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Abstract

This thesis explores the behaviour of different types of individuals (i.e., traders,
experimental subjects) in financial markets under two different environments. It
consists of three chapters/papers. Chapters 2 and 3 focus on an electronic mar-
ket environment where traders submit orders through an electronic platform (i.e.,
electronic (limit) order book). Chapter 4 develops a portfolio choice problem - im-
plemented in a laboratory environment - where subjects choose under risk, the al-
location of wealth between two assets.

Chapters 2 and 3 develop a dynamic continuous-time model of trade in a single
financial asset under two different setups. In chapter 2 under the Single-Market
scenario, the set of preferences of all market participants is aggregated on a limit
order book related to a ‘lit’ market. Under the Multi-Markets scenario, trading takes
place on two limit order markets that operate in parallel: an open (transparent) ‘lit’
market and a ‘dark’ (opaque) market. The aim of this chapter is to study the effects
of the latter market on the ‘lit’ market’s quality measures, trading behaviour and
welfare of traders. The results show that the presence of the ‘dark’ market harms the
quality of the incumbent exchange (i.e., reduced liquidity, quoted spread increase,
the effective spreads of all market participants increase). All market participants
across the two scenarios make higher profits when they participate in the ‘lit’ market
under the Multi-Markets scenario.

Chapter 3 looks into the recent regulatory interests on ‘dark’ trading (e.g., Eu-
ropean Commission, 2010; Securities and Exchange Commission, 2010). To ad-
dress the policy question a competitive setting is considered - with two different
groups of agents - where two limit order markets operate simultaneously under
two different scenarios. This chapter looks into whether the different price mech-
anisms applied to the ‘dark’ market - midpoint dark pool (‘mid-market’ scenario)
and Volume-Weighted Average Price (VWAP) dark pool (‘VWAP-market’ scenario)
- affect traders’ welfare (and behaviour) and the ‘lit’ market’s quality. The results
suggest that across the two scenarios the ‘VWAP-market’ scenario benefits the ‘lit’
market’s quality while only a certain group of agents (speculators) make less profits
in this environment as compared to the alternative scenario.

The aim of chapter 4 is to study - in a laboratory environment - subjects’ de-
cision making under risk in a financial asset setting, with contingent claims fixed
across frames. By testing the fundamental and untested hypothesis imposed on the
majority of the asset demand tests (i.e., Arrow-Debreu contingent claim setup); the



study focuses on the application of revealed preference to the model of choice un-
der risk and under uncertainty. Applying Afriat’s Theorem (Afriat, 1967) we check
if the experimental data is consistent with the maximization hypothesis. The re-
sults suggest that the power of the test is close to perfect; while the test’s predictive
success is within the positive range.
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Chapter 1

Introduction

This thesis examines the behaviour of different types of individuals (i.e., traders,

experimental subjects) in financial markets under two different settings. That is, in

chapters 2 and 3 we model the behaviour of different groups of traders in dynamic

(limit) order book based financial markets. In contrast, in chapter 4 we develop and

implement - in a laboratory setting a financial asset demand test where subjects

choose under risk the allocation of wealth between two assets.

Without publicly displaying orders, dark pools have increased their market share

- in recent years - in global equity markets. The increased percentages of ‘dark’ trad-

ing (e.g., Banks, 2014; Securities and Exchange Commission, 2015) coupled with the

decline in order sizes and depths on the incumbent exchanges (e.g., Chordia, Roll,

and Subrahmanyam, 2011) have triggered regulatory and academic concerns on the

effect of these Alternative Trading Systems (ATS) on the information fragmentation,

liquidity, market competitiveness and fairness. Another concern related with the

order migration away from the traditional exchanges towards dark pools is the de-

gree that these venues have on the distribution of welfare among market partici-

pants (retail and institutional investors); since these venues were used primarily by

institutions in order to avoid market impact or adverse price movements. Yet the

effects of ‘dark’ trading are still debatable. These trading platforms are important -

high market share - and there is limited and contradictory empirical or theoretical

work on dark pool activity (e.g., Ye, 2010; Zhu, 2013, (price discovery); or Degryse,

De Jong, and Kervel, 2015; Foley and Putniņš, 2016, (market quality)).

In chapters 2 and 3, motivated by the aforementioned, we consider dynamic

continuous-time models of trade in a single financial asset, in order to capture the

concerns related to ‘dark’ trading. Given the multidimensionality of the state space,

we employ in each model the numerical approach of Pakes and McGuire (2001) and

Goettler, Parlour, and Rajan (2009) in order to derive the optimal strategies adopted

by the market participants. Optimal strategies are state dependent and each trader

1



Introduction 2

submits an order in order to maximize his expected payoff.

Chapter 2, sheds light on the effects that ‘dark’ trading has on traders (i.e., trading

behaviour and welfare) and on the quality of the ‘lit’ market. To be able to answer the

above, we test two scenarios; under scenario I (Single-Market) trading takes place

on a single limit order book that offers at any instant full pre-trade transparency.

Under scenario II (Multi-Markets) two marketplaces exist and operate simultane-

ously, a ‘lit’ market and a ‘dark’ market. To be consistent with how real financial

markets operate, the ‘dark’ market at any instant offers no pre-trade transparency.

All traders can trade on share of the asset and each of them has an individual private

value for the asset, allocated before they take any trading decision. Analysis of the

model shows that the ‘dark’ market harms the ‘lit’ market’s quality. Moreover under

the Multi-Markets scenario, liquidity suppliers (speculators) under the risk of being

picked off submit less limit orders to the ‘lit’ market as compared to the alternative

scenario. Due to the different trading strategies adopted by the market participants

under the Multi-Markets scenario, all trades irrespective of valuation make higher

profits when they participate in the ‘lit’ market as compared to the Single-Market

scenario.

Chapter 3 focusses on the regulatory concerns related to ‘dark’ trading. This

chapter addresses the policy question related to whether or not ‘dark’ trading in-

creases the traders’ profits - by adopting different trading strategies - and the mar-

ket quality of the incumbent exchange. For our purposes we test two scenarios: (i)

a ‘mid-market’ scenario where a ‘lit’ market competes with dark pool that executes

orders at any instant at the midpoint of the incumbent exchange; and (ii) a ‘VWAP-

market’ scenario where the ‘dark’ market matches traders orders at any instant at

the Volume-Weighted Average Price (VWAP). Irrespective of the scenario, the mar-

ket contains two groups of agents: large traders who can trade z > 1 shares of the as-

set and small traders who can trade one share of the asset. Our results indicate that

across the two scenarios there is an increase in liquidity supply in the ‘lit’ market

under the ‘VWAP-market’ scenario. Moreover, across the two scenarios, the trading

cost of submitting a market order that executes against an outstanding limit order

under the ‘mid-market’ scenario, is higher. Traders with β = 0 (speculators) are the

only market participants who make less profits when they participate in any market

under the ‘VWAP-market’ scenario as compared to the alternative scenario.

Chapter 4 focuses on the recent strand of papers that have been developed and



Introduction 3

implemented - in a laboratory setting - related to nonparametric asset demand tests (e.g.,

Varian, 1983, 1988; Green and Srivastava, 1986; Kübler, Selden, and Wei, 2014; Choi

et al., 2007, and; Polisson, Quah, and Renou, 2017). In most of these models, as-

set demand tests make use of the Arrow-Debreu contingent claim setting; that is

an individual posses preferences over state contingent consumption. Markets are

assumed to be complete (i.e., same number of assets and states of the world) so ob-

servations can be transformed to contingent claim demands and prices. The focus

of this chapter is to test this fundamental and untested hypothesis used in financial

asset demand tests. To do that, we design an experiment in which each subject is

asked to purchase securities under four different scenarios in the asset space with

contingent claims fixed across frames (i.e., scenario I: Arrow-Debreu securities, sce-

narios II, III, IV: ordinary securities). Subjects are facing risk where the probabilities

of the two available states are objectively known. Under certain assumptions, we

are able to generate - for each of the four scenarios - an equivalent environment

in the asset space were subjects are asked to make asset demand choices. Using

Afriat’s Theorem (Afriat, 1967) we are able to apply a nonparametric test of utility

maxmization within and across the available scenarios. In our analysis, we observe

that the test’s predictive success across and within scenarios is within the positive

range. That is, the test has explanatory power against the alternative hypothesis of

random choice. The power of the model is close to perfect given that the probability

of a random dataset to be consistent with the utility maximization model across all

scenarios at an efficiency index of 0.85 is effectively zero.



Chapter 2

Dynamic Equilibrium in Limit Order

Markets: Analysis of Microstructure

Characteristics, Trading Behaviour

and Welfare

2.1 Introduction

The organization of trading in the financial markets has encountered enormous

adjustments at the end of the 20th century. Quote-driven markets (dealer markets)

have been substituted progressively by order-driven markets. While in quote-driven

markets trades are only executed by dealers, who quote the bid and ask prices, in

order-driven markets there are no designated intermediaries.1 In these markets,

trades are matched through computers, clerks, or brokers while traders interact di-

rectly with each other by submitting orders that are sorted according to certain trad-

ing rules.2

To be in line with the empirical findings of Jain (2005) the focus of this study is

based on an electronic market environment (order-driven computerized system)

where traders submit orders through an electronic trading platform (i.e., electronic

limit order book). Jain (2005) by examining the impact of market microstructure on

asset pricing, observes that the leading stock exchange in 101 out of the 120 sample

1 Some markets (hybrid) often combine features from both quote and order-driven protocols.
Some typical examples of these markets are the NYSE, AMEX (organised by specialists who manage
the order book and guarantee liquidity), NASDAQ and LSE.

2 In all exchanges and electronic platforms traders that offer the most competitive prices are
queued first. The next rule that most of the systems follow is the time rule, where priority is given
to traders that improved first the prevailing quotes. Finally some markets give priority to displayed
against non-displayed orders or obey the size precedence rule.

4



2.1: Introduction 5

countries has introduced screen-based electronic trading.

Equity trading has seen a rapid increase in the number of new trading venues

(e.g., Alternative trading systems (ATSs) in the US and multilateral trading facilities

(MTFs) in Europe). Trading systems structured as electronic limit order books (i.e.,

electronic communication networks (ECNs)), generally offer pre- and post-trade

transparency (‘lit’ venues).3 Trading interests and prices are publicly available to

the market participants prior to execution, while the transaction details of executed

orders are announced in real time. Dark pools in contrast with ECNs, are alterna-

tive equity trading systems that operate with limited or no pre-trade transparency

(‘dark’ venues). Details of the orders (i.e., price and quantity) submitted in these

off-exchange trading platforms, are not displayed to the other market participants.

Any order executed in these venues is reported in a consolidated tape (in the U.S.

equity markets), a mechanism that offers post-trade transparency.4

The motivation of this study lies on (i) the significant high percentage of ‘dark’

trading, in terms of average daily trading volume, in the major global equity mar-

kets (i.e. U.S., Europe, Canada, Australia, Asia) over the past few years. According

to Banks (2014) at the largest U.S. platforms, the average daily trading volume ab-

sorbed by dark pools in 2013 ranged from 100 to 300 million shares; (ii) the empirical

findings of Chordia, Roll, and Subrahmanyam (2011), that point clear evidence on

the continuous decrease of the order sizes and depths on exchanges; and (iii) the

fundamental regulatory concerns linked with ‘dark’ trading that include the poten-

tial impact on the price discovery process, on the fragmentation of information,

liquidity and on market competition and fairness. Yet, the effect of dark trading

on quoted spreads and on market quality as a whole is still debatable (see for ex-

ample empirical findings of Degryse, De Jong, and Kervel, 2015; Foley and Putniņš,

2016). Another concern related with the order migration away from the traditional

exchanges towards dark pools is the degree that these venues have on the distribu-

tion of welfare among market participants (retail and institutional investors); since

dark pools primary target was to ‘protect’ institutions from trading large blocks of

shares.
3 Some global stock exchanges, such as the NASDAQ OMX, Deutsche Boerse/Xetra and LSE, fea-

ture non-displayed orders. These orders are either ‘controlled’ by specialists within their order books
or held by the exchange.

4 For further discussion on the ATSs/MTFs and primarily dark pools see Subsection 2.1.1.
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Thus, this study will focus on answering the following question: “How does the

microstructure of a dark pool affect the ‘lit’ market’s quality measures, trading be-

haviour and welfare of market participants ?"

The effects of this market mechanism are extremely interesting. Minute effects

on these markets have massive effects on the rest of the economy; by absorbing

huge amounts of trade from the traditional exchanges, they generate huge turnover

in the financial markets. These venues are important (i.e., high market share) and

there is limited empirical or theoretical work on dark pool activity and how these

markets behave.5 Dark pools nowadays add structural complexity in markets since

the design and the trading rules they obey are completely dependent on whoever

operates them (i.e. banks, agency brokers, exchanges).6 As a result, there is lim-

ited and contradictory evidence of whether their design is sensible, if it encourages

predatory trading or generates efficiency within the market.7

Given the aforementioned, this study tests two scenarios: (i) a Single-Market

scenario where the set of preferences of all market participants is aggregated on a

limit order book related to a ‘lit’ market; and (ii) a Multi-Markets scenario where liq-

uidity is scattered between two marketplaces - a ‘lit’ market and a ‘dark’ market - that

operate simultaneously. Under the latter scenario (Multi-Markets) each market has

a respective limit order book and different levels of transparency. The ‘lit’ market of-

fers at any instant full pre-trade transparency; that is the limit order book related to

the ‘lit’ market reveals all the relevant information to the market participants con-

cerning the available trading opportunities for any available price. In contrast the

limit order book related to the ‘dark’ market offers no pre-trade transparency (i.e.,

trading opportunities are not observable to the agents).

We consider a dynamic continuous-time model of trade in a single financial as-

set. Traders are risk neutral, observe the fundamental value of the asset at any in-

stant with a time lag and have different motives to trade. An agent’s private value,

denoted by β , is drawn independently across traders from a discrete distribution

Fβ with finite support. Agents with the most extreme private values are keen to

trade quickly since their main benefits arise from their exogenous private values.

5 (e.g., Ye, 2010; Zhu, 2013, (price discovery); or Degryse, De Jong, and Kervel, 2015; Foley and
Putniņš, 2016, (market quality)).

6 For further discussion on the different types of dark pools see Subsection 2.1.1.
7 Brunnermeier and Pedersen (2005) define predatory trading as “trading that induces and/or

exploits the need of other investors to reduce their positions”.
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In contrast agents with zero private values may be willing to trade only when the

fundamental is mispriced. Market participants can trade one share of the asset and

under the Multi-Markets scenario they can choose either the ‘lit’ or the ‘dark’ mar-

ket in order to submit their order. If their order does not execute, traders re-enter

the market and revise their order. Traders can re-enter the market multiple times

until execution.

Given the properties of the ‘dark’ market - under the Multi-Markets scenario -

an agent’s trading decision depends on the prevailing market conditions of the ‘lit’

market (state-dependent action). Conditional on the state of the trading game each

trader submits an order in order to maximize his expected discounted payoff. Since

our model does not have a closed-form solution we follow the numerical approach

of Pakes and McGuire (2001) - originally used by Goettler, Parlour, and Rajan (2005)

- and Goettler, Parlour, and Rajan (2009) so to be able to find a Markov-perfect equi-

librium in which a trader irrespective of valuation acts optimally. Once the equilib-

rium is found we simulate the model for some billion order submissions were the

dynamics of the model are examined.

Our key findings include: (i) (market quality) the presence of the ‘dark’ mar-

ket under the Multi-Markets scenario harms the ‘lit’ market’s quality. Liquidity is

reduced; the quoted spread increases and the number of limit orders at the best

quotes and at both sides of the limit order book decrease. Moreover the effective

spreads of all market participants are greater and the ‘lit’ market’s informational in-

efficiency increases; (ii) (trading behaviour) agents with zero private values decrease

their liquidity provision in the LM under the Multi-Markets scenario. The ‘lit’ mar-

ket’s wider spread changes the order placement strategies adopted by the agents

with nonzero private values (and as a result reduces the ‘lit’ market’s microstruc-

ture noise). The above coupled with the properties of the DM (no pre-trade trans-

parency) under the Multi-Markets scenario indicate that the placement of non-ag-

gressive limit orders (i.e., at the best quotes) to the LM involve more risk and are

associated with a high probability of being picked off; (iii) (trading behaviour) the

non-display properties of the ‘dark’ market drive agents with no intrinsic motives to

trade; to place more aggressive limit orders in that venue; (iv) (trading behaviour) re-

turning agents with zero private values prefer the ‘dark’ market for the placement of

their orders. For returning agents with nonzero private values this is less of an issue

given their exogenous motives to trade and the ‘lit’ market’s reduced microstructure
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noise; (v) (trading behaviour) across the two scenarios, although the agents with

nonzero private values tend to be a little more conservative in the ‘lit’ market - in

terms of mean price of submitted limit orders - they reduce their picked off proba-

bilities, increase their percentages of limit orders executing and obtain better terms

of trade in that venue; and (vi) (welfare) agents irrespective of valuation across the

two scenarios make higher profits when they participate in the LM under the Mul-

ti-Markets scenario.

Our results stand in line with the theoretical findings of Zhu (2013) and Buti,

Rindi, and Werner (2017) and the empirical findings of Nimalendran and Ray (2014); De-

gryse, De Jong, and Kervel (2015) and Kwan, Masulis, and McInish (2015). Zhu (2013)

examines the impact the ‘midpoint’ dark pool has on price discovery and shows that

the incumbent exchange (dark pool) is more attractive to informed (uniformed)

traders, and as a result harms the ‘lit’ market’s liquidity. Buti, Rindi, and Werner

(2017) show that the introduction of a dark pool that competes with a ‘lit’ market

widens the spread and lowers the depth of the latter. Nimalendran and Ray (2014)

analyse data from one US dark pool and conclude that trading in the ‘dark’ mar-

ket increases the spread and price impact on the ‘lit’ market. Degryse, De Jong, and

Kervel (2015) using data from 52 Dutch stocks in the Amsterdam Exchange (AEX)

with large and mid-cap indices conclude that dark trading has a negative effect on

the order books’ liquidity. Kwan, Masulis, and McInish (2015) use a dataset of US off-

exchange trading classified into five dark venues and show that the ability to queue

jump in some dark venues discourages market participants from providing liquidity

to the incumbent exchanges and hence widens the spread and lowers the depth of

these markets.

Our results stand against the theoretical findings of Boulatov and George (2013)

and the empirical findings of Foley and Putniņš (2016). Boulatov and George (2013)

by examining the impact of hidden liquidity on market quality they show that opac-

ity in limit order markets enhances liquidity and the market’s informational effi-

ciency. Foley and Putniņš (2016) using the introduction of the minimum price im-

provement regulation in Canada and Australia examine the effects that ‘two-sided’

dark trading has on market quality. Their results suggest that ‘dark’ markets bene-

fit market quality by reducing the quoted and effective spreads and increasing the

informational efficiency of the market.
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2.1.1 Diving into Dark Pools

In 2005, the market share of dark pools in equity markets was low. Dark pools’

primary purpose was to minimize information leakage by allowing certain investors,

i.e., institutions, to anonymously trade large blocks of shares (see Zhu, 2013). Thus,

the benefits associated with the choice of these venues was the protection they of-

fered to large institutional investors against predatory trading and unfavourable

price movements. The adoption of new regulations, the evolution of communi-

cation networks together with the rise in high frequency trading, and decimaliza-

tion brought changes in the market structure of equity trading systems (see Banks,

2014). In the U.S., the adoption in 2005 and full implementation in 2007 of the Reg-

ulation National Market System (Reg NMS) with its main target to enhance compe-

tition with incumbent exchanges, led to the introduction of new alternative elec-

tronic trading venues (ATSs).8 Similarly in Europe, in force since November 2007,

the Markets in Financial Instruments Directive (MiFID) enabled fast expansion to

multilateral trading facilities (MTFs).9

According to Securities and Exchange Commission (2010), as of September 2009,

liquidity in the U.S. equity markets was scattered among 5 electronic communica-

tion networks (ECNs), almost 10 registered exchanges, 32 dark pools and 200 broker-

dealers. Registered exchanges and ECNs (‘lit’ venues) offer pre- and post-trade trans-

parency since the consolidated quotation data is publicly available to market par-

ticipants. These venues executed approximately 74.6% of the share volume in NMS

stocks. Dark pools and broker-dealer internalization (dark venues) by matching or-

ders anonymously offer limited or no pre-trade transparency. These venues exe-

cuted 25.4% of the share volume.

In recent years, not only the market share but also the number of ATSs, and par-

ticularly that of dark pools, has increased even more. From the third quarter of 2009

until the second quarter of 2015, the number of dark pools has increased from 32 to

50. Moreover, the market share of these dark venues approximately doubled from

7.9% to 14.9% (Securities and Exchange Commission, 2015). As of September 2015,

based on data available from BATS Chi-X Europe, the five days average of total con-

8 For further discussion on rules adopted by the Securities and Exchange Commission (SEC) un-
der Regulation National Market System (Reg NMS), see Securities and Exchange Commission (2005).

9 For further discussion on Markets in Financial Instruments Directive (MiFID) and the devel-
opments in market structures in Europe, see European Commission (2010).
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solidated volume traded in dark pools accounted for almost 10% up from approxi-

mately 2.7% five years ago.

Apart from the aforementioned regulations that enhanced competition, a con-

fluence of factors led to the rapid increase in market power of dark pools. The con-

tinuous decrease in consolidated equity volume (see for example Chordia, Roll, and

Subrahmanyam, 2011) and the introduction of maker-taker or taker-maker pricing

schemes on equity exchanges forced certain market participants (i.e., institutions)

to shift their attention towards off-exchange trading platforms.10 The matching and

pricing mechanisms the majority of dark pools follow offer not only more attractive

fee structures but potential price improvements relative to the national best bid and

offer (NBBO) of exchanges.

According to Zhu (2013) and Buti, Rindi, and Werner (2017) dark pools are sub-

divided into four main categories: (i) bank/broker pools, operated by banks, hold

the majority of the market share in the U.S., Canada and Europe. By offering lim-

ited price discovery, the execution price these continuous nondisplayed limit order

books follow, is bounded between the national best bid and offer (NBBO). Exam-

ples involve Goldman Sachs SIGMA X (SIGMA X MTF in Europe), Barclays LX and

UBS PIN ATS (UBS MTF in Europe). (ii) Independent/agency pools, operated by

agency brokers, match orders at the midpoint of NBBO or the Volume-weighted av-

erage price (VWAP). Examples involve, ITG Posit (Posit in Europe), Liquidnet and

Knight Match. (iii) Exchange-Based pools, which are owned by exchanges and pro-

vide no direct price discovery since execution prices are derived form the NBBO; and

(iv) market maker pools where liquidity is supplied by the manager of these venues.

For our purposes in this model, we follow the trading mechanism of bank/broker

dark pools.

This study is organised as follows. Sections 2.2 and 2.3 present the details of the

model; Section 2.4 depicts the results and Section 2.5 concludes.

2.2 Preliminaries

The trading game involves traders who can trade one share of the asset. We de-

note the variable that controls the number of available shares a particular trader has

10 See Harris (2013) for further information on the effects of maker-taker or taker-maker pricing
schemes.
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to trade by z , where z ∈ {0, 1}. A factor that gives heterogeneity to the market par-

ticipants, is their intrinsic private value to trade the asset.11 We denote an agent’s

private value by β ; this value - allocated to an agent before taking any action - is

drawn independently across traders from a discrete distributionFβ with finite sup-

port. Traders with greater absolute private values in β are impatient to trade since

the main benefits arise from their private values. Traders with a private value of zero

(no intrinsic motivation to trade) may only be willing to trade profitably when the

fundamental value of the asset is mispriced.

We consider a dynamic continuous-time model of trade in a single financial as-

set. At any time t , the asset has a common (fundamental) value, denoted as vt , that

evolves over time following a random walk.12 The time between innovations in vt

follow a Poisson process with parameter λv. When an innovation occurs, the fun-

damental value equiprobably increases or decreases by σ ticks. Any change in the

fundamental value reveals new information about the asset. Assume at time t > 0,

the fundamental value is drawn to decrease by σ ticks and the next event drawn

is the arrival of a new trader at time t ′ > t . This trader arriving at time t ′, is bet-

ter informed compared to all active traders who submitted limit orders in the time

interval [0, t ).

Trading takes place on two limit order markets that operate simultaneously, an

open (transparent) ‘lit’ market and a ‘dark’ (opaque) market.13 While the ‘lit’ market

offers at any instant full pre-trade transparency the ‘dark’ market represents a typ-

ical form of a dark pool, in terms of the trading mechanism applied, that provides

limited price discovery. The dark pool in our model is opaque, that is an order sub-

mitted to the ‘dark’ market is not observable to any other active market participant

but the order submitter (no pre-trade transparency). At any instant this continuous

nondisplayed ‘two-sided’ limit order book (i.e., ‘dark’ limit order market) can exe-

cute buy and sell orders at different prices as long as resting limit orders exist on

11 Private value for the asset is also present in the models of Biais, Hillion, and Spatt (1995); Par-
lour (1998); Theissen (2000); Handa, Schwartz, and Tiwari (2003); Goettler, Parlour, and Rajan (2005,
2009); Hoffmann (2014); Chiarella and Ladley (2016) and Buti, Rindi, and Werner (2017); among
many others.

12 The fundamental value is considered to be the expectation of the future cash flows on the stock.
13 From this point and onwards (until Section 2.4); given that the Single-Market scenario is a sub-

division of the Multi-Markets scenario (i.e., only one limit order book), our focus lies only on the
latter scenario.
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the other side of the market.14 Due to these properties a trader’s decision whether

or not to submit an order to the ‘dark’ market is endogenously determined at any

instant by the prevailing market conditions of the ‘lit’ market.15

New traders arrive at the market according to a Poisson process with parame-

ter λN. Upon first arrival, traders can submit an order of one share to either market

or wait until the market conditions change (submit no order). Traders, after sub-

mitting an order which has not been executed, re-enter the market and revise their

previous trading strategies after a random amount of time (for further analysis, see

Subsection 2.3.1). The re-entry time is drawn from a Poisson process with parame-

ter λR.

The model discourages agents from infinitely postponing trade by introducing

a discount rate. The payoffs of order executions, are discounted back to the order’s

submission time, at rate ρ. This discount rate which is the same for all agents irre-

spective of valuation, captures costs related to delaying transactions or even poten-

tial lost trading opportunities.16 That is the discount rate captures the agents’ desire

to trade sooner rather than later.

2.3 Model Description

Let m ∈ {mL , mD } be a binary variable where m =mL if we are referring to the

‘lit’ market (LM) characteristics and m =mD if we are referring to the ‘dark’ market

(DM) characteristics. As in real limit order markets, the limit order book related to

the market m is described by a discrete set of prices such that Pm = {p i }+∞i=−∞. We

denote the tick size, which is constant and defines the distance between any two

consecutive prices, by d∆p
m . At any instant t > 0, with each price p i ∈ Pm there are

backlogs of outstanding (unexecuted) limit orders (`i
m ,t ), obeying time priority, to

buy (`i
m ,t > 0) or to sell (`i

m ,t < 0) the asset. That is, the limit order book related to

the market m at time t denoted by Lm ,t , is the vector of outstanding orders such

14 For further discussion about the two types of dark trading (i.e., ‘one-sided’, ‘two-sided’) and the
effects that these have on market quality measures see Foley and Putniņš (2016).

15 As we will discuss later, the market conditions at any instant are influenced by a range of fac-
tors such as optimal decisions adopted by the other active market participants (returning or new) or
changes in the fundamental value of the asset.

16 In our model the discount rate ρ does not represent the opportunity cost of capital related to
an investment.
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thatLm ,t = {`i
m ,t }

+∞
i=−∞.17

The quotes, at each instant of time, are defined by the orders in the limit order

book related to the market m . The best bid price is the highest price at which there

is a buy limit order on the book while the best ask price is the lowest price at which

there is a sell limit order. That is, given a limit order book Lm , the best bid and

the best ask are defined as B (Lm ) = max{p i |`i
m > 0} and A(Lm ) = min{p i |`i

m < 0}
respectively.18

In this model, all orders submitted are considered to be marketable. A buy order

submitted at price p i to market m and time t ′ is a market buy order if there exists

an outstanding limit order at the same price on the sell side of the limit order book

Lm ,t ′ . In contrast if there is no matching order on the sell side, the buy order sub-

mitted at time t ′ is a limit buy order and is placed on the book at the submitted

price level and quantity (i.e., for this particular example the order will be placed at

the positive values in `i
m ,t ′).19 Continuing with the example above, if the price of the

limit buy order submitted is greater than the best bid price such that p i > p i−1, we

set B (Lm ,t ′) =max{p i |`i
m ,t ′ > 0}. Finally an order submitted to sell (buy) the asset

at price below (above) the bid (ask) price is executed immediately at the bid (ask)

quote.

All agents that take part in the trading game, are risk neutral and they observe the

fundamental value of the asset at time t with a time lag ∆t (vt−∆t
). That is, traders

have to estimate the actual fundamental value by observing the current (at time

t ) market conditions of the LM.20 In this model an agent’s trading decisions at any

instant are state-dependent. An agent upon first arrival at time t , conditional on

the state of the trading game, may choose to submit an order or not to submit any

order. In the first case, the agent has to choose betweenLmL ,t (LM) orLmD ,t (DM),

the submitted quantity (buy or sell one unit) and the price of the submitted order.

The price of the order submitted to either market (at or above/below quotes) implies

17 We adopt similar notation to Goettler, Parlour, and Rajan (2005, 2009); Bernales (2014);
and Chiarella and Ladley (2016) to describe the microstructure features of the model for the dynamic
order book market.

18 If the order bookLm is empty on the buy side or on the sell side we set B (Lm ) =−∞or A(Lm ) =
+∞ respectively.

19 Similar order characterizations are used if we focus on the buy side of the market m when a sell
order is submitted.

20 For further analysis on the learning process applied for the estimation of the fundamental value
see Subsection 2.3.3.
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the agent’s trading decision to submit a market or a limit order.

After submitting an order which has not been executed, agents re-enter the mar-

ket and monitor their previous unfilled orders. Upon re-entry, agents can either

keep or cancel their existing limit order. In the latter case, agents can immediately

submit a new order or wait for different market conditions to apply, in order to sub-

mit a new one. Cancellation and re-submission of an unfilled limit order requires

from agents to choose the market (LM or DM), the quantity (buy or sell) and the

price of the new order, given the new state of the trading game.

The benefit of keeping an existing order in the LM or in the DM, is that the order’s

time priority in the queue is reserved. Conversely, the cost of keeping an order is

that the value of the asset might have moved in a direction before the trader’s re-

entry that will affect the expected payoff from that order. For example, suppose at

time t > 0, a trader submits an order to the LM to buy the asset at price p buy when

the fundamental value is vt . Suppose further that the depth on the other side of

the market m is such that the order represents a limit buy order. The trader’s net

common benefit for submitting an order of one share at time t is vt −p buy. If at time

t ′ > t , before the agent’s re-entry at time tre, the following events occur:

¨

vt ′ = vt −σ, vt has fallen to vt ′ ,

vt ′ = vt +σ, vt has risen to vt ′ .

(2.1)

(2.2)

In the first event, the agent’s net common benefit reduces since vt ′ − p buy (2.1)=

(vt −σ)−p buy = vt − (p buy+σ). In the second event, the agent’s net common benefit

increases and there is smaller chance of the order to be filled, since vt ′ − p buy (2.2)=

(vt +σ)− p buy. The former event, captures the agent’s implicit transaction cost of

being ‘picked off’ when the fundamental value (vt ′) has moved in an unfavourable

direction after a limit order has been submitted.

Limit order submitters are active members of the trading game, by revising their

orders until they execute. The model allows agents with unfilled orders to re-enter

the market multiple times. However, agents stop being part of the trading game, and

leave the market forever, after their order executes. Despite the fact that the (re-)

entry rate - drawn from a Poisson process with parameter (λR) λN - is the same for

all agents; trading decisions are endogenously determined by the prevailing market

conditions of the LM and the number of active agents. As a result, there is a random



2.3: Model Description 15

number of active market participants at any instant, that monitor the market.

2.3.1 Traders Maximization Problem

Consider a trader who submits an order to either market at time t > 0. Assume

further that the order is fully-matched with its respective limit order that stands on

the other side of the book. That is, the order submitted represents a market order.

The trader’s instantaneous utility at time t is given by:

ut =







β +
�

vt −p i
�

if the trader’s order is a buy order executed at price p i ,
�

p i −vt

�

−β if the trader’s order is a sell order executed at price p i .
(2.3)

Alternatively, if the order is placed in the book as a limit order (no matching order

on the other side), then the trader’s instantaneous utility is equal to zero. Recall

that the fundamental value evolves over time following a random walk, and thus

the price at which a trade can occur can be unbounded. Nevertheless, as it can be

observed from Eq. (2.3) a trader conditional on the value of β , cares only about the

price relative to the fundamental rather than the absolute price of a trade.

Each trader in the game conditional on the state of the LM he observes at any

instant, submits an order to either market to maximize his expected discounted

payoff. We define as α =
�

m , x , p
�

the action taken by an agent who arrives at the

market at time t . Here, p denotes the price at which a trader submits an order.21

Let m ∈ {mL , mD } denote the limit order book choice, where m =mL if the trader

chooses the LM (LmL ,t ) and m =mD if the trader chooses the DM (LmD ,t ). Finally, x

denotes the quantity of the submitted order to buy or sell one unit of the asset such

that

x =



















+1 if a buy order of one unit is submitted,

−1 if a sell order of one unit is submitted,

0 if no order is submitted.

(2.4)

We denote the state observed by a trader with private valuationβ on a particular

21 The superscript for the price parameter p is removed for ease of notation.
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entry to the market at time t > 0, by s = (m cmL ,t ,β ,α, zR) ∈ Sβ . Here m cmL ,t are the

market conditions of the LM at time t and α is the status of the trader’s previous

action.22 Moreover the variable zR ∈ {0, 1} indicates the remaining number of shares

a trader has to trade; whileSβ is the set of possible states that particular trader may

face. We define the market conditions at any instant t > 0 by the three-tuple

m cmL ,t =
n ?
LmL ,t , vt−∆t

, qmL ,t (·)
o

. (2.5)

Here,
?
LmL ,t is a set of variables that characterize the ‘open’ limit order book, vt−∆t

is

the lagged fundamental value and qmL ,t (p , x )≥ 0 is the trader’s order priority among

all its respective orders in terms of price and quantity.

Suppose at time t > 0, a new trader by observing state s = (m cmL ,t ,β ,;, zR) takes

an optimal action by submitting an order at price p to the LM. If the action does

not represent a market order we define the order’s priority as qmL ,t (p , x ) = |`p
mL ,t +x |,

where `p
mL ,t denotes the depth of the limit order book related to mL .23 Upon re-

entry at time t ′ > t , if the trader’s order has not been filled (zR 6= 0) the trader by

observing the state of the trading game, which includes the term qmL ,t ′(·) ≤ qmL ,t (·),
can take further actions in order to maximize his expected payoff. Thus the trader’s

order priority might evolve over time due to the trading decisions adopted by the

rest active market participants before the agent’s re-entry to the market at time t ′.

On any entry, a trader conditional on the available information set, chooses an

optimal action. For computational tractability if a trader’s optimal action in state

s ∈Sβ and time t > 0 does not represent a market order (i.e., a limit order) the price

of it is bounded within k ticks away from the agent’s expectation of the fundamental

value of the asset.24 Denote the agent’s expectation of the fundamental at time t by

v̂t = E (vt | m cmL ,t ). Thus, the set of possible actions a trader can take in state s ,

denoted as A(s ), is defined to be

22 If the trader is entering the market for the first time we set the state variable α= ;.
23 It is worth highlighting that although in Eq. (2.5) our focus lies on the prevailing market condi-

tions of the LM, the priority of an order submitted at price p ∈PmD
to the DM is defined in the same

way.
24 To ensure that the fixed point is not affected we choose a large value for k (for further analysis

see Subsection 2.3.4).
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A(s ) =
�

;,
�

m , x , p
�

| p ∈ [̂vt −k , v̂t +k ]∩Pm ,

m ∈ {mL , mD },

x ∈ {−1,+1}
	

.

(2.6)

Consider a particular trader entering at the market at time t > 0 and taking an

optimal action ᾱ = (m̄ , x̄ , p̄ ) ∈ A(s ) by submitting an order to the DM. Assume fur-

ther that the trader re-enters the market at some future random time t ′ > t and

observes state s ′. Upon re-entry, if the order is still active (e.g., zR 6= 0), in the new

state s ′ =
�

m cmL ,t ′ ,β , ᾱ, zR

�

∈Sβ the trader has the option not only to keep, but also

to cancel the order and submit a new one of z shares to either market. That is, each

action ᾱ ∈ A(s ) generates an expected payoff that consists of: (i) a payoff given that

the order executes, i.e., zR = 0, at the time interval [t , t ′] before the trader’s re-entry

to the market; and (ii) a value related to the trader’s re-entry to the market when

zR 6= 0.

The probability of a limit order - submitted in state s - to be filled depends on

the strategic decisions adopted by the active agents in other states. Each order sub-

mission alters the limit order book LmL ,t (LmD ,t ) and as a result the state of the

trading game for the later traders. Assume at time t = 0 a trader’s optimal action

α̂= (m̂ , x̂ , p̂ )when facing state s is to submit an order at price p̂ to market m .25 The

expected payoff of this order being filled at price p̂ and time tex before the trader’s

re-entry to the market at time tre, is given by

π(tre, α̂, s ) =

∫ tre

0

∫ +∞

−∞

�

e −ρtex
��

β +vtex
− p̂

�

x̂
�

η(tex | α̂, s )

�

γ(v | s , tex)d vd t . (2.7)

The payoff from execution before re-entry at the time tex, is discounted back to the

trader’s first arrival to the market, at rateρ. The termβ+vtex
−p̂ , captures the instan-

taneous payoff of the order at time tex (see Eq. (2.3)), where vtex
is the fundamental

value of the asset at that time. As introduced in Eq. (2.4), x̂ is the quantity of the sub-

mitted order and γ(v | s , tex) is the density function of the fundamental value of the

asset at the execution time given state s . Additionally, η(tex | α̂, s ) denotes the prob-

25 Normalizing the trader’s entry time to zero.
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ability that the trader’s action α̂ in state s =
�

m cmL ,t=0,β ,;, z
�

at time t = 0 results

in execution at time tex, before his re-entry to the market at time tre. If the trader’s

optimal action α̂ in state s and time t = 0, is to submit an order to either market that

results in immediate execution we set η(0 | α̂, s ) = 1.

Consider now the alternative case in which the trader’s previous order submitted

at price p̂ to market m and time t = 0 is still unfilled. The trader by re-entering the

market at time tre, he can take further actions given the new state s ′ =
�

m cmL ,tre
,β , α̂, zR 6= 0

�

of the LM. The trader can (i) cancel and resubmit a new order to the same market m

at a different price
?
p 6= p̂ and quantity

?
x ±1; (ii) cancel and resubmit an order to the

alternative market at price
?
p 6= p̂ or

?
p = p̂ and quantity

?
x ±1; (iii) cancel and submit

no order (
?
x = 0); or (iv) keep his unfilled order in market m at the same price such

that
?
α= (

?
m = m̂ ,

?
x = x̂ ,

?
p = p̂ ). The value V(s ) to the agent of being in state s is given

by the Bellman Equation of the trader’s maximization problem

V(s ) =max
α̂∈A(s )

∫ +∞

tre=0

�

π(tre, α̂, s ) + e −ρtre

∫

s ′∈Sβ

V(s ′)×

×ψ
�

s ′ | α̂, s , tre

�

d s ′
�

d G (tre).

(2.8)

Here, Sβ is the set of possible states a trader with private valuation β may face on

re-entry. G (tre) is the exogenous probability distribution of the re-entry that follows

an exponential distribution with parameter λR (see Section 2.2). In addition,ψ(s ′ |
α̂, s , tre) is the probability that at time tre on re-entry the trader faces the new state

s ′, given previous action α̂ and previous state s . The first term is defined in Eq. (2.7);

while the second term reflects the subsequent payoff on re-entry at time tre.

2.3.2 Existence of Equilibria

On each entry to the market, a particular trader facing state s =
�

m cmL ,t ,β ,α, zR

�

∈
Sβ , takes an action α̂ = (m̂ , x̂ , p̂ ) that maximizes his expected discounted utility, as

introduced in Eq. (2.8). In this model, the optimal action α̂ ∈ A(s ), depends on the

prevailing market conditions of the LM (state-dependent action). That is the state of

the game at any instant contains all the relevant information required for the trader

in order to choose his optimal action.
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Given the set of possible actions a trader can take in a given state s , all the ele-

ments of b and x are integers (see Eq. (2.6)). Moreover, by bounding the prices of the

submitted limit orders k ticks away from the agent’s expectation of the fundamen-

tal value of the asset (i.e., finite set of prices); we obtain a discrete and finite set of

decisions. The state space of the trading game at any instant can change either due

to fundamental value changes or optimal trading decisions adopted by the active

market participants (new or returning). Since these events can occur a countable

number of times within a finite simulation, it follows that the state space is count-

able. Based on the above it follows that the game has Markov-perfect equilibria (see

for example Rieder (1979); Fudenberg and Tirole (1991)). We focus on stationary

symmetric equilibria, where traders with the same type choose the same strategy,

and this strategy does not depend on the arrival time of traders to the market.26

2.3.3 Model Solution of the Trading Game

Ideally, we would like traders to take optimal actions conditional on the entire

information set of the trading game. In practice, this makes the model analytically

intractable due to the size of the state space. Therefore, to obtain a numerical ap-

proximation of the equilibrium, we follow the numerical approach of Pakes and

McGuire (2001). Similar to Goettler, Parlour, and Rajan (2005, 2009) and Chiarella

and Ladley (2016) the equilibrium concept of the game is an approximation of the

true Markov-perfect equilibrium, in which traders’ optimal strategies are condi-

tional on the available information set of the reduced state space.27

Agents in the trading game start with initial expected payoffs of different action

and state pairs. The learning process allows us firstly to dynamically update traders’

expected payoffs of different actions and states by observing the realized payoffs of

their actions. The equilibrium is reached when traders’ expected payoffs of each ac-

tion and state pair match the realized outcomes. Secondly, given that the full state

space of the trading game is too big, the Pakes and McGuire (2001) algorithm allows

us to reduce the dimensionality of the state space size by updating the agents’ ex-

pected payoffs only for states that are actually visited. That is, states that belong to

26 The optimal strategy for each trader at time t > 0 when facing state s is the same when facing
the same state at some future time t ′ > t .

27 For further analysis on the reduced state space see Subsection 2.3.4.
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the recurrent classRβ , such that Rβ ⊂Sβ .28

The simulation starts at time t = 0, with both limit order booksLmL ,t=0 (LM) and

LmD ,t=0 (DM) empty, and is driven by three exogenous events. Recall that the arrival

of new traders, the re-entry of traders with zR 6= 0 (i.e., more shares to trade) and the

fundamental value changes, follow the Poisson process with parameters λN, λR and

λv respectively. The inter-event times in a Poisson process with parameter λ are

i.i.d. exponentially distributed with mean λ.

Suppose a new trader enters the market at time t > 0. The trader, conditional on

the state s =
�

m cmL ,t ,β ,;, zR

�

which incorporates fundamental value changes and

entry (re-entry) rates of new (old) traders up to time t , takes an action. At any instant

t , each action α =
�

m , x , p
�

∈ A(s ) in each state s ∈ Rβ has an expected payoff. We

denote the expected payoff by Ut (α | s ) ∈ R. Let α? be the agent’s payoff-maximal

action in state s , such that α? ∈ argmax
α∈A(s )

Ut (α | s ).29 That is, the value of state s is

determined as V(s ) =Ut (α? | s ).
To ensure that traders explore the whole space for each new pair (α, s ) in the

simulation we assign to them optimistic initial expected payoffs. The first time a

state s is visited, the initial expected payoff - denoted as U0(α | s ) - of taking action

α in state s that might involve submitting a limit buy (sell) order at price p to either

market, is the payoff e −ρty
�

β +v−p
� �

e −ρty
�

p −v−β
��

. Here, ty is the expected time

to the arrival of a new trader who submits a sell (buy) market order to the respective

market at price p while facing state s ∈ Rβ . The trader by submitting this limit or-

der to market m presumes that the new trader will be willing to be a counterparty by

submitting a market order and not a limit order at price p̂ 6= p . Given any new pair

(α, s ) encountered in the simulation, the initial action α taken by a trader, involves

submitting an order with high expected payoff but with very small probability of

execution. Through a learning process the term U0(α | s ) is updated and the trader

moves to orders with smaller expected payoffs but with higher probability of execu-

tion.30 If the trader was pessimistic (i.e., by submitting orders with higher execution

28 A state i is recurrent iff the expected total number of visits to i is infinite, that is
∑∞

k=0 P k
i i . Two

different states i and j communicate i ↔ j if i → j and j → i . All the states that communicate
with each other form a class. A recurrent class is absorbing i.e., onces the system enters to the class
it never leaves.

29 Since on any entry the action set is finite, the maximum over all other actions exists and it is
well defined.

30 For details about the learning process see Subsection 2.3.3.
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probability but lower expected payoffs) he would not have been able to identify if

more profitable orders will execute.

Learning Process

Over repeated visits to a state s ∈Rβ , the updating process described below cal-

culates each trader’s expected payoff for each action taken that results in an order

being executed or cancelled so that the trader can pick the optimal action. Consider

a new trader entering the market at time t > 0 while facing state s =
�

m cmL ,t ,β ,;, zR

�

∈
Rβ . Assume the trader’s optimal action does not represent a market order, e.g., a

limit order submitted to the LM or to the DM at price p ∈ Pm or no order. This ac-

tion α? provides the highest expected payoff among all the other possible actions

such that α? ∈ argmax
α∈A(s )

Ut (α | s ). Consider now two alternative events (i) at time

t ′′ < t ′ and state s ′′ ∈ Rβ , the trader’s order is executed, that is zR = 0 (the trader has

no more shares to trade). This is due to the presence of another trader with private

valuation β̂ who takes an action α̂? ∈ A(s ′′) which involves submitting a market or-

der at price p̂ = p and time t ′′ to the respective market m ; or (ii) the trader’s order is

still unexecuted and remains on the book as a limit order before the traders re-en-

try. Suppose at some future time t ′ > t , the trader re-enters and observes state s ′.

Under the aforementioned event (i) since the trader’s order is filled (i.e., zR = 0) we

update his expected payoff for taking action α? in state s and time t , as follows

Ut ′′(α
? | s ) =

nα?,s
nα?,s +1

Ut (α
? | s ) +

1

nα?,s +1
e −ρ(t

′′−t )(β +vt ′′ −p )x . (2.9)

The term nα?,s is a positive integer that records the number of times the action α? is

chosen in state s . For the trader with private valuation β̂ who submitted the market

order at price p̂ = p in state s ′′ and time t ′′, we update his expected payoff as follows

Ut ′′(α̂
? | s ′′) =

nα̂?,s ′′

nα̂?,s ′′ +1
Ut ′′(α̂

? | s ′′) +
1

nα̂?,s ′′ +1
(β̂ +vt ′′ − p̂ )x̂ . (2.10)

That is, the expected payoff is updated so that it is equal to the average payoff at-

tained when the optimal action α̂? is taken in state s ′′. For each pair (α, s ) in the

simulation process we assign an initial positive integer n0 = na ,s . As na ,s gets very

large, this integer reduces the convergence speed of the algorithm. To achieve faster

convergence, after 3×108 actions, we reset the counter to its initial value n0. More-
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over, by assigning optimistic initial expected payoffs to all agents, states in Rβ that

are only visited at the start of the optimization, once execution probabilities are up-

dated, stop being part of the recurrent classRβ .

If the order submitted at state s and time t is still active (see event (ii)), then given

the new state s ′ =
�

m cmL ,t ′ ,β ,α?, zR

�

at time t ′ the trader will choose an optimal

action with value V(s ′) = Ut ′(α?? | s ′) since zR 6= 0. We update the agent’s expected

payoff for taking action α? in state s and time t , as follows

Ut ′(α
? | s ) =

nα?,s
nα?,s +1

Ut (α
? | s ) +

1

nα?,s +1
e −ρ(t

′−t )V(s ′). (2.11)

The continuation value of state s ′, denoted as V(s ′), allows the agent in the trading

game to profitably execute the order in the future. Being consistent with the nota-

tion used above, as introduced in Eq (2.8), the value V(s ′) of the agent in state s ′ at

time t ′ is decomposed into the payoff from execution before the trader’s next re-

entry, at time i.e., t ′′ and the continuation payoff on re-entry at time i.e., t ′′′ > t ′′.

In the event where the trader’s order executes at time i.e., t ′′ we set the continu-

ation payoff V(s ′) = 0,∀s ′, since zR (i.e., the trader has no more shares to trade).

If the trader’s order is still unfilled at time t ′′′, the agent while facing state s ′′ =
�

m cmL ,t ′′′ ,β ,α??, zR

�

, will choose an optimal action such that α??? ∈ argmax
α∈A(s ′′)

Ut ′′′(α |

s ′′). That is, the agent’s future optimal actions at different states and order execu-

tion, are used to determine the expected payoff from taking action α? in state s and

time t . Over repeated visits to a state, the learning process applied computes the

trader’s expected payoff and continuation values so that the trader can pick the ac-

tion that will maximize his payoff.

All agents in the trading game observe the fundamental value at any instant t

with a time lag∆t . That is, conditional on the prevailing market conditions, denoted

m cmL ,t , agents have to estimate the fundamental value before taking any action.

Recall that an agent’s estimate of the fundamental value at time t is denoted as v̂t =

E (vt |m cmL ,t ). We set v̂t = vt−∆t
+ ζn (m cmL ,t ), where ζn (m cmL ,t ) = E (vt |m cmL ,t )−

vt−∆t
is the extent by which an agent with private valuation β at time t , revises the

term E (vt |m cmL ,t ) given lagged value vt−∆t
. We define

ζn+1(m cmL
) =

n̂

n̂ +1
ζn (m cmL

) +
1

n̂ +1
(vt −vt−∆t

) (2.12)
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where n̂ counts the number of times market conditions m are encountered during

the simulation process.31 Thus, using the estimate v̂ = vt−∆t
+ζn (m cmL

) the action

set A(s ) is defined as in Eq. (2.6).

Traders use the term v̂t = vt−∆t
+ζn (m cmL ,t ) to estimate what the current state at

time t is and choose an action so as to maximize their expected discounted payoffs.

However during the learning process we described above, we record the payoffs in

the real state of the trading game (i.e., without the estimate) that the action was

taken and not the perceived state. In equilibrium these estimates for any given (α, s )

pair are correct given that we require - as we will see in the next Subsection - the

difference between the expected and the realized payoffs to be small.

Convergence Criteria

To check for convergence we follow the same approach proposed by Bernales

(2014) and Chiarella and Ladley (2016). We initially run the learning process (see

Subsection 2.3.3) for several billion order submissions, by updating agents’ expected

payoffs for each pair (α, s ). After this point, we fix these payoffs denoted as U?(α, s )

(i.e., the learning process is not applied) and we simulate the model for a further

billion more order submissions ( for new and returning agents). During this period

the realized payoffs for all executed orders are recorded. Denote the realized payoff

for an order executed in state s ∈ Rβ , by V̂(s ). Suppose for example a trader with

private valuation β enters to the market at time t and submits and order to the DM

at price p ∈ PmD
. If this order fully executes at some future time t ′ > t without the

trader modifying it, his realized payoff is given by V̂(s ) = e −ρ(t
′−t )(β+vt ′−p )x .32 The

convergence of the algorithm is achieved if difference between the expected payoffs

and the realized ones is small (i) the correlation between beliefs U?(·) and realized

payoffs V̂(·) is greater than 0.99; and (ii) the mean absolute error in beliefs, that is

|U?(·) − V̂(·)|, weighted by the numbers of times the pair (α, s ) is observed, is less

than 0.04. If both of these criteria are satisfied, we simulate a market session for a

further billion order submissions in which the trading data is collected. Else, we re-

peat the learning process through equations (2.9) to (2.11) until the equilibrium is

reached.
31 Since our focus lies on stationary equilibria, the time subscript on market conditions is omitted.
32 The realized payoff V̂(·) can be thought as a direct measure of benefits to trade.
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2.3.4 Numerical Parametrization

In the model, to ensure numerical tractability: (i) all agents given their private

valuation β , care about the relative price of a trade, that is the difference between

the execution price and the fundamental value v (see discussion after Eq. (2.3)); and

(ii) given all the possible states a trader with private valuation β might face, we con-

sider only states that belong to the recurrent class such that s ∈ Rβ ⊂ Sβ . All the

above, allow us by restricting the state space of the trading game for each agent,

to compute the fixed point. Hence, the state at any instant t > 0 is defined by the

four-tuple

s = ({
?
LmL ,t , vt−∆t

, qmL ,t (p , x )
︸ ︷︷ ︸

=m cmL ,t

},β ,α, zR) (2.13)

where m cmL ,t are the market conditions of the LM observed by the agent with pri-

vate valuation β (see Eq. (2.5)). If the returning trader’s order, submitted at time

t ′ < t and state s ′, has not been executed before his re-entry, α is the trader’s pre-

vious action taken in state s ′ and zR denotes the remaining shares the trader can

trade. The variables in
?
LmL ,t that characterizeLmL ,t at time t , are: (i) the bid price

and the ask price; (ii) the depth at the bid quote and the ask quote (i.e., `B
mL ,t and

`A
mL ,t ); and (iii) the buy and the sell quantities in the LmL ,t (i.e.,

∑N
i=0 `

i
mL ,t > 0 and

∑N
i=0 `

i
mL ,t < 0).

We set the support in ticks of the private value distributionFβ to be {−8,−4, 0, 4, 8}
with cumulative distribution {0.15, 0.35, 0.65, 0.85, 1.0}. Speculators, agents with pri-

vate value equal to zero may only trade profitably when the fundamental is mis-

priced. Agents with the most extreme private values (i.e., β = |8|) are keen to trade

quickly given that their main benefits arise from their private values.

The values assigned to the private value distribution Fβ follow approximately

the findings of Hollifield et al. (2006). By splitting the private value into five differ-

ent intervals, they estimate the distributions of private values and the optimal order

submission strategies for three sample stocks on the Vancouver exchange.33 They

observe that across the three stocks the mean probability of private value in the in-

terval (−2.5%,+2.5%) is 44%; in the intervals (−5%,−2.5%] and [−2.5%,+5%) is 26%;

33 The three sample stocks are Barkhor Resources (BHO), Eurus Resources (ERR), and War Eagle
Mining Company (WEM).
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and in the intervals (−5%,−2.5%] and [−2.5%,+5%) is 30%.

New agents arrive randomly to the market following a Poisson process with in-

tensityλN. To support the value assigned toλN, we use the empirical findings of Con-

rad, Wahal, and Xiang (2015). By sampling all common stocks in the US with a stock

price and market cap greater than $1 and $100 million respectively, Conrad, Wahal,

and Xiang (2015) examine the relation between high frequency quotations and the

behaviour of stock prices for the period 2009− 2011. By splitting firms into differ-

ent size quantiles and by averaging over the entire time series, they observe that the

average number of trades for stocks in the largest size quantile is almost one trade

per second.34 Given the above and conditional that each trade involves two traders

we set λN = 2. That is, a trader enters to the market on average every 0.5 seconds.

In the model, an agent with zR 6= 0 (more shares to trade) re-enters the market

and revises his previous order according to a Poisson process with intensity λR. The

agent conditional on the new state of the game, can take further actions so as to

maximize his expected discounted payoff. We set λR = 0.1, that is traders re-enter

the market and revise their orders on average every 10 seconds. This is approxi-

mately in line with the empirical findings of Hautsch and Huang (2011), where the

median cancellation time of one asset (WCRX) among the 200 biggest stocks listed

on NASDAQ is 10 seconds.35

The fundamental value of the asset at any t , denoted as vt , follows a Poisson

process with rate λv. This parameter denotes the expected number of innovations

of the fundamental value in one second. Similar to Goettler, Parlour, and Rajan

(2009) we set λv = 0.125, that is the fundamental value increases or decreases by σ

ticks every 8 seconds on average. We set σ = 1, so when an innovation occurs the

fundamental value increases or decreases with equal probability by one tick.

At any instant, agents of any valuation, can place their limit orders to either the

LM or the DM at any feasible price that lies in the interval p ∈ [̂vt −k , v̂t +k ]∩Pm .

We set the value of the parameter k = 13; that is, the price of a limit order at any

t may be submitted in a range between thirteen ticks above and below v̂t .36 Recall

that v̂t = E (vt |m cmL ,t ) is the trader’s best estimate of the fundamental value since

34 Stocks in the two largest size quantiles accounted for over 80% of the market cap.
35 In terms of market capitalization on October 1, 2010.
36 Similar to Goettler, Parlour, and Rajan (2009); Bernales (2014) and Chiarella and Ladley (2016)

we simulate scenarios with k > 13 but no effect has been observed on the market outcomes since
market participants were not submitting limit orders so far away from the fundamental value.
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all agents in the trading game observe v with a time lag ∆t . The lag with which all

traders observe the fundamental value is set to ten seconds, that is∆t = 10.

In the model we set the discount rate, denoted as ρ, to 0.03. This parameter

is essential to compute the fixed point since it restricts agents from infinitely post-

poning trade, e.g., submit only limit orders with very small probability of execution,

denoted as η(·). Consider the case in which ρ = 0 and a trader enters to the mar-

ket with z shares to trade. The agent, by observing any state s ∈ Rβ at any time

t , will always pick an action that involves submitting a limit buy (sell) order to the

OM at price p � vt (p � vt ) with η(·) converging asymptotically to zero. That is,

given ρ = 0 and any state, an agent’s strategic profile will include taking an optimal

action by submitting orders at prices far away from the fundamental value (not an

aggressive order).

2.4 Results

This section displays the results derived from the simulations for 9× 108 order

submissions given the numerical parametrization as introduced in Subsection 2.3.4.

To ensure that the model converges to the same equilibrium we run several opti-

mizations under different random seeds. For our analysis we simulate two scenar-

ios. Under scenario I (Single-Market) trading takes place on a single limit order book

that offers at any instant full pre-trade transparency (LM). Under scenario II (Multi-

Markets) two marketplaces exist and operate simultaneously, a ‘lit’ market (LM) and

a ‘dark’ market (DM).

2.4.1 Market Quality

We first examine how the introduction of the DM affects the market quality of the

LM. To do this we focus on standard market quality measures: the bid-ask spread,

the effective spread, the number of limit orders at the ask and at the sell side (the

sell side is symmetric to the buy side), the effectively traded limit orders at the sell

side of the book related to market m , the tracking error (i.e., the average absolute

difference between the market’s midprice and the fundamental value of the asset)

and the microstructure noise (i.e., the mean absolute difference between the exe-
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cution price and the fundamental value).37 Table (2.1) depicts the above measures.

The presence of the DM under the Multi-Markets scenario harms LM’s market qual-

ity. For example across the two scenarios, the quoted spread of the LM widens from

1.135 to 4.780 ticks. Liquidity is reduced as the number of limit orders at the ask and

at the sell side of the book related to the LM decline from 3.711 to 1.344 and from

46.302 to 4.783 ticks respectively and the tracking error increases. In contrast the

microstructure noise decreases from 0.620 to 0.483 ticks.

Single-Market Multi-Markets
LM LM DM

Spread
1.135 4.780 1.701

Effective Spread
1.028 3.212 -0.346

N. of limit orders at the ask
3.711 1.344 6.025

N. of limit orders at the sell side of the LOB
46.302 4.783 15.300

N. of limit orders at the sell side of the LOB (effectively traded)
4.527 1.626 2.891

Tracking Error
0.716 1.496 0.925

Microstructure noise: |p −vt |
0.620 0.483 0.856

Table 2.1: Market quality and liquidity. The sell side is symmetric to the buy side.
The spread is the distance in ticks, between the best ask and the best bid. The num-
ber of effectively traded limit orders at the sell side of the book are the limit orders
submitted and executed without any modification. The effective spread is defined
to be 2(p−mp )x where p is the execution price, mp is the mid-price when the order
is submitted and x is the quantity of the order to buy or to sell one unit of the asset,
with x = 1 (x =−1) if the transaction involves a market buy (sell) order. The tracking
error is the average absolute distance between the midprice and the fundamental
value. The microstrucutre noise is defined to be the absolute mean difference be-
tween the execution price and the fundamental value of the asset. All the statistics
are calculated by observing the market every 10 simulation minutes. Number of ob-
servations: 45516 (Single-Market), 80183 (Multi-Markets). The fixed point for each
of the available scenarios is obtained independently.

The decrease in the quality of the LM is amplified further by observing the ef-

fective spread. Similar to Chiarella and Ladley (2016) we define the effective spread

as 2(p −mp )x where p is the execution price, mp is the mid-price when the order

is submitted and x is the quantity of the order to buy or to sell one unit of the as-

37 Given the bid and ask quotes as defined in Section 2.3 the mid-price (midpoint) of the LM at
any instant t is defined as mpt =

A(LmL ,t )+B (LmL ,t )
2 .
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set, with x = 1 (x = −1) if the transaction involves a market buy (sell) order. While

the market spread illustrates posted positions and given the fact that a trade may

occur within the bid and ask quotes the effective spread is a direct measure of exe-

cution costs related to a trade. That is the effective spread which is based on trade

price (when an incoming order at price p (market order) matches with a limit order

on the other side of the market) captures the microstructure features of the market

(e.g., stale quotes). Comparing the two scenarios the effective spread of the LM in-

creases from 1.028 to 3.212 ticks. Thus, under the Multi-Markets scenario market

order submitters that choose the LM have to pay relatively higher transaction costs.

The increase of the effective spread in the LM is twofold. Firstly, the likelihood of

finding a trader who is willing to be a counterpart is reduced (see for example depth

at the sell side of the book related to the LM). Secondly, the quotes are less informa-

tive due to the increase of the tracking error and less competitive as the number of

effectively traded limit orders is reduced (see for example row five in Table (2.1)).

In order to shed more light into the execution costs of the market participants

we introduce Table (2.2). Table (2.2) depicts the effective spreads that market par-

ticipants face in the LM across the two scenarios. As can be seen from the table the

increment in liquidity provision in the LM coupled with the lower spread and the

smaller tracking error under the Single-Market scenario signifies that market order

submitters have to pay low cost to transact. In contrast, the effective spreads for

agents irrespective of valuation under the Multi-markets scenario are higher. For

example the effective spreads for agents with extreme private values (i.e., with aβ of

4 and 8) are increasing from approximately 1.02 to 3.17 ticks. However the effective

spreads of agents with zero private values are greater. As we will see later (Subsec-

tion 2.4.2) these agents follow a more conservative approach in the LM and may only

place market orders when significant mispricing is present. Thus the speculators’

increased effective spread signifies the relative deficiency of trading opportunities

of these traders when they participate in the LM by posting market orders under the

Multi-Markets scenario.

Focussing now on the Multi-Markets scenario the DM, as compared to the LM,

offers a more liquid and competitive environment to the market participants.38 The

38 Although our focus in this paragraph lies on the Multi-Markets scenario; as can be seen from Ta-
ble (2.1) the LM under the Single-Market scenario, as compared to the DM under the Multi-Markets
scenario, is more competitive and more liquid (see rows one, four and five).
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Scenario Venue Effective Spread
Private Value |β |
0 4 8

Single-Market LM 1.049 1.024 1.023
Multi-Markets LM 3.481 3.161 3.192

Table 2.2: Table showing the effective spreads by each trader valuation under the
two available scenarios. The effective spread is defined to be 2(p −mp )x where p is
the execution price, mp is the mid-price when the order is submitted and x is the
quantity of the order to buy or to sell one unit of the asset, with x = 1 (x = −1) if
the transaction involves a market buy (sell) order. All the statistics are calculated by
observing the market every 10 simulation minutes.

spread decreases and the quantities available at the ask quote and at the sell side of

the limit order book related to the DM increase (see rows one, three and four in Ta-

ble (2.1)). A result to the above is the DM’s reduced tracking error from 1.496 to 0.925

ticks. Although the DM reduces informational inefficiency the properties related to

that market (at any instant the DM’s depth at the best quotes and throughout the

book are not observable to the traders) do not allow market participants to bene-

fit from the informational advantage this venue offers considering the fundamental

value of the asset.

The above is justified even more by observing the increase in the DM’s microstruc-

ture noise. Similar to Goettler, Parlour, and Rajan (2009) and Bernales (2014) to be

able to measure the trading frictions present in our model (e.g., agents with differ-

ent exogenous motives to trade observing the fundamental value with the same lag,

discrete set of prices and cognition limits among others) that make execution prices

deviate from the fundamental value we introduce the microstructure noise.39 As can

be seen from Table (2.1) under the Multi-Markets scenario the microstructure noise

is greater in the DM (i.e., 0.856 ticks) as compared to the LM (i.e., 0.483 ticks). As

we will see later the optimal trading strategies adopted by the agents in the LM - as

a result primarily of the increased spread and the lower quantities available at the

best quotes and throughout the book related to the LM - will make quotes in that

venue be more often set and executed at prices closer to the fundamental.

Given the properties of the DM, market order submitters participating in that

venue cannot directly infer the costs associated to these orders. That is in our cal-

culations we define the DM’s effective spread relative to the LM’s midprice (i.e., ef-

39 For further analysis about the decomposition of transaction price see Hasbrouck (2002).



2.4: Results 30

fective spread = 2(p −mp )x where p is the DM’s execution price, mp is the LM’s

mid-price when the order is submitted and x is the quantity of the order to buy or

to sell one unit of the asset, with x = 1 (x = −1) if the transaction involves a mar-

ket buy (sell) order.). However the results in Table (2.1) show an aggregate picture

of the transaction cost related to submitting a market order to the DM (i.e., market

sell (buy) orders submitted to the DM execute on average at prices 0.173 ticks above

(below) the LM’s midprice). Table (2.3) decomposes the agents effective spreads in

the DM under the Multi-Markets scenario.

Scenario Venue Effective Spread
[|pmL

−pmD
|]

Private Value |β |
0 4 8

Multi-Markets DM 0.449 -0.912 -0.215
[1.516] [2.036] [1.704]

Table 2.3: Table showing the DM’s effective spreads by each trader valuation under
the Multi-Markets scenario. The effective spread is defined to be 2(p −mp )x where
p is the execution price, mp is the LM’s mid-price when the order is submitted and
x is the quantity of the order to buy or to sell one unit of the asset, with x = 1 (x =
−1) if the transaction involves a market buy (sell) order. Given the definition above,
row two measures the average absolute difference between the LM’s market orders’
execution price and the DM’s market orders’ execution price. All the statistics are
calculated by observing the market every 10 simulation minutes.

As can be seen from Table (2.3) agents with nonzero private values conditional

on the LM’s midprice have to pay relatively lower transaction costs when a market

order matches a resting limit order on the other side of the book in the DM. For ex-

ample agents with a β of |4| execute market sell (buy) orders in the DM at prices

0.912 ticks above (below) the LM’s midprice. In contrast given the LM’s midprice,

agents with zero private values have to pay higher transaction costs. The above

is justified even further by looking at the average absolute distance between the

LM’s market orders’ execution price and the DM’s market orders’ execution price

for these traders. As can be seen from the table an agent with a β of zero executes

market sell (buy) orders to the DM at prices 1.51 ticks above (below) the LM’s market

orders’ execution price.

Our results stand in line with the theoretical findings of Buti, Rindi, and Werner

(2017) which show that the introduction of a dark pool that competes with a trans-

parent limit order book (LOB) affects negatively the market quality of the latter (i.e.,
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wider spread and lower depth). Although Foley and Putniņš (2016) find that ‘two-

sided’ dark trading drives prices close to the random walk; they also observe that

it benefits liquidity (low quoted, effective and realized spreads) and informational

efficiency.

2.4.2 Trading Behaviour

Conditional on the state of the trading game at any instant t , agents submit or-

ders to maximise their expected discounted payoff. Recall that in our model all or-

ders submitted are marketable. That is an order at price p executes if there exists a

limit order at the same price standing on the other side of the respective book that

the order is submitted. If no matching order is present the order is placed on the

book as a limit order. While market orders offer immediate execution, the cost as-

sociated with them is that traders might end up overpaying for the asset. On the

other hand, limit orders offer potentially better terms for trade but the cost associ-

ated with them is that traders might have to wait longer for their trade to execute.

Moreover, limit order submitters face the risk of being picked off, by submitting a

limit sell (buy) order and the price of the fundamental value rises (falls) in the time

interval between the order’s submission and execution.

An agent, by submitting a market order, acts as liquidity demander, conversely

an agent who posts a limit order provides liquidity to the market (i.e., liquidity sup-

plier). Agents with higher positive or negative intrinsic private values to trade are

impatient to trade since their main benefits arise from their private values. Spec-

ulators, agents with β = 0 have no exogenous reasons to trade. Table (2.4) depicts

the percentage of limit and market orders submitted by each trader type under the

two available scenarios. As can be seen from the table, speculators act as liquidity

suppliers under the ‘Single-Market’ scenario by providing approximately 92% of the

limit orders in the market. Agents with an absolute private value of 4 or 8 act as liq-

uidity demanders as they prefer to trade by submitting market orders and relatively

few limit orders. Speculators under the Multi-Markets scenario decrease their sup-

ply of liquidity in both the LM and the DM by posting fewer limit orders. More inter-

estingly comparing the speculators’ liquidity provision strategy across the two avail-

able scenarios the percentage of limit orders submitted by them in the LM when

competing with the DM is reduced significantly from 91.99% to 58.35%. Agents with
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nonzero private values (i.e., |4| and |8|) increase their liquidity provision in the LM

approximately by 33% compared to the Single-Market case, follow the same strategy

in both venues by submitting relatively fewer limit orders and more market orders.

Scenario Venue Order’s Type Private Value |β |
0 4 8

Single-Market LM Limit orders submitted 91.99% 5.81% 2.20%
Market orders 14.55% 41.35% 44.10%

Multi-Markets LM Limit orders submitted 58.35% 24.29% 17.36%
Market orders 12.51% 52.25% 35.24%

DM Limit orders submitted 87.13% 10.37% 2.50%
Market orders 19.93% 37.79% 42.28%

Table 2.4: Table showing proportion of limit and market order submitted by each
trader valuation (new and returning) under the two available scenarios, as a per-
centage of all limit and market orders. Statistics are calculated from 9× 108 order
submissions. The fixed point for each of the available scenarios is obtained inde-
pendently.

The reasons for the decrease in the percentage of the limit orders submitted in

the LM by the speculators under the Multi-Markets scenario are (i) the switch in

the strategies adopted primarily by the agents with a β of |4| in the LM (e.g., in-

crease in liquidity demand to 52.25%) together with the properties of the DM (no

pre-trade transparency) under the Multi-Markets scenario indicate that the place-

ment of non-aggressive limit orders (i.e., at the best quotes) to the LM involve more

risk and are associated with high probability of being picked off. Recall that agents

with no intrinsic motive to trade are vulnerable to this effect (for further discussion

see analysis of Table (2.7)); and (ii) the increased market spread of the LM that sup-

ports the placement of limit orders from traders with nonzero private values in order

to avoid overpaying for the asset. Thus due to the increased competition and the low

quantities available, quotes in the LM are more often set by traders with higher pri-

vate valuations that are willing to trade at prices - as opposed to the speculators -

closer to the fundamental value of the asset (i.e., more aggressive orders).

Tables (2.5), (2.6) and (2.7) support further the aforementioned observation as

well as our findings in Subsection 2.4.1. As can be seen from Table (2.5) under the

Multi-Markets scenario the percentage of traders with nonzero private values (i.e.,

|4| and |8|) who have not yet executed and switch to the DM (LM) after the random

re-entry is on average approximately 52% (48%). Recall that these traders are keen to

trade quickly by submitting aggressive orders (i.e., market or price improving limit
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orders) to either market so as to capture their exogenous private values. In contrast

returning speculators seem to prefer the DM and its non-displayed properties for

the placement of their orders. For example, comparing the speculators strategies

related to switching/no switching between markets, the percentage of these agents

that move to the DM more than triples, from 22.40% to 77.60%.

Scenario Venue Switching/no switching
between markets

Private Value |β |
0 4 8

Multi-Markets LM Remain to LM 13.94% 19.31% 35.05%
From DM to LM 8.46% 24.23% 17.52%

Total 22.40% 43.54% 52.57%
DM Remain to DM 68.51% 48.93% 34.00%

From LM to DM 9.09% 7.54% 13.43%
Total 77.60% 56.46% 47.43%

Table 2.5: Table showing the proportion of returning agents who switch from the
DM to the LM and vise-versa (rows two and five respectively) split by each trader
valuation. Rows one and four show the proportion or returning agents who remain
to the same venue. Statistics are calculated from 9×108 order submissions.

Given that traders irrespective of valuation can re-enter the market multiple times

before execution we next examine the LM’s (LM’s and DM’s) order flow after the ran-

dom re-entry to the market under the Single-Market (Multi-Markets) scenario. Ta-

ble (2.6) depicts the percentage of orders submitted by each trader valuation with

zR = 1 (i.e., more shares to trade) after re-entering the market under the two avail-

able scenarios.40 Not surprisingly under both scenarios the LM’s - DM’s order flow

is predominately determined by the order submissions strategies adopted by the re-

turning market participants with zero private values. For example after the random

re-entry under the Single-Market scenario, 83.41% of the orders submitted at the LM

are coming from the agents with zero private values, 10.00% from the agents with

a β of |4| and 6.59% from the agents with the most extreme private values (β = |8|).

What is worth noticing is the switch in the traders’ order placement strategies under

the Multi-Markets scenario. Comparing the two scenarios, despite the transparent

characteristics of the LM, the percentage of orders submitted at this venue by the re-

turning traders with β = 0 drops to 52.90%. In contrast the smaller effective spreads

of agents with β 6= 0 in the LM (see Table (2.2)) along with the LM’s wider spread

40 That is we consider traders with shares available to trade who re-enter the market and either
retain their previous limit order, cancel and resubmit a new order to the LM under the Single-Market
scenario (or to either the LM or the DM under the Multi-Markets scenario) or submit an order (mar-
ket or limit) for the first time.
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enhance trading activity of these agents in the LM. For example the percentage of

orders submitted in the LM by the returning agents with nonzero private values al-

most doubles from 14.00% to 27.99% and from 8.16% to 19.11%.

Scenario Venue
Order flow

returning agents (%)
Private Value |β |

0 4 8
Single-Market LM 83.41% 10.00% 6.59%
Multi-Markets LM 52.90% 27.99% 19.11%

DM 77.85% 14.00% 8.16%

Table 2.6: Table showing the proportion of market and limit orders submitted by
each returning trader valuation as a percentage of all orders under the two scenar-
ios (LM’s - DM’s order flow after re-entry). For each active trader type with zR = 1
(more shares to trade) we find the percentage of orders submitted after re-entry to
the market. These orders involve returning traders that choose either to retain, can-
cel and resubmit or submit for the first time. Statistics are calculated from 9× 108

order submissions.

It is worth highlighting, that although speculators submit relative fewer limit or-

ders in the LM under the Multi-Markets scenario (see row 3, Table (2.4)) they do

not switch to demand liquidity by posting more market orders. In fact the percent-

age of market orders submitted by these traders in the LM has its lowest value (i.e.,

12.51%). In contrast to the traders with nonzero private values, agents withβ = 0 fol-

low a more conservative approach by keeping their limit orders in the book related

to market m for longer period and waiting for opportunities to arise (see analysis

of Table (2.7)). That is, they submit market orders only when significant mispricing

is observed. Although the presence of the DM harms the market quality of the LM

under the Multi-Markets scenario - by shifting the trading behaviour of the liquidity

suppliers - as we will see later this competition seems to be beneficial with respect

to obtaining better terms of trade for the traders that participate in the LM.

Consider a new trader irrespective of valuation, entering the market at time t

and state s when the fundamental value is vt . Assume further that the trader’s opti-

mal action in state s involves submitting a market sell order to the LM at price p .41

Since a trade occurs, the new agent’s net common benefit for submitting the sell

order at price p when the fundamental value is vt is given by p − vt (see Eq. (2.3)).

Agents with β = 0 have no intrinsic motives to trade and may only be willing to sell

41 Here we consider the case in which there exists an outstanding limit order in the LM.
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the asset at prices above the fundamental value. Conversely, traders with nonzero

private values (i.e., β = −8) should be willing to sell the asset at lower prices since

their main benefits arise from their exogenous private values.42

Table (2.7) justifies the aforementioned discussion in terms of aggressiveness

of quotes. As can be seen from the table speculators submit more conservative

limit orders in comparison to the traders with nonzero private values (see ‘Price

of sell limit orders’). More specifically, under the Single-Market scenario specula-

tors submit limit sell orders on average at prices 3.68 ticks above the fundamental

value, while traders with a β of |4| and |8| are more aggressive submitting sell orders

at prices 0.03 and 0.01 ticks respectively above the fundamental value. Under the

Multi-Markets scenario the decrease in the market quality measures of the LM make

traders - and primarily traders with a β of 0 and |4| - more cautious by submitting

sell orders further away from the fundamental. Speculators submit sell limit orders

on average at prices 4.55 ticks above the fundamental value; agents with a β of |4|
tend to be a little more conservative, as compared to the Single-Market scenario, by

submitting sell limit orders on average at prices 0.33 above the fundamental. The

speculators’ increased probability of being picked off in the LM and the properties

of the DM (i.e., no pre-trade transparency) switch the order submissions strategies

(in terms of aggressiveness) of the aforementioned traders. Specifically, when spec-

ulators participate in the DM they submit limit sell orders on average at prices 2.88

(2.01) ticks lower as compared to the LM under the Multi-Markets scenario (Single-

Market scenario).

The limit order submission strategies adopted by the different market partici-

pants (i.e., the level of aggressiveness, percentages of limit orders submitted) deter-

mine the likelihood of a limit order executing, the probability of a limit order being

picked off and the average time to execution. As we can see from Table (2.7) under

all available scenarios speculators have the lowest percentages of executed limit or-

ders followed by the agents with private values of |4| and |8|. For example under

the Single-Market scenario, the percentage of executed limit orders by agents with

private values 0, |4| and |8| increases on from 5.84% to 78.69% to 85.38%. The high

percentages of the agents with nonzero private values are supported by their exoge-

42 It is worth mentioning that agents with the higher private values (i.e., β = ±8) might submit
sell (buy) orders at prices lower (higher) than the fundamental. Recall the term β +vt −p in Eq. (2.7)
that captures the order’s instantaneous payoff.
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Limit orders
executed (%)

Picked Off
Time to Execution

(Limit orders)
Price of

sell limit orders
Private Value |β | Private Value |β | Private Value |β | Private Value |β |

0 4 8 0 4 8 0 4 8 0 4 8
Single-Market LM 5.84% 78.69% 85.38% 47.83% 16.15% 11.55% 129.87 4.01 2.53 3.68 0.03 0.01
Multi-Markets LM 2.78% 79.95% 84.45% 56.96% 8.86% 7.12% 68.23 3.75 2.05 4.55 0.33 0.03

DM 13.98% 45.79% 56.91% 48.22% 25.09% 16.45% 63.37 7.39 4.27 1.67 0.31 -0.01

Table 2.7: Table showing the percentage of limit orders executed per trader valua-
tion, the average time to execution between the trader’s first arrival to the market
and his limit order executing (‘Time to Execution’) and the mean price of submitted
limit sell orders. The probability of being picked off is calculated when x (vt −vs )< 0,
where vs is the fundamental value at submission time, vt is the fundamental value
at execution time and x is the limit order’s quantity when submitted. Due to the
symmetry of the model we do not report the price of buy limit orders. Statistics are
calculated from 9×108 order submissions.

nous - higher than the speculators - motives to trade. As we have mentioned these

traders prefer to trade quickly by submitting limit orders close to the fundamental

value rather than waiting for more conservative orders to execute. Under the Multi-

Markets scenario although traders with nonzero private values are acting relatively

more aggressively in the DM, as compared to the LM, their percentages of limit or-

ders executing is reduced. The uncertainty the DM offers in order placement strate-

gies (i.e., no information is revealed to any market participant about the available

quantities on either side of the DM) coupled with the decrease in the percentages of

limit orders submitted to the DM, by the traders with nonzero private values, justify

the above. In contrast the protection dark trading offers to speculators as opposed

to the LM for the placement of more aggressive limit orders increases the specula-

tors’ percentage of limit orders executing in the DM.

The characteristics of the centralized limit order book under the Single-Market

scenario as compared to the Multi-Markets scenario (e.g., lower market and effective

spread, increased number of limit orders at the ask side and at the book as a whole)

make the post of a market order or an aggressive limit order in the LM for a spec-

ulator under the former scenario, to be rarely profitable.43 By keeping limit orders

in the book so to exploit any mispricing, speculators increase the amount of time

spent in the LM under the Single-Market scenario. In contrast agents with nonzero

private values have much shorter waiting times. Comparing now the average exe-

cution time of agents with β = 0 across the two available scenarios, we can observe

43 For further analysis see Subsection 2.4.1.
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for example that although these trades are more cautious in the LM by placing limit

order further away from the fundamental they have shorter waiting times in the LM

in comparison to the Single-Market scenario. For example the average time inter-

val between a trader’s entry to the market and his limit order executing in the LM is

almost halved from 129.87 to 68.32 seconds. The reasons for the reduction in spec-

ulators execution time across the two scenarios are due to (i) the protection dark

trading offers to these traders as opposed to the LM, for the placement of more ag-

gressive limit orders with a higher chance of executing; and (ii) the increased spread

of the LM under the Multi-Markets scenario that supports the strategies adopted by

the agents with nonzero values to place more limit orders; and as a result the relative

deficiency of trading opportunities the LM offers to traders with β = 0.

Cognition limits that prevent agents from continuously monitoring the market

and immediately modifying their previous limit orders after a change in the market

conditions together with the exogenous characteristics of the market participants

(patient-impatient traders) increase significantly speculators’ probability of being

picked off. As expected agents with extreme values (β = |8|) have the lowest proba-

bility of being picked off followed by the traders with the intermediate private values

under both scenarios (see Table (2.7)). The non-display liquidity properties of the

DM and the speculators strategies in this venue increase the picked off probability

from 8.80% to 25.09% for agents with β = |4| and from 7.12% to 16.45% for agents

with β = |8|. Under the Multi-Markets scenario, the higher risk associated with the

placement of conservative limit orders to the LM (see discussion after Table (2.4))

and the increase in the percentage of market orders submitted to the same venue,

by the traders with β = |4| increase the speculators probability of being picked off.

Namely from 47.83% under the Single-Market scenario to 56.96% under the Multi-

markets scenario when a trader with β = 0 decides to submit a limit order to the

LM.

Table (2.8) shows the difference between the execution price pex and the funda-

mental value of the asset vtex
for all executed sell orders (market and limit). Given a

trader with valuation β , an increase in the term pex − vtex
signifies an improvement

in terms of trade. As can be seen from the table, under the Single-Market scenario

agents with zero private value execute sell orders on average at prices 0.35 ticks

above the fundamental while agents with nonzero values execute at worse terms

of trade. Namely traders with β = |4| execute their sell orders at prices 0.11 ticks
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Scenario Venue
Price of executed

sell orders
(benefits from trade)

Private Value |β |
0 4 8

Single-Market LM 0.35 -0.11 -0.30
Multi-Markets LM 0.72 -0.04 -0.12

DM 0.38 -0.12 -0.49

Table 2.8: Table showing the mean price in ticks relative to the fundamental value
for all executed sell orders (market and limit orders). Given all traders with valu-
ation β we obtain the mean price in ticks of all sell orders executed realtive to the
fundamental value by traders with the given valuation. Statistics are calculated from
9×108 order submissions.

and traders with β = |8| at prices 0.30 ticks below the fundamental value. Across

the two scenarios, agents’ - irrespective of valuation - order submission strategies

adopted in the LM lead then to attain better terms of trade in that venue under the

Multi-Markets scenario. The increment in mispricing risk impatient agents face in

the DM leads to worse terms of trade for these agents (see rows two and three in

‘Picked Off’ section in Table (2.7)). For example, agents with the extreme private

values (i.e., β = |8|) execute their sell orders on average at prices 0.49 ticks below the

fundamental.

2.4.3 The Gains From Trade

In order to test the effects the dark market (DM) has on the profits of the market

participants, we calculate the average payoff per trader valuation (i.e., the surplus)

under the two available scenarios. To do that we apply the analysis of gains from

trade and definitions used by Hollifield et al. (2006).

Suppose a returning trader with private value β enters the market under the

Multi-Markets scenario at time t with zR = 1 (i.e., available shares to trade). As-

sume further that the trader’s optimal action α =
�

m , x , p
�

while facing state s =

(m cmL ,t ,β , α̂, zR) represents a market sell order submitted to the DM. Recall from

Eq. (2.3) the term
�

p −vt

�

− β that captures the instantaneous payoff of an order

submitted and executed at time t . This payoff is discounted back to the traders first

arrival to the market (i.e., t ′ < t ) at rate ρ such that e −ρ(t
′−t )(

�

p −vt

�

−β ). Given the

above we can decompose the agent’s - with private value β - profit as follows
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GT =−β +β + e −ρ(t
′−t )(

�

p −vt

�

−β )

=β + e −ρ(t
′−t )

�

p −vt

�

+β −βe −ρ(t
′−t )

=β +β (1− e −ρ(t
′−t )) + e −ρ(t

′−t )
�

p −vt

�

(2.14)

where the term β (1− e −ρ(t
′−t )) captures the trader’s with private value β cost asso-

ciated with delaying the trade (waiting cost) and e −ρ(t
′−t )

�

p −vt

�

captures the gains

or losses associated with a trade excluding any gains from the agent’s private value

(money transfer).44

Table (2.9) shows the average payoff, the waiting cost and the money transfer

per trader valuation under the two available scenarios. As we can see from the table

across the two scenarios traders with the extreme private values (i.e., β = |8|) in

the LM (Single-Market scenario) and in the DM (Multi-Markets scenario) have the

lowest waiting costs of -0.180 and -0.247 respectively. In contrast under the Multi-

Markets scenario traders with intermediate private values (i.e., β = |4|) trade faster

in the LM than the traders with a β of |8|. For example the waiting cost in the LM for

the former traders is -0.277 and for the later is -0.290. The above is explained by the

switch in the trading strategies adopted by the agents with aβ of |4| (i.e., submit 52%

of the market orders in the LM, see Table (2.4)). Under the Multi-Markets scenario,

the more aggressive strategies adopted by the agents with nonzero private values

explain the DM’s total lower waiting costs as compared to the LM.

Scenario Venue Average Payoff Waiting Cost Money Transfer
Private Value |β | Private Value |β | Private Value |β |

0 4 8 Total 0 4 8 Total 0 4 8 Total
Single-Market LM 0.111 3.667 7.530 3.759 0.000 -0.242 -0.180 -0.151 0.111 -0.091 -0.291 -0.090
Multi-Markets LM 0.328 3.690 7.603 4.897 0.000 -0.277 -0.290 -0.258 0.328 -0.033 -0.107 -0.031

DM 0.181 3.486 7.274 3.007 0.000 -0.404 -0.247 -0.190 0.181 -0.110 -0.479 -0.077

Table 2.9: Table showing the average payoff, the waiting cost and the money transfer
per trader valuation under the two available scenarios. For full details on how profits
are defined see text. Statistics are calculated from 9× 108 order submissions. The
fixed point for each of the available scenarios is obtained independently.

Across the two scenarios irrespective of the venue agents with β = |8| incur the

higher money transfer. Driven by their exogenous motives to trade, these agents are

44 In our model we do not pre-assume that a trader with a negative (positive) private valuation
will sell (buy) the asset. All decisions are state-dependent and thus they depend on the prevailing
market conditions of the LM at any instant.
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keen to trade quickly even when the asset is not mispriced. This loss in the money

transfer is primarily absorbed by the speculators. For example in the DM under

the Multi-Markets scenario and in the LM under the Single-Market scenario agents

with extreme values of β incur high money transfer (i.e., -0.479 and -0.291) while

speculators obtain money transfer equal to 0.181 and 0.111 ticks respectively. The

lower quantities available at the best quotes and throughout the book related to the

LM under the Multi-Markets scenario that led to the adoption of more conservative

strategies resulted in better money transfer and terms to trade for all agents irre-

spective of valuation.

As can be seen from the table, across the two available scenarios the average

payoffs of all agents irrespective of valuation are the highest in the LM under the

Multi-Markets scenario. The average payoff for agents with β = 0 is equal to 0.328

ticks, while agents with nonzero private values obtain gains equal to 3.960 and 7.603

ticks. Comparing LM’s payoffs across scenarios the speculators obtain higher aver-

age payoff under the Multi-Markets scenario. In the DM an agent’s gains from trade

irrespective of valuation are reduced. The properties related to the DM seem to do

more harm to the agents with the extreme private values (i.e., β = |8|).

2.5 Conclusion

In recent years, dark pools’ market share in equity markets has increased sub-

stantially. In order to study the effects that a ‘dark’ market has on the ‘lit’ market

we build a dynamic continuous-time model of trade in a single financial asset. For

our purposes we test two scenarios where risk neutral traders can choose either

to buy or to sell one share of the asset. Under the Single-Market scenario trad-

ing takes place in a single limit order book with full pre-trade transparency. Un-

der the Multi-Markets scenario liquidity is scattered between two limit order mar-

kets that operate simultaneously. An open ‘lit’ market (LM) and a ‘dark’ market

(DM). To be consistent with how real financial markets operate, the DM offer no

pre-trade transparency to the market participants. This continuous non-displayed

‘two-sided’ limit order book matches buy (sell) orders at different prices as long as

resting limit orders exist on the sell (buy) side of the DM.

To derive our results we use the numerical approach of Pakes and McGuire (2001)
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and Goettler, Parlour, and Rajan (2009) where market participants at any instant

choose optimal actions given the state of the trading game. Trading decisions - ir-

respective of scenario - are endogenously determined at any instant by the prevail-

ing market conditions of the LM (state-dependent actions). Analysis of the model

shows that under the Multi-Markets scenario the DM harms the LM’s quality. Across

the two scenarios the LM’s quoted and effective spread increase; the number of limit

orders at the best quotes and at the book as a whole substantially decrease. More-

over the tracking error (i.e., market’s inefficiency) increase. In contrast, the order

placement strategies adopted by the agents with nonzero private values move trans-

actions in the LM closer to the fundamental value of the asset (i.e., decrease in the

LM’s microstructure noise).

Under the Multi-Markets scenario, the decrease in the LM’s quality (i) increase

the picked off probabilities of speculators when they participate in the LM; return-

ing agents with zero private values prefer the DM and its non-displayed properties

for the placement of their orders. For returning agents with nonzero private values

this is less of an issue, the LM’s reduced mictostructure noise coupled with their ex-

ogenously desire to trade quickly reduces their picked off probabilities in the LM;

(ii) the uncertainty the DM offers in order placement strategies has a strong effect

(in terms of higher picked off probabilities, increased time to execution of limit or-

ders and lower percentages of limit orders executing) to agents with nonzero private

values; and (iii) all agents irrespective of type to move backwards - in terms of ag-

gressiveness - when they participate in the LM by submitting limit orders. The above

strategies drive all agents to obtain better terms of trade when they participate in the

LM as compared to the DM.

Agents irrespective of valuation across the two scenarios make higher profits

when they participate in the LM under the Multi-Markets scenario. The different

strategies adopted by all agents irrespective of valuation in the LM, the reduced

LM’s microstructure noise coupled with the pre-trade transparency this venue of-

fers benefit all market participants in terms of money transfer and average payoffs.



Chapter 3

Dynamic Equilibrium in Limit Order

Markets: Midpoint Dark Pool Vs VWAP

Dark Pool, Analysis of Market Quality,

Trading Behaviour and Welfare

3.1 Introduction

Dark pools are equity trading systems that offer limited or no pre-trade trans-

parency. In recent years, these Alternative Trading systems (ATSs) - used primarily

by institutions so as to avoid market impact or adverse price movements - have in-

creased their market share in global equity markets (e.g., U.S., Europe, Australia and

Canada). According to Foley and Putniņš (2016), as of 2013, in the U.S. the most ac-

tive dark pools - in terms of trading equity volume - accounted for approximately

15% of the consolidated volume; ‘dark’ trading in Europe represented 10% of the

volume, in Australia 14% and in Canada 10%.

Dark pools are subdivided into different groups in terms of the matching mech-

anism applied to them. The most active dark pools in the U.S. equity trading mar-

kets - in descending order in terms of percentage of consolidated equity volume

(see Figure 1 in Buti, Rindi, and Werner (2017)) - are the bank/broker pools, the

Independent/agency pools and the market maker pools. Bank/broker pools, offer

limited price discovery since they match traders’ orders at execution prices that are

bounded between the National Best Bid and Offer (NBBO). Independent/agency

pools offer a single price mechanism to the market participants; that is at any instant

these systems match orders at the midpoint of the NBBO or the Volume-Weighted

Average Price (VWAP). For the purposes of this study we follow the trading mecha-

nism of independent/agency pools.
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By absorbing liquidity from the incumbent exchanges, ‘dark’ trading has raised

concerns - especially among market regulators - on the effects these venues have

on market quality and welfare. Numerous proposals and public consultations have

been conducted by many regulators and policymakers (European Commission, 2010;

Securities and Exchange Commission, 2010). However the inconclusive effects of

‘dark’ trading have resulted in a hesitant approach towards the development of new

regulations related to ‘dark’ trading.1 For example, the Securities and Exchange

Commission (SEC) Chairman Mary Jo in her prepared speech said that “One of the

most difficult tasks in developing the right regulatory response to such potentially

disruptive trading strategies is the need to avoid undue interference with practices

that benefit investors and market efficiency."2

Given the aforementioned (i.e., rising market share of dark pools and the regu-

latory interest in ‘dark’ trading) by applying two different price mechanisms to the

‘dark’ market (i.e., a midpoint dark pool and a VWAP dark pool) we address the fol-

lowing policy question: “How, in a competitive setting where two order markets op-

erate simultaneously, does the different price setting rule of the ‘dark’ market affect

the ‘lit’ market’s quality, trading behaviour and welfare of market participants?”

To be able to answer the above, this study tests two scenarios (i) a ‘mid-market’

scenario where an open limit order book competes with dark pool that executes

orders at any instant at the midpoint of the ‘lit’ market; and (ii) a ‘VWAP-market’

scenario where the ‘dark’ market matches traders orders at any instant at the Vol-

ume-Weighted Average Price (VWAP)3 Understanding the dynamic order choices

under the two available scenarios is crucial since of our rational risk neutral agents

may use different trading strategies across the two environments. We consider a dy-

namic continuous-time model of trade in a single financial asset where agents irre-

spective of the scenario, choose at any instant an optimal action conditional on the

prevailing market conditions of the trading game (i.e., state of the game). That is all

trading decisions - given the properties of the ‘dark’ market (non-displayed depth)

- depend on the state of the open limit order book. Due to the size of the state-

1 Limited and contradictory evidence of whether the dark pools’ design is sensible, if it encour-
ages predatory trading or generates efficiency within the market.

2 For more details see Wall Street Journal, (https://www.wsj.com/articles/dark-pools-convince-
sec-to-delay-transparency-rules-mary-jo-white-says-1473876535).

3 For further details about the different price mechanisms imposed on the ‘dark’ markets, see
Section 3.3.
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space the equilibrium cannot be determined analytically, so we use the numerical

approach of Pakes and McGuire (2001) and Goettler, Parlour, and Rajan (2005, 2009)

to identify a Markov-perfect equilibrium.

In this model, we consider two groups of traders who can trade different num-

ber of shares of the financial asset. Large traders (i.e., institutions) who can trade

at most z̄ > 1 shares and small traders who can trade one share of the asset. An-

other factor that gives additional heterogeneity to the market participants is their

exogenous motives to trade (i.e., private value of the asset). An agent’s private value

- irrespective of type - is drawn from a discrete distributionFβ with finite support

and is assigned to him before taking any action. We assign the most extreme private

values (i.e.,β = |8|) only to large traders so to capture their desire to trade quickly and

to avoid adverse price movements (impatient traders). While both groups can have

intermediate private values (i.e.,β = |4|); we assign the zero private value (i.e.,β = 0)

only to small traders (i.e., no exogenous reasons to trade) so that these traders may

only trade profitably when the fundamental value of the asset is mispriced (specu-

lators).4

The main findings of this study include (policy implications): (i) across the two

scenarios there is an increase in liquidity supply in the ‘lit’ market under the ‘VWAP–

market’ scenario. The above is supported by a reduced quoted spread, and the in-

creased number of limit orders at the best quotes and throughout the open limit

order book as a whole. The ‘lit’ market’s narrower quoted spread reduces the mar-

ket’s informational inefficiency (i.e., reduction in the ‘lit’ market’s tracking error);

(ii) the ‘lit’ market’s narrower spread (increased competition) and smaller tracking

error, under the ‘VWAP-market’ scenario, move transactions closer to the funda-

mental value of the asset when a trader participate in the VWAP ‘dark’ market as

compared to the midpoint ‘dark’ market; (iii) across the two scenarios, the trading

cost of submitting a market order that executes against an outstanding limit order

under the ‘mid-market’ scenario, is higher. That is the effective spreads of all agents

under the alternative scenario (‘VWAP-market’ scenario) are reduced; (iv) across the

two ‘dark’ markets the VWAP proved to be a faster exchange to trade given that the

average time between the trader’s entry and his order (market or limit) executing

is reduced; (v) under both scenarios the demand for liquidity in the ‘dark’ market

4 The values assigned to the private value distributionFβ are empirically supported, for further
analysis see Subsection 3.3.4.
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shifts across small and large traders. Specifically, small traders with zero private

values significantly increase their percentage of market orders submitted. The sin-

gle price mechanism of the ‘dark’ market coupled with the ‘lit’ markets’ competitive

environment, increase the likelihood for agents with zero private value of finding

mispriced stale limit orders at the ‘dark’ market; (vi) the aforementioned strategy

adopted by speculators will lead them to obtain worse terms of trade - compared to

the ‘mid-market’ scenario - when they participate in any market under the ‘VWAP–

market’ scenario. Large traders and small traders with the intermediate values are

better off - in terms of benefiting from trade - when participate in any market under

the ‘VWAP-market’ scenario; and (vii) traders with β = 0 (speculators) are the only

market participants that make less profits when participate in any market under the

‘VWAP-market’ scenario as compared to the alternative scenario.

To the best of our knowledge this is the first study that focusses on answering

the policy question related to the effects that two different price mechanisms have

on the ‘lit’ market’s quality, trading behaviour and welfare of market participants.

Some seminar papers - although focussing on answering similar questions on a

completely different setup - with contradictory evidence of the effects of ‘dark’ trad-

ing are presented below. Ye (2010) using the Kyle (1985) setup by allowing only large

informed traders to freely choose trading venues shows that the addition of the dark

pool harms the ‘lit’ market’s price discovery. In contrast Zhu (2013) using the Glosten

and Milgrom (1985) framework, shows that when a midpoint dark poll operates in

parallel with a ‘lit’ exchange the former trading system improves the price discov-

ery of the exchange. Degryse, De Jong, and Kervel (2015) analyse 52 Dutch stocks in

the Amsterdam Exchange (AEX) with large and mid-cap indices and show that ‘dark’

trading has a negative effect on the order books’ liquidity. Foley and Putniņš (2016)

examine the minimum price improvement regulation imposed in Canada and Aus-

tralia and analyse the effects of ‘dark’ trading. They show that the ‘two-sided’ dark

trading benefits the ‘lit’ market’s quality (i.e., reduced spreads and increased infor-

mational efficiency); in contrast they do not provide clear evidence on the effects of

‘one-sided’ dark trading (i.e., midpoint or VWAP dark pool) on the ‘lit’ market’s qual-

ity. Buti, Rindi, and Werner (2017) using the Parlour (1998) benchmark show that the

introduction of a midpoint dark pool that competes with a ‘lit’ market widens the

spread and lower the depth of the latter. Moreover they show that the midpoint dark

pool on average reduces the welfare of traders with and without access to the ‘dark’
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market.

This study is organised as follows. Sections 3.2 and 3.3 present the details of the

model; Section 3.4 depicts the results and Section 3.5 focusses on the conclusion

and policy implications.

3.2 Preliminaries

The trading game involves two groups of traders: large (institutional) traders

who can trade z ∈ {1, 2, . . . , z̄ } shares of the asset and small (retail) traders who trade

one share of the asset (i.e., z = 1). We denote the proportion of large traders by γLT

and the proportion of small traders byγST. A factor that gives additional heterogene-

ity to the market participants, is their intrinsic private value to trade the asset.5 We

denote an agent’s private value by β ; this value - allocated to an agent before taking

any action - is drawn independently across traders from a discrete distributionFβ
with finite support. Traders with greater absolute private values in β are impatient

to trade since the main benefits arise from their private values. Traders with private

value equal to zero may only trade profitably when the asset is mispriced depend-

ing on the observable market conditions. Thus each trader in the game has a type

δ =
�

µ,β
�

where µ is the trader’s group indicator and β is the private value for the

asset. We set µ = µS if the market participant is a small (retail) trader and µ = µL if

the market participant is a large (institutional) trader.

We consider a dynamic continuous-time model of trade in a single financial as-

set. At any time t , the asset has a common (fundamental) value, denoted as vt , that

evolves over time following a random walk.6 The time between innovations in vt

follow a Poisson process with parameter λv. When an innovation occurs, the fun-

damental value equiprobably increases or decreases byσ ticks.

Trading takes place on two limit order books that operate simultaneously, an

open ‘lit’ market (LM) and a single price ‘dark’ market (DM) (i.e., ‘one-sided’ dark

market).7 For our analysis we consider two scenarios depending on the DM’s match-

5 Private value for the asset is also present in the models of Biais, Hillion, and Spatt (1995); Par-
lour (1998); Theissen (2000); Handa, Schwartz, and Tiwari (2003); Goettler, Parlour, and Rajan (2005,
2009); Hoffmann (2014); Chiarella and Ladley (2016) and Buti, Rindi, and Werner (2017); among
many others.

6 The fundamental value is considered to be the expectation of the future cash flows on the stock.
7 The definition of ‘one-sided’ dark trading is taken from Foley and Putniņš (2016).
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ing mechanism applied. Although in both scenarios the dark trade executes at a sin-

gle price (‘one-sided’ dark trading) under the ‘mid-market’ scenario the DM matches

orders at any instant at the midpoint of the LM. In contrast under the ‘VWAP-market’

scenario dark trades execute at any instant at the Volume-Weighted Average Price

(VWAP). Given the full pre-trade transparency properties of the LM a buy (sell) order

of z shares submitted to the DM - irrespective of the scenario - executes at a single

price if there is sufficient depth on the sell (buy) of the book.8 We use the term ‘dark’

since an order submitted to the DM is not observable to any other active trader but

the order submitter. That is the DM irrespective of the scenario offers no pre-trade

transparency to the market participants.

New traders arrive at the market according to a Poisson process with parame-

ter λN. Given any scenario upon first arrival, small (large) traders can submit an

order of one share (z̄ shares) to either market or wait until the market conditions

change (submit no order). Small (large) traders, after submitting an order which

has not been (fully) executed, re-enter the market and revise their orders after a ran-

dom amount of time (for further analysis, see Subsection 3.3.1). The re-entry time

is drawn from a Poisson process with parameter λR.

The model discourages agents from infinitely postponing trade by introducing

a discount rate. The payoffs of order executions, are discounted back to the order’s

submission time, at rate ρ. This discount rate which is the same for both groups of

agents, captures costs related to delaying transactions or even potential lost trading

opportunities (e.g., agents’ desire to trade sooner rather than later).9

3.3 Model Description

We set m ∈ {mL , mD } such that if m =mL we are referring to the ‘lit’ market (LM)

characteristics and if m = mD we are referring to the ‘dark’ market (DM) charac-

teristics. The limit order book related to market mL , is described by a discrete set

of prices such thatPmL
= {p i }+∞i=−∞. We denote the tick size, which is constant and

defines the distance between any two consecutive prices, by d∆p
mL

. At any instant

8 The factor that determines the sufficiency of the depth depends on the number of shares a
trader can trade.

9 In our model the discount rate ρ does not represent the opportunity cost of capital related to
an investment.
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t > 0, with each price p i ∈PmL
there are backlogs of unexecuted limit orders (`i

mL ,t ),

obeying time priority. Here, positive values in `i
mL ,t (i.e., `i

mL ,t > 0) denote buy orders

and negative values (i.e., `i
mL ,t < 0) sell orders. That is, the limit order book related

to the LM at time t denoted byLmL ,t , is the vector of outstanding orders such that

LmL ,t = {`i
mL ,t }

+∞
i=−∞.10

The limit order book of the LM obeys price and time priority. Given the limit

order bookLmL ,t the bid price and the ask price are defined as follows

B (LmL ,t ) =max{p i |`i
mL ,t > 0}

A(LmL ,t ) =min{p i |`i
mL ,t < 0}.

(3.1)

The best bid price is the highest price at which there is a buy limit order on the book

while the best ask price is the lowest price at which there is a sell limit order. If

the order book related to the LM is empty on the buy side or on the sell side at any

instant t ′ we set B (LmL ,t ′) =−∞ or A(LmL ,t ′) = +∞ respectively. Given the bid and

ask quotes as defined above, the LM’s mid-price (midpoint) at time t > 0 will be

mpt =
A(LmL ,t ) +B (LmL ,t )

2
. (3.2)

That is under the ‘mid-market’ scenario the backlog of unexecuted limit orders (`
mpt
mD ,t )

to buy (`
mpt
mD ,t > 0) or to sell (`

mpt
mD ,t < 0) the asset at price mpt ∈PmL

define the depth

of the book related to the DM such thatLmD ,t = `
mpt
mD ,t .11 In the simulations if the buy

(sell) side of the book related to the LM is empty, the bid (ask) price is set to be the

last defined price, so as the midpoint to be properly defined at any instant.

Under the ‘VWAP-market’ scenario the execution price of the DM is set to be

VWAPt =λVWAPt−1+ (1−λ)pe x (3.3)

where pe x is the price of the order executed at time t in the LM and 0 < λ < 1 is

10 We adopt similar notation to Goettler, Parlour, and Rajan (2005, 2009);Bernales (2014);
and Chiarella and Ladley (2016) to describe the microstructure features of the model for the dynamic
order book market.

11 In this content under both scenarios we avoid the characterization of a pure ‘dark’ limit order
book. Due to the DM’s characteristics (i.e., single price mechanism) agents that choose to partici-
pate in the DM cannot post limit orders away from the ‘best’ price. Unexecuted limit orders can be
thought as resting orders that define at any instant the DM’s depth (i.e., sell (buy) imbalance).
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the smoothing factor. It is worth noticing that VWAPt is updated every time a trade

occurs in the LM. Thus under the ‘VWAP-market’ scenario the depth of the book

related to the DM is defined by the backlog of outstanding limit orders (`VWAPt
mD ,t ) to

buy (`VWAPt
mD ,t > 0) or to sell (`VWAPt

mD ,t < 0) the asset at price VWAPt ∈ PmL
. Similar to

the ‘mid-market’ scenario we denote the book related to the DM under the ‘VWAP-

market’ scenario byLmD ,t such thatLmD ,t = `
VWAPt
mD ,t .

All orders of z shares submitted in this model are marketable. Consider for ex-

ample the ‘mid-market’ scenario and denote with slight abuse of notation the depth

on the sell side of the DM at price p by `p
mD

. A buy order of z shares submitted at

price p to the DM is a market buy order if the DM’s depth `p
mL

is such that `p
mD
≥ z .

That is, the submitted order of z shares results in a trade and the order is removed

from the book. If 0 ≤ `p
mL
< z the buy order of z shares submitted to the DM at

price p partially executes against the available `p
mL

shares and the remaining shares

enter into the ‘dark’ order bookLmD
at the buy side as a limit buy order of z − `p

mL

shares.12 Given that there exists enough depth on the other side of the LM, an order

submitted to sell (buy) the asset at price below (above) the bid (ask) price is exe-

cuted immediately at the LM’s bid (ask) quote. Finally, under both scenarios due to

the price mechanism applied to the DM (single price) unexecuted sell (buy) orders

in that venue submitted earlier are ahead in the queue (i.e., no price priority).

All agents that take part in the trading game, irrespective of the group and the

scenario, are risk neutral and they observe the fundamental value of the asset at time

t with a time lag∆t (vt−∆t
). That is, both groups have to estimate the actual funda-

mental value by observing the current (at time t ) market conditions.13 In this model

an agent’s trading decisions at any instant are state-dependent. Given any scenario

upon first arrival at time t , a new small (large) agent, conditional on the state of

the trading game, may choose to submit an order of one share (z̄ shares) to the LM

or to the DM, or not to submit any order. In the former case the agent’s choice be-

tween the LM or the DM imply choosing the submitted quantity - buy or sell one (z̄ )

unit(s) - and if he decides to participate in the LM the price of the submitted order.

The price of the order submitted to the LM (at or above/below quotes) coupled with

12 For small traders this is not the case since they can trade only one share of the asset. Irrespective
of scenario identical order characterizations are used if we focus on the depth at the buy (sell) side
of the DM or on the depth at the buy (sell) side of the LM when an order of z shares is submitted.

13 For further analysis on the learning process applied for the estimation of the fundamental value
see Subsection 3.3.2.
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the depth (at or above/below the given quote) implies the agent’s decision to sub-

mit a market or a limit order. In contrast the endogenous decision between market

or limit order in the DM depends on the unobservable to the trader depth, on the

other side of the DM.

After submitting an order which has not been (fully) executed, returning small

(large) agents with available shares to trade re-enter the market and monitor their

previous unfilled orders. Given that market participants cannot instantly respond to

market changes (i.e., order submission strategies adopted by other new or returning

agents or fundamental value changes) they face the risk of being picked off if the

fundamental values of the asset moves in an unfavourable direction. Upon re-entry

agents can keep or cancel their previous limit order. In the latter case, agents can

immediately submit a new order to either market by picking a new set of choices as

described in the previous paragraph or wait for different market conditions to apply

in order to submit a new one.

The model allows agents with unfilled orders to re-enter the market multiple

times. However, small (large) agents stop being part of the trading game after their

order (fully) executes. Despite the fact that the (re-) entry rate - drawn from a Pois-

son process with parameter (λR) λN - is the same for all agents; trading decisions

are endogenously determined by the prevailing market conditions of the LM and

the number of active agents. As a result, there is a random number of active market

participants at any instant, that monitor the market.

3.3.1 Traders Maximization Problem

Each trader in the game conditional on his type δ =
�

µ,β
�

and on the state of

the observable market conditions he observes (i.e., the state of the LM) at any in-

stant, submits an order of z shares to either market so to maximize his expected

discounted payoff. We define as α =
�

m , xz , p
�

the action taken by an agent with

type δ =
�

µ,β
�

who arrives at the market at time t . Here, p denotes the price at

which a trader submits an order.14 Recall that under the ‘mid-market’ scenario if

the order is submitted to the LM then p ∈ PmL
or if it is submitted to the DM then

p =mpt ∈ PmL
. Under the ‘VWAP-market’ scenario if the order is submitted to the

DM then p = VWAPt . Recall that VWAP is updated every time a trade occurs in the

14 The superscript for the price parameter p is removed for ease of notation.
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LM (see Eq. (3.3)).15 Let m ∈ {mL , mD } denote the book choice, where m = mL if

the trader chooses the limit order book related to the LM (LmL ,t ) and m =mD if the

trader chooses the book realted to the DM (LmD ,t ). Finally, xz denotes the quantity

of the submitted order to buy or sell z units of the asset such that16

xz =



















+1 if a buy order of z units is submitted,

−1 if a sell order of z units is submitted,

0 if no order is submitted.

(3.4)

We denote the state observed by a trader with type δ on a particular entry to

the market at time t > 0, by s = (m cmL ,t ,δ,α,φδ) ∈ Sδ; where m cmL ,t denotes the

market conditions of the LM andSδ is the set of possible states a trader with type δ

may face. The variable φδ indicates the remaining number of shares a trader with

type δ has to trade.17 If a returning trader had previously entered the market m by

submitting a limit order of z shares (i.e., xz ± 1) to either market that has not been

(fully) executed; the state also contains the action α previously taken by the trader.

We define the market conditions at any instant t > 0 by the three-tuple

m cmL ,t =
n ?
LmL ,t , vt−∆t

, qmL ,t (·)
o

. (3.5)

Here,
?
LmL ,t is a set of variables that characterize the limit order book related to

the LM, vt−∆t
is the lagged fundamental value and qmL ,t (p , xz ) ≥ 0 is the trader’s

order priority among all its respective orders in terms of price and quantity (i.e.,

xz ∈−1, 0,+1).

Suppose at time t > 0 a new trader with type δ =
�

µ,β
�

by observing state s =

(m cmL ,t ,β ,;,φδ) takes an optimal action by submitting an order of z shares at price

p to the LM. If the action does not represent an order that fully executes at time t

(i.e., market order) we define the order’s priority as qmL ,t (p , xz ) = |`
p
mL ,t + xz |, where

`
p
mL ,t denotes the depth of the limit order book related to the LM.18 Upon re-entry

15 From this point and onwards (until Section 3.4) for the sake of repetition - unless stated - given
that decisions are state-dependent (i.e., state of the LM) we consider a single price ‘dark’ market
irrespective of the scenario.

16 Large traders in this model cannot split their orders between either market. That is they cannot
submit orders that are in part buy orders, and in part sell orders.

17 We setφδ ∈ {0, 1} if the agent is a small trader andφδ ∈ {0, z̄ } if he is a large trader.
18 It is worth highlighting that in Eq. (3.5) our focus lies on the prevailing market conditions of
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at time t ′ > t , if the trader’s order has not been fully filled (φδ 6= 0) the trader by

observing the state of the trading game, which includes the term qmL ,t ′(·) ≤ qmL ,t (·),
can take further actions in order to maximize his expected payoff.

The state of the trading game at any instant determines the action a particular

trader with type δ will choose (i.e., state-dependent trading decisions). Denote the

set of possible actions a trade can take in state s by A(s ). Formally we define the

action space as

A(s ) =
�

;,
�

m , xz , p
�

| p ∈ [̂vt −k , v̂t +k ]∩PmL
,

m ∈ {mL , mD },

xz ∈ {−1,+1}
	

.

(3.6)

Recall that an agent irrespective of group observes the fundamental value at any t

with a time lag∆t (vt−∆t
), thus conditional on the prevailing market conditions we

denote his best estimate by v̂t = E (vt | m cmL ,t ).19 Since the fundamental value of

the asset follows a random walk, the set of prices a trade can occur at the process

of the game can be unbounded. That is any market participant in this model cares

about the relative price of a trade (i.e., all prices are expressed in terms relative to

the fundamental value of the asset).

Assume at time t = 0 a trader’s optimal action α̂ = (m̂ , x̂z , p̂ ) when facing state

s is to submit an order of z shares at price p̂ to market m .20 We define the trader’s

expected payoff of the i th (i ∈ {1, 2, . . . , z }) share executing at price p̂ and time tex in

the time interval [0, tre] before his re-entry to the market at time tre as

π(tre, α̂, s , i ) =

∫ tre

0

∫ +∞

−∞

�

e −ρtex
��

β +vtex
− p̂

�

x̂z

�

η(tex, i | α̂, s )

�

γ(v | s , tex)d vd t .

(3.7)

The term β + vtex
− p̂ captures the trader’s with type δ =

�

µ,β
�

instantaneous utility

of the i th share executing at price p̂ . We denote the fundamental value of the as-

the LM. The priority of an order submitted at the single price p ∈ PmD
of the DM follows only time

priority.
19 For further analysis, see discussion before Eq. (3.13) and Subsection 3.3.4 for the restriction

imposed on the price placement of limit orders.
20 Normalizing the trader’s entry time to zero.
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set at time tex by vtex
. As introduced in Eq. (3.4), x̂z is the quantity of the submitted

order and γ(v | s , tex) is the density function of the fundamental value of the asset

at time tex given state s . Additionally, η(tex, i | α̂, s ) denotes the probability that the

trader’s action α̂ in state s =
�

m cmL ,t=0,δ,;,φδ
�

at time t = 0 results in the i th share

executing at time tex, before his re-entry at time tre. If there exist a matching order(s)

on the other side of market m the order of z shares submitted at time t = 0 imme-

diately executes at price p̂ (i.e., market order) and we set η(tex, i | α̂, s ) = 1 for each

i ∈ {1, 2, . . . , z }.
Continuing with the above example, consider now the case where the trader re-

enters the market m with available shares to trade (i.e., φδ 6= 0). The trader by re-

entering the market at time tre, can take further actions given the new state s ′ =
�

m cmL ,tre
,δ, α̂,φδ

�

of the LM. The trader can either (i) cancel and resubmit a new or-

der of the available shares at a different price to the same market m . If m =mL at

p ∈
�

v̂tre
−k , v̂tre

+k
�

∩PmL
6= p̂ else if m = mD at price p = mptre

6= p̂ (‘mid-mar-

ket’ scenario) or p =VWAPtre
6= p̂ (‘VWAP-market’ scenario) with xz ±1;21 (ii) cancel

and resubmit an order to the alternative market. If the trader’s optimal action is

to jump from the DM to the LM after re-entry he can choose to submit an order

at price p = ( 6=)mpt or p = ( 6=)VWAPt with xz ± 1. Alternatively if his optimal ac-

tion is to jump from the LM to the DM after re-entry he can choose to submit an

order at a single price p with xz ± 1; (iii) cancel and submit no order (xz = 0); or

(iv) keep his unfilled order in market m at the same price and same direction such

that α = (b = b̂ , xz = x̂z , p = p̂ ). The value V(s ) to the agent of being in state s is

given by the Bellman Equation of the trader’s maximization problem

V(s ) =max
α̂∈A(s )

∫ +∞

tre=0

��

z
∑

i=1

π(tre, α̂, s , i )

�

+ e −ρtre

∫

s ′∈Sδ

V(s ′)×

×ψ
�

s ′ | α̂, s , tre, i
�

d s ′
�

d G (tre).

(3.8)

Here,Sδ is the set of possible states a trader with type δmay face on re-entry. G (tre)

is the exogenous probability distribution of the re-entry that follows an exponential

distribution with parameter λR (see Section 3.2). In addition,ψ(s ′ | α̂, s , tre, i ) is the

21 The execution price of the DM is determined at any instant by the order placements strategies
adopted by the active agents in the LM before the trader’s re-entry to the market.
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probability that at time tre on re-entry the trader faces state s ′, given previous action

α̂, previous state s and i executed orders.22 The first term - defined in Eq. (3.7) -

captures the trader’s payoff of the i (i ∈ {0, 1, . . . , z }) shares executing before his re-

entry at time tre. The second term reflects the agent’s subsequent payoff on re-entry

at time tre.

3.3.2 Model Solution of the Trading Game

Ideally, we would like traders to take optimal actions conditional on the entire

information set of the trading game. In practice, this makes the model analytically

intractable due to the size of the state space. Therefore, to obtain an approximation

of the equilibrium, we follow the numerical approach of Pakes and McGuire (2001).

Similar to Goettler, Parlour, and Rajan (2005, 2009) and Chiarella and Ladley (2016)

the equilibrium concept of the game is an approximation of the true Markov-perfect

equilibrium, in which traders’ optimal strategies are conditional on the available

information set of the reduced state space.23

Traders in the trading game - irrespective of type - start with initial overly opti-

mistic expected payoffs of different action and state pairs (i.e., (a , s )). The learning

process which is described below allows us firstly to dynamically update traders’ ex-

pected payoffs for each pair (a , s ) by observing the realized payoffs of their actions.

The equilibrium is reached when traders’ expected payoffs of each action and state

pair match the realized outcomes.24 Additionally, given that the full state space of

the trading game is too big, the Pakes and McGuire (2001) algorithm allows us to

reduce the dimensionality of the state space size by updating the agents’ expected

payoffs only for states that are actually visited. That is, states that belong to the re-

current classRδ, such that Rδ ⊂Sδ.25

The simulation starts at time t = 0, with both the limit order bookLmL ,t=0 (LM)

and the bookLmD ,t=0 (DM) being empty, and is driven by three exogenous events.

22 Recall that the state of a returning trader contains the remaining order(s) he has available to
trade.

23 For further analysis on the reduced state space see Subsection 3.3.4.
24 For further details about the convergence criteria used in our simulations see Subsection 3.3.3.
25 A state i is recurrent iff the expected total number of visits to i is infinite, that is

∑∞
k=0 P k

i i . Two
different states i and j communicate i ↔ j if i → j and j → i . All the states that communicate
with each other form a class. A recurrent class is absorbing i.e., onces the system enters to the class
it never leaves.
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Recall that the arrival of new traders irrespective of type, the re-entry of traders with

φδ 6= 0 (i.e., more shares to trade) and the fundamental value changes, follow the

Poisson process with parameters λN, λR and λv respectively.

Suppose a new trader with type δ=
�

µ,β
�

and z shares to trade, enters the mar-

ket at time t > 0. The trader, conditional on the state s =
�

m cmL ,t ,δ,;,φδ
�

which

incorporates fundamental values changes and entry (re-entry) rates of new (old)

traders up to time t , takes an action.26 At any instant t , each action α=
�

m , xz , p
�

∈
A(s ) in each state s ∈Sδ has an expected payoff. We denote the expected payoff by

Ut (α | s ) ∈ R. Let α? be the agent’s payoff-maximizing action in state s , such that

α? ∈ argmax
α∈A(s )

Ut (α | s ).27 That is, the value of state s is determined as V(s ) =Ut (α? | s ).

Over repeated visits to a state s ∈Rδ, the updating process described below cal-

culates each trader’s expected payoff for each action taken that results in an order

been executed or cancelled so that the trader can pick the optimal action. Consider

a new large trader with typeδ=
�

µL ,β
�

entering the market at time t > 0 while facing

state s =
�

m cmL ,t ,δ,;,φδ
�

∈ Rδ. Assume that the action (i.e., α? ∈ argmax
α∈A(s )

Ut (α | s ))

taken in state s from that particular trader represent a limit order of z shares sub-

mitted to the LM or the DM that fully executes at time t ′ before the trader’s re-entry

to market m at time tre (t ′ < tre). We update the agent’s expected payoff for taking

action α? in state s and time t , as follows

Ut ′(α
? | s ) =

nα?,s
nα?,s +1

Ut (α
? | s ) +

1

nα?,s +1
e −ρ(t

′−t )z (β +vt ′ −p )xz . (3.9)

Here, p is the price of the order with submitted quantity xz which executes at time t ′

prior to the trader’s re-entry at time tre > t ′, when the fundamental value is vt ′ . The

expected payoff is updated so that it is equal to the average payoff attained when the

optimal action α? is taken in state s . The term nα?,s is a positive integer that records

the number of times the action α? is chosen in state s . Conversely, if the trader’s

order does not execute (i.e.,φδ = z ) before his re-entry to the market at time tre, we

update his expected payoff as follows:

26 Every order submission strategy adopted by an active participant changes the state of the limit
order book related to market mL (state variable) and consequently changes the states observed by
the next agents.

27 Since on any entry the action set is finite, the maximum over all other actions exists and it is
well defined.
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Utre
(α? | s ) =

nα?,s
nα?,s +1

Ut (α
? | s ) +

1

nα?,s +1
e −ρ(tre−t )V(sre). (3.10)

Here V(sre) is the continuation value of state sre =
�

m cmL ,tre
,δ,α?,φδ

�

when the trader

re-enters the market at time tre, given previous action α? and previous state s .

Suppose now that the action α? ∈ argmax
α∈A(s )

Ut (α | s ) chosen by the new large trade

in state s =
�

m cmL ,t ,δ,;,φδ
�

∈ Rδ and time t > 0 represents a limit order of z =

2 shares that partially executes in market m and time t ′′ (i.e., φδ = 1) before the

trader’s re-entry at time tre.28 Since the order submitted in state s and time t is still

active the trader given the new state s ′ =
�

m cmL ,tre
,δ,α?,φδ

�

at time tre will choose

an optimal action with value V(s ′) = Utre
(α?? | s ′). Given the above, we update the

trader’s expected payoff for the order of z = 2 submitted in state s and time t that

partially executes as follows

Utre
(α? | s ) =

nα?,s
nα?,s +1

Ut (α
? | s ) +

1

nα?,s +1

�

e −ρ(t
′′−t )(β +vt ′′ −p )xz + e −ρ(tre−t )V(s ′)

�

.

(3.11)

The continuation value of state s ′, denoted as V(s ′), allows the agent in the trading

game to profitably execute the order of the unexecuted shares in the future. Sup-

pose that the particular large trader withφδ = 1 (i.e., one share available to trade) is

randomly drawn to re-enter to market m at time w . As we have seen in Eq. (3.8) the

value to a trader of being in state s ′ at time tre can be decomposed into the payoff

from full (partial) execution before re-entry and by the continuation payoff in case

of re-entry to market m at time w . Even if the order is not fully executed at time w

the agent will still choose the optimal action (i.e.,α?? ∈ argmax
α∈A(s ′′)

Uw (α | s ′′)) in the new

state s ′′ =
�

m cmL ,w ,δ,α??,φδ
�

. That is an agent’s future optimal actions at different

states, that result in the order being fully filled are used to determine the expected

payoff from taking action α? in state s and time t .

Continuing with the example above for the trader of type δ̂ = (µ̂, β̂ ) who sub-

mitted the order of ẑ = 1 share at price p̂ = p and time t ′′ by facing state s ′′′ =
�

m cmL ,t ′′ , δ̂,;,φ̂δ
�

we update his expected payoff as follows

28 The value assigned to z is used for illustration purposes.
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Ut ′′(α̂
? | s ′′′) =

nα̂?,s ′′′

nα̂?,s ′′′ +1
Ut ′′(α̂

? | s ′′′) +
1

nα̂?,s ′′′ +1
(β̂ +vt ′′ − p̂ )x̂z . (3.12)

Here α̂? is the optimal action take by the trader with type δ̂ = (µ̂, β̂ ) at time t while

facing state s ′′′. For each pair (α, s ) in the simulation process we assign an initial

positive integer n0 = na ,s . As na ,s gets very large for some pairs, this integer reduces

the convergence speed of the algorithm. To achieve faster convergence, after 3×108

order submissions we reset the counter to its initial value n0. Moreover, by assign-

ing optimistic initial payoffs to all agents, states that are only visited at the start of

the optimization, once execution probabilities are updated, stop been part of the

recurrent setRδ.

Agents irrespective of type conditional on the market conditions of the LM have

to estimate the fundamental value before taking an action. Recall that we denoted

the expectation of the fundamental value of the asset at time t by v̂t = E (vt |m cmL ,t )

(see discussion after Eq (3.6)). To be able to define a trader’s action set A(s ) we set

v̂t = vt−∆t
+ ζn (m cmL ,t ) where ζn (m cmL ,t ) is the extent by which an agent at time t

revises the term E (vt |m cmL ,t ) given lagged value vt−∆t
. We define

ζn+1(m cmL
) =

n̂

n̂ +1
ζn (m cmL

) +
1

n̂ +1
(vt −vt−∆t

) (3.13)

where n̂ counts the number of times market condition m is encountered during the

simulation process.29

Assigning initial overly optimistic expected payoffs to the market participants

each time a state is visited for the first time is very important for the optimization

process. The above lead agents - for every new state state encountered in the sim-

ulation - to submit orders with very low probability of execution but with very high

expected payoffs. Through the learning process described above traders learn that

these orders are not executing and will move to orders that offer lower expected pay-

offs but have higher probability of executing. If the trader was pessimistic (i.e., by

submitting orders with higher execution probability but lower expected payoffs) he

would not have been able to identify if more profitable orders will execute.

29 As we will see in Subsection 3.3.3; since our focus lies on stationary equilibria, the time sub-
script on market conditions is omitted.
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3.3.3 Existence and Convergence Criteria

To be able to compute the fixed point where an agent’s expected payoffs actu-

ally match the realized ones we follow the approach proposed by Goettler, Parlour,

and Rajan (2009); Bernales (2014); and Chiarella and Ladley (2016).30 That is ini-

tially we run the optimization process as described in Subsection 3.3.2 for several

billion order submissions. After this point we keep fixed the expected payoffs for

each market participant with type δ (denoted as Û(·)) and we re-run the model for

several billion more order submissions where the actual (realized) payoffs are calcu-

lated. Suppose under the ‘mid-market’ scenario a large trader with type δ =
�

µL ,β
�

enters to the market at time t > 0 with z = 2 shares to trade and his optimal ac-

tion involves submitting an order to the DM at price p =mpt .31 Assume further at

time w1 and time w2 with w2 >w1 before the trader’s random re-entry to the market

the order submitted fully executes. Since the order resulted in a trade at time w2 the

trader leaves the market by obtaining a realized payoff. This realized payoff denoted

by V̂(s ) is equal to V̂(s ) = e −ρ(w1−t )(β +vw1
−p )xz + e −ρ(w2−t )(β +vw2

−p )xz . For each

pair (α, s ) encountered in the simulation we then compare the expected and the re-

alized payoffs. Under both scenarios if the mean absolute difference between the

expected and the realized payoffs weighted by the number of times the pair (α, s )

is encountered in the simulations is less than 0.03 and the correlation between Û(·)
and V̂(·) is more than 0.99 we conclude that the model has converged and the fixed

point is found. If the above criteria are not satisfied we repeat the optimization pro-

cess and the tests until convergence is achieved. Our focus lies on symmetric and

stationary equilibria where agents with the same type adopt the same strategies and

these strategies do not depend on time; since an agent with type δ will choose the

same action when facing the same state s more than once.

3.3.4 Numerical Parametrization

To support the values assigned to the parametersγLT andγST (proportion of insti-

tutional and retail traders respectively) we follow approximately the empirical find-

30 We do not prove uniqueness although - for each parametrization - we run several simulations
using different random seeds to guarantee computational uniqueness (i.e., the model converges to
the same equilibrium).

31 See footnote 28.
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ings of Menkhoff and Schmeling (2010). Analysing the data set of the order book of

an electronic FX market with complete order details and coded trader identities they

show that information about the counterparty affects the future trading decisions

of individuals. Using the total trading volume as a proxy for overall trade size they

allocate each trader, depending on its size, into three groups (small, medium and

large trader group). Given the total number of market participants, they observe

that 25% (' 24.37%) are large and medium traders while the rest are small traders.

Thus we set γLT = 0.2.

The binary variable µ =
�

µS ,µL

	

is the agents’ group indicator; we set µ = µS if

the agent is a small (retail) trader andµ=µL if he is a large (institutional) one. Small

traders can trade one share of the asset (z = 1) while large trader can trade at most

three shares of the asset (z̄ = 3). Agents are part of the trading game by revising

their unfilled orders until they are fully executed, that isφδ = 0. Assume a new large

trader enters to the market at time t and state s and submits an order of z shares to

the DM at price mpt and direction x . The trader re-enters to the market at random

time t ′ > t while observing state s ′. If his previous order is not executed (φδ 6= 0 or

φδ = z ), the trader can take further actions conditional on the new state s ′. He can

retain the order in the DM, cancel and re-submit a new order to the LM or to the

DM or submit no order. Conversely ifφδ = 0, the trader does not have any shares to

trade and leaves the market forever.

All traders irrespective of type observe the fundamental value of the asset with

a time lag ∆t . We set ∆t = 10, that is traders observe the fundamental with a time

lag of ten seconds. At any instant, agents of any type, can place their limit orders

to the LM at any feasible price that lies in the interval p ∈ [̂vt −k , v̂t +k ]∩PmL
. We

set the value of the parameter k = 13; that is, the price of a limit order at any t

may be submitted in a range between thirteen ticks above and below the trader’s

expectation of the fundamental.32 It is worth highlighting that conditional on the

price mechanism applied to the DM under any scenario (‘mid-market’ and ‘VWAP-

market’ scenarios) there are no orders in that venue away from the single price.

In the model, to ensure numerical tractability: (i) all agents care about the rel-

32 The restriction imposed on the price placement of limit orders at any feasible price within k
ticks away from the trader’s expectation is based on two reasons (i) computational tractability; and
(ii) order placement strategies adopted by agents. Limit orders submitted at ticks greater than k = 13
were rarely executed..
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ative price of a trade, the difference between the price and the fundamental value

v (see discussion after Eq. (3.6));and (ii) given all the possible states a trader with

type δmight face, we consider only states that belong to the recurrent set such that

s ∈Rδ ⊂Sδ. All the above, allow us by restricting the state space of the trading game

for each agent, to compute the fixed point. Hence, the state at any instant t > 0 is

defined by the four-tuple

s = ({
?
LmL ,t , vt−∆t

, qmL ,t (·)
︸ ︷︷ ︸

=m cmL ,t

},δ,α,φδ) (3.14)

where m cmL ,t are the market conditions of the LM observed by the agent with type

δ (see Eq. (3.5)). If the returning trader’s order of z shares, submitted at time t ′ < t

and state s ′, has not been fully executed before his re-entry,α is the trader’s previous

action taken in state s ′ and φδ denotes the remaining shares the trader can trade.

The variables in
?
LmL ,t that characterizeLmL ,t at time t , are: (i) the bid price and the

ask price; (ii) the depth at the bid quote and the ask quote (i.e., `B
mL ,t and `A

mL ,t ); and

(iii) the buy and the sell quantities in theLmL ,t (i.e.,
∑N

i=0 `
i
mL ,t > 0 and

∑N
i=0 `

i
mL ,t < 0).

We set the support in ticks of the private value distributionF µ
β to be {−8,−4, 0, 4, 8}

with cumulative distribution {0.0, 0.2375, 0.7625, 1.0, 1.0} for the small agents; and

with cumulative distribution {0.35, 0.5, 0.5, 0.65, 1.0} for large traders. The values

assigned to the private value distribution F µ
β follow approximately the findings of

Hollifield et al. (2006). By splitting the private value into five different intervals, they

estimate the distributions of private values and the optimal order submission strate-

gies for three sample stocks on the Vancouver exchange.33 They observe that across

the three stocks the mean probability of private value in the interval (−2.5%,+2.5%)

is 44%; in the intervals (−5%,−2.5%] and [2.5%,+5%) is 26%; and in the intervals

(−∞,−5%] and [+5%,+∞) is 30%. Combining the private value distributions the

number of shares each trader type can trade and the proportion of large and small

traders that participate in the trading game we can see that for small agents (i.e.,

z = 1) with a β of 0 it holds that 0.8× 0.525× z = 0.42 while for large traders (i.e.,

z̄ = 3) for the same β it holds that 0.2×0.0× z̄ = 0.0. Similarly for a large traders with

a β = |8| we have that 0.2× 0.7× z̄ = 0.42 and for small traders 0.8× 0.0× z = 0.0.

Agents with extreme private values (i.e., our large traders) under the risk off being

33 The three sample stocks are Barkhor Resources (BHO), Eurus Resources (ERR), and War Eagle
Mining Company (WEM).
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picked off or to avoid high waiting costs are keen to trade quickly so to capture their

exogenous motives to trade. Agents with zero private values (i.e., our small traders)

may only trade when the fundamental value of the asset is mispriced by posting

more conservative limit orders (i.e., no exogenous motivation to trade).

The fundamental value of the asset at any t , denoted as vt , follows a Poisson pro-

cess with rate λv. This parameter denotes the expected number of innovations of

the fundamental value in one second. Similar to Goettler, Parlour, and Rajan (2009)

low volatility case, we set λv = 0.125, that is the fundamental value increases or de-

creases byσ ticks every 8 seconds on average. We setσ= 1, so when an innovation

occurs the fundamental value increases or decreases with equal probability by one

tick.

New agents irrespective of type arrive randomly to the market following a Pois-

son process with intensity λN. To support the value assigned to λN, we use the

empirical findings of Conrad, Wahal, and Xiang (2015). By sampling all common

stocks in the US with a stock price and market cap greater than $1 and $100 million

respectively, Conrad, Wahal, and Xiang (2015) examine the relation between high

frequency quotations and the behaviour of stock prices for the period 2009− 2011.

By splitting firms into different size quantiles and by averaging over the entire time

series, they observe that the average number of trades for stocks in the largest size

quantile is almost one trade per second.34 Given the above and conditional that

each trade involves two traders we set λN = 2. That is, a trader enters to the market

on average every 0.5 seconds.

In the model, an agent irrespective of type δ and scenario with φδ 6= 0 (more

shares to trade) re-enters the market and revises his previous order according to a

Poisson process with intensity λR. We set λR = 0.1, that is traders re-enter to the

market and revise their orders on average every 10 seconds. This is approximately

in line with the empirical findings of Hautsch and Huang (2011), where the median

cancellation time of one asset (WCRX) among the 200 biggest stocks listed on NAS-

DAQ is 10 seconds.35

In order to capture the risk of an agent submitting a limit order that might not

result to a trade and thus to be able to find the fixed point we introduce the discount

34 Stocks in the two largest size quantiles accounted for over 80% of the market cap.
35 In terms of market capitalization on October 1, 2010.
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rate denoted by ρ. In this model we set the discount rate ρ equal to 0.03.36 The

discount rate is common under any scenario and for both the LM and the DM and

captures the agents preference to execute sooner than later. Moreover we set the

smoothing factor λ equal to 0.3. This parameter is used to set the matching price of

the DM under the ‘VWAP-market’ scenario (see Eq. (3.3)).37

3.4 Results

As described in Subsection 3.3.3 to ensure that the fixed point is computationally

unique we run simulations using different random seeds. In this Section we intro-

duce the model’s results after the convergence criteria have met for 9× 108 order

submissions.

3.4.1 Market Quality

In this section we analyse how the introduction of the single price DM under the

‘mid-market’ and the ‘VWAP-market’ scenarios affects the quality of the LM. To do

this we introduce different quality measures such as the bid-ask spread, the num-

ber of limit orders (total and effectively traded) at the bid and at the buy side of the

books as a whole (the buy side is symmetric to the sell side). Table (3.1) depicts an

analysis of the aforementioned measures. As can be seen from the table across the

two scenarios there is an increase in liquidity supply in the LM under the ‘VWAP-

market’ scenario. For example the number of limit orders at the bid and at the buy

side of the limit order book related to the LM increase from 3.771 to 3.800 and from

17.227 to 20.057 ticks respectively. Moreover this increase in liquidity competition

results in the reduction of the spread (i.e., from 1.525 to 1.454 ticks) and the number

of effectively traded limit orders (i.e., limit orders submitted and executing without

any modification) at the bid price and at the buy side of the book as a whole. In con-

trast to the ‘mid-market’ scenario limit order submitters under the ‘VWAP-market’

scenario are keen to cancel their unexecuted limit orders more frequently. To justify

36 We simulated the trading game by settingρ = 0.05 andρ = 0.01 and the results we derived were
qualitatively similar to our benchmark case although with lower values of ρ agents spent more time
in the market increasing the model’s running time.

37 We experiment with different values of λ (i.e., λ = 0.5 and λ = 0.6) and the results are qualita-
tively similar.
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mid-market VWAP-market
LM DM LM DM

Spread
1.525 – 1.454 –

N. of limit orders at the bid
3.771 2.575 3.800 1.778

N. of limit orders at the bid (effectively traded)
1.013 1.759 0.915 1.526

N. of limit orders at the buy side of the book
17.227 2.575 20.057 1.778

N. of limit orders at the buy side of the book (effectively traded)
4.885 1.759 4.798 1.526

Microstructure noise: |p −vt |
0.674 0.863 0.666 0.738

Tracking Error
0.830 0.839 0.789 0.648

Table 3.1: Table showing market quality and liquidity under both available scenar-
ios. The buy side is symmetric to the sell side. The spread is the distance in ticks,
between the best ask and the best bid. The number of effectively traded limit orders
at the bid price and at the buy side of the book are the limit orders submitted and
executed without any modification. The tracking error is the average absolute dis-
tance between the midprice and the fundamental value. The microstrucutre noise
is defined to be the absolute mean difference between the execution price and the
fundamental value of the asset. Due to the DMs matching mechanism the spread is
equal to zero (single price markets). The number of limit orders at the bid price of
the DMs (total and effectively traded) is equal to the number of limit orders at the
buy side of the DMs (total and effectively traded). All the statistics are calculated by
observing the market every 10 simulation minutes. Number of observations: 85249
(mid-market), 79264 (VWAP-market). The fixed point for each of the available sce-
narios is obtained independently.

the above suppose at a random time before the trader’s re-entry to the market the

fundamental value has moved in an adverse (favourable) direction. The LM’s more

competitive environment - under the ‘VWAP-market’ scenario - will lead that partic-

ular trader to cancel his unexecuted limit order more often and re-position himself,

in terms of aggressiveness, by posting a more conservative (aggressive) limit order

so as to stay protected (at competitive prices) (see statistics in Table (3.5)).

Comparing further the two scenarios we focus next next on the microstructure

noise difference between the two single price DMs. The microstructure noise is de-

fined to be the mean absolute distance between the execution price and the funda-

mental value of the asset. The smaller the distance the closer the execution price

is to the fundamental value. The fact that both books related to the DM are LM-
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dependent (i.e., at any instant the execution prices are derived from the LM) justify

the above. The different matching criteria imposed on these two venues (VWAP is

updated every time a trade occurs in the LM), the narrower spread (increased com-

petition) and the smaller tracking error (reduction in informational inefficiency) of

the LM under the ‘VWAP-market’ scenario move transactions closer to the funda-

mental value of the asset. Moreover as can be seen from the table, across both sce-

narios, the number of limit (resting) orders submitted and executed without any

modification at the single price of both DMs (i.e., effectively traded) increase in con-

trast to the LMs. The single price mechanism applied to both DMs increase the like-

lihood of finding stale limit orders at these venues.

In order to have a better understanding on the execution costs related to a mar-

ket order we introduce the effective spread. Similar to Chiarella and Ladley (2016)

the effective spread - used to capture microstructure features of market m - is de-

fined as: 2(p −mp )xz where p is the execution price, mp is the mid-price when

the order is submitted and xz is the order’s submitted quantity to buy or to sell z

units of the asset, with xz = 1 (xz =−1) if the transaction involves a market buy (sell)

order.38 The effective spreads of each trader type in the LM under both scenarios

are illustrated in Table (3.2). As can be seen from the table under the ‘mid-market’

scenario the effective spreads of both groups of agents irrespective of private value

are greater. That is under the ‘mid-market’ scenario the trading cost of submitting

a market order that executes against an outstanding limit order on the other side

of the book related to the LM is higher. The improvement of the LM’s quality (as

we have seen in Table (3.1)) and the increased competition that narrows the spread

of the limit order book related to the market mL under the ‘VWAP-market’ scenario

reduces the cost associated to submitting a market order.

Under both scenarios the effective spreads of large traders with the most extreme

private values (β = |8|) are greater than the rest of the market participants. Large

traders with a β of |8| are keen to trade quickly in either market, even when the fun-

damental is not mispriced to benefit from their exogenous values. In contrast the

effective spreads of small traders with zero private valuation have the lowest values.

These traders may only trade profitably when the fundamental value is mispriced

(i.e., place market orders when significant mispricing is present) since their main

38 Given that the execution price of the DM under the ‘mid-market’ is the mid-price (midpoint)
we will focus only on the effective spreads of traders when they submit a market order to the LM.
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Scenario Venue Traders Effective spread
Private Value |β |

0 4 8 Total
mid-market LM Small 1.251 1.306 – 1.285

Large – 1.359 1.446 1.427
VWAP-market LM Small 1.219 1.232 – 1.227

Large – 1.292 1.370 1.354

Table 3.2: Table showing the effective spreads in the LM by each trader type under
the two available scenarios. The effective spread is defined to be 2(p−mp )xz where
p is the execution price, mp is the mid-price when the order is submitted and xz

is the order’s submitted quantity to buy or to sell z units of the asset, with xz = 1
(xz =−1) if the transaction involves a market buy (sell) order. The effective spreads
of small traders with a β of |8| and the effective spreads of large traders with β of 0
are not available due to the values assigned to the private value distributionF µ

β (for
further details see Subsection 3.3.4). All the statistics are calculated by observing
the market every 10 simulation minutes.

benefits are obtained from the trading activity. For example large traders with a

β of |8| are executing buy (sell) markets orders in the LM under the ‘mid-market’

scenario 0.723 ticks above (below) the market’s midprice while under the ‘VWAP-

market’ scenario the same traders execute at 0.685 ticks. Small traders with a β of 0

on the other hand execute market buy (sell) orders 0.625 ticks and 0.609 ticks above

(below) the market’s midprice under the ‘mid-market’ and the ‘VWAP-market’ sce-

nario respectively.

Scenario Venue Traders Time to Execution
[Time to Execution

limit orders]
mid-market LM Small 22.112 [28.322]

Large 2.187 [3.823]
DM Small 30.357 [37.205]

Large 4.061 [7.944]
VWAP-market LM Small 24.962 [33.192]

Large 1.986 [3.582]
DM Small 27.584 [34.599]

Large 3.874 [7.222]

Table 3.3: Table showing average time interval between a trader entering the mar-
ket and his order executing (i.e., market and limit order). In brackets is the average
time interval between a trader entering the market and his limit order executing.
Statistics are collected from 9×108 order submissions.

Table (3.3) further supports our findings. As can be seen from the table irre-

spective of the scenario, small traders have longer waiting times in contrast to large
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traders.39 The latter agents despite the larger number of shares they can trade are

willing to obtain the gains from trade available in the market (i.e., even when there

is no mispricing) instead of waiting. Irrespective of the scenario, small and large

traders due to the properties of the DMs (i.e., non-displayed liquidity) and the single

price mechanism imposed on these venues, have spent a longer time in these mar-

kets. In contrast to the ‘mid-market’ scenario small agents under ‘VWAP-market’

scenario, spend a longer time in the LM; the increased competition coupled with

the decreased spread, the smaller microstructure noise and the tracking error of the

LM drive these agents to cancel their outstanding limit orders more frequently and

as a result to have longer waiting times. This environment seems to benefit large

traders since their average time to execution in the LM is reduced even more. More-

over comparing the two scenarios all agents spend less time in the DM under the

‘VWAP-market’ scenario. As we will see in the next section, the different strategies

adopted by the market participants will verify the above observation.

3.4.2 Trading Behaviour

In the previous Subsection we saw that in contrast to ‘mid-market’ scenario the

presence of the VWAP DM improves the LM’s market quality. Liquidity provision in

the LM is increased; the quoted spread, the microstructure noise and the tracking

error decrease the number of limit orders at the bid and at the buy side of the book

related to the LM increase. Moreover, the effective spreads of all agent types are

reduced. In this section we are going to analyse the trading behaviour of the agents

under the two available scenarios (e.g., order submission strategies) and the effects

these strategies have in terms on benefits from trade and price of executed orders.

Order Placement Strategies

At any instant, agents with zero private values (i.e., speculators) - given the state

of the trading game they observe as defined in Eq. (3.14) - may only trade profitably if

the fundamental value is mispriced. In contrast agents with the most extreme values

(i.e., β = ±8) are more likely to submit orders even when the asset is not mispriced

since their main benefits arise from their exogenous private values.

39 Recall from Subsection 3.3.4 that we assign a β of zero only to small traders and a β of |8| only
to large traders.
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Table (3.4) displays the order placement strategies (i.e., market orders submitted

per trader type) adopted by the market participants under the ‘mid-market’ and the

‘VWAP-market’ scenarios. As can be seen from the table across the two scenarios

small traders with zero private valuation prefer to trade by submitting limit orders

to the LM (i.e., percentage of market orders submitted close to 17%); large traders

on the other hand, with β = |8| demand liquidity by submitting the majority of the

market orders. The above is driven by the different private value distributions as-

signed to these agents. Recall that in our model we only consider small traders with

a β of 0 and |4| and large traders with a β of |4| and with the most extreme private

values (i.e., β = |8|).

Scenario Venue Traders
market orders
submitted (%)

Private Value |β |
0 4 8

mid-market LM Small 18.60% 29.43% –
Large – 11.16% 40.81%

DM Small 52.14% 27.03% –
Large – 9.67% 11.16%

VWAP-market LM Small 17.08% 30.05% –
Large – 11.02% 41.85%

DM Small 40.15% 35.58% –
Large – 12.90% 11.37%

Table 3.4: Table showing the percentage of market orders submitted by each trader
type under both scenarios. The percentages of small traders with a β of |8| and the
percentages of large traders withβ of 0 are not available due to the values assigned to
the private value distributionF µ

β (for further details see Subsection 3.3.4). Statistics
are collected from 9×108 order submissions.

As shown further in Table (3.4) under both scenarios the demand for liquidity

in the DM shifts across small and large traders. Small agents with zero private val-

ues (i.e., small traders) considerably increase their demand for liquidity. For exam-

ple the percentage of market orders submitted by agents with a β of zero almost

triples (from 18.60% to 52.14%) under the ‘mid-market’ scenario and is more than

double (from 17.08% to 40.15%) under the ‘VWAP-market’ scenario. In contrast the

percentage of market orders submitted by large traders with a β of |8| decreases

from 40.81% to 11.16% under the ‘mid-market’ scenario and from 41.85% to 11.37%

under the ‘VWAP-market’ scenario. The reasons for this shift in liquidity demand

across large and small agents are (i) the price mechanism applied to both DMs that

increases the likelihood for agents with zero private values of finding mispriced stale
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limit orders at the DM submitted by large traders; (ii) the competitive environment

of both LMs that increase the probability - primarily of limit order submitters - of be-

ing picked off after unfavourable fundamental value movements coupled with the

anonymity the DM offers (see Tables (3.1) and (3.5)); and (iii) the exogenous charac-

teristics of large traders with the most extreme private values that drive these agents

to trade quickly in the LM even if the fundamental value is not mispriced.

mid-market VWAP-market
LM DM LM DM

Small Large Small Large Small Large Small Large
Number of limit order cancellations per trader

2.39 0.10 1.24 0.26 2.70 0.09 0.84 0.29
Probability of being picked off

35.29% 12.95% 26.60% 19.34% 37.43% 12.69% 22.86% 19.61%

Table 3.5: Table showing the number of limit orders cancellations per trader, di-
vided by group. The probability of being picked off is calculated when x (vt −vs )< 0,
where vs is the fundamental value at submission time, vt is the fundamental value
at execution time and xz is the limit order’s quantity when submitted. Statistics are
collected from 9×108 order submissions.

In contrast to the ‘mid-market’ scenario small and large traders with interme-

diate characteristics (i.e., β = |4|) increase even more their demand for liquidity

under the alternative scenario (i.e., ‘VWAP-market’ scenario). As we will see later

the different strategies adopted by these agents in terms of aggressiveness in the

DM coupled with the LM’s improved quality and the DM’s price mechanism (see

Subsection 3.4.1) under the ‘VWAP-market’ scenario will lead them to obtain better

terms of trade.

Order Aggressiveness

Consider a small trader with type δ entering the market at time t > 0 and his

optimal action in state s involves submitting an order to market m at price p with

x =−1 (i.e., sell order). Given that any order submitted in our model is marketable; if

there is no order on the buy side of the book the order is entered into the book related

to market m as a limit order. If at time t ′ > t the order executes before the trader re-

entry then the trader obtains a realized payoff equal to e −ρ(t
′−t )(p − vt ′ −β ). Agents

with zero private values should demand a sell price higher than vt while agents with

β 6= 0 should be willing to demand a lower sell price, even negative.

Table (3.6) displays the average price of sell limit orders submitted by each agent
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type under the ‘mid-market’ and the ‘VWAP-market’ scenarios. As shown in the ta-

ble, under both scenarios small traders (i.e., agents withβ = 0 andβ = |4|) - although

a little more aggressive under the ‘VWAP-market’ scenario - submit more conserva-

tive limit orders to either market as compared to large traders. For example under

the ‘mid-market’ scenario traders with the most extreme private values (i.e., β = |8|)
demand on average a sell price of 0.33 below the fundamental in the LM while spec-

ulators submit limit sell orders at prices 2.49 ticks above the fundamental in the

same venue.

Scenario Venue Traders
Price of

sell limit orders
Private Value |β |
0 4 8

mid-market LM Small 2.49 0.26 –
Large – -0.01 -0.33

DM Small 0.62 -0.22 –
Large – -0.39 -0.52

VWAP-market LM Small 2.40 0.19 –
Large – -0.02 -0.27

DM Small 0.42 -0.15 –
Large – -0.23 -0.29

Table 3.6: Table showing the average price of sell limit orders demanded by each
trader type under both scenarios. The prices of small traders with a β of |8| and the
prices of large traders with β of 0 are not available due to the values assigned to the
private value distributionF µ

β (for further details see Subsection 3.3.4). Statistics are
collected from 9×108 order submissions.

Agents irrespective of type conditional on the single price mechanism applied

to each DM (LM - dependent) under the risk off being picked off in the LM are keen

to move forward in terms of aggressiveness when they submit limit sell orders to

the DM (see rows three, four, seven and eight in Table (3.6)). Most noticeably small

traders with zero private values submit limit sell orders to the DM when the execu-

tion price is 0.62 ticks above the fundamental under the ‘mid-market’ scenario and

0.42 ticks above the fundamental under the ‘VWAP-market’ scenario. The above

strategies - in terms of aggressiveness - adopted by all market participants though,

given the unobservable to the market participants depth on either side of the book

related to the DM; and the increased competition that these markets have at the

single price at any instant (i.e., see number of effectively traded limited orders at

the bid price of the DMs in Table (3.1)) increase the time agents spend to the DM
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(see rows three and seven in Table (3.3)) and will lead them to obtain worse terms

of trade when participating in that venue as compared to the LM.

Comparing now the DMs across the two scenarios. In contrast to the ‘mid-market’

scenario, agents with the nonzero private values (i.e., small and large traders) adopt

different strategies - in terms of aggressiveness - when they submit limit sell or-

ders to the DM under the ‘VWAP-market’ scenario. For example while small (large)

traders with a β of |4| under the ‘mid-market’ scenario they demand a sell price

of 0.22 (0.39) ticks below the fundamental, under the ‘VWAP-market’ scenario the

same type of agents submit limit orders to the DM when the price is 0.15 (0.23) ticks

below the fundamental. In contrast to the ‘mid-market’ scenario, the improved

quality of the LM under the ‘VWAP-market’ scenario; the different price mecha-

nisms imposed to the DMs (VWAP is updated every time a trade occurs in the LM);

and the lower quantities available at the single price of the book related to the DM

under the ‘VWAP-market’ scenario will create a more favourable environment for

the agents with nonzero private values in terms of execution time and benefits from

trade when participating in that venue.

Benefits From Trade

Agents irrespective of type given the state of the trading game they observe, choose

an action α =
�

m , x , p
�

∈ A(s ) so as to obtain the best possible terms of trade from

the other active agents. Driven from their exogenous motives to trade and to avoid

the risk of being picked off, agents with the most extreme private values (i.e., large

traders with a β of |8|) are keen to trade quickly at prices worse than the agents with

the zero or with the intermediate private values. Table (3.7) depicts the average exe-

cution price of all sell orders (i.e., the average distance between the execution price

p and the fundamental value, denoted as vt at time of execution t , for all executed

market and limit orders). For a small trader for example with β = 0 the greater dis-

tance signifies an improvement in the terms of trade.

As shown in the table under the ‘mid-market’ scenario all market participants

obtain better terms of trade in the LM in contrast to the DM. For example small

(large) traders with a β of |4| execute sell orders in the LM 0.02 (0.10) ticks below

the fundamental as compared to 0.40 (0.45) ticks below the fundamental when they

participate in the DM. Under the ‘VWAP-market’ while small and large traders with
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Scenario Venue Traders
Price of executed

sell orders
(benefits from trade)

Private Value |β |
0 4 8

mid-market LM Small 0.63 -0.02 –
Large – -0.10 -0.42

DM Small 0.31 -0.40 –
Large – -0.45 -0.66

VWAP-market LM Small 0.58 -0.02 –
Large – -0.09 -0.39

DM Small 0.33 -0.24 –
Large – -0.26 -0.35

Table 3.7: Table showing the average price of all sell market and limit orders exe-
cuted by each trader type under both scenarios. The prices of executed sell orders
for small traders with a β of |8| and prices of executed sell orders for large traders
with β of 0 are not available due to the values assigned to the private value distribu-
tionF µ

β (for further details see Subsection 3.3.4). Statistics are collected from 9×108

order submissions.

a β ∈ {0,±4} practice better terms of trade in the LM; large traders with the most

extreme private values (i.e., β = |8|) execute sell limit and market orders in the DM

0.35 ticks below the fundamental value as compared to 0.39 ticks below the funda-

mental when they participate in the LM. These traders’ improvement in the terms

of trade is incorporated in the relatively increased costs paid by the other agents -

and primarily by the small traders with zero private valuation - that participate in

the DM (compare rows seven and eight with rows five and six).

Apart from the small traders with zero private values that participate in the LM

under the ‘mid-market’ scenario; across the two scenarios small and large agents

with intermediate and the most extreme private values experience better terms of

trade when they participate on either market m under the ‘VWAP-market’ scenario.40

For example large traders that participate in the LM under the ‘VWAP-market’ sce-

nario with a β of |4| (|8|) execute 0.09 (0.39) ticks below the fundamental as com-

pared to 0.10 (0.42) ticks below the fundamental when they participate in the LM

under the ‘mid-market’ scenario. The reduced quoted spread, microstructure noise

and tracking error of the LM under the ‘VWAP-market’ scenario (for further discus-

sion about market quality see Subsection 3.4.1) seem to harm more the small agents

40 The only agents that are not strictly better off in terms of benefits of trade are the small agents
with a β of |4| since in both scenarios they execute sell market and limit orders in the LM 0.02 ticks
below the fundamental value.
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with zero private value since we observe a decline in their terms of trade by 0.05

ticks.

3.4.3 Welfare Analysis

In this section using the analysis of gains from trade introduced by Hollifield et

al. (2006) we examine the profitability of the traders under the ‘mid-market’ and the

‘VWAP-market’ scenarios.41 We define a trader of type δ; profit for an order of z

shares fully executing at time t ′ and market m as

G Tδ = e −ρ(t
′−t )z (β +vt ′ −p )x . (3.15)

where β is the trader’s private valuation, vt ′ is the fundamental value of the asset at

the time of execution, p is the price of the order submitted and x is the submitted

quantity.42 Recall that the gains from an order of z shares executing are discounted

back to the trader’s first arrival to the market (in our example at time t ) and at rate

ρ. To be able to gain insight into the gains and losses for the trading process of the

game we decompose the agent’s profit as follows

G Tδ =β +β (1− e −ρ(t
′−t )) + e −ρ(t

′−t )
�

p −vt

�

. (3.16)

the intermediate term β (1− e −ρ(t
′−t )) (waiting cost) captures the cost related to the

trader’s endogenous decision to delay the trade either due to lack of liquidity or un-

favourable market conditions (i.e., state observant decision). The last term e −ρ(t
′−t )

�

p −vt

�

(money transfer) captures the trader’s gains (losses) from the trading activity with-

out including his private valuation. The ‘money transfer’ term is discounted back

to the trader’s first arrival to the market.

Table (3.8) displays the waiting costs and money transfer per trader type under

the ‘mid-market’ and the ‘VWAP-market’ scenarios. As shown in the table, irrespec-

tive of the scenario, agents of any type trade faster in the LM in comparison to the

DM. Most noticeably under both scenarios large traders with the most extreme pri-

vate values (i.e., β = |8|) trade much faster in the LM as can been seen by their lower

41 Similar analysis is used by Bernales (2014) and Chiarella and Ladley (2016).
42 In our model we do not pre-assume that a trader with a negative (positive) private valuation

will sell (buy) the asset. All decisions are state-dependent and thus they depend on the prevailing
market conditions of the LM at any instant.
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Scenario Venue Traders Waiting Cost Money Transfer
Private Value |β | Private Value |β |

0 4 8 0 4 8
mid-market LM Small 0.000 -0.301 – 0.313 -0.019 –

Large – -0.353 -0.281 – -0.097 -0.402
DM Small 0.000 -0.334 – 0.193 -0.371 –

Large – -0.473 -0.573 – -0.410 -0.621
VWAP-market LM Small 0.000 -0.267 – 0.274 -0.023 –

Large – -0.327 -0.272 – -0.090 -0.394
DM Small 0.000 -0.324 – 0.177 -0.231 –

Large – -0.432 -0.554 – -0.249 -0.346

Table 3.8: Table showing the average waiting costs and money transfer by each
trader type under both scenarios. For full details on how these terms are defined
see discussion after Eq. (3.16). The waiting costs and money transfer of small traders
with a β of |8| and of large traders with β of 0 are not available due to the values as-
signed to the private value distributionF µ

β (for further details see Subsection 3.3.4).
Statistics are collected from 9×108 order submissions.

waiting costs (e.g., under the ‘mid-market’ scenario from -0.573 to -0.281). Due to

the number of shares large traders with intermediate private values hold, they trade

slower in the LM (i.e., higher waiting costs) as compared to the small traders with

the same private values. For large traders with a β of |8| this is less of a problem.

These traders are keen to trade quickly by placing more aggressive orders to the LM

since their benefits arise from their private values. Irrespective of the scenario, the

different order placements strategies adopted by the large traders of any valuation

when participating in the DM, completely shift the waiting costs for them (see Ta-

ble (3.4)). For example under the ‘VWAP-market’ scenario while large traders with

the most extreme values have on average a waiting cost of -0.554, large traders with

a β of |4| have a lower waiting cost equal to -0.432.

Comparing the two scenarios, in contrast to the ‘mid-market’ scenario all agents

irrespective of type and venue choice trade faster under the ‘VWAP-market’ sce-

nario. For example small trades with the intermediate private values (i.e., β = |4|)
under the ‘mid-market’ scenario, when participating in the LM have on average a

waiting cost of -0.301 as compared to a waiting cost of -0.267 when the same type of

agents participate in that venue under the ‘VWAP-market’ scenario. The reasons

why all traders have lower waiting costs under the latter scenario are (i) the im-

proved market quality of the LM; (ii) the different prices mechanishm applied to

the DMs. Recall that VWAP is updated every time a trade occurs in the LM; and as

a result of all the above (iii) the different strategies adopted by the market partici-
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pants when they participate in either the DM or in the LM under the ‘VWAP-market’

scenario.

Irrespective of the scenario large traders with aβ of |8| incur higher money trans-

fer than all the other trader types. For example as shown in Table (3.8), the money

transfer value of large traders with the most extreme private values when participate

in the LM under the ‘mid-market’ scenario is -0.402; in contrast the money trans-

fer value of large traders with a β of |4| is significantly smaller and equal to -0.097

ticks. The loss incurred to large traders with a β = |8| from the trading activity is pri-

marily captured by the small traders with zero private values. Recall that the latter

agents under the risk of being picked off spend more time in the market and may

only trade profitably when the fundamental value is mispriced. Apart from the large

traders with a β = |8| under the ‘VWAP-market’ scenario (recall from Table (3.7) that

these traders experience an improvement in terms of trade when they participate in

the DM); all other agents when participate in the DM, due to the properties of this

venue (i.e., no pre-trade transparency) face less favourable trading opportunities in

terms of increased money transfer.

Under the ‘VWAP-market’ scenario: (i) large traders irrespective of private valu-

ation; and (ii) small traders with intermediate private values (i.e., β = |4|) when par-

ticipating in the DM incur lower money transfer as compared to the ‘mid-market’

scenario. The improvement these type of agents experience - in the form of reduced

money transfer - harms the rest of the market participants (e.g., the small traders ir-

respective of valuation when participate in the LM and the small traders with zero

private value when participate in the DM). As we will see next (analysis of Table (3.9))

the above observation coupled with the absence of waiting costs for the traders with

zero private values; reduce these traders’ profits under the ‘VWAP-market’ scenario.

Table (3.9) depicts the average profits per order by trader type under the two

available scenarios. Irrespective of the scenario agents of any type make greater

profits when participating in the LM in comparison to the DM. For example under

the ‘mid-market’ scenario the average payoff of a small trader with β = 0, who par-

ticipates in the LM is 0.313 ticks as compared to the 0.193 ticks when a trader with

zero private value participates in the DM. The observable state of the LM, the low

waiting costs coupled with the high money transfer of large traders with the most ex-

treme private values benefit speculators (i.e., small traders with zero private values).

The latter traders make profits primarily from this money transfer. Conversely, the
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competitive environment of the LM and cognition limits that prevent agents from

continuously monitoring the market; increase the picked off probabilities of these

traders. The above coupled with the fact that speculators are particularly suscepti-

ble to this effect drive them to jump to the DM and execute orders at less favourable

terms.

Scenario Venue Traders Average Payoff
Private Value |β |

0 4 8 Total
mid-market LM Small 0.313 3.681 – 2.114

Large – 3.550 7.317 6.240
DM Small 0.193 3.296 – 0.969

Large – 3.117 6.806 4.958
VWAP-market LM Small 0.274 3.711 – 1.991

Large – 3.584 7.334 6.312
DM Small 0.177 3.445 – 1.441

Large – 3.320 7.100 4.963

Table 3.9: Table showing the average payoff by each trader type under both scenar-
ios. For full details on how traders’ payoffs are defined see text. The payoffs of small
traders with a β of |8| and of large traders with β of 0 are not available due to the
values assigned to the private value distributionF µ

β (for further details see Subsec-
tion 3.3.4). Statistics are collected from 9×108 order submissions.

Across the two scenarios, the improvement of the LMs quality under the ‘VWAP-

market’ scenario reduces the average payoff of speculators. Even though the trading

cost of executing a market order in the LM is reduced for all market participants (see

Table (3.2)); small traders with zero private values by primarily supplying liquid-

ity in this venue are harmed the most. Moreover the DM’s reduced microstructure

noise - under the ‘VWAP-market’ scenario - that moves transactions closer to the

fundamental value, decreases speculators profits as compared to the ‘mid-market’

scenario. Specifically, speculators’ average payoff when they participate in the DM

under the ‘mid-market’ scenario is 0.193 ticks as compared to the 0.177 when these

traders participate in the DM under the ‘VWAP-market’ scenario.

Recall from Subsection 3.4.2 that under the ‘VWAP-market’ scenario large traders

irrespective of valuation are strictly better off in terms of benefits from trade as com-

pared to the ‘mid-market’ scenario. The above coupled with the improvement these

traders experience in terms of reduced money transfer and waiting costs (see Ta-

ble (3.8)) allows them to make greater profits when participating in any market m

under the ‘VWAP-market’ scenario as compared to the ‘mid-market’ scenario.
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3.5 Conclusion and Policy implications

Dark pools’ increasing market share in global equity markets over the last decade

coupled with the increased concerns of the exchange officials linked with ‘dark’

trading (i.e., trading moving to off exchange platforms) are the driving forces of this

study.43 For the purposes of this study we build two scenarios where two markets - a

‘lit’ (LM) and a ‘dark’ (DM) - operate simultaneously. While under both scenarios we

apply a single price mechanism to the dark pool, under the ‘mid-market’ scenario

the ‘dark’ book matches orders at any instant at the mid-price (midpoint) of the

‘open’ limit order book. Under the ‘VWAP-market’ scenario the single price mech-

anism of the ‘dark’ book is the Volume-Weighted Average Price (VWAP). That is at

any instant irrespective of the scenario dark pools match agents orders at a single

price which is derived from the LM. We consider a dynamic continuous-time model

of trade in a single financial asset were risk neutral agents submit orders in order to

maximize their expected discounted payoff.

To be consistent with how real financial markets operate the trading game in-

cludes two groups of traders: large (institutional) traders who can trade at most

three shares of the asset and small (retail) traders who trade one share of the as-

set. A factor that gives additional heterogeneity to the traders, is their intrinsic pri-

vate value to trade the asset. Irrespective of the scenario - given the non-displayed

properties of the DM - an agent’s trading decisions depend on the prevailing mar-

ket conditions of the LM. That is all actions in the trading game are state-dependent.

Given that the model is analytically intractable (very large state space) we apply the

numerical approach of Pakes and McGuire (2001) and Goettler, Parlour, and Rajan

(2009) in order calculate the fixed point of the game.

Our findings have numerous policy implications as there is clear evidence that

the presence of the VWAP DM compared to the midpoint DM improves the LM’s

market quality. Liquidity provision in the LM is increased; the quoted spread, the

microstructure noise (i.e., the absolute mean difference between the execution price

and the fundamental value of the asset) and the tracking error (i.e., the average ab-

solute distance between the midprice and the fundamental value) decrease. The

number of limit orders at the best quotes and in the limit order book of the LM as a

43 For further discussion about dark pools and the concerns these markets raise to exchange of-
ficials see Section 3.1.
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whole increase. As a result of the above, the effective spreads of all agent types are

reduced. Moreover, as compared to the midpoint, the VWAP DM offers (i) a faster

exchange to trade given that the average time interval between the trader’s entry to

the market and his order (market or limit) executing is reduced; and (ii) prices closer

to the fundamental value of the asset given the DM reduced microstructure noise

as compared to the midpoint DM.

In contrast to the ‘mid-market’ scenario, under the ’VWAP-market’ scenario all

agents with nonzero private values - irrespective of venue - experience an improve-

ment in the form of reduced waiting costs. Moreover across the two scenarios, apart

from the speculators (i.e., small agents), all market participants obtain better terms

of trade when participate in either venue under the ’VWAP-market’ scenario. The

above allow agents with nonzero private values irrespective of group to make greater

profits when participate in any market under the ‘VWAP-market’ scenario as com-

pared to the ‘mid-market’ scenario.



Chapter 4

A Nonparametric Analysis of Portfolio

Choice

4.1 Introduction

In recent years there is an increasing number of papers that have developed and

implemented - in a laboratory setting - nonparametric asset demand tests. These

tests require the subject to choose a preferred option among financial assets sub-

ject to a standard budget constraint. Varian (1983, 1988) and Green and Srivastava

(1986) derive necessary and sufficient conditions for a demand set to be consistent

with the utility maximization model. Kübler, Selden, and Wei (2014) assume that

state of nature probabilities are not fixed (i.e., demand is continuous, differentiable

function of prices, income and probabilities) and find restrictions on the contin-

gent claim demand functions so to be consistent with state independent expected

utility function. Choi et al. (2007) implement a portfolio choice experiment; given

two commonly known states of the world, each participant was asked to purchase

two Arrow-Debreu securities (i.e., easy security offers one unit of account in one

state and zero in the other) under different budget constraints. In their analysis,

using Afriat’s Theorem (Afriat, 1967) their objective is to check whether a subject’s

behaviour is consistent with the maximization hypothesis. By applying the exper-

imental data collected by Choi et al. (2007); Polisson, Quah, and Renou (2017) de-

velop a nonparametric approach (i.e., lattice method) and test the consistency of

the data with a wide range of models of choice under risk and under uncertainty

(i.e., expected utilty, rank dependent utility among others).1

In the majority of the aforementioned cases, the financial asset demand mod-

els make use of the classic Arrow-Debreu contingent claim setting; that is, under

1 Other (functional form or nonparametric) asset demand tests have been derived from Dybvig
(1983) and Echenique and Saito (2015).
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a finite number of states, a subject possess preferences over state contingent con-

sumption. Moreover markets are assumed to be complete (i.e., same number of

assets and states of the world). The focus of this study is to test this fundamental

hypothesis used in the financial asset demand tests. To do that we design an ex-

periment in which each subject is asked to purchase securities under four different

scenarios in the asset space with contingent claims fixed across frames. Under the

complete market case - for every budget line randomly selected in the contingent

space - we create four different budget lines (i.e., one for each scenario) in the asset

space where subjects are asked to make choices. Subjects are facing risk where the

probabilities of each state occurring are objectively known. There are two states of

the world and each scenario is associated with two securities each of them promises

different payoffs in the two available states (scenario I: Arrow-Debreu securities,

scenarios II, III, IV: ordinary securities).

In our analysis, using Afriat’s theorem (Afriat, 1967) we derive conditions that

are necessary and sufficient for the dataset so as to be consistent with utility max-

imization within and across the available scenarios. Afriat’s Theorem states that

given any finite data set, if the Generalized Axiom of Revealed Preference (GARP)

holds then there exists a utility function that rationalizes the data that is continu-

ous, increasing and concave.2 The above result proves to be very useful because in

implementing our test we adopt the nonparametric revealed preference approach

of Afriat (1967); Diewert (1973) and Varian (1982)); that is, the model’s utility func-

tion that represents subjects’ preferences does not reply on any functional form as-

sumptions.

Given that the power of the experiment depends on the number of observations

each subject is facing; it is natural to expect that hardly any behaviour at the level

of individual subject, will be exactly consistent with the maximization hypothesis.3

Given the aforementioned, we allow in our analysis for departures from rationality

using Afriat’s critical cost efficiency index or CCEI (see Afriat, 1972; Afriat, 1973, and;

Varian, 1990). This index, denoted by e , takes values from 0 to 1, with e = 1 if a

subject passes the test exactly. Moreover we determine the power of the test/model

using the approach proposed by Bronars (1987). By introducing artificial subjects

2 For further analysis see Section 4.2.
3 In our analysis, we find that only the choice behaviour of one subject is consistent with the

model of choice. (see Section 4.5).
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that make uniformly random choices in the asset space, we estimate the probability

of the dataset generated by these subjects being inconsistent - at a given efficiency

index - with the model of choice. All of the above allows us to evaluate the difference

between the pass rate and the model’s precision (i.e., the probability of a random

dataset passing the test) at a given efficiency index by introducing the Selten’s index

of predictive success (Selten, 1991).

Our main findings include: (i) At a cost efficiency index 0.90 almost 90% of the

subjects are consistent with the utility maximization model under scenario I (Ar-

row-Debreu securities). The more complex payoff structure of the ordinary secu-

rities in scenarios II, III and IV, reduces this percentage. As expected the less cost

inefficient we allow subjects to be, the less subjects are consistent with the model

of choice; (ii) the probability of a random dataset to be consistent with the utility

maximization model across all scenarios at an efficiency index of 0.85 is effectively

zero. The above leads to the conclusion that the power of the model is close to per-

fect. The CCEI scores - and as a result the power of the experiment depends on

the number of observations each subject is facing; (iii) the test’s predictive success

across and within scenarios is within the positive range. That is, the test has ex-

planatory power against the alternative hypothesis of random choice; (iv) given the

CCEI scores at any given efficiency index within and across scenarios; some sub-

jects are consistent within and across scenarios while others are consistent within

but not across. (heterogeneous behaviour).

This study is organised as follows. Section 4.2 emphasises on the nonparamet-

ric approach while Section 4.3 on the equivalence between the financial asset set-

ting and the contingent claim setting. Section 4.4 describes the experimental design

and procedures. Section 4.5 depicts the results of our analysis, and Section 4.6 con-

cludes.

4.2 Revealed Preference

For our purposes in order to be able to understand what the model of choice

says about the data, we use as empirical strategy the revealed preference method-

ology (e.g., Samuelson, 1938, 1948; Afriat, 1967, and; Varian, 1982). We follow the

tradition of Afriat (1967) and we suppose that we have access to a finite dataset, such
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that:

Let Ω = {
�

p t , x t
�

}Tt=1, be a finite set of observations. At every observation t =

1, 2, . . . , T , we interpret x t =
�

x t
1 , x t

2 , . . . , x t
`

�

∈ R`+ as the observed bundle (the de-

mand bundle) of `goods chosen by an individual consumer at prices p t =
�

p t
1 , p t

2 , . . . , p t
`

�

∈
R`++. We define the individual’s budget set, given income w > 0, asB t =

�

x ∈R`+ : p · x ≤w
	

.

Let U : R`+ → R denote a local nonsatiated utility function. We say that the func-

tion U rationalizes the finite set Ω = {
�

p t , x t
�

}Tt=1, if ∀t (t ∈ {1, 2, . . . , T }) it holds

U (x t ) ≥ U (x ), ∀x ∈ B t =
�

x ∈R`+ : p t · x ≤ p t · x t
	

. That is, the bundle x t is the

one that maximizes the consumer’s utility function U (i.e., w = p t · x t ), compared

to any other bundles that belong inB t .

Given the above setting, we can ask what are the necessary and sufficient con-

ditions for the data set Ω = {
�

p t , x t
�

}Tt=1 to be consistent with an individual con-

sumer that maximizes the utility function U . The existence of the local nonsatiated

utility function U that rationalzies the data depends upon what information can

be revealed from Ω. Given a set O , that contains the observed bundles, such that

O = {x t }Tt=1 and the price vector p t =
�

p t
1 , p t

2 , . . . , p t
`

�

∈R`++, at every t = 1, 2, . . . , T we

define the following:

Definition 4.1. For the observed bundles x t , x s ∈O we say that x t is directly revealed

preferred to the bundle x s (denoted as x t �∗ x s ) if p t · x s ¶ p t · x t .

In words, x t is directly revealed preferred to the bundle x s if the bundle x s was af-

fordable when the bundle x t was chosen. Replacing p t · x s ¶ p t · x t with strict in-

equality we derive p t · x s < p t · x t . That is, the bundle x s was not only affordable

but also was cheaper when x t was chosen. More formally:

Definition 4.2. For the observed bundles x t , x s ∈O we say that x t is directly revealed

strictly preferred to the bundle x s (denoted as x t �∗ x s ) if p t · x s < p t · x t .

Definition 4.3. For the observed bundles x t , x s ∈ O we say that x t is revealed pre-

ferred to the bundle x s (denoted as x t � x s ) if there is some sequence i , j , . . . , m such

that x t �∗ x i , x i �∗ x j , . . . , x l �∗ x m , and x m �∗ x s .

Definition 4.4. For the observed bundles x t , x s ∈O we say that x t is revealed strictly

preferred to the bundle x s (denoted as x t � x s ) if there exist x i and x j such that

x t �∗ x i , x i �∗ x j , x j �∗ x s .
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The relation � is the transitive closure of the relation �∗. It implies, based on

the above definitions, that the bundle x t can be revealed preferred to the bundle x s

either directly or through a chain. When a given data set is rationalizable by a lo-

cal nonsatiated utility function, its revealed preference must satisfy the Generalized

Axiom of Revealed Preference (GARP). GARP is a no-cycling condition that states if

a bundle x t is revealed preferred to a bundle x s (i.e., x t � x s ) it cannot be the case

that x s is directly revealed strictly preferred to the bundle x t (i.e., x s �∗ x t ). More

formally:

Definition 4.5. A data set Ω= {
�

p t , x t
�

}Tt=1 obeys the Generalized Axiom of Revealed

Preference (GARP) if given a chain such that x t �∗ x i , x i �∗ x j , . . . , x l �∗ x m , x m �∗

x s =⇒ x s �∗ x t .

Hence, it is intuitive that any finite data set will be rationalizable by a local nonsa-

tiated utility function if the revealed preference relations satisfy the GARP condition.

We now state the problem as follows

Definition 4.6. A data setΩ= {
�

p t , x t
�

}Tt=1 is rationalizable if there exists a local non-

satiated utility function U : R`+ → R, such that at every observation t = 1, 2, . . . , T it

holds

U (x t )≥U (x ) ∀x ∈B t =
�

x ∈R`+ : p t · x ≤ p t · x t
	

In words, the data set is rationalizable if there exists a local nonsatiated utility func-

tion such that the bundle chosen at every observation t , provides a utility weakly

greater than any other affordable bundle. The Theorem of Afriat (1967) states that

if a data set obeys GARP then there exists a continuous, strictly increasing and con-

cave utility function that rationalizes the given data set.4

Theorem 4.1. Let the data set Ω = {
�

p t , x t
�

}Tt=1. The following statements about Ω

are equivalent:

1. The data set Ω is rationalizable by a nonsatiated utility function U :R`+→R.

2. The data set Ω obeys the Generalized Axiom of Revealed preference (GARP).

4 The term GARP is equivalent to Afriat’s cyclical consistency condition (e.g., Varian, 1982, see
Fact 1).
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3. Associated to each observation t = 1, 2, . . . , T there exist numbers u t ∈ R and

λt ∈R++, such that

u t ′ ¶ u t +λt p t · (x t ′ − x t ), ∀t , t ′ = 1, 2, . . . , T

4. There exists a continuous, strictly increasing and concave utility function U :

R`+→R that rationalizes the data set Ω.

Proof. See Afriat (1967), Diewert (1973), Varian (1982) and Fostel, Scarf, and Todd

(2004).

In words, Afriat’s Theorem states that given any finite data set, if GARP holds then

there exists a utility function that rationalizes the data that is continuous, increasing

and concave. Moreover, it provides two alternative tests for utility maximization.

Both of these empirical tests include checking if GARP holds either directly or by

solving a system of linear inequalities (i.e., Afriat inequalities).5

The purpose of this paper is to study decision making under risk in the financial

asset setting with contingent claims fixed across frames. Under certain assump-

tions, we are able to transform our observations into the contingent consumption

setting and focus on the application of revealed preference in order to test the model

of choice under risk and under uncertainty; given s = 1, 2, . . . ,S states of the world,

we let the vectors xt = (x t
1 , x t

2 , . . . , x t
S ) ∈ R

S
+ and pt =

�

p1, p2, . . . , pS

�

∈ RS
++ to be the

individual’s contingent consumption and state prices, at observation t .6 Given the

above, we can ask what conditions are necessary and sufficient for a given data set

to be rationalizable by a local nonsatiated utility function. To be more specific, the

utility function U :RS
+→R rationalizes the data set Ω = {(pt ,xt )}Tt=1 if for every ob-

servation t = 1, 2, . . . , T it holds that

U (xt )≥U (x) ∀x ∈B t =
�

x ∈Rs
+ :pt ·x≤pt ·xt

	

(4.1)

That is, xt maximizes the the individual’s utility function U compared to any other

bundle of contingent consumption (i.e., x) that belong inB t .

5 The latter test require for each observation t = 1, 2, . . . , T to find numbers (u t , λt ) that solve the
inequality introduced in statement 3 of Theorem 4.1.

6 See for example Varian (1982, 1983, 1988), Green and Srivastava (1986), Diewert (2012), Kübler,
Selden, and Wei (2014),Echenique and Saito (2015) and Polisson, Quah, and Renou (2017).
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4.3 From the Financial Asset Setting to the Contingent

Claim Setting

Lets consider an economy with k ∈ {1, 2, . . . , K } financial assets and and s ∈
{1, 2, . . . ,S} states of the world. An Arrow-Debreu (AD) security k ∈ K (see Arrow,

1964, and; Debreu, 1987) is the one that promises one unit of consumption in state

s ∈ S and nothing in any other state. Denote the payoff an AD security k offers in

state s by
∼
ξs k . It holds that

∼
ξs k = 1 for s = k and

∼
ξs k = 0 for s 6= k , i.e., the index of

an AD security is identical to the state in which this security pays off (state claim).

Hence, given S states, denote the payoff matrix of the K AD securities by
∼
Ξ ∈RS×K ,

such that

∼
ΞS×K =













1 0 · · · 0

0 1 · · · 0
...

...
...

...

0 0 · · · 1













(4.2)

Throughout this paper we focus on a complete system of financial markets with

S states and K = S financial assets. Under this assumption, a complete system of

AD securities offers the same trading opportunities to individuals as a contingent

claims system (Arrow, 1964).

An ordinary (complex) security, is a type of asset that provides a more complex

structure than an AD security. An ordinary security is one that potentially pays off

in more than just a single state. In a similar fashion as before, we denote as ξs k

the payoff an ordinary security k offers in state s . Thus, given K and S ordinary

securities and states respectively, the payoff matrix Ξ ∈ RS×K takes the following

form

ΞS×K =













ξ11 ξ12 · · · ξ1K

ξ21 ξ22 · · · ξ2K

...
...

...
...

ξS1 ξS2 · · · ξS K













(4.3)

Denote by zk and z = (z1, z2, . . . , zK ) ∈ RK
+ the quantity of the k asset held by an

individual and the portfolio of ordinary securities respectively. Denote the price of
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asset k by pk , withp=
�

p1, p2, . . . , pK

�

∈RK
++ denoting the corresponding price vector.

Given the matrixΞ, the term
K
∑

k=1
ξs k zk determines the payoff that portfolioz offers in

state s ∈ {1, 2, . . . ,S}. Denote the individual’s contingent claims in state s by xs such

that x ∈RS
+, ∀s ∈ S . Assume that the individual’s preferences over state contingent

consumption are represented by the utility function U (x). Assume further that the

probability of state s is commonly known to beπs , withπs ∈∆(S ).7 Holding income

w > 0, the decision maker’s asset optimization problem is given by

max
x∈RS

+,z∈RK
+

U (x;π) =
S
∑

s=1

πs u (xs )

subject to

p ·z =w and x=Ξz

⇒
K
∑

k=1

pk zk =w and xs =
K
∑

k=1

ξs k zk , for all s = 1, 2, . . .S

(4.4)

Given a system of AD and a system of ordinary securities, a portfolio’s payoff

in any given state s = 1, 2, . . . ,S , is determined by the term
K
∑

k=1

∼
ξs k zk and

K
∑

k=1
ξs k zk

respectively. With AD securities, this payoff depends only on the quantity (zk=s ) of

the respective AD security that pays off in state s (see Matrix (4.2)). With ordinary

securities, this payoff depends on the combination of all ordinary securities held

by an agent. This comes from the fact that all securities held and which form the

portfolio may promise payoffs in more than a single state (see Matrix (4.3)). Hence,

in both sets the return on the portfolio decides the amount of purchasing power

transferred to the agent.

A necessary and sufficient condition that ensures an equivalence between the

two aforementioned sets arises from the complete market assumption. Our as-

sumption of completeness of markets, guarantees that the matrix of payoffs Ξ has

full rank, that is rank(Ξ) = S . The full rank condition tell us that across S states, the

payoff matrix Ξ of the K ordinary securities has S linearly independent columns.

Denote the contingent claim vector of AD prices by
∼
p=

�

p1, p2, . . . , ps

�

. Then, by the

no-arbitrage theorem on asset prices, there exists a vector
∼
p� 0 that correctly prices

7 Here π = (π1,π2, . . . ,πS ) ∈∆(S ), where∆(S ) =

�

π ∈RS :π� 0 and
S
∑

s=1
πs = 1

�

.
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all available K ordinary securities. Given the above, it holds that

∼
p ·x=p ·z

⇒
S
∑

s=1

∼
p s

�

K
∑

k=1

ξs k zk

�

=
K
∑

k=1

pk zk

⇒
∼
p 1(ξ11z1+ · · ·+ξ1K zK ) + · · ·+

∼
p S (ξS1z1+ · · ·+ξS K zK ) =

= p1z1+ · · ·+pK zK

⇒







































S
∑

s=1

∼
p sξs 1 = p1

S
∑

s=1

∼
p sξs 2 = p2

...
S
∑

s=1

∼
p sξs K = pK

⇒













ξ11 ξ21 · · · ξS1

ξ12 ξ22 · · · ξS2

...
...

...
...

ξ1K ξ2K · · · ξS K

























∼
p 1
∼
p 2
...
∼
p K













=













p1

p2

...

pK













(4.3)
⇒ p=ΞT

∼
p⇔pT = (ΞT

∼
p)T⇔pT =

∼
p
T
Ξ

or equivalently

pk =
S
∑

s=1

∼
p sξs k for all k = 1, 2, . . . , K

(4.5)

Thus now, instead of the asset optimization problem (see Eq.(4.4)) we focus only

on demand tests for the contingent claim system. By setting x = Ξz and pT =
∼
p
T
Ξ

we turn our attention to the contingent consumption demand x ∈RS
+ that solves8

8 Proposition A.1 in Appendix A shows the equivalence between the two sets.
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max
x∈RS

+

U (x;π) =
S
∑

s=1

πs u (xs )

=
S
∑

s=1

πs u

�

K
∑

k=1

ξs k zk

�

=π1u (ξ11z1+ . . .ξ1K zK )+ · · ·+πS u (ξS1z1+ . . .ξS K zK )

subject to
∼
p ·x=w

⇒
S
∑

s=1

∼
p s

�

K
∑

k=1

ξs k zk

�

=w

⇒
∼
p 1 (ξ11z1+ . . .ξ1K zK )+ · · ·+

∼
p S (ξS1z1+ · · ·+ξS K zK ) =w

(4.6)

4.4 Experimental Design and Procedures

4.4.1 Design

In this experiment each participant is asked to purchase securities - under four

different scenarios in the asset space - under risk. There are two states of the world,

and each scenario is associated with two securities each of them offer different pay-

offs in the two available states. For each of the four scenarios, there are 20 decision

tasks; that is each subject is asked to complete a series of 80 decision tasks. Each

task requires the subject to allocate tokens between two securities in the asset space.

The complete market assumption and the fact that asset prices preclude arbitrage

ensure equivalence between a contingent claim and a financial asset setting; allow-

ing us to study decision making under risk in the latter with contingent claims fixed

across frames.9 Specifically, for every budget line randomly selected in the contin-

gent space (CS), we are able to create for each of the four scenarios, an equivalent

environment in the asset space (AS) where subjects are asked to make choices under

risk. To be precise, in scenario I each subject is asked to divide the budget between

two AD securities. In scenarios II, III or IV subjects are asked to divide the budget

between two ordinary securities (OS). Table 4.1 illustrates the structure of the payoff

9 See Section 4.3 for further information.
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matrices for each scenario available. The order the scenarios are presented to every

participant is random.

scenario I scenario II scenario III scenario IV
AD OS OS OS

∼
Ξ=

�

1 0
0 1

�

Ξ1 =

�

4 0
0 1

�

Ξ2 =

�

4 1
0 1

�

Ξ3 =

�

4 1
0 2

�

Table 4.1: Payoff matrices associated with each available scenario. Scenario I con-
siders Arrow-Debreu securities (AD) while scenarios II-IV consider ordinary secu-
rities (OS); e.g., in scenario IV security A pays off 4 tokens in state 1 and 0 in state 2
and security B pays off 1 token in state 1 and 2 tokens in state 2.

To provide intuition, we present a simple example of how the budget lines in the

AS for all the scenarios, are generated. Suppose the computer has drawn for one

participant in the CS, the x-intercept to be 50.00 tokens and the y-intercept to be

20.00 tokens. Denote the x- and y-intercepts by X C S and Y C S respectively such that

X C S = 50.00 and Y C S = 20.00. Being consistent with the notation used in Section 4.3,

and by setting the individual’s wealth to 100 (i.e., w = 100), we infer the relative

prices of the two Arrow-Debreu securities such that
∼
p 1 = 2 and

∼
p 2 = 5. Using for each

security and scenario all the payoff relevant information (see Table 4.1) and the fact

that pT =
∼
p
T
Ξ (see concluding equation in (4.5), where p=

�

p1, p2

�

� 0) we calculate

the corresponding prices and intercepts (i.e., X AS and Y AS ) in the AS. Figure 4.1,

using the example above, represents graphically the budget line generated in the CS

(Figure 4.1a), and the budget lines in the AS under the 4 available scenarios (Figure

4.1b).

To ensure that the budget lines cross frequently in the CS, we use as our starting

point, the same procedure of budget line selection as in Choi et al. (2007).10 That

is, given two states of the world and two associated AD securities we program z-

Tree (Zurich Toolbox for Ready-made Economic Experiments) to generate for each

subject 20 independent budget lines in the CS, by picking randomly the x- and y-

intercepts.11 Both axes are scaled from 0 to 100 tokens. Additionally, both inter-

cepts are drawn randomly uniformly between 10 and 100 tokens, with a restriction

10 Given sufficient relative price variations, we can test consistency of subjects’ behavior under
the model of choice.

11 See Fischbacher (2007) for a description of the z-Tree software.



4.4: Experimental Design and Procedures 89

10 20 30 40 50

10

20

30

40

s 1

s 2 w = 100
∼
p 1 = 2
∼
p 2 = 5

(a) Budget line in the CS.
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(b) Budget lines in the AS.

Figure 4.1: Budget line drawn in the contingent space with two AD securities and
two states, with X C S = 50.00 and Y C S = 20.00 (Fig. 4.1a). Budget lines generated
in the asset space that offer an equivalent environment to the participants as in the
contingent space, under the four available scenarios (Fig. 4.1b).

imposed that at least one of the intercepts is at or above the 50 token level. Denote

the demand for the AD security that promises a payoff of one unit in state s by xs . By

setting the individual’s wealth equal to 100 (i.e., w = 100), given a random draw in

the CS, we then can infer the relative prices (
∼
p= (

∼
p 1,

∼
p 2)� 0) of the AD securities.12

In this experiment, the graphical interface used follows the lines of Loomes (1991)

and Loomes and Pogrebna (2014). That is, subjects see a graphical representation

12 Here,
∼
ps=1(2) is the price of the AD security that pays off in state 1(2); and the budget constraint

is
∼
p 1 x1+

∼
p 2 x2 =w .
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of two centred lines where they are asked to choose any affordable portfolio of two

securities under risk. Given a decision task and any available scenario, the two lines

represent the x- and y- intercepts in the AS; that is, the two lines map the closed in-

tervals [0, X AS ] and [0, Y AS ] respectively. Figure 4.2, represents graphically the two

lines used to map the budget line from the AS under scenario IV, for the example

described above.

Choice
of a1

0 3.12 6.25 9.37 12.5

Choice
of a2

0 2.08 4.16 6.24 8.33

Figure 4.2: Display used to represent the budget line generated in the asset space
under scenario IV (see Figure 4.1b). Both lines represent the minimum and max-
imum number of tokens a subject can allocate between the two securities in the
given space.

4.4.2 Procedures

This experiment was conducted in the Leicester Experimental Economics (LEx-

Econ) Laboratory in the Department of Economics at the University of Leicester.

The 67 subjects that participated in the experiment, were recruited from under-

graduate classes at University of Leicester. Each experimental session - apart from

one - consisted of 10 subjects, each of them completed the experiment at an indi-

vidual computer terminal.13 Instructions were read aloud by an experimenter and

two practise tasks were provided to the subjects. In order to move to the actual ex-

periment, subjects had to answer correctly a question related to how the payoff in

tokens, is calculated in a hypothetical case.14 Each experimental session lasted ap-

proximately one hour and eight minutes. Payoffs were calculated in terms of tokens

and then converted into money at an exchange rate of £0.5 per token. Subjects were

paid an average of £18 (including a £2 participation fee), privately at the end of the

session.
13 Out of the seven sessions conducted, only the second session included 7 subjects.
14 See a copy of the instructions and of the question (Figure B.1) in Appendix B.
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In each of the 80 decision tasks, a subject had to choose how to allocate tokens

between a RED asset and a BLUE asset in the AS. Feasible allocations for both assets

were represented by two centred lines (see Figure 4.2); with the top (bottom) line

corresponding to the RED (BLUE) asset. The granularity of these lines was set to

0.01 tokens. On each of these lines, a cursor (dot) was placed to represent the allo-

cation to the corresponding asset (see Figure C.1 in Appendix C for an illustration).

To choose an allocation, subjects were asked to click and drag either cursor to their

desired allocation. The movement of one cursor automatically adjusted the posi-

tion of the other to satisfy the budget constraint.15 Subjects were able to adjust the

position of both cursors within the feasible sets as many time as they wish, with no

time restrictions. At the start of each decision task, the initial allocation of tokens,

and the corresponding cursors, was random and independent across tasks.

In this experiment, subjects faced risk since each task included two possible

events (event 1 and event 2). In each decision task, the tokens a subject allocated

in each asset had different returns depending on the scenario and the two events.

With probabilities assigned to each event being objectively known; at the end of

each task, the computer randomly selected one of the two events with equal prob-

ability (π = 1/2), independently across tasks. Applying the random lottery mecha-

nism, subjects were not informed of the event that was drawn by the computer at

the end of each task. At the end of the experiment, the computer randomly selected

with equal probability one decision task for each subject. Conditional on the allo-

cation of tokens, the scenario and the event randomly drawn by the computer, the

subject was paid the amount he earned in that specific task.

4.5 Results

We first test for utility maximization on the given experimental data and we present

the exact pass rates in Table 4.2. As can be seen from the table across the 80 decision

tasks - each subject had to face - only 1 out of the 67 subjects passes GARP on ev-

ery scenario (i.e., ‘all scenarios’). That is, only the choice behaviour of one subject

is consistent with the utility maximization model. Moreover, subjects under sce-

narios I, II and II performed better than under scenario IV. More precisely, of the 67

15 In any decision task, subjects could choose any combination of (x1, x2) ≥ 0 in the asset space,
that satisfied the constraint p1 x1+p2 x2 = 1.
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subjects 31 pass GARP under scenario I, 26 pass under scenarios II and III, 20 pass

under scenario IV (see columns one, two, three and four of Table 4.2).

scenario I scenario II scenario III scenario IV all scenarios
GARP 31/67 26/67 26/67 20/67 1/67

Table 4.2: Exact Pass Rates

Due to the fact that GARP offers an ‘exact’ test, i.e., either the dataset satisfies

GARP or it does not, we allow in our analysis for departures from rationality. To

measure the degree of GARP violations we use Afriat’s critical cost efficiency index

or CCEI (see Afriat, 1972; Afriat, 1973, and; Varian, 1990).16 To be more specific the

departure involves adjusting the budget constraintB t such that∀t (t ∈ {1, 2, . . . , T })
the budget is now defined to be

B t (e ) =
�

x ∈Rs
+ : p t · x ≤ e p t · x t

	

(4.7)

for some e ∈ [0, 1].17 That is, x t is directly revealed preferred to x at efficient level

e if p t · x ≤ e p t · x t . Assume that a particular subject has chosen under the con-

tingent consumption setting the bundle x 1 = (17.5, 31.25) at prices p 1 = (1.25, 2.5)

and the bundle x 2 = (35, 12.5) at prices p 2 = (2.5, 1). The above situation is displayed

in Figure 4.3. We can observe that the bundle x 1 is revealed preferred to the bun-

dle x 2 (i.e., x 1 � x 2) at prices p 1 since p 1 · x 2 < p 1 · x 1.18 Moreover, x 2 is revealed

preferred to x 1 (i.e., x 2 � x 1) at prices p 2 since p 2 · x 1 < p 2 · x 2. That is the given

data violates GARP and cannot be rationalizable by a nonsatiated utility function.

Shifting (shrinking) the budget lines as displayed in Figure 4.3 by some factor (i.e.,

e = 30/40 = 0.75) it holds that x 1 �∗e x 2 since p 1 · x 2 ≤ e p 1 · x 1 and x 2 �∗e x 1 since

p 2 · x 1 ≮ e p 2 · x 2. That is when the CCEI is equal to 0.75 the data satisfies GARP and

will be rationalizable by a local nonsatiated utility function.

16 Some seminar papers that use the CCEI, the VEI or other indices to measure a model’s fit
are Choi et al. (2007); Echenique, Lee, and Shum (2011); Choi et al. (2014); Dean and Martin (2016)
and Polisson, Quah, and Renou (2017).

17 The value of e determines by how much the budget should be shrunk so to satisfy GARP. When
e = 1 the data set is fully rationalizable by a local nonsatiated utility while when e = 0 GARP is trivially
satisfied.

18 Recall that the transitive closure relation � implies that a bundle can be directly revealed pre-
ferred to another bundle either directly or through a chain.
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Figure 4.3: Calculating the CCEI

4.5.1 Distributions of Efficiency Indices and Bronars Power

Given the number of decision tasks each subject had to face and that the results

presented in Table 4.2 are sharp, we next focus on the different efficiency levels at

which subjects pass GARP. Figure 4.4 displays the empirical distribution (dashed

black line) of the CCEI scores generated by the experimental data on every scenario.

As can be seen from the figure at an efficiency index of 0.9 approximately 40% of the

subjects are consistent with the utility maximization model. Moreover by allowing

a 20% efficiency loss (i.e., subject are now 10% more cost inefficient as compared to

the 0.9 efficiency index) we can observe that this percentage increases to 65%.

To be able to justify the aforementioned (i.e., the power of our experiment is

determined by the number of decision tasks each subject had to face) and to under-

stand whether the observed distribution of the CCEI scores imply relative success

or failure of the model to explain the experimental data we follow the approach pro-

posed by Bronars (1987). The Bronars (1987) approach introduces artificial subjects

that make uniformly random choices from a collection of budget sets. Being con-

sistent with the notation used in Section 4.3, we denote the quantities of assets by

zk and their prices by pk with z ∈ RK =2
+ and p ∈ RK =2

++ denoting the corresponding

vectors. Using the number of observations a subject had to face in the experiment
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Figure 4.4: CCEI Distributions on every scenario (‘all scenarios’)

and the number of securities we first generate uniformly asset holdings. Given a set

of prices - randomly generated in the experiment - under any available scenario in

the AS; the asset holdings and the actual subjects’ choices for each subsequent task;

we then generate uniformly random portfolios of the K = 2 available securities. Fi-

nally by setting x = Ξz and pT =
∼
p
T
Ξ with x ∈ RS=2

+ and
∼
p ∈ RS=2

++ we were able to

transform these uniformly random choices so as to focus on the contingent con-

sumption setting. That is from a collection of 20 budget lines randomly generated

in the CS for each actual subject in the experiment; each artificial subject made 80

choices in the AS each of them transformed to a claim contingent. With the process

described above we generate a random sample of 100,500 artificial subjects.19

Figures 4.4 and 4.5 compare the distributions of the CCEI scores generated by

the 100,500 artificial subjects (solid black lines) and the CCEI scores generated by

the actual 67 subjects (dashed black lines) under scenarios I-IV and on every sce-

nario. Choosing the 0.95 efficiency level we observe that the percentage of the ran-

19 We compared these results to a sample of 33500 random subjects. By applying five one-sided
Kolmogorov-Smirnov tests to the CCEI distributions of the two random generated samples we ob-
served at a 5% significant level the estimated area does not change. More precisely the test statistic
for the K-S test under scenarios I-IV and all scenarios was 0.0066, 0.0064, 7.2637e-04, 0.0046 and
0.0026.
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dom subjects that have CCEI scores at or above this threshold ranges from 4.4%

under scenario II to 19.4% under scenario III (Figure 4.5). The percentage of the

actual subjects with a CCEI score 0.95 or higher increases significantly to 64.1% un-

der scenario II (smallest) and to 74.6% under scenario I (highest). Moreover, while

more than 83% of the actual subjects on average - under scenarios I-IV - have a CCEI

score of 0.90 or higher this percentage falls to approximately 25% on average for the

random subjects (Figures 4.5a - 4.5d).

(a) scenario I (b) scenario II

(c) scenario I (d) scenario I

Figure 4.5: CCEI Distributions by scenario

Comparing now the CCEI distributions depicted in Figures 4.4 and 4.5 of both

the actual and the artificial subjects we can observe for example that at any e =

{0.90, 0.95, 1.00} the actual subjects’ CCEI scores are smaller under the ‘all scenar-

ios’ case as compared to any of the scenarios I, II, III or IV. The above strongly sug-

gests that the CCEI scores - and as a consequence the power of the experiment -

depend on the number of observations each subject is facing.20. Conditional on the

20 Recall from Section that the experimental design is balanced so each subject has to complete
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aforementioned efficiency levels the likelihood of an artificial subject passing GARP

on every scenario is very close to zero (see Figure 4.4). This difference between the

CCEI distributions of the actual and the artificial subjects signifies that the test’s

consistency is not a result of a random behaviour and subjects clearly understood

the procedures.

The set of feasible allocations a subject can choose under a particular scenario

in the AS is given by a budget line (see for example Figure 4.2 in Subsection 4.4.1);

that is the subject is strained to exhaust a fixed amount of purchasing power (i.e.,

is choosing a combination (z1, z2)≥ 0 such that p1z1 +p2z2 =m). Suppose at some

t ∈ {1, 2, . . . T } the subject is observed to have chosen under scenario i a portfolio

zt ∈ RK
+ such that zt ∈ ϑB t

i , where ϑB t
i is the upper boundary ofB t

i = {x ∈ R
S
+ |

∃z ∈ RK
+ : p · z ≤ p · zt and x = Ξzt }, where i ∈ {1, 2, 3, 4}. Denote an element that

belongs to the setB t
i under scenario i by x. It holds that x ∈ ϑB t

i if > y ∈B t
i such

that y >x.21 Given a particular randomly selected budget line in the CS, the payoff

matrices associated to each of the four scenarios generate budget sets in the AS,

such thatB1 ⊂B2 ⊂B3 ⊂B4. Thus in the simulated experiment, artificial subjects

should attain at any efficiency level higher CCEI scores under scenarios III and IV

as compared to the scenarios I and II. Figure 4.5 supports the above.

The results suggest that subjects are consistent within scenarios but not across.

To justify the above we conduct the Wilcoxon sign ranked test (Wilcoxon, 1945).

That is we test the null hypothesis that the median difference between the subjects’

CCEI scores within (within and across) scenarios is equal to zero. The p-values are

depicted in Table 4.3.

Scenarios II III IV
I 0.052 0.1176 0.002

I III IV
II – 0.932 0.960

I II IV
III – – 0.503

Scenarios all
I 0.000

all
II 0.000

all
III 0.000

all
IV 0.000

Table 4.3: Wilcoxon sign ranked test within (within and across) scenarios (p-values)

20 decision tasks under scenario I, II, III and IV
21 Given any two vectors x,y ∈RK

+ : x > y if x 6= y and xi ≥ yi ∀i .
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As shown in the table, at the 5% significance level we reject the null hypothe-

sis that the median difference between the subjects’ CCEI scores within and across

scenarios is equal to zero. Moreover looking within the scenarios we can observe

that the null hypothesis is rejected at the 5% significance level for scenarios I and

IV; given the payoff matrices associated with each scenario, under scenario IV sub-

jects had to choose a portfolio that included ordinary securities with more complex

payoffs’ structure than the AD ones (i.e., scenario I).

4.5.2 Predictive success

To be able to test the predictive success of the model for each and across all sce-

narios we aggregate the pass rates and the power of the test into a single axiomatic

measure proposed by Selten (1991). Selten’s index of predictive success is described

as p = r − a ∈ [−1, 1] where p is the measure of predictive success, r ∈ [0, 1] is the

‘hit rate’ (relative frequency of correct predictions) and a is the area which is one

minus the the model’s power (the percentage of the feasible space explained by the

model). Table 4.4 depicts the hit rates under scenarios I to IV and across all scenar-

ios disaggregated by the efficiency levels 0.90, 0.95 and 1.00.

Hit rate
0.90 0.95 1.00

GARP

scenario I 60/67 (89.5%) 50/67 (74.6%) 31/67 (46.2%)
scenario II 53/67 (79.1%) 43/67 (64.1%) 26/67 (38.8%)
scenario III 55/67 (82.0%) 45/67 (67.1%) 26/67 (38.8%)
scenario IV 57/67 (85.0%) 46/67 (68.6%) 20/67 (29.8%)

all scenarios 27/67 (40.2%) 12/67 (17.9%) 1/67 (1.4%)

Table 4.4: Hit Rates by scenario and Efficiency Level

As expected moving to higher efficiency levels the hit rate is reduced in all cells.

For example, under scenario IV 57/67 subjects obey GARP at the 0.90 efficiency level,

46/67 at the 0.95 efficiency level and 20/67 if we do not allow the decision maker

to make mistakes. Scenario I presents the highest hit rates under all displayed ef-

ficiency levels of 89.5%, 74.6% and 46.2% respectively (i.e., under scenario I, if we

allow subjects to be 10% cost inefficient 89.5% of the individual choices can be ex-

plained by the utility maximization model). This is due to the simplified portfo-

lio structure that the corresponding scenario offers to subjects (i.e., AD securities).
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Given any efficiency level the hit rate percentages are reduced significantly across

scenarios (‘all scenarios’).

Area (1 - Power)
0.90 0.95 1.00

GARP

scenario I 14.3% 4.5% 0.3%
scenario II 14.2% 4.4% 0.3%
scenario III 41.9% 19.4% 2.3%
scenario IV 30.6% 13.0% 1.3%

all scenarios 0.0% 0.0% 0.0%

Table 4.5: Area by scenario and Efficiency Level

Table 4.5 disaggregates the second component of the Selten’s index, the area.

The percentages in the cells close to zero indicate that the test’s statistical power

with respect to the alternative hypothesis of uniform random choice is close to one

(i.e., a very small number of the artificial subjects out of 100,500 pass the test).22

For example, under scenario III (I) the statistical power of the test at 0.90, 0.95 and

1 efficiency level is 58.1 (85.7), 80.6 (95.5) and 97.7 (99.7) respectively. The notable

high percentages of scenarios III and IV - when we allow subjects to be 10% and

5% cost inefficient - are justified by the payoff matrices associated with these two

scenarios and as a consequence by the choice set available under the AS space. The

values displayed in table 4.5 and in Figures 4.4 and 4.5 coincide.

In order to see if the variation of the hit rate across the available scenarios is sta-

tistically significant we build the 95% confidence intervals with respect to the the

relative size of subjects who pass the test under scenarios I to IV and across scenar-

ios (‘all scenarios’) given e = {0.90, 0.95, 1.00}. Recall that hit rates, as displayed in

Table 4.4, signify the relative frequency of correct predictions. This frequency fol-

lows the binomial distribution with estimates the proportion of successful events.

The results are depicted in Figure 4.6.

Under any efficiency level, what emerges immediately is that there is no signif-

icant difference between scenarios II, III and IV. Scenario I that corresponds to AD

securities, offers higher hit rates at any efficiency level. By relaxing the assump-

tion that decision makers can make mistakes; and focus on the 0.90 efficiency level,

scenario IV presents the second highest hit rate. Finally, there are significant differ-

22 Theoretically the area should be a strictly positive number. However the cells across scenarios
(‘all scenarios’) indicate an estimated area of zero, that is zero artificial subjects pass the test.
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Figure 4.6: 95% Confidence Intervals on hit rates by scenario and efficiency index
e = {0.90, 0.95, 1.00}

ences if we focus on the hit rates across scenarios (‘all scenarios’). Even if we relax

the test by 10%, ‘all scenarios’ presents a hit rate significantly lower than scenarios

I, II, III and IV.

Selten index 0.90 0.95 1.00
scenario I 0.752 0.701 0.459
scenario II 0.649 0.597 0.385
scenario III 0.401 0.477 0.365
scenario IV 0.544 0.556 0.285

all scenarios 0.402 0.179 0.014

Table 4.6: Predictive success by scenario and Efficiency Level

The Selten index for the threshold levels 0.90, 0.95 and 1.00 is presented in Ta-

ble 4.6. What we can observe immediately is that at any e = {0.90, 0.95, 1.00} - under

scenarios I and II - the Selten axiomatic measure is almost determined by the hit

rates (see Table 4.4). All cells have indices within the positive range, indicating the

power of the test against the alternative hypothesis of random choice. Naturally, the

less cost inefficient we allow subjects to be (i.e., efficiency levels 0.95 and 1.00) the

indices under all cases are smaller but still superior to the alternative hypothesis.

It is worth highlighting that across scenarios (‘all scenarios’) the index of predictive

success is completely characterized by the hit rate under any e ; even though these
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indices are low ranked.

4.6 Conclusion

We develop and implement in an experimental setting a financial asset demand

test using revealed preference conditions. The complete market assumption and

the fact that asset prices exclude arbitrage allow us to study decision making under

risk in the financial asset setting. Subjects purchase securities under four differ-

ent scenarios given the two states of the world with contingent claims fixed across

frames. Subjects are facing risk, i.e., where the probabilities assigned to each state

are objectively known. Each scenario is associated with a set of securities each of

them offer different payoffs in the two available states. Under scenario I subjects

are choosing between two Arrow-Debreu securities, under scenarios II, III ,IV they

are choosing between two ordinary securities. In our analysis, by applying Afriat’s

Theorem (Afriat, 1967) we derive conditions that are necessary and sufficient for

the dataset so as to be consistent with utility maximization within and across the

available scenarios.

At a cost efficiency index 0.90 almost 40% of the subjects are consistent with

the utility maximization model, across all scenarios. Naturally, this percentage in-

creases significantly if our focus is within the scenarios. For example under scenario

I the percentage of subjects who obey GARP is close to 90%. The test’s predictive

success across and within scenarios is well within the positive range. That is, the

test has explanatory power against the alternative hypothesis of random choice.

Moreover, the dataset reveals some heterogeneity among subjects, i.e., some sub-

jects are consistent within and across scenarios while others are consistent within

but not across. This heterogeneity among subjects might arise from the different

payoff matrices associated with each scenario or from the fact that subjects under

different scenarios choose different rules.



Chapter 5

Conclusion

This thesis studied the behaviour of different types of individuals (i.e., traders,

experimental subjects) in financial markets under different environments. In Chap-

ters 2 and 3 we modelled the behaviour of different groups of traders in dynamic

(limit) order book based financial markets. In a competitive setting where two limit

order books operated simultaneously (i.e., an open market and a ‘dark’ market -

Multi-Markets scenario) chapter 2 studied the effects that the ‘dark’ market had on

the ‘lit’ market’s quality, trading behaviour and welfare of market participants. Anal-

ysis of the model had shown that - in contrast to the Single-Market scenario (i.e., one

single ‘lit’ market) the ‘lit’ market’s quality is reduced (i.e., reduced liquidity, quoted

spread increased, the effective spreads of all market participants increased) under

the Multi-Markets scenario. The different trading strategies adopted by the agents

led them to make higher profits when they participated in the ‘lit’ market under the

Multi-Markets scenario. An area in which chapter 2 can be expanded would be en-

dogenous information acquisition where agents can choose to buy information by

paying a cost. Another area in which this chapter can be advanced is by changing

the characteristics of the asset (i.e., volatility of changes in the fundamental value)

so as to observe if agents will employ different trading strategies.

Chapter 3 addressed the policy concerns related to ‘dark’ trading. This chapter

studied whether or not ‘dark’ trading increased the traders’ profits - by adopting dif-

ferent trading strategies - and the market quality of the incumbent exchange (i.e.,

‘lit’ market). An innovative setup was used containing different groups of traders

(i.e., small and large agents) and two different dark pools in terms of price mech-

anism applied. Analysis of the model had shown that the ‘VWAP-market’ scenario

(i.e., VWAP dark pool) benefited the ‘lit’ market’s quality while only a certain group

of agents (speculators) made less profits in this setup as compared to the alternative

scenario (i.e., ‘mid-market’ scenario). An area in which chapter 3 can be expanded

would be to allow large traders to split orders between markets; another area would
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be the endogenous determination of an agent’s type given the prevailing market

conditions.

On the other hand, Chapter 4 developed and implemented in an experimental

setting a financial asset demand test using revealed preference conditions. In the

experiment, subjects purchased securities under four different scenarios in the as-

set space with contingent claims fixed across frames. Subjects were facing risk since

the probabilities assigned to each of the two states were objectively known. Under

scenario I subjects were choosing between two Arrow-Debreu securities, under sce-

narios II, II,IV subjects were choosing between two ordinary securities. The chapter

studied the consistency of the data with respect to the maximization hypothesis.

Analysis of the test has shown that test’s predictive success across and within sce-

narios was within the positive range. Moreover, the power of the test was close to

perfect; and some heterogeneous behaviour had been observed for some subjects

across and within scenarios. This heterogeneity among subjects might arise from

the different payoff matrices associated with each scenario or from the fact that sub-

jects under different scenarios choose different rules. To address the latter, will re-

quire to adopt a different approach (i.e., parametric) in implementing the test. By

imposing stronger assumptions over the functional forms and to be able to estimate

parameters of interest (i.e., CRRA, CARA).
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Appendix A

Proof of Proposition

Proposition A.1. Consider K ordinary securities with an associated matrix of payoffs

Ξ, such that Ξ ∈ RS×K where S is the number of states. Denote the contingent claim

vector of AD prices and the ordinary securities’ price vector by
∼
p= (

∼
p 1,

∼
p 2, . . . ,

∼
p S ) and

p= (p1, p2, . . . , pS ) respectively. Assume thatp is related to
∼
p in a way such that ∃ ∼p� 0

with pT =
∼
p
T
Ξ (i.e., prices exclude arbitrage). Given income w > 0, consider the sets

C S = {x ∈RS
+ |
∼
p ·x=w }

AS = {x ∈RS
+ | ∃z ∈R

K
+ :p ·z =w andx=Ξz}

Then, if rank(Ξ) = S (i.e., Ξ has full rank), the two sets are equal (i.e., C S = AS).

Proof. If x=Ξz, it holds that
∼
p ·x= ∼p

T
x=

∼
p(Ξz) = (

∼
pΞ)z =pTz =p ·z.

(C S ⊆ AS ): Given that the matrix Ξ has full rank, the payoffs of the K ordinary

securities across states are linearly independent. That is, there exists a portfolio of

ordinary securities that can uniquely represent any state contingent consumption.

Denote by z ∈RK
+ the portfolio of the K ordinary securities such that x=Ξz, where

x = (x1, x2, . . . , xs ) ≥ 0 is the vector of contingent consumption. By the definition of

C S , x ∈C S and
∼
p ·x=w ⇔p ·z =w and hence x ∈ AS .

(AS ⊆C S ): By the definition of AS , given the vector of contingent consumption

x ∈ AS there ∃z ∈RK
+ such that p ·z = w and x = Ξz. That is p ·z = w ⇔ ∼

p ·x = w

where we can derive that x ∈C S .
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Instructions to Subjects

Thank you for taking part in this experiment.

In this experiment you can earn money in addition to the Âč2 show up fee. The

amount you will earn will depend partly on your decisions and partly on chance.

Please read the instructions carefully because a considerable amount of money is

involved. During the experiment, we will refer to tokens instead of pounds. Your

earnings will be calculated in tokens and later paid to you in private, in pounds.

In this experiment, 2 tokens = £1.

If you have any questions at any point, please raise your hand and an experi-

menter will come to your desk.

By clicking NEXT, you will proceed to the instructions.

The experiment consists of 80 tasks. In each task there are two assets: asset RED

and asset BLUE. You will need to choose how to allocate tokens between these two

assets. In each task, assets RED and BLUE have some associated returns (how many

tokens an asset will pay you for each token you allocated to that asset). Different

tasks will offer different returns for each asset.

In addition, each task will include two possible events (event 1 and event 2).

These events are drawn by the computer randomly with equal probability, indepen-

dently across tasks. The tokens you have allocated to each asset will have different

returns depending on the chosen event.

At the end of the experiment, the computer will draw randomly with equal prob-

ability one task out of 80. Your payment in this experiment is determined by your

allocation of tokens, the returns and the event randomly drawn by the computer in

that task.

You are provided detailed instructions of the experiment in the next screen.

First, the interface to make choices is introduced. The probabilities of each event

appear in the box on the top-left. As you can see below, each event has a 50% proba-

bility. This probability will remain fixed throughout this experiment. The probabil-
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ity of either event being drawn is independent across tasks. The returns of the assets

appear in the other box. In the example below, if event 1 is chosen by the computer,

asset RED and BLUE will pay 1 and 0 tokens, respectively. If event 2 is chosen, asset

RED and BLUE will pay 0 and 1 token, respectively.

The maximum quantities available of asset RED and BLUE appear in the box

on the bottom-left. The maximum quantity available of each asset is the result of a

random process. This quantity can vary between 2.5 and 100. In the example below,

the maximum quantities of asset RED and BLUE are 100 and 50, respectively. In

addition, the prices of asset RED and BLUE appear in the box on the bottom-right.

These prices determine the allocations that are possible. As you can see below, the

prices of asset RED and BLUE are 1 and 2, respectively. This implies that for each

additional token of asset BLUE, 2 tokens need to be deducted from asset RED.

The interface below shows additional boxes where you will be allowed to choose

an allocation. Every feasible allocation between 0 and the maximum number of

tokens appears in the centre of the screen. Feasible allocations for asset RED and

BLUE are represented by the top and bottom line, respectively. On each of these

lines, you will have a corresponding dot, representing the allocation to that asset.

You can choose an allocation by clicking and dragging either the RED or the BLUE

dot to your desired allocation. You can click and drag either dot as many times as

you need. Both dots are related to prices as explained in the previous screen. So,

if you move one dot, the other will adjust automatically. The initial allocation of

tokens, and the corresponding dots, is random; and independent across tasks.

You may practice the choice of an allocation of assets before you proceed to click

NEXT.

Lastly, four additional boxes appear in the interface. On the right, a pie chart

shows the percentage of expenditure allocated in asset RED and BLUE. Consequently,

the pie chart is updated with every new allocation (every new position of the dots).

The additional bottom-left box shows your current choice and the bottom-right box

calculates the payoffs according to your current choice in the case that either event

1 or 2 is chosen. A summary of your final allocation is provided above the button

OK, which you click to confirm your allocation and proceed with the next task.

Let’s go through an example. The details of this example intend to help you un-

derstand how the interface works. This example does not intend to suggest how

you should make your decisions. In this particular example, if event 1 is drawn, as-
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set RED has a return of 1 and asset BLUE has a return of 0 tokens. If event 2 is drawn

asset RED has a return of 0 and asset BLUE has a return of 1 token. One possible al-

location can be A, where 27.82 tokens are allocated to asset RED and 20.26 tokens to

asset BLUE. Another possible allocation can be B, where 63.16 tokens are allocated

to asset RED and 5.14 tokens to asset BLUE.

Besides A and B, there are many feasible allocations among asset RED and asset

BLUE that you can choose.

On the next screen, you will be given two practice tasks. In each practice task,

you will see the two lines representing possible allocations. To choose an alloca-

tion, you can click either on the RED or BLUE dot and drag them along the lines

towards your desired allocation of tokens; release the mouse button to choose the

allocation. This process can be repeated as many times as you want until you are

happy with your choice. To confirm your choice, click the OK button. You will then

automatically proceed to the next task. The choices you make in the practice tasks

will not be used for payment.

Click the START button to begin the practice tasks

[Subjects will take in part in two practice rounds]

Now you know how to use the interface. If you have any questions at this stage,

please raise your hand and an experimenter will come to your desk.

The method to determine your payment in this experiment is as follows.

At the end of the experiment, the computer will randomly draw one task from

the 80 tasks. All tasks have the same probability of being drawn. In that particu-

lar task, the computer will then randomly draw either event 1 or event 2 with equal

probability. If event 1 is drawn, then your earnings equal to the return each asset

offered for each token you allocated to that asset in the chosen event 1. The returns

that assets RED and BLUE offered in the alternative event 2 will not be taken into

account. If event 2 is drawn, then your earnings equal to the return each asset of-

fered for each token you allocated to that asset in the chosen event 2. The returns

that assets RED and BLUE offered in the alternative event 1 will not be taken into

account.

At the end of the experiment, the selected task, assets’ prices, the returns of each

asset in both events, the probabilities assigned to each event, your own choice in

that particular task, and the amount that will be paid are shown on the screen.

The tokens will then be exchanged for money 2 tokens = £1.
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Summary

You will see 80 screens. Your task is to choose an allocation of tokens between

two assets, asset RED and asset BLUE. You can do this by clicking the RED or the

BLUE dot and dragging it towards your selected choice.

In each task, event 1 and event 2 have 50% probability assigned to them (this

probability will remain fixed throughout this experiment). The choice of either event

is independent across tasks.

At the end of the experiment, the computer will draw a task and an event ran-

domly. You will be paid according to the number of tokens that you have allocated

on each asset and the associated returns each asset offers in the chosen event. The

returns that assets RED and BLUE offer in the alternative event will not be taken into

account.

In this experiment, 2 tokens = £1.

Before you start the experiment, on the next screen you will be asked a question

related to how the payoffs are calculated in a hypothetical case.

[Subjects will answer the questionnaire]

The section with the instructions of the experiment is over.

By clicking the START button, you consent to participate in this experiment.

Even if you decide to take part in the experiment, you are free to withdraw at any

time. Withdrawing from this particular experiment will not affect your relationship

with the laboratory.

[Subjects will take part in the experiment]
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B.1 Questionnaire

Figure B.1: Questionnaire
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Example Screenshot

Figure C.1: Screenshot of an Individual Decision Problem
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traders react to large counterpartiesâĂŹ trades?” Journal of International Money

and Finance 29.7, pp. 1283–1302.

Nimalendran, M. and S. Ray (2014). “Informational linkages between dark and lit

trading venues”. Journal of Financial Markets 17, pp. 230–261.

Pakes, A. and P. McGuire (2001). “Stochastic algorithms, symmetric Markov per-
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