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ABSTRACT 

Spatial species distribution models to predict liver fluke disease (Fasciola gigantica) in 

cattle: A case study of Sokoto State, Nigeria. 

Isah Hamisu 

 

 

Species distribution models provide an alternative way of observing the distribution of 

species rather than the conventional methods such as satellite tracking, aerial 

photography and ground surveys that are both labour and capital intensive.  

This thesis presents the first application of species distribution models using short-term 

and long-climate average in predicting the suitability of habitats and transmission pattern 

of F.gigantica in a semi-arid part of Nigeria in West Africa. The MaxEnt modelling 

technique was identified in giving better results than BioClim and Domain models in 

modelling the geographic range of F.gigantica based on six accuracy measures 

(sensitivity, specificity, Kappa, True Skill Statistics, AUC and Correlation). Also, six 

scenarios were created  with MaxEnt using both  Bioclim and non-Bioclim variables, 

which were validated with independent data obtained during the field work. Finally, 

Bioclim variables generated from IPCC future climate projections under ‘modest’ RCP 

2.6 and ‘aggressive’ RCP 8.5 greenhouse gas emission scenarios were utilised in the 

construction of the MaxEnt model for two time slices 2041-2060 and 2061-2080. 

Subsequently, soil moisture was found to be the most significant variable and the 

distributions of F. gigantica in the study area were significantly associated with it 

(p<0.05). The predicted area of suitability for the disease prevalence has expanded under 

both RCP’s for the two future time slices. 

By combining a species distribution model with satellite based and HadGEM2-es climate 

projections, risk maps with the aid of GIS were generated indicating which provinces of 

Sokoto State are predicted to experience an increase in fascioliasis risk in the future. This 

study validated the short-term model by examining the relationship between the risk 

indices,  and climatic variables with fascioliasis recorded prevalence.  

This research  also used two questionnares through a cross-sectional survey on 

slaughtered cattle at the abattoirs of the sampled localities in investigating the influence 

of biological factors on fascioliasis prevalence.   

 Gathering the models developed in this study, coupled with the biological risk factors, 

can improve our understanding of both the present and future risks. That will no doubt 

promote the ability to design effective control strategies against this parasite that takes a 

heavy toll on animals’ health and productivity. 
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Chapter 1 

Background  

 

1.1Introduction 

This chapter provides background knowledge on the topic of this thesis (species 

distribution models) and an overview of all chapters in this study. It includes explanations 

of relevant concepts, terms, and tools that shed more light on the topic and its potential 

contributions to knowledge. 

1.2 Species distribution models 

Species distribution models predict the possible or actual range of a species through 

integrating species recorded presence with measured climatic/environmental 

characteristics that are believed to be favourable for the survival of the species at the 

known occurrence location (Pearson, 2007). These modelling techniques start by 

identifying the presence of a species, and then both biotic and abiotic factors assumed to 

be favourable for the species. These data can then be used to approximate the spatial 

dispersion of favourable climatic conditions that suit a species across an area of study 

(Franklin, 2009). This modelling approach is a branch of biogeography (Box, 1981, 

Pearson et al., 2007), ecological gradient analysis (Whittaker et al., 1973) and geographic 

information science (Franklin, 1995). Species distribution modelling is sometimes called 

environmental niche modelling or habitat distribution modelling or climate envelope 

modelling (Elith and Leathwick, 2009a). Regarding the scale of the study, ecological 

relationships can be investigated at any level in species distribution models as 

‘conceptually there are ‘no' restrictions on any ‘natural scale' (Levin, 1992).  Preferably, 

the scale is to be determined by study objectives and data availability (Elith and 

Leathwick, 2009b).  

Species distribution models fall under the broad category of correlative models that are 

preoccupied with establishing the relationship between species occurrence at a site and 

the environmental variables of the site (Pearson, 2007). These environmental variables 

encompass both the climatic and non-climatic conditions that are suitable for the 

physiology and persistence of the species otherwise known as environmental space. This 

environmental space is based on the theory of ecological niches that has for long been 

applied in ecological studies (Chase and Leibold, 2003).  Grinnell (1917) defines an 
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ecological niche as part of the habitat that maintains a population of species over a long 

period in environmental space. This definition was supported by Peterson (2003) who 

added that niche provides the specific limit of a geographic range of a species with 

suitable ecological conditions. On the other hand, Elton (1927) defines the ecological 

niche as the predation and prey relationships of a species or the interrelationships of 

species among themselves, especially in the food web. This definition assumes that 

species maintain survival based on suitability of the environmental conditions and their 

ability to withstand competition with other species (Hirzel et al., 2002, Sober´on, 2007) 

As modelling species distribution based on the Eltonian definition is always a difficult 

task since it involves interrelationships between species, thus this study used the 

expanded definition of a niche in line with Hutchinsonian theory. This theory described 

a niche as an ‘n-dimensional volume' of species habitat that contains suitable 

environmental conditions that can support species survival without the need to emigrate 

(Hutchinson, 1957). This geographic area occupied by the species according to 

Hutchinson (1957) is referred to as a fundamental or potential niche. This potential niche 

implies the actual or the full extent of the suitable habitats that can support species 

survival in environmental space, but some factors such as biotic interactions (competition 

with other species, predation) or geographic obstacles may impede species from 

occupying all suitable habitats (Anderson and Mart´ınez-Meyer, 2004). A realised niche 

is the actual area that species are inhabiting where there is no possibility of exclusion (of 

the species) due to biotic competition, and hence it is a subset of fundamental niche 

(Hutchinson 1957). Pearson (2007) further added that due to some constraints on the 

realised niche in the form of geographic barriers (very high elevation, slope) and biotic 

factors (competition with the same species or different species) can enforce species to 

inhabit an area referred to as occupied niche. Nevertheless, it is vital to understand that a 

species can occupy habitats that are not suitable for their livelihood as a result of moving 

away from more suitable habitats. This situation explains the theory of source-sink 

(Pulliam, 2000) where the former as the sink (unsuitable) while the latter as the source 

(suitable). Furthermore, due to a possibility of adverse conditions at the ‘sink,' it is 

expected that the species may face extinction. 

1.2.1Types of data for species distribution models 

 The data for species distribution modelling, according to Pearson et al. (2007) are 

divided into two types: biological data that explains the observed occurrence sites of 
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species and environmental data associated with the landscape where the species is 

present. The biological data are available from a variety of sources, which include 

personal collection, land surveys, museum collections, and online resources. Different 

researchers in species distribution modelling utilise these sources (Fleishman et al., 2001, 

Araújo et al., 2005, Raxworthy et al., 2003). Moreover, these biological data are in two 

categories: firstly, sites where the species presence is known (presence-only) and 

secondly on locations where the species are present and where absent (presence/absence). 

The use of this latter type of biological data according to Brotons et al. (2004) often leads 

to better model performance. However, there should be caution in the use of 

presence/absence records since some sites may be suitable for species survival but during 

the survey, the species may not be detected thereby leading to the inclusion of ‘false 

absences'(Hirzel et al., 2002). Some notable limitations of biological data for species 

distribution modelling include species misidentification, the wrong coordinate system of 

samples and tendency of samples to be collected that are closer to human settlements and 

access routes (Graham et al., 2004, Pearson 2007). Regarding environmental data, the 

most common variables in species distribution modelling are climate (temperature, 

precipitation) altitude or configuration of the landscape (slope, elevation), vegetation and 

soil type (Franklin, 2009). 

1.2.2 Generic species distribution models 

In modelling species distribution, ‘generic’ techniques (Fox, 2012) are available that 

include statistical methods (logistic regression, generalised linear models, generalised 

additive models) and machine-learning methods [maximum entropy and artificial neural 

networks] (Pearson, 2007). Also, the algorithms of some of these methods uses 

presence/absence or presence-only record of species in modelling the species geographic 

range (Franklin, 2009). The algorithms of presence/absence techniques differentiates 

between species presence locations and absence locations in modelling spatial 

distribution of a species. Examples include generalised linear models (GLMs,), 

generalised additive models (GAMs), Genetic Algorithm for Rule-set Predictions 

(GARP) and artificial neural networks (ANNS). In contrast the algorithms of the 

presence-only techniques distinguishes species present locations and background 

locations since absent locations are unknown (Graham et al., 2004). These methods 

include BioClim (Busby, 1991), MaxEnt (Phillips et al., 2006), SPECIES (Pearson et al., 

2002) and Domain (Carpenter et al., 1993). All these models apply to any climate-
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sensitive species given availability of occurrence records and associated environmental 

characteristics.  Chapter 4 of this thesis compared three of these presence-only methods 

(MaxEnt, BioClim, and Domain) in modelling the geographic range of F. gigantica in 

the present study area 

1.2.3 Species-specific species distribution models 

Species-specific correlative models were developed specifically on helminthiases with a 

particular focus on fascioliasis due to the dependence of its life cycle on climate and 

weather conditions (de Waal et al., 2007). Ollerenshaw and Rowlands (1959) study 

provided the foundation for building a fascioliasis risk index based on the availability of 

a ten-year prevalence record that enabled the creation and validation of statistical 

methods. Another added impetus was awareness and knowledge of the influence of 

temperature and moisture in the geographic range of fascioliases coupled with the 

parasite's international distribution. All these factors make fascioliases unique and the 

ideal parasite for the application of the species-specific correlative model that is currently 

in use in the early warning system (EWS) in the UK. This technique explains the temporal 

transmission pattern of fascioliasis as an index of risk that incorporates 'the application 

of geographic information system (GIS) technology' (Malone et al., 1998b). Finally, 

chapter 5 applied this method in producing the first short term and long-term fascioliasis 

risk in Sokoto State, Nigeria.  

1.2.4 Limitations of species distribution models 

 Despite the values of species distribution models (discussed later), some limitations are 

affecting the efficient performance of these models. Reddy and D´avalos (2003) 

explained that bias in species distribution modelling could occur owing to the tendency 

to select species occurrence records that are closer to human settlements, rivers or roads.  

Many data on species occurrence are opportunistic records and hence their collection is 

not based on systematic field surveys that can guarantee better fitness for species 

distribution modelling (Franklin, 2009b). Also, the existing record of species at a site 

may not be too accurate regarding X and Y Coordinates, or in having the right species of 

reference or in attaining the optimal number of records needed to produce the best 

modelling results (Stockwell and Peterson, 2002). Similarly, the climatic variables used 

in modelling may not be too accurate due to errors associated with the models applied to 

generate them which even if used in modelling may lead to unreliable results. In 

addressing the issue of bias in the selection of species occurrence records, Fourcade et al. 
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(2014) proposed some techniques. Each one of the techniques is expected to reduce bias 

in species occurrence records thereby increasing the reliability of modelling results.   

Another essential pitfall that may affect the efficient performance of species distribution 

models is that the models were developed using occurrence data based on the realised 

niche (Guisan and Zimmerman, 2000) instead of the fundamental niche. Thus all the 

major obstacles that can hinder species from occupying all suitable areas such as very 

high elevations or biotic interactions (competition with other species, predation) are not 

considered (Pulliam, 2000, Anderson and Mart´ınez-Meyer, 2004). Some few approaches 

have incorporated biotic environments in species distribution modelling (Araújo and 

Luoto, 2007. Heikinnen et al., 2007.) 

Finally, another limitation of correlative models as noted by Ortega-huerta and Peterson 

(2008) and Pearson et al. (2006) is that different species distribution models even though 

developed with the same inputs often yield different outputs. This result was also 

confirmed by Loiselle et al. (2003) in their study where different models produced 

various outcomes. This variation in performance according to Thuiller (2003) can be 

resolved using the newly available ‘framework' for choosing most scientifically reliable 

statistical models. In other words, a broad understanding of how the algorithm of different 

mathematical models work can provide precious information in selecting the best model 

that suits a specific species or study area. (Elith and Leathwick, 2009b) 

1.2.5 Applications of species distribution models 

 Beyond all these limitations, species distribution models have broad applications in 

different areas. Studies by Peterson et al. (2006), Kozak and Wiens (2006) and 

Raxworthy et al. (2007) proved that species distribution models could be advantageous 

in the identification of high-risk areas for disease outbreaks, species niche studies, and 

taxonomy. Given that, species distribution models were used in modelling the geographic 

range of fascioliasis in Greece, Colombia, the UK, Iran, East Africa and Pakistan (Malone 

et al., 1998a, Kantzoura et al., 2011b, Fox, 2012, Valentia-Lopez et al., 2012, Afshan et 

al., 2014). Regarding conservation, these models provide an opportunity for exploration 

of potential areas which the species can inhabit through aiding appropriate planning of 

field surveys (Fleishman et al., 2002, Guisan et al., 2006). Species distribution models 

have also been applied in impact evaluation and management of resources, ecological 

modelling and in investigating the effects of climate change on biodiversity and 

ecosystems (Franklin, 2009b).  
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1.3 Climate-sensitive diseases  

Climate fluctuations and changes affect both the present and future geographic range, 

intensity as well as the transmission pattern of animal diseases (Baylis and Githeko, 

2006). Thus, any pathogen whose transmission can be decreased or increased by the 

influence of climate is regarded as a climate-sensitive disease (Grace et al., 2015).  These 

diseases are affected by climatic elements such as temperature, rainfall and heat stress 

influencing the activities of the pathogens, vectors and their hosts'.  Even the ecosystem 

services relating to disease transmission and animal management are likely to change due 

to changes in climate.  In this light, 65 animal diseases have been recognised as important 

to livestock keepers in developing countries out of which 58% are classified as climate-

sensitive. In addition, these diseases are reported by the World Health Organisation 

(WHO, 2006) as having a high probability of affecting the health and wellbeing of not 

only animals but humans in third world countries due to their zoonotic nature. 

Furthermore, climate-sensitive diseases are more prevalent in developing countries which 

are characterised by high temperatures and vulnerable populaces. Moreover, fascioliasis 

is among 13 diseases that are known as important to livestock keepers in sub-Saharan 

Africa.  The majority of livestock (81%) are in developing countries (FAOSTAT, 2013) 

where they are under threat of these climate-sensitive diseases, demonstrated by the 

annual mortality of 20% of ruminants (Otte and Chilonda, 2002). 
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Table 1-1 Significant Livestock diseases to poor and vulnerable livestock keepers in Africa and Asia 

Disease/pathogen                  Region  

WA ECSA SA SEA 

Salmonellosis 1 1 1 1 

Campylobacteriosis 1 1 1 1 

Crytosporidiosis 1 1 1 1 

Leptospirosis 1 1 1 1 

Botulism 1 1 1 1 

Endoparasitosis 1 1 1 1 

Listeriosis 1 1 1 1 

Toxoplasmosis 1 1 1 1 

Escherichia coli infection 1 1 1 1 

Anthrax 1 1- 1 1 

Fascioliasis 1 1 1 1 

Trypanosomiasis 1 1 0 0 

Ectoparasites 1 1 1- 1 

1=an important problem; 1- =a minor problem; 0=not a problem 

Regions: WA= West Africa, ECSA= Eastern, Central and Southern Africa, SA= South 

Asia, SEA= South-East Asia (source: Grace et al., 2015) 

 1.4 Geographic Information System (GIS) tool in species distribution modelling 

A GIS is a digital-based information system that is an essential tool for species 

distribution modelling. Pearson (2007) explained that all data about environmental and 

species occurrence must have the capability to be visualised and stored in a GIS-friendly 

format before any modelling operations. GIS serves as an instrument that assists SDM in 

the conversion of different environmental variables and biological data to the same 

geographic reference system. Also, the GIS tool is essential in analysing model outputs 

for visualisation and further required manipulations (Pearson et al., 2002). 

 In addition to the functions mentioned above, GIS is an appropriate tool in the study of 

fascioliasis which possesses some characteristics in endemic localities. According to 

Yilma and Malone (1998) changes in the incidence of fascioliasis were related to 

responses to varied climatic conditions in endemic locations. Moreover, GIS can use 

these climatic conditions in modelling. Another characteristic of fascioliasis which GIS 

can incorporate in modelling is practices of animal management and their populations. 
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Fascioliasis prevalence is associated with the presence of snails that maintain a long 

lifespan and generations in suitable locations, which also adds to its amenability to GIS 

analysis.  

1.5 Thesis Structure 

The dissertation consists of seven chapters classified into three sections (Figure 1.1). The 

introductory chapters presents the essential background information and explanations of 

some contextual terms, followed by the presentation of the results and discussions of the 

methods used in the research. The final section, includes the overall discussion, 

conclusions and the contributions of the research in the control of liver fluke disease in 

Sokoto State. 

 

Chapter 4-6: Methods analysis and Results 

 

Modelling the Suitability 

of the study area for the 

parasite 

Modelling spatio-temporal 

transmission pattern of the 

parasite in the study area 

Investigation of risk 

factors on the parasite 

infection among the 

slaughtered cattle 

 

Chapter 7: General discussion, conclusions and contributions of the research 

 

Figure 1-1: Thesis structure 

 

Chapter 1: The chapter explores the main background information on species distribution 

modelling.  

Chapter 2: A related literature review in this chapter started with a description of the 

lifecycle and essential factors affecting the prevalence of fascioliasis. Also includes a 

review of some studies on fascioliasis across different parts of the world using species 

distribution modelling techniques. Presented at the end of the chapter are gaps in the 

literature, research questions and objectives. 

Chapter 1-3: introduction and conceptual framework 

 

CH.1 Introduction and 

summary of thesis 

structure 

CH.2 Literature review Study area 
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Chapter 3:  Highlighted background information about the study area regarding 

descriptions of its climate, vegetation, agriculture, and hydrology. 

Chapter 4: This chapter dealt with modelling of the geographic range of F.gigantica in 

the study area. Different techniques based on presence-only (MaxEnt, BioClim, and 

Domain) were compared. The chapter also includes the use of BioClim variables from 

WorldClim and climatic variables from a satellite based on current and future projections 

in modelling the geographic range of fascioliasis using MaxEnt modelling.  

Chapter 5: This chapter presents the use of a species-specific species distribution model 

in the calculation of climate-based forecast risk of fascioliasis and also in the 

determination of its spatiotemporal transmission pattern in Sokoto State. The main 

climatic elements used include rainfall and potential evapotranspiration.  

Chapter 6: This provides an investigation into risk determinants (both biological and 

environmental) for fascioliasis infections among the slaughtered cattle data obtained from 

fieldwork. It presents the use of binary logistic regression in estimating the likelihood of 

disease infections due to cattle characteristics, cattle holder socio-economic status, 

practices of herd/cattle management and environmental variables in the study area. 

Chapter 7: This chapter summarises the overall research contributions of this thesis based 

on the use of spatial distribution models in predicting F.gigantica in the study area. It 

also includes the general discussion and conclusions from chapters 4, 5 and 6.  This 

chapter also presents the main weaknesses of the study and directions for future research. 
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Chapter 2 

Literature Review 

 

2.1 Introduction 

Although fascioliasis is among the climate-sensitive diseases, other factors are also 

important in contributing to its incidence. In this regard, Yatswako and Alhaji (2017) 

explained that both intrinsic (biological characteristics) and extrinsic 

(climatic/environmental) factors determine the outbreak and intensity of fascioliasis in 

domestic animals. According to the Food and Agricultural Organisation report,  

developing countries keep 81% of the 38 billion livestock population worldwide 

(FAOSTAT, 2013). However, the health and productivity of this livestock are under 

severe threats from diseases including fascioliasis (Grace et al., 2012). As reported by 

Steinfeld et al. (2006) globally the livestock sector accounts for 40% GDP that provides 

nourishment to humanity and employment of 1.3 billion people. Because of the, ‘one 

health' approach (Conraths et al., 2011) which involves a collaboration of different 

disciplines in the control of diseases has been recommended.  

 This chapter, therefore, reviews the literature on the fascioliasis parasite and the factors 

that affect its geographical distribution. In addition, this chapter reviews applications of 

species distribution model techniques in the control of fascioliasis across various parts of 

the world.  The essence was to pinpoint research gaps in the study of fascioliasis and as 

act as a basis for constructing the research questions and objectives for this study. 

2.2 Fascioliasis disease 

Fascioliasis is a parasitic disease whose life cycle substantially depends on moisture and 

thermal conditions (Malone et al., 1998a, Mas-Coma et al., 2009, Freitas et al., 2014).  

This parasitic disease has attracted International attention due to its impacts on animal 

and public health (Afshan et al., 2014). Furthermore, fascioliasis alongside other 

helminthic diseases tops the outline of the items in the agenda at the 3rd World Meeting 

of the Partners for Parasitic Control (PPC) conducted in WHO headquarters, Geneva 

2004 (Mas-Coma et al., 2005). In addition, fascioliasis is described as a fatal disease that 

reduces the productivity of cattle and sheep (Valentia-Lopez et al., 2012, Charlier et al., 

2014). Besides, health effects due to fascioliasis constitute substantial economic losses 

that run into millions of dollars in different parts of the world (Saleha, 1991, Malone et 

al., 1998a, Fox et al., 2011) 
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 Fascioliasis is caused by two `etiological agents', F.hepatica and F. gigantica where the 

former is more prevalent in temperate areas while the latter is mostly in the tropical 

regions (Andrews, 1999). Moreover, F.gigantica is genetically related to F.hepatica but 

diverged many millions of years ago and then dispersed into various parts of Asia and 

Africa (Irving et al., 2003). Thus, these two species share common characteristics 

regarding liver infections of the mammalian host and share the same life cycle. Despite 

these common attributes, according to Spithill et al. (1999), these two species differ in 

the amount of moisture needed by their respective intermediate hosts and also in the 

interactions between the host and the parasite.  Differences also exist in the practices of 

animal management and other development indices between temperate areas where 

F.hepatica thrives and tropical biomes where F.gigantica is endemic. Also, R.natalensis 

that transmits F.gigantica requires higher temperature and stagnant water bodies whereas 

Galba truncatula needs lower temperature and intermittent water bodies (Mas-Coma, 

2004).  All these variations account for the epidemiological differences between the two 

species, which warrants different studies. In Nigeria, only F.gigantica thrives, which 

according to Spithill et al. (1999) reached 60% prevalence rate. 

It is essential to note that fascioliasis does not only affect animals but also human beings 

and hence it is viewed as water or food-borne zoonotic disease owing to its public health 

effects (Moe, 2004). In that light, it was recognised as foodborne trematodiasis (FBTs) 

by the World Health Organisation (WHO) as deserving attention since it constitutes a 

great health burden in many countries of the world. For example, it was reported by Sripa 

et al. (2010)  that human fascioliasis leads to liver and bile duct cancer and is rated number 

five amongst the ailments noted as possessing the most significant quantity of disability-

adjusted life years (DALYs) in 2004.  

2.2.1 Lifecycle of fascioliasis 

The life cycle of fascioliasis is complicated owing to the presence of both intermediate 

and definitive hosts couple with favourable environmental factors that are indispensable 

for the survival of the parasite (Mas-Coma et al., 2014).  Tolan (2011) described the 

developmental stages in the life cycle of fascioliasis as starting with the release of fresh 

eggs in the bile ducts and faeces of the infected animals and sometimes humans. Under 

suitable climatic conditions of temperature and moisture, hatching of these eggs in faeces 

occur and consequently produce miracidia that infect vulnerable lymnaea (natalenses) 

snails as its intermediate hosts. In addition, the miracidia undergo the reproductive 
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process in the snails and yield sporocyst, rediae and finally cercariae. The snail then 

discharges the cercariae that later encyst into metacercariae on suitable surfaces such as 

leaves of grasses and stems (Andrews, 1999, Graczyk and Fried, 1999). Consequently, 

after ingesting the grass by the grazing animals, the metacercariae excyst in the 

duodenum and follow through the appropriate intestinal surface into the peritoneal cavity 

and then finally occupy the liver parenchyma through the biliary ducts for development 

into adults (Tolan, 2011).   

The continuation of the fasciolosis life cycle depends on optimum conditions of climate 

parameters notably temperature and precipitation (Fox and Hutchings 2013, World Bank 

2014). Also, according to Mas-Coma et al. (2009) environmental factors such as latitude 

and altitude determine the conditions of temperature which may affect the prevalence of 

fascioliasis (Figure 2.2). Fasciola gigantica being a tropical species requires higher 

minimum temperature than F.hepatica that thrives in temperate areas, but the two species 

overlap in some tropical regions with high altitudes, for example Kenya and Ethiopia 

(Malone et al., 1998a) and also in Egypt (Soliman, 2008). Extreme hydrological events 

such as heavy rainfall leads to flooding and accumulation of water under poor drainage, 

which may provide new habitat for intermediate hosts of fascioliasis (Torgerson and 

Claxton, 1999). The ecological condition required by the snail L.A. natalenses that 

transmits F. gigantica is water that moves sluggishly or collects at a depression, for 

example in lakes (ponds) or rice fields where irrigation is practiced (Kendall, 1965, 

Fabiyi, 1987).  

 

Figure 2-2: Associations of risk factors that enhance the emergence of F. gigantica (Togerson and Claxton, 1999 
modified). 

2.2.2 Intermediate and definitive host of fascioliasis 

In the free-living state after emerging from faeces under optimum temperature and 

moisture, fascioliasis parasite development halts unless accommodated inside the body 

of another living organism as the vector referred to as the intermediate host (Tolan, 2011).  

The dominant species of intermediate hosts of F.gigantica is lymnae auricularia sensu 

lato. The main subspecies are L.A. natalenses and L.A. refescens that are found in West 

Africa and Indian sub continental areas (like Bangladesh and Pakistan) respectively 

(Spithill et al. 1999). 
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Figure 2-3: L.a.natelences snails the intermediate hosts of Fasciola gigantica on the leaves of the plant in the study 
area (fieldwork, 2016). 

  2.2.3 The global distribution of fascioliasis  

Concerning spatial distribution across the globe, Mas-Coma et al. (2009) explained that 

fascioliasis is the invertebrate-borne disease that has the highest spread across the world 

including  very high altitude areas above the sea level as is the case in Andean countries 

(Bolivia, Peru, Ecuador, and Venezuela). Fasciola gigantica is restricted to areas where 

ecological conditions permit survival of the intermediate host R.natalensis. As reported 

by Spithill et al. (1999) the countries of Africa with the highest prevalence of F.gigantica 

are Egypt, Sudan, Tanganyika, Chad, Nigeria, Zambia, Zimbabwe, Uganda, and Ethiopia. 

In Asia, high prevalence countries include Indonesia, NE Thailand, Philippines, Vietnam, 

Pakistan, India, Nepal, and Iran. 

2.3 Effects of climatic and environmental factors on Fasciola gigantica 

transmission 

 Climatic elements such as temperature, rainfall and their interactions affect the viability 

of the parasite in its free-living states (egg and miracidia) and intramolluscan stages 

[sporocyst, rediae, and cercariae] (Poulin, 2006).  Thus, it is vital to comprehend how 

these elements modulate the activities of the parasites to appreciate the application of 

climate in the study of the geographic range of fascioliasis.  The climatic conditions are 

required to be within an optimum range for the survival and development of the 
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fascioliasis parasite and its intermediate host snails. This section explained different 

stages of the life cycle of fascioliasis species under the following subheadings. 

2.3.1 Effects of Temperature 

The higher the temperature within the optimum range the faster the development of 

miracidia in eggs of F.gigantica, development takes only 10-11 days  between 37-38OC 

whilst the number of days extends to 33 at 17-22OC (Guralp et al., 1964). It was estimated 

by Grigoryan (1958) that at 24-26OC, 70-80% of eggs would emerge whilst temperature 

that exceeds 43-44OC will lead to eggs mortality. It was noted by Guralp et al. (1964) that 

it takes 14 weeks for eggs of F.gigantica to start hatching at different batches. In some 

countries in East Africa such as Kenya, the average temperature was much lower than 

other parts of the continent and hence the growth of F. gigantica eggs was said to be from 

52 to 109 days at 10OC and 22OC(Torgerson and Claxton, 1999). They also noted that the 

level of nourishment and the quantity of parasite the snail contains would encourage and 

stimulate the ability of the parasite to produce eggs  

 Temperature is also very significant in influencing the physiology and ability to produce 

cercariae by snails (Mas-Coma et al., 2009). Dinnik and Dinnik (1963) and (Islam et al., 

2014) found that temperature at 26OC stimulates reproductive processes in snails within 

a few days.  Air temperature is therefore very crucial in affecting the prevalence and 

geographic range of F.gigantica. Likewise,  infected snails take a minimum of 20 days 

and maximum of 46-50 days to start shedding of cercariae at 25-27OC (Dinnik and 

Dinnik, 1963, Sharma et al., 1989). This shedding period is prolonged if the temperature 

reduces and may take up to 197 days as observed at very high elevations in Kenya (Dinnik 

and Dinnik 1963). 

 It was reported by Spithill et al. (1999) that temperature determines the ability of snails 

to excyst cercariae as metacercariae which anchor suitable objects that are within 6.4cm 

of the water body. Suhardono and Copeman (2008) reported that metacercariae were 

more viable in water than outside water environments based on their study in Indonesia. 

They concluded that the viability of metacercariae was higher at the moderate 

temperature of 20OC but was reduced as temperature increased to 26, 30 and 35OC.  The 

survival rate of metacercariae outside water environment increases when the air is humid 

at relatively low temperature. Kimura observed this in Japan where metacercariae 

survived for 120 days at 12-28OC and relative humidity 30-45% on rice straw.  
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2.3.2 Effects of Moisture 

Moisture is essential for the effective functioning of all activities or processes that support 

the viability of fascioliasis (Torgerson and Claxton, 1999). In this regard, inadequate 

moisture or desiccation has been found by Altizer et al. (2006) to be inimical to the 

survival of fascioliasis and its intermediate host's snails.  Rainfall is the primary source 

of moisture and in situations where rainfall is greater than potential evapotranspiration 

will provide suitable conditions for transmission of fascioliasis (Mas-Coma et al., 2005). 

However, during dry seasons in most tropical countries, moisture becomes available at 

locations that are proximate to water bodies such as irrigation sites, streams or lakes. 

At the initial stage of fascioliasis development, moisture is required to disintegrate faecal 

mass into fluke eggs (Torgerson and Claxton, 1999). Likewise, the intermediate hosts of 

F.gigantica snails L. a. natalenses need deep water to survive as they cannot aestivate for 

a long time during a dry spell or drought. A report by Schillhorn Van Veen et al. (1980) 

has indicated an increase in the population of snails at the onset of the rainy season in 

West Africa as the temperature was not limiting throughout the year. Similarly, in 

Malawi, the period of rainfall around March/April provides ideal conditions for the 

survival of a large number of snails. 

Given the preceding discussion, moisture is indispensable for the dispersal, free-living 

and intramolluscan stages of fascioliasis (Andrews, 1999). For example even under 

optimum temperature, desiccation is a severe threat to the viability of metacercariae 

(Spithill et al., 1999). It is worth emphasising that in semi-arid areas like in Nigeria and 

elsewhere the transmission of fascioliasis during the dry season is only possible near 

water bodies (example streams, dams, lakes, and ponds) as sources of moisture since 

rainfall is only available in wet season. The existence of extensive fadama land ( areas 

liable to flooding) especially in north-western Nigeria and abundant rain in the south and 

western parts of the country have provided favourable conditions for fascioliasis to thrive 

which was up to 60% and above (Spithill et al.1999). 
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Figure 3-4: Metacercariae weekly survival rate when subjected to desiccation at different 

temperatures (Spithill et al.1999). 

Besides, the productivity of snails decreases during the dry periods due to their habitation 

of the aquatic environment such as stagnant water (Roberts and Suhadono, 1996). Thus 

the transmission of fasciolosis will not be active during the desiccation period. However, 

if the condition of dryness persists, according to Spithill et al. (1999) eggs production in 

snails continues, but hatching of eggs occurs only if moisture conditions improves. 

Furthermore, in extreme dry seasons in tropical areas snails can survive for up to six 

months through hibernation and aestivation (Roberts and Suhadono, 1996, Spithill et al., 

1999, Bunza et al., 2008b).  Thus dry seasons, especially in the tropics, are invariably not 

very favourable for growth and development of snails. Moreover, that observation was 

confirmed by Copeman (2000) based on their research on F. gigantica and its 

intermediate hosts' snails in rice fields in Surade, West Java, Indonesia.  

2.3.3. Vegetation 

Vegetation is a significant determinant of fascioliasis risk due to its influence in providing 

habitats to snails and on which metacercariae anchor after emerging from snails. Besides, 

it serves as nourishment for animals and even humans. These functions, make vegetation 

a perfect vector for transmission of fascioliasis and is measured by a remote sensing index 

referred to as Normalised Difference Vegetation Index (NDVI).  

NDVI is very useful in epidemiological studies as it represents the amount of moisture in 

the environment (Malone et al., 2001, Valentia-Lopez et al., 2012). Furthermore, NDVI 

was described as a composite mixture of various factors of the environment [elevation, 
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precipitation, temperature] (Hay et al., 1997) and hence a good indicator of climate risk. 

In view of this, NDVI was incorporated as using Geographic Information System (GIS) 

analysis to show the prediction of climatic risk for the design of control programs against 

both human and animal fascioliasis in East Africa, Europe and South America (Malone 

et al., 1998a, Fuentes et al., 2001, Kantzoura et al., 2011, Afshan et al., 2014) 

2.4. Effects of biotic (host-parasite) factors on Fasciola gigantica transmission 

The climatic factors cannot operate in isolation but there are other contributing factors 

that determine the transmission, intensity and spatial distribution of fascioliasis. These 

factors are classified into host-parasite and climatic/environmental factors [including 

definitive hosts management practices] (Yatswako and Alhaji, 2017). The preceding 

section explained the effects of climatic and environmental factors on fascioliasis 

prevalence while this section described host-specific factors and their effects on the 

prevalence of the parasite. 

2.4.1 The age of the definitive host 

 The age of the definitive hosts determines their susceptibility to fascioliasis infection.  In 

this regard, there are two contradictory reports concerning the most vulnerable to 

infection between the young and old definitive hosts. The first observation was that the 

young hosts were more susceptible to infection due to low immunity (which increased 

with age) than the older hosts. It, therefore, means that the more infections the host 

encounters, the more its immunity develops over time. This observation was supported 

by Blood (1978) and Noble and Noble (1982) where fascioliasis infections were more 

predominant among the weaners than the older hosts when compared across different age 

groups. In contrast to the above observation, Anon (1992)  concluded that vulnerability 

to infection was the same across the old and young host and in some cases even higher 

among older definitive hosts (Esch, 1977). Similarly, some studies conducted recently 

shared this view and explained that older hosts were more exposed to the infection than 

younger ones (Elelu et al., 2016a, Pfukenyi et al., 2006, Pfukenyi and Mukaratirwa, 2004) 

2.4.2 The gender of the host 

A strong link exists between the sex of the host and fascioliasis infections as a result of 

the presence of steroid hormones which respond differently to parasitic infection in the 

definitive host (Esch, 1977). Given this, female hosts were more susceptible to infection 

than male hosts as concluded in a study by Rahman and Collins (1992). This was because 

of the observed increase in ‘peri-parturient' (before giving birth)   release of parasite's egg 
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that undermined the immunity of lactating female definitive host. These findings were 

also supported by Berger (1971) that the period of parturition and lactation erodes the 

acquired immunity against fascioliasis infections and other helminths. Conclusively, the 

definitive female host were, more vulnerable to infections across a given pasture owing 

to their tendency to transmit the infection to their calves as ‘adaptive/periodic mechanism' 

(Briskey, 2004). 

2.4.3 Practices of animal management 

The type of management system operated by cattle holders can determine their exposure 

to the risk of fascioliasis infection. Thus, animals reared by a sedentary system of 

husbandry were less susceptible to infection as reported in a study around Lake Chad by 

Jean-Richard et al. (2014). In contrast to this, animals reared by pastoralists especially 

the Fulani's that allow contacts with other herds in mostly snail-infected pasture, were 

more vulnerable to fascioliasis infections as reported by Elelu et al., (2016a) 

2.5 Use of generic models to predict fascioliasis 

Presence-only species distribution models have been used extensively in species 

distribution modelling studies to show the relationship between recorded sites of species 

occurrence and their estimated climatic conditions [at occurrence sites](Phillips et al., 

2006, Franklin, 2009).  Maximum entropy (MaxEnt) is one of the most popular presence-

only methods introduced in 2006 (Renner and Warton, 2013). The technique has broad 

applications in modelling the   geographic range of various species of plants and animals 

due to the impacts of climate and environmental factors for different purposes (Gomes et 

al., 2018, Elith et al., 2011, Welk et al., 2002, Graham and Hijmans, 2006), including the 

effects of   climate changes on species geographic range (Graham and Hijmans, 2006, 

Echarri and Tambussi, 2009, Cordellier and Pfenninger, 2009). MaxEnt has also been 

applied in studies involving species dispersal as a function of the relationship between 

physical and biological factors (Cunningham et al., 2009).  However, studies that focused 

on modelling the geographic ranges of fascioliasis using presence-only techniques are 

quite a few across the globe, despite being the most widespread pathogen(Mas-Coma et 

al., 2014)  and affecting both animal and human health (Tolan, 2011). 

 MaxEnt is the presence-only method that was used in northcentral Nigeria by Yaro et al. 

(2018) in modelling the effect of environmental risk determinants on the prevalence of 

Fasciola gigantica in trade cattle slaughtered in some major abattoirs in Niger state. The 

study obtained data on fascioliasis prevalence from five municipal abattoirs based on 
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retrospective survey and climatic data were extracted from WorldClim database. The 

results of the study showed that provinces that lie in the southeastern part of the state that 

include Katcha, Gbako, Bosso and parts of Rafi and Shiroro were more suitable for the 

prevalence of the parasite and hence ‘higher risk zones’ than other parts of Niger state. 

Furthermore, the study indicated that precipitation and mean temperature of the coldest 

quarter as well as precipitation of the wettest quarter were more influential in modelling 

the geographic range of Fasciola gigantica in the state. The most notable limitations of 

the study was in the use of core bioclimatic variables (BIO1-19) and hence did not make 

use of soil  moisture based variables (BIO27-35) that are equally significant in modelling 

the prevalence of fascioliasis in endemic localities.  

 Another prominent study using MaxEnt was carried out in southeastern Europe by 

Kantzoura et al. (2011b) in modelling the geographic range for F. hepatica genotypes 

and haplotypes. The results of the studies indicated that both temperature and 

precipitation had equal weight in model construction for all the genotypes of fascioliasis. 

However, temperature and precipitation had different effects on the distribution of the 

three classes of fascioliasis haplotypes (CtCmt1, CtCmt2.1, and CtCmt2.2). In a study in 

Colombia, by Valentia-Lopez et al. (2012), maps based on climate-based forecast index 

(CFI) results for the control of F. hepatica were developed within a GIS. The index was 

constructed using growing degree day-water budget concept and the interactions of 

rainfall and potential evapotranspiration.  This CFI risk map was in good agreement with 

the risk pattern indicated by MaxEnt model that was constructed with environmental 

variables. 

Some of the significant limitations of MaxEnt include the insufficient guide for its use 

when compared to older methods such as GLM or GAM and the need to refine the use of 

regularisation in reducing overfitting (Phillips et al., 2006). Also, MaxEnt requires 

specific software before executing modelling operations. Above all these limitations, 

MaxEnt needs only the presence of species, and climatic data about the area of study as 

its algorithm is very deterministic in yielding optimal results. The probability map 

produced by MaxEnt is uninterrupted  in showing variations regarding suitability across 

the modelled area(Phillips et al., 2006).  

  Other presence-only techniques such as BioClim and Domain have also been used in 

species distribution modelling of both plants and animal diseases for different purposes 
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(Franklin, 2009). In modelling the geographic distribution of fascioliasis across endemic 

localities of the globe, no any one of these techniques was ever applied individually or in 

combination with other methods. 

2.6 Applications of species-specific models in the studies of fascioliasis 

Fascioliasis disease has plagued various parts of the world, and hence it is regarded as 

one of the most widely spread disease globally (Mas-Coma et al., 2005). Moreover, due 

to the importance of fascioliasis as a significant threat to animal's health and productivity 

(Ardo et al., 2014) much research had been conducted to monitor its prevalence and 

spatial distribution across different parts of the world. 

         In England, the association between climate and fascioliasis outbreak has been 

explained by Ollerenshaw and Rowlands since 1959. This study laid the foundation for 

the development of short-term forecasting using an empirical equation that determines 

monthly levels of potential evapotranspiration and rainfall. Higher evapotranspiration 

than rains indicates soil moisture deficit, thereby reducing the risk to a lower stage, while 

if the reverse is the case, the excess water will accumulate giving rise to greater risk index. 

The success of this forecast has led to the modification of the index using long-term 

projection data produced by UKCP09 to create seasonal risk forecast to future (2070). A 

study by Fox et al. (2011) presents the first long-term forecast of fascioliasis risk in 

Europe to determine the impact of changes in climate in fascioliasis transmission. Also, 

the study incorporated the use of immediate past climate provided by UKCIP to assess 

the changes in the transmission of the parasite as a function of the current climate 

variables. The result of the study has revealed future variation in transmission intensity 

across different parts of the UK, with Wales predicted to have the potential of emerging 

as the highest risk in 2050. The risk has also been shown to vary temporally due to the 

predicted rise in fascioliasis risk from overwintering larvae. 

Moreover, the study simulated that spatially some parts of the UK will experience the 

lower risk of fascioliasis infection in summer season due to inadequate moisture. 

Although the study has illustrated the role of long-term changes in climate in influencing 

fascioliasis risk, there was no utilisation of corresponding prevalence data for model 

validation. Finally, the study could not determine the effects of climate on fascioliases 

transmission as this was beyond its scope. 



 

21 
 

The climate-based model was also applied in the whole of Europe by Caminade et al. 

(2015) to predict the outbreaks of fascioliasis due to recent climatic changes and future 

changes in climate. This study adapted the fascioliasis forecasting system developed for 

Wales by Ollerenshaw and Rowlands (1959) in predicting the incidence of fascioliasis 

based on the model derived from interactions of temperature and rainfall. The gridded 

climate data for the period 1959-2013 was extracted from the ground-based stations for 

all the countries of Europe that were assembled by the work of Haylock et al. (2008). 

Future climate data were obtained from an ensemble of the climate model developed by 

Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) for three-time slices 

beginning from 2011-2030 up to 2071-2090 based on four Representative Concentration 

Pathways (RCPs 2.6, 4.5, 6 and 8.5). The results of the recent climate-driven risk index 

have indicated expansion of suitable areas in central and northwestern Europe, which also 

matched the incidence of fascioliasis infections in animals. Similarly, in the future, the 

period of fascioliasis transmission was predicted to be longer by four months in northern 

Europe due to an increase in favourable climatic condition. In southern Europe, the study 

indicated winter months to experience more risk owing to the predicted increase in 

moisture and suitable climatic conditions but a decrease in risk in summer months.  

A significant limitation of this study is that it used a climate model that was developed 

specifically for Wales, which limits the applicability of the developed risk model to future 

projected climate scenarios at the continental scale of Europe (Caminade et al., 2015). In 

addition, some arid areas in southern Europe that were shown by the model to be of lower 

risk may not reflect reality as irrigation was not incorporated into the models' 

construction. Likewise, different types of soils and land use were not considered by the 

model despite their importance in determining the presence of the fascioliasis parasite. 

(McCann et al., 2010, Bennema et al., 2009, Charlier et al., 2014). 

In Colombia, South America, fascioliasis has undermined the productivity of both cattle 

and sheep and hence is regarded as important. This led to the development of climate-

based risk model by Valentia-Lopez et al. (2012) in order to provide a guide for 

prevention and control of fascioliasis infection by identifying areas of high risk as well 

as a temporal transmission pattern. The model was an adaptation of a forecast index 

applied in East Africa (Malone et al., 1998)  based on growing degree days (GDD) and 

the use of the essential requirements for the parasite's survival notably rainfall and 

potential evapotranspiration. These variables were used in the calculation of climate-
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based forecast index (CFI) for Colombia which was converted into a map with the aid of 

a geographic information system (GIS). The study also developed other techniques for 

the identification of high-risk areas using elevation, enhanced vegetation index and land 

surface temperature within the geographic information system and maximum entropy 

using BioClim variables. Outputs from these methods have indicated spatial relationships 

in predicted fascioliasis risk pattern with the forecast index grid.  

In Asia due to observed prevalence of fascioliasis, climate-based fascioliasis forecast 

models were developed by Halimi et al. (2015) to predict outbreaks of fascioliasis in Iran. 

This study made use of a geographical information system and Ollerenshaw's climate-

based fascioliasis risk index. A risk map was produced within a GIS that represented the 

computed index that reflected differences in the climatic conditions of Iran. The country 

of the study was devided into four classes, with 1st and 4th classes representing lowest and 

highest risk, reflecting the degree in the availability of suitable climatic conditions that 

favour fascioliasis transmission. The results of the study showed that a high percentage 

(91%) of the study area was predicted to be free of fascioliasis outbreaks. This was due 

to moisture deficit and low thermal regime during the rainy season, especially from 

December to April. Conversely, areas of high rainfall such as Gilan province, Rasht, 

Astara, and Bandar Anzaly were found to be high-risk areas, constituting only 3% of Iran.  

 In East Africa, Malone et al. (1998) adapted the Ollerenshaw climate-driven index of 

fascioliasis risk using climate data obtained from the Food and Agricultural Organisation 

(FAO).  In the global database, the main essential drivers of fascioliases were rainfall and 

potential evapotranspiration across all of the area of study. Consequently, the resulting 

equation for calculating the index was modified to allow the computation of fascioliasis 

risk either from F. hepatica and F.gigantica as both species thrived in the study area. 

Risk index maps were created for each of one of the two species using geographic 

information system in the study area. The results of the computed risk index indicated 

spatio-temporal variation in the transmission pattern of both species of fascioliasis. The 

risk was most significant in areas with the higher amount of soil moisture and very low 

in arid areas. This should be treated with caution as irrigation practice in these areas may 

provide suitable habitat for fascioliasis and its hosts. 

Furthermore, high altitudes in Ethiopia and Kenya were completely devoid of suitable 

conditions for the parasite's survival. Regarding validation, the combined risk index was 
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significantly correlated to both ten-year average NDVI data obtained from NOAA and 

available fasciolosis prevalence record. This study has demonstrated that differences in 

the seasonal pattern of fascioliasis transmission and spatial variation across regions can 

be obtained from monthly forecast index. Also, the use of a GIS tool in creating risk index 

using monthly climate data and computer-based data from agroecological zones was also 

indicated. Finally, this technique developed in this study was valuable in designing 

effective methods of control against fascioliasis prevalence in East Africa. Given that, 

the method was recommended by Mas-Coma et al. (2009) based on the accuracy of its 

predictions of risk due to fascioliasis in the study area.  

   A plethora of research was conducted using species-specific models during the last fifty 

years whilst only a few studies focused on F. gigantica with none of these few studies 

concentrating on any part of West Africa. Few researchers have investigated future 

projections of climate and their effects on fascioliasis transmission while no study has 

been applied to any part of Africa. 

2.7 Use of regression techniques in modelling the risk of fascioliasis 

  Regression techniques have been described as relevant to species distribution modelling 

due to their concern with showing the relationships between the dependent variable, 

which can be binary, counts or ordinal and the independent or explanatory variables 

(Franklin, 2009). In the study of fascioliasis regression methods have been used to explain 

the spatial variation of infections across various areas of study (McCann et al., 2010, 

Howell et al., 2015, Olsen et al., 2015, Kantzoura et al., 2011a). Some of these studies 

used binary regression which have the advantages of overcoming the expectations of 

homogeneity of variances, normality, and linearity over linear regressions (Schuppert, 

2009).  However, Reed and Wu (2013) explained that some significant limitations of 

binary regression are limited sample size, restrictions on the number of predictor 

variables and the evaluation of probability ratio of outcomes (negative or positive). In 

this section, some reviews of regression methods that were applied to fascioliasis studies 

and their findings will be discussed. 

The distribution range of F. hepatica infection in dairy herds at the local spatial unit in 

England and Wales was explained by McCann et al. (2010) using linear regression 

models. The independent variables were the climatic, environmental, soil and pasture 

parameters while the dependent variable was F. hepatica infection data in dairy herds 

obtained from previous research conducted in the winter of 2006/2007. The result of the 
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study showed that the combined influence of climatic and environmental factors 

described 70-76% of the variation in fluke infection at the level of postcode area.  

Although various models were created each with both temperature and rainfall as 

covariates, these two variables remained consistently strong predictors of F. hepatica at 

the smallest spatial units in the area of study. This research has, demonstrated that 

building spatial models with at least five-year mean of aggregated variables in developing 

risk maps for fascioliasis can yield better model fitness than using recent individual 

annual or monthly weather data.  

 Another related study which was intended to be ‘observational' regarding its assessment 

of the relationships between exposure to fascioliasis infections in high yielding herds and 

risk determinants was conducted by Howell et al. (2015) on UK dairy industry. The effect 

of how farms were managed and associated environmental factors on exposure to 

fascioliasis infection was examined using multivariable linear regression. The results 

showed that feeding on wet pasture, the presence of non-dairy cattle on sampled farms, 

grazing near water bodies such as streams, lakes, and herds that contain few cattle were 

related positively to exposure to the risk of fascioliasis infection. These factors according 

to Rapsch et al. (2008) were essential for the survival of F. hepatica and its intermediate 

host snail in temperate areas.  

As the knowledge of the prevalence of and risk factors associated with fascioliasis was 

limited in Denmark, a study was conducted by Olsen et al. (2015) to that effect. The 

primary source of the data on the prevalence of infection was obtained through meat 

inspection from 2011 to 2013. Both global and local clustering of infection prevalence 

were identified using Moran, I technique to find out the underlying environmental factors. 

In addition, binary logistic regression modelling was applied to the incidence of infection 

as the dependent variable while the environmental risk factors including cattle 

management as predictor variables. The result showed an increase in the number of cases 

across the three years of study while spatial analysis indicated clustering of both positive 

and negative herds. 

Moreover, a meaningful relationship was observed between the environmental 

parameters such as streams, wetlands pasture and exposure to infection in cattle herds. 

The primary constraint of this study was that the meat inspection employed has poor 

sensitivity and as such would not mirror the real prevalence in the population of cattle. In 



 

25 
 

addition, the assessment by the logistic regression model has indicated more possibility 

of infection in a few areas which was not consistent with the observed prevalence data.  

In South America in Espirito Santo state, Brazil Freitas et al. (2014) produced a 

bioclimatic map  to ascertain the proportion of areas in the state that were suitable for the 

prevalence of F. hepatica between 2009 and 2011. The bioclimatic map was generated 

using 30 years data obtained from 109 weather stations that were situated in the state. 

The result indicated more than fifty percent of the study area was found suitable for the 

healthy living of fascioliasis and its intermediate host's snail. The slaughterhouse as the 

source of information showed that the parasite was more concentrated in three cities such 

as Atilio vivacqua, Itapemirin, and Anchieta with 28.41%, 25.50%, and 24.95% 

respectively. The reliability of the information utilised by this research was not objective 

since slaughterhouses could not give the precise origin of the animals slaughtered. 

Moreover, no instrument (such as a questionnaire) was used in obtaining relevant data 

about the slaughtered cattle. 

 Binary logistic regression technique was applied in Thessaly, Greece to investigate the 

relationship between risk determinants related to management of pasture and farm, herd 

and status of the farmer as well as satellite-based environmental data with fascioliasis 

infection in sheep and goat farms. This study by Kantzoura et al. (2011a) revealed 16.2 

% and 78.4% of farms were infected with fascioliasis based on coproantigen and serology 

respectively. Using coproantigen, all the environmental factors including temperature, 

rainfall, and elevation were not statistically related to fascioliasis infection. However, 

based on the serology component, only NDVI variable was statistically related to 

fascioliasis infection. The study also identified farms that were privately owned with all 

year round grazing areas, and boggy pastures were highly exposed to the risk of 

fascioliasis infection in the area of study. The weakness of this research was that the risk 

map developed could not be a representative for the entire region of Mediterranean due 

to heterogeneity regarding temperature and rainfall patterns across the region. Also, some 

area-specific determinants were used by the model which were only applicable to the 

small spatial unit that was used as the study area thereby making extrapolation to the 

whole Mediterranean region prohibitive. 

2.8 Fascioliasis prevalence studies in West Africa 

In West Africa, most of the studies on fascioliasis were based on explaining prevalence 

at abattoirs and slaughter slabs. However, only a few of these studies incorporated the 
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effects of biological characteristics on fascioliasis infection risk. These characteristics 

include the breed of the animal, sex, age, socio-economic characteristics of the cattle or 

animal owner which all affect animal exposure and susceptibility to fascioliasis 

infections. Some studies have incorporated the use of these non-climatic factors in 

influencing fascioliasis prevalence across various areas of the world (Tum et al., 2004, 

Ekwunife and Eneanya, 2006, Ali et al., 2008, Jean-Richard et al., 2014) 

In southeastern Chad (a neighbouring country to Nigeria) prevalence of F.gigantica 

infections in slaughtered cattle was investigated by Jean-Richard et al. (2014).  The study 

compared the prevalence of fascioliasis infections between cattle, goats, and sheep 

through routine meat inspections at three slaughter slabs situated in Grenada, Sidje and 

Bache Djani. The ethnic background of the animal owner was used as the main risk factor 

for F.gigantica infections. The results suggest that cattle were having the highest 

infections (68%) while goats were the lowest. Also, animals owned by tribe (Kouri) that 

were settling close to Lake Chad and other water bodies were having the higher risk of 

F.gigantica infections than that livestock belonging to Gorane, Peul, Arab and 

Kanembou. The method used in detecting the presence of fascioliasis in the liver of 

slaughtered animals was defective as only a section of the liver was inspected instead of 

the whole organ (Jean-Richard et al., 2014). Additionally, other factors such as age, 

breed, and sex of the animals were not considered in determining risk for fascioliasis 

infections in this study.  

 A study was undertaken in Niger republic (that neighbours Nigeria in the north) by Ali 

et al. (2008) which investigated the presence of fascioliasis in the country. The method 

applied by this research was the detection of genotype characteristics of the two species 

of fascioliasis from cattle, sheep, and goats. The result of this study indicated the presence 

of F. gigantica and F. hepatica through comparison of internal transcribed spacers (ITS) 

sequences obtained from samples in the country with gene type of the two species in 

different endemic localities. This study served as a means of confirming the prevalence 

of fascioliasis infections and hence more studies are needed for the control of infections 

in the Niger Republic. 

In Nigeria, only a few studies reported the prevalence of fascioliasis based on the 

influence of biological features or characteristics of slaughtered animals but only one 

known study by Yaro et al. (2018) incorporated climate variables. A study by Yatswako 
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and Alhaji (2017) investigated the burdens of F.gigantica in cattle slaughtered at various 

abattoirs in North-Central Nigeria. Meat was inspected to identify fascioliasis infection 

in livers of the slaughtered cattle which is commonly applied in Africa due to its 

advantage of convenience and affordability over laboratory diagnosis (Phiri, 2006, 

Yatswako and Alhaji, 2017). The result of the study indicated that breed, age and sex 

were significant determinants of fascioliasis infections in slaughtered cattle. Studies with 

similar findings in Nigeria were: in Adamawa (Ardo et al., 2014), in Kano (Danbirni et 

al., 2015), Imo state (Njoku-Tony and Okoli, 2011) and Ondo state (Afolabi and Olususi, 

2016) 

Other studies in Nigeria were predominantly the investigation of F. gigantica infections 

among slaughtered animals at abattoirs by veterinary scientists and parasitologist across 

the various ecological zones of the country. In Western Nigeria, fascioliasis was 

identified as one of the most harmful diseases in causing damage and condemnations of 

organs that constitute 20.28% of 641,224 cattle slaughtered at 12 abattoirs in Lagos and 

Ogun states within 2005-2007(Cadmus and Adesokan, 2009). In Anambra state, 

investigation of the presence and intensity of F. gigantica infections in cattle slaughtered 

at Onitsha abattoir was carried out by Ekwunife and Eneanya (2006). The method used 

post-mortem inspection on the slaughtered cattle and discovered levels of F. gigantica 

infection at various abattoirs in the state. In Imo state Njoku-Tony and Okoli (2011) 

identified the prevalence rate of F. gigantica through laboratory analysis of adult fluke 

eggs of the slaughtered sheep in the major abattoirs of the state. The result showed that 

17% of the 367 sheep examined were infected.  

 In Adamawa state, Nigeria, Ardo et al. (2014) applied a post-mortem examination on the 

liver of the slaughtered animals and revealed different prevalence rates in the provinces 

of Yola, Mubi, and Numan. In Kano state, the prevalence of F. gigantica on the effect on 

liver condemnation among the slaughtered cattle was studied by Dan birni et al.,(2015). 

The result indicated the high cost of the condemned liver due to F. gigantica which ran 

into millions of naira. In Kaduna state, Aliyu et al. (2014) made use of coprology and 

serology in Zaria to determine the seroprevalence of F. gigantica at slaughter slabs and 

on farms.   

In Nigeria, herd-level risk factors and incidence of F.gigantica in cattle in Edu, a local 

government area of Kwara state were investigated by Elelu et al. (2016a). The use of 
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binary logistic regression in the study revealed the influence of age in determining the 

risk of fascioliasis infections in live cattle. This research was the first attempt at focusing 

on the risk determinants of live cattle using biological characteristics.  

Conclusively, only a few studies on fascioliasis (Elelu et al., 2016a, Yatswako and Alhaji, 

2017) in Nigeria, and West Africa applied regression techniques as part of species 

distribution model methods while the rest was the only description of fascioliasis 

prevalence from abattoirs. Moreover, none of the studies applies both intrinsic and 

extrinsic factors in the study of fascioliasis among slaughtered cattle in any part of West 

Africa. 

2.9 Gaps in the literature 

In the review of the literature in the preceding sections, the gaps in knowledge that need 

more focus are: 

 To date, the majority of studies on fascioliasis have focused on F. hepatica that 

thrives in data-rich developed countries of the world. 

 Even though only a few studies have used species distribution models to 

investigate the geographic ranges of fascioliasis, to my knowledge, none has 

applied MaxEnt using IPCC future projections of climate data. 

 The use of field survey data in the validation of species distribution models using 

current climatic variables. 

 The necessity to use an approach that compares two or more species distribution 

models in the study of fascioliasis. 

 The studies that focus on the effects of climate and its changes on the spatial 

species distribution of fascioliasis in the long term or short term are not many, 

and to date none were applied in any part of West Africa. 

 In modelling the distribution of fascioliasis most of the studies used WorldClim 

data on temperature and precipitation without the use of soil moisture variable 

from CLIMOND database ((BIO27-35). 

 Not known study has investigated both intrinsic and extrinsic risk determinants 

of F.gigantica infections in trade cattle slaughtered at abattoirs.  

3.0 Aim, Research Questions, and Objectives 

Following the above gaps in the literature, the aim, research questions, and objectives 

were developed. 
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3.0.1 Aim 

The main aim of the research is to explain and understand species spatial distribution 

modelling to predict F.gigantica in cattle with a focus on Sokoto State, Nigeria. 

3.0.2 Research questions 

In line with the above aim, the following research questions were formulated 

1. How reliably can presence-only species distribution models predict the 

geographic ranges of F.gigantica in Sokoto State? 

2.  How relevant is a species-specific model in the prediction of spatiotemporal 

changes in fascioliasis risk in the study area? 

3. Are there significant relationships between biological characteristics of animals 

and climatic/environmental factors with recent fascioliasis infections data among 

slaughtered cattle? 

3.0.3 Objectives of the research 

1. To compare the performance of MaxEnt, Domain, and BioClim in modelling the 

geographic range of fascioliasis. 

2. To evaluate MaxEnt in modelling the spatial distribution of fascioliasis based on 

WorldClim derived climate data (BioClim) and satellite data using independent 

validation data. 

3. To predict the spatial distribution of fascioliasis in the future under scenarios of 

climate change based on two Representative Concentration Pathways (RCP2.6 

and 8.5) for two time periods of 2050 and 2070. 

4. To predict spatiotemporal changes in fascioliasis transmission risk through the 

use of the species-specific model in the study area. 

5. To find out the associations between extrinsic and intrinsic factors on recent 

fascioliasis infections data among slaughtered animals. 
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Chapter 3 

 

Study Area 

3.1Introduction 

Sokoto State is one of the northwestern states of Nigeria situated between longitudes 4o 

8′ E and 6o 54′ E of Greenwich meridian and latitudes 12o N and 13o 58′ N of the equator. 

The state shares boundaries with Kebbi state (southwestern side) and Zamfara state 

(eastern side) which were carved out from the state in 1991 and 1992 respectively. At the 

extreme north, Sokoto is the immediate neighbour to Niger republic and occupies 32,000 

square kilometres of land area. The state consists of 23 provinces, which include: 

Tangaza, Binji, Silame, Gudu, Kware, Wamakko, and Sokoto north, Sokoto south, Dange 

shuni, Tureta, Bodinga, Shagari, Yabo, Tambuwal and Kebbe local governments. The 

state has a total human population of 3,696,999 million based on a 2006 census (Magaji 

et al. 2014). 

3.2 Climate 

The interplay of two opposing air masses is responsible for different climatic conditions 

in the area. These air masses are tropical maritime air mass and continental air mass that 

originates from the Atlantic Ocean and Sahara desert respectively. The area or zone where 

the air masses meet referred to as Intertropical convergence zone (ITCZ) which shifts and 

fluctuates across the year and as such determines different seasons (Barry & Chorley, 

2010). The condition of temperature varies over the year with extreme levels occurring 

around March to May and the peak in April when it will reach 40oC. Moreover, during 

November up to February the temperature drops owing to the dry cold wind coming from 

the Sahara (Abdulrahim et al., 2013). Rainfall begins in April and ceases in the middle or 

end of September with average values between 500mm and 1,300mm. The state enjoys 

distinct dry and wet seasons over the year and the main characteristics of the dry season 

are the hamattan winds blowing from the Sahara desert. The length of the dry season is 

early October to April and sometimes beyond that and then the wet season commences 

around May up to September (Magaji et al., 2014).  
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Figure 3-5: The map of the study area. 

3.3 Drainage 

 The presence of a river in a settlement is precious in the provision of drinking water, 

fishing and irrigation activities. The major river in Sokoto State is called river Rima River 
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that originated from the southeastern parts of Nigeria where it passes through  Kano, 

Katsina and Niger republic. Rima River also cut across the entire Sokoto State and 

extends to Kebbi and some parts of Zamfara state. Another river of significance is river 

Sokoto that drains water from Funtua and Dandume in Kastina state. Other notable rivers 

are river Bunsuru and Gagare which are the two main tributaries that move northwardly 

and join the main river Rima that invariably provides suitable sites for the survival of 

different parasitic diseases and their hosts. All the tributaries drain over basement 

complex rocks characterised by narrow valleys (Abdulrahim et al., 2013).                                                                                                                                                      

3.4 Relief 

The study area occupies an extensive area in the Illumedan basin which is surrounded by 

the Precambrian basement complex (Abdulrahim et al., 2013). Regarding geology, the 

state is underlain by sedimentary rocks, which are supported by basement complex from 

beneath. Some geological periods such as cretaceous and tertiary era marked the 

accumulation of sediments in a syncline which became hardened into a rock (Davis, 

1982). The different sub groups of sedimentary rocks in Sokoto State are Gundumi 

formation which constitutes sandstones and clay, associated with water. The second sub 

group referred to as Rima which constitutes sediments from the sea and divided into 

Taloka, Dukamaje and Wurno formation. The third group is called Sokoto group 

originating from the sea and includes Dange (contains clays and shales) and Kalambaina 

(contains limestone) formations. Sokoto is homogeneously plain with some patches of 

plateau and sandstone that reached an average height of 300mm (Davis, 1982) 

3.5 Vegetation 

The vegetation of Sokoto State is described as short grass Sudan savannah and 

characterised by small grasses and shrubs that do not attain height greater than one 

meter(Babatunde et al., 2011). Neem trees (Dogon yaro) and Baobao trees constitute 

forest vegetation in the state. The existence of trees and short grasses of less than one 

meter covered the entire area of the state.  Also, the vegetation consists of not only thorny 

species with acacia trees but also dump lam around water courses with some patches of 

seasonal grasses (Abdulrahim et al., 2013). 

3.6 Agriculture 

Sokoto is predominantly an agrarian state with more than 85% of the population engaged 

in agricultural practices. Farming practices in the state include crop farming and livestock 

rearing where the former involves cultivation of crops such as millet, guinea corn, sugar 

cane, beans and cereals. On the other hand, the state is ranked as the second leading 
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producer of livestock in Nigeriathe where a large proportion of the indigenes are 

practicing animal husbandry. The yearly average of livestock numbers of the erstwhile 

Sokoto State (as it was bifurcated into Kebbi state and Zamfara state in 1991 and 1996 

respectively) livestock numbers was estimated at 1,772,830 cattle (17,290 density/km2), 

2,466,484 goats (24,055 density/km2) 2,566,246 sheep (25,028 density/km2), 43,960  

camels  (0.429 density/km2) and 109,484 dogs (1.068 density/km2)” (Magaji et al., 2014).  
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Chapter 4 

Modelling the geographic range of  Fasciola gigantica in Sokoto State, Nigeria 

4.0 Preface 

 This chapter explored the first modelling of the geographic range of F.gigantica in 

Sokoto State using presence-only species distribution models.  

In this chapter, a paper titled ‘Modelling the geographic range of Fasciola gigantica in 

semi-arid West Africa: a case study of Sokoto State, Nigeria’, was formed and is under 

the second stage of review with the International Journal of Geo-Information (ijgi-

401307). 

4.1Introduction 

The ability of a model to predict the geographical distribution of species relies on its 

‘accuracy’ (Liu et al., 2009) which reflects most importantly the model's ability to 

differentiate between species occurrence locations and non-occurrence locations (Ash & 

Shwartz, 1999). In the evaluation of the accurate performance of MaxEnt, this study 

compared it with two other presence-only methods, BioClim (Busby, 1986, Busby, 1991) 

and Domain (Carpenter et al., 1993), using data on the distribution of F. gigantica in 

Sokoto State, Nigeria. The former technique models the suitability of an area through 

creating ‘bioclimatic envelope’ that encloses the extremes of the environmental range of 

the known occurrence sites of a species (Busby, 1986). The latter model uses a measure 

of agreement as a metric from a point-to-point based on ‘Gower distance’ in 

environmental space to predict any potential site as suitable owing to its closeness to the 

known occurrence locations(Carpenter et al., 1993). According to Meynecke (2004) and 

Walther et al. (2004), many studies applied BIOCLIM and Domain models in the 

predictions of the geographical distribution of taxa in different parts of the continents of 

Africa, South America and Australia.  Phillips et al. (2006) described this approach of 

comparing performance between different modelling techniques as a research need in 

species distribution modelling. As noted by Segurado and Araujo (2004) and Elith et al. 

(2006) a few studies have compared the accuracy of presence-only models. Some of these 

have compared MaxEnt with GARP (Phillips et al., 2006), MaxEnt with BioClim 

(Hijmans, 2012), and between BioClim, Domain and other presence-absence methods 

using only five accuracy measures (Tognelli et al., 2009).  

In the study of fascioliasis using eight accuracy measures, this approach is the first 

attempt to compare MaxEnt with the BioClim and Domain models. In addition, no known 
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study has applied these methods in comparison with MaxEnt in modelling a spatial range 

of fascioliasis across any part of the globe. Furthermore, this study created six scenarios 

based on different combinations of Bioclim variables and non-Bioclim or satellite-based 

variables. The MaxEnt model used the variables in each scenario in determining the 

spatial distribution of F. gigantica in Sokoto State. Also, this study made a comparison 

between the current and future predictions of suitable areas for F. gigantica prevalence 

using maxEnt model. The essence was to evaluate the dynamics of F.gigantica disease 

transmission in the study area due to future changes in climate. 

The Centers for Disease Control and Prevention (CDC, 2010) and the World Health 

Organisation (WHO, 2006) referred F. gigantica as a neglected tropical animal disease 

and zoonotic respectively. That, therefore, makes the disease pose severe threats to 

developing countries like Nigeria where funding on public and veterinary services are 

grossly inadequate (Blackburn et al., 2015). The disease is known to impair the 

productivity of the infected animals that leads to the loss of millions of dollars worldwide 

thereby becoming inimical to trade and human wellbeing indirectly (Mas-Coma et al., 

2005, Fürst et al., 2012). The effects of the disease on humans even though not yet 

reported in the study area has been captured in various parts of the world and is regarded 

as important (Tolan, 2011, Esteban et al., 2003, Mas-Coma & Bargues, 1997). It is 

essential to model the likelihood of spread of F.gigantica using species distribution 

modelling techniques in order to achieve public health objectives and to contribute to the 

knowledge of its spatial epidemiology(Levine et al., 2004, Zeilhofer et al., 2007). This 

study aims to provide novel methods using GIS analysis for the design of appropriate 

monitoring to control F. gigantica infections of domestic animals in Sokoto State, 

Nigeria. 

4.2Materials and Methods 

4.2.1Fasciola gigantica occurrence data 

 Data on 210 reported presence locations of F. gigantica were obtained from the Ministry 

of Animal Health in Sokoto State, established in 1965. The second source of the data was 

from Sokoto State Ministry of Animal and Fisheries development that contained 

fascioliasis prevalence record for ten years (2005-2014). The data was mainly paper 

records of the various localities with documented incidences of liver fluke. One major 

shortcoming of the data from these two sources was that the occurrence localities lacked 

spatial coordinates. Given that, the coordinates of the locations were collected from the 
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National Population Commission (NPC), Sokoto State, branch where a gazette of all the 

localities in the state with their spatial coordinates exists. The use of fascioliasis 

occurrence data from the mentioned ministries in Sokoto State was due to the availability 

of only a few (3) records from the Global Biodiversity Information Facility (GBIF) in 

Nigeria. 

The low number of <300 presence records in this study proved to be adequate. Because 

it was discovered in other studies using GARP alone, and in its comparison with MaxEnt 

that 50 and 15 records respectively produced acceptable results that were statistically 

significant (Stockwell & Peterson, 2002, Papes & Baubert, 2007). Also, according to 

Pearson et al. (2007) as few as five records using MaxEnt alone produced accurate 

modelling results. That, therefore, adds confidence in the reliability of the results obtained 

in the present study. However, the use of appropriate scale regarding the spatial extents 

of the study area and grain of  environmental variables can determine ‘the performance 

of species distribution model’(Khosravi et al., 2015). In addition, some other studies by 

Seo et al. (2009) and Guisan et al. (2007) confirmed that increasing the size of the study 

area enhanced the model performance while the reverse was the case when the grain size 

of climatic variables was increased. That is because AUC being one of the most effective 

measures of accuracy is determined greatly by the scale of the study domain.  

4.2.2Data preparation 

 The most notable sources of occurrence data for species in species distribution modelling 

are through field survey, gathering from existing records otherwise known as 

‘opportunistic samples’ and thirdly from atlas data which consist of grids(Franklin, 

2009a). The data for this study falls into the second category and hence may exhibit 

clustering and duplication of sample points of Fasciola gigantica occurrence. That, 

therefore, demands ‘cleaning’  of the sample points (Newbold, 2010, Hijmans, 2011) in 

order to obtain a complete collection of unduplicated presence records that determine the 

efficient performance of species distribution models (Elith et al., 2011). Based on this 

motive, this study applied the use of Nearest Neighbour Index (Clark and Evans 1954) 

employed in R in ECOSPAT package (Di Cola et al., 2017) in the reduction of clustering 

and increasing the minimum distance between any two sample points to 1km. That was 

to conform to the spatial resolution of the environmental variables used in this study.  

Barbosa et al. (2009)  asserted that both the variables and the species’ records  ‘must’ 



 

37 
 

have the same spatial resolution in order to obtain accuracy in species distribution 

modelling.  Consequently, that will also promote proper understanding of environmental 

conditions occupied by the species and the effectiveness of predicting the geographic 

range of the species across the area of study (Philips et al. 2017). The formula for the 

calculation of the Nearest Neighbour Index (Evans and Clark, 1954) is as follows: 

 𝐸(𝑑𝑖) = [(0.5 ∗ √
𝐴

𝑁
) + (0.0514 +

0.041

√𝑁
) ∗

𝐵

𝑁
] … … … … … … … … … … … … … … 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

Where A and B are a record of species and N is the sum of all the species records in the 

study area. 
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Figure 4-6: Map of Sokoto State showing the occurrence sites for F. gigantica used in species 

distribution modelling. 

  

4.2.3 Source of climatic and environmental data for species distribution modelling 

 This research utilised climatic and environmental variables in species distribution 

modelling of fascioliasis due to their influence in every stage of the parasite's lifecycle 

(Yilma & Malone, 1998, Spithill et al., 1999a, McCann et al., 2010a, Fox et al., 2011).  

These variables include temperature, rainfall, elevation and vegetation index (NDVI) 

obtained from remotely sensed data and ground based stations. This subsection described   

each variable used in this research as follows:  

4.2.3.1BioClim 

 World climate (WorldClim) data base  version 1.4 available at 

(http://www.worldclim.org) was used in generating Bioclim variables that have been 
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applied extensively in many species distribution modelling of plants and animals (Busby, 

1991, Masuoka et al., 2009, Joyner, 2010, Kouam et al., 2010, Kantzoura et al., 2011b). 

This data base gathered monthly climate data across weather stations from all parts of the 

world between the period of 1950-2000 (Hijmans et al., 2005). Consequently, the 

database produced climate surfaces for the entire land surfaces of the World except for 

Antarctica that includes monthly averages of temperature (maximum, minimum and 

mean) and precipitation after being subjected to thin-plate smoothing spline interpolation 

using ANUSPLIN software package (Hutchinson, 2004).  

      According to Hijmans et al. (2005), the interpolation was used to reduce the original 

coarse resolution of approximately 111 km to a finer resolution of 1 km. The WorldClim 

data were later validated using the records of the global weather stations targeted at 

minimising the uncertainty and errors related to interpolation. For species distribution 

modelling, the WorldClim developed BioClim variables from the derived averages of 

precipitation, mean, minimum and maximum temperature with the same resolution and 

the same temporal range as other climate variables (Hijmans & Elith, 2016). These 

variables apply to many species distribution models because they exhibit suitability in 

capturing the long term effects of climatic variables that are more biologically relevant 

to species of plants and animals worldwide  (Nix, 1986, Kumar et al., 2009., Reddy et al., 

2015, Kantzoura et al., 2011b).  Table 4:3 contained the nineteen Bioclim variables (Bo1-

19) and their interpretations. 

4.2.3.2 CliMond Bioclim (Soil moisture) 

CliMond is a French word Climatic ‘mondid’ meaning World climate that provides a 

collection of climate data, techniques of modelling and Bioclim variables available at 

(http://www.climond.org/). This database is accessible for free public use in species 

distribution modelling, climate studies and niche modelling among others (Hutchinson et 

al., 2009, Kriticos et al., 2012, Kriticos et al., 2014).  Also, this CliMond data set used 

interpolation in the derivations of climate surfaces at 10’ and 30’ for the entire land 

surfaces of the World. It was further highlighted by Kriticos et al. (2012) that this data 

base applied WorldClim and Climate Research Unit (CRU) data sets as a ‘baseline 

climatology’ due to their accuracy and broad applications in research. 

 According to Kriticos et al. (2014), the inadequacy of the core suite of Bioclim variables 

(BIO1-19) in species distribution modelling of some organisms has led to the 

development of the soil moisture Bioclim variables (BIO28-35) that are at present only 

http://www.climond.org/
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available at CliMond Archive (Hutchinson et al., 2009).  That was due to the complexity 

of creating soil moisture-based variables that require the use of water-balance soil 

moisture index unlike the core variables developed from temperature and rainfall only 

through more expedient and straight forward processes (Hijmans et al., 2005, Hutchinson 

et al., 2009). The processes of creating soil moisture index BioClim variables as described 

by Kriticos et al. (2012) involved the use of two software programs viz: DYMEX 

(thoroughly explained by Maywald et al. (2007)) and CLIMEX software that was useful 

in  determining the approximate climatic influence in the distribution of species across 

different years (Sutherst et al., 2007). These two software packages assisted in the 

creation of a ‘single-bucket’ soil moisture model through interpolation of monthly 

climatic parameters. These climate values were useful in the estimation of weekly dryness 

and saturation of moisture by using a scale of zero to one respectively. Consequently, 

CliMond database used the aggregated weekly values into soil moisture index that ranges 

from BIO28 to BIO35(see table 4:3)  available in ASCII grid and ESRI grid format 

(Kriticos et al., 2012).   The CliMond data sets have the advantage over WorldClim and 

CRU data set of including more variables that are relevant for species distribution 

modelling (Kriticos et al., 2012). 

4.2.3.3  Elevation 

The Digital elevation model (DEM)  was used in this study and is described as the general 

characteristics of a landscape quantitatively expressed regarding ‘grids, contours or 

irregular network’(Florinsky, 1998). DEM is a product of the global 1-arc second  Shuttle 

Radar Topographic Mission (SRTM) via the United States Geological Survey’s 

EarthExplorer website (http://earthexplorer.usgs.gov).  This elevation data developed 

from the joint project by NASA, the National Geospatial-Intelligence Agency as well as 

the German and Italian Space Agencies and hence refered to as most comprehensive (Farr 

et al., 2007). Acccording to Rodriguez et al. (2006), the Jet Propulsion Laboratory data 

gathered interferometric radar data for the creation of the elevation data within less than 

600 latitudes of the World. 

         The SRTM elevation data has broad applications primarily in the study of 

geomorphological and hydrological processes in different parts of the World (Blumberg, 

2006, Grohman et al., 2007, Ludwig & Schneider, 2006, Zandbergen, 2008). From these 

processes, several terrain variables emerged that affect movement and availability of 

rainfall water on the earth surface for applications in species distribution models 
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(Franklin, 2009b). This study used slope and topographic index as extracts from the DEM 

using ArcGIS 10.3 spatial analyst due to their relevance in species distribution models 

(Franklin, 2009b). The topographic index explains the role of  slope gradient and 

topography in the dispersion and generation of surface runoff  calculated  as follows; 

𝑊𝑇 = 𝐼𝑛 (
𝐴𝑇

𝑇 𝑡𝑎𝑛 𝛽
) … … … … … … … … . 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2  

where T represents soil transmissivity, A is upslope contributing area, and 𝛽 is slope 

angle. T is constant with a value of 1 implying homogeneity in soil properties and stable 

hyrological state (Franklin, 2009b). 

            In this study, maximum entropy predicted that soil moisture variable had the 

highest contribution in the geographic distribution of F. gigantica in the study area. Given 

that, the topographic index was incorporated into one of the modelling scenarios as a 

surrogate to SRTM elevation in order to examine its contribution to the prediction of F. 

gigantica geographic distribution in the study area.  

4.2.3.4 Land SurfaceTemperature 

 Land surface temperature MODIS LST (MOD11C1) for the period of 2005-2014 was 

available from the National  Aeronautic and Space Administration (NASA) Earth 

Observations website (http://neo.sci.gsfc.nasa.gov/ ).  Many types of research applied this 

remotely sensed data on LST due to its accuracy across different parts of the world 

(Mildrexler et al., 2011, Hengl et al., 2012, Guangmeng & Mei, 2004, Julien & Sobrino, 

2009, Langer et al., 2010, Hulley & Hook, 2009).  The day and night algorithm was used 

in the creation of a primary source of the data set and its emissivities through the 

recording of mean temperatures for both day and night in kelvin (Kantzoura et al., 2011a). 

Wan and Dozier (1996), explained that the split-window algorithm and approximated 

emissivities from different land cover provided the secondary source of the data set. This 

latter algorithm has the advantage of correcting for the atmospheric and emissivity effects 

(Wan, 1999). In order to add quality to the data set all the unusable records of LSTs due 

to the effect of clouds were rejected through the double-screening method before 

reprojecting the MOD11C1 (Wan et al., 2002). The database determined the accuracy of 

the data through the validation to a more advanced stage 1, and the errors were less than 

1O across uniform surfaces of grassland vegetation, crops and water (Wan, 2013). The 

original resolution of the data is 0.05 degrees (approximately 5km), and the temporal 

resolutions are monthly, eight days and daily.  The data set has temporal coverage of 

March 2000 to January-2007 based on version 004 while version 0041 continued from 

http://neo.sci.gsfc.nasa.gov/
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January 1, 2007, to present. Wan (1999) described these two versions referred to as C4.1 

and C4 as very accurate especially over deserts and semi-arid areas and also consistent. 

He further stated that the main weaknesses of these two versions were in the inflation of 

data values in lakes and vegetated areas and also lacked stability regarding emissivity 

values especially in the atmospheric window channels in bands 31 and 32. The area 

coverage of the data is global using latitude and longitude grid.  

4.2.3.5 Vegetation 

The vegetation provides shelter for many pathogen parasites including fascioliasis and 

hence regarded as an essential determinant of F.gigantica risk (Kantzoura et al., 2011b). 

It is determined by an index referred to as Normalised Difference Vegetation Index 

(NDVI).  This research used this NDVI data set from 2005 to 2014 and is available on 

the National Aeronautic and Space Administration (NASA) website  

(http://neo.sci.gsfc.nasa.gov/). Also, the index was the product of Moderate Resolution 

Imaging Spectroradiometer (MODIS)  described by Wiegand et al. (1991)  as capable of 

capturing the variability in vegetation conditions and the calculation of biophysical 

parameters from arid areas to dense vegetation of rain forest regions. The NDVI index 

uses an equation that consists of red and near infra-red NIR signals that Huete et al. (1999) 

described as having responses that ‘are radiometrically calibrated, cloud-filtered, 

atmospherically corrected, spatially and temporally gridded and adjusted for view angle 

influences to produce the level 3 vegetation index maps. The level 3 products are 16- and 

30-day, cloud-free vegetation maps at 250m, 1km and 0.250 spatial resolution.’ The 

NDVI has positive values that show bare soil if it is zero or 0.1 and 0.5 values imply 

sparse vegetation while greater than 0.6 to 1 show dense vegetation. The negative values 

always show clouds and water surfaces. (Leta  et al., 2015)  

       This MODIS NDVI was a ‘continuity index’ and more up to date then the existing 

NOAA-AVHRR NDVI (Prince et al., 1994). Also, the product has been validated and 

compared with other products such as GIMMS NDVI by Schucknecht et al. (2017) and 

Fensholt et al. (2012) and was found to be very much related as well as consistent with 

this product especially in the semi-arid West Africa. MODIS has been recommended for 

studies on the epidemiology of pathogens especially fascioliasis due to mainly their 

spatial resolution (Kantzoura et al., 2011a). 

4.2.3.6  Rainfall data 

 This research utilised RFE 2.0 data (http://earlywarning.usgs.gov/fews.), developed to 

minimise random errors and bias commonly associated with the existing rainfall products 

http://neo.sci.gsfc.nasa.gov/
http://earlywarning.usgs.gov/fews
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in order to enhance the validity of precipitation approximations (Xie & Arkin, 1996). The 

earlier version RFE1.0 was phased out in 2001 and replaced with current version RFE2.0 

(Herman et al., 1997) due to the applications of more recent data sources and methods  

(NOAACPC, 2001).  The earlier version used a satellite based product of Meteosat five 

integrated with daily rain gauge data obtained from the World Meteorological 

Organisation’s (WMO) Global Telecommunication System data. The latest version 

RFE2.0 was improved with the utilisation of two most recent instruments that are called 

Special Sensor Microwave/ Imager (SSM/I) on board the Defence Meteorological 

Satellite Programme (DMSP) and Advanced Microwave Sounding Unit (AMSU) 

(Hoscilo et al., 2015).  

     The necessity for the utility of satellite-based approximations of precipitation in Africa 

‘arises’ due to the presence of very few and unevenly distributed weather stations across 

the continent (NOAACPC, 2001).  Various studies in Africa used RFE v2.0 in 

comparison with other satellite-based products and or weather stations-based rainfall 

estimates in order to test the accuracy of the product. Toté et al. (2015) compared two 

satellite-based rainfall estimates that is Climate Hazards Group InfraRed Precipitation 

with Stations (CHIRPS) and TAMSAT African Rainfall Climatology And Time-series 

(TARCAT) with RFE v2.0 and concluded that the estimates of RFE v2.0 and CHIRPS 

performed well in their estimation of rainfall for drought and flood monitoring in 

Mozambique. The performance of FEWSNET rainfall estimates was equated with that of 

the weather stations mainly in the Sahelian parts of Africa with insufficient gauged data 

(Symeonakis et al., 2009, Maidment et al., 2013). The study by Symeonakis et al. (2009) 

also compared two rainfall approximation methods using RFE 1.0  as baseline data with 

some weather stations-based methods. In the end, they concluded that there were 

agreements between precipitation approximations by satellite-based FEWSNET and 

weather-station-based approximations. 

Moreover, this manifected itself across areas with rainfall record of 14mm per thirty years 

as of March 1996 with the low bias of 0.03 and r2 of 0.6 in South Africa. A perfect 

relationship with RFE 1.0 product also observed in West Africa and Madagascar. 

Regarding the comparison of accuracy between the older version RFE1.0 and the new 

version RFE2.0, there was a disparity between one country and another in Africa. For 

example, according to Dinku et al. (2008), RFE1.0 gave the best result in Ethiopia than 

RFE2.0 while in Zimbabwe RFE2.0 was slightly better than RFE1.0. 
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 RFE2.0 is available for the whole of Africa from 2000 to date with a spatial resolution 

of 8 kilometres at 10-day composites, and this study used the data from 2005-2014.  

Furthermore, there was resampling of the data to 1km in order to align with the other data 

sets as an essential requirement for maximum entropy modelling.  Although the data was 

accurate across various locations in Africa, at the original resolution, the database 

estimated rainfall without incorporating orographic rainfall effects (NOAACPC, 2001) 

which may cause uncertainty. 

4.2.3.7 Soil moisture 

In order to obtain a scientifically rigorous soil moisture datasets, this research utilised the 

Global Land Data Assimilation System (GLDAS-2) produced through the combined 

efforts of the National Aeronautics and Space Administration (NASA), the National 

Oceanic and Atmospheric Administration (NOAA), the Goddard Space Flight Centre 

(GSFC) and the National Centre for Environmental Prediction [NCEP] (Cai et al., 2017). 

This data set integrated both field data from ground land-surface-based station data as 

well as satellite measurements.  That is to satisfy the objective of obtaining the real 

condition of landscape and ‘fluxes’ through the application of sophisticated land surface 

modelling and assimilation methods (Rodell et al., 2004). It also made use of four land-

based models, which includes Catchment, Noah, the Community Land model (CLM) and 

Variable Infiltration Capacity (VIC). Kumar et al., 2006, explained that GLDAS has a 

unique quality of being driven by many offline models related to the landscape that 

combined a large number of station data processed at a resolution of 2.50 to 1km by Land 

Information System (LIS). 

  This version of GLDAS-2 is more ‘climatologically consistent’ than the earlier version 

GLDAS-1 as the latter caused some artefacts in the trend from 1979 to present due to 

many ‘switching’ of data sources (Rui & Beaudoing, 2014). The GLDAS-2 consists of 

28 parameters of precipitation, temperature and soil moisture which consist of four strata- 

0-10cm, 10-40cm, 40-100cm and 100-200 cm depths using kg/m2 as a unit area of soil 

water content(Cai et al., 2017). The data set’s accuracy and validity have been tested 

against existing data from various origins (Zhang et al., 2008, Chen et al., 2013, Cheng 

et al., 2015). Syed et al. (2008) and Reichle et al. (2007) explained that GLDAS-2 

products applied extensively in hydrology and as an input into weather and climate-based 

models. 
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  The GLDAS-2 version is available at 0.25 spatial resolution in NetCDF format. This 

study made use of monthly moisture values obtained through the mean of 3-hourly 

products based on soil depth of between 0-200cm.   

4.2.3.8 Future BioClim  

This future climate dataset was a product of the International Centre for Tropical 

Agriculture and available online at http://gisweb.ciat.cgiar.org/GCMPage. The database 

used WorldClim (Hijmans et al., 2005) as its baseline climate. That was due to 

considering the high resolution and broad applications of WorldClim data by researchers 

in different fields as well as having more than half a thousand times citations in high 

quality journals (Ramirez & Jarvis, 2010). The dataset employed a method that involved 

introducing coarse GCM cells into the computation of climate data from either ground-

based stations or interpolated climate surfaces with high resolution referred to as spatial 

disaggregation (Buytaert et al., 2009). That was meant to maintain standard and 

consistency in the spatial pattern of the general circulation model (GCM) outputs in the 

dataset. They added that this method has advantages in reducing uncertainties as well as 

in retaining the original GCM patterns over time periods than the conventional method 

of downscaling GCM outputs through interpolation. Given the advantages of spatial 

disaggregation, according to (Ramirez & Jarvis, 2010), this database applied it on 24 

General Circulation Models from the IPCC Fourth Assessment Report (2007) while using 

climatologies of the WorldClim (Hijmans et al., 2005)  as a base. These GCMs were 

available from the Earth System Grid (ESG) database for three different scenarios of 

emission of A1B, A2 and B1 and the temporal scale of 30 year average divided into seven 

slices (Buytaert et al., 2009) 

    In line with the IPCC Fourth Assessment Report (2007), there was the development of 

various Coupled Model Intercomparison projects (CMIP) aimed at disseminating and 

encouraging GCM science associated knowledge. The latest project being CMIP.3 

provided GCM outputs for free public use through the online network of the Earth System 

Grid (ESG). CIAT subsequently downloaded the dataset as reported by Buytaert et al. 

(2009) for the emission scenarios SRES-A1B, A2 and B1 as well as for seven thirty year 

averages that covered 2010-2039 and ended 2070-2099. Moreover,  the GCM used time 

series generated by the database for the computation of the 30 year running means for the 

present day projections as well as seven projections for the future beginning from 2010-

2039 up to 2050-2099.  Finally, there was a disaggregation of the anomalies which imply 

the variation between the means of the GCMs products of 1960-1990 and the future 

http://gisweb.ciat.cgiar.org/GCMPage
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projections of specifically precipitation, maximum and minimum temperature  (Ramirez 

& Jarvis, 2010). Consequently, these were added to the baseline climate obtained from 

WorldClim (Hijmans et al., 2005) by utilising complete ‘sum’ for temperature and 

‘relative changes’ for precipitation (Ramirez & Jarvis, 2010). In the end, the database 

computed and obtained a mean temperature from both the maximum and minimum 

temperatures. From these variables, the database created 19 bioclimatic variables for 

applications into species distribution modelling due to their association with the species 

biological mechanisms and their distributions (Busby, 1991). 

4.2.4 Multi-collinearity 

 Multicollinearity implies a correlation between environmental and climatic variables 

(Kovacs et al., 2005, franklin, 2009). However, due to the sensitivity of most of the 

modelling techniques to very high levels of correlation among variables, it appears 

necessary to subject them (variables) to test for multicollinearity (Merow et al., 2013). 

Aguilera et al., (2006) highlighted that it is impossible to have uncorrelated variables, but 

it is necessary to keep the level of correlation at certain limits for easy identification of 

relationships among variables. In this regard, this study utilised the Pearson correlation 

coefficient, and the maximum degree of correlation (positive and negative) among 

variables maintained at 0.75.  
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Figure 4-7: Cluster dendrogram showing correlations of Bioclim variables. The dotted line marked 

the limit of correlation to 0.75. All the branches indicate variables that were highly correlated and 

hence only one variable was chosen on each branch. 

 

 

Figure 4-8: Cluster dendrogram showing correlations of non-Bioclim variables. Similar to Figure 

4-2, the level of correlation was kept at 0.75 and the dotted line marked the limit of the relationship. 
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Table 4 -2: Interpretation of the acronym of the remotely sensed dataset based on climate and 

environment used in the MaxEnt model 

Variable Description 

tmp101_ann Mean annual temperature 

tmp102_ann Minimum  annual temperature 

tmp103_ann Maximum annual  temperature 

rain_104_ann Maximum annual rainfall 

rain_105_ann Mean annual rainfall 

rain_106_ann Minimum annual rainfall 

ndvi_107_ann (NDVI_36)* Maximum annual NDVI 

ndvi_108_ann (NDVI_37)* Minimum annual NDVI 

ndvi_109_ann (NDVI_38)* Mean annual NDVI 

sm_110_ann Mean annual soil moisture 

sm_111_ann Maximum annual soil moisture 

sm_112_ann Minimum annual soil moisture 

srtm_113_ann (SRTM_39)* Mean elevation 

NB: All the metric marked * was the code used when the variable combined with Bioclim variables 

Table 4-3:  Climatic and environmental dataset used in the research 

Data source Tempora

l 

coverage 

Spatial 

resolutio

n 

ID 

Number 

Tempora

l scale 

BIOCLIM (http://www.worldclim.org). 1950-

2000 

1km BIO1-

BIO35 

 

Temperatur

e 

http://neo.sci.gsfc.nasa.gov/ 

 

2005-

2014 

0.05º 

(6km) 

MOD11C

1 

Monthly 

Soil 

moisture 

https://giovanni.gsfc.nasa.gov/giovan

ni/ 

 

2005-

2014 

0.25 

Degrees 

(28km) 

GLDAS-2 Monthly 

NDVI http://neo.sci.gsfc.nasa.gov/ 

 

2005-

2014 

1km MOD13A

2 

Monthly 

Rainfall Fews Net data 

(http://earlywarning.usgs.gov/fews.) 

2005-

2014 

8km FEWSNE

T RFE 

2.0)] 

10 days 

Elevation http://earthexplorer.usgs.gov  2000 30m SRTM  

 

 

 

 

 

http://neo.sci.gsfc.nasa.gov/
https://giovanni.gsfc.nasa.gov/giovanni/
https://giovanni.gsfc.nasa.gov/giovanni/
http://neo.sci.gsfc.nasa.gov/
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Table 4-4: List of bioclimatic parameters from WorldClim applied in the Model (Hijmans & Elith, 2016) 

Code Bioclimatic variables 

Bio_1 Annual Mean Temperature 

Bio_2 Mean Diurnal Range(mean of monthly (max 

temp-min temp)) 

Bio_3 Isothermality(P2/P7)*(100) 

Bio_4 Temperature Seasonality(standard deviation 

*100) 

Bio_5 The maximum temperature of warmest month 

Bio_6 Min Temperature of the coldest month 

Bio_7 Temperature Annual Range(P5-P6) 

Bio_8 Mean Temperature of the wettest quarter 

Bio_9 Mean temperature of driest quarter 

Bio_10 Mean temperature of the warmest quarter 

Bio_11 Mean Temperature of coldest quarter 

Bio_12 Annual precipitation 

Bio_13 Precipitation of the wettest month 

Bio_14 Precipitation of the driest month 

Bio_15 Precipitation of seasonality (Coefficient of 

variation) 

Bio_16 Precipitation of the wettest quarter 

Bio_17 Precipitation of the driest quarter 

Bio_18 Precipitation of the warmest quarter 

Bio_19 Precipitation of the coldest quarter 

Bio_28 Annual mean moisture index 

Bio_29 Highest weekly moisture index 

Bio_30 Lowest weekly moisture index 

Bio_31 Moisture index seasonality 

Bio_32 Mean moisture index of wettest quarter 

Bio_33 Mean moisture index of driest quarter 

Bio_34 Mean moisture index of warmest quarter 

Bio_35 Mean moisture index of coldest quarter 

 

4.2.5  Maximum entropy modelling 

 Maximum entropy is a presence-only machine learning technique developed in 2004 

(Elith et al., 2010) that makes use of the known presence of a species at a site and the 

measured climatic variables across the site in order to model the species geographic 

dispersion (Phillips et al., 2006). That is in contrast with presence-absence methods that 

use both the presence and absence of a species in modelling the geographical distribution 

of the species, for example, random forests, boosted regression trees and generalised 

linear models (Elith et al., 2011). Maximum entropy mainly utilises two data sets that 

include a known site of species occurrence and the approximated measurement of 

variables (climatic or environmental) over those sites in order to model the suitability of 

the habitat (sites) for the species (Franklin, 2009b) in Figure 4:4. The main idea is that 

the dispersion of the species (which is unknown) should have maximum entropy (in terms 
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of   consistency with the data) (Merow et al., 2013) and as such should be  uniform across 

the area of study under the condition of  satisfying some constraints (Phillips et al., 2006). 

These constraints are that the values of these variables predicted should be equivalent to 

or near to their observed values which reflects the principle of maximum entropy(Elith 

et al., 2011) 

 

Figure 4-9: This illustrates the data requirements of Maximum entropy modelling method. The GPS 

points refer to geographic coordinates of a species location, and the climate variables are the values 

obtained through measurement over the same location. These data were then transformed 

mathematically by maxEnt algorithm through the use of its features that are linear, quadratic, product, 

threshold and categorical. The essence is to ensure that expected values of each feature match its 

observed values. Then probability maps would be produced to indicate areas variability about the 

suitability for the species.(Source: Neftali 2017). 

 

 

        The relationship between the species and the variables used in fitting the MaxEnt 

model is described as complex and  not a linear (Austin, 2002),  which therefore 

necessitates the latter to be changed or transformed mathematically into features (Elith et 

al., 2011). These features are divided into five classes viz linear, quadratic, product, 

threshold and hinge (Dudık et al., 2004) and they serve as constraints on the spatial 

dispersion of species since they are transformations of the original environmental 

variables. Linear and quadratic are constraining the mean and variance of the climatic 

variable so that they should match the observed values respectively. The product features 

function to ensure that the sum of two climatic variables is constrained to match their 

empirical values. Likewise, the threshold features ensure that the value of continuous 

climatic variable beyond a particular threshold is given a value of 1 while below is given 
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a zero score. This feature then ensures that the fraction of the distribution that has values 

for the variables that attain one threshold would be constrained to match their empirical 

values. Hinge features are similar to threshold features the only difference is that 

categorical variables are involved (Phillips et al., 2006) 

Maximum entropy is a species distribution modelling technique that has been built with 

a ‘guarantee’ to produce accurate modelling of species geographical distribution (Phillips 

et al., 2004, Phillips et al., 2006, Elith et al., 2011). Maximum entropy algorithm 

according to Phillips et al. (2006) uses various steps of mathematical and statistical 

operations that are ‘deterministic’ and consequently ‘converge to the maximum entropy 

probability distribution’.  In the explanation of how MaxEnt works this study relies 

strongly on the contributions of Phillips et al. (2006), Elith et al. (2011) and Merow et al. 

(2013). For illustration, in this study, we use k to represent a collection of pixels that 

constitute the study site  that consist of smaller sub units as occurrence sites q within the 

unknown distribution D. Each of the study sites q would have a positive probability value 

in the unknown distribution approximated to 1. The unknown distribution D is estimated 

as likely distribution D̂ whose entropy is interpreted as: 𝐻(�̂�) = ∑ �̂�(𝐷)𝐼𝑛 �̂�(𝐷)𝐷€𝐾  

Where 𝐼𝑛 is the natural logarithm, H is the entropy, 𝐷  is unknown distribution, �̂� is the 

estimate of unknown distribution (Phillips et al., 2006). 

The algorithm of maximum entropy is effective (Berger et al., 1996)  and is consistent 

with its principle. This means a homogeneous distribution of the unknown distribution D 

is expected to be achieved through constraining the mathematical transformation of the 

environmental features f (Elith et al., 2011) to match the observed values at K the study 

site. Consequently, each feature in the environmental space allocates a number to every 

site q in the study area K. The assumption or the averages of each feature f under the 

unknown distribution D is ∑ 𝐷(𝑞)𝑓𝑗(𝑞)𝑞€𝐾   which is simplified as D[fj].        

On the other hand, the empirical or the observed values average is given as 

1

𝑚
∑ 𝑓𝑗(𝑞𝑖) 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠 �̃�[𝑓𝑗]𝑚

𝑖=1 (�̃� is representing a homogeneous 

distribution in the study area). So in line with the principle of maximum entropy, the 

unknown probability D is constraining the predicted features fj (D[fj]) to have similar 

average values with the empirical averages D̂[fj] (Jaynes, 1957)  which is given as 

     �̂�(𝐷) = �̃�[𝑓𝑗] … … … … . 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑓𝑗 … … 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 
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According to Della Pietra et al. (1997),  the above proportionality (as shown in equation 

1) in the unknown distribution can be performed by application of the mathematical 

theory of convex duality. This theory as explained by Phillips et al. (2006) indicates 

similarity between  MaxEnt likelihood distribution and Gibbs distribution (Dudık et al., 

2004) and is expressed as 

𝑞𝜆(𝐷) =
𝑒𝜆.𝑓(𝑞)

𝑧𝜆
… … … … … … … … 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

Equation 2 shows Gibbs distribution with 𝜆 indicating a vector of n real-valued 

coefficient or the transformed environmental variable weights, f indicates the vector of 

the entire n features while 𝑧𝜆 has a unique function of  adding  probability distributions 

𝑞𝜆 to be equal to 1 and hence acts as normalizing constant. It is worth emphasizing that 

the  equality between MaxEnt likelihood distribution D and the Gibbs distribution 𝑞𝜆  as 

indicated by convex duality  ‘maximises’  the probability of  all the m (sample)  sites 

(Phillips et al., 2006). Similarly, the negative log probability of all the m (sample) sites 

is minimised. 

�̃�[−Ι𝑛(𝑞𝜆)] … … … … … . 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 3 

𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦 𝑤𝑟𝑖𝑡𝑡𝑒𝑛 𝑎𝑠 𝑧𝜆 −
1

𝑚
∑ 𝜆. 𝑓(𝑞𝑖)𝑚

𝑖=1  and is referred to as “log loss” 

MaxEnt has an inherent tendency to overfit the training data. This is because the predicted 

values could not match the observed or empirical values precisely but can only estimate 

them. In that light, as explained by Phillips et al. (2006) there is a restriction imposed to 

constrain the average of the expected values under the unknown distribution to be near 

the observed values.  This led to the  constraint relaxation in equation (1) with an 

addendum (Dudık et al., 2004) 

�̂�(𝐷) = �̃�[𝑓𝑗] ≤  βj … … … … … … … … … … equation 4  

for each feature fj and constants βj 

Consequently, this leads to e1-regularization that altered the two characterization in (4) 

above (Phillips et al., 2006): in (5) below MaxEnt distribution is indicated to be Gibbs 

distribution that sets the minimum limits (between observed and empirical values) 

�̃�[−𝐼𝑛(𝑞𝜆)] + ∑
𝛽𝑗|𝜆𝑗| … … … … . . 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 

𝑗

 



 

53 
 

Where the ‘log loss’ is the first segment and  the second segment ‘penalizes’ the utility 

of higher numbers for the coefficients 𝜆𝑗 (Phillips et al., 2006). According to Williams 

(1995) regularization has the advantage of  not only reducing overfitting but also in 

coercing MaxEnt to concentrate on the most significant variables. Furthermore, e1-

regularization greatly decreases variables to a small numbers thereby reducing the 

possibility of overfitting and  is referred to as “lasso” in Generalised Linear Models 

(GLM) and Generalised Additive Models [GAM] (Guisan et al., 2002). 

The MaxEnt procedure described in the preceding  discussion n  will converge at optimal 

probability distribution through repetition in changing the coefficients 𝜆= (0….1) in order 

to minimise regularised log loss   (Phillips et al., 2006). 

4.2.5.1 Modelling scenarios 

 In species distribution modelling according to Joyner (2010), it is logical to create 

various scenarios constituting different environmental and climatic variables in order to 

evaluate the suitability of each scenario in modelling the species spatial distribution. This 

research developed six scenarios to investigate the spatial distribution of F. gigantica. 

Scenario 1 consists of precipitation and temperature variables (Bioclim). While scenario 

2 and 3 contained Bioclim and non-Bioclim variables respectively that described 

precipitation, temperature and soil moisture variables. As a convention, MaxEnt used 

only the first scenario variables to model spatial distribution of F. hepatica. The soil 

moisture has a significant influence on the survival of fascioliasis intermediate host 

especially in the semi-arid parts of the world (Khanjari et al., 2014). The utilisation of 

more relevant variables in a model can enhance the model’s ability to choose the most 

significant variable (Baldwin, 2009). In that light, the study included NDVI and SRTM 

elevation into scenario 4 (Bioclim) and scenario 5 (non-Bioclim).  Due to the contribution 

of the soil moisture in the earlier modelling scenarios, this study added the topographic 

index and slope generated from SRTM elevation in scenario 6. These variables were a 

surrogate to elevation since they were influential in the redistribution of water across a 

landscape and hence affect the spatial distribution of species (Franklin, 2009b). 

4.2.5.2 Maxent implementation on modelling scenarios 

This study downloaded MaxEnt freely on the World Wide Web at 

http://www.cs.princeton.edu/∼schapire/maxEnt. The specific parameters left at default 

settings include convergence threshold=10-5, maximum iterations=5000, regularisation 

value 10-4, the maximum number of background points=10000 and auto features 
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involving linear, quadratic, product and binary features utilised in all the runs. That is 

because Phillips and Dudík (2008) confirmed that the performance of the MaxEnt model 

based on default settings does not differ from the modified settings as revealed from 

‘recent simulations’. 

4.2.6 BioClim modelling 

BioClim (Busby,1986) is an environmental envelope or climate-envelope model (Booth 

et al.,2014) that provides a binary classification of suitable and unsuitable habitat through 

the use of  “hyper-box”  that encompasses favourable environmental conditions occupied 

by about 100 percent of species (Franklin, 2009a). The software for computing the model 

is available in the ‘dismo’ R package for species distribution models (Hijmans et al., 

2011b). The algorithm of this modelling technique computes the values of climatic 

variables across the entire area of study and then make a comparison with the percentage 

distribution of the values at the recorded occurrence sites (Beaumont et al., 2005). 

Consequently, the algorithm then selects the values that are at least fifty percent closer to 

the values at the known occurrence sites for classification as suitable for the species. 

Carpenter et al. (1993) highlighted that species could survive at any sites that are within 

the limits of the climatic envelope or rectilinear volume of the known occurrence sites 

for the species.  

The development of an information system that comprised the most relevant variables for 

species distribution and climatic data occurred at the same time as the first version of 

BioClim software (Franklin, 2009b). That led to the generation of bioclimatic variables 

(BIO1-19) that are very suitable for modelling of species (Hijmans et al., 2005). Recently, 

new methods have emerged (example DIVA-GIS software; www.divagis.org) of 

implementing BioClim model application to bioclimatic variables for species distribution 

models referred to as  “BioClim” technique (Franklin, 2009b).   
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Figure 4-5: BIOCLIM ENVELOP MODEL (Carpenter et al., 1993, modified).This figure shows narrow distribution 

range of the 5%-95% thereby excluding suitable site ‘A’ and enclosing unsuitable site ‘B’ as suitable. Also, the 

omitted site ‘C’ was nearest to site ‘A’ treated by the model as unsuitable 

 

 

   Booth (1990) described the predictions by BioClim models as ‘unsound’ due to the 

graphical representation of x and y values of climate and environment as independent of 

each other. That shortcoming necessitated the need for alternative methods (Walker & 

Cocks, 1991). It was also noted by Carpenter et al. (1993) that there is a high possibility 

of exclusion of some known record sites from the ‘core bioclimate’ which affects the 

efficient performance of the method. For example, Figure 4:5  

4.2.7 Domain modelling 

Domain (Carpenter et al., 1993) is a presence-only modelling technique for species 

distribution that uses  ‘distance’ between environmental parameters at any site and the 

known occurrence sites for classification into suitable and unsuitable locations for the 

species (Franklin, 2009b). The software for computing the model is available in the 

‘dismo’ R package of species distribution models (Elith et al., 2011). The distance 

expressed as ‘Gower’ distance defined by Legendre and Legendre (1998)  as a means of 

obtaining common attributes through the use of climatic and environmental variables. 
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The Gower metric measures the common attributes quantitatively in environmental space 

between two sites X1 and X2 (Legendre & Legendre, 1998) as 

𝐺(𝑋1, 𝑋2) =
1

𝑃
∑ 𝑆12𝑗 … … … … … … … … … … … … … 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 11

𝑃

𝑗=1

 

where p is the descriptor of the common attributes or similarities S for each of the 

descriptors, and j is the distance. The model used the computed values between two 

locations as the amount of distance in measuring similarity and common attributes in 

environmental space, and Rj is the maximum distance measured in a set of occurrence 

locations. 

𝑠12𝑗 = 1 −
[𝑦1 + 𝑦2  ]

𝑅𝑗 
… … … . 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 12 

  According to Hijmans et al. (2005), the model can find the distance between the 

environmental condition at site X1  and recorded occurrence sites for one climate 

parameter by computing its mean values across the entire recorded occurrence sites. All 

the locations within the environmental range as computed in equation 11, the model 

assigned values between 0 and one while all the omitted locations outside the range got 

negative values (Carpenter et al., 1993).  
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Figure 4-10: Domain model (Carpenter et al., 1993, modified). 

 

The Domain model differs from all other models due to lack of distinct boundary for the 

environmental envelope (Tsoar et al., 2007) and can generate a map based on common 

attribute values that may differ continuously across the landscape of interest. Also, the 

model used a threshold value either based on expert knowledge or subjectively to select 

sites that may vary in the value of an environmental variable from the recorded 

occurrence site of not greater than 10% of the range (Carpenter et al., 1993). However, 

the main criticism of the model was in having the weak predictive ability and performing 

‘poorly’ in detecting climate change effects in species distribution (Elith et al., 2006, 

Hijmans & Graham, 2006). 

4.2.8 Model evaluation 

 The main essence of evaluating species distribution models is to assess the suitability of 

an area to a particular species of plants and or animals for habitation through 

quantification of accurate measures of validity (Franklin, 2009b). In addition, model 

assessment provides a sound basis for comparison across different models (Segurado & 

Araujo, 2004, Pearson et al., 2006, Allouche et al., 2006). According to Rykiel (1996), 

the validity of a model depends on its attainment of certain prescribed standards. These 

include determining the predictive ability of the model, error percentage and credible 
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nature or acceptance of the model to the global community (Morrison et al., 1998, 

Franklin, 2009b).  

Although, no model is entirely immune from ‘errors’ since they simplified reality 

(Franklin, 2009b) but they are still essential for a wide range of applications (Barry & 

Elith, 2006) as ‘errors’ could encompass  ‘variations in the statistical sense’(Goodchild, 

1994). Barry and Elith (2006) highlighted that the idea of statistical variation includes 

both the error and the uncertainty arising not only from the data and model’s 

approximations but also in the unclear or ambivalent interpretation of modelling concepts 

(Elith & Burgman, 2002, Franklin, 2009b). 

 This research has followed all the steps described below in evaluating the performance 

of the models and the modelling scenarios used in this chapter.  

4.2.9 Independent evaluation data 

Independent evaluation data refers to a new set of data not used in estimating the fitness 

of the species distribution model (Fielding & Bell, 1997, Barry & Elith, 2006, Franklin, 

2009b). It, therefore, gives the ‘best’ and better method of validating species distribution 

model than randomly splitting the same data into training and testing (Franklin, 2009b) 

that often leads to inflation of accuracy measures of the model’s performance(Edwards 

et al., 2006). 

This research obtained independent data through a fieldwork approved and funded by the 

University of Leicester from July to August 2016 and  Ministry of Animal health, Sokoto 

State, through the state Director granted permission for data access and collection. The 

field survey involved visitation to slaughter houses of fifteen localities of the study area. 

These localities are Kuchi, Girkua, Shagari, Gidan Abuzai, Silame, Dan Bara, Sokoto 

north, Gidan Daji, Rabah, Wurno, Goronyo, Gada, Sarkakarwa, Dagoza and Tamaru. 

In this study, evaluation of the MaxEnt model was carried out using the collected 

independent data for ‘testing’  and another separate data (from a government agency) ‘for 

training’ (estimating the fitness) through a technique known as cross-validation(Hijmans, 

2012). This method is advantageous as it yields better predictive accuracy through proper 

assessment of uncertainties (Merow et al., 2013). Hijmans (2012) further highlighted that 

in species distribution modelling cross-validation has another advantage of not 

overestimating performance due to the high correlation of variables. That, therefore, is a 

complete requirement of the conventional goodness of fit statistic both in the evaluation 
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and in a better estimate of ‘predictive power’ of SDM. These reasons make cross-

validation the most accurate and reliable measure of evaluating data for species 

distribution models(Merow et al., 2013).  

     All the accuracy measures of the model's predictions in this study used the 

independent test data. That is because all test data if available in species distribution 

modelling are useful in the evaluation of the model performance (Fielding & Bell, 1997, 

Liu & Newll, 2011, Hijmans, 2012) 

  

 

 

Figure 4-11: Independent evaluation data  

 

4.3.0 Threshold-dependent evaluation 

  A threshold implies setting a limit for suitability above specific values and unsuitability 

below those values and is described as a reliable measure of models ability to produce 

predictive maps for binary (presence and absence)  classification (Manel et al., 2001, Liu 

et al., 2005, Negga, 2007). That would lead to the derivation of a confusion matrix or 

error matrix (Table 4.4) which consists of observations and predictions of the presence 

and absence(Fielding & Bell, 1997).  
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Table 4-5: A Confusion matrix. (a implies true positive rate (TPR), b is the false positive rate (FPR), c is 

the false negative rate (FNR), and d is true negative rate [TNR](Fielding & Bell, 1997) 

 

 

Predicted 

                        Actual 

                     +                           -                                        

+ 

- 

   a                          b 

   c                          d    

  Several measures of model performance can be generated from the confusion matrix to 

assess the ability of the model to make accurate classification into presence and 

absence(Barbosa et al., 2013). For a full description of all the measures see (Fielding & 

Bell, 1997). Here the study used the following measures: Sensitivity (TPR), specificity 

(TNR), omission rate (FNR), commission rate (FPR), Kappa and True Skill Statistics 

(Table 4.5). Sensitivity is the ability of the model to predict presences accurately and 

therefore indicates omission rate while specificity is the opposite in predicting absences 

(background) which indicates commission rate (Allouche et al., 2006) 

Both false negative rate (FNR) and false positive rates (FPR) imply omission and 

commission rates respectively (Fielding & Bell, 1997, Barbosa et al., 2013). Omission 

rates indicate presences that are omitted by the model while commission quantifies the 

number of absences classified as presences and as hence referred to as ‘measures of 

mismatch’(Barbosa et al., 2013). 

The Kappa statistics relies heavily on the number of observations that are correctly and 

incorrectly predicted (prevalence) in a model in order to give a calculated proportion of 

specific agreement (Manel et al., 2001). This measure is described as very prominent in 

species distribution modelling and gives some level of confidence in its prediction of 

presence and absence (Pearson et al., (2004), Segurado & & Araujo, (2004), Allouche et 

al., 2006). According to Cohen (1960), the maximum kappa scores are between -1 to +1 

with the latter score implying excellent performance while a zero score or less implies a 

random chance agreement. However, kappa has some short comings for being over 

reliant on the number of observations (prevalence) which provides some ‘misleading 

information’ and inflation of accuracy values referred to as ‘statistical artefacts’ (Lantz 
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& Nebenzahl, 1996, Allouche et al., 2006, Zheng & Agresti, 2000, Pontius & Millones, 

2011). 

 Given the criticism surrounding kappa, this research complemented it with an alternative 

method that proved to be devoid of all its shortcomings that is True Skill Statistics 

TSS(Somodi et al., 2017). This measure of model performance as described by Allouche 

et al. (2006) correlates significantly with an area under the curve (AUC) that does not 

depends on prevalence. The early applications of TSS otherwise known as Hansen-

Kuiper’s discriminant were in meteorological forecasting in the evaluation of weather 

forecasts (Accadia et al., 2005).  The formula for the calculation of TSS consists of the 

derived elements from the confusion matrix (Table 4:5). One primary common attribute 

between kappa and TSS according to Allouche et al. (2006) is that both are accounting 

for omission and commission errors resulting from random chance. The value scores of 

TSS ranging between -1 to +1, where zero implies model goodness that is tantamount to 

random guessing while +1 implies perfection in agreement. 

Table 4-6. Indices of evaluating the correct performance of MaxEnt, BioClim and Domain as derived 

from figure confusion matrix. 

Measure Calculation 

 Sensitivity 

Specificity 

False positive rate 

False negative rate 

Kappa 

 

 

True Skill Statistics 

a/(a+c) 

d/(b+d) 

b/(b+d) 

c/(a+c) 

[(a+d) – (((a+c)(a+b) + (b+d) 

(c+d))/N)]/[N-(((a+c)(a+b)+ 

(b+d)(c+d))/N] 

ad-bc/(a+c)(b+d)=Sensitivity+Specificity-1 

 

In order for this study to test whether the MaxEnt model’s predictions of the independent 

validation test localities were significant and not through random chances (Anderson et 

al., 2002) a one-tail binomial test was used. The null hypothesis expresses that the 

selection of the model was not by chance from the collection of all other models with the 

equivalent predicted area that is suitable for the species (Phillips et al., 2006). 
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 All the threshold-dependent measures of evaluation used by this study required a choice 

of a threshold which has much impact on binary (presence and absence maps) 

classification (Freeman & Moisen, 2008b). In that light, this study applied a threshold 

based on the 10th percentile training presence. This threshold according to Jarnevich and 

Reynolds (2010) depends on the choice of a value which if exceeded classify 90% of the 

training points as suitable for the species. Morueta-Holme et al. (2010) and Jarnevich and 

Reynolds (2010) used this threshold in their respective studies where they described it as 

resulting ‘to a more conservative’ model than other thresholds criteria that may lead to 

over-estimate of the model’s predictive ability. This study selects this threshold as it gives 

a correct binary classification of species distribution models that included almost all the 

known occurrence locations for the prevalence of F. gigantica in the study area. 

4.3.1Threshold-independent evaluation 

Species distribution models are evaluated using threshold-independent measures due to 

their ability to utilise complete information provided by the model in order to explain the 

general characteristics of the species distribution(Merow et al., 2013, Fielding & Bell, 

1997). These measures assess the performance of a model without relying on any 

particular threshold (Deleo, 1993, Phillips et al., 2006). Receiver operating characteristic 

(ROC) has its origin in signal processing and it gives an indication of the models ability 

in ranking cases (discriminating) into two categories or classes using all possible 

thresholds (Deleo, 1993, Zweig & Campbell, 1993, Provost & Fawcett, 1997, Elith, 2002, 

Merow et al., 2013). It uses the area under the curve (AUC)  which is a technique of 

scoring higher percentage to the random chances of choosing presence locations than the 

background localities anytime random selection is made in the presence-only 

models(Fielding & Bell, 1997, Merow et al., 2013).  The application of AUC was initially 

in presence/absence models that distinguish presence locations from absence locations 

example generalised linear models (GLM) and generalised additive models (GAMs) 

(Ferrier et al., 2002). In the presence-only models, AUC was implemented after adjusting 

this constraint by differentiating between presence and background or random since there 

was no truly absence record (Anderson et al., 2003a). In the achievement of this motive, 

all the pixels in the area of study were labelled x random while the entire pixels that 

constitute the geographic extent of the known occurrence locations were labelled x presence. 

(Phillips et al., 2006). The species distribution model used the combined pixels from both 

the presence and random in predicting the entire area of study (Wiley et al., 2003). 
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In interpreting the values of AUC, the random prediction had a score of 0.5 and described 

as bad model while a good model has values closer to 1(Freeman & Moisen, 2008a, 

Swets, 1988). It was further highlighted that a species distribution model with an AUC 

score of 0.7 is‘potentially significant’ and possessing a good predictive ability, while 

models with AUC equal to or greater than 0.8 are excellent and models with equal to or 

greater than 0.9 are outstanding (Hosmer & Lemeshow, 2000, Elith et al., 2006, Morueta-

Holme et al., 2010, Sobek-Swant et al., 2012). 

  Fourcade et al. (2014) highlighted that  AUC provides a robust estimate of model 

performance that it is not affected by prevalence (Manel et al., 2001) and hence can be a 

valid means of comparing different models (Cumming, 2000). The only caveats in the 

use of AUC  as it is ranked-based (Merow et al., 2013) is that validity for comparison 

among models should ensure that all the models constructed should be similar in terms 

of study area, background samples, species as well as in the utility of validation data set 

(Elith et al., 2011) 

 In the evaluation of species distribution models, this study used the AUC score of both 

the training data and the independent test data.  The former assesses the fitness of the 

model to the data, and the latter appraises the predictive ability and generality of the 

model (Arau´ jo & Guisan, 2006, Merow et al., 2013)  

In addition to AUC, this research applied other measures in the evaluation of the models 

as recommended by  Shabani et al. (2016)  who described AUC as ‘overoptimistic’ s and 

hence it could not   ‘tell the whole story’ (Austin, 2007, Peterson et al., 2007). Also, 

Somodi et al. (2017) suggested complementing AUC with other model goodness 

measures especially TSS. 

4.3.2 Jackknife for variable importance 

The significance of each variable in modelling was evaluated using Jackknife. It 

determines the contribution of each variable by serially accomplishing the following three 

tasks; 

1) Involving all variables in running  the model 

2)  Leaving out one  variable at a time in running the model again 

3) Using the left out variable alone in stage (2) in running the model. 

The most significant variable (s) resulting from these Jackknife operation is the one that 

increases highest training gains when used alone in running the model and likewise 
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decreases the training gain than all other variables when left out or isolated from the 

model. (For more explanation refer to MaxEnt tutorial on (www.cs.princeton.edu). 

4.3.3Biserial correlation 

  Biserial correlation is another threshold-independent measure of prediction accuracy in 

species distribution models (Thibaud et al., 2014, Elith & Graham, 2009, Franklin, 

2009b). Zheng and Agresti (2000) defined biserial correlation  (COR) as the correlation 

between what a model predicts and the number of observations scaled between 0-1 in the 

validation data of the presence-absence model which is mostly computed using Pearson 

correlation coefficient. The presence-only models calculate the correlation between the 

model probability estimations (predictions) and the observed validation data of presence 

and background model. That is because all evaluation measures apply to both presence-

absence models and presence and background models but with a different 

interpretation(Franklin, 2009b). 

In testing the statistical significance of the relationship between model predictions and 

observations, this study used the Wilcoxon rank signed test that is equivalent to a paired 

two-tailed t-test (Phillips et al., 2006).  Also, used the paired two-tailed t-test at 95% 

confidence interval in testing the statistical significance of the differences in performance 

between MaxEnt and the other two models.  

Figure (4-8) shows the flow chart that explained the procedures used in achieving the 

objectives of this chapter. 

http://www.cs.princeton.edu/
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Figure 4-12 Flowchart adopted in this chapter 

 

4.3Results 

4.3.1Comparison of MaxEnt with BioClim and Domain models 

Figure 4-8 shows the estimates of the six accuracy measures generated from the confusion 

matrix for the three models using the validation data sets. The performance of MaxEnt 

being the bench mark model was compared individually with BioClim and then Domain 

in order to calculate the statistically significant relationships between each pair. MaxEnt 

has got highest scores regarding sensitivity (TPR), specificity (TNR), Kappa and TSS 

than BioClim and the differences are statistically significant ( t = 4.74, P=0.018) at 95% 

confidence level. Likewise, the scores of MaxEnt are higher than that of Domain model 

that is also statistically significant (t = 3.90, P=0.030).  The Domain model has the highest 

omission rate (FPR) followed by BioClim model. Similarly, regarding commission rate 
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(FNR), BioClim has the highest rate followed by Domain and then MaxEnt with the 

lowest rate. 

 

Figure 4-13: Estimates of the six threshold-dependent measures for the three models (MaxEnt, BioClim 

and Domain) using the validation dataset. In this chart sensitivity and specificity show higher values 

complemented by omission and commission rates.  Barbosa et al. (2013)   highlighted that high omission 

and commission rates do not imply ‘a mistake’ by a model based on the view that certain circumstances 

may cause a species not to inhabit all suitable areas or to occupy unsuitable locations.  They further 

added that high omission rates may not indicate the weakness of the model but could be generated from 

‘errors’ resulting from collection and assemblage of the species data. Also, it was explained by Pulliam 

( 1988) that high omission rates might accrue due to the occurrence of the species at unsuitable locations 

as no data is ‘error free’ Barbosa et al. (2013). In the same vein, high commission rates may also reflect 

models ability to detect a species presence at a location that is favourable in terms of environmental 

conditions but become extinct due to some biological factors (example competition with other species 

etc.)(Anderson et al., 2003b, Barbosa et al., 2009). According to Barbosa et al. (2013), the result of this 

study has a high probability of accuracy as it is normal for sensitivity(TPR)  values to be higher than 

specificity (TNR) and likewise for commission rate (FPR) to get higher values than omission rate (FNR).   

 

 In the study area, there is spatial variability of the probability of fascioliasis occurrence 

in the three models (Figure 4-9). The threshold used by the dismo r package (Hijmans et 

al., 2011a) was equal training sensitivity and logistic specificity threshold used in binary 

prediction of the three models. The MaxEnt has a threshold value of 0.5353 while 

BioClim has a value of 0.1101 while Domain model has 0.5856 as its threshold. 

 The AUC (Table 4-6) and COR (Figure 4-11) values were statistically significant for 

MaxEnt model based on Wilcoxon signed-rank test (Z = -3.6, P = 0.0001). The values of 

these indices for both BioClim and Domain were performances that were not better than 



 

67 
 

random and were not significant statistically as revealed by Wilcoxon signed-rank test 

(Z= -0.8, P =0.189 and Z= -0.8, P = 0.187) respectively. Box plots are shown in Figure 

4-10, indicating A, B and C for MaxEnt, BioClim and Domain respectively. The 

interquartile range for both presence and absence values were higher for MaxEnt than the 

other two models. 

 

Figure 4-14: Predicted probability of F. gigantica presence from (A) MaxEnt model B) BioClim and 

C) Domain model. Both models were created using R-dismo package. The training sites constitute 

70% while the test samples were 30%. Eight not highly correlated environmental variables based on 

temperature and precipitation were used.  Brownish colour indicated areas of high probability while 

the dark green showed areas of low probability of occurrence. 
 

 

Table 4-7: Result of threshold-independent measure of modelling methods 

Model Total 

Number 

of records 

Total number of 

records for 

training 

Total 

number of 

records for 

testing 

Number 

of 

variables 

used 

AUC 

for 

training 

data 

AUC for 

test data 
Corre

lation 

p-value 

MaxEnt 177 158 53 8 0.811 0.8047 0.335 P<0.001 

BIOCLIM 177 158 53 8 0.6261 0.5723 0.055 0.189 
DOMAIN 177 158 53 8 0.5402 0.5126 0.056 0.187 
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Figure 4-15 : Boxplots of the three models A.MaxEnt, B. BioClim and C. Domain model indicating the 

probability of predicting both presence and background locations of F.gigantica in the study area. 

Table 4-8: Density of livestock population in provinces of Sokoto State in decreasing order of importance 

Provinces Density per km2 

Sokoto south 5585.614 
Sokoto north 4634.171 
Sabon-Birni 1130.196 
Isa 806.3161 
Kware 767.073 
Bodinga 745.148 
Wamakko 584.484 
Silame 580 
Wurno 471 
Dange shuni 451.781 
Binji 400.906 
Yabo 397.143 
Gwadabawa 273.166 
Tambuwal 254 
Gada 249.698 
Shagari 235.931 
Goronyo 200.595 
Illela 190.628 
Kebbe 163.534 
Rabah 153.789 
Tureta 111.322 
Gudu 76.781 
Tangaza 57 

Source: Ministry of Agriculture/Animal Health and Fisheries Development, Sokoto State  

4.3.2 Comparison of  MaxEnt modelling based on different scenarios 

4.3.2.1Threshold –dependent omission tests 

All the six scenarios (Table 8) produced predictions that were better than random. Using 

the 10th percentile training threshold, the binomial test of omission was significant 

statistically for all the scenarios (P from 0.0027 to 0.034) while their threshold values 
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ranged from 0.2916 to 0.331. Scenario 5 that constitute non-BioClim variables predicted 

the largest area (0.5106). Regarding the omission rate, scenario 2 ranked highest (20%) 

while scenario 6 has the lowest omission rate (17%). Similarly, the True Statistics Scores 

(TSS) for all the scenarios was better than random chance agreement as the values ranged 

from 0.2964 to 0.4173 and were statistically significant (averaged p=0.014 at the one-

tailed test of binomial probabilities). 

 

 
 

Figure 4-11: Showing the scores of each scenario based on True Skill Statistics generated from the 

confusion matrix elements using independent test data in maximum entropy modelling of F. gigantica 

geographical distribution using climatic and environmental variables. 

Table 4-Error! No text of specified style in document.-9: Results of the threshold-dependent binomial 

tests of omission based on 10% percentile training presence 

Scenario Logistic 

threshold 

Fractional predicted 

area 

Test omission rate P-value 

Scenario 1 0.3144 0.4152 0.1941 0.0113 

 

Scenario 2 0.3089 0.5028 0.205 0.028 

 

Scenario 3 0.2992 0.412 0.18 0.0027 

 

Scenario 4 0.2926 0.4607 0.1983 0.0114 

Scenario 5 0.331 0.5106 0.1936 0.034 

Scenario 6 0.303 0.5043 0.1713 0.019 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

Scenario 1

Scenario 2

Scenario 3

Scenario 4

Scenario 5

Scenario 6

TSS
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Figure 4-12: Dark brown colour implies a high 

probability of suitable conditions for F. gigantica, 

lighter shades of blue implying low predicted the 

probability of suitable conditions based on scenario 

1. That indicates that suitable conditions are 

predicted to be highly likely through all the four 

agricultural zones of Sokoto State 

 
 

 
Figure 4-13: Scenario 2 MaxEnt prediction using 

dark brown colour indicating the probability of 

suitable conditions and lighter shades of blue 

implying low predicted the probability of suitable 

conditions. That prediction is not as extensive as 

scenario 1 and more concentrated around the 

centre of the state. 

  

 

 
Figure 4-14: Showing wider spread of suitable 

condition based on Scennario_3 using dark 

brown colour in implying a high probability of 

suitable conditions and lighter shades of blue 

indicating low predicted the probability of 

suitable conditions for F.gigantica. That gives 

extensive coverage of Sokoto State. 

  

 
Figure 4-15: This gives slightly uniform coverage 

of the entire Sokoto state based on scenario_4 using 

dark brown colour in showing a high probability of 

suitable conditions and lighter shades of blue 

implying low predicted the probability of suitable 

conditions for F.gigantica. 
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Figure 4-16: Scenario 5 is showing a homogeneous 

distribution around the centre of Sokoto state using 

dark brown colour implying a high probability of 

suitable conditions and lighter shades of blue 

indicating the low predicted probability of suitable 

conditions for F.gigantica 

 
 

 
Figure 4-17: The figure shows a geographical 

distribution that has cut across all parts of 

Sokoto state based on scenario 6 using dark 

brown colour in indicating a high probability of 

suitable conditions and lighter shades of blue 

implying low predicted the probability of 

suitable conditions for F.gigantica. 

  

4.4.2.2Threshold-independent tests 

 For all the scenarios (Table 4-9) using the combination of different climatic and 

environmental variables, the AUC values based on independent validation data were 

above 0.5 indicating better than random prediction and were statistically significant 

(p=0.03 at two-tailed Wilcoxon signed-ranked test). The addition of soil moisture in 

scenario two did not increase the AUC score, but the inclusion of NDVI and SRTM 

elevation in scenario 3 raised AUC to 0.7511. In scenario six that contained terrain 

attributes such as slope and topographic index did not change the AUC value significantly 

as it remained at 0.744. On the non-Bioclim variables, using all the variables of 

temperature, precipitation, soil moisture including NDVI and elevation in scenario 4, the 

AUC value (0.7487) was higher than when the model used only temperature, 

precipitation and soil moisture variables  in scenario 5(0.7082) 

On the variable contribution in each scenario, soil moisture consistently had the highest 

percentage with the minimum value in scenario 6 (30.7) to highest percentage in scenario 

5 (79.9). In scenario 1, in the absence of soil moisture, the bio 16 which is precipitation 

of the wettest quarter, had the most significant effect (24.2%) in the modelling. Other 

variables that were very influential in the modelling across the whole scenarios that 

contained them were maximum annual NDVI (NDVI_36), elevation (SRTM_39), 

precipitation of the warmest quarter (bio_18) and mean temperature of the coldest month 
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(bio_6). Similarly, in the Jackknife AUC, these variables possessed the most valuable 

data when they were used alone and in combination with all other variables in modelling 

F. gigantica in the study area. 

Table 4-10: Results of the threshold-independent measures of model scenarios 

 

 

Scenario Total number of 

records for 

training 

Independent 

records for 

testing 

Number 

of 

variables 

used 

AUC for 

training 

data 

AUC for test  

Test data 

Scenario1 176 15 8 0.8347 0.7519 

Scenario2 176 15 8 0.8016 0.7281 

Scenario3 176 15 11 0.8474 0.7511 

Scenario 4 176 15 9 0.8302 0.7487 

Scenario 5 176 15 5 0.7722 0.7082 

Scenario 6 176 15 12 0.8005 0.743 

 

 
Figure 4-18: Scenario 1 results of the Jackknife test for the MaxEnt model for Sokoto State showing the 

gain of each variable to the likelihood map model. It uses temperature and precipitation variables 

(BIO1-19). Precipitation of the wettest quarter (BIO_16) and precipitation of the warmest quarter 

(BIO_18) have got the highest contribution in modelling the geographical distribution of F. gigantica 

in Sokoto State in this scenario. 

 

 
Figure 4-19: Jackknife test for scenario 2 MaxEnt model for Sokoto state showing the gain of each 

variables in the predicted probability map model. It contained temperature, precipitation and soil 

moisture variables only. When used alone in running the model annual mean moisture index (BIO_28) 

and precipitation of the warmest quarter (BIO_18) have got the highest contribution in modelling F. 

gigantica in Sokoto State in this scenario. 
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Figure 4-20: Scenario 3 (that contained temperature, precipitation, soil moisture, NDVI and SRTM 

elevation) results of the Jackknife test for the MaxEnt model for Sokoto state showing the gain of each 

variable in the predicted probability map model.  In this scenario annual mean moisture index (BIO_28) 

and precipitation of the warmest quarter (BIO_18) were most influential in the modelling the 

geographical distribution of F. gigantica in Sokoto State 

 
 

 
Figure 4-21: This is the non-BioClim scenario four results of the Jackknife test for the MaxEnt model 

for Sokoto state showing the gain of each variable in the predicted likelihood map model. It contained 

temperature, rainfall, soil moisture, NDVI and SRTM elevation variables. In this scenario annual mean 

soil moisture (SM_110) has got the highest contribution in modelling of F. gigantica in Sokoto state. 

Other important variables include  minimum annual NDVI(ndvi_108) and elevation (srtm_113) 

 

 

 
Figure 4-22: This is another non-Bioclim scenario 5 (that consist of temperature, rainfall and soil 

moisture variables)  results of the Jackknife test for the MaxEnt model for Sokoto state showing the gain 

of each variable in the predicted likelihood map model. In this scenario, minimum annual soil moisture 

(SM_112) was having the highest contribution in modelling of the disease in the study area. 
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Figure 4-23: This scenario 6 (that contained the combination of Bioclim and non-BioClim variables). 

In this scenario annual mean moisture index (BIO_28), maximum annual (ndvi_36) and temperature 

seasonality (bio_4) had greatest effect in modelling the geographic range of F. gigantica in Sokoto State. 

 

 

Table 4-11: Predictor variable percent Contribution as estimated by Maximum entropy of fascioliasis 

gigantica in Sokoto state (Non-BioClim) 

Variable Percent contribution 

Scenario 4 Scenario5 
tmp101_ann 0.5 4.3 

temp_103  7.8 

rain_104  2.2 

rain_105 1  

rain_106 2.3  

ndvi_108 11.2  

ndvi109_ann 2  

sm_110 22.5  

sm_111 3.5 5.8 

sm_112 46.2 79.9 

srtm_113 10.7  

 



 

75 
 

 

 

Table 4-12: Predictor variable percent Contribution as estimated by Maximum entropy of fascioliasis 

gigantica in Sokoto State (BioClim) 

Variable Percent contribution 
Scenario1 Scenario2 Scenario3 Scenario 6 

bio_1 10.8    
bio_2 10.7    
bio_3 1.6 0.3 0.4 0.3 
Bio_4   6.8 8 
Bio_6 21.4 20.3 8.3 14.1 
Bio_9 5.7 5 1.3 1.4 
Bio_12   5.8  
Bio_16 24.2 5.8  4.1 
Bio_17  2.4 4.2 3.3 
Bio_18 17.8 9.2 2.3 2.5 
Bio_19 7.8    
Bio_28  49.8 36.5 30.7 
Bio_33  7.2   
NDVI_36   23.2 22.4 
NDVI_38   1.1 2.3 
SRTM_39   10.1  
Slope    8.8 
Topo_Indx    2.1 

 

4.3.2Forecasting future climate change effects on suitable areas for Fasciola 

gigantica distribution in Sokoto State 

The areas (Table 4:12) predicted as suitable for Fasciola gigantica distribution in Sokoto 

State under the RCP’s 2.6 and 8.5  for 2050 and 2070 were all statistically significant (p 

=0.001). The increase in the extent of suitable areas for the parasite was consistent in 

RCP 8.5 for the two time periods. Conversely, a slight contraction (224.4km) occurred in 

the earlier period of RCP 2.6 in the year 2050. The  MaxEnt model produced the 

probablity maps based on 10th percentile training presence threshold for each of the future 

years under RCP’s. 

      Table 4-13: Comparison between current fractional predicted area (13286.4km2) and the future 

predicted distribution areas for 2050 and 2070 under Representative Concentration Pathways (RCPs) 

2.6 and 8.5 that are suitable for F. gigantica prevalence in Sokoto State by maximum entropy modelling 

RCP Future predicted area (km2)              Expansion           Contraction 

2050 2070 2050 2070 2050 2070 

2.6 13062 14307.2    - 1020.8 224.4km       - 

8.5 13558.4 13795.2 272 508      -       - 
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Figure 4-24: A, B, C, D & E: These are the MaxEnt’s forecasts of the suitable areas for F. 

gigantica distribution under RCPs 2.6 and 8.5 for the years 2050 and 2070. The year 2050 

under RCP 2.6 was calculated based on a threshold of 0.3069(A) while for 2050 of the same 

RCP was 0.3401(B). The threshold value used by RCP 8.5 was 0.3257(D) for the year 2050 

while 0.3409 (E) was the threshold used for the year 2070 of the same RCP. The dark bluish 

and green colour is indicating suitability while the reddish colour is indicating unsuitable 

habitat for fascioliasis distribution in Sokoto State. The middle picture (C) is showing the 

currently suitable areas as computed by maxEnt using temperature and precipitation 

variables. These variables were consistent across the RCPs for 2.6 and 8.5 for all the future 

years under study. 

 

 

4.3 Discussion and Conclusion 

In Nigeria, the prevalence of F. gigantica was estimated at 60% (Spithill et al., 1999a) 

due to favourable prevailing climatic and environmental conditions. Also, there is the 

availability of extensive areas of low-elevation referred to as floodplains or fadamas that 

are more common in northern Nigeria that support the existence of water bodies in lakes, 

ponds and streams (Magaji et al., 2014). Sokoto State is part of northwest Nigeria and is 

among the leading producers of animals in the country (Mamman, 2005) with a 

population of over three million people (NPC,2006). The state has an estimated 4 million 

cattle, sheep and goats (Bala et al., 2014) where the majority of the inhabitants are 

practicing animal rearing as an alternative to crop farming due to sparse arable land 

(Magaji et al., 2014). All the known studies on fascioliasis in Nigeria have focused on 
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reporting its prevalence using abattoir records (Bunza et al., 2008b, Magaji et al., 2014, 

Danbirni et al., 2015, Elelu et al., 2016a). Studies that applied species distribution models 

to examine the geographic range of fascioliasis in Nigeria or any part of West Africa in 

response to climatic variables are still elusive.  Comparison of Maximum entropy with 

BioClim and Domain models is a recommended approach in modelling potential 

distributional range of species (Phillips et al., 2006). Moreover, modelling the geographic 

range of fascioliasis through GIS analysis was applied in South-Eastern Europe 

(Kantzoura et al., 2011b), in Northern Europe (McCann et al., 2010a) and East Africa 

(Yilma & Malone, 1998). 

4.4.1Comparison of MaxEnt with BioClim and Domain models 

Presence-only techniques apply different algorithms in evaluating the fitness of their test 

data in species distribution modelling and each of the models according to Pearce and 

Ferrier (2000)  should be rated about their ‘function complexity’. Tsoar et al. (2007) 

confirmed this in their study of comparison between six modelling techniques that 

variation exists regarding complexity across all the models, which they ranked 

differently. 

Similarly, in this research, considerable differences exist regarding the complexity 

between the compared three presence-only models. The Domain model applies the 

‘Gower distance’(Legendre & Legendre, 1998) to the known occurrence locations of 

species to characterise a location as suitable. The technique has a weakness of not having 

the ability to classify all the possible locations as suitable that have the same 

environmental conditions as the occurrence locations (Tsoar et al., 2007). The BioClim 

model uses a climatic envelope encompassing the suitable environmental conditions 

occupied by known occurrence locations of the species (Carpenter et al., 1993). Its main 

limitation is that the method cannot capture the effect of associations between 

environmental variables on the distribution of species (Tsoar et al., 2007, Franklin, 

2009a).  

The findings of this study agreed with some previous studies regarding the higher 

performance of MaxEnt over other modelling techniques (Hernendez et al., 2006, Phillips 

et al., 2006, Pearson et al., 2007, Tognelli et al., 2009). The main limitation observed 

from the study by Elith et al. (2006) was that the assessment of their model’s predictive 

ability was with the utility of field observation data of species absences. Moreover, 

according to them could give unreliable result due to several possible factors like 
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competition with other species or geographic obstacles that limit the distribution of 

species at potential habitat. Other approaches noted these factors  (Tyre et al., 2001, 

Anderson et al., 2002). Another limitation that applies to all these studies is that there 

were no projections of the modelling methods to the use of future climate which 

according to Thuiller (2004) may affect performance across different models. In addition, 

the modelling techniques compared in these studies did not capture the effects of potential 

factors that include obstacles due to geographic location or competition with other species 

that can inhibit species from inhabiting all sites that are favourable for their survival.  Few 

approaches have applied this method (Anderson et al., 2002, Thomas et al., 2004). 

However, none of these approaches of comparison between models ever applied to 

modelling the distribution range of fascioliasis in any part of the World despite its threat 

to public health and global food security. 

 The results of this study confirmed the versatility of MaxEnt and its ‘expressiveness’ 

(Elith et al., 2006) than all the methods compared in this study due to having a very 

effective and deterministic algorithm that was created with a ‘guarantee’ to produce best 

modelling result with the even small number of occurrence localities (Phillips et al., 

2006). Hence in this study MaxEnt is consistently outperforming BioClim and Domain 

in all accuracy measures. Similarly, that agreed with Segurado and Araujo (2004) who 

stated that both BioClim and Domain models perform less well when subjected to a 

comparison with other techniques. Also, this further reflects the conclusion by Elith et al. 

(2006) that predictive accuracy significantly influenced by model complexity. According 

to Dudık et al. (2004) and Phillips et al. (2006) MaxEnt is currently one of the most 

efficient and successful modelling technique due to the utility of its regularisation 

technique that ensures optimal performance with either large or small number of points. 

Therefore, due to predictive ability and flexibility, this study among the tested methods 

agrees that MaxEnt is the best choice for the design of control measures against the 

prevalence of F.gigantica in the study area. 

It is explicitly clear regarding the visual investigation that MaxEnt algorithm produced a 

more reasonable prediction of potential distribution for F. gigantica than BioClim and 

Domain. That was because MaxEnt integrates and sums the contributions of all the 

climatic and environmental variables at each of the pixels that constitute the study area 

which reflects its advantage of ‘additivity’(Phillips et al., 2006) that enabled the 

production of more continous predictions (see Figure 4-9). MaxEnt also exhibits the 
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capability to show continuity in prediction through differentiating between various levels 

of probability of species occurrence (Phillips et al., 2006). Given that, it indicated the 

MaxEnt performance of maintaining higher values regarding AUC, TSS, kappa, 

sensitivity and specificity than BioClim and Domain models in the present studies. 

Sokoto North and South were the core areas of suitability as predicted by MaxEnt 

probability map in this study that supports a high density of animals (Table 4-7). This 

result is consistent with the findings by Tum et al. (2004) that applied a geographic 

information system to create a model for mapping risk of fascioliasis in cattle in 

Cambodia where cattle density was confirmed to be a risk factor for fascioliasis 

transmission. Fabiyi and Adeleye (1982) corroborated that fact with a report that in 

Nigeria the morphology of fascioliasis prevalence is consistent with zones of high animal 

density among others. 

The poor performance of BioClim and Domain models in this study might be due to the 

small number of occurrence records. However, a study by Beaumont et al. (2005) 

indicated the optimal performance of BioClim in species distribution modelling was 

related to the number of sample records of the species. Similarly, Tognelli et al. (2009) 

reported that small sample size could affect the performance of BioClim model 

negatively. In contrast, they added that the excellent performance of Domain methods 

does not rely heavily on sample size. In this study the poor performance of both BioClim 

and Domain models may be due to the nature of the species, the area of study and the 

number of samples available for modelling, as was concluded by other studies as a source 

of variation in performance among modelling techniques (Thuiller et al., 2006, 

Hernendez et al., 2006, Segurado & Araujo, 2004, Tsoar et al., 2007). It is, therefore, 

necessary to compare MaxEnt with other presence-only methods (Environmental Niche 

Factor Analysis ENFA) or presence-absence methods (Genetic Algorithm for Rule-set 

Prediction GARP, Random forests, boosted regression trees) in the study of fascioliasis 

in the semi-arid as such studies are beyond the scope of this research. 

4.3.2 Comparison of MaxEnt modelling scenarios 

   MaxEnt algorithm in all the six scenarios performed better than random predictions that 

were statistically significant. The threshold-dependent binomial test (Table 4-8) indicated 

independent test sites omission rates and fractional predicted area test that were 

statistically significant for all the six scenarios. Similarly, the AUC being the threshold-

independent measure indicated better than random scores for all the scenarios. The 
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Bioclim based scenarios (scenario 1, 2, 3 and 6) performed better than non-Bioclim 

scenarios. That reflected the suitability of  Bioclim variables to the biological mechanism 

of different species of animals and plants (Ramirez & Jarvis, 2010). In addition, the 

predictions of the potential distribution of F. gigantica by all the scenarios were 

reasonable as they all indicated almost the same ‘core’ areas of suitability. These 

probability maps, therefore, show the location of most of the most suitable areas around 

the central part of Sokoto State, in the provinces of Sokoto north and south extending to 

Goronyo, Wamakko, Shagari, Silame, Binji, Tangaza and Gwadabawa. These core areas 

of suitability  are cut across by river Rima with large expanse of ‘Fadama’ which is  a 

Hausa name that denotes  area liable to flooding or  ‘floodplains’ that can support 

irrigation due to being ‘low-lying and underlined by shallow aquifers’ mostly found 

adjacent to significant Rivers in Nigeria (Dan-Azumi, 2010).  

 These Fadama lands or floodplains support the growth of vegetation as they are 

susceptible to annual flooding due to being lower land surfaces that are located close to 

rivers that tend to overflow their banks during rainy seasons (Lockaby et al., 2008). A 

notable flooding event in Sokoto State was in 2010 as reported by Etuonovbe (2011)  

along the valley of river Rima that has submerged an extensive Fadama land. 

Subsequently, that might affect snail movement into new areas thereby aiding the 

prevalence of F. gigantica into these new areas (Bunza et al., 2008b). Also according to 

Dan-Azumi (2010), these fadama lands are used for crop farming throughout the year for 

the production of vegetables like onions, lettuce, tomatoes and also for animal grazing. 

Bunza et al. (2008) report that fadama lands are risky areas for fascioliasis prevalence 

due to the availability of grasses for animals to graze throughout the year as well as water 

in ponds and lakes that provide habitat for aquatic snails, the intermediate hosts of F. 

gigantica. 
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Figure 4-25: This is a fadama or floodplain in Goronyo province in Sokoto State. It shows water in lakes 

where animals including cattle, sheep and donkeys are drinking. At the same time, the animals graze on 

the vegetation. Moreover, if the animals are infected, their faeces will contain the cercariae which under 

optimum condition of temperature will aid the transmission of fascioliasis gigantica (Source: Field 

work,2016) 

 

 

4.3.3 Future prediction of suitable areas for Fasciola gigantica 

          All the models constructed under RCP 2.6 and 8.5 for 2050 and 2070 got AUC 

scores greater than random at identifying suitable environments for F. gigantica in 

Sokoto State. The only caveat is that future predictions are ‘speculative’ and full of 

‘uncertainty’ (Joyner, 2010) but never the less there was good agreement between the 

current distribution and future distribution of F. gigantica across the study area. That 

indicates that F. gigantica has established natural ecology over the central part of Sokoto 

State in the provinces of Sokoto north and south, Kware, Wamakko and Silame. In this 

study, the suitable areas have expanded between the current distribution and future years 

except for the early part of 2050 of RCP 2.6. Under RCP 8.5 the expansion was consistent 

in both 2050 and 2070 indicating the effects of climate change on disease dynamics in 

the developing world due to urbanisation and possibly lack of climate policy (van Vuuren 

et al., 2011). However, the use of species distribution models when complemented with 

interactions between species can provide the best estimates of the distribution of species 

under climate change (Davis et al., 1998). Parra-Olea et al. (2005) further report that due 

to lack of alternatives, species distribution models provide the most current applicable 

method for forecasting the impact of climate change on the spatial dispersal of species of 
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either plants or animals. Similar to the findings in this study MaxEnt has been used in 

modelling the potential geographical distribution of human parasitic disease in Africa 

using current and future climatic projections by Slater and Michael (2012). They found 

out that that the disease has expanded in its distribution due to climate change based on 

projections under two scenarios A2a and B2a by HADCM3 and CCCMA models for the 

year 2050. 

   Conclusion 

In this study, we have shown an approach to compare the accuracy of presence-only 

methods of species distribution models by modelling the geographic range of F. gigantica 

using MaxEnt, BioClim and Domain models. The findings revealed that the differences 

in the complexity of the modelling algorithms affected their accuracy performance. 

However, it is very significant to highlight that by modelling the geographic range of F. 

gigantica in Sokoto State in Nigeria in the present study; it does not indicate the precise 

limits of F. gigantica distribution in the whole of Nigeria. Instead, the modelling 

techniques applied have identified provinces that share the same climatic conditions with 

the known occurrence sites of F. gigantica. These modelling results can support 

biogeographic information and regard as a first effort to estimate the geographic range of 

F. gigantica in Nigeria.  

Our results suggest that future research should focus on increasing the extent of the study 

area as well as the spatial resolution of the environmental variables which may affect the 

predictive abilities of different modelling techniques (Karl et al., 2000, Hernandez et al., 

2006). This study based on species distribution modelling cannot be a perfect match to 

actual field survey (Hernendez et al., 2006, Tognelli et al., 2009) but can provide a 

necessary guide in the planning of appropriate target areas for the control of F. gigantica 

prevalence. In addition, this study identified BioClim variables as more suitable for 

modelling species distributions than non-BioClim satellite-based aggregated variables. 

Regarding variable contributions, soil moisture was the most significant determinant of 

fascioliasis risk in Sokoto State as revealed by MaxEnt based on both BioClim and non-

BioClim variables. In the study area, the modelling result showed that all the localities 

with extensive fadama land and high density of animal population coincided with the 

most suitable sites for fascioliasis prevalence. In the future, the model predicted the 
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expansion of fascioliasis incidence to new areas due to increased rainfall and temperature 

in some locations. 

Moreover, all the models in our study made use of climatic variables only without 

integrating other factors that affect livestock management in the study area. These factors 

according to Kantzoura et al. (2011a) also affect the modelling of a geographic range of 

fascioliasis. However, using this approach, the models of species distribution can be 

evaluated and MaxEnt being the best model can be more confidently applied by animal 

and public health planners in the design of the field survey for the control of F. gigantica 

prevalence or any parasitic pathogens with a similar pattern of transmission in the study 

area. 
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CHAPTER 5 

Forecasting the incidence of Fasciola gigantica risk using the species-specific 

model in Sokoto state 

5.1 Preface 

Chapter 4, demonstrated the use of generic species distribution models in modelling the 

geographic range of F.gigantica in the study area. The approach used presence-only 

techniques due to the availability of fascioliasis occurrence record at government 

department in Sokoto State. Maximum entropy was the best performing model that 

indicated the suitability of the study area for fascioliasis prevalence. However, the 

modelling technique did not indicate a spatio-temporal pattern of F.gigantica 

transmission, which is essential in designing control strategies against fascioliasis 

prevalence in the study area. 

Given that, this study in this chapter used the species-specific model in determining the 

transmission pattern of F.gigantica risk using the essential drivers - temperature and 

available moisture. 

Short term and long term simulation models for fascioliasis are not new in the UK 

(Ollerenshaw & Rowlands, 1959, Fox et al., 2011, Gettinby et al., 1974), in east Africa 

(Malone & Yilma, 1999, Yilma & Malone, 1998), in Switzerland (Rapsch et al., 2008) 

in Iran (Halimi et al., 2015). However, application of species specific models in either 

short term or long term in any part of West Africa remains rare. 

5.2 Introduction 

The essential climatic variables that effect the population of both the fascioliasis parasite 

and its intermediate host snail at each stage of development are air temperature, rainfall 

and potential evapotranspiration (Mas-Coma et al., 2009). Hence it is important to 

understand the role of these variables in the transmission of F. gigantica in order to 

‘appreciate’ how changes in these variables due to changes in climate may affect 

fascioliasis risk (Fox et al., 2011). According to Dinnik and Dinnik (1963) temperature 

within the range of 24OC-26OC support efficient growth of miracidia which develops 

from F. gigantica eggs in faeces while the temperature in excess of 43OC can lead to the 

eggs mortality. Furthermore, they added that temperature of above 16OC accelerates the 

growth of F. gigantica parasite larvae in the intermediate host. In addition, if the infection 

of the snail with F. gigantica parasite lasts for 46-50 days then the shedding of cercariae 

commences within a temperature range of 25OC-27OC (Asanji 1988). In the free-living 
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stage of the parasite after ejection from snail according to Suhardono and Copeman 

(2008) metacercariae is the new form of encysted cercariae that remains viable under an 

optimum temperature of 26OC and soil moisture that resulted primarily from rainfall 

(Mochankana & Robertson, 2018). It has also been emphasised by Mas-Coma et al. 

(2009) that the levels of rainfall and evapotranspiration play an important role in 

influencing the suitability of a habitat for snails being the intermediate host of F. 

gigantica.  

In Nigeria the prevalence of fascioliasis has been reported from all the ecological zones: 

in the North-west; (Danbirni et al., 2015, Bunza et al., 2008b), North-east (Karshima et 

al., 2016), in South-east (Opara et al., 2005),  South-West; (Afolabi & Olususi, 2016)  

north-Central (Elelu et al., 2016a). The disease was first detected in 1939 in Northern 

Nigeria impacting the mortality of goats as reported by Burke (Danbirni et al., 2015). 

Despite the period of over seventy years since the first incidence report and the economic 

aspect of the losses due to fascioliasis in Nigeria, only a few species-specific distribution 

models have been developed to guide the control against F.gigantica infections. 

 Given the understanding of the influence of climate in the outbreak of F.gigantica, short-

term climate models have been developed to forecast the incidence of fascioliasis in 

different parts of the world. These forecasts according to McCann et al. (2010b) and 

Halimi et al. (2015) are very valuable in simulating and predicting the outbreaks and 

seasonal pattern of fascioliasis transmission for the design of effective methods of 

control. In England and Wales, the fascioliasis forecast system was initiated by 

Ollerenshaw and Rowlands (1959) using the climate data obtained from weather stations 

across the island of Anglesey as well as fascioliasis prevalence data for ten years (1948-

1957). The values of potential evapotranspiration were computed using the Penman 

technique. The equation they applied to compute the risk index was Mt = n (R-PE+5), 

where n indicates the days with rain, R indicates rainfall and PE is potential 

evapotranspiration.  The significant limitations of this fascioliasis forecast indices were 

in demand for various datasets in the calculation of potential evapotranspiration and lack 

of distinguishing the specific requirements of the two species of fascioliasis in the 

equation (Malone & Yilma, 1999). In addition, the index did not use the growing degree 

days (GDD) which indicate the number of days with tolerable limits of temperature for 

the parasite's survival. However, the application of the climate-based forecast continued 

in different parts of the world with some modifications to accommodate other relevant 
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variables that contribute to the outbreaks of fascioliasis including growing degree day 

(GDD) and Thorntwaite water budget (Ruselle et al., 1984a, Malone & Yilma, 1999). 

This index created by Ollerenshaw is currently the basis for prediction of fasciolosis in 

the short-term for the farmers and other stakeholders in the UK by National Animal 

Disease Information Service (NADIS, 2016). 

  Fasciola gigantica is a tropical species that is endemic in different parts of Africa 

including Kenya, Malawi, Tanzania, Zambia, Zimbabwe, Mali, East Africa, Egypt, 

Botswana, Nigeria and some parts of Asia including Indonesia, Cambodia, Philippines, 

Iran, India, Pakistan, Burma, Nepal (Spithill et al., 1999b, Mochankana & Robertson, 

2018). In Africa, the application of the fascioliasis forecast system was first modified and 

adapted in East Africa recently where both species of fascioliasis thrived by Malone et 

al. (1998a). Although the incidence shows that fascioliasis occurs in other regions 

especially Africa, (Pfukenyi et al., 2006), no study has applied climate-based forecast 

models to predict F.gigantica incidence.  

 All the known previous forecast systems including short-term and long-term predictions 

of fascioliasis occurred within the temperate biomes. However, these predictions can be 

useful in in determining spatio-temporal variability in the prevalence of fascioliasis in 

some countries of the world especially in West Africa where such studies are elusive. 

Also, these models can assist the farming community in formulating effective control 

strategies. The availability of HADGEM2-ES with simulations of fine scale climate 

parameters provides the means of making a robust long term future projections.  This 

study used the climate data obtained from HADGEM2-ES and from current climate data 

in combination with modified Yilma and Malone index that was itself a modification of 

Ollerenshaw and Rowlands (1959). That is to stimulating how short-term and long-term 

changes in climate will alter F.gigantica risk in the future up to 2070 under changes in 

climate based on two extremes of representative concentration pathways(i.e. RCP2.6 and 

8.5). Risk maps based on short-term (2005-2014), immediate past climate (1971-2000) 

and future climate RCP 2.6 2050, RCP 8.5 2050 and RCP 2.6 2070 to RCP 8.5 2070 were 

created to show the kind of influence that climate has on the risk of F.gigantica in Sokoto 

State, Nigeria. 
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5.3 Materials and Methods 

5.3.1 AIRS Data 

This research used near surface air temperature Atmospheric Infra-Red Sounder (AIRS 

,AIRX3STM) of monthly time series downloaded from  AIRS/Aqua level 3 Standard 

Physical Retrieval version 6 (AIRS + AMSU) with a spatial resolution of 1o by 1o from 

2005 to 2014 (https://disc.gsfc.nasa.gov/SSW/#keywords=AIRX3STM%2006). As 

reported by Chahine et al. (2006) in May 2002, on the NASA platform three microwave 

instruments that include AIRS, the Advanced Microwave Sounding Unit (AMSU) and 

the Humidity Sounder for Brazil began operation on board the Earth Observing System 

(EOS) Aqua spacecraft. The AIRS instrument captures infrared within the atmospheric 

spectrum in  2378 bands of frequencies (channels) with a nominal resolving power of 

about 1200 extending to ‘over 95% of the global surface and returning about 3 million 

spectra daily’(Tobin et al., 2006). The AIRS products have wide applications including 

improvement in weather simulation as well as hydrological and energy cycle studies (Le 

Marshall et al., 2005, Tian et al., 2006). In order to improve the accuracy of AIRS 

products, a ‘cloud clearing’ of AIRS radiances were carried out using physical retrieval 

algorithm [PRA] (Chahine et al., 2006) in all the participating AMSU footprints and for 

the capturing of temperature and water vapour as explained by Susskind et al. (2003). 

In terms of validation, the temperature and precipitation products of AIRS correlated 

highly with the values retrieved by the global operational radiosonde network and 

radiosondes at dual Atmospheric Radiation Measurement locations (Southern Great 

Plains(SGP) and Tropical Western Pacific [TWP]) (Divakarla et al., 2006, Tobin et al., 

2006). The derivation of these results according to Chahine et al. (2006) were at the 

National Oceanic and Atmospheric Administration (NOAA)/National Environmental 

Satellite Data and Information Service (NESDIS). 

The AIRS monthly temporal resolution used in this study has the advantage of having 

‘lowest possible systematic errors’(Tian et al., 2013) and were available for 100% of the 

period of interest 2005-2014 without any gores(cells with no data). 

5.3.2 Rainfall 

Refer to section 4.2.3.6 in chapter 4 for the description of the rainfall dataset used in the 

present chapter 

https://disc.gsfc.nasa.gov/SSW/#keywords=AIRX3STM%2006
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5.3.3 NDVI 

The description of NDVI dataset used in this chapter refer to section 4.2.3.5 in chapter 4 

5.3.4 Soil moisture 

 The soil moisture variable used in this chapter was described in chapter 4 section 

4.2.3.7 

5.3.5 Past climate 

The study in this chapter obtained past climate from WorldClim described in section 

4.2.3.1 of chapter 4 

5.3 .4 Future climate scenarios 

For simulating future F. gigantica risk, this study utilised future WorldClim data from 

the Hardley Centre Global Environmental Model version 2- Earth system (HadGEM2-

es). Collins et al. (2011), described the model as consisting of two components which are 

atmospheric and oceanic. HadGEM2-es is preceded by HadGEM1 (Johns et al., 2006) 

with more flexibility in ‘allowing’ the computation of climate change impacts on global 

biogeochemical systems which can have both negative and positive feedbacks (Charlson 

et al., 1987, Cox et al., 2000, Jones et al., 2009). These feedbacks as noted by Collins et 

al. (2011) affect the development of a global future climate system.  

HadGEM2-ES future projection of climate was among the model outputs used for the 

elucidation of the fifth phase of the Coupled Model Intercomparison Project five 

(CMIP5) as well as being one of the model's offshoots from Intergovernmental Panel on 

Climate Change (IPCC) fifth Assessment Report (AR5).  The performance of the model 

regarding the prediction of yearly cycles of temperature and precipitation was 

significantly correlated to the ground-based stations over different parts of Africa and 

Nigeria (Dike et al., 2015).  

 This study utilised monthly climate change average data at a 1km spatial resolution for 

two 20-year time periods: 2041-2060, 2061-2080. These two time periods referred to as 

2050 and 2070 respectively. The emissions scenarios for each of these two time periods 

were based on Representative Concentration Pathways (RCPs) reflecting climate forcing 

from greenhouse gases in the atmosphere in 2100 for RCP8.5 (similar to IPCC: A1F1 

and B1 SRES) and RCP2.6 (below IPCC: SRES B1). The climate parameters used 

include monthly mean Temperature (OC), maximum minimum and mean temperature 

(OC) and total monthly precipitation (mm/month). 
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5.4 Forecast parametrisation 

This study adapted a fascioliasis forecast index system modified from Ollerenshaw and 

Rowlands (1959) and applied in East Africa by Malone et al. (1998a). The index referred 

to as a water-based system (Afshan et al., 2014) was based on thermal and soil moisture 

requirements of F. gigantica. The index was calculated using an empirical equation that 

incorporated the use of GDD, rainfall and evapotranspiration in determining the level of 

risk for fascioliasis transmission:  

 Index 1 = (GDD ×  Z) ×
Rain – PET

25
, If Rain − PET > 0,    equation 1   

where Z implies days with excess rain and 25 is correction factor to reduce the surplus 

water to 2.5cm 

𝐼𝑛𝑑𝑒𝑥 2 = 𝐺𝐷𝐷 × 𝐷𝑎𝑦𝑠 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ, 𝑖𝑓 (𝑅 − 𝑃𝐸𝑇 × 0.8) > 0 … … … … … 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2 

        where GDD = Growing degree days 

        R= Rainfall (mm/month)  

         PET= Potential evapotranspiration (mm/month).   

    GDD assumed that the developmental stages of a living organism occur within some 

favourable limits of temperature. At the extremes of these limits, the survival of the 

organism would be threatened (Ruselle et al., 1984b). GDD was computed as the monthly 

mean temperature minus the base development temperature (Valencia-López et al., 2012) 

for the F. gigantica which is 160C (Dinnik & Dinnik, 1963). The mean monthly 

temperature was calculated by obtaining the average of the maximum and minimum 

temperature as follows (Valencia-López et al., 2012) 

MnT = Maximum temperature +  minimum temperature/2 . equation 3 

GDD = (MnT − 16𝑂C ) ×  days of month equation 4 

  For the computation of potential evapotranspiration, the study used  the Hargreaves 

equation  (equation 5) where Ra is extra-terrestrial radiation (MJ, m-2 day-1) (Droogers & 

Allen, 2002) 𝑇𝑚𝑎𝑥 indicates the mean monthly values of the maximum daily air 

temperature (0C) while 𝑇𝑚𝑖𝑛 is the minimum mean monthly values of daily air 

temperature (0C), 𝜆 is the latent heat of vaporisation, 𝑇𝑎 is the average monthly air 

temperature (Najmaddin, 2017). 
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𝑃𝐸 = 0.0023(𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛)0.5(𝑇𝑎 + 17.8)
𝑅𝑎
𝜆     … … … . . 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 5 

 By entering the formula (equation 2) into Microsoft Excel 2013, this study calculated the 

fascioliasis forecast index.  Moreover, through the use of Excel, the study prepared Coma 

delimited (CSV) files for use in Geographic Information System (GIS) analysis. The 

interpretation of the index is 600= no risk, 601-1,500= low risk; 1500-3000=moderate 

and above 3000 high risks.  

 In  equation 1, subtracting the value of potential evapotranspiration multiplied by 0.8 

(PET× 0.8) from rainfall if greater than zero indicates availability of soil moisture storage  

at the surface of 2.5cm of  soil   based on a Water Budget model (Malone et al., 1998b, 

Yilma & Malone, 1998, Valencia-López et al., 2012). In the present study only index 2 

was used as applied by Valencia-López et al. (2012) due to its relevance in accounting 

for soil water availability in the top 2.5cm that suits F. gigantica life cycle (Yilma & 

Malone, 1998). Also, both indexes are similar (Fuentes et al., 2016) but differ in the 

accumulation of surplus water from the index 1 that is consistent with the life cycle 

requirements of the intermediate hosts of F. hepatica (Yilma & Malone, 1998). 

5.5 Proposed Modification to the forecast indices for semi-arid ecological zones                

  This study investigated the use of soil moisture instead of rainfall in the calculation of 

fascioliasis index. Although in the semi-arid the presence of moisture is the most crucial 

determinant that is constraining ‘ecosystem processes’ (Lu et al., 2011), there were some 

months with more available soil moisture than potential evapotranspiration as identified 

by this research. Consequently, the presence of soil moisture is always critical for the 

completion of fascioliasis lifecycle and the activities of its intermediate host's snails 

(Malone et al., 1998a, Spithill et al., 1999a, Mas-Coma et al., 2009). In addition, in the 

previous chapter maximum entropy modelling has revealed the role of soil moisture as 

having the highest contribution in the prevalence of F. gigantica in the study area.  

Despite its simplicity, the proposed index can be valuable since it provides an alternative 

to the use of rainfall variable that lasts for only a few months especially in the semi-arid 

parts of west Africa (Barbé et al., 2002). 

The index was calculated monthly based on ten-year averages climate data from the 

satellite in line with a new formula that is equally proposed for semi-arid in tropical areas 

as follows: 

𝐼𝑛𝑑𝑒𝑥 3 = 𝐺𝐷𝐷 × 𝐷𝑎𝑦𝑠 𝑖𝑛 𝑚𝑜𝑛𝑡ℎ, 𝑖𝑓 (𝑆𝑀 − 𝑃𝐸𝑇) > 0 … … … … … 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 6 
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where 

 SM= soil moisture (mm/month) 

PET = potential evapotranspiration (mm/month) 

5.6 The study design 

For each of the 23 provinces in Sokoto State, a monthly F. gigantica climate-based 

forecast index was computed using the constructed monthly climate forecast model based 

on the knowledge of life cycle needs of fascioliasis. These provinces constitute the four 

agricultural zones in Sokoto State as shown in Figure 5-2. The study utilised long-term 

climate data from WorldClim (1970-2000) being the base line climate, the short-term 

climate data from satellite 2005-2014 and then the future projection of the long-term 

years (2050 and 2070) based on Representative Concentration Pathways (2.6 and 8.5) in 

examining the seasonal transmission pattern.  

5.7 Statistical validation of climate variables and forecast Index  

In order to validate the use of future climate variables in the simulation of the forecast 

indices, this study compared quantitatively the WorldClim baseline (1970-2000) climate 

data with six ground-based stations in the Northwest ecological zone of Nigeria. The 

climate data within this temporal range was well ‘refined’ and are an expansion of the 

first version (Fick & Hijmans, 2017) that were used as the basis for projection of future 

climate by various earth models (Hijmans et al., 2005). These stations and their spatial 

coordinates are: in Sokoto State (12.55ON, 5.12OE) Kano state (12.3ON, 8.32OE), Kaduna 

state (10.42ON, 7.19OE), Katsina state (13.05ON, 7.41OE) Zamfara (12.1ON6.42OE) and 

Kebbi state (10.53ON, 4.45OE) as shown in Figure 5-1. Furthermore, this study obtained 

climate data based on daily maximum temperature, minimum temperature and rainfall 

for 1970-2000 for these stations. The correlation coefficient (equation 7) was used in 

assessing the level of agreement between baseline climate and each of the weather 

stations in Northwest Nigeria in respect of these variables. The appropriateness of this 

technique employed was evident in the validation of satellite data by Dike et al. (2015) 

through comparison with ground based stations in Africa and across the whole of Nigeria. 

Also, root-mean-square-error (RMSE) (equation 8) was also used as a means of 

calculating the differences between the predicted (WorldClim data) and observed 

(stations data) as employed by Fick and Hijmans (2017) in their production of WorldClim 

baseline data. 

 Correlation coefficient denoted as r calculated as;  
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𝑟 =
𝑛 ∑ 𝑥𝑦 − (∑ 𝑥)(∑ 𝑦)

√(𝑛 ∑ 𝑥²) − (∑ 𝑥)² √(𝑛 ∑ 𝑦² ) − (∑ 𝑦)²
    … … … 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 7 

 where x and y are the observed climate value and the estimated value respectively, and 

n is the number of records 

𝑅𝑀𝑆𝐸 = √
∑ (𝑃𝑊 − 𝑂𝑆)2𝑛

𝑖=1

𝑁
   … … … … … . . 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 8 

𝐵𝐼𝐴𝑆 =
∑ (𝑃𝑊 − 𝑂𝑆)𝑁

𝑖=1

∑ 𝑂𝑆𝑁
𝑖=1

      … … … … … … . 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 9 

 

where PW stands for the predicted WorldClim data and OS indicates observed stationed 

data while N implies the total number of records. 

A statistical test was also implemented to determine the significance of the correlation 

between the observed and the simulated values using the p-value  (Harris & Jarvis, 2014). 

In this study, a paired t-test was used to calculate the statistical significance of the 

relationships between the means of the two data sets at 95% confidence level. The null 

hypothesis that was tested using Minitab 17 statistical software based on the statement 

that the difference between the means is zero (with 95% confidence). 

Fascioliasis infection prevalence data for each of the 23 provinces in Sokoto State was 

collected from government documents at the Ministry of Animal Health, Sokoto State. 

This data was divided into agricultural zones (Table 1). Only the data from Sokoto zone 

was generated from abattoir while the rest were through slaughter slabs. The validation 

was done also using correlation coefficient tests (Afshan et al., 2014) to evaluate the 

relationship between the forecast indices and some significant predictor variables 

obtained from satellites which include annual averages of rainfall, potential 

evapotranspiration, soil moisture and NDVI.  

Table 5-14:  Summary of F. gigantica prevalence reported in the four agricultural zones of Sokoto State. 

Agricultural zone Number of units Prevalence mean 

Standard Error  

Method of detection 

Gwadabawa zone 7 62(SE 9.83) SS 

Isa 5 66.3(SE 11.7) SS 

Sokoto 7 77.08(SE 6.79) AS 

Tambuwal 4 106.57(SE 5.3) SS 

AS= Abattoir survey, SS=Slaughter slab 
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Figure 5-16: weather stations in north western Nigeria 
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G  
Figure 5-17: Map of Sokoto state showing the four agricultural zones 

 

 

Figure (5-3) shows the technique (flowchart) employed in achieving the objectives of 

this chapter. 
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Figure 5-18 Figure shows the flowchart adopted in this chapter 

 

5.8 Results 

5.8.1Comparison between baseline climatic data estimated from WorldClim with 

ground-based stations. 

Figure 5-3 shows the baseline monthly average climate data on precipitation from 

WorldClim and the six ground-based stations.  The summary of the correlation coefficient 

statistics (Table 5-2) indicate that the r value between the baseline (past) precipitation 

data and all the six stations were high (r>0.9) and statistically significant at the 95% 

confidence level (see appendix). The lowest RMSE for monthly precipitation recorded at 

Sokoto station (14.24mm, bias=5.3) and highest at Kaduna station (67.2 mm, bias=44.79) 

with underestimation of Katsina station (24.23mm, bias=-10.75). For monthly maximum 

temperature, the level of correlations was high for all the stations (Figure 5-4) except for 

Yelwa (bias=-0.09) and Kaduna (bias=-2.88) but were all statistically significant 

(p<0.05) Table 5-3. For monthly maximum temperature, the RMSE ranged from 1.33 OC 

to 3.84 OC with a tendency towards underestimating the ground based stations except for 

Sokoto station. The relationship measured between the baseline monthly minimum 

temperature and the ground based measurements (Figure 5-5) were all high r > 0.7 (Table 
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4) and were all statistically significant (p<0.05). The RMSE were between 2.44 and 3.41 

with all negative bias except in Sokoto and Yelwa stations. 

 
Figure 5-19: Annual mean cycle of precipitation (mm/month) for the north-west ecological region of 

Nigeria from six ground-based stations quantitatively compared with WorldClim data using Katsina 

station. The results indicate relationships that were statistically significant (p=001) at 95% confidence 

level 
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Figure 5-20: Annual mean cycle of maximum temperature (OC) across the northwestern ecological 

region of Nigeria from six ground-based stations quantitatively compared with WorldClim data using 

correlation coefficient. 

 

 
Figure 5-21: Annual mean cycle of minimum temperature (OC) across the northwestern ecological 

region of Nigeria from six ground-based stations quantitatively compared with WorldClim data using 

correlation coefficient. 
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Table 5: 2: Correlation coefficient between mean monthly precipitation WorldClim and weather stations 

in northwestern Nigeria 1970-2000. 

 WorldClim Sokoto Yelwa Gusau Katsina Kano Kaduna 

WorldClim 1       

Sokoto 0.99 1      

Yelwa 0.97 0.97 1     

Gusau 0.99 0.99 0.98 1    

Katsina 0.96 0.97 0.93 0.96 1   

Kano 0.99 0.99 0.96 0.99 0.98 1  

Kaduna 0.94 0.95 0.94 0.96 0.97 0.95 1 

 

Table 5-3: Correlation coefficient between maximum monthly temperature from WorldClim and weather 

stations in northwestern Nigeria 1970-2000 

 WorldClim Sokoto Yelwa Gusau Katsina Kano Kaduna 

WorldClim 1       

Sokoto 0.92 1      

Yelwa 0.47 0.71 1     

Gusau 0.84 0.97 0.83 1    

Katsina 0.94 0.94 0.45 0.86 1   

Kano 0.93 0.96 0.56 0.91 0.98 1  

Kaduna 0.58 0.81 0.96 0.91 0.60 0.70 1 

 

Table 5-4: Correlation coefficient between minimum monthly temperature from 

WorldClim and weather stations in north-western Nigeria 1970-2000 

 WorldClim Sokoto  Yelwa Gusau Katsina Kano Kaduna 

WorldClim 1       

Sokoto  0.80 1      

Yelwa 0.80 0.97 1     

Gusau 0.81 0.96 0.98 1    

Katsina 0.70 0.98 0.95 0.96 1   

Kano 0.75 0.99 0.97 0.97 0.99 1  

Kaduna 0.79 0.95 0.99 0.98 0.94 0.96 1 

 

In summary, the WorldClim temperature and precipitation data show high correlations 

with station data. That, therefore, indicate the reliability of using WorldClim data in 

modelling the spatial pattern of fascioliaisis transmission in this study. 
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5.8.2 Comparison of forecast indices with known areas of fascioliasis prevalence in 

Sokoto State 

The fascioliasis risk model showed that the distribution of F. gigantica risk was not 

homogeneous across the four agricultural zones of the country. Table 1 shows infection 

prevalence spreading across all the four agricultural zones in Sokoto State that are 

approximately of equal elevation (between 238m-334m see Table 5-6). Based on short-

term average rainfall (Figure 5-9) and soil moisture (Figure 5.10) the highest risk areas 

were localised in the Sokoto and Tambuwal zones. However, forecast index based on soil 

moisture indicated additional areas of risk in both Gwadabawa and Isa zones. 

Furthermore, forecast indices based on the long-term average of the past years (Figure 

5.11) showed higher risk in the same zones as the short-term with some few foci in 

Gwadabawa zones while Isa zone was left as reduced risk of fascioliasis infection. 

Similarly, in the year 2050, the forecast indices indicated similar areas of higher risk areas 

in both RCP 2.6 (Figure 5.12) and RCP 8.5 (Figure 5.13). The only difference is that in 

the former RCP the risk areas extended into more provinces in Isa zone than in 

Gwadabawa while in the latter RCP both Isa and Gwadabawa zones were having almost 

the same number of high-risk areas. Tambuwal and Sokoto zones maintained their status 

as higher risk zones in the year 2070, based on RCP 2.6 (Figure 5.14) and 8.5 (Figure 

5.15). In addition, these two RCPs showed almost similar risk pattern with Isa having 

more risk areas than Gwadabawa zone.   

      Regarding validation, both positive and inverse relationships were observed (Table 5-

7) based on spatial correlation coefficient statistics between the reported prevalence, 

forecast indices and the relevant climatic and environmental variables using short-term 

average in the study area. Spatial correlations (Figures 5.7 and 5.8) between forecast 

indices using rainfall variable (r=0.67) and soil moisture (r=0.37) respectively with 

recorded infections prevalence distribution of F. gigantica in 23 provinces of Sokoto 

State. The correlations between monthly averaged fascioliasis infections prevalence were 

significant with monthly averaged NDVI and rainfall (P<0.01), likewise monthly 

averaged soil moisture (p<0.05). However, a significant inverse relationships were 

observed between infections prevalence and mean monthly temperature (p<0.01) and 

potential evapotranspiration (p< 0.05). 
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Table 5-5: Descriptive statistics of the short-term climatic and environmental variables 

Variable Period Number of 

provinces 

Mean  SD SE 

Rainfall 2005-2014 23 763.86 62.8 13.09 

Soil moisture 2005-2014 23 220.45 12.78 2.66 

NDVI 2005-2014 23 0.33 0.06 0.013 

Mean Temperature 2005-2014 23 30.36 0.22 0.04 

Potential 

evapotranspiration 

2005-2014 23 207.13 2.88 0.60 

At 95% confidence level 

Table 5-6: Area, average temperature and mean altitude of the 23 provinces that constitute the four 

agricultural zones of Sokoto state, Nigeria. 

Agricultural 

zone 

Province Area(km2) Mean 

temperature(OC) 

Altitude 

(m) 

Gwadabawa Binji 557 33 238 

 Gada 1314  32 300 

 Gudu 3463 31 279 

 Gwadabawa 989 28 278 

 Illela 1244 31 277 

 Silame 787 32 248 

 Tangaza 2470 30 268 

Isa Goronyo 1703 31 300 

 Isa 2161 30 322 

 Rabah 2431 32 279 

 Sabon Birni 2357 31 334 

 Wurno 683 30 300 

Sokoto Bodinga 562 30 289 

 Dange Shuni 1208 31 311 

 Kware 553 32 268 

 Sokoto N 51 31 289 

 Tureta 2381 30 300 

 Wamakko 695 31 268 

Tambuwal zone Kebbe 2609 30 300 

 Shagari 1329 30 300 

 Tambuwal 1712 30 289 

 Yabo 787 31 279 
 

Table 5-7: Correlation coefficient between the reported Fasciola gigantica prevalence monthly aggregated 

across each of the 23 provinces in Sokoto State and the climatic variables. All the values are significant by 

student’s t-test at 99%. 

 F.prevalence Forecast 

Index 

NDVI Mean 

Temp 

PE

T 

Rainfall Soil 

moisture 

F.prevalence 1       

Forecast Index 0.7 1      

NDVI 0.6 0.6 1     

Mean Temp. -0.5 -0.4 -0.6 1    

PET -0.4 -0.5 -0.4 0.8 1   

Rainfall 0.8 0.6 0.7 -0.6 -0.3 1  

Soil moisture 0.4 0.3 0.4 -0.1 -0.2 0.5 1 
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Figure 5-22:  This indicates 10-year average (2005-2014) of Fascioliasis prevalence in Sokoto State as 

obtained from Ministry of Animal Health, Sokoto. The areas with high prevalence were more 

concentrated around the southern parts of the state that includes Kebbe, Shagari, Tambuwal, Yabo, and 

Sokoto north. 
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Figure 5-23: Comparison of forecast index using rainfall and potential evapotranspiration with reported 

F. gigantica prevalence in all the 23 provinces of Sokoto State, Nigeria. A high level of agreement is 

shown to exist between the reported F. gigantica prevalence in the study area and the forecast indices 

in respect of each province 

 

 

 
Figure 5-24: Comparison of forecast index using soil moisture and potential evapotranspiration with 

reported F. gigantica prevalence in all the 23 provinces of Sokoto State, Nigeria. That indicates some 

level of agreement between available soil moisture in each province and the risk of infection with 

F.gigantica in the study area. 
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Figure 5-25: Density map of Sokoto State showing forecast risk indices for F.gigantica. The model was 

developed using monthly climate and remotely sensed database on current climate (2005-2014).  The 

lowest limit of temperature used for the development of F.gigantica was 16OC. 
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Figure 5-26: Density map of Sokoto State showing forecast risk indices for F.gigantica. The model was 

developed using monthly climate and remotely sensed database on GLDAS soil moisture (2005-2014).  

The lowest limit of temperature used for the development of F.gigantica was 16OC. 
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Figure 5-27: Density map of Sokoto State showing forecast risk indices for F.gigantica. The model was 

developed using monthly climate and WorldClim database on past climate (1970-2000).  The lowest 

limit of temperature used for the development of F.gigantica was 16OC. 
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Figure 5-28: Density map of Sokoto State showing forecast risk indices for F.gigantica. The model was 

developed using monthly climate from HADGEM2-ES model based on RCP2.6 of 2050. The lowest limit 

of temperature used for the development of F.gigantica was 16OC. The high-risk areas spread from 

southern part of the state towards the centre leaving only a few areas with low risk. 
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Figure 5-29: Density map of Sokoto State showing forecast risk indices for F.gigantica. The model was 

developed using monthly climate from HADGEM2-ES model based on RCP8.5 of 2050. The lowest limit 

of temperature used for the development of F.gigantica was 16OC. The high-risk areas spread from 

southern part of the state towards the centre leaving more areas than (Figure 5-12) with low risk 

especially at the northern border. 
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Figure 5-30: Density map of Sokoto State showing forecast risk indices for F.gigantica. The model was 

developed using monthly climate from HADGEM2-ES model based on RCP2.6 of 2070. The lowest limit 

of temperature used for the development of F.gigantica was 16OC. The high-risk areas spread from 

southern part of the state towards the centre leaving only a few areas with low risk. 
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Figure 5-31: Density map of Sokoto State showing forecast risk indices for F.gigantica. The model was 

developed using monthly climate from HADGEM2-ES model based on RCP8.5 of 2070. The lowest limit 

of temperature used for the development of F.gigantica was 16OC. The high-risk areas spread from 

southern part of the state towards the centre leaving only a few areas with low risk. 
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Figure 5-32: Comparison of past and future risk. This indicates that fascioliasis risk increases from 

immediate past climate (1970-2000) towards the future years reaching peak in RCP 8.5 of 2070. This 

situation therefore demands appropriate control measures should be taken against the prevalence of 

F.gigantica in Sokoto state. 

 

 
Figure 5-33: This shows the spatial variability in soil water storage based on water budget across the 

23 provinces in Sokoto State. The differences in each province reflect the pattern of rainfall distribution 

over the entire state. 
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Figure 5-34: The temporal changes in the amount of soil water with July and August having the highest 

amount indicating a high risk of F.gigantica infection. 

 

 

5.8.3 Monthly forecast indices across all the provinces 

The seasonal pattern of transmission of F. gigantica in the study area is shown 

using the short-term average based on rainfall (Table 5-8) and soil moisture (Table 5.9), 

long-term [immediate past climate data] (Table 5-10), future RCP 2.6 2050 (Table 5.11), 

RCP 8.5 2050 (Table 5-12), RCP 2.6 2070 (Table 5-13) and RCP 8.5 2070 (Table 5-14). 

3-4 months of shedding period of cercariae per year from June to September is evident in 

most of the provinces in Sokoto State with a clear distinction between dry and wet seasons 

(Figure 5-19). Based on short term average (Table 5-8) cercariae-shedding commenced 

in June for only one province each for Gwadabawa and Isa zones, but two provinces in 

Sokoto zone indicated a restriction of shedding time to only three months. 

Similarly, with long-term average (past climate data) for which the shedding 

period was only for two to three months (July to September). About the future projection 

of cercariae shedding, the year 2050 witnessed a different prediction between RCP 2.6 

(Table 5-11) and  RCP8.5 (Table15-2) which were three to four months (June to 

September) and two to three months (July to September) respectively. The trend in the 

cercariae shedding is almost similar between RCP 2.6 (Table 5-13) and RCP8.5 (Table 

5-14) in the year 2070 where the shedding commenced in June to September for only 
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Sokoto and Tambuwal zones while Gwadabawa and Isa zones the simulation was in July 

to September only. 

 However, using soil moisture (Table 5-9) revealed longer cercariae shedding 

period from June-January (Figure 5-20) which indicated the extension into dry season 

months of October, November, December, and January. The shedding period extended 

to February for Silame in Gwadabawa zone, Rabah and Boding in Isa zone, Dange shuni 

in Sokoto zone and all the four provinces in Tambuwal zone. 

 

 
Figure 5-35: Monthly F. gigantica forecast (equation 2) for all the provinces in Sokoto State indicating 

a seasonal pattern of cercariae-shedding and the most appropriate times for preventing and curative 

measures for the whole state and other parts of North- western Nigeria. That is based on the 

consideration of rainfall variable only where two periods from January to May and from October to 

December are recommended both for prevention and curative measures against F. gigantica infections 

respectively. 
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Figure 5-36: Monthly F. gigantica forecast(equation 6) for all the provinces in Sokoto State indicating 

a seasonal pattern of cercariae-shedding and the most appropriate times for preventing and curative 

measures for the whole state and other parts of North- western Nigeria. That is based on consideration 

of soil moisture variable where one period from March to June is recommended both for prevention and 

curative against F. gigantica infections. 

 
Table 5-8: Monthly forecast and the patterns of cercariae-shedding for F. gigantica in the four agricultural 

zones of Sokoto State based on 10 year monthly average. The shedding commenced in June in some 

provinces such as Gada, Goronyo, Sokoto north and and south and ended in August. In Gwadabawa, there 

was no risk based on ten-year avearge as the total monthly rainfall recorded was lower than the monthly 

averaged evapotranspiration. The cumulative index for the state indicates medium risk based on a 10-year 

monthly average. 

AG 

ZONE 

Province J F M A M J J A S O N D Annual 

forecast 

GWD Binji 0 0 0 0 0 0 458 398 0 0 0 0 856 

 Gada 0 0 0 0 0 514 458 0 0 0 0 0 972 

 Gudu 0 0 0 0 0 0 458 0 0 0 0 0 458 

 Gwadabawa 0 0 0 0 0 0 0 0 0 0 0 0 0 

 Illela 0 0 0 0 0 0 458 0 0 0 0 0 458 

 Silame 0 0 0 0 0 0 458 398 0 0 0 0 856 

 Tangaza 0 0 0 0 0 0 506 0 0 0 0 0 506 

ISA Goronyo 0 0 0 0 0 558 503 0 0 0 0 0 1061 

 Isa 0 0 0 0 0 0 458 0 0 0 0 0 458 

 Rabah 0 0 0 0 0 0 0 398 0 0 0 0 839 

 Sabon B 0 0 0 0 0 0 458 0 0 0 0 0 458 

 Wurno 0 0 0 0 0 0 458 0 0 0 0 0 458 

SOK Bodinga 0 0 0 0 0 0 493 382 0 0 0 0 875 

 Dange S 0 0 0 0 0 0 0 398 441 0 0 0 840 

 Kware 0 0 0 0 0 0 458 0 0 0 0 0 458 

 Sokoto N 0 0 0 0 0 559 503 0 0 0 0 0 1061 

 Sokoto S 0 0 0 0 0 514 458 0 0 0 0 0 972 

 Tureta 0 0 0 0 0 0 0 398 441 0 0 0 840 

 Wamakko 0 0 0 0 0 0 458 398 0 0 0 0 972 

TAMB Kebbe 0 0 0 0 0 0 458 398 441 0 0 0 1298 

 Shagari 0 0 0 0 0 0 458 398 0 0 0 0 856 

 Tambuwal 0 0 0 0 0 0 458 398 441 0 0 0 1370 

 Yabo 0 0 0 0 0 0 458 398 0 0 0 0 856 
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Table 5-9: Monthly forecast and the patterns of cercariae shedding for F. gigantica in the four agricultural 

zones of Sokoto State based on 10-year average (soil moisture). The length of the shedding period extended 

when on soil moisture variable replaced rainfall in the computation of the risk index. In most of the 

provinces, shedding starts in July and ends in January of the following year. However, in Silame, Rabah, 

Bodinga, Dange shuni, Kebbe, Shagari, Tambuwal and Yabo the end of shedding was in February. The 

areas noted with a shorter period of cercarael shedding include Gudu, Gwadabawa, Tangaza, Goronyo 

and Bodinga. 

AG 

ZONE 

Province J F M A M J J A S O N D Annual 

forecast 

GWD Binji 545 0 0 0 0 0 458 398 442 530 519 516 3407 

 Gada 545 0 0 0 0 514 458 398 442 530 519 516 3921 

 Gudu 0 0 0 0 533 0 458 398 442 0 0 0 1832 

 Gwadabaw 0 0 0 0 0 514 458 398 441 530 519 0 2862 

 Illela 545 0 0 0 0 0 458 398 441 530 519 515 2862 

 Silame 545 426 0 0 0 0 458 398 441 530 519 515 2800 

 Tangaza 0 0 0 0 0 0 507 399 474 583 531 460 2955 

ISA Goronyo 0 0 0 0 0 0 503 427 468 561 521 467 2948 

 Isa 545 0 0 0 0 0 0 398 442 530 519 516 2949 

 Rabah 545 426 0 0 0 0 458 398 442 530 519 516 3833 

 Sabon B 545 0 0 0 0 0 548 398 442 530 519 516 3407 

 Wurno 545 0 0 0 0 0 548 398 442 530 519 516 3407 

SOK Bodinga 0 400 0 0 0 0 493 382 414 497 508 495 3189 

 Dange S 545 426 0 0 0 0 458 398 441 530 519 516 3834 

 Kware 545 0 0 0 0 0 458 398 441 530 519 516 2862 

 Sokoto N 505 0 0 0 0 559 502 427 468 561 521 467 4011 

 Sokoto S 545 0 0 0 0 514 458 398 441 530 519 516 3921 

 Tureta 545 0 0 0 0 0 458 398 442 530 519 515 2373 

 Wamakko 545 0 0 0 0 0 458 398 442 0 519 516 2877 

TAM Kebbe 545 426 0 0 0 0 458 398 442 530 519 516 3407 

 Shagari 545 426 0 0 0 0 458 398 442 530 519 516 3834 

 Tambuwal 545 426 0 0 0 0 0 399 442 530 519 516 3375 

 Yabo 544 426 0 0 0 0 458 398 442 530 519 516 3833 

Table 5-10: Monthly forecast and the patterns of cercariae shedding for F. gigantica in the four 

agricultural zones of Sokoto State based on the monthly average of past climate (1970-2000). The risk 

index values were more concentrated in August across all across all the provinces in the state. In September 

only Dange Shuni and Tureta had higher rainfall average than potential evapotranspiration. Also, the 

period of cercariael shedding was  2 to 3 months. The cumulative risk was also at the medium stage 

AG 

ZONE 

Province J F M A M J J A S O N D Annual 

forecast 

GWD Binji 0 0 0 0 0 0 0 276 0 0 0 0 276 

 Gada 0 0 0 0 0 0 333 290 0 0 0 0 623 

 Gudu 0 0 0 0 0 0 335 284 0 0 0 0 619 

 Gwadabawa 0 0 0 0 0 0 0 288 0 0 0 0 288 

 Illela 0 0 0 0 0 0 344 298 0 0 0 0 642 

 Silame 0 0 0 0 0 0 319 276 0 0 0 0 595 

 Tangaza 0 0 0 0 0 0 0 299 0 0 0 0 299 

ISA Goronyo 0 0 0 0 0 0 319 281 0 0 0 0 600 

 Isa 0 0 0 0 0 0 0 257 0 0 0 0 257 

 Rabah 0 0 0 0 0 0 328 273 0 0 0 0 602 

 Sabon B 0 0 0 0 0 0 312 270 0 0 0 0 582 

 Wurno 0 0 0 0 0 0 319 278 0 0 0 0 597 

SOK Bodinga 0 0 0 0 0 0 303 260 0 0 0 0 563 

 Dange S 0 0 0 0 0 0 299 257 287 0 0 0 843 

 Kware 0 0 0 0 0 0 325 278 0 0 0 0 603 

 Sokoto N 0 0 0 0 0 0 321 284 0 0 0 0 605 

 Sokoto S 0 0 0 0 0 0 331 276 0 0 0 0 607 

 Tureta 0 0 0 0 0 0 282 242 273 0 0 0 697 

 Wamakko 0 0 0 0 0 0 329 274 0 0 0 0 604 

TAMB Kebbe 0 0 0 0 0 0 264 231 252 0 0 0 746 

 Shagari 0 0 0 0 0 0 289 246 277 0 0 0 814 

 Tambuwal 0 0 0 0 0 0 287 243 275 0 0 0 805 

 Yabo 0 0 0 0 0 0 308 265 295 0 0 0 869 
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Table 5-11: Monthly forecast and the patterns of cercariae shedding for F. gigantica in the four 

agricultural zones of Sokoto State based on RCP 2.6 2050. In comparison with the past climate average, 

the shedding period increased by one month. Binji, Gwadabawa, Tangaza and Isa recorded higher total 

monthly average ranfall than potential evapotranspiration and hence posed high fascioliasis risk based on 

this future projection under RCP 2.6. The provinces with four months cercariae shedding period were 

Tureta, Kebbe, Shagari and Tambuwal. 

AG 

ZONE 

Province J F M A M J J A S O N D Annual 

forecast 

GWD Binji 0 0 0 0 0 0 450 383 440 0 0 0 1271 

 Gada 0 0 0 0 0 0 0 386 441 0 0 0 826 

 Gudu 0 0 0 0 0 0 0 361 417 0 0 0 778 

 Gwadabawa 0 0 0 0 0 0 449 381 438 0 0 0 1269 

 Illela 0 0 0 0 0 0 0 395 455 0 0 0 850 

 Silame 0 0 0 0 0 0 437 375 432 0 0 0 1244 

 Tangaza 0 0 0 0 0 0 0 392 451 0 0 0 845 

ISA Goronyo 0 0 0 0 0 0 430 366 420 0 0 0 1217 

 Isa 0 0 0 0 0 0 423 361 417 0 0 0 1201 

 Rabah 0 0 0 0 0 0 428 361 425 0 0 0 1214 

 Sabon B 0 0 0 0 0 0 432 369 422 0 0 0 1223 

 Wurno 0 0 0 0 0 0 437 369 429 0 0 0 1235 

SOK Bodinga 0 0 0 0 0 0 426 363 416 0 0 0 1205 

 Dange S 0 0 0 0 0 0 420 355 410 0 0 0 1185 

 Kware 0 0 0 0 0 0 442 372 437 0 0 0 1250 

 Sokoto N 0 0 0 0 0 0 439 369 429 0 0 0 1237 

 Sokoto S 0 0 0 0 0 0 434 364 423 0 0 0 1221 

 Tureta 0 0 0 0 0 467 403 346 396 0 0 0 1611 

 Wamakko 0 0 0 0 0 0 440 367 429 0 0 0 1237 

TAMB Kebbe 0 0 0 0 0 514 440 367 429 0 0 0 1751 

 Shagari 0 0 0 0 0 481 409 347 399 0 0 0 1636 

 Tambuwal 0 0 0 0 0 469 403 344 392 0 0 0 1608 

 Yabo 0 0 0 0 0 0 420 360 413 0 0 0 1192 

Table 5-12: Monthly forecast and the patterns of cercariae shedding for F. gigantica in the four 

agricultural zones of Sokoto State based on RCP 8.5 2050. The fascioliasis risk index under this future 

projection was highest in August and September. Also, the shedding period was slightly shorter across all 

the provinces except for Rabah, Bodinga, Dange Shuni, Sokoto north, Tureta and all the provinces in 

Tambuwal zone. 

AG 

ZONE 

Province J F M A M J J A S O N D Annual 

forecast 

GWD Binji 0 0 0 0 0 0 0 440 497 0 0 0 936 

 Gada 0 0 0 0 0 0 0 442 498 0 0 0 938 

 Gudu 0 0 0 0 0 0 0 446 506 0 0 0 951 

 Gwadabawa 0 0 0 0 0 0 0 437 495 0 0 0 932 

 Illela 0 0 0 0 0 0 0 0 451 0 0 0 961 

 Silame 0 0 0 0 0 0 0 434 489 0 0 0 923 

 Tangaza 0 0 0 0 0 0 0 420 471 0 0 0 891 

ISA Goronyo 0 0 0 0 0 0 0 423 478 0 0 0 901 

 Isa 0 0 0 0 0 0 0 415 473 0 0 0 887 

 Rabah 0 0 0 0 0 0 485 417 480 0 0 0 1382 

 Sabon B 0 0 0 0 0 0 0 442 498 0 0 0 939 

 Wurno 0 0 0 0 0 0 0 425 486 0 0 0 910 

SOK Bodinga 0 0 0 0 0 0 483 420 471 0 0 0 1374 

 Dange S 0 0 0 0 0 0 476 414 467 0 0 0 1356 

 Kware 0 0 0 0 0 0 0 430 492 0 0 0 922 

 Sokoto N 0 0 0 0 0 0 0 426 488 0 0 0 913 

 Sokoto S 0 0 0 0 0 0 493 422 482 0 0 0 1396 

 Tureta 0 0 0 0 0 0 459 405 453 0 0 0 1316 

 Wamakko 0 0 0 0 0 0 0 427 488 0 0 0 914 

TAMB Kebbe 0 0 0 0 0 0 434 389 413 0 0 0 1294 

 Shagari 0 0 0 0 0 0 467 406 455 0 0 0 1327 

 Tambuwal 0 0 0 0 0 0 498 426 488 0 0 0 1411 

 Yabo 0 0 0 0 0 0 479 418 468 0 0 0 1365 
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Table 5-13: Monthly forecast and the patterns of cercariae shedding for F. gigantica in the four 

agricultural zones of Sokoto State based on RCP 2.6 2070. The future projections based on this long-term 

average revealed fascioliasis infection risk occurring in three to four months. That shows an increase in 

total monthly average rainfall than potential evapotranspiration in June, July, August and September. The 

cumulative index was at the medium stage. 

AG 

ZONE 

Province J F M A M J J A S O N D Annual 

forecast 

GWD Binji 0 0 0 0 0 0 449 381 434 0 0 0 1264 

 Gada 0 0 0 0 0 0 0 383 435 0 0 0 818 

 Gudu 0 0 0 0 0 0 0 487 443 0 0 0 830 

 Gwadabawa 0 0 0 0 0 0 450 380 434 0 0 0 1263 

 Illela 0 0 0 0 0 0 0 394 447 0 0 0 841 

 Silame 0 0 0 0 0 0 437 374 428 0 0 0 1238 

 Tangaza 0 0 0 0 0 0 0 391 446 0 0 0 836 

ISA Goronyo 0 0 0 0 0 0 427 364 416 0 0 0 1208 

 Isa 0 0 0 0 0 0 423 359 411 0 0 0 1194 

 Rabah 0 0 0 0 0 0 426 360 419 0 0 0 1204 

 Sabon B 0 0 0 0 0 0 429 367 416 0 0 0 1264 

 Wurno 0 0 0 0 0 0 0 436 367 0 0 0 1227 

SOK Bodinga 0 0 0 0 0 0 427 361 411 0 0 0 1197 

 Dange S 0 0 0 0 0 0 418 355 405 0 0 0 1178 

 Kware 0 0 0 0 0 0 440 372 431 0 0 0 1243 

 Sokoto N 0 0 0 0 0 0 437 367 425 0 0 0 1228 

 Sokoto S 0 0 0 0 0 0 433 363 419 0 0 0 1214 

 Tureta 0 0 0 0 0 471 402 344 392 0 0 0 1608 

 Wamakko 0 0 0 0 0 0 440 367 425 0 0 0 1232 

TAMB Kebbe 0 0 0 0 0 435 377 332 356 0 0 0 1498 

 Shagari 0 0 0 0 0 485 407 346 395 0 0 0 1632 

 Tambuwal 0 0 0 0 0 471 403 344 389 0 0 0 1606 

 Yabo 0 0 0 0 0 0 422 358 408 0 0 0 1188 

Table 5-14: Monthly forecast and the patterns of cercariae shedding for F. gigantica in the four 

agricultural zones of Sokoto State based on RCP 8.5 2070. The shedding period under this RCP of climate 

change was mainly three months across all the provinces except for Tambuwal zone and Tureta. That 

indicates the spread of fascioliasis risk across all the localities in the future. 

AG 

ZONE 

Province J F M A M J J A S O N D Annual 

forecast 

GWD Binji 0 0 0 0 0 0 530 459 528 0 0 0 1516 

 Gada 0 0 0 0 0 0 0 460 432 0 0 0 993 

 Gudu 0 0 0 0 0 0 0 465 540 0 0 0 1005 

 Gwadabawa 0 0 0 0 0 0 0 435 510 0 0 0 946 

 Illela 0 0 0 0 0 0 0 471 546 0 0 0 1017 

 Silame 0 0 0 0 0 0 518 451 521 0 0 0 1481 

 Tangaza 0 0 0 0 0 0 0 468 543 0 0 0 1011 

ISA Goronyo 0 0 0 0 0 0 510 440 512 0 0 0 1462 

 Isa 0 0 0 0 0 0 502 434 504 0 0 0 1440 

 Rabah 0 0 0 0 0 0 505 436 510 0 0 0 1450 

 Sabon B 0 0 0 0 0 0 512 443 511 0 0 0 1466 

 Wurno 0 0 0 0 0 0 516 443 518 0 0 0 1476 

SOK Bodinga 0 0 0 0 0 0 504 437 501 0 0 0 1442 

 Dange S 0 0 0 0 0 0 496 431 497 0 0 0 1423 

 Kware 0 0 0 0 0 0 522 448 525 0 0 0 1495 

 Sokoto N 0 0 0 0 0 0 518 443 517 0 0 0 1478 

 Sokoto S 0 0 0 0 0 0 513 439 512 0 0 0 1463 

 Tureta 0 0 0 0 0 538 479 422 480 0 0 0 1919 

 Wamakko 0 0 0 0 0 0 519 443 518 0 0 0 1480 

TAMB Kebbe 0 0 0 0 0 500 452 406 435 0 0 0 1793 

 Shagari 0 0 0 0 0 553 485 423 481 0 0 0 1943 

 Tambuwal 0 0 0 0 0 538 481 422 474 0 0 0 1914 

 Yabo 0 0 0 0 0 576 499 436 497 0 0 0 2007 
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Figure 5-37: Open water bodies in Sokoto state, Nigeria (source: World Wildlife Fund WWF) 

 

 

5.9 Discussion 

The WorldClim data of the immediate past climate (often referred to as current climate) 

on maximum, minimum temperature and precipitation have indicated good agreement 

with the ground-based station's data in the north-west ecological zone of Nigeria, 

especially in Sokoto State. The accuracy between WorldClim data estimate and ground 

stations observations on temperature had the lowest RMSE than rainfall over the same 

period. That was because the temperature is determined by latitudes and elevation which 

makes it more consistent than rainfall estimates that have high spatio-temporal 

variabilities even across adjacent locations (Fick & Hijmans, 2017). Similarly, 

temperature achieves higher accuracy than precipitation between estimated and observed 
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values in other World climate surfaces (New et al., 2002). These findings suggests that 

the result of this study can be extrapolated to all the states in the north western part of 

Nigeria regarding designing control strategies for preventing infection from F. gigantica. 

In the present study, the validation was carried out using the available database based on 

liver condemnations from abattoirs and slaughter slabs. Fasciola gigantica infection 

prevalence record was in agreement with the NDVI, soil moisture, mean temperature and 

potential evapotranspiration. The record was the best database available as the veterinary 

health workers documented it after inspection of the slaughtered animals. However, this 

may not represent the complete number of livers infected with fascioliasis due to the 

tendency of butchers to resist full inspection based on their ‘attachment of too much 

monetary value to the liver’(Danbirni et al., 2015). Similarly, the first study in East Africa 

by Yilma and Malone (1998) showed that fascioliasis prevalence record in Ethiopia was 

significantly correlated to rainfall, available soil moisture, mean temperature and 

potential evapotranspiration. This fascioliasis forecast index was a modification of the 

model developed in the UK by  Ollerenshaw and Rowlands (1959) in formulating control 

strategies against F. hepatica prevalence. Their study has indicated the suitability of 

climate-based forecast index in the study of both species of fascioliasis.  In the same vein, 

a study was carried out in the province of Punjab in Pakistan by Afshan et al. (2014) that 

focused on investigating the impact of climate change on transmission risk of both human 

and animal fascioliasis. In their study, they also made use of climate-based fascioliasis 

forecast index which they used in formulating appropriate preventive measures against 

fascioliasis prevalence in that country. The study was validated by comparing the 

available fascioliasis prevalence record to forecast indices and NDVI through correlation 

coefficient. The main limitation of their study is that it was based on immediate past 

climate without looking at the effects of long-terms climate projections in predicting the 

risks of fascioliasis. 

The first report of fascioliasis dated back to 1939 in northern Nigeria according to 

Danbirni et al. (2015) and since then only a few studies  had been carried out to investigate 

its spatio-temporal variability across the country as a function of climatic variables. Even 

in northern Nigeria where the fascioliasis originated and spread to other parts of the 

country due to an abundant population of animals (Okiki, 2017) no species-specific 

distribution modelling study has been established to assess the dynamics of F. gigantica 

transmission. However,  in the UK, the fascioliasis forecast index created by Ollerenshaw 
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and Rowlands (1959) is still in use today as a basis for predicting the outbreak of 

fascioliasis to farmers with a reasonable level of reliability (Fox et al., 2011).  This study 

presents the first attempt in the modification of  Ollerenshaw and Rowlands (1959) index 

applicable to the semi-arid ecological zone of West Africa, in creating F.gigantica 

monthly forecast index.  

   The short-term risk map indicated the many localities in Gwadabawa and Isa 

agricultural zones were free of F.gigantica according to the forecast index. On the other 

hand, long-term map (immediate past climate) shows that the high risk of F.gigantica 

infection occurred in Sokoto and Tambuwal zones with a reduction of free risk areas as 

occurred in the short-term period. For example, localities such as Gudu, Tangaza, 

Gwadabawa, Isa, Illela, Goronyo, Sabon Birni and Kware were without any risk of 

F.gigantica during short-term but the risk increased in Isa, Gwadabawa and Tangaza 

based on long-term records. The two areas of highest risk corresponds to areas that are 

lying in the southern part of Sokoto State where the total rainfall is invariably higher than 

the northern part of the state. That is because in Nigeria and all parts of West Africa 

especially the Sahel, rainfall decreases from the southern coasts to the continental interior 

(Nicholson, 2013, Yosef et al., 2018) which equally reflects the pattern of rainfall in 

Sokoto State. According to Sultan and Janicot (2000), the rainfall over the Sahel or semi-

arid part of West Africa is influenced by the movement of moist air originating from the 

Gulf of Guinea that shifts the Inter-Tropical Convergence Zone and related rainfall 

maxima to the northernmost position in August.  

It is pertinent to note that the only model drivers used are temperature, rainfall and how 

they interacted with each other. Rainfall in sufficient quantity always aids the 

transmission of fascioliasis in all the localities in Sokoto State since the temperature is 

always above the 16OC threshold and hence not restrictive. It is explicitly clear that high 

risk occurred in areas with higher rainfall and soil moisture, which reflects the pattern in 

any area around the globe where fascioliasis thrives (Yilma & Malone, 1998, Pfukenyi 

et al., 2006, Fox et al., 2011, Afshan et al., 2014). Conversely, all areas that have higher 

temperature couple with low rainfall especially around the northern tip of Sokoto State 

that borders the Niger republic will face moisture deficit that threatened the survival of 

F.gigantica. The only caution to be exercised when referring to these areas as free of risk 

is when we consider the presence of lakes and water bodies (Figure 5-22) since 

temperature is always not a limiting factor.  
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The present study suggests that in Sokoto State, temperature and soil moisture are crucial 

in influencing the seasonal patterns of F.gigantica infection due to its effects on every 

stage in the life cycle of the parasite and activity of the intermediate snail. Nevertheless, 

the spread of the infection in various parts of the state requires the knowledge of the 

effects of other risk determinants that are related to herd, farmer status and pasture 

management.  Kantzoura et al. (2011a) reported that risk factors for fasciola infection in 

sheep and goats when combined with the use of environmental variables in modelling 

using GIS could provide ‘possibilities for regionally adapted control measures’(Beck et 

al., 2000, Bennema et al., 2009). However, this study was carried out in Thessaly, Greece 

and the risk factors considered were about the prevalence and transmission of F. hepatica 

and animals were restricted to sheep and goats. Similarly, drinking water sources such as 

ponds, streams and lakes were noted in Ethiopia as risk factors especially during the 

period of the dry season when animals congregate thereby aiding transmission of the 

infection (Njau et al., 1988). It is therefore essential to incorporate the knowledge of risks 

factors in complementing the use of climate-based models in order to design appropriate 

methods of controlling the transmission of fascioliasis infection in the study area and 

other parts of northern Nigeria. Also, this study did not utilise the existence of water 

bodies in building the model which according to Yilma and Malone (1998) are very 

significant factors in determining the transmission of fascioliasis infection, especially in 

the Sahel. 

In this study, the annual forecast index values for the year 2070 under RCP 2.6 and 8.5 

were higher than the year 2050 based on the preceding RCPs and the immediate past 

climate. That, therefore, suggests that the risk of fascioliasis in the study area is increasing 

reflecting the situation in most EU countries and is evident in the UK (de Waal T et al., 

2007, Fox et al., 2011). These findings are in agreement with the annual differentiation 

in the intensity of transmission across areas of fascioliasis prevalence in response to 

climate in the UK by Ollerenshaw and Rowlands (1959). The present study, therefore, 

suggests regional scale annual forecast can be initiated for north-west or entire northern 

Nigeria by using contemporary or current data from satellite or ground-based stations to 

run monthly climate-based fascioliasis forecasts system. 

This chapter further suggests that the appropriate timing for prevention of fascioliasis is 

November to January that is the period immediately after the raining season and the 

preventive period is February to May before the beginning of the raining season. During 
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the latter period, it is recommended to take drugs that are effective against the young and 

old flukes. 

Conclusion 

i. Fascioliasis forecast index based on GDD and water-based budget (GDD-

WB) using monthly climate data can be applied in Nigeria. Due to the 

relevance of these models they were adapted and applied in various parts of 

the world, and the results of such studies were published (UK, Colombia, 

USA, East Africa in Ethiopia and southern Brazil) 

ii. The results suggest that there is spatial variation in F. gigantica risk in Sokoto 

State and northern Nigeria with risk extending to more localities due to 

changes in climate under the two RCP scenarios in 2050 and 2070. 

 

iii. The results further suggest that temporal variation occurs in terms of 

transmission intensity in Sokoto State and northern Nigeria that calls for the 

establishment of yearly F. gigantica forecast to inform the livestock farmers 

of climate years that would result into high risk due to possibility of wet 

grazing areas that would require year round treatment during the rainy season. 

iv. Findings unique to this study suggest that soil moisture can be used instead of 

rainfall to calculate the risk of F. gigantica in the semi-arid ecological zone 

of Nigeria and West Africa. 

v. The appropriate time for the treatment of herd by adulticidal fluke drugs as 

this study suggests is February to May in northern Nigeria when the 

transmission is not high due to soil moisture deficit and is the period during 

which drugs are more effective in stopping the development of flukes to bile 

duct stages. 

vi. The spatio-temporal variability in transmission as the results of this study 

suggest indicating where both human and capital resources should be targeted 

for effective monitoring. The data obtained from such monitoring can enhance 

our understanding of the likely impacts of changes in climate on F. gigantica 

prevalence and information can be derived that can assist in designing 

appropriate adaptive measures.  
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CHAPTER 6 

Investigation of risk determinants of Fasciola gigantica infection in 

slaughtered cattle based on a cross-sectional survey in Sokoto State, Nigeria. 

6.1Preface 

In the previous chapters (4 and 5) species distribution models were used in determining 

the geographic distribution range and transmission pattern of F.gigantica in Sokoto State. 

These models were developed using abiotic or physical factors only. However, biotic 

factors or biological characteristics of animals affect the incidence of fascoliasis (Soberon 

& Peterson 2005, Yatswako & Alhaji, 2017). 

This chapter incorporated both biotic factors and abiotic factors in investigating their 

influence in F.gigantica infections prevalence among the slaughtered cattle at abattoirs. 

Binary logistic regression is a technique that applies to species distribution models in 

finding the associations between a binary response variable and explanatory or 

independent variables (Franklin, 2009b).  

6.2 Introduction 

Fasciola gigantica is a significant constraint on the health and wellbeing of 16 million 

cattle in Nigeria due to the increasing number of condemned livers in various abattoirs in 

all the geopolitical zones of the country (De Bont J et al., 1994, Elelu et al., 2016a). 

Conraths et al. (2011) reported that there is a change in the economic status of low-income 

class into middle class across the world. Hence, they added that the demand for animal 

products might rise by 30% up to 2030 which would stimulate animal production 

globally. In the Nigerian economy alone, the contribution of livestock specifically cattle 

according to the Central Bank of Nigeria, CBN (1999) was about 12.7% of total 

agriculture gross domestic product (GDP).  However,  disease such as fascioliasis with a 

cosmopolitan distribution is affecting animal’s productivity, and therefore the World 

Health Organisation has recommended the need to formulate appropriate strategies to 

control the disease (WHO, 2006). Also, the economic losses due to fascioliasis have been 

estimated to be over US$800 million per annum in Africa’s 200 million cattle population 

(Spithill et al., 1999b).  According to Orlandi et al. (2002), F. gigantica being one of the 

species of trematodes has recently been enlisted as a significant disease by Food 

Technologist’ Expert Panel on Food Safety and Nutrition.  
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It was highlighted by Bunza et al. (2008b) that two major categories of factors have been 

affecting the geographical distribution of F. gigantica which include climatic and 

environmental factors on one hand and livestock characteristics as well as associated 

practices of grazing management factors on the other hand. That has been corroborated 

by Tum et al. (2004) who reported that the risk of infection of fascioliasis could be 

‘influenced’ by the population of animals and also a system of animal grazing that 

determines their accessibility to both contaminated water and pasture.   This approach of 

study that focuses on  practices of herd management as potential risk factors when 

complemented with climatic factors can assist significantly in recognising infection 

sources and most effective way of designing control programs (Roberts & Suhadono, 

1996) 

There is a plethora of research on the influence of climate in the spatial dispersal and 

transmission pattern of fascioliasis across the various regions of the world (Yilma & 

Malone, 1998, Fox et al., 2011, Kantzoura et al., 2011b). In contrast, according to 

Adedokun et al. (2008), only a few known studies have investigated the effects of non-

climatic factors such as sex, breed of the animal and age in the prevalence of fascioliasis 

in different ecological zones of the globe. These non-climatic determinants influence 

indirectly on the parasite through the definitive hosts via livestock and incidentally even 

humans. 

In Nigeria, no known study focused on risk determinants based on herd management 

practices of slaughtered animals at abattoirs for F. gigantica infection. In northern 

Nigeria, a major producer of livestock to other parts of the country, the knowledge of risk 

factors for fascioliasis infection is scanty with only a few studies documenting risk factors 

at herd level and slaughtered cattle at abattoirs. (Schillhorn Van Veen et al., 1980, Ardo 

et al., 2014, Elelu et al., 2016a). This study presents the first effort at identifying the 

effects of both biotic and abiotic factors on fascioliasis infection in slaughtered cattle at 

an abattoir in Sokoto State. The research would serve as a guide in designing effective 

control measures against fascioliasis infection prevalence.  

6.3 Materials and methods 

6.3.1 Climate and environmental variables 

This chapter used yearly averages of relevant climatic variables that affect the life cycle 

of fascioliasis and its intermediate host snails in binary regression techniques as 

independent variables while the binary response was presence and absence of F.gigantica 
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infections. These variables include rainfall, temperature, NDVI, soil moisture and 

elevation. 

6.3.1.1Rainfall 

Refer to section 4.2.3.6 in chapter 4 for the description of the rainfall dataset used in the 

present chapter. 

6.3.1.2  Land Surface Temperature 

The land surface temperature used in this chapter was described in section 4.2.3.4 of 

chapter 4. 

6.3.1.3 NDVI 

The description of NDVI dataset used in this chapter refer to section 4.2.3.5 in chapter 4 

6.3.1.4 Soil moisture 

The soil moisture variable used in this chapter was described in chapter 4 section 

4.2.3.7 

6.3.1.5 Elevation 

This chapter used elevation as described in section 4.2.3.3 in chapter 4 

6.3.2 Study design and sampling 

 A cross-sectional survey was carried out in July to August to investigate the prevalence 

of F. gigantica infections and herd management practices risk factors in cattle in 10 

provinces of Sokoto State, northwestern Nigeria. These provinces were drawn to 

represent the four agricultural zones of Sokoto State, which encompass the entire 23 local 

government areas. The agricultural zones include  Sokoto, Isa, Gwadabawa and 

Tambuwal (Abubakar et al., 2013). In Sokoto zone Rabah was selected, in Isa zone, 

Goronyo was selected, in Gwadabawa zone, Silame was selected, in Tambuwal zone both 

Dange shuni and Shagari were selected. 

 A total of 300 slaughtered cattle were randomly sampled for F. gigantica infections. For 

each sampled cattle the owner of the herd from which it belongs was selected. Sarkin 

fawa (King of the abattoir) was very handy in tracing the owners of each of the sampled 

slaughtered cattle. 

6.3.3 Data collection 

This study administered two questionnaires to elicit relevant information regarding the 

biological characteristics of each slughtered cattle and socio-demographic status of the 

the owners of slaughtered cattle. The biological characteristics of each slaughtered cattle 
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include breed, its source, age, sex and age. In addition, cattle owners socio-demographic 

characteristics centred on herd management system and the knowledge of the disease 

among others. The disease fasciolosis is known in the study area by different names as 

butchers and herdsmen refer to it as “ciwon hanta” as well as “Fadama”. The latter name 

implies the association of the parasite with moisture due to its association with the marshy 

areas that are common along the river sides in the study area (Muhammad, 2007). 

6.3.4 Faecal test 

Faecal samples were collected from the rectum of each sampled slaughtered cattle with 

the aid of plastic gloves in line with Hansen and Perry (1994)  report. The plastic glove 

was carefully twisted inside out and taken under suitable conditions to Parasitology 

laboratory of Usmanu Danfodio Veterinary Teaching for analysis. Also, the bile from the 

gall bladder of each selected cattle was obtained along with the faeces.  

Sedimentation technique was applied by this study as adopted by MAFF (1986), Hansen 

and Perry (1994), Bunza (2007), Magaji et al. (2014), (Sah et al., 2018). The following 

equipment was required: Beakers, tea strainer, measuring cylinder, means of shaking the 

mixtures, test tubes, cover slips, teaspoons as well as a microscope. A beaker is a cylinder 

container made up of glass commonly used in the laboratory. The tea strainer is a device 

used in the filtering of small solid particles from the liquid. A test tube is a tube like a 

device made of glass with only one opening that can contain a small number of substances 

for laboratory testing. The microscope is an optical device that can magnify an image of 

either animal or plant or animal cells for viewing.  

In the laboratory, a quantity (3g) of faeces contained in a test tube was mixed with 40-

50ml of tap water. That would result in a solution with suspended particles of faeces. The 

tea strainer was used in filtering the suspension after blending with the aid of a fork and 

then poured into a test tube. In order to allow the suspension to settle properly the 

sediment was left for five minutes after adding 10% formalin. Then the suspended 

particles in the form of liquid substances referred to as supernatant were ejected with 

utmost caution. The resulting sediment containing eggs of fascioliasis in the test tube was 

centrifuged at 2000rpm.  These sediments were later mixed with the 5 ml of water and 

1ml of diethyl-ether and then gradually allowed to settle for another five minutes. That 

was also again followed by ejecting supernatant cautiously as done previously. 

Microscopic examination was carried out on the sediment that was strained with a drop 
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of methylene blue that was poured on to micro slide enclosed with a cover slip at a 

magnification of 10*10. 

6.3.5 Statistical techniques for data analysis 

In this study, the percentage of F. gigantica prevalence at each of the sampled locality 

was computed as the total number of cattle that were positive (with infection) divided by 

the population of all the sampled slaughtered cattle.  Chi-square is a statistical measure 

that can be applied in a situation where there is a categorical or discrete variable with the 

sole aim of testing the fitness of ‘each category’ to a ‘theoretical expectation’(McDonald, 

2008). Hence this technique was used in this study to evaluate the associations between 

the F. gigantica prevalence and practices of herd management and also cattle data. The 

equation for calculating chi-square is  

𝜒2 = ∑
(𝑂 − 𝐸)2

𝐸
… … … … … … … … … … … 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 1 

where O is the observed values about the total number of the infected and not- infected 

cattle, E is the expected value(McDonald, 2008). 

In the calculation of Chi-square the response variable was fascioliases cattle infection 

status which was represented as a binary variable (B=absence; A = presence) and the 

independent or predictor variables were the characteristics of the slaughtered cattle,  

practices of cattle management, individual cattle data and satellite based climate and 

environmental data. The coding of each factor as a response from the respondents was 

entered into excel spread sheet along with its corresponding status in terms of infection 

either positive (A) or negative (B) (see Tables A-4, A-5 and A-6 in appendix). For 

example gender (F=female, M=male), animal source (1= local, 2=exotic), herd 

acquisition (1=purchased, 2=gift, 3=inherited), water source (1=Dams/fadama/lakes, 

2=Tap/well water), grazing areas (1=fringes of lakes/rivers/ponds, 2=Market, 

3=government reserved areas), tribe (A= Hausa/Zabarma, B=Fulani). Similarly, the 

values of each climatic variable was entered in respect of the sampled slaughtered cattle 

across the selected localities (see Table A-6 in the appendix). This Chi-square technique 

was used in analysing the associations between fascioliasis infections and both biotic and 

abiotic factors by various studies (Kantzoura et al., 2011a, Magaji et al., 2014, Elelu et 

al., 2016a, Yatswako & Alhaji, 2017). 
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 In addition to Chi-square, this study applied binary regression in order to estimate the 

likelihoods of (example) infection prevalence as a function of independent or predictor 

variables; 𝜋 = Pr(𝑌 = 1|𝑋 = 𝑥) (Boonrak, 2017). This method was used to determine 

the proportion of fascioliases infections in the population of the sampled slaughtered 

cattle. Risk factors such as gender, age, the source of each cattle, the tribe of the herdsmen 

and climatic variables were used in assessing their influence in causing the infections 

among the slaughtered cattle. For example, consider any of these independent variable as 

X in causing the infection of fascioliases. So the likelihood of infection with the disease 

will depend on the influence of each risk factor. 

𝜋𝑖=Ρ𝑟
(𝑌𝑖=1|𝑋𝑖=𝑥𝑖

) =
𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖

)

1 + 𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥𝑖)
… … … … … … … … … . 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 2  

where Y represents categorical or binary variable indicating presence or absence of 

infection 

𝑌𝑖= 1 if the infection is present in the sampled slaughtered cattle 

𝑌𝑖= 0 if the infection is absent in the sampled slaughtered cattle within observation i 

Exp = is the odds of being in one of the categories 

X= (X1, X2.,…, Xk) being a collection of independent variables that can be nominal, 

categorical and the risk factors are age, gender, origin/source of cattle and the tribe of the 

herdsmen. 

The use of binomial regression in this study is appropriate since it involved examining 

the influence of a set of predictor variables on categorical or binary response variables 

(Stevens, 1980). This technique was very flexible in assessing the odds of becoming a 

member in one of the classes in the binary variable (infected and not infected) as a 

response to the influence of the set of independent variables. Minitab 17 Statistical 

Software was used in this study due to its flexibility in running the binary logistic 

regression model especially through the inclusion of various indices of goodness-of-fit 

as reported by Peng et al. (2002). The test of statistical significance for the binary model 

of logistic regression was analysed using the 𝜒2 test table of model coefficients. The value 
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of OR showed the odd ratio that is predicting the likelihood of the disease occurrence in 

the sampled slaughtered cattle at a 95% confidence interval. 

 In this study,  the goodness-of-fit which imply the fitness of the regression model to the 

data on F.gigantica infection often regarded as model’s predictive performance (Guffey, 

2012) was carried out using Hosmer-Lemeshow. This technique was described as an 

appropriate measure of calibration in the evaluation of the predictive performance of the 

logistic regression model (Steyerberg et al., 2010). The Hosmer-Lemeshow calibration 

indices evaluate the overall agreement between the model’s predicted likelihood of the 

disease occurrence and the empirical observation. The formula after (Hosmer & 

Lemeshow, 1980) is: 

𝐻�̂� = ∑
(𝑜𝑖 −𝑛𝑖�̅�𝑖   )2

𝑛𝑖�̅�𝑖(1−�̅�𝑖)
 𝐾

𝑖  ~Χ𝑘−2
2 … … … … … equation 3  

where oi the number of infected disease cases as observed outcome cases in group i, ni is 

the number of all the sampled cases as the totality of observations in group i, �̅�𝑖 is the 

mean predicted likelihood of disease occurrence in group i, and K is the number of risk 

factors or group in the model. 

Contrary to other measures of statistical test, in Hosmer-Lemeshow the P values of above 

0.05 indicate a good fit to the model (Steyerberga et al., 2001, Boonrak, 2017). That 

implies the absence of statistically significant differences for even a single group in the 

predictions of the number of events in comparison to the total number of observations 

(Guffey, 2012). According to Schuppert (2009) binary logistic regression has an 

advantage over linear regression of avoiding any assumptions of linearity, normality and 

about the sameness of variances. 

6.4 Results 

6.4.1Cattle management and slaughtered cattle data 

The characteristics of the owners of the slaughtered cattle in the selected localities during 

the field survey are shown in table 6:1. Males constitute 88.3% of the respondents while 

females were only 11.7 %. Likewise, the age group between 16-45 years were the 

majority (61.6%) while the group with the lowest number of respondents were those in 

the age category of 60 and above (mean age was 36.45, SD± 14.59, range   17-63 years). 

A more significant number of the respondents were married (71.7%) and without any 

formal education (73%). Most of the respondent acquired their cattle through inheritance 
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(56.7%) while those whose cattle were given as a gift to them constitute only 14.3%. The 

slaughtered cattle were reared mostly by Fulani (54%) then the Hausa/Zabarma ethnic 

group (46%). 

A total of 300 hundred cattle were slaughtered with a mean age (in months) of 44.1 (SD 

±17.302, range 23-74 months). Female cattle were slaughtered more (51.3%) than male 

cattle (48.7%). Regarding the breed composition, Sokoto Gudale was the most dominant 

(52.7%) followed by Red Bororo with 28.7% while the white Fulani breed constitutes 

only 18.7% of the slaughtered cattle. 

Table 6 -15 : Demographic characteristics of the owners of the slaughtered cattle in studied provinces in 

Sokoto State, Nigeria 

Demographic characteristics Frequency Percentage 

Sex   
Male 265 88.3 
Female 35 11.7 
Total 300 100 
Age(years)   
16-45 185 61.6 
46-60 90 30 
Above 61 25 8.4 
Total 300 100 
Marital status   
Single 85 28.3 
Married 215 71.7 
Total 300 100 
Education level (formal)   
Primary 80 43.3 
Secondary/ Higher institution 10 3 
None 220 53.7 
Total 300 100 
Source of cattle   
Purchase 87 29 
Inherited 170 56.7 
Gift 43 14.3 
Total 300 100 
Tribe   
Hausa/Zabarma 138 46 
Fulani 162 54 
Total 300 100 

 

6.4.2 Faecal test data 

A faecal test analysis of 300 samples from the slaughtered cattle in 10 provinces revealed 

that 92 (30.7%) were positive for the presence of F.gigantica parasite while 208 (69.3%) 

were unaffected. The spread of infections was found across all the surveyed localities 
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ranging from 26% to 43% (Table 6:2). The highest F.gigantica infection was documented 

in Kebbe (43%), Sokoto North (40%) and Shagari (40) (Figure 6:1). 

Table 6 -16: Slaughtered cattle F.gigantica infections from the provinces studied in Sokoto State, Nigeria 

Provinces Slaughtered 
cattle 

Sample size Infected Percent positive 

Goronyo 223 30 09 30 
Kebbe 119 30 13 43 
Wurno 196 30 09 30 
Gada 203 30 06 20 
Sokoto N 535 30 12 40 
Gudu 205 30 06 20 
Silame 251 30 08 26 
Shagari 121 30 12 40 
Dange shuni 108 30 08 26 
Rabah 124 30 09 30 
Total 2085 300 92 30.7% 
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Figure 6-38: Prevalence of fascioliasis infection across the 10 provinces studied in Sokoto State. The 

different dots indicate varying prevalence rates as recorded during the analyses of the faecal samples 

of the slaughtered cattle while dot that represents zero value shows areas that were not surveyed. 

 

6.4.3 Associations between risk factors and F.gigantica infections 

The relationships between the slaughtered cattle characteristics and F.gigantica 

infections were explored using Chi Square statistical test. The analysis revealed that there 

is a significant association between the characteristics of the slaughtered cattle that 

bordered on the source of cattle (from either local or exotic), age and breed and 

F.gigantica infection. However, the relationship between gender of the slaughtered cattle 

and fascioliasis infection was not significant (P>0.05) as shown in Table 6:3. 

The association between the practices of cattle management with F.gigantica infection 

was investigated in Table 6:4. The respondent’s responses regarding how they acquired 

the slaughtered cattle, the source of drinking water for their cattle as well as the tribes of 

the cattle holders were significantly associated with the F.gigantica infection. This study 
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further confirmed that the type of pastures where the slaughtered cattle of the respondents 

grazed was not significantly associated with fascioliasis infection. 

The climatic variables such as temperature, NDVI, rainfall, soil moisture and elevation 

were found to be associated with F.gigantica but not significantly as shown in table 5. 

Table 6-17:  Association between the slaughtered cattle characteristics and F.gigantica infection in 

selected abattoirs and slaughter slabs in Sokoto State. 

Risk factors Chi-Square df P-Value 

Animal source 10.05 1 < 0.001*** 

Age 28.96 1 < 0.001*** 

Breed 5.40 1 <0.05*** 

Gender 2.16 1 >0.05 

***= significant test 

Table 6-18: Association between practices of herd management and F.gigantica infection in selected 

abattoirs and slaughter slabs in Sokoto State. 

Risk factors Chi-Square df P-Value 

Cattle/herd  acquisition 14.40 1 < 0.001*** 

Grazing areas 0.25 1 >0.05 

Water source 8.69 1 <0.05*** 

Tribe 17.41 1 <0.05*** 
 

Table 6-19: Association between Climatic factors and F.gigantica infection in selected abattoirs and 

slaughter slabs in Sokoto State 

Risk factors Chi-Square df P-Value 

Temperature 1.50 1 > 0.05 

NDVI 0.52 1 > 0.05 

Rainfall 0.05 1 > 0.05 

Soil moisture 0.03 1 > 0.05 

Elevation 0.00 1 > 0.05 

 

6.4.4 Effects of risk factors on fascioliasis infection   

The result of the binomial logistic regression is shown (in Table 6:6) explains the effects 

of the source or origin of cattle, age, breed and gender on F.gigantica infection. All these 

factors were statistically significant (P<0.05) except gender (P>0.05). The Hosmer-

Lemeshow test indicated that the model fitted the data well (P=0.716). Moreover, the 

analysis showed that the source of animals that is weather exotic or local was not related 

to an increased likelihood of F.gigantica infections (OR: 0.2734; 95% confidence interval 

CI: 0.1137-0.6570). Age of cattle more significant than 24 months was found to be more 

likely to fascioliasis infection (OR: 1.0498; 95% CI: 1.0305-1.0695) than the younger 

ones. The breed of cattle of being either white Fulani, Red Bororo and Sokoto Gudale 

was associated with an increased likelihood of infection with F.gigantica  (OR: 1.5934; 
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95% CI: 1.0641-2.3860). Male cattle were 0.6 times less likely to be infected with 

F.gigantica (OR: 0.6213; 95% CI: 0.3302-1.1688) than female cattle. 

The likelihoods for F.gigantica infection due to the practices of cattle management were 

shown in table 6:7. The ways the cattle were acquired either through inheritance, been 

purchased from the market or received as a gift was found to be related to increased 

probability of fascioliasis infection (OR: 1.9700; 95% CI: 1.3612-2.8510). Similarly, 

cattle belonging to Fulani were more likely to be infected with F.gigantica (OR: 3.1229; 

95% CI: 1.7959-5.4303) than those cattle that belonged to Hausa/Zabarma ethnic groups. 

However, grazing areas and source of drinking water for cattle were found to be 

associated with decreased likelihood of infection with F.gigantica(OR: 0.8980; 95% CI: 

0.5895-1.3679) and (OR: 0.3539; 95% CI: 0.1696-0.7381) respectively. The model that 

used practices of cattle management associations with the likelihood of infections with 

F. gigantica was well fitted according to the Hosmer-Lemeshow test (P=0.644). 

Climatic factors and their associations with the probability of infections with F. gigantica 

is shown in table 7. Although the associations of all the variables in the model were not 

statistically significant (P>0.05), the data fitted the model as revealed by the Hosmer-

Lemeshow test (P=0.984). Elevation has an association with increased likelihood of 

infection with F.gigantica infections (OR: 1.0004; 95% CI: 0.9796-1.0216). NDVI (at 

95% confidence interval) indicated an increased likelihood of infection with fascioliasis 

((OR: 0.1753; 95% CI: 0.0016-19.7182). 

Table 6-20: Slaughtered cattle characteristics and the likelihood of F.gigantica infection using binary 

logistic regression 

Risk factors Odds Ratio 95% Confidence Interval 

Animal source 0.2734 (0.1137-0.6570) 

Age 1.0498 (1.0305-1.0695) 

Breed 1.5934 (1.0641-2.3860) 

Gender 0.6213 (0.3302-1.1688) NS 

 

Table 6-21: Practices of herd management and the likelihood of F.gigantica infection using binary 

logistic regression 

Risk factors Odds Ratio 95% Confidence Interval 

Cattle/herd  acquisition 1.9700 (1.3612-2.8510) 

Grazing areas 0.8980 (0.5895-1.3679) 

Water source 0.3539 (0.1696-0.7381) 

Tribe 3.1229 (1.7959-5.4303) 
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Table 6-22: Climatic factors and the likelihood of F.gigantica infection using binary logistic regression 

Risk factors Odds Ratio 95% Confidence Interval 

Temperature 0.7904 (0.5422-1.1520) NS 

NDVI 0.1753 (0.0016-19.7182) NS 

Rainfall 0.9993 (0.9929-1.0057) NS 

Soil moisture 0.9963 (0.9531-1.0414) NS 

Elevation 1.0004 (0.9796-1.0216) NS 

 

6.5 Discussion 

This study presents the first efforts towards determining the prevalence and possible risk 

factors associated with the slaughtered cattle in Sokoto State, Nigeria. Not long ago, it 

has been reported by Moll et al. (2000) and Coles (2005)  that the conventional method 

of using drugs for the treatment of F.gigantica infection is no longer beneficial.  This 

situation, therefore, demands to investigate risk determinants associated with the 

slaughtered cattle in order to design a more accurate way of decreasing the infection and 

for the improvement of meat quality. 

 The sedimentation technique employed by this study to test for the presence of 

F.gigantica parasite revealed 30.7% infection. This percentage is higher than 27.6% 

reported by Magaji et al. (2014) which was based on only one abattoir in Sokoto 

metropolis. The prevalence rates recorded by Ardo et al. (2014) in Adamawa was 21.8% 

and also in south eastern Nigeria  Ikeme and Obioha (1973) reported 26% which were all 

lower than the prevalence rate reported in this study.  In Bauchi,  north central Nigeria 

Sugun et al. (2010) reported   76.9 %   and also Elelu et al. (2016a) recorded 74.9% in 

Kwara state north-central Nigeria. These variations in prevalence may be due to 

environmental factors and animal density between the areas of study. Also, separate cattle 

management systems employed by different localities may have accounted for such 

differences (Abunna et al., 2010).  The F.gigantica prevalence rate recorded in this 

research is higher than 26% obtained in the Sahelian area of Kenya by Mungube et al. 

(2006) but lower than 36.5% obtained in Uganda based on the study by Magona et al. 

(1999) but almost similar to 31.7% reported by Pfukenyi and Mukaratirwa (2004) in 

Zimbabwe. 

  Regarding age, the prevalence of F.gigantica infection was significantly more 

associated with older cattle then younger ones. This finding may be due to a decrease in 

immunity to fascioliasis infection in respect of the older cattle and comparatively higher 
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in younger ones. This view was supported by  Esch (1977) and  Anon (1992). Also, 

studies by Schillhorn Van Veen et al. (1980) and Pfukenyi et al. (2006) reported that older 

cattle were more susceptible to F.gigantica infection due to prolonged exposure at regular 

grazing sites. Similar to this study, older cattle were found by Ardo et al. (2014) had 

higher F.gigantica infection rate than the younger slaughtered cattle in Adamawa state, 

north-eastern Nigeria. This type of findings was also reflected in Tanzania by Nzalawahe 

et al. (2014) and Botswana by Mochankana and Robertson (2018). The study area 

composed of agrarian society and hence have been using cattle for various purposes 

including transportation and in ploughing. In that regard older cattle over time may have 

lost the ability to carry out such operations. So most of the respondents offer them for 

sale in exchange for younger ones that can work on farms and in the provision of milk. 

That, therefore, may be responsible for having a higher number of older cattle that were 

slaughtered in most of the abattoirs in Sokoto State, and perhaps some parts of Nigeria. 

Also, older cattle are significant preferences when the need to raise money for ‘religious’ 

and ‘domestic purposes’ arises as reported by Elelu  et al. (2016b). 

This study reveals that there is a statistically significant relationship between breeds of 

cattle and infection of F.gigantica in Sokoto State. Sokoto Gudale and Red Bororo were 

the most predominant breeds with higher prevalence rate. The variations in infection rate 

across different breeds may be attributed to physiology, immunology and genetics of each 

breed which according to Molina (2005) and Yatswako and Alhaji (2017) can influence 

‘resistance and resilience to F.gigantica infections’. Similar to the findings in this study  

Sokoto Gudale breed was having higher prevalence rates as reported by Magaji et al. 

(2014) in the abattoir of Sokoto metropolis. Contrary to our findings, Red Bororo had 

more infections then the other breeds in Adamawa by Ardo et al. (2014). In Botswana, 

also various breeds of cattle indicated differences in fascioliasis infection tolerance as 

reported by  Mochankana and Robertson (2018). 

Regarding the gender of the animals, in this female study cattle had a higher burden of 

F.gigantica infection (51.3%) than males (the bulls) (48.7%). Some reports in Nigeria by 

Yatswako and Alhaji (2017) and Ulayi et al. (2007) were in agreement with our studies. 

Fatima and Chislti (2008) also recorded a higher prevalence of F.gigantica in cows than 

bulls in Egypt. This imbalance in infection rate among the female cattle was due to 

reproductive processes that tend to undermine their immunity to F.gigantica infection. 

This observation got support from Soulsby (1982) and Schillhorn Van Veen ( 1997). In 
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contrast to our findings in some abattoirs in Gwagwalada and Jalingo in northern Nigeria 

Idris and Madara (2005)   and   Obadiah (2010) respectively reported bulls were more 

susceptible to fascioliasis infection than the female cows. 

 Analysis of modes of acquiring the ownership of cattle as a risk factor has indicated 

inheritance as a most crucial predictor of F.gigantica in the study area. That is because 

the act of keeping cattle in Sokoto State is a traditional farming practice that has been 

passed on from successive generations using the same methods of management. Hence, 

exposure of cattle to the risk of infection would increase owing to the high illiteracy rate 

among the cattle owners as confirmed by this study (Table1). A study in support of this 

observation was carried out by Elelu  et al. (2016b) who reported that the significant 

custodians of cattle in Nigeria have inadequate knowledge of risk determinants associated 

with animal diseases including F.gigantica. Similarly, tribe or ethnic background of the 

respondents proved to be a significant factor that has a high likelihood of increasing the 

risk of F.gigantica infections in Sokoto State. That is because Fulani ethnic group had 

the largest population of cattle not only in Sokoto state but the whole of 

Nigeria(FMAWR, 2008). They are described as pastoralist (Elelu  et al., 2016b) that are 

constantly on the move in search of water and grass for their animals. Even sedentary 

Fulani’s (those that area settled permanently at one place) in the study area inhabit 

settlements where the primary sources of water for their livestock are ponds, streams, 

lakes and irrigation sites. These sites present appropriate conditions for gathering of 

animals in search of pasture and for drinking which eventually aids the transmission of 

fascioliasis. This situation has already been captured in a study by Njau et al. (1988) and 

Durr et al. (2005).  

The fitness of the regression model used in this study has not only been limited to 

determinants of risk such as cattle characteristics, herd management and cattle holders’ 

status in increasing the likelihood of cattle infection with F.gigantica but also climatic 

factors.  The binomial regression model identified these climatic variables as important 

determinants of F.gigantica risks in the study area. Although these factors were 

statistically non-significant, the result reflects the advantage of biological characteristics 

as a more critical determinant of F.gigantica risk at individual cattle slaughtered at the 

abattoir. That is because in the present study (chapter 4 and 5) and other studies have 

demonstrated the significant roles of climatic and environmental conditions in 

influencing fascioliasis infection risks at different spatial units-local, regional and 
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continental levels (McCann et al., 2010a, Fox et al., 2011, Caminade et al., 2015, Malone 

et al., 1998a). Thus, the main conclusion of this study is that botic factors were more 

significantly affecting fascioliasis infections at individual slaughtered cattle at the 

abatoirs than abiotic factors. Similar to this study, Kantzoura et al. (2011a) reported that 

there was a non significant relationship between climatic risk factors and fascioliasis 

infection among sheep and goats using the binary regression model in Thessaly, Greece.  

6.5.1 Conclusions 

This study has indicated the prevalence of F.gigantica infections in slaughtered cattle in 

Sokoto State using coprological analysis. However, other techniques of testing for the 

presence of fascioliasis include a haematological and seropositive analysis which were 

very useful indicators but outside the scope of our study. Other studies have applied these 

approaches (Kantzoura et al., 2011a, Elelu et al., 2016a). Regression techniques are an 

essential tool in species distribution modelling(Franklin, 2009b). In that light, Cringoli et 

al. (2004) and Fuentes et al. (2006) added that new development in the study of diseases 

is to apply regression model to a specific area of study and then extrapolate the modelling 

predictions to a different area (s). 

Given that, extrapolation of the result of this study should be done cautiously as even 

within the north-west ecological zone of Nigeria variations may exist regarding risk 

factors examined in the present study.  Nigeria is a large country with diverse ecological 

conditions. Hence, there is a need for another study from the southern part in order to 

investigate potential risk factors affecting F.gigantica infections. Moreover, research on 

the influence of seasons on fascioliasis are limited (Adedokun et al., 2008, Sah et al., 

2018) future studies should incorporate such significant directions. Nevertheless, the 

effects of the risk factors that were investigated using regression model in this study can 

be precious in designing effective control methods for F.gigantica prevention in 

slaughtered cattle in Nigeria.  
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Chapter 7 

General discussion, Conclusions, and future research recommendations 

7.0 Introduction 

This study indicated the relevance of species distribution models in the predictions of the 

spatial distribution of F.gigantica in semi-arid Sokoto State. Despite non-inclusion of 

biotic factors ( such as competition between species, migrations or geographic obstacles 

to dispersal), the species distribution models using abiotic factors proved to be useful 

indicators of fascioliasis risk across different parts of the world (Fox et al., 2011, 

Caminade et al., 2015, Malone et al., 1998a, Islam et al., 2014, Khanjari et al., 2014). In 

addition, this research shows the relevance of both BioClim and satellite-based 

aggregated climate data in model construction. Besides, the study used the most recent 

field survey data on biological characteristics of slaughtered cattle and examined their 

associations with fascioliasis infections in the study area. 

Including the future climate data projections in both generic and species-specific models 

in this thesis was in appreciation of the dynamic nature of climate due to both natural and 

anthropogenic activities. Intergovernmental Panel on Climate Change (IPCC, 2007) 

projected that the world experienced a rise in temperature of 0.7OC since 1970 and 

towards the end of the 21st century the increase in temperature would be 1-6OC. In 

Nigeria, the climate of the current conditions indicated 0.014OC and 6mm day increases 

for temperature and rainfall between 1970 and 2000 respectively in all the ecological 

zones (Babatunde et al., 2011). Regarding future projections, Dike et al. (2015) reported 

potential changes in temperature and precipitation for northwest Nigeria under RCP 8.5 

of climate change scenario based on HADGEM2-ES model for the year 2080.  Also, the 

occurrence of extreme hydrological events recently caused severe floods across all parts 

of Nigeria including Sokoto State due to reduced frequency but heavy rains and higher 

evapotranspiration (Etuonovbe, 2011, Yusuf & Jones, 2014). These changes are 

disproportionately affecting developing countries like Nigeria and more pronounced in 

the northwest that encompass the study area. Regarding that, Diffenbaugh and Giorgi 

(2012)  described entire northwestern Nigeria as a hot spot of climate change. Thus it is 

essential to understand how this changes in climate at both temporal and spatial scales 

affect the distribution range and intensity of fascioliasis incidence using species 

distribution models in the study area. 
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 Chapter 4 compared presence-only generic species distribution models in determining 

the geographic range of fascioliasis and also applied the use of BioClim and satellite-

based variables in model constructions in different scenarios. However, general species 

model scenarios developed with only BioClim variables provided the most accurate 

predictions of the geographic distribution of F.gigantica infections in Sokoto State. That 

was because BioClim variables were more suitable than aggregated yearly averaged 

climate variables in influencing the biological machanism of plants and animal species 

(Kriticos et al., 2014, Reddy et al., 2015). In addition, the chapter examined the long-

term effects of climate projections on a future geographic range of F.gigantica.  

In chapter 5, the focused was on both short term and long term future projections of 

F.gigantica risk. The application of the index presents the first adaptation of fasciolaisis 

risk index using GIS analysis in semi-arid West Africa. Chapter 6 explored the 

associations between intrinsic and extrinsic factors on fascioliasis infections among 

slaughtered cattle in Sokoto State. Given that, the chapter examined for the first time the 

socio-economic characteristics of the owners of the slaughterd cattle and their 

relationships with F.gigantica infections in Sokoto state.  This chapter presents the 

general discussions, conclusions, and future research recommendations. 

7.1 Conclusions 

In this study, the overall aim was to develop spatial species distribution models to predict 

liver fluke (F.gigantica) in cattle, a case study of Sokoto State using relevant drivers 

(summarised at the end of chapter 1). To achieve this main aim the following specific 

objectives were accomplished: 

1. To compare the performance of MaxEnt, Domain, and BioClim in modelling the 

geographic range of fascioliasis. 

MaxEnt modelling technique has higher AUC than BioClim and Domain models and 

hence produced a more statistically significant spatial distribution range of fascioliasis in 

Sokoto State. Also, the use of threshold-dependent measures of accuracy such as 

sensitivity, specificity, TNR, FPR, and kappa all indicated MaxEnt as having the more 

significant performance.  MaxEnt also got higher scores than BioClim and Domain 

models based on TSS and biserial correlation measures of the accuracy. Given this, 

MaxEnt proved to be an appropriate modelling technique that suits the species and the 

study area. In addition, MaxEnt performed well due to some additional reasons. Firstly, 

MaxEnt is a presence-only technique whose performance is not affected negatively by a 
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few numbers of occurrence records (Phillips et al., 2006). This advantage makes it more 

applicable to third world countries where absence data for species distribution is scarce. 

Hence, the use of presence/absence techniques (such as GLM, GAM, Artificial Neural 

Network) in species distribution modelling presents some challenges in the study area.  

Secondly, the algorithm of MaxEnt is complex and deterministic in producing efficient 

modelling result (Elith et al., 2011). Given that, MaxEnt has upper hand in modelling the 

geographic range of both plants and animal species than regression techniques as 

previously reviewed (Pearce & Boyce, 2006, Phillips et al., 2006, Olden et al., 2008). In 

this study, the main benefits of using MaxEnt arise from their versatility regarding 

accountability for the relationships between fascioliasis prevalence, which is non-linear 

with each predictor variables. And secondly, the combined effects of associations of 

variables collectively on fascioliasis prevalence.  

In this study, the performances of MaxEnt were statistically significant (P<0.05) in all 

the accuracy measures employed in this research. In addition, the AUC scores were 

higher than random predictions (>0.5) in all the six scenarios that used a different 

combination of variables. 

2. To evaluate MaxEnt in modelling the spatial distribution of fascioliasis based on 

WorldClim derived climate data (BioClim) and satellite data using independent 

validation data. 

Given the preceding discussion, it is evident and reasonable for MaxEnt to identify soil 

moisture and rainfall as the dominant predictor variables across the Bioclim and non-

Bioclim scenarios in the study area. That, therefore, reflects the reality on the ground as 

the study area lies in the semi-arid ecological zone where the main source of moisture 

was  rainfall that lasts for only 3 to 4 months of a year (Abdulrahim et al., 2013). In 

addition, other secondary sources of moisture for the survival of the parasite were the 

existing extensive floodplains or fadamas, irrigation sites, areas adjoining perennial lakes 

and streams. Similar to the findings of this study Yilma and Malone (1998) developed 

the geographic information system (GIS) forecast model to predict fascioliasis using 

rainfall and temperature variables in Ethiopia, East Africa. The results revealed that areas 

of high soil moisture content resulting from rainfall were more risky areas for fascioliasis 

prevalence. Other areas of high risk as revealed by their study include terrains that were 

proximate to permanent water bodies as well as at the fringes of dams where dry season 

farming of crops was taking place. Khanjari et al. (2014) and Pfukenyi et al. (2006) also 
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reported that availability of  soil moisture was among the top predictors that aid the 

growth of the F. gigantica parasite into various stages. 

 Precipitation is identified by this study as very important variable that influenced the 

distribution of fascioliasis in Sokoto State, through seasonal supply of moisture needed 

for the dispersal, reproduction and free-living stages of fascioliasis (Andrews, 1999, 

Altizer et al., 2006, Mas-Coma et al., 2009). According to Bunza et al. (2008b), rainfall 

also influences the activities of infected snails in the distribution and transmission of 

fascioliasis. That illustrates the significance of rainfall in affecting every stage of the 

lifecycle of fascioliasis. However desiccation or moisture deficit conditions and dryness 

for some period will lead to mortality of the parasite (Spithill et al., 1999b). Fox et al. 

(2011) also reported that rainfall is one of the most influential factors in the prevalence 

of F. gigantica especially in the semi-arid ecological zones of the World. 

  The MaxEnt modelling also predicted mean diurnal temperature as the most important 

determinants of F. gigantica distribution in the study area. Due to the location of the 

Sokoto State in the tropics, the prevailing temperature condition hardly falls below the 

minimum value required for the completion of the life cycle of F. gigantica throughout 

the year (at optimum range of) 160 to 450 C (Saleha, 1991, Andrews, 1999, Graczyk & 

Fried, 1999, Fairweather et al., 1999, Spithill et al., 1999b, Mas-Coma et al., 2009, Fox 

et al., 2011).  According to Andrews (1999), the processes of embryonation and evolution 

in the life cycle of fascioliasis are being significantly influenced by temperature within 

tolerable limits that is between 230C to 300C. Valencia-López et al. (2012) further 

confirmed that temperature variables are very significant predictors of fascioliasis. 

Normalised Difference Vegetation Index (NDVI) is an index that assesses the density and 

greenness of vegetation and was found by this study to be a very significant predictor of 

F. gigantica distribution. The locations of most suitable areas lie in the fadama of Sokoto 

State that supports vegetation around lakes, ponds and streams. NDVI  ‘proved’ to be an 

essential determinant of risk due to fascioliasis (Afshan et al., 2014). In a similar 

development, Fuentes et al. (2001) and (Kantzoura et al., 2011b) described NDVI as an 

instrumental variable in the risk assessment due to fascioliasis. 

Elevation made a significant contribution to the modelling of fascioliasis distribution in 

this study. That is because of the relationships between elevation and hydrological, 

geomorphological as well as biological processes (Moore et al., 1991). Elevation also 
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affects the temperature regime, precipitation formation and in the flow and accumulation 

of rainfall water at lowland areas of the landscape which subsequently determines soil 

moisture availability (Franklin, 2009b). Moreover, soil moisture affects the growth of 

grass that animals feed on and if (the grass is) contaminated with cercariae aids the 

transmission of F. gigantica. In a related development, Zumaquero-Rı´os et al. (2013) 

and Rahman et al. (2017) report that low-elevation was found to be very suitable 

‘hotspots’ and ‘clusters’ for the prevalence of F. gigantica specifically in Asia and Africa. 

The example is given in Figure 4-25.  

The  Sokoto north and south being the core areas of suitability as predicted by MaxEnt 

probability map supports extensive fadama areas where agriculture including animal 

rearing, and food production are providing a livelihood for over 50,000 people (Adams, 

1993, Dan-Azumi, 2010).  Moreover,  Abubakar et al. (2013) reported that Sokoto north 

and south had higher soil moisture content in the lowland areas at the valley of river Rima 

where animal graze during most times of the year.  Similarly, such area supports a high 

density of animals (Table 4-7) which is consistent with the findings of a study by Tum et 

al. (2004) that applied geographic information system to create a  model for mapping risk 

of fascioliasis in cattle in Cambodia where cattle density was confirmed to be a risk factor 

for fascioliasis transmission.  Fabiyi and Adeleye (1982) corroborated that fact that in 

Nigeria the morphology of fascioliasis prevalence is consistent with zones of high animal 

density among others. 

.3. To predict the spatial distribution of fascioliasis in the future under scenarios of 

climate change based on two Representative Concentration Pathways (RCP2.6 and 

8.5) for two time periods of 2050 and 2070. 

Fascioliasis is a disease with the highest widespread globally, and according to Mas-

Coma et al. (2009), climate change has a significant impact on its present and future 

distributions. That is evident in this study where spatially the predicted areas were 

expanding between the current and future climatic condition due to climate change under 

RCP 2.6 and 8.5 for the years 2050 and 2070. It has also been reported that fascioliasis 

incidence is on the increase in EU member countries by de Waal et al. (2007) and also 

even in the U.K (VIDA). Therefore, the finding from this study illustrates the use of 

species distribution modelling specifically in developing countries in forecasting the 
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potential distribution of F. gigantica under future climate projections in the semi-arid 

ecological zone of West Africa. 

This study also revealed that precipitation and soil moisture were the most important 

factors that determined the geographic range of F.gigantica in the study area. Hence, the 

risk is expected to increase in the future in view of the simulated increase in these 

variables over the entire northwest ecological zones of Nigeria by some global circulation 

models including RCM, GFDL CM3 and CCSM4 (Vizy et al., 2013). That also supports 

the findings in this study, which indicated an expansion in the areal extent of suitable 

areas for F.gigantica prevalence based on RCP 2.6 and RCP 8.5 of the years 2050 and 

2070. 

4. To predict spatiotemporal changes in fascioliasis transmission risk through the 

use of the species-specific model under two Representative Concentration Pathways 

(RCP2.6 and 8.5) for two time periods of 2050 and 2070 in the study area. 

Chapter 5 revealed the use of rainfall and temperature variables in providing a sound 

indication of both short-term and long-term future risk of fascioliasis infections in the 

study area through the applications of species-specific models. The fascioliasis forecast 

index has its origin in the correlative model developed by Ollerenshaw and Rowlands 

(1959) using the climatic conditions of temperature and moisture. Also, the reliability of 

the index expanded its applications in various parts of the world including East Africa 

where it was modified to suit both species of fascioliasis by  Malone et al. (1998a). To 

date, as noted by Fox (2012) no method of modelling fascioliasis risk ‘supersedes’ that 

of Ollerenshaw index due to the paucity of accurate and reliable prevalence record. 

Ollerenshaw (1966) admitted that insufficient data on fascioliasis prevalence was the 

most significant impediments in the formulation of climate-sensitive and ‘not a 

notifiable’ disease forecasting including fascioliasis. Besides, documented incidences 

were only a few without precise inclusions of mortality rates among sheep and also lack 

of reporting data on annual variations in outbreaks (Ollerenshaw, 1966). In Africa, meat 

inspection from abattoirs is an essential information source for research due to limited 

ability to utilise laboratories for disease diagnosis (Phiri, 2006, Cadmus & Adesokan, 

2009). Hence, meat inspection during abattoir surveillance provides disease information 

for documentation to relevant agencies in all the states in Nigeria including Sokoto State. 
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 However, according to World Health Organisation (WHO, 2006) fascioliasis climate 

forecast in the United Kingdom served as a basis for establishment of early warning 

system (EWS) that for long arose the interest of various areas including academic, politics 

and practitioners. Given that, the National Animal Disease Information Service (NADIS, 

2016) disseminates fascioliasis forecast information monthly to 1) Registered veterinary 

organisations in the UK, 2) farmers’ cooperative societies with interest in ruminant 

livestock (English Beef and Sheep Meat Industry, Hybu Cig Cymru Meat Promotion 

Wales and Quality Meat Scotland, 3) to the Animal Medicine Training central 

coordinating agency via their ongoing Professional Training Development and 4) to 

animal farm related businesses. This study, will therefore be the first to stimulate the 

creation of fascioliasis forecast in northwestern Nigeria, where there is largest population 

of livestock. 

The prediction of risk by the modelling technique in this study based on short-term (2005-

2014) was in agreement with the fascioliasis distribution prevalence map within the same 

temporal range.  Most of the areas with the highest disease incidences correspond to areas 

with the highest risk index. Regarding long-term projections, the validation is needed 

from time to time to keep pace with changing the climate. As reported by Fox (2012) 

correlative models based on long-term projections need continuous ‘validation’ and 

‘refinement’ to confirm the status of relationships under new, different conditions of 

climate. 

 The future risk maps have shown that Sokoto State and other parts of the north-west 

ecological zone of Nigeria may experience a more severe fascioliasis epidemic within the 

next 50 to 70 years than the previous past years. The pockets of high-risk areas are 

expected to be southernmost part of the study area that constitutes Sokoto and Tambuwal 

zones. The prediction of the rainfall applied in this study was in line with emission 

scenarios used for future climate change by HadGEM2-es model based on RCP 2.6 and 

RCP 8.5 for the years 2050 and 2070. Hadgem2-es model has an outstanding predictive 

ability especially in Nigeria regarding estimates of rainfall and temperature. A study by 

Dike et al. (2015) confirmed that there was a high correlation between HadGEM2-es 

estimates of rainfall and temperature with ground based observations in the north, east 

and west of Nigeria. The relationship was statistically significant particularly in the 

northern station, which indicated an increase in the cycle of precipitation and 

temperature. This future prediction of fascioliasis risk based on the HadGEM2-es model 



 

145 
 

should be treated with caution as there are uncertainties regarding future emission of 

radiative forcing gases upon which the model was based. However, this study can serve 

as providing a warning of a potential increase in the future risk of fascioliasis in Sokoto 

State as is presently the case in the UK (Fox et al., 2011) and other parts of the world.  

Diffenbaugh and Giorgi (2012) described north-western Nigeria as ‘hot spots’ of climate 

change and hence expected to be impacted negatively due to the vulnerable populace 

(Suk & Semenza, 2011). Consequently, climate change has many impacts, which 

includes promoting disease prevalence and spread (Conraths et al., 2011), affecting 

Nigeria’s agriculture and public health sector (Abiodun et al., 2011). Also, global change 

in climate enhanced resistance to anthelmintic drugs (Wolstenholme et al., 2004 ) and 

also on the physiology of the hosts of infection (Harle et al., 2007). Given these, Fox et 

al. (2011) reported that a gap exists regarding scales at which the actual changes in the 

disease transmission and spatio-temporal variability in climate modelling which when 

combined with the above mentioned factors can make a climate-based forecast as being 

‘indicative’. However, risk maps developed in this study reflects variability in respect of 

changing climate in the spread of fascioliasis infection thereby indicating the role of 

climate in influencing these variabilities. 

5. To find out the associations between extrinsic and intrinsic factors on recent 

fascioliasis infections data among slaughtered animals. 

Chapter 6 assessed the associations between intrinsic factors (biological characteristics) 

and extrinsic factors (climatic/environmental) on fascioliasis infections among 

slaughtered cattle in the study area. This study presents the first attempt at evaluating the 

associations between socio-economic characteristics of the cattle holders and F.gigantica 

infections among slaughtered cattle in Nigeria.  The majority of the cattle belongs to 

Fulani’s that are pastoralist always in search of pasture for their animals and hence 

without access to any form of education as confirmed by this study. Given this, any new 

control strategies against the spread of animal diseases may be challenging to implement 

by the majority of livestock holders. In this regard, animal diseases in the study area may 

continue to pose a threat to the health and productivity of livestock due to high literacy 

rate (>70%) among livestock holders. In addition, the health of humans in the study is at 

risk due to the zoonotic nature of some animal diseases especially F gigantica. Besides, 

other factors such as the breed, age of the animal proved to be essential determinants of 
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risk due to F.gigantica. White Fulani breed showed some level of resistance to 

F.gigantica infections than other breeds of cattle and hence raising them in the study area 

is at this moment encouraged. In the provision of the milk and other cattle products, 

younger calves are preferred based on their immunity to F.gigantica than the older ones 

that are more frequently exposed.  

Although climatic factors fitted the model well, their contributions in the infections 

among the slaughtered cattle at abattoirs were not statistically significant. This result 

might be due to more influence of biotic factors on F.gigantica prevalence at the level of 

individual cattle slaughtered at abattoirs. This result does not contradict the relevance of 

climate in overall effects on fascioliasis infections at localities level where variations 

might exist between localities regarding prevailing climatic conditions. Hence, 

fascioliasis infections among aggregated numbers of slaughtered cattle between separate 

localities may associate significantly with climatic conditions across the localities. 

However, at an abattoir of a particular locality, the slaughtered cattle experienced the 

same climatic conditions of that locality, and binary logistic regression technique could 

not detect any associations with fascioliasis infections at individual cattle level. The 

biological characteristics on the other hand always differ between one slaughtered cattle 

to another regarding sex, age, breed and management systems even of common origin or 

locality. Similar to this result, in modelling spatial distribution to predict fascioliasis in 

cattle at an abattoir in Victoria, Australia, rainfall was having ‘inconsistent’ association 

with fascioliasis infections data obtained from slaughterhouses. This study by Durr et al. 

(2005) confirmed the relevance of irrigation as the essential predictor of fascioliasis risk. 

Also, Tum et al. (2004) in Cambodia did not include temperature and rainfall variables 

as a determinant of F.gigantica risk in the developed GIS model due to their uniform 

conditions throughout the year. However, other factors considered as important include 

altitude, the distance from the river as well as flooding (inundation). 

7.2 Research limitations 

This research applied species distribution models in the prediction of F.gigantica in 

Sokoto State using various models, techniques, and data in achieving the main objectives 

of the research. Given that, there are uncertainties (Negga, 2007) in indicating the reality 

by the developed models due to the integration of information from different sources. 

The worldClim database as the source of climate data in this study applied interpolation 

method  (Hijmans et al., 2005) in creating climate surfaces which presents uncertainty. 
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Also, the measurement of these variables might pose some challenges especially rainfall 

data that has high spatio-temporal variablity and hence not very precise (Negga, 2007). 

The basis of the general spatial species distribution modelling in this research (MaxEnt, 

BioClim and DOMAIN) was on the concept of niche as consisting of species occurrence 

information together with the climatic parameters about the study area within both short 

term and long-term periods. Given that, the modelling result reflected only  ‘the snapshot’ 

of the anticipated association between climate and the species (Guisan & Thuiller, 2005, 

Negga, 2007). This technique of species distribution models referred to as correlative 

modelling only captures the use of physical factors (abiotic) in determining the 

distribution range of species. Thus the method does not consider biological factors 

(Soberon & Peterson 2005) in influencing the occurrence of species despite their 

importance. As a consequence, the model indicated only the potential habitat where the 

species occupied (fundamental niche) instead of that portion (realised niche) where 

biological factors (competition with the same species or different species and predation) 

might cause the exclusion of the species (Peterson, 2006, Pulliam, 2000). The potential 

effects of these biological factors on species dispersal has distorted the actual spatial 

species range. As a result of this observation, species dispersal across space is limited by 

biological relationships which conform to the concept of realised niche described by 

Hutchinson (Guisan & Thuiller, 2005). Overall, the model result is quite acceptable as 

indicating fundamental niche occupied by F.gigantica species and its intermediate hosts 

in the study area. 

This study also made use of geostatistically processed remotely sensed data from 

MODIS, AIRS, SRTM, and GLDAS to the same common projection, extent, and spatial 

resolution. This reason presents another limitation of this research that could affect the 

predictive abilities of species distribution modelling techniques. 

7.3 Future Research Recommendations 

In modelling spatial distribution of F.gigantica, future study should incorporate irrigation 

factor as another essential variable that affects the prevalence of infections. In Sokoto 

State, there are dams and other open water bodies, which all affect fascioliasis 

transmission, through the provision of habitat to the parasite and its hosts, especially in 

the dry season. Given that, the species model will give a more realistic indication of high-

risk areas rather than relying on rainfall and temperature variables as the only 

determinants. 
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Biotic interactions, dispersal, and evolutionary factors should also be incorporated in 

future studies using species distribution models to understand the occupied niche that 

suits the survival of fascioliasis and its intermediate snails in the study area. 

In the computation of evapotranspiration, it is also recommended to use another technique 

such as the Penman-Monteith equation which is the most excellent method by Food and 

Agricultural Organization (FAO). 

 Future studies should also focus on increasing the extent of the study area to obtain a 

broader coverage of fascioliasis endemic localities in Nigeria. Given that, will enable 

effective monitoring of the parasite prevalence at the national scale for the formulation 

of control strategies. Future work will also ensure adding the existing fascioliasis 

occurrence locations to GBIF as currently only a few records (3) exist in Nigeria. 

Fascioliasis is a  zoonotic disease, and hence the future approach should investigate the 

prevalence of fascioliasis infections among humans especially the inhabitants of 

settlements proximate to riverine areas in the state.  In Nigeria with more than 60% 

fascioliasis prevalence in animals, there is a possibility for human infections, which 

should be the focus of the future studies. 
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Appendixes 

 

 

Figure A-39: BioClim variables 
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Figure A-40 Satellite-based variables 

 

Table A-23 Fasciola gigantica occurrence locations, Sokoto state. 

     species        x      y 

fascioliasis_gigantica 5.7021 13.41427 

fascioliasis_gigantica 5.62682 13.36062 

fascioliasis_gigantica 5.59485 13.30568 

fascioliasis_gigantica 5.63799 13.32342 

fascioliasis_gigantica 5.55472 13.35502 

fascioliasis_gigantica 5.83678 13.55986 

fascioliasis_gigantica 5.89882 13.56986 

fascioliasis_gigantica 5.86366 13.52776 

fascioliasis_gigantica 5.15263 12.8441 

fascioliasis_gigantica 5.14597 12.82673 

fascioliasis_gigantica 5.11733 12.84294 

fascioliasis_gigantica 5.12636 1.83608 

fascioliasis_gigantica 5.13429 12.83297 

fascioliasis_gigantica 5.13077 12.84528 



 

151 
 

fascioliasis_gigantica 5.11672 12.87515 

fascioliasis_gigantica 5.11729 12.87192 

fascioliasis_gigantica 4.97791 13.29739 

fascioliasis_gigantica 4.96926 13.34122 

fascioliasis_gigantica 4.94878 13.3659 

fascioliasis_gigantica 4.95999 13.26212 

fascioliasis_gigantica 4.97648 13.2723 

fascioliasis_gigantica 4.99686 13.30821 

fascioliasis_gigantica 4.99369 13.30511 

fascioliasis_gigantica 4.99544 13.32938 

fascioliasis_gigantica 5.01398 13.33554 

fascioliasis_gigantica 5.01369 13.33118 

fascioliasis_gigantica 5.00978 13.323265 

fascioliasis_gigantica 5.00529 13.3247 

fascioliasis_gigantica 5.01475 13.32473 

fascioliasis_gigantica 5.21606 13.05312 

fascioliasis_gigantica 5.20567 13.07371 

fascioliasis_gigantica 5.20049 13.07403 

fascioliasis_gigantica 5.19707 13.07346 

fascioliasis_gigantica 5.22658 13.07206 

fascioliasis_gigantica 5.22248 13.07326 

fascioliasis_gigantica 4.80093 12.46834 

fascioliasis_gigantica 4.9587 12.50529 

fascioliasis_gigantica 4.98967 12.48384 

fascioliasis_gigantica 4.99407 12.47088 

fascioliasis_gigantica 5.01812 12.40856 

fascioliasis_gigantica 5.10437 12.29934 

fascioliasis_gigantica 4.9962 12.41878 

fascioliasis_gigantica 5.0197 12.44788 

fascioliasis_gigantica 4.99162 12.46395 

fascioliasis_gigantica 4.64181 12.40596 

fascioliasis_gigantica 5.64605 13.75556 

fascioliasis_gigantica 5.69901 13.80663 

fascioliasis_gigantica 5.69748 13.79848 

fascioliasis_gigantica 5.68757 13.80254 

fascioliasis_gigantica 5.62264 13.7498 

fascioliasis_gigantica 5.62416 13.74388 

fascioliasis_gigantica 5.74221 13.56142 

fascioliasis_gigantica 5.73348 13.54228 

fascioliasis_gigantica 5.72165 13.51617 

fascioliasis_gigantica 5.98154 13.66356 

fascioliasis_gigantica 5.96911 13.65142 

fascioliasis_gigantica 5.99801 13.69259 

fascioliasis_gigantica 5.00108 13.69531 
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fascioliasis_gigantica 5.00959 13.69413 

fascioliasis_gigantica 5.01872 13.69441 

fascioliasis_gigantica 6.01678 13.68246 

fascioliasis_gigantica 6.02385 13.68493 

fascioliasis_gigantica 6.03899 13.67125 

fascioliasis_gigantica 4.91645 13.22609 

fascioliasis_gigantica 4.93619 13.24994 

fascioliasis_gigantica 4.94444 13.24745 

fascioliasis_gigantica 4.95542 13.28089 

fascioliasis_gigantica 4.88759 13.2658 

fascioliasis_gigantica 4.8573 13.29216 

fascioliasis_gigantica 4.84947 13.29715 

fascioliasis_gigantica 4.90392 13.25502 

fascioliasis_gigantica 4.86831 13.2423 

fascioliasis_gigantica 4.85962 13.24257 

fascioliasis_gigantica 4.82878 13.24365 

fascioliasis_gigantica 5.23719 13.36145 

fascioliasis_gigantica 5.24543 13.35571 

fascioliasis_gigantica 5.30826 13.59517 

fascioliasis_gigantica 5.34608 13.58817 

fascioliasis_gigantica 5.35396 13.56411 

fascioliasis_gigantica 5.29998 13.22064 

fascioliasis_gigantica 5.30174 13.21704 

fascioliasis_gigantica 5.3115 13.22142 

fascioliasis_gigantica 5.32221 13.22262 

fascioliasis_gigantica 5.32834 13.22508 

fascioliasis_gigantica 5.37379 13.08628 

fascioliasis_gigantica 5.3722 13.08647 

fascioliasis_gigantica 5.37282 13.09008 

fascioliasis_gigantica 5.38872 13.11091 

fascioliasis_gigantica 5.3917 13.09638 

fascioliasis_gigantica 5.43426 13.14061 

fascioliasis_gigantica 5.4692 13.15582 

fascioliasis_gigantica 5.63623 13.02759 

fascioliasis_gigantica 5.62262 13.0642 

fascioliasis_gigantica 5.62948 13.04762 

fascioliasis_gigantica 5.29521 12.57681 

fascioliasis_gigantica 5.28336 12.59876 

fascioliasis_gigantica 5.2758 12.58416 

fascioliasis_gigantica 5.3854 12.58219 

fascioliasis_gigantica 5.32284 12.35084 

fascioliasis_gigantica 5.42932 12.40073 

fascioliasis_gigantica 5.42288 12.41775 

fascioliasis_gigantica 5.46183 12.53963 
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fascioliasis_gigantica 5.41563 12.57323 

fascioliasis_gigantica 5.57395 12.67444 

fascioliasis_gigantica 6.45098 13.20129 

fascioliasis_gigantica 6.37634 13.13888 

fascioliasis_gigantica 6.36152 13.13889 

fascioliasis_gigantica 6.35862 13.16567 

fascioliasis_gigantica 6.35743 13.19916 

fascioliasis_gigantica 6.34528 13.22029 

fascioliasis_gigantica 6.35918 13.23265 

fascioliasis_gigantica 6.3599 13.23844 

fascioliasis_gigantica 6.12059 13.36034 

fascioliasis_gigantica 6.65407 13.29256 

fascioliasis_gigantica 4.6854 13.50346 

fascioliasis_gigantica 4.68521 13.50744 

fascioliasis_gigantica 4.71082 13.47143 

fascioliasis_gigantica 4.53331 13.30127 

fascioliasis_gigantica 4.46255 13.24397 

fascioliasis_gigantica 4.15907 13.3586 

fascioliasis_gigantica 4.5101 13.649 

fascioliasis_gigantica 4.60059 13.7088 

fascioliasis_gigantica 5.26211 13.06519 

fascioliasis_gigantica 5.28162 13.02854 

fascioliasis_gigantica 5.28922 13.0342 

fascioliasis_gigantica 5.27444 13.04018 

fascioliasis_gigantica 5.28916 13.05239 

fascioliasis_gigantica 4.84808 13.03231 

fascioliasis_gigantica 4.7638 13.01301 

fascioliasis_gigantica 4.75795 13.01544 

fascioliasis_gigantica 4.91591 13.01482 

fascioliasis_gigantica 4.81824 12.9211 

fascioliasis_gigantica 4.84689 12.97317 

fascioliasis_gigantica 4.84386 12.95826 

fascioliasis_gigantica 4.84509 12.93958 

fascioliasis_gigantica 4.84562 12.94173 

fascioliasis_gigantica 4.87048 12.00522 

fascioliasis_gigantica 4.99309 12.62707 

fascioliasis_gigantica 4.96963 12.62563 

fascioliasis_gigantica 4.98113 12.59338 

fascioliasis_gigantica 4.97993 12.58602 

fascioliasis_gigantica 4.96198 12.53556 

fascioliasis_gigantica 4.95786 12.53395 

fascioliasis_gigantica 4.95459 12.53355 

fascioliasis_gigantica 5.10257 12.6327 

fascioliasis_gigantica 5.10092 12.60885 



 

154 
 

fascioliasis_gigantica 5.08459 12.70341 

fascioliasis_gigantica 5.08367 12.70396 

fascioliasis_gigantica 5.094 12.76689 

fascioliasis_gigantica 5.01415 12.7204 

fascioliasis_gigantica 5.0111 12.70517 

fascioliasis_gigantica 4.98988 12.68123 

fascioliasis_gigantica 4.98355 12.67515 

fascioliasis_gigantica 4.98405 12.67175 

fascioliasis_gigantica 4.97626 12.68467 

fascioliasis_gigantica 4.97682 12.67786 

fascioliasis_gigantica 4.96703 12.67873 

fascioliasis_gigantica 4.95586 12.69071 

fascioliasis_gigantica 4.95179 12.69972 

fascioliasis_gigantica 4.93358 12.67499 

fascioliasis_gigantica 4.87387 12.82152 

fascioliasis_gigantica 4.87381 12.82623 

fascioliasis_gigantica 4.89323 12.82509 

fascioliasis_gigantica 5.22225 13.297 

fascioliasis_gigantica 5.18338 13.26805 

fascioliasis_gigantica 5.18114 13.26787 

fascioliasis_gigantica 5.17532 13.2672 

fascioliasis_gigantica 5.17596 13.27097 

fascioliasis_gigantica 5.17131 13.27745 

fascioliasis_gigantica 5.23289 13.29974 

fascioliasis_gigantica 5.25935 13.31321 

fascioliasis_gigantica 5.18978 13.26691 

fascioliasis_gigantica 5.264426 13.21154 

fascioliasis_gigantica 5.33309 13.16922 

fascioliasis_gigantica 5.33213 13.162 

fascioliasis_gigantica 5.27975 13.1034 

fascioliasis_gigantica 5.35687 13.7219 

fascioliasis_gigantica 5.4102 13.77076 

fascioliasis_gigantica 5.41613 13.77464 

fascioliasis_gigantica 5.3609 13.68605 

fascioliasis_gigantica 5.32083 13.62351 

fascioliasis_gigantica 5.31416 13.63782 

fascioliasis_gigantica 5.42203 13.51892 

fascioliasis_gigantica 5.42318 13.51132 

fascioliasis_gigantica 5.44522 13.49252 

fascioliasis_gigantica 5.44621 13.49597 

fascioliasis_gigantica 5.26918 13.53883 

fascioliasis_gigantica 5.39064 13.26159 

fascioliasis_gigantica 5.41109 13.28643 

fascioliasis_gigantica 5.4362 13.28307 
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fascioliasis_gigantica 5.42537 13.27382 

fascioliasis_gigantica 5.43253 13.27122 

fascioliasis_gigantica 5.45667 13.2278 

fascioliasis_gigantica 5.47059 13.16966 

fascioliasis_gigantica 5.48118 13.21636 

fascioliasis_gigantica 5.35888 13.24507 

fascioliasis_gigantica 5.36702 13.1768 

fascioliasis_gigantica 5.36605 13.19062 

fascioliasis_gigantica 5.39831 13.1496 

fascioliasis_gigantica 5.10811 13.03003 

fascioliasis_gigantica 5.16727 13.05468 

fascioliasis_gigantica 5.19461 13.11404 

fascioliasis_gigantica 5.19423 13.11476 

fascioliasis_gigantica 5.19727 13.11747 

fascioliasis_gigantica 5.19881 13.11541 

fascioliasis_gigantica 5.20348 13.10909 

fascioliasis_gigantica 5.20725 13.11547 

fascioliasis_gigantica 5.18833 13.05281 

fascioliasis_gigantica 5.19585 13.02797 

fascioliasis_gigantica 5.1996 12.96534 

fascioliasis_gigantica 5.19175 12.99063 

fascioliasis_gigantica 5.18044 12.99036 

fascioliasis_gigantica 5.18983 12.9714 

fascioliasis_gigantica 5.19183 12.97272 

fascioliasis_gigantica 5.22594 13.00587 

fascioliasis_gigantica 5.22933 13.00591 

fascioliasis_gigantica 4.5927 11.81603 

fascioliasis_gigantica 4.59159 11.8228 

fascioliasis_gigantica 4.5023 11.5349 

fascioliasis_gigantica 4.49636 11.64495 

fascioliasis_gigantica 4.49475 11.64909 

fascioliasis_gigantica 4.50042 11.53925 

fascioliasis_gigantica 4.64456 11.67927 

fascioliasis_gigantica 4.6881 11.69767 

fascioliasis_gigantica 4.80217 12.17174 
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Table A-24 Fascioliasis occurrence locations from field survey 

species Longitude Latitude 

fascioliasis_gigantica 5.67202 13.44602 

fascioliasis_gigantica 4.48776 11.70457 

fascioliasis_gigantica 4.81976 12.13627 

fascioliasis_gigantica 5.42416 13.285 

fascioliasis_gigantica 5.39854 13.12939 

fascioliasis_gigantica 5.65835 13.75537 

fascioliasis_gigantica 5.96986 13.67035 

fascioliasis_gigantica 5.24735 13.06706 

fascioliasis_gigantica 5.25524 13.0825 

fascioliasis_gigantica 4.55923 13.57824 

fascioliasis_gigantica 4.16723 13.27847 

fascioliasis_gigantica 4.84808 13.03231 

fascioliasis_gigantica 4.99309 12.62707 

fascioliasis_gigantica 5.55944 12.70357 

fascioliasis_gigantica 5.50948 13.11946 
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Figure A-41 MaxEnt evaluation measures 
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Figure A-42: MaxEnt modelling response curves 
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Figure A-43 BioClim evaluation measures 

 

Figure A-44 Response curves BioClim modelling 



 

160 
 

 
AUC 

 
TPR 

 
TNR 

 
FPR 

 
FNR 

 
Kappa 

Figure A-45 Domain model evaluation measures 
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Figure A-46 Response curves Domain model 

 

Figure A-47 Scenario 1 
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Figure A-48 Scenario 2 

 

Figure A-49 Scenario 3 
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Figure A-50 Scenario 4 

 

Figure A-51 Scenario 5 
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Figure A-52 Scenario 6 

 

Figure A-53 AIRS data 



 

165 
 

 

Figure A-54 Mean, Max, Min and precipitation1970-2000 (WorldClim) 
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Figure A-55 Precipitation for August (WorldClim, HadGEM2-es, RCP 2.6 2050, RCP 8.5 2050, RCP 2.6 

2070, RCP 8.5 2070 respectively) 
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Figure A-56 Maximum temperature for May (WorldClim, HadGEM2-es, RCP 2.6 2050, RCP 8.5 2050, 

RCP 2.6 2070, RCP 8.5 2070 respectively) 
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Figure A-57 Minimum temperature for December Figs17-19: Maximum temperature for May 

(WorldClim, HadGEM2-es, RCP 2.6 2050, RCP 8.5 2050, RCP 2.6 2070, RCP 8.5 2070 respectively). 
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Table A-25 Fasciola gigantica prevalence and climatic/environmental variables 2005-2014 aggregated 

yearly average 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Provinces Faciola prev. rain sm_1 index_1 ndvi mean temp_1 PET_1

GORONYO 61 660 198.3859304 503 0.264960631 30.5 205.8137702

BODINGA 82 805 230.8611526 875 0.390944881 30 203.360897

TANGAZA 52 750 228.469724 506 0.36312336 30.5 210.2734431

SOKOTO NORTH 76 769 213.8361982 1061 0.318024935 30.5 207.5637702

TAMBUWAL 96 850 230.3324992 856 0.407808395 30.5 213.6185885

GADA 90 770 221.3130836 972 0.337926508 30.5 206.43955

SABON BIRNI 40 663 196.5179672 458 0.231594489 30.5 208.9968472

BINJI 66 756 225.006635 856 0.357316272 30.5 208.9817764

GWADABAWA 38 746 209.8301805 456 0.260301838 30.5 210.2567137

RABAH 89 873 231.441831 839 0.473425196 30 203.360897

TURETA 57 711 210.3857511 811 0.378772967 30 203.360897

ISA 49 719 215.0818329 302 0.272572178 30.5 208.9968472

GUDU 58 715 200.9968472 458 0.304954067 30.5 209.7151097

SOKOTO SOUTH 68 780 220.2754339 972 0.288024935 30.5 208.8637702

SILAME 52 736 235.9005 856 0.372506562 30.5 204.6935885

SHAGARI 98 866 235.5986328 856 0.354363517 30 204.5875259

YABO 114 796 235.9005 856 0.387795276 30.5 204.7221544

DANGE SHUNI 95 866 233.1367671 840 0.341469817 30 204.110897

KWARE 50 730 230.0884972 458 0.283333333 30.5 207.6137702

ILLELA 77 724 219.7914314 458 0.2460958 30.5 209.6137702

WURNO 45 717 229.3095652 458 0.228576116 30.5 207.6137702

WAMAKKO 50 719 220.5254339 972 0.343536746 30.5 208.8637702

KEBBE 117 848 200.0303318 1298 0.401377952 30 202.7071721
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Faculty of Science and Engineering 

University of Leicester 

  Questionnaire number: 

                                                                                                               Date: 

The purpose of this questionnaire is to investigate the relationships between 

environmental variables and biological characteristics of slaughtered cattle with F. 

gigantica infections in Sokoto state, Nigeria. This is a PhD research that is being 

conducted through the University of Leicester, United Kingdom. It is intended to elicit 

information about your experiences, knowledge as well as involvement in livestock 

management with particular reference to the slaughtered cattle at this abattoir. There is 

no need to write your name on the questionnaire, and you are at this moment assured that 

all information would be treated with confidence. You should feel free to give your 

responses and as such should be as convenient as possible which should take an estimated 

10 minutes to supply. 

Questionnaire for owners of the slaughtered cattle at the abattoir 

1. Sex…………. 

2. Marital status……………… 

A single 

B Married 

3. Age……………. 

A-16-45 

B. 46-60 

C. Above 61 

4. Educational level 

A Primary 

B. Secondary/Higher institution 

C. None 

5. Tribe 

A. Hausa/Zabarma 

B. Fulani 

 6. Regarding the source of ownership of cattle, which of the following applies to you 

A. Inheritance 

B. Given as a gift 
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C. Purchased 

7. If purchased, please select any option that matches you from below 

A. From the local environment 

B. From the country Nigeria 

C. Outside the country. 

8.  Which of the following is the source of pasture for your cattle? 

A.At the fringes of rivers, ponds and lakes 

B. Market 

C. Government reserved areas 

9). Where is the source of drinking water for your cattle during both dry and wet 

seasons? 

A. Fadama 

B. Dams 

C. Tap water 

10. How do your cattle intermingle with other cattle? 

A. They congregate during drinking water around the water source 

  B. They mix during grazing 

  C. They do not mix at all 

11. Are you familiar with the symptoms of liver fluke disease? 

A Yes 

B. No 

If ‘Yes’ continue to question 12 

12. Which part of the year do you notice those symptoms to be more severe? 

…………………………………………….. 

13. How intensive do you assess the livestock farming in Sokoto state 

A Very intensive 

B. Intensive 

C. Less intensive 

 

 

 



 

172 
 

 

Faculty of Science and Engineering 

University of Leicester 

  Questionnaire number: 

                                                                                                               Date: 

The purpose of this questionnaire is to investigate the relationships between 

environmental variables and biological characteristics of slaughtered cattle with F. 

gigantica infections in Sokoto state, Nigeria. This is a PhD research that is being 

conducted through the University of Leicester, United Kingdom. It is intended to elicit 

information about your experiences, knowledge as well as involvement in livestock 

management with particular reference to the slaughtered cattle at this abattoir. There is 

no need to write your name on the questionnaire, and you are at this moment assured that 

all information would be treated with confidence. You should feel free to give your 

responses and as such should be as convenient as possible which should take an estimated 

10 minutes to supply. 

Biological characteristics of the slaughtered cattle at the abattoir 

1. Where is the source of your cattle? 

A. Local 

B. Exotic 

2. Please state the age of your cattle…. 

3. What is the breed of your cattle? 

A. White Fulani 

B. Red Bororo 

C. Sokoto Gudale 

4.  The sex of the cattle 

A. Female (cow) 

B. Male (bull) 
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Table A-26: Biological characteristics of slaughtered Cattle and fascioliasis infection 

(Data for logistic regression) 

ID Provinces F.Infection Animal 

source 

AGE Gender Breed 

1 Goronyo A 1 73 F 1 

2 
 

B 2 24 F 1 

3 
 

B 1 73 F 1 

4 
 

B 2 24 M 1 

5 
 

B 2 36 M 2 

6 
 

B 1 24 F 2 

7 
 

A 1 73 F 2 

8 
 

B 1 36 M 1 

9 
 

B 2 24 F 2 

10 
 

B 1 36 M 1 

11 
 

A 1 73 F 2 

12 
 

B 1 36 F 2 

13 
 

B 1 36 M 1 

14 
 

B 2 24 M 3 

15 
 

A 1 72 F 3 

16 
 

B 1 36 M 2 

17 
 

B 1 24 M 1 

18 
 

B 2 24 F 3 

19 
 

A 1 48 F 3 

20 
 

B 1 36 M 2 

21 
 

B 1 72 F 3 

22 
 

A 1 48 M 3 

23 
 

B 1 36 M 3 

24 
 

B 1 72 M 2 

25 
 

B 1 48 M 3 

26 
 

B 1 72 F 3 

27 
 

B 1 24 M 3 

28 
 

B 2 36 F 2 

29 
 

B 1 72 F 3 

30 
 

B 1 73 F 3 

31 Kebbe A 1 24 M 2 

32 
 

A 1 73 F 2 

33 
 

B 2 24 M 1 

34 
 

B 2 36 M 2 

35 
 

B 1 24 F 3 

36 
 

A 1 73 F 2 

37 
 

B 1 36 M 2 

38 
 

B 2 24 F 1 

39 
 

B 1 36 M 3 

40 
 

A 1 73 F 3 

41 
 

B 1 36 F 2 

42 
 

B 1 36 M 3 
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43 
 

B 2 24 M 2 

44 
 

A 1 72 F 2 

45 
 

B 1 36 M 1 

46 
 

B 1 24 M 2 

47 
 

A 1 48 F 2 

48 
 

A 1 48 F 2 

49 
 

B 1 36 M 3 

50 
 

B 1 72 F 3 

51 
 

A 1 48 M 3 

52 
 

B 1 36 M 3 

53 
 

B 1 48 M 2 

54 
 

A 1 48 M 3 

55 
 

B 1 72 F 2 

56 
 

B 1 24 M 3 

57 
 

B 2 36 F 2 

58 
 

A 1 48 F 3 

59 
 

B 2 48 F 1 

60 
 

B 1 36 M 2 

61 Wurno A 1 73 F 1 

62 
 

B 2 24 F 2 

63 
 

A 1 73 F 2 

64 
 

B 2 24 M 2 

65 
 

B 2 36 M 1 

66 
 

B 1 24 F 3 

67 
 

B 1 73 F 1 

68 
 

B 1 36 M 2 

69 
 

B 2 24 F 3 

70 
 

B 1 36 M 3 

71 
 

A 1 73 F 2 

72 
 

B 1 36 F 1 

73 
 

B 1 36 M 2 

74 
 

B 2 24 M 2 

75 
 

A 1 48 F 3 

76 
 

B 1 36 M 1 

77 
 

B 1 24 M 3 

78 
 

A 1 48 F 2 

79 
 

B 1 48 F 3 

80 
 

B 1 36 M 1 

81 
 

B 1 72 F 3 

82 
 

B 2 48 M 3 

83 
 

B 1 36 M 1 

84 
 

A 1 72 M 3 

85 
 

B 1 48 M 3 

86 
 

B 1 72 F 2 

87 
 

B 1 24 M 3 

88 
 

B 2 36 F 3 
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89 
 

A 1 72 F 3 

90 
 

B 2 48 F 3 

91 Gada B 1 36 M 1 

92 
 

A 1 48 F 2 

93 
 

B 2 24 F 1 

94 
 

B 1 73 F 2 

95 
 

B 2 24 M 1 

96 
 

B 2 36 M 2 

97 
 

B 1 24 F 2 

98 
 

B 1 73 F 1 

99 
 

B 1 36 M 2 

100 
 

B 2 24 F 1 

101 
 

B 1 36 M 2 

102 
 

A 1 73 F 2 

103 
 

B 1 36 F 2 

104 
 

B 1 36 M 3 

105 
 

B 2 24 M 3 

106 
 

A 1 72 F 3 

107 
 

B 1 36 M 1 

108 
 

B 1 24 M 3 

109 
 

A 1 48 F 3 

110 
 

A 1 48 F 3 

111 
 

B 1 36 M 3 

112 
 

B 1 72 F 3 

113 
 

A 2 48 M 3 

114 
 

B 1 36 M 3 

115 
 

A 1 72 M 3 

116 
 

B 1 48 M 3 

117 
 

B 1 36 F 3 

118 
 

B 1 24 M 1 

119 
 

B 2 36 F 3 

120 
 

A 1 48 F 3 

121 Sokoto 

north 

A 2 48 F 1 

122 
 

B 1 36 M 2 

123 
 

A 1 48 F 1 

124 
 

B 2 24 F 2 

125 
 

B 1 73 F 2 

126 
 

A 1 24 M 2 

127 
 

B 2 36 M 2 

128 
 

B 1 24 F 1 

129 
 

A 1 73 F 2 

130 
 

B 1 36 M 3 

131 
 

B 2 24 F 3 

132 
 

B 1 36 M 1 

133 
 

A 1 73 F 3 
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134 
 

B 1 36 F 3 

135 
 

A 1 36 M 3 

136 
 

B 2 24 M 2 

137 
 

A 1 72 F 3 

138 
 

B 1 36 M 3 

139 
 

B 1 24 M 3 

140 
 

A 1 48 F 3 

141 
 

A 1 48 F 3 

142 
 

B 1 36 M 3 

143 
 

B 1 72 F 3 

144 
 

A 2 48 M 3 

145 
 

B 1 36 M 3 

146 
 

A 1 72 M 3 

147 
 

A 1 48 M 3 

148 
 

B 1 36 F 3 

149 
 

B 1 72 M 3 

150 
 

B 2 36 F 3 

151 Gudu B 1 48 F 1 

152 
 

B 2 48 F 3 

153 
 

B 1 36 M 2 

154 
 

A 1 73 F 1 

155 
 

B 2 24 F 3 

156 
 

A 1 73 F 2 

157 
 

A 2 24 M 3 

158 
 

B 2 36 M 2 

159 
 

B 1 24 F 1 

160 
 

A 1 73 F 3 

161 
 

B 1 36 M 2 

162 
 

B 2 24 F 3 

163 
 

B 1 36 M 3 

164 
 

A 1 73 F 3 

165 
 

B 1 36 F 3 

166 
 

A 1 36 M 3 

167 
 

B 2 24 M 3 

168 
 

A 1 72 F 3 

169 
 

B 1 36 M 3 

170 
 

A 1 24 M 3 

171 
 

A 2 48 F 3 

172 
 

B 2 48 F 3 

173 
 

B 1 36 M 3 

174 
 

A 1 48 F 3 

175 
 

B 2 48 M 3 

176 
 

B 1 36 M 3 

177 
 

A 1 72 M 3 

178 
 

B 1 48 M 3 

179 
 

B 1 36 F 3 
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180 
 

A 1 72 M 3 

181 Silame B 2 36 F 1 

182 
 

A 1 73 F 1 

183 
 

B 2 48 F 1 

184 
 

B 1 36 M 1 

185 
 

A 1 36 F 2 

186 
 

B 2 24 F 1 

187 
 

B 1 73 F 2 

188 
 

A 1 24 M 2 

189 
 

B 2 36 M 3 

190 
 

B 1 24 F 2 

191 
 

A 1 73 F 2 

192 
 

B 1 36 M 3 

193 
 

A 2 24 F 3 

194 
 

B 1 36 M 1 

195 
 

A 1 73 F 3 

196 
 

B 1 36 F 2 

197 
 

A 1 36 M 3 

198 
 

B 2 24 M 2 

199 
 

A 1 72 F 3 

200 
 

B 1 36 M 3 

201 
 

B 1 24 M 2 

202 
 

B 2 48 F 3 

203 
 

B 2 48 F 3 

204 
 

A 1 36 M 3 

205 
 

B 1 48 F 3 

206 
 

B 2 48 M 3 

207 
 

B 1 36 M 3 

208 
 

A 1 72 M 3 

209 
 

B 1 48 M 3 

210 
 

B 1 36 F 3 

211 Shagari B 1 48 M 1 

212 
 

B 2 36 F 2 

213 
 

A 1 48 F 1 

214 
 

B 2 48 F 2 

215 
 

B 1 36 M 2 

216 
 

A 1 24 F 3 

217 
 

B 2 24 F 3 

218 
 

B 1 23 F 1 

219 
 

A 2 74 M 3 

220 
 

B 2 36 M 3 

221 
 

A 1 24 F 3 

222 
 

B 1 73 F 3 

223 
 

B 1 36 M 2 

224 
 

B 2 24 F 1 

225 
 

B 1 36 M 3 
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226 
 

A 1 73 F 3 

227 
 

B 1 36 F 2 

228 
 

A 1 36 M 3 

229 
 

B 2 24 M 3 

230 
 

A 1 72 F 2 

231 
 

B 1 36 M 2 

232 
 

B 1 24 M 3 

233 
 

A 1 72 F 2 

234 
 

B 2 48 F 3 

235 
 

B 1 36 M 2 

236 
 

B 1 48 F 3 

237 
 

B 2 48 M 3 

238 
 

B 1 36 M 2 

239 
 

A 1 72 M 2 

240 
 

B 1 48 M 3 

241 Dange 

shuni 

B 1 36 F 1 

242 
 

B 1 48 M 2 

243 
 

B 2 36 F 2 

244 
 

B 1 48 F 3 

245 
 

B 2 48 F 1 

246 
 

A 1 36 M 2 

247 
 

A 1 48 F 2 

248 
 

B 2 24 F 3 

249 
 

B 1 73 F 3 

250 
 

B 2 24 M 3 

251 
 

B 2 36 M 3 

252 
 

A 1 24 F 3 

253 
 

A 1 73 F 3 

254 
 

B 1 36 M 2 

255 
 

B 2 24 F 1 

256 
 

B 1 36 M 3 

257 
 

A 1 73 F 3 

258 
 

B 1 36 F 1 

259 
 

A 1 36 M 3 

260 
 

B 2 24 M 2 

261 
 

A 1 72 F 3 

262 
 

B 1 36 M 3 

263 
 

B 1 24 M 3 

264 
 

A 1 72 F 3 

265 
 

B 2 48 F 1 

266 
 

B 1 36 M 3 

267 
 

B 1 48 F 3 

268 
 

B 2 48 M 3 

269 
 

B 1 36 M 3 

270 
 

B 1 72 M 1 
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271 Rabah A 1 48 M 1 

272 
 

B 1 36 F 2 

273 
 

B 1 48 M 1 

274 
 

B 2 36 F 2 

275 
 

B 1 48 F 3 

276 
 

B 2 48 F 1 

277 
 

B 1 36 M 2 

278 
 

A 1 73 F 2 

279 
 

B 2 24 F 1 

280 
 

B 1 73 F 3 

281 
 

B 2 24 M 2 

282 
 

B 2 36 M 1 

283 
 

A 1 24 F 2 

284 
 

A 1 73 F 3 

285 
 

B 1 36 M 3 

286 
 

B 2 24 F 1 

287 
 

B 1 36 M 3 

288 
 

A 1 73 F 2 

289 
 

B 1 36 F 3 

290 
 

A 1 36 M 3 

291 
 

B 2 24 M 1 

292 
 

A 1 72 F 3 

293 
 

B 1 36 M 3 

294 
 

B 1 24 M 2 

295 
 

A 1 72 F 3 

296 
 

B 2 48 F 3 

297 
 

A 1 36 M 3 

298 
 

B 1 48 F 3 

299 
 

B 2 48 M 3 

300 
 

A 1 36 M 3 

 

Table A-27 Practices of cattle management and fascioliasis infection 

ID Provinces F.Infection herd 

acquisition 

grazing 

areas 

water 

source 

Tribe 

1 Gudu A 1 3 2 B 

2 
 

B 1 3 2 A 

3 
 

B 1 3 1 B 

4 
 

B 1 2 1 A 

5 
 

B 2 2 2 B 

6 
 

B 2 2 1 A 

7 
 

A 1 2 1 B 

8 
 

B 3 3 2 A 

9 
 

B 2 2 1 A 

10 
 

B 1 2 1 A 

11 
 

A 2 2 2 B 
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12 
 

B 1 1 1 A 

13 
 

B 2 2 2 B 

14 
 

B 3 1 1 A 

15 
 

A 3 1 1 B 

16 
 

B 2 2 2 A 

17 
 

B 1 3 1 B 

18 
 

B 3 1 1 A 

19 
 

A 3 1 1 B 

20 
 

B 2 2 1 B 

21 
 

B 3 1 1 A 

22 
 

A 3 1 1 B 

23 
 

B 3 1 2 A 

24 
 

B 2 2 1 A 

25 
 

B 3 1 1 B 

26 
 

B 3 1 2 A 

27 
 

B 3 1 1 B 

28 
 

B 2 2 1 A 

29 
 

B 3 1 1 B 

30 
 

B 3 1 2 B 

31 Goronyo A 3 2 2 A 

32 
 

A 2 2 1 B 

33 
 

B 1 2 2 A 

34 
 

B 2 2 1 B 

35 
 

B 3 1 1 A 

36 
 

A 2 2 1 B 

37 
 

B 2 2 2 A 

38 
 

B 3 1 1 B 

39 
 

B 3 1 2 A 

40 
 

A 3 2 2 B 

41 
 

B 1 2 1 A 

42 
 

B 3 1 1 B 

43 
 

B 3 1 1 A 

44 
 

A 1 3 1 B 

45 
 

B 1 1 1 A 

46 
 

B 2 2 2 B 

47 
 

A 2 2 1 A 

48 
 

A 1 1 1 B 

49 
 

B 3 1 1 A 

50 
 

B 3 1 1 B 

51 
 

A 3 1 2 A 

52 
 

B 3 1 1 B 

53 
 

B 1 3 1 B 

54 
 

A 3 1 1 A 

55 
 

B 2 2 2 B 

56 
 

B 3 1 1 A 

57 
 

B 2 2 1 A 
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58 
 

A 3 1 1 B 

59 
 

B 1 3 1 A 

60 
 

B 2 2 1 B 

61 Gada A 1 3 1 B 

62 
 

B 1 1 2 B 

63 
 

A 3 2 1 B 

64 
 

B 2 2 1 A 

65 
 

B 1 2 2 B 

66 
 

B 3 1 1 A 

67 
 

B 1 2 2 B 

68 
 

B 2 2 1 B 

69 
 

B 3 1 1 B 

70 
 

B 3 3 2 A 

71 
 

A 1 3 1 B 

72 
 

B 3 1 1 B 

73 
 

B 2 2 1 A 

74 
 

B 1 1 1 A 

75 
 

A 3 1 1 B 

76 
 

B 1 2 2 B 

77 
 

B 3 1 1 A 

78 
 

A 3 1 2 B 

79 
 

B 3 1 1 A 

80 
 

B 1 3 1 B 

81 
 

B 3 1 1 A 

82 
 

B 3 1 1 B 

83 
 

B 1 3 1 A 

84 
 

A 3 1 1 B 

85 
 

B 3 1 2 A 

86 
 

B 1 2 1 B 

87 
 

B 3 1 1 A 

88 
 

B 3 1 1 B 

89 
 

A 3 1 2 B 

90 
 

B 3 1 1 A 

91 Wurno B 3 1 2 A 

92 
 

A 3 1 1 B 

93 
 

B 1 3 1 A 

94 
 

B 2 2 1 B 

95 
 

B 1 3 1 A 

96 
 

B 2 2 1 B 

97 
 

B 1 3 2 A 

98 
 

B 1 3 1 B 

99 
 

B 2 2 1 A 

100 
 

B 1 3 2 B 

101 
 

B 3 1 1 A 

102 
 

A 2 1 1 B 

103 
 

B 1 3 1 A 
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104 
 

B 3 1 1 B 

105 
 

B 3 1 1 A 

106 
 

A 3 1 1 B 

107 
 

B 1 3 1 B 

108 
 

B 3 1 1 A 

109 
 

A 3 1 1 A 

110 
 

A 3 1 1 B 

111 
 

B 3 1 2 A 

112 
 

B 3 1 1 B 

113 
 

A 3 1 1 B 

114 
 

B 3 1 2 A 

115 
 

A 3 1 1 B 

116 
 

B 3 1 1 A 

117 
 

B 3 1 2 B 

118 
 

B 1 3 1 A 

119 
 

B 3 1 2 B 

120 
 

A 3 1 1 A 

121 Sokoto 

north 

A 1 3 1 B 

122 
 

B 2 2 1 A 

123 
 

A 1 1 1 B 

124 
 

B 2 2 1 A 

125 
 

B 3 1 1 A 

126 
 

A 2 1 1 B 

127 
 

B 1 2 2 A 

128 
 

B 1 2 1 B 

129 
 

A 3 1 1 A 

130 
 

B 3 1 1 B 

131 
 

B 3 1 2 B 

132 
 

B 1 2 1 B 

133 
 

A 3 1 1 B 

134 
 

B 3 1 1 A 

135 
 

A 3 1 1 B 

136 
 

B 1 1 2 A 

137 
 

A 3 3 1 B 

138 
 

B 3 1 1 B 

139 
 

B 3 1 1 A 

140 
 

A 3 1 1 B 

141 
 

A 3 1 1 A 

142 
 

B 3 1 2 B 

143 
 

B 3 1 1 B 

144 
 

A 3 1 2 B 

145 
 

B 3 1 1 B 

146 
 

A 3 1 1 B 

147 
 

A 3 1 1 B 

148 
 

B 3 1 1 A 
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149 
 

B 3 1 1 B 

150 
 

B 3 1 1 B 

151 Kebbe B 1 2 1 B 

152 
 

B 3 1 2 A 

153 
 

B 2 2 1 B 

154 
 

A 1 1 1 B 

155 
 

B 3 1 2 A 

156 
 

A 2 1 1 B 

157 
 

A 3 1 1 B 

158 
 

B 2 2 1 B 

159 
 

B 1 2 1 B 

160 
 

A 3 3 1 B 

161 
 

B 2 2 1 B 

162 
 

B 3 1 2 B 

163 
 

B 3 1 1 A 

164 
 

A 3 1 1 B 

165 
 

B 3 1 2 B 

166 
 

A 3 1 1 B 

167 
 

B 3 1 1 A 

168 
 

A 3 1 1 B 

169 
 

B 3 1 1 A 

170 
 

A 3 1 1 B 

171 
 

A 3 1 1 B 

172 
 

B 3 1 2 A 

173 
 

B 3 1 2 B 

174 
 

A 3 1 1 A 

175 
 

B 3 1 1 B 

176 
 

B 3 1 1 B 

177 
 

A 3 1 1 B 

178 
 

B 3 1 1 A 

179 
 

B 3 1 1 A 

180 
 

A 3 1 1 B 

181 Shagari B 1 2 2 B 

182 
 

A 1 3 1 A 

183 
 

B 1 2 1 B 

184 
 

B 1 2 1 A 

185 
 

A 2 2 1 B 

186 
 

B 1 1 1 A 

187 
 

B 2 2 2 B 

188 
 

A 2 1 1 B 

189 
 

B 3 1 1 A 

190 
 

B 1 1 2 A 

191 
 

A 3 1 1 B 

192 
 

B 3 1 1 A 

193 
 

A 3 1 1 B 

194 
 

B 1 1 1 A 
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195 
 

A 3 1 2 B 

196 
 

B 1 1 1 A 

197 
 

A 3 1 1 B 

198 
 

B 2 1 2 A 

199 
 

A 3 1 1 B 

200 
 

B 3 1 1 A 

201 
 

B 1 1 1 B 

202 
 

B 3 1 2 A 

203 
 

B 3 1 1 B 

204 
 

A 3 1 1 B 

205 
 

B 3 1 2 A 

206 
 

B 3 1 1 B 

207 
 

B 3 1 1 B 

208 
 

A 3 1 1 B 

209 
 

B 3 1 1 A 

210 
 

B 3 1 2 A 

211 Silame B 1 3 1 B 

212 
 

B 2 1 2 A 

213 
 

A 1 3 1 B 

214 
 

B 1 1 1 A 

215 
 

B 1 1 1 B 

216 
 

A 3 1 1 B 

217 
 

B 3 1 2 A 

218 
 

B 1 3 1 A 

219 
 

A 3 3 1 B 

220 
 

B 3 3 2 B 

221 
 

A 3 3 1 A 

222 
 

B 3 3 1 B 

223 
 

B 1 1 1 A 

224 
 

B 1 1 1 B 

225 
 

B 3 3 1 A 

226 
 

A 3 1 2 B 

227 
 

B 2 1 1 A 

228 
 

A 3 1 1 B 

229 
 

B 3 1 2 B 

230 
 

A 2 1 1 B 

231 
 

B 2 1 1 A 

232 
 

B 3 3 1 A 

233 
 

A 3 1 1 B 

234 
 

B 3 1 2 A 

235 
 

B 2 1 1 B 

236 
 

B 3 1 2 B 

237 
 

B 3 1 1 A 

238 
 

B 1 3 1 B 

239 
 

A 2 1 1 B 

240 
 

B 3 1 1 A 
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241 Dange 

shuni 

B 1 1 1 A 

242 
 

B 2 1 1 B 

243 
 

B 1 1 1 A 

244 
 

B 3 3 1 B 

245 
 

B 1 1 1 A 

246 
 

A 3 1 1 B 

247 
 

A 2 1 1 A 

248 
 

B 3 1 2 B 

249 
 

B 3 1 1 B 

250 
 

B 3 1 1 A 

251 
 

B 3 3 1 B 

252 
 

A 3 1 1 A 

253 
 

A 3 1 1 A 

254 
 

B 1 1 1 B 

255 
 

B 1 3 1 B 

256 
 

B 3 1 1 A 

257 
 

A 3 1 1 A 

258 
 

B 1 1 2 B 

259 
 

A 3 1 1 A 

260 
 

B 1 1 1 B 

261 
 

A 3 1 1 A 

262 
 

B 3 3 1 B 

263 
 

B 3 1 1 A 

264 
 

A 3 1 1 A 

265 
 

B 1 1 1 A 

266 
 

B 3 1 1 B 

267 
 

B 3 3 1 B 

268 
 

B 3 1 1 A 

269 
 

B 3 1 1 B 

270 
 

B 1 1 1 A 

271 Rabah A 1 1 1 A 

272 
 

B 1 1 1 A 

273 
 

B 1 3 2 B 

274 
 

B 1 1 1 A 

275 
 

B 3 3 1 A 

276 
 

B 1 1 1 B 

277 
 

B 2 1 1 A 

278 
 

A 2 1 2 B 

279 
 

B 1 1 1 A 

280 
 

B 3 1 1 A 

281 
 

B 1 1 2 B 

282 
 

B 1 1 1 A 

283 
 

A 3 1 1 A 

284 
 

A 3 1 1 A 

285 
 

B 3 1 1 B 
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286 
 

B 1 3 1 A 

287 
 

B 1 1 1 B 

288 
 

A 3 1 1 A 

289 
 

B 3 1 1 B 

290 
 

A 3 1 1 A 

291 
 

B 1 3 1 A 

292 
 

A 3 1 1 A 

293 
 

B 1 1 1 B 

294 
 

B 1 1 1 A 

295 
 

A 3 1 1 A 

296 
 

B 1 1 1 B 

297 
 

A 3 1 1 A 

298 
 

B 1 1 1 B 

299 
 

B 1 1 1 A 

300 
 

A 3 1 1 A 

 

Table A-28 Climatic/environmental factors and fascioliasis infection 

ID Province

s 

F_Infection temperatu

re 

NDVI Rainfall soil 

moistur

e 

Elevatio

n 

1 Goronyo A 34 0.2 730 198 300 

2 
 

B 34 0.2 730 198 300 

3 
 

B 34 0.2 730 198 300 

4 
 

B 34 0.2 730 198 300 

5 
 

B 34 0.2 730 198 300 

6 
 

B 34 0.2 730 198 300 

7 
 

A 34 0.2 730 198 300 

8 
 

B 34 0.2 730 198 300 

9 
 

B 34 0.2 730 198 300 

10 
 

B 34 0.2 730 198 300 

11 
 

A 34 0.2 730 198 300 

12 
 

B 34 0.2 730 198 300 

13 
 

B 34 0.2 730 198 300 

14 
 

B 34 0.2 730 198 300 

15 
 

A 34 0.2 730 198 300 

16 
 

B 34 0.2 730 198 300 

17 
 

B 34 0.2 730 198 300 

18 
 

B 34 0.2 730 198 300 

19 
 

A 34 0.2 730 198 300 

20 
 

B 34 0.2 730 198 300 

21 
 

B 34 0.2 730 198 300 

22 
 

A 34 0.2 730 198 300 

23 
 

B 34 0.2 730 198 300 

24 
 

B 34 0.2 730 198 300 

25 
 

B 34 0.2 730 198 300 
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26 
 

B 34 0.2 730 198 300 

27 
 

B 34 0.2 730 198 300 

28 
 

B 34 0.2 730 198 300 

29 
 

B 34 0.2 730 198 300 

30 
 

B 34 0.4 1088 230 300 

31 Kebbe A 32 0.4 1088 230 300 

32 
 

A 32 0.4 1088 230 300 

33 
 

B 32 0.4 1088 230 300 

34 
 

B 32 0.4 1088 230 300 

35 
 

B 32 0.4 1088 230 300 

36 
 

A 32 0.4 1088 230 300 

37 
 

B 32 0.4 1088 230 300 

38 
 

B 32 0.4 1088 230 300 

39 
 

B 32 0.4 1088 230 300 

40 
 

A 32 0.4 1088 230 300 

41 
 

B 32 0.4 1088 230 300 

42 
 

B 32 0.4 1088 230 300 

43 
 

B 32 0.4 1088 230 300 

44 
 

A 32 0.4 1088 230 300 

45 
 

B 32 0.4 1088 230 300 

46 
 

B 32 0.4 1088 230 300 

47 
 

A 32 0.4 1088 230 300 

48 
 

A 32 0.4 1088 230 300 

49 
 

B 32 0.4 1088 230 300 

50 
 

B 32 0.4 1088 230 300 

51 
 

A 32 0.4 1088 230 300 

52 
 

B 32 0.4 1088 230 300 

53 
 

B 32 0.4 1088 230 300 

54 
 

A 32 0.4 1088 230 300 

55 
 

B 32 0.4 1088 230 300 

56 
 

B 32 0.4 1088 230 300 

57 
 

B 32 0.4 1088 230 300 

58 
 

A 32 0.4 1088 230 300 

59 
 

B 32 0.4 1088 230 300 

60 
 

B 32 0.4 1088 230 300 

61 Wurno A 33 0.3 717 195 300 

62 
 

B 33 0.3 717 195 300 

63 
 

A 33 0.3 717 195 300 

64 
 

B 33 0.3 717 195 300 

65 
 

B 33 0.3 717 195 300 

66 
 

B 33 0.3 717 195 300 

67 
 

B 33 0.3 717 195 300 

68 
 

B 33 0.3 717 195 300 

69 
 

B 33 0.3 717 195 300 

70 
 

B 33 0.3 717 195 300 

71 
 

A 33 0.3 717 195 300 
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72 
 

B 33 0.3 717 195 300 

73 
 

B 33 0.3 717 195 300 

74 
 

B 33 0.3 717 195 300 

75 
 

A 33 0.3 717 195 300 

76 
 

B 33 0.3 717 195 300 

77 
 

B 33 0.3 717 195 300 

78 
 

A 33 0.3 717 195 300 

79 
 

B 33 0.3 717 195 300 

80 
 

B 33 0.3 717 195 300 

81 
 

B 33 0.3 717 195 300 

82 
 

B 33 0.3 717 195 300 

83 
 

B 33 0.3 717 195 300 

84 
 

A 33 0.3 717 195 300 

85 
 

B 33 0.3 717 195 300 

86 
 

B 33 0.3 717 195 300 

87 
 

B 33 0.3 717 195 300 

88 
 

B 33 0.3 717 195 300 

89 
 

A 33 0.3 717 195 300 

90 
 

B 33 0.3 717 195 300 

91 Gada B 34 0.2 730 199 300 

92 
 

A 34 0.2 730 199 300 

93 
 

B 34 0.2 730 199 300 

94 
 

B 34 0.2 730 199 300 

95 
 

B 34 0.2 730 199 300 

96 
 

B 34 0.2 730 199 300 

97 
 

B 34 0.2 730 199 300 

98 
 

B 34 0.2 730 199 300 

99 
 

B 34 0.2 730 199 300 

100 
 

B 34 0.2 730 199 300 

101 
 

B 34 0.2 730 199 300 

102 
 

A 34 0.2 730 199 300 

103 
 

B 34 0.2 730 199 300 

104 
 

B 34 0.2 730 199 300 

105 
 

B 34 0.2 730 199 300 

106 
 

A 34 0.2 730 199 300 

107 
 

B 34 0.2 730 199 300 

108 
 

B 34 0.2 730 199 300 

109 
 

A 34 0.2 730 199 300 

110 
 

A 34 0.2 730 199 300 

111 
 

B 34 0.2 730 199 300 

112 
 

B 34 0.2 730 199 300 

113 
 

A 34 0.2 730 199 300 

114 
 

B 34 0.2 730 199 300 

115 
 

A 34 0.2 730 199 300 

116 
 

B 34 0.2 730 199 300 

117 
 

B 34 0.2 730 199 300 
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118 
 

B 34 0.2 730 199 300 

119 
 

B 34 0.2 730 199 300 

120 
 

A 34 0.2 730 199 300 

121 Sokoto 

N. 

A 35 0.3 739 213 289 

122 
 

B 35 0.3 739 213 289 

123 
 

A 35 0.3 739 213 289 

124 
 

B 35 0.3 739 213 289 

125 
 

B 35 0.3 739 213 289 

126 
 

A 35 0.3 739 213 289 

127 
 

B 35 0.3 739 213 289 

128 
 

B 35 0.3 739 213 289 

129 
 

A 35 0.3 739 213 289 

130 
 

B 35 0.3 739 213 289 

131 
 

B 35 0.3 739 213 289 

132 
 

B 35 0.3 739 213 289 

133 
 

A 35 0.3 739 213 289 

134 
 

B 35 0.3 739 213 289 

135 
 

A 35 0.3 739 213 289 

136 
 

B 35 0.3 739 213 289 

137 
 

A 35 0.3 739 213 289 

138 
 

B 35 0.3 739 213 289 

139 
 

B 35 0.3 739 213 289 

140 
 

A 35 0.3 739 213 289 

141 
 

A 35 0.3 739 213 289 

142 
 

B 35 0.3 739 213 289 

143 
 

B 35 0.3 739 213 289 

144 
 

A 35 0.3 739 213 289 

145 
 

B 35 0.3 739 213 289 

146 
 

A 35 0.3 739 213 289 

147 
 

A 35 0.3 739 213 289 

148 
 

B 35 0.3 739 213 289 

149 
 

B 35 0.3 739 213 289 

150 
 

B 35 0.3 739 213 289 

151 Gudu B 36 0.3 715 199 289 

152 
 

B 36 0.3 715 199 279 

153 
 

B 36 0.3 715 199 279 

154 
 

A 36 0.3 715 199 279 

155 
 

B 36 0.3 715 199 279 

156 
 

A 36 0.3 715 199 279 

157 
 

A 36 0.3 715 199 279 

158 
 

B 36 0.3 715 199 279 

159 
 

B 36 0.3 715 199 279 

160 
 

A 36 0.3 715 199 279 

161 
 

B 36 0.3 715 199 279 

162 
 

B 36 0.3 715 199 279 
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163 
 

B 36 0.3 715 199 279 

164 
 

A 36 0.3 715 199 279 

165 
 

B 36 0.3 715 199 279 

166 
 

A 36 0.3 715 199 279 

167 
 

B 36 0.3 715 199 279 

168 
 

A 36 0.3 715 199 279 

169 
 

B 36 0.3 715 199 279 

170 
 

A 36 0.3 715 199 279 

171 
 

A 36 0.3 715 199 279 

172 
 

B 36 0.3 715 199 279 

173 
 

B 36 0.3 715 199 279 

174 
 

A 36 0.3 715 199 279 

175 
 

B 36 0.3 715 199 279 

176 
 

B 36 0.3 715 199 279 

177 
 

A 36 0.3 715 199 279 

178 
 

B 36 0.3 715 199 279 

179 
 

B 36 0.3 715 199 279 

180 
 

A 36 0.3 715 199 279 

181 Silame B 35 0.3 706 215 248 

182 
 

A 35 0.3 706 215 248 

183 
 

B 35 0.3 706 215 248 

184 
 

B 35 0.3 706 215 248 

185 
 

A 35 0.3 706 215 248 

186 
 

B 35 0.3 706 215 248 

187 
 

B 35 0.3 706 215 248 

188 
 

A 35 0.3 706 215 248 

189 
 

B 35 0.3 706 215 248 

190 
 

B 35 0.3 706 215 248 

191 
 

A 35 0.3 706 215 248 

192 
 

B 35 0.3 706 215 248 

193 
 

A 35 0.3 706 215 248 

194 
 

B 35 0.3 706 215 248 

195 
 

A 35 0.3 706 215 248 

196 
 

B 35 0.3 706 215 248 

197 
 

A 35 0.3 706 215 248 

198 
 

B 35 0.3 706 215 248 

199 
 

A 35 0.3 706 215 248 

200 
 

B 35 0.3 706 215 248 

201 
 

B 35 0.3 706 215 248 

202 
 

B 35 0.3 706 215 248 

203 
 

B 35 0.3 706 215 248 

204 
 

A 35 0.3 706 215 248 

205 
 

B 35 0.3 706 215 248 

206 
 

B 35 0.3 706 215 248 

207 
 

B 35 0.3 706 215 248 

208 
 

A 35 0.3 706 215 248 
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209 
 

B 35 0.3 706 215 248 

210 
 

B 35 0.3 706 215 248 

211 Shagari B 34 0.4 866 220 300 

212 
 

B 34 0.4 866 220 300 

213 
 

A 34 0.4 866 220 300 

214 
 

B 34 0.4 866 220 300 

215 
 

B 34 0.4 866 220 300 

216 
 

A 34 0.4 866 220 300 

217 
 

B 34 0.4 866 220 300 

218 
 

B 34 0.4 866 220 300 

219 
 

A 34 0.4 866 220 300 

220 
 

B 34 0.4 866 220 300 

221 
 

A 34 0.4 866 220 300 

222 
 

B 34 0.4 866 220 300 

223 
 

B 34 0.4 866 220 300 

224 
 

B 34 0.4 866 220 300 

225 
 

B 34 0.4 866 220 300 

226 
 

A 34 0.4 866 220 300 

227 
 

B 34 0.4 866 220 300 

228 
 

A 34 0.4 866 220 300 

229 
 

B 34 0.4 866 220 300 

230 
 

A 34 0.4 866 220 300 

231 
 

B 34 0.4 866 220 300 

232 
 

B 34 0.4 866 220 300 

233 
 

A 34 0.4 866 220 300 

234 
 

B 34 0.4 866 220 300 

235 
 

B 34 0.4 866 220 300 

236 
 

B 34 0.4 866 220 300 

237 
 

B 34 0.4 866 220 300 

238 
 

B 34 0.4 866 220 300 

239 
 

A 34 0.4 866 220 300 

240 
 

B 34 0.4 866 220 300 

241 Dange S. B 34 0.2 866 221 311 

242 
 

B 34 0.2 866 221 311 

243 
 

B 34 0.2 866 221 311 

244 
 

B 34 0.2 866 221 311 

245 
 

B 34 0.2 866 221 311 

246 
 

A 34 0.2 866 221 311 

247 
 

A 34 0.2 866 221 311 

248 
 

B 34 0.2 866 221 311 

249 
 

B 34 0.2 866 221 311 

250 
 

B 34 0.2 866 221 311 

251 
 

B 34 0.2 866 221 311 

252 
 

A 34 0.2 866 221 311 

253 
 

A 34 0.2 866 221 311 

254 
 

B 34 0.2 866 221 311 



 

192 
 

255 
 

B 34 0.2 866 221 311 

256 
 

B 34 0.2 866 221 311 

257 
 

A 34 0.2 866 221 311 

258 
 

B 34 0.2 866 221 311 

259 
 

A 34 0.2 866 221 311 

260 
 

B 34 0.2 866 221 311 

261 
 

A 34 0.2 866 221 311 

262 
 

B 34 0.2 866 221 311 

263 
 

B 34 0.2 866 221 311 

264 
 

A 34 0.2 866 221 311 

265 
 

B 34 0.2 866 221 311 

266 
 

B 34 0.2 866 221 311 

267 
 

B 34 0.2 866 221 311 

268 
 

B 34 0.2 866 221 311 

269 
 

B 34 0.2 866 221 311 

270 
 

B 34 0.2 866 221 311 

271 Rabah A 34 0.3 873 228 311 

272 
 

B 34 0.3 873 228 277 

273 
 

B 34 0.3 873 228 277 

274 
 

B 34 0.3 873 228 277 

275 
 

B 34 0.3 873 228 277 

276 
 

B 34 0.3 873 228 277 

277 
 

B 34 0.3 873 228 277 

278 
 

A 34 0.3 873 228 277 

279 
 

B 34 0.3 873 228 277 

280 
 

B 34 0.3 873 228 277 

281 
 

B 34 0.3 873 228 277 

282 
 

B 34 0.3 873 228 277 

283 
 

A 34 0.3 873 228 277 

284 
 

A 34 0.3 873 228 277 

285 
 

B 34 0.3 873 228 277 

286 
 

B 34 0.3 873 228 277 

287 
 

B 34 0.3 873 228 277 

288 
 

A 34 0.3 873 228 277 

289 
 

B 34 0.3 873 228 277 

290 
 

A 34 0.3 873 228 277 

291 
 

B 34 0.3 873 228 277 

292 
 

A 34 0.3 873 228 277 

293 
 

B 34 0.3 873 228 277 

294 
 

B 34 0.3 873 228 277 

295 
 

A 34 0.3 873 228 277 

296 
 

B 34 0.3 873 228 277 

297 
 

A 34 0.3 873 228 277 

298 
 

B 34 0.3 873 228 277 

299 
 

B 34 0.3 873 228 277 

300 
 

A 34 0.3 873 228 277 
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Figure A-58 Field work 2016 interviewing slaughtered cattle holder 
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Figure A-59 Recording data on biological characteristics of slaughtered cattle at Sokoto abattoir. 
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Figure A-60Goronyo slaughter slabs (field work 2016) 
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