
Multilevel sparse grid kernels
collocation with radial basis

functions for elliptic and parabolic
problems

Thesis submitted for the degree of

Doctor of Philosophy

at the

University of Leicester

by

Yangzhang Zhao

Department of Mathematics

University of Leicester

August 2016

http://www.le.ac.uk
http://www.le.ac.uk

"Everybody should have a dream, what if that dream comes true."

Jack Ma – Founder and Chairman of Alibaba Group

Abstract

Radial basis functions (RBFs) are well-known for the ease implementation as
they are the mesh-free method [31, 37, 71, 72]. In this thesis, we modify the
multilevel sparse grid kernel interpolation (MuSIK) algorithm proposed in [48]
for use in Kansa’s collocation method (referred to as MuSIK-C) to solve elliptic
and parabolic problems. The curse of dimensionality is a significant challenge
in high dimension approximation. A full grid collocation method requires O(Nd)

nodal points to construct an approximation; here N is the number of nodes in
one direction and d means the dimension. However, the sparse grid collocation
method in this thesis only demand O(N logd−1(N)) nodes. We save much more
memory cost using sparse grids and obtain a good performance as using full grids.
Moreover, the combination technique [20, 54] allows the sparse grid collocation
method to be parallelised. When solving parabolic problems, we follow Myers
et al.’s suggestion in [90] to use the space-time method, considering time as
one spatial dimension. If we apply sparse grids in the spatial dimensions and
use time-stepping, we still need O(N2 logd−1(N)) nodes. However, if we use the
space-time method, the total number of nodes is O(N logd(N)).

In this thesis, we always compare the performance of multiquadric (MQ) basis
function and the Gaussian basis function. In all experiments, we observe that
the collocation method using the Gaussian with scaling shape parameters does
not converge. Meanwhile, in Chapter 3, there is an experiment to show that the
space-time method with MQ has a similar convergence rate as a time-stepping
method using MQ in option pricing. From the numerical experiments in Chapter
4, MuSIK-C using MQ and the Gaussian always give more rapid convergence
and high accuracy especially in four dimensions (T × R3) for PDEs with smooth
conditions. Compared to some recently proposed mesh-based methods, MuSIK-C
shows similar performance in low dimension situation and better approximation
in high dimension. In Chapter 5, we combine the Method of Lines (MOL) and our
MuSIK-C to obtain good convergence in pricing one asset European option and
the Margrabe option, that have non-smooth initial conditions.

Acknowledgements

It is an unforgettable memory to live and study in Leicester for five years. I would
like to express my sincere gratitude to everyone who gives me help and support
during my Ph.D. life. Without you, I could never ever achieve that.

First and foremost, I would like to express utmost gratitude to my supervisor,
instructor and mentor, Prof. Jeremy Levesley. Thanks to his support, patience
and immense helpful advice, I could persevered in my Ph.D. study and related
research. Prof. Jeremy Levesley also provided plenty of wise advices for me in
other fields. I could not imagine a person who could be a better supervisor for me
than Prof. Jeremy Levesley.

Secondly, I am also grateful to all the staff members of the mathematics department
and the administration of the University for their help. I would like to thank Prof.
Emmanuil (Manolis) Georgoulis, Dr. Andrea Cangiani, Dr. Bo Wang and Dr.
Steven Hales for their guidance, suggestions on my studies. They are great source
and give me endless support in my research.

Finally, I would like to thank every kindly friend in MAB; Daniel, Juxi, Masha,
Matt, Ruhao, Sam, Yanshan and so on. It’s a great pleasure to work with them.
I would like to thank especially Dr. Zhaonan Dong, known as Peter Dong, and
Dr. Qi Zhang. Peter is always ready to deliver helpful and inspiring bits of advice
wholeheartedly at request since we are aware each other. To some extents, Qi is
my co-researcher, and he is helpful and motivative for all the time. It’s wonderful
to have Peter and Qi as my close friends.

Last but not least, my warmest thanks goes to my beloved soul mate Dr. Yun
Song for her patience, support, her sense of understanding and help throughout
my research. The hard time she lived with me during my research in Leicester
means a lot to me and she owes much more than thanks.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures vi

List of Tables ix

Abbreviations xiii

1 Introduction 1
1.1 Background . 1

1.1.1 Radial basis functions and collocation 3
1.1.2 Multilevel method . 6
1.1.3 Sparse grid method . 8
1.1.4 Space-time method . 9
1.1.5 Black-Scholes equation . 10

1.2 Motivation and objective . 11
1.3 Main achievements . 12
1.4 Thesis outline . 13

2 Scattered data approximation 14
2.1 Scattered data interpolation problem 14
2.2 Basic concepts . 15
2.3 Radial basis functions . 19
2.4 Anisotropic tensor product basis function 23
2.5 Convergence . 26
2.6 An example . 27

3 Solving partial differential equations using RBFs 30
3.1 Elliptic PDEs . 31
3.2 Parabolic PDEs . 32

3.2.1 Method of lines . 33
3.2.2 Consider time as a spatial dimension 36

iv

Contents v

3.3 Numerical experiments . 37
3.4 Conclusion . 43

4 Multilevel sparse grid kernel collocation with RBFs 45
4.1 Sparse grid kernel collocation . 46

4.1.1 Collocation with the combination technique 46
4.2 Multilevel sparse grid kernel collocation 51

4.2.1 Multilevel full grid collocation 52
4.2.2 Multilevel sparse grid kernel collocation 54

4.3 Numerical experiments . 56
4.3.1 Elliptic examples . 57
4.3.2 Parabolic examples . 71

4.4 Conclusion . 79

5 MuSIK-C for option pricing 80
5.1 One asset European Option pricing 81

5.1.1 MuSIK-C in option pricing from different initial times 81
5.1.2 Algorithm to predetermine an earlier time 83
5.1.3 Numerical experiments . 86

5.2 Margrabe Option pricing . 93
5.3 Richardson Extrapolation . 98

6 Conclusions and Future Work 102
6.1 Conclusions . 102
6.2 Future work . 104

Bibliography 106

List of Figures

2.1 Different RBF shapes with different shape parameter values as c =
0.01, c = 0.1 and c = 2. 21

2.2 An example of normal MQ and anisotropic tensor MQ funcions in
two dimensions. 23

2.3 An example of normal Gaussian and anisotropic tensor Gaussian
functions in two dimensions. 24

3.1 The performance of the space-time and the MOL using MQ on the
spatial computational domain [Smin, Smax] = [0, 3E]. The left figure
shows the max error at t = 0 on [Smin, Smax] = [0, 3E], the right
figure shows the max error at t = 0 on

[
Ŝmin, Ŝmax

]
= [0.4E, 1.6E]. 41

3.2 The performance of the MOL solution (left) and the space-time
method (right) using MQ basis function on the spatial computational
domain [Smin, Smax] = [0, 3E]. Errors are sampled on [Smin, Smax] =
[0, 3E] at t = 0. 42

3.3 The performance of the MOL solution using MQ in the level 8
(left) and the level 9 (right) on the spatial computational domain[
S̃min, S̃max

]
= [−E, 6E]. Errors are sampled on [Smin, Smax] =

[0, 3E] at t = 0. 43

4.1 Sparse grid S4,2 via (4.5). 48
4.2 The redundant nodes of S4,2

l in Figure 4.1. 49
4.3 The construction of approximation û on S4,2. 50
4.4 Multilevel full grid procedure. 53
4.5 6 nested sparse grids from S1,2 to S6,2. 54
4.6 The performance of MLRBF-C, RBF-C, MuSIK-C and SIK-C with

different basis functions and shape parameters for Example 4.1. . . 62
4.7 The performance of MuSIK-C and FEM for Example 4.2. 64
4.8 The performance of multilevel sparse collocation with MQ/Gaussian

and sparse grid IPDG for Example 4.3. 67
4.9 The performance of the multilevel sparse collocation methods using

MQ and Gaussian with connection constant C = 2 for Example 4.4. 69
4.10 The performance of the multilevel sparse collocaiton methods using

MQ and Gaussian with connection constant C = 2 for Example 4.5. 70
4.11 The performance of the multilevel sparse collocation method using

MQ and Gaussian with the two contants: 2 and 3, for Example 4.6. 73

vi

List of Figures vii

4.12 This compares mulitilevel sparse collocation with MQ/Gaussian and
IgA for Example 4.7. 75

4.13 This compares multilevel sparse collocation with MQ/Gaussian and
IgA for Example 4.8. 77

4.14 The performance of the multilevel sparse collocation method using
MQ and Gaussian with C = 2 for Example 4.9. 78

5.1 Max error of estimations at 3000 uniform points in [0.4E, 1.6E] at
t = 0 for Parameter Set 1. All initial conditions are analytical
solutions and boundary condtions are the same. Initial times in
left plots are maturity time T , that of right side are time τ = 0.5T .
Two figures above are using the Gaussian basic functions, the figures
below are using MQ basic functions 82

5.2 Dashed line is stop time τ , red solid line is terminate spot τ end. . . 83
5.3 Examples of exact Gamma(left) and Speed(right) at t = 0.865 with

1000 uniform nodes in X1 = [80, 120] for Parameter Set 1. 84
5.4 Approximations on the European call option price, Gamma and

Speed (left three figures), and corresponding errors (right three
figures) at τ = 0.865 following variable set in Table 5.1 and Parameter
Set 1 in Table 3.1. 87

5.5 Approximations on the European call option price, Gamma and
Speed (left three figures), and corresponding errors (right three
figures) at τ = 0.9 following variable set in Table 5.1 and Parameter
Set 1 in Table 3.1. 88

5.6 The performance of multilevel sparse collocation and plain sparse
collocation for one asset European call option price following Parameter
Set 1 with that initial condition is estimation at τ = 0.865 using
Gaussian(left) and MQ(right), C = 2. Error evaluated at 4000
uniform points in [0.4E, 1.6E] at time t = 0. 90

5.7 The performance of multilevel sparse collocation and plain sparse
collocation for one asset European call option price following Parameter
Set 1 with that initial condition is analytical solution at τ = 0.865
using Gaussian(left) and MQ(right), C = 2. Error evaluated at
4000 uniform points in [0.4E, 1.6E] at time t = 0. 91

5.8 The performance of multilevel sparse collocation and plain sparse
collocation for one asset dividend European call option price following
Parameter Set 2 with that initial condition is estimation at τ =
0.236 using Gaussian(left) and MQ(right), C = 2. Error evaluated
at 4000 uniform points in [0.4E, 1.6E] at time t = 0. 93

5.9 The error between the true surface at the new terminal condition
and the approximated surface from MOL. 97

5.10 The performance of multilevel sparse collocation and plain sparse
collocation for Margrabe option price following Parameter Set 3
with that initial condition is estimation at τ end = 0.8T using Gaussian(left)
and MQ(right), C = 2. Error evaluated at 10,000 uniform points
in [90, 110]2 at time t = 0. 97

List of Figures viii

5.11 RE method applied on MuSIK-C with Gaussian(left) and MQ(right)
from Table 5.10 and 5.11. 101

5.12 RE method applied on MuSIK-C with Gaussian(left) and MQ(right)
from Table 5.12 and 5.13. 101

List of Tables

1.1 The performance of multilevel method and direct method with c =
0.05. 8

1.2 The performance of multilevel method and direct method with scaling
c. 8

2.1 Example of Radial Basis Functions 19
2.2 Wendland’s compactly supported radial basis function 20
2.3 Results using MQ with the scaling shape parameter 2hn1 28
2.4 Results using the Gaussian with the scaling shape parameter 2hn1 . . 29
2.5 Results using MQ with a constant shape parameter 0.2. 29
2.6 Results using the Gaussian with a constant shape parameter 0.2. . . 29

3.1 Parameter Set 1 for non-dividend European call option. 39
3.2 The performance of the MOL and the space-time method using

Gaussian on the spatial computational domain [Smin, Smax] = [0, 3E].
Error evaluated at 3000 uniform test points at time t = 0 on
[Smin, Smax] = [0, 3E]. 40

3.3 The performance of the MOL and the space-time method using
MQ on the spatial computational domain [Smin, Smax] = [0, 3E].
Error evaluated at 3000 uniform test points at time t = 0 on
[Smin, Smax] = [0, 3E]. 40

3.4 The performance of the MOL and the space-time method using
MQ on the spatial computational domain [Smin, Smax] = [0, 3E].
Error evaluated at 3000 uniform test points at time t = 0 on[
Ŝmin, Ŝmax

]
= [0.4E, 1.6E]. 41

3.5 The performance of the MOL using MQ on different spatial computational
domain. Error evaluated at 3000 uniform test points at time t = 0
on [Smin, Smax] = [0, 3E]. 43

4.1 MQ: Multilevel RBF collocation (MLRBF-C) and RBF collocation
(RBF-C) on full grid with C = 2 for Example 4.1. Max error
evaluated at 64,000 Halton points in the whole domain. 58

4.2 MQ: Multilevel RBF collocation and RBF collocation on full grid
with C = 3 for Example 4.1. Max error evaluated at 64,000 Halton
points in the whole domain. 58

4.3 Gaussian: Multilevel RBF collocation and RBF collocation on full
grid with C = 2 for Example 4.1. Max error evaluated at 64,000
Halton points in the whole domain. 59

ix

List of Tables x

4.4 Gaussian: Multilevel RBF collocation and RBF collocation on full
grid with C = 3 for Example 4.1. Max error evaluated at 64,000
Halton points in the whole domain. 59

4.5 Multilevel sparse collocation compared with sparse collocation for
MQ for Example 4.1 with C = 2. Max error evaluated at 64,000
Halton points in the whole domain. 59

4.6 Multilevel sparse collocation compared with sparse collocation for
MQ for Example 4.1 when C = 3. Max error evaluated at 64,000
Halton points in the whole domain. 60

4.7 Multilevel sparse collocation compared with sparse collocation using
the Gaussian for Example 4.1 when C = 2. Max error evaluated at
64,000 Halton points in the whole domain. 60

4.8 Multilevel sparse collocation compared with sparse collocation using
the Gaussian for Example 4.1 when C = 3. Max error evaluated at
64,000 Halton points in the whole domain. 61

4.9 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.2 with C = 2. Max error evaluated
at 64,000 Halton points in the whole domain. 63

4.10 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.2 with C = 3. Max error evaluated
at 64,000 Halton points in the whole domain. 64

4.11 Sparse grid condition number for MQ and Gaussian with the two
considered constants: 2 and 3, in the three dimensional Poisson
problem. 65

4.12 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.3 with C = 2. Max error evaluated
at 120,000 Halton points in the whole domain. 65

4.13 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.3 with C = 3. Max error evaluated
at 120,000 Halton points in the whole domain. 66

4.14 Illustration of how condition number grows on sparse grids for MQ
and Gaussian with a connection consatant of C = 2 in the four
dimensional Poisson problem. 68

4.15 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.4 with C = 2. Max error evaluated
at 240,000 Halton points in the whole domain. 68

4.16 The performance of multilevel sparse collocation methods using MQ
and Gaussian for Example 4.5 with C = 2. Max error evaluated at
240,000 Halton points in the whole domain. 70

4.17 Sparse grid condition number using MQ and Gaussian with the two
connection constants: 2 and 3, in the two dimensional heat problem. 71

4.18 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.6 with C = 2. Max error evaluated
at 64,000 Halton points in the whole domain. 72

4.19 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.6 with C = 3. Max error evaluated
at 64,000 Halton points in the whole domain. 72

List of Tables xi

4.20 Sparse grid condition number using MQ and Gaussian with the two
connection constants: 2 and 3, in the three dimensional heat problem. 74

4.21 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.7 with C = 2. Max error evaluated
at 120,000 Halton points in the whole domain. 74

4.22 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.7 with C = 3. Max error evaluated
at 120,000 Halton points in the whole domain. 75

4.23 Sparse grid condition number using MQ and Gaussian with the
connection constant C = 2 in the four dimensional heat problem. . 76

4.24 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.8 with C = 2. Max error evaluated
at 240,000 Halton points in the whole domain. 76

4.25 The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.9 with C = 2. Max error evaluated
at 240,000 Halton points in the whole domain. 78

5.1 Restricted variables set. 86
5.2 The performance of multilevel sparse collocation and plain sparse

collocation for one asset European call option price following Parameter
Set 1 with that initial condition is estimation at τ = 0.865 using
Gaussian and a connection constant C = 2. Error evaluated at 4000
uniform points in [0.4E, 1.6E] at time t = 0. 89

5.3 The performance of multilevel sparse collocation and plain sparse
collocation for one asset European call option price following Parameter
Set 1 with that initial condition is estimation at τ = 0.865 using
MQ and a connection constant C = 2. Error evaluated at 4000
uniform points in [0.4E, 1.6E] at time t = 0. 90

5.4 Parameter Set 2 for continuous dividend European call option. . . . 91
5.5 The performance of multilevel sparse collocation and plain sparse

collocation for one asset dividend European call option price following
Parameter Set 2 with that initial condition is estimation at τ =
0.236 using Gaussian and a connection constant C = 2. Error
evaluated at 4000 uniform points in [0.4E, 1.6E] at time t = 0. . . . 92

5.6 The performance of multilevel sparse collocation and plain sparse
collocation for one asset dividend European call option price following
Parameter Set 2 with that initial condition is estimation at τ =
0.236 using MQ and a connection constant C = 2. Error evaluated
at 4000 uniform points in [0.4E, 1.6E] at time t = 0. 92

5.7 Parameter Set 3 for Margrabe option. 95
5.8 The performance of multilevel sparse collocation and plain sparse

collocation for Margrabe with an earlier terminal value of 0.8T using
MQ and a connection constant C = 2. Error evaluated at 10,000
uniform points in [90, 110]2 at time t = 0. 96

List of Tables xii

5.9 The performance of multilevel sparse collocation and plain sparse
collocation for Margrabe with an earlier terminal value of 0.8T using
Gaussian and a connection constant C = 2. Error evaluated at
10,000 uniform points in [90, 110]2 at time t = 0. 96

5.10 Results of MuSIK-C with Gaussian from Table 5.2 and corresponding
RE when β = 1.7. 100

5.11 Results of MuSIK-C with MQ from Table 5.3 and corresponding
RE when β = 2.3. 100

5.12 Results of MuSIK-C with Gaussian from Table 5.5 and corresponding
RE when β = 1.5. 100

5.13 Results of MuSIK-C with MQ from Table 5.6 and corresponding
RE when β = 1.6. 100

Abbreviations

ACBF = Approximate Cardinal Basis Function
ATPBFs = Anisotropic Tensor Product Basis Functions
BDF = Backward Differential Formula
BUP = Boundary Update Procedure
CSRBFs = Compactly Supported Radial Basis Functions
FEM = Finite Element Method
FDM = Finite Difference Method
FVM = Finite Volume Method
GBM = Geometric Brownian motion
GSRBFs = Globally Supported Radial Basis Functions
IgA = Isogeometric Analysis
IMQ = Inverse Multiquadric
IPDG = interior penalty discontinuous Galerkin
MLRBF-C= Multilevel Full Grid RBF Collocation
MOL = Method of Lines
MQ = Multiquadric
MuSIK = Multilevel Sparse Grid Kernel Interpolation
MuSIK-C= Multilevel Sparse Grid Kernel Collocation
ODEs = Ordinary Differential Equations
PD = Positive Definite
PDEs = Partial Differential Equations
PSM = Pseudospectral Method
PUM = Partition of Unity
RBFs = Radial Basis Functions
RBF-C = RBF collocation
RE = Richardson Extrapolation
RMS = Root Mean Square Error
SIK = Sparse Grid Kernel Interpolation
SIK-C = Sparse Grid Kernel Collocation
TPS = Thin Plate Splines
VSK = Variably Scaled Kernels

xiii

To my parents

xiv

Chapter 1

Introduction

1.1 Background

Numerical approximations of partial differential equations (PDEs) have been widely

utilised in diverse subject areas, such as fluid dynamics, electromagnetism, material

science, astrophysics and financial markets. There are a variety of numerical

methods for solving PDEs. The most well-known is perhaps the finite difference

method (FDM) which utilises finite difference equations to approximate differential

equations [52]. The computational domain is usually divided into discretization

grids. The discretization results in a system of equations of the variable at nodal

points, and once a solution is found, then we have a discrete representation of

the solution at each nodal point. The FDM is easy to understand when the

domain is a rectangle. However, when the shape of domain is complex, it is

difficult to implement the FDM without employing other techniques. The finite

element method (FEM) is another well-known numerical technique for solving

PDEs and it can cope with geometric variation better than the FDM [66, 104].

The computational domain is divided into smaller domains (finite elements) and

the solution in each element is constructed from the basis functions. The number

of variables or dimensions might reach hundreds or even thousands in a realistic

problem. The above two methods require some pre-decided meshes, however mesh

construction is difficult in high dimensional problems. In view of this, it is very

1

Introduction 2

significant to devise efficient numerical methods for high dimensional problems.

In this thesis, our purpose is to examine the performance of a new method for

solving the linear PDEs, especially in high-dimensional situations.

Mesh-free methods are believed to have a huge advantage when spatial dimension

is increasing. They just require data points located in the domain instead of being

concerned with the connectivity of the nodes. Radial basis functions (RBFs) are

one kind of such mesh-free method. Hardy firstly proposed the multiquadric (MQ)

RBF [56] in 1971. Hardy also published a review of the development of the MQ

RBF from 1968 to 1988 in [57]. In 1982, Franke examined various methods to solve

the scattered data interpolation problem in the plain and concluded that Hardy’s

MQ was the best in [41]. Later, Micchelli demonstrated the interpolation matrix of

many RBFs (including MQ) are invertible [89]. Further, Madych and Nelson [87]

stated the spectral convergence rate of MQ interpolation in 1992. In the literature

[71, 72], Kansa first utilised the MQ RBF to solve PDEs, and this approach is called

Kansa’s method which is an unsymmetric collocation method. Afterwards, using

the MQ became quite popular in PDE problems such as [18, 35, 63, 100]. Later,

for initial and boundary conditions, Hon et al. extended this method to solve

the engineering biphasic model with the nonlinear initial and boundary conditions

in [63]. Fornberg et al. applied variate boundary treatments (edge enhancement

techniques) to RBFs to investigate the problem of RBF approximations at the

edge of an interval in both one and two dimensions [17]. Furthermore, examples

of option pricing (American and European option) with RBFs (Global RBFs and

Quasi-RBFs) have been demonstrated by Hon in [61, 62], where the Boundary

Updated Procedure (BUP) technique is applied to capture the free boundary

condition problem in the American option. Hon also investigated the theoretical

convergence of RBFs for the Black-Scholes equation [65]. The attractive factors

of MQ are not only its suitability in high dimension and spectral convergence but

also its infinite differentiability. Other RBFs such as the Gaussian RBFs have the

same properties, see [31, 38, 64]. Infinitely differentiable RBFs are most popular

in applications. However, it is not clear that how to choose the type of RBF for

one particular problem.

Introduction 3

Besides the Kansa method, Fasshauer [27] produced a symmetric matrix from

the PDE system by applying the Hermite interpolation property of RBFs. Wu

adopted the RBF Hermite-Birkhoff interpolation and proved the convergence of

this approach in [122]. Later in 1998, Wu [124] also proved that this method keeps

its convergence when solving PDE problems. In the same year, Schaback and

Franke [43] also provided their convergence order estimation. In this thesis we use

the Kansa collocation method [71, 72] which was mentioned above. Some others

use the symmetric RBF method [27, 37].

1.1.1 Radial basis functions and collocation

LetX = {x1,x2, . . . ,xN} ⊆ Rd be a set of scattered data sites, the RBF interpolant

û which will be described in detail in Chapter 2 takes the following form:

û(x) =
N∑
i=1

λiφ(‖x− xi‖), x ∈ Rd, (1.1)

where the norm ‖ · ‖ : Rd → R+ normally stands for the Euclidean norm, λ =

{λ1, . . . , λN} is coefficient vector and φ : R+ → R is the RBF. For an interpolation

problem to a known or unknown function f , we need the measurements at the

data site {f(x1), f(x2), . . . , f(xN)} to make the interpolant satisfy

û(xi) = f(xi), i = 1, 2, . . . , N.

For the boundary value problem for partial differential equations:

Lu = f in Ω,

u = g on ∂Ω,

where L is a differential operator, f and g are prescribed functions, Ω is the

domain, and ∂Ω denotes the boundary of domain. The interpolant û matches the

Introduction 4

system at the given data:

Lû(x) = f(x), x ∈ X ∩ Ω,

û(x) = g(x), x ∈ X ∩ ∂Ω.

The corresponding matrix system is

Lφ(‖x1 − x1‖) Lφ(‖x1 − x2‖) · · · Lφ(‖x1 − xN‖)

Lφ(‖x2 − x1‖) Lφ(‖x2 − x2‖) · · · Lφ(‖x2 − xN‖)
...

... · · · ...

Lφ(‖xn − x1‖) Lφ(‖xn − x2‖) · · · Lφ(‖xn − xN‖)

φ(‖xn+1 − x1‖) φ(‖xn+1 − x2‖) · · · φ(‖xn+1 − xN‖)
...

... · · · ...

φ(‖xN − x1‖) φ(‖xN − x2‖) · · · φ(‖xN − xN‖)

λ1

λ2

...

λn

λn+1

...

λN

=

f1

f2

...

fn

gn+1

...

gN

,(1.2)

here xi ∈ X ∩ Ω for i = 1, 2, . . . , n and xj ∈ X ∩ ∂Ω for j = n+ 1, . . . , N .

Since RBFs were proposed almost five decades ago, RBFs have had a fast development

and been widely used in many areas. There are lots of publications mentioned the

numerous advantages of RBFs, for example, [10, 24, 119]. In [37], Larsson and

Fornberg concluded that RBFs are more accurate than the standard second-order

finite difference method (FDM) and the Fourier-Chebyshev pseudospectral method

(PSM) in elliptic problems. Buhmann et al. and Madych et al. proved that

infinitely smooth RBFs have spectral orders of convergence (faster than any polynomial

order) in [9, 87]. In [15], Cecil et al. illustrated the example of solving the Hamilton

Jacobi equation in two to four dimensions by using RBFs. Alternatively, finite

difference (FDM), finite element (FEM), finite volume (FVM) can also be used to

solve this problem [66, 107]. Pena’s eight step "cooking recipe" [95] showed that

RBFs can be easily applied to a range of different option pricing problems. The

RBFs method only requires an arbitrary set of nodes which is extremely useful for

high-dimensional implementation, such as an American basket option [32, 75]. To

sum up, the profits are high-order accuracy, applicability in high dimension, easy

to implement and mesh free.

Introduction 5

Kansa summarised the achievements and challenges concerning RBFs in Cheng

and Brebbia’s book [19]. In the article, he classifies RBFs into three classes:

• Compactly supported radial basis functions (CSRBFs), see Wendland [117]

and Wu [123]; for example

φ(r) = (1− r)4
+(4r + 1), (2DRBF, Wendland),

φ(r) = (1− r)5
+(5r4 + 25r3 + 48r2 + 40r + 8), (2DRBF, Wu).

Here the notation (1− r)+ = max{1− r, 0}, hence the above CSRBFs have

a support parameter 0 ≤ r ≤ 1.

• Polyharmonic splines and thin plate splines (TPS):

φ(r) = rk, k = 1, 3, 5, . . . , (polyharmonic),

φ(r) = rk log(r), k = 2, 4, 6, . . . , (TPS).

• C∞ RBF splines can be any transcendental univariate function with a local

scale factor (also called shape parameter) c. Some examples as we mentioned:

φ(r) =
β
√
r2 + c2, (MQ),

φ(r) = exp

(
−r

2

c2

)
, (Gaussian).

In the above three classifications, only C∞ RBFs have the shape parameter c. The

operator can change the shape from flat to peak by employing different values of c

(more details in Chapter 2). According to Schaback’s uncertainty principle [101]:

"Either one goes for a small error and gets a bad sensitivity, or one wants a stable

algorithm and has to take a comparatively large error." There is not a perfect

approach and theory to optimise choice of shape parameters currently. However,

many researchers have done some remarkable procedures to solve the problem, for

instance, [7, 31, 33, 38, 39, 40, 79, 80, 81].

Although infinitely smooth RBFs are widely used to implement for high dimensional

problems, the computational cost grows fast when the dimension is increasing.

Introduction 6

Moreover, the density of data will raise up at a high speed so that will cause an

ill-conditioning problem. Even if we don’t take care of the trouble in ill-conditioning,

the long running time to solve the system matrix is prohibitive. In 1999, the

authors in [4] pointed out it was not appropriate (at that time) to utilise direct

method when the size of data is bigger than ten thousand. Current practical

applications often require tens of thousands or even millions of data sites. The

requirement of large data forces the researchers to develop strategies to overcome

the difficulties. Utilising CSRBFs [117, 123] is an easy way to handle computational

cost problem. As a result, we will lose spectral convergence. Some of other

suggested methods to address the difficulties are domain decomposition method

[23, 77], multilevel method [28, 55, 70], preconditioning strategies [4, 8, 34], sparse

grid method [46, 51], RBF partition of unity (PUM) method [59, 60, 105]. In the

next two subsections, we would like to give a brief introduction to the multilevel

method and sparse grid method that are employed in this thesis.

1.1.2 Multilevel method

It is a general approach to utilise the multilevel method to accelerate convergence

rate for scattered data, see [28, 48, 52, 69, 70, 91, 93]. The basic idea of the

multilevel method is the hierarchical decomposition of the data sites. For instance,

given a set of data X ⊆ Ω ⊆ Rd, the first requirement is to form a nested sequence

of subsets

X1 ⊆ X2 ⊆ · · · ⊆ X.

Furthermore, Wendland suggested [119] that the separation distance (see Definition

2.5) qX and fill distance (Definition 2.4) hX,Ω should follow:

qXj+1
=

1

2
qXj+1

,

hXj+1,Ω =
1

2
hXj ,Ω.

Introduction 7

Regardless of whether it is an interpolation problem or to solve PDE system, the

approximations ûl at the lth level satisfies the residual equation

ûl|Xl
=

(
f −

l−1∑
j=0

ûj

)
|Xl
,

where û0 ≡ 0, f is the target function.

It is also demonstrated in [119] that there are two restrictions in utilising the

multilevel method. The first is that we must use different basis functions at every

level l. This is because the data sites are nested

Xl ⊆ Xl+1.

If the basis functions are the same, the approximation spaces will also be nested

span{φl (x− y) ,y ∈ Xl} ⊆ span{φl+1 (x− y) ,y ∈ Xl+1}.

Therefore, using the multilevel method will not improve the approximations. In

the Example 1.1, we compare estimation results under utilising the same basis

functions and applying different basis functions. The second restriction is that we

only apply one cycle of the algorithm and any further cycle would not improve our

approximations as a result of that the data sets we used are nested.

Example 1.1. For a simple one dimension interpolation problem, suppose target

function is f(x) = sin(πx) on the interval [0, 1].

The numerical results are obtained with multiquadric RBF. In the following two

tables, N stands for the number of uniformly spaced nodes, l∞ is max absolute

error. From Table 1.1 and Table 1.2, we can recognise that using scaling kernels

is crucial for multilevel method if we do not change basis function.

Introduction 8

Level N c Direct l∞ Multilevel l∞
1 3 0.05 1.8e-1 1.8e-1
2 5 0.05 4.3e-2 4.3e-2
3 9 0.05 2.1e-2 2.1e-2
4 17 0.05 8.7e-3 8.7e-3
5 33 0.05 2.1e-3 2.1e-3

Table 1.1: The performance of multilevel method and direct method with
c = 0.05.

Level N c Direct l∞ Multilevel l∞
1 3 0.8 2.8e-3 2.8e-3
2 5 0.4 1.1e-2 1.6e-3
3 9 0.2 7.3e-3 6.5e-4
4 17 0.1 4.0e-3 1.8e-4
5 33 0.05 2.1e-3 4.5e-5

Table 1.2: The performance of multilevel method and direct method with
scaling c.

1.1.3 Sparse grid method

The sparse grid is the core part of this thesis, and there will be detailed explanation

in Chapter 4. Here, we just give some common background. The sparse grid

method was proposed by Zenger [126] in 1991 in order to deal with PDE problems

in high-dimensional situations. It resulted from the Smolyak algorithm [106]

for numerical integration. The fundamentals of sparse grid techniques have a

close relationship with the hyperbolic cross [1, 112], the Boolean method [20]

and the discrete blending method [3]. The sparse grid method relies on a tensor

product hierarchical basis construction, which can reduce the degrees of freedom

from O(Nd) to O(N logd−1(N)) for d-dimensional problems without compromising

much on accuracy.

In 1992, Griebel et al. [54] proposed an alternative representation of the sparse

grid, which is called the combination technique. This technique separates a sparse

grid into several coarser sub-grids that are directionally uniform. Thus, partial

solutions can be estimated on every sub-grid and be linearly combined to construct

the final approximation. As the sparse grid is divided into much coarser grids, it

is beneficial for reducing memory requirement. For example, we can solve two

Introduction 9

dimensional elliptic problem with 13,313 nodes or three dimensions with 21,249

centres using the sparse grid on a laptop while it is not possible to handle similar

size of data sites on the full grid. On the other hand, the processes to achieve

approximations on sub-grids are independent so that it is convenient to apply

parallel method on sparse grid combination technique.

Currently, sparse grid techniques are widely used in interpolation and approximation.

They have been incorporated in collocation methods for high-dimensional stochastic

differential equations [83, 92, 125], Galerkin and finite element methods [11, 12,

13, 45, 104, 116], finite difference methods [52], finite volume methods [58] for

high-dimensional PDEs.

1.1.4 Space-time method

When we try to solve parabolic equations (see Definition 3.2), one normal way is

to consider the time dimension and spatial dimensions separately, like the Method

of Lines (MOL) which is introduced in Chapter 3; see [62, 95, 98]. In 2002, Myers

et al. [90] proposed treating time as one spatial dimension which is called the

space-time method in RBF field. Recently, this method is becoming a standard

approach, see e.g. [2, 53, 74, 94, 111, 114].

Using previous algorithms to solve time dependent PDEs with RBFs, particular

discretization in the time direction is essential. Once the discretization nodes in

the time direction are determined, we only have approximations at those time

nodes. If we would like to have approximations outside the time discretization

grid, we have to relocate the time nodes and resolve the problem. Having an

efficient time and spatial grid is crucial to the approximation accuracy in previous

major algorithms. However, it is not clear which direction has more effect on

the estimation. The space-time method can avoid the above disadvantages by

applying RBFs on all directions. Because we don’t need to balance the influences

from different methods in the time direction and spatial directions. In Chapter 3,

we present an example to show the performance of the MOL and the space-time

method. When utilising a sparse grid, one can reduce the complexity. For example,

Introduction 10

solving a T×Rd PDE as usual, we may need O(N2 logd−1(N)) operations, where

N is nodes number in each direction. However, if consider time as one dimension,

the complexity is O(N logd(N)). In this thesis, we use the space-time method to

solve parabolic problems.

1.1.5 Black-Scholes equation

Options are contracts that offer owners the right, but not the obligation to buy

(called call option) or sell (called put option) underlying assets or instruments at

a specified strike price. One option has an expiry date, also known as maturity

date. The holder can exercise his option before the expiry date or on the date,

depending on the form of the option. There are many styles of options such as

European option, American option, Spread option, Barrier option and so on. As

many options and financial derivatives are concerned about multiple assets, solving

high dimensional problems is significant in financial framework. The time when

holder would like to trade depends on the option style. For instance, an American

option holder can exercise the option at any time before maturity. However, a

European call option holder only can exercise at the expiry time T , which is

determined when signing the contract. The corresponding payoff function for one

asset European call option at time T is

P = (S − E)+ = max{S − E, 0}, (1.3)

where E is the exercise price, S is the stock price at time T .

The Black-Scholes equation [6] is very famous in financial mathematics to price

options. It is widely used in different kinds of options pricing by matching variety

of boundary conditions. Because the Black-Scholes equation is also one kind of

parabolic equations, the normal approach of option pricing is to solve the equation

is by time stepping [13, 16, 32, 61, 62, 75, 95]. However, there are also some

research on option pricing using the space-time method. For instance, Urschel

[114] introduced an adaptive space-time multigrid method for the pricing of barrier

options in 2013. Urschel stated one disadvantage of the space-time method that it

Introduction 11

generates a large system matrix due to the addition of one dimension. Therefore,

we will cost more computation time. However, we can reduce the influence of

this by employing the sparse grid technique which reduces the complexity and

is parallel. In the following, we will introduce some basic concepts about the

Black-Scholes equation.

In the Black-Scholes model, the underlying asset S follows Geometric Brownian

motion (GBM):

dS = µSdt+ σSdW. (1.4)

Here µ and σ represent the expected asset return and volatility of asset return

respectively. W (t) is a Wiener process with W (0) = 0 and the increment W (t)−

W (s) is Gaussian with mean 0 and variance t−s for any 0 ≤ s < t, and increments

for non-overlapping time intervals are independent. In the Black-Scholes framework,

σ is constant and µ is set to be risk-free rate r. Based on the arbitrage-free

assumption, the multi-asset Black-Scholes equation on domain [0, T]× Ω holds:

∂C

∂t
+

1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2C

∂SiSj
+

d∑
i=1

(r − qi)Si
∂C

∂Si
− rC = 0, (1.5)

• C stands for the analytical option price which is determined by time t and

d assets’ prices.

• σi is volatility of ith underlying stock.

• ρi,j is the correlation between stocks i and j.

• qi is continuous dividend payment for ith asset.

• r is risk-free rate.

• T means maturity time.

1.2 Motivation and objective

In high dimensional approximation, there is a challenge we cannot ignore called

the curse of dimensionality, a term due to Bellmann [5]. If we demand fast

Introduction 12

convergence when dimension d is growing, we need to employ an exponentially

increasing number of collocation points at order Nd, where N is the number of

points in one direction. More recently, a method called multilevel sparse grid kernel

interpolation (MuSIK) [48] (formerly referred to as MLSKI) was successfully

applied in high dimension interpolations by Georgoulis, Levesley and Subhan.

In Subnhan’s thesis [109], he proposed the sparse grid kernels (SIK) algorithm,

for the solution of interpolation problem in high dimensions. The scheme uses

direction-wise decomposition of structured interpolation data sites in conjunction

with the application of kernel-based interpolants with different scaling in each

direction. SIK algorithm can be viewed as an extension of the idea of sparse grids

to kernel-based functions. To achieve accelerated convergence, SIK is extended to

the multilevel version (MuSIK). The experiments in [48, 109] showed that both

SIK and MuSIK are stable and MuSIK gives rapid convergence results even in

four dimensions interpolation. This phenomenon is the main motivation for us

to develop SIK collocation (SIK-C) and MuSIK collocation (MuSIK-C) algorithm

in PDEs solving. We not only have an interest in elliptic and parabolic problem

with smooth boundaries but also would like to exploit problems with non-smooth

conditions like options pricing in the Black-Scholes model.

1.3 Main achievements

In this thesis, we do not mean that MuSIK-C is perfect. But MuSIK-C is easily

implemented for high dimensional approximations meanwhile it keeps rapid convergence

and gives accurate approximations. In Section 4.3, we show that MuSIK-C has

similar performance compared to mesh-based methods in low dimension and achieves

better approximations in high dimension. During the experiments, we observe that

the convergence rates of MuSIK-C do not decrease while the dimension d increases.

Moreover, MuSIK-C even shows spectral convergence in many experiments, such

as pricing one dimensional European call option in Section 5.1.3. We found

our MuSIK-C method can not handle parabolic problem with non-smooth initial

conditions, like Black-Scholes equation. In Chapter 5, we introduce a method to

Introduction 13

take a relatively smooth estimation as the initial condition at an earlier time before

the maturity time. Then we make MuSIK-C applicable in the remaining domain.

1.4 Thesis outline

In Chapter 2 we introduce anisotropic tensor product basis functions that will

be used in this thesis and some basic definitions, theories and notations that are

helpful to have an overview of the RBF.

Chapter 3 focuses on typical methods for partial differential equation solving

with RBFs, including the Kansa collocation method, the Method of Lines (MOL)

and the space-time method. In Section 3.3, there is an example to show the

performance of the Method of Lines and the space-time method when approximating

option price. We demonstrate that the space-time method with MQ has a similar

convergence rate as the MOL using MQ.

Chapter 4 shows our sparse grid kernel collocation (SIK-C) and multilevel sparse

grid kernel collocation (MuSIK-C) algorithms. At the end of this chapter, we

show the superiority of MuSIK-C in some collocation experiments with smooth

conditions that reach four dimensions (including time dimension for the parabolic

problem) and comparisons with some recent mesh-based methods.

In Chapter 5, we observe that only SIK-C using MQ can be used directly to

solve Black-Scholes equation with a non-smooth initial condition. So we introduce

a method to estimate a relatively smooth initial condition at an earlier time.

Then we implement MuSIK-C to solve Black-Scholes equation with that relatively

smooth initial condition for pricing the European option and the Margrabe option.

At the end, we apply Richardson Extrapolation to make the solutions more accurate

and accelerate the convergence rate.

A summary of the thesis and future work is given in Chapter 6.

Chapter 2

Scattered data approximation

2.1 Scattered data interpolation problem

The interpolation scheme is to construct an estimating function û which is good

enough to pass through all the given measurements (called the data values) at

the corresponding locations (called the data sites). Normally this is a mapping

from Rd to R (d is the dimension of the data). Depending on the process, we are

not only interested in the given data values but also concerned about deducing

approximations at locations that are different from those indicated by available

measurements. If the region on which the measurements located do lie on a

uniform or a regular grid then the process is called grid or mesh data interpolation,

otherwise, it’s called scattered data interpolation.

Definition 2.1 (Scattered data interpolation problem). LetX = {x1,x2, . . . ,xN} ⊆

Rd, for those points, given pairwise data (xi, yi), yi ∈ R. The multivariate scattered

data interpolation problem is to find a function û : Rd → R such that û(xi) = yi

for i = 1, ..., N , where û is called the interpolant to the data.

Here xi are the measurements locations, and yi are the corresponding measurements,

the data set (xi, yi) can also be called sample set. Normally, the convenient

approach for resolving the scattered data interpolation problem is to assume the

interpolant û is a linear combination of certain number of basis functions, φk(x),

14

Scattered data approximation 15

k = 1, ..., N , i.e.,

û(x) =
N∑
k=1

λkφk(x), x ∈ Rd. (2.1)

The interpolant satisfies the conditions

û(xi) = yi, i = 1, 2, . . . , N. (2.2)

These equations lead to the linear system

Aλ = y, (2.3)

where the entries of the interpolation matrix A are given by

Aj,k = φk(xj), j, k = 1, 2, . . . , N,

and λ = [λ1, . . . , λN]T ,y = [y1, . . . , yN]T .

The non-singularity of matrix A guarantees there is only a unique solution of the

problem. In [89], Micchelli demonstrated some restrictions to ensure matrix A is

non-singular by proving that complete monotonicity of one function implies that

its conditional positive definiteness.

2.2 Basic concepts

In this section, we will introduce some basic, essential definitions and theorems.

These can be found in any elementary textbook on RBFs (see [10, 29, 119]).

Definition 2.2 (lp − norm). Let A : Rn → Rm and u ∈ Rn. The p − norm or

lp − norm, p ≥ 1 of matrix A induced by the vector norm ‖ · ‖p is defined as

‖A‖p = max
u∈Rn\{0}

‖Au‖p
‖u‖p

,

here ‖u‖p = (
∑n

i=1 |ui|)
1
p .

l1 − norm, l2 − norm and l∞ − norm are displayed as follows:

Scattered data approximation 16

• (l1 − norm) ‖u‖1 =
∑n

i=1 |ui|,

(l1 − norm) ‖A‖1 = max1≤j≤n
∑n

i=1 |Aij|,

• (l2 − norm) ‖u‖2 = (
∑n

i=1 |ui|2)
1
2 ,

(l2 − norm) ‖A‖2 =
√
ρ (ATA), where ρ is the spectral radius,

• (l∞ − norm) ‖u‖∞ = max1≤i≤n |ui|,

(l∞ − norm) ‖A‖∞ = max1≤i≤n
∑n

j=1 |Aij|.

Definition 2.3 (Multi-index notation). Let N0 denote the set of non-negative

integers. A d-dimensional multi-index is a d-tuple α = (α1, . . . , αd) ∈ Nd
0. For

x = (x1, . . . , xd) ∈ Rd, we define

|α| =
d∑
i=1

αi,

xα =
d∏
j=1

x
αj
j ,

and

Dα =

(
∂

∂x1

)α1

· · ·
(

∂

∂xd

)αd
=

∂|α|

∂xα1
1 · · · ∂x

αd
d

.

Definition 2.4 (Fill distance). The fill distance corresponding to the data set X

in domain Ω is defined as:

hX,Ω = sup
x∈Ω

min
xj∈X

||x− xj||2.

The fill distance is used as a measure of the data distribution is also known as the

covering radius.

Definition 2.5 (Separation distance). The separation distance of data site X is

defined as:

qX =
1

2
min
i 6=j
||xi − xj||2.

This is also referred to as the packing radius. The separation distance can be

understood physically as the maximum radius r that guarantees there are not

overlapped open spheres centring at nodes in X, {x ∈ Rd : ‖x−xj‖2 ≤ r,xj ∈ X}.

Scattered data approximation 17

Definition 2.6 (Condition number). The condition number of a matrix A with

respect to any matrix norm ||.|| is

κ(A) = ||A||||A−1||.

Using the l2 − norm, the condition number κ(A) is displayed as:

κ (A) = ||A||2||A−1||2 =
σmax
σmin

,

here σmax and σmin are maximal and minimal singular values of A respectively,

and especially, when matrix A is positive definite the statement can be rewritten

as

κ(A) =
λmax
λmin

,

where λmax and λmin are maximal and minimal modulus values of eigenvalues of

A respectively.

It is critical to control the size of condition number because conditioning is a

measure of the numerical stability of the interpolation process. The condition

number is used to quantify the sensitivity to perturbations of a linear system, and

to estimate the accuracy of a computed solution. For example, there is a linear

system

Ay = b. (2.4)

It there is a perturbation in the vector b, such that b̃ = b + δb, then Equation

(2.4) becomes

Aỹ = b̃. (2.5)

Define δy = ỹ − y, it can be shown [113] that

‖δy‖
‖y‖

≤ κ (A)
‖δb‖
‖b‖

. (2.6)

Similarly, if Ã = A+ δA, from equation

Ãỹ = b, (2.7)

Scattered data approximation 18

we obtain [113]
‖δy‖
‖y‖

≤ κ (A)
‖δA‖
‖A‖

(2.8)

If the condition number of matrix A is κ(A) = O(1), we can demonstrate that the

system is not sensitive to small perturbations. Therefore, it is well-conditioned. In

contrast, a system which is sensitive to small perturbations is called ill-conditioned,

and it suffers from instabilities when solved on a machine, while the matrix has a

large condition number.

Definition 2.7 (Positive definite matrix). A real N square symmetric matrix A

is called positive semi-definite if its associated quadratic form is non-negative, i.e.,

N∑
j=1

N∑
k=1

λjλkAjk ≥ 0,

for λ = [λ1, . . . , λN]T ∈ RN . If the only vector λ that turns the above quadratic

form into an equality is the zero vector, then A is called positive definite.

A positive definite matrix A has an inverse matrix A−1, because its determinant

is not zero.

Definition 2.8 (Positive definite (PD) function). A real valued continuous function

φ : Rd → R is positive semi-definite on Rd if and only if it is even and

N∑
j=1

N∑
k=1

λjλkφ(xj − xk) ≥ 0,

for any N pairwise different points {x1, . . . ,xN} ⊆ Rd, and λ = [λ1, . . . , λN]T ∈

RN . The function φ is strictly positive definite on Rd if the only vector λ that

turns the above into the equality is the zero vector.

Positive definite functions have an important role in approximation theory and

statistics, and the property is crucial for interpolation.

Scattered data approximation 19

2.3 Radial basis functions

Firstly, we give the definition of a radial function as:

Definition 2.9 (Radial function). A function Φ : Rd → R is defined as a radial

if there is a univariate function φ : [0,∞) → R, such that Φ(x) = φ(r), where

r = ‖x‖, and ‖.‖ is some norm on Rd (typically the Euclidean norm).

Supposing we have some scattered points located in a domain Rd, which is called

centres or nodes and represented by xi = (x1
i , x

2
i , . . . , x

d
i). From the definition

above, a radial function depends on the distance from variable point x to centre

node xi as Φ(x − xi) = φ(‖x − xi‖), here the norm represents for the Euclidean

distance.

From the different kinds of RBFs, we list some widely utilised globally supported

radial basis functions (GSRBFs) in Table 2.1. Because the interpolation matrix

depending on GSRBFs is full, computation cost grows exponentially as the size

of problem increasing. In contrast, compactly supported radial basis functions

(CSRBFs) were introduced with the advantage that they produce a sparser linear

system for the interpolation problem. Currently, Wendland’s functions are popular

CSRBFs and have been further developed and modified in [117, 119]. Some

examples are listed in Table 2.2. Other CSRBFs such as Wu’s functions can

be found in [29, 123].

Name of RBFs Functional Form φ(r) = Parameters
Gaussians e−(cr)2 c > 0

Polyharmonic Splines rν ν > 0, ν /∈ 2N
Thin Plate Splines (TPS) r2k log(r) k ∈ N

Multiquadric(MQ) (c2 + r2)
ν
2 ν > 0, ν /∈ 2N, c > 0

Inverse Multiquadric(IMQ) (c2 + r2)
ν
2 v < 0, c > 0

Table 2.1: Example of some globally supported radial basis functions

As early as two decades ago, many researchers demonstrated the accuracy, stability

and ease of implementation of MQ and Gaussians basis functions; for instance

[41, 89, 96, 108]. Since this MQ and Gaussians have comparatively high accuracy

and are infinitely differentiable, many authors have a preference to utilise them

Scattered data approximation 20

Dimension d Radial Basis Function smoothness

d = 1

φ1,0(r) = (1− r)+

φ1,1(r) = (1− r)3
+(3r + 1)

φ1,2(r) = (1− r)5
+(8r2 + 5r + 1)

C0

C2

C4

d ≤ 3

φ3,0(r) = (1− r)2
+

φ3,1(r) = (1− r)4
+(4r + 1)

φ3,2(r) = (1− r)6
+(35r2 + 18r + 3)

φ3,3(r) = (1− r)8
+(32r3 + 25r2 + 8r + 1)

C0

C2

C4

C6

d ≤ 5

φ5,0(r) = (1− r)3
+

φ5,1(r) = (1− r)5
+(5r + 1)

φ5,2(r) = (1− r)7
+(16r2 + 7r + 1)

C0

C2

C4

Table 2.2: Example of Wendland’s compactly supported radial basis functions.

in the literature, for example, [32, 38, 62, 75, 95]. In this thesis, we also consider

these two as our basis functions.

The multiquadric(MQ) and Gaussian functions are displayed as follow:

Multiquadric : φ(‖x− xi‖) =
√
‖x− xi‖2 + c2, (2.9)

Gaussian : φ(‖x− xi‖) = e−
‖x−xi‖

2

c2 , (2.10)

where c is called the shape parameter which has a huge influence for RBFs. For

the above presentations, different choices of shape parameters can lead to different

shapes of RBFs from peak to flat as shown in Figure 2.1.

As mentioned earlier, while the shape of the RBF is becoming flatter the condition

number of the system is also growing and the approximation is more accurate.

However, once the shape parameter c exceed a limit which is not easy to predict,

Scattered data approximation 21

Figure 2.1: Different RBF shapes with different shape parameter values as
c = 0.01, c = 0.1 and c = 2.

the system becomes too ill-conditioned and unstable, so the results are not credible.

Furthermore, in [25] Driscoll and Fornberg stated that even though a small value of

c (c→ 0) can provide a well-conditioned linear system, an inaccurate solution also

comes out. Those observations suggest that different RBFs with shape parameters

should have a reliable region for their shape parameters. In 1995, Schaback [101]

mentioned that there is a balancing point between accuracy and good condition

and we cannot guarantee both. Later, the Contour-Padé algorithm [40] and

RBF-QR method [39] were proposed to handle flatter RBFs more stably. Then,

Fasshauer and Mccourt [31] introduced a stable method with flat Gaussian kernels

and Fornberg, Larsson and Flyer [38] extended the RBF-QR approach to three

dimensions. Recently, in [7] variably scaled kernels (VSK) method was proposed

to reduce the condition number by treating the shape parameter as an extra space

variable. As so far, the optimal shape parameter is still an open problem in RBF

research.

Definition 2.10 (Completely monotone). A function ϕ is completely monotone

on [0,∞) if:

1. ϕ ∈ C[0,∞).

2. ϕ ∈ C∞(0,∞).

Scattered data approximation 22

3. (−1)lϕ(l)(r) ≥ 0 where r > 0 and l = 0, 1, · · ·

Theorem 2.11 (Micchelli). Let g ∈ C∞[0,∞) be such that g′ is completely

monotonic but not constant. Suppose further that g(r) ≥ 0. Then the interpolation

matrix A is nonsingular for φ(r) = g(r2).

Proof. Supposing A = {φ(‖xi − xj‖)}xi,xj∈X and X is set of points. Since g(r) ∈

C∞[0,∞), then we have

g(r) = g(0) +

∫ r

0

g′(x)dx.

By replacing g′(x) with the Bernstein-Widder representation

g′(x) =

∫ ∞
0

e−αxdµ (α) ,

and exchange integrals. From Fubini’s theorem, it is allowed to change the order

of integration in iterated integrals. We obtain

g(r) = g(0) +

∫ r

0

∫ ∞
0

e−αxdµ(α)dx.

Suppose λ ∈ RX and
∑

i∈X λi = 0, then we have

∫ r

0

e−αxdx = −α−1e−αr + α−1.

and

λTAλ = −
∫ ∞

0

∑
i∈X

∑
j∈X

λiλjα
−1e−α‖i−j‖

2

dµ(α),

Thus λTAλ < 0 for all λ and except λ = 0, this means there is one negative

eigenvalue in A with remainder of positive eigenvalues.

The above proof is taken from [10]. There is also a nice proof by Powell in [96].

Scattered data approximation 23

2.4 Anisotropic tensor product basis function

Definition 2.12. (Anisotropic Radial Basis Function) Let φ(‖ · −xi‖) be a given

RBF centred at xi ∈ Rd and let A ∈ Rd×d be an invertible matrix. The anisotropic

radial basis function φA is defined by

φA(‖ · −xi‖) = φ(‖A (· − xi) ‖).

Considering the domains on different directions are not in the same size and sparse

grid distribution which will be introduced in Chapter 4, here we choose anisotropic

tensor product basis functions (ATPBFs) instead of norm form:

Multiquadric : φA,xi(x) =
d∏

k=1

√
A2
k(xk − xki)2 + c2

k, (2.11)

Gaussian : φA,xi(x) =
d∏

k=1

e
−A

2
k(xk−x

k
i)

2

c2
k , (2.12)

where k is the kth dimension of variable x, coefficient Ak is kth diagonal element of

scaling matrix A ∈ Rd×Rd that make approximations suitable for different grids,

see Figure 2.2 and Figure 2.3. From the equations (2.11) and (2.12), we observe

that ATPBF for the Gaussian is still belong to RBFs. In particular, it is a scaled

RBF. However, ATPBF for MQ is not radial any more.

Figure 2.2: An example of normal MQ and anisotropic tensor MQ funcions in
two dimensions.

Scattered data approximation 24

Figure 2.3: An example of normal Gaussian and anisotropic tensor Gaussian
functions in two dimensions.

It is not necessary to put Ak before (xk − xki)2. We can draw a similar expression

as:

Multiquadric : φA,xi(x) =
d∏

k=1

√
(xk − xki)2 + (Chk)2, (2.13)

Gaussian : φA,xi(x) =
d∏

k=1

e
− (xk−x

k
i)

2

(Chk)
2 , (2.14)

here we consider Chk = ck
Ak
, (k = 1, 2, . . . , d) as "shape parameters" specially

chosen for center xi according to different spatial dimensions, hk is nodes distance

in kth direction. The values ofAk are always set to be nodes number in corresponding

direction minus one. Shape parameters ck ∈ R are always selected as ck = CLk,

here C is a connection constant number. Supposing xk ∈ [ak, bk], then Lk = bk−ak.

The ATPBFs are the main basis functions used in this paper. The derivatives from

this expression can be derived as:

Multiquadric : Dxp(φA,xi) =
xp − xpi√

(xp − xpi)2 + (Chp)2

∏
k 6=p

√
(xk − xki)2 + (Chk)2,

D2
xp(φA,xi) =

(Chp)
2

[(xp − xpi)2 + (Chp)2]
3
2

∏
k 6=p

√
(xk − xki)2 + (Chk)2,

Gaussian : Dxp(φA,xi) = −2(xp − xpi)
(Chp)2

∏
k

e
− (xk−x

k
i)

2

(Chk)
2 ,

D2
xp(φA,xi) = (− 2

(Chp)2
+

4(xp − xpi)2

(Chp)4
)
∏
k

e
− (xk−x

k
i)

2

(Chk)
2 .

Scattered data approximation 25

Given a set of scattered data points X = {xi, i = 1, 2, . . . , N} ⊆ Rd, then the

approximation û in the rest of this thesis is formed as:

û(x) =
N∑
i=1

λiφA,xi(x). (2.15)

For the interpolation problem, firstly we consider one dimensional case. Given

a set of scattered data X = {ξ1, ξ2, . . . , ξN} and corresponding function values

Y = {η1, η2, . . . , ηN}. The interpolant û can be written in Lagrange form as

û(x) =
n∑
j=1

ηjuj(x) (2.16)

where the uj(x) are the so-called univariate cardinal basis functions, defined by

the property that uj(ξi) = δij, the Kronecker delta.

From Equation (2.15), we obtain the following matrix-vector equation by enforcing

û(xi) = yi

Φ · λ = y. (2.17)

Here, Φi,j = φA,xj(xi). As dimension d increases, the size of matrix Φ also grows.

The tensor product nature of our radial basis functions give us an alternative

approach to solve the above equation.

Φ · λ = y

⇒ λ = Φ−1 · y.

Then the problem is to find the inverse of the matrix Φ without solving it. We can

use the property of Kronecker Product on the univariate cardinal basis function:

(Φ1 · (Φ1)−1)⊗ · · · ⊗ (Φd · (Φd)
−1) = I1 ⊗ · · · ⊗ Id = I

⇒ (Φ1 ⊗ · · · ⊗ Φd) · ((Φ1)−1 ⊗ · · · ⊗ (Φd)
−1) = I.

Scattered data approximation 26

By using the tensor product nature we know that:

Φ = Φ1 ⊗ · · · ⊗ Φd. (2.18)

Combine the above equations together, we can have:

(Φ)−1 = (Φ1)−1 ⊗ · · · ⊗ (Φd)
−1

⇒ λ = (Φ)−1 · y = ((Φ1)−1 ⊗ · · · ⊗ (Φd)
−1) · y.

This formula shows that the high dimensional interpolation coefficients can be

constructed by tensor product of the univariate cardinal basis function, due to the

tensor product nature of ATBRFs, but not solving the large size ill-conditioned

matrix. For instance, the size of a interpolation matrix Φ on a full grid is N2d, N is

nodes number in one direction and d is dimension. The normal cost to invert Φ is

O(N6d). However, the cost to invert Φi is O(N6) and the cost to make Kronecker

Product is O(N2d). Moreover, we can easily generalize this method. Hence, we

not only improve the numerical stability but also reduce the memory requirement

for solving the interpolation problem. Therefore, the numerical stability is only

related with the condition number of univariate cardinal function interpolation.

2.5 Convergence

For the MQ and Gaussian RBFs used in this thesis, there are two approaches to

make the approximation converge. One is to refine the mesh size h. That means

we need to utilise more nodes, with the relative we increase the computational

cost. Another way is to use larger shape parameter c, which is performed without

extra cost. However, as the c becomes larger, the shape of the basis function is

flatter and the system matrix becomes more ill-conditioned. This phenomenon is

demonstrated by Schaback’s uncertainty principle [101]. Our numerical experiments

also provided the same performance.

For the accuracy of the RBF interpolation, Madych and Nelson [87] gave the proof

of the exponential convergence for a class of RBFs. Furthermore, Wendland [118]

Scattered data approximation 27

refined the error bound to O
(
λ
√

1
h

)
for the Gaussian, where 0 < λ < 1. In [84],

Madych proposed an error estimate for MQ as O
(
eacλ

c
h

)
, where a is a positive

constant. In Hermite interpolation, the investigation of the rate of convergence of

Hermite interpolation has been done by Luo and Levesley [82] with a modification

method of variational approach of Madych and Nelson [85, 86]. For the elliptic

PDE problem, Franke and Schaback [43] used symmetric collocation method to

find an L∞ error bound, and in term of L2 norm, it has an additional convergence

factor hd/2 for MQ basis function. There is some theoretical work on multilevel

RBF collocation method, such as [55, 91, 120]. Afterwards, Farrell and Wendland

[26] showed a convergence theory for multilevel collocation using CSRBFs which

is also based on symmetric collocation method. Although there is no theoretical

proof for the convergence of our method, numerical experiments demonstrate that

good convergence results are also observed using MuSIK-C.

2.6 An example

In this section, we present a two dimensional elliptic example on the domain

Ω = [0, 1]2 to investigate on the condition number (Cond) and convergence in

function of different kinds of shape parameters. We use Kansa method which is

described in Section 3.1 to solve this example. As shown in Equations (2.13) and

(2.14) that we utilise in this thesis, the shape parameter at the kth direction is in

the form Chk. hk means the nodes distance in the kth direction. In this example,

we only use the full grid collocation and there are two dimensions. So at the level

n, hn1 = hn2 = 1
Nn−1

, here Nn is the number of nodes in one dimension. C is the

connection constant number and is equal to 2 in this experiment. This choice is

also used in most examples in this thesis. Therefore, shape parameters are scaling

with different uniform grids at different levels. en means the l∞ error at the level

n:

en = max
x∈T
|u(x)− ûn(x)|,

Scattered data approximation 28

here T is a testing points set that contains 24,000 uniform points in the whole

domain. The order is depending on the nodes distance hn1 at the level n.

Order =
log(en+1)− log(en)

log(hn+1
1)− log(hn1)

.

Example 2.1. In this example, we consider Poisson’s equation

uxx + uyy =
2x(x2y2 − 3y2 + x4 + 2x2 + 1)

(x2 + 1)3
, Ω = [0, 1]2 , (2.19)

with boundary conditions

u(x, 0) = 0, x ∈ [0, 1] ,

u(x, 1) =
x

x2 + 1
, x ∈ [0, 1] ,

u(0, y) = 0, y ∈ [0, 1] ,

u(1, y) =
y2

2
, y ∈ [0, 1] .

Here, the analytical solution is

u(x, y) =
xy2

x2 + 1
.

Level N Cond(MQ) e(MQ) Order(MQ)
1 3 8e3 2.0e-2 —
2 5 7e5 6.1e-3 1.7
3 9 2e7 2.8e-3 1.1
4 17 4e8 2.0e-3 0.5
5 33 8e9 1.2e-3 0.7
6 65 1e11 6.8e-4 0.8

Table 2.3: Results using MQ with the scaling shape parameter 2hn1 .

In Table 2.3 and 2.4, it is evident that we control condition number in an acceptable

range. It is interesting that convergence rate in Table 2.3 seems to be near 1, while

the order in Table 2.4 is closing to 0. This phenomenon about the collocation

with the Gaussian basis function is also observed in Section 3.3, Section 4.3 and

Chapter 5. However, the numerical results in Section 4.3 also demonstrate that

MuSIK-C can overcome the problem to obtain a rapid convergence. In Table 2.5

Scattered data approximation 29

Level N Cond(G) e(G) Order(G)
1 3 1e3 5.0e-2 —
2 5 8e4 2.4e-2 1.04
3 9 4e6 1.8e-2 0.46
4 17 6e7 1.6e-2 0.16
5 33 3e8 1.5e-2 0.07
6 65 1e9 1.5e-2 0.03

Table 2.4: Results using the Gaussian with the scaling shape parameter 2hn1 .

Level N Cond(MQ) e(MQ) Order(MQ)
1 3 50 4.7e-2 —
2 5 5e3 1.6e-2 1.6
3 9 4e6 4.2e-3 1.9
4 17 2e11 6.4e-4 2.7
5 33 1e20 2.6e-5 4.7
6 65 5e21 3.5e-6 2.9

Table 2.5: Results using MQ with a constant shape parameter 0.2.

Level N Cond(G) e(G) Order(G)
1 3 100 2.9e-1 —
2 5 198 8.8e-2 1.7
3 9 8e4 3.7e-2 1.2
4 17 3e15 1.1e-3 5.1
5 33 2e21 1.9e-5 5.8
6 65 2e22 6.6e-5 -1.8

Table 2.6: Results using the Gaussian with a constant shape parameter 0.2.

and Table 2.6, we take a constant distance hnc = 0.1 instead of hn1 at different

levels. Therefore, shape parameter is fixed as 0.2. We can see that the orders are

very fast, and we can achieve very accurate results in most cases. However, the

condition number is growing extremely fast so that in the level 6 in Table 2.6, the

error is bigger, and the order is a negative number.

Chapter 3

Solving partial differential equations

using RBFs

One important application of radial basis functions (RBFs) is to solve partial

differential equations (PDEs). The collocation method with RBFs is renowned in

resolving elliptic boundary value problems (see Definition 3.1). After Myers et al.

[90] proposed the space-time method in RBF field, many researchers have worked

on applying collocation into parabolic problems. In this chapter, we firstly review

one well-known collocation method called the Kansa method which is utilised

in this thesis in Section 3.1. We then introduce two main methods used for

the parabolic problem (see Definition 3.2), the Method of Lines (MOL) and the

space-time method in Section 3.2. In Section 3.3, we present one option pricing

example to show the performance of the space-time method and the MOL when

solving a parabolic problem.

30

Solving partial differential equations using RBFs 31

3.1 Elliptic PDEs

Definition 3.1 (Elliptic differential operator). A linear operator L : C2(Ω) →

C(Ω) in the following form is an elliptic differential operator of second order

Lu(x) =
d∑

i,j=1

aij(x)
∂2

∂xi∂xj
u(x) +

d∑
i=1

bi(x)
∂

∂xi
u(x) + b0(x)u(x), (3.1)

where the coefficient matrix
[
aij(x)

]
∈ Rd×d satisfies

∃ α > 0,
d∑

i,j=1

aij(x)cicj > α‖c‖2
2

for all x ∈ Ω and c ∈ Rd.

We solve the second order elliptic PDE with Dirichlet boundary conditions system:

Lu = f in Ω, (3.2)

u = g on ∂Ω, (3.3)

where L is an elliptic operator, f and g are prescribed functions. We choose

a set of uniformly distributed points Ξ = Ξ1 ∪ Ξ2 as centre nodes, here Ξ1 =

{x1,x2, . . . ,xn} are interior points of Ω and Ξ2 = {xn+1,xn+2, . . . ,xN} are located

on the boundary ∂Ω. In this thesis, the PDE system is solved by Kansa method

[71, 72]. The method is well-known for its easy programming in high dimension and

regardless of geometric complexity of problems, while the well-posedness problem

of system is still an open question as described in [42, 43] by Franke and Schaback.

Kansa’s method is a spectral method in which a global approximation at the form

û(x) =
N∑
i=1

λiφA,xi(x)

Solving partial differential equations using RBFs 32

is used. In order to acquire the coefficients λ, we substitute the equation into the

above elliptic system (3.2) and (3.3):

N∑
i=1

λiLφA,xi(xj) = f(xj), j = 1, 2, . . . , n, (3.4)

N∑
i=1

λiφA,xi(xj) = g(xj), j = n+ 1, n+ 2, . . . , N. (3.5)

For visual simplicity, a matrix-vector product equation is obtained as:

LφA,x1(x1) LφA,x2(x1) · · · LφA,xN (x1)

LφA,x1(x2) LφA,x2(x2) · · · LφA,xN (x2)
...

... · · · ...

LφA,x1(xn) LφA,x2(xn) · · · LφA,xN (xn)

φA,x1(xn+1) φA,x2(xn+1) · · · φA,xN (xn+1)
...

... · · · ...

φA,x1(xN) φA,x2(xN) · · · φA,xN (xN)

λ1

λ2

...

λn

λn+1

...

λN

=

f1

f2

...

fn

gn+1

...

gN

. (3.6)

3.2 Parabolic PDEs

Definition 3.2 (Parabolic differential operator). A linear operator L on Ω in the

form:

Lu(t,x) = ut −
d∑

i,j=1

aij(t,x)
∂2u

∂xi∂xj
−

d∑
i=1

bi(t,x)
∂u

∂xi
− c(t,x)u(x), (3.7)

is said to be parabolic if for fixed t, the operator with second order term is an

elliptic operator. Here the variable t stands for time.

The heat equation is a typical example of a parabolic PDE. The generalization of

heat equation with Dirichlet condition on domain x ∈ Ω ⊆ Rd and t ∈ [a, b] is:

ut − Lu = 0, [a, b]× Ω, (3.8)

u(a,x) = f(x), x ∈ Ω, (3.9)

u(t,x) = g(t,x), [a, b]× ∂Ω, (3.10)

Solving partial differential equations using RBFs 33

where L is an elliptic operator of second order, f(x) is an initial condition and

g(x) is a boundary condition.

To solve the heat equation with radial basis functions, there are two main methods

to deal with the time variable. One way is to apply the method of lines (MOL) in

the time direction with any finite difference method, such as Runge-Kutta method,

Crank-Nicolson method and so on. The other is to consider time t as one spatial

dimension [90].

3.2.1 Method of lines

The method of lines (MOL) is a standard numerical method for approximating

PDEs. The essence of the method is to convert PDE problems to ordinary

differential equations (ODEs) by preserving partial derivatives in specially chosen

directions and take the place of partial derivatives on other directions by algebraic

approximations [102]. In this subsection, I just present the Crank-Nicolson method

which was used in [62, 95, 98] and in the following experiments. In the FDM, the

Crank-Nicolson scheme as one implicit method is well-known as an unconditionally

stable scheme while the explicit scheme is called conditionally stable. Moreover,

Giles and Carter [50] emphasized that the Crank-Nicolson method is unconditionally

stable in L2 norm.

Recall the nodes set Ξ in Section 3.1. Set the approximation ûMOL constructed by

using the MOL in the form:

ûMOL(t,x) =
N∑
i=1

λi(t)φA,xi(x), [a, b]× Ω, (3.11)

where coefficients λ(t) = [λ1(t), λ2(t), . . . , λN(t)]T are functions based on time

variable t.

From the initial condition (3.9), we can have N equations:

N∑
i=1

λi(a)φA,xi(xj) = f(xj) (3.12)

Solving partial differential equations using RBFs 34

for j = 1, 2, . . . , N . Now, introducing matrix algebra to make algorithm clearer,

we define matrix Φ:

Φ =

φA,x1(x1) φA,x2(x1) · · · φA,xN (x1)

φA,x1(x2) φA,x2(x2) · · · φA,xN (x2)
...

...

φA,x1(xN) φA,x2(xN) · · · φA,xN (xN)

 . (3.13)

Thus Equation (3.12) becomes

Φλa = f . (3.14)

Here λa standing for λ(a) is coefficients at time t = a, f = [f(x1), f(x2), . . . , f(xN)]T .

According to Theorem 2.11, matrix Φ (3.13) which is constructed by basis function

(2.11) or (2.12) is invertible. Therefore, we can multiply inverse matrix Φ−1 on

both sides of (3.14) in order to achieve coefficients:

λa = Φ−1f . (3.15)

Following up with the first series of coefficients at initial time, we need an iteration

equation to derive coefficients at subsequent times. Substitute Equation (3.11) into

(3.8), we obtain

∂

∂t

N∑
i=1

λi(t)φA,xi(x)−
N∑
i=1

λi(t)LφA,xi(x) = 0. (3.16)

Apply this equation at the interior points in the set Ξ1 = {x1,x2, . . . ,xn} to form

the matrix-vector product equation

ΦI ∂λ

∂t
− LΦIλ = 0, (3.17)

where

ΦI =

φA,x1(x1) φA,x2(x1) · · · φA,xN (x1)

φA,x1(x2) φA,x2(x2) · · · φA,xN (x2)
...

...

φA,x1(xn) φA,x2(xn) · · · φA,xN (xn)

 . (3.18)

Solving partial differential equations using RBFs 35

LΦI =

LφA,x1(x1) LφA,x2(x1) · · · LφA,xN (x1)

LφA,x1(x2) LφA,x2(x2) · · · LφA,xN (x2)
...

...

LφA,x1(xn) LφA,x2(xn) · · · LφA,xN (xn)

 . (3.19)

So far, we use radial basis functions to replace derivatives of target function u

on spatial directions and only reserve the partial derivative on time variable t. It

is reasonable to consider Equation (3.17) as a system of ODEs problems. The

next thing is to employ a method to solve this system of ODEs, such as the

Crank-Nicolson method.

Assuming time t is discretized into M uniformly distributed nodes with distance

∆t = b−a
M−1

on [a, b]:

ti = a+ (i− 1)×∆t, i = 1, 2, . . . ,M.

Equation (3.17) can be rewritten as:

ΦIλti − ΦIλti−1

∆t
=

1

2
LΦIλti +

1

2
LΦIλti−1 , i = 1, 2, . . . ,M, (3.20)

where λti = λ(ti). We can reorganize the above Equation (3.20) into the iteration

expression

Bλti = Dλti−1 . (3.21)

Here B and D are n×N square matrices represented separately as

B = ΦI − 1

2
LΦI∆t,

D = ΦI +
1

2
LΦI∆t.

Previous researchers (Hon et al. [62]) applied a method called the Boundary

Update Procedure (BUP) to force approximation values to satisfy boundary conditions.

Here, we impose the boundary conditions (3.10) instead of the BUP as [105].

Solving partial differential equations using RBFs 36

Suppose the matrix ΦB applied on the boundary nodes Ξ2 = {xn+1, . . . ,xN} is

ΦB =

φA,x1(xn+1) φA,x2(xn+1) · · · φA,xN (xn+1)

...
...

φA,x1(xN) φA,x2(xN) · · · φA,xN (xN)

 . (3.22)

So the boundary conditions at time step ti is

ΦBλti = gti , (3.23)

where gti = [g (ti,xn+1) , . . . , g (ti,xN)]T .

Combine the equations (3.21) and (3.23), we have

 B
ΦB

λti =

Dλti−1

gti

 . (3.24)

If the parabolic problem is solved from the final time t = b, the iteration equation

is D
ΦB

λti−1 =

Bλti

gti−1

 . (3.25)

3.2.2 Consider time as a spatial dimension

Considering time as a spatial dimension is known as the space-time method, which

was firstly introduced into RBF field by Myers et al. in [90]. In order to describe

this method clearly, we define some new notations firstly. In a parabolic problem

we have a space domain Ω ⊆ Rd and time interval t ∈ [a, b], now suppose Ωt =

Ω × t ⊆ Rd × [a, b]. Normally we only have conditions on boundary ∂Ω and at

initial time given at starting time a or final time b, so in this section we use ∂Ωt to

represent the portion of boundary of Ωt where the conditions are listed out in the

problem. Correspondingly, there is a little change in uniformly distributed centre

nodes Θ ∈ Ωt. Θ = Θ1 ∪Θ2, where Θ1 = {η1,η2, . . . ,ηn} are located in Ωt \ ∂Ωt

and Θ2 = {ηn+1,ηn+2, . . . ,ηN} are on ∂Ωt.

Solving partial differential equations using RBFs 37

Now our problem for target function u is displayed as:

Ltu = f, in Ωt \ ∂Ωt, (3.26)

u = g, on ∂Ωt, (3.27)

where Lt is a parabolic operator, f, g are selected functions that makes u satisfies

the PDE.

It is not necessary to explain how to solve this linear system as it is same to do a

full grid RBF collocation (RBF-C) by Kansa’s method introduced in Section 3.1.

We also use û to represent the solution solved by the space-time method.

3.3 Numerical experiments

In 1973, the original analytical formula of non-dividend European options was

proposed by Black and Scholes in [6]. Following this achievement, Roll extended

the model to underlying stock paying dividends and introduced the first extension

analytical formulation of the call option in [99]. After that, Geske [49] and Whaley

[121] made corrections to the formulation separately in 1979 and 1981. The

analytical solution of one asset European call option C(t, S) is:

C(t, S) = Se−q(T−t)N (d1)− Ee−r(T−t)N (d2),

d1 =
log(S

E
) + (r − q + 1

2
σ2)(T − t)

σ
√
T − t

,

d2 = d1 − σ
√
T − t,

whereN is the cumulative distribution function of the standard normal distribution,

S means the stock price at time t, E is the strike price, σ is the volatility of the

underlying stock, q is the continuous dividend payment for the asset, r is the

risk-free rate and T means the maturity time.

The above option price C(t, S) satisfies the following system on [0, T]× [0,+∞)

∂C

∂t
+

1

2
σ2S2∂

2C

∂C2
+ (r − q)S∂C

∂S
− rC = 0, t ∈ [0, T) , S ∈ [0,+∞) , (3.28)

Solving partial differential equations using RBFs 38

with initial condition and boundary conditions

C(T, S) = max{S − E, 0}, S ∈ [0,+∞) , (3.29)

C(t, 0) = 0, t ∈ [0, T] , (3.30)

lim
S→+∞

C(t, S) = lim
S→+∞

(
Se−q(T−t) − Ee−r(T−t)

)
, t ∈ [0, T] . (3.31)

Obviously, it is impossible to construct numerical results on an infinity domain.

For computational purpose, we need to truncate the domain for stock price S

from [0,+∞) to [Smin, Smax] even though there will be an unavoidable truncated

error. However, according to the dominant diffusion process, it will reduce the

influence from imperfect boundary condition. If we choose a domain large enough,

the solution of the region of interest will not be affected by the truncation error.

Let u(t, S) stands for the one asset European call option value in the truncated

domain [Smin, Smax]. Hence u(t, S) satisfies the following system on Ωt = [0, T]×

[Smin, Smax]:

∂u

∂t
+

1

2
σ2S2 ∂

2u

∂S2
+ (r − q)S ∂u

∂S
− ru = 0, t ∈ [0, T) , S ∈ [Smin, Smax] ,(3.32)

with initial condition and boundary conditions

u(T, S) = max{S − E, 0}, S ∈ [Smin, Smax] , (3.33)

u(t, Smin) = g1(t), t ∈ [0, T] , (3.34)

u(t, Smax) = g2(t), t ∈ [0, T] . (3.35)

Here, boundary conditions g1(t) := 0 and g2(t) := Smaxe
−q(T−t) − Ee−r(T−t). We

also choose an enlarge spatial truncated domain
[
S̃min, S̃max

]
⊃ [Smin, Smax]. Let

u∗(t, S) stands for the option value on the domain
[
S̃min, S̃max

]
. The PDE system

for u∗ is very similar with the system for V , so we don’t display that again.

In this section, we approximate the price of one asset non-dividend European

call option following Parameter Set 1 taken from the BENCHOP [110] as Table

3.1. The numerical approximations are constructed by using the MOL and the

space-time method. In order to compare the MOL and the space-time method

Solving partial differential equations using RBFs 39

Parameter Values
σ 0.15
r 0.03
T 1
E 100
q 0

Smin 0
Smax 3E

Table 3.1: Parameter Set 1 for non-dividend European call option.

more fair, in the following numerical results, center nodes are uniformly distributed

on the domain [0, T]×[Smin, Smax] and the domain [0, T]×
[
S̃min, S̃max

]
. In order to

reduce changeable factors, all approximations are obtained with shape parameter

C = 2.

In the following tables, "Nodes" is the number of nodal points used for the

approximation at different levels n. T is a testing sample points set which will be

made explicit in each case. We measure the errors in the MOL and the space-time

method at the level n respectively as

En
MOL = max

S∈T
|C(0, S)− ûnMOL(0, S)|,

En
RBF−C = max

S∈T
|C(0, S)− ûn(0, S)|.

Correspondingly, let ρ stands for the slope of two adjacent points in different

methods, for instance,

ρMOL =
log
(
En+1

MOL

)
− log (En

MOL)

log
(
Nodesn+1

)
− log (Nodesn)

,

here Nodesn means the nodes number at the nth level.

When we apply the space-time method on the domain Ωt = [Smin, Smax]× [0, T],

we obtain the solution by solving Equations from (3.32) to (3.35). In Table

3.2, the max absolute errors are calculated on the sample points in the domain

[Smin, Smax] = [0, 3E] when we use the Gaussian basis function. We can see that

the convergence rates for the MOL and the space-time method are both decreasing

to zero. The bad performance of the collocation method using the Gaussian is also

Solving partial differential equations using RBFs 40

Level Nodes EMOL ρMOL ERBF−C ρRBF−C

1 9 12.3 — 11.8 —
2 25 7.01 -0.55 6.65 -0.56
3 81 5.10 -0.27 6.03 -0.08
4 289 5.48 0.06 6.97 0.11
5 1089 5.36 -0.02 7.11 0.02
6 4225 5.26 -0.01 7.07 -0.004
7 16641 5.20 -0.01 6.90 -0.02
8 66049 5.08 -0.02 6.82 -0.009

Table 3.2: The performance of the MOL and the space-time method using
Gaussian on the spatial computational domain [Smin, Smax] = [0, 3E]. Error
evaluated at 3000 uniform test points at time t = 0 on [Smin, Smax] = [0, 3E].

Level Nodes EMOL ρMOL ERBF−C ρRBF−C

1 9 15.9 — 15.7 —
2 25 6.40 -0.89 6.37 -0.88
3 81 1.87 -1.04 1.84 -1.06
4 289 2.64e-1 -1.54 2.46e-1 -1.58
5 1089 1.16e-1 -0.62 1.61e-1 -0.32
6 4225 5.73e-2 -0.52 9.26e-2 -0.41
7 16641 2.85e-2 -0.51 4.79e-2 -0.48
8 66049 1.39e-2 -0.52 2.39e-2 -0.50

Table 3.3: The performance of the MOL and the space-time method using MQ
on the spatial computational domain [Smin, Smax] = [0, 3E]. Error evaluated at

3000 uniform test points at time t = 0 on [Smin, Smax] = [0, 3E].

observed in Section 2.6, Chapter 4 and Chapter 5. In Table 3.3, the max absolute

errors are also calculated on the sample points in the domain [Smin, Smax] = [0, 3E]

when we use the MQ. Both methods converge and the MOL seems to give more

accurate solutions compared to the space-time method. However, the convergence

rates based on the number of nodes for the MOL and the space-time method are

both tending to be 0.5.

As this experiment is about option pricing, the truncation error has influence on

the solutions, especially on the solutions near the boundary side. In Table 3.4,

we show the performance of both methods using the MQ on the central region[
Ŝmin, Ŝmax

]
= [0.4E, 1.6E]. The difference between Table 3.3 and Table 3.4

is only that the errors are calculated on the different testing points in different

domains. It is obvious that both methods illustrate better performance for the

Solving partial differential equations using RBFs 41

Level Nodes EMOL ρMOL ERBF−C ρRBF−C

1 9 15.9 — 15.7 —
2 25 6.40 -0.89 6.37 -0.88
3 81 1.87 -1.04 1.84 -1.06
4 289 2.64e-1 -1.54 2.46e-1 -1.58
5 1089 7.06e-2 -0.99 6.33e-2 -1.02
6 4225 1.59e-2 -1.10 1.28e-2 -1.18
7 16641 4.11e-3 -0.99 2.69e-3 -1.14
8 66049 1.08e-3 -0.97 7.64e-4 -0.91

Table 3.4: The performance of the MOL and the space-time method using MQ
on the spatial computational domain [Smin, Smax] = [0, 3E]. Error evaluated at

3000 uniform test points at time t = 0 on
[
Ŝmin, Ŝmax

]
= [0.4E, 1.6E].

accuracy and the convergence rate. The rates based on the number of nodes tend

to be 1 for both and the space-time method performs a little better in the accuracy.

To have a visual view, we draw the performance of the MOL and the space-time

method using MQ in Figure 3.1.

Figure 3.1: The performance of the space-time and the MOL using MQ on
the spatial computational domain [Smin, Smax] = [0, 3E]. The left figure shows
the max error at t = 0 on [Smin, Smax] = [0, 3E], the right figure shows the max

error at t = 0 on
[
Ŝmin, Ŝmax

]
= [0.4E, 1.6E].

In Figure 3.2, we observe that the major errors in both figures are located near

the boundaries. Meanwhile, the approximation using the MOL seems to be less

influenced by the truncation error in the central region
[
Ŝmin, Ŝmax

]
= [0.4E, 1.6E].

This observation supports that choosing a large enough spatial computational

domain is meaningful for option pricing. To have good approximations on the

Solving partial differential equations using RBFs 42

Figure 3.2: The performance of the MOL solution (left) and the space-time
method (right) using MQ basis function on the spatial computational domain
[Smin, Smax] = [0, 3E]. Errors are sampled on [Smin, Smax] = [0, 3E] at t = 0.

whole domain [Smin, Smax], we test using an enlarged region
[
S̃min, S̃max

]
= [−E, 6E]

and keep other parameter setting same as before. We define the boundary conditions

for the domain
[
S̃min, S̃max

]
as:

V ∗(t, S̃min) = 0, t ∈ [0, T] , (3.36)

V ∗(t, S̃max) = S̃maxe
−q(T−t) − Ee−r(T−t), t ∈ [0, T] . (3.37)

As the MOL using MQ has similar performance as the space-time method using

MQ, so we just display results from the MOL using MQ in the following table.

For the MOL using MQ on the enlarged domain, we define the errors as E∗MOL and

the slope as ρ∗MOL in Table 3.5.

Table 3.5 shows the performance of the MOL using MQ on different spatial

computational domains: [Smin, Smax] = [0, 3E] and
[
S̃min, S̃max

]
= [−E, 6E]. As

we can see, choosing a larger spatial domain than the area that we are interested

in yields a significant improvement based on the same cost of nodes.

In Figure 3.3, the errors are sampled at the region [Smin, Smax] for levels 8 and 9. As

we can see, the major errors locate in the kink around the strike price and there is a

very good performance at the portions near Smin and Smax. Meanwhile, we obtain

a better solution with more nodes. Based on these observations, in Chapter 5, we

choose the MOL using MQ on an enlarged computational domain to approximate

Solving partial differential equations using RBFs 43

Level Nodes EMOL ρMOL E∗MOL ρ∗MOL

1 9 15.9 — 51.1 —
2 25 6.40 -0.89 19.6 -0.94
3 81 1.87 -1.04 5.84 -1.03
4 289 2.64e-1 -1.54 2.87 -0.56
5 1089 1.16e-1 -0.62 3.45e-1 -1.60
6 4225 5.73e-2 -0.52 6.29e-2 -1.26
7 16641 2.85e-2 -0.51 3.10e-2 -0.52
8 66049 1.39e-2 -0.52 4.27e-3 -1.44

Table 3.5: The performance of the MOL using MQ on different spatial
computational domain. Error evaluated at 3000 uniform test points at time

t = 0 on [Smin, Smax] = [0, 3E].

Figure 3.3: The performance of the MOL solution using MQ in the level 8
(left) and the level 9 (right) on the spatial computational domain

[
S̃min, S̃max

]
=

[−E, 6E]. Errors are sampled on [Smin, Smax] = [0, 3E] at t = 0.

the option price at an earlier time. A larger computational domain can block

the truncation error from boundary side outside of our interesting domain. We

could employ more spatial nodes to obtain better approximation in one spatial

dimension problem, however, that will be a serious challenge in high dimensions.

3.4 Conclusion

In this chapter, we briefly review the Kansa method, the Method of Lines and the

space-time method. From the numerical results, we can demonstrate that choosing

a large enough computation domain yields a significant improvement in option

Solving partial differential equations using RBFs 44

pricing. The space-time method using MQ can be directly used to solve parabolic

problems, but the space-time method using the Gaussian cannot. When the nodal

points are uniformly distributed, the space-time method using MQ has a similar

convergence rate as the MOL using MQ in option pricing where an initial condition

is non-smooth. Moreover, when using the MOL on a uniformly distributed grid,

the number of nodes required is O(Nd+1), here d is the spatial dimension and N

means the nodes number in one direction. However, when we use sparse grids

introduced in Chapter 4 in the space-time method, we only need O(N logd(N))

nodes to construct the approximation. Even though we apply sparse grids in the

spatial dimensions in the MOL. The number of nodes required is O(N2 logd−1(N)).

We still save the memory cost with the space-time method. In Chapter 4, we

show the performance of the sparse collocation method and the multilevel sparse

collocation method in solving PDEs with smooth conditions.

Chapter 4

Multilevel sparse grid kernel

collocation with RBFs

In the approximation field, high dimensional problems are always difficult because

of the curse of dimensionality. Floater and Iske [36] proposed a multilevel interpolation

scheme to circumvent this problem. The multilevel interpolation method requires

decomposing the given data into a hierarchy of nested subsets. In [68, 69], Iske

further studied the scheme and gave an efficient construction of such hierarchies.

In [70], Iske and Levesley developed the multilevel scheme based on adaptive

domain decomposition. Based on Floater-Iske setting, Narcowich, Schaback and

Ward [91] demonstrated the multilevel method is a numerically stable method for

the interpolation and gave some theoretical underpinnings. Further, Hales and

Levesley [55] demonstrated the error estimates for the multilevel approximation

using polyharmonic splines. Fasshauer and Jerome used the multilevel method

with compactly supported radial basis functions (CSRBFs) to solve elliptic PDE

in [28, 30]. In [26], Farrell and Wendland also used the multilevel RBF collocation

method with CSRBFs to solve elliptic PDEs on bounded domains. Moreover, they

demonstrated a convergence theory.

Another way to overcome the problem is the sparse grid method introduced by

Zenger [126]. This method relies on a multi-scale basis via a tensor product

construction and saves a massive amount of storage and memory cost without

45

Multilevel sparse grid kernel collocation with RBFs 46

loosing accuracy. Hemker [58] applied the finite volume method on sparse grids to

solve three-dimensional elliptic problems. In [54], Griebel, Schneider and Zenger

developed a combination technique for the sparse grid. They also demonstrated

that the combination approach works for both smooth solutions and non-smooth

solutions of linear problems, and even for non-linear problems. Griebel [52] employed

finite difference in multilevel sparse grid method to solve elliptic PDEs. In 2013,

Georgoulis, Levesley and Subhan [48] proposed an method called multilevel sparse

grid kernel (MuSIK) for interpolation. Here, we extend this MuSIK method to

the collocation problem.

4.1 Sparse grid kernel collocation

One of the advantages in using radial basis function is easy to construct even in

high-dimensional problems. However, in order to achieve accuracy when dimension

d is increasing, we have to fix the fill distance of full grid. That means the number

of evenly distributed collocation points in every direction N is constant. As a

result, the size of a full grid is growing exponentially as Nd. In contrast, the sparse

grid kernel (SIK) algorithm which combines approximations based tensor product

anisotropic radial basis functions on every sub-grid is a stable and efficient method

when facing high dimension problem. The support of this matter is that under

the assumption of sufficient smoothness of the data, the amount of nodes utilised

can be reduced dramatically to guarantee a certain accuracy based on carefully

constructed tensor product anisotropic basis function. Owing to the additional

smoothness assumed, there is only a negligible loss of precision. The basic idea of

SIK was first introduced about fifty years ago in [1, 106] and Zenger [126] proposed

sparse grid methods in 1991.

4.1.1 Collocation with the combination technique

Schreiber discussed tensor product of one-dimensional RBFs applying directly

sparse grid methods in her thesis [103], where numerical results corresponding to

Multilevel sparse grid kernel collocation with RBFs 47

the resulting method were not promising. On the other hand, the direct using

of non-tensor product RBFs in the sparse grid setting is not straightforward,

since the approximation spaces are characterised by basis functions with different

anisotropic scaling in various directions. By utilising such scaling, the solution

obtained from sparse grid method is infeasible as there is no guarantee about the

well-posedness of the resulting kernel-based interpolation problems.

The strategy we adopt here is a sparse grid combination technique which was

introduced in [54], afterwards this technique is operative in piecewise polynomial

interpolation on sparse grids, for instance [12, 44, 46]. In sparse grid kernel

collocation, the sparse grid is decomposed into a number of sub-grids firstly. In

that case, all solutions that are constructed by solving collocation problems on each

sub-grid are linearly combined to form a final solution on the sparse grid. The

details about sparse grid kernel interpolation are discussed completely in [109],

and here we present a particular case to introduce the collocation algorithm.

Suppose u is target function mapping from domain Ω ⊆ Rd to R. We define

Ω = [0, 1]d in this section. Recall the collocation node set Ξ = Ξ1 ∪ Ξ2, where

Ξ1 = {x1,x2, . . . ,xn} are interior points in Ω and Ξ2 = {xn+1,xn+2, . . . ,xN} are

located on the boundary ∂Ω. The approximation û : Ω→ R has a requirement to

satisfy the collocation system for u:

Lû(x) = f(x), x ∈ Ω, (4.1)

û(x) = g(x), x ∈ ∂Ω. (4.2)

We define a multi-index l = (l1, l2, . . . , ld) ∈ Nd with condition |l|1 = n + (d− 1),

here n represents the serial level and d is the number of dimensions. We use the

symbol Sn,d
l to represent one decomposition of the sparse grid. The number of

nodes of each sub-gridSn,d
l in each direction areNl = 2l+1 := (2l1 +1, . . . , 2ld+1).

The sub-grids are directionally uniform grids. In some directions fewer points may

be needed and in others much more information is needed. The points xl,i of Sn,d
l

are the points:

xl,i := (xl1,i1 , . . . , xld,id) ,

Multilevel sparse grid kernel collocation with RBFs 48

where xlj ,ij = ij2
−lj , for ij = 0, 1, 2, . . . , 2lj , j = 1, . . . , d. Alternatively, the total

amount of centres used in Sn,d
l can be presented by the following formula:

Nn,d
l =

∏
Nl =

d∏
i=1

(2li + 1). (4.3)

Furthermore, one sparse grid Sn,d at level n and in d dimensions is the union of

all possible grids Sn,d
l :

Sn,d =
⋃

|l|1=n+(d−1)

Sn,d
l . (4.4)

Here, we give an example of decomposition of sparse grid S4,2 at level four and in

two dimensions. The above equation reduces to

S4,2 =
⋃

l1+l2=5

S4,2
l1,l2

. (4.5)

For a straightforward understanding, (4.5) is expressed in Figure 4.1.

=
⋃

⋃ ⋃

Figure 4.1: Sparse grid S4,2 via (4.5).

However, if we construct approximation û based on the four sub-grids in Figure

4.1, it is clear that some nodes are utilised more than once. In order to fix this

problem, we need to pick the redundant nodes out. In Figure 4.2, the first grid of

the second row is the union of S4,2
4,1 and S4,2

3,2, and the first grid in the third row

is the union of S4,2
4,1, S

4,2
3,2 and S4,2

2,3. The red points are redundancy nodes and the

Multilevel sparse grid kernel collocation with RBFs 49

red grids in the right-hand side column in Figure 4.2 are just sub-grids S3,2
l of

sparse grid S3,2 at level three and in two dimensions.

⋂
=

⋂
=

⋂
=

Figure 4.2: The redundant nodes of S4,2
l in Figure 4.1.

As so far, we can formulate approximation û on the seven sub-grids in an arranged

order as shown in Figure 4.3. This example is a particular case of the combination

technique, and the combination formula will be displayed subsequently.

Now it is time to construct approximations on every coarser directionally uniform

grids. As we employ tensor product RBFs in sparse grid kernel collocation (SIK-C),

the scaling coefficients Al ∈ Rd for each multi-index l is defined as

Al := (2l1 , 2l2 , . . . , 2ld).

We can solve the collocation system (4.1) and (4.2) on each sub grid Sn,d
l to have

an approximation ûn,dl . Here ûn,dl can be presented as

ûn,dl (x) =

Nn,d
l∑
i=1

λiφAl,xi
(x). (4.6)

Multilevel sparse grid kernel collocation with RBFs 50

= ⊕

⊕ ⊕

	 	

	

Figure 4.3: The construction of approximation û on S4,2.

The final approximation ûn,d on sparse gridSn,d is constructed with these particular

approximations ûn,dl following the rule named the combination formula [20, 44, 54]:

ûn,d(x) =
d−1∑
q=0

(−1)q

 d− 1

q

 ∑
|l|1=n+(d−1)−q

ûn−q,dl (x). (4.7)

For the special case d = 2:

ûn,2(x) =
∑
|l|1=n+1

ûn,2l (x)−
∑
|l|1=n

ûn−1,2
l (x), (4.8)

Multilevel sparse grid kernel collocation with RBFs 51

when n = 4, it is the situation shown in Figure 4.3:

û4,2(x) = û4,2
4,1(x) + û4,2

3,2(x) + û4,2
2,3(x) + û4,2

1,4(x)

− û3,2
3,1(x)− û3,2

2,2(x)− û3,2
1,3(x).

For d = 3:

ûn,3(x) =
∑
|l|1=n+2

ûn,3l (x)− 2
∑
|l|1=n+1

ûn−1,3
l (x) +

∑
|l|1=n

ûn−2,3
l (x). (4.9)

For d = 4:

ûn,4(x) =
∑
|l|1=n+3

ûn,4l (x)− 3
∑
|l|1=n+2

ûn−1,4
l (x)+

3
∑
|l|1=n+1

ûn−2,4
l (x)−

∑
|l|1=n

ûn−3,4
l (x).

(4.10)

To sum up the above procedure, we describe the algorithm as Algorithm 1:

As we can see, one sparse grid cost less complexity than a corresponding full grid.

Furthermore, the combination technique makes sparse grid decompose into sparse

sub-grids. As a result, the memory and computation cost are reduced again. From

the Equation (4.3), we notice that the size of each sub grid is O(2n+d−1). However,

the number of nodes required in a corresponding full grid is O(2dn). It is obviously

that our SIK-C algorithm save a lot of complexity compared to standard RBF

algorithm, especially for the large class of data when d > 2. Another advantage

of SIK-C is that it is possible to formulate approximation ûn,dl on each sub grid

Sn,d
l with an individual code so that all approximations can be solved in a parallel

system, see [44, 47, 51].

4.2 Multilevel sparse grid kernel collocation

For a significant amount of scattered data, a multilevel method is an efficient

approach to accelerate convergence without breaking up the computational limitation.

Multilevel sparse grid kernel collocation with RBFs 52

Algorithm 1 Algorithm for Sparse grid kernel collocation

1. Input level n, dimension d for sparse grid Sn,d and domain Ω.

2. Determine sequence k = {n− d+ 1, n− d+ 2, . . . , n} that settle the amount
of levels that we need to construct Sn,d.

3. Define multi-index set L = {Lk1 , . . . , Lkd}, here Lki = {l = (l1, . . . , ld) : |l|1 =
ki + d− 1} for i = 1, . . . , d.

4. Construct each directionally uniform sub grid Ski,d
l with evenly distributed

nodes Nl =
(
2l1 + 1, . . . , 2ld + 1

)
in different dimensions.

5. On each sub grid Ski,d
l , formulate approximation ûki,dl to satisfy:

Lûki,dl (x) = f(x), x ∈ Ω,

ûki,dl (x) = g(x), x ∈ ∂Ω.

6. Utilise combination formula

ûn,d(x) =
d−1∑
q=0

(−1)q
(
d− 1
q

) ∑
|l|1=n+(d−1)−q

ûn−q,dl (x)

to construct final approximation ûn,d on sparse grid Sn,d

Output ûn,d.

The main idea of the multilevel method is to decompose scattered data into limited

subspaces that form a nested sequence. Then in order to solve the collocation

problem, all hierarchical approximations are summed up. On the coarsest subset

approximation is formulated directly to original PDE model; other approximations

are constructed to the PDE residuals on each subspace. The multilevel method

is applied successfully in interpolation and collocation problems such as [26, 28,

30, 36, 68, 69, 70, 91, 93]. Error analysis of multilevel interpolation with RBFs is

discussed in [30, 55].

4.2.1 Multilevel full grid collocation

Suppose Xi ⊆ Ω ⊆ Rd, i = 1, 2, . . . ,m are a sequence of nested full grids in domain

Ω, each one has 2i + 1 evenly distributed nodes on one dimension, so they can be

Multilevel sparse grid kernel collocation with RBFs 53

presented as:

X1 ⊆ X2 · · · ⊆ Xm ⊆ Ω ⊆ Rd. (4.11)

On the first grid X1, the approximation ∆û1 is constructed to satisfy collocation

system:

L∆û1(x) = f(x), x ∈ X1 ∩ Ω,

∆û1(x) = g(x), x ∈ X1 ∩ ∂Ω.

Approximation û1 = ∆û1 on grid X1. On other grids Xi for i ≥ 2, approximations

∆ûi must satisfy the PDE residual system as:

L∆ûi(x) = f(x)− Lûi−1(x), x ∈ Xi ∩ Ω,

∆ûi(x) = g(x)− ûi−1(x), x ∈ Xi ∩ ∂Ω,

here ûi = ûi−1 + ∆ûi, i ≥ 2. Then let us use ûmML = ûm to represent the final

approximation. The progress is drawn in following Figure 4.4.

Figure 4.4: Multilevel full grid procedure.

Multilevel sparse grid kernel collocation with RBFs 54

4.2.2 Multilevel sparse grid kernel collocation

The essential idea of the multilevel method is to approximate the residuals in

different levels. The setting of SIK-C is naturally suitable for a multilevel approximation

algorithm. Firstly, the sparse grids from lower to higher level are nested, i.e.,

Sn,d ⊂ Sn+1,d for n ∈ N. Figure 4.5 shows a example in two dimensions, in which

there are six nested sparse grids. Secondly, the anisotropic basis functions are

scaled to fit the density of each particular sub-grid. That means the approximation

spaces will not be nested for different levels. Finally, a multilevel algorithm requires

the same number of nodal points and memory storage as SIK-C.

Figure 4.5: 6 nested sparse grids from S1,2 to S6,2.

The multilevel sparse kernel-based collocation (MuSIK-C, for short) algorithm is

to solve the collocation problem on the coarsest sparse grid and then from the next

level to solve on the residuals. Setting ∆0 := 0, for k = 1, . . . , n, ∆k is the sparse

Multilevel sparse grid kernel collocation with RBFs 55

grid approximation to the residuals u −
∑k−1

j=0 ∆j on Sk,d solved by collocation

method from linear system:

L∆k = f −
k−1∑
j=0

L∆j, (4.12)

∆k = g −
k−1∑
j=0

∆j. (4.13)

The resulting multilevel sparse kernel based collocation is then given by

ûn,dML :=
n∑
j=1

∆j. (4.14)

We summarise multilevel sparse grid kernel based collocation as Algorithm 2.

Algorithm 2 Algorithm for Multilevel sparse grid kernel based collocation
1. Input starting level m, final level n, dimension d and domain Ω.

2. Setting ∆m−1 := 0.

for i = m to n do

Reconstruct collocation system on Si,d as:

L∆i = f −
i−1∑

j=m−1

L∆j,

∆i = g −
i−1∑

j=m−1

∆j.

Recall Algorithm 1 to solve the above system.

Output residual approximation ∆i.

end for

3. Sum up all residual approximations:

ûn,dML =
n∑

i=m

∆i.

Output ûn,dML.

Multilevel sparse grid kernel collocation with RBFs 56

4.3 Numerical experiments

In this section, we mainly show the performance of MuSIK-C using MQ and

Gaussian basis functions in solving elliptic and parabolic problems with smooth

conditions up to 4 dimensions (including time). According to Schaback’s uncertainty

principle [101], we expect to have a better approximation with a larger condition

number. As the condition number is depending on the choice of the connection

constant parameter C, we illustrate the performance of our methods based on two

connection constants (C = 2 and C = 3).

Because our implemented basis functions are tensor product, so there are two

examples in the two-dimensional elliptic problem. In Example 4.1, we solve a PDE

system with a non-tensor product target function. Here, we compare full grid RBF

collocation (RBF-C), multilevel full grid RBF collocation (MLRBF-C), SIK-C and

MuSIK-C. In Example 4.2, we approximate a tensor product target function in the

two-dimensional elliptic problem. In this example, we compare MuSIK-C with a

Q-basis tensor product FEM implemented in private communication Z. Dong [22].

In the three-dimensional (Example 4.3) and four-dimensional (Example 4.4) case,

we compare MuSIK-C with a recent mesh-based method, called interior penalty

discontinuous Galerkin (IPDG) method [116]. We also solve a four-dimensional

elliptic problem whose analytical solution is non-tensor in Example 4.5.

In the parabolic problems, we firstly use MuSIK-C to approximate a non-tensor

product function in one spatial dimension in Example 4.6. Then we compare

MuSIK-C with another recent mesh-based method, called Isogeometric Analysis

(IgA) method [74] in Example 4.7 and Example 4.8. In these two examples, the

target functions are both tensor product. One is in two spatial dimensions and

the other is in three spatial dimensions. Finally, we illustrate the performance of

MuSIK-C in solving a three-dimensional spatial problem where the target function

is non-tensor in Example 4.9.

In the following results, the condition (Cond) number of sparse grid is chosen to be

the biggest from all condition numbers of every sub-grid in the same level. There

are some notations to be declared. "Nodes" stands for the number of center points

Multilevel sparse grid kernel collocation with RBFs 57

that are used to construct estimations. Suppose u is the analytical solution. T

is a testing sample points set whose elements are the Halton points [73]. T will

be made explicit in each example. We measure the errors in RBF-C, MLRBF-C,

SIK-C and MuSIK-C at level n respectively as

En
RBF−C(x) = max

x∈T
|u(x)− ûn(x)| ,

En
MLRBF−C(x) = max

x∈T
|u(x)− ûnML(x)| ,

En
SIK−C(x) = max

x∈T

∣∣u(x)− ûn,d(x)
∣∣ ,

En
MuSIK−C(x) = max

x∈T

∣∣∣u(x)− ûn,dML(x)
∣∣∣ .

Correspondingly, we define the slope ρ for two adjacent points in different methods,

for instance

ρRBF−C =
log
(
En+1

RBF−C

)
− log

(
En

RBF−C

)
log
(
Nodesn+1

)
− log (Nodesn)

,

here Nodesn means the nodes number in the nth level.

4.3.1 Elliptic examples

Example 4.1. In this example, we solve the following two-dimensional problem

on Ω = [0, 1]2

∆u(x) = −π2 sin(πx1x2)(x2
1 + x2

2), x ∈ Ω, (4.15)

with boundary conditions

u(x) = sin(πx1x2), x ∈ ∂Ω. (4.16)

The exact solution is a two-dimensional non-tensor product function

u(x) = sin(πx1x2). (4.17)

Multilevel sparse grid kernel collocation with RBFs 58

Level Nodes Cond EMLRBF−C ρMLRBF−C ERBF−C ρRBF−C

1 9 8e3 5.26e-2 — 5.26e-2 —
2 25 7e5 1.31e-2 -1.36 2.88e-2 -0.59
3 81 2e7 2.71e-3 -1.34 1.46e-2 -0.58
4 289 4e8 6.91e-4 -1.07 7.60e-3 -0.51
5 1089 8e9 1.75e-4 -1.04 3.96e-3 -0.49
6 4225 1e11 4.37e-5 -1.02 2.06e-3 -0.48

Table 4.1: MQ: Multilevel RBF collocation (MLRBF-C) and RBF collocation
(RBF-C) on full grid with C = 2 for Example 4.1. Max error evaluated at 64,000

Halton points in the whole domain.

Level Nodes Cond EMLRBF−C ρMLRBF−C ERBF−C ρRBF−C

1 9 1e5 3.65e-2 — 3.65e-2 —
2 25 3e7 7.08e-3 -1.61 1.12e-2 -1.16
3 81 2e9 1.83e-3 -1.15 5.41e-3 -0.62
4 289 6e10 4.35e-4 -1.13 2.95e-3 -0.48
5 1089 1e12 9.38e-5 -1.16 1.59e-3 -0.47
6 4225 2e13 1.90e-5 -1.18 8.38e-4 -0.47

Table 4.2: MQ: Multilevel RBF collocation and RBF collocation on full grid
with C = 3 for Example 4.1. Max error evaluated at 64,000 Halton points in

the whole domain.

From Tables 4.1 and 4.2, it is obvious that the multilevel method really offers

advantages in the solutions. The difference between these two tables is that there

are two values of the connection constant parameter (C = 2 and 3). When

C is bigger, the condition number grows faster. The convergence rate is faster

and solutions are more accurate as we expected. In Tables 4.3 and 4.4, we use

the Gaussian basis function in place of MQ. Both tables also demonstrate the

superiority of the multilevel method and that RBF collocation with the Gaussian

does not converge. In particular, when C = 3 the performance of multilevel

RBF collocation with the Gaussian in Table 4.4 is better than the performance of

multilevel RBF collocation with MQ in Table 4.2. Meanwhile, the corresponding

condition numbers are also much bigger.

Multilevel sparse grid kernel collocation with RBFs 59

Level Nodes Cond EMLRBF−C ρMLRBF−C ERBF−C ρRBF−C

1 9 1e3 5.63e-2 — 5.63e-2 —
2 25 8e4 9.34e-3 -1.76 2.20e-2 -0.92
3 81 4e6 2.23e-3 -1.22 2.11e-2 -0.03
4 289 6e7 5.61e-4 -1.08 2.31e-2 0.07
5 1089 3e8 1.42e-4 -1.04 2.43e-2 0.04
6 4225 1e9 3.57e-5 -1.02 2.48e-2 0.02

Table 4.3: Gaussian: Multilevel RBF collocation and RBF collocation on full
grid with C = 2 for Example 4.1. Max error evaluated at 64,000 Halton points

in the whole domain.

Level Nodes Cond EMLRBF−C ρMLRBF−C ERBF−C ρRBF−C

1 9 2e4 3.00e-2 — 3.00e-2 —
2 25 2e7 4.47e-3 -1.86 5.60e-3 -1.64
3 81 5e10 6.09e-4 -1.70 2.53e-3 -0.67
4 289 2e14 8.54e-5 -1.54 2.22e-3 -0.10
5 1089 2e16 1.21e-5 -1.47 2.26e-3 0.01
6 4225 6e17 1.67e-6 -1.46 2.32e-3 0.02

Table 4.4: Gaussian: Multilevel RBF collocation and RBF collocation on full
grid with C = 3 for Example 4.1. Max error evaluated at 64,000 Halton points

in the whole domain.

Level Nodes Cond EMuSIK−C ρMuSIK−C ESIK−C ρSIK−C

2 21 1e5 4.51e-2 — 4.51e-2 —
3 49 7e5 1.61e-2 -1.21 1.69e-2 -1.16
4 113 8e6 3.85e-3 -1.71 9.55e-3 -0.68
5 257 5e7 8.66e-4 -1.82 5.91e-3 -0.58
6 577 2e8 2.09e-4 -1.76 4.15e-3 -0.44
7 1281 9e8 5.17e-5 -1.75 2.93e-3 -0.44
8 2817 4e9 1.27e-5 -1.78 2.11e-3 -0.42
9 6145 2e10 3.13e-6 -1.80 1.50e-3 -0.43
10 13313 6e10 7.68e-7 -1.81 1.08e-3 -0.43
11 28673 3e11 1.88e-7 -1.83 7.69e-4 -0.44
12 61441 1e12 4.62e-8 -1.84 5.27e-4 -0.50

Table 4.5: Multilevel sparse collocation compared with sparse collocation for
MQ for Example 4.1 with C = 2. Max error evaluated at 64,000 Halton points

in the whole domain.

Tables 4.5 and 4.6 show that the sparse grid collocation has the same performance

as the full grid collocation. In Table 4.6, we can see the performance of SIK-C

and MuSIK-C where we using MQ basis function when C = 3. Both have large

Multilevel sparse grid kernel collocation with RBFs 60

Level Nodes Cond EMuSIK−C ρMuSIK−C ESIK−C ρSIK−C

2 21 3e6 2.78e-2 — 2.78e-2 —
3 49 6e7 7.74e-3 -1.51 6.58e-3 -1.70
4 113 6e8 1.15e-3 -2.28 2.66e-3 -1.08
5 257 2e9 2.03e-4 -2.11 1.85e-3 -0.45
6 577 2e10 4.02e-5 -2.00 1.43e-3 -0.32
7 1281 1e11 8.59e-6 -1.93 1.07e-3 -0.36
8 2817 5e11 1.83e-6 -1.96 7.82e-4 -0.40
9 6145 2e12 3.73e-7 -2.04 5.76e-4 -0.39
10 13313 9e12 7.52e-8 -2.07 4.16e-4 -0.42
11 28673 4e13 1.54e-8 -2.07 2.98e-4 -0.43
12 61441 1e14 9.80e-9 -0.59 2.13e-4 -0.44

Table 4.6: Multilevel sparse collocation compared with sparse collocation for
MQ for Example 4.1 when C = 3. Max error evaluated at 64,000 Halton points

in the whole domain.

condition numbers (1e14) at the last level. However, SIK-C seems to keep its

convergence while MuSIK-C starts to stop. The condition number is a very

important index for the stability of the system but it is not the only determining

factor to get accurate approximations. Even though the system is ill-conditioned,

we can also achieve a good approximation. However, the solutions might not be

such reliable.

Level Nodes Cond EMuSIK−C ρMuSIK−C ESIK−C ρSIK−C

2 21 2e4 2.82e-2 — 2.82e-2 —
3 49 8e4 1.69e-2 -0.60 2.17e-2 -0.31
4 113 2e6 4.44e-3 -1.60 2.32e-2 0.08
5 257 3e7 9.69e-4 -1.85 2.43e-2 0.06
6 577 2e8 2.43e-4 -1.71 2.48e-2 0.02
7 1281 8e8 6.21e-5 -1.72 2.51e-2 0.02
8 2817 3e9 1.57e-5 -1.74 2.52e-2 0.01
9 6145 1e10 3.93e-6 -1.78 2.52e-2 -0.00
10 13313 5e10 9.88e-7 -1.79 2.47e-2 -0.03
11 28673 2e11 2.44e-7 -1.82 2.52e-2 0.03
12 61441 9e11 5.92e-8 -1.86 2.43e-2 -0.05

Table 4.7: Multilevel sparse collocation compared with sparse collocation using
the Gaussian for Example 4.1 when C = 2. Max error evaluated at 64,000 Halton

points in the whole domain.

Similarly, we use the Gaussian basis functions instead of MQ in Tables 4.7 and

4.8. SIK-C with the Gaussian also does not converge. When C = 3, the condition

Multilevel sparse grid kernel collocation with RBFs 61

Level Nodes Cond EMuSIK−C ρMuSIK−C ESIK−C ρSIK−C

2 21 9e5 2.31e-2 — 2.31e-2 —
3 49 3e8 5.98e-3 -1.60 5.87e-3 -1.62
4 113 4e9 4.75e-4 -3.03 2.74e-3 -0.91
5 257 5e10 5.51e-5 -2.62 2.36e-3 -0.18
6 577 2e13 8.02e-6 -2.38 2.35e-3 -0.00
7 1281 2e15 1.12e-6 -2.47 2.36e-3 0.01
8 2817 2e16 1.50e-7 -2.55 2.37e-3 0.01
9 6145 3e17 1.99e-8 -2.59 2.37e-3 -0.00
10 13313 3e18 2.61e-9 -2.63 2.34e-3 -0.02
11 28673 1e19 1.59e-8 2.36 7.12e-3 1.45
12 61441 4e20 41 28 8e8 33

Table 4.8: Multilevel sparse collocation compared with sparse collocation using
the Gaussian for Example 4.1 when C = 3. Max error evaluated at 64,000 Halton

points in the whole domain.

number of MuSIK-C with the Gaussian reaches 1e19 and 4e20 at the levels 11 and

12. According to the ill-condition problem, the performance of MuSIK-C with the

Gaussian breaks down at the levels 11 and 12. However, the condition number is

3e18 at the level 10 and we also have an improving estimation.

From the Figure 4.6, we observe that SIK-C and RBF-C with MQ basis functions

converge slowly and they have similar performance. Meanwhile, those two methods

with the Gaussian do not converge. This phenomenon was also observed in the

interpolation with RBFs, such as [115]. In Figure 4.6, MuSIK-C is always faster

and more accurate than the other three methods. The illustration clearly shows

the advantages of using the multilevel methods and the sparse version in particular.

In the remaining examples, we only show the solutions from MuSIK-C.

Multilevel sparse grid kernel collocation with RBFs 62

Figure 4.6: The performance of MLRBF-C, RBF-C, MuSIK-C and SIK-C
with different basis functions and shape parameters for Example 4.1.

Multilevel sparse grid kernel collocation with RBFs 63

Example 4.2. In this example, we solve the following two-dimensional problem

on Ω = [0, 1]2

∆u(x) = −2π2 sin(πx1) cos(πx2), x ∈ Ω, (4.18)

with boundary conditions

u(x) = sin(πx1) cos(πx2), x ∈ ∂Ω. (4.19)

The exact solution is a two-dimensional tensor product function

u(x) = sin(πx1) cos(πx2). (4.20)

Level Nodes EMuSIK−C (MQ) ρMuSIK−C (MQ) EMuSIK−C (G) ρMuSIK−C (G)
2 21 2.81e-2 — 1.09e-2 —
3 49 7.53e-3 -1.55 5.01e-3 -0.91
4 113 2.07e-3 -1.55 1.70e-3 -1.29
5 257 5.33e-4 -1.65 5.50e-4 -1.38
6 577 1.33e-4 -1.71 1.62e-4 -1.51
7 1281 3.31e-5 -1.75 4.47e-5 -1.61
8 2817 8.14e-6 -1.78 1.18e-5 -1.69
9 6145 1.99e-6 -1.80 3.01e-6 -1.75
10 13313 4.89e-7 -1.82 7.55e-7 -1.79
11 28673 1.17e-7 -1.86 1.89e-7 -1.80
12 61441 2.83e-8 -1.86 4.69e-8 -1.83

Table 4.9: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.2 with C = 2. Max error evaluated at 64,000

Halton points in the whole domain.

Here the focus is on multilevel sparse collocation with MQ and Gaussian with

two different constants C. In Table 4.10, MuSIK-C breaks down at the levels 11

and 12. However, the convergence rate increases slowly before the ill-conditioning

problem arises. In Figure 4.7, the FEM is implemented by my colleague Z. Dong

[22]. The FEM is based on the Q-basis tensor product polynomials on a full

grid. In Figure 4.7 Qp refers to a degree p polynomial in each direction for the

Q basis method. We can see that the slope for the dashed line is almost growing

as p+1
2
. That means the convergence order is increasing with polynomial order

p. Similarly, the convergence rate of MuSIK-C can be accelerated by increasing

Multilevel sparse grid kernel collocation with RBFs 64

Level Nodes EMuSIK−C (MQ) ρMuSIK−C (MQ) EMuSIK−C (G) ρMuSIK−C (G)
2 21 1.24e-2 — 1.20e-2 —
3 49 4.02e-3 -1.33 1.08e-3 -2.85
4 113 8.54e-4 -1.85 1.45e-4 -2.40
5 257 1.89e-4 -1.83 1.84e-5 -2.51
6 577 4.12e-5 -1.88 2.41e-6 -2.51
7 1281 8.59e-6 -1.97 3.25e-7 -2.51
8 2817 1.74e-6 -2.03 4.47e-8 -2.52
9 6145 3.45e-7 -2.07 5.98e-9 -2.58
10 13313 6.69e-8 -2.12 8.05e-10 -2.59
11 28673 1.32e-8 -2.11 3.64e-8 4.97
12 61441 6.72e-9 -0.89 8 25

Table 4.10: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.2 with C = 3. Max error evaluated at 64,000

Halton points in the whole domain.

Figure 4.7: The performance of MuSIK-C and FEM for Example 4.2.

the shape parameter. The performance of MuSIK-C using both basis functions

with C = 2 is better than the performance of the FEM with p = 2, for accuracy

and convergence rate. With constant C = 3, MuSIK-C using MQ has similar

performance with the FEM with p = 3. Moreover, MuSIK-C using the Gaussian

has similar performance with the FEM with p = 4. However, MuSIK-C using

both basis functions with C = 3 breaks down in the levels 11 and 12 because of

Multilevel sparse grid kernel collocation with RBFs 65

the ill-condition. This phenomenon demonstrates it is quite significant to reduce

the condition number while utilising our MuSIK-C method. Therefore, one of our

future research directions is to explore the use of preconditioning schemes.

Example 4.3. In this example, we solve the following three-dimensional problem

on Ω = [0, 1]3

∆u(x) = 0, x ∈ Ω, (4.21)

with boundary conditions

u(x) = sin(πx1) sin(πx2)
sinh(

√
2πx3)

sinh(
√

2π)
, x ∈ ∂Ω. (4.22)

The exact solution is a three-dimensional tensor product function

u(x) = sin(πx1) sin(πx2)
sinh(

√
2πx3)

sinh(
√

2π)
. (4.23)

Level Nodes MQ C=2 MQ C=3 Gaussian C=2 Gaussian C=3
3 225 3e8 4e10 1e7 4e10
4 593 2e9 7e11 2e8 1e13
5 1505 2e10 1e13 1e9 8e14
6 3713 1e11 1e14 9e9 3e16
7 8961 6e11 8e14 6e10 8e18
8 21249 3e12 6e15 3e11 5e20

Table 4.11: Sparse grid condition number for MQ and Gaussian with the two
considered constants: 2 and 3, in the three dimensional Poisson problem.

Level Nodes EMuSIK−C (MQ) ρMuSIK−C (MQ) EMuSIK−C (G) ρMuSIK−C (G)
3 225 3.01e-2 — 5.55e-2 —
4 593 7.83e-3 -1.39 1.39e-2 -1.43
5 1505 1.92e-3 -1.51 3.52e-3 -1.47
6 3713 3.49e-4 -1.89 6.89e-4 -1.81
7 8961 9.30e-5 -1.50 1.78e-4 -1.54
8 21249 2.29e-5 -1.62 4.49e-5 -1.60

Table 4.12: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.3 with C = 2. Max error evaluated at 120,000

Halton points in the whole domain.

Multilevel sparse grid kernel collocation with RBFs 66

Level Nodes EMuSIK−C (MQ) ρMuSIK−C (MQ) EMuSIK−C (G) ρMuSIK−C (G)
3 225 2.15e-2 — 1.72e-2 —
4 593 3.74e-3 -1.80 1.79e-3 -2.34
5 1505 7.64e-4 -1.70 2.43e-4 -2.14
6 3713 1.17e-4 -2.08 2.78e-5 -2.40
7 8961 2.39e-5 -1.80 3.67e-6 -2.30
8 21249 4.67e-6 -1.89 9.74e-5 3.80

Table 4.13: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.3 with C = 3. Max error evaluated at 120,000

Halton points in the whole domain.

Here the focus is on multilevel sparse collocation with MQ and Gaussian with two

different constants C. The convergence rate here seems to be growing. In Table

4.13, MuSIK-C with the Gaussian blows up more quickly.

In 2016, Wang et al. [116] developed an interior penalty discontinuous Galerkin

(IPDG) method based on sparse grid to solve high-dimensional elliptic problems.

The key idea is that IPDG utilises discontinuous elements over the computational

domain, so the choice of local polynomial basis is flexible; see [14] for details.

The authors used a hierarchical basis representation to construct a sparse finite

element approximation space. The resulting degrees of freedom is substantially

reduced without deteriorating the order of convergence too much. In particularly,

the IPDG method can achieve accuracy of O
(
hp| log2 h|d−1

)
in the energy norm

for d-dimensional problem, where p is the degree of polynomials used and h is

the uniform mesh size in each dimension. In this example, the numerical results

of IPDG are taken from [116]. In Figure 4.8, MuSIK-C with C = 2 performs

much better than the IPDG when polynomial order p = 1. MuSIK-C with C = 3

converges faster and with more accuracy than IPDG when p = 2.

Multilevel sparse grid kernel collocation with RBFs 67

Figure 4.8: The performance of multilevel sparse collocation with
MQ/Gaussian and sparse grid IPDG for Example 4.3.

Example 4.4. In this example, we solve the following four-dimensional problem

on Ω = [0, 1]4

∆u(x) = 0, x ∈ Ω, (4.24)

with boundary conditions

u(x) = sin(πx1) sin(πx2) sin(πx3)
sinh(

√
3πx4)

sinh(
√

3π)
, x ∈ ∂Ω. (4.25)

The exact solution is a four-dimensional tensor product function

u(x) = sin(πx1) sin(πx2) sin(πx3)
sinh(

√
3πx4)

sinh(
√

3π)
. (4.26)

In Table 4.14, we see the conditions all grow rapidly for MQ and Gaussian. As we

explained before, even with a big condition number, it is also possible to achieve

good estimations, but it might be not very reliable. In Table 4.15, the focus is

on multilevel sparse collocation with MQ and Gaussian with the same connection

constants C = 2. The convergence rate is also growing slowly. In Figure 4.9,

Multilevel sparse grid kernel collocation with RBFs 68

Level Nodes MQ C=2 Gaussian C=2
4 2769 4e11 4e9
5 7681 3e12 4e10
6 20481 3e13 3e11
7 52993 2e14 2e12
8 133889 1e15 2e13

Table 4.14: Illustration of how condition number grows on sparse grids for
MQ and Gaussian with a connection consatant of C = 2 in the four dimensional

Poisson problem.

Level Nodes EMuSIK−C (MQ) ρMuSIK−C (MQ) EMuSIK−C (G) ρMuSIK−C (G)
4 2769 1.62e-2 — 4.26e-2 —
5 7681 3.93e-3 -1.39 1.02e-2 -1.40
6 20481 9.62e-4 -1.44 2.52e-3 -1.43
7 52993 2.42e-4 -1.45 6.40e-4 -1.44
8 133889 5.91e-5 -1.52 1.58e-4 -1.51

Table 4.15: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.4 with C = 2. Max error evaluated at 240,000

Halton points in the whole domain.

the numerical results are also taken from [116]. MuSIK-C with C = 2 show a

rapid convergence rate, faster than the IPDG method with p = 2. In Figure 4.8,

MuSIK-C with C = 2 performs better than the IPDG method with p = 2. That

means even though the dimension is increasing, the performance of our method

compared to others is not reduced.

Multilevel sparse grid kernel collocation with RBFs 69

Figure 4.9: The performance of the multilevel sparse collocation methods using
MQ and Gaussian with connection constant C = 2 for Example 4.4.

Example 4.5. In this example, we solve the following four-dimensional problem

on Ω = [0, 1]4

∆u(x) = −π2 sin(π
4∏
i=1

xi)(x
2
2x

2
3x

2
4 + x2

1x
2
3x

2
4 + x2

1x
2
2x

2
4 + x2

1x
2
2x

2
3), x ∈ Ω, (4.27)

with boundary conditions

u(x) = sin(π
4∏
i=1

xi), x ∈ ∂Ω. (4.28)

The exact solution is a four-dimensional non-tensor product function

u(x) = sin(π
4∏
i=1

xi). (4.29)

As we did not find any publications that solve PDE with a non-tensor product

target function in high dimension, we just display our numerical results. Table

4.16 shows the performance when the target is a non-tensor product function in

Multilevel sparse grid kernel collocation with RBFs 70

Level Nodes EMuSIK−C (MQ) ρMuSIK−C (MQ) EMuSIK−C (G) ρMuSIK−C (G)
4 2769 9.78e-3 — 2.84e-2 —
5 7681 5.28e-3 -0.60 1.16e-2 -0.88
6 20481 1.85e-3 -1.07 2.20e-3 -1.70
7 52993 5.08e-4 -1.36 7.08e-4 -1.19
8 133889 1.37e-4 -1.41 2.03e-4 -1.35

Table 4.16: The performance of multilevel sparse collocation methods using
MQ and Gaussian for Example 4.5 with C = 2. Max error evaluated at 240,000

Halton points in the whole domain.

four dimensions. Here the focus is on multilevel sparse collocation with MQ and

Gaussian with the same connection constants C = 2. Similarly, we observe the

convergence rate is also growing slowly.

Figure 4.10: The performance of the multilevel sparse collocaiton methods
using MQ and Gaussian with connection constant C = 2 for Example 4.5.

Multilevel sparse grid kernel collocation with RBFs 71

4.3.2 Parabolic examples

Example 4.6. In this example, we solve the following one-dimensional spatial

problem on Ωt = Ω× t = [0, 1]× [0, 1]

ut−uxx =
π2

(t+ 0.5)2
sin

(
πx

t+ 0.5

)
− πx

(t+ 0.5)2
cos

(
πx

t+ 0.5

)
, x ∈ Ω, t ∈ (0, 1] ,

(4.30)

with boundary and initial conditions

u(t, x) = sin

(
πx

t+ 0.5

)
, x ∈ ∂Ω, t ∈ (0, 1] , (4.31)

u(0, x) = sin (2πx) , x ∈ Ω. (4.32)

The analytical solution is a non-tensor product function

u(t, x) = sin

(
πx

t+ 0.5

)
. (4.33)

Level Nodes MQ C=2 MQ C=3 Gaussian C=2 Gaussian C=3
2 21 4e4 1e6 3e3 6e5
3 49 4e5 2e7 4e4 2e8
4 113 5e6 7e7 1e6 8e10
5 257 3e7 2e9 2e7 6e12
6 577 2e8 2e10 1e8 7e13
7 1281 7e8 8e10 6e8 1e15
8 2817 3e9 4e11 3e9 1e16
9 6145 1e10 1e12 1e10 2e17
10 13313 5e10 6e12 4e10 6e18
11 28673 2e11 2e13 2e11 4e19
12 61441 7e11 1e14 7e11 3e20

Table 4.17: Sparse grid condition number using MQ and Gaussian with the
two connection constants: 2 and 3, in the two dimensional heat problem.

In Tables 4.18 and 4.19, the focus is on multilevel sparse collocation with MQ and

Gaussian with two constants: C = 2 and 3. The convergence rate here appears

to be growing slowly. In Table 4.19, MuSIK-C with the Gaussian breaks down in

the levels 11 and 12.

Multilevel sparse grid kernel collocation with RBFs 72

Level Nodes EMuSIK−C (MQ) ρMuSIK−C (MQ) EMuSIK−C (G) ρMuSIK−C (G)
2 21 4.21e-1 — 4.22e-1 —
3 49 2.26e-1 -0.73 2.09e-1 -0.83
4 113 1.14e-1 -0.82 9.89e-2 -0.90
5 257 3.53e-2 -1.43 2.80e-2 -1.54
6 577 8.88e-3 -1.71 6.58e-3 -1.79
7 1281 2.20e-3 -1.75 1.73e-3 -1.67
8 2817 6.22e-4 -1.60 5.34e-4 -1.50
9 6145 1.88e-4 -1.54 1.75e-4 -1.43
10 13313 5.62e-5 -1.56 5.61e-5 -1.47
11 28673 1.62e-5 -1.62 1.68e-5 -1.57
12 61441 4.30e-6 -1.74 4.82e-6 -1.64

Table 4.18: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.6 with C = 2. Max error evaluated at 64,000

Halton points in the whole domain.

Level Nodes EMuSIK−C (MQ) ρMuSIK−C (MQ) EMuSIK−C (G) ρMuSIK−C (G)
2 21 4.85e-1 — 5.06e-1 —
3 49 2.44e-1 -0.81 2.30e-1 -0.93
4 113 8.87e-2 -1.21 4.72e-2 -1.89
5 257 1.76e-2 -1.97 1.17e-2 -1.70
6 577 2.82e-3 -2.27 1.31e-3 -2.71
7 1281 6.67e-4 -1.81 1.39e-4 -2.81
8 2817 1.99e-4 -1.54 3.83e-5 -1.64
9 6145 5.46e-5 -1.66 6.26e-6 -2.32
10 13313 1.34e-5 -1.81 8.96e-7 -2.52
11 28673 2.99e-6 -1.96 5.23e-7 -0.70
12 61441 7.88e-7 -1.75 2.47e-6 2.04

Table 4.19: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.6 with C = 3. Max error evaluated at 64,000

Halton points in the whole domain.

Multilevel sparse grid kernel collocation with RBFs 73

Figure 4.11: The performance of the multilevel sparse collocation method
using MQ and Gaussian with the two contants: 2 and 3, for Example 4.6.

Example 4.7. In this example, we solve the following two-dimensional spatial

problem on Ωt = Ω× t = [0, 1]2 × [0, 1]

ut−∆u = π sin(πx1) sin(πx2) (cos(πt) + 2π sin(πt)) , x ∈ Ω, t ∈ (0, 1] , (4.34)

with boundary and initial conditions

u(t,x) = sin(πt) sin(πx1) sin(πx2), x ∈ ∂Ω, t ∈ (0, 1] , (4.35)

u(0,x) = 0, x ∈ Ω. (4.36)

The analytical solution is a tensor product function

u(t,x) = sin(πt) sin(πx1) sin(πx2). (4.37)

Langer et al. [74] presented a new stable space-time Isogeometric Analysis (IgA)

method in 2016. Isogeometric analysis is a collection of methods (henceforth

Multilevel sparse grid kernel collocation with RBFs 74

referred to as isogeometric methods) that use splines, or some of their extensions

such as NURBS (non-uniform rational B-splines) and T-splines, as functions to

build approximation spaces which are then used to solve partial differential equations

numerically, see [21] for detail. As the authors just presented L2 errors in [74], we

change to RMS error here to compare. Let us define the error and slope as

En
RMS =

√√√√ 1

NT

NT∑
i=1

(
u(xi)− ûn,dML(xi)

)2

, xi ∈ T,

ρRMS =
log
(
En+1

RMS

)
− log (En

RMS)

log
(
Nodesn+1

)
− log (Nodesn)

,

where Nodesn means the nodes number at the level n, NT is the number of nodes

in the testing points set T.

Level Nodes MQ C=2 MQ C=3 Gaussian C=2 Gaussian C=3
3 225 2e8 3e10 1e7 4e10
4 593 2e9 6e11 2e8 1e13
5 1505 2e10 9e12 1e9 1e15
6 3713 9e10 8e13 9e9 3e16
7 8961 5e11 6e14 6e10 9e18
8 21249 2e12 4e15 3e11 9e19

Table 4.20: Sparse grid condition number using MQ and Gaussian with the
two connection constants: 2 and 3, in the three dimensional heat problem.

Level Nodes ERMS (MQ) ρRMS (MQ) ERMS (G) ρRMS (G)
3 225 4.78e-3 — 8.54e-3 —
4 593 9.05e-4 -1.72 1.86e-3 -1.57
5 1505 2.09e-4 -1.57 4.45e-4 -1.53
6 3713 4.91e-5 -1.60 1.08e-4 -1.57
7 8961 1.21e-5 -1.59 2.68e-5 -1.58
8 21249 2.96e-6 -1.63 6.66e-6 -1.61

Table 4.21: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.7 with C = 2. Max error evaluated at 120,000

Halton points in the whole domain.

In Tables 4.21 and 4.22, the focus is on multilevel sparse collocation with MQ and

Gaussian with two constants C = 2 and 3. The convergence rate here appears

to increase slowly before the multilevel sparse collocation breaks down. In Figure

Multilevel sparse grid kernel collocation with RBFs 75

Level Nodes ERMS (MQ) ρRMS (MQ) ERMS (G) ρRMS (G)
3 225 2.34e-3 — 1.74e-3 —
4 593 1.96e-4 -2.56 1.19e-4 -2.77
5 1505 3.59e-5 -1.82 1.55e-5 -2.18
6 3713 6.67e-6 -1.86 1.97e-6 -2.29
7 8961 1.28e-6 -1.87 2.55e-7 -2.32
8 21249 3.25e-7 -1.59 5.69e-8 -1.74

Table 4.22: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.7 with C = 3. Max error evaluated at 120,000

Halton points in the whole domain.

4.12, the numerical results of the IgA method are taken from [74]. MuSIK-C with

C = 2 has better performance than the IgA with p = 1 and has faster convergence

rate than the IgA with p = 2. MuSIk-C using the Gaussian with C = 3 performs

better than the IgA with p = 3.

Figure 4.12: This compares mulitilevel sparse collocation with MQ/Gaussian
and IgA for Example 4.7.

Multilevel sparse grid kernel collocation with RBFs 76

Example 4.8. In this example, we solve the following three-dimensional spatial

problem on Ωt = Ω× t = [0, 1]3 × [0, 1]

ut−∆u = π sin(πx1) sin(πx2) sin(πx3) (cos(πt) + 3π sin(πt)) , x ∈ Ω, t ∈ (0, 1] ,

(4.38)

with boundary and initial conditions

u(t,x) = sin(πt) sin(πx1) sin(πx2) sin(πx3), x ∈ ∂Ω, t ∈ (0, 1] , (4.39)

u(0,x) = 0, x ∈ Ω. (4.40)

The analytical solution is a tensor product function

u(t,x) = sin(πt) sin(πx1) sin(πx2) sin(πx3). (4.41)

Level Nodes MQ C=2 Gaussian C=2
4 2769 3e11 5e9
5 7681 3e12 4e10
6 20481 2e13 3e11
7 52993 2e14 2e12
8 133889 1e15 3e13

Table 4.23: Sparse grid condition number using MQ and Gaussian with the
connection constant C = 2 in the four dimensional heat problem.

Level Nodes ERMS (MQ) ρRMS (MQ) ERMS (G) ρRMS (G)
4 2769 1.80e-3 — 3.19e-3 —
5 7681 3.71e-4 -1.55 6.98e-4 -1.49
6 20481 8.91e-5 -1.45 1.70e-4 -1.44
7 52993 2.18e-5 -1.48 4.23e-5 -1.46
8 133889 5.48e-6 -1.49 1.06e-5 -1.50

Table 4.24: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.8 with C = 2. Max error evaluated at 240,000

Halton points in the whole domain.

In Table 4.23, we see that the condition numbers grow fast for both basis functions.

In Table 4.24, the focus is on multilevel sparse collocation using MQ and Gaussian

with constant C = 2. The convergence rate here also appears to grow slowly. In

Multilevel sparse grid kernel collocation with RBFs 77

Figure 4.9, the numerical results of IgA are taken from [74]. So we also present

RMS error here. MuSIK-C with C = 2 appears to have more capacity than the

IgA with p = 2 in the square domain. As MuSIK-C is not applicable on a flexible

domain, we cannot compare with IgA on irregular regions.

Figure 4.13: This compares multilevel sparse collocation with MQ/Gaussian
and IgA for Example 4.8.

Example 4.9. In this example, we solve the following three-dimensional spatial

problem on Ωt = Ω× t = [0, 1]3 × [0, 1]

ut−∆u = e10(t−1) sin(πx1x2x3)
(
10 + π2

(
x2

2x
2
3 + x2

1x
2
3 + x2

1x
2
2

))
, x ∈ Ω, t ∈ (0, 1] ,

(4.42)

with boundary and initial conditions

u(t,x) = e10(t−1) sin(πx1x2x3), x ∈ ∂Ω, t ∈ (0, 1] , (4.43)

u(0,x) = e−10 sin(πx1x2x3), x ∈ Ω. (4.44)

The analytical solution is a non-tensor product function

u(t,x) = e10(t−1) sin(πx1x2x3). (4.45)

Multilevel sparse grid kernel collocation with RBFs 78

Level Nodes EMuSIK−C (MQ) ρMuSIK−C (MQ) EMuSIK−C (G) ρMuSIK−C (G)
4 2769 6.44e-2 — 9.18e-2 —
5 7681 2.70e-2 -0.85 4.33e-2 -0.74
6 20481 9.54e-3 -1.06 1.30e-2 -1.23
7 52993 3.30e-3 -1.12 4.01e-3 -1.24
8 133889 1.06e-3 -1.22 1.18e-3 -1.32

Table 4.25: The performance of the multilevel sparse collocation method using
MQ and Gaussian for Example 4.9 with C = 2. Max error evaluated at 240,000

Halton points in the whole domain.

Table 4.25 shows the performance when the target is a non-tensor product function

in three spatial dimensions. Here the focus is on multilevel sparse collocation with

MQ and Gaussian with C = 2. We observe that the convergence rate here also

appears to increase slowly.

Figure 4.14: The performance of the multilevel sparse collocation method
using MQ and Gaussian with C = 2 for Example 4.9.

Multilevel sparse grid kernel collocation with RBFs 79

4.4 Conclusion

From the experiments in last section, we can demonstrate that MuSIK-C is faster

and more accurate than RBF-C, MLRBF-C and SIK-C when solving a PDE with

smooth boundary conditions. MuSIK-C has similar performance as the recent

mesh-based methods to solve PDEs with smooth conditions in low dimensions. In

higher dimensions, we obtain better approximations. Moreover, it is a difficult task

to construct elements for the mesh-based method in high dimensions, especially for

high order polynomials. MuSIK-C, as a mesh-free method, still has its advantage

of easy implementation. The convergence rates of MuSIK-C in the above examples

are increasing slowly and might even be spectral. Furthermore, the solution

displays more rapid convergence when utilising bigger shape parameters. However,

the condition number also grows quickly so that the problem is ill-conditioned and

solutions become unreliable. As we described in Chapter 2, there have been some

developments in reducing the condition number while keeping the high convergence

when using RBF. We will explore the use of techniques to improve our method in

the near future. In Chapter 5, we shall test the performance of MuSIK-C in the

space-time method to approximate an option price.

Chapter 5

MuSIK-C for option pricing

In this chapter, we discuss the implementation of MuSIK-C on option pricing.

Recall the multi-assets Black-Scholes equation on domain [0, T]× Ω:

∂C

∂t
+

1

2

d∑
i=1

d∑
j=1

ρijσiσjSiSj
∂2C

∂SiSj
+

d∑
i=1

(r − qi)Si
∂C

∂Si
− rC = 0, (5.1)

where C stands for the analytical option price which is determined by time t and

d assets’ prices, σi is the volatility of ith underlying stock, ρi,j is the correlation

between stocks i and j, qi is the continuous dividend payment for ith asset, r

is the risk-free rate. In 2015, the authors in [110] gathered together to join in

the BENCHOP project, which provides the finance community with a common

suite of benchmark problems for option pricing. At that time, we participated

in the BENCHOP with the multilevel full grid radial basis function collocation

(MLRBF-C). In this chapter, we hope to have a better approximation by utilising

MuSIK-C method.

In Chapter 4, the numerical experiments have shown that MuSIK-C is stable and

efficient in solving parabolic problem with smooth boundary conditions. However,

we found MuSIK-C is not suitable to solve problem with non-smooth conditions

like option pricing as shown in Section 5.1.1. In order to handle this problem,

we modify the time interval by a small amount and take a relatively smooth

initial condition at an earlier time τ . Then we apply MuSIK-C on the new domain

80

MuSIK-C for option pricing 81

[0, τ]×[Smin, Smax]. The detail about how to determine the value of τ and estimate

the fine initial condition is displayed in Section 5.1.2. In Section 5.1.3, we use the

combination method to price one dimensional European call option. Afterwards,

we also price the Margrabe option with the combination method in Section 5.2. In

Section 5.3, we employed Richardson Extrapolation to improve the approximation

based on existing results.

5.1 One asset European Option pricing

5.1.1 MuSIK-C in option pricing from different initial times

Recall the details about the one asset Black-Scholes PDE problem shown in Section

3.3. In this subsection, we display numerical results following the Parameter Set 1

in Table 3.1. To show the performance of MuSIK-C and SIK-C at different initial

times, we set one initial time is the maturity time T and another is τ = 0.5T .

Initial conditions are max{S −E, 0} and analytical solution C(τ, S), respectively.

The boundary conditions are the same as Equations (3.34) and (3.35) in both

cases.

Even though the interval for stock price S is [Smin, Smax], the most interesting

area is around strike price E. Let us set the central region as
[
Ŝmin, Ŝmax

]
=

[0.4E, 1.6E]. The errors in the following figures are sampled on the central region[
Ŝmin, Ŝmax

]
. This is also required in the BENCHOP [110].

In Figure 5.1 shows max error of estimations at 3000 testing points evenly distributed

in [0.4E, 1.6E] at current time t = 0. It is clear that only SIK-C with MQ basis

functions keeps converging and there is no significant difference in both cases: the

initial time is at T and the initial time is at τ = 0.5T . Meanwhile MuSIK-C only

works when the initial time is τ = 0.5T . The Figure 5.1 is an indication to show

that our scheme is practical. We would like to make the approximation at time

τ is close enough to the analytical solution. Otherwise, we will introduce another

factor that will influence our numerical result. This restriction can be satisfied by

MuSIK-C for option pricing 82

Figure 5.1: Max error of estimations at 3000 uniform points in [0.4E, 1.6E]
at t = 0 for Parameter Set 1. All initial conditions are analytical solutions and
boundary condtions are the same. Initial times in left plots are maturity time T ,
that of right side are time τ = 0.5T . Two figures above are using the Gaussian

basic functions, the figures below are using MQ basic functions

employing plenty of nodes to construct a finer grid as discussed in Section 3.3. In

next section, we introduce algorithm about the determination of time τ .

MuSIK-C for option pricing 83

5.1.2 Algorithm to predetermine an earlier time

Our purpose is to take an approximation ûτ at an earlier time τ before the maturity

time T as an initial condition, in order to apply MuSIK-C on the remaining time

interval. However, it is illogical if we take τ too earlier because MuSIK-C is our

main method. It will be meaningless if the domain for MuSIK-C is quite small.

So firstly, we define a symbol called τ end to stand for minimum value of τ that

we admit, see Figure 5.2. As we are moving initial condition backward step by

Figure 5.2: Dashed line is stop time τ , red solid line is terminate spot τ end.

step, the method of lines (MOL) is proper to decide the time spot we should stop.

Here, we use method introduced in Section 3.2.1. For the purpose of computing

a good estimation on the whole domain [Smin, Smax], we have to choose a bigger

domain
[
S̃min, S̃max

]
⊃ [Smin, Smax] so as to prevent the truncation error from the

boundary.

Owing to the facts that payoff functions of one asset European options only have

singularity at strike price, the option value is monotone and convex around the

strike price. So the strategy for selecting the modified initial condition in time is

to ensure that the approximation is convex in a region will be described later. The

test for this is the Gamma of the approximation is positive. There are no points

of inflection (changes in sign of curvature). This is ensured by testing the slope

of the second derivative of approximation, also known as the speed, is monotonic

on a sub-interval around the strike price. Firstly we define the domain around

exercise price E is
[
Ê−, Ê+

]
, here Ê± := E ± 0.2E. Supposing we put a large

MuSIK-C for option pricing 84

amount of uniform nodes X in domain
[
S̃min, S̃max

]
, the nodes located in

[
Ê−, Ê+

]
are defined as set X1. The approximation ûτ satisfies conditions such as Gamma
∂2ûτ

∂S2 > 0 on X1 and further the Speed ∂3ûτ

∂S3 is monotonic in subintervals of X1.

The performance of the exact Gamma and Speed for Parameter Set 1 is drawn in

Figure 5.3. As we can see, there are three subintervals in the figure of the Speed

and the Speed is monotonic in every subinterval.

Figure 5.3: Examples of exact Gamma(left) and Speed(right) at t = 0.865
with 1000 uniform nodes in X1 = [80, 120] for Parameter Set 1.

Currently, the scheme to determine τ is not perfect and is a method of choice.

It might give us a relatively smooth initial condition rather than exactly smooth.

This will be demonstrated again in the following sections. As so far, we can

summarise the combination algorithm for one asset European option pricing as

Algorithm 3.

MuSIK-C for option pricing 85

Algorithm 3 Algorithm for the combination method on one asset European
option pricing

1. Input parameter set, nodes number N , time step ∆t and terminate time τ end.

2. Determine domain for MOL as
[
S̃min, S̃max

]
.

3. Construct set X in
[
S̃min, S̃max

]
with N uniform nodes and set X1 = X ∩[

Ê−, Ê+

]
, Ê± = E ± 0.2E.

4. Set Tdone = 0 and apply MOL.

while Tdone < T − τ end do

Let xmax, xmin to be the prices where approximations û(xmax) and û(xmin)

are extremum values on X1. Define X11 =
[
Ê−, xmax

]
, X12 = [xmax, xmin],

X13 =
[
xmin, Ê+

]
to be subintervals of X1.

if Gamma = ∂2û
∂S2 > 0 on X1 and Speed = ∂3û

∂S3 is monotonic on three
subintervals then

Break MOL;

else

Tdone = Tdone+ ∆t;

end if

end while

5. Assign τ = Tdone and set initial condition f = û.

6. Reconstruct Black-Scholes equation on Ω∗t = [0, τ]× [Smin, Smax] as:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − q)S∂V

∂S
− rV = 0,

with initial condition and boundary conditions

V (t, Smin) = 0, t ∈ [0, τ] ,

V (t, Smax) = Smaxe
−q∗(T−t) − Ee−r∗(T−t), t ∈ [0, τ] ,

V (τ, S) = f(S), S ∈ [Smin, Smax] ,

7. Employ MuSIK-C Algorithm 2.

MuSIK-C for option pricing 86

5.1.3 Numerical experiments

Our first example is to price the European call option following Parameter Set 1

in Table 3.1. In the algorithm to predetermine time τ , we utilise the necessary

restrictions setting in the MOL as shown in Table 5.1.

Variables Values
rend 0.8T
N 5000
∆t 0.001

S̃min −E
S̃max 2Smax

Table 5.1: Restricted variables set.

The size of set X is 5000 and the size of X1 = X ∩ [E − 0.2E,E + 0.2E] is 286.

Algorithm 3 stops using MOL when τ = 0.865. In Figure 5.4, values of 1000

uniform points option values in [Smin, Smax] are given, Gamma and Speed on X1

are graphed in left-hand side, and corresponding errors of approximations are given

in right-hand side. To indicate τ = 0.865 is necessary in this particular situation,

we represent the performance of approximation at τ = 0.9 in Figure 5.5. From

the upper right corner in Figure 5.5, we can see there is no big difference in option

values. However, we can observe apparent oscillation around S = 100 in Speed

from bottom left corner figure in Figure 5.5. Meanwhile, the error plots of Gamma

and Speed in Figure 5.5 are almost 10 times bigger than the corresponding graphs

in Figure 5.4.

MuSIK-C for option pricing 87

Figure 5.4: Approximations on the European call option price, Gamma and
Speed (left three figures), and corresponding errors (right three figures) at τ =

0.865 following variable set in Table 5.1 and Parameter Set 1 in Table 3.1.

MuSIK-C for option pricing 88

Figure 5.5: Approximations on the European call option price, Gamma and
Speed (left three figures), and corresponding errors (right three figures) at τ =

0.9 following variable set in Table 5.1 and Parameter Set 1 in Table 3.1.

MuSIK-C for option pricing 89

Continuing Step 6 in Algorithm 3, we apply Algorithm 2 on domain Ω∗t = [0, τ]×

[Smin, Smax]. To distinguish the notations, for the solutions obtained on the

computational domain [0, τ] × [Smin, Smax], we measure the errors at the level

n as

E+,n
SIK−C = max

S∈T
|C(0, S)− ûn,d(0, S)|,

E+,n
MuSIK−C = max

S∈T
|C(0, S)− ûn,dML(0, S)|,

here T is a testing domain which will be explicit in each case. Correspondingly,

we also define ρ is the slope of two adjacent points, for instance,

ρ+
SIK−C =

log
(
E+,n+1

RBF−C

)
− log

(
E+,n

RBF−C

)
log
(
Nodesn+1

)
− log (Nodesn)

,

here Nodesn means the nodes number in the level n.

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
SIK−C ρ+

SIK−C

2 21 6.56 — 6.56 —
3 49 1.48 -1.76 1.29 -1.92
4 113 2.05e-1 -2.37 3.71e-1 -1.49
5 257 6.69e-2 -1.36 3.01e-1 -0.25
6 577 4.07e-2 -0.61 2.74e-1 -0.12
7 1281 1.34e-2 -1.39 2.57e-1 -0.08
8 2817 4.37e-3 -1.42 2.48e-1 -0.04
9 6145 1.36e-3 -1.50 2.44e-1 -0.02
10 13313 4.06e-4 -1.56 2.42e-1 -0.01
11 28673 1.09e-4 -1.72 2.41e-1 -0.005
12 61441 1.99e-5 -2.22 2.41e-1 -0.003

Table 5.2: The performance of multilevel sparse collocation and plain sparse
collocation for one asset European call option price following Parameter Set
1 with that initial condition is estimation at τ = 0.865 using Gaussian and
a connection constant C = 2. Error evaluated at 4000 uniform points in

[0.4E, 1.6E] at time t = 0.

In Table 5.2, MuSIK-C using the Gaussian shows its increasing convergence rate

while SIK-C using the Gaussian doesn’t converge. In Table 5.3, we use the MQ

to replace the Gaussian. Both MuSIK-C and SIK-C break down at the level 12

due to the ill-condition problem. As shown in Figure 5.6, MuSIK-C achieves good

convergence at high levels. However, there are instances where MuSIK-C with MQ

MuSIK-C for option pricing 90

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
SIK−C ρ+

SIK−C

2 21 6.24 — 6.24 —
3 49 1.63 -1.58 1.63 -1.58
4 113 7.54e-2 -3.68 7.14e-2 -3.75
5 257 2.74e-2 -1.23 3.02e-2 -1.05
6 577 2.86e-2 0.05 1.42e-2 -0.93
7 1281 9.39e-3 -1.40 6.05e-3 -1.07
8 2817 3.00e-3 -1.45 3.13e-3 -0.84
9 6145 8.95e-4 -1.55 1.72e-3 -0.77
10 13313 2.43e-4 -1.69 9.00e-4 -0.84
11 28673 5.52e-5 -1.93 5.45e-4 -0.65
12 61441 2.44e-3 4.97 4.28e-3 2.70

Table 5.3: The performance of multilevel sparse collocation and plain sparse
collocation for one asset European call option price following Parameter Set 1
with that initial condition is estimation at τ = 0.865 using MQ and a connection
constant C = 2. Error evaluated at 4000 uniform points in [0.4E, 1.6E] at time

t = 0.

Figure 5.6: The performance of multilevel sparse collocation and plain sparse
collocation for one asset European call option price following Parameter Set 1
with that initial condition is estimation at τ = 0.865 using Gaussian(left) and
MQ(right), C = 2. Error evaluated at 4000 uniform points in [0.4E, 1.6E] at

time t = 0.

basis functions performs worse than SIK-C with MQ in the mid-range. In Figure

5.7, the initial condition is the analytical solution at τ = 0.865, we observe there

is also a jump in the performance of multilevel sparse collocation as stated above.

One possible explanation is that our algorithm to determine τ is still a method

for choice. It just returns us a possible relatively smooth initial condition rather

than one exact smooth one. Meanwhile, MuSIK-C is a method by approximating

MuSIK-C for option pricing 91

Figure 5.7: The performance of multilevel sparse collocation and plain sparse
collocation for one asset European call option price following Parameter Set 1
with that initial condition is analytical solution at τ = 0.865 using Gaussian(left)
and MQ(right), C = 2. Error evaluated at 4000 uniform points in [0.4E, 1.6E]

at time t = 0.

the residuals, so it might take more steps to overcome the problem caused by

non-smooth conditions. Figures 5.6 and 5.7 indicate the stop time τ = 0.865 is

not such perfect as we expected as there are some noise results. However, it is still

a practical choice.

Now we present an additional Parameter Set 2 for continuous dividend European

call option with a shorter expiry as shown in Table 5.4. We still use the restricted

variable set in Table 5.1 into the MOL to predetermine a spot time τ , except

we choose a smaller time step ∆t = 0.0001 for the short maturity. Algorithm 3

terminates the MOL when τ = 0.236.

Parameter Values
σ 0.3
r 0.05
T 0.25
E 15
q 0.01

Smin 0
Smax 3E

Table 5.4: Parameter Set 2 for continuous dividend European call option.

MuSIK-C for option pricing 92

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
SIK−C ρ+

SIK−C

2 21 1.04 — 1.04 —
3 49 2.30e-1 -1.78 2.06e-1 -1.91
4 113 2.54e-2 -2.63 4.11e-2 -1.93
5 257 1.02e-2 -1.11 3.58e-2 -0.17
6 577 1.24e-2 0.25 3.37e-2 -0.07
7 1281 4.73e-3 -1.21 3.07e-2 -0.11
8 2817 1.80e-3 -1.22 2.94e-2 -0.05
9 6145 6.57e-4 -1.29 2.88e-2 -0.03
10 13313 2.24e-4 -1.39 2.85e-2 -0.01
11 28673 7.08e-5 -1.50 2.84e-2 -0.006
12 61441 2.03e-5 -1.64 2.83e-2 -0.003

Table 5.5: The performance of multilevel sparse collocation and plain sparse
collocation for one asset dividend European call option price following Parameter
Set 2 with that initial condition is estimation at τ = 0.236 using Gaussian
and a connection constant C = 2. Error evaluated at 4000 uniform points in

[0.4E, 1.6E] at time t = 0.

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
SIK−C ρ+

SIK−C

2 21 9.76e-1 — 9.76e-1 —
3 49 2.53e-2 -1.59 2.56e-1 -1.58
4 113 1.94e-2 -3.07 2.13e-2 -2.98
5 257 5.30e-3 -1.58 5.42e-3 -1.66
6 577 1.03e-2 0.82 3.01e-3 -0.73
7 1281 3.98e-3 -1.19 1.05e-3 -1.32
8 2817 1.49e-3 -1.25 5.21e-4 -0.89
9 6145 5.47e-4 -1.28 2.82e-4 -0.79
10 13313 1.87e-4 -1.39 1.47e-4 -0.84
11 28673 5.74e-5 -1.54 7.51e-5 -0.87
12 61441 1.53e-5 -1.73 3.81e-5 -0.89

Table 5.6: The performance of multilevel sparse collocation and plain sparse
collocation for one asset dividend European call option price following Parameter
Set 2 with that initial condition is estimation at τ = 0.236 using MQ and
a connection constant C = 2. Error evaluated at 4000 uniform points in

[0.4E, 1.6E] at time t = 0.

Numerical results for Parameter Set 2 are displayed in Tables 5.5, 5.6 and Figure

5.8. They demonstrate similar performance as the previous example, but the

convergence rates of MuSIK-C methods are not such good compared to the previous

convergence rates in Tables 5.2 and 5.3. Moreover, the jump in the performance

of MuSIK-C is much clearer. This phenomenon indicates that the initial condition

at τ = 0.236 is still not smooth enough.

MuSIK-C for option pricing 93

Figure 5.8: The performance of multilevel sparse collocation and plain sparse
collocation for one asset dividend European call option price following Parameter
Set 2 with that initial condition is estimation at τ = 0.236 using Gaussian(left)
and MQ(right), C = 2. Error evaluated at 4000 uniform points in [0.4E, 1.6E]

at time t = 0.

As so far, we can demonstrate that we can only apply MuSIK-C to solve PDEs

with smooth conditions. So in option pricing, it is significant to take a relatively

smooth approximation at an earlier time τ for the implementation of MuSIK-C.

However, the current scheme we proposed is still a method of choice. Meanwhile,

in order to guarantee the accuracy of the approximation at τ , we utilise a huge

number of nodes. This procedure increases the whole computational cost and

makes the combination method not comparable to other methods. As a result,

one of our future direction is to employ other efficient methods to determine the

time τ .

5.2 Margrabe Option pricing

In this section, we would like to exploit the performance of MuSIK-C and SIK-C

methods under 2 assets options pricing. The two assets Black-Scholes equation is

displayed as:

∂u

∂t
+

1

2
σ2

1S
2
1

∂2u

∂S2
1

+ ρσ1σ2S1S2
∂2u

∂S1S2

+
1

2
σ2

2S
2
2

∂2u

∂S2
2

+ (r − q1)S1
∂u

∂S1

+ (r − q2)S2
∂u

∂S2

− ru = 0.

MuSIK-C for option pricing 94

There is plenty of literature about high dimension option pricing, such as basket

options [13, 75, 97], high dimension American option [32], spread options [67, 76].

For the purpose to check our method in a closed domain instead of particular

locations, we choose the Margrabe option as our primary target in high dimensions.

The Margrabe option is a special kind of spread option as strike price is zero and its

analytical solution is proposed by Margrabe [88] in 1978. The holder can exchange

the second asset for the first at maturity time T . So the pay off function P at

time T is

P (T, S1, S2) = max{0, S1(T)− S2(T)}.

An expression for the Margrabe option

C(t0, s1, s2) = E
[
e−r(T−t0) max (S1(T)− S2(T), 0)

]
,

S1(t) and S2(t) satisfy

dS1(t) = (r − q1)S1(t)dt+ σ1S1(t)dω1, S1(t0) = s1,

dS2(t) = (r − q2)S2(t)dt+ σ2S2(t)dω2, S2(t0) = s2,

where ω1 and ω2 are Brownian motions with E [dω1dω2] = ρdt. The solutions for

Si(t) are

Si(t) = sie
(r−qi)(t−t0)Mi(t0, t), i = 1, 2,

Mi(t0, t) = exp

(
σi(ωi(t)− ωi(t0))− 1

2
σ2
i (t− t0)

)
, i = 1, 2.

We observe that option price C does not depend on the riskless rate r. We shall

assume that r = 0. So it is not accurate to estimate boundary values by backward

formula. When we deal with boundaries, we fix one variable as the strike price

and consider the problem as depending on just one European option. Once S1 is

fixed, it is a put option. Conversely, it is a call option. This method is also utilised

by Fasshauer [32]. Therefore, we can use the procedure in Section 5.1 to construct

MuSIK-C for option pricing 95

boundary grids. The analytical formula of the Margrabe option is

C(t, S1, S2) = e−q1(T−t)S1N(d1)− e−q2(T−t)S2N(d2), (5.2)

d1 =
log(S1

S2
) + (q2 − q1 + 1

2
σ2)(T − t)

σ
√
T − t

, (5.3)

d2 = d1 − σ
√
T − t, (5.4)

where σ =
√
σ2

1 + σ2
2 − 2σ1σ2ρ. Other notations have the same meaning as those

in the previous section.

Parameter Values
σ1 0.15
σ2 0.15
ρ 0.5
T 1
E 0
q1 0
q2 0

Table 5.7: Parameter Set 3 for Margrabe option.

In the example, we use Parameter Set 3 in Table 5.7. The Margrabe option is a

bet on the values of two risky assets. The most useful price of this option is when

these two values near to each other. So we choose the interesting spatial domain

as Ω = [80, 120]2 in this example.

As discussed before, we choose a larger domain Ω̃ to avoid the influence of the

boundaries when applying the MOL to determine the estimated initial condition.

Therefore, we set Ω̃ = [50, 150]2. As so far, we did not develop an effective

and appropriate method to determine the stop time τ for the Margrabe option.

Therefore, a terminate time spot τ end when we must stop is chosen to be 0.8T .

We utilise the MOL with 10,000 uniform nodes in the domain Ω̃ and ∆t = 0.001

to obtain an approximation at τ end, see Figure 5.9. We can see that the largest

deviation along the diagonal as expected.

Afterwards, we apply MuSIK-C and SIK-C method in the domain Ω∗t = [0, 0.8T]×

[80, 120]2. We still use E+
MuSIK−C and E+

SIK−C to measure the errors and use

ρ+
MuSIK−C and ρ+

IK−C to represent the slopes as defined before. Details are displayed

in the Tables 5.9 and 5.8. The corresponding results are plotted in Figure 5.10.

MuSIK-C for option pricing 96

As shown in Figure 5.10, MuSIK-C does not work from the first step. The reason

might be that our estimated initial condition at τ = 0.8T is still not smooth

enough, but it is not singular as that at the maturity time T . Therefore, our

MuSIK-C method offsets the influence from initial condition firstly by producing

a rough approximation. Afterwards, MuSIK-C using the Gaussian works well with

a rapid convergence rate around 1.9 while MuSIK-C using MQ only expresses a

slow convergence rate at the last step.

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
SIK−C ρ+

SIK−C

3 225 5.35e-2 — 5.35e-2 —
4 593 1.64e-1 1.16 5.58e-2 0.04
5 1505 3.54e-2 -1.65 4.81e-2 -0.16
6 3713 6.37e-3 -1.90 2.47e-2 -0.74
7 8961 1.27e-3 -1.83 1.17e-2 -0.84
8 21249 8.87e-4 -0.42 6.50e-3 -0.68

Table 5.8: The performance of multilevel sparse collocation and plain sparse
collocation for Margrabe with an earlier terminal value of 0.8T using MQ and
a connection constant C = 2. Error evaluated at 10,000 uniform points in

[90, 110]2 at time t = 0.

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
SIK−C ρ+

SIK−C

3 225 9.27e-1 — 9.27e-1 —
4 593 8.70e-1 -0.06 8.02e-1 -0.15
5 1505 1.69e-1 -1.76 6.84e-1 -0.17
6 3713 3.30e-2 -1.81 6.39e-1 -0.08
7 8961 6.64e-3 -1.82 6.15e-1 -0.04
8 21249 1.32e-3 -1.87 6.07e-1 -0.02

Table 5.9: The performance of multilevel sparse collocation and plain sparse
collocation for Margrabe with an earlier terminal value of 0.8T using Gaussian
and a connection constant C = 2. Error evaluated at 10,000 uniform points in

[90, 110]2 at time t = 0.

MuSIK-C for option pricing 97

Figure 5.9: The error between the true surface at the new terminal condition
and the approximated surface from MOL.

Figure 5.10: The performance of multilevel sparse collocation and plain sparse
collocation for Margrabe option price following Parameter Set 3 with that initial
condition is estimation at τ end = 0.8T using Gaussian(left) and MQ(right),
C = 2. Error evaluated at 10,000 uniform points in [90, 110]2 at time t = 0.

MuSIK-C for option pricing 98

5.3 Richardson Extrapolation

Richardson extrapolation (RE) is a quite useful and often used acceleration method.

It is used to improve the rate of convergence of a sequence. In these pages,

it is proposed that Richardson extrapolation can be employed to improve the

convergence of the method. One famous classical application is Romberg integration.

The basic idea behind that is to utilise Richardson extrapolation repeatedly on

the trapezoidal rule. The general Romberg formula is

Tm,j =
4j−1Tm,j−1 − Tm−1,j−1

4j−1 − 1
, j = 2, 3, . . . (m ≥ j). (5.5)

The term Tm,1 means trapezoidal rule with 2m + 1 equally distributed points in

the integration interval [a, b] and it satisfies equation

I − Tm,1 = C1h
2 + C2h

4 +O
(
h6
)
, h =

b− a
2m

, m ≥ 1. (5.6)

Replacing h with h
2
, we can apply RE on Equation (5.6) to obtain

I − Tm+1,2 = C
′

2h
4 +O

(
h6
)
, m ≥ 1 (5.7)

Tm+1,2 =
4Tm+1,1 − Tm,1

3
, m ≥ 1, (5.8)

where Equation (5.8) is equivalent to Simpson rule.

Now let us focus on the performance of Richardson extrapolation on our MuSIK-C

method. Even though we do not know exactly what the convergence rate is, we also

can utilise Richardson Extrapolation to advance our numerical results. Depending

on the numerical results in Section 5.1.3, we just take partial numerical data.

Because the rate of approximations are always oscillating at the beginning, and

the condition number at the last step is a problem that we have to consider. The

estimations are not helpful for utilising Richardson extrapolation.

MuSIK-C for option pricing 99

Suppose our approximation u
(

1
N

)
has a relation depending on the number of nodes

N with the target function U as

u

(
1

N

)
= u+ C

(
1

N

)α1

+O
((

1

N

)α2
)
, 0 < α1 < α2. (5.9)

For a sequence of number Ni, i = 1, . . . , n, we set Bi = Ni+1

Ni
, i = 1, . . . , n− 1, so

u

(
1

Ni

)
= u+ C

(
1

Ni

)α1

+O
((

1

Ni

)α2
)
, (5.10)

and

u

(
1

Ni+1

)
= u+ C

(
1

Ni+1

)α1

+O
((

1

Ni+1

)α2
)
, (5.11)

⇒ u

(
1

Ni+1

)
= u+

1

Bα1
i

C

(
1

Ni

)α1

+O
((

1

Ni

)α2
)
. (5.12)

By guessing an index β, we can form a new approximation

Bβ
i u
(

1
Ni+1

)
− u

(
1
Ni

)
Bβ
i − 1

= u+
Bβ−α1

i − 1

Bβ
i − 1

C

(
1

Ni

)α1

+O
((

1

Ni

)α2
)
. (5.13)

From Equation (5.13), we know

• If β = α1, we can obtain high convergence rate α2.

• If β � α1, the new Equation (5.13) will coincide with Equation (5.11).

• If β > α1 and β is not too big, we can achieve an approximation parallel to

the Equation (5.11).

In the following tables, we use E+
RE to represent the max absolute error from

Richardson extrapolation and ρ+
RE to represent the slope. The definitions are

similar as before.

MuSIK-C for option pricing 100

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
RE ρ+

RE

6 577 4.07e-2 -0.61 — —
7 1281 1.34e-2 -1.39 4.09e-3 —
8 2817 4.37e-3 -1.42 1.47e-3 -1.30
9 6145 1.36e-3 -1.50 3.14e-4 -1.97
10 13313 4.06e-4 -1.56 6.10e-5 -2.12
11 28673 1.09e-4 -1.72 2.82e-6 -4.00

Table 5.10: Results of MuSIK-C with Gaussian from Table 5.2 and
corresponding RE when β = 1.7.

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
RE ρ+

RE

6 577 2.86e-2 0.05 — —
7 1281 9.39e-3 -1.40 5.78e-3 —
8 2817 3.00e-3 -1.45 1.77e-3 -1.51
9 6145 8.95e-4 -1.55 4.78e-4 -1.68
10 13313 2.43e-4 -1.69 1.11e-4 -1.88
11 28673 5.51e-5 -1.93 2.07e-5 -2.19

Table 5.11: Results of MuSIK-C with MQ from Table 5.3 and corresponding
RE when β = 2.3.

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
RE ρ+

RE

6 577 1.24e-2 0.25 — —
7 1281 4.73e-3 -1.21 2.59e-3 —
8 2817 1.80e-3 -1.22 7.46e-4 -1.58
9 6145 6.57e-4 -1.29 1.43e-4 -2.12
10 13313 2.24e-4 -1.39 2.83e-5 -2.10
11 28673 7.08e-5 -1.50 2.38e-6 -3.23

Table 5.12: Results of MuSIK-C with Gaussian from Table 5.5 and
corresponding RE when β = 1.5.

Level Nodes E+
MuSIK−C ρ+

MuSIK−C E+
RE ρ+

RE

6 577 1.03e-2 0.82 — —
7 1281 3.98e-3 -1.19 2.86e-3 —
8 2817 1.49e-3 -1.25 5.80e-4 -2.03
9 6145 5.47e-4 -1.28 1.69e-4 -1.58
10 13313 1.87e-4 -1.39 3.93e-5 -1.89
11 28673 5.74e-5 -1.54 4.43e-6 -2.85

Table 5.13: Results of MuSIK-C with MQ from Table 5.6 and corresponding
RE when β = 1.6.

MuSIK-C for option pricing 101

Figure 5.11: RE method applied on MuSIK-C with Gaussian(left) and
MQ(right) from Table 5.10 and 5.11.

Figure 5.12: RE method applied on MuSIK-C with Gaussian(left) and
MQ(right) from Table 5.12 and 5.13.

As we can see, the slopes of MuSIK-C are increasing slowly in Tables 5.10, 5.11,

5.12 and 5.13. So we guess the value of β in different situations is around the

absolute value of the last slope. The Richardson extrapolation results seem to be

exponential convergence in Figures 5.11 and 5.12. In the face of this phenomena,

we just can have a guess the real convergence rate is a function of data size. It

will be an interesting future work to figure out the reason.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In Chapter 3, we briefly reviewed the Kansa’s collocation method, the Method

of Lines (MOL) and the space-time method. As the numerical example shown in

Section 3.3, we observed it is helpful to choose a larger spatial domain for using

the MOL to solve the Black-Scholes equation. Meanwhile, when we utilised the

space-time method with MQ basis function directly on the original domain, we

achieved a series of convergence approximations on the whole spatial domain and

it has a similar convergence rate as the MOL. Moreover, we reduced the number

of nodal points by considering time as one spatial dimension.

In Chapter 4, we extended the multilevel sparse grid kernels (MuSIK) interpolation

method into the collocation method to form MuSIK-C. MuSIK-C method has

the desirable properties of the RBFs. These properties are easy to implement,

mesh-free and applicability in high dimension. This method also inherits the

advantages of MuSIK method, for instance, the combination technique that divides

the sparse grid into a series of more coarsen directionally uniform sub-grids, rapid

convergence rate, parallel approach. Each of these advantages makes MuSIK-C

more appropriate for high dimensional situations. We successfully obtained good

solutions for elliptic and parabolic problems with smooth boundary conditions

and smooth initial condition up to four dimensions (including time). From the

102

Conclusions and Future Work 103

experiments in Chapter 4, we observe that the convergence rates of MuSIK-C

are increasing slowly when the system is not ill-conditioned. This phenomenon

suggests MuSIK-C might be a spectral method even though we did not prove

it theoretically. Compared to some very recent mesh-based methods, we have

demonstrated that our MuSIK-C has the same level performance in low dimensional

problems and has a better performance in high dimensional situations. Moreover,

even though we are using tensor product radial basis functions in the collocation,

MuSIK-C still shows its superiority in approximating non-tensor product functions.

We found MuSIK-C has its limitation in dealing with Black-Scholes PDE which

is a parabolic problem whose initial condition is not smooth. In order to mitigate

MuSIK-C method’s drawback, we decide replace the non-smooth initial boundary,

which is in the time direction, with a smooth estimation. Therefore, we developed

a method to determine the stop time for the forcing movement and implement

this method to price no dividend and continuous dividend European options. We

not only make MuSIK-C applicable in Black-Scholes PDE, but also observe that

it seems to have an exponential convergence rate. Then, in Section 5.3, we apply

Richardson extrapolation method to accelerate the convergence speed and achieve

more accurate approximations. In the Margrabe option pricing, we don’t have

a method to determine when we should stop the forcing movement currently.

Instead, we choose an end time manually.

It is interesting to observe that SIK-C with the Gaussian basis function does

not converge while SIK-C method with multiquadric basis function can have a

slow convergence rate. Currently, we do not have a proper explanation. MuSIK-C

method with both basis functions can provide superior performance. However, the

ill-conditioning problem always accompanies with our method when using larger

shape parameter, applying high levels and handling with high dimension problem.

So the first requirement is to reduce the condition number under the situation that

convergence rate is guaranteed. Afterwards, the performance of MuSIK-C will be

more attractive.

Conclusions and Future Work 104

6.2 Future work

The approximate cardinal basis function (ACBF) is a good choice to deal with the

badly conditioned system. Ling and Kansa proposed preconditioning schemes that

are based on domain decomposition method and least-squares method in [77] and

[78] separately. In [8], the authors investigated and compared the performances of a

class of preconditioners on Poisson, modified Helmholtz and Helmholtz equations.

No matter to do interpolation problem or collocation problem with RBFs, there is

a very significant process to find the coefficients. Usually, we obtain the coefficients

by solving the global Gaussian elimination method which is expensive as it requires

O(N3) flops. Suppose a matrix-vector equation is

Aλ = f . (6.1)

The idea behind preconditioning scheme is just to construct a preconditioner

W such that WA = I, here I is identify matrix. So the coefficients λ = Wf .

Assuming there are only α non-zero elements in each row of W, multiplying the

preconditioner by a vector can be performed in O(αN) flops.

Recall Equation (2.18)

Φ = Φ1 ⊗ · · · ⊗ Φd.

Φ means the interpolation matrix constructed by the anisotropic tensor product

basis functions. Φi are the matrices constructed by the nodes in the ith direction.

We can obtain the inverse matrix Φ−1 instead of solving the full matrix by equation

(Φ)−1 = (Φ1)−1 ⊗ · · · ⊗ (Φd)
−1 .

This is one kind of the preconditioner W as we talked before. What is more, it

converts a d-dimensional problem to d one dimensional problems. Therefore, it

will be very helpful for high-dimensional approximations. One of our future work

is trying to apply a similar idea on the collocation matrix.

There are also many other jobs waiting for us. In order to improve the run

time, we would like to employ quasi quadrature method as discussed in [115].

Conclusions and Future Work 105

As mentioned in the introduction, the sparse grid was introduced to deal with the

curse of dimension. We are always interested in exploiting more higher dimension

problems, like d = 10. In this thesis, we just tested unsymmetric collocation with

MuSIK-C. In the near future, we will try to solve PDEs with MuSIK-C based

on symmetric collocation. Moreover, we observed that MuSIK-C has difficulty in

solving the parabolic problem with a non-smooth initial condition. Even though

we introduced a combination method to fix that problem, we still would like to

apply sparse grid into Galerkin method to form a multilevel sparse grid kernels

Galerkin method. Certainly, the error analysis is always our purpose.

Bibliography

[1] K. I. Babenko. Approximation by trigonometric polynomials in a certain

class of periodic functions of several variables. Soviet Mathematics Doklady,

1:672–675, 1960.

[2] R. E. Bank, P. S. Vassilevski, and L. T. Zikatanov. Arbitrary dimension

convection-diffusion schemes for space-time discretizations. Journal of

Computational and Applied Mathematics, 2016.

[3] G. Baszenski, F. J. Delvos, and S. Jester. Blending approximations with sine

functions. In Numerical Methods in Approximation Theory, 9:1–19, 1992.

[4] R. K. Beatson, J. B. Cherrie, and C. T. Mouat. Fast fitting of radial basis

functions: methods based on preconditioned GMRES iteration. Advance in

Computational Mathematics, 11(2-3):253–270, 1999.

[5] R. Belmann. Adaptive Control process: a guide tour. Princeton Universoty

Press, Princeton, 1961.

[6] F. Black and M. Scholes. The pricing of corporate liabilities. Journal of

Political Economy, 81(3):637–654, 1973.

[7] M. Bozzini, L. Lenarduzzi, M. Rossini, and R. Schaback. Interpolation with

variably scaled kernels. IMA Journal of Numerical Analysis, 35(1):199-219,

2015.

[8] D. Brown, L. Ling, E. J. Kansa, and J. Levesley. On approximate cardinal

preconditioning methods for solving PDEs with radial basis functions.

Engineering Analysis with Boundary Elements, 29(4):343–353, 2005.

106

Bibliography 107

[9] M. D. Buhmann. Spectral convergence of multiquadric interpolation.

Proceeding of the Edinburgh Mathematical Society, 36(-):319–333, 1993.

[10] M. D. Buhmann. Radial Basis Functions: Theory and Implementations.

Cambridge University Press,Cambridge, 2003.

[11] H. J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269,

2004.

[12] H. J. Bungartz, M. Griebel, and U. Rüde. Extrapolation, combination, and

Sparse grids grid techniques for elliptic boundary value problems. Computer

Methods in Applied Mechanics and Engineering, 116(1-4):243–252, 1994.

[13] H. J. Bungartz, A. Heinecke, D. Puger, and S. Schraufstetter. Option pricing

with a direct adaptive sparse grid approach. Journal of Computational and

Applied Mathematics, 236:3741–3750, 2012.

[14] A. Cangiani, E. H. Georgoulis, and P. Houston. hp-Version discontinuous

Galerkin methods on polygonal and polyhedral meshes. Mathematical

Models and Methods in Applied Sciences, 24(10):2009–2041, 2014.

[15] T. Cecil, J. Qian, and S. Osher. Numerical method for high dimensional

hamilton-jacobi equation using radial basis functions. Journal of

Computational Physics, 196(-):327–347, 2004.

[16] R. Chan and S. Hubbert. Options pricing under the one-dimensional

jump-diffusion model using the radial basis function interpolation scheme.

Review of Derivatives Research, 17(2):161–189, 2014.

[17] R. Charles, T. A. Driscoll, B. Fornberg, and G. Wright. Observations on the

behavior of radial basis function approximations near boundaries. Computers

and Mathematics with Applications, 43(3):473–490, 2002.

[18] C. S. Chen, M. A. Golberg, and S. Karur. Improved multiquadric

approximation for partial differential equations. Engineering Analysis with

Boundary Elements, 18(1):9–17, 1996.

Bibliography 108

[19] A. H-D Cheng and C. A. Brebbia. Boundary Elements and Other Mesh

Reduction Methods XXXVIII. WIT press, 2015.

[20] F. J. Delvos. d-variate Boolean interpolation. Journal of Approximation

Theory, 34:99–114, 1982.

[21] L. B. Da Veiga, A. Buffa, G. Sangalli, and R. Vázquez. Mathematical

analysis of variational isogeometric methods. Acta Numerica, 23:157–287,

2014.

[22] Z. Dong. Provide communication.

[23] M. R. Dubal. Domain decomposition and local refinement for multiquadric

approximations I. Second-order equations in one-dimension. Journal of

Applied Computer Science Methods, 1(1):146–171, 1994.

[24] M. R. Dubal, R. A. Matzner, and S. R. Olvera. In approaches to numerical

relativity. Cambridge University Press, Cambridge, 1993.

[25] T. A. Driscoll and B. Fornberg. Interpolation in the limit of increasingly

flat radail basis functions. Computers and Mathematics with Applications,

43(3):413–422, 2002.

[26] P. Farrell and H. Wendland. RBF multiscale collocation for second order

elliptic boundary value problems. SIAM Journal on Numerical Analysis,

51(4):2403–2425, 2013.

[27] G. E. Fasshauer. Solving partial differential equations by collocation with

radial basis functions. Proceedings of Chamonix, 1997(-):1–8, 1996.

[28] G. E. Fasshauer. Solving differential equations with radial basis

functions: multilevel methods and smoothing. Advances in Computational

Mathematics, 11(-):139–159, 1999.

[29] G. E. Fasshauer. Meshfree approximation methods with matlab. World

Scientific, 2007.

Bibliography 109

[30] G. E. Fasshauer and J. W. Jerome. Multistep approximation algorithms:

improved convergence rates through postconditioning with smoothing

kernels. Advances in Computational Mathematics, 10:1–27, 1999.

[31] G. E. Fasshauer and M. J. McCourt. Stable Evaluation of Gaussian

Radial Basis Function Interpolants. SIAM Journal on Scientific Computing,

34(2):A737–A762, 2012.

[32] G. E. Fasshauer, A. Q. M. Khaliq, and D. A. Voss. Using meshfree

approximation for multi asset American option problems. Chinese Institute

Engineers, 24(-):563–571, 2004.

[33] G. E. Fasshauer and J. G. Zhang. On choosing optimal shape parameters

for rbf approximation. Numerical Algorithms, 45(1-4):345–368, 2007.

[34] G. E. Fasshauer and J. G. Zhang. Preconditioning of Radial Basis Function

Interpolation Systems via Accelerated Iterated Approximate Moving Least

Squares Approximation. In Progress on Meshless Methods Volume 11 of the

series Computational Methods in Applied Sciences pp:57–75, Springer, New

York, 2009.

[35] A. I. Fedoseyev, M. J. Friedman, and E. J. Kansa. Improved multiquadric

method for elliptic partial differential equations via PDE collocation on the

boundary. Computers and Mathematics with Applications, 43(3-5):439–455,

2002.

[36] M. S. Floater and A. Iske. Multistep scattered data interpolation using

compactly supported radial basis functions. Journal of Computational and

Applied Mathematics, 73(1-2):65–78, 1996.

[37] B. Fornberg and E. Larsson. A numerical study of some radial basis function

based solution methods for elliptic pdes. Computers and Mathematics with

Applications, 46(5-6):891–902, 2003.

[38] B. Fornberg, E. Larsson, and N. Flyer. Stable computation with

Gaussian radial basis functions. SIAM Journal on Scientific Computing,

33(2):869–892, 2011.

Bibliography 110

[39] B. Fornberg and C. Piret. A stable algorithm for flat radial basis functions

on a sphere. SIAM Journal on Scientific Computing, 30(1):60–80, 2007.

[40] B. Fornberg and G. Wright. Stable computation of multiquadric interpolants

for all values of the shape parameter. Computers and Mathematics with

Applications, 48(5-6):853–867, 2004.

[41] R. Franke. Scattered data interpolation: test of some methods. Mathematics

of Computation, 38(157):181–200, 1982.

[42] C. Franke and R. Schaback. Solving partial differential equations

by collocation using radial basis functions. Applied Mathematics and

Computation, 93(1):73–82, 1998.

[43] C. Franke and R. Schaback. Convergence order estimates of meshless

collocation methods using radial basis functions. Adavaces in Computational

Mathematics, 8(-):381–399, 1998.

[44] J. Garcke and M. Griebel. On the parallelization of the sparse grid approach

for data mining. In S. Margenov, J. Wasniewski, and P. Yalamov, editors,

Large-Scale Scientific Computations, Third International Conference, LSSC

2001, Sozopol, Bulgaria, volume 2179 of Lecture Notes in Computer Science,

pages 22–32, Springer, 2001.

[45] J. Garcke and M. Griebel. Sparse grids and applications. Springer, 2013.

[46] J. Garcke and M. Hegland. Fitting multidimensional data using gradient

penalties and the sparse grid combination technique. Computing,

84(1-2):1–25, 2009.

[47] J. Garcke, M. Hegland, and O. Nielsen. Parallelisation of sparse grids for

large scale data analysis. ANZIAM Journal, 48(1):11–22, 2006.

[48] E. H. Georgoulis, J. Levesley, and F. Subhan. Multilevel sparse kernel-based

interpolation. SIAM Journal on Scientific Computing, 35(2):A815–A831,

2013.

Bibliography 111

[49] R. Geske. The valuation of compound options. Journal of Financial

Economics, 7: 63–81, 1979.

[50] M. B. Giles and R. Carter. Convergence analysis of Crank-Nicolson and

Rannacher time-marching. 2005.

[51] M. Griebel. The combination technique for the sparse grid solution of PDEs

on multiprocessor machines. Parallel Processing Letters, 2(1):61–70, 1992.

[52] M. Griebel. Adaptive sparse grid multilevel methods for elliptic PDEs based

on finite difference. Computing, 61(2):151–179, 1998.

[53] M. Griebel, D. Oeltz. A sparse grid space-time discretization scheme for

parabolic problems. Computing, 81(1):1–34, 2007.

[54] M. Griebel, M. Schneider, and C. Zenger. A combination technique for

the solution of sparse grid problems. In Iterative methods in linear algebra

(Brussels, 1991), pages 263–281. North-Holland, Amsterdam, 1992.

[55] S. J. Hales and J. Levesley. Error estimates for multilevel approximation

using polyharmonic splines. Numerical Algorithms, 30:1–10, 2002.

[56] R. L. Hardy. Multiquadric equations of topography and other irregular

surfaces. Journal of Geophysical Research, 76(8):1905–1915, 1971.

[57] R. L. Hardy Theory and applications of the multiquadric-biharmonic

method. Computers and Mathematics with Applications, 19(8/9):163–208,

1990.

[58] P. W. Hemker. Sparse-grid finite-volume multigrid for 3D-problems.

Advances in Computational Mathematics, 4(1-2):83–110, 1995.

[59] A. Heryudono, E. Larsson, A. Ramage, and L. von Sydow. Preconditioning

for Radial Basis Function Partition of Unity Methods. Journal of Scientific

Computing, 67(3):1089–1109, 2016.

[60] A. Heryudono, E. Larsson, and A. Safdari-Vaighani. A radial basis function

partition of unity collocation method for convection diffusion equations

Bibliography 112

arising in financial applications. SIAM Journal on Scientific Computing,

2014.

[61] Y. C. Hon. A quasi-radial basis functions methods for American option

pricing. Computers and Mathematics with Applications, 43(-):513–524, 2002.

[62] Y. C. Hon and X. Z. Mao. A radial basis function method for solving option

pricing model. Financial Engineering, 8(-):1–24, 1999.

[63] Y. C. Hon, M. W. Lu, W. M. Xue, and Y. M. Zhu. Multiquadric method

for the numerical solution of a biphasic mixture model. Appled Mathematics

Computation, 88(2-3):153–176, 1997.

[64] Y. C. Hon and R. Schaback. On unsymmetric collocation by radial basis

functions. Applied Mathematics and Computation, 119(2-3):177–186, 2001.

[65] Y. C. Hon and Z. Wu. Convergence error estimate in solving free boundary

diffusion problem by radial basis functions method. Engineering Analysis

with Boundary Elements, 27(-):73–79, 2003.

[66] C. Hu and C. W. Shu. A discontinuous galerkin finite element method

for hamilton–jacobi equations. SIAM Journal on Scientific Computing,

21(2):666–690, 2006.

[67] T. R. Hurd and Z. Zhou. A Fourier Transform Method for Spread Option

Pricing. SIAM Journal on Financial Mathematics, 1(1):142–157, 2010.

[68] A. Iske. Multiresolution methods in scattered data modelling. Lecture

Notes in Computational Science and Engineering, Springer-Verlag Berlin

Heidelberg, 37(-):83–102, 2004.

[69] A. Iske. Hierarchical scattered data filtering for multilevel interpolation

schemes. In Mathematical methods for curves and surfaces (Oslo, 2000),

Vanderbilt University Press, Nashville, TN, 211–221.

[70] A. Iske and J. Levesley. Multilevel scattered data approximation by adaptive

domain decomposition. Numerical Algorithms, 39:187–198, 2005.

Bibliography 113

[71] E. J. Kansa. Multiquadrics - a scattered data approximation scheme

with applications to computational fluid-dynamics - I. Computers and

Mathematics with Applications, 19(8-9):127–145, 1990.

[72] E. J. Kansa. Multiquadrics - a scattered data approximation scheme

with applications to computational fluid-dynamics - II. Computers and

Mathematics with Applications, 19(8-9):147–161, 1990.

[73] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Dover

Publications, 2005.

[74] U. Langer, S. Moore, and M. Neumuller. Space-time isogeometric analysis

of parabolic evolution equations. Computer Methods in Applied Mechanics

and Engineering, 306:342–263, 2016.

[75] E. Larsson, U. Pettersson, J. Presson, and G. Marcusson. Improved radial

basis function methods for multi-dimensional option pricing. Computers and

Mathematics with Applications, 222(1):82–93, 2008.

[76] M. Li, S. Deng, and J. Zhou. Closed-form approximations for spread option

prices and Greeks. Journal of Derivatives, 15:58–80, 2008.

[77] L. Ling and E. J. Kansa. Preconditioning for Radial Basis Functions with

Domain Decomposition Methods. Mathematical and Computer Modelling,

40(13):1413–1427, 2004.

[78] L. Ling and E. J. Kansa. A least-squares preconditioner for radial basis

functions collocation methods. Advances in Computational Mathematics,

23(1):31–54, 2005.

[79] L. T. Luh. On Wu and Schaback’s error bound. International Journal of

Numerical Methods and Applications, 1(2):155–174, 2009.

[80] L. T. Luh. The shape parameter in the Gaussian function. Computers and

Mathematics with Applications, 63(3):687–694, 2012.

[81] L. T. Luh. The shape parameter in the Gaussian function II. Engineering

Analysis with Boundary Elements, 37(6):988–993, 2013.

Bibliography 114

[82] J. Levesley and Z. Luo. Error estimates and convergence rates for variational

hermite interpolation. Journal of Approximation Theory, 95(-):264–279,

1998.

[83] X. Ma and N. Zabaras. An adaptive hierarchical sparse grid collocation

algorithm for the solution of stochastic differential equations. Journal of

Computational Physics, 228(8):3084–3113, 2009.

[84] W. R. Madych. Miscellaneous error bounds for multiquadric and related

interpolators. Computers and Mathematics with Applications, 24:121–138,

1992.

[85] W. R. Madych and S. A. Nelson. Multivariate interpolation and conditionally

positive definite functions. Approximation Theory and its Applications,

4(-):77–89, 1988.

[86] W. R. Madych and S. A. Nelson. Multivariate interpolation and

conditionally positive definite functions. II. Mathematics of Computation,

54(189):211–230, 1990.

[87] W. R. Madych and S. A. Nelson. Bounds on multivariate polynomials

and exponential error estimates for multiquadric interpolation. Journal of

Approximation Theory, 70(1):94–114, 1992.

[88] W. Margrabe. The value of an option to exchange one asset for another.

Journal of Finance, 33(-):177–186, 1978.

[89] C. A. Micchelli. Interpolation of scattered data: distance matrix and

conditionally positive definite function. Constructive Approximation,

2(-):11–22, 1986.

[90] D. E. Myers, S. De Iaco, D. Posa, and L. De Cesare. Space-Time Radial

Basis Functions. Computers and Mathematics with Applications, 43:539-549,

2002.

[91] F. J. Narcowich, R. Schaback, and J. D. Ward. Multilevel interpolation and

approximation. Applied and Computational Harmonic Analysis, 7:243–261,

1999.

Bibliography 115

[92] F. Nobile, R. Tempone, and C. Webster. A sparse grid stochastic collocation

method for partial differential equations with random input data. SIAM

Journal of Numerical Analysis, 46(5):2309–2345, 2008.

[93] Y. Ohtake, A. Belyaev, and H. P. Seidel. 3d scattered data interpolation and

approximation with multilevel compactly supported rbfs. Graphical Models,

67:150–165, 2005.

[94] K. Parand and J. A. Rad. Kansa method for the solution of a parabolic

equation with an unknown spacewise-dependent coefficient subject to an

extra measurement. Computer Physics Communications, 184(3):582–595,

2013.

[95] A. Pena. Option pricing with radial basis functions: a tutorial. Technical

report, Wilmott Magazine, 2005.

[96] M. J. D. Powell. The theory of radial basis function approximation in 1990,

in Advances in numerical analysis II. Oxford University Press, 105–210,

1992.

[97] C. Reisinger and G. Wittum. Efficient hierarchical approximation of

high-dimensional option pricing problems. SIAM Journal on Scientific

Computing, 29(1):440–458, 2006.

[98] A. La Rocca, A. Hernandez Rosales, and H. Power. Radial basis

function Hermite collocation approach for the solution of time dependent

convection-diffusion problems. Engineering Analysis with Boundary

Elements, 29:359–370, 2005.

[99] R. Roll. An analytical formula for unprotected American call options on

stocks with known dividends. Journal of Financial Economics, 5: 251–58,

1977.

[100] S. A. Sarra and E. J. Kansa. Multiquadric Radial Basis Function

Approximation Methods for the Numerical Solution of Partial Differential

Equations. Advances in Computational Mechanics, 2(2), 2009.

Bibliography 116

[101] R. Schaback. Error estimates and condition numbers for radial basis function

interpolation. Advances in Computational Mathematics, 3(-):251–264, 1995.

[102] W. E. Schiesser and G. W. Griths. A compendium of partial differential

equation models: Method of lines analysis with Matlab. Cambridge

University Press, 2009.

[103] A. Schreiber. The method of Smolyak in multivariate interpolation.

PhD thesis, der Mathematisch-Naturwissenschaftlichen Fakultäten, der

Georg-August-Universität zu Göttingen, 2000.

[104] C. Schwab, E. Suli, and R. Todor. Sparse finite element approximation

of high-dimensional transport-dominated diffusion problems. ESAIM:

Mathematical Modelling and Numerical Analysis, 42(05):777–819, 2008.

[105] V. Shcherbakov and E. Larsson. Radial basis function partition of unity

methods for pricing vanilla basket options. Computers & Mathematics with

Applications, 71(1):185–200, 2016.

[106] S. A. Smolyak. Quadrature and interpolation of formulas for tensor product

of certain classes of functions. Soviet Mathematics Doklady, 4:240–243, 1963.

[107] S. Song and L. Tang. A tvd-type method for 2d scalar Hamilton Jacobi

equations on unstructured meshes. Journal of Computational and Applied

Mathematics, 195(1-2):182–191, 2006.

[108] S. E. Stead. Estimation of gradients from scattered data. Journal of

Mathematics, 14(1):265–279, 1984.

[109] F. Subhan. Multilevel Sparse Kernel-Based Interpolation. Ph.D. Thesis,

University of Leicester, 2011.

[110] L. V. Sydow, L. J. Hook, E. Larsson, E. Lindstrom, S. Milovanovic,

J. Persson, V. Shcherbakov, Y. Shpolyanskiy, S. Siren, J. Toivanen,

J. Walden, M. Wiktorsson, M. B. Giles, J. Levesley, J. Li, C. W. Oosterlee,

M. J. Ruijter, A. Toropov, Y. Zhao. BENCHOP-the BENCHmarking

project in option pricing. International Journal of Computer Mathematics,

forthcoming 2015.

Bibliography 117

[111] M. Tatari and M. Dehghan. A method for solving partial differential

equations via radial basis functions: Application to the heat equation.

Engineering Analysis with Boundary Elements, 34(3):206–212, 2010.

[112] V. Temlyakov. Approximations of functions with bounded mixed derivative.

Trudy Matematicheskogo Instituta imeni VA Steklova, 178:3–113, 1986.

[113] L. N. Trefethen and David Bau, III. Numerical linear algebra. Society for

Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[114] J. C. Urschel. A Space-Time Multigrid Method for the Numerical Valuation

of Barrier Options. Communications in Mathematical Finance, 2(3):1–20,

2013.

[115] F. Usta. Sparse Grid Approximation with Gaussians. PhD thesis, University

of Leicester, June 2015.

[116] Z. Wang, Q. Tang, W. Guo, and Y. Cheng. Sparse grid discontinuous

Galerkin methods for high-dimensional elliptic equations. Journal of

Computational Physics, 314:244–263, 2016.

[117] H. Wendland. Piecewise polynomial, positive definite and compactly

supported radial functions of minimal degree. Advances in Computational

Mathematics, 4(4):389–396, 1995.

[118] H. Wendland. Gaussian interpolation revisited, in: Trends in Approximation

Theory eds. K. Kopotun, T. Lyche, and M. Neamtu. Vanderbilt University

Press, Nashville, 2001.

[119] H. Wendland. Scattered data approximation. Cambridge University Press,

Cambridge, 2005.

[120] H. Wendland. Multiscale analysis in Sobolev spaces on bounded domains.

Numerische Mathematik, 116:493–517, 2010.

[121] R. E. Whaley. On the valuation of American call options on stocks with

known dividends. Journal of Financial Economics, 9: 207–211, 1981.

Bibliography 118

[122] Z. Wu. Hermite-Birkhoff interpolation of scattered data by radial basis

functions. Journal of Approximation Theory, 8(2), 1–11, 1992.

[123] Z. Wu. Multivariate compactly supported positive definite and compactly

supported radial functions. Advances in Computational Mathematics,

4(4):283–292, 1995.

[124] Z. Wu. Solving pde with radial basis function and the error estimation.

Advances in computational mathematics. Lecture notes on pure and applied

mathematics, 202, 1998.

[125] D. Xiu. Efficient collocational approach for parametric uncertainty analysis.

Communications in Computational Physics, 2(2):293–309, 2007.

[126] C. Zenger. Sparse grids. In Parallel algorithms for partial differential

equations (Kiel, 1990), volume 31 of Notes Numerical Fluid Mechanics,

pages 241–251. Vieweg, Braunschweig, 1991.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Background
	1.1.1 Radial basis functions and collocation
	1.1.2 Multilevel method
	1.1.3 Sparse grid method
	1.1.4 Space-time method
	1.1.5 Black-Scholes equation

	1.2 Motivation and objective
	1.3 Main achievements
	1.4 Thesis outline

	2 Scattered data approximation
	2.1 Scattered data interpolation problem
	2.2 Basic concepts
	2.3 Radial basis functions
	2.4 Anisotropic tensor product basis function
	2.5 Convergence
	2.6 An example

	3 Solving partial differential equations using RBFs
	3.1 Elliptic PDEs
	3.2 Parabolic PDEs
	3.2.1 Method of lines
	3.2.2 Consider time as a spatial dimension

	3.3 Numerical experiments
	3.4 Conclusion

	4 Multilevel sparse grid kernel collocation with RBFs
	4.1 Sparse grid kernel collocation
	4.1.1 Collocation with the combination technique

	4.2 Multilevel sparse grid kernel collocation
	4.2.1 Multilevel full grid collocation
	4.2.2 Multilevel sparse grid kernel collocation

	4.3 Numerical experiments
	4.3.1 Elliptic examples
	4.3.2 Parabolic examples

	4.4 Conclusion

	5 MuSIK-C for option pricing
	5.1 One asset European Option pricing
	5.1.1 MuSIK-C in option pricing from different initial times
	5.1.2 Algorithm to predetermine an earlier time
	5.1.3 Numerical experiments

	5.2 Margrabe Option pricing
	5.3 Richardson Extrapolation

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future work

	Bibliography

