
Succinct BWT-based Sequence prediction

Rafael Ktistakis1, Philippe Fournier-Viger2, Simon J. Puglisi3, and Rajeev
Raman1

1 Department of Informatics, University of Leicester, UK
2 Harbin Institute of Technology (Shenzhen)

3 Department of Computer Science University of Helsinki, Finland
{crk15,r.raman}@leicester.ac.uk, philfv@hit.edu.cn, puglisi@cs.helsinki.fi

Abstract. Sequences of symbols can be used to represent data in many
domains such as text documents, activity logs, customer transactions and
website click-streams. Sequence prediction is a popular task, which con-
sists of predicting the next symbol of a sequence, given a set of training
sequences. Although numerous prediction models have been proposed,
many have a low accuracy because they are lossy models (they discard
information from training sequences to build the model), while lossless
models are often more accurate but typically consume a large amount
of memory. This paper addresses these issues by proposing a novel se-
quence prediction model named SuBSeq that is lossless and utilizes the
succinct Wavelet Tree data structure and the Burrows-Wheeler Trans-
form to compactly store and efficiently access training sequences for pre-
diction. An experimental evaluation shows that SuBSeq has a very low
memory consumption and excellent accuracy when compared to eight
state-of-the-art predictors on seven real datasets.

1 Introduction

Sequences of symbols (strings) are a type of data found in many domains. For
instance, they can be used to represent sequences of words in a text, events in a
business process log, purchases made by customers, or point-of-interests visited
by tourists. An important task in data mining is sequence prediction. Given
a multi-set of training strings (or sequences) D̂ = {x1, . . . , xd} defined over a
finite ordered alphabet of symbols, sequence prediction consists of predicting the
next symbol of the prefix of an unknown query sequence Q. The underlying
assumption is that all the strings are created by a same underlying process.
To perform sequence prediction, a predictor can be trained using the training
strings. Then the predictor can perform predictions.

Various sequence prediction models have been proposed, having various char-
acteristics. They have been used in many domains to perform tasks such as
predicting heart failure [18], human activities [19] and webpage prefetching [6].
Although numerous prediction models have been proposed, many are lossy mod-
els [3,9,15,16,21]. In other words, they discard information from training se-
quences to build small models. But the drawback of this approach is that they

2 R. Ktistakis, P. Fournier-Viger, S. J. Puglisi, and R. Raman

may lack information when its time to make a prediction, which can result in
low prediction accuracy [7]. Some models such as DG [15] also adopt simplifying
assumptions such that each symbol of a string only depends on the previous one.
But this assumption often does not hold in real life applications.

The aforementioned limitations of lossy predictors have recently been ad-
dressed by proposing lossless models, which keep all information about training
sequences in memory to perform more accurate predictions. The assumption is
that a lossless model should be more accurate because they can use all the avail-
able information to make each prediction. Some of the best models of this type
is CPT [7], which was then extended as CPT+ [6]. These models store training
sequences in a trie-based structure, and were shown to be more accurate than
multiple state-of-the-art lossy models. However, the CPT/CPT+ have several
important drawbacks:

– To perform a prediction, the CPT/CPT+ models utilize the bag-of-words
model, which does not consider the order between symbols. But for some
domains, the order is important.

– The CPT/CPT+models require choosing several dataset-specific parameters.
The prediction accuracy can vary greatly depending on how these param-
eters are set. Setting these parameters is not trivial and requires to have
background knowledge or use a trial-and-error approach to find optimal pa-
rameter settings.

– All lossless predictors end up storing the entire training sequence in main
memory. Thus, it is essential that a lossless predictor should store the train-
ing sequence space-efficiently. We use the following variables to denote the
size of the sequence database D: d is the number of sequences, M is the
total length of all the sequences and σ is the alphabet size. We note that
the information-theoretic lower bound for storing D is M log σ bits4 in the
worst case. On the other hand:
• CPT+ uses σ bit-strings of length d to represent the sets of symbols
contained in each sequence. This alone takes dσ bits, which can be much
larger than M log σ bits if σ is large.

• CPT+ stores the training dataset in a trie. In the worst case, there could
be Ω(M) trie nodes, and each trie node contains three (64-bit) pointers,
a significant overhead.

• CPT+ uses ideas such as Patricia compression and replacing frequently
occurring sub-sequences by a single symbol to try to minimize the num-
ber of trie nodes[6]. However, success is unpredictable, and the frequent
pattern mining slows down the training phase.

– During the prediction phase, given a query Q of k symbols, CPT+ performs
several bitwise-and of up to k bit-strings of length d each to find sequences
containing a subset of symbols in Q. This takes O(f(k) · d) time where f(k)
can be as large as 2k. In practice, many fewer than 2k combinations are tried,
and the constants in the O() are small. However, as we show, the query time
of CPT+ grows linearly with d.

4 Logs are to base 2 unless stated otherwise.

Succinct BWT-based Sequence prediction 3

This paper addresses drawbacks of the CPT/CPT+ models by proposing
a novel sequence predictor named SuBSeq. This model adopts the succinct
Wavelet Tree data structure and the Burrows-Wheeler Transform to store train-
ing sequences in a very compact way, while still allowing fast access to training
sequences for prediction. An experimental evaluation shows that SuBSeq has a
very low and predictable memory consumption (the space usage varies between
1.6 and 2.2 times the binary size of D) and excellent accuracy when compared
to state-of-the-art predictors on real datasets. Last but not least, SuBSeq is
largely parameter-free.

The rest of this paper is organized as follows. Section 2 introduces prelimi-
naries about sequence prediction. Section 3 presents the proposed SuBSeq pre-
dictor. Section 4 presents the performance evaluation. Finally, a conclusion is
drawn and future work is discussed.

2 Preliminaries

Strings. A string x = x[0..n − 1] = x[0]x[1] . . . x[n − 1] is a sequence of |x| = n
symbols drawn from a constant ordered alphabet of size σ. For i = 0, . . . , n− 1
we write X[i..n−1] to denote the suffix of X of length n−i+1, that is X[i..n−1] =
X[i]X[i+ 1] . . .X[n− 1]. We will often refer to suffix X[i..n− 1] simply as “suffix
i”. Similarly, we write X[0..i] to denote the prefix of X of length i+ 1. We write
X[i..j] to represent the substring X[i]X[i+ 1] . . .X[j] of X that starts at position
i and ends at position j.

In this paper we consider a multiset of d strings D̂ = {x1, x2, . . . xd}. We

represent D̂ as a single string by concatenating the strings in D into a single
string D = x1$x2$. . . $xd, using a special symbol $ to delineate individual strings,
which does not occur in any string xi. We let M = |D| denote the length of D.

Suffix Arrays. We make use of several standard data structures built from
D. The first of these is the suffix array [10], denoted SA, which is an array
SA[0..M−1] containing a permutation of the integers 0..M−1 such that D[SA[0]..M−
1] < D[SA[1]..M − 1] < · · · < D[SA[M − 1]..M − 1]. In other words, SA[j] = i iff
D[i..M − 1] is the jth suffix of D in ascending lexicographical order.

The Burrows-Wheeler Transform [2,11], denoted BWT is a string BWT[0..M−
1] is a permutation of D defined by SA, such that BWT[i] = D[SA[i]− 1], except
when SA[i] = 0, in which case BWT[i] = D[M]. See Fig. 1 for an example.

Backward Search. The FM-index is a compressed text index (see [13]) that
consists of two main components: a wavelet tree build from the BWT string, and
an array C of σ integers such that C[c] gives the total number of symbols in the
BWT string that are less than symbol c. Searching with an FM-index is based
on a procedure called backward search, which finds the range of SA containing all
suffixes that begin with a given query pattern Q. This range then contains the
positions of occurrence of Q in D. Figure 2 shows how backward search is used
for counting the number of occurrences (the count query). In the algorithm, C[c]
is the position of the first occurrence of the symbol c in F, and the function rankL
is defined as rankL(c, j) ≡

󰀏󰀏{i | i < j and L[i] = c}
󰀏󰀏. The main difference between

4 R. Ktistakis, P. Fournier-Viger, S. J. Puglisi, and R. Raman

the members of the FM-family is how they implement the rankL-function. The
best ones use wavelet trees.

L SA
A 6 $

N 5 A $

N 3 A N A $

B 1 A N A N A $

$ 0 B A N A N A $

A 4 N A $

A 2 N A N A $

Fig. 1: SA and BWT string L for
string D = BANANA$.

Algorithm FM-Count(Q[0..k − 1])
1: b ← 0; e ← M
2: for i ← m− 1 downto 0 do
3: c ← Q[i]
4: b ← C[c] + rankL(c, b)
5: e ← C[c] + rankL(c, e)
6: if b = e then break
7: return e− b

Fig. 2: Counting pattern occurrences
using backward search.

Wavelet Tree. The wavelet tree [12] of string D over an alphabet Σ is a
binary tree with leaves labelled by the symbols of Σ. Each node v is associated
with the subsequence of D consisting of those symbols that appear in the subtree
rooted at v. The associated strings are not stored; instead each internal node
v stores a bitvector B(v) that tells for each character in the associated string
whether it is in the left or right subtree of v.

In a wavelet tree the total length of the bitvectors is |D|⌈log |Σ|⌉, which is
exactly the length of D in bits using the standard representation.

A rank query rankD(c, r) over a wavelet tree is evaluated by a traversal
from the root to the leaf labelled by c. Wavelet trees answer rank queries in
O(log σ) time. A similar procedure enables one to access a given symbol D[i] in
O(log σ) time, or to enumerate all the distinct symbols in a range of the string,
as well as compute the frequency of each of those symbols. Wavelet trees answer
these distinct(i, j) queries in O(k log σ) time, where k is the number of distinct
symbols in D[i..j]. Wavelet trees also support the query select(c, i) in O(log σ)
time, which returns the position of the ith occurrence of symbol c in D. The
queries rank, select, access, and distinct involve rank (or select) queries over the
bitvectors stored on the root-to-leaf path. There are many data structures for
representing bitvectors so that rank and select queries can be answered in con-
stant time [14,17]. These data structures are a standard component in succinct
data structure design. Recent experimental studies of these bitvectors can be
found in [5,8].

3 Succinct BWT-based Sequence prediction model

The Succinct BWT-based Sequence prediction model (SuBSeq) is a new lossless
predictor. Its main distinctive characteristics are that (1) efficiently stores the
entire input training data without any loss (2) fetches training sequences similar

Succinct BWT-based Sequence prediction 5

to a given sequence (query prefix) (3) it does not depend in any parameter-set
fine-tuning in order to be accurate (4) SuBSeq keeps into account the item or-
der of a given query prefix. The latter is the main key difference to the CPT+
prediction model. CPT+ searches for sequences using the bag-of-words model.
This model does not take into account the items order of a prefix for match-
ing it in the training data (which might be important aspect for some domain
applications, as discussed).

3.1 Algorithm description

The SuBSeq prediction algorithm is consisted of two main phases; the train
phase and the ready-for-prediction phase. A multiset D̂ of training sequences is
given as an input. During the train phase, SuBSeq will use the D to produce the
FM-index and store BWT in memory using a wavelet tree. During the ready-for-
prediction phase, SuBSeq is ready to answer query prefixes. The answers that
SuBSeq returns can further be evaluated with the query suffix (see Section 4.2).

For every query prefix SuBSeq will try to give an answer by finding similar
sequences in its training data sequences. This is done through the given query
prefix and a generated collection of sub-queries. Due to the fact that SuBSeq
is only able to locate exact matches of a given pattern in its training data, it
is essential to have a mechanism that expands our prediction model coverage to
more training data. The collection of sub-queries plays the role of this mecha-
nism. Every sub-query comes from the initial query prefix. These are produced
by allowing operations of deletion and substitution. The deletions are always at
the start of the query or sub-query and the substitutions are limited to two.

Example. For a given Q = [a, b, c, d], SuBSeq will try to find exact matches for
Q1 = [a, b, c, d], Q2 = [¿, b, c, d], Q3 = [a, ¿, c, d], Q4 = [a, b, ¿, d], Q5 = [b, c, d],
Q6 = [¿, c, d], Q7 = [b, ¿, d], Q8 = [c, d], Q9 = [¿, d]

On the example above we denote with ¿ the place where we can replace with
any symbol from our alphabet. Assuming our alphabet as Σ = {a, b, c, d} then
SuBSeq can match Q6 with some example training sequences like: [a, c, d, a, d],
[b, c, d, c, a], [c, c, d, b, b], [d, c, d, a, b].

After SuBSeq has found the similar sequences, it uses them to produce
possible answers and eventually order them according to a weight. Producing
possible answers is done through the consequents of the similar sequences. The
consequent of a similar sequence s is considered the subsequence from the item
common to both s and the current (sub-)query used, and up to the last item
of s. For SuBSeq we will be using consequents of length up to two items long.
Every time a (sub-)query is used to find similar training sequence, we come up
with consequents. The items of the consequents are put into a Frequency Array
and they are ordered by a weight. A final prediction answer is the item in the
array with the highest weight value. The final answer is given either (a) when
SuBSeq has collected all possible consequents for both the initial query prefix
and its all produced sub-queries or (b) when a threshold of confidence is met.

6 R. Ktistakis, P. Fournier-Viger, S. J. Puglisi, and R. Raman

Finally, when an item of a consequent is inserted to the frequency array, it
is assigned a weight value. If the item exists in the array then the new value is
added-up on the old value. The weight formula is defined as w = y/Y + (2 −
sub)/2 + 1 + r. We consider y to be the suq-query length, Y the initial query
length, sub the number of substitutions and r = 1

index+1 . The later indicates the
index of the item in the consequent.

3.2 Implementation using FM-index

We mainly need four core functions; (1) backwardSearch (2) forwardSearch
(3) neighbourExpansion (4) getConsequents.

The backwardSearch can be implemented by tweaking the FM-Count
(see Figure 2) to return the (b, e) for a query item at a time.

The forwardSearch does the opposite of the backwardSearch for a given
i. It gives the index i′ = C[c] + rankL(c, i) where c = L[i], and c′ = L[i′] occurs
after c in D.

The neighbourExpansion constitutes the key function of our prediction
model. Using the FM-index, one can only find exact matches for a given pat-
tern. This creates a twofold issue; (1) there is no way to locate similar training
sequences (2) usually in sequence prediction, searching only for exact matches
does not give an enough coverage (if any) for confident predictions. The main
idea of neighbour expansion is that for a given query prefix, it will perform a
normal backwardSearch if the prefix does not have any substitutions in place or
for any substitution that it mets it will recursively expand to all possible symbols
that might follow. Taking into account our previous example of sub-queries, Q3,
we will make the following assumption; before a [c, d] all of the {a, b, c, d} appear
in the training data. This can be figured out with a distinct call for a range in
L. Then Q3 will be expanded to [a, a, c, d], [a, b, c, d], [a, c, c, d] and [a, d, c, d] for
a normal backwardSearch each.

The getConsequents utilises the forwardSearch definition to obtain the
consequents for ranges that have been acquired through the neighbourExpansion.
Expanded sub-queries which result in patterns that have already been used, are
excluded. We do this by utilising a bit-vector of lengthM . Every index of success-
ful neighbourExpansion ranges, is a set bit in the bit-vector. Thus, consequents
from sub-queries that have been prior utilised, will not be re-used and only new
consequent information will added in Frequency Array.

A C++ implementation of our prediction model can be found on github.

com/rafkt/SUBSEQ.

4 Evaluation

We split this section as: the set-up environment, our experimental aims, the
competition to our prediction model and finally the discussion of accuracy and
performance evaluation. For this section, full details about our experimental data
and about our results can be found on github.com/rafkt/SUBSEQ.

github.com/rafkt/SUBSEQ
github.com/rafkt/SUBSEQ

Succinct BWT-based Sequence prediction 7

4.1 Experimental Setup

Environment. Experiments were performed under macOS 10.14.1 with an Intel
Core i7 (4 Cores, 256KB L2 per Core, 8MB L3), 32GB DDR3 1867MHz RAM
and a 8.0 GT/s Link speed SSD. The lossless predictors, CPT+, CPT, were
ran using IPredict framework [6] under java version 1.8.0 112 with JIT enabled
which allows the bytecode to be compiled into native machine code, allowing a
fair comparison with native implementations. The SuBSeq Predictor was com-
piled under clang-1000.11.45.5, while SPiCe baseline [1] was compiled and run
under Python 2.7.10. We used the sdsl-lite library [4] for implementing SuBSeq.

Aims. To measure and compare different prediction models in terms of their
accuracy and their performance. Performance is measured in terms of the execu-
tion time a prediction model needs to train itself; the execution time it needs to
complete answering a testing set; the memory usage it utilises after the training
phase is complete.

Competition. We compare SuBSeq with a variety of state-of-the-art lossy
and lossless predictors. These are: All-K-order Markov (AKOM) [16], LZ78 [21],
Transition Directed Acyclic Graph (TDAG) [9], Prediction by Partial Match-
ing (PPM) [3] and Dependancy Graphs (DG) [15]. We also included a spectral
learning prediction model from SPiCe competition [1]. We also compare SuBSeq
with CPT+ [6] as it is the current state-of-the-art lossless prediction model.

Data. For our experiments we used datasets with various characteristics
from SPMF library5 library. In addition, we used synthetic data6 which was
generated by IBM QUEST data generator [20].

4.2 Accuracy of prediction

Each dataset is read in memory, and then is split into a training set and a
testing set using the k-fold cross validation. Once a predictor has been trained,
each sequence of the testing set is split into two parts, the query prefix and the
query suffix. The size of each can be defined through a parameter in advance.
Then a trained prediction model is called to give answers for every prefix in
the testing set. A prediction answer for a query prefix is accurate if it appears
within the query suffix7. The accuracy rate is the ratio of accurate predictions
to the total number of test sequences. Each prediction model has been trained
and tested using k-fold cross validation with k = 14 to obtain a low variance for
each run.

Accuracy results are shown in Table 1. Our prediction model provides
better accuracy than any other lossy predictor for SIGN, KOSARAK and FIFA
datasets. At the same time, we can observe that SuBSeq has an overall better
accuracy than any predictor for MSNBC and BIBLE CHAR. However, if we
take into consideration the accuracy variation of CPT+ (as show in the Table 1

5 Available at http://www.philippe-fournier-viger.com/spmf
6 Details about QUEST exported data, are available at github.com/rafkt/SUBSEQ
7 Same evaluation approach was followed for CPT+[6]

http://www.philippe-fournier-viger.com/spmf
github.com/rafkt/SUBSEQ

8 R. Ktistakis, P. Fournier-Viger, S. J. Puglisi, and R. Raman

at CPT+ column in a [min-max] range) based on its different possible param-
eter tunes, then SuBSeq provides an overall better accuracy performance for
KOSARAK and FIFA as well. Thus, CPT+ gets less competitive if it is not finely
tuned making SuBSeq more attractive.

Datasets DG TDAG CPT+ subSeq
Mark1
(PPM)

AKOM LZ78
SPiCe
base-
line

BMS 36 7 [30-38] 33 30 31 33 0.19

SIGN 2 0 [26-34] 23 4 7 5 4

MSNBC 55 31 [49-59] 64 38 48 43 30

BIBLE WORD 6 23 [0 - 22] 29 11 32 18 2

BIBLE CHAR 3 79 [1 - 80] 88 16 81 65 6

KOSARAK 30 1 [31-37] 34 23 20 20 0.6

FIFA 25 7 [18 - 34] 29 23 26 25 0.38

Table 1: Prediction models and their accuracy in %. First and second best per-
formers are in bold

4.3 Performance

The Memory of SuBSeq was measured by using the relevant api in sdsl li-
brary. The memory for the rest of the predictors was measured through IPredict.
We compared the different prediction models through the ratio of their memory
usage over the training set binary size. In the Table 2, SuBSeq is the most con-
sistent and most memory efficient prediction model. It uses an average memory
of up to 2.2 times the memory of the input training set binary size. Predic-
tion models like TDAG and CPT+ appear to be highly inconsistent. TDAG
can utilise space between 70 to 2500 times the input binary size while CPT+
between 0.5 to 80 times; indicating an unpredictable performance.

The running time of SuBSeq was directly compared to CPT+ for various
datasets (Figure 3c) in respect of the testing-phase (and training-phase). Eval-
uations also included input data of an increasing σ, n, d using the QUEST gen-
erator. The results showed competitive and consistent performance for SuBSeq
in comparison to CPT+.

4.4 Optimisation discussion

Our current implementation of SuBSeq is not fully optimised yet. Experimen-
tal evaluation showed that 90% of the time needed from SuBSeq to answer a
query, it is spent for neighbour expansion. Further experiments revealed that

Succinct BWT-based Sequence prediction 9

Datasets DG TDAG CPT+ CPT subSeq
Mark1
(PPM)

AKOM LZ78

BMS 4.87 136.34 9.01 15.58 2.14 1.63 26.05 5.60

SIGN 2.96 124.51 0.54 10.86 1.73 1.69 38.07 5.08

MSNBC 0.06 176.29 3.19 5.42 2.14 0.06 13.71 4.14

BIBLE WORD 6.07 77.72 11.10 12.74 1.90 1.70 20.83 3.40

BIBLE CHAR 0.68 2689.15 3.38 6.46 2.18 0.25 51.69 42.77

KOSARAK 6.76 126.92 81.49 86.43 1.67 21.17 30.62 4.86

FIFA 2.98 90.74 4.88 6.64 1.60 1.15 23.40 3.59

Table 2: Ratio of prediction model memory to training binary size (M ∗⌈log(σ)⌉)

(a) Memory (b) Time (c) various datasets

Fig. 3: Testing time performance of CPT+ and SuBSeq

in average only a 45% of the executed rank operations are unique per query.
Thus, preventing neighbour expansion from performing excessive rank calls in
the wavelet tree, would optimise the speed performance of SuBSeq for datasets
with large σ. Figure 3c shows that for a dataset like KOSARAK (σ = 654, 987),
SuBSeq performance is less competitive. One way to minimise excessive rank
calls is to store (retrieve) each rank result in (from) a trie-based data structure.

5 Conclusion

Lossless sequence predictors are often very accurate but can consume a large
amount of memory. To address this issue, this paper presented a novel predic-
tor named SuBSeq that is lossless and utilizes the succinct Wavelet Tree data
structure and the Burrows-Wheeler Transform to compactly store and efficiently
access training sequences for prediction. Experimental results have shown that
SuBSeq has a very low and predictable memory consumption (varying 1.6 to 2.2
times the binary size of D) and excellent accuracy in comparison to state-of-the-
art predictors on real datasets. Moreover, SuBSeq is mostly parameter-free.
Future work includes optimising SuBSeq neighbour expansion along with its
overall speed performance.

10 R. Ktistakis, P. Fournier-Viger, S. J. Puglisi, and R. Raman

References

1. Balle, B., Eyraud, R., Luque, F.M., Quattoni, A., Verwer, S.: Results of the Se-
quence PredIction ChallengE (SPiCe): a Competition on Learning the Next Symbol
in a Sequence. In: Proc. 13th International Conference in Grammatical Inference.
vol. 57. JMLR W&CP, Delft, Netherlands (2016)

2. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm.
Tech. Rep. 124, Digital Equiptment Corporation (1994)

3. Cleary, J., Witten, I.: Data compression using adaptive coding and partial string
matching. IEEE Trans. Commun. 32(4), 396–402 (1984)

4. Gog, S.: simongog/sdsl-lite (2015), https://github.com/simongog/sdsl-lite
5. Gog, S., Petri, M.: Optimized succinct data structures for massive data. Software,

Practice and Experience 44(11), 1287–1314 (2014)
6. Gueniche, T., Fournier-Viger, P., Raman, R., Tseng, V.S.: Cpt+: Decreasing the

time/space complexity of the compact prediction tree. In: Proc. PAKDD. pp. 625–
636 (2015)

7. Gueniche, T., Fournier-Viger, P., Tseng, V.S.: Compact prediction tree: A lossless
model for accurate sequence prediction. Advanced Data Mining and Applications
pp. 177–188 (2013)

8. Kärkkäinen, J., Kempa, D., Puglisi, S.J.: Hybrid compression of bitvectors for the
FM-index. In: Proc. DCC. pp. 302–311. IEEE (2014)

9. Laird, P., Saul, R.: Discrete sequence prediction and its applications. Machine
Learning 15(1), 43–68 (Apr 1994)

10. Manber, U., Myers, E.W.: Suffix arrays: A new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

11. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

12. Navarro, G.: Wavelet trees for all. Journal of Discrete Algorithms 25, 2–20 (2014)
13. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Computing Surveys

39(1), article 2 (2007)
14. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.

In: Proc. ALENEX. pp. 60–70. SIAM (2007)
15. Padmanabhan, V.N., Mogul, J.C.: Using predictive prefetching to improve world

wide web latency. SIGCOMM Comput. Commun. Rev. 26(3), 22–36 (Jul 1996)
16. Pitkow, J., Pirolli, P.: Mining longest repeating subsequences to predict world

wide web surfing. In: USITS’99 Proceedings of the 2nd conference on USENIX
Symposium on Internet Technologies and Systems - Volume 2. pp. 139–150 (1999)

17. Raman, R., Raman, V., Rao, S.S.: Succinct indexable dictionaries with applica-
tions to encoding k-ary trees, prefix sums and multisets. ACM Transactions on
Algorithms 3(4) (2007)

18. Rjeily, C.B., Badr, G., Al Hassani, A.H., Andres, E.: Predicting heart failure class
using a sequence prediction algorithm. In: 2017 Fourth International Conference
on Advances in Biomedical Engineering (ICABME). pp. 1–4. IEEE (2017)

19. Tax, N.: Human activity prediction in smart home environments with lstm neural
networks. In: 2018 14th International Conference on Intelligent Environments (IE).
pp. 40–47. IEEE (2018)

20. Zheng, Z., Kohavi, R., Mason, L.: Real world performance of association rule al-
gorithms. In: Proc. ACM SIGKDD. pp. 401–406. ACM (2001)

21. Ziv, J., Lempel, A.: Compression of individual sequences via variable-rate coding.
IEEE Trans. Inf. Theor. 24(5), 530–536 (1978)

https://github.com/simongog/sdsl-lite

