The Socio-economy of the Late Postclassic Maya: A Regional Perspective Based on Ceramic Production in Northern Yucatán, México

Thesis submitted for the degree of Doctor of Philosophy at the University of Leicester 2017

By Carmen Giomar Sánchez Fortoul

B.Sc., M.Sc., M.A.

School of Archaeology and Ancient History

Abstract

The Socio-economy of the Late Postclassic Maya: A Regional Perspective Based on Ceramic Production in Northern Yucatán, México

Carmen Giomar Sánchez Fortoul

This thesis is about the Maya who inhabited northern Yucatán, México, during the centuries around the European arrival, the Late Postclassic (AD c. 1100-1500). The nature of Late Postclassic (LP) society is not well understood, primarily because its socio-economic nature eludes researchers. To advance our understanding of LP socio-economic environment and to inform current debates, this research examines patterns in ceramic technology to understand better ceramic production, distribution, and exchange.

The research questions can be summarized as follows. Were there patterns in raw material selection and ceramic technology reflecting zones of production, groups of potters, technological traditions, or other social divisions? What might such patterns tell us about the organization of production and the nature of interactions, including networks of ceramic exchange and technological traditions that may reflect social divisions or integration?

These questions were addressed mainly through petrographic and chemical analyses of ceramic jars and cajetes, using a regional approach including Mayapán and sites from the north-central and eastern areas of Yucatán. Raw materials and pottery were characterized into compositional and technological classes. Many potters' groups supplied the centers. Mayapán pottery fabrics are largely homogenous. Minor centers show great variability that, nevertheless, follows a pattern determined by overarching traditions dictating the appropriate materials for different types of vessels. One technological tradition dates to the Terminal Classic and continues up to the present. At least two orientations to production are emerging because the association between raw materials and types of vessels at Mayapán differs from north-central sites. Mayapán imported few vessels and exported many, found at sites less than two days' march from Mayapán. A ritual context or a limited sub-regional market context may explain this movement. These findings have informed current views about LP ceramic production and exchange and advanced our understanding of the socio-economic nature of this period.

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation to the people and institutions that made this research possible. I would like to thank my family, Armando, Cristina, Verónica, and Mercedes for their support and understanding during all the years of my studies, and to my father and mother who taught me the value of perseverance and hard work.

I am grateful forever to Dr. Ian Whitbread, my supervisor, for taking me as his student. I want to express my deepest gratitude to him for teaching me so much about archaeology, the structure of a thesis, petrographic and chemical analyses, photography, color, camera shake, statistical methods, x-ray to study forming techniques, tools to cut a sherd, write an effective proposal, and the list goes on. Throughout all these years of work, Dr. Whitbread has been a never-ending source of insight and good ideas. I cannot properly express the extent of my appreciation for his constant guidance, recommendations, and suggestions that profoundly benefited this thesis. I also want to thank the rest of my supervisors, Dr. Ruth Young and Dr. Alice Samson, for always being there in case I needed them.

My deepest appreciation also goes to Professor Elizabeth Graham (UCL Institute of Archaeology) and Dr. Richard Thomas for agreeing to be my examiners and for taking the time to read my thesis. I appreciate their insightful comments during my examination. Professor Graham profusely commented on this thesis, and the thesis and I benefited greatly from all her comments.

I would like to thank Dra. María de los Angeles Olay Barrientos, Consejo de Arqueología, Coordinación Nacional de Arqueología, Instituto Nacional de Antropología e Historia (INAH), México and the Arqueólogo (Arqlg.) Eduardo López Calzada, Delegado Centro INAH Yucatán, for providing the necessary permits for this research (Oficio 401.B(4)19.2013/36/0926). I want to thank the Arqlg. Alfredo Barrera Rubio, Arqlg. María José Con, Arqlg. Enrique Terrones González, Arqlg. Carlos Peraza Lope, Dr. Marilyn Masson, and Dr. Clifford Brown for kindly providing the ceramic materials for this research. Immense thanks to the ceramist Luis Flores Cobá and the Arqlg. Wilberth A. Cruz Alvarado for their time, explanations, and collaboration. Muchas gracias!

I am also thankful to the Department of Geosciences, Florida Atlantic University (FAU), Boca Raton, Florida for providing access to the petrographic microscopes and to Daniel Pierce and Michael D. Glascock of the Archaeometry Laboratory at the University of Missouri for considering my proposal and deciding to perform the chemical analysis for this study. I want to thank them for going the extra mile in the analysis of the chemical data, way beyond the requirements. I also want to thank Dr. Leslie Cecil for providing her Belize data and for her assistance to Pierce and Glascock during chemical analysis, without which some of the results of this study would not be reached.

(Rendón 1947, Figure 1)

TABLE OF CONTENTS

ABSTRA	СТ	2 -
ACKNO\	VLEDGEMENTS	3 -
TABLE C	F CONTENTS	5 -
LIST OF	TABLES	10 -
LIST OF	FIGURES	12 -
CHAPTE	R 1 INTRODUCTION	16 -
1.1 Brie	ef Introduction to the Late Postclassic in Northern Yucatán	17 -
1.2 Lat	e Postclassic Debates	19 -
1.3 The	Problem	22 -
1.4 The	Objectives of Research	25 -
1.5 Out	line of the Methodology	27 -
CHAPTE	R 2 THE LATE POSTCLASSIC: A VIEW FROM THE NORTH	30 -
2.1 The	Late Postclassic in Northern Yucatán	30 -
2.1.1	Political Organization of Northern Yucatán	30 -
2.1.2	The Institution of Tribute	34 -
2.1.3	Markets and other Economic Aspects	35 -
2.2 Cur	rent Research	37 -
2.2.1	Late Classic at Tikal and Palenque	38 -
2.2.2	The Late Postclassic	39 -
2.3 Exp	lanatory Models of Ceramic Production Organization	42 -
2.3.1	Mercantile Production-Distribution Trajectory	42 -
2.3.2	Dichotomous Ceramic Economy	43 -
2.3.3	Tributary Mode of Production	44 -
2.3.4	Ritual Mode of Production	44 -
2.3.5	Calendrically Shifting Production Location	46 -
2.4 Sur	nmary	46 -
CHAPTE	R 3 CERAMICS OF THE LATE POSTCLASSIC	47 -
CHAPTE	R 3 CERAMICS OF THE LATE POSTCLASSIC	47 - 48 -
CHAPTE 3.1 The 3.1.1	R 3 CERAMICS OF THE LATE POSTCLASSIC Ceramics of Late Postclassic Northern Yucatán Mayapán Red Ware	
CHAPTE 3.1 The 3.1.1 3.1.2	R 3 CERAMICS OF THE LATE POSTCLASSIC Ceramics of Late Postclassic Northern Yucatán Mayapán Red Ware Mayapán Unslipped Ware	

3.	3.1.4 Peto Cream Ware	57 -
СНА	HAPTER 4 THE GEOLOGICAL SETTING	59 -
4.1	.1 The Geological Setting of the Study Region	
4.2	.2 The Rocks within the Region	63 -
4.3	.3 Other Surface Features	
4.4	.4 Clays within the Region	67 -
4.5	.5 Summary	71 -
СНА	HAPTER 5 RESEARCH METHODS	72 -
5.1	.1 Technology as Cultural Production	72 -
5.2	.2 Outline of the Methodology	75 -
5.3	.3 Sampling Strategy	- 76 -
5.	5.3.1 Sites Selected	- 76 -
5.	5.3.2 Samples Selected	78 -
5.4	.4 Collection of Raw Materials from the North-central A	.rea 80 -
55	5 Preliminary Survey of Pottery Samples	- 88 -
5.5	5.5.1 Hypothesis A: Unslipped Jars	- 89 -
5.	5.5.2 Hypothesis B: Red-slipped Mama Jars	- 90 -
5.	5.5.3 Hypothesis C: Eastern Red-slipped Elite Items	91 -
5.6	.6 Petrographic Analysis	- 91 -
5	5.6.2 Petrographic Analysis of Thin Sections	- 92 -
5.7	.7 Chemical Analysis	- 93 -
CHA	HAPTER 6 RESULTS OF HAND-SPECIMEN ANALYSIS	5 94 -
6.1	.1 Attributes, Scales, and Measurements	94 -
6.2	.2 Types of Inclusions Observed	97 -
6.3	.3 Hand-specimen Fabrics	103 -
6.4	.4 White Micrite Fabrics	104 -
6.	6.4.1 Hand-specimen Fabric Micrite-medium-W (WM-	-m-W) 104 -
6.	6.4.2 Fabric Micrite-medium-W-hard (WM-m-W-h) in	Hand specimen 106 -
6.5	5 Sparry Fabrics	- 106 -
6.	6.5.1 Fabric Spar-coarse-White (SP-c-W)	- 106 -
6.	6.5.2 Hand-specimen Fabric Spar-medium-W (SP-m-W	/) 108 -
6.	6.5.3 Fabric Sparry-coarse-B (SP-c-B)	- 108 -
	6 Dayly Davticlas Eabries	400
6.6	.b Dark Particles Fabrics	109 -

6.6.1	Fabric Dark-coarse/medium-W (GM-cm-W) in Hand Specimen	110 -
6.6.2	Hand-specimen Fabric Dark-coarse-R/B (GM-cm-R/B)	111 -
C T C	and Countral Falsains	
6./ SI	Hand specimen Fabric Spirite Chiefel fine D/D (VT f D/D)	
0.7.1	Hand specimen Fabric Crystal-Inte-K/B (X1-I-K/B)	- 111 -
6.7.2	Hand-specimen Fabric Crystal-coarse-R/B (XI-C-R/B)	113 -
6.7.3	Hand-specimen Fabric Crystal-coarse-W (XI-c-W)	115 -
6.8 As	ssociations between Hand-specimen Fabrics, Sites, and Ceramic Varieties	115 -
6.9 Ke	ey for the Assignment of Fabrics	117 -
6.10	Hand-specimen Analysis of Local Raw Materials	119 -
6 11	Summary	_ 120 _
0.11	Summary	120 -
CHAPT	ER 7 RESULTS OF THE CHEMICAL ANALYSIS	121 -
7.1 Tł	e Structure of the Data	122 -
7.2 Lo	ocation of the Sources of the Chemical Groups	142 -
7.3 Th	ne Chemical Groups	145 -
7.3.1	Chemical Group 1 (n=82)	147 -
7.3.2	Chemical Group 2 (n=34)	153 -
7.3.3	Chemical Group 3 (n=8)	157 -
7.3.4	Chemical Group 4 (n=11)	158 -
7.3.5	Chemical Group 5 (n=16)	159 -
7.4 Co	onclusions	161 -
СНАРТ	ER 8 RESULTS FROM PETROGRAPHIC THIN-SECTION ANALYSIS	163 -
8.1 Ty	pes of Inclusions Found	164 -
8.1.1	Calcite Particles	167 -
8.1.2	Dolomite	171 -
8.1.3	Non-calcareous Particles	173 -
8.2 Pe	etrographic Fabric Classes	- 175 -
821	Scales and Measurements used for the Description of Inclusions in Thin Section	n - 177 -
822	Scales and Measurements used for the Description of the Microstructure and	Micromass in
Thin	Section	- 178 -
8.2.3	The Fabric Classes	178 -
83 0	alosnar Fahric Classes	- 187 -
831	Dolognar-W-Coarce (DS-W-c) Fabric Class	- 183 -
2 2 7	Dolosnar-W-Medium (DS-W-m) Fabric Class	- 196 -
0.J.Z Q 2 2	Dolospar-W-Hard (DS-W-mc-h) Fabric Class	- 100 - _ 107
0.3.3 Q 2 /	Dolospar-ReCoarse (DS-R-c) Fabric Class	- 107 - 190 -
0.5.4 Q 2 E	Associations between Dolosnar Fabrics and Sites Chemical Groups, and Coron	nic Typology
8.5.5 191 -	Associations between bolospar rabits and sites, Chemical Groups, and Ceran	iic i ypology
8.4 Fi	nely Crystalline Sparite Fabric Classes	194 -
8.4.1	Sparite-W/B-Coarse/Medium (CS-W/B-cm) Fabric Class	195 -
8.4.2	Associations between Sparite-W/B-Coarse/Medium Fabric Class, Sites, and Ce	ramic
Туро	logy	197 -

8.5 Mi	crite Fabric Class	198 -
8.5.1	Micrite-W-Medium (CM-W-m) Fabric Class	199 -
8.5.2	Associations between Micrite-W-Medium (CM-W-m) fabric class and Sites, and C	eramic
Турою)gy	200 -
86 Me	dium and Coarsely Crystalline Calcite Fabrics Classes	- 201 -
861	Calcite-Micrite-Coarse-01 (CX-CM-01-c) Fabric Class	- 202 -
862	Calcite-Micrite-Coarse-02 (CX-CM-02-c) Fabric Class	- 205 -
863	Sparite-m-W/B-Coarse (CSm-W/B-c) Fabric Class	- 205 -
864	Calcite-Quartz-B/R-Fine (CX-Q7-B/R-f) Fabric Class	- 207 -
8.6.5	Calcite-Grog-B/R-Coarse (MX-GROG-B/R-c) Fabric Class	209 -
87 Ma	dium and Coarsely Crystalline Dolomite Fabrics Classes	- 211 -
0.7 IVIC	Dolomite-W/R-Medium (DX-R/W-m) Eabric Class	- 212 -
0.7.1 972	Dolomite-Calcite-B-Coarse (DX-CY-B-c) Eabric Class	- 214 -
0.7.2	Dolomite Calcite Medium Hard (DX CX m h) Eabric Class	
0.7.5	Singloton Eabrics	- 210 - 210
0.7.4	Associations between Single Crystal Eabrics, Sites, and Coramic Typology	- 110
0.7.5	Associations between single-crystal rabits, sites, and ceramic rypology	210 -
8.8 Fab	ric Classes with Skeletal Remains	219 -
8.8.1	Bioclast-W-Medium (CH-W-cm) Fabric Class	219 -
8.8.2	Bioclast-B-Coarse (CH-B-c) Fabric Class	221 -
8.8.3	Singleton Fabrics	223 -
8.8.4	Associations between Bioclast Fabric Classes, and Sites, and Ceramic Typology	223 -
8 0 Da	rk Micrito Fabric Classos	- 224 -
0.5 Da	DarkMicrite Micrite Medium (CC CM W m) Eabric Class	- 224 -
0.9.1	DarkMicrite Micrite Coarse (CG CM W/ c) Eabric Class	
8.9.2	Associations between Dark Micrite Fabric Classes, Sites, and Ceramic Varieties	223 - 226 -
8.10	Petrographic Analysis of Collected Clays and Marls	226 -
8.11	List of Samples	229 -
0 1 7	Summary	225
0.12	Summary	235 -
CHAPTE	R 9 LATE POSTCLASSIC CERAMIC PRODUCTION TECHNOLOGY	238 -
I) CERAI	MIC PRODUCTION TECHNOLOGY AT NORTH-CENTRAL SITES	238 -
9.1 Re/	constructing Production. North-central Red-slinned Mama	- 2/11 -
9.1 Net	Raw Materials Selection for Mama: Clavs	- 747 -
0 1 2	Raw Materials Selection for Mama: Coarser Inclusions	- 242 -
913	Raw Materials Transportation	- 247 -
9.1.5 Q 1 /	Raw Materials Processing for the Production of Mama	- 251 -
0 1 5	The Fahric Classes of Red-clinned Mama Samples	- 253 -
0 1 A	Red-slipned Mama Potters' Groups	- 255 -
0.1.7	Forming and Einishing Tochniques of Pod slipped Mama	- 250 - 261
9.1.8	Summary	201 - 273 -
9.2 Red	constructing Production: North-central, Plain Navula	274 -
9.2.1	Raw Materials Selection for Navula: Coarser Inclusions	275 -
9.2.2	The Fabric Classes of Plain, Unslipped Navula Jars	276 -
9.2.3	Plain, Unslipped Navula Potters' Groups	279 -
9.2.4	Summary	283 -

9.3 R	econstructing Production: Unslipped, Yacman Samples	283 -
9.3.1	1 Raw Materials Selection for Yacman: Coarser Inclusions	284 -
9.3.2	2 Raw Materials Selection and Processing for Yacman: Hi'	286 -
9.3.3	3 The Fabric Classes of Striated, Unslipped Yacman Samples	287 -
9.3.4	4 Striated, Unslipped Yacman Potters Groups	290 -
9.3.5	5 Summary	291 -
9 <i>1</i> E	iring of Samples from North-central Sites	- 292 -
9.7	1 Effects of Firing on Calcite Inclusions	- 291 -
0.4.	 Effects of Firing on Calcule Inclusions Effects of Firing on Calcule Inclusions 	
9.4.2	A Firing Experiment with Paw Materials from the North control Area	
9.4.3	A Filing Experiment with Raw Materials from the North-central Area	- 290 -
9.4.4	5 Discussion	- 303 -
01.110		
II) FAB	RIC CLASSES OF THE EASTERN SITES	304 -
9.5 F	abric Classes of Eastern Sites: Cobá, Culubá, Chac Mool	304 -
9.6 S	ummary	308 -
CHAPT	FER 10 PATTERNS OF LATE POSTCLASSIC CERAMIC PRODUCTION	312 -
10.1	Technological Traditions	212
10.1	1 Sacab Pod clippod Tradition	- 312 - 312 -
10.1	2 Translucent Bock Cooking Det Tradition	- 514 -
10.1		317 -
10.2	Ceramic Production Organization at North-central Sites	- 319 -
10.2	.1 Production Organization	319 -
10.2	.2 Dolospar Fabrics: Production Location	324 -
10.3	Movement of Pots	326 -
10.3	.1 Short Distance Movement of Pots	326 -
10.3	.2 Long Distance Movement of Pots	330 -
10.4		
10.4	Evaluating the Hypotheses	332 -
10.5	Summary	333 -
		005
CHAP	TER 11 DISCUSSION AND CONCLUSIONS	335 -
11.1	Discussion of Research Questions 1 to 5	335 -
11.1	.1 Research Question 1	335 -
11.1	.2 Research Question 2	336 -
11.1	.3 Research Question 3	337 -
11.1	.4 Research Question 4	338 -
11.1	.5 Research Question 5	342 -
11.2	Discussion of Research Question 6	345 -
11.3	Conclusions	348 -
11.4	Future Directions	350 -

APPENDIX A: XRD ANALYSIS OF THE CLAY PORTION OF A MARL FOUND AT MAYAPAN (S#11) 356	5-
APPENDIX B: NEUTRON ACTIVATION ANALYSIS OF LATE POSTCLASSIC MAYAN CERAMICS FROM THE NORTHERN YUCATAN PENINSULA, MEXICO	5 <u>2</u> -
APPENDIX C: BULK XRD AND CLAY ANALYSES OF A NAVULA , MAYAPAN (#256) POTTERY SAMPLE 394	1 -
REFERENCES CITED 404	1 -

LIST OF TABLES

Table 5-1. Case Study in Each Zone and List of Sites within each Case	76 -
Table 5-2. Aerial Distances from Mayapán to North-central Sites	77 -
Table 5-3. List of Samples for Hand-specimen Analysis within Site and Variety	79 -
Table 5-4. Raw Materials Collected and their Characteristics	84 -
Table 6-1. Frequency Label used for Range of Variation of the Inclusions (Kemp 1985, p.17, cite	ed in
Whitbread 1995, p. 379)	95 -
Table 6-2. Color Codes of Re-fired Sherds	96 -
Table 6-3. Key to Estimate the Overall Texture	97 -
Table 6-4. Types of Main Inclusions in Hand specimens	97 -
Table 6-5. List of Hand-specimen Fabrics with Fabric Code and Description	104 -
Table 6-6. Fabric Class Micrite-medium-W (WM-m-W) in Hand Specimen	105 -
Table 6-7. Fabric Class Spar-coarse-W (SP-c-W) in Hand Specimen	107 -
Table 6-8. Fabric Class Spar-medium-W (SP-m-W) in Hand Specimen	108 -
Table 6-9. Fabric Class Spar-coarse-B (SP-c-B) in Hand Specimen	109 -
Table 6-10. Fabric Class Dark-coarse/medium-W (GM-cm-W) in Hand Specimen	110 -
Table 6-11. Fabric Dark-coarse-R (GM-cm-R/B)	111 -
Table 6-12. Fabric class Crystal-fine-red-refired (XT-f-R/B) in hand specimen	112 -
Table 6-13. Fabric Class Crystal-coarse-R/B (XT-c-R/B) in Hand Specimen	114 -
Table 6-14. Associations between Hand specimens and Ceramic Varieties	115 -
Table 6-15. Key for the Assignment and Summary of Fabric Classes	119 -
Table 7-1 (a). Elemental Concentration (ppm) of Pottery and Raw Materials Samples	123 -
Table 7-2. Elemental Loadings on Principal Components (from Pierce and Glascock 2015, Appen 134 -	ndix A) -
Table 7-3. CD Functions with Coefficients for each Variable (based on Table 3. Pierce and Glasc	cock
2015. in descending order.)	- 140 -
Table 7-4. Mahalanobis distance calculations for raw clay samples (Table 4. Pierce and Glascock	2015)
144 -) -
Table 7-5. Sites of Closest Compositional Euclidian Match	144 -
Table 7-6(a). Means and Standard Deviation of Elemental Concentrations	146 -
Table 7-7. No. of Samples within Group 1 within Sites and Ceramic Varieties	152 -
Table 7-8. Samples within Group 2 within Sites and Ceramic Varieties	156 -
Table 7-9. Samples within Group 5	160 -
Table 8-1. Thin Sections Selected by Site and Type of Vessel	164 -
Table 8-2. Main Inclusions in Thin Sections.	167 -
Table 8-3. Petrographic Groups and Fabric Classes	181 -
•	

Table 8-4. Summary of Main Petrographic Characteristics of Dolospar Fabrics	183 -
Table 8-5. Description of Dolospar-W-Coarse (DS-W-c) in Thin Section	185 -
Table 8-6. Dolospar-W-Medium Fabric Class (DS-W-m)	186 -
Table 8-7. Dolospar-W-Hard Fabric Class (DS-W-mc-h)	188 -
Table 8-8. Description of Dolospar-B-Coarse in Thin Section	190 -
Table 8-9. Samples within Dolospar Fabrics within Sites and Ceramic Varieties	192 -
Table 8-10. Main Petrographic Characteristics of Finely Crystalline Sparitic Fabrics	194 -
Table 8-11. Sparite-W/B-Coarse/Medium (CS-W/B-cm) Fabric Class in Thin Section	196 -
Table 8-12. Thin Sections with Sparite Fabric within Sites and Ceramic Varieties	197 -
Table 8-13 Main Petrographic Characteristics of Micritic Fabrics	199 -
Table 8-14 Fabric Class Micrite-W-Medium (CM-W-m) in Thin Section	200 -
Table 8-15. Associations between the Micrite fabric class and Sites and Ceramic Varieties	201 -
Table 8-16. Main Petrographic Characteristics of Calcite-Crystal Fabric Classes	202 -
Table 8-17. Calcite-Micrite-Coarse-01 Fabric Class (CX-CM-01-c) in Thin Section	204 -
Table 8-18. Description of Fabric Class Sparite-m-W/B-Coarse (CSm-W/B-c)	206 -
Table 8-19. Fabric Class Calcite-Ouartz-B/R-Fine (CX-OZ-R/B-f) in Thin Section	208 -
Table 8-20 Description of Fabric Calcite-Grog-B/R-Coarse (MX-GROG-B/R-c)	210 -
Table 8-21 Main Characteristics of Dolomite Fabrics	212 -
Table 8-22 Description of Fabric Class Dolomite-W/B-Medium with (DX-B/W-m)	213 -
Table 8-23 Fabric Dolomite-Calcite-B-Coarse (DX-CX-B-c)	215 -
Table 8-24 Associations between Single-Crystal Fabric Classes and Sites and Ceramic Varieties	218 -
Table 8-25 Main Characteristics of Skeletal Remains Fabrics	219 -
Table 8-26 Fabric Class Bioclasts-W-Coarse/Medium (CH-W-cm) in Thin Section	220 -
Table 8-27 Description of Fabric Rioclast-R-Coarse (CH-R-c) in Thin Section	220
Table 8-28 Associations between Bioclast Fabric Classes and Sites and Ceramic Varieties	222
Table 8-29 Main Petrographic Characteristics of Dark Micrite Fabrics	223
Table 8-30 Fabric Class Dark Micrite-Medium (CG-CM-W-m)	224
Table 8-31 Associations between Dark Micrite Fabric Classes and Sites and Ceramic Varieties	224 -
Table 8-37. Results of Petrographic Analysis of Local Mark and Clay	220 -
Table 8-32. List of Samples in this Study	227 -
Table 8-34. Distribution of the Fabric Classes within Sites and Ceramic Varieties	227 = 236 =
Table 9-1 List of Inclusions Codes and Short Description	255 -
Table 9-7. Erst of metasions, Codes, and Short Description	255 -
Table 9-2. Chemical Groups within Fabric Classes and Sites showing Suggested Minimum No. of	235 -
Patters' Groups for North central Mama (red slipped vessels)	257
Table 0.4 Features used in Surface Analysis	261 -
Table 0.5 Surface Features of Bowl I	204 -
Table 9.6 Surface Attributes of Cajete I	203 -
Table 9.7 Surface Attributes of Cajete I	267 -
Table 0.8 Surface Attributes of a Large Ded slipped for I	209 -
Table 9.9. Surface Attributes of a Large Red slipped Jar II	270 -
Table 9.10. Presence/absence of Dolognar Fabric Classes Found within Navula	272 -
Table 0.11 Exprise and Chamical Compositions of Unslipped Plain Navula Jars from the North car	279 -
Sites	280 -
Table 9.12 Fabrics and Chemical Compositions of Striates Unslinned Vacman Jars from the North	200 -
central Sites	200 -
Table 0.12 Different States of Conversion to Lime when Different Caloite Variaties are Fired for Si	290 -
Hours (data from Shoval and Book 2005)	201
Toble 0.14. Effect of Temperature on Second Inclusions (Migrite and Finally arystalling Sporry	294 -
Indusional	200
-	290 -
Table 0 15 Clay Decomposition Temperature (after Dye 1001 n 11. USCS)	200 -
Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.)	201
Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.) Table 9-16. Changes to Palygorskite and Kaolinite with Temperature	301 -
Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.) - Table 9-16. Changes to Palygorskite and Kaolinite with Temperature - Table 9-17. Transformation of Sample Raw Materials into Ceramics - Table 9-18. Fabrics found at Cobé. Chan Mool and Culubé within Commis Variation -	301 - 302 - 305
Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.) - Table 9-16. Changes to Palygorskite and Kaolinite with Temperature - Table 9-17. Transformation of Sample Raw Materials into Ceramics - Table 9-18. Fabrics found at Cobá, Chac Mool, and Culubá within Ceramic Varieties - Table 9-19. Chamical Variability of Fabric Coloito Micrite Course Ol (CX, CM OL a) -	301 - 302 - 305 - 206
Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.) - Table 9-16. Changes to Palygorskite and Kaolinite with Temperature - Table 9-17. Transformation of Sample Raw Materials into Ceramics - Table 9-18. Fabrics found at Cobá, Chac Mool, and Culubá within Ceramic Varieties - Table 9-19. Chemical Variability of Fabric Calcite-Micrite-Coarse-01 (CX-CM-01-c) - Table 10.1. Scope of the North cantral Tachnological Traditions -	301 - 302 - 305 - 306 - 212
Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.) - Table 9-16. Changes to Palygorskite and Kaolinite with Temperature - Table 9-17. Transformation of Sample Raw Materials into Ceramics - Table 9-18. Fabrics found at Cobá, Chac Mool, and Culubá within Ceramic Varieties - Table 9-19. Chemical Variability of Fabric Calcite-Micrite-Coarse-01 (CX-CM-01-c) - Table 10-1. Scope of the North-central Technological Traditions - Table 10.2. Temperar used during the 1050 of the North-central Technological Traditions -	301 - 302 - 305 - 306 - 313 -
Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.) - Table 9-16. Changes to Palygorskite and Kaolinite with Temperature - Table 9-17. Transformation of Sample Raw Materials into Ceramics - Table 9-18. Fabrics found at Cobá, Chac Mool, and Culubá within Ceramic Varieties - Table 9-19. Chemical Variability of Fabric Calcite-Micrite-Coarse-01 (CX-CM-01-c) - Table 10-1. Scope of the North-central Technological Traditions. - Table 10-2. Tempers used during the 1950s in Yucatán by Town and Vessel Type (compiled from Thompson 1958)	301 - 302 - 305 - 306 - 313 -
Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.) - Table 9-16. Changes to Palygorskite and Kaolinite with Temperature - Table 9-17. Transformation of Sample Raw Materials into Ceramics - Table 9-18. Fabrics found at Cobá, Chac Mool, and Culubá within Ceramic Varieties - Table 9-19. Chemical Variability of Fabric Calcite-Micrite-Coarse-01 (CX-CM-01-c) - Table 10-1. Scope of the North-central Technological Traditions. - Table 10-2. Tempers used during the 1950s in Yucatán by Town and Vessel Type (compiled from Thompson 1958) - Table 10.3. Types of Inclusions and Vessel Forms at Chichén Itzé Lympel, and -	301 - 302 - 305 - 306 - 313 - 317 -
Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.) - Table 9-16. Changes to Palygorskite and Kaolinite with Temperature - Table 9-17. Transformation of Sample Raw Materials into Ceramics - Table 9-18. Fabrics found at Cobá, Chac Mool, and Culubá within Ceramic Varieties - Table 9-19. Chemical Variability of Fabric Calcite-Micrite-Coarse-01 (CX-CM-01-c) - Table 10-1. Scope of the North-central Technological Traditions. - Table 10-2. Tempers used during the 1950s in Yucatán by Town and Vessel Type (compiled from Thompson 1958) - Table 10-3. Types of Inclusions and Vessel Forms at Chichén Itzá, Uxmal, and - Table 10.4. Distribution of Nan delegner Tumes of Fabrics within Ceramic Tumes -	301 - 302 - 305 - 306 - 313 - 317 - 318 - 220

Table 10-5. Distribution of All Types of Fabrics within Ceramic Types	322 -
---	-------

LIST OF FIGURES

Figure 1-1. Yucatán Peninsula, showing main sites	17 -
Figure 1-2. Mayapán (photograph by C. Sánchez Fortoul)	18 -
Figure 1-3. The observatory of Mayapán (photograph by C. Sánchez Fortoul)	18 -
Figure 1-4. Red-slipped, Late Postclassic bowl from north-central Yucatán (from Cruz Alvarado 2	012,
Figure 327f)	19 -
Figure 1-5. Map of studied region with sites in this research (after Pierce and Glascock 2015, Figu	ire 10) - 28 -
Figure 2-1) Concerning Mayanán encircled in black are confederated in red are allied or friendly	v and
the rest (Chikinchel Ecab etc) are independent provinces (after Roys 1957 n 2: Masson and Pera	7a
Lone 2014 Fig I I	- 32 -
Figure 2-2. The political organization of the Cupul (Okoshi Harada 2015, Figure 4)	- 34 -
Figure 2-3. Two Cobanero traders at Santa Cruz, Belize taking overland route back with 45 kg on t	their
backs (from Hammond 1978, Figure 8)	- 36 -
Figure 3-1. Mayapán Red Ware jars from Mayapán (from Smith 1971b, Fig. 38)	51 -
Figure 3-2. Mama variety samples (a:#260, b:#323, c:#113, d:#119)	51 -
Figure 3-3. Mama variety jar (drawing by Luis Flores Cobá)	52 -
Figure 3-4. Mama variety, tripod dishes or cajetes (drawing by Luis Flores Cobá)	53 -
Figure 3-5. Navula variety (a:#162, b:#398, c:#313, d:#165, e:#314)	- 54 -
Figure 3-6. Plain, unslipped Navula iar (drawing by Luis Flores Cobá)	- 54 -
Figure 3-7. Plain, unslipped Navula caiete (drawing by Luis Flores Cobá)	55 -
Figure 3-8. Yacman samples (a: #435, b: #430, c: #150, d: #432)	55 -
Figure 3-9 (a) Small reconstructed striated open-mouthed iar or olla (from Brown 2017). (b) Yaci	man
iar (from Smith 1971b. Figure 29m)	56 -
Figure 3-10. Pavil (a) and the incised variety. Palmul (b)	56 -
Figure 3-11. Xcanchakan samples (a: #370, b: #371, c: #372, d: #373)	57 -
Figure 3-12. Xcanchakan variety. Peto Cream Ware (from	58 -
Figure 4-1, Chicxulub crater, cenote ring, and pockmarked area (Pope et al. 1996, Figure 1)	60 -
Figure 4-2. Geological map of Yucatán showing cenote ring (from Perry et al. 2009, Figure 1)	61 -
Figure 4-3. Geological map of the north-central sites (based on INEGI 2006)	62 -
Figure 4-4, Location of the UNAM 1 and 2 wells near Mayapán (Urrutia-Fucugauchi et al. 1996, F	igure
1)	63 -
Figure 4-5. Rocks at or near surface for sampled wells (After Leftticariu 2003)	64 -
Figure 4-6. (a) Entrance to cenote; (b) exhausted sascabera under the hard caliche layer	65 -
Figure 4-7. Altillo exposed by road construction, with dark soil on top and pockets of unconsolidat	ed
granular carbonate rock, or sascab	66 -
Figure 4-8. Collection of red soil sample in a "planicie" area (# 3, Table 5-4)	68 -
Figure 4-9. Locations of palygorskite clays (after Arnold 1971; de Pablo 1996, p.94; Isphording 19	984,
p.68, Figure 4; Morales Valderrama 2005;Sánchez del Río et al. 2009, Figure 1)	69 -
Figure 4-10. Entrance to palygorskite-sascab mine in the vicinity of Chapab (Figure 4-3), Yucatán	70 -
Figure 5-1. Sites sampled in this research (after Pierce and Glascock 2015, Figure 10)	76 -
Figure 5-2. Ceramics frequencies (based on Cruz Alvarado 2012, Tabla 1, p.33; Masson and Peraz	a Lope
2014, p.63, 69; Masson, Hare, and Peraza Lope 2006, p.189)	78 -
Figure 5-3. Location of north-central sites and of soil samples: raw materials collection = red ballo	on,
site = yellow balloon (after 2016 Google Earth)	82 -
Figure 5-4. Expansion of Figure 5-3 to show more detail of the locations of samples of raw materia	als 83
-	
Figure 5-5. Small container made with dark red soil	85 -
Figure 5-6. Two sascab marls. (a): sample $\#2$, (b): sample $\#1$, card = 15 cm	86 -
Figure 5-7. Small jar prepared with sample #1	87 -
Figure 5-8. Marl sascab sample (#11, Table 5-4) near Mayapán (white card = 15 cm)	88 -
Figure 6-1. Micrite inclusions in hand specimen (#87, Mama from Mayapán)	98 -
Figure 6-2. Micrite inclusions in hand specimen (#161, Mama from Mayapán)	98 -
Figure 6-3. Particles composed of sparry crystals (#272, Yacman from Tipikal)	99 -
Figure 6-4. Expansion of Figure 6-3 to show individual crystals within particles (#272, Yacman fro	om
Tipikal)	- 100 -

Figure 6-5. Sparry fabric showing granular porous grains and powdery crystallites (#273, Yacman from Tipikal)
Figure 6-6. Dark particles (#155, Mama from Telchaquillo) 101 -
Figure 6-7. Dark areas in matrix (Mama from the site of Mama) 102 -
Figure 6-8. Sample showing translucent, angular inclusions (#281) 103 -
Figure 6-9. Translucent and angular, smooth particles (#60, Navula from Mayapán, from Sánchez Fortoul 2009, Fig. 6.4) 103 -
Figure 6-10. Fabric Micrite-medium-W (#316, Mama from Telchaguillo) 105 -
Figure 6-11. Sample with granular inclusions and silty matrix (#256, Navula from Mayapán) 107 -
Figure 6-12. Hand-specimen fabric GM-cm-W (#300, scale = 1cm) 110 -
Figure 6-13. Hand-specimen fabric XT-f-R/B (#136) 112 -
Figure 6-14. Fabric XT-f-R (Sample #137 Payil from Mayapán) 113 -
Figure 6-15. Clear single crystals (#281) 114 -
Figure 6-16. Angular, smooth whitish inclusions (#279) 114 -
Figure 6-17. Summary of procedure followed for hand-specimen fabric characterization 118 -
Figure 7-1. Biplot of the sample on principal component #1 and #2 (Figure 1, from Pierce and Glascock
2015) 135 -
Figure 7-2. Plot of samples in principal components #1 and #2 axes (Figure 2, Pierce and Glascock
2015), or P1 and P2 (Formula 7-1), depicting the samples within each of the five groups resulting from the initial Cluster Analysis
Figure 7-3. Pottery samples' chemical compositions of (a) Ce and Sb, (b) Cr and Sb, (c) Hf and Th, and
(d) Cs and Cr (Pierce and Glascock (2015), Figures 3-6) 139 -
Figure 7-4. Sample in discriminant functions #1 and #2 (Pierce and Glascock 2015, Figure 7) 141 -
Figure 7-5. Sample in discriminant functions #3 and #2 (Pierce and Glascock 2015, Figure 8) 142 -
Figure 7-6. Clay samples and the chemical groups (Figure 9, Pierce and Glascock 2015) 143 -
Figure 7-7. Map showing north-central sites and Euclidean matches, with Belize area within circle (after
Figure 10, Pierce and Glascock 2015) 145 -
Figure 7-8. Percentage that each chemical group represents of the total chemically analyzed samples
-146 - 146 - 146
Figure 7-9. Europium (Eu) against samarium (Sm)
Figure 7-10. Aluminum (AI) against iron (Fe)
Figure 7-11. Zheolinum (ZI) against Zhie (ZII)
Figure 7-12. Italihulii (III) against certuin (Ce)
Figure 7-14 Calcium (Ca) against Iron (Fe)
Figure 7-15 Comparison with Cecil's Laguna de On data (Figure 11 Pierce and Glascock 2015) - 159 -
Figure 7-16 Uranium (II) against Manganese (Mn)
Figure 8-1. Dolomite (colorless or grayish) and calcite (tinted reddish) (#441, pp, width of field 1.1mm)
Figure 8-2 Center: dark micrite or semi-opaque: top_right: translucent micrite (#339_xp; width of field
1.1 mm).
Figure 8-3. Two sparry particles. One (a) has finely (# 165, pp), and the other (b), 169 -
Figure 8-4. Single calcite crystals, some showing characteristic pastel interference colors (#204, xp,
width of field 2.82 mm)
Figure 8-5. Fossil shell fragments showing micritization (#450; xp; width of field 2.82 mm) 170 -
Figure 8-6. Dolospar particle showing rhombohedral dolomite crystals and grain alteration by micrite
(#98, xp, width of field 1.1 mm) 172 -
Figure 8-7. Dolomite as single crystals (#339, xp, width of field 1.1 mm) 172 -
Figure 8-8. Dolomite as single shapeless crystals (#441, xp, width of field 2.8 mm) 173 -
Figure 8-9. Quartz (white) and calcite (tinted pink with alizarin red) (#134, xp, width of field 1.1 mm) 174 -
Figure 8-10. (a) unslipped sherd with silt size calcite (#275, xp, width of field 1.1 mm); (b) center: red-
slipped sherd with fine-grained fabric (#445, xp, width of view 2.82 mm); lower right: argillaceous
particle with embedded calcite 175 -
Figure 8-11. Dolospar-W-Coarse, showing dolospar grains and silty matrix (#405, xp, width of field
2.82 mm) 184 -
Figure 8-12. Dolospar grain with micritic alteration (#405, pp, width of field 1.1 mm) 184 -
Figure 8-13. Fabric Dolospar-W-Medium: (a) mostly darker color, but lighter (b) areas are present (#267,
xp, width of field 2.82mm)

Figure 8-14. Fabric Dolospar-W-Hard. (a) dolospar, brown micromass, light color band brown nodules and micromass (#342, xp. width of field 2.82mm).	d by wall; (b) - 188
Figure 8-15 Fabric Dolospar-B-Coarse showing dolospar grains and silty dolomite	- 190
Figure 8-16. Fabric Sparite-W/B-Coarse/Medium with sparite at top and left, and micr 272, pp, width of field 2.82 mm)	ite to the right (# 195
Figure 8-17. Fabric Sparite-W/B-Coarse/Medium (CS-W/B-cm) showing sparite partic bottom) (# 262, xp, width of field 2.82 mm).	les (top and - 196
Figure 8-18. Fabric CM-W-m showing micrite particles (# 437, xp, width of field 2.8)	mm) 199
Figure 8-19. Fabric Calcite-Micrite-Coarse-01 (CX-CS-01-c) showing single calcite cr width of field 2.8 mm)	ystals (#354, xp, 203
Figure 8-20. Fabric Calcite-Micrite-Coarse-01 (CX-CS-01-c) showing single calcite cr width of field 2.8 mm)	ystals (#204, xp, 203
Figure 8-21. Fabric Calcite-Micrite-Coarse-02 (CX-CM-02-c) showing calcite crystals alteration (#191 xp width of field 2.82 mm)	with spot - 205
Figure 8-22 Fabric Sparite-m-W/R-Coarse showing two views of: (a) medium-crystall	line sparite (# 335
xp, width of field 2.82 mm) and (b) medium-crystalline sparry calcite (#335, xp, width 206 -	of field 1.1 mm).
Figure 8-23. Fabric Class Calcite-Quartz-B/R-Fine showing calcite and quartz field 2.82 mm)	(#131, pp, width o
Figure 8-24. Fabric Class CX-QZ-R/B-f showing calcite and scatter quartz (white); (# field 2.82 mm)	382, xp, width of 208
Figure 8-25. Fabric Calcite-Grog-B/R-Coarse, stained with alizarin red, showing calcit	e crystals (pink)
and dark argillaceous particles with embedded calcite crystals (#275, xp, width of field	2.82 mm) 209
Figure 8-26. Fabric Calcite-Grog-B/R-Coarse showing fragment of unslipped sherd as	temper (#275, xp,
width of field 1.1 mm)	211
Figure 8-27. Fabric Calcite-Grog-B/R-Coarse showing red-slipped sherd (center) and c	lark argillaceous
particles with embedded crystals (#445; width of view 2.82 mm, xp)	211
Figure 8-28. Fabric Dolomite-W/B-Medium with single crystals of dolomite (# 339, xp 2.82 mm)), width of view 212
Figure 8-29. Fabric Dolomite-W/B-Medium with dolomite (# 237, xp, width of view 2 Figure 8-30. Fabric class Dolomite-Calcite-B-Coarse (DX-CX-B-c) showing anhedral from Mayapán, xp, with of field 2.8 mm)	.82 mm) 213 dolomite (#60 214
Figure 8-31. Fabric class Dolomite-Calcite-B-Coarse (DX-CX-B-c) showing subangul dolomite (#441, xp, width of field 2.8)	ar anhedral 215
Figure 8-32. Fabric Dolomite-Calcite-B-Coarse showing subhedral dolomite (top whit alizarin red stripes) and calcite (bottom, tinted with alizaring red) (#442, xp, width of f	e, with pink ield 2.82 mm)
210 - Figure 8-33 Fabric class Dolomite-Calcite-Medium-Hard (#320 xn width of field 2.8	(2 mm) = 217
Figure 8-34. Fabric class Bioclast-W-Coarse/Medium (CH-W-cm) showing skeletal fra section is tinted) (#284, xp, width of field 2.8 mm)	agments (thin - 220
Figure 8-35. Fabric Class Bioclast-B-Coarse (#450, xp., width of field 2.82mm)	- 221
Figure 8-36. Fabric class Bioclast-B-Coarse (#409, xp, width of field 2.82 mm)	222
Figure 8-37. Fabric DarkMicrite-Micrite-Coarse (CG-CM-W-c) showing coarse dark r	nicrite and very - 225
Figure 9-1 Main Medium (a) and coarse (b) fabrics of the north-central area	- 239
Figure 9-2. Sample from Mama vessel showing its colors and textures	- 237
Figure 9-3. Sample bowl made with clav#11, scale in cm (Table 5-4)	- 243
Figure 9-4. Small bowls prepared with the different clav samples (#1, #2, #4, #11, #1	6, #18, Table 5-4)
right: vessel to the right was painted with red soil from the Mama-Chumayel area with	added water 24
- Figure 9-5 Briquettes made with marl sascab (#2) and red soil (#3)(Table 5-4)	- 244
Figure 9-6. Results X-ray powder analysis of the clay fraction of raw material sample #	#11 (Shannon - 246
Figure 9-7 Percentage that a fabric type represents of the total Mama ($n=69$) N ₋ C thin	sections: KFV· N
C=north-central;CalcXtal=calcite, single crystals; DarkMicr =dark micrite;DolmXtal=	dolomite, single
Figure 9-8 Carbonate-rock sascab (# 17 Table 6-12)	_ 248
Figure 9-9. Sascahera (sascah nocket or laver) located by the road	_ 240
1 guil 7 7. Sastatoria (sastato potket or layer) located by the load	249

Figure 9-10. (a) Use of <i>mecapal</i> by novice priests carrying materials to the temple (Mendoza Codex,
Fol. 62r); (b) complex <i>mecapal</i> used to transport water-carrying vessels (Figure 28 e, Thompson 1958)250 -
Figure 9-11. Basket-type and palm-rib sifters from Yucatán used by potters to sift temper, from
Thompson (Figures 16g and 16h, 1958)
Figure 9-12. Frequency of red-slipped Mama fabric classes within N-C sites
Figure 9-13. Profile of Bowl I showing location of surface features 265 -
Figure 9-14. Outline of Cajete I showing location of surface features 267 -
Figure 9-15. Profile of Cajete II showing location of surface features 269 -
Figure 9-16. Profile of Large Slipped Jar I showing location of surface features 270 -
Figure 9-17. Percentage that fabric types represent of total Navula thin sections (n=53); Key to inclusion
types: CalcXtal = single calcite crystals, DarkMicr=dark micrite, DolmXtal= single dolomite crystals 276 -
Figure 9-18. Frequency of fabric classes of unslipped, plain Navula within sites 277 -
Figure 9-19 Reconstructed Yacman vessel from cave Yok Dzono (Brown 2017) 284 -
Figure 9-20. Percentage that the types of fabrics represent of total Yacman samples (n=53); KEY:
CalcXtal = single calcite crystals, DarkMicr=dark micrite, DolmXtal= single dolomite crystals 284 -
Figure 9-21. Comparison of the types of fabrics found in Mama and Yacman samples 286 -
Figure 9-22. Grinding stone (about 1m in diameter) from Yucatán (from Thompson 1958, Figure 16f) 287 -
Figure 9-23. Frequency of Yacman samples within the different fabric classes (n=59) 288 -
Figure 9-24 Yacman samples from Tekit 290 -
Figure 9-25. Ethnographic half dome kiln, Yucatán (Thompson 1958, Fig 26g) 293 -
Figure 9-26. Dolomite heated at 1°C per min in different atmospheres, y-axis = fraction reacted
(McIntosh et al. 1990, Fig 1) 296 -
Figure 9-27. (a): briquettes keeping their form at 700°C; (b): obliterated coarse-to-very-coarse briquette
at 750°C (#2) 299 -
Figure 10-1 Similarity of Red-slipped jars throughout Yucatán and time: (a) and (b) Reyna and Hills
1978, Figure 41(f) and 41(d); (c) and (d) Thompson 1930, Plate XVII(a) and XVII(b); (e) and (f)
Thompson 1958, Figure 40(a) and 38(h); (g) and (h) after Smith 1971, Figure 38 (1, 2, 3, 4, 5), 38(15)
314 -
Figure 10-2. Chart with choices made by potters working with non-dolospar inclusions 321 -
Figure 10-3. Choices made by potters working with dolospar sascab 322 -
Figure 10-4. Aerial distance between north-central sites 328 -

Chapter 1 INTRODUCTION

This thesis is about the inhabitants of northern Yucatán, México, during the last centuries before the European arrival (1511, shipwreck of Aguilar). They are part of a people known as the Maya, and the period of study is the Late Postclassic (AD c. 1100-1500). The Europeans arrived only decades after the abandonment of Mayapán, the last Maya capital in this region. The Late Postclassic is then key to gain a better understanding of the state of northern Yucatan (Figure 1-1) society at the time of contact and the impact of this contact on these people. Despite extensive ethnohistorical records and current research, the nature of the Late Postclassic Maya society is not well understood, primarily because details of its socio-economic nature still eludes researchers, prompting the proposal of multiple and many times conflicting perspectives about this period. Through a combination of analytical methodologies that include petrography and chemical analyses, this research examines regional patterns in ceramic production technology. These patterns are examined in term of the wider context, including ethnohistorical, ethnographic, and geological to gain a better understanding of ceramic manufacture, production organization, and networks of interaction, such as traditions and exchange. These are crucial aspects for understanding the socio-economic environment of this society and informing current perspectives about this important period.

This chapter introduces the Late Postclassic and the challenges and problems it raises for researchers. It summarizes overarching views that have been proposed about the nature of the Late Postclassic. The objectives of this project are presented and the methodology selected is outlined.

Figure 1-1. Yucatán Peninsula, showing main sites

1.1 Brief Introduction to the Late Postclassic in Northern Yucatán

Mayapán (Figure 1-1) was the largest Maya capital and urban center during its peak of 250 years (Masson and Peraza 2014, p.1), the Late Postclassic (AD 1200 to 1450). During that time, Mayapán was a center with a political centralization (Masson and Peraza Lope 2014, p.23) without rivals in the Maya lowlands (Masson and Peraza Lope 2014, p.27). It was a capital uniting much of northern Yucatán in a confederacy of territories under its dominion (Roys 1962). It was a walled city, and its size and population were unrivaled reaching a population of 15,000-17,000 and an enclosed area of 450 hectares (Masson and Peraza Lope 2014, p.266).

Construction at Mayapán may have started as early as AD1050/1100 (Milbrath and Peraza Lope 2003, p.24), coinciding with the decline of the Terminal Classic (AD 850-1000, date from Masson and Peraza Lope 2014, p.63) center of Chichén Itzá (Peraza Lope et al. 2006) and new political arrangements. The founding of Mayapán may have been related to waves of migrations of the Itza (Roys 1962), a Toltec-influenced, or hybridized Maya from Tabasco (Figure 1-1). According to the informants in Landa (1986), the founding of Mayapán resulted from an agreement between the Itza and the different Lords of the country to found a new city to which the Lords moved and to which all matters of the country were brought. North-central Yucatán area was governed from Mayapán by this league of Lords (Landa 1986; Roys 1962).

Figure 1-2. Mayapán (photograph by C. Sánchez Fortoul)

Figure 1-3. The observatory of Mayapán (photograph by C. Sánchez Fortoul)

Social developments were associated with changes in material culture including changes in architectural design and differences in building construction techniques. Most

important for this research, a distinctive red-slipped ceramics (Figure 1-4) appeared fully developed at Mayapán (Smith 1971a) with forms that, up to the current state of research, bear little relation to previous ceramics of the area (Smith 1971a, Brown 1999). These ceramics dominated in all assemblages from inland sites of northern Yucatán (Peraza Lope et al. 2006). They are also found in the eastern coastal area where they are somewhat different in texture and compactness (Peraza Lope 1993, p.308).

Figure 1-4. Red-slipped, Late Postclassic bowl from north-central Yucatán (from Cruz Alvarado 2012, Figure 327f)

Mayapán was abandoned around AD 1441-1461 following a rebellion in which the chiefs, thinking that the ruling lineage, Cocom, was getting too close to the Mexicans, killed all the members of the Cocom house, except for the now famous son who, according to Landa's (1986) informants who traced their ancestors to Mayapán, was trading in Honduras. After the massacre, the inhabitants of Mayapán abandoned this center, and the chiefs returned to their towns (Landa 1986). Mayapán was the last Maya capital in the lowlands. Until the conquest, no other center rose to become the new Mayan political center. The Europeans arrived a few decades after Mayapán was abandoned, marking the start of the conquest and colonization period.

1.2 Late Postclassic Debates

An eclectic array of perspectives exists aiming to explain the nature of Late Postclassic society. The overarching debate that encompasses these views is whether the socioeconomic institutions and organization of this period represent, paraphrasing Robles Castellanos and Andrews (1985, p.56), a slow or delayed disintegration of Maya culture or a refinement of its development. This section outlines some of the most influential, and sometimes overlapping, views about the nature of the Late Postclassic. Some of them, like the decadent view, have been fading away but remnants exist. Most of these views argue for a society overwhelmingly dominated by one socio-economic aspect over the others.

The Decadent View

This view of the Postclassic prevailed over most of the 20th century. The alleged decadence had started with the political and demographic collapse that occurred in the peninsula's southern lowlands around A.D. 700-900 and continued until the conquest. Society had fallen in a state of cultural decay, despondency and carelessness (Pollock 1952, p.24; Roys 1962, p.44-45; Shepard 1964; Willey 1985, p.51). The main symptoms convincing researchers of a "collapsed" or "decadent" Maya Late Postclassic included the lack of centralized government at the time of contact (Roys 1957), the perceived low quality of the construction and materials involved, and the low number of sizable ceremonial structures. For instance, Pollock (1952, p.239) commented on the poor structural design of buildings, which might lead to their faster destruction. The smaller size and number or ceremonial structures were attributed to cultural decay (Pollock 1952, p.239-240). In northern Yucatán, the change to a ceramic composition using almost exclusively the most common rock in the region – limestone – has been attributed to the simplification of techniques resulting from cultural decline, and lower resourcefulness and carelessness (Shepard 1964, p.518 - 519).

The Revivalist Views

According to this view (Masson et al. 2006; Milbrath and Peraza Lope 2009; Pollock 1952, p.236-240; Robles Castellanos and Andrews 1985, p.90), during the northern Late Postclassic, rulers and priests reintroduced Terminal Classic traditions and symbols to assert their political power and reassert themselves over the foreign practices of the Toltecs (Pollock 1952, p.237). The term "Maya Renaissance" has been used for the northern Late Postclassic (Andrews IV 1975) because there was a reversion to some features of the Classic, such as block masonry and corbelled vaults, that were missing during the Late Classic (Andrews IV 1975); features, in particular, observed in buildings (Pendergast 1985, p.240; Pollock 1962, p.240; Roys 1957, p.44). Mayapán is the type site for the Late Postclassic. Elsewhere in Yucatán, and in particular on the east coast,

pottery and architectural remains have been found with stylistic and construction methods with affinities to Mayapán (Pollock 1951, p.239; Smith 1971a). Some researchers consider the Late Postclassic changes so transforming that they have attributed them to a conscious effort to restructure the society as a whole (Robles Castellanos and Andrews 1985, p.90). A process of cultural transformation may have occurred rather than a break with the past (Milbrath and Peraza Lope 2009), with Willey (1985, p.43) considering Mayapán culture to have been a new synthesis that was essentially Maya.

The Political Economy Views

Political economy commonly refers to studies drawing on economics and political science in explaining how the political environment and the economic system influence each other (Weingast 2008). In Mesoamerican research, political economy is usually associated with the principle of rational choices and maximization, most often from the part of the elite, but increasingly also from the part of the commoners. Rational choice in political science stands for the application of the economics approach in the study of political phenomena (Lohmann 2013).

The control of the environment through technology and the belief that ancient people used technology in a quest for efficiency or for a material's performance are the basis for views known, usually, as the managerial (Wells 2006) or adaptational (Brumfiel and Earle 1987) models. In these models, the elite organize and mobilize labor and resources to take advantage of the environment or to avoid famine and other societal failures.

The financial (Wells 2006), also known as political (Brumfiel and Earle 1987), framework also emphasizes the elite and rulers as organizational agents. Elites manipulated ideological, political, economic, or other aspects of society to create, maintain, or increase the inequality that defines the existence of an elite class (Brumfiel and Earle 1987; Wells 2006). The elite and rulers control economic activities, such as long-distance trade and the flow of goods, artifacts needed for ritual activities, luxury and prestige items, or food to extend their power.

Mercantilist or commercial development models (Brumfiel and Earle 1987) of ancient Mesoamerica economies emphasize economically rational choices to maximize elite and/or individual gains. These models are usually intertwined with ideas of the rationalist approach and individual agency in which the individuals strive for efficiency, personal gain, and competitiveness (Wells 2006, p.278). These models propose a Maya society engaged in market exchange and "World-Systems" dynamics, as discussed by Brumfiel and Earle (1987), Kepecs (1999), Rathje (1975) and others.

The Collective Reciprocity View

In this view, society was organized around reciprocal obligations and perceived as a collective enterprise directed by the elites involving the gods, nature, and humanity (Farriss 1992, p.6). Society was organized in interdependent widening networks that incorporated the extended family, through the *cah* (community), *chibal* (patronym group) to the polity and the sacred (Farris 1992, p.6; Restall 1997, p.90; Fernández Tejedo 1990, p.34). Through the extended family, individuals were incorporated into this network and collective enterprise based on reciprocal obligations (Farriss 1992; Fernández Tejedo 1990, p.34; Stanton and Gallareta 2001; Restall 1997, p.185), such as gift giving.

That many views exist about the Late Postclassic makes evident that current research is recognizing the complexity of Late Postclassic society and that several types and levels of socio-economic organizations, exchange, or institutions may have co-existed. The goal has become to determine the relative role that the different socio-economic aspects played in the community, while, usually, emphasizing a set of factors. For instance, the power of a polity might have been based not on the domination of a territory but on the control of the rights of what was produced (Graham 2011, p.34-44). In this model, spheres of tribute obligations and interpersonal relationships are emphasized, while acknowledging other economic aspects such as inter and intraregional exchange. In contrast, in research at Mayapán, Masson and Peraza Lope (2014) consider that market exchange and craft production with a surplus take a more prominent role in the Late Postclassic economy while acknowledging the significance of tribute and gift giving.

1.3 The Problem

Chase (2004, p.118) has said that any economy can be characterized in terms of its production and distribution. The study of craft production and the interdependencies between production, exchange, and distribution are therefore crucial to characterize the socio-economy of a society. Several models have been proposed to explain the organization of Maya ceramic production; in particular, for the Classic period for which more studies over larger areas exist. In Chapter 2, current research and models proposed

to explain ceramic production, organization or exchange are summarized and discussed. One of the objectives of the current research is to evaluate how the results emerging from this study fit these models. Despite the extent of research and multiple proposed models, the study of the ceramic production, organization, and exchange in Late Postclassic Yucatán has had many challenges, and it is still unclear.

One of these challenges results from the stylistic similarity of ceramics throughout northern Yucatán. When compared to the previous period, the Late Postclassic presented a reduced palette of ceramic types (Masson 2001). For instance, summaries in Masson (2001, p.172-173) of the slipped sherds at Mayapán show that 92 % of them are classified in only one of the ceramic varieties (the red-slipped Mama). Contrastingly, at Altar de Sacrificios during the Late Classic, the slipped ceramic type with the highest frequency represents 40% of the total, and the rest is divided into significant portions (26%, 18%, 5%, 9%, 1%, 1%). In addition, within a ceramic type, each of the vessel forms and its surface finish, decoration, style, and macroscopic paste composition are highly similar from site to site, in particular from north-central Yucatán to Quintana Roo (Masson 2001, p.161), with affinities to Mayapán. Similarities to those at Mayapán spread over large areas of the Yucatán Peninsula including current-day Belize, Yucatán, and Quintana Roo states (Pendergast 1985, p.240; West 2002, p.178; Rathje 1975; Sabloff and Freidel 1975). However, only a few studies have attempted to measure the observed uniformity of Late Postclassic ceramics (Brown 1999; Howie, Aimers, and Graham 2014; Masson 2001; Masson and Rosenswig 2005).

Composition, as seen in hand specimens, also appears very homogeneous (Smith 1971a). For instance, red-slipped ceramics commonly found at any of the north-central sites (known as Red Mama group) cannot be distinguished from site to site. In light of this uniformity, it is not known whether Red Mama pots were produced at one or several production centers. Therefore, it is not known if paste similarities result from local production under common choices of materials, from a high degree of economic integration between centers with production and distribution from a few of them, or from a lack of geological diversity. The same can be said about the unslipped ceramics commonly found in this area. There is variation, however, on the texture of the paste of most sherds from north-central sites, when compared to sherds from eastern coastal sites. At the coast, red-slipped ceramics with a finer and compacted paste dominate, that nevertheless present stylistic similarities to the north-central red-slipped ceramics (Red Mama group). This similarity in the ceramics, combined with the challenges of a mostly

geologically homogeneous northern Yucatán, has hindered research on ceramic production, organization, and exchange.

Some researchers (Howie 2012; López Varela et al. 2001) have argued that in Maya archaeology, this situation will not change and little will be known about production organization until ceramic production is studied in term of technological choices and techniques applied in the construction of pottery. The way ceramic products are made results from choices and actions made by potters during the selection and processing of raw material, and during forming, finishing, and firing of the pots.

How can this help the understanding of ceramic production and organization, and Late Postclassic socio-economic organization? Pottery reflects the choices and actions made by artisans with regard to materials, the techniques applied, and the sequence of steps followed for the construction of the product. There is a growing body of literature supporting the notion that these choices are modulated by the wider cultural, symbolic, economic, and political environment surrounding the artisans (Dobres 2010; Lemonnier 1993, p.3; Gosselain 2000, Jordan 2015, p.67; Sillar and Tite 2000). Therefore, differences in the wider environmental and social context are reflected in differences in the choices made by potters. These, in turn, may result in similarities and dissimilarities in the way pottery is made, or technological variations in the pottery produced.

The study of how ceramics were made, the choices made from the raw materials that may have been available to potters (Chapter 4), and variations in technology have, as a result, an archaeological value for they may point to divisions within the potters' environment including socio-economic context, technological traditions, or production groups and zones (Roux and Courty 2005, p.202). These groups and zones of production may have implications for understanding ceramic manufacture, organization, and exchange. Chapter 5 lays out the methods designed to gather the data needed to test the hypotheses and achieve the objectives of this research. The chapter addresses the *chaine opératoire*, the theoretical basis for the methodology, and the reconstruction of pottery production. The sampling strategy and samples taken are discussed as well as the analytical methods used, mainly hand-specimen and thin-section petrographic analyses, and chemical analysis. The study of technology is then used to investigate the Late Postclassic socio-economic environment.

More scientific studies are needed in which, for one, the variability in the ceramic composition and manufacturing techniques over large areas of northern Yucatán are compared, and second, these variations are seen from the context of potters' choices for the construction of the pots. Current ceramic research for the Late Postclassic of northern Yucatán, with few but significant exceptions (Kepecs 1999; Cecil 2012), has been overwhelmingly typological or stylistic in nature based on macroscopic examination (Brown 1999, Cruz Alvarado 2012, Ochoa Rodríguez 2004, Peraza Lope 1993), or at the site level (Masson and Peraza 2014, Sánchez Fortoul 2009, 2013). It has therefore not been possible to assess ceramic variability and address questions of ceramic production and exchange. As a result of this gap, research has not been able to address basic questions of intra- and inter-site variations in composition, number and location of ceramic work groups, zones of raw material procurement, manufacturing technologies, and common choices or technological traditions. Basic scientific research through a methodology that combines analytical techniques such as petrographic (Chapter 6 and 8), chemical (Chapter 7), and surface feature analyses to examine the variability in ceramic composition and manufacturing choices and technology (Chapter 9) can overcome many of the challenges that studies of the Late Postclassic have traditionally faced. This will pave the way to addressing questions dealing with the wider Late Postclassic context such as the existence and scope of technological traditions (Chapter 10), organization of production (Chapter 10), and exchange (Chapter 10), as well as the role of Mayapán in the overall Late Postclassic Yucatecan society (Chapter 11).

1.4 The Objectives of Research

In light of the significant role of pottery in the ancient Maya socio-economy and the many questions that remain about ceramic production traditions and networks of interaction and exchange, this research is aimed at investigating the following research questions:

- Are there sufficiently varied patterns in raw material selection and ceramic attributes or characteristics to allow the characterization of pottery fabrics into fabric classes and distinct technological classes? This first and most basic question needs to be addressed.
- 2. What might such technological patterns tell us about how the different classes of pottery (such as with different surface finish or forms) were made?
- 3. Are the observed homogenization of style and macroscopic composition maintained through different levels of analysis, e.g. microscopic composition and chemical analysis? Do the observed homogenization of style and macroscopic composition reflect a shared technological tradition? For instance, a technological

tradition defined by a shared understanding of how red-slipped Mama vessels should be made.

- 4. What might such technological patterns and traditions say about the organization of pottery production, such as number and location of potters groups, or associations with and between geographical areas or specific sites, and its social significance?
- 5. What might such patterns and organization of pottery production tell us about the distribution of utilitarian ceramics and the types of exchange that may have taken place? In particular, were ceramics produced at each center? Alternatively, was production centralized and, if so, where?
- 6. How are the results of this research informing current models for the organization of Late Postclassic ceramic production, distribution, and exchange?

Crucial to addressing the social and economic nature of the Late Postclassic and informing current models is determining the role of Mayapán, the northern capital, in the regional socio-economic sphere. Equally important is the understanding of the role of the minor or peripheral communities in the socio-economic environment, including the nature of their interactions among themselves and with Mayapán. For instance, did Mayapán provide ceramics to the lesser centers? Different models explaining aspects of ceramic production, organization, and exchange for the Late Postclassic have been proposed. They are presented in Chapter 2. In the concluding chapter of this thesis, the patterns observed concerning the organization, traditions, distribution of ceramics, and types of exchange are examined in relation to these models.

Based on observations from a preliminary survey of a fraction of the handspecimen samples, which indicated that patterned differences in the compositions of slipped and unslipped samples may exist in the data, three hypotheses were proposed as a guide to addressing the research questions. The patterns observed in the preliminary survey (Section 5.5 and Chapter 6) are:

(a) In the north-central area, the macroscopic composition of red-slipped samples appears more uniform throughout the sites than for the unslipped ones.

(b) Samples classified as Payil, the eastern variety of red-slipped ceramics commonly found at eastern sites, and also found at Mayapán, have similarities to a few other samples from the north-central sites and could have been locally made.

With the hypotheses, answers are proposed to particular cases of the research questions and, therefore, in the process of collecting the data to test them, data addressing the questions are gathered. The hypotheses proposed are presented below. They are examined in greater depth with alternative interpretations in Chapter 5.

Hypothesis A: Unslipped jars found at the different sites were locally produced at minor centers and Mayapán.

This hypothesis is based on a variety of fabrics observed within the unslipped samples.

Hypothesis B: In the north-central area, red-slipped pots (Mama) were produced at one production locality that supplied the rest of the north-central centers.

The basis for this hypothesis is two compositional groups, one with white limestone and one with dark inclusions, observed within the red-slipped samples.

Hypothesis C: Payil, the fine-grained red-slipped ceramic type commonly found at eastern coastal sites, when found at north-central sites, was locally made.

This hypothesis is based on paste characteristics of samples categorized as Payil and found at Mayapán that have fabrics similar to unslipped samples considered probably to be local to the north-central area.

1.5 Outline of the Methodology

The methodology selected to test the hypotheses listed above and to achieve the objectives of this research uses a combination of chemical, petrographic (in hand-specimen and thin-section) and surface feature analyses. These analytical techniques will be used to examine the variability in composition and ceramic manufacturing methods based on pottery samples from Late Postclassic contexts. Local clays were collected with the objective of evaluating the available raw material resources and, in the absence of direct evidence for ceramic production, seeking clays compositionally comparable to the pottery. The technical attributes are examined as indications of potters' actions and choices that were embedded in their wider socio-economic environment. Conversely, interpretations given to the raw materials analysis will be based on current knowledge of the environment in which the potters lived. Ethnohistorical accounts complement integral parts of this thesis, as well as the presentation of the wider environment including the

geological setting and current research on the socio-economic environment of the Maya people during the Late Postclassic in northern Yucatán.

The study is structured using a regional approach with two test cases that represent sites from the north-central and eastern areas of the Yucatán Peninsula (Figure 1-5), an area presenting a Mayapán-style ceramic assemblage. Both cases seek to study the characteristics and technological patterns of the local ceramics. The location of the north-central sites, adjacent to the main Late Postclassic center of Mayapán, provides the opportunity of studying pottery production, distribution, and socio-economic integration between closely located major and minor centers, while the eastern sites address the research questions concerning interaction over longer distances.

Figure 1-5. Map of studied region with sites in this research (after Pierce and Glascock 2015, Figure 10)

Petrographic hand-specimen analysis (Chapter 6) was used to divide the samples into broad groups based on characteristics observed at relatively low magnification. The division was mainly based on the inclusions, crystal structure, and grain size of rocks in the pottery clay. From these groups, subsets of samples were selected for further chemical and thin-section petrographic analyses. The chemical analysis used neutron activation analysis (NAA) and a multivariate statistical analysis of the chemical compositions of the samples with the aim of characterizing distinct chemical groups. The analysis and resulting chemical groups are presented in Chapter 7. Using thin-section analysis, the samples were grouped by their petrographic characteristics into technological classes, which are described in Chapter 8 together with a description of the main inclusions found. The objectives of this research call for an examination of the analytical results to find patterns in ceramic production. To this end, Chapter 9 evaluates results from the above analyses, complemented with geological and ethnographic data, to seek compositional and technological patterns and draw inferences about the ceramic techniques that might have been used in the construction of the pottery vessels. Chapter 10 further develops the interpretation of technological patterns to determine the existence and scope of technological traditions, the organization of production, and movement of pots. The document ends in Chapter 11 with a summary of the findings and directions for future research.

Chapter 2 THE LATE POSTCLASSIC: A VIEW FROM THE NORTH

The aim of this chapter is to present current research on the ceramic economy within the study region, as well as models that have been proposed explaining the organization of ceramic production, distribution, and exchange during the northern Yucatán Late Postclassic period. At the completion of this thesis, the results of this study are examined to assess how well they fit these models.

The current models are linked to perceptions of what the organizing principles of Maya society were and to interpretations of ancient Maya socio-economic institutions. This chapter starts reviewing current interpretations of the socio-political and economic institutions during the Late Postclassic, including political, tribute, and market institutions. The chapter continues with a review and discussion of current research on ceramic economy and models that have been proposed.

2.1 The Late Postclassic in Northern Yucatán

This section presents current interpretations and research informing about some of the main Maya social institutions. Aspects of the political and social environments surrounding the potters of the Late Postclassic are also discussed.

2.1.1 Political Organization of Northern Yucatán

When compared to the northern Terminal Classic (AD 850-1000), the Late Postclassic shows changes in the political arena. The approaches taken to the political organization by the inland and eastern areas of the peninsula differed (Robles Castellanos and Andrews 1985). In the inland areas, Robles Castellanos Castellano and Andrews (1985, p.91) see the rise of Mayapán as representing an attempt to bring back the power and grandeur of Chichén Itzá during the Terminal Classic, but with a different political organization. In this area, there was a shift from the increased political and economic centralization observed since the Classic period up to the Terminal Classic at Chichén Itzá (Chase and Chase 1985, p.2; Kepecs 1999, Robles Castellano and Andrews 1985, p.54). This reversal is evident in the league of provincial Lords who, for a time, shared rulership at Mayapán (Landa 1986) and the radical change in the political organization of the eastern areas (Chikinchel and Ecab in Figure 2.1). In the Ecab (Figure 2.1) area,

no Late Postclassic site seems to be larger or have preeminence over the others, suggesting political decentralization (Robles Castellano and Andrews 1985). Based on ceramics, settlement pattern information, and ethnohistorical records, it is believed that the eastern area was outside the direct political dominion of Mayapán and without a main political center (Roys 1962, p.32). Robles Castellano and Andrews (1985) suggest that two political experiments were running concurrently: in the west, an attempt to bring a large area under centralized but shared government, and, in the east, decentralization.

According to Landa (1986, based on informants), the Lords of northern Yucatán were persuaded by the leader of the foreign groups to agree to found a new city to which the Lords moved and to which all things (*cosas*) and matters (*negocios*) of the country were brought. The nature of this agreement, and whether it was voluntary or enforced under duress are not clear. The Cocom, Xiu, and Chel and many heads of local main lineages and their entourages moved to Mayapán and administered their domains from there (Landa 1986). It is thought that most of the north-central Yucatán area was governed by this league (Roys 1957). It was apparently a new type of shared government, a government by many. After the Itza leader had left (who called himself C'uc'ul can, the mythological Toltec leader), the house of the Cocom became the head of the coalition (Landa 1986). As noted by Landa in the *Relations*, it was the duty of all the Lords to honor, gift, visit, and entertain the Cocom. Mayapán reached its height of construction from the thirteenth to the early decades of the fifteenth century.

As mentioned earlier, Graham (2011, p.34-44) had proposed that, right before the Conquest, the power of a polity was not based on the dominion of a territory. It was based on the control of the rights of what was produced, administered through spheres of tribute obligations, interpersonal relationships, or administrative control centered on a person or group of people. For instance, a lord could acquire rights over resources by appropriation through warfare of part of the tribute historically owed to another lord. Applying this model to Mayapán, forced extraction of the resources in the form of tribute owed to each local lord may have been behind the rounding up of Lords at Mayapán, first by the Itza and continued by the Cocom. This interpretation gives new meaning to the passage in the *Relations* (Land 1986) recalling that the Itza leader and the heads of the north-central linages had come to an agreement to move to Mayapán and that, as a result, all kind of products were brought to this center. Blanton et al. (1993) calls the Lords at Mayapán "invited hostages."

Figure 2-1.). Concerning Mayapán, encircled in black are confederated, in red are allied or friendly, and the rest (Chikinchel, Ecab, etc) are independent provinces (after Roys 1957, p.2; Masson and Peraza Lope 2014, Fig I.I.

Based on Landa (1986) and his informants, it can be gathered that northern Yucatán was already divided into multiple polities before Mayapán was founded (Robles Castellano and Andrews 1985, p.91). After the abandonment of Mayapán, the Lords and their entourages returned to their provinces (Landa 1986). Our understanding of the political order at the time the Spanish arrived owes a great debt to the work of Roys (1957). He compiled Spanish and Native documents interpreting that, at the time of contact, Yucatán was divided into sixteen provinces (Roys 1957, Map 3.1), *cuchcabalob*, most of which were territorial in nature. Since Roys's fundamental work, new analyses have amended the limits (Andrew 1984) or suggested that the model is too rigid to represent the dynamics that may have existed (Graham 2011; Okoshi Harada 2012, 2015; Restall 1997) while recognizing the extraordinary contribution of his work to Maya research. Figure 2-1 is used to illustrate the location of the provinces because they are referenced in current literature.

A model by Okoshi Harada (2012) puts forward a fluid political organization. In this model, the basic political unit was not the province but the community or *cah* (2012, p.5). In Roys' model, the emphasis is on the territorial dominion of the chief (Graham 2011), while in the new model, the focus is on the network of relationships and obligations to the rulers.

Maya people appear to identify themselves as part of the extended family, the patrilineage (*ch'ibal*), and the community (*cah*) (Restall 1997:13). The name of the *ch'ibal* and the *cah* to which a person belonged were the only specific terms used to identify a person as part of a distinctive social group (Restall 1997). A significant proportion of the population lived in detached residential compounds or residential clusters spread around in the *montes* (bushes), and sometimes far from a larger concentration or town. The *cah* also included farming land (*milpa*) that could lie miles from the *cah* residences (Restall 1997). Therefore, usually, a *cah* could not be linearly demarcated (Okoshi Harada 2012, p.5).

A group of dispersed *cahob* (*-ob* for plural) comprised the *batabil* or *señorio*, under the authority of a *batab*. Both, the *cah* and the batabil were political units. Each *cah* had an *ah cuch cab* selected by the *batab* that ensured that tribute and services were promptly provided, organized the community festivities, or prepared it for war (Okoshi Harada 2012, p.6). However if a *batab* could not provide needed benefits to the *cah*, the *ah cuch cab* could take the decision of recognizing a different *batab*. Therefore, *cahob* recognizing a different *batab* may be geographically intertwined, and as a result, the *batabil* usually did not occupy a continuous space (Okoshi Harada 2012, p.5) nor it could be depicted in a linear way (Figure 2-2).

According to Okoshi Harada (2015, p.6), many *batabilob* were independent, but most depended upon a *batab* with the title of *halach uinic*. The relationships between the different levels were more political than hierarchical, immersed in a web of alliances and rivalries (Fernandez Tejedo 1990, p.32). This political environment bears relation to the

potters and the result of their work, such as when a vessel or the content of a vessel is destined to be part of tribute. Therefore, the distribution of a vessel from its place of production can reflect a political area. Such is the case at Palenque. The range of distribution of most of the pottery from Palenque coincided with the spatial range of Palenque emblem (Rands and Bishop 1980).

Figure 2-2. The political organization of the Cupul (Okoshi Harada 2015, Figure 4)

2.1.2 The Institution of Tribute

The power of the rulers was rooted in complex relationships that allowed them to collect offerings or tribute, a crucial part of the socio-economic arrangements (Fernandez Tejedo 1990, p.34). Benefits such as divine protection, defense, and administrative services were provided by nobles to the population, while commoners were obligated to provide recognition to their authority and compensate the Lords for the benefits showered on them (Fernandez Tejedo 1990, p.34). Tribute was paid at the family, most probably extended family, and the community levels. It consisted of a fraction of the production of agricultural goods, such as cotton, corn, salt, cacao, honey, turkeys, fish, as well as products from industries such as textiles or mantas (Fernandez Tejedo 1990, p.35; Landa 1986; Piña Chan 1978). Of these products, textiles constituted the main tribute item during colonial times (Landa 1943, Roys 1972). Pottery, however, is not mentioned by Landa as part of tribute paid. Nevertheless, pottery could have been used to transport tribute items such as honey. During early colonial times, pottery may have been part of the tribute paid to the *encomenderos* as shown by a copy of the declaration of what the town of Motul supplied in 1552 (Fernandez Tejedo 1990, p.52), which included 18 cántaros (water carrying/storage ceramic pots) and 26 ollas.

Another component of tribute was in the form of labor, which could be communal labor. However, not all-compulsory communal labor was part of tribute. This is shown in the small peasant village of Chan Kom (Redfield and Villa Rojas 1962), Yucatán, population 250, and in many towns in Yucatán, through a rotating system in which some of the work needed was performed by boys and adult males involved in communal work. This work was not remunerated, and it was not voluntary either; it was enforced with the punishment of prison. At Chan Kom, both individuals (private houses) and the community (roads and *cuartel*) benefited from communal work.

2.1.3 Markets and other Economic Aspects

According to Roys (1972), when the Spanish arrived, the Maya society was divided into three main classes: nobles, commoners, and slaves. However, Maya society may have been more complex than that (Fox et al. 1996b, p.798). For instance, Fox et al. (1996b, p.798) consider that given that the ways in which kinship crosscut through the social organization are not clear, it may be inappropriate to divide Maya society strictly by classes. Of these classes, the nobility or ruling class was also the main long-distance or inter-regional merchants (Roys 1972, p.33; Piña Chan 1978, p.44; Chapman 1959, p.40). We know that the son of the Cocom was trading in Honduras at the time of the Mayapán massacre (Landa 1986). Chapman (1959, p.10) divided Maya commercial activity into two institutions, long distance exchange and markets. Chapman considered them to be separate because they differed in many ways (Chapman 1959, p.10), including the type of place where the trading took place, the people involved in the transactions, and the products traded (Chapman 1959).

Yucatecan products exported for long-distance exchange were mainly salt, mantas, slaves, honey, beeswax, (Landa 1986; Roys 1972, p.51-54; Vasquez de Espinoza 1948, cited in Piña Chan 1978, p.42), cochineal, cacao, achiote, and índigo (Vasquez de Espinoza 1948, cited in Piña Chan 1978, p.42). The elite impetus, according to Landa (1986), for this trading was to obtain currency in the form of cacao beans and stone beads, dyes for the body, or red seashells (Landa 1986) with which to buy items such as feathers or jewels. These transactions occurred outside Yucatán borders, such as Ulúa and Nito (Honduras), in these predetermined places (Chapman 1959, p.50).

There are no rivers in northern Yucatán, and there were no beasts of burden. Therefore, products to and from inland communities in this area were transported on the backs of porters who, according to Sahagún (1946 cited in Chapman 1959, p.47), were people of the lowest social status, forming long human caravans crossing the land. When possible, large canoes were used to travel around the peninsula or the rivers found to the south. To give an idea of the distances covered by peddlers on foot, Hammond (1978) documented an overland route from Cobán, highland Guatemala to the lowlands in Belize. This was done at a time in which peddlers set out on foot carrying 45 kg of small products on their backs with a band across the forehead (tumpline or *mecapal*) as illustrated in Figure 2-3. The trip took one week with daily distances traveled of around 32 km, staying overnight at the different towns in between.

Figure 2-3. Two Cobanero traders at Santa Cruz, Belize taking overland route back with 45 kg on their backs (from Hammond 1978, Figure 8)

Large markets have been described in the northeast part of the peninsula (Figure 2-1) at the towns of Chauaca (Landa 1986, pp.232-233), Cachi (Oviedo 1851-55, cited in Piña Chan 1978), Ecab (Mártyr de Anglería 1892, cited in Piña Chan 1978). However, there are no specific descriptions of inland markets. They are mentioned, nevertheless, even if in passing such as when Landa says that the products of the land are stored in granaries until it is the right time to sell. According to Roys, larger towns likely had markets (Roys 1972, p.52). Given that Tomás López (1552-1553) ordered that every town should have a market and that every transaction should happen at the market, it is
doubtful that all small communities had markets (Roys 1972, p.52). It can also be inferred from the ordinance that a portion of the transactions occurred without a marketplace, perhaps performed by peddlers similar to the cobanero traders just described.

Based on tribute paid to the Spanish through the *encomienda* system, Piña Chan (1978) compiled a list of products from different areas of Yucatán. The products include salt, fish, honey, wax, cotton, slaves, cacao, copal, cochineal, flint. The products are regional, produced only in certain areas (Piña Chan 1978, Figure 12). The north-central area where most sites in this study are located, including Mayapán, appears without any product. Itinerant merchants may have existed to supply local markets (Roys 1943, p.51).

There are no records of pottery being traded at local markets, but it is presumed that it was (Roys 1972, p.46) given the reference in Landa (1986) to pottery and woodworking as important occupations and objects of trade. Judging by early colonial times, most probably all commoners farmed (Landa 1986; Roys 1972, p.46) attending other industries such as pottery or barter only when land obligations allowed them.

2.2 Current Research

Given the scarcity of regional analyses for the northern Late Postclassic, those conducted for the Late Classic periods in the southern lowlands and Palenque have been a source from which hypotheses can be drawn for this period and others. Excellent summaries of these investigations already exist, such as those from Rice (2009) and Foias (2004). This research focuses on utilitarian ceramics, and this is the emphasis of the summaries and discussion of research presented in this section.

In the Maya area, direct evidence for pottery production is very scarce. When found, it has been related to ceremonial items such as censers (Masson and Peraza Lope 2014) or to prestige items such as the Classic Period polychrome vessels, which have been usually found in Classic palace contexts without direct evidence of forming or firing (Halperin and Foias 2010; Reents-Budet et al. 2000; see Halperin and Foias 2010 for proposed direct evidence for production).

Only a few structures in the southern and northern lowlands have been ascribed to pottery firing. The most cited example is from the Late Classic site of K'axob in Belize. At this site, connected underground pits (López Varela et al. 2001) have been found together with sherds that look like tools for working clay. However, Prudence Rice (2009, p.127) is not convinced by this evidence pointing out that signs of firing such as

smoke, ash or wasters are not mentioned in the report. The findings of Smyth and Dore (1992) at the Terminal Classic center of Sayil (Puuc area, Yucatán), in an area that appears as non-domestic (lacking *metates*, or grinding stones) and with a high incidence of overfired sherds (wasters), indicates the existence of a likely ceramic production area.

On the other hand, Rice describes evidence found by Freter (1996 cited in Rice 2009, p.138) of the firing of utilitarian items near clay sources in the rural areas around Copán. The common pattern among the presumed firing areas comprised a test pit that yielded abundant ceramics, 5% or so of misfired or warped sherds (wasters), greenstone tools for burnishing, the presence of unfired clay and carbon flecks, and probable areas for firing located near (50-100 m) the residences showing burned and hardened soil areas. Freter concludes that utilitarian production occurred in rural areas in the courtyard of residences built close to the clay source without kilns, investment, or central control. With the lack of direct evidence, indirect evidence such as anomalous sherd density in the ceramic assemblage (in isolation, unusual concentrations of pottery are considered to be weak evidence because they may occur for a variety of reasons, such as feasting, storage, or garbage disposal) or pottery and clay compositional analyses have been used to suggest locations of production (Fry 1980; Howie 2012; Rands and Bishop 1980).

2.2.1 Late Classic at Tikal and Palenque

Fry (1980) used a combination of methods that included the examination of fall-off pottery distribution curves and paste inclusions to study the production location and distribution of pottery from Tikal, current Guatemala (Figure 1-1). Although monochrome or unslipped types of vessels were produced from different sources around the periphery of Tikal, both serving vessels and wide-mouthed jars were found in considerable amounts in the central area of this site, indicating to Fry that they were taken to central Tikal for market exchange. Based on the distribution of pottery and the comparison of clays and sources, Fry concludes that the organization was complex (Fry 1980, p.11) and that the patterns observed are explained by the existence of a market system (Fry 1980, p.16). Ceramics were produced in peripheral centers around a core center and brought to it through a decentralized market system.

He also inferred that the core center did not produce or distribute ceramics, with the exception of some serving vessels; it mostly consumed ceramics. That a high proportion (around 40%) of the assemblage at minor centers in Tikal peripheral areas comprises serving and polychrome vessels corroborated to Fry that market exchange explains the patterns, arguing that gift giving, for instance, could not explain the significant amount of vessels encountered. Similarly, at Palenque, Campeche (Figure 1-1), Yucatán, Rands and Bishop's (1980) study of ceramic production and distribution, through petrographic and chemical analysis, indicated to them that the amount of pottery brought into Palenque was far greater than the locally manufactured and exported pottery. Similar to Fry (1980), Rands and Bishop conclude that Palenque was a consumer of ceramic items from the agriculturally poor plains.

These interpretations have been challenged. For instance, Stanton and Gallareta (2001, p.232) point out that the same patterns that indicated to Fry decentralized market exchange at minor centers can also be interpreted as redistribution by local elites. The presence of all types of peripherally made ceramics at the core center can be explained as pottery transferred to the core center as part of tribute paying, a part of which could have gone back to the same or other minor centers. They also propose production for feasting as an alternative explanation to the amount of serving vessels found. Stanton and Gallareta (2001) also emphasize that market exchange and redistribution are not mutually exclusive.

Pottery production seemed organized (or specialized) at the community or zonal level (Rands and Bishop 1980, p.42) by form and/or functional classes, based on a compositional subdivision that corresponded to figurines and some serving vessels. Specialization by ware and form is also suggested for the northern Terminal Classic by neutron activation analysis (Smyth et al. 1995) and petrographic analysis (Smith 1971b; Shepard 1958) of wares that coexisted, in particular in the Uxmal core (Figure 1-1), in the Puuc area in Yucatán

2.2.2 The Late Postclassic

Research on ceramic production for the Late Postclassic is sparse and lacks the multisite and encompassing approaches that exist for the Classic period. Nevertheless, limited but significant research has provided a major contribution.

Evidence for Ceramic Production

Direct evidence for production during the Late Postclassic is limited to cases of ceremonial items, such as censers or figurines (Masson and Peraza Lope 2014). For

instance, At Mayapán, Hare and Masson (2010) found a Late Postclassic effigy censer ceramic workshop in a house attached to a palace; it contained fine artisan stucco tools and numerous molds made with distinctive, unfinished effigy pieces.

Local production during the Late Postclassic, at least in some northern Yucatán areas, is supported by a study that included petrographic analysis of selected samples of Late Postclassic red-slipped pottery from several sites of the Chikinchel region (Figure 2-1), located in the north-eastern area of the peninsula (Kepecs 1999). Kepecs found a prevalence of one paste type at each of the three main regional centers, with each paste type being different at each center, suggesting to her a production that is probably local and distinct from the production centers that supplied the western area. The study includes petrographic analysis of some samples by ware, and it does not include chemical analysis. As a result of the lack of indications for the locations of production, several alternative interpretations can be given. Particularly, the vessels sampled and qualified as locally made could have been imported from somewhere else.

Mayapán

Masson and Peraza Lope's (2014, 2016) in-depth analysis of Mayapán is essential for understanding craft production at this site as a Late Postclassic social and urban entity. They report craft production of surplus products manufactured from materials such as chert/chalcedony, obsidian, or shell within a total of 34 households (Masson and Peraza Lope 2016, p.269) located within the wall enclosing Mayapán. In many cases, the different crafts overlap in a given household. The area around Mayapán and neighboring sites is a limestone platform in which no chert/chalcedony, obsidian, or shell sources have been found. Chert/chalcedony preforms likely arrived from mines in the Puuc area (as documented by Landa 1986), located 60 km from Mayapán, and most of the obsidian arrived from Ixtepeque, Guatemala (Masson and Peraza Lope 2016, p.254), located almost 700 km to the south. Marine shells were also imported. Given that items were produced within the households for their consumption, Masson and Peraza Lope (2014) are interested in identifying households producing above their own needs, or production for surplus. They define two indicators to identify localities with production for surplus (Masson and Peraza Lope 2014, p.320). One is given by concentrations one standard deviation above the mean, and the second is the presence of direct evidence for production such as preforms or shell working debris.

Regarding ceramic production, direct evidence in the form of molds for production of ceremonial items such as figurines and censers has been found (Masson and Peraza Lope 2016, p.248). However, molds are portable objects, and the possibility that the location of production is located somewhere else cannot be ignored. Masson and Peraza Lope (2016, p.252) found that copper working and effigy censer production are associated exclusively with elite contexts.

Concerning utilitarian ceramics, no direct evidence for production has been found at Mayapán. Two houselots were identified with a concentration of sherds above the mean (Masson and Peraza Lope 2014, p.261), structure Q-176 and Q-40a. For instance, surface collection from Q-176 yielded 23% of the total surface collection from the settlement zone (Masson and Peraza Lope 2014, p.261). As mentioned earlier, unusual concentrations of pottery may occur for a variety of reasons including feasting, storage, dumping, or garbage disposal. However, red-slipped Mama vessels (which comprise many forms) and one unslipped form, a striated open-mouth jar (olla) thought to be for cooking, comprise 84% of the assemblage found at this facility. The anomalous sherd concentration, which signaled a production facility to Masson and Peraza Lope (2014, p.261), and the limited number of ceramic types (specialization) found at this house, with a small proportion of other unslipped forms (15% or less), may be interpreted as a potential ceramic production location. However, these proportions would have to be compared to proportions at other households to determine whether it is atypical. Nevertheless, alternative explanations exist. The same pattern can be explained if large amounts of food were cooked (using *ollas*) at this location for feasting or rituals (using slipped vessels and/or ollas).

When kilns are lacking, such as is the case in the Maya area, an alternative indication of ceramic production would be the presence of wasters (overfired sherds). It will be shown in subsequent chapters that it is unlikely that wasters will ever be found for the Late Postclassic utilitarian ceramics of northern Yucatán. Experiments performed (Section 9.4.1 - 9.4.3) with utilitarian ceramic sherds consisting of re-firing them at a temperature just above the temperature of calcination (transformation into quicklime) demonstrated the destruction of the sherds within a few days.

Long-distance Exchange

NAA analysis of censers and red-slipped samples from Mayapán (Cecil 2012) is starting to clarify whether we are dealing with movement of vessels or traditions, at least over a

very large area. Petrographic and NAA analysis of samples from Mayapán, Santa Rita Corozal (Belize), and Petén area (Southern Lowland) found that Mayapán-style censers and red-slipped samples from these sites do not share chemical groups, but that they shared forms and style characteristics.

2.3 Explanatory Models of Ceramic Production Organization

Based on the ethnohistorical and archaeological records, models have been proposed to explain the organization of ceramic production during the Late Postclassic. These models are outlined and discussed in this section.

2.3.1 Mercantile Production-Distribution Trajectory

This view of Late Postclassic production and distribution is linked to the hypothesized trajectory of ancient societies proposed by Rathje (1975) and Sabloff and Freidel (1975) that takes ancient societies from a stage of monumental construction and elaborate projects to a stage characterized by mass replication (Rathje 1975, p.414-415). If enough local demand exists, local variety accompanies these developments. Rathje (1975) proposed that Maya society during the Late Postclassic in northern Yucatán was in such a developmental stage. The Late Postclassic pottery production and distribution characteristics included the presence of:

a) Mass production of pottery (Rathje 1975, p.430).

b) Cost-cutting techniques such as specialization, standardization (or routinization), and simplification (Rathje 1975, p.430).

c) Distribution of standardized set of products (Rathje 1975, p.414-415).

d) Overarching production and distribution system (Rathje 1975, p.414-415), instead of local small-scale production units.

e) Land-based regional distribution and large-scale commercial exchange utilizing maritime transport (Rathje 1975, p.433).

Under this model, large quantities of standardized vessels were produced (Rathje 1975, p.430). Rathje proposed that standardization of shapes and sizes would make stacking and transportation more efficient (Rathje 1975, p.430) and that not only the vessels have a simplified appearance but also the manufacturing processes are simplified (Rathje 1975, p.430). This model proposes ceramic production for local, regional, and international markets (Rathje 1975; Sabloff and Freidel 1975). Feinman and Garraty

(2010, p.171) define market exchange as economic transactions in which supply and demand forces, as well as price or exchange equivalencies, exist. As is the case in the Maya area, the archaeological evidence for market exchange has been difficult to find.

Hirth (1998, p.453-454) summarized indirect approaches that have been used to identify market exchange. One is based on physical configurations in particular architectural indications of markets. The contextual approach infers the existence of a market based on societal features that are believed to require a market, such as large city, or as a result of the natural growth of society. Another approach is to infer markets from information on craft specialization or the scale of production. A greater flow of products than with reciprocal obligations or redistribution is expected in a marketplace, and an increased number of specialist producers points to market institutions. Another approach is based on the spatial distribution of products, which are thought to be distributed more widely in a market environment. Lastly, the distributional approach is based on the state level.

Ratjhe (1975) suggests that, during the Late Postclassic, the expanded market gave rise to mass production, of not only pottery but also other Yucatecan goods. The material remains of that period, therefore, would be characterized by:

a) Wide regional distribution across sites and regions of a common paste composition.

b) Uniformity of manufacturing techniques as the result of mass production.

2.3.2 Dichotomous Ceramic Economy

The results and propositions from ceramic production and distribution studies such as Fry (1980) or Rands and Bishop (1980), discussed earlier, represent a dichotomous model of the ceramic economy. The main tenet of this model is, on the one hand, a decentralized market system in which the core center is a consumer with no role or a small role in redistribution, and a periphery that produced utilitarian (or subsistence) items with a surplus to be exchanged at local and sub-regional markets. On the other hand, the elite controlled the production and distribution of prestige goods by attaching the producers to their residences.

Given the lack of direct evidence for ceramic production, the distributional patterns that Fry, and Rands and Bishop encountered can explain more than one mode of exchange. For instance, as mentioned earlier, Stanton and Gallareta (2001, p.232) differ

from the interpretation that the patterns described in Fry (1980) for the utilitarian ceramics reflect a market economy. As Renfrew (1975, p.10) has stated, when looking at spatial distribution in isolation, market exchange does not differ from redistribution.

Evidence supporting the dichotomous model would have Mayapán as a pottery consumer center and dispersed pottery production at the minor centers. Pottery produced at the minor centers should be found at Mayapán. Although other interpretations can be given to these patterns, the criteria outlined represent the necessary requirements to support this model.

2.3.3 Tributary Mode of Production

According to the informants to Landa (1986), the Lords at Mayapán required sheets of cotton (mantas), hens, honey, cacao, and copal as tribute. Landa (1986) tells us that the Lords' entourages who live at Mayapán did not pay tribute. Therefore, functionaries and perhaps attached artisans did not pay tribute. Barrera Rubio (1984) has proposed that tribute was concentrated at the Maya centers, and the centers monopolized critical raw materials, jobs, and manufacturers. According to some researchers (Barrera Rubio 1984; Fernández Tejedo 1990), the governmental apparatus transferred tribute to trade with the exterior world for products that would be monopolized by the elites. Little or no goods were redistributed back to the people (Fernández Tejedo 1990). However, the community received some redistribution through a series of activities organized by the governmental group. In order to consider this model and given that the head of the different houses or lineages resided at Mayapán, at a very minimum, pottery from the minor centers should be found at Mayapán.

2.3.4 Ritual Mode of Production

Another model involves a ritual mode of production (Wells 2006, p.283), which can include prestige and utilitarian items for gift-giving, feasting, religious ceremonies, and other rituals. Ritual economy is a framework that sees some specialty products as socially valued objects (Wells 2006, p.285), and the group as continually negotiating and materializing its values through rituals (West 2006, p.285). Demand for food and items for ceremonies regulated production and consumption, and surplus production was needed to produce items for rituals. For instance, an alternative explanation to Fry's (1980) market exchange explanation, proposed by Stanton and Gallareta (2001, p.232),

is that the amount of serving vessels at the core center were produced to be broken during feasting or ceremonies.

Pottery was an integral part, although indirectly, of the many fiestas and ceremonies of Yucatecan Mayas. Much of the ceramic production was likely damaged or broken as a result of these festivities. Landa (1986, p.70 - 90) compiled a Maya calendar including fiestas and ceremonies from which it is evident that large amounts of pottery required to be replaced. In the month of *Pax*, all the lords from the minor centers went to the major center for ceremonies that included eating and drinking for 5 days. At the return to their towns, they prepared their own fiestas in which drinking and copal burning lasted until the month of *Pop* (3 months). In the month of *Pop*, for the new year celebration, all utilitarian things including dishes and *vasos* (jars) were renewed. They will take the old things and dispose them out of town (with very significant implications for archaeologists' frequency counts). Unfortunately, Landa did not describe pottery production and who and how dishes and jars were replaced. In this month also, all the males will get together at the temple for days of drinking and eating. In the month of *Yax*, they will get new censers and clay effigies. Throughout the months, Landa described fiestas and ceremonies with days of eating and drinking.

Ethnographic work shows examples of ceramic production for ritual purposes. San José Petén is the town to which, according to interpretations of Native writings, the Itza migrated during the Terminal Classic to Early Postclassic (AD 1000-1100/1150, dates from Masson, Hare, and Peraza Lope 2006, p.189; Masson and Peraza Lope 2014, p.69) and that is most likely culturally related to Yucatán (Reina and Hills 1978, p.142). At this town, pottery is fired primarily close to the *milpas* (cropping fields) throughout the countryside. However, there is a dual orientation to pottery production (Reina and Hills 1978). This pottery is for domestic consumption, but once a year pottery is produced in the pueblo (town) to be used in a ritual with the skull during the Day of the Dead. For this ritual only, ollas are made, and the ritual food is prepared in these ollas. When done with the rituals, the ollas are then used throughout the year (Reina and Hills 1978). The spatial distribution that rituals such as this create for these ollas is similar to distribution, for instance, that market exchange would create, in which ollas were produced at one center but found at many other centers. However, some characteristics in pottery distribution may help to identify, for instance, the reciprocal exchange (Hirth 1998, p.455). They include the low volume of commodity movement, small sphere of distribution, and heterogeneity of the sources.

2.3.5 Calendrically Shifting Production Location

The organization of production could have been more complex than researchers envision. Rice (2009, p.119) has said that during the Late Classic multiple types of ceramic production organization coexisted and that the organization varied dependent on the type of vessels, the intended use, or the intended users. For instance, Rice proposed a ceramic production organization for elite items based on a calendrically based shifting of production location from center to center and another organization for ordinary items. This organization parallels the interpretation by Edmonson (1979) of Late Postclassic political organization in which centers did not permanently hold power but rotated it according to calendrical cycles. The main centers may have rotated according to the *may* or 256 years. The books record another rotation in which each of the thirteen most prominent centers among the provinces became the "seat of the katun". The seat of the katun became a capital for a period of a katun (20 years), getting tribute rights and administrative powers (Edmonson 1979, p.3). Ceramic production location, as proposed by Rice, rotated accordingly, at least for ceremonial vessels.

The archaeological record of paid tribute to the seat of the *may* or *katun* that involves pottery, probably as containers (for honey, for instance), would not be that different from the archaeological fingerprint of market exchange. At the centers that are seat of the *katun*, feasting or production for rituals could be recognized if some types of vessels predominate, such as ceremonial, serving, or cooking vessels.

2.4 Summary

The current research and the models presented highlight the difficulties and ambiguities of interpretation when, as in the case in Maya area, direct evidence for production is lacking. The situation is made more difficult because, during the Late Postclassic, colonial and ethnohistorical records mention several coexisting exchange mechanisms, while the quantities involved or the relative importance in the economy was not described. The models for ceramic production, distribution, and exchange usually emphasize some of these mechanisms more than others. At the completion of this study, the results are compared to these models, aiming to identify the models that better fit the results.

This chapter presents the topic of this research, the Late Postclassic ceramics of northern Yucatán. The chapter starts by defining the study region and period of investigation. The ceramic varieties included in this study are described next.

Tases and Eastern Tases Spheres

During the Late Postclassic, ceramic differences between the north-central and northeastern zones of the peninsula were relatively minor. On the other hand, the extent of differences in art and architecture has led most researchers to believe that these areas, though closely related, belong to two different cultural spheres that have been called Tases and eastern Tases. When compared to the Terminal Classic, the Tases ceramic sphere is characterized by new ceramic types (Peraza Lope *et al.* 2006), the almost exclusive presence of calcareous rocks as inclusions, and, usually, soft paste with medium to coarse texture.

Major differences exist related to the distribution of the ceramic types, with some types dominating in a given zone. In most inland sites, only one red-slipped (Red Mama group) and one unslipped ceramic group (Unslipped Navula) dominate the assemblages [this classification was devised by Smith (1971a) for Mayapán (see next section)]. Although many vessel forms exist, each basic vessel form within these groups varies little from site to site. The eastern Tases red-slipped vessels (Red Payil group) are thinner, finer, and more compact than Mama. Payil sherds are found throughout the coast, including the Chetumal area and northern Belize. In addition to Payil, the unslipped Navula and Vista Alegre (a local eastern unslipped group) are also common in the coastal area.

Although the ceramics of the period lack finely decorated or elaborated items, Payil was most likely an elite item. Ochoa (personal communication, August 2012) has observed that eastern red-slipped Payil is usually found in ceremonial and elite contexts. Kepecs (1999, p.511) makes a similar observation remarking that Payil sherds were found mainly on the central platforms of the main centers of the Chikinchel region.

Without detailed mineralogical and chemical analyses, it has been difficult to determine whether stylistic similarities of red-slipped pottery in the inland or coastal

areas are related to many producers sharing rigid standards of how to make the pots or to the existence a few producers. Similarly, without detailed mineralogical and chemical analyses, it has not been possible to investigate whether Navula and Yacman stylistic variability matches a varied composition.

The Study Time and Region

The sites examined in this study are located in north-central and north-eastern Yucatán. In these areas, the Tases and eastern Tases ceramic complexes dominated (Peraza Lope *et al.* 2006). Traditionally, the start of the northern Yucatán Late Postclassic is marked by the beginning of construction at Mayapán, date recently moved down to around AD 1100 (Masson, Hare, and Peraza Lope 2006, p.189; Masson and Peraza Lope 2014, p.63, 69), coinciding with the appearance in northern Yucatán of Tases most common ceramics (Red Mama and Unslipped Navula ceramic groups). The Early Postclassic, AD 1000-1100, appears to be a transitional period positioned after the end of the Terminal Classic but before the beginning of construction at Mayapán.

3.1 The Ceramics of Late Postclassic Northern Yucatán

Smith (1971a) classified the ceramics from Mayapán using the type-variety system. This classification provides a way to describe and classify the observed variety in the ceramics while enabling a way to communicate in the language used by most ceramists of northern Yucatán material. The type-variety system is composed of a hierarchy of wares, types, and varieties. The whole array of types and varieties defined for each ware are present at Mayapán. This is not the case at other sites where only a few types are usually present. Groups of sites that present similar ceramic groups are collected into a single culturally significant ceramic sphere.

Origins of Northern Late Postclassic Ceramics – Red-slipped Wares

Some researchers (Brown 1999a; Smith 1971a, p.203) do not see much influence of the previous northern Terminal Classic ceramics, the Sotuta (Chichén Itzá) and Cehpech (Puuc area), in the development of the northern Late Postclassic (Tases) red-slipped ceramics. Smith (1971a, p.254) proposed that migrants, the Itza probably, arrived on the east coast after crossing the peninsula from Champoton (Tabasco area, Figure1-1) and from there went first to Chichén Itza and later to Mayapán. At some point in these peregrinations, they copied the Sotuta (Terminal Classic) vessels but continue using their

"decadent" (limestone-only, coarser paste) manufacturing techniques for the construction of the pottery clay, creating what will be known as Peto Cream Ware. The implication from Smith's proposition is that the limestone-only slipped Postclassic ceramics of northern Yucatán are descendants of Peto, the first "decadent" ceramics. Smith (1971a) believed that the red-slipped ceramics from Mayapán did not start at this site, and must have developed somewhere else before the beginnings of Mayapán.

A study that may have a bearing on the topic of the shift to limestone-only temper has been mostly overlooked. A distinctive feature of Terminal Classic Cehpech and Sotuta slipped ceramics is the presence of volcanic ash. Except for Thin Slate Ware from Uxmal, the distinctive slates (a type of slip) of the northern Terminal Classic contain volcanic ash (Smith 1971b, p.169-172). However, petrographic analysis (Chung et al. 1995, Tabla 2; Varela and Leclaire 1999) of Sotuta and Cehpech slates (Terminal Classic) recovered from 25 northern Yucatán sites showed that the analyzed sherds that are not from the main sites of Chichén Itzá or in the Puuc area are composed of carbonates only, with only a few containing volcanic ash. This is to say that Sotuta and Cehpech ceramics (by style and form), at centers distinct from the core centers of Chichén and Puuc area, predominately have carbonate inclusions. Therefore, at centers away from the core centers, ash-tempered Sotuta and Cehpech ceramics coexisted with local calcitetempered Sotuta and Cehpech ceramics. Locally made calcite tempered Terminal Classic slates goes against the broadly accepted notion of the Late Postclassic ceramic composition representing an abrupt break with the previous period (in which finer and volcanic inclusions were the most common).

Researchers have entertained the idea that Mayapán Red and Payil ceramics may have originated in Belize or the Petén area. Based on findings at Lamanai, Belize, Pendergast proposed (1981, p.48-49) that red-slipped ceramics with affinities to Mayapán developed before the 12th century somewhere else and were later adopted at Mayapán. Radiocarbon analysis yielded a date of A.D. 1140. At the time of these findings (1981), Mayapán chronology dated the founding of this site to around A.D. 1250. Mayapán's chronology has now been moved down because the first building may have been built as early as A.D. 1100 (Milbrath and Peraza 2003, Peraza Lope et al. 2006), which prompted researchers (Lope Peraza et al. 2006, p.173) to propose that red-slipped ceramics as found at Lamanai are not earlier than Mayapán ceramics (Lope Peraza et al. 2006, p.173). However, new radiocarbon reanalysis (Hanna et al. 2016) of the redslipped Lamanai ceramics with affinities to Mayapán have moved down the appearance of these ceramics to the late 10th century, earlier than the dates from Mayapán.

Origins of Northern Late Postclassic Ceramics – Unslipped Wares

Regarding Postclassic unslipped vessels, some researchers see a continuity of Terminal Classic Sotuta and Cehpech unslipped forms, particular the striated jars, until the Late Postclassic (Brown 1999a, p.295, 314). Furthermore, Brainerd (1958) who classified ceramics of northern Yucatán earlier than Smith (1971a), grouped together Mayapán unslipped vessels with previous ones given their similarities.

The rest of this section presents a brief description of the wares involved in the current research: Mayapán Red, Mayapán Unslipped, Tulum Red, and Peto Cream Ware. Of the many varieties within these wares (Smith 1971a, p.135-136) the description focuses on the varieties sampled for this study. With regard to the forms sampled, sherds mainly from jars but also some dip dishes (*cajetes*) were selected for analysis.

3.1.1 Mayapán Red Ware

Mayapán Red is a red-slipped, smoothed and burnished ware (Figure 3-1, 3-2) without many defects, such as spalling or popping (Smith 1971a, p.23). Forms such as jars (Figure 3-1, Figure 3-3), deep dishes or *cajetes* (Figure 3-4), bowls, tripod grater, basins, and restricted orifice bowls are common (Smith 1971a, p.203). This ware has little in common with the Sotuta and Cehpech slipped wares from northern Yucatán previous periods (Brown 1999a; Smith 1971a, p.202). It shares some forms and overall color with the Payil group of the eastern area, differing on some of the forms and thickness, compactness, and composition of the paste (Brown 1999a, p.328).

Figure 3-1. Mayapán Red Ware jars from Mayapán (from Smith 1971b, Fig. 38)

Figure 3-2. Mama variety samples (a:#260, b:#323, c:#113, d:#119)

Of the Mayapán Red Ware varieties, this study focuses on the Mama variety (the reasons for this selection are summarized later within Chapter 5). Of the Mama forms, this study examines jars and deep dishes or cajetes. According to Smith (1971a, p.203), the main Mama forms are high and low-neck jars. Smith (1971a, p.79) considered jars one of the most, if not the most, important type of vessels at Mayapán because of their relative abundance (41% of his collection) and the array of functions for which they are suitable.

Figure 3-3. Mama variety jar (drawing by Luis Flores Cobá)

Regarding their intended use, a considerable amount of red-slipped jars is found by the sinkholes common in the area (Cruz Alvarado 2017, personal communication), or cenotes. Cenotes reach the water table indicating an association to water that can be functional (carrying, storing) or ritual. Ethnographic work in Yucatán (Thompson 1958) at a time in which forms similar to that of the Postclassic were in use shows them used for water carrying and storage.

The second form included in this study is the *cajete* (Figure 3-4), a deep dish that can occur with tripod supports. Cajetes are slipped on the exterior and interior walls. Although the emphasis of this study is on jars, some cajete sherds were selected for analysis because the functions of jars and cajetes may differ substantially, and they may present differences in production technology.

Figure 3-4. Mama variety, tripod dishes or cajetes (drawing by Luis Flores Cobá)

3.1.2 Mayapán Unslipped Ware

This is an unslipped, smoothed but never burnished ware (Figures 3-5 to 3-9). It is probably the most abundant Tases ware, and together with Mayapán Red Ware makes up most of the assemblage from north-central sites. Most research results have divided these unslipped ceramics based on the probable intended function of the vessel into utilitarian and ceremonial (Smith 1971a; Ochoa 2007). Some of the forms associated with Mayapán Unslipped Ware are open-mouth jars, deep dishes or *cajetes*, censers, flat vase dishes, and restricted orifice bowls (Smith 1971).

Figure 3-5. Navula variety (a:#162, b:#398, c:#313, d:#165, e:#314)

Of the varieties in this ware, this study focuses on utilitarian jars of the Navula (the variety name is similar to the ware name) and Yacman varieties. Navula variety jars (Figures 3-5 to 3-7) are usually undecorated. Some Navula *cajetes* were also included.

Figure 3-6. Plain, unslipped Navula jar (drawing by Luis Flores Cobá)

Figure 3-7. Plain, unslipped Navula cajete (drawing by Luis Flores Cobá)

Yacman vessels are a variety of the Mayapán Unslipped Ware showing light striations (Figures 3.8, 3-9) over most of the body usually up close to the shoulder. Most are open-mouthed (the mouth is at least one-third of the maximum diameter) with a low-neck and globular body, or *ollas* (Figure 3-9). They most likely were cooking pots, based on descriptions in ethnographic work (Thompson 1958) and observation such as that of Brown (1999a, p.326) of a high frequency of burnt, carbon-coated bottoms in his collection.

Figure 3-8. Yacman samples (a: #435, b: #430, c: #150, d: #432)

Figure 3-9. (a) Small reconstructed striated, open-mouthed jar or olla (from Brown 2017); (b) Yacman jar (from Smith 1971b, Figure 29m)

3.1.3 Tulum Red Ware

This is a red-slipped, smoothed and burnished ware rarely found outside the eastern zone, with the exception of Mayapán. The Tulum varieties involved in this study are Payil (Figure 3-10a) and its incised variety, Palmul Incised (Figure 3-10b). They share with Mama many visual characteristics, such as form and general slip color, but they differ in their paste texture, compactness, and homogeneity in slip color, with Payil being more homogeneous (Smith 1971a).

Figure 3-10. Payil (a) and the incised variety, Palmul (b)

3.1.4 Peto Cream Ware

The ceramic variety included in this research is called Xcanchakan Black-on-Cream (Figure 3-11, 3-12), which is a variety from the Peto Cream Ware. At Mayapán, it is more common in the early deposits (Smith 1971a). Smith (1971b, p.254) considered that this cream-slipped ware overlapped during the end of the Terminal Classic and the Late Postclassic and served as a bridge between these periods. Smith offers two reasons. One is the ceramic associations, which indicated to him an earlier beginning for Peto than for Mayapán Red. The second is that Peto shares forms and decoration with Sotuta (Chichén) ceramics and presents a method of manufacture with only coarse carbonate rock temper (as opposed to volcanic ash during the Terminal Classic) that presaged the composition to come during the Late Postclassic. A very early and sealed deposit at Mayapán contains Peto Crean, Sotuta, and Cehpech ceramics (Milbrath and Peraza Lope 2003, p.6), which indicates that Peto is earlier than Mayapán Red. That Peto, Sotuta, and Cehpech ceramics may have overlapped is suggested by other evidence such as radiocarbon dates of AD 900–1000 from Isla Cerritos (Robles 1987, p.105–106 cited in Milbrath and Peraza Lope 2003, p.5). This is a location on the east coast, and Peto may have been earlier on the coast than in the inland areas of Yucatán (Ochoa 1999).

Figure 3-11. Xcanchakan samples (a: #370, b: #371, c: #372, d: #373)

Figure 3-12. Xcanchakan variety, Peto Cream Ware (from Smith 1971b, Figure 75 l,m)

Chapter 4 THE GEOLOGICAL SETTING

This chapter presents the geological environment and raw materials that surrounded the potters who made the vessels in this study. The physical, petrographic (in hand specimen and thin section), and chemical characteristics of these vessels are compared to the raw materials collected for it is crucial for this study to understand the geological environment. The technological choices made by potters are, by necessity, related to the availability and properties of the raw materials chosen (Howie 2012; Sillar 2000, p.5) in the construction of the pottery clay. Nevertheless, the availability and suitability of raw materials are not the only factors driving the selection made by potters (Sillar 2000, p.5). This chapter starts by introducing the general geological setting of northern Yucatán, including the Chicxulub meteor that hit Yucatán and its effects on the morphology and sedimentation of the region. It continues with the main rocks, special features, and clays within the region.

4.1 The Geological Setting of the Study Region

The Yucatán Peninsula is a marine platform that has been covered with water multiple times throughout its geological history (López Ramos 1975). The study region is located in the northern part of the peninsula. This is an area without surface rivers due to the fractures and depressions in the carbonate rocks (Instituto Nacional de Estadística, Geografía, e Informática [INEGI] 1983). Sinkholes reaching the water level, or cenotes in Maya language, are common.

Complex processes have interacted in Yucatán including geological changes, soil formation, redeposition of soil material toward karstic depressions (Cabadas et al. 2010), and weathering, in addition to the strike of a large meteor (Hildebrand et al.1991) at the end of the Cretaceous near the current town of Chicxulub (Figure 4-1) in northwest Yucatán. These processes have been instrumental in the creation of the current-day soils of Yucatán (Pope et al. 1996) and surface features.

The morphology of Yucatán was affected by the meteor (Pope et al. 1996). The impact created a crater (Figure 4-1) and a semicircular depression, or "moat," 3-5 m deep located at a radius of 83 km (Pope et al. 1996). At the edge of the crater, there is a semicircular area with high permeability coinciding with the semicircular depression

(Pope et al. 1996) that contains a ring of sinkholes reaching the water table (Figure 4-1), or cenotes (from Maya language), that separates the basin of the crater from the area outside the ring. The area outside the crater has many cenotes, so many that it is called the "pockmarked" terrain (Perry et al. 2002).

Figure 4-1. Chicxulub crater, cenote ring, and pockmarked area (Pope et al. 1996, Figure 1)

The sedimentation patterns in northern Yucatán are closely linked to the impact of the meteorite (Figure 4-1). Sedimentation and rock formation inside the basin are different from the outside. During the Late Tertiary, while the sedimentation took place within the crater's basin, the area outside the ring may have been exposed and underwent weathering and karstification made evident by the cenotes (Perry et al. 2002; Pope 1997). The area inside the basin is mapped by Pope and INEGI as Late Tertiary, while the area south and outside the ring is mapped as Early Tertiary.

As shown in Figure 4-2, the Late Tertiary (yellow) covers the area inside the crater and arches around comprising almost all of the north part of the state of Yucatán, most of the eastern half of the same state, and most of the state of Quintana Roo (Perry et al. 2009). The oldest exposed rocks in this area comprise Early Tertiary (Eocene) carbonate rocks (INEGI 2006) located south and southeast of the cenote ring (Figure 4-2).

Figure 4-2. Geological map of Yucatán showing cenote ring (from Perry et al. 2009, Figure 1)

Most sites in this research are located in the north-central area, north and south of Mayapán, forming close to a straight line. These sites are shown demarcated by the top rectangle in Figure 4-2 and shown in more detail in Figure 4-3. In addition, three sites, Culubá, Cobá, and Chac Mool are located in the eastern part in northern Yucatán and can be seen in Figure 4-2.

In relation to the sites in this study, the older Early Tertiary area starts near Tekit, as illustrated in Figure 4-3, and includes among other towns, Muna, Ticul, Tzucacab, Pisté (INEGI 2006) and the sites of Tekit, Mama, Tipikal, and Teabo included in this study. The Early Tertiary may also comprise a small-restricted Oligocene area in the Tecoh area (INEGI 1983). The Late Tertiary (Pliocene-Miocene) area includes several of the sites in this study: Mayapán, Telchaquillo, Tecoh, and Tepich in the north-central area and Cobá and Culubá in the northeast area (Figure 4-2 and 4-3).

Figure 4-3. Geological map of the north-central sites (based on INEGI 2006)

4.2 The Rocks within the Region

The Yucatán peninsula is mainly composed of carbonate rocks over a much older basement of terrigenous origin (López Ramos 1975). Cores taken from wells drilled in northern Yucatán, mainly by PEMEX (Petróleos Mexicanos) and by the National University of México (UNAM) Chicxulub drilling program (Urrutia-Fucugauchi et al. 2004) have provided samples for the identification of surface mineral phases. Figure 4-4 shows the geographical location of the wells, in particular, U2 (UNAM2) located close to Mayapán. Based on these programs, limestone, dolomitic limestone, and dolostone are the rocks that commonly crop out in that area (Leftticariu 2003).

Figure 4-4. Location of the UNAM 1 and 2 wells near Mayapán (Urrutia-Fucugauchi et al. 1996, Figure 1)

Mostly two minerals with very similar crystal structure form the carbonate rocks of Yucatán: calcite (CaCO3) and dolomite (CaMg(CO3)2). A carbonate rock is classified as a limestone when calcite dominates, as opposed to dolostone when dolomite dominates. Having a similar crystal structure, calcite and dolomite are very difficult to

differentiate in hand specimens and even with microscopes. In carbonate sediments, dolomite is usually associated with calcite (Nesse 1986, p.144), but it can be found in isolation (Adams and MacKenzie 2001, p.132).

In Figure 4-5, the lithological columns for the sampled wells in Leftticariu (2003, p.3, Figure 2) were modified to show only the rocks at or near the surface. Although dolomite layers may be more common outside the basin of the crater than inside (Leftticariu 2003, p.2), dolostone and dolomitic limestone were found close to the surface around Mayapán at -20 m, in samples taken from well UNAM 2 (Figures 4-4 and 4-5).

Figure 4-5. Rocks at or near surface for sampled wells (After Leftticariu 2003)

4.3 Other Surface Features

The relief of the northern Yucatán Peninsula developed from the limestones and processes including a coastal plain and a karstic plain (Bautista and Zinck 2010, p.2). The coastal plain extends along the coast, and it is less than 10 m above sea level. The karstic plain has a topography that varies from flat to undulating at 10 - 60 m above sea

level (Bautista and Zinck 2010, p.2) that in the north-central area is less contrasting. As described earlier, cenotes, illustrated in Figure 4-6(a), are common in the area.

Altillos and Planicies

Two forms occur throughout the karstic area, namely the mounds or "altillos" and the flat areas or "planicies". The soils in the mounds have a large amount of stones and organic material (Bautista and Zinck 2010). The *planicies* are the flat areas from which the water filters to the underground, and the soils are washed away containing the least amount of carbonate minerals. Black soils occur on mounds, and deep red soils on the *planicies* (Bautista and Zinck 2010, p.2). In general, the carbonate rocks are found at the surface and under the shallow soils within the area. Other features within the area are the calcrete layer (caliche) and the sascab pockets, which are described next.

Figure 4-6. (a) Entrance to cenote; (b) exhausted sascabera under the hard caliche layer

Calcrete (Caliche) Layer

In addition to cenotes (Figure 4-6a), a characteristic surface feature in northern Yucatán is a calcrete, or caliche, layer (Perry et al. 2002) created by the dissolution and redeposition of the calcareous materials (INEGI 1983). This hard carbonate layer (Figure 4-6b) is more developed within the crater's ring, the Chicxulub Sedimentary Basin, in which it can reach up to 3 m thick (Perry et al. 2002). Carbonate rocks (limestones, dolomitic limestones, or dolostones) underlie the caliche layer.

Sascab

Underlain the caliche layer or between rock or clay layers, there are relatively thin lenses of unconsolidated carbonate powder, pebbles, and boulders known as *sascab* (Perry et al. 2002). It is very common in the peninsula (Figure 4-7). The composition of *sascab* varies according to the associated rock layers (Littmann 1958). Littmann showed that *sascab* is an unconsolidated version of the nearby rocks and that *sascab* located near limestone contains limestone, while *sascab* found in pockets associated with nearby dolostone is composed of dolomite. In the same manner, a clay layer underlying the *sascab* layer affects the composition of *sascab*.

Figure 4-7. *Altillo* exposed by road construction, with dark soil on top and pockets of unconsolidated granular carbonate rock, or *sascab*

4.4 Clays within the Region

The Yucatán Peninsula has witnessed geological, extraterrestrial, sedimentation, and soil formation processes and events that have resulted in a variety of clays: pedogenetic, detrital, and direct crystallization clays (Isphording 1984, p.60). Given that north of the Champoton River (which includes the whole state of Yucatán), there are no surface rivers and all drainage is subterranean (Isphording 1984, p.61), the clays do not contain significant detrital material. The exceptions are some clays found at fault basins of the eastern area (smectite) or some flat closed basins in the interior (Isphording 1984, p.61; see Isphording 1984 on how the clays may have been formed). As is described in the next paragraphs, kaolinite, kaolinite-rich clayey thick red soils, montmorillonite, kaolinite-montmorillonite, palygorskite, and sepiolite have been documented in the northwestern area. In the eastern area, the clays are dominated by smectite, while kaolinite is present but not common (Isphording 1984, p.65), and palygorskite has not been found.

Kaolinite

The soils formed on limestone in Yucatán are rich in well-crystallized kaolinite (Cabadas et al. 2010), indicating to Cabadas et al. a high degree of weathering. Kaolinite is associated with the pedogenetic soils of the northeast coastal plains and the northwestern plains (Quiñones 1975; Isphording 1984; Cabadas et al. 2010). The soils of these areas are similar in that they are composed mainly of weathered limestone, organic material, clays, and oxides. The mineralogy of the clays includes poorly crystallized kaolinite, boehmite, and traces of talc and chlorite (Isphording 1984, p.61). De Pablo-Galan (1996, p.100) examined 90% pure disordered kaolinite around Sierra del Ticul representing mature pedogenetic soils (De Pablo-Galan 1996, p.100). Associated with this kaolinite are minor quartz and calcite (De Pablo-Galan 1996).

Figure 4-8. Collection of red soil sample in a "planicie" area (#3, Table 5-4)

Red Soils and Clays

Red and reddish brown materials are found in some of the low or *planicies* areas. A study by Cabadas et al. (2010, p.1441) of thick red soils (Figure 4-8) in three different areas of Yucatán found that these soils are dominated by clayey fine material (over 50% with one location, Kantunil Kin, having 88-99%). These clays owe their red or reddish brown color to red iron oxides and brown ferruginous nodules. They are mostly friable or slightly plastic, usually without sand inclusions other than ferric concretions (Isphording 1984, p.61, 65). The clay minerals in these red soils were, in order of abundance, kaolinite, vermiculite, mica, and goethite and gibbsite. Illite and palygorskite are absent.

The amount of organic matter in unprocessed red clays from the north-central regions may be high. In a study (Shang and Tiessen 2003) that measured the organic material in black and red soils of the Hocaba community, it was found that they contained 15% organic material.

Smectite

Smectite has been documented in samples from Maxcanú, Figure 4-9 (Sánchez del Rio et. al 2009). These clays are plastic and of gray to black, or dark brown, color (Isphording 1984, p.65), containing abundant silt to sand size quartz, magnetite, and ilmenite (black opaque).

Palygorskite

Palygorskite is common in northwestern Yucatán. It has been found in several places close to the surface (Sánchez del Rio et al. 2009). Isphording and Wilson (1974, p.484) consider palygorskite as the dominant clay not only in the Ticul area but also in other areas of the peninsula.

Figure 4-9. Locations of palygorskite clays (after Arnold 1971; de Pablo 1996, p.94; Isphording 1984, p.68, Figure 4; Morales Valderrama 2005;Sánchez del Río et al. 2009, Figure 1)

Figure 4-9 summarizes the locations at which palygorskite has been found. Sánchez del Río et al. (2009) analyzed samples from these locations finding that these deposits do not contain smectites, carbonate minerals, or significant quartz amount which these authors explain by palygorskite formed by precipitation.

Sánchez del Río et al. (2009) also collected two samples of sascab, one from a sascabera south of Maxcanú, Chanchocholá, and another from a pottery shop at Ticul.

The analysis showed that they are palygorskite marls, the first containing dolomite and the other calcite and dolomite. Figure 4-10 illustrates a palygorskite marl sascabera.

Figure 4-10. Entrance to palygorskite-sascab mine in the vicinity of Chapab (Figure 4-3), Yucatán

Currently, there are no known palygorskite sources within the crater's basin (Figure 4-9). Most palygorskite clays from Yucatán are hard as a rock when dry but plastic and soft when wet (Isphording 1984, p.67, 69), while sepiolite clays are non-plastic (Schultz et al, Isphording 1984, p.67-69).

Kaolinite-montmorillonite

The presence of kaolinite-montmorillonite has been documented (Schultz et al. 1971) in

three locations of northern Yucatán, Yo' K'at (Arnold 2005a, 2008) close to Ticul, Tepekan, and Becal (Campeche).

Montmorillonite

Arnold (1971, Table 1) has documented this clay in the vicinity of Ticul, found in samples taken from sascaberas in that area. The samples are composed of clay and

calcite. In one instance, the clay is 100% montmorillonite. In the other, 85% is composed of montmorillonite, and for the rest the results were inconclusive.

Montmorillonite-kaolinite

The clay portion of a marl collected for this study (#11 in Table 5-4) from a sascabera located near Mayapán is mainly composed of montmorillonite (Shannon 2017, report included in Appendix A for ease reference). Kaolinite is a minor component.

Quartz is a minor component naturally present in soils and clays from the northcentral area, and the northwestern area in general (Shang and Tiessen 2003, p.192; Sánchez de los Ríos 2009). For instance, patches of red soils located in the community of Hocaba, located in north-central Yucatán 56 km south of Mérida, were examined finding that quartz is concentrated in the silt fraction (Shang and Tiessen 2003). In the clay fraction of these red soils, kaolinite was the most abundant mineral. The analysis of multiple palygorskite clay sources by Sánchez del Rio (2009) throughout central Yucatán showed that traces of quartz are commonly found in these clays.

4.5 Summary

Carbonate rocks are the most common rocks in Yucatán. They are composed mainly of calcite and/or dolomite. Common in northern Yucatán is an unconsolidated version of the carbonate rocks. It is locally called *sascab*. It is readily found almost at surface level in lenses and pockets. These pockets are locally known as *sascaberas*.

The impact of a meteorite affected the morphology and sedimentation patterns of Yucatán. The impact formed a variety of features such as the basin of the crater and a ring of sinkholes (cenotes) around it (Figure 4-1). During the Late Tertiary, sedimentation took place within the basin of the crater, while the area outside the ring, dated as Early Tertiary, may have been exposed to the corresponding weathering (Perry et al. 2002; Pope 1997). These differences in dates have been corroborated with isotope techniques. Research has shown that these age differences are associated with differences in soil characteristics, with Pope et al. (1996) finding that what most explains differences in Yucatecan soils is age. In contrast to the lack of mineralogical variety of the rocks, a variety of clay deposits including kaolinite, kaolinite-montmorillonite, smectite, and palygorskite are reported in the literature. However, references in the literature of clay deposits located within the basin are sparse.

Chapter 5 RESEARCH METHODS

The ultimate goal of this study is to contribute to a better understanding of the Late Postclassic social and economic environment. In Chapter 1, hypotheses and research questions were proposed to investigate regional patterns in ceramic production technology that might reflect production organization, social groups or divisions, and interactions including exchange and traditions. These are key components of the Late Postclassic Maya socio-economy. The expectation of learning about these many aspects of Maya society through the study of ceramic technology rests on a theoretical framework that considers technology as a cultural production. Under this framework, technology is conditioned to not only the constraints of the environment but also to the wider symbolic, economic, and political context embedding the artisans (Dobres 2010; Lemonnier 1993; Jordan 2015). This is the central tenet for the research methodology of this study.

This chapter starts by presenting the theoretical foundation for the research methodology including three concepts that proved to be useful in this study: technological choices, techniques, and the *chaine opératoire*. Next, three hypotheses proposed for guiding this research in addressing the research questions are discussed. Within the conceptual framework, a combination of analytical methods, concepts, and constructs was used to test the hypotheses and address the research questions including the use of the *chaine opératoire*, test cases, ceramic experiments, petrographic, chemical (NAA), statistical, and surface features analyses.

5.1 Technology as Cultural Production

The notion of technology as cultural production is closely related to the process of learning how to implement technological solutions. These solutions are physical objects and part of the material culture (Jordan 2015, p.1). Usually, people do not invent technological solutions by themselves just by trial and error: most of the time, people learn from other people (Jordan 2015, p 1). A new potter is made through a long learning process. It involves person-to-person contact, transfer of traditions, sharing or demonstrations of material culture, in which not only the mode of execution is conveyed to the potter but also the appropriate behaviors, movements, mental models of the
finished work, traditions, symbolism, and cultural meanings (Wendrich 2012, p.2-4; Jordan 2015).

That ancient technologies are socially embedded (Whitbread 2001, p.450) is demonstrated by ethnographic work showing the relation between the way things are done, or technologies, and cultural and symbolic perceptions of the world (Arnold 1971, Gosselain 2000, Thompson 1971, Morales Valderrama (2005), Mahias 1993). Van de Leeuw (1993), for instance, showed that the way potters conceive a pot is a factor in the choices of technical processes.

Technological choices are related to the concept of technological style. The basic stages in the manufacture of ancient ceramics are the same worldwide because of the nature clay (Rye 1981, p.3). They include the selection of raw materials, the preparation of the pottery clay, forming, drying, and firing (Rye 1981, p.3). In addition to or within these necessary steps, potters can choose from a variety of valid alternatives with regard to clays, tempers, shapes, thickness, and techniques of construction, and firing (Sackett 1990:33) that would produce a successful vessel. Sackett (1990) defines technological style as the selection, within the alternatives present to potters, of functionally equivalent alternatives. Therefore, style is a given manner of doing something, which is specific to a time and place.

Two concepts used in the approach in this study need to be defined: techniques and *chaine opératoire*. A technique is a series of actions to achieve a particular goal such as collecting and processing the clay or slipping (Sillar and Tite 2000, p.4). The sequence in which techniques are executed to transform the raw materials into the final product is known as the *chaine opératoire* (Sillar and Tite 2000, p.4, van der Leeuw 1993, p.240).

How does the study of techniques and *chaine opératoire* lead to a better understanding of ceramic production and organization as well of the socio-economic organization? One reason for the usefulness of the *chaine opératoire* is that it provides a method to examine the choices at every stage of the production process (Wendrich 2012, p.257) and facilitates the identification of variations. Techniques are usually grouped (Rye 1981, p.4) based on their places in the sequence of production, such as those associated with material processing.

Reconstructing this sequence allows identifying invariants or steps that cannot be modified (van der Leeuw 1993, p.240) without compromising the final product, and variants that allow more freedom. This sequence provides a road map from which techniques used among groups of pottery can be identified and compared.

Another reason for using a *chaine opératoire* is that it may uncover social divisions. Different behaviors and differences in the environment may result in technological variations in the pottery. Therefore, patterned similarities in ceramic technology express "the tradition to which the producer group belongs and therefore discriminate between main technical traditions" (Roux and Courty 2005, p.202). The choices made by potters with regard to materials, the techniques applied, and the sequence of steps followed for the construction of the end product are conditioned by the wider cultural, symbolic, economic, and political environment surrounding the artisans (Dobres 2010; Lemonnier 1993, p.3; Gosselain 2000). Material analysis, therefore, provides a route to access past societies (Whitbread 2001, p.450).

The reasons for that are related to the processes of knowledge transfer. The learning of a craft and knowledge transfer is dictated by social factors such as family, traditions (Wendrich 2012, p.11; Jason 2015), or gender (Wendrich 2012, p.11). Therefore, the technological style of one member of the group resembles that of other members (Jeffra 2015, p.142). For instance, Gosselain (2000, p.189) observed that networks of interaction and social boundaries tended to be reflected in the spatial distribution of the different styles and ways of making pottery, the *chaine opératoire*.

The artifacts (or material culture), then, are more than just the result of technology for they embody traditions and social context. Therefore, the study of how ceramics were made, the choices made from what may have been available to potters, and variations in technology have, as a result, archaeological value for they may point to divisions in the potters' environment, such as technological traditions, or production groups and zones (Roux and Courty 2005, p.202). These groups may have implications and are useful in this study for the understanding of ceramic manufacture, organization, exchange, and other interactions.

Another area in which a *chaine opératoire* is useful for this research is in the design and evaluation of experiments on local raw materials. Jeffra (2015) has advocated the use of the *chaine opératoire* in experimental archaeology as a form to bridge the results of experimental data and the social environment. This allows making inferences about the social context.

However, there are many limitations as to the use of the *chaine opératoire* in archaeology. One such limitation is that the work of the archaeologist differs from the ethnographer in that the actions made by potters are not visible in the archaeological record (Rye 1981, p.4). The archaeologist has to be content with observing the physical

attributes of the pottery and making inferences about the actions and techniques that may have produced them (Rye 1981, p.4). Another major limitation when examining pottery is that the observed attributes could have been the solution to multiple technological problems. Given the premise that artifacts reflect the broader cultural context, this ambiguity implies that attributes could have been the physical representation of many types of social meanings (Lemmonier 1993, p.16). In addition, some actions do not leave traces in the archaeological record and others are erased. Lastly, while the *chaine opératoire* refers to a particular sequence of manufacture for whole pots, the archaeological material many times is made of small pieces of different pots.

5.2 Outline of the Methodology

To test the hypotheses and address the research questions a regional- and technologybased approach for the reconstruction of pottery manufacture is needed. Given that the *chaine opératoire* is used for whole vessels, a variation of the *chaine opératoire* method used by Roux and Courty (2005) in South Levant is useful for this study. Their approach starts with the raw materials and ends with the finished fired sherds, instead of the finished fired pots. Roux and Courty (2005, p.202) first grouped the sherds according to surface forming or finishing characteristics such as presence and type of slip. These groups were further broken down into petrographic groups based on petrographic analysis that discriminated the samples by the materials selected and clay processing techniques based on the properties of the fine portion of the pottery clay and properties of the coarser inclusions such as their type, morphology, and abundance.

In the current study, the reconstruction of pottery manufacture involves the hierarchical or cumulative study of raw materials and pottery attributes, the inference of techniques, *chaines opératoires*, and traditions using the implementation used by Roux and Courty (2005). The current research is structured around two test cases comprising one set of sites in the north-central area of Yucatán and another in the eastern area (Figure 5-1). The steps in the analytical method are outlined below and discussed in the next sections:

first, an inspection of the available collections; second, a sampling of pottery vessels from existing collections; third, a collection of raw materials from the north-central area; fourth, a preliminary survey of pottery samples and formulation of hypotheses; fifth, petrographic analysis of hand specimens into broad groups; sixth, petrographic analysis of thin sections and characterization into fabric classes; seventh, chemical analysis of pottery samples and clays and characterization into chemical groups; and

lastly, examination of patterns and interpretation of ceramic production patterns.

5.3 Sampling Strategy

Testing of the hypotheses involves the identification and comparison of patterns in ceramic technology using a regional approach. The sampling strategy was designed to support the identification of these patterns.

5.3.1 Sites Selected

The research is structured around two test cases of selected sites from the north-central and eastern areas designed to test the hypotheses at short- and long-distance levels. The test cases will be referred as Case A and B (Table 5-1).

Table 5-1. Case Study in Each Zone and List of Sites within each Case

Case Study	Zone	Sites (Figure 5-1)	
А	Mayapán and neighboring sites located in	Tepich, Tecoh, Telchaquillo, Mayapán,	
	north-central area of Yucatán Peninsula	Tekit, Mama, Teabo, and Tipikal	
В	Mayapán and distant sites including eastern site	Mayapán	
		and Chac Mool, Cobá, and Culubá	

Figure 5-1. Sites sampled in this research (after Pierce and Glascock 2015, Figure 10)

Figure 5-1 illustrates the sites included in this research. Case study A comprises the sites on the map located within the north-central area. In a north to south direction, the sites are Tepich, Tecoh, Telchaquillo, Mayapán, Tekit, Mama, Teabo, and Tipikal. Case study B comprises Mayapán and sites located to the east: Chac Mool, Cobá, and Culubá. The north-central sites are relatively close to each other (Table 5-2); for instance, Maya porters could have covered these distances between Mayapán to the centers in one or two days: modern peddlers covered between 20 to 40 km in one day (Hammond 1978).

MayapánTepich26 kmMayapánTecoh11 kmMayapánTelchaquillo1.5 kmMayapánTekit18 kmMayapánMama22 kmMayapánTipikal30 kmMayapánTeabo33 km			
MayapánTecoh11 kmMayapánTelchaquillo1.5 kmMayapánTekit18 kmMayapánMama22 kmMayapánTipikal30 kmMayapánTeabo33 km	Mayapán	Tepich	26 km
MayapánTelchaquillo1.5 kmMayapánTekit18 kmMayapánMama22 kmMayapánTipikal30 kmMayapánTeabo33 km	Mayapán	Tecoh	11 km
MayapánTekit18 kmMayapánMama22 kmMayapánTipikal30 kmMayapánTeabo33 km	Mayapán	Telchaquillo	1.5 km
MayapánMama22 kmMayapánTipikal30 kmMayapánTeabo33 km	Mayapán	Tekit	18 km
MayapánTipikal30 kmMayapánTeabo33 km	Mayapán	Mama	22 km
Mayapán Teabo 33 km	Mayapán	Tipikal	30 km
	Mayapán	Teabo	33 km

 Table 5-2. Aerial Distances from Mayapán to North-central Sites

To illustrate the trajectory of these centers throughout time regarding the ceramics, Figure 5-2 illustrates the frequencies of ceramics found at each of the north-central sites discriminated by period (data from Cruz 2012). This figure shows that since early times, communities had existed around the sites in this study, in particular at Tepich and Tipikal. During the Postclassic, the ceramic frequencies of most of the sites are much diminished, such as at Tipikal and Tepich in comparison to what they were. The exceptions are Telchaquillo and, of course, Mayapán that without much prior ceramic presence suddenly roused.

Figure 5-2. Ceramics frequencies (based on Cruz Alvarado 2012, Tabla 1, p.33; Masson and Peraza Lope 2014, p.63, 69; Masson, Hare, and Peraza Lope 2006, p.189)

5.3.2 Samples Selected

Ceramic Types and Forms Selected

Sample selection aimed to provide a combination of ceramic types and vessel forms from each site. The main red-slipped varieties included are Mama, Payil (Smith 1971a), and Cancun. The main unslipped varieties include the plain Navula, and the striated Yacman variety (Smith 1971a). These varieties are specifically targeted because they are some of the most common ceramic varieties in northern Yucatán in numerical terms, and they occur at several sites throughout the region, enabling the examination of ceramic technology in similar types of vessels at different sites. In addition, they correspond to a mixture of unslipped and slipped, utilitarian, and elite classes, expected to increase the likelihood of uncovering differences in ceramic technology and composition. A few samples of other varieties less commonly found outside Mayapán were included for comparison purposes (Table 5-3).

Site	SLIFFED				UNSLIFFED			
	Mama (jars, cajetes)	Cancu n (jars)	Xcan chakan (jars)	Payil (cajetes , bowls)	Navula (plain;jars, cajetes)	Yacman (striated ; jars)	Othe r	Total
NORTH- CENTRAL								
Tepich	9				6	6		21
Tecoh	8				8	5		21
Telchaquill o	11		6		10	5		32
Mayapán	54		8	10	26	22	(*) 20	140
Tekit	5				3	5		13
Mama	11				5	4		20
Tipikal	9				11	10		30
Teabo	8				5	6		19
EASTERN								
Coba		9			6			15
Culuba	10	9		2	6	7	(**) 8	42
Chac Mool	1		4	6	4	3		18
Total	126	18	18	18	90	73	28	371

 Table 5-3. List of Samples for Hand-specimen Analysis within Site and Variety

(*) Mayapán: Unslipped Exterior = 3, Polbox = 5, Tecoh = 4, Sulche = 1, Kukula = 4, Chen Mul = 2, Moyos = 1 (**) Culubá: Vista Alegre = 8

Using the type-variety classification as a starting point has many advantages. One advantage is that it groups the ceramics by stylistic and textural categories such as surface finish, modifications to the surface such as striations, general grain size texture, and compactness, and in some cases by vessel form (e.g., Yacman open-mouth jars). Furthermore, the type-variety system corresponds with conventional Mesoamerican assemblage descriptions for it is customary to express the results in term of this system (Brown 1999a; Cruz Alvarado 2012; Kepecs 1999; Smith 1971a), making research accessible and meaningful to other researchers in the field.

Within the ceramic varieties, three forms were selected for study based on ethnographic work on the function of Yucatecan vessels (Rendón 1947, 1948a, 1948b; Thompson 1958). The selected forms are jars thought to have been used for storage and cooking (*ollas*), slipped jars (*tinajas* or *cántaros*) likely used for storage and water

carrying. Some deep dishes known as *cajetes*, which, based on the form, may have been for serving, were also included.

Sampling Strategy

The samples were located in two Mexican states, Yucatán and Quintana Roo. This brought about two approaches to sampling.

North-central sites and Culubá, Yucatán State. Due to storage limitations, most archaeological ceramics in northern Yucatán, after classification and quantification, are returned to their find spot and buried, keeping in storage a small selection of the original collection. The relative proportions of different varieties and vessel forms found in the excavations are not maintained in storage. The samples were provided by the excavations of Arqlgo. Carlos Peraza Lope (Cruz Alvarado, W. A., 2012, Garrido Euán, M.A., 2003), Arqlgo. Alfredo Barrera Rubio (Peraza Lope, C. and Barrera Rubio, A., 2006), and Dr. Clifford T. Brown (Brown, C.T. 1999a, 1999b). These samples were judgmentally selected. This was based on criteria distinct from composition and focused on sampling sherds from the same types of vessels (same ceramic varieties) and forms (jars or cajetes) across all the sites. This strategy ensures that technological attributes and techniques are compared in equal terms. In addition, this selection met restrictions on the size of the specimen (large enough to provide material for chemical and petrographic analysis) and INAH, Yucatán prohibition of the use for destructive analysis of parts of vessels considered diagnostic of the form (such as lips).

Chac Mool and Cobá, Quintana Roo State. Samples from these two sites were selected by the excavation archaeologists, Arqlga. María José Con (Con Uribe, M.J., 2011) and Arqlgo. Enrique Terrones Gonzáles (Terrones González, E., 2006) and handed to this author.

The restrictions and strategy to sampling result in the fact that the proportions or percentages in this study relate to the sample collection taken and not to the site. The samples, however, have the potential of providing much-needed information about the variability of compositions and techniques within and between ceramic varieties and across the sites through the region.

5.4 Collection of Raw Materials from the North-central Area

Raw materials were collected from locations around the north-central sites (the eastern sites, Chac Mool, Cobá, and Culubá, were not included in this selection) shown on the

map in Figure 5-3. The objectives with this collection are many, including (a) identify materials available to the ancient potters; (b) study their potential role in and suitability for the construction of the vessels sampled; (c) examine the relation of raw materials to pottery to draw inferences about choices made by potters; and (d) investigate provenance.

Similar to pottery samples, the raw materials were examined in hand specimens, chemically, and petrographically. The results are presented in the corresponding chapters. This section presents the information about each sample taken, including the coordinates of the find spot and description of the material in hand specimens.

The study area can be described (Section 4.3) as having flat areas (or *planicies*) framed by very low-slope hills (or *altillos*). Cuts into these slopes for the construction of the roads have exposed the soil layers and carbonate rocks. The documented clay mines are located further to the south and west of the north-central sites in this study. Many of them are illustrated in Figure 4-9. However, clay inside a cenote within Mayapán has been collected before (Don Fernando Flores, personal communication Feb 2016). Unfortunately, the entrance to the cenote was plugged with natural beehives. Potters rarely would walk more than 7 km for raw materials (Arnold 2005b); a prospection for clay deposits within 10 km from Mayapán and other north-central sites was undertaken, but it was infructuous. The only documented clay deposit within this distance is located 5 km east of the town of Mama (Arnold et al. 2007; Morales Valderrama 2005, p.131), but the search for this deposit was unsuccessful probably because it is submerged most of the year (Morales Valderrama 2005, p.131). Nevertheless, one clay sample was taken from a documented palygorskite deposit (Sanchez del Río et al. 2009) located 20 km south-east from Mayapán, and 13 km east of Mama, in the Ticul-Chapab road (sample # 19, Table 5-4).

Figure 5-3. Location of north-central sites and of soil samples: raw materials collection = red balloon, site = yellow balloon (after 2016 Google Earth)

In contrast to clay deposits, sascab (unconsolidated carbonate rocks) is ubiquitous around the north-central sites. Figures 5-3 and 5-4 contain the locations of collection and the north-central sites. Although both types look similar to the naked eye, a simple test of plasticity (described below) showed that sascab is of two types,:

(a) carbonate-rock sascab, a non-plastic and granular material, forming pebbles and granules; and

(b), marl sascab, a more homogeneous material when in place and plastic when wet.

These two types of materials are locally called sascab. In this project, the proportion of clay in the samples was not measured, and the term marl is used for carbonate material that, based on its plasticity, contains a proportion of clay. The rest of this section describes the collected raw materials.

Figure 5-4. Expansion of Figure 5-3 to show more detail of the locations of samples of raw materials.

Table 5-4 contains the list of all the raw material samples collected, coordinates, and a summary of the samples' physical characteristics. Plasticity and shrinkage are meaningful for plastic samples only. Plasticity was determined by a simple procedure of wetting the clay and testing whether a coil can be rolled up twice without breaking. Shrinkage, in this study, is given as a percentage based on the difference in the length of a straight wet slab when compared with its length when dry.

Raw material #	Coordinates	Location	Type of Sample	Physical Characteristics
(MURR-ID)				
#1	N 20° 27' 40''	Mama-Chumavel, Mama A (right side looking at Chumavel,	Marl sascab, plastic	a) Raw: Color = 2.5 YR 8/1 White; Shrinkage = 5%;
(CGS187)	W 89° 20' 15''	Mama-Chumayel road, altillo about 1.85 km south of the exit		Plasticity = Yes
		to Mama)		
#2	N 20' 27' 40''	Mama-Chumayel, Mama B (left side Mama-Chumayel road,	Marl sascab, plastic	a) Raw: Color = 2.5 YR $8/1$ White; Shrinkage = 3% ;
(CGS188)	W 89° 20' 16''	altillo on front of #1)		Plasticity = yes
#3	N 20° 27' 38''	Mama-Chumayel road (right side looking at Chumayel,	Red clayey soil, plastic	a) Raw: Color= ; shrinkage = 7%; plasticity = yes
	W 89° 20' 13''	around 1 Km south of sample #1, red soil from planicie)		
#4	N 20° 24' 27''	Teabo A (altillo about 200 mts north Tipikal/Teabo junction,	Marl sascab, plastic	a)Raw: Color ; Shrinkage = 0%; Plasticity = low
(CGS189)	W 89° 18' 25''	right side), sascabera.		
#5	N 20° 24' 35''	Tipikal structure (soil, around 10 mt from structure)	Red-clayey soils, no	a) Raw: Color= strong brown
	W 89° 20' 58''		plastic	
#6	N 20° 24' 36''	Tipikal structure (soil, around 30 mt north of estructure)	Red-clayey soil, plastic	a) Raw: Color = reddish brown; Shrinkage = 7% ;
(CGS190)	W 89° 20° 58°			Plasticity = yes
#7	N 20° 22' 15''	Mani-Oxkutzcab road (soil from naranjal)	Red-clayey soil, plastic	a) Raw: Color = red; Shrinkage = 7% ; Plasticity =
	W 89° 24' 02''		5 1 1 1 1 1	yes
#8	N 20° 32′ 38.69′′	Old Road Tekit-Tecoh, Tekit (red soil from small bump,	Red clayey soil, plastic	a) Raw: Color = 2.5 Y 5/8 red; Shrinkage = 13% ;
(CGS191)	W 89° 21° 11.85°	exit to Rancho S. Antonio)		Plasticity = yes
#9	(Gap)		~	
#10	N 20° 38' 24.81''	Sascabera Mayapán A (road Tecoh to Mayapán, btw north and	Carbonate-rock sascab,	Raw: Color = 2.5 YR 8/1 White; Plasticity = NO;
(CGS192)	W 89° 28° 01.45°	south entrances to Telchaquillo, 0.7 km from south entrance)	no plastic	particle size 2-4 mm
#11	N 20°38'24.47''	Sascabera Mayapán B (road Tecoh to Mayapán, btw north and	Marl sascab, plastic	a) Raw: Color = light reddish brown 5YR 6/4;
(CGS193)	W 89°28'01.13''	south entrances to Telchaquillo, 0.7 km from south entrance)		Shrinkage = 12%; Plasticity = yes/high
#16	N 20°29'47.68''	Road Citincabchen (altillo in old road Telchaquillo to	Marl sascab, plastic	a) Raw: Color = 2.5 YR 8/1 White ; Shrinkage = no ;
(CGS194)	W89°33'03.02''	Sacalum, around 2.6 km south from Citincabchen)		Plasticity = yes
#17	N 20° 28'49.58''	Road Citincabchen (altillo in old road Telchaquillo to	Carbonate-rock sascab	Raw: color = 2.5 YR $8/1$ White; Particle size
	W 89° 34'08.73''	Sacalum, around 3.4 km south from Citincabchen)	("cuut"), no plastic.	approximately 1-2 mm
#18	N 20° 28' 29.57''	Road Huanabchen-Sacalum (intersection roads to	Marl sascab, plastic	a)Raw: Color = 2.5 YR 8/1 White; Plasticity = yes
(CGS195)	W89° 34′ 28.56′′	Sacalum/Xcanchakan/Ticul)		
#19a	N 20°26'29"	Mine Ticul-Chapab, Chapab a (road Ticul-Chapab, right side	Clay, plastic	a) Raw: Color = light gray, btw 10YR 8/1 and 7/1#;
(CGS196)	W 89°28'45"	looking at Chapab, 7 km from Calle 24 with 13)		Plasticity = Yes
#19b	N 20°26'29"	Mine Ticul-Chapab, Chapab b (road Ticul-Chapab, right side	Clay, plastic	a) Raw: color 2.5Y 8.5/1 white; Plasticity =very plastic
(CGS197)	W89°28'45"	looking at Chapab, 7 km from Calle 24 with 13)		

Table 5-4. Raw Materials Collected and their Characteristics

Description of Collected Samples

Red color soils and clays. Red soils are found in the *planicies* (Section 4.3). Although there are no north-central pottery samples that match the deep red or brown red color of these soils, the samples were collected to investigate the availability of potential raw materials that can be used for pottery making and to determine the range of choices that potters may have had. The samples were found in the flat areas or *planicies* (Figure 4-8), with coordinates found in Table 5-4. The samples taken include some without coarse materials (#3 and #7, Table 5-4) and others containing very coarse angular carbonate fragments (#6, #8, Table 5-4). The red soils collected are plastic when abundant water is added. After manually removing pebbles (no other treatment was performed), briquettes and small vessels were formed (such as the one in Figure 5-5) for firing tests and for thin sections.

Figure 5-5. Small container made with dark red soil

Off-white-to-yellow marl sascab. Samples #1, #2, #4, #16, and #18 (Table 5-4) are sascab samples that showed to be plastic. Figure 5-6 shows marl sascab pockets in an *altillo* under the dark soil layer, exposed by a road cut. Marls were collected to study their suitability as raw materials for pottery clay following processing by the potter. These marls are composed of a mud or clay portion with embedded very coarse (>1 mm) carbonate rock fragments.

Figure 5-6. Two sascab marls. (a): sample #2, (b): sample #1, card = 15 cm

Figure 5-7. Small jar prepared with sample #1

Off-white-to-yellow rock sascab. Samples #10 and #17 are non-plastic carbonate rock sascab (Table 5-4). They were collected to investigate their potential as a source of the observed white carbonate inclusions in the pottery samples. The two samples contain fine to very coarse carbonate rock fragments. They were collected from the sides of road cuts.

Light reddish brown marl sascab. A sample (# 11, Table 5-4) of a light-brown marl sascab (Figure 5-8) was collected in the vicinity of Mayapán, at 0.7 km north from the south Telchaquillo exit, on the left side looking to the south (Table 5-4). This is an old sascabera (Don Fernando Flores, personal communication, Feb 2016). In a subsequent visit to this place, it had been destroyed and leveled by a new expansion to

the road. A simple test of plasticity indicated that this sample is a marl, marl sascab, and briquettes and a small vessel were made from it.

Figure 5-8. Marl sascab sample (#11, Table 5-4) near Mayapán (white card = 15 cm)

Light greenish gray clay. One sample (#19a) of a light greenish gray clay was collected 20 km south from Mayapán in the vicinity of Chapab, on the road between Chapab to Ticul, at 7 km from the intersection of Calle 13 and 24 (Table 5-4 and Figure 5-4). This mine is documented by (Sánchez del Río et al. 2009) as a 100% pure palygorskite. Arnold (2005a) also documents that sascab is collected from this mine by Ticul potters to obtain *sak lu'um, or* sacalum. At this town, it is considered an indispensable ingredient in the preparation of temper (sacalum mixed with calcite or dolomite) to improve the strength of the pottery clay.

5.5 Preliminary Survey of Pottery Samples

A preliminary survey of some of the selected pottery samples using a hand lens was conducted to get a sense of the variation of the pottery samples. This survey indicated that patterned differences in the compositions of slipped and unslipped samples might exist in the pottery samples. The patterns observed in the preliminary survey are:

(a), in the north-central area, the macroscopic composition of red-slipped samples appears more uniform throughout the sites than for the unslipped ones; and

(b), samples classified as Payil, the eastern variety of red-slipped ceramics commonly found at eastern sites, and also found at Mayapán, have similarities to a few other samples from the north-central sites and could have been locally made.

Based on these observations, three hypotheses were proposed with the purpose of guiding this research in addressing the research questions. The hypotheses were outlined in Chapter 1, and they will be discussed in this section. The hypotheses are specific cases of the research questions designed such that in the process of collecting the information to test them, data are gathered to address the research questions.

5.5.1 Hypothesis A: Unslipped Jars

Hypothesis A: Unslipped jars (plain and striated, or Navula and Yacman) found at the different north-central sites were locally produced at minor centers and at Mayapán.

This hypothesis is based on the observation made during the preliminary survey of a variety of inclusions within the unslipped samples. As a result of the lack of direct evidence for ceramic production, to test Hypothesis A it is necessary to establish local production: the chemical compositions of the vessels or the technology (petrography) applied in their construction is different at each site. This is to say that a division of composition by site exists. This is a strong argument, but it is not sufficient to support Hypothesis A because other explanations can be given for the same pattern. Different fabrics at different sites may be due to sites importing pottery from different sites located somewhere else. The argument for local production is more convincing if pottery and local clays match, whilst acknowledging that the pottery may have been made of clay from a different location with similar chemical composition.

If the technology is different at each site, chemical compositions of the vessels could have followed a different pattern. The chemical groups can still give us information about the sources of the raw materials. If the chemical groups are also different at each north-central site, then it is possible that raw materials were sourced at each location. If instead there are only a few chemical groups, then, local production (as suggested by the divisions by site of the petrographic fabrics) may have occurred in combination with other scenarios. Such scenarios include a region with very little chemical variability, or potters sharing raw material sources and building their ceramics according to technological norms that differ from site to site. Hypothesis A is rejected if the same composition is found at more than one site.

5.5.2 Hypothesis B: Red-slipped Mama Jars

Hypothesis B: In the north-central area, red-slipped pots (Mama) were produced at one production locality that supplied the rest of the north-central centers.

This hypothesis is based on observations during the preliminary hand-specimen survey of two macroscopic fabric groups that include most of the red-slipped sherds of the northcentral area. To test this hypothesis, it is first necessary to establish whether there is chemical or petrographic variation between sites and between ceramic classes. Evidence that will support this hypothesis is composed of a combination of conditions. One necessary criterion that needs to be met is that the compositions of Mama vessels, which are found at several sites, fall within a single chemical group and one petrographic group. However, because this pattern may be created by a widespread technological tradition (one petrographic group) in a geologically homogeneous area (one chemical group), more evidence for production of Mama at one location is needed. To establish that Mama was produced at the specific site, further evidence such as local clays that match the pottery, or Mama fabrics that match those of vessels found at the site but not elsewhere is needed. Hypothesis B is not supported if there are many chemical or petrographic groups within Mama.

Hypothesis B puts forward the notion of centralization of red-slipped ceramic production to explain red-slipped vessels' homogeneity, at least in the north-central area. It is important to mention that if the conditions are met, and the results are consistent with the hypothesis, there is room for other interpretations to the findings. The same pattern of one or a few petrographic and chemical groups over a wide area is given by massive import of Mama from somewhere else. The idea of importation would be lessened, and Hypothesis B would be strengthened if there were a match between the chemical group(s) containing Mama sherds and the clay from the region. An alternative explanation for one chemical and petrographic group is one of local production under chemical homogeneity across the region and a widespread technological tradition. If Hypothesis B holds true, it can be interpreted as uniformity in style and composition that could have been driven by elite control, or by consumer demand for exchange, payment of tribute, aesthetic uniformity, or other perceived needs for social uniformity.

5.5.3 Hypothesis C: Eastern Red-slipped Elite Items

Hypothesis C: Payil, the fine-grained red-slipped ceramic type commonly found at eastern coastal sites, when found at north-central sites, was locally made.

This proposition is based on paste characteristics of samples categorized as Payil but found at Mayapán and have fabrics similar to a few unslipped samples considered probably to be local to the north-central area. Payil is commonly found at eastern coastal sites and has many similarities to Mama. They differ in that Payil presents a fine-grained, crystalline, compacted, usually reddish-gray fabric, and red refired color. Payil samples found at Mayapán refired to a red color, and red refired clays are found in the northcentral area. Payil samples have single translucent to opaque crystals, and some unslipped samples found at the north-central sites contain discrete translucent crystals. Hypothesis C is supported if two conditions apply: local production is established or the compositions of samples classified as Payil match the composition of locally produced samples.

5.6 Petrographic Analysis

Petrography was chosen in this study because it can discriminate pottery clay fabrics based on the composition of rock fragments and other materials. What is more, it can discriminate based on many other variables including grain size, crystal texture, or structural features of the clay portion (clay matrix or micromass) porosity and voids' shapes. These characteristics of a petrographic analysis are relevant and useful to this study: despite the mineralogical uniformity within the study area, limited but significant research of Mayapán ceramics (Sánchez 2009, 2013) has shown that textural characteristics can discriminate late Postclassic pastes. This ability makes petrography a valuable tool to study ceramic technologies and uncover technological traditions. For instance, the structure of the clay matrix or the characteristics of the inclusions may result from potters' actions such as the selection of certain materials, discarding of others, crushing or sieving during the construction of the vessels. Decisions may reflect the group and technological tradition to which the potters belonged (Roux and Courty 2005,

p.202) and their wider social context (Dobres 2010; Lemonnier 1993, p.3; Gosselain 2000).

5.6.1 Petrographic Analysis of Hand Specimens

The objective of the hand-specimen analysis is to characterize (Whitbread 1995, p.372), the samples into broad groups that can be duplicated by other researchers. It is low cost, requiring little training in a technology using a combination of naked eye, hand lens, and stereomicroscope. The term "characterization" as adopted in this study includes identification of inclusions and classification (Whitbread 1995, p.372) of samples into fabric classes. The term "fabric" is the term preferred by ceramic petrographers for the "clay body" or paste. The groups defined by this analysis are the basis for the sample selection for the thin-section and chemical analyses. The results of hand-specimen examinations are broad macroscopic fabric groups, which are presented in Chapter 6.

5.6.2 Petrographic Analysis of Thin Sections

The polarizing microscope used in ceramic petrography makes possible the characterization of samples based on the mineralogical composition and texture of inclusions within the ceramic fabric. Petrographic research in the general geographic area has shown that despite the mineralogical homogeneity in the area, fabrics can be discriminated by textural characteristics. For instance, a petrographic analysis of ceramics from the Puuc area performed by Shepard (Smith 1971b, p.171) characterized the fabrics based, in part, on carbonate micromorphology, including clear calcite, gray limestone, sparite, calcite, or cryptocrystalline calcite. Kepecs' (1999) analysis in the Chikenchel area characterized the samples into five fabrics. A petrographic analysis of samples from Mayapán (Sánchez Fortoul 2013) characterized fabrics based on micromorphology (micrite, sparite, gray micrite, crystalline calcite). These analyses are useful in that they have shown that variability exists, in particular, related to the micromorphology of calcite and dolomite. The studies are, however, restricted to one site or a limited geographical area and cannot address questions about ceramic production organization, regional exchange, traditions or other interactions properly. The method followed for the analysis of each thin section and the description of the fabric class can be found in Whitbread (1995, Appendix 3).

5.7 Chemical Analysis

The chemical analysis provides data on elemental concentrations (Whitbread 2001, p.451) and enables incorporation of the clay portion in the characterization (Whitbread 2001, p.187) of the samples. However, the results of this analysis do not identify the mineralogy of inclusions or clay. Petrographic and chemical analyses complement each other because petrography makes it possible to identify rocks, inclusions in general, and textures.

In addition to the characterization of pottery and raw materials samples, a chemical analysis can provide significant information about provenance. Early in the research, it became apparent that, due to the geological homogeneity in the region and the widespread distribution of pottery with similar inclusions, petrography, although an ideal tool to define technological classes, is less likely to discriminate samples in terms of materials procurement. For these reasons, this study includes chemical analysis (NAA) owing to its ability to detect trace elements that can be applied in characterizing the samples and in the study of procurement zones, even in areas of apparent geological homogeneity.

Chemical variability of pottery and clays can then point to differences in resource zones. Current research shows that chemical analysis is a viable approach for this project having the potential of discriminating distinct zones in north-central Yucatán. The analysis of modern pottery using neutron activation from different Yucatecan communities (Arnold et al. 1999, 2000) showed that different communities (Tepekan, Ticul, Mama and Akil) produce pottery with different chemical patterns. In another study, Arnold et al. (2007) used INAA and distinguished provenance groups when analyzing samples of the same clay type, palygorskite, based on relative concentrations of Rb versus V,Ni, or Mn. It was expected then that chemical analysis is capable of discriminating northern Yucatán pottery into chemical zones. The hand-specimen analysis is the foundation of the technological analysis performed in this study. The attributes of the pottery samples were examined aiming to describe and classify, or characterize, the samples into broad petrographic groups with similar characteristics. As is presented in subsequent chapters, samples taken from these groups underwent further chemical and petrographic thin-section analyses, ensuring compositional variability in the selection process for these analyses. Furthermore, hand-specimen characterization can serve as a guide to and be replicated by other researchers, given the relatively small financial and technical expertise that it requires.

A total of 376 samples was selected (sampling strategy in Section 5.3) from eight north-central sites, or case study A including Mayapán and neighboring centers, and three eastern sites, Chac Mool, Cobá, and Culubá. This analysis does not require complex preparation of the samples. The main equipment consisted of a hand lens, portable stereomicroscope, portable test kiln, Mohs scale, and pliers. The physical attributes of the sherds (Orton et al. 2008, p.231-242; Peacock 1977, p.29; Whitbread 1995) were examined, and the samples characterized into broad macroscopic fabric groups. Regardless the structure of the selection of the samples, the resulting groups are technological in nature created unrelatedly of the contextual information regarding their find spot, ceramic variety, or form of the samples.

This chapter is divided into two sections. In the first section, the attributes examined and the scales and measurements used are described. The second section contains the results of this analysis including a description of the types of inclusions and fabrics found.

6.1 Attributes, Scales, and Measurements

The attributes examined should be observed on a fresh break of the sherd. They are the following:

Type of Inclusion. This refers to the type of mineral or material (for instance, shells or organic matter) identified. When identification is not possible, the particle is described by salient characteristics such as color or crystal structure.

Percent Abundance. It is estimated for each type of inclusion as a range of variation of the percentage of the whole area occupied by the inclusion in the fresh break. This is a visual task aided by comparison charts for the visual estimation of percentages of mineral content (Matthew et al. 1991). Table 6-1 contains the scale and labels used for the description of percent abundance of the inclusions (Kemp 1985, p.17, cited in Whitbread 1995, p.379)

J. J. J.
Range of Variation
(percentage of total area)
> 70 %
50 - 70 %
30 - 50 %
15 – 30 %
5 - 15 %
2-5%
0.5 - 2 %
<0.5

Table 6-1. Frequency Label used for Range of Variation of the Inclusions (Kemp 1985, p.17, cited in Whitbread 1995, p. 379)

Particle Size. When needed, the size of individual grains was estimated visually on the fresh break. The microscope reticle was often used to corroborate measurements. A modified Wentworth (1922, Table I) scale for the classification of particle sizes in which sizes less than 0.25 mm are conflated into a fine size is used to describe the particle size:

Fine sand = < 0.25mm Medium sand = 0.25 - 0.50mm Coarse sand = 0.50 - 1.0mm Very coarse sand = > 1.0mm

Rounding. Rounding of a particle refers to the prevalent rounding as defined in Orton (2008, Figure A.5). The scale used is in Orton (2008, Figure A.5), including angular, sub-angular, rounded, sub-rounded, irregular, flat.

The attributes that pertain to the whole sherd are fired color, re-fired color, hardness, fracture, thickness, texture (or grain-size), and sorting.

Fired color. This is the original color of the clay of the pottery under natural light. It is usually described using Munsell charts (Munsell 2009).

Re-fired color. This attribute refers to the color of a pottery sample after being fired again in the laboratory (Whitbread 2007 et al, p.180). Differences in firing conditions, such as temperature or atmosphere (Whitbread 2007 et al., p180), may mask underlying colors of the clay. Refiring all the samples under the same conditions at a

temperature higher than the original eliminates these differences (Whitbread 2007 et al., p180). The samples were refired at 900°C. Destruction of the samples by calcination (more about this process in Section 9.6) showed that this temperature is higher than the original firing temperature. Differences in the re-fired colors correspond to differences in the relative concentrations of iron (Whitbread 2007 et al., p187-188) and can point to broad clay differences.

The re-fired colors obtained were red (R), white (W), and light reddish brown or pink (B). The range of variation for these codes is found in Table 6-2.

Re-fired Color	Code	Munsell color
White	W	5yr 8/1 to 8/2; 2.5yr 8/1 to 8/2;
		7.5yr 8/1, 8/2, 8/3; 10yr 8/1, 8/2, 8/3;
Light reddish brown, pink	В	5yr 8/3 to 8/4; 2.5yr 8/3 to 8/4;
		5yr 7/3 to 7/6; 5yr 6/3 to 6/6;
		2.5yr 7/2 to 7/6; 2.5yr 6/2 to 6/6
Red	R	2.5yr 7/8,6/8,5/8,4/8; 2.5yr 5/6, 4/6, 3/6;

 Table 6-2. Color Codes of Re-fired Sherds

Hardness. At first, this attribute was rated in comparison to the hardness of a "typical" Mayapán sherd. A characteristic of most sherds from Mayapán is that they are very soft, friable, and could be chipped with a nail. The hardness test was initially performed using Sánchez's nails. These nails did not last, and to be consistent throughout the test, a Mohs test was used for all the sherds. Sherds that could not be scratched with Mohs # 2 are considered hard (hardness = h), and the rest, soft (hardness = s). Some sherds were found to be atypically hard.

Fracture. The fracture can be described as conchoidal, smooth, hackly, or laminated (Orton et al 1993, p.235). Color, fracture, and hardness are attributes that could be a function of firing temperature or other firing conditions (Orton et al 1993, p.68).

Texture or grain size. The overall texture of the sherd or the fresh break section was estimated using the charts in Matthew et al. (1991) for the visual estimation of percentage. A code for fine, medium, and coarse was assigned to each sherd. In this study, a fabric has a fine texture as long as the coarsely grained (> 0.5 mm) inclusions are constrained to very few (Table 6-1) or less of the overall abundance of the inclusions, and the medium grained (0.25-0.5 mm) are few or less of the overall abundance of inclusions. A fabric has a medium texture if it has common or more of overall abundance

of medium-grained particles, and, at the same time, the coarse inclusions are constrained to very few or less of the overall abundance. Lastly, a fabric has a coarse texture if it has few or more overall abundance of coarse inclusions. Table 6-3 summarizes the key to determine the textures and the codes assigned to the samples.

Tuble o billey to Estimate	tuble o by hey to Estimate the overall relative				
Prevalent texture	Code	Key			
Fine	f	very few or less coarse-size particles and			
		few or less medium-size particles			
Medium	m	very few or less coarse-size particles and common or more			
		medium-size particles			
Coarse	с	Few or more coarse-size particles			

Table 6-3. Key to Estimate the Overall Texture

Sorting. Sorting or size homogeneity was estimated using inclusion sorting charts in Figure A.6 of Orton et al. (1993).

6.2 Types of Inclusions Observed

The inclusions identified through hand-specimen analysis include white and gray micritic limestone, fragments of a sparry carbonate rock (calcite or dolomite), dark particles, single glassy crystals. These inclusions and the code assigned to them are listed in Table 6-4.

Inclusion Code	Short Description
WM	white, dull and chalky calcareous rock
SP	bundles of microscopic spar crystals
GM	dark gray or dark particles
XT	single crystal

Table 6-4. Types of Main Inclusions in Hand specimens

Micrite

The term micrite is used for clusters of calcite crystals in which each crystal is less than 0.005 mm (Adams and MacKenzie 2001, p.6). In hand-specimen samples, micrite is white or very light gray, opaque, dull, and chalky. Under the hand lens or binocular microscope, from low magnification, such as ten times natural size or 10X, to high magnification or 30-40X, micrite looks uniform, chalky, without internal structure (Figures 6-1 and 6-2) as a result of its microcrystalline nature in which individual crystals cannot be distinguished. Micritic inclusions that look white are called micrite in this study, to differentiate them from dark micrite, because dark particles may have looked different to ancient potters.

Figure 6-1. Micrite inclusions in hand specimen (#87, Mama from Mayapán)

Two instances of micritic samples are illustrated in Figures 6-1 and 6-2. The identification of the samples is given in the figures. This number can be used in Table 8-33 to obtain more information about them.

Figure 6-2. Micrite inclusions in hand specimen (#161, Mama from Mayapán)

As found in nature, these microcrystalline carbonates can be present in large masses forming calcareous rocks and in discrete calcareous aggregates of different origin, including calcification of organic and inorganic grains and marine skeletons.

Sparry Grains

Particles composed of clusters of sparry crystals were observed in some of the samples. The term sparite, spar, or sparry calcite is used for crystals over 0.01 mm (Adams and MacKenzie 2001, p.6; Folk 1980, p.156; Greensmith 1989, p.106). There is no set limit for a largest sparite size, although Folk (1980, p.156) states that it could range up to 1 mm and more. In fact, the crystals could be calcite or dolomite crystals, but in hand specimens, they cannot be identified with certainty.

The small individual crystal size prevents sparry crystals from being distinguished with the naked eye. The binocular microscope was used to this end, using magnification at least of 30-40 times the natural size. Even at this magnification, only crystals equal or larger than 0.040 mm were resolved with the microscope used in this study. This implies that, in hand specimens, a portion of the sparry samples was misclassified as micrite. Figure 6-3 shows grains (bottom center) at this magnification and silty discrete crystals in the matrix. These grains are expanded in Figure 6-4 to distinguish the small (around 0.040-0.060 mm) crystals better.

Figure 6-3. Particles composed of sparry crystals (#272, Yacman from Tipikal)

Figure 6-4. Expansion of Figure 6-3 to show individual crystals within particles (#272, Yacman from Tipikal)

Sparite particles in which the individual small crystals have a granular appearance are sometimes referred as saccharoidal or sucrose calcite (López Ramos 1975, p.266). Although the binocular microscope was needed to resolve the individual crystals, in some (but not all) of the samples, two characteristics observed with 10-20X hand lens are good indications that the inclusions are sparry inclusions. One characteristic is that the particles exhibit a granular or porous texture. The second is that the paste contains abundant semi-translucent to whitish crystallites, apparently from the obliteration of the sparry particles. These characteristics can be observed clearly in the sample in Figure 6-5 (also Figures 6-7 and 6-11). Similar to micrite, in nature in the Yucatán peninsula, sparite is found in masses and discrete particles, and both are components of the carbonate rocks within the region (Chapter 4).

Figure 6-5. Sparry fabric showing granular porous grains and powdery crystallites (#273, Yacman from Tipikal)

Dark Particles

Dark, usually gray, soft or indurated particles are also observed. Their nature cannot be determined with certainty in hand specimens. Gray/brown limestone, oxides, peloids (as fossilized fecal matter), and organic matter are some of the types of particles that look dark in hand specimens.

Figure 6-6. Dark particles (#155, Mama from Telchaquillo)

In the sample in Figure 6-6, some of the dark particles were plucked out from the matrix and treated with hydrochloric acid, which reacts with calcite. The particles dissolved leaving a dark soft residue, indicating that these particles are fragments of carbonate rocks. It is then probable that the dark color, at least in the treated particle, results from the presence of organic material in the carbonate rock. The individual crystals of the dark particles could not be resolved with the binocular microscope.

Figure 6-7. Dark areas in matrix (Mama from the site of Mama)

The sample in Figure 6-7 presents long irregularly shaped diffused areas of a dark color matrix. This is an example of what should not be classified as a dark particle fabric. Although there are areas of dark matrix, they do not correspond to individual particles. Instead, they appear related to organic material. The sample was classified as sparry: the white carbonate grains appear granular or porous and there are powdery particles sprinkled on the fresh break indicating that the white larger inclusions are, most likely, clusters of small sparry crystals.

Single Crystals

Translucent to semi-translucent, mostly angular, particles were observed in the samples, in particular from Culubá and Chac Mool. The term single crystal is used in this study to

Figure 6-8. Sample showing translucent, angular inclusions (#281)

Figure 6-9. Translucent and angular, smooth particles (#60, Navula from Mayapán, from Sánchez Fortoul 2009, Fig. 6.4)

6.3 Hand-specimen Fabrics

Table 6-5 summarizes the hand-specimen fabrics found. They are described in the next sections. The table includes the fabric name, a fabric code, and a short description. The

code consists of the main inclusion code (Table 6-4), sample texture (Table 6-3), and refired color (Table 6-2). The scales and measurements used in the description of the fabrics can be found earlier in this section (Section 6.1).

Fabric Name	Fabric Code	Fabric Description
Spar-coarse-W	SP-c-W	Sparry particles, coarsely grained, refired to white
Spar-medium-W	SP-m-W	Sparry particles, medium grained, refired to white
Spar-coarse-B	SP-c-B	Sparry particles, coarsely grained, refired to lrb
Micrite-medium-W-hard	WMm-W-h	Sparry/Micritic, medium grained, refired to white, hard paste
Micrite-medium-W	WM-m-W	White micrite particles, medium grained, refired to white
Dark-coarse/medium-W	GM-cm-W	Dark particles, medium to coarse, refired to white
Dark-coarse-R/B	GM-c-R/B	Dark particles, coarse, refired to red and lrb
Crystal-fine-R/B	XT-f-R/B	Discrete crystals, fine grained, refired to red or lrb
Crystal-coarse-R/B	XT-c-R/B	Discrete crystals, coarsely grained, refired to red or lrb
Crystal-coarse-W	XT-c-W	Discrete crystals, coarsely grained, refired to white

Table 6-5. List of Hand-specimen Fabrics with Fabric Code and Description

KEY: lrb = light-reddish brown

6.4 White Micrite Fabrics

Included in this group are samples for which micrite is the dominant inclusion. The samples were grouped into two fabrics differing mainly on the hardness of the paste.

6.4.1 Hand-specimen Fabric Micrite-medium-W (WM-m-W)

Samples presenting this fabric are characterized by the presence of micrite as dominant inclusion, soft paste, medium-grain size, and white refired color. Figure 6-10 shows a sample with this fabric. This is a fabric with a wide range of variation in many of the attributes described in Table 6-6. The scales and measurements used in this table can be found in Section 6.1. For instance, a *common* frequency of grains refers to that label in Table 6-1 pointing to an abundance with a range of variation of 15-30 % for that inclusion. Fabric Micrite-medium-W is described in Table 6-6.

Figure 6-10. Fabric Micrite-medium-W (#316, Mama from Telchaquillo)

Tuble o of Tublie	
Re-fired Color:	Predominantly white, but a few refired to light reddish brown (Table 6.2 for
	Munsell colors)
Grain size :	Medium
Fired Color:	Varied: light gray (5YR 7/1-7/2, light brownish gray (10YR 8/1), very pale
	brown (10YR 7/4), pinkish white (7.5YR 8/2)
Hardness:	Soft
Compactness:	Varied: porous to moderately compacted
Rounding:	Varied: subangular to irregular
Fracture:	Varied: hackly, extremely irregular to moderately smooth
Thickness:	Varied: from 5 -12 mm
Inclusio	ns (Section 6.1)
Sorting:	Poor
Composition:	Common to Few: MICRITE - white, chalky, opaque fragments, mostly sub- angular to subrounded, medium texture, with particle size ranging from fine to medium. Very few: opaque, sub-rounded to irregular gray particles; sparite or micritized remains may also be present
Voids:	mostly moderately compacted, but some samples have long pores or channels.

Table 6-6. Fabric Class Micrite-medium-W (WM-m-W) in Hand Specimen

Associations: This fabric was found at the north-central sites almost exclusively associated with red-slipped Mama and the plain Navula. This fabric was not found at the eastern sites.

6.4.2 Fabric Micrite-medium-W-hard (WM-m-W-h) in Hand specimen

This fabric is a variant of fabric Micrite-medium-W (WM-m-W). Contrasting to most north-central fabrics, samples with this fabric cannot be chipped with a nail or scratched with Mohs # 2. The fabric is characterized by the presence of microcrystalline particles (although sparry particles were observed in a few), white refired color, and medium texture, differentiated from WM-m-W by its unusual hardness. This fabric also includes a few hard paste samples with sparry particles.

Associations: This fabric is associated with the site of Mama and to Mayapán to a lesser degree. It was also observed that this fabric was found, mostly, in red-slipped Mama samples.

6.5 Sparry Fabrics

Samples in this fabric class are characterized by the dominant presence of clusters of sparry crystals of calcite or dolomite. Many times, the particles present a micritic alteration that makes their identification difficult. Samples in which spar dominates are characterized into three hand-specimen fabrics. They are described below.

6.5.1 Fabric Spar-coarse-White (SP-c-W)

Sherds grouped within this fabric class are characterized by the presence of coarse particles composed of a sparry (SP) carbonate (calcite or dolomite), soft paste, high porosity, and a white refired color (Figure 6-11). Table 6-7 summarizes Spar-coarse-W (SP-c-W) fabric main characteristics.

Figure 6-11. Sample with granular inclusions and silty matrix (#256, Navula from Mayapán)

Refired Color	White (Table 6.2 for Munsell colors)			
Grain Size:	Coarse			
Fired Color:	Mostly light gray (10YR 7/1-7/2), very pale brown (10YR 8/3 -7/3), reddish yellow (5YR 7/8), light red (2.5YR 7/6)			
Hardness:	soft; chips with nail			
Compactness:	Porous, not compacted, usually very friable			
Rounding:	Subangular to subrounded			
Fracture:	Hackly, irregular			
Thickness:	Varied, 5 – 14.2 mm			
Inclusions (Section 6.1)				
Over-all	Common to frequent			
Abundance:				
Sorting:	Bimodal/fairly sorted			
Composition:	Common to Frequent : Clusters of sparry carbonate (calcite or dolomite), subangular to subrounded, with coarse (0.5 – 1.0 mm) mode of particle size ranging from fine to coarse. The size of each spar crystal is difficult to estimate with the binocular. Only crystals larger than 0.04 mm distinguished, but smaller appear to be present. To the naked eye, some particles look whitish and dull and others semi-translucent likely depending on spar crystal size. Few to Very few : fine angular individual crystals (likely calcite or dolomite) embedded in the matrix, each around 0.04-0.06 mm Few to Very rare: Gray micrite, coarsely to medium grained.			
Voids:	Visible channels and pores			

Table 6-7. Fabric Class S	par-coarse-W (SP-	c-W) in Hand S	pecimen
---------------------------	-------------------	----------------	---------

Associations. The samples presenting this fabric were found at the north-central sites associated with unslipped jars: plain Navula jars and the striated, unslipped Yacman jars. This fabric occurred in a few red-slipped Mama jars.

6.5.2 Hand-specimen Fabric Spar-medium-W (SP-m-W)

Sherds with this fabric are characterized by sparry particles as main inclusion, soft medium-grained paste, and a white refired color. This fabric differs from the coarsely grained Spar-coarse-W (SP-c-W) described earlier not only in the predominant grain size but also the less frequency of inclusions and in a moderately compacted paste (less porous than SP-c-W). The description of this fabric is found in Table 6-8.

Re-fired Color	White (Table 6.2 for Munsell colors)
Grain size (mode):	Medium
Fired Color:	Mostly light gray (10YR 7/1-7/2), very pale brown (10YR 8/3 -7/3), or reddish
	yellow (5YR 7/8) to a lesser degree
Hardness:	Soft
Compactness:	Moderately compacted, few vughs, rare channels
Rounding:	Subangular to sunrounded
Fracture:	Varied, from moderately smooth to irregular
Thickness:	Wide range, from 5.5 to 11 mm
Inclusions (Section 6.1)	
Sorting:	Bimodal/fairly sorted
Average size:	medium
Composition:	 Few: Mostly opaque, medium grained, subangular to subrounded sparite rock fragments. Many of these bundles are partially coated with micrite. Few to Very few: fine angular individual crystals (likely calcite or dolomite) embedded in the matrix, each around 0.04-0.07 mm Very few to Rare: Opaque, subangular or subrounded, gray particles. Some look indurated, peloidic. Silty matrix
Voids:	Many with long channels and pores

Table 6-8. Fabric Class Spar-medium-W (SP-m-W) in Hand Specimen

Associations: This fabric was found at the north-central sites primarily associated with slipped Mama and plain unslipped Navula samples, while striated open-mouth jars (Yacman) were largely absent.

6.5.3 Fabric Sparry-coarse-B (SP-c-B)

The main characteristics of this fabric are the presence of coarsely grained sparry inclusions, probably calcite or dolomite, soft, friable, highly porous paste, and light
reddish brown refired color. The main differences from the equally sparry and coarse Spar-coarse-W are the light brown or light red fired color, the light reddish brown refired color, and slightly higher frequency of inclusions of this fabric. The detailed description of this fabric is found in Table 6-9.

Refired Color	Light reddish brown (Table 6.2 for Munsell colors)
Grain size:	Coarse
Fired Color:	pinkish gray (7.5 YR 7/2), light reddish brown (2.5YR 7/3), pale brown (10YR 7/3),
	reddish yellow (5YR 7/8), light red (2.5YR 7/6)
Hardness:	Soft, chipped with nail
Compactness:	High porosity
Rounding:	
Fracture:	Irregular
Thickness:	6 – 10.5 mm
Inclusio	ns (Section 6.1)
Sorting:	Bimodal/fairly sorted
Average size:	Coarse
Composition	Subangular to angular
Composition:	 Dominant to Frequent: Subangular or angular, coarse ranging from medium to coarse, particles made of spar, probably calcite or dolomite; many present micrite alterations; varied (0.04 mm to .1 mm) crystal size. Few to Very few: fine angular individual crystals (likely calcite or dolomite) embedded in the matrix, each around 0.04-0.07 mm Very rare to Few: Glassy, rhomboid medium or coarse crystals; opaque subrounded gray micrite; micritized fossils
Voids:	Porous

Table 6-9. Fabric Class Spar-coarse-B (SP-c-B) in Hand Specimen

Associations: This fabric is found at the north-central sites and Cobá associated with unslipped jars: Navula (plain) and Yacman (striated open-mouth) varieties. The Yacman samples exhibiting this paste are relatively thin and very uniform in their thickness (6 to 7.3 mm) and in their high porosity.

6.6 Dark Particles Fabrics

This is a group of samples characterized by the presence of dark particles (Figures 6-12) as main inclusions. The samples were characterized into two fabrics, described below.

Figure 6-12. Hand-specimen fabric GM-cm-W (#300, scale = 1cm)

6.6.1 Fabric Dark-coarse/medium-W (GM-cm-W) in Hand Specimen

This fabric is characterized by the presence of dark particles, medium to coarser grain size, and white refired color. Table 6-10 presents the description of this fabric class.

	uss Durk course, meanum (Givi em (C) in Hund Speenhen
Fired color:	Very varied: light gray (10YR 7/2), gray (10YR 6/1), light brownish gray (10YR
	6/2), very pale brown (10YR 7/3), pale brown (10YR 6/3), light pink (5YR 8/2).
Grain size (mode)	Medium to coarse
Re-fired color :	White (Table 6-2 for Munsell colors)
Hardness:	Soft, chips with nail, and easily scratched w/ # 2.
Compactness:	Not compacted, usually
Rounding:	Rounded to angular
Fracture:	Usually hackly, irregular
Thickness:	Most between 7 and 11mm
Inclusi	ons (Section 6.1)
Sorting:	Fairly sorted
Rounding:	Varied
Composition:	Common to Few: Dark gray particles, opaque or sub-opaque, from rounded to angular, medium to very coarse, no internal structure is observed and the individual crystals cannot be seen at the magnification of the binocular microscope. Few to Very rare: White micrite, medium to coarse.
Voids:	Deep rounded pores and long channels running on the direction of the wall.

Table 6-10. Fabric Class Dark-coarse/medium-W (GM-cm-W) in Hand Specimen

Associations: this fabric was found throughout the north-central sites, in particular at Tepich. This fabric occurred in all ceramic classes: Mama, Navula and Yacman.

This fabric is a variant of the Dark-coarse/medium-W fabric just described. It differs only in its light-reddish brown or red refired color. Sherds distinguished by this fabric are characterized by the presence of darker limestone or dark particles, medium to coarser texture, and red and light reddish brown color. The description of this fabric is found in Table 6-11.

Fired Color:	Gray (10YR 6/1), light red (2.5YR 7/6) and reddish brown (5YR 6/4)
Grain size:)	Medium to coarse
Re-fired Color:	Red (2.5 YR 5/6) or light reddish brown (Table 6-2 for Munsell colors)
Hardness:	Soft
Compactness:	Porous, not compacted
Rounding:	rounded to angular
Fracture:	Hackly, irregular
Thickness:	6 – 11.5 mm
Inclus	ions (Section 6.1)
Sorting:	Fairly sorted
Predominant size:	Medium to coarse
Composition:	Common – Gray, dark particle, coarse (most frequent grain size), size ranging from coarse to medium, subangular. Very few to Very Rare - Sparite - present in a few samples, medium size
Voids:	Varied, from moderately compacted to some with long channels

Table 6-11. Fabric Dark-coarse-R (GM-cm-R/B)

Associations: In the north-central area, samples with this fabric refired to light-reddish brown and were found at Tecoh, Tekit, Teabo, and Cobá associated with Yacman and Xcanchakan. Samples with this fabric were found at Culubá and refired to a red color.

6.7 Single-Crystal Fabrics

Sherds with this type of fabric are characterized by the presence of usually angular, glassy, semi-translucent to whitish, fine to very coarse single crystals. The crystals are probably composed of calcite, dolomite, or quartz. The samples are characterized into three hand-specimen fabrics, described in the next sections.

6.7.1 Hand-specimen Fabric Crystal-fine-R/B (XT-f-R/B)

Sherds with this fabric are characterized by their fine-grained particle size (Figures 6-13, 6-14), semi-translucent to whitish angular inclusions, compacted to moderately compacted paste, and red or light-reddish brown refired color. This fabric includes samples having a hardness from soft to hard. Gray micritic particles may be present.

Figure 6-13. Hand-specimen fabric XT-f-R/B (#136)

The description of this fabric is found in Table 6-12. The scales and measurements used in this table can be found in Section 6.1.

Fired Color:	pink (10R8/3), light gray (10R7/1), light red (10R 7/6), dark reddish gray (2.5 YR $4/1$)
Grain size:	Fine
Re-fired Color:	Red and strong pink (Table 6.2 for red refired Munsell colors)
Hardness:	Soft, with some moderately hard but that still are scratched with Mohs # 2
Compactness:	Compacted to moderately compacted
Rounding:	Angular
Fracture:	Primarily smooth, but one is hackly.
Thickness:	From 5 to 7 mm
Incl	usions (Section 6.1)
Overall	Veried, from Common to Dominant
Abundance:	
Sorting:	Well sorted
Average size:	Fine
Composition of	Dominant to Common : under hand lens 10 – 20X, particles are angular, smooth
Coarser Portion	white or light gray. With the binocular more detail is observed: the inclusions are
(>0.0625 mm):	mostly individual crystals (and some crystal aggregates) with size from very fine
	to fine (mode is fine); glassy, semitranslucent to sub-opaque; rounding is angular
	with rhomboid shape; color if present: whitish or light gray.
	Rare to Very rare: medium size (mode), white or gray micrite, with size from
	fine to coarse
Voids:	very small pores and channels

Table 6-12. Fabric class Crystal-fine-red-refired (XT-f-R/B) in hand specimen

Associations: This fabric is primarily associated with Payil sherds found at Mayapán and Chac Mool. One Payil sample from Culubá also belongs to this fabric.

Figure 6-14. Fabric XT-f-R (Sample #137 Payil from Mayapán)

6.7.2 Hand-specimen Fabric Crystal-coarse-R/B (XT-c-R/B)

A soft paste, coarsely grained macro-crystalline inclusions, and light reddish brown or strong pink refired colors characterize the sherds grouped within this fabric. Figures 6-15 and 6-16 illustrate two samples classified under this fabric. Table 6-13 contains the description of this fabric.

Figure 6-15. Clear single crystals (#281)

Figure 6-16. Angular, smooth whitish inclusions (#279)

Fired Color:	Light red (10R 7/6),, light reddish brown (2.5YR 6/3), pink (2.5 YR 8/4)
Grain size:	Coarse
Re-fired Color:	Light reddish brown (2.5YR 6/3,4,6), pink (2.5 YR 8/4), reddish brown (5YR
	4/4) and red.
Hardness:	Varied: mostly soft, but some from Xcanchakan from Chac Mool and Cancún
	from Culubá are moderately hard
Compactness:	Varied
Fracture:	Varied
Thickness:	5.1 – 8.5 mm

Table 6-13. Fabric	Class Crysta	l-coarse-R/B	(XT-c-R/B)	in Hand Snecimen
$1 a D C V^{-1} S C T a D C C$	$\nabla a \sigma \sigma \nabla r \sigma \sigma \sigma$	1 - c v a i s c - i v D	$\mathbf{X} \mathbf{I} = \mathbf{V} = \mathbf{I} \mathbf{V} \mathbf{D}$	

Inc	clusions (Section 6.1)
Sorting:	Good
Composition:	Frequent to Few – glassy, semi-translucent to translucent, rhombic or blocky, mostly coarsely grained (mode) single crystals. In some Cancún variety samples from Culubá there are elongated poly-crystalline fragments that still maintain a shell form. Very Few to Very rare –at western sites, sparry particles may be present, medium size; gray dark inclusions may be present

Associations: This fabric was commonly found in samples from sites located in the eastern area: Culubá, Chac Mool and Cobá. In addition, this fabric was found in samples of Navula and Yacman found at Mayapán, Telchaquillo, Tekit, and Tipikal, which refired to light reddish brown. At the eastern sites, this fabric was found in all the utilitarian varieties included in this study: Mama, Navula, Yacman, and Xcanchakan. They present varied hardness including soft, moderately hard to hard. This fabric also occurred in four Xcanchakan samples from Chac Mool. Red refired samples were found associated with the site of Culubá in samples classified as Mama and Cancún, while light reddish-brown samples were found at the other mentioned sites in all the ceramic varieties.

6.7.3 Hand-specimen Fabric Crystal-coarse-W (XT-c-W)

This is variant of the Crystal-coarse-R/B in which the samples have a soft paste and refired to white. Similar to Crystal-coarse-R/B, it is characterized by the presence of coarse translucent to semi-translucent single crystals and coarsely grained particles, and white refired color.

Associations: Sherds grouped within this fabric were found at Cobá and Mayapán. At Cobá, the samples are red-slipped and classified as Cancún. At Mayapán, this fabric was found in unslipped Yacman and Navula samples.

6.8 Associations between Hand-specimen Fabrics, Sites, and Ceramic Varieties

Table 6-14 summarizes the associations between the fabrics, sites, and ceramic varieties. It shows that differences exist between the types of fabrics present in red-slipped Mama samples when compared to the unslipped samples. It also shows differences between the fabrics found in most north-central when compared to the eastern sites (Cobá, Chac Mool, Culubá).

Table 6-14. Associations between Hand specimens and Ceramic Varieties

	SITES		SLIP	UNS	LIPPED		
Fabric Class Code		Mama (red)	Cancún (red)	Xcan chaka (cream)	Payil (red)	Navula (plain)	Yacman (striated)
Micrite-medium-W WM-m-W	North-central	Х		Х		Х	х
Micrite-medium-W- hard WM-m-W-h	Mama, Mayapan	Х					
Spar-coarse-W SP-c-W	North-central	x				Х	Х
Spar-medium-W SP-m-W	North-central, Coba	х				Х	
Spar-coarse-B SP-c-B	North-central, Coba					Х	Х
Dark- coarse/medium-W GM-cm-W	North-central	Х				Х	Х
Dark-coarse-R/B GM-cm-R/B	Teabo, Tecoh, Tekit,	Х		Х			Х
	Culubá	Х					Х
	Coba		Х				
Crystal-fine-R/B XT-f-R/B	Mayapan, Chac Mool,				Х		
Crystal-coarse-R/B XT-c-R/B	Culubá,	Х	Х				Х
	Coba		Х				
	Mayapan, Tekit, Tipikal					Х	Х
Crystal-coarse-W XT-c-W	Mayapan,					Х	Х
	Coba		Х				

(*) North-central = most north-central sites.

North-central Sites

Most red-slipped samples from the north-central area (Mama) were characterized into Micrite-medium-W, although sparry and gray micrite samples were also found.

Within the samples of plain, unslipped Navulá jars and cajetes, a variety of fabrics were found including sparitic, micritic, and dark particles. No particular type or types of inclusions appear to dominate. In addition, neither medium-grained nor coarse particles dominate the samples.

In contrast, Yacman, the striated and unslipped open-mouth jars, is characterized by its coarse paste. Coarse sparry fabrics or coarse dark-particle fabrics dominate in the samples. In addition, differing markedly from Mama, fabrics with translucent crystals were found in Yacman samples.

Payil samples from Mayapán contain finely grained crystals and differ from the fabrics in Mama, Navula, and Yacman.

Eastern Sites

Within the samples from Cobá, Chac Mool, and Culubá, fabrics with single crystals are the norm. Contrastingly, the most common fabrics within north-central samples contain sparry calcite (or dolomite) or micrite. At Culubá and Chac Mool, coarse crystalline fabrics are found almost exclusively in the utilitarian slipped, Mama and Xcanchakan, and the utilitarian unslipped samples, Yacman and Navula. In contrast, finely grained crystals were commonly found in the elite Payil ceramic variety.

6.9 Key for the Assignment of Fabrics

Procedure for the Characterization into Fabrics

The hand-specimen analysis made apparent that among all the attributes examined, four accounted for most of the variation observed. The fabric groups are based mainly on these four attributes: hardness, inclusion type, overall texture, and refired color.

The procedure followed for the characterization into hand-specimen fabrics using these four attributes is summarized in Figure 6-17. Starting with a sherd, a fresh break is made. The fresh break is examined to determine the main types of inclusions and texture. The small piece cut for the fresh break is then refired to determine refired color. The sherd is tested for hardness with Mohs scale or nails.

Figure 6-17. Summary of procedure followed for hand-specimen fabric characterization

Table 6-15 functions as a key to follow for the assignment of the broad handspecimen fabrics. For instance, if the hardness is soft, the dominant inclusions are sparry particles (SP), the overall texture is coarse (texture = c), and the refired color is white (W), the fabric is SP-c-W.

				<	Wiall	a inclus	ions	/	•
Hard	Main Inclusion	Texture	Re- fired	SP	WM	GM	хт	Shell	Fabric Code
		c	W	X		x			SP-c-W
Soft		m	W	X		x			SP-m-W
	Spar (SP)	c	В	X			x	x	SP-c-B
	Micrite (WM)	m	W	X	X	X		X	WM-m-W
	Dark Particle (GM)	c,m	W		x	X			GM-cm-W
		c	R, B	x		X	X		GM-cm-R/B
Hard	Micrite (WM)	m	W		X	x			WM-m-W-h
	6* 1 .	f	R, B		X	x	X		XT-f-R/B
Varied	Single Xtal (XT)	c	R, B				X		XT-c-R/B
	()	c	W				X		XT-c-W

 Table 6-15. Key for the Assignment and Summary of Fabric Classes

Refired color: W=white, B = light reddish brown; R = red

SP= spar; WM=white limestone; GM = dark particle; XT= discrete crystals; Shell = skeletal Inclusions: X = dominant or diagnostic (not necessarily dominant) inclusion; x= may be present

6.10 Hand-specimen Analysis of Local Raw Materials

Hand-specimen Analysis of Carbonate-rock Sascab Samples

Hand-specimen analysis, using hand lens and binocular microscope, was performed on two rock (non-plastic) sascab samples (#10, #17, Table 5-4) with the purpose of comparing carbonate fragments found in sascab to the carbonate inclusions found within the pottery samples from north-central sites.

The particles in the pottery samples are composed of sparry crystals. The binocular microscope showed that the particles in raw material sample #10 are composed of rhombohedral sparry crystals, probably dolomite judging by the characteristic rhombohedral shape observed, each crystal with size around 0.040 to 0.05mm. The classification of spar as opposed to micrite was possible when the individual crystallites were at least larger than 0.04 - 0.05 mm. The cluster of crystals appears to be held together by a very fine mud. It was not possible to determine with certainty whether the observed grains in the collected sascab are composed of calcite as opposed to dolomite. A test with chlorohydric acid differentiates calcite from dolomite in hand specimens but it is not reliable when used with fine-grained dolomite. Sample #17 contains some clusters of euhedral sparry crystals but most of the grains could not be resolved.

Micritic and sparry particles plucked out from pottery samples were also examined using the binocular microscope. The physical attributes of sascab, such as crystal size and the rhombic form of the sparry particles, matched the grains of some of the sparry pottery samples.

6.11 Summary

Hand-specimen analysis showed that variations exist in the composition of the samples. It was observed that the main characteristics that divided the samples for the formation of the hand-specimen fabrics are the dominant inclusions, the texture (or grain size), the refired color, and the hardness of the paste. It was found that there are patterns to this variability that allowed characterizing the samples into ten fabrics.

The results made evident that the fabrics are correlated to the types of vessels and to the geographical location. In the north-central area, most red-slipped samples have medium-grained microcrystalline fabrics. The samples of the unslipped, striated open-mouth Yacman jars always have coarse fabrics in which the main inclusions are sparry, dark particles, or single crystals. These differences between red-slipped and open-mouthed jars, a cooking pot, may be related to their intended function. Navula samples, plain and unslipped, on the other hand, do not have a recognizable pattern and do not show a dominant grain size or type of inclusion. This analysis also showed that the fabrics within the utilitarian vessels sampled from the north-central area differ from the fabrics found at eastern sites (coarse single crystals) for the same type of vessels. On the other hand, Payil, found at Mayapán and Chac Mool, shares the same fine-grained single-crystal fabric.

However, there are many limitations when performing a hand-specimen analysis. The most challenging is that most inclusions cannot be identified, and it was not possible to determine whether the white carbonate inclusions in the pottery samples are calcite or dolomite. There is also the issue of the maximum magnification of the microscope used in this work, 40 times the natural size. Crystals less than 0.040 mm cannot be distinguished with clarity. An analysis using thin sections and the polarizing microscope presented in subsequent chapters addresses these issues.

In sum, while hand-specimen analysis was successful in characterizing the samples into fabrics and showing that patterns exist, these fabrics, however, are very broad and insufficient to test the hypotheses guiding this research or address the research questions. In the next chapter, the samples are further characterized into groups by their chemical attributes given by differences in raw materials sources and technologies applied.

In this chapter, the results of the chemical analysis are presented. The main objective of this analysis is to characterize the pottery fabrics in terms of their chemical attributes. To this end, a combination of petrographic and chemical analyses was used. This approach addresses the challenges to studying the Late Postclassic ceramic economy. These challenges are the result, in a good part, from stylistic similarities within the ceramics, combined with a geologically largely homogeneous northern Yucatán that has hindered research on ceramic production. It was anticipated from the start of this study that there would be little variability amongst types of rocks in northern Yucatán. It was expected that chemical analysis overcomes these challenges. While petrographic analysis is based on the rocks and mineral inclusions, chemical analysis incorporates the clay component in the characterization of the fabrics (Whitbread 2007, p.187).

A total of 186 pottery samples and 12 clay samples were analyzed using Neutron Activation Analysis (NAA). The samples were taken from the different fabrics identified with hand-specimen analysis, focusing on the selection of each fabric from the various sites and ceramic classes. Chemical analysis was performed by Pierce and Glascock (2015) at the University of Missouri's Research Reactor (MURR). This report is included in Appendix B for ease of reference. The results of this analysis will be reexamined in subsequent chapters (Chapter 9 and 10) in light of the results of the petrographic analysis (Chapter 8).

In addition to the characterization of the pottery samples, this research makes use of chemical analysis for provenance analysis. Provenance of pottery samples cannot be known from examining chemical groups in isolation. The chemical groups need to be compared to known sources, including raw materials taken from known or probable sources. It is preferable, however, to use pottery, including wasters, found in known or presumed production centers. The reason for comparing pottery to pottery, as opposed to raw materials, is that the raw materials used to manufacture the pottery could have been processed in such a way that changed their chemical fingerprint. The concentrations of elements may be changed by adding temper, mixing clays, or through levigation. A pottery-to-pottery comparison would incorporate changes within the chemical composition in response to techniques of clay preparation. However, a search of the literature showed that there are no known production centers for utilitarian ceramics in the study region for any period (Dahlin and Ardens 2002).

Therefore, the investigation of the chemical compositions of the samples took a different approach that includes the investigation of the structure that the elemental chemical data of pottery samples and raw materials from the region might have and that seeks patterns in the data leading to the characterization of the samples into chemical groups. Given that the location of production is not known, if raw materials or raw materials with distinctive chemical information are lacking, the characterization of pottery samples by itself might provide significant information for this research by forming potters' groups of similar chemical characteristics. On the other hand, if raw materials are available that provide distinctive chemical information, the groups formed, in addition to characterizing the pottery samples can potentially determine provenance. Because these groups have different chemical compositions, they may represent geological or social divisions such as different geological sources of raw materials or ways of making pottery (traditions).

7.1 The Structure of the Data

The procedures followed at MURR for the processing of the samples and collection of the data are described by Pierce and Glascock (2015) and (Glascock 1992, 2009). Briefly, the procedure includes a series of steps for the removal of small fragments from each sample and the abrasion, washing, drying, weighing, and irradiation of the fragments. After irradiation, the samples are allowed to decay, and the concentration of the chemical elements counted and recorded in parts per million (Table 7-1). The 33 chemical elements analyzed are: aluminum (Al), barium (Ba), calcium (Ca), dysprosium (Dy), potassium (K), manganese (Mn), sodium (Na), titanium (Ti), vanadium (V), arsenic (As), lanthanum (La), lutetium (Lu), neodymium (Nd), samarium (Sn), uranium (U), ytterbium (Yb), cerium (Ce), cobalt (Co), chromium (Cr), cesium (Cs), europium (Eu), iron (Fe), hafnium (Hf), nickel (Ni), rubidium (Rb), antimony (Sb), scandium (Zr).

Chemical Group	Site Name	ANID	Alternate ID	As	La	Lu	Nd	Sm	U	Yb	Ce	Со	Cr	Cs	Eu	Fe	Hf	Ni	Rb
Group 1	Tepich	CGS001	282	3.0105	9.3006	0.1768	8.9640	1.8786	2.0359	0.8454	22.194	1.9722	40.835	1.8588	0.3535	10352.3	1.7433	0.00	16.39
Group 1	Tepich	CGS002	283	5.1889	7.2767	0.1757	7.0281	1.6285	1.6894	0.9314	27.520	1.8833	33.821	1.9413	0.3121	10267.5	1.8049	0.00	21.97
Group 1	Tepich	CGS003	284	5.6371	9.4489	0.1507	7.4157	1.7196	1.6594	0.7462	19.805	2.4610	56.804	1.8035	0.3203	11568.0	1.9601	33.12	16.85
Group 1	Tepich	CGS004	285	2.7923	5.8703	0.1421	5.8124	1.1297	1.3976	0.6877	15.859	0.8634	26.292	1.2232	0.2156	8816.0	1.7022	15.15	12.27
Group 1	Tepich	CGS005	286	8.9659	10.1563	0.1304	8.3758	1.7709	1.2456	0.9743	24.374	2.7146	48.257	1.6807	0.3334	14018.4	2.0191	0.00	18.76
Group 1	Tepich	CGS006	309	3.0287	7.4385	0.1641	6.5796	1.5618	2.0499	0.8351	16.777	1.4643	27.209	1.4734	0.2811	8471.8	1.5889	0.00	17.90
Group 1	Tepich	CGS007	304	3.9999	10.0303	0.1556	8.6281	2.0001	1.8848	0.9597	24.200	2.4146	49.677	1.8357	0.3895	11993.2	2.1963	23.54	15.72
Group 5	Tepich	CGS008	389	10.1000	25.3261	0.3630	23.8089	4.4827	1.4594	2.2170	59.043	6.8324	119.822	4.0989	0.9206	28317.8	4.4260	38.22	37.78
Group 1	Tepich	CGS009	288	3.9977	9.3753	0.1536	7.4082	1.4843	1.3008	0.8523	20.930	2.2850	30.732	2.3341	0.2814	10645.6	2.0926	0.00	24.20
Group 1	Tepich	CGS010	289	1.5214	4.8464	0.1001	3.2916	0.9233	1.3507	0.4540	10.128	2.1569	35.048	1.5567	0.1699	7221.1	1.7917	15.08	17.19
u/a	Tepich	CGS011	290	2.6920	10.1223	0.1147	6.7130	1.5777	0.6548	0.8214	20.258	1.7320	22.688	1.8892	0.2991	9102.1	1.8997	0.00	13.74
Group 1	Tepich	CGS012	291	8.9378	9.4531	0.1443	9.1688	1.8687	1.6458	1.0089	26.175	3.2717	86.516	1.9705	0.3756	13852.8	1.9125	0.00	18.95
Group 1	Tepich	CGS013	300	3.7694	9.4453	0.1254	8.9262	1.4951	1.4736	0.7790	19.341	2.2373	31.218	2.3475	0.2757	10737.0	2.1331	19.95	23.75
Group 1	Tepich	CGS014	301	2.2905	8.0644	0.1082	5.7441	1.3581	1.9134	0.6440	16.552	0.9560	23.223	1.0685	0.2547	6889.0	1.2456	0.00	10.59
Group 2	Tecoh	CGS015	237	3.6564	14.9286	0.3277	15.1729	3.6919	1.0123	2.5390	31.882	3.2678	22.384	2.5919	0.7117	15852.6	3.2504	0.00	48.96
Group 1	Tecoh	CGS016	235	3.4918	5.2093	0.1296	4.5437	1.0885	1.8977	0.4729	11.646	1.0640	44.313	0.7228	0.1793	7731.0	1.3424	0.00	4.78
u/a	Tecoh	CGS017	236	8.5967	12.5430	0.1505	11.2121	2.1906	0.7130	1.1666	26.293	3.6641	58.302	0.9936	0.4368	12182.6	2.0068	31.98	13.43
Group 2	Tecoh	CGS018	339	4.2398	15.0054	0.3380	16.8343	3.6675	1.0477	2.4595	32.819	3.2905	24.379	2.4316	0.6903	15625.9	3.3774	0.00	47.60
Group 1	Tecoh	CGS019	395	3.6380	4.6928	0.1114	3.9413	1.0076	1.8355	0.4351	10.907	1.0783	44.402	0.7672	0.1656	7907.7	1.2768	0.00	3.38
Group 1	Tecoh	CGS020	396	3.8919	3.2841	0.0876	6.1178	0.8448	1.1517	0.6992	7.460	1.2959	40.987	0.5031	0.1669	8991.4	1.3273	0.00	2.80
Group 1	Tecoh	CGS021	397	3.4125	5.3551	0.1295	6.0148	1.0935	2.2898	0.5129	11.403	1.3148	44.461	0.6107	0.1841	7957.5	1.3500	0.00	5.11
Group 2	Tecoh	CGS022	335	7.5145	19.4705	0.2138	18.3652	3.3593	1.0611	1.5723	40.716	5.0366	85.733	1.8405	0.7025	18699.7	2.7186	0.00	16.56
u/a	Tecoh	CGS023	336	2.7035	6.3777	0.1066	7.0478	1.1831	1.2163	0.6292	13.106	1.0727	35.820	0.2872	0.2215	7453.6	1.1241	0.00	3.90
Group 2	Tecoh	CGS024	390	6.5081	/.521/	0.1363	5.5254	1.3881	1.1629	1.0051	20.176	2.9221	52.134	4.2201	0.2796	18468.5	3.3203	0.00	27.65
Group 5	Tecoh	CGS025	391	13.0092	26.4568	0.3065	21.81/3	4.6165	1.4584	2.2394	56.695	8.0815	114.435	3.5532	0.9549	26134.1	4.03/2	54.19	52.04
Group 2	Tecon	CGS020	392	4.3412	10.8/00	0.3528	10.9032	4.0588	0.7310	2.0529	38.332	5.1094	23.343	2.420/	0.7415	148/8.3	3.3228	0.00	32.04
Group 5 Croup 1	Tecon	CGS027	393	14.0323	5 2626	0.3805	5 2122	0.0049	1.///3	2.7298	/5./0/	9.8915	98.870	5.1081	1.2048	7627.2	4./159	40.02	32.78
Group 1	Tecoli	CG\$020	220	2.0940	7 7216	0.1327	7.0100	1.1109	2.1755	1 1212	19.054	2 0125	45.140	2 2 4 7 5	0.1602	20266.2	2 2 2 5 1	18 70	4.92
Group 1	Tecoli	CG\$029	239	16 1010	9 5790	0.2274	7.9109 8.6602	1.0407	2 6200	1.1312	20.208	2.9123	117 624	2.3473	0.3330	20300.3	2.3331	10.70	21.22
Group 1	Tecoh	CG\$031	332	10.1910	0.0108	0.2131	10.0092	2 0732	2.0299	0.0876	20.396	3.2700	84 677	2.3630	0.3774	1/18/10 1	2.3093	13.00	21.23
Group 1	Tecoh	CG\$032	333	3 / 831	2 9325	0.1074	2 4674	0.7594	1 3661	0.5870	13 440	1 3/17/	28 976	1 2750	0.3901	8525.0	1.0041	0.00	14 41
Group 1	Telchaa	CGS032	155	7 4507	10 5840	0.1403	10 2165	1 9660	1.0275	0.9220	25 508	2 7350	53 289	1 1 9 8 8	0.1445	11096.5	1.6007	0.00	17.51
Group 1 Group 1	Telchaq	CGS034	158	5 8491	7 6834	0.1405	6 4847	1 7068	1.0273	0.9220	20.056	2.7550	79 154	1.1700	0.3330	11415.0	1.0007	10.63	9.29
Group 1 Group 1	Telchaq	CGS035	160	7 6021	6 0048	0.1504	5 8183	1 3896	2 1947	0.7398	15 050	1 6219	55 571	1.8179	0.2554	10943.6	1.9037	0.00	9.68
11/a	Telchag	CGS036	161	2 5067	3 8336	0.0637	4 2337	1 0119	3 1 3 9 1	0.4856	9 928	0.8474	36 545	0.4036	0 1 5 3 9	7295.6	1 3493	0.00	3 01
Group 1	Telchag	CGS037	319	2.0662	5 1 5 2 1	0 1048	3 6599	1 0364	1 7175	0.5116	11 196	1 2879	27 137	0.6037	0 1812	5813.9	1 1123	0.00	4 15
Group 1	Telchao	CGS038	153	12.9614	12,1160	0.1788	12.3160	2.2246	1.7326	1.1496	25.213	2.5676	90.605	1.3036	0.4470	15946.1	2,2635	0.00	12.04
Group 5	Telchaq.	CGS039	154	11.4971	42.0740	0.5670	36.5020	7.7830	1.3663	4.6951	92.919	8.4648	141.098	4.1297	1.5615	34517.1	6.7414	56.55	40.88

Table 7-1 (a). Elemental Concentration (ppm) of Pottery and Raw Materials Samples

Chemical Group	Site Name	ANID	Alternate ID	As	La	Lu	Nd	Sm	U	Yb	Ce	Со	Cr	Cs	Eu	Fe	Hf	Ni	Rb
u/a	Telchaq.	CGS040	175	27.0807	18.4487	0.3434	22.0662	4.8512	2.9499	2.1945	60.176	4.8698	157.198	1.7758	1.0223	31747.0	2.9862	32.20	14.22
Group 1	Telchaq.	CGS041	176	6.7987	10.0903	0.1888	10.5316	2.0869	2.3931	1.0126	25.331	2.4909	60.365	2.8438	0.3993	15884.6	2.0701	0.00	24.85
Group 1	Telchaq.	CGS042	312	7.8092	7.7066	0.1637	7.3100	1.6867	1.8973	0.9466	17.308	1.8644	52.416	1.0509	0.2679	9059.3	1.5439	0.00	15.16
Group 1	Telchaq.	CGS043	162	2.3469	6.6432	0.1571	8.1053	1.5526	4.0786	0.6501	15.894	1.0219	52.325	1.0664	0.2322	7175.4	2.0054	0.00	8.12
u/a	Telchaq.	CGS044	163	3.9880	4.7910	0.1183	3.6692	1.0733	2.2433	0.4883	12.154	1.0929	31.683	0.3063	0.1814	6908.5	0.9499	0.00	2.29
Group 5	Telchaq.	CGS045	165	21.4219	31.7083	0.4588	28.4987	6.2308	3.9989	2.8083	78.236	11.1219	187.499	4.4645	1.2999	35504.7	4.6987	60.92	38.41
Group 1	Telchaq.	CGS046	313	8.3344	13.6663	0.1931	11.2298	2.6164	2.4630	1.1318	26.837	2.7476	81.873	1.5650	0.5010	13122.7	1.7463	0.00	13.16
Group 1	Telchaq.	CGS047	314	7.2905	6.7115	0.1390	6.4637	1.3795	1.8906	0.9274	21.575	1.8405	59.045	1.4645	0.2703	14711.5	2.1052	0.00	14.26
u/a	Telchaq.	CGS048	315	1.4618	5.1597	0.0633	3.8491	0.9987	1.3524	0.4640	10.944	1.2066	47.960	0.7462	0.1756	4963.9	1.1266	28.73	4.55
Group 1	Telchaq.	CGS049	398	7.1692	13.7891	0.2301	13.2668	2.6246	2.4070	1.2323	27.504	2.7426	83.575	1.8299	0.5160	13295.6	1.8238	0.00	17.00
Group 1	Telchaq.	CGS050	169	3.4671	4.8228	0.1217	3.3401	0.9956	1.9257	0.4768	10.110	1.1428	45.907	0.8695	0.1746	7153.8	1.1797	0.00	11.08
Group 2	Telchaq.	CGS051	172	17.4726	13.3773	0.2357	14.0806	2.6421	1.5435	1.4499	42.309	2.6662	97.166	3.3769	0.4853	20524.7	4.1599	34.61	33.68
Group 1	Mayapan	CGS052	113	8.0740	6.5167	0.1419	5.8351	1.3902	2.6012	0.6205	15.275	1.8331	46.615	1.0577	0.2233	9235.9	1.4831	0.00	17.89
Group 2	Mayapan	CGS053	119	4.1628	12.4392	0.2263	8.9091	2.1042	1.5166	1.5019	25.131	3.2855	54.595	3.5645	0.3887	18831.5	5.2836	0.00	28.73
Group 1	Mayapan	CGS054	248	11.8676	6.6187	0.1346	7.1527	1.6567	1.7274	0.7217	16.067	1.5883	62.975	1.2386	0.3136	10052.1	1.3142	0.00	12.68
Group 1	Mayapan	CGS055	249	6.5769	9.7498	0.1721	11.5770	2.1987	1.8245	1.0235	25.555	1.8816	68.773	0.7824	0.4408	9957.6	1.7547	0.00	7.74
Group 1	Mayapan	CGS056	259	8.3253	6.3289	0.1685	5.7634	1.4884	2.3345	0.7658	16.609	1.9703	75.140	0.7519	0.2651	12490.3	1.7596	0.00	11.01
Group 1	Mayapan	CGS057	260	7.2709	5.8149	0.0812	6.5537	1.3234	3.5319	0.5437	16.913	1.3415	36.034	0.8145	0.2031	9623.3	1.4245	0.00	9.18
Group 1	Mayapan	CGS058	322	4.3461	4.8179	0.0716	4.5853	1.1603	3.4852	0.5482	13.158	2.1492	30.527	1.1626	0.1799	8281.7	1.4785	0.00	9.15
Group 1	Mayapan	CGS059	323	6.5350	5.0352	0.1756	5.1742	1.5126	3.4862	0.7588	15.451	1.3758	53.831	1.1846	0.2487	9630.9	1.2994	0.00	13.85
Group 1	Mayapan	CGS060	436	8.1345	6.1831	0.1380	4.7892	1.2898	1.7427	0.8235	17.058	1.9441	69.578	0.9523	0.2590	12033.0	1.6246	0.00	12.65
Group 1	Mayapan	CGS061	437	7.0520	7.6450	0.1252	5.4385	1.4476	1.1591	0.7707	16.298	1.9367	63.610	0.8831	0.2898	10110.7	1.7548	0.00	16.76
Group 1	Mayapan	CGS062	438	4.0713	6.5036	0.1349	5.9156	1.3424	1.8145	0.7365	15.385	1.2133	32.635	0.7087	0.2050	6041.6	1.1948	0.00	15.17
Group 1	Mayapan	CGS063	439	5.4586	8.9030	0.1392	9.7054	1.7095	1.8659	0.7989	19.208	2.0671	46.540	0.8842	0.3084	8737.9	1.5872	0.00	10.42
Group 1	Mayapan	CGS064	451	1.7019	6.3151	0.1076	5.7998	1.1878	1.9983	0.5604	13.026	1.2467	53.186	0.9811	0.1965	5936.6	1.4817	32.00	12.46
Group 1	Mayapan	CGS065	98	2.9372	4.6870	0.0933	4.2281	1.0281	1.8473	0.5193	11.643	1.4922	36.497	0.8531	0.1785	7062.7	1.0662	0.00	9.68
Group 2	Mayapan	CGS066	146	4.4453	12.1798	0.1526	10.9474	2.2721	1.7137	0.9587	29.320	1.5964	39.880	1.5608	0.3340	8217.9	2.7405	17.31	22.02
Group 1	Mayapan	CGS067	148	5.5723	4.1968	0.1170	4.2155	0.9460	1.5955	0.5922	15.456	1.6789	49.210	1.5394	0.1753	10881.4	1.6656	0.00	18.34
Group 1	Mayapan	CGS068	149	6.1496	5.8199	0.1388	4.9357	1.2160	1.5927	0.7139	16.234	2.0118	63.424	1.4575	0.2433	12005.6	1.6770	0.00	18.75
u/a	Mayapan	CGS069	150	8.7785	14.4984	0.1745	11.8690	2.7080	2.1497	1.1106	36.392	2.0863	91.439	2.5237	0.4644	16108.7	2.6993	24.60	16.02
Group 1	Mayapan	CGS070	101	7.4846	8.7002	0.1592	8.6256	1.8661	2.0684	0.9141	22.218	2.0442	72.184	2.1830	0.3633	14624.3	2.1444	0.00	18.93
u/a	Mayapan	CGS071	102	8.4268	11.8819	0.2060	10.6122	2.5858	1.9168	1.3557	21.019	1.8442	40.910	0.8483	0.4755	12028.4	2.0686	0.00	14.67
u/a	Mayapan	CGS072	104	4.2173	8.8927	0.1370	8.3632	1.7156	2.5518	0.6906	17.399	1.0886	38.140	0.2600	0.3008	7101.7	1.1061	0.00	5.69
Group 1	Mayapan	CGS073	106	5.2871	8.8108	0.1460	7.4657	1.7214	1.9177	0.8834	21.376	2.1355	37.891	2.0539	0.2725	9713.9	2.0392	0.00	32.57
Group 1	Mayapan	CGS074	109	3.1725	5.5633	0.1729	5.0970	1.2905	2.6615	0.8196	12.238	1.7219	29.232	1.1392	0.1996	7852.9	1.9283	0.00	25.38
Group 1	Mayapan	CGS075	110	3.9988	10.4629	0.1164	8.5952	1.7230	1.2706	0.7742	20.842	1.5863	38.471	0.9994	0.3429	8686.1	1.3464	0.00	11.65
Group 1	Mayapan	CGS076	242	8.0069	8.5215	0.1295	7.6110	1.5556	0.8876	0.7432	20.018	2.1844	68.940	1.3551	0.3183	11489.3	1.7528	0.00	20.49
Group 1	Mayapan	CGS077	243	8.8255	6.6490	0.1183	6.0860	1.3754	1.4192	0.8324	17.012	2.4505	63.160	1.8233	0.2609	12926.1	1.7453	0.00	17.51
Group 1	Mayapan	CGS078	244	13.1925	12.0049	0.1866	11.9049	2.2358	2.0999	1.3208	27.264	3.7873	75.353	1.3262	0.4496	15958.1	2.0996	25.64	16.54
Group 1	Mayapan	CGS079	253	4.5954	7.0205	0.1535	7.0630	1.5055	2.6437	0.7991	17.341	1.5063	35.117	1.0034	0.2108	7120.3	1.6303	0.00	15.82

Chemical Group	Site Name	ANID	Alternate ID	As	La	Lu	Nd	Sm	U	Yb	Ce	Со	Cr	Cs	Eu	Fe	Hf	Ni	Rb
Group 1	Mayapar	n CGS080	256	8.5105	10.0907	0.1767	8.5960	1.8982	2.1170	0.9208	23.139	2.4774	81.595	1.7278	0.3305	11848.4	2.0482	16.04	15.91
Group 1	Mayapar	n CGS081	257	12.4250	7.1527	0.1867	7.5208	1.9641	2.4391	0.9978	23.747	2.0725	77.202	1.1786	0.3771	12885.6	1.6374	18.42	10.90
Group 1	Mayapar	n CGS082	258	8.2453	9.2049	0.1818	8.6308	1.8552	2.8791	0.8451	21.554	2.1511	64.334	1.3688	0.3422	11486.2	1.7228	0.00	9.85
Group 4	Mayapar	n CGS083	129	5.1543	21.4397	0.3111	17.7429	3.6045	2.0319	1.9728	55.359	4.5777	92.324	0.8104	0.6967	21889.7	8.8500	0.00	11.11
Group 4	Mayapar	n CGS084	130	6.3181	20.3557	0.2824	16.4365	3.4272	1.4192	1.8981	48.731	3.5885	84.915	0.7429	0.6318	20052.2	8.1204	0.00	6.76
Group 4	Mayapar	n CGS085	131	6.0374	34.0162	0.3442	28.7140	6.2347	1.8687	2.7271	92.956	3.2480	83.754	0.9654	1.2836	23756.7	6.8833	0.00	10.00
Group 4	Mayapar	n CGS086	133	7.0202	15.6165	0.2233	11.6365	2.8052	1.3987	1.6870	34.596	2.6506	60.362	0.6532	0.5686	19407.7	4.8769	0.00	0.00
u/a	Mayapar	n CGS087	134	6.4304	35.1360	0.4700	31.1108	6.2183	1.4469	3.5285	83.454	8.2656	106.034	1.9244	1.2879	35285.2	10.4412	0.00	15.35
u/a	Mayapar	n CGS088	135	7.7689	24.5045	0.4704	27.4526	6.3637	1.4186	3.6343	92.388	12.5062	111.911	1.3782	1.2234	30943.4	5.4007	48.78	15.07
Group 4	Mayapar	n CGS089	136	5.4468	19.5868	0.2142	19.1001	3.5144	0.9737	1.6733	42.421	2.5026	62.698	0.6288	0.6717	17801.7	4.2934	0.00	5.54
u/a	Mayapar	n CGS090	328	8.6032	10.7535	0.2063	10.5414	2.4067	1.5626	1.4563	28.431	4.7080	46.156	2.3490	0.4260	16497.2	4.6806	44.76	17.39
Group 5	Tekit	CGS091	445	20.0402	22.1350	0.3023	19.0260	4.1235	1.3031	2.2561	51.554	5.0693	112.410	3.2029	0.7507	27013.5	4.3744	36.94	44.52
Group 1	Tekit	CGS092	446	8.9537	6.5701	0.1673	6.8409	1.4803	1.9911	0.8122	16.397	2.3553	51.729	0.5264	0.2839	10786.6	1.1741	0.00	6.94
Group 2	Tekit	CGS093	447	9.3490	23.1683	0.3087	20.7145	4.3816	2.4245	2.2009	44.215	2.6596	22.660	2.4816	0.6675	13489.0	3.9573	43.47	23.49
Group 1	Tekit	CGS094	448	4.6277	6.1500	0.1197	4.8488	1.1483	1.8963	0.5881	12.910	1.9045	26.218	0.8766	0.1921	6603.3	1.0827	0.00	5.33
Group 1	Tekit	CGS095	449	5.4791	4.9747	0.0828	4.7561	1.3034	3.1984	0.5158	12.471	1.5976	47.059	1.0236	0.1977	9175.4	1.2907	0.00	10.21
Group 2	Tekit	CGS096	440	4.6554	9.2452	0.1806	7.5606	2.1149	1.3967	1.3191	30.323	1.9551	27.500	1.0923	0.3207	10853.9	2.8850	16.14	13.87
Group 5	Tekit	CGS097	441	10.8215	24.2031	0.3461	23.4421	4./260	2.2942	2.4/59	53.706	6.8300	109.528	3.3298	0.9294	26329.0	4.0202	48.24	38.01
Group 5	Tekit	CGS098	442	/.1424	1/./094	0.2728	15.8838	3.3486	2.2123	2.0030	42.806	4.6/61	/9.249	3.1241	0.6331	22420.1	3.7940	29.12	41.21
u/a	Tekit	CGS099	443	11.46/3	10.0225	0.4326	15.5065	3.3316	1.6/09	3.2894	49.760	2.4/83	63.530	2.5770	0.4498	23630.2	8.3611	30.66	27.02
Group 2	Tekit	CGS100	444	5.2880	19.9225	0.1/4/	19.5072	3.4800	1.4385	1.3243	44.159	2.1255	52.800 94.900	2.3333	0.5205	95/4.8	3.4313	23.20	27.39
Group 2	Telrit	CCS101	450	2.5710	4.9430	0.1224	5.2902	2 5 2 2 1	1 2004	0.8094	17.200	0.9073	64.690 59.710	2.1557	0.1805	8074.0	2.0317	27.00	13.08
Group 2	Telrit	CGS102	452	2.3647	7 6096	0.1127	13.4//1	2.3331	1.2094	0.7014	14 779	2 1 1 5 2	38.712 72.000	2.0072	0.3910	00/4.0 10512.5	2.8224	37.09	20.01
u/a Croup 2	Tekit	CGS103	455	5 1657	17.0960	0.1243	14 6685	3 3 4 1 7	1.0080	2 1033	14.770	2.1155	21 553	1.7900	0.2652	15146.0	4 2352	20.32	10.00
Group 2 Group 4	Tekit	CGS104	455	8 2322	28 6234	0.2757	25 5124	5 6134	0.8052	2.1035	58 356	2.7759	153 603	0.4520	1 1450	28030 2	3 3766	13.89	6.16
010up 4 11/9	Mama	CGS105	340	6 0241	17 7947	0.2070	18 7445	4 3477	0.0052	2.0500	45 127	1 4345	21 305	1 3056	0 4482	8688.0	4 6980	0.00	7.95
Group 1	Mama	CGS107	341	2 8986	12 3368	0.1402	11.0523	1 9809	2 6570	0.5786	25.810	2 1652	91 486	1 5308	0.3180	5699.9	1 9554	87.16	12 58
Group 1	Mama	CGS108	342	2.2718	13.2614	0.1389	12.1655	2.1273	2.6153	0.6565	26.878	2.2601	96.632	1.6776	0.3612	5926.8	2.0557	86.20	12.67
Group 1	Mama	CGS109	343	2.5382	12.2289	0.1496	10.5073	1.9347	2.6632	0.5846	26,182	2.1578	91.944	1.6237	0.3156	5798.0	1.9187	72.82	12.63
u/a	Mama	CGS110	344	10.7390	8.8059	0.1478	6.4051	1.4684	1.5948	0.8319	17.413	2.7887	145.543	1.8041	0.2728	14340.5	2.8097	32.73	18.47
Group 1	Mama	CGS111	415	2.1679	12.1942	0.1360	14.4761	1.9750	2.0205	0.5682	25.910	2.1716	97.029	1.6728	0.3107	5799.9	1.9352	84.85	12.56
Group 1	Mama	CGS112	416	2.3435	11.3052	0.0733	10.1331	1.8173	2.4552	0.5468	23.470	2.0318	88.468	1.6129	0.2944	5380.0	1.7772	98.55	11.70
Group 1	Mama	CGS113	346	4.4676	9.8266	0.1203	7.6583	1.7906	1.3607	0.8700	21.4882	2.9680	84.799	2.7729	0.3516	10931.5	2.1831	88.53	20.32
Group 2	Mama	CGS114	347	5.2208	13.9703	0.1604	9.7845	2.1625	1.6323	0.8698	42.2459	3.0964	145.744	5.6137	0.3644	14904.8	3.9980	55.84	58.80
Group 1	Mama	CGS115	350	6.1777	9.2901	0.1392	8.3279	1.9219	1.6537	1.0334	23.3575	2.2352	80.528	1.1813	0.3733	11472.2	1.8550	21.12	11.97
u/a	Mama	CGS116	351	8.6196	38.4025	0.3488	32.4376	6.2812	1.5206	2.8488	72.6073	7.0859	77.286	0.6767	1.1524	21448.3	4.5095	36.02	9.05
u/a	Mama	CGS117	352	4.9070	31.4092	0.2073	25.7541	4.7322	1.5548	1.2855	55.4733	3.1602	185.328	4.5954	0.8352	13522.4	4.2084	86.04	39.99
u/a	Mama	CGS118	409	1.7828	2.9228	0.0707	3.0516	0.6084	0.9950	0.5339	7.1744	0.9164	22.331	0.7842	0.1165	5564.2	0.7906	0.00	11.18
u/a	Mama	CGS119	410	6.5772	14.8546	0.2552	15.5468	2.8807	3.8347	1.1778	27.2315	1.7655	57.464	0.7051	0.5169	13964.1	2.0887	0.00	13.28

u/a Mama CGS120 411 6.0040 5.0116 0.0815 7.1774 1.0005 1.0071 0.6390 12.8444 2.5159 14.286 0.7827 0.1589 6183.6 1.7066 0.00 u/a Teabo CGS121 418 6.7429 4.6123 0.0899 5.4277 1.0285 0.4762 0.7538 11.2910 1.2295 11.736 0.4083 0.1580 7203.4 1.8109 0.00 Group 2 Teabo CGS123 420 3.2456 6.2130 0.0843 4.1599 1.2821 0.9169 0.6142 21.7872 1.2810 31.487 0.8737 0.2283 0.7716 0.5557 8712.3 2.7152 0.00 u/a Teabo CGS124 421 2.8771 4.3662 0.2161 1.49280 3.1206 1.4583 3.7401 80.6135 7.3424 97.571 4.3681 1.4682 3.882.4 7.9478 2.6453 Group 2 Teabo CGS126 431 4.0401<	110
u/aTeaboCGS1214186.74294.61230.08995.42771.02850.47620.753811.29101.229511.7360.40830.15807203.41.81090.00Group 2TeaboCGS1224196.576211.98110.181214.68922.71930.72341.497532.26631.617329.5561.36530.34459621.03.50920.00u/aTeaboCGS1234203.24566.21300.08434.15091.28210.91690.614221.78721.281031.4870.87220.22437292.91.77600.00Group 2TeaboCGS1244212.875714.36620.216114.92803.12061.45541.712330.51581.673720.2890.67610.55578712.32.71520.00u/aTeaboCGS1264314.040115.47130.23631.447553.36911.44662.006241.01364.335846.1871.46020.62461676.73.96690.00Group 2TeaboCGS1274323.09111.241920.260711.40942.71850.92152.058135.15063.966944.9142.59940.45281770.74.35820.00Group 5TeaboCGS1284337.527117.23810.257316.48903.95771.37792.46025.57855.931683.9232.80870.74352402915.06872.665Gr	9.97
Group 2 Teabo CGS122 419 6.5762 11.9811 0.1812 14.6892 2.7193 0.7234 1.4975 32.2663 1.6173 29.556 1.3653 0.3445 9621.0 3.5092 0.00 u/a Teabo CGS123 420 3.2456 6.2130 0.0843 4.1509 1.2821 0.9169 0.6142 21.7872 1.2810 31.487 0.8722 0.2243 7292.9 1.7760 0.00 Group 2 Teabo CGS124 421 2.8757 14.3662 0.2161 14.9280 3.1206 1.4554 1.7123 30.5158 1.6737 20.289 0.6761 0.5557 8712.3 2.7152 0.00 u/a Teabo CGS126 431 4.0401 15.4713 0.2363 14.7555 3.3691 1.466 2.0062 41.1036 4.3358 46.187 1.4602 0.6246 16726.7 3.9669 0.00 Group 2 Teabo CGS128 433 7.571 1.24192 0.2607 11.4094 2.7185 0.9215 2.0581 35.156 3.9694 44.914 <t< th=""><th>6.66</th></t<>	6.66
u/aTeaboCGS1234203.24566.21300.08434.15091.28210.91690.614221.78721.281031.4870.87220.22437292.91.77600.00Group 2TeaboCGS1244212.875714.36620.216114.92803.12061.45541.712330.51581.673720.2890.67610.55578712.32.71520.00u/aTeaboCGS12543013.448732.20880.457828.12736.02661.43833.740180.61357.342497.5714.36811.045833882.47.947826.45Group 2TeaboCGS1274323.091112.41920.260711.40942.71850.92152.058135.15063.966944.9142.59940.45291770.74.53220.00Group 5TeaboCGS1274337.527117.23810.251914.81483.40061.03382.027344.47003.954571.8022.22480.585719718.34.15840.00Group 5TeaboCGS1304266.41856.81000.14518.10131.55330.58071.244518.39061.508924.1930.84560.243710096.02.761912.08Group 1TipikalCGS1312616.856320.46980.171316.94843.88191.47151.423443.62921.594524.3580.90830.50908064.52.66298.13 <th>18.82</th>	18.82
Group 2 u/aTeaboCGS1244212.875714.36620.216114.92803.12061.45541.712330.51581.673720.2890.67610.55578712.32.71520.00u/aTeaboCGS12543013.448732.20880.457828.12736.02661.43833.740180.61357.342497.5714.36811.045833882.47.947826.45Group 2TeaboCGS1264314.040115.47130.236314.75553.36911.44662.006241.10364.335846.1871.46020.624616726.73.96690.00Group 5TeaboCGS1284337.527117.23810.251914.81483.40061.03382.027344.47003.954571.8022.22480.585719718.34.15840.00Group 5TeaboCGS1294358.528319.95280.295316.48903.95371.37792.460250.57895.931683.9232.80870.743524029.15.068726.45Group 2TeaboCGS1304266.41856.81000.14518.10131.55330.58071.244518.39061.508924.1930.84560.243710096.02.761912.08Group 1TipikalCGS1322624.02717.56820.09015.84911.24400.71570.759822.01062.544032.2112.00150.243010645.41.7982	9.78
u/aTeaboCGS12543013.448732.20880.457828.12736.02661.43833.740180.61357.342497.5714.36811.045833882.47.947826.45Group 2TeaboCGS1264314.040115.47130.236314.75553.36911.44662.006241.10364.335846.1871.46020.624616726.73.96690.00Group 3TeaboCGS1274323.091112.41920.260711.40942.71850.92152.058135.15063.966944.9142.59940.452917704.74.53220.00Group 5TeaboCGS1284337.527117.23810.251914.81483.40061.03382.027344.47003.954571.8022.22480.585719718.34.15840.00Group 5TeaboCGS1304266.41856.81000.14518.10131.55330.58071.244518.39061.508924.1930.84560.243710096.02.761912.08Group 1TipikalCGS1312616.856320.46980.171316.94843.88191.47151.423443.62921.594524.3580.90830.50908064.52.66298.13Group 1TipikalCGS1332634.767312.19240.145410.88942.20011.96080.948226.62911.653445.2731.55370.33598308.32.117716	12.48
Group 2TeaboCGS1264314.040115.47130.236314.75553.36911.44662.006241.10364.335846.1871.46020.624616726.73.96690.00Group 2TeaboCGS1274323.091112.41920.260711.40942.71850.92152.058135.15063.966944.9142.59940.452917704.74.53220.00Group 5TeaboCGS1284337.527117.23810.251914.81483.40061.03382.027344.47003.954571.8022.22480.585719718.34.15840.00Group 5TeaboCGS1294358.528319.95280.295316.48903.95371.37792.460250.57895.931683.9232.80870.743524029.15.068726.45Group 1TipikalCGS1312616.856320.46980.171316.94843.88191.47151.423443.62921.594524.3580.90830.50908064.52.66298.13Group 1TipikalCGS1322634.767312.19240.145410.88942.20011.96080.948226.62911.653445.2731.55370.33598308.32.117716.64Group 1TipikalCGS13526710.42018.59400.13137.52761.86651.65790.970320.43812.452182.6661.11460.351312468.81.7077	60.40
Group 2 Teabo CGS127 432 3.0911 12.4192 0.2607 11.4094 2.7185 0.9215 2.0581 35.1506 3.9669 44.914 2.5994 0.4529 17704.7 4.5322 0.00 Group 5 Teabo CGS128 433 7.5271 17.2381 0.2519 14.8148 3.4006 1.0338 2.0273 44.4700 3.9545 71.802 2.2248 0.5857 19718.3 4.1584 0.00 Group 5 Teabo CGS129 435 8.5283 19.9528 0.2953 16.4890 3.9537 1.3779 2.4602 50.5789 5.9316 83.923 2.8087 0.7435 24029.1 5.0687 26.455 Group 1 Tipikal CGS131 261 6.8563 20.4698 0.1713 16.9484 3.8819 1.4715 1.4234 43.6292 1.5945 24.358 0.9083 0.5090 8064.5 2.6629 8.13 Group 1 Tipikal CGS133 263 4.7673 12.1924 0.1454 10.8894 2.2001 1.9608 0.9482 26.6291 1.	36.93
Group 5 Teabo CGS128 433 7.5271 17.2381 0.2519 14.8148 3.4006 1.0338 2.0273 44.4700 3.9545 71.802 2.2248 0.5857 19718.3 4.1584 0.00 Group 5 Teabo CGS129 435 8.5283 19.9528 0.2953 16.4890 3.9537 1.3779 2.4602 50.5789 5.9316 83.923 2.8087 0.7435 24029.1 5.0687 26.45 Group 1 Teabo CGS130 426 6.4185 6.8100 0.1451 8.1013 1.5533 0.5807 1.2445 18.3906 1.5089 24.193 0.8456 0.2437 10096.0 2.7619 12.08 Group 1 Tipikal CGS132 262 4.0271 7.5682 0.901 5.8491 1.2940 0.7157 0.7598 22.0106 2.5440 32.211 2.0015 0.2430 10645.4 1.7982 0.00 Group 1 Tipikal CGS133 263 4.7673 12.1924 0.1454 10.8894 2.2001 1.9608 0.9482 26.6291 1.6534	35.37
Group 5 Teabo CGS129 435 8.5283 19.9528 0.2953 16.4890 3.9537 1.3779 2.4602 50.5789 5.9316 83.923 2.8087 0.7435 24029.1 5.0687 26.45 Group 2 Teabo CGS130 426 6.4185 6.8100 0.1451 8.1013 1.5533 0.5807 1.2445 18.3906 1.5089 24.193 0.8456 0.2437 10096.0 2.7619 12.08 Group 1 Tipikal CGS132 262 4.0271 7.5682 0.0901 5.8491 1.2940 0.7157 0.7598 22.0106 2.5440 32.211 2.0015 0.2430 10645.4 1.7982 0.00 Group 1 Tipikal CGS133 263 4.7673 12.1924 0.1454 10.8894 2.2001 1.9608 0.9482 26.6291 1.6534 45.273 1.5537 0.3359 8308.3 2.1177 16.64 Group 1 Tipikal CGS134 266 10.4201 8.5940 0.1313 7.5276 1.8665 1.6579 0.9703 20.4381 2.45	28.68
Group 2 Teabo CGS130 426 6.4185 6.8100 0.1451 8.1013 1.5533 0.5807 1.2445 18.3906 1.5089 24.193 0.8456 0.2437 10096.0 2.7619 12.08 Group 2 Tipikal CGS131 261 6.8563 20.4698 0.1713 16.9484 3.8819 1.4715 1.4234 43.6292 1.5945 24.358 0.9083 0.5090 8064.5 2.6629 8.13 Group 1 Tipikal CGS132 262 4.0271 7.5682 0.0901 5.8491 1.2940 0.7157 0.7598 22.0106 2.5440 32.211 2.0015 0.2430 10645.4 1.7982 0.000 Group 1 Tipikal CGS133 263 4.7673 12.1924 0.1454 10.8894 2.2001 1.9608 0.9482 26.6291 1.6534 45.273 1.5537 0.3359 8308.3 2.1177 16.64 Group 1 Tipikal CGS135 267 10.4201 8.5940 0.1313 7.5276 1.8665 1.6579 0.9703 20.4381 2.4	38.25
Group 2 Tipikal CGS131 261 6.8563 20.4698 0.1713 16.9484 3.8819 1.4715 1.4234 43.6292 1.5945 24.358 0.9083 0.5090 8064.5 2.6629 8.13 Group 1 Tipikal CGS132 262 4.0271 7.5682 0.0901 5.8491 1.2940 0.7157 0.7598 22.0106 2.5440 32.211 2.0015 0.2430 10645.4 1.7982 0.00 Group 1 Tipikal CGS133 263 4.7673 12.1924 0.1454 10.8894 2.2001 1.9608 0.9482 26.6291 1.6534 45.273 1.5537 0.3359 8308.3 2.1177 16.64 Group 1 Tipikal CGS134 266 10.4201 8.5940 0.1313 7.5276 1.8665 1.6579 0.9703 20.4381 2.4521 82.666 1.1146 0.3513 12468.8 1.7077 15.04 Group 1 Tipikal CGS135 267 10.5427 8.6123 0.1250 8.1827 1.7858 1.6672 0.9705 20.8362 2	11.42
Group 1 Tipikal CGS132 262 4.0271 7.5682 0.0901 5.8491 1.2940 0.7157 0.7598 22.0106 2.5440 32.211 2.0015 0.2430 10645.4 1.7982 0.00 Group 1 Tipikal CGS133 263 4.7673 12.1924 0.1454 10.8894 2.2001 1.9608 0.9482 26.6291 1.6534 45.273 1.5537 0.3359 8308.3 2.1177 16.64 Group 1 Tipikal CGS134 266 10.4201 8.5940 0.1313 7.5276 1.8665 1.6579 0.9703 20.4381 2.4521 82.666 1.1146 0.3513 12468.8 1.7077 15.04 Group 1 Tipikal CGS135 267 10.5427 8.6123 0.1250 8.1827 1.7858 1.6672 0.9705 20.8362 2.5311 81.855 1.2253 0.3398 12751.1 1.6537 0.00 u/a Tipikal CGS136 269 5.7782 9.7012 0.1657 8.8058 2.1440 1.0447 1.3310 19.2655 2.3045	12.31
Group 1 Tipikal CGS133 263 4.7673 12.1924 0.1454 10.8894 2.2001 1.9608 0.9482 26.6291 1.6534 45.273 1.5537 0.3359 8308.3 2.1177 16.64 Group 1 Tipikal CGS134 266 10.4201 8.5940 0.1313 7.5276 1.8665 1.6579 0.9703 20.4381 2.4521 82.666 1.1146 0.3513 12468.8 1.7077 15.04 Group 1 Tipikal CGS135 267 10.5427 8.6123 0.1250 8.1827 1.7858 1.6672 0.9705 20.8362 2.5311 81.855 1.2253 0.3398 12751.1 1.6537 0.00 n/a Tipikal CGS136 269 5.7782 9.7012 0.1657 8.8058 2.1440 1.0447 1.3310 19.2655 2.3045 19.745 1.0867 0.3831 9480.2 1.8571 0.00	16.52
Group 1 Tipikal CGS134 266 10.4201 8.5940 0.1313 7.5276 1.8665 1.6579 0.9703 20.4381 2.4521 82.666 1.1146 0.3513 12468.8 1.7077 15.04 Group 1 Tipikal CGS135 267 10.5427 8.6123 0.1250 8.1827 1.7858 1.6672 0.9705 20.8362 2.5311 81.855 1.2253 0.3398 12751.1 1.6537 0.00 n/a Tipikal CGS136 269 5.7782 9.7012 0.1657 8.8058 2.1440 1.0447 1.3310 19.2655 2.3045 19.745 1.0867 0.3831 9480.2 1.8571 0.00	13.08
Group 1 Tipikal CGS135 267 10.5427 8.6123 0.1250 8.1827 1.7858 1.6672 0.9705 20.8362 2.5311 81.855 1.2253 0.3398 12751.1 1.6537 0.00	11.08
u/a Tipikal CGS136 269 5 7782 9 7012 0 1657 8 8058 2 1440 1 0447 1 3310 1 9 2655 2 3045 1 9 745 1 0867 0 3831 9 480 2 1 8571 0 00	12.95
	25.40
Group 1 Tipikal CGS137 271 2.1215 6.0663 0.1207 5.5431 1.3132 1.6353 0.7447 14.1927 1.2186 29.909 1.0282 0.1927 6121.0 1.3172 8.15	17.04
Group 1 Tipikal CGS138 272 3.7844 4.3860 0.0960 3.1277 0.8705 1.4734 0.4394 11.9096 1.7809 35.901 1.4252 0.1511 8666.1 1.3380 0.00	15.68
Group 5 Tipikal CGS139 275 7.7580 27.1151 0.3865 25.2549 5.3644 0.8791 3.1076 68.1881 5.7224 53.388 2.9787 0.8273 29042.0 6.8315 0.00	33.35
Group 1 Tipikal CGS140 405 5.7300 6.3175 0.0970 6.7221 1.5728 4.3148 0.7732 16.4445 1.6483 66.592 1.7909 0.2465 11846.9 1.8214 0.00	20.15
Group 1 Tipikal CGS141 407 7.8321 12.9785 0.1901 11.8259 2.4904 3.0054 1.1915 27.6782 3.6405 87.453 2.2211 0.4626 11357.4 2.0820 46.15	18.90
Group 2 Tipikal CGS142 277 6.5758 11.2665 0.1935 8.0414 2.0953 2.2338 1.4940 28.6588 1.5042 18.456 1.8423 0.2720 10777.2 3.3630 0.00	18.33
u/a Tipikal CGS143 278 1.0671 7.1086 0.0919 7.2487 1.4840 1.0266 0.7607 16.0606 1.2741 20.820 1.2374 0.1924 5306.1 1.2869 0.00	14.85
Group 2 Tipikal CGS144 279 2.2815 23.0694 0.2713 18.9759 4.2893 1.1419 2.3023 50.5916 2.6283 21.122 3.9046 0.6144 13746.9 4.2929 0.00	39.45
Group 2 Tipikal CGS145 281 4.2533 11.0050 0.1322 10.6986 2.2000 0.6525 1.0560 28.9197 1.5644 21.602 1.1125 0.3313 11470.3 2.6611 0.00	13.45
Group 2 Tipikal CGS146 403 3.1522 12.6822 0.1676 11.1750 2.5315 0.7151 1.3793 43.1333 2.0932 111.857 2.8252 0.4743 12948.2 2.8254 0.00	26.78
Group 2 Culuba CGS147 203 6.3375 15.1976 0.1071 12.3050 2.5983 1.3732 0.8997 33.1628 1.2926 16.624 1.7246 0.3260 8575.7 3.1335 0.00	26.20
Group 2 Culuba CGS148 204 5.9524 16.1603 0.1266 13.0465 2.7090 1.0406 0.9414 34.0390 1.3609 16.2389 1.9518 0.3447 8852.3 3.4173 0.00	27.33
U/a Culuba CGS149 20/ 1.7644 15.5983 0.2224 15.6598 3.1053 0.9765 1.5348 34.7909 1.1099 27.7626 1.7671 0.4337 3988.5 4.1495 15.19	19.17
Group 2 Culuba CG5150 208 5.7456 16.0353 0.1184 12.5481 2.7189 0.9225 0.9115 34.3695 1.2945 16.2708 1.7622 0.3539 8832.6 3.0283 12.48	29.20
Group 2 Culuba CGS151 209 6.5936 15.1963 0.1227 14.7258 2.6507 1.1881 0.8546 35.3732 1.3558 16.8365 2.1086 0.3387 8811.7 3.4338 0.00	28.88
Group 3 Culuba CG5152 210 19.0852 29.1603 0.4218 26.0960 5.8992 0.8398 3.0199 80.0384 3.1271 27.0856 2.8662 0.7914 21344.2 7.1064 29.44	43.43
Group 3 Cultuba CG5153 349 10.2799 8.7995 0.1795 7.2330 1.7456 0.8356 1.2974 49.7108 3.0218 31.3753 1.7921 0.2356 10517.2 6.1557 0.00	23.76
U/a Cullaba CGS154 181 5.5380 25.8391 0.4499 2.53515 5.7974 0.4433 5.3776 69.5047 2.7191 26.1550 2.6492 0.7396 22847.2 6.9655 0.00	60.41
Group 2 Cultuba CGS155 214 4.15// 11.4615 0.1646 9.7546 2.1514 1.107/ 1.1238 21.9868 0.9761 9.2788 1.2547 0.2772 8557.5 1.9642 0.00	16.46
U/A UIIUDA CUSISO 21/ 0.0855 $11./250$ 0.1591 $10./022$ 2.1225 $1.20/9$ $1.12/4$ 22.4151 $1.0/12$ $10.881/$ $1.253/$ $0.2/3/$ 8201.9 2.00// 0.00	18.27
$ \begin{array}{c} \textbf{Group J} \textbf{Group J}$	19.10
Craup 3 Culuba CGS150 100 11.0220 20.2040 0.5320 20.0200 5.5347 1.0579 2.4140 09.7075 5.1204 50.1202 5.7639 0.7455 10880.0 7.1074 22.70 Craup 3 Culuba CGS150 101 11.0800 20.8000 0.3205 10.1074 A 3222 1.2222 2.4140 09.7075 5.1204 50.1202 5.7639 0.7455 10880.0 7.1074 22.70	42.34

Chemical Group	Site Name	ANID	Alternate ID	As	La	Lu	Nd	Sm	U	Yb	Ce	Со	Cr	Cs	Eu	Fe	Hf	Ni	Rb
Group 3	Culuba	CGS160	200	15.3052	27.9764	0.4053	24.9983	5.6582	1.0000	3.0815	68.4423	3.0803	26.6385	2.8478	0.7757	19715.9	6.2840	0.00	40.77
Group 3	Culuba	CGS161	202	15.5371	28.7511	0.4166	26.6124	5.7751	0.8808	3.1539	68.7200	2.9471	26.9657	3.0092	0.8056	19122.4	6.5048	0.00	35.65
Group 2	Coba	CGS162	354	3.2067	33.5213	0.4757	27.3287	5.8379	1.0531	3.3744	61.0361	1.7773	18.8851	1.4859	0.8824	12325.6	4.8352	0.00	19.54
Group 1	Coba	CGS163	385	7.0119	7.0488	0.1171	7.1685	1.1202	0.9378	0.6484	17.0921	1.2174	24.2570	0.9217	0.1982	10128.2	1.8582	0.00	11.12
u/a	Coba	CGS164	355	6.1405	16.6126	0.1481	13.8416	2.5618	0.7242	1.1069	31.3714	2.2787	46.5749	1.7675	0.5101	12066.1	1.8841	0.00	18.54
Group 1	Coba	CGS165	356	6.8450	11.1394	0.1447	14.0431	1.9132	1.1690	0.8817	22.3241	2.3327	50.8480	1.6346	0.3687	15627.4	2.0739	0.00	22.54
u/a	Coba	CGS166	358	6.5147	12.3702	0.1890	9.5591	2.3569	0.9700	1.4382	25.1682	1.7266	22.2962	1.8811	0.3231	12687.7	4.2571	0.00	30.86
Group 1	Coba	CGS167	357	2.6512	9.5544	0.0881	7.7754	1.3408	0.5136	0.6893	17.3566	0.8370	15.5317	0.5188	0.2591	6022.2	1.1799	0.00	7.21
Group 5	Coba	CGS168	388	16.1436	24.7414	0.3170	21.1758	4.4170	1.0709	2.2861	53.5938	6.0062	74.4919	3.5744	0.9434	25033.0	3.6534	24.41	34.69
Group 2	Coba	CGS169	360	2.8181	31.9195	0.4513	25.7931	5.6705	1.1649	3.2825	56.8837	1.4038	17.0704	1.0848	0.8361	11533.7	4.7472	0.00	17.59
Group 3	Coba	CGS170	359	19.5207	5.4601	0.2499	4.4744	1.5502	2.1268	1.3170	29.2508	2.7578	22.2095	3.5449	0.1811	20605.4	5.1007	0.00	27.09
Group 2	Coba	CGS171	364	10.4579	20.3578	0.2282	17.0975	3.3625	1.7438	1.7318	47.1349	4.8183	80.0761	3.2699	0.6665	22235.6	3.0696	0.00	30.41
Group 1	Coba	CGS172	365	5.4893	13.4153	0.1395	11.3077	2.2230	0.7638	1.0628	35.2872	1.9707	34.5399	1.8612	0.4537	11126.3	1.8143	0.00	17.57
Group 1	Coba	CGS173	361	4.6077	12.5990	0.1258	12.2198	2.1195	0.8685	0.9495	33.7595	2.1158	35.6468	1.8113	0.4464	10126.0	1.7586	0.00	15.32
Group 2	Coba	CGS174	362	4.7291	15.9787	0.1715	13.3305	2.5587	0.8478	1.2725	38.2435	2.7452	65.6327	3.9345	0.5262	17135.8	2.4912	0.00	25.16
Group 4	C.Mool	CGS175	376	4.9975	26.4230	0.2670	22.7369	4.8507	2.1815	2.0615	55.3521	2.9279	61.8713	0.6390	0.9288	17615.7	5.3400	0.00	3.53
Group 4	C.Mool	CGS176	377	9.4973	43.7893	0.3251	37.7313	7.6637	2.7554	2.1275	94.8104	2.4349	60.3294	0.2761	1.4759	16090.7	4.0446	19.07	0.00
Group 4	C.Mool	CGS177	380	6.8101	50.4596	0.3090	45.9757	9.3863	2.3505	2.5086	102.8177	2.3676	59.7801	0.3727	1.8142	15654.1	4.9366	0.00	2.82
u/a	C.Mool	CGS178	381	10.3434	46.9793	0.4446	41.3026	8.3391	1.7376	3.4200	117.9282	9.2530	105.4498	1.1444	1.5947	35758.3	10.7151	0.00	7.72
Group 4	C.Mool	CGS179	382	10.3991	52.0738	0.2880	47.6080	9.8330	1.1466	2.4805	144.1581	2.8984	71.8810	0.6418	1.8500	19165.3	5.6370	0.00	4.72
Group 4	C.Mool	CGS180	379	8.3110	12.6087	0.1972	18.0220	2.3099	1.6554	1.5511	44.2425	2.4695	59.0378	0.3338	0.4284	18204.5	5.8881	0.00	0.00
Group 5	C.Mool	CGS181	366	20.7343	36.4183	0.4443	34.8855	/.1/65	2.4/24	3.33/5	/9.3/41	6.8285	//.0690	3.6680	1.1241	30357.3	/.4298	42.94	29.25
u/a	C.Mool	CGS182	367	16.9470	15.6027	0.1832	12.5550	2.9447	1.6313	1.3779	33.3234	4.4312	39.3851	1.1846	0.5307	21540.4	4.2737	40.26	5.30
Group 5	C.Mool	CGS183	3/4	6.9091	26.2087	0.3508	25.9790	5.2037	1.2500	2.8444	/1.016/	/.0942	/8.9608	4.9985	0.9806	35304.1	6.5019	34.18	34.88
Group 5	C.Mool	CGS184	370	19.8493	30.1550	0.4805	32.8233	1.3422	0.8066	3.8281	67.0500	4.36//	50.24(2)	2.9132	1.1932	290/0./	4.6/33	30.88	23.28
Group 5	C.Mool	CGS185	3/1	18.8411	34.2430	0.4296	32.7528	6.//40	1.0228	3.4802	04.//44	4.1/63	50.3462	2.2305	1.0883	26/08.3	4.2959	32.19	20.38
u/a	C.MOOI	CCS107	Class A	1 5 6 9 0	5 0025	0.4009	6 1001	0.0902	5.0502	5.4045	00.2343 11.0064	0.2642	12 0690	0.9497	0.1001	2495.0	0.8272	20.70	1.54
u/a u/o		CG\$188	Clay R	0.6705	3.9923	0.0781	3 8047	0.6741	0.3009	0.3627	5 6/1/	0.3043	0.0462	0.2072	0.1901	1615.0	0.8273	0.00	2.46
u/a u/o		CG\$180	Clay D	0.0795	3 4168	0.0508	3 0011	0.0741	0.0600	0.2024	6 8103	0.0000	16 1625	0.1308	0.0977	1220.2	0.4941	0.00	2.40 1.36
u/a u/o		CGS109	Clay D	28 5/81	65 9076	0.7218	55 4047	11 8131	2 1/39	5 5 5 9 9	137 2087	17 5975	23/ 3/58	11 8822	2 3256	56864.5	8 7478	92.95	4.50
u/a 11/9		CGS191	Clay F	34 3622	71 7409	0.7210	62 6836	12 8346	3 7147	5 9590	144 7246	20.9472	337 2393	10.9816	2.5250	62662.8	8 1175	106.72	103.26
u/a 11/9		CGS192	Clay E	1 1748	3 3718	0.0313	4 9059	0.6138	0.6421	0 2194	5 9886	1 1248	15 1140	0.3196	0 1118	1699.8	0.3292	0.00	4 62
Group 1		CGS193	Clay G	7 9456	14 4286	0 1474	14 9900	2 5641	1 3279	1 0143	28 8493	4 0697	60 44 34	2 0198	0.5161	12886.2	1 8982	0.00	21.49
n/a		CGS194	Clay H	0 5210	1 8596	0.0173	4 0602	0 3732	0.4492	0 1055	3 5183	0.6187	13 8537	0 4605	0.0650	1332.7	0 3099	6.88	4 68
u/a u/a		CGS195	Clay I	0.6002	2.9665	0.0495	2 9991	0.5752	0 7718	0.2216	5 6073	0.3627	14 3653	0.4499	0.0880	1641.2	0.4087	0.00	3.91
u/a		CGS196	Clay J	3.2512	7.7129	0.0825	7.1847	1.3294	0.7699	0.3920	22.5597	3.4546	56.5934	3.4604	0.1574	22257.0	5.8704	34.26	51.63
u/a		CGS197	Clay K	2.8125	9.8924	0.0941	10.2795	2.2299	0.5231	0.8347	19.7693	0.9683	10.6858	0.5449	0.2643	4130.6	1.1761	8.21	6.13
u/a		CGS198	Clay L	0.3842	2.7663	0.0328	2.8376	0.6558	0.2484	0.2782	5.5375	0.4923	5.0960	0.2161	0.0846	1185.8	0.3528	0.00	2.06

Chemical Group	Site Name	ANID	Alternate ID	Sb	Sc	Sr	Ta	Tb	Th	Zn	Zr	Al	Ba	Ca	Dy	K	Mn	Na	Ti	V
Group 1	Tepich	CGS001	282	0.3727	3.3709	404.61	0.4456	0.2519	6.1765	29.89	52.43	35054.3	99.1	309638.1	1.3978	2966.0	67.22	413.4	1167.7	27.34
Group 1	Tepich	CGS002	283	0.4206	3.1789	417.19	0.4260	0.2174	6.5359	27.20	51.64	37521.8	127.9	317703.1	1.2658	2446.4	63.34	1213.0	911.7	17.88
Group 1	Tepich	CGS003	284	0.5232	3.6119	418.04	0.5020	0.2072	6.8072	19.68	50.88	41188.6	130.4	297832.4	1.2895	2831.6	59.57	647.5	1281.9	24.46
Group 1	Tepich	CGS004	285	0.2169	2.6110	384.71	0.3898	0.1378	6.2819	14.63	44.90	35797.4	91.0	310107.9	1.1084	1546.3	45.39	306.6	756.1	11.71
Group 1	Tepich	CGS005	286	0.4295	4.0819	353.79	0.5151	0.2373	6.8732	19.95	49.17	42705.8	119.0	246333.8	1.3562	2853.3	95.12	815.5	1428.2	36.28
Group 1	Tepich	CGS006	309	0.3119	2.9138	371.20	0.3852	0.2133	6.1751	13.95	55.19	32638.2	170.3	313946.6	1.3462	4903.6	66.90	403.9	826.7	17.16
Group 1	Tepich	CGS007	304	0.2999	4.1047	419.57	0.5380	0.2718	7.3088	16.01	49.34	43702.5	146.6	289017.9	1.5007	1865.3	56.24	550.4	1396.7	22.03
Group 5	Tepich	CGS008	389	0.6939	9.4010	386.80	1.0798	0.6239	13.9391	25.54	100.29	88125.0	307.6	197446.4	3.7873	6660.2	217.82	647.2	3258.7	65.67
Group 1	Tepich	CGS009	288	0.2963	3.5390	430.80	0.4959	0.2172	7.4667	20.83	45.39	44822.9	183.0	289863.2	1.1543	4860.0	71.35	448.1	1373.4	19.40
Group 1	Tepich	CGS010	289	0.2083	2.7655	388.25	0.4059	0.1104	5.8618	11.41	37.26	39151.9	195.3	296227.2	0.7033	3960.8	57.89	499.0	1036.9	14.81
u/a	Tepich	CGS011	290	0.1640	2.9240	381.96	0.4394	0.1976	6.7808	13.75	51.93	39454.9	117.1	306700.8	1.2869	2004.7	86.17	275.2	1236.9	13.01
Group 1	Tepich	CGS012	291	0.4936	5.2684	424.41	0.5330	0.2646	5.9309	27.25	38.68	39285.6	158.5	248407.7	1.5256	4404.2	84.17	259.6	1668.2	33.94
Group 1	Tepich	CGS013	300	0.2708	3.5183	441.53	0.5082	0.1969	7.4823	19.34	44.84	47625.3	206.0	280673.7	1.3934	4363.3	68.75	486.1	1457.1	19.85
Group 1	Tepich	CGS014	301	0.1778	2.1898	389.05	0.3003	0.1963	4.4232	14.11	55.19	29382.6	131.1	320263.9	1.0488	0.0	47.02	450.8	819.7	14.63
Group 2	Tecoh	CGS015	237	0.5276	7.3035	199.91	0.4443	0.6668	5.4416	41.51	74.10	49639.1	310.3	193982.6	3.8891	14133.2	311.71	507.7	1636.9	12.82
Group 1	Tecoh	CGS016	235	0.2922	2.7045	277.39	0.3456	0.1200	4.7333	10.63	36.20	26311.3	66.2	278002.3	0.8192	0.0	38.51	326.1	859.3	14.75
u/a	Tecoh	CGS017	236	0.6864	3.9606	165.70	0.4219	0.3103	5.5589	24.02	40.11	30774.5	125.1	321353.7	1.9009	2341.9	99.95	155.1	1215.0	27.56
Group 2	Tecoh	CGS018	339	0.5106	7.4336	214.01	0.4503	0.6423	5.5532	47.59	68.43	53066.3	241.1	193955.9	3.8121	13935.8	312.49	508.3	1808.6	21.05
Group 1	Tecoh	CGS019	395	0.2815	2.7336	270.42	0.3469	0.1093	4.7880	11.05	35.47	26942.8	72.1	268913.0	0.6754	1326.3	39.24	302.9	790.2	18.03
Group 1	Tecoh	CGS020	396	0.2719	2.4993	262.70	0.3337	0.1648	4.8577	6.27	39.20	30097.1	34.5	283352.4	0.7859	1222.8	46.02	353.5	639.2	10.82
Group 1	Tecoh	CGS021	397	0.3152	2.7255	266.38	0.3560	0.1372	4.7881	9.80	37.96	27004.3	52.3	274756.4	0.8287	680.2	47.02	238.9	880.6	15.11
Group 2	Tecoh	CGS022	335	0.4672	5.8623	214.58	0.6477	0.4483	8.5353	22.81	72.08	50285.3	157.7	272183.2	2.7562	1253.5	260.10	478.0	1733.9	36.41
u/a	Tecoh	CGS023	336	0.2097	2.1761	272.68	0.2596	0.1724	3.9734	11.32	28.35	24105.0	55.6	276058.4	1.0290	785.2	43.27	191.8	811.5	18.75
Group 2	Tecoh	CGS024	390	0.6984	5.7023	370.74	0.7519	0.1904	10.4029	23.40	69.69	67828.5	146.2	207501.1	1.2622	4406.9	128.99	1002.6	1897.6	41.82
Group 5	Tecoh	CGS025	391	0.7436	8.9637	300.40	0.9415	0.6230	12.3470	41.35	97.49	75543.1	178.1	225513.4	3.7734	4774.8	279.04	1231.5	2744.3	56.01
Group 2	Tecoh	CGS026	392	0.6616	7.3718	297.59	0.4682	0.6620	6.1698	45.27	86.12	51184.4	183.5	199506.9	4.1402	17142.7	278.88	689.6	1637.0	18.21
Group 5	Tecoh	CGS027	393	0.5386	11.0926	147.09	1.1229	0.8076	14.5248	29.87	117.77	87002.4	203.9	216114.5	4.8939	6287.6	492.49	1357.4	3465.5	68.75
Group 1	Tecoh	CGS028	394	0.3363	2.6530	243.72	0.3352	0.1451	4.7669	9.89	44.29	25854.6	72.1	261131.5	0.8162	446.6	46.44	375.6	867.5	18.29
Group 1	Tecoh	CGS029	239	0.4805	5.7931	241.62	0.6321	0.2719	7.4350	18.33	54.53	43971.4	79.6	230641.5	1.6049	3870.6	60.21	393.2	1915.6	50.26
Group 1	Tecoh	CGS030	332	0.5547	6.3475	286.60	0.7273	0.3005	8.4544	21.42	64.83	48988.7	139.7	237623.5	1.7316	6011.0	71.00	469.0	1933.4	51.05
Group 1	Tecoh	CGS031	333	0.4798	4.6685	281.84	0.5235	0.3505	6.1482	16.67	52.90	37459.3	116.5	257800.4	1.6892	5630.7	107.57	480.8	1310.9	32.94
Group 1	Tecoh	CGS032	334	0.2770	2.6975	276.74	0.3543	0.1020	5.4692	18.39	55.04	36079.9	81.6	291255.1	0.7569	1966.6	76.56	753.9	763.4	20.93
Group 1	Telchaq.	CGS033	155	0.3183	3.6061	380.19	0.4032	0.2977	5.0440	17.82	38.21	30486.6	90.5	309567.0	1.6574	4069.4	103.43	679.6	1137.1	25.63
Group 1	Telchaq.	CGS034	158	0.3377	4.8395	222.85	0.5003	0.2485	6.5777	16.54	50.13	37366.9	87.6	258443.7	1.3938	705.4	75.35	401.6	1459.9	25.42
Group 1	Telchaq.	CGS035	160	0.3298	3.3749	225.83	0.3823	0.1706	4.9503	13.51	48.87	30696.1	61.5	233469.9	1.0833	1361.0	42.21	496.8	1081.7	29.40
u/a	Telchaq.	CGS036	161	0.2013	2.2371	344.01	0.2833	0.1033	4.0329	12.52	48.10	23739.5	63.7	318615.1	0.6908	798.0	40.04	362.7	571.8	20.28
Group 1	Telchaq.	CGS037	319	0.2438	1.9320	553.99	0.2673	0.1314	3.9016	13.06	45.32	26423.9	76.9	303187.9	0.7223	0.0	60.51	303.1	561.1	13.67
Group 1	Telchaq.	CGS038	153	0.3544	5.4458	361.93	0.6522	0.3445	7.0746	21.69	49.23	38940.1	130.8	284479.3	1.9436	1045.8	66.65	249.0	1572.5	27.51
Group 5	Telchaq.	CGS039	154	1.8488	12.4730	159.90	1.4025	1.2096	17.1478	62.31	145.17	94413.2	254.8	142517.7	6.8402	8648.5	518.84	1666.8	3697.4	66.53

 Table 7-1 (b). Continuation Elemental Concentration (ppm) of Pottery and Raw Materials Samples

ua Telchag. CGSM0 17.5 0.4833 8.9258 22.690 0.8788 0.6747 10.684 31.21 97.2 50717.3 23.58 23.4819.4 1,150 26.431 10.287 56.43 29.997 25.71 35.61 24.17 75.55 139.01 28.15 27.998.30 1.4627 22.819 88.84 52.84 100.66 30.44 30.76 22.819 88.84 52.84 100.66 30.44 30.76 22.819 88.84 52.84 100.66 30.44 10.147 55.66 10.45 30.47 12.718 32.64 22.827 43.319.44 11.478 50.68 19.34 Group 1 Telchaa, CGS044 163 0.863 12.0087 0.3257 13.83 42.768 18.89 260302 1.0331 12412 58.98 53.91 13.55 3.99 3.75 2.778 9.53.59 1.057 1.477 2.53 8.99 1.0331 12412 58.98 50.64 1.031 12412 </th <th>Chemical Group</th> <th>Site Name</th> <th>ANID</th> <th>Alternate ID</th> <th>Sb</th> <th>Sc</th> <th>Sr</th> <th>Ta</th> <th>Tb</th> <th>Th</th> <th>Zn</th> <th>Zr</th> <th>Al</th> <th>Ba</th> <th>Ca</th> <th>Dy</th> <th>K</th> <th>Mn</th> <th>Na</th> <th>Ti</th> <th>V</th>	Chemical Group	Site Name	ANID	Alternate ID	Sb	Sc	Sr	Ta	Tb	Th	Zn	Zr	Al	Ba	Ca	Dy	K	Mn	Na	Ti	V
Group I Telkha ₂ CGS041 176 0.6691 49546 339.2 0.582 0.274 7.604 27.7 54.2 4478.3 124.3 26091.7 21.6143 508.11 7.17 7.55.5 130.01 28.18 Group I Telkha ₂ CGS043 162 0.389 29.392 20.10 0.244 10.241 27.941.2 9.15 31.904.2 17.15 31.842.1 0.83 10.74 14.78 80.66 19.54 Group J Telcha ₂ CGS045 165 0.867 12.088 20.25 11.16 0.424 17.19 27.19 26.18 33.75 20.900.2 31.93 33.93.3 33.93.3 33.93	u/a	Telchaq.	CGS040	175	0.4883	8.9258	226.99	0.8788	0.7442	10.6984	31.21	79.72	50717.3	235.8	234519.4	4.1519	2643.3	102.87	564.3	2579.4	57.67
Group I Telcha ₂ CGS042 312 0.4423 30623 28140 0.0347 0.2244 4.0012 19.10 39.97 24712 91.5 273983 1.4627 281.9 88.44 18.44 136.0 69.81 24.81 una CGS044 163 0.1999 19930 30.870 0.220 0.1481 14.163 17.92 7194.00 26.11 1690932 2.7000 74.81.3 313.55 33.93 Group I Clchan, CGS046 313 0.314 4.348 0.220 0.135 0.3805 5.771 20.51 6.43 31.75 21.64 33.75 24.78 74.9 21.88 4.40 31.83 0.177 23.35 33.93 Group I Telchan, CGS044 31.5 0.544 34.71 0.518 33.77 22.16 43.87 25.751 6.47 27.975 151.3 37.97 23.1 46.98 33.77 23.77 23.77 23.77 23.77 23.77 <th>Group 1</th> <th>Telchaq.</th> <th>CGS041</th> <th>176</th> <th>0.6691</th> <th>4.9546</th> <th>339.92</th> <th>0.5826</th> <th>0.2674</th> <th>7.6064</th> <th>27.57</th> <th>54.62</th> <th>44788.3</th> <th>124.3</th> <th>260977.2</th> <th>1.6343</th> <th>5084.1</th> <th>76.17</th> <th>755.5</th> <th>1390.1</th> <th>28.15</th>	Group 1	Telchaq.	CGS041	176	0.6691	4.9546	339.92	0.5826	0.2674	7.6064	27.57	54.62	44788.3	124.3	260977.2	1.6343	5084.1	76.17	755.5	1390.1	28.15
Group 1 Tekhag CCS043 162 0.389 29.892 23.07 0.581 0.2329 7.5069 16.18 64.21 279.848 74.9 271.320.3 1.0410 4.514 376.6 98.1 24.81 Group 5 Tekhaq CGS045 165 0.867 12.0089 0.226 1.1469 0.8141 1.715 32.442 1.823 3.476 1.715 3.476 9.53 20387 0.037 1.442 3.343.8 81.3 Group 1 Tekhaq CGS047 314 0.4134 3.944.0 0.3121 2.127 2.433 3.448 1.417 2.233 ua Tekhaq CGS048 315 0.1284 0.319 0.3122 0.2222 0.1087 2.818 5.463 3.375 0.715 2.3788 3.60 6.81 3.702 1.2107 4.303 3.93 0.7174 2.218 3.935 0.3791 7.461 2.825 7.5750.8 0.6916 1.995 4.56 3.702 2.108<	Group 1	Telchaq.	CGS042	312	0.4423	3.0623	281.90	0.3547	0.2244	4.0912	19.10	39.97	26471.2	91.5	273983.0	1.4627	2281.9	88.84	528.4	1006.6	30.48
ua Telchaq. CC6044 163 01939 1930 38.70 0.2591 0.1451 3.9042 17.15 32.64 218.35 74.3 318924.2 0.8977 0.0 40.74 147.8 50.68 19.34 Group 1 Telchaq. CG6046 313 0.4174 4.5488 32.01 0.515 0.3805 5.972 18.84 54.63 3347.68 9.53 20305.5 1.077 90.55 54.39 1335.5 33.9 Group 1 Telchaq. CG6048 314 0.4381 39.43 39.41.6 0.5489 0.2114 7.547 2.122 16.460 8.86 Group 1 Telchaq. CG6049 398 0.4297 4.6493 39.30 0.320 6.0212 10.88 278.00 0.642 275.073.0 0.378 36.06 6.15 10.95 36.16 84.31 9.33 30.934 30.934 30.937 2.320 45.07 12.93 86.064 2.20 0.936 36.066 <t< th=""><th>Group 1</th><th>Telchaq.</th><th>CGS043</th><th>162</th><th>0.3899</th><th>2.9892</th><th>230.79</th><th>0.5851</th><th>0.2329</th><th>7.5069</th><th>16.18</th><th>64.21</th><th>27984.8</th><th>74.9</th><th>271320.3</th><th>1.0480</th><th>1619.4</th><th>45.41</th><th>376.6</th><th>998.1</th><th>24.81</th></t<>	Group 1	Telchaq.	CGS043	162	0.3899	2.9892	230.79	0.5851	0.2329	7.5069	16.18	64.21	27984.8	74.9	271320.3	1.0480	1619.4	45.41	376.6	998.1	24.81
Group 5 Telchag, CGS045 165 0.8637 12.0089 20.22 1.1469 0.8424 1.4163 47.50 117.92 779400 26.11 199093.2 47.00 74.83 32.70 44.23 33.48 81.31 Group 1 Telchag, CGS047 31.4 0.4330 39.043 39.16 0.5480 0.2114 7.5479 26.18 38.75 42478 18.89 260300.2 1.301 21.142 58.88 82.1179 21.142 58.88 82.117 21.142 58.88 21.77 22.51 64.08 82.33 77.7 22.51 64.08 82.37 77.7 23.78 76.71 22.007 34.39 0.334 13.3028 27.850.0 64.8 27.72 25.738.88 2.107 2.018 33.91 2.717.68 12.32 2.318.8 2.40 0.343 8.834 0.328 8.897 4.631 0.828 5.917.1 2.853 3.91 2.717.68 12.32 2.918.8 2.433 1.38 1.483 3.428	u/a	Telchaq.	CGS044	163	0.1989	1.9930	308.70	0.2591	0.1451	3.9042	17.15	32.64	21823.5	74.3	318924.2	0.8397	0.0	40.74	147.8	506.8	19.54
Group 1 Telchag, CG8046 313 0.4174 4.5483 322.01 0.515 0.3805 5 320 3347.6 95.3 20385.9 20.557 197.9 90.55 54.39 1335.5 3390 Group 1 Telchag, CG8048 315 0.1234 198.43 30.00 1334.1 0.5499 0.3492 6.0499 334.71 0.5499 0.329 6.022 2.00 45.07 32398.7 72.8 2578.88 2.1679 214.8 83.3 36.7 2.175 0.64.8 31670.2 0.1245 34.95.5 3.992 77.88 25.175.88 2.1679 2.148.8 83.43 1.057 2.230 4.500 6.42 1.051.8 3.165.6 6.172.0 97.1 2.231.8 6.339 2.175.8 8.590 5.318.8 3.139 3.139 3.034 3.130 0.314 3.252.7 2.9353.0 2.3788 8.361 6.370.9 6.363 4.300.8 2.5649.2 1.12 2.1779.2 2.0318 3.992 1.163 3.9	Group 5	Telchaq.	CGS045	165	0.8637	12.0089	202.26	1.1469	0.8424	14.1633	47.50	117.92	77940.0	261.1	169093.2	4.7902	7448.3	327.20	442.3	3394.8	81.31
Group I Telchaq. CGS047 314 0.430 3.9034 94.16 0.548 0.2114 7.479 26.18 38.75 42478.9 18.89 20.030.2 1.301 21.41.2 58.88 82.41 140.77 22.31 64.60 886 Group I Telchaq. CGS049 318 0.4297 4.6499 334.71 0.5129 0.3329 6.0222 23.00 45.07 32398.7 72.8 25378.8 2.167 114.9 88.23 57.07 122.07 34.39 Group I Telchaq. CGS051 172 1.1970 6.0925 31.39 9.9438 0.3941 30.87 2.88 89.9 761.0 22.57 9.930 3.691 210.7 2.183 89.2 20.71 8.829 5.649.2 191.2 217.58 13.99 2.318 89.44 1.085 5.649.2 191.2 217.52 2.0318 89.24 1.098 103.54 2.560.7 5.649.2 191.2 217.53 3.802.4 1.083 </th <th>Group 1</th> <th>Telchaq.</th> <th>CGS046</th> <th>313</th> <th>0.4174</th> <th>4.5488</th> <th>322.01</th> <th>0.5135</th> <th>0.3805</th> <th>5.9782</th> <th>18.84</th> <th>54.63</th> <th>33476.8</th> <th>95.3</th> <th>260385.9</th> <th>2.0557</th> <th>1977.9</th> <th>90.55</th> <th>543.9</th> <th>1335.5</th> <th>33.99</th>	Group 1	Telchaq.	CGS046	313	0.4174	4.5488	322.01	0.5135	0.3805	5.9782	18.84	54.63	33476.8	95.3	260385.9	2.0557	1977.9	90.55	543.9	1335.5	33.99
ua Telchaq. CS048 315 0.1254 1.9814 359.4 0.310 0.907 3.123 1.6.43 2.275 20519.0 64.8 318795.3 0.795 113.6 37.97 223.1 64.00 886 Group 1 Telchaq. CS0505 169 0.2451 2.4538 8.10 0.5120 33.39 0.022 2.304 4.504 2.57 25935.0 2.64.8 1.99.5 43.61 36.6 84.33 1.935 Group 1 Mayapan CS0552 113 0.4287 2.4384 0.3996 0.3397 7.28 2.57 25935.0 2.7025.0 0.263 36.06 6.64 2.20 38.61 4.00 1.64.2 5.64.2 1.17.8 1.23.2 2.7025.0 0.238 2.802.5 5.64.92 1.19.2 2.018 38.2 5.76.7 1.56 3.31 2.0075 2.108.2 2.64.44 0.714.2 2.015 2.77 2.9138 3.814 4.615 3.84.5 7.00 3.11.8 2.017.5 2.0218 3.14 2.612 4.204 2.015.2 2.77 3.916<	Group 1	Telchaq.	CGS047	314	0.4330	3.9034	394.16	0.5489	0.2114	7.5479	26.18	38.75	42478.9	188.9	260300.2	1.3031	2141.2	58.98	824.1	1407.7	22.53
Group 1 Telchaq. CGS049 398 0.4297 4.649 334.71 0.5129 0.3229 6.202 23.00 45.07 3239.87 7.2.8 2578.00 6.046 199 84.83 576.7 12.07.3 34.33 19.35 Group 1 Telchaq. CGS051 172 1.1970 6.9025 31.393 0.9438 0.3934 13.0287 28.58 86.90 5701.1 22.57 25935.0 0.8706 67.20 937.1 2085.5 36.0 65.1 54.20 915.6 24.72 70.91 Mayapan CGS054 248 0.8143 0.8143 0.8325 8.829 66.491 108.25 56.5492 19.12 217759.2 2.138.9 82.41 10.98 156.2 47.02 Group 1 Mayapan CGS054 248 0.4433 0.312 6.257 5.300 2.346 46.67 11.42 7042.0 1.385 1.869 4.610 13.55 13.42 2704.69 0.833 51.14 6.70.2 72.27 4.73 23.7 8.63 6.70 17.49 9.33.6 6	u/a	Telchaq.	CGS048	315	0.1254	1.9814	359.45	0.3150	0.0967	3.4123	16.34	32.75	20519.0	64.8	318795.3	0.7595	1153.6	37.97	223.1	646.0	8.86
Group 1 Telchaq, CG8050 169 0.2451 2.4353 349.55 0.3309 0.1302 42654 15.31 30.88 27580.0 66.4 272560.8 0.6916 119.9.5 43.61 30.66 84.33 19.33 Group 1 Mayapan CG8051 172 1.1970 6.9025 31.39 0.9148 0.3934 1.2087 2.858 86.90 57031.4 2.257 25935.0 2.3798 360.6 61.52 2.970 2.386.2 2.370.6 72.20 9.37.1 2.88.5 2.600.5 2.17759.2 2.0181 3982.4 1.08.4 2.500.5 2.40 0.4343 2.773 2.84.98 0.4310 0.3298 5.6749 1.91.2 2.101.2 2.11.2 2.7042.0 1.38.8 1.40.90 0.311 3.64.8 3.41.1 9.7044.9 8.81.2 3.773 2.84.98 0.410 0.2344 6.667 3.11.3 1.44 1.63.3 1.45.3 1.45.3 1.45.3 1.45.3 1.45.3 1.45.3 1.45.3 1.45.3	Group 1	Telchaq.	CGS049	398	0.4297	4.6499	334.71	0.5129	0.3329	6.0222	23.00	45.07	32398.7	72.8	253788.8	2.1679	2148.9	88.23	576.7	1220.7	34.39
Group 1 Telchaq, CGS051 1172 1.1970 6.9025 31.39 0.9438 0.3944 0.3945 0.825 56549.2 191.2 21775.9 2.018 3882.4 110.98 105.4 256.0 2601 Group 1 Mayapan CGS055 249 0.4433 0.3248 0.3298 5.6749 1.234 84.82 2076.0 1.62 2435.43 1.785 6.670 21.135 1.34.4 27042.06 1.234 1.82 2070.6 0.2344 1.785 6.79 2.2074.80 3.51 6.79 2.2674.48 0.774 2.233 7.18.0 1.26704.69 0.834 5.11 6.58 1.285 4.12 1.2654 1.285 1.1785 1.34 5.23 1.265	Group 1	Telchaq.	CGS050	169	0.2451	2.4538	349.55	0.3309	0.1302	4.2654	15.31	30.88	27580.0	66.4	272560.8	0.6916	1199.5	43.61	360.6	843.3	19.35
Group 1 Mayapan CGS052 113 0.4287 2.9104 39.242 0.3894 0.1977 4.6213 2.085 33.91 2.176.8 12.32 2.0225.0 0.9263 38.60 6.6.1 54.20 915.6 2.472 Group 1 Mayapan CGS054 248 0.3142 3.3118 280.47 0.5546 0.2557 3.9956 13.91 36.94 2.348.54 67.00 2.70590.2 1.3862 259.4.5 46.57 1174.9 93.6 36.44 Group 1 Mayapan CGS055 249 0.4433 3.7773 284.98 0.4310 0.2356 5.6749 12.93 48.28 29676.0 16.16 2.42.64 3014.2 7.423 36.6 12.12 3.83 1.4 6.513 14.19 3.318 14.11 3.83 3.14 6.574 3.218 6.774 2.33 7.16 97.4 87.1 2.685 Group 1 Mayapan CGS058 3.22 0.316 2.775 5.250 16.52 42.08 3.11.4 6.513 5.241 2.31.8 3.510.8 5	Group 2	Telchaq.	CGS051	172	1.1970	6.9025	313.93	0.9438	0.3934	13.0287	28.58	86.90	57031.4	225.7	259353.0	2.3798	3760.6	72.20	937.1	2085.9	79.27
Group 1 Mayapan CGS051 119 0.8343 8.1868 344.31 0.8956 0.325 8.897 46.91 108.25 56.492 191.2 217759 2.0318 3982.4 110.98 105.4 2560.2 56.04 Group 1 Mayapan CGS055 249 0.4433 3.777 284.98 0.4101 0.3298 5.6749 12.93 48.82 29676.0 116.2 24333.4 1.7856 186.09 46.01 43.98 811.19 38.87 Group 1 Mayapan CGS057 260 0.3511 2.713 319.99 0.317 0.1428 5.016 16.72 42.68 30742.9 81.1 207046.9 0.833 511.4 6.533 17.80 57.4 87.1 26.83 Group 1 Mayapan CGS057 323 0.3310 2.952 2.252.2 0.3385 0.167 5.520 16.52 2.165.9 99.12 2.353.10 1.785 139.5 5.11.8 5.01.67 2.528 1.785 139.5 5.1.8 1.086 2.293.31 1.33.53.18 2.360 1.66.7 </th <th>Group 1</th> <th>Mayapan</th> <th>CGS052</th> <th>113</th> <th>0.4287</th> <th>2.9104</th> <th>392.42</th> <th>0.3894</th> <th>0.1977</th> <th>4.6213</th> <th>20.85</th> <th>33.91</th> <th>27176.8</th> <th>123.2</th> <th>270225.0</th> <th>0.9263</th> <th>3863.0</th> <th>65.61</th> <th>542.0</th> <th>915.6</th> <th>24.72</th>	Group 1	Mayapan	CGS052	113	0.4287	2.9104	392.42	0.3894	0.1977	4.6213	20.85	33.91	27176.8	123.2	270225.0	0.9263	3863.0	65.61	542.0	915.6	24.72
Group I Mayapan CGS054 248 0.3142 3.3118 280.47 0.3546 0.2357 3.9956 13.91 36.94 23845.6 70.0 270590.2 1.3862 2594.5 46.57 1174.9 933.6 36.48 36.773 28438 0.4333 3.773 284.98 0.4310 0.3298 5.6749 12.93 48.28 29676.0 16.22 28435.34 1.7856 1860.9 46.07 1452.5 67.23 174.2 67.23 174.2 67.23 174.2 67.23 174.2 67.23 174.5 67.23 174.5 67.23 174.5 67.23 174.5 67.23 174.5 67.23 174.5 67.23 174.8 70.27 24.38 26.74 24.24 24.83 70.16 20.15 21.27 43.82 20.165 16.52 49.26 301.0 99.1 26674.8 0.7743 22.39 71.80 59.7 87.7 26.83 22.127 23.83 51.0 20.257 22.52.2 0.3339 2.952.5 22.52.0 0.338 23.178 23.56 3121.5 13.178 <th< th=""><th>Group 2</th><th>Mayapan</th><th>CGS053</th><th>119</th><th>0.8343</th><th>8.1868</th><th>344.31</th><th>0.8956</th><th>0.3225</th><th>8.8297</th><th>46.91</th><th>108.25</th><th>56549.2</th><th>191.2</th><th>217759.2</th><th>2.0318</th><th>3982.4</th><th>110.98</th><th>1035.4</th><th>2560.2</th><th>56.01</th></th<>	Group 2	Mayapan	CGS053	119	0.8343	8.1868	344.31	0.8956	0.3225	8.8297	46.91	108.25	56549.2	191.2	217759.2	2.0318	3982.4	110.98	1035.4	2560.2	56.01
Group I Mayapan CGS055 249 0.4433 3.7773 28.498 0.4310 0.3298 5.6749 12.93 48.28 296760. 116.2 284353.4 1.7856 18609. 46.01 439.8 1411.9 28.43 Group I Mayapan CGS056 259 0.4749 4.0812 342.41 0.4336 0.2208 5.3600 23.46 46.67 32113.5 13.4 270420.6 1.2534 1.475.2 6.72.8 312.6 0.667.9 9.834 31.1.4 6.55.4 32.81 1.670 6.52 49.26 3074.2 81.1 6704.8 0.773 2239.3 71.80 597.4 87.1 26.85 Group I Mayapan CGS059 32.3 0.339 2.952 22.2 0.3385 0.187 8.165 18.66 42.50 28156.9 99.6 232541.0 1.233 3510.8 50.06 62.8 10.178 35.36 Group I Mayapan CGS061 437 0.7196 4.015 324.0 0.1783 37.51 24.42 29.58 20247.3 86.5 259343.0	Group 1	Mayapan	CGS054	248	0.3142	3.3118	280.47	0.3546	0.2557	3.9956	13.91	36.94	23845.6	79.0	270590.2	1.3862	2594.5	46.57	1174.9	933.6	36.48
Group I Mayapan CGS056 259 0.4749 4.0812 342.41 0.4336 0.208 5.3600 23.46 46.67 32113.5 134.4 270420.6 1.2534 1745.2 67.23 376.2 1227.2 43.82 Group I Mayapan CGS058 322 0.3511 2.7153 319.99 0.3158 0.1627 5.5260 16.52 42.68 30742.9 81.1 26744.8 0.7743 229.3 51.14 67.83 3218.0 67.84 87.14 87.81 226734.8 0.7743 229.3 51.18 51.14 61.652 42.63 0510.7 99.6 232541.0 1.2383 3510.8 50.06 628.2 1031.5 29.77 Group I Mayapan CGS061 437 0.7196 40.156 324.02 0.4598 0.1689 49.161 39.98 41.51 325.3 85.2 2934.3 1.0645 176.1 60.83 349.1 540.0 19.88 67.00 19.88 67.001 18.26 44.161 0.402.0 0.2287 4.8408 38.66 37.68 2479.0 <th>Group 1</th> <th>Mayapan</th> <th>CGS055</th> <th>249</th> <th>0.4433</th> <th>3.7773</th> <th>284.98</th> <th>0.4310</th> <th>0.3298</th> <th>5.6749</th> <th>12.93</th> <th>48.28</th> <th>29676.0</th> <th>116.2</th> <th>284353.4</th> <th>1.7856</th> <th>1860.9</th> <th>46.01</th> <th>439.8</th> <th>1411.9</th> <th>38.87</th>	Group 1	Mayapan	CGS055	249	0.4433	3.7773	284.98	0.4310	0.3298	5.6749	12.93	48.28	29676.0	116.2	284353.4	1.7856	1860.9	46.01	439.8	1411.9	38.87
Group I Mayapan CGS057 260 0.3511 2.7153 319.99 0.317 0.1429 5.0145 16.72 42.68 30742.9 81.1 267046.9 0.8343 511.4 65.83 121.80 655.4 32.21 Group I Mayapan CGS058 322 0.3162 2.4360 312.19 0.3158 0.1677 5.5260 16.52 49.26 30510.7 9.1 266744.8 0.7743 2239.3 71.80 597.4 879.1 26.85 Group I Mayapan CGS060 436 0.3390 3.538 278.25 0.4026 0.1828 4.8763 23.78 33.56 312.15 123.1 256389.5 1.1785 1392.5 54.12 441.2 108.67 32.53 Group I Mayapan CGS061 437 0.7164 4.0156 324.02 0.288 0.1689 4.161 39.98 4.151 325.40 83.8 264180.8 1.2623 391.8 76.76 37.4 84.15 44.16 1.652 49.64 259343.0 1.0551 1.776.1 60.83 439.1 <th>Group 1</th> <th>Mayapan</th> <th>CGS056</th> <th>259</th> <th>0.4749</th> <th>4.0812</th> <th>342.41</th> <th>0.4336</th> <th>0.2208</th> <th>5.3600</th> <th>23.46</th> <th>46.67</th> <th>32113.5</th> <th>134.4</th> <th>270420.6</th> <th>1.2534</th> <th>1745.2</th> <th>67.23</th> <th>376.2</th> <th>1227.2</th> <th>43.82</th>	Group 1	Mayapan	CGS056	259	0.4749	4.0812	342.41	0.4336	0.2208	5.3600	23.46	46.67	32113.5	134.4	270420.6	1.2534	1745.2	67.23	376.2	1227.2	43.82
Group 1 Mayapan CGS058 322 0.3162 2.4360 312.19 0.3138 0.1677 5.5260 16.52 49.26 30510.7 99.1 266744.8 0.7743 2239.3 71.80 597.4 879.1 26.85 Group 1 Mayapan CGS059 323 0.3339 2.9525 225.22 0.3385 0.1814 4.6515 18.66 42.50 28156.9 99.6 232541.0 1.2383 510.8 50.06 628.2 101.86 72.77 Group 1 Mayapan CGS061 437 0.7196 4.0156 324.02 0.4598 0.1689 4.9161 39.98 41.51 32534.0 83.8 264180.8 1.2629 331.8 76.70 370.4 951.9 48.85 Group 1 Mayapan CGS064 438 0.3053 2.0728 41.47 0.2980 0.1793 3.7521 24.24 2.958 20247.3 86.5 259343.0 1.0545 1776.1 60.83 439.1 54.00 19.988 49.04 38.06 37.68 24790.0 68.2 243556.3 1.261	Group 1	Mayapan	CGS057	260	0.3511	2.7153	319.99	0.3317	0.1429	5.0145	16.72	42.68	30742.9	81.1	267046.9	0.8343	511.4	65.83	1218.0	655.4	32.81
Group 1 Mayapan CGS059 323 0.3339 2.9522 225.22 0.3385 0.1814 4.6515 18.66 42.50 28156.9 99.6 23254.0 1.2383 3510.8 50.06 628.2 1031.5 29.77 Group 1 Mayapan CGS060 436 0.3900 3.5386 278.25 0.4026 0.1884 4.8763 23.78 33.66 31221.5 123.1 256389.5 1.1785 1392.5 54.12 441.2 108.67 32.53 Group 1 Mayapan CGS061 437 0.7196 4.0156 324.02 0.4280 0.1793 3.7521 24.42 29.58 0.247.3 86.5 25934.30 1.0545 177.61 60.83 439.1 54.00 19.98 Group 1 Mayapan CGS064 451 0.3420 2.5438 580.15 0.4047 0.1497 4.3413 16.62 46.40 25925.0 123.7 296591.3 0.8344 170.64 34.12 328.1 89.86 19.08 Group 1 Mayapan CGS065 98 0.2207 2.31	Group 1	Mayapan	CGS058	322	0.3162	2.4360	312.19	0.3158	0.1677	5.5260	16.52	49.26	30510.7	99.1	266744.8	0.7743	2239.3	71.80	597.4	879.1	26.85
Group 1 Mayapan CGS060 436 0.3900 3.5386 278.25 0.4026 0.1828 4.8763 23.78 33.56 31221.5 123.1 256389.5 1.1785 1392.5 54.12 441.2 1086.7 32.53 Group 1 Mayapan CGS061 437 0.7196 4.0156 324.02 0.4598 0.1689 4.9161 39.98 41.51 32534.0 83.8 264180.8 1.2629 3391.8 76.70 37.04 951.9 98.85 Group 1 Mayapan CGS063 439 0.4386 3.082 292.77 0.4220 0.2287 4.8408 38.06 37.68 24790.0 68.8 243556.3 1.613 1081.5 71.83 318.3 753.8 23.26 Group 1 Mayapan CGS064 451 0.3420 2.5438 50.12 0.447 0.1497 4.3413 16.62 24.62 2227.0 28.0 276856.6 0.7793 979.9 79.9 79.4 64.12 38.00 26.75 Group 1 Mayapan CGS067 148 0.3004	Group 1	Mayapan	CGS059	323	0.3339	2.9525	225.22	0.3385	0.1814	4.6515	18.66	42.50	28156.9	99.6	232541.0	1.2383	3510.8	50.06	628.2	1031.5	29.77
Group 1 Mayapan CGS061 437 0.7196 4.0156 324.02 0.4598 0.1689 4.9161 39.98 41.51 32534.0 8.8 264180.8 1.2629 3391.8 76.70 370.4 951.9 48.85 Group 1 Mayapan CGS062 438 0.3053 2.0728 414.87 0.2287 4.8408 38.06 37.68 247.30 86.5 25934.30 1.0545 1776.1 60.83 439.1 540.0 19.98 Group 1 Mayapan CGS064 451 0.3420 2.5438 580.15 0.4047 0.1497 4.3413 16.62 25925.0 123.7 296581.3 0.8344 1706.4 34.12 328.1 898.6 19.08 Group 1 Mayapan CGS065 98 0.2307 2.3123 493.4 0.3020 0.1419 3.9802 24.27 24.62 22270.2 85.0 276856.6 0.7793 979.9 79.29 466.2 76.4 17.04 Group 1 Mayapan CGS067 148 0.3064 3.2520 264.30 0.4054 <th>Group 1</th> <th>Mayapan</th> <th>CGS060</th> <th>436</th> <th>0.3900</th> <th>3.5386</th> <th>278.25</th> <th>0.4026</th> <th>0.1828</th> <th>4.8763</th> <th>23.78</th> <th>33.56</th> <th>31221.5</th> <th>123.1</th> <th>256389.5</th> <th>1.1785</th> <th>1392.5</th> <th>54.12</th> <th>441.2</th> <th>1086.7</th> <th>32.53</th>	Group 1	Mayapan	CGS060	436	0.3900	3.5386	278.25	0.4026	0.1828	4.8763	23.78	33.56	31221.5	123.1	256389.5	1.1785	1392.5	54.12	441.2	1086.7	32.53
Group 1 Mayapan CGS062 438 0.3053 2.0728 414.87 0.2980 0.1793 3.7521 24.24 29.58 20247.3 86.5 259343.0 1.0545 1776.1 60.83 439.1 540.0 19.98 Group 1 Mayapan CGS063 439 0.4386 3.0862 29.77 0.4220 0.2287 4.8408 38.06 37.68 2479.00 68.8 24356.3 1.2613 1081.5 71.83 318.3 753.8 23.26 Group 1 Mayapan CGS064 451 0.3420 2.5438 580.15 0.4047 0.1497 4.3413 16.62 46.0 25925.0 123.7 296585.6 0.7793 79.9 79.29 466.2 72.64 17.04 Group 1 Mayapan CGS065 146 0.8572 3.5795 534.21 0.5521 0.3498 7.6508 38.19 53.83 36359.9 154.1 298373.3 1.6208 416.9.5 64.45 641.3 980.0 26.75 Group 1 Mayapan CGS066 148 0.3064 3.2520 </th <th>Group 1</th> <th>Mayapan</th> <th>CGS061</th> <th>437</th> <th>0.7196</th> <th>4.0156</th> <th>324.02</th> <th>0.4598</th> <th>0.1689</th> <th>4.9161</th> <th>39.98</th> <th>41.51</th> <th>32534.0</th> <th>83.8</th> <th>264180.8</th> <th>1.2629</th> <th>3391.8</th> <th>76.70</th> <th>370.4</th> <th>951.9</th> <th>48.85</th>	Group 1	Mayapan	CGS061	437	0.7196	4.0156	324.02	0.4598	0.1689	4.9161	39.98	41.51	32534.0	83.8	264180.8	1.2629	3391.8	76.70	370.4	951.9	48.85
Group 1MayapanCGS0634390.43863.0862292.770.42200.22874.840838.0637.6824790.068.8243556.31.26131081.571.83318.3753.823.26Group 1MayapanCGS0644510.34202.543858.0150.40470.14974.341316.6246.4025925.0123.7296591.30.83441706.434.12328.1898.619.08Group 1MayapanCGS065980.23072.3123493.340.30200.14193.980224.2724.6222270.285.0276856.60.7793979.979.29466.276.417.04Group 1MayapanCGS0661460.85723.5795534.210.55210.34987.650838.1953.8336359.9154.129837.331.6213416.9564.4564.4590.0826.75Group 1MayapanCGS0671480.30643.2520264.030.40540.12765.774123.2934.3435895.297.1239238.90.74103932.062.28801.091.730.93Group 1MayapanCGS0671010.52154.0701362.040.44310.18465.774123.8754.915547.1862.023576.071.08182072.370.051437.11050.338.45u/aMayapanCGS0671010.52144.5986265.180.59410.3165<	Group 1	Mayapan	CGS062	438	0.3053	2.0728	414.87	0.2980	0.1793	3.7521	24.24	29.58	20247.3	86.5	259343.0	1.0545	1776.1	60.83	439.1	540.0	19.98
Group 1MayapanCGS0644510.34202.5438580.150.40470.14974.341316.6246.4025925.0123.7296591.30.83441706.434.12328.1898.619.08Group 1MayapanCGS065980.23072.3123493.340.30200.14193.980224.2724.6222270.285.0276856.60.7793979.979.29466.2726.417.04Group 1MayapanCGS0661460.85723.5795534.210.55210.34987.650838.1953.8336359.9154.1298373.31.62084169.564.45641.3980.026.75Group 1MayapanCGS0671480.30643.2520264.030.40540.12765.741522.2934.3435895.297.1239238.90.74103932.062.28801.0918.730.93Group 1MayapanCGS0681490.52154.0701362.040.44310.18465.774123.8754.9155471.862.0235769.71.08182072.370.051437.11050.338.45u/aMayapanCGS0691500.62155.4912400.070.65170.38199.098236.5771.9445968.9110.0229286.32.07052609.050.02690.81699.640.11Group 1MayapanCGS0711020.55204.35528.4890.41750.45	Group 1	Mayapan	CGS063	439	0.4386	3.0862	292.77	0.4220	0.2287	4.8408	38.06	37.68	24790.0	68.8	243556.3	1.2613	1081.5	71.83	318.3	753.8	23.26
Group 1MayapanCGS065980.23072.3123493.340.30200.14193.980224.2724.6222270.285.0276856.60.7/939/9.979.29466.2726.417.04Group 2MayapanCGS0661460.85723.5795534.210.55210.34987.650838.1953.8336359.9154.1298373.31.62084169.564.45641.3980.026.75Group 1MayapanCGS0671480.30643.2520264.030.40540.12765.741522.2934.3435895.297.1239238.90.74103932.062.28801.0918.730.93Group 1MayapanCGS0681490.52154.0701362.040.44310.18465.774123.8754.9155471.862.0235769.71.08182072.370.051437.11050.338.45u/aMayapanCGS0691500.62155.4912400.070.65170.38199.098236.5771.9445968.9110.0229286.32.07052609.050.02690.81699.640.11Group 1MayapanCGS0701010.59244.5986265.180.59410.31657.067025.5763.1541765.376.3212553.31.67283399.164.24755.81506.640.08u/aMayapanCGS0711020.55204.3635284.890.41750.4519<	Group 1	Mayapan	CGS064	451	0.3420	2.5438	580.15	0.4047	0.1497	4.3413	16.62	46.40	25925.0	123.7	296591.3	0.8344	1706.4	34.12	328.1	898.6	19.08
Group 2 Mayapan CGS066 146 0.85/2 3.5/95 534.21 0.5521 0.3498 7.6508 38.19 53.83 36359.9 154.1 298373.3 1.6208 4169.5 64.45 641.3 980.0 26.75 Group 1 Mayapan CGS067 148 0.3064 3.2520 264.03 0.4054 0.1276 5.7415 22.29 34.34 35895.2 97.1 239238.9 0.7410 3932.0 62.28 801.0 918.7 30.93 Group 1 Mayapan CGS068 149 0.5215 4.0701 362.04 0.4431 0.1846 5.7741 23.87 54.91 55471.8 62.0 235769.7 1.0818 2072.3 70.05 1437.1 1050.3 38.45 u/a Mayapan CGS070 101 0.5924 4.5986 265.18 0.5941 0.3165 7.0670 25.57 63.15 41765.3 76.3 212553.3 1.6728 3399.1 64.24 75.8 1506.6 40.08 u/a Mayapan CGS071 102 0.5520 4.365	Group I	Mayapan	CGS065	98	0.2307	2.3123	493.34	0.3020	0.1419	3.9802	24.27	24.62	22270.2	85.0	276856.6	0.7793	9/9.9	79.29	466.2	726.4	17.04
Group I Mayapan CGS067 148 0.3064 3.2520 264.03 0.4054 0.1276 5.7415 22.29 34.34 35895.2 97.1 239238.9 0.7410 3932.0 62.28 801.0 918.7 30.93 Group 1 Mayapan CGS068 149 0.5215 4.0701 362.04 0.4431 0.1276 5.7411 23.87 54.91 55471.8 62.0 235769.7 1.0818 2072.3 70.05 1437.1 1050.3 38.45 u/a Mayapan CGS069 150 0.6215 5.4912 400.07 0.6517 0.3819 9.0982 36.57 71.94 45968.9 110.0 229286.3 2.0705 2609.0 50.02 69.08 1699.6 40.11 Group 1 Mayapan CGS070 101 0.5924 4.5986 265.18 0.5941 0.3165 7.0670 25.57 63.15 41765.3 76.3 212553.3 1.6728 3399.1 64.24 75.8 1506.6 40.08 u/a Mayapan CGS071 102 0.5520 4.365	Group 2	Mayapan	CG8066	146	0.85/2	3.5/95	534.21	0.5521	0.3498	/.6508	38.19	53.83	36359.9	154.1	2983/3.3	1.6208	4169.5	64.45	641.3	980.0	26.75
Group I Mayapan CGS068 149 0.5215 4.0/01 362.04 0.4431 0.1846 5.7/41 23.87 54.91 55471.8 62.0 235769.7 1.0818 20/2.3 70.05 1437.1 1050.3 38.45 u/a Mayapan CGS069 150 0.6215 5.4912 400.07 0.6517 0.3819 9.0982 36.57 71.94 45968.9 110.0 229286.3 2.0705 2609.0 50.02 690.8 1699.6 40.11 Group 1 Mayapan CGS070 101 0.5924 4.5986 265.18 0.5941 0.3165 7.0670 25.57 63.15 41765.3 76.3 212553.3 1.6728 3399.1 64.24 75.8 1506.6 40.08 u/a Mayapan CGS071 102 0.5520 4.365 284.89 0.4175 0.4519 5.3922 22.93 50.05 30746.6 106.6 20283 22343 2276.2 64.20 547.1 1130.8 42.26 u/a Mayapan CGS072 104 0.2606 2.1441	Group I	Mayapan	CGS06/	148	0.3064	3.2520	264.03	0.4054	0.12/6	5./415	22.29	34.34	35895.2	97.1	239238.9	0./410	3932.0	62.28	801.0	918./	30.93
u/a Mayapan CGS069 150 0.8215 5.4912 400.07 0.8817 0.3819 9.0982 36.57 71.34 43968.9 110.0 229286.3 2.0705 2609.0 50.02 690.8 1699.6 40.11 Group 1 Mayapan CGS070 101 0.5924 4.5986 265.18 0.5941 0.3165 7.0670 25.57 63.15 41765.3 76.3 212553.3 1.6728 3399.1 64.24 75.8 1506.6 40.08 u/a Mayapan CGS071 102 0.5520 4.365 284.89 0.4175 0.4519 5.3922 22.93 50.05 30746.6 106.6 20283 2.2742 64.20 547.1 1130.8 42.26 u/a Mayapan CGS072 104 0.2606 2.1441 369.19 0.2293 0.2234 3.6031 17.80 31.60 24675.8 78.7 277983.6 1.1384 334.8 54.32 76.8 571.2 23.24 Group 1 Mayapan CGS073 106 0.6153 3.2665 474.33 <t< th=""><th>Group I</th><th>Mayapan</th><th>CGS068</th><th>149</th><th>0.5215</th><th>4.0/01</th><th>362.04</th><th>0.4431</th><th>0.1846</th><th>5.//41</th><th>23.87</th><th>54.91</th><th>554/1.8</th><th>62.0</th><th>235/69./</th><th>1.0818</th><th>20/2.3</th><th>/0.05</th><th>1437.1</th><th>1050.3</th><th>38.45</th></t<>	Group I	Mayapan	CGS068	149	0.5215	4.0/01	362.04	0.4431	0.1846	5.//41	23.87	54.91	554/1.8	62.0	235/69./	1.0818	20/2.3	/0.05	1437.1	1050.3	38.45
Group I Mayapan CGS070 101 0.5924 4.3986 265.18 0.5941 0.3165 7.0670 25.57 65.15 41765.5 76.5 212555.5 1.6728 5399.1 64.24 755.8 1506.6 40.06 u/a Mayapan CGS071 102 0.5520 4.365 284.89 0.4175 0.4519 5.3922 22.93 50.05 30746.6 106.6 259230.8 2.2343 2276.2 64.20 547.1 1130.8 42.26 u/a Mayapan CGS072 104 0.2606 2.1441 369.19 0.2293 0.2234 3.6031 17.80 31.60 24675.8 78.7 277983.6 1.1384 334.8 54.32 76.8 571.2 25.25 Group 1 Mayapan CGS073 106 0.6153 3.2665 474.33 0.5024 0.2177 6.1605 30.07 42.54 30760.0 129.1 288357.5 1.234 5079.8 92.62 814.0 1195.2 23.44 Group 1 Mayapan CGS074 109 0.4982 2.9566	u/a Carran 1	Mayapan	CGS009	101	0.6215	5.4912	400.07	0.0517	0.3819	9.0982	30.37	/1.94	43908.9	76.2	229280.3	2.0705	2009.0	50.02	090.8	1699.0	40.11
u/a Mayapan CGS071 102 0.5320 4.3635 244.69 0.4175 0.4319 3.3922 22.93 30.05 50746.6 106.6 2.2545 22.762 64.20 547.1 1130.6 42.26 u/a Mayapan CGS072 104 0.2606 2.141 369.19 0.2293 0.2234 3.6031 17.80 31.60 24675.8 78.7 277983.6 1.1384 334.8 54.32 76.8 571.2 25.25 Group 1 Mayapan CGS073 106 0.6153 3.2665 474.33 0.5024 0.2177 6.1605 30.07 42.54 30760.0 129.1 288357.5 1.2394 5079.8 92.62 814.0 1195.2 23.44 Group 1 Mayapan CGS074 109 0.4982 2.9566 354.03 0.4140 0.1921 4.6149 25.91 49.12 27843.8 70.9 243462.5 1.1532 5713.7 99.05 63.0.8 874.1 16.73 Group 1 Mayapan CGS075 110 0.3578 2.7903 610.12	Group I	Mayapan	CGS070	101	0.5924	4.3980	205.18	0.3941	0.3103	7.0070	25.57	03.15 50.05	41/05.5	/0.3	212555.5	1.0/28	2276.2	64.24	/33.8	1300.0	40.08
Image Mayapan CGS072 104 0.2000 2.144 309.19 0.2293 0.2293 0.001 17.80 31.00 24013.8 78.7 27493.0 1.1344 334.8 34.32 700.8 51.12 23.23 Group 1 Mayapan CGS073 106 0.6153 3.2665 474.33 0.5024 0.2177 6.1605 30.07 42.54 30760.0 129.1 288357.5 1.2394 5079.8 92.62 814.0 1195.2 23.44 Group 1 Mayapan CGS074 109 0.4982 2.9586 354.03 0.4140 0.1921 4.6149 25.91 49.12 27843.8 70.9 243462.5 1.1532 5713.7 99.05 63.0.8 874.1 16.73 Group 1 Mayapan CGS075 110 0.3578 2.7903 610.12 0.3549 0.2673 4.6801 19.54 27.41 27842.4 90.2 249190.2 1.2914 744.2 92.60 92.75 876.1 20.90 Group 1 Mayapan CGS075 110 0.3578 52.670 <th>u/a</th> <th>Mayapan</th> <th>CGS071</th> <th>102</th> <th>0.3320</th> <th>4.3033</th> <th>260.10</th> <th>0.4173</th> <th>0.4319</th> <th>2 6021</th> <th>17.90</th> <th>21.60</th> <th>24675.8</th> <th>79.7</th> <th>239230.0</th> <th>1 1 2 9 4</th> <th>22/0.2</th> <th>54.20</th> <th>766.9</th> <th>571.2</th> <th>42.20</th>	u/a	Mayapan	CGS071	102	0.3320	4.3033	260.10	0.4173	0.4319	2 6021	17.90	21.60	24675.8	79.7	239230.0	1 1 2 9 4	22/0.2	54.20	766.9	571.2	42.20
Group I Mayapan CGS073 100 0.0153 52.053 474.35 0.0024 0.2177 0.1003 50.07 42.04 50700.0 129.1 2.8357.5 1.2394 5079.8 92.02 814.0 1193.2 23.44 Group I Mayapan CGS074 109 0.4982 2.9586 354.03 0.4140 0.1921 4.6149 25.91 49.12 27843.8 70.9 243462.5 1.1532 5713.7 99.05 630.8 874.1 16.73 Group I Mayapan CGS075 110 0.3578 2.7903 610.12 0.3549 0.2673 4.6801 19.54 27.41 27842.4 90.2 2.49190.2 1.2914 1744.2 92.60 927.5 876.1 20.90 Group I Mayapan CGS075 242 0.5704 4.2758 52.60 72.2 95 30.69 32426 1 146.2 2.89715.8 1.411 300.7 83.11 95.96 1396.9 32.73 36.93 32.426 1	u/a Croup 1	Mayapan	CGS072	104	0.2000	2.1441	171 33	0.2293	0.2234	6 1605	30.07	42.54	24075.0	120.1	211905.0	1.1304	5070.8	02.62	700.0 814.0	1105.2	23.23
Group 1 Mayapan CGS074 109 0.4962 2.9360 504.00 0.1921 4.0149 2.914 71.2 245402.5 1.152 51.57 95.05 650.8 674.1 10.75 Group 1 Mayapan CGS075 110 0.3578 2.7903 610.12 0.3549 0.2673 4.6801 19.54 27.41 27842.4 90.2 249190.2 1.2914 1744.2 92.60 927.5 876.1 20.90 Group 1 Mayapan CGS076 242 0.5704 4.2758 2.600 927.5 876.1 20.90 Group 1 Mayapan CGS076 242 0.5704 4.2758 2.600 927.5 876.1 20.90 Group 1 Mayapan CGS076 242 0.5704 4.2758 2.600 927.5 876.9 2.793 3.603 3.4246.1 1.46.2 2.89715.8 1.4171 300.7 3.603 3.4246.1 1.46.2 2.89715.8 1.4171 300.7 3.603 3.4	Group 1	Mayapan	CGS073	100	0.0133	2 0586	354.03	0.3024	0.2177	4 6140	25.01	42.54	27843.8	70.0	200337.3	1.2594	5713.7	92.02	630.8	874.1	16 73
Group 1 Mayapan CGS075 110 0.5378 2.7905 010.12 0.5349 0.2075 4.0801 19.54 27.41 27842.4 90.2 249190.2 1.2914 1744.2 92.00 927.5 870.1 20.90 Group 1 Mayapan CGS076 242 0.5704 4.2758 526.70 0.4711 0.2495 5.0807 22.95 39.69 34246.1 146.2 289715.8 1.4171 3207.5 83.11 959.6 1396.9 32.73	Group 1	Mayapan	CG\$074	110	0.4982	2.9380	610.12	0.4140	0.1921	4.0149	10.54	49.12 27.41	27843.0	00.2	243402.3	1.1552	1744.2	99.05	030.8	876.1	20.00
	Group 1 Group 1	Mayapan	CG\$075	242	0.5578	4 2758	526.70	0.3349	0.2075	5 0807	22.04	30.60	3/2/6 1	146.2	249190.2	1.2914	3207.5	83.11	927.5	1306.0	20.90
Group 1 Mayapan CGS077 243 03918 37262 234.84 0.4565 0.2212 5.6726 25.02 57.58 34407.7 166.8 251302.9 1.2775 2711.4 71.82 884.8 1335.7 21.83	Group 1	Mayapan	CGS070	243	0.3918	3 7262	234 84	0.4565	0.275 0.2712	5 6726	25.02	57.59	34407 7	166.8	251302.9	1 2775	2711.4	71.82	884.8	1335 7	21.83
Group 1 Mayapan CGS077 245 0.5916 5.7262 254.64 0.4565 0.2212 5.0726 25.02 57.56 54407.7 1151 254551 7 1.8781 1992.6 119.01 440.7 1576.2 34.57	Group 1	Mayapan	CGS078	243	0.5985	4 8504	382 56	0.5604	0 2973	6 2460	29.02	54 56	35507.7	115.1	254551.7	1 8781	1992.6	119.01	440 7	1576.2	34 57
Group 1 Mayapan CGS079 253 0.3467 2.4404 337.18 0.3832 0.2283 4.5600 25.82 35.94 25189.2 97.0 250341.2 1.0612 3032.3 69.16 359.2 647.8 21.48	Group 1	Mayapan	CGS079	253	0.3467	2 4404	337.18	0.3832	0.2283	4 5600	25.82	35 94	25189.2	97.0	250341.2	1.0612	3032.3	69.16	359.2	647.8	21.48
Group 1 Mayapan CGS080 256 0.5391 4.3655 255.84 0.5489 0.2381 6.0127 26.76 54.34 35002.8 103.1 224390.0 1.4874 3549.7 91.06 968.2 1585.6 36.18	Group 1	Mayapan	CGS080	256	0.5391	4.3655	255.84	0.5489	0.2381	6.0127	26.76	54.34	35002.8	103.1	224390.0	1.4874	3549.7	91.06	968.2	1585.6	36.18

Chemical Group	Site Name	ANID	Alternate ID	Sb	Sc	Sr	Ta	Tb	Th	Zn	Zr	Al	Ba	Ca	Dy	К	Mn	Na	Ti	V
Group 1	Mayapan	CGS081	257	0.7720	4.3591	342.49	0.4405	0.2850	5.4606	22.81	53.10	33798.2	175.4	232215.3	1.7408	2467.1	58.04	624.4	1305.0	51.39
Group 1	Mayapan	CGS082	258	0.5241	3.7196	252.76	0.4751	0.2842	5.4895	19.37	47.43	34336.7	94.4	223137.5	1.4634	1566.4	63.30	548.5	1420.8	39.69
Group 4	Mayapan	CGS083	129	0.6732	9.1421	228.44	1.0644	0.4872	10.1945	48.22	183.19	64216.9	191.3	151518.8	2.9739	2471.6	124.45	2776.0	3529.8	52.10
Group 4	Mayapan	CGS084	130	0.5880	8.3110	169.66	0.9518	0.4774	9.1909	43.92	193.87	66846.0	169.6	147823.8	2.9233	2012.6	122.33	2404.7	3400.1	48.07
Group 4	Mayapan	CGS085	131	0.6182	8.6758	321.25	0.9606	0.8787	8.9911	55.02	132.67	60393.1	70.0	191922.0	4.6137	2913.2	78.82	2948.6	2661.3	53.84
Group 4	Mayapan	CGS086	133	0.5976	6.4730	342.55	0.6788	0.4392	7.7643	38.90	114.61	45307.3	92.0	238121.7	2.5543	1187.1	122.11	1313.9	2541.8	47.54
u/a	Mayapan	CGS087	134	1.1473	13.1037	213.57	1.2977	0.9431	15.0588	58.50	198.79	88285.6	176.7	143190.7	5.8376	4528.0	378.09	3168.1	4863.1	72.64
u/a	Mayapan	CGS088	135	1.3454	9.0106	126.38	1.0304	0.9866	12.3913	43.64	112.67	68215.4	122.6	203934.7	5.8690	1652.7	589.99	1145.2	3206.1	53.17
Group 4	Mayapan	CGS089	136	0.4626	6.5296	154.11	0.6266	0.4382	6.3605	36.96	100.56	48332.0	56.1	210080.0	2.6526	993.3	45.53	2386.7	2209.0	46.64
u/a	Mayapan	CGS090	328	5.3714	9.7966	162.21	0.7460	0.3251	8.2389	46.21	97.44	79649.0	96.6	216358.5	1.9443	3529.5	49.63	2672.4	2904.2	106.37
Group 5	Tekit	CGS091	445	1.6261	8.1031	448.46	1.0699	0.6470	13.1400	45.69	101.51	78793.7	431.6	172223.7	3.6827	21249.3	181.72	1020.5	2655.0	78.43
Group 1	Tekit	CGS092	446	0.3095	2.8334	396.56	0.3127	0.1743	3.6736	13.56	33.70	24551.3	63.7	313943.4	1.2871	2049.4	86.51	162.3	990.3	27.54
Group 2	Tekit	CGS093	447	1.3402	5.8456	255.43	0.8067	0.6175	9.9795	53.82	95.50	53535.7	135.2	231649.2	3.6960	7636.3	88.49	1652.3	1686.6	35.71
Group 1	Tekit	CGS094	448	0.2237	1.9963	356.03	0.2565	0.1582	4.0163	10.92	29.97	24411.9	78.3	284837.3	0.7270	1942.7	76.06	327.9	702.9	15.51
Group 1	Tekit	CGS095	449	0.3166	2.8088	398.10	0.3566	0.1341	4.4065	20.32	42.44	28148.9	101.1	261224.0	0.8390	3771.7	65.54	556.8	1038.2	24.83
Group 2	Tekit	CGS096	440	0.8411	4.0303	258.34	0.6519	0.3008	8.3564	28.45	70.30	42369.7	158.2	284171.6	2.1250	4425.3	86.91	774.4	1167.4	22.85
Group 5	Tekit	CGS097	441	0.8780	10.0147	219.43	0.8772	0.6802	10.5338	32.52	82.30	72441.9	193.6	158657.7	4.0276	10099.6	351.82	881.2	2650.5	78.18
Group 5	Tekit	CGS098	442	0.8931	7.7204	257.25	0.8075	0.5058	10.5029	32.39	109.95	64165.6	205.7	154809.0	3.1507	9279.5	240.32	1020.9	2095.5	46.69
u/a	Tekit	CGS099	443	2.5113	8.8559	225.97	1.5562	0.5312	16.6674	60.07	157.59	89317.7	217.8	181344.5	3.8061	5369.8	73.20	1716.8	2616.7	52.03
Group 2	Tekit	CGS100	444	0.8241	4.4505	613.32	0.7039	0.4351	12.6094	35.63	77.19	49290.0	137.7	268695.0	2.6442	3706.8	88.91	761.3	1459.2	30.68
Group 2	Tekit	CGS101	450	0.8298	4.1570	175.63	0.9594	0.1965	10.1983	20.55	47.16	41522.0	147.0	300353.6	1.1365	5990.2	32.88	684.2	1568.0	43.59
Group 2	Tekit	CGS102	452	0.6829	4.0154	472.53	0.6137	0.2663	9.6242	26.10	51.76	42634.2	118.4	296897.8	1.5685	7028.8	59.25	411.2	1429.1	34.05
u/a	Tekit	CGS103	453	1.0926	4.2231	187.82	0.5036	0.3097	5.1962	27.77	85.20	33445.2	101.4	304147.1	1.4473	3674.2	74.10	421.5	1631.5	48.41
Group 2	Tekit	CGS104	454	1.4154	6.1513	112.81	0.9597	0.4898	11.4708	40.46	71.57	62922.9	153.9	259821.8	2.9850	3419.3	236.05	1769.2	1705.7	36.03
Group 4	Tekit	CGS105	455	0.4646	6.7146	87.06	0.6483	0.8789	9.7354	35.55	79.61	42473.7	72.5	286747.3	5.1977	1604.9	61.19	1106.2	2002.4	50.26
u/a	Mama	CGS106	340	0.7989	4.9856	372.27	0.9888	0.6515	10.1424	45.95	92.29	55365.0	267.8	271420.6	3.8033	2599.8	71.45	947.4	1291.4	21.57
Group 1	Mama	CGS10/	341	0.3619	3.9506	272.22	0.4945	0.1804	5.8450	21.17	51.58	31810.6	60.4	264/26.0	1.0093	19/4.8	40.97	316.2	1320.4	28.95
Group I	Mama	CGS108	342	0.3681	4.1436	245.53	0.5026	0.1853	6.1303	20.43	42.78	34095.5	64.9	268181.6	1.1043	2944.7	42.18	302.3	1639.4	31.89
Group I	Mama	CGS109	343	0.3755	3.9128	228.04	0.4888	0.1663	5.9871	19.02	48.07	31415.0	76.7	247763.9	1.1603	2254.9	40.78	373.9	1310.6	25.79
u/a	Mama	CGSI10	344	1.1426	4.8821	448.33	0.6/20	0.1/59	7.6091	35.49	54.86	41865.6	205.8	269047.8	1.2401	3/3/.4	67.01	3/5.3	1808.4	20.05
Group I	Mama	CGS112	415	0.3102	3.9430	2/0.6/	0.489/	0.1594	5.9311	19.41	45.15	32081./	101.9	251444./	1.0004	2544.8	43.16	368.7	1306.9	28.10
Group I	Mama	CCS112	410	0.331/	3.088/	210.94	0.4598	0.1/95	5.5985	10.40	50.07	30948.0	39.3	200047.4	1.2045	2838.2	42.33	505.5	1294.1	21.81
Group 1	Mama	CCS114	340	0.40/9	4.3382	233.82	0.30/9	0.2455	5.9501	30.38	50.07 02.24	5/309./	182.8	284/00./	1.3843	4013.0	81.05	525.4	15/1.8	51.24
Group 2 Croup 1	Mama	CG\$114	347	0.2401	4 2251	205.25	0.4014	0.2200	6 21 81	42.74	20.04	26405 4	165.0	251109.1	1.5///	2642 1	62 24	1370.0	2090.3	20.99
Group I	Mama	CGS116	350	1.0165	4.2331	293.23	0.4914	1 0104	10 2205	50.20	122.00	600495.4	214.5	105870 4	5 2250	2840.0	240.09	434.3 542.4	14/0./	54.22
u/a u/a	Mama	CGS117	352	0.8270	8 2785	110.67	1.0500	0.4131	10.2803	31.47	125.90	71816.5	163.5	263033 1	2 3 8 7 0	5547.7	100.03	631 /	2724.0	51.01
u/a u/a	Mama	CGS118	332 409	0.8279	0.2703	107 37	0.1879	0.4131	2 7615	12 78	22 51	15823.0	52.9	203933.1	2.3079	1474.2	54.07	737.0	386.3	16.00
u/a 11/9	Mama	CGS110	410	0.1707	4 1/1/8	218.00	0 4381	0.1070	4 5878	26 14	80 30	30922.0	211.5	266030 8	2 3722	2751 1	89.07	4507	1780.0	41 30
u/a u/a	Mama	CGS120	411	1.0616	2 0604	574 37	0.3672	0.1303	4 8857	36.41	Δ7 Δ1	23501.2	135 /	200057.8	0.8867	3986.6	90.03	289.2	481 0	31 37
u/a u/a	Teaho	CGS120	418	0 5770	2.0004	340.97	0.3965	0 1396	4 9367	24 71	39.85	26891.0	177.2	325785 1	1 0966	2500.0	59.55	473.2	630.2	14.93
u/a	10000	000121	710	0.5770	2.7004	540.77	0.5705	0.1570	4.7507	27./1	57.05	20071.0	1//.2	545705.1	1.0700	2500.1	57.50	T 15.2	050.2	17.75

Chemical Group	Site Name	ANID	Alternate ID	Sb	Sc	Sr	Ta	Tb	Th	Zn	Zr	Al	Ba	Ca	Dy	K	Mn	Na	Ti	V
Group 2	Teabo	CGS122	419	0.9166	4.0546	290.97	0.6667	0.3983	7.7182	30.69	77.48	42018.3	182.6	304716.6	2.4348	4109.9	64.95	574.1	911.1	22.15
u/a	Teabo	CGS123	420	0.5579	2.8886	328.78	0.3352	0.1762	4.1876	20.30	56.53	24899.8	98.6	277340.8	1.1579	2959.5	60.63	394.7	1194.6	54.85
Group 2	Teabo	CGS124	421	0.4366	4.4898	298.52	0.5297	0.4812	5.6746	36.72	58.96	47242.1	137.1	264502.6	3.0707	2474.2	74.68	526.8	1313.0	25.38
u/a	Teabo	CGS125	430	1.9179	12.0735	250.84	1.7036	0.8662	21.0207	81.37	155.06	129989.5	489.4	55311.0	5.5769	20474.6	570.42	3907.2	3400.1	72.90
Group 2	Teabo	CGS126	431	0.5806	6.8924	362.17	0.6232	0.4824	8.0555	28.52	90.23	57337.2	222.0	259638.2	3.1066	10068.6	226.80	513.3	2053.8	30.83
Group 2	Teabo	CGS127	432	0.7652	8.0932	361.99	0.9281	0.4338	9.7272	50.43	84.90	75961.7	185.3	228824.6	2.6126	6038.7	187.05	1228.4	1957.2	32.02
Group 5	Teabo	CGS128	433	1.2300	6.5786	325.39	0.9146	0.4722	11.5638	45.62	97.68	65078.3	245.5	232277.0	3.1347	7624.0	286.76	1412.4	2136.1	51.18
Group 5	Teabo	CGS129	435	1.0945	9.4507	239.65	1.0624	0.6006	11.8335	59.86	92.13	84603.1	253.5	183392.6	4.0509	10231.7	305.08	1500.1	2425.8	55.74
Group 2	Teabo	CGS130	426	0.9081	3.7667	287.87	0.6173	0.2687	7.4138	32.62	51.47	46382.8	180.9	291681.2	1.5472	4119.3	76.88	592.6	1091.4	22.08
Group 2	Tipikal	CGS131	261	1.4404	3.4963	287.80	0.4882	0.5252	5.7264	21.45	62.54	35213.6	154.3	308377.8	2.8370	2541.9	51.12	419.4	892.0	47.11
Group 1	Tipikal	CGS132	262	0.4060	3.3296	285.15	0.4518	0.1511	7.2834	16.97	29.52	44608.4	167.6	285320.3	1.1495	3790.9	76.35	541.7	1305.0	25.34
Group 1	Tipikal	CGS133	263	0.5255	3.2139	293.75	0.4435	0.2589	7.0010	17.48	50.96	37512.3	139.1	250485.3	1.5686	2098.9	60.54	492.1	1213.1	22.01
Group 1	Tipikal	CGS134	266	0.4749	4.1429	257.76	0.4791	0.2446	5.3113	15.64	51.08	34122.5	166.3	257934.2	1.5874	2549.4	66.66	519.1	1426.0	37.49
Group 1	Tipikal	CGS135	267	0.4879	4.2623	249.83	0.4787	0.2854	5.3494	21.44	41.98	36750.2	202.8	253919.1	1.6733	3016.4	71.23	581.7	1624.9	33.13
u/a	Tipikal	CGS136	269	0.4186	4.3025	311.28	0.3049	0.3588	3.7601	22.20	43.61	31666.4	142.8	277959.2	2.0017	6791.6	175.51	471.5	1022.7	25.37
Group 1	Tipikal	CGS137	271	0.3381	2.2856	257.76	0.3064	0.1619	3.3943	18.55	50.14	23523.3	101.7	255440.3	0.9973	5227.7	88.85	371.9	705.7	12.19
Group 1	Tipikal	CGS138	272	0.3475	2.5742	290.83	0.3398	0.1316	4.4919	18.71	28.66	39796.1	168.5	255450.4	0.7918	4967.0	62.74	869.1	883.3	21.94
Group 5	Tipikal	CGS139	275	1.5949	10.9833	106.60	1.4000	0.7159	17.2320	69.70	164.99	103515.1	271.1	96394.4	4.6130	9809.2	427.85	2139.5	3082.0	59.65
Group 1	Tipikal	CGS140	405	0.4701	4.1344	215.25	0.4890	0.1831	6.0527	18.01	53.17	39527.8	114.9	242488.8	1.1764	4220.6	53.74	964.4	1181.4	36.81
Group 1	Tipikal	CGS141	407	0.5178	4.3472	299.40	0.4885	0.2720	5.5784	27.64	66.48	36024.5	152.7	289807.2	1.7522	3289.1	136.82	804.1	1614.5	39.18
Group 2	Tipikal	CGS142	277	0.9699	4.0071	229.34	0.9503	0.2688	12.2862	41.23	99.23	53936.0	173.1	225388.9	1.9181	5639.9	100.21	1057.4	1226.3	23.09
u/a	Tipikal	CGS143	278	0.2453	2.0303	432.56	0.2976	0.1738	3.4239	15.36	30.84	22160.9	79.6	306258.9	1.2323	3820.7	77.82	300.4	573.7	8.54
Group 2	Tipikal	CGS144	279	1.2648	5.8939	229.43	1.0294	0.6028	13.4046	43.47	79.69	62722.1	139.4	244116.0	3.7872	6420.5	91.90	1743.7	1618.9	33.63
Group 2	Tipikal	CGS145	281	0.7020	3.9160	81.50	0.5633	0.2362	7.0809	18.55	54.51	40651.2	133.4	315111.1	1.4971	3939.9	68.11	887.3	1159.6	22.62
Group 2	Tipikal	CGS146	403	0.4774	5.5015	162.28	0.5910	0.3562	7.4878	21.30	58.65	45197.9	145.2	269809.7	2.2701	6615.6	56.04	575.7	1893.7	44.66
Group 2	Culuba	CGS147	203	0.8696	3.6334	93.34	0.6696	0.2971	8.3407	28.65	57.46	39643.7	114.4	295955.1	1.5774	5985.3	44.42	220.2	1205.8	29.99
Group 2	Culuba	CGS148	204	0.8922	3.7591	114.38	0.7092	0.3086	8.8359	29.65	79.49	43915.5	98.5	288986.8	1.6381	4620.3	39.99	263.8	1174.3	29.58
u/a	Culuba	CGS149	207	0.8219	5.8298	121.71	0.8046	0.4948	9.4728	31.52	87.34	57648.1	75.0	295292.6	2.6841	4275.0	52.24	1242.6	1859.4	32.15
Group 2	Culuba	CGS150	208	0.9317	3.7727	109.96	0.7043	0.3076	8.8933	25.95	72.14	43886.4	135.9	283663.0	1.6293	4919.5	41.76	252.4	1187.8	35.08
Group 2	Culuba	CGS151	209	0.9208	3./694	110.48	0.6907	0.2693	8./511	30.12	80.10	44855.5	95.6	293962.1	1.6109	51/3.2	38.41	251.1	1247.9	38.90
Group 3	Culuba	CG8152	210	3.4525	9./049	114.50	1.1/15	0.8422	14.9/14	/1.11	154.8/	89514.4	182.1	1/9850.0	5.01/0	10323.5	92.46	827.7	2/26.2	0/.9/ 70.14
Group 5	Culuba	CGS155	349	3.9210	/.0090	45.24	1.1800	0.2200	14.2043	45.90	101.20	/944/.3	125.0	23/028.8	1./048	5005.9	08.80	1089.8	2241.5	/9.14
u/a Cara ang 2	Culuba	CG8154	181	1.0224	9.9904	245.90	1.3293	0.8/08	6 1202	02.82	51.00	8/393.1	238.3	1/1419.4	5.0515	2565 1	119.54	222.2	2422.0	38.00
Group 2	Culuba	CG\$155	214	1.0554	2.3702	212 27	0.4901	0.3279	6.0204	22 22	52.05	20004.4	67.0	208664.2	1.7551	4202.9	43.00 51.69	2102.4	184.0	34.73 41.00
u/a Crown 3	Culuba	CCS150	217	2 4275	2.3339	07.04	0.4641	0.5007	0.0804	55.55	32.03	20100.0	07.0	298004.5	2 0155	4295.8	50.55	2102.4	464.0	41.99
Group 3	Culuba	CG\$157	188	3.4273	0.1210	97.94	1.0403	0.8130	12.7304	67.34	115.02	86087.0	100.0	160017 /	1 2704	4026.5	50.55 64 51	740 1	2010.0	70.83
Group 3	Culuba	CG\$150	100	2 0531	9.9010	90.75	1.1018	0.7220	13.0007	60.55	1/2 83	80076.8	190.9	178300 3	3 800/	6475.7	68 25	628.3	2620.1	60.25
Group 3	Culuba	CGS160	200	3 0861	8 8780	104.68	1.0228	0.0524	12 7000	54.00	138.05	76424 7	112.0	206054.8	5 1 8 9 0	11951 8	71 31	2022.3	2705.5	67 44
Group 3	Culuba	CGS161	200	2 8200	8 9180	115.01	1.0220	0.9049	12.7000	56.94	167.23	78425 1	126.0	217050.9	5 3141	6504.6	68 17	1573.3	2302.7	76.80
Group 3	Coba	CGS162	354	1.4146	5.5448	582.02	0.9703	0.9514	12.3139	60.80	107.25	58207 5	176.3	264124.4	5.9639	3469 5	99 71	650 5	1903 4	24 67
Group 2	Coou	000102	554	1.4140	5.5440	502.02	0.7705	0.7514		00.00	107.55	50201.5	110.5	207127.T	5.7057	5407.5	JJ. / I	050.5	т <i>у</i> 05.т	27.07

	- 132 -

Chemical Group	Site Name	ANID	Alternate ID	Sb	Sc	Sr	Ta	Tb	Th	Zn	Zr	Al	Ba	Ca	Dy	К	Mn	Na	Ti	V
Group 1	Coba	CGS163	385	0.4791	2.9920	878.95	0.4866	0.1556	6.6973	13.15	38.33	44147.9	146.1	293339.1	0.9550	2694.9	57.20	2520.2	1274.8	19.06
u/a	Coba	CGS164	355	0.3625	4.2190	598.84	0.4657	0.3391	5.8251	18.55	42.42	37938.6	114.5	308146.7	2.0057	4478.9	154.07	2073.7	1183.9	37.10
Group 1	Coba	CGS165	356	0.3602	4.7388	715.39	0.5331	0.2832	6.6822	22.05	58.27	46880.4	197.1	288609.9	1.7194	3028.2	154.08	943.2	1445.0	28.30
u/a	Coba	CGS166	358	1.5238	5.2161	466.53	0.9078	0.3868	11.4755	32.84	115.20	57006.4	111.3	264962.7	2.2426	8739.6	44.47	5481.6	1547.7	42.32
Group 1	Coba	CGS167	357	0.1921	2.1061	770.54	0.2666	0.1604	4.3522	8.92	46.37	25466.0	220.8	330186.3	1.0037	1360.8	75.70	569.6	720.9	12.33
Group 5	Coba	CGS168	388	0.7462	8.1255	855.00	0.9307	0.6132	12.7039	28.58	114.37	78605.2	177.8	217362.6	4.0088	5003.6	350.24	2311.6	2307.4	82.62
Group 2	Coba	CGS169	360	1.0943	5.2434	654.38	0.9131	0.8946	12.2275	55.97	104.48	55146.7	210.3	274572.9	5.7807	2906.2	87.02	804.7	1792.4	19.94
Group 3	Coba	CGS170	359	2.6692	6.7526	540.96	1.0962	0.2440	12.1316	52.85	100.00	71886.6	264.3	208312.1	1.5558	5215.9	51.19	751.3	1817.8	36.95
Group 2	Coba	CGS171	364	0.4429	7.4309	1057.10	0.8247	0.4884	10.0991	34.55	55.48	64457.6	249.0	228487.4	2.9790	5900.6	322.70	701.6	2802.8	44.97
Group 1	Coba	CGS172	365	0.3021	3.7237	793.11	0.4231	0.3077	5.3230	15.16	47.34	33073.7	114.2	301667.7	1.8012	1565.2	96.44	404.7	1515.6	38.98
Group 1	Coba	CGS173	361	0.3180	3.5705	747.82	0.4157	0.2672	5.4057	16.05	51.09	29996.8	142.3	313826.5	1.5848	2243.8	100.23	366.0	1271.7	28.45
Group 2	Coba	CGS174	362	0.3921	5.9437	833.48	0.7216	0.3461	8.1210	21.57	63.96	55421.3	218.0	256285.0	2.0657	3338.0	134.38	544.1	2276.6	47.44
Group 4	C. Mool	CGS175	376	0.5104	7.0795	934.88	0.6905	0.7041	7.3931	32.71	141.89	50040.8	65.1	213295.3	3.5776	1053.0	60.87	1732.7	2404.0	43.82
Group 4	C. Mool	CGS176	377	0.3641	6.4049	1958.79	0.6348	0.8957	6.3932	24.26	120.57	44569.4	98.4	259949.7	4.8305	857.0	49.72	643.8	2298.5	42.29
Group 4	C. Mool	CGS177	380	0.3785	6.0694	1449.84	0.6126	1.1338	6.1060	31.91	128.29	44279.4	61.4	232850.4	5.7610	237.8	41.74	908.7	1943.2	38.00
u/a	C. Mool	CGS178	381	1.0680	12.1816	492.13	1.3307	1.0127	15.0296	55.24	236.39	89236.0	111.3	128098.1	6.0961	3892.7	354.37	3314.3	4429.4	66.55
Group 4	C. Mool	CGS179	382	0.5903	7.1457	380.44	0.7681	1.0513	8.7181	43.61	143.14	52486.2	54.3	231118.3	5.7998	1940.9	133.52	1190.2	2454.4	38.87
Group 4	C. Mool	CGS180	379	0.4690	6.7142	478.25	0.7274	0.3232	7.8521	33.09	141.71	46483.3	47.5	213487.0	2.1894	863.7	75.23	936.6	2803.7	32.70
Group 5	C. Mool	CGS181	366	3.3054	12.1652	469.87	1.3600	0.9221	16.6794	62.28	158.25	95904.0	77.2	175750.8	5.9060	9570.9	208.62	2677.4	3432.5	103.89
u/a	C. Mool	CGS182	367	6.9673	8.7636	428.83	0.6279	0.3431	7.5116	43.63	89.21	62673.0	71.9	266317.8	2.2789	1885.1	53.31	596.1	2620.0	103.82
Group 5	C. Mool	CGS183	374	1.2188	13.1821	1279.53	1.4566	0.6813	17.5372	82.46	153.81	110378.1	192.0	95300.8	4.3398	10874.9	333.01	5693.8	3980.7	81.70
Group 5	C. Mool	CGS184	370	4.6480	9.2011	758.74	0.9154	1.0693	12.7944	35.44	97.94	64597.4	50.3	225939.9	6.5926	4943.3	200.23	2518.4	2075.3	118.92
Group 5	C. Mool	CGS185	371	3.8761	8.3058	548.37	0.8144	1.0371	11.3783	30.60	79.21	60917.2	68.3	244628.1	6.0356	5204.7	161.67	1423.7	1953.3	104.79
u/a	C. Mool	CGS186	369	1.1404	12.2487	1366.60	1.4088	0.8166	15.9129	69.58	247.77	88555.7	91.3	150580.2	5.4041	2977.8	411.37	3005.7	4961.0	103.55
u/a		CGS187	Clay A	0.3301	1.7508	359.93	0.1063	0.1690	1.7687	5.62	23.21	12313.7	33.6	413428.3	1.0230	0.0	26.48	169.5	351.1	35.95
u/a		CGS188	Clay B	0.1779	0.9677	754.60	0.0658	0.0756	1.0221	8.94	15.31	6249.4	63.3	425296.4	0.5640	0.0	40.86	2452.0	303.2	27.95
u/a		CGS189	Clay C	0.1191	0.8229	425.93	0.0806	0.0985	1.2633	3.75	14.12	6205.3	30.5	40/495.4	0.5159	0.0	18.92	939.5	264.8	10.43
u/a		CGS190	Clay D	2.8087	21.2751	0.00	1.9878	1.6059	25.0076	69.26	234.17	14/396.3	216.9	/3668.8	9.4720	11752.6	1021.13	517.1	5/12.6	182.51
u/a		CGS191	Clay E	2.0790	21.5953	100.86	1.9570	1.7370	23.3461	61.51	195.98	136461.0	167.9	115120.8	10.5511	9313.2	1157.26	382.0	5691.1	231.07
u/a		CG8192	Clay F	0.0816	0.6929	680.40	0.0626	0.0845	1.0162	5.23	12.84	/262.3	35.6	416004./	0.4480	1111.2	25.62	232.5	161.3	4.1/
Group 1*		CGS193	Clay G	0.4906	4.4220	462.29	0.4212	0.3716	5.1990	30.81	49.86	33427.3	82.9	344504.8	2.1182	2323.9	123.76	579.7	1435.6	34.00
u/a		CG8194	Clay H	0.1414	0.6383	395.90	0.0727	0.0365	0.81/6	4.10	5.85	51/0.0	51.0	394668.5	0.2449	0.0	13.05	441.0	395.3	9.18
u/a		CG8195	Clay I	0.1126	0./983	108.31	0.0815	0.0704	1.1152	5.65 24.20	13.88	6/91.9	50.6 28 5	3/1931./	0.3922	7800.0	8.60	313./ 109.1	1697.0	0.40
u/a		CCS190	Clay J	1.2/04	ð.ð004	0.00	0.8143	0.1205	11.32/3	24.20 5.19	20.05	12047.4	28.3	1383.0	0.33/6	/809.0	20.22	198.1	108/.0	45.49
u/a		CG819/	Clay K	0.2946	1.8812	238.37	0.1430	0.2301	4.7703	5.18 2.74	30.05	1394/.4	0/./	330044.3	1.4234	993.4	39.23	244.5	43/.8	21.10
u/a		CG8198	Clay L	0.1081	0.6/49	222.27	0.0541	0.0827	0.7675	3./4	13.68	5464.7	46.7	406581.0	0.4546	0.0	22.63	244.5	/8.4	5.67

A combination of analytical methods was used to investigate the structure that the elemental chemical data of pottery samples and raw materials might have and to seek patterns in the data aiding in the characterization of the samples into chemical groups. These methods (Pierce and Glascock 2015) and the structure in the data that they suggest are the focus of this section.

Cluster Analysis

Cluster analysis was used to identify initial groups of samples presenting similar compositions (nickel was not considered due to the presence of many missing values (Pierce and Glascock 2015, p.7). Cluster analysis is not used for final group formation because many disadvantages to its use with highly correlated data have been documented, and compositional data are usually correlated (Baxter 1994, p.167-168).

Principal Components Analysis

Principal components analysis, on the other hand, works well in this situation and, in addition, it can show the relationships between the samples (Glascock 1994, p.98), mainly through the use of plots. Principal components analysis reduces the number of variables by calculating "principal components" (PC), which are linear combinations of the original variables (Formula 7.1). The coefficients (a1, a2, ...,n32 in Formula 7.1), or elemental loadings, are based on calculations on the correlations matrix of the data such as new principal component variables are uncorrelated (Baxter 1994, p.49). The goal is that the first few principal components, hopefully, the first two, capture as much variation as possible. The principal components for the 32 elemental concentration in Table 7-1 take the form (based on Baxter 1994, p.49):

$$P1 = a1 As + a2 La + ... + a32 V$$
 (Formula 7.1)

$$P2 = b1 As + b2 La + ... + b32 V$$

....

$$Pn = n1 As + n2 La + ... + n32 V$$

This analysis structures the data enabling the determination of which elements are driving the most variation between the samples. This variation is usually examined in two (first and second principal components) or three (first, second and third principal components) dimensions (Shennan 1998:270-276) because, although multiple principal components may be calculated, any significant variation is found in the first and second, or occasionally third, components.

Table 7-2 contains the results of the principal components analysis showing the elemental loadings, or coefficients. From this table, principal component #1 represents 60.42% and principal component # 2 represents 10.75 % of the variation. That the first two components represent 71.17% of the total variation implies that the data are highly correlated, with components PC3 to PC5 representing only 13.96% of the total variation.

		/						
Var.	Mean	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Al	42879.55	-0.151	0.054	-0.001	-0.054	-0.054	0.119	0.016
As	6.063139	-0.154	-0.047	0.253	-0.366	0.004	-0.591	0.127
Ba	122.659	-0.090	0.201	0.073	0.197	-0.029	-0.081	0.160
Ca	246083.2	0.069	-0.003	-0.057	0.025	0.052	-0.094	-0.083
Ce	28.18013	-0.227	-0.124	-0.085	0.082	0.087	0.050	-0.119
Со	2.342636	-0.181	-0.017	0.308	0.047	-0.007	-0.022	0.210
Cr	48.23178	-0.081	-0.120	0.597	-0.088	0.217	0.266	-0.114
Cs	1.468539	-0.141	0.394	0.178	0.051	0.076	0.089	-0.340
Dy	1.886598	-0.231	-0.118	-0.112	0.120	0.033	-0.093	0.037
Eu	0.400553	-0.216	-0.188	0.023	0.177	0.096	-0.017	-0.061
Fe	12607.15	-0.168	-0.038	0.189	-0.083	-0.055	-0.057	0.173
Hf	2.609019	-0.210	-0.027	-0.130	-0.103	-0.033	0.171	0.011
К	3127.403	-0.186	0.537	-0.021	0.133	-0.018	-0.065	-0.046
La	11.74533	-0.224	-0.161	-0.102	0.179	0.118	0.010	-0.196
Lu	0.181459	-0.177	-0.078	-0.027	0.038	0.021	-0.037	0.056
Mn	86.1236	-0.178	0.048	0.247	0.353	-0.227	-0.058	0.501
Na	693.3304	-0.186	-0.018	-0.033	-0.227	-0.693	0.386	-0.018
Nd	10.70512	-0.221	-0.182	-0.103	0.177	0.135	-0.030	-0.152
Rb	15.46212	-0.144	0.488	0.043	0.162	0.056	-0.056	-0.173
Sb	0.60416	-0.224	0.151	-0.267	-0.448	-0.003	-0.278	-0.045
Sc	4.624566	-0.189	-0.014	0.080	-0.063	0.037	0.090	0.033
Sm	2.314391	-0.216	-0.151	-0.100	0.129	0.113	-0.032	-0.107
Sr	301.3819	0.035	-0.174	0.181	0.255	-0.561	-0.370	-0.511
Та	0.577449	-0.166	0.040	-0.023	-0.104	0.011	0.126	-0.065
Tb	0.316359	-0.229	-0.138	-0.114	0.123	0.058	-0.105	-0.004
Th	7.216566	-0.150	0.055	-0.034	-0.076	-0.003	0.110	-0.060
Ti	1446.887	-0.182	-0.035	0.134	-0.056	0.051	0.171	-0.028
U	1.521436	0.030	-0.101	0.279	-0.123	0.092	0.036	-0.252
V	33.55622	-0.166	-0.018	0.130	-0.315	0.044	-0.097	-0.113
Yb	1.179099	-0.220	-0.075	-0.107	0.079	-0.027	-0.072	0.136
Zn	26.60706	-0.167	0.043	-0.125	-0.073	-0.062	-0.009	0.040
Zr	64.26081	-0.177	-0.066	-0.101	-0.093	-0.022	0.167	0.010
Eigenvalues:		1.206	0.215	0.125	0.098	0.072	0.052	0.045
Total Variation	explained:	60.42%	10.75%	6.25%	4.10%	3.61%	2.61%	2.24%

 Table 7-2. Elemental Loadings on Principal Components (from Pierce and Glascock 2015, Appendix A)

* Values in **bold** explain the greatest amount of variation within each component. Those in *italics* explain a significant portion of the variation, but less than those in bold.

For each sample (row) in Table 7-1, the values of the elemental loadings (coefficients) a1 to a32 (PC1, Table 7-2) and b1 to b32 (PC2, Table 7-2) as well as the values of the standardized (log 10 in this study) concentrations of Al, As ... Zr from Table 7-1 are used to calculate P1 and P2 (Formula 7-1). The value of P1 is plotted along the axis that defines the direction of most variance (Glascock et al. 2004, p.100). The

calculated P1 and P2 for the pottery samples and raw clay samples are plotted in principal component #1 axis against principal component #2 axis, as illustrated in Figure 7-1.

In addition, the loadings (or coefficients) of all the variables (the elements Al, As $\dots Zr$) in Table 7-2 for PC1 And PC2 can be added to the plot representing the relationship between the variables (Glascock et al. 2004, p.100). For instance Al = (-0.151, 0.052). The length of each variable's vector indicates the contribution of the element. When straight angles separate the vectors of two elements, the two elements are not correlated. An angle of around 180 degrees means high inverse correlation, while a small angle means high correlation (Glascock et al. 2004, p.100). Because two types of information have been plotted, a chart such as Figure 7-1 is called a biplot.

Figure 7-1. Biplot of the sample on principal component #1 and #2 (Figure 1, from Pierce and Glascock 2015)

In Figure 7-1, a relationship among variables can be visualized. Many highly correlated elements (small angle) have an inverse correlation (180 degrees angle) in the principal component # 1 axis with calcium in particular, and strontium, and uranium to a lesser degree. This means that the higher the concentration of calcium, the lower the concentration of these many elements, and conversely. Calcite and strontium are common in calcareous rocks. Most pottery samples contain carbonate inclusions (calcium or dolomite), and most of the raw material samples collected (Section 5-4, Table

5-4) are marls (combination of clay and carbonate mud). In Table 7-2, the loadings of calcium, strontium, and uranium in principal component #1 (PC1) have all positive coefficients, while they are negative for the rest of the elements.

Another group of variables, Rb, Cs, K, and Ba can be observed in Figure 7-1 pulling against U, Sr, and Cr in the principal component #2 axis. It can be observed in Table 7-2 that the elements most driving the variation (large positive or negative values, Doran and Hodson 1975:195) for principal component #2 are Rb, Cs, K, and Ba. These elements present positive loadings in this table, while U, Sr, and Cr present negative elemental loadings.

In Figure 7-2, principal components # 1 and # 2 are plotted in the x and y-axis. One group can be distinguished in principal component # 2 (Group 4), but the rest largely overlap in principal components # 1 and # 2.

Figure 7-2. Plot of samples in principal components #1 and #2 axes (Figure 2, Pierce and Glascock 2015), or P1 and P2 (Formula 7-1), depicting the samples within each of the five groups resulting from the initial Cluster Analysis.

Bivariate Plots

As a result of the overlap that persists when plotting on principal components, other techniques were used to perform the final group assignments (Pierce and Glascock 2015), starting with the use of bivariate plots. They allow exploring the relationships between two variables (elemental concentrations) and the groups. For instance, plotting the

concentration of antimony (Sb) against chromium (Cr) in Figure 7-3(b) shows that Groups 3 and 5, which overlapped in Figure 7-2, are distinguishable based on this element. Similarly, Groups 2 and 4, which have some overlap in principal component #1 and #2 (Figure 7-2), are distinguishable when plotted on chromium versus caesium (Figure 7-3(d)).

Figure 7-3 (a)

Figure 7-3 (c)

Figure 7-3 (d) Figure 7-3. Pottery samples' chemical compositions of (a) Ce and Sb, (b) Cr and Sb, (c) Hf and Th, and (d) Cs and Cr (Pierce and Glascock (2015), Figures 3-6)

Mahalanobis Distance

Mahalanobis distance (MD) was used to confirm final group membership given that overlaps between Groups 1 and 2 and between 2 and 5 persisted, necessitating the application of other means to confirm groups (Pierce and Glascock 2015, p.10). MD is particularly useful when data are highly correlated (Glascock 2004, p.100). In this case, the scatter plot of a set of points forms an ellipsoid (in n-dimensions), and the Euclidean distance used in many multivariate methods is not suitable because it assumes that the scatter is circular (Baxter 1994, p.80). The Mahalanobis distance (MD) between a sample and the group centroid is defined as the squared Euclidean distance between them, divided by the group variance in the direction of the sample (Glascock 2004, p.100). This calculation gives less weight (than the Euclidean Distance) to variables with larger variances and groups of correlated variables (Baxter 1994, p.80).

Information about the correlations between pairs of elements (based on the variance–covariance matrix) is included in MD, allowing the calculation of the probability that a particular specimen belongs to a group. One factor in this probability is the distance of the specimen to the group centroid. The calculation of these probabilities resulted in 81 percent of the samples being assigned to a total of five

chemical groups, with the rest remaining unassigned (the samples and chemical group assignments can be found in Table 8-33). The MD calculations discriminate the groups but do not inform about their characteristics.

Discriminant Analysis

After finding the groups in the chemical data, discriminant analysis (DA) was used to further analyze the data by visualizing in a plot the separation of the groups and pointing to the variables that most differentiate a group from the others (Pierce and Glascock 2015, p.14). This can be done because the calculations involved in DA maximize the variations between groups (Pierce and Glascock 2015, p.14). By making use of the variances within groups, the output of DA are new functions in which the calculations have made the within-groups variance small, while making the between-group variance, large (Baxter 1994, p.189).

Table 7-3 contains the DA (four). Each of the numeric columns contains the coefficient for the variables (elements). The values of the coefficient indicate their contribution to the separation of the groups. They are in descending order to show their contribution to the functions better. The coefficients in the first canonical discriminant (CD) function CD1 accounts for the maximum separation between the centroids of the groups, and so do the successive functions.

CD1	CD1	CD2	CD2	CD3	CD3	CD4	CD4
0.787027	Sc	1.680123	Eu	1.044727	Eu	1.51443	Hf
0.439592	Nd	0.673006	Hf	0.51623	Та	1.186246	Та
0.377674	Th	0.625309	Fe	0.47681	Fe	1.083495	Eu
0.371771	Dy	0.555818	Ti	0.439059	Th	0.957004	Ca
0.356505	Cs	0.521863	La	0.361587	Mn	0.753156	Sm
0.351432	Та	0.282691	Na	0.312804	Cr	0.58519	Mn
0.334034	Eu	0.241641	Zn	0.281903	Sm	0.392856	Yb
0.32793	Sb	0.201191	U	0.245859	Со	0.158651	Cs
0.228579	Yb	0.170409	Cr	0.24033	V	0.121129	V
0.177012	Mn	0.122469	Та	0.190015	Dy	0.116048	U
0.176914	Ba	0.099531	Со	0.134925	Sr	0.09626	Ba
0.134875	Ca	0.092491	K	0.109587	Sb	0.09243	Cr
0.128901	U	0.064964	Dy	0.10387	K	0.009	Rb
0.125921	Rb	0.040395	As	0.080756	Rb	0.002891	Sr
0.103455	V	0.005535	Sr	0.060639	La	-0.00356	Zn
0.077456	Ti	-0.00039	Ca	0.047925	Hf	-0.01768	K
0.04924	Al	-0.06846	Nd	0.02698	Nd	-0.07926	Na
0.024781	As	-0.07283	Rb	0.015156	Al	-0.08317	Nd
-0.04069	Zn	-0.10948	Cs	0.011789	U	-0.09155	Ti
-0.04131	Sr	-0.11138	Zr	-0.01445	Na	-0.0921	Fe
-0.05302	Lu	-0.16886	Ce	-0.01913	Zr	-0.11624	Dy
-0.10696	K	-0.17339	Lu	-0.04565	Lu	-0.11846	Tb
-0.10785	Na	-0.17929	Ва	-0.063	Ba	-0.14515	As
-0.15096	Zr	-0.18346	Yb	-0.11965	Yb	-0.16633	Al

Table 7-3. CD Functions with Coefficients for each Variable (based on Table 3, Pierce and Glascock 2015, in descending order,)

-0.1572	Со	-0.19421	Tb	-0.15359	As	-0.28166	Sb
-0.17116	Tb	-0.24592	Sb	-0.16385	Cs	-0.33901	Th
-0.2265	Cr	-0.35652	Mn	-0.32881	Zn	-0.47032	La
-0.39139	Ce	-0.43829	V	-0.50762	Ti	-0.55927	Sc
-0.41863	La	-0.49008	Th	-0.60971	Ce	-0.64672	Lu
-0.53578	Sm	-1.00333	Sc	-0.69655	Tb	-0.82378	Ce
-0.89353	Fe	-1.17942	Al	-1.01388	Ca	-0.8373	Zr
-1.60964	Hf	-1.7251	Sm	-1.57547	Sc	-0.89973	Co

The first and second CD function values were calculated, and in Figure 7-4 they are plotted in the axes of the discriminant functions #1 and #2. The plot separates the troublesome overlap of Group 1 and Group 2 of previous methods. Figure 7-5 plots the samples along discriminant functions #3 and #2, separating Groups 2 and 5 in discriminant function #2.

Figure 7-4. Sample in discriminant functions #1 and # 2 (Pierce and Glascock 2015, Figure 7)

Figure 7-5. Sample in discriminant functions #3 and #2 (Pierce and Glascock 2015, Figure 8)

Mahalanobis Distance Test

The groups found were tested using MD calculations to determine the likelihood of each specimen being a member of each chemical group from which that specimen had been removed (Pierce and Glascock 2015, p.16). These tests were successful and confirmed cohesive group assignment (Pierce and Glascock 2015, p.16).

7.2 Location of the Sources of the Chemical Groups

With the objective of identifying the geographical source of the pottery samples, the compositions of the collected raw materials are compared with the five groups just defined. The collected clays (Table 5-4) are plotted in the principal component #1 and #2 plot of Figure 7-6. From this figure, one clay sample, CGS193 (# 11, Table 5-4), fits within the chemical group 1. The clay was collected near Mayapán.

Figure 7-6. Clay samples and the chemical groups (Figure 9, Pierce and Glascock 2015)

Aiming to resolve the observed ambiguity in Figure 7-6 (in which it is not clear whether CGS193 belongs to Group 1 or 2), a Mahalanobis distance was calculated to confirm that this clay sample belongs to Group 1 rather than Group 2 (Pierce and Glascock 2015, p.18). Table 7-4 shows that Group 1 is the closest match for sample CGS193. As can be recalled from Chapter 5 (Table 5-4), clay deposits were not found near (within 10 km) Mayapán or the other north-central sites (a documented deposit 5km from Mama was not located). Excluding clayey red soils and one clay sample from Chapab-Ticul road (13 km west of Mama), the samples collected are marls (plastic sascab). The results of the chemical analysis show that a marl that matches the composition of the pottery found at Mayapán and other north-central sites within group1 is located near that site and that the rest of the clay samples do not fit well any of the chemical groups (Pierce and Glascock 2015, p.18).

			Group	Group	Group	Group	Best	Source
MURRID	Alt ID	Group 1	2	3	4	5	Group	assignment
CGS187	Clay A	0.000	1.861	0.362	0.023	0.005	Group 2	unassigned
CGS188	Clay B	0.000	0.000	0.065	0.009	0.000	Group 3	unassigned
CGS189	Clay C	0.000	0.000	0.033	0.001	0.000	Group 3	unassigned
CGS190	Clay D	0.000	0.000	0.046	0.001	0.017	Group 3	unassigned
CGS191	Clay E	0.000	0.000	0.097	0.001	0.093	Group 3	unassigned
CGS192	Clay F	0.000	0.000	0.024	0.001	0.000	Group 3	unassigned
CGS193	Clay G	77.900	0.366	0.225	0.026	0.084	Group 1	Group 1
CGS194	Clay H	0.000	0.000	0.011	0.000	0.000	Group 3	unassigned
CGS195	Clay I	0.000	0.000	0.045	0.004	0.000	Group 3	unassigned
CGS196	Clay J	0.000	0.000	0.002	0.000	0.000	Group 3	unassigned
CGS197	Clay K	0.073	6.249	1.022	0.016	0.045	Group 2	unassigned
CGS198	Clay L	0.012	0.002	0.121	0.012	0.004	Group 3	unassigned

 Table 7-4. Mahalanobis distance calculations for raw clay samples (Table 4, Pierce and Glascock 2015)

To investigate the potential provenance of the pottery samples, Pierce and Glascock (2015, p.19) compared the composition of pottery samples against all the samples stored within MURR database from the general Yucatán region: 2071 samples, of which only 51 are from Mayapán. Nevertheless, 80 of the samples in this study have compositions closest to the 51 MURR samples from Mayapán than to rest of samples within MURR. Table 7-5 summarizes the results. The most similar compositions for samples within Group 4 were found at Laguna de On, Belize, and there are only 57 (of 2071) samples within MURR from that site. A number of pottery samples within Group 5 also have compositions that match MURR samples found in the Belize area, at Santa Rita Corozal. Group 2 and 3 are too varied and no pattern is observed.

	Total #	Mayapán	Laguna de On	Santa Rita Corozal	Mama	Kiuic	Caye Coco	Ticul	others
Group 1	82	80				2			
Group 2	34	7	2		3	3		5	13
Group 3	8		2				1	4	1
Group 4	11		11						
Group 5	16			10				3	3

Table 7-5. Sites of Closest Compositional Euclidian Match

Pierce (personal communication 11/2015) clarified the value of these findings for this research, remarking that there is the potential for error. The calculation of the Euclidian distance uses the place of collection, the find spot, of the samples. It may be different from the place where raw materials were sourced. The results of this calculation can be found in the Table 8-33 for each sample.

Figure 7-7 shows the sites in this research program and sites of closest Euclidian

match. The region of Santa Rita Corozal and Laguna the On in Belize is encircled.

Figure 7-7. Map showing north-central sites and Euclidean matches, with Belize area within circle (after Figure 10, Pierce and Glascock 2015)

7.3 The Chemical Groups

The objectives of this section are to discuss and characterize the chemical groups in terms of the elements that distinguish them and, then, draw inferences about the possible zones of raw materials procurement. Figure 7-8 presents for each site the chemical groups found and the percentage that each chemical group represents of the total number of chemically assigned (some samples do not fit in any group and remained unassigned) samples for that site.

Figure 7-8. Percentage that each chemical group represents of the total chemically analyzed samples from each site

Table 7-6 contains the means and standard deviations calculated from the elemental concentrations in each chemical group. Figure 7-8 and Table 7-6 are referenced several times in the presentation of the chemical groups.

	· ·										
Chemical											
Group	As	La	Lu	Nd	Sm	U	Yb	Ce	Со	Cr	Cs
Group 1, mean	5.99	8.13	0.14	7.61	1.60	1.98	0.79	19.30	2.00	56.07	1.41
std dev.	3.18	2.68	0.03	2.70	0.42	0.73	0.21	5.66	0.64	22.98	0.56
Group 2, mean	5.41	15.61	0.21	13.87	2.97	1.23	1.59	36.23	2.35	42.15	2.23
std dev.	2.79	5.95	0.09	5.08	1.04	0.41	0.68	9.90	1.08	31.93	1.10
Group 3, mean	14.27	20.76	0.33	19.14	4.32	1.12	2.40	59.69	2.85	28.30	2.77
std dev.	3.41	8.64	0.08	8.24	1.65	0.40	0.69	15.15	0.31	3.28	0.71
Group 4, mean	7.11	29.54	0.28	26.47	5.39	1.69	2.14	70.35	2.94	77.32	0.59
std dev.	1.71	13.17	0.05	11.66	2.50	0.58	0.42	32.21	0.63	26.70	0.20
Group 5, mean	13.40	27.89	0.37	25.25	5.31	1.61	2.80	63.11	6.57	94.29	3.53

Table 7-6(a). Means and Standard Deviation of Elemental Concentrations

std dev	. 5.21	7.03	0.08	6.72	1.38	0.78	0.71	13.55	1.98	34.80	0.83

Chemical											
Group	Eu	Fe	Hf	Ni	Rb	Sb	Sc	Sr	Та	Tb	Th
Group1, mean	0.29	10319.61	1.72	10.58	14.32	0.39	3.53	358.73	0.44	0.21	5.61
std dev.	0.09	3243.30	0.33	23.29	5.58	0.12	0.92	137.68	0.09	0.06	1.10
Group 2, mean	0.48	13028.78	3.40	7.66	26.51	0.86	5.27	324.75	0.72	0.42	9.04
std dev.	0.18	4021.53	0.76	14.40	11.99	0.30	1.54	214.45	0.18	0.18	2.27
Group 3, mean	0.59	18487.74	6.35	6.52	32.27	3.28	8.78	150.45	1.11	0.66	13.51
std dev.	0.23	1838.64	0.74	11.41	8.86	0.45	1.12	149.04	0.07	0.26	1.01
Group 4, mean	1.04	19870.68	5.66	3.00	4.60	0.52	7.21	591.39	0.76	0.70	8.06
std dev.	0.48	3647.79	1.62	6.45	3.66	0.10	0.98	577.77	0.15	0.27	1.35
Group 5, mean	0.99	28460.63	4.96	35.12	34.16	1.61	9.86	419.05	1.08	0.75	13.63
std dev.	0.25	4689.09	1.17	16.93	6.36	1.20	1.87	303.51	0.21	0.20	2.32

Continuation of Table 7-6 (b)

Continuation of Table 7-6 (c)

Chemical Group	Zn	Zr	AI	Ba	Ca	Dy	к	Mn	Na	Ti	v
Group 1, mean	19.66	45.54	33716.02	114.03	269632.78	1.26	2652.96	69.08	578.93	1154.08	27.28
std dev.	6.15	9.05	6956.45	42.42	25357.49	0.36	1406.33	21.88	330.47	322.58	9.45
Group 2, mean	34.85	73.93	50654.91	165.61	262836.37	2.57	6183.54	120.18	751.55	1610.34	34.57
std dev.	10.98	17.05	10248.85	48.25	35775.93	1.17	4659.16	87.67	417.14	515.22	14.01
Group 3, mean	57.48	139.05	80806.71	157.48	199986.70	3.85	7470.65	66.91	1440.68	2402.06	70.76
std dev.	7.90	21.87	6648.62	55.94	21084.28	1.37	2760.17	12.25	1026.94	344.10	14.47
Group 4, mean	38.56	134.56	51402.56	88.91	216083.13	3.92	1466.82	83.23	1668.00	2568.01	44.92
std dev.	8.22	31.44	8171.46	45.76	39740.98	1.29	760.57	33.85	783.97	489.34	6.19
Group 5, mean	45.73	114.42	81376.45	210.75	181713.88	4.60	8606.88	305.17	1746.55	2834.67	75.00
std dev.	16.46	26.21	14146.11	92.22	43958.14	1.13	3847.19	103.16	1197.10	626.25	19.92

7.3.1 Chemical Group 1 (n=82)

This is the largest chemical group, containing 44 percent of the pottery samples. It is fairly homogeneous and clustered in principal components (Pierce and Glascock 2015, p.19). The elemental loadings of principal component #1 distinguish this group from the rest, with the exception of overlaps with Group 2 (Figure 7-2). The variables most driving the variation in principal component #1 in a positive direction are calcium (Ca), strontium (Sr), and uranium (U). Pulling in the negative direction are a series of elements including cerium (Ce), dysprosium (Dy), terbium (Tb), antimony (Sb), europium (Eu), and hafnium (Hf). In Figure 7-1, they appear with a small angle amongst them, indicating high correlation. Discriminant function #2 separates Group 1 from Group 2 (Figure 7-4).

Inspection of the list of elements involved in discriminant function #2 (Table 7-3) and the mean concentrations (Table 7-6), taking into consideration the spread of the data (Table 7-6), can point to the most significant elements in separating the groups. Some of these elements are plotted in Figures 7-9 to 7-11. Figure 7-9 shows that Group 1 is low in Samarium (Sm) and europium (Eu) when compared to the rest of the groups, with some Group 2 overlap.

Figure 7-9. Europium (Eu) against samarium (Sm)

Figure 7-10. Aluminum (Al) against iron (Fe)

As shown in Figure 7-10, Group 1 is low in Aluminum compared to the rest of the groups, and low in iron when compared to most Group 2 samples and Groups 3, 4, and 5. Similarly, Group 1 is low in zirconium and relatively low in zinc (Figure 7-11) when compared to the other groups.

Figure 7-11. Zirconium (Zr) against Zinc (Zn)

Likely, hafnium (Hf) is the element that best distinguishes Group 1 from the rest. Figure 7-3(c) and Figure 7-12 show very little overlap of Group 1 with the rest of the groups when plotted on this element. It can be observed that Group 1 has the lowest, or relatively low, concentrations in elements important in driving the distinctions in principal component # 2 including europium (Eu), samarium (Sm), cerium (Ce), iron (Fe), aluminum (Al), hafnium (Hf), lanthanum (La), zirconium (Zr), and zinc (Zn).

Figure 7-12. Hafnium (Hf) against Cerium (Ce)

Associations between Group 1 and Ceramic Varieties and Sites

In this section, associations between samples within Group 1 and ceramic varieties and sites are examined. Table 7-7 summarizes the samples presenting compositions within Group 1, within site and ceramic variety. It is important to recall from Chapter 5 that percentages or proportions of the pottery samples represent the collection of pottery samples taken and do not represent percentages of the sites.

Table 7-7 shows that:

- Samples from Culubá or Chac Mool do not have compositions within Group 1.
- Sherds with compositions within Group 1 were found throughout the northcentral sites and Cobá (Figure 7-8), with the exception of Teabo.
- Most of the pottery samples found at Mayapán, Tepich, and Telchaquillo are associated with Group 1.

- The utilitarian varieties Mama (medium-grained red-slipped), Yacman (unslipped, striated), or Navula (unslipped, plain) are equally represented within Group 1.
- Payil, the red-slipped variety common at eastern sites characterized by its compact and fine paste, was not found in this group, even when found at Mayapán.
- Navula samples within Group 1 were found mostly at Mayapán and Telchaquillo, while none was found south of Mayapán. Mama and Yacman samples within Group 1 were found at most north-central sites.

Geographical Location	Site Name (n=total chemically analyzed)	Red-slipped (Mama)	Unslipped, striated (Yacman)	Xcan chakan	Plain, unslipped (Navula)	Fine, red-slipped (Payil)
North-central area						
	Tepich (n=14)	6	5		1	
	Tecoh (n=17)	4	4		1	
	Telchaquillo (n=19)	4	3	1	4	
	Mayapán (n=39)	12	3		11	
	Tekit (n=15)	3				
	Mama (n=15)	5	2			
	Tipikal (n=16)	4	4			
	Teabo (n=10)					
Eastern area						
	Coba (n=13)	3 (*)			2	
	Culubá (n=15)					
	Chac Mool (n=12)					

Table 7-7. No. of Samples within Group 1 within Sites and Ceramic Varieties

(*) Cancún variety

Sources of Group 1 Vessels

As a result of the lack of direct evidence for production, indirect measures of provenance such as the Criterion of Abundance (Bishop et al. 1982, p.301) were considered. This criterion postulates that a strongly represented ceramic unit at a given site is presumed to be of local manufacture. Based on these criteria, production of Group 1 pottery is related to three sites: Tepich, Telchaquillo and/or Mayapán. For instance, 66% of the samples from Mayapán are found within Group 1. The percentage is higher if only chemically assigned samples are considered (79%) and even more if Payil samples are taken out of consideration (92%) because they are, as discussed in the next sections, foreign. The abundance of Group 1 at Tepich, Telchaquillo and Mayapán is indicating that the

geographical scope of raw material sources within chemical Group 1 may be wide and most probably encompassing at least these three sites.

In the case of Mayapán, in addition to the criterion of abundance, two more arguments support the notion of local production in its vicinity. One is that when the Euclidian distance is calculated between samples in this research program and the rest of MURR database, the most common match for the samples within Group 1 is Mayapán in 80 out of 82 cases, or 97.6% (Pierce and Glascock 2015, p.19). The second argument is the match in the composition of a marl (#11) from Mayapán and pottery within Group 1, and Group 1 closest Euclidian match is Mayapán.

In sum, Group 1 is characterized by having low concentrations in europium (Eu), samarium (Sm), cerium (Ce), iron (Fe), aluminum (Al), hafnium (Hf), lanthanum (La), zirconium (Zr), and zinc (Zn). Within these elements, hafnium (Hf) is the element that best distinguishes Group 1 from the other groups. On the other hand, Group 1 and Group 2 samples are highly calcareous in relation to Groups 3, 4, and 5, with the technological implications that this entails (discussed in Section 9.6).

It is possible that an area with raw materials within chemical Group 1 is located within the crater's basin, and that the differences in chemical composition between Group 1 and 2 are related to the age of the rocks. As mentioned in Section 4.1, the sedimentation patterns in northern Yucatán are closely linked to the impact the meteorite (Figure 4-1). During the Late Tertiary, while the sedimentation took place within the crater's basin, the area outside (Early Tertiary) the ring may have been exposed and undergoing weathering and karstification made evident by the cenotes. The depleted mineral composition of Group 1, when compared to other groups, may be related to the younger age of the sediments. In addition, a marl (#11, Table 5-4) from within the crater's basin matched the composition of pottery samples within Group1, and the sites in which Group 1 dominate (criterion of abundance) are located within the basin.

7.3.2 Chemical Group 2 (n=34)

This group is considered the least homogeneous of all the groups (Pierce and Glascock 2015, p.19). Neither principal components nor discriminant analysis completely pulls this group apart from all others. There is always an overlap. Nevertheless, Group 2 can be distinguished by using the results from these methods to pull Group 2 away from other groups in a group-by-group basis and by comparing the concentrations of pairs of

elements (bivariate plots). The comparisons that distinguish Group 2 from other groups are presented next.

Discriminant function #2 distinguish Group 2 from Group 1 when plotting on the axes of discriminant functions #1 and #2 (Figure 7-4), as discussed in section 7.3.1. When plotting the variables driving the group separation, Group 2 appears similar to Group 1 but with higher concentrations, as can be observed in Figures 7-9 to 7-12. In these bivariate plots, Group 2 overlaps other groups. It is not the highest or lowest on any of the elements. What better distinguishes Group 2 from Group 1 is the range of concentrations for hafnium (Hf) with low overlap (Figure 7-12).

Bivariate plots show that Group 2 can be distinguished from Group 3 based on antimony (Figure 7-3 (a)), aluminum (Al) (Figure 7-10). Principal component #2 distinguishes Group 4 from Group 2, with some overlap (Figure 7-2). In this component, cesium (Cs), potassium (K), and rubidium (Rb) pull in the positive direction and account for most of the variation in this principal component (Table 7-2). Figure 7-13 shows the concentration of rubidium separating Group 4 from the rest and Group 2.

The overlap between Group 2 and 5 is resolved by the discriminant functions # 3 in Figure 7-5. Among the elements driving the separation of groups are europium and iron. Group 2 is clearly separated from Group 5 based on its relatively low iron concentrations, as shown in Figure 7-14. Other bivariate plots presented earlier show that Group 2 is relatively low in many elements in relation to Group 5: europium (Eu) and samarium (Sm)(Figure 7-9), aluminum (Figure 7-10), zirconium (Zr) (Figure 7-11), and cerium (Ce) and hafnium (Hf) (Figure 7-12).

Figure 7-13. Strontium (Sr) against rubidium (Rb)

Figure 7-14. Calcium (Ca) against Iron (Fe)

Only utilitarian vessels were found with a composition within Group 2. Table 7-8 shows the number of samples within each location with compositions within Group 2. Group 2 represents a small portion of the analyzed samples from Mayapán (only two samples out of 39, #119 and #146 in Table 8-33), Telchaquillo (1 of 19, #172), Mama (1 of 15, #347), Tepich (0 of 14). Tepich, Telchaquillo, and Mayapán are also the sites at which Group 1 is found almost exclusively. The majority of Group 2 samples are from Tekit, Teabo, Tipikal, and Tecoh. It is also found at the eastern sites of Cobá and Culubá.

Geographical Location	Site Name (n=total chemically analyzed)	Total Group 2		
North-central area				
	Tepich (n=14)	0		
	Tecoh (n=17)	5		
	Telchaquillo (n=19)	1		
	Mayapán (n=39)	2		
	Tekit (n=15)	6		
	Mama (n=15)	1		
	Tipikal (n=16)	5		
	Teabo (n=10)	5		
Eastern area				
	Coba (n=13)	4		
	Culubá (n=15)	5		
	Chac Mool (n=12)			
Total		34		

Table 7-8. Samples within Group 2 within Sites and Ceramic Varieties

Sources of Group 2 Vessels

None of the raw material selected matched the composition of this group. Euclidean distance calculations between samples in this group and samples in the MURR database for the region provided matches that are too varied and are not useful to determine provenance.

In sum, there is no one single element that distinguishes Group 2 from the rest. It is similar in many ways to Group 1, with relatively high calcium and presenting low concentrations for many elements but with higher concentrations than Group 1. What better distinguishes Group 2 from Group 1 is the range of concentrations for hafnium (Hf). Similar to Group 1, calcium is relatively high. In the north-central area, the samples from Tepich, Telchaquillo, and Mayapán rarely were found to have a composition within

Group 2, while most Group 2 samples are from Tecoh and south of Mayapán. These sites coincide with the Early Tertiary area in Figure 4-5. The differences in composition between Group 2 and Group 1 may, then, be related to differences in the age of sedimentation.

7.3.3 Chemical Group 3 (n=8)

This group is clearly distinguished from Groups 1,2, and 4 based on cesium and from all the groups based on chromium (Figure 7-3(b)), although it overlaps with Groups 2 and 5 when visualized in principal component #1 and #2 (Figure 7-2). It is also well differentiated in discriminant analysis (Figure 7-5), in particular in discriminant function #2 that separates the overlap between Group 3 and Groups 2 and 5. Inspection of the main variables driving the separation of groups in this function shows that Group 3 is characterized by its richness in many of the element. It shows relatively high concentrations in several elements including antimony (Sb) (Figure 7-3 (a), 7-3(b)), aluminum (Al) (Figure 7-10), and zinc (Zn) (Figure 7-11), zirconium (Zr) (Figure 7-11), hafnium (Hf) (Figure 7-12), iron (Fe) (Figure 7-14). At the same time, it is relatively low in calcium (Ca) (Figure 7-14).

Group 3 Association to Ceramic Varieties

The samples do not show a pattern with regard to ceramic varieties, with slipped, unslipped, coarse and fine-grained samples found in this group. This group is associated with the site of Culubá.

Sources of Group 3 Vessels

No raw materials samples matched the composition of this group. Euclidean distance calculations between samples in this group and samples from the region previously analyzed in MURR database provided matches that are too varied and not useful to determine provenance. There are eight sherds in this group, of which seven were found at Culubá (Figure 7-7, 7-8). The criteria of abundance point to Culubá as the source area for the raw materials. However, this study does not include other sites from the Culubá area, and the degree of chemical homogeneity of the area is unknown. It could be that raw materials from many sites within the area fall within Group 3.

Group 4 differs from the rest of the groups. Particularly, discriminant function #1 totally differentiates this group from all the others. This group is also clearly distinguished in principal components #2 (Figure 7-2). The variables most driving principal component # 2 in a positive direction are cesium (Cs), potassium (K), and rubidium (Rb). Group 4

has a relatively low concentration of cesium (Cs) (Figure 7-3 (d)) and rubidium (Rb).

Group 4 Association with Ceramic Varieties and Sites

This group contains all the samples of the eastern, fine-grained, red-slipped Payil (including Palmul the incised Payil), with one exception from Culubá (#349 in Table 8-33). Conversely, Group 4 only contains samples classified as Payil (or Palmul) with one exception from Tekit (#455 in Table 8-33). Of the 11 samples in this group (Figure 7-8), five samples were found at Chac Mool, five at Mayapán, and one at Tekit (which is not red-slipped but unslipped).

Sources of Group 4 Pottery Vessels

7.3.4 Chemical Group 4 (n=11)

Raw materials from the Belize region matched the composition of Group 4. Previous research (Cecil 2012) has shown that Payil, or at least some of Payil, was manufactured using clays from Caye Coco (located in the vicinity of Laguna de On, Figure 7-7). This is demonstrated by sixteen clays collected by Cecil (2012) from around Caye Coco that matched the chemical compositions of a group of red-slipped Payil samples found at Caye Coco and Laguna de On (Cecil 2012, p.23).

The chemical data for Group 4 were compared (Pierce and Glascock 2015, p.21) to a larger dataset (n=1335) kindly provided by Dr. Leslie Cecil (Pierce and Glascock 2015, p.21). Within the larger dataset, there are 34 Payil samples collected from Laguna de On, Belize (Figure 7-7). A comparison based on discriminant analysis fitted 18 of the 34 Cecil's Payil samples within Group 4 (Figure 7-15).

Figure 7-15. Comparison with Cecil's Laguna de On data (Figure 11, Pierce and Glascock 2015)

Mahalanobis distance calculation, using both the entire MURR and Cecil's data, was used to test Group 4 against all samples. It found that there are 42 samples in the combined dataset that strongly fit within Group 4. Of these 42 samples, 28 came from Laguna de On (Pierce and Glascock 2015, p.21). The significance of this is higher because Laguna de On comprises only 4.3 % of the MURR dataset for the region (Pierce and Glascock 2015, p.21) which shows a strong association between Group 4 and Laguna de On.

From these combined lines of evidence, it can be said with a good measure of confidence that Payil samples found at Mayapán (Group 4) are imports from the Laguna de On, Belize region. In the next chapter, petrographic analysis of these samples is used to confirm this result.

7.3.5 Chemical Group 5 (n=16)

Chemical Group 5 overlaps with Groups 2 and 3 when considering principal components #1 and #2. It is clearly differentiated from Group 2 and 3 in discriminant function #3 (Figure 7-5). In addition, higher concentrations of Iron (Fe) distinguishes Group 5 from the rest (Figure 7-10). Other elemental bivariate plots show that Group 5 is relatively

high in caesium (Cs) (Figure 7-3 (a)), aluminum (Figure 7-10), manganese (Mn) (Figure 7-16), and chromium (Cr) (Figure 7-3 (b)). On the other hand, this group is low in calcium (Ca) concentrations when compared to groups 1 and 2 (Figure 7-14).

Figure 7-16. Uranium (U) against Manganese (Mn)

Group 5 Associations with Sites and Ceramic Varieties

		1		~ ·		1
Site Name	Chemical Group	Variety	Most common Euclid match	Sample Code	Vessel Shape	Refired Color
Coba	5	Cancun	Tepakan	388	jar	light reddish brown
Tekit	5	Mama	Santa Rita Corozal	jar	jar	reddish brown
Chac Mool	5	Navula	Santa Rita Corozal	374	jar	red
Tecoh	5	Navula	Santa Rita Corozal	391	jar	light reddish brown
Tecoh	5	Navula	Santa Rita Corozal	393	jar	light reddish brown
Telchaquillo	5	Navula	Santa Rita Corozal	165	jar	light reddish brown
Chac Mool	5	Xcanchakan	Ticul	370	jar	light reddish brown
Chac Mool	5	Xcanchakan	Ticul	371	jar	light reddish brown
Tepich	5	Xcanchakan	Santa Rita Corozal	389	jar	white
Chac Mool	5	Yacman	Ticul	366	jar	light reddish brown
Teabo	5	Yacman	various	433	jar	light reddish brown
Teabo	5	Yacman	Santa Rita Corozal	435	jar	light reddish brown
Tekit	5	Yacman	various	442	jar	reddish brown
Tekit	5	Yacman	Santa Rita Corozal	441	jar	reddish brown
Telchaquillo	5	Yacman	Santa Rita Corozal	154	jar	red
Tipikal	5	Yacman	Santa Rita Corozal	275	jar	red

Table 7-9. Samples within Group 5

In regard to the ceramic varieties associated with Group 5, only two of the sixteen samples within Group 5 are red-slipped, as can be observed from Table 7-9. Fourteen of sixteen samples within this fabric are coarse Yacman, Navula, and Xcanchakan.

Source of Group 5 Pottery Vessels

Group 5 samples were found at most north-central sites, with the notable exceptions of Mayapán and Mama. Regarding the eastern sites, they were found at Cobá and Chac Mool. Euclidian distance points to Santa Rita Corozal, Belize (Table 7-9) as the most common match in MURR for ten of the samples.

7.4 Conclusions

As was mentioned at the start of this chapter, the aim of the chemical analysis is to characterize the pottery samples into compositional groups that potentially reflect differences in materials sources, or techniques applied, or both. Raw materials were available from around the north-central sites. When raw materials are available and provide distinctive chemical fingerprints, provenance can potentially be determined. In this chapter, a variety of multivariate statistical analyses was used to characterize the samples. Possible zones of raw materials procurement were also proposed.

Thanks to the variety of methods used, the chemical analysis was successful in characterizing the samples, into five chemical groups that may represent different sources or different ways of making the pottery (techniques). Groups 3, 4, and 5 can be clearly distinguished from each other and the rest using principal components and discriminant function analyses. Group 1 and Group 2 are very similar in that they are depleted of many minerals. They can be differentiated from each other by the degree of depletion of some minerals that is higher in Group 1. Contextual divisions were also identified that strengthen the validity of the groups.

Regarding provenance determination, Group 1, Group 2, and Group 5 comprise the bulk of samples from these north-central sites. Samples within each one of these groups were found at several sites with no division of chemical composition by site. Arguments were presented for the production of Groups 1 pottery samples found at Mayapán at or near that site. However, zones of raw materials procurement for Group 1 samples could not be determined with certainty owing to the spread of the chemical Group 1 throughout the sites. Fourteen out of 16 samples in Group 5 are coarse Navula, Yacman, or Xcanchakan, with 10 out of 16 samples in Group 5 pointing to Santa Rita Corozal as the closest Euclidian distance. All Group 3 samples (with one exception) were found at Culubá. All Group 4 (with one exception) are Payil samples (fine-grained thought to be elite items) with compositions and Euclidian distances matching samples and raw materials from Laguna de On.

The chemical groups have been useful in characterizing the samples. However, Groups 1, 2 and 5 comprise most of the samples and cross cut several sites. Therefore, the groups do not provide the level of detail needed to address the hypotheses and research questions (Section 1.3). It is expected that, with petrographic analysis, even in a homogeneous mineralogical environment, variations in raw material preparation, such as grain size, will be detected, allowing the characterization of the fabrics based on the techniques or processing applied.

This chapter presents the results of petrographic thin-section analysis. The results of the hand-specimen analysis pointed to coarse divisions in the pottery samples mainly based on the inclusions in the fabrics and ceramic types. The inclusions, however, could not be identified with certainty using this type of analysis. The chemical analysis provided significant information about the main chemical divisions in the north-central and the three eastern sites. The chemical groups from the north-central sites, however, are distributed across several sites and are not distinctive of these locations. Hand-specimen and chemical analyses have not provided the level of detail in the variability of the data needed to test the hypotheses proposed in this study (see Section 5.5 with hypotheses).

Petrographic analysis using the polarizing microscope adds a new dimension to the investigation of the variability in the pottery by focusing on the examination of attributes related to the selections of raw materials and the processing and construction of the pottery clay. Even in a mineralogical and chemically uniform environment, potters may have applied techniques that vary from one group to another. When these variations are repetitive and follow a pattern, a technological group is uncovered. Different technological groups reflect variations in the techniques (way of doing things).

In subsequent chapters, these groups are examined in combination with the information gathered during hand-specimen and chemical analyses of raw material and pottery samples to draw inferences about ceramic techniques for the construction of the vessels and aspects of the organization of production and exchange.

Table 8-1 contains the number of samples included in thin-section analysis within sites and ceramic varieties. The list of ceramic varieties included in this study and their main characteristic are found in Table 5-3 and summarized here.

		SLIPP ED				U N S L I P P E D				
	MED	UM and C	OARSE	FINE		С	C O A R S E			
	MAMA /((red, j cajetes)	CANCUN ars and	XCAN CHAKAN (cream, jars)	PAYIL (red, bowls and cajetes)		NAVULA (plain, jars and cajetes)	YACMAN (striated, open- mouthed jars)	VISTA ALEGRE (eastern, jar)	CHEN MUL (censer)	Tot
NORTH- CENTRAL										
Tepich	7		1			6	6			20
Tecoh	7					7	5			19
Telchaquillo	7		3			8	5			23
Mayapán	22 (**)		2	5		17	14		1	61
Tekit	5					4	5			14
Mama	11					4	3			18
Tipikal	7					5	10			22
Teabo	4					2	5			11
EASTERN										
Coba		6				3				9
Culubá	7	3		1			2	1		14
Chac Mool	1		4	5 (*)		4	4			18
Total	78	9	10	11		60	59	1	1	229

Table 8-1. Thin Sections Selected by Site and Type of Vessel

(*) includes Palmul (Payil incised) samples; includes one Tecoh variety sample

The chapter is structured in three major sections. The first section describes the main types of inclusions found. The second section describes the fabric classes identified in the pottery samples, as well as the associations between these fabrics and contextual information such as sites and ceramic varieties. The last main section describes the petrographic analysis of local raw materials collected.

8.1 Types of Inclusions Found

This section deals with the description of the main particles that were observed in the thin sections. When observing a thin section using the polarizing microscope, two main components can be distinguished. One is a very fine mass, which is the clay portion that used to be plastic before firing, and the second component comprises particles (also called in many other ways, such as aplastics, grains, or inclusions) that appear embedded in this fine mass. The inclusions present in a thin section could be of many types

including minerals (which are usually found), clumps of organic materials, shells, or grass.

Calcite and dolomite were the main minerals found. These are both carbonates with similar crystalline structures and optical characteristics in hand specimen and under the polarizing microscope. This similarity usually makes their distinction difficult or unreliable in both analytical methods. Under the microscope, differentiation was achieved by tinting one-half of the each thin section with the dye alizarin red. This dyes calcite a pink to red color but not dolomite (Adams and MacKenzie 2001, p.7; Nesse 1986, p.144). In Figure 8-1 (#441, Table 8-33), tinting with alizarin distinguishes dolomite (colorless) from calcite (two reddish fragments at left and right of central crystal). Calcite and dolomite were present in multiple textural varieties that will be explained below.

Figure 8-1. Dolomite (colorless or grayish) and calcite (tinted reddish) (#441, pp, width of field 1.1mm)

Quartz is also present in the thin sections. Quartz in significant amounts was not common, mostly found at Mayapán and Chac Mool. However, traces of quartz were observed in many thin sections of vessels from the north-central sites.

The detailed description of the main particles found is presented next. Scales or measurements, in particular of crystal and particle size, are used in these descriptions. Their definitions can be found in Section 8.2.1. Most attributes are described as seen

under the polarizing microscopes. Minerals and other particles, when analyzed with the lights of the polarizing microscope, exhibit a set of optical characteristics. They are used to identify most particles and characterize the thin section. Although the description and operation of the polarizing microscope, as well as the analysis performed with it, are well established in the literature (Philpotts 2003; Nesse 1986), a brief explanation of the main concepts and the most used terms in this research are summarized next for ease of reference.

The Polarizing Microscope

Crystalline materials, based on their crystal structure, could be isotropic or anisotropic. In an *optically isotropic* material, the light travels with the same velocity in all directions, while in an anisotropic substance the velocity of light is different in different directions (Nesse 1986, p.10). These differences occur because the electron clouds of the substance do not have the same vibrations on all directions. When light interacts with these clouds, the velocity of light varies. In contrast to a binocular microscope, the polarizing microscope has polarizing prisms or filters (Nesse 1986, p.10). One is located under and one above the stage, constraining the light to vibrate in one direction. The upper polarizing filter can be moved in and out. In the polarizing microscope, the light that exits the lower polar and enters the crystal material is polarized in one direction (plane polarized or pp). If plane polarized light enters an anisotropic crystal, it resolves into two light components. If the upper polarizing filter is inserted (*crossed polarized or xp*), the filter combines the two components generating *interference color* (Philpotts 2003, p.9). These colors are related to attributes that characterize the crystals such as *birefringence*, or the difference between the maximum and minimum refractive index (Philpotts 2003, p.7), also expressed as the range of interference colors observed. The interference colors are dependent on the thickness of the thin section, but this is usually constant and set to 0.030 mm for all the thin sections. If under crossed polars the thin section is rotated, there are positions in which the light is parallel to the polar and no light is transmitted, and the crystals are said to be in extinction (Philpotts 2003). If under plane polarized light the stage is rotated and an anisotropic mineral changes color, it said that the mineral is pleochroic.

For the purpose of describing the types found, particles were broadly divided based on their mineralogy into calcite, dolomite, and non-calcareous particles. Table 8-2

contains the list of the observed types of inclusions within these three categories. They are described in the next sections.

Main Mineral or Inclusion Type	Inclusion Type	Inclusion Code
Calcite	Micritic	СМ
	Dark Micrite	CG
	Sparry or sparite	CS
	Skeletal Remain	СН
	Single Crystal	CX
Dolomite		
	Dolospar (sparry)	DS
	Single Crystal	DX
Non-calcareous	Quartz single crystal	QX
	Argillaceous fragments	MX
	Grog	GROG

Table 8-2. Main Inclusions in Thin Sections

8.1.1 Calcite Particles

The different textural varieties of calcite found in the samples are described in this section as they appear under the polarizing microscope. These textural varieties were introduced and described in Chapter 6.

Micrite

Under plane polarized light, micrite particles (more in Section 6.2.1) are sub-translucent (light going through) with a very pale gray to light brown color. Given micrite crystal size of less than 0.005 mm (Adams and MacKenzie 2001, p.6) that is smaller than the thickness of a thin section (0.030 mm), many crystals are packed vertically through the thin section and the individual crystals cannot be resolved under the polarizing microscope.

Dark Micrite

Under the polarizing microscope, gray micrite (more in Section 6.2.3) appeared opaque or semi-opaque with very limited light passing through, differing from sub-translucent micrite. Similar to micrite, the individual crystals cannot be resolved. The reasons for the dark color and high levels of opaqueness are varied. One reason could be higher levels of micritization, with very small crystal sizes. Another possible reason is the presence of organic or mineral matter affecting the color and translucency of micrite. Figure 8-2

shows a semi-opaque (xp) particle composed of dark gray micrite. The particle to the top right is translucent micrite having, in this case, a speckled appearance.

Figure 8-2. Center: dark micrite or semi-opaque; top, right: translucent micrite (#339, xp; width of field 1.1 mm).

Sparite

As can be recalled (Section 6.2.2) the term sparite, spar, or sparry calcite is used for crystals usually over 0.01 mm (10 microns) (Adams and MacKenzie 2001, p.6; Folk 1980, p.156; Greensmith 1989, p.106).

Under the polarizing microscope, sparry calcite was usually observed forming bundles of subhedral (subhedral means with a few crystal faces [Philpotts 2003, p.115]) to anhedral (without crystal faces [Philpotts 2003, p.115]) crystals in which the size of each crystal usually ranged between 0.02 mm and 0.04 mm (Figure 8-3a), which is considered finely crystalline sparite (Folk 1980, p.165). Medium crystalline (Folk 1980, p.165) or reaching 0.06 to 0.1 mm and more (Figure 8-3b) was also observed, to a lesser degree.

Figure 8-3. Two sparry particles. One (a) has finely (# 165, pp), and the other (b), medium-crystalline (#277, xp) calcite crystals (width of field 1.1 mm).

Single crystals

The term single crystal is used to refer to discrete individual crystals and differentiate them from grains composed of an aggregation of crystals, such as the cases mentioned under sparry calcite, or sparite. Figure 8-4 shows single calcite crystals embedded within the matrix.

Figure 8-4. Single calcite crystals, some showing characteristic pastel interference colors (#204, xp, width of field 2.82 mm)

Skeletal remains

Skeletal remains were easily identified in thin section when part of the original organism could still be discerned, even if it was only a cast or a mold of the original organism. Skeletal remains in various stages of micritization and sparite infilling were observed in the samples, showing relicts of the original skeletal structure. Figure 8-5 shows small fragments of fossil shells in which the original carbonate (probable aragonite) skeleton was micritized while preserving some of the original animal structures.

Figure 8-5. Fossil shell fragments showing micritization (#450; xp; width of field 2.82 mm)

A specific type of micritization that may occur in shells was observed in some of the samples. Some fragments presented a texture that has been called homogeneous calcite (Adams and MacKenzie 2001:37). In homogeneous calcite, the shell structures were micritized in such a way that the minute crystals have similar orientation (Adams and MacKenzie 2001:37). The whole particle, then, presents interference colors and zoned (moving slowly and not all at once) or shadow extinction, in contrast to regular micrite. It looks almost clear in plane polarized light. Fragments of "homogeneous" calcite shells can be confused with single calcite crystals.

8.1.2 Dolomite

Calcite and dolomite are many times found together in limestone, dolomitic limestone, and the rock dolomite (Nesse 1986:144), in this case referring to the rock as opposed to the mineral. Dolomite (CaMg(CO₃)₂) may form from calcite that undergoes replacement of some of its calcium by magnesium (Adams and MacKenzie 2001, p.132). It also may occur from direct precipitation (Folk1 980, p.98) and as cement or vein filling (Folk 1980, p.98). The magnesium in dolomite may be replaced by manganese or iron, and if iron-rich it is known as ankerite (Adams and MacKenzie 2001, p.132), forming a continuum from dolomite CaMg(CO₃)₂ to ferro dolomite CaFe(CO₃)₂ (Folk 1980, p.97). According to Nesse (1986, p.145), ankerite is less common than dolomite. They both have similar optical characteristics under the polarizing microscope and, usually, rhombohedral form. Ankerite is often brownish due to iron staining (Folk 1980, p.98).

The carbonate identified in this study, using the polarizing microscope, as dolomite, could be ankerite. One sample from Mayapán (#276, Table 8-33) was analyzed using X-ray diffraction (XRD). In this sample, petrography had identified dolomite as the main inclusion, while X-ray XRD identified ankerite instead (Shannon 2016, included in Appendix C for easy of reference). In this study, minerals having the characteristics of dolomite (or ankerite) are referred to as dolomite, given that they could not be distinguished with the polarizing microscope.

Dolomite crystals usually occur as euhedral rhombohedra, contrasting with calcite crystals, and usually do not show the characteristic calcite pastel colors under polarized light. Dolomite is usually colorless, cloudy, and may have red or brown iron alteration (Nesse 1986:144) starting at the center of the crystal (Figure 8-7).

In the samples, dolomite was found as clusters of sparry dolomite and as single crystals. It was not found forming microcrystalline grains. In this study, dolospar refers to bundles of sparry dolomite to indicate the presence of dolomite and differentiate it from calcite spar or sparite.

Figure 8-6. Dolospar particle showing rhombohedral dolomite crystals and grain alteration by micrite (#98, xp, width of field 1.1 mm)

Figure 8-6 shows one particle of dolospar composed of the clustering of dolomite crystals. Many of the dolospar clusters observed have a micritic alteration, to various degrees (Figure 8-6), and in hand specimen, it could have been taken for micrite.

Figure 8-7. Dolomite as single crystals (#339, xp, width of field 1.1 mm)

Figure 8-8. Dolomite as single shapeless crystals (#441, xp, width of field 2.8 mm)

Figure 8-7 shows single crystals of dolomite presenting red iron alteration. Although dolomite crystals were most commonly euhedral (with crystal faces) with their characteristic rhombohedral shape, subhedral crystals that have lost their shape were also found, as can be observed in Figure 8-8.

8.1.3 Non-calcareous Particles

The main non-calcareous particles observed were quartz, grog, and dark subangular-toangular argillaceous particles with embedded crystals. In addition to these main or diagnostic inclusions, discrete defined areas that can be distinguished from adjacent areas by an increase or decrease in concentration were also observed (Kemp 1985:32). These units are known as textural concentration features (tcf). In pottery, they may be the result of a variety of processes including, clay mixing, fecal pellets, or concretions (Whitbread 1995:386). Amorphous concentration features (acf) are concentration features that appear opaque under crossed polarized light (Whitbread 1995:386). One example of an amorphous feature is organic matter that may be present. The description of the main non-calcareous inclusions is found next.

Quartz

Traces of quartz as very fine-to-fine single crystals (0.0625-0.25 mm) were observed in many of the thin sections. As was mentioned earlier, quartz in significant amounts was

not common, primarily found only at Mayapán and Chac Mool. Figure 8-9 shows subrounded to subangular quartz grains.

Figure 8-9. Quartz (white) and calcite (tinted pink with alizarin red) (#134, xp, width of field 1.1 mm)

Grog

Grog (sherd inclusions) was found in four samples (Figure 8-10). There are two types of grog. One consists of unslipped sherds with embedded fine-grained single crystals of calcite (#275, #433, #435, #445), of which one instance can be seen in Figure 8-10(a). The second type consists of fine-grained red-slipped sherds (#445) without visible inclusions, as seen in Figure 8-10(b).

Figure 8-10. (a) unslipped sherd with silt size calcite (#275, xp, width of field 1.1 mm); (b) center: red-slipped sherd with fine-grained fabric (#445, xp, width of view 2.82 mm); lower right: argillaceous particle with embedded calcite.

Argillaceous Particles with Embedded Crystals

Angular to subangular argillaceous particles (Figure 8-10, bottom right) were found in a few sherds. In hand specimens and under the microscope they are mostly dark brown color. The polarizing microscope allowed observing very fine-to-fine calcite crystals, with very fine mode, embedded in the particles. These particles are similar to others identified as grog (see previous paragraphs), and they co-occur; grog has been found only in samples having argillaceous inclusions. Therefore, it is possible that argillaceous particles are the result of crushing sherds such as that shown in Figure 8-10 (a).

8.2 Petrographic Fabric Classes

Thin-section analysis was used to refine hand-specimen fabrics by uncovering finegrained distinctions and reliably identify minerals. For instance, although particles composed of sparry crystals were observed in hand specimens, their mineralogy could not be identified. Thin-section analysis identified them as clusters of either dolomite or calcite crystals. In addition, thin-section analysis provided much-needed information about the structure of voids and the very fine portions of the clay matrix. Therefore, a hand-specimen fabric group yielded several thin-section fabrics based on the identification of the types of inclusion present and other characteristics, such as micromass structure.

The immediate goal of the petrographic analysis is to characterize the samples into fabric classes. The individual members of a fabric share a range of properties (Whitbread 1995:372). The starting point was the hand-specimen group (spar, micrite, dark grains, single crystals, skeletal remains) to which the thin section belongs. Second, using the polarizing microscope, the inclusions were identified and the broad fabric classes further divided usually based on the most abundant or diagnostic coarse inclusions. Each of these types of fabrics (for example, micritic) comprises one or several fabric classes. Next, a set of characteristics was examined following the method for the characterization into fabric classes devised by Whitbread (1989; 1995, Appendix 3). Terms that may be unfamiliar and that will be used to describe the thin section are defined next:

Micromass. The micromass (Whitbread 1995:381) is composed of the clay part plus all the material less than 0.010mm (10 microns).

Fabric. In this research, the term fabric refers to the "arrangement, size, shape, frequency, and composition of components of the ceramic material" (Whitbread, 1995:368) for the coarse and finer portions, including the clay (<0.002 mm). In this study, clay matrix refers to the finer portion of the ceramics that before firing used to be plastic. In contrast to this term, a fabric description includes the description of attributes such as the presence of crystallites, or the relative spatial arrangements of voids and particles in a thin section. In the context of a petrographic analysis, the term fabric is the preferred term for what can also be called paste.

Microstructure. The description of the microstructure includes the description of the shape, arrangement, and abundance of voids in the clay matrix, the description of the packing and preferred orientation of inclusions, and the color and optical characteristics of the fired clay (Whitbread 1995). The description of the microstructure and micromass follows the approach proposed by Whitbread (1989; 1995, p.380-381).

8.2.1 Scales and Measurements used for the Description of Inclusions in Thin Section

The scales and measurements used to describe the inclusions observed in thin sections can be found in the literature (Whitbread 1989; 1995), and they are repeated in this section for ease of reference.

(a) Frequency of particles in the coarse portion of the thin section, in this study, is given in relation to the whole thin section. The whole thin section includes voids, and fine and coarse portions of the thin section. The inclusions' frequency was estimated using charts for the visual estimation of percentages of mineral content (Matthew, Woods, and Oliver 1991) and described using the following labels (after Kemp 1985; cited in Whitbread 1995: 379).

Predominant =	= > 70 %
Dominant	= 50 - 70 %
Frequent	= 30 - 50 %
Common	= 15 - 30 %
Few	= 5 - 15 %
Very few	= 2 - 5 %
Rare	= 0.5 - 2 %
Very rare < 0 .	5

(b) Particle Size was measured using the microscope reticle and described using Wentworth (1922, Table I) scale for the classification of particle sizes:

Silt	= 0.04 - 0.0625mm
Very fine sand	= 0.0625 - 0.125 mm
Fine sand	= 0.0625 - 0.25mm
Medium sand	= 0.25 - 0.50mm
Coarse sand	= 0.50 - 1.0mm
Very coarse sat	nd = > 1.0mm

(c) Angularity was estimated using the scales in Orton et al. (2008: Appendix): rounded, subrounded, subangular, and angular.

(d) Inclusion boundaries refer to the sharpness of the boundary particle/matrix. This boundary can be described using a scale in Kemp (1985; as cited in Whitbread 1986):

Sharp = knife-edge Clear = (< 0.06mm)Diffuse = (> 0.06mm), and Merging = parts of boundary are missing. (e) Individual crystal size of carbonate rocks was described using Folk's (1980:

165) scale for carbonate rocks:

cryptocrystalline = < 0.001 mm (1 micron)aphanocrystalline = 0.001 - 0.0039 mmvery finely crystalline = 0.0039 - 0.0156 mmfinely crystalline = 0.0156 - 0.0625 mmmedium crystalline = 0.0625 - 0.25 mmcoarsely crystalline = 0.25 - 1.00 mmvery coarsely crystalline = 1.00 - 4.00 mmextremely coarsely crystalline = over 4 mm

It is needed to clarify that with sections (b) and (e) two different components are measured. One carbonate particle or carbonate rock fragment can be composed of a single crystal or of a cluster of crystals, and two measurements may be needed to describe them: one measures the size of the overall particle, using (b), and the other the size of the crystals that may be present within a particle, using (e).

8.2.2 Scales and Measurements used for the Description of the Microstructure and Micromass in Thin Section

Throughout the rest of this and subsequent chapters, the attributes observed in the micromass, as well as the relations between these attributes (structure), are described using the scales and measurements as defined in this section.

(a) Coarse:fine:voids or c:f:v ratio. c:f:v gives the relative proportions (%) of the whole thin section area occupied by the coarse particles (c), fine particles (f) and voids (v), following (Whitbread 1995, p.383-384). The coarse to fine boundary is usually 0.01mm which coincides with the micromass boundary; however, this boundary can be set to a different limit (Whitbread 1995, p.383), and in this study, it is set at 0.0625 mm. Given that this is the silt to sand particle size (Section 8.2.1) boundary, for the purpose of calculating the c:f:v ratio, the fine portion includes not only the micromass but also silt that may be present.

(b) The shape of voids in the thin section was described using the scales in Whitbread (1995: Appendix 3):

planar voids	= planar in three dimensions usually with changes in direction
channels	= cylindrical in three dimensions
vughs	= large and irregular voids

vesicles = regular in shape with smooth surfaces massive = a microstructure without or with rare voids

(c) Packing of inclusions is based on three variables: grains spacing, fine to coarse distribution, and concentration of crystallites. The spacing is estimated for grains larger than 0.0625 mm. The scale used is from Whitbread (1995):

close-spaced = grains have point of contact single-spaced = distance between grains is equal to their diameter double-spaced = distance between grains is double to their mean diameters open-spaced = distance is more than double

(d) Color of the micromass under plane and cross-polarized light were described using Munsell Soil-color Charts (Munsell 2009).

(e) Optical state gives a measure of the micromass' modification or alteration due to firing (Whitbread 2005:382). It is observed by rotating the thin section under crossed polar light (Whitbread 2005:382). The optical state can be described as (Whitbread 1995:382)

optically active = displays interference colors and extinction optically inactive = no change on optical properties on rotation

(f) An optically active micromass can be further described by the appearance and shape of the birefringent zones, such as speckled, crystallitic, striated, strial (Whitbread 2005:383).

(g) Optical density describes the opacity of the inclusions relative to the matrix, with those less opaque having low density, more opaque high density, and no difference, neutral density (Whitbread 1986:81).

(*h*) *Porosity abundance* was based on the whole thin-section area. It was estimated for each thin section using abundance charts. The scale for the abundance of particles in Section 8.2.1 was used to describe porosity.

8.2.3 The Fabric Classes

This section presents the list of the fabric classes identified. They will be described in detail in the following sections. To each fabric class, a name and a code were assigned.

The fabric class name is descriptive of the main characteristics of the group, in particular the most abundant or diagnostic inclusions (not necessarily the most abundant) present. Table 8-2 lists the types, codes, and names of these inclusions. More than one inclusion could be included in a name. In the codes given to the inclusions, the first character indicates the main mineral or inclusion type: D, dolomite; C, calcite; Q, quartz; and M, argillaceous or mud. The second character gives more information about the particle, usually indicating the crystal structure or texture: S, sparry; M, microcrystalline; X, one single crystal; H, skeletal remains or homogeneous calcite. Another important characteristic included in the name of most fabric classes is the overall grain-size in the thin section: course (c), medium (m), and fine (f) (see Section 6.1). A fabric class code was assigned because it is particularly useful in some charts and tables where space is limited. In any other case, the fabric name is used.

The following sections describe the different types of fabrics and fabric classes identified. The sections are presented in terms of the principal types of fabrics, which are mostly related to the diagnostic or main inclusion(s) found in thin section and that groups together multiple fabric classes, for instance, fabrics in which dolospar dominates. Within each of the main types of inclusions, the individual fabric classes are identified and described. Within each section, after the descriptions of the fabric classes, the associations of these fabrics with sites and ceramic classes are discussed.

The fabric classes presented in this chapter are summarized in Table 8-3. This table includes the main type of inclusion that groups a set of fabrics, the list of fabric classes, a fabric code mainly for concise displaying in charts and tables, and a short description of the fabric.
Table 8-3.	Petrographic	Groups and	Fabric	Classes

Fabric Class Name	Fabric Class Code	Main Inclusion and Diagnostic Characteristics
DOLOSPAR (finely crystalline)		
Dolospar-W-Coarse	DS-W-c	finely crystalline sparry dolomite, coarse particle size, silty dolomite matrix, and very porous micromass.
Dolospar-W-Medium	DS-W-m	finely crystalline sparry dolomite, medium particle size, silty dolomite matrix, and usually few voids.
Dolospar-W-Hard	DS-W-mc-h	variant of Dolospar-W-Medium, differing on the frequency of dark brown organic amorphous material and dark micritic inclusions.
Dolospar-B-Coarse	DS-B-c	variant of Dolospar-W-Coarse, differing on its reddish brown color (xp) and higher frequency of inclusions.
SPARITE (finely crystalline)		
Sparite-W/B-Coarse/Medium	CS-W/B-cm	coarse-to-medium particles made of finely crystalline sparite, usually $0.020 - 0.030$ mm; lack of homogeneity across the group in regard to other petrographic attributes.
MICRITE (micro-crystalline)		
Micrite-W-Medium	CM-W-m	medium (mode) micrite grains, usually rare silt, lack of homogeneity across the group in regard to other petrographic attributes.
DARK MICRITE (micro- crystalline)		
DarkMicrite-Micrite-Medium	CG-CM-W-m	opaque or sub-opaque, medium-grained, dark micrite, with low porosity and silt.
DarkMicrite-Micrite-Coarse	CG-CM-W-c	variant of DarkMicrite-Micrite-Medium, with opaque or sub-opaque dark micrite and low silt, differing on its highly porous micromass and coarsely grained fabric.
CALCITE (larger xtals)		
Calcite-Micrite-Coarse-01	CX-CM-01-c	coarse (mode), sub-angular to angular discrete crystals of calcite, with a moderately compacted micromass and very few voids.
Calcite-Micrite-Coarse-02	СХ-СМ-02-с	variety of Calcite-Micrite-Coarse-01 differing in the much higher porosity and large channels.
Sparite-m-W/B-Coarse	CSm-W/B-c	coarse (mode) particles made of mosaics of sparry calcite (sparite) in which each crystal size is medium-crystalline or larger, usually between 0.06 mm to 0.18 mm, and, second, by a very porous matrix.
Calcite-Quartz-B/R-Fine	CX-QZ-B/R-f	fine calcite and quartz single crystals in a compact matrix with rare pores
Calcite-Grog-B/R-Coarse	MX-GROG- B/R-c	grog and coarse angular to irregularly shaped fragments of very dark brown argillaceous particles with embedded silty-to-very fine calcite crystals that in four samples were identified as unslipped sherd fragments. Usually discrete calcite crystals are present.
DOLOMITE (larger xtals)		
Dolomite-B/W-Medium	DX-B/W-m	fine grained (mode) discrete rhombohedral dolomite.
Dolomite-Calcite-B-Coarse	DX-CX-B-c	coarse (mode), subangular to angular, mostly subhedral to anhedral single crystals of dolomite; calcite crystals may be present.
Dolomite-Calcite-Medium- Hard	DX-CX-R/B- c-h	variant of Dolomite-Calcite-B-Coarse with medium- grained single crystals of dolomite and calcite.
BIOCLASTS		
Bioclast-W-Coarse/Medium	CH-W-cm	medium-to-coarse (mode) micritized fossil shells in a moderately compacted and homogeneous across the group fabric.
Bioclast-B-Coarse	СН-В-с	coarse micritized angular fossil shells of varied sizes in a very porous matrix with long channels and fabric that is inhomogeneous across the group.

(*) Inclusion codes: Table 8-2; Colors: W=white, B=light reddish brown, R=red; Texture: c=coarse, m=medium, f=fine

8.3 Dolospar Fabric Classes

One of the mayor fabric groups that resulted from hand-specimen analysis contains sherds with sparry grains as the main inclusion. The analysis of thin sections taken from some of these samples revealed that sparry crystals are composed of two types of minerals: dolomite (dolospar) and calcite (sparite). Some samples containing very finegrained sparite or dolospar had been misclassified as micrite during hand-specimen analysis and were reclassified as sparite and dolospar. Similarly, many samples classified during hand-specimen analysis as having dark micrite as the main inclusion were found in thin-section analysis to have sparry inclusions as the dominant inclusion type. The high abundance of darker inclusions attached to some samples was most probably a trick played by the dark color on the eye that led to overestimating darker particles during hand-specimen analysis.

This section deals with the group of fabrics in which petrographic analysis showed that sparry grains were composed of dolomite, or dolospar (DS). Dolospar is present in coarse (> 0.5 mm) or medium-grained (0.25 - 0.5 mm) particles. Within these particles, each crystal size usually is finely crystalline (0.015 to 0.060 mm; see scales and measurements in Section 7.2.1). Eighty-three of the 226 thin sections had dolospar as the main inclusion, making up a large part of the total samples, representing 36% of the total.

The dolospar fabrics are very homogeneous with regard to the main types of inclusions (dolospar), the secondary inclusions, and the properties of the micromass. The main division between them resides in the grain size. There are coarse (Dolospar-W-Coarse) and medium grained samples (Dolospar-W-Medium), while fine-grained samples are absent. Some of the medium-grained samples are defined as a variant fabric (Dolospar-W-Hard) because they present a somewhat darker color micromass and more areas with, apparently, organic material than most medium-grained samples. These differences may represent a variety of reasons that include differences in firing temperature, firing conditions, or differences in clays. Similarly, some of the coarse samples markedly differ on the micromass color and frequency of inclusions (Dolospar-B-Coarse). Table 8-4 summarizes the main petrographic characteristics of these fabrics.

Fabric Class	Main Inclusions	Grain Size (mode)	Poro_ sity	Fired Color (xp)
Dolospar-W-Coarse (DS-W-c)	Coarse portion: Dolospar Fine (<0.0625 mm) portion: dolomite s-xtal	coarse	high	10YR 7/2 light gray; 5Y 7/2, 6/2 very light olive gray; 5YR 6/4,6 Light & reddish yellow; strong brown 7.5YR 5/6; light yellowish brown 10YR 6/4;
Dolospar–B-Coarse (DS-B-c)	Coarse: Dolospar Fine (<0.0625 mm) portion: dolomite s-xtals	coarse	high	2.5YR 7/3 Light reddish brown; 5YR 5/4 reddish brown; 7.5 YR 6/8 yellowish red
Dolospar–W- Medium (DS-W-m)	Coarse portion: dolospar; dark lumps/dark micrite micrite Fine (<0.0625 mm) portion: dolomite s-xtals	medium	moderate	5Y 7/2, 6/2 very light olive gray; 10 YR 6/2 light brownish gray; 10 YR7/3 very pale brown; 10YR 5/4 yellowish brown; 10YR 5/3 brown;
Dolospar-W-Hard (DS-W-mc-h)	Coarse: dolospar brown lumps Fine (<0.0625 mm) portion: dolomite s-xtals	medium to coarse	moderate	10 YR 7/3 very pale brown; 5YR 5/4 reddish brown; 10 YR 5/3 brown

Table 8-4. Summary of Main Petrographic Characteristics of Dolospar Fabrics

s-xtals: single crystals

The next four sections contain descriptions of the dolospar fabrics. Following these descriptions, the associations observed between these fabric classes and contextual information for the samples, such as find spot and ceramic varieties, are examined.

8.3.1 Dolospar-W-Coarse (DS-W-c) Fabric Class

In thin section, Dolospar-W-Coarse fabric class (DS-W-c) is characterized by its finely crystalline sparry dolomite, coarse particle size, silty dolomite matrix, and very porous micromass. A characteristic of this fabric is its homogeneity across the samples in regard to the composition and texture of the inclusions and color and optical characteristics of the micromass.

Figure 8-11. Dolospar-W-Coarse, showing dolospar grains and silty matrix (#405, xp, width of field 2.82 mm)

Figure 8-12. Dolospar grain with micritic alteration (#405, pp, width of field 1.1 mm)

Figure 8-11 illustrates a sample within this fabric class showing dolospar grains in a heavily silted matrix, while Figure 8-12 shows a dolospar grain with micrite alteration. Table 8-5 contains the detailed description of Dolospar-W-Coarse fabric class.

Table 8-5. Description of Dolospar-W-Coarse (DS-W-c) in Thin Section

No. of thin sections: 27
General fabric type : Dolomite spar
Main characteristics: (1) dolospar as main inclusion; (2) turns to white color when refired; (3) coarsely grained.
Photomicrographs: Figures 8-11, 8-12
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Chapter 6)
Hand-specimen Fabric: Spar-coarse-White (SP-c-W)
Hardness : soft
Refired-color: white (Table 6-3)
Texture: coarse
Fired color: 10YR 6/1 Gray; 10YR 7/1 light gray; 7.5 YR 8/2 pinkish white;
10YR 7/2, 6/2 Light gray brown & light brownish gray
DS-W-c in Thin section:
I) Microstructure (see Section 8.2.2)
• Voids: High porosity with voids ranging from 5 - 25% of the thin-section area; this is usually a matrix very
fragmented by pores and/or long channels that can be up to 1 mm and yughs up to 0.4 mm. Separation voids
are observed around some inclusions.
 Packing (particles > silt) : mostly single-spaced.
 Preferred orientation: no visible orientation of voids or particles
i refered orientation. To visible orientation of votas of particles
IIa) Groundmass: homogeneity and optical characteristic (see Section 8.2.2)
The micromass is largely ontically inactive
• The colors of the micromass are mostly 10VR 7/2 light gray: 5V 7/2 6/2 very light olive gray. 5VR 6/4 6
light & reddish vallow
Mitthe the individual samples the migromass is fairly homogeneous in color degree of entirel estivity, and
• Within the individual samples, the interomass is fairly homogeneous in color, degree of optical activity, and distribution of insurance of optical activity, and
astroution of inclusions.
• Actoss the samples within this fabric class, the fabric is falgery homogeneous with the main difference
Telated the frequency of micrite and the degree of micritization of dolospar grains.
11b) Groundmass: coarser inclusions (see Section 8.2.1)
• The coarse:fine:voids ratio is 30-50 : 25-65: 5-25 with a coarse:fine boundary of 0.0625 mm
• Coarser Inclusions (>0.0625 mm) (frequency ranges refer to the whole thin section, see Section 8.2.1).
Frequent to Common: DOLOSPAR – various amounts of dolospar; many with micritic alteration; many with
embedded fossilized shells (probably bivalves) similar to the ones floating in the matrix; particle size is from
medium to coarse (> 0.25 mm, Section 8.2.1 (b)), with a mode of coarse; sub-angular to angular. The dolomite
crystals forming the particle are usually euhedral with rhombohedral shape, size: 0.010 - 0.060 mm. Red iron
alteration of crystals may be present.
Few to Very rare : GRAY or BROWN MICRITE – medium brown-gray opaque or semi-opaque in xp;
subrounded to rounded; MICRITE - very coarse to fine; subrounded; whitish, very light brown, or very light
gray in xp; sub-translucent
Rare to Very rare: SKELETAL REMAINS and HOMOGENEOUS CALCITE (CH) – Recognizable skeletal
(shells) fossil remains and fragments, likely to be skeletal (made of homogeneous calcite: Section 8.1.1); grain
size from very coarse to fine; poorly sorted; varied particle shape SPARITE – very finely to finely crystalline
sparry calcite, most with particle size from medium to coarse; DOLOMITE CRYSTALS - eroded, subhedral,
equant single dolomite crystals with particle size from fine to coarse; CALCITE CRYSTALS – single crystals
with size from fine to coarse, with planar boundaries; also mosaics made of medium-crystalline calcite with over
all particle size from fine to coarse particle size, many with light brown or greenish mineralization.
Very rare: QUARTZ – two or three single-crystal grains, usually with particle size from fine $(0.0625 - 0.25)$
mm, or Section 6.2) quartz crystals.
IIc) Groundmass: finer inclusions (see section 8.2.1):
The total fine (<0.0625 mm) portion takes 25 to 65% (see c:f:v), and the finer inclusions or silt (0.04 - 0.0625
mm) are relative to the fine portion only.
Frequent to common: mainly single dolomite crystals, finely crystalline, mostly euhedral, rhombohedral
III) Textural Concentration Features
The following two may be present
• Light brown to light-yellow brown in pp, greenish gray in xp, homogeneous with no internal structure.
inclusion, or orientation; mostly sub-rounded; lower optical density than micromass; most common size is
0.15 mm.
• Brownish-red to dark-brown-red (xp), more than 5 are present in most thin sections; no internal structure.
inclusions or orientation; high optical density; most have clear boundaries; the mode is 0.15 mm with a
range from 0.05 to 0.3 mm; usually rounded to subrounded.

8.3.2 Dolospar-W-Medium (DS-W-m) Fabric Class

In thin section, Dolospar-W-Medium is characterized by its finely crystalline sparry dolomite, medium particle size, and usually few voids. Most characteristics of this fabric including the types of inclusions and the characteristic of the micromass are homogeneous across the samples. While inhomogeneous bands of darker brown color, by one wall, may be present (shown in Figure 8-13 (a)), the color of this fabric within and between thin sections is very homogeneous, mostly of very pale brown (10 YR 7/3) color (Figure 8-13(b)).

Figure 8-13. Fabric Dolospar-W-Medium: (a) mostly darker color, but lighter (b) areas are present (#267, xp, width of field 2.82mm)

This fabric differs from Dolospar-W-Coarse (DS-W-c) not only in its grain size but also in the frequency of inclusions and porosity. While the frequency of coarser inclusions in Dolospar-W-Coarse fabric is consistently high (frequent to common), the frequency in Dolospar-W-Medium fabrics could be few. In addition, Dolospar-W-Coarse is more porous than Dolospar-W-Medium and voids separating the particles from the matrix (separation voids) more common than in Dolospar-W-Medium. Table 8-6 contains the description of this fabric.

Table 8-6. Dolospar-W-Medium Fabric Class (DS-W-m)

Fabric class code DS-W-m general information:
No. of thin sections $= 28$
General fabric type : Dolomite spar
Main characteristics: (1) dolospar as main inclusion; (2) medium-grained; (3) turns to white color when refired
Photomicrographs: Figure 8-13
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Chapter 6):
Hand-specimen Fabric: Spar-medium-White (SP-m-W) and Micrite-medium-White (WM-m-W)
Hardness : soft
Refired-color: white (see Table 6-3)
Fired color: 10YR 7/1 Light gray; 5YR 8/2 Pinkish white; 2.5YR 7/6 Light red; 10YR 7/3 very pale brown;
10YR 6/2 light brown gray

DS-W-m in Thin section:
I) Microstructure (see Section 8.2.2)
• voids: moderate porosity; less porous and more compacted fabric than DS-W-c; very few vughs comprising around 3 - 5% of the thin section; usually without voids separating particles from matrix (but some inclusions do have them).
• Packing (particles > silt): spaced to singled
• Preferred orientation: no orientation of vughs or particles were observed
IIa) Groundmass: homogeneity and optical characteristics (see Section 8.2.2)
• Homogeneity: color between thin sections fairly homogeneous mostly very pale brown (10 YR 7/3) color. Within one sample, color fairly homogeneous throughout most of the micromass. In some samples, inhomogeneous bands of darker brown by on wall are present.
• Small and few areas of optically faintly active micromass. In pp, faint pleochroism may be observed in areas of lighter color of the micromass. In areas of lighter color, the colors of the micromass in fabrics Dolospar-W-Medium and Dolospar-W-Coarse are similar.
• The colors under xp are 5Y 7/2, 6/2 very light olive gray; 10 YR 6/2 light brownish gray; 10 YR7/3 very pale brown; 10YR 5/4 yellowish brown; 10YR 5/3 brown;
IIb) Groundmass: coarser inclusions (see Section 8.2.1):
 This fabric is defined with a wide coarse:fine:voids ratio of 20-45:77-50: 3-5, with a coarse:fine boundary of 0.0625 mm Coarser Inclusions (>0.0625 mm)
Common to Few: DOLOSPAR – particle size ranges from fine to coarse, mode is medium; particles are mostly subangular; the individual dolomite crystals forming the particles are usually euhedral with rhombohedral shape; size: 0.010 – 0.060 mm; particles may be altered by micrite; some with embedded fossilized shells (probably bivalves), similar to the ones embedded in the micromass;
Few to Very rare: MICRITE – semi-translucent in xp; white and chalky in hand specimen; SPARITE – medium to coarse, finely crystalline, rounded to subrounded; GRAY or BROWN MICRITE – likely, with organic material; usually rounded to subrounded, opaque to semi-opaque in xp.
Rare : SKELETAL REMAINS and HOMOGENEOUS CALCITE – recognizable skeletal remains and homogeneous calcite fragments likely to be skeletal (made of homogeneous calcite, Section 8.1.1), sub-translucent in polarized light; SPARITE – coarse, subrounded.
Rare-Very rare: SINGLE CALCITE CRYSTAL — planar crystals usually from fine to coarse; also medium- crystalline calcite mosaics with fine to coarse particle size; some blocky and prolate shape; many with brown alteration; SINGLE DOLOMITE CRYSTALS usually planar boundaries, euhedral to subhedral, medium particle size.
Very rare: QUARTZ – two or three single-crystal grains, usually, fine size (0.0625-0.25 mm, or see section 6.2).
IIc) Groundmass: fine portion (see Section 8.2.1):
The fine portion $\overline{\langle 0.0625 \text{ mm} \rangle}$:takes 77-50 % of the whole field of view (see c:f:v), and the finer inclusions or silt (0.04 - 0.0625 mm) frequencies are relative to the fine portion only.
Frequent to common silt size single dolomite crystals from 0.03 to 0.0625 mm, euhedral, rhombohedral. Reddish brown iron alteration of crystals may be present

8.3.3 Dolospar-W-Hard (DS-W-mc-h) Fabric Class

This fabric is a variant of Dolospar-W-Medium sharing with this fabric the same type and frequency range of dolospar inclusions and largely medium-grained size (but coarse samples were also found). They differ in the darker color of the micromass and in the frequency of dark brown amorphous material that appears to be organic matter and in the frequency of dark micritic inclusions.

The micromass colors are mostly browns (5YR 5/4 reddish brown, 10 YR 5/3 brown, 10YR 6/2 brownish gray) going almost wall to wall, but bands of light brownish gray or light greenish gray areas by one wall may be present, as seen in Figure 8-14 (a). This difference within the same thin section and the brown micromass colors are

indicative of local variation in the firing effects likely due to the presence of organic matter (Whitbread 1995:387), representing amorphous concentrations and depletion features. The organic matter in the samples is taking the form of impregnations of the micromass and of nodules that can be observed in Figure 8-14(b). In addition, the organic matter also impregnates micrite grains; in areas of brown micromass, the micrite is also medium brown color, while translucent in areas of lighter color, reflecting variations in firing temperature and the burning off of the organic material that may be present. Table 8-7 contains the detailed description of fabric class.

Figure 8-14. Fabric Dolospar-W-Hard. (a) dolospar, brown micromass, light color band by wall; (b) brown nodules and micromass (#342, xp, width of field 2.82mm)

Table 8-7. Dolospar-W-Hard Fabric Class (DS-W-mc-h)

Fabric class code DS-W-mc-h general information:
No. of thin sections $= 11$
General fabric type: Dolomite spar
Main characteristics: (1) dolospar as the main inclusion, also gray micrite; (2) hard paste; (3) turns to white when
re-fired; (4) coarse to medium medium-grained particle size
Photomicrographs: Figure 8-14
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Chapter 6)
Fabrics: Micrite-White-hard (WM-cm-W-h)
Hardness : hard
Refired color: white (see Table 6-3)
Fired color: 10 YR 7/2 light gray; 10 YR 6/2 light brownish gray; 10 YR 6/3 pale brown
DS-W-mc-h in Thin section :
I) Microstructure (see Section 8.2.2)
• Moderate to high porosity with few voids, usually vesicular vughs; separation voids are observed around are
common
• Packing (particles > silt) : single spacing
• Preferred orientation: no voids or particle orientation observed
IIa) Groundmass: homogeneity and optical characteristic (see Section 8.2.2)
• Fired (original) color in xp, pp: yellow brown (10YR 5/4), reddish brown (2.5 YR 5/4), light brownish or
light greenish gray (10 YR 7/3)
• The micromass is mostly brown color, with large opaque areas, but bands of light brownish gray, or light
greenish gray areas by one wall may be present. Mottled micromass occurs in many areas.
• Micromass largely optically inactive. In pp. faint pleochroism is observed in the micromass in some samples
interonaus augery optioning inderive. In pp, funit predentoisin is observed in the interonaus in some sumpres.

The coarse:fine:voids ratio is 20-45: 75-50: 5 with a coarse:fine boundary of 0.0625 mm Coarser Inclusions (>0.0625 mm) (frequencies are taken of the whole thin section). Common to Few: DOLOSPAR - particle size ranges from fine to very coarse, mode is varied with coarse and medium modes included within this fabric; subangular; The dolomite crystals forming each particle are usually euhedral with rhombohedral shape, with size from 0.010 to 0.060 mm. Few: BROWN MICRITE - opaque to semi-opaque (xp), medium to dark brown, rounded to subrounded, also irregularly shaped; no internal structure, without inclusions; particles are tinted with alizarin red; coarse to fine, mode is medium. In areas of lighter micromass, the color of the brown inclusions is very light brown indicating that the brown color is due to organic material. MICRITE - medium to coarse, mode is medium; subrounded to rounded. Very Few to Very rare: SKELETAL REMAINS and HOMOGENEOUS CALCITE (CH) - Recognizable skeletal remains and fragments likely to be skeletal (made of homogeneous calcite, Section 8.1.1); MICRITE semi-translucent in xp. Very rare: SINGLE DOLOMITE CRYSTAL — some prismatic and prolate in shape; CALCITE CRYSTALS single crystals, planar boundaries, with particle size from fine to coarse; medium-crystalline clear calcite mosaics may be present, with various particle size from fine to coarse; QUARTZ – absent in half the samples and, in the rest, from one to five particles may be present. IIc) Groundmass: finer inclusions (see Section 8.2.1) The fine portion takes 85-50% of the whole field of view (see c:f:v), and the finer inclusions or silt (0.04 - 0.0625) mm) frequencies are relative to the fine portion only. High percentage of silt made of single dolomite crystals 0.03 to 0.0625 mm (finely crystalline), mostly euhedral, rhombohedral comprising 20- 50 % of the fine portion. III) Textural Concentration Features Textural concentration features were not observed, but the dark micromass and lumps may be preventing their observation IV) Amorphous Concentrations Features

Common dark brown opaque fine to medium nodules, most likely organic matter. In addition areas of the micromass show impregnation with same matter.

8.3.4 Dolospar-B-Coarse (DS-B-c) Fabric Class

This fabric is a variant of the also coarse Dolospar-W-Coarse. Similar to this fabric, Dolospar-B-Coarse is characterized, under the polarizing microscope, by the presence of finely crystalline dolospar as the main inclusion, coarse texture, silty dolomite matrix, and very porous matrix (Figure 8-15).

Figure 8-15. Fabric Dolospar-B-Coarse, showing dolospar grains and silty dolomite (#258, xp, width of field 2.82 mm)

Dolospar-B-Coarse differs from Dolospar-W-Coarse fabric in the higher frequency of inclusions and dominant yellow red or reddish brown fired color (xp), contrasting to the light greenish gray that dominates in Dolospar-W-Coarse. Table 8-8 presents the description of Dolospar-B-Coarse in detail.

	Table 8-8. Descri	ption of Dolosp	oar-B-Coarse in	Thin Section
--	-------------------	-----------------	-----------------	--------------

Fabric class code DS-B-c general information:
No. of thin sections: 18
General fabric type: Dolomite spar
Main characteristics: (1) dolospar as main inclusion; (2) turns to light reddish brown when refired; (3) coarsely
grained
Photomicrographs: Figure 8-15
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Chapter 6)
Hand-specimen Fabric: Spar-coarse-lrb (SP-c-B) (lrb=light reddish brown)
Hardness : soft
Refired color: light reddish brown (see Table 6-3)
Texture: coarse
Fired color: 7.5 YR 7/1-8, 7.5 YR 6/1-8 Light gray, pinkish gray, light brown, reddish yellow
DS-B-c in Thin section:
I) Microstructure (see Section 8.2.2)
• Voids: high porosity, micromass with pores and long channels of up to 0.6 mm and vughs up to 0.4 mm; voids
comprising up to 10 - 15% of the thin-section area and, usually, with voids separating the particles.
IIa) Groundmass: homogeneity and optical characteristic (see Section 8.2.2)
• The micromass is usually not homogeneous in color, optical activity, or distribution of inclusions.
• The micromass optically is usually slightly active. The colors of the micromass include light reddish brown,
pale brown, brown, or yellowish red, in xp and pp. Close to the walls, the color is lighter, a light brown.
Spacing: Single spacing separation of particles
IIb) Groundmass: coarser inclusions (see Section 8.2.1)
• The coarse: fine: voids ratio is 20-50: 35 -70: 10-15 with a coarse: fine boundary of 0.0625 mm
• Coarser inclusions (>0.0625 mm) (frequencies are taken of the whole thin section).

Frequent to Common: DOLOSPAR – Particles consist of dolomite finely crystalline, euhedral, rhombohedral
crystals; particle size from medium to very coarse, with coarse to very coarse mode. Particle shape is varied;
particles are usually sub-angular. Dolospar particle usually shows alteration to micrite.
Few to Very rare: MICRITE - very coarse to fine particle size, subrounded; SKELETAL REMAINS and
HOMOGENEOUS CALCITE (CH) - recognizable skeletal remains and fragments likely to be skeletal (made of
homogeneous calcite, Section 8.1.1) with grain size from very coarse to fine; varied particle shape; GRAY or
BROWN MICRITE – if present, usually subrounded
Rare: SPARITE – coarse, subrounded.
Very rare: SINGLE DOLOMITE CRYSTAL — subhedral, prolate shape; QUARTZ – absent in half of the thin
sections; one to three fine quartz crystals in the rest of the samples.
IIc) Groundmass: fine portion (see section 8.2.1)
The total fine portion takes $35-70\%$ of the whole field of view (see c:f:v). The finer inclusions or silt (0.04 - 0.0625)
mm) frequencies are relative to the fine portion only.
Frequent to Few single dolomite crystals (each 0.03 to 0.0625 mm), mostly euhedral, rhombohedral.
III) Textural Concentration Features
The following two are usually present
• Light brown light mustard brown in pp, olive gray in xp, homogeneous with no internal structure, inclusion,
or orientation; faintly pleochroic; mostly sub-rounded; lower optical density that matrix; most common size is
0.15.
• Brownish-red to dark-brown-red (xp, pp), rounded or subrounded, particles of, most probable, iron
concretions; frequency (counting) from absent to a count around ten in most sherds; no internal structure,
inclusions or orientation; high optical density; most with clear boundaries; the most frequent size (mode) is

8.3.5 Associations between Dolospar Fabrics and Sites, Chemical Groups, and Ceramic Typology

0.15 mm with a range from 0.05 mm to 0.3 mm

In this section, the associations between the dolospar samples and other contextual information available for these samples will be examined. The chemical variability and the location at which the samples were found, as well as the ceramic variety into which the samples have been classified, are examined as they relate to the fabric classes. The ceramic variety subsumes a series of properties that reflect not only the decorative style of the vessel but also properties that may be related to the intended function of the vessel such as vessel form and presence of slip.

Table 8-9 summarizes the contextual information and associations. Each letter (or value) in the table represents one thin section characterized within the dolospar fabrics. Each thin section is located within the ceramic variety, fabric class, and site to which corresponds. The two axes of the table are used for the fabric classes and sites, while letter codes are used to indicate the ceramic variety into which the sample is classified. The ceramic varieties included in this study are summarized in Table 5-3.

							-75	sites				
Fabric Texture	Fabric Class	Tepich	Tecoh	Telchaquill 0	Mayapán (n=33)	Tekit	Mama	Tipikal	T cabo	Cobá	Chae Mool	Culubá
	DOLOSPAR											
Medium	Dolospar-W-Medium (DS-W-m)		MM N	MMMM NNN	MMMMMM NNNNN	ММ		MM				
	Dolospar-W-Hard (DS-W-cm-h)				МММ		MMMM MMM Y					
Coarse	Dolospar-B-Coarse (DS-B-c)		YY	NN Y Y	M NN YYYYYYYY			Y				
	Dolospar-W-Coarse (DS-W-c)		M N	N Y X	MMM NNN Y YYY C		М	MM YYYY YYYY				

 Table 8-9. Samples within Dolospar Fabrics within Sites and Ceramic Varieties

 ←-----north-central ------→←eastern

KEY: M = Mama variety (red-slipped), N = Navula (plain, unslipped), Y = Yacman (striated, unslipped), X = Xcanchakan, and C = Chen Mul.

Dolospar Fabrics and Chemical Compositions

The dolospar fabrics are largely chemically homogeneous. Chemical variation is indicative of variations in raw materials sources or their processing or techniques. Of fifty-six chemically analyzed (not all petrographically analyzed samples are also chemically analyzed) dolospar samples, fifty-one (91%) have a composition within Group 1, four are unassigned, and one within Group 5.

Dolospar Fabric Classes and Sites

A division between the samples from the eastern and north-central sites is evident in Table 8-9. Based on the sampling strategy of this research, sherds from the same type of vessels (for instance, Mama sherds from jars and cajetes) were selected for analysis across all the sites, including north-central and eastern sites. However, dolospar fabrics were not found in any of the samples from the eastern sites (Chac Mool, Culubá, and Cobá), acknowledging that few sites were sampled from the eastern area and that it very well be that dolospar fabrics are present at other eastern sites.

Samples from most north-central sites contain dolospar fabrics, except for Tepich and Teabo, located furthest to the north and to the south-east of the area. Based on the samples in this research, and on Table 5-2 with the aerial distances from Mayapán to other north-central sites, the distribution of dolospar fabrics extended 11 km to the north (Tecoh) and 30 km to the south (Tipikal). Dolospar fabrics represent 64% of the analyzed thin sections from Mayapán. That is, 39 of 61 thin sections from Mayapán. The proportions are higher if Payil (which is foreign) is not included in the calculation.

Dolospar Fabrics and Ceramic Varieties

As was mentioned at the beginning of this chapter, the same ceramic varieties from both north-central and eastern regions were analyzed; however, only Mama, Navula, and Yacman (and a Chen Mul and a Xcanchakan samples) from the north-central sites were found to have dolospar fabrics. Payil and Cancun, both eastern varieties, were not found to have this type of fabric; nor were Mama, Yacman, or Navula from the eastern sites found with dolospar fabrics.

Among the samples that were found with dolospar fabrics there is a division between slipped samples (M) and the unslipped striated ollas (Y) into medium and coarse fabrics. Differences in the grain size are associated with other properties of the fabrics including color and porosity. When found to have a dolospar fabric, the unslipped and striated open-mouthed Yacman jars (Y) in 25 out of 26 instances present coarse fabrics. The division may be related to the intended function of the vessels. Yacman jars have an open-mouthed and globular body (ollas), and, based on high frequencies of burnt, carbon-coated bottoms (Brown 1999a, p.326) and ethnographic work (Thompson 1958), most likely were used as cooking pots. Slipped vessels, based on ethnographic work (Thompson 1958) involving similar Yucatecan vessels, are not put on the fire. Medium-grained fabrics were preferred by potters using dolospar fabrics for the construction of the red-slipped Mama vessels; however, Mama samples do not show the clear-cut division by grain size observed in the Yacman samples. The unslipped and plain Navula jars do not show a grain size pattern.

The Dolospar-W-hard (DS-W-cm-h) Dolospar-W-hard (DS-W-cm-h) is associated with red-slipped Mama samples (10 out of 11 samples). This association, and the fact that this fabric appears to present more organic matter (with firing effects likely due to the presence of organic matter [Whitbread 1995:387]) than other samples with dolospar, may be related to firing at lower temperature or faster in an attempt to preserve the luster of the slip.

The location at which samples presenting dolospar were found varies with the ceramic variety. Red-slipped Mama and the unslipped, striated Yacman jars were found at many of the north-central sites, whereas the samples of plain unslipped Navula were

found, mostly, within the vicinity of Mayapán (Mayapán and Telchaquillo, plus two dolospar sherds at Tecoh). This interpretation may change with more sampling, given that the number of sherds analyzed from secondary centers was small, and in particular of the Navula variety.

In summary, among the samples, fragments of sparry dolomite (dolospar) are a common inclusion. Two main dolospar fabrics were defined, differing mainly in the grain size modes: medium and coarse. These fabrics are very homogeneous across sites. Two variant fabrics were also defined for each of these fabrics. This division by grain size in the dolospar fabrics is highly correlated with the type of vessel. Red-slipped samples (sherds from jars and cajetes) are medium-grained, whereas the unslipped open-mouth striated Yacman samples are coarse, and the plain Navula do not show any pattern. The samples containing dolospar were found in north-central sites only. At Mayapán, Mama, Yacman, and Navula samples were found with these fabrics comprising two thirds of the samples from this site. It was also observed that the red-slipped Mama and striated Yacman samples having dolospar inclusions were found at most north-central sites, while Navula samples within this fabric were found at Mayapán and Telchaquillo almost exclusively. However, the number of Navula samples from the lesser sites is small and this interpretation may change with a larger sample.

8.4 Finely Crystalline Sparite Fabric Classes

This section deals with a group of 20 thin sections in which petrographic analysis found finely crystalline sparry calcite, or sparite, as the main inclusion. Samples in which finely crystalline sparite dominate were grouped in one fabric class, Sparite-W/B-Coarse/Medium.

Fabric Class	Main Inclusions	Grain Size	Porosit	Fired Color (xp)
		(mode)	У	
Sparite-W/B-Coarse/Medium	Coarse portion:	Medium to	Varied	light red (7.5 YR 7/6),
(CS-W/B-cm)	finely crystalline sparite	coarse		light.reddish brown (5yr
				6/4), dark brown, light
				greenish gray 7.5YR 7/2 -
				7/1, very pale brown (10
				YR 8/2)

 Table 8-10. Main Petrographic Characteristics of Finely Crystalline Sparitic

 Fabrics

This fabric is not homogeneous in petrographic characteristics, but due to the small number of samples and high variability, it was not possible to separate this fabric further according to the different characteristics. A more extensive sampling may reveal that many sparite fabrics may have existed. What the samples within this fabric have in

common is a basic recipe consisting of the use of medium-to-coarse particles of finely crystalline sparitic rocks as dominant inclusion. The main characteristics of this fabric are summarized in Table 8-10.

8.4.1 Sparite-W/B-Coarse/Medium (CS-W/B-cm) Fabric Class

This section presents the characteristics of the sparitic fabric that catches a variety of samples in which sparite dominates. Samples having this fabric class are characterized by the presence of common coarse-to-medium particles composed of a cluster of finely crystalline calcite crystals (sparite), with crystal size usually between 0.020 - 0.030 mm (Section 8.2.1). Other than sharing the main inclusion type, the samples within this fabric are not homogeneous across the group with regard to their petrographic attributes such as porosity, silt frequency, color of the micromass, or the presence/absence of other coarse (> silt) particles, which may include micrite, skeletal remains, red concretions, or discrete dolomite crystals.

Figure 8-16. Fabric Sparite-W/B-Coarse/Medium with sparite at top and left, and micrite to the right (# 272, pp, width of field 2.82 mm)

Figure 8-17. Fabric Sparite-W/B-Coarse/Medium (CS-W/B-cm) showing sparite particles (top and bottom) (# 262, xp, width of field 2.82 mm).

Figure 8-16 and 8-17 illustrate two instances of this fabric. Table 8-11 contains

the description of Sparite-W/B-Coarse/Medium fabric class.

Table 8-11. Sparite-W/B-Coarse/Medium (CS-W/B-cm) Fabric Class in Thin Section

Fabric class code CS-W/B-cm general information:
No. of thin sections $= 20$
General fabric type: finely crystalline sparite
Main characteristics: (1) finely crystalline sparite as main inclusion; (2) turn to white or light reddish brown when
refired; (3) coarse or medium-grained
Photomicrographs: 8-16, 8-17
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Chapter 6):
Hand-specimen fabrics: various (some characterized as single crystals, others as sparite, and others as white and
dark micrite).
Hardness : soft
Refired color: white, light reddish brown.
Grain size: medium to coarse
Fired color: very light gray, light pinkish gray or light pink
CS-W/B-cm in Thin section:
I) Microstructure (see Section 8.2.2)
• Most samples are low to moderately porous presenting in thin section vughs taking around 3% - 7% of
the thin section areas, with only a few thin sections containing significant channels.
No preferred orientation of particles or voids was observed.
IIa) Groundmass: homogeneity and optical characteristic (see Section 8.2.2)
 The micromass is optically inactive to optically slightly active.
Within individual specimens, the micromass is homogeneous in color and optical activity.
• Between samples this is not a homogeneous fabric, with a wide range or porosity and micromass color.
The colors found include (pp), light red (7.5 YR 7/6), light.reddish brown (5yr 6/4), dark brown, light
greenish gray 7.5YR 7/2 - 7/1, very pale brown (10 YR 8/2).
IIb) Groundmass: coarser inclusions (see Section 8.2.1)
• The coarse: fine: voids ratio is around 15-40:82-53:3-7, with the coarse: fine boundary at 0.0625 mm

• Coarser Inclusions (>0.0625 mm; percentages are taken of the whole thin section).
Common : SPARITE (CLEAR) – particles usually subangular, with size that ranges from medium to very coarse with a mode that varies. Particles made of finely crystalline, anhedral, granular calcite crystals; each crystal ranges in size from 0.015 to 0.06 mm (15-60 microns); particles usually subangular, with size that ranges from medium to very coarse with mode that varies.
Common to Very rare: SKELETAL REMAINS and HOMOGENEOUS CALCITE – recognizable fossil shells
This type of inclusion is absent in about half the samples
Few to Very rare: BROWN or GRAY MICRITE – particles are opaque to semi opaque (xp), without any internal structure; fine to coarse grain size; sub-rounded to rounded; with some particles with holes as colander; brown micrite is present in more than half of the samples; MICRITE – subrounded, medium-grained micrite, sub-translucent (xp); micrite is present in half or less of these samples.
Very rare: SINGLE DOLOMITE CRYSTALS – euhedral and subhedral; SINGLE CALCITE CRYSTALS
IIc) Groundmass: fine portion (see Section 8.2.1)
The total fine portion takes $82-58$ % of the whole field of view (see c:f:v). The finer inclusions or silt (0.04 -
0.0625 mm) frequencies are relative to the fine portion only.
Common to rare, usually made of fragments of calcite crystals, or rounded dark micrite, or tcl.
III) Textural Concentration Features (tcf)
The following ter were found, but they are not common: Brownish-red to dark-brown-red (xp) concretions: present to a frequency count of up to $5 - 10$ particles in the thic-section; the particles have no internal structure, inclusions or orientation; high optical density; most with clear boundaries; grain-size mode 0.15 mm with a range from 0.05 mm to 0.3 mm; subrounded and acicular (needle like). Tipikal has an anomalous sherd with around 15% (of thin section area) red concretions.
Yellowish Light brown particles present in one third of the samples; homogeneous with no internal structure, inclusion, or orientation; faintly pleochroic (pp); mostly sub-rounded; lower optical density that matrix; mode is

8.4.2 Associations between Sparite-W/B-Coarse/Medium Fabric Class,

Sites, and Ceramic Typology

0.15

The objective of this section is to examine the associations that exist between the samples with this sparitic fabric and the contextual information of the samples related to the find spot and the ceramic type/variety. These associations are illustrated in Table 8-12.

KEY: M = Mama variety (red-slipped), N = Navula (plain, unslipped), X = Xcanchakan

Even with the small number of samples within this fabric, significant information was gathered.

- Samples within the sparitic fabric were found at most north-central sites and Cobá.
- Red-slipped (Mama), cream-slipped (Xcanchakan), and plain (Navula) samples share this fabric.
- Plain Navula and striated Yacman jars are both unslipped, but the samples analyzed present a division in the type of fabric: Yacman was not found within this fabric. Apparently, potters do not select this fabric for the construction of striated jars.

Briefly summarizing this section, sparry samples can be divided into dolomite and calcite sparry fabrics. One sparite fabric was defined representing a common basic recipe comprising medium-to-coarse particles composed of finely crystalline sparite in a low to moderately porous micromass. This fabric is not homogeneous in its petrographic characteristics across the sites, and it may comprise multiple origins or producers. This fabric (or better said, this basic recipe) is correlated with the type of vessel: only slipped (Mama and Xcanchakan) and plain Navula samples were found to have this fabric, whereas no samples of the striated open-mouth Yacman, thought to be for cooking, were found to have this fabric.

8.5 Micrite Fabric Class

Seventeen thin sections in which micrite dominate are the topic of this section. A major group resulting from hand-specimen analysis has white chalky micrite as the dominant inclusion. Thin sections made from samples taken from this broad hand-specimen fabric showed that a portion of samples classified in hand specimen as dominantly micritic contained fine-grained dolomite or sparite instead. They were described in the previous sections under the corresponding fabric classes.

One fabric class, Micrite-W-Medium, was defined by grouping the samples having the common characteristic of micrite, mostly medium-grained, as the main inclusion having little in common with regard to other petrographic characteristics. More extensive sampling may uncover that we are dealing with multiple fabrics based on the attributes just mentioned, but not enough samples are present in this study to accommodate the number of different combinations of attributes found and separate them into more fabric classes. This section contains the description of this micritic fabric class, summarized in Table 8-13, and ends with the presentation of the associations between this fabric, sites, and ceramic varieties.

Fabric Class	Main Inclusions	Grain Size (mode)	Porosity	Fired Color
Micrite-W- Medium (CM-W-m)	coarse portion: micrite; a variety of other inclusions may be present (sparite mainly) fine portion: varied	medium	Moderate (mode), with wide variation	Varied

 Table 8-13 Main Petrographic Characteristics of Micritic Fabrics

8.5.1 Micrite-W-Medium (CM-W-m) Fabric Class

Samples with this fabric composition are characterized by the presence of medium-size (mode) micrite (sub-translucent under crossed polarized light, Figure 8-18) grains as the main inclusion and usually rare silt.

Figure 8-18. Fabric CM-W-m showing micrite particles (# 437, xp, width of field 2.8 mm)

Other petrographic characteristics are not homogeneous within thin sections and between samples: wide range of variation on the colors (xp) of the micromass, porosity, presence/absence of iron concretions, secondary (in addition to micrite) inclusions (Table 8-14). For instance, at Mayapán, the porosity of this fabric ranges from low (around 3% of thin sections) to high (around 15%) and varies widely in the absence/presence of

bioclasts and silt. Table 8-13 contains the main attributes of this fabric that differentiate Micrite-W-Medium from dolospar or sparite fabric classes, whereas Table 8-14 describes this fabric in detail.

Table 8-14 Fabric Class Micrite-W-Medium (CM-W-m) in Thin Section

Fabric CM-W-m General Information:
No. of thin sections $= 17$
General fabric type: Micrite
Main characteristics: (1) micrite (semitranslucent in xp) as main inclusion; (2) turns to white when refired; (3)
medium-grained
Photomicrographs: 8-18
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Chapter 6):
Fabrics: Micrite-medium-W (WM-m-W)
Hardness : soft
Refired-color: white (see Table 6-3 for refired Munsell colors)
Fired color: varied color including pinkish gray(7.5 R 7/2) to reddish brown 2.5 YR 5/4)
CM-W-m in Thin section:
I) Microstructure (see Section 8.2.2)
• Voids: Most samples have voids in the form of yughs (many subrounded) taking 3-8% of thin section, but
the range is wider with one sample taking around 15%. Most voids are yughs, with only a few channels.
Most micrite grains show diffused grain boundaries
• The space between coarse particles (≥ 0.0625) is varied Sorting is varied. The whole range of sizes is present
from fine to very coarse with mode = medium
No preferred orientation of particles or voids was observed
Ha) Groundmass: homogeneity and ontical characteristic (see Section 8.2.2)
The fabric is characterized by
• The micromass is not homogeneous within this sections and between samples. The color of the micromass
is very varied from reddich brown and medium brown to light gray and a light brown. Some have darker
is very varied information with an international part of the state of
micromass spotta by small specked areas of optical value f have a motion appearance with data of optical micromass spotta by small specked areas of optical value f have a motion of the instance f (#32) and
#340 the around mass is largely homogeneous in color ontical activity, while in solice of the instances ($#352$ and $#340$) the around mass is largely homogeneous in color ontical activity and inclusion distribution
The groundmass coarses inclusions (see Section 8.2.1.)
The orbit varies from 20.25: 57.7.32 with a of houndary at 0.0625mm
The c.r.v values from $20-55$, $31-77$, $3-6$ with a c.r boundary at 0.0025 mm,
Coarser inclusions (>0.0025 min) (requencies are taken of the whole thin section).
Common: MICDITE (comitranslucent in ym), meetly gub angular to gubrounded; feirly corted with grain size
Common: Where $f = (seminalistic entries x_p) -mostly sub-angliar to sub-founded, fairly softed, with grain size$
Fairing it on the to coarse out host (hode) are the coarse, rounded subrounded
Few to very faire: SFARTE (clear) – medium to coarse, founded, subjounded
very lew to very rate, BKOWN of OKAT WICKITE - Semi opaque, mostly of own michie (xp), mie to coalse
grain size, subfounded, founded, nonlogeneous appearance. Howooreneous cale it (which likely are skelet and BEMAINS - Decomprised and as shalls in addition to homogeneous against (which likely are skeletat
REMAINS – Recognizable remains such as shorts in addition to homogeneous calcule (which fixely all skeletal
Vory represent UAPTZ - quartz is a very minor component in about half the samples (three or four particles in
the this section) and obsent or one particle in the rest: DISCDETE CALCITE COVSTAIS fine grained:
DOI OMITE COVETALS - fine garacter in the test, DISCRETE CALCITE CRISTALS - fine granted,
Ic) Groundmass: fine nortion (see Section 8.2.1.)
Fina Dartian (20.0625 mm) (frequencies are based on the fina partian only)
Pare to user user site size forgenerit of solito structure
Kale to very fale silt size flagments of calefie crystals
III) resturat Concentration Features
biowinish-red to dark-brown-red (xp), with no internal structure, inclusions or orientation; varied optical density;
inost with clear boundaries, the most frequent size is 0.15 mm with a range from 0.05 mm to 0.3 mm; subrounded
and activitian (needle like).

8.5.2 Associations between Micrite-W-Medium (CM-W-m) fabric class and Sites, and Ceramic Typology

In this section, the associations between Micrite-W-Medium fabric and other contextual information are examined, in relation to the find spot, chemical group, and the ceramic

variety into which the samples have been classified. The Table 8-15 summarizes these associations.

Fabric Class	Tepich	Tecoh	Telchaquill 0	Mayapán (n=33)	Tekit	Mama	Tipikal	T cabo	Cobá	Chac Mool	Culubá
MICRITE											
CM-W-m (Grp 1, u/a)		YY	М	MMM NNN X	М	MMM N	М	М			

 Table 8-15. Associations between the Micrite fabric class and Sites and Ceramic

 Varieties

- Samples with this fabric composition were not found at the three eastern sites: Cobá, Chac Mool, and Culubá.
- Samples were only found at the north-central sites.
- Most are slipped (Mama and Xcanchakan) or plain (Navula), but two striated Yacman were also found.

Two Yacman samples, with main micrite as dominant inclusion, present a fabric that, nevertheless, differs markedly from the rest in the micritic group. It has common silt and very high porosity and may represent a separate fabric class.

Micrite-W-Medium seems to represent a basic recipe consisting of mediumgrained micrite inclusions, but other than that, it is very heterogeneous in its petrographic characteristics. This micritic fabric and the sparitic fabric defined in the previous section (Sparite-W/B-Coarse/Medium) present many similarities: they were both found at multiple north-central sites, they have heterogeneous petrography, they are mediumgrained, and they were mostly found in the red-slipped Mama and plain Navula.

8.6 Medium and Coarsely Crystalline Calcite Fabrics Classes

A main group of fabrics defined during hand-specimen analysis contains semitranslucent to translucent single crystals (XT) detected during that analysis. Samples were taken from these fabrics, and thin sections were prepared. Their analysis under polarizing light revealed that not only calcite but also dolomite and quartz are present. The petrographic analysis also showed that, in some cases, what looked like single

KEY: M = Mama variety (red-slipped), N = Navula (plain, unslipped), Y = Yacman (striated, unslipped), X = Xcanchakan

crystals in hand specimens are a variety of other carbonate rock textures including fragments of coarse shells, homogeneous (micritic) calcite (usually skeletal remains), or particles composed of mosaics of sparite or dolospar particles in which each crystal is relatively large (medium-to-coarsely crystalline).

This section deals with those thin sections containing an abundance of few or more (abundance tables in Section 8.2.1) single crystals of calcite. This section also includes samples containing few or more particles composed of sparry calcite in which each crystal ranges in size from medium-crystalline to larger crystals, looking like a translucent rock in the hand specimen or low magnification.

The samples can be broadly divided based on particle size into coarse and fine groups of fabrics. Within the coarse group, four fabric classes were formed: Calcite-Micrite-Coarse-01 (CX-CM-01-c), Calcite-Micrite-Coarse-02 (CX-CM-02-c), Sparite-mc-W/B-Coarse (CSm-W/B-c), and Calcite-Grog-B/R-Coarse (MX-GROG-B/R-c). One crystalline fabric was found to have a fine texture, Calcite-Quartz-B/R-Fine or CX-QZ-B/R-f (and a singleton CX-QZ-B/R-c). A summary of the main characteristics of these five fabrics is found in Table 8-16.

Fabric Class	Main or Diagnostic Inclusions	Grain Size mode	Porosity
Calcite-Micrite-Coarse-01 (CX-CM-01-c)	Coarse portion: coarse particles of single calcite crystals micrite	Coarse	Low to Moderate
Calcite-Micrite-Coarse-02 (CX-CM-02-c)	Coarse portion: coarse particles of single calcite crystals micrite	Coarse	High
Sparite-m-W/B-Coarse (CSm-W/B-c)	Coarse portion : coarse particles of sparite with crystal size = medium-crystalline (usually 0.07 to 0.18 mm)	Coarse	High
Calcite-Quartz-B/R-Fine (CX-QZ-B/R-f)	Coarse portion: fine (0.1-0.25mm) calcite and quartz single crystals	Fine	Low
Calcite-Grog-B/R-Coarse (MX-GROG-B/R-c)	Coarse portion: dark argillaceous particles, single calcite crystals, grog Fine portion (< 0.652 mm) single calcite crystals	Coarse	Varied

 Table 8-16. Main Petrographic Characteristics of Calcite-Crystal Fabric Classes

KEY s-xtals: single crystals; 1-r-b: light reddish brown ; u/a = unassigned; Ch. Grp. = chemical group

8.6.1 Calcite-Micrite-Coarse-01 (CX-CM-01-c) Fabric Class

This fabric is characterized by the presence of coarse (mode), sub-angular to angular discrete crystals of calcite, with a moderately compacted micromass and very few voids. The fabric is not homogeneous across the group, in particular regarding the

Figure 8-19. Fabric Calcite-Micrite-Coarse-01 (CX-CS-01-c) showing single calcite crystals (#354, xp, width of field 2.8 mm)

Figure 8-20. Fabric Calcite-Micrite-Coarse-01 (CX-CS-01-c) showing single calcite crystals (#204, xp, width of field 2.8 mm)

Table 8-17. Calcite-Micrite-Coarse-01 Fabric Class (CX-CM-01-c) in Thin Section

General Information of the CX-CM-01-c Fabric Class
No. of thin sections: 16
General fabric type: Single calcite crystals
Main characteristics (1) single calcite crystals (and sparite or micrite) · (2) moderately compacted (3) varied
refired color: (3) coarsely grained
Photomicrographs: Figures 8-19 8-20
Ceramic Sohere: Oriental Tases'
Summary of Characteristics in Hand Specimen (Chanter 6):
Hand-specimen fabrics: Crystal-coarse-R/B (XT-c-R/B)
Hardness: soft
Refired color: red. light reddish brown
Fired color: light red, pinkish grav
Texture: coarse
CX-CS-R/B-c in Thin section:
I) Microstructure (Section 8.2.2)
Voids: Low to moderately porous fabric with yughs taking 1-5% of the whole field of view
 Packing: single to double spaced
 Preferred orientation: no orientation of particles or voids was observed
• Treferred orientation. no orientation of particles of volds was observed.
IIa) Groundmass: homogeneity and optical characteristic (definition of terms and scales: this chapter, Section 8.2.2)
• Micromass homogeneity within individual specimens: mostly homogeneous color and optical activity.
Heterogeneous samples across the group
 Color xx, xn: medium gray, light reddish brown or brown: ontical state: not active micromass to ontically.
slightly active: semi opaque micromass in many
signify deave, sein opaque inclonass in many
IIb) Groundmass: coarser inclusions (Section 8.2.1)
The coarse: fine: voids ratio is 25-40:55-75:1-5 with a coarse: fine boundary of 0.0625 mm
Coarse inclusions (>0.0625 mm) (frequencies of the whole thin section).
Frequent to Common: SINGLE CALCITE CRYSTALS - coarse (mode) particles ranging in size from very fine
to coarse; most are angular with planar boundaries, subhedral and some anhedral, many altered with reddish
brown alteration.
Few to Very rare: MICRITE – birefringent and semitranslucent (xp), mostly sub rounded micrite particles,
usually coarsely grained (mode) but ranging from fine to very coarse; SPARITE – grain size ranging from medium
to coarse.
Rare to Very rare: DARK MICRITE – subrounded to rounded, fine to coarse; SKELETAL REMAINS;
MEDIUM to COARSELY CRYSTALLINE SPARITE – medium to coarse; red concretions can take at least 2-
3% of the thin section vary in size from fine to coarse (Quartz is absent).
IIc) Groundmass: fine portion (section 8.2.1)
Fine Portion (<0.0625 mm) (frequencies are of the fine portion only)
Presence of silt is varied, but usually very few silt, mostly calcite fragments taking 3 to 7 % of fine portion
III) Textural Concentration Features
• Brownish-red to reddish brown (xp) concretions are very common, and mostly rounded to sub-rounded, with
no internal structure, inclusions or orientation; high optical density; size ranging from fine to coarse with the
most frequent size 0.15mm. The brown and the red concretions are two different colors depending most likely
on temperature: brown opaque in no oxidation and red in oxidation.
• Yellow concretions: yellow concretions are a mineral alteration of calcite crystal grains that overcomes the
grain and becomes what looks as an isolated grain by it-self.

Fabric Calcite-Micrite-Coarse-01 has similarities to Calcite C fabric of the Crystalline Calcite-tempered fabric classes described by Linda Howie (2012, p.244-250) for the site of Lamanai, Belize. It differs from this fabric in that in Calcite-Micrite-Coarse-01 quartz is absent while the description of Calcite C includes a few to rare quartz crystals. Figure 8-19 and 8-20 shows the main inclusions within this fabric.

8.6.2 Calcite-Micrite-Coarse-02 (CX-CM-02-c) Fabric Class

Fabric Calcite-Micrite-Coarse-02 (CX-CM-02-c) is a variety of Calcite-Micrite-Coarse-01 just described and presents similar attributes of composition: presence of coarse (mode), sub-angular to angular discrete crystals of calcite, and micrite or sparite may also be present. The two fabrics differ in the high percentage of voids and large channels present in Calcite-Micrite-Coarse-02 that create a very open porous matrix. Figure 8-21 illustrates Calcite-Micrite-Coarse-02 fabric.

Figure 8-21. Fabric Calcite-Micrite-Coarse-02 (CX-CM-02-c) showing calcite crystals with spot alteration (#191, xp, width of field 2.82 mm)

8.6.3 Sparite-m-W/B-Coarse (CSm-W/B-c) Fabric Class

This fabric is distinguished by, first, the presence of coarse (mode) particles composed of mosaics of sparry calcite (sparite) in which each crystal size is medium-crystalline or larger, usually between 0.06 mm to 0.18 mm, and, second, by a very porous matrix. This is not a homogeneous fabric across the group, with wide variability related, mainly, to the frequency of the sparite grains, the color of the micromass, and the presence/absence of micrite. The difference between this fabric and the two previous fabrics (Calcite-Micrite-Coarse-01 and 02) is that the two previous are based on single crystals, whereas in this fabric (Sparite-m-W/B-Coarse) mosaics of sparry crystals dominate. To illustrate the appearance of these mosaics, Figure 8-22 shows two views of the grains in this fabric at two different magnifications.

Sparite-m-W/B-Coarse, therefore, could have been considered a variant of the finely crystalline sparite fabric (Sparite-W/B-Coarse/med) described earlier given that both contain sparite clusters which differ based on the size of the individual crystals. This fabric is included with fabrics characterized by the presence of single crystals because in both cases in the hand specimens, they may have looked translucent or semi-translucent to potters, and potters may have used them indistinctively. The description of this fabric is found in Table 8-18.

Figure 8-22. Fabric Sparite-m-W/B-Coarse showing two views of: (a) mediumcrystalline sparite (# 335, xp, width of field 2.82 mm) and (b) medium-crystalline sparry calcite (#335, xp, width of field 1.1 mm)

Table 8-18. Description of Fabric Class Sparite-m-W/B-Coarse (CSm-W	/ B-c)
---	----------------

General Information of CSm-W/B-c Fabric Class:
No. of thin sections: 11
General fabric type : single calcite crystals
Main characteristics: 1) Usually few sparite in which each crystal is relatively large in size, or medium-crystalline,
sometimes in combination with clear finely crystalline sparite or coarse single calcite crystals (2) soft paste; (4)
coarsely grained
Photomicrographs: Figure 8-22
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Chapter 6)
Fabrics : Spar-coarse-lrb various (SP-c-B) (lrb = light-reddish brown); DarkParticles-Coarse/Medium-White (GM-
cm-W
Hardness : soft
Refired-color: white and light reddish brown
Texture: coarse

Fired color: light red, reddish brown
CSm-W/B-c in Thin section:
I) Microstructure (definition of terms and scales: this chapter, Section 8.2.2)
• Voids: very porous (with one exception), with vughs and long channels taking 10 - 15% of the thin section.
• Packing (particles > silt) : double spaced or more.
Preferred orientation: no orientation of particles or voids was observed.
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
• The micromass color is not homogeneous between thin section, but it is fairly homogeneous within a
thin section.
• The colors of the micromass under xp are usually browns: light brown, light reddish brown, and medium
brown.
IIb) Groundmass: coarser inclusions (Section 8.2.1)
• The coarse: fine: voids ratio is 20-30-: 55-70: 10-15 with coarse: fine boundary of 0.0625 mm
• Coarser Inclusions (>0.0625 mm) (frequencies are taken of the whole thin section).
Common to Few: SPARITE (mediun-crystalline or larger) – coarse (mode) particles made of mosaics of sparite, or sparry calcite, with a coarse mode. The crystals comprising the particle are medium-crystalline or larger, usually between 0.06 mm to 0.18 mm (medium crystalline defined as = 0.0625 – 0.25 mm), contrasting to the finely crystalline sparite in the sparite fabric CS-W/B-cm. Few to Very rare: MICRITE – micrite (sub-translucent and translucent in xp); and DARK BROWN INCLUSIONS (opaque or sub-opaque in xp). Very rare: SINGLE CALCITE – medium grained single calcite crystals, usually subangular; SPARITE (finely crystalline) – medium to coarse, subrounded to subangular, particles of finely crystalline sparite. IIc) Groundmass: fine portion (scales and measurements: this chapter, section 8.2.1):
The total fine portion takes 55-70 % of the whole field of view (see c:f:v), and the finer inclusions or silt (0.04 -
0.0625 mm) frequencies are relative to the fine portion only.
Rare to very rare calcite crystal fragments
III) Textural Concentration Features
The following two may be present
• light-yellow brown in pp, homogeneous with no internal structure.

• Brownish-red (xp); no internal structure; with clear boundaries; usually rounded to subrounded.

8.6.4 Calcite-Quartz-B/R-Fine (CX-QZ-B/R-f) Fabric Class

This fabric is easily recognized by its very-fine to fine calcite and quartz single crystals in a compact matrix with rare pores. Figures 8-23 and 8-24 illustrate two instances of this fabric. The detailed description of Calcite-Quartz-B/R-Fine fabric is found in Table 8-19.

Figure 8-23. Fabric Class Calcite-Quartz-B/R-Fine showing calcite and quartz (#131, pp, width of field 2.82 mm)

Figure 8-24. Fabric Class CX-QZ-R/B-f showing calcite and scatter quartz (white); (# 382, xp, width of field 2.82 mm)

Table 8-19. Fabric Class Calcite-Quartz-B/R-Fine (CX-QZ-R/B-f) in Thin Section
Fabric class code CX-QZ-R/B-f general information:
No. of thin sections: 9
General fabric type: calcite and quartz single crystals
Main characteristics: (1) fine grained calcite and quartz; (2) mostly compacted
Photomicrographs: 8-23, 8-24
Ceramic Sphere: Eastern Tases (and one classified as Mama)
Summary of Characteristics in Hand Specimen (Section 6.2):
Hand-specimen analysis: Crystalline-Fine-R/B (XT-f-R/B)
Hardness: mostly soft but two hard samples are included
Refired color: red and light reddish brown
Porosity: compacted to moderately porous
Texture: fine-grained

- 209	_
-------	---

Fired color: gray, dark reddish gray, light red
CX-QZ-R/B-f in Thin section:
I) Microstructure (Section 8.2.2)
• Few voids, usually vesicular vughs taking around 1-5% of the thin section area
• Packing (particles > silt) : single spacing
Preferred orientation: no voids or particle orientation observed
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
(a) The micromass is homogeneous, without crystallites, with colors (pp, xp) brown (7.5 YR 5/4), dark
yellowish brown 10YR 4/6, pale brown 2.5Y 8/3
IIb) Groundmass: coarser inclusions (Section 8.2.1)
(a) The c:f.v from 20-65: 30-80: 1-5, with a c:f micromass' boundary of 0.0625,
(b) Coarser Inclusions (>0.0625 mm) (frequencies are taken of the whole thin section).
Frequent to Common: SINGLE CALCITE XTALS – discrete particles ranging in size from very fine to coarse,
with very fine to fine mode; angular, planar boundaries, anhedral.
Few to Very few: QUARTZ – discrete particles ranging in size from fine to medium, with fine mode; usually
subrounded to rounded, anhedral
IIc) Groundmass: fine portion (Section 8.2.1)
The Fine Portion (<0.0625 mm) is 30-80 % of total, and the frequency is of the fine portion only.
Common mostly calcite fragments
III) Textural Concentration Features
Count of 3 to 10 brownish-red to dark-brown-red (xp), with no internal structure, inclusions or orientation; high
optical density; most with clear boundaries; the most frequent size is 0.15 mm with a range from 0.05 mm to 0.3
mm; subrounded and acicular (needle like).

8.6.5 Calcite-Grog-B/R-Coarse (MX-GROG-B/R-c) Fabric Class

This is a fabric characterized by the presence of grog or coarse angular to irregularly shaped fragments of very dark brown (10YR 2/2) argillaceous particles with embedded silty to very fine calcite crystals. In four samples, these particles were identified as unslipped sherd fragments, or grog.

Figure 8-25. Fabric Calcite-Grog-B/R-Coarse, stained with alizarin red, showing calcite crystals (pink) and dark argillaceous particles with embedded calcite crystals (#275, xp, width of field 2.82 mm)

Usually, discrete calcite crystals are also present. These argillaceous particles may not be the most abundant inclusion, as shown in Figure 8-25, but they are diagnostic for this fabric. Given that some of these particles were identified as grog, they all may be grog, and the subrounded particles such as that at the top left corner of Figure 8-25 (or right bottom in Figure 8-27) are an indication that the original vessel had a friable paste, most likely. One argillaceous inclusion identified as an unslipped sherd fragment is illustrated in Figure 8-26. In addition, finely grained red-slipped sherd fragments were found in one sample, shown in Figure 8-27. Table 8-20 contains the description of this fabric.

 Table 8-20 Description of Fabric Calcite-Grog-B/R-Coarse (MX-GROG-B/R-c)

Fabric class code MX-grog-B/R-c general information:
No. of thin sections: 6
General fabric type : dark argillaceous
Main characteristics: (1) dark argillaceous particles with embedded calcite or quartz crystal inclusions; (2) micrite
or single crystals of calcite; (3) red or light-reddish brown refired
Photomicrographs: Figure 8-25, 8-26, 8-27
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Section 6.2)
Fabric : Crystal-Coarse-R/B (XT-c-R/B) or DarkParticles-coarse-R/B (GM-c-R/B)
Hardness : soft
Refired-color: red and light-reddish brown
Texture: coarse
Fired color: gray, dark gray, light brown
MX-GROG-B/R-c in Thin section:
I) Microstructure (Section 8.2.2)
Voids: few to common porosity with large vughs and channels
• Packing (particles > silt) : double spaced
 Preferred orientation: no preferred orientation of voids or particles was observed
1 1
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
• The micromass is not homogeneous in color and optical activity. The colors of the micromass are dark colors
such as strong brown (7.5YR 4/6), reddish brown 2.5 YR 5/6 and lighter colors such as light brown or light
red (2.5 YR 6/6).
IIb) Groundmass: coarser inclusions (Section 8.2.1)
• The coarse: fine: voids ratio is 35: 55 – 60:5-10 with a coarse: fine boundary of 0.0625 mm
• Coarser Inclusions (>0.0625 mm) (frequencies are of the whole field of view)
• Course metasions (> 0.0025 mm) (nequencies are of the whole field of view).
Few to Very few: ARGILLACEOUS PARTICLES with CRYSTALS – angular to subrounded coarse in mode
but ranging from fine to coarse) high ontical density oncourse dark brown arguilaceous particles with silt to very
(our function of calcite crystals: these particles rephably are sherd fragments
Here inclusions of callete crystals, inclusion probably, are shown in a modulum) mostly with planar boundaries.
eubadra calcite crystals
Eave to Vory reprovement MCPITE fine to very corresponded to subrounded:
Pere to very rate. Witchith - The to very coarse, founded to subjounded,
Nait, of ANTIE
Kate to very fate. Oroof - medium shefu hagnetics, some win the same fating that industry of the second state of the second
Inclussions, QUARTZ - two of uncernine particles in most unit sections. SINGLE DOLOWITE CRTSTALS
Fine Dertion (<0.0625 mm) (frequencies are of the fine portion only)
Fine Foldon (>0.0023 min) (inequencies are of the fine polition only) Eraquant to rare angular calatte eractale: for angular and sub angular dark argillageous particles
rrequent to rare angular calcule crystars, lew angular and sub-angular dark arginaceous particles
III) Textural Concentration Features
Light greenish gray (10Y 7/1) medium to coarse size, rounded particles with ghosts of acicular skeletal remains
giving them the appearance of a ball of coquina: less dense than the fabric and of contrasting color and inclusions

Figure 8-26. Fabric Calcite-Grog-B/R-Coarse showing fragment of unslipped sherd as temper (#275, xp, width of field 1.1 mm)

Figure 8-27. Fabric Calcite-Grog-B/R-Coarse showing red-slipped sherd (center) and dark argillaceous particles with embedded crystals (#445; width of view 2.82 mm, xp)

8.7 Medium and Coarsely Crystalline Dolomite Fabrics Classes

Coarse to fine single crystals of dolomite were also found in the samples. It is likely that potters were not able to differentiate them from calcite crystals with the same texture. Three fabrics were defined having single dolomite crystals as the dominant inclusions:

Dolomite-W/B-Medium (DX-W/B-m), Dolomite-Calcite-B-Coarse (DX-CX-B-c), and Dolomite-Calcite-Medium-Hard (DX-CX-m-h). The main characteristics of these fabrics are summarized in Table 8-21.

Fabric Class	Main Inclusions	Grain Size (mode)	Porosity
Dolomite-W/B-Medium (DX-B/W-m)	Coarse portion: fine dolomite s-xtals	Fine	Low
Dolomite-Calcite-B-Coarse (DX-CX-B-c)	Coarse portion: coarse dolomite and medium calcite s-xtals	Coarse	Varied
Dolomite-Calcite-Medium-Hard (DX-CX-m-h)	Coarse portion: medium grained dolomite and calcite s-xtals	Medium	Medium to high

Table 8-21. Main Characteristics of Dolomite Fabrics

KEY s-xtals: single crystals

8.7.1 Dolomite-W/B-Medium (DX-B/W-m) Fabric Class

This is a very distinctive fabric characterized by fine-grained (mode) discrete rhombohedral dolomite, in a largely compact matrix, as shown in Figure 8-28 and Figure 8-29. Dolomite is mostly euhedral to subhedral. Many dolomite crystals present alteration to red iron oxides, particularly, at the crystals' center. There are five sherds within this fabric class. Table 8-22 contains the detailed description of this fabric.

Figure 8-28. Fabric Dolomite-W/B-Medium with single crystals of dolomite (# 339, xp, width of view 2.82 mm)

Figure 8-29. Fabric Dolomite-W/B-Medium with dolomite (# 237, xp, width of view 2.82 mm)

I ADIE 8-22 DESCRIDUON OF FADRIC CLASS DOTOMILE-W/B-MEDIUM WILD (DA-B/W-M	Table 8-	22 Descrir	otion of Fab	ric Class	Dolomite-	W/B-Medium	with (DX-B/W-m
---	----------	------------	--------------	-----------	------------------	------------	--------	----------

Fabric class code DX-B-m general information:
No. of thin sections : 5
General fabric type: single dolomite crystals
Main characteristics: (1) fine-to-medium particle size, euhedral dolomite; (2) fine to medium texture; (3) few silt
Photomicrographs: Figure 8-28
Ceramic Sphere: Tases
Summary of Characteristics in Hand Specimen (Chapter 6)
Hand-specimen fabrics: samples originally assigned to DarkParticle-coarse/medium-W (GM-cm-W) and
DarkParticle-coarse-R/B because fine dolomite crystals were not detected during hand-specimen analysis.
Hardness : soft
Refired color: light reddish brown and white
Porosity: low
DX-B/W-m in Thin section:
I) Microstructure (8.2.2)
Mostly compacted sherds with voids, usually in the form of thin channels taking 2 -7% of field of view. The spacing
between grains in the coarse portion (> 0.0625mm) is double to open.
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
Largely homogeneous groundmass
• lightly active mostly without crystallites, but in some (#339) some faint crystallites were observed
• very pale greenish brown (xp, pp)
IIb) Groundmass: coarser inclusions (Section 8.2.1)
This is a medium-grained fabric, with the micromass' boundary at 0.0625, the c:f:v around 25:70:5
Common to few: DOLOMITE (single crystals) – fine (mode) particles of rhombohedral single crystals of dolomite,
with size ranging from fine to medium, usually $0.1 - 0.35$ mm in longest diameter particle size; euhedral to
subhedral merging into the clay matrix; colorless in pp light and light gray in xp. These inclusion are well sorted.
Very few: DARK MICRITE – sub opaque (xp); medium to coarse, with medium mode.
Rare to very rare: MICRITE – micrite that is birefringent or semi translucent (xp), with wide variety of roundness
(rounded, surrounded, and sub angular). CLEAR SPARITE (finely crystalline) - sparite fragments in which the
most common size of each crystal is 0.020-0.010 mm; fine (mode) particle size, when present, but the size could
range from fine to coarse. SINGLE CALCITE CRYSTALS - very fine to medium size particles, subhedral.
• IIc) Groundmass: fine portion (section 8.2.1):

Fine Portion (<0.0625 mm) (frequencies are of the fine portion only)
Very rare silt size inclusions, but some silt-size red concretions are present
III) Textural Concentration Features
Reddish-yellow to olive-green in pp and xp, with no internal structure, inclusion, or orientation; faintly pleochroic with mottled extinction; mostly rounded; higher optical density that matrix; diffuse boundaries; most frequent size is 0.05 mm ranging from 0.05 to .2 mm
Brownish-red to dark-brown-red (xp), with no internal structure, inclusions or orientation; frequency of more than 10 particles; high optical density; most with clear boundaries; the most frequent size is 0.04 mm with a range of 30 microns to 0.15 mm; most are rounded, but some subangular and irregular.
IV) Amorphous

Black (pp and xp); very rare; rounded or rhombic probably showing relic shape of dolomite, replaced by most probably, magnetite; most frequent size is 0.08 mm with range 0.06 to 0.1 mm.

8.7.2 Dolomite-Calcite-B-Coarse (DX-CX-B-c) Fabric Class

This fabric is characterized by the presence of coarse (mode), subangular to angular, mostly subhedral to anhedral single crystals of dolomite. Calcite crystals were present in three of the four samples characterized within this fabric.

Figure 8-30. Fabric class Dolomite-Calcite-B-Coarse (DX-CX-B-c) showing anhedral dolomite (#60 from Mayapán, xp, with of field 2.8 mm)

This is not a homogeneous fabric class (Figure 8-30, 8-31 and 8-32). It is defined with a wide range of variation. It is possible that Dolomite-Calcite-B-Coarse comprises two fabric classes having in common the presence of coarse dolomite and differing in the frequency of inclusions. Mayapán samples contain very few dolomite particles (Figure 8-30), whereas Tekit (Figure 8-31) samples have a higher frequency of inclusions. This fabric class was originally identified and described by Brown (1999a, p.352) who

associated it with a new ceramic type that he called Calcite-tempered Unslipped Type and Striated Calcite-tempered Unslipped Type. The description of this fabric can be found in Table 8-23.

Figure 8-31. Fabric class Dolomite-Calcite-B-Coarse (DX-CX-B-c) showing subangular anhedral dolomite (#441, xp, width of field 2.8)

Table 8-23. Fabric Dolomite-Calcite-B-Coarse (DX-CX-B-c)

Fabric class DX-CX-B-c general information:
No. of thin sections $= 4$
General fabric type: dolomite crystals
Main characteristics: coarse (mode) single dolomite crystals
Photomicrographs: 8-30, 8-31, 8-32
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Section 6.2):
Hand-specimen Fabric: Crystalline-Coarse-R/B (XT-c-R/B)
Hardness : soft
Refired color: reddish brown, light reddish brown
Texture: coarse
Fired color: gray, light reddish brown, pale brown
DX-CX-B-c in Thin section :
I) Microstructure (see Section 8.2.2)
Porosity: varied, from high to moderate taking approximately from 10 to 3%
• Packing (particles > silt) : doubled spaced
Preferred orientation: no orientation was observed
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
• Homogeneous: the inclusions are fairly homogeneous throughout the thin section. Variations in color were
observed within the Tekit samples.
• Fired (original) color in xp, pp: light yellowish brown0YR 6/4, very pale brown 10YR 7/4
IIb) Groundmass: coarser inclusions (Section 8.2.1)
The c:f:v is 35:55-62:3-10, with the micromass boundary at 0.0625,
Coarser Inclusions (>0.0625 mm) (frequency ranges are taken of the whole thin section).
Frequent to Few: SINGLE DOLOMITE CRYSTALS – coarse (mode) single crystals, with size ranging from
fine to coarsely grained; euhedral to anhedral; in Mayapán samples, some are very eroded or altered.

Very few to Very rare: SINGLE CALCITE CRYSTALS –medium (mode) with size from very fine to medium; subhedral; DARK MICRITE – sub opaque (xp), fine to medium, with mode fine; MICRITE – semitranslucent (xp), with wide variety of roundness (rounded, surrounded, and sub angular).

IIc) Groundmass: finer inclusions (Section 8.2.1) Fine Portion (<0.0625 mm) (frequencies are related to the fine portion only) Very few to very rare silt, no crystallites.

Figure 8-32. Fabric Dolomite-Calcite-B-Coarse showing subhedral dolomite (top white, with pink alizarin red stripes) and calcite (bottom, tinted with alizaring red) (#442, xp, width of field 2.82 mm)

8.7.3 Dolomite-Calcite-Medium-Hard (DX-CX-m-h) Fabric Class

This fabric is a medium-grained variant of the previous fabric Dolomite-Calcite-B-Coarse. Similar to Dolomite-Calcite-B-Coarse, this fabric is characterized by the presence of dolomite and single calcite crystals. The micromass is also moderately to highly porous. The main difference from Dolomite-Calcite-B-Coarse is in the dominant medium-grained dolomite particles. This fabric was found in two thin sections from Culubá (Figure 8-33).

Figure 8-33. Fabric class Dolomite-Calcite-Medium-Hard (#320, xp, width of field 2.82 mm)

8.7.4 Singleton Fabrics

This section contains the description of three samples in the crystalline fabrics that could not be categorized within any of the fabrics described earlier. A fabric code was given to these samples. One shred (CX-DXsilt-DS-W-c, #291) found at Tepich contains few fine to medium calcite crystals. It differs from the previous crystalline fabrics in the presence of silt-size dolomite, probable dolospar (very altered to micrite), and coarse spar and micrite.

Another sample (CX-CM-01-f, #135) contains calcite crystals and micrite. It differs from Calcite-Micrite-01-Coarse (a fabric class that also contains calcite crystals and may contain micrite) in its fine-grained and low porosity. The only sample within this fabric was found at Mayapán and classified as Payil.

The third sample (CX-QZ-B-c, #375) was found at Chac Mool and contains significant quantities of coarse calcite crystals and quartz. It differs from the fabric Calcite-Quartz-B/R-Fine, found in the red-slipped Payil (eastern Tases) samples, in the coarse texture of the fabric. This singleton was an unslipped sample classified as Navula.

8.7.5 Associations between Single-Crystal Fabrics, Sites, and Ceramic Typology

This section presents the associations that exist between the calcite and dolomite crystalline fabric classes described in the previous sections and contextual information such as find spot and surface finish or vessels form (subsumed in the ceramic variety). Table 8-24 presents the fabrics with fine to very coarse crystals (calcite, dolomite, or quartz) arranged by their grain size to better show patterns in the data. Even with the small number of samples, patterns in the data can be inferred from this table.

 Table 8-24. Associations between Single-Crystal Fabric Classes and Sites and

 Ceramic Varieties

	←		-No	rth-cen	tral				→←	Easte	r ``
Sites							Sites				
Fabric	Tepich	Tecoh	Telchaquillo	Mayapán	Tekit	Mama	Tipikal	T eabo	Cobá	Chac Mool	Culubá
Fine Particle Size					ĺ						
Calcite-Quartz-B/R-Fine (CX-QZ-B/R-f)				PPPP						PPPP	
Dolomite-B/W-Medium (DX-B/W-m)		M M N			M Y						
Coarse Particle Size											
Calcite-Quartz-B-Coarse (CX-QZ-B-c)										N	
Dolomite-Calcite-Medium-Hard (DX-CX-m-h)											MM
Calcite-Micrite-01-Coarse (CX-CM-01-c)				X			N		M M M N	xxxx	M M M M M M
Calcite-Micrite-02-Coarse (CX-CM-02-c)										N Y Y Y	M YY V
Sparite-mXtal-W/B-Coarse (CSm-W/B-c)	YY	NNN	Y			Y	N	YY	N		
Calcite-Grog-B/R-Coarse (MX-GROG-B/R-c)			Y		М		Y	YY			
Dolomite-Calcite-B-Coarse (DX-CX-B-c)				N N	YY						

KEY: M = Mama (or Cancun) variety (slipped), N = Navula (plain), Y = Yacman (striated), P = Payil , X = Xcanchakan; uk = unknown ; u/a = unassigned

Crystalline Fabrics and Associations with Sites and Ceramic Varieties

Fabric classes with medium-to-coarse crystals when found at the north-central sites are associated with unslipped jars, in particular striated Yacman jars. Of the total of 20 samples, 19 are unslipped jars. Of these, 12 are Yacman ollas, most likely used for

cooking. On the other hand, these types of coarse fabrics classes when found at Cobá, Chac Mool or Culubá are associated with all utilitarian ceramic varieties: Mama, Yacman, Navula, and Xcanchakan. In addition, it can be observed from Table 8-24 that the coarse crystalline fabric classes found at the eastern and north-central sites are different and do not overlap.

Not all the crystalline fabrics from eastern and north-central sites are coarse: a fine (mode) grained dolomite fabric (Dolomite-B/W-Medium) was found at the north-central sites of Tecoh and Tekit, and fabric Calcite-Quartz-B/R-Fine containing fine calcite and quartz was found in Payil samples from Chac Mool and Culubá.

8.8 Fabric Classes with Skeletal Remains

Fossilized fragments of maritime faunal skeletal remains (CH) were commonly found in some of the samples. These remains had undergone processes such as micritization that created micro to medium-crystalline infilled fossils. This section deals with those thin sections in which skeletal remains are the dominant inclusion. Two fabric classes were found, CH-W-cm and CH-B-c. Their main characteristics are summarized in Table8-25.

Fabric Class	Main Inclusions	Grain Size (mode)	Poro sity
Bioclasts-W-Coarse/Medium (CH-W-cm)	Coarse portion: micritized skeletal remains and homogeneous calcite Fine portion: no silt	Medium to coarse	Low to Med (1-7%)
Bioclasts-B-Coarse (CH-B-c)	Coarse portion : micritized skeletal remains and homogeneous calcite Fine portion: varied silt from few to common	Coarse	High (10-20%)

Table 8-25. Main Characteristics of Skeletal Remains Fabrics

8.8.1 Bioclast-W-Medium (CH-W-cm) Fabric Class

This fabric is characterized by the presence of micritized shell fragments (see Figure 8-34) in which most fit the description of "homogeneous calcite" (Section 8.1.1), which can lead to their classification as single crystals. The description of this fabric is found in Table 8-26.

Figure 8-34. Fabric class Bioclast-W-Coarse/Medium (CH-W-cm) showing skeletal fragments (thin section is tinted) (#284, xp, width of field 2.8 mm)

Table 8-26. Fabric Class Bioclasts-W-Coarse/Medium (CH-W-cm) in Thin Section
Fabric class code CH-W-cm general information:
No. of thin sections $= 11$
General fabric type: Skeletal remains and fragments of calcite homogeneous
Main characteristics: (1) skeletal remains and homogeneous micrite; (2) white refired color; (3) coarse-grained or
medium-grained
Photomicrographs: Figure 8-35
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Section 6.2):
Hand-specimen fabric: Micrite-medium-White (WM-m-W), which is explained by the micritic nature of the fossil
remains.
Hardness : soft
Refired color: white
CH-W-cm Thin section:
I) Microstructure (Section 8.2.2)
• Porosity: Mostly compacted sherds with voids usually in the form of vughs taking 2 -7% of field of view
• Packing (particles > silt) : double space
Preferred orientation: no orientation
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
Largely homogeneous groundmass
• white to v. pale brown 10YR 8/1 to 8/2, very light greenish gray (xp, pp); birefringent, faintly pleochroic
matrix
IIb) Groundmass: coarser inclusions (Section 8.2.1)
Coarser Inclusions (>0.0625 mm) (frequencies are related to the whole thin section).
• the 30 : $63-68$:2-7, with the micromass' boundary 0.0625.
Common to Few: MICRITIZED SHELLS and HOMOGENEOUS CALCITE – many recognizable fragments of
skeletal remains and of homogeneous calcite (likely fragments of micritized skeletal remains); mostly prolate; many
showing zoned extinction, setting them apart from micrite. They range in size from fine to coarse, mode is coarse
to medium.
Rare to Very rare: MICRITE – single calcite, coarse, micrite-altered sparry calcite.
Very rare: QUARTZ – present with frequency of 1 or two particles in a thin section.
IIc) Groundmass: fine portion
Fine Portion (<0.0625 mm) (frequencies are of the fine portion only)
Very rare silt
III) Textural Concentration Features

Absent to a count of 3 or four are brownish-red to dark-brown-red (xp), with no internal structure, inclusions or orientation; high optical density; most with clear boundaries.

8.8.2 Bioclast-B-Coarse (CH-B-c) Fabric Class

This is a coarse fabric, with abundant angular, recognizable shell remains. This fabric differs from the skeletal remains fabric just described, or Bioclast-W-Coarse/Medium, not only on the fired and refired colors but also in the higher porosity, long channels, and the color under xp and pp.

Figure 8-35. Fabric Class Bioclast-B-Coarse (#450, xp, width of field 2.82mm)

This fabric is not homogeneous as illustrated in Figures 8-35 and 8-36. In Figure 8-35, the inclusions are largely homogeneous micrite and shell remains are recognizable, whereas the inclusions in Figure 8-36 are a mixture of biomicritic rocks, micritized shell fragments, and bio-sparite fragments. The description of this fabric is found in Table 8-27.

Figure 8-36. Fabric class Bioclast-B-Coarse (#409, xp, width of field 2.82 mm)

Table 8-27	Description	of Fabric	Bioclast-B-Coarse	(CH-B-c)	in Thin Section

Fabric class code CH-B-c general information:
No. of thin sections = 9
General fabric type: skeletal remains and homogeneous calcite
Main characteristics: (1) Skeletal remains; (2) light reddish brown refiring color; (3) coarse-grained or medium-
grained
Photomicrographs: Picture 8-36
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Section 6.2):
Fabrics: various (sparitic, micritic, or single crystals)
Hardness : soft
Refired color: light reddish brown
CH-B-c in Thin section :
I) Microstructure (Section 8.2.2)
• porosity : varied, ranging from 5 to around 20% of the thin section, with vughs and long channels
• Packing (particles > silt) : close
Preferred orientation: no orientation observed
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
Homogeneous:
• Fired (original) color in xp, pp: yellowish brown to strong brown (7.5 YR 5/8), brown 10YR 5/3 opaque
IIb) Groundmass: coarser inclusions (Section 8.2.1)
• Coarser Inclusions (>0.0625 mm) (frequencies are related to the whole thin section).
• The c:f:v is 15-50 :30-80: 5-20
Frequent to Common: SHELLS and HOMOGENEOUS CALCITE – a mixture of recognizable fragments of
skeletal remains and of homogeneous calcite (which are likely fragments of micritized skeletal remains); mostly
prolate; many showing zoned extinction, setting them apart from other micrite. They range in size from fine to
coarse without a more frequent size.
Very Few to Very rare: DARK MICRITE (sub opaque in xp)
IIc) Groundmass: finer inclusions (Section 8.2.1)
Fine Portion (<0.0625 mm) (percentages are of the fine portion only)
Varied silt frequency from very few to common

8.8.3 Singleton Fabrics

In this section, one singleton fabric is described. A code was assigned. Fabric CH-R-f is characterized by its fine texture. The fabric is represented by one Palmul sherd from Culubá with fine-grain, predominant presence of fine angular and sub-angular shell and calcite homogeneous (likely shells) fragments, and a relatively compacted paste.

8.8.4 Associations between Bioclast Fabric Classes, and Sites, and Ceramic Typology

Table 8-28 helps to visualize the distribution of the two fabrics in which the skeletal remains dominate. The table clearly shows that the two fabrics have different geographical scope. Fabric class Bioclast-W-Coarse/Medium, or CH-W-cm, was found at Tepich almost exclusively. The north-central sites in Table 8-28 are presented ordered according to their location, in a north to south direction. Tepich is the farthest site to the north of Mayapán in this study, and the fabric classes found at Tepich do not overlap, for the most part, with the fabrics found at the other north-central sites.

 Table 8-28. Associations between Bioclast Fabric Classes and Sites and Ceramic Varieties

KEY: M = Mama variety (slipped), N = Navula (plain), Y = Yacman (striated)

These fabrics appear correlated with the surface finish (or ceramic type), although the number of samples characterized within these fabrics is small, and this interpretation can change with more extensive sampling. Fabric class Bioclast-B-Coarse, or CH-B-c, was found in unslipped samples only, mostly plain Navula jars (but one cajete).

8.9 Dark Micrite Fabric Classes

Dark Micrite fabrics comprise a group of samples containing dark brown or gray, semiopaque particles of micrite as main inclusions. A significant portion of hand specimens has as a main characteristic the presence of dark gray, brown, or black particles. In many instances during thin-section analysis, dark micrite were characterized under a variety of different fabric classes, mainly because dark particles played a trick on the eye leading to overestimating their contribution to the total of inclusions.

This group is composed of two fabric classes: a medium-grained DarkMicrite-Micrite-Medium (CG-CS-W/B-m) class and a coarsely grained (CG-CM-W-c) class. Table 8-29 summarizes the main characteristics of these fabrics.

 Table 8-29. Main Petrographic Characteristics of Dark Micrite Fabrics

Fabric Class	Grain Size	Main Inclusions	Poro sity	Fired Color (xp)		
DarkMicrite-Micrite-Medium (CG-CM-W-m)	coarse	COARSE portion: dark brown micrite	Low	Pale brown, red		
DarkMicrite-Micrite-Coarse (CG-CM-W-c)	coarse	COARSE portion: dark brown micrite (xp, pp)	High	Light olive, very light gray		

8.9.1 DarkMicrite-Micrite-Medium (CG-CM-W-m) Fabric Class

Samples within this fabric are characterized by the presence of opaque or sub-opaque, medium-grained, dark micrite, with low porosity and silt. The description of this fabric is found in Table 8-30.

Table 0-50. Fabric Class Darkinerite-interiteriteriteriteriteriteriteriteriteri
Fabric class code general information:
No. of thin sections = 7
General fabric type: dark micrite
Main characteristics: (1) dark micrite,
Photomicrographs:
Ceramic sphere: Tases
Summary of Characteristics in Hand Specimen (Section 6.2):
Hand-specimen fabric: GM-cm-W
Hardness : soft
Refired color: white
CG-CM-W-c in Thin section :
I) Microstructure (Section 8.2.2)
Porosity: very low, around 2%
• Packing (particles > silt) : double
Preferred orientation: no preferred orientation observed
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
homogeneous : color may vary within a thin section from brownish gray to light gray

 Table 8-30. Fabric Class DarkMicrite-Micrite-Medium (CG-CM-W-m)

- 225 -	
---------	--

• Fired (original) color in xp , pp: mainly light yellowish or reddish gray, but also brownish gray was observed								
IIb) Groundmass: coarser inclusions (Section 8.2.1)								
 Coarser Inclusions (>0.0625 mm) (frequencies are related to whole thin section). The c:f: v is 10-30: 68-88: 2 Common to Few: DARK MICRITE dark brown calcareous mud (xp, pp), fine to very coarse, mode is medium Very few to Very rare: MICRITE may be present; CALCITE HOMOGENEOUS Micritized fossil shells, medium to coarsely grained present in most thin sections. Very rare: OUARTZ - fine grained quartz, with a count of 1 or 2 per thin section when present. 								
IIc) Groundmass: finer inclusions (Section 8.2.1)								
Fine Portion (<0.0625 mm) (frequencies are of the fine portion only) No silt observed in most, rare dolomite crystals in thin section.								
III) Textural Concentration Features								
Very rare red concretions								

8.9.2 DarkMicrite-Micrite-Coarse (CG-CM-W-c) Fabric Class

Fabric class DarkMicrite-Micrite-Coarse (CG-CM-W-c) is a variant of DarkMicrite-Micrite-Micrite-Medium (CG-CM-W-m). Similar to samples within DarkMicrite-Micrite-Micrite-Micrite-Coarse present opaque or subopaque, dark micrite, with low silt. It is differentiated from CG-CM-W-m by its highly porous micromass and coarsely grained fabric (Figure 8-37).

Figure 8-37. Fabric DarkMicrite-Micrite-Coarse (CG-CM-W-c) showing coarse dark micrite and very porous micromass (#146, xp, width of field 2.82 mm)

8.9.3 Associations between Dark Micrite Fabric Classes, Sites, and Ceramic Varieties

In this section, the associations between the dark micrite fabrics and contextual information are examined. Each entry in Table 8-31 represents one thin section and shows the site or find spot, as well as the ceramic variety and the fabric class to which it was assigned.

 \leftarrow -----North-central ----- \rightarrow Easter \rightarrow Sites Sites **Felchaquillo** Chac Mool Mayapán Culubá **Fipikal Fepich** T eabo Fabric Class Tecoh Mama **Fekit** Cobá DARK MICRITE DarkMicrite-Micrite-Medium MΝΝΝΝ (CG-CM-W-m) Ν DarkMicrite-Micrite-Coarse MY ΥY Y (CG-CM-W-c) ΥY

 Table 8-31. Associations between Dark Micrite Fabric Classes and Sites and Ceramic Varieties

KEY: M = Mama variety (slipped), N = Navula (plain), Y = Yacman (striated), uk = unknown

It can be observed from the table that these fabrics have a limited geographical scope. They were found within the north-central area, from Tepich to Tekit. The table also shows that there is a correlation between the fabrics and the types of vessels. The coarser fabric is associated with open-mouth Yacman jars, cooking pots most likely, while the medium-grained fabric is associated with plain unslipped samples.

8.10 Petrographic Analysis of Collected Clays and Marls

This section reports the results of the thin-section analysis of raw materials from the north-central area. As can be recalled from Section 5.4, no clay deposits were located within the vicinity of Mayapán (one potential clay mine within Mayapán had its entrance plugged in with natural beehives). The closest mine was located 20 km from this site in the Chapab area. Samples (Table 5-4) of red soils, off-white to yellow marl sascab, off-white to yellow marl sascab, off-white to yellow marl sascab, off-white to yellow rock sascab, light brown marl sascab, and a light gray clay from around Chapab were collected from various locations (map in Figure 6-8).

Marls (plastic sascab) comprise most of the petrographically analyzed raw materials. They contain carbonate rock fragments. First, after manually removing the larger pebbles, briquettes were prepared from these marls. They were fired at 700°C for 40-45 minutes. Thin sections were prepared and examined under the polarizing microscope. Table 8-32 contains the results of the petrographic analysis of these raw materials.

 Table 8-32. Results of Petrographic Analysis of Local Marls and Clay

Raw Material #1 (CGS187)
I) Microstructure (Section 8.2.2)
Porosity: no porosity
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
Micromass optically inactive.
Fired (original) color in xp, pp: light greenish gray GLEY1 5G 7/1 (xp, pp);.
IIb) Groundmass: coarser inclusions (Section 8.2.1)
Coarser Inclusions (>0.0625 mm) (frequency ranges of whole thin section).
No inclusions
IIc) Groundmass: finer inclusions (Section 8.2.1)
Fine Portion (<0.0625 mm) (frequencies are of the fine portion only)
No inclusions
III) Textural Concentration Features
Very rare yellow red subrounded concretions
Raw Material #2 (CGS188)
I) Microstructure (Section 8.2.2)
Porosity: no porosity
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
Homogeneity : homogeneous color and optical activity
Optically inactive micromass
Micromass Fired (original) color in xp, pp: r: light greenish gray GLEY1 5G 7/1 (xp, pp).
IIb) Groundmass: coarser inclusions (Section 8.2.1)
Coarser Inclusions (>0.0625 mm) (frequency ranges of whole thin section).
Common SPARITE (finely crystalline), very coarse particle size, subrounded to rounded.
(NO = Single dolomite crystals, dolospar, single calcite crystals, quartz, micrite)
IIc) Groundmass: finer inclusions (Section 8.2.1)
Fine Portion (<0.0625 mm) (frequencies are of the fine portion only)
INO SILE SIZE particles
Very rare red concretions
Very rare medium brown onaque (xp) irregularly shaped units
very rate medium brown opaque (xp) megularly shaped units
Raw Material #4 (CGS189)
D Microstructure (Section 8.2.2)
Porosity: no porosity
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
Homogeneity : homogeneous color and optical activity
Optically activity: inactive micromass
Micromass fired (original) color in xp , pp: light greenish gray GLEY1 5G 7/1 (xp, pp)

11b) Groundmass: coarser inclusions (Section 8.2.1)
Coarser Inclusions (>0.0625 mm) (frequency ranges of whole thin section).
Few SPARITE (finely crystalline), with very coarse (mode) particle size ranging from fine to very coarse.
Few BROWN MICRITE
(NO = Single dolomite crystals, dolospar, single calcite crystals, quartz, micrite)
IIc) Groundmass: finer inclusions (Section 8.2.1)
Fine Portion (<0.0625 mm) (frequencies are of the fine portion only)
No silt size particles
III) Textural and Amorphous Concentration Features
Red concretions, fine size, rounded, count of 5
Amorphous irregularly shaped concentrations of brown color
Raw Material #11 (CGS193)
D Microstructure (Section 8.2.2)
Derosity: 5 % channels
To to sty. 570 channels
Ta) Groundmass: nonogenerity and optical characteristic (Section 6.2.2)
Portigeneity: nomogeneous color and optical activity
Optically activity: optically inactive
Micromass fired (original) color in xp, pp: Reddish yellow 10 YR //8 pp,xp and pale brown yellow 10 YR 8/8;
11b) Groundmass: coarser inclusions (Section 8.2.1)
Coarser Inclusions (>0.0625 mm) (frequency ranges of whole thin section).
Few finely crystalline DOLOSPAR, grain size very coarse (mode) but ranging from fine to very coarse
Few finely crystalline SPARITE, coarse (mode) grain size.
Few BROWN MICRITE, semi-opaque
Rare BIOCLAST
Very rare QUARTZ
(NO = dolomite or calcite single crystals, micrite)
IIc) Groundmass: finer inclusions (Section 8.2.1)
Fine Portion (<0.0625 mm) (frequencies are of the fine portion only)
Very rare DOLOMITE
III) Textural and Amorphous Concentration Features
Few red iron concretions, rounded
Amorphous brown irregularly shaped clay impregnations and nodules
Raw Material #19a (CGS196)
I) Microstructure (Section 8.2.2)
Porosity: No porosity
IIa) Groundmass: homogeneity and optical characteristic (Section 8.2.2)
Homogeneity homogeneous color and optical activity
Ontically activity ontically inactive
Micromass fired (original) color in vn_np; very pale grav
Heromass: coarser inclusions (Section 8.2.1.)
Coarser Inclusions (>0.625 mm) (frequency ranges of whole thin section)
Few finely crystalline SPARITE fine to medium particle size subangular very finely crystalline
Very Few DARK MICRITE
Very rare SINGLE CALCITE CRYSTAL (counted 1)
(NO Micrite Quartz Red concretions Shells)
Level mente, qualiz, real control ons, sinens)
Fine Portion (\leq 10.0625 mm) (frequencies are of the fine portion only)
Very rare calcite
III) Taxtural and Amernhaus Concentration Features
111) בכאנוו מו מווע Alliu phous Concentration Features

The particle sizes of the carbonate inclusions in the raw materials do not match the pottery samples. The pottery samples from the north-central area do not include untempered, fine-grained, or very coarsely grained samples. Contrastingly, these types of grains were found in these marls. One thin section does not have any inclusions (#1). Samples #2 and #4 contain very coarse particles of (finely crystalline) sparite. Sample #11 includes a mixture of very coarse dolospar and sparite comprises the main inclusions. In the next chapter, these issues are examined further. The raw materials and pottery samples are compared in depth. They are also examined in terms of the possible ceramic techniques that could have been used to produce the vessels sampled in this study. The ceramic techniques examined include firing techniques appropriate for such calcareous raw materials.

8.11 List of Samples

Table 8-33 contains the list of pottery samples. The table includes the ANID or id used in the chemical analysis, the fabric class code assigned to the sample, the chemical group (if the sample was selected for chemical analysis), the ceramic variety, and the most common Euclidian distance match calculated as part of the chemical analysis.

				Ch.	Fabric Class	Most common	Vessel		
#	Site	Variety	ANID	Grp	(thin section)	Euclid match	Shape	(*)	Sample ID
1	Mayapan	Mama			CM-W-m		Cajete	F	MY 87
2	Mayapan	Mama			DZ-B-c		Cajete	F	MY 87
3	Mayapan	Mama					cajete	А	MY 87
4	Mayapan	Mama					Cajete	F	MY 87
5	Mayapan	Mama					tinaja	А	MY 87
6	Mayapan	Mama			CG-CM-W-m		tinaja	F	MY 87
7	Mayapan	Mama					tinaja	А	MY 87
8	Mayapan	Mama					cajete	F	MY 87
9	Mayapan	Navula					Olla	А	MY 87
10	Mayapan	Navula					olla	F	MY 87
15	Mayapan	Yacman			DZ-B-c		olla	G	MY 87
16	Mayapan	Yacman			DZ-B-c		olla	G	MY 87
17	Mayapan	Tecoh					cajete	А	MY 87
18	Mayapan	Mama			DZ-W-c		cajete	G	MY 87
23	Mayapan	Mama					tinaja	А	MY 89
24	Mayapan	Mama					tinaja	F	MY 89
25	Mayapan	Mama			DZ-W-m		tinaja	F	MY 89
26	Mayapan	Mama					tinaja	А	MY 89
27	Mayapan	Mama			CS-W/B-cm		tinaja	G	MY 89
28	Mayapan	Mama					tinaja	F	MY 89
32	Mayapan	Navula			DZ-W-c		olla	G	MY 89
34	Mayapan	Yacman					Olla	А	MY 89
35	Mayapan	Yacman			DZ-W-c		olla	А	MY 89
38	Mayapan	Polbox					tinaja	С	MY 89
39	Mayapan	Yacman					Olla	F	MY 97
42	Mayapan	Yacman					Olla	G	MY 96
43	Mayapan	Yacman			DZ-B-c		Olla	G	MY 96
44	Mayapan	Navula					Olla	A	MY 91
45	Mayapan	Yacman					Olla	G	MY 96
48	Mayapan	Chen Mul			DZ-W-c		censer	G	MY 91
54	Mayapan	Papacal					tinaja	F	MY 86
58	Mayapan	Yacman					Olla	F	MY 87
59	Mayapan	Navula			DX-CX-B-c		Olla	С	MY 87
60	Mayapan	Navula			DX-CX-B-c		Olla	С	MY 87
62	Mayapan	Kukula					tinaja	А	MY 50
64	Mayapan	Kukula					tinaja	А	MY 50
65	Mayapan	Kukula					tinaja	А	MY 50

Table 8-33. List of Samples in this Study

7017	Mayapan	Tecoh					tinaja	F	MY 50
/U N	Mayapan	Polbox					tinaja	Η	MY 50
72 N	Mayapan	Xcanchakan					tinaja	F	MY 50
74 N	Mayapan	Moyos					velero	G	MY 35
76 N	Mayapan	Unslipped- Exterior					tinaja	A	MY 35
		Unslipped-							
78 N	Mayapan	Exterior					tinaja	Α	MY 35
79 N	Mayapan	Polbox					Tinaja	Α	MY 35
80 N	Mayapan	Sulche					Tinaja	А	MY 35
82 N	Mayapan	Yacman			CG-CM-W-c		Olla	А	MY 35
85 N	Mayapan	Xcanchakan					tinaja	G	MY 58
87 N	Mayapan	Mama					tinaja	F	MY 58
88 N	Mayapan	Kukula					tinaja	F	MY 51
89 N	Mayapan	Yacman					Olla	С	MY 110
90 N	Mayapan	Yacman					Olla	С	MY 110
91 N	Mayapan	Payil					tinaja	F	MY 110
95 N	Mayapan	Papacal					tinaja	F	MY 110
98 N	Mayapan	Yacman	CGS065	1	DZ-W-c	Mayapan	Olla		MY 110
101 N	Mayapan	Navula	CGS070	1	DZ-B-c	Mayapan	cajete	F	MP980702-1
102 N	Mayapan	Navula	CGS071	u/a	CM-W-m	Mayapan	Olla	F	MP980702-1
							cylind	_	- mood - o c c
103 N	Mayapan	Navula					er	F	MP981506-2
104 N	Mayapan	Navula	CGS072	u/a	CM-W-m	Mayapan	Olla	F	MP989701
105 N	Mayapan	Navula					Cajete	F	MP980792
106 N	Mayapan	Navula	CGS073	1	CH-W-cm	Mayapan	Cajete	A	MP980752
107 N	Mayapan	Navula					Cajete	F	MP980731
109 N	Mayapan	Navula	CGS074	1	DZ-W-m	Mayapan	Cajete	A	MP980752
110 N	Mayapan	Navula	CGS075	1	DZ-W-m	Mayapan	Cajete	F	MP980691
111 N	Mayapan	Mama					tinaja	G	MP980701
112 N	Mayapan	Mama	~~~~				Cajete	F	MP970526-1
113 N	Mayapan	Mama	CGS052	1	DZ-W-c	Mayapan	Cajete	G	MP9770506
114	(Mana					Tecom	C	MD000014 1
114 N	viayapan	Mama			DZ W		ale	G	MP982014-1
IN	Vlavanan	10/10/0200			DZ-w-m		Cajete	G	MP982065-3
115 N	Javapan	Mama					agista	E	
115 N 117 N 110 N	Mayapan	Mama	CCS052	2	OZ MY D f	Tioul	cajete	F A	MD001505 1
115 N 117 N 119 N	Mayapan Mayapan Mayapan	Mama Mama Linglinnad	CGS053	2	QZ-MX-B-f	Ticul	cajete Cajete	F A	MP981505-1
115 N 117 N 119 N	Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior	CGS053	2	QZ-MX-B-f	Ticul	cajete Cajete	F A F	MP981505-1
115 N 117 N 119 N 121 N	Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior	CGS053	2	QZ-MX-B-f	Ticul	cajete Cajete tinaja	F A F	MP981505-1 MP982926-2 MP980703
115 N 117 N 119 N 121 N 129 N 130 N	Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil	CGS053 CGS083 CGS084	2	QZ-MX-B-f	Ticul Laguna de On	cajete Cajete tinaja tinaja	F A F O	MP982926-2 MP980793 MP980793
115 N 117 N 119 N 121 N 129 N 130 N 131 N	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil Payil Payil	CGS053 CGS083 CGS084 CGS085	2 4 4 4	QZ-MX-B-f	Ticul Laguna de On Laguna de On	cajete Cajete tinaja tinaja tinaja	F A F O C	MP981505-1 MP982926-2 MP980793 MP980793 MP980793
115 M 117 M 119 M 121 M 129 M 130 M 131 M 132 M	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil Payil Payil Payil	CGS053 CGS083 CGS084 CGS085	2 4 4 4	QZ-MX-B-f CX-QZ-B/R-f	Ticul Laguna de On Laguna de On Laguna de On	cajete Cajete tinaja tinaja tinaja Cajete	F A F O C C	MP981505-1 MP982926-2 MP980793 MP980793 MP980793 MP980793
115 N 117 N 119 N 121 N 129 N 130 N 131 N 132 N 133 N	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil	CGS053 CGS083 CGS084 CGS085 CGS086	2 4 4 4 4	QZ-MX-B-f CX-QZ-B/R-f	Ticul Laguna de On Laguna de On Laguna de On	cajete Cajete tinaja tinaja tinaja Cajete tinaja	F A F O C C C C	MP982926-2 MP980793 MP980793 MP980793 MP980793 MP981740-1 MP982004-2
115 M 117 M 119 M 121 M 129 M 130 M 131 M 132 M 133 M 134 M	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087	2 4 4 4 4 4 4 1/2	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal	cajete Cajete tinaja tinaja tinaja tinaja Cajete tinaja	F A F O C C C C C C	MP982926-2 MP982926-2 MP980793 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1
115 M 117 M 119 M 121 M 129 M 130 M 131 M 132 M 133 M 134 M 135 M	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088	2 4 4 4 4 4 u/a u/a	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-CM-01-f	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal various	cajete Cajete tinaja tinaja tinaja tinaja Cajete tinaja tinaja tinaja	F A F O C C C C C C C C	MP982926-2 MP982926-2 MP980793 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1 MP982501
115 M 117 M 119 M 121 M 129 M 130 M 131 M 132 M 133 M 134 M 135 M 136 M	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089	2 4 4 4 4 4 u/a u/a 4	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-CM-01-f CX-QZ-B/R-f	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On	cajete Cajete tinaja tinaja tinaja tinaja Cajete tinaja tinaja tinaja	F A F O C C C C C C C C C C C C	MP982926-2 MP982926-2 MP980793 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1 MP982501 MP980752
115 M 117 M 119 M 121 M 129 M 130 M 131 M 132 M 133 M 134 M 135 M 136 M 137 M	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089	2 4 4 4 4 4 u/a u/a 4	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-CM-01-f CX-QZ-B/R-f	Ticul Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On	cajete Cajete tinaja tinaja tinaja tinaja Cajete tinaja tinaja tinaja	F A F O C C C C C C C C C C C C C C	MP 982011-1 MP 981505-1 MP 982926-2 MP 980793 MP 980793 MP 980793 MP 981740-1 MP 982004-2 MP 982041-1 MP 982501 MP 980752 MP 982006-2
115 M 117 M 119 M 121 M 129 M 130 M 131 M 132 M 133 M 134 M 135 M 136 M 137 M 141 M	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089	2 4 4 4 4 u/a u/a 4	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f	Ticul Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On	cajete Cajete tinaja tinaja tinaja tinaja Cajete tinaja tinaja tinaja tinaja tinaja	F A F O C C C C C C C C C C C C C A	MP 982011-1 MP 981505-1 MP 982926-2 MP 980793 MP 980793 MP 980793 MP 981740-1 MP 982004-2 MP 982041-1 MP 982041-1 MP 982501 MP 980752 MP 982006-2 MP 981527-1
115 M 117 M 119 M 121 M 129 M 130 M 131 M 132 M 133 M 134 M 135 M 136 M 137 M 141 M 142 M	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089	2 4 4 4 4 u/a u/a 4 4	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On	cajete Cajete tinaja tinaja tinaja tinaja Cajete tinaja tinaja tinaja tinaja Cajete Tinaja Cajete	F A F O C C C C C C C C C C C C A A	MP 982011-1 MP 981505-1 MP 982926-2 MP 980793 MP 980793 MP 981740-1 MP 982004-2 MP 982041-1 MP 982041-1 MP 982501 MP 980752 MP 982006-2 MP 981527-1 MP 982969-2
115 M 117 M 119 M 121 M 129 M 130 M 131 M 132 M 133 M 134 M 135 M 136 M 137 M 141 M 142 M	Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066	2 4 4 4 4 u/a u/a 4 0 2	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f	Ticul Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan	cajete Cajete tinaja tinaja tinaja tinaja Cajete tinaja tinaja tinaja cajete Tinaja Cajete Olla	F A F O C C C C C C C C C C C C C C C C C C	MP982011-1 MP981505-1 MP982926-2 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1 MP982041-1 MP982501 MP980752 MP982006-2 MP981527-1 MP982969-2 MP980731
115 M 117 M 119 M 121 M 122 M 120 M 130 M 131 M 132 M 133 M 134 M 135 M 136 M 137 M 136 M 137 M 141 M 142 M 144 M 14	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Polbox Polbox Yacman	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066	2 4 4 4 4 4 4 4 4 2	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f	Ticul Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan	cajete Cajete tinaja tinaja tinaja Cajete tinaja tinaja tinaja tinaja Cajete Tinaja Cajete Olla Olla	F O C C C C C C C C C C C C C C C C C C	MP 982011-1 MP 981505-1 MP 980793 MP 980793 MP 980793 MP 980793 MP 981740-1 MP 982004-2 MP 982041-1 MP 982004-2 MP 982004-2 MP 982006-2 MP 981527-1 MP 982969-2 MP 980731 MP 980752
115 M 117 M 119 M 121 M 122 M 130 M 131 M 132 M 133 M 134 M 135 M 136 M 137 M 136 M 137 M 141 M 142 M 144 M 144 M 144 M 148 M	Mayapan Mayapan	Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Polbox Polbox Yacman Yacman	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS066	2 4 4 4 4 4 4 4 4 4 4 2 2	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-CM-01-f CX-QZ-B/R-f CX-QZ-B/R-f DZ-B-c DZ-B-c	Ticul Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan Mayapan	cajete Cajete tinaja tinaja tinaja Cajete tinaja tinaja tinaja tinaja Cajete Tinaja Cajete Olla Olla	F A F O C C C C C C C C C C C C C C C C C C	MP 982011-1 MP981505-1 MP982926-2 MP980793 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1 MP982501 MP982501 MP980752 MP980752 MP981527-1 MP982969-2 MP980731 MP980752 MP980752 MP980752
115 M 117 M 119 M 121 M 122 M 130 M 131 M 132 M 133 M 133 M 134 M 135 M 136 M 137 M 141 M 142 M 144 M 144 M 144 M 144 M 144 M	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Polbox Polbox Yacman Yacman Yacman	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS066 CGS067 CGS068	2 4 4 4 4 4 u/a 4 2 2 1 1	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f DZ-B-c DZ-B-c DZ-B-c DZ-B-c	Ticul Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan Mayapan Mayapan	cajete Cajete tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja Cajete Tinaja Cajete Olla Olla Olla	F A F O C C C C C C C C C C C C C C C C C C	MP 982011-1 MP981505-1 MP982926-2 MP980793 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1 MP982501 MP980752 MP980752 MP981527-1 MP982969-2 MP980731 MP980752 MP980752 MP980752 MP970526-1 MP980792
115 M 117 M 119 M 121 M 120 M 130 M 131 M 132 M 133 M 133 M 135 M 135 M 136 M 137 M 141 M 142 M 144 M 144 M 144 M 144 M 145 M 14	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Polbox Polbox Yacman Yacman Yacman Yacman	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS066 CGS067 CGS068 CGS069	2 4 4 4 4 4 4 4 4 2 2 1 1 1 1 u/a	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-CM-01-f CX-QZ-B/R-f CX-QZ-B/R-f DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c	Ticul Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan Mayapan Mayapan Mayapan	cajete Cajete tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja Cajete Tinaja Cajete Olla Olla Olla Olla	F A F O C C C C C C C C C C C C C C C C C C	MP 982011-1 MP981505-1 MP982926-2 MP980793 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1 MP982501 MP980752 MP980752 MP981527-1 MP982969-2 MP980731 MP980752 MP980752 MP970526-1 MP980792 MP980792
115 M 117 M 119 M 121 M 120 M 130 M 131 M 132 M 133 M 133 M 133 M 134 M 135 M 135 M 136 M 137 M 141 M 142 M 144 M 144 M 144 M 145 M 14	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Polbox Polbox Yacman Yacman Yacman Yacman Yacman	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS066 CGS067 CGS068 CGS069	2 4 4 4 4 4 4 4 4 2 2 1 1 1 1 u/a	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-CM-01-f CX-QZ-B/R-f CX-QZ-B/R-f DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan Mayapan Mayapan	cajete Cajete tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja Cajete Tinaja Cajete Olla Olla Olla Olla Olla	F A F C C C C C C C C C C C C C C C C C	MP 982011-1 MP981505-1 MP982926-2 MP980793 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1 MP982004-2 MP980752 MP980752 MP981527-1 MP982969-2 MP980731 MP980752 MP980752 MP980792 MP980792 MP980792 MP980792
115 M 117 M 1117 M 1119 M 121 M 120 M 130 M 131 M 132 M 133 M 133 M 133 M 134 M 135 M 135 M 137 M 141 M 142 M 144 M 144 M 144 M 149 M 150 M 151 M 152 M	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Polbox Polbox Yacman Yacman Yacman Yacman Yacman Yacman	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS067 CGS066 CGS067	2 4 4 4 4 4 4 4 4 4 2 2 1 1 1 1 u/a	QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-CM-01-f CX-QZ-B/R-f OZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan Mayapan Mayapan Mayapan	cajete Cajete tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja cajete Tinaja Cajete Olla Olla Olla Olla Olla Olla Olla	$ \begin{array}{c} F \\ A \\ \hline \\ F \\ O \\ C \\ C$	MP 982011-1 MP981505-1 MP982926-2 MP980793 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1 MP982006-2 MP981527-1 MP982969-2 MP980752 MP980752 MP980752 MP980752 MP980792 MP980792 MP980792 MP982547-2 MP982565-1
115 M 117 M 1117 M 1119 M 121 M 120 M 130 M 131 M 132 M 133 M 133 M 133 M 134 M 135 M 137 M 141 M 142 M 144 M 144 M 144 M 145 M 150 M 151 M 152 M 153 T	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Polbox Polbox Yacman Yacman Yacman Yacman Yacman Yacman Yacman	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS067 CGS068 CGS069 CGS068	2 4 4 4 4 4 4 4 4 4 4 2 2 1 1 1 1 1 1	QZ-MX-B-f QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan Mayapan Mayapan Mayapan	cajete Cajete tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja Cajete Tinaja Cajete Olla Olla Olla Olla Olla Olla Olla Oll	$\begin{array}{c} F \\ A \\ F \\ O \\ C \\ C$	MP 982011-1 MP981505-1 MP982926-2 MP980793 MP980793 MP980793 MP981740-1 MP982004-2 MP982041-1 MP98206-2 MP981527-1 MP981527-1 MP982969-2 MP980731 MP980752 MP980752 MP980792 MP980792 MP980792 MP980792 MP982547-2 MP982565-1 TQ97 0970
115 N 117 N 117 N 119 N 121 N 120 N 130 N 131 N 132 N 133 N 134 N 135 N 135 N 136 N 137 N 141 N 142 N 144 N 144 N 144 N 145 N 150 N 151 N 152 N	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Payil Yacman Yacman Yacman Yacman Yacman Yacman Yacman	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS067 CGS068 CGS069 CGS038 CGS038	2 4 4 4 4 4 4 4 4 4 4 2 2 1 1 1 1 1 1 2 5	QZ-MX-B-f QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal Various Laguna de On Mayapan Mayapan Mayapan Mayapan Mayapan S. Rita Corozal	cajete Cajete tinaja tinaja tinaja Cajete tinaja tinaja tinaja tinaja Cajete Tinaja Cajete Olla Olla Olla Olla Olla Olla Olla Oll	$\begin{array}{c} F \\ A \\ F \\ O \\ C \\ C$	MP 982011-1 MP 981505-1 MP 982926-2 MP 980793 MP 980793 MP 980793 MP 981740-1 MP 982004-2 MP 982041-1 MP 982041-1 MP 982501 MP 980752 MP 980752 MP 980752 MP 980752 MP 980752 MP 980752 MP 980792 MP 980792
115 M 117 M 117 M 119 M 121 M 120 M 130 M 131 M 132 M 133 M 133 M 134 M 135 M 135 M 136 M 137 M 141 M 144 M 144 M 144 M 144 M 150 M 151 M 155 T 155 T	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payarman Yach	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS067 CGS068 CGS069 CGS038 CGS039 CGS033	2 4 4 4 4 4 4 4 4 4 2 2 1 1 1 1 1 1 5 5 1	QZ-MX-B-f QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f DZ-B-c	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan Mayapan Mayapan Mayapan Mayapan S. Rita Corozal Mayapan	cajete Cajete tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja Cajete Olla Olla Olla Olla Olla Olla Olla Oll	$\begin{array}{c} F \\ A \\ F \\ O \\ C \\ C$	MP 982011-1 MP 981505-1 MP 982926-2 MP 980793 MP 980793 MP 980793 MP 981740-1 MP 982004-2 MP 982041-1 MP 98206-2 MP 980752 MP 980752 MP 980752 MP 980752 MP 980752 MP 980752 MP 980752 MP 980792 MP 980792
115 N 117 N 117 N 119 N 121 N 120 N 130 N 132 N 133 N 134 N 135 N 135 N 136 N 137 N 141 N 142 N 144 N 144 N 144 N 145 N 150 N 151 N 155 T 155 T 155 T	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payaran Yacman	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS067 CGS068 CGS069 CGS038 CGS039 CGS033	2 4 4 4 4 4 4 4 2 2 1 1 1 1 1 1 5 5 1	QZ-MX-B-f	Ticul Laguna de On Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan Mayapan Mayapan Mayapan Mayapan S. Rita Corozal Mayapan	cajete Cajete tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja tinaja Cajete Olla Olla Olla Olla Olla Olla Olla Oll	$ \begin{array}{c} F \\ A \\ F \\ O \\ C \\ C$	MP 982011-1 MP 981505-1 MP 982926-2 MP 980793 MP 980793 MP 980793 MP 981740-1 MP 982004-2 MP 982041-1 MP 982004-2 MP 98206-2 MP 980752 MP 980752 MP 980752 MP 980752 MP 980752 MP 980792 MP 980793 MP 980792 MP 980792 MP 980793 MP 980793 M
115 M 117 M 119 M 121 M 122 M 123 M 133 M 133 M 133 M 134 M 135 M 137 M 138 M 137 M 141 M 142 M 144 M 144 M 147 M 150 M 151 M 152 M 153 T 155 T 156 T 157 T	Mayapan Mayapan	Mama Mama Mama Unslipped- Exterior Payil Payin Payacman Yacman Yacman Yacman Yacman Yacman Yacman Mama Mama Mama Mama	CGS053 CGS083 CGS084 CGS085 CGS086 CGS087 CGS088 CGS089 CGS066 CGS066 CGS067 CGS068 CGS069 CGS038 CGS039 CGS033	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 1 2 2 1 1 1 1	QZ-MX-B-f QZ-MX-B-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-QZ-B/R-f DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c DZ-B-c	Ticul Laguna de On Laguna de On Laguna de On S. Rita Corozal various Laguna de On Mayapan Mayapan Mayapan Mayapan Mayapan S. Rita Corozal Mayapan	cajete Cajete tinaja tinaja tinaja cajete tinaja tinaja tinaja tinaja tinaja Cajete Olla Olla Olla Olla Olla Olla Olla Oll	$ \begin{array}{c} F \\ A \\ F \\ O \\ C \\ C$	MP 982011-1 MP 981505-1 MP 982926-2 MP 980793 MP 980793 MP 980793 MP 981740-1 MP 982004-2 MP 982041-1 MP 982041-1 MP 98206-2 MP 980752 MP 980752 MP 980752 MP 980752 MP 980752 MP 980792 MP 980792 MP 980792 MP 980792 MP 980792 MP 982547-2 MP 982565-1 TQ 97 0970 TQ 97 0092-1 TQ 97 0092-1 TQ 97 0988 TQ 97 1007-1

159	Telchaquillo	Mama					tinaja	F	TQ97 0912-1
160	Telchaquillo	Mama	CGS035	1	DZ-W-m	Mayapan	tinaja	F	TQ97 0130-1
161	Telchaquillo	Mama	CGS036	u/a	CM-W-m	Mayapan	Cajete	F	TQ971203-2
162	Telchaquillo	Navula	CGS043	1	DZ-W-c	Mayapan	Olla	F	TQ97 0454-3
163	Telchaquillo	Navula	CGS044	u/a	CS-W/B-cm	Mayapan	Olla	G	TQ97 0728-1
164	Telchaquillo	Navula			DZ-B-c		Olla	G	TQ97 0898
165	Telchaquillo	Navula	CGS045	5	DZ-B-c	S. Rita Corozal	olla	G	TQ 970727
166	Telchaquillo	Navula					olla	G	TO97 0743
167	Telchaquillo	Navula					olla	G	TO97 1207
168	Telchaquillo	Xcanchakan					tinaia	A	TO97 3024-2
169	Telchaquillo	Xcanchakan	CGS050	1	DZ-W-c	Mavapan	tinaia	F	TO971007-1
170	Telchaquillo	Xcanchakan					tinaia	F	TO971208-5
171	Telchaquillo	Xcanchakan			Untemprd		tinaia	F	TO970727
172	Telchaquillo	Xcanchakan	CGS051	2	CS-W/B-cm	Ticul	tinaia	Α	TO970454
173	Telchaquillo	Xcanchakan					tinaia	F	TTO 97 0783
175	Telchaquillo	Yacman	CGS040	u/a	DZ-B-c	various	Olla	F	TO97 0791
176	Telchaquillo	Yacman	CGS041	1	CSm-W/B-c	Mavapan	Olla	F	TO97 1584-2
178	Culuba	Vista Alegre						С	CLBE E11-14 10-E IV
								-	CLB 01 11Kloc 13-E
179	Culuba	Vista Alegre						С	III
180	Culuba	Vista Alegre						С	CLB01 9KK 12-II II
181	Culuba	Vista Alegre	CGS154	u/a	CX-CM-02-c	Tipui		G	CLB01 11Klo 9-C II
182	Culuba	Vista Alegre						C	CLB01 11KL0 18-k II
								-	CLB02 9K1C 12-HH
183	Culuba	Vista Alegre						С	II
184	Culuba	Vista Alegre						C	CLB01 9K1C 12-GG
185	Culuba	Vista Alegre						C	CLB01 AK19 5-S I
188	Culuba	Yacman	CGS158	3		various	Olla	Ā	CLB00 PM 3M I
189	Culuba	Yacman		-			Olla	A	CLB00 9KK 16-29 I
190	Culuba	Yacman					Olla	A	CLB00 9KK 16-FF I
191	Culuba	Yacman	CGS159	3	СХ-СМ-02-с	Cave Coco	Olla	C	CLB00 RM 29-R I
200	Culuba	Yacman	CGS160	3	CX-CM-02-c	Ticul	Olla	C	CLB00 9K1C 16-FF I
201	Culuba	Yacman		-			Olla	C	CLB00 PM 2K I
202	Culuba	Yacman	CGS161	3		Laguna de On	Olla	G	CLB00 9K1C 16-FF I
203	Culuba	Mama	CGS147	2	CX-CM-01-c	Mayapan	tinaia	C	CLB00 9KK 17CC I
204	Culuba	Mama	CGS148	2	CX-CM-01-c	Mayapan	tinaja	C	CLB00 9KIC 16EG I
205	Culuba	Mama		_			tinaia	A	CLB00 9KIC 16EG I
206	Culuba	Mama			CX-CM-02-c		tinaja	C	CLB00 9KIC 16EE I
207	Culuba	Mama	CGS149	u/a	CX-CM-01-c	various	tinaja	A	CLB00 PM 32-1 II
208	Culuba	Mama	CGS150	2	CX-CM-01-c	various	tinaja	C	CLB00 9KIC 16FF I
209	Culuba	Mama	CGS151	2	CX-CM-01-c	various	tinaja	C	CLB00 PM 18-11
210	Culuba	Mama	CGS152	3	CX-CM-01-c	Laguna de On	tinaja	Δ	CLB00 9KK 16-FF
211	Culuba	Mama	000102	5		Luguna de On	tinaja	A	CLB00 PM 18-11
212	Culuba	Mama					tinaja	C	CLB00 PM 32-0 I
212	Culuba	Cancun					tinaia	$\frac{c}{c}$	CLB00 PM 28 I
213	Culuba	Cancun	CG8155	2		Mayanan	tinaja	Н	CLB00 PM 26-K II
214	Culuba	Cancun	000100	~	CX-CM-01-c	111ayapan	tinaja	н	CI B00 PM 35-A I
215	Culuba	Cancun			$DX_CY_m h$		tinaja	<u>с</u>	CI BOO PM 35 V
210	Culuba Culuba	Cancun	CG\$156	11/9	DA-CA-III-II	Mayanan	tinaja	с H	CI BOO PM 35 K I
217	Culuba	Cancun	000100	u/a		iviayapan	tinaja	$\frac{11}{C}$	CI B00 PM 25 11
210	Culuba	Cancun					tinaja		CLB00 PM 55-J1
219	Culuba	Navula					Ollo		CLD00 FM C1-11
229	Culuba	Nousia					Olla		
230	Culuba	Navula					Olla		
231	Culuba	Navula					Olla	U C	CLDUU FINI 18-J
232	Culuba	INAVUIA					Olla	U C	
233	Culuba	INAVUIA					Olla		CLBUUPM 30-M I
234		INAVUIA	000017	1	D7 W	Maria	Ulla		CLB00 PM 32-11
235	Teech	iviama	CGS017	1	DZ-W-m	iviayapan	tinaja	F A	1C 9/ 0844-1
236	Tecon	iviama	CGS017	u/a	CS-W/B-CM	various	unaja	A	TC 97 10/50-1
237	Tecoh	Iviama	CG8015	2	DX-B/W-m	Iviama	tinaja	A	TC 97 0130
238	Tecoh	Y acman	000000	1	DZ-B-C		Olla	G	1C970728-1
239	Tecoh	Y acman	CGS029	1	DZ-B-c	Mayapan	Olla	G	1C9/0/28-1

241 Mayapan	Yacman			DZ-W-c		Olla	G	MP
242 Mayapan	Navula	CGS076	1	CM-W-m	Mayapan	Olla	Α	MP 98 0739
243 Mayapan	Navula	CGS077	1	DZ-W-c	Mayapan	Olla	G	MP 98 1513-3
244 Mayapan	Navula	CGS078	1	DZ-W-c	Mayapan	Olla	G	MP98 0739 D#91
246 Mayapan	Navula			DZ-W-m		Cajete	G	MP 98 1679-1
247 Mayapan	Navula					Olla	F	
248 Mayapan	Mama	CGS054	1	DZ-W-m	Mayapan	tinaja	F	MP980752
249 Mayapan	Mama	CGS055	1	DZ-W-c	Mayapan	tinaja	F	MP9822065-3
250 Mayapan	Mama					tinaja	0	MP9800641
251 Mayapan	Mama					tinaja	Α	MP98 0641
253 Mayapan	Navula	CGS079	1	DZ-W-m	Mayapan	Cajete	G	MP 98 0792
254 Mayapan	Navula					Cajete	G	MP
255 Mayapan	Navula					Cajete	G	
256 Mayapan	Navula	CGS080	1	DZ-W-m	Mayapan	Cajete	G	MP 98 0770-1
257 Mayapan	Navula	CGS081	1	DZ-W-m	Mayapan	Cajete	G	MP 930960
258 Mayapan	Navula	CGS082	1	DZ-B-c	Mayapan	Olla	G	MO 98 2065-4
259 Mayapan	Mama	CGS056	1	CM-W-m	Mavapan	tinaia	F	MP 981S08-2
260 Mayapan	Mama	CGS057	1	DZ-W-m	Mayapan	tinaja	F	MP98 0752
261 Tipikal	Mama	CGS131	2	CS-W/B-cm	Laguna de On	Caiete	Α	TI99 1087-1
262 Tipikal	Mama	CGS132	1	CS-W/B-cm	Mayapan	Cajete	Α	TI 94 1107-1
263 Tipikal	Mama	CGS133	1	DZ-W-m	Mayapan	Cajete	F	TI 99 1125-1
264 Tipikal	Mama		-			Cajete	A	TI 99 99 1125-1
265 Tipikal	Mama					tinaia	F	T1 99 3000-1
265 Tipikal	Mama	CGS134	1	DZ-W-c	Mayanan	tinaja	Δ	Ti 99 1124-1
260 Tipikal	Mama	CG\$135	1	DZ-W-m	Mayapan	tinaja	Δ	TI 99 11-24-1
267 Tipikal	Mama	000100	1	DZ-W-m	Widyapan	tinaja	G	TI 99 1104-1
260 Tipikal	Mama	CG\$136	11/2	CM-W-m	Mayanan	tinaja	F	TI 99 1106-1
200 Tipikal	Vacman	005150	u/a	DZ-W-c	Wayapan	Olla	G	TI 99 1107-1
270 Tipikal	Vacman	CG\$137	1	DZ-W-C	Mayanan	Olla	G	TI 99 1107-1
271 Tipikal	Vacman	CG\$138	1	DZ-W-C	Mayapan	Olla	G	TI 00 1107 1
272 Tipikal	Vacman	CUSI56	1	DZ-W-C	Wayapan	Olla	G	TI 99 1107-1 TI 00 1144 1
275 Tipikal	Vacman			DZ-W-C		Olla	G	TI 00 1144-1
274 Tipikal	Vacman	CG\$130	5	MY CY B/P o	S Dita Corozal	Olla	C	TI 99 1144-1 TI 00 1087 1
275 Tipikal	Novulo	CU3139	5	WIA-CA-D/K-C	S. Kita Colozal	Olla	C E	TI 00 1007 1
270 Tipikal	Navula	CCS142	2	CSm W/D a	Cruta da Chao	Olla	Г С	TI 00 1020 1
277 Tipikal	Navula	CCS142	2	CSIII-W/D-C	Giuta de Chac	Olla	U C	TI 99 1929-1 TI 07 1111 1
270 Tipikal	Navula	CCS143	u/a	CU D o	wayapan	Olla	U C	TI 00 1500 2
2/9 1 lp1kal	Navula	CG5144	2	Сн-в-с	various	Olla		TL 00 1520 1
280 Tipikai	Navula	CCS145	2	CV CM 01 a	vorious	Olla	U C	TI 40 1520 1
281 Прікаї	Navula	CGS145	2 1	CX-CM-01-C	various	Olla		TD 07 0040
282 Tepich	Mama	CCS001	1	CH-w-cm	Mayapan	Cajete	F E	TP 97 0849
283 Tepicn	Mama	CGS002	1	CH-w-cm	Mayapan	Cajete	Г	TP 4/ ??92
284 Tepich	Mama	CG8003	1	CH-W-cm	Mayapan	Cajete	F	TP 9/ 1032
285 Tepich	Mama	CG8004	1	CH-W-cm	Mayapan	Cajete	F	TP 42 0/94
286 Tepich	Mama	CG8005	1	CH-w-cm	Mayapan	Cajete	F	TP 97 3046-1
288 Tepich	Yacman	CG8009	1	CG-CM-W-C	Mayapan	Olla	A	TP 9/ 1634-1
289 Tepich	Yacman	CGS010	1	CSm-W/B-c	Mayapan	Olla	A	TP 43 310/
290 Tepich	Yacman	CGS011	u/a	CSm-W/B-c	Mayapan	Olla	A	TP 97 0849
201 7	N 7	000010	1	CX-DXsilt-W-	M	011	г	TD 07 2245
291 Tepich	Yacman	CGS012	1	C CC CM NV	Mayapan	Olla	F	TP 97 2245
300 Tepich	Yacman	CGS013	1	CG-CM-W-c	Mayapan	Olla	A	TP 9/ 1034-3
301 Tepich	Yacman	CGS014	1	CH-W-cm	Mayapan	Olla	F	TP 97 3111-1
302 Tepich	Navula			CG-CM-W-m		Cajete	A	TP 97 1928
303 Tepich	Navula	~~~~		CG-CM-W-m		Cajete	A	TP 97 1634-1
304 Tepich	Navula	CGS007	1	CH-W-cm	Mayapan	Olla	F	<u>TP 97 2231-1</u>
305 Tepich	Navula			CG-CM-W-m		Olla	A	TP 97 5353``
306 Tepich	Navula			CG-CM-W-m		Cajete	A	TP 97 2123
307 Tepich	Navula			CG-CM-W-m		Cajete	A	TP 97 1888-1
308 Tepich	Mama					tinaja	A	TP 97 2271
309 Tepich	Mama	CGS006	1	CH-W-cm	Mayapan	tinaja	A	TP 97 1753
310 Tepich	Mama					tinaja	Α	TP 97 0776
311 Tepich	Mama			CH-W-cm		tinaja	F	TP 97 0790
312 Telchaquillo	Yacman	CGS042	1	DZ-W-c	Mayapan	Olla	F	TQ97 0702

313 Telchaquillo	Navula	CGS046	1	DZ-W-m	Mayapan	Olla	F	TQ 970727
314 Telchaquillo	Navula	CGS047	1	DZ-B-c	Mayapan	Olla	F	TQ 0702- 3A
315 Telchaquillo	Navula	CGS048	u/a	DZ-W-m	Mayapan	Olla	F	TQ 97 1016 - 1
316 Telchaquillo	Mama					Cajete	F	TQ 97 08824-1
317 Telchaquillo	Mama			DZ-W-m		Cajete	F	TQ 971220
318 Telchaquillo	Mama			DZ-W-m		Cajete	F	TQ 97 0743
319 Telchaquillo	Mama	CGS037	1	CS-W/B-cm	Mayapan	tinaja	F	TQ 47 0454 - 2
320 Culuba	Cancun	CGS157	3	DX-CX-m-h	Ticul	Cajete	С	CL 800 PM 27-J
321 Culuba	Cancun					Cajete	F	CJB 00 PM 26-J I D
322 Mayapan	Mama	CGS058	1	DZ-W-mc-h	Mayapan	Cajete	F	MP 930506-1
323 Mayapan	Mama	CGS059	1	DZ-W-m	Mavapan	Caiete	F	MP 97 0526-1
324 Mayapan	Mama			CS-W/B-cm		Caiete	A	MY 96 3375
325 Mayapan	Mama					Cajete	A	MY 96 3351
326 Mayapan	Xcanchakan					tinaia	F	MP 98
327 Mayapan	Xcanchakan			CM-W-m		tinaja	F	MP 98
328 Mayapan	Xcanchakan	CG\$090	11/2	CX-CM-01-c	Ticul	tinaja	r C	MP 9886-1
320 Mayapan	Xcanchakan		u/u		Tieur	tinaja	E F	MP 98
320 Mayapan	Xcanchakan					tinaja	٨	MP 98
331 Mayapan	Xcanchakan					tinaja	л F	MD 08
222 Togoh	Veamon	CC\$020	1	CM W m	Mayanan	Ollo	r C	TC 07 0728 1
222 Teech	Yacman	CCS030	1	CM-W-m	Mayapan	Olla	U E	TC 97 0728-1
224 Teach	Vacuati	CC5031	1	CM-W-III	Mayapan	Olla	Г Г	TC 97 0728-1
334 Tecon	Y acman	CG8032	1	CG-CM-W-C	Mayapan	Olla	F A	TC 97 0750-1
335 Tecoh	Navula	CGS022	2	CSm-W/B-c	various	Olla	A F	TC 97 0844
336 Tecoh	Navula	CGS023	u/a	DZ-W-c	Mayapan	Olla	F	TC 97 0750
337 Tecoh	Navula					Olla	A	TC 97 0106-1
338 Tecoh	Mama					tinaja	A	TC 97 0844
339 Tecoh	Mama	CGS018	2	DX-B/W-m	Mama	tinaja	A	TC 97 0130
340 Mama	Mama	CGS106	u/a	CM-W-m	various	tinaja	A	MM 98 est.H DESM
341 Mama	Mama	CGS107	1	DZ-W-mc-h	Mayapan	tinaja	F	MM 98 1395 - 1
342 Mama	Mama	CGS108	1	DZ-W-mc-h	Kiuic	tinaja	F	MM 98 1395-1
343 Mama	Mama	CGS109	1	DZ-W-mc-h	Mayapan	tinaja	F	MM 98 1395 - 1
344 Mama	Mama	CGS110	u/a	CM-W-m	Mayapan	tinaja	A	MM 98 0946 - 1
345 Mama	Mama			CM-W-m		Cajete	А	MM 98 0891 -
346 Mama	Yacman	CGS113	1	CSm-W/B-c	Kiuic	Olla	А	MM 98 0866-2
347 Mama	Yacman	CGS114	2	CH-YC-W-c-h	Ticul	Olla	F	MM 98 2991-1
348 Culuba	Palmul					tinaja	С	CLB 99 1M 34.P I O
349 Culuba	Palmul	CGS153	3	CH-R-f	Ticul	tinaja	С	CLB 00 PM 40-M
350 Mama	Yacman	CGS115	1	DZ-W-mc-h	Mayapan	Olla	F	MM98 2991-1
351 Mama	Yacman	CGS116	u/a		various	Olla	F	MM 98 0866
352 Mama	Navula	CGS117	u/a	CH-B-c	various	Olla	F	MM 98 2471
354 Coba	Cancun	CGS162	2	CX-CM-01-c	Laguna de On	tinaja	F	
355 Coba	Cancun	CGS164	u/a	CS-W/B-cm	Tepakan	tinaia	С	
356 Coba	Cancun	CGS165	1		Mavapan	caiete	С	
357 Coba	Cancun	CGS167	1	CS-W/B-cm	Mayapan	cajete	Ā	
358 Coba			1		·· J ·· F ··	· · · · · ·	a	
250 Coba	Cancun	CGS166	11/a		Akil	tinaia	(ì	
1191.002	Cancun Cancun	CGS166 CGS170	$\frac{u}{a}$		Akil Ticul	tinaja tinaja	G A	
360 Coba	Cancun Cancun	CGS166 CGS170 CGS169	u/a 3 2	CS-W/B-cm	Akil Ticul Laguna de On	tinaja tinaja tinaja	G A C	
360 Coba 361 Coba	Cancun Cancun Cancun	CGS166 CGS170 CGS169 CGS173	u/a 3 2	CS-W/B-cm	Akil Ticul Laguna de On Mayapan	tinaja tinaja tinaja Olla	G A C G	
360 Coba 361 Coba 362 Coba	Cancun Cancun Cancun Navula	CGS166 CGS170 CGS169 CGS173 CGS174	u/a 3 2 1 2	CS-W/B-cm	Akil Ticul Laguna de On Mayapan Kiuic	tinaja tinaja tinaja Olla Olla	G A C G	
360 Coba 361 Coba 362 Coba 363 Coba	Cancun Cancun Cancun Navula Navula	CGS166 CGS170 CGS169 CGS173 CGS174	u/a 3 2 1 2	CS-W/B-cm CSm-W/B-c	Akil Ticul Laguna de On Mayapan Kiuic	tinaja tinaja tinaja Olla Olla	G A C G G	
360 Coba 361 Coba 362 Coba 363 Coba 363 Coba	Cancun Cancun Cancun Navula Navula Navula	CGS166 CGS170 CGS169 CGS173 CGS174	u/a 3 2 1 2 2	CS-W/B-cm CSm-W/B-c	Akil Ticul Laguna de On Mayapan Kiuic	tinaja tinaja tinaja Olla Olla Olla	G A C G G G	
360 Coba 361 Coba 362 Coba 363 Coba 364 Coba	Cancun Cancun Cancun Navula Navula Navula	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171	u/a 3 2 1 2 2 2 1	CS-W/B-cm CSm-W/B-c CS-W/B-cm	Akil Ticul Laguna de On Mayapan Kiuic various	tinaja tinaja tinaja Olla Olla Olla Olla	G A C G G A F	
360 Coba 361 Coba 362 Coba 363 Coba 364 Coba 365 Coba 266 Coba	Cancun Cancun Navula Navula Navula Navula Navula	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172	u/a 3 2 1 2 2 1 2 1	CS-W/B-cm CSm-W/B-c CS-W/B-cm CX-CM-01-c	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan	tinaja tinaja Olla Olla Olla Olla Olla Olla	G A C G G G A F C	
360 Coba 361 Coba 362 Coba 363 Coba 364 Coba 365 Coba 366 Chac Mool 267 Chac Mool	Cancun Cancun Navula Navula Navula Navula Navula Yacman	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172 CGS181	u/a 3 2 1 2 2 1 2 1 5 2	CS-W/B-cm CSm-W/B-c CS-W/B-cm CX-CM-01-c CX-CM-02-c	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan Ticul	tinaja tinaja Olla Olla Olla Olla Olla Olla Olla	G A C G G G A F G C	
360 Coba 361 Coba 362 Coba 363 Coba 364 Coba 365 Coba 366 Chac Mool 367 Chac Mool	Cancun Cancun Navula Navula Navula Navula Navula Yacman Yacman	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172 CGS181 CGS182	u/a 3 2 1 2 2 1 5 u/a	CS-W/B-cm CSm-W/B-c CS-W/B-cm CX-CM-01-c CX-CM-02-c CX-CM-02-c	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan Ticul various	tinaja tinaja Olla Olla Olla Olla Olla Olla Olla O	G A C G G G A F G C C	
360 Coba 361 Coba 362 Coba 363 Coba 363 Coba 364 Coba 365 Coba 366 Chac Mool 367 Chac Mool 368 Chac Mool	Cancun Cancun Navula Navula Navula Navula Yacman Yacman Yacman	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172 CGS181 CGS182	u/a 3 2 1 2 2 1 5 u/a	CS-W/B-cm CSm-W/B-c CS-W/B-cm CX-CM-01-c CX-CM-02-c CX-CM-02-c Magnt-MX-R-f	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan Ticul various	tinaja tinaja tinaja Olla Olla Olla Olla Olla Olla Olla O	G A C G G G G G A F G C O C	
360 Coba 361 Coba 362 Coba 363 Coba 363 Coba 364 Coba 365 Coba 366 Chac Mool 367 Chac Mool 368 Chac Mool 369 Chac Mool 369 Chac Mool	Cancun Cancun Navula Navula Navula Navula Yacman Yacman Mama	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172 CGS181 CGS182 CGS186	u/a 3 2 1 2 2 1 5 u/a u/a	CS-W/B-cm CSm-W/B-c CS-W/B-cm CX-CM-01-c CX-CM-02-c CX-CM-02-c CX-CM-02-c Magnt-MX-R-f CX-QZ-B/R-f	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan Ticul various S. Rita Corozal	tinaja tinaja tinaja Olla Olla Olla Olla Olla Olla Olla O	G A C G G G G A F G C O C	
360 Coba 361 Coba 362 Coba 363 Coba 363 Coba 364 Coba 365 Coba 366 Chac Mool 367 Chac Mool 368 Chac Mool 369 Chac Mool 370 Chac Mool	Cancun Cancun Navula Navula Navula Navula Yacman Yacman Yacman Mama Xcanchakan	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172 CGS181 CGS182 CGS186 CGS184	u/a 3 2 1 2 2 1 5 u/a 5 5 u/a 5	CS-W/B-cm CSm-W/B-c CS-W/B-cm CX-CM-01-c CX-CM-02-c CX-CM-02-c Magnt-MX-R-f CX-QZ-B/R-f CX-CM-01-c	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan Ticul various S. Rita Corozal Ticul	tinaja tinaja Olla Olla Olla Olla Olla Olla Olla O	G A C G G G G G G A F G C C C C	
360 Coba 361 Coba 362 Coba 363 Coba 363 Coba 364 Coba 365 Coba 366 Chac Mool 367 Chac Mool 368 Chac Mool 369 Chac Mool 370 Chac Mool 370 Chac Mool	Cancun Cancun Navula Navula Navula Navula Yacman Yacman Yacman Mama Xcanchakan	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172 CGS181 CGS182 CGS186 CGS184 CGS185	u/a 3 2 1 2 2 1 5 u/a 5 5 5	CS-W/B-cm CSm-W/B-c CS-W/B-cm CX-CM-01-c CX-CM-02-c CX-CM-02-c Magnt-MX-R-f CX-QZ-B/R-f CX-CM-01-c CX-CM-01-c	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan Ticul various S. Rita Corozal Ticul Ticul	tinaja tinaja Olla Olla Olla Olla Olla Olla Olla O	A C G G G G G G A F C C C C C	
360 Coba 361 Coba 362 Coba 363 Coba 363 Coba 364 Coba 365 Coba 366 Chac Mool 367 Chac Mool 368 Chac Mool 369 Chac Mool 370 Chac Mool 371 Chac Mool 372 Chac Mool	Cancun Cancun Navula Navula Navula Navula Yacman Yacman Yacman Mama Xcanchakan Xcanchakan	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172 CGS181 CGS182 CGS186 CGS184 CGS185	u/a 3 2 1 2 2 1 5 u/a 5 5 5	CS-W/B-cm CSm-W/B-c CS-W/B-cm CX-CM-01-c CX-CM-02-c CX-CM-02-c Magnt-MX-R-f CX-QZ-B/R-f CX-CM-01-c CX-CM-01-c CX-CM-01-c	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan Ticul various S. Rita Corozal Ticul Ticul	tinaja tinaja Olla Olla Olla Olla Olla Olla Olla O	G A C G G G G G G A F G C C C C C C	
360 Coba 361 Coba 362 Coba 363 Coba 363 Coba 364 Coba 365 Coba 366 Chac Mool 367 Chac Mool 368 Chac Mool 369 Chac Mool 370 Chac Mool 371 Chac Mool 372 Chac Mool 372 Chac Mool	Cancun Cancun Cancun Navula Navula Navula Navula Yacman Yacman Yacman Mama Xcanchakan Xcanchakan Xcanchakan	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172 CGS181 CGS182 CGS186 CGS184 CGS185	u/a 3 2 1 2 2 1 5 u/a 5 5 5 5	CS-W/B-cm CSm-W/B-c CS-W/B-cm CX-CM-01-c CX-CM-02-c Magnt-MX-R-f CX-QZ-B/R-f CX-QZ-B/R-f CX-CM-01-c CX-CM-01-c CX-CM-01-c	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan Ticul various S. Rita Corozal Ticul Ticul	tinaja tinaja Olla Olla Olla Olla Olla Olla Olla O	G A C G G G G G A F G C C C C C C	
360 Coba 361 Coba 362 Coba 363 Coba 363 Coba 364 Coba 365 Coba 366 Chac Mool 367 Chac Mool 368 Chac Mool 369 Chac Mool 370 Chac Mool 371 Chac Mool 372 Chac Mool 373 Chac Mool 374 Chac Mool	Cancun Cancun Cancun Navula Navula Navula Navula Yacman Yacman Yacman Xcanchakan Xcanchakan Xcanchakan Navula	CGS166 CGS170 CGS169 CGS173 CGS174 CGS171 CGS172 CGS181 CGS182 CGS186 CGS184 CGS185	u/a 3 2 1 2 2 1 5 5 u/a 5 5 5 5	CS-W/B-cm CS-W/B-cm CX-CM-01-c CX-CM-02-c CX-CM-02-c Magnt-MX-R-f CX-QZ-B/R-f CX-CM-01-c CX-CM-01-c CX-CM-01-c CX-CM-01-c GR-CM-R-m	Akil Ticul Laguna de On Mayapan Kiuic various Mayapan Ticul various S. Rita Corozal Ticul Ticul S. Rita Corozal	tinaja tinaja tinaja Olla Olla Olla Olla Olla Olla Olla O	$\begin{array}{c} G\\ A\\ C\\ G\\ G\\ G\\ G\\ G\\ G\\ G\\ G\\ G\\ C\\ C\\$	

377 Chae Mool Payil CGS17 6 CX-V2-BR-F Laguna de On Bowl C 379 Chae Mool Palmul CGS17 4 Laguna de On Bowl C 380 Chae Mool Palmul CGS17 4 Laguna de On Bowl C 381 Chae Mool Palmul CGS17 4 CX-Q2-BR-F S. Rita Corcal Bowl C 382 Chae Mool Navula CGS17 3 4 CX-Q2-BR-F S. Rita Corcal GII C 383 Chae Cancun CGS16 5 CX-CM-01-c Taguna de On Bowl C 387 Chae Cancun CGS16 5 CX-CM-01-c Treal DIIa F T79 7230-1 390 Tecoh Navula CGS02 2 SC-WB-cm S. Rita Corcal IIa F T79 7016-1 391 Tecoh Navula CGS02 5 SCN-WB-cm S. Rita Corcal IIa F T29 7016-1 392 Tecoh Navula CGS02 5 SCN-WB-cm Narda GIIa F T29 7016-1 3937	376 Chac Mool	Payil	CGS175	4	CX-QZ-B/R-f	Laguna de On	Tinaja	С	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	377 Chac Mool	Payil	CGS176	4	CX-QZ-B/R-f	Laguna de On	Tinaja	С	
379 Chae Mool Palmul CGS17 4 Iaguna de On Bowl C 381 Chae Mool Palmul CGS177 4 CX-Q2-B/R-F S. Rita Corozal Bowl C 382 Chae Mool Palmul CGS179 4 CX-Q2-B/R-F Laguna de On Bowl C 383 Chae Mool Navula CGS163 I CX-CM-01-c Mayapan Unit F 384 Chae Mool Navula CGS166 5 CX-CM-01-c Mayapan Unit F T 387 Chae Mool Yauran CGS166 5 CX-CM-01-c Treal Olla F T 97 7230-1 390 Teoch Navula CGS026 5 CS-WB-cm S. Rita Corozal Olla F T C97 0166-1 391 Teoch Navula CGS027 5 CSm-WF-c S. Rita Corozal Olla G T C97 0166-1 392 Teoch Navula CGS021 1 DZ-W-m Mayapan Timaja G T C97 0164-1 393 Teoch Mama CGS020 1 DZ-W-m Mayapan	378 Chac Mool	Navula			CX-CM-02-c		Olla	С	
380 Chae Mool Palmul CGS178 Var Laguna de On Bowl C 381 Chae Mool Palmul CGS178 Var CA-2FAR-F Jaguna de On Rowl C 382 Chae Mool Navula CGS163 I CX-CV-FAR-F Jaguna de On Rowl C 385 Coba Cancun CGS163 I CX-CV-H02-c Olla G 386 Coba Varenna CGS005 S CX-CM-01-c Tepakan tinaja A 388 Coba Cancun CGS005 S CX-CM-01-c Tepakan tinaja A 390 Teoch Navula CGS025 S S:Rata Corozal Olla F C79 0106-1 393 Teoch Navula CGS020 I DZ-W-m Margaan Olla G C 79 0106-1 393 Teoch Maraa CGS020 I DZ-W-m Mayapan Tinaja G C 79 0166-1 393 Teoch Maraa CGS020 I DZ-W-m Mayapan	379 Chac Mool	Palmul	CGS180	4	CH-QZ-B-f	Laguna de On	Bowl	С	
381 Chae Moo Palmul CGS178 u° CX-Q2-LR-F S. Rita Corozal Bowl C 382 Chae Moo Palmul CGS173 I CX-Q2-RR-F Laguna de On Olla O 383 Chae Moo Navula C CX-CM-0-le Mayapan Imaja F 383 Chae Mool Yaeman C CX-CM-0-le Tepakan Iimaja A 383 Chae Mool Yaeman CSC-W1-0-e Tepakan Iimaja A 389 Teoch Navula CGS024 S CS-W1B-em S. Rita Corozal Olla F TC97 0106-1 391 Teoch Navula CGS025 S CS-W1B-em S. Rita Corozal Olla F TC97 0106-1 392 Teoch Navula CGS027 S CS-W1B-em S. Rita Corozal Olla G TC97 0106-1 393 Teoch Marula CGS021 DZ-W-m Mayapan Olla G TC97 0106-1 393 Teoch Marula CGS021 DZ-W-m Mayapan Timaja G TC97 0106-1 393 Teoch Marul	380 Chac Mool	Palmul	CGS177	4		Laguna de On	Bowl	С	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	381 Chac Mool	Palmul	CGS178	u/a	CX-QZ-B/R-f	S. Rita Corozal	Bowl	С	
383 Coba Cancun CGS163 I CX-CM-01-c Mayapan Imaja F 385 Coba Navula C CX-CM-01-c Tepakan Imaja F 386 Coba Cancun CGS168 S CX-CM-01-c Tepakan Imaja A 387 Coba Cancun CGS168 S CX-CM-01-c Tepakan Imaja A 390 Tecoh Navula CGS024 CS-WB-cm Incul Olla F TC97 0166-1 391 Tecoh Navula CGS025 CSm-WB-cs S. Rita Corozal Olla F TC97 0166-1 392 Tecoh Navula CGS024 DZ-W-m Mayapan Olla F TC97 0166-1 393 Tecoh Marula CGS021 DZ-W-m Mayapan Timaja F TC97 0844-1 395 Tecoh Marua CGS024 DZ-W-m Mayapan Timaja G TC 97 0844-1 395 Tecoh Marua CGS024 DZ-W-m Mayapan Timaja G TC 97 0844-1 395 Tecoh Marua CGS024 DZ-W-m Mayapan Timaja G TC 97 0844-1 395 Tecoh Marua CGS024 DZ-W-c Mayapan Tima	382 Chac Mool	Palmul	CGS179	4	CX-QZ-B/R-f	Laguna de On	Bowl	С	
385 Coba Cancun CGS16 1 CX-CM-01-c Mayapan Imaga F 386 Coba Carcun CS168 5 CX-CM-02-c Imaga T P7 2230-1 388 Tepich Xcanchakan CGS008 5 CX-CM-01-c Tepakan Imaga T P7 2230-1 390 Tepich Xcanchakan CGS024 CS-W/B-ern S. Rita Corocal Imaga T P7 7 2230-1 390 Tepich Navula CGS025 CS-W/B-ern S. Rita Corocal Illa F TC 97 0166-1 392 Tecoh Navula CGS027 I DZ-W-ern Mayapan Timaja F C 97 0844 395 Tecoh Mama CGS021 I DZ-W-ern Mayapan Timaja G C 97 0844 395 Tecoh Mama CGS021 I DZ-W-ern Mayapan Timaja G C 97 0844 395 Techa Mawala CGS049 I DZ-W-ern Mayapan Timaja G T19 9 1045-1 <td>384 Chac Mool</td> <td>Navula</td> <td></td> <td></td> <td>QZ-R-m</td> <td></td> <td>Olla</td> <td>0</td> <td></td>	384 Chac Mool	Navula			QZ-R-m		Olla	0	
386CobaNavulaCorx-CM-02-eOIIaG387Chae ModelYacmanCGS1685CX-CM-02-eTepakantinajaA388TcbaCancunCGS1685CX-CM-02-eTepakantinajaA389TcbaNavulaCGS0242CS-WiB-emS. Rita CorozalIIIaFTC97 0106-1391TecohNavulaCGS025SCS-WiB-emS. Rita CorozalOIIaFTC97 0106-1392TecohNavulaCGS027SCS-WiB-emMaraaOIIaGTC97 0106-1393TecohNavulaCGS028IDZ-W-mMayapanTinajaFTC97 0106-1394TecohMaruaCGS020IDZ-W-mMayapanTinajaGTC 97 0844395TecohMarnaCGS021IDZ-W-mMayapanTinajaGTC 97 0844395TecohMaraaCGS024IDZ-W-mMayapanTinajaGTC 97 0844398TechaquiloNavulaCGS049IDZ-W-mMayapanOIIaGT199 1163-1400 TipikalNavulaCGS140IDZ-W-mMayapanOIIaGT199 1162-1402 TipikalNavulaCGS140IDZ-W-cHOIIaGT199 1162-2403 TipikalNavulaCGS140IDZ-W-cOIIaGT199 1146-2404 TipikalNavulaCGS141DZ-W-cHoyapanOIIaGT199 1146-2406 Tipika	385 Coba	Cancun	CGS163	1	CX-CM-01-c	Mayapan	tinaja	F	
387 Cohe Mool Yaeman CSC-W-02-c Tepakan tinaja P 388 Coho Cascus 5 CX-W-01-c Tepakan tinaja P P 72230-1 390 Tecoh Navula CGS002 1 CS-W/B-cm Ticul Olla F T C 97 0764-1 391 Tecoh Navula CGS02 5 CSm-W/B-c S. Rita Corozal Olla G TC 97 0106-1 392 Tecoh Navula CGS02 5 CSm-W/B-c S. Rita Corozal Olla G TC 97 0104-1 393 Tecoh Navula CGS02 1 DZ-W-m Mayapan Tinaja G TC 97 0844 395 Tecoh Mama CGS02 1 DZ-W-m Mayapan Tinaja G TC 97 0844 398 Telchaguillo Navula CGS04 1 DZ-W-c Mayapan Olla G T1 99 1163-1 400 Tipikal Navula CGS14 1 DZ-W-c Olla G T1 99 1163-1 403 Tipikal Navula CGS14 0 DZ-W-c Olla G	386 Coba	Navula					Olla	G	
1888 Coba Cancum CGS008 Cor-Wi-er Teppakan tinaja A 1890 Tejch Xcanchakan CGS002 5 CS-Wi-ern S. Rita Corozal Olla F TC 97 0106-1 190 Tecoh Navula CGS025 5 CS-Wi-ern S. Rita Corozal Olla F TC 97 0106-1 193 Tecoh Navula CGS025 1 DX-B/W-m Maran Olla G TC 97 0106-1 193 Tecoh Navula CGS020 1 DZ-W-m Mayapan Tinaja G TC 97 0844 195 Tecoh Mama CGS020 1 DZ-W-m Mayapan Tinaja G TC 97 0844 195 Tecoh Mama CGS021 1 DZ-W-m Mayapan Tinaja G TC 97 0844 199 Tipikal Navula CGS021 1 DZ-W-m Mayapan Olla G T199 1163-1 400 Tipikal Navula CGS146 1 DZ-W-e Olla G T199 1161-1 403 Tipikal Navula CGS140 1 DZ-W-e Olla <	387 Chac Mool	Yacman			CX-CM-02-c				
389 Tepich Xeanchakan CGS008 5 CS-WiB-cm S. Rita Corozal Imaja IP 97 230-1 390 Tecoh Navula CGS025 5 CS-WiB-cc S. Rita Corozal Olla F TC 97 0106-1 391 Tecoh Navula CGS026 2 DX-B/W-m Mama Olla F TC 97 0106-1 392 Tecoh Navula CGS028 1 DZ-W-m Mayapan Olla F TC 97 0844-1 395 Tecoh Mama CGS021 DZ-W-m Mayapan Tinaja G TC 97 0844-1 395 Techaquillo Navula CGS021 DZ-W-m Mayapan Olla G T1 991108-1 400 Tipikal Navula CGS042 DZ-W-m Mayapan Olla G T1 991108-1 401 Tipikal Navula CGS146 CS-W-W Olla G T1 991123-1 403 Tipikal Navula CGS140 DZ-W-c Olla G T1 99114-2 404 Tipikal Navula CGS1	388 Coba	Cancun	CGS168	5	CX-CM-01-c	Tepakan	tinaja	А	
990 Tecoh Navula CGS024 2 CS-WiB-cm Ticul Olla F TC 97 0764-1 391 Tecoh Navula CGS025 S. Kita Corozal Olla G TC97 0764-1 393 Tecoh Navula CGS026 2 DX-W/M- Maran Olla G TC97 0106-1 393 Tecoh Navula CGS020 1 DZ-W-m Mayapan Tinaja G TC 97 0844 395 Tecoh Mama CGS021 DZ-W-m Mayapan Tinaja G TC 97 0844 396 Tecoh Mama CGS021 DZ-W-m Mayapan Tinaja G TC 97 0844 398 Tjecha Navula CGS021 DZ-W-m Mayapan Olla G T1991163-1 400 Tipikal Navula CGS146 2 CS-W/B-cm Kiuic Olla G T1991171-2 404 Tipikal Navula CGS146 2 CS-W/B-cm Olla G T1991146-2 405 Tipikal Yacman	389 Tepich	Xcanchakan	CGS008	5	CS-W/B-cm	S. Rita Corozal	tinaja		TP 97 2230-1
991 Tecoh Navula CGS025 5 CSm-W/B-c S. Rita Corozal Olla G TC97 0166-1 393 Tecoh Navula CGS027 5 CSm-W/B-c S. Rita Corozal Olla G TC97 0106 393 Tecoh Navula CGS028 I DZ-W-m Mayapan Olla G TC97 0824 395 Tecoh Mama CGS020 I DZ-W-e Mayapan Tinaja G TC97 0824 397 Tecoh Mama CGS020 I DZ-W-e Mayapan Tinaja G TC97 0844 398 Telchaquillo Navula CGS049 I DZ-W-e Mayapan Olla G T99 1163-1 400 Tipikal Navula CGS146 2 CS-W-B-cm Kiuic Olla G T199 117-2 403 Tipikal Navula CGS146 1 DZ-W-c Olla G T199 114-1 404 Tipikal Yacman CGS141 DZ-W-c Mayapan Olla G T1	390 Tecoh	Navula	CGS024	2	CS-W/B-cm	Ticul	Olla	F	TC 97 0106-1
992 Tecoh Navula CGS026 2 DX-B/W-m Mama Olla G TC 97 0106-1 393 Tecoh Navula CGS027 5 CSm-W/B-C S. Rita Corozal Olla F TC 97 0106-1 393 Tecoh Navula CGS028 1 DZ-W-m Mayapan Tinaja F TC 97 0844-1 395 Tecoh Mama CGS021 1 DZ-W-m Mayapan Tinaja G TC 97 0844-1 396 Tecoh Mama CGS021 1 DZ-W-m Mayapan Tinaja G TC 97 0844-1 397 Tecoh Manua CGS049 1 DZ-W-m Mayapan Olla G T1991163-1 400 Tipikal Navula CGS140 1 DZ-W-c Olla G T1991171-2 403 Tipikal Navula CGS140 1 DZ-W-c Olla G T1991146-2 404 Tipikal Yacman CGS140 1 DZ-W-c Mayapan Olla G T1991146-2 404 Tipikal Yacman CGS140 1 DZ-W-c Mayapan Olla G T1991146-2 40	391 Tecoh	Navula	CGS025	5	CSm-W/B-c	S. Rita Corozal	Olla	F	TC97 0764-1
993 Tecoh Navula CGS027 5 CSn-W/B-c S. Rita Corozal Olla G TC97 0844 395 Tecoh Mama CGS019 I DZ-W-m Mayapan Tinaja G TC 97 0844 395 Tecoh Mama CGS019 I DZ-W-m Mayapan Tinaja G TC 97 0852 397 Tecoh Mama CGS020 I DZ-W-m Mayapan Tinaja G TC 97 0844 398 Telchaquillo Navula CGS049 I DZ-W-m Mayapan Olla G T0 991105-1 400 Tipikal Navula CGS146 Z CS-W/B-cm Nico Olla G T1991105-1 400 Tipikal Navula CGS146 Z CS-W/B-cm Nico Olla G T199117-2 404 Tipikal Yacman CGS141 DZ-W-c Olla G T1991146-2 406 Tipikal Yacman CGS141 DZ-W-c Olla G MM9808-1 406	392 Tecoh	Navula	CGS026	2	DX-B/W-m	Mama	Olla	G	TC97 0106-1
394 Tecoh Mama CGS028 1 DZ-W-m Mayapan Tinaja F TC 970844-1 395 Tecoh Mama CGS021 1 DZ-W-c Mayapan Tinaja G TC 970844-1 396 Tecoh Mama CGS021 1 Utermprd Mayapan Tinaja G TC 970844 398 Techaquillo Navula CGS021 1 Utermprd Mayapan Olla G T1991163-1 400 Tipikal Navula CGS14 2 CS-W-B-cm Kiuic Olla G T1991123-1 402 Tipikal Navula CGS14 2 CS-W-C Olla G T199114-1 405 Tipikal Yacman CGS14 1 DZ-W-c Olla G T199114-2 404 Tipikal Yacman CGS14 1 DZ-W-c Olla G T1991146-2 406 Tipikal Yacman GS18 Va	393 Tecoh	Navula	CGS027	5	CSm-W/B-c	S. Rita Corozal	Olla	G	TC 97 0106
395 Tecoh Mama CGS019 1 DZ-W-m Mayapan Tinaja G TC 970844-1 396 Tecoh Mama CGS020 1 DZ-W-c Mayapan Tinaja G TC 970842 397 Tecoh Mara CGS049 1 DZ-W-m Mayapan Tinaja G TC 970844 398 Techa Navula CGS049 1 DZ-W-m Mayapan Tinaja G TC 970844 400 Tipikal Navula CGS146 2 CS-W/m Mayapan Olla G T1 991108-1 401 Tipikal Navula CGS146 2 CS-W/B-cm Kiuic Olla G T1 991123-1 403 Tipikal Yacman CGS140 1 DZ-W-c Olla G T1991146-2 405 Tipikal Yacman CGS141 1 DZ-B-c Mayapan Olla G T1991146-2 405 Tipikal Yacman CGS119 u/a CH-B-c Mayapan Olla G MM98 088-1 409 Mama Navula CGS119 u/a CH-B-c	394 Tecoh	Navula	CGS028	1	DZ-W-m	Mayapan	Olla	F	TC97 0844
396 Tecoh Mama CGS020 1 Dz-W-c Mayapan Tinaja G TC 97 0852 397 Tecoh Mama CGS021 1 Untemprd Mayapan Tinaja G TC 97 0854 398 Telchaquillo Navula CGS049 1 DZ-W-m Mayapan Olla G TL 99 1163-1 400 Tipikal Navula C 1 P Cajete G TL 99 1163-1 400 Tipikal Navula C S CS-W-C Olla G TL 99 1172-1 403 Tipikal Navula CGS140 1 DZ-W-c Mayapan Olla G TL 99 1172-2 404 Tipikal Yacman CGS140 1 DZ-W-c Mayapan Olla G TL 99 1144-1 405 Tipikal Yacman CGS141 D DZ-W-c Mayapan Olla G TH 99 1146-2 406 Tipikal Yacman CGS141 D DZ-W-c Mayapan Olla MM 98 088-1	395 Tecoh	Mama	CGS019	1	DZ-W-m	Mayapan	Tinaja	F	TC 970844-1
397 Tecoh Marua CGS021 1 Untemprd Mayapan Tinaja G TC 97 0844 398 Telehaquillo Navula CGS049 1 DZ-W-m Mayapan Olla G TC 97 0844 399 Tipikal Navula Image Image Olla G TI 99 1103-1 400 Tipikal Navula Image Image Image Olla G TI 99 1123-1 403 Tipikal Navula CGS146 2 CS-W/B-cm Kiuic Olla G TI 99 1171-2 404 Tipikal Yacman CGS141 DZ-W-c Mayapan Olla G TI 99 1146-2 405 Tipikal Yacman CGS141 DZ-W-c Mayapan Olla G TI 99 1146-2 405 Tipikal Yacman CGS141 DZ-W-c Mayapan Olla G MM98 088-1 409 Mama Navula CGS112 U/a CH-H-E-c Kiuic Cajete F MM98 1395-1 411 Mama Mama <td>396 Tecoh</td> <td>Mama</td> <td>CGS020</td> <td>1</td> <td>DZ-W-c</td> <td>Mayapan</td> <td>Tinaja</td> <td>G</td> <td>TC 97 0852</td>	396 Tecoh	Mama	CGS020	1	DZ-W-c	Mayapan	Tinaja	G	TC 97 0852
398 Telchaquillo Navula CGS049 I DZ-W-m Mayapan Olla G T 09 710727-1 399 Tipikal Navula I DZ-W-m Navano Olla G T1 99 1163-1 400 Tipikal Navula I Image: Common State Stat	397 Tecoh	Mama	CGS021	1	Untemprd	Mayapan	Tinaja	G	TC 97 0844
399 Tipikal Navula Image: Constraint of the second	398 Telchaquillo	Navula	CGS049	1	DZ-W-m	Mayapan	Olla	G	TQ 970727-1
400 Tipikal Navula Cajete G TI 99110S-1 401 Tipikal Navula Olla G TI 991123-1 402 Tipikal Navula CGS146 2 CS-W/B-cm Kiuic Olla G TI 991123-1 403 Tipikal Navula CGS146 2 CS-W/B-cm Kiuic Olla G TI 991123-1 404 Tipikal Yacman CGS140 1 DZ-W-c Olla G TI 991146-2 406 Tipikal Yacman CGS141 1 DZ-W-c Mayapan Olla G TI 991146-2 408 Mama Navula CGS118 u/a CH-B-c Mayapan Olla G MM98 0887-1 410 Mama Navula CGS118 u/a CH-B-c Kiuic Cajete G MM98 0887-1 412 Mama Navula CGS119 u/a CH-B-c Timaja G MM98 1395-1	399 Tipikal	Navula					Olla	G	TI 99 1163-1
401 Tipikal Navula CGS118 u/a CH-B-c Mayapan Olla G MM98 088-1 410 Mama Navula CGS119 u/a CH-B-c Kiuic Cajete F MM98 098-1 MM98 1395-1 412 Mama Mama Mama CGS119 u/a CM-B-c Mayapan Tinaja	400 Tipikal	Navula					Caiete	G	TI 99110S-1
402 Tipikal Navula CGS146 2 CS-W/B-cm Kiuic Olla G TI 991123-1 403 Tipikal Yacman CGS146 1 DZ-W-c Olla G TI 99 1144-1 405 Tipikal Yacman CGS140 1 DZ-W-c Mayapan Olla G TI 99 1146-2 406 Tipikal Yacman CGS140 1 DZ-W-c Mayapan Olla G TI 99 1146-2 408 Mama Navula CGS141 1 DZ-B-c Mayapan Olla G TI 99 1146-2 408 Mama Navula CGS118 u/a CH-B-c Kiuic Cajete MM98 088-1 410 Mama Mara DZ-W-rec Tinaja G MM98 1395-1 413 Mama Mama CGS112 DZ-W-rec-h Tinaja G MM98 1395-1 415 Mama Mama CGS121 DZ-W-rec-h Mayapan Tinaja G <td>401 Tipikal</td> <td>Navula</td> <td></td> <td></td> <td></td> <td></td> <td>Olla</td> <td>G</td> <td>TI 991123-1</td>	401 Tipikal	Navula					Olla	G	TI 991123-1
403 Tipikal Navula CGS146 2 CS-W/B-cm Kiuic Olla G T199 1171-2 404 Tipikal Yacman CGS140 1 DZ-W-c Olla G T199 1144-1 405 Tipikal Yacman CGS141 1 DZ-W-c Olla G T199 1610-2 406 Tipikal Yacman CGS141 1 DZ-B-c Mayapan Olla G T199 1610-2 409 Mama Navula CGS118 u/a CH-B-c Mayapan Olla G T199 1610-2 410 Mama Navula CGS118 u/a CH-B-c Mayapan Olla G MM98 088-1 412 Mama Mama CGS120 u/a CH-B-c Kiuic Cajete G MM98 135-1 413 Mama Mama Mama DZ-W-mc-h Tinaja G MM98 1395-1 414 Mama Mama CGS121 U/a CS-W/B-	402 Tipikal	Navula					Olla	G	TI 991123-1
404 Tipikal Yacman CGS140 DZ-W-c Mayapan Olla G Ti99 1144-1 405 Tipikal Yacman CGS140 DZ-W-c Mayapan Olla G Ti99 1146-2 406 Tipikal Yacman CGS141 DZ-W-c Mayapan Olla G Ti99 1610-2 407 Tipikal Yacman CGS141 DZ-B-c Mayapan Olla G Ti99 1146-2 409 Mama Navula CGS118 u/a CH-B-c Mayapan Olla G MM98 008-1 410 Mama Navula CGS120 u/a CH-B-c Kiuic Cajete F MM98 1395-1 413 Mama Mama Mama DZ-W-mc-h Tinaja F MM98 1345-1 414 Mama Mama CGS111 DZ-W-mc-h Mayapan Tinaja G MM98 1345-1 414 Mama Mama CGS112 I DZ-W-mc-h Mayapan Tinaja A TB98 197-1 416 Mama CGS112 u/a </td <td>403 Tipikal</td> <td>Navula</td> <td>CGS146</td> <td>2</td> <td>CS-W/B-cm</td> <td>Kiuic</td> <td>Olla</td> <td>G</td> <td>TI 99 1171-2</td>	403 Tipikal	Navula	CGS146	2	CS-W/B-cm	Kiuic	Olla	G	TI 99 1171-2
Input Input <th< td=""><td>404 Tipikal</td><td>Yacman</td><td>000110</td><td>_</td><td>DZ-W-c</td><td></td><td>Olla</td><td>G</td><td>TI99 1144-1</td></th<>	404 Tipikal	Yacman	000110	_	DZ-W-c		Olla	G	TI99 1144-1
Hyperic Lipped Latitude Constrained DZ-W-c Olla G T199 110-2 406 (Tipikal Yacman CGS141 I DZ-W-c Olla G T199 1610-2 407 Tipikal Yacman CGS141 I DZ-W-c Olla G T199 1610-2 408 Mama Navula CGS119 u/a CH-B-c Mayapan Olla G T199 1610-2 410 Mama Navula CGS119 u/a CH-B-c Kiuic Cajete G MM98 0887-1 411 Mama Mama Mama CGS120 u/a CM-V-m Mayapan Cajete G MM98 0986-1 412 Mama Mama Mama DZ-W-mc-h Tinaja G MM98 1345-1 414 Mama Mama CGS111 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 414 Mama Mama CGS121 U/a CS-W/B-cm Mayapan Tinaja M B97 1854-1 418 Teabo Mama CGS122	405 Tipikal	Yacman	CGS140	1	DZ-W-c	Mayanan	Olla	G	TI99 1146-2
100 100 <td>406 Tipikal</td> <td>Vacman</td> <td>000110</td> <td>-</td> <td>DZ-W-c</td> <td>iniujupun</td> <td>Olla</td> <td>G</td> <td>TI99 1610-2</td>	406 Tipikal	Vacman	000110	-	DZ-W-c	iniujupun	Olla	G	TI99 1610-2
Name Navula Cost 11 DE Dec Navula olla Cost 11 DE Dec Navula olla C MM3 page 408 Mama Navula CGS118 u/a CH-B-c Mayapan Olla G MM98 008-1 410 Mama Navula CGS120 u/a CH-B-c Kiuic Cajete G MM98 008-1 411 Mama Navula CGS120 u/a CM-W-m Mayapan Cajete G MM98 1395-1 413 Mama Mama DZ-W-mc-h Tinaja G MM98 1395-1 414 Mama Mama CGS111 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 416 Mama Mama CGS112 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 417 Teabo Mama CGS121 u/a CS-W/B-cm Various Tinaja A TB97 1854-1 418 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja A TB98 1726-1	407 Tinikal	Vacman	CGS141	1	DZ-R-c	Mayanan	Olla	G	TI99 1146-2
Nama Navula CGS118 u/a CH-B-c Mayapan Olla G MM98 08871 410 Mama Navula CGS119 u/a CH-B-c Kiuic Cajete F MM98 08871 411 Mama Navula CGS120 u/a CH-W-m Mayapan Cajete G MM98 08871 411 Mama Mama C DZ-W-mc-h Tinaja G MM98 1345-1 413 Mama Mama DZ-W-mc-h Tinaja G MM98 1395-1 414 Mama Mama CGS111 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 415 Mama Mama CGS112 1 DZ-W-mc-h Mayapan Tinaja A TB97 1854-1 417 Teabo Mama CGS121 u/a CS-W/B-cm various Tinaja A TB98 1068-1 420 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja	408 Mama	Navula	000111	-		in a grant and a grant and a grant a gr	olla	C	MM98 008-1
10 Mama Navula CGS119 u/a CH-B-c Kuic Cajete F MM98 1714-1 411 Mama Navula CGS119 u/a CH-B-c Kuic Cajete G MM98 0986-1 412 Mama Mama Mama DZ-W-mc-h Tinaja G MM98 1395-1 413 Mama Mama Mama DZ-W-c Tinaja G MM98 1395-1 414 Mama Mama CGS111 1 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 414 Mama Mama CGS112 1 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 416 Mama Mama CGS121 u/a CS-W-mc-h Mayapan Tinaja Tinaja Tinaja Tinaja TiB98 0421-1 419 Teabo Mama CGS123 u/a CS-W/B-cm various Tinaja TiB98 1068-1 420 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja TiB98 0421-1 421 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja<	409 Mama	Navula	CGS118	11/a	CH-B-c	Mayanan	Olla	G	MM98 0887-1
111 Mama Navula CGS120 u/a CM-W-m Mayapan Cajete G MM98 0986-1 412 Mama Mama Mama DZ-W-mc-h Tinaja F MM98 0986-1 413 Mama Mama Mama DZ-W-c Tinaja G MM98 1395-1 414 Mama Mama Mama DZ-W-rc Tinaja G MM98 1345-1 415 Mama Mama CGS111 DZ-W-rc-h Tinaja G MM98 1395-1 416 Mama Mama CGS121 DZ-W-rc-h Mayapan Tinaja G MM98 1395-1 416 Mama Mama CGS121 DZ-W-rc-h Mayapan Tinaja A TB97 1854-1 417 Teabo Mama CGS121 U/a CS-W/B-cm various Tinaja A TB98 1068-1 420 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja F TB98 1068-1 421 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0821-1 422 Teabo Mama CGS123 u/a	410 Mama	Navula	CGS119	u/a	CH-B-c	Kinic	Cajete	F	MM98 1714-1
111 Mama Cost 2 Mark Mind Maypan Cupter Cupter Cupter Finaja F MM98 1395-1 412 Mama Mama DZ-W-rec Tinaja F MM98 1395-1 414 Mama Mama CGS111 1 DZ-W-rec Tinaja G MM98 1395-1 416 Mama Mama CGS112 1 DZ-W-rec-h Mayapan Tinaja G MM98 1395-1 417 Teabo Mama CGS121 1 DZ-W-rec-h Mayapan Tinaja G MM98 1395-1 417 Teabo Mama CGS121 u/a CS-W/B-cm Various Tinaja A TB98 1068-1 412 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 1068-1 422 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 080-1 422 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 080-1 <tr< td=""><td>411 Mama</td><td>Navula</td><td>CGS120</td><td>u/a</td><td>CM-W-m</td><td>Mayanan</td><td>Cajete</td><td>G</td><td>MM98 0986-1</td></tr<>	411 Mama	Navula	CGS120	u/a	CM-W-m	Mayanan	Cajete	G	MM98 0986-1
113 Mama Mama DZ-W-c Tinaja G MM98 1472-1 413 Mama Mama DZ-W-c Tinaja G MM98 1472-1 414 Mama Mama CGS111 I DZ-W-rc-h Tinaja G MM98 1395-1 415 Mama Mama CGS112 I DZ-W-rc-h Mayapan Tinaja G MM98 1395-1 416 Mama Mama CGS112 I DZ-W-rc-h Mayapan Tinaja G MM98 1395-1 416 Mama Mama CGS112 DZ-W-rc-h Mayapan Tinaja G MM98 1395-1 417 Teabo Mama CGS121 u/a CS-W/B-cm various Tinaja F TB98 0421-1 419 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja F TB98 1068-1 420 Teabo Mama CGS124 CS-W/B-cm various Tinaja A TB98 0821-1 422 Teabo Mama CGS124 CS-W/B-cm Various Tinaja A TB98 0847-1 423 Teabo Mama	412 Mama	Mama	000120	u/u	DZ-W-mc-h	iniujupun	Tinaia	F	MM98 1395-1
113 Mama Mama DZ-W-mc-h Tinaja F MM98 1345-1 414 Mama Mama CGS111 1 DZ-W-mc-h Mayapan Tinaja G MM98 1345-1 416 Mama Mama CGS112 1 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 416 Mama Mama CGS112 1 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 417 Teabo Mama CGS121 u/a CS-W/B-cm Mayapan Tinaja A TB97 1854-1 418 Teabo Mama CGS122 CS-W/B-cm various Tinaja A TB98 1068-1 420 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja F TB98 0821-1 422 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0821-1 422 Teabo Mama CGS130 2 CS-W/B-cm Mayapan Olla A TB98 0847-1 424	413 Mama	Mama			DZ-W-c		Tinaja	G	MM98 1472-1
11 Mama CGS111 1 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 415 Mama Mama CGS112 1 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 416 Mama Mama CGS112 1 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 417 Teabo Mama CGS121 u/a CS-W/B-cm Mayapan Tinaja A TB97 1854-1 418 Teabo Mama CGS122 2 CS-W/B-cm various Tinaja A TB98 1068-1 420 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja A TB98 1082-1 422 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0821-1 422 Teabo Mama CGS124 2 CS-W/B-cm Mayapan Oila A TB98 0821-1 424 Teabo Mama CGS130 2 CS-W/B-cm Mayapan Oila A	414 Mama	Mama			DZ-W-C		Tinaja	F	MM98 1345-1
110 Mama Mama CGS112 1 DZ-W-mc-h Mayapan Tinaja G MM98 1395-1 416 Mama CGS112 1 DZ-W-mc-h Mayapan Tinaja A TB97 1854-1 417 Teabo Mama CGS121 u/a CS-W/B-cm Mayapan Tinaja A TB97 1854-1 418 Teabo Mama CGS122 2 CS-W/B-cm various Tinaja A TB98 1068-1 420 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja A TB98 1068-1 420 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 10821-1 421 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0821-1 422 Teabo Mama CGS123 u/a CM-W-m Mayapan Olla A TB98 083-1 423 Teabo Mama CGS130 2 CS-W/B-cm Mayapan Olla A <td< td=""><td>415 Mama</td><td>Mama</td><td>CGS111</td><td>1</td><td>DZ-W-mc-h</td><td>Mayanan</td><td>Tinaja</td><td>G</td><td>MM98 1395-1</td></td<>	415 Mama	Mama	CGS111	1	DZ-W-mc-h	Mayanan	Tinaja	G	MM98 1395-1
417TeaboMamaCGS1121DZ-Wnite-inMayapanTinajaATB95-1417TeaboMamaCGS121u/aCS-W/B-cmMayapanTinajaATB98 0421-1419TeaboMamaCGS1222CS-W/B-cmvariousTinajaATB98 1068-1420TeaboMamaCGS123u/aCM-W-mMayapanTinajaFTB98 1068-1420TeaboMamaCGS123u/aCM-W-mMayapanTinajaFTB98 1068-1421TeaboMamaCGS1242CS-W/B-cmvariousTinajaATB98 0821-1422TeaboMamaCGS1242CS-W/B-cmvariousTinajaATB98 0821-1422TeaboMamaCGS1242CS-W/B-cmvariousTinajaATB98 0821-1423TeaboMamaCGS1202CS-W/B-cmvariousCajeteATB98 103-1424TeaboMamaCGS1302CS-W/B-cmOllaATB98 084-1426TeaboNavulaCGS1302CS-W/B-cmOllaATB98 084-1427TeaboNavulaCGS1302CS-W/B-cmOllaGTB98 073-1429TeaboNavulaCGS125u/aB-cChacOllaGTB98 097-1429TeaboNavulaCGS125u/aB-cChacOllaGTB9	415 Mama	Mama	CG\$112	1	DZ-W-mc-h	Mayapan	Tinaja	G	MM08 1305-1
418 Teabo Mama CGS121 u/a CS-W/B-cm Mayapan Tinaja F TB98 0421-1 419 Teabo Mama CGS122 2 CS-W/B-cm various Tinaja A TB98 1068-1 420 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja F TB98 1068-1 420 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja F TB98 0821-1 421 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0821-1 422 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0821-1 423 Teabo Mama C S CS-W/B-cm Various Cajete A TB98 103-1 424 Teabo Mama CGS130 2 CS-W/B-cm Mayapan Olla A TB98 084-1 426 Teabo Navula CGS130 2 CS-W/B-cm Olla G TB98	417 Teabo	Mama	000112	1		iviayapan	Tinaja	Δ	TR97 1854_1
419 Teabo Mama CGS121 Gas CS-W/B-cm Wayapan Tinaja A TB98 1068-1 420 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja A TB98 1086-1 420 Teabo Mama CGS123 u/a CM-W-m Mayapan Tinaja F TB98 1086-1 421 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0821-1 422 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0890-1 423 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0890-1 424 Teabo Mama CGS125 Q CS-W/B-cm Mayapan Olla A TB98 0884-1 426 Teabo Navula CGS130 2 CS-W/B-cm Mayapan Olla A TB98 0847-1 427 Teabo Navula CGS130 2 CS-W/B-cm Olla G TB98 0643-1 </td <td>417 Teabo</td> <td>Mama</td> <td>CG\$121</td> <td>11/9</td> <td>CS-W/B-cm</td> <td>Mayanan</td> <td>Tinaja</td> <td>F</td> <td>TB98 0/21-1</td>	417 Teabo	Mama	CG\$121	11/9	CS-W/B-cm	Mayanan	Tinaja	F	TB98 0/21-1
410TeaboManaCGS1222CGSW/B-CmVariousTinajaFTB98 10361420TeaboMamaCGS123u/aCM-W-mMayapanTinajaFTB98 1726-1421TeaboMamaCGS1242CS-W/B-cmvariousTinajaFTB98 0821-1422TeaboMamaCGS1242CS-W/B-cmvariousTinajaATB98 0890-1423TeaboMamaCGS1302CS-W/B-cmCajeteATB98 1033-1425TeaboNavulaCGS1302CS-W/B-cmMayapanOllaATB98 084-1426TeaboNavulaCGS1302CS-W/B-cmMayapanOllaATB98 084-1426TeaboNavulaCGS1302CS-W/B-cmMayapanOllaATB98 084-1427TeaboNavulaCGS1302CS-W/B-cmMayapanOllaATB98 084-1428TeaboNavulaCGS125u/aCH-B-cOllaGTB98 073-1430TeaboNavulaCGS125u/aB-cChacOllaGTB98 0972-1431TeaboYacmanCGS1262CSm-W/B-cvariousOllaGTB98 1097-1432TeaboYacmanCGS1262CSm-W/B-cvariousOllaGTB98 093-1433TeaboYacmanCGS1262CSm-W/B-cvariousOl	410 Teabo	Mama	CG\$121	$\frac{u}{a}$	CS W/B cm	various	Tinaja	T A	TB08 1068 1
421 Teabo Mama CGS123 au CM+W-In Mayapan Finaja F TB38 1/20-1 421 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja F TB98 0821-1 422 Teabo Mama CGS124 2 CS-W/B-cm various Tinaja A TB98 0800-1 423 Teabo Mama C CS-W/B-cm Cajete A TB98 1096-1 424 Teabo Mama C Cajete A TB98 1033-1 425 Teabo Navula CGS130 2 CS-W/B-cm Mayapan Olla A TB98 0884-1 426 Teabo Navula CGS130 2 CS-W/B-cm Mayapan Olla A TB98 0847-1 427 Teabo Navula CGS130 2 CS-W/B-cm Mayapan Olla G TB98 0847-1 428 Teabo Navula CH-B-c Olla G TB98 0793-1 429 Teabo Navula CH-B-c Olla G <td>419 Teabo</td> <td>Mama</td> <td>CGS122</td> <td>2 11/9</td> <td>CM-W-m</td> <td>Mayanan</td> <td>Tinaja</td> <td>F</td> <td>TB98 1726-1</td>	419 Teabo	Mama	CGS122	2 11/9	CM-W-m	Mayanan	Tinaja	F	TB98 1726-1
421 Teabo Mama CGS124 2 CS-W/B-cm Various Tinaja A TB98 0821-1 422 Teabo Mama Image Image Tinaja A TB98 0890-1 423 Teabo Mama Image Image Cajete A TB98 1096-1 424 Teabo Mama Image Image Cajete A TB98 0884-1 425 Teabo Navula CGS130 2 CS-W/B-cm Mayapan Olla A TB98 0847-1 426 Teabo Navula CGS130 2 CS-W/B-cm Mayapan Olla A TB98 0847-1 427 Teabo Navula CGS130 2 CS-W/B-cm Mayapan Olla G TB98 0847-1 428 Teabo Navula CGS130 2 CS-W/B-cm Mayapan Olla G TB98 0821-1 429 Teabo Navula CH-B-c Olla G TB98 0821-1 TG-MX-CX- 430 Teabo Yacman CGS125 U/a B-c Chac Olla G TB98 0972-1 431 Teabo Ya	420 Teabo	Mama	CG\$123	$\frac{u}{a}$	CS W/B cm	various	Tinaja	r F	TB08 0821 1
423TeaboMamaImageIma	421 Teabo	Mama	005124	4	CD-W/D-CIII	various	Tinaja	ι' Δ	TB98 0800-1
425 readoManhaImageImageImageImageImageImageImageImageImageImage424 TeaboMamaImage <t< td=""><td>422 Teabo</td><td>Mama</td><td></td><td></td><td></td><td></td><td>Caiata</td><td>A</td><td>TD98 0890-1</td></t<>	422 Teabo	Mama					Caiata	A	TD98 0890-1
424 readoManualImage <td>423 Teabo</td> <td>Mama</td> <td></td> <td></td> <td></td> <td></td> <td>Cajete</td> <td>A</td> <td>TD90 1090-1</td>	423 Teabo	Mama					Cajete	A	TD90 1090-1
425 TeaboNavulaCGS1302CS-W/B-cmMayapanOllaATB98 0847-1426 TeaboNavulaCGS1302CS-W/B-cmMayapanOllaATB98 0847-1427 TeaboNavulaCGS1302CS-W/B-cmMayapanOllaGTB98 0643-1428 TeaboNavulaCH-B-cOllaGTB98 0793-1429 TeaboNavulaCH-B-cOllaGTB98 0821-1429 TeaboNavulaCGS125u/aB-cChacOllaFTB98 0972-1430 TeaboYacmanCGS1262CSm-W/B-cvariousOllaGTB98 1097-1431 TeaboYacmanCGS1272CSm-W/B-cvariousOllaGTB98 1097-1433 TeaboYacmanCGS1285MX-CX-B/R-cvariousOllaATB98 0903-1434 TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 0793-1435 TeaboYacmanCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437 MayapanMamaCGS0611CM-W-mMayapanCaieteFPemy 09 8553	424 Teabo	Namla						A	TD90 1055-1
426 TeaboNavulaCGS1302CS-W/B-CmMayapanOllaATB98 0847-1427 TeaboNavulaOllaGTB98 0643-1428 TeaboNavulaCH-B-cOllaGTB98 0793-1429 TeaboNavulaOllaGTB98 0821-1429 TeaboNavulaOllaGTB98 0821-1430 TeaboYacmanCGS125u/aB-cChacOllaFTB98 0972-1431 TeaboYacmanCGS1262CSm-W/B-cvariousOllaGTB98 1097-1432 TeaboYacmanCGS1272CSm-W/B-cvariousOllaGTB98 1097-1433 TeaboYacmanCGS1285MX-CX-B/R-cvariousOllaATB98 0903-1434 TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 0793-1435 TeaboYacmanCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437 MayapanMamaCGS0611CM-W-mMayapanCaieteFPemy 09 8553	425 Teabo	Navula	000120	2	CC W/D are	Marian	Olla	A	TD90 0004-1
427 TeaboNavulaContant<	420 Teabo	Navula	CUSISU	2	CS-W/D-CIII	Mayapan	Olla	A C	TD90 0647-1
428 TeaboNavulaCH-B-COllaGIB98 0795-1429 TeaboNavulaImage: CH-B-COllaGTB98 0821-1430 TeaboYacmanCGS125u/aB-cChacOllaFTB98 0972-1431 TeaboYacmanCGS1262CSm-W/B-cvariousOllaGTB98 1097-1432 TeaboYacmanCGS1272CSm-W/B-cvariousOllaGTB98 1097-1433 TeaboYacmanCGS1285MX-CX-B/R-cvariousOllaATB98 0903-1434 TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 073-1436 MayapanMamaCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437 MayapanMamaCGS0611CM-W-mMayapanCajeteFPemy 09 8553	42 / Teabo	Navula			CUD		Olla	G	TD08 0702 1
429 reaboNavulareaboTcf-MX-CX- Tcf-MX-CX-OllaGIB98 0821-1430 TeaboYacmanCGS125u/aB-cChacOllaFTB98 0972-1431 TeaboYacmanCGS1262CSm-W/B-cvariousOllaGTB98 1097-1432 TeaboYacmanCGS1272CSm-W/B-cvariousOllaGTB98 1097-1433 TeaboYacmanCGS1285MX-CX-B/R-cvariousOllaATB98 0903-1434 TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 0793-1436 MayapanMamaCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437 MayapanMamaCGS0611CM-W-mMayapanCajeteFPemy 09 8553	428 Teabo	Navula			Сн-в-с		Olla	G	TD00.0021.1
430TeaboYacmanCGS125u/aB-cChacOllaFTB98 0972-1431TeaboYacmanCGS1262CSm-W/B-cvariousOllaGTB98 1097-1432TeaboYacmanCGS1272CSm-W/B-cvariousOllaGTB98 1097-1433TeaboYacmanCGS1285MX-CX-B/R-cvariousOllaATB98 0903-1434TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 1012-1435TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 0793-1436MayapanMamaCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437MayapanMamaCGS0611CM-W-mMayapanCajeteFPemy 09 8553	429 Teabo	INAVUIA			Taf MY OV		Ulla	G	1 898 0821-1
431TeaboYacmanCGS1262CSm-W/B-cvariousOllaGTB98 1097-1432TeaboYacmanCGS1272CSm-W/B-cvariousOllaGTB98 1097-1433TeaboYacmanCGS1285MX-CX-B/R-cvariousOllaATB98 0903-1434TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaCTB98 1012-1435TeaboYacmanCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437MayapanMamaCGS0611CM-W-mMayapanCajeteFPemy 09 8553	430 Teabo	Yacman	CGS125	u/a	B-c	Chac	Olla	F	TB98 0972-1
432 TeaboYacmanCGS1272CSm-W/B-cvariousOllaGTB98 1097-1433 TeaboYacmanCGS1285MX-CX-B/R-cvariousOllaATB98 0903-1434 TeaboYacmanCGS1295MX-CX-B/R-cvariousOllaCTB98 1012-1435 TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 0793-1436 MayapanMamaCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437 MayapanMamaCGS0611CM-W-mMayapanCajeteFPemy 09 8553	431 Teabo	Yacman	CGS126	2	CSm-W/B-c	various	Olla	G	TB98 1097-1
433 TeaboYacmanCGS1285MX-CX-B/R-cvariousOllaATB98 0903-1434 TeaboYacmanOllaCTB98 1012-1OllaCTB98 1012-1435 TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 0793-1436 MayapanMamaCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437 MayapanMamaCGS0611CM-W-mMayapanCajeteFPemy 09 8553	432 Teabo	Yacman	CGS127	2	CSm-W/B-c	various	Olla	G	TB98 1097-1
434 TeaboYacmanOllaCTB98 1012-1435 TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 0793-1436 MayapanMamaCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437 MayapanMamaCGS0611CM-W-mMayapanCajeteFPemy 09 8553	433 Teabo	Yacman	CGS128	5	MX-CX-B/R-c	various	Olla	Α	TB98 0903-1
435 TeaboYacmanCGS1295MX-CX-B/R-cS. Rita CorozalOllaFTB98 0793-1436 MayapanMamaCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437 MayapanMamaCGS0611CM-W-mMayapanCajeteFPemy 09 8553	434 Teabo	Yacman					Olla	С	TB98 1012-1
436 MayapanMamaCGS0601DZ-W-mc-hMayapanTinajaFPemy 09 8553437 MayapanMamaCGS0611CM-W-mMayapanCajeteFPemy 09 8553	435 Teabo	Yacman	CGS129	5	MX-CX-B/R-c	S. Rita Corozal	Olla	F	TB98 0793-1
437 Mayapan Mama CGS061 1 CM-W-m Mayapan Cajete F Pemy 09 8553	436 Mayapan	Mama	CGS060	1	DZ-W-mc-h	Mayapan	Tinaia	F	Pemy 09 8553
	437 Mayapan	Mama	CGS061	1	CM-W-m	Mayapan	Cajete	F	Pemy 09 8553

438 Mayapan	Mama	CGS062	1	DZ-W-mc-h	Mayapan	Cajete	Α	Pemy 09 8553
439 Mayapan	Mama	CGS063	1	DZ-W-m	Mayapan	Tinaja	F	Pemy 09 8553
440 Tekit	Yacman	CGS096	2	DX-B/W-m	Mayapan	Olla	Α	TK980203-1
441 Tekit	Yacman	CGS097	5	DX-CX-B-c	S. Rita Corozal	Olla	С	TK980239
442 Tekit	Yacman	CGS098	5	DX-CX-B-c	various	Olla	С	TK80239
443 Tekit	Yacman	CGS099	u/a	CH-B-c	Ticul	Olla	С	TK98 0199-1
444 Tekit	Yacman	CGS100	2	CG-CM-W-c	Tepekan	Olla	А	TK980237-1
445 Tekit	Mama	CGS091	5	MX-CX-B/R-c	S. Rita Corozal	Tinaja	А	TK99 0258
446 Tekit	Mama	CGS092	1	CM-W-m	Mayapan	Tinaja	F	TK98 1850-1
447 Tekit	Mama	CGS093	2	DX-B/W-m	Ticul	Tinaja	А	TK98 0014
448 Tekit	Mama	CGS094	1	DZ-W-m	Mayapan	Tinaja	F	TK98 0117-1
449 Tekit	Mama	CGS095	1	DZ-W-m	Mayapan	Cajete	G	TK98 0151
450 Tekit	Navula	CGS101	2	CH-B-c	Mayapan	Olla	G	TK98 0055
451 Mayapan	Mama	CGS064	1	DZ-W-c	Mayapan	Cajete		MP 981505-1
452 Tekit	Navula	CGS102	2	CS-W/B-cm	Kiuic	Olla	G	TK 98 0213
453 Tekit	Navula	CGS103	u/a	CH-B-c	Kiuic	Olla		TK 98 0157
454 Tekit	Navula	CGS104	2	CH-B-c	Sayil	Olla	А	TK 98 2253
9107 Mayapan	Yacman					Olla	А	MY 110
9113 Mayapan	Mama					tinaja	F	MY 87
9114 Mayapan	Mama					tinaja	F	MY 87
9115 Mayapan	Mama					tinaja	F	MY 87
9116 Mayapan	Mama					tinaja	Α	MY 87
9117 Mayapan	Mama					tinaja	А	MY 87
9118 Mayapan	Mama					tinaja	А	MY 87
9119 Mayapan	Mama					tinaja	F	MY 87
9120 Mayapan	Mama					cajete	А	MY 110
9121 Mayapan	Mama					tinaja	F	MY 110
9122 Mayapan	Mama					tinaja	F	MY 110
9123 Mayapan	Mama					tinaja	F	MY 110
9124 Mayapan	Mama					tinaja	F	MY 110
9125 Mayapan	Mama					tinaja	F	MY 110
9127 Mayapan	Yacman					Olla	С	MY 89
9130 Mayapan	Chen Mul					censer	А	MP 032195
9132 Mayapan	Tecoh					tinaja	А	MP963998
9133 Mayapan	Tecoh			DZ-W-m		tinaja	С	MP963998
9136 Mayapan	Mama					tinaja	G	MP 063616-3
9137 Mayapan	Mama					tinaja	F	MP 063616-3
9150 Mayapan	Mama					Bowl		MP982047-2
9151 Mayapan	Mama					Cajete		MP980506-4
9152 Mayapan	Mama		1			Cajete		MP98
Cenote						,		
9153 Pixyah	Mama					tinaja		
Cenote								
9154 Pixyah	Mama					tinaja		

(*) Main hand-specimen grouping: A=dark particles; F=micrite; G=sparite; C=single crystals

8.12 Summary

Table 8-34 combines the tables that were presented earlier in this chapter for each type of fabric. Associations between these types of fabrics, sites, and ceramic varieties can be observed in this table. Two blocks of fabrics have been highlighted in the table. One block contains, in pink, the fabric classes in which most north-central red-slipped (Mama) samples were found. The second contains, in gray, the fabrics in which most of the unslipped, striated samples (Yacman) were found.

	Fabric Class	Chemcl Group	Tepich	Tecoh	Telcha quillo	Mayap án	Tekit	Mama	Tipikal	T cabo	Cobá	Chac Mool	Culubá
Μ	DARK MICRI	TE		1		 		<u>_</u>				i	
Е	CG-CM-W-m	1,2uk	NNNNN			M							
D I	CH-W-cm	1	MMMM MMM N Y			N							
TI	MEDIUM-CR	YSTAI	LINE DO	LOMI	ТЕ		<u> </u>	<u>11</u>		I <u></u>	,	<u>, </u>	
M	DX-B/W-m	2		M M N			M Y						
	FINELY CRY	STALI	JINE SPA	RITE	1			1		ļ		<u> </u>	<u> </u>
G R	CS-W/B-cm	2, u/a	X	M N	M N X	ММ	N		MM N	MMM N	MMM N		
Α	MICRITE	1											
I	CM-W-m	1, u/a		YY	М	MMM NNN X	М	MMM N	М	М			
N	FINELY CRY	STALI	JINE DOL	JOSPA	R		<u></u>	1		n			
Е	DS-W-m	1		MM N	MMMM NNN	MMMMMM NNNNN	MM		ММ				
D	DS-W-mc-h	1				MMM		MMMMM MM Y					
С	DS-B-c	1		YY	NN Y Y	M NN YYYYYYYY			Y				
O A	DS-W-c	1		M N	N Y V	MMM NNN Y YYY		М	MM YYYY				
R	DADK MICDI	TF			Λ	L			1111				
s	CG-CM-W-c	1,2	YY	Y	М	YY	Y						
Е	MEDIUM AN	D COA	RSELY C	RYSTA	ALLINE	CALCITE	1	ņ	ņ.	<u>, </u>		n	
L	CSm-W/B-c	1,2u/ a	YY	N N N	Y			Y	N	YY	N		
Y	MX-CX- GROG-B/R-c DX-CX-B-c	5 uk 5			Y	NN	M V V		Y	YY			
G							• •						
R	CX-QZ-B-c DX-CX-m-h	uk 3										N	MM
А	CX-CM-01-c	1,23, 5							N		M M M		M M M M
I		u/a				X					N	XXX X	MM
N E	CX-CM-02-c	3,5, uk										N Y Y Y	M Y Y V
D	SKELETAL R	EMAI	NS	<u> </u>	<u>I</u>		I <u></u>	<u> </u>	<u> </u>	ļ	<u> И</u>	<u> </u>	
	СН-В-с	2, u/a				N N N Y	N N N	N	N				
	FINE CALCIT	TE ANI	QUARTZ	Z									
F I N E	CX-QZ-B/R-f	4, u/a				P P P P						P P P P P	

 Table 8-34. Distribution of the Fabric Classes within Sites and Ceramic Varieties

KEY: M = Mama variety (slipped), N = Navula (plain), Y = Yacman (striated), P = Payil, X = Xcanchakan, and C = Chen Mul.

Table 8.34 shows that:

- The samples from the north-central sites show a clear division by grain size between the utilitarian ceramic varieties of red-slipped Mama (pink shaded area) and the striated open-mouth Yacman (pale gray shaded area) samples: red-slipped samples are largely medium-grained whereas the striated open-mouth samples are coarse.
- The division by grain size between Mama and Yacman that was observed at the north-central sites was not observed in the Mama and Yacman samples from Cobá, Culubá, and Chac Mool.
- Instead, a partition by grain size was observed in the studied samples from the eastern sites that divides elite, or Payil, and utilitarian (Mama, Cancun, Navula, Yacman, and Xcanchakan) samples into fine and coarse respectively.
- At the north-central sites, most Mama samples fall within micro or finely crystalline calcite or dolomite fabrics. This is to say, micrite, sparite, or dolospar fabrics. In hand specimens, these three types of inclusions are difficult to impossible to differentiate, many times requiring the polarizing microscope to distinguish them.
- At the north-central sites, most Yacman samples were found within the dolospar, dark micrite, and discrete crystal fabrics.

With the exception of the dolospar fabrics, Mama and Yacman are not usually found sharing the same fabric. The fabrics of Mama and Yacman overlap in one type of fabric, dolospar, although they differentiate in their grain size. On the other hand, Mama and Navula co-occur.

In the next chapter, the information from this chapter about fabric classes and their distribution is combined with the geological (Chapter 3), hand-specimen (Chapter 6), chemical (Chapter 7), and ethnographic information to draw inferences about the ceramic techniques applied to raw materials in producing the vessels sampled in this study. Aspects of production organization will also be examined.

Chapter 9

LATE POSTCLASSIC CERAMIC PRODUCTION TECHNOLOGY

In this chapter, patterns in the data are sought and inferences drawn aiming to reconstruct two main aspects of ceramic production and organization: one, the ceramic techniques applied at the different stages of raw material processing and pottery manufacture to produce the vessels sampled in this study; and second, the variation of the fabric classes indicative of pottery groups. In contrast to previous chapters, in which the properties and attributes of the pottery clay, samples, and raw materials were analyzed forming petrographic (Chapter 6 and 8) and chemical (Chapter 7) groups, in this chapter, a more holistic approach is taken to interpret patterns in the analytical results with reference to geological, ethnographic, and raw materials experimental information.

Reconstruction of production technologies is presented in terms of the geographical location of north-central sites and sites located toward the east of the peninsula (Coba, Chac Mool, and Culubá), mainly because the north-central and eastern samples overlap little in their petrographic characteristics, and because raw materials were collected only from the north-central area. Therefore, the investigation of techniques for eastern samples is restricted to the examination of their fabric classes.

I) CERAMIC PRODUCTION TECHNOLOGY at NORTH-CENTRAL SITES

In this reconstruction, the aim is to link what has been learned from the hand-specimen, chemical, and thin-section analyses (Chapter 6, Chapter 7, and Chapter 8) to the raw materials within the area, and to techniques and processes that might have been applied in manufacturing the vessels sampled in this study. A combination of analytical methods, including examination of, and experimentation with, raw materials complemented with ethnographic data, was used for comparing the characteristics of the samples to raw materials. The samples included in this study and analyzed through these methods do not include complete or partial vessels; in addition, there are no known production locations. Production techniques, defined by Rye (1981, p.4) as the patterned and repetitive series of potters' actions that produced the attributes observed in the ceramic material, were inferred using aspects of the *chaine opératoire*, as described in the methodology chapter

(Sections 5.1, 5.3), and informed by contextual information, such as geological and ethnographic sources.

Within the north-central area, reconstruction of production technologies is presented in terms of the different types of vessels included in this study. They are redslipped jars and cajetes commonly found in this area (Mama variety), plain and unslipped jars and cajetes (Navula variety), and striated unslipped (Yacman variety) cooking pots. There are two reasons for this. One is that different varieties imply differences in attributes such as surface finish (red-slipped, unslipped, or cream-slipped), decoration (plain, striated, or incised), paste texture (fine, or non-fine), and, sometimes, form; attributes may be related to the intended function of a vessel. The second reason is that patterns have emerged in which variations in technology (such as in grain size) are associated with the ceramic varieties, as observed in Table 8-34.

Figure 9-1. Main Medium (a) and coarse (b) fabrics of the north-central area

One such pattern is presented by a division in ceramic variety as illustrated in Figure 9-1. This figure shows that at north-central sites, medium-grained fabrics (such as DS-W-m, or Dolospar-W-Medium, in Figure 9-1a) dominate in red-slipped Mama samples (solid bars more pronounced in Figure 9-1a), while coarse fabrics (such as CG-CM-W-c, or DarkMicrite-Micrite-Medium, in Figure 9-1b) dominate in unslipped striated Yacman jars (brick pattern is more pronounced in Figure 9-2b than in 9-1a).

For each main ceramic variety in this study, Mama (red-slipped), Navula (plain, unslipped), and Yacman (striated, unslipped), the different stages of ceramic production (including raw material collection, processing, construction of fabric classes, and forming) are analyzed, provided that information is available. The objectives are to:

(1) Demonstrate that raw materials from the north-central area have the potential of producing the samples analyzed in this study, and contribute to an assessment of the range of available choices, as opposed to the choices that may have been made by potters.

(2) Propose possible techniques that may have been applied to local raw materials to produce the vessels sampled.

(3) Draw inferences about the number of potters' groups that manufactured Mama, Navula, and Yacman.

With these objectives in mind, local raw materials were collected from around the north-central area, at localities shown on the map in Figures 5-3 and 5-4, for comparison with the pottery fabrics. The materials collected are described in Section 5.4 and include red soils, marl sascab, non-plastic sascab, and light gray clay. As can be recalled (Section 4.3), the term sascab is the local name for the pockets of unconsolidated carbonate rocks (such as limestone or dolostone) that are so common in northern Yucatán (Perry et al. 2002).

The sections in this chapter dealing with the reconstruction of technologies are presented in the following order:

(1) Reconstructing north-central red-slipped Mama, a variety common at northcentral sites (Section 9.1)

(2) Reconstructing north-central plain, unslipped Navula, a variety common at north-central sites (Section 9.2)

(3) Reconstructing north-central striated, unslipped Yacman, a ceramic variety common at north-central sites (Section 9.3)

(4) Firing of the samples (Section 9.4)

Firing of the vessels is discussed only once at the end of the reconstruction, encompassing all the ceramic varieties, because the information gathered is not specific to a given ceramic variety. Inferences about the number of Mama, Navula, and Yacman (for which there is more information) potters that the different fabric classes may represent are included in the presentation of the fabric classes found in these varieties.

9.1 Reconstructing Production: North-central Red-slipped Mama

During the Late Postclassic, the medium-grained red-slipped Red Mama group, and the closely related, thinner, finer-grained red-slipped ceramics, the Red Payil group of the eastern sites, were the predominant slipped ceramics over most of northern Yucatán and, in many centers, the only type of slipped ceramics. One characteristic of Mama samples from the north-central sites is the homogeneity in their external characteristics of composition, including the general appearance of the inclusions, grain size, and even color of the paste. In a hand specimen, most red-slipped jars and cajetes are characterized by frequent to common white and chalky or finely crystalline carbonate inclusions, with a medium (mode) grain size, and light fired colors, usually light pinkish gray, light reddish brown, or light red (Figure 9-2).

Figure 9-2. Sample from Mama vessel, showing its colors and textures.

In this section, the local geology and materials from the north-central area are examined with the perspective of their potential to produce ceramics such as red-slipped Mama samples. A variety of clay deposits have been documented (Section 4.4), although, based on a search of the literature, none of them within the crater's basin. In this section, the clays are examined from a pottery-making perspective.

Kaolinite-montmorillonite has been used by modern potters as the main pottery clay (*K'at*) in the vicinity of Ticul (Arnold and Bohor 1977; Isphording and Wilson 1974). As the name kaolinite-montmorillonite indicates, clay deposits can comprise more than one type of clay, and the properties of this combination may be different from the properties of the individual components. Potters in this town consider that the properties of this mixture are superior to any other clays in Yucatán for the construction of large vessels (Arnold 2008, p.155). In northern Yucatán, this combination has been found only in a few localities, which include the vicinity of Ticul, Tepekán, and Becal (Schultz et al. 1971; Isphording and Wilson 1974). Kaolinite deposits have been reported using XRD (Morales Valderrama 2005, Figure 2) of clays from towns in northern Yucatán at Yaxcabá, Akil, and Ticul.

A review of the literature showed that palygorskite deposits have been found in several northern Yucatán locations, mapped in Figure 4-9. As can be observed, all of these locations are outside of the basin of the crater, but this could be the result of studies concentrated around modern pottery towns. No clay mines have been reported near Mayapán, or the sites in this research situated to its north: Telchaquillo, Tecoh, and Tepich. A cenote (sinkhole reaching the water table) at Mayapán from which clay may have been collected before (according to local sources) was inaccessible for this study because its entrance was blocked by natural beehives. The documented mines closest to Mayapán are located around 20 km to the south, near the current towns of Chapab and Mama (Figures 4-9, 5-4). Morales Valderrama's (2005, Figure 2) XRD analysis of ethnographic raw clays and tempers shows that palygorskite is used as pottery clay (*k'at*) by modern potters at Uayma and Mama (Figure 4-9). At Ticul, palygorskite (*sacalum*) is one ingredient mixed with carbonate rocks (calcite, dolomite) to prepare a temper. According to potters, it enhances the strength of the pottery clay (Arnold 1971, 1972, 2008).

Sascab as Pottery Clay

The suitability of some of the sascab samples to be successfully fired to ceramic was investigated. Its suitability was assessed through a test of plasticity and a successful firing. A test of plasticity performed on sascab samples collected from the north-central area (wetting the material, making a coil, and bending into two circles; see Table 5-4) showed that there are two types of sascab: a plastic sascab or marl, and a non-plastic, largely carbonated-rock sascab. The term marl refers to a friable carbonate rock with clay. The term marl sascab is used in this study to refer to the sascab samples that pass the test of plasticity. The plasticity of marl sascab samples allowed for the construction of small vessels (Figures 9-3 and 9-4) and briquettes (Figure 9-5). The list of raw materials samples and their characteristics, including plasticity, is presented in Table 5-4.

Figure 9-3. Sample bowl made with clay#11, scale in cm (Table 5-4)

Figure 9-4. Small bowls prepared with the different clay samples (#1, #2, #4, #11, #16, #18, Table 5-4); right: vessel to the right was painted with red soil from the Mama-Chumayel area with added water

Figure 9-5. Briquettes made with marl sascab (#2) and red soil (#3)(Table 5-4)

To test whether marl sascab samples could be fired to produce a potentially utilitarian vessel, briquettes were made (Figure 9-5) and experimental firings were performed (more details on firing experiments in Section 9.4). Various combinations of conditions were attempted to achieve basic characteristics of a successful firing, which included losing plasticity by becoming a ceramic as demonstrated by not re-hydrating and recovering plasticity, by keeping its form, and by not breaking easily under a bending tension. Two briquettes met these characteristics under the firing conditions: clay sample

#1, and #11 (Table 5-4), a sample with a composition within Group 1 that matches most pottery samples from Mayapán.

In sum, the number one objective outlined at the start of this section was met, which showed that some of the marl sascab (#1 and #11) samples are suitable for pottery making. The characteristics of these samples when fired (see Section 9-4) match the characteristics of most north-central pottery in their light color and largely soft paste. This shows that suitable materials for pottery production occur in the vicinity of Mayapán, and, given that sascab is ubiquitous, probably also occurs in the vicinity of the other north-central sites.

Raw material sample # 11 was tested further, given that it matches the chemistry of pottery samples (chemical Group 1) and, in addition, is suitable as pottery clay. This sample is composed of a clay fraction and coarser particles. Petrography showed that the particles are mainly dolomite (silt size single crystals) and clusters of sparry dolomite (dolospar). Neither petrography nor chemical analysis can detect the type of clay present. The clay portion was analyzed (Shannon 2007, or see Appendix A) using x-ray powder diffraction (XRD) to determine the types of clay(s) present, finding that the main clay is montmorillonite, while kaolinite is a minor component (Figure 9-6). Arnold (2008, p.155) has reported widespread deposits of montmorillonite as marl pockets or as clay deposits around Ticul; however, potters consider this clay of inferior quality (than kaolinite-montmorillonite) because large vessels break.

Marl S#11 Clay Analysis

Figure 9-6. Results X-ray powder analysis of the clay fraction of raw material sample #11 (Shannon 2007, Figure 4)

Having examined the composition of the fine portion, the next step in this reconstruction is to examine the composition of coarse inclusions in terms of the raw materials from the area. It was demonstrated that there are marls close to the north-central sites that are suitable for pottery making. The marl sascab samples, however, contain very coarse carbonate fragments and hardly any silt or fine particles. Further processing of the raw materials collected from the area would have been necessary to construct a

pottery clay that is similar in grain size and frequency of inclusions to the fabrics of pottery samples in this study.

9.1.2 Raw Materials Selection for Mama: Coarser Inclusions

In this section, the types of inclusions found in the red-slipped samples during the petrographic analysis are compared to particles found in the collected raw materials. The objective is to examine and propose the types of raw materials that match the particles observed in the pottery samples.

Main Types of Fabrics Found in the Red-slipped Mama Samples

In Figure 9-7 the fabric classes discussed in Chapter 8 were grouped by the main types of fabrics or inclusions (a type of fabric refers to all the fabrics with a common main or diagnostic inclusion, for instance, bioclasts) to give a broader picture of the types of inclusions found in the red-slipped (Mama) samples of the north-central area. Figure 9-7 presents the percentage that samples within a type of fabric (for instance, all micritic or dolospar types of fabrics) represents of the total number of north-central Mama samples that were analyzed in thin section (n=69). For instance, in Figure 9-7, 16% of Mama thin sections are characterized as micritic type of fabrics and 50% as dolospar fabrics. In Figure 9-7, it can be observed that:

- At the north-central sites, the bulk of red-slipped Mama samples have three types of fabrics: finely crystalline dolospar (50%), micrite (16%), and finely crystalline sparite (12%), acknowledging that more samples were taken from Mayapán (21 Mama thin sections, or 30%). At Mayapán, dolospar (sparry dolomite as opposed to sparite that is used to refer to sparry calcite) inclusions dominate the samples.
- Samples in which the main inclusions are single crystals of calcite, dark micrite, or single dolomite crystals are rare in the Mama samples from the north-central sites. Equally rare are fabrics without inclusions and singletons (ungrouped samples).

Figure 9-7. Percentage that a fabric type represents of the total Mama (n=69) N-C thin sections; KEY: N-C=north-central;CalcXtal=calcite, single crystals; DarkMicr =dark micrite;DolmXtal=dolomite, single crystals

The division in the composition of the coarser inclusions of most red-slipped samples from the north-central areas into dolospar, micrite, or sparite corresponds with the composition of sascab (see Section 6.10). Figure 9-8 shows an example of what is considered by local residents (Don Fernando Flores, personal communication, Feb 2015) a fine-grained sascab or *cuut* (raw material #17, Table 5-4). Figure 9-9 portrays a *sascabera*, or a pocket in the carbonate layer containing sascab. There are two types of sascab, a marl and a non-plastic, mostly carbonate-rock sascab (Section 6.6).

Figure 9-8. Carbonate-rock sascab (# 17, Table 6-12)

Figure 9-9. Sascabera (sascab pocket or layer) located by the road Mama to Chumayel (#2, Table 5-4)

In sum, the bulk of the inclusions in red-slipped vessels sampled from northcentral sites are particles of dolospar, micrite, and sparite, which, with the unaided eye or low magnification (10X), are difficult to impossible to set apart because of their small crystal size, likely accounting for the observed superficial homogeneity in composition.

9.1.3 Raw Materials Transportation

The Maya people did not use beasts of burden or rolling carts to transport heavy loads. At the time of Thompson's (1958) ethnographic work in Yucatán, depending on the distance, clays and tempers were carried to the potters' work area by *mecapal* or tumpline. Figure 9-10a from the Codex Mendoza (Aztec) illustrates the use of the *mecapal* by novice priests carrying material to the temple. *Mecapals* can be made very complex, such as in Figure 9-10b for the transport of bulky and heavy items such as ceramic jars.

Figure 9-10. (a) Use of *mecapal* by novice priests carrying materials to the temple (Mendoza Codex, Fol. 62r); (b) complex *mecapal* used to transport water-carrying vessels (Figure 28 e, Thompson 1958)

It is not known how far Mayapán potters, for instance, traveled to transport clays. However, Arnold (2005b) has provided, based on ethnographic work at 117 sites, a maximum distance of 7 km that approximately 90% of potters would have traveled on foot while carrying raw materials.

9.1.4 Raw Materials Processing for the Production of Mama

As discussed earlier, it is probable, as shown by firing experiments (Section 9.4), that part of the production of vessels used local marl sascab for the plastic portion of the clay body. It was also discussed that the marls collected contain very coarse carbonate fragments and hardly any silt or fine particles. Very coarse particles are not present in the pottery samples. If marl sascab were used, further processing of the raw materials would have been necessary. In this section, the raw materials and pottery samples are compared, aiming to draw inferences about the ceramic technologies to which the raw materials were subjected in order to prepare the pottery clay.

The Use of Temper

Coarser inclusions found in the pottery clay could be naturally occurring or could have been added by the potters, in which case are known as temper (Shepard 1964, p.518; Whitbread 1995, p.374). It is likely that the inclusions found in the north-central samples are temper. Hand-specimen analysis in which samples of non-plastic (carbonate rock) sascab were compared to inclusions in the pottery using the binocular microscope (Section 6.10) showed that the samples of sascab are composed of sparry particles, which are consistent with what is observed in many pottery samples

More telling are the divisions observed in the grain size and frequency of the inclusions in pottery, indicating that the inclusions are not naturally occurring and that a selective adding of inclusions dependent on the type of vessels being made took place. This is demonstrated by comparing the red-slipped Mama samples, which are medium-grained, with the striated, unslipped Yacman open-mouth ollas that are coarsely grained (Section 8.3.1, Section 8.3.2, summary on Section 8.11).

Ethnographic work in Yucatán has documented the use of sascab as temper. It has been used traditionally for the construction of pots that would not be used for cooking on the fire (Thompson 1958, Morales Valderrama 2005; Rendón 1947, p.117). At the time of Thompson's (1958) work, communities specialized in production of cooking versus non-cooking vessels, and the preferential use of sascab was mostly related to a specialization in non-cooking pots.

Processing the Clay

There are indications in Mama pottery samples that the grain size of the inclusions resulted from the crushing and sieving of raw materials. The truncation of the upper size range of the particles in the pottery samples is an indication that sieving may have occurred (Whitbread 1995, p.398). For instance, in Mama thin sections, the most frequent grain size (mode) is medium, while the maximum particle size is coarse. As presented in Section 9.3, the mode for Yacman is coarse with a maximum of around 1.5 mm (very coarse). A division of ceramic varieties by grain size is observed: medium-grained in red-slipped Mama and coarsely grained in Yacman ollas. This division points to the selective addition of particles by potters, the addition of temper, depending on the type of vessel.

Crushing of raw materials to reduce them to the desired size is a likely scenario. Analyzed raw materials (marls and non-plastic) hardly contain silt to medium particles. Most particles are very coarse (> 1 mm) to small pebbles, and they do not correspond to the size and frequency of particles within the fabrics of the pottery samples, acknowledging that potters may have obtained their raw materials from deposits different than those in the locations sampled.

Rendón (1947), in her ethnographic work in some Yucatán towns, describes the processing of clay in which crushing and sifting are part of the process. The clay, or *k'at*, is dried under the sun just enough to start crumbling under pressure. It is then put in a container called *ch'oy* that is the same Maya name given to the wooden containers from previous times (Rendón 1947). Enough water is added to wet the clay, which is then kneaded. Temper is added after kneading. In modern times, sascab is taken from the sascabera and ground by whacking it with a good thick club (Rendón 148a). Rendón tells us that to control the grain size for ordinary pots, a coarse sifter is used. For finer ceramics, several sifters (Figure 9-11) may be used; each of finer aperture than the previous until the desired grain-size is achieved.

Figure 9-11. Basket-type and palm-rib sifters from Yucatán used by potters to sift temper, from Thompson (Figures 16g and 16h, 1958)

In sum, the divisions of grain size and frequency between ceramic varieties indicate that the coarser particles found in Mama samples were probably added by potters. The grain size of the coarser particles observed in the samples is most likely the result of crushing and sifting. Similarities between raw materials and the inclusions in the pottery samples indicate that micritic to finely crystalline carbonate inclusions in the red-slipped Mama samples were likely collected from sascab pockets, locally called sascaberas. Most likely, potters could not distinguish whether sascab consisted of fragments of micrite, or finely crystalline calcite (sparite) or dolomite (dolospar). With the unaided eye or very low magnification (10X) these carbonate varieties are difficult to impossible to set apart due to their small crystal size.

9.1.5 The Fabric Classes of Red-slipped Mama Samples

In this section, the fabric classes of red-slipped Mama samples and the sites in which they were found are presented. Different fabric classes are, in part, the result of differences in environment as well as in the processes of pottery clay construction discussed earlier, including the selection of raw materials (clays and tempers) and the processing of the materials. One fabric class represents a common technology for the construction of the pottery clay, and when one fabric class is found at multiple sites, they share a common technology or way of doing things.

Figure 9-12 breaks down into fabric classes the broad categories of inclusions illustrated in Figure 9-7 (Mama samples from the north-central sites) and shows on a site by site basis the frequencies of the different fabric classes found at each site.

Figure 9-12. Frequency of red-slipped Mama fabric classes within N-C sites.Key to FabricsCG-CM-W-c= DarkMicrite-Micrite-Coarse;CH-W-cm= Bioclast-W-Coarse/Medium;CS-W/B-cm= Sparite-W/B-Coarse/Medium;DX-B/W-m= Dolomite-B/X-medium;

From the sampling restrictions and sampling strategies faced in this study (described in Section 5.3), it follows that the frequencies illustrated in Figure 9-12 do not represent the true proportions of these fabrics at the sites. They do, however, represent the variability of the samples.

The codes used to represent the inclusions were presented in the previous chapter (Table 8-2) and repeated for ease of reference in Table 9-1. Figure 9-12 shows that, at the north-central sites, the red-slipped Mama samples were found within multiple fabric classes. This chart shows that there were three main types of fabrics found at most of the north-central sites: dolospar (DS-W-m or Dolospar-W-Medium, DS-W-mc-h or Dolospar-W-Hard), micritic (CM-W-m or Micrite-W-Medium), and sparitic (CS-W/B-m or Sparite-W/B-Medium) fabrics. The rest of the fabrics were found at one or two sites.

Inclusion code	Short Description							
СМ	(calcite) micrite							
CG	(calcite) gray/brown limestone							
CS	(calcite) sparite							
СН	skeletal remains (such as fossilized shells) or							
	fragments with calcite homogeneous texture							
CX	(calcite) single-crystals							
DS	dolospar							
DX	single dolomite-crystal							
QX	quartz single-crystal							
RC	red concretion							
MX	Mud (argillaceous) with crystals							

Table 9-1. List of Inclusions, Codes, and Short Description

One type of fabric found at multiple sites represents a significant portion of the red-slipped samples, the very-fine to finely crystalline sparry dolomite, or dolospar fabrics (Figure 9-12, solid orange). The term Dolospar in Figure 9-12 comprises the list of fabrics in Table 9-12. Most samples have medium-grained fabrics. Coarse Mama samples were also found, to a lesser degree.

		1	L				
	Texture	Fabric Class	Presence/Absence				
Dolospar-W-Medium	Medium	DS-W-m	X				
Dolospar-W-Hard	Medium to coarse	DS-W-mc-h	X				
Dolospar-W-Coarse	Coarse	DS-W-c	x				

Coarse

DS-B-c

Dolospar-B-Coarse

Table 9-2. Presence/absence of Mama Samples within each Dolospar Fabric Class

Another group of samples in Figure 9-12 found at multiple north-central sites predominantly contains finely crystalline sparite, or fabric Sparite-W/B-Coarse/Medium (CS-W/B-cm). This group presents high variability in its petrographic attributes (Section 8.4) and may represent multiple sources with a common basic recipe using medium-to-coarse particles of sparitic limestone.

The remaining key group of samples also found at multiple sites is fabric Micrite-W-Medium (CM-W-m) in which micrite dominates (Section 8.5). Similar to the sparite fabric, this micrite fabric catches samples that are not homogeneous in their petrographic characteristics but share what appears to be a basic recipe of medium-grained micrite.

In sum, multiple fabrics were found in the Mama samples, but the bulk comprises fabrics dominated by medium-grained particles composed of finely crystalline dolospar, micrite, and sparite. With the unaided eye or very low magnification (10X), they are difficult to set apart due to their very fine to finely crystalline crystal size.

9.1.6 Red-slipped Mama Potters' Groups

This section deals with the number of potters' groups that produced the vessels sampled for this study. One fabric class represents a common technology, or way of doing things, for the construction of the pottery clay and a potential potters' group, although the possibility exists that from different ways of doing things, the same fabric class might result. One or many groups of potters could have been sharing a technology. For instance, one fabric class with samples within two chemical groups may indicate one technology but two raw materials sources.

In Table 9-3, the chemical composition groups associated with each fabric class are presented, showing their distribution through the sites. This table is breaking down further the information in Figure 9-12 to show potential differences in the selection of raw materials (or processing) by including the chemical divisions within the fabric classes. In regard to the samples that were not assigned to any chemical group (unassigned), the chemical composition of one of these samples is not necessarily similar to the composition of another unassigned sample, and in Table 9-3, they are shown as potentially having different chemical compositions. For instance, in the case of the Micrite-W-coarse fabric, unassigned samples having this fabric were found at four sites. It is possible that four or more potters groups existed. However, it is also possible that they all represent only one potters' group. The minimum number of potters' groups working with micrite and unassigned material is only one.

		-					<u> </u>				/
Type of Fabric	Fabric Class Code and Name	Ch. Grp	Tepich	Tecoh	Telchaquilo	Mayapán	Tekit	Mama	Tipikal	Teabo	Minimum No. of Potters' Groups (PG)
Bioclast	CH-W-cm (Bioclast-W-Coarse/Medium)	1	Х								PG#1
Dark Micrite	CG-CM-W-c (DarkMicrite-Micrite-Coarse)	1			Х						PG#2
Micrite	CM-W-m (Micrite-W-coarse)	1				Х	X				PG#3
		uk				Х		Х			
		u/a			Х						PG#4
		u/a						Х			
		u/a							Х		
		u/a								Х	
Dolospar	DS-W-m (Dolospar-W-Medium), DS-W-mc-h (Dolospar-W-Hard)	1		X	X	Х	X	Х	X		PG#5a PG#5b
Sparite	CS-W/B-cm (Sparite-W/B-Coarse/med)	1			Х				Х		PG#6
· ·		2							Х	Х	PG#7
		uk				Х					
		u/a		Х							PG#8
		u/a								Х	
Fine Dolomit e Crystals	DX-B/W-m (Dolomite-B/W-Medium)	2		Х			X				PG#9
Argillac. /Crystals and Grog	(*) MX-GROG-B/R-c (MudXtal-Grog-Coarse)	5					X				PG#10

 Table 9-3. Chemical Groups within Fabric Classes and Sites, showing Suggested

 Minimum No. of Potters' Groups for North-central Mama (red-slipped vessels)

Key to inclusions: DarkMicr=dark micrite; u/a = chemically unassigned; uk=unknown (no chemically analyzed); (*) one sample

The red-slipped Mama samples found at north-central sites have a chemical composition (Table 9-3) within Group 1, Group 2, or are unassigned, with the exception of one sample within Group 5. Samples within Group 1 and Group 2 were found at many sites and have a widespread distribution; therefore, these groups by themselves are not useful in identifying zones of procurement. However, inspection of the combinations of fabric classes (second column), chemical groups (third column), and contextual information can inform us about the number of potters' groups, or even tell us something about the location of the material sources of a group of samples.

In this study, one potters' group is inferred by the combination a technological class (fabric class) and a potential zone of procurement (chemical group), although the differences in chemical compositions may also be due to the chemical heterogeneity of one source. Contextual information, such as patterns in the types of vessels or ceramic varieties is also considered when inferring potters' groups (the associations between

fabric classes and ceramic varieties have been presented in Chapter 8 for individual type of fabrics at the end of the corresponding section and for all the fabrics in Table 8-34).

The last column in Table 9-3 is used to indicate that, for a given combination of petrographic and chemical characteristics, at least one distinct potters' group (PG) can be inferred from the data. For instance, the micritic fabric Micrite-W-Medium (CM-W-m) was found at Tekit and Mayapán with a chemical composition falling within chemical Group 1. Therefore, at least one potters' group (PG) was producing red-slipped pots with these characteristics; granting that the number of potters' groups could have been higher. A code was given to the potters group (PG#3) to expedite when referring to the combination fabric and chemical group. PG#3 only represents the minimum number of potters' groups because other interpretations are also plausible. It is possible that several groups in a homogeneous Group 1 chemical area could have been producing vessels with the characteristics of CM-W-m fabric. Because of the lack of other contextual information, such as different types of vessels at Mayapán and Tekit that would help to divide PG#3 into further potters' groups, only one potters' group was assigned.

It is important to clarify that the actual location where these vessels were produced was not necessarily at Mayapán or Tekit, which are locations of deposition. The production location is not known because neither the petrographic characteristics nor the chemical group is distinctive in regard to location. We know from ethnographic data (Thompson 1958) that not all Yucatecan towns produced pottery. The table shows that the pottery clay for a group of samples was constructed with a distinctive technology and within a given chemical fingerprint. A larger sample, however, might show wider variations.

Chemical homogeneity over a wide area or an import from another area could produce the same pattern. Red-slipped Mama samples in the Micrite-W-Medium fabric class were also found at other sites, such as Mama, Tipikal, Teabo, and Telchaquillo, with chemical compositions that do not match any of the five chemical groups, or are unassigned. Unassigned samples could be different or equal to each other (for instance PG#4 represents the minimum number of potters' groups, one group, working with unassigned CM-W-m materials).

From Table 9-3, it can be said that the production of red-slipped Mama vessels at the north-central sites is associated with several potters' groups. Going down one by one in the rows in the table, the potters' groups that might have built Mama jars and cajetes are reflected in the following patterns:

(a) At least one potters' group (PG#1) is associated with Bioclast-W-Coarse/Medium (CH-W-cm, Section 8.8.1), within Group 1 found at Tepich, although many potters' groups working with homogeneous raw materials could have created the same pattern.

(b) One potters' group (PG#2) at Telchaquillo is associated with two Mama samples within fabric DarkMicrite-Micrite-Coarse, or GM-CM-W-c (Section 8.9.2) and Group 1.

(c) As discussed earlier, at least two potters' groups are associated with a group of Mama samples within fabric Micrite-W-Medium (CM-W-m, Section 8.5.1). At Mayapán and Tekit, this fabric was found within chemical composition Group 1, pointing to one potters' group (PG#3). This fabric was also found at several sites (Table 9-3) but with unassigned chemical composition. Likely, another potters' group existed (PG#4). These groups were discussed earlier in this section. This fabric was found throughout most of the north-central sites. It is not petrographically homogeneous, with a wide variation in the frequency of micrite and the presence/absence of secondary inclusions. Contextual information about this fabric in regard to the types of vessels manufactured with it shows that the bulk of samples come from red-slipped Mama and Navula (but not Yacman) vessels (Section 8.5.2). Based on the petrographic and chemical heterogeneity and the association with two ceramic types, it may represent a common technology shared by several potters' groups across sites that produce Mama and Navula. This common technology is composed of a common basic recipe that involves mediumgrained particles of a white, opaque, relatively friable carbonate rock in a very lightcolored paste. However, the data do not rule out other explanations, including the possibility that one group of potters supplied other centers from a location with local chemical variations in raw materials, or that the processing of the clay (such as levigation or clay mixing) affected the chemical composition of what was originally a chemically uniform raw material. What we do know is that all of these vessels with Micrite-W-Medium micrite fabric were made using a common basic recipe based, most likely, as argued in the previous section, in the processing of sascab.

d) Two potters' group (PG#5a and PG#b) may be associated with red-slipped Mama samples with medium-grained dolospar fabrics: Dolospar-W-Medium (DS-W-m, Section 8.3.2) and Dolospar-W-Hard (DS-W-cm-h, Section 8.3.3). These two fabrics are always associated with chemical Group 1 at all sites and have high petrographic homogeneity. As discussed in Sections 8.33 and 8.3.5, their differences in organic matter

and hardness may be related to differences in firing technology. One or two potters' group producing Mama at one location is a likely scenario (Section 8.3.3). However, the existence of many groups working from several locations in an area presenting a homogeneous chemical composition cannot be ruled out.

(e) At several sites, some of the Mama samples were found within a finely crystalline sparitic fabric (Sparite-W/B-Coarse/Medium or CS-W/B-cm, Section 8.4.1) that falls within chemical Group 1 (PG#6) at Tecoh and Tipikal, chemical Group 2 (PG#7) at Tipikal and Teabo, or unassigned (PG#8) at Telchaquillo and Tipikal. Similar to micritic fabrics, sparitic fabrics are not petrographically homogeneous (based on variations of frequency of sparite, presence/absence of secondary inclusions, porosity, silt frequency, and other characteristics). The heterogeneity of petrographic and chemical compositions indicates that many potters' groups producing at different locations is a likely scenario.

Micrite-W-Medium may represent a basic recipe for constructing the pottery clay of these vessels at several locations. In addition to this explanation, other explanations may be given, such as the existence of one potter's group at one location presenting a variation of local raw material.

(f) In some of the Mama samples from Tecoh and Tekit, a medium-crystalline single dolomite crystal (Dolomite-B/W-Medium or DX-B/W-m, Section 8.7.1) fabric was found within chemical Group 2 (PC#9), which is a combination particular to these two sites. There are only four samples in this fabric. The characteristics of this fabric containing mostly fine dolomite crystals, which are not common, suggests that their presence at two sites with same chemical group makes production by one group of potters a likely scenario.

Summary

Summarizing the findings of this section, the combination of fabric classes, chemical compositions, and contextual information is the principal method of identifying potters' groups in this study. It can be said from the list of different fabric classes within the various chemical compositions that the red-slipped Mama vessels sampled in this study were produced by many groups of potters. At Tepich, Tekit, Tecoh, and Telchaquillo, fabrics were found that are likely local with limited distribution; acknowledging that a more extensive sampling may change this interpretation. Nevertheless, the bulk of Mama production comprises vessels having dolospar, sparitic, and micritic fabrics.

Dolospar, micrite, and sparite fabrics have similarities in their external appearance, widespread distribution across north-central sites, and association with Mama and Navula (Table 8-34). They have in common the presence of medium-grained particles comprising a white, relatively friable, micro to finely crystalline carbonate rock as the main inclusions in a light-colored paste. The undifferentiated optical characteristics of carbonate minerals—small crystal size, and general light paste color—impart to the fabrics a visual similarity. Given that the three widespread fabrics share these characteristics and are associated with red-slipped vessels, it indicates that a basic recipe was shared by at least these three potters' groups for the production of Mama, and probably also Navula.

The compositional heterogeneity of micritic and sparitic fabrics and their presence at several sites can be interpreted as many potters' groups at different locations. The data, however, do not rule out other explanations (given under micritic and sparitic fabrics).

The group of red-slipped Mama with medium-grained dolospar fabrics differs from the micritic or sparitic samples in its internal, and across sites, petrographic and chemical (Group 1) homogeneity. Therefore, this may indicate one group of potters working from one location and supplying other centers without completely ruling out a widespread dolospar tradition under chemical homogeneity.

9.1.7 Forming and Finishing Techniques of Red-slipped Mama

To contribute to the composite picture of ceramic production, which is one of the main objectives of this study, in this section, techniques that might have been used in forming and finishing Late Postclassic vessels from north-central Yucatán are investigated. In addition to the pottery samples in this study, five almost complete vessels were examined. The analytical method applied to infer ancient techniques is non-destructive and based on the inspection, visual and tactile of surface features. This method is based on work (such as that in Rye 1981, p.58) showing that some surface features in sherds or vessels correlate to specific forming or finishing techniques. However, a given feature can result from different techniques, and operations can erase the traces of operations applied before them (Roux and Courty 1995, p.18; Rye 1981, p.58).

There is no evidence in the current research of the use of the potter's wheel or any other device that would have worked as a wheel by ancient Maya potters. As of the current research, Maya vessels were hand built. For instance, studies of Classic period lowland pottery seeking clues of forming techniques have not found indications of the use of a wheel (Reents-Budet 1994). There is, however, a device called *kabal*. It is a wooden cylinder or a pottery-saucer, rotated by the potter's feet, that is used in modern Yucatecan times (Thompson 1958, p.76-80, 88). It may not have been used in antiquity because the word *kabal* did not appear in the early Maya-Spanish dictionaries until the 17th century (Thompson 1958, p.76). In addition, there is no Maya word for the *tabla* or board that provides a flat area in which to turn the *kabal* (Thompson 1958, p.76).

Maya pottery is unglazed. Clay slips were used instead. At Mayapán, the unslipped pottery was almost always smoothed but never burnished (Smith 1971, p.23), and the slipped pottery was burnished to attain the lustrous finish that can still be seen.

The rest of this section presents the surface analyses to examine the forming process. The objective of the surface analysis is to identify features and configurations of features (Livingstone and Viseyrias 2010) in pottery that will give indications of the techniques used throughout the different stages of pottery making; granting that the lack of diagnostic features does not discard the possibility that a given technique was applied. The techniques are usually grouped by the main process in manufacturing such as forming or firing.

9.1.7.1 Forming Techniques

Ethnographic work has shown that the study of forming techniques is useful in identifying social divisions. In Yucatán, Thompson (1958) found that the forming methods used to start large jars is a community specialization. In the highlands of Guatemala, Reina and Hill (1978) found that the way large vessels are started divides along linguistic groups. In Senegal, Gelber (2005) found two types of traditions related to the techniques used to start the vessels. The link between technological choices and potters' identities may be more related to socio-economic interaction than to identity. In a study in which many cultural aspects, from learning networks to population density, were compared to clay preparation technology, Livingstone-Smith (2000) concluded that of the contemplated factors, settlement patterns and distribution zones (that matched the identity of potters only partially) were the factors that better fit the technological areas. This indicated to him that the technological areas closely matched areas of intense socio-economic interaction bounded by unpopulated areas.

Different approaches can be taken for the reconstruction of forming techniques including X-ray and visual inspection of surface features. In this study, the latter approach was taken. Based on ethnographic and experimental work, certain visual features or combinations of features may point to a specific technique (Rye 1981, Livingstone and Viseyrias 2010). Some of the surface features related to different forming methods mentioned in this section are described below.

Use of a Concave Mold or Support

A concave support or mold can be itself made as a ceramic vessel manufactured with the desired shape and size. Gelbert (2005) identified four main macrotraces diagnostic of this technique.

- (a) Usually, the part of the pot that rests on the support is thicker than the rest. Given that the base of the vessel rests on the support, the potter has difficulties in obtaining a uniform thickness.
- (b) The support leaves a circular mark around the vessel. This happens if the diameter of the support is small in relation to the rest of the vessel.
- (c) The vessel's base is slightly concave. A small depression is formed on the exterior wall of the vessel's bottom. This occurs because the pressure exercised by the hand against the clay is insufficient. This trace can be erased by adding clay later.
- (d) Depressions on the interior wall that are produced by the fingers while opening the clay or pressing it against the mold or support.

Use of a Convex Mold

The mold itself can be a ceramic vessel manufactured for this purpose. It could be a plate or a bowl (Sheppard 1958, p.63). Gelbert (2005) identified four macrotraces that are very diagnostic of this technique.

- (a) Imprints or furrows at the bottom of the interior wall. They are caused by using a tissue to cover the mold, or by the uneven surface of the mold.
- (b) Uniform curving of the bottom. According to Gelbert, this technique allows even the less capable potters to obtain a perfectly rounded vessel.
- (c) Very compacted paste. Pressing against the mold while thinning the pot leads to compaction of the paste.
- (d) Thin and uniform vessel. The uniformity of thickness is obtained while pressing the clay with a tool against the mold to thin the vessel.

Coiling

The term refers to building vessels by superimposing rolls of clay (Shepard 1958, p.57). Indications of coiling (Rye 1981, p.67) include the following:

- (a) Variations in wall thickness.
- (b) Irregular sherd edges with meandering contour.
- (c) Step-like fracture or cubic facets.
- (d) Separations along coil lines.

The description of the features is presented in combination with a drawing of the outline of the pot following Livingstone and Viseyrias (2010, p.134-139). Table 9-4 lists the surface features observed. A description is included for terms that maybe un-familiar.

Table 9-4. Features used in Surface Analysis

Abrupt walls: abrupt walls rising from the vessel bottom making a composite form Attached neck, neck do not come from body Conical feet: feet are attached to some vessel with various forms, conical-shaped feet Composite form: usually applies to deep dishes (cajetes) with round bottom (sub-hemispherical body) and relatively planar walls Circular groove: groove going around exterior wall of vessels or interior of cajete Diagonally burnished surface Direct rim: a rim that does not turn inward or outward Even thickness Evenness Everted rim: jar rim turns sharply outward. Flat bottom Horizontally burnished surface: burnishing marks are horizontal around the vessel. Horizontal bump: this is a thicker area going horizontally around the vessel. *Horizontal depression*: this is a horizontal depression encircling the parts or whole vessel. Horizontal un-even area: un-even horizontal area going around the vessels. Horizontal un-even area: thickness is guite uniform. In-turned wall: opening of sub-hemispherical vessel is constricted by inturn just below the rim, producing small shoulder. Nearly cylindrical neck: Jar neck approximates a cylinder. Round bottom Round bottom, bottom with concave area: this is a vessel that would have a rounded bottom if were not because there is a rounded concave depression on the outside where the bottom rests. Sub-hemispherical body: most non-jar vessels approximate a hemisphere. Subspherical body: jar bodies approximate a sphere. Striated outside body Smooth interior surface: even, compact, smooth feeling surface. Smooth exterior surface: even, compact, smooth feeling surface. Smoothing marks Red-slipped surface: red slip was applied. Unslipped surface Un-evenness

9.1.7.2 Surface Analysis of Five Red-slipped Vessels

(a) Bowl I (# 9150, Table 8-33)

This is a small to medium size (height, 12cm; diameter mouth, 15 cm) Mama variety bowl (Figure 9-13) with *inturned wall* and mouth, *sub-hemispherical body, round bottom with concave area, direct rim, red-slipped surface* on the outside, *unslipped surface* on the inside, *smooth interior surface*.

Figure 9-13. Profile of Bowl I showing location of surface features

The surface features observed in this vessel are listed in Table 9-5. As expected by the above presentation, this vessel does not show the signs of being thrown in a potters' wheel, such as spiral marks on the inside bottom caused by the hand or thumb pushing to open the vessel (Rye 1981, p.75).

Table 9-5. Surface Features of Bowl I
(1)Smooth interior surface in lower part of the body, smooth exterior surface in lower part
of the body
(2)Evenness of lower part of body
(3) Rounded bottom
(4) Ring base with concave area
(5) Horizontal un-even area, at 7 cm from bottom. Diagonal smoothing marks can be felt in
some parts of this horizontal area.
(6)Horizontal depression on inside wall just under horizontal un-even area
(7)Horizontal bump, just below the rim.
(8)Smoothed interior surface

(9)*Red-slipped surface* on the outside (10)*Horizontally burnished surface on the outside*.

The lower half of the vessel shows smooth interior and exterior walls (1) and evenness (2) without bumps or depressions. The vessel probably was not started on a flat area. The vessel has a rounded bottom (3). To achieve a rounded bottom, the vessel could have been started in a flat area, and the excess trimmed to obtain a rounded bottom. This technique was documented in Yucatán (Thompson 1958). However, when this technique is used, the curvature of the bottom varies significantly (Thompson 1958, p.51). This is not the case with Bowl I, which has a uniform curvature without discontinuities. Because of this, it is probable that it was started in a rounded surface.

It is probable that the vessel was started in a concave mold. According to Gelbert (2005), a very diagnostic feature of the use of a concave mold is a slightly concave area observed on the outside bottom of the vessel (Section 9.1.7.1). Bowl I presents a concave rounded area at the bottom (4), which is visible from the outside. This feature is otherwise difficult to explain. This feature and the very rounded bottom of the vessel make it likely that it was started on a rounded, concave mold. Comparing this technique to ethnographic work, Thompson mentions that, in addition to the trimming technique, round bottom vessels were also started on a concave surface (Thompson 1958, p.51).

Bowl I shows evidence of being formed in two sections. When the lower part of this pot was built up to 7 cm, it was left to partially dry. This would explain the difference between the even lower part and the uneven band area (5) going around the vessel, in addition to the smoothing marks in this area that were not totally obliterated. Other than this band, there are no surface traces on the interior or exterior of this pot up to the 7 cm high mark. The depression (6) and the horizontal uneven area (5) at 7 cm indicate that the potter could not totally erase his actions, likely because the bottom was already semi-dry (Thompson 1958, p.52). This uneven horizontal band joins the lower part of the vessel to the next addition. This type of feature related to a section of the pot left to dry has been observed by Thompson (1958) in Yucatán vessels during the manufacture of pots.

The top half of the body is smooth and even without traces. Right below the rim, there is a horizontal bump (7) going around the vessel. It has the appearance of the superimposition of a coil (Gelber 2005, Figure 8a), but could also be the result of pressing down with the fingers while forming the lip.

The surface was smoothed (8), slipped on the exterior only (9), and burnished (10), presenting horizontal burnishing marks, which indicates that it may have been turned as it was burnished.

(b) Cajete I (# 9151, Table 8-33)

This is a whole Mama tripod cajete (Figure 9-14) with *abrupt walls, round bottom,* three *conical feet, a red-slipped surface* on the whole interior and exterior wall. The exterior of the bottom has an *unslipped surface*. The surface features (1 to 9) are summarized in Table 9-6.

Figure 9-14. Outline of Cajete I showing location of surface features

Table 9-6. Surface Attributes of Cajete I

- (1) Even thickness, very even throughout the rounded bottom, with uniform curving.
- (2) Horizontal bump, where rounded bottom joins the start of the wall
- (3) Un-evenness on thickness between bottom and walls, with walls somewhat thicker than the bottom.
- (4) Even thickness, very even, throughout the wall.
- (5) Conical feet, three.
- (6) Red-slipped surface outside
- (7) Red-slipped surface inside
- (8) Unslipped outside bottom
- (9) Diagonally burnished surface. The burnishing strokes are diagonal.

This vessel presents a very rounded bottom without indications that the roundness was formed by trimming. The rounded bottom has very uniform curving and even thickness throughout the bottom (1). As discussed before, the rounded bottom and the uniform curvature (without indication that the round shape results from trimming) may indicate that the vessel was started on a rounded concave or convex surface (Section 9.1.7.1). The use of a concave surface, however, conforms to ethnographic data (Thompson 1958). This surface also supports the vessel while it is built.

This pot shows evidence of having been made in two sections. Extra clay, probably a coil was added to help join the bottom to the walls, explaining the horizontal bump (2) going around the vessel, the visible disruption, and the thicker area protruding from the wall where the bottom and walls join. These indications of a join in addition to the walls that rise abruptly from the bottom and the un-evenness and difference in thickness (3) between the rounded bottom and the walls indicate that the bottom and walls are two sections.

It is not clear how the walls were built. A very even thickness throughout the walls is observed (4). The walls may be the result of using a long slab of clay or of coiling, which was well smoothed.

The conical feet were added while the bottom was already leather-hard, judging by the lack of deformation on the rounded bottom.

The cajete was smoothed and slipped outside (6) and inside (7), while the outside bottom was left unslipped (8). The vessel was then burnished (9) inside and out. Given the diagonal marks, the cajete was not rotated while it was burnished.

(c) Cajete II (# 9152, Table 8-33)

This is a partial tripod Mama cajete with missing feet (Figure 9-15), *composite form*, lightly *round bottom*, *abrupt walls*, *circular groove* delimiting interior separation of bottom and walls, *red-slipped surface* on interior and exterior wall. The surface features (1-7) for this cajete can be found in Table 9-7.

Figure 9-15. Profile of Cajete II showing location of surface features

Table 9-7. Surface Attributes of Cajete I I

(1) Rounded bottom, with even thickness and uniform curving throughout the bottom.

- (2) Even thickness throughout the walls.
- (3) Un-evenness on thickness between bottom and walls, but it is hardly noticeable.

(4) Circular groove in the interior (not shown). This circular groove is perfectly circular.

(5) Red-slipped surface outside

(6) Red-slipped surface inside

(7) Burnished surface. The burnishing strokes are diagonal.

This vessel presents a very rounded bottom without indications that the roundness was formed by trimming. The rounded bottom has uniform curving, and even thickness throughout the bottom (1). As discussed before, the rounded bottom and the uniform curvature (without indication that the round shape is the result of trimming) may indicate that the vessel was started on a rounded concave or convex surface (Section 9.1.7.1).

In contrast to Cajete I, there are no bottom-to-walls joining marks. Any joins that may have occurred were erased. This cajete could have been made entirely in a mold. This would explain the even thickness throughout the walls (2) and the lack of evidence for a joining of the bottom and the walls. The walls are slightly thicker than the bottom (3), which indicates that, if a mold was used, it was probably a convex rather than concave mold (Section 9.1.7.1). Alternatively, the walls may have been coiled, smoothing the joins to the bottom and the coil marks.

A circular groove (4) in low relief is observed on the interior of the cajete where the bottom turns into a wall. The circularity of this groove could have been accomplished in a variety of ways including pressing an object against the vessel while the cajete was rotating, or, given the lack of a rotating device, by lightly pressing the lip of an upsidedown vessel against the interior of the cajete. The cajete was slipped on the outside (5), inside (6), and burnished (7).

(*d*) Large Slipped Jar I (# 9153, Table 8-33)

This is a medium to large (height of body 20 cm, neck 7 cm) Mama variety jar (Figure 9-16), missing the whole bottom and almost the whole left side of the pot, *subspherical body, pear-shape body, flat bottom, horizontal handles, narrow mouth, abrupt neck, medium-high neck, slightly outcurving neck, flaring neck, red-slipped surface* on outside, *unslipped surface* on the inside. This type of jar is described by Smith (1971, p.80) as one of the main Late Postclassic forms at Mayapán. It was found near the small site of Chan Pixyax (4 km west of Mayapán). Table 9-8 includes the surface features (1 to 10) observed in this jar.

Figure 9-16. Profile of Large Slipped Jar I showing location of surface features

Table 9-8. Surface Attributes of a Large Red-slipped Jar I

(1) Smoothing marks, vertical, in interior lower half, bellow the horizontal bump

(2) Even thickness, around 5 mm, up to to 9-10 cm high.

(3) Horizontal un-even area, 3 cm wide around vessel starting at around 9-10 cm (around half body height) from bottom.

(4) Even thickness, around 7 mm, of pots top half

(5) Evenness of whole upper half

The interior lower half presents vertical smoothing marks (1). The lower part is thin (5 mm) and of even thickness (2) up to 9 to 10 cms from the bottom. There are no visible indications of coiling. The thin walls and even thickness may indicate the use of a mold. The interior marks are not consistent with the use of a convex mold. The vessel was started on a flat surface, and could have been started by a variety of methods in which coiling and a concave mold concur with ethnographic data.

Given that the bottom of the vessel is flat and missing, a join existed that attached the bottom to the vessel wall. The bottom and the walls were built as two separate sections.

At 9 to 10 cm from the bottom, a horizontal uneven area (3) encircles the pot. This indicates that the vessel was built up to that height, and then, it was left to partially dry. This would explain the very uneven 2 to 3 cm wide horizontal band where the thick joining coil can still be detected. These types of surface features have been attributed to the dryness of the bottom half, which makes the coil marks difficult to obliterate (Thompson 1958, p.52).

The second half was added, but there is no evidence of the technique used, given that the top half presents even thickness (4) of around 7 mm, evenness throughout (5) and no smoothing marks (6).

The neck has even thickness (7) and is attached (8) to the body. It does not come from the vessel. It appears to have been formed by adding a tall, flat slab to the interior of the opening. Given that one section of the body is broken, it is possible to look from the body up to the neck and observe that it is cut clean.

The jar appears to have been built in at least four sections: a lower part up to 9 - 10 cm, most likely leaving an opening in the bottom, the bottom of the pot, the top part of the body, and the neck. After the first 10 cm were built, it was left to dry. The neck was added because it was not built from the body.

e) Large Slipped Jar II (# 9154, Table 8-33)

This is a medium to large (height 28 cm, diameter 30 cm, neck 8 cm) Mama variety jar, found near the small site of Chan Pixyax (4 km west of Mayapán), *subspherical body*,

round bottom, bottom with slightly concave area, horizontal handles, narrow mouth, abrupt neck, medium-high neck, slightly outcurving neck, flaring neck, red-slipped surface on outside, unslipped surface on the inside. Table 9-9 includes the attributes (1 to 12) observed in this jar.

- -

Table 9-9. Surface Attributes of a Large Red-slipped Jar II						
(1) Rounded bottom, bottom with slightly concave area						
(2) Smooth interior surface up to 6 cm, no bumps, no smoothing marks						
(3 Slight un-evenness on the exterior, vertical, up to 8 cm, likely smoothing marks						
(4) Horizontal un-even area, furrows, with horizontal bump at around 6 cm encircling the pot, 2-3 cm						
wide						
(5) Horizontal un-even area with, at around 15 cm encircling the pot, furrows, with horizontal bump						
(6) Horizontal un-even area, furrows, with horizontal bump at around 8 cm from the neck						
(7) Even thickness of neck						
(8) no horizontal bumps on neck						
(9) Attached neck						
(10) Handles attached						
(11) Red-slipped surface outside						
(12) Burnished outside surface.						

The vessel has a rounded bottom with a slight concave depression (1). The interior is smooth (2) without smoothing marks. There are smoothing marks on the lower exterior half of the vessel (3). The lower part is thin (5 mm) and of even thickness up to 9 to 10 cm from the bottom. It is unclear how the vessel was started. The slightly concave bottom, a difficult-to-explain feature, could be explained with the use of a mold (Gelbert 2005). A mold would also explain the rounded bottom.

The bottom was built up to around 6 cm and left to dry, judging by the horizontal 2 cm uneven area (4) with light furrows going around the vessel. These types of surface features have been attributed to a dryness of the bottom half, which makes coil marks difficult to obliterate (Thompson 1958, p.52).

The vessel was built up to 15 cm and left to dry somewhat. This is indicated by the second slightly uneven area (5) with horizontal bumps and ripples at 15 cm going around the vessel.

The vessel was built up to the shoulder (8 cm from neck) and left to dry, as shown by a slightly uneven area, with horizontal bumps encircling the pot.

The neck presents an even thickness (7). It was made as a separate section, because it can be observed that it is a separate section attached (9) to the interior wall of the rim body, and it does not grow from the body. It appears to have been formed by adding a tall, flat slab to the interior of the opening. The handles were attached (10). The vessel was smoothed and slipped (11) and burnished (12).

Jar II was built in sections: the first 6 cm may have been manufactured in a mold or support. There were three drying episodes. The neck was made separately and attached to the interior of the opening. The handles were attached.

Summarizing these findings, the analyzed vessels were all hand built. They were constructed using coils, slabs, and molds. Different techniques were used for the different types of vessels, probably using combinations of mold and coils in some of the vessels. One of the techniques encountered is very distinctive of modern Yucatecan potters: the open base technique with which the large Jar I appears to have been started. Thompson (1958), in his ethnographic work at nine towns of northern Yucatán, remarks that this is the technique used for most vessels (although modeling is used for some small vessels). The potter starts the vessels by coiling around an open base on the edge of the *kabal* leaving a hole at the bottom. The coil thickness varies depending on the size of the vessel but the diameter is usually between 4 and 6 cm. To fill the hole at the bottom of the forming vessel the potter presses a lump of clay into the hole and on top of the kabal, spreading the paste toward the interior edge of the vessel. Foster (1967) did not find this technique in his extensive ethnographic work in central México. The open base technique is not used in Guatemala either, with two exceptions (Reina and Hill 1978). One is the Chorti-speaking area in southeast Guatemala. The other is the town San José Petén, located in Lake Petén Itzá, Guatemalan lowlands (Figure 2-1). Its Maya inhabitants are descendants of Terminal Classic/Early Postclassic migrations from northern Yucatán (Roys 1962).

9.1.8 Summary

A prospection made searching for deposits of clay around Mayapán was not successful. However, marls are common, and samples were taken with the objective of testing their suitability to function as a viable pottery clay. The location and description of these raw materials can be found in Table 5-4. Of the marls collected, firing tests (Section 9-4) demonstrated that two of the samples were suitable for pottery making: sample #1 from the road Mama-Chumayel and sample #11 from road by Mayapán, showing that raw materials suitable for pottery production are found in the vicinity of Mayapán, and probably near other north-central sites.

Most red-slipped pottery samples contain medium-grained particles composed of micritic to finely crystalline sparry calcite or dolomite. Divisions of grain size between

red-slipped Mama and unslipped Yacman jars, and frequency of inclusions between these two ceramic varieties, indicate that the coarser particles were added by potters.

The source of the particles in red-slipped vessels is most likely sascab, based on comparisons of pottery fabrics (such as Dolospar-W-Medium, Micrite-W-Medium, and Sparite-W/B-Coarse/Medium), raw materials (micritic and sparry carbonate inclusions), and ethnographic work (Thompson 1958; Rendon 1947, 1948a; Morales Valderrama 2005). Further processing of the raw materials collected from the area would have been necessary to construct a pottery clay that is similar in grain size and frequency of inclusions to the samples in this study, probably by crushing and sifting the very coarse to coarse particles of micritic and sparry carbonate rocks found in sascab.

Surface analysis of five red-slipped vessels showed that they were hand built in sections likely using coils for the jars and molds for the rounded bottom of cajetes. The lower parts of jars up to 7 to 9 cm were built and left to dry before continuing with the next section.

Many potters' groups were involved in the production of red-slipped Mama vessels that were sampled from the north-central sites. Production of Mama most likely occurred at multiple locations. Based on the petrographic and chemical variability of micritic and sparitic sascab fabrics, they may represent several potters' groups at various locations. However, it cannot be ruled out that production of Mama with micritic fabrics, for instance, occurred at one location that presents a varied composition.

Mama with dolospar fabrics, contrastingly, presents chemical and petrographic homogeneity across sites. They may represent centralized production, but alternative explanations exist including local production at the different sites, that results in a homogeneous fabric by using raw materials with chemical compositions within Group 1, along with fragments of dolospar. The location of production of vessels with dolospar fabrics will be further discussed in the next chapter.

9.2 Reconstructing Production: North-central, Plain Navula

The plain, unslipped Navula jars and cajetes that were sampled for this study are part of one of the most abundant Tases ware, the Unslipped Navula Ware. Together with Mayapán Red Ware, they make up most of the Late Postclassic assemblage from north-central sites (Smith 1971a). Most research results have divided these unslipped ceramics, based on the probable intended function of the vessel, into utilitarian and ceremonial (Smith 1971a; Ochoa 2007). Some of the utilitarian forms include open-mouth jars, deep

dishes or *cajetes*, flat vase dishes, and restricted orifice bowls (Smith 1971). Of the many varieties and forms within the unslipped Navula Ware, this section deals mainly with jars of the Navula variety. Some Navula *cajetes* (Figure 3-7) were included for comparison given that the intended function of jars and *cajetes* had to differ greatly.

Three aspects of production for plain Navula samples differ markedly from what was discussed about the red-slipped samples in the previous section, and they are the focus of this section: (1) raw materials selection in regard to the types of coarse inclusions found; (2) the fabric classes identified in the plain Navula samples; and (3) the number and location of the potters. In the previous section about red-slipped Mama samples, the clays within the area and the techniques related to raw materials processing were addressed, and given that they also apply to plain, unslipped Navula samples, and that no additional information has been found pertinent to Navula, they are not discussed again in this section.

9.2.1 Raw Materials Selection for Navula: Coarser Inclusions

The objectives of this section are to examine the inclusions present within the fabric classes of Navula samples and to compare them to the local raw materials in order to draw inferences as to their origin. Sixty thin sections of unslipped plain (Navula) jars and cajetes were analyzed, comprising multiple types of fabrics. The distinctive inclusions or types of fabrics are shown in Figure 9-17. They are mainly dolospar (finely crystalline sparry dolomite), bioclasts (skeletal remains), dark micrite, single crystals, and sparite (finely crystalline sparry calcite). Figure 9-17 contains the percentage of the total of Navula samples that were found within each type of fabric. That more unslipped plain samples were found to have dolospar types of fabrics may be due, at least in part, to the fact that more samples were analyzed from Mayapán than from any other site (61 of 188 thin sections), and that at this site, dolospar fabrics comprise most (64% including Payil, or foreign samples) of the samples.

Figure 9-17. Percentage that fabric types represent of total Navula thin sections (n=53); Key to inclusion types: CalcXtal = single calcite crystals, DarkMicr=dark micrite, DolmXtal= single dolomite crystals.

From the previous section, it can be recalled that the fabrics of red-slipped (Mama) samples are mostly composed of dolospar, micrite, or sparite, and it was argued that they are associated with sascab. When compared to the types of fabrics found in red-slipped (Mama) samples (Figure 9-7) of the north-central sites, Navula samples were found in greater variety of the types of fabrics, including fabrics with bioclasts, single crystals (calcite and dolomite), dark micrite, or singleton fabrics, indicating a greater variability of types of inclusions and sources of raw materials.

9.2.2 The Fabric Classes of Plain, Unslipped Navula Jars

The fabric classes and sites at which plain, unslipped Navula samples were found are presented in this section. One fabric class represents a common technology for the construction of the pottery clay, acknowledging that it is possible that from different ways of doing things the same fabric class will result. When one fabric class is found in multiple sites, it can be argued that they share a common technology, or way of doing things.

Figure 9-18 breaks down the information in Figure 9-17 to show on a site-by-site basis the frequencies of the fabric classes found in plain, unslipped Navula samples.

Figure 9-18. Frequency of fabric classes of unslipped, plain Navula within sites.

Key to inclusions: CalcXtal = single calcite crystals, DarkMicr=dark micrite, DolmXtal = single dolomite crystal Key to fabric classes

CG-CM-W-m=DarkMicrite-Micrite-Medium CH-B-c = Bioclast-B-Coarse CH-W-cm= Bioclast-W-Coarse/Medium CS-W/B-cm= Sparite-W/B-Coarse/med CX-R/B-c= CalcXtal-R/B-Coarse Dolospar= fabrics in Table 9-10 DX-B/W-m = Dolomite-B/X-medium

CM-W-m=Micrite-W-Medium CSm-W/B-c = Sparite-m-W/B-Coarse CX-CM-01-c = Calcite-Micrite-Coarse-01 DX-CX-B-c = Dolomite-Calcite-B-Coarse

Figure 9-18 shows that a variety of fabric classes was found within the unslipped plain Navula samples from the north-central sites. One way of looking at the variety of Navula fabrics is to divide them into those containing mainly inclusions of micro to finely crystalline calcite or dolomite and those with mainly larger crystals. Among the finely crystalline crystal category are those containing:

(a) micritized fossil shells (usually calcite homogeneous, Section 8.1.3) or Bioclast-W-Coarse/Medium (CH-W-cm),

(b) microcrystalline calcite Micrite-W-Medium (CM-W-m),

(c) finely crystalline dolospar fabrics, or Dolospar-B-Coarse, Dolospar-W-Coarse, and Dolospar-W-Medium, and

).

In hand specimens, when examined with a hand lens, it was not possible to set them apart. They all look, for the most part, like white micritic limestone. One example of a sparitic fabric in a hand specimen is illustrated in Figure 6-10. It required using the binocular or polarizing microscope to recognize the different crystal textures. It is highly likely that potters were not able to set them apart and may have used them indiscriminately. However, each of these fabrics was found at different sites, as can be observed in Figure 9-18. At Tepich, plain, unslipped samples were also found within a fabric containing medium-dark micrite particles as a main inclusion, or DarkMicrite-Micrite-Medium (CG-CM-W-m).

Other groups of Navula samples contain distinctive particles that in a hand specimen looked like translucent or semi-translucent rocks. These samples comprise fabric classes in which the main or diagnostic particles are coarse-to-very-coarse crystalline calcite or dolomite, as well as sparry particles in which each crystal is at least medium-crystalline (one example in a hand specimen is illustrated in Figure 6-15). Among these fabrics are those containing as main inclusions:

(a) medium-crystalline sparry calcite, or Sparite-m-W/B-Coarse (CSm-W/B-c),

(b)coarsely grained single crystals of dolomite, or Dolomite-Calcite-B-Coarse (DX-CX-B-c), and

(c) coarse-to-very-coarse single calcite crystals or Calcite-Micrite-Coarse-01 (CX-CM-01-c).

Two fabrics do not fit within these two sets. One is a coarse shell fabric that was found south of Mayapán, or Bioclast-B-Coarse (CH-B-c), with remains that, in a hand specimen, appear whitish, smooth, and opaque to semi-translucent, blocky, and angular with sharp edges. The second fabric appears in a hand specimen as fine-grained with fine dark inclusions that the microscope revealed as iron-altered, rhombohedral, fine, single crystals of dolomite, or fabric Dolomite-B/W-Medium (DX-B/W-m).

Many of the fabrics found in the plain, unslipped samples were found also in the red-slipped samples (Mama) from the North-central sites (Figure 9-12), such as CG-CM-W-c at Tepich, CH-W-cm at Tepich, CM-W-m at Mayapán and Mama, CS-W/B-cm at multiple sites, and Dolospar fabrics at Mayapán, Telchaquillo, and Tecoh.

At Mayapán, most Navula samples (Figure 9-18) were found within the dolospar fabrics. Unslipped and plain Navula jars or cajetes with dolospar fabrics were not found at Tepich or south of Mayapán (Figure 1-5). Table 9-10 shows that in contrast to the redslipped samples discussed earlier in which the samples taken are dominated by one grain size (medium), Navula samples were found to have medium and coarse dolospar fabrics, granting that the number of samples is small and that more extensive sampling can yield different interpretations.

Texture	Fabric Class	Fabric Class	Presence
Coarse	Dolospar-B-Coarse	DS-B-c	X
Coarse	Dolospar-W-Coarse	DS-W-c	X
Medium	Dolospar-W-Medium	DS-W-m	X

Table 9-10. Presence/absence of Dolospar Fabric Classes Found within Navula

In addition, a fabric with coarse, clear, single crystals of dolomite and rare calcite, or Dolomite-Calcite-B-Coarse (DX-CX-B-c), a fabric with fossilized homogeneous micrite (bioclasts) that re-fired to white, or Bioclast-W-Coarse/Medium (CH-W-cm), and a micrite Micrite-W-Medium (CM-W-m) fabric were also found within the Navula samples at Mayapán.

9.2.3 Plain, Unslipped Navula Potters' Groups

The chemical composition potentially gives information about zones of raw material procurement, and in this section, chemical composition is analyzed in combination with the fabric classes, seeking patterns to infer the number and even location of the potters' groups. Table 9-11 reiterates the information in Figure 9-18 and, in addition, incorporates the chemical variability of the unslipped, plain Navula samples. Samples that could not be assigned to any of the chemical groups, or unassigned, are also included in the table. The composition of one unassigned sample is not necessarily similar to other unassigned samples, and they are shown as having different chemical compositions from other unassigned samples.

	Fabric	Ch Gr (*)	Tepich	Tecoh	Telchaquillo	Mayapán	Tekit	Mama	Tipikal	Teabo	Minimum Number Potters' Groups (PG)
Micrite	Micrite-W-Medium										PG#1
	(CM-W-m)	1				Х					
		u/a						Х			PG#2
		u/a				Х					
Bioclasts	Bioclast-W-Coarse/Medium (CH-W-cm)	1	Х			Х					PG#3
Dolospar	Dolospar-W-Coarse(DS-W-c), Dolospar-B-Coarse(DS-B-c), Dolospar-W-Medium (DS-W-m)	1		X	X	X					PG#4a PG#4b PG#4c
Finely- crystalline Sparite	Sparite-W/B-Coarse/Medium (CS-W/B-cm)	2		X			Х		X	X	PG#5
		u/a			Х						PG#6
Rioclasts	Bioclast-B-Coarse (CH-B-c)	2					x		x		PG#7
Diociasts		11/a					- 11	X	21		PG#8
		u/a					Х				
Medium- crystalline or Larger	Sparite-m-W/B-Coarse (CSm-W/B-c)	2		x					x		PG#9
		5		x						1	PG#10
	Dolomite-Calcite-B-Coarse (DX-CX-B-c)	uk				Х					PG#11
Dark Micrite	DarkMicrite-Micrite-Medium (CG- CM-W-m)	uk	x								PG#12

 Table 9-11. Fabrics and Chemical Compositions of Unslipped, Plain Navula Jars

 from the North-central Sites

Key to inclusions: CalcXtal = single calcite crystals, DarkMicr=dark micrite, DolmXtal = single dolomite crystal u/a = chemically unassigned; uk= unknown (it was not chemically analyzed)

As expressed in the previous section, the ceramic production technologies implied by the fabric classes, when examined in relation to the geological variations, may reveal different potter's groups and probable zones of procurement of the raw materials. The sites in Table 9-11 are arranged from north to south, showing a division in the sub-regional distribution of Navula samples based on their chemical groups: samples within Group 1 were not found south of Mayapán (with one exception), while samples within Group 2 were found south of Mayapán and at Tecoh. This geographical and chemical division indicates that different potters' groups likely produced the Group 1 and Group 2 pottery, and that the pottery of these groups may have been distributed differently.

Further examination of the combination of fabric classes and chemical groups shown in Table 9-11 indicates that the plain, unslipped samples likely represent vessels made by multiple potters' groups.

- Navula specimens were found sharing the medium-grained fabric Micrite-W-Medium (CM-W-m, Section 8.5.1) with red-slipped Mama at the sites of Mayapán and Mama. Although they may represent one group of potters working with heterogeneous materials, which would account for the inhomogeneous petrographic and chemical (Group 1 and unassigned) characteristics of this fabric, it is probable that two or more groups were involved (PG#1, PG#2). This proposition is based on Mama and Navula co-occurring at Mayapán and Mama sites (which can be seen more clearly in Table 8-34). At Mayapán, Mama and Navula samples have composition within Group 1, while at the site of Mama Navula and Mama are not assigned to any chemical group (Tables 9-3 and 9-11). Given that CM-W-m was found in Mama and Navula vessels almost exclusively, it may represent a common basic recipe for producing these vessels at different locations.
- At least one group of potters (PG#3) is inferred at Tepich and associated with Navula samples falling within the bioclast fabric Bioclast-W-Coarse/Medium (CH-W-cm) and composition within Group 1. This is a fabric shared with Mama samples and found at Tepich only, with one exception from Mayapán. Several groups of potters in a homogeneous raw material environment producing vessels with Bioclast-W-Coarse/Medium characteristics is a possibility.
- At Mayapán and Telchaquillo, which are one mile apart, and at Tecoh, at least three potters' group (PG#4a, PG#4b, PG#4c) were producing Navula vessels with dolospar fabrics within Group 1. An alternative explanation is that multiple groups at different chemically homogeneous locations were producing these vessels.
- At least one or two groups of potters are associated with a sparitic fabric Sparite-W/B-Coarse/Medium. This fabric was found at Tecoh, Tekit, Tipikal, and Teabo within chemical Group 2 (one potters' group or PG#5). It was also found at Telchaquillo in which the samples are chemically unassigned (a second potters' group or PG#6). This fabric is not homogeneous across the group in regard to porosity, silt frequency, color of the micromass, or the presence/absence of other particles such as micrite, skeletal remains, red concretions, or discrete dolomite crystals. Navula samples in this fabric co-occur with Mama with the same fabric. At Tipikal and Teabo, the ceramic varieties Mama and Navula share chemical

compositions (Group 2), while at other sites, no match was found. The heterogeneity of Navula petrographic characteristics with this fabric may indicate one or two potters' groups within a very heterogeneous raw materials environment. Alternatively, the heterogeneity of petrographic attributes within, mostly, one chemical group, (Group 2) may indicate little chemical variability across several raw materials locations. In this last scenario, that Yacman is not found in this fabric indicates the preferential use of this type of raw material for the construction of Navula (and Mama), and that a widespread tradition may have existed.

- A bioclasts or skeletal remains coarse fabric, Bioclast-B-coarse or CH-B-c, within Group 2 was found at Tekit and Tipikal pointing to one potters 'group PG#7. A second potters' group (PG#8) is inferred from this fabric being found at Tekit and Mama with unassigned chemical composition. An alternative explanation is that Group 2 raw materials with the characteristics of this fabric are found at Tekit and Tipikal and that several potters' groups at different locations may have existed. In the samples taken, Bioclast-B-coarse fabric was found in unslipped vessels only (Table 8-34), which, in the last proposed scenario, indicates the preferential use of this fabric across locations for the construction of unslipped vessels.
- One or two potters' groups at a minimum (PG#9 and G#10) may have been associated with a crystalline fabric Sparite-m-W/B-Coarse (CSm-W/B-c) with a medium-crystalline sparry calcite. Sparite-m-W/B-Coarse was found in samples from Tecoh and Tipikal having a Group 2 composition, and in samples from Tecoh having a Group 5 composition. More potters' groups may be involved if raw materials with similar characteristics and chemical compositions are found at the different locations. These potters were preferentially selecting this material for unslipped Navula (and Mama) vessels (Table 8-34).
- At least one potter's group (PG#11) is associated with a coarse dolomite fabric, Dolomite-Calcite-B-Coarse (DX-CX-B-c) that was found at Mayapán and at Tekit in samples from Yacman and Navula unslipped jars.
- One potters' group (PG#12), at least, may be responsible for a fabric found at Tepich only (with one exception) containing mainly dark micrite, Dark Micrite-

Micrite-Medium (CG-CM-W-m). This is a dark, microcrystalline fabric that Navula shares mostly with red-slipped Mama.

9.2.4 Summary

When compared to Mama (red-slipped), Navula samples were found in a greater variety of fabric types including fabrics with bioclasts, dolospar, sparite, micrite, single crystals (CalcXtal and DolmXtal), dark micrite (DarkMicr), or singleton fabrics, indicating a greater variability of types of inclusions and potential sources of raw materials. These fabrics represent different technologies and potters' groups.

From the examination of fabrics, chemical groups, and contextual information, more information was gathered about possible potters' groups. Navula co-occurs with Mama sharing micro-to-finely crystalline fabrics at sites throughout the north-central area. There is also a correspondence, most of the time, of the chemical groups of Mama and Navula for a given fabric at the different sites. It is then likely that plain unslipped and red-slipped vessels were produced by the same groups of potters. In addition, Navula shares coarse dolospar fabrics with Yacman and some Mama.

Navula samples with the micro-to-finely crystalline fabrics share fabrics and cooccur with red-slipped samples. On the other hand, Navula samples with the crystalline coarse particles share fabrics with the unslipped Yacman samples. It appears that potters who made red-slipped vessels also made plain vessels and that potters who made striated Yacman cooking pots also made plain vessels. There are, however, two instances in which potters appear to work with plain, unslipped vessels only. This is the case of potters working with fabric CH-B-c, found only in Navula samples (with one exception), and of potters using fabric CG-CM-W-m; granting that the number of samples is small and a more extensive sampling can change this interpretation. Forming techniques are not discussed for Navula because vessels of this type were not available for analysis.

9.3 Reconstructing Production: Unslipped, Yacman Samples

The striated, unslipped Yacman jars are a variety of the Unslipped Navula Ware (Figure 9-19). Yacman and Navula are the two varieties of this ware included in this study differentiated by the light striations that Yacman vessels present. The form included in this study is also the most common—an open-mouth jar thought to be for cooking.

Three aspects of unslipped Yacman jar production differ markedly from what was discussed about the red-slipped samples in Section 9.1, and they are the focus of this

section: (1) raw materials selection concerning the types of coarse inclusions found; (2) the fabric classes identified in the plain Navula samples; and (3) the number and location of the potters. In the previous section about red-slipped Mama vessels, the clays within the area were discussed, and, given that this discussion also applies to plain, unslipped Navula samples and that no additional information has been found pertinent to Yacman, they are not discussed again.

Figure 9-19 Reconstructed Yacman vessel from cave Yok Dzono (Brown 2017)

9.3.1 Raw Materials Selection for Yacman: Coarser Inclusions

Figure 9-20. Percentage that the types of fabrics represent of total Yacman samples (n=53); KEY: CalcXtal = single calcite crystals, DarkMicr=dark micrite, DolmXtal= single dolomite crystals.

The types of fabrics found in striated, unslipped open-mouth ollas can be broadly divided by the main or diagnostic inclusions. This broad categorization is shown in

Figure 9-20, which shows the different types of fabrics in the Yacman samples. Figure 9-20 shows that:

- Samples having fabrics containing coarsely grained dolospar comprise a significant portion of the total fabrics found in striated jars. Given that most dolospar found is finely crystalline (or each crystal size around 0.02 to 0.06 mm), the appearance in a hand specimen of the crystals comprising the grains varies from white and dull (like micrite) to clear, depending on grain-size and degree of alteration.
- The contribution of micrite and sparite fabrics is insignificant.
- Fabrics with larger crystals, from medium to very-coarse single crystals of calcite or dolomite, as the main or diagnostic inclusions make a significant contribution to the total variety of fabrics found in striated, unslipped Yacman samples. Due to the larger size of the crystals, the individual grains can be detected in a hand specimen as translucent or semi-translucent, smoothed, planar or blocky, angular inclusions.

In Figure 9-21 (that combines Figures 9-7 and 9-17), a pattern for the northcentral sites is shown in which single calcite crystal fabrics comprise a negligible percentage of the Mama samples for this area, whereas they comprise a significant proportion of unslipped striated samples throughout the north-central sites. If fabrics with dolomite crystals are added (DolmXtal), the proportion of fabrics with translucent rocks is even higher.

It is apparent that the fabric classes found in the striated, unslipped Yacman samples, when compared with red-slipped Mama, share similar dolospar fabrics, and have little in common with all other fabrics.

Figure 9-21. Comparison of the types of fabrics found in Mama and Yacman samples.

9.3.2 Raw Materials Selection and Processing for Yacman: Hi'

Ethnographic studies in Northern Yucatecan show that potters use *hi*' to refer to the translucent rock added to the pottery clay that is essential for the construction of cooking pots (Thompson 1958, Rendón 1948b). *Hi*' is composed of calcite crystals (Arnold 2008, p.192; Thompson 1958, p.70). Potters obtain calcite nodules from caves and veins in the rocks (Thompson 1958, p.70). The translucent rocks found in pottery samples are therefore most likely the same substance.

Rendón (1947, p.116) described the processing applied to hi'. The rock is cut from the *canteras* in transportable portions and taken to a place just outside the potter's house. In some towns, to obtain hi', limestone is burned, as described by Thompson (1958:70) at Lerma, Maxcanú, and Ticul. Thompson suggested that burning is performed in order to break down the calcareous cement that binds the crystals to form a pile of granules. While he didn't know the exact temperature of this firing, he thought it was not high enough to decompose the crystals (calcinar), which gave the pile of granular rock a gray color instead of the original white color of ground hi' (1958:70). Rendón (1947, p.116) observed that the decision to heat the crystalline rock before grinding is a community specialization. At Maxcanú and Becal, hi' is not heated but ground as it was taken from the canteras.

The grinding is done using a hard, smooth-surface limestone boulder (Thompson 1958, p.68) of about 1m in diameter called a *mux* (Figure 9-22) that is moved back and forth. Thompson (1958, p.68) and Rendón (1947) described that the *mux* was used to roll over the temper to grind it. The *mux* cannot be lifted due to its size and weight. After grinding the *hi*', the potter sieves it. In the north-central region, *hi*' is not as available as sascab. Towns such as Becal and Tepakam had to import *hi*' from Maxcanú and Celcetok (Thompson 1958, p.66).

Figure 9-22. Grinding stone (about 1m in diameter) from Yucatán (from Thompson 1958, Figure 16f)

9.3.3 The Fabric Classes of Striated, Unslipped Yacman Samples

This section presents the fabric classes and sites in which the striated, unslipped Yacman vessels sampled for this study were found. Each fabric class represents a common technology for the construction of the pottery clay that can be found at multiple sites, sharing a common technology, or way of doing things. Figure 9-23 breaks down the information in Figure 9-20 to show in a site-by-site basis the frequency of fabric classes.

Figure 9-23. Frequency of Yacman samples within the different fabric classes (n=59).

Key to inclusions: CalcXtal = single calcite crystals, DarkMicr=dark micrite, DolmXtal – single dolomite crystal Key to Fabrics :

```
CG-CM-W-c = DarkMicrite-Micrite-CoarseCH-B-c = Bioclast-B-CoarseCH-W-cm = Bioclast-W-Coarse/MediumCM-W-m = Micrite-W-MediumCSm-W/B-c = Sparite-m-W/B-CoarseDX-CX-B-c = Dolomite-Calcite-B-CoarseDX-B/W-m = Dolomite-B/W-MediumDolospar= Dolospar-W-Coarse, Dolospar-B-CoarseMX-GROG-MDX-B/R-c = Calcite-Grog-B/R-CoarseD
```

Yacman fabrics can be divided into those with main inclusions of micro to finely crystalline calcite (or dolomite) and those with larger crystals. The larger crystals range from medium to very coarsely crystalline, which usually look translucent to semi-translucent in a hand specimen. The fabrics dominated by micritic to finely crystalline inclusions are the following:

- Bioclast-W-Coarse (CH-W-c), with micritized fossil shells
- Micrite-W-Medium (CM-W-m) fabric, or micritic limestone
- Dolospar-W-Coarse (DS-W-c) and Dolospar-B-Coarse (DS-B-c), similar fabrics differing in their refired color, containing finely-crystalline sparry dolomite (dolospar)
- DarkMicrite-Micrite-Coarse (CG-CM-W-c), with dark micrite fabric

Of these fabrics, dolospar fabrics stand out because they were consistently found in the thin sections from multiple sites. They are in the majority of striated samples from Mayapán, Telchaquillo, and Tipikal. The sites at which these fabrics were found coincide with the sites at which the red-slipped (Mama) samples with dolospar fabrics were found: these were only north-central sites with the exception of Tepich and Teabo. They were not identified at the eastern sites, Cobá, Chac Mool or Culubá.

Almost 25% of Yacman thin sections from the north-central area were found to have larger calcite or dolomite crystals. As has been mentioned, this type of proportion does not represent the site or assemblage. They represent the variability of the samples. The different crystalline fabric classes found in Yacman are many:

- Sparite-m-W/B-Coarse (CSm-W/B-c), containing coarse particles composed of medium-crystalline calcite
- Calcite-Micrite-Coarse-02 (CX-CM-02), particles composed of coarse single calcite crystals
- Dolomite-Calcite-B-Coarse (DX-CX-B-c), with coarse-to-very-coarse discrete particles of dolomite
- Dolomite-B/W-Medium (DX-B/W-m), a fabric with individual fine-to-mediumcrystalline single dolomite crystals
- Calcite-Grog-B/R-Coarse (MX-GROG-MDX-B/R-c), a fabric with coarse dark argillaceous inclusions with embedded finely crystalline calcite and, in some, grog (crushed sherds).

Figure 9-24 Yacman samples from Tekit

9.3.4 Striated, Unslipped Yacman Potters Groups

In this section, the chemical compositions are analyzed in combination with the fabric classes and contextual information to seek patterns in order to infer the number, and even the location, of the potters' groups. Table 9-12 reiterates the fabric class and site information in Figure 9-23 and, in addition, incorporates the chemical variability of the Yacman samples. Samples that could not be assigned to any of the chemical groups, or unassigned, are also included in the table.

Type of Fabric	Fabric Class	Ch Gr (*)	Tepich	Tecoh	Telchaquillo	Mayapán	Tekit	Mama	Tipikal	Teabo	Minimum Potters' Groups (PG)
Dark Micrite	DarkMicrite-Micrite-Coarse (CG-CM-W-c)	1	Х	Х							PG#1
		2				Х	Х				PG#2
Bioclasts	Bioclast-W-Coarse/Medium (CH-W-c)	1	Х								PG#3
Dolospar	Dolospar-W-Coarse(DS-W-c), Dolospar-B-Coarse(DS-B-c)	1		Х	Х	Х		Х	Х		PG#4a PG#4b
Mediun- crystalline sparite	Sparite-m-W/B-Coarse (CSm-W/B-c)	1	Х		Х			Х			PG#5
		2								Х	PG#6
Coarse single dolomite	Dolomite-Calcite-B-Coarse (DX-CX-B-c)	5					X				PG#7
Argillac./ calcite & grog	Calcite-Grog-B/R-Coarse (MX-CROG-B/R-c)	5			X				X	X	PG#8

 Table 9-12. Fabrics and Chemical Compositions of Striates, Unslipped Yacman Jars

 from the North-central Sites

Key to inclusions: CalcXtal = single calcite crystals, DarkMicr=dark micrite, DolmXtal = single dolomite crystal u/a = chemically unassigned; uk= unknown (it was not chemically analyzed)

The last column in Table 9-12 shows the minimum number of potters' groups that can be inferred from the data. For instance, Yacman samples were found to have coarse, dark micrite particles as main inclusions, or fabric DarkMicrite-Micrite-Coarse (CG-CM-W-c) at Tecoh and Tepich within Group 1 chemical composition, and at Mayapán and Tekit within chemical composition Group 2. The potters' group producing vessels with composition within Group 2 most likely was not the same as that building vessels within Group 1. At least one potters' group is likely associated with this fabric within chemical Group 1 (PG#1). This group represents the minimum number of potters' groups because other interpretations are also plausible. For instance, it is possible that several groups in a homogeneous Group 1 chemical area could have been producing vessels within CG-CM-W-c fabric. Due to the lack of other criteria, including contextual information such as the existence of different types of vessels at Tepich compared to Tecoh that help divide the data into further potters' groups, only one potters' group was assigned to the combination of fabric CG-CM-W-c and Group 1.

The number of Yacman samples in this study that are not from Mayapán is small, but it is still possible to observe from the data in Figure 9-23 and Table 9-10 that several potters' groups for Yacman jars existed. The production of Yacman probably occurred at many sites, given the number of fabrics and the different sites in which they were found. However, some of this variation may be due to potters at one location working with compositionally heterogeneous raw materials.

There are, however, two fabrics that are petrographic and chemically homogeneous and that were found at multiple sites: dolospar fabrics DS-W-c and DS-B-c, differing in fired and refired color, and the argillaceous fabric Calcite-Grog-B/R-Coarse. Based on the homogeneity observed in these fabrics, they may have been produced at one location and moved to other north-central sites. An alternative explanation would be the existence of a widespread technological tradition over a chemically homogeneous region in which the raw materials are sourced at each site for the construction of the pottery clay for unslipped, striated pots.

9.3.5 Summary

The translucent rocks found in pottery samples are most likely the substance called *hi*' by local modern potters. Due to the large size of the crystals, the individual grains can be

detected in hand specimen as translucent or semi-translucent, smoothed, planar or blocky, angular inclusions.

The samples show that multiple potters' groups for Yacman jars existed. The bulk of Yacman thin sections have composition within dolospar and coarse crystalline fabrics. Differing from the unslipped Navula jars, fabrics in which micrite (white in hand specimen) or finely crystalline sparite dominate were largely absent in the Yacman samples. However, Yacman was found to have coarse particles of the finely crystalline dolospar fabrics. Examination of Table 8-34 indicates that Mama and Yacman fabric classes do not contain the same type of inclusions (this is to say, they do not share the same type of fabrics), with one exception: fabrics with dolospar inclusions are common to Mama and Yacman.

The variety of crystalline fabrics in the Yacman samples from throughout the north-central sites may represent a common basic recipe based on coarse particles of translucent to semi-translucent rocks for the production of these jars. The production may have occurred at many sites because, with the exception of dolospar and the Calcite-Grog-B/R-Coarse fabric (MX-CROG-B/R-c), Yacman fabrics were found to have limited distribution at one or two sites. An alternative scenario to consider is that the different macro crystalline fabrics are the product of one or a few potters' groups, in which variations in the types of crystals represent local variations in the availability of crystalline calcite or dolomite. However, we know from ethnographic work that these crystals are not available at all north-central localities (Thompson 1958) and are imported into some pottery towns, which would add to the variety of crystalline fabrics.

9.4 Firing of Samples from North-central Sites

The aim with this section is to investigate and present the processes that successfully take raw material from the north-central area and change it into durable ceramics. To achieve this goal, in this section, the behavior of local material when exposed to temperature is investigated through experimentation from two points of view: one, effects of temperature on carbonate inclusions; and second, effects on the plastic or clay portion.

To start this section, background information on the effects of temperature on calcite, dolomite, and clays is presented. Next, experiments on the effects of temperature on briquettes containing various grain sizes of carbonate inclusion are described and the results presented. This is followed by a description of experiments and the results of a firing schedule aimed at determining whether samples of marl sascab, red soils, and gray

clay might become ceramic, the characteristics that they might take, and the conditions under which these may occur.

The Maya potters who manufactured the ceramics analyzed in this research were dealing with carbonate rocks. Potters need to raise the temperature during firing to a point at which pots lose their plasticity and become ceramic. Up to this state of research (Section 3.1), Maya pots appear to have been fired in open fires. No direct evidence for the production of utilitarian ceramics has been found in the study region. In his ethnographic work on pottery towns of Yucatán, Thompson (1958) describes in most towns the use of a traditional kiln that is built as a half dome (Figure 9-25). Given that his potter informants do not have a Maya word for it, calling it *horno*, Thompson believes that this type of dome is not pre-Hispanic. In addition, in several instances, potter informants remembered the time when pottery was open fired, usually in a square against an *albarrada*, a dry-laid stone or rubble wall (Thompson 1958, p.97). Thompson (1958, p.97) remarks that (but no reference is given) Eduardo Toro Quiñones found one of those open kilns at Dzununcán in which two more walls were added to the *albarrada* to build an "unroofed and open-ended square enclosure. The vessels are stacked inside and covered with firewood".

Figure 9-25. Ethnographic half dome kiln, Yucatán (Thompson 1958, Fig 26g)

9.4.1 Effects of Firing on Calcite Inclusions

Calcite and high temperatures are a concern to potters requiring a careful control of the firing process because this mineral, through a reaction known as calcination, changes into lime and water. Lime absorbs atmospheric humidity (water vapor), rehydrating the lime into the higher volume calcium hydroxide Ca(OH)2 (Rye 1981, p.33), which expands and potentially, depending on the amount of lime and the degree of calcination, destroys the pot and crumbles it. Various temperatures have been proposed for the start of calcite calcination, with some considering that calcite starts to decompose at 750°C (Rye 1981; Bronitsky and Hamer 1986; Feathers 1989), while some have suggested that the decomposition starts at lower temperatures (Rice 1987c, p.103–105).

Differences in the calcination starting point suggested by different researchers may be explained by the experiments on firing conducted by Shoval and Beck (2005). They showed that conversion to lime is greatly affected by the crystal size of the calcite. More specifically, their experiments demonstrated an inverse relationship between the exposed crystal surface areas of individual calcite grains and their conversion to lime. The calcite particles with the least exposed surface area are coarse single crystals (also called mono-crystalline), followed by the multi-crystalline sparry variety, and finally the microcrystalline (micrite) aggregates of calcite. Shoval and Beck (2005) found that, after six hours of heating, these three calcite varieties start to de-carbonate at 600°C. Micrite totally decomposed at 600°C, sparite at 650°C, and mono-crystalline calcite at 750°C (Table 9-13), showing that calcite in the form of individual single crystals is more stable at higher temperatures.

Calcite Crystal-size Varieties	600°C	650°C	700°C	750°C
Micrite (chalk)	Almost complete	Totally complete		
Sparry limestone	Starts	Almost complete	Totally complete	
Coarse Single calcite Crystal	Starts			Almost complete, crystal shape remains

 Table 9-13. Different States of Conversion to Lime when Different Calcite

 Varieties are Fired for Six Hours (data from Shoval and Beck 2005).

Six hours of heating is longer than the duration of most open fires, acknowledging that the actual firing conditions of ancient Maya pottery are still unknown. Reina and Hill (1978, p.114) report a firing time of 20 minutes for one *tinaja* (water vessel) at San Miguel Acatán, while Thompson (1958, p.97) reports firing times of 2 to 3 hours in a half dome kiln in Yucatán. Differences in firing times are the result of potters' working knowledge of what works and what does not work with the materials used. A good portion of the samples in this study contain dolomite in addition to calcite, and as is discussed later in this section, dolomite also decomposes following a different reaction than calcite and at different temperatures.

9.4.2 Effects of Firing on Dolomite Inclusions

The changes that calcite experiences with temperature have received considerable attention in archeology. Less information is found in the literature about the effects of rising temperatures on dolomite in relation to ancient pottery. Dolomite (Ca (Mg, Fe) (CO3)2) in comparison to calcite (CaCO3), is slightly harder (Gautam 2001, p.153), 3.5 to 4 in Mohs scale. Dolomite and calcite are similar in that they both decompose with enough temperature, with dolomite dissociating into calcite and magnesium oxide with temperatures above 650°C (Britton et al. 1952a, 1952b).

There is no agreement in regard to the details of mechanisms for the dissociation reaction of dolomite (McIntosh et al. 1990). The mechanisms are complex with many factors affecting the reaction including the atmosphere, temperature, the rate of heating, and the particle size (McIntosh et al. 1990). In general, McIntosh et al. observe that dolomite calcination proceeds in two stages. In the first stage, dolomite dissociates into calcite and magnesium oxide and in the second, if the temperature is brought up to a point at which carbon dioxide is driven off, the calcite will calcinate, producing calcium oxide with a considerable reduction in volume due to the loss of carbon dioxide.

 $CaMg(CO_{,}), \rightarrow CaCO_{,} + MgO + CO (Stage 1)$ $CaCO_{,} \rightarrow CaO + CO$ (Stage 2)

McIntosh et al. (1990) showed that the temperature at which dolomite decomposes could vary widely depending on the atmosphere surrounding the particles. This relationship is shown in Figure 9-26. The mechanism is more complex than this

because the atmosphere is affected by the heating rate and the mass of the sample: if the carbon dioxide produced cannot escape or the atmosphere is rich in carbon dioxide, the temperature of calcination (second inflection) will be raised. In the example illustrated in Figure 9-26, the decomposition of dolomite into calcite starts around 600 °C. At 700°C, 40-50% of dolomite decomposes rather quickly. The newly formed calcite in turn decomposes into calcium oxide (Xie et al. 2016, p.45). The temperature of complete decomposition of dolomite into calcite varies with the amount of CO and may reach as high as 900°C. According to Xie et al. (2016, p.45) the complete decomposition of dolomite generally occurs at temperatures higher than 800°C. After 800°C, the remaining calcite turns into lime (Trindade 2009, p.349) and dolomite and calcite disappear.

Figure 9-26. Dolomite heated at 1°C per min in different atmospheres, y-axis = fraction reacted (McIntosh et al. 1990, Fig 1)

9.4.3 A Firing Experiment with Raw Materials from the North-central Area

A limited testing was performed on raw materials collected from the north-central area with the objective of investigating technological processes that may have been used to produce a successful firing given the materials on hand. Two of the main divisions observed in the fabrics of pottery samples from the north-central area (discussed in this and in previous chapters) are between the types of carbonate rock varieties found in the pottery (micrite and sparry in red-slipped vessels and single crystals in a good part of the unslipped, in particular Yacman) and between medium and coarse fabrics.

The results of Shoval and Beck (2005) discussed above showed an inverse relationship between the arrangement/crystal size of the carbonate crystals (micrite,

sparite, coarse single crystals) making up a particle and the efficiency of calcination. Maya potters may therefore have been aware of differences in the firing between sascab (micrite, spar) tempered vessels and coarse single-crystal tempered vessels.

While experimenting with the raw materials to fire a successful briquette, it became apparent that the particle size has an important role in the efficiency of calcination and on the subsequent destruction of the briquette. To investigate the grain sizes and temperatures that produce a successful outcome, briquettes were prepared with the plastic raw materials collected in the field (Table 5-4). Three types of briquettes were examined:

Case A. One briquette was prepared with sample clay #11 (Table 5-4), which is the plastic sascab found close to Mayapán. Petrographic analysis (Table 8-32) of this sample showed that the original raw material had hardly any silt, fine, or medium particles. The inclusions were composed of coarse-to-very-coarse dolospar and some sparite. The raw material was lightly ground to create a fine to medium-grained material. It was sifted through a 0.5 mm mesh. The resulting briquette had a fine-to-medium texture (Case A, Table 9-14).

Case B. A second group of briquettes was made of the marl sascab raw material samples (#1, #2, #4, #11, #16, #18) including sample #11. Petrographic analysis (Table 8-32) had shown that plastic sascab samples contain very coarse clusters of very-finely crystalline sparry calcite, with the exception of clay #11 that contains coarse to very coarse particles of dolospar. For the briquette construction, pebbles and other extremely coarse particles were removed manually, just enough to permit building the briquettes.

Case C. One last group of briquettes was made with red clayey soils (Table 8-32), also containing coarse-to-very-coarse carbonate particles.

The samples were fired at 650°C, 700°C and 750°C in an oxidizing atmosphere for 45 min (Paragon Quickfire 6 test kiln). A starting target temperature of 650 °C and a time of 45 minutes were selected based on Table 9-15 containing Rye's (1980) decomposition temperatures and times for different types of clays.

Size of Carbonate Particles	Type of Sample	650 °C.	700° C.	750°C.
Case A (Sascab: #11): (a)Particle size = fine-to-medium; (b)Crystal size = finely-crystalline sparry	 (a)Plastic portion = marl sascab (b) Coarse portion = fine-to-medium grained 	-calcination of sascab's carbonate mud portion - keeps briquette form	keeps form	keeps form
Case B (Sascab: #1, #2, #4, #11, #16,#18): (a)Particle size = coarse-to very coarse; (b)Crystal size = finely-crystalline sparry	(a)Plastic portion = marl sascab (b)Coarse portion = coarse-to-very-coarsely grained	-calcination of sascab's carbonate mud portion - keeps briquette form	- keeps form	-calcination of coarse and very coarse inclusions - crumbles
Case C (red clay: #6, #8): (a)Particle size = coarse-to very coarse; (b)Crystal size = finely-crystalline sparry	(a)Plastic portion = plastic red soil (b)Coarse portion = coarse-to-very-coarsely grained	- keeps briquette form	- keeps form	-calcination of coarse and very coarse inclusions - crumbles

 Table 9-14. Effect of Temperature on Sascab Inclusions (Micrite and Finelycrystalline Sparry Inclusions)

Temperature of 650°C. The marl sascab briquettes (Case A and B) calcined to an extent at 650°C; the degree of which could not be measured, but calcination may have started from a lower temperature. This calcination did not change the shape of the briquettes. That calcination occurred was demonstrated by submerging a piece of the briquette in water: bubbles are released from the reaction of the water with the quicklime formed during calcination. The test for excessive and destructive hydration of quicklime was done by letting the briquettes stay in the open air for a few days. All the briquettes maintained their form.

Temperature of 700°C. All of the briquettes kept their form when exposed to the air.

Temperature of 750°C. Upon firing, two different outcomes were witnessed: the fine to medium-grained briquette kept its form, while the coarse-to-very-coarse briquettes, or Case B and C, disintegrated within two days.

Figure 9-27. (a): briquettes keeping their form at 700°C; (b): obliterated coarseto-very-coarse briquette at 750°C (#2)

Based on this experiment, the damage that calcination can inflict on pottery is dependent on grain size, among other factors such as crystal area. Fine-to-mediumgrained briquettes did not crumble at 750°C (Figure 9-27a) while very-coarse briquettes were rapidly reduced to a pile of fragments (Figure 9-27b). This experiment illustrates the major difficulties and challenges that potters encountered when carbonate inclusions were part of the firing equation. Shoval and Beck (2005) showed that coarse monocrystals will calcinate at 750°C, but also, that they will keep their form. This experiment showed that the calcination does not necessarily cause the destruction of the briquette, rather, when fired at a given temperature, destruction is related to grain size.

The divisions in grain size and the truncation of most grain sizes larger than 1mm indicates that the coarser inclusions were most probably sifted (Section 9-1) and potters controlled the size of the particles. The grain size (mode) of Yacman cooking pots, coarse, differs from red-slipped Mama, or medium. This control may have been related to the potters' working knowledge of the firing conditions. This implies that Yacman firing conditions may have been different from red-slipped Mama conditions. But grain size is only one of several factors in the samples that appear related to firing performance, such as the presence of macro crystals in some of the Yacman pots. As seen in Section 9.4.1, larger single crystals are more stable and calcination starts at a higher temperature. Even after calcination, they appear to expand less than smaller crystals. On the other hand, as shown in the experiment in this section, a smaller grain size protects the vessels from destruction when the calcination temperature is reached because the temperature can be increased to accelerate the decomposition of the clay and reduce the firing time.

9.4.4 Effects of Firing on Clays

Pottery making requires that pots be fired at a temperature at which the clay decomposes and becomes ceramic, losing its plasticity. During firing, a clay undergoes a series of modifications, including dehydration, dihydroxylation, decomposition and new phase formation (Trindate et al. 2009, p.345), that change its organization and eventually its chemical composition. Unless the clay is decomposed completely, the clay may become plastic when exposed to water, or rehydroxylation.

Potters need to raise the temperature during firing to reach the point at which the clay starts to sinter, and either maintain the temperature for a relatively long period of time until the clay has transformed, or if possible, raise the temperature quickly for a more rapid transformation. The presence of calcite and dolomite fragments in the pottery clay puts limitations on the temperatures that can be reached without damaging the pottery.

There are three main variables that are crucial in firing: maximum temperature, atmosphere, and the rate at which the temperature rises (Rye 1981, p.110). The temperatures at which fired clay starts to decompose and the time required for the decomposition of some of the different types of clays are listed in Table 9-15.

Clay	Decomposition	Firing time
	Temp (C)	required
Kaolinite	415	weeks
Kaolinite	550	30 mins
Kaolinite	585	very rapid
Halloysite	558	very rapid
Montmorillonite	678	very rapid
Palygorskite and	400	30 min
sepiolite		

Table 9-15. Clay Decomposition Temperature (after Rye 1981, p.11; U.S.G.S.)

XRD of one of the marl sascab (Shannon 2017, included in Appendix A for easy reference), #11, found that the clay portion is mostly composed of montmorillonite, and kaolinite to a lesser degree. The temperature of decomposition of this clay is rather high when compared to other clays that have been documented in the area (Section 4.3). However, this marl presents a mixture with kaolinite, and the properties of this mixture likely are not the same as the properties of the individual clays.

As can be recalled, two of the common clays in Yucatán are kaolinite and palygorskite (Section 4.3, Section 9.1.1). At 500-550°C for 30 min, kaolinite largely disappears as a crystalline phase (but remnants may be present depending on atmosphere,

for instance) and an amorphous meta-kaolinite and an illite/muscovite, or mica, phase appears (Trindade et al. 2009). This new mica phase is stable, disappearing at around 800°C (see Shannon 2016 for minor mica phase detected in Mayapan pottery sample).

Palygorskite dehydration stars at the very low temperature of 350°C (Frini-Srasra and Srasra 2008), and a new phase appears, palygorskite anhydrate. The remaining palygorskite and this new phase transform into an amorphous substance at around 550-600°C (Xie et al 2016, p.44), but retain the fibrous morphological characteristics of palygorskite until around 800°C. These transformations are summarized in Table 9-16.

	350 °C		500 °C	550 °C	800 °C	900 °C
Palygorskite (Xie et al. 2016)	- Paly partial dehydrati on	- paly & - paly anhydride appears		- paly & - - paly anhydride disappear, - keeps form	paly morphological characteristics disappear	
Kaolinite (Trindade et al. 2009)	Natural kaolinite		-Kaolinite disappears - amorphous metakaolinite apears			
			Mica-like (illite/muscovite) phase appears		Mica almost disappears	Mica disappears

 Table 9-16. Changes to Palygorskite and Kaolinite with Temperature

Experiment on Firing Briquettes Made with Local Materials

Based on the previous discussion on the effects of temperature on micritic and sparry calcite and dolomite, as summarized in Table 9-14, the temperature reached by the pots should be equal to or higher than the temperature needed to decompose the clay, but less than the temperature indicated in Table 9-14 for a given particle size. For instance, from Table 9-14, a vessel built with medium-grained sascab inclusions can be fired to 750°C, whereas a vessel containing coarse sascab can be fired only up to 700°C. It is important to notice that the clay matrix is a marl, and that even if coarse particles are removed, a carbonate mud is present. Experiments on the effects of an oxidizing versus a reducing atmosphere were not performed.

An experiment on firing was conducted to determine whether the raw materials from the area (marl sascab samples, red-soils, and one gray clay) might become ceramic, the characteristics that they might take, and the conditions under which this occurs. Briquettes, with characteristics summarized in Table 9-17, were fired at 700°C for 45 minutes.

At 700°C for this duration, none of the marl sascab briquettes lost their plasticity, even though they were firm to the touch. When they were submerged in water for one day to test whether they had become ceramic, the briquettes recovered their plasticity, as demonstrated by their clay portion dissolving into a very fine mud. The reasons for this could be many. One likely reason is that, given that they are marls, the amount of clay is not sufficient to bond the material when sintered, preventing it from becoming ceramic. Another reason is that the firing time has to be longer than indicated in Table 9-15, because they are marls and not pure clay.

Test Case (#sample)	Type of Raw Materials	Changed to Ceramics at 700 °C, for 45 min?	Changed to Ceramics at 600 °C, for 5 hrs?
Case A (#11) marl sascab, fine texture	 (a)Plastic portion = clayey carbonate mud, or marl sascab (b) Inclusions Particle size = fine-to-medium; Crystal size = finely-crystalline sparry 	No	Yes
Case B (#1, #2, #4, #11, #16,#18) marl sascab, very coarse rock fragments	 (a)Plastic portion = clayey carbonate mud, or marl sascab (b) Inclusions Particle size = coarse-to very coarse; Crystal size = finely-crystalline sparry 	No	#1 = Yes #2 = No #4 = No #11 = Yes #16 = No #18 = No
Case C (#6, #8) red clayey soil, coarsely grained	 (a)Plastic portion = clayey red soil (b) Inclusions Particle size = coarse-to very coarse; Crystal size = finely-crystalline sparry 	No	Not tested
Case D (#3, #7) red clayey soil, fine grained	red clayey soil, no coarse inclusion, likely no carbonates	Yes	
Case E (#19a) Light gray clay (Chapab)	Fine clay probably with carbonate mud (some change into lime ocurred)	No	low resistance to break

Table 9-17. Transformation of Sample Raw Materials into Ceramics

When fired at 700°C for 45 min, two red clays (Case D: #3, #7) without coarse carbonate inclusions became ceramic. Carbon was deposited on these red clayey briquettes due to the amount of organic matter in the red soils from the area (Shang and Tiessen 2003). These two briquettes were re-fired at 750°C to examine their appearance after burning off the organic material. Clayey red soils are common in the north-central area and represent an option available to potters. Ancient potters were aware that red soils can be used for pottery. An odd-looking tile-like device thought to be a candle shield has been found at Mayapán/Telchaquillo. Potters, however, did not select these clays for

the construction of their vessels despite being fast-firing and harder than typical Mayapán ceramics. Additional experimental testing of these clays is needed to show whether large vessels can be successfully built with them.

To test whether allowing for more firing time resulted in a transformation of the raw materials into ceramics, the marl sascab briquettes (including sample #19a) (Table 5-4) were fired at 600-650°C for 5 hrs. Table 9-17 summarizes the results of this experiment. Sample #1 (marl from Mama–Chumayel road, Table 5-4) and sample #11 (marl from Mayapán sascabera that matches the chemical compositions of Mayapán pottery, Table 5-4) became ceramic with a good resistance to breaking. The raw materials in marl samples #2, #4, #16, #18 probably do not have enough clay to bond the material because these did not change into ceramics.

The briquette made with clay (#19a, Table 5-4) from a mine near Chapab (Figure 5-4) also became ceramic. This mine supplies Ticul potters with sascab for temper (Arnold 2005a) and contains a critical ingredient for their pottery clay, sacalum (Arnold 1971). This ingredient was shown to be palygorskite (Arnold 2005a). Although Sánchez del Río et. al (2009) took a sample from this mine that was 100% palygorskite, the sample taken for this research, although very fine, has a carbonate mud component demonstrated by the slight fizzling when submerged in water after firing. Although sample #19a kept its form throughout the tests mentioned earlier, when the briquette was bent with the hands, its resistance to breakage was low and it broke easily. This may be related to the briquette becoming very light in weight after firing, most likely due to the loss of water. The loss of weight was not measured, but a comparison between sample #19a with #11 after firing showed that #19a had close to half the weight of #11.

9.4.5 Discussion

The research presented in this section showed a varied temperature and rate of transformation of carbonate rocks into lime depending on several factors that required the attention from part of the potters. Lime hydrates to calcium hydroxide, taking up more volume than calcite. The expansion can disintegrate or break a vessel. Dolomite decomposes first into calcite, which, with further heating, follows the calcite decomposition path. At a given moment, dolomite, calcite, and lime may all coexist. The research also shows that the efficiency of decomposition is inverse to the area exposed by the crystals. Coarse, single crystals have lower surface area and begin to decompose

at higher temperatures (lower decomposition rate), while micrite or carbonate mud have higher surface area and start to decompose at lower temperatures.

Experiments performed in this study showed that particle size is relevant to the expansion caused by the crystallization of quicklime that may damage or even break a pot: the larger the particle, the greater the damage, with the frequency of large particles most likely playing a role in this process. Experiments also showed that the temperature reached by the pots should be equal to or higher than the temperature needed to decompose the clay, but not higher than 700°C, unless the fabric is finely grained or the particles present are coarse discrete crystals, such as hi'.

Experiments with local sascab showed that some of the marl sascab samples collected from the area are suitable for the production of ceramics. These marls are of light color, from off-white to light yellow brown. A short firing of 45 minutes transformed the red soils into ceramics, but this was not so for marl sascab and the light gray clay sample from Chapab. However, a slow firing at 600-650 °C for five hours transformed two of the sascab samples into ceramics: sample #1 (Table 5-4) from the road Mama-Chumayel and #11 from a sascabera by Mayapán.

Even when calcite was not present, as was the case in most Late Classic ashtempered pottery, and to maintain the glossiness of burnished slips, the pots might have been fired at low temperatures (Rice 2009), probably not exceeding 700°C (Taylor 1982 cited in Rice 2009). This suggests that for slipped vessels, the limiting temperature factor was probably maintaining the luster of the slip (Rice 2009), while the limiting factor for unslipped vessels was the disintegration of the pots due to calcination. It is very clear from the results of the experiments performed that the raw materials from the northcentral area of Yucatán presented great challenges to potters. Nevertheless, that they were successful in controlling temperature and preserving the vessels' luster can be appreciated in the result of their work.

II) FABRIC CLASSES of THE EASTERN SITES

9.5 Fabric Classes of Eastern Sites: Cobá, Culubá, Chac Mool

A reconstruction of ceramic techniques used in samples from the eastern sites (Coba, Culubá, and Chac Mool) was not possible because no raw materials were collected from this area and the number of samples is very small. Instead, this section focuses on examining the fabric classes found at the eastern sites, seeking technological patterns, and on the comparison of these fabrics with fabrics of samples from the north-central sites. Table 9-18 illustrates the fabric classes and ceramic varieties found in samples from the eastern sites of Coba, Chac Mool, and Culubá, as well as the fabric classes shared between eastern and north-central sites.

Fabric Class	Chemical Group	Tepich	Tecoh	Telchaquillo	Mayapán	Tekit	Mama	Tipikal	T cabo	Cobá	Chac Mool	Culubá
CALCITE S- XTALS												
CX-QZ-B/R-f	4, u/a				PPPP						PPPP	
CX-QZ-B-c											N	
QZ-R-m											N	
CH-QZ-B-f											P	
CH-R-f	3											P
DX-CX-m-h	3											MM
CX-CM-01-c	1,2,3,5, u/a				x			N		M M M N	xxxx	М М М М М М М
CS-W/B-cm	1,2,5, u/a	X	M N	M N X	MM	N		M M N	MM M N	M M M N		
CX-CM-02-c	3,5										N Y Y Y	M Y Y V
CSm-W/B-c	1,2,5, u/a	YY	NNN	Y			Y	N	Y Y	N		

Table 9-18. Fabrics found at Cobá, Chac Mool, and Culubá within Ceramic Varieties

KEY: M = Mama variety (slipped), N = Navula (plain), P = Payil, Y = Yacman (striated), X = Xcanchakan, and C = Chen Mul uk = unknown ; u/a = unassigned

The Fabric Classes of Coba, Chac Mool and Culubá

Based on this limited number of eastern Coba, Chac Mool, and Culubá samples, the following general patterns in the data can be inferred from this table:

 At these sites, all samples classified as Mama (medium or coarse, red-slipped) or Cancun (a variety used for Mama-like samples), Navula (plain, unslipped), Yacman (striated, unslipped), or Xcanchakan (cream-slipped that started during the Terminal Classic, included for comparison) are characterized by their coarse texture.

- The division by grain size of red-slipped versus striated, unslipped samples observed at north-central sites was not observed in the samples from Coba, Chac Mool, and Culubá.
- The most common inclusions found in samples classified as Mama (or Cancun), Yacman and Navula, and Xcanchakan from Coba, Culubá, and Chac Mool are coarse calcite single crystals. In contrast, in the north-central sites, macro crystalline calcite crystals are relatively rare in any significant amount and are mostly found in some unslipped samples.
- Samples from these sites classified as Payil contain fine-grained calcite and quartz.

The Fabric Classes of Mama, Yacman, Navula, and Xcanchakan found at Eastern Area The samples from Mama and Cancún ceramic varieties from Cobá and Culubá, as well as the cream-slipped Xcanchakan from Chac Mool shared a basic recipe that consists primarily of coarse discrete calcite crystals and micrite lumps, or fabric Calcite-Micrite-Coarse-01 (CX-CM-01-c). This fabric has a varied chemical composition, pointing to a common technology with multiple sources, as shown in Table 9-19, by the chemical groups of this fabric at the different sites. This fabric represents a common manufacturing technique or basic recipe for constructing pottery clay for some of the coarse slipped samples found at eastern sites including red-slipped Mama (or Cancún) and the creamslipped Xcanchakan.

Fabric Class	Site Name	Chemical Group	Variety	Sample Code
CX-CM-01-c	Tipikal	2	Navula	281
CX-CM-01-c	Mayapan	unassigned	Xcanchakan	328
CX-CM-01-c	Culuba		Cancun	215
CX-CM-01-c	Culuba	2	Mama	209
CX-CM-01-c	Culuba	2	Mama	208
CX-CM-01-c	Culuba	2	Mama	204
CX-CM-01-c	Culuba	2	Mama	203
CX-CM-01-c	Culuba	3	Mama	210
CX-CM-01-c	Culuba	unassigned	Mama	207
CX-CM-01-c	Coba	1	Navula	365
CX-CM-01-c	Coba	1	Cancun	385
CX-CM-01-c	Coba	2	Cancun	354
CX-CM-01-c	Coba	5	Cancun	388
CX-CM-01-c	Chac Mool		Xcanchakan	373

Table 9-19. Chemical Variability of Fabric Calcite-Micrite-Coarse-01 (CX-CM-01-c)

Fabric Class	Site Name	Chemical Group	Variety	Sample Code
CX-CM-01-c	Chac Mool		Xcanchakan	372
CX-CM-01-c	Chac Mool	5	Xcanchakan	371
CX-CM-01-c	Chac Mool	5	Xcanchakan	370
CX-CM-01-f	Mayapan	unassigned	Payil	135
CX-CM-02-c	Chac Mool		Navula	378
CX-CM-02-c	Chac Mool		Yacman	387
CX-CM-02-c	Chac Mool	5	Yacman	366
CX-CM-02-c	Chac Mool	unassigned	Yacman	367
CX-CM-02-c	Culuba		Mama	206
CX-CM-02-c	Culuba	3	Yacman	191
CX-CM-02-c	Culuba	3	Yacman	200
CX-CM-02-c	Culuba	unassigned	Vista Alegre	181

A variant of the Calcite-Micrite-Coarse-01 fabric is also coarse. It differs from this fabric in that is very porous. This fabric has been named Calcite-Micrite-Coarse-02 (or CX-CM-02-c). Eight out of ten samples in this fabric are unslipped plain (Navula) or striated (Yacman) samples. One more sample in this fabric is the only Vista Alegre sample (# 181, Culubá) included in this research for comparison. Vista Alegre is an unslipped ware that started prior to the Postclassic and that is particular to the eastern sites.

Payil

With the exception of two unassigned samples, Mayapán and Chac Mool Payil samples share the same distinctive petrographic characteristics and chemical composition (Group 4). These characteristics are found only in Payil and Palmul (incised Payil) sherds. As discussed in previous chapters, these samples did not originate at these sites. They may have originated at Laguna de On.

However, Payil samples in this study may have been produced by multiple groups of potters. Two Payil fine grained samples, one from Culubá (#349) with chemical composition within Group 3 and another from Mayapán (# 135), have chemical and petrographic characteristics that differ from the rest.

The Fabric Classes of Xcanchakan

Xcanchakan is one of the ceramic varieties of Peto Cream Ware, a buff-slipped type of ceramics that started during the Terminal Classic (Smith 1971a) and continued into the Late Postclassic. Smith (1971) considered that the coarse carbonate rock temper in Peto

presaged the composition to come during the Late Postclassic. Eight samples were selected for petrographic analysis, and six of them for chemical analysis.

The results of the analysis of this small sample indicate that there is no one Xcanchakan fabric but many. Xcanchakan seems to reflect local availability of raw materials. Xcanchakan sherds found at north-central sites have fabrics indistinguishable from other north-central slipped samples, such as Dolospar-W-medium (DS-W-m) within Group 1 and Sparite-W/B-Coarse/Medium (CS-W/B-cm) within Group 2.

Similarly, Xcanchakan sherds found at Chac Mool (no Xcanchakan samples from Cobá and Culubá were analyzed) have a fabric that is indistinguishable from other slipped Mama or Cancún samples found at eastern areas, containing single calcite crystals as main inclusions, or Calcite-Micrite-Coarse-01 (CX-CM-01-c). Xcanchakan found at Chac Mool may represent a common technology for the construction of the buff-slipped Xcanchakan and the red-slipped Mama (and Cancún) pottery at eastern sites. Its chemical variety points to several sources and producers using a common technology.

In sum, the findings of this section indicate that the fabric classes of the samples from utilitarian varieties (Mama, Yacman, Navula, and Xcanchakan), when found at the north-central sites, are largely different from the fabric classes of varieties found at Coba, Culubá, and Chac Mool. At the eastern sites, the samples analyzed are coarsely grained, and the division by grain size among utilitarian red-slipped and striated Yacman jars present at north-central sites was not observed in the samples from the three eastern sites. A division between coarsely grained utilitarian wares (that include Mama, Yacman, Navula, and Xcanchakan varieties) and a fine ware (Payil) is observed. In regard to Xcanchakan (cream-slipped), the results of the analysis of this small sample indicate that there is no one Xcanchakan fabric but many. Xcanchakan sherds share fabric classes with other utilitarian ceramic types from the sites in which they were found.

9.6 Summary

In this chapter, it was shown that the main three utilitarian types of vessels in this study, Mama, Yacman, and Navulá, were produced at many centers by many potters' groups. The fabrics of these vessels greatly differ when compared between the north-central and the three eastern sites. At the north central sites, there is a correlation between these types of vessels and the types of tempers found in the samples. This correlation may be related to the function of the vessels. At Chac Mool and Culubá, the same types of materials were used for all utilitarian vessels sampled, whereas at Cobá, fabrics were typical of the east and north-central region, apparently sharing traits with both major regions.

Red-Slipped Mama Vessels

Concerning the manufacture of red-slipped Mama vessels, most contain medium-grained particles composed of micrite, finely crystalline sparry calcite (sparite), or sparry dolomite (dolospar). Differences in divisions of grain size and frequency of inclusions between ceramic varieties indicate that these particles were added by potters. The source of all these types of particles is sascab.

A general recipe was used for constructing the clay body of Mama vessels. It consists of grinding (or wacking with a club) the carbonate rock (sascab, most likely) to a medium grain size and sifting the results. The pottery was hand built. The surface analysis of one large red-slipped Mama jar shows that it was made in sections, apparently using the open base technique that has also being described ethnographically for large jars (Thompson 1958). Molds could have been used to build the rounded bottom of bowls and cajetes. Large jars may have been built up to 7-10 cm in height and left to dry before continuing with the upper section of the vessel.

Navula

When Navula is made with sascab (micrite, sparry calcite, dolospar), it displays fabrics similar to most red-slipped vessels. However, a good portion of the Navula samples displays a variety of fabrics not found in the Mama samples, including fabrics in which bioclasts, calcite or dolomite single crystals, or dark micrite dominate. Navula fabrics display a considerable variability in the petrographic and chemical characteristics, which points to many producers probably in as many locations. Furthermore, while a relative uniformity in grain size was observed for Mama (grain size has mode of medium) and Yacman (grain size has mode of coarse), no patterns were observed for Navula.

Yacman

Mama, Navula, and Yacman ceramic varieties intercept in the dolospar fabrics. The raw materials and the chemical Group 1 are the same for the dolospar fabrics within these three types of samples. They differ in the technology applied. Mama samples with dolospar have a fabric that is medium-grained (mode), many with organic material, whereas the Yacman samples are coarsely grained and no organic material is observed.

There is another distinction. Mama and Navula with dolospar fabrics refired to a white color (with a few exceptions), but about half of the Yacman samples containing dolospar fabrics refired to a light reddish brown. Differences in refired color can be related to differences in the clay sources.

In contrast to Mama and Navula samples, micrite and finely crystalline sparite fabrics were not found in the Yacman samples (with two exceptions); instead, fabrics with large medium to very coarse single crystals of calcite or dolomite make a significant contribution to the total variety of fabrics found in the striated, unslipped Yacman samples. Due to the larger size of the crystals, many times the individual grains can be detected in a hand specimen as translucent or semi-translucent particles. The translucent rocks found in pottery samples are most likely the substance called *hi*' by local modern potters, which is collected in nodules and requires grinding. Yacman was also found to have a gray micrite fabric. In contrast to the dolospar fabrics, the crystalline and gray micrite fabrics have varied composition indicating several potters' groups.

Firing

Some Mama and Yacman vessels were made with similar dolospar fabrics, which makes it possible to compare aspects of the firing technology of these two types of vessels. In some of the Mama samples, the matrix shows impregnation and concentrations of brown material near to only one of the sherd's walls, while close to the other wall, the colors are clear, indicating that the brown material is most likely organic. The colors are clear in Yacman samples. It is then likely that Mama was fired at a lower temperature or experienced a shorter firing than Yacman. Most likely, the shorter firing of the Mama vessels was done to protect the luster of the slip.

That the ancient potters who produced the vessels in this research were successful in controlling temperature and preserving the vessels' luster can be appreciated in the end result of their work. Slipped samples maintain their luster even today and show little firing defects, such as spalling or popping of carbonate particles. Most are soft and friable, though, and this may be the result of using marls.

It is very clear that the raw materials from the area present significant challenges to potters. In this section, through experimentation, a firing schedule that works for the marls from Mayapán (#11) and Mama-Chumayel road (#1) was found. An XRD analysis of sample #11 found montmorillonite and kaolinite in this marl. It is also clear that the potters had developed an empirical understanding of what worked. Given the material constraints of working with carbonate materials and that clays, marls, or sascab found at different pottery towns varied, most likely what worked in one location may not have worked in another.

In the next chapter, the techniques inferred in this chapter are further examined in combination with other contextual information, such as sites, to advance new hypotheses about the interrelations and organization in which the potters were embedded, including the existence of technological traditions, the organization of production, and ceramic exchange. The previous chapter focused on seeking patterns indicative of ceramic production techniques applied in the construction of the vessels sampled in this research. A reconstruction of the techniques during ceramic manufacture was proposed for the jars and cajetes of the three main varieties in this study: the red-slipped Mama and the unslipped Navula and Yacman. The number of potters' groups that might have been involved was also examined. This chapter examines the techniques applied in the context of the distribution or geographical location of the pottery, the types of vessels (e.g., slipped versus unslipped) covered by the different variety names, and the assumed function (cooking versus non-cooking) of the vessels, seeking patterns that reflect the existence and scope of technological traditions, the organization of production, and the movement of pots. Having gathered and analyzed the data of this research, the chapter ends with the evaluation of the hypotheses that guided this study.

10.1 Technological Traditions

In this section, archaeological and ethnographic data are compared to show that Late Postclassic technological traditions can be identified, and that they extend into the present. It will be argued that ceramic production, and the choices made in regard to the various aspects of production, were guided by these traditions. These traditions had a sub-regional scope that is geographically restricted to the ceramic sphere to which they are related, i.e., traditions at the north-central sites differ from those at the more eastern sites (Chac Mool, Coba, Culubá).

Based on the results of this study, within the north-central sites, at least two technological traditions can be proposed. One was related to the construction of striated open-mouth jars and the second to the construction of red-slipped jars and cajetes (the forms included in this study). Table 10-1 combines the tables presented in Chapter 8 for most of the fabrics to show their association with sites and traditions. This table is used in the following discussion on the existence of these two traditions. Encircled in red are fabrics comprising the red-slipped (Mama) tradition, while in green are the fabrics involved with the striated, open-mouth (Yacman) jar tradition.

	Fabric Class	Chemcl Group	Tepich	Tecoh	Telcha quillo	Maya pán	Tekit	Mama	Tipikal	T cabo	Cobá	Chac Mool	Culubá
Μ	DARK MICRI	TE							·			·	
Е	CG-CM-W-m	1,2uk	NNNNN			М							
-	BIOCLASTS												
D	CH-W-cm	1	MMMM										
I			MMM N Y			N							
П	MEDIUM-CR	YSTAI	LINE DO	LOMI	ТЕ	<u> </u>	<u></u>	<u> </u>	μ	<u>H</u>	<u></u>	<u> </u>	<u>I</u>
U	DX-B/W-m	2		MM			М						
М				N			v						
	FINELY-CRY	STALI	LINE SPAI	RITE		<u> </u>	<u>.</u>		μ	<u></u>	<u></u>	<u> </u>	<u> </u>
G	CS-W/B-cm	2, u/a		М	М	MM		1	MM	МММ	MMM		
R			v	N	N		N		N	N	N		
	MICDITE	<u> </u>	А		Χ			<u> </u>	ļ	<u> </u>	ļ		
А	CM-W-m	1. u/a			М	МММ	М	МММ	М	М	1		
I		-,				NNN		N					
Ν	EINELV CDV	GTALI	DE DOI			X			ļ				
г	FINELY-CKY DS-W-m		INE DOL		R MMMM	мммммм	мм	1	MM	l –	1		<u> </u>
L		1		N	NNN	NNNNN							
D	DS-W-mc-h	1				МММ		MMMMM MM					
-	DS-B-c	1				М	i –		i		<u> </u>		
С				vv		NN VVVVVVVV			v				
0	DS-W-c	1		M		МММ		М	MM				
А				Ν	N Y	NNN Y YYY			уууу				
R					Χ	С			YYYY				
G	DARK MICRI	TE		.			x 7	1	1	1	1		
Э	CG-CM-w-c	1,2	YY	Y	M	YY	Y						
Е	MEDIUM ANI	D COA	RSELY-C	RYST	ALLINE	CALCITE	1	1	1	<u></u>		<u> </u>	1
L	CSm-w/B-c	1,2u/ a	YY	N N N	Y			Y	N	YY	N		
Y	MX-CX-	5					М						
	GROG-B/R-c	1- 5			Y	NT NT			Y	YY			
G	DA-UA-B-C	ик,5				IN IN	YY				<u> </u>		
P	CX-QZ-B-c	uk						<u> </u>	<u> </u>	<u> </u>	<u> </u>	N	1000
к	DX-CX-m-h	3											MM
А	CX-CM-01-c	1,23,							NI		M M		M M M M
I		J u/a				х			1		N	XXX	M M M M
N	CV CM 02 -	2.5					1				1	X	14
1	CA-CIVI-02-C	3,5, uk										N	11/1
Е												YYY	Y Y V
D	SKELETAL R	EMAL	NS	I	<u> </u>		II	<u>II</u>	<u>II</u>	<u>II</u>	<u>II</u>	I <u> </u>	<u></u>
	СН-В-с	2, u/a				NNN	ΝN	N	N				
					<u> </u>	Y	Ν			<u> </u>			
FI	CX-OZ-B/P f	4 11/2					1	1	1		1		
N E	CA-QL-D/K-1	-, u/d						<u> </u>				P P	

 Table 10-1. Scope of the North-central Technological Traditions.

KEY: M = Mama variety (slipped), N = Navula (plain), P = Payil, Y = Yacman (striated), X = Xcanchakan, and C = Chen Mul uk = unknown ; u/a = unassigned

10.1.1 Sascab Red-slipped Tradition

One characteristic of Mama samples from the north-central sites is the homogeneity in their external characteristics of composition including the general appearance of the inclusions, grain size, and even color of the paste. In a hand specimen, most red-slipped jars and cajetes are characterized by frequent to common white and chalky or finely crystalline carbonate inclusions, with a medium (mode) grain size, and light fired colors that are usually light reddish brown, light red, or pinkish gray.

Researchers have observed that, during the northern Late Postclassic period, the form and attributes of decorative styles were very similar across sites. This similarity extends over vast areas of the Yucatán Peninsula into current-day Belize, and the states of Yucatán, and Quintana Roo (Pendergast 1985, p.240; West 2002, p.178; Rathje 1975; Sabloff and Freidel 1975). These similarities have been present for a long period that extends into present times. This is illustrated in Figure 10-1 in which modern ethnographic water-carrying and storage vessels (a) and (b) from San José Petén (Reyna and Hills 1978), (c) and (d) from Belize (Thompson 1930), and (e) and (f) from northern Yucatán (Thompson 1958) show similarities among themselves and with Late Postclassic (g) and (h) vessels from northern Yucatán (Smith 1971).

Figure 10-1 Similarity of Red-slipped jars throughout Yucatán and time: (a) and (b) Reyna and Hills 1978, Figure 41(f) and 41(d); (c) and (d) Thompson 1930, Plate XVII(a) and XVII(b); (e) and (f) Thompson 1958, Figure 40(a) and 38(h); (g) and (h) after Smith 1971, Figure 38 (1, 2, 3, 4, 5), 38(15).

Sascab in the forms of dolospar (50%), micrite (16%), and sparite (12%) represents the bulk of the constituents of the fabrics found in red-slipped Mama samples from the north-central area. This may account for the perceived homogeneity in composition. With the naked eye or very low magnification (10X), it is difficult to set fabrics apart. The sascab fabric classes involved were presented in Chapter 8 and discussed in relation to Mama in Section 9.1. Briefly, one of the sascab fabrics is Micrite-W-Medium (CM-W-m, Section 8.5.1) found within Group 1 at Mayapán, Tecoh, and Tekit. It is also found in chemically unassigned samples at other sites (Mama, Telchaquillo, and Tipikal). Another sascab fabric is the finely crystalline sparitic Sparite-W/B-Coarse/Medium (CS-W/B-c, Section 8.4.1) fabric within Group 2 found at Tipikal and Teabo. Chemically unassigned samples were found at Telchaquillo and Tipikal. Lastly, the sascab fabric Dolospar-W-Medium (Section 8.3.2) and Dolospar-W-Hard (Section 8.3.3), within chemical Group 1, are found at most north-central sites. The production of red-slipped Mama samples at the north-central sites comprised multiple potters' groups and, most likely, several different procurement zones of raw materials. Nevertheless, across sites, Mama samples present a commonality of surface characteristics, including similar superficial compositions that make it difficult to set them apart in a hand specimen examination.

It is possible that throughout the north-central area, potters conformed to a mental schema of how red-slipped vessels should look. Concerning to the temper added to the pottery clay, white opaque inclusions (sascab) were preferred. It was shown in this study that choices existed as to the color of the clay and that red clayey soils could have been a viable alternative to the light colored clays found in the pottery, although more experimental data are needed to examine the viability of the use of red clay in large vessels. Nevertheless, potters apparently selected clay materials exhibiting a light color as part of the tradition. This color may have been the result of the low iron in the composition of the raw materials of this north-central area (Section 7.3.1 and Section 7.3.2). Also part of the tradition is an overall medium-grain size for the inclusions. Potters may have aimed to achieve a medium grain particle, but many exceptions were found.

The materials were selected and techniques were applied from an array of available choices according to an overarching technological tradition. The tradition consisted of the use of medium-grained sascab as temper in a light colored paste. This principal technological tradition probably had different branches depending on the type of vessel. Surface feature analysis of two cajetes, one bowl, and two large jars showed that the rounded bottom cajetes and bowl might have been started using molds, while one of the jars was started using the open base technique (it is not clear how the second jar was started). The open base technique has been documented in modern northern Yucatán (Thompson 1958) and in modern San José Petén, Guatemala (Figure 2-1) by Reina and Hill (1978, p.141-145). San José Petén is a town culturally linked to Postclassic northern Yucatán that remained in relative isolation from European influence, and it was not conquered by the Spanish for close to three hundred years (Reina and Hill 1978, p.141-145). The shapes of their vessels are similar to vessels produced during the Late Postclassic in northern Yucatán (Reina and Hill 1978, p.141-145) (Figure 10-1). This overarching sascab red-slipped technological tradition extended over the northern inland areas of Yucatán.

Within the Sascab Red-slipped technological tradition, it is likely that local variations existed in the way things were done to accommodate variations in local materials. For instance, at Mayapán, a marl could have been used as pottery clay. The experiments performed in this study with marls of the area showed that firing for 45 min would not transform them into ceramics. A longer time of several hours is required. However, 45 min could have been sufficient at sites at which deposits of pure clay, kaolinite for instance, exist. In addition, the use of a marl as clay body at some localities would have required a more laborious processing, such as grinding and sifting, than when a clay(s) is used.

Ethnographic Data

Modern Yucatecan potters preferred sascab for the construction of the pottery clay of non-cooking pots (Thompson 1958, Rendón 1947), in particular when the town specialized in the production of water containers, such as at Tepekán, Uayma, and Valladolid (Thompson 1958). Table 10-2 compiles ethnographic observations about the use of sascab and hi' at northern Yucatán towns that made pottery (Thompson 1958). Many of these vessels, in particular if they were water vessels, had red-slip applied, whereas cooking pots were never slipped. At Ticul in particular, Arnold (2008) observed that the temper added was associated with the vessel function; a white earth to water vessels (storage and carrying), hi' (ground crystalline calcite) to cooking pots, and a recipe that varied for cajetes, figurines, and other non-water vessels.

Town	Types of vessels that are red-slipped	Town specialization	Temper for Non- cooking pots'	Temper for Cooking pots
Lerma,	All vessels are unslippped		hi'	hi'
Campeche				
Tepakán,	Only large water-storage jars	Water container	sascab	hi' (when ollas
Campeche				made)
Becal,	Only stamp-decorated water	Cooking pots	sascab (cuut or	hi' (imported
Campeche	containers		very fine, if non-	from Maxcanú)
, î			cooking made)	,
Maxcanú,		Cooking pots	hi'(when non-	hi'
Yucatán			cooking made)	
Ticul,	Non-cooking	Town-potters' separation	sascab	hi'
Yucatán		by temper		
Mama,	Only water storage. For all		sascab and hi'	sascab and hi'
Yucatán	other slipped, a creamy slip		mixture	mixture
Izamal,	Most non- cooking pots.		sascab and hi'	sascab and hi'
Yucatán			mixture	mixture
Uayma		Non-cooking	sascab and hi'	hi'
		_	mixture	
Valladolid	All non-cooking pots	Non-cooking	sascab	sascab

Table 10-2. Tempers used during the 1950s in Yucatán by Town and Vessel Type (compiled from Thompson 1958)

10.1.2 Translucent Rock Cooking Pot Tradition

Construction of some open-mouth jars, or Yacman (unslipped, striated), followed a technology associated with the use of translucent rocks as temper within a coarse and open (porous) paste. Medium-to-very-coarsely grained translucent calcite or dolomite crystals were found in close to 25% of the Yacman thin sections from the north-central area (Section 9.3). Several fabrics were found to have in common inclusions that would have looked translucent to the naked eye. The fabrics and their samples within sites are encircled by a green line in Table 10-1. Some of the fabrics are not petrographically homogeneous, presenting differences in the minerals involved (calcite versus dolomite) and inclusion textures, including crystal size, overall particle color, and translucency.

The use of translucent crystals for the construction of unslipped jars has been documented (Smith 1971b, p.171-172) from the time prior to the Late Postclassic, the Terminal Classic, and summarized in Table 10-3. This is an ancient tradition in northern Yucatán as shown by Anna Shepard (Smith 1971b, p.169-172) in the petrographic analysis of sherds from Uxmal, Kabah, and Chichén Itzá. These sites had their major occupancy earlier than the apogee of Mayapán.

Table 10-3 shows a clear division of slipped versus unslipped wares and forms by the types of tempers used; divisions that Smith (1971a, p.2) thought were probably related to function. Unslipped jars at Puuc sites and Chichén Itza contained clear crystalline or gray particles, while the slipped vessels primarily contained cryptocrystalline (micrite), saccharoidal (finely crystalline sparite), or volcanic ash.

	Chichén Itzá	Uxmal and Kabah	Chichén Itzá	Uxmal and Kabah	
Inclusions Types/ Ceramic Class	Slipped	Slipped	Unslipped	Unslipped	
			Jars	Jars	
Inclusions Types					
Clear Crystalline			Х	Х	
Grey			Х	Х	
Lamellar			Х		
Cryptocrystalline (or micrite)		Х			
Saccharoidal (or sparry)		Х			
Volcanic ash	Х	Х			
Others					
Potsherd		Х			
Clay lump		Х			

Table 10-3. Types of Inclusions and Vessel Forms at Chichén Itzá, Uxmal, and Kabah during the Terminal Classic (data from Smith 1971b, p.171-172)

The practice of adding a translucent rock to the clay was documented in early colonial times in the Pío Pérez dictionary (Pío Pérez 1877). This is a Yucatec-Spanish/Spanish-Yucatec dictionary compiled in 1898 but based on various earlier dictionaries including the Ticul dictionary, a Spanish-Maya dictionary completed in 1690. The dictionary describes the substance that in Maya language is called *hi*' as a "kind of transparent rock that potters grind to mix with clay and build pots for the kitchen."

In modern times, the use of translucent rocks as temper for the construction of northern Yucatán cooking jars or ollas has been documented in Yucatán ethnographic sources repeatedly (Thompson 1958, Rendón 1947, p.116, Arnold 2008). Table 9-23 compiles ethnographic observations (Thompson 1958) about the use of sascab and *hi*' at northern Yucatán pottery towns. It shows that *hi*' was used consistently for the production of cooking pots. At Ticul, this rock has been documented as ground crystalline calcite (Arnold 2008). Reina and Hill (1978, p.141-145) documented the use in modern San José Petén, Guatemala of a substance added to the clay for ollas. San José Petén is a town culturally linked to northern Yucatán (Reina and Hill 1978, p.141-145). They collect quartz and feldspar and call it *hi*'. This *hi*' is heated (as it is in some northern Yucatán towns) and ground before adding it to the clay.

Ultimately, the selection of temper may be related to the intended function of a vessel. Given that Yacman jars are thought to be for cooking (Brown 1999a) and that ethnographic work tells us that Yucatecan slipped vessels are not used on fire (Thompson 1958), the division between the sascab and translucent-rock technological traditions

reflected in the north-central samples is probably related to cooking versus non-cooking pots.

In sum, this study has shown that even in an environment dominated by limestone, choices of different materials exist. Texture provides most of the variation. Ancient and modern potters make choices from a wide array of variables. For instance, potters selected sascab for the construction of slipped vessels. However, gray/dark micrite is available, as found in some unslipped vessels. The selection of sascab, from other possible technological choices that could have functioned equally well (Sackett 1990), is part of the north-central Yucatecan technological style.

Two technological traditions were recognized. Mama and Yacman produced at the local level were guided by sub-regional Yucatecan traditions, the red-slipped sascab and the translucent rock (hi') cooking pot traditions that, in the case of the sascab tradition for red-slipped vessels, resulted in a textural uniformity of the pottery fabric to the naked eye. At the different pottery towns of the north-central area, red-slipped jars and cajetes were locally made. There was one exception to this situation. Some of the red-slipped samples found at the different north-central centers are similar in petrographic and chemical composition to those found at Mayapán. In the next section, it is argued that they were not locally made but imported to the lesser centers from Mayapán.

10.2 Ceramic Production Organization at North-central Sites

The organization and the location of production of utilitarian ceramics at the northcentral sites are the topics of this section. In the previous chapter, manufacturing techniques for the production of red-slipped Mama, and the unslipped Navula and Yacman were identified. In this section, the fabric classes and the techniques applied, as discussed in the previous chapter, are examined in the context of their distribution and the types of vessels involved, aiming to identify patterns from which the organization of ceramic production for utilitarian vessels at north-central sites can be inferred.

10.2.1 Production Organization

Many groups of potters or zones of procurement were involved in the production of utilitarian ceramics in the north-central region. Data supporting this proposition were presented in Sections 9.1 to 9.3, consisting of the several fabric classes and chemical groups found at different sites. For instance, the red-slipped Mama producers include

potters using different fabrics at many sites with varied chemical compositions and most likely representing several potters' groups: a bioclast (or skeletal remains) fabric found at Tepich, a fine-to-medium dolomite fabric at Tekit and Tecoh, and local micritic-tofinely crystalline calcite or dolomite fabrics found throughout the different sites.

Among fabrics found at the north-central sites, the homogeneity in petrographic and chemical attributes of the dolospar fabrics stands out. In sections Section 9.1 and 9.3, dealing with the reconstructions of red-slipped Mama and unslipped Yacman production respectively, it was shown that for these two types of vessels, the dolospar fabric classes appear at many sites with homogeneous petrographic and chemical characteristics. Mama and Yacman with dolospar fabrics are characterized into two different fabrics mainly differing in their texture, while Navula with dolospar does not appear to follow a grain size pattern.

Non-dolospar Mama and Yacman fabric are varied and found at all locations, as presented in Sections 9.1 and 9.3. They are either not petrographically homogeneous or not chemically homogeneous, indicating that many potters' groups or many sources may have been involved. Table 10-4 illustrates a very broad categorization, based on Chapter 9 results, of the main non-dolospar fabrics for Mama, Yacman, and Navula samples grouped by the primary type of inclusion present.

C 10-4. Distribution of Non-dolospar Types of Fabrics within Ceranic Ty											
	Micrite (sascab)	Sparite (sascab)	Bioclasts (only Tepich)	Bioclasts	Discrete Crystals	Gray Micrite					
Mama	Х	Х	Х								
Yacman					Х	Х					
Navula	Х	х		Х	Х	Х					

Table 10-4. Distribution of Non-dolospar Types of Fabrics within Ceramic Type

Table 10-4 shows that when samples with dolospar fabrics are excluded the samples of Mama and Yacman are divided by the type of temper. In Mama vessels, having non-dolospar fabrics, sascab (micrite or sparite) dominates (Section 9.1). These samples were found at many sites. There is also a bioclast fabric found at Tepich. Contrastingly, in non-dolospar Yacman samples, sascab is not found (with two exceptions). In these samples, coarsely crystalline calcite and gray micrite dominate. In both cases, most of these fabrics are not homogeneous in representing variations of sources or producers, although one source with local variation is a viable alternative.

In non-dolospar ceramics, there is a correlation between Mama and Yacman and the types of temper. If different kinds of materials or techniques imply that different potters' groups were involved, then Mama and Yacman with non-dolospar fabrics were produced by distinct sets of potters.

Figure 10-2. Chart with choices made by potters working with non-dolospar inclusions

The patterns or divisions summarized in Table 10-4 are illustrated in Figure 10-2. Potters working with non-dolospar materials mainly belong to two major categories: those working with sascab and those working with either macro-crystals or gray micrite. Sascab potters processed clay and temper to obtain a medium-size (most of the time) overall texture to produce red-slipped vessels. Other groups of potters worked with gray micrite or macro crystals to get a coarse fabric used for the production of striated openmouth Yacman jars. Both types of producers may have produced the plain Navula. In contrast to vessels with non-dolospar fabrics, the vessels sampled containing dolospar fabrics are not correlated to the type of temper.

<	<	< - Dolospar Fbrc->					
	Micrite	Sparite	Bioclasts (Tepich)	Bioclasts	Discrete Crystals	Gray Micrite	
Mama	Х	Х	Х				Х
Yacman					Х	Х	Х
Navula	Х	Х		Х	х	Х	Х

 Table 10-5. Distribution of All Types of Fabrics within Ceramic Types

If samples with dolospar fabrics are included in Table 10-4, the result looks like Table 10-5. This table shows that dolospar potters differed from the rest in many ways. They used the same kind of temper for all types of vessels. Dolospar potters divided their production into red-slipped Mama and unslipped Yacman ollas based not on the types of materials added to the clay (as non-dolospar potters did), but only on the grain-size. Red-slipped Mama samples are mainly medium-grained while Yacman jars are coarse.

Figure 10-3. Choices made by potters working with dolospar sascab

Figure 10-2 illustrates the divisions observed in the production of Mama and Yacman with dolospar fabrics. Navula within dolospar fabrics appears to have been made

without any grain-size discrimination, but the number of Navula samples is small and further sampling and research may uncover new associations that were missed in this study.

It is very unlikely that potters could have differentiated one type of sascab from the others. In this study, it took a stereomicroscope and a polarizing microscope to do so. Therefore, potters did not select dolospar sascab as opposed to micrite or sparite sascab to organize their work in a given manner. The differences between dolospar and nondolospar potters are likely due to the availability of types of sascab at some locations but not at the others. For instance, given that the three types of sascab cannot be differentiated with the unaided eye, if the three of them were found at one location, it would not be possible to have the distribution illustrated in Table 10-5 in which Yacman is only found having dolospar sascab.

In summarizing, two orientations to the organization of the north-central Mama and Yacman potters are inferred from the data.

(a) One arrangement reflects potters divided by groups that produce red-slipped Mama vessels or striated Yacman ollas. These potters' groups are correlated to the type of temper. The group or groups of potters producing Mama only used sascab as temper. One group or groups of potters producing Yacman used macro crystals and another gray micrite. Navula did not follow a pattern, and it may have been produced by all types of potters. This division of potters is very similar to that found by Thompson (1958) at Yucatán pottery towns. However, he found that towns were specialized in the production of cooking as opposed to non-cooking vessels, in which cooking vessels contain translucent rocks (hi') as temper while non-cooking vessels (which include slipped vessels for they are never put on fire [Thompson 1958]) contain sascab.

(b) The second arrangement has potters using the same type of material, dolospar sascab, for all vessels. Potters under this arrangement were using a production zone for the procurement of sascab for Yacman ollas (dolospar only) that is different from the zone or zones in which potters in the arrangement described in (a) were procuring sascab for Mama vessels.

In addition to these two arrangements, a few groups producing Mama or Navula did not adhere to these patterns just described. Given the petrographic and chemical homogeneity of dolospar fabrics across sites, the next section examines the data to draw inferences about the location and number of producers that may explain this homogeneity.

10.2.2 Dolospar Fabrics: Production Location

Another point that needs to be explained is the production of potentially significant quantities of vessels with dolospar fabrics characterized by their homogeneity. Out of 56 thin sections from utilitarian vessels from Mayapán, 39 have dolospar fabrics (70%). Although proportions of samples such as this are not representative of the proportions at the site level due to sampling restrictions and strategy, they are indicative of the variability, or lack of it, of the fabrics at Mayapán. Mayapán vessels, as represented in the samples, are fairly homogeneous in regard to the type of materials found in most of them, sascab. Most of this sascab is dolospar sascab. In addition, samples from Mayapán, in general, are homogeneous in regard to their chemical composition. Most fall within Group 1. Nevertheless, red-slipped and striated ollas are divided by grain size.

One scenario that explains the significant amount of samples with similar chemical compositions of Mama (or Yacman) with dolospar fabrics across sites is one in which the raw materials to produce vessels with dolospar fabrics within Group 1 are found at most north-central sites. Under this scenario, a technological tradition existed at Tecoh, Telchaquillo, Mayapán, Tekit, Mama, and Tipikal in which most potters (for some Mama with non-sascab fabrics are found) worked with local materials and preferred sascab (dolospar, micrite, or sparite) for the construction of red-slipped Mama vessels. As mentioned before, at the different localities, it was very unlikely that potters could have distinguished one type of sascab from others (for instance, dolospar sascab from sparite sascab).

The fabrics found in Yacman vessels present a problem for this scenario. At the different sites, Yacman vessels were found to have fabrics that include dolospar sascab, semi-translucent or smooth angular particles, or gray/dark micrite. Of the 62 Yacman thin sections (62) only two (#332, #333 from Tecoh) have sascab different from dolospar, micrite in this case, as main inclusions. If Yacman was locally manufactured and sascab was used, potters at these minor centers apparently preferred dolospar to micrite and sparite sascab. However, the three varieties of sascab (dolospar, sparite, micrite) are impossible to differentiate from each other using the unaided eye. The plain Navula jars and cajetes present another problem to the local dolospar production scenario, because at Teabo, Tipikal, Mama, and Tekit, these vessels were found to have micrite or sparite sascab, among other fabrics, but never dolospar sascab. It is not possible, if dolospar
sascab is locally available at these sites, that potters could have selected dolospar sascab for Yacman and avoid it for Navula. Navula having dolospar sascab was found at Mayapán and vicinity, Telchaquillo, and Tecoh.

Another scenario that could explain the homogeneity in the chemical composition of Mama (or Yacman) with dolospar fabrics across sites is one in which red-slipped Mama, and unslipped Yacman and Navula with these characteristics were produced at a mineralogically (dolomite) and chemically (Group 1) homogeneous production zone or zones. At the dolospar production zone, the pottery fabrics of all types of vessels were prepared using the same temper, dolospar sascab.

This scenario accounts for the patterns in the distribution of Yacman and Navula with dolospar fabrics observed at minor centers. Mama and Yacman from the dolospar production center were taken to the minor north-central sites, while at this centers Yacman was not produce using sascab. This scenario explains the presence of Yacman with dolospar sascab at the minor centers, while Yacman with other types of sascab is not found. This scenario also explains how Mama, which was produced at the minor centers using local sascab (micrite, sparite), is found with all types of sascab at the minor centers. In this scenario, the plain Navula from the dolospar production zone was not taken to the minor sites (although it is found at Telchaquillo), explaining why Navula with dolospar center produces Mama, Yacman, and Navula. Therefore, the producing center presents these three varieties, and it is expected, that they are the most at this center. This points to Mayapán or Telchaquillo as the producing centers given that they are the only sites in which the three studied ceramic varieties were found with dolospar fabrics and, at the same time, these ceramics are the bulk of the samples.

The proposition that utilitarian vessels having dolospar fabrics were produced at one location that is chemically homogeneous (Group 1), and that this location was Mayapán (or a place in its vicinity such as Telchaquillo), has support from a combination of evidence that, although no one is conclusive, altogether weigh in favor of this view. The evidence includes:

(a) A local marl (#11, Table 5-4) near Mayapán matches the composition of most vessels sampled from Mayapán, which is overwhelmingly within Group 1, including all but one vessels with dolospar.

(b) The composition of raw materials collected near Tekit, Mama, Teabo, Tipikal, and other localities does not match the composition of pottery produced with dolospar

(c) When having dolospar fabrics, samples taken from Navula jars or cajetes are found only at Mayapán and its vicinity (Telchaquillo and two samples at Tecoh) and, therefore, they are types of vessels associated with this area and no other (acknowledging that this interpretation could be the result of the limitations of the sampling);

(d) A Euclidian distance (Pierce and Glascock 2015) comparing each specimen in this study to every one of the 2,071 northern Yucatán specimens in the MURR database, of which only 51 (2.5%) are from Mayapán (Cecil 2012), found that samples in this study from Mayapán are more similar to the 51 MURR samples from Mayapán than to any other sample; and lastly

(e) In the samples from Mayapán, dolospar is the most common fabric.

In sum, production at one center or production zone of vessels with dolospar fabrics, as discussed before, explains the particular distributional patterns encountered.

10.3 Movement of Pots

In this section, the variability of fabrics and other aspects of technology are examined, seeking patterns that reflect whether pots have been moved over long or relatively short distances. Movement over a short distance is studied through the examination of the variability of pottery and raw materials within the north-central sites, while long distance movement is studied through patterns indicating that non-local production may be involved.

10.3.1 Short Distance Movement of Pots

Given the lack of direct evidence for production, such as kilns or wasters, the movement of vessels is investigated by examining the chemical and mineralogical fingerprints. The criteria that must be met to show local production at a given center and the movement of the pots to another were discussed in Section 5.5 in relation to the proposed Hypothesis B (red-slipped pots were centrally produced). Although that discussion refers to one ceramic type, it is valid as a guide in a more general discussion. In Sections 9.1, 9.2, and 9.3, potential potters' groups, based mainly on shared chemical and petrographic compositions, were discussed. Of these groups, those found at more than one site are examined further in this section, for they may be indicative of the movement of vessels.

To investigate this movement, the first step is to establish whether the chemical or petrographic compositions are different at the different sites. The chemical analysis found relatively low variability in the samples from north-central sites, assigning the samples to only three chemical groups (Group 1, Group 2, and Group 5) that geographically largely overlap. However, when the chemical groups were examined in combination with the petrographic classes, greater variability was found (Section 9.1, 9.2, 9.3). Only for those samples found at more than one site with composition falling within one single chemical and petrographic group can the argument of movement between sites be made.

Perhaps the most convincing cases are shown by a few instances in which a fabric class is found within the same chemical group at two sites. The following instances share the same chemical group and petrographic fabric across sites.

(a) One is the micritic fabric Micrite-W-coarse within Group 1 from Mayapán and Tekit.

(b) Another is the sparitic fabric Sparite-W/B-Coarse/Medium within Group 2 found at Teabo and Tipikal.

(c) The dolomite crystals fabric Dolomite-B/W-Medium within Group 2 found at Tecoh and Tekit is another example.

(d) Mama and Yacman samples with dolospar fabrics, and all within Group 1, found at many of the north-central sites.

Shared chemical and petrographic characteristics between samples at different sites could be the result of exchange. It also could result from local production at the different sites under a common tradition and chemical homogeneity. Importation from somewhere else can also produce this pattern. The matter is complicated by the fact that, when sites are located relatively close together, ceramics could have been locally manufactured while potters could have shared one source of raw material from several centers. Further evidence needs to be present to establish local production or to eliminate some of these alternatives. For example, inferences can be made about the sharing of resources based on the distance between sites.

Arnold (2005b) has provided, based on ethnographic work at 117 sites, empirical metrics for the maximum distances that a potter might have traveled to obtain raw materials. The maximum distance that approximately 90% of potters would have traveled on foot while carrying raw materials is 7 kilometers. Therefore, localities 14 or fewer

kilometers apart may have shared resources. Figure 10-3 shows the distances between sites used to determine whether resource sharing may have occurred.

epich N **Fepich-Tecoh** 14.5 km Tecoh 🎢ekoh **Tecoh-Telchaquillo** = 10.72 km Telchaquillo Telchaquillo-Mayapan Mayapan 1.8 km Mayapan-Tekit = 16.4km ekit Tekit-Mama 8 km Mama Mama-Teabo = 9.72 km 8 Iama-Tipikal = 6.2 km <u>[ipikà</u> © 2016 Google Ticul Image Landsat / Copernicus Teabo Tipikal 6.2 km © 2016 INEGI Image © 2016 DigitalGlobe

Figure 10-4. Aerial distance between north-central sites

In the cases of (a) the micritic fabric Micrite-W-coarse within Group 1 from Mayapán and Tekit, and (c) the fabric Dolomite-B/W-Medium within Group 2 from Tecoh and Tekit, most likely, raw materials were not shared (distances > 14 km). It is possible that, for instance, vessels with fabric Dolomite-B/W-Medium (within Group 2) from Tekit were transported to Tecoh. However, it is also possible that they were independently produced at these two sites with similar petrographic and chemical characteristics. In the case (b) of the sparitic fabric Sparite-W/B-Coarse/Medium within Group 2 from Teabo and Tipikal, there is the possibility of resource sharing with local production, in addition to the scenarios mentioned for cases (a) and (c).

Lastly, in the case of Mama and Yacman samples in the dolospar fabrics found at many of the north-central sites all within chemical Group 1, or case (d), the data presented allows us to make a strong argument (Section 10.2.2) for the production of these types of vessels in the vicinity of Mayapán. The implication of this argument is that these vessels, when found at sites other than Mayapán, are the result of the movement of these vessels from this center to the periphery. The mechanisms of exchange that might have been involved, and the issue of what was intended to move, i.e., the contents of the vessels or the vessels themselves that merely served as containers, are discussed in the next chapter.

From the data of this study, Mayapán may have received few vessels from other north-central sites. This is inferred not only from the limited petrographic variety of the samples from Mayapán (70% dolospar) as discussed in the previous section but also from the variety of chemical compositions at the minor sites that are not observed in Mayapán samples. Most utilitarian samples (Mama, Yacman, Navula) found at Mayapán have compositions within Group 1. Out of 32 utilitarian samples (Payil samples not included) from Mayapán that were chemically analyzed, 26 (81%) fall within Group 1, four are unassigned, and only two have a compositions of samples are more varied, including 50% or more of the samples within Group 2, Group 5 or unassigned compositions, in addition to the Group 1 dolospar samples that may be present.

In summarizing, due to the lack of direct evidence for production, indirect methods were applied to infer the movement of pots within the north-central area. The data are not clear as to whether pots were moved between the north-central sites, but there are a few instances in which the same fabric and chemistry present at two sites could be interpreted as resource sharing, local production, or exchange. Arguments were

presented for the production of vessels with dolospar fabrics being related to Mayapán or an area near this center. From this location, Mama and Yacman dolospar vessels may have been distributed to minor north-central sites. However, based on the samples, dolospar vessels did not reach Tepich (the northernmost site in this study) and Teabo (the south-easternmost site). When compared to the wide variety of petrographic and chemical compositions found in vessels from the minor centers, Mayapán vessels sampled in this study present rather homogenous petrographic and chemical compositions. Mayapán ceramics do not reflect the variety of compositions found at the minor centers, and it may have received few ceramics from other north-central sites.

10.3.2 Long Distance Movement of Pots

In two instances, there is overlap between fabrics found at north-central sites and those found at Cobá, Chac Mool, and Culubá. One is related to the Payil elite vessels found at Mayapán and Chac Mool. At both sites, the fabric is fine-grained calcite and quartz, Calcite-Quartz-B/R-Fine (or CX-QZ-B/R-f) within chemical Group 4. The correspondence of petrographic and chemical compositions between these two sites indicates that the Payil samples have a common origin. The chemical analysis (Section 7.3.4) that includes clays collected by Cecil (2012) traced the origins of these samples to Laguna de On, Belize. Therefore, Payil from Chac Mool and Mayapán appear to be foreign to both of these sites. Sherds classified as Payil may have had other fabrics and probably other origins, given that two sherds were classified as Payil but did not present the fabric described earlier (#349, #135). This issue, however, could not be resolved in this study given the small number of Payil samples inferred from the two samples classified as Payil. It is doubtful that a misclassification of Payil occurred because utilitarian samples in this study (Mama, Yacman, Navula) do not present a compacted and fine-grained texture.

The second instance of fabrics shared between north-central and eastern sites is the sparite fabric, Sparite-W/B-Coarse/med (CS-W/B-cm), which is found across the north-central sites and also at Cobá in the east (Table 9-18). As discussed in Section 9.1, sascab is the most likely source of the inclusions in this fabric, composed as it is of finely crystalline calcite. It is associated with utilitarian slipped pottery (Mama, Cancun, and Xcanchakan) and Navula, but not with striated Yacman. It is possible that red-slipped Mama vessels were transported to Coba. However, the fabric mentioned above is inhomogeneous from a petrographic perspective, and the samples from Cobá may be local. This means that the sascab tradition for the construction of red-slipped pottery was also present at Coba, while it was not observed at Chac Mool or Culubá. Interestingly, while no overlap was observed in the fabrics of utilitarian ceramics from Chac Mool and Culubá with those of north-central sites, the red-slipped Cancun samples from Coba present characteristics from both the north-central and eastern areas: sascab sparite fabrics (north-central) and coarse crystalline fabrics (eastern). It appears then that redslipped utilitarian ceramics from Coba were manufactured following both the sascab traditions of the north-central sites and the coarse crystalline calcite traditions of the eastern sites.

Four Yacman samples and one red-slipped Mama found at Teabo, Tipikal, Tekit, and Telchaquillo have an unusual fabric, Calcite-Grog-B/R-c (MX-GROG-B/R-c), containing fine to medium calcite crystals, argillaceous inclusions with crystals, and grog. This is an unusual fabric because grog has not been reported in Late Postclassic ceramics from these sites. Furthermore, fabrics of the grog fragments were not found in the samples analyzed; one grog fabric has untempered, compact red-slipped fragments that would be classified as Payil, and, the other grog fabric has a dark brown to black argillaceous matrix with embedded crystals. The Euclidian distance points to Santa Rita Corozal, Belize (Figure 7-7) as the most common match in the MURR database, a site at which not only grog (Cecil 2012, p.18-20) but also crystalline fabrics are more common. It is, therefore, possible that imports from Belize include not only elite Payil items from Laguna de On but also pottery that appears to be utilitarian, such as unslipped, striated vessels. If this was the case, the key issue is whether the vessels or the contents of the vessels were intended to be transported. That vessels with this fabric are local to the north-central sites cannot be ruled out. Given the limitations of the sampling in this study, these five samples with this unusual fabric may represent a larger body of vessels, and a grog tempered tradition, within the north-central Late Postclassic area that had not been identified before.

Summarizing the findings of this section, Payil samples found at Mayapán and Chac Mool are foreign to these sites, originating at Laguna de On. Payil samples in this study share the same chemical characteristics as samples from Laguna de On, which in turn match the clays from that area (Cecil 2012). Other than the Payil samples analyzed there is no hard evidence of foreign vessels in the samples from north-central sites. However, five samples of an unusual fabric containing grog were found at several northcentral sites. These samples may also be an import from Belize, given that the Euclidian distance matches Santa Rita Corozal, Belize, and that grog has not been reported in Late Postclassic ceramics of northern Yucatán but is common at this site (Cecil 2012). There is also the possibility that these five samples represent a larger body of grog-tempered north-central vessels that had not been found before. However, the number of calcite crystals makes this fabric more consistent with the eastern coast than with the inland areas.

10.4 Evaluating the Hypotheses

Hypotheses to guide this study were outlined in Section 1.3 and described in Section 5.3. In this section, the hypotheses are revisited and evaluated in terms of the analytical results from this study.

Hypothesis A: Unslipped jars found at the different sites were locally produced at minor centers and at Mayapán.

The results as discussed in this and previous chapters support Hypothesis A. In retrospect, however, this hypothesis is not appropriate to cover the complexity of the interpretations given to the organization in the production of unslipped vessels. Navula and Yacman present different orientations in their production. While the plain Navula was most likely locally produced and consumed, the results for Yacman point to a dual path. One arrangement is characterized by several producers and zones of procurement, with some potters specialized in the production of Yacman with coarsely crystalline temper and other with gray micrite tempers (see Section 10.2.1). A second arrangement involved potters whose Yacman fabrics contained dolospar sascab (Section 10.2.2), likely located in the vicinity of Mayapán (dolospar fabric), with pottery exported to the rest of the north-central sites.

Hypothesis B: In the north-central area, red-slipped pots (Mama) were produced at one production locality that supplied the rest of the north-central centers.

The results do not support Hypothesis B. The fabrics found within the Mama samples from the north-central sites are varied and correspond with several producers and zones of procurement, with the likely exception of samples with dolospar composition, that appear to have been produced in one geographical area and distributed to many northcentral sites. Most likely, the production of Mama had an organization similar to Yacman: (a) local production at different north-central centers with potters specializing in using sascab temper (mainly micrite and sparite), but with other fabrics also present; and (b) potters whose vessels also contained sascab with production located at or in the vicinity of Mayapán, and exported to other north-central sites.

Hypothesis C: Payil, the fine-grained red-slipped ceramic type commonly found at eastern coastal sites, when found at north-central sites, was locally made.

The results do not support Hypothesis C. The chemical and petrographic results point to a foreign location, Laguna de On specifically, as the source of Payil samples found at Mayapán (and Chac Mool).

10.5 **Summary**

The associations found in this chapter show that at least two technological traditions were present during the Late Postclassic, or even earlier: the sascab red-slipped vessel tradition and the translucent-rock cooking-pot tradition. These traditions are correlated to the type of vessels. Similar traditions have been documented in ethnographic work in northern Yucatán during modern times (Thompson 1958). Thompson identified different technological paths related to the function of the vessel: sascab for non-cooking vessels (that always include slipped vessels) and translucent rocks for cooking vessels.

Production of utilitarian vessels occurred at many places including Mayapán, most likely. At the minor centers, the data are not specific enough to determine whether the find spot corresponds to the location of production. In contrast, the evidence indicates that the pottery found at Mayapán was produced at or near this site. The patterns inferred for the organization of production suggest that a complex arrangement existed for red-slipped Mama and striated Yacman jars that point to a dual path.

It was proposed that Mama and Yacman vessels with dolospar fabrics were taken from their zone of production in the Mayapán area to the secondary north-central sites. This proposition is based on a body of evidence including distributional patterns. The distributional patterns, mainly of Yacman and Navula having dolospar fabrics and chemical composition within Group 1, cannot be explained unless Mama, Yacman, and Navula with dolospar are produced in a geologically homogeneous zone and are not local to the north-central centers.

It was also proposed that Mayapán received few ceramics from other north-central sites. This observation is inferred from the comparison of the variety of chemical and

petrographic compositions at the lesser sites with the almost homogeneous chemical compositions of the utilitarian ceramics from Mayapán. Movement of pots is demonstrated in the Payil samples found at Mayapán and Chac Mool that originated at Laguna de On.

If it is true that Yacman and Mama vessels produced with dolospar inclusions and found at the minor centers were imported, it is apparent that at the smaller centers there was a clear correlation between the vessel types and understandings of how they should be made. At the minor centers, Yacman ollas contained macrocrystalline calcite or gray micrite. This understanding has perdured until current times. Although a couple of samples from Mayapán contain macrocrystalline calcite or dolomite, sascab was added to the bulk of the samples from this site.

At the end of this chapter, the hypotheses proposed at the start of this thesis were evaluated based on the results obtained. The hypotheses address key issues in Late Postclassic archaeology and history, and at the same time ensure that the methods selected and the data gathered in the process directly address the research questions (Section 1.3). In the final chapter, the research questions are debated and conclusions drawn.

Until the completion of this study, a detailed chemical and petrographic analysis of ceramics from Late Postclassic contexts from several north-central and eastern sites in northern Yucatán had not been conducted, and the variability of raw materials and processing techniques had not been assessed. Current ceramic analyses for this period have been largely based on macroscopic analysis (Smith 1971; Brown 1999; Cruz Alvarado 2012), which has resulted in an underestimation of the range of variability of the pottery fabric classes. Work on discriminating between locally, centrally, or foreignmade ceramics has been limited because of a lack of basic research on ceramic manufacture and variability in ceramic fabrics. With this study, crucial basic information for proposing ideas, not only about ceramics, but also the organization and socio-economic interactions during the northern Late Postclassic, is now available.

This chapter discusses the findings of this research and evaluates how the results emerging from this study fit current models for ceramic production, distribution, and exchange for the northern Late Postclassic. The chapter also presents the conclusions drawn from this study and suggests future research to build upon the results of this study.

11.1 Discussion of Research Questions 1 to 5

In this section, the findings of this study are summarized. The findings are presented according to the research questions that this study set up to investigate.

11.1.1 Research Question 1

Are there sufficiently varied patterns in raw material selection and ceramic attributes or characteristics to allow the characterization of pottery fabrics into fabric classes and distinct technological classes? This first and most basic question needs to be addressed.

Distinct technological classes exist, shown in the ceramic properties and attributes observed in hand specimens and thin sections that allowed the characterization of the samples into fabric classes, including those dominated by micro and finely crystalline calcite (sascab), finely crystalline dolospar (sascab), and macro-crystalline or bioclast inclusions. Definition of these classes is complemented with the groups found in chemical analysis.

11.1.2 Research Question 2

What might such technological patterns tell us about how the different classes of pottery (such as with different surface finish or forms) were made?

This study showed that, in the north-central area, the types of vessels (red-slipped vessels, unslipped cooking pots, and plain unslipped vessels) are correlated with the raw materials selected and techniques applied and that raw materials were not selected at random. Two technological patterns for the construction of north-central utilitarian vessels in this study were observed.

One technological pattern is observed in samples from Mayapán. At this site, sascab was found in all types (red-slipped Mama and unslipped Navula and Yacman) of vessels sampled. Most of them have a composition within one chemical group, Group 1. A second pattern is observed at other north-central sites, at which a purposeful selection of raw materials according to the type of vessels occurred. At these sites (as discussed in depth in Sections 9.1 to 9.3, and Section 10.1), sascab of varied compositions and sources (dolospar, micrite, sparite) was found in Mama and some Navula vessels, while crystalline calcite or dolomite was found in Yacman, as well as gray micrite. Navula may have been manufactured by any of the potters' groups. These correlations depend on the geographical region. At Culubá and Chac Mool, different patterns were found (see Section 9.5 for in-depth results).

Raw materials analysis and experimentation allowed that inferences could be made about techniques applied in the construction of the vessels. Clay deposits are sparse, in particular, close to Mayapán. Red clayey soils are present in the area and suitable for pottery making, but they were not selected by potters (even though it was used in one particular item, a candle shield). Marls are ubiquitous and may have been used. Experimentation with marls showed that some are suitable for pottery making. However, they require a laborious processing that may have included grinding and/or sifting to remove the very coarse (>1 mm) rock fragments observed in the marls and that are common in the sascab marls but absent in the pottery. These are not the only

techniques that could have been used. Levigation is a viable option. However, it is not supported by ethnographic work.

A limited surface-feature analysis of a few vessels found that forming techniques varied with the type of vessel. Molds may have been used for the rounded bottom of two cajetes and one bowl found at Mayapán. Two large jars (found in a small site 4 km from Mayapán), most likely, were built in sections using a coiling technique apparently combined with the open base technique.

North-central Yucatán potters dealt with the challenges that working with carbonate materials generate during firing. Potters had gained practical knowledge about the interrelation between particle size, crystal size, firing time, and firing temperature of the carbonate rocks and clays of the area (XRD of one sample sounf montmorillonite/kaolinite at Mayapán). Potters had to play with these interrelations, allowing enough firing time to transform clays or marl into ceramics while keeping the temperature low enough to avoid calcination and destruction of luster in slipped vessels. That they had mastered the techniques is demonstrated by slipped vessels that survived these firings with few defects (such as popping of carbonate inclusions) and luster that can be observed even today.

11.1.3 Research Question 3

Is the observed homogenization of style and macroscopic composition maintained through different levels of analysis, e.g. microscopic composition and chemical analysis? Does the observed homogenization of style and macroscopic composition reflect a shared technological tradition? For instance, a technological tradition defined by a shared understanding of how red-slipped Mama vessels should be made.

This study has demonstrated that many fabric classes exist at different locations within the study region and that, for the most part, the observed macroscopic homogeneity throughout large areas of Yucatán during the Late Postclassic (Masson 2001; Pendergast 1985, p.240; West 2002, p.178) is not reflected in a homogeneous chemical or petrographic composition across sites. The homogeneity of style refers to a reduced palate (compared to previous periods) of ceramic types that are found from site to site. In addition, the same ceramic types with similar vessel forms are found from site to site throughout Yucatán. Sherds from the north-central area cannot be distinguished between sites.

More than one level of analysis is involved in the observed homogeneity. Two macroscopic levels are involved: one is related to the form and decorative attributes, and the other, to the macroscopic composition and technological choices (such as the appearance of the paste). At the laboratory level, there are petrographic (technological) and chemical levels of analyses.

This study showed that within the north-central area, the homogenization of style observed in red-slipped Mama vessels reflects an overarching sub-regional tradition: the sascab, red-slipped tradition. It is identified by formal and decorative (such as surface finish) similarities (subsumed in a common ceramic variety), and matched by uniformity in macroscopic technological choices (sascab) and techniques (medium-grained temper, light color paste). However, laboratory analyses demonstrated that red-slipped ceramics found through northern Yucatán are not mineralogically or chemically homogeneous. The chemical and petrographic variability indicate that several potters' groups were producing Mama vessels at different locations following a overarching tradition.

A second tradition was identified in a group of the striated, unslipped Yacman jars from north-central sites, guided by an ancient sub-regional Yucatecan technological dating back at least to the Terminal Classic (Smith 1971a, p.191; 1971b, p.169 – 173) and that extends into the present. In this technological tradition, translucent rocks (*hi'*) are added to the clay for the construction of cooking pots. The chemical and internal petrographic variability of the fabrics within this tradition indicate that various potters' groups were involved, most likely at different locations within the north-central area. In sum, this study showed that technological traditions exist in the study region for the construction of red-slipped vessels and for some of the striated unslipped ollas. It also showed that the notion of homogeneity in pottery composition between and within the two study areas, north-central and eastern, is not supported by the results.

11.1.4 Research Question 4

What might such technological patterns and traditions say about the organization of pottery production, such as the number and location of potters groups or associations within and between geographical areas or specific sites, and its social significance?

The main findings and interpretations concerning the organization of production at the main center, Mayapán, include:

a) A production zone within chemical Group 1, located at or near Mayapán, produced most of the utilitarian pottery (sampled in this study) found at Mayapán (Section 10.2.2).

b) At Mayapán or in the vicinity, groups of potters produced a significant portion of the utilitarian vessels sampled at this site (over 70%) with a uniform technology characterized by the use of sparry dolomite (dolospar) sascab as temper. However, as mentioned earlier, it is acknowledged that the proportions in this study do not correspond to those of the complete assemblage from Mayapán.

c) Potters who produced vessels with Mayapán dolospar fabric added sascab to all utilitarian types of pots (in this study) including the striated Yacman jars, breaking with Terminal Classic and north-central traditions. The production of these potters was divided into red-slipped Mama vessels using medium-grained sascab and striated Yacman ollas using coarse sascab. Navula vessels with dolospar fabrics do not show a grain size pattern.

d) Given that the use of the translucent rock tradition hi' is a long-lasting inland tradition (as mentioned earlier in this and previous chapters), Mayapán potters differed significantly from potters in the Puuc area, Chichén Itza (Smith 1971a, p.191; 1971b, p.169 – 173), and minor north-central sites in that the type of temper in their vessels was not correlated to the types of vessels built (e.g., slipped jars or cajetes versus unslipped vessels).

e) Based on ethnographic work, there is the possibility that the correlation of pottery materials to types of vessels just mentioned extended to the community level. At towns in northern Yucatán, Thompson (1958) found that whole communities specialized in building non-cooking vessels using sascab as temper while others specialized on cooking pots using hi' as temper.

f) Although Mayapán potters had cultural understandings of how pots should be made that differ from potters from the north-central area, Mayapán potters, most likely, were not new to limestone technology. Mayapán pottery appeared at Mayapán fully developed (Smith 1971a). Objects, such as ceramic vessels, represent a cultural body of knowledge that is refined over generations that, usually, is not learned by trial-and-error experimentation within one lifetime (Jordan 2015, p.12).

Regarding the north-central minor centers, the main findings and interpretations are:

a) Ceramic production was dispersed. Several potters' groups were identified at the different sites. The locations of production are not known with certainty, mainly because the chemical groups are not linked to any specific location.

b) At these sites, a correlation between ceramic varieties (Mama and Yacman) and technological choices was found. It is possible that with a larger sampling, more ceramic varieties would be found correlated to different technological choices. In-depth answers to this question are found in Section 9.1.6 for red-slipped Mama potters' groups, Section 9.2.3 for plain Navula, and in 9.3.4 for the striated open-mouth Yacman jars.

More than one type of production organization can account for the uniformity in composition and technological characteristics of the bulk (dolospar fabric) of the vessels sampled from Mayapán. Mass production is one. Elite involvement in enforcing uniformity is another. In addition, the ethnographic record in the Maya areas describes various instances of production of a considerable amount of rather uniform pottery within independent households. Reina and Hill (1978, p.29-41) described the town of Chinautla in the highlands of Guatemala. Pottery is produced within the town households. The town produces the same eight forms that include ollas and *tinajas* (for liquids). Clay is collected from the same mountain area. Around 10% of pumice is used as temper by all potters for all forms. The same clay preparation and manufacturing steps are followed by all potters for all forms. This uniformity is dictated by *costumbre* that indicates what can and cannot be done in pottery production as well as other aspects of life. As long as *costumbre* is maintained, the pottery is of good quality. Therefore, creativity is discouraged. It is not up to the individual to interfere with *costumbre*.

Large amounts of pottery can be produced annually in this way. At Chinautla Reina and Hill (1978, p.29-41) report that each potter can produce 20 medium size vessels and 3 or 4 large vessels per week. At the community of Amatenango, highlands of Guatemala, Nash (1966) describes a similar production arrangement of part-time, household production guided by *costumbre*. Of the 280 households, only three did not make pottery.

At Yucatán towns, Thompson (1958) observed that many aspects of production were divided by community or town, in what Thompson called a community specialization. It is not known, however, if this part-time specialization (farming the *milpa* for men and household chores and child rearing for women take precedence)

resulted from reorganizations after the Spanish conquest. The community specializations include the types of vessels made, mainly divided into cooking and non-cooking pottery producing towns, the forming techniques, in particular, the technique used to start the vessels, and the type of temper used for cooking and non-cooking pots. Even the gender of who made the pottery was a community specialization. At Lerma, Becal, Maxcanú, Izamal, and Valladolid men made the pottery, while at Tepekán and Mama women made the pottery. There was a tendency for men to be the potters if the town specialized in cooking pots. In an organization such as this, with production following the norms imposed by *costumbre* (Reina and Hill 1978) or tradition, or a perceived need for uniformity, it is not impossible that the ceramic output accumulated over two or more centuries would appear as very standardized and mass-produced to archaeologists. The examples presented show that considerable amounts of uniform pottery can be produced without the need of a central authority or concerted mass production strategy.

At Mayapán, Masson and Peraza Lope (2014) have found a series of crafting households related to chert, weaving, obsidian, and marine shells (2014, p.281) with production above the level at other households (concentrations one standard deviation above the mean). While direct evidence for these industries was found, it was not found for ceramic production. The experiments performed in this study showed that the Late Postclassic utilitarian ceramics from north-central Yucatán, when overfired, disintegrate in a very short time as a result of the presence of medium to coarsely grained carbonate temper. Therefore, the accumulation of overfired sherds (wasters), one of the main markers of ceramic production (Rice 1987) when kilns are absent, as in the Maya area, would not be present for the Postclassic in this region.

Pottery of uniform technological characteristics from Mayapán or vicinity could have been produced under different organizations of production. As mentioned earlier (Section 2.2), Masson and Peraza Lope (2014) are finding that Mayapán was a producer of items such as shell, obsidian, or chert objects, for which direct evidence for craft production has been found. Apparently, their production was concentrated in areas close to the ceremonial center, mostly within affluent households (Masson and Peraza Lope 2014), many of them, multi-crafting households. It is probable, then, that the production of utilitarian pottery followed a similar path, and pottery was, one, produced at Mayapán, and second, within households, of which many were multi-crafting households.

11.1.5 Research Question 5

What might such patterns and organization of pottery production tell us about the distribution of utilitarian ceramics and the types of exchanges that may have taken place? In particular, were ceramics produced at each center? Alternatively, was production centralized and, if so, where?

The main findings and interpretations discussed concerning to ceramic exchange include:

a) Vessels produced at Mayapán were consumed at Mayapán and, in addition, transported to the minor centers. This interpretation is based, as discussed in Section 10.2.2, on the observation that vessels with Mayapán fabric style were found at the minor centers and that their distribution cannot be explained by local production. Of the studied utilitarian types of vessels (Mama, Yacman, and Navula), red-slipped Mama and striated Yacman vessels having Mayapán style fabric (dolospar sascab) or micrite to a lesser degree were found, in addition to Mayapán, at Tecoh, Telchaquillo, Tekit, Mama, and Tipikal. The plain Navula jars or cajetes with this fabric apparently remained close to the Mayapán/Telchaquillo area. They were not found outside Mayapán's vicinity.

b) Vessels with Mayapán fabric style have a restricted sub-regional spatial distribution limited to a one day and a maximum of two days' march. Furthermore, the Chac Mool or Culubá vessels sampled do not display north-central style fabrics. At Cobá, a mixed pattern north-central/eastern was found.

c) Mayapán was not a consumer of external utilitarian ceramics (or substances transported in them). Apparently, very few utilitarian vessels (Mama, Yacman, and Navulá jars and cajetes) produced at the minor centers were transported to Mayapán (discussed in Section 10.3.1).

The movement of vessels from Mayapán to the minor centers represents a close political, social, or economic relationship among them. The nature of this relationship is not clear from the results of this study. This relationship appears to diminish with distance traveled: none of the vessels sampled from the northernmost site (Tepich located 26 km from Mayapán), or the south easternmost site (Teabo which is 33 km from Mayapán), or the three eastern sites (Cobá, Chac Mool, Culubá) have dolospar fabrics similar to those found at Mayapán.

In cases such as this study, in which direct evidence for ceramic production has not been found, more than one interpretation usually can be given to patterns found. The proposed exchange mechanism by which the red-slipped and striated vessels moved out of Mayapán is one such case. The rest of this section describes exchange mechanisms that may have been present during the Late Postclassic (market transactions, gifting, and tribute) and evaluates how the results emerging from this study fit these mechanisms.

The Case for Market Transactions

At Mayapán, Masson and Peraza Lope (2014) have found a series of households related to chert, weaving, obsidian, and marine shells (2014, p.281) in amounts recovered that are above the median of other households at this site. Hirth (1998, p.453-454) summarized indirect approaches that have been used to identify market exchange, discussed in Section 2.3.4. Based on these approaches, there are indirect indications in this study of market exchange. From a contextual view, a marketplace may have existed based on the assumption that a large city requires a marketplace to complement its supply. Furthermore, the scale of surplus vessels produced that reached areas outside Mayapán may have exceeded that expected to meet reciprocal obligations. For instance, of 22 thin sections analyzed from Tipikal, 13 Mama and one Yacman samples have Mayapán fabric style (dolospar). However, from a spatial perspective, the distribution of ceramics with Mayapán fabric is limited to a march of one or two days at the most.

The indirect evidence can be interpreted as market exchange in which utilitarian ceramics, Mama and Yacman, from Mayapán, found at smaller north-central sites, had been traded for goods from the surrounding areas and centers; granting that market transactions do not necessarily involve the existence of a place with a market (Hirth 1998, p.453). Given that the north-central communities were producing red-slipped and striated cooking vessels apparently similar to those from Mayapán, it is possible that vessels from this site were not the object of trade with these communities. The contents of the vessels were more important. However, in a market exchange scenario in which the contents of the vessels might have been traded, it is puzzling that more ceramics from the minor centers were not found at Mayapán.

Alternatively, Mayapán vessels could have been desirable due to their association with Mayapán. Culber described a situation that may have parallels with Late Postclassic northern Yucatán (1930, p.157). In San Gregorio, during the Early Postclassic, plain coarse pottery was produced by several communities, while finer utilitarian vessels were imported from major centers. This situation has also been observed in modern times, for instance, at Amatenango (Culbert 1930, p.149) and Chanal (Deal 1998, p.69).

In summary, a market exchange context can explain the distribution of redslipped vessels and striated ollas having the same fabrics as Mayapán vessels and found at most of the minor north-central centers in this study. As mentioned earlier, the sphere of distribution of pottery with Mayapán fabrics is very limited, and it does not represent a widespread regional exchange.

The Case for Gifting

The movement of vessels from Mayapán to the smaller centers could have been an effort to re-enforce social relationships by gifting or feasting (Renfrew 1975, p.4), or from responding to social or political collective reciprocal obligations (Nancy Farriss 1992; Fernández Tejedo 1990, p.34; Stanton and Gallareta 2001) as discussed in Section 1.1.1.4. These exchange mechanisms played an important role in Yucatecan Maya society and have been well documented in several accounts, including Bishop Landa at contact time (Landa 1986) and ethnographic work (Redfield and Villa Rojas 1967, p.127–159) during modern times.

As discussed in Section 2.3.4, low volume of commodity movement, small sphere of distribution, and heterogeneity of the sources characterize most reciprocal exchange (Hirth 1998, p.455). Based on these three parameters, reciprocity does not explain the observed movement of vessels to the smaller centers. Concerning to the volume of pottery moved, the number of vessels transported could have been significant. For instance, of 22 thin sections analyzed from Tipikal, 13 Mama and Yacman samples have a dolospar fabric (while no plain Navula samples from Tipikal have this fabric). Regarding the second of Hirth's parameters, the sphere of distribution, the extent of the geographical distribution of vessels from Mayapán to the minor centers was small, limited to one to two days' march. Lastly, concerning to the last of Hirth's variables, the sources are not heterogeneous. Only red-slipped and striated Yacman ollas were taken to the minor centers, with all red-slipped vessels sharing a dolospar medium-grained fabric and the striated Yacman jars a coarse dolospar fabric. From the perspective of Hirth's criteria, even though the sphere of distribution is small, for the most part, gifting does not explain the patterns in this study.

The Case for Tribute

That red-slipped vessels and striated ollas from the main center were transported to the communities can be explained by the tribute redistribution mechanism in which products

from Mayapán were taken to the smaller centers. Redistribution could have been in the form of vessels or they served as containers for items such as honey. However, there are no references to this type movement within the ethnohistorical record and, apparently, little or no goods were redistributed back to the people (Fernández Tejedo 1990; Barrera Rubio 1984). Barrera Rubio (1984) has proposed that tribute was concentrated at the Maya centers and that the centers monopolized important raw materials, jobs, and manufacturers.

In summarizing the types of exchange that explain the patterns in the data, market exchange (movement of vessels for ritual purposes is discussed in the next section), rather than reciprocal relationships or tribute, better explain the presence of Mayapán vessels at the minor center, given the potential volume that could have been transported and the homogeneity of the source. It is not known why vessels from the minor centers were not found at Mayapán and the reason for minor centers wanting vessels from Mayapán when they are producing the same type of vessels.

11.2 Discussion of Research Question 6

How do the production, distribution, and exchange patterns described in the previous sections compare with current models for the organization of Late Postclassic ceramic production, distribution, and exchange?

In this section, current models for ceramic production, distribution, and exchange (Section 2.3) are examined to understand whether they explain the patterns found (summarized in Sections 11.1.1 to 11.3.5) and the inferences drawn in this study.

The Mercantile Production and Distribution Model

At Mayapán, the uniformity in composition and technological characteristics of redslipped vessels on the one hand, and unslipped, striated vessels on the other fit within this model and can be interpreted as mass production under a cost-cutting strategy of standardization. This interpretation fits within the mercantile model (Section 1.1.1.3) of production and distribution for the Late Postclassic, as proposed by Sabloff and Freidel (1975) and Rathje (1975). In this model, during this period there was a shift from mere craft production to mass replication (Rathje 1975, p.441), in particular as a strategy to cut production costs. As mentioned in the previous section, in isolation, uniformity of ceramic production can result from more than one scenario, including mass production. However, the results do not support the notion of a widespread regional exchange of utilitarian ceramics throughout northern Yucatán from Mayapán, or from any other north-central sites, as contemplated in the mercantile view of the Postclassic (Rathje 1975; Sabloff and Freidel 1975). The distribution of the technological fabrics as found at Mayapán does not extend beyond one or two days' march. It was not found in the vessels sampled from Tepich and Teabo, nor was the fabric at any of the three eastern sites.

To summarize, the movement of vessels from Mayapán together with the uniformity of Mayapán pottery technology fit within the mercantile model of production. On the other hand, the limited sphere of distribution of Mayapán pottery does not fit this model, which envisions a regional and inter-regional exchange. The results support a more limited sub-regional version of the mercantile model, in which distribution of utilitarian pottery may have occurred from Mayapán to sites located within one or two days' march.

The Tributary Mode of Production Model

This model of production was discussed as part of the answer to research question #5. Tribute is an important component of Late Postclassic socio-economy. However, the spatial distribution of the ceramic vessels sampled in this research does not fit well this model.

The Ritual Mode of Production Model

In Section 2.3, the integral part, although indirectly, of pottery in the many fiestas and ceremonies of Yucatecan Mayas was emphasized by Landa (1986, p.70 - 90). Probably large amounts of pottery were produced to replace damaged and broken pottery in festivities, as well as pottery broken as part of renewal ceremonies (Section 2.3).

Concerning Mayapán pottery found at minor centers, one mechanism that can explain the patterns observed in this study is related to production for ritual. One ethnographic example provided by Reina and Hills (1978) at San José Petén (described in Section 2.3) illustrates pottery being transported from a main town to the minor centers. Cooking pots, usually of dispersed production, once a year were produced in the main town for cooking during the ceremony of the skull in which large amounts of food were consumed. This scenario would explain the distribution found at minor centers of red-slipped vessels and ollas having the same fabrics as the main center, Mayapán. However, a better assessment of the proportions that Mama and Yacman with Mayapán fabric represent of the assemblage of the different minor sites is necessary to assess whether a ritual context is a viable scenario.

Calendrically Shifting Production Location Model

This model has political and ritual components. In this model, elite ceramic items were manufactured at different locations according to a ritual calendar (based on the Native chronicles [Edmonson 1979]). These locations were 13 principal centers, which for a *katun* period (20 years), would be the religious capital (seat or host) and entitled to tribute.

The archaeological record left by paid tribute to the seat of the *may* or *katun* when the payment involves pottery, probably as containers (for honey, for instance), is not that different from the archaeological fingerprint of market exchange. It is possible that the movement of red-slipped vessels and striated ollas is the result of tribute sent in ceramic containers, or that the container itself was part of the payment, from Mayapán to the acting religious capital. However, most minor sites in this study probably did not qualify as host of the *katun*, according to the list of towns provided by Edmonson (1979). Teabo, nevertheless, is on that list.

Dichotomous View of Ceramic Production Model

Under this model, the main centers are consumers in a decentralized market economy, and the production of utilitarian ceramics is dispersed and away from the main centers. Mayapán as a substantial producer of all types of utilitarian pottery (evidence provided in Section 10.2.2 points to production at or near Mayapán) not only for local consumption but also for movement to other sites runs against a view of main centers as consumers (Fry 1980; Rands and Bishop 1980). At Mayapán, Masson and Peraza Lope (2014) have found a series of crafting households related to chert, weaving, obsidian, and marine shells (2014, p.281) with production above the level at other households (concentrations one standard deviation above the mean). Production within a main center is consistent with Smyth and Dore's (1992) proposition of ceramic production in the non-domestic area of Sayil (Puuc area, Yucatán) during the Terminal Classic. Mayapán received few ceramics from other sites.

Mayapán received few ceramics from other sites and apparently was a producer of utilitarian ceramics. This pattern does not fit well with models of production organization such as the dichotomous production model discussed in this section (see Fry 1980, and Section 2.3) in which the main producers of subsistence products were located on the periphery of Mayapán, while the main center was a consumer of pottery.

Summarizing the comparison of the findings of this study with proposed ceramic production and exchange models, it can be said that two of the five models for the production, organization, and exchange discussed in this section explain better than the rest the results and interpretations of this study. One of such explanatory models is a scaled-down version of the Mercantile Production and Distribution Model in which, instead of the regional and inter-regional scope of exchange as in the originally proposed model (Section 1.1.1.3), utilitarian ceramics (or their contents) from Mayapán were exchanged and distributed to sites located relatively close (within one or two days' march) to Mayapán. The second model that can explain this study's results is a Ritual Mode of Production in which some of the vessels in this study (Mama and Yacman) were transported from their location of production at or around Mayapán the minor centers as part of ritual or periodic activity.

11.3 Conclusions

A variety of organizations of ceramic production and several mechanisms for exchange most likely co-existed during the Late Postclassic. The organizing principles of Late Postclassic Maya society did not rest upon one but several mechanisms and institutions (Masson and Peraza Lope 2014, Graham 2011). The goal is to identify the many ways in which ceramic production was organized, and to understand better the relative contribution of each mechanism of exchange to Late Postclassic socio-economy.

This study contributes to a better understanding of the organization of ceramic production during the Late Postclassic. The results show that at the north-central and the three eastern sites, many potters were producing the slipped and unslipped varieties in this study (Mama, Yacman, and Navula). It was found that the observed macroscopic homogeneity of composition is not matched by a chemical or petrographic homogeneity. At the minor north-central sites, there is a correlation between tempers used and the types of vessels. The main divisions are related to sascab for red-slipped vessels and crystalline calcite or gray micrite for Yacman. These divisions most likely corresponded to different potters groups.

Mayapán or a place near Mayapán produced the bulk of the pottery found there. A correlation between the type of temper and the type of vessel (slipped jar or cajete, unslipped jars) in this study was not found, and the bulk of utilitarian vessels are tempered with sascab. The composition is very homogeneous. The main division at Mayapán is related to grain size, with the fabric of slipped vessels containing usually medium-grained inclusions, whereas Yacman vessels have coarse inclusions.

A correlation between temper and the utilitarian type of vessels in this study was not observed at Chac Mool and Culubá either. At these sites all utilitarian samples including Navula, Yacman, Mama, Cancun, and Xcanchakan were produced within a coarse macro-crystalline and sascab (micrite) tradition from several production zones. The main division observed at Chac Mool and Culubá in ceramic composition is between Payil and utilitarian ceramics.

A better understanding has been gained of the interrelation between sites and movement of vessels. Exchange of ceramic vessels has a limited geographical scope. No long distance movement of Mayapán vessels was observed. They were not found at the three eastern sites. They were not found at Tepich or Teabo either. It is possible that the distribution of Mayapán fabric vessels from their place of production at Mayapán reflects a political area, such as in the case of Palenque (Rands and Bishop 1980).

A considerable amount of pottery may have been moved from Mayapán. Market exchange or rituals involving movement of vessels (with the caveats mentioned earlier) can be used to explain this movement. Movement of vessels occurred between minor centers, detected when a petrographically homogeneous fabric class is found with the same chemical composition at two sites. This was observed, however, in a few instances.

The results of this study provide new insights into the technology involved in the manufacture of Late Postclassic ceramics. This study shows that at north-central centers the selection of raw materials and their processing followed traditions that can be traced back to, at least, the Terminal Classic. Petrography has been crucial for the detection of cultural divisions reflected in the data. The Late Postclassic potters who made the striated Yacman jars at the minor north-central sites shared with potters of centuries past from Uxmal and Chichén Itza a common understanding of how ollas should be made. The ceramic technology applied by Late Postclassic potters was not careless or decadent. Despite the collapse of Uxmal and Chichén Itza, the last (Terminal) Classic centers in northern Yucatán, the culture and traditions of these centers continued in the different communities.

Storey and Storey (2016, p.116) have remarked that, when a crisis is a slow moving one, societies have time to adapt and that it is not uncommon for them to rebound after a catastrophe. Given time, a society can not only adapt but also regenerate the old structures into new ones. A new society based on the older one emerges, in a geographical location that is not necessarily the same. Furthermore, the cultural manifestation is not necessarily the same either. After the protracted collapse of the Classic centers, a new society emerged for which Mayapán is the type site.

The results show that the ceramics at Mayapán and the minor centers represent old and new traits. For the most part, because some exceptions were found, Mayapán potters did not follow a long-term central Yucatán technological tradition. Mayapán potters may have originated outside the northern central area of Yucatán. It is likely that potters at north-central sites emulated red-slipped Mayapán style pottery while keeping their technological traditions.

The new Postclassic Maya world was not exclusive to northern Yucatán. The ceramic style, the international style, the new effigy censer tradition, the world view and ancestor veneration that they represent, and the calendrical rituals for which they were used joined the Maya from Yucatán, Guatemala, and Belize in a common Late Postclassic worldview (Storey and Storey 2016; Masson et al. 2006, p.193) that was not there before.

This study identified the same Late Postclassic ceramic technological traditions in modern Yucatán. According to Farriss (1984, p.395), that the Maya have been able of preserving their traditions, social order, and culture is owed to an agrarian way of life that is adaptable to demands of new rulers and a Yucatán region that has attracted little attention for settlers. The new (and at the same time very old) Late Postclassic order continued up to the present in Yucatán communities and the traditions of the Maya potter.

11.4 Future Directions

This study raised questions about the ceramic technology and the social and economic environment during the Late Postclassic. The information gathered allowed to address the questions raised. However, it is clear from the discussions and results presented in the final chapters that this current study is a stepping-stone to progress in our understanding of the socio, political, or economic nature of the Late Postclassic, and that many issues directly related to the research questions remain. Refinements to the research questions and new inquiries have emerged based on the findings of this study.

This section proposes future research aiming to advance our knowledge of the socioeconomic and political structures of the Late Postclassic. For instance, this study found that many of utilitarian vessels sampled from Mayapán show uniformity of technology, composition, and macroscopic appearance. Uniformity has also been observed in other aspects of Late Postclassic Maya society (Masson and Peraza Lope 2014). Were Mayapán rulers promoting a uniformity of style? One way to investigate this question involves a detailed study of ceramic production and distribution patterns. This section deals with this and other emerging or long-standing questions. It proposes work addressing these questions and presents the implications that the proposed work might have advancing our understanding of the socio-economic and political structure of the Late Postclassic.

Future Research on Political Structure

Question I: What was the role of the ruling classes on craft production?

The involvement of the ruling classes in the production of items such as shell beads, weapons, censers, or utilitarian pottery during the Late Postclassic is not clear. From the perspective of ceramic production, one way to investigate Question I is by comparing the ceramic production patterns of the utilitarian pottery from Mayapán resulting from this current study with the results of future research investigating ceremonial items from various locations within Mayapán. Of special interest is the attached workshop for the production of ceremonial items, described earlier (Section 2.2.2), and whether the same paste was used for ceremonial and utilitarian vessels. The implications of the proposed research may shed light on the possible location of utilitarian ceramics production and the extent of elite control over ceramic production.

The proposed research will be enhanced if the technological comparisons extend to neighboring centers. For example, if indications exist that ceremonial items were produced locally and at the peripheral centers (in addition to being produced at Mayapán), one inference that can be drawn is that elite exerted little centralized control over the production of ceremonial items.

Question II: Were Mayapán rulers promoting uniformity of style?

At Mayapán, the uniformity of pottery composition and macroscopic appearance of the pottery fabrics characterized in this study may have been the manifestation of Late Postclassic traditions or social processes. As mentioned repeatedly in this study, uniformity over extended geographical areas is also reflected in stylistic features and forms.

Future research similar to the current study but including a wider range of types of vessels can provide a finer-grained assessment of the technological variability within

Mayapán. The proposed study may provide associations between technological characteristics and contextual information (such as the type of building, or location within Mayapán) to better assess the patterns that might exist linking ceramic production with other aspects of society.

At Mayapán, the uniformity of some architectural features and that one house plan dominates can be interpreted as a unified government program (Masson and Peraza Lope 2014, p.550). One tenet of this current (Sánchez) research is that ceramic technology is not disconnected from the wider context of society and that pottery fabrics may have been the manifestation of Late Postclassic traditions, social understandings, or social processes. The Mayapán state may have been promoting a symbolism of political unity (Masson and Peraza Lope 2014, p.550). Wobst (2000) considered artifacts as the evidence not only for how things were made but also of the actions taken to make the world conform to a mental schema not necessarily related to ethnicity or identity (Wobst 2000, p.41). Wobst proposes that a material record presenting those similarities could be interpreted as a situation in which there was a problem with keeping the group together (Wobst 2000, p.47).

Future Research on Ceramic Production and Organization

Question III: Did the production of utilitarian ceramics follow the same path than the production of other crafts (such as shell beads, or lithic weapons) as described by Masson and Peraza Lope (2014) at Mayapán?

Masson and Peraza Lope (2014) are finding direct evidence for craft production within Mayapán urban area, within the households; however, direct evidence of ceramic production is limited to ceremonial items. Although it is reasonable to propose, based on these findings for non-pottery crafts, that utilitarian ceramics were manufactured within Mayapán, the possibility that they were not produced within this center and that they followed a different production path cannot be completely ruled out.

Despite the progress in knowledge that the current (Sánchez) study represents, the location of production of utilitarian ceramics found at Mayapán is not known with certainty. Therefore, future research should aim to a finer-grained determination of the place of raw materials collection and manufacture. To this end, future research can build upon the findings presented in the current study and focus on the investigation of vessels from Mayapán and centers in its vicinity.

A multi-site research can be undertaken in a manner similar to the approach taken in the current study, which is based on the detailed scientific examination of patterns in ceramic production including provenance analysis. The proposed study would differ from the current study in that the studied sites are Mayapán and sites within around 5 km from Mayapán. This distance is based on the survey by Delgado Kú et al. (2014, p.27) of sites located in Mayapán's periphery. In addition, the composition and technological characteristics of censers, figurines and other vessels from the ceremonial ceramics workshop, identified by Masson and Peraza Lope (2014), can be compared to the characteristics of censers and other types of vessels (including the samples in the current study and other types of vessels) from other Mayapán structures. The results of the proposed research can potentially point to the locations of production for Mayapán pottery and contribute to a better understanding of the organization of pottery production and the economic environment during the Late Postclassic.

Question IV: What is the chaine opératoire or manufacturing process of the different vessels in Mayapán assemblage?

Through detailed scientific analysis and archaeological experimentation, future research can reconstruct the production processes of the various types of vessels from Mayapán. Of the utilitarian ceramics, slipped and unslipped jars and cajetes, as well as the unslipped striated ollas, comprise the bulk of the vessels sampled from Mayapán for the current study. Although these vessels are a significant fraction of the total Mayapán assemblage, many other types of vessels are found at this center. It is expected that with a more extensive sampling more production patterns and more *chaine opératoires* will emerge. Research like this would allow refining the ceramic production patterns resulting from this current study and identifying new patterns.

Future Research on Ceramic Traditions

Question V: Did Mayapán red-slipped (Tases) ceramics develop from local traditions? The same question can be asked for unslipped Mayapán ceramics.

This study showed that long-term technological traditions were important factors driving the choices made by potters. The *chaine opératoire* of a given type of vessel sampled from several periods can provide insights as to the changes or permanence of technological characteristics through time, a macro-tradition (Aimers 2013, p.2). It was said earlier that the history of Mayapán is associated with the Postclassic and that the red-

slipped ceramics from this site do not appear to develop from previous ceramics from northern Yucatán. On the other hand, many of the minor north-central centers show associations to several periods. From the compositional and technological analysis of a given type of vessel, such as red-slipped jar or cajetes or striated, unslipped ollas, from the Late Classic, Terminal Classic, and Postclassic, a timeline of changes in technological characteristics can emerge.

Question VI: Where did Mayapán ceramics come from?

This long-standing question can be approached with a regional and inter-regional study examining ceramic production patterns. However, based on the findings of the current study (also see Cecil 2012), it is not expected that red-slipped vessels, for instance, display a common fabric or chemical characteristics across distant sites. On the other hand, surface analysis of forming techniques in this study (see Section 9.1.7 with analysis of a large jar from a minor north-central site) points to a forming method described in ethnographic data from San José Petén, Guatemala (Reina and Hill 1978), coinciding with modern northern Yucatan forming techniques (Thompson 1958). These data show that forming techniques are culturally ingrained and that they have been preserved by generations of potters despite migrations over a large area. Research can attempt to track over a large area the Late Postclassic red-slipped traditions using technological analyses in which the examination of forming techniques take a preeminent role.

Future Research on Mechanisms of Exchange

Question VII: What was the impetus behind the movement of pots from Mayapán to the minor centers?

Based on the data gathered in the current research, market exchange or ritual activity are likely scenarios explaining the movement of pottery from Mayapán to north-central sites. However, future research with larger samples and more variety of vessels from Mayapán and other locations (Tipikal and Tepich for instance) may clarify further the nature of this connection. Future analyses should consider including modeled Chen Mul type of censers and other ceremonial items from Mayapán and minor centers. Their movement or lack of it may give indications as to the forces behind the movement of vessels from Mayapán to the adjacent centers.

Future Research on Methods

Question VIII: What do all this mean from the perspective of the type:variety system used at Mayapán and in northern Yucatán in general?

In Maya studies, a ware identifies a ceramic assemblage in which paste and surface characteristics are constant (Smith 1971a). The ware concept as applied by Smith (1971a) at Mayapán benefits from a high macroscopic homogeneity of the paste. At Mayapán, wares are then based mainly on stylistic characteristics. At a regional level (Northern Yucatan), macroscopic attributes of the paste divide inland wares with affinities to Mayapán from the eastern wares. However, this current research has shown that, for example, the observed homogeneity of paste displayed by Mayapan Red Ware sherds (Mama in this study) is not maintained at different levels of analyses, such as macroscopic, petrographic, and chemical analyses. Mayapán Red Ware (Mama) is associated with multiple fabric classes. The same can be said about Mayapán Unslipped Ware samples in this study (Navula and Yacman). Furthermore, some of the fabric classes are common to Mayapán Red and Mayapán Unslipped Wares. It is apparent that the complexity resulting from incorporating the fabric classes found in this study into the current type:variety system as used in northern Yucatán, either at the top or the bottom of the hierarchy, would deem useless the classification. A new direction that research may take is to explore concepts such as ceramic systems and macro-traditions (Aimers 2013, Aimers and Graham 2013) to probe their usefulness in describing social divisions, meanings, and interactions associated with the stylistic and technological groups.

Concluding Remarks

This study showed that a detailed multi-site scientific analysis of pottery and raw materials, using a combination of analytical methods complemented with experimentation and ethnographic research has advanced our understanding of Late Postclassic ceramic production, organization, and exchange. It has also provided information with which to propose new hypotheses and new research directions. More important, it has advanced and informed current views about the socio-economic environment during the Late Postclassic.

APPENDIX A: XRD ANALYSIS of the CLAY PORTION of a MARL FOUND at MAYAPAN (S#11)

ittsburgh Mineral & March 10, 2017 nvironmental echnology, Inc. Ms. Carmen G. Sanchez 6172 NW 88th Ave. Parkland, FL 33067 Dear Ms. Sanchez: This report summarizes the results of clay speciation analysis of your soil sample. The sample material was received at PMET's laboratory on February 23, 2017 in a labelled plastic bag along with a PMET chain of custody document. A request for analysis and a sample description were received from Ms. Sanchez via email prior to receipt of sample. The purpose of the analysis was to determine the species of clay present in the soil. X-ray Diffraction Analysis X-ray powder diffraction (XRD) analysis was used to determine the clay species. The as-received sample was added to a large beaker of distilled water and allowed to soak overnight. Over the next 48 hours the material was alternately stirred with a glass rod and treated with an ultrasonic probe. The sample was then submerged in a column of deionized water, treated for five minutes with an ultrasonic probe, then allowed to settle for 72 hours. The clay fraction was removed from the top of the column of settled fines using a pipette and deposited on glass slides. The glass slides were treated and analyzed by XRD according to USGS Bulletin 1563. Clay speciation was determined by running separate scans on the dried oriented, glycolated, heated at 400°C, and heated at 550°C material. The XRD parameters for clay analysis are similar to the above, except that the clay patterns are scanned from 2.9°-21.7°. These traces are color coded black for the oriented slide, blue for the glycolated slide, red for the slide heated to 400°C, and dark red for the slide heated to 550°C. The traces are overlain for comparison to the USGS Clay Mineral Identification Flow Diagram. 700 Fifth Avenue

700 Fifth Avenue New Brighton, PA 15066 (724) 843-5000 FAX: (724) 843-5353 www.pmet-inc.com Discussion

The differential clay analysis shows that montmorillonite, a smectite, is the major clay mineral. Montmorillonite is a swelling clay whose crystal spacing expands upon absorbing glycol vapor. There is a minor amount of kaolinite also present.

Ms.Sanchez, please email me if you would like to discuss these results. Thank you for using PMET's laboratory services on this project.

Sincerely,

Raulden Mr. Stauma

Randolph W. Shannon Laboratory Manager

RFA 6758

Table 1 Sample Identification, As-received Weight

PMET I.D.	Sample I.D.	Sample Description	As- received Wt. (g)
6758-1	S#11	marl	56.07

Table 2

Results of Clay Analysis Estimated Amount

Mineral	Atomic Formula	Amount
kaolinite	Al2Si2O5(OH)4	minor
montmorillonite	Na0.3(AIMg)2Si4O10(OH)2·xH2O	major

Figure 2 Clay column and dried slid

Shannon 2017 p.4

Operations: Displacement -0.053 | Import
S758-1g - File: S758-1g Jaw - Type: 2Th/Th locked - Start: 2.915 * - End: 21.710 * - Step: 0.015 * - Step time: 0.9 s - Temp: 25 *C (Room) - Time Started: 10
Operations: Y Scale July 1.083 | Displacement -0.029 | Displacement -0.031 | Displacement -0.042 | Displacement -0.063 | Displacement -0.10
S758-112 - File: S758-112.raw - Type: 2Th/Th locked - Started: 23.93 * - End: 21.635 * - Step: D.015 * - Step time: 0.9 s - Temp: 25 *C (Room) - Time Started:
Operations: Displacement 0.115 | Displacement 0.073 | Y Scale July 0.750 | Y Scale July 0.750 | mport

S758-11 - File: 6758-11 arw - Type: Thirth locked - Start: 2.555 * - End: 21.749 * - Step: 0.015 * - Step time: 0.9 s - Termo: 25 *C (Room) - Time Started; 10 Operations: Displacement -0.104 | Displacement -0.135 | Y Scale Kui 0.833 | Y Scale Kui 0.833 | Displacement -0.156 | Import

Clay Patterns

Shannon 2017 p.5

APPENDIX B: NEUTRON ACTIVATION ANALYSIS OF LATE POSTCLASSIC MAYAN CERAMICS FROM THE NORTHERN YUCATAN PENINSULA, MEXICO

Neutron Activation Analysis of Late Postclassic Mayan Ceramics from the Northern Yucatan peninsula, Mexico

Report Prepared by: Daniel Pierce and Michael D. Glascock Archaeometry Laboratory Research Reactor Center University of Missouri Columbia, MO 65211

> Report Prepared For: Carmen G. Sanchez Fortoul 6172 NW 88th Ave. Parkland, FL 33067 Cell: 954-575-1555 cgs11@leicester.ac.uk

> > October 21, 2015

Introduction

This project involves the analysis of 186 pottery samples and 12 raw clay samples from the northern Yucatan peninsula, Mexico. The primary goal of this report is to address compositional variability within the sample and to better understand the consumption and production patterns based on compositional groups. In this report we describe sample preparation, data collection, statistical procedures, address chemical group assignments, and examine possible matches with other ceramic samples previously submitted and recorded in the MURR database to identify possible geographic origin of compositional groups.

This report describes the preparation, analysis, and interpretation of 186 samples of pottery (CGS001-186) and 12 raw clay samples (CGS187-198) from Late Postclassic contexts in the north of the state of Yucatan, Mexico. Specifically, the researcher intends to examine patterns of production and exchange in this largely geologically homogenous region. The sample derives from collections obtained from two case studies and excavated by the Instituto Nacional de Antropologia e Historia (INAH) as part of a salvage project resulting from road expansion. These artifacts and the results presented in the following report is intended to be used for analysis towards completion of Ms. Sanchez's doctoral dissertation. The sample consists of an array of decorative styles, vessel forms, and from multiple sites (Table 1).

Sample location	Count
Chacmool	12
Coba	13
Coluba	15
Mama	15
Mayapan	39
Teabo	10
Tocah	18
Tekit	15
Telchaquillo	19
Tepich	14
Tipikal	16
**Raw Clays	12
Total	198

Table 1. Late postclassic samples used for the current analysis.

The sample was first analyzed in isolation to examine the chemical structure of the dataset. This serves several purposes. First, the chemical data must be analyzed for the purposes of accurately describing the chemical structure of the dataset. Further differences in composition may indicate different production areas even identifying exotic origin at times. Alternatively, while compositional differences may indicate an exotic origin of clays, strong chemical divergences such as enrichment or depletion and different chemical compositions may also be explained by differences in mixing clays and temper into a paste. Strong chemical patterning with regard to the site may also indicate local production and consumption at the site scale when compared to previous studies. Second, many of the statistical techniques employed to compare the current data to previously identified Mesoamerican reference groups have shortcomings that are more readily identified with detailed knowledge of the sample in isolation. Discriminant analysis, for example, has become the standard for ceramic comparison in the Mesoamerica. Discriminant analysis creates new axes that maximize the elemental differences among predefined groups. The current sample may, however, be differentiated from known Mesoamerican reference groups according to elements that are not heavily weighted in the existing discriminant analysis. In this case, one must examine possible group structure through different means (e.g. Mahalanobis calculations, principal component analysis, inspection of bivariate plots, and Euclidian distance searches) and then recalculate the discriminant analysis based on compositional group assignments.

Sample Preparation

Ceramic samples were prepared for INAA using procedures standard at MURR. Fragments of about 1 cm² were removed from each sample and abraded using a silicon carbide burr in order to remove glaze, slip, paint, and adhering soil, thereby reducing the risk of measuring contamination. The samples were washed in deionized water and allowed to dry in the laboratory. Once dry, the individual sherds were ground to powder in an agate mortar to homogenize the samples. Archival samples were retained from each sherd (when possible) for future research.

Two analytical samples were prepared from each source specimen. Portions of approximately 150 mg of powder were weighed into clean high-density polyethylene vials used for short irradiations at MURR. At the same time, 200 mg of each sample was weighed into clean high-purity quartz vials used for long irradiations. Individual sample weights were recorded to the nearest 0.01 mg using an analytical balance. Both vials were sealed prior to irradiation. Along with the unknown samples, Standards made from National Institute of Standards and Technology (NIST) certified standard reference materials of SRM-1633a (coal fly ash) and SRM-688 (basalt rock) were similarly prepared, as were quality control samples (e.g., standards treated as unknowns) of SRM-278 (obsidian rock) and Ohio Red Clay (a standard developed for in-house applications).

Irradiation and Gamma-Ray Spectroscopy

Neutron activation analysis of ceramics at MURR, which consists of two irradiations and a total of three gamma counts, constitutes a superset of the procedures used at most other NAA laboratories (Glascock 1992; Neff 1992, 2000). As discussed in detail by Glascock (1992), a short irradiation is carried out through the pneumatic tube irradiation system. Samples in the polyvials are sequentially irradiated, two at a time, for five seconds by a neutron flux of 8 x 10¹³ n cm⁻² s⁻¹. The 720-second count yields gamma spectra containing peaks for nine short-lived elements aluminum (Al), barium (Ba), calcium (Ca), dysprosium (Dy), potassium (K), manganese (Mn), sodium (Na), titanium (Ti), and vanadium (V). The samples are encapsulated

in quartz vials and are subjected to a 24–hour irradiation at a neutron flux of 5 x 10¹³ n cm⁻² s⁻¹. This long irradiation is analogous to the single irradiation utilized at most other laboratories. After the long irradiation, samples decay for seven days, and then are counted for 1,800 seconds (the "middle count") on a high-resolution germanium detector coupled to an automatic sample changer. The middle count yields determinations of seven medium half-life elements, namely arsenic (As), lanthanum (La), lutetium (Lu), neodymium (Nd), samarium (Sm), uranium (U), and ytterbium (Yb). After an additional three- or four-week decay, a final count of 8,500 seconds is carried out on each sample. The latter measurement yields the following 17 long half-life elements: cerium (Ce), cobalt (Co), chromium (Cr), cesium (Cs), europium (Eu), iron (Fe), hafnium (Hf), nickel (Ni), rubidium (Rb), antimony (Sb), scandium (Sc), strontium (Sr), tantalum (Ta), terbium (Tb), thorium (Th), zinc (Zn), and zirconium (Zr). The element concentration data from the three measurements are tabulated in parts per million.

Interpreting Chemical Data

The analyses at MURR, described above, produced elemental concentration values for 33 elements in most of the analyzed samples. Nickel was removed from all statistical techniques due to the high number of missing values within the dataset.

Statistical analysis was subsequently carried out on base-10 logarithms of concentrations on the remaining 30 elements. Use of log concentrations rather than raw data compensates for differences in magnitude between the major elements, such as calcium, on one hand and trace elements, such as the rare earth or lanthanide elements (REEs). Transformation to base-10 logarithms also yields a more normal distribution for many trace elements.

The interpretation of compositional data obtained from the analysis of archaeological materials is discussed in detail elsewhere (e.g., Baxter and Buck 2000; Bieber et al. 1976; Bishop and Neff 1989; Glascock 1992; Harbottle 1976; Neff 2000) and will only be summarized here. The main goal of data analysis is to identify distinct and relatively homogeneous groups within the analytical database. Based on the provenance postulate of Weigand et al. (1977), different chemical groups may be assumed to represent geographically restricted sources. With pottery, however, chemical composition additionally varies according to the paste recipes that potters employ. A paste recipe reflect the cumulative pottery production steps from the selection of raw materials, preparation of those materials, the mixing of temper and clay, and even the firing of the pottery can affect the final recipe as changes in color and mineral structure can take place. For lithic materials such as obsidian, basalt, and cryptocrystalline silicates (e.g., chert, flint, or jasper), raw material samples are frequently collected from known outcrops or secondary deposits and the compositional data obtained on the samples is used to define the source localities or boundaries. The locations of sources can also be inferred by comparing unknown specimens (i.e., ceramic artifacts) to knowns (i.e., clay samples) or by indirect methods such as the "criterion of abundance" (Bishop et al. 1982) or by arguments based on geological and sedimentological characteristics (e.g., Steponaitis et al. 1996). The ubiquity of ceramic raw materials usually makes it impossible to sample all potential "sources" intensively enough to create groups of knowns to which unknowns can be compared. Lithic sources tend to be more

localized and compositionally homogeneous in the case of obsidian or compositionally heterogeneous as is the case for most cherts.

Compositional groups can be viewed as "centers of mass" in the compositional hyperspace described by the measured elemental data. Groups are characterized by the locations of their centroids and the unique relationships (i.e., correlations) between the elements. Decisions about whether to assign a specimen to a particular compositional group are based on the overall probability that the measured concentrations for the specimen could have been obtained from that group.

Initial hypotheses about source-related subgroups in the compositional data can be derived from non-compositional information (e.g., archaeological context, decorative attributes, etc.) or from application of various pattern-recognition techniques to the multivariate chemical data. Some of the pattern recognition techniques that have been used to investigate archaeological data sets are cluster analysis (CA), principal components analysis (PCA), and discriminant analysis (DA). Each of the techniques has its own advantages and disadvantages which may depend upon the types and quantity of data available for interpretation.

The variables (measured elements) in archaeological and geological data sets are often correlated and frequently large in number. This makes handling and interpreting patterns within the data difficult. Therefore, it is often useful to transform the original variables into a smaller set of uncorrelated variables in order to make data interpretation easier. Of the above-mentioned pattern recognition techniques, PCA is a technique that transforms from the data from the original correlated variables into uncorrelated variables most easily.

PCA creates a new set of reference axes arranged in decreasing order of variance subsumed. The individual PCs are linear combinations of the original variables. The data can be displayed on combinations of the new axes, just as they can be displayed on the original elemental concentration axes. PCA can be used in a pure pattern-recognition mode, i.e., to search for subgroups in an undifferentiated data set, or in a more evaluative mode, i.e., to assess the coherence of hypothetical groups suggested by other criteria. Generally, compositional different groups than for specimens in the same group, and this implies that groups should be detectable as distinct areas of high point density on plots of the first few components. It is well known that PCA of chemical data is scale dependent, and analyses tend to be dominated by those elements or isotopes for which the concentrations are relatively large. This is yet another reason for the log transformation of the data.

One frequently exploited strength of PCA, discussed by Baxter (1992), Baxter and Buck (2000), and Neff (1994, 2002), is that it can be applied as a simultaneous R- and Q-mode technique, with both variables (elements) and objects (individual analyzed samples) displayed on the same set of principal component reference axes. A plot using the first two principal components as axes is usually the best possible two-dimensional representation of the correlation or variance-covariance structure within the data set. Small angles between the vectors from the origin to variable coordinates indicate strong positive correlation; angles at 90 degrees indicate no

correlation; and angles close to 180 degrees indicate strong negative correlation. Likewise, a plot of sample coordinates on these same axes will be the best two-dimensional representation of Euclidean relations among the samples in log-concentration space (if the PCA was based on the variance-covariance matrix) or standardized log-concentration space (if the PCA was based on the correlation matrix). Displaying both objects and variables on the same plot makes it possible to observe the contributions of specific elements to group separation and to the distinctive shapes of the various groups. Such a plot is commonly referred to as a "biplot" in reference to the simultaneous plotting of objects and variables. The variable inter-relationships inferred from a biplot can be verified directly by inspecting bivariate elemental concentration plots. [Note that a bivariate plot of elemental concentrations is not a biplot.]

Whether a group can be discriminated easily from other groups can be evaluated visually in two dimensions or statistically in multiple dimensions. A metric known as the Mahalanobis distance (or generalized distance) makes it possible to describe the separation between groups or between individual samples and groups on multiple dimensions. The Mahalanobis distance of a specimen from a group centroid (Bieber *et al.* 1976, Bishop and Neff 1989) is defined by:

$$D_{y,X}^2 = [y - \overline{X}]^t I_x[y - \overline{X}]$$

where y is the 1 x m array of logged elemental concentrations for the specimen of interest, X is the n x m data matrix of logged concentrations for the group to which the point is being compared with \overline{X} being it 1 x m centroid, and I_x is the inverse of the m x m variancecovariance matrix of group X. Because Mahalanobis distance takes into account variances and covariances in the multivariate group it is analogous to expressing distance from a univariate mean in standard deviation units. Like standard deviation units, Mahalanobis distances can be converted into probabilities of group membership for individual specimens. For relatively small sample sizes, it is appropriate to base probabilities on Hotelling's T^2 , which is the multivariate extension of the univariate Student's t.

When group sizes are small, Mahalanobis distance-based probabilities can fluctuate dramatically depending upon whether or not each specimen is assumed to be a member of the group to which it is being compared. Harbottle (1976) calls this phenomenon "stretchability" in reference to the tendency of an included specimen to stretch the group in the direction of its own location in elemental concentration space. This problem can be circumvented by cross-validation, that is, by removing each specimen from its presumed group before calculating its own probability of membership (Baxter 1994; Leese and Main 1994). This is a conservative approach to group evaluation that may sometimes exclude true group members.

Small sample and group sizes place further constraints on the use of Mahalanobis distance: with more elements than samples, the group variance-covariance matrix is singular thus rendering calculation of I_x (and D^2 itself) impossible. Therefore, the dimensionality of the groups must somehow be reduced. One approach would be to eliminate elements considered irrelevant or redundant. The problem with this approach is that the investigator's preconceptions about which elements should be discriminate may not be valid. It also squanders the main advantage of

\

multielement analysis, namely the capability to measure a large number of elements. An alternative approach is to calculate Mahalanobis distances with the scores on principal components extracted from the variance-covariance or correlation matrix for the complete data set. This approach entails only the assumption, entirely reasonable in light of the above discussion of PCA, that most group-separating differences should be visible on the first several PCs. Unless a data set is extremely complex, containing numerous distinct groups, using enough components to subsume at least 90% of the total variance in the data can be generally assumed to yield Mahalanobis distances that approximate Mahalanobis distances in full elemental concentration space.

Lastly, Mahalanobis distance calculations are also quite useful for handling missing data (Sayre 1975). When many specimens are analyzed for a large number of elements, it is almost certain that a few element concentrations will be missed for some of the specimens. This occurs most frequently when the concentration for an element is near the detection limit. Rather than eliminate the specimen or the element from consideration, it is possible to substitute a missing value by replacing it with a value that minimizes the Mahalanobis distance for the specimen from the group centroid. Thus, those few specimens which are missing a single concentration value can still be used in group calculations.

Summary of Interpretive Techniques

Typically, the approach used to interpret chemical data for pottery involves hierarchical cluster analysis (CA) and principal components analysis (PCA) to establish initial groupings within the sample. Further, to chemically characterize the sample, principal component analyses were useful in identifying which elements are the most significant in creating variation within the sample. After constructing base groups through CA and PCA, bivariate elemental plots were used to refine groups. Next, Mahalanobis distance based probabilities were calculated to assess likelihood of group membership. Initially, raw clay samples were excluded from compositional groups. This could indicate a local origin of that group. Finally, the groups were then compared to previously defined groups in the area by Leslie Cecil and the entirety of the MURR database.

To establish chemical groups, we first used a CA to identify clusters of chemically similar samples using 32 of the 33 total recorded elements for each sample. Nickel (Ni) was excluded due to a high frequency of missing values. From this analysis, five rough groups were identified. Following the CA, principle component analyses were used to define the sources of variation between specimens and maximize said variation. Through this, groups were further refined through visual inspection of PC loading plots. However, as shown below, the groups created based on PC loadings have compositional overlap that must be teased out with further analyses. Finally, the intersections of individual elements were projected on bivariate plots to better visually assess group membership. To evaluate these groups, boot strapped Mahalanobis distance calculations then tested each group member against its own group for robustness.

To identify significant correlations and possible geographic source areas for each group, we first considered unpublished NAA data provided by Leslie Cecil from various sites in the region. We

then compared the groups to the MURR database to identify the most compositionally similar samples. Finally, using a bivariate plot inspection and Mahalonobis distance calculations, we projected the raw clay samples onto the identified compositional groups to identify local production potential.

Results and Source Assignments

The primary questions addressed here are: 1) What is the chemical group composition of the dataset? 2) Can we identify where each compositional may have originated geographically? 3) Does there seem to be any significant correlations between descriptive variables and assigned compositional groups?

The compositional groups are presented below. All plots below depict all specimens submitted for analysis. The complete results of source assignment for each specimen, can be found in Appendix A.

General Chemical Structure of the Pottery Sample

As an initial step toward interpreting the pottery sample, the dataset was considered in isolation. This allowed perusal of the general structure of the chemical data and identification of important variables for group formation. A PCA was conducted without Ni, (Figure 1). Ni has produced many missing values in the sample because the values were below detection limits

Figure 1. R-Q Mode biplot of the sample on Principal Component 1 and Principal Component 2.

The principal component loadings are presented in Figure 1 through an R-Q mode biplot of the principal component analyses found in Table 2. On PC1 (representing over 60.4 percent of the total sample variation), all elements display negative loadings except U, Ca, and Sr. High values among these elements have generated high PC1 values. It should be noted that cations of the alkaline earth metals (Ca, Sr, and Ba) commonly substitute for one another in the chemical structure of many clays (Ca and Sr in particular). Notably, that all recorded alkali earth metals are positively loaded and all other elements are negative. The first seven principal components alone explain approximately 90.8 percent of the variability in the sample.

 Table 2. Elemental Loadings for the pottery sample on Principal Component Axes 1 through 5*.

 *Values in bold explain the greatest amount of variation within each component. Those in *italics* explain a significant portion of the variation, but less than those in bold.

Variable	Mean	PC1	PC2	PC3	PC4	PC5	PC6	PC7
Al	42879.55	-0.151	0.054	-0.001	-0.054	-0.054	0.119	0.016
As	6.063139	-0.154	-0.047	0.253	-0.366	0.004	-0.591	0.127
Ва	122.659	-0.090	0.201	0.073	0.197	-0.029	-0.081	0.160
Ca	246083.2	0.069	-0.003	-0.057	0.025	0.052	-0.094	-0.083
Ce	28.18013	-0.227	-0.124	-0.085	0.082	0.087	0.050	-0.119
Со	2.342636	-0.181	-0.017	0.308	0.047	-0.007	-0.022	0.210

Cr	48.23178	-0.081	-0.120	0.597	-0.088	0.217	0.266	-0.114
Cs	1.468539	-0.141	0.394	0.178	0.051	0.076	0.089	-0.340
Dy	1.886598	-0.231	-0.118	-0.112	0.120	0.033	-0.093	0.037
Eu	0.400553	-0.216	-0.188	0.023	0.177	0.096	-0.017	-0.061
Fe	12607.15	-0.168	-0.038	0.189	-0.083	-0.055	-0.057	0.173
Hf	2.609019	-0.210	-0.027	-0.130	-0.103	-0.033	0.171	0.011
К	3127.403	-0.186	0.537	-0.021	0.133	-0.018	-0.065	-0.046
La	11.74533	-0.224	-0.161	-0.102	0.179	0.118	0.010	-0.196
Lu	0.181459	-0.177	-0.078	-0.027	0.038	0.021	-0.037	0.056
Mn	86.1236	-0.178	0.048	0.247	0.353	-0.227	-0.058	0.501
Na	693.3304	-0.186	-0.018	-0.033	-0.227	-0.693	0.386	-0.018
Nd	10.70512	-0.221	-0.182	-0.103	0.177	0.135	-0.030	-0.152
Rb	15.46212	-0.144	0.488	0.043	0.162	0.056	-0.056	-0.173
Sb	0.60416	-0.224	0.151	-0.267	-0.448	-0.003	-0.278	-0.045
Sc	4.624566	-0.189	-0.014	0.080	-0.063	0.037	0.090	0.033
Sm	2.314391	-0.216	-0.151	-0.100	0.129	0.113	-0.032	-0.107
Sr	301.3819	0.035	-0.174	0.181	0.255	-0.561	-0.370	-0.511
Та	0.577449	-0.166	0.040	-0.023	-0.104	0.011	0.126	-0.065
Tb	0.316359	-0.229	-0.138	-0.114	0.123	0.058	-0.105	-0.004
Th	7.216566	-0.150	0.055	-0.034	-0.076	-0.003	0.110	-0.060
Ті	1446.887	-0.182	-0.035	0.134	-0.056	0.051	0.171	-0.028
U	1.521436	0.030	-0.101	0.279	-0.123	0.092	0.036	-0.252
V	33.55622	-0.166	-0.018	0.130	-0.315	0.044	-0.097	-0.113
Yb	1.179099	-0.220	-0.075	-0.107	0.079	-0.027	-0.072	0.136
Zn	26.60706	-0.167	0.043	-0.125	-0.073	-0.062	-0.009	0.040
Zr	64.26081	-0.177	-0.066	-0.101	-0.093	-0.022	0.167	0.010
Eigenvalues:		1.206	0.215	0.125	0.098	0.072	0.052	0.045
Total Variation explained:	1	60.42%	10.75%	6.25%	4.10%	3.61%	2.61%	2.24%

Visual inspection of principal component biplots resulted in blurry and overlapped chemical groups which were used to refine groupings from the Cluster Analysis (Fig 2.) Based on this PCA, it appears that Calcium (Ca), Strontium (Sr), Uranium (U), Antimony (Sb), and Chromium (Cr) explain the greatest amount of chemical variation across the first 5 PC's (85.94% of the variation cumulatively). Other elements have also been found to be useful in visualizing the sample into distinct groups (Figs. 3-6). However, it is apparent that significant chemical overlap between specimens necessitates a confirmation of group membership through other means. Visual inspection alone does not appear sufficient for confident group identification. For this reason, Mahalanobis distance calculations were also used for group final group assignment (Appendix B).

Figure 4. Bi-variate plot of the sample showing the chemical composition of sample on axes of Cr and Sb

Figure 5. Bi-variate plot of the sample showing the chemical composition of sample on axes of Hf and Th

Figure 6. Bi-variate plot of the sample showing the chemical composition of sample on axes of Cs and Cr

Group formation based on multiple forms of analysis

Groups were formed within the current sample through multiple analyses as described above and confirmed through the use of Mahalanobis distance calculations. The purpose for this is to provide a consistent, replicable characterization of the pottery sample. After defining chemical groups, a Discriminant Analysis (DA) was conducted using the identified groups (Table 3). This analysis maximizes the variation between groups by maximizing the internal homogeneity as well as external heterogeneity between groups (Fig. 7-8).

Element		CD1	CD2	CD3	CD4
Hf	2.310776	-1.60964	0.673006	0.047925	1.51443
Eu	2.280309	0.334034	1.680123	1.044727	1.083495
Sc	2.102611	0.787027	-1.00333	-1.57547	-0.55927
Sm	1.977309	-0.53578	-1.7251	0.281903	0.753156
Са	1.400715	0.134875	-0.00039	-1.01388	0.957004
Та	1.34617	0.351432	0.122469	0.51623	1.186246
Fe	1.193836	-0.89353	0.625309	0.47681	-0.0921
Al	1.19221	0.04924	-1.17942	0.015156	-0.16633
Ce	1.109979	-0.39139	-0.16886	-0.60971	-0.82378
Со	0.951095	-0.1572	0.099531	0.245859	-0.89973
Zr	0.858273	-0.15096	-0.11138	-0.01913	-0.8373
Th	0.830975	0.377674	-0.49008	0.439059	-0.33901
La	0.820045	-0.41863	0.521863	0.060639	-0.47032
Mn	0.794753	0.177012	-0.35652	0.361587	0.58519
Ti	0.762231	0.077456	0.555818	-0.50762	-0.09155
Tb	0.752483	-0.17116	-0.19421	-0.69655	-0.11846
Lu	0.673204	-0.05302	-0.17339	-0.04565	-0.64672
V	0.524624	0.103455	-0.43829	0.24033	0.121129
Sb	0.509273	0.32793	-0.24592	0.109587	-0.28166
Yb	0.504536	0.228579	-0.18346	-0.11965	0.392856
Nd	0.453401	0.439592	-0.06846	0.02698	-0.08317
Dy	0.438237	0.371771	0.064964	0.190015	-0.11624
Cs	0.437149	0.356505	-0.10948	-0.16385	0.158651
Cr	0.432124	-0.2265	0.170409	0.312804	0.09243
Zn	0.41009	-0.04069	0.241641	-0.32881	-0.00356
Na	0.313108	-0.10785	0.282691	-0.01445	-0.07926
Ва	0.276911	0.176914	-0.17929	-0.063	0.09626
U	0.265894	0.128901	0.201191	0.011789	0.116048
As	0.216576	0.024781	0.040395	-0.15359	-0.14515
К	0.176339	-0.10696	0.092491	0.10387	-0.01768
Rb	0.166622	0.125921	-0.07283	0.080756	0.009

Table 3. Canonical Discriminant Analysis of five identified source groups in submitted sample

Sr	0.141245	-0.04131	0.005535	0.134925	0.002891
			Wilk's lambda	:	0.001301
			Approx. F:	16.04409	
			p-value:		3E-113

Discriminant function #1 (54.7%) Figure 7. Bi-variate plot of the sample on axes of Discriminant functions 1 and 2.

Figure 8. Bi-variate plot of the sample on axes of Discriminant functions 3 and 2.

As indicated here, some overlap occurs between the groups. However, this overlap can be accounted for when viewing the convergence of individual elements. For example, Groups 3 and 5 are greatly overlapped when considering only the PC loadings. But, they are clearly distinguishable based on Chromium (Cr) (see Figs. 4 and 6). Similarly, considering discriminant function 3 (Fig 8) clearly separates the groups. In the same way, groups 1 and 4 are nearly identical in discriminant function 2 and 3 (Fig. 8), but clearly different in Function 1(Fig. 7), PC loadings 1 and 2 (Fig 2), as well as the element Hafnium (Hf), among others (See Figs. 3, and 5). Needless to say, it is important to consider many variables when addressing compositional variability

After constructing source groups based on multiple forms of analysis, we have then a conducted a Mahalanobis distance calculations comparing the current sample to itself. The sample was tested jackknifed, as the likelihood of each specimen being a member of each chemical group was calculated by comparing said specimen to each identified group with that specimen removed. These tests confirmed cohesive group assignment (See Appendix B).

In general, our approach to group formation requires that the groups hold together when presented through multiple statistical techniques and multiple elemental and PCA plots. Since the first two principal components explain over 71% percent of the variability within the sample, we did not rely heavily on the less influential components to formulate compositional groups. It

is now believed that the samples do in fact represent separate source groups despite retaining some chemical overlap at times, as these results above demonstrate.

Finally, the combination of Principle Component Analysis, visual inspection of bivariate elemental plots, Mahalanobis Distance Calculations, and Discriminant Analysis provided us with the final group assignment (Appendix A). However, it should be noted that no single type of analysis was in and of itself conclusive in all cases and informed decisions were made considering all analyses. Unassigned specimens were either dissimilar to all groups or may have been chemically consistent with more than one group. However, assignment of over 81.6% of the specimens is sufficiently high, with minimal unassigned specimens. In an attempt to geographically identify these chemical groups, further analysis was then conducted by comparing the collected raw clay samples, and Euclidian distance searches comparing this sample to all other samples from the region in the MURR NAA database.

Geographic identification of source groups

Next, we compared the five identified source groups, with the collected raw clay sample (CGS187-198) (Fig 9). Through visual inspection of the bivariate plot, it appears that only Group 1 is reflected in the raw clay sample. This is identified in a single specimen (CGS193).

Fig 9. Comparison of Raw clay samples to compositional groups

To confirm the inclusion of clay samples in compositional group 1 rather than 2 as the ambiguity of Fig 9 suggest, a Mahalanobis distance analysis was conducted (Table 4). From these analyses, we can conclude that of the assignable raw clay specimens, compositional Group 1 appears to be the closest match for specimen CGS193. As expected from the above analysis, Mahalanobis distance calculations reveal it is unlikely that other specimens fit in any of these groups. Of note, this specimen was taken from Sascabera Mayapan B. Similarly, Euclidian distance searches suggest that group 1 is also from the site of Mayapan (see below). This provides a strong argument that this is in fact a resource acquisition location and potential production area. However, negative results for other raw clays do not preclude the possibility that they may in fact be source areas. We must remember that NAA is a bulk analytical technique. The data produced from NAA includes not only the composition of the clay, but also the temper, inclusions, etc. Rather, NAA is truly identifying the composition of the entirety of the paste; whereas clay samples reflect only raw clay. For this reason, it is possible that the clay contributing to the pastes may in fact come from the same location as the raw clays provided, and other inclusions may be obscuring the relationship analytically.

							Best	Source	
MURRID	Alt ID	Group 1	Group 2	Group 3	Group 4	Group 5	Group	assignment	
CGS187	Clay A	0.000	1.861	0.362	0.023	0.005	Group 2	unassigned	
CGS188	Clay B	0.000	0.000	0.065	0.009	0.000	Group 3	unassigned	
CGS189	Clay C	0.000	0.000	0.033	0.001	0.000	Group 3	unassigned	
CGS190	Clay D	0.000	0.000	0.046	0.001	0.017	Group 3	unassigned	
CGS191	Clay E	0.000	0.000	0.097	0.001	0.093	Group 3	unassigned	
CGS192	Clay F	0.000	0.000	0.024	0.001	0.000	Group 3	unassigned	
CGS193	Clay G	77.900	0.366	0.225	0.026	0.084	Group 1	Group 1	
CGS194	Clay H	0.000	0.000	0.011	0.000	0.000	Group 3	unassigned	
CGS195	Clay I	0.000	0.000	0.045	0.004	0.000	Group 3	unassigned	
CGS196	Clay J	0.000	0.000	0.002	0.000	0.000	Group 3	unassigned	
CGS197	Clay K	0.073	6.249	1.022	0.016	0.045	Group 2	unassigned	
CGS198	Clay L	0.012	0.002	0.121	0.012	0.004	Group 3	unassigned	

 Table 4. Mahalanobis distance calculations for raw clay samples based on discriminant functions

Finally, to address potential provenance of compositional groups, we have conducted further Euclidian distance searches based on all samples within the region found from the MURR NAA database. This type of analysis is in and of itself not conclusive as it must rely on the assumption of the criterion of abundance. However, it can produce quite compelling results, as we see here. In this analysis, each specimen is compared to every specimen in our database. For this report, we have inquired as to identify the ten closest matches chemically. Though not conclusive in and of itself, the implication is simply that if a high proportion of close matches come from the same area, the identified compositional group may have originated there as well. At times, this can provide useful information and hint at potential provenance. The samples used for comparison are the most proximal geographically found in the database and are generally split into three regions (Fig 10).

Figure 10. Location of reference samples and current samples.

This analysis did produce some compelling results. Group 1, as alluded to above has a close affinity to Mayapan. Of the 82 specimens identified as belonging to group 1, The most common of the ten closest matches are from Mayapan in 80 (97.6%). This is especially interesting when

we consider how rare these samples are in the MURR database. Of the 2071 specimens used for comparison, only 51 (2.5%) were found at Mayapan; a very striking result for such a common match. The majority of the similar matches are from the site of Kiuic. Groups 2 and 3 are highly variable in their closest matches, and little information can be drawn on this account. However, group 4 as well has provided an interesting result. Though small in size (n=11), this group is strongly associated with a completely different area. All 11 specimens are most similar to specimens found at Laguna de On in northern Belize. Again, this is quite compelling when we consider that only 57 of the 2701 (2.8%) reference samples compared are actually from Laguna de On. The other matches that are the most similar are nearly all from this region as well, being from either Santa Rita Corozal or Caye Coco. This is especially compelling when we remember the great distinction of this group observed through discriminant analysis on discriminant function 1 (Fig. 7). Group 5, on the other hand is also compositional similar to samples from this area in many cases, although there is considerably more diversity; while some members of this group are compositionally most similar to specimens from further to the south at sites such as Tipuj.

Final Group Assessment

Unfortunately, the final group designation is often blurry when only individual elements are considered as illustrated in the biplots above. However, some generalizations can be made for each group by using a multi-method approach of group construction.

Group 1 (n=82) is the largest of the five identified compositional groups. It is a relatively homogenous and moderately clustered when considering the PC loadings. Though with some individual elements it is more varied group, it is easily distinguishable from the others when considering certain elements in isolation. Specimens in this group are comparatively low in Hafnium (Hf), Antimony (Sb), for example. Of note, this group is possibly related to raw clay sample CGS193, as shown in Table 4. As discussed above, the specimens of this group are also highly correlated to the Mayapan site, which is the origin of the associated raw clay sample. To further substantiate the validity of this compositional group, 26 of the 33 (79%) sampled sherds collected from Mayapan, are found within this group; a strong case for the legitimacy of utilization of the criterion of abundance. It is therefore possible if not likely that Group 1 represents local production at Mayapan given its large size as seen in the criterion of abundance (Bishop et al. 1982), similarities to other Mayapan ceramics, and raw clay. Also significant is the fact that 12 of 13 compositionally assigned ceramics from Tepich, 12 of 15 Telchaquillo, and 7 of 8 assigned sherds from Mama are members of group 1. Interestingly, of the 27 assigned Cajete form ceramics, 23 of them (85%) are in group 1 despite Group 1 making up only 54% of all assigned sherds.

Group 2 (n=34) is the least homogenous of all groups chemically. Further, in almost all cases, it appears to overlap with another group. However, this can be teased out by considering multiple bivariate plots at once. For example, in many of the biplots, Group 2 overlaps with multiple other groups. However, when we consider discriminant functions, the differences are

exaggerated and Group 2 begins to become distinct visually. The internal cohesiveness of this group has then been further substantiated through Mahalonobis testing (see Appendix B). Euclidian distance searches were not able to identify a common geographical match, perhaps a product of the lack of internal homogeneity. There is no single element in which Group 2 is considerably higher or lower than all other groups. In many ways, it is similar to group 1, although it is notably higher in Antimony (Sb) and Hafnium (Hf) than Group 1. When considering descriptive variables and contextual information, it is notable that 5 of the 7 assignable sherds from Teabo are in group 2, yet only 2 of the 33 Mayapan sherds are found in Group 2. It does not appear that any particular vessel shape, form, or decoration is related to this group.

Group 3 (n=8) is the smallest of the groups but is easily distinguishable by numerous elements. For example, in Figure 4 we see a highly homogenous and tightly clustered distinct group. The distinction is also clear with discriminant analysis and through the use of principal components. In general, this group tends to be higher in Antimony (Sb), Zinc (Zn), and Hafnium (Hf), while trending lower in Chromium (Cr), and Manganese (Mn). Euclidian distance searches were similarly variable in the closest matches, and thus provenance remains unclear. However, a possible point of origin may be the Coluba site, as 7 of the 8 members of this group come from this site.

Group 4 (n=11) is especially compelling given its stark difference observable in Figure 7 based on discriminant function 1. In general, this group appears to be low in Potassium (K), Rubidium (Rb), and Caesium (Cs); while being relatively high in Zircon (Zr), and Neodymium (Nd). As mentioned above, Euclidian distance searches revealed a strong similarity with sherds from Northern Belizean sites (particularly Laguna de On). Notably, 8 of the 9 assigned sherds with Tulum Red decoration, are found in group 4. Similarly interesting, all 4 of the assigned tecomate sherds are members of group 4 as well as all 5 Payil red sherds. This last point is especially significant as Pavil ceramics are known to be produced in Belize, far from the research area (Leslie Cecil, personal communication). Can this be evidence of long distance trade? May it be a locally produced imitation? Euclidean distance searches may indicate trade, but perhaps further analysis could confirm this. To explore these issues further, we contacted Dr. Leslie Cecil for assistance. We then compared the current sample to a large dataset provided by her in numerous ways. Cecil has identified 34 of her sherds as Payil (Fig. 11). Of these 34, 18 fit within the currently identified group 4 based on Mahalonobis calculations. Other important descriptive variables appear to be significant as well. Of Cecil's provided data (n=1335), 23 are Navula type ceramics. Of these, all are found at Laguna de On and nearly one third of them fit within the compositional variation of Group 4. This is a reiteration of the previous Euclidian distance search. Finally, we ran another Mahalanobis distance calculation to test this group against all samples. Of the entire reference dataset(both MURR's data and those provided by Cecil), 42 specimens had at least a 10% likelihood of being a member of compositional group 4. Of these 42, twenty eight (67%) of them come from Laguna de On. The significance of this is great given that Laguna de On ceramics make up only 4.3% of the total reference dataset. Given these multiple lines of evidence, we can say with a fair amount of confidence that group 4 does in fact reflect long distance trade from the south, likely near the site of Laguna de On in northern

Belize. Interestingly, despite the small size of this group, 55.6% (5 of 9) of the sherds found at Chacmool in this study are in fact from Group 4; possibly indicating trade between Chacmool and Laguna de On.

Group 5 (n=16) is quite diverse relative to its small size. In many cases it has significant overlap with Group 3. However, as seen in Figures 3 and 5, it can be pulled apart with specific elemental bivariate plots. For instance, group 5 is comparatively high in Caesium (Cs), Cobalt (Co), and Iron (Fe), while being low in Calcium (Ca). Based on Euclidian distance searches, this group is largely similar to specimens from sites in northern Belize, however some specimens are most similar to samples from further south near the Guatemala-Belize border. When considering descriptive variables, it is notable that the remaining Chacmool ceramics not in Group 4, are found in Group 5 (n=4). Also notable, 3 of the 5 (60%) of the Peto Cream ceramics are in group 5.

Finally, the unassigned specimens (n=34) were left unassigned due to either being significantly different from all four chemical groups or being chemically consistent with more than one group.

In some occasions, specimens were left unassigned due to conflicting likelihoods based on the different analyses performed. There is little similarity between the unassigned specimens and they likely originate from various source locations as they are wildly variable compositionally and Euclidian distance searches produced a wide array of similar matches.

Conclusions

The above discussions regarding NAA of Late Postclassic Yucatan ceramics has utilized multiple types of analysis to not only define compositional groups within the sample, but to attempt to identify geographically the source location. We feel that we were successful in these goals. However, identifying source location can be a complicated matter. The locations proposed here will require further analysis to confirm. It is advisable to also consider archaeological, ethnographic, geological, and contextual data to better grasp potential source locations geographically.

In this study, we first used Principal Component analysis to identify the compositional structure of the sample. Next we used the PC loadings in combination with various elemental biplots to separate the sample into five clear mutually exclusive source groups; which were then confirmed through Mahalanobis distance calculations.

To get at the potential locations of origin, we have employed various methods. We first compared this sample to provided clay samples and then previously analyzed samples and data from our database and those provided by Dr. Cecil using Euclidian distance searches. It is clear that we have five distinct compositional groups here. While some may reflect local production, as may be indicated with Group 1 at Mayapan, we have also identified strong evidence for long distance trade with group 4 and possibly group 5.

Acknowledgments

We acknowledge Leslie Cecil for her assistance without which many of the results presented here would not be possible. Also, we wish to thank Shilo Bender, and Katie Lane for their roles in preparing the samples for irradiation. This project was supported in part by NSF grant BCS-1415403 to the Archaeometry Laboratory at the University of Missouri Research Reactor. Any forthcoming publication from this report must include this grant number. We also ask that when any publication of this material is underway, please consider the authors of this report for coauthorship.

<u>Appendix A.</u> Final compositional group assignment for Angamuco sample

Pages 24 to 29 of this report containing its Appendix A with the final compositional group assignment for the sample, which is present in the original document, have been removed. Their contents were copied into the body of the thesis in Table 8-33 ("List of samples in this study"). This table contains chemical and petrographic group assignments for the sample.

<u>Appendix B</u> Mahalonobis results confirming group membership of ceramic sherd samples

ANID	Probability Group_1	for each sampl Group_2	e calculated a Group_3	fter removal fr Group_4	om original Group_5	group. Best Group
CGS001	89.554	37.584	0.41	0.018	0.68	Group 1
CGS002	56.385	29.949	0.466	0.043	0.652	Group 1
CGS003	99.567	50.926	1.073	0.114	0.369	Group_1
CGS004	62.69	1.223	0.134	0.004	0.054	Group_1
CGS005	93.731	59.569	2.049	0.341	0.826	Group_1
CGS006	49.255	12.971	0.193	0.005	0.643	Group_1
CGS007	74.655	22.171	0.722	0.026	0.404	Group_1
CGS009	61.151	32.196	0.349	0.008	2.233	Group_1
CGS010	2.691	0.191	0.197	0.002	0.08	Group_1
CGS012	33.495	27.226	3.301	0.182	3.08	Group_1
CGS013	64.334	27.248	0.367	0.007	1.972	Group_1
CGS014	60.219	0.221	0.127	0.003	0.029	Group_1
CGS016	57.426	0.145	0.222	0.024	0.002	Group_1
CGS019	54.726	0.223	0.235	0.026	0.002	Group_1
CGS020	44.719	0.071	0.176	0.022	0.002	Group_1
CGS021	49.85	0.129	0.234	0.026	0.002	Group_1
CGS028	40.149	0.08	0.243	0.026	0.001	Group_1
CGS029	35.062	12.059	1.34	3.292	0.036	Group_1
CGS030	34.762	18.335	1.008	3.244	0.223	Group_1
CGS031	35.414	39.071	3.472	0.231	2.963	Group_2
CGS032	38.605	0.871	0.274	0.016	0.01	Group_1
CGS033	86.039	34.523	0.679	0.041	1.912	Group_1
CGS034	48.799	3.055	1.921	0.179	0.014	Group_1
CGS035	86.724	8.155	1.091	0.313	0.007	Group_1
CGS037	27.483	0.014	0.121	0.005	0.005	Group_1
CGS038	39.112	4.793	3.533	1.04	0.257	Group_1
CGS041	73.37	89.891	3.086	0.302	2.456	Group_2
CGS042	95.135	23.226	0.688	0.154	0.227	Group_1
CGS043	26.491	2.209	0.361	0.03	0.008	Group_1
CGS046	62.059	20.309	3.043	0.471	0.479	Group_1
CGS047	92.614	34.978	1.612	0.294	0.124	Group_1
CGS049	66.995	29.451	2.824	0.328	0.784	Group_1
CGS050	60.27	0.417	0.242	0.014	0.006	Group_1
CGS052	63.126	12.331	0.623	0.096	0.205	Group_1
CGS054	91.258	14.569	1.39	0.707	0.034	Group_1
CGS055	45.634	10.744	0.958	0.475	0.074	Group_1
CGS056	81.99	11.569	2.297	1.37	0.033	Group_1
CGS057	15.202	0.64	0.739	0.802	0.002	Group_1
CGS058	86.274	3.179	0.436	0.039	0.018	Group_1
CGS059	93.981	19.889	0.805	0.114	0.034	Group_1

Membership probabilities(%) for samples from the group. Group 1

CGS060	89.96	11.487	1.272	0.436	0.024	Group_1
CGS061	17.158	38.818	0.911	0.585	0.171	Group_2
CGS062	57.607	1.767	0.16	0.012	0.095	Group_1
CGS063	56.27	9.264	0.384	0.102	0.076	Group_1
CGS064	89.365	0.789	0.19	0.006	0.029	Group_1
CGS065	21.733	0.124	0.202	0.008	0.019	Group_1
CGS067	48.758	9.892	0.759	0.054	0.023	Group_1
CGS068	21.133	15.146	2.56	1.111	0.012	Group_1
CGS070	55.096	71.992	4.456	1.639	0.136	Group_2
CGS073	58.844	42.361	0.596	0.043	2.981	Group_1
CGS074	55.281	13.861	0.263	0.013	0.495	Group_1
CGS075	41.267	2.919	0.285	0.019	0.236	Group_1
CGS076	84.761	33.144	1.483	0.265	0.852	Group_1
CGS077	94.652	43.932	1.766	0.175	0.129	Group_1
CGS078	57.969	20.035	4.87	3.185	1.352	Group_1
CGS079	58.716	13.201	0.241	0.018	0.275	Group_1
CGS080	79.638	60.609	3.884	1.092	0.149	Group_1
CGS081	40.693	20.249	7.365	6.846	0.096	Group_1
CGS082	83.133	18.631	2.955	2.09	0.036	Group_1
CGS092	4.183	0.691	0.479	0.109	0.078	Group_1
CGS094	42.276	0.317	0.178	0.009	0.035	Group_1
CGS095	57.359	3.926	0.574	0.047	0.029	Group_1
CGS107	48.253	2.448	0.729	0.026	0.023	Group_1
CGS108	24.926	2.192	0.734	0.015	0.042	Group_1
CGS109	34.7	2.262	0.674	0.017	0.025	Group_1
CGS111	24.579	1.7	0.566	0.009	0.049	Group_1
CGS112	27.873	1.366	0.555	0.012	0.016	Group_1
CGS113	66.303	61.737	1.648	0.039	0.999	Group_1
CGS115	96.915	32.809	1.275	0.076	0.453	Group_1
CGS132	71.482	29.568	0.354	0.014	0.718	Group_1
CGS133	39.71	47.419	0.453	0.05	0.38	Group_2
CGS134	95.646	27.558	3.214	0.968	0.119	Group_1
CGS135	96.823	40.745	3.298	0.68	0.282	Group_1
CGS137	21.673	2.022	0.124	0.002	0.193	Group_1
CGS138	26.471	1.928	0.328	0.013	0.051	Group_1
CGS140	60.915	38.497	2.582	0.276	0.02	Group_1
CGS141	44.352	56.534	2.628	0.365	1.715	Group_2
CGS163	0.958	0.549	0.362	0.119	0.112	Group_1
CGS165	9.213	31.875	1.297	0.055	5.514	Group_2
CGS167	3.742	0.026	0.075	0.002	0.025	Group_1
CGS172	35.858	18.759	0.419	0.028	1.007	Group_1
CGS173	35.697	16.42	0.33	0.013	0.833	Group_1

ANID	Probab Group_1	ility for each samp Group_2	ole calculated Group_3	l after remov Group_4	al from origin Group_5	nal group Best Group
CGS015	0.002	40.496	0.324	0.004	0.034	Group_2
CGS018	0.007	57.39	0.467	0.007	0.1	Group_2
CGS022	2.546	16.642	2.373	0.232	3.694	Group_2
CGS024	15.240	52.625	3.098	0.539	0.393	Group_2
CGS026	0.000	48.518	0.382	0.008	0.047	Group_2
CGS051	0.418	15.108	0.966	1.512	1.264	Group_2
CGS053	0.454	79.148	2.783	1.181	2.872	Group_2
CGS066	0.776	89.795	0.398	0.075	3.198	Group_2
CGS093	0.000	55.193	2.424	1.049	26.923	Group_2
CGS096	0.014	94.645	0.403	0.111	1.768	Group_2
CGS100	0.171	98.318	0.793	0.057	6.194	Group_2
CGS101	0.020	44.028	1.881	0.774	0.007	Group_2
CGS102	2.180	87.103	0.414	0.015	3.007	Group_2
CGS104	0.000	60.131	1.243	0.918	4.121	Group_2
CGS122	0.000	98.354	0.272	0.086	2.375	Group_2
CGS124	0.000	42.978	0.195	0.021	0.222	Group_2
CGS126	1.306	92.56	1.402	0.027	4.853	Group_2
CGS127	0.025	79.833	1.881	0.069	29.731	Group_2
CGS130	0.000	58.6	0.239	0.104	1.167	Group_2
CGS131	0.000	48.529	0.263	0.401	0.873	Group_2
CGS142	0.000	82.748	0.548	0.217	2.868	Group_2
CGS144	0.000	42.155	0.561	0.044	3.243	Group_2
CGS145	0.000	72.983	0.227	0.036	0.284	Group_2
CGS146	1.143	37.801	1.447	0.03	2.109	Group_2
CGS147	0.000	57.517	0.186	0.042	0.502	Group_2
CGS148	0.000	73.543	0.189	0.05	0.531	Group_2
CGS150	0.000	68.849	0.181	0.042	0.569	Group_2
CGS151	0.000	62.823	0.221	0.074	0.538	Group_2
CGS155	0.000	37.785	0.101	0.039	0.273	Group_2
CGS162	0.000	49.715	0.28	0.068	0.065	Group_2
CGS169	0.000	41.456	0.211	0.038	0.041	Group_2
CGS171	0.000					
	0.007	26	0.898	0.233	18.759	Group_2

Membership probabilities(%) for samples from the group: Group_2 obability for each sample calculated after removal from original group

Membership probabilities(%) for samples from the group: Group_3 Probability for each sample calculated after removal from original group

	Probability for each sample calculated after removal from original group.									
ANID	Group_1	Group_2	Group_3	Group_4	Group_5	Best Group				
CGS152	0.000	0.099	91.719	0.079	8.121	Group_3				
CGS153	0.000	0.886	92.587	0.097	0.007	Group_3				
CGS157	0.000	0.493	93.326	0.038	0.145	Group_3				
CGS158	0.000	0.149	92.763	0.153	4.291	Group_3				
CGS159	0.000	0.646	92.240	0.212	3.259	Group_3				
CGS160	0.000	0.344	92.046	0.098	10.461	Group_3				
CGS161	0.000	0.434	99.715	0.095	11.207	Group_3				

CGS170	0.000	0.425	91.663	0.086	0.179	Group_3

Membership probabilities(%) for samples from the group: Group_4 Probability for each sample calculated after removal from original group

	1 lobaonity lo	i cacii saini	pie calculat	icu anci removai nom ong	Sinai group.	
ANID	Group_1	Group_2	Group_3	Group_4	Group_5	Best Group
CGS083	0.000	0.817	0.618	85.960	0.081	Group_4
CGS084	0.000	0.534	0.969	97.673	0.032	Group_4
CGS085	0.000	0.496	1.277	88.136	0.262	Group_4
CGS086	0.000	3.462	3.919	92.964	0.047	Group_4
CGS089	0.000	0.166	3.724	69.832	0.005	Group_4
CGS105	0.000	0.057	3.197	71.921	0.032	Group_4
CGS175	0.000	0.117	3.100	97.362	0.024	Group_4
CGS176	0.000	0.030	2.499	76.434	0.027	Group 4
CGS177	0.000	0.001	1.966	75.526	0.003	Group_4
CGS179	0.000	0.126	4.126	84.261	0.110	Group_4
CGS180	0.000	0.497	4.339	79.940	0.009	Group_4

Membership probabilities(%) for samples from the group: Group_5 Probability for each sample calculated after removal from original group

ANID	Group_1	Group_2	Group_3	Group_4	Group_5	Best Group
CGS008	0.151	11.249	0.404	1.500	95.448	Group_5
CGS025	0.045	15.059	0.355	7.143	88.481	Group_5
CGS027	0.000	2.231	0.219	2.869	91.004	Group_5
CGS039	0.000	0.256	0.212	5.235	60.385	Group_5
CGS045	0.017	0.056	0.143	0.781	64.215	Group_5
CGS091	0.063	0.945	0.464	1.089	38.199	Group_5
CGS097	0.258	8.364	0.368	3.275	99.312	Group_5
CGS098	1.065	57.791	1.052	0.857	86.824	Group_5
CGS128	0.075	64.916	2.148	2.266	86.922	Group_5
CGS129	0.016	26.584	0.686	4.236	98.415	Group_5
CGS139	0.000	2.541	0.744	5.975	61.545	Group_5
CGS168	0.001	11.222	0.428	6.511	72.386	Group_5
CGS181	0.000	0.077	.220	0.031	44.018	Group_5
CGS183	0.000	1.447	0.221	6.183	47.466	Group_5
CGS184	0.000	0.092	0.883	0.025	74.928	Group_5
CGS185	0.000	0.253	2.112	0.052	62.709	Group_5

Membership probabilities(%) for samples from the group: Unassigned Probability for each sample calculated after removal from original group.

ANID	Group_1	Group_2	Group_3	Group_4	Group_5	Best Group
CGS011	29.761	2.033	0.146	0.002	0.185	Group_1
CGS017	0.205	17.335	0.570	0.140	1.279	Group_2
CGS023	12.695	0.031	0.121	0.009	0.004	Group_1
CGS036	20.066	0.011	0.170	0.016	0.001	Group_1

CGS040	0.662	0.440	0.328	1.188	2.833	Group_5
CGS044	4.598	0.118	0.124	0.013	0.008	Group_1
CGS048	4.234	0.003	0.106	0.001	0.003	Group_1
CGS069	21.680	55.672	4.678	6.914	0.442	Group_2
CGS071	2.241	47.304	0.788	0.982	0.808	Group_2
CGS072	1.913	0.029	0.213	0.072	0.003	Group_1
CGS087	0.000	0.325	0.231	16.945	6.754	Group_4
CGS088	0.000	0.562	0.358	19.414	5.995	Group_4
CGS090	0.000	1.123	1.426	0.038	0.006	Group_3
CGS099	0.000	2.682	1.502	0.266	1.830	Group_2
CGS103	0.959	47.432	7.095	3.265	0.092	Group_2
CGS106	0.000	69.128	0.307	0.173	0.811	Group_2
CGS110	30.197	22.678	3.191	3.617	0.075	Group_1
CGS114	0.012	6.974	0.671	0.957	0.191	Group_2
CGS116	0.000	2.313	2.222	26.810	4.238	Group_4
CGS117	0.005	1.145	0.923	0.261	3.402	Group_5
CGS118	14.798	0.008	0.084	0.002	0.005	Group_1
CGS119	23.092	29.562	1.572	0.369	0.787	Group_2
CGS120	0.000	0.990	0.140	0.055	0.361	Group_2
CGS121	0.000	1.011	0.092	0.026	0.111	Group_2
CGS123	4.981	22.169	0.238	0.052	0.073	Group_2
CGS125	0.000	0.226	0.182	2.176	24.035	Group_5
CGS136	2.458	27.074	0.226	0.012	0.881	Group_2
CGS143	3.087	0.082	0.069	0.001	0.039	Group_1
CGS149	0.000	6.274	0.233	0.021	0.166	Group_2
CGS154	0.000	0.684	1.165	0.119	0.633	Group_3
CGS156	0.000	10.626	0.163	0.101	0.730	Group_2
CGS164	2.025	31.858	0.885	0.047	4.954	Group_2
CGS166	0.000	3.140	1.227	0.428	1.176	Group_2
CGS178	0.000	0.101	0.205	0.949	1.856	Group_5
CGS182	0.000	0.117	3.094	0.007	0.032	Group_3
CGS186	0.000	0.004	0.094	0.005	0.384	Group_5

References Cited

Baxter, Michael J. 1992	Archaeological uses of the biplot—a neglected technique? In <i>Computer Applications and Quantitative Methods in Archaeology, 1991</i> , edited by G. Lock and J. Moffett. BAR International Series S577, 141–148. Tempvs Reparatvm, Archaeological and Historical Associates, Oxford.
1994	Exploratory Multivariate Analysis in Archaeology. Edinburgh University Press, Edinburgh.
Baxter, M.J. and C 2000	E. Buck Data Handling and Statistical Analysis. In <i>Modern Analytical Methods in Art and Archaeology</i> , edited by E. Ciliberto and G. Spoto, pp. 681-746. John Wiley and Sons,
Bieber, Alan M. Jr 1976	., Dorothea W. Brooks, Garman Harbottle, and Edward V. Sayre Application of multivariate techniques to analytical data on Aegean ceramics. <i>Archaeometry</i> 18:59–74.
Bishop, Ronald L. 1989	and Hector Neff Compositional data analysis in archaeology. In <i>Archaeological Chemistry IV</i> , edited by R. O. Allen, pp. 576–586. Advances in Chemistry Series 220, American Chemical Society, Washington, D.C.
Bishop, Ronald L., 1982	Robert L. Rands, and George R. Holley Ceramic compositional analysis in archaeological perspective. In <i>Advances in Archaeological</i> <i>Method and Theory</i> , vol. 5, pp. 275–330. Academic Press, New York.
Garrett, Donald L. 2004	Handbook of Lihtium and Natural Calcium Chloride: Their Deposits, Processing, Uses and Properties. Elsevier Academic Press.
Gibson, Charles 1964	Aztecs Under Spanish Rule: A History of the Indians of the Valley of Mexico, 1519-1810. Stanford University Press.
Glascock, Michael 1992	D. Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In <i>Chemical Characterization of Ceramic Pastes in Archaeology</i> , edited by H. Neff, pp. 11–26. Prehistory Press, Madison, WI.
Harbottle, Garman 1976	Activation analysis in archaeology. Radiochemistry 3:33-72. The Chemical Society, London.
Hillier, Stephen 2003 Clay Min Springer Publishin	neralogy. In Encyclopedia of Sediments and Sedimentary Rocks, edited by Gerard V. Middleton. g.
Laird, David A. 2006 Influence	e of Layer Charge on Swelling of Smectites. Applied Clay Science 34:74-87.
Leese, Morven N. 1994 The effic Archaeometry 36:3	and Peter L. Main cient computation of unbiased Mahalanobis distances and their interpretation in archaeometry. 307–316.
Neff, Hector 1992 Introduct Prehistory Press, M	tion. In <i>Chemical Characterization of Ceramic Pastes in Archaeology</i> , edited by H. Neff, pp. 1–10. Iadison, WI.
1994 RQ-mod	e principal components analysis of ceramic compositional data. Archaeometry 36:115-130.
2000 Neutron <i>Art and Archaeolo</i>	activation analysis for provenance determination in archaeology. In <i>Modern Analytical Methods in gy</i> , edited by E. Ciliberto and G. Spoto, pp. 81–134. John Wiley and Sons, Inc., New York.
2002 Quantita Greater Southwest Los Angeles.	tive techniques for analyzing ceramic compositional data. In Ceramic_Source Determination in the t, edited by D. M. Glowacki and H. Neff. Monograph 44, Cotsen Institute of Archaeology, UCLA,
Neff, Hector, and M	Michael D. Glascock

Nichols, Deborah L., Elizabeth M. Brumfiel, Hector Neff, Mary Hodge, Thomas H. Charlton, and Michael D. Glascock

2002 Neutrons, Markets, Cities, and Empires: A 1000-Year Perspective on Ceramic Production and Distribution in the Postclassic Basin of Mexico. *Journal of Anthropological Archaeology*, 21:25-82.

Sayre, Edward V.

1975 Brookhaven Procedures for Statistical Analyses of Multivariate Archaeometric Data. Brookhaven National Laboratory Report BNL-23128. New York.

Sayre, Edward V. and Garman Harbottle

1979 The Analysis by Neutron Activation of Archaeological Ceramics Related to Teotihuacan. Brookhaven National Laboratory, Informal Report C-2250, New York.

Steponaitis, Vincas, M. James Blackman, and Hector Neff 1996 Large-scale compositional patterns in the chemical composition of Mississippian pottery. *American Antiquity* 61:555–572.

Stoner, W. D., M. D. Glascock, and J. R. Ferguson

2008 Instrumental Neutron Activation Analysis of Aztec and Other Figurines from the site of Xaltocan, Valley of Mexico. Report written for client Lisa Overholtzer. University of Missouri research Reactor (MURR), Archaeometry Laboratory.

Williams, H. and R. F. Heizer

1965 Sources of rocks used in Olmec monuments. In *Sources of stones used in prehistoric Mesoamerican sites*, pp. 1-39. University of California Press, Berkeley.

Weigand, Phil C., Garman Harbottle, and Edward V. Sayre

1977 Turquoise sources and source analysis: Mesoamerica and the southwestern U.S.A. In *Exchange Systems in Prehistory*, edited by T. K. Earle and J. E. Ericson, pp. 15–34. Academic Press, New York.

APPENDIX C: BULK XRD AND CLAY ANALYSES of a NAVULA , MAYAPAN (#256) POTTERY SAMPLE

hittsburgh Mineral & Einvironmental

November 30, 2016

echnology, Inc.

Ms. Carmen G. Sanchez 6172 NW 88th Ave. Parkland, FL 33067

Dear Ms. Sanchez:

This report summarizes the results of quantitative mineral phase analysis, clay speciation, and semi-quantitative elemental analysis of your archaeological ceramic. The sample fragments were received at PMET's laboratory on October 24, 2016 in a labelled plastic bag along with a PMET chain of custody document. A request for analysis and a sample description were received from Ms. Sanchez via email prior to receipt of sample.

The purpose of the analysis was to determine the species of clay present in the ceramic, the amount of mineral phases and amorphous material, and the approximate elemental composition of the sample.

X-ray Diffraction Analysis

X-ray powder diffraction (XRD) and Rietveld quantification analyses were used to determine the mineralogical composition of the sample and the clay species.

The as-received fragments were gently disaggregated by hand crushing with a large porcelain mortar and pestle. The crushed material was separated by brushing dry through a 325 mesh (44 μ) sieve. The fine fraction was then submerged in a column of deionized water, treated for five minutes with an ultrasonic probe, then allowed to settle for 72 hours.

The clay fraction was removed from the top of the column of settled fines using a pipette and deposited on glass slides. The glass slides were treated and analyzed by XRD according to USGS Bulletin 1563.

The remaining fines in the column were dried and then blended with the original sample. The original sample was then split to obtain analytical aliquots for bulk XRD analysis and for SEM-EDX and IR elemental analysis.

> 700 Fifth Avenue New Brighton, PA 15066 (724) 843-5000 FAX: (724) 843-5353 www.pmet-inc.com

Bulk XRD sample preparation included grinding 2 g of sample using the BICO Model VP-1989 mill with a 3.5 inch ring and puck. The pulverized material was spiked with fluorite (CaF2) on a 90:10 weight basis and mixed using a SPEX Industries Mixer/Mill for 10 minutes. Standard spike intensity was used as a reference to determine the amorphous content of the samples.

Step-scanned XRD data were collected by the Siemens D500 computer-automated diffractometer using Bragg-Brentano geometry. Cu radiation was produced at a power of 45kV and 30 mA. The diffracted beam was collimated by a 0.05° receiving slit. The data was collected in the 2 θ range of 4.9°–66.1° with a step size of 0.015° and a dwell time of 1 sec/step using a Sol-X solid state energy-dispersive X-ray detector.

Qualitative analysis of the XRD patterns was performed using proprietary Bruker AXS software Diffrac Plus EVA (v. 7001, 2001) peak search algorithm. The reference database for the crystal pattern search/match is the International Center for Diffraction Data database (ICDD, 2001). A chemical screen using the XRF and ICP data was used to narrow the search.

Quantitative analysis was performed using the whole pattern fitting function of Diffrac Plus Topas R, a proprietary Bruker AXS software (v. 2.0, 2000), which is based on the Rietveld method (Rietveld 1969). The reference database for quantitative analysis of crystal structures is the Inorganic Crystal Structure Database (NIST ICSD, 2010, v.2).

Clay speciation was determined by running separate scans on the dried oriented, glycolated, heated at 400°C, and heated at 550°C. The XRD parameters for clay analysis are similar to the above, except that the clay patterns are scanned from 2.9°-21.7°. These traces are color coded black, blue, red, dark red, respectively, and overlain for comparison to the USGS Clay Mineral Identification Flow Diagram.

Elemental Analysis

Elemental composition was determined using SEM with energy-dispersive x-ray spectroscopy and infrared analysis. Oxygen was not included in the analysis. Carbon and sulfur were analyzed in duplicate using an Eltra induction furnace with infrared detectors. Carbon and sulfur standards were run with errors of 1.36% for C and 2.9%, for S.

The major and minor elements were detected using an Amray 1600 scanning electron microscope with a Tracor energy-dispersive x-ray detector. Elements from Na and higher on the atomic chart were detected. The results were expressed as stoichiometric oxides and normalized along with the carbon and sulfur data to 100%.

Discussion

The only clay mineral present in the sample is a mica species. Its stability under the various conditions of treatment confirms this determination. The presence of a very weak 5-angstrom 002 peak at 8.8° two-theta indicates that the mica species is glauconite
The bulk XRD analysis identified ankerite, which is a solid solution series with Fe and Mg sharing a carbonate ion. The Rietveld refinement indicates that this ankerite contains the maximum amount of iron, as shown in the table of results. This finding may be influenced by other factors, so the Fe:Mg ratio should be considered at the high end of a range and not an absolute.

Ms. Sanchez, please email me if you would like to discuss these results. Thank you for using PMET's laboratory services on this project.

Sincerely,

Raulogen Ob Stauma

Randolph W. Shannon Laboratory Manager

RFA 6710

Table 1 Sample Identification, As-received Weight

PMET I.D.	Sample I.D.	Sample Description	As- received Wt. (g)
6710-1	256	Archaeological ceramics - Mayapan	12.82

Table 2

Results of Bulk XRD Analysis Wt. %

Mineral	Atomic Formula	256
quartz	SiO2	0.5
mica	KAl2(Si3Al)O10(OH)2	5.5
calcite	CaCO3	42.9
aragonite	CaCO3	1.6
ankerite	Ca(Fe0.7Mg0.3)(CO3)2	19.6
amorphous	(clay, hydrocarbons)	29.9

Table 3 Results of Clay Analysis Estimated wt. %

Mineral	Atomic Formula	256
mica	(K,Na)(Fe,Al,Mg)2(Si,Al)4O10(OH)2	99+

Results of SEM-EDX & IR
Analysis Approx. Wt. %

Stoichiometric Oxide	256
CO2	26.8
MgO	6.0
Al2O3	7.4
SiO2	13.9
SO3	0.5
K2O	0.3
CaO	40.8
TiO2	0.5
Fe2O3	3.8

SEM-EDX Spectrum

Figure 1

²⁵⁶

Figure 2 As-received sample fragments

6710-1

Figure 3 Clay column and dried slides

S710-1h - File: 6710-1h.raw - Type: 2Th (T) locked - Start 2.900 * - End: 21.895 * - Step: 0.015 * - Step time: 0.9 s - Temp.: 25 *C (Room) - Time Started: 10 Operations: Y Scale Mill 1.200 | import

Figure 4 Clay patterns

Figure 5 Bulk XRD Scan

REFERENCES CITED

Adams, A.E and MacKenzie, W.S., 2001. A Color Atlas of Carbonate Sediments and Rocks under the *Microscope*. London: Manson Publishing.

Andrews, E.W., IV, 1975. Progress report on the 1960-1964 field seasons, National Geographic Society-Tulane University Dzibilchaltun Program. *Archaeological Investigations of the Yucatan Peninsula*. New Orleans: Middle American Research Institute Tulane University, 31, 23–68.

Andrews, A.P. and Robles Castellano, F., 1985. Chichen Itza and Coba: An Itza-Maya Standoff in Early Postclassic Yucatan. *In*: Chase, A.F. and Rice, P.M., (eds.) *The Lowland Maya Postclassic*. Austin: University of Texas Press, 62–72.

Andrews, A.P., Andrews, E.W., and Robles Castellanos, F., 2003. The Northern Maya Collapse and its Aftermath. *Ancient Mesoamerica*, 14, 151–156.

Andrews, E.W. and Sabloff, J.A., 1985. Classic to Postclassic: A Summary Discussion. *In*: Late Lowland Maya Civilization. Albuquerque: University of New Mexico Press, 433–456.

Aimers, J.J., 2013 Introduction. In: Aimers, J. J., (ed.) Ancient Maya Pottery: Classification, Analysis, and Interpretation. University Press Florida. 1-10

Aimers, J.J., Graham, E., 2013 Type-Variety on Trial: Experiments in Classification and Meaning Using Ceramic Assemblages from Lamanai, Belice. In: Aimers, J. J., (ed.) *Ancient Maya Pottery: Classification, Analysis, and Interpretation.* University Press Florida. 91-106

Arnold, D.B, 1971. Ethnomineralogy of Ticul, Yucatán Potters: Emics and Ethic. American Antiquity, 36 (1), 20–30.

Arnold, D.B, 2005a. Maya Blue and Palygorskite: A Second Possible pre-Columbian Source. *Ancient Mesoamerica*, 16, 51–62.

Arnold, D.B., 2005b. Linking Society with the Compositional Analysis of Pottery: A Model from Comparative Ethnography. *Pottery Manufacturing Processes: Reconstitution and Interpretation*, London: Archaeopress, 15–21.

Arnold, D.B, 2008. *Social Change and the Evolution of Ceramic Production and Distribution in a Maya Community*. Boulder, Colorado: University Press.

Arnold, D.E. and Bohor, B.F., 1977. An Ancient Clay Mine at Yo' K'at, Yucatán. *American Antiquity*, 42(4), 575–582.

Arnold, D.E., Neff, H., and Bishop, R.L. 1991. Compositional Analysis and "Sources" of Pottery: An Ethnoarcheological Approach. *American Anthropologist*, 93 (1), 70–90.

Arnold, D.E., Neff, H.N., Bishop, R.L. and Glascock. M.D., 1999. Testing interpretive assumptions of neutron activation analysis: contemporary pottery in Yucatán, 1964-1994. *In*: Chilton, E., (ed.) *Material meanings: critical approaches to the analysis of style*, Salt Lake City: University of Utah Press, 61–84.

Arnold D.E., Neff, H. and Glascock, M.D., 2000. Testing assumptions of neutron activation analysis: communities, workshops, and paste preparation in Yucatán, Mexico. *Archaeometry*, 42(2): 301–316.

Arnold, D.E., Neff, H., Glascock, M.D. and Speakman, R.J., 2007. Sourcing the palygorskite used in Maya blue: a pilot study comparing the results of INAA and LA-ICP-MS. *Latin American Antiquity*, 18(1):44–58.

Arnold, D.E., Bohor, B.F., Neff, H., Feinman, G.M., Williams, P.R., Dussubieux, L. and Bishop, R., 2012. The first direct evidence of pre-Columbian sources of palygorskite for Maya Blue. *Journal of Archaeological Science*, 39 (7), 2252–2260.

Barrera Rubio, A., 1984. Consideraciones sobre el modo de producción Asiático entre los Mayas. *In*: Barrera Rubio, P., (ed.) *El Modo de Produccion Tributario en Mesoamerica*, Escuela de Ciencias Antropológicas, México: Universidad de Yucatán, 203–375.

Bautista, F., and Zinck, J.A., 2010. Construction of a Yucatec Maya soil classification and comparison with the WRB framework. *Journal of Ethnobiology and Ethnomedicine*, 2010, 6–7.

Baxter, M.J., 1994. Exploratory Multivariate Analysis in Archaeology. Edinburgh University Press.

Beck, M.E., 2006. Linking finished ceramics to raw materials: oxidized color groups for lowland desert clays. *KIVA: The Journal of Southwestern Archaeology and History*, 72(1), 93–118.

Bishop, R.L., Rands, R.L., and Holley, G.R., 1982. Ceramic compositional analysis in archaeological perspective. *Advances in Archaeological Method and Theory*, 5, 275–330.

Brainerd, G., 1958. The Archaeological Ceramics of Yucatán. Berkeley: University of California Press.

Brainerd, G.W., 1958. The archaeological ceramics of Yucatán. *Archaeological Records*, Vol. 19, Berkeley: University of California.

Britton, H.T.S., and Gregg, S.J. and Winsor, G.W., 1952a. The calcination of dolomite. Part I. —The kinetics of the thermal decomposition of calcite and of magnesite. *Transactions of the Faraday Society*, 1952, 48, 63–69.

Britton, H.T.S. and Gregg, S.J. and Winsor, G.W., 1952b. The calcination of dolomite. Part II.—The thermal decomposition of dolomite. Transactions of the Faraday Society, 1952, *48*, 70–75.

Bronitsky, G. and Hamer R., 1986. Experiments in ceramic technology: The effects of various tempering materials on impact and thermal-shock resistance. American Antiquity, 51(1), 89–101.

Brown. C.T., 1999a. Mayapán Society and Ancient Social Organization. Dissertation (PhD), Tulane University.

Brown, C.T., 2017. Yacman Striated. (Photograph). Maya Archaeology, Mayapán Ceramic Photos. Available from: https://sites.google.com/site/mayaarchaeology/Home/mayapan-ceramic-photos

Brumfiel, E. and Earle, T., 1987. (eds.) Specialization, Exchange, and Complex Societies. Cambridge University Press, 1–9.

Cabadas-Baez, H., Solleiro-Rebolledo, E., Dedov, S., Pi, T. and Alcalá, J.R., 2010. The complex genesis of red soils in Península de Yucatán, Mexico: mineralogical, micromorphological, and geochemical proxies. *Eurasian Soil Science*, 43(13), 1439–1457.

Canuto, M.A. and Fash, W.L., Jr., 2004. The Blind Spot: Where the Elite and Non-Elites Meet. *In*: Golden, C.W. and Borgstede, G., (eds.), *Continuities and Changes in Maya Archaeology: Perspectives at the Millennium*, London: Routledge, 51–76.

Cecil, Leslie G., 2012. Inter-Regional Socioeconomic and Sociopolitical Relations of the Postclassic Maya of North-Central Yucatán, México, Belize, and Guatemala. NSF Final Report

Chang, K.C., 1975. Ancient Trade as Economics or as Ecology. *In*: Sabloff, J. and Lamberg-Karlovsky, C.C., (eds), *Ancient Civilization and Trade*. Albuquerque: University of New Mexico Press, 211–224.

Chapman, A.M., 1959. *Puertos de Intercambio in Mesoamérica Prehispánica*. Instituto Nacional de Antropología e Historia, México.

Chase, A.F., 2004. Polities, Politics, and Social Dynamics: "Contextualizing" the Archaeology of the Belize Valley and Caracol. *In* Garber, J., (ed). *The Archaeology of the Belize Valley: Half a Century Later*. Gainesville: University Press of Florida, 320–334.

Chase, A. F. and Chase, D. Z., 1985 Introduction. In (eds.). By Chase, A. and Rice, P. The *Lowland Maya Postclassic*. University of Texas Press, Austin, pp 1-8

Chung, H., Barba L. and Varela Torrecilla, C., 1995. Inferencias sobre distintivos sociales en Chichén Itzá a través del estudio de la cerámica Pizarra Chichén (Chichén Slate Ware). *In*: Varela Torrecilla, C., Bonor Villarejo, J.L. and Fernández Marquínez, M.Y. (eds), *Religión y sociedad en el área maya*. Sociedad Española de Estudios Maya.

Código de Mendoza, MS. Arch. Seden A.1, Fol. 62r, 113D, 64 Bodleian Libraries, University of Oxford, Available from: <u>http://treasures.bodleian.ox.ac.uk/treasures/codex-mendoza/</u>.

Cruz Alvarado, W.A., 2012. Distribución y Cronología Cerámica de Sitios Arqueológicos del Centro-Sur de Yucatán. Unpublished Thesis. Universidad Autónoma de Yucatán.

Dahlin, B.H., and Ardens, T., 2002. Modes of Exchange and Regional Pattern: Chunchucmil, Yucatán. *In*: Masson, M., and Freidel, D.A., (eds), *Ancient Maya Political Economies*. Walnut Creek, CA: Altamira Press, 249–284.

De Pablo Galán, L., 1996. Palygorskite in Eocene-Oligocene lagoonal environment, Yucatán, Mexico. *Revista Mexicana de Ciencias Geológicas*. 13(1), Universidad Nacional Autónoma de México, Instituto de Geología, México, D.F., 94-103.

Deal, M., 1998. *Pottery Ethnoarchaeology of the Central Maya Highland*. Salt Lake City: University of Utah Press.

Delgado Kú, P.C., Escamilla Ojeda, B.C, Peraza Lope, C., y Masson, M., 2014 Asentamiento y arquitectura de los sitios periféricos asociados a Mayapán, Yucatán. Primera Mesa Redonda del Mayab, Arquitectura y Sociedad entre los Mayas

Deutchman, H.L. 1980. Chemical Evidence of Ceramics Exchange on Black Mesa. *In*: Fry, R. (ed), *Models and Methods in Regional Exchange*. 1st Ed. Society for American Archaeology, 119–134.

Dobres, M.A., 2010. Archaeologies of technology. *Cambridge Journal of Economics*, 2010, 34, 103–114.

Doran, J.E and Hodson, F.R., 1975. *Mathematics and Computers in Archaeology*. Edinburgh University Press.

Drennan, R.D., 1996. *Statistics for Archaeologists: A Commonsense Approach*. New York: Plenum Press.

Edmonson, M. S., 1979. Some Postclassic questions about the Classic Maya. *In*: Robertson, M.G. and Jeffers, D.C. (eds), *Tercera mesa redonda de palenque*. 4, Palenque, Chiapas, Mexico: Pre-Columbian Art Research Institute, 9–18.

Farriss, N.M., 1992. *Maya Society under Colonial Rule: The Collective Enterprise of Survival,* Princeton, New Jersey: University Press.

Feathers, J. K., 1989. Effects of temper on strength of ceramics: response to Bronitsky and Hammer. American Antiquity, 54(3), 579–588.

Fernandez Tejedo, I., 1990. *La Comunidad Indígena Maya de Yucatán: Siglos XVI y XVII*, México: Instituto Nacional de Antropologia e Historía.

Foias, A.E., 2004. The Past and Future of Maya Ceramic Studies. In: Golden, G., and Borgstede, G., (eds), *Continuities and Changes in Maya Archaeology: Perspectives at the Millennium*. New York: Routledge Press, 143-175.

Folk, R.L., 1980. Petrology of Sedimentary Rocks, Austin, Texas: Hemphill Publishing Company.

Frini-Srasra, N., and Srasra, E., 2008. Effect of heating on palygorskite and acid treated palygorskite properties. *Surface Engineering and Applied Electrochemistry*, 2008, 44(1), 43–49.

Fry, R.E., 1980. Models of Exchange for Major Shape Classes of Lowland Maya Pottery. *In*: Fry, R. (ed.), *Models and Methods in Regional Exchange*. Society for American Archaeology. 3–18.

Feinman, G.M. and Garraty, C.P., 2010. Preindustrial markets and marketing – an archaeological perspective. *Annual Review of Anthropology*, 39, 167-191.

Garrido Euán, M.A., 2003. *Salvamento Arqueológico en la Carretera Kanasín-Oxkutzcab*, Tesis no publicada de licenciatura, Universidad Autónoma de Yucatán, Mérida, Yucatán.

Garza, S. and Kurjack, E., 1980. Atlas Arqueológico del Estado de Yucatán, INAH, México.

Gautam, S., 2001. Earth's Materials: Minerals and rocks, Prentice-Hall, New Jersey

Gelbert, A., 2005. Reconnaissance des techniques et des methodes de faconnage par l'analyse des macrotraces: etude ethnoarcheologique dans la vallee du Senegal. *In*: Livingstone-Smith, A., Bosquet, D., and Martineau, R., (eds), *Pottery Manufacturing Processes: Reconstitution and Interpretation*. London: Archaeopress.

Gilli, A., Hodell, D.A., Kamenov, G.D. and Brenner, M., 2009. Geological and archaeological implications of strontium isotope analysis of exposed bedrock in the Chicxulub crater basin, northwestern Yucatán, Mexico. *Geology*, August, 2009, 37(8), 723–726.

Glascock, M.D., 1992. Characterization of archaeological ceramics at MURR by neutron activation analysis and multivariate statistics. In: Neff, H. (ed), *Chemical Characterization of Ceramic Pastes in Archaeology*. Madison: Prehistory Press, 11–26.

Glascock, M.D., Neff, H., and Vaughn, K.J., 2004. Instrumental neutron activation analysis and multivariate statistics for pottery provenance. *Hyperfine Interactions*. 2004, 154, 95–105.

Gosselain, O.P., 2000 . Materializing identities: an African perspective. *Journal of Archaeological Method and Theory*, 7(3), 187.

Graham, E., 2011. *Maya Christians and Their Churches in Sixteenth-Century Belize*. Gainesville: University Press of Florida.

Greensmith, J.T., 1989. Petrology of Sedimentary Rocks. 7th Ed., Oxford: University Printing House. Hammond, N., 1978. Cacao and Cocineros: an overland trade route between the Maya highlands and lowlands In Mesoamerican communication routes and cultural contacts. *In*: Lee, T.A., and Navarrete, C., (eds.), *Paper of the New World Archaeological Foundation*. Provo, UT: Brigham Young University, 19-26.

Hanna, J. A., Graham, E., Pendergast, D. M., Hoggarth, J. A., Lentz, D. L., Kennett, D. J., 2016. A new radiocarbon sequence from Lamanai, Belize: two Bayesian models from one of Mesoamerica's most enduring sites. Radiocarbon, Vol 58, Nr 4, 2016, p 771–794

Hare, T.S., and Masson, M.A., 2010. *Pottery Assemblage Variation at Mayapán Residences*, Presented at the April 2010 SAA Meeting, St Louis, MO. USA.

Hill, J.H., 1985. Style: A Conceptual Evolutionary Framework: *In*: Nelson, B.A., (ed) *Decoding Prehistoric Ceramics*. Carbondale: Southern Illinois University Press, 362-385.

Hirth, K.G., 1998. The distributional approach: a new way to identify exchange in the archaeological record. *Current Anthropology*, 39(4), 451–476.

Hirth, K.G.,, 2009. Craft Production, Household Diversification, and Domestic Economy in Prehispanic Mesoamerica. *In In Housework: Craft Production and Domestic Economy in Ancient Mesoamerica*, edited by Kenneth G. Hirth, Archaeological Papers of the Anthropological American Association, Vol 19, Issue 1, pp-13-32

Hildebrand, A. R., Penfield, G. T., Kring, D.A., Pilkington, M., Camargo, A., Jacobsen, S.B., and Boynton, W.V., 1991. Chicxulub crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. *Geology*, 19, 867–871.

Howie, L., 2012. Ceramic Change and the Maya Collapse: a study of pottery technology, manufacture and consumption at Lamanai, Belize. Oxford: Archaeopress.

Howie, L., Aimers, J., and Graham E. 2014. 50 left feet: The manufacture and meaning of effigy censers from Lamanai, Belize. In: M. Martinón-Torres (Ed.), *Craft and science: International perspectives on archaeological ceramics*. Doha, Qatar: Bloomsbury Qatar Foundation http://dx.doi.org/10.5339/uclq.2014.cas.ch5

INEGI (Instituto Nacional de Estadística, Geografía, e Informática), 1983. *Carta geológica:* scale 1:250 000. Ciudad de México, Secretaria de Programación y Presupuesto.

INEGI (Instituto Nacional de Estadística, Geografía, e Informática), 1984. *Carta Edafológica*, scale 1:250 000. Ciudad de México, Secretaria de Programación y Presupuesto.

INEGI (Instituto Nacional de Estadística, Geografía, e Informática), 2006. *Carta Geológica-Minera Mérida F16-10 Yucatan, Campeche y Quintana Roo.* (online map) scale 1:250 000. Ciudad de Mexico, Secretaria de Programacı'on y Presupuesto. Available from: https://mapserver.sgm.gob.mx/Cartas Online/geologia/116 F16-10 GM.pdf.

INEGI (Instituto Nacional de Estadística, Geografía, e Informática), 2013. *Carta Edafológica Serie II Mérida F16-10*. Scale 1:250 000. Ciudad de México, Secretaria de Programación y Presupuesto.

Isphording, W.C., 1984. The clays of Yucatan, Mexico: a contrast in genesis. *In*: Singer, A., and Galan, E. (eds), *Palygorskite-Sepiolite: occurrences and uses*. Amsterdam: Elsevier Science Publishers, 59–73.

Isphording, W.C. and Wilson, E.M., 1974. The relationship of "volcanic ash," sak lu'um, and Palygorskite in Northern Yucatan Maya ceramics. *American Antiquity*, July, 1974, 39(3), 483–488.

Jeffra, C.D., 2015. Experimental approaches to archaeological ceramics: unifying disparate methodologies with the chaîne opératoire. *Archaeological and Anthropological Sciences*. 7, 141–149.

Jordan P., 2015. *Technology as human social tradition*. *Cultural transmission among hunter-gatherers*. *Origins of Human Behaviour and Culture*. University of California Press, Oakland.

Kemp, R.A., 1985. Soil Micromorphology and the Quaternary. Quaternary Research Association Technical Guide No. 2. Cambridge.

Kepecs, S., 1997. Native Yucatán and Spanish Influence: The Archaeology and History of Chikinchel. *Journal of Archaeological Method and Theory*, 1997, 4(3 & 4).

Kepecs, S., 1999. The political economy of Chikinchel, Yucatan, Mexico: a diachonic analysis from the Prehispanic era through the age of Spanish administration. Unpublished Ph.D. dissertation. University of Wisconsin-Madison.

Landa, F. D. de, 1986. Relación de las Cosas de Yucatán, 13th ed. México: Editorial Porrua.

Lefticariu, M., Perryl E. C. and Lefticariu, L., 2003. Diagenetic processes in the Cenozoic sedimentary formations associated with the Chicxulub Impact Crater, northwestern Yucatan Peninsula, Mexico. Presented in The Second International Conference on Saltwater Intrusion and Coastal Aquifers— Monitoring, Modeling, and Management. Mérida, Yucatán, México, March 30–April 2, 2003.

Lemonnier, P., (ed.) 1993. Introduction. *In: Technological Choices: Transformations in Material Cultures since the Neolithic*. London: Routledge, 1–35.

Littmann, E., 1958. Ancient Mesoamerican mortars, plasters, and stuccos: the composition and origin of sascab. *American Antiquity*, 24(2), 172–176.

Liu, H.B., Chen, T.H., Chang, D.Y., et al., 2013. Effect of rehydration on structure and surface properties of thermally treated palygorskite. *Journal of Colloid and Interface Science*, 2013. 393, 87–91.

Livingstone, A. and Viseyrias, A., 2010. Shaping Kabambian pottery: identification and definition of technical features. *The Open Anthropology Journal*, 2010 (3), 124–141.

Lohmann, S., 2013. Rational choice and political science. *In*: Durlauf, S.N. and Blume, L.E. (eds),. *The New Palgrave Dictionary of Economics* Second Edition, Palgrave Macmillan, 2008. <u>The New Palgrave</u> <u>Dictionary of Economics Online</u>. Palgrave Macmillan. 30 March 2017 Available from: <<u>http://www.dictionaryofeconomics.com/article?id=pde2008_R000253>doi:10.1057/9780230226203.13</u> 86.

López, R.,E., 1975. Geological summary of the Yucatán Península. *The Ocean Basins and Margins: The Gulf of Mexico and the Caribbean*. New York: Plenum Press. (3).

López Varela, S.L., McAnany, P.A. and Perry, K.A., 2001. Ceramics technology at Late Classic K'axob, Belize. *Journal of Field Archaeology*, 28.

Masson, M.A., 2001. Changing patterns of ceramic stylistic diversity in the pre-Hispanic Maya lowlands. *Acta archaeological*, 12(2), 159–188.

Masson, M. A. and Peraza Lope, C., 2004. Commoners in Postclassic Maya Society: social versus economic class constructs. *In*: Lohse, J.C. and Valdez, F., Jr (eds.), *Ancient Maya Commoners*. Austin: University of Texas Press, 197–224.

Masson, M.A., Hare, T.S., Peraza Lope, C., Escamilla Ojeda B.C., Paris E.H., Kohut, B., Russell, B.W. and Alvarado, W.C., 2016. Household craft production in the Pre-hispanic urban setting of Mayapán, Yucatan, Mexico. *Journal of Archaeological Research*, 24(3), 229–274.

Masson, M.A. and Rosenswig R.M., 2005. Production characteristics of Postclassic Maya pottery from Caye Coco, Northern Belize. *Latin American Antiquity*, 16(40), 355–384.

Masson, M. A., Hare, T.S., and Peraza Lope, C., 2006. Postclassic Maya Society Regenerated at Mayapán, In *After Collapse: The Regeneration of Complex Societies*, edited by Glenn M. Schwartz and John J. Nichols, pp. 188–207. University of Arizona Press, Tucson.

Masson, M.A., and Peraza Lope, C., 2014. *Kukulcan's Realm: Urban Life at Ancient Mayapán*, Boulder: University of Colorado.

Matthew A.J., Woods, A.J. and Oliver, C., 1991. Spots before the eyes: new comparison charts for visual percentage estimation in archaeological material. *In*: Middleton, A.P. and Freestone, I.C. (eds.), *Recent Developments in Ceramic Petrology*. London: British Museum Occasional Paper 81, 265–276.

McKillop, H., 1996. Ancient Maya trading ports and the integration of long distance and regional economies: Wild Cane Cay in South-coastal Belize. *Ancient Mesoamerica*, 7(1), 49–62.

Mcintosh, R.M., Sharp, J.H. and Wilburn, F.W., 1990. The thermal decomposition of dolomite. *Thermochimica Acta*. 165(1990), Amsterdam: Elsevier Science Publishers B.V., 281–296.

Milbrath, S. and Peraza Lope, C. 2003. Revisiting Mayapán: México's last Maya capital. *Ancient Mesoamerica*, 14(1), 1–46.

Milbrath, S., Peraza Lope, C., 2009. Survival and revival of Terminal Classic traditions at Postclassic Mayapán. *Latin American Antiquity*. 20(4):581–606

Morales Valderrama, C., 2005. La Alfarería de Yucatán: Una Tradición al Finalizar el Siglo XX. *In*: Merino Carrion, B. and Cook, A.G., (Eds) *La Producción Alfarera en el México Antiguo I*. Mexico: Instituto Nacional de Antropología e Historia.

Munsell, 2009. Soil-color Charts: with genuine Munsell color chips. Grand Rapids: Munsell Color.

Nesse, W.D., 1986. Introduction to Optical Mineralogy. New York: Oxford University Press.

Ochoa Rodríguez, J.M., 2007. Las Esferas Cerámicas Tases del Posclásico en el Norte de la Península de Yucatán (CA. 1100-1550 D.C.). *In: La Producción Alfarera en el México Antiguo V*. Mexico: Instituto Nacional de Antropologia e Historia.

Okoshi Harada, T., 2010. La formación de las entidades políticas en las tierras bajas mayas del posclásico tardio: una nueva perspectiva. *Figuras Mayas de la Diversidad*. Mexico: Universidad Nacional Autónoma de Mexico.

Okoshi Harada, T., 2012. Las entidades políticas de las tierras bajas del norte al tiempo de la invasión española. *Revista Digital Universitaria*. 13(12).

Orton, C., Tyers, P., and Vince, A., 2008. Pottery in Archaeology. Cambridge University Press.

Peacock, D.P.S., (ed.) 1977. Ceramics in Roman and medieval archaeology. *In: Pottery and early commerce: characterization and trade in Roman and later ceramics*. London: University of Southampton Academic Press.

Pendergast, D.M., 1985. Stability through change: Lamanai, Belize, from the ninth to the seventeenth century. *In*: Sabloff, J.A., and Andrews, E.W. (eds), *Late Lowland Maya Civilization: Classic to Postclassic*. Albuquerque: University of New Mexico Press, 223–249.

Peraza Lope, C.A., 1993. *Estudio y secuencia del material cerámico de San Gervasio, Cozumel.* Tésis profesional, Mérida, Yucatán México: Universidad Autónoma de Yucatán.

Peraza Lope, C., and Barrera Rubio, A., 2006. La cerámica arqueológica de Kulubá, Yucatán. Los Maya de Ayer y Hoy. *In*: Rubio, A.B., and Gubler, R., (eds), Mexico: Eugenia Montalvan Proyectos Culturales S.C.P.

Peraza Lope, C., Masson, M. A., Hare, T.S., and Candelario Delgado Kú, P., 2006. The Chronology of Mayapan: New radiocarbon evidence. *Ancient Mesoamerica*, 17(2), 153–175.

Perry, E., Velazquez-Oliman, G., and Marin, L., 2002. The hydrogeochemistry of the karst aquifer system of the Northern Yucatan Peninsula, Mexico. *International Geology Review*, 44, 191–221.

Perry, E., Paytan, A., Pedersen, B., and Velazquez-Oliman, G., 2009. Groundwater geochemistry of the Yucatan Peninsula, Mexico: Constraints on stratigraphy and hydrogeology. *Journal of Hydrology*. 367(1), 27–40.

Philpotts, A.R., 2003. *Petrography of Igneous and Metamorphic Rocks*. Long Grove, IL: Waveland Press.

Pierce, D. and Glascock, M. D., 2015. *Neutron activation analysis of Late Postclassic Mayan ceramics from the northern Yucatan Peninsula, Mexico.* Archaeometry Laboratory, Research Reactor Center, Columbia: University of Missouri, unpublished report. Appendix C, this document

Piña Chan, R., 1978. Commerce in the Yucatán Península: The conquest and colonial period. In: Lee, T.A., Jr., and Navarrete, C., (eds), *Mesoamerican Communication Routes and Cultural Contacts*. New World Archaeological Foundation. Provo, Utah: Brigham Young University. 37–48.

Pio Pérez, J., 1877, Diccionario de la lengua Maya. Mérida: Imprenta Literaria de Juan F.Molina Solis. Available: https:/books.google.com

Platter, S., (ed.) 1989. Economic Anthropology. Stanford University Press.

Pollock, H.E.D., 1952. Department of Archaeology. *Carnegie Institute of Washington*. Yearbook 51, 235–43. Washington.

Pope, K.O., Ocampo A.C., Kinsland, G.L., and Smith, R., 1996. Surface expression of the Chicxulub crater. *Geology*, 24(6), 527–530.

Rands, R. and Bishop, R., 1980. Resource procurement zones and patterns of ceramic exchange in the Palenque region, Mexico. *In*: Fry, R., (ed.) *Models and Methods in Regional Exchange*. Society for American Archaeology, 19–46.

Rathje, W.L., 1975. The last tango in Mayapán: a tentative trajectory of production-distribution systems. *In*: Lee, T.A., Jr., and Navarrete, C., (eds.) *Mesoamerican Communication Routes and Cultural Contacts*. Provo, Utah: New World Archaeological Foundation, Brigham Young University, 147–176.

Reents-Budet, D., 1994. *Painting the Maya Universe: Royal Ceramics of the Classic Period*. Durham, NC: Duke University Press, in association with Duke University Museum of Art.

Redfield, R. and Villa Rojas A., 1962. *Chan Kom: A Maya village, a classic study of the basic folk culture in a village in eastern Yucatan*. University of Chicago Press.

Renfrew, C., 1975. Trade as action at a distance: Questions of integration and communication. In: Sabloff, J. and Lamberg-Karlovsky, C.C., (eds.), *Ancient Civilization and Trade*. Albuquerque: University of New Mexico Press, 3–59.

Reina, R. E., and Hill, R.M., 1978. *The Traditional Pottery of Guatemala*. Austin: University of Texas Press.

Rendón, S., 1947. Notas dobre la alfarería Indígena de la peninsula de Yucatán. *Revista Mexicana de estudios antropológicos*. 9, 107–123.

Rendón, S., 1948a. *El Jarro Yucateco. Revista Mexicana de Cultura, Epoca.* 2(78), 4 (Sep. 26 revista dominical en El Nacional), Mexico.

Rendón, S., 1948b. *El "kum" yucateco. Revista Mexicana de Cultura, Epoca.* 2(89), 4 (Dic. 5 revista dominical en El Nacional), Mexico.

Restall, M., 1997. The Maya World: Yucatec Culture and Society, 1550-1850, Stanford University Press.

Rice, P.M., 1987. Pottery Analysis: A Sourcebook. University of Chicago Press.

Rice, P.M., 1987. Economic change in the Lowland Late Classic Period. In: Brumfiel, E.M., and Earle, T.K., (eds.) *Specialization, Exchange, and Complex Societies*. Cambridge: University Press, 76–85.

Rice, P.M., 2009. Late Classic Maya Pottery Production: Review and Synthesis. *Journal of Archaeological Method Theory*, 16, 117–156.

Robles Castellano, Jose, F., 1990. La Secuencia Cerámica de la Región de Coba, Quintana Roo. INAH.

Robles Castellano, and Andrews, A.P., 1985. A review and synthesis of recent Postclassic archaeology in Northern Yucatán. *In*: Sabloff, J.A. and Andrews, E.W. V, (eds.) *Late Lowland Maya Civilization: Classic to Postclassic*. Albuquerque: University of New Mexico Press, 53–98.

Rochette, E.T., 2009. Jade in full: Pre-hispanic domestic production of wealth goods in the Middle Motagua Valley, Guatemala. *In*: Hirth, K.G., (ed.), *Housework: Craft Production and Domestic Economy in Ancient Mesoamerica. Archaeological Papers of the Anthropological American Association*, 19(1), 205–224.

Roux, V. and Courty, M., 1995. Identification of wheel throwing on the basis of ceramic surface feature and microfabrics. *Journal of Archaeological Science*. 1955(2), 17–50.

Roux, V. and Courty, M., 2005. Identifying social identities at a macro-regional level: Chalcolithic ceramics of South Levant as a case study. *In*: Smith, L., Bosquet, D., and Martineau, R., (eds.) *Pottery Manufacturing Processes: Reconstitution and Interpretation*. London: Archaeopress, 201–214.

Roys, R.L., 1957. *The Political Geography of the Yucatán Maya*, Washington, DC: Carnegie Institution of Washington.

Roys, R.L., 1962. *Literary Sources for the History of Mayapán, Yucatán, Mexico*. Washington, DC: Carnegie Institution for Science, 24–86.

Roys, R.L., 1972. *The Indian Background of Colonial Yucatán*. Norman, OK, University of Oklahoma Press, reproduced from the first edition published by Carnegie Institution of Washington in 1943.

Rye, O.S., 1981. Pottery Technology: Principles and Reconstruction. Washington, DC: Taraxacum.

Sabloff, J.A., Freidel, D.A., 1975. A model of a Pre-Columbian trading center. *In*: Sabloff, J., and Lamberg-Karlovsky, C.C., (eds.), *Ancient Civilization and Trade*. Albuquerque: University of New Mexico Press, 469–408.

Sabloff, J.A. and Rathje, W., 1975. *Changing Pre-Columbian Commercial Systems: The 1972-1973 Seasons at Cozumel, Mexico. Monographs of the Peabody Museum, No. 3*. Cambridge: Harvard University.

Sabloff, J., 2007. It depends on how we look at things: New perspectives on the Postclassic period in the Northern Maya Lowland. *Proceedings of the American Philosophical Society*, 151(1), 11–26.

Sackett, J., 1990. Style and ethnicity in archaeology: the case for isochrestism. In: Conkey, M., and Hastorf, C., (eds.), The Uses of Archaeology. Cambridge: Cambridge University Press, 32-43.

de Sahagún, B., 1946. Historia general de las cosas de Nueva Esparta. Notas por M. Acosta Saignes, 3 vols. México.

Sánchez del Río, M., Suarez, M., and García-Romero, E., 2009. The occurrence of palygorskyte in the Yucatán peninsula: ethno-historic and archaeological contexts. *Archaeometry*, 51(2), 214-230.

Sánchez Fortoul, C.G., 2009. Ceramics of Mayapán: A Petrographic Study. Thesis (Master's), Boca Raton: Florida Atlantic University.

Sánchez Fortoul, C.G., 2013 Ceramic composition diversity at Mayapan, the last Maya capital. *Open Journal of Archaeometry*, 1(1), 4.

Schultz, L., Shepard, A., Blackmon, P., and Starkey, H., 1971. Mixed-layer kaolinite-montmorillonite from the Yucatán Peninsula. *Clays and Clay Minerals*, 19, 137–150.

Shang C. and Tiessen, H., 2003. Soil Organic C Sequestration and Stabilization in Karstic Soils of Yucatan. *Biogeochemistry*, February 62(2), 177–196.

Shannon, R.W., 2016. XRD, elemental, and clay analysis of one Late Postclassic pottery sample from Mayapán, Unpublished report, Appendix C, this document.

Shannon, R.W., 2017. XRD analysis of a marl from Mayapán, Unpublished report, Appendix A, this document.

Shennan, S., 1998. Quantifying Archaeology, Iowa City: University of Iowa Press.

Shepard, A.O., 1958. Ceramic Technology. *Carnegie Institution of Washington*, Yearbook 57. Washington, D.C.

Shepard, A.O., 1964. Temper Identification: "Technological Sherd-Splitting" or an Unanswered Challenge. *American Antiquity*, April 29(4), 518–520.

Shoval, S., Gaft, M., Beck, P., and Kirsh, Y., 1993. Thermal behaviour of limestone and monocrystalline calcite tempers during firing and their use in ancient vessels. *Journal of Thermal Analysis and Calorimetry*, 40(1), 263–273.

Shoval, S., and Beck, P., 2005. Thermo-FTIR spectroscopy analysis as a method of characterizing ancient ceramic technology. *Journal of Thermal Analysis and Calorimetry*, 82(3), 609–616.

Schultz, <u>L.G.</u>, Shepard, A.O., Blackmon, <u>P.D.</u>, and Starkey, <u>H.C.</u>, 1971. Mixed-layer kaolinitemontmorillonite from the Yucatan Peninsula, Mexico. *Clays and Clay Minerals*, 19(3), 137–150.

Sillar, B., and Tite, M.S., 2000. The challenge of 'technological choices' for materials science approaches in archaeology. *Archaeometry*, 42, 2–20.

Smith, R.E., 1971a. *The pottery of Mayapán: Including studies of ceramic material from Uxmal, Kabah, and Chichen Itza.* Vol 1. Papers of the Peabody Museum. Vol 66. Cambridge, MA: Harvard University.

Smith, R.E., 1971b. *The pottery of Mayapán: Including studies of ceramic material from Uxmal, Kabah, and Chichen Itza.* Vol 2. Papers of the Peabody Museum. Vol 66. Cambridge, MA: Harvard University.

Smyth, M.P., and Dore, C.D., 1992. Large site archaeological methods at Sayil, Yucatan, Mexico: Investigating community organization at a prehispanic Maya center. *Latin American Antiquity*, 3:3(1), 3–21.

Stanton, T.W., and Gallareta Negrón, T. 2001. Warfare, ceramic economy, and the Itza: A reconsideration of the Itza Polity in ancient Yucatán. *Ancient Mesoamerica*, 12(2), 229–245.

Stark, M.T., 1991. Ceramic production and community specialization: a Kalinga ethnoarchaeological study. World Archaeology, 23(1), 64-78

Storey, R., Storey, G.R. 2016. Requestioning the Classic Maya Collapse and the fall of the Roman Empire: slow collapse. In: Faulseit, R.K. (ed.) *Beyond Collapse: Archaeological Perspectives on Resilience, Revitalization, and Transformation in Complex Societies.* Carbondale: Southern Illinois University Press, 99-123

Terrones González, E., 2006. El asentamiento prehispánico de Chac Mool, Quintana Roo. *In*: Márquez, L., Hernández, P., González, E., (eds.) *La poblacián maya costera de Chac Mool: análisis biocultural y dinámica demográfica en el Clásico Terminal y Posclásico*. México: Escuela Nacional de Antropología e Historia, 15–26.

Thompson, J.E., 1930. Ethnology of the Mayas of Southern and central British Honduras. *Publications of the Field Museum of Natural History. Anthropological Series*, 17(2), 27–213.

Thompson, R.H., 1958. Modern Yucatecan Maya Pottery Making. American Antiquity, 22(4).

Trindade, M.J., Dias, M.I., Coroado, J., and Rocha, F., 2009. Mineralogical transformations of calcareous rich clays with firing: a comparative study between calcite and dolomite rich clays from Algarve, Portugal. *Applied Clay Science*, 42(3/4), 345–355.

Urrutia-Fucugauchi, J., Morgan, J., Stöffler, D., and Claeys, P., 2004. The Chicxulub Scientific Drilling Project (CSDP). *Meteoritics & Planetary Science*, 39(6), 787–790.

U.S. Geological Survey, 2001. A laboratory manual for X-ray powder diffraction (Open-File Report 01-041). Online file http://pubs.usgs.gov/of/2001/of01-041/htmldocs/clays/seppaly.htm.

Wells, E.C., 2006. Recent trends in theorizing pre-hispanic Mesoamerican economies. *Journal of Archaeological Research*, 14, 265–312.

Weingast, B. R., and Wittman, D. 2008 The Oxford Handbook of Political Economy. (ed.). Oxford UP

Wendrich, W. (ed.), 2012. Archaeology and Apprenticeship: Body Knowledge, Identity, and Communities of Practice. Tucson: University of Arizona Press, 1–19.

Wentworth, C.K., 1922. A scale of grade and class terms for clastic sediments. *The Journal of Geology*, July-August 30(5), 377–392.

West, G., 2002. Ceramic exchange in the late Classic and Postclassic Maya Lowlands: A diachronic approach. *In*: Masson, M., and Freidel, D.A., (eds.) *Ancient Maya Political Economies*. Walnut Creek, CA: Altamira Press, 140–196.

Whitbread, I.K., 1991. Image and data processing in ceramic petrology. *In*: Middleton, A.P., and Freestone, I.C. (eds.), *Recent Developments in Ceramic Petrology*. London: British Museum Occasional Paper 81, 369–388.

Whitbread, I.K., 1989. A proposal for the systematic description of thin-sections toward the study of ancient ceramic technology. *In: Archaeometry: Proceedings of the 25th International Symposium*. Amsterdam: Elsevier, 127–138.

Whitbread, I.K., 1995. Greek Transport Amphorae: A petrological and archaeological study. The British School at Athens, Fitch Laboratory Occasional Paper 4. Exeter, GB: The Short Run Press.

Whitbread, I.K., 2001. Ceramic petrology, clay geochemistry and ceramic production—from technology to the mind of the potter. In: Brothwell, D.R., Pollard, A.M. (eds.) Handbook of Archaeological Sciences. Chichester, New York: John Wiley & Sons, 449–459.

Whitbread, I.K., Ponting, M.J., and Wells, B. 2007. Temporal patterns in ceramic production in the Berbati Valley, Greece. *Journal of Field Archaeology*, 32, 177–193.

Willey, G.R., 1985. The Postclassic of the Maya Lowlands: A preliminary overview. *In*: Sabloff, J.A., and Andrews, E.W. V, (eds.) *Late Lowland Maya Civilization: Classic to Postclassic*. Albuquerque: University of New Mexico Press, 17-52

Xie, J.J., Chen, T., Xing, B., Liu, H., Xie, Q., Li, H. and Wu, Y., 2016. The thermochemical activity of dolomite occurred in dolomite–palygorskite. *Applied Clay Science*, 119 (2016) 42–48