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Abstract

Background

Sometimes individual patient level (IPD) must be reconstructed data from summary
information when treatment switching has occurred (i.e. proportion of patients changed
treatment arms during the course of a randomised control trial) to facilitate re-analysis
when the IPD is unavailable. However, to re-analyse overall survival (OS), information
is needed on the time to treatment switching; this can usually be approximated by time to
progression (TTP). Therefore, the reconstructed data must include TTP and time to death
for patients, estimated using an illness-death modelling framework.

Methods

Here it is assumed only summary information of Progression-free survival (PFS) and OS
are available. Using coordinates extracted from the Kaplan-Meier curves, the survival
distributions are modelled. These are then combined with the PFS and OS risk tables,
models for TTP, and estimates of the censoring distributions and post-progression
survival (PPS) The data are then simulated and combined to obtain the underlying
survival data. The correct proportion of treatment switchers is selected from those
experiencing disease progression and the dataset analysed using a Rank Preserving
Structural Failure Time Model (RPSFTM) to account for treatment switching. Multiple
datasets are created from these models; each is analysed separately and the results
averaged over to obtain a final point estimate.

Results
The simulated data are, on average, broadly representative of the original IPD, both in
terms of the reported summary statistics and the RPSFTM analysis.

Conclusions

This application demonstrates the success with which this method can be used to
reconstruct the data, and achieve an appropriate re-analysis for treatment switching,
fulfilling a fundamental gap in the research.



Acknowledgements

I would like to thank my supervisors Professor Keith Abrams and Professor Paul Lambert

for their support, advice and enthusiasm during my study.

Many thanks go to all the members of the Advisory Panel: Dr Nicholas Latimer, Dr Ian
White, Professor Nicky Welton, Dr Elisabeth George, Maud Pacou, Joshua Ray, Elaine
Wright, Eric Low and Professor Anne Thomas, for their guidance. I have really
appreciated the friendly, supportive environment of the Biostatistics research group, and

a big thank you to all of those who kindly took part in the Reproducibility Study.

Gratitude is extended to the National Institute for Health Research, who funded the work
involved in producing this thesis, and have played a significant role in my career
development to date.  have been very fortunate with all the opportunities that this funding

entitled me to and the training I received throughout my studies.

I wish to thank members of the Mathematics department at Keele University; in particular
Dr David Bedford for inspiring me to study Mathematics at University, and Dr Maria
Heckl for first suggesting I would be capable of studying for a PhD.

My thanks also go to my colleagues at the Cancer Research Clinical Trials Unit at
Birmingham for their interest, support and encouragement particularly in the last few

weeks.

A huge thank you must go to my family and fiancé for their continued encouragement,
support, hugs and confidence in me and my ability. Thank you to my fiancé for his
reassurance, my Nan for her enthusiasm and my Dad, for encouraging me to continue
learning. Many thanks to my mum, especially for her belief in me, and for helping me to

develop a love of Maths.

i



Table of contents

ADSIFACE ceeerecnecntentennienteestestesseessessstesssesssassssesssssssstsssasssstsssassssassstsssassssasenaes i
ACKNOWICAZEIMENLS ...ceererueiesruricssnricsssnecssanessssnessssnossssssssssssssssssssssessssessssssssssssssssssssssssses ii
List of Tables.......cccceevueeruercnnennee xii
LSt Of FIGUIES..uueiiiiiirniiciiisnricsssnnicsssssnricssssssnssssssssssssssssssssssssssssssssssssssssssssssssssssssssssans Xiv
LiSt of ADDIevIations ......cccceeeiiviiiiseeissenenssenesssneecssnecsssecsssseessssecsssssessssesssssssssssssssses xvii

Chapter 1:  Why treatment switching is an important issue in Health Technology

ASSESSIMEIILS ccuueerersarecssanecssanecsssnessnnesssseessssesssssesssssessssssssssasssssssssssnssssanssss 1
1.1 Treatment switching within Health Technology Assessment ......... 1
1.1.1 Treatment switching in Randomised Control Trials .............. 1
1.1.2 Purpose of Health Technology Assessment.............cc..c........ 2

1.1.3 Available methodology for use with data where treatment
switching has been permitted ...........ccccoeeveiiercieeiiieeieeee, 3

1.1.4 Impact of the methodology for treatment switching within

Health Technology Assessment ............ccceeeeeeiiienieeiieenneen. 13

1.2 Objectives and structure of the thesis..........cccceeevieriiiiienieeieenen. 17
L.2.1 ODbBJECHIVES ..cuuvieutieiiiieiieeiieeite ettt ete ettt e eeeebeessaeeseens 17

1.2.2 Thesis STIUCTULE ......eeueeriiieiieriieeiee ettt 17

Chapter 2: The effect of treatment switching in practice and the reporting of

studies with treatment switching 20
2.1 Chapter OVEIVIEW .....cocuieiieeiieiieeieeiee et eieeeteeeeesaeenaeeseaeeseesnnes 20

2.2 Changes in practice with regard to methodology for studies with

treatment SWItChING........cccvviviuiieeiiieeie e 20

2.2.1 Review of National Institute of Health and Care Excellence

Technology Appraisals.........cccccueeevieeerciieeriieeeiee e 20

2.3 Routinely reported and available information for treatment

SWILChING tr1AlS .. .eveiiiieciie e e 36

111



Chapter 3:

Chapter 4:

v

2.3.1 FINAINGS c..viiiiiiiiieeieeieceee ettt 37
2.3.2 DISCUSSION .ttt e e e e e e e e e eereaaaeeeas 43

Secondary analysis using former studies with treatment switching. 46

3.1

3.2

33

3.4

3.5

3.6

3.7

CRapter OVEIVIEW ...cuviieeiiieeeiieeeieeeeieeesvee e eesveeeseaeeeeaeeeneaeeenneas 46

Impact of appropriateness of methodology on secondary analysis46

[Nustrative examples of impact on an Indirect Comparison.......... 49
3.3.1 Indirect COMPATISON ......eeruvieeieeiieiieeieenireeteesieeeieesereeneens 50
3.3.2 Simulation of the data ..........ccoeiiiiiiiiiiie 51

3.3.3 Simulated example with differential treatment effects and
treatment switching proportions............ceccveeeveereeerieenveennnan. 51

3.3.4 Simulated example with the same treatment effect and

differential treatment switching proportions..............cccue..... 54
3.3.5 The BRIM-3 and BREAK-3 trials .........ccccovervinienenniennene 56
Initial simulation study — part 1: Specific scenarios...........c.......... 57
3.4.1 Back@round .........cccoccviiiiiiiiiiiieieeeee e 57
3.4.2 MEthOdS ..ot 57
3.4.3 RESULILS .ot 60
3.4.4 CONCIUSIONS ...eviiiiiiiiieniieie ettt 65
Simulation study — part 2: Systematic selection of scenarios........ 67
3.5.1 Back@round ...........coccuieiiieiiiiiieie e 67
3.5.2 MEthOdS ...cooueieiiieiieie e 67
3.5.3 RESULILS .t 70
3.5.4 CONCIUSIONS ...eviiiieieeiieriieie ettt 80
Overall conclusions from the simulation studies.........c..cccccecueneen. 81
Potential SOIULIONS........cocuivieiiiiiiiiiieiceeeeeeeee e 83
3.7.1 Directly adjusting the summary data............cccoecveerienreennn. 83
3.7.2 Reconstructing individual patient level data......................... 83

Reconstructing Individual Patient Level Data for Overall Survival 87

4.1

CRapter OVEIVIEW ...cuviieeiieeeiieeeieeeeieeeeveeesve e e reeeseaeeesaeeeeaeeenneas 87



4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

J F018 4016 1011510 ) o DORRRURU R 87

Evaluation of current methodology ..........ccceccveviiieniiiiiiiniinieeee 88
4.3.1 NOLALION c..euiiieiieieeiteseeee ettt 88
4.3.2 Naive approaches ........cccccecveeeiieiriieeeiie e 88
4.3.3 Hoyle and Henley approach ..........cccccoeceeeciienieniienienieeee 88
4.3.4 Guyot approach ........ccccveeiviieeiiieeieeee e 91
4.3.5 Limitations of current approaches............cccceeevveerveeenveennen. 93
4.3.6 Rationale for a simulation approach............cccceevevevivennennen. 94
Simulation approach ...........cccceeiveiieriiienieeeeee e 95
4.4.1 Outline of method..........ccceviiniiiiiiiieccee 95
Mustrative example of reconstructing IPD...........cccooeviinienne 104
4.5.1 Neutron Therapy trial.........cccocoeeeviieniieiiienieeiieie e 104
4.5.2 MEthOdS ......oovuiiiiiiiniieiieieeeeee s 105
4.5.3 RESUILS ..o 106
4.5.4 CONCIUSIONS ..ottt 110
Reproducibility study........ccceevvieniieiiiiniieiieieeicee e 110
4.6.1 Background ..........cccoeouieiieniieiiiieeeeee e 110
4.6.2 MEthOds .......oouiiiiiiiiieieeieseee s 111
4.6.3 RESUILS ..ot 112
4.6.4 CONCIUSIONS ....eeveeniieiiiniieiieieriteseete ettt 113
DiSCUSSION POINES ..veeiiieniieeiiieiieeiieeieeeee et e eee e e seae s e seeeebee e 117
4.7.1 The location of the coordinates .............cceceervercreeneeennenne. 117
4.7.2 The number of simulated datasets..........ccccceevueevierieennnnne 118
4.7.3 Does the knot location have an impact on the results? ...... 122
4.7.4 Acceptable MitS........ccocveviieriieiieieeieee e 123
Secondary analysis for treatment switching .............cccceceeeveennee. 124
4.8.1 Background ..........cccoeevieiieniieiieieeee e 124
4.8.2 MethOdsS .....couiiiiiiiieiiieiee e 124
4.8.3 Tllustrative eXamples ........cccceeeieeerieeeiiieeiie e eeree e 127
Discussion and further wWork..........ccccoociiiiiiiniiii 134



Chapter 5:

Chapter 6:

vi

Reconstructing individual patient level data with two related

OULCOIMICS uueeerrersunecssecssnecssesssasssseessssssansssassssasssssssasssssssssasssssssassssassssassnns 136
5.1 CRapter OVEIVIEW .....cccuieiuieeiieiieeiieeiieeiteeieeeieeseeeeaeeseseeseesneeenne 136
5.2 Motivation and almMS ........coecueereeriieenieeieenie et 136
5.3 Structure of the data.........ccocooiiiiiiiii 137
5.3.1 An Illness-Death modelling structure ...........ccceevveeernneennes 137
5.3.2 Available information ..........c.cccoceeviriiniininieneee 139
5.4 Exploring the levels of information available ............................. 140
5.4.1 Methods development ..........ccceeevieeeeieeecieencieecee e 141

5.4.2 Overview of implementing the key methods depending on the
INFOrMAtION ..cvviiiiiiiicicece e 160

5.4.3 Illustrative example contrasting scenarios 1 (All information)

and 4 (Three outcomes only)......ccccceeevveerierciieniennieenieeenn 166

5.4.4 Tllustrative example using the TAnDEM trial.................... 171

5.4.5 Understanding and assessing the underlying driving factors...
.......................................................................................... 175

5.4.6 Sensitivity analysiS.....ccccecvveeeriieeiieeeiieeeee e 179

5.5 pSecondary analysis for treatment switching ..............c.cccouveeneee. 180
5.5.1 Exploring other mechanisms...........ccoecveeviierveesieenieeieennen. 181

5.5.2 Reanalysis of the TAnDEM trial for treatment switching . 183

5.6 Discussion, Strengths and Limitations ............cccceeveveevieeneeennenne. 185
Addressing treatment switching in assessment for surrogacy ........ 187
6.1  CRhapter OVEIVIEW .....cccuieiieeiieiieeieeeieeeite e eteeseaeeaeesebeeeeeeneeenne 187
6.2  Anillustrative case Study.......cccceeevveeeiieeniieeeie e 187
6.2.1 Surrogacy in non-small-cell-lung cancer .............ccccouee.e. 187
6.2.2 Cochrane review for EGFR positive NSCLC patients....... 189
6.2.3 Available information ..........c.ccooceeviriiniineniine, 193

6.2.4 Methodology: overview based on the initial intentions of data
TECONSITUCTION ..ottt ettt 193

6.2.5 Issues encountered and possible solutions.......................... 195



Chapter 7:

Appendices

Appendix A:

Appendix B:

vil

60.2.60 RESUILS - e e e e e e e e e e e e e e e eaens 215

6.2.7 Implications from this case study.........ccccccveererveerciieenieens 219
6.3 CONCIUSIONS. ...eoiiiiiiieeiiieiie ettt ettt et ete e aeeteesaee b ees 223
Suggested reporting guidelines, summary and discussion .............. 225
7.1 Chapter OVETVIEW ......ececuiieeiieeeiieeeieeeeieeesaeeesereeensreeesseeennneesnnnes 225

7.2 Specific information needed to assess the impact of treatment

switching on summary data and to adjust accordingly................ 225

7.2.1 Understanding the impact of treatment switching on

secondary analysiS........cecvereerierienieiienienceese e 225
7.3 Proposed gUIdAnCe .........cccueruieierienierienieieeieseee e 226
7.3.1 Reporting of StUAIes ......cceevveeriiiiiiiniieiieeieeee e 228

7.3.2 Procedures to be followed if data are to be reconstructed and
1€ANALYSE . eeiiiieeiiieeiee et 234
B TN 1111 0 | o OSSP 239
7.5 Limitations, Discussion and ConteXt.........ccccccevvvvvvveveeeeeeeeeiinnnns 241
7.6 Further Worki ........occooiiiii 248

7.6.1 Understanding the impact of treatment switching in

secondary analySiS.......ccceecveereuieeniiieeriie e eriee e 248

7.6.2 The simulation ProCeSS.........ccverveerierieeriierieenieeneeeieenenes 249

7.6.3 Addressing treatment switching...........ccccceevevveerciieeeneenne, 250

7.6.4 Additional areas. ........coceveevierierienieeieneeeeee e 252

7.7 CONCIUSIONS.....eeutiritiiietteiieettete ettt ettt ettt sbe e seeens 252
.................................................................................................................... I
Technology Appraisals included in the review ........eeecsseccseensenennes I
A-1: List of Technology Appraisals included in the review..................... I

A-2: List of TAs with treatment switching included in the review .... VIII

Replication of analysis, restricting the time scale to TAs published
ATLEr 2003....uucneenrenieiineenennenenstenteseesnesnesesssessessssssesssesssssssssasssassnes XI



Appendix C:

Appendix D:

viil

B-1: Recommendations by the characteristics of TAS........ccccceceevuennnnne XI
B-2: Recommendations by the characteristic and year of publication . XII

B-3: Summary of results by crossover adjustment and comparison... XIII

List of evidence reviewed in Section 2.3........ccoueeveriseensecssnecsannsnens XV
C-1: Reviewed as ‘Manufacturers Submission’ Evidence .................. XV
C-2: Reviewed as ‘Evidence Review Group’ Evidence...................... XV
C-3: Trial publications reVIeWed ..........ccceeeviieevieeeiieeeieeeee e XVI
Results of the Systematic Simulation Study........cccceevvunerccsccnreccsnnes XXI
D-1: ITT Results for Study A (for Group 1).....ccceeveeeviieniieiiienieennns XXI
D-2: ITT Results for Study A (for Group 2)......ccevveeciienieeieenieeennenn XXII
D-3: ITT Results for Study A (for Group 3).....cccceevveriienieeiieienns XXIV
D-4: ITT Results for Study A (for Group 4)......ccceeeveecieenieeiieiens XXVI
D-5: ITT Results for Study A (for Group 5).....ccccevveevieenveereennen. XXVIII
D-6: ITT Results for Study B (for Group 1) ......ccceeevieiienieiiiennnnne XXIX
D-7: ITT Results for Study B (for Group 2) .....cccceeveveevcveeniieennen. XXX
D-8: ITT Results for Study B (for Group 3) .....ccccvvevcveenrieeeiieenee. XXXII
D-9: ITT Results for Study B (for Group 4) .......ccceeeevveevcrveennenns XXXIV
D-10:ITT Results for Study B (for Group 5) .....cccovvevcveenciveenneens XXXVI
D-11:RPSFTM-adjusted analysis for Study A (Group 1)............. XXXVII
D-12:RPSFTM-adjusted analysis for Study A (Group 2)............. XXXVII
D-13:RPSFTM-adjusted analysis for Study A (Group 3)............ XXXVII
D-14:RPSFTM-adjusted analysis for Study A (Group 4).............. XXXIX
D-15:RPSFTM-adjusted analysis for Study A (Group 5).....ccccccvvennenee. XL
D-16:RPSFTM-adjusted analysis for Study B (Group 1)................... XLI
D-17:RPSFTM-adjusted analysis for Study B (Group 2)........c.......... XLI
D-18:RPSFTM-adjusted analysis for Study B (Group 3)................... XLII
D-19:RPSFTM-adjusted analysis for Study B (Group 4).................. XLIII



X

D-20:RPSFTM-adjusted analysis for Study B (Group 5).................. XLIV

D-21:Results of the IC using both ITT HRs (for Group 1)................. XLV
D-22:Results of the IC using both ITT HRs (for Group 2)................. XLV
D-23:Results of the IC using both ITT HRs (for Group 3)................ XLVI
D-24:Results of the IC using both ITT HRs (for Group 4).............. XLVII
D-25:Results of the IC using both ITT HRs (for Group 5)............. XLVIII

D-26:Results of the IC using RPSFTM HR for Study A and ITT HR for
Study B (for Group 1)....ceeeeiieeiieeieeeieeeee e XLIX

D-27:Results of the IC using RPSFTM HR for Study A and ITT HR for
Study B (for Group 2) .....ccoveeeiieiieiiieiieeieeieeeeeee e XLIX

D-28:Results of the IC using RPSFTM HR for Study A and ITT HR for
Study B (for Group 3)...eveeeieeeiee ettt L

D-29:Results of the IC using RPSFTM HR for Study A and ITT HR for
Study B (for GToUp 4)....eeeeeeiieeieeeieeeeeeee e LI

D-30:Results of the IC using RPSFTM HR for Study A and ITT HR for
Study B (for Group 5)....ceevieiiieiieieeieeeceee e LII

D-31:Results of the IC using ITT HR for Study A and RPSFTM HR for
Study B (for Group 1) ....coecvieiiiiiieieeiieieeeee e LIII

D-32:Results of the IC using ITT HR for Study A and RPSFTM HR for
Study B (for Group 2).....ceecieieiiieeieeeieeeee e LIII

D-33:Results of the IC using ITT HR for Study A and RPSFTM HR for
Study B (for Group 3)....coocvieiiiieeieeieeeee et LIV

D-34:Results of the IC using ITT HR for Study A and RPSFTM HR for
Study B (for GToup 4)....coecvieeeiieiieieeieeeeeeeee e LV

D-35:Results of the IC using ITT HR for Study A and RPSFTM HR for
Study B (for GToup 5)...cveeeeiieeiieeiieeeee et LVI

D-36:Results of the IC using both RPSFTM HRs (for Group 1)........ LVII
D-37:Results of the IC using both RPSFTM HRs (for Group 2)........ LVII

D-38:Results of the IC using both RPSFTM HRs (for Group 3)....... LVIII



Appendix E:

Appendix F:

Appendix G:

Appendix H:

Appendix I:

D-39:Results of the IC using both RPSFTM HRs (for Group 4)......... LIX

D-40:Results of the IC using both RPSFTM HRs (for Group 95)........... LX
Ilustrative Example: Coordinates and Model Fitting.................. LXII
E-1: Comparison of extracted coordinates to the IPD....................... LXII

E-2: Comparison of models with different degrees of freedom ....... LXIII

E-3: MoOde] £t StAtISTICS. . uuueeeeeeeeeeeieeee et eeeeeeeeeeeeeeeeeeenan LXIV
E-4: Discussion on the ‘best model .......oovvummeeeeeeeiieeieeeeeeeeeeeeen. LXIV
E-5: Examination of different knot locations for 4 df ....................... LXV

E-6: Replicating reported results for models with different dfs..... LXVII

E-7: Secondary analysis for models with different dfs.................. LXVII

Reproducibility Study .......ccooveeeveiciinicisnicssnninssnnisssnnesssncssssncssnenes LXIX

F-1: Instructions for data extraction (Method A: Guyot; Method B:
SIMUIALION) ..veiiiiiieiie e e e LXIX

F-2: Instructions for data extraction (Method C: Simulation; Method D:

F-3: Results for the individual participants............ccccceeevveeenneennes LXXIII

F-4: Results for the individual participants, stratified by method

EXtrACtION OTAET ....evviiiiniiiiieiieieetecee e LXXIV
Calculation of the censoring distribution for TAnDEM ............ LXXV
G-1: Initial calculation of CENSOTINGS.......cccvveeeieieeerieeeiieeeiee e LXXV

G-2: Calculation of censoring distribution parameters, after applying the

SCAlE fACTOT ... LXXV
Further discussion points for the simulation method. ............... LXXVI
H-1: Distinct subsets of the Illustrative Example .............cccoc....... LXXVI
Development of ‘Illness-Death’ modelling approach............... LXXVII

I-1:  Generalising the formula for post-progression censoring ... LXXVII

I-2:  Example values of v, i for a 10-month interval. ................ LXXVIII



Appendix J: References for the studies included in the case study (Chapter 6)

........................................................................................................ LXXIX
J-1: BMS 009 . LXXIX
J-2: CHEN Lo LXXIX
J-3: ENSURE ...t LXXIX
J-4: BEURTAC ..ottt LXXIX
J-50 FASTACT 2.t LXXX
J-6: TORCH.....cciiiieiieeee e e LXXX
J-7: GTOWG .o LXXXI
J-8: First-SIGNAL ......oooiiiiiiiiiiiieeee e LXXXI
J-9: TOPICAL ..ottt LXXXI
J-10: INTACT 1 & INTACT 2..eeiiieeeeeeeeeeeeeeeeee e LXXXI
J-11: NEJOO2 (referred to as NEJSG in Greenhalgh (2016)) ....... LXXXII
J-12:0 TPASS e e LXXXIII
J-13:1 WITOG3405 ...t LXXXIV
J-14: YU 2014 oo LXXXIV
J-15: OPTIMAL ..ot LXXXV
J-16: LUXLUNE 3 oot LXXXVI
J-17: LUXLUNZ 6 oo LXXXVI
J-18: FLEX oottt LXXXVII
BiDlIOZrapRhy ..ccccueiiiiiiiniiiinieinntinsniecsnencsnnscssecsssecsssseessssncssssssssssesssssssssssssssssssssas -1-

X1



List of Tables

Table 2-1: TAs which have been replaced or withdrawn by year .............ccceevveeeiiennnns 24
Table 2-2: Choice of cut-points for the timescale............cceeeieriieiiiinieiiienieeeee e, 25
Table 2-3: TA level details obtained from the TA evidence summary ...........c.ccceeuee. 38
Table 2-4: Trial level details obtained from the TA evidence summary........................ 39
Table 2-5: Evidence in the manufacturer’s submission or ERG report.............ccceeene.. 40
Table 2-6: Primary endpoints as reported in the publication............ccccevvveverveniencnnene 41
Table 2-7: Commonly reported information about enrolment and follow-up................ 41
Table 2-8: Kaplan-Meier curves reported in the trial publication ............ccccceeevveeennenn. 41
Table 2-9: NUumber 0f @VENTS .......oouiiiiiiiiiiiiiieiee e 41
Table 2-10: Effect estimates routinely USed ..........cccueeeuieriieiiieiieeiienie e 42
Table 2-11: Commonly available information on treatment switching.......................... 43
Table 3-1: Study specific simulation information - Example 1........cccccccovevviieeniieennnn. 52

Table 3-2: Study-specific information for the single simulated dataset - Example 1..... 52
Table 3-3: Comparison of HRs calculated from an IC - Example 1.........cccccocveninnennee. 53
Table 3-4: Study specific simulation information - Example 2..........cccccceveviieenieeennnn. 54

Table 3-5: Study-specific information for the single simulated dataset - Example 2..... 55

Table 3-6: Comparison of HRs calculated from an IC - Example 2..........cccccocvevennenee. 55
Table 3-7: Study-specific information for the BRIM-3 and BREAK-3 trials................. 57
Table 3-8: Comparison of HRs calculated from an IC — BRIM-3 and BREAK-3.......... 57
Table 3-9: Scenario INfOrmMation .........coc.eeiiiiiiiiiiieieee et 59
Table 3-10: Initial simulation - averaged scenario-study-specific information.............. 61
Table 3-11: Initial simulation - Average IC HR depending on analysis method ........... 62
Table 3-12: Initial simulation study - statistical significance depending on method ..... 62
Table 3-13: Initial simulation — Performance measures for Study A .........ccoeeevvveennenn. 63
Table 3-14: Initial simulation - Performance measures for Study B..........ccceeviieennnenn. 64
Table 3-15: Initial simulation - IC performance measures (part 1) ........cccoeceeevueenieennnns 64
Table 3-16: Initial simulation - IC performance measures (Part 2) ........cccoecveevveerveennens 65
Table 3-17: 'Systematic simulation' - Characteristics of the simulated datasets ............ 68
Table 3-18: Example of ‘duplicate’ SCENArios ........cecuveeeruiieeiiiieciieeeiie et 68
Table 3-19: 'Systematic simulation' - Grouped results for bias ..........cccceeeeveriencnnennn. 79
Table 3-20: 'Systematic simulation' - Grouped results for MSE and Coverage ............. 80
Table 4-1: Initial analysis for the IPD and IPLD — Neutron therapy example.............. 107

Xil



Table 4-2: Secondary analysis for the IPD and IPLD — Neutron therapy example...... 108
Table 4-3: Average HR and RMST for the IPLD over participants............ccccceeeueenee. 116
Table 4-4: Log-HR averaged over a given number of datasets.............cccceevveeerveennnnen. 120
Table 4-5: HR depending on the ordering of the IPLD datasets ...........ccccceevveerveenneen. 121
Table 4-6: IPD and IPLD for the VEG105192 trial........ccccoovieviiiiniiiiiiieeiieeeeeee 128
Table 4-7: Secondary analysis for treatment switching — VEG105192 trial ................ 129
Table 4-8: Comparison of the IPD and IPLD statistics —- TAnDEM example ............. 133
Table 4-9: Secondary analysis for treatment switching — TAnDEM example............. 134
Table 5-1: Information SCENATIOS ..........coveriirierierierieieete et 141
Table 5-2: Overview and summary of key methods based on available information .. 164
Table 5-3: ITT analysis results for the IPD and IPLD — Simulated example............... 169
Table 5-4: Degrees of freedom — TANDEM ......ccccoooiiiiiiiiiiiiieeeeeeeee e 173
Table 5-5: ITT results for the IPD and IPLD - TANDEM........cccoooviiiiiiiiiiieiieee, 174
Table 5-6: Values to ensure consistent CENSOTING......c..ueerveerveerirerieerrienreenreeneeeveenenes 178
Table 5-7: Values to ensure consistency censoring - lmitS..........ccccceeeeeveeencreeenneeennen. 178
Table 5-8: Reanalysis for treatment switching results IPD and IPLD - TAnDEM ...... 184
Table 6-1 Details of the trial characteristics included in the Cochrane review ............ 191
Table 6-2: Treatment switching in trials included in the Cochrane review.................. 192
Table 6-3: Information available for the Cochrane review trials.........c.cccoceenienennne. 194
Table 6-4: Comparison of reported and reconstructed HRS ..........ccccevvviinciiinienennnen. 213
Table 6-5: Comparison of reported and reconstructed events.............ccccveevivereeeneenen. 214
Table 6-6: Revised estimates accounting for treatment switching .............ccceeeeueeeee. 215
Table 6-7: Coefficients for the PFS log-HR from the meta-regressions ...................... 216
Table 7-1: 'Crossover' asseSSmMent t0O0] ........cccueiiiiiiiieiiiiiieiie e 232

xiil



List of Figures

Figure 1-1:
Figure 2-1:
Figure 2-2:
Figure 2-3:
Figure 2-4:
Figure 2-5:
Figure 2-6:
Figure 2-7:
Figure 2-8:
Figure 2-9:
Figure 2-10
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 3-6:
Figure 3-7:
Figure 3-8:
Figure 3-9:
Figure 3-10

Figure 3-11:
Figure 3-12:
Figure 3-13:
Figure 3-14:
Figure 3-15:
Figure 3-16:
Figure 3-17:
Figure 3-18:
Figure 3-19:
Figure 3-20:

Figure 4-1:

Xiv

Real-world problem with and without treatment switching .............c.cc...... 14
NICE TAs with and without crossover, stratified by year.............c.cceenee. 24
Treatment switching methods in NICE TAS.....c.cccociiiviiiiiiiecie e 25
Comparisons (indirect or mixed treatment) in NICE TAS........cccccveevneennee. 26
Type of comparison used in NICE TAS......ccccoocieriiiiiinieeiieiecieeee e 27
Recommendations stratified by type of crossover method........................... 29

Recommendations for TAs with crossover — no recommended methods.... 30

Recommendations for TAs with crossover - recommended methods ......... 30
Recommendations based on TA characteristics ..........coecvevieecieenieeiieennnene 31
Overview of recommendations ...........ceceeierienenieneenenieseee e 32
: Overview of recommendations, by year of publication............c.ccccveennee. 33
Indirect Comparison of two treatments...........cccveeeveeerieeeriieeerieeesieeeeiee s 47
Indirect comparison of two treatments: complex pathway ............cccceeuenee. 47
Mixed Treatment COMPATISON .......ccueeeuveerieerieertieeieeriiesaeeteesreenseeseeenseens 48
'Systematic simulation' SCENATIOS.......ccuveeeruveeeirieeeiieeeiee e e eeeee e e 69
'Systematic simulation' - Grouped simulation scenarios..............ccccveeeruveennn. 71
'Systematic simulation' - Absolute bias (Group 1)......cccceeceeeviienienciienneenen. 72
'Systematic simulation' - Absolute bias (Group 2)........ccceeceeeveeneerieenneennnn. 72
'Systematic simulation' - Absolute bias (Group 3)......ccccceevvevcrieercieeenieeenne, 73
'Systematic simulation' - Absolute bias (Group 4)......c.ccceevveevvrveerreeeeieeenne. 73
: 'Systematic simulation' - Absolute bias (Group 5).......ccccceeeverieerieennennnen. 74
'Systematic simulation' - MSE (Group 1) .....ccccoevieniiiiiieniieiieieeieee 74
'Systematic simulation' - MSE (Group 2) .....ccccceeeienieeiiieniieieenieeieeieee 75
'Systematic simulation' - MSE (GToup 3) .....coocveeviieeniieeciieecee e 75
'Systematic simulation' - MSE (GToup 4) ......ccccceeveiieenieeeeiie e 76
'Systematic simulation' - MSE (Group 5) ....ccccceeevierieeiiiiniieieeieeieeeee 76
'Systematic simulation' - Coverage (Group 1) .......ccccceevviieiienieenienreennen. 77
'Systematic simulation' - Coverage (Group 2) ......ccceeeevveercieeeriveeesiveeenneens 77
'Systematic simulation' - Coverage (Group 3) ......cccceeeeeercieeeniieeenieeeeveenns 78
'Systematic simulation' - Coverage (Group 4) ......ccceevveeveeviienieenieenreennnens 78
'Systematic simulation' - Coverage (Group 5) ......cceeevvevieeviienieeniienreeneens 79
Simulation Technique Reconstruction Process.........ccccceeveevcveenciieenieeenneen. 96



Figure 4-2: Fitted models compared to the coordinates — Neutron therapy example... 106

Figure 4-3: Time dependent HRS..........cccoooiiiiiiiiiiiieeeeee e 109
Figure 4-4: Simulated examples used for the Reproducibility Study..........ccceeuveenneee. 115
Figure 4-5: Average log-HR depending on the number of datasets simulated............. 120
Figure 4-6: Log-HR depending on the ordering of the IPLD datasets ........................ 121
Figure 4-7: Kaplan-Meier curve for OS — VEG105192 trial (Sternberg, 2010)........... 127
Figure 4-8: Average survival compared with the coordinates — VEG105192 trial ...... 129
Figure 4-9: Kaplan-Meier curve for OS - TAnDEM trial .........cccoevvieviiiiniieiieeeee, 131
Figure 4-10: Location of the coordinates — TANDEM trial.........ccccoceviiniiiiinienennene 131
Figure 4-11: Average survival compared with the coordinates - TAnDEM trial ........ 133
Figure 5-1: Standard illness-death model ............ccoooovieeiiieniiiie e, 137
Figure 5-2: Illness-Death model with standard health states for cancer trials.............. 138
Figure 5-3: 'Delayed entry' format for PPS..........ccoooiiiiiiiiii e 146
Figure 5-4: 'Reset the clock' format for PPS..........ccoooiiiiiiiiiee e 147
Figure 5-5: Competing risks nature of overall survival............cccceevviiieiiiiiiniieeieeee, 154
Figure 5-6: Competing risks nature of PFS or OS data..........cccccevviiiivciiicciiiieeee, 157
Figure 5-7: Approach to be adopted depending on available information ................... 160
Figure 5-8: Process for summary information on transitions (Scenarios 1 and 2) ....... 161
Figure 5-9: Process for TTP, PFS and OS summary information (Scenario 4)............ 162
Figure 5-10: Process for PFS and OS summary information (Scenario 5)................... 163
Figure 5-11: Kaplan-Meier curves for the simulated example ..........cccceeevenieneniiencnne 167
Figure 5-12: PFS and OS Kaplan-Meiers and Risk-tables - Simulated example......... 168
Figure 5-13: IPD and IPLD for scenarios 1 and 4 - Simulated example...................... 170
Figure 5-14: Kaplan-Meier curves for PFS and OS in the TAnDEM trial................... 172
Figure 6-1: Association between PFS and OS, depending on crossover (Hotta) ......... 188
Figure 6-2: Differences in the intervals for PFS and OS in ENSURE ..............c.......... 196
Figure 6-3: Example of censoring due to differential reporting times ..........cccccecuerueee 201
Figure 6-4: Flowchart for the process.........cocvviiiiieeiiiieciie et 203
Figure 6-5: Recruitment period and followW-up .........ccceeviiieiiiieiiiiciecce e, 205
Figure 6-6: Potential structure of data ............ccoooiieiieniiiiiicee e 208

Figure 6-7: Association between log-HRs for PFS and OS depending adjustment ..... 217
Figure 6-8: Association between log-HR PFS and OS depending on data used.......... 218
Figure 6-9: Association between PFS and OS HR, overall and stratified by crossover220

Figure 7-1: Crossover Screening process for studies included in secondary analysis.. 234

XV



Figure 7-2: Initial process for determining whether crossover data can be reanalysed 235
Figure 7-3: Overview of process, if crossover occurs around progression time .......... 237

Figure 7-4: Overview of process, if crossover occurs following interim analysis ....... 238

Xvi



List of Abbreviations

A

AIC
BIC
BSC
CEA
Cens.
Chemo.
CI
CONSORT
CTMP
Df
EGFR
EGEFR +ve
EMA
ERG
FDA
HR
HTA
IC
ICER
IPCW
IPD
IPE
IPLD
IQWiG
ISPOR
ITT
LCH
LTFU
MTC
NAR

Xvii

Anastrazole (Monotherapy)

Akaike information criterion

Bayesian Information Criterion

Best Supportive Care

Cost-Effectiveness Analysis

Censored Observations

Chemotherapy

Confidence Interval

Consolidating Standards for Reporting Trials
The Center for Medical Technology Policy
Degrees of freedom

Epidermal Growth Factor Receptor
Epidermal Growth Factor Receptor Positive Mutation
European Medicines Agency

Evidence Review Group

Food and Drug Administration

Hazard Ratio

Health Technology Assessment

Indirect Comparison

Incremental Cost-Effectiveness Ratio
Inverse Probability of Censoring Weighting
Individual Patient Data

Iterative Parameter Estimation

Individual Patient Level Data

Institut fiir Qualitdt und Wirtschaftlichkeit im Gesundheitswesen

International Society for Pharmacoeconomics and Outcomes Research

Intention-to-treat

Log Cumulative Hazard

Lost to Follow-up

Mixed Treatment Comparison

‘Numbers at Risk’



NHS National Health Service

NICE National Institute for Health and Care Excellence
NMA Network Meta-Analysis

No. Number

NSCLC Non-Small-Cell Lung Cancer

ORR Objective Response Rate

OS Overall Survival

PD Transition from Disease Progression to Death
PFS Progression-free Survival

PH Proportional Hazards

PP Per Protocol

PPC Post-progression Censoring

PPS Post-progression Survival

Prob. Probability

QALY Quality-Adjusted Life Year

RCC Renal Cell Carcinoma

RCS Restricted Cubic Splines

RCT Randomised Control Trial

RMST Restricted Mean Survival

RPSFTM Rank Preserving Structural Failure Time Models
SD Transition from Stable to Death

SE Standard Error

SNM Structural Nested Models

Sp Transition from Stable to Disease Progression
STA Single Technology Appraisal

T+A Trastuzumab and Anastrozole (Combination therapy)
TA Technology Appraisal

TKI Tyrosine-Kinase Inhibitor

Trt Treatment

TSD Technical Support Document

TTP Time to Progression

xviii



Chapter 1: Why treatment switching is an important issue in
Health Technology Assessments

1.1 Treatment switching within Health Technology Assessment

1.1.1 Treatment switching in Randomised Control Trials

Within randomised control trials (RCTs) the term ‘non-compliance’ is widely used to
refer to a variety of issues; since it describes any deviation, in which patients depart from
taking the medication as specified in the protocol. Hence, ‘non-compliance’ encompasses
patients who discontinue treatments or never receive their randomised intervention.
Treatment switching, also known as crossover, is a specific form of non-compliance; as,
in the context of this research, it is when a patient switches to an alternative therapy (often
that of the other treatment arm) from that which they were randomised to. This change in
treatment arms could happen during any stage of the trial. Whilst it is common across
many disease areas for treatment switching to occur before the patient starts on their
randomised treatment, this thesis concentrates on the alternative situation; that is, where
treatment switching happens after the randomised treatment regimen has already started.
Recent research (Morden, 2009, Latimer, 2012) has shown that permitting patients to
switch treatment arms after the start of the first intervention is a complex methodological

issue, and highlighted further areas of work which this thesis seeks to address.

Conventional analyses such as intention-to-treat (ITT) and per protocol (PP) approaches
are frequently implemented to account for non-compliance. ITT is an approach whereby
a patient is analysed according to the intervention group they were randomised to,
regardless of whether they actually received that treatment. This gives a pragmatic
estimate, representing what is likely to happen in practice as not all patients would be
suitable to receive that particular treatment or take the treatments according to the
protocol. PP, therefore, provides a better estimate of the efficacy, as it purely analyses
patients according to the intervention received (and also providing that they complied
with the treatment protocol). This means that patients who do not follow the treatment
regimen as specified in the protocol are completely excluded. However, under this
approach, patients who switch treatment groups before the administration of any

treatment (and once again providing they follow the regimen for this new treatment



according to the protocol) are analysed as part of the treatment group to which they

switch.

As this research concentrates on treatment switching or crossover where the switch does
not occur at the start of treatment, patients will have experienced more than one of the
interventions being compared in the trial. This type of treatment switching in RCTs is
particularly common in trials for advanced or metastatic cancer or heart disease. In these

trials, the outcome is typically time-to-event.

Treatment switching in data assessed for a time-to-event outcome can have a profound
effect, especially when the treatment to which the patients are switching is considerably
more effective. Thus, crossing over to the alternative treatment can result in an increased
survival time. Under these circumstances adopting an ITT approach leads to the treatment
effect being underestimated (Morden, 2009). Simulation studies have shown that the
greater the proportion of patients switching, and the true treatment effect, the greater the

bias (Morden, 2009, Latimer, 2012).

Treatment switching or crossover in a RCT should not be confused with ‘crossover trials’.
It differs considerably from ‘crossover trials’ in which crossover is part of the overall
design. In a ‘crossover trial’ design, all patients should undergo both interventions. In this
way each patient can act as their own control. These studies are, hence, restricted to
chronic conditions as a patient must start the subsequent interventions in the same disease
state as they were for the first. Where this cannot be achieved, such as with curative
treatments or worsening conditions, crossover trials are infeasible. In contrast, for RCTs
with crossover (in terms of a treatment switch), crossover is not an inherent part of the
design (the analyst is not necessarily interested in how the patient responded under two
different treatment regimens), not all patients may switch and it is not intended to use the
patient as their own control. Moreover, it is typically permitted for ethical or practical
reasons, and given the conditions it occurs in, the patient is likely to be at a more severe

level of the disease when starting the second treatment.

1.1.2 Purpose of Health Technology Assessment
Health Technology Assessment (HTA) plays a vital role in today’s society. In the United
Kingdom, an intervention can only be prescribed by the National Health Service (NHS)
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if it has been reimbursed, following a recommendation by the National Institute for Health
and Care Excellence (NICE). Once an intervention is licensed, a manufacturer may
submit documentary evidence, known as the manufacturer’s submission, to the NICE
demonstrating the clinical- and cost-effectiveness of their intervention. Once this has been
submitted it is sent to an Evidence Review Group (ERG), typically an academic body
who review the evidence, conduct reanalysis where necessary and provide feedback to
the NICE committee. Following this, the evidence from the manufacturer and the ERG is
considered by the NICE committee, and a decision is made on whether to recommend the
treatment for reimbursement or not. The clinical and cost-effectiveness is usually based

on one or more phase three RCTs. These trials are known as the pivotal evidence.

1.1.3 Available methodology for use with data where treatment switching has

been permitted
1.1.3.1 Simple methods

1.1.3.1.1 Intention-to-treat

Intention-to-treat analysis (ITT) is a routinely used approach within the field of medical
statistics, and widely considered as the ‘gold standard’ for analysing RCTs (Gupta, 2011).
In an ITT analysis, all randomised subjects are included within the analysis, with patients
being analysed in the groups to which they were assigned at randomisation; regardless of
medical adherence, subsequent treatment withdrawal or protocol deviation (Fisher, 1990).
As the ITT approach includes patients who may not have complied with the protocol
within the treatment group, the true treatment difference will be attenuated. However, this
attenuation is typically accepted as it gives more pragmatic results. These are considered
reflective of the treatment effect that could be seen in the ‘real world’ as, in practice, not

every patient can be expected to strictly comply with protocol conditions.

1.1.3.1.2 Per Protocol

The Per Protocol (PP) method is another popular analysis used within RCTs, often
conducted as a secondary or sensitivity analysis to ITT. PP is the converse of an ITT
analysis. Whereas the ITT approach endeavours to give a pragmatic view, PP analysis is
purely concerned with measuring the efficacy of the treatment. Therefore, patients are
analysed according to the treatment they received, rather than that to which they were

initially randomised. In terms of adjusting for treatment switching in time-to-event data,



this can be conducted in one of two ways; patients who ultimately switched treatments
could be excluded entirely from the analysis, or alternatively their follow-up could be
included in the analysis up until the time that they switch, at which point they are

censored.

In theory, this approach could resolve the issues surrounding treatment switching in HTA
as it would only include the follow-up relevant to the decision problem (e.g. by excluding
patients who have unusual treatment pathways, or by ignoring the follow-up for any
alternative treatments). However, the complication is that patients do not switch at

random.

For example, one typical reason for control group patients switching is to allow them the
potential benefit of experimental intervention as a second-line / rescue medication. In
these circumstances the patients who do switch treatments will be those with a more
severe level of disease. Another common reason is to allow control patients the
experimental intervention after treatment un-blinding, if this has been demonstrated to be
superior. In contrast to the patient population who switched on progression, these patients
changing treatments after un-blinding are likely to be the stronger patients of the control
group, since they have already survived for a substantial part of the follow-up. This
introduces selection bias, breaking the randomisation, and causing misleading results.
Depending on the percentage of treatment switching, the selection bias can have profound
implications for the power of the study and, thus the level of uncertainty in the decision
problem. (Latimer, 2012). In addition, the approach by which treatment switchers are

excluded from the analysis also results in bias because it conditions on future events.

1.1.3.1.3 Treatment as Time Varying Covariate

This is a simple extension of the semi-parametric proportional hazards (PH) Cox model
(Cox, 1972), in which covariates are allowed to vary over time and is practically
implemented by partitioning each patient’s survival time into intervals based on which
treatment they received at that timepoint (Cox, 1984). Since this method extends a
commonly used survival model, it is easy to implement and understand. The treatment
covariate is recorded as a binary variable, with zero typically representing the control
intervention and one, the experimental treatment regime. This covariate is a function of

time, allowing patients to change from one treatment to another.
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The model can be written in the form,

2:(8) = 2A0(t) exp(B x; (D)) (1-1)

Where A represents the hazard, A, the baseline hazard and x;(t), the binary variable for
intervention as described above. It should be noted that x;(t) is a function of time and

thus allows the individual to change from one treatment to the other.

To estimate the effect of the treatment, each patient’s survival time is entered in according
to the duration they had spent on that particular treatment. This approach, however,
suffers similarly to PP when applied in a treatment switching context, if crossover is
related to the patient’s prognosis. Once again, this relationship violates randomisation and

introduces often considerable selection bias (Morden, 2009).

1.1.3.1.4 Summary of the Simple Methods

The simple approaches are all popular, regularly implemented techniques within the
analysis of RCTs. Hence, the concepts and findings can be easily understood and
interpreted by a variety of people, including those in the pharmaceutical industry and
decision-makers. However, in the presence of treatment switching from the control group
to the intervention arm, the ITT analysis does not give the comparison required for
decision-making. The other two approaches (PP and Treatment as a Time Varying
Covariate) ‘adjust’ for changes in intervention, and therefore allow for the comparison of
current versus potential (i.e. ifthe experimental intervention is introduced) NHS practice.
Nevertheless, because of the nature of treatment switching (it does not occur randomly)
randomisation is typically violated and results are considerably biased. As previously
mentioned, this bias compromises the statistical power, and has severe implications on
the uncertainty in the decision problem. Recent research (Latimer, 2012) has concluded
that these methods, despite being used most commonly, are not appropriate analyses for

inclusion in HTA submissions when treatment switching has occurred.

1.1.3.2 Complex Methods

This section discusses some more complex methods developed for addressing non-
compliance within studies, that were also considered potential approaches for adjusting
for treatment switching (Morden, 2009, Latimer, 2012). Of particular interest are some

randomisation-based techniques which have been especially developed in order to
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preserve the randomisation of the trial, two observational methods, originally designed to

be used on observational datasets, and a two-stage method.

1.1.3.2.1 Adjusted Cox Model (Law and Kaldor, 1996)

Law and Kaldor (1996) proposed the Adjusted Cox model, another extension of the
popular Cox model (Cox, 1972). A benefit of this method is that switching from either
group can be modelled. Initially, from a non-statistical point of view, this method appears
very intuitive as patients are grouped according to which treatment they received first and
whether they switch treatments. This results in four groups: those who remain on the
control intervention through the trial; those who only receive the experimental
intervention; those who switch from the control intervention to the experimental
sometime throughout the trial; and those who switch from the experimental group to the
control. The previously mentioned Cox model with treatment as a time-varying covariate
is then fitted. Given that the Cox model is a PH model, the PH assumption must hold. The
underlying hazards of switchers and non-switchers are assumed to be multiplicative

factors.

Whilst the Adjusted Cox Model seems intuitive, there are statistical flaws; in particular
that by grouping switchers, a treatment switcher’s hazard of dying is zero until their time
of switch. This is because a patient cannot switch once they have died; therefore, the
model prohibits them from dying until they have switched. However, this is not
appropriate as the patient would always have been at risk of dying. Another fundamental
assumption of survival models, which it violates, is that which states that stratification or
conditioning cannot be based on future events as, otherwise, it leads to immortal time bias

(Lévesque, 2010).

1.1.3.2.2 Causal Proportional Hazards Estimator (Loves and Goethebeur, 2003)

The Causal Proportional Hazards Estimator (Loyes and Goethebeur, 2003) is restricted
to scenarios with all-or-nothing compliance. ‘All-or-nothing compliance’ means that a
patient’s switch is said to occur at time zero, and so a patient can only receive one
treatment. This is because the method divides the treatment group into compliers (those
who adhered to their allocated treatment regimen) and non-compliers (those who changed

interventions). In addition, the Causal Proportional Hazards Estimator can only adjust for



switching in one trial arm. This latter point should not affect the decision problem too
adversely as it is only strictly necessary to account for ‘crossover’ in the control arm to
ensure that this reflects current NHS practice. The ‘all-or-nothing” compliance does,
however, impede this method being used in practice; as in the context of this research,
patients switch at a time later than the start of the study (e.g. disease progression) which

violates this assumption, and thus leads to bias.

1.1.3.3 Randomisation Based Methods
1.1.3.3.1 Rank-Preserving Structural Failure Time Models (RPSFTM)

Robins and Tsiatis (1991) published a paper discussing a class of models, known as ‘Rank
Preserving Structural Failure Time Models (RPSFTM)’. The principle benefit for their
use in a treatment switching context is that they endeavour to adjust for crossover, whilst
preserving the randomisation of the trial. A RPSFTM is a particular type of Accelerated
Failure Time (AFT) model. With an AFT model, the covariate of interest is assumed to
have a multiplicative effect on the underlying survival time, rather than assuming PH. In

other words,
S1(t) = Sz(at) (1-2)

Where the multiplicative effect, « is referred to as an acceleration factor. The acceleration
factor is interpreted as the extent to which a patient’s life is accelerated by the covariate

of interest.

The principle benefit of using a RPSFTM in a treatment switching context is that they
adjust for crossover, whilst preserving the randomisation of the trial. The RPSFTMs aim
to model the patients underlying survival time assuming they received no (or more often,
the control) treatment. These underlying survival times are referred to as the
‘counterfactual’ times. A patient’s observed survival time (be it through death or
censoring) will be denoted as, 7, and their counterfactual time, as U. It should be noted
that 7"is known as this comes directly from the data, whereas U is unknown. 7 and U are

then related in the way described below.

For patients who have only experienced the control treatment during the entire study,
T=U (e.g. the time they would have lived had they only received the control intervention

is what was actually observed).



Provided that the counterfactual times can be assumed independent of randomisation, the
observed time for a patient is expressed as the sum of the time the patient spent on the
control treatment, T and the time spent on the new treatment, Ty (shown in Equation 1-

3).

T = TC + TN (1-3)

Typically, treatment switching research only considers treatment switching mechanisms
where only the patients in the control group can switch, this means that for patients

randomised to the new intervention, their time on the control treatment is zero.

The following causal model is used to relate the observed and counterfactual times.

U=T;+exp(—y) Ty (1-4)

The factor, exp(—), referred to as the acceleration time, can be interpreted such that
values less than one indicate a protective effect, whilst those above one, signify a harmful

effect.

A binary process X;(?) is defined, which takes the value one when a patient receives the
experimental intervention and zero otherwise. The equation for the causal model can be

written in the form (given in Equation 1-5):

T;
Ui:f exp[ ¥ X;(t)] dt (1-5)
0

The method uses a test-based approach, whereby plausible values for i are tested.
Initially the counterfactual times are calculated for each patient based on the current
estimate for 1. The test statistic, Z(y) for that value of y using a specified statistical model
is then computed. Potential tests include the log rank test, Cox, exponential or Weibull
models. This process is repeated using different values of y until a value of y is found
such that Z(y) = 0 and hence balances the counterfactual times between the two trial

arms.

A fundamental and largely untestable assumption of the RPSFTMs, which gives the

method its name, is that two patients receiving the same treatment regimen must follow
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the same pattern if both had received the alternative treatment. In other words, in a pair
of patients receiving the same treatment, the patient who died first would always follow

this pattern, regardless of which of treatment both patients had received.

Another more vital assumption of these models is that that they assume a ‘common
treatment effect’. In other words, patients experience the same treatment effect, regardless
of when they start receiving the treatment. Therefore, patients switching to a treatment
benefit as much as those initially randomised to that intervention. This assumption may
well be violated in the context of this research, as often patients switch on disease
progression. Therefore, treatment switchers will start on the new treatment at a more
severe level of disease than patients initially randomised, and are consequently less likely
to benefit as much. Another consideration is whether treatment switching is related to
prognosis (as it often is in the case in the context of this research), since in these
circumstances RPSFTM findings are subject to bias unless the data is re-censored (White,

1999).

As an AFT modelling approach is used, an acceleration factor is obtained, rather than the
more commonly presented hazard ratio (HR). However, particularly when submitting the
results as part of a NICE TA, it is more usual to convert this acceleration factor to a HR.
This is often achieved by calculating the counterfactual dataset using the estimated
acceleration factor, and then fitting a standard Cox (1972) (or Weibull PH (Collett, 2003))
model to the data. Whilst this produces a satisfactory point estimate, the standard error
(SE) obtained from the model would be too precise. Therefore, standard practice is to
calculate the SE, by ‘preserving the p-value’. This essentially means that the p-value and,
thus test statistic, are retained from the ITT analysis, and the SE calculated from these

and the point estimate. The practical calculation needed is described in Section 4.8.2.4.

1.1.3.3.2 [Iterative Parameter Estimation Algorithm (IPE)

Whilst this method is a distinct method in its own right, in practice the Iterative Parameter
Estimation (IPE) Algorithm is often grouped with the RPSFTMs (Branson and
Whitehead, 2002). This is because RPSFTM and IPE use exactly the same underlying
theory; the key difference is the estimation process. Rather than using a test-based

approach, the acceleration factor is computed using a likelihood-based technique.



A parametric failure time model, such as a Weibull, log-logistic, log-normal or gamma
distribution, is fitted to the data to compare treatment arms, similarly as would be done
in an ITT analysis. This estimate can be used as the initial value for the acceleration factor,
e¥. This factor is then applied to the time estimates, and the same chosen model fitted
once again, giving a revised estimate for 1. The time estimates are adjusted by this revised
estimate, the model refitted, and a new estimate for 1) obtained. This process is repeated
until at last the estimate for Y converges. Re-censoring is important particularly in the
model fitting process (e.g. when adjusting the observed survival time estimates). Whilst
bootstrapping is recommended for obtaining the SE, it can be computationally time
consuming, and so alternatively the SE could be calculated from the final regression

model. Computing the SE this last way will result in a smaller SE.

Alongside the ‘common treatment effect’ and ‘rank preserving’ assumptions described in
Section 1.1.3.3.1 for the RPSFTM, the IPE has the additional condition, that the
parametric form must be appropriate for the survival estimates. This last condition is
testable, and thus it is essential to check the parametric model is a suitable form for the

data.

1.1.3.3.3 Parametric Randomisation-Based Methods

Like the IPE, this approach (Walker, 2004) uses a parametric distribution, but for this
method three models are now used. These include a causal model which relates a patient’s
counterfactual time, U, to their observed failure time; a model for the association between
U, the counterfactual times, and the test statistic Z (this is typically a bivariate frailty
model, either positive stable or gamma); and a marginal cumulative hazards model.
Whilst a maximum likelihood estimate approach could be used in this method, it is
extremely sensitive, and hence augmented models are recommended to maintain the
randomisation balance between groups. Additionally, these augmented models are more

robust if the parametric model has been mis-specified (Morden, 2011).

1.1.3.4 Observational Methods
Once prognosis-related treatment switching occurs, randomisation has been violated and
thus the trial becomes more like an observational study. Thus, certain methods designed

specifically for observational studies were suggested, provided that the RCT data contains
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the necessary information (i.e. satisfactory for confounding control). These approaches
may be particularly useful when the ‘common treatment effect” assumption does not hold.
That is to say, patients who switch receive a different (possibly attenuated) treatment

effect to those randomised to that treatment.

1.1.3.4.1 Structural Nested Models (Robins, 1998)

Structural nested models (SNM) are causal models which have been designed to estimate
a time-dependent treatment effect for a survival endpoint when time-dependent
confounding is present (Robins, 1998). The underlying theory is that, by conditioning on
covariates and previous treatment history, the treatment becomes randomly assigned. As
with the RPSFTM and IPE, an AFT structure is used, alongside counterfactual survival
times, and with exposure to treatment accelerating the time-to-event by the factor, e ™¥.
One advantage of SNMs is that time-varying covariates can be included. This method
also requires the specification of when a patient becomes at risk of switching treatments.
Two key assumptions of this model are that: the counterfactuals are independent of
exposure to treatment; and that there are ‘no unmeasured confounders’ (the idea that all
possible factors leading to treatment switching are included within the dataset, and can,
therefore, be conditioned on). This last assumption may be a limitation of using SNMs in
RCTs, as the datasets are often considerably smaller than observational studies, and thus
it is difficult to assess the suitability of this assumption using the observed data. This can
also be particularly problematic if the confounders change over time, as they would need
to be recorded. As with the RPSFTM, g-estimation is typically used to predict the
acceleration factor, by determining the value of Y for which the counterfactual time and

treatment exposure become independent.

1.1.3.4.2 Inverse Probability of Censoring Weighting (Robins, 2000)
In contrast to SNM, Inverse Probability of Censoring Weighting (IPCW) utilises a PH

modelling approach, rather than an AFT model (Robins, 2000). It is useful in accounting
for informative censoring, as uncensored observations are up-weighted based on
similarity of their covariate values those of the censored patients. This weighting aims to
remove selection bias, by up-weighting uncensored patients. In the context of treatment
switching, patients who switch tream, are artificially censored at the time of the treatment

switch. The weights are then included in a standard analysis such as the Cox model, with
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treatment as the exposure, to obtain the estimate of the treatment effect, adjusted for

Crossover.

The IPCW also relies on the ‘no unmeasured confounders assumption’ in order to
appropriately calculate the weights. However, this is generally untestable in the data that
are available. In addition, given that this approach was originally designed for
observational studies which are often considerably larger than RCTs, there may be
problems when calculating the weights; this often occurs when there is an especially large
proportion of patients switching treatments, or rare covariate values. In these cases, the

weights often become very large and potentially unstable.

1.1.3.4.3 Two Stage Method (Latimer, 2012)

This approach (Latimer, 2012) is the most recent method proposed for treatment
switching, and is reliant on the existence of a relationship between treatment switching
and disease progression. As apparent by its name, it comprises of two stages; the first
stage treats the data as a randomised trial, whilst the second stage, analyses the data as if

it were an observational study.

It is imperative that a secondary baseline time, namely disease progression, exists. For
the patients in the control group, the difference in survival time from this secondary
baseline between switchers and non-switchers is modelled, using an AFT model. Once
this difference has been obtained, the survival times for treatment switchers (post-
secondary baseline) is adjusted accordingly. When added to the pre-secondary baseline
time, this gives a revised survival time for treatment switchers. Using this adjusted
dataset, a standard survival model can then be fitted to obtain an estimate for the treatment

effect, having accounted for crossover.

The ‘no unmeasured confounders’ assumption must hold at the secondary baseline
(usually at disease progression), and patients must switch soon after this baseline in order
to avoid time-dependent confounding. For disease areas such as advanced or metastatic
cancer, this is often the case; e.g. in practice patients will switch treatment soon after
disease progression or not change at all. It also requires that data are available at the time
of switching, and ideally post-switch, for the second stage of the method. This can be

problematic in RCTs, when follow-up post-progression is more limited
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1.1.4 Impact of the methodology for treatment switching within Health

Technology Assessment

1.1.4.1 Effect of treatment switching on Health Technology Assessment submissions
Treatment switching has considerably less impact for regulatory bodies, such as the Food
and Drug Administration (FDA) or European Medicines Agency (EMA) than for
reimbursement agencies, like NICE. This is because the regulatory bodies’ main concern
is that an intervention is safe, and hence they consider estimates of progression-free
survival (PFS) are satisfactory evidence. Whereas, reimbursement agencies are
principally interested in two related areas: the intervention’s efficacy over a lifetime
horizon (i.e. an average patient’s lifetime) — estimated from overall survival (OS) — and
its cost-effectiveness. Both of these are affected by treatment switching (Jonsson, 2014).
As explained earlier, if patients switch to a superior treatment at disease progression, the
true efficacy is underestimated. Including this underestimate within cost-effectiveness
analysis (CEA) can lead to exceptionally high and very sensitive estimates for CEA. A
clear example of this occurred in one Technology Appraisal (TA), TA169 (NICE, 2009a),
submitted to NICE in Renal Cell Carcinoma (RCC) where the Incremental Cost-
Effectiveness Ratio (ICER; a measure of the extra cost in pounds gained for every extra
quality-adjusted life year (QALY)) ranged between £29,440 — within NICEs £30,000 per
QALY willingness to pay threshold — to £104,715. This variation was largely caused by
the way in which the OS data was used in the CEA model. The ERG group’s estimate of
£104,715 was obtained only using the ITT estimates for OS; whereas the manufacturer
applied the same adjustments used to improve PFS model fit, to the OS data, which gave
the lower estimate. Other methods (including PP) resulted in estimates around £71,000

per QALY (NICE, 2009a).

The immense uncertainty about the cost-effectiveness, due to treatment switching, has
ramifications for decision-making. Decision-makers must either refuse to recommend the
intervention or, more often, request further evidence; thereby delaying the decision until
more evidence can be provided on which they can make a more certain decision.

Therefore, this impacts on the wider society as it means patients are either denied or
required to wait longer for a new potentially cost-effective intervention. In particular, in
oncology, these are patients with advanced or metastatic cancer, who have a poor
prognosis and who would benefit from receiving these interventions as soon as practically

possible.

13



Figure 1-1: Real-world problem with and without treatment switching

N
Standard treatments New treatment A

L available on the NHS ) not available on the NHS

Current NHS practice —
standard interventions
(no new intervention)

Potential NHS practice
with new intervention

Current NHS practice — Potential NHS practice
standard interventions with new intervention
(no new intervention) (standard intervention

could also be given)

Not representative of current NHS practice
(patients received treatments which can’t be
prescribed on NHS)

Potential NHS practice
with new intervention

A) treatments compared in the real-world problem; B) the real-world decision problem
of interest (without any treatment switching); C) the real-world decision problem of
interest, remains unaffected despite treatment switching from the ‘new intervention’
group, D) real-world problem as it stands with treatment switching in the control group,
this no longer represents the relevant decision problem.
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Historically, there has been some doubt as to why an ITT approach is unacceptable for
decision-making; primarily because it is the traditional approach employed to account for
non-compliance or drop-outs, and believed to give pragmatic estimates. Although the true
treatment effect is naturally attenuated, this attenuation is seen as representative of
practice (as not all patients would strictly adhere to the treatment regimen set out in the
protocol). However, the key issue is that the ITT analysis does not address the decision-
problem in question; which is to directly compare current NHS practice (where the
intervention being assessed cannot be prescribed to the general public), to the scenario
where it could be prescribed. Using estimates for the standard treatment, where some
patients have switched to the intervention being assessed violates this. Therefore, it is not
an appropriate comparison, nor the basis for the reimbursement decision as the decision
to not recommend is potentially based on the improvement the patients in the control
group have received by switching to the experimental intervention. This is shown

diagrammatically in Figure 1-1.

1.1.4.2 Evaluation of methodology and current recommendations within the United
Kingdom

Given the variety of methods, and the differing levels of complexity, this issue was
prioritised by NICE, and consequently a simulation study was undertaken to compare a
range of approaches (Morden, 2009). This original simulation compared nine different
methods (ITT; PP: excluding and censoring switchers; treatment as a time-varying
covariate; adjusted Cox model; Causal proportional hazards estimator; RPSFTM: log-
rank, Cox, Exponential and Weibull; IPE algorithm; and Parametric randomisation-based
methods) over sixty-four scenarios. The findings indicated that the simple techniques
performed extremely poorly. Whilst the ITT approach grossly underestimated the true
treatment effect; PP methods and including treatment as a time-varying covariate proved
exceptionally biased. Of the more complex methodology, which method proved the most
accurate still remained unclear; although the IPE was tentatively suggested as perhaps the

most reliable.

A second simulation study (Latimer, 2012) was conducted with the aim of expanding the
previous investigation. This further research had several differences to that of Morden
(2009). In particular, the study included a more complex data generation technique, and

encompassed more methods for addressing treatment switching and scenarios. The
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simulated data allowed for the patients’ survival time to be time-dependant and related to
patient’s treatment and prognosis. This change in technique improved the realism of the
simulated data, and hence rendered the conclusions more generalizable to current
practice. A change in the data also permitted the investigation of more observational
methods, such as SNM, IPCW and the two-stage method. A follow-up simulation study
to this second one has since been performed to explore further scenarios and increase the

evidence base (Latimer, 2017).

The conclusions formed by Latimer (2012) were broadly similar to the Morden study in
that simple methods yield considerable bias, and no one method proves itself to be the
best-performing approach over all scenarios. This simulation study demonstrated that
there are a core of the more complex methods that work consistently well, providing that
their assumptions or criteria are fulfilled. These methods consist of the RPSFTM (or their
parametric equivalent the IPE), the IPCW and the two-stage method; all of which are very
different in approach and data requirements. For example, to use the RPSFTM, the
‘common treatment effect’ assumption must hold; whilst for the IPCW, the ‘no
unmeasured confounders’ assumption must be valid. These findings were reaffirmed by

Latimer’s second simulation study (Latimer, 2018c).

As discussed, the recommended approaches greatly vary in their methodology; however,
they also differ considerably in the estimates they give. An illustration of this occurs with
TA215 for Pazopanib as a treatment for RCC (NICE, 2011). The HR for the [IPCW was
0.642 (0.266, 1.248), compared with 0.310 (0.073, 1.715) and 0.501 (0.136, 2.348) for
the unweighted adjusted and weighted unadjusted RPSFTMs respectively.

The considerable differences, between the estimates, fuel the reservations concerning the
application of the methods and their validity in a specific context (Latimer, 2016). NICE
have, more recently, begun to advocate methods for addressing treatment switching (Van
Engen, 2014), where necessary. A Technical Support Document (TSD) has been
published (Latimer, 2014), to provide advice on addressing treatment switching, and the
theoretical and practical application of the recommended methods. These
recommendations directly follow from the former simulation studies. In addition, the
TSD stresses choosing a method whose criteria agree with the data, testing all potentially

appropriate recommended approaches, and the importance of providing valid justification
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for the final choice of statistical model. Latimer (2015) describes how analysis with
recommended methods may still be dismissed by NICE in the event that it is not deemed
appropriate. Discussion with stakeholders has reinforced the need for appropriate and
adequate justification for the choice of methodology, as a measure to improve
transparency and acceptability to decision-makers. Consequently, this has been a key area
of recent research for Latimer et al. (Bell, 2014, Bell, 2015, Watkins, 2016, Latimer,
2018a, Latimer, 2018b).

1.2 Objectives and structure of the thesis

1.2.1 Objectives
The key aims of this thesis are to:

1) Determine the impact that previous research has had on methods used to
analyse data with treatment switching in NICE TAs;

2) Assess changes with regard to the use of secondary analysis, namely indirect
comparisons (IC) or mixed treatment comparisons (MTC), and in the type of
treatment switching occurring;

3) Evaluate the impact the inclusion of biased estimates might have on an IC;

4) Develop methodology to address treatment switching when only summary
data are available;

5) Investigate the effectiveness of these methods, particularly for alternative

secondary analysis such as proving PFS as a surrogate for OS.

1.2.2 Thesis structure
Chapter 1 aims to introduce the background to treatment switching, and its effect on HTA.
It highlights the variety of methods that can be used and discusses previous research in

this field.

Chapter 2 addresses the first two objectives (the impact of previous research on NICE
TAs, and frequency of ICs and MTCs in NICE TAs) set out in section 1.2.1, by updating
and extending previous reviews of NICE TAs of interventions for advanced or metastatic
cancer. It primarily looks at the prevalence of treatment switching, and the methodology

used to analysis the data, also stratifying into key time periods.
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Chapter 3 sets out key background as to why including inappropriately analysed methods
in secondary analysis might be particularly hazardous; and evaluates the impact of
conducting ICs using adjusted and / or unadjusted estimates (Objective 3). It then
describes previous approaches that have been taken to adjust for treatment switching,

when only summary data are available, and the limitations of these.

A substantial amount of methodological development was required to address these
limitations, and is explained across Chapters 4 and 5. This was achieved by generating
simulation techniques for reconstructing individual patient level data (IPLD). Initially, in
Chapter 4, the approach was developed and evaluated to produce IPLD for one outcome.
This was then extended considerably more (Chapter 5) so as to create paired data using
an ‘illness-death’ modelling approach. To accomplish this aim, it was necessary to
establish how the method could be implemented depending on the summary information
available. This novel methodology can then be used to address Objective 4 (accounting
for treatment switching appropriately when only summary data are available) of the

project.

The penultimate chapter (Chapter 6) focuses on the last aim of the thesis, and considers
the impact treatment switching has on proving surrogacy. Consequently, it uses a case-
study in Non-small-cell lung cancer, to show the impact using revised ITT estimates,
which account for treatment switching appropriately. It also highlights issues analysts can
face due to differential reporting, and gives suggestions for how to overcome them, also
detailing the final modifications and extensions that must be made to the approach.

The final chapter (Chapter 7) is divided into two sections. The first describes
recommendations for features that should be consistently reported in time-to-event trials.
This is stratified further depending on the trial characteristics, e.g. data with treatment
switching, secondary analysis including studies with treatment switching, or just survival
analysis in general. These recommendations draw heavily on material from Chapters 2
and 6. This initial section also describes the process of identifying the important
information about treatment switching from publication, how to determine whether it is
possible, and if so, how to adjust for treatment switching based on the information
available. The second part of the chapter summarises the research presented throughout

the thesis. It discusses the uses, strengths and limitations of the methodology, their
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implications on current practice and places it in context. Finally, suggestions for future

work are described.
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Chapter 2: The effect of treatment switching in practice and
the reporting of studies with treatment switching

2.1 Chapter overview

This chapter starts by examining the prevalence of treatment switching in NICE TAs, and
describes how the methodology has changed, particularly since the publication of former
research (Morden, 2009, Latimer, 2012) by reviewing cancer TAs submitted to NICE. It
updates previous reviews, and includes all relevant TAs published before January 2017.
It also considers how prevalent ICs and MTCs are, and how these characteristics
(treatment switching and comparisons) affect the recommendation. The second part of
this chapter considers the evidence that is available with regard to treatment switching
studies, by further examining a subset of the TAs identified in the first part. It concentrates
on understanding what information is presented at different levels of evidence (e.g. TA
summary report, Manufacturers Submission, trial publication etc.). In particular, the focus
was on determining what information was routinely reported relating to the reasons for

and proportion of treatment switching.

2.2 Changes in practice with regard to methodology for studies with
treatment switching

2.2.1 Review of National Institute of Health and Care Excellence Technology
Appraisals

2.2.1.1 Purpose of the review

2.2.1.1.1 Background

As part of his research, Latimer (2012) reviewed TAs submitted to NICE of non-
screening or non-surgical interventions for advanced or metastatic cancer or cancer of all
severities, which had been submitted to NICE between 2000 and 2010. This consisted of
forty-five appraisals (thirteen not having fulfilled the inclusion criteria). Of these, twenty-
five were identified as containing treatment switching. Further investigation found that
the general approach was to: (1) ignore treatment switching completely; (2) to identify it
as an issue but not adjust; (3) use an ITT approach; (4) employ PP methods (either
excluding switchers completely from the analysis or censoring switchers at the time of

switch); or (5) on rare occasions use Ad Hoc methods such as case-mix, using reference
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data for the control arm; or exploiting PFS. Only one TA published within this time-frame
applied methods that were later recommended which included a RPSFTM and the [IPCW
(the two-stage method having been proposed subsequent to this time). Following the
completion of this review, two further appraisals were published which had included
analysis using an RPSFTM. This slight change followed the publication of the Morden
simulation study (Morden, 2011), and could imply an increase in awareness of the

methods for treatment switching, and the relevant merits of each.

Another review was undertaken to update the Latimer review up to May 2013 (Boucher,
2013b). Of the thirty-six TAs published after 2010 which met the inclusion criteria, there
were ten appraisals with treatment switching. As previously mentioned two had used a
RPSFTM in addition to simple methods of adjustment, and one further appraisal
published in 2011 had explored using both an RPSFTM and IPCW. However, both
Latimer’s conclusions (Latimer, 2012) and TSD recommendations (Latimer, 2014) insist
that adequate justification is given for which method is used. This is vital in view of the
widely differing results the methods may yield. Nevertheless, the justification for the final
choice of method relies on the RSPFTM having been viewed as suitable in an earlier
appraisal rather than the methodological requirements having been fulfilled. If, in this
case the common treatment effect did not hold, then even though a currently
recommended method had been employed, the results from this analysis could still remain

biased.

In addition, this second review (Boucher, 2013b) had a further focus; to identify the effect
of secondary analysis in studies where the pivotal evidence (that is the trial or trials used
to provide evidence of the intervention’s clinical and cost-effectiveness, and on which
decisions are primarily made) contained treatment switching. The motivation for this was
that including estimates within secondary analysis can give misleading results, if
treatment switching has not been appropriately accounted for. Given the importance of
adjusting estimates for treatment switching, and the lack of using appropriate
methodology, this situation was highly likely to have occurred. For the purpose of this
review, the ‘secondary analysis’ was restricted to the use of IC. Since an IC compares
two or more interventions, if at least one trial for each intervention is biased due to

inappropriately adjusted treatment switching, the final estimates for the IC will be
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inaccurate. However, this inaccuracy will become even more pronounced if one of the

trials has been adjusted, whilst the other studies have not.

This review found that, over thirteen and half years, thirteen appraisals where crossover
was an issue in the pivotal evidence had also conducted an IC. Of the eleven appraisals
for which information about the additional studies included in the IC could be found, all
contained at least one trial where treatment switching had been permitted. Of these trials,
for which only the reported analysis was available for inclusion in the IC, no
recommended method had been used. Where methods for treatment switching had been
employed, these were either ITT or PP approaches. In at least one circumstance, the
method that was used was dictated by the data collection (Steineck, 1990), as the paper
stated that no information was recorded on patients once they had switched. Due to the
lack of adjustment in HTA submissions, in general, the pivotal evidence had not been

adjusted appropriately either.

As already stated only TAs where treatment switching occurred within the pivotal
evidence were investigated further for ICs, and consequently for the inclusion of
summary data with treatment switching. The motivation for scrutinising TAs with
treatment switching, was that if the pivotal evidence contained crossover, it was highly
likely that some of the other trials incorporated through the IC would also have allowed
treatment switching. However, this might well underestimate the actual number of TAs

with ICs including summary data with unadjusted crossover.

2.2.1.1.2 Aims of this review

This review aims to assess:

1) How common it is for pivotal evidence in NICE appraisals in interventions for
advanced or metastatic cancer to contain treatment switching, and whether this

has changed since 2010.

2) Which methods are tried (i.e. tested on the data, but not necessarily chosen as
the final method) in practice on data with treatment switching, particularly for

appraisals published since 2010.

3) The impact treatment switching has on the recommendation and if this varies by

adjustment method.
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4) How common it is for IC / MTC to be conducted as part of a NICE appraisal in

interventions for advanced or metastatic cancer.

5) Whether conducting an IC / MTC when the pivotal evidence contains treatment

switching potentially impacts on the recommendation.

2.2.1.2 Inclusion / exclusion criteria
For the review, the studies included will be identified using the following inclusion /
exclusion criteria:
Inclusion
e TAs published by NICE between January 2000 and December 2016
e Complete appraisals

e Appraisals assessing interventions for treating cancer patients.

Exclusion
o TAs labelled as ‘terminated’.
e Appraisals in disease areas other than cancer
e Appraisals for surgical or screening interventions.

e Appraisals for treatments exclusively aimed at adjuvant or early cancer patients.

2.2.1.3 Review findings

In addition to the 81 TAs identified in previous similar reviews (covering TAs published
between January 2000 and May 2013), a further 53 TAs were found; bringing the total to
134 eligible TAs. TAs are reviewed periodically, and the guidance replaced. Therefore,
for several TAs, particularly between 2000 and 2003, it was not possible to obtain the
original reports and hence relevant information on these (unless previously described in
the Latimer review (Latimer, 2012)) These replaced or subsequently withdrawn TAs are

given in Table 2-1.
There are a considerably high number of TAs, 30, published in 2016 (as can be seen in

Figure 2-1). However, several of these were re-evaluating and reviewing interventions

from previously published TAs.
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Table 2-1: TAs which have been replaced or withdrawn by year

Year of Publication TAs which have since been replaced or withdrawn
2000 TA17

2001 TA26

2002 TA37 TA45 TAS0 TAS54

2003 TA62 TA65

2008 TA147

2012 TA241

2013 TA296

2016 TA376

A list of the TAs included in the review can be found in Appendix A.

2.2.1.3.1 Prevalence of treatment switching in pivotal evidence

Of the 134 TAs, 55 (41%) used trials with treatment switching for the pivotal evidence.
Interestingly, the proportion of TAs with treatment switching has decreased slightly over
each of the reviews (55.6% for TAs between 2000 and 2010 (Latimer, 2012), 36.1%
between January 2010 and May 2013 (Boucher, 2013b), and 31.5% for May 2013 to end
of December 2016).

Figure 2-1: NICE TAs with and without crossover, stratified by year

NICE TAs with and without crossover,
stratified by year of publication

No. of appraisals

5
N A A AN R rE e

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Year of Publication

® Without crossover m With crossover

Whilst the overall proportion of treatment switching may have decreased slightly, Figure
2-1 shows clearly that treatment switching is a consistently occurring phenomenon with

at least one TA each year containing pivotal evidence with crossover.
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2.2.1.3.2 Methodology used on treatment switching data in pivotal evidence

To understand the impact the previous research has had on the methodology and for ease
of reporting, the timescale has been divided into four periods: 2000 —2009; 2010 — 2012;
2013 —2015; and 2016. The reasons for these are presented in Table 2-2.

Table 2-2: Choice of cut-points for the timescale

Time period Motivation for cut-point

2000 — 2009 | Time period prior to research on appropriate statistical methods for adjusting
for treatment switching.
2010 — 2012 | Initial research on treatment switching methodology; discouraging the use of
simple approaches for treatment switching.
2013 —2015 | Subsequent research on treatment switching methodology; establishing
recommended methods, NICE and TSD guidance, and publicising them.
2016 Guidance now established and publicised.

Figure 2-2: Treatment switching methods in NICE TAs

Number of times particular methods have been used on the
pivotal evidence of a NICE TA, stratified by time period

*This does not indicate that it was the final method chosen
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In the first time period (2000 — 2009), a number of different methods were employed,
though rarely any of those currently recommended. Since 2009, the methods fall into two
categories: (1) the use of an ITT approach or no additional adjustment for treatment
switching (not advocated to account for crossover); or (2) one of the recommended

methods (RPSFTM, IPCW or two-stage). For the recommended methods, there is some
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suggestion of a trend over time. Initially, between 2010-2012, the RPSFTM was the most
popular of the three recommended methods (three examples compared to, one IPCW and
no two-stage). However, more recently, applications have become more balanced across
all three methods. This also highlights how manufacturers are testing different methods,
as well potentially reflecting a deeper level of understanding about treatment switching
issues. In the 2010-2012 time period, the choice of the RPSFTM was often justified by
saying that this method had been deemed appropriate by NICE in other TAs (e.g. TA215
(NICE, 2011)), rather than checking the different model assumptions and data
requirements, where possible. Nevertheless, there is some evidence that the choice of
model is now becoming a more informed decision, based on relevant assumptions and

data requirements.

2.2.1.3.3 Use of secondary analyses in pivotal evidence

The secondary analyses that often appear in TAs are ICs or MTC / network meta-analyses
(NMAs). Figure 2-3 shows how their usage has increased over time since 2006 (when
they first appeared), to the extent that in the last two years, there were more TAs which
reported comparisons than those which did not. Figure 2-4 demonstrates the breakdown,
per year, of comparisons into ICs and NMA. Until 2011 and between 2013 and 2014, all
comparisons were ICs; in 2011 and 2012, the comparisons were evenly split between ICs
and NMAs. The years 2015 and 2016 show the greatest number of NMAs, and also a high

number of ICs.

Figure 2-3: Comparisons (indirect or mixed treatment) in NICE TAs

Number of TAs stratified by calendar year and
whether or not a IC / NMA had been conducted
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Year of Publication
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Figure 2-4: Type of comparison used in NICE TAs

Number of TAs using IC, MTC and NMA
stratified by the analysis method

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

No. of TAs

Year of Publication

IC ENMA / MTC

2.2.1.3.4 Notable example (TA417)
TA417 is a particularly informative example (NICE, 2016). This TA evaluated the use of

Nivolumab for previously treated advanced RCC patients. Although the pivotal evidence,
the CheckMate 025 trial (Cella, 2016), did not permit treatment switching, the NMA the
manufacturer conducted contained several trials which had (e.g. TARGET and
RECORD-1). In this TA, the manufacturer wished to also present a crossover-adjusted
NMA. For some trials, estimates accounting for treatment switching had been reported,
e.g. RECORD-1 which presented an RPSFTM analysis. However, no such similar
appropriate analysis existed for the TARGET trial (Escudier, 2009b), and thus the
manufacturer settled on using the immature OS data as this was known to not be affected
by treatment switching. Nevertheless, the use of this data has been criticised, because of

its immaturity.

A vital point to this example is the manufacturer’s awareness of the issues of treatment
switching, and potential dangers in including unadjusted results in the analysis. It is
important that they have tried to account for treatment switching, but evident that there
are limitations to performing ‘crossover-adjusted’ comparisons (e.g. ICs, NMAs) when

summary data estimates have not been reported using appropriate recommended methods.

27



2.2.1.3.5 Recommendations by NICE

For the purposes of the previous review (Boucher, 2013b), the type of recommendation
was classified into two categories: (1) positive; or (2) negative. The definitions were as
follows:

e Positive recommendation: any recommendation that the intervention be
reimbursed and thus used in the NHS (regardless of any additional access
schemes or restrictions to the patient population, e.g. to those with a specific
biomarker)

e Negative recommendation: the intervention was not recommended for
reimbursement

Initially, it was anticipated that the same definition would be employed again. However,
on reflection it was decided that the above definition could lose vital information for the
purpose of this review. That is, that, potentially, positive recommendations for TAs with
treatment switching in the pivotal evidence may be subject to conditions more often than
those without. Therefore, the definition for positive recommendation was revised and the
new category of partial recommendation introduced. These were defined as follows:

e Positive recommendation: for this category the intervention must have been
recommended without any conditions as a first choice or option;

e Partial recommendation: the intervention has been recommended for
reimbursement subject to conditions, e.g. for a specific subgroup only, with a
patient access scheme, with a discount agreement, etc.

The definition for negative recommendation remained unchanged. Since this decision
was made at a later date, for many of the TAs given in Table 2-1, the information needed
to distinguish between positive and partial recommendations was unavailable. These
appraisals were consequently excluded from the analysis. It can be noted that for two of
the TAs (in Table 2-1), some basic information had previously been recorded: TA241 had
not been recommended and TA296 had been recommended (but no information about

whether this recommendation was subject to conditions was available).

2.2.1.3.6 For TAs with treatment switching in the pivotal evidence

This section principally concerns itself with how the method might influence the
recommendation. Figure 2-5 shows the recommendations stratified by the method type.

Partial recommendations are the most popular type of recommendation. There are some
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slight differences in terms of receiving a ‘positive recommendation’ (first choice or option
— without conditions) and ‘no recommendation’ depending on the method used, with
slightly more TAs having ‘no recommendation’ than a positive result when using naive
approaches, whilst there are the same number for those TAs using more appropriate
methods. It should be noted though, that very few appraisals have used appropriate
methods, 10 in total.

Figure 2-5: Recommendations stratified by type of crossover method

Recommendation for TAs including crossover data
based on type of method employed on the pivotal evidence

24
20
16

12

0 ]

Total Only naive methods 1+ recommended method used

First choice or option Partial recommendation ~ ®No recommendation

To assess the impact of the method on the recommendation further, the timescale has
been restricted to between 2009 and 2016. The motivation for this was that first research
into appropriate methods for treatment switching was published in 2009, thus establishing
that naive approaches should not be employed. This restriction does, however, result in
very small numbers, but it is interesting to see from Figure 2-6 and Figure 2-7 that there
could be some suggestion that 35% of the TAs using naive methods to analyse their
pivotal evidence do not get recommended, compared to 25% which use more advanced

methods.
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Figure 2-6: Recommendations for TAs with crossover — no recommended methods

Recommendations for TAs with crossover published
between 2009 and 2016, where none of the
recommended methods had been applied to the data

4 (20%)
7 (35%)
0 (45%)
Recommended Partially recommended = No recommendation

The number (%) for each recommendation can be found adjacent to the corresponding
section of the pie chart.

Figure 2-7: Recommendations for TAs with crossover - recommended methods

Recommendations for TAs with crossover published
between 2009 and 2016, where at least one of the
recommended methods had been applied to the data

2 (25%) 2 (25%)

4 (50%)

Recommended = Partially recommended = No recommendation

The number (%) for each recommendation can be found adjacent to the corresponding
section of the pie chart.

2.2.1.3.7 Stratified by characteristics

From Figure 2-8, which shows the breakdown of recommendation based on the
characteristics (e.g. neither crossover and comparison, both crossover and comparison,
only crossover, only comparison), the groups with either both crossover and comparison
or neither crossover nor comparison, seem to have a considerably larger proportion of

negative recommendations than where only one occurred (approximately 35% — 40%
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Figure 2-8: Recommendations based on TA characteristics

Neither crossover nor Crossover and
comparison comparison
5 (13%)
4 (19%)
19 10
(50%) (48%)
Positive = Partial = Negative = Positive = Partial = Negative
Crossover only Comparison only
4 (13%)
6 (19%)
o 19 (64%)
(50%)
Positive = Partial = Negative Positive » Partial = Negative

The number (%) for each recommendation can be found on/adjacent to the corresponding
section of the pie chart.

compared to 20% — 25%). There are similar proportions of positive recommendations

across all groups.

From Figure 2-9, which shows a breakdown of TAs by recommendation and
characteristics, it is clear that the most common type of recommendation is partial
recommendation (e.g. positive recommendation, usually with a patient access scheme and
/ or discount agreement). In addition, it can be seen that of the four characteristic groups,
TAs without crossover and without any comparison having been conducted are the most

frequent. Looking at the recommendations by characteristics and year
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(Figure 2-10) did not appear to show any clear trends. Since a number of TAs between
2000 and 2003, without treatment switching, had been withdrawn and replaced, these
were therefore excluded from the analysis since no recommendation information could
be obtained on them. To investigate whether this did potentially lead to bias, the analyses
used for Figure 2-8 and Figure 2-9 were rerun restricting the time period to 2004 — 2016.
These figures can be found in the appendices, but showed little difference to those
presented here. Stratification based on whether the treatment switching was adjusted
using recommended methods, and whether an IC or MTC was conducted did not show

any significant findings and the results can be found in Appendix B.

2.2.1.4 Conclusions

Treatment switching continues to be an issue in NICE TAs, and whilst the prevalence has
declined slightly (40.1%) since the last review (55.6%), examples have arisen each year.
A particular strength of this work is how it has highlighted a considerable change in the
methodology used within NICE TAs, particularly over the last six years, and how the
issues and approaches to adjust for treatment switching have been better understood and
accepted. Rather than the wide variety of methods used originally to account for treatment
switching, the approaches now fall into two categories: those where appropriate methods
have been used, and those where treatment switching has effectively been ignored. There
is also some evidence that guidance provided by NICE and in the TSD has been effective,
in that more of the recommended methods are being tested on the data, and more recently

that appropriate choices and justifications are now being given.

In terms of the recommendation, it is possibly still too early to ascertain what effect the
methods for treatment switching are having on the recommendation, since there are only
ten appraisals which use recommended methods, and not all of these may have chosen
appropriate models. One aspect that this review does not take account of is the time of
the appraisal process. It could be that there are differences in the length of time taken to
provide a recommendation for different methods, e.g. if the NICE panel, perhaps, ask for
more information for TAs where naive methods have been used, which may be less

necessary if more appropriate analyses have already been submitted.

It is clear to see that ICs and NMA are becoming more frequently reported in TAs, and

this leaves scope for potential problems with including treatment switching data in these,
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depending on whether or not it has been appropriately analysed. Where it has not, it is
debatable what approach should be taken. This uncertainty in approach is due, in part, to
manufacturers rarely having access to the IPLD for a competitor’s product. As a result,
they are often unsure of the action to take, if these reported estimates do not adequately
account for treatment switching (available evidence is explored in section 2.3). In
addition, it is not clear what effect including a comparison (whether or not treatment
switching occurred in the pivotal evidence) has on the recommendation, and if the

inclusion of this provides greater support or not.

2.2.1.4.1 Views on accounting for treatment switching and the impact this has on the

uptake of appropriate methodology

This review provides some evidence in highlighting the effect of previous research into
treatment switching, the establishment of guidelines and the publicity of this former work,
by examining how submissions have changed. However, underpinning these changes are
the perspectives of stakeholders (notably analysts in the pharmaceutical industry, decision
makers). This section seeks to put the review evidence into some of the context
surrounding it. Investigations have continuously highlighted the difficulty in
understanding and acceptability of adjustment methods for stakeholders (Maervoat, 2014,
Henshall, 2016, Latimer, 2015, Latimer, 2016, Zhang, 2016). The European Annual
Conference of the International Society for Pharmacoeconomic and Outcomes Research
(ISPOR) has provided a key platform for the discussion of and education on treatment
switching matters. In particular, during the sixteenth and seventeenth (2013 and 2014)
there were several workshops (Maervoat, 2014, Van Engen, 2014) and talks covering
treatment switching related topics, and these and the questions which followed
highlighted the variation in expertise when applying or interpreting results from the
appropriate methods. Moreover, the discussion emphasised that many stakeholders did
not feel confident enough to apply the methods, or did not understand how the approaches

worked.

One common theme was that, whilst different HTA bodies appreciate the issues caused
by treatment switching, they take different stances on the methodology considered
appropriate. In particular, the German HTA body, Institut fiir Qualitdit und
Wirtschaftlichkeit im Gesundheitswesen (IQWiG), whilst now accepting treatment

switching is an issue, seemed fervently against any of the adjustment methods; and based
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on a workshop (IQWiG, 2014) specifically stated that they would not use adjusted
estimates in the decision-making process. The German position seems a consistent one
with Zhang (2016) highlighting that a case-study of submissions to the Gemeinsamer
Bundesausschuss suggested that they did not accept the use of treatment switching
approaches. This potentially gives conflicting advice, creating more uncertainty, and
contributing to the initial reluctance in accepting results or indeed using this
methodology. This might also provide some reasoning as to why there are still appraisals
which choose to ignore treatment switching, rather than address it; given that there is no
real uniformity across HTA bodies compelling them to use these complex methods. In
addition, little difference in recommendation in the United Kingdom is seen depending

on whether adjustment has been made.

2.3 Routinely reported and available information for treatment

switching trials
To understand the information that is typically reported for trials with treatment
switching, it was decided to examine the evidence sources further. Given time constraints,
the TAs were restricted to those appraising a single technology where treatment switching
had occurred and a comparison (either IC or MTC) had been performed. This particular
subset was chosen because it gave the most scope for showcasing the variety of evidence
for different levels of information e.g. information on pivotal evidence and on supporting
studies only included for the comparison. The subset comprised of 15 appraisals (TA34,
TA91, TA101, TA116, TA124, TA162, TA171, TA214, TA215, TA258, TA319, TA321,
TA338, TA377, TA422), of which 3 were subsequently excluded; 2 of these (TA91 and
TA338) because the guidance has since been replaced, meaning that the original
documents were no longer available; and one (TA422) since it differed in evidence base
and motivation for TA. TA422 was predominately an update from a previous submission,
and was being reviewed in preparation for the end of the Cancer Drugs Fund. In addition
to this, no information was available in the TA summary report relating to evidence
appraised, due to a change in the format of the TA report structure. Instead the reader was

referred to the committee papers.

This investigation started by reviewing all of the TA documents, examining the summary

of ‘evidence’, for details including:
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e Trial names and sample sizes

e Outcomes reported

e Statistics presented

e Details about data cut-off and follow-up lengths

e Information about treatment switching

e Information about the comparison (either IC or MTC / NMA) and any studies

included in it

To showcase a variety of evidence sources, once the TA summary had been examined,
for some of the included TAs, a copy of the ERG report and / or manufacturers submission
was obtained, as were further publications that related to some or all of the included
studies. It should be noted that the review focussed on the key trials used in the pivotal
evidence and / or the comparison. Additional supporting trials, and in particular,

observational studies were not investigated further (e.g. to publication level).

2.3.1 Findings

A total of 12 TAs, 3 manufacturers submissions, 3 ERG reports and 39 trial publications
from peer-reviewed journals were examined. The findings are stratified by evidence
source. A list of the manufacturers submissions, ERG reports and trial publications are

available in Appendix C.

2.3.1.1 TA evidence summary

The evidence collected from the TAs fell into two broad categories: those features which
were related to the TA (e.g. number of key RCTs, reporting of trial names etc.), reported
in Table 2-3, and those that were specific to each trial included in the TA (and could not
easily be summarised over the TA, e.g. whether treatment switching had occurred in that

trial, whether the data cut-off date was stated, etc.), given in Table 2-4.

The majority of TAs rely on one key RCT, however, one third of these provided additional
evidence as well. Many TAs reported trial names and the primary endpoint. However,
considerably less information is given for the trials included in the IC, with only a quarter
giving all the names of the trials. This becomes even more evident when the trial level

data are examined. It is not surprising that little, in terms of the IC trials, has been
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reported, as these are not directly relevant to the decision problem. However, treatment
switching occurring in these trials could impact on any findings from the IC, and thus

would benefit from being reported.

Table 2-3: TA level details obtained from the TA evidence summary

No. of TAs (%)
(n=12)

No. of key RCTs

1 9 (75.0)

2 3 (25.0)
Additional evidence used 4 (33.3)
Trial names reported

None 1 (8.3)

Some 1 (8.3)

All 6 (50.0)
Sample size of key trials reported 4 (33.3)
Primary endpoint for the trials 9 (75.0)
Reason for the IC

To improve comparisons / scope of the decision problem 7 (58.3)

For reasons associated with CEA 1 (8.3)

As ‘sensitivity analysis’ 1 (8.3)
No. of additional trials

Unclear 1 (8.3)

1 4 (33.3)

2 3 (25.0)

3 2 (16.7)

4 1 (8.3)

5 0 (0.0)

6 1 (8.3)
Trial names reported

None 7 (58.3)

Some 2 (16.7)

All 3 (25.0)

The trial information typically reported for the pivotal evidence consisted of the size of
the trial, its impact on TTP or PFS, and its effect on OS. The effect estimates were mostly
in terms of median survival and HRs. Information about treatment switching is much
more variable, although for a large proportion of trials, there was some clear indication
that crossover did occur in the text. In addition, typically a reason was provided for why

treatment switching occurred and the treatment arms affected were given.

These findings suggested that the manufacturers submissions contain more detail than the
ERG report, as might be expected. Kaplan-Meier curves were occasionally reported for
the pivotal evidence for the Manufacturers Submission, but more commonly, for OS, in
the ERG report. Once again, there was relatively little information about the studies in

the IC, although here the names of the trials were reported, and a little more detail is
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provided about treatment switching. This particularly concerns whether treatment

switching did occur, why it was permitted and which treatment arm it occurred in.

Table 2-4: Trial level details obtained from the TA evidence summary

The total number of trials and related percentages have not been reported as some TAs
were unclear about the number of trials included and thus calculating these statistics
would not necessarily be an accurate reflection of the truth.

Number of trials
For the pivotal For the IC
evidence
Sample size
Per group 4 2
Overall 6 2
Reported the primary endpoint 10 2
Primary endpoint was:
TTP 3 0
PFS 4 0
oS 3 0
Joint PFS and OS 1 2
Duration of response as a secondary endpoint 4 0
Data cut-off date 1 1
Maximum or median length of follow-up 4 1
Statistics:
Median with CI: TTP 2 0
PFS 6 0
oS 10 0
Median, point estimate only: | TTP 2 1
PFS 1 1
oS 1 1
HR: TTP 2% 0
PFS 6 2
oS 10 2%
Events: PFS (per group) 1 0
OS (per group) 2 0
OS (overall) 1 0
Whether treatment switching occurred clearly reported 7 1
Reason for treatment switching specified 8 0
Treatment switching occurs in
One treatment arm 5 1
Both treatment arms 4 0
Treatment switching proportions reported 3 1
Recommended methodology used 3 1
Justification for the choice of methodology 0 0

* indicates a pooled estimate

2.3.1.2 Manufacturers Submissions and ERG Reports
Of'the 14 TAs, 3 manufacturers submissions (TA116, TA214, TA215) and 3 ERG reports
(TA101, TA214, TA215) were identified. The findings are given in Table 2-5.
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Table 2-5: Evidence in the manufacturer’s submission or ERG report

Number of trials based on information from the: Manufa.ctflrers ERG reports
submission
Trial detail Pivotal -y | Pivotal oy
evidence evidence
Sample size
Per group 3 15 4 5
Overall 0 0 2 0
Primary endpoint was:
TTP 0 | 0 0
PFS 2 | 1 1
(ON] 1 7 2 0
Joint PFS and OS 0 0 0 0
Joint TTP and OS 0 | 0 0
Other 0 | 0 1
Kaplan-Meier curves
PFS K-M with ‘risk table’ 1 0 0 0
PFS K-M without ‘risk table’ 1 0 0 0
OS K-M with ‘risk table’ 1 0 0 0
OS K-M without ‘risk table’ 1 0 2 0
Events
TTP or PFS events (per group) 1 0 1 2
OS events (per group) 2 0 3 3
OS events (overall) 0 0 0 1
Data cut-off date 1 2 2 0
Maximum or median length of follow-up 2 8 0 0
Statistics:
Median TTP 1 5 1 7
TTP HR 1 3 0 5
Median PFS 2 9 3 6
PFS HR 2 7 2 8
Median OS 3 8 3 8
OS HR 3 4 4 8
Whether treatment switching occurred
Possible or definite, according to the authors 3 6 3 1
Unclear in publication 0 3 0 0
Prohibited 0 0 0 2
Reason for treatment switching specified 2 4 2 1
Treatment switching occurs in
One treatment arm 2 4 1 1
Both treatment arms 0 2 2 0
Treatment switching proportions reported 2 0 2 1
Recommended methodology used 1 0 1 0
Justification for the choice of methodology 1 0 0 0

2.3.1.3 Individual publications

Of the 12 included TAs, all the RCTs in the TA were identified and reviewed for 4 TAs
(TA171, TA258, TA377) and some of those for TA101 (1 RCT of 7), and TA319 (2 of 4
RCTs). For TA214, the 4 studies used by the manufacturer were examined, as was the
RIBBON-1 trial added by the ERG. 12 of the 13 trials documented in the Manufacturers
Submission for TA215 were appraised. For several of the trials reviewed, the results were

spread across two separate publications; the initial paper tended to report TTP / PFS
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outcomes, occasionally in conjunction with immature OS data, whilst the follow-up paper

then reported the mature OS data (sometimes referring to the previously published or

partially updated TTP / PFS results). In total, 39 papers were examined; 9 of which were

‘follow-up’ papers.

2.3.1.3.1 General information

Table 2-6: Primary endpoints as reported in the publication

Reported in original

Reported in follow-up

Total papers reporting

paper paper

n=30 (%) n=9 (%) n=239 (%)
TTP 3 (10.0) 0 (0.0) 3 (1.7)
PFS 10 (33.3) 2 (22.2) 12 (30.8)
0s 8 (26.7) 0 (0.0) 8 (20.5)
Joint PFS and OS 3 (10.0) 1 (11.1) 4 (10.3)
Other 3 (10.0) 0 (0.0) 3 (1.1

Table 2-7: Commonly reported information

about enrolment and follow-up

Reported in original

Reported in follow-up

Total papers reporting

follow-up length

paper paper
n=30 (%) n=9 (%) n=239 (%)
Dates of Recruitment 21 (70.0) 4 (44.4) 25 (64.1)
Date of data cut-off
for analysis 9 (30.0) 5 (55.6) 14 359
Median or maximum 5 (16.7) 3 (33.3) 8 (20.5)

Table 2-8: Kaplan-Meier curves reported in the trial publication

Reported in original

Reported in follow-up

Total papers reporting

paper paper
n=30 (%) n=9 (%) n=239 (%)
. TTP 2 (6.7) 1 (11.1) 3 (1.7
‘Z;f?;gle PFS 6* (20.0) 1 (11.1) 7 (17.9)
oS 7 (23.3) 1 (11.1) 8 (20.5)
With TTP 3 (10.0) 0 (0.0) 3 (1.7
il tables _PFS 14 (46.7) 1 (11.1) 15 (38.5)
oS 14 (46.7) 7 (77.8) 21 (53.8)

* One of Kaplan-Meier curves included in the ‘PFS’ results was actually described as

‘event-free survival’

Table 2-9: Number of events

Reported in original Reported in follow-up | Total papers reporting
paper paper
Events n=30 (%) n=9 (%) n=39 (%)
Per group 3 (10.0) 2 (22.2) 5 (12.8)
TTPor PES - =l 1 (3.3) 0 (0.0) 1 (2.6)
0s Per group 11 (36.7) 5 (55.6) 16 (41.0)
Overall 5 16.7) 0 (0.0) 5 (12.8)
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Table 2-10: Effect estimates routinely used

Reported in original Reported in follow-up Total papers reporting
paper paper
n=30 (%) n=9 (%) n =39 (%)
. TTP 6 (20.0) 2 (22.2) 8 (20.5)
xfjfva:l PFS 18 (60.0) 3 (33.3) 21 (53.8)
oS 15 (50.0) 7 (77.8) 22 (56.4)
TTP 6 (20.0) 1 (11.1) 7 (17.9)
HR PFS 16 (53.3) 2 (22.2) 18 (46.2)
oS 16 (53.3) 8 (88.9) 24 (61.5)

Table 2-6 to 2-10 tabulate the details about the general survival analysis details (e.g.
endpoints, enrolment, Kaplan-Meier curves, etc). Clearly, from Table 2-6 the most
common endpoint was PFS and this was primarily reported in the original paper and only
occasionally eluded to in the follow-up publication. In terms of information about
enrolment and follow-up (Table 2-7), in the majority of papers, the dates of recruitment
were given. However, information about either the average (or maximum) length of
follow-up or the data cut-off date, were less frequently reported. The majority of papers
published at least one Kaplan-Meier curve. In the case of the follow-up publication, this
was almost always for OS, and rarely any other endpoint. Whilst the majority of Kaplan-
Meier curves (Table 2-8) were accompanied by a risk table there was still a noticeable
proportion that did not (almost a quarter — 6 / 29 for PFS; 7 / 29 for OS). In terms of
events (Table 2-9), OS was the most frequently reported outcome, generally detailing the
number of deaths for each treatment group. Events for other endpoints were occasionally
given, although in some cases these were only for the overall population, rather than in

each group. Median survival and HRs continued to be routinely used (Table 2-10).

2.3.1.3.2 Crossover-specific information

Table 2-11 documents the information concerning treatment switching that was found in
the trial publications. In the majority of the papers (23/39), little information could be
obtained on the existence of treatment switching in that study. In some papers, however,
treatment switching, although not directly stated was implied in other ways (e.g. through
the discussion of post-study treatments). Only 2 papers clearly stated that treatment
switching was prohibited. Overall, there were similar numbers of trials which permitted
treatment switching in all arms, to those where it was only permitted in some (e.g. for a
two arm trial, only allowed for control group, for a three arm trial, patients in two of the

three arms were allowed to crossover). Reasons were given in several of the papers, and
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the most popular were: to allow as a rescue treatment following disease progression, or
to administer the superior treatment after treatment un-blinding (or an amendment to the
protocol). In some of the publications, patients could switch for either of these reasons.

Treatment switching proportion was sometimes reported, mostly in the follow-up paper.

Table 2-11: Commonly available information on treatment switching

Reported in original | Reported in follow- Total papers
paper up paper reporting
n=30 (%) n=9 (%) n=39 (%)
Treatment switching:
Was prohibited 2 (6.7) 0 (0.0) 2 (5,1)
Was not reported on 16 (53.3) 7 (77.8) 23 (59.0)
Occurred in one / some arm(s) 7 (23.3) 2 (22.2) 9 (23.1)
Occurred in all arms 5 (16.7) 2 (22.2) 7 (17.9)
Reason for treatment switching:
As post-study treatment 2 (6.7 1 (11.1) 3 (7.7)
Following disease progression 9 (30.0) 3 (33.3) 12 (30.8)
Available after un-blinding / 7 (23.3) 5 (55.6) 12 (30.8)
protocol amendment
Treatment switching proportion 6 (20.0) 5 (55.6) 11 (28.2)

2.3.1.3.3 Additional notes

There are a couple of additional findings that are noteworthy; another outcome that is
commonly reported in TA summaries as one of the secondary analyses is ‘duration of
response’. Studies from the more recent TA, sometimes report OS in several different
ways; using the ITT approach; and stratifying by ‘as treated’, dividing the patients into
groups depending on treatment given (either two or three groups, e.g. control treatment
only, experimental treatment only, control and experimental treatment). A few papers
also reported median time to switch. Motzer (2009) chose to report additional information
for the ‘risk table’. Alongside the ‘number at risk’ the number of deaths were reported.
Several of the other trials for which the papers were not reviewed were reported only

available in terms of Abstracts.

2.3.2 Discussion

In terms of obtaining the relevant information, the principle difficulties often related to
the identification of the trials. It was difficult to obtain copies of either the Manufacturers
Submission or ERG report. Without these, which included references to the actual
publications used, identifying individual trials was exceptionally challenging as not all

publications report the trial name. Thus, this evidence cannot be considered as an
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exhaustive list of evidence for all the TAs considered. However, it gives some indication

of the level of information routinely available from different evidence sources.

The main aim of identifying individual papers was to determine whether more detailed
information (e.g. number of events, Kaplan-Meier curve, ‘numbers at risk’ table)
regarding the survival distributions was available, alongside details about treatment
switching. This was clearly fulfilled. In most cases a Kaplan-Meier curve, with ‘at risk’
table was available for a given trial, and in many cases so was a PFS K-M curve. However,
in terms of considering the most up-to-date data, PFS and OS may not both be reported
with the same length of follow-up. This, in particular, has a great bearing on the methods

developed and discussed in future chapters (Chapter 5 and Chapter 6).

In terms of treatment switching, relatively little information tends to be clearly reported,
which means finding relevant ‘crossover’ information can be difficult. Sometimes it is
only eluded to in terms of post-study therapies (often presented as a table in the
supplementary appendix); whilst in other cases it can be clearly documented in the main
text. The reasons for treatment switching, and, in particular, when it occurs are rarely
stated. Of the few papers that do document when treatment switching has been permitted,
the majority are ‘on disease progression’ as second-line therapy or to control group
patients on ‘un-blinding’ or following interim analyses when one treatment has been
demonstrated to be superior to the other. Most papers indicate the extent of treatment
switching (e.g. proportion receiving as ‘post-study’ or switching). However, where
treatment switching occurs for different reasons, the extent to which it has occurred for

each reason is almost never stated.

The most popular reported measures of efficacy for all outcomes (TTP, PFS and OS) are
median survival and HR, being reported in the majority of trials. It is clear that, for most
trials, PFS is used as the primary outcome; this means that even if crossover is not part of
the study design, there is huge potential for treatment switching to have occurred
following disease progression in terms of a second or subsequent line therapy. The trial
level tables only capture whether the Kaplan-Meier was accompanied by a risk table or
not. However, where risk tables were presented these varied wildly in terms of the number

of intervals (e.g. times at which the ‘number at risk’ were reported).
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The publication for updated OS in the MM-009 and MM-010 trials (Dimopoulos, 2009)
should be praised for the detail in its paper relating to treatment switching. The authors
clearly specified the reasons for treatment switching, and how many patients had switched
for each reason. This would be particularly useful when forming a decision about how

much a study was affected by treatment switching.

There is no doubt that across all types of evidence, the reporting is very varied. There is,
perhaps, slightly more consistency for publications, most likely due to the existing
reporting guidelines. However, these still vary in terms of the outcomes they report, and
in particular the information on treatment switching. In terms of the TA summaries, these
vary vastly with some such as TA34 reporting mostly on the findings, and very little on
the trials used (e.g. trial names); and those such as TA258 reporting very detailed
summary information. Given that these methods are still relatively new, it is important to

continue monitoring how and when they are used.
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Chapter 3: Secondary analysis using former studies with
treatment switching

3.1 Chapter overview

This chapter principally explores and evaluates how findings from an IC are affected by
the inclusion of studies with treatment switching. In particular how these estimates and
statistical significance change depending on whether adequate adjustment for treatment
switching has been implemented. Three examples are shown, two of which use individual
simulated datasets, before a full simulation study is undertaken. This simulation study is
divided into two parts: an initial study in which a variety of different scenarios (11 in
total) were tried; and a second more ‘systematic’ study where all distinct combinations of
a subset of covariates used in the initial study were chosen (136 scenarios in total). The
initial simulation study focussed on examining HRs or treatment effects that had been
observed in case studies, or which were perhaps more extreme, in order to assess the
sensitivity of ICs to treatment switching. The final section of this chapter discusses former

research undertaken to address this issue.

3.2 Impact of appropriateness of methodology on secondary analysis

Given the recent research (Morden, 2011, Latimer, 2012) in the field of treatment
switching, and in particular the guidelines (Latimer, 2014) that have been released; it is
to be expected that, in the future, the recommended methods will be implemented more
regularly to account for treatment switching. In addition, appropriate justification for the
final choices will be provided alongside. Nevertheless, this future improvement will not
address issues within previously published appraisals. However, this is problematic as
conducting secondary analysis, such as ICs, within TAs is becoming increasingly

required.

An IC is conducted where no direct head-to-head comparison exists for treatment A and
B, say; but where other trials exist in which treatments A and B have been compared to a
common comparator (Bucher, 1997). Figure 3-1 describes this diagrammatically for when
there are only three possible treatments and two RCTs. The two novel treatments are
labelled ‘A’ and ‘B’, and the study which compares this novel treatment to the common

comparator ‘X’, denoted Study ‘A’ and Study ‘B’ for the respective treatments. Treatment
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X represents a regimen such as with Placebo or best supportive care. If there are no head-
to-head trials comparing ‘A’ and ‘B’ then as indicated in the Figure 3-1 by the dashed
line these are compared indirectly. Figure 3-1 highlights the ‘network’ of treatments e.g.

connection of treatments through trials.

Figure 3-1: Indirect Comparison of two treatments

Novel trt
IBI

Diagram showing an indirect comparison of treatment A and B, where there are two
studies A and B, showing the efficacy of each of the treatments to the comparator X. The
solid lines represent the direct evidence, and the dashed line, the indirect evidence.

This can be extended to encompass a number of treatments, provided each intervention
is linked by another, as shown in Figure 3-2.

Figure 3-2: Indirect comparison of two treatments: complex pathway

Standard trt
IXI

Treatments ‘A’ and ‘D’ are compared indirectly (highlighted by the dotted line), by using
the studies connecting A and D through treatments X, B, C. Direct head-to-head studies
are shown by the solid black lines.

Methods exist whereby all treatments can be compared with one another in one analysis,

and which take into account both direct and indirect evidence; these methods are known
as ‘Mixed Treatment Comparison’ (MTC) or Network Meta-Analysis (NMA). An
example of a network for a NMA is given in Figure 3-3 (Lumley, 2002, Lu, 2004,
Caldwell, 2005).
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Figure 3-3: Mixed Treatment Comparison

Standard trt

Novel trt
IBI

Since there is at least one study (solid lines) connecting each treatment to another, all
pairwise treatment comparisons can be calculated - either using the direct evidence (solid
lines) or indirectly (dashed lines).

These methods can be especially useful in HTA as they provide comparisons of the
intervention under review with those routinely used in practice for that disease or
alternative potentially ‘gold standard’ treatments. One example of this is presented in
TA215 (NICE, 2011) which assessed pazopanib for treating metastatic RCC. The pivotal
evidence consisted of a RCT (Sternberg, 2010) which compared pazopanib with placebo,
both of which were administered in conjunction with best supportive care (defined as
monitoring of progression, symptom control and palliative care without active treatment).
However, sunitinib is a treatment previously recommended as a first-line option for
patients with this condition and hence, a comparison between sunitinib and pazopanib
was desirable. This comparison was achieved using an IC, which included other
treatments such as interferon-alpha, vinblastine and medroxyprogesterone in order to link

the network. This IC was in a form similar to that shown in Figure 3-2.

The work conducted by Latimer (2012) not only demonstrated the need to adjust for
treatment switching, but also that the more appropriate methods were rarely used in
practice. Therefore, examples, such as TA171 Multiple Myeloma — lenalidomide, have
caused concern (NICE, 2009b). In this appraisal, the manufacturer indirectly compared
lenalidomide with bortezomib. The evidence for bortezomib came from the APEX RCT

(Richardson, 2005), which had been used as evidence of bortezomib’s clinical- and cost-
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effectiveness in TA129 (NICE, 2007), and in which all patients receiving the control
intervention of high dose dexamethasone were offered bortezomib after the interim
analyses showed bortezomib to be far superior. No adjustment for treatment switching
was considered necessary in the final analysis, since the results showed a significantly
lower HR for both time to progression (TTP) and OS. This unadjusted estimate was then
included within the IC. Given that a considerable number of control group patients
switched treatments, the actual effectiveness of bortezomib will have been
underestimated. Treatment switching also occurred in the MM-009 and MM-010 RCTs
used to provide the evidence for lenalidomide (Weber, 2007, Dimopoulos, 2007,
Dimopoulos, 2009), but in this case some effort had been taken to adjust for the crossover,
though not using one of the currently recommended methods (external data had been
used). Especially, since both treatments show a statistically significant effect on survival
(Bortezomib: TTP HR 0.55 (0.44, 0.69), OS HR 0.57 (0.4, 0.81); Lenalidomide: TTP HR
0.35 (0.29, 0.43), OS HR 0.66 (0.45, 0.96), and because of the effect of treatment
switching, there will be considerable uncertainty about the treatment effect between

lenalidomide and bortezomib.

In order to have more certainty in situations such as these, it is necessary to have estimates
where an appropriate method of analysis (from those recommended if treatment switching
has occurred) has been employed. To achieve this aim, the data will likely need to be
reanalysed. However, currently whilst manufacturers will have access to their own
individual patient data (IPD), and can therefore adjust it; for competitors’ products, they
are often solely reliant on published summary information. At present, all methods for

treatment switching, and in particular those that have been recommended, require IPD.

3.3 Illustrative examples of impact on an Indirect Comparison

To increase understanding of the impact that using ‘unadjusted’ and ‘adjusted’ estimates
within ICs has, three examples are described below. For the first two examples, the data
(for the two included trials) has been simulated, based on plausible characteristics of TAs
(e.g. HR, survival proportion, treatment switching proportion etc.). There were two
principle motivations for this: (1) due to the minority of examples which contain treatment
switching in both trials, where ITT analyses and ‘adjusted’ estimates are available for

both trials (it permitted a range of HRs and treatment switching proportions to be
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explored); (2) to ensure that the treatment switching has been appropriately accounted for
by the adjustment method chosen (this is untestable in trial data; although justification
can be based on method assumptions and data requirements, it is not infallible). The third
example (BRIM-3 and BREAK-3) presents one of the rare existing ICs where the
manufacturer reported both an ‘unadjusted’ and ‘adjusted’ estimate (NICE, 2014). For
this example, it also demonstrates what might have happened if they had conducted the

same IC, but only had one ‘adjusted’ estimate rather than two.

3.3.1 Indirect Comparison

Only a simple IC (i.e. of the form shown in Figure 3-1) (Bucher, 1997) was used, where:

In(HRyp) = In(HRy¢) — In(HRpc) (3-1)

SE(In(HR,p)) = /SE(n(HR,))? + SE(In(HRp())? (3-2)

Four different comparisons were considered which correspond to the following situations:

L. An IC of the ITT HRs. Where only ITT HRs are presented, that is to say no
adjusted HRs are available, the ITT results might be used. Alternatively, if
some studies have reported an adjusted HR but not others, the ITT results

might be chosen to provide consistency.

II. An IC using the adjusted HR. This is the ideal solution in which all studies

will have been adjusted for treatment switching before inclusion in an IC.

IL/TV. An IC in which adjusted HRs are used where available and ITT used
otherwise. This is potentially the most likely situation for the future.
Typically manufacturers have their own IPD and so can analyse this any
way they choose. Since guidelines have now been produced, this should
ensure that some means of adjustment will be made. However, the
comparator interventions come from previously published trials and hence

are unlikely to have been appropriately adjusted for treatment switching.
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3.3.2 Simulation of the data
As specified in section 3.3.1, the examples described in Section 3.3.2 and 3.3.4 comprise

of an IC with two trials. The data for each trial have been simulated as follows.

Both studies had a sample size of 500, with 1:1 randomisation. The underlying survival
was simulated from a Weibull distribution, with shape parameter of 0.5, and a scale
parameter of 1.322, which means that, on the control treatment, at three years,
approximately 90% of the patients will have died. To allow for additional variation
between the patients, 70% of patients were assumed to have a more severe disease on
enrolment, and therefore, their survival was reduced by 25%. For this, a Bernoulli
distribution with probability of 0.70 was used, and patients for whom this was 1 had their

survival time multiplied by 0.75.

Only administrative censoring was assumed, and this was achieved using a uniform
distribution between 730 and 1095, designed to represent a maximum follow-up time of
between 2 and 3 years. Therefore, patients were recruited at a constant rate over the space

of a year, and the time of analysis was exactly three years into the study.

Whilst the treatment effect and proportion of crossover varied over the two studies; both
studies had a level of treatment switching, and were designed to have a clear treatment
effect. A Bernoulli distribution was used to allocate switchers, with different probabilities
for those with different disease severities (as shown in Table 3-1); patients with a higher
disease severity being more likely to switch. Once a patient was assigned to switch, their
switch time was generated from a uniform distribution, implying that a patient who
switched was likely to switch at any point throughout the study. Treatment switchers

received the same treatment effect as patients randomised to the intervention.

3.3.3 Simulated example with differential treatment effects and treatment
switching proportions

3.3.3.1 Methods and Results

For both studies, an ITT HR was estimated, as was an adjusted HR. To obtain an adjusted

HR, a RPSFTM was fitted (as described in Section 1.1.3.3.1). The final acceleration factor

was used to obtain the counterfactual dataset, then the original analysis (such as a Cox
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model) conducted to give the final ‘adjusted HR’. The SE was calculated by preserving
the p-value (given in Section 1.1.3.3.1).

Table 3-1: Study specific simulation information - Example 1
Summary of the information on treatment switching and efficacy used for the simulation
of each of the studies

Study A: Study B:

Treatments:

Novel treatment reference A B

Standard treatment reference X X
Level of treatment switching: Low High
Switching proportion for patients
with:

Severe disease 25% 95%

Moderate disease 5% 10%
Underlying HR 0.70 0.31

Table 3-2: Study-specific information for the single simulated dataset - Example 1
Summary of the information on treatment switching and efficacy for the simulated dataset
representing each study. NOTE: Only one dataset has been simulated per study. * CI:
Confidence Interval

Study A: Study B:

No. of patients switching from

standard to novel treatment, 45 (18.0%) 183 (73.2%)

(%):

ITT HR, (95% CI*; p-value): 0.797 (0.665, 0.956; p=0.013)  0.560 (0.456, 0.688; p <0.001)

RPSFTM-adjusted HR,
(95% CI*; p-value):

0.738 (0.581,0.939; p=0.013)  0.334 (0.228, 0.488; p <0.001)

Using the simulation parameters, within the IC formula, the underlying difference
between the two treatments should be a HR of 2.258. Hence, from the IC, the underlying
mortality rate for patients on treatment A is more than twice that of patients on treatment
B. Given that only a single dataset has been simulated for each trial, the actual HR will

only be comparable (not exact).

So, starting with the most preferable scenario, that is adjusted HRs are available for all

groups, a HR of 2.210 (95% CI: 1.408, 3.641) is achieved. This suggests that there is a
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statistically significant difference between the two treatments, and that the mortality rate

for those receiving treatment A is 2.210 times that of those patients on treatment B.

Table 3-3: Comparison of HRs calculated from an IC - Example 1

Study A Study B HR (95% CI) Statistically significant?
Unadjusted Unadjusted 1.423 (95% CI: 1.080, 1.875) Yes
Unadjusted Adjusted 2.386 (95% CI: 1.562, 3.467) Yes

Adjusted Unadjusted 1.318 (95% CI: 0.961, 1.806) No

Adjusted Adjusted 2.210 (95% CI: 1.408, 3.641) Yes

This HR is very similar to the underlying rate but it should be noticed that there is a wide

confidence interval (CI).

Consider next what happens when no adjustment has been made in either case. Here, the
HR: 1.423 (95% CI: 1.080, 1.875) still shows a statistically significant difference
between the two treatments. Even though it is statistically significant, the HR is
considerably lower, only suggesting the hazard rate is 1.423 times higher. In addition, the
true underlying value of 2.258 does not lie within the CI. The CI is affected by the
estimates for the HR and in addition, without adjusting for treatment switching there is

less uncertainty incorporated in the SE and hence this results in a narrower CI for the IC.

Now, examine the third scenario, where only some (one of the two) HRs have been
adjusted for treatment switching. First, assume both analyses, adjusted and unadjusted are
available for Study B. Therefore, the study where there was the largest amount of
treatment switching, and greatest treatment effect has been adjusted for. Using this
combination achieves a HR of 2.386 (95% CI: 1.562, 3.467), higher than the previous
two ICs. This time there is a smaller CI than the case where both HRs had previously
been adjusted, but this still incorporates the true HR (unlike the scenario with both

unadjusted).

Looking at the final example, where Study A has been adjusted for treatment switching
and not Study B, it can be seen that the HR is 1.318 (95% CI: 0.961, 1.806). This time, in
contrast to the other scenarios, a statistically significant difference cannot be seen.
Similarly, to the other cases where at least one adjusted HR has been used, there is an

increase in the uncertainty compared to the unadjusted IC. Like the unadjusted analysis,
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the true value is not contained within the CI. In summary, there appears to be potential

bias unless both studies have accounted for treatment switching.

3.3.4 Simulated example with the same treatment effect and differential
treatment switching proportions

From the first example, it could be concluded that, if the adjusted analyses for all

treatment groups are not available, the ITT analyses should be used for consistency.

However, this second example highlights the potential downfall of adopting that stance.

The survival data were simulated in a similar way to the previous example (and as set out
in section 3.3.2); hence, using the same underlying survival, randomisation ratio, sample
size and censoring distribution. In this scenario, both treatment effects compared with the
control treatment were set to the same; but, the amount of treatment switching for each

study was different.

It should be noted, that based on the simulation parameters, the underlying difference
between the two treatments should be a HR of 1. Hence, the mortality rate for patients on

treatment C was the same as that for patients on treatment D.

Table 3-4: Study specific simulation information - Example 2
Summary of the information on treatment switching and efficacy used for the simulation
of each of the studies

Study C: Study D:

Treatments:

Novel treatment reference C D

Standard treatment reference X X
Level of treatment switching: High Low
Switching proportion for patients
with:

Severe disease 95% 25%

Moderate disease 10% 5%
Underlying HR 0.50 0.50
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Table 3-5: Study-specific information for the single simulated dataset - Example 2
Summary of the information on treatment switching and efficacy for the simulated dataset
representing each study. NOTE: Only one dataset has been simulated per study.

Study C: Study D:
No. of patients switching from
standard to novel treatment, 192 (76.8%) 46 (18.4%)
(%):
ITT HR, (95% CI*; p-value): 0.693 (0.573, 0.839; p <0.001)  0.484 (0.398, 0.590; p <0.001)
RPSFTM-adjusted HR, . .
(95% CI*; p-value): 0.530(0.383, 0.735; p <0.001)  0.465 (0.380, 0.570; p <0.001)

Table 3-6 gives the results of conducting an IC on both the unadjusted HR, both adjusted
HRs and where one of the HR has been adjusted and the other not.

Table 3-6: Comparison of HRs calculated from an IC - Example 2

Study C Study D HR (95% CI) Statistically significant?
Unadjusted Unadjusted 1.432 (1.090, 1.881) Yes
Unadjusted Adjusted 1.490 (1.129, 1.967) No

Adjusted Unadjusted 1.095 (0.749, 1.600) No

Adjusted Adjusted 1.140 (0.778, 1.671) No

Most importantly, the HR has changed considerably over the different scenarios. This is
useful to examine as the HR is not affected by sample size, unlike the statistical
significance. However, this example shows that it could be possible that statistical
significance of the treatment effect between intervention C and D is different if the
unadjusted HRs are used, compared to any other pairing. As the underlying treatment
effects, are in fact the same, the first comparison, with both unadjusted estimates, gives a
misleading conclusion. Although no example which included such a large treatment effect
combined with such high proportion of treatment switching has been identified, an
example exists for which the treatment switching proportion was 98% (ITT HR: 0.83)
and another separate example (in a different type of cancer) where an ITT (unadjusted for
treatment switching) HR estimate is reported as 0.55 (treatment switching was 62%). In
theory, there could be such an example which combined both of these estimates in the

future, potentially resulting in similar findings to this example.

These two examples highlighted the potential variation in results from an IC, depending
on how treatment switching was addressed in the trials. Having simulated the data, there

was the advantage of confirming that the ‘adjustment’ method has performed well, and
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in knowing how biased the IC was for each scenario. The original motivation of
simulating the datasets was the lack of examples. However, one example does exist, and

this is presented in Section 3.3.5.

It is hard to draw firm conclusions having only looked at two different situations, and one
single comparison for each. To explore these suppositions conclusively, a full simulation

study would be required.

3.3.5 The BRIM-3 and BREAK-3 trials

This final example demonstrates an actual case presented to NICE, and is quite
remarkable as it is one of the only examples where both of the trials used in the IC
reported ITT and RPSFTM estimates for the treatment effect (NICE, 2014). Whilst the
TA reported the results for scenarios I and II (both unadjusted and both adjusted
estimates); here, those for scenarios III and IV demonstrate how the results may have

been affected if both the adjusted analyses had not been available.

TA321 considered whether Dabrafenib was cost-effective for treating patients with
unresectable or metastatic BRAF V600 mutation-positive melanoma (NICE, 2014). The
pivotal evidence came from the BREAK-3 trial, which compared Dabrafenib with
Dacarbazine (Hauschild, 2014). However, the manufacturer also chose to conduct an IC
between Dabrafenib and Vemurafenib, a treatment recommended by NICE, subject to
the patient access / discount scheme, in 2012. The evidence for Vemurafenib came from
the BRIM-3 trial (where the control group received Dacarbazine treatment) (McArthur,
2014).

Information on treatment switching and treatment efficacy for both of the studies is given
in Table 3-7. This highlights that, whilst the ITT HR (for OS) is the same for both trials,

the treatment switching proportion is noticeably different (34% vs. 57%).
Table 3-8 shows the results from using different combinations of the unadjusted and

adjusted estimates. Whilst the point estimate and SE clearly change, the statistical

significance does not, which is a reflection of the small sample size.
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Table 3-7: Study-specific information for the BRIM-3 and BREAK-3 trials
Summary of the information on treatment switching and efficacy for each study

BRIM-3 BREAK-3

Treatments:

Novel treatment Vemurafenib Dabrafenib

Standard treatment Dacarbazine Dacarbazine
No. of patients switching from 0 0
standard to novel treatment, (%): o erin) o7
ITT HR, (95% CI): 0.76 (0.63, 0.93) 0.76 (0.48, 1.21)
RPSFTM-adjusted HR, (95% CI): 0.64 (0.53, 0.78) 0.55(0.21, 1.43)

Table 3-8: Comparison of HRs calculated from an IC — BRIM-3 and BREAK-3

BRIM-3 BREAK-3 HR (95% CI) Statistically significant?
Unadjusted Unadjusted 1.00 (0.61, 1.64) No
Unadjusted Adjusted 0.72 (0.27, 1.93) No

Adjusted Unadjusted 1.19 (0.72, 1.95) No

Adjusted Adjusted 0.86 (0.32, 2.29) No

3.4 Initial simulation study — part 1: Specific scenarios

3.4.1 Background

Whilst the case study examples indicated that there were issues relating to ICs in trials
with treatment switching, there was always the possibility that these findings could be in
the extreme, and hence rarely occur in practice. Therefore, a small simulation study was
conducted to assess the impact of crossover in a slightly wider context. The aim was to
assess, if the same circumstances were to stand, how variable the difference between ICs
using ITT and RPSFTM-adjusted estimates were, and any changes on the statistical

significance that might occur.

3.4.2 Methods

3.4.2.1 Simulation of the data

The underlying survival data was generated in the same way as for the simulated
examples and hence the details of this can be found in Section 3.3.1. However, the
underlying HR and switching proportions varied across scenarios (and also study). In

generating the scenarios, the key aim was to explore many different possible
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combinations relating to the trial characteristics (thus representing different examples
seen in practice) but using a small number of scenarios. As a consequence, there was no

systematic method to the assignment of crossover proportion and treatment eftect.

Throughout the review of the TAs, it was noticed that HRs for OS ranged between 0.30
and 1. So assuming that assessors and manufacturers would only be interested in
comparing treatments indirectly where there was some suggestion of a protective effect
when compared to the standard treatment; the underlying HR was restricted to a selection

of values between 0.31 (strong protective effect) and 0.95 (weak protective effect).

It was also of interest to consider how the results were affected, both depending on how
high the switch proportion was, and based on which type of prognosis switched more.
Although the choices for p;, p, (the probability of switching for patients with a ‘poor’
and ‘good’ prognosis respectively) were chosen arbitrarily, the proportion of switchers
overall primarily lay between 18% and 80% (once again in line with examples in the
literature). However, there were a few exceptions which were specifically designed to

have very little treatment switching (< 5%).

The table below shows the structure of the scenarios regarding the treatment effect, and
the probability of switching for patients depending on prognosis (p; for those with a

‘poor’ prognosis and p, for those with a ‘good’ prognosis).

These encompass a wide range of possible situations, exploring those occasions:

e Where one study may have the stronger underlying treatment effect and the
higher proportion of treatment switching (scenarios 1,2,3,5,8);

e  Where the studies have the same underlying treatment effect but different
proportions of patients switching (scenarios 4,6);

e  Where one study had the more effective treatment, but the other allowed more
treatment switching (scenario 7);

e How the selection process (choosing which type of prognosis switched more)
affected the situation (scenarios 9,10,13);

e Where the studies had different underlying treatment effects but the same

proportion of treatment switching (scenario 11);
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e Where the studies were exactly the same in terms of underlying HR and

treatment switching proportion (mechanism) (scenario 12).

Table 3-9: Scenario information

The underlying true HR and probability of switching (depending on disease severity) for
each of the simulated studies in the IC comparing treatment ‘A’ — assessed in ‘Study A’
and treatment ‘B’ — assessed in ‘Study B’.

Scenario Study A Study B
HR P1 P2 HR P1 P2
1 0.70 0.70 0.1 0.50 0.90 0.10
2 0.70 0.25 0.05 0.31 0.95 0.10
3 0.50 0.70 0.1 0.70 0.25 0.05
4 0.70 0.95 0.4 0.70 0.25 0.05
5 0.70 0.90 0.2 0.95 0.25 0.05
6 0.95 0.95 0.4 0.95 0.25 0.05
7 0.70 0.90 0.4 0.55 0.45 0.05
8 0.40 0.95 0.4 0.60 0.01 0.01
9 0.70 0.10 0.7 0.50 0.10 0.90
10 0.70 0.05 0.25 0.31 0.10 0.95
11 0.70 0.70 0.25 0.50 0.70 0.25
12 0.70 0.70 0.25 0.70 0.70 0.25
13 0.70 0.70 0.25 0.70 0.50 0.25

For each scenario considered, 1000 replications were carried out, and thus the results

reported are an average over these 1000.

3.4.2.2 Statistical analyses undertaken
For each dataset, regardless of scenario, the proportion of treatment switching, ITT HR
using a Cox PH model, RP SFTM-adjusted HR were calculated for each ‘study’. Once
these estimates had been obtained, four ICs were conducted:

1) Using both ITT HR for the studies

2) Using the adjusted HR for study A, and the ITT HR for study B

3) Using the ITT HR for study A, and the adjusted HR for study B

4) Using both of the adjusted HRs
As well as computing the point estimates and the uncertainty, whether the comparison
was statistically significant or not (i.e. whether the value 1 was contained within the 95%

CI for the IC) was also recorded.
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3.4.2.2.1 Performance Measures

For both adjusted and unadjusted of the study-specific HRs and each of the ICs, several
performance measures were calculated. These included the bias, mean squared error

(MSE) and the coverage. These were defined as follows (Boucher, 2013b):

Bias, 6

§=pf-p (3-3)
Where f is the estimate obtained from that specific analysis and 8 the true underlying
value.
Mean squared error (MSE)

MSE = (f - ,8)2 + (SE (/?)) (3-4)

Where E is the mean value of all the estimates () for a specific analysis, and once

again [ is the true underlying value.

Since this method takes account of both the bias and the variability of the estimates, it

provides an expedient overall assessment of a particular analysis method.

Coverage

Proportion of simulations where the true underlying value is contained within the 95%

CI. For a 95% CI, the coverage should be approximately 95%.

3.4.3 Results

3.4.3.1 Point estimates

Table 3-10 details the estimates both for the studies, in terms of average adjusted and
unadjusted HR and treatment switching proportion. As expected, where the treatment
switching proportion is very low and / or the HR is close to 1, the ITT and RPSFTM-

adjusted results are very similar.
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3.4.3.2 Comparison of statistical significance across ICs

Table 3-11 gives the values of the HR for the IC using every combination of adjusted and
unadjusted estimates, contrasted with the true underlying HR. Using both ITT estimates
tends to underestimate the treatment effect, sometimes drastically, whilst only using one
adjusted and one unadjusted tends to lead to an over- or under-estimate depending on
which has the stronger treatment effect and / or high treatment switching proportion.
Using both adjusted estimates always performs well, and the majority of the time, it gives

the results most similar to the underlying value.

Table 3-12 shows the proportion of the 1000 simulations which were statistically
significant for each of the four ICs and each of the scenarios. There are quite noticeable
differences in the proportions, depending on whether neither, one or both have been
adjusted. Whether the proportion of statically significant observations increases or
decreases, when comparing the IC with both ITT estimates to that with both adjusted,
varies from scenario to scenario. However, care must be taken in interpreting these
findings, as highly biased estimates may be wrongly significant. Essentially, these are just

a measure for the power of the analysis.

Table 3-10: Initial simulation - averaged scenario-study-specific information
The scenario-specific details for each study, then used in the IC, averaged over all 1000
datasets with the exception of the true HR — this is the underlying scenario value.

Study A Study B

Scenario : .
e || rrrm | A | Coomeer T | v [ A

1 51.9% 0.70 0.766 0.695 66.1% 0.50 0.663 0.511
2 19.0% 0.70 0.727 0.697 69.5% 0.31 0.554 0.315
3 52.1% 0.50 0.628 0.508 19.0% 0.70 0.728 0.699
4 78.4% 0.70 0.806 0.695 19.1% 0.70 0.727 0.699
5 69.1% 0.70 0.789 0.693 19.0% 0.95 0.949 0.945
6 78.5% 0.95 0.962 0.947 18.9% 0.95 0.949 0.945
7 75.0% 0.70 0.802 0.697 32.9% 0.55 0.621 0.564
8 78.5% 0.40 0.650 0.411 1.0% 0.60 0.601 0.612
9 28.1% 0.70 0.753 0.698 34.1% 0.50 0.611 0.516
10 11.0% 0.70 0.725 0.700 35.4% 0.31 0.460 0.317
11 56.3% 0.70 0.777 0.697 56.7% 0.50 0.644 0.512
12 56.6% 0.70 0.779 0.699 56.8% 0.70 0.776 0.695
13 71.5% 0.70 0.807 0.697 35.5% 0.50 0.593 0.512
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Table 3-11: Initial simulation - Average IC HR depending on analysis method

The HR estimates calculated from an IC on each of the 1000 scenario-specific estimates
and then averaged over on the log-HR scale. The estimates have then been converted
back to the HR scale to make them easier to interpret.

HR obtained from the indirect comparison of Study A versus Study B:
Scenario Using the true ITT estimates for Adjusted for A ITT for A Adjusted for

underlying values A&B ITT for B Adjusted for B A&B
1 1.397 1.155 1.048 1.498 1.359
2 2.258 1.311 1.258 2.310 2.216
3 0.714 0.862 0.698 0.897 0.727
4 1.000 1.107 0.955 1.152 0.994
5 0.737 0.832 0.731 0.835 0.734
6 1.000 1.014 0.998 1.019 1.002
7 1.273 1.291 1.122 1.423 1.237
8 0.667 1.082 0.684 1.063 0.672
9 1.397 1.232 1.142 1.460 1.353
10 2.258 1.576 1.522 2.287 2.209
11 1.400 1.207 1.083 1.517 1.361
12 1.000 1.004 0.901 1.121 1.006
13 1.400 1.363 1.177 1.576 1.362

Table 3-12: Initial simulation study - statistical significance depending on method
The proportion of the 1000 simulations for which the IC HR was a statistically significant

result.
Proportion of simulations for which the indirect comparison of
Scenario Study A versus Study B was statistically significant:
ITT estimates Adjusted for A ITT for A Adjusted for

for A& B ITT for B Adjusted for B A&B
1 4.7% 0.2% 29.5% 8.7%
2 21.6% 9.3% 86.6% 79.5%
3 4.6% 28.1% 1.8% 16.0%
4 2.0% 0.2% 3.4% 0.2%
5 6.9% 16.6% 5.2% 12.3%
6 0.1% 0.5% 0.1% 0.3%
7 19.0% 0.8% 38.0% 2.5%
8 1.4% 15.0% 1.4% 18.9%
9 11.5% 1.8% 36.6% 12.4%
10 67.9% 55.0% 97.3% 95.3%
11 9.1% 0.7% 38.1% 8.3%
12 0.2% 1.2% 1.3% 0.1%
13 32.0% 1.3% 60.2% 6.6%
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3.4.3.3 Performance measures

There is a considerable difference over the scenarios in terms of the bias (both absolute
and percentage), and the coverage for study A, as shown in Table 3-13. Ignoring the
direction (i.e. positive or negative values), the bias of the estimate ranges between 0.9%
and 38.2% for the ITT estimate, and reduces to between 0.4% and 1.8% for the adjusted
estimates. The MSE for the ITT was largely comparable across all scenarios and between
the ITT and RPSFTM except for scenarios 6 and 8. The coverage is exceptionally variable
for the ITT, it ranged from 0.1% to 94.9%. In two of the scenarios, the coverage was close
to what is expected; a further nine ranged between 60% and 93%. The remaining
scenarios all had poor coverage (less than 40%). For the adjusted estimates, apart from
one scenario the coverage was either around the expected 95% or higher. Even if the SE
is correct, where there is high bias, the coverage will not be appropriate, and thus, will

not necessarily be useful.

Table 3-13: Initial simulation — Performance measures for Study A
Performance measure (bias, MSE and coverage) for the simulated ‘Study A’.

ITT RPSFTM-adjusted
Scenario Abs'o lute Pr'o P- MSE Coverage AbsP lute Pr.op. MSE Coverage
bias Bias bias Bias
1 0.070 8.2% 0.077 83.7% -0.001 -1.4% 0.080 96.8%
2 0.030 3.2% 0.070 92.6% 0.000 -0.9% 0.066 96.5%
3 0.130 20.0% 0.077 36.2% 0.014 0.6% 0.075 92.8%
4 0.109 12.7% 0.087 67.7% 0.001 -1.7% 0.099 97.8%
5 0.092 10.9% 0.082 76.1% -0.001 -1.8% 0.090 96.7%
6 0.016 0.9% 0.088 94.9% 0.008 -1.4% 0.147 95.2%
7 0.106 12.3% 0.088 65.8% 0.004 -1.3% 0.099 97.4%
8 0.253 38.2% 0.129 0.1% 0.018 0.9% 0.079 96.2%
9 0.056 6.6% 0.076 86.2% 0.002 -0.8% 0.073 97.2%
10 0.028 3.0% 0.068 94.3% 0.003 -0.4% 0.063 97.2%
11 0.081 9.5% 0.080 79.2% 0.002 -1.1% 0.083 97.4%
12 0.082 9.7% 0.080 78.4% 0.004 -0.8% 0.084 97.8%
13 0.111 12.9% 0.088 67.1% 0.004 -1.3% 0.097 97.4%

Based on the results from Table 3-14, study B follows a similar trend to that for study A.
The bias typically reduces, although in estimates where there was initially low bias
(<0.5%), the adjusted estimate does contain slightly more bias (1.1%. to 1.4%). Once
again, for the ITT estimates the coverage varies substantially — 0% to 95%. Here five

studies have values of the coverage close to 95% (93.1% to 95.4%). The adjusted results
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were acceptably close to 95% (between 92% and 97%) in most scenarios. The MSE was

comparable for all scenarios except scenario 2.

Table 3-14: Initial simulation - Performance measures for Study B

Performance measure (bias, MSE and coverage) for the simulated ‘Study B’.

ITT RPSFTM-adjusted
Seenario Abbsio;sute 1;;(;2' MSE Coverage Ablfio;:te I]);i(;l: MSE Coverage
1 0.165 24.1% 0.092 17.4% 0.017 0.8% 0.082 94.6%
2 0.247 43.7% 0.121 0.0% 0.011 -0.7% 0.067 93.7%
3 0.031 3.5% 0.068 93.1% 0.002 -0.5% 0.065 98.2%
4 0.031 3.3% 0.071 93.5% 0.002 -0.6% 0.068 96.8%
5 0.003 -0.5% 0.087 95.4% 0.000 -1.1% 0.097 94.8%
6 0.003 -0.5% 0.088 94.5% -0.001 -1.1% 0.097 94.6%
7 0.074 11.1% 0.065 74.6% 0.018 1.7% 0.068 93.0%
8 0.004 -0.3% 0.058 94.5% 0.015 1.4% 0.060 93.1%
9 0.113 17.6% 0.074 46.0% 0.020 2.0% 0.071 92.2%
10 0.152 32.2% 0.072 3.9% 0.011 0.8% 0.052 92.1%
11 0.147 22.0% 0.086 26.3% 0.018 1.3% 0.078 93.1%
12 0.079 9.3% 0.079 78.6% 0.000 -1.4% 0.083 97.3%
13 0.095 15.2% 0.067 56.8% 0.016 1.6% 0.067 92.9%

Table 3-15: Initial simulation - IC performance measures (part 1)
The performance measure (bias, MSE and coverage) for the simulated ICs for two of the
1IC-scenarios — using both ITT estimates, and using Study A RPSFTM-adjusted and Study

B ITT estimates.
ITTA versus ITT B adjusted A versus ITT B
Seenario Abs.o lute Pr.o p- MSE Coverage Abs.o lute Pr.o p- MSE Coverage
bias Bias bias Bias
1 -0.232 -22.0% 0.211 91.3% -0.338 -34.8% 0.274 83.3%
2 -0.934 -73.9% 1.059 15.0% -0.988 -81.3% 1.156 12.7%
3 0.155 16.4% 0.141 92.4% -0.005 -3.9% 0.124 99.0%
4 0.117 8.9% 0.161 98.0% -0.032 -6.2% 0.163 99.8%
5 0.102 10.7% 0.117 97.4% 0.003 -2.0% 0.115 99.3%
6 0.022 0.6% 0.133 99.9% 0.013 -1.8% 0.182 99.5%
7 0.031 0.5% 0.181 99.7% -0.134 -15.0% 0.215 98.5%
8 0.426 37.8% 0.332 23.5% 0.033 0.4% 0.150 99.0%
9 -0.153 -14.5% 0.196 96.6% -0.243 -23.6% 0.228 92.4%
10 -0.667 -44.7% 0.667 58.8% -0.722 -49.7% 0.732 54.2%
11 -0.182 -17.0% 0.200 95.2% -0.304 -30.8% 0.264 89.6%
12 0.013 -0.4% 0.136 99.8% -0.088 -12.2% 0.147 98.8%
13 -0.025 -3.7% 0.188 98.9% -0.207 -20.6% 0.243 96.9%
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Table 3-16: Initial simulation - IC performance measures (part 2)

The performance measure (bias, MSE and coverage) for the simulated ICs for two of the
IC-scenarios — using Study A RPSFTM-adjusted and Study B ITT estimates, and using
both ITT estimates.

ITT A versus adjusted B adjusted A versus adjusted B
Seenario Abbsio;sute 1;;‘;1;- MSE Coverage Abbsio;:te l;;i(;l;' MSE Coverage
1 0.126 5.2% 0.294 99.1% -0.013 -4.7% 0.268 99.8%
2 0.114 -0.3% 0.570 99.2% 0.017 -4.6% 0.536 99.7%
3 0.191 19.7% 0.157 90.4% 0.024 0.3% 0.130 99.4%
4 0.162 12.5% 0.180 96.6% 0.007 -2.0% 0.169 99.8%
5 0.106 11.0% 0.125 97.4% 0.006 -1.7% 0.120 99.4%
6 0.028 1.0% 0.141 99.9% 0.019 -1.4% 0.188 99.7%
7 0.167 9.5% 0.253 97.8% -0.015 -4.7% 0.236 99.4%
8 0.407 36.7% 0.315 24.9% 0.020 -1.4% 0.147 98.9%
9 0.083 3.0% 0.255 98.3% -0.024 -4.8% 0.240 99.1%
10 0.070 -0.5% 0.454 99.0% -0.009 -4.0% 0.433 99.1%
11 0.141 6.3% 0.298 98.7% -0.014 -4.8% 0.272 99.3%
12 0.134 9.8% 0.190 98.7% 0.020 -0.8% 0.172 99.9%
13 0.197 10.0% 0.297 97.3% -0.014 -4.6% 0.263 99.1%

From Table 3-15, Table 3-16, it can be seen that the proportion of bias varies
considerably, and as this example shows the bias can go in either direction. Starting with
Table 3-15 and looking across all scenarios, the bias could be as little as 0.4% to 73.9%
for the comparison using both ITT estimates and 0.4% to 81.3% for the adjusted estimate
for study A and ITT estimate for study B. The MSE is a lot higher than for the individual
estimates, especially for the second scenario. The coverage is also very variable (ranging
from 15% to 99.9% when using both the ITT estimates and 12.7% to 99.8% for the
adjusted A and ITT B comparison).

3.4.4 Conclusions

The data for this example was simulated in such a way that the RPSFTM was expected
to perform well in adjusting for the treatment switching, based on previous simulation
studies (Morden 2009, Latimer 2012). In practice, it could not be guaranteed how
successful any adjustment would be at obtaining the actual treatment effect, and thus there
may be additional bias in the adjusted estimates used in the ‘adjusted’ IC analysis. Yet,
having ensured that the adjustment method in the simulation study was appropriate

highlighted that in these circumstances the adjusted estimates should be similar to the true
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values, and hence the IC using both adjusted estimates would perform well, albeit with

additional uncertainty.

The data presented here are by far a simplification of those that could be obtained in
practice. For example, whilst the proportion of treatment switchers was related to the
severity level, the switching time was not controlled by any time dependent covariates
(such as severity, age, etc.). In addition, the underlying survival data for both studies was
the same. This meant that exactly the same population was assumed for both studies,
which may not occur in practice. The initial simulation results are, therefore, very
important, as they have shown that even in these simple examples where additional
external biases may be reduced, the data remain sensitive and whether treatment

switching was accounted for has a clear impact.

The changes in the proportion of simulations where the result was statistically significant

is perhaps surprising. When adjusting a single estimate for treatment switching using the

RPSFTM, the uncertainty is typically calculated by preserving the p-value (section

1.1.3.3.1). This approach merely increases the uncertainty, and does not alter the

significance. To some extent then, it might have been hypothesized that, in general, for

the IC, either:

1)  The significance would not change — i.e. the proportion of simulations showing a
statistically significant effect should remain the same.

2) A statistically significant result would be less likely, given the increase in
uncertainty — i.e. the proportion of simulations showing a statistically significant
effect will be less for comparisons using at least one adjusted estimate, compared

to the analysis using both ITT estimates.

However, neither of these hypotheses were justified by the data. Indeed, in some
circumstances the proportion of statistically significant effects increased substantially.
Whilst these findings may give some insight into the effect of treatment switching in ICs,
it is difficult to see how this could be used in practice. As the actual underlying treatment
effect is unknown, and the level of bias varies by this unknown quantity, there will always

be a high level of uncertainty.
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In terms of the comparison using the adjusted and unadjusted estimates, similar
approaches were followed as for the case studies. These estimates were highly sensitive
and very much influenced by scenarios. For example, where the estimate with the higher
treatment switching proportion and which showed the greater treatment effect was
adjusted for crossover, and the other one not, the IC HR more closely resembled the
adjusted analysis; albeit that this was an overestimate of the true effect, and there might
also have been a higher probability of having a statistically significant result. In contrast
where the estimate for the study with less treatment switching, and showing less benefit

was adjusted, the results resembled the ITT analysis more.

It should also be noted that the analyses both in terms of the IC HR and probability of

being statistically significant were very sensitive to the data used.

3.5 Simulation study — part 2: Systematic selection of scenarios

3.5.1 Background

The initial simulation study examined different potential scenarios. It highlighted a
number of exceptionally valuable points, depending on which estimates (unadjusted or
adjusted) were used. However, due to the nature of the simulation scenarios (a wide
variety of characteristics were spread across a very limited number of scenarios), it was
difficult to compare across situations and examine the effect that all the different
parameters had. It did not seem feasible due to computation time to investigate all
combinations of the values of the HR, and probabilities of switching which differed
depending on prognosis for each study, as this would have led to at least 1,728 scenarios.
Nevertheless, a more systematic approach did seem warranted to give a greater

understanding of the effect in terms of bias, MSE and coverage.

3.5.2 Methods

3.5.2.1 Simulation of the data

As before, for the case studies and the initial simulation study, the underlying survival
data was simulated according to section 3.3.1. However, here the treatment effect and
treatment switching proportion were restricted to four possible values, for both of the

studies. These are given below.
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Table 3-17: 'Systematic simulation' - Characteristics of the simulated datasets

Characteristic Values used in the simulation
Treatment effect 0.31; 0.50; 0.70; 0.95
Treatment switching proportion 25% poor prognosis; 5% good prognosis

50% poor prognosis; 25% good prognosis
70% poor prognosis; 25% good prognosis
90% poor prognosis; 40% good prognosis

This resulted in 256 potential scenarios. It was then noticed that since the same set of
values were being used for study A and B, this would lead to some duplicate findings.
Therefore, to improve computation time, essentially ‘duplicate’ scenarios were ignored.
An example of a duplicate scenario is given in Table 3-18, since essentially Scenario X
is the same as Scenario Y, just with the study letters reversed. Therefore, the findings
should be almost identical (some variation is likely to occur naturally as part of the

simulation), only with the study names reversed.

Table 3-18: Example of ‘duplicate’ scenarios

Study Parameter Scenario X Scenario Y
Treatment effect 0.31 0.95

Study A . 25% poor prognosis; 70% poor prognosis;
Crossover proportion 5% good prognosis 25% good prognosis
Treatment effect 0.95 0.31

Study B . 70% poor prognosis; 25% poor prognosis;
Crossover proportion 25% good prognosis 5% good prognosis

This reduced the number of scenarios to 136, which are illustrated in Figure 3-4.

3.5.2.2 Analyses

For each dataset, the HRs and corresponding SE were calculated using a Cox model (Cox,
1972) and a RPSFTM (Robins and Tsiatis, 1991). An IC was then performed, as described
in sections 3.3.1. and 3.3.3.1, using each of the estimates (both ITT; one adjusted and one
ITT estimate; both adjusted). The main aim of this research was to assess the various
performance measures, which are reported in Section 3.5.3. The performance measures
of interest were the bias (both absolute and percentage), MSE and coverage, as defined

in Section 3.4.2.2.1.
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Since it is difficult to summarise all of the 136 scenarios in a clear way, the scenarios
have been grouped into five categories; those with:
(1) the same treatment effect and crossover proportion;
(2) with less effective novel treatment in study B and lower proportion of crossover
in study B;
(3) less effective novel treatment in study B and the same proportion of crossover;
(4) less effective novel treatment in study B and higher proportion of crossover in
study B;
(5) the same treatment effect and a higher proportion of crossover in study B.

This is illustrated in Figure 3-5.

Figure 3-4: 'Systematic simulation' scenarios
Study B

1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16

17 18 19 20 21 22 23 24 25 26 27 28 29 | 30 31

32 33 34 | 35 36 37 38 39 | 40 | 41 42 | 43 | 44 | 45

46 | 47 | 48 | 49 50 51 52 53 54 55 56 | 57 58

59 | 60 [ 61 | 62 | 63 | 64 | 65 | 66 | 67 | 68 | 69 | 70

71 72 73 74 75 76 77 78 | 79 80 [ 81

82 83 84 | 85 86 | 87 88 | 89 90 | 91

‘ 92 | 93 [ 94 | 95 | 96 | 97 | 98 | 99 | 100

101 | 102 | 103 | 104 | 105 | 106 | 107 | 108

Study A

109 | 110 | 111 | 112 | 113 | 114 | 115

HR: 0.31
HR: 0.50 116 | 117 | 118 | 119 | 120 | 121
HR: 0.70

122 | 123 | 124 | 125 | 126
HR: 0.95

127 | 128 | 129 | 130

Crossover proportion: 25% poor prognosis; 5% good prognosis
131 | 132 | 133

Crossover proportion: 50% poor prognosis; 25% good prognosis

Crossover proportion: 70% poor prognosis; 25% good prognosis 134 | 135

EECLD JOOm

Crossover proportion: 90% poor prognosis; 40% good prognosis 136

Hllustration of the HR and treatment switching proportions in each of the 136 simulation
scenarios of the ‘Systematic simulation study’.
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3.5.3 Results
Detailed results about the bias (absolute and proportional), MSE and coverage for each

of the 136 scenarios are available in the Appendix D.

Table 3-19 gives a summary over all scenarios and also across each of the five groups.
Where the underlying treatment effect for both studies and the crossover proportion are
equal (Group 1), the ICs using both ITT estimates produce very little bias. Consequently,
little was gained by using the adjusted estimates, and in fact the bias potentially increased
when using the RPSFTM-adjusted (range in comparison to the ITT estimates). For the
remaining groups, the comparisons using both RPSFTM-adjusted estimates showed a
marked decrease in bias than the both ITT IC, reducing from -54.9% to 46.6% for the
both ITT to -4.8% to 3.1% for the both RPSFTIM-adjusted. Similar figures for the MSE
and Coverage are available in Figure 3-11 to Figure 3-15 and Figure 3-16 to Figure 3-20
respectively. Table 3-20 gives the summarised results for MSE and coverage. The MSE
remains relatively consistent across groups for each of the IC-scenarios. This is
particularly interesting since the MSE is a measure which balances the precision against
the bias, thus the fact that they are consistent across ICs means that any decrease in bias,
is being consistently matched by a loss in precision. Therefore, there is a trade-off to be
made and it may be worth accepting a small amount of bias to improve the precision. It
should be noted, though, that the MSE is only one way in which to contrast the bias and
precision. The coverage was exceptionally variable (3.6% to 100%); almost all of the both
adjusted ICs having 99% or 100% coverage, and similar results for the ITT estimates
when the crossover proportion and HR were the same in both studies. Coverage has been
presented for completeness, but given the highly biased nature of estimates does not prove

very useful.
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Mean absolute bias in the estimates
Scenarios with the same treatment effect & crossover proportion for both studies

Figure 3-6: 'Systematic simulation' - Absolute bias (Group 1)
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Mean absolute bias in the estimates

Figure 3-8: 'Systematic simulation' - Absolute bias (Group 3)
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Mean absolute bias in the estimates

Figure 3-10: 'Systematic simulation’ - Absolute bias (Group 5)
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Figure 3-14: 'Systematic simulation' - MSE (Group 4)
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Hllustration of the mean value of the MSE in the estimate for each scenario where study

B had a less effective treatment novel treatment but a higher proportion of crossover.

Figure 3-15: 'Systematic simulation' - MSE (Group 5)
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Figure 3-20: 'Systematic simulation’ - Coverage (Group 5)
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Hllustration of the mean value of the coverage in the estimate for each scenario where
both novel treatments are equally as effective but Study B has a higher proportion of
crossover.

Table 3-19: 'Systematic simulation' - Grouped results for bias
Average, minimum and maximum bias over all the scenarios and the grouped simulation
scenarios for each of the IC-scenarios.

. . Neither adjusted Only A adjusted Only B adjusted Both adjusted
Grouping Statistic
Absolute % Absolute % Absolute % Absolute %
Mean 0.089 11.3% -0.063 -13.4% 0.202 20.7% 0.021 -0.7%

Overall Minimum -0.340 -54.9% -0.454 -93.5% 0.016 -0.7% 0.001 -6.8%

Maximum 0.456 46.6% 0.026 2.0% 0.873 47.1% 0.046 3.1%
Same Mean 0.010 -0.9% -0.139 -23.7% 0.237 14.1% 0.021 -2.0%
‘rfefa“tng“ Min 0.002 2.1% -0.454 -93.5% 0.017 -0.2% 0.010 -6.8%
elrec
crossover Max 0.020 0.1% 0.008 -1.1% 0.873 43.7% 0.044 -0.4%
proportion
Less Mean 0.217 27.2% -0.009 -5.5% 0.263 30.4% 0.021 -0.5%
:’ffetctwet Min 0.069 7.0% -0.117 -29.9% 0.073 7.4% 0.004 -4.2%
reatmen
& less Max 0.456 46.6% 0.026 1.4% 0.544 47.1% 0.042 2.1%
crossover
Less Mean 0.143 19.6% -0.021 -7.4% 0.204 24.4% 0.021 -0.1%
teffef“"et " Min 0.038 3.2% -0.155 -40.0% 0.042 3.7% 0.003 -4.5%
reatmen
same Max 0.292 46.0% 0.023 2.0% 0.541 46.7% 0.036 2.6%
crossover
Less Mean 0.076 11.1% -0.032 -9.5% 0.145 18.5% 0.022 0.1%
teffef“"et & Min -0.068 -14.6% -0.160 -39.3% 0.042 3.3% 0.006 -4.1%
reatmen
more Max 0.213 38.4% 0.022 2.0% 0.399 39.3% 0.046 3.1%
crossover
Same Mean -0.085 -12.5% -0.180 -30.4% 0.168 10.0% 0.023 -1.8%
tffefaf&mem Min -0.340 -54.9% -0.453 91.5% 0.016 -0.7% 0.001 -4.8%
€ more
crossover Max 0.008 -0.8% 0.001 -1.9% 0.663 36.5% 0.046 -0.7%
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Table 3-20: 'Systematic simulation' - Grouped results for MSE and Coverage
Average, minimum and maximum results for the MSE and coverage over all the scenarios
and the grouped simulation scenarios for each of the IC-scenarios.

MSE Coverage
Grouping  Statistic  nNojper  OnlyA  OnlyB Both  Neither  OnlyA  OnlyB  Both
adjusted adjusted adjusted adjusted adjusted adjusted adjusted adjusted
Mean 0.131 0.123 0.214 0.141 81.2% 93.9% 78.8% 99.2%
Overall Minimum 0.062 0.059 0.066 0.062 3.6% 15.9% 6.8% 96.7%
Maximum 0.361 0.335 1.200 0.309 99.8% 100.0% 99.9% 100.0%
Same Mean 0.139 0.182 0.335 0.204 99.4% 90.3% 90.5% 99.2%
treatment
effect & Min 0.128 0.135 0.137 0.141 98.9% 51.6% 57.1% 96.7%
crossover
proportion Max 0.160 0.335 1.200 0.309 99.7% 99.7% 99.9% 100.0%
Less Mean 0.162 0.106 0.210 0.117 58.6% 98.9% 56.4% 99.3%
effective
treatment Min 0.094 0.065 0.099 0.067 4.1% 95.6% 6.8% 98.1%
& less
crossover Max 0.361 0.139 0.502 0.163 98.6% 99.9% 98.5% 99.8%
Less Mean 0.121 0.097 0.179 0.113 77.2% 98.0% 74.3% 99.2%
effective
treatment Min 0.062 0.060 0.066 0.062 3.6% 91.5% 23.9% 97.4%
& same
Crossover Max 0.188 0.127 0.522 0.165 99.0% 99.8% 98.6% 99.9%
Less Mean 0.096 0.091 0.147 0.113 89.5% 96.4% 87.6% 99.1%
effective
treatment Min 0.062 0.059 0.072 0.067 22.7% 75.0% 45.9% 97.6%
& more
crossover Max 0.131 0.118 0.357 0.156 99.7% 100.0% 99.1% 99.9%
e Mean 0.139 0.183 0.274 0.205 94.6% 81.1% 96.1% 99.4%
treatment Min 0.123 0.125 0.147 0139  463%  159%  77.6%a  982%
eff & more
crossover Max 0.214 0.324 0.846 0.303 99.8% 99.7% 99.7%  100.0%

3.5.4 Conclusions

This follows a similar trend to the initial simulation. In scenarios where there is the same
treatment switching effect and switching proportion for both studies, the IC using both
ITT estimates gives very little bias, and extremely high coverage. However, in other
scenarios the bias and coverage range quite considerably, even if the proportion of
treatment switching is the same in both groups using the ITT estimates. There are also
differences in the variability depending on which estimates are used in the IC. Once again,
the IC using both adjusted estimates performs consistently well at representing the true
HR between the two treatments of interest. As before, this will be due to the adjustment
method being extremely appropriate for the data requirements; had the common treatment

effect assumption been violated the bias would most likely have been greater.
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3.6 Overall conclusions from the simulation studies

The key findings of this, and the previous study, are (1) that the impact of treatment
switching is substantial depending on whether or not the estimates have or have not been
appropriately adjusted; and (2) that the bias and coverage is highly related to the
underlying treatment effect and the proportion of bias.

The simulation studies show that, theoretically, there is less cause for concern if only ITT
analyses are available when the proportion of crossover and the underlying HR for each
of the new treatments (compared with the common comparator) are the same. However,
in reality the true HRs are unknown (and any ITT analysis will be biased to an unknown
degree). Therefore, it would be very difficult to determine in practice whether an example
complied with these conditions. It could actually be that the true treatment effect for one

study is less than the other, and thus the bias could be considerable.

The estimates for the coverage caused the most concern, given that when both adjusted
estimates were included within the IC, the coverage remained at above 97%. This
occurred both in the initial and the ‘systematic’ simulation study findings. From the initial
simulation study where the study-specific performance measures were calculated, it was
possible to see some additional uncertainty than expected (e.g. coverage values of 96%
or higher) which could be contributing. An alternative suggestion is that some of this
could be contributable to the exclusions of the ‘severity’ variable in the model.
Exploration has shown that the inclusion of this variable in the ITT Cox model analysis
reduces the SE, potentially accounting for some of the poor coverage, the rest being due
to bias. Since the p-value is preserved in the RPSFTM analysis, some of the additional
variation will undoubtedly carry across to the adjusted estimates. This means that
although the point estimate should be unbiased, the SE will be increased. Whilst this will
have contributed towards the poor coverage using both adjusted estimates, it does not
fully explain it. Greater uncertainty around the estimate would also impact on decision

making, if these results are used as inputs for a probabilistic economic decision model.
At the most basic level, the findings from these simulation studies emphasise the

importance of examining any additional summary data for treatment switching, when

conducting an IC. It is vital to know: whether treatment switching has occurred, the
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proportion of crossover, and if any adjustment has been made as these factors clearly
affect the results. In light of the findings from this study, where a non-negligible
proportion of treatment switching has occurred and no adjustment has been made, any

results must be considered with caution.

In situations, when only the unadjusted HRs are reported, even if the amount of treatment
switching is known, it is hard to draw any conclusions of how affected this estimate may
be. Previous simulation studies (Morden, 2009, Latimer, 2012) have indicated that the
more treatment switching there is, and the greater the true treatment effect is, the more
bias toward the null hypothesis (i.e. the closer the HR is to one); but in a clinical example
where the true treatment effect will not be known, the full impact of conducting an IC
cannot be fully assessed. Using appropriately adjusted estimates for treatment switching,
therefore, is highly recommended, even though this will result in a higher level of

uncertainty around the estimate.

When adjusted HRs are available for some but not all treatments, using a mixture of
adjusted and unadjusted HRs is likely to lead to a great discrepancy, and possibly high
bias. The simulation studies, presented in this Chapter have highlighted the wide-ranging
consequences of adopting such an approach; in particular, the treatment effect is
underestimated, or overestimated depending on whether it is the more or less effective

treatment that has been adjusted for.

However, as has been demonstrated, using both the unadjusted estimates is not a fair
representation either, and hence, ICs should be conducted using adjusted estimates for all
RCTs with treatment switching. Given the past practice in NICE TAs (discussed in
Chapter 2), this would mean re-analysis of RCTs with treatment switching must occur
before their inclusion into an IC. But, in order to conduct this re-analysis, the data must
be available at individual patient level. For manufacturers conducting an IC with respect
to a competitor’s product, this is unlikely to be feasible under the STA process. Therefore,
at present they would be impelled to either exclude the study or include the ITT analysis,
neither of which is ideal. Research was therefore undertaken to produce a method
whereby some form of adjustment could be performed only using routinely reported

summary statistics.
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3.7 Potential solutions

Although no formal evaluation (such as in Sections 3.3, 3.4 and 3.5) of ICs including
summary data affected by treatment switching had taken place, the issue had already been
raised and thus, prior to the research presented here (Chapters 4 — 6), work had been
undertaken to develop a method which could be used to adjust appropriately for treatment
switching which only used routinely reported information (Boucher, 2013b). For this
purpose, two broad approaches were suggested: the first, to use the simulation studies
(Morden, 2009, Latimer, 2012) to estimate the associated level of bias, and then adjust
by this amount; the second, to reconstruct the IPD to permit existing recommended
methods to be used. The methods (Chapter 4 and 5) outlined in this thesis drastically

extend the earlier work described in section 3.7.2.

3.7.1 Directly adjusting the summary data

The first method, known as the ‘adjustment factor method’, calculated the ‘adjustment
factor’ — one minus the proportion of bias (given the trial characteristics) — and then
multiplied the HR by this factor. However, the proportion of bias could be computed in
one of two ways. The first of which required the trial characteristics to exactly match one
of the scenarios, then the proportion of bias for that scenario was used. The second
approach fitted a linear regression to the simulations and trial characteristics, and aimed
to predict the level of bias for a given set of characteristics. These methods were
theoretically and computationally easy to use, and a simulation study demonstrated that
the level of bias was generally reduced when compared with an ITT approach (Boucher,
2013a, Boucher, 2013b). However, the characteristics used to define the simulation
scenarios are rarely known in practice, and hence made the method difficult to use

routinely. Overall, the ‘adjustment factors’ are only useful as tools for sensitivity analysis.

3.7.2 Reconstructing individual patient level data

The alternative proposed approach was to reconstruct the IPD. A method to reconstruct
individual patient survival times using coordinates extracted from a Kaplan-Meier curve
had been proposed and subsequently advocated (Guyot, 2012). This method, referred to
as the ‘Guyot method’ (described in more detail in Section 4.3.4) was, therefore, decided
upon. The method effectively back transforms the time coordinates; calculates the number

of events at a given time, and when the ‘numbers at risk’ table is presented, the number
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of censorings over an interval; and finally distributes the censorings evenly over the

interval or time span (if the ‘numbers at risk’ information is not given).

However, further difficulties remain after the IPD survival times have been generated.
Although the analyst now has survival times for individual patients, there is still no
information on which of these patients switched and when they switched. Consequently,
this must be estimated. Essentially bootstrapping without replacement was used to allot
switchers and non-switchers; thus patients are selected at random from the control group,
and assigned as switchers, until the number that was reported as crossing over has been
reached. This bootstrapping process is repeated multiple times, for computational
purposes 100 repetitions was decided upon, in order to incorporate the uncertainty around

who switches.

Approximate switch times for patients were calculated by multiplying their OS time by
the ratio of median times for PFS and OS. This mechanism was also used as part of the
methods in Chapter 4 and thus, the calculation of the switch time is described in more
detail in Section 4.8.2.3. The data, for each of the 100 repetitions, was analysed using a
recommended method, and the result recorded. All the results were then averaged over to
give one estimate of the treatment effect. The simulation study showed that, whilst the
bootstrapping mechanism and switch time estimation worked relatively well, reducing
the bias from an ITT estimate when the percentage of crossover was high and
effectiveness of the treatment strong, there were difficulties using the Guyot method

(Boucher, 2013b).

The Guyot method was found to be harder to implement than expected, and examples
comparing the reconstructed data with the original IPD showed many discrepancies. In
addition, summary statistics calculated from the reconstructed data were at times vastly
different to those reported. This caused concern for implementing the method in practice,
and the key conclusions of the research relating to this approach were that other

techniques for reconstructing data should be explored or developed (Boucher, 2013b).

Consequently, although the reconstructing IPD approach had tremendous potential, as it

stood, none of the methods produced from this project could be effectively and
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confidently used in practice to reduce the bias due to treatment switching in summary

statistics. Further research was required to develop this reconstruction approach further.

3.7.2.1 Generating the survival times

Whilst the Guyot method (Guyot, 2012) is largely recommended, in this context,
problems existed with this method, emerging largely through digitizing the curve (using
a software package to digitally read and record coordinates from an uploaded copy of the
Kaplan-Meier curve). This highlighted how dependent the method is on having accurate
coordinates. The principle difficulty related to the type and quality of the graph. Poor
quality graphs clearly impact, however, other elements such as dotted or dashed lines,
exceptionally thin or thick lines make it challenging to take clearly take points. Although
there is a line recognition component of the software, Digitizelt (2013), this seldom works
effectually, and it is almost always necessary to take points manually by clicking on the
location the coordinate is to be taken at. However, this also induces error. In particular
thick lines cause difficulties, and can lead to conflicting coordinates. It is not possible for
the survival proportion to increase, nevertheless, this can easily occur within the
coordinates; for example, having a 0.871 probability of survival at 25 days but a 0.872
probability at 29 days. One of these must be incorrect but in practice it is almost
impossible to tell which. It could be that the cursor had been slightly to low on the first,
or too high on the second. Sometimes a reasonable guess can be made depending on the
coordinates either side but more often than not, it becomes an arbitrary choice made by
the analyst, and thus highly subjective. It was also concerning that a different choice of
coordinate could lead to a quite different dataset, as the time coordinates are back-
transformed to give the survival times, and potentially result in noticeably different
results. Given the sensitivity of the data it was felt that the uncertainty surrounding the

reconstructed data was reflected in the final results.

3.7.2.2 Constructing and analysing the treatment switching information

The general approach by which treatment switching information was reconstructed is
described in sections 4.8.2.2 and 4.8.2.3, as this was also utilised during the
methodological development which informs that Chapter. This principle difference with
the methods employed in Boucher (2013b), was the replicating of the treatment switching

information 100 times, the individual analysis for each of these replications using one of
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the recommended methods (namely a variation of the RPSFTM) and the averaging of the
results. In addition, this project ensured that the median times from the group where

treatment switching has not occurred were used to avoid bias.
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Chapter 4: Reconstructing Individual Patient Level Data for
Overall Survival

4.1 Chapter overview

This chapter discusses the current methods available for reconstructing IPLD for one
outcome (namely OS), which is the initial step towards reconstructing and reanalysing
treatment switching data. It continues by proposing a novel simulation approach, detailed
in Section 4.4. This approach is illustrated by its application to a dataset for Neutron
therapy, before being assessed in a reproducibility study. During the illustrative example
and reproducibility study, the simulation technique is contrasted with the Guyot method
(described in Section 4.3.4). Extensions needed in order to apply treatment switching

methods are given and two case studies presented.

4.2 Introduction

In previous research (Boucher, 2013a, Boucher, 2013b), the approach by which IPLD
was reconstructed and re-analysed indicated the greatest potential for use in practice
(more details are available in Section 3.7.2.2). However, in order to promote this, the
principle limitations in terms of the accuracy of the IPLD must be resolved. One solution
was to consider other methods for generating survival times, which might lead to more
representative data. More importantly, however, it was felt necessary to be able to reflect
some of the uncertainty in the reconstruction process within the final analysis. This could
be achieved by generating multiple datasets, although the most recommended methods,
which include the Guyot (2012) and Hoyle and Henley (2011) methods, for data

reconstruction do not particularly lend themselves to this.

It should be noted that reconstructing IPLD is not restricted purely to aiming to address
treatment switching, but for other reasons as well. For example, it may be necessary to
obtain various summary statistics, such as restricted mean survival time (RMST), or CEA,
the primary reason which has fuelled research in this area. Alternatively, it might be that
the analysis method employed already is inappropriate, perhaps if a PH model, such as
the Cox (1972) or Weibull (Collett, 2003) model, has been applied when the PH

assumption is clearly violated.
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4.3 Evaluation of current methodology
A variety of approaches already exist, however, each of these have limitations, principally
how they accommodate uncertainty about the data reconstruction process. They typically

assume that the dataset they produce is equivalent to the IPD.

4.3.1 Notation

Before describing the methods, some notation used in this section (4.3) will be introduced.
The ‘numbers at risk’ table is a key component for both of the more complex methods.
The period of time between two values of the risk-set will be referred to as the interval,
and denoted /. The value of the risk-set at the start of the interval will be written as n; and
the survival proportion at the start of the interval as S;. The number of censorings and
number of events occurring over the course of the interval are represented by ¢; and d;

respectively.

4.3.2 Naive approaches

For calculating statistics such as RMST, naive approaches (Wan, 2015) are often taken.
These involve extracting pairs of survival and time coordinates from the Kaplan-Meier
curve, and then using a ‘least squares’ or a ‘graphical’ approach to estimate parameter
value for simple survival parametric distributions, such as exponential or Weibull. If a
‘least squares’ approach is employed, the sum of the squares of the residuals (the
difference between the model estimates and the actual data) is minimised to obtain the
parameter values. If, instead, graphical methods are used, the data is transformed onto a
scale, such as the log cumulative hazard (LCH) and log times scales, and then a linear
regression model fitted. For values such as the RMST, the model obtained can just be
integrated between the relevant limits (e.g. for the RMST at five years, integrating the
survival function between zero and five). However, no particular attention is given to
censoring for these methods, and they are heavily reliant on the simple survival models
chosen, representing the data well. A key criticism of these approaches has been that they

also do not account for uncertainty.

4.3.3 Hoyle and Henley approach
This method takes extracted coordinates at the same time points at which the numbers at

risk are reported, as well as a quarter, half and three-quarters of the way through an
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interval. It aims to essentially calculate the number of events and censored observations,
and number at risk over each quarter of an interval. One of its key assumptions is that the
censorings are distributed evenly throughout the interval, thus, if say eight censoring had
occurred throughout the course of a four month interval, two would have occurred each

month.

The first stage of the method is to calculate the number of deaths and number of
censorings. The survival at the start of the next interval is essentially made up of the
survival at the beginning of the current interval, multiplied by the probability of surviving

the interval, calculated as it would be for life-tables.

d,
Sip1=511- — 1 4-1)
n; — ici

In addition, the number at risk at the end of the interval is essentially the number at risk

at the start of the interval, minus the number of events and censorings over the interval.

Ny =Ny —c—d; (4-2)

Using this information, and rearranging it, the number of deaths and censorings can be

computed as follows.

d = (my + 141 (S — Si41)
! Sr+ S

(4-3)

_ 2 (Speamy — Spnyyq)
S;+ Si41

Cq (4-4)

These estimates will be rounded to the nearest integer.

Once these estimates have been obtained, the method then goes on to split each interval
in half, calculating the same parameters as before. For this, the additional notation has
been introduced: I,y to indicate that the survival / numbers at risk at the start of, and the
number of censorings and deaths during the time period from x™ proportion of the interval

to the y' proportion is being calculated. For example, I (0 l) means the time period from
2

3
21

the start of interval / until halfway through the interval; I ( ) would indicate the period
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from three-quarters of the way through until the end of the interval. Where the x,y
subscript is omitted, this means that the whole interval is being considered. Therefore, the

survival proportion and the number at risk can be calculated using the equations below.

d
N R
S’(ll) =51 —1 (4-5)
2! n; % o
_ AR RS _
Si+1 = 51(1 1) 1- 1 (4-6)
z ny—z¢
4
Ny =Ny — € — dI(O%) - dl(%yl) 4-7)

The numbers of death over these smaller time periods, can be calculated as follows:

2

(4-8)
k 51(1’1)51 + 51(1’1)51+1 +25; 541 )

/(51 ut S, n1+1> +25; n,+1\
L (5 . > ™ iy
11\ = |51 I+1
(1) Gy 7

2 2

<51 Lt S, n1+1> + 25144 (4-9)
—(35.. +5 (1) (1)
1 F S s,

(%'1)51 + 51(%’1)51+1 + 255144
Based on all of the above:
€= Ny =Ny — dI(O%) - dl(%'l) (4-10)
And,
= d 1 4-11
M T Moy T2 i
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Having achieved this, for greater accuracy each half-interval is split again. By the same

principles used to estimate expressions 4-5 to 4-11 this means that,

Sl(ll)nl + Sl(ll)nl(%,l) + 2 Sl(ll)nl+1
dl 11 S <SI 11 _SI 1 > 42 ¥z z (4-12)
5 75 > S S+ S S +25;S
(4 2) (4 z) (0 2) I(%%) I I(%%) I(%'l) I I(%,l)
Stz \Mp T S15 \Tus1 + 251, N
d — S _ S (4—'1) (2'1) (4—'1) (2'1) (4_13)
"Gy \TGy T\ S (St S

Si+1+2 51(11)51+1
:

GY Gy Gy

For simplicity, deaths in the first quarter, and third quarter are calculated as follows.

G2) (+-14)

dI = dl

Gz v

Based on the assumption mentioned earlier about evenly distributing censored

N (4-15)

g

observations, the following statement holds.

()

(11) = C1(13) = CI(S ) = Z (4-16)

22 24 2!

CI = CI

(o)
In other words, the censoring for each quarter is exactly the same e.g. the total censorings

over the interval, divided by 4.

When these estimates have been obtained, a model is fitted to the data, with the
parameters estimated by maximising the likelihood. Suggested models include

exponential, Weibull, logistic, log-normal and log-logistic distributions.

Tierney (Williamson, 2002) has proposed an amended version of the method for use if

the ‘numbers at risk’ table has not been reported.

4.3.4 Guyot approach
This approach predominantly uses the theory behind the calculation of the Kaplan-Meier

curve. It involves extracting pairs of survival and time coordinates at each distinct event
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time. The coordinates are typically extracted by uploading a scanned copy of the Kaplan-
Meier curve into a digitizing software package, such as Digitizelt (mentioned in Section
3.7.2.1). The software permits the analyst to click on the location of an ‘event’ (e.g. each
step of the curve), and easily record its coordinates. This list of coordinates can then be
transported into a statistical software package, and manipulated to reconstruct IPLD.

Since, the Kaplan-Meier curve, up to the k™ distinct event time, is calculated as follows:

k
d
st = [pr p=1-3 @17)
z=0 z

Where d,, n, are the number of events and numbers at risk at time t,; then, the number

of events calculated at a given event time is:

S(t) > (4-18)

dp =my (1 - X2
k k< S(tk-1)

As it currently stands, censoring is being ignored (or assumed to occur at the very end of
the timescale). However, in reality, censoring is likely to have occurred throughout the
whole timescale, and as such will need to be accounted for. Where possible, if the
numbers at risk are available, these should be used to calculate the number of censored

observations throughout the intervals. This is obtained using equation (4-19):

S
= ( St )nl —Nyy41 (4-19)

This value is rounded to the nearest integer.

The censorings are assumed to happen evenly throughout the interval, and so for the m™
person of M people censored in interval /, the censoring time occurs at:

trv1 — 4 )

4-20
M+1 (420)

teensy, = U1 + m(

Once the censoring times have been allocated, these are then used in the ‘number at risk’
needed to back-transform the survival estimate, and calculate the number of events at that
specific time point. When the number of events have been calculated over the entire
interval, the ‘number at risk’ for the reconstructed dataset is computed and compared with

that of the IPD. If there are differences, this difference is added to the number of
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censorings over the interval, and the process of reconstructing the data for that interval
repeated. The estimates for intervals are then summed, and compared with the actual
number of censorings (if the number of events has been reported), and adjusted
accordingly. Where the number of events is not available, the initial estimates are
assumed to be accurate, and no re-estimation is done. Without the number of events and
‘numbers at risk’ table, this method assumes that all patients experienced the event of

interest.

4.3.5 Limitations of current approaches
The three broad approaches for facilitating reanalysis of time-to-event data vary
considerably in their theory and implementation. Recent studies that have compared these
methods have concluded that the Hoyle and Henley and the Guyot approaches typically
perform better than naive techniques and result in lower levels of bias (Wan, 2015).
However, there are still limitations with these, principally in terms of the censoring
distribution. Both methods assume evenly distributed censored observations which may
or may not be valid. In addition, the IPLD created by these approaches is treated as being
equivalent to the original IPD; in that the results obtained from this data are assumed
equivalent to those from the IPD. However, there is the potential for error in the dataset.
The censoring assumptions may not be appropriate, the coordinates may well contain
measurement error, to mention some potential issues. This is particularly true for the
Guyot method, since this approach relies on obtaining accurate values of the coordinates
at every distinct event time. As previously described in detail in Section 3.7.2.1, (based
on Boucher (2013b)), this is difficult to achieve in practice, and is impacted on by the
quality of the scanned survival curve. In large sample sizes with many events, event times
can be difficult to isolate since the step function can appear more of a smooth continuous
curve. Also, dotted line styles can make it hard to determine the event time. Thick line
styles complicate the data extraction process as there is more room for variation and error.
Since the survival function is monotonic, there must not be any inconsistencies within the
extracted coordinates. E.g.,

e the survival proportion cannot exceed any previous estimate of the survival;

o there should not be two different estimates of the survival proportion at the same

time;

e the survival proportion must be bounded between zero and one;

93



e the time coordinates must be greater than zero.
Nevertheless, it is difficult to ensure that all these conditions are met. Thus, if any are
violated, coordinates are typically removed subjectively (e.g. the analyst removes the
estimates they believe to be the inaccurate ones). For these reasons, it seemed important
that uncertainty within the data reconstruction process is taken into account during the

analysis.

4.3.6 Rationale for a simulation approach

To combat the current problems that had been associated with reconstructing IPLD (in
particular extracting exact event times, and relying on a single dataset), a new ‘simulation
approach’ was developed. This novel technique draws on some of the methodology
behind the naive methods and the Guyot approach. Like naive model fitting approaches,
this method models the survival, using coordinates extracted from the survival curve (as
is used for both the Guyot and Hoyle and Henley approaches). An important extension is
also ensuring flexible models are used (e.g. no restriction to exponential or Weibull
models). Also, in contrast to the naive methods, a censoring distribution is modelled in
addition to the survival curve. For this novel simulation approach, a similar technique to
that applied in the Guyot method is used to generate the censoring distribution. Survival
times and censoring times are then simulated from the respective models, before being
combined to produce a single complete dataset. This method deviates most from other
approaches; since, rather than only producing a single dataset, multiple datasets are
simulated from the models and analysed individually. To summarise the datasets overall,
an average is taken across all the individual results. A key difference between the
simulation method and the Hoyle and Henley or Guyot approaches, therefore, is that this
method cannot claim to create a single dataset almost identical to the original IPD. This
is because the simulated survival and censoring times come from models. However, long-
term the average point estimate over multiple simulated datasets will tend towards the

true underlying value, provided that the models are a reasonable fit.

Should this method prove successful, this could also provide a solution to generating the
treatment switching information. If the OS could be reconstructed effectively, then so
long as the PFS Kaplan-Meier was given, PFS could also be constructed. However, OS
and PFS would need to be related to each other, during the simulation. Given that this
could be developed, this might also address issues surrounding who switched, as
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assuming patients only crossover on progression, there would be more information on

patients who did (or did not progress), which could be used to indicate prognosis. These

combined solutions would strengthen the model considerably. The aim therefore became

to first develop a technique whereby IPLD could be simulated using coordinates extracted

off a Kaplan-Meier curve, and then once this had been established, extending this method

to simultaneously simulate PFS and OS (explained in Chapter 5).

4.4 Simulation approach

4.4.1 Outline of method

The process of simulating IPLD comprises of ten key stages. These stages are illustrated

graphically in Figure 4-1, and listed below.

1.

(98]

NS s

10.
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Extract coordinates for the survival proportion and time from the scanned
survival curve for each treatment arm;

Transform the extracted coordinates onto the LCH and log time scales;
Model the survival distribution for each treatment arm, using restricted
cubic splines (RCS);

Construct a censoring distribution based on the information reported,
Simulate survival times for each patient from the survival model;
Simulate censoring times for each patient from the censoring distribution;
Define the observed survival time and status of each patient; by taking
the minimum of the times obtained in steps 5 and 6.

Analyse the dataset using the analysis method of choice, recording the
results;

Repeat stages 5 — 8 to produce multiple datasets, as this incorporates
uncertainty around the reconstruction process;

Calculate an average of the recorded results to obtain a final point

estimate.
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4.4.1.1 Stage I: Extracting the data

As with the Guyot (2012) and the Hoyle and Henley (2011) methods, this approach begins
by obtaining estimates of the survival proportion at a number of different time points. To
do this effectively, scanned Kaplan-Meier curves should be transported into a digitizing
software package. Unlike the other data reconstruction approaches, rather than at exact
event times, here the aim is only to capture the shape of the survival curve, so that the
survival distribution can be modelled. This does not require exact event times. The reason
for this choice is that, in practice, it can be exceptionally hard to accurately extract
coordinates at each distinct event time. This is particularly true for large trials with many
events (resulting in a smooth-looking function instead of a clear step-function), having

many event times close together, and line styles, such as thick or dotted lines.

4.4.1.2 Stage 2: Transformation of the data on to the log cumulative hazard scale

The extracted coordinates are then transformed, in preparation for the modelling process,
and to ensure that the subsequent model has an intuitive interpretation. The survival
coordinates are transformed onto the log cumulative hazard (LCH) scale, whilst the
values for the time are transformed onto the log scale. This choice of transformation
means that, if a linear function is fitted, the resulting survival distribution is the commonly
used Weibull model. Consequently, if this simple linear model is extended to encompass
more complex terms, these additional terms can be interpreted as merely modelling the

departure from linearity.

4.4.1.3 Stage 3: Modelling the survival distribution

The choice of model is crucial to obtaining representative survival data. As discussed in
Section 4.4.1.2, using a linear model on the transformed (LCH) scale, would give a
Weibull model. However, the data needing be reconstructed often have quite complex
non-linear shapes, which require more complex models. Using polynomial terms is not
necessarily appropriate, since in practice these often contain turning points, whereas the
survival distribution must be strictly monotonic. Therefore, the application of RCS for
log time within the model has been selected. Whilst these models are not restricted to
monotonic functions, usually given the nature of the data, (e.g. the true survival function
will never exhibit a turning point), they remain monotonic. On the rare occasion that it is

non-monotonic, astute choices for knot locations and / or use of additional coordinates
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can correct this. The splines functions ensure a flexible model, and since the LCH scale
has been used, this model is equivalent to the flexible parametric survival model (Royston

and Parmar, 2002).

In terms of the practical implementation, RCS functions are computed from the log time
variable. These are then included within an ordinary least squares regression, with the
LCH variable as the outcome, and the splines functions as the exposure. The resulting

model can then be written in the form:
In(H) = S(Int | k, a) (4-21)

Where H is the hazard function, ¢ time, £ the knots and «a the coefficients.

4.4.1.4 Stage 4: Modelling the censoring distribution
This stage differs quite considerably from the alternative data reconstruction methods. It
should be remarked that the censoring distribution is more difficult to construct than the
survival function, since the majority of the information about censoring is given
implicitly, and its level varies between studies. Three different techniques by which a
censoring distribution can be constructed have been proposed, based on the data available.
The information these methods use are:

A) the maximum study length;

B) recruitment and follow-up times; and

C) ‘Numbers at risk’ table.
Of these three, method C (using the ‘Numbers at risk’ table) is the most preferable.

4.4.1.4.1 Approach A: Maximum study length

This technique relies on the smallest information possible, and can be applied in the
absence of any other information than the Kaplan-Meier curve. The maximum study
length can either be determined from the publication, if perhaps the survival is reported
for a fixed length of follow-up (e.g. 6-month, 1-year survival, etc.), or estimated as the
maximum value of the Kaplan-Meier curve, regardless of whether it is a censored
observation or an event). This estimated maximum time is used to censor any patients
whose simulated survival time exceeds this value. One important assumption of this
method is, however, that patients cannot be censored earlier than this time point, e.g. if

withdrawing from the study or being lost to follow-up (LTFU).
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4.4.1.4.2 Approach B: Using recruitment and follow-up times

This second approach requires the dates of recruitment and the data cut-off date to have
been reported in the publication. This technique makes two key assumptions: that of
administrative censoring only (patients must remain in the study, other than leaving due
to an event, for a minimum length of time which will be described below; e.g. they cannot
leave because of withdrawal of consent, or being LTFU); and secondly by assuming that

patients enrol in the study uniformly throughout the recruitment period.

This method works by calculating the minimum length of study time any patients who do
not experience an event must have remained in the trial: this is essentially the length of
time between end of recruitment and the data cut-off dates. To create the variation within
the censoring times, the maximum study length also needs to be determined: this is the
difference between the data cut-off date and the start date of recruitment. Once these have
been ascertained, censoring times can then be simulated uniformly between these values.
In other words, denoting the censoring distribution as C, and #max, fend as the time between
the start of the randomisation and the data cut-off, and the time between the start and end

of the randomisation period respectively; then C~Uniform(tnax — tend> tmax)-

Once again, this method imposes a distribution for administratively censoring patients.

Approach A (maximum study length) censoring is essentially a special case of this
method, in which all patients were randomised at the same time (recruitment /

randomisation for all patients was one day or less), such that t.,,q = 0.

4.4.1.4.3 Approach C: Using the ‘Numbers at risk’ table

This approach employs a similar technique to that used for constructing the censoring
distribution in the Guyot method; that is to estimate the number of patients who were
censored during a given interval. In order to do this, however, it is imperative that the
‘number at risk’ table has been reported (e.g. as illustrated in Figure 4-7). The advantage
of this approach is that it can take account of other types of censoring e.g. LTFU,
withdrawing consent, rather than just administrative.

To calculate the number of censored patients for a particular interval, the following

formula, used to construct lifetables, is relied on:
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pi=1-—7— (4-22)
n; — 7 Ci
Where d;, ¢; denote the number of events and censorings over a particular interval, /,

respectively and #; , the number at risk at the start of the /™ interval.

Sometimes, the denominator shown in equation (4-22), is referred to as the ‘effective
number at risk’; this essentially is the ‘number at risk’ taking account of those patients
who leave over the course of the interval due to censoring. This formula specifically
assumes that censoring occurs evenly throughout the study, by multiplying the number of
censorings by a half; this means that censored patients only actually contribute towards

the risk-set for half the interval.

Equation (4.22) can be re-arranged to obtain an expression for c;
d;
o =2(n - —) (4-23)

However, expressions for d; or p; do not yet exist, and thus, these must be estimated.

For the method to perform well, accurate estimates for the survival at the ‘numbers at
risk’ time points are required. Therefore, it should be ensured that the survival coordinate
nearest to these time points is an appropriate estimate. If this is the case, then:

S
Pi= S(ti-1)

(4-24)

In terms of d;, consideration must be given to how the difference in the ‘number at risk’
(denoted y;) over the interval is composed. Since there are only two ways in which a

patient can leave the risk set, by either having an event or being censored, then:

yi =d; +¢ (4-25)

Since y; can be estimated directly from the data, and c is the parameter of interest, then

;=2 <nl- - (3;__;;)) (4-26)
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Re-arranging this, estimates for the number of censored observations, ¢;, can be obtained

using the following expression:

. _ 2(y; —m(1 = pp)
P Di +1

(4-27)

Nevertheless, assuming the total number of censored patients (over the whole time
period) is reported or can be calculated, which is represented by C. Then, there may be

occasions where:

(4-28)

()

#
M-

o

~.
1l
=

And [ is the last interval.

In these cases, to ensure the simulated data should contain approximately the right number
of censorings on average, the estimates for each interval are scaled accordingly based on
equation (4-29).

o =& 4-29

Where ¢, ¢'are the initial and revised estimates for the number of censored observations

respectively.

This is perhaps where generating the censoring distribution using a simulation approach
deviates most from other methods. Instead of allocating patients to censoring times evenly
spaced throughout the timescale, a piecewise exponential model has been chosen, where
each interval has its own hazard rate. This hazard rate essentially depends on the

probability of remaining in the study and the length of the interval.

A (4-30)

Where /; is the length of the i ™ interval.
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By using the piecewise exponential models, the assumption that the hazard of being
censored remains constant over the course of an interval is being made, but can vary

between intervals.

4.4.1.5 Stage 5: Simulating from the survival distribution

The next stage of the method is to generate a time for each patient; this can be achieved
by simulating from the survival model. But, first, the survival distribution model (given
in Equation (4-21) must be rearranged in terms of z. This is solved for different values of
S(1), to give ‘simulated’ survival times for each patient. If simple survival models, such
as an exponential or Weibull distribution, have been chosen, this rearrangement could be
computed analytically. If, however, a more complex model, such as the flexible
parametric distribution, is used, the process is considerably more complex, and it is no
longer possible to calculate the function analytically. Therefore, the method becomes
reliant on user written software packages, which employ root solving techniques to solve
the expression and produce the simulated survival times. One example of a package that

can be used is the stsurvsim command in Stata (Royston, 2012).

4.4.1.6 Stage 6: Simulating from the censoring distribution

Having simulated a survival time estimate for each patient, their censoring time needs to
be generated. Once again this will depend on the choice of censoring distribution. If the
‘maximum time censoring’ approach is used, then each individual’s censoring time is the
value of the maximum time. If instead, the ‘recruitment times censoring’ approach has
been chosen to define the censoring distribution, then times are simulated from the
uniform distribution outlined in Section 4.4.1.4.2. Finally, should a ‘numbers at risk’ table
approach be adopted, the simulation model is a piecewise exponential distribution. In
practice this is implemented by simulating an interval-specific time for each interval and
each patient. This is estimated, as follows, where for patient x their censoring time, for a

particular interval, can be calculated as:

0 ;o ifty S tmax,
te =1 ti o, ifti Stmay (4-31)
tmaxi ’ if ty > tmaxi
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Where,

t; = (4-32)

And S ~ Uniform(0,1).

The total censoring time can then be calculated by summing over all the intervals, in other

words,

t, = z ty, (4-33)

4.4.1.7 Defining the patients’ observed survival times and status

Now that each patient has a simulated survival time and censoring time, their observed
time and status (i.e. indicator of event or censored) must be determined. This is simply
calculated by using the minimum of the two values: if the minimum value is the survival
time, this patient experienced an event at the simulated survival time; if the minimum

value is the censoring time, this patient was censored at their simulated censoring time.

4.4.1.8 Stage 8: Analysing the simulated dataset
The analysis of a single dataset can be divided into two parts: 1) replicating the reported
statistics in order to confirm how representative the simulated data is to the original IPD;

and 2) conducting any additional analyses.

4.4.1.8.1 Part 1: Replicating the reported statistics

This is a crucial stage of the method; its purpose is to evaluate how representative these
simulated data are to the original IPD. Commonly reported statistics, such as the number
of events, median survival (or survival proportion at a specific time point) and HR and,
if possible, RMST, should be replicated. There will be a level of disparity between the
IPLD and the IPD, but, if the IPLD is representative of the IPD, this should be small. For
certain statistics, in particular the median survival, a reasonably higher level of disparity
can still be acceptable. This is due in part to the fact that the median can be sensitive to
reconstruction based on a step function. Therefore, having fitting a continuous model

through this step function, will account for some of the difference.
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4.4.1.8.2 Part 2: Conducting additional analysis

This is principally the main aim of reconstructing IPLD; to conduct a new analysis.
Therefore, once it has been established that the IPLD is a reasonable proxy for the IPD,

the additional analysis can be implemented on the dataset.

4.4.1.9 Stage 9: Capturing the uncertainty by producing multiple datasets

Since this is where this data reconstruction method differs the most from other alternative
techniques, it is perhaps, the most important stage of the approach. Instead of relying on
a single dataset, multiple datasets are simulated and analysed (by repeating stages 5 to 9).
This means that uncertainty around the reconstruction process is specifically captured,
and no one dataset is given excessive weight (e.g. considered to be exactly equivalent to

the IPD).

Whilst a single reconstructed dataset may give values of the replicated statistics that differ
noticeably from the IPD, in the long term, assuming the chosen model fits the data
reasonably well, the results will tend towards those that could have been obtained from

the IPD.

4.4.1.10 Stage 10: Obtaining a final point estimate

Having generated all of the datasets, and analysed these individually, for ease of
interpretation or inclusion in further secondary analysis (e.g. the calculation of HR for a
meta-analysis), a single point estimate would be valuable. Therefore, the average over all

the datasets, is taken; similar to using parametric bootstrap.

4.5 Illustrative example of reconstructing IPD

4.5.1 Neutron Therapy trial

To illustrate how this method can be used in practice, and for an initial assessment of
whether the methodology performs well, the simulation approach has been applied to the
longer-term follow-up from a RCT. This RCT investigated whether treating pelvic cancer
patients with Neutron therapy improved survival in contrast to Photon therapy (Errington,
1991). This specific trial was chosen as the IPD were accessible. Whilst these methods
are designed to be used when the IPD are not accessible, here, it allowed a direct head-

to-head comparison for the IPD and IPLD secondary analysis results. The secondary
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analyses chosen were methods that accounted for non-proportional hazards, since the
Kaplan-Meier curves crossed (at approximately 6 months — Figure 4-4), suggesting that

the PH assumption may be violated.

4.5.2 Methods
Two methods have been used to reconstruct the data: the Guyot approach (Guyot, 2012)
and the simulation method. For both methods, the effect of the level of information
available was explored.
For the Guyot approach this included having:

e neither the ‘numbers at risk’ table or events;

e cvents only;

e both the events and ‘at risk’ table.

For the simulation approach, this meant applying all three censoring techniques.

An ITT analysis was conducted, once the data had been reconstructed using the required
method. This analysis included the number of deaths, median survival time, RMST at
three and a half years, and the HR estimated from a Cox model. To account for possible
non-PH, two different secondary analysis methods were applied: 1) a Cox model which
allowed for time-dependent effects (Bellera, 2010) by including an interaction term

between log time and treatment as shown in equation (4-34)
h(t) = ho(t)exp(By + Bi trt + B trt X log(t)) (4-34)

and 2) piecewise Cox models, which effectively estimate different HR, for pre-specified

time periods, as shown in equation (4-35).

h(t) = hy(t) exp(ﬁjxl-j), where x;; = trt; ift;_; <t <tg; (4-35)
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4.5.3 Results
4.5.3.1 Model fitting

Figure 4-2: Fitted models compared to the coordinates — Neutron therapy example
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The chosen models compared to the extracted coordinates: (left) on the LCH scale — as
fitted during the modelling process, (right) transformed back to the survival scale.

For the simulation method, models had to be determined for each treatment arm. The
simulation models chosen for both treatment arms used four degrees of freedom (df).
These decisions were based on:

e avisual inspection of the curve with the extracted coordinates;

e the Akaike Information Criterion (AIC) statistic;

e the Bayesian Information Criterion (BIC) statistic;

compared over models using different degrees of freedom, from 3 df to 9 df.

Once the degrees of freedom had been chosen, four different knot locations (for that
number of degrees of freedom) were tried. These models were plotted and showed very
little difference on visual inspection. Hence, the knot location was judged not to have
been influential on the results. More information, including the curves and model fitting

criteria results, is provided in the Appendix E.

The results for the initial ITT analysis, contrasting IPD and IPLD are shown in Table 4-1.
For the simulation method, the results have been averaged over the two thousand
generated datasets. Also shown in Table 4-1 is the effect of the information available to
develop the censoring distribution. The findings presented here show how much poorer
the data reconstruction methods are when little information is available on censoring (e.g.

when the maximum time simulation method or Guyot approach without the ‘risk table’
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Figure 4-3: Time dependent HRs
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Hllustration of the HR over time depending on the data being used.

and number of events are used). Interestingly, here the ‘recruitment times’ censoring
proved almost as appropriate as the ‘numbers at risk’ table censoring for the simulation
technique. Of the statistics reported the number of events in the photon therapy group, the
HR and median survival time appeared quite sensitive across methods. As already
commented upon, a slight degree of variation in the median survival time is expected. It
should be noted that the three and half year RMST proved very stable over all of the

simulation method results.

4.5.3.2 Secondary Analysis

Continuing to the secondary analysis, the results for this are presented in Table 4-2. A
formal test for non-PH was non-significant, which meant that this analysis may not yield
significant results. However, for illustration purposes, this was still deemed to be a good
example. Examining Table 4-2, highlights, yet again, that, particularly for this example,
making simplistic assumptions about censoring can lead to poorer performance in terms
of obtaining IPLD results comparable to the IPD. In addition, it was also clear different
levels of information available for the Guyot approach led to quite different estimates

across both Cox approaches accounting for non-PH. Once again, for the simulation
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technique, the ‘risk table’ and ‘recruitment times’ censoring distributions resulted in very
similar findings. Further assessment of Table 4-4, showed that the IPLD findings from
the time-dependent Cox model, performed exceedingly better at representing IPD than
when the piecewise model had been used. This is also illustrated, for the IPD, Guyot
approach (with ‘events’ and ‘number at risk’ table) and the simulation technique (using

the ‘numbers at risk’ censoring method) in Figure 4-3.

4.5.4 Conclusions

This example highlights the huge impact the level of information and choice of method
can have on the results. When the amount of information is reduced to the minimum
(Kaplan-Meier curve without ‘at risk’ table), strong assumptions about censoring (e.g.
only administrative censoring at the maximum follow-up time) are applied. This
consequently often reduces the representativeness of the data to the IPD, as can be seen
here (Section 4.5.3). It is, perhaps, quite surprising how well the Guyot method (including
the number of events), and simulation approaches with either ‘recruitment times’ or
‘numbers at risk’ table censoring methods perform in terms of the initial analysis, and for
the simulation techniques for the Cox model with time-dependent effects. None of the
methods performed particularly well in relation to the piecewise model, which may
suggest that this methodology is not so proficient in reconstructing IPLD which is suitable

for applying piecewise models.

4.6 Reproducibility study
4.6.1 Background

Having assessed the viability of the method in practice, it was important to examine the
reproducibility aspect of the approach. To ensure reliability and consistency, the
simulation technique must also provide results that can be easily reproducible, especially

given the simulation nature of the data.

Therefore, a small reproducibility study was undertaken. This investigated the
reproducibility of both the Guyot and the simulation approach. It directly considered the
effect of different participants, and image quality considerations such as line style and
line thickness. To enable certain statistics to be calculated and full comparison to the IPD,

the three datasets for the reproducibility study were simulated based on clinical trials
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(REACT trial (Gershlick, 2005), TAnDEM trial (Kaufman, 2009) and the MRC-Focus
trial (Seymour, 2007)). Information about the simulated examples can be found in Figure

4-3.

The REACT trial example was specifically chosen, as this is very representative of typical
heart disease trials, and as such the Kaplan-Meier curve is a complex shape (very steep
drop in the first couple of days, plateauing soon after for the remainder of the follow-up
(e.g. plateau for approximately four months out of six). This shape is likely to be

challenging for any method used to reconstruct the data.

4.6.2 Methods

Six participants were asked to extract coordinates twice for the three examples, once for
the Guyot method and once for the simulation method. To ensure parity between the two
methods, none of the participants had previously extracted coordinates for either method,
nor were they experienced with the digitizing software. Each participant had a set of
instructions, given in Appendix F, describing the criteria for extracting the coordinates
for a particular method. In addition, the methods were labelled generically to blind
participants as to the actual approach they were digitizing for. Half of the participants
were required to start with the Guyot method (Method A) and then extract for the
simulation technique (Method B); whilst the other half were instructed to digitize for the
simulation approach (renamed Method C), before extracting for the Guyot method (now
labelled Method D). By varying the order in which participants extracted the data it was
hoped that the potential bias of participants improving the extraction process over the
course of the example would be addressed, and thus the coordinates being extracted better

for the second method.

In order to reconstruct the data using the Guyot method, the coordinates must conform to
certain criteria (time coordinates are positive and distinct; monotonic survival function).
As such, the following filters were applied:
e Removal of any coordinates where the survival probability was greater than one
or less than zero;
e Removal of any duplicate coordinates with respect to both time and survival or

just time;
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e Removal of any estimate of the survival function which exceeded any of the
previous estimates;

e Removal of the final estimate of survival if a patient was censored.

These filters could also be applied to the simulation technique, if it was thought it might

improve the model fit.

The statistics chosen for comparison were the HR and RMST at a given time point.

To ensure fairness, models with four degrees of freedom were used for the simulation
approach, for all examples, regardless of fit. Having fixed the degrees of freedom, knot
locations were permitted to be changed, if the default knots led to a non-monotonic or
especially ill-fitting function. One thousand datasets were generated for each example in

the simulation approach.

4.6.3 Results

Results from the individual participants, both un-stratified and stratified based on
extraction order, are reported in Appendix F. Table 4-5 gives the results for the RMST
and HR averaged over participants for each method and example. These are discussed in

more detail in sections 4.6.3.1 to 4.6.3.3.

4.6.3.1 Guyot method compared to the IPD

Of all three examples, the first seemed to have the most across-participant variation for
the Guyot method, with HR estimates ranging between 0.497 and 0.884. This example
also had the greatest difference between the results from the IPLD and IPD, (0.516 in
contrast to 0.697). In comparison, for the other two examples, the point estimates for the

IPLD and IPD were comparable.

It should be noted, that whilst all participants followed and typically conformed with the
same instructions, for the last two examples, one person’s results are markedly different.
Stratifying by the order of extraction demonstrated little difference for examples 2 and 3.
However, for the first example, the results did show differences: for those extracting for

the Guyot approach first, the average was 0.798 (Standard Deviation: 0.141, minimum:
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0.636; maximum: 0.884), and 0.596 (Standard Deviation: 0.087, minimum: 0.497;

maximum: 0.657) for those who digitized for the Guyot method second.

4.6.3.2 Simulation method compared to the IPD

As with the Guyot approach, the first example has the greatest amount of variation over
the different participants, ranging from 0.388 to 0.580. However, in terms of point
estimates, all of the average results over 1000 datasets are exceptionally similar to the
reported values. None of the examples showed evidence that the results depended on the

ordering of the methods (e.g. Guyot first, simulation second).

4.6.3.3 Contrasting the Guyot and simulation approach

Both methods performed well at reconstructing the data and obtaining a point estimate
for examples 2 and 3, but generally the variability was greater for the Guyot approach;
partly due to the participant with different results. The first example yielded very
different estimates over participants for each method and example. These are discussed

in more detail in Sections 4.6.3.1 and 4.6.3.2.

4.6.4 Conclusions

Based on the above reproducibility study, it would appear that the simulation approach is
an excellent alternative to the algorithm proposed by Guyot for reconstruction IPLD. The
simulation method is considerably more flexible, allowing it to capture and reconstruct
more complex survival data, such as that in Example 1 with greater accuracy and lower

across-participant variability.

It should be commented that, even though the simulation technique did perform better for
Example 1, it required a lot of effort to find suitable models to effectively capture the
shape of the curve, and ensure the simulated data was truly representative of the
underlying survival distribution. This was ultimately achieved by specifically chosen knot
locations. It is worth noting that the Guyot method also had difficulty reconstructing the
data.
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4.6.4.1 Limitations and areas for improvement

Should this, or a similar study be repeated, the implementation and findings have
highlighted several areas that could have been further exploited to achieve the maximum
potential from such an investigation. Some of the key limitations of this particular study
were the small sample size both in terms of participants and examples. Both of these
occurred in order to make the study feasible, as those who agreed to participate were
limited on the time available to digitize the curves. Thus, the whole digitizing process

was restricted to only taking one to two hours.

In addition to having more than six participants, more examples should be used; in
particular examples where there were a greater sample size and many events over a short
timescale (such that the Kaplan-Meier has the appearance of a smooth curve). Such
examples were excluded due to the time it would take for the coordinates to be digitized.
Further tests on the quality of the image could also be useful; this could include more
dotted or thick lines, the choice of line colour (e.g. yellow, or pale coloured as opposed

to dark lines) and those with poorer image quality.

Another factor that this study did not take account of was asking participants to digitize
the same dataset more than once to facilitate an assessment of the within participant
variation. The last adaptation that could have been made would be to have varied the
order of the examples as well as the order of the reconstruction methods. This would have
determined, for definite, if the first study (and method) a participant digitized for was

distinctly different because of starting the process or due to a particular example.
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4.6.4.2 Advantages of this study

Compared to that described in the Guyot publication, the reproducibility study undertaken
here had more participants, allowing the potential for variability to be assessed further. It
also demonstrated how differently the guidelines for extracting coordinates could be
interpreted and applied. For example, with the first study (as more points are needed than
the number of events, and to avoid turning points in the curve) the instructions indicated
that a quarter of the total points (in other words ten to fifteen or more), were taken at the
beginning. However, these were taken in different ways. For instance, in Example 1, one
participant extracted a considerable number of additional points at the time of the first
event, whilst another distributed their additional points over the first 20 days. Another
advantage was that by simulating the datasets, it allowed greater comparison between the
IPD and IPLD. Moreover, it enabled statistics that are infrequently reported such as the
RMST to be recorded, and also an appropriate cut-off time for this (suitable for the
simulation technique) to be chosen. Simulating the underlying datasets also ensured that
additional features, such as the dotted lines and thick line style were included in the

examples, as these factors potentially impact on the results.

4.7 Discussion points

Whilst the outline of the method is easy to describe (Sections 4.4.1) and illustrate
(Sections 4.5 and 4.6), there are several questions that come to light in order to use this
approach in practice. For example, how many coordinates should be taken? How many
datasets should be simulated? These questions, and other topics will be explored in further
detail in the following sections, with reference made to the findings from the illustrative

example and the reproducibility studies.

4.7.1 The location of the coordinates

One reason for choosing a modelling-based approach was to minimise the need for
capturing every single event time as this can be very difficult to do in practice. However,
if not digitizing at exact event times, how many points should be taken? And where should
these be placed? Is it better to take as many points as possible (and throughout the whole
of the time scale)? Would points extracted at evenly spaced intervals be adequate? Is it

still important to try to identify and extract coordinates at exact event times (with the
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proviso that it matters less if this is not obtainable)? The principle concern was whether

results would differ depending on which of the above approaches was adopted.

Intuitively, some of these suggestions could be accepted or rejected. For example, taking
a high proportion of points in the tail of the distribution should avoided; if not, this would
give excessive weight to the estimates in the tail, which are usually less stable and often
the result of small sample size. Another condition, which was inferred, was that more
points should be taken where there are more events (though not necessarily at event
times). Combining these two, suggests that evenly spaced intervals are not sensible, as
these would give insufficient weight to the coordinates in the necessary places (e.g. more
weight at the start, little weight in the tail). Finally, in order to apply appropriate models
which fit well to the data, sufficient coordinates must be taken, in other words ten to

twenty data points for each spline variable created.

The question still remained how many coordinates should be taken. If as many points as
possible could be taken, would this improve the fit? Initial exploration demonstrated that
actually in trying to obtain as many points as possible, the digitizer was likely to induce
much more variation and error, as it is harder to consistently ensure monotonicity when
taking so many coordinates. This substantially increased variation / error which ultimately
results in more unstable models and can lead to turning points in the model fitted for the

survival function.

4.7.2 The number of simulated datasets

One of the key advantages of the simulation approach is that it captures the uncertainty
around the reconstruction process by producing multiple datasets. However, that leads to
the question of how many datasets should be generated. In theory, it would be preferable
to generate as many as possible, thus enabling more reliable and reproducible estimates
to be obtained. But in practice, the more datasets that are produced, the more
computationally time intensive the method becomes, not only in simulating the datasets,
but also in analysing them. Ideally, one thousand or more datasets should be produced if
time permits as this typically ensures reasonable reproducibility of results. Nevertheless,
generating several hundred datasets can be satisfactory in terms of producing a point
estimate which gives a representative average of the IPLD, and which clearly gives a huge

saving in computation time. It should be noted, though, that using fewer datasets could
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result in greater differences if repeating the same data reconstruction and analysis
methods for a second (or third, or fourth etc.) time using the same summary data, than if
several thousand datasets were produced each time. Therefore, there will always be a
trade-off between feasible computation time and good reproducibility with regard to the

replication of the method.

4.7.2.1 Effect of replication using different numbers of datasets
This section explores how the point estimate changes with regard to the number of
datasets simulated and the impact of this on reproducibility. This is achieved using the

information generated from the illustrative example described in Section 4.5.

Firstly, it examines how the point estimate varies depending on how many datasets are
simulated. The ITT Cox model HR (on the log-scale) has been chosen to demonstrate
this. Figure 4-5 highlights how this statistic changes the more datasets are produced and
averaged over up to 2000 datasets, whilst Table 4-4 gives a comparison of the actual point

estimate values for a selected number of datasets (e.g. 10, 500 and 2000 etc.).

Table 4-4 showed that averaging over less than 100 datasets (i.e. 10, 20 or 50) gave
poorer agreement. However, based on the values presented in the table, any number of
100 datasets or more computed a relatively consistent estimate, comparable with the
IPD. Nevertheless, on examining the plot in Figure 4-5: Average log-HR depending on
the number of datasets simulated, which provides a continuous assessment, it can be
seen that convergence actually occurred after approximately 800 datasets. Essentially,
the consistent agreement at 100 or 500 datasets, were chance findings. Particularly from
Figure 4-5: Average log-HR depending on the number of datasets simulated, it is clear
that for small numbers of simulations, the point estimate is sensitive and so sufficient

simulations must be generated to ensure convergence and reproducibility.

To assess reproducibility further, it was decided to explore how the ordering of the
datasets impacted on the point estimate. Therefore, a ‘bootstrapping without replacement’
technique was employed to essentially ‘re-order’ the datasets. Thus, creating different
subsets of datasets for a particular number of datasets e.g. 200. At the time the analysis
was undertaken, the process of simulating the data was exceptionally time intensive for a

large number of datasets. Consequently, it was more feasible to use the existing datasets,
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than to create further simulations. Figure 4-6 and Table 4-5 illustrate how these estimates
change depending on the ordering of the datasets, for smaller numbers of datasets. Since,
there are only 2000 datasets, these subsets have been restricted to those up to 500 datasets,
since this means that, at maximum, only a quarter of all the datasets will ever be used,

allowing some variation. The estimate was calculated for five different orderings.

Table 4-4: Log-HR averaged over a given number of datasets
Change in the average value of the log-HR depending on how many simulated datasets
were averaged over, contrasted with the reported estimate.

Number of datasets | Reported log-HR Average log-HR
10 0.416
20 0.415
50 0.435
100 0.454
500 0451 0.455
1000 0.455
1500 0.456
2000 0.454

Figure 4-5: Average log-HR depending on the number of datasets simulated
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The log-HR averaged over different numbers of datasets (up to 2000) compared to the
reported estimate (as shown by the red line) — results from the illustrative example in
section 4.5.
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Figure 4-6: Log-HR depending on the ordering of the IPLD datasets
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The average log-HR for different numbers of datasets and different ‘orderings’ of 2000
simulated datasets, contrasted with the reported value, shown by the red line.

Table 4-5: HR depending on the ordering of the IPLD datasets
Both the average log-HR and the HR for different numbers of datasets and different
‘orderings’ of 2000 simulated datasets, contrasted with the reported value.

Number of Reported Average log-HR
datasets log-HR Order1 | Order2 | Order 3 | Order 4 | Order 5
10 0.416 0.503 0.367 0.461 0.458
20 0.415 0.532 0.406 0.465 0.549
50 0.451 0.435 0.496 0.444 0.460 0.479
100 ) 0.454 0.461 0.488 0.456 0.461
200 0.459 0.456 0.470 0.461 0.447
500 0.455 0.468 0.461 0.453 0.441
Number of Reported HR
datasets HR Order1 | Order2 | Order3 | Order 4 | Order S
10 1.516 1.654 1.443 1.586 1.581
20 1.514 1.702 1.501 1.592 1.732
50 1,570 1.545 1.642 1.559 1.584 1.614
100 ' 1.575 1.586 1.629 1.578 1.586
200 1.582 1.578 1.600 1.586 1.564
500 1.576 1.597 1.586 1.573 1.554

Since the datasets to be included are essentially drawn from a finite set, some

observations will appear in all, a few or none of the five re-orderings.
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Whilst there is not a vast difference (Table 4-5) between the values calculated there is
still clear variability between the estimates depending on the re-ordering. For example,
the estimates, for two hundred datasets say, vary between 1.564, reasonably close to the
reported estimate, to 1.600 which might suggest the IPLD is not representing the IPD as
well as would have been hoped. Given that there will be some overlap between re-
orderings, which could have reduced the variability, for 200 datasets distinct subsets
were assessed. However, the results from these did not differ noticeably from those
reported in Table 4-5. These results from the distinct subsets (of 200 datasets) are
presented in the Appendix H.

4.7.3 Does the knot location have an impact on the results?

Whether the model is sensitive to knot locations is purely attributable to the specific
example. This was highlighted clearly in the examples already presented in this chapter
(Sections 4.5 and 4.6). In the illustrative example (given in Section 4.5), for the chosen
number of degrees of freedom, the knot location made very little difference (graphically)
to the model fitted. However, in the later example in the Reproducibility Study (Section
4.6) to find a monotonic well-fitting model for the first example and several of the
participants, specific knot location had to be chosen (default knot locations for the same
number of degrees of freedom produced ill-fitting or non-monotonic functions). Once

again, this was easily identified by plotting the fitted model against the coordinates.

There is the potential that some of this sensitivity could be accredited to the coordinates;
if there is variation within the coordinates (discrepancy in the survival proportion
resulting in a later estimate having a marginally higher survival proportion than at an
earlier time point). For a method such as the Guyot approach, the data would have to be
screened and filtered to remove conflicting estimates such as these. However, with a
simulation approach the majority of the time, these small discrepancies should not affect
the data too significantly, but could possibly lead to this sensitivity. Therefore, in these
circumstances, also applying a screening process to these coordinates to see if this

improves the model fit (and reduces the sensitivity) is advocated.
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4.7.4 Acceptable limits

The last point which is difficult to determine is how to define acceptable limits, since the
term ‘acceptable’ is very subjective. For example, if the publication reported that the HR
was 0.70, would HR of 0.72 (0.02 difference) from the reconstructed data be acceptable?
Or what about a 0.75 (difference of 0.05) HR? To some people both of these differences
could be considered satisfactory, for others perhaps neither would be. And what about the
number of events: what about a discrepancy of two events? In a treatment arm with six
hundred participants, this might be acceptable; but in a sample size of fifty, it could be

argued that this is substantially less so.

Decisions for some of the key statistics rely on other considerations, which are detailed

below

e Number of events — as detailed above the difference between the reported and
reconstructed data estimate also depends on the sample size of the treatment
group. Larger discrepancies in a larger sample size would possibly be more
acceptable.

e Median survival time — here a more lenient acceptability criteria is required,
because of the underlying step function nature of the data. However, the absolute
size of the discrepancy must be related to the follow-up length. E.g. 0.25-year
difference in median survival for a seven-year follow-up length seems
satisfactory; this same discrepancy in follow-up of a year would not be
acceptable.

e RMST - although this statistic does not require such lenient boundaries as for
the median survival time, the results must still be interpreted in relation to the
follow-up length.

e HR —to some extent it could be argued that this statistic can be considered
independent to other elements of the trial (e.g. the scale of the point estimate
should not be affected by follow-up time), however, it should always be
contextualised. For example, smaller sample sizes may lead to larger variation in

the uncertainty, or point estimate which should be expected.

In addition to assessing the individual statistics, an overall assessment needs to be made.

Intuitively, if at least one of the statistics is clearly not ‘acceptably’ close to the reported
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estimate, then any findings from that reconstructed data should be treated with caution,

and potentially other models considered and assessed.

4.8 Secondary analysis for treatment switching

4.8.1 Background

The main aim for developing this method of reconstructing the IPLD has always been to
ultimately adjust for treatment switching using one of the currently recommended
methods. Thus far, this method has only concerned itself with recreating the survival time
information. However, in order to adjust for treatment switching, data related to treatment
switching must also be reconstructed. Therefore, this section describes how treatment
switching information can be generated. The techniques described here are similar to
those used in Boucher (2013a) which was discussed in Section 3.7.2.2. In Section 5.5, a
more complex and realistic method is suggested, however, this relies on having

reconstructed paired data (Sections 5.4.1 and 0)

4.8.2 Methods

4.8.2.1 Reconstruction of the treatment switching information

Of the currently recommended methods (Latimer, 2014), the RPSFTM has been chosen
for the re-analysis method. The reason for this decision is that the RPSFTM, unlike the
other methods (which require all treatment switching related covariates to be available),
only needs two variables:

1. indicating whether a patient switched;

2. recording time of switch, if it occurred (note, for patients in the experimental
group this is denoted zero, and for non-switching control patients, this is their
last observed survival time, be it through censoring or event).

Therefore, in order to apply the RPSFTM the first stage of reconstructing the treatment
switching data, is to assign which patients switched. The switch time can then be

calculated. These stages are detailed in Sections 4.8.2.2 and 4.8.2.3.

4.8.2.2 Assigning treatment switchers
Typically, information will have been reported on the number, or perhaps proportion of
patients who switched treatments. There is little other information on which to base the

decision about patients who switch, as it is not known how the treatment affects OS
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For example, whether it is those patients with a shorter survival time who are more likely
to have switched, or those with longer survival. Therefore, the choice has been made
arbitrary. Patients are selected at random and assigned to switch, until the amount of

treatment switchers matches that reported in the publication.

4.8.2.3 Calculating switch times

With regard to switch times, whilst authors may specify whether treatment switching was
permitted on disease progression (NICE, 2012); after un-blinding; or following interim
analysis (NICE, 2009b), this is often the only information available. Given that perhaps
the most common reason for switching in advanced or metastatic cancer trials is disease
progression, the method has been designed to assume that the actual switch happens at a
patient’s progression time. There is some justification for this argument, as although a
patient might not actually switch at the time of documented disease progression, if they

do switch treatments, it will be very soon after this date (Latimer, 2012).

Median PFS and OS times are routinely reported, particularly in NICE TAs. Therefore,
it is assumed that the ratio of median PFS to median OS gives an approximation for the
average proportion of life spent progression free. Essentially, the median PFS is treated
as the average time until the patient’s disease starts to progress, and the median OS as the
average time until the patient dies. Therefore, given a patient’s OS time, their estimated
progression time is their simulated OS time multiplied by the ratio (Boucher, 2013b). It
should be noted that for an exponential distribution, the ratio of two median survival times

is the same as the ratio of mean survival, and also equivalent to the HR.

In the previous research addressing treatment switching using summary data (Boucher,
2013a, Boucher 2013b) (described in Section 3.7.2.2, for each dataset, the process of
assigning treatment switchers was treated as a form of bootstrapping without replacement.
In other words, of the patients in the control group, the process of selecting those patients
who switched was repeated, effectively choosing different patients each time. Each
selection were analysed separately and the results then averaged over (in a similar way to
the simulation technique). However, now each of the simulated datasets just has one
combination of treatment switchers. This is because uncertainty about the data
reconstruction process is already being accounted for through simulating multiple

datasets.
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4.8.2.4 Secondary analysis applied

The choice of secondary analysis is relatively limited. Of the three (or four, including
IPE) recommended approaches to be used to adjust for treatment switching, only the
RPSFTM (or its parametric equivalent, IPE) is feasible since this approach does not rely
on covariates, but does need a variable identifying the treatment switchers and the

patients’ switch time.

Another advantage of using the RPSFTM is that this method ‘preserves the p-value’. This
means that the uncertainty is purely based on the p-value of the original ITT analysis (see

Section 1.1.3.3.1 for more details).

Since the test statistic, Z, is

In HR

~ SE(InHR) (4-36)

And as ‘preserving the p-value’ means that the test statistic is the same for the adjusted

results as the unadjusted, then

InHR InHR_4;
7= ITT _ _ adj (4-37)
SE(In HR;rr)  SE(InHR44;)
And so,
SE(HR;rr)
SE(In HRadj) =In HRgq4; (W (4-38)

Therefore, the secondary analysis using the RPSFTM only needs to calculate the point
estimate. Hence, for this approach only, it is not necessary to calculate the RPSFTM HR
estimates separately and then combine them. Instead, n samples can be combined as one
huge dataset, and analysed together, since no SE for the adjusted HR needs to be obtained

through the estimates.
It should be noted that the analysis may not give entirely appropriate estimates if the

RPSFTM assumptions do not hold, e.g. it is inappropriate to assume that the treatment

effect is the same between switchers and non-switchers.
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4.8.3 Illustrative examples

4.8.3.1 Pazopanib for the first-line treatment of advanced renal cell carcinoma

VEG105192.

4.8.3.1.1 Background
The first example used was taken from NICE TA215 Pazopanib for the first-line treatment
of advanced RCC (NICE, 2011). The pivotal evidence for this appraisal came from the
VEG105192 trial (Sternberg, 2010). This compared best supportive care (BSC), defined
as the monitoring of progression, symptom control, and palliative care without active
treatment, combined with either pazopanib (n = 155) or placebo (n = 78). On disease
progression, patients with an ECOG status of 2 or less who had been receiving placebo,
had the option of having pazopanib added to their treatment regimen. This led to 40
patients (51%) having switched treatment by the final date of analysis. To account for
treatment switching reanalysis, the manufacturer applied several different methods which
included a weighted RPSFTM (not currently programmed in Stata) and an unweighted
RPSFTM (available in user-written package strbee (White, 2002)). Since the final
analysis for the reconstructed IPLD was conducted in Stata, the secondary analysis aimed
to replicate the results of the unweighted RPSFTM using a log-rank test. This, however,
proved complex since, for this analysis, the g-estimation process discovered three
possible values which satisfied Z = 0, thus giving three potential results for the

acceleration factor.

Figure 4-7: Kaplan-Meier curve for OS — VEG105192 trial (Sternberg, 2010)

Image subject to copyright and so has been removed from the text. Please see the

original source for image.

127



4.8.3.1.2 Methods
The method was performed as outlined in Section 4.4. Coordinates were extracted off the
curve. The models used to simulate the data were restrictive cubic splines models with
five degrees of freedom for both the Pazopanib and Placebo treatment groups. The
censoring distribution was calculated using information from the ‘numbers at risk’ table.
For this example. 2000 datasets were generated. For each simulated dataset, 40 patients
from the control group were chosen randomly and assigned to switch. Given that median
PFS is 2.8 months and median OS, 23.5 months; a patient’s progression time, and switch

time, is 12% of their OS time.

To accommodate the treatment switching, the RPSFTM method was applied to the
reconstructed data. Here, the unweighted RPSFTM with the log-rank statistic was used.
This was then compared with the values reported from the same analysis conducted on

the IPD.

4.8.3.1.3 Results
Reported summary statistics

Table 4-6: IPD and IPLD for the VEG105192 trial
Comparison of the average value over 2000 simulated datasets and the same statistics
reported in the original publication

Reported Simulated average Reported Simulated average
No. of events 49 48.8 99 102.1
Median OS 235  (12.0,34.3) | 23.7 (14.3,35.0) | 229 (17.6,25.4) | 22.60 (18.5.26.8)
HR 1 - 1 - 1.01 (0.72,142) | 1.04 (0.73,1.51)

Initially the ITT analysis is replicated (results given in Table 4-6), in order to confirm the
data are representative of the original IPD. As shown in Figure 4-8, the average survival
(calculated at monthly intervals) over all 2000 datasets is comparable to the coordinates.
In terms of the summary statistics, those for the Placebo group are very similar, although
the CI for median OS is slightly smaller. For the pazopanib group, these differ more
noticeably. On average, three more deaths are occurring, and the HR shows a 4% increase
in mortality on pazopanib compared with placebo, rather than the 1% reported. The CI is
also wider for the HR. Therefore, there is some difference within the reconstructed data

to the original IPD. However, it is largely comparable.
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Figure 4-8: Average survival compared with the coordinates — VEG105192 trial
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Reanalysis

Table 4-7: Secondary analysis for treatment switching — VEG105192 trial
Comparison of the secondary analysis, using an RPSFTM to account for treatment
switching, between the original reported and the average of the simulated datasets

Reported Simulated average
Acceleration 0.61
factor 3.16 0.95 (0.55, 1.70)
5.75

Table 4-7. gives the three estimates for the acceleration factor (as described in Section
4.8.3.1.1), derived from the original IPD, on the left, and the value obtained from the re-
analysis on the right. Rather than the multiple solutions found using the IPD, only a single

value was obtained for each dataset using the IPLD.

4.8.3.1.4 Discussion
This method recreates data that are representative of the original IPD, and that can be re-
analysed addressing for treatment switching. The simulation technique has the advantage
that it encapsulates the uncertainty around the original Kaplan-Meier and in the
reconstruction process, particularly compared to using the Guyot method (Guyot, 2012).
The method was straightforward to implement in practice; the process, however, proved

time-consuming, particularly since 2000 datasets were generated. This value had been
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chosen to ensure robust results, i.e. should the method be performed again, the average
HR would largely remain unchanged. This led to further debate on whether greater
efficiency, in terms of time, or greater robustness was more important. Subsequently the

number of datasets was reduced to 200.

Given that, for this specific example, a single solution was not found for the IPD, this put
the method under additional pressure as there is greater potential for error and
disagreement. Particularly since the method does not recreate the original dataset exactly,
there will be some error and variation in the results, which should diminish once the
average is taken. However, that potentially means that it is very unlikely that three
solutions would have been found for every dataset. As the results highlighted, in all
datasets, a single solution was obtained (but not three). In practice, this difference could
not be ascertained as there would be no indication whether the IPD would produce a

single, or multiple, solutions.

In conclusion, for this dataset, the simulation technique worked in terms of reconstructing
the survival time IPLD, but there is less evidence that the treatment switching reanalysis
has been successful. It would be, therefore, advisable to try additional analysis methods,
or other examples in order to bring a greater confirmation of whether the method works.
The next example should have reported, where possible, a single solution for y produced

from a RPSFTM with the log-rank test.

4.8.3.2 TAnDEM trial

4.8.3.2.1 Background
TA257 (NICE 2012) assessed lapatinib (GlaxoSmithKline) or trastuzumab (Hoffman-La
Roche) in combination with an aromatase inhibitor (letrozole or anastrazole) for the
treatment of metastatic breast cancer. The pivotal evidence for trastuzumab came from
the TAnDEM trial (Kaufman, 2009), which compared the combination treatment of
trastuzumab plus anastrazole (T+A) with a treatment regimen only containing anastrazole
(A). However, both the appraisal and the original publication report that, after
experiencing disease progression, 73 (71%) patients randomised to receive anastrozole

alone had begun to receive trastuzumab in addition. The publication only reports the ITT
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analysis, but the appraisal also gives results from a RPSFTM. No information is given on

what test was used to calculate the RPSFTM analysis.

Figure 4-9: Kaplan-Meier curve for OS - TAnDEM trial

Image subject to copyright and so has been removed from the text. Please see the
original source (Kaufman, 2009) for image.

4.8.3.2.2 Methods

Similarly, to the example in Section 4.7.3.1, the data are reconstructed using the process

explained in Section 4.4. Figure 4-10 shows the location of the coordinates that were

extracted from the Kaplan-Meier curve (given in Figure 4-9) using the digitizing software

package (Digitizelt, 2013). The left-hand side give the coordinates (denoted by the lime

green plus signs) for A and on the right are the coordinates for T+A.

Figure 4-10: Location of the coordinates — TAnDEM trial
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As afore mentioned, the coordinates from the Kaplan-Meier curve are transformed. In
order to capture the shape of the curve, models with 7 and 8 degrees of freedom were
fitted for A and T+A respectively. For both treatment arms the knot locations were chosen
specifically (rather than using knots calculated from equally spaced percentiles), in order
to maximize the fit to the curve. The censoring distribution was formed using the
information from the ‘numbers at risk table’, in Figure 4-9, and by deducing the survival
at the equivalent time points using the coordinates. A total of 200 datasets were created.
This is considerably less than was used in the previous example (in Section 4.8.3.1); this
change was made to reduce the computation time to a more appropriate length.
Modifications to the program have since rendered this change unnecessary and more
datasets (e.g. 2000) can now be generated in an appropriate amount of time. For each
dataset the number of events and ITT median OS time in each of the treatment groups
and the ITT (log-)HR were recorded. These were averaged over for the final point

estimates.

Treatment switching information

The treatment switching information was reconstructed using the process outlined in
Section 4.7.2. A random subset, equalling the number of patients who switched in size,
was taken from the control group and assigned to switch. Thus here, 73 of the 104 patients
were chosen at random and assigned to switch. Their switch time was calculated as 10%
(ratio of median survival, where median PFS was 2.4 months; and median OS, 23.9
months) of their OS. Once the treatment switching information had been reconstructed, a
RPSFTM using a log rank test was fitted to the data. The value of y recorded. In addition,
the ‘adjusted” HR was recorded. Although the RPSFTM uses an AFT model, standard
practice in NICE TAs is to report a HR. This statistic was hence obtained by calculating
the counterfactual dataset using the estimated acceleration factor, and then fitting a
standard Cox (or Weibull PH) model to the data. The y value and log HRs were also

averaged over for the final results.

4.8.3.2.3 Results
The comparison for the original (ITT) analysis, both on the IPD and IPLD are given in
Table 4-8. A comparison for the average survival is given in Table 4-8. In contrast to the
previous example, the number of events was comparable for both groups. There were

differences in the median survival for the ITT analysis, The HR also differed slightly —
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14% decrease in mortality rate, compared with 16% decrease as reported. The fit to the

survival curve was relatively good near to the start of the time scale, however when events

became scarce after about 42 months, the goodness of fit deteriorated.

Figure 4-11: Average survival compared with the coordinates — TAnDEM trial
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Table 4-8: Comparison of the IPD and IPLD statistics — TAnDEM example

Comparison of the average point estimate over 200 IPLD simulated datasets to the
reported estimate for the simple ITT analysis in the TAnDEM trial.

Point estimates, (95% CI)
Reported 200 ;?I:lflli:tg:doc‘l’::asets

No. of events

A 64 63.9 (51, 78)*

T+A 58 58.6 (44, 74)*
Median OS

A 23.9 months (18.2,37.4) 24.9 months (18.2,35.7)

T+A 28.5 months (22.8,42.4) 29.2 months (22.8,41.7)
HR 0.84 (0.59, 1.20) 0.86 (0.58, 1.20)

The secondary analysis for treatment switching is presented in Table 4-9. For Table 4-9,

the reported information was extracted from the TA. Whilst the point estimate for the

reanalysis was almost identical as the one reported in the appraisal, the uncertainty is

greater in the re-analysis.

133




Table 4-9: Secondary analysis for treatment switching — TAnDEM example
Comparison of the secondary analysis, using an RPSFTM to account for treatment
switching reported in the TA and the average across 200 simulated datasets

Point estimates, (95% CI)
LD 200 sgrr:lli:tg:do(‘l’::asets
Median OS
A 21.98 months 22.25 months
HR 0.74 (0.39, 1.38) 0.73 (0.32, 1.66)
Acceleration factor - 1.29

4.8.3.2.4 Discussion
The method adjusts for treatment switching well, and attains a RPSFTM analysis which
mirrors that obtained using the original IPD, although with more uncertainty. Therefore,
this approach enables the re-analysis of data for treatment switching where only summary
data and the Kaplan-Meier curve are available. In particular, this demonstrates the success
in replicating the RPSFTM analysis that could have been obtained from the original IPD.
Additionally, the reduction in the number of datasets needed, improved the efficiency of

the reconstruction and analysis process, without adversely affecting the robustness.

The simulation of the switch times still causes concern. At present, all treatment switchers
are assumed to switch after the same proportion of their OS time, which does not seem
realistic. This is particularly because no variation from this proportion is permitted. One
potential solution for this is to adapt the method to simulate a pair of PFS and OS times
for each patient, provided a Kaplan-Meier was available for PFS as well as OS. This
would also have the ability to improve the choice of treatment switchers (as described in
Section 5.5). The practicalities and methodology to achieve this were developed and are

explained in Chapter 5 and Chapter 6.

4.9 Discussion and further work

This proposed simulation technique is an exceptionally useful method for reconstructing
IPLD. It competently reconstructs survival time data, maintaining a good level of
accuracy, even with challenging features as to curve shape or line style. Based on findings
from the illustrative example and reproducibility study, it can be concluded that this new

method is an excellent alternative to the Guyot reconstruction algorithm (2012).
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Evidence about re-analysing reconstructed data for treatment switching is perhaps less
conclusive. This approach facilitates re-analysis that would be infeasible otherwise. For
example, it may provide a reasonable proxy for the results from an IPD analysis.
However, the way in which the treatment switching data are generated is of most concern.
As it currently stands, the switching mechanism ignores selection process, and does not

permit variation in switch time.

As discussed in Section 4.7.3.2.4, the most important future development is the
simulation of PFS and OS paired data. Currently, the existing methods only reconstruct
one outcome at a time, so whilst PFS and OS data could be generated using these methods,
they would not be paired across patients, a necessity if treatment switching is to be
accounted for. In terms of PFS and OS, the principle issue that has to be contended with
is that, any patient who has died prior to progression, will have the same time at PFS and

OS, and thus, if a simulation approach is used, this will have to be taken into account.

Another area of research in this field to be considered is developing even more flexible
censoring distributions, for example, those handling interval censoring. Interval censoring
is very common for outcomes such as PFS, and therefore, likely to appear in many
examples. Given the flexibility of the framework, this approach could potentially be
extended further to incorporate this. Other considerations include ensuring that the model
fitted is always monotonic. This could be done by using a class of RCS models that fit
monotonic functions. Alternatively, it could be useful to consider weighting the

coordinates to improve the model fit.
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Chapter 5: Reconstructing individual patient level data with
two related outcomes

5.1 Chapter overview

This chapter extends the simulation technique proposed in Chapter 4 to facilitate the
production of pairs of survival times for patients, primarily for PFS and OS data. This
extension involves the use of an underlying ‘illness-death’ modelling framework. Chapter
5 follows the development of the methodology depending on what information is
available to the analyst and how this might impact on the results, in terms of assumptions
made. In addition, it discusses modifications to the methods outlined in Chapter 4 to
reconstruct treatment switching information. The key approaches for this chapter are,

furthermore, described using illustrative examples.

5.2 Motivation and aims

In order to address an example where only summary data are available and treatment
switching has not been handled appropriately, a method by which the IPD are
reconstructed and re-analysed (Chapter 4) was proposed. However, whilst the survival
time information is relatively straightforward to reconstruct, many assumptions are
required to provide treatment switching information (Boucher, 2013a). Thus far, a purely
deterministic approach had been used, whereby, provided patients switched following
progression, a patient’s switch time was assumed proportional to their time of death, and
the ratio of the median survival times for PFS and OS (Boucher, 2015). Primarily these
switch times were used both as proxy for TTP and time to treatment switch. In addition,
for this initial method all patients had an equal probability of switching treatments. Whilst
in some examples this gave reasonable agreement with a corresponding analysis
conducted on the IPD, it clearly ignored the biological processes underlying the treatment
switching mechanism; and so was a key limitation of this approach (Boucher, 2015). The
aim consequently became to develop a method which allowed variability in the switch
time, i.e. all patients’ switch time would not necessarily be the same proportion of their

OS time, and which also included some type of selection process.

Any method used to reconstruct IPD typically depends on patients switching soon after

disease progression (Boucher, 2013a); this occurs for two principle reasons, the first being
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that is perhaps the most common situation, and the second because it provides a reference
for constructing the switch time (Boucher, 2013, Morden, 2011, Latimer, 2013).
However, thus far little use has been made of the PFS and / or TTP evidence provided, as
only the median survival time for this outcome has been used. Indeed, given that many
studies specifically choose PFS as the primary endpoint and OS as a secondary outcome;
there is potentially a wealth of information that could be exploited further (Morden, 2011,
Latimer, 2013).

To maximise the use of PFS or TTP, when the Kaplan-Meier curve for this outcome has
been presented, IPLD could be generated, using the simulation approach (Chapter 4);
likewise to the OS information. However, for the purpose of using this as a switch time,
the simulated times for PFS and OS must be paired. Nevertheless, since PFS and OS are
composite endpoints, and therefore not independent of each other, thought is required to
allow for the inherent correlation. Considering the underlying structure of PFS and OS,

leads to the necessity of using a framework based on an ‘Illness-Death’ model.

5.3 Structure of the data

5.3.1 An lllness-Death modelling structure
Figure 5-1: Standard illness-death model

Alive and well
(State 1)

i
(State 2)

Dead
(State 3)

Structure of a typical three-state ‘illness-death’ model; with states: “Alive and well”;
“lll; and “Dead” and transition rates denoted a;;(t) for the transition from the i to the
J™ state.

‘Illness-Death” models are a type of multistate model (Hinchliffe, 2013). ‘Illness-death’
models (shown in Figure 5-1) typically consist of three states: a state where patients are
alive and well (state 1); a state where patients are ill (state 2); and finally, a state
containing the patients who have died (state 3). Moving from one state to another is
defined as a transition. There are three transitions in this model: from state 1 to state 2,

that is to say, well patients become ill; from state 1 to 3, those who were alive and well
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can die; and from state 2 to state 3, i.e. a patient who is ill could die. Associated with each
transition is a specific hazard rate, also referred to as the transition rate. Where IPD are
available, these hazard rates are estimated directly from the data. The probability of being
in any one state at a given time can be calculated using the transition rates (Hinchliffe,

2013).

This thesis concentrates on studies in advanced or metastatic cancer, and thus, tend to be
of a particular form (illustrated in Figure 5-2). All patients will start the study in question,
with stable disease. They are followed-up to observe when, during the course of the trial
they experience disease progression (e.g. an increase in tumour size). This occurs at a
certain rate, denoted as: hgp(t) (previously referred to as a,,(t)). However, some
patients, often only a small proportion, will die before they reach the stage of disease
progression. These are typically still included in the analysis for PFS. Assuming that the
rate at which patients have died before experiencing disease progression is represented
using hgp (t). Given that OS is included as an outcome, patients who have experienced
disease progression continued to be followed-up to death. The rate at which this occurs

will be indicated as hpp (t).

Figure 5-2: lllness-Death model with standard health states for cancer trials
hsp (t)

Progressive
Disease
(State 2, P)

Stable
(State 1, S)

Dead
(State 3, D)

Structure of a typical three-state ‘illness-death’ model in cancer trials; with states:
“Stable (disease)”; “Progressive disease”; and “Dead” and transition rates denoted
h;; (t) for the transition from the i" to the j" state.

Clearly, this is the necessary format for enabling pairs of times for progression and death
for each patient in the trial to be simulated. As mentioned before, where IPD are
accessible the rates hgp (t), hgp (t), hpp (t) are directly estimated. These parameters could
then be used within a simulation approach. However, when only summary data are
available this process is less straight-forward. In addition, the process largely depends on

what level of summary data has been reported.
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The survival functions for PFS and OS, denoted Spps(t) and Spg(t) respectively are

composite functions of the transition rates, and can be written as follows:

Sprs(t) = eXp[—(Hsp(t) + Hgp (t))] (5-1)

Sos(t) = exp[_(HSP (t) + Hgp (t)g]
+ expl—Hpp (£)] f hop(s) exp|—(Hsp(s) + Hsp(s)  (52)
0

— Hpp (5))] ds
Where,

Hi(t) = f ) du (5:3)

Alternatively, Syps(t) can be written as:

Sos(t) = Sprs(t) + expl—Hpp ()] ] hsp(5)Sprs(s) explHpp(s)] ds  (5-4)

Or,
th S
Sos(t) = Spps(t) + Spp (t)j %{gg@ ds (5-5)
0 PD
And where,
Si(t) = exp[—H;(0)] (5-6)

This essentially means that the OS distribution is composed of complicated functions
involving both PFS and time from progression to death (also known as post-progression

survival (PPS)).

5.3.2 Available information

The amount of information varies considerably from study to study, with each choosing
to report in a different way. Ideally, to use an underlying ‘illness-death’ modelling
structure, information on all the transitions and the censoring distribution would need to
be reported, particularly in terms of Kaplan-Meier curves. Two of the three transitions
relate to commonly discussed outcomes: TTP equivalent to Sgp(t) and PPS — essentially
Spp (t). However, the frequency of these outcomes being reported is relatively low. TTP
is sometimes reported alongside or instead of PFS, and is perhaps the most common
outcome after PFS and OS. PPS is often discussed, but rarely reported. The last transition

is not easily meaningful in practice, the time taken to death where death occurs before
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documented disease progression, and hence is very unlikely to be reported. Similarly,
time to censoring is not often of interest, and so also not reported. Given the rarity of
these transitions being reported (and additionally all being reported together), it is highly
improbable that, if a method could be developed using the underlying ‘illness-death’

modelling structure, it could be used in practice.

Instead of these transition rates, the outcome of PFS and OS are almost always reported.
Since these are composite endpoints of the transition rates, in theory, and making some
strong assumptions, it should be possible to extract and model the necessary parameters
to enable the IPD to be reconstructed. However, determining what these assumptions

should be, remained very unclear.

5.4 Exploring the levels of information available

The variety in reporting outcomes, and difficulty in identifying and constructing suitable
assumptions, was key in starting to formulate this problem and methodology. Therefore,
it was decided to take a gradual and systematic approach in which specific information
(e.g. transitions rates and censoring) became more limited and general (e.g. composite

endpoints) information became more available. This is shown in Table 5-1.

Essentially these situations translate to examples where:

1. Kaplan-Meier curves are available for all transitions, and a Kaplan-Meier for the
censoring distribution (direct information on censoring)

2. Kaplan-Meier curves are available for all transitions, and risk tables (indirect
information on censoring)

3. Kaplan-Meier curves are available for PFS, TTP (equivalent to the transition
from stable to disease progression), and the transition from progression to death

4. Kaplan-Meier curves for PFS, TTP and OS are available and risk tables are
available

5. Kaplan-Meier curves for PFS and OS

It should be noted that the ‘number at risk’ tables for time to death (before progression),
TTP and PFS will all be identical.
The aim of using all these scenarios was to provide a variety of methods that would (1)

address the different levels of information which could possibly be observed, and (2) to
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obtain the following necessary stages to developing a method purely relying on PFS and
OS.

The stages were:

e How to estimate the transition from stable to death when there is only PFS and

TTP (scenario 3)

e How to estimate the transition from progression to death using only PFS, TTP,

and OS (scenario 4)

e How to estimate the TTP survival from only PFS and OS risk tables and / or

Kaplan-Meier curves (scenario 5)
e How to estimate the censoring distribution from risk tables, particularly with

regard to the post-progression phase (from scenario 2 onwards)

Table 5-1: Information Scenarios

L Scenario

Outcome Statistic 1 5 3 4 5
Time to death, Ssp (t) Kaplan-Meier curve 4 v & &
(before progression) Risk table - B} - - -
Time to progression, Syrp (t) Kaplan-Meier curve VI v | v |V x
(Ssp(®)) Risk table .
Post progression survival, Sppg(t) | Kaplan-Meier curve Vv v x
(Sep () Risk table v v | x| =
Time to censoring Kaplan-Meier curve v x x x x
Progression-free survival, Spps(t) | Kaplan-Meier curve - - v v v

Risk table - v 4 v v
Overall survival, Sps(t) Kaplan-Meier curve - - - v v

Risk table - - - v v
v This information is available to use and necessary for this method
x : This information has not been reported
- This information may or may not be available but is not integral to the method

5.4.1 Methods development

As described above, there is a clear dependency on the available information and the

approach to be taken.
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5.4.1.1 All information (Scenario 1)

5.4.1.1.1 Background
Whilst a situation where summary information is available on all of the transitions and
the censoring is exceptionally rare, developing and evaluating an approach that could be
used here is essential. Not only would it determine the format to ultimately be emulated
with more limited information, but it would also provide an assessment of whether the
methodology would perform satisfactorily at all. In other words, assuming this is the ‘gold
standard’ level of summary data, if an approach with all transitions and censoring
information performed poorly, there would be little point in extending this underlying
methodology further to rely on less detailed information. Another reason is that
manufacturers may be more prepared to produce this more detailed summary information
(e.g. K-M curves for individual transitions), rather than providing direct access to the

IPD. As a consequence, this could offer a suitable compromise to both parties.

5.4.1.1.2 Overview of method

For this approach, it is assumed that there is a Kaplan-Meier curve for each transition,

and for the time to censoring (four Kaplan-Meier curves in total).

The method has seven key steps:
1. Extract coordinates for each outcome and each treatment group
2. Model the survival (or censoring) distribution using RCS models fitted on the
log-cumulative hazard scale
3. Simulate a time from each transition / time to censoring model for that specific
simulated treatment group
4. Combine the information together to define the survival outcome

a. PFS information: take the minimum of the simulated TTP, time to death
(before progression) and censoring as the observed survival time and
event type (progression, death or censoring)

b. OS information: for all patients defined as progression, take the
minimum of the simulated PPS and censoring times as the observed PPS
and event type. Combine this newly defined PPS information with the
PFS censorings and deaths to complete the OS information

5. Analyse the dataset
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6. Simulate and analyse additional datasets (using steps 3 - 5)

7. Average over all the datasets to obtain a point estimate

5.4.1.1.3 Stages 1 and 2: Extracting coordinates and modelling the survival

distribution
Stages one to three are very simple extensions of the method outlined in Section 4.4.
Hence, all the points relating to extracting the coordinates still hold for this method. The
principal difference is that here there are more than one outcome of interest. Therefore,
for every single Kaplan-Meier curve needed, and for each treatment group, coordinates
must be extracted. For a two arm trial this would give eight sets of coordinates (four per
treatment group). Each of these sets of coordinates has to be transformed onto the log-
cumulative hazard and log time scale for the survival and time coordinates respectively.
Then individually for each treatment group and outcome, RCS functions are calculated.
Then, using least squares regression, a model is constructed for the survival / censoring
distribution. Since it is assumed that there is a Kaplan-Meier curve reported for time to
censoring, there is no need to use any of the techniques outlined in section 4.4.1.4 (e.g.

‘numbers at risk’ or recruitment times). Instead, it is directly modelled.

5.4.1.1.4 Potential issues with post-progression survival

The greatest complication with this method is the definition of PPS. By using an ‘illness-
death’ modelling structure, potentially two timescales are being introduced: time from
randomisation and time between transitions. However, of the three transitions only PPS

survival is affected (the other transitions move from stable disease — the starting state).

Due to the difference in timescale, there are two possible definitions of PPS: (1) PPS with
‘delayed entry’ — the timescale starts from randomisation, but each patient enters the risk-
set only after experiencing disease progression; (2) PPS with the ‘reset the clock’ time
scale — a person’s survival time is measured from the time of their progression (i.e. their

progression time becomes t = 0)
The following example will describe this more clearly. Supposing a patient was enrolled
on the trial, and then had documented disease progression at two months, and died six

months later. In terms of the ‘delayed entry’ notation, this person would be denoted as
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entering the risk set for PPS at time two months, and leaving the risk set (due to an event)
at eight months. For the ‘reset the clock’ approach, this person would be recorded as

entering the risk set at time zero, and leaving at six months.

The definition used has several important implications on the simulation technique
employed and underlying assumptions. If the ‘reset the clock’ approach is adopted then
essentially PPS is completely independent of any of the other transitions (i.e. it does not
relate to TTP; e.g. all earlier progressors are not also all the earlier deaths). Therefore,

this can be simulated in exactly the same way as the other outcomes.

On the other hand, if the ‘delayed entry’ technique has been employed, the theory is quite
different. Here, there is conditioning on the TTP, which also needs to be built into the
method. Times are still simulated from the PPS model but conditional on the simulated
TTP. The principle advantage of this, is that it allows for a relationship between TTP and
PPS (e.g. a longer TTP survival leads to longer PPS).

In practice, it is more likely that, if PPS is reported, the ‘reset the clock’ approach will be
used, as this has a more meaningful practical interpretation, time from progression until
death (rather than time from randomisation to death for patients who experienced disease
progression). However, using the ‘reset the clock’ approach in this methodology is only
really justified if the analyst fervently believes that there is no relationship between TTP
and PPS. This is described further in Figure 5-3 and Figure 5-4.

5.4.1.1.5 Stage 3: Simulating the survival

For the TTP, time to death (before progression) and time to censoring, the times for these
outcomes can be simulated in the same way as in Section 4.4.1.4.3. The only outcome
which is different is the post-progression, which as explained in the section above
(Section 5.4.1.1.4), depends on how it has been defined (using ‘reset the clock’ or
‘delayed entry’).
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5.4.1.1.6 Stage 4: Combining the simulated data together

For the transition-specific simulated times the interpretation in the top panel is different
depending on the PPS method. For delayed entry, this is the time from randomisation to

event; for ‘reset the clock’, this is the time between transitions.

Combining the simulated times together essentially forms two key stages: combining the
PFS data; and combining the OS data. For PFS, one of three things can happen to a
patient: either they experienced progression; they died (before progression) or they were
censored. To define which type of event a patient had, the minimum of the three simulated
times is taken as the observed survival time. The choice of survival time, also defines the

type of event.

OS is slightly more complicated to estimate, as some of the information carries over from
PFS. Since patients that have died before progression have already been defined, only
calculating those that died after progression is of interest. In addition, any patients defined
as ‘censored’ for PFS are temporarily ignored (this imposes the assumption that patients
who were censored for PFS were not followed up after this time for PPS). For all patients
who progress, time from randomisation to death for patients who progress, and time to
censoring are compared. Once again, the observed OS time and status, for this subgroup
of the population is the minimum of the times being compared. This newly defined PPS
information is then combined with the PFS deaths and censorings to complete the OS

data.

As well as differences in the simulation, there are also differences when combining the
information together depending on which technique was used to calculate the PPS. Figure
5-3 and Figure 5-4 illustrate the differences. Figure 5-3 shows the process when the PPS
is calculated using the ‘delayed entry’ technique; whilst Figure 5-4 illustrates the
approach when ‘reset the clock’ method is employed. The top panel shows example
simulated transition and censoring times for four people. This example has been specially
designed so that it clearly shows that there is a level of correlation between TTP and PPS

for the ‘delayed entry’ format, with the patients with shorter
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Figure 5-3: 'Delayed entry' format for PPS
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Diagram illustrating how the simulated times are combined to define the PFS and OS
data if the ‘delayed entry’ approach is used.
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Figure 5-4: 'Reset the clock' format for PPS
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Diagram illustrating how the simulated times are combined to define the PFS and OS
data if the ‘reset the clock’ approach is used.
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simulated TTP times, also having shorter PPS times. In contrast, for the ‘reset the clock’
diagram, some of the patients with earlier TTP times, have a longer PPS than those with

a longer TTP time.

Essentially, the middle panels are identical for both PPS approaches, since the comparison
is between the times for TTP, death before progression and censoring, and thus PPS
information is temporarily being ignored. It is also in the bottom panel that the differences

become noticeable again.

For Figure 5-3, the last two simulated times (those for death post progression and time to
censoring), are considered for patients defined as having progressed. This means, for the
moment, the information on TTP or death before progression must be ignored, as is any
simulated data on patients defined as censored or dead for PFS (e.g. the last two patients).
The minimum of these is then taken, as the observed survival time and status. For Figure
5-4, it is slightly different. As before, the information on TTP or death before progression,
and any simulated data on patients defined as censored or dead for PFS is temporarily
ignored. The difference with this approach is that the simulated PPS time here is only
time from progression to death, so first, the time from randomisation to death must be
calculated in order to contrast it with the time to censoring. This is simply done by adding
the TTP and PPS times together. Once this has been obtained, the minimum of the newly
calculated PPS (from randomisation) and the time to censoring is taken as a patient’s

observed survival time and status.

5.4.1.2 Estimating censoring in the presence of all transitions (Scenario 2)

Scenario 1 examined the ‘gold standard’ level of summary information, in which, in
addition to the summary data on the transitions, there was also a Kaplan-Meier curve for
censoring. In practice, though, this would hardly, if ever, be actually reported. Therefore,
censoring must be estimated in a different way. Once again, the methodology established
in Chapter 4 is used to generate the censoring distribution with some minor differences.
All three techniques: maximum study time; recruitment times; and ‘numbers at risk’ table

can be used in this setting.

148



5.4.1.2.1 Maximum study time censoring

This extends very simply to the case where two outcomes are of interest. To use this
method, the maximum study time over both outcomes for a specific treatment arm, is
estimated, usually by reading it from the Kaplan-Meier curve. Then, this time is treated
as the patient’s ‘simulated’ time of censoring, and thus the data can be defined in the way

outlined in Section 5.3.1.1.6.

5.4.1.2.2 Recruitment times censoring

Similarly, to the maximum study time censoring technique, the method using recruitment
times also automatically extends to the reconstruction of paired data. Provided that the
recruitment times and data cut-off date have been reported, a uniform distribution
between the minimum and maximum length of follow-up can be determined for the
censoring times distribution, where the minimum and maximum length of follow-up are
defined as in Section 4.4.1.4.2. A single censoring time is then generated for each patient

from this uniform distribution, and this time used for both PFS and PPS.

5.4.1.2.3 ‘Numbers at risk’ approach

This approach is the most different of all the three possible censoring distributions when
translated to the paired data setting (i.e. PFS / OS). It is heavily dependent on the
information that has been reported. Under this framework, the PFS censoring must be

separated from the PPS censoring.

To gauge PFS censoring, the event type (death or progression) must essentially be
ignored, and hence use the PFS survival proportion. This can be achieved in one of two
ways. The first is by calculating the survival proportion for both death before progression
and TTP at the corresponding times to the ‘numbers at risk’ interval and then multiplying
them. In this method, the approximate value of the survival, Spr¢(t) at a given time, t*

1S:

Sprs(t™) = Sprp(t?) Ssp(£7) (5-7)

Alternatively, if the PFS K-M curve is available, it may be better, and potentially easier
to directly estimate the PFS survival proportion from that (either from visual inspection,

or more preferably by taking coordinates at the interval time points). Once the PFS
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survival proportion has been obtained, the estimation and censoring distribution continues

in exactly the same way as it would have for a single outcome.

For the scenarios where PPS is explicitly reported, there remain differences in the
methods depending on how the PPS was calculated. If the ‘reset the clock’ technique has
been used, then calculating the PPS censoring becomes simple: it is essentially calculated

using the method for a single outcome.

If the ‘delayed entry’ timescale has been used; this is far more complicated. In a ‘delayed
entry’ risk-table, the number of patients at time zero will actually be zero as patients
should not enter the risk-set until after progression, and progression should commence
after time zero. Therefore, this risk-set, unlike most, will increase as well as decrease in
number over time. However, this means that the equation used to calculate censoring is
not clear, as the change in the number at risk over the i interval (denoted ;) is not
evidently defined. This is because, at present, this term has not been divided into
progressions and those experiencing a PPS event, a crucial factor in determining the

number of PPS censorings). This can be expressed as:

Yppsi = dppsi + Cppsi — drrpi (5-8)

Where yji, cji, dji are the change in the number at risk, the number of censored observations
and the number of events respectively over the i'" interval, for outcome j (e.g. TTP, PPS

etc.).

It is imperative that the change in y purely due to leaving the risk set, which shall be

defined as y*, is estimated.

Yppsi = dppsi + Cppsi (5-9)

In order to do this, the number of progressions must first be calculated. At this stage,
essentially, this is obtained in a similar way to the number of censorings. Having already
calculated the number of PFS censorings, the number of PFS events can easily be

obtained.

dprsi = Yprsi — Cprsi (5-10)
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The probability of having experienced an event over the course of the i interval for

outcome j, is defined as gj.

q;i =1—pj; (5-11)

Where, pji is the probability of not having an event.

Without currently making any assumptions about the ordering of the deaths before

progression throughout the progressions, the interval specific formula for interval, i, is:

dTTPi

drrpi = (5-12)

1
Nprsi — (j Cprsi T Vi dSD)

Where n; is the number at risk for the start of the i interval for outcome j and y; is the

average proportion of interval patients, who are censored, are at risk for.

This reduces further to

q _ drrpi
TTPi = 1 (5-13)
Nprsi — (Q (Yprsi — dprsi) + Vi (dppsi — dTTPi)
1 1
drrpi <nPFSi —5Yprsi T dprsi (7 + Vi)) (5-14)
drrp; =

1+ viaprsi

Once these estimates for the progression have been obtained, all that remains is their
inclusion in the equation for the probability of being censored post-progression, pppci
(given in Equation (5-15)):

Cppsi

Pepci = 1- 1 5-15
(nppsi + a; drrp) — dePSi (-1)

Once again, returning to y*, there is:

Cppsi

Pppci = 1- (5-16)

1. .,
(npps; + a; drrpi) — 5 (Yppsi — Cppsi)

This formula has been generalised in Appendix 1.
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To complete the censoring distribution, this probability in conjunction with the length of
interval ([;) is included within a piecewise exponential model, such that, for each interval,

Inpppc;

Scensi~ Exponential(4y), where 1; = — i
i

(5-17)

5.4.1.3 Reconstructing the data without one of the transition rates (relating to PFS)
(Scenario 3)

5.4.1.3.1 Estimating event type for PFS when one of the relevant transitions is missing

In practice, the transition for stable to death is exceptionally unlikely to have been
reported as it is not usually of particular interest since TTP, PFS and OS are often seen as
more relevant outcomes. Provided that PFS data are available, though, this missing

transition can be estimated, since:

Sprs(t) = Sprp(t) Ssp(t) (5-18)

In principle then, provided that coordinates from the Kaplan-Meier curves for TTP and
PFS have been extracted and modelled, the survival for time to death before progression

can be simulated from:

Sprs(t)
Strp(t)

Ssp(t) = (5-19)

However, since the ultimate aim is the simulation of PFS data, where alongside each event
time is the event type (progression or death), there is an alternative approach. Beyersmann
(2009) proposed a method by which data with two competing risks could be simulated
using distributions for the all-cause survival and only one of the cause-specific hazards.
This would be exceptionally useful as essentially this is the information that is available,
as there are two competing risks (death and progression) and the all-cause survival, PFS.
Using this approach, the probability for a particular event type X, that for which the
cause-specific hazard, ay,(t), is available can be defined as:

P(Xp=1|T €dt,|T>1t) = =
(Xr | | ) P(T €dt|T >t o, (t) + gy (b)

(5-20)

Where a, (t) is the cause-specific hazard for the competing risk.
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Therefore, in the context of this research, the probability of the event being a progression,
Xrre, where Xrrp = 1 indicates a progression, Xrrp = 0 indicates a death (event due to

competing risk), is:

hrrp(t) hrrp(t)
X =1|T €dt,|T>¢t) = = 5-21
(Krre | | ) hrrp(t) + hsp(t)  hpps(t) (>-21)
Since,
hprs(t) = hrrp(t) + hsp(t) (5-22)

Beyersmann’s, (2009) method is relatively simple to implement here. The first stage is to
simulate the event times from the all-cause, in this case PFS, distribution. Once an event
time has been simulated for all patients in the dataset. The hazard rate at the patient’s
specific simulated survival time needs to be estimated for both TTP and PFS (one of the
cause-specific hazards and the all-cause hazard rate). When these have been obtained, the
ratio can be calculated. Probabilities close to zero suggest that these patients were more
likely to have died than progressed, whilst probabilities close to one, indicate these
patients most likely experienced disease progression. This patient-specific probability is

then included within a Bernoulli distribution to formally define the event type.

Whilst this approach has primarily been developed, with the idea of the cause-specific
information being that of TTP, this methodology would still hold in the rare case of death
before progression having been reported alongside PFS, but no data for TTP. The only
difference is that the simulated event type definition would be zero for a progression and

one for a death.

5.4.1.4 Reconstructing the data with TTP, PFS and OS (Scenario 4)

In this scenario, there is no longer information specifically on PPS. PPS is an outcome
which appears to be seldom reported. However, obtaining information on this is integral
to the method developed thus far. Particularly if the motivation is for treatment switching

patients who switch on progression, then PPS becomes vital.

153



5.4.1.4.1 Calculating PPS from OS (Scenario 4)

This section assumes that in the absence of PPS, OS information has still been reported.
Essentially, OS could be viewed as a competing risks problem, in which patients either

die before progression or after progression. This is illustrated in Figure 5-5.

Figure 5-5: Competing risks nature of overall survival

Deaths before
progression
Deaths after
progression

In order to obtain an expression for PPS, the deaths after progression must be isolated.

Therefore, the formula used to calculate OS must be examined.

The equation for OS can be written as follows:

th S
Sos(t) = Spps(t) + Spps(t) f TT%ED?S (};I;S(S) ds (5-23)
0

In other words, the proportion of patients who are alive (Sps(t)) is composed of the

proportion of patients who are alive and with stable disease (Sprs(t)), and those who are

t

alive but with progressive disease (Sppg(t) fo hsp(8)Sprs(s) ds ). This expression does

Spps(s)

contain the function of interest, Sppg(t), but is not currently in an analytical form that can
be simulated from. Therefore, Equation (5-22) must be rearranged to give an expression
for Spps(t). To do this, however, it is first easier to obtain an expression for hppg(t)

because of Sppg(t) being explicitly involved in the integral.

Initially the Equation (5-22) is rearranged so that the integral is one side and the other

terms on the other:

Sos(t) — Sprs(t) _ fthTTP(S)SPFS(S) ds (5-24)
0

Spps(t) Spps(s)

Using the fact that S(t) = exp(—H (t)) the following is obtained:
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eXp(_Hos(t)) _ exp(_HPFS(t)) _ “herp()Sprs(s)
exp(—Hpps(t)) exp(—Hpps(t)) Jo Spps(s)

ds (5-25)

And then using the rules of exponentials, the following expression is obtained:

th S
exp(Hpps(t) — Hos(t)) — exp(Hpps(t) — Hpps(t)) = f % ds (5-26)
0

This expression can then be differentiated with respect to t, giving the

(H’PPS(t) - Hlos(f))EXp(HPPS(t) - Hos(t))

hyrp(£)Spr (5-27)
— (H'pps(t) = H'prs(t) )exp(Hpps (t) — Hprs(t)) = M

Spps(t)

Since % (H (t)) = h(t) and as S(t) = exp(—H (t)), the equation below is attained:

(hpps(t) = hos(£))Sos(t) = (hpps(t) = hpps(t)) Sprs(t) _ hyrp(8)Spps(t)

_ (5-28)
Spps(t) Spps(t)

So,

(hPPS (t) — hos (t))sos(t) - (hPPS ) — hPFS(t)) Sprs(t) = hsp(t)Sprs(t)  (5-29)

Now that Equation (5-29) no longer contains hppg(t) within an integral, the equation

can be re-arranged to make hppg(t) the subject. At last Equation (5-30) obtained,

_ (hTTP ) — hPFS(t))SPFS(t) + hos(£)Sos(t)
hres(t) = Sos(t) — Sprs(t) (30

Where the terms on the right-hand side of the equation can be evaluated using the models

developed on the coordinates for each outcome.

This function is then integrated using integration techniques to obtain the cumulative
hazard function. In practice, this was implemented using the ‘integ’ command in Stata.
The obtained values were then transformed onto the log-cumulative hazard scale. RCS

models are then used to obtain a final model for PPS.

It should be noted that here the type of PPS being used is clearly defined. Since PPS is
calculated through progression, the underlying structure is ‘delayed entry’; since OS is
measured from randomisation. Therefore, when simulating the PPS data, the survival

times are all conditional on the simulated TTP.
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5.4.1.4.2 Calculating PPS censoring (Scenario 4)

The PPS censoring distribution also becomes more complex to estimate if the ‘numbers
at risk’ table approach is used, since the information for this now needs to be extracted

from the OS risk-table. This relies on making additional assumptions.

The process starts by calculating the number of censorings for PFS and OS. This is done,
as if each outcome was separate (i.e. using the same approach for estimating the number
of censorings if only one outcome was of interest — Section 4.4.1.4). Once these have
been obtained, the number of events for each outcome can also be computed. It becomes
crucial to have calculated the number of progressions. It should be noted that this
approach estimates PPS, using the ‘delayed entry’ technique, and so issues caused by

patients entering as well as leaving the risk set apply here.

Assuming dj;, ¢j; are the number of events and censorings respectively for the outcome ;

and interval i, then:

dspi = dppsi — drrpi (5-31)

Where dgp; is the number of deaths before progression for the i interval.

Since,
dosi = dspi + dppsi (5-32)
And,

Cosi = Cprsi T Cppsi (5-33)

The post-progression events and censorings can easily be obtained by rearranging these
expressions. These values for dppg;, Cpps; are then included in the formula (Equation (5-

16)), with ‘delayed entry’ detailed in Section 5.4.1.2.3.

5.4.1.5 Reconstructing the data with only PFS and OS (Scenario 5)
This last scenario differs from the last in that TTP is no longer available. This is a very

crucial part of the ‘illness-death’ model and must therefore be indirectly estimated from
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any information which is available. It is assumed that the total number of progressions

for a given treatment arm has been reported.

5.4.1.5.1 Calculating TTP

Essentially this stage has two ultimate aims:
1) to estimate the number of progressions needed to calculate the post-progression
censoring (PPC);
2) to obtain a model for the TTP hazard rate in order to define the event type and
calculate the PPS.
The first part largely relies on knowing the number of PFS and OS events (as calculated

from stage 2) since the number of events, dj; for interval i and outcome j is:

dji = Yji = Cji (5-34)

However, in order to estimate the next part of this stage, modelling the TTP hazard rate,
more accurately, it is beneficial to have smaller intervals than those typically reported in
the ‘at risk table’. Therefore, each interval is divided into smaller intervals, known as
partitions. The number of partitions is arbitrary; and so, in theory every interval could
contain the same number of partitions. Nevertheless, it is more reasonable to have more
partitions where there are more events. Therefore, assuming the number of coordinates to
be a proxy for the number of events, the number of partitions is usually the number of
coordinates in the interval, or possibly the square root of the number of coordinates (if
there are many coordinates). The survival proportion must then be calculated, and / or
more importantly the probability of survival for each partition is needed, so that the
number of events over that partition can be calculated. Partitions will use the subscript k

and intervals i.

Figure 5-6: Competing risks nature of PFS or OS data

Censored
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PFS or OS data can be represented by a ‘competing risks’ format, as shown in Figure 5-6,
where patients can only either be censored or experience an event (either PFS or OS
depending on the outcome). Therefore, the probability of patients having an event or

being censored can be expressed using the following formulae (Lambert, 2010):

t

Pevent,, = fScens(S)Sevent(s)hevent(s)ds (5-35)
0
t

Pcens, = fScens(S)Sevent(s)hcens(s)ds (5-36)
0

Whilst, in practice, given that the models are piecewise exponential and RCS models
(Durrleman, 1989), these functions cannot be integrated analytically, but can be evaluated
using numerical integration techniques. Once the probabilities have been obtained for
each partition, using these relevant probabilities and the number of events / censorings
over the whole interval, estimates can be calculated for the number of events, number of

censorings and the number at risk at the start of each partition.

Now that the number of events for both PFS and OS has been obtained, the minimum and
maximum possible number of progression events per partition can be calculated.
Basically, the maximum number of progressions for any partition is the number of PFS
events, since essentially this means that no patients died before progression for that
particular partition. The minimum number of progressions, progwn,, is calculated by
assuming that the maximum possible number of deaths before progression occurred, and

hence is:

progvin, = A4prsy, — min(dppsk ) dosk) (5-37)

Where, dpps, , dos, are the estimated number of events for PFS and OS respectively.

Assuming that the actual number of progressions, D, is between the total minimum,Dy;p,
and the maximum Dy, number of events. Essentially the estimated number of

progressions, drrp, for the k" partition is calculated as:

drrpy, = Progming + B ( pProgmax; — PTOQMINk) (5-33)
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Here [, has been chosen to be proportional to the difference between the total minimum

and maximum number of progressions. Thus,

proguin, (Dmax — D) + progyax, (D — Dyin)

(5-39)
Dyax — Dmin

dTTPk =

Once the number of progressions has been obtained, a similar technique to that used in
relative survival (Pohar Perme, 2012, Dickman, 2015) is used, and the excess hazard i.e.
the difference between the hazard rate for TTP and PFS model. The process then

continues by calculating the risk time over the interval,

1
A = <nk 3 (cprs, + dprs,) ) L (5-40)

Where Ay, ny, cpps,, dprs,, L are the risk time, number at risk, censorings, events and

length of the k" partition.

The excess hazard rate A, is then calculated as:

_ (dppsk - dTTPk)

A
k AL

(5-41)

This rate is then modelled using RCS models to ensure flexible smooth curves

(Durrleman, 1989), which gives a model for the excess hazard rate, A(t).

hpps(t) = hrrp(t) + A(Y) (5-42)

5.4.1.5.2 Modifications to existing methodology

Now that specific information on the TTP distribution is no longer accessible, the excess
hazard (difference between the PFS and TTP hazards) is modelled rather than directly
modelling the TTP hazard. However, this leads to some small modifications in some of

the later formulae.

Calculation of the PPS hazard
In section 5.4.1.4.1, the PPS hazard was defined in Equation (5-30) as:

_ (hTTP ) — hPFS(t))SPFS(t) + hos(£)Sos(t)
tres(t) = 5050~ Sprs(D e

Using the excess hazard notation, this now simplifies to:
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A(t) Sprs(t) + hos(£)Sps(t)
Sos(t) — Sprs(t)

hpps(t) = (5-44)

Calculation of the probability of an event being due to progression

Considering how the excess hazard has been defined, the following equation (5.45) can

be obtained:

hrrp(t) = hpps(t) — A(L) (5-45)

Therefore, substituting this into the expression used to calculate the probability that the

event, at a particular event time, is due to progression, becomes:

hprs(t) — A(t) _q A(t)
hpps(t) hpps(t)

Figure 5-7: Approach to be adopted depending on available information

K-M curves for all K-M curves for K-M curves for
transitions? TTP, PFS & 0S? PFS & 0S?
Yes Yes Yes
10 4

[ SCENARIO 1/2 ] [ SCENARIO 5 ]

Yes No

! v

[ SCENARIO 1 ] [ SCENARIO 2 J

Table 5-2 outlines the stages of the method and gives a summary of the efficacy and ease
of implementation for each of the key approaches; also providing a contrast between the

three. Figure 5-8 to Figure 5-10 show the process for each scenario diagrammatically.

5.4.2 Overview of implementing the key methods depending on the information
The previous sections of this chapter explain the sequential adaptations of the methods.

However, they give little detail of the practical implementation depending on what level
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Figure 5-8: Process for summary information on transitions (Scenarios 1 and 2)

METHOD
SCENARIO 1/2
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CENSORING i
for censoring?
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T
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as observed time & status

Patient defined as
aving progressed
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OS times & status are Define PPS: take the min. of
equivalent to the patient’s PPS & cens. time as
PPS times & status observed time & status **

OS times & status are
equivalent to PPS times &
status (as defined in 5.4.1.1.6)

I

v

progressing & non-progressing

Group together OS times for

patients to fully define OS

v
ANALYSIS N
Average over the point Analyse the dataset
estimates
J
* If using a delayed entry is used, then the simulation will be conditional on the patient’s simulated progression time.

This does not apply to ‘reset the clock’ approach.
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of the number of progressions (e.g. number entering the risk-set)

progression time. This does not apply to ‘delayed entry’ approach.
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Figure 5-9: Process for TTP, PFS and OS summary information (Scenario 4)
METHOD

SURVIVAL Extract coordinates from Transform to the LCH scale & Calculate the PPS
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1 A ‘delayed entry’ approach is implicitly used.
I The simulated time will be conditional on the patient’s progression time.
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Table 5-2: Overview and summary of key methods based on available information

Available Brief overview of stages Summary
information
5421 Al 1. Extract coordinates for each outcome and each treatment group | The challenge for this method is in
transitions and 2. Model the survival (or censoring) distribution using RCS identifying the type of PPS that has
censoring splines models fitted on the log-cumulative hazard scale been employed. Having done this,
3. Simulate a time from each outcome model (for that specific the approach is easy to implement
simulated treatment group) in practice.
4. Combine the information together to define the outcome
a.  PFS information: take the minimum of the simulated
TTP, time to death (before progression) and censoring
as the observed survival time and event type
(progression, death or censoring)
b.  OS information: for all patients defined as progression,
take the minimum of the simulated PPS and censoring
times as the observed PPS and event type. Combine this
newly defined PPS information with the PFS censorings
and deaths to complete the OS information
5. Analyse the dataset
6.  Simulate and analyse additional datasets (using steps 3 - 5)
7. Average over all the datasets to obtain a point estimate
5422 T7TP, | 1. Extract the coordinates off the scanned Kaplan-Meier curves As with all the methods, this
PFES and OS for TTP, PFS and OS (for each trial arm) using digitizing approach still maintains the broad
software. stages of: extracting the
2.  Transform the survival and time coordinates to the LCH and coordinates; modelling the survival
log time scales respectively. and censoring distributions;
3. Calculate RCS to the data; only outcome and treatment specific | simulating multiple datasets from
information should be used to estimate the knots. the models; analysing datasets
4. Model the survival distribution for a given outcome and separately; and then combining the
treatment, using ordinary least squares regression with the results. Unlike the methods
LCH as outcome, and RCS variables as the covariates. described in section 5.3.2.1,
5. Calculate the PPS hazard rate, using the formula given in however, this approach has a much
Section 5.3.1.4.1 evaluated at estimates obtained from the greater dependency on early stages
respective survival distribution models. later in the method. For instance,
6.  Estimate the censoring distribution, if using the ... appropriate models for TTP, PFS
a. ‘Maximum time censoring’ approach: determine the and OS, are important in ensuring
maximum study time. sensible estimates for PPS
b.  ‘Recruitment times’ approach: calculate the minimum information, and PFS event type
and maximum study lengths to incorporate into the definition.
uniform distribution, used for the simulation.
c.  ‘Numbers at risk” approach: Also, in practice, ensuring
i.  Start by calculating the PFS censoring, which is harmonious distributions for TTP
done exactly as outlined in section 4.4.1.4.3, and PFS can be challenging. By the
ultimately resulting in the parameter values for a very definition of PFS, Sprs(t) <
piecewise exponential distribution. Srrp(t). However, where almost all
ii.  Then for PPS censoring, calculate the number of of the PFS events are due to
OS events and censorings progression, extracting coordinates
iii.  Estimate the number of progressions. and obtaining models which always
7.  Calculate the post-progression events, and censorings, and then | comply with this criteria, can be
include within the expression given in Section 5.3.1.3.2 to difficult. Nevertheless, it is
obtain the parameter values for a piecewise exponential exceptionally useful to be able to
distribution. model TTP directly, as this is such
8. Simulate a PFS time for each patient from the respective an influential factor, particularly
distribution. with a view to ultimately adjusting
9.  Include this probability within a Bernoulli distribution, and for treatment switching; TTP
formally define the event type. information will define both the
eligible population for switching,
and the switch time.
10. Simulate a PPS time for each patient with disease progression,
conditional on their PFS (equivalent to their TTP) time.
11.  Simulate the censoring times - for the ‘Number at risk’
approach PFS and PPS must be simulated with PPS censoring
being conditional on a patient’s progression time.
12. Take the minimum of the PFS and (PES) censoring time as the
patients observed PFS time; the time chosen defines the event
status (event or censored).
13. For patients with disease progression, define their PPS by take

the minimum of their PPS and (PPS) censoring time as the
patients observed PPS time; once again, the time chosen
defines the event status (event or censored).

Combine the PPS information, with the observed PFS
censoring times and PFS event times for patients who died
before progression to obtain observed OS time and status
information.
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Available

the approach.

information Brief overview of stages Summary
14. Simulate multiple datasets, by following stages (7 — 14)
multiple times; each dataset should be analysed separately
using the methods of choice
15. Results from each separate analysis must be averaged over.
5423 PFS Repeat stages 1 —4 from section 5.4.2.2 this time only for the Once again, the broad stages of the
and OS PFS and OS outcomes (TTP is not available so coordinates simulation approach carry over to
cannot be extracted and the distribution modelled directly). this method. However, this
2. Estimate the PFS and OS censoring distribution, if using the ... | technique consists of more stages,
a.  ‘Maximum time censoring’ approach: determine the and places a considerable
maximum study time. dependency on assumptions and
b.  ‘Recruitment times’ approach: calculate the minimum appropriate model specification. It
and maximum study lengths to incorporate into the also essentially changes the usual
uniform distribution, used for the simulation. order of approach. In all of the
c.  ‘Numbers at risk” approach: previous variations of the
i.  Start by calculating the PFS, and then OS simulation method, typically, all of
censoring; this is done following the stages survival models are obtained before
outlined in section 4.4.1.4.3. Ultimately parameter | attention is turned to the censoring
values for a piecewise exponential distribution distribution. Here, though, the
should be obtained. censoring for PFS and OS (not
3. Decide upon an appropriate formulation of partitions, calculate | PPS), must be calculated early on
the partitions. (stage 2 of 12) in order to allow
4.  Estimate the survival and censoring probabilities for PFS and estimation of TTP information. This
OS for each partition, as explained in section 5.3.1.5.1. approach relies on many
5. Estimate the number of PFS and OS events over a partition. assumptions and correct model
6.  Estimate the number of progressions — TTP events (as outlined | specifications; this therefore, makes
in Section 5.3.1.5.1) it much more sensitive to changes.
7. Calculate and model the excess hazard between the TTP and
PES events. Whilst the theory behind this
8. Calculate the PPS hazard rate, using the formula given in method is robust, the practical
Section 5.3.1.5.2 (similar to that Section 5.3.1.4.1, but using application is much more uncertain.
the excess hazard rate as opposed to the TTP hazard rate) To enable estimation, many
evaluated at estimates obtained from the respective survival decisions must be made, all of
distribution models. which may influence the results in
9.  Ifusing the ‘Numbers at risk’ approach, calculate the PPS some way. These decisions include
censoring distribution using steps 6.ii. — 6.iv. of section 5.4.2.2. | how to determine the number, and
This could be done either at the partition level or at the interval | consequently distribution of
level. partitions. Also, in order to
10. Simulate a PFS time for each patient from the respective numerically integrate to obtain the
distribution. probability, and hence the number
11. Evaluate the excess and PFS hazard at each of the simulated of events / censorings over a
PFS times, and include in the relevant expression from Section | partition, the number of points over
5.3.1.5.2. The value obtained is still the probability of that which to do this, must be chosen.
specific PFS event being due to disease progression. Deciding on the spread of
12.  Follow the stages 9 — 16 given in Section 5.3.2.2.1 to complete | censorings over an interval is

choice that must be established.

Having to determine these factors is
a limitation of this approach, as the
choices will largely be arbitrary,
and yet could be influential.
Nevertheless, it is very necessary to
create this method, and reconstruct
the data, but as a result it means that
sensitivity analysis is very
important.

of information is available to the analyst, and how the stages of the approach link together.

Thus, this section seeks to address that particular deficiency.

Only the ‘key’ approaches have been chosen. These are scenario 1, having all transition

rates and censoring information; scenario 4, having TTP, PFS and OS; and scenario 5,

having PFS and OS. These three scenarios have been classed as ‘key’, for the following

reasons. Scenario 1 demonstrates the underlying process that must be emulated in later
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scenarios with less specific information. Scenarios 4 and 5 are important, as these are the
most commonly found situations. Scenario 2 has also been briefly mentioned in Figure
5-7 and Figure 5-8, since this only departs slightly from that described in the previous

scenario. The process for identifying the appropriate scenario is described in Figure 5-7.

5.4.3 Illustrative example contrasting scenarios 1 (All information) and 4 (Three

outcomes only)

5.4.3.1 Illustrative example

For ease of explanation and to ensure all the necessary summary information was
available, the methods are explained using an example data. The data for this example are
simulated based on the results from the TAnDEM trial (Kaufman, 2009) (described in
Section 4.7.3.2). Kaplan-Meier curves were produced for each of the transitions, the
censoring distribution, PFS and OS. These are shown in Figure 5-6. Figure 5-7 shows

the same PFS and OS Kaplan-Meier curves, complete with the respective risk-tables.

5.4.3.2 Methods

The methods were carried out as specified in Table 5-2 (Sections 4.4.3.3 and 4.4.3.4). A
range of models, with different degrees of freedom and knot locations for the RCS, were
tested on the available data, and the most parsimonious ones which also showed the
exceptionally good fit graphically, chosen as the final models. For the first scenario (in
which all transitions were available), the ‘delayed entry’ approach was used. For each

scenario, two hundred datasets were created for the simulation approach.

The number of events, median survival time and HR obtained from a Cox model are used

to compare the representativeness of the IPLD with the original IPD.

5.4.3.3 Results

The contrast between the reported summary statistics (number of events, median survival
time and HR) for the IPD and the two IPLD scenarios is presented in Table 5-3. In terms
of point estimates for PFS, those for the median survival time and HR are very similar
across all types of data (IPD and both IPLD). However, for the IPLD there is marginally
less variation (e.g. narrow Cls). The number of events is broadly comparable for the [PD

and IPLD created using ‘All information’ (transitions and censoring). For the fourth
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scenario, having TTP, PFS and OS, there are more noticeable differences in the number

of events, in particular, having four additional events in the control group.

Apart from the number of events, which are almost identical, the IPLD for ‘All
information’ and the IPD point estimates (for median survival time and HR) for OS,

although still comparable vary more than for PFS. For these, the uncertainty for the IPLD
is slightly increased, compared to that reported from the IPD. Despite the OS median
survival time being similar to the IPD for the method relying on TTP, PFS and OS, (with
increased variability), the number of events is substantially different. Also, the HR differs

considerably.
Figure 5-13 shows the comparison between the extracted coordinates and the survival
proportion calculated at every month, and averaged across all datasets for each treatment

arm and the two methods (depending on the information available) for PFS and OS.

Table 5-3: ITT analysis results for the IPD and IPLD — Simulated example

Average over 200 reconstructed datasets
Original IPD All information TTP, PFS and OS
Number of Control 98 97 101
events Experim. 88 87 86
PFS  Median Control 2.7 months (1.4, 3.9) 2.7 months (1.5, 3.9) 2.6 months (1.5, 3.6)
survival ime  pyperim, 5.4 months (2.5, 8.9) 5.2 months (2.1, 9.1) 5.3 months (2.0, 8.6)
Hazard ratio 0.582 (0.431, 0.786) 0.585 (0.454, 0.785) 0.573 (0.433, 0.760)
Number of Control 62 62 79
events Experim. 58 58 65
oS Median Control 26.2 months (21.5, 29.5) 25.7 months (21.6, 30.4) 25.5 months (21.3, 29.7)
survival time Experim. 37.6 months (29.2, 49.5) 36.6 months (27.3, 48.1) 38.4 months (30.4, 46.4)
Hazard ratio 0.556 (0.385, 0.804) 0.563 (0.392, 0.867) 0.499 (0.353, 0.705)

For this example, the average number of events for the IPLD has been rounded to the
nearest integer.

5.4.3.4 Conclusions

From the results presented here, it is clear that using Scenario 1 (All information) works
exceptionally well, leading to results that are highly comparable the IPD. This is very
pleasing as it means the underlying theory is working well and therefore, aiming to

emulate this approach in the later scenarios is appropriate.

Unfortunately applying the methodology for scenario four (having TTP, PFS and OS) did
not work as well as expected, although still sufficiently good enough to be useful. Whilst
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the PFS data for the experimental group is relatively comparable, at this stage there were
already issues with the number of events in the control group. This issue worsened
considerably for the PPS events. This was explored in greater detail subsequently, and
the principle cause was found to be the censoring; most attributable to the wide interval

length and sudden drop in survival over the interval.

Since the underlying summary data had been simulated, having the risk-table with
intervals at every three, and then every one month was investigated. Even using the three-
month intervals, the censoring still performed poorly, but once one-month intervals were
used, the results were far more reflective of the IPD. This emphasised the importance,

particularly for PPS in ensuring that the value of a in the censoring is appropriate.

5.4.4 Illustrative example using the TAnDEM trial

5.4.4.1 Illustrative example

Here the TAnDEM trial (Kaufman, 2009) example that was used previously in section
4.7.3.2 has been used. Kaplan-Meier curves, and “at risk’ tables for PFS and OS; and the
number of events for TTP, PFS and OS were available. It should be noted that this
example, perhaps, has slightly more information than would be typically reported,
reporting on events is often variable and in addition, the ‘at risk’ table uses many intervals

(12 intervals).

5.4.4.2 Methods
It was decided to only use information for PFS and OS. This choice was made for two
reasons;

1) it avoids the practical challenges of extracting the coordinates for TTP and PFS
such that Sp7p(t) < Sprs(t) since there are very few deaths prior to disease
progression;

2) it assesses how the method should work if only the two outcomes had been

reported.
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5.4.4.2.1 Overview of reconstructing the IPLD

This example used the method set out in Section 5.4.2.3. In brief: extracting the
coordinates from the Kaplan-Meier curves; fitting models to each arm; calculating the
censoring distributions for PFS and OS; estimating the progressions over the interval,
excess hazard and TTP hazard rate; estimating and modelling the PPS and PPS censoring

distribution; simulating the datasets and analysing the data for common ITT statistics.

5.4.4.2.2 Specific details

Table 5-4 shows the respective degrees of freedom for the RCS models and treatment
groups (Durrleman, 1989). The partitions were based on the number of coordinates
(combined for PFS and OS) in each interval. Tables highlighting the initial calculation

PFS censorings in the A group and the process of the scale factor are available in the
Appendix G and were achieved because the number of PFS events was also available for
each treatment group. The PPS censoring distribution was formed using the partitioned
data rather than the original intervals. For this method, two hundred datasets were

simulated.

5.4.4.3 Results

On average, from Table 5-5, the number of events, median survival times and HR for
both PFS and OS are generally comparable (e.g. within acceptable limits) to those
obtained from the original IPD. There is slightly better agreement with the control group

(A) information compared to the experimental group (T+A).

Table 5-4: Degrees of freedom — TAnDEM
Degrees of freedom for the restricted cubic splines models for each outcome and each
treatment group.

Trial arm Degrees of freedom
PFS 0SS Excess hazard PPS
A 4 9 4 5
T+A 8 6 4 5
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5.4.4.4 Assessing the representativeness of the IPLD
Table 5-5: ITT results for the IPD and IPLD - TAnDEM

. . Average over 200
QI TV reconstrfcted datasets

& Number of A 92 92.9

=~ events T+A 84 86.6
Number of A 99 100.6

i events T+A 87 90.6

E Median A 2.4 months (2.0, 4.8) 2.9 months (1.6, 4.2)
survival time T+A 4.8 months (3.7, 7.0) 5.1 months (2.9, 7.3)
Hazard ratio 0.63 (0.47, 0.84) 0.67 (0.52, 0.85)
Number of A 64 62.2
events T+A 58 55.2

8 Median A 23.9 months (18.2,37.4) 21.7 months (18.3, 25.2)
survival time T+A 28.5 months (22.8, 42.4) 26.1 months (22.1, 30.1)
Hazard ratio 0.84 (0.59, 1.20) 0.86 (0.59, 1.26)

5.4.4.5 Conclusions

The IPLD generated was broadly representative of the data, although there were still some
reasonably large discrepancies between the IPD and IPLD e.g. approximately four extra
PFS events in the T+A group. However, in terms of the OS results, these were far more
comparable for the initial analysis than in the previous example using Scenario 4 (Three
outcomes) in Section 5.4.3. The main reason for this is probably due to the detailed
summary information, in particular the risk-tables. As explained in the Section 0, the
simulated example only reported the numbers at risk at five, very widely spaced, intervals.
The larger the change in survival, particularly in the early intervals, the less accurate the
estimates for the piecewise-exponential models are; this is likely to be that situations
where the interval is wide and with a large decrease in survival are indicative of scenarios
where assuming a constant hazard rate over the interval is not appropriate. For the
example in Section 0, the best approximation to the true underlying censoring function
occurred when the numbers at risk were reported every month (e.g. 12-times more
frequently than initially reported). In the TAnDEM example, though, the numbers at risk
were reported every 5 months, giving a total of 12 intervals. In addition, with the
simulated example, the PFS at the end of the first interval for the experimental treatment

group was just under 10%, in contrast with slightly less than 50% survival.
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Whilst the variation between the IPLD and IPD are greater than would have been hoped,
it is still within acceptable limits. This is especially true given how many strong
assumptions have to be applied in order to estimate necessary components for
reconstructing the IPLD with an ‘illness-death’ modelling approach and only two

outcomes.

5.4.5 Understanding and assessing the underlying driving factors

This process is extremely complex, and relies on many interconnected models and stages,
particularly when using more limited and / or general information. Therefore, if the results
are less comparable, it is vital to understand, and put into practice how to assess individual
parts of the method. Some of this ‘testing’ will be done through sensitivity analysis, such
as trying other models with different degrees of freedom and / or knot locations, using
different partitions, etc. However, two parts of the method can be specifically assessed.
These are the estimation of the TTP events (using the relative survival framework) and

the ‘consistent censoring’ assumption.

5.4.5.1 Using the relative survival framework to assess the distribution of TTP
events

The relative survival framework for estimating the TTP distribution is by no means
infallible, since it was necessary to adapt this to suit the needs of the ‘illness-death’
modelling approach. It may still be possible to estimate a negative number of
progressions, or alternatively a number exceeding the change in risk-table (e.g. more
progressions than the number of progressions and deaths combined). However, in these
situations, these issues can actually provide some indication of whereabouts the method

is not performing well and why this might be.

One way of checking the model suitability is to plot both the PFS hazard model and
estimated excess hazard model against time. Where the excess hazard curve exceeds the
PFS hazard, this indicates that too many events have been estimated in that region. If the
excess hazard rate falls below zero, this would suggest that not enough events have been
estimated in this region. It may help to partition the timescale based on intervals /
partitions to identify particular regions. This information could then ultimately be crudely

used to perform some type of re-weighting of the events.
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5.4.5.2 Assessing ‘consistency’ of censoring
The key assumption for the censoring distribution is that of ‘consistency’. This means
that once a patient has been censored for PFS, this censoring time and status is also used

for OS. As a result, the following statements must hold:
Wprs < Wos (5-47)

Where w; is the number of censorings for outcome ;.

However, in practice, this may not always occur. This could be due to measurement /
estimation error, the assumption of the events occurring evenly throughout an interval or
because ‘consistency’ does not hold (e.g. if all the censorings occurred before any event

times).

Therefore, this section explores exactly what the ‘consistency’ assumption means in terms
of estimation. To achieve this the starting point must be the life-tables equation for

calculating the probability of surviving an interval, i.

pi=1-|—7— (5-48)

Here, !> represents the time which censored patients are assumed to be at risk for. To
assume censoring evenly over the interval, the 72 is used. However, essentially any value,
a;, where 0 < a; < 1 could be used and hence, equation (5-48) becomes:

—1 ( di ) 549
pi = S (5-49)

Where the values a; could be different for each interval, and «; represents the proportion

of the interval that censored patients are ‘at risk’ for.

Letting y; be the change in risk table over the interval, i, d;, the number of deaths and w;,

the censorings. For a given outcome, j, and a given interval, i, the estimated censorings
W can be defined as:

Wy = yi = mi(1 = pji)

1—a;(1—=pj)

(5-50)
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So, if the consistency conditions hold, then:

Yprsi — Nprsi(1 — Pprsi) < Yosi — Nosi(1 — Posi)

1—appsi(1 —pprsi) ~ 1—apsi(1—posi)

(5-51)

Whilst values of y;;, nj;, p;; are fixed, that for a;; is not.

Given that aj; measures the proportion of the interval that censored patients are ‘at risk’
for, 0 < aj; < 1. If consistency for interval i holds, then for at least one value of 0 <

aprsi < 1, there must exist at least one value of 0 < apg; < 1.

Rearranging this equation (5-51), gives:

(1 _ _Yosi — Nosi Gosi )
Yprsi — Nprsi qpFsi n (‘IPFSi) ( Yosi — Nosi qosi )aPFS. (5-52)
L

qosi

Qosi =
Yprsi — Nprsi 4prFsi

qosi
Where, q]l =1- pjl

This can be written more simply as:

(1-9)) n <qPFSi

qosi

Qosi = ) 0; aprsi,

qosi (5-53)

Yosi — Nosi qosi

where 0; =
Yprsi — Nprsi QpFsi

This formulation of the problem essentially takes account of whether the assumption of
the events occurring evenly throughout an interval holds (if so, apg; = aprs; = 0.5 will

satisfy the conditions, or if not, what a more reasonable value might be.

However, the question still remains how to use this information? This function could be
illustrated graphically, showing the range of all plausible values for ag;, @ppsi, but this
would result in many graphs. For example, for a two arm study, with six intervals, twenty-
four graphs would be produced. However, since the functions are linear, a simpler
strategy is to evaluate the function at apps; = 0 and aprg; = 1. Table 5-6 and Table 5-7

show how these values can be interpreted.
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Table 5-6: Values to ensure consistent censoring

Values of apg; for which Values at the limits .
l Interpretation
This means that any of value
1. O0<aprs; <1 s < 0 Aps; <0 of appgy, @ g, between 0 and
1 will ensure consistency.
This means that for all values
0 < apsi < Pu 0 < ays; < 1 but only values
2. Qosi = 0 Qosi = 1 b 0 and
0< ;<1 Aprs; etwe.en and ¢,
ensure consistency.
No feasible values No Yalues can be found o
3. aps; > 1 aps; > 1 obtain consistency for this
@ppsi < 0 interval.

It may be possible, if, at aprg; = 0, 0 < aps; < 1, that agg; is

Yu < apsi <Pp, 0<yPy <yYp <1).

Table 5-7: Values to ensure consistency censoring - limits

restricted further (e.g.

Values of apgg; for which

Values at the limits

Interpretation

Y, = s =Yy At apps; =0 At apps; =1
This means that for all values
0 < aprs; < 1 but only
4. O<apps; =1 Aosi = P, Apsi = Py values a@yg; between ¥, and

Y, ensure consistency.

To calculate the value of ¢; in scenario 2, the expression on the right-hand side of the

inequality needs to be set to one and appg; to ¢..

( i) + (CIPFSL) 0 ;= 1, 0, = Yosi 0si 9osi (5-54)
qosi Yprsi — Nprsi qprsi
Rearranging gives:
(1 _Qa- @i))
qOSi (5_55)

¢ = (M) o

qosi

To correct for an inaccurate total number of events supposedly caused through estimation

/ measurement error, the simulation approach, both for a single or multiple outcomes,
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applies a scaling factor to the number of censorings in each interval. This scale factor

{; for outcome j takes the form of

‘ W
; — (5-56)
g Z§=1 Wji
Where W; is the total number of censorings reported, and / the last interval.
For consistency to hold during and after the application of the scale factor, then
prs Wprsi < Cos Wos; (5-57)
Writing in terms of W ;
Yprsi — Nprsi 4pFsi Yosi — Nosi qosi
ZPFS( 1 ) = Zos( 1 ) (5-58)
— QpFsi 4pFsi — Qosi qosi
Once again, rearranging to obtain an expression in terms of a;; gives:
Tos; = 1— Cos < Yosi osiqosi )
dosi {prs \Yprsi — Nprsiqprsi
(5-59)

Cos (Qprsi Yosi — Nosiqosi
+ ApFsi
{prs \Qosi/ \Yprsi — Nprsiqprsi

5.4.6 Sensitivity analysis

With this type of simulation approach, sensitivity analysis is strongly advocated.
Different models should be investigated to ensure suitability and robustness of the results.
This could be done through visual inspection of the curve and comparison of other model
fitting statistics such as the AIC and / or BIC. It may also be useful to examine different
knot locations as this can also impact on the fit of the model. If possible, it would be
desirable to run the whole approach (e.g. simulating and analysing the full datasets) for a
variety of different models and for different outcomes. However, this may be infeasible
as the process can be very computationally intensive. The whole process can take between

two to five hours.
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It is important to consider different partition locations and formulations. For instance,
these are usually recommended to be proportional to the number of coordinates (or the
square root of the number of coordinates — rounded up to the nearest integer). Alternative
strategies could also include, exploring the impact of no additional partitions, the same
number of partitions, half the number of coordinates etc. This is a vital part of sensitivity
analysis for ensuring whether this ‘model fitting’ stage is influential on the results or not.
Ideally, the results should not vary depending on how many partitions there are, or where

these are selected.

5.5 Secondary analysis for treatment switching

Simulating IPLD with paired PFS and OS times is not exclusive to examples where
treatment switching has occurred, as this stage of the work only aims to reconstruct the
survival times. Therefore, in order to complete the objective of this project, information
on treatment switching must also be reconstructed.

Continuing with the assumption that patients switch on (or shortly following) disease
progression, there are naturally a subset of patients who are eligible to have switched i.e.
in every simulated dataset any patient defined as having experienced disease progression.
However, the number of eligible patients will vary in each dataset, and it is unlikely that
all patients experiencing progression would switch (in general, the switch proportion is
between 30% and 80% of all control group patients; whereas PFS / TTP occurs in the

majority of patients).

In previous research, (Boucher, 2013b) and Section 4.8, patients were chosen at random
from the control group and assigned to switch until the number reported was reached.
This meant that all control group patients were at risk of being defined as having switched.
However, in this situation, modifying this approach to simply use the eligible patients
rather than the whole population may not be appropriate; especially when the number of
progressions is similar to the number of switchers. This is because given that the number
of progressions will vary from simulation to simulation, there may be circumstances
where, for one or more datasets, the number of progressions (i.e. the potential switchers)
is less than the reported number of switchers. Therefore, the proportion of switchers to
progressions will be fixed, so that for the i*" dataset, the number of treatment switchers,

X;, 1s:
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X; = QfPl' (5-60)

Where P; is the number of patients who progressed for the i dataset and a the proportion
of switchers to progressions calculated as:
X Np
=—=— 5-61
a=5=> (5-61)
Where X is the reported number of switchers, and p the proportion of patients who have
switched (from the whole control group population), and N, P are the reported number of

control group patients and number of progressions respectively.

A subset of size x; is chosen from P;, where patients for the subset are selected at random
(i.e. any patient in P; has an equal chance of having switched). This defines the treatment

switchers, and time to treatment switch is assumed to be equivalent to TTP information.

5.5.1 Exploring other mechanisms

Thus far, the method has been modified, from that described in Section 4.8, to include a
selection process; by restricting the population at risk of switching to those control group
patients who progressed (Section 5.5) rather than all control patients (Section 4.8).
However, the true underlying treatment switching mechanism is likely to be considerably
more complex. This current selection process (outlined earlier in Section 5.5) essentially
assumes ‘exchangeability’ of progressors. In other words, any patient who progresses has
an equally likely chance of switching. Nevertheless, previous ‘simple’ simulation study
structures have differentiated patients with ‘poor’ and ‘good’ prognosis. This is an

element that may not be captured if assuming ‘exchangeability’ of progressors.

This can, though, to some extent be built in quite easily by using different assumptions.
The easiest, perhaps, to understand is weighting the treatment switching probability by
progression time. In its simplest form, this means defining the treatment switchers as
those with:
1) the shortest progression times: it is assumed that patients progressing early
are likely to have a poorer prognosis, and could be more likely to switch; or,
2) the longest progression times: this assumes that patients with a ‘good

prognosis’ could be more likely to switch, indicated perhaps by the patients
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who progressed later in the time period (the earliest progressors could be

already too advanced to be switched).

The easiest way of implementing these additional assumptions is purely to rank the
eligible subjects in order (depending on whether the shortest or longest progressors are
needed) and then assign the first x% to switch. This would be exceptionally crude in terms
of weighting by the progression, and so a refined approach would potentially be more
desirable in practice, which could add a stochastic element (e.g. for (2) mostly later
progressors would be used, but so would a small proportion of patients with earlier

progression times).

Another option would be to select switchers based on the PPS. This is perhaps less
intuitive, and possibly harder to justify in some ways. Selecting the patients with the
longest PPS times represents the situation whereby the new treatment is considerably
more effectively, and patients with longer post-progression times are more likely to have
switched (shorter post-progression times are more likely to be the control group patients
who don’t switch). However, this assumes a potentially drastic effect of the new

treatment. More importantly, though, this would completely ignore the effect of TTP.

Whilst the results from these progression / post-progression time dependent mechanisms
essentially provide good limits for the true treatment effect, in their simplest form they
are completely deterministic and hence, slightly artificially created scenarios. Adding an
extra layer of complexity in the selection process could be important. Additionally,
exploring other possibilities which aim to select patients with a shorter progression time

but longer post-progression time would also be valuable.

Once the selection mechanism has been decided upon, the analyst must then consider the
time between progression and treatment switch. In reality, there will be a period of time,
possibly quite short, between disease progression occurring and switching to receive the
new treatment. For ease, this period of time will be referred to as the lapse period. Whilst
it is easiest to ignore this lapse, and assume that the progression time is the time of switch,
to improve the realism, or perhaps for sensitivity analysis, it might be important to add a

lapse period.

182



Ideally, if a Kaplan-Meier curve is available from progression to time of treatment switch
this should be used. In practice, though, this is rarely reported. More likely this lapse
period may need to be informed by clinical opinion (e.g. views on how long the offer to
switch treatment is left open for). For example, Latimer (2012) suggests that patients
usually switch treatments within two follow-up appointments of documented disease
progression if they are planning to. When the length of time has been agreed on, the lapse

period could potentially be defined using a uniform distribution.

It should be noted that in considering /apse periods, this may also inform the selection
process. Again, to improve the reality of the mechanism it may be worthwhile to add in
more conditions for selecting switchers e.g. set a minimum PPS time. If, for instance, it
is known that in practice, it was at least a week before a patient could receive the new
treatment after being diagnosed as having progressed, then it is unlikely or even

impossible for a patient who died less than seven days after progression to have switched.

5.5.2 Reanalysis of the TAnDEM trial for treatment switching

The TAnDEM trial (Kaufman, 2009) has once again been chosen to illustrate how to
reconstruct and reanalyse summary data for treatment switching. Since Section 5.4.3
examined how to reconstruct the underlying survival TTP, PFS and OS data, here only

the additional steps needed for the treatment switching reanalysis are discussed.

5.5.2.1 Treatment switching in the TAnDEM trial

In terms of treatment switching, 73 of 104 patients receiving anastrazole monotherapy
(A), had trastuzumab added to their treatment regimen after disease progression. Based
on the information provided, this means that 79.3% (73 / 92) of patients that progressed

switched.

5.5.2.2 Reconstruction of the treatment switching information
The treatment switching information was reconstructed using the method outlined in the
earlier parts of this section (5.4), but under a number of different scenarios. Those
considered were treatment switchers selected:

1. Atrandom

2. As those with the shortest progression-times
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3. As those with the shortest post-progression times

4. As those with the longest post-progression times

For this example, switchers were assumed to switch at the time of progression (i.e. no
lapse period was used). In terms of the RPSFTM used, a log-rank test statistic was chosen
and the method conducted with and without re-censoring (Robins and Tsiatis, 1991,
White, 1999). Given that the ‘end-study’ data are unavailable; this was assumed to be the

maximum study length (i.e. 60 months) for every patient.

This example was chosen because it reported a RPSFTM analysis and therefore it is
possible to make a comparison between an equivalent analysis for treatment switching

using IPD and IPLD.

5.5.2.3 Secondary analysis applied

Once the final simulated datasets including the treatment switching information have
been reconstructed, a RPSFTM can be fitted to the data (Robins and Tsiatis, 1991). In
order to calculate an appropriate SE for the RPSFTM HR, this method uses an approach
called ‘preserving the p-value’, whereby the SE is created using the p-value from the ITT
analysis. This preserves the extra uncertainty surrounding the adjusted results. However,
it also means that only a point estimate is required. Therefore, the model is fitted to the
larger dataset containing all the individually simulated datasets; rather than analysing
each simulated dataset separately and then averaging over all the results as is necessary

for all other analyses.

5.5.2.4 Results
Table 5-8: Reanalysis for treatment switching results IPD and IPLD - TAnDEM

Hazard ratio

Switching mechanism RPSFTM RPSFTM
without re-censoring with re-censoring

IPD 0.74* (0.39, 1.38)

I Atrandom 0.73 (0.38, 1.39) 0.73 (0.39, 1.38)

,  Those with the shortest 0.72 (0.36, 1.41) 0.72 (0.37, 1.40)
progression-times

3 Those with the shortest post- 0.77 (0.46, 1.30) 0.78 (0.48, 1.29)
progression times

4 Thosewith the longest post- 0.64 (0.26, 1.58) 0.65 (0.27, 1.56)

progression times

* This HR was extracted from the TA, where no details were given as to whether the model re-

censored patients or not.
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5.5.2.5 Conclusions

For this example, results for the re-analysis using the ‘at random’ switching mechanism
were exceptionally close to those of the IPD. The other switching mechanisms performed
poorer in comparison; the best of these being the selection of those with the shortest
progression time the HR differing slightly, and having increased variability. As can be
expected, the results are potentially being biased by selecting patients based on the PPS.
By choosing shorter survival times it is assumed the new treatment is less effective
leading to an adjusted analysis which only suggests a 23% reduction in the mortality rate.
Choosing the longest post-progression times leads to a revised estimate suggesting a
reduction of 36% in the mortality rate. Compared with the IPD analysis results, the first
(switch mechanism 3) underestimates the treatment effect, whilst (4) overestimates it.
Some of the similarity could be partly explained by the ‘end study time’ given to the
patients during the re-censoring process. In the IPD, this ‘end study time’ used to re-
censor patients will vary from person to person depending on when they were recruited
to the trial, i.e. it is the subject-specific maximum length of follow-up. However, this level
of information is not accessible, and so typically the ‘end study time’ is assumed to be

the maximum follow-up time and to be the same for everyone.

5.6 Discussion, Strengths and Limitations

The content of this chapter describes and illustrates novel methods for reconstructing
IPLD with outcomes paired across patients, provided that the underlying data follows an
‘illness-death’ modelling structure. The examples presented show that data can be
reconstructed given a minimum level of information (namely Kaplan-Meier curves and
risk-tables for PFS and OS, and the number of events for TTP, PFS and OS). This ‘illness-
death’ modelling framework is especially useful if the data needs to be reanalysed for
treatment switching; as very often analysts may have access to their own RCT but not for

other comparators and may rely on published K-Ms

As expected, the quality of the data varies depending on the level and detail of the
information reported. The more specific information there is (e.g. on individual
transitions and censoring), the more it can be presumed that the IPLD will represent the

IPD. The strong assumptions and necessity to estimate several of the crucial parameters /
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functions, as summary information becomes more limited, lead to sensitivity and greater

variation between the IPLD and IPD summary statistics.

Using the ‘illness-death’ modelling framework to reconstruct IPLD in order to reanalyse
summary data for treatment switching demonstrates great potential. For the TAnDEM
trial, the reanalysis using IPD and IPLD were remarkably similar (when a ‘random’
approach) was used. Whilst the results given in Chapter 4 for the same RPSFTM-analysis
on the IPLD where only OS was reconstructed from the summary data, were within
acceptable limits; by using this extended methodology the treatment switching
mechanism is much better captured. By having both TTP and OS information (assuming
patients switched on progression), a selection process can automatically be implemented
(e.g. only patients defined as having progressed can switch). Therefore, even if the ‘at
random’ mechanism is used, which may be quite a realistic option rather than alternative
more selective mechanisms, there is a form of selection in the background. Also, the
variation in the switch time is a much better, more realistic, improvement. In addition,
having TTP information could enable other complex methods for addressing treatment
switching to be used. Since TTP is often one of the most driving characteristics in patients
switching treatments, this could be incorporated as the variable (at secondary baseline)

predictive of crossover, in a two-stage analysis (Section 1.1.2.4.3).

Another key advantage, as with the simulation approach in general, is the flexibility.
Whilst only a small set of treatment switching mechanisms were explored, the approach
has the potential to accommodate many other styles (e.g. “weighted” selection of
progressors as switchers; time between diagnosis of progression and switching
treatments, etc.). To consolidate this work further, it would benefit from a greater number
of examples, and also assessing how the results from a reanalysis fit into a secondary

analysis. This has been explored in Chapter 6.
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Chapter 6: Addressing treatment switching in assessment for
surrogacy

6.1 Chapter overview

This chapter opens by summarising the key assumptions and data requirements for
implementing the simulation technique for paired data (e.g. PFS and OS). It then
considers another type of secondary analysis, assessment of surrogacy, and the effect
treatment switching has on it. A case study has been used to illustrate the effect of
reconstructing and re-analysing summary data for treatment switching and its inclusion
in this secondary analysis. The case study also serves to highlight the issues, largely due
to lack of necessary information and variation of reporting, faced by analysts

reconstructing IPLD, and some potential solutions.

6.2 An illustrative case study

6.2.1 Surrogacy in non-small-cell-lung cancer

Whilst this research began by concentrating on the impact unadjusted treatment switching
has on IC or MTC of OS, there are other secondary analyses that are affected. The issue
of treatment switching in assessing surrogacy was highlighted by Hotta (2013), who
described the effect for non-small-cell-lung cancer (NSCLC). The paper examined
whether PFS could be used as a surrogate endpoint for OS. The study, using thirty-four
trials, found little evidence of correlation between PFS and OS. However, when
stratifying studies with less than 1% of crossover (n = 20), and those with more than 1%
(n = 15), a strong correlation (R-squared = 0.69) was observed in those which did not
permit crossover. Stratifying further based on the proportion of crossover (between 1%
and 20%; 20% to 40%; 40% or more), did not show any clear evidence of correlation.
Nevertheless, the correlation for studies with less than 1% crossover gave rise to the
hypothesis that a strong relationship, in general, would have been observed had all studies
prohibited crossover. It should be noted that although the R-squared values were quite
high, there would still be a lot of uncertainty in terms of trying to infer differences

between them.
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Figure 6-1: Association between PFS and OS, depending on crossover (Hoftta)

Image subject to copyright and so has been removed from the text. Please see the

original source (Hotta, 2013) for image.

The observation and results seem quite intuitive as it is unlikely that any of the studies
will have been appropriately adjusted for treatment switching. This will mean that whilst
the PFS estimates will be unbiased, those for OS will have been severely underestimated
for studies with treatment switching. The proportion of bias will depend on both the true
underlying survival effect, proportion of treatment switchers, potentially the length of
follow-up, and possibly even the method used if a PP analysis was adopted instead of the
ITT. Therefore, just stratifying based on treatment switching proportion alone will not
necessarily lead to any clear findings (such as a ‘dose response’ type of relationship, e.g.

weaker correlation as the crossover proportion increases).
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To establish clear evidence for whether PFS is a surrogate for OS, in examples such as
this, the best solution, is to ensure treatment switching is adequately accounted for, before
estimates are included within an assessment for surrogacy. Once again, it is unlikely that
access to the IPD for all the studies would be obtained, and hence this is a situation where

the methods outlined in Chapter 4 and particularly Chapter 5 would need to be used.

6.2.2 Cochrane review for EGFR positive NSCLC patients

Further examples, published after Hotta (2013), have been identified. One of which was
a Cochrane review (Greenhalgh, 2016), for first-line treatment for patients with advanced
NSCLC with epidermal growth factor receptor (EGFR) positive disease. This review had
included nineteen studies, the majority of which had treatment switching in varying
proportions. As there were many examples where treatment switching had not been
adequately accounted for, there was much scope for the methodology described in
Chapter 5. In addition, this case study had the potential to highlight the extent to which

adjusting can affect results.

6.2.2.1 The trials

Nineteen trials were included, all of which compared chemotherapy (primarily platinum-
based) with a type of targeted therapy (with or without chemotherapy). Some of the key
trial characteristics, including the study’s patient population, blinding, trial phase, sample
size of the EGFR population and endpoints. The exact type of chemotherapy used varied
across studies, and in many cases a combination of chemotherapies were given. In a few
examples patients could have received one of several possible chemotherapies (e.g.
gemcitabine in combination with paclitaxel or docetaxel). Common types included:
cisplatin, gemcitabine, paclitaxel, docetaxel, vinorelbine and carboplatin. Four targeted
therapies were examined: one monoclonal antibodies, cetuximab; and three Tyrosine-
Kinase Inhibitors (TKIs), afatinib, gefitinib and erlotinib. References for the trials can be

found in Appendix J.

Some (n=8) of the trials were purely within an EGFR positive population, whilst other
used unselected population, and then carried out either a pre-planned or ad hoc subgroup
analysis. In addition, the patient population was very varied, with some studies having

purely Asian participants; a population where particularly TKIs are thought to perform
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well. Trial designs ranged considerably across studies; with some advocating a
‘crossover’ style design where the second-line treatment was the alternative treatment

arm.

Whilst the INTACT 1 and 2 trials were reported separately for the ITT population, the
publication reporting EGFR data, chose to pool the information for these two trials.
Therefore, no individual estimates for EGFR +ve patients were available at a trial level.
Thus, this thesis uses the pooled analysis and so treated INTACT as if it were one study

rather than the two trials.

6.2.2.2 Treatment Switching

In the standard treatment switching analysis for HTA, adjusting the control arm for
treatment switching is usually sufficient. This is since switching within the experimental
arm, where switching occurs from a non-reimbursed to an already reimbursed
intervention, is representative of current NHS practice, whereas the opposite (switching
from an already reimbursed intervention to one that is not reimbursed) is not. This
analysis continues under the same conditions, thus ignoring whether treatment switching

occurred in the experimental arm.

The reporting of treatment switching information was also very variable, and Table 6-2
describes crossover information for each trial. Only:

e 1 trial specified that treatment crossover was not permitted;

e 2 (combining the INTACT trials as one study) did not mention whether
treatment switching was or was not permitted, and so are assumed not to have
allowed it;

e 4 specified crossover for second-line treatment;

e 2 specified that treatment switching was permitted in the protocol for at least one
arm (and may have had ad hoc crossover in the other);

e 3 allowed treatment switching at the physician’s discretion;

e 2 only specified that TKIs had been administered in the post-study treatment

regimens with no additional details.
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6.2.3 Available information

As shown in Table 6-3, the information available for the trials, which need to be
reanalysed, is variable. The GTOWG and the EURTAC trial contained the most detailed
information about the survival. With the exception of the TOPICAL and Yu trials, the
others all contain, at the very least Kaplan-Meier curves for PFS and OS. Two trials were
later excluded from the analysis. The first was the TOPICAL trial, which was removed
because it did not report Kaplan-Meier curves for either PFS or OS at subgroup level,
making it impossible to reconstruct the data. The second was the trial reported by Yu;
whilst a PFS Kaplan-Meier curve was published on the EGFR +ve subgroup, no OS
information was given on the subgroup, and thus, the OS data could not be reconstructed

or reanalysed for the EGFR +ve population.

6.2.4 Methodology: overview based on the initial intentions of data
reconstruction

For 11 (CHEN, ENSURE, FASTACT-2, First-SIGNAL, IPASS, LUX-Lung 3, LUX-
Lung 6, NEJ002, OPTIMAL, TORCH, WJTOG 3405) of the 13 trials with treatment
switching that needed reconstructing, PFS and OS Kaplan-Meier curves for the EGFR
+ve patients were extracted. The information for the GTOWG study was reported in the
form of a poster presentation which contained a table including the survival times (both
for PFS and OS) for the ten patients with EGFR activating genes. Therefore, for this study
no data reconstruction took place. For the last trial, the EURTAC trial, detailed summary
information was provided specifically for this analysis by the manufacturer. This included
life tables, Kaplan-Meier curves, risk-tables, and the number of events for TTP, PFS,

death before progression, PPS, OS, and PFS and OS censoring.

For the EURTAC study, the survival proportion and times from the life-tables for the
individual transitions and OS censoring were used to model these distributions, using the
methodology outlined in Section 5.4.2.1. For the remaining studies (where the PFS and
OS graphs had been extracted), the methods, described in Section 5.4.2.3, were used. For
all studies, where data were reconstructed, 1000 datasets (per example) were created.
Once the PFS and OS data had been reconstructed, the treatment switching information
was then reconstructed using the ‘at random’ switching mechanism, and the RPSFTM
applied to the data (detailed in Section 5.5). Having obtained all adjusted estimates, a

meta-regression model was fitted, for both the adjusted and unadjusted OS
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results, where the outcome was the log-HR for OS and with the log-HR for PFS as the
covariate of interest. In order to compare the findings to those presented in Hotta (2013),
a linear regression model with the OS HR as outcome, and PFS HR as covariate was also
fitted, where observations were weighted by sample size. The regression models were
plotted graphically, and the R? value recorded. Results for the overall population, and

stratifying by treatment switching were collected.

6.2.5 Issues encountered and possible solutions

To develop this method, a ‘standard’ set of information was assumed to be available;
information which allows ‘consistency’ between outcomes. In other words, follow-up,
time of reporting and intervals for the ‘numbers at risk’ table are the same for both
outcomes. Nevertheless, the variability in the design and reporting of survival analysis
trials is great in practice. This meant that, in order to fulfil the aim of reconstructing these

studies, amendments had to be made to the methodology to accommodate the differences.

The key issues included:
e Differential reporting times for the ‘numbers at risk’ table
e Absence of the ‘numbers at risk’ table — but inclusion of some information on
censoring
e Differential reporting times for outcomes
e Extracting subgroup specific information
e Little or no information on treatment switching
e Estimating the number of events

e Differential censoring

The complications caused by these issues, potential solutions and the approaches taken
here are explained in detail in the following sections and were instrumental in forming

the suggested guidelines for reporting given in Chapter 7:.

6.2.5.1 Differential reporting times for the ‘numbers at risk’ table
There can often be a great difference in the shape of the survival curve for PFS and OS;
this may mean that it is more reasonable to use different scales for different outcomes

when producing Kaplan-Meier curves and risk tables. For example, at eighteen months,
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the survival proportion may be less than ten percent for PFS, and more than sixty percent
for OS. Therefore, there is little benefit in reporting PFS past this point, and it may be
useful to report ‘numbers at risk’ every three months say (six monthly intervals may not
fully represent the data). However, if follow-up data are available for up to sixty months,
by which time the OS proportion has reached approximately twenty percent, it would be
useful to report this. Using three monthly intervals on the graph for OS, might,
nevertheless, appear cluttered. Therefore, a scale of either six or twelve months may be
chosen instead. This may be particularly common as well where outcomes are reported
separately.

Figure 6-2: Differences in the intervals for PFS and OS in ENSURE

Image subject to copyright and so has been removed from the text. Please see the
original source (Wu, 2015) for images.

Reported Kaplan-Meier curves for (top) PFS and (bottom) OS, complete with risk-tables.
Follow-up time and number at risk intervals vary by outcome.
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An example of this can be seen with the ENSURE trial (Figure 6-2), where the authors
show PFS data up to fourteen months, reporting the ‘number at risk’ every two months,
whilst OS follow-up lasts up to forty-two months, with the ‘number at risk’ given every

six months.

The impact this issue has on the method is marginal. This means that the same level of
agreement for the two endpoints cannot be guaranteed, when scaling is used to re-

calculate the number at risk, events and censorings for a given partition.

6.2.5.2 Absence of the ‘Numbers at risk’ table

Whilst the majority of Kaplan-Meier curves were accompanied by risk tables there were
several exceptions: CHEN, First-SIGNAL, TORCH and the long-term follow-up for
WIJTOG 3405. Nevertheless, for the CHEN, the number of censorings were reported.
Therefore, the study length (approximately 36 months), was treated as a single interval,

and so the censoring distribution was calculated as:

G

1
=3 (nj—¢)
36

Where j indicates the treatment group, and c¢;, n; the number of censorings and total

In|1— (6-1)

Scensj(t) = eXp(—/ljt) , /11. = —

number of patients in the /™ group. An exponential distribution, and thus a constant hazard

rate, is assumed.

For the other three (First-SIGNAL, TORCH and WITOG 3405), the censorings were
indicated on the Kaplan-Meier curve. In each case, however, the locations of the
censoring provided evidence against using either the recruitment times or maximum
censoring time methods. Both the recruitment times or maximum censoring time methods
assume purely administrative censoring, but since all trials indicate censoring within the
minimum follow-up, this assumption is violated, invalidating the use of these approaches.
Thus, for WITOG 3405, it was decided to use the data reported at the initial data cut-off,
which contained a risk table, and effectively ignore this later follow-up. Both the First-
SIGNAL and TORCH trials were comparatively small trials (n=39 and n=53
respectively), and thus the coordinates were expected to capture the majority of event

times. The ‘tick’ marks for specifying the censorings were then digitized; here the time
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coordinate was of the utmost importance whilst the survival proportion was largely
irrelevant. The survival proportion was ignored because this information primarily related
to events, rather than censorings. The timescale was then divided into intervals, based on
the scale for the time on the PFS Kaplan-Meier curve (e.g. every 10 months for First-
SIGNAL). The number of coordinates for ‘events’ were then calculated for each interval,
and the same was done for those for censorings. These were then treated as proxies for
the number of events and censorings for an interval and as such are scaled to ensure that
the total ‘number of events’ matched that which was reported. The ‘number at risk’ at the

start of an interval is then estimated as:
Ay =g — (dica + 6i-1) (6-2)
This achieved, the censoring distribution for interval i and treatment group j, is calculated
as:
N 6-3
i — 5 (dji) (63)
l;

In|1l-—

Scens]-i(t) = exp(_)’]lt) ) /1] = -

6.2.5.3 Differential reporting times for outcomes

‘Differential reporting times’ for outcomes essentially occurs when there are different
lengths of follow-up for PFS and OS. This is a very key issue and proved to be a common
one, occurring in at least eight of the studies which were to be reconstructed. Primarily,
it is due to PFS data reaching maturity much earlier than the OS data. Often once PFS
data are considered mature, there is less reason to record PFS data for any events beyond
this cut-off point. For OS, though, the patients must be followed-up until the data for that
outcome are mature, and so it is possible that the length of follow-up for OS is longer
than for PFS. This potentially violates one of the most vital assumptions of the simulation
methods; that which assumes that patients who are censored for PFS, are also censored at
the same time for OS. In this situation, however, even assuming purely administrative
censoring, it is perfectly possible that a patient might be administratively censored for
PFS, but then followed up and either be administratively censored at a different time OR

die during the subsequent follow-up.

Assuming that in the context of a particular application, only administrative censoring

occurs, then the problem can be considered as essentially having two time scales: calendar
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time and study time. This issue will be illustrated further, using the OPTIMAL trial as the
example, and at present assuming that only administrative censoring occurred (this may
or may not be a valid assumption). In this example, PFS and OS were reported twice,
however, none of these analyses used the same data cut-off date (PFS: 16™ August 2010,
7% January 2011; OS: 31% December 2011; 21% December 2012). Taking the updated
analysis for both PFS and OS, this means that there is a difference of 23.5 months follow-

up.

Adopting a similar approach to that used during the ‘recruitment time’ censoring
distribution (Section 4.4.1.4.2) can help to understand more about the issue. Given that
no patients could leave the study for any other reason that experiencing an event or being
administratively censored, any patient not experiencing a PFS event, must be in the study
for at least 17.6 months (between 17" July 2009 and 7™ January 2011). The maximum
length of time a person could have participated in the study would be 28.4 months (this
would mean that that person had been enrolled / randomised on the 24" August 2008 —
the start of recruitment). Thus, the observed time of any censored patient would lie
between 17.6 months and 28.4 months for PFS. Now consider OS; the follow-up for this
continues for a further 23.5 months. However, assuming these people attend follow-up,
there is the possibility that within that time they could either die (before or following
progression) or be censored administratively, at which point their OS time of censoring
would be their PFS time plus 23.5 months (hence between 41.1 and 51.9 months). If they

experienced an OS event, then this must occur after the PFS censoring time.

It may be possible to decipher some of this information (e.g. difference in follow-up,
minimum and maximum length of PFS follow-up, etc.) from the trial publications.
However, it is still reliant on the assumption that patients are only censored
administratively, which may or may not be valid; and additionally, does not aid the
calculations needed to define distributions for post-progression events. This is because it
i1s impossible to distinguish between post-progression events / censorings for known

progressors and those for patients who were administratively censored for PFS.

This situation is potentially most problematic when the data cut-off date, at least for PFS,
occurs soon after the end of recruitment, as it is more likely that there will be a proportion

of patients who will not have been followed up for sufficient time to enable disease
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progression to be recorded. Ignoring this differential follow-up would potentially
seriously affect the simulation technique; since it is unlikely the censoring distribution
will be correct (e.g. censoring for OS occurs too early; not enough censoring for OS
patients towards the end of the timescale). Also, if administratively censored patients
experience events, these events will be attributed to ‘post-progression’, and thus the PPS
distribution will likely underestimate the survival proportion. This in turn could bias the
treatment switching reanalysis, if the PPS is shortened because the administrative
censoring events have not been taken into account. Differential reporting of outcomes
definitely affected the following trials: ENSURE, First-SIGNAL, IPASS, LUX-Lung 3,
LUX-Lung 6, NEJO02 and OPTIMAL.

6.2.5.3.1 Considering solutions

This problem is very complex, and whilst, at this stage, the effects ignoring this could
have in practice cannot be predicted; theoretically they could be quite serious. Therefore,
it is important to consider how adjustments could be made to account for the differential
follow-up and still allow the method to work. It should be noted though, that whatever,

amendments are made, these will no doubt rely on some strong assumptions.

The possible options are to:

1. Assume administrative censoring for both PFS and OS, where patients who are
administratively censored at PFS have to also be censored for OS (prohibiting
events from PFS censored patients)

2. Restrict the OS timescale, by using information on recruitment times to re-
censor OS

3. Consider the problem in terms of multi-state model diagram; essentially
considering patient’s moving into an ‘administrative censoring’ state before

moving into one of the other health states (e.g. death).

6.2.5.3.2 Administrative censoring

Option 1 could be very easy to implement in practice, and modifications could be made

to allow some patients to have been censored for other reasons. Below gives an example
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Figure 6-3: Example of censoring due to differential reporting times

Colour coding: Light grey indicates periods in which any censorings cannot be attributed
to administrative censoring, blue indicates periods in which censorings would be
attributable to administrative censoring, dark grey indicates periods in follow-up was not
recorded for that outcome
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The first stage of the method would be to calculate the PFS and OS events as usual. Then,
the minimum and maximum length of study time should be computed. Any PFS
censorings estimated as occurring before the minimum length, must be attributed to drop-

out for reasons other than administrative, and assumed to also occur for OS. For intervals
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which occur after the minimum study time for the outcome, these censorings are all
assumed to be administrative. If the minimum study time occurs during an interval (rather
than between them), it could either be decided to treat all the censorings during that

interval as administrative or only consider a proportion as administrative.

This is demonstrated in the above example, where all censorings in the interval containing
the minimum time, have been attributed to administrative censoring. This approach
means than of the twenty-one estimated administrative OS censorings, eleven (five plus
six) censorings would be the administrative censorings from PFS, re-censored after the
end of follow-up. Using this framework and assuming the original calculations were
‘consistent’ (i.e. the number of OS censoring is greater than or equal to the numbers of
censorings for PFS) for all intervals before the minimum time, this framework allows the

censoring distributions for pre- and post-progression to be calculated easily.

PFS information is simulated as usual (Chapter 5), however for patients whose censoring
time falls into the ‘administratively censored’ time period, the data must be treated
differently. For these patients, a new administrative censoring time (for OS) is constructed
by adding the additional follow-up length to their PFS censoring time. In contrast with
previous descriptions of this technique for ‘PFS censored’ patients, this revised
administrative time is then compared with the patient’s PPS time. If the PPS time is the
minimum of the two values, then the patient is defined as having had a PPS event. If,
instead the censoring time is the minimum, the patient is ‘censored’. This approach,
therefore, takes account of the situation where insufficient follow-up has been allowed
for all patients to experience progression, and thus it is likely that some patients would
have experienced progression and death post-progression subsequent to the publication

of the PFS outcome. This is demonstrated in the flowchart in Figure 6-4.
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6.2.5.3.3 Restricting the timescale

This method is perhaps the most straight-forward approach of the three. Initially, the issue
of differential reporting is essentially ignored: PFS events and censoring distributions are
calculated as usual as is the PPS event model. The only minor deviation for the PPS
censoring is that where the number of PFS censorings is greater than OS censorings there

is assumed to be no difference (i.e. Equation 6-4).
cpps; = max(0, cos; — Cprs,) (6-4)

Once the entire dataset (including survival times for PFS and OS has been created),
recruitment time information is added. In earlier chapters (Chapter 4 and Chapter 5) of
the thesis, using recruitment times censoring only involved simulating a maximum
study length from a uniform distribution (independent of any other information).
However, here the PFS data includes vital information on censoring which must be
taken account of. In other words, if a PFS event did occur then the recruitment time
must be such that it allows sufficient time for that event to have occurred in the study’s

duration. Figure 6-5 explains the four possibilities that may occur.

First, it is vital to understand what is meant by the ‘compulsory’ and ‘optional’ parts of
follow-up (as shown on right side of Figure 6-5). Unless a patient has left the study before
the end of the study (e.g. through withdrawal of consent, LTFU etc.) or experienced an
event, they must have remained in the study at least, from the end of recruitment to the
data cut-off time. This length of time has been termed ‘minimum follow-up time’ and is

‘compulsory’.

The length of recruitment period, has been termed as ‘additional’ and ‘optional’ follow-
up’, as whilst all patients should experience some proportion of this, the amount will vary
from person to person, i.e. the earlier the patient was recruited (e.g. at the start of
recruitment), the more ‘additional follow-up’ they will have. ‘Maximum follow-up’ refers
to the sum of the minimum (compulsory) and additional (optional) follow-up times, and

is the maximum length of time a patient could have been in the study.
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In Figure 6-5, the panel denoted (A) shows what the situation might look like in calendar
time; patients enter the study at some point throughout the recruitment period and are
followed up until they

1. have an event,

2. leave the study for some reason, or

3. are administratively censored at the data cut-off time.

Panel (B) translates this over to study time, where all patients enter the study at time = 0.

For the first patient (with long PFS event time), their end study time must occur between
their event time and the maximum length of follow-up. With the second patient, their
event time is such that any of the simulated time from the ‘additional’ follow-up period
would be satisfactory. Thus, for patients who are defined as experiencing an event, their

t'max (‘end study time” for the patient).

tprs + (tmax — tprs)R if tprs = tmin
tmin + (tmax - tmin)R if tPFS < tmin

Where R~Uniform(0,1)

t max = { (6-5)

For patients defined as being censored, if their censoring time falls within the additional
follow-up time, then these are assumed to be administratively censored patients.
Therefore, their recruitment time is exactly the difference between the defined censoring
time and the maximum follow-up time (no proportion unlike the other situations
mentioned). The final individual is illustrative of a patient who must have been censored
for reasons other than administrative, as the simulated censoring time is within the
minimum follow-up time. Hence the recruitment time, for this patient, is simulated from
the uniform distribution between zero and length of the additional follow-up time. In other
words, for censored patients:

o= { tmax i_f teens = tmin (6-6)

timin + (tmax — tmin ) R if teens < tmin

Where R~Uniform(0,1)

Once an end study time has been generated for each patient, the OS data are re-censored
based on these study times. This re-censored analysis should then be representative of the

OS data at the PFS data cut-off.
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6.2.5.3.4 Multistate model framework

The third approach is to consider administrative censoring as if it were one of the health
states, by essentially formulating a multi-state model framework. This framework could
be particularly valuable where the PFS data cut-off occurs soon after the end of
recruitment. This is because the follow-up period may be insufficient to capture
progression of patients only recently recruited, but the longer OS follow-up might capture
their death (possibly post-progression). This approach explicitly considers this
happening.

However, within this structure there are essentially two possibilities for models that could
be used. The first model assumes that once in the ‘administratively censored’ state, the
only way of leaving it, is by dying (i.e. transitioning to progressive disease cannot occur).
The second model is potentially more realistic, but relies on two exceptionally strong
assumptions which are:
1. The same care pathways can occur after being administratively censored e.g.
patient can either progress or die before progression.
2. Once a patient who was administratively censored (for PFS) has progressed,
they transition from progressive disease to dead at the same rate as those who

progressed from stable disease.

These models are very useful for understanding the problem and the mechanism that
needs to be represented, but this adds in several additional functions to be estimated
(namely Ag4, A4p and for model 2, also A4p). It may be possible to estimate Ag, , at the
very least using information from the recruitment and follow-up times, and possibly in
conjunction with the ‘numbers at risk’ table. The other functions would be exceptionally
hard to estimate as there is almost no distinct information on these. It may perhaps be
possible to continue with the method under the following assumptions: for model 1,
App = A4p (ideally it should be better if App, = f A4p, however the limited data available
will not be sufficient to estimate f); for model 2, it would need to assume that the total
hazard rate from stable to progression via administrative censoring, is the same as that
from transitioning directly from stable to progression. Similarly, it requires that the total
hazard rate from stable to death via administrative censoring, is the same as that from

transitioning directly from stable to death. Whilst for model 2, this set-up should seem
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trivial and collapsible to the three state model, for the estimation of PPS and simulation

of this data this underlying structure would be very valuable.

Figure 6-6: Potential structure of data
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6.2.5.3.5 Solution used in this example

In order to address the issue within this example, it was decided to take the approach
described in Section 6.3.5.3.3, restricting the timescale, as this was relatively easy to
implement, very understandable and perhaps the most intuitive. It is also less likely to be
biased, but does result in a loss of precision. In addition, of the three potential solutions

it possibly relied on the least assumptions.

6.2.5.4 Extracting subgroup specific information from an ITT population

As explained in section 6.2.2.1, whilst the review concentrated on the EGFR positive
mutation patients, several of the trials used an unselected population, some of which
allowed treatment switching. Although all trials report some subgroup-specific

information, which statistics are reported vary across papers. For very few papers, all
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information (Kaplan-Meier curves for both PFS and OS, number of events, ‘at risk’ tables

and treatment switching proportion) is available at subgroup level.

There are several options open to do this:
1) Reconstruct the entire unselected population:
a. If data for every single subgroup are available, but no subgroup-specific
information on treatment switching is:
1. Reconstruct data for each subgroup separately and combine,
making sure to have a subgroup specific indicator variable.
ii. Apply the treatment switching proportion as if conducting the
analysis on the unselected population.
iii. Define the final dataset for the unselected population.
iv. Analyse the EGFR positive mutation data (based on the subgroup
indicator).
b. If data for not every subgroup (only that of interest) are provided:
1. Simulate data from the unselected population.
ii. Apply the treatment switching information, ignoring the interest
in any specific subgroup.
iii. Model the subgroup specific hazard function for one outcome.

iv. Define the EGFR status using a Bernoulli distribution with

probability (EGFR status = +ve) = —ESER+e WWhere 1, is

Unselected

the hazard function for either PFS or OS.
v. Analyse the data using this EGFR status to stratify mutation
positive patients
2) Reconstruct data for the EGFR mutation positive patients only
a. Assume the treatment switching proportion is the same for subgroup as it
is for the unselected population
b. Assume the treatment switching proportion for the subgroup is
proportional to that of the unselected population and the progression
events for the subgroup and unselected population.

For this case study, approach (2) was implemented.
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6.2.5.5 Limited or no information on treatment switching

For those trials which did not report that treatment switching had or had not occurred, it
was assumed that no treatment switching had occurred. However, a smaller group of
studies specified that treatment switching had been permitted at the physician’s discretion
but did not quantify how often this had happened. Therefore, for these studies, it was
decided to assume that all patients who could have switched (i.e. all patients experiencing

progressive disease) did switch.

6.2.5.5.1 Estimating treatment switching information for the subgroup

Five of the trials used an unselected population, and thus for four of these, no subgroup-
specific information was reported on treatment switching. Information was available,
however, on the full ITT population. In an attempt to capture both the association between
TTP and switching, for these trials, the proportion of switchers in the estimated TTP
unselected population was calculated, and then this proportion was applied to the
estimated TTP population for the subgroup. In the practical application of assigning
treatment switchers in the reconstructed data, if the estimated / reported number of
treatment switchers exceeded the estimated / reported number of progressors, all patients

who progressed were assumed to have switched.

6.2.5.6 [Estimating the number of events
6.2.5.6.1 Estimating PFS events

Looking at the papers there is a variety of reporting with regard to either specific
subgroup, and / or ITT information on events. These quantities are important for scaling
censoring and in comparing the reconstructed data with the IPD. However, several papers
did not report these. Originally it had been hoped that modelling objective response rate
(ORR) and the number of PFS events using ordinary least squares regression, at subgroup
level, where both had been reported, could provide useful predictions for an approximate
number. However, the predictions were considered very unreliable when compared with
the total number of events across both groups (for the LUX-Lung 6 trial), and also for the
approximate number of censorings (calculated at a later date, by counting the censoring
tick marks on the Kaplan-Meier). Therefore, these predictions were scaled by the reported
total number of events for the LUX-Lung 6 trial, and by using the estimated number of

censorings (from the tick marks) for the others.
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6.2.5.6.2 Estimating TTP events

None of the studies provided information at subgroup level for the number of
progressions, and only one trial reported it at the unselected population level (TORCH).
It seemed rare that in any of the studies, some patients had died before disease
progression. Therefore, it was decided to use the TORCH trial information to determine
the average proportion for the number of patients expected to die before progression. This
meant for the control group that, 94.3% (316/335) of PFS patients were expected to
experience progression and 93.5% (333/356) for the experimental group. These
proportions were applied to the reported number of PFS events (and rounded to the
nearest integer) to give an estimate of the number of progressions. Where the PFS event
total had not been actually published, that obtained when estimating the censoring
distribution was used. The only exception was the control arm of the NEJ0O2 trial, in
which all included patients received subsequent treatment (secondline or later) with an

TKI, and therefore, it had to be concluded that no patients died before progression.

6.2.5.7 Differential censoring

This issue was highlighted by the EURTAC trial where a greater amount of summary
data was available. Having the life tables illustrated that whilst there were a greater
number of censorings early on for PFS, these did not all appear in the OS life table. This
would affect the PPS censoring and the assumption of ‘consistent censoring’. The reason
for this seemed largely unclear, but it was ultimately suggested that it could be that
although a patient may withdraw from or be LTFU for PFS, their death may be flagged

up and thus recorded. For this analysis, this issue has been ignored.

6.2.5.8 Practical issues in model fitting

Choosing appropriate models is an ongoing challenge for this method, and was certainly
in this example. Some of the most crucial models were for OS and PPS, and whilst the
RCS are flexible, at times it was a struggle to find distributions that were flexible enough
to cope with the large decrease in survival that occurred soon after randomisation, such
as when there were many tied events very early in the trial. Also, in some cases the data
negatively affected the choice of model; towards the tail of the distribution large steps

influenced the curve into a rapidly decreasing survival function, when a plateau was more
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reasonable. This was ultimately achieved by restricting the timescale, but did require

additional and in some cases time consuming input to find realistically suitable models.

6.2.5.9 Using earlier follow-up

For two studies, IPASS and WITOG 3405, the data reconstructed was all for the earliest
follow-up time. In the case of IPASS, this was chosen as it avoided contending with the
differential reporting of outcomes and the additional assumptions that would otherwise
have needed to be used. For WJTOG 3405, this earlier time point was chosen because
additional information (‘numbers at risk tables’) was available. As explained previously,
unlike the initial publication, the poster showing subsequent follow-up did not include

risk-tables, and thus using this follow-up could have led to issues with the censoring.
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6.2.6 Results

6.2.6.1 Reconstructed data

Table 6-4 illustrates the reported HRs for PFS and OS for the reconstructed data and the
average over the 1000 datasets, whilst Table 6-5 gives the comparison for the number of
events. Considering PFS HR, the point estimates are largely comparable, indeed in most
cases there is very good agreement. CHEN and TORCH are in general the exceptions,
with there being a difference of more than 0.05 between the reported and IPLD HR.
However, it should be noted these were very small studies (n<40). There is also some
difference in the log-SE for the PFS HR, but this is, generally comparable. Differences
are more apparent in OS, although for some studies, this may be due to the restricted
length of follow up. The least similar estimates are for the CHEN trial. The WJTOG 3405
trial also has poorer agreement, as do First-SIGNAL and TORCH to a slightly less extent.
For some trials, the log-SE is increased, but this could be attributable to the restricted

timescale, which would naturally lead to increased variability.

6.2.6.2 Impact of treatment switching on surrogacy

Table 6-6: Revised estimates accounting for treatment switching

Extended OS Subject to IPLD OS Adjusted OS
Name N ; .
HR SE crossover HR SE HR SE
BMS 099 17 1.620  0.561 No n/a
CHEN 24 2.355  0.608 Yes 0.753 0.570 | 0.653 0.857
ENSURE 217 0.910 0.188 Yes 0.863 0.343 0.594 1.209
EURTAC 174 1.040  0.248 Yes 1.043 0.219 1.089 0.439
FASTACT-2 97 0.480 0.294 Yes 0.464 0.290 | 0.370  0.376
GTOWG 10 0.781  0.837 Yes n/a 0.451 2.700
FLEX 1125 0.871  0.068 No? n/a
First-SIGNAL 53 1.043  0.377 Yes 0.938 0.442 | 0.948 0.370
INTACT 1 &2 32 1.770  0.645 No? n/a
IPASS 261 1.000  0.140 Yes 0.831 0.227 | 0.788 0.291
LUX-Lung 3 345 0.880  0.147 Yes 0.909 0.223 0.807 0.505
LUX-Lung 6 364 0.930  0.131 Yes 0.921 0.219 | 0.903 0.271
NEJ002 (NEJSG) | 228 0.887  0.171 Yes 0.814 0.243 0.736 0.362
OPTIMAL 155 1.190  0.184 Yes 0.910 0.318 0.841 0.584
TORCH 39 1.580  0.415 Yes 1.701 0.436 | 2.090  0.605
WITOG3405 118 1.185  0.222 Yes 2.237 0.475 4412 0.876

There are differences in the number of events, both for PFS and OS between the average
IPLD and the IPD. Where the timescale has been restricted it is pleasing to note that the

average [PLD at the early timescale is, in all cases, less than was reported at the later date.
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Table 6-6 shows the reported OS HR and SE for the latest available follow-up for 17 (16
treating INTACT 1 & 2 as one study), the IPLD HR for OS for the reconstructed data and
adjusted OS estimates. In all cases the point estimate is affected by the treatment
switching reanalysis, for some studies the change is fairly minor, but for others it is quite
significant; FASTACT-2 for instance, the point estimate had an absolute decrease by
0.11. In all except one study, the SE for the adjusted estimate is substantially increased

as is usual with an RPSFTM analysis, and SE calculated by preserving the p-value.

For the subsequent analyses, because of the change in follow-up, several different
scenarios were considered:
1) using the reported PFS and latest OS follow-up (estimates typically used in
practice);
2) using the reported PFS and earlier OS follow-up, where appropriate (more
representative of the IPLD results, unadjusted for treatment switching);
3) using the reconstructed PFS and unadjusted OS estimates;
4) using the reconstructed PFS and adjusted OS estimates.
For the INTACT studies, FLEX and BMS 099 the estimates remain the same across all
four scenarios. The estimates for the GTOWG study are the same for the first three

scenarios; but the adjusted estimate for OS is used in the last scenario.

6.2.6.2.1 Meta-regression

To explore the relationship between PFS and OS using these studies, a meta-regression

was conducted, the findings of which are given in Table 6-7 and Figures Figure 6-7 and

Figure 6-8.
Table 6-7: Coefficients for the PFS log-HR from the meta-regressions
. Coefficient for o .

Scenario PFS log-HR (95% CI; p-value)
1. Reported PFS and latest OS estimates -0.059 (-0.233,0.115; p=0.479)
2. Reported PFS and OS, with estimates for earlier Lo
OS FU used where appropriate 0.019 (-0.179,0.217; p = 0.839)
3. Reconstructed PFS and unadjusted OS estimates 0.079 (-0.166, 0.324; p=0.501)
4. Reconstructed PFS and adjusted OS estimates 0.194 (-0.172, 0.560; p=0.274)
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Figure 6-7: Association between log-HRs for PFS and OS depending adjustment
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Contrasting scenarios 1 and 4, it is clear to see that there is a difference in the relationship
between PFS and OS, having taken treatment switching into account. Whilst the graded
approach (looking from scenario 1 to 4), highlights some of this could be due to restricting
the timescale and looking at earlier follow-up, the difference between scenario 3 and 4
suggests that treatment switching does have an effect. A potential issue with these plots
is that they assume PH for both PFS and OS. If the PH assumption is justified then length
of follow-up is not important. However, with differential follow-up and different HRs,

the agreement between HRs will be reduced.

217



Figure 6-8: Association between log-HR PF'S and OS depending on data used
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The association between PFS and OS, (A.) comparing the reported data with different
follow-up lengths; (B.) comparing the reported data with shorter follow-up with the

reconstructed (unadjusted) data; (C.) comparing the reconstructed data with and without
adjustment.
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6.2.6.2.2 Linear regression model, weighted by sample size

In contrast to the analysis given in 6.2.6.2.1, these models were fitted on the HR scale (as
opposed to the log scale). Whilst, the log scale may seem a more reasonable choice, the

analysis presented here follows that of Hotta (2013).

R2
Scenario Overall Crossover Crossover
population prohibited permitted

1. Reported PFS and latest OS estimates 0.0196 0.0185
2. Reported PFS and OS, W}th estimates for earlier 0016 0.0468
OS FU used where appropriate

0.3367
3. Reconstructed PFS and unadjusted OS estimates 0.001 0.0787
4. Reconstructed PFS and adjusted OS estimates 0.000 0.0546

6.2.7 Implications from this case study

6.2.7.1 Reconstructing data

This analysis highlighted complications that the poor and inconsistent reporting of trials,
investigating time-to-event endpoints, can cause for the method. This will also have had
implications on the quality of the reconstructed data. Particularly for the CHEN study,
which had a small sample size, the IPLD performed poorly. In the case of CHEN, some
of this could be attributable to the lack of information on the EGFR +ve population, to
calculate the HRs initially, the Guyot method was used. Based on the previous contrast
between Guyot and the simulation approach, differences could, perhaps have been,
expected. There were also other features that could have impacted on the quality; for
example the fact that there was no ‘risk table’. As described above, this resulted in the
censorings being evenly distributed throughout the timescale, something which may not
have been appropriate. Using a model for the simulation process may have contributed as
well. In larger studies, the steps are smaller, leading to a smoother curve, which means
that the model typically captures the shape well, and generates representative data. For
this example, since the steps were so steep, the model has difficulty fitting well, and the
data will no doubt vary quite considerably across datasets, and if compared to the original

IPD.
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Figure 6-9: Association between PFS and OS HR, overall and stratified by crossover
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The association between PFS and OS, both when all studies are included (overall) and
when stratified by crossover for the 4 scenarios. (A.) 1. Reported PFS and latest OS
estimates; (B.) 2. Reported PFS and OS, with estimates for earlier OS FU used where
appropriate; (C.) Reconstructed PFS and unadjusted OS estimates (D.) 4. Reconstructed
PF'S and adjusted OS estimates
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Restricting the timescale will also have had implications. The OS HR obtained at the
later date is only truly comparable with the restricted analysis if PH are assumed;
something which may or may not be valid. The findings from the IPLD would suggest
that this could be the case, but trials which did report an earlier OS HR challenged this
with estimates at earlier time points reporting a more effective / less harmful effect than

the final one.

One study for which some concern with the reanalysis remains is the LUX-Lung 6; this
is primarily given its similarity to the LUX-Lung 3 trial. A principle difference between
the two LUX-Lung trials is the patient population; LUX-Lung 3 was a multinational trial
whilst LUX-Lung 6 was conducted purely in an Asian population. Since the targeted
therapies have often performed better in Asian populations, this could explain some of
the variation, at least at PFS level, as the LUX-Lung 3 trial showed considerably less
benefit for PFS (0.58 compared to 0.28, SE was similar in both groups). However, this
difference was not reflected in the OS, and certainly not when treatment switching was

taken account of (LUX-Lung 3 — 0.807; LUX-Lung 6 — 0.903).

The First-SIGNAL and OPTIMAL studies should perhaps be treated with some caution
since both reported OS HRs slightly above one, and yet the reconstructed data estimated
one below one. Since the direction of the adjustment does appear to depend on the ITT
HR, (adjustment increasing numerically is OS HR greater than 1, and OS HR decreasing
numerically if ITT HR is less than 1), this may have some impact on the validity of the
findings. With OPTIMAL, however, it is noticeable that the HR has increased over time,
and since at the early time point it is only just exceeding one, it is conceivable that since
the timescale has been restricted even further this value could be appropriate. With the
exception of LUX-Lung 6 and OPTIMAL, the other trials where concern has been
expressed are all small studies, and as the subsequent analyses (meta-regressions) are

weighted inversely based on sample size, these should not have too large an impact.

6.2.7.2 Relationship with PFS and OS in a EGFR +ve NSCLC population

Comparing the outcomes from the meta-regression using the reported PFS and latest
possible OS results (scenario 1), and those obtained with the reconstructed data and
adjusted OS (scenario 4) results shows a key difference in the direction of that

relationship. Whilst in neither of the analyses, the findings were statistically significant,
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in the first (scenario 1), there is a negative correlation between the two, with the OS log-
HR decreasing as the PFS log-HR increases. In contrast, the final scenario (scenario 4)
shows a stronger positive relationship, with the OS log-HR increasing as the PFS log-HR

increases.

Looking at the two intermediate stages (scenarios 2 and 3) demonstrated that there may
well be some effect due to the timescale, since, as the OS follow-up is restricted, so the
positive relationship between PFS and OS log-HRs increased. This could be something
to investigate further. It could, however, perhaps be argued that some of this could still
be attributable to the impact of treatment switching, as the earlier the timescale is, the less
time the effect may have to manifest itself; i.e. because patients tend to switch treatments
earlier, this may have implications in different type of cancers, e.g. depending on the

length of PPS.

Examining the results described in Section 6.2.6.2.2, it is pleasing to see some agreement
with those from Hotta (2013). There is a similar trend when comparing the reported
estimates (scenario 1), despite the R* values being considerably lower. In addition, the
crossover prohibited studies show a much stronger association, observed overall, and the
association between studies where treatment switching had not been prohibited was
weaker still. Whilst the association between the studies which did not prohibit crossover
improves when treatment switching is accounted for, the direction of the association
directly contrasts with that for the studies which prohibited treatment switching. This,
consequently, leads to the final results demonstrating an even weaker association between

PFS and OS HRs.

Of the two analyses, the meta-regression provides greater and more robust evidence of
the association between the two outcomes. A key reason for this is because of the weights
used in the regression models. The choice of the SE is a better measure of a study’s
reliability as it takes into account the number of events in addition to the study’s size, as
it is important to include the number of events (a large study with few events will still
contain a large amount of uncertainty which needs to be captured). In addition, using the
SE means that the greater uncertainty surrounding the adjusted estimates is also taken
account of, once treatment switching is adjusted for. This is not the case if the sample size

is used, as the sample size remains unaffected by treatment switching.
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6.3 Conclusions

This case study proved exceptionally enlightening. Up until now, the example (TAnDEM
trial) had reported a good level of summary data (e.g. numbers of events, detailed risk
table, same data cut-off date, etc.) making it relatively easy to reproduce the data. In these
studies such a level of information was rare, and the reporting of basic statistics variable.
Finding sufficient information to effectively reconstruct the data did prove challenging.
Where possible, other information was used to improve quality, e.g. estimating
censorings by counting the tick marks. These may have partially improved particular
examples, but the approaches would not necessarily be feasible with larger studies.
Consideration of whether this information could be used to further effect in a more

systematic way would be an asset.

It was reassuring to see how effectively the amendments did work, and the similarity
between the IPLD and IPD. Nevertheless, given that unlike other studies, hitherto used
where additional IPD analyses (e.g. treatment switching analysis) were available for
comparison, more exploration perhaps should be given to investigating the impact; either
by gaining further examples where IPD are available, or by using simulated data.
Nevertheless, the amendments will have had some effect. These analyses demonstrated
areas for further development. Having the indications for censoring did indicate that in
some situations the assumption of even censoring, even throughout an interval, might not
be particularly appropriate. Developing an approach to use in these circumstances could
prove useful. How to account for treatment switching when the number of treatment
switchers exceeds the number of reported progressions, or if crossover occurs before
documented progression is also an issue. This is essentially developing strategies for
addressing treatment switching when it is not related to progression. In order to do this,
additional information would no doubt be needed. Further steps would be to investigate
how treatment switching would be introduced in these circumstances (e.g. for what
reasons treatment switching would be permitted) and when in the timescale this could
occur (e.g. anytime, after a particular date etc.), and consequently, if information was to
become available, what would be useful. Once identified, this could then be developed
further. Finally, for studies such as IPASS as well as the ‘immature’ OS, an updated
analysis was available. It would be incredibly useful if essentially the ‘immature’ OS

IPLD could be updated using this additional information. This may well be possible, but
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would rely on an improved understanding of how all the different outcomes interact with
each other and who would be “at risk’ of events. It could also be of interest to explore the

alternative solutions for resolving the issues outlined in section 6.3.5.

Access to more detailed summary information proved useful. Having detailed lifetables
permitted additional information to be gathered and highlighted potential issues with the
censoring distribution, even though these did not appear to have an effect. One surprising
finding was how difficult the CHEN study was to reproduce, largely due to the small
sample size. Even from the start of the process, model fitting proved challenging, given
the large steps in the Kaplan-Meier curve. The other issue was in replicating the ITT
statistics. With such a small sample size, any results are heavily influenced by chance,
and thus the estimates obtained from the reported statistics are exceptionally wide
ranging. It might be worth therefore, determining whether for smaller sample sizes (e.g.
less than 40 patients) there is a preferable way of reconstructing the data; for example,
using an alternative method to the simulation approach, simulating from the survival

times rather than a model etc. (similar to bootstrapping).

It is interesting to see how comparable the findings were with those from Hotta (2013). It
further confirms that treatment switching can play a vital role in assessing surrogacy
within advanced / metastatic cancer trials. In the wider context, it demonstrates how
important it is to consider the impact of treatment switching in any secondary analysis
involving OS. Chapter 3 investigated the impact of treatment switching in secondary
analysis, where primarily only two studies are involved. Here, where there are many trials,
and with the quantity of treatment switching involved, it is hardly surprising that there

should be a noticeable difference when crossover is taken into account.

In summary, the two most key findings were:
1. the poor quality of reporting of trials;
2. that, as previously shown with Hotta, treatment switching can impact on the
proving of surrogacy, but this can be partly addressed by reconstructing and

adjusting summary data.
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Chapter 7: Suggested reporting guidelines, summary and
discussion

7.1 Chapter overview

Chapter 7 draws on the knowledge learnt through the review in Chapter 2 and the example
in Chapter 6 to produce guidelines for reporting studies in treatment switching. In
addition, it provides processes for analysts to follow to evaluate studies for treatment
switching prior to performing secondary analyses. This chapter continues by summarising
the entire project, highlighting the key findings and methodological developments. In
particular it also discusses how these could be translated into practice, or affect current

practice

7.2 Specific information needed to assess the impact of treatment
switching on summary data and to adjust accordingly

7.2.1 Understanding the impact of treatment switching on secondary analysis

The findings from this thesis highlight how not accounting for treatment switching can
have a key impact on the results of secondary analysis, such as ICs (sections 3.3.3, 3.3.4,
3.3.5, 3.4, 3.5) and in investigating surrogate endpoints (6.3.1, 6.3.6.2). Since the impact
is not negligible, it is vital that reviewers, especially decision-makers are aware of the
potential bias caused by treatment switching in secondary analysis for a particular
example. This emphasises the importance of clear reporting about the inclusion of trials
with treatment switching in any secondary analysis involving OS (or possibly even PFS).
As found in Section 2.3, historically, the description of the studies included in the
secondary analysis is varied, and does not necessarily state whether treatment switching
was permitted. It is strongly advocated that, at the very least, the following details are
reported:

e whether treatment switching occurred (this should include any indication of
whether it is likely or unlikely if the publication / information used does not
explicitly state if it was prohibited or permitted);

e the proportion of treatment switchers;

e whether any adjustment has been made to account for treatment switching.
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This would ensure that the impact of treatment switching has been fully assessed, and that
even if no reanalysis is undertaken to adequately adjust data with crossover, more
assessment could be made of the impact of treatment switching, and the results

approached with caution, if necessary.

Should the analyst choose to reconstruct and reanalyse the studies with unadjusted
treatment switching (using methodology from Sections 4.3, 4.4 and 5.4.2), then a certain
level of information is required (Section 5.3.2). To start with the analyst needs conviction
that treatment switching occurred at, or soon after, disease progression, since the methods
were only designed to address this reason for treatment switching. Given the development
in Section 6.3, it may also be possible to address switching if this occurs after a secondary

timepoint (e.g. interim analysis or unblinding). This is discussed further in Section 7.3.2.2

In addition to the treatment switching information, at minimum, the following must be
available to enable the survival data to be reconstructed:

(1) either a K-M curve for OS and median PFS and OS times; or

(2) both PFS and OS K-M curves must be available.
Without these, a different approach would be required.

Of the two approaches, the second will produce more realistic data, but to improve the
quality of the data, requires:

e PFS and OS data having been reported using the same data cut-off date,

e the number of TTP, PFS and OS events

Further improvement would be seen, if the analyst could access K-M curves for TTP,

PPS, death before progression and censoring.

7.3 Proposed guidance

The development of effective guidance continues to be a priority, and remains on-going
(Latimer, 2018b). There are several areas in which work has already commenced. The
initial recommendations revolved around which methods should be used in practice
(Latimer, 2013, Latimer, 2014, Latimer, 2018c). Further work has focused on how to

check the appropriateness of the approach, and provide valid justification (Bell, 2014,
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Bell, 2015. Watkins, 2016). In 2016, The Center for Medical Technology Policy (CTMP)
published best practice guidance on conducting, analysing and reporting trials with
treatment switching, which looked at the problem in a considerably broader context
(Conley, 2016, The Green Park Collaborative, 2016). This guidance document essentially
spans the whole life of a trial, from conception to final report, and features details such
as how to assess necessity of including treatment switching when designing the trial to

the choice of the final analysis method, and its reporting.

Sufficient planning and thought for treatment switching throughout the whole duration of
the trial should improve outcomes and the choice / implementation of analysis methods.
For example, it will ensure that relevant information is collected for the appropriate
methodology or methodologies. Another key impact is likely to be that decision-makers
will have more consistent access to detailed treatment switching data. However, it should
be noted that the CTMP guidance has a strong emphasis on the reporting for documents
intended for decision-makers, rather than general publications (The Green Park

Collaborative, 2016).

Identifying original manufacturer’s submissions, or evidence review group reports for
Chapter 2 proved challenging, and so the majority of the detailed information was
obtained came from publications, and similar challenges are likely to face manufacturers
when identifying information for a competitor’s product. The CTMP guidelines (The
Green Park Collaborative, 2016) do not currently reiterate the need to include this high
level of information in the journal article, or other publicly available document.
Therefore, whilst this might be feasible for manufacturers to report, it seems unlikely that
this information would be readily available, such as in publications, if practice continues

as it is at present.

In addition, the guidance documents described above do not account for the variable
reporting in survival analysis trials in general (Pelissier, 2008, Batson, 2016), nor do they
provide any guidance on how to successfully review trials with treatment switching to
determine whether sufficient evidence has been documented in advance of their inclusion

in secondary analyses.
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The the primary aim of the guidance presented in this thesis was to ensure that sufficient
information would be available, so that IPLD could be reconstructed more easily and
accurately. However, these suggestions have the capacity to also address some of the
deficiencies identified in the reporting of studies with a ‘time-to-event’ outcome by
Pelissier (2008) and build on the finding of Batson (2016). For example the guidance
recommends detailed ‘at risk’ tables and the reporting of the number of events, both of

which were found to have been reported inconsistently (Pelissier, 2008, Batson 2016).

7.3.1 Reporting of studies
This section divides into three parts:

(1) comments about the reporting of survival analysis studies in general;

(2) the reporting of treatment switching studies in general; and,

(3) the reporting of secondary analyses where studies with treatment switching are

likely to occur.

The suggestions are separated into those which should always be reported, referred to as
‘Good practice’, and other extra information (‘Additional Features’); in some cases this
relates to more complex analysis, which although not necessarily compulsory, strengthens
the evidence base and the reader / analysts understanding (and would improve the quality
if reanalysis was needed). These suggestions primarily use the findings from Section 2.3
on the current state of reporting; and the information needed for effective data
reconstruction and treatment switching reanalysis (sections 4.4, 4.5, 5.3.2 and 6.3.5).
These recommendations are intended to be used alongside other reporting guidance such
as the Consolidated Standards of Reporting Trials (CONSORT) checklist and the CTMP

guidelines, not to replace it.
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7.3.1.1 Suggestions for improving the reporting of survival analysis studies

Good

practice

Additional
features

(cont.)
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4 Clearly specify the data cut-off date for PFS and OS, particularly

if different within the same paper
State the recruitment dates

Include K-M curves for PFS and OS. If the data is immature for
OS, this could be included in the supplementary appendix rather

than the main text, so long as it is still publicly reported

Report the number of TTP, PFS and OS events for each treatment
group, alongside any important subgroup populations (e.g. those

where a K-M curve has been presented)

Produce a detailed ‘at risk table’, with at least five intervals
where the ‘number at risk’ is greater than 1 and where the
survival proportion in the first interval does not decrease by more

than 30%

In studies where crossover might be possible, clearly state

L whether crossover was permitted or not in the protocol and if it
may have occurred during the post-protocol follow-up

(" Alongside the ‘at risk table’ report the number of events that have

occurred during a particular interval

Produce K-M curves for any or all of the following outcomes:
TTP, PPS, time to death before progression; time to censoring;

for inclusion in the supplementary appendix

Detail why patients were censored and whether any patients

censored for PFS were subsequently followed up (and received

\_an event) for OS



7.3.1.2 Suggestions for improving the reporting of treatment switching studies

Good

practice

Additional

features
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(" Specify how treatment crossover occurred, clearly giving all
reasons (e.g. allowed at or after disease progression, permitted

to all patients after interim analysis (or after a given date) etc.)

Report the number and / or proportion of patients who crossed
over for each treatment arm, and include estimates for any key
subgroups of patient populations (e.g. those for which specific

additional analyses have been given)

Document the number and / or proportions of patients who
crossed over for each reason, if crossover could have occurred in
more than one way (e.g. x’ patients switched after disease
progression until interim analysis and ‘y’ patients switched
before progression after this was allowed following interim

analysis)

Specify whether any methods have been used to adjust for

treatment switching, and which these were

kInclude ITT K-M curves for PFS and OS

(" Include a K-M curve showing time from either start of study or
time of progression, depending on which is more appropriate,

until time of treatment switch

Report median time (and / or other centiles) and range until
treatment switch, either from the start of study or progression

time, depending on which is most appropriate
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7.3.1.3 Recommendations for the reporting of secondary analyses involving OS in
disease areas which may involve data with treatment switching
Good (" Review all included studies for treatment switching

practice
Report how many studies included treatment crossover

~ State the proportion of patients crossing over between treatment

arms

\_ Describe the methods used to address the treatment switching

-

Additional Report the secondary analysis using (1) ITT estimates and (2)
features crossover-adjusted*® estimates

*Crossover-adjusted: this either means the use of an
appropriately justified recommended method on the IPD; or,
where possible using the data reconstruction and reanalysis

process (Detailed in Section 7.3.1.4)

7.3.1.4 Procedures to be followed when conducting secondary analyses involving OS

in disease areas which may involve data with treatment switching

7.3.1.4.1 Screening process and determining whether data can be reconstructed

As part of the usual screening processes (e.g. relevance, matching the inclusion criteria,
bias assessment etc.) for trials, before their inclusion into a secondary analysis, treatment
switching should also be taken into account. In terms of treatment switching, it is
important to ascertain whether it occurred; if so, for what reasons it was permitted, which
treatment groups were affected, how many patients switched; and what methodology, if
any, was employed. A suggestion for an assessment tool is given in Table 7-1. This tool
comprises of eight questions divided over four key areas (denoted Parts A — D). The
questions and possible answers have been formed based on the findings in Section 2.3,
and from the quality of reporting for the example used in Section 6.3. Part A focuses on
determining whether treatment switching occurred. If treatment switching did not occur,
the analyst does not need to proceed with any further questions. If crossover did or was
likely to have occurred, then the subsequent sections should be completed. Part B aims to
identify the reasons for why treatment switching occurred; this is a key element, should

the data need to be reconstructed and
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Table 7-1: 'Crossover' assessment tool

PART A: Likelihood of treatment ‘crossover’

States that ‘crossover’ was not permitted

Reports no information about ‘crossover’, making it impossible to
determine if it was likely to occur

Reports no specific information about ‘crossover’, but trial design /
information implies that ‘crossover’ was likely to have occurred

Indicates that the post treatment phase contained trial interventions
Specifies that ‘crossover’ did occur

Not reported

As ‘protocol-specified’ first choice for second- (or subsequent) line
therapy

As a possible option for therapy after disease progression [may be
subject to other conditions, such as patient health]

As ‘superior’ treatment on un-blinding

1. The publication: O
O
O
O
O
PART B: Reasons for ‘crossover’
2. The reasons for O
crossover are: O
(tick all that apply)
O
O
O

For other reasons, state these:

PART C: Details of ‘crossover’

3. Due to ‘crossover’, the [
following treatment O
groups were affected:

O

O

4. The proportion of O
‘crossover’: O

O

5. The following O
outcomes were O
affected by crossover:

It is unclear how ‘crossover’ affected the treatment groups

Control patients ‘crossed over’ to the experimental treatment;
Experimental group patients did not switch

Experimental group patients ‘crossed over’ to the control treatment;
Control group patients did not switch

Control patients ‘crossed over’ to the experimental treatment;
Experimental group patients ‘crossed over’ to the control treatment;
Is not reported

Is not clearly reported (some details may be given, but the overall
number or proportion is unclear)

Is clearly reported

The impact of crossover on the outcomes was unclear
OS only

PFS and OS

PART D: Methodology employed to account for ‘crossover’

6. Was ‘crossover’ O
specifically addressed

in the analysis? O

O

O

7. Has sensitivity analysis [

been performed? E.g. 0
several recommended

methods applied o

8. Justification for the O

methodology O

O

It is unclear how ‘crossover’ was addressed

No; no additional methods were used (underlying analysis was ITT)

Yes; but the methods used were not those recommended in NICE
TSD 16 (e.g. PP excluding or censoring patients)

Yes; using methods recommended in NICE TSD 16 (e.g. RPSFTM,
IPCW, two-stage)

No
Unclear
Yes

Was not given

Was given, but was not valid (e.g. not based on reasonable
arguments relating to data requirements and / or assumptions)
Was given, and considered appropriate (e.g. based on reasonable
arguments relating to data requirements and / or assumptions)
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reanalysed, as current methods only cover certain situations. The objective of Part C, is
to assess the magnitude of treatment switching, as well as obtaining estimates for any
further reanalysis. Knowing how many patients switched can provide some measure of
the enormity of the issue; a smaller proportion of treatment switcher is likely to have a
more marginal effect, than if practically the entire control group had switched. It also
aims to determine which outcomes and treatment groups are affected. The final part (Part
D) investigates how treatment switching has been handled. After the identification of
studies with treatment switching, the next stages are largely governed by the methodology
used, and the analyst’s propensity to perform additional analyses. To conclude whether
the adjustment for crossover is really appropriate, even if recommended methods have
been used the justification for the choice of approach is key. Where this is presented, it
should be scrutinized. Nevertheless, it may be difficult to determine whether the
justification is appropriate in practice, and so some level of trust is required. However,
reasons such as the method being ‘acceptable’ in other examples should not be classed as
sufficient and thus disregarded. Caution should also be given to those that say a method
was chosen because it ‘performed well’. Additionally, sensitivity analysis could prove
useful in terms of checking the variability of the results due to method, and provide
alternative estimates if data requirements / assumptions are deemed more appropriate by
the reviewer or analyst. For examples, where there is considerable doubt as to a

recommended methods suitability, this should be clearly documented.

Once the ‘crossover’ information has been collected, the flow-chart in Figure 7-1 shows
the preliminary steps to be taken, depending on the amount of information available. As
shown in the figure, if no treatment switching is identified, the estimates can be
immediately included in the secondary analysis (subject to the other suitability checks,
e.g. bias, appropriateness of trial population and methodology etc.). Similarly, if
treatment switching did occur but has been adequately accounted for, then the ‘adjusted’
estimates can be included in the secondary analysis without any further work. The key
issues arise if crossover is identified and the analyst considered the methods used to have

been inadequate for addressing treatment switching.
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Figure 7-1: Crossover Screening process for studies included in secondary analysis

Screen the included
studies for crossover

No crossover

Crossover
A 4
Identify if appropriate Include current estimate
methods have been used in secondary analysis

Appropriate methods used

Inappropriate
methods used

Assess whether summary Include current estimate
data can be adjusted in secondary analysis

At this stage, there are essentially two choices:

(1) to endeavour to conduct a reanalysis of the data, appropriately addressing

treatment switching; or,

(2) to continue with the inappropriate estimates.
The first is advocated of these two options; however, if the analyst chooses to adopt the
second option, they must, at the very least, report which studies crossover occurred in,
and where possible the outcomes affected and the proportion of treatment switching. It
is highly recommended conducting sensitivity analysis, in terms of including and
excluding studies permitting treatment switching, also possibly a stratified analysis
based on crossover, if using meta-analysis or a regression approach to test for

surrogacy.

7.3.2 Procedures to be followed if data are to be reconstructed and reanalysed
Should the analyst be prepared to attempt the reanalysis, and thus reconstruction of the
data, the next stages of the process are described in Figure 7-2. These stages assess
whether approaches exist to reconstruct the treatment switching data for the particular
switching mechanism used; and secondly, whether there is sufficient evidence to be able

to reconstruct the data.
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To-date the methods have been specifically developed to adjust for treatment switching
only when it occurs around the time of disease progression. Based on some of the

theory developed around recruitment times, designed to account for differential times

Figure 7-2: Initial process for determining whether crossover data can be reanalysed

Assess whether summary
data can be adjusted

Other reasons

Occurs ‘at or soon
after progression’
or ‘following

interim analysis’
A 4

Consider the basics of the No methods available |
summary data available recreate switch times |

Summary data
incl. OS K-M
A 4 —_———
Consider the detail of the | No data reconstruction or
summary data available | reanalysis can be done |

OS K-M curve only

K-M curves for
transitions /
PFS& 0OS | v

Reconstruct PFS & OS data

.. . Reconstruct OS data only
using simulation

Pathways separate depending
on reasons for switching

for reporting outcomes, it would be possible to also adjust for patients switching at a
particular time point, e.g. at or just after the date of interim analysis, or un-blinding of
treatment regimen. To adjust for treatment switching, where the time of switch was not:
(1) at or soon after TTP (TTP as a proxy for switch time); or
(2) at or soon after a specific time that can calculated from recruitment information
and a specific date (e.g. interim analysis, un-blinding),

further methods development would be required.
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To produce the OS data, either of the approaches outlined in Chapter 4 and 5 can be
used depending on the amount of information available. If K-M curves only exist for
OS, then whilst this may limit and consequently impact on the reconstruction of the
treatment switching information (imposing additional strong assumptions), OS data can
be reconstructed. Whilst it is advocated to use the methodology in Chapter 4 to
incorporate the additional uncertainty, the Guyot (2012) or Hoyle and Henley (2011)
methods are alternatives. Wherever possible though, if enough information (e.g. K-M
curves) matching any of the scenarios described in Chapter 5 is available, the
corresponding approach should be used. Modifications described in Chapter 6 (Section

6.2.5) may also be necessary.

Once the data for OS (and PFS, if feasible) has been constructed, the information for
treatment switching must be reconstructed. These differ slightly depending on the
reasons for treatment switching and the information available, and the basic processes

are described in Figure 7-3 and Figure 7-4.

Sensitivity analysis remains integral both during and after the data reconstruction. The
models from which any data are simulated should be investigated, and the impact both
of the number and location of knots examined. Where paired data have been
reconstructed, understanding the effect of the individual parts of the process is key. It is
strongly recommended that the investigations described in Section 5.4.5 are conducted,
where appropriate, and especially if there are noticeable differences between the [IPLD

and IPD.

7.3.2.1 Using TTP as a proxy for switch time

Figure 7-3 shows an overview of the process, when the progression time can essentially
be used as a proxy for switch time. Where the data has been reconstructed using an
‘illness-death’ modelling framework, reconstructing treatment switching follows the
procedure outlined in Chapter 5. If the PFS K-M curve was not available, and only OS
data were reconstructed, then to form the treatment switching information, it is essential
that median survival times for PFS and OS are reported. Where these are available, then
the treatment switching information is constructed as described in Sections 4.8.2.1 and

4.8.2.3.

236



Figure 7-3: Overview of process, if crossover occurs around progression time

Procedures to follow if treatment switching occurred at or soon after progression

K-M curves available for
transitions / PFS & OS

Only K-M curve for OS
(no other K-M available)

Simulation approach
using ‘iliness-death’
modelling framework

A 4

Either using:
* Simulation approach
* Guyot method
* Hoyle & Henley method

PFS & OS data Only OS data
reconstructed reconstructed
Median PFS & OS not available
Median PFS &
OS available
4 v —_—_————
Reconstruct Reconstruct I Crossover data cannot be :
crossover data crossover data : reconstructed |
v

Reanalyse the data
for crossover

|

Ensure the IPLD is
representative of the IPD

!

Include current estimate
in secondary analysis

7.3.2.2 Using a particular time point to calculate switch times

If instead the treatment switching occurs at or soon after a particular time point (e.g.
interim analysis as described in Figure 7-4 or the date of un-blinding, etc.), then it may
still be possible to reconstruct the treatment switching information; provided that at least
the start date of the trial and the date of this time point have been reported. Preferably the
date of the end of recruitment would also be available. Where only OS data has been
reconstructed, a similar approach to that for creating censoring times using the
‘recruitment times’ method (Section 4.4.1.4.2) would be adopted, but instead of using the
final follow-up date, the time point (e.g. interim analysis data cut-off; date of un-blinding)
would be used. Instead of producing a ‘length of follow-up’, these values would represent

‘time to switch’; should this occur within a patient’s survival time (e.g. this value occurs

before their observed OS time (be it event or censoring)), then the patient could have
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Figure 7-4: Overview of process, if crossover occurs following interim analysis

Procedures to follow if treatment switching occurred following interim analysis

K-M curves available for Only K-M curve for OS
transitions / PFS & OS (no other K-M available)
Either using:

Simulation approach
using ‘iliness-death’
modelling framework

* Simulation approach
* Guyot method
* Hoyle & Henley method

A4

PFS & OS data Only OS data
reconstructed reconstructed

No recruitment & interim
data cut-off times given

Recruitment times
& interim data
cut-off reported

A4

Reconstruct crossover Reconstruct | |
X X . Crossover data cannot be
data using PFS times & / crossover data using |
i R reconstructed
or recruitment data recruitment data | |
!

Reanalyse the data
for crossover

!

Ensure the IPLD is
representative of the IPD

!

Include current estimate
in secondary analysis

switched. In terms of assigning switchers, these would then be chosen randomly from

those who ‘could’ have switched, based on the switch times.

If both PFS and OS data have been generated, then as specified in Section 6.2.5.3.5, the
recruitment times can be constructed. Each patient will then have a suitable switch time
calculated by deducting their individual simulated recruitment time, the time between the
start of the study and permitting ‘crossover’ to take place. As before, patients where this
switch time occurs before their final OS survival time, are eligible to switch. As usual the

appropriate proportion can then be selected at random from the eligible population.
When all the data has been reconstructed, it can then be analysed, first for the ITT

statistics to check it is reasonably representative of the IPD, and secondly for the treatment

switching reanalysis. If using a simulation approach (either for a single outcome or for
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paired data), this process will involve creating, analysing and averaging over many

datasets (as described in Sections 4.4 and 5.4).

7.4 Summary

This work started by investigating the methodology used, in practice, to analyse data with
treatment switching for NICE submissions. Findings showed that there has been a change
in the approaches taken, which suggest that the promotion of appropriate methods is
succeeding. Whilst there continues to be a proportion of TAs which choose to ignore the
presence of treatment switching, those which do decide to acknowledge and address the
problem, implement the recommended methods. In addition, there now appears a greater
willingness to consider the use of and / or test all three approaches. Also, with regard to
the final choice of method, sound reasons (such as choices based on data requirements or
method assumptions) are now being used as justification. There is clear evidence that ICs
and NMAs are becoming more prevalent in NICE TAs, which gives greater scope for the
inclusion of biased estimates, caused by inappropriate analysis of treatment switching, in
otherwise suitable TAs. The example, TA417 highlighted some of the difficulties in
obtaining crossover-adjusted ICs and NMAs as the manufacturers are limited by
previously conducted, publicly available analyses. No conclusive evidence was found that

treatment switching or ICs / NMAs have a specific impact on the HTA recommendation.

The impact of using inappropriate (e.g. ITT) or appropriate (e.g. RPSFTM) analyses,
when conducting a simple IC, was then assessed. Initial examples demonstrated that not
only could the point estimate of the IC HR drastically change (depending on whether
adjusted or unadjusted estimates were included), but potentially the statistical
significance might too. Exploring this further through simulation ascertained that, in the
majority of cases using an adjusted analysis for both studies with treatment switching
showed a marked improvement in terms of the point estimate. The coverage, however,
suggested that the SE was too great. There were a few cases where using both ITT
estimates, or both RPSFTM estimates, performed equally well. These were when the
crossover proportion for both studies were the same, as was the underlying treatment
effect. Identifying this situation in practice would be very difficult as the true underlying

treatment effect is unknown.
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This early work highlighted two key findings:
(1) a large base of evidence exists in which treatment switching has not been
accounted for appropriately;
(2) using adjusted estimates is the most reliable way of obtaining reasonable
estimates from an IC when treatment switching data are involved.

This would mean that before inclusion into an IC, unadjusted estimates would have to be
reanalysed using appropriate methods; a step which would require IPD in order to apply
any of the recommended adjustment approaches. Given that the analysts rarely have
access to IPD for the comparator interventions, the next stage was to develop methods
that allowed treatment switching to be addressed using summary data. Previous research
had highlighted the potential for reanalysing ‘reconstructed data’, but described
limitations with the reconstruction methods. This led to the huge project of creating a
reconstruction approach for time-to-event data which utilised simulation techniques, thus
incorporating a sufficient amount of the uncertainty around the process. Initially the aim
was to reconstruct a single outcome. The novel method relies on modelling the survival
and censoring distributions, (primarily using extracted coordinates from the Kaplan-
Meier curve, information on the numbers at risk or follow-up length), and produces
multiple datasets which can be averaged over. Preliminary examples show that in terms
of replicating reported statistics, conducting a simple reanalysis for non-proportional
hazards and reproducibility, the proposed simulation technique is an excellent, possibly

superior, alternative to other reconstruction methods (e.g. Guyot, 2012).

However, in order to account for treatment switching, a number of strong assumptions
are necessary to reconstruct the crossover information. This, in turn, means that, even if
the results seem plausible, the underlying switching mechanism is not appropriately
modelled. To enable some of these strong assumptions to be relaxed or modified to
become more realistic, PFS needed to be reconstructed alongside OS, and outcomes

matched across patients.

To reconstruct paired data, such as PFS and OS, an ‘illness-death’ modelling structure
should be adopted. To implement this effectively, summary data, such as Kaplan-Meier
curves on the individual transitions and censoring are required. Having this means that
the models for each transition and censoring can be fitted, and simulated from, to create

the final dataset. As with the single outcome technique, multiple datasets are simulated
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and the results averaged over. This high level of information is almost always unavailable,
and consequently this original method must be replicated by estimating the relevant
functions from available data on other outcomes (e.g. PFS, OS). The less specific
information there is, the greater the margin for error, and the more variation between the
reported results and any from the reconstructed data. The treatment switching mechanism
which accompanies this more advanced simulation technique is, in its simplest form, easy

to implement, but captures the underlying mechanism much more effectively.

The inclusion of data with treatment switching not only affects ICs, but also impacts on
other secondary analysis. Hotta (2013) highlighted the issue of treatment switching
affecting surrogacy in NSCLC. A Cochrane review (Greenhalgh, 2016) was used to
illustrate the impact of adjusting adequately for treatment switching, before assessing the
relationship between PFS and OS. This review (Greenhalgh, 2016) comprised of nineteen
studies, of which fifteen studies, permitted treatment switching, with at least 30%, and
more often 65% or more of patients switching from the control intervention (of
Chemotherapy) to an experimental treatment (Targeted therapy). The adjustment showed
considerable impact on the point estimate for the meta-regression coefficient for the log-
HR for PFS. This highlighted that adjusting the summary data can have a substantial
difference on a secondary analysis. However, the example also demonstrated a number
of difficulties in implementing the method because of the nature of the reported
information. In many cases, suitable solutions were developed to address these problems,
although these were often bespoke modifications, designed to contend with the available

information and not always generalisable.

7.5 Limitations, Discussion and Context

The findings from the review proved very interesting, since in terms of the final
recommendation, no noticeable difference was observed between studies which permitted
treatment switching and those that did not. One possible explanation for this is that,
perhaps, although the final outcome does not differ majorly, the length of the appraisal
might. It is conceivable that, in order to reach a conclusion, the HTA bodies request
additional information from studies which would not be necessary for studies without
treatment switching. This could, thus, lengthen the appraisal process but not affect the

recommendation. Therefore, in terms of updating or conducting further reviews, one
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additional part could be to investigate the length of the decision process (from submission

to recommendation).

The change over time in the methods used to analyse data with treatment switching is
especially pleasing, as there is clearly a trend with more TAs exploring the use of different
recommended methods, and far fewer using the most inappropriate or experimental ‘ad
hoc’ approaches. This demonstrates the success, that particularly Latimer (2014) has had,
in promoting the most appropriate methodology. In addition, it highlights a ‘learning
curve effect’; initially as the number of methods reduced there was a compulsion to use
the RPSFTM, as this had ‘been previously accepted as appropriate’ in crossover TAs, and
perhaps as this was a longer-standing method specifically designed for treatment
switching. This showed an understanding of which approaches should not be used, and
that the RPSFTM was a more appropriate model, but demonstrated a key lack of
knowledge of the modelling assumptions, and thus appropriateness of the various
recommended methods. Based on the increase in the use of the other methods, the variety
of methodology being documented per appraisal (where the analysts have identified and
aimed to address treatment switching), and the type of justification being given, it is clear

that this deficiency is being dealt with.

One area which the review was not fully able to determine was whether the application
of appropriate methodology affects the recommendation. These findings appear to be in
accordance with those of Gurskyte (2018). The principle difficulty faced is likely to be
that of insufficient evidence, since there are still relatively few appraisals which have used
recommended methods. This is most likely due to the research on suitable methods still
being quite recent; given that RCTs are usually three to five years duration, very few trials
would have been able to specify the recommended methods at the protocol stage, those
that may have, may be now coming to completion. Views about using methods that were
not specified in the protocol can be quite divergent; some maintaining that the protocol
must be followed exactly with no deviation; others advocating the use of different
methods if it means conducting a more appropriate analysis. Should the review be updated
in five or ten years’ time, there would no doubt be a greater number of examples using
the recommended methods, and the results less likely to be affected by chance. However,
that analysis may face similar difficulties for the comparator. To maintain equipoise in

decision making, it is vital that the timescale is restricted to the period in which clear
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findings had been given on appropriate methodology. If, as is indicated, the situation
continues to improve, then more and more trials with treatment switching should be
relying on recommended methods rather than an ITT (or even less appropriate e.g. PP)
approach. This could mean, however, that there is an insufficient number of TAs using
an ITT analysis to compare decisions across; which though positive in many ways, would

hamper this assessment.

A vital aspect of this research was the simulation study conducted in Chapter 3. This
assessment of the effect of incorporating unreliable summary data within a quite simple
form of secondary analysis is most enlightening. It confirms the existing supposition that,
in general, using appropriately adjusted estimates is key to obtaining most appropriate
results for an IC. As always with a simulation study, its main advantage is that of having
the true underlying values, which means that the appropriateness of the treatment
switching analysis could also be assessed alongside that of the IC; something not possible

with a case-study.

Whilst many different scenarios were covered, this was by no means exhaustive. This
study concentrated on the proportion of switchers and the treatment effect. However,
study sample size could also have a bearing on the findings; in addition, there could
potentially be more than one trial per comparator (e.g. two trials for treatment ‘X’
compared with ‘A’, one trial for ‘X’ compared with ‘B”). Using more complex methods
of simulating the underlying data might also have been beneficial, as would simulating
data which may suit other methods better and applying a wider variety of methods.
Understanding the implications of these could be very important, both for analysts and
for decision-makers. Gaining a better understanding of the underlying situation could also
be useful, alongside guidance on suitable treatment switching approaches, in allaying

uncertainty regarding the appropriateness of adjustment methods in ICs (Ishak, 2018).

Here, only simple ICs have been considered, but in practice, and based on the review it is
clear to see that NMA / MTCs are gaining popularity. The data structure for these would
be much more complex. NMA has sometimes been suggested as a solution for studies
with treatment switching (Thorland, 2013), as strength could be borrowed from other
studies which prohibited treatment switching, and used to reduce the bias caused by

treatment switching. However, this will introduce more variability and potentially
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inconsistency. This, in turn, could lead to additional complexity, as to account for this,
methods which address heterogeneity and inconsistency in NMA (Jansen and Cope,
2012) would be required. Whilst this might provide a solution where there is sufficient
evidence to conduct a NMA, this approach would not necessarily be generalisable to other
secondary analysis e.g. ICs with two studies or meta-analysis. Therefore, as adjusting for
the treatment switching, by reconstructing IPLD, would rectify the unreliability of the

estimates, this may still be preferable.

Prior to this work, Hotta (2013) had already demonstrated, through a case-study, that
treatment switching could have a bearing on the proving of surrogacy. These conclusions
were reiterated in the work of Hernadez-Villafuerte (2018), where proof of surrogacy in
other cancers such as melanoma and RCC was deemed to have been affected by
crossover. These papers concentrated on demonstrating that treatment switching causes
issues. They did not suggest any solutions to rectify the issue, except to potentially stratify
the analysis by whether treatment switching occurred or not. However, this suggestion
means that the wealth of information is not being retained. Moreover, there could be the
potential to introduce bias if the studies which permit treatment switching are
fundamentally different to the others. For example, if only those studies which saw a
considerable PFS benefit permitted treatment crossover. Therefore, analyses which
included estimates unadjusted for treatment switching, and those which stratified by
crossover, could provide some evidence, but would not be firm conclusions on which to

prove PFS as a surrogate outcome for OS.

Treatment switching was a key issue for the Hotta study (Hotta, 2013) as there was a
sizeable proportion (15 / 35) of studies with crossover. Nonetheless, supposing that, in
fact, the EGFR +ve population, as described in the Cochrane review (Greenhalgh, 2016),
had been the population of interest, the problem would have been fundamental. Excluding
the studies with treatment switching would be an incredibly severe approach, as this

would have just left three / four studies, of which only one was of any size (n > 40).

The outcome of readjusting the simulation approach is a very crucial finding. Whilst this
is not conclusive, the surrogacy analysis is rather naive, and a more robust approach is
required to validate PFS as a surrogate in the EGFR +ve NSCLC population, it provides

valuable evidence that, readjusting summary data for treatment switching could address
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the crossover issue sufficiently to give appropriate and valid results. This could fulfil a
fundamental deficiency in the current methodology and evidence base for determining
surrogacy, as there will be further examples, in other types of cancer, where the proof of
surrogacy will be affected by treatment switching. This is particularly likely in cancers
where patients typically have short progression times, and where a number of studies have
allowed treatment switching on progression. Furthermore, since it worked so effectively
for the surrogacy example, it provides support that the reanalysis of IPLD could also

extend over to address other issues, such as meta-analysis of OS.

The reconstruction methodology is designed to be used when access to the IPD are
unavailable. Whilst it often gives reasonable agreement to the IPD, it will always be an
inferior substitute. Wherever possible, IPD should be obtained, and this methodology
only used as a secondary alternative. However, Simmonds (2005) found that, for
systematic reviews and meta-analysis, it is usually only possible to obtain IPD for 50%
of the studies. Given the drive towards data sharing, and thus permitting access to IPD,
this percentage should increase, which theoretically could minimise the use of the
reconstruction methodology in its original context. Nevertheless, the time from the
application for IPD access to approval and the release of the IPD (if approved) is often
lengthy (e.g. in ensuring all legal requirements are met with relation to the General Data
Protection Regulation (2018) and Data Protection Act, (2018)) and the whole process
time consuming. Therefore, these reconstruction techniques could be applied in the
meantime to provide a preliminary estimate, which would then be updated once the
analyst has access to the IPD. This means that although the methods may not be required
for the primary analysis, they could still prove useful. In addition, there will always be an
abundance of historical trials for which these methods may be needed, as access to the
IPD will still be prohibited, or where the IPD may no longer actually exist. In the
meantime, at least, the methods developed and described in Chapters 4 and 5 may allow
for a level of compromise. Whilst manufacturers may not be prepared to disclose the IPD,
or rerun new additional analysis, they may be prepared to release additional basic
summary information, if necessary, such as the number of events or K-M curves for a
particular outcome, or even life-tables. These are very simple analysis, that could easily
be produced. Taking previously published and / or additional information, and using this

within the methods could solve the issue; the manufacturer conducting the secondary
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analysis would have more appropriate valid results, and its competitor will have

maintained confidentiality.

The simulation method has shown itself to be an excellent and exceptionally flexible
alternative to other data reconstruction processes, but it should be noted that no method
of data reconstruction is ever going to be perfect. Whilst the simulation approaches do
account for some of the uncertainty surrounding the data reconstruction process (unlike
other existing methods), they still do not fully capture all the uncertainty. Therefore,
sufficient sensitivity analysis is required to assess the robustness of the models and the
findings (as detailed in Sections 4.7 and 5.4.6). For example, the uncertainty around the
model parameters is completely ignored. This is perhaps a deficiency that should be
understood, but it should not impede or violate the findings from it in any way (Bennett,
2018). The fact that it does account for at least some of the uncertainty still distinguishes
it from its alternatives. One criticism that the simulation process has received was that all
simulated datasets are included in the final averaging. Naturally as with simulation some
datasets may be closer to the original dataset than others (findings that are perhaps closer
to the extreme limits of the distribution). Therefore, restricting to a subset of datasets
which most closely resemble the original was recommended, to improve comparability
of results. This would lead to an analyst determining suitable criteria for the restriction,
which could be very subjective. It would also impact on the calculation of the SE.
Alternatively, the datasets could be weighted by their comparability, but similarly this
would impact on the SE, and require the weights to be defined. This has meant that at
present, no action has been taken to implement this suggestion, however, it could be

something that is examined long term.

The key limitation, relating to regular implementation of the data reconstruction
methodology, is its complexity. The simulation approach for the single outcome (Chapter
4) remains relatively straightforward to understand; whilst that for the paired data is
exceptionally intricate and complicated. It draws on methodology from numerous areas
of survival analysis and manipulates them, often using them in unusual contexts (e.g.
allowing censoring to be a competing risk). Programming into frequently used software,
such as creating a Stata or R package, would no doubt remove some of the difficulties in
using the method. However, in conjunction with developing this, some possible issues

may still need to be resolved, mostly relating to the model fit. As has been explained
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throughout the thesis, whilst in theory, the coordinates should be such that turning points
in the survival (not the hazard) distribution are prohibited, occasionally these occur. These
can often be overcome by manipulating the data (e.g. extracting additional coordinates in
particular places), but this type of approach would not be suitable for a novice using the
software. Therefore, investigating the use of further splines functions, which are restricted

to producing monotonic models, would be beneficial.

There can be no doubt that the data are affected by the type and quality of the summary
information. Clearly, the paired data approach using the summary data on the transitions
and censoring provides a better level of agreement and realism. Whilst these are not
necessarily outcomes that are considered as meaningful, in these days of online
appendices, they could be exceptionally useful to report; especially those relating to TTP
and PPS when treatment switching has occurred. As already mentioned, the quality of the
reporting also impacts substantially on the work. One particular area of concern is the
differential timing in reporting outcomes. This was exceedingly common, and although
resolved here by restricting the timescale, could lead to criticism such as was discussed
in the example given in Chapter 2. By restricting the timescale, reliance is being put on
immature data, which may be seen by decision-makers as being inappropriate and / or
unreliable, due to it potentially being highly influenced by chance. Whilst the guidance
given at the start of the chapter should improve reporting in the future, it cannot undo
previous poor reporting. In order to tackle this issue further, additional examples could
prove beneficial, in terms of revealing any other potential problem. These could also

provide greater validation of the approach.

At its current stage, unfortunately this methodology cannot encompass all the potential
treatment switching scenarios or methodology. To date, this approach does not consider
situations where patients do not switch at progression (e.g. at interim analysis). So far this
work has not applied other approaches recommended for treatment switching. At present,
although it does not permit a method such as the IPCW to be applied, since this would
require covariates, the two-stage model may be a possibility. Given the necessity that the
chosen approach does actually fulfil the method’s assumptions and data requirements,
improving the range of possible models would be key. Whilst an application of the two-

stage model with PFS time as the covariate is a feasible option, it is unlikely that the
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covariates needed to fit the IPCW could ever be reconstructed; and so the implications of

this should be investigated further.

Despite its many limitations, these simulation approaches facilitate reanalysis for
treatment switching where IPD are unavailable, fulfilling a fundamental gap in the
treatment switching research. A few years ago, there were no possibilities for addressing
treatment switching when the IPD were unavailable. This would have led to the exclusion
of valuable evidence or the use of flawed findings. Whilst this work cannot fully address
every kind of treatment switching, and is wholly reliant on ‘good’ reporting of trials, it
provides a solid foundation for the reanalysis of summary data with crossover and an
indispensable platform for further research. Nevertheless, the use of sensitivity analysis
subsequent to using these approaches is crucial in determining the appropriateness and

robustness of the findings.

7.6 Further work

The potential extensions of this project fall into three main themes, that have been covered
throughout this thesis. These are:

e Understanding the impact of treatment switching in secondary analysis

e The simulation technique

e Addressing the impact of treatment switching

7.6.1 Understanding the impact of treatment switching in secondary analysis

The simulation studies in Chapter 3 provided a rationale for ensuring that estimates for
studies with treatment switching are appropriately analysed before their inclusion in an
IC. As discussed in Section 7.5, there are a variety of extensions that could be done to
improve understanding even further. However, as that section also suggested, a more
important area of continued research would be to explore the impact on NMAs, given
their increasing use. Developing a good knowledge of the effect of the estimates could be
especially important, given how NMAs include direct and indirect evidence. Treatment
switching has the potential to create a vast amount of sensitivity in NMA, as it may lead
to direct and indirect evidence being inconsistent, depending on where crossover has been
permitted. In addition, there would be far more room for error, since more studies would

be involved, and possibly lead to a high number containing treatment switching.
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More importantly it might be even more necessary with NMAs to carefully consider how
to address crossover, for example if two-way switching has been allowed. This work has
approached the treatment switching problem in the same way as other similar research
projects; by only considering and adjusting for treatment switching in the control arm,
regardless of whether crossover also occurred in the experimental arm. This decision has
been fundamentally decided upon as typically switching from the experimental to control
arm does not affect the decision-making problem. However, if treatment switching has
occurred in the experimental arm, there may be some additional bias still within the
estimate, even if the control arm has been adjusted. One concern would be that this may
affect the consistency of the direct and indirect evidence, which could also be particularly
problematic if looking at a trial where potentially two quite novel and possibly very
effective treatments have been compared. In this case, it could be difficult to ascertain

which of the treatments would essentially be the ‘control’ treatment.

7.6.2 The simulation process

The simulation process has been developed to such an extent that it is a usable and
relatively reliable method, however, there are some ways in which it could be improved
further. As previously described in Section 7.5, to facilitate the uptake of this
methodology, producing programs / packages for commonly used computer software
(e.g. Stata, R etc.) would be key. Equally, as imparted before, this would potentially
involve investigating and ultimately, using splines functions that ensure monotonic
functions. Given that these splines functions are already available in an R package, this

may be possible to achieve in R.

There are other important areas of development which relate to model fit, for example,
some of the models require even more flexibility than is possible, using RCS models.
These are particularly those that demonstrate a ‘cure’ shape (Othus, 2012), such as in
example 1 (Figure 4-4). Building this into the method would improve model fit and
generalisability. Another potential change would be to model outcomes such as TTP, PFS
and OS altogether using multivariate survival models. Since these outcomes are
interrelated, it would be excellent if this was continued into the modelling. It would also,
hopefully, ensure that all quantities were consistent with each other, and avoid any errors
caused by the modelling process (e.g. models for PFS survival proportion which exceed

the TTP or OS survival proportion).
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Developing the censoring distribution more is an area which could be exploited further.
The simulation framework allows for a greater flexibility in the creation of the censoring
distribution compared with other methods. However, this flexibility may not be used to
its maximum potential. The case study demonstrated that often the location of censorings
is indicated on the K-M curve. It would be useful if this could be utilised further to help
construct more realistic censoring distributions. This may be improved by better
reporting, (e.g. detailing the number of events per interval). In addition, given that interval
censoring is exceptionally common, particularly for PFS, it would be beneficial to adapt

the methods to include this.

The final area where more research is needed is in addressing the issues discussed in
Chapter 6; in particular, how to address modelling of small studies, lack of information
in terms of events or numbers at risk, and differential timing in the reporting of outcomes.
Here, primarily the simplest technique was employed, but that is not necessarily to say
that the approach was the best. This is particularly with regard to

(1) using the shorter term follow-up (for at least two studies); and,

(2) restricting the time period to account for differential timing of reporting

outcomes.

In the first case, the aim would to be to update the simulated OS information, based on
the later term follow-up. For the second, this would involve investigating alternative
approaches to restricting the timescale. In these cases, the current approach taken means
that important evidence is being disregarded. In addition, given the HTA panel’s
reluctance and criticism of using the short-term follow-up in the example highlighted in
Section 2.2.1.3.4, the concern would be that these results would be treated with the same

response if simulated data and reanalysis used a restricted timescale.

7.6.3 Addressing treatment switching

There are two key ways in which the simulation technique could be used to address
treatment switching. The first is the same as it has been used to address treatment
switching in this thesis; by reconstructing data for crossover reanalysis when only
summary data are available. To improve this further, additional work must concentrate
on widening the types of treatment switching that can be adjusted for. If treatment
switching for all control group patients has been permitted following interim analysis,

providing the date is given, then combining the usual approach, with that used to restrict

250



the timescale could be developed to produce the necessary information. However, there
may be other situations, which could be harder to reconstruct. As suggested in the
discussion in Chapter 6, reasons for treatment switching, and the relevant information
could be explored further. Even developing the current methodology for reconstructing

the treatment switching information could be an area for improvement.

In improving the use of reconstructing IPLD for the accounting of treatment switching,
the implementation of the alternative recommended approaches to the RPSFTM should
be examined. This is of key importance, given the strong assumptions that the RPSFTM
rely on, and that these may not be reasonable in the context in which they are being used.
The two-stage method would be most easily transferable into this setting, as initially it
could be fitted just using the PFS time as the only covariate. This could be justified as it
is one of the most, if not the most informative variable as to why a patient switched, if
patients switch on progression. The IPCW would be considerably harder to implement,
as it requires covariate data, which at present are not reconstructed during the process
described in this thesis. The feasibility of reconstructing this data would be integral to
allowing this method to be explored further in this setting, and the inability to do this
would prohibit the use of the [IPCW on reconstructed data.

A completely different application for this simulation method would be in trying to adjust
for treatment switching at the IPD level. The use of external data to account for treatment
switching has been suggested; this would require the identification of a study (external
data) which prohibited treatment switching, and was sufficiently similar to the trial which
allowed crossover. This external data could then be used to predict counterfactual times
for the patients who switched treatments. An example of this approach was implemented,
using a relatively naive framework, in TA171 (NICE, 2009b). For this example, the PPS
model was calibrated such that the median OS in the control group after progression was
equal to that which had been observed in the UK Medical Research Myeloma trials
(NICE, 2009b). Whilst a more formal approach would need to be developed than that
used in TA171, the simulation method could provide a useful tool during this approach.
The external data to be used has always been required at IPD level. Having the simulation
approach would mean that the analyst would not necessarily require IPD level
information. They would just need to identify a similar trial, and either fully or possibly

partially reconstruct the data.
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7.6.4 Additional areas

A more general area of further work could be to investigate the use of external information
for strengthening results. Section 7.6.3 briefly discussed how the simulation method could
be used to enable external information to be combined with trial data, where treatment
switching occurred. Whilst developing a robust framework for using external data could
be beneficial for adjusting for treatment switching, there are other contexts in which
external data could be useful, e.g. in validating extrapolation results. In addition, to the
other contexts, there are also different ways in which a framework could be developed.
For example, by using a ‘multiple imputation’ (Carpenter and Kenward, 2014) style

approach or a Bayesian predictive model.

Another area of interest could be in examining how increasing levels of summary data
may affect the methods. This superior information, for example, could involve having a
life-table at all distinct event / censoring times for each of the transitions. With more
detailed summary information, it could be worthwhile investigating if there were any
simpler methods, which would be as efficacious as the paired simulation approach at

producing results comparable to the IPD.

7.7 Conclusions

Previous research into appropriate methodology for data with treatment switching is
being promoted successfully, and a change in the type of methods used in practice was
observed. However, a gap in the research was detected; this was, given the wealth of
studies with treatment switching that have inappropriately analysed, the inclusion of

biased estimates within secondary analysis.

Preliminary exploration, through simulation studies, demonstrated that even with a simple
secondary analysis such as an IC, using ITT estimates, and particularly using a mixture
of ITT and adjusted estimates leads to exceptionally biased and unreliable findings. The
only really reliable way of accounting for treatment switching, was to have an ‘adjusted’
estimate for each study, which was then used in the IC. This, nevertheless, meant that

summary data must be reanalysed for treatment switching.
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Complex data reconstruction methods were developed, which used a simulation
approach. Where PFS and OS K-M curves were both reported, paired data could be
reconstructed, allowing a more realistic treatment switching mechanism to be
implemented. These methods were influenced by the amount of information available and
the quality of the reporting. Once the data had been reconstructed, existing treatment
switching techniques, namely the RPSFTM could be applied.

The methods were applied to studies used in a Cochrane review for EGFR +ve NSCLC
treatments (Greenhalgh, 2016). The aim, however, was to investigate PFS as a surrogate
endpoint for OS. This case study highlighted many issues caused by poor reporting, and
developed solutions for them. Comparing a meta-regression for the log-HR for PFS
against log-HR for OS, showed a difference in the gradient depending on whether the
treatment switching was adjusted (in the reconstructed IPLD) or not (using the reported

estimates).

Whilst there remain a variety of areas for further research with this methodology, the
approaches can be used to account for treatment switching in summary data, fulfilling the
original void in research. The results produced, have typically demonstrated good
agreement with the ITT summary statistics, and in one example where a RPSFTM
analysis was available. This gives more confidence to the results from any secondary

analysis (e.g. treatment switching reanalysis).
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Appendices

Appendix A: Technology Appraisals included in the review

A-1: List of Technology Appraisals included in the review
List of the Technology Appraisals included in the review alongside the year of

publications and detailing the type of cancer.

Reference | Technology Appraisal Title pl?l{)?iacra:it(')n Type of cancer

TA3 Ovarian cancer - taxanes (TA3) 2000 Ovarian
(replaced by TAS5) (withdrawn)

TA6 Breast cancer - taxanes (TA6) (replaced 2000 Breast
by TA30) (withdrawn)

TA17 Colorectal cancer - laparoscopic surgery 2000 Colorectal
(TA17) (replaced by TA105)

TA23 Brain cancer - temozolomide (TA23) 2001 Brain

TA25 Pancreatic cancer - gemcitabine (TA25) 2001 Pancreatic

TA26 Lung cancer - docetaxel, paclitaxel, 2001 Lung
gemcitabine and vinorelbine (TA26)
(replaced by CG24)

TA28 Ovarian cancer - topotecan (TA28) 2001 Ovarian
(replaced by TA91) (withdrawn)

TA29 Leukaemia (lymphocytic) - fludarabine 2001 Leukaemia
(TA29)

TA30 Breast cancer - taxanes (review) (TA30) 2001 Breast
(replaced by CG81)

TA33 Colorectal cancer (advanced) - 2002 Colorectal
irinotecan, oxaliplatin & raltitrexed
(TA33) (replaced by TA93) (withdrawn)

TA34 Breast cancer - trastuzumab (TA34) 2002 Breast

TA37 Lymphoma (follicular non-Hodgkin's) - 2002 Lymphoma
rituximab (replaced by TA137) (TA37)
(replaced by TA137) (withdrawn)

TA45 Ovarian cancer (advanced) - pegylated 2002 Ovarian
liposomal doxorubicin hydrochloride
(TA45) (replaced by TA91) (withdrawn)

TAS0 Leukaemia (chronic myeloid) - imatinib 2002 Leukaemia
(TAS50) (replaced by TA70) (withdrawn)

TA54 Breast cancer - vinorelbine (TA54) 2002 Breast
(replaced by CG81)

TASS Ovarian cancer - paclitaxel (review) 2003 Ovarian
(TASS)

TA61 Colorectal cancer - capecitabine and 2003 Colorectal
tegafur uracil (TA61)

TA62 Breast cancer - capecitabine (TA62) 2003 Breast
(replaced by CG81)




Reference

Technology Appraisal Title

Year of

Type of cancer

publication

TA65 Non-Hodgkin's lymphoma - rituximab 2003 Lymphoma
(TA65)

TA70 Leukaemia (chronic myeloid) - imatinib 2003 Leukaemia
(TA70) (partially updated by TA241 and
TA251)

TA86 Gastrointestinal stromal tumours - 2004 Gastrointestinal
imatinib (TA86)

TA91 Ovarian cancer (advanced) - paclitaxel, 2005 Ovarian
pegylated liposomal doxorubicin
hydrochloride and topotecan (review)
(TA91)

TA93 Colorectal cancer (advanced) - 2005 Colorectal
irinotecan, oxaliplatin and raltitrexed
(TA93) (replaced by CG131)

TA101 Prostate cancer (hormone-refractory) - 2006 Prostate
docetaxel (TA101)

TA116 | Breast cancer - gemcitabine (TA116) 2007 Breast

TAT118 | Colorectal cancer (metastatic) - 2007 Colorectal
bevacizumab and cetuximab (TA118)
(partially updated by TA242)

TA119 | Leukaemia (lymphocytic) - fludarabine 2007 Leukaemia
(TA119)

TA121 | Glioma (newly diagnosed and high 2007 Glioma
grade) - carmustine implants and
temozolomide (TA121)

TA124 | Lung cancer (non-small-cell) - 2007 Lung
pemetrexed (TA124)

TA129 | Multiple myeloma - bortezomib (TA129) 2007 Myeloma

TA135 | Mesothelioma - pemetrexed disodium 2008 Lung
(TA135)

TA137 | Lymphoma (follicular non-Hodgkin's) - 2008 Lymphoma
rituximab (TA137)

TA145 | Head and neck cancer - cetuximab 2008 Head & Neck
(TA145)

TA147 | Breast cancer (advanced & metastatic) - 2008 Breast
bevacizumab (withdrawn) (TA147)

TA162 | Lung cancer (non-small-cell) - erlotinib 2008 Lung
(TA162)

TA169 | Renal cell carcinoma - sunitinib (TA169) 2009 Renal cell

TA171 Multiple myeloma - lenalidomide 2009 Myeloma
(TA171)

TA172 | Head and neck cancer (squamous cell 2009 Head & Neck
carcinoma) - cetuximab (TA172)

TA174 | Leukaemia (chronic lymphocytic, first 2009 Leukaemia

line) - rituximab (TA174)

II




Reference

Technology Appraisal Title

Year of

Type of cancer

or metastatic maintenance treatment) -
erlotinib (monotherapy) (TA227)

publication

TA176 | Colorectal cancer (first line) - cetuximab 2009 Colorectal
(TA176)

TA178 | Renal cell carcinoma (TA178) 2009 Renal Cell

TA179 | Gastrointestinal stromal tumours - 2009 Gastrointestinal
sunitinib (TA179)

TA181 | Lung cancer (non-small-cell, first line 2009 Lung
treatment) - pemetrexed (TA181)

TA183 | Cervical cancer (recurrent) - topotecan 2009 Cervical
(TA183)

TA184 | Lung cancer (small-cell) - topotecan 2009 Lung
(TA184)

TA185 | Soft tissue sarcoma - trabectedin 2010 Soft tissue
(TA185) sarcoma

TA189 | Hepatocellular carcinoma (advanced and 2010 Liver
metastatic) - sorafenib (first line)
(TA189)

TA191 | Gastric cancer (advanced) - capecitabine 2010 Gastric
(TA191)

TA192 | Lung cancer (non-small-cell, first line) - 2010 Lung
gefitinib (TA192)

TA193 | Leukaemia (chronic lymphocytic, 2010 Leukaemia
relapsed) - rituximab (TA193)

TA202 | Chronic lymphocytic leukaemia - 2010 Leukaemia
ofatumumab (TA202)

TA208 | Gastric cancer (HER2-positive 2010 Gastric
metastatic) - trastuzumab (TA208)

TA209 | Gastrointestinal stromal tumours 2010 Gastrointestinal
(unresectable/metastatic) - imatinib
(TA209)

TA212 | Colorectal cancer (metastatic) - 2010 Colorectal
bevacizumab (TA212)

TA214 | Breast cancer - bevacizumab (in 2011 Breast
combination with a taxane) (TA214)

TA215 | Renal cell carcinoma (first line 2011 Renal cell
metastatic) - pazopanib (TA215)

TA216 | Leukaemia (lymphocytic) - 2011 Leukaemia
bendamustine (TA216)

TA219 | Everolimus for the second-line treatment 2011 Renal cell
of advanced renal cell carcinoma
(TA219)

TA222 | Ovarian cancer (relapsed) - trabectedin 2011 Ovarian
(TA222)

TA226 | Lymphoma (follicular non-Hodgkin's) - 2011 Lymphoma
rituximab (TA226)

TA227 | Lung cancer (non-small-cell, advanced 2011 Lung

III




Reference

Technology Appraisal Title

Year of

Type of cancer

paclitaxel and carboplatin for first-line
treatment of advanced ovarian cancer
(TA284)

publication

TA228 | Multiple myeloma (first line) - 2011 Myeloma
bortezomib and thalidomide (TA228)

TA235 | Osteosarcoma - mifamurtide (TA235) 2011 Osteosarcoma

TA239 | Breast cancer (metastatic) - fulvestrant 2011 Breast
(TA239)

TA241 | Leukaemia (chronic myeloid) - dasatinib, 2012 Leukaemia
nilotinib, imatinib (intolerant, resistant)
(TA241)

TA242 | Colorectal cancer (metastatic) 2nd line - 2012 Colorectal
cetuximab, bevacizumab and
panitumumab (review) (TA242)

TA243 | Follicular lymphoma - rituximab 2012 Lymphoma
(review) (TA243)

TA250 | Breast cancer (advanced) - eribulin 2012 Breast
(TA250)

TA251 Leukaemia (chronic myeloid, first line) - 2012 Leukaemia
dasatinib, nilotinib and standard-dose
imatinib (TA251)

TA255 | Prostate cancer - cabazitaxel (TA255) 2012 Prostate

TA257 | Breast cancer (metastatic hormone- 2012 Breast
receptor) - lapatinib and trastuzumab
(with aromatase inhibitor) (TA257)

TA258 | Lung cancer (non small cell, EGFR-TK 2012 Lung
mutation positive) - erlotinib (1st line)
(TA258)

TA259 | Prostate cancer (metastatic, castration 2012 Prostate
resistant) - abiraterone (following
cytoxic therapy) (TA259)

TA263 | Bevacizumab in combination with 2012 Breast
capecitabine for the first-line treatment
of metastatic breast cancer (TA263)

TA265 | Bone metastases from solid tumours - 2012 Bone metastases
denosumab (TA265)

TA268 | Melanoma (stage III or IV) - ipilimumab 2012 Melanoma
(TA268)

TA269 | Melanoma (BRAF V600 mutation 2012 Melanoma
positive, unresectable metastatic) -
vemurafenib (TA269)

TA272 | Urothelial tract carcinoma (transitional 2013 Urothelial tract
cell, advanced, metastatic) - vinflunine
(TA272)

TA284 | Bevacizumab in combination with 2013 Ovarian
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Reference

Technology Appraisal Title

Year of
publication

Type of cancer

TA285

Ovarian, fallopian tube and primary
peritoneal cancer (recurrent advanced,
platinum-sensitive or partially platinum-
sensitive) - bevacizumab (TA285)

2013

Ovarian,
Fallopian tube
and peritoneal

TA295

Breast cancer (HER2 negative, oestrogen
receptor positive, locally advanced or
metastatic) - everolimus (with an
aromatase inhibitor) (TA295)

2013

Breast

TA296

Lung cancer (non-small-cell, anaplastic
lymphoma kinase fusion gene,
previously treated) - crizotinib (TA296)

2013

Lung

TA299

Leukaemia (chronic myeloid) - bosutinib
(TA299)

2013

Leukaemia

TA306

Lymphoma (non Hodgkin's, relapsed,
refractory) - pixantrone monotherapy
(TA306)

2014

Lymphoma

TA307

Colorectal cancer (metastatic) -
aflibercept (TA307)

2014

Colorectal

TA309

Lung cancer (non small cell, non
squamous) - pemetrexed (TA309)

2014

Lung

TA310

Lung cancer (non small cell, EGFR
mutation positive) - afatinib (TA310)

2014

Lung

TA311

Multiple myeloma - bortezomib
(induction therapy) (TA311)

2014

Myeloma

TA316

Enzalutamide for metastatic
hormone-relapsed prostate cancer
previously treated with a
docetaxel-containing regimen

2014

Prostate

TA319

Ipilimumab for previously untreated
advanced (unresectable or metastatic)
melanoma

2014

Melanoma

TA321

Dabrafenib for treating unresectable or
metastatic BRAF V600
mutation-positive melanoma

2014

Melanoma

TA326

Imatinib for the adjuvant treatment of
gastrointestinal stromal tumours

2014

Gastrointestinal

TA333

Axitinib for treating advanced renal cell
carcinoma after failure of prior systemic
treatment

2015

Renal cell

TA338

Pomalidomide for relapsed and
refractory multiple myeloma previously
treated with lenalidomide and
bortezomib

2015

Myeloma

TA343

Obinutuzumab in combination with
chlorambucil for untreated chronic
lymphocytic leukaemia

2015

Leukaemia




Reference

Technology Appraisal Title

Year of
publication

Type of cancer

TA344

Ofatumumab in combination with
chlorambucil or bendamustine for
untreated chronic lymphocytic leukaemia

2015

Leukaemia

TA347

Nintedanib for previously treated locally
advanced, metastatic, or locally recurrent
non-small-cell lung cancer

2015

Lung

TA357

Pembrolizumab for treating advanced
melanoma after disease progression with
ipilimumab

2015

Melanoma

TA359

Idelalisib for treating chronic
lymphocytic leukaemia

2015

Leukaemia

TA360

Paclitaxel as albumin-bound
nanoparticles in combination with
gemcitabine for previously untreated
metastatic pancreatic cancer

2015

Pancreatic

TA366

Pembrolizumab for advanced melanoma
not previously treated with ipilimumab

2015

Melanoma

TA370

Bortezomib for previously untreated
mantle cell lymphoma

2015

Lymphoma

TA371

Trastuzumab emtansine for treating
HER2-positive, unresectable locally
advanced or metastatic breast cancer
after treatment with trastuzumab and a
taxane

2015

Breast

TA374

Erlotinib and gefitinib for treating non-
small-cell lung cancer that has
progressed after prior chemotherapy

2015

Lung

TA376

Radium-223 dichloride for treating
hormone-relapsed prostate cancer with
bone metastases

2016

Prostate

TA377

Enzalutamide for treating metastatic
hormone-relapsed prostate cancer before
chemotherapy is indicated

2016

Prostate

TA378

Ramucirumab for treating advanced

gastric cancer or gastro—oesophageal
junction adenocarcinoma previously
treated with chemotherapy

2016

Gastric or
gastro-
oesophageal

TA380

Panobinostat for treating multiple
myeloma after at least 2 previous
treatments

2016

Myeloma

TA381

Olaparib for maintenance treatment of
relapsed, platinum-sensitive, BRCA
mutation-positive ovarian, fallopian tube
and peritoneal cancer after response to
second-line or subsequent platinum-
based chemotherapy

2016

Overian,
fallopian tube
and peritoneal

TA384

Nivolumab for treating advanced
(unresectable or metastatic) melanoma

2016

Melanoma
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Reference

Technology Appraisal Title

Year of
publication

Type of cancer

TA389

Topotecan, pegylated liposomal
doxorubicin hydrochloride, paclitaxel,
trabectedin and gemcitabine for treating
recurrent ovarian cancer

2016

Overian

TA395

Ceritinib for previously treated
anaplastic lymphoma kinase positive
non-small-cell lung cancer

2016

Lung

TA396

Trametinib in combination with
dabrafenib for treating unresectable or
metastatic melanoma

2016

Melanoma

TA399

Azacitidine for treating acute myeloid
leukaemia with more than 30% bone
marrow blasts

2016

Leukaemia

TA400

Nivolumab in combination with
ipilimumab for treating advanced
melanoma

2016

Melanoma

TA401

Bosutinib for previously treated chronic
myeloid leukaemia

2016

Leukaemia

TA402

Pemetrexed maintenance treatment for
non-squamous non-small-cell lung
cancer after pemetrexed and cisplatin

2016

Lung

TA403

Ramucirumab for previously treated
locally advanced or metastatic non-
small-cell lung cancer

2016

Lung

TA404

Degarelix for treating advanced
hormone-dependent prostate cancer

2016

Prostate

TA405

Trifluridine—tipiracil for previously
treated metastatic colorectal cancer

2016

Colorectal

TA391

Cabazitaxel for hormone-relapsed
metastatic prostate cancer treated with
docetaxel

2016

Prostate

TA408

Pegaspargase for treating acute
lymphoblastic leukaemia

2016

Leukaemia

TA410

Talimogene laherparepvec for treating
unresectable metastatic melanoma

2016

Melanoma

TA411

Necitumumab for untreated advanced or
metastatic squamous non-small-cell lung
cancer

2016

Lung

TA412

Radium-223 dichloride for treating
hormone-relapsed prostate cancer with
bone metastases

2016

Prostate

TA414

Cobimetinib in combination with
vemurafenib for treating unresectable or
metastatic BRAF V600 mutation-
positive melanoma

2016

Melanoma

TA416

Osimertinib for treating locally advanced
or metastatic EGFR T790M mutation-
positive non-small-cell lung cancer

2016

Lung

VII




Reference

Year of

Technology Appraisal Title publication

Type of cancer

TA417

Nivolumab for previously treated 2016 Renal cell
advanced renal cell carcinoma

TA421

Everolimus with exemestane for treating 2016 Breast
advanced breast cancer after endocrine
therapy

TA422

Crizotinib for previously treated 2016 Lung
anaplastic lymphoma kinase-positive
advanced non-small-cell lung cancer

TA423

Eribulin for treating locally advanced or 2016 Breast
metastatic breast cancer after 2 or more
chemotherapy regimens

TA424

Pertuzumab for the neoadjuvant 2016 Breast
treatment of HER2-positive breast
cancer

TA425

Dasatinib, nilotinib and high-dose 2016 Leukaemia
imatinib for treating imatinib-resistant or
intolerant chronic myeloid leukaemia

TA426

Dasatinib, nilotinib and imatinib for 2016 Leukaemia
untreated chronic myeloid leukaemia

A-2: List of TAs with treatment switching included in the review

A list of the TAs included in the review, in which treatment switching was clearly

identified as having occurred in the pivotal evidence.

Reference | Technology Appraisal Title
TA3 Ovarian cancer - taxanes (TA3) (replaced by TAS5) (withdrawn)
TA6 Breast cancer - taxanes (TA6) (replaced by TA30) (withdrawn)
TA28 Ovarian cancer - topotecan (TA28) (replaced by TA91) (withdrawn)
TA30 Breast cancer - taxanes (review) (TA30) (replaced by CG81)
TA33 Colorectal cancer (advanced) - irinotecan, oxaliplatin & raltitrexed
(TA33) (replaced by TA93) (withdrawn)
TA34 Breast cancer - trastuzumab (TA34)
TAS5 Ovarian cancer - paclitaxel (review) (TAS55)
TA70 Leukaemia (chronic myeloid) - imatinib (TA70) (partially updated by
TA241 and TA251)
TA86 Gastrointestinal stromal tumours - imatinib (TA86)
TA91 Ovarian cancer (advanced) - paclitaxel, pegylated liposomal doxorubicin
hydrochloride and topotecan (review) (TA91)
TA93 Colorectal cancer (advanced) - irinotecan, oxaliplatin and raltitrexed
(TA93) (replaced by CG131)
TA101 Prostate cancer (hormone-refractory) - docetaxel (TA101)
TA116 | Breast cancer - gemcitabine (TA116)

VIII




Reference

Technology Appraisal Title

TA118 | Colorectal cancer (metastatic) - bevacizumab and cetuximab (TA118)
(partially updated by TA242)

TA119 | Leukaemia (lymphocytic) - fludarabine (TA119)

TAI121 Glioma (newly diagnosed and high grade) - carmustine implants and
temozolomide (TA121)

TA124 | Lung cancer (non-small-cell) - pemetrexed (TA124)

TA129 | Multiple myeloma - bortezomib (TA129)

TA162 | Lung cancer (non-small-cell) - erlotinib (TA162)

TA169 | Renal cell carcinoma - sunitinib (TA169)

TA171 Multiple myeloma - lenalidomide (TA171)

TA172 | Head and neck cancer (squamous cell carcinoma) - cetuximab (TA172)

TA176 | Colorectal cancer (first line) - cetuximab (TA176)

TA178 | Renal cell carcinoma (TA178)

TA179 | Gastrointestinal stromal tumours - sunitinib (TA179)

TA192 | Lung cancer (non-small-cell, first line) - gefitinib (TA192)

TA214 | Breast cancer - bevacizumab (in combination with a taxane) (TA214)

TA215 | Renal cell carcinoma (first line metastatic) - pazopanib (TA215)

TA219 | Everolimus for the second-line treatment of advanced renal cell
carcinoma (TA219)

TA257 | Breast cancer (metastatic hormone-receptor) - lapatinib and trastuzumab
(with aromatase inhibitor) (TA257)

TA258 | Lung cancer (non small cell, EGFR-TK mutation positive) - erlotinib (1st
line) (TA258)

TA263 | Bevacizumab in combination with capecitabine for the first-line treatment
of metastatic breast cancer (TA263)

TA268 | Melanoma (stage III or IV) - ipilimumab (TA268)

TA269 | Melanoma (BRAF V600 mutation positive, unresectable metastatic) -
vemurafenib (TA269)

TA284 | Bevacizumab in combination with paclitaxel and carboplatin for first-line
treatment of advanced ovarian cancer (TA284)

TA285 | Ovarian, fallopian tube and primary peritoneal cancer (recurrent
advanced, platinum-sensitive or partially platinum-sensitive) -
bevacizumab (TA285)

TA319 | Ipilimumab for previously untreated advanced (unresectable or
metastatic) melanoma

TA321 Dabrafenib for treating unresectable or metastatic BRAF V600
mutation-positive melanoma

TA326 | Imatinib for the adjuvant treatment of gastrointestinal stromal tumours

TA338 | Pomalidomide for relapsed and refractory multiple myeloma previously
treated with lenalidomide and bortezomib

TA357 | Pembrolizumab for treating advanced melanoma after disease progression
with ipilimumab

TA359 | Idelalisib for treating chronic lymphocytic leukaemia

IX




Reference

Technology Appraisal Title

TA371 Trastuzumab emtansine for treating HER2-positive, unresectable locally
advanced or metastatic breast cancer after treatment with trastuzumab and
a taxane

TA377 | Enzalutamide for treating metastatic hormone-relapsed prostate cancer
before chemotherapy is indicated

TA389 | Topotecan, pegylated liposomal doxorubicin hydrochloride, paclitaxel,
trabectedin and gemcitabine for treating recurrent ovarian cancer

TA396 | Trametinib in combination with dabrafenib for treating unresectable or
metastatic melanoma

TA404 | Degarelix for treating advanced hormone-dependent prostate cancer

TA422 | Crizotinib for previously treated anaplastic lymphoma kinase-positive
advanced non-small-cell lung cancer

TA425 | Dasatinib, nilotinib and high-dose imatinib for treating imatinib-resistant
or intolerant chronic myeloid leukaemia

TA426 | Dasatinib, nilotinib and imatinib for untreated chronic myeloid leukaemia




Appendix B: Replication of analysis, restricting the time scale

to TAs published after 2003

In the following pie charts, the value next to each segment show the number of TAs,

followed by the percentage.

B-1: Recommendations by the characteristics of TAs
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B-2: Recommendations by the characteristic and year of publication
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B-3: Summary of results by crossover adjustment and comparison
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Appendix C: List of evidence reviewed in Section 2.3

C-1: Reviewed as ‘Manufacturers Submission’ Evidence
The following sources were reviewed as indicative of evidence of contained within a
Manufacturers Submission to NICE.
TA Ref. | Reference

TA116 Eli Lilly and Company. Gemcitabine for the treatment of metastatic
breast cancer. Single Technology Appraisal (STA) submission to the
National Institute for Health and Clinical Excellence. 18" May 2006.
TA214 Roche. Single Technology Appraisal (STA) Bevicizumab in
combination with taxanes for the treatment of HER2-negative 1% line
metastatic breast cancer. 8 March 2010

TA215 Heron Evidence Development Systematic Review. Clinical and
Economic Systematic Reviews in Treatment Naive Advanced/Metastatic
Renal Cell Carcinoma. Version 3. December 2010*

* The evidence presented in this review was deemed to be representative
of the Manufacturers Submission

GlaxoSmithKline. Pazopanib for the first-line treatment of patients with
advanced renal cell carcinoma (RCC): Addendum to GSK’s submission
to NICE. July 2010

C-2: Reviewed as ‘Evidence Review Group’ Evidence
The following sources were reviewed as indicative of evidence of contained within a
Evidence Review Group’s report.
TA Ref. Reference

TA101 Collins R, Fenwick E, Trowman R, Perard R, Norman G, Light K et al.
A systematic review and economic model of the clinical effectiveness
and cost-effectiveness of docetaxel in combination with prednisone or
prednisolone for the treatment of hormone-refractory metastatic prostate
cancer. Health Technol. Assess 2007; 11(2)*

* The evidence presented in this review was deemed to be representative
of the Evidence Review Group’s Report

TA214 Rodgers M, Soares M, Epstein D, Yang H, Fox D, Eastwood A.
Bevacizumab in combination with a taxane for the first-line treatment of
HER2-negative metastatic breast cancer. Evidence Review Group’s
Report. 17" May 2010

TA215 Kilonzo M, Hislop J, Elders A, Fraser C, Bissett D, McClinton S,
Mowatt G, Vale L. Pazopanib for the first line treatment of patients with
advanced and/or metastatic renal cell carcinoma: A Single Technology
Appraisal. 15 September 2010.

XV



C-3: Trial publications reviewed

Note: Jones 2005 was used as evidence in TA116 in addition to TA214 and the
publications for BRIM-3 (Chapman, 2011, McArthur, 2014) were used as evidence in
TA321 in addition to TA319.

TA Ref. | Trial Name Type of Reference
(if any) publication

Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A,
Chi KN, Oudard S, Theodore C, James ND, Turesson I,
Rosenthal MA, Eisenberger MA, and TAX 327
Investigators. Docetaxel plus Prednisone or Mitoxantrone
plus Prednisone for Advanced Prostate Cancer. New
England Journal of Medicine 2004;351:1502-12.
Weber DM, Chen C, Niesvizky R, Wang M, Belch A,
Stadtmauer EA, Siegel D, Borrello I, Rajkumar V,
Chanan-Khan AA, Lonial S, Yu Z, Patin J, Olenyckyj M,
Original Zeldis JB, Knight RD and Multiple Myeloma (009) Study
Investigators. Lenalidomide plus Dexamethasone for
Relapsed Multiple Myeloma in North America. New
England Journal of Medicine 2007;357:2133-42.
Dimopoulos MA, Spencer A, Attal M, Prince HM,
Harousseau JC, Dmoszynska A et al. Multiple Myeloma
MM-010 Original (010) study investigators. Lenalidomide plus
dexamethasone for relapsed or refractory multiple
myeloma. N Engl J Med 2007; 357: 2123-2132.
Dimopoulos MA, Chen C, Spencer A, Niesvizky R, Attal
M, Stadtmauer EA, Petrucci MT, Yu Z, Olesnyckyi M,
TA171 MM-009 & Zeldis JB, Knight RD, Weber DM. Long-term follow-up
MM-010 Follow-up on overall survival from the MM-009 and MM-010 phase
IIT trials of lenalidomide plus dexamethasone in patients
with relapsed or refractory multiple myeloma. Leukemia
(2009) 23, 2147-2152;
Richardson PG, Sonneveld P, Schuster MW, Irwin D,
Stadtmauer EA, Facon T, Harousseau JL, Ben-Yuhuda D,
Original Lonial S et al. Bortezomib or High-Dose Dexamethasone
for Relapsed Multiple Myeloma. N Engl ] Med
2005;352:2487-98.
Richardson PG, Sonneveld P, Schuster M, Irwin D,
Stadtmauer E, Facon E, Harousseau JL et al. Extended
Follow-up follow-up of a phase 3 trial in relapsed multiple myeloma:
final time-to-event results of the APEX trial. Blood. 2007.
110(10)
Miller K, Wang M, Gralow J, Dickler M, Cobleigh M,
Perez EA, Shenkier T, Cella D, Davidson NE. Paclitaxel
E2100 Original plus Bevacizumab versus Paclitaxel Alone for Metastatic
Breast Cancer. New England Journal of Medicine 2007.
357(26) pp 2666 - 2676

TA101 TAX327 Original

MM-009

APEX

TA214 Albain KS, Nag SM, Calderillo-Ruiz G, Jordaan JP,
Llombart AC, Pluzanska A, Rolski J, Melemed AS,
Reyes-Vidal JM, Sekhon JS, Simms L, O’Shaughnessy J.
Original Gemcitabine Plus Paclitaxel Versus Paclitaxel
Monotherapy in Patients With Metastatic Breast Cancer
and Prior Anthracycline Treatment. Journal of Clinical
Oncology 2008. 26(24) pp 3950 - 3957

Albain, 2008

XVI



TA Ref.

Trial Name
(if any)

Type of
publication

Reference

TA214

Seidman
(CALBG)

Original

Seidman AD, Berry D, Cirrincione C, Harris L, Muss H,
Marcom PK, Gipson G, Burstein H, Lake D, Shapiro CL,
Ungaro P, Norton L, Winer E, Hudis C. Randomized
Phase III Trial of Weekly Compared With Every-3-Weeks
Paclitaxel for Metastatic Breast Cancer, With
Trastuzumab for all HER-2 Overexpressors and Random
Assignment to Trastuzumab or Not in HER-2
Nonoverexpressors: Final Results of Cancer and
Leukemia Group B Protocol 9840. Journal of Clinical
Oncology 2008. 26(10) pp 1642-1649

Jones 2005

Original

Jones SE, Erban J, Overmoyer B, Budd GT, Hutchins I,
Lower E, Laufman S et al. Randomized Phase III Study of
Docetaxel Compared with Paclitaxel in Metastatic Breast
Cancer. 2005. 23(24)pp5542-5551

RIBBON-1

Original

Robert NJ, Dieras V, Glaspy J, Brufsky AM, Bondarenko
I, Lipatov ON, Perez EA et al. RIBBON-1: Randomized,
Double-Blind, Placebo-Controlled, Phase III Trial of
Chemotherapy With or Without Bevacizumab for First-
Line Treatment of Human Epidermal Growth Factor
Receptor 2—Negative, Locally Recurrent or Metastatic
Breast Cancer. Journal of Clinical Oncology 2011. 29(10)
pp1252-1260

TA215

VEG105192

Original

Sternberg CN, Davis ID, Mardiak J, Szczylik C, Lee E,
Wagstaff J, Barrios CH, Salman P, Gladkov OA, Kavina
A, Zarba JJ, Chen M, McCann L, Pandite L,
Roychowdhury DF, Hawkins RE. Pazopanib in Locally
Advanced or Metastatic Renal Cell Carcinoma: Results of
a Randomized Phase III Trial. Journal of Clinical
Oncology 2010. 28(6) pp 1061-1068

Steineck 1990

Original

Steineck G, Strander H, Carbin BE, Borgstrom E, Wallin
L, et al. (1990) Recombinant leukocyte interferon alpha-
2a and medroxyprogesterone in advanced renal cell
carcinoma. A randomized trial. Acta Oncol. 29(2): 155-
162.

Kriegmair

Original

Kriegmair M, Oberneder R, Hofstetter A. (1995)
Interferon alfa and vinblastine versus
medroxyprogesterone acetate in the treatment of
metastatic renal cell carcinoma. Urology. 45(5): 758-762.

Pyrhonen
1999

Original

Pyrhonen S, Salminen E, Ruutu M, Lehtonen T, Nurmi
M, et al. (1999) Prospective randomized trial of interferon
alfa-2a plus vinblastine versus vinblastine alone in
patients with advanced renal cell cancer. J Clin Oncol.
17(9): 2859-2867.

Motzer 2009

Original

Motzer RJ, Hutson TE, Tomczak P, Dror Michaelson M,
Bukowski RM, Rixe O, Oudard S, Negrier S, Szczylik C,
Kim ST, Chen I, Bycott PW, Baum CM, Figlin RA.
Sunitinib versus Interferon Alfa in Metastatic Renal-Cell
Carcinoma. New England Journal of Medicine 2007.
356(2) ppl15-124

Follow-up

Motzer RJ, Hutson TE, Tomczak P, Michaelson MD,
Bukowski RM, et al. (2009) Overall survival and updated
results for sunitinib compared with interferon alfa in

patients with metastatic renal cell carcinoma. J Clin
Oncol. 27(22): 3584-3590

CRECY

Original

Negrier S, Escudier B, Lasset C, Douillard JY, Savary J,
et al. (1998) Recombinant human interleukin-2,
recombinant human interferon alfa-2a, or both in
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TA Ref.

Trial Name
(if any)

Type of
publication

Reference

metastatic renal-cell carcinoma. Groupe Francais
dTmmunotherapie. N Engl J Med. 338(18): 1272-1278.

Negrier 2007

Original

Negrier S, Perol D, Ravaud A, Chevreau C, Bay JO, et al.
(2007) Medroxyprogesterone, interferon alfa-2a,
interleukin 2, or combination of both cytokines in patients
with metastatic renal carcinoma of intermediate
prognosis: results of a randomized controlled trial.
Cancer. 110(11): 2468-2477

TA215

AVOREN

Original

Melichar B, Koralewski P, Ravaud A, Pluzanska A,
Bracarda S, et al. (2008) First-line bevacizumab combined
with reduced dose interferon-alpha2a is active in patients
with metastatic renal cell carcinoma. Ann Oncol. 19(8):
1470-1476.

TARGET

Original

Escudier B, Eisen T, Stadler WM, Szczylik C, Oudard S,
et al. Sorafenib for treatment of renal cell carcinoma:
Final efficacy and safety results of the phase III treatment

approaches in renal cancer global evaluation trial. J Clin
Oncol. 2009b 27(20): 3312-3318.

CALGB
90206

Original

Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA,
et al. (2008a) Bevacizumab plus interferon alfa compared
with interferon alfa monotherapy in patients with
metastatic renal cell carcinoma: CALGB 90206. J Clin
Oncol. 26(33): 5422

Global ARCC

Original

Hudes G, Carducci M, Tomczak P, Dutcher J, Figlin R, et
al. (2007) Temsirolimus, interferon alfa, or both for
advanced renal-cell carcinoma. N Engl J Med. 356(22):
2271-2281.

MRC REO1

Original

Ritchie AWW, Griffiths G, Parmar M. (1999) Interferon-
alpha and survival in metastatic renal carcinoma: early
results of a randomised controlled trial. Medical Research
Council Renal Cancer Collaborators. Lancet. 353(9146):
14

TA258

EURTAC

Original

De Marinis F, Rosell R, Vergnenegre A, Massuti B, Felip
E, Gervais R, et al. Erlotinib vs chemotherapy (CT) in
advanced non-small cell lung cancer (NSCLC) patients
with epidermal growth factor receptor (EGFR) activating
mutations — the EURTAC Phase II randomized trial
interim results. European Journal of Cancer 2011;47:
S597.

IPASS

Original

Mok TS, Wu, YL. Thongprasert S, Yang, CH, Chu DT,
Saijo N.et al. Gefitinib or Carboplatin—Paclitaxel in
Pulmonary Adenocarcinoma N Engl J Med 2009; 361:947

Follow-up

Fukuoka M, Wu YL, Thongprasert S, Sunpaweravong P,
Leong SS, Sriuranpong V, et al. Biomarker analyses and
final overall survival results from a phase III,
randomized, open-label, first-line study of gefitinib versus
carboplatin/ paclitaxel in clinically selected patients with
advanced nonsmall cell lung cancer in Asia (IPASS).
Journal of Clinical Oncology 2011;29(21):2866—74

FIRST-
SIGNAL

Original

Han JY, Park K, Kim SW, Lee DH, Kim HY, Kim HT, et
al. First-SIGNAL.: first-line single-agent Iressa versus
gemcitabine and cisplatin trial in never-smokers with
adenocarcinoma of the lung. Journal of Clinical Oncology
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ITT Results for Study B (for Group 3)
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ITT Results for Study B (for Group 4)
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ITT Results for Study B (for Group 5)
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D-11: RPSFTM-adjusted analysis for Study A (Group 1)

Study A
Scenario True Mean Absolute | Proportional M.SE of Cover.age of the
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR

1 0.31 0.32 0.01 0% 0.06 86%

17 0.31 0.32 0.01 0% 0.06 92%

32 0.31 0.32 0.01 0% 0.07 93%
46 0.31 0.32 0.01 2% 0.08 96%

59 0.50 0.52 0.02 2% 0.08 90%

71 0.50 0.52 0.02 2% 0.09 93%

82 0.50 0.52 0.02 1% 0.09 93%
92 0.50 0.52 0.02 1% 0.11 95%
101 0.70 0.70 0.00 -1% 0.07 97%
109 0.70 0.70 0.00 -1% 0.07 98%
116 0.70 0.70 0.00 -2% 0.08 98%
122 0.70 0.70 0.00 -2% 0.09 97%
127 0.95 0.95 0.00 -1% 0.09 95%
131 0.95 0.95 0.00 -1% 0.11 96%
134 0.95 0.96 0.01 -1% 0.13 94%
136 0.95 0.96 0.01 -1% 0.15 95%

D-12: RPSFTM-adjusted analysis for Study A (Group 2)

Study A
Scenario | Trye Mean Absolute | Proportional M.SE O Cover'age GiEfir3
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
20 0.31 0.32 0.01 1% 0.07 91%
24 0.31 0.32 0.01 0% 0.06 91%
28 0.31 0.32 0.01 1% 0.07 91%
34 0.31 0.32 0.01 0% 0.07 94%
35 0.31 0.32 0.01 1% 0.08 93%
38 0.31 0.32 0.01 0% 0.07 94%
39 0.31 0.32 0.01 -1% 0.07 93%
42 0.31 0.32 0.01 0% 0.07 93%
43 0.31 0.32 0.01 0% 0.07 95%
47 0.31 0.32 0.01 0% 0.08 96%
48 0.31 0.33 0.02 1% 0.08 96%
49 0.31 0.32 0.01 -1% 0.08 97%
51 0.31 0.32 0.01 0% 0.08 97%
52 0.31 0.32 0.01 -2% 0.08 95%
53 0.31 0.32 0.01 -1% 0.08 95%
55 0.31 0.32 0.01 0% 0.08 97%
56 0.31 0.33 0.02 0% 0.08 96%
57 0.31 0.32 0.01 0% 0.08 96%
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Study A
Scenario True Mean Absolute | Proportional M.SE of Cover.age of the
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
74 0.50 0.52 0.02 1% 0.09 93%
78 0.50 0.52 0.02 1% 0.09 91%
84 0.50 0.52 0.02 1% 0.10 93%
85 0.50 0.52 0.02 2% 0.09 94%
88 0.50 0.52 0.02 1% 0.10 92%
89 0.50 0.52 0.02 1% 0.09 95%
93 0.50 0.52 0.02 1% 0.10 96%
94 0.50 0.52 0.02 1% 0.11 95%
95 0.50 0.52 0.02 1% 0.11 95%
97 0.50 0.52 0.02 1% 0.11 95%
98 0.50 0.52 0.02 1% 0.11 95%
99 0.50 0.52 0.02 0% 0.11 95%
112 0.70 0.70 0.00 -1% 0.08 97%
118 0.70 0.70 0.00 2% 0.08 97%
119 0.70 0.70 0.00 -1% 0.08 98%
123 0.70 0.70 0.00 -1% 0.10 98%
124 0.70 0.70 0.00 -1% 0.10 97%
125 0.70 0.70 0.00 -3% 0.09 97%

D-13: RPSFTM-adjusted analysis for Study A (Group 3)

Study A
Scenario | Trye Mean Absolute | Proportional M.SE O Cover'age GiEfir3
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
5 0.31 0.32 0.01 1% 0.06 87%
9 0.31 0.32 0.01 1% 0.06 87%
13 0.31 0.32 0.01 2% 0.06 88%
21 0.31 0.32 0.01 1% 0.07 91%
25 0.31 0.32 0.01 0% 0.06 92%
29 0.31 0.32 0.01 1% 0.06 93%
36 0.31 0.32 0.01 1% 0.07 94%
40 0.31 0.32 0.01 1% 0.07 93%
44 0.31 0.32 0.01 1% 0.08 92%
50 0.31 0.32 0.01 -1% 0.08 97%
54 0.31 0.32 0.01 -1% 0.08 96%
58 0.31 0.32 0.01 0% 0.08 96%
63 0.50 0.52 0.02 2% 0.08 91%
67 0.50 0.52 0.02 2% 0.08 90%
75 0.50 0.51 0.01 1% 0.08 93%
79 0.50 0.52 0.02 2% 0.09 92%
86 0.50 0.52 0.02 2% 0.10 94%
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Study A

Scenario | Trye Mean Absolute | Proportional MSE of Coverage of the
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
90 0.50 0.51 0.01 1% 0.09 95%
96 0.50 0.52 0.02 0% 0.10 96%
100 0.50 0.52 0.02 1% 0.11 95%
105 0.70 0.70 0.00 0% 0.07 96%
113 0.70 0.70 0.00 -1% 0.08 97%
120 0.70 0.70 0.00 -2% 0.08 98%
126 0.70 0.70 0.00 -2% 0.10 97%

D-14: RPSFTM-adjusted analysis for Study A (Group 4)

Study A
Scenario | Trye Mean Absolute | Proportional M.SE O Cover'age GiEfir3
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
6 0.31 0.32 0.01 1% 0.06 87%
7 0.31 0.32 0.01 0% 0.06 84%
8 0.31 0.32 0.01 0% 0.06 86%
10 0.31 0.32 0.01 1% 0.06 87%
11 0.31 0.32 0.01 1% 0.06 85%
12 0.31 0.32 0.01 1% 0.06 85%
14 0.31 0.32 0.01 2% 0.06 84%
15 0.31 0.32 0.01 1% 0.06 86%
16 0.31 0.32 0.01 2% 0.06 85%
22 0.31 0.32 0.01 1% 0.07 92%
23 0.31 0.32 0.01 0% 0.06 92%
26 0.31 0.32 0.01 1% 0.06 92%
27 0.31 0.32 0.01 1% 0.06 92%
30 0.31 0.32 0.01 1% 0.07 91%
31 0.31 0.32 0.01 -1% 0.07 90%
37 0.31 0.32 0.01 0% 0.07 94%
41 0.31 0.32 0.01 0% 0.07 94%
45 0.31 0.32 0.01 0% 0.07 93%
64 0.50 0.52 0.02 2% 0.08 91%
65 0.50 0.52 0.02 2% 0.08 89%
66 0.50 0.52 0.02 2% 0.08 91%
68 0.50 0.52 0.02 2% 0.08 90%
69 0.50 0.52 0.02 2% 0.08 90%
70 0.50 0.52 0.02 1% 0.08 90%
76 0.50 0.52 0.02 2% 0.09 93%
77 0.50 0.52 0.02 2% 0.09 92%
80 0.50 0.52 0.02 1% 0.09 93%
81 0.50 0.52 0.02 2% 0.09 93%
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Study A

Scenario | Trye Mean Absolute | Proportional MSE of Coverage of the
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
87 0.50 0.52 0.02 1% 0.09 94%
91 0.50 0.52 0.02 2% 0.10 93%
106 0.70 0.70 0.00 -1% 0.06 98%
107 0.70 0.70 0.00 -1% 0.07 96%
108 0.70 0.71 0.01 0% 0.07 97%
114 0.70 0.70 0.00 -1% 0.07 98%
115 0.70 0.70 0.00 -1% 0.07 98%
121 0.70 0.70 0.00 -1% 0.08 98%

D-15: RPSFTM-adjusted analysis for Study A (Group 5)

Study A
Scenario | Trye Mean Absolute | Proportional M.SE O Cover'age GiEfir3
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR

2 0.31 0.32 0.01 1% 0.06 85%
0.31 0.32 0.01 2% 0.06 85%

4 0.31 0.32 0.01 1% 0.06 86%
18 0.31 0.32 0.01 -1% 0.06 91%
19 0.31 0.32 0.01 0% 0.06 92%
33 0.31 0.32 0.01 -1% 0.07 93%
60 0.50 0.52 0.02 3% 0.09 89%
61 0.50 0.52 0.02 2% 0.08 90%
62 0.50 0.52 0.02 2% 0.08 90%
72 0.50 0.52 0.02 2% 0.09 94%
73 0.50 0.52 0.02 2% 0.09 93%
83 0.50 0.52 0.02 2% 0.10 94%
102 0.70 0.69 -0.01 -2% 0.06 97%
103 0.70 0.70 0.00 -1% 0.07 98%
104 0.70 0.70 0.00 0% 0.07 96%
110 0.70 0.70 0.00 -1% 0.07 97%
111 0.70 0.70 0.00 -1% 0.07 98%
117 0.70 0.70 0.00 2% 0.08 98%
128 0.95 0.95 0.00 -1% 0.10 96%
129 0.95 0.95 0.00 -1% 0.09 96%
130 0.95 0.95 0.00 -1% 0.10 96%
132 0.95 0.95 0.00 -1% 0.11 95%
133 0.95 0.95 0.00 -2% 0.11 96%
135 0.95 0.95 0.00 -2% 0.12 95%
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D-16: RPSFTM-adjusted analysis for Study B (Group 1)

Study B
Scenario True Mean Absolute | Proportional M.SE of Cover.age of the
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR

1 0.31 0.32 0.01 2% 0.06 86%

17 0.31 0.32 0.01 0% 0.07 92%

32 0.31 0.32 0.01 -1% 0.06 94%
46 0.31 0.33 0.02 1% 0.08 96%

59 0.50 0.52 0.02 1% 0.08 89%

71 0.50 0.52 0.02 2% 0.09 95%

82 0.50 0.52 0.02 2% 0.10 94%
92 0.50 0.52 0.02 0% 0.10 96%
101 0.70 0.70 0.00 -1% 0.07 96%
109 0.70 0.70 0.00 -1% 0.07 97%
116 0.70 0.70 0.00 -1% 0.08 97%
122 0.70 0.70 0.00 -2% 0.09 98%
127 0.95 0.95 0.00 -1% 0.09 95%
131 0.95 0.95 0.00 -1% 0.12 94%
134 0.95 0.95 0.00 2% 0.12 95%
136 0.95 0.95 0.00 2% 0.14 96%

D-17: RPSFTM-adjusted analysis for Study B (Group 2)

Study B
Scenario | Trye Mean Absolute | Proportional M.SE O Cover'age GiEfir3
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
20 0.50 0.52 0.02 2% 0.08 91%
24 0.70 0.70 0.00 0% 0.07 97%
28 0.95 0.95 0.00 -1% 0.10 96%
34 0.50 0.52 0.02 2% 0.08 89%
35 0.50 0.52 0.02 2% 0.09 93%
38 0.70 0.70 0.00 -1% 0.07 96%
39 0.70 0.70 0.00 -1% 0.08 97%
42 0.95 0.95 0.00 -1% 0.10 95%
43 0.95 0.95 0.00 -1% 0.11 96%
47 0.50 0.52 0.02 2% 0.08 90%
48 0.50 0.52 0.02 1% 0.09 94%
49 0.50 0.52 0.02 1% 0.10 94%
51 0.70 0.70 0.00 -1% 0.07 97%
52 0.70 0.70 0.00 -1% 0.08 97%
53 0.70 0.70 0.00 -1% 0.08 97%
55 0.95 0.96 0.01 0% 0.10 95%
56 0.95 0.95 0.00 2% 0.11 94%
57 0.95 0.95 0.00 -1% 0.12 95%
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Study B

Scenario True Mean Absolute | Proportional M.SE of Cover.age of the
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
74 0.70 0.70 0.00 -1% 0.07 96%
78 0.95 0.95 0.00 -1% 0.09 96%
84 0.70 0.70 0.00 -1% 0.06 98%
85 0.70 0.70 0.00 -2% 0.07 98%
88 0.95 0.95 0.00 -1% 0.10 95%
89 0.95 0.95 0.00 -1% 0.11 96%
93 0.70 0.70 0.00 -1% 0.06 97%
94 0.70 0.70 0.00 -1% 0.07 98%
95 0.70 0.70 0.00 -1% 0.08 98%
97 0.95 0.95 0.00 -1% 0.10 94%
98 0.95 0.94 -0.01 -2% 0.11 94%
99 0.95 0.95 0.00 2% 0.12 95%
112 0.95 0.95 0.00 -1% 0.10 95%
118 0.95 0.95 0.00 -1% 0.09 96%
119 0.95 0.95 0.00 2% 0.11 95%
123 0.95 0.95 0.00 -1% 0.09 95%
124 0.95 0.95 0.00 -1% 0.11 95%
125 0.95 0.95 0.00 -2% 0.12 95%

D-18: RPSFTM-adjusted analysis for Study B (Group 3)

Study B
Scenario | Trye Mean Absolute | Proportional M.SE O Cover'age GiEfir3
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
5 0.50 0.52 0.02 2% 0.08 91%
9 0.70 0.70 0.00 -1% 0.06 97%
13 0.95 0.95 0.00 -1% 0.10 94%
21 0.50 0.52 0.02 2% 0.09 94%
25 0.70 0.70 0.00 -1% 0.07 99%
29 0.95 0.95 0.00 -1% 0.11 96%
36 0.50 0.51 0.01 1% 0.09 95%
40 0.70 0.70 0.00 -1% 0.08 97%
44 0.95 0.94 -0.01 -3% 0.11 95%
50 0.50 0.52 0.02 1% 0.11 96%
54 0.70 0.70 0.00 -2% 0.09 97%
58 0.95 0.95 0.00 -2% 0.14 94%
63 0.70 0.70 0.00 -1% 0.07 96%
67 0.95 0.95 0.00 -1% 0.09 96%
75 0.70 0.70 0.00 -1% 0.08 97%
79 0.95 0.95 0.00 -2% 0.11 95%
86 0.70 0.70 0.00 -1% 0.09 96%
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Study B
Scenario True Mean Absolute | Proportional M.SE of Cover.age of the
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
90 0.95 0.95 0.00 2% 0.12 95%
96 0.70 0.70 0.00 2% 0.10 98%
100 0.95 0.95 0.00 2% 0.14 96%
105 0.95 0.95 0.00 -1% 0.10 95%
113 0.95 0.95 0.00 2% 0.11 94%
120 0.95 0.95 0.00 -1% 0.12 96%
126 0.95 0.95 0.00 -2% 0.15 96%

D-19: RPSFTM-adjusted analysis for Study B (Group 4)

Study B
Scenario | Trye Mean Absolute | Proportional M.SE O Cover'age GiEfir3
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
6 0.50 0.52 0.02 2% 0.09 92%
7 0.50 0.52 0.02 2% 0.10 93%
8 0.50 0.52 0.02 1% 0.11 95%
10 0.70 0.71 0.01 0% 0.08 98%
11 0.70 0.70 0.00 2% 0.08 97%
12 0.70 0.70 0.00 2% 0.09 98%
14 0.95 0.94 -0.01 -2% 0.10 96%
15 0.95 0.95 0.00 -1% 0.13 95%
16 0.95 0.95 0.00 2% 0.14 95%
22 0.50 0.51 0.01 0% 0.09 94%
23 0.50 0.52 0.02 1% 0.11 96%
26 0.70 0.70 0.00 -1% 0.09 97%
27 0.70 0.70 0.00 -1% 0.10 97%
30 0.95 0.94 -0.01 -2% 0.11 96%
31 0.95 0.95 0.00 -2% 0.14 95%
37 0.50 0.52 0.02 1% 0.10 96%
41 0.70 0.71 0.01 -1% 0.10 97%
45 0.95 0.95 0.00 2% 0.14 94%
64 0.70 0.70 0.00 -1% 0.07 98%
65 0.70 0.70 0.00 2% 0.08 98%
66 0.70 0.70 0.00 -1% 0.10 97%
68 0.95 0.94 -0.01 -3% 0.10 95%
69 0.95 0.95 0.00 -1% 0.12 95%
70 0.95 0.96 0.01 -1% 0.15 95%
76 0.70 0.69 -0.01 -2% 0.07 98%
77 0.70 0.70 0.00 -2% 0.09 97%
80 0.95 0.94 -0.01 -3% 0.11 95%
81 0.95 0.95 0.00 2% 0.14 95%
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Study B

Scenario | Trye Mean Absolute | Proportional MSE of Coverage of the
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR
87 0.70 0.70 0.00 -2% 0.10 97%
91 0.95 0.95 0.00 2% 0.14 96%
106 0.95 0.95 0.00 -1% 0.12 95%
107 0.95 0.95 0.00 -2% 0.12 95%
108 0.95 0.95 0.00 -2% 0.14 96%
114 0.95 0.95 0.00 -1% 0.12 96%
115 0.95 0.96 0.01 -1% 0.15 95%
121 0.95 0.95 0.00 -2% 0.14 95%

D-20: RPSFTM-adjusted analysis for Study B (Group 5)

Study B
Scenario | Trye Mean Absolute | Proportional M.SE O Cover'age GiEfir3
HR estimated bias bias estimated estimated
RPSFTM HR RPSFTM HR RPSFTM HR

2 0.31 0.32 0.01 0% 0.06 92%
0.31 0.32 0.01 0% 0.07 94%

4 0.31 0.32 0.01 -1% 0.08 96%
18 0.31 0.32 0.01 0% 0.07 94%
19 0.31 0.32 0.01 0% 0.08 96%
33 0.31 0.32 0.01 0% 0.08 96%
60 0.50 0.52 0.02 2% 0.09 92%
61 0.50 0.51 0.01 1% 0.09 94%
62 0.50 0.52 0.02 1% 0.10 96%
72 0.50 0.52 0.02 2% 0.10 92%
73 0.50 0.52 0.02 1% 0.10 96%
83 0.50 0.52 0.02 2% 0.11 96%
102 0.70 0.70 0.00 -1% 0.08 98%
103 0.70 0.70 0.00 -1% 0.08 97%
104 0.70 0.70 0.00 -2% 0.10 98%
110 0.70 0.70 0.00 -2% 0.08 98%
111 0.70 0.71 0.01 -1% 0.10 98%
117 0.70 0.70 0.00 -2% 0.09 98%
128 0.95 0.95 0.00 -1% 0.12 94%
129 0.95 0.95 0.00 -2% 0.13 94%
130 0.95 0.95 0.00 2% 0.14 96%
132 0.95 0.95 0.00 2% 0.12 95%
133 0.95 0.95 0.00 2% 0.14 95%
135 0.95 0.95 0.00 2% 0.13 95%
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D-21: Results of the IC using both ITT HRs (for Group 1)

Both ITT HR
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . P! MSE Coverage
HRs bias bias
1 1.00 1.00 0.00 2% 0.16 94%
17 1.00 1.01 0.01 -1% 0.17 94%
32 1.00 1.02 0.02 0% 0.17 95%
46 1.00 1.00 0.00 2% 0.15 95%
59 1.00 1.01 0.01 0% 0.15 95%
71 1.00 1.00 0.00 -1% 0.14 96%
82 1.00 1.00 0.00 -1% 0.14 95%
92 1.00 1.02 0.02 0% 0.16 95%
101 1.00 1.01 0.01 -1% 0.15 94%
109 1.00 1.01 0.01 -1% 0.14 95%
116 1.00 1.01 0.01 -1% 0.14 96%
122 1.00 1.01 0.01 -1% 0.14 96%
127 1.00 1.01 0.01 -1% 0.14 96%
131 1.00 1.01 0.01 -1% 0.14 95%
134 1.00 1.02 0.02 0% 0.14 96%
136 1.00 1.01 0.01 -1% 0.14 95%
D-22: Results of the IC using both ITT HRs (for Group 2)
Both ITT HR
IC calculated
Scenario from the t e Absolute Proportional
underlying IC HR . Lo MSE Coverage
HRs bias bias
20 0.62 0.85 0.23 26% 0.36 42%
24 0.44 0.64 0.20 30% 0.29 25%
28 0.33 0.49 0.17 32% 0.23 18%
34 0.62 0.94 0.32 33% 0.45 20%
35 0.62 0.85 0.23 25% 0.35 44%
38 0.44 0.71 0.27 37% 0.37 10%
39 0.44 0.68 0.24 34% 0.34 16%
42 0.33 0.54 0.22 39% 0.29 5%
43 0.33 0.54 0.22 39% 0.29 4%
47 0.62 1.08 0.46 41% 0.61 3%
48 0.62 0.97 0.35 35% 0.49 13%
49 0.62 0.92 0.30 31% 0.43 23%
51 0.44 0.81 0.37 44% 0.48 1%
52 0.44 0.78 0.33 42% 0.45 4%
53 0.44 0.75 0.31 40% 0.42 4%
55 0.33 0.62 0.29 46% 0.38 0%
56 0.33 0.62 0.30 47% 0.39 1%
57 0.33 0.61 0.29 46% 0.38 1%
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Both ITT HR

IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
74 0.71 0.84 0.13 14% 0.24 79%
78 0.53 0.65 0.12 17% 0.21 67%
84 0.71 0.90 0.18 19% 0.30 64%
85 0.71 0.86 0.15 15% 0.26 75%
88 0.53 0.68 0.16 22% 0.25 52%
89 0.53 0.68 0.15 21% 0.25 56%
93 0.71 0.96 0.25 24% 0.38 43%
94 0.71 0.92 0.21 21% 0.34 55%
95 0.71 0.90 0.19 20% 0.31 60%
97 0.53 0.73 0.21 27% 0.31 31%
98 0.53 0.74 0.21 27% 0.31 33%
99 0.53 0.73 0.20 27% 0.30 35%
112 0.74 0.81 0.07 7% 0.17 90%
118 0.74 0.82 0.08 9% 0.19 89%
119 0.74 0.82 0.09 9% 0.19 88%
123 0.74 0.86 0.12 13% 0.23 81%
124 0.74 0.85 0.11 12% 0.23 82%
125 0.74 0.84 0.10 11% 0.22 85%
D-23: Results of the IC using both ITT HRs (for Group 3)
IC calculated Both ITT HIR
Scenario from the t e Absolute Proportional
underlying IC HR . Lo MSE Coverage
HRs bias bias

5 0.62 0.70 0.08 10% 0.18 90%
9 0.44 0.53 0.09 15% 0.17 77%
13 033 0.41 0.08 18% 0.14 66%
1 0.62 0.77 0.15 18% 0.25 68%
25 0.44 0.61 0.17 27% 0.25 36%
29 0.33 0.49 0.16 32% 0.23 17%
36 0.62 0.81 0.19 2% 0.31 54%
40 0.44 0.67 0.23 32% 0.32 18%
44 033 0.55 0.22 39% 0.30 5%
50 0.62 0.85 0.23 26% 0.35 42%
54 0.44 0.74 0.29 39% 0.39 6%
53 033 0.62 0.29 46% 037 1%
63 071 0.77 0.05 5% 0.16 91%
67 0.53 0.58 0.06 8% 0.13 90%
75 071 0.81 0.09 10% 0.20 88%
79 053 0.65 0.12 18% 0.21 67%
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Both ITT HR

IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
36 0.71 0.84 0.12 13% 0.24 79%
90 0.53 0.68 0.15 21% 0.24 53%
9% 0.71 0.87 0.15 16% 0.27 1%
100 0.53 0.73 0.20 26% 0.30 35%
105 0.74 0.77 0.04 3% 0.14 95%
113 0.74 0.80 0.07 7% 0.17 91%
120 0.74 0.81 0.07 8% 0.18 90%
126 0.74 0.84 0.10 11% 0.22 84%
D-24: Results of the IC using both ITT HRs (for Group 4)
Both ITT HR
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
6 0.62 0.70 0.08 10% 0.18 90%
7 0.62 0.53 0.09 15% 0.17 77%
8 0.62 0.41 0.08 18% 0.14 66%
10 0.44 0.77 0.15 18% 0.25 68%
11 0.44 0.61 0.17 27% 0.25 36%
12 0.44 0.49 0.16 32% 0.23 17%
14 0.33 0.81 0.19 22% 0.31 54%
15 0.33 0.67 0.23 32% 0.32 18%
16 0.33 0.55 0.22 39% 0.30 5%
22 0.62 0.85 0.23 26% 0.35 2%
23 0.62 0.74 0.29 39% 0.39 6%
26 0.44 0.62 0.29 46% 0.37 1%
27 0.44 0.77 0.05 5% 0.16 91%
30 0.33 0.58 0.06 8% 0.13 90%
31 0.33 0.81 0.09 10% 0.20 88%
37 0.62 0.65 0.12 18% 0.21 67%
41 0.44 0.84 0.12 13% 0.24 79%
45 0.33 0.68 0.15 21% 0.24 53%
64 0.71 0.87 0.15 16% 0.27 1%
65 0.71 0.73 0.20 26% 0.30 35%
66 0.71 0.77 0.04 3% 0.14 95%
68 0.53 0.80 0.07 7% 0.17 91%
69 0.53 0.81 0.07 8% 0.18 90%
70 0.53 0.84 0.10 11% 0.22 84%
76 0.71 0.70 0.08 10% 0.18 90%
77 0.71 0.53 0.09 15% 0.17 77%
80 0.53 0.41 0.08 18% 0.14 66%
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Both ITT HR

IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
81 0.53 0.77 0.15 18% 0.25 68%
87 0.71 0.61 0.17 27% 0.25 36%
91 0.53 0.49 0.16 32% 0.23 17%
106 0.74 0.81 0.19 22% 0.31 54%
107 0.74 0.67 0.23 32% 0.32 18%
108 0.74 0.55 0.22 39% 0.30 5%
114 0.74 0.85 0.23 26% 0.35 42%
115 0.74 0.74 0.29 39% 0.39 6%
121 0.74 0.62 0.29 46% 0.37 1%
D-25: Results of the IC using both ITT HRs (for Group 5)
Both ITT HR
IC calculated
Scenario from the t e Absolute Proportional
underlying IC HR . Po! MSE Coverage
HRs bias bias
2 1.00 0.84 -0.16 -22% -0.04 74%
1.00 0.76 -0.24 -35% -0.13 49%
4 1.00 0.66 -0.34 -55% -0.24 17%
18 1.00 0.92 -0.08 -12% 0.05 91%
19 1.00 0.80 -0.20 -27% -0.08 66%
33 1.00 0.88 -0.12 -16% 0.01 84%
60 1.00 0.91 -0.09 -12% 0.04 88%
61 1.00 0.87 -0.13 -18% -0.01 80%
62 1.00 0.80 -0.20 -27% -0.09 63%
72 1.00 0.95 -0.05 -7% 0.08 93%
73 1.00 0.90 -0.10 -14% 0.02 86%
83 1.00 0.94 -0.06 -9% 0.06 92%
102 1.00 0.96 -0.04 -6% 0.08 94%
103 1.00 0.94 -0.06 -8% 0.07 92%
104 1.00 0.92 -0.08 -11% 0.04 88%
110 1.00 0.98 -0.02 -3% 0.11 95%
111 1.00 0.95 -0.05 -7% 0.07 93%
117 1.00 0.98 -0.02 -4% 0.10 95%
128 1.00 1.00 0.00 -1% 0.14 95%
129 1.00 1.00 0.00 -1% 0.14 95%
130 1.00 1.00 0.00 -2% 0.13 95%
132 1.00 1.01 0.01 -1% 0.14 95%
133 1.00 1.00 0.00 -1% 0.13 95%
135 1.00 1.00 0.00 -1% 0.13 95%
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D-26: Results of the IC using RPSFTM HR for Study A and ITT HR for Study B
(for Group 1)

Adjusted Study A & ITT Study B
IC calculated
Scenario from the t e Absolute Proportional
underlying IC HR . Lo MSE Coverage
HRs bias bias

1 1.00 0.84 -0.16 -24% 0.00 74%
17 1.00 0.70 -0.30 -50% -0.16 47%
32 1.00 0.63 -0.37 -65% -0.23 36%
46 1.00 0.55 -0.45 -93% -0.32 27%
59 1.00 0.95 -0.05 -8% 0.10 92%
71 1.00 0.85 -0.15 -21% -0.02 81%
82 1.00 0.81 -0.19 -28% -0.05 74%
92 1.00 0.76 -0.24 -37% -0.09 70%
101 1.00 0.97 -0.03 -5% 0.11 95%
109 1.00 0.93 -0.07 -10% 0.06 93%
116 1.00 0.90 -0.10 -13% 0.04 92%
122 1.00 0.88 -0.12 -17% 0.02 90%
127 1.00 1.01 0.01 -1% 0.14 96%
131 1.00 1.00 0.00 -2% 0.15 95%
134 1.00 1.01 0.01 2% 0.16 95%
136 1.00 1.00 0.00 -3% 0.18 94%

D-27: Results of the IC using RPSFTM HR for Study A and ITT HR for Study B

(for Group 2)
Adjusted Study A & ITT Study B
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
20 0.62 0.59 -0.03 -10% 0.09 91%
24 0.44 0.44 0.00 -5% 0.08 93%
28 0.33 0.34 0.01 0% 0.08 93%
34 0.62 0.59 -0.03 -10% 0.08 94%
35 0.62 0.53 -0.09 -22% 0.02 85%
38 0.44 0.44 0.00 -4% 0.09 94%
39 0.44 0.42 -0.02 -10% 0.07 92%
42 0.33 0.34 0.01 0% 0.08 95%
43 0.33 0.34 0.01 -1% 0.08 95%
47 0.62 0.59 -0.03 -10% 0.11 96%
48 0.62 0.54 -0.08 -22% 0.04 91%
49 0.62 0.50 -0.12 -30% 0.00 85%
51 0.44 0.45 0.00 -4% 0.10 97%
52 0.44 0.42 -0.02 -11% 0.08 94%
53 0.44 0.41 -0.03 -13% 0.07 95%
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Adjusted Study A & ITT Study B
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
55 0.33 0.34 0.01 -1% 0.09 96%
56 0.33 0.34 0.02 0% 0.10 96%
57 0.33 0.34 0.01 -2% 0.09 96%
74 0.71 0.71 0.00 -3% 0.11 94%
78 0.53 0.55 0.02 1% 0.11 93%
84 0.71 0.72 0.00 2% 0.13 95%
85 0.71 0.69 -0.03 -7% 0.09 94%
88 0.53 0.55 0.02 1% 0.12 94%
89 0.53 0.55 0.02 1% 0.11 95%
93 0.71 0.72 0.00 -3% 0.14 95%
94 0.71 0.69 -0.02 -8% 0.11 95%
95 0.71 0.68 -0.04 -10% 0.09 94%
97 0.53 0.55 0.02 0% 0.13 96%
98 0.53 0.55 0.03 1% 0.13 95%
99 0.53 0.54 0.02 -1% 0.13 95%
112 0.74 0.74 0.00 -2% 0.11 97%
118 0.74 0.74 0.00 -2% 0.11 97%
119 0.74 0.74 0.00 -1% 0.11 97%
123 0.74 0.75 0.01 -1% 0.13 97%
124 0.74 0.74 0.00 -2% 0.13 97%
125 0.74 0.73 -0.01 -4% 0.12 96%

D-28: Results of the IC using RPSFTM HR for Study A and ITT HR for Study B

(for Group 3)
Adjusted Study A & ITT Study B
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
5 0.62 0.58 -0.04 -10% 0.06 90%
9 0.44 0.44 0.00 -3% 0.08 91%
13 0.33 0.34 0.01 1% 0.07 90%
21 0.62 0.53 -0.09 -21% 0.01 84%
25 0.44 0.42 -0.02 -9% 0.06 93%
29 0.33 0.34 0.01 0% 0.07 93%
36 0.62 0.51 -0.11 -27% -0.01 82%
40 0.44 0.42 -0.03 -11% 0.06 93%
44 0.33 0.34 0.02 0% 0.09 93%
50 0.62 0.46 -0.16 -40% -0.05 77%
54 0.44 0.40 -0.04 -15% 0.05 94%
58 0.33 0.34 0.01 -1% 0.09 97%
63 0.71 0.72 0.00 -2% 0.12 93%




Adjusted Study A & ITT Study B
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
67 0.53 0.55 0.02 2% 0.10 93%
75 0.71 0.68 -0.04 -8% 0.07 93%
79 0.53 0.55 0.02 2% 0.11 94%
86 0.71 0.67 -0.04 -10% 0.07 92%
90 0.53 0.54 0.02 0% 0.11 95%
96 0.71 0.65 -0.07 -15% 0.05 92%
100 0.53 0.54 0.02 0% 0.12 96%
105 0.74 0.74 0.01 -1% 0.11 96%
113 0.74 0.74 0.00 -2% 0.11 97%
120 0.74 0.73 -0.01 -3% 0.10 97%
126 0.74 0.73 -0.01 -4% 0.12 96%

D-29: Results of the IC using RPSFTM HR for Study A and ITT HR for Study B

(for Group 4)
Adjusted Study A & ITT Study B
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
6 0.62 0.53 -0.09 -22% 0.00 76%
7 0.62 0.50 -0.12 -30% -0.03 64%
8 0.62 0.46 -0.16 -39% -0.07 48%
10 0.44 0.42 -0.02 -9% 0.05 89%
11 0.44 0.42 -0.02 -9% 0.05 87%
12 0.44 0.40 -0.04 -13% 0.03 86%
14 0.33 0.34 0.01 1% 0.08 90%
15 0.33 0.34 0.01 0% 0.07 90%
16 0.33 0.34 0.01 0% 0.07 89%
22 0.62 0.51 -0.11 -27% -0.02 77%
23 0.62 0.46 -0.16 -39% -0.07 61%
26 0.44 0.41 -0.03 -11% 0.05 91%
27 0.44 0.40 -0.04 -15% 0.03 90%
30 0.33 0.34 0.01 0% 0.08 93%
31 0.33 0.33 0.01 2% 0.08 90%
37 0.62 0.46 -0.16 -39% -0.06 68%
41 0.44 0.40 -0.04 -16% 0.04 91%
45 0.33 0.34 0.01 -1% 0.08 94%
64 0.71 0.68 -0.03 -7% 0.07 92%
65 0.71 0.67 -0.04 -9% 0.06 91%
66 0.71 0.65 -0.07 -13% 0.03 85%
68 0.53 0.55 0.02 2% 0.10 92%
69 0.53 0.54 0.02 1% 0.10 93%

LI



Adjusted Study A & ITT Study B
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . po! MSE Coverage
HRs bias bias
70 0.53 0.54 0.01 0% 0.09 93%
76 0.71 0.68 -0.04 -8% 0.08 92%
77 0.71 0.65 -0.06 -12% 0.04 91%
80 0.53 0.55 0.02 1% 0.11 94%
81 0.53 0.54 0.02 0% 0.10 95%
87 0.71 0.64 -0.07 -14% 0.04 90%
91 0.53 0.54 0.02 0% 0.11 95%
106 0.74 0.74 0.00 -1% 0.10 96%
107 0.74 0.74 0.00 -2% 0.10 96%
108 0.74 0.74 0.00 -2% 0.10 96%
114 0.74 0.73 0.00 -3% 0.10 97%
115 0.74 0.73 -0.01 -3% 0.09 98%
121 0.74 0.73 -0.01 -3% 0.10 98%

D-30: Results of the IC using RPSFTM HR for Study A and ITT HR for Study B

(for Group 5)
Adjusted Study A & ITT Study B
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . P! MSE Coverage
HRs bias bias

2 1.00 0.70 -0.30 -48% -0.17 38%
3 1.00 0.63 -0.37 -63% -0.25 18%
4 1.00 0.55 -0.45 -87% -0.35 4%
18 1.00 0.62 -0.38 -67% -0.25 27%
19 1.00 0.55 -0.45 -89% -0.34 10%
33 1.00 0.55 -0.45 -92% -0.33 13%
60 1.00 0.86 -0.14 -20% -0.01 78%
61 1.00 0.81 -0.19 -26% -0.06 66%
62 1.00 0.75 -0.25 -36% -0.13 48%
72 1.00 0.80 -0.20 -28% -0.06 69%
73 1.00 0.76 -0.24 -36% -0.12 57%
83 1.00 0.75 -0.25 -37% -0.12 60%
102 1.00 0.92 -0.08 -11% 0.03 92%
103 1.00 0.91 -0.09 -12% 0.02 89%
104 1.00 0.88 -0.12 -16% 0.00 85%
110 1.00 0.90 -0.10 -13% 0.03 91%
111 1.00 0.87 -0.13 -17% -0.01 86%
117 1.00 0.88 -0.12 -17% 0.01 89%
128 1.00 1.00 0.00 -2% 0.14 95%
129 1.00 1.00 0.00 -2% 0.14 94%
130 1.00 1.00 0.00 -2% 0.13 95%
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IC calculated
from the true

Adjusted Study A & ITT Study B

Scenario . g
underlying | jcpgr | Abselute | Proportional MSE Coverage
HRs bias bias
132 1.00 1.00 0.00 2% 0.15 95%
133 1.00 0.99 -0.01 -3% 0.14 94%
135 1.00 0.99 -0.01 -3% 0.15 94%

D-31: Results of the IC using ITT HR for Study A and RPSFTM HR for Study B
(for Group 1)

ITT Study A & Adjusted Study B
IC calculated
Scenario from the t e Absolute Proportional
underlying IC HR . PO MSE Coverage
HRs bias bias

1 0.21 15% 0.45 77% 0.21 15%
17 0.50 31% 0.83 48% 0.50 31%
32 0.68 38% 1.04 31% 0.68 38%
46 0.87 44% 1.31 30% 0.87 44%
59 0.09 6% 0.26 91% 0.09 6%
71 0.20 15% 0.39 84% 0.20 15%
82 0.27 19% 0.51 76% 0.27 19%
92 0.39 25% 0.67 66% 0.39 25%
101 0.06 3% 0.20 94% 0.06 3%
109 0.10 7% 0.26 94% 0.10 7%
116 0.13 9% 0.29 92% 0.13 9%
122 0.17 12% 0.35 91% 0.17 12%
127 0.02 0% 0.15 96% 0.02 0%
131 0.02 0% 0.17 94% 0.02 0%
134 0.04 1% 0.19 95% 0.04 1%
136 0.03 1% 0.21 95% 0.03 1%

D-32: Results of the IC using ITT HR for Study A and RPSFTM HR for Study B

(for Group 2)
IC calculated ITT Study A & Adjusted Study B
Scenario from the true .
underlying | jcyr | Abselute | Proportional MSE Coverage

HRs bias bias
20 0.62 1.21 0.21 15% 0.45 77%
24 0.44 1.50 0.50 31% 0.83 48%
28 0.33 1.68 0.68 38% 1.04 31%
34 0.62 1.87 0.87 44% 131 30%
35 0.62 1.09 0.09 6% 0.26 91%
38 0.44 1.20 0.20 15% 0.39 84%
39 0.44 1.27 0.27 19% 0.51 76%
42 0.33 1.39 0.39 25% 0.67 66%

LIII




IC calculated
from the true

ITT Study A & Adjusted Study B

Scenario underlying ICHR | Absolute Proportional MSE Coverage
HRs bias bias
43 0.33 1.06 0.06 3% 0.20 94%
47 0.62 1.10 0.10 7% 0.26 94%
48 0.62 1.13 0.13 9% 0.29 92%
49 0.62 1.17 0.17 12% 0.35 91%
51 0.44 1.02 0.02 0% 0.15 96%
52 0.44 1.02 0.02 0% 0.17 94%
53 0.44 1.04 0.04 1% 0.19 95%
55 0.33 1.03 0.03 1% 0.21 95%
56 0.33 0.92 0.30 31% 0.45 29%
57 0.33 0.67 0.22 32% 0.32 22%
74 0.71 0.49 0.17 33% 0.24 24%
78 0.53 1.01 0.39 37% 0.55 12%
84 0.71 1.02 0.40 37% 0.58 19%
85 0.71 0.74 0.30 39% 0.41 8%
88 0.53 0.75 0.30 39% 0.42 13%
89 0.53 0.55 0.22 39% 0.30 8%
93 0.71 0.55 0.22 39% 0.31 14%
94 0.71 1.16 0.54 45% 0.72 2%
95 0.71 1.16 0.54 45% 0.75 4%
97 0.53 1.16 0.54 45% 0.75 8%
98 0.53 0.84 0.40 46% 0.52 1%
99 0.53 0.85 0.40 46% 0.54 3%
112 0.74 0.84 0.40 46% 0.53 4%
118 0.74 0.62 0.30 46% 0.39 1%
119 0.74 0.63 0.31 47% 0.41 3%
123 0.74 0.62 0.30 46% 0.40 7%
124 0.74 0.88 0.16 17% 0.28 74%
125 0.74 0.65 0.13 18% 0.21 69%

D-33: Results of the IC using ITT HR for Study A and RPSFTM HR for Study B

(for Group 3)
IC calculated ITT Study A & Adjusted Study B
Scenario from the t e Absolute Proportional
underlying IC HR . PO MSE Coverage
HRs bias bias
5 0.62 0.75 0.13 16% 0.25 78%
9 0.44 0.55 0.11 18% 0.19 71%
13 0.33 0.41 0.08 19% 0.14 68%
21 0.62 0.92 0.30 31% 0.44 36%
25 0.44 0.67 0.23 33% 0.32 28%
29 0.33 0.50 0.17 33% 0.25 31%
36 0.62 1.03 0.41 38% 0.59 22%
40 0.44 0.75 0.31 39% 0.42 14%
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IC calculated
from the true

ITT Study A & Adjusted Study B

Scenario underlying IC HR Abs'olute Propo'rtional MSE Coverage
HRs ias bias
44 0.33 0.56 0.23 40% 0.32 16%
50 0.62 1.16 0.54 45% 0.77 15%
54 0.44 0.85 0.41 47% 0.55 7%
58 0.33 0.63 0.30 47% 0.41 9%
63 0.71 0.80 0.08 9% 0.20 89%
67 0.53 0.59 0.06 9% 0.14 89%
75 0.71 0.88 0.17 17% 0.29 77%
79 0.53 0.66 0.13 18% 0.23 72%
86 0.71 0.94 0.22 22% 0.37 66%
90 0.53 0.69 0.17 22% 0.28 62%
96 0.71 1.01 0.29 27% 0.46 56%
100 0.53 0.75 0.22 27% 0.35 54%
105 0.74 0.78 0.04 4% 0.15 95%
113 0.74 0.82 0.08 8% 0.20 91%
120 0.74 0.82 0.09 9% 0.21 90%
126 0.74 0.86 0.12 12% 0.27 86%

D-34: Results of the IC using ITT HR for Study A and RPSFTM HR for Study B

(for Group 4)
IC calculated ITT Study A & Adjusted Study B
Scenario from the t e Absolute Proportional
underlying IC HR . PO MSE Coverage
HRs bias bias
6 0.62 0.75 0.13 15% 0.27 82%
7 0.62 0.75 0.13 15% 0.28 83%
8 0.62 0.75 0.13 14% 0.29 88%
10 0.44 0.55 0.11 18% 0.19 76%
11 0.44 0.56 0.12 19% 0.20 74%
12 0.44 0.56 0.12 19% 0.21 79%
14 0.33 0.41 0.09 19% 0.15 70%
15 0.33 0.41 0.09 19% 0.15 74%
16 0.33 0.41 0.09 19% 0.16 77%
22 0.62 0.93 0.31 31% 0.48 42%
23 0.62 0.92 0.30 30% 0.48 54%
26 0.44 0.67 0.23 32% 0.33 34%
27 0.44 0.67 0.23 32% 0.35 41%
30 0.33 0.50 0.18 33% 0.26 32%
31 0.33 0.50 0.17 33% 0.27 42%
37 0.62 1.02 0.40 37% 0.60 35%
41 0.44 0.74 0.30 39% 0.42 24%
45 0.33 0.55 0.23 39% 0.33 25%
64 0.71 0.80 0.08 9% 0.20 92%
65 0.71 0.81 0.09 9% 0.21 92%
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IC calculated
from the true

ITT Study A & Adjusted Study B

Scenario underlying ICHR | Absolute Proportional MSE Coverage
HRs bias bias
66 0.71 0.80 0.09 9% 0.22 93%
68 0.53 0.59 0.07 9% 0.16 87%
69 0.53 0.59 0.06 9% 0.16 90%
70 0.53 0.59 0.06 8% 0.17 90%
76 0.71 0.90 0.18 19% 0.32 76%
77 0.71 0.90 0.18 18% 0.33 79%
80 0.53 0.66 0.13 18% 0.24 73%
81 0.53 0.66 0.13 18% 0.25 77%
87 0.71 0.94 0.22 22% 0.38 73%
91 0.53 0.69 0.17 22% 0.28 68%
106 0.74 0.78 0.04 3% 0.16 95%
107 0.74 0.78 0.04 3% 0.17 94%
108 0.74 0.79 0.05 3% 0.19 94%
114 0.74 0.81 0.08 7% 0.20 91%
115 0.74 0.81 0.07 7% 0.21 93%
121 0.74 0.83 0.10 9% 0.24 90%

D-35: Results of the IC using ITT HR for Study A and RPSFTM HR for Study B

(for Group 5)
IC calculated ITT Study A & Adjusted Study B
Scenario from the t e Absolute Proportional
underlying IC HR . PO MSE Coverage
HRs bias bias
2 1.00 1.24 0.24 16% 0.49 82%
3 1.00 1.24 0.24 16% 0.52 84%
4 1.00 1.25 0.25 16% 0.54 90%
18 1.00 1.50 0.50 30% 0.83 54%
19 1.00 1.51 0.51 30% 0.86 69%
33 1.00 1.66 0.66 37% 1.07 52%
60 1.00 1.09 0.09 5% 0.27 92%
61 1.00 1.10 0.10 6% 0.30 93%
62 1.00 1.10 0.10 6% 0.31 95%
72 1.00 1.20 0.20 14% 0.42 84%
73 1.00 1.22 0.22 15% 0.46 86%
83 1.00 1.28 0.28 19% 0.53 81%
102 1.00 1.04 0.04 2% 0.19 97%
103 1.00 1.06 0.06 3% 0.21 97%
104 1.00 1.06 0.06 3% 0.24 96%
110 1.00 1.10 0.10 7% 0.26 93%
111 1.00 1.10 0.10 6% 0.27 95%
117 1.00 1.13 0.13 10% 0.31 93%
128 1.00 1.02 0.02 -1% 0.17 95%
129 1.00 1.02 0.02 0% 0.19 94%
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IC calculated
from the true

ITT Study A & Adjusted Study B

Scenario underlying ICHR | Absolute Proportional MSE Coverage
HRs bias bias
130 1.00 1.02 0.02 -1% 0.20 95%
132 1.00 1.03 0.03 0% 0.19 95%
133 1.00 1.03 0.03 0% 0.20 96%
135 1.00 1.03 0.03 0% 0.20 95%
D-36: Results of the IC using both RPSFTM HRs (for Group 1)
Both Adjusted
IC calculated
Scenario from the t e Absolute Proportional
underlying IC HR . PO MSE Coverage
HRs bias bias
1 1.00 1.01 0.01 4% 0.24 87%
17 1.00 1.03 0.03 3% 0.30 92%
32 1.00 1.04 0.04 2% 0.31 95%
46 1.00 1.02 0.02 1% 0.33 97%
59 1.00 1.02 0.02 -1% 0.20 91%
71 1.00 1.01 0.01 2% 0.20 95%
82 1.00 1.02 0.02 -3% 0.24 94%
92 1.00 1.04 0.04 2% 0.30 97%
101 1.00 1.01 0.01 -1% 0.15 97%
109 1.00 1.01 0.01 -1% 0.16 97%
116 1.00 1.01 0.01 -1% 0.18 98%
122 1.00 1.02 0.02 -1% 0.21 98%
127 1.00 1.01 0.01 -1% 0.16 96%
131 1.00 1.01 0.01 2% 0.18 95%
134 1.00 1.03 0.03 0% 0.21 96%
136 1.00 1.03 0.03 2% 0.24 95%
D-37: Results of the IC using both RPSFTM HRs (for Group 2)
Both Adjusted
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . L MSE Coverage
HRs bias bias
20 0.62 0.63 0.01 3% 0.15 90%
24 0.44 0.46 0.01 -1% 0.10 93%
28 0.33 0.34 0.02 1% 0.08 93%
34 0.62 0.63 0.01 -3% 0.15 94%
35 0.62 0.64 0.02 -3% 0.17 94%
38 0.44 0.46 0.02 0% 0.11 96%
39 0.44 0.46 0.02 0% 0.12 95%
42 0.33 0.34 0.01 0% 0.09 95%
43 0.33 0.34 0.02 0% 0.09 95%
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IC calculated
from the true

Both Adjusted

Scenario | underlying | cpr | Abselute | Proportional MSE Coverage
HRs bias bias
47 0.62 0.64 0.02 -3% 0.17 96%
48 0.62 0.64 0.02 -3% 0.18 96%
49 0.62 0.63 0.01 -4% 0.18 96%
51 0.44 0.46 0.02 0% 0.13 97%
52 0.44 0.46 0.02 -2% 0.13 95%
53 0.44 0.46 0.02 -1% 0.13 97%
55 0.33 0.34 0.01 -1% 0.09 97%
56 0.33 0.35 0.02 0% 0.11 95%
57 0.33 0.34 0.02 -1% 0.10 96%
74 0.71 0.74 0.03 1% 0.15 95%
78 0.53 0.55 0.02 2% 0.11 94%
84 0.71 0.75 0.03 2% 0.16 95%
85 0.71 0.75 0.04 2% 0.17 97%
88 0.53 0.55 0.03 2% 0.12 94%
89 0.53 0.55 0.03 1% 0.13 95%
93 0.71 0.75 0.03 1% 0.18 96%
94 0.71 0.76 0.04 1% 0.20 96%
95 0.71 0.76 0.04 1% 0.20 97%
97 0.53 0.55 0.03 1% 0.14 96%
98 0.53 0.56 0.03 2% 0.15 96%
99 0.53 0.55 0.03 1% 0.15 95%
112 0.74 0.74 0.01 -1% 0.11 97%
118 0.74 0.74 0.00 -2% 0.12 97%
119 0.74 0.75 0.02 -1% 0.14 97%
123 0.74 0.75 0.01 -1% 0.14 97%
124 0.74 0.75 0.01 -1% 0.15 97%
125 0.74 0.74 0.01 -2% 0.15 96%
D-38: Results of the IC using both RPSFTM HRs (for Group 3)
Both Adjusted
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . Po! MSE Coverage
HRs bias bias

5 0.62 0.62 0.00 -3% 0.12 90%
9 0.44 0.46 0.02 1% 0.10 91%
13 0.33 0.34 0.02 2% 0.08 91%
21 0.62 0.63 0.01 -2% 0.14 94%
25 0.44 0.46 0.02 0% 0.10 96%
29 0.33 0.34 0.01 0% 0.08 93%
36 0.62 0.64 0.02 -2% 0.17 94%
40 0.44 0.47 0.03 1% 0.13 95%
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IC calculated
from the true

Both Adjusted

Scenario | underlying | cpr | Abselute | Proportional MSE Coverage
HRs bias bias
44 0.33 0.35 0.02 2% 0.10 92%
50 0.62 0.63 0.01 -4% 0.18 97%
54 0.44 0.47 0.03 0% 0.14 97%
58 0.33 0.35 0.02 0% 0.11 96%
63 0.71 0.75 0.03 2% 0.15 94%
67 0.53 0.55 0.02 2% 0.11 93%
75 0.71 0.74 0.03 1% 0.16 95%
79 0.53 0.56 0.03 3% 0.13 94%
86 0.71 0.75 0.04 1% 0.18 96%
90 0.53 0.55 0.03 1% 0.13 95%
96 0.71 0.75 0.03 0% 0.19 97%
100 0.53 0.56 0.03 1% 0.15 95%
105 0.74 0.75 0.01 0% 0.12 96%
113 0.74 0.75 0.01 -1% 0.13 97%
120 0.74 0.74 0.00 2% 0.13 96%
126 0.74 0.75 0.01 2% 0.16 97%
D-39: Results of the IC using both RPSFTM HRs (for Group 4)
Both Adjusted
IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . Po! MSE Coverage
HRs bias bias

6 0.62 0.63 0.01 2% 0.14 92%
7 0.62 0.63 0.01 -4% 0.15 91%
8 0.62 0.63 0.01 -4% 0.16 92%
10 0.44 0.46 0.02 0% 0.10 93%
11 0.44 0.47 0.03 2% 0.12 92%
12 0.44 0.47 0.03 1% 0.12 94%
14 0.33 0.35 0.02 2% 0.09 91%
15 0.33 0.34 0.02 1% 0.09 91%
16 0.33 0.35 0.02 2% 0.09 91%
22 0.62 0.64 0.02 -1% 0.16 94%
23 0.62 0.63 0.01 -4% 0.16 95%
26 0.44 0.46 0.02 0% 0.11 95%
27 0.44 0.46 0.02 0% 0.12 95%
30 0.33 0.35 0.02 1% 0.09 92%
31 0.33 0.34 0.02 -1% 0.10 92%
37 0.62 0.64 0.02 -4% 0.17 95%
41 0.44 0.46 0.02 -1% 0.12 96%
45 0.33 0.35 0.02 0% 0.10 95%
64 0.71 0.75 0.03 2% 0.15 95%
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Both Adjusted

IC calculated
Scenario from the .true Absolute Proportional
underlying IC HR . L MSE Coverage
HRs bias bias
65 0.71 0.75 0.04 3% 0.17 95%
66 0.71 0.75 0.04 2% 0.17 95%
68 0.53 0.56 0.03 3% 0.12 91%
69 0.53 0.55 0.03 2% 0.12 94%
70 0.53 0.55 0.02 0% 0.13 93%
76 0.71 0.76 0.05 3% 0.18 95%
77 0.71 0.76 0.04 2% 0.19 96%
80 0.53 0.56 0.03 2% 0.13 94%
81 0.53 0.56 0.03 2% 0.14 95%
87 0.71 0.75 0.03 1% 0.18 97%
91 0.53 0.56 0.03 1% 0.14 95%
106 0.74 0.75 0.01 -1% 0.12 96%
107 0.74 0.75 0.01 -1% 0.13 96%
108 0.74 0.76 0.02 -1% 0.15 96%
114 0.74 0.75 0.01 -2% 0.13 97%
115 0.74 0.75 0.01 -2% 0.14 97%
121 0.74 0.75 0.01 -2% 0.15 97%
D-40: Results of the IC using both RPSFTM HRs (for Group 5)
Both Adjusted
IC calculated
Scenario from the t e Absolute Proportional
underlying IC HR . PO MSE Coverage
HRs bias bias

2 1.00 1.04 0.04 -2% 0.28 91%
3 1.00 1.04 0.04 -2% 0.30 92%
4 1.00 1.05 0.05 -2% 0.32 94%
18 1.00 1.03 0.03 -4% 0.29 94%
19 1.00 1.03 0.03 -4% 0.31 96%
33 1.00 1.03 0.03 -5% 0.33 95%
60 1.00 1.02 0.02 -1% 0.21 93%
61 1.00 1.03 0.03 -1% 0.23 94%
62 1.00 1.03 0.03 -1% 0.24 96%
72 1.00 1.01 0.01 -3% 0.22 94%
73 1.00 1.04 0.04 -1% 0.26 97%
83 1.00 1.03 0.03 -2% 0.26 95%
102 1.00 1.00 0.00 -2% 0.14 99%
103 1.00 1.02 0.02 -1% 0.17 98%
104 1.00 1.02 0.02 -1% 0.19 97%
110 1.00 1.01 0.01 -1% 0.17 98%
111 1.00 1.01 0.01 -2% 0.17 98%
117 1.00 1.02 0.02 -1% 0.19 98%
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Both Adjusted

IC calculated
Scenario from the true .
underlying IC HR Absolute Propo'rtlonal MSE Coverage

HRs bias bias
128 1.00 1.01 0.01 -1% 0.17 95%
129 1.00 1.02 0.02 -1% 0.19 94%
130 1.00 1.02 0.02 -1% 0.20 95%
132 1.00 1.02 0.02 -1% 0.19 95%
133 1.00 1.02 0.02 2% 0.20 96%
135 1.00 1.02 0.02 2% 0.21 95%
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Appendix E: Illustrative Example: Coordinates and Model
Fitting
E-1: Comparison of extracted coordinates to the IPD

(top: extracted coordinates compared to IPD; bottom: Kaplan-Meier curve formed by

joining up the coordinates)

Kaplan-Meier survival estimates
Comparison of the IPD the curve constructed using the coordinates
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E-2: Comparison of models with different degrees of freedom
Model fit — showing model fit for 3, 4, 5, 6, 7, 8, 10 degrees of freedom. The knot locations

used applied knots based on evenly spaced percentiles.

Models with 3 df Models with 4 df
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E-3: Model fit statistics
The follow table shows the model fit statistics using the AIC and BIC for the models

fitted with different degrees of freedom.

Best Photon Therapy Neutron Therapy
models DF in AIC DF in BIC DF in AIC DF in BIC
model value model value model value model value
1 9 -141.6 4 -131.4 4 -21.5 3 -10.6
2 5 -141.0 5 -129.7 5 -20.8 4 -10.5
3 4 -140.7 6 -125.7 3 -19.3 5 -7.7
4 8 -139.6 7 -123.3 6 -18.7 6 -3.3
5 6 -138.8 9 -122.9 7 -17.4 7 0.1
6 7 -138.3 8 -122.8 8 -15.7 8 4.0
7 10 -137.0 10 -116.5 9 -14.4 9 7.5
8 3 -97.0 3 -89.51 10 -13.7 10 10.4

E-4: Discussion on the ‘best model’

All the information from the table in D-3 was considered, along with visual inspection of
the curves (D-2). Whilst the photon therapy, the AIC indicates the model with nine
degrees of freedom to be the best, there are very little differences between this model and
the models with four or five degrees of freedom. This is noticed within the BIC, which
suggests that the extra complexity of the model with nine degrees is not necessary,
highlighting the model with only four as the preferred. Since visual inspection shows the
model with four degrees of freedom to fit well, and given relatively small gains from

using more complex model, four degrees of freedom were selected for the final model.

For the neutron therapy group, the models with a lower number of degrees of freedom
were selected both for the AIC and BIC. The model with four degrees of freedom is
considered the best model from the AIC and second best by the BIC; this last criterion
selecting the model with three degrees as being the best. However, on visual inspection
the model with four degrees of freedom appears to fit the data more closely, and hence

on this occasion the added complexity is justified.

Therefore, both treatment arms used models with four degrees of freedom.
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E-5: Examination of different knot locations for 4 df

Different knot positions
for Photon Therapy
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A variety of different knot positions were used. Based on visual inspection, for the
Neutron Therapy group the change in knot positions made very different to the final
curve, and most of the curves overlaid each other. For the photon group, one example,

where the interior knot locations (i.e. knots 2, 3 and 4) were evenly distributed between
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the boundary knots (fixed from the default values), gave some slightly more noticeable

departures.

Example 1: Default knot positions — knot positions based on evenly spaced percentiles
(e.g. at 20™, 40™ 60™ and 80™ percentile — double check)

Example 2: Default knot positions for the alternative therapy (e.g. Neutron therapy knot
positions for the photon therapy group)

Example 3: Boundary knots were fixed and interior knots evenly distributed between
them (calculated on the log-time scale)

Example 4: Knot positions were based on both sets of time coordinates to give a consistent

estimate for both models
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Appendix F: Reproducibility Study

F-1: Instructions for data extraction (Method A: Guyot; Method B: Simulation)

Where to take points: Methods

Method A.

1. Set up the dataset
2. Take points at the event times (i.e. at the bottom of each

step in the curve — see Figure 1). Where there are dotted or

Click here

(Where the arrows are)

thick lines, you may have to guess roughly where the event

occurred.

Figure 1: Where to take
a point for an event time

NOTE: You might well have less points than the number of events

but you certainly should not have more points than events

Method B.

1. Setup the dataset

2. Take points according to the following instructions:

a.

LXIX

Aim to capture the shape of the curve — you don’t need to click at every
event time (the bottom of each step — as shown in the Figure 1 above)

Take points throughout the entire time span

Take at least 60 points and no more than 500 — you can see the number of
points selected on the right hand side of the screen next to ‘points’

Take more points, where and when there are many events / many steps or in
the curve (usually at the start of the timescale). This can also include a very
sharp drop at the start of the curve.

Towards the end of the time span (in the tail of the distribution), only click in
the midpoint of the step as shown in Figure 2

Ensure there is an estimate for the survival before any time after time = 0,
where the ‘numbers at risk’ are given

Avoid only taking points at evenly spaced intervals



LXX

h. Treatment groups from the same trial do not need to have the same number

of points Do not try to click on every single point on the curve
Where there is an exceptionally sharp drop at
the start of the curve, take several points at
(where the x is - in the midpoint of the step)

different survival times along this drop (this

may not necessarily be at different time |

points). '_|

When only 60 to 80 points have been taken, —
Figure 2. Where to take
approximately 15 - 20 of these should be points in the tail

within the first interval of the numbers at risk table (if given). They do not

have to be at event times.



F-2: Instructions for data extraction (Method C: Simulation; Method D: Guyot)

Where to take points: Methods

1. Setup the dataset
2. Take points according to the following instructions:
a. Aim to capture the shape of the curve — you don’t need to click at every
event time (the bottom of each step — as shown in the Figure 2 below)
b. Take points throughout the entire time span
c. Take at least 60 points and no more than 500 rokansshy s Tnthemiciot s

— you can see the number of points selected

on the right hand side of the screen next to |

‘points’ L

d. Take more points, where and when there are Figure 1. Where to take
many events / many steps or in the curve points in the tail
(usually at the start of the timescale). This can also include a very sharp drop
at the start of the curve.

e. Towards the end of the time span (in the tail of the distribution), only click in
the midpoint of the step as shown in Figure 1

f. Ensure there is an estimate for the survival before any time after time = 0,
where the ‘numbers at risk’ are given

g. Avoid only taking points at evenly spaced intervals

h. Treatment groups from the same trial do not need to have the same number
of points Do not try to click on every single point on the curve

1. Where there is an exceptionally sharp drop at the start of the curve, take
several points at different survival times along this drop (this may not
necessarily be at different time points).

j. When only 60 to 80 points have been taken, approximately 15 - 20 of these
should be within the first interval of the numbers at risk table (if given).

They do not have to be at event times.
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Method D.
Click here

(Wheretheirjcwsire)
1. Setup the dataset
2. Take points at the event times (i.e. at the bottom of each

step in the curve — see Figure 2). Where there are dotted or

thick lines, may have to guess roughly where the event
[k Tines, yot may have fo gu HERy W v Figure 2: Where to take

occurred. a point for an event time

NOTE: You might well have less points than the number of events

but you certainly should not have more points than events
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F-3: Results for the individual participants

Example 1
Method: Guyot Simulation approach
Participant Hazard ratio Restricted mean survival time Hazz'lrd Restricted mean survival time
Control group New group ratio Control group New group
IPD 0.516 22.667 25.610 0.516 22.667 25.610
1 0.636 25.622 27.756 0.580 22.774 25.680
2 0.657 25.781 27.879 0.453 22.589 26.101
3 0.884 25.659 27.765 0.388 22.737 28.556
4 0.634 25.535 27.735 0.524 22.736 25.565
5 0.497 26.144 28.68 0.532 22.767 25.586
6 0.875 25.740 28.247 0.524 22.638 25.547
Average 0.697 25.747 28.012 0.496 22.707 26.172
Range 0.497 - 0.884 25.535-26.144  27.735—-28.689 | 0.388-0.580  22.589-22.775  25.547-28.556
Example 2
Method: Guyot Simulation approach
Participant Hazard ratio Restricted mean survival time Hazz'lrd Restricted mean survival time
Control group New group ratio Control group New group
IPD 0.580 4.307 6.147 0.580 4.307 6.147
1 0.563 4.498 6.318 0.580 4330 5.986
2 0.579 4.657 6.294 0.585 4.359 6.044
3 0.581 4572 6.286 0.589 4258 6.007
4 0.578 4.467 6.208 0.577 4277 6.055
5 0.588 7.108 7.909 0.552 4.612 6.308
6 0.622 4.698 6.098 0.571 4.186 5.891
Average 0.585 5.000 6.519 0.576 4.337 6.049
Range 0.563—0.622 4.467—-7.108 6.098 — 7.909 0.552 - 0.589 4.186-4.612 5.891-6.308
Example 3
Method: Guyot Simulation approach
Restricted mean survival time Hazard Restricted mean survival time
Participant Hazard ratio .
Control group New group ratio Control group New group
IPD 0.881 12.585 14.138 0.881 12.585 14.138
1 0.892 12.648 14.234 0.895 12.491 14.044
2 0.886 12.527 14.134 0.899 12.535 14.092
3 0.875 12.818 14.383 0.874 12.534 14.157
4 0911 12.865 13.954 0.873 12.573 14.041
5 0.924 14.098 15.030 0.890 12.344 14.119
6 0.650 13.152 18.639 0.906 12.556 14.114
Average 0.856 13.018 15.062 0.889 12.506 14.094
Range 0.650—0.924 12.527-14.098  13.954—-18.639 | 0.873-0.906  12.344-12.573  14.041 - 14.157
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F-4: Results for the individual participants, stratified by method extraction order

Example 1
Method: Guyot Simulation approach
Extracting . Hazard Restricted mean survival time Hazard Restricted mean survival time
order Participant ratio Control group New group ratio Control group  New group
- IPD 0.516 22.667 25.610 0.516 22.667 25.610
1 0.636 25.622 27.756 0.580 22.774 25.680
Guyot 3 0.884 25.659 27.765 0.388 22.737 28.556
first 6 0.875 25.740 28.247 0.524 22.638 25.547
Average 0.798 25.674 27.923 0.497 22.716 26.594
2 0.657 25.781 27.879 0.453 22.589 26.101
Simulation 4 0.634 25.535 27.735 0.524 22.736 25.565
first 5 0.497 26.144 28.680 0.532 22.767 25.586
Average 0.596 25.820 28.098 0.503 22.697 25.751
Regardless | 4 1 10e 0.697 25.747 28.012 0.496 22.707 26.172
of order
Example 2
Method: Guyot Simulation approach
Extracting . Hazard Restricted mean survival time Hazard Restricted mean survival time
order Participant ratio Control group New group ratio Control group New group
- IPD 0.516 22.667 25.610 0.516 22.667 25.610
1 0.563 4.498 6.318 0.580 433 5.986
Guyot 3 0.581 4.572 6.286 0.589 4.258 6.007
first 6 0.622 4.698 6.098 0.571 4.186 5.891
Average 0.589 4.589 6.234 0.580 4.258 5.961
2 0.579 4.657 6.294 0.585 4.359 6.044
Simulation 4 0.578 4.467 6.208 0.577 4.277 6.055
first 5 0.588 7.108 7.909 0.552 4.612 6.308
Average 0.582 5.411 6.804 0.571 4.416 6.136
Regardless | 4 oe 0.585 5.000 6.519 0.576 4337 6.049
of order
Example 3
Method: Guyot Simulation approach
Extracting . Hazard Restricted mean survival time Hazard Restricted mean survival time
order Participant ratio Control group New group ratio Control group  New group
- IPD 0.881 12.585 14.138 0.881 12.585 14.138
1 0.892 12.648 14.234 0.895 12.491 14.044
Guyot 3 0.875 12.818 14.383 0.874 12.534 14.157
first 6 0.650 13.152 18.639 0.906 12.556 14.114
Average 0.806 12.873 15.752 0.892 12.527 14.105
2 0.886 12.527 14.134 0.899 12.535 14.092
Simulation 4 0911 12.865 13.954 0.873 12.573 14.041
first 5 0.924 14.098 15.03 0.89 12.344 14.119
Average 0.907 13.163 14.373 0.887 12.484 14.084
Regardless | 4 1 10e 0.856 13.018 15.062 0.889 12.506 14.094
of order
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Appendix G: Calculation of the censoring distribution for

TAnDEM
G-1: Initial calculation of censorings
Time at start Survival atend  Change in NAR Prob. of Est. no. of cens.
of the interval NAR of the interval over interval surviving over interval
0 104 0.3901 68 0.3901 0.0000
5 36 0.2270 14 0.5818 0.0000
10 22 0.0993 13 0.4375 0.8696
15 9 0.0603 4 0.6071 0.0000
20 5 0.0390 1 0.6471 0.0000
25 4 0.0213 2 0.5455 0.2353
30 2 0.0035 1 0.1667 0.0000
35 1 0.0035 1 1.0000 1.0000
40 0 0.0035 0 1.0000 0.0000
Total 2.1049

G-2: Calculation of censoring distribution parameters, after applying the scale

factor
Time at start NAR Change in NAR  Est. no. of Interval Prob. of Interval
of the interval over interval cens. length cens. specific haz.
0 104 68 0.0000 5 1.0000 0.0000
5 36 14 0.0000 5 1.0000 0.0000
10 22 13 3.1482 5 0.8156 0.0408
15 9 4 0.0000 5 1.0000 0.0000
20 5 1 0.0000 5 1.0000 0.0000
25 4 2 0.8518 5 0.7514 0.0572
30 2 1 0.0000 5 1.0000 0.0000
35 1 1 1.0000 5 0.0000 0.0000
40 0 0 0.0000 5 0.0000 0.0000
Total 5.0000
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Appendix H: Further discussion points for the simulation

method

H-1: Distinct subsets of the Illustrative Example
The 2000 simulated datasets, produced for the Illustrative Example, were partitioned into

200-dataset subsets and averaged over. The results are given in the table below.

Distinct ordering: Average log-HR Average HR
1 0.43 1.53
2 0.47 1.60
3 0.45 1.56
4 0.46 1.58
5 0.48 1.61
6 0.44 1.55
7 0.42 1.53
8 0.45 1.57
9 0.48 1.62

10* 0.47 1.60

* This subset only contained 199 datasets
As can be seen the average estimates (for 200 datasets) ranged between 1.53 and 1.62,

with some of the estimates being quite noticeably different from the reported IPD value

of 1.57.
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Appendix I: Development of ‘Illness-Death’ modelling
approach

I-1: Generalising the formula for post-progression censoring

In Chapter 5, the following expression (Equation (5-12)) was introduced

p —1 Cppsi
PPCi — + T 1., (5-16)
(nppsi + @; drrpi) =5 (Vppsi — Crpsi)
This can be generalised further such that the proportion
Cpps;
Prpci =1 — n)

Npps; + Vj drrp; — 1) Cpps;

Example values and their interpretation are given below in Appendix I-2.

LXXVII



Example values of v, n for a 10-month interval.

I-2
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The values of v,n can be different over each partition. More often though, v;

has been chosen.
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Appendix J: References for the studies included in the case

study (Chapter 6)

J-1: BMS 099

Khambata-Ford S, Harbison CT, Hart LL, Awad M, Xu LA, Horak CE, et al. Analysis of
potential predictive markers of cetuximab benefit in BMS099, a phase III study of
cetuximab and first-line taxane/carboplatin in advanced non-small-cell lung cancer.
Journal of Clinical Oncology 2010;28(6):918-27.

Lynch TJ, Patel T, Dreisbach L, McCleod M, Heim WJ, Hermann RC, et al. Cetuximab
and first-line taxane/ carboplatin chemotherapy in advanced non-small cell lung
cancer: results of the randomized multicenter phase III trial BMS099. Journal of

Clinical Oncology 2010;28(6):911-7.

J-2: CHEN
Chen YM, Tsai CM, Fan WC, Shih JF, Liu SH, Wu CH, et al. Phase II randomized trial
of erlotinib or vinorelbine in chemonaive, advanced, non-small cell lung cancer

patients aged 70 years or older. Journal of Thoracic Oncology 2012;7 (2):412-8.

J-3: ENSURE

Wu Y-L, Zhou C, Liam CK, Wu G, Liu X, Zhong Z, et al. First-line erlotinib versus
gemcitabine/cisplatin in patients with advanced EGFR mutation-positive non-
small-cell lung cancer: analyses from the phase III, randomized, open-label,
ENSURE study. Annals of Oncology 2015;26(9):1883-9.

Wu Y-L, Zhou C, Wu G, Liu X, Zhong Z, Lu S, et al. Quality of life (QOL) analysis from
ENSURE, a phase 3, open-label study of first-line erlotinib versus
gemcitabine/cisplatin in Asian patients with epidermal growth factor receptor
(EGFR) mutation positive (MUT+) non-small cell lung cancer (NSCLC). Journal
of Thoracic Oncology 2014;9: S37.

J-4: EURTAC

De Marinis F, Rosell R, Vergnenegre A, Massuti B, Felip E, Gervais R, et al. Erlotinib
vs chemotherapy (CT) in advanced non-small cell lung cancer (NSCLC) patients
with epidermal growth factor receptor (EGFR) activating mutations —the EURTAC
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Phase II randomized trial interim results. European Journal of Cancer 2011;47:
S597.

Rosell R, Carcereny E, Gervais R, Vergnenegre A, Massuti B, Felip E, et al. Erlotinib
versus standard chemotherapy as first-line treatment for European patients with
advanced EGFR mutation-positive non-small-cell lung cancer (EURTAC): a
multicentre, open-label, randomised phase 3 trial. The Lancet Oncology
2012;13(3):239-46.

de Marinis F, Vergnenegre A, Passaro A, Dubos-Arvis C, Carcereny E, Drozdowskyj A,
et al. Erlotinib-associated rash in patients with EGFR mutation-positive non-
smallcell smallcell lung cancer treated in the EURTAC trial. Future Oncology
2015;11(3):421-9.

J-5: FASTACT 2

Mok T, Wu YL, Thongprasert S, Yu C, Zhang J, Ladrera L, et al. A randomized placebo-
controlled phase III study of intercalated erlotinib with gemcitabine/platinum in
first-line advanced non-small cell lung cancer (NSCLC): FASTACT-IL. Journal of
Clinical Oncology 2012;30(May 20 Suppl):7519.

Wu YL, Lee JS, Thongprasert S, Yu CJ, Zhang L, Ladrera G, et al. Intercalated
combination of chemotherapy and erlotinib for patients with advanced stage non-
small-cell lung cancer (FASTACT-2): a randomised, double-blind trial. The Lancet
Oncology 2013;14(8):777-86.

J-6: TORCH

Di Maio M, Leighl NB, Gallo C, Feld R, Ciardiello F, Butts C, et al. Quality of life
analysis of TORCH, a randomized trial testing first-line erlotinib followed by
second-line cisplatin/gemcitabine chemotherapy in advanced non-small cell lung
cancer. Journal of Thoracic Oncology 2012;7(12): 1830—44.

Gridelli C, Butts C, Ciardiello F, Feld R, Gallo C, Perrone F. An international,
multicenter, randomized phase III study of first-line erlotinib followed by second-
line cisplatin/ gemcitabine versus first-line cisplatin/gemcitabine followed by
second-line erlotinib in advanced non-small-cell lung cancer: treatment rationale
and protocol dynamics of the TORCH trial. Clinical Lung Cancer 2008;9(4):235—
8.
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Gridelli C, Ciardiello F, Gallo C, Feld R, Butts C, Gebbia V, et al. First-line erlotinib
followed by second-line cisplatin-gemcitabine chemotherapy in advanced non-
small cell lung cancer: the TORCH randomized trial. Journal of Clinical Oncology
2012;30(24):3002—11.

Tsao M, Gallo S, Saieg C, Santos M, Gebbia GDC, Perrone V, et al. Biomarkers of torch
trial on first-line erlotinib followed by second-line chemotherapy in advanced
nonsmall cell lung cancer patients. International Association for the Study of Lung
Cancer. 3rd European Lung Cancer Conference, Geneva. 2012 Switzerland April

18-21. 2012.

J-7: GTOWG

Reck M, Von Pawel J, Fischer Jr, Kortsik C, von Eiff M, Koester W, et al. Erlotinib versus
carboplatin/vinorelbine in elderly patients (age 70 or older) with advanced nonsmall
cell lung carcinoma (NSCLC): a randomised phase II study of the German Thoracic

Oncology Working Group. Journal of Clinical Oncology 2010;28:15s.

J-8: First-SIGNAL
Han JY, Park K, Kim SW, Lee DH, Kim HY, Kim HT, et al. First-SIGNAL.: first-line
single-agent Iressa versus gemcitabine and cisplatin trial in never-smokers with

adenocarcinoma of the lung. Journal of Clinical Oncology 2012;30(10):1122-8.

J-9: TOPICAL

Lee SM, Khan I, Upadhyay S, Lewanski C, Falk S, Skailes G, et al. First-line erlotinib in
patients with advanced non-small cell lung cancer unsuitable for chemotherapy
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Oncology 2012;13(11):1161-70.

J-10: INTACT 1 & INTACT 2

Bell DW, Lynch TJ, Haserlat SM, Harris PL, Okimoto RA, Brannigan BW, et al.
Epidermal growth factor receptor mutations in non-small cell lung cancer:
molecular analysis of the IDEAL/INTACT gefitinib studies. Journal of Clinical
Oncology 2005;23:8081-92.
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associated with a poor response to gefitinib in the NEJ002 study: smoking and the
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