.8929 0.1071


and

B =

 2/3 1/3

1/3 2/3


which is a fixed embeddable matrix. Also δ is a parameter; we choose a low level,

δ = 0.1, to say that if δ(P̂ ) < δ = 0.1, then P̂ is embeddable.

Let us compute the perturbed transition matrix by:

P̂ −→ (1− δ)P + δB −→ Q

P̂ =

 0.8693 0.1307

0.8369 0.1631


and det(P̂ ) = 0.0323. So, the exact generator exists:

Q = T (logD)T−1 =

 −0.4633 0.4633

2.9663 −2.9663


In addition, Table 3.4 shows the perturbed transition matrices (first column of

the table) and their Q matrices (second column of the table) for all other transition
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Cases P̂ perturbed matrices Q matrices

BP(2010-2011)

 0.8404 0.1596

0.8083 0.1917

  −0.5671 0.5671

2.8718 −2.8718


BP(2011-2012

 0.7955 0.2045

0.7646 0.2354

  −0.7337 0.7337

2.7433 −2.7433


BP(2012-2013

 0.8859 0.1141

0.8584 0.1416

  −0.4216 0.4216

3.1719 −3.1719


Table 3.4: 2-by-2 perturbed transition matrices and Q matrices for the 2010-2011,

2011-2012, and 2012-2013 financial years.

matrices for the three financial years (2010-2011, 2011-2012, 2012-2013). So, the

exact generators exist for all our perturbed transition matrices with the chosen

parameter δ = 0.1 and embeddable B (fixed) matrix (B =

 2/3 1/3

1/3 2/3

).

According to the algebraic approach, the exact generators exists for volatilities

for all the financial years except the 2012-2013 financial year. Therefore, we only

consider the perturbation approach for the volatilities for this financial year in this

case. So,

P̂v =

 0.7928 0.2072

0.7901 0.2099


where P̂v is the perturbed transition matrix and det(P̂v) = 0.0026 for the 2012-

2013 financial year volatilities. So, the exact generator exists:

Qv = T (logD)T−1 =

 −1.2341 1.2341

4.7053 −4.7053


with the chosen parameter δ = 0.17 (observe δ3 = 0.5 and we choose a low level

δ̃3 = 0.17) and embeddable B (fixed) matrix. However, the perturbed transition

matrix is not embeddable with the parameter δ = 0.1 and embeddable B (fixed)

matrix (B = B2 =

 2/3 1/3

1/3 2/3

).

Random Search:
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In this part, random matrices were used to find minimum value of the parameter

δ in the perturbation approach with the fixed matrix B = B2. First, we choose four

iid variables and the P matrix is constructed such that:

Pt =

 ξ
′
1

ξ
′
1+ξ

′
2

ξ
′
2

ξ
′
1+ξ

′
2

ξ
′′
1

ξ
′′
1 +ξ

′′
2

ξ
′′
2

ξ
′′
1 +ξ

′′
2


where ξ

′
i and ξ

′′
i are the iid for all i = 1, 2. Also, all the random variables are normally

distributed (ξi ∼ NE(1)). Then, perturbation is considered for this random matrix

with the same B matrix as the previous part to find δ.

All these steps are repeated 105 times in order to find the minimum value of the

parameter δ, which is 0.2. The aim is to find practical δ = δn (such as confidence

interval) such that for the observed error δ(P̂ ) >> δ we can say that the matrix P̂

is not embeddable (observe δ = 0.2).

Case 2 (3× 3)

Algebraic Approach:

P is the transition matrix for the 2009-2010 financial year:

Pt =


0.2051 0.7436 0.0513

0.1429 0.7551 0.1020

0.1667 0.7500 0.0833


We do not have any necessary and sufficient conditions for 3×3 stochastic transition

matrices, det(P ) > 0. Using the algebraic approach: According to the function

eQ = P = TDT−1, we wish to find the eigenvalue (D) and eigenvector (T) of P

Q = T (logD)T−1 =
−1.7094 3.7052 −2.0156

0.1432 −1.2451 1.1117

1.6950 3.9188 −5.6713


The matrix is a real matrix. However there is a negative value on the off-diagonal,

so the exact generator does not exist.

Also, Table 3.5 shows that the exact generators do not exist for the transition

matrices for the two financial years 2009-2010, and 2011-2012. Instead, we consider

the perturbation approach for these years.
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Cases Q matrices

BP(2010-2011)


−1.5678 + 1.2048i 1.5172 + 1.5096i 0.0507 + 0.3047i

1.3732− 1.3663i −1.7774 + 1.7121i 0.4040− 0.3456i

0.1481 + 0.8886i 1.3020− 1.1135i −1.4500 + 0.2248i



BP(2011-2012)


−6.6596 9.7921 −3.1315

0.3780 −0.8546 0.4766

3.9983 −3.9513 −0.0473



BP(2012-2013)


−2.0995− 0.0793i 1.5290 + 0.6971i 0.5704− 0.6178i

0.3762− 0.0330i −0.7550 + 0.2900i 0.3788− 0.2571i

0.1588 + 0.3761i 3.6563− 3.3070i −3.8152 + 2.9308i


Table 3.5: Q matrices of the 3-by-3 transition matrices for the 2010-2011, 2011-2012,

2012-2013 financial years

Cases Q matrices

BP(2009-2010)


−2.5570 1.8508 0.7062

0.3887 −0.2968 −0.0919

−3.1243 5.8412 −2.7169



BP(2010-2011)


−1.5839 + 0.8545i 1.5372− 0.6754i 0.0466− 0.1790i

0.4293− 0.1886i −0.4273 + 0.1491i −0.0020 + 0.0395i

2.6579− 10.2045i −0.4079 + 8.0665i −2.2500 + 2.1380i



BP(2011-2012)


−2.4491 + 2.5892i 2.2517− 2.7298i 0.1974 + 0.1406i

0.2710− 0.3286i −0.2741 + 0.346i 0.0031− 0.0178i

5.3235 + 3.7917 0.6971− 3.9976i −6.0206 + 0.2059i



BP(2012-2013)


−2.3304 1.2007 1.1298

0.3269 −0.1968 −0.1301

−2.0164 4.3503 −2.3339


Table 3.6: Q matrices of the 3-by-3 transition matrices for volatilities
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Moreover, Table 3.6 illustrates that the exact generators do not exist for all

other transition matrices for the three financial years 2010-2011, 2011-2012, 2012-

2013 either for the volatility case. Therefore, we consider the perturbation approach

for all the estimated transition matrices.

Perturbation Approach:

P is the same transition matrix for the 2009-2010 financial year found with the

algebraic approach:

Pt =


0.2051 0.7436 0.0513

0.1429 0.7551 0.1020

0.1667 0.7500 0.0833


and

B =


1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3


which is a fixed embeddable matrix. Also δ is a parameter which we choose as

δ = 0.1. Let us compute the pertubated transition matrix by:

P̂ −→ (1− δ)P + δB −→ Q

P̂ =


0.2178 0.7026 0.0795

0.1619 0.7129 0.1251

0.1834 0.7083 0.1083


and det(P̂ ) = 3.6279 × 10−5. The matrix is real but not the true generator

(negative value on the off-diagonal).

Q = T (logD)T−1 =


−1.4852 4.2201 −2.7351

0.0164 −1.8104 1.7940

2.1430 4.7858 −6.9286


Table 3.7 shows the perturbed transition matrices and Table 3.8 shows their Q

matrices for all the other transition matrices for the three financial years 2010-2011,

2011-2012, and 2012-2013. So, the exact generators do not exist for all our perturbed
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Cases P̂ perturbed matrices

BP(2010-2011)


0.4276 0.4619 0.1105

0.4212 0.4212 0.1574

0.2583 0.4333 0.3084



BP(2011-2012)


0.0934 0.8134 0.0934

0.1359 0.7235 0.1406

0.1834 0.6334 0.1834



BP(2012-2013)


0.2279 0.6415 0.1306

0.1528 0.7267 0.1205

0.1413 0.7533 0.1053


Table 3.7: 3-by-3 pertubated transition matrices

Cases Q matrices

BP(2010-2011)


−1.6362 + 1.1813i 1.5290− 1.4803i 0.1073 + 0.2988i

1.4101− 1.3897i −1.8709 + 1.7414i 0.4606− 0.3515i

0.1851 + 0.8652i 1.3138− 1.0842i −1.4988 + 0.2189i



BP(2011-2012)


−6.6737 9.7014 −3.0268

0.4695 −1.0512 0.5816

4.0899 −4.0428 −0.0474



BP(2012-2013)


−2.1324 + 0.0880i 1.4546− 0.7734i 0.6778 + 0.6854i

0.4486 + 0.0417i −0.9347− 0.3663i 0.4861 + 0.3246i

0.2313− 0.3674i 3.5819 + 3.2307i −3.8132− 2.8632i


Table 3.8: Q matrices of the 3-by-3 pertubated transition matrices
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Cases Q matrices

BP(2009-2010)


−2.4820 1.6971 0.7846

0.5701 −0.5565 −0.0136

−2.9452 5.6879 −2.7430



BP(2010-2011)


−1.6598 + 1.1501i 1.5356− 0.9094i 0.1242− 0.2408i

0.4598 + 0.1075i −0.5354− 0.0850i 0.0755− 0.0225i

2.6931− 9.9196i −0.4138 + 7.8432i −2.2793 + 2.076i



BP(2011-2012)


−2.6580− 2.4010i 2.2622 + 2.5320i −0.3957− 0.1313i

0.1679 + 0.5156i −0.3682− 0.5437i 0.2004 + 0.0282i

5.2096− 3.6014i 0.7119 + 3.7980i −5.9215− 0.1969i



BP(2012-2013)


−2.2958 1.1101 1.1856

0.4668 −0.3929 −0.0739

−1.8766 4.2600 −2.3834


Table 3.9: Q matrices of the 3-by-3 pertubated transition matrices for volatilities

transition matrices with the chosen parameter, δ = 0.1, and the embeddable B

(fixed) matrix.

The perturbation approach is then considered for the transition matrices for the

volatility case. However, the exact generators exist for all two of the perturbed

transition matrices with the chosen parameter δ = 0.1 and embeddable B (fixed)

matrix. Q matrices of the 3-by-3 pertubated transition matrices are illustrated in

Table 3.9 for all financial years. In Cases 1 and 4, the matrices are real but not

embeddable. (Pertubated transition matrices are illustrated in Table B.1.)

Random Search:

In this section, random matrices were used to find the minimum value of the

parameter δ in the perturbation approach. First, we choose nine iid variables and

the P matrix is constructed such that:

Pt =


ξ
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
where ξ

′
i, ξ

′′
i and ξ

′′′
i are iid for all i = 1, 2, 3. Also, all the random variables normally
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distributed (ξi ∼ NE(1)). Then, perturbation is considered for this random matrix

with the same B matrix as previous to find δ. All these steps are repeated 105 times

in order to find the minimum value of the parameter δ, which is 0.5.

Case 3 ((2× 2)⊗ (2× 2))

Algebraic Approach:

The data is split into two groups (Z = (X, Y )). In this part we will consider

PX to be the transition matrix for the X group of the data via the EM and C4.5

(machine learning) algorithms to treat the missing values. However, there is no

missing data in the Y group of the data. Therefore, the PY transition matrix is

same for all processes.

PX is the transition matrix of the X part of the split data for the 2009-2010

financial year via the EM algorithm:

PX =

 0.2419 0.7581

0.2449 0.7551


According the existence condition of 2 × 2 stochastic transition matrices det(P ) =

−0.0030 < 0, so the exact generator does not exist. Applying the algebraic approach:

According to the function eQ = P = TDT−1, we wish to find the eigenvalue (D)

and eigenvector of P

QX = T (logD)T−1 =

 −4.3907 + 2.3745i 4.3907− 2.3745i

1.4184− 0.7671i −1.4184 + 0.7671i


The matrix is even not a real matrix.

Moreover, Table 3.10 shows that the exact generators do not exist any other

transition matrices (PX via EM algorithm for the three financial years (2010-2011,

2011-2012, 2012-2013). And, Table 3.11 shows that the exact generators do not

exist any other transition matrices (PX via C4.5 algorithm for our dataset).

Also, PY transition matrices are same in the same financial for EM algorithm

and C4.5 algorithm processes. PY is the transition matrix of Y part of the splitted

data for 2009-2010 financial year:

PY =

 0.9060 0.0940

0.9167 0.0833


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Cases Q matrices (PX via EM)

BP(2009-2010)

 −4.3907 + 2.3745i 4.3907− 2.3745i

1.4184− 0.7671i −1.4184 + 0.7671i


BP(2010-2011)

 −1.5412 + 1.4234i 1.5412− 1.4234i

1.8610− 1.7184i −1.8610 + 1.7184i


BP(2011-2012)

 −5.2174 + 2.4060i 5.2174− 2.4060i

1.5951− 0.7356i −1.5951 + 0.7356i


BP(2012-2013)

 −2.2862 2.2862

0.7277 0.7277


Table 3.10: QX matrices via the EM algorithm for the 2010-2011, 2011-2012, 2012-

2013 financial years

Cases Q matrices (PX via EM)

BP(2009-2010)

 −1.2225 + 2.2366i 1.2225− 2.2366i

0.5750− 1.0050i −0.5750 + 1.0050i


BP(2010-2011)

 −0.5998 + 1.57726i 0.5998− 1.57726i

0.5992− 1.5700i −0.5992 + 1.5700i


BP(2011-2012)

 −0.9629 + 2.3484i 0.9629− 2.3484i

0.3252− 0.7932i 0.3252 + 0.7932i


BP(2012-2013)

 −1.2525 + 2.3050i 1.2525− 2.3050i

0.4546− 0.8366i −0.4546 + 0.8366i


Table 3.11: QX matrices via the C4.5 algorithm for the 2010-2011, 2011-2012, 2012-

2013 financial years
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Cases QY matrices

BP(2009-2010)

 −0.4220 + 0.2922i 0.4220− 0.2922i

4.1155− 2.8494i −4.1155 + 2.8494i


BP(2010-2011)

 −0.2320 0.2320

1.4182 −1.4182


BP(2011-2012)

 −0.8388 0.8388

2.0949 −2.0949


BP(2012-2013)

 −0.3849 + 0.3055i 0.3849− 0.3055i

3.5732− 2.8361i −3.5732 + 2.8361i


Table 3.12: QY matrices

According the existence condition of 2 × 2 stochastic transition matrix, det(P ) =

−0.0107 < 0, so the exact generator does not exist. Applying algebraic approach:

According to the function eQ = P = TDT−1, find the eigenvalue (D) and eigen-

vector of P

QY =

 −0.4220 + 0.2922i 0.4220− 0.2922i

4.1155− 2.8494i −4.1155 + 2.8494i


The matrix is not a real matrix, so the exact generator does not exist.

There are exact generators for the 2010-2011, and 2011-2012 financial years.

However, generators do not exist exist for the 2009-2010 and 2012-2013 financial

years. These are presented in Table 3.12.

Now, let us find the generator for the tensor product of the transition matrices

from splitting the data.

P = PX ⊗ PY =


0.2192 0.0227 0.6868 0.0713

0.2218 0.0202 0.6949 0.0632

0.2219 0.0230 0.6841 0.0710

0.2245 0.0204 0.6922 0.0629


P is the tensor product of the transition matrices where PX is the transition matrix

of the X group via the EM algorithm and PY is the transition matrix of the Y group

for the 2009-2010 financial year. Table 2.2 and Table 2.3 illustrate the estimated

transition matrices for the Markov chains via these algorithms.
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Also, in Section 2.3, Table 2.5 and Table 2.6 illustrate that the tensor product of

the estimated transition matrices for the volatility case where PX is estimated via

the EM and C4.5 algorithms, respectively.

We do not have any necessary and sufficient conditions for 4 × 4 stochastic

transition matrices, det(P ) = 2.1871× 10−9 < 0. Using the properties of the tensor

product:

Q = I ⊗QY +QX ⊗ I =


−4.8127 + 2.6667i 0.4220− 0.2922i 4.3907− 2.3745i 0

4.1155− 2.8494i −8.5062 + 5.2239i 0 4.3907− 2.3745i

1.4184− 0.7671i 0 −1.8404 + 1.0593i 0.4220− 0.2922i

0 1.4184− 0.7671i 4.1155− 2.8494i −5.5339 + 3.6165i


As before, the matrix is even not a real matrix, so the exact generator does not

exist. Also, the Q matrix of the tensor product of the transition matrices for the

other financial years are illustrated in Table 3.13, where PX are estimated by the EM

algorithm. Table 3.14 shows the Q matrix of the tensor product of the transition

matrix for our dataset where PX are estimated by the C4.5 algorithm.

Moreover, for the volatility case, the exact generators do not exist for all tran-

sition matrices (PX via the EM and C4.5 algorithms for our dataset), which are

illustrated in Table B.2. Also,the PY transition matrices are the same for the same

financial years using both the EM and C4.5 algorithm processes (see Table B.3)).

The Q matrix of the tensor product of the transition matrices for the other financial

years are illustrated in Table 3.15 where PX is estimated by the EM algorithm for

the estimated volatilities. Table 3.16 shows the Q matrix of the tensor product of

the transition matrix for our dataset, where PX is estimated by the C4.5 algorithm

for the estimated volatilities. There are no real generators for the tensor products

of the transition matrices, therefore we need to consider the perturbation approach

for all the tensor products of the estimated transition matrices in both situations

(share price and volatility).

Perturbation Approach:
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Q matrices
−1.7740 + 1.4231i 0.2327 + 0.0001i 2.5419− 1.4231i −0.0006− 0.0001i

1.4214− 0.0003i −2.9626 + 1.4235i −0.0022− 0.0004i 1.5434− 1.4228ii

1.8620− 1.7185i −0.0011 + 0.0001i −2.0940 + 1.7185i 0.2330− 0.0001i

−0.0036− 0.0005i 1.8645− 1.7189 1.4212 + 0.0003i −3.2822 + 1.7181i



−3.4903 + 1.7073i 0.8451− 0.0001i 2.6518− 3.7073i −0.0067 + 0.0001i

2.0998 + 0.0014i −4.7463 + 1.7081i −0.0058 + 0.0014i 2.6525− 1.7081i

2.2270− 1.4343i −0.0057− 0.0001i −3.0655 + 1.4343i 0.8441 + 0.0001i

0.0069 + 0.0014i 2.2269− 1.4335i 2.1010− 0.0014i −4.3207 + 1.4335i



−2.6701 + 0.3029i 0.3839− 0.3029i 2.2850− 0.0004i 0.0012 + 0.0004i

3.5896− 2.8387i −5.8758 + 2.8387i −0.0079− 0.0004i 2.2941 + 0.0004i

0.7270 + 0.0009i 0.0007− 0.0009i −1.1117 + 0.3058i 0.3840− 0.3058i

−0.0040 + 0.0009i 0.7318− 0.0009i 3.5694− 2.8358i −4.2972 + 2.8358i


Table 3.13: Q matrix of the tensor product of the transition matrices (PX is es-

timated via the EM algorithm) for the 2010-2011, 2011-2012, 2012-2013 financial

years
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Q matrices
−2.1088 2.4259 −1.3261 2.7995

−1.2164 −1.0241 −0.1448 3.2328

1.4578 −0.5469 0.4409 −1.8548

−0.0723 −0.5639 1.3951 −0.8042



−0.8320 + 1.5716i 0.2321 + 0.0001i 0.5999− 1.5716i −0.00061− 0.0001i

1.4179 + 0.0002i −2.0177 + 1.5715i 0.0003− 0.0002i 0.5995− 1.5715i

0.5994− 1.5700i −0.0002 + 0.0001i −0.8314 + 1.5700i 0.2322− 0.0001i

−0.0006− 0.0006i 0.3258− 0.7926i 2.0955 + 0.0006i −2.4207 + 0.7926i



−1.8029 + 2.3486i 0.8401− 0.0002i 0.9642− 2.3486i −0.0013 + 0.0002i

2.0977− 0.0006i −3.0605 + 2.3490i −0.0027 + 0.0006i 0.9656− 2.3490i

0.3256− 0.7929i −0.0004− 0.0002i −1.1643 + 0.7929i 0.8391 + 0.0002i

−0.0006− 0.0006i 0.3258− 0.7926i 2.0955 + 0.0006i −2.4207 + 0.7926i



−1.6372 + 2.1617i 0.3847 + 0.1433i 1.2523− 1.8562i 0.0002− 0.4488i

3.5673 + 1.3277i −4.8198 + 0.9773i 0.0059− 4.1638i 1.2466 + 1.8588i

0.4542− 0.6740i 0.0004− 0.1625i −0.8391 + 0.9795i 0.3845− 0.1429i

0.0037− 1.5081i 0.409 + 0.6715i 3.5695− 1.3280i −4.0241 + 2.1646i


Table 3.14: Q matrix of the tensor product of the transition matrices (PX is esti-

mated via the C4.5 algorithm) for the 2009-2010, 2010-2011, 2011-2012, 2012-2013

financial years
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Q matrices
−4.7475 + 0.0692i 0.1067− 0.0692i 4.6408− 0.1666i 0.1666i

3.3353− 2.1616i −7.9761 + 2.1616i 5.2058i 4.6408− 5.2058i

0.7868− 0.0282i 0.0282i −0.8936− 0.0692i 0.1067 + 0.0692i

0.8826i 0.7868− 0.8826i 3.3353 + 2.1616i −4.1221− 2.1616i



−1.9170− 0.0268i 0.0647 + 0.0268i 1.8523 + 0.0759i −0.0759i

4.0784 + 1.6910i −5.9307− 1.6910i −4.7835i 1.8523 + 4.7835i

0.5427 + 0.0222i −0.0222i −0.6074 + 0.0268i 0.0647− 0.0268i

−1.4015i 0.5427 + 1.4015i 4.0784− 1.6910i −4.6211 + 1.6910i



−2.4098− 2.6086i 0.0593− 0.1534i 2.3505 + 2.6086i 0.1534i

2.0747− 5.3706i −4.4252 + 2.6086i 5.3706i 2.3505− 2.6086i

0.3230 + 0.3585i 00211i −0.3823− 0.3585i 0.0593− 0.0211i

0.7381i 0.3230− 0.3585i 2.0747− 0.7381i −2.3977 + 0.3585i



−3.1137− 2.5906i 0.1248− 0.1222i 2.9889 + 2.7129i 0

3.0820− 3.0194i −6.0709 + 0.3065i 0 2.9889 + 2.7129i

0.4724 + 0.4287i 0 −0.5971− 0.3065i 0.1248− 0.1222i

0 0.4724 + 0.4287i 3.0820− 3.0194i −3.5544 + 2.5906i


Table 3.15: Q matrix of the tensor product of the transition matrices for the volatil-

ities (PX estimated via the EM algorithm)
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Q matrices
−2.8065 + 2.8246i 0.1067− 0.0974i 2.6998− 2.7272i 0

3.3353− 3.0442i −6.0351 + 5.7714i 0 2.6998− 2.7272i

0.4103− 0.4144i 0 −0.5170 + 0.5118i 0.1067− 0.0974i

0 0.4103− 0.4144i 0.3353− 3.0442i −3.7456 + 3.4586i



−2.5087 + 0.0492i 0.0648− 0.0492i 2.4439 0

4.0766− 3.0924i −6.5205 + 3.0924i 0 2.4439

0.5680 0 −0.6328 + 0.0492i 0.0648− 0.0492i

0 0.5680 4.0766− 3.0924i −4.6446 + 3.0924i



−5.3688 0.0593 5.3095 0

2.0744 −7.3839 0 5.3095

0.7654 0 −0.8247 0.0593

0 0.7654 2.0744 −2.8389



−2.6977 + 0.1223i 0.1248− 0.1223i 2.5729 0

3.0816− 3.0193i −5.6545 + 3.0193i 0 2.5729

0.1437 0 −0.2685 + 0.1223i 0.1248− 0.1223i

0 0.1437 3.0816− 3.0193i −3.2253 + 3.0193i


Table 3.16: Q matrix of the tensor product of the transition matrices for the volatil-

ities (PX estimated via the C4.5 algorithm)
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In this subsection we follow the same procedure as for Cases 1 and 2 shown

at the beginning of this section. The main difference is that we have two 2 × 2

transition matrices (PX , PY ) for perturbation. Also, we have two different results

for PX because of the missing data treatment.

Therefore, we start with the perturbation of these transition matrices for all

financial years. To perturb, we use

B =

 2/3 1/3

1/3 2/3


which is a fixed embeddable matrix and nearly the best embeddable matrix according

to our preliminary calculations. Also, δ is a parameter which we choose as δ = 0.1.

Then,

P̂ −→ (1− δ)P + δB −→ Q

We then compute their Q matrices (Q̂X , Q̂Y ). Table B.4 and Table B.5 show that

the pertubated transition matrices P̂X estimated via the EM and C4.5 algorithms.

Also, PY is the same for both these algorithms. Table B.6 illustrates the pertubated

P̂Y transition matrices (see Appendix for these tables).

Finally, we use the property of the tensor product to compute the Q̂ matrices

for the tensor products of the pertubated transition matrices:

Q = I ⊗QY +QX ⊗ I

The Q̂ matrices of the tensor product of the pertubated transition matrices are

illustrated in Table 3.17 and Table 3.18 for all transition matrices for all financial

years. Hence, the exact generators do not exist for any of our perturbed transition

matrices with the chosen parameter, δ = 0.1, and embeddable B (fixed) matrix.

Furthermore, the perturbation approach is considered for the transition matrices

for the volatility case. However, the exact generators do not exist for any perturbed

transition matrices with the chosen parameter, δ = 0.1, and the embeddable B

(fixed) matrix. The perturbed transition matrices for each method (EM and C4.5)

and their Q matrices are illustrated in Table B.7, Table B.8 and Table B.9 in the

Appendix. Also, the Q̂ matrices of the tensor products of the pertubated transition
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Cases Q matrices

BP(2009-2010)


−3.0253 0.4520 2.5733 0

3.2901 −5.8634 0 2.5733

0.9124 0 −1.3644 0.4520

0 0.9124 3.2901 −4.2025



BP(2010-2011)


−2.8674 0.2697 2.5977 0

1.3095 −3.9072 0 2.5977

3.0972 0 −3.3668 0.2697

0 3.0971 1.3095 −4.4066



BP(2011-2012)


−3.3219 0.7568 2.5651 0

1.7538 −4.3189 0 2.5651

0.8663 0 −1.6231 0.7568

0 0.8663 1.7538 −2.6201



BP(2012-2013)


−2.4059 0.5139 1.8920 0

3.6124 −5.5044 0 1.8920

0.6652 0 −1.1791 0.5139

0 0.6652 3.6124 −4.2776


Table 3.17: Q matrix of the tensor product for the perturbed transition matrices

(PX is estimated via the EM algorithm) for all financial years
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Q matrices
−1.8951 + 2.1028i 0.4520 1.4431− 2.1028i 0

3.2901 −4.7332 + 2.1028i 0 1.4431− 2.1028i

0.7129− 1.0388i 0 −1.1649 + 1.0388i 0.4520

0 0.7129− 1.0388i 3.2901 −4.0030 + 1.0388i



−0.9878 + 1.5716i 0.2697 0.7181− 1.5716i 0

1.3095 −2.0276 + 1.5716i 0 0.7181− 1.5716i

0.7173− 1.5700i 0 −0.9870 + 1.5700i 0.2697

0 0.7173− 1.5700i 1.3095 −2.0268 + 1.5700i



−1.8854 + 2.3058i 0.7568 1.1286− 2.3058i 0

1.7538 −2.8824 + 2.3058i 0 1.1286− 2.3058i

0.4091− 0.8358i 0 −1.1659 + 0.8358i 0.7568

0 0.4091− 0.8358i 1.7538 −2.1629 + 0.8358i



−1.9831 + 2.2617i 0.5139 1.4692− 2.2617i 0

3.6124 −5.0815 + 2.2617i 0 1.4692− 2.2617i

0.5716− 0.8799i 0 −1.0855 + 0.8799i 0.5139

0 0.5716− 0.8799i 3.6124 −4.1840 + 0.8799i


Table 3.18: Q matrix of the tensor product for the perturbed transition matrices

(PX is estimated via the C4.5 algorithm) for all financial years
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Q matrices
−3.0855 0.3368 2.7487 0

5.0595 −7.8082 0 2.7487

0.573 0 −0.8941 0.3368

0 0.5573 5.0595 −5.6168



−1.8179 0.1924 1.6255 0

3.7697 −5.3952 0 1.6255

0.5337 0 −0.7261 0.1924

0 0.5337 3.7697 −4.3034



−3.1522 + 2.6857i 0.1266 3.0256− 2.6857i 0

1.8402 −4.8658 + 2.6857i 0 3.0256− 2.6857i

0.5136− 0.4559i 0 −0.6402 + 0.4559i 0.1266

0 0.5136− 0.4559i 1.8402 −2.3538 + 0.4559i



−4.8353 + 0.2185i 0.4015− 0.2185i 4.4338 0

5.3695− 2.9230i −9.8033 + 2.9230i 0 4.4338

0.8500 0 −1.2515 + 0.2185i 0.4015− 0.2185i

0 0.8500 5.3695− 2.9230i −6.2195 + 2.9230i


Table 3.19: Q matrix of the tensor product for the perturbed transition matrices

(PX is estimated via the EM algorithm) for the volatilities

matrices are illustrated in Table 3.19 and Table 3.20 for all financial years. Hence,

the exact generators do not exist for any of the perturbed transition matrices with

the chosen parameter, δ = 0.1, and the embeddable B (fixed) matrix.

Random Search:

In this subsection, random matrices are used to find minimum value for the

parameter δ for the perturbation approach. First, we choose eight iid variables, PX ,

and the PY matrix is constructed such that:

PX =

 ξ
′
1

ξ
′
1+ξ

′
2

ξ
′
2

ξ
′
1+ξ

′
2

ξ
′′
1

ξ
′′
1 +ξ

′′
2

ξ
′′
2

ξ
′′
1 +ξ

′′
2



PY =

 η
′
1

η
′
1+η

′
2

η
′
2

η
′
1+η

′
2

η
′′
1

η
′′
1 +η

′′
2

η
′′
2

η
′′
1 +η

′′
2


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Q matrices
−4.5468 + 2.6506i 0.3368 4.2100− 2.6506i 0

5.0595 −9.2695 + 2.6506i 0 4.2100− 2.6506i

0.7799− 0.4910i 0 −1.1167 + 0.4910i 0.3368

0 0.7799− 0.4910i 5.0595 −5.8394 + 0.4910i



−2.2089 0.1924 2.0165 0

3.7697 −5.7862 0 2.0165

0.5395 0 −0.7319 0.1924

0 0.5395 3.7697 −4.3092



−2.9603 01.126 2.8337 0

1.8402 −4.6739 0 2.8337

0.5073 0 −0.6339 0.1266

0 0.5073 1, 8402 −2.3475



−2.5747 + 0.2185i 0.4015− 0.2185i 2.1732 0

5.3695− 2.9230i −7.5427 + 2.9230i 0 2.1732

0.2038 0 −0.6053 + 0.2185i 0.4015− 0.2185i

0 0.2038 5.3695− 2.9230i −5.5733 + 2.9230i


Table 3.20: Q matrix of the tensor product for the perturbed transition matrices

(PX is estimated via the C4.5 algorithm) for the volatilities
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where ξ
′
i, ξ

′′
i are iid and η

′
i, η

′′
i are iid for all i = 1, 2. Also, all the random

variables are normally distributed (ξi ∼ NE(1), ηi ∼ NE(1)). Then, perturbation

is considered for this random matrix with the same B matrix as previous to find δ.

All these steps are repeated 105 times in Matlab in order to find the minimum

value of the parameter δ, which is 0.22.

3.4 More Data Analysis on the Embedding for

the Financial Data

In this section, more financial data is tested in the 3-by-3 case of the embedding

problem to give a general conclusion. For these analyses, the data is the share prices

of the twenty different companies for four different financial years (2009-2010, 2010-

2011, 2011-2012, 2012-2013). First, the 3-by-3 transition matrices for these share

prices are estimated using MLE and their Q matrices are then computed by the al-

gebraic approach to the embedding problem (see Section 3.3.2 for details). All these

matrices are presented in Appendix B. In general, the Q matrices are not real, or

are real with negative values on their diagonals. Therefore, the estimated transition

matrices are not embeddable except for the transition matrices associated with the

Royal Mail (2012-2013), Sainsbury (2012-2013), Unilever (2010-2011), Whitbread

(2011-2012), WHSmith (2011-2012), and Wolseley (2010-2011) share prices. Briefly,

for most data the Markov chains are not embeddable.

3.5 Conclusion

The intention of this chapter was to analyse whether the discrete time model permits

extension or embedding in the continuous time model. If the model is converted to

a continuous time model (embeddable), it means that the result (data) is observable

each time. This is a plausible and important method in the financial sector. If the

model is a continuous time model, many existing formulae (such as option pricing)

are applicable to the model. We analyse this problem by applying it to our data.

This part of the research is an extensive case study of the embedding problem for
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financial data and its volatility. It gives a real financial application that illustrates

the importance of the embedding problem. As a result, in general we could not

embed the discrete time Markov chain in the continuous time Markov chain. This

means that the model we considered should be treated as a discrete time model.

Inspecting the case study, our overall results are as follows:

(i) Share prices, algebraic approach. According to the algebraic approach, the

exact generators do not exist for any constructed transition matrices for any transi-

tion matrix types ((2× 2), (3× 3), (2× 2)⊗ (2× 2)) in any financial year considered

(2009-2010, 2010-2011, 2011-2012);

(ii) Volatility, algebraic approach. According to the algebraic approach, exact

generators exist in several cases for the volatility (2×2) transition matrices, and for

several cases of volatility for the (2× 2)⊗ (2× 2) case; however, the exact generator

does not exist for the volatility (3× 3) transition matrices for any of the data.

(iii) Share prices, volatility, perturbation approach.

(2× 2) case. According to the perturbation approach, the exact generators exist

for the slightly perturbed (2 × 2) transition matrices for all the financial data and

volatilities. The chosen parameter is δ = 0.1.

(3 × 3) case. However, in the case of the perturbation parameter δ = 0.1, none

of the perturbed transition matrices have an exact generator. This suggests that if

one were to consider a larger number of states, this would only make things worse.

(2×2)⊗ (2×2) case. Surprisingly, for the small perturbation parameter δ = 0.1,

roughly half of the perturbed transition matrices have an exact generator.

For the (2×2) case, data often appear as independent observations. This explains

why, in most cases, the embedding problem has a negative solution.

Moreover, for these analyses, the share prices of the twenty different companies

for four different financial years (2009-2010, 2010-2011, 2011-2012, 2012-2013) are

considered for embeddability via the algebraic approach. The overall conclusion is

that in most cases the Markov chains are not embeddable.

Overall, this study shows that using a continuous time model for volatility is

more stable than the original share prices. In addition, considering a small number

of carefully chosen states is generally more reliable.



Chapter 4

Random Walk on The

Lamplighter Group

This chapter is based on the analysis of arbitrarily chosen groups of share prices of

relatively small data sizes (around 250 closing prices for each group). In addition,

their volatility is analysed using the same procedure as for share prices. The research

presented here is effectively a continuation of the study in [99].

In particular, by constructing the Markov chain models, we find that traditional

models such as the geometric Levy process pricing models do not provide proper

fits to this data because the estimated transition matrices for all our datasets have

highly variable rows. Moreover, traditional models such as (i) Brownian motion, (ii)

random walks with iid increments, (iii) geometric Brownian motion, (iv) geometric

Levy processes and geometric random walks, and (v) continuous time homogeneous

Markov chain pricing models do not fit the data [99]. The embedding of discrete

time Markov chains into continuous time Markov chains seems to be an even bigger

problem than the independence assumption. We recall here that the embedding

problem is to solve the log matrix problem, i.e., to find the Q matrix such that

the stochastic matrix P has a representation P = eQ (see the previous chapter for

details of the embedding problem and its connection with financial data). Due to

the fact that interest rates are practically zero, it has become increasingly popular to

use random walks as the modelling tool of choice for risky assets. Random walks on

the wreath products (which is a specialized product of two groups based on a semi-

91
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direct product) are known in the literature as lamplighter random walks because of

the intuitive interpretation of such walks in terms of the configuration of lamps (as

defined in [58]).

Motivated by the nature of share prices, we discuss several procedures to model

risky assets via the random walk on the lamplighter group (or its tensor products).

Specifically, we model data as a geometric Markov chain with a hidden random

walk on the group [101]. The hidden random walk is constructed on the lamplighter

group on Z3 and on the tensor product of groups Z2⊗Z2. The lamplighter group has

a specific structure where the hidden information is actually explicit. We assume

that the positions of the lamplighters are known, but we do not know the status

of the lamps. We refer to this as a hidden random walk on the lamplighter group.

Choosing the semi-group generators for the branching random walk requires tedious

calculations and is still an open question for future research [21]. To analyse the

sensitivity of the generators, we choose at least two different generator sets.

We also construct the biased random walks on the tensor product of the lamp-

lighter group models (as introduced in [72]) to fit the data. Overall, several branch-

ing walk models are considered. A Monte Carlo simulation is then applied to find

the best fit. The results are then compared with analytic errors computed for the

relative distance between two tensor products of random stochastic matrices.

The missing data algorithms (which are considered in Chapter 2) and Monte

Carlo simulation are used to find the best fit in the sense of finding the random

walk for which the distance between the original matrix and the corresponding 3×3

reduced transition matrix is smallest. In this chapter, as a measure of the fit of the

class of stochastic matrices, we consider the smallest trace norm difference between

two transition matrices. The fit is relatively good. Moreover, for the randomly

chosen data sets, the α-biased random walk on the tensor product of the lamplighter

group and α− λ-biased random walk provide significantly better fits to the data.

Additionally, we follow the same procedures for the volatility process as for the

share price data to ensure consistency. Then, all the results are compared with

analytic errors. Most of the results presented in this chapter have been reported

in [81].
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Figure 4.1: Lamplighter group.

4.1 Random Walk on the Group

In this section, we work mainly with directed graphs and have found that branching

trees and graphs are particularly useful in the stochastic modelling of the data. We

construct the Cayley graph on the lamplighter group by choosing particular group

generators. Then, we model the jump part of the shares as a random walk on the

associated Cayley graph of the lamplighter group, which is called a random walk on

the lamplighter group. Therefore, details of the random walk on the group, graphs

and branching trees have been reviewed in Chapter 1.

As stated above, the data jumps are modelled as a geometric Markov chain with

a hidden random walk on the lamplighter group on Z3 and on the tensor product of

groups Z2 ⊗ Z2.

Let us begin with definition of the lamplighter group:

4.1.1 Lamplighter Group

The lamplighter group G1 is defined as a semi-direct product, G1 := Z n Σx∈ZZ2,

with the direct sum of copies of Z2 indexed by Z (n is the semi-direct product); for

m,m′ ∈ Z and η, η′ ∈ Σx∈ZZ2 the group operation is

(m, η)(m′, η′) := (m+m′, η ⊕ ρ−mη′)

where ⊕ is a component-wise addition modulo 2 and ρ is a left shift [72]. The m-

move is for the lamplighter and the η-move for the status of lamps (on → off and

off → on), (see Figure 4.1 and [12] for more details).

For example, P = {0, 1, 2} is the element and ρ is a left shift. So,

ρP = {1, 2, 0}
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ρ−1 is right shift:

ρ−1P = {2, 0, 1}

Also, ρ−m has become an m-steps right shift. If m = 4,

ρ−4P = {2, 0, 1}

Additionally, the element η ∈ Σx∈ZZ2 is referred to as a configuration and η(k)

as the bit at k. We further identify Z2 with {0, 1}.

The position of the marker is denoted by M(x) in the state x, which is the first

component of an element x = (m, η) ∈ G1.

(1, 0),(−1, 0) and (0, 10) are the generators of the lamplighter group G1.

The reason for the name of this group is that a streetlamp at each integer with

the configuration η represents which lights are on, namely those where η = 1 [72].

We also may imagine a lamplighter at the position of the marker. The first two

generators of G1 correspond to the lamplighter taking a step either to the right or to

the left (leaving the lights unchanged). The third generator ((0, 10) ) corresponds to

flipping the light at the position of the lamplighter (see Figure4.2 and notations [72].

Figure 4.2: An element of the lamplighter group.

4.1.2 Random Walk on the Lamplighter Group

In order to construct a branching-type random walk on the group and apply it to

fit the data, we choose a generator set S for the group, generating it as a semi-

group that is in general non-symmetric (x ∈ S but x−1 6∈ S). Then, we construct

the branching random walk on the group, and finally we model the hidden Markov

chain on the lamplighter group. Branching means that off-springs of x are xy, where

y ∈ S.
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We begin by considering the lamplighter group on Z3. There are three positions,

0, 1, and 2, on the group. They refer to: no jump, small jump, and big jump,

respectively. Direct analysis shows that the lamplighter group on Z3 has 24 elements,

which are listed in the following set:

E = {e1 = (0, (0, 0, 0)), e2 = (0, (0, 0, 1)), e3 = (0, (0, 1, 0)), e4 = (0, (1, 0, 0)),

e5 = (0, (0, 1, 1)), e6 = (0, (1, 0, 1)), e7 = (0, (1, 1, 0)), e8 = (0, (1, 1, 1)),

e9 = (1, (0, 0, 0)), e10 = (1, (0, 0, 1)), e11 = (1, (0, 1, 0)), e12 = (1, (1, 0, 0)),

e13 = (1, (0, 1, 1)), e14 = (1, (1, 0, 1)), e15 = (1, (1, 1, 0)), e16 = (1, (1, 1, 1, )),

e17 = (2, (0, 0, 0)), e18 = (2, (0, 0, 1)), e19 = (2, (0, 1, 0)), e20 = (2, (1, 0, 0)),

e21 = (2, (0, 1, 1)), e22 = (2, (1, 0, 1)), e23 = (2, (1, 1, 0)), e24 = (2, (1, 1, 1))}

To examine the sensitivity of the generators, two different generator sets are chosen

at random. First, we choose a random set of elements and verified that the set was

indeed the generator (as a semi-group). If the set generates the group, the set is

chosen as the generator set. Else, we choose another random set and repeat all the

steps again until we find two different generator sets. Theoretically, it may appear

that for two different generators the results may be qualitatively different. Choosing

the “right” generator is still an open question [21].

The two randomly chosen generator sets of the lamplighter group on Z3 are:

S1 = {e4 = (0, (1, 0, 0)), e11 = (1, (0, 1, 0))},

S2 = {e10 = (1, (0, 0, 1)), e20 = (2, (1, 0, 0))}

We explain in detail the next procedure for the first generator set S1. Then, we

compare the results for both choices in Section 4.2.

Let us continue with constructing the simple random walk on the group. The

transition probabilities for the simple random walk with d links are defined by

wij = 1/d if i links to j, wij = 0 otherwise

Then, the 24 × 24 transition matrix W of the simple random walk is defined as

follows:

wij =

1/2 if i links to j,

0 otherwise
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The hidden Markov chain on the lamplighter group is then constructed to model the

data. For the hidden part, it is assumed that we know the lamplighter positions, but

we do not know the status of the lamps. Hence, the possible positions are observed

as follows:

0 = {e1 = (0, (0, 0, 0)), e2 = (0, (0, 0, 1)), e3 = (0, (0, 1, 0)), e4 = (0, (1, 0, 0)),

e5 = (0, (0, 1, 1)), e6 = (0, (1, 0, 1)), e7 = (0, (1, 1, 0)), e8 = (0, (1, 1, 1))}

1 = {e9 = (1, (0, 0, 0)), e10 = (1, (0, 0, 1)), e11 = (1, (0, 1, 0)), e12 = (1, (1, 0, 0)),

e13 = (1, (0, 1, 1)), e14 = (1, (1, 0, 1)), e15 = (1, (1, 1, 0)), e16 = (1, (1, 1, 1, ))}

2 = {e17 = (2, (0, 0, 0)), e18 = (2, (0, 0, 1)), e19 = (2, (0, 1, 0)), e20 = (2, (1, 0, 0)),

e21 = (2, (0, 1, 1)), e22 = (2, (1, 0, 1)), e23 = (2, (1, 1, 0)), e24 = (2, (1, 1, 1))}

Finally, we construct the branching tree and then the branching type random

walk. There are two methods that can be used to construct the branching tree: the

first method is that of choosing one of the elements from the generator set which

became the initial point of the tree; then, all the generators are used to generate the

branching tree. We need to stop when we receive each element of the group, and

so the branching tree is completed. Figure 4.3 shows the generated branching tree

via the first method, which illustrates the generated branching tree with the first

generator set (S1), starting from e4.

Figure 4.3: The branching tree via method 1.

The second method is to use all the elements of each generator as the initial
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Figure 4.4: The branching tree via method 2: Initial point is e4.

points of the tree. Then, all elements of each generator are used to generate the

branching tree. As with the first method, we need to stop when we receive each

element of the group, at which point the branching tree is completed. Figure 4.4

and Figure 4.5 show the branching trees generated by each generator via the second

method. Note that each element of the generator generates the branching tree.

We run two branching trees simultaneously until we have all the elements [17].

Figure 4.3, Figure 4.4 and Figure 4.5 show that both approaches generate the whole

group [29].

Based on the original branching walk, we construct a new random walk on group

of states. Then, for the new random walk, we find the transition matrix by simu-

lation. The simulation of the model is run 105 times to find the transition matrix

so as to subsequently find the best fit for the estimated 3 × 3 transition matrix by

the maximum-likelihood estimation (MLE). The answer may be found theoretically,

but it seems the random simulation is a considerably more efficient way of finding

it.

Biased Random Walk on the Lamplighter Group

In this part, biased random walks on the lamplighter group are considered.
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Figure 4.5: The branching tree via method 2: Initial point is e11.

The λ- biased random walk on the lamplighter group: Following Lyons,

Pemantle, and Peres, for λ > 0 we define the λ- biased random walk RWλ on a lo-

cally connected finite graph with a distinguished vertex Θ as the time-homogeneous

Markov chain {Xn;n ≥ 0} with the following transition probabilities [72]. The

distance from a vertex |v| to Θ is the number of edges on the shortest path join-

ing the two vertexes. Suppose that v is a vertex of the graph. Let v1, ..., vk(k ≥

1 unless v = Θ) be the neighbours of v at a distance |v| − 1 from Θ and let

u1, u2, ..., uj (j ≥ 0) be the neighbours of v. Then, the transition probabilities are

w(v, vi) =
λ

(kλ+ j)
for i = 1, ..., k;

w(v, ui) =
1

(kλ+ j)
for i = 1, ..., k.

And,

wij =

1/d if there are d links where d > 0,

0 otherwise

when the λ- biased condition for the neighbours of the vertex v is satisfied [72].

To construct the λ- biased random walk for the data, we closely follow the

construction procedure for the simple random walk. We work with the same 3× 3-
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state Markov chain and generator sets S1, S2. Moreover, we only treat the case of

the first generator set S1. The results are then analysed for both generator sets

(S1, S2) in Section 4.2.

Then, the λ- biased random walk is constructed on the lamplighter group via

transition probabilities:

w(v, vi) =
λ

(λ+ 1)
, w(v, ui) =

1

(λ+ 1)
(4.1.1)

and,

wij =

1/2 if d = 2,

0 otherwise

(4.1.2)

when the λ- biased condition for the neighbours is satisfied.

Let us take a vertex v = e8 as an example to explain the biased random walk:

In our branching tree the distinguished vertex is Θ = e4 and neighbours of the

vertex are {v1 = e5, v2 = e14}. The distance from a vertex |v| to Θ is the number of

the edges on a shortest path joining the two vertexes. In this case,

|v1| = |v| − 1

The vertex has a neighbour with shorter distance to the distinguished vertex.

Therefore, the biased random walk can be considered here with the transition prob-

abilities:

w8,5 = 1
λ+1

, w8,14 = λ
λ+1

The transition probabilities of a 24 × 24 Markov chain are calculated based on

the Cayley graph. The transition matrix P1 consists of two parts.

In the first part all links below have transition probabilities of 1/2, i.e.,

w4,1 = w4,15 = w1,4 = w1,11 = 1
2
, w11,9 = w11,21 = w18,17 = w18,6 = 1

2
;

w17,18 = w17,4 = w6,2 = w6,15 = 1
2
, w21,19 = w21,8 = w19,21 = w19,7 = 1

2
;

w14,16 = w14,20 = w16,14 = w16,23 = 1
2
, w15,12 = w15,24 = w1,4 = w1,11 = 1

2
;

w12,15 = w12,22 = w20,22 = w20,1 = 1
2
, w2,6 = w2,13 = w13,10 = w13,19 = 1

2

w24,23 = w24,5 = w23,24 = w23,3 = 1
2
, w10,13 = w10,17 = 1

2
;

The second part probabilities are defined by

w9,11 = 1
λ+1

, w9,18 = λ
λ+1

, w7,12 = 1
λ+1

, w7,3 = λ
λ+1

;

w8,5 = 1
λ+1

, w8,14 = λ
λ+1

w22,2 = 1
λ+1

, w22,20 = λ
λ+1

;
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w3,7 = 1
λ+1

, w3,9 = λ
λ+1

, w5,8 = 1
λ+1

, w5,10 = λ
λ+1

Then, the hidden Markov chain on the lamplighter group is constructed to model

the data. The hidden part is same as before, with the known lamplighter positions

but unknown states of lamps. A Monte Carlo simulation is run 105 times to choose

the optimal parameter λ to find the transition matrix that allows us to find the best

fit for the estimated transition matrices. The value of the parameter λ is chosen by

the minimum over grid (0, 1).

The α- biased random walk on the lamplighter group: We consider

a slightly perturbed simple random walk on the lamplighter group generated as a

semi-group with a non-symmetric set of generators. The approach is similar to the

previous cases with the same set up: the same two generator sets (S1, S2) are chosen

and the same 3 × 3-state Markov chain is considered as the initial matrix. And

again, we only treat the case of the first generator set S1 with the results then being

analysed for both generator sets (S1, S2) in Section 4.2.

As before, based on the Cayley graph, we calculate the transition probability of

a 24 × 24-state Markov chain . Notice that e1 = 0 is not in our generators (i.e.,

e1 = 0 6∈ Si), and so staying at the same position is not allowed in the branching-

type random walk. To modify this, the α parameter is introduced and the transition

matrix is perturbed by the diagonal matrix. For instance, the 24 × 24 matrix for

the α- biased random walk is:

wij =


1
2
(1− α) if i links to j,

α if i = j,

0 otherwise.

(4.1.3)

The other steps (e.g., hidden part, observations,...) are similar to the previous

approaches. A Monte Carlo simulation used to find the best fit using trace norm

differences for the estimated transition matrices.

The α− λ- biased random walk on the lamplighter group: The process

is similar to the previous cases.

The transition probabilities for the α− λ- biased random walk are:

w(v, vi) = (1− α)
λ

(kλ+ j)
) , w(v, ui) = (1− α)

1

(kλ+ j)
) for i = 1, ..., k.
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vi and ui are sites satisfying conditions explained in the “Biased Random Walk on

the Lamplighter Group” section.

And

wij =


(1− α)1

d
if i links to j,

α if i = j,

0 otherwise

when the neighbours of the vertex v satisfy the λ- biased condition.

Specifically for this case, the 24× 24 matrix W is:

w(v, vi) = (1− α)
λ

(λ+ 1)
, w(v, ui) = (1− α)

1

(λ+ 1)
(4.1.4)

and

wij =


1
2
(1− α) if i links to j,

α if i = j,

0 otherwise

(4.1.5)

when the λ- biased condition for the neighbours is satisfied.

Notice that the 24× 24 transition matrix P2 of the Markov chain is found by

P2 = (1− α)P1 + αI

where I is the identity matrix and P1 is the transition matrix of the λ-biased

case. Finally, the Monte Carlo simulation is run 105 times to chose the optimal

parameters λ and α (0 to 1) in order to compute the transition matrix used to find

the best fit for the original transition matrices. The values of the parameters λ and

α are chosen by the minimum over grid (0, 1).

4.1.3 Random Walk on the tensor product of the Lamp-

lighter Group

In this section, we consider the tensor product of the lamplighter groups on Z2.

First, let the group G be the tensor product of two groups G = G1 ⊗ G2. The
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elements of the group G are pairs of the elements of the groups G1 and G2.

G = G1 ⊗G2 = (a, b), a ∈ G1, b ∈ G2;

(a1, b1)⊗ (a2, b2) = (a1 + a2, b1 + b2)

Consider the lamplighter group on the group G, and particularly G1 = G2 = Z2.

Notice that the elements of the lamplighter group on Z2:

E = (0, (0, 0)), (0, (0, 1)), (0, (1, 0)), (0, (1, 1)), (1, (0, 0)), (1, (0, 1)), (1, (1, 0)), (1, (1, 1))

Then, we can introduce the elements of the tensor product of the lamplighter group

on the group G. The tensor product of the lamplighter group has 64 elements

because of property of itself and the tensor product. There are four positions 0, 1,

2, and 3 on this group. They refer to differences between the daily-adjusted closing

values of the share prices as no small jump, small jump and no big jump, big jump,

respectively.

The set of the elements is:

E = {e1 = (0, (0, 0, 0, 0)), e2 = (0, (0, 0, 0, 1)), e3 = (0, (0, 0, 1, 0)), e4 = (0, (0, 1, 0, 0)),

e5 = (0, (1, 0, 0, 0)), e6 = (0, (0, 0, 1, 1)), e7 = (0, (0, 1, 1, 0)), e8 = (0, (1, 1, 0, 0)),

e9 = (0, (0, 1, 0, 1)), e10 = (0, (1, 0, 0, 1)), e11 = (0, (1, 0, 1, 0)), e12 = (0, (0, 1, 1, 1)),

e13 = (0, (1, 0, 1, 1)), e14 = (0, (1, 1, 0, 1)), e15 = (0, (1, 1, 1, 0)), e16 = (0, (1, 1, 1, 1)),

e17 = (1, (0, 0, 0, 0)), e18 = (1, (0, 0, 0, 1)), e19 = (1, (0, 0, 1, 0)), e20 = (1, (0, 1, 0, 0)),

e21 = (1, (1, 0, 0, 0)), e22 = (1, (0, 0, 1, 1)), e23 = (1, (0, 1, 1, 0)), e24 = (1, (1, 1, 0, 0)),

e25 = (1, (0, 1, 0, 1)), e26 = (1, (1, 0, 0, 1)), e27 = (1, (1, 0, 1, 0)), e28 = (1, (0, 1, 1, 1)),

e29 = (1, (1, 0, 1, 1)), e30 = (1, (1, 1, 0, 1)), e31 = (1, (1, 1, 1, 0)), e32 = (1, (1, 1, 1, 1)),

e33 = (2, (0, 0, 0, 0)), e34 = (2, (0, 0, 0, 1)), e35 = (2, (0, 0, 1, 0)), e36 = (2, (0, 1, 0, 0)),

e37 = (2, (1, 0, 0, 0)), e38 = (2, (0, 0, 1, 1)), e39 = (2, (0, 1, 1, 0)), e40 = (2, (1, 1, 0, 0)),

e41 = (2, (0, 1, 0, 1)), e42 = (2, (1, 0, 0, 1)), e43 = (2, (1, 0, 1, 0)), e44 = (2, (0, 1, 1, 1)),

e45 = (2, (1, 0, 1, 1)), e46 = (2, (1, 1, 0, 1)), e47 = (2, (1, 1, 1, 0)), e48 = (2, (1, 1, 1, 1)),

e49 = (3, (0, 0, 0, 0)), e50 = (3, (0, 0, 0, 1)), e51 = (3, (0, 0, 1, 0)), e52 = (3, (0, 1, 0, 0)),

e53 = (3, (1, 0, 0, 0)), e54 = (3, (0, 0, 1, 1)), e55 = (3, (0, 1, 1, 0)), e56 = (3, (1, 1, 0, 0)),

e57 = (3, (0, 1, 0, 1)), e58 = (3, (1, 0, 0, 1)), e59 = (3, (1, 0, 1, 0)), e60 = (3, (0, 1, 1, 1)),

e61 = (3, (1, 0, 1, 1)), e62 = (3, (1, 1, 0, 1)), e63 = (3, (1, 1, 1, 0)), e64 = (0, (1, 1, 1, 1))}
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As per the first model (see Section 4.1.2), we randomly choose two different

generator sets of the tensor product of the lamplighter group G1 ⊗ G2, generating

it as a semi-group. The generator sets of the group are chosen as:

S3 = {e18 = (1, (0, 0, 0, 1)), e35 = (2, (0, 0, 1, 0))},

S4 = {e36 = (2, (0, 1, 0, 0)), e50 = (3, (0, 0, 0, 1))}

Then, we construct the simple random walk and the biased random walks via the

tensor product of the lamplighter groups. We also consider the hidden Markov chain

on the group to model the data. Finally, we estimate the transition matrix for the

new model. The overall procedure is the same as in the case of the lamplighter group

on Z3, where necessary definitions and explanations can be found in Section 4.1.2.

Let us start by constructing the simple random walk on the group. The transition

matrix of the simple random walk is:

wij =

1/2 if i links to j,

0 otherwise

The hidden part and observations are similar to the previous model. Figure 4.6

shows the generated branching tree with the first generator set (S3).

We run the simulation 105 times to find the best fit to the original matrix. The

data is split as in Section 2.2. The transition matrices are estimated by the MLE

and result in the tensor product of the estimated transition matrices. This tensor

product is then used as the original matrix.
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Figure 4.6: The branching tree via S3.
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Biased Random Walk on the tensor product of the Lamplighter Group

In this subsection, we construct the biased random walk via the tensor product of

the lamplighter group by choosing optimal parameters. Let us start with the λ-

biased random walk:

The λ- biased random walk on the tensor product of the lamplighter

group: We consider a slightly perturbed λ- biased random walk on a lamplighter

group [72].

Then, the λ- biased random walk is constructed on the lamplighter group via

transition probabilities as defined in (4.1.1)-(4.1.2).

The transition probability of a 64 × 64-state Markov chain is calculated based

on the Cayley graph. In particular, the transition probabilities are as below:

w1,18 = w1,35 = w2,17 = w2,38 = w3,22 = w3,33 = w5,26 = w5,43 = 1
2

w6,19 = w6,34 = w7,28 = w7,36 = w8,30 = w8,47 = w9,20 = w9,44 = 1
2

w10,21 = w10,45 = w11,29 = w11,37 = w12,23 = w12,41 = w13,27 = w13,42 = 1
2

w14,24 = w14,48 = w15,32 = w15,40 = w16,31 = w16,46 = w17,37 = w17,50 = 1
2

w18,42 = w18,49 = w19,43 = w19,54 = w21,33 = w21,58 = w23,47 = w23,60 = 1
2

w24,36 = w24,62 = w25,46 = w25,52 = w27,35 = w27,61 = w28,48 = w28,55 = 1
2

w29,38 = w29,59 = w30,41 = w30,56 = w32,44 = w32,63 = w33,52 = w33,5 = 1
2

w34,57 = w34,10 = w35,55 = w35,11 = w36,49 = w36,8 = w37,56 = w37,1 = 1
2

w38,60 = w38,13 = w39,51 = w39,15 = w40,53 = w40,4 = w42,62 = w42,2 = 1
2

w43,63 = w43,3 = w44,54 = w44,16 = w45,64 = w45,6 = w47,59 = w47,7 = 1
2

w48,61 = w48,12 = w49,3 = w49,20 = w51,1 = w51,23 = w52,7 = w52,17 = 1
2

w53,11 = w53,24 = w54,2 = w54,28 = w55,4 = w55,19 = w56,15 = w56,21 = 1
2

w57,12 = w57,18 = w58,13 = w58,30 = w59,5 = w59,31 = w60,9 = w60,22 = 1
2

w61,10 = w61,32 = w62,16 = w62,26 = w63,8 = w63,27 = w64,14 = w64,29 = 1
2

w31,64 = 1
λ+1

, w31,39 = λ
λ+1

, w46,58 = 1
λ+1

, w46,9 = λ
λ+1

w26,53 = 1
λ+1

, w26,24 = λ
λ+1

, w50,25 = 1
λ+1

, w50,6 = λ
λ+1

w22,45 = 1
λ+1

, w22,51 = λ
λ+1

, w20,40 = 1
λ+1

, w20,57 = λ
λ+1

w4,25 = 1
λ+1

, w4,39 = λ
λ+1

, w41,14 = 1
λ+1

, w41,50 = λ
λ+1

We use a similar process to the simple random walk on the tensor product of

the lamplighter group. Finally the simulation is run 105 times, and the optimal
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Cases Generator S1 Generator S2

BP(2009-2010)


0.6478 0.3522 0

0 0.7650 0.2350

0.2222 0 0.7778




0.2500 0.7500 0

0.0020 0.9970 0.0010

0 1.0000 0



BP(2010-2011)


0.5000 0.5000 0

0 0.8571 0.1429

0 0 1.0000




0.3273 0.3165 0.3561

0.2414 0.4409 0.3177

0.2785 0.4399 0.2816



BP(2011-2012)


0.5584 0.4416 0

0 0.7258 0.2742

0.2544 0 0.7456




0 0.6667 0.3333

0.0010 0.9970 0.0020

0.3333 0.6667 0



BP(2012-2013)


0.4000 0.6000 0

0 0.9932 0.0068

0.0036 0 0.9964




0.2500 0.5000 0.2500

0.0010 0.9950 0.0040

0.2000 0.8000 0


Table 4.1: α− λ biased random walk on the lamplighter group.

parameter λ is found that gives the best fit to the original matrix.

The α- biased random walk on the tensor product of the lamplighter

group: The 64× 64 transition matrix is defined as in (4.1.3).

The other steps (e.g., hidden part, observations,...) are similar to the previous

approaches. A Monte Carlo simulation is used to find the best fit using norm

differences for the estimated transition matrices.

The α−λ- biased random walk on the tensor product of the lamplighter

group: The transition probabilities for the α − λ- biased random walk on the

lamplighter group are defined similar to the first model, more specifically as in

(4.1.4) -(4.1.5). The Monte Carlo simulation is run 105 times to choose the optimal

parameter λ and α (0 to 1) to find the best fit for the estimated transition matrices.

4.2 Results and Comparisons

A branching-type random walk is constructed on the lamplighter group with two

different generator sets (S1, S2) in Section 4.1.2. Also, a biased random walk is
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considered on the lamplighter group. 3 × 3 transition matrices are estimated by

the Monte Carlo simulation. We estimate the transition matrices by constructing

the model as the simple random walk and biased random walks on the lamplighter

group to find the best fit for the estimated transition matrices. Table 2.1 shows

the estimated transition matrices by maximum likelihood. Table 4.1 illustrates the

transition matrices for a α− λ biased random walk on the lamplighter group. (The

estimated transition matrices are illustrated in Table C.1, C.2, C.3 for the simple

random walk and the other biased random walks on the lamplighter group in the

Appendix.)

We calculate the trace error (norm) between the simulated matrices and the

original transition matrices in order to compare with the four different random

walks on the lamplighter group. Also, we consider the same computation as for

another generator set to check sensitivity. The first row of Table 4.2 shows the

comparison of trace norm values for all cases of each of the four methods with the

first generator S1. A comparison of trace norm values found for all methods with

a second generator S2 are stated in the second row of the table. These show that

the best approximation was given by the α- biased and α−λ- biased random walks.

The smallest norm value is around 0.02. Also, the trace norm errors do not display

significant differences between the values for the two different generator sets (S1, S2).

The results raise an open question as to the assessment of the best generator fit and

statistical hypothesis testing of the best fit.

To be consistent, we apply the four different methods with the four different

random walks on the lamplighter group and two different generator sets to the

volatility in the same procedure as the share price data. The simulated transition

matrices are illustrated in Table C.5, Table C.6, Table C.7 and Table C.8 (for these

tables, see the Appendix). Again, we calculate the trace error (norm) between the

simulated matrices and that based on the data to compare the methods for the

volatility processes. The first row of Table 4.3 shows a comparison of the trace

norm values for all cases for each of the four methods with the first generator S1. A

comparison of the trace norm values for all methods with the second generator S2

are reported in the second row of the table. They show that the best approximation
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Cases Simple RW λ biased α biased α− λ biased

BP(2009-2010) 0.9715 0.8422 0.3077 0.0997

BP(2010-2011) 0.9684 0.8561 0.2952 0.0530

BP(2011-2012) 0.9664 0.8330 0.3140 0.0731

BP(2012-2013) 0.9781 0.9630 0.3136 0.0742

BP(2009-2010) 0.9832 0.8996 0.2224 0.0455

BP(2010-2011) 0.9076 0.8616 0.2649 0.0417

BP(2011-2012) 0.9868 0.9003 0.3426 0.0669

BP(2012-2013) 0.9855 0.9080 0.2992 0.0253

Table 4.2: Norm errors of the random walk on the lamplighter group

was given by the α- biased and α−λ- biased random walks, which was a somewhat

unexpected result. The smallest norm value is around 0.05; additionally, there is no

significant difference between the trace error values for the two different generator

sets, as per the share price data.

Cases Simple RW λ biased α biased α− λ biased

BP(2009-2010) 0.4902 0.4625 0.2453 0.1450

BP(2010-2011) 0.3380 0.2694 0.2798 0.1254

BP(2011-2012) 0.4995 0.4779 0.2215 0.1347

BP(2012-2013) 0.4958 0.4657 0.2828 0.1098

BP(2009-2010) 0.4862 0.3914 0.2217 0.0825

BP(2010-2011) 0.4447 0.3757 0.2507 0.1091

BP(2011-2012) 0.4826 0.4043 0.2215 0.0580

BP(2012-2013) 0.4529 0.3883 0.2064 0.0870

Table 4.3: Norm errors of the random walk on the lamplighter group for volatility.

Moreover, a branching-type random walk is constructed on the tensor product

of the lamplighter group with two different generator sets (S2, S3) in Section 4.1.3.

Also, a biased random walk is considered on the tensor product of the lamplighter
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group. 2× 2 transition matrices estimated by the Monte Carlo simulation and their

tensor product is computed. We estimate the transition matrices by constructing

the model as the simple random walk and biased random walks on the lamplighter

group to find the best fit for the estimated transition matrices. Specifically, we

assume that the transformed data are such that Z = (X, Y ). X - “no jump”, “small

jump” and Y - “no big jump”, “big jump” groups. PX is the estimated transition

matrix of X, and PY is the estimated transition matrix of Y . In order to estimate

the transition matrix PX , we deal with the missing data using both the EM and C4.5

algorithms. Therefore, we estimate two different transition matrices in each case and

take their tensor product, as illustrated in Table C.9 and Table C.10 (see Appendix).

Moreover, a branching-type random walk is constructed on the tensor product of

the lamplighter group with two different generator sets (S3, S4) in Section 4.1.3.

Also, a biased random walk is considered on the tensor product lamplighter group.

Their transition matrices and the estimated transition matrices from Section 4.1.2

are compared with the tensor product of the original transition matrices (PX ⊗PY ).

The trace norm is applied to find the best fit to the data. To give an idea of the

results of these methods, Table C.4 shows the transition matrices for the λ- biased

random walk on the tensor product of the lamplighter group with the generator S3

(see Appendix).

In order to check consistency, we once again apply the same procedure for volatil-

ity as we did for share prices. Therefore, a branching-type random walk is con-

structed on the tensor product of the lamplighter group with two different generator

sets (S3, S4) for the volatility procedure. Also, a biased random walk is considered on

the tensor product lamplighter group. Their transition matrices and the estimated

transition matrices are compared with the tensor product of the original transition

matrices (PX ⊗ PY ) (which are illustrated in Table C.11 and Table C.12 in the Ap-

pendix). Again, we calculate the trace error (norm) between the simulated matrices

and that based on the data to compare the methods for the volatility processes.

Table 4.4 shows the comparison of the norm errors of the random walk on the

tensor product of the lamplighter group with two different generator sets (S3, S4),

where the transition matrices are estimated via the EM algorithm and C4.5 machine
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Cases Simple RW λ biased α biased α− λ biased

BP(2009-2010) 1.2659 0.9677 0.3767 0.1797

BP(2010-2011) 1.1207 0.8234 0.2334 0.0290

BP(2011-2012) 1.1675 0.8690 0.2934 0.0123

BP(2012-2013) 1.2215 0.9214 0.3400 0.1089

BP(2009-2010) 1.2201 0.9123 0.3001 0.1569

BP(2010-2011) 1.1814 0.8692 0.2771 0.0783

BP(2011-2012) 1.2062 0.8966 0.3166 0.0995

BP(2012-2013) 1.2662 0.9528 0.3531 0.1534

BP(2009-2010) 1.2400 0.9460 0.3495 0.1261

BP(2010-2011) 1.1738 0.8759 0.2082 0.1334

BP(2011-2012) 1.1611 0.8612 0.2050 0.1399

BP(2012-2013) 1.2504 0.9528 0.3347 0.1142

BP(2009-2010) 1.2575 0.9457 0.3138 0.1141

BP(2010-2011) 1.1882 0.8790 0.2684 0.1016

BP(2011-2012) 1.1674 0.8626 0.2424 0.1283

BP(2012-2013) 1.2553 0.9407 0.3201 0.1176

Table 4.4: Norm errors of the random walk on the tensor product of the lamplighter

group

learning algorithm. The first and second parts of the table show the results for the

generator set S3, whilst the third and forth parts of the table shows the results for

the generator set S4. The best approximation is again achieved by the α- biased

and α − λ- biased random walks. The smallest norm value is around 0.01; also,

there is no significant difference between the values for the two different generator

sets (S3, S4) and the two different missing value treatment methods (EM and C4.5

algorithm).

In addition, Table 4.5 shows the comparison of the norm errors of the random

walk on the tensor product of the lamplighter group using the two different generator

sets (S3 and S4) with the transition matrices estimated via the EM and C4.5 machine
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Cases Simple RW λ biased α biased α− λ biased

BP(2009-2010) 0.4008 0.4089 0.2795 0.0880

BP(2010-2011) 0.3869 0.3891 0.2558 0.0698

BP(2011-2012) 0.3918 0.3875 0.2650 0.0296

BP(2012-2013) 0.4063 0.4102 0.2983 0.1008

BP(2009-2010) 0.4201 0.4060 0.2587 0.1086

BP(2010-2011) 0.3875 0.3714 0.2409 0.0672

BP(2011-2012) 0.4127 0.3966 0.2595 0.0855

BP(2012-2013) 0.4268 0.4123 0.2840 0.1061

BP(2009-2010) 0.4088 0.4131 0.2974 0.0843

BP(2010-2011) 0.3933 0.3974 0.2696 0.0637

BP(2011-2012) 0.3877 0.3905 0.2479 0.0486

BP(2012-2013) 0.4172 0.4165 0.2065 0.0651

BP(2009-2010) 0.4331 0.4181 0.2001 0.1120

BP(2010-2011) 0.4024 0.3874 0.2571 0.0692

BP(2011-2012) 0.4012 0.3858 0.2755 0.0410

BP(2012-2013) 0.4206 0.4076 0.2895 0.0566

Table 4.5: Norm errors of the random walk on the tensor product of the lamplighter

group for volatilities

learning algorithms for the volatility process. The best approximation is again

achieved by the α- biased and α − λ- biased random walks. The smallest norm

value is around 0.01, and there is no significant difference between the values for the

two different generator sets and the two different missing value treatment methods.

The choice of a “good” (best) generator is an open question.Theoretically it may

appear that for two different generator’s results may be qualitatively different. For

the chosen simple trace norm metric, the trace errors for the different generators do

not show any large differences. However, by choosing the weighted norms we may

obtain more significant errors.

Briefly, the fit is relatively good. For the randomly chosen datasets, the α-biased
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random walk on the lamplighter group and α − λ- biased random walk provide

significantly better fits to the data. The smallest trace norm value is around 0.02.

Also, the α-biased random walk on the tensor product of the lamplighter group and

α−λ- biased random walk provide significantly better fits to the data compared with

other models. The smallest trace norm values is around 0.04. The random walk on

the tensor product of the lamplighter group gives a better approximation than the

random walk on the lamplighter group. Also, two different generators are chosen

randomly for the each case, and each produce similar results. Therefore, this shows

the sensitivity. Two different methods (EM and machine learning) are used to deal

with the missing data. They yield close results, showing the robustness. In addition,

the results are almost same regarding share price and its volatility. Although the

method works well in many situations, results were occasionally unsatisfactory, such

as with BP (2009-2010). This poses the question as to funding a better approach,

e.g., funding a better generator.

For the moment we do not have results showing any direct advantage of the

lamplighter construction with respect to the general construction of the Markovian

model. However, parametric models are often easier to handle then non-parametric

models [97], [32].



Chapter 5

Option Price for Binomial Model

via Quantum Data

This chapter is devoted to the analysis of the quantum data. First, we introduce

three different statistics, namely the Maxwell-Boltzmann, Bose-Einstein and Fermi-

Dirac statistics, for both quantum and classical methods. Then, we present a single-

step classical binomial model, and a one-step and multi-step quantum binomial

model. Specifically, we estimate the parameters of the quantum two-step binomial

market. Then, we find option prices based on these parameters in a quantum bino-

mial market.

5.1 Statistical Mechanics

There are both quantum and classical statistics. The usual classical statistics are

statistics on data such as that of moment estimator. Quantum statistics are mostly

associated with the probabilities of eigenvalues defined by quantum state, density, ρ,

etc. Statistics consider the extent to which particles can be distinguished and how

that affects the number of unique states the particles can create. The statistics of

distinguishable classical particles is described using Maxwell-Boltzmann statistics.

In other words, the configurations of two different particles in two different states

are not the same. Extending this to N particles yields the Maxwell-Boltzmann

distribution of particles in different states.

113
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Figure 5.1: Configurations of (a) Maxwell-Boltzmann, (b) Bose-Einstein and (c)

Fermi-Dirac ball-in-box models. Note that all N entities are fully allocated.

In addition, the statistics of indistinguishable quantum particles are described us-

ing Bose-Einstein and Fermi-Dirac statistics. When particles are indistinguishable,

the number of unique states is decreased, as the number of unique configurations

is reduced. See Figure 5.1 for a detailed picture of the difference between these

statistical models [79]. Also, see further for details of likelihood for each of the

statistics.
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5.2 Classical and Quantum Binomial Model

In finance theory, the binomial model is a useful and well-known model used for

pricing a stock option, and was first proposed by Cox, Ross and Rubinstein [30]. This

model converts the Black-Scholes-Merton model into a discrete binary tree model

of prices. The binomial tree is constructed between the valuation and expiration

dates (number of steps). For each n steps of the binomial model, n new tree nodes

are created. These new nodes represent a single, discrete change in the underlying

stock price. For example, the term single-step means that only one discrete change

in the stock underlying the option. In this research, we mostly consider a two-step

quantum binomial model. First of all, we present the single-step classical binomial

model. Then, we introduce the option price formula for single-step, two-step and

multi-step quantum binomial models with the notation used in [102]. See Appendix

C for details of the derivation of the option price formulae for these binomial models.

Single-Step Classical Binomial Model:

A binomial market (B, S) consists of a risk-free bank account B and stock of

price S. An arbitrage-free portfolio is:

B1 = B0(1 + r), S1 = S0(1 +R) (5.2.1)

where the interest rate r is constant and the volatility rate R takes two values such

as:

−1 ≤ u < r < d (5.2.2)

S1 has two outcomes. Cu = [S0(1 + u)−K]+ is the price of the call option if there

is an upward movement u in the stock price and Cd = [S0(1 + d)−K]+ is the price

of the call option if there is an downward movement d in the stock price and strike

price K. Therefore, the formula for the current price of an option C is

C =
1

1 + r
[
r − d
u− d

Cu +
u− r
u− d

Cd]. (5.2.3)

Equivalently,

C =
1

1 + r
[quCu + qdCd]. (5.2.4)

Single-Step Quantum Binomial Model:
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Let us consider the single-step binomial model for the price of a call option with a

risk-free bank account B, a stock S, and strike price K. An arbitrage-free replicating

portfolio is:

B1 = B0(1 + r), S1 = S0(I2 + A) (5.2.5)

where A is the quantum operator (or observable), which is a self-adjoint non-negative

matrix. Notice that by abuse of notation we denote by S1 a random variable in

the classical case and an operator in the quantum case. Traditionally, saying the

observed matrix refers to the observed eigenvalues.

And,

H = [S1 −K]+ (5.2.6)

which takes two values: hb is the price of the call option if there is an upward

movement in the stock of (1 + b) and ha is the price of the call option if there is a

downward movement (we follow the notation used in [102] here, where b = u − 1

and a = d− 1):

hb = [S0(1 + b)−K]+, ha = [S0(1 + a)−K]+ (5.2.7)

Hence, the current option value C is

C =
1

1 + r
tr[ρH] =

1

1 + r
[
b− r
b− a

ha +
r − a
b− a

hb]. (5.2.8)

where the density matrix ρ (i.e., a self-adjojnt positive matrix with the trace 1) for

all states in the risk-neutral world.

Multi-Step Quantum Binomial Model:

A single-step quantum binomial model is considered in order to derive the

N−period multi-step model. In the multi-step model, each step is taken using

the tensor product (see Chapter 2 for details of the tensor product) of the previous

step to build a composite quantum system. Let us consider a call options in the N−

period quantum binomial market (B, S). Its payoff is

HN = [SN −K]+ (5.2.9)

where K is the strike price. And,

HN = [SN −K]+ =
N∑
n=0

[S0(1 + b)n(1 + a)N−n−K][
∑
|σ|

⊗Nj=1|wjσ >< wjσ|] (5.2.10)



Chapter 5. Option Price for Binomial Model via Quantum Data 117

In here, wjσ = |1 >=
(

1
0

)
means to choose b = u− 1 at time j in the tensor product;

similarly, wjσ = |0 >=
(

0
1

)
means to choose a = d− 1

f(SN) =
N∑
n=0

f(undN−n)
∑
|σ|

|wjσ >< wjσ|

The second sum is over all permutations with a fixed number of chosen u’s =n.

The price for the call option in this multi-step quantum binomial pricing can be

written as follows:

CN
0 = tr(ρ⊗N [SN −K]+) (5.2.11)

Then, this equation is taken and the equivalent of the Cox-Ross-Rubinstein option

pricing formula in [102] can be derived as follows:

CN
0 = (1 + r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[S0(1 + b)n(1 + a)N−n −K]+. (5.2.12)

where q = qu and 1− q = qd are the same as for the classical case.

Moreover, the option price formula is found via Bose-Einstein statistics instead

of the classical Maxwell-Boltzmann statistics as follows [102]:

CN
0 = tr(ρ⊗N [SN −K]+) (5.2.13)

Also this equation is used to derive a new quantum option pricing formula in [102]

as follows:

CN
0 = (1 + r)−N

N∑
n=0

(
qn(1− q)N−n∑N
k=0 q

k(1− q)N−k
[S0(1 + b)n(1 + a)N−n −K]+). (5.2.14)

Two-Step Quantum Binomial Model:

Now we present the two-step quantum binomial model, which is the key model

in this research. We define the two-step binomial market (B, S) with a risk-free

bank account B = (B0, B1, B2) and a stock S = (S0, S1, S2) as follows:

B1 = B0(1 + r)2, S2 = S0 ⊗2
j=1 (I2 + A) (5.2.15)

where stock price movement is represented by the quantum operator A, which

is a Hermitian matrix.
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In order to derive the option price formula in a two-step quantum binomial

market, let us take N = 2 in equation 5.2.11. The option price formula is as

follows:

C2
0 = tr(ρ⊗2

j [S2 −K]+) (5.2.16)

The following formula is equal to ( 5.2.16), which is derived via classical Maxwell-

Boltzmann statistics.

C2
0 = (1 + r)−2

2∑
n=0

2!

n!(2− n)!
qn(1− q)2−n[S0(1 + b)n(1 + a)2−n −K]+. (5.2.17)

C2
0 =

1

(1 + r)2
(q2[S0(1 + b)2 −K]+ + 2q(1− q)[S0(1 + b)(1 + a)−K]+

+ (1− q)2[S0(1 + a)2 −K]+).

5.3 Computing Option Price via the Two-Step

Quantum Binomial Model

S0

dS0

uS0

udS0

u2S0

d2S0

duS0P
d

Pu Pd

Pu

Pu

P
d

The diagram above illustrates a two-step binomial tree in a classical probability

model. S0, S1, . . . is the dataset for which the probabilities Pu, Pd are observed.

The estimated value of Pu is the total number of upward movements over the total
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number of movements. Also, the estimated value of Pd is the total number of

downward movements over the total number of movements. Hence, for one step

Pf(X) = f(Xu)Pu + f(Xd)Pd.

In addition, we need to present a new parameter r, which is the interest rate,

in order to consider the same binomial tree in a Cox-Rubinstein binomial mar-

ket’s so-called classical binomial model. In this model, the arbitrage-free martingale

probabilities qu and qd are considered for computation in a Cox-Rubinstein binomial

market. The main purpose where is the estimation of the parameters u and d. Note

that Pu and Pd are irrelevant for the option pricing; however, they might be used to

estimate the model.

Briefly, the formula of the option price via the classical binomial model is:

OP (C) =

∑n
j=0 f(S0u

jdn−j)
(
n
j

)
qjuq

n−j
d

(1 + r)n
(5.3.18)

where uqu + dqd = 1 + r (the same u and d as defined above) with no arbitrage

condition (d < 1 + r < u) and f(S0u
jdn−j) = Cujdn−j where the option price of

option claim C = f(Sn). Therefore,

qu =
1 + r − d
u− d

, qd = 1− qu.

Also, in this research we consider the call option (C = (S2 −K)+). For a two-step

binomial model, the option price is:

OP =
Cuuq2

u + 2Cudquqd + Cddq2
d

(1 + r)2
. (5.3.19)

In this research, we work with quantum data. Firstly, expressing odd/ known

results in a new form may allow for a better qualitative understanding. Additionally,

the quantum model is well established [102], [95]. In the classical case, the prob-

abilities Pu, Pd are observed from the data S0, S1, . . .. The all difference between

the classical case and quantum case is about data. In the quantum case, the data

is observed S0, S1, . . . + errors with outliers or missing data. In our research, the

observed data is the operator H⊗2 that has eigenvalues H⊗2.



Chapter 5. Option Price for Binomial Model via Quantum Data 120

Furthermore, the general formula for option price via the quantum binomial

model is as follows:

OP (f(ST ) = f(S0H
⊗n) =

tr(ρ⊗nf(S0H
⊗n))

(1 + r)n
(5.3.20)

where ρ is density matrix (ρ > 0, ρ∗ = ρ) and must have a trace of one. Also,

Sn = S0H
⊗n, ρ = ρ̂⊗n, tr(ρH) = 1 + r

For a one-step quantum binomial model, the option price is:

OP (f(ST )) = OP (f(S0H) =
tr(ρf(S0H))

(1 + r)
(5.3.21)

where S0 is constant and a Hermitian matrix H is the quantum operator, as follows:

H = V ∗DHV and DH =

 u o

0 d

 ≥ 0

where V ∗ is the adjoint of V and V , V ∗, DH are for the diagonal representation.

Lemma 5.3.1. Let H be a self-adjoint matrix:

g(H) = V ∗g(DH)V.

Also, ρ is a density matrix, as follows:

ρ =

 ρ11 ρ12

ρ21 ρ22

 ≥ 0

so, ρ11, ρ21 ≥ 0. ρ is a self-adjoint (ρ∗ = ρ), ρ∗ is an adjoint of ρ and ā is the

conjugate:

ρ∗ =

 ρ11 ρ̄21

ρ̄12 ρ22


so, ρ12 = ρ21.

Also, the arbitrage-free condition tr(ρH) = 1 + r is satisfied such that:

tr(ρH) = tr(ρV ∗DHV )

= tr((V ρV ∗)DH)

= tr(ρ̃DH)

if ρ̃ = V ρV ∗ is a density matrix.
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Lemma 5.3.2. ρ̃ = V ρV ∗ is a density matrix if ρ is the density.

Proof:

(i) ρ̃ must be a self-adjoint

(ii) ρ̃ must have a trace of one.

ρ̃∗ = (V ρV ∗)∗ = (V ∗)∗ρV ∗ = V ρV ∗ = ρ̃

and

tr(ρ̃) = tr(V ρV ∗) = tr(V ∗V ρ) = tr(ρ) = 1

Therefore, ρ̃ is a density matrix.

Hence,

tr(ρ̃DH) = 1 + r

tr(ρ̃) = 1

and

ρ̃11 + ρ̃22 = 1

ρ̃11u+ ρ̃22d = 1 + r.

Then, ρ̃11 = qu, ρ̃22 = qd and

qu =
1 + r − d
u− d

, qd = 1− qu.

Finally, we obtain the option price formula for the one-step model:

OP (f(S1)) =
f(S0u)qu + f(S0d)qd

(1 + r)
(5.3.22)

In this research, our aim is to estimate the parameters required to describe a

two-step quantum binomial market. Therefore, we derive the option price formula

for the two-step quantum binomial model via same procedure used above for the

one-step quantum binomial model. For a two-step quantum binomial model, the

option price is:

OP (f(ST )) = OP (f(S0H
⊗2) =

tr(ρ⊗2f(S0H
⊗2))

(1 + r)2
(5.3.23)
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where S0 is a constant, Hermitian matrix H⊗2 is a quantum operator and ρ⊗2 is a

density matrix. Also, the arbitrage-free condition tr(ρ⊗2H⊗2) = 1 + r is satisfied:

tr(ρ⊗2H⊗2) = tr(ρ̃DH)

and ρ̃⊗2 is a density matrix from Lemma 5.3.2. Hence,

tr(ρ̃⊗2D⊗2
H ) = 1 + r

tr(ρ̃⊗2) = 1

and diagonal elements of the ρ̃⊗2 are as q2
u, quqd, qdqu, q

2
d,

qu =
1 + r − d
u− d

, qd = 1− qu.

Finally, we obtain the option price formula for the two-step model:

OP (f(S2)) =
f(S0u

2)q2
u + f(S0ud)quqd + f(S0du)qdqu + f(S0d

2)q2
d

(1 + r)2
(5.3.24)

Thus, in general ( 5.3.20) we obtain the same answer as for the classical case

( 5.3.18). The general formula of the option price in a quantum binomial market is:

OP (f(ST ) = f(S0H
⊗n) =

tr(ρ⊗nf(S0H
⊗n))

(1 + r)n
(5.3.25)

=

∑n
j=0 f(S0u

jdn−j)
(
n
j

)
qjuq

n−j
d

(1 + r)n
(5.3.26)

In conclusion, we need to work with eigenvalues of the Hermitian operator; more

specifically, we observe the eigenvalues of the operator H⊗n. The original density

matrix ρ is irrelevant to the computation of option price for the binomial model via

quantum data. We only need the transformed density matrix ρ̃ for computation [95].

Thus, the main job is to estimate high “u” and low “d” jumps from a set of numbers

(eigenvalues of H⊗n).

Briefly, we need to estimate the parameters “u” ,“d” in both the classical and

quantum models. The main point is availability. If we have more data, we observe

H, (rather than H⊗2), which is easier.
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5.3.1 Estimating the Parameters (“u” and “d”) for a Two-

Step Quantum Binomial Model

The observable data (given) λ is real data, which is a set of eigenvalues of H⊗2:

λi =
Si
Si−1

(5.3.27)

where Si is the monthly share price process for i = 1, . . . , N . Therefore, our dataset

is:

A = {λ1, . . . , λN} (5.3.28)

which comes from a family such as:

B = {ujdn−j : j = {0, 1, . . . , n}}. (5.3.29)

In addition we have errors:

λi = ujdn−j + εi (5.3.30)

where j = j(i). Now, our goal is one of identifying the parameters “u” and “d”.

Briefly, the data is statistically “dirty”. Even without the presence of errors εi it

is not a straightforward question. In general, the machine learning-type algorithm

takes four main steps in order to estimate “u” and “d”:

Step 1: Randomly choose a pair (u, d) such that:

fj(u, d) = ujdn−j

where j = {1, . . . , n+ 1}.

Step 2: Given λ, find a minimum

εj = |λ− fj(u, d)| and Arg = j

for which the minimum ε = ε1 . . . εn+1 is obtained. Then,

Aj = {λk : j = Arg(~ε)}.

Step 3: Based on Maxwell-Boltzmann statistics, estimate p̂, (and so q̂ = 1− p̂).

Step 4: Compute u, d by the minimum value of the risk function:∑
λk∈Aj

|λk − ujdn−j|)p̂j q̂n−j
(
n

j

)
→ min

u,d
.
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Specifically, in this research we consider a two-step quantum binomial market.

Case n=2: It is rational to treat fortnight closing data as once observed end of

the monthly closing data. In particular, we first randomly choose initial values for

u and d that satisfy the following conditions:
d ∈ (

√
λmin,

√
λmed)

d < u

u ∈ (
√
λmed,

√
λmax)

(5.3.31)

Then, errors are computed to identify classes of the data:

ε1i = |λi − u2|

ε2i = |λi − ud|

ε3i = |λi − d2|

If ε1i is the minimum error λi goes to Auu class, else if ε2i is the minimum error

λi goes to Aud class and else ε3i is the minimum error λi goes to Add class.

Second, we compute the probabilities p and q = (1− p) of u and d by likelihood:

At the beginning of this chapter, we review three different statistics.

In Maxwell-Boltzmann statistics, ujdn−j appears with equal chances as a tensor

product for each u, whilst each d appears independently with fixed probability.

ujdn−j →
(
n

j

)
P j
uP

n−j
d

where
(
n
j

)
are the places to put u.

Bose-Einstein statistics ignore the placement, and each ujdn−j counts once.

CP j
uP

n−j
d

where C is a normaliser.

Fermi-Dirac statistics ignores also the placement. There is no p, q, and one

simply puts 1/3 for each event uu, ud, dd. (Also ud = du.)
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The Maxwell-Boltzmann statistics likelihood function is

L = (p2)nuu(q2)ndd(2pq)nud (5.3.32)

where nuu is the number of elements in class Auu, ndd is the number of elements in

class Add and nud is the number of the elements in class Aud.

The Bose-Einstein statistics likelihood function is similar

L = CN(p2)nuu(q2)ndd(pq)nud (5.3.33)

where nuu is the number of elements in class Auu, ndd is the number of elements in

class Add and nud is number of the elements in class Aud. Also, N = nuu +nud +ndd

and

C =
1

1− pq
where p2 + pq + q2 = p2 + 2pq + q2 − pq = 1− pq.

Since Fermi-Dirac statistics do not depend on p, q, the likelihood step is not

present.

In the last step, we compute u and d via the probabilities computed in the second

step.

F = p2(
∑

λi∈Auu

|λi − u2|) + 2pq(
∑

λi∈Aud

|λi − ud|) + q2(
∑
λi∈Add

|λi − d2|) (5.3.34)

We find the minimum value of the risk function F with minimum u and d which

satisfy the conditions in ( 5.3.31). All the steps are repeated until convergence.

5.3.2 Results

In reality, we have always look only at available data, not the mathematical model.

In this example, we consider real model is fortnight and available data is monthly

share prices. Therefore, dissimilar to the other models, we consider the monthly

closing share prices for the model presented in this chapter. The share prices data



Chapter 5. Option Price for Binomial Model via Quantum Data 126

Cases BP(2009-2010) BP(2010-2011) BP(2011-2012) BP(2012-2013)

OP 0.4738 0.5589 0.5062 0.4803

Table 5.1: The option prices for a quantum binomial market for all financial years

were obtained from the Internet for BP monthly closing share prices for four different

financial years, namely (April to April) 2009-2010, 2010-2011, 2011-2012, 2012-2013.

The real data Sn is transformed to λi = Si

Si−1
. We treat the data as a set of eigenvalues

of H⊗2 (same operator, iid observation). Here we assume that we do not observe the

closing prices at the end of each fortnight. (H → two weeks, H⊗2 → month, · · · )

Then, we estimate the parameters “u” and “d” by the machine learning-type

algorithm introduced in Section 5.3.1. As a result of this algorithm, the option price

is computed using the estimated parameters “u” and “d” in the quantum binomial

market, and which are illustrated in Table 5.1. Also, the interest rate is chosen to

satisfy a no arbitrage condition. Surprisingly, a 0 interest rate gives negative option

prices.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

The main purpose of this thesis was to suggest an alternative means of modelling

share prices in the real market, and thereby to gain further understanding of related

mathematical methodology in the financial area. We considered a number of prob-

lems in several areas which are considered substantial in certain mathematical and

financial areas.

In this thesis, we modelled the BP share prices over four different financial years,

(April to April) 2009-2010, 2010-2011, 2011-2012, 2012-2013, which were chosen

arbitrarily from the internet. For the first and the second model, we worked with

day-by-day closing share prices, which were considered after log transformation.

However, for the quantum model case, we worked with BP’s monthly closing share

prices for the same financial years. In addition, the volatility of the share price data

was estimated and analysed by the same procedure as for share prices process.

First, the logged data were modelled as an additive functional of a discrete time

Markov chain perturbed by Gaussian noise. Applying the real share price data, we

assumed our model was a discrete time model.

Second, though our model was discrete time, working with continuous time is

easier in theory for a number of reasons. Therefore, we considered the embedding

problem, which examined whether a discrete time Markov chain can be treated

as a continuous time Markov chain [22]. Although the embedding problem was

127
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applied to the financial area by Israel [75], one of the goals of this research was to

analyse whether the discrete time model permitted extension or embedding into the

continuous time model. If the model could be converted to a continuous time model

(i.e., it was indeed embeddable), this would have meant that the result (data) was

observable each time. This is a plausible and important method in the financial

area. If a model is a continuous time model, many existing formulae (such as option

pricing) are then directly applicable to the model.

We analysed this problem by applying it to our data. This part of the research

is an extensive case study on the embedding problem for the financial data and its

volatility. It illustrates the importance of the embedding problem in a real financial

application. As a result, in general we found we could not embed the discrete time

Markov chain into the continuous time Markov chain. This means that the model

we considered should be treated as a discrete time model only. Overall, this study

shows that using a continuous time model for volatility is more stable than the

original share prices. In addition, considering a small number of carefully chosen

states is more reliable in terms of modelling.

Third, we present a new and simple, yet realistic method of modelling, analysing

and considering financial data in our second model. We modelled the logged data as

an additive functional of a discrete time Markov chain with a hidden random walk on

the so-called lamplighter group, which are wreath products of groups. In particular,

the hidden random walk was constructed on the lamplighter group Z3 and on the

tensor product of groups Z2⊗Z2. Also, a biased random walk (as introduced in [72])

was constructed to fit the data. After comparison to different random walks with

two different generator sets, for the randomly chosen datasets the α-biased random

walk on the lamplighter group and α−λ- biased random walk were shown to provide

good fits to the data; in addition, the α-biased random walk on the tensor product

of the lamplighter group and α−λ- biased random walk were also shown to provide

significantly better fits to the data compared with other models. The random walk

on the tensor product of the lamplighter group gave a better approximation to the

data than the random walk on the lamplighter group. Also, two different generators

were chosen randomly for each case, and each produced similar results. Therefore,
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this shows the sensitivity. Two different methods (EM and Machine Learning) are

used to deal with the missing data. They yield close results showing the robustness.

Furthermore, splitting data is a key method for both our first and second models.

The tensor product structure comes from the splitting of the data into no jump, small

jump and no big jump groups and matching it into the no small jump-small jump

and no big jump-big jump groups. This then required us to deal with any missing

data. Splitting data in a (2×2)(2×2) manner helps to find the hedging to compute

the option price, but the missing data is important in any such case. Therefore, the

missing data and appropriate treatment methods have been reviewed. Specifically,

we used the Expectation- Maximization Algorithm as the parameter estimation

method and the C4.5 machine learning algorithm as the imputation method in

order to treat the missing values.

Finally, we analysed the quantum data, which was subsequently used to compute

the option price. In particular, we considered a binomial model. In finance theory,

the binomial model is a useful and well-known model for pricing stock options. This

model was used to convert the Black-Scholes-Merton model into a discrete binary

tree model of prices. Quantum binomial options pricing model made the respective

theories not only easier to analyse but also easier to implement on a computer.

Specifically, we considered a two-step quantum binomial model to estimate the

appropriate parameters. We realized that the original density matrix ρ is irrelevant

to the computation of option price using a binomial model via quantum data. We

only needed to transform the density matrix ρ̃ for computation. Thus, the main

requirement was to estimate u and d from H⊗n. Therefore, we estimated these

parameters using the binomial quantum model, and subsequently computed option

prices based on these parameters in a quantum binomial market.

6.2 Future Work

In theory, working with continuous time is easier than discrete time. The embedding

problem plays a significant role in finance. Whilst this thesis contains an extensive

case study on the embedding problem regarding financial data and its volatility,
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more research needs to be done for the embedding problem in the area of finance.

In case 2, for the random search in the embedding problem in Section 3.3.4 in

Chapter 3, all steps are repeated 105 times in order to find the minimum value of

the parameter δ, which was found to be 0.2. The aim is to find practical δ = δn

(such as a confidence interval) such as that for the observed error δ(P̂ ) >> δ. We

say that the matrix P̂ is not embeddable (observe δ = 0.2). We believe this result

can be proved theoretically, but at this stage, we do not know how.

Further, the statistical distribution chosen for computation was the Maxwell-

Boltzmann classical statistical distribution. The influence of statistical methods such

as those of Maxwell-Boltzmann or Bose-Einstein statistics on parameter estimation

in quantum binomial market is an interesting, and open, question.

In this research, we use entropy in a machine learning algorithm to treat the

missing data. Additionally, application of entropy should be considered for data

analysis. Due to the entropy property HXY = HX + HY for independent variables,

entropy could be used as an alternative metric for data fitting problems.

Theoretical results for the distance between two stochastic random matrices is

another interesting open question.

In addition, the results are similar for share price and its volatility. Although the

method works well in many situations, sometimes results are not satisfactory such

for as BP (2009-2010). This poses the question as to whether a better approach can

be found, e.g., finding a better generator.
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Appendix A

Dataset

In the following figures, we illustrate the original data in this research are used to

be analysed. We choose the BP daily share price data for four different financial

years. The main point of this research is analysing of the each financial year share

price data.

Figure A.1: BP Share Prices Chart between April 2009 and April 2010

Figure A.2: BP Share Prices Chart between April 2010 and April 2011
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Figure A.3: BP Share Prices Chart between April 2011 and April 2012



Appendix B

Tables and Figures: Embedding

Problem
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Cases P̂

BP(2009-2010)


0.1392 0.8009 0.0598

0.1499 0.8168 0.0333

0.0333 0.9333 0.0333



BP(2010-2011)


0.2860 0.6650 0.0491

0.2097 0.7569 0.0333

0.9333 0.0333 0.0333



BP(2011-2012)


0.0655 0.9012 0.0333

0.1378 0.8249 0.0374

0.0333 0.9333 0.0333



BP(2012-2013)


0.1205 0.7882 0.0914

0.1413 0.8253 0.0333

0.0333 0.9333 0.0333


Table B.1: 3-by-3 pertubated transition matrices for volatilities

QX matrices (PXviaEM) QX matrices (PXviaC4.5) −4.7935 4.7935

0.8059 −0.8059

  −2.6998 + 2.7272i 2.6998− 2.7272i

0.4103− 0.4144i 0.4103 + 0.4144i


 −1.8522 1.8522

0.5425 −0.5425

  −2.4439 2.4439

0.5680 −0.5680


 −2.3475 + 2.7629i 2.3475− 2.7629i

0.3218− 0.3787i −0.3218 + 0.3787i

  −5.3095 5.3095

0.7654 −0.7654


 −2.9885 + 2.7127i 2.9885− 2.7127i

0.472− 0.4289i −0.4725 + 0.4289i

  −2.5729 2.5729

0.1437 −0.1437


Table B.2: QX matrices via EM and C4.5 algorithm for volatilities
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Cases QY

BP(2009-2010)

 −0.1067 + 0.0974i 0.1067− 0.0974i

3.3353− 3.0442i −3.3353 + 3.0442i


BP(2010-2011)

 −0.0648 + 0.0492i 0.0648− 0.0492i

4.0766− 3.0924i −4.0766 + 3.0924i


BP(2011-2012)

 −0.0593 0.0593

2.0744 −2.0744


BP(2012-2013)

 −0.1248 + 0.1223i 0.1248− 0.1223i

3.0816− 3.0193i −3.0816 + 3.0193i


Table B.3: QY for volatilities

Cases PX Q matrices

BP(2009-2010)

 0.2844 0.7156

0.2357 0.7463

  −2.5733 2.5733

0.9124 −0.9124


BP(2010-2011)

 0.5454 0.4546

0.5420 0.4580

  −2.5977 2.5977

3.0971 −3.0971


BP(2011-2012)

 0.2766 0.7234

0.2443 0.7557

  −2.5651 2.5651

0.8663 −0.8663


BP(2012-2013)

 0.3175 0.6825

0.2400 0.7600

  −1.8920 1.8920

0.6652 −0.6652


Table B.4: Perturbated transition matrices PX via EM and their Q matrices
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Cases PX Q matrices

BP(2009-2010)

 0.2531 0.7469

0.3689 0.6311

  −1.4431 + 2.1028i 1.4431− 2.1028i

0.7129− 1.0388i −0.7129 + 1.0388i


BP(2010-2011)

 0.3807 0.6193

0.6187 0.3813

  −0.7181 + 1.5716i 0.7181− 1.5716i

0.7173− 1.5700i −0.7173 + 1.5700i


BP(2011-2012)

 0.1083 0.8917

0.3232 0.6768

  −1.1286 + 2.3058i 1.1286− 2.3058i

0.4091− 0.8358i −0.4091 + 0.8358i


BP(2012-2013)

 0.1865 0.8135

0.3165 0.6835

  −1.4692 + 2.2617i 1.4692− 2.2617i

0.5716− 0.8799i −0.5716 + 0.8799i


Table B.5: Perturbated transition matrices PX via C4.5 and their Q matrices

Cases PY Q matrices

BP(2009-2010)

 0.8821 0.1179

0.8854 0.1416

  −0.4520 0.4520

3.2901 −3.2901


BP(2010-2011)

 0.8664 0.1356

0.6583 0.3417

  −0.2697 0.2697

1.3095 −1.3095


BP(2011-2012)

 0.7230 0.2770

0.6418 0.3582

  −0.7568 0.7568

1.7538 −1.7538


BP(2012-2013)

 0.8775 0.1225

0.8613 0.1387

  −0.5139 0.5139

3.6124 −3.6124


Table B.6: Perturbated transition matrices PY and their Q matrices
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Cases PX Q matrices

BP(2009-2010)

 0.1991 0.8009

0.1624 0.8376

  −2.7487 2.7487

0.5573 −0.5573


BP(2010-2011)

 0.3341 0.6659

0.2186 0.7814

  −1.6255 1.6255

0.5337 −0.5337


BP(2011-2012)

 0.1203 0.8797

0.1493 0.8507

  −3.0256 + 2.6857i 3.0256− 2.6857i

0.5136− 0.4559i −0.5136 + 0.4559i


BP(2012-2013)

 0.1651 0.8349

0.1601 0.8399

  −4.4338 4.4338

0.8500 −0.8500


Table B.7: Perturbated transition matrices PX via EM and their Q matrices for

volatilities

Cases PX Q matrices

BP(2009-2010)

 0.1505 0.8495

0.1574 0.8426

  −4.2100 + 2.6506i 4.2100− 2.6506i

0.7799− 0.4910i −0.7799 + 0.4910i


BP(2010-2011)

 0.2723 0.7277

0.1947 0.8053

  −2.0165 2.0165

0.5395 −0.5395


BP(2011-2012)

 0.1819 0.8181

0.1465 0.8535

  −2.8337 2.8337

0.5073 −0.5073


BP(2012-2013)

 0.1706 0.8294

0.0778 0.9222

  −2.1732 2.1732

0.2038 −0.2038


Table B.8: Perturbated transition matrices PX via C4.5 and their Q matrices for

volatilities
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Cases PY Q matrices

BP(2009-2010)

 0.9379 0.0621

0.9333 0.0667

  −0.3368 0.3368

5.0595 −5.0595


BP(2010-2011)

 0.9524 0.0554

0.9333 0.0667

  −0.1924 0.1924

3.7697 −3.7697


BP(2011-2012)

 0.9446 0.0554

0.8047 0.1953

  −0.1266 0.1266

1.8402 −1.8402


BP(2012-2013)

 0.9302 0.0698

0.9333 0.0667

  −0.4015 + 0.2185i 0.4015− 0.2186i

5.3695− 2.9230i −5.3695 + 2.9230i


Table B.9: Perturbated transition matrices PY and their Q matrices for volatilities

Cases Transition matrices

(2009-2010)


0.1071 0.5714 0.3214

0.0957 0.4522 0.4522

0.1308 0.4486 0.4206



(2010-2011)


0.1500 0.3500 0.5000

0.1351 0.4775 0.3874

0.1919 0.4545 0.3535



(2011-2012)


0.0857 0.4286 0.4857

0.1810 0.4286 0.3905

0.1091 0.4091 0.4818



(2012-2013)


0.1220 0.3171 0.5610

0.1961 0.3824 0.4216

0.1619 0.4667 0.3714


Table B.10: 3-by-3 transition matrices for all financial years of Barclays
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Cases Q matrices

(2009-2010)


−2.3146 4.0294 −1.7154

−0.1590 −1.6378 1.7970

0.7844 0.7290 −1.5134



(2010-2011)


−2.0881 + 1.3535i 1.2544 + 1.2192i 0.8337− 2.5729i

0.4331 + 0.2407i −1.4201 + 0.2168i 0.9871− 0.4576i

0.3557− 0.8266i 1.1119− 0.7446i −1.4678 + 1.5713i



(2011-2012)


−2.6648 + 3.1303i 1.3120− 0.9453i 1.3527− 2.1849i

0.3807− 1.8384i −1.8342 + 0.5552i 1.4538 + 1.2831i

0.4568 + 0.7792i 1.3327− 0.2353i −1.7896− 0.5439i



(2012-2013)


−1.8272 −2.9488 4.7765

0.9646 −1.0017 0.0372

−0.1975 2.1382 −1.9408


Table B.11: Q matrices of the 3-by-3 transition matrices for all financial years of

Barclays

Cases Transition matrices

(2009-2010)


0.2222 0.4074 0.3704

0.2000 0.4667 0.3333

0.2308 0.3846 0.3846



(2010-2011)


0.1739 0.4130 0.4130

0.1560 0.4495 0.3945

0.2105 0.4316 0.3579



(2011-2012)


0.2326 0.4186 0.3488

0.1000 0.4800 0.4200

0.2056 0.3178 0.4766



(2012-2013)


0.3019 0.3774 0.3208

0.1895 0.3368 0.4737

0.2000 0.4300 0.3700


Table B.12: 3-by-3 transition matrices for all financial years of Burberry
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Cases Q matrices

(2009-2010)


−7.1081 + 2.1916i 2.5123− 0.6083i 4.5958− 1.5834i

0.5638− 0.0002i −1.5024 + 0.0001i 0.9386 + 0.0001i

3.6001− 1.3148i 0.2647 + 0.3649i −3.8648 + 0.9499i



(2010-2011)


−2.6302 + 1.2341i 1.5415 + 0.3314i 1.0885− 1.5654i

0.7162 + 0.6859i −1.9051 + 0.1842i 1.1890− 0.8700i

0.4209− 1.3586i 1.4411− 0.3648i −1.8619 + 1.7233i



(2011-2012)


−1.8708 1.3414 0.5294

−0.1078 −1.0512 1.1589

0.8260 0.4502 −1.2761



(2012-2013)


−1.7636 + 0.0287i 0.8790 + 0.5417i 0.8848− 0.5704i

0.4899− 0.0919i −1.4406− 1.7321i 0.9506 + 1.8240i

0.4945 + 0.0725i 0.9016 + 1.3658i −1.3962− 1.4383i


Table B.13: Q matrices of the 3-by-3 transition matrices for all financial years of

Burberry

Cases Transition matrices

(2009-2010)


0.1212 0.5152 0.3636

0.1204 0.4444 0.4352

0.1468 0.4037 0.4495



(2010-2011)


0.2083 0.4167 0.3750

0.2062 0.3299 0.4639

0.1714 0.4286 0.4000



(2011-2012)


0.1591 0.3409 0.5000

0.2212 0.4231 0.3558

0.1373 0.4314 0.4314



(2012-2013)


0.3108 0.3649 0.3243

0.3103 0.3103 0.3793

0.2874 0.3678 0.3448


Table B.14: 3-by-3 transition matrices for all financial years of Easyjet
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Cases Q matrices

(2009-2010)


−3.2807 4.0439 −0.7632

0.0713 −1.6367 1.5654

0.9299 0.4177 −1.3476



(2010-2011)


−2.6493 + 0.2666i 0.9786− 1.0149i 1.6707 + 0.7483i

0.4840− 0.5027i −1.4398 + 1.9136i 0.9558− 1.4109i

0.7639 + 0.3425i 0.8829− 1.3039i −1.6468 + 0.9614i



(2011-2012)


−2.4070 −0.1783 2.5852

1.2428 −1.3195 0.0770

−0.2163 1.3949 −1.1785



(2012-2013)


−2.5589− 0.2926i 1.0164 + 1.0213i 1.5425− 0.7286i

0.9755 + 0.5839i −1.8789− 2.0383i 0.9032 + 1.4542i

1.2419− 0.3255i 0.9827 + 1.1363i −2.2246− 0.8107i


Table B.15: Q matrices of the 3-by-3 transition matrices for all financial years of

Easyjet

Cases Transition matrices

(2009-2010)


0.1111 0.4722 0.4167

0.1513 0.4874 0.3613

0.1474 0.4737 0.3789



(2010-2011)


0.2838 0.3649 0.3514

0.3118 0.3548 0.3333

0.2892 0.3855 0.3253



(2011-2012)


0.2807 0.3860 0.3333

0.1705 0.2955 0.5341

0.2476 0.3714 0.3810



(2012-2013)


0.3289 0.3289 0.3421

0.2976 0.2619 0.4405

0.2955 0.4205 0.2841


Table B.16: 3-by-3 transition matrices for all financial years of Hsbc
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Cases Q matrices

(2009-2010)


−2.8022 + 2.8136i 2.0901 + 0.0846i 0.7121− 2.8982i

0.4379− 0.5816i −2.2407− 0.0175i 1.8028 + 0.5991i

0.5146− 0.3354i 2.0606− 0.0101i −2.5752 + 0.3455i



(2010-2011)


−2.5177 0.0200 2.4980

2.5169 −2.5789 0.0615

−0.5401 2.8080 −2.2676



(2011-2012)


−3.4170 + 1.3078i 0.7606 + 1.6531i 2.6564− 2.9611i

1.5499− 1.9338i −1.6492− 2.4444i 0.0995 + 4.3785i

0.5675 + 0.8856i 0.9465 + 1.1194i −1.5141− 2.0050i



(2012-2013)


−2.3778 + 0.0002i 1.1510− 0.0201i 1.2264 + 0.0198i

1.0415− 0.0181i −1.4498 + 1.6249i 0.4083− 1.6067i

1.0593 + 0.0171i 0.3898− 1.5337i −1.4489 + 1.5165i


Table B.17: Q matrices of the 3-by-3 transition matrices for all financial years of

Hsbc

Cases Transition matrices

(2009-2010)


0.1765 0.4412 0.3824

0.1311 0.5000 0.3689

0.1277 0.5000 0.3723



(2010-2011)


0.2083 0.3333 0.4583

0.2308 0.3750 0.3942

0.1531 0.5000 0.3469



(2011-2012)


0.2500 0.2778 0.4722

0.1250 0.4519 0.4231

0.1273 0.4273 0.4455



(2012-2013)


0.0952 0.5476 0.3571

0.1782 0.3861 0.4356

0.2000 0.3619 0.4381


Table B.18: 3-by-3 transition matrices for all financial years of ITV



Appendices 153

Cases Q matrices

(2009-2010)


−2.5653 −0.1346 2.7003

0.4879 −2.4152 1.9273

0.2927 3.2435 −3.5362



(2010-2011)


−0.8765 −1.7673 2.6437

1.3140 −2.0785 0.7646

−0.9625 3.1155 −2.1532



(2011-2012)


−1.8054 −0.5943 2.3996

0.2838 −1.8498 1.5660

0.3226 1.9434 −2.2658



(2012-2013)


−1.5531− 13.0049i −1.9339 + 37.2338i 3.4866− 24.2266i

0.6086− 0.5316i −2.0978 + 1.8432i 1.4890− 1.3114i

0.0544 + 5.8271i 2.7933− 16.9899i −2.8475 + 11.1617i


Table B.19: Q matrices of the 3-by-3 transition matrices for all financial years of

ITV

Cases Transition matrices

(2009-2010)


0.2245 0.3265 0.4490

0.2396 0.3958 0.3646

0.1429 0.4095 0.4476



(2010-2011)


0.2353 0.3922 0.3725

0.1373 0.4216 0.4412

0.2577 0.4124 0.3299



(2011-2012)


0.2222 0.2963 0.4815

0.1954 0.2989 0.5057

0.2294 0.4128 0.3578



(2012-2013)


0.2656 0.3594 0.3750

0.2826 0.3587 0.3587

0.2283 0.3913 0.3804


Table B.20: 3-by-3 transition matrices for all financial years of Marks and Spencer
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Cases Q matrices

(2009-2010)


−1.9870 0.2340 1.7530

1.2440 −1.7176 0.4736

−0.2218 1.4922 −1.2704



(2010-2011)


−2.4567− 0.1271i 1.2794− 0.0380i 1.1772 + 0.1652i

0.7721− 1.7305i −1.7787− 0.5174i 1.0068 + 2.2480i

0.4731 + 1.9223i 1.2293 + 0.5747i −1.7024− 2.4971i



(2011-2012)


−2.8686 + 0.2099i 1.8293 + 0.8388i 1.0393− 1.0487i

1.0051 + 0.3021i −1.7696 + 1.2073i 0.7644− 1.5094i

0.6190− 0.3452i 0.5061− 1.3792i −1.1251 + 1.7244i



(2012-2013)


−2.4322 0.7091 1.7230

2.6087 −3.2734 0.6647

−0.9168 2.7802 −1.8635


Table B.21: Q matrices of the 3-by-3 transition matrices for all financial years of

Marks and Spencer

Cases Transition matrices

(2009-2010)


0.3735 0.2651 0.3614

0.3165 0.2405 0.4430

0.3256 0.4419 0.2326



(2010-2011)


0.3125 0.3500 0.3375

0.2857 0.3571 0.3571

0.3721 0.3023 0.3256



(2011-2012)


0.2903 0.3548 0.3548

0.2308 0.3407 0.4286

0.2371 0.4021 0.3608



(2012-2013)


0.2632 0.4386 0.2982

0.1771 0.3542 0.4688

0.2577 0.3918 0.3505


Table B.22: 3-by-3 transition matrices for all financial years of Next
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Cases Q matrices

(2009-2010)


−1.9206 + 0.0152i 1.1094 + 0.4271i 0.8111− 0.4423i

1.0088 + 0.0487i −1.4014 + 1.3727i 0.3926− 1.4213i

0.9623− 0.0601i 0.2027− 1.6938i −1.1650 + 1.7538i



(2010-2011)


−2.9385 1.9280 1.0107

−1.0607 −1.0656 2.1261

3.8464 −0.7823 −3.0643



(2011-2012)


−2.1712− 0.0107i 1.0528− 0.1985i 1.1181 + 0.2092i

0.7197 + 0.0883i −1.7532 + 1.6364i 1.0338− 1.7248i

0.7124− 0.0776i 0.9987− 1.4382i −1.7111 + 1.5159i



(2012-2013)


−0.6405 2.5194 −1.8791

−1.0974 −2.4896 3.5873

1.4864 1.0196 −2.5061


Table B.23: Q matrices of the 3-by-3 transition matrices for all financial years of

Next

Cases Transition matrices

(2009-2010)


0.3594 0.2812 0.3594

0.1667 0.3111 0.5222

0.2812 0.4583 0.2604



(2010-2011)


0.2344 0.3438 0.4219

0.2500 0.3696 0.3804

0.2766 0.3830 0.3404



(2011-2012)


0.2537 0.4328 0.3134

0.2360 0.3258 0.4382

0.3085 0.3404 0.3511



(2012-2013)


0.2687 0.3433 0.3881

0.2857 0.3516 0.3626

0.2667 0.3889 0.3444


Table B.24: 3-by-3 transition matrices for all financial years of Pearson
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Cases Q matrices

(2009-2010)


−1.4071− 0.0850i 0.7154− 0.2184i 0.6917 + 0.3033i

0.5579− 0.4793i −1.0771− 1.2319i 0.5192 + 1.7113i

0.4365 + 0.5111i 0.5277 + 1.3135i −0.9643− 1.8248i



(2010-2011)


−2.8163− 1.2101i 2.4422− 0.9536i 0.3744 + 2.1638i

1.3724− 0.1805i −2.9908− 0.1422i 1.6183 + 0.3227i

0.5743 + 1.0006i 1.2647 + 0.7885i −1.8390− 1.7893i



(2011-2012)


−1.5070 2.3909 −0.8841

−0.3702 −1.8630 2.2332

1.4413 0.0815 −1.5227



(2012-2013)


−1.8407 −1.3628 3.2035

1.6675 −2.2727 0.6048

−0.2768 3.3012 −3.0240


Table B.25: Q matrices of the 3-by-3 transition matrices for all financial years of

Pearson

Cases Transition matrices

(2009-2010)


0.1143 0.3143 0.5714

0.1238 0.4286 0.4476

0.1759 0.4444 0.3796



(2010-2011)


0.1034 0.4828 0.4138

0.1560 0.4037 0.4404

0.0885 0.4425 0.4690



(2011-2012)


0.2286 0.4857 0.2857

0.1261 0.4775 0.3964

0.1250 0.4038 0.4712



(2012-2013)


0.1364 0.4091 0.4545

0.0667 0.5250 0.4083

0.1019 0.4537 0.4444


Table B.26: 3-by-3 transition matrices for all financial years of Royal bank
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Cases Q matrices

(2009-2010)


−2.2137 + 1.3011i 1.7692 + 1.5626i 0.4445− 2.8639i

0.5278 + 0.2675i −1.6799 + 0.3212i 1.1522− 0.5888i

0.2298− 0.6902i 1.0252− 0.8289i −1.2552 + 1.5193i



(2010-2011)


−2.4972 + 1.5278i 1.0642− 1.9363i 1.4329 + 0.4087i

0.2167− 1.1305i −1.5559 + 1.4328i 1.3393− 0.3024i

0.4548 + 0.6765i 1.2064− 0.8574i −1.6612 + 0.1810i



(2011-2012)


−1.9600 1.9774 −0.0174

0.3251 −1.5734 1.2483

0.3125 1.0409 −1.3534



(2012-2013)


−3.1964 0.3673 2.8291

−0.1360 −1.4506 1.5866

0.8106 1.5667 −2.3774


Table B.27: Q matrices of the 3-by-3 transition matrices for all financial years of

Royal bank

Cases Transition matrices

(2009-2010)


0.3056 0.4306 0.2639

0.2386 0.2841 0.4773

0.3222 0.3667 0.3111



(2010-2011)


0.3188 0.3043 0.3768

0.2065 0.4022 0.3913

0.3034 0.3820 0.3146



(2011-2012)


0.3553 0.4079 0.2368

0.2738 0.2976 0.4286

0.2889 0.3111 0.4000



(2012-2013)


0.3750 0.3295 0.2955

0.3291 0.3671 0.3038

0.3704 0.2469 0.3827


Table B.28: 3-by-3 transition matrices for all financial years of Royal mail
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Cases Q matrices

(2009-2010)


0.0314 2.8395 −2.8709

−1.4386 −2.9619 4.4007

1.4095 0.6637 −2.0732



(2010-2011)


−1.7140− 0.5291i 0.7704− 0.4609i 0.9434 + 0.9900i

0.5252− 0.6691i −1.5033− 0.5828i 0.9782 + 1.2518i

0.7577 + 1.0849i 0.9568 + 0.9449i −1.7145− 2.0297i



(2011-2012)


−1.2691 4.5326 −3.2634

0.2377 −4.7518 4.5142

0.8500 0.6073 −1.4572



(2012-2013)


−2.1556 1.4231 0.7325

0.8724 −1.7371 0.8647

1.5303 0.1073 −1.6377


Table B.29: Q matrices of the 3-by-3 transition matrices for all financial years of

Royal mail

Cases Transition matrices

(2009-2010)


0.2933 0.4133 0.2933

0.2921 0.3034 0.4045

0.3140 0.3721 0.3140



(2010-2011)


0.3485 0.3333 0.3182

0.2647 0.3824 0.3529

0.1951 0.5000 0.3049



(2011-2012)


0.3284 0.3284 0.3433

0.3068 0.2955 0.3977

0.1895 0.4105 0.4000



(2012-2013)


0.4444 0.2667 0.2889

0.2754 0.3188 0.4058

0.3596 0.2472 0.3933


Table B.30: 3-by-3 transition matrices for all financial years of Sainsbury
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Cases Q matrices

(2009-2010)


1.6453 6.8228 −8.4671

−2.3286 −6.1802 8.5077

1.0115 0.5201 −1.5313



(2010-2011)


−1.6648− 0.2069i 0.8479 + 0.6471i 0.8169− 0.4402i

0.6806− 0.5185i −1.5909 + 1.6217i 0.9103− 1.1033i

0.4933 + 0.8114i 1.2966− 2.5382i −1.7899 + 1.7267i



(2011-2012)


−1.7569 + 0.1337i 0.8524− 0.2365i 0.9048 + 0.1027i

0.7559− 1.2490i −1.7616 + 2.2087i 1.0057− 0.9596i

0.5381 + 1.0402i 1.0047− 1.8394i −1.5429 + 0.7992i



(2012-2013)


−1.2159 0.8336 0.3823

0.1435 −1.9072 1.7636

1.1381 0.6029 −1.7408


Table B.31: Q matrices of the 3-by-3 transition matrices for all financial years of

Sainsbury

Cases Transition matrices

(2009-2010)


0.1707 0.3415 0.4878

0.1792 0.4057 0.4151

0.1456 0.4854 0.3689



(2010-2011)


0.2295 0.4262 0.3443

0.2174 0.3587 0.4239

0.2887 0.3402 0.3711



(2011-2012)


0.1724 0.4483 0.3793

0.2366 0.3548 0.4086

0.2626 0.3434 0.3939



(2012-2013)


0.4752 0.2574 0.2673

0.3239 0.2817 0.3944

0.4079 0.3158 0.2763


Table B.32: 3-by-3 transition matrices for all financial years of Shell
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Cases Q matrices

(2009-2010)


−1.0916 −3.2671 4.3591

0.9717 −1.9729 1.0013

−0.5794 3.3807 −2.8016



(2010-2011)


−2.0712 2.3539 −0.2828

−0.3142 −1.5826 1.8968

1.6381 −0.0009 −1.6373



(2011-2012)


−9.2765 15.5368 −6.2609

−0.3218 −0.2394 0.5612

5.7372 −8.8780 3.1410



(2012-2013)


−1.3302− 0.0487i 0.6509− 0.0795i 0.6792 + 0.1282i

0.8334 + 0.8280i −1.7987 + 1.3523i 0.9653− 2.1802i

1.0225− 0.6981i 0.7824− 1.1400i −1.8048 + 1.8380i


Table B.33: Q matrices of the 3-by-3 transition matrices for all financial years of

Shell

Cases Transition matrices

(2009-2010)


0.3125 0.4688 0.2188

0.2323 0.3636 0.4040

0.2414 0.3908 0.3678



(2010-2011)


0.2969 0.3125 0.3906

0.2283 0.4022 0.3696

0.2447 0.3723 0.3830



(2011-2012)


0.3291 0.2785 0.3924

0.2625 0.3500 0.3875

0.3407 0.3297 0.3297



(2012-2013)


0.3750 0.2596 0.3654

0.3788 0.3333 0.2879

0.5256 0.2051 0.2692


Table B.34: 3-by-3 transition matrices for all financial years of Smith
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Cases Q matrices

(2009-2010)


−1.9183− 0.3596i 2.4554− 3.5820i −0.5367 + 3.9413i

0.5997 + 0.2834i −2.7218 + 2.8231i 2.1218− 3.1063i

0.7300− 0.0619i 1.3365− 0.6163i −2.0664 + 0.6781i



(2010-2011)


−2.3011 −0.0062 2.3073

0.4913 −2.0842 1.5932

1.0488 2.0240 −3.0730



(2011-2012)


−1.8652 + 0.7422i 0.8333 + 0.4678i 1.0318− 1.2099i

0.8028 + 0.6698i −1.8297 + 0.4222i 1.0268− 1.0919i

0.8835− 1.2129i 0.8861− 0.7646i −1.7695 + 1.9772i



(2012-2013)


−1.2508− 1.5218i 0.5916 + 0.3365i 0.6592 + 1.1853i

0.9976− 0.0602i −1.7332 + 0.0133i 0.7356 + 0.0469i

0.8527 + 2.0967i 0.6453− 0.4637i −1.4982− 1.6331i


Table B.35: Q matrices of the 3-by-3 transition matrices for all financial years of

Smith

Cases Transition matrices

(2009-2010)


0.0741 0.4815 0.4444

0.1120 0.5440 0.3440

0.1122 0.4592 0.4286



(2010-2011)


0.1538 0.4615 0.3846

0.0952 0.3810 0.5238

0.1008 0.4538 0.4454



(2011-2012)


0.1860 0.5116 0.3023

0.1546 0.3814 0.4639

0.1818 0.3455 0.4727



(2012-2013)


0.2750 0.3500 0.3750

0.0816 0.3980 0.5204

0.2000 0.4000 0.4000


Table B.36: 3-by-3 transition matrices for all financial years of Taylor
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Cases Q matrices

(2009-2010)


−2.9151 + 2.8006i 1.3743− 0.5083i 1.5408− 2.2923i

0.3523− 0.3368i −1.2387 + 0.0611i 0.8864 + 0.2757i

0.3536− 0.3419i 1.2289 + 0.0621i −1.5826 + 0.2799i



(2010-2011)


−2.6447− 0.0674i 1.0941− 1.5091i 1.5503 + 1.5765i

0.3143 + 0.0819i −1.5100 + 1.8355i 1.1957− 1.9175i

0.3000− 0.0587i 1.1140− 1.3147i −1.4140 + 1.3734i



(2011-2012)


−2.2724 3.6020 −1.3295

0.1905 −2.0100 1.8193

0.7202 0.3646 −1.0847



(2012-2013)


−1.7155− 0.1214i 0.8575− 0.1276i 0.8580 + 0.2490i

0.0109 + 1.1724i −1.6342 + 1.2332i 1.6233− 2.4056i

0.6341− 0.9892i 1.1206− 1.0405i −1.7547 + 2.0298i


Table B.37: Q matrices of the 3-by-3 transition matrices for all financial years of

Taylor

Cases Transition matrices

(2009-2010)


0.2239 0.4179 0.3582

0.3061 0.3571 0.3367

0.2588 0.4118 0.3294



(2010-2011)


0.3846 0.3077 0.3077

0.3171 0.3415 0.3415

0.2556 0.3222 0.4222



(2011-2012)


0.2603 0.3288 0.4110

0.2674 0.3140 0.4186

0.3407 0.3736 0.2857



(2012-2013)


0.3711 0.2680 0.3608

0.4167 0.2500 0.3333

0.3924 0.3544 0.2532


Table B.38: 3-by-3 transition matrices for all financial years of Unilever
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Cases Q matrices

(2009-2010)


−2.0807 + 1.8093i 1.0598− 1.3328i 1.0210− 0.4766i

0.2351− 4.1759i −1.7705 + 1.2215i 1.5352 + 2.9545i

1.3690 + 3.3886i 1.2059− 0.3578i −2.5749− 3.0308i



(2010-2011)


−1.6675 1.0454 0.6220

1.2822 −2.4369 1.1550

0.3119 1.2743 −1.5863



(2011-2012)


−2.6595− 0.9472i 1.8290 + 1.9020i 0.8309− 0.9547i

1.8790 + 2.4434i −2.5532− 1.0771i 0.6741− 1.3666i

0.3755− 1.5087i 0.9092− 0.5154i −1.2847 + 2.0243i



(2012-2013)


1.0389 −5.1947 4.1558

1.2105 −1.2997 0.0892

−2.3789 7.5628 −5.1841


Table B.39: Q matrices of the 3-by-3 transition matrices for all financial years of

Unilever

Cases Transition matrices

(2009-2010)


0.2456 0.3509 0.4035

0.1798 0.3596 0.4607

0.2596 0.3558 0.3846



(2010-2011)


0.3043 0.3188 0.3768

0.2069 0.3908 0.4023

0.3191 0.3298 0.3511



(2011-2012)


0.3239 0.4085 0.2676

0.2471 0.2941 0.4588

0.2766 0.3404 0.3830



(2012-2013)


0.3293 0.2927 0.3780

0.3256 0.3721 0.3023

0.3375 0.3750 0.2875


Table B.40: 3-by-3 transition matrices for all financial years of Vodafone
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Cases Q matrices

(2009-2010)


−3.2193− 0.3495i 1.4513− 0.0560i 1.7679 + 0.4056i

1.4281 + 3.2195i −2.5615 + 0.5162i 1.1337− 3.7358i

0.5422− 2.5639i 1.3969− 0.4110i −1.9392 + 2.9750i



(2010-2011)


−2.1184− 0.7839i 0.8731− 0.0961i 1.2451 + 0.8799i

0.2637− 1.4741i −1.7465− 0.1806i 1.4828 + 1.6545i

1.3107 + 1.9396i 0.9755 + 0.2376i −2.2861− 2.1771i



(2011-2012)


−2.9824− 3.9836i 1.6598− 8.1379i 1.3226 + 12.1216i

1.1155 + 3.3470i −2.9656 + 6.8374i 1.8501− 10.1844i

1.1969− 0.0946i 1.4719− 0.1932i −2.6688 + 0.2878i



(2012-2013)


−2.3404 + 0.9337i 1.5241 + 2.2564i 0.8163− 3.1901i

1.1888− 0.1745i −2.4356− 0.4216i 1.2468 + 0.5960i

1.1211− 0.7696i 1.0561− 1.8598i −2.1772 + 2.6294i


Table B.41: Q matrices of the 3-by-3 transition matrices for all financial years of

Vodafone

Cases Transition matrices

(2009-2010)


0.3247 0.3377 0.3377

0.3011 0.3871 0.3118

0.3077 0.3974 0.2949



(2010-2011)


0.2364 0.3818 0.3818

0.2653 0.3980 0.3367

0.1753 0.3918 0.4330



(2011-2012)


0.3182 0.3485 0.3333

0.2449 0.4490 0.3061

0.2442 0.3721 0.3837



(2012-2013)


0.2075 0.3396 0.4528

0.2212 0.4327 0.3462

0.2043 0.4516 0.3441


Table B.42: 3-by-3 transition matrices for all financial years of Whitbread
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Cases Q matrices

(2009-2010)


−2.5071− 0.3086i 1.1923− 1.7637i 1.3150 + 2.0723i

1.1116− 0.0574i −2.2769− 0.3279i 1.1653 + 0.3853i

1.1497 + 0.3730i 1.5377 + 2.1321i −2.6875− 2.5051i



(2010-2011)


−2.9835 1.3921 1.5912

2.1329 −2.4377 0.3048

−0.4349 1.6764 −1.2412



(2011-2012)


−1.9189 0.7862 1.1327

0.6926 −1.4651 0.7725

0.6834 1.0987 −1.7820



(2012-2013)


−2.4150 −2.1666 4.5815

0.9793 −1.1052 0.1262

0.2742 2.5095 −2.7839


Table B.43: Q matrices of the 3-by-3 transition matrices for all financial years of

Whitbread

Cases Transition matrices

(2009-2010)


0.2794 0.3824 0.3382

0.2903 0.3441 0.3656

0.2529 0.4023 0.3448



(2010-2011)


0.4177 0.3544 0.2278

0.2892 0.2410 0.4699

0.2500 0.3977 0.3523



(2011-2012)


0.4189 0.2568 0.3243

0.2442 0.3953 0.3605

0.2444 0.3667 0.3889



(2012-2013)


0.2041 0.3469 0.4490

0.1376 0.4771 0.3853

0.2609 0.4348 0.3043


Table B.44: 3-by-3 transition matrices for all financial years of WhSmith
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Cases Q matrices

(2009-2010)


−2.8648 + 0.3297i 1.3138− 0.6588i 1.5510 + 0.3292i

0.7836− 1.0011i −1.8820 + 2.0006i 1.0983− 0.9995i

1.4015 + 0.8125i 0.9850− 1.6238i −2.3865 + 0.8113i



(2010-2011)


−1.2454 + 0.0938i 0.6204− 0.7644i 0.6247 + 0.6706i

0.5799− 0.2452i −1.2587 + 1.9972i 0.6789− 1.7522i

0.5711 + 0.1470i 0.6302− 1.1975i −1.2012 + 1.0506i



(2011-2012)


−1.2290 0.2636 0.9654

0.5154 −1.9301 1.4147

0.5179 1.6276 −2.1455



(2012-2013)


−1.7460 + 1.0732i 0.9932 + 0.5723i 0.7529− 1.6455i

0.4565 + 0.5072i −1.2441 + 0.2705i 0.7877− 0.7777i

0.3891− 1.1726i 0.9452− 0.6253i −1.3343 + 1.7979i


Table B.45: Q matrices of the 3-by-3 transition matrices for all financial years of

WhSmith

Cases Transition matrices

(2009-2010)


0.0938 0.5312 0.3750

0.1481 0.4352 0.4167

0.1182 0.4091 0.4727



(2010-2011)


0.2586 0.3103 0.4310

0.2188 0.4479 0.3333

0.2292 0.3646 0.4062



(2011-2012)


0.1707 0.4390 0.3902

0.1553 0.4272 0.4175

0.1589 0.3832 0.4579



(2012-2013)


0.2453 0.3962 0.3585

0.2347 0.3776 0.3878

0.1753 0.4124 0.4124


Table B.46: 3-by-3 transition matrices for all financial years of Wolseley
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Cases Q matrices

(2009-2010)


−2.3837 + 2.2104i 1.2078− 2.9745i 1.1759 + 0.7641i

0.3532− 0.6833i −1.5374 + 0.9194i 1.1842− 0.2362i

0.3473 + 0.0340i 1.1836− 0.0457i −1.5309 + 0.0117i



(2010-2011)


−2.7590 0.1130 2.6457

0.7245 −1.3198 0.5953

0.9427 1.2516 −2.1942



(2011-2012)


−3.4843 2.9667 0.5172

0.5925 −2.1119 1.5194

0.7248 0.9140 −1.6388



(2012-2013)


−2.3764− 0.5760i 1.3717 + 0.9181i 1.0045− 0.3422i

0.9560 + 1.2546i −2.2675− 1.9997i 1.3117 + 0.7452i

0.3327− 0.9527i 1.5414 + 1.5186i −1.8739− 0.5659i


Table B.47: Q matrices of the 3-by-3 transition matrices for all financial years of

Wolseley
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Tables and Figures: Lamplighter

Group

Cayley graph with 24 elements:

Figure C.1: Cayley graph with 24 elements.

Transition matrices for the first generator set,

S1 = {e4 = (0, (1, 0, 0)), e11 = (1, (0, 1, 0))}
168
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and second generator set

S2 = {e10 = (1, (0, 0, 1)), e20 = (2, (1, 0, 0))}

Figure C.2: Transition matrix of the simple random walk for the first generator (S1)
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Figure C.3: Transition matrix of the α- biased random walk for the first generator

(S1)
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Figure C.4: Transition matrix of the λ-biased random walk for the first generator

(S1)
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Figure C.5: Transition matrix of the α−λ- biased random walk for the first generator

(S1)
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Figure C.6: Branching tree for the second generators (S2) via method 1, initial point

is e10
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Figure C.7: Transition matrix of the simple random walk for the second generator

(S2)
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Figure C.8: Transition matrix of the α- biased random walk for the second generator

(S2)
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Cases Generator S1 Generator S2

BP(2009-2010)


0.4845 0.5155 0

0 0.4908 0.5092

0.4716 0 0.5284




0 0.5271 0.4729

0.5638 0 0.4362

0.5128 0.4872 0



BP(2010-2011)


0.4702 0.5298 0

0 0.4847 0.5153

0.4732 0 0.5268




0 0.4738 0.5262

0.5385 0 0.4615

0.5106 0.4894 0



BP(2011-2012)


0.4947 0.5093 0

0 0.5015 0.4985

0.4670 0 0.5330




0 0.5233 0.4767

0.5444 0 0.4556

0.5031 0.4969 0



BP(2012-2013)


0.4654 0.4346 0

0 0.5157 0.4843

0.5136 0 0.4864




0 0.5701 0.4299

0.4766 0 0.5234

0.5294 0.4706 0


Table C.1: Branching-type random walk on the lamplighter group.

Cases Generator S1 Generator S2

BP(2009-2010)


0.4088 0.5912 0

0 0.5955 0.4045

0.4909 0 0.5091




0 0.5836 0.4164

0.3623 0.1836 0.4541

0.4295 0.5705 0



BP(2010-2011)


0.4718 0.5282 0

0 0.6084 0.3916

0.4474 0 0.5526




0 0.5604 0.4396

0.4144 0.1663 0.4194

0.4348 0.5652 0



BP(2011-2012)


0.3723 0.6277 0

0 0.5438 0.4562

0.4928 0 0.5072




0 0.5749 0.4251

0.3687 0.2048 0.4265

0.4463 0.5537 0



BP(2012-2013)


0.4418 0.5582 0

0 0.5888 0.4112

0.5159 0 0.4841




0 0.5019 0.4981

0.3131 0.2015 0.4854

0.3921 0.6079 0


Table C.2: λ biased random walk on the lamplighter group.
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Figure C.9: Branching Tree for the chosen generator e36 as a initial point via method

1
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Cases Generator S1 Generator S2

BP(2009-2010)


0.6860 0.3140 0

0 0.7927 0.2073

0.2247 0 0.7753




0.6167 0.3833 0

0.3174 0.6807 0.0018

0 1.0000 0



BP(2010-2011)


0.6070 0.3930 0

0 0.6990 0.3010

0.1886 0 0.8114




0.5482 0.2193 0.2326

0.2295 0.5184 0.2521

0.1561 0.3035 0.5405



BP(2011-2012)


0.6808 0.3192 0

0 0.7629 0.2371

0.2103 0 0.7897




0 0.4000 0.6000

0.0061 0.3347 0.6592

0.0020 0.6514 0.3466



BP(2012-2013)


0.2857 0.7143 0

0 0.8000 0.2000

0.0041 0 0.9959




0.3438 0.2188 0.4375

0.0181 0.5221 0.4598

0.0234 0.4936 0.4830


Table C.3: α biased random walk on the lamplighter group.
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Cases P̂

BP(2009-2010)


0 0.4323 0.5677 0

0 0 0.5973 0.4027

0.5018 0 0 0.4982

0.5391 0.4609 0 0



BP(2010-2011)


0 0.4568 0.5432 0

0 0 0.5261 0.4739

0.5919 0 0 0.4081

0.5273 0.4727 0 0



BP(2011-2012)


0 0.3827 0.6173 0

0 0 0.5577 0.4423

0.5261 0 0 0.4739

0.5526 0.4474 0 0



BP(2012-2013)


0 0.4167 0.5833 0

0 0 0.5804 0.4196

0.5246 0 0 0.4754

0.5000 0.5000 0 0


Table C.4: λ biased random walk on the tensor product of the lamplighter group

with S3.
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Cases Generator S1 Generator S2

BP(2009-2010)


0.4702 0.5298 0

0 0.4847 0.5153

0.4732 0 0.5268




0 0.4684 0.5316

0.5314 0 0.4686

0.5359 0.4641 0



BP(2010-2011)


0.4907 0.5093 0

0 0.5015 0.4985

0.4670 0 0.5330




0 0.5015 0.4985

0.5015 0 0.4985

0.5301 0.4699 0



BP(2011-2012)


0.4654 0.5346 0

0 0.5157 0.4843

0.5136 0 0.4864




0 0.4832 0.5168

0.5045 0 0.4955

0.4643 0.5357 0



BP(2012-2013)


0.5248 0.4752 0

0 0.5090 0.4910

0.4985 0 0.5015




0 0.5138 0.4862

0.5272 0 0.4728

0.4414 0.5586 0


Table C.5: Branching-type random walk on the lamplighter group for volatility.

Cases Generator S1 Generator S2

BP(2009-2010)


0.4071 0.5929 0

0 0.5833 0.4167

0.5093 0 0.4907




0 0.5431 0.4569

0.3187 0.1946 0.4866

0.4224 0.5776 0



BP(2010-2011)


0.5103 0.4897 0

0 0.5812 0.4188

0.6180 0 0.3820




0 0.5879 0.4121

0.3605 0.1684 0.4711

0.5700 0.4300 0



BP(2011-2012)


0.3827 0.6173 0

0 0.5535 0.4465

0.5000 0 0.5000




0 0.5654 0.4346

0.3873 0.1569 0.4559

0.4013 0.5987 0



BP(2012-2013)


0.3893 0.6107 0

0 0.5604 0.4396

0.5136 0 0.4864




0 0.5208 0.4792

0.2961 0.2257 0.4782

0.4396 0.5604 0


Table C.6: λ biased random walk on the lamplighter group for volatility.



Appendices 183

Cases Generator S1 Generator S2

BP(2009-2010)


0.8821 0.1179 0

0 0.9480 0.0520

0.3882 0 0.6118




0.6099 0.2967 0.0934

0.2074 0.6878 0.1048

0.2584 0.2022 0.5393



BP(2010-2011)


0.3333 0.6667 0

0 0.8182 0.1818

0.0010 0 0.9990




0.6030 0.3712 0.0258

0.3259 0.6437 0.0304

0.5750 0.0750 0.3500



BP(2011-2012)


0.6032 0.3968 0

0 0.7788 0.2212

0.1589 0 0.8411




0.2941 0.2941 0.4118

0.0120 0.3406 0.6474

0.0104 0.6798 0.3098



BP(2012-2013)


0.3611 0.6389 0

0 0.5615 0.4385

0.2036 0 0.7964




0.5534 0.2362 0.2104

0.1965 0.5869 0.2166

0.2041 0.3095 0.4864


Table C.7: α biased random walk on the lamplighter group for volatility.

Cases Generator S1 Generator S2

BP(2009-2010)


0.4884 0.5116 0

0 0.6218 0.3782

0.3359 0 0.6641




0.2500 0.7500 0

0.0020 0.9970 0.0010

0 1.0000 0



BP(2010-2011)


0.9103 0.0897 0

0 0.9636 0.0364

0.0922 0 0.9078




0.2857 0.5714 0.1429

0.0030 0.9970 0

1.0000 0 0



BP(2011-2012)


0.4672 0.5328 0

0 0.6254 0.3746

0.2701 0 0.7299




0 1.0000 0

0 0.9990 0.0010

0 1.0000 0



BP(2012-2013)


0.7647 0.2353 0

0 0.8792 0.1208

0.0656 0 0.9344




0 1.0000 0

0 0.9990 0.0010

0 1.0000 0


Table C.8: α− λ biased random walk on the lamplighter group for volatility.
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Cases PX PY PX ⊕ PY

BP(2009-2010)

 0.2419 0.7581

0.2449 0.7551

 0.9060 0.0940

0.9167 0.0833




0.2192 0.0227 0.6868 0.0713

0.2218 0.0202 0.6949 0.0632

0.2219 0.0230 0.6841 0.0710

0.2245 0.0204 0.6922 0.0629



BP(2010-2011)

 0.5319 0.4681

0.5652 0.4348

 0.8864 0.1136

0.6944 0.3056




0.4715 0.0604 0.4149 0.0532

0.3694 0.1625 0.3251 0.1430

0.5010 0.0642 0.3854 0.0494

0.3925 0.1727 0.3019 0.1329



BP(2011-2012)

 0.2333 0.7667

0.2344 0.7656

 0.7293 0.2707

0.6761 0.3239




0.3298 0.1224 0.3995 0.1483

0.3057 0.1465 0.3704 0.1775

0.3354 0.1245 0.3939 0.1462

0.3109 0.1490 0.3652 0.1750



BP(2012-2013)

 0.2787 0.7213

0.2296 0.7704

 0.9009 0.0991

0.9200 0.0800




0.2511 0.0276 0.6498 0.0715

0.2564 0.0223 0.6636 0.0577

0.2068 0.0228 0.6940 0.0764

0.2112 0.0184 0.7088 0.0616


Table C.9: Transition matrices via EM Algorithm.
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Cases PX PY PX ⊕ PY

BP(2009-2010)

 0.2072 0.7928

0.3729 0.6271

 0.9060 0.0940

0.9167 0.0833




0.1877 0.0195 0.7183 0.745

0.1899 0.0173 0.7268 0.0660

0.3378 0.351 0.5682 0.0589

0.3418 0.0311 0.5749 0.0522



BP(2010-2011)

 0.3489 0.6511

0.6504 0.3496

 0.8864 0.1136

0.6944 0.3056




0.3093 0.0396 0.5771 0.0740

0.2423 0.1066 0.4521 0.1990

0.5765 0.0739 0.3099 0.0397

0.4516 0.1988 0.2428 0.1068



BP(2011-2012)

 0.0463 0.9537

0.3221 0.6779

 0.7293 0.2707

0.6761 0.3239




0.0338 0.0125 0.6955 0.2582

0.0313 0.0150 0.6448 0.3089

0.2349 0.0872 0.4944 0.1835

0.2178 0.1043 0.4583 0.2196



BP(2012-2013)

 0.1332 0.8668

0.3146 0.6854

 0.9009 0.0991

0.9200 0.0800




0.1200 0.0132 0.7809 0.0859

0.1225 0.0107 0.7975 0.0693

0.2834 0.0312 0.6175 0.0679

0.2894 0.0252 0.6306 0.0548


Table C.10: Transition matrices via Machine Learning.
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Cases PX PY PX ⊕ PY

BP(2009-2010)

 0.1471 0.8529

0.1434 0.8566

 0.9680 0.0320

1.0000 0




0.1424 0.0047 0.8256 0.0273

0.1471 0 0.8529 0

0.1388 0.0046 0.8292 0.0274

0.1434 0 0.8566 0



BP(2010-2011)

 0.2954 0.7046

0.2054 0.7946

 0.9841 0.0159

1.0000 0




0.2907 0.0047 0.6934 0.0112

0.2954 0 0.7046 0

0.2022 0.0033 0.7820 0.0126

0.2054 0 0.7946 0



BP(2011-2012)

 0.0596 0.9404

0.1289 0.8711

 0.9755 0.0245

0.8571 0.1429




0.0581 0.0015 0.9174 0.0230

0.0511 0.0085 0.8061 0.1343

0.1257 0.0032 0.8498 0.0213

0.1105 0.0184 0.7467 0.1244



BP(2012-2013)

 0.1094 0.8906

0.1408 0.8592

 0.9595 0.0405

1.0000 0




0.1049 0.0044 0.8546 0.0361

0.1094 0 0.8906 0

0.1351 0.0057 0.8245 0.03348

0.1408 0 0.8592 0


Table C.11: Transition matrices via EM Algorithm for volatility.
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Cases PX PY PX ⊕ PY

BP(2009-2010)

 0.0932 0.9068

0.1378 0.8622

  0.9680 0.0320

1.0000 0




0.0902 0.0030 0.8778 0.0290

0.0932 0 0.9068 0

0.1334 0.0044 0.8346 0.0276

0.1378 0 0.8622 0



BP(2010-2011)

 0.2285 0.7715

0.1793 0.8207

 0.9841 0.0159

1.0000 0




0.2249 0.0036 0.7592 0.0123

0.2285 0 0.8077 0.0130

0.1793 0 0.8207 0



BP(2011-2012)

 0.1280 0.8720

0.1257 0.8743

  0.9755 0.0245

0.8571 0.1429




0.1249 0.0031 0.8506 0.0214

0.1097 0.0183 0.7474 0.1246

0.1226 0.0031 0.8529 0.0214

0.1077 0.0180 0.7494 0.1249



BP(2012-2013)

 0.1155 0.8845

0.0494 0.9506

  0.9595 0.0405

1.0000 0




0.1127 0.0028 0.8628 0.0217

0.0990 0.0165 0.7581 0.1264

0.0482 0.0012 0.9273 0.0233

0.0423 0.0071 0.8148 0.1358


Table C.12: Transition matrices via Machine Learning for volatility.
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Quantum Binomial Model

D.1 Derivation of Single-Step Classical Binomial

Model

A binomial market (B, S) consist of a risk-free bank account B and stock of price

S. An arbitrage-free portfolio is:

B1 = B0(1 + r), S1 = S0(1 +R)

where the interest rate r is constant and the volatility rate R takes two values such

as:

−1 ≤ u < r < d

S1 has two outcomes. Therefore, S1 is described by using Bernoulli’s model of

the binomial market. Ω = {1 + d, 1 + u} with probability distribution P is the

probabilistic model for S1. Let’s assume that:

qu = P{S1 = S0(1 + u)} = P{R = u} > 0.

The variable qu is interpreted as the probability of upward stock movement, and

qd = 1 − qu is interpreted as the probability of downward movement. There is a

unique risk neutral measure M on Ω:

EM [R] = uM{R = u}+ dM{R = d} = r,

188



Appendices 189

that is,

M{R = u} =
r − d
b− d

,M{R = d} =
u− r
b− d

.

Hence, the risk-neutral world of the classical model for the binomial market has

only one element M .

Cu = [S0(1 + u) − K]+ is the price of the call option if there is an upward

movement u in the stock price and Cd = [S0(1 + d) − K]+ is the price of the call

option if there is an downward movement u in the stock price. Therefore, the formula

of the current price of an option C is

C =
1

1 + r
[
r − d
u− d

Cu +
u− r
u− d

Cd].

D.2 Derivation of Single-Step Quantum Binomial

Model

In this section we present the quantum based no-arbitrage stock market in order to

derive the single-step quantum model is presented for the binomial market (B, S).

We consider the Hilbert space C2 with its canonical basis

|0 >=

 1

0

 , |1 >=

 0

1

 .

Assume a stock is in a quantum state:

ρ =
1

2
(wI2 + xσx + yσy + zσz)

where density matrix ρ is an arbitrary 2× 2 Hermitian matrix. A Hermitian matrix

is a complex square matrix that is equal to its own conjugate transpose. In quantum

mechanics, a density matrix is a Hermitian matrix of trace one. Density matrices

describe the statistical state of a group of systems or a single system where the pure

quantum state the system is in. In addition, 2× 2 Hermitian matrix can be written

as a linear combination of the Pauli spin matrices

I2 =

 1 0

0 1

 , σx =

 0 1

1 0

 , σy =

 0 −i

i 0

 , σz =

 1 0

0 −1

 .
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They form the basis for the Hilbert space of 2 × 2 complex Hermitian matrices

( [48]). Let’s consider a matrix A is a quantum operator in quantum mechanics.

The stock is transformed from one state to the next by using this matrix where A

is an arbitrary Hermitian matrix.

A = (x0I2 + x1σx + x2σy + x3σz)

Let a and b be the eigenvalues of A. The eigenvalues are represent the possible

values of A when it is measured. And they expressed as follows:

a = x0 −
√
x2

1 + x2
2 + x2

3, b = x0 +
√
x2

1 + x2
2 + x2

3 (D.2.1)

where all xj are real numbers, x2
1 + x2

2 + x2
3 6= 0 and a, b > −1. The following result

is obtained after solving each equation for x0 and taking them equal to each other:

a+
√
x2

1 + x2
2 + x2

3 = b−
√
x2

1 + x2
2 + x2

3

which can be written as:
(b− a)2

4
= x2

1 + x2
2 + x2

3

By substituting (b − a)/2 into equation D.2.1 in place of
√
x2

1 + x2
2 + x2

3 it follows

that:

x0 = a+
b− a

2
=
a+ b

2

By the risk-neutral valuation, all individuals are indifferent to risk in a risk-neutral

world, and the return earned on the stock must equal the risk-free interest rate.

Considering A is used to transform the stock from one state to the next, one should

expect that it evolves the stock at the risk-free rate. Thus, the expected value

of measuring A should be the risk-free interest rate. In quantum mechanics, the

expected value of a quantum operator is computed by using trace (see Chapter 2

for details of trace) and density matrix:

< A >p= tr(ρA) = r

where r is the risk-free rate. As we mentioned before, a density matrix must have a

trace of one:

tr(ρ) =
1

2
(w + z) +

1

2
(w − z) = 1
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This concludes that w = 1, which means that:

r = tr

1

2

w + z x− iy

x+ iy w − z

 x0 + x3 x1 − x2i

x1 + x2i x0 − x3


which reduces to:

r = wx0 + zx3 + xx1 + x2y

The risk-neutral states are shown to be

x1x+ x2y + x3z = r − (a+ b)

2

where x0 = (a+ b)/2 and w = 1. The eigenvalues of any density matrix are

λ1 =
1

2
(w −

√
x2 + y

2
+ z2), λ2 =

1

2
(w +

√
x2 + y

2
+ z2)

where 0 ≤ λi ≤ 1, w = 1 and all (x, y, z) satisfy

x2 + y2 + z2 < 1

which is a disk of radius
√

1− (2r−a−b)2
(b−a)2

in the unit ball of R3. The quantum binomial

model replaces the single random variable R in the classical model with a complex

Hermitian matrix A.

D.3 Derivation of Multi-Step Quantum Binomial

Model

In this part, the single-step quantum binomial model is considered in order to derive

N−period multi-step model. In the multi-step model, each step is taken tensor

product (see Chapter 2 for details of the tensor product) with the previous step to

build a composite quantum system. Let Hn = (C2)⊗n and

|ε1 . . . εn >= |ε1 > ⊗ . . .⊗ |εn >, ε1 . . . εn = 0, 1.

{|ε1 . . . εn > ε1 . . . εn = 0, 1} is the canonical basis of Hn.

Then the N -period quantum binomial market (B, S) sets up with a risk-free

bank account B = (B0, B1, . . . , BN) and a stock S = (S0, S1, . . . , SN) as follows:

Bn = B0(1 + r)n, Sn = S0 ⊗nj=1 (I2 + A)⊗ IN−n
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where IN−n is the identity on HN−n and stock price movement is represented by the

quantum operator A which is a Hermitian matrix

A = (x0I2 + x1jσx + x2jσy + x3jσz) (D.3.2)

where σx, σy, σz are the Pauli matrices of quantum mechanics for all j = 1, . . . , N .

SN can be written as follows, assuming the Maxwell-Boltzmann classical statis-

tics:

SN = S0

N∑
n=0

(1 + b)n(1 + a)N−n[
∑
|σ|

⊗Nj=1|wjσ >< wjσ|]

where all σ are subsets of {1, . . . , N}, wjσ = uσ for j ∈ σ or wjσ = vσ otherwise and

form an orthonormal basis in the Hilbert space.

In here, wjσ = |1 >=
(

1
0

)
meaning to choose b = u − 1 at time j in the tensor

product. And, wjσ = |0 >=
(

0
1

)
meaning to choose a = d− 1

f(SN) =
N∑
n=0

f(undN−n)
∑
|σ|

|wjσ >< wjσ|

The sum means that we fist fix the number of chosen u’s =n, then automatically

the number of chosen d’s = N − n. The second sums is over all permutation with

fixed number of chosen u’s = n.

Now, let’s consider call options in the N− period quantum binomial market

(B, S). Its payoff is

HN = [SN −K]+

where K is the strike price. And,

HN = [SN −K]+ =
N∑
n=0

[S0(1 + b)n(1 + a)N−n −K][
∑
|σ|

⊗Nj=1|wjσ >< wjσ|]

The stocks quantum states are represented by the density matrix ρ is:

⊗Nj=1ρj =
1

2N
⊗Nj=1 (I2 + xjσx + yjσy + zjσz)

All the states are faithful risk-neutral states of the N -period quantum binomial

market (B, S) where (xj, yj, zj) satisfiesx
2
j + y2

j + z2
j < 1,

x1jxj + y1jyj + z1jzj = r − a+b
2
,
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for every j = 1, . . . , N . Also, by using the Maxwell-Boltzmann statistics, one

has that

tr[(⊗Nj=1ρj)
∑
|σ|=n

⊗Nj=1|wjσ >< wjσ|] =
N !

n!(N − n)!
qn(1− q)N−n

for n = 0, 1, . . . , N , where q = ra
ba

.

Therefore, the price for the call option in this multi-step quantum binomial

pricing can be written as follow:

CN
0 = tr[(⊗Nj=1ρj)[SN −K]+]

Then this equation is taken and derived the equivalent of the Cox-Ross-Rubinstein

option pricing formula in [102] as follows:

CN
0 = (1 + r)−N

N∑
n=0

N !

n!(N − n)!
qn(1− q)N−n[S0(1 + b)n(1 + a)N−n −K]+].

Moreover, option price formula is via Bose-Einstein statistics instead of the classical

Maxwell-Boltzmann statistics as follows ( [102]):

CN
0 = tr[ρ(⊗N)[SN −K]+]

Also this equation is taken and derived a new quantum option pricing formula

in [102] as follows:

CN
0 = (1 + r)−N

N∑
n=0

(
qn(1− q)N−n∑N
k=0 q

k(1− q)N−k
[S0(1 + b)n(1 + a)N−n −K]+].


