
Adaptive large-scale mantle

convection simulations

Thesis submitted for the degree of

Doctor of Philosophy

at the University of Leicester

by

Samuel Peter Cox MMath (Oxon)

Department of Mathematics

University of Leicester

2017



Adaptive large-scale mantle

convection simulations
abstract

Samuel P. Cox

The long-term motion of the Earth’s mantle is of considerable interest to geologists
and geodynamists in explaining the evolution of the planet and its internal and sur-
face history. The inaccessible nature of the mantle necessitates the use of computer
simulations to further our understanding of the processes underlying the motion of
tectonic plates.

Numerical methods employed to solve the equations describing this motion lead to
linear systems of a size which stretch the current capabilities of supercomputers to
their limits. Progress towards the satisfactory simulation of this process is dependent
upon the use of new mathematical and computational ideas in order to bring the
largest problems within the reach of current computer architectures.

In this thesis we present an implementation of the discontinuous Galerkin method,
coupled to a more traditional finite element method, for the simulation of this sys-
tem. We also present an a posteriori error estimate for the convection-diffusion
equation without reaction, using an exponential fitting technique and artificial re-
action to relax the restrictions upon the derivative of the convection field that are
usually imposed within the existing literature. This error bound is used as the basis
of an h-adaptive mesh refinement strategy. We present an implementation of the
calculation of this bound alongside the simulation and the indicator, in a parallelised
C++ code, suitable for use in a distributed computing setting.

Finally, we present an implementation of the discontinuous Galerkin method into
the community code ASPECT, along with an adaptivity indicator based upon the
proven a posteriori error bound. We furnish both implementations with numerical
examples to explore the applicability of these methods to a number of circumstances,
with the aim of reducing the computational cost of large mantle convection simula-
tions.
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Chapter 1

Introduction

1.1 The Boussinesq system

The Boussinesq system of equations is the mostly widely used simplification of the

mathematical model of the convective flow of the Earth’s mantle. Under some sim-

plifying assumptions to be examined later, the dynamics of the mantle temperature

θ, velocity u , and pressure p are governed by the following equations:

θt − ε∆θ + u · ∇θ = f (x, t),

−∇ · (2µ(θ,x)κ (u)) +∇p = −ρ(θ,x)g,

∇ · u = 0,

where the symmetric gradient operator, viscosity, density and gravity are denoted

by κ (·), µ, ρ and g, respectively.

The numerical treatment of the Earth’s mantle flow problem as described by these

equations is difficult, particularly given the greatly varying parameter values, the

existence of boundary and interior layers, the nonlinear dependencies, and the vastly

differing scales upon which the constituent processes are set. In this work, we aim

to extend the current state of knowledge as to how to solve these problems while

making best use of computational resources. In particular, we aim to explore how

1



Introduction 2

rigorous error estimation can be used to guide the resolution of computation within

a simulation.

We are interested in the use of parallel numerical algorithms to solve this problem,

and so we begin with an introduction to the hardware and software setting of such

simulations.

1.2 An introduction to distributed-memory

computing

In order to simulate increasingly large models within a reasonable period of time,

computers are required to perform increasingly large numbers of calculations.

The simplest approach to satisfying this demand is to increase the clock speed of a

single processor, which allows greater flops (floating-point operations per second).

However, we are reaching the limits of engineering in terms of single processor speed.

Additionally, an increase in clock speed translates into a cubic increase in power

consumption [25], and thus vast energy requirements, which is neither a desirable

nor sustainable state of affairs. As a consequence, processor clock rates have not

increased in more than a decade.

Since a single-processor system is doomed by such flaws, it is established practise to

use multiple processors working in parallel to increase the feasible model size. For

small numbers of processors, up to perhaps 32, a reasonable approach is to allow

all the processors to access a single pool of shared memory. However, beyond a

small number of cores, the speed and efficiency of this approach quickly falls, for

two reasons. Firstly, the speed of data access falls as the available storage increases,

and the number of connections to the memory reaches physical limits due to size.

These reduce the speed at which a single data storage can be physically accessed by

multiple cores. Secondly, issues of data concurrency occur, with multiple processes

attempting to access the same data simultaneously. As we are interested in a class

of problems that are very large, this is not a reasonable approach, since we will need

many processors to tackle this size of problems.
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Instead, for the largest problems, we embrace a more scalable approach: that of

a distributed problem. Under this paradigm, each processor has access only to a

restricted portion of the problem. This reduces the need to broadcast large quantities

of data, instead allowing us to localise portions of the code, and only communicate

the bare minimum of information when necessary. However this does place additional

requirements upon the data structures used, and complicates the process of solution.

Fortunately, in the setting of finite element simulation, implementations of these

required data structures, and the necessary logic to co-ordinate the progress of the

simulation in parallel, before combining the local solves into a global solution, ex-

ist in several software libraries. In particular, the deal.II library [15] builds upon

the p4est algorithms [24], along with the Trilinos [53, 54] and PETSc [14, 13, 12]

libraries to implement this infrastructure. Combining this with their abilities in

thread-based parallelisation within processors, they provide the high-level structure

for our implementation (we refer the reader to the references provided for a fuller

understanding than the minimum presented in Chapter 5 of this thesis).

1.3 Discussion of previous numerical models in

software, and their limitations

The study of numerical modelling of mantle convection began in the late 1960s and

early 1970s, with 2D finite difference codes such as those of Minear and Toksöz [77],

Torrance and Turcotte [102], Mckenzie et al. [74], and Schmeling and Jacoby [89].

These generally used the stream function formulation to eliminate the pressure from

the Navier-Stokes equations and reduce 2D velocity vectors to scalars. More recent

attempts to use finite differences have used staggered grids (e.g., [43]), equivalent to

using a finite volume method.

Spectral methods were employed in mantle simulations as early as 1974 [112], and

enjoyed much popularity during the 1980s and early 1990s for both 3D Cartesian and

spherical geometries, due to their power in splitting a 3D problem into several 1D

problems (e.g., [18, 100]), but they have largely fallen out of favour due to difficulties

with handling large lateral heterogeneities in viscosity.
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Finite volume methods enjoyed a lot of popularity from the early 1990s, and continue

to be used, e.g., the Stag3D code of Tackley [99], but not to the same extent as finite

element methods.

Finite element (FE) methods were first used in the early 1980s, often solving for

a stream function, (e.g., [48]). Most FE codes now solve instead for the primary

variables of temperature, velocity, and pressure. There are a growing number of

codes that are well documented and have been widely used in the mantle convection

modelling community, as well as a number of newer codes that are relevant to this

work. We refer the interested reader to [73], and the references therein, for an

excellent discussion of the history of the FE method and the use of mesh adaptivity

in geodynamics. Below are presented details of a number of the most widely used

of these codes.

1.3.1 TERRA

TERRA is an FE code developed by John Baumgardner in 1985 [16]. It uses a

fixed mesh based on an icosahedral partition of the sphere, with each triangular

face regularly subdivided a fixed number of times, to create a nearly uniform mesh

on the surface of the sphere. This is then extended down into the bulk of the

sphere a given distance and subdivided in that direction, to give a mesh covering

the entire mantle shell. This was parallelised in 1995 using message passing and

domain decomposition.

1.3.2 CitCom

Another very influential FE code, CitCom [80] was developed originally in the mid-

1990s to solve 2D mantle convection problems. This was shown to be an easily

extensible code, and was soon converted to solve on three-dimensional Cartesian

domains in parallel. It spawned a large number of spin-offs, most notably CitComS

[117], which solves in parallel on a fully spherical domain, using a multigrid algo-

rithm, and Ellipsis3d [83] which uses the particle-in-cell approach to track particle

flow through the mesh.
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1.3.3 Fluidity

Fluidity [30] differs from most FE mantle convection codes in that it is based on

an unstructured mesh; the concept of this method is to utilise h-adaptivity (that

is, adaptive mesh refinement) as well as r-adaptivity (moving nodes of the mesh

to follow the movement of material) to resolve the complex geometries of emerging

structures within the mantle. It solves the incompressible Boussinesq equations (see

Section 2.4) using the conjugate gradient method with algebraic multigrid (AMG)

preconditioner for the solution of the Stokes system, with pressure correction intro-

duced through a preconditioned FGMRES solver. The mesh is iteratively adapted

to minimise a functional that represents the sub-optimality of the mesh.

1.3.4 Rhea

Rhea [23] is a highly parallel, 3D, octree-based h-adaptive FE code capable of reso-

lution down to 1.5km locally, running on tens of thousands of cores with hundreds of

millions of elements. It solves the Boussinesq system with space-and-temperature-

dependent viscosity, using pressure-stabilisation for the Stokes system. This is solved

using a preconditioned MINRES solver, with the preconditioner using an approxi-

mation to the Schur complement of a lumped mass matrix weighted by the inverse

viscosity.

1.3.5 ASPECT

ASPECT [67] is a fully parallelised FE code for solving the Boussinesq equations.

It is based on the deal.II [15] C++ library with the Trilinos [53, 54] library. The

system is stabilised with a nonlinear artificial diffusion [47], and solved on an h-

adaptive mesh using AMG to precondition the system. It is designed to be modular,

using the deal.II, Trilinos, and p4est libraries to handle their specialised areas. The

h-adaptivity is by default directed by use of the so-called Kelly error estimator

[64], although other options are available. Refinement and coarsening take place at

intervals within the simulation.
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In summary, there are a number of software packages that model mantle convection

numerically, and a wide range of techniques used. Earlier models relied upon fixed

meshes to harness the computing power available at the time. More recently, a push

for adaptive methods has allowed far greater accuracy with the same computational

resources, along with improved solvers and preconditioners. Yet still there remains a

large gap between the desired resolution and current abilities. Further improvements

in adaptivity will form part of the further work required to bring the largest problems

into the reach of our computational resources.

1.4 Proposed work

We propose the use of adaptive finite element methods driven by rigorous a poste-

riori error estimates in modelling mantle convection, with a view to reducing the

computational cost, and thus helping to bring larger problems within the reach

of current computing abilities. We will derive a new a posteriori error bound for

a convection-diffusion equation without reaction, discretised by the discontinuous

Galerkin method. The current literature does not cover the case of a posteriori er-

ror bounds for general steady-state flows without restrictions upon the divergence

of the convection field. This, in turn, results in Gronwall-type exponential compo-

nents in the resulting a posteriori error bounds for standard norms for the respective

transient PDE problems. The new error bound does not rely on such restrictions,

allowing it to be applied to situations of scientific interest, where we do not a priori

know the behaviour of the flow. This is exactly the situation encountered in mantle

convection simulation, since the temperature and velocity are tightly coupled in a

nonlinear fashion. The practical aim of this work is to use this a posteriori error

bound as the basis of an adaptivity indicator strategy. The use of an indicator de-

signed for this problem should result in meshes which more accurately target areas

of interest and computational difficulty than an ad hoc indicator, and thus improve

the accuracy of simulation obtained for a given computational cost.

We present an implementation of the discontinuous Galerkin method for the conv-

ection-diffusion equation, coupled to a finite element Stokes flow solver, for use in

exploring mantle convection problems. We use this to explore the behaviour of the
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discontinuous Galerkin method and the associated error bound under a number of

flow patterns, along with an indicator strategy based upon the error bound.

Finally, we present an implementation of the discontinuous Galerkin method in the

community mantle convection simulation code ASPECT, along with an adaptivity

indicator based upon the derived error bound, and discuss its use through a series

of numerical examples.

1.5 Outline of this thesis

In Chapter 2, we present an outline of the current understanding of the motion of the

Earth’s mantle, and a derivation of the partial differential equations which govern the

Boussinesq approximation to its properties and movement. We then report previous

results showing the well-posedness of the underlying Stokes and convection-diffusion

problems, in addition to well-posedness of the full coupled system.

In Chapter 3, we introduce the finite element and discontinuous Galerkin discretisa-

tion methods, and derive their formulations of the Stokes and convection-diffusion

problems, respectively. We then comment upon the solution methods for the linear

systems, and the use of adaptive mesh refinement to reduce the computational cost

of such simulations.

In Chapter 4, we derive a new a posteriori error bound for the stationary convection-

diffusion equation in the convection-dominated regime, without the traditional re-

strictions placed upon the divergence of the convection field. We then convert this

into an a posteriori error bound upon the non-stationary convection-diffusion prob-

lem, with the same relaxation of restrictions.

In Chapter 5, we present an implementation of the discontinuous Galerkin method

into a small mantle convection simulation code, based on a tutorial code from the

deal.II library. This is coupled to a finite element Stokes solver. We present the im-

plementation of an explicit computation of the error bound alongside the simulation,

with particular emphasis placed upon the parallelisable nature of the implementa-

tion, demonstrating a novel auxiliary-mesh method to accurately calculate all the
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required terms. Finally, we demonstrate the behaviour of the derived error bound

through numerical examples.

In Chapter 6, we present the implementation into the community code ASPECT

of the discontinuous Galerkin method for the temperature equation, and present

numerical examples demonstrating its use. Finally, we also explore the use of an

adaptivity indicator based upon the error estimate derived in Chapter 4.

In Chapter 7, we discuss conclusions of the work undertaken and areas for further

exploration and research.



Chapter 2

The Boussinesq model of mantle

convection

In this chapter, we motivate the use of mathematical modelling to understand man-

tle convection, and survey the current state of knowledge about the mechanism of

mantle convection. We then introduce the Boussinesq model for mantle convection,

and discussing its well-posedness.

2.1 Geological knowledge

The deepest man-made hole on land, the Kola superdeep borehole, reached a depth

of 12,262m in 1994 before drilling was halted, while the deepest oceanic hole (drilled

on the Tiber Oil Field in the Gulf of Mexico) reaches 10,680m from the seabed, or

11,939m from sea level. Meanwhile the lowest known natural point is Challenger

Deep in the Mariana Trench at 10,911m. By comparison, the mean radius of the

Earth is approximately 6,371km, meaning that the greatest depth man has reached

is something less than 0.2% of the distance to the centre. This demonstrates the

inaccessible nature of the interior of the Earth, which means that currently (and for

the foreseeable future) the only practical ways to study it are by indirect methods,

such as remote sensing (e.g., seismological, magnetic and gravitational readings);

studying rocks that have come from the interior (through volcanism, uplift, or other

9
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Region Depth (km) Radius (km)
Pressure

range (GPa)
Crust 0–24 6347–6371 0–0.60
Upper mantle 24–670 5701–6347 0.60–24
Lower mantle 670–2891 3480–5701 24–136
Outer core 2891–5150 1221–3480 136–329
Inner core 5150–6371 0–1221 329–364

Table 2.1: A simplified version of the PREM model

processes); studying meteorite compositions and extraterrestrial planets and moons;

and mathematical modelling.

The interior of the Earth is by no means homogeneous. Variations occur at different

latitudes and longitudes, but the largest heterogeneities are dependent upon depth.

To this end, the standard models of the Earth interior are based upon changes at

prescribed depths. There are several levels of model for the Earth. The most basic

level consists of a core of radius 3480km, surrounded by a layer of mantle 2810km

thick, with a crust of depth 80km on top. A more in-depth model, based on the

PREM model of Dziewonski & Anderson [33], is presented in a modified form in

Table 2.1. This PREM model is based on inversion of astronomic-geodetic data and

seismic wave data, coupled with knowledge of the positions of seismic discontinuities

based on many other previous works.

In this discussion, it must be understood that there are variations in the depth

profiles beneath different points on the surface, and thus estimates of thickness vary

dependent on individual preference, and boundaries between layers often occur over

perhaps tens of kilometres or more. Thus, defining transition depths is bound to

admit a range of plausible values. However, the simplified PREM scheme is a useful

initial reference setting. Figure 2.1 illustrates the PREM scheme with additional

information near the surface.

At the surface of the Earth lies the crust, within which there are distinct differences

between oceanic crust and continental crust – oceanic crust is denser, and thinner,

at between 5 and 10km thick; continental crust is lighter, and varies between 20

and 70km in thickness, typically 30-45km, with the thickest parts beneath young
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Figure 2.1: Illustration of the PREM model, demonstrating the differences be-
tween the oceanic and continental lithosphere [70].

mountain ranges. Crust varies greatly in composition, but, on average, continen-

tal crust is silica-rich while oceanic crust is basaltic and contains more iron- and

magnesium-based minerals.

Beneath the crust lies the lithospheric mantle. The transition from crust to litho-

spheric mantle is known as the Mohorovičić discontinuity (Moho), generally defined

as the layer where P-wave (pressure wave) velocities exceed 7.6km/s. This can be

a sharp boundary, but can also be a more gradual transition, probably up to a

thickness of about 2km. Below the lithospheric mantle is the upper mantle, which

extends to around 670km. The upper mantle is primarily made of magnesium sil-

icate, largely in the form of olivine. Below this is the lower mantle, which reaches

to a depth of 2891km. The separation at 670km is due to a distinct discontinuity in

seismic velocities measured globally at that depth. It is a matter of current debate

to what extent the 670 discontinuity prevents the transfer of material between upper
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and lower mantle, with different results and disciplines suggesting different regimes

of mixing.

Other important definitions are those of the lithosphere and asthenosphere. The

lithosphere is the mechanically strong, uppermost layer of the Earth. Extending

down to around 80km depth, it comprises the entirety of the crust and the litho-

spheric mantle. Within the lithosphere, heat transport is primarily through conduc-

tion. Beneath the lithosphere, the asthenosphere is the mechanically weak material

between the depths of about 80km and 200km. In the asthenosphere and below,

convection is the dominant method of heat transport. Note that the lithosphere and

asthenosphere definitions refer to the mechanical properties of the layers, while the

core-mantle-crust definitions refer to the composition of the material.

Both upper and lower mantle contain a number of distinct layers with different

seismic properties. For example the layer known as D′′ is an approximately 150km

thick layer directly above the core-mantle boundary showing distinct seismic velocity

behaviours in distinct lateral portions. The size of the areas over which the velocities

vary in D′′ are on a similar scale to the size of today’s tectonic plates and continents,

suggesting that the remains of previous crustal plates may lie there. Other examples

of distinct layers include the Lehmann seismic discontinuity at approximately 200km

(which is not found everywhere), and the 410km discontinuity, which is believed to

result from a change of crystal lattice structure within the material.

Beneath the mantle is the core. Meteorite composition studies, gravity calculations,

and the presence of Earth’s magnetosphere indicate that this is made primarily of

iron, with perhaps up to 10% nickel and other dense elements, and a few other, lighter

elements present, such as silicon, sulphur and oxygen. It is not known whether there

may be radioactive elements present in the core at high enough levels to contribute

significantly to heat generation [70, p. 197].

The core has 2 distinct zones: the inner core, with a radius of 1220km, at a depth

of 5150km, is solid, while surrounding this is the outer core which is liquid (this is

rendered necessary to account for effects in tide motion, and for the presence of the

magnetosphere, in addition to being indicated by a lack of S-wave propagation). This

outer core is around 2260km thick, between the depths of 2891km and 5150km, and

is thought to be nearly homogeneous in composition. Pressures at the core-mantle
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Figure 2.2: Example geometry demonstrating the different fault types possible
between plates [70]. Force labels are explained in the text.

boundary (CMB, also known as the Gutenberg discontinuity) are estimated at 136

GPa, while at the centre of the Earth the pressure is around 364 GPa.[39, p. 371]

Variation in viscosity is one of the most important features in the structure of the

mantle. However, it is very difficult to calculate a unique viscosity profile based

upon experimental evidence, since the evidence suggests lateral variation in viscos-

ity in addition to vertical variation. (see Section 2.2). Temperature is also linked to

both viscosity and depth, but temperature profiles are ill-constrained, due to an in-

complete understanding of the formation of the planet and its subsequent history, as

well as uncertainties in the parameter values and inter-dependencies of temperature,

viscosity, buoyancy and diffusion.

The lithosphere is split into a number of high-strength tectonic plates, separated by

low-strength fault zones; these allow the plates to move independently of each other.

This means that there are three basic types of fault mechanism between plates:

spreading, where two plates are moving apart; subduction, where two colliding plates

force one plate to sink beneath the other; and transform, where the two plates slide

past each other. In the case of a continental plate colliding with an oceanic plate,

the oceanic plate’s higher density will force it beneath the less dense continental

crust.

To demonstrate these fault types, an example geometry is used in Figure 2.2. This

shows an oceanic plate being subducted beneath a continental plate, with a third

plate on the right moving away, creating a spreading ridge. This is a fairly common



The Boussinesq model of mantle convection 14

setup in reality, found for example off the coast of Japan. The forces acting upon the

subducting plate are as follows: mantle drag force (FDF ) results from the difference

in flow rates of the mantle and the plate. Depending on the relative velocities, this

force can act towards or away from the subduction zone. The collision resistance

force (FCR) is imparted by the resistance between the two plates. The ridge push

force (FRP ) is the result of upwelling material under the spreading ridge spreading

sideways, forcing the plate sideways. There is another resistive force, in the form

of the slab resistance force (FSR) acting upon the leading edge of the subducting

slab. Finally, there is the slab pull force (FSP ) which, if the slab remains connected

to the plate, pulls the plate down. This force is caused by the difference between

the densities of the slab, which is made of cold, dense crust, and the surrounding

material, which is warmer and less dense. It is essentially then the slab’s own

increased density that drags it down. Current thinking is that in most cases this

slab pull is the main driving force behind the movement of subducting plates, as

opposed to the typical view that the mantle pushes the plates, the so-called ‘crustal

conveyor belt’ mechanism. However, it is still an open question as to how this

explanation allows for the initial development of plate tectonics.

In addition to these three plates, the fourth plate in the background induces (and is

subjected to) a transform force (FTF ) as it slides parallel to the subducting plate.

The plate on top of the subducting plate also experiences a trench suction (FSU)

as the weight of the subducting plate pulls it away from the upper plate, effectively

pulling the upper plate towards the trench.

Earthquakes commonly occur near to transform and subduction faults, being gen-

erated by the buildup and sudden release of energy as neighbouring plates slip past

each other after being held in position by friction. Volcanoes are also often located

around 150 km inland from subducting faults. This is believed to result from the

dehydration of the descending slab; the increasing pressure forces water out of the

slab, reducing the melting temperature of the material directly above it. This re-

sults in upwellings of less viscous material, manifesting themselves as volcanoes at

the surface.

Oceanic plate is largely generated at spreading faults; as two plates separate, new,

less viscous material rises to fill the gap, and solidifies to form new oceanic crust. The

fact that oceanic crust subducts beneath continental crust means that continental
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crust is far older than the majority of oceanic crust; the oldest oceanic crust is

currently dated at around 160Mya, while the oldest continental crust is dated at

4Ga old, and the cratons (the stable parts of the continental lithosphere that largely

form the basis of today’s continents) probably formed in the period 3.5 - 2.7 Gya

[70, p. 596].

In the mantle, material is transported by buoyancy differences between different

temperatures of rock: cool, dense material sinks down, while hotter, less dense

material is more buoyant and therefore rises. This is the primary transporter of both

material and heat: thermal conduction is orders of magnitude slower than advection

of the hot material itself. Debate still continues as to how strongly coupled the

mantle and plates are. The general consensus is that the plates are not as strongly

coupled as previously thought, and that it is the plates themselves that generate the

majority of their motion.

Plates typically move relative to each other at an average of something less than

5cm per year, which demonstrates the range of lengthscales and timescales to be

considered – movement per year is on the order of centimetres, while the mantle

itself is on the order thousands of kilometres. Thus, the timescale of years is not

really suitable – models will have to consider timescales much longer than this.

Given the inaccessible nature of the interior of the Earth as demonstrated above,

the uncertainties in the remote measurements and subsequent inversions of data,

and the fact that the processes being studied occur over far longer timescales than

the study itself, modelling is a useful tool to test possible explanations, and to

simulate processes faster than they occur and can be measured by humans. A brief

introduction to the previous and ongoing work undertaken towards modelling the

interior is presented in Section 2.2.

2.2 Geological modelling history and literature

review

Some of the earliest work on modelling of the physical properties of the mantle

was done by Haskell in three papers between 1935 and 1937 [49, 50, 51]. This was
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theoretical work based on understanding the process of continental uplift after ice

sheets melt and drain from continents. This work gave an estimate of the average

viscosity over the top 1000-1200km as roughly 1021 Pascal-seconds (1 Pascal-second

= 1 kg/m/s is the viscosity of a fluid placed between two plates one metre apart

which requires a shear stress of one pascal on one plate to move the plate sideways

at 1 m/s).

Unfortunately, several mis-applications of this result, and confusion over the resolv-

ing power of various authors’ data, led to this average value only being attributed

to the mantle above the 670km discontinuity. This misinterpretation skewed several

later models, as there is in reality a large jump in viscosity moving from the upper

to lower mantle [79] (thus attributing the result up to just the 670km level over-

estimated the result for the upper mantle viscosity). Since then, there have been

many more attempts to invert various data sets to give new estimated radial vis-

cosity profiles based on various techniques, such as isostatic adjustment and seismic

tomography, e.g., [29, 62, 78, 75], as well as analysis on the ability to infer layers

from available data [84]. A reasonable estimate at this time would be a viscosity of

1023 − 1025 Pa · s at a depth of 2000km, reducing to 1021 Pa · s at 700km depth.

The volume around the 670km discontinuity has a reduced viscosity of perhaps 1019

Pa · s. Above this discontinuity, the viscosity is again at least 1021 Pa · s rising as

high as perhaps 1023 or 1024 Pa · s in the crust. However, these figures and profiles

are highly uncertain, and the available data may not even be able to resolve the

viscosity profile into any more than 2 layers. So the choice of viscosity profile is a

large uncertainty in any model.

Alongside the attempts to decode the viscosity profile of the mantle, there has been

much work undertaken attempting to model convection within the mantle.

2.3 Derivation of mantle equations

The basic model of the motion of the mantle is as one of an extremely viscous fluid.

We take the approach of modelling the entire system by means of the interaction

of three primary quantities: temperature, velocity, and pressure. These are supple-

mented by relations prescribing the parameters governing the flow, such as viscosity,
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density, and diffusivity. In this section, we state the equations that describe the mo-

tion of the mantle from this viewpoint: conservation of momentum, conservation of

mass, and conservation of energy. We largely follow the approach presented in [91],

while another useful resource with additional details is [38].

2.3.1 Conservation of mass

The conservation of mass requires that the change of mass in a volume is equal to

the quantity of mass flowing into or out of the volume. This is written

ρt +∇ · (ρu) = 0, (2.3.1)

where u is the velocity, ρ the density, and the subscript t denotes the time derivative.

In the case of an incompressible fluid, there is no change in density in time or space,

and then (2.3.1) reduces to

∇ · u = 0.

2.3.2 Conservation of momentum

The conservation of momentum, for a fluid that is Newtonian and isotropic, is em-

bodied in the identity

ρ (u t + u · ∇u)−∇ ·
(
µ (∇u +∇uᵀ) +

(
kB −

2

3
µ

)
∇ · u

)
= −∇p + ρg, (2.3.2)

where g is the gravity vector, p pressure, µ viscosity, and kB is the bulk viscosity of

the material.

2.3.3 Conservation of energy

By combining the second law of thermodynamics with the notion that energy must

be conserved, it can be shown (e.g., [91, Chapter 6]) that, assuming again that the
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fluid is Newtonian,

ρCp (θt + u · ∇θ)− αθ (pt + u · ∇p)

= ∇ · (k∇θ) + kB (∇ · u)2 + 2µ

(
1

2
(∇u +∇uᵀ)− 1

3
∇ · u

)2

+ ρf , (2.3.3)

where θ is the temperature, Cp is the specific heat, α the thermal expansivity, k

the thermal conductivity, kB the bulk viscosity as above, and f the internal heating

term.

2.4 Assumptions and Boussinesq approximation

In order to present our analysis, we simplify the three equations (2.3.1), (2.3.2),

(2.3.3) by using the so-called Boussinesq approximation [21]. This greatly reduces

the complexity of the equations, while also retaining the most important behaviours.

The rigorous analysis of this approximation was developed in [94, 76], showing that

the approximation is valid in the case where αθ � 1 and ε2

Cpθ
� L2, where L

is a typical lengthscale of the system. For the case of mantle convection, these

quantities are as indicated, ensuring that the Boussinesq approximation is valid for

our purposes (we comment briefly upon this later within this section).

The Boussinesq approximation stems from the following assumptions:

• density is predominantly dependent on thermal effects rather than pressure-

based effects, meaning that we may neglect the latter;

• we may take density to be constant, except in the terms where it modifies

gravity to give a buoyancy term.

By taking these assumptions, we may infer the following.

In the conservation of mass, by the product rule

0 = ρt +∇ · (ρu) = ρt + u · ∇ρ+ ρ∇ · u .
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Then taking the density ρ to be constant in this equation, we see that

∇ · u = 0. (2.4.1)

Thus the equation of conservation of mass collapses, in the Boussinesq approxima-

tion, to the requirement for a divergence-free velocity field. This is the incompress-

ibility assumption.

Applying the same approximation to the left hand side of the equation for conser-

vation of momentum (2.3.2), and combining this with the divergence-free quality of

u from above, we have

ρ (u t + u · ∇u)−∇ · (µ (∇u +∇uᵀ)) = −∇p + ρg.

By nondimensionalising this equation around a reference state, we see that the left-

most quantity ρ (u t + u · ∇u) is premultiplied by the reciprocal of the dimensionless

Prandtl number Pr = µ0/ (ρ0ε0), where subscript 0 denotes a reference value. This

quantity is a characteristic of the fluid itself, and denotes the ratio between momen-

tum diffusivity and thermal diffusivity. In the mantle the Prandtl number is in the

order of 1023, ensuring that this term is utterly negligible. Thus, we have

−∇ · (µ (∇u +∇uᵀ)) = −∇p + ρg.

(This can alternatively be justified by considering that the ratio of inertial forces to

viscous forces is very small, with the same result.)

Finally, simplifying (2.3.3) by assuming αθ � 1 and a divergence-free velocity, along

with a constant density,

Cp (θt + u · ∇θ) = ∇ ·
(
k

ρ
∇θ
)

+ 2
µ

ρ

(
1

2
(∇u +∇uᵀ)

)2

+ f .

Taking Cp constant, we neglect the viscous heating term since it scales like Ra−1,

where Ra is the Rayleigh number of the fluid. In the mantle, this has a value around

10−6, and so discarding this term should not have too significant an effect. Doing
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so reduces the equation to the classical convection-diffusion equation

θt + u · ∇θ −∇ · (ε∇θ) = f ,

where ε is the diffusion coefficient. We refer to [94, 76] for the analysis of the

applicability of this approximation, and refer again to [38, 91] for an explanation of

the derivation via nondimensionalisation.

We comment here briefly upon the reasonableness of the assumption that density

is constant throughout the mantle. The density is in fact expected to increase

by around 50% between the surface and base of the mantle. However, given that

the lengthscale of any variation in pressure is likely to be large, in the absence of

sharp discontinuities due to phase changes, the effect of this approximation (namely,

incompressibility as in (2.4.1)) is generally deemed reasonable.

Finally, we note here that, while these approximations greatly reduce the complexity

of the equations we study, they do not overly restrict the regimes of flow that we

wish to explore. Indeed, there are a number of material models that fit into this

framework, and can be studied in this way through the variable viscosity, density, and

heating terms and their possible dependence upon the primary fields of temperature,

velocity and pressure.

We are now able to rigorously state the full system of equations that will be analysed

in the following chapters.

2.5 The Boussinesq system

Let Ω ⊂ Rd, d ∈ {2, 3}, be a closed, bounded domain. We denote its boundary by Γ,

which we split into two subsets, ΓD and ΓN , with ΓD ∪ ΓN = Γ. Let I = [0, T ] ⊂ R,

T > 0, be a time interval. The problem that we will consider is the following: given

an initial temperature field θ0(x) and time- and position-dependent forcing term
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f (x, t), find the triple (θ(x, t),u(x, t), p(x, t)) such that

θt − ε∆θ + u · ∇θ = f (x, t)

−∇ · (2µ(θ,x)κ (u)) +∇p = −ρ(θ,x)g

∇ · u = 0

 in Ω× I,

θ(x, 0) = θ0(x) in Ω,

θ = gD(x, t) on ΓD × I,

ε
∂θ

∂n
= gN(x, t) on ΓN × I,

u · n = 0

κ (u)n × n = 0

}
in Γ× I,

(2.5.1)

where θ(x, t) corresponds to temperature, u(x, t) velocity, and p(x, t) pressure. The

first equation is the energy equation; the second and third form the Stokes system.

The thermal diffusion, which is constant, is denoted by ε, while κ (u) is the sym-

metric gradient operator, κ (u) := 1
2
(∇u +∇uᵀ), and g the gravity vector. In our

models, we use g = 9.81er, where er is the radial unit vector (in the case of an-

nular or shell geometries) or the unit downwards vector (in a box geometry). The

temperature- and position-dependent viscosity is denoted by µ(θ,x) and density by

ρ(θ,x). The precise functional analytic setting for the solution and problem data is

discussed below, after the necessary definitions are introduced.

2.6 Some spaces and notation

In order to discuss the existence of solutions to the system (2.5.1) and the convection-

diffusion and Stokes systems, as well as describing the finite element methods pro-

posed in this work, we first briefly recollect standard definitions of Lebesgue and

Sobolev spaces (see, for example, [1]).

Definition 2.1. Let p ∈ R ∪ {+∞} and ω a subset of Rd. The Lp-norm is the

functional

‖v‖ω,p :=

(∫
ω

v(x)p dx

) 1
p

, for 1 ≤ p <∞,
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‖v‖ω,∞ := ess sup
x∈ω

v(x).

The Lebesgue space Lp(ω) is then defined as the space of functions

Lp(ω) := {v : ω → R such that ‖v‖ω,p <∞} .

In particular, the space L2(ω) is a Hilbert space when equipped with the inner

product

(w, v)ω :=

∫
ω

wv dx.

We suppress the subscript ω when it is referring to the whole domain Ω.

In the p = 2 case, we also suppress the subscript p notation for the norm where it is

unlikely to cause confusion.

Definition 2.2. Let p ∈ R∪ {+∞}, s be a non-negative integer, and ω be an open

subset of Rd. Also let α be a multi-index of dimension d. The Sobolev space W s,p(ω)

is defined as the set of functions

W s,p(ω) := {v ∈ Lp(ω) : Dαv ∈ Lp(ω) for 0 ≤ |α| ≤ s} ,

equipped with the norm

‖v‖ω,W s,p :=

 ∑
0≤|α|≤s

‖Dαv‖pω,p

1/p

, for 1 ≤ p <∞,

‖v‖ω,W s,∞ := max
0≤|α|≤s

‖Dαv‖ω,∞,

where Dαv is the weak (or distributional) derivative of v of order α, and ‖v‖p,ω the

Lp-norm on ω.

We also define the family of semi-norms |·|ω,W s,p :

|v|ω,W s,p :=

∑
|α|=s

‖Dαv‖pω,p

1/p

, for 1 ≤ p <∞,

|v|ω,W s,∞ := max
|α|=s
‖Dαv‖ω,∞.
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In particular, since W k,2(ω) is a Hilbert space, we use the shorthand Hk(ω) :=

W k,2(ω) for any integer k ≥ 1.

We also define the shorthand

H1
0 (ω) :=

{
v ∈ H1(ω) : v|Γ = 0

}
,

H1
D(ω) :=

{
v ∈ H1(ω) : v|ΓD = 0

}
,

where ΓD is the portion of the boundary of domain ω that is subject to a Dirichlet

boundary condition.

We define C0(ω) to be the set of continuous functions over the domain ω.

For 1 ≤ p ≤ ∞ we use the standard notation Lp(0, T ;X) to denote the Bochner

space of functions which are p-integrable over the interval (0, T ) with values in a

Banach space X.

Finally, we define C(0, T ;X) to be the set of continuous mappings of the interval

[0, T ] into X.

2.7 The convection-diffusion problem

With a view to analyse the numerical discretisation, we first analyse the energy

equation separately from the Stokes system, which together form the Boussinesq

system (2.5.1).

We consider the closed, and bounded, domain Ω ⊂ Rd, d ∈ {2, 3} as before. Let

u(x, t) = (u1, . . . , ud)
ᵀ ∈ [C(0, T ;W 1,∞(Ω))]

d
(and hence ∇ · u ∈ L∞(0, T ;L∞(Ω)))

be given. We decompose the boundary Γ into two parts, ΓD and ΓN , such that

ΓD ∩ ΓN = ∅, ΓD ∪ ΓN = Γ, and make the assumption that u(x, t) · n(x) = 0 for

(x, t) in ΓN × I, where n(x) is the outward normal from the boundary at point x.
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We consider the convection-diffusion initial-boundary value problem:

θt − ε∆θ + u(x, t) · ∇θ = f (x, t) on Ω× I, (2.7.1)

θ = gD(x, t) on ΓD × I, (2.7.2)

ε
∂θ

∂n
= gN(x, t) on ΓN × I, (2.7.3)

θ(x, 0) = θ0(x) on Ω. (2.7.4)

Here, we take ε to be a small positive constant, 0 < ε� 1, f (x, t) ∈ L2(0, T ;L2(Ω)),

and θ0(x) ∈ L2(Ω). We also assume gD ∈ H1(0, T ;H
1
2 (Γ)).

In the following analysis, we make use of the solution to a related problem with

an additional reaction term. To this end, we also consider the convection-diffusion-

reaction equation

θt − ε∆θ + u(x, t) · ∇θ + b(x, t)θ = f (x, t) on Ω× I, (2.7.5)

where b ∈ L∞(Ω) is a reaction coefficient. This is supplemented with the same

boundary conditions (2.7.2), (2.7.3) and initial condition (2.7.4).

We now derive the weak formulation of the convection-diffusion and convection-

diffusion-reaction equations.

Taking the equation (2.7.5) we can multiply all terms by a function v ∈ H1(Ω) and

integrate over Ω to give∫
Ω

(θtv − ε∆θv + u(x, t) · ∇θv + b(x, t)θv) dx =

∫
Ω

f (x)v dx,

and apply the divergence theorem to the second term, to give∫
Ω

(θtv + ε∇θ · ∇v + u(x, t) · ∇θv + b(x, t)θv) dx−
∫

Γ

ε (∇θ · n) v ds

=

∫
Ω

f (x)v dx. (2.7.6)
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Since we would like our solution to live in a closed solution space, we impose the

Neumann boundary condition weakly, so that∫
Ω

(θtv + ε∇θ · ∇v + u(x, t) · ∇θv + b(x, t)θv) dx =

∫
Ω

f (x)v dx+

∫
ΓN

gNv ds.

We define the bilinear form a (θ, v) by

a (θ, v) = (ε∇θ,∇v) + (u(x, t) · ∇θ, v) ,

and the linear functional l (v) by

l (v) =

∫
Ω

f (x)v dx+

∫
ΓN

gNv ds.

Then the weak formulation of the problem (2.7.1)-(2.7.4) reads: for each t ∈ I, find

θ(t) ∈ H1(Ω) such that

(θt , v) + a (θ, v) = l (v) ,

θ|ΓD = gD,

θ(x, 0) = θ0(x),

 (2.7.7)

for all v ∈ H1(Ω).

We can in identical fashion derive the weak formulation of the convection-diffusion-

reaction problem (2.7.2)–(2.7.5): for each t ∈ I find θ(t) ∈ H1(Ω) such that

(θt , v) + areac (θ, v) = l (v) ,

θ|ΓD = gD,

θ(x, 0) = θ0(x),


for all v ∈ H1(Ω), where

areac (θ, v) = (ε∇θ,∇v) + (u(x, t) · ∇θ, v) + (b(x, t)θ, v) . (2.7.8)

The existence and uniqueness of a solution to the problem (2.7.1)–(2.7.4) (and equiv-

alently, (2.7.7)) on a spherical domain Ω = {x ∈ Ω : R1 < |x| < R2} is shown in

[97, Lemma 2], which is reproduced below.
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Lemma 2.3 (Well-posedness of convection-diffusion problem). Let Ω = {x ∈ Ω :

R1 < |x| < R2} and suppose that f ∈ L2(0, T ;H−1(Ω)), gD ∈ H1(0, T ;H
1
2 (Γ)),

u ∈ L2(0, T ; [L3(Ω))
3
], ∇·u ∈ L2(0, T ;L3(Ω)), and θ0 ∈ L2(Ω). Then there exists a

unique solution θ ∈ L2(0, T ;H1(Ω))∩L∞(0, T ;L2(Ω)) to the system (2.7.1), (2.7.2),

(2.7.4).

As the assumptions on the data regularity will be stronger than those in Lemma 2.3

(these are needed below), this can be applied directly to our situation, along with

a standard treatment of Neumann boundary conditions, and we have the existence

and uniqueness of a solution θ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)) to the problem

(2.7.1)–(2.7.4).

2.8 The Stokes system

Having discussed the well-posedness for the convection-diffusion equation on a spher-

ical domain, we now consider the associated stationary Stokes system in the Boussi-

nesq system (2.5.1) at every time t ∈ I: given a temperature field θ ∈ L2(Ω),

viscosity µ(θ, ·) ∈ L∞(Ω) with a minimum µ(θ, ·) ≥
¯
µ > 0 and density term

ρ(θ, ·) ∈ L2(Ω), find the pair (u(x), p(x)) such that

−∇ · (2µ (θ,x)κ (u)) +∇p = −ρ(θ,x)g

∇ · u = 0

}
in Ω× I, (2.8.1)

u · n = 0

κ (u)n × n = 0

}
in Γ× I, (2.8.2)

where u(x) is the velocity, and p(x) the pressure. The gravity vector is denoted by

g, and κ (u) is the symmetric gradient operator.

The system (2.8.1)–(2.8.2) does not necessarily admit a unique solution, for example

in the case of a thick-shell domain. Indeed, in this case, defining the three rigid body

motions v(i), i = 1, 2, 3 by v(i)(x) := e(i) × x where e(i) is the unit vector in the i-

th coordinate direction and (u(x), p(x)) a solution at time t ∈ I, gives us that

u +
∑3

i=1 civ
(i) is also a solution, for ci ∈ R. In addition, the pressure solution is

only unique up to an additive constant.
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In the case of a thick-shell domain, to circumvent this, we can introduce three natural

spaces for this problem:

W :=
{

w ∈
[
H1(Ω)

]3
: w · n = 0 on Γ

}
,

U :=
{
w ∈ W : (w,v(i)) = 0 for i = 1, 2, 3

}
,

Q :=
{
q ∈ L2(Ω) : (q, 1) = 0

}
.

We define the norms on U and Q by

‖v‖U := ‖v‖H1 ,

‖q‖Q := ‖q‖ .

Our solution will be non-unique if we look for u ∈ W , but eliminating the degrees

of freedom associated to the rigid body motions allows a unique solution in U .

Other domains may be handled in a similar way if they are rotationally invariant

under rigid-body motions. Similarly, the condition (q, 1) = 0 for q ∈ Q removes the

freedom to add a constant for the pressure field.

In standard fashion, we define

∫
Ω

κ (w) : κ (v) dx :=
d∑

i,j=1

∫
Ω

∂wi
∂xj

∂vi
∂xj

dx.

Then the weak formulation of this problem is derived in the following manner.

Multiplying (2.8.1) by a test function v ∈ U and q ∈ Q, and integrating over the

domain, we have∫
Ω

−∇ · (2µ (θ,x)κ (u)) v dx+

∫
Ω

∇p · v dx =

∫
Ω

−ρ(θ,x)g · v dx, (2.8.3)∫
Ω

q∇ · u dx = 0.

Using integration by parts on the left-hand side of (2.8.3) gives

(2µ (θ,x)κ (u), κ (v))− (∇ · v, p) = (−ρ(θ,x)g,v),

−(∇ · u , q) = 0.
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We define the following bilinear forms:

s (u ,v) := (2µ (θ,x)κ (u), κ (v)),

b (v, p) := −(∇ · v, p).
(2.8.4)

The weak formulation of the Stokes equation is thus: find u ∈ U , p ∈ Q such that

s (u ,v) + b (v, p) = − (ρ(θ,x)g,v)

b (u , q) = 0

}
, (2.8.5)

for all (v, q) ∈ U ×Q.

It is well known [45, Corollary 4.1] that the choice of spaces for u and p affect

the well-posedness of the problem. In the theory of traditional FE methods, the

Lax-Milgram lemma shows stability of methods which contain bilinear functionals

on the cartesian product of a Hilbert space with itself. In the mixed-method case,

however, the bilinear functionals involved operate on the cartesian product of two

different Hilbert spaces. The inf-sup condition encodes a sufficient condition for the

extension of this lemma to the case of distinct Hilbert spaces. In our case, since

s (·, ·) is coercive on U , and b (·, ·) does indeed satisfy the inf-sup condition

inf
q∈Q

sup
v∈U

b (v, q)

‖q‖Q ‖v‖U
> 0,

(see [96] for proof of these two assertions) we satisfy the conditions of [45, Corollary

4.1], so that (2.8.5) is indeed well-posed.

Specifically, in our case we have the following result from [97, Lemma 1].

Lemma 2.4 (Well-posedness of stationary Stokes system). Let Ω be a spherical

domain Ω = {x ∈ Ω : R1 < |x| < R2}, and suppose that

ρ(θ,x)g ∈
[
L2(Ω)

]3
,

µ ∈ L∞(Ω),

µ(θ,x) ≥
¯
µ > 0.

Then there exists a unique solution to (2.8.1), (2.8.2) in U ×Q.
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2.9 Well-posedness of full problem

Finally, in view of showing well-posedness of the full Boussinesq problem, we in-

troduce the weak form of the full system (2.5.1): for each t ∈ I, find (θ,u , p) ∈
H1(Ω)× U ×Q such that

(θt , v) + a (θ, v) = l (v)

s (u ,v) + b (v, p) = − (ρ(θ,x)g,v)

b (u , q) = 0

θ|ΓD = gD

θ(x, 0) = θ0(x)


, (2.9.1)

for all (v,v, q) ∈ H1(Ω) × U × Q, where we note the implicit dependence of the

bilinear form a (·, ·) upon the convection variable u(x, t).

Once again, [97, Theorem 3] shows the well-posedness of this system on a spherical

domain, under certain conditions. We use the notation cl (Ω) to denote the closure

of Ω.

Lemma 2.5. Suppose µ : cl (Ω)× R→ (0,+∞) and

f ∈ L∞(0, T ;L∞(Ω)), θ0 ∈ L∞(Ω),

gD ∈ H1(0, T ;H
1
2 (Γ)) ∩ L∞(0, T ;L∞(Γ)).

Then there exists a solution (θ,u , p) of (2.9.1),

u ∈ L∞(0, T ;
[
H1(Ω)

]3
), p ∈ L∞(0, T ;L2(Ω)),

θ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L∞(Ω)),

and, if

u ∈ L∞(0, T ;
[
W 1,∞(Ω)

]3
),

then the solution is unique.

Since we have stronger conditions in place, we can apply this to our situation, along

with a standard treatment of the Neumann boundary conditions, and claim that

(2.9.1) is well-posed.



Chapter 3

Numerical models and methods

In this chapter, we introduce the symmetric interior penalty discontinuous Galerkin

method for the energy equation, along with the finite element method for the Stokes

system, before combining these into a single solution scheme. This includes discus-

sion of the merits and drawbacks of such a scheme.

We then introduce some of the related aspects of solving the numerical problem,

with details on the structure of the associated linear systems, and their handling

and solution. Finally we discuss the topic of adaptive mesh refinement, and its role

in enabling the solution of large problems.

3.1 Why dG?

The finite element method is a well-established numerical framework for the approx-

imate solution of partial differential equations, just like those encountered in (2.5.1).

It converts an infinite-dimensional problem to one posed in a finite-dimensional

space, allowing for a numerical solution on a computer or computer cluster. The

method, in its most classic flavour, is characterised by first decomposing the domain

of interest into a finite number of non-overlapping cells which cover the domain.

This so-called meshing of the domain is then used to define a space of admissible

solutions that are (mapped) polynomial over each cell. Next, a linear system is

constructed with reference to the partial differential equation of interest and to the

30
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space of admissible solutions. Finally, this linear system is solved by a direct or

iterative method to arrive at an approximate solution from the admissible space.

Over the preceding decades, a large number of techniques have been developed under

the umbrella of the ‘finite element method’. These are usually developed to exhibit

certain desirable qualities, which are of benefit when seeking solutions to a given

class of problems. One such technique, which will be introduced in the next section,

is the discontinuous Galerkin method. This removes the constraint of continuity

across mesh cell interfaces as is usually employed in the finite element method, and

instead allows the solution to be discontinuous over the mesh interfaces. Instead,

continuity is imposed weakly within the discrete weak form: different dG approaches

are obtained depending on how this is done [8].

Before introducing in detail the particular discontinuous Galerkin (dG) method con-

sidered here by means of its application to the convection-diffusion equation (2.7.2)–

(2.7.5), we discuss some of the merits and disadvantages of the method.

The discontinuous Galerkin method was originally introduced [11, 32, 7, 111] to

capitalise on the flexibility afforded by decoupling neighbouring cells. Firstly, the

mesh requirements can be relaxed from those found in conforming methods. In par-

ticular, the presence of ‘hanging nodes’ (nodes occurring when a cell on one side of

a mesh interface is subdivided into smaller cells by splitting of such interface, but

the neighbouring cell is not) is handled naturally, without technical requirements or

restrictions. This has the advantage of seamless interpretation of stable numerical

fluxes, enhancing the stability of the method. Secondly, the choice of polynomial

approximation space is increased: cells may vary in polynomial degree across the

mesh (e.g., through p-refinement, where p is the polynomial order), and if desired

the polynomial space can be defined with respect to the physical frame of refer-

ence, rather than requiring mapping back and forth between the physical frame and

a reference frame. This also enables the extension to meshes containing general

polygons, which is of particular benefit when considering problems on intricate or

heterogeneous domains. For further details of the use of discontinuous methods and

polygons in an hp setting, see [26] and the references therein.

The main benefits of interest exploited in the current work are: ease in mesh adaptiv-

ity, and the stability of the method when modelling convection-dominated problems.
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It is well known within the numerical modelling community that the standard finite

element method (just like the centred finite difference method) suffers from the

phenomenon of spurious oscillations when solving convection-diffusion problems in

the convection-dominated regime. This was initially treated with the addition of

artificial diffusion [109], before the technique was refined to add diffusion only in

the direction of the streamlines [59, 65]. Following this, the method known as

streamline upwind Petrov-Galerkin (SUPG) [58] enhanced the capability to solve

the convection-dominated problem. Since then, numerous techniques have been

proposed to stabilise FE, such as artificial viscosity and entropy viscosity [47], to

mention just two.

On the other hand, the discontinuous Galerkin method, with carefully chosen nu-

merical fluxes, is not affected by the oscillatory behaviour at boundary layers or

shocks. This means no additional stabilisation term is required on top of the natu-

ral stabilising effect embedded in the numerical fluxes.

In the high-order method setting, a benefit of the discontinuous Galerkin (dG)

method is the locality of its stencils. Degrees of freedom (DoFs) within one cell

communicate directly with two classes of DoFs: those within the same cell, and

those on the faces of neighbouring cells. This reduces the distance across the mesh

which is closely coupled in the linear system, and thus eases the iterative solution

process.

In the same way, at least in three dimensions, the use of dG also translates into a

matrix with fewer non-zero elements per row. FEM couples cells to each of their

neighbours that share at least a vertex, while dG couples only to the 6 cells (in 3

dimensions, assuming hexahedral cells are used) which share a face with the current

cell. This greatly reduces the number of non-zero elements on each row of the matrix.

In turn, this reduces the memory requirements when storing the sparse matrix, and

is of benefit when attempting to solve the linear system.

The two main disadvantages of the dG method are its increased number of DoFs,

and the expense in computing the associated linear system entries. The first comes

from the fact that DoFs at vertices and on faces are no longer shared between cells.

Instead, both cells sharing a face, and all cells around a vertex, contain a separate

DoF. The multiplicity of DoFs at some points can increase the number of DoFs
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substantially, and thus the method is often viewed as being expensive, particularly

as it does not by itself reduce the discretisation error of the solution. However, recent

work [26] has shown that, at least on tensor-product meshes, dG methods employing

polynomials of total degree p are able to compete in computational efficiency with

FEM for higher degrees p, while retaining the convergence properties of the dG

method with tensor-polynomial basis functions. The second disadvantage occurs

due to the complexity of the weak form involved with the method: a number of extra

terms related to the numerical fluxes are introduced, which must be assembled. This

requires the infrastructural ability to integrate over mesh faces and the programming

ability and investment to implement the correct algorithm to combine all the terms.

The a posteriori error analysis of the method is fairly mature for a number of

classes of problem. In the case of pure diffusion, there are many estimators for a

selection of finite element discretisations [105, 3], and for dG methods in particular

[17, 60, 56]. Stationary linear convection-diffusion equations have been analysed in

[106, 68, 108, 88, 90, 35, 118]. The literature also contains many non-stationary

convection-diffusion a posteriori error estimators [57, 20, 5, 6, 34, 107, 95, 40, 71]

with dG methods for pure diffusion considered in [36, 42, 93], and the dG convection-

diffusion case treated in [27].

The combination of these characteristics justifies the implementation and analysis

of such a scheme as worthwhile, in order to develop a more rigorously supported

error indicator for mesh adaptation.

We additionally note here that in the dG convection-diffusion case above, some

strong assumptions are placed upon the convection field. In the case of no reac-

tion, the convective field must have a non-positive divergence. While we solve the

Boussinesq problem here, which satisfies a zero divergence condition on the velocity

field, we have to overcome the difficulties raised by only solving for a divergence-free

field approximately. Thus, when we come to solve the convection-diffusion equation,

we do so using a convective field that is only approximately divergence-free. This

means we are in need of an error estimate that is applicable to the case where the

divergence of the velocity is small but positive. We note that the use of alternative

mantle convection models incorporating compressible flow is becoming increasingly
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widespread [113, 98, 114, 82, 99, 69]. Consequently, the development of a result han-

dling weaker assumptions upon the convection field provides the prospect of future

application to these models also.

Thus, we look to extend the current techniques to develop a new error estimate, and

to then implement this as the basis of a practical error indicator for the purpose of

adaptive mesh refinement.

In particular, we study the case where a discontinuous Galerkin method for the

temperature equation is coupled with a conforming finite element method for the

Stokes problem. This may be considered as a stepping-stone towards the use of

the dG method to discretise the Stokes problem also. The Stokes problem would

benefit particularly from the increased sparsity of the matrices generated, given

that the solution of the Stokes system with strongly varying viscosity is still a very

difficult problem and, in our experience, can take up to 90% of the runtime for

the complete simulation. Thus, improvements in the solution of the Stokes system

are bound to have the greatest effect on the runtime of the largest models we wish

to consider. Nevertheless, the scope of the current work is focused more on the

derivation of a rigorous error indicator to more accurately detect where to focus the

given computational resources.

In the following sections we derive a dG method for the temperature equation and

a FEM for the Stokes equation.

3.2 Semi-discrete dG formulation for the energy

equation

We first consider a semi-discrete method for the approximation of the temperature

component θ of the problem (2.7.2)–(2.7.5) whereby we discretise solely in the space

variable. As such, we consider the domain Ω to be a either a polygon in 2D or a

polyhedron in 3D, and define a mesh Th. In two dimensions, Th is a collection of

open, triangular or quadrilateral cells K that subdivide the domain Ω. In three

dimensions, Th is a collection of open, tetrahedral or hexahedral cells that similarly

subdivide Ω; that is,
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1.
⋃
K∈Th

cl (K) = cl (Ω), and

2. Ki ∩Kj = ∅ for all pairs of cells Ki, Kj ∈ Th, i 6= j,

where we use the notation cl (ω), ω ⊂ Rd to denote the closure of ω, with d ∈ {2, 3}.
For each K ∈ Th, we denote the boundary of the cell by ∂K := cl (K) \K. For each

pair of cells K,K ′ ∈ Th, we say the cells are vertex-neighbours if cl (K)∩cl (K ′) 6= ∅,
and define their interface to be a face (we remark that, in 3D, faces are 2-dimensional

intersections between neighbouring cells, while 1D intersections of cells are known

as edges). We denote by Fh the collection of all such (d − 1)-dimensional faces

defined by the interfaces between cells. We also define the set of interior faces FI
and set of faces on the boundary FB. Thus we have that Fh = FI ∪ FB and we

define the boundary of the domain as Γ =
⋃
F∈FB

F . We also subdivide FB into

faces on the Dirichlet boundary FD and faces on the Neumann boundary FN , with

FD ∪ FN = FB and FD ∩ FN = ∅.

We denote by hF the (d − 1)-dimensional measure of the face F , and by hK the

d-dimensional measure of the cell K.

Let K̂ be the reference simplex in the case where the mesh Th is made up of simplices,

or the reference hypercube in the case Th is made up of quadrilaterals or hexahedra.

We say that a polynomial has total degree m where m is the maximum over all terms

in the polynomial of the sum of the exponents of the variables in that term. Let

Pk(K̂) , k ≥ 0, be the space of polynomials of total degree less than or equal to

k in the variables x1, . . . , xd on the reference cell K̂, while Qk(K̂) is the space of

polynomials of degree less than or equal to k in each variable x1, . . . , xd on K̂.

Let DK : K̂ → K be a smooth map with non-singular Jacobian. Then we can define

the space of piecewise-polynomial functions Xh,k in the following way: if our mesh

Th is composed of simplicial cells, then

Xh,k :=
{
vh ∈ L2(Ω) : vh|K ◦ DK ∈ Pk(K̂) ∀ K ∈ Th

}
, (3.2.1)

while, if the mesh is composed of quadrilateral or hexahedral cells, then

Xh,k :=
{
vh ∈ L2(Ω) : vh|K ◦ DK ∈ Qk(K̂) ∀ K ∈ Th

}
. (3.2.2)
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Remark 3.1. We note here in passing that it is equally possible to apply the space

Pk to the case of quadrilateral and hexahedral meshes. This has the added benefit

of reducing the number of degrees of freedom per cell, and has been shown [26]

to exhibit the same order of convergence as Qk. However, due to limitations in

the current ability to implement these on non-fixed meshes, we do not use these

here. Nonetheless, this could be a new direction of research in view of the potential

complexity benefits.

Returning to the weak formulation (2.7.6), we can now split the domain into the

cells of the mesh Th and test against a function vh ∈ Xh,k:

∑
K∈Th

(θt , vh)K + (ε∇θ,∇vh)K + (u(x, t) · ∇θ + b(x, t)θ, vh)K

−
∑
K∈Th

〈ε (∇θ · n) , vh〉∂K =
∑
K∈Th

(f (x, t), vh)K ,

where n is the outward normal to the cell boundary ∂K. We then split the cell-

boundary terms into three sets: the set of internal faces we denote by FI , the faces

within the Dirichlet boundary area ΓD by FD, and those in the Neumann boundary

areas ΓN by FN :

∑
K∈Th

(θt , vh)K + (ε∇θ,∇vh)K + (u(x, t) · ∇θ + b(x, t)θ, vh)K

−
∑
K∈Th

〈ε (∇θ · n) , vh〉∂K\Γ−
∑
K∈Th

〈ε (∇θ · n) , vh〉∂K∩ΓD
−
∑
K∈Th

〈ε (∇θ · n) , vh〉∂K∩ΓN

=
∑
K∈Th

(f (x, t), vh)K .

Combining boundary terms, we have

∑
K∈Th

(θt , vh)K + (ε∇θ,∇vh)K + (u(x, t) · ∇θ + b(x, t)θ, vh)K

−
∑
K∈Th

〈ε (∇θ · n) , vh〉∂K\Γ + 〈ε (∇θ · n) , vh〉ΓD + 〈ε (∇θ · n) , vh〉ΓN

=
∑
K∈Th

(f (x, t), vh)K .
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Since we know from (2.7.3) that ε ∂θ
∂n

= ε∇θ · n = gN on ΓN , we can substitute this

in and move the term to the right hand side:

∑
K∈Th

(θt , vh)K + (ε∇θ,∇vh)K + (u(x, t) · ∇θ + b(x, t)θ, vh)K

−
∑
K∈Th

〈ε (∇θ · n) , vh〉∂K\Γ + 〈ε (∇θ · n) , vh〉ΓD

=
∑
K∈Th

(f (x, t), vh)K + 〈gN , vh〉ΓN .

We introduce the notation θ+
K to mean the internal trace of θ, for a given cell K, and

θ−K the external trace. Each internal face F ∈ FI (the set of internal faces) has two

neighbouring cells, K and K ′, with outward normals nK ,nK′ on the face F . Then

the jumps over F for a scalar-valued function w and vector-valued function w are

defined as

JwKF := w+
KnK + w+

K′nK′ , JwKF := w+
K · nK + w+

K′ · nK′ .

For faces on the Dirichlet portion of the boundary, we set

JwKF := w+
KnK , JwKF := w+

K · nK ,

while on the Neumann portion we set

JwKF := 0, JwKF := 0.

We suppress the subscript when no confusion is likely. In the same way, we define

the average values of w and w on the face F ⊂ ∂K as

{w}F :=
1

2

(
w+
K + w−K

)
, {w}F :=

1

2

(
w+
K + w−K

)
,

while on all boundary faces we define

{w}F := w+
K , {w}F := w+

K .

Again, we suppress the subscript in the notation when there is no risk of ambiguity.
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Now, from elliptic regularity, ε∇θ · n is continuous on all internal faces [44, Cor

8.36]. Thus we can substitute this with the average of the two values from the two

neighbouring cells, {ε∇θ}, and rewrite this as

∑
K∈Th

(θt , vh)K + (ε∇θ,∇vh)K + (u(x, t) · ∇θ + b(x, t)θ, vh)K

−
∑
F∈Fh

〈ε {∇θ} , JvhK〉F =
∑
K∈Th

(f (x, t), vh)K + 〈gN , vh〉ΓN . (3.2.3)

Rather than strongly enforcing the Dirichlet boundary conditions by modifying the

test and trial spaces, we instead enforce them weakly by means of the following

equality:

Υ〈ε {∇vh} , JθK〉ΓD +
σε

hF
〈JθK , JvhK〉ΓD = Υ〈ε (∇vh · n) , θ〉ΓD +

σε

hF
〈θ, vh〉ΓD

= Υ〈ε (∇vh · n) , gD〉ΓD +
σε

hF
〈gD, vh〉ΓD ,

(3.2.4)

with a penalty parameter σ that will be chosen later, and with Υ a value in {−1, 1}.
A choice of Υ = −1 results in the symmetric interior penalty method while a choice

of Υ = 1 results in the non-symmetric interior penalty method.

Given we are seeking a solution in H1(Ω), we have that JθK = 0 almost everywhere.

Thus, for all F ∈ FI ∪ FN ,

Υ〈ε {∇vh} , JθK〉F +
σε

hF
〈JθK , JvhK〉F = 0. (3.2.5)

This allows us to symmetrise (3.2.3), and to ensure that the resulting bilinear form

is coercive. Adding (3.2.4) and (3.2.5) in gives

∑
K∈Th

(θt , vh)K + (ε∇θ,∇vh)K + (u(x, t) · ∇θ + b(x, t)θ, vh)K

+
∑
F∈Fh

−〈ε {∇θ} , JvhK〉F + Υ〈ε {∇vh} , JθK〉F +
σε

hF
〈JθK , JvhK〉F

=
∑
K∈Th

(f (x, t), vh)K + 〈gN , vh〉ΓN

+ Υ〈ε (∇vh · n) , gD〉ΓD +
σε

hF
〈gD, vh〉ΓD .
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We also denote, for each cell K, the inflow boundary of K by

∂−K := {x ∈ ∂K : u(x, t) · nK(x) < 0} ,

and similarly by

∂+K := {x ∈ ∂K : u(x, t) · nK(x) ≥ 0} ,

the outflow boundary of K. We note that intervals along individual faces may move

between ∂−K and ∂+K at different times t ∈ I.

We wish to impose numerical fluxes on the local problem on each cell, so as to couple

neighbouring cells together in a stable fashion in the convection-dominated regime.

To this end, we denote the upwind-jump on each cell K across the cell boundary by

bθcK :=

{
θ+
K − θ

−
K on ∂−K\Γ,

θ−K − θ
+
K on ∂+K\Γ.

We weakly impose continuity across this cell boundary portion by the following:

〈
(u(x, t) · nK)θ+, v+

h

〉
∂−K

=
〈
(u(x, t) · nK)θ−, v+

h

〉
∂−K

.

In the region ∂−K ∩ ΓD, we impose the Dirichlet boundary condition by replacing

θ− by gD. Thus, for each cell K in Th, we have the following two equations:

〈
(u(x, t) · nK)θ+, v+

h

〉
∂−K\ΓD

=
〈
(u(x, t) · nK)θ−, v+

h

〉
∂−K\ΓD

, (3.2.6)〈
(u(x, t) · n)θ+, v+

h

〉
∂−K∩ΓD

=
〈
(u(x, t) · n)gD, v

+
h

〉
∂−K∩ΓD

. (3.2.7)

We note that (3.2.6) is equivalent to

〈
(u(x, t) · nK)bθc, v+

h

〉
∂−K\ΓD

= 0. (3.2.8)

Adding both (3.2.7) and (3.2.8) into our equation gives

∑
K∈Th

(θt , vh)K + (ε∇θ,∇vh)K + (u(x, t) · ∇θ + b(x, t)θ, vh)K
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+
∑
F∈Fh

−〈ε {∇θ} , JvhK〉F + Υ〈ε {∇vh} , JθK〉F +
σε

hF
〈JθK , JvhK〉F

−
∑
K∈Th

〈
(u(x, t) · n)θ+, v+

h

〉
∂−K∩ΓD

+
〈
(u(x, t) · nK)bθc, v+

h

〉
∂−K\ΓD

=
∑
K∈Th

(f (x, t), vh)K + 〈gN , vh〉ΓN + Υ〈ε∇vh · n, gD〉ΓD +
σε

hF
〈gD, vh〉ΓD

−
∑
K∈Th

〈
(u(x, t) · n)gD, v

+
h

〉
∂−K∩ΓD

.

We can now define the bilinear form areac,h (θ, v) and linear functional lh (v) by

areac,h (θ, v) :=
∑
K∈Th

(ε∇θ,∇v)K + (u(x, t) · ∇θ + b(x, t)θ, v)K

+
∑
F∈Fh

−〈ε {∇θ} , JvK〉F + Υ〈ε {∇v} , JθK〉F +
σε

hF
〈JθK , JvK〉F

+
∑
K∈Th

〈
(u(x, t) · n)θ+, v+

〉
∂−K∩ΓD

+
〈
(u(x, t) · nK)bθc, v+

〉
∂−K\ΓD

,

lh (v) :=
∑
K∈Th

(f (x, t), v)K + 〈gN , v〉ΓN + Υ〈ε∇v · n, gD〉ΓD +
σε

hF
〈gD, v〉ΓD

−
∑
K∈Th

〈
(u(x, t) · n)gD, v

+
〉
∂−K∩ΓD

.

Additionally we can define the bilinear form ah (θ, v) by

ah (θ, v) :=
∑
K∈Th

(ε∇θ,∇v)K + (u(x, t) · ∇θ, v)K

+
∑
F∈Fh

−〈ε {∇θ} , JvK〉F + Υ〈ε {∇v} , JθK〉F +
σε

hF
〈JθK , JvK〉F

−
∑
K∈Th

〈
(u(x, t) · n)θ+, v+

〉
∂−K∩ΓD

+
〈
(u(x, t) · nK)bθc, v+

〉
∂−K\ΓD

.

Thus, the semi-discrete discontinuous Galerkin method for the non-stationary con-

vection-diffusion-reaction equation reads:
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Let Vh := Xh,k. For each t ∈ I, find θh(t) ∈ Vh such that

∑
K∈Th

(θht , vh)K + areac,h (θh, vh) = lh (vh) (3.2.9)

for all vh ∈ Vh, with θh(0) = θ0,h the L2-projection of θ0 into Vh.

Similarly the semi-discrete discontinuous Galerkin method for the non-stationary

convection-diffusion equation reads as follows:

Let Vh := Xh,k. For each t ∈ I, find θh(t) ∈ Vh such that

∑
K∈Th

(θht , vh)K + ah (θh, vh) = lh (vh) (3.2.10)

for all vh ∈ Vh, with θh(0) = θ0,h the L2-projection of θ0 into Vh.

3.3 Fully discrete dG formulation for the energy

equation

The semi-discrete problem as formulated above is still an infinite-dimensional prob-

lem in the time variable. In order to fully reduce the solution of the PDE (2.7.5) to

a finite-dimensional problem, we discretise also in time in the following manner.

Let N > 0 be a positive integer, and let t0 = 0, t1, t2, . . . , tN = T be a strictly

increasing sequence of values in the interval I = [0, T ]. Then we discretise the time

interval I into N subintervals In, n ∈ {1, . . . , N}, with each subinterval defined by

In := [tn−1, tn]. We denote the timestep length τn = tn − tn−1.

At each timestep tn, we define a triangulation T nh in the identical fashion to the

previous section. We denote by Fnh the collection of all (d − 1)-dimensional faces

defined by the interfaces between cells. We also define the set of interior faces FnI
and set of faces on the boundary FnB. Thus we have that Fnh = FnI ∪ FnB. We also

subdivide FnB into faces on the Dirichlet boundary FnD and faces on the Neumann

boundary FnN , with FnD ∪ FnN = FnB and FnD ∩ FnN = ∅.
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For each T nh we can define the space of piecewise-polynomial functions Xn
h,k in the

obvious way: if our mesh T nh is composed of simplicial cells, then

Xn
h,k :=

{
vh ∈ L2(Ω) : vh|K ◦ DK ∈ Pk ∀ K ∈ T nh

}
, (3.3.1)

while if the mesh is composed of quadrilateral or hexahedral cells, then

Xn
h,k :=

{
vh ∈ L2(Ω) : vh|K ◦ DK ∈ Qk ∀ K ∈ T nh

}
. (3.3.2)

We then say for n = 0, . . . , N that V n
h := Xn

h,k.

Taking the semi-discrete form from (3.2.9) we can discretise the time derivative by

a timestepping scheme – here we choose the backward Euler method. The approxi-

mation in the backward Euler method is

wt(x, t
n) ≈ w(x, tn)− w(x, tn−1)

τn
.

We can then use this approximation to state the fully discrete discontinuous Galerkin

method for the convection-diffusion problem: for n = 0, . . . , N , find θnh ∈ V n
h such

that

∑
K∈T nh

(
θnh − θn−1

h

τn
, vh

)
K

+ ah (θnh , vh) = lh (vh) , (3.3.3)

for all vh ∈ V n
h , with θ0

h = θ0,h the L2-projection of θ0 into V 0
h .

The sequence θnh(x), n = 0, . . . , N is then an approximation to the true solution

θ(x, t).

Similarly, the fully discrete discontinuous Galerkin method for the convection-diff-

usion-reaction problem is: for n = 0, . . . , N , find θnh ∈ V n
h such that

∑
K∈T nh

(
θnh − θn−1

h

τn
, vh

)
K

+ areac,h (θnh , vh) = lh (vh) ,

for all vh ∈ V n
h , with θ0

h = θ0,h the L2-projection of θ0 into V 0
h .
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3.4 Finite element method for the Stokes system

Having introduced the dG method for the convection-diffusion-reaction equation,

we now concentrate on the FE for the associated stationary Stokes system in the

Boussinesq system on a thick-shell domain (2.5.1).

We recall the following two bilinear forms from (2.8.4):

s (u ,v) = (2µ (θ,x)κ (u), κ (v)),

b (v, p) = −(∇ · v, p),

and the weak formulation (2.8.5): find u ∈ U , p ∈ Q such that

s (u ,v) + b (v, p) = − (ρ(θ,x)g,v)

b (u , q) = 0

}
(3.4.1)

for all (v, q) ∈ U ×Q, where

W :=
{

w ∈
[
H1(Ω)

]3
: w · n = 0 on Γ

}
,

U :=
{
w ∈ W : (w,v(i)) = 0 for i = 1, 2, 3

}
,

Q :=
{
q ∈ L2(Ω) : (q, 1) = 0

}
.

For each t ∈ I, we define the FEM for the stationary Stokes problem (3.4.1) in the

following manner. Let Th be a mesh of the domain Ω as defined in Section 3.2.

We define the space of piecewise-polynomial functions Xh,k in the following way,

identically to as in Section 3.3: if our mesh Th is composed of simplicial cells, then

Xh,k :=
{
vh ∈ L2(Ω) : vh|K ◦ DK ∈ Pk ∀ K ∈ Th

}
,

while if the mesh is composed of quadrilateral or hexahedral cells, then

Xh,k :=
{
vh ∈ L2(Ω) : vh|K ◦ DK ∈ Qk ∀ K ∈ Th

}
.
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We then can introduce the following two spaces for k ≥ 2:

Uh,k :=
{

v ∈
[
Xh,k

]d
: v ∈

[
C0(Ω)

]d}
,

Qh,k−1 :=
{
q ∈ Xh,k−1 : q ∈ C0(Ω)

}
.

The pairing of these two spaces, Uh,k×Qh,k−1 gives rise to the Taylor-Hood element

(see e.g., [22]).

Defining the discrete versions of the bilinear forms s (·, ·) and b (·, ·),

sh (u ,v) :=
∑
K∈Th

(2µ (θ,x)κ (u), κ (v))K ,

bh (v, p) := −
∑
K∈Th

(∇ · v, p)K ,

we state the FEM for the Stokes problem using the Taylor-Hood element as the

following:

find (uh, ph) ∈ Uh,k ×Qh,k−1 such that

sh (uh,vh) + bh (vh, ph) = − (ρ(θ,x)g,vh)

bh (uh, qh) = 0

}
, (3.4.2)

for all (vh, qh) ∈ Uh,k ×Qh,k−1.

The well-posedness of this formulation is guaranteed, conditional upon the fulfillment

of the discrete inf-sup condition by the chosen mixed finite element pairing, that is,

upon the existence of a constant β∗ > 0 such that

inf
qh∈Qh,k−1

sup
vh∈Uh,k

bh (vh, qh)

‖vh‖U ‖qh‖Q
≥ β∗.

We refer the reader to [45] and [22] for proof of the sufficiency of the condition in

guaranteeing well-posedness, and to [104], which builds upon [19], that show the

Taylor-Hood mixed finite element does indeed satisfy this condition.
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3.5 The full coupled FE/dG system

Having introduced the numerical schemes for the convection-diffusion (2.7.7) and

Stokes problems (2.8.5) in turn, we are now ready to set out the complete process

for approximating the full system (2.9.1).

Since (2.7.7) is non-stationary (it contains the time-derivate term ut), while (2.8.5)

is stationary (its time-dependence comes purely from the time-dependence of its pa-

rameter values), we employ a scheme that alternates between the numerical solution

of (3.3.3) and (3.4.2) in the following manner.

Given an initial condition on the temperature, θ0
h = θ0,h, we use this to solve (3.4.2)

for (u0
h, p

0
h), with θ0

h used to evaluate µ(θh,x) and ρ(θh,x). Having established the

initial convection field in this way, this is then used when timestepping forward: at

each timestep tn, we solve the convection-diffusion problem (3.3.3) for θnh with the

previous convection field un−1 used to evaluate the term u · ∇θ in the bilinear form

ah. We are then in turn able to employ θnh in solving (3.4.2) for un
h and pnh. This

scheme is presented in Algorithm 3.1.

Algorithm 3.1 Calculate (θnh ,u
n
h, p

n
h) for n = 0, . . . , N

θ0
h ← θ0,h.

Solve (3.4.2) with θ0
h for u0

h, p
0
h.

for n = 1, . . . , N do
Solve (3.3.3) with un−1

h for θnh .
Solve (3.4.2) with θnh for un

h, p
n
h.

end for

3.6 Linear systems, their preconditioning, and

solution

Finite Element Methods reduce the original (linearised) infinite-dimensional problem

to a finite-dimensional linear system. Implementation of these methods, therefore,

combines the assembly of the required matrices and vectors to frame the problem

as a linear system, with the solution of this resulting system.
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In order to quickly simulate these systems, we therefore need to be able to both

assemble and solve quickly. It is often beneficial to design algorithms that take both

these requirements into account simultaneously.

We consider the solution stage first, as it is often the most crucial, consuming the

majority of the computational time in a simulation.

Linear systems resulting from finite element approximations are typically charac-

terised by their large size, and sparse, highly-structured nature. This lends them to

solution by iterative methods, since sparse direct methods cannot scale suitably for

use in the largest scenarios (typically, when tackling practically relevant 3D prob-

lems).

Typically, iterative methods are known to converge at a rate dependent on the prop-

erties of the matrix being inverted [46]. Often, this property is the condition number

of the matrix (the ratio of the largest and smallest eigenvalues) or the clustering

properties of the eigenvalues. Hence it is often worth investing in preconditioning, a

technique to ‘improve’ the properties of the matrix being inverted, such that conver-

gence of the iterative technique is accelerated. The ability to correctly precondition

matrices is crucial in the largest, or worst-behaved, problems. Recent work in this

mathematical area include e.g., [86, 87] for coupled flow of magma and mantle.

Preconditioners usually work best when the properties of the original matrix are

taken into account. For example, if the original matrix is block-structured, or

diagonally-dominant, then the best preconditioners will take account of, and make

use of, this structure to treat the matrix in an improved way. Essentially, knowledge

of the matrix, or the original problem itself, is used to give the solver the best chance

of solving in fewer iterations. We employ an FGMRES solver for both the Stokes

system and temperature system, since this allows us to modify the preconditioning

matrices within the iteration if desired. We precondition with a Schur-based pre-

conditioner to solve the Stokes system, and a Jacobi preconditioner to solve for the

temperature.

The assembly process typically should work to ensure that as much structure is

preserved as is reasonably possible. Thus, assembly should ensure that blocks in

the coupling between components of the solution fields are reflected as blocks in the

resulting matrix.
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Alongside this, the assembly of the matrix needs to be as fast as possible. Parallelism

of this task is generally possible, since it involves computation of integrals over cells

and (possibly) faces. This is, typically, a fully asynchronous process. In Chapter

5 we describe some of the algorithms needed to parallelise this assembly in our

implementation in deal.II. This makes heavy use of the WorkStream functionality

[103] as well as the ability to decompose the domain into discrete subdomains, with

each parallel process taking responsibility for contributions from all cells and faces

in a given subdomain.

3.7 Adaptive mesh refinement

A dominant aim of this project is to derive a rigorous a posteriori error indicator

for use in adaptive mesh refinement (AMR).

Adaptivity is the technique of changing the structure of the simulation locally be-

tween timesteps, or iteratively on a single timestep, in order to provide more or less

accuracy at a given location. The three most common techniques are:

• adapting the mesh locally by adding cells or coarsening adjacent cells into

larger cells;

• modifying the degree of the polynomial approximation space locally;

• keeping the number of cells fixed but modifying the positions of nodes.

These are referred to as h-, p- and r-refinement, respectively. We consider here only

h-refinement.

The use of h-refinement has a long history in the finite element community (e.g.,

[10, 4]), and is useful for targeting computational effort at areas of the domain

that would most benefit from it. These are usually areas containing singularities,

boundary layers, interior layers, and fast-varying coefficients. Increasing the spatial

resolution in these areas allows improved approximation of the solution, but at the

cost of additional computation. Conversely, other areas may be coarsened, ensuring

these areas do not use so much computational effort, but at the cost of diminished
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accuracy. The task of an adaptivity indicator is, thus, simple and at the same

time incredibly complex: it should rank areas that would most benefit from extra

refinement, and rank those whose coarsening will least damage the accuracy of the

overall simulation.

The main difficulty, of course, is that we do not know the exact solution of our

simulation a priori and, thus, cannot know the exact error at any point. Instead,

we employ a posteriori bounds on the error, which allow us to bound some quantity

of error based purely on knowledge of the partial differential equation and the ap-

proximate solution. Based upon this bound, an error indicator may be selected for

the purposes of directing the adaptivity.

Another complication in providing such an indicator is the fact that of course we

may not in general have full knowledge of the effect of a given adaptation. Without

completing the calculation with a given adaptation, we are in general unable to say

how greatly this will affect the accuracy, since we do not know the resulting approx-

imate solution until it is calculated. While the repeated comparison of alternatively

adapted meshes may be considered in the case of a stationary problem, it is largely

uncountenanceable in the case of a time-dependent simulation, since adaptation at

a single timestep may have strong effects on the accuracy later in the simulation,

and would, thus, require multiple simulations through the full time interval being

simulated. Doing so in order to decide upon the best locations to refine is obviously

infeasible, and largely defeats the aim of the adaptivity, which is to reduce the com-

putational effort. Thus, the error indicator is unlikely to know the full effect of a

given refinement or coarsening, especially in a time-dependent problem.

In Chapter 4 we derive a new a posteriori error bound for the dG discretisation of

the temperature equation in a rigorous manner. This allows us to then produce an

error indicator for use in driving the adaptivity algorithm.
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An a posteriori error bound

We wish to derive an a posteriori error bound for the discontinuous Galerkin method

applied to the non-stationary convection-diffusion problem (2.7.1)–(2.7.4), for use

within an adaptive finite element solution of the full coupled system (2.5.1), as

described in Algorithm 3.1. In such a scheme, we have that the convection term u

is a finite element function in Uh approximately solving the Stokes system (3.4.2).

The approach we take here, similarly to [27], is to first derive an a posteriori error

bound for the stationary problem, before using the elliptic reconstruction framework

[72] to extend this to the non-stationary problem.

Little previous work has been done on the a posteriori analysis of the stationary

convection-diffusion problem without a reaction term, except where severe restric-

tions are placed on the divergence of the convection. In order to use the Lax-Milgram

Lemma to prove existence and uniqueness of the solution, coercivity and continuity

of the bilinear form need to be established. The standard assumptions to ensure

coercivity are then:

∇ · u ∈ L∞(Ω),

and there exists a constant γ0 > 0 such that

− 1

2
∇ · u(x, t) + b(x, t) > γ0. (4.0.1)

49
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The usefulness of this assumption (4.0.1) is evident when considering that, in the

case of zero boundary conditions, we may split the convection and reaction terms

of the weak formulation into an anti-symmetric part and a symmetric part in the

following way:

(u · ∇θ + bθ, v) =
1

2
(u · ∇θ, v)− 1

2
(u · ∇v, θ) +

((
b − 1

2
∇ · u

)
θ, v

)
.

The assumption of (4.0.1) then is seen to be an assumption that the symmetric

part is positive, bounded uniformly below by a positive constant. Coercivity of the

bilinear form can then be trivially established by replacing v with θ, which cancels

out the anti-symmetric part, and leaves only the positive symmetric part.

However, this condition cannot always be assumed to hold for general u and b. In

particular, in the case of vanishing reaction, this demands the troublesome require-

ment that −1
2
∇ · u > γ0 > 0 everywhere. Since in our setup u is the numerical

solution of a Stokes problem, the divergence is only approximately zero, and thus

we cannot in general enforce the condition of strictly negative divergence.

One approach to handling this issue is to add in an artificial reaction term char-

acterised by the reaction coefficient δ0, with δ0 >
1
2
∇ · u , so that we can satisfy

(4.0.1) and thus have coercivity. This can be unsatisfactory since, while we know

∇ · u ∈ [L∞(Ω)]d, we demand that δ0 must be at least as large as ∇ · u , and δ0

ultimately ends up inside an exponential factor in the a posteriori error bound for

the non-stationary convection-diffusion problem.

An alternative approach, proposed in [9, 41], is to use an exponential-fitting tech-

nique, testing against a modified test function to prove coercivity in a modified

norm. However, this alone is not enough to guarantee coercivity in the modified

norm without still assuming ∇ · u ≤ 0.

We proceed by combining the two approaches: the exponential fitting technique

modifies the norm, and the effective reaction term, which is then supplemented by

an additional reaction term, ensures coercivity. As we shall see, in this way a minimal

amount of artificial reaction is introduced in all regimes. The benefit of combining

these two approaches is that they can work together complementarily to give the

strongest result. By modifying the norm by an exponential-fitting technique, we



An a posteriori error bound 51

x

y1

1
(0, 0)

Figure 4.1: Flow field diagram for the example of negative-divergence flow in a
unit box.

are able to enlarge the set of convection fields under which no additional reaction is

required to give coercivity. However, for convection fields where this is not sufficient,

we still add enough reaction locally to ensure coercivity. In this manner, we reduce

the additional reaction that must be added. This is important to minimise, since

our later results depend upon this additional reaction in an exponential fashion.

We introduce here two 2-dimensional examples to highlight the theoretical develop-

ment. In the first, we consider a box [0, 1]2 with a flow field
(
1, 1

2
− 1

2
y − x

)ᵀ
across

it, as illustrated in Figure 4.1. In this case, ∇·u = −1
2
, and so we should have little

difficulty in deriving a bound as shown in [90].

In the second example, we consider an annular domain, inner radius R0, outer ra-

dius R1, centred at the origin, with free-slip boundaries (that is, u · n = 0 on Γ).

Suppose that we only approximately impose a circular flow u ≈ (y,−x)ᵀ, be it

through solution of a Stokes system or some other means. Given that we are using
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an approximate convection field, we can expect the divergence of the approximate

field to be only approximately zero. In this case, there will be areas of positive di-

vergence. Successive cycles of flow around the annulus may cause the same material

to flow through this same area of positive divergence multiple times, compounding

the associated error at each cycle. Thus, to bound such a case, we can expect to

require an exponential term in our error bound.

Our strategy over the remainder of the chapter is the following: after proving an

a posteriori error bound on the stationary convection-diffusion-reaction equation in

a modified norm, we reframe the non-stationary convection-diffusion equation (cru-

cially, with no reaction) as a non-stationary convection-diffusion-reaction equation

by means of the observation that we may rewrite the equation

θt − ε∆θ + u · ∇θ = f ,

as

θt − ε∆θ + u · ∇θ + δθ = f + δθ.

Then, using the elliptic reconstruction framework of [72], and a Gronwall inequality,

we bound the error for the non-stationary convection-diffusion problem, converting

the reaction term into an exponential factor in the final error bound.

We note here that this error bound takes the view that the convection field is im-

posed upon the temperature solution without any dependence upon the underlying

temperature solution. The a posteriori analysis of the fully coupled system of Stokes

flow and temperature equation is beyond the scope of this work, and is, to the au-

thor’s knowledge, an unresolved area of study.

4.1 Problem definitions

In view of proving the a posteriori error bound for the non-stationary problem, we

first consider the stationary convection-diffusion-reaction problem

−ε∆θ + u(x) · ∇θ + δ(x)θ = f (x) on Ω, (4.1.1)

θ = 0 on ΓD, (4.1.2)
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ε
∂θ

∂n
= gN(x) on ΓN , (4.1.3)

with δ ∈ L2(Ω), where we focus on the case of zero Dirichlet values since this problem

can always be reduced to such (cf. [44]). Here we assume ε is a positive constant,

u belongs to a Stokes finite element space, and thus u ∈ [W 1,∞(Ω)]
d
, with bounded

divergence, and f ∈ L2(Ω). We require gD ∈ H
1
2 (Γ), gN ∈ H

3
2 (Γ), and apply the

same conditions to the sets ΓD and ΓN as in Chapter 3.

Considering the convection-diffusion-reaction problem (4.1.1)–(4.1.3), we restate the

bilinear form areac (·, ·) from (2.7.8), with b replaced by δ:

areac (θ, v) = (ε∇θ,∇v) + (u(x, t) · ∇θ, v) + (δθ, v).

The weak formulation for the problem including reaction δ then reads: find θ ∈
H1
D(Ω) such that

areac (θ, v) = l (v) , (4.1.4)

for all v ∈ H1(Ω).

Let Π : Vh + H1(Ω) → Xh,1 be the L2-projection, with Xh,1 defined as in (3.3.1)–

(3.3.2). For wh, vh ∈ Vh + H1(Ω), we (re)define the bilinear form areac,h with added

reaction δ:

areac,h (wh, vh) :=
∑
K∈Th

(ε∇hwh,∇hvh)K + (u · ∇hwh + δwh, vh)K

−
∑
F∈Fh

(
〈{ε∇Πwh} , JvhK〉F + 〈{ε∇Πvh} , JwhK〉F −

εσ

hF
〈JwhK , JvhK〉F

)
−
∑
K∈Th

(
〈u · nwh, vh〉∂−K∩ΓD

+ 〈u · nKbwhc, vh〉∂−K\ΓD
)
,

Note that here and in the following we use the symmetric interior penalty method,

with the parameter Υ = −1, and that we use the piecewise gradient ∇h on each cell.

We note that these bilinear forms coincide with the previous definitions of ah and

areac,h on Vh × Vh. Also note that we assume, without loss of generality, that σ ≥ 1.
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Arguing in an identical manner as in the derivation of (3.2.10), the discontinuous

Galerkin method for the convection-diffusion-reaction problem (4.1.1)–(4.1.3) reads:

find θh ∈ Vh such that

areac,h (θh, vh) = lh (vh) (4.1.5)

for all vh ∈ Vh.

We also note here that for θ, v ∈ H1
D(Ω),

areac,h (θ, v) = areac (θ, v) . (4.1.6)

Remark 4.1. We define here some useful shorthand notation for certain three-dimen-

sional vector fields. In three dimensions, the curl operator is defined to be

curlΦ =


∂Φ3

∂y
− ∂Φ2

∂z
∂Φ1

∂z
− ∂Φ3

∂x
∂Φ2

∂x
− ∂Φ1

∂y

 ,

for a vector-valued function Φ.

In the case of two-dimensional flow, it is helpful to reconsider this as a three-dimen-

sional flow with a zero z-direction component, e.g.

u :=

(
u1

u2

)
=


u1

u2

0

 .

We observe that, for a function of the form

Ψ :=


0

0

g(x, y)

 ,

where g(x, y) is constant in the z-direction, we have

curlΨ =


∂g
∂y

− ∂g
∂x

0

 ,
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i.e. the curl is a two-dimensional flow in the plane. Since this property will be of

use, this motivates the following shorthand: for a vector-valued function Ψ of the

form

Ψ :=


0

0

g(x, y)

 ,

where g(x, y) is a scalar-valued function with no dependence on z, we use the short-

hand Ψ = g(x), which allows us to write curl g(x) instead of curlΨ.

4.2 Exponential fitting

Since we assume u ∈ [W 1,∞(Ω)]
d ⊂ [L2(Ω)]

d
, this has a Helmholtz decomposition

as guaranteed by the following result (e.g., [101, 45]).

Lemma 4.2 (Helmholtz decomposition). Let d ∈ {2, 3}. Every u ∈ [L2(Ω)]
d

has a

decomposition of the form

u = ∇η + curlφ,

with η ∈ H1(Ω) and φ ∈ [H1(Ω)]
3
. In the case of d = 2, we use the view of the

convection field as a three-dimensional vector field with zero z-direction component,

as in Remark 4.1.

Remark 4.3. Since η is the solution of the equation ∆η = ∇ · u on a smooth,

or convex polygonal domain, we have that η ∈ H2(Ω) ⊂ W 1,∞(Ω) and curlφ =

u −∇η ∈ L∞(Ω)d.

Remark 4.4. Additionally, since we have assumed that u · n = 0 on ΓN , we have

∇η · n = 0 on ΓN (cf. [45, Thm 3.2]).

We now define the weighting function

ψ := exp(−αη), (4.2.1)

with α ∈ R+ a constant to be determined later, so that

∇ψ = −αψ∇η.
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Since η ∈ W 1,∞(Ω) (cf. Remark 4.3), we have that ψ ∈ W 1,∞(Ω). Thus ψv ∈ H1(Ω)

for all v ∈ H1(Ω), and ψw ∈ H1
D(Ω) for all w ∈ H1

D(Ω).

With this weighting function, we are able to define the ψ-weighted Lp-norm ‖·‖ψ,ω,p
as

‖v‖pψ,ω,p :=

∫
ω

ψvp dx,

where we suppress the ω subscript if ω = Ω, and suppress the p subscript if p = 2.

In the case of p =∞, we use the definition ‖v‖ψ,ω,∞ := supω
∣∣√ψv∣∣.

For θ, v ∈ H1(Ω), using ψv as test function in the definition of areac and applying

the product rule, yields

areac (θ, ψv) = (ε∇θ, ψ∇v) + ((u − αε∇η) · ∇θ, ψv) + (δθ, ψv).

Integration by parts on the second term, and using (4.2.1) and Remark 4.4, reveals

((u − αε∇η) θ, ψ∇v) + ((u − αε∇η)ψv,∇θ)

= ((α∇η −∇) · (u − αε∇η) θ, ψv) + 〈(u − αε∇η) · nθ, ψv〉ΓD , (4.2.2)

where we abuse the ‘dot’ notation to simultaneously denote both the vector dot-

product and part of the divergence operator: that is, we write

(α∇η −∇) · u = α∇η · u −∇ · u .

Equation (4.2.2) allows us to write

areac (θ, ψv) = (ε∇θ, ψ∇v) + ((δ + (α∇η −∇) · (u − αε∇η)) θ, ψv)

− ((u − αε∇η) θ, ψ∇v) + 〈(u − αε∇η) · nθ, ψv〉ΓD , (4.2.3)

and, thus,

areac (θ, ψθ) = (ε∇θ, ψ∇θ) +

((
δ +

1

2
(α∇η −∇) · (u − αε∇η)

)
θ, ψθ

)
+

1

2
〈(u − αε∇η) · nθ, ψθ〉ΓD . (4.2.4)
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Similarly, we can write, for wh, vh ∈ Vh,

areac,h (wh, ψvh) =
∑
K∈Th

(ε∇hwh, ψ∇hvh)K + ((u − αε∇η) · ∇hwh + δwh, ψvh)K

−
∑
F∈Fh

(
〈{ε∇Πwh} , JψvhK〉F + 〈{ε∇Π(ψvh)} , JwhK〉F −

εσ

hF
〈JwhK , JψvhK〉F

)
−
∑
K∈Th

(
〈(u − αε∇η) · nwh, ψvh〉∂−K∩ΓD

+ 〈(u − αε∇η) · nKbψvhc, wh〉∂−K\ΓD
)
,

and, using integration by parts and the cell-wise analogue of (4.2.2), we get

areac,h (wh, ψwh)

=
∑
K∈Th

(ε∇hwh, ψ∇hwh)K +

((
δ +

1

2
(α∇η −∇) · (u − αε∇η)

)
wh, ψwh

)
K

−
∑
F∈Fh

(
〈{ε∇Πwh} , JψwhK〉F + 〈{ε∇Π(ψwh)} , JwhK〉F −

εσ

hF
〈JwhK , JψwhK〉F

)
+
∑
K∈Th

(
〈(u − αε∇η) · nwh, ψwh〉∂+K∩ΓD

+ 〈(u − αε∇η) · nKbψwhc, wh〉∂+K\ΓD
)
.

We introduce the helpful notation

L := δ +
1

2
(α∇η −∇) · (u − αε∇η) ,

and, for future reference,

M := δ + (α∇η −∇) · (u − αε∇η) . (4.2.5)

Then, if δ is large enough that L ≥ 0, we may define the ψ-weighted norm |‖vh|‖ψ :

|‖vh|‖2
ψ :=

∑
K∈Th

ε ‖∇vh‖
2
ψ,K +

∑
K∈Th

∥∥∥√Lvh∥∥∥2

ψ,K
+
∑
F∈Fh

σε

hF
‖JvhK‖

2
ψ,F . (4.2.6)

We note that, in the case of a divergence-free convection field, we may allow η = 0,

in which case L = 0 if we also choose δ = 0. See Section 4.8 for a discussion of this

case: in the following analysis, for simplicity of presentation, we assume L 6= 0. All

the results follow analogously in the L = 0 case, however.
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For w ∈ [L2(Ω)]
d
, we further define the semi-norm

|w|ψ,? := sup
v∈H1

D(Ω)\{0}

∫
Ω

wψ · ∇v dx

|‖v|‖ψ
.

Finally, we now define

|vh|2ψ,A := |(u − αε∇η) vh|2ψ,? +
∑
F∈Fh

hF‖u − αε∇η‖2
F,∞

ε
‖JvhK‖

2
ψ,F . (4.2.7)

These definitions will be used to bound the convective derivative by the semi-

norm |(u − αε∇η) vh|2ψ,? and the jump terms hF‖u − αε∇η‖F,∞ε−1 ‖JvhK‖
2
ψ,F , anal-

ogously to [108] and the subsequent [90]. Here we note that

hF‖u − αε∇η‖2
F,∞ε

−1 = σ−1Pe2
L

σε

hF
,

where PeL is the modified local mesh Péclet number and σε
hF

is the penalty term.

We end this section with the following observation, which will be useful later.

Remark 4.5. For any vector field b and scalar function w, by the Cauchy-Schwarz

inequality,

|bw|ψ,? := sup
v∈H1

D(Ω)\{0}

∫
Ω

bψw · ∇v dx

|‖v|‖ψ

≤ sup
v∈H1

D(Ω)\{0}

‖bw‖ψ ‖∇v‖ψ dx

|‖v|‖ψ

≤ sup
v∈H1

D(Ω)\{0}

(∑
K∈Th

‖bw‖2
ψ,K

) 1
2
(∑

K∈Th
‖∇v‖2

ψ,K

) 1
2

√
ε
(∑

K∈Th
‖∇v‖2

ψ,K

) 1
2

=
1√
ε

∑
K∈Th

‖bw‖2
ψ,K

 1
2

≤ 1√
ε

∑
K∈Th

(
‖b‖2

ψ,K,∞ ‖w‖
2
K

) 1
2

. (4.2.8)
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4.2.1 Coercivity and continuity results

It is trivial to observe the following from (4.2.4):

Lemma 4.6 (Coercivity of areac (·, ψ·) over H1
D(Ω)). For w ∈ H1

D(Ω),

areac (w,ψw) = |‖w|‖2
ψ .

In what follows, we use the notation . to denote “less than, up to a constant

independent of h and ε”.

Lemma 4.7 (Continuity of areac (·, ψ·) over H1
D(Ω)). Under the assumption that,

for x ∈ Ω,

δ(x) ≥ max {0,−2 (α∇η −∇) · (u − αε∇η) (x)} , (4.2.9)

we have that for w, v ∈ H1
D(Ω),

(ε∇w,ψ∇v) + ((δ + (α∇η −∇) · (u − αε∇η))w,ψv) . |‖w|‖ψ |‖v|‖ψ , (4.2.10)

and

areac (w,ψv) . (|‖w|‖ψ + |(u − αε∇η)w|ψ,?) |‖v|‖ψ .

Proof. The first assertion (4.2.10) follows from the assumption (4.2.9). Applying

(4.2.10) to (4.2.3), we have

areac (w,ψv) =(ε∇w,ψ∇v) + ((δ + (α∇η −∇) · (u − αε∇η))w,ψv)

− ((u − αε∇η)w,ψ∇v) + ((u − αε∇η) · nw,ψv)ΓD

.(ε∇w,ψ∇v) + ((δ + (α∇η −∇) · (u − αε∇η))w,ψv)

− ((u − αε∇η)w,ψ∇v)

. (|‖w|‖ψ + |(u − αε∇η)w|ψ,?) |‖v|‖ψ .

Motivated by this continuity result, we choose δ as in (4.2.9), and then have the

following result.
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Lemma 4.8 (Continuity of areac (·, ψ·) over (Vh +H1
D(Ω)) ×H1

D(Ω)). It is easy to

verify that, for wh ∈ Vh +H1
D(Ω), v ∈ H1

D(Ω),

areac (wh, ψv) . (|‖wh|‖ψ + |wh|ψ,A) |‖v|‖ψ .

Having chosen δ, we are able to characterise the behaviour of the weight ψ and the

term L based upon the underlying flow pattern.

Since η is the solution of the equation

∆η = ∇ · u ,

a flow field of purely negative-divergence will lead to a large weighting, while a purely

positive-divergence field will have a reduced weighting. A divergence-free field has

weighting ψ = 1. In a similar way, 1
2

(α∇η −∇) · (u − αε∇η) is generally negative

when ∇ · u is positive, and vice-versa. By our choice of δ, this means that L is

always non-negative, with a value of zero for divergence-free flow, and a positive

value for all other divergence values, in line with the absolute size of the divergence.

In this way, the ψ-weighted dG norm does the following: in areas of zero divergence,

we recover the unweighted dG norm. Areas of negative divergence are emphasised,

since both ψ and L will be large there. Areas of positive divergence have reduced

H1- and edge jump-terms, with an L2 term that is also negatively affected by the

weighting, but is emphasised by the L value.

Thus the ψ-weighted norm reduces the prominence of areas of positive divergence.

This reduces the area highlighted to be problematic in the example on an annular

domain at the beginning of this chapter.

4.3 Estimator notation and definitions

In this section, we introduce all the notation needed to state the a posteriori error

estimator.
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For each cell K and each edge F we define the following patches, using the notation

cl (K) to denote the closure of a cell.

ωK := {K ′ ∈ Th : K ′ shares a face with K} ,

ωF := {K ′ ∈ Th : F ⊂ ∂K ′} ,

ω̃K := {K ′ ∈ Th : cl (K ′) ∩ cl (K) 6= ∅} ,

ω̃F := {K ′ ∈ Th : cl (K ′) ∩ cl (F ) 6= ∅} .

For each facet (either a cell or an edge) ω and for each function φ ∈ L∞(ω) defined

on it, we define the following notation for the supremum and infimum of the absolute

value over the facet ω:

φω := sup
ω
|φ|, φ

ω
:= inf

ω
|φ|.

Similarly, for each vector function φ ∈ [L∞(ω)]d defined on it, we define the following

notation for the supremum and infimum of the norm of the vector over the facet ω:

φω := sup
ω
‖φ‖ , φ

ω
:= inf

ω
‖φ‖ .

On each cell, we define the shorthand

λK :=

 ε−
1
2 if ψ

K
= ψK = 1,

max

{
∇ψK√
LK
, ψK√

ε

}
otherwise.

Then, for each cell K and each edge F , we also define the local weighting functions

ρK := 1√
ψ
K

min

{
ψK√
LK
, hKλK

}
, ρωF := minK′∈ωF

{
hK′
ψ
K′
λ2
K

}
,

%K :=
λ2K
ψ
K

, %ωF := maxK′∈ωF %K′ .
(4.3.1)

Note that for F ∈ Fh and K ⊂ ωF , we have

%−1
K ≥ %−1

ωF
. (4.3.2)

Let now θh be the dG approximation obtained from (4.1.5). For each element K ∈
Th, we introduce a local error indicator ζK which is given by the sum of the three
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terms

ζ2
K = ζ2

RK
+ ζ2

EK
+ ζ2

JK
,

to be defined below.

The first term ζRK is the interior residual defined by

ζ2
RK

= ρ2
K ‖f + ε∆θh − u · ∇θh − δθh‖

2
K .

The second term ζEK is the edge residual defined by

ζ2
EK

=
1

2

∑
F∈∂K\Γ

ρωF ‖Jε∇θhK‖
2
F .

The last term ζJK measures the edge jumps of the approximate solution θh and is

defined by

ζ2
JK

=
∑
F∈∂K

(
σε

hF

(
ψωF + %ωFσε+

ψFα
2ε∇η2

F

LωF

)
+ ρωF ‖u‖2

F,∞

+ hF‖L‖ψ,ω̃F ,∞ +
ψ ω̃FhF

ε
‖u − αε∇η‖2

ω̃F ,∞

 ‖JθhK‖2
F .

We then define the a-posteriori error estimator by

ζ :=

∑
K∈Th

ζ2
K

 1
2

. (4.3.3)

4.4 Bounding the stationary convection-diffusion-

reaction problem

We claim the following bound on the stationary convection-diffusion-reaction prob-

lem.

Theorem 4.9. Let θ be the solution of (4.1.1)–(4.1.3) and let θh ∈ Vh be the solution

to the discontinuous Galerkin problem (4.1.5). Let the error estimator ζ be defined
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as in (4.3.3). Then we have the a posteriori error bound

|‖θ − θh|‖ψ + |θ − θh|ψ,A . ζ.

In the remainder of Section 4.4, we present a proof of Theorem 4.9. We begin with

some results that will be necessary in our proof.

We begin with the well-known inverse inequality (e.g., [92, 110] for the proof on

d-simplices – the result also holds for quadrilaterals and hexahedra). Let p ≥ 1 be

a fixed integer. For any polynomial v ∈ Pp(ω), we have

‖v‖2
∂ω . h−1

K ‖v‖
2
ω . (4.4.1)

Theorem 4.10 (Karakachian-Pascal operator). Let V c
h := Vh ∩ H1

D(Ω), the con-

forming subspace of Vh which satisfies the Dirichlet boundary condition (4.1.2). For

any vh ∈ Vh there exists a function Ch(vh) ∈ V c
h , satisfying

∑
K∈Th

‖vh − Ch(vh)‖
2
K .

∑
F∈Fh

hF ‖JvhK‖
2
F ,∑

K∈Th

‖∇ (vh − Ch(vh))‖
2
K .

∑
F∈Fh

h−1
F ‖JvhK‖

2
F .

We refer to Ch : Vh → V c
h as the Karakashian-Pascal approximation operator (cf.

[61] for the constructive proof of a unique such operator).

We can extend this result to show that, for any positive weight φ ∈ L∞(Ω), the

following approximation result holds.

Lemma 4.11. For vh ∈ Vh,

∑
K∈Th

‖φ (vh − Ch(vh))‖
2
K .

∑
F∈Fh

‖φ‖2
ω̃F ,∞hF ‖JvhK‖

2
F ,∑

K∈Th

‖φ∇ (vh − Ch(vh))‖
2
K .

∑
F∈Fh

‖φ‖2
ω̃F ,∞h

−1
F ‖JvhK‖

2
F .
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In particular, setting φ := ξ
√
ψ, for a positive function ξ ∈ L∞(Ω), we have: for

vh ∈ Vh,

∑
K∈Th

‖ξ (vh − Ch(vh))‖
2
ψ,K .

∑
F∈Fh

‖ξ‖2
ψ,ω̃F ,∞hF ‖JvhK‖

2
F ,∑

K∈Th

‖ξ∇ (vh − Ch(vh))‖
2
ψ,K .

∑
F∈Fh

‖ξ‖2
ψ,ω̃F ,∞h

−1
F ‖JvhK‖

2
F .

Proof. Defining a local analogue of the canonical Karakashian-Pascal operator for

each cell, which coincides with the latter on each cell, we can prove a local inequality

in the spirit of the Karakashian-Pascal inequality using just the patch of edges

touching each cell by at least a vertex. Weighting by φ, we pull out the maximum

per cell. Summing over all cells, we convert this to a sum over edges by weighting

each edge F with the maximum over all cells K such that F ⊂ ω̃K , that is, over all

cells in ω̃F .

The second part is shown by replacing φ by ξ
√
ψ.

Let I be the identity operator. The L2-projection Π : Vh + H1
D(Ω) → Xh,1 (the

space of linear polynomials as defined by (3.2.1)–(3.2.2)) is defined, for each w ∈
Vh +H1

D(Ω), as the unique wh = Πw such that

(w, vh) = (Πw, vh) ∀vh ∈ Xh,1.

The L2-projection satisfies the following:

1. the stability property

‖Πv‖ω ≤ ‖v‖ω ;

2. the local estimates

ρ−1
K ‖(I − Π) (ψv)‖K . |‖v|‖ψ,K ,

ρ
− 1

2
ωF ‖(I − Π) (ψv)‖F . |‖v|‖ψ,ωF ,

(4.4.2)

for any v ∈ H1
D(Ω), and any K,F ⊂ Th;
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3. the global estimates

∑
K∈Th

ρ−2
K ‖(I − Π) (ψv)‖2

K

 1
2

. |‖v|‖ψ ,

∑
F∈Fh

ρ−1
ωF
‖(I − Π) (ψv)‖2

F

 1
2

. |‖v|‖ψ ,

(4.4.3)

for any v ∈ H1
D(Ω).

These bounds on the L2-projector (see Appendix A for proofs) are based on the

following result from [85, 3.5.22]: let 0 ≤ l ≤ k. For any bounded, open set ω with

diameter h, and v ∈ H l+1(ω),

‖v − Πv‖ω + h ‖(v − Πv)‖H1(ω) . hl+1|v|Hl+1(ω), (4.4.4)

and the resulting bound:

%−1
K ‖∇(ψv)‖2

K . |‖v|‖2
ψ,K , (4.4.5)

along with two trace inequalities [2]: for vh ∈ Vh, and for any cell K and edge

F ⊂ ∂K,

‖vh‖
2
F . h−1

K ‖vh‖
2
K + ‖vh‖K ‖∇vh‖K

and

‖vh‖
2
F . h−1

K ‖vh‖
2
K + hK ‖∇vh‖

2
K .

4.4.1 An inf-sup result

The following inf-sup result will be used to bound the conforming error in Lemma

4.16.

Lemma 4.12. There is a constant C > 0 such that

inf
θ∈H1

D(Ω)\{0}
sup

v∈H1
D(Ω)\{0}

areac (θ, ψv)

(|‖θ|‖ψ + |(u − αε∇η) θ|ψ,?) |‖v|‖ψ
≥ C > 0.
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Proof. Let w ∈ H1
D(Ω) and Λ ∈ (0, 1). Then there exists wΛ ∈ H1

D(Ω) such that

|‖wΛ|‖ψ = 1, −
∫

Ω

(u − αε∇η)wψ · ∇wΛ dx ≥ Λ|(u − αε∇η)w|ψ,?.

From (4.2.3) we have

areac (w,ψwΛ) =

∫
Ω

εψ∇w · ∇wΛ dx+

∫
Ω

(δ + (α∇η −∇) · (u − αε∇η))ψwwΛ dx

−
∫

Ω

(u − αε∇η)ψw · ∇wΛ dx.

Then, by Lemma 4.7, we obtain

areac (w,ψwΛ) ≥ Λ|(u − αε∇η)w|ψ,? − C1|‖w|‖ψ |‖wΛ|‖ψ
= Λ|(u − αε∇η)w|ψ,? − C1|‖w|‖ψ ,

for some positive constant C1.

Define vΛ = w +
|‖w |‖ψ
1+C1

wΛ. Obviously, |‖vΛ|‖ψ ≤
(

1 + 1
1+C1

)
|‖w|‖ψ .

So, using Lemma 4.6,

sup
v∈H1

D(Ω)\{0}

areac (w,ψv)

|‖v|‖ψ
≥areac (w,ψvΛ)

|‖vΛ|‖ψ

=
areac (w,ψw) +

|‖w |‖ψ
1+C1

areac (w,ψwΛ)

|‖vΛ|‖ψ

≥
|‖w|‖2

ψ +
|‖w |‖ψ
1+C1

(Λ|(u − αε∇η)w|ψ,? − C1|‖w|‖ψ)(
1 + 1

1+C1

)
|‖w|‖ψ

=
|‖w|‖ψ + Λ|(u − αε∇η)w|ψ,?

2 + C1

.

Since Λ ∈ (0, 1) and w ∈ H1
D(Ω) are arbitrary,

inf
w∈H1

D(Ω)\{0}
sup

v∈H1
D(Ω)\{0}

areac (w,ψv)

(|‖w|‖ψ + |(u − αε∇η)w|ψ,?) |‖v|‖ψ
≥ 1

2 + C1

> 0,

and the result follows.
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4.4.2 A decomposition of functions from Vh

Following [55, 56] we decompose the discontinuous Galerkin solution into a conform-

ing part and a non-conforming remainder. That is, we write

θh = θch + θdh,

where θch = Ch(θh) ∈ V c
h := Vh ∩ H1

D(Ω), with Ch the Karakashian-Pascal approxi-

mation operator from Theorem 4.10. The remainder is given by θdh := θh − θch. We

make the observation that
q
θdh

y
F

= JθhKF on any edge F . By the triangle inequality

we obtain

|‖θ − θh|‖ψ + |θ − θh|ψ,A ≤ |‖θ − θch|‖ψ + |θ − θch|ψ,A + |‖θdh|‖ψ + |θdh|ψ,A. (4.4.6)

We can now prove that both the nonconforming term θdh and the continuous error

θ − θch can each be bounded by the error estimator.

4.4.3 Bounding the nonconforming terms

Lemma 4.13. There holds

|‖θdh|‖2
ψ + |θdh|2ψ,A

.
∑
F∈Fh

(
ψF

σε

hF
+ hF‖L‖ψ,ω̃F ,∞ +

ψ ω̃FhF

ε
‖u − αε∇η‖2

ω̃F ,∞

)
‖JθhK‖

2
F .

Proof. Since
q
θdh

y
= JθhK, we have

|‖θdh|‖2
ψ + |θdh|2ψ,A =

∑
K∈Th

(
ε
∥∥∇θdh∥∥2

ψ,K
+
∥∥∥√Lθdh∥∥∥2

ψ,K

)
+ |(u − αε∇η) θdh|2ψ,?

+
∑
F∈Fh

(
σε

hF
+
hF‖u − αε∇η‖2

F,∞

ε

)
‖JθhK‖

2
ψ,F .
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Lemma 4.11 yields

∑
K∈Th

ε
∥∥∇θdh∥∥2

ψ,K
. σ−1

∑
F∈Fh

σε

hF
ψF ‖JθhK‖

2
F ,

and ∑
K∈Th

∥∥∥√Lθdh∥∥∥2

ψ,K
.
∑
F∈Fh

hF‖L‖ψ,ω̃F ,∞ ‖|JθhK|‖
2
F .

To estimate |(u − αε∇η) θdh|ψ,?, we apply Lemma 4.11 once more, with the bound

(4.2.8), and obtain

|(u − αε∇η) θdh|2ψ,? ≤
1

ε

∑
K∈Th

‖u − αε∇η‖2
ψ,K,∞

∥∥θdh∥∥2

K

.
∑
F∈Fh

hFψ ω̃F ‖u − αε∇η‖
2
ω̃F ,∞

ε
‖|JθhK|‖

2
F .

Finally,

∑
F∈Fh

(
σε

hF
+
hF‖u − αε∇η‖2

F,∞

ε

)
‖JθhK‖

2
ψ,F

≤
∑
F∈Fh

ψF

(
σε

hF
+
hF‖u − αε∇η‖2

F,∞

ε

)
‖JθhK‖

2
F .

Collecting together these bounds and noting that ψF ≤ ψ ω̃F yields the result.

4.4.4 Bounding the conforming terms

The following two lemmas are intermediate results in view of bounding the conform-

ing error, in Lemma 4.16.

Lemma 4.14. For any v ∈ H1
D(Ω), we have

(f , (I − Π) (ψv))−areac,h (θh, (I − Π) (ψv))

.

∑
K∈Th

(
ζ2
RK

+ ζ2
EK

)
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+
∑
F∈Fh

(
%ωF

σ2ε2

hF
+ ρωF ‖u‖2

F,∞

)
‖JθhK‖

2
F

 1
2

|‖v|‖ψ .

Proof. Set

T = (f , (I − Π) (ψv))− areac,h (θh, (I − Π) (ψv)) .

Then, using (I − Π) Π = 0, and after integration by parts,

T =
∑
K∈Th

(f + ε∆θh − u · ∇θh − δθh, (I − Π) (ψv))K

−
∑
K∈Th

〈ε∇θh · nK , (I − Π) (ψv)〉∂K

+
∑
F∈Fh

〈{ε∇θh} , J(I − Π) (ψv)K〉F

−
∑
F∈Fh

σε

hF
〈JθhK , JΠ (ψv)K〉F

+
∑
K∈Th

〈u · nKθh, (I − Π) (ψv)〉∂−K∩ΓD

+
∑
K∈Th

〈u · nKbθhc, (I − Π) (ψv)〉∂−K\ΓD

=T1 + T2 + T3 + T4 + T5 + T6.

By the Cauchy-Schwarz inequality and (4.4.3),

T1 .

∑
K∈Th

ζ2
RK

 1
2
∑
K∈Th

ρ−2
K ‖(I − Π) (ψv)‖2

K

 1
2

.

∑
K∈Th

ζ2
RK

 1
2

|‖v|‖ψ .

T2 + T3 can be written in terms of jumps and averages as

T2 + T3 = −
∑
F∈Fh

〈Jε∇θhK , {(I − Π) (ψv)}〉F +
∑
F∈FN

〈Jε∇θhK , {(I − Π) (ψv)}〉F .

The Cauchy-Schwarz inequality and (4.4.3) yield

T2 + T3 .

∑
F∈Fh

ρωF ‖Jε∇θhK‖
2
F

 1
2
∑
F∈Fh

ρ−1
ωF
‖(I − Π) (ψv)‖2

F

 1
2
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.

∑
F∈Fh

ρωF ‖Jε∇θhK‖
2
F

 1
2

|‖v|‖ψ

.

∑
K∈Th

ζEK

 1
2

|‖v|‖ψ .

To bound T4, we use the interpolant Gh introduced by Clément [28] which is con-

tinuous and has the following property:

h−1
K ‖(Gh − I) v‖ . ‖∇v‖ . (4.4.7)

By applying in turn the Cauchy-Schwarz inequality, (4.3.2), the inverse inequality

(4.4.1), triangle inequality, Clément bound (4.4.7), L2-bound (4.4.2), and (4.4.5), we

can show

T4 =−
∑
F∈Fh

σε

hF
〈JθhK , JΠ (ψv)K〉F

.

∑
F∈Fh

%ωF
σ2ε2

hF
‖JθhK‖

2
F

 1
2
∑
F∈Fh

%−1
ωF
h−1
F ‖J(Gh − Π) (ψv)K‖2

F

 1
2

.

∑
F∈Fh

%ωF
σ2ε2

hF
‖JθhK‖

2
F

 1
2
∑
K∈Th

%−1
K h−2

K ‖(Gh − Π) (ψv)‖2
K

 1
2

.

∑
F∈Fh

%ωF
σ2ε2

hF
‖JθhK‖

2
F

 1
2
∑
K∈Th

%−1
K h−2

K

(
‖(Gh − I) (ψv)‖2

K

+ ‖(I − Π) (ψv)‖2
K

) 1
2

.

∑
F∈Fh

%ωF
σ2ε2

hF
‖JθhK‖

2
F

 1
2
∑
K∈Th

%−1
K ‖∇ (ψv)‖2

K

 1
2

.

∑
F∈Fh

%ωF
σ2ε2

hF
‖JθhK‖

2
F

 1
2

|‖v|‖ψ .
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To bound the final terms T5 + T6, we again use the Cauchy-Schwarz inequality and

(4.4.3):

T5 + T6 =
∑
K∈Th

〈u · nKθh, (I − Π) (ψv)〉∂−K∩ΓD

+
∑
K∈Th

〈u · nKbθhc, (I − Π) (ψv)〉∂−K\ΓD

=
∑
F∈Fh

〈JuθhK , (I − Π) (ψv)〉F

.

∑
F∈Fh

ρωF ‖JuθhK‖
2
F

 1
2
∑
F∈Fh

ρ−1
ωF
‖(I − Π) (ψv)‖2

F

 1
2

.

∑
F∈Fh

ρωF ‖u‖2
F,∞ ‖JθhK‖

2
F

 1
2

|‖v|‖ψ .

.

Lemma 4.15. For any v ∈ H1
D(Ω), the following bound holds:

areac,h
(
θdh, ψv

)
.

∑
F∈Fh

(
σε

hF

(
ψωF + %ωF ε+

ψFα
2ε∇η2

F

LωF

)
+ hF‖M‖ψ,ω̃F ,∞

+
hF
ε
‖u − αε∇η‖2

ψ,ω̃F ,∞

)
‖JθhK‖

2
F

 1
2

|‖v|‖ψ ,

with M defined as in (4.2.5).

Proof. Recalling the definition of areac,h:

areac,h

(
θdh, ψv

)
=
∑
K∈Th

(
ε∇hθ

d
h,∇h (ψv)

)
K
−
(
θdh,∇h · (uψv)

)
K

+
(
δθdh, ψv

)
K

−
∑
F∈Fh

〈
{ε∇Π (ψv)} ,

q
θdh

y〉
F

=
∑
K∈Th

(
εψ∇θdh,∇v

)
K
−
(
(u − αε∇η)ψθdh,∇v

)
K

+
∑
K∈Th

(
Mθdh, ψv

)
K
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−
∑
F∈Fh

〈
{ε∇Π (ψv)} ,

q
θdh

y〉
F
−
∑
K∈Th

αε
〈
∇η · nKθdh, ψv

〉
∂K

=S1 + S2 + S3 + S4 + S5,

by the product rule, and integration by parts. By the Cauchy-Schwarz inequality

and Lemma 4.11,

S1 ≤

∑
K∈Th

∫
K

εψ
∣∣∇θdh∣∣2 dx

 1
2
∑
K∈Th

∫
K

εψ (∇v)2 dx

 1
2

≤

∑
K∈Th

∫
K

εψ
∣∣∇θdh∣∣2 dx

 1
2

|‖v|‖ψ

. σ−
1
2

∑
F∈Fh

ψωF
σε

hF
‖JθhK‖

2
F

 1
2

|‖v|‖ψ .

Using the definition of the semi-norm |·|ψ,?, Lemma 4.11 and (4.2.8),

S2 ≤|(u − αε∇η) θdh|ψ,?|‖v|‖ψ

≤ 1√
ε

∑
K∈Th

‖u − αε∇η‖2
ψ,K,∞

∥∥θdh∥∥2

K

 1
2

|‖v|‖ψ

.

∑
F∈Fh

hF
ε
‖u − αε∇η‖2

ψ,ω̃F ,∞ ‖JθhK‖
2
F

 1
2

|‖v|‖ψ .

By the Cauchy-Schwarz inequality and Lemma 4.11, and since M+ δ = 2L,

S3 ≤

∑
K∈Th

∫
K

ψM
(
θdh
)2

dx

 1
2
∑
K∈Th

∫
K

ψMv2 dx

 1
2

≤

∑
K∈Th

∫
K

ψM
(
θdh
)2

dx

 1
2
∑
K∈Th

∫
K

ψ (M+ δ) v2 dx

 1
2

.

∑
K∈Th

∫
K

ψM
(
θdh
)2

dx

 1
2

|‖v|‖ψ
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.

∑
F∈Fh

hF‖M‖2
ψ,ω̃F ,∞ ‖JθhK‖

2
F

 1
2

|‖v|‖ψ .

By the Cauchy-Schwarz inequality, the stability of the L2-projection, an inverse

inequality, the triangle inequality (splitting Π into Π − I + I), the linearity of the

gradient operator, and (4.4.4), we have

S4 ≤ σ−
1
2

∑
F∈Fh

∫
F

%ωF
σε2

hF
JθhK

2 ds

 1
2
∑
F∈Fh

%−1
ωF
hF

∫
F

{∇Π (ψv)}2 ds

 1
2

. σ−
1
2

∑
F∈Fh

%ωF
σε2

hF
‖JθhK‖

2
F

 1
2
∑
F∈Fh

%−1
ωF
hF

∫
F

{∇ (ψv)}2 ds

 1
2

. σ−
1
2

∑
F∈Fh

%ωF
σε2

hF
‖JθhK‖

2
F

 1
2
∑
K∈Th

%−1
K ‖∇ (ψv)‖2

K

 1
2

. σ−
1
2

∑
F∈Fh

%ωF
σε2

hF
‖JθhK‖

2
F

 1
2

|‖v|‖ψ .

Finally, by the Cauchy-Schwarz inequality,

S5 =−
∑
K∈Th

∫
∂K

αε∇η · nKψθdhv ds

≤
∑
F∈Fh

∫
F

αε∇η ·
q
θdh

y
ψv ds

≤σ−
1
2

∑
F∈Fh

σα2ε2∇η2

F

hFLωF
‖JθhK‖

2
ψ,F

 1
2
∑
F∈Fh

∫
F

hFLωFψv
2 ds

 1
2

≤σ−
1
2

∑
F∈Fh

σα2ε2∇η2

F

hFLωF
‖JθhK‖

2
ψ,F

 1
2
∑
K∈Th

∫
K

LKψv2 dx

 1
2

≤σ−
1
2

∑
F∈Fh

σα2ε2∇η2

F

hFLωF
‖JθhK‖

2
ψ,F

 1
2
∑
K∈Th

∥∥∥√Lv∥∥∥2

ψ,K

 1
2
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≤σ−
1
2

∑
F∈Fh

σα2ε2∇η2

F

hFLωF
‖JθhK‖

2
ψ,F

 1
2

|‖v|‖ψ

≤σ−
1
2

∑
F∈Fh

ψFσα
2ε2∇η2

F

hFLωF
‖JθhK‖

2
F

 1
2

|‖v|‖ψ .

We note that, of course, in the case of a constant η, such that ∇η = 0, we have

no S5 term, and thus in the following results the term ψF σα
2ε2∇η2F

hFLωF
should then not

appear, being treated as 0 rather than 0
δωF

, which may not be defined in the case

δωF = 0.

We can now state and prove the following bound on the conforming error θ − θch:

Lemma 4.16. There holds:

|‖θ − θch|‖ψ + |θ − θch|ψ,A

.

∑
K∈Th

(
ζ2
RK

+ ζ2
EK

)
+
∑
F∈Fh

(
σε

hF

(
ψωF + %ωFσε+

ψFα
2ε∇η2

F

LωF

)
+ ρωF ‖u‖2

F,∞

+ hF‖M‖ψ,ω̃F ,∞ +
hF
ε
‖u − αε∇η‖2

ψ,ω̃F ,∞

)
‖JθhK‖

2
F

 1
2

.

Proof. Note that |θ − θch|ψ,A = |(u − αε∇η) (θ − θch)|ψ,?, cf. (4.2.7). Then, the inf-

sup Lemma 4.12 yields:

|‖θ − θch|‖ψ + |(u − αε∇η) (θ − θch)|ψ,? . sup
v∈H1

D(Ω)\{0}

areac (θ − θch, ψv)

|‖v|‖ψ
,

for any v ∈ H1
D(Ω), since ψ ∈ W 1,∞(Ω), we have that ψv ∈ H1

D(Ω). The properties

(4.1.6), (4.1.4), and (4.1.5), along with the bilinearity of areac and areac,h, allow us to
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conclude that, for any v ∈ H1
D(Ω),

areac (θ − θch, ψv)

= areac (θ, ψv)− areac (θch, ψv)

= areac (θ, ψv)− areac,h (θch, ψv)

= areac (θ, ψv)− areac,h (θh, ψv) + areac,h

(
θdh, ψv

)
= (f , ψv)− areac,h (θh, ψv) + areac,h

(
θdh, ψv

)
= (f , (I − Π) (ψv)) + (f ,Π (ψv))− areac,h (θh, ψv) + areac,h

(
θdh, ψv

)
= (f , (I − Π) (ψv)) + areac,h (θh,Π (ψv))− areac,h (θh, ψv) + areac,h

(
θdh, ψv

)
= (f , (I − Π) (ψv))− areac,h (θh, (I − Π) (ψv)) + areac,h

(
θdh, ψv

)
Then Lemmas 4.14 and 4.15 already give the result.

4.4.5 Completing the bound on the stationary problem

By combining (4.4.6) with Lemmas 4.13 and 4.16, and noting thatM . L, we have

the following bound on the error of the problem (4.1.5).

Theorem 4.17. Let θ be the solution of (4.1.1)–(4.1.3) and θh its discontinuous

Galerkin approximation, the solution of (4.1.5). Then, the following bound holds:

|‖θ − θh|‖ψ + |θ − θh|ψ,A

.

∑
K∈Th

(
ζ2
RK

+ ζ2
EK

)
+
∑
F∈Fh

(
σε

hF

(
ψωF + %ωFσε+

ψFα
2ε∇η2

F

LωF

)
+ ρωF ‖u‖2

F,∞

+ hF‖L‖ψ,ω̃F ,∞ +
ψ ω̃FhF

ε
‖u − αε∇η‖2

ω̃F ,∞

 ‖JθhK‖2
F

 1
2

.
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4.5 An a posteriori error bound for the

non-stationary problem

Having shown a bound on the stationary convection-diffusion-reaction problem, we

can now use this to tackle the non-stationary convection-diffusion (crucially, with

no reaction) problem, using the observation noted previously, that we can rewrite

the equation

θt − ε∆θ + u(x, t) · ∇θ = f (x, t),

in the form of a convection-diffusion-reaction problem simply as

θt − ε∆θ + u(x, t) · ∇θ + δθ = f (x, t) + δθ.

Thus, let θh be the solution of the semi-discrete problem

∑
K∈Th

(θht , vh)K + ah (θh, vh) = (f , vh) , (4.5.1)

for all vh ∈ Vh, where, for wh, vh ∈ Vh + H1(Ω), we (re)define the bilinear form ah

by

ah (wh, vh) :=
∑
K∈Th

(ε∇hwh,∇hvh)K + (u · ∇hwh, vh)K

−
∑
F∈Fh

(
〈ε {∇Πwh} , JvhK〉F + 〈ε {∇Πvh} , JwhK〉F −

σε

hF
〈JwhK , JvhK〉F

)
−
∑
K∈Th

(
〈u · nwh, vh〉∂−K∩ΓD

+ 〈u · nKbwhc, vh〉∂−K\ΓD
)
.

Then θh is also the solution to

∑
K∈Th

(θht , vh)K + areac,h (θh, vh) = (f + δθh, vh) ,

for all vh ∈ Vh. Thus, we have reframed our convection-diffusion problem in terms

of a convection-diffusion-reaction problem, allowing us to use the stationary bound

derived in the previous section.
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With this observation in place, we turn to the elliptic reconstruction framework of

[72] to provide an a posteriori error bound on the numerical solution to the non-

stationary solution.

4.5.1 Elliptic reconstruction

We define the semi-discrete elliptic reconstruction we ∈ H1
D(Ω) to be the solution of

areac (we, v) = (f + δθh − θht , v) ∀v ∈ H1
D(Ω). (4.5.2)

This means that the elliptic reconstruction we is the exact solution to the parabolic

PDE whose dG approximation is θh [72].

We define the dG version of this, which is to find we,h ∈ Vh for all t ∈ I, such that

at each time t ∈ I,

areac,h (we,h, vh) = (f + δθh − θht , vh) ∀vh ∈ Vh.

Then since areac,h (·, ψ·) is coercive over Vh, we have that we,h = θh.

Since we and we,h solve a convection-diffusion-reaction problem and its dG approx-

imation, we can therefore apply the bound in Theorem 4.9 to show that

|‖we − θh|‖ψ + |we − θh|ψ,A
.
∑
K∈Th

(
ρ2
K ‖f − θht + ε∆θh − u · ∇θh‖

2
K + ζ2

EK

)
+
∑
F∈Fh

ζ2
JK
. (4.5.3)

4.5.2 A semi-discrete bound

We use the notation e = θ − θh, and introduce the splitting:

e = ρ+ π with ρ := θ − we, π := we − θh,

along with the extra notation ec := θ − θch and πc := we − θch.
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We introduce the following error estimator terms:

ζ̃2
S1

:=
∑
K∈Th

ρ2
K ‖f − θht + ε∆θh − u · ∇θh‖

2
K

+
∑
F∈FI

ρωF ‖Jε∇θhK‖
2
F

+
∑
F∈Fh

(
σε

hF

(
ψωF + %ωFσε+

ψFα
2ε∇η2

F

LωF

)
+ ρωF ‖u‖2

F,∞

+ hF‖L‖ψ,ω̃F ,∞ +
ψ ω̃FhF

ε
‖u − αε∇η‖2

ω̃F ,∞

 ‖JθhK‖2
F ,

ζ̃2
S2

:=
∑
F∈Fh

min

{
‖L−

1
2‖2

ψ,ω̃F ,∞,
ψ ω̃F
ε

}
hF ‖JθhtK‖

2
F ,

ζ̃2
S3

:=
∑
F∈Fh

ψ ω̃FhF ‖JθhK‖
2
F .

We have that θ satisfies

(θt , ψv) + areac (θ, ψv) = (f + δθ, ψv) ∀v ∈ H1
D(Ω),

so by rearrangement and recalling (4.5.2) we can show that

(et , ψv) + areac (ρ, ψv) = (δe, ψv) ∀v ∈ H1
D(Ω).

Testing with v = ec, and noting that e = ec − θdh and ρ = ec − πc, gives

(ect , ψe
c) + areac (ec, ψec) =

(
θdht , ψe

c
)

+ areac (πc, ψec) + (δe, ψec).

In the following, we note that in the case of constant η and δ = 0, we have zero L.

In this case, the result carries through in the natural way, resulting in a bound on

the quantity

‖e‖2
ψ,L∞(0,t;L2(Ω)) +

∫ t

0

|‖e|‖2
ψ ds,

with the |‖·|‖ψ norm containing only an H1 term.
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By the Cauchy-Schwarz inequality, Poincare-Friedrichs inequality, and the coercivity

and continuity of areac (·, ·) (cf. Lemma 4.6 and Lemma 4.8 respectively),

(
‖ec‖2

ψ

)
t

+ |‖ec|‖2
ψ . min

{∥∥∥∥ 1√
L
(
θdh
)
t

∥∥∥∥
ψ

,

∥∥∥∥ 1√
ε

(
θdh
)
t

∥∥∥∥
ψ

}
|‖ec|‖ψ

+ (|‖πc|‖ψ + |πc|ψ,A) |‖ec|‖ψ +

∥∥∥∥ δ√
L
e

∥∥∥∥
ψ

∥∥∥√Lec∥∥∥
ψ
.

Using Young’s inequality, we arrive to

(
‖ec‖2

ψ

)
t

+ |‖ec|‖2
ψ . min

{∥∥∥∥ 1√
L
(
θdh
)
t

∥∥∥∥
ψ

,

∥∥∥∥ 1√
ε

(
θdh
)
t

∥∥∥∥
ψ

}
|‖ec|‖ψ

+
1

2
(|‖πc|‖ψ + |πc|ψ,A)2 +

∥∥∥∥ δ√
L
e

∥∥∥∥
ψ

∥∥∥√Lec∥∥∥
ψ

. (|‖πc|‖ψ + |πc|ψ,A)2 + min

{∥∥∥∥ 1√
L
(
θdh
)
t

∥∥∥∥
ψ

,

∥∥∥∥ 1√
ε

(
θdh
)
t

∥∥∥∥
ψ

}2

+

∥∥∥∥ δ√
L
e

∥∥∥∥2

ψ

+
∥∥∥√Lec∥∥∥2

ψ

. (|‖πc|‖ψ + |πc|ψ,A)2 + min

{∥∥∥∥ 1√
L
(
θdh
)
t

∥∥∥∥
ψ

,

∥∥∥∥ 1√
ε

(
θdh
)
t

∥∥∥∥
ψ

}2

+

∥∥∥∥ δ√
L
e

∥∥∥∥2

ψ

.

By the triangle inequality,

(
‖e‖2

ψ

)
t

+ |‖e|‖2
ψ . (|‖π|‖ψ + |π|ψ,A)2 + min

{∥∥∥∥ 1√
L
(
θdh
)
t

∥∥∥∥
ψ

,

∥∥∥∥ 1√
ε

(
θdh
)
t

∥∥∥∥
ψ

}2

+

∥∥∥∥ δ√
L
e

∥∥∥∥2

ψ

+
(∥∥θdh∥∥2

ψ

)
t

+ |‖θdh|‖2
ψ + |θdh|2ψ,A.

By applying a Gronwall inequality [37, Appendix B, p.624] we have that for t ∈ I,

‖e‖2
ψ,L∞(0,t;L2(Ω)) +

∫ t

0

|‖e|‖2
ψ ds

. exp

(∫ t

0

max
Ω

δ2

L
(s) ds

)(
‖e(0)‖2

ψ +

∫ t

0

(|‖π|‖ψ + |π|ψ,A)2 ds
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+

∫ t

0

min

{∥∥∥∥ 1√
L
(
θdh
)
t

∥∥∥∥
ψ

,

∥∥∥∥ 1√
ε

(
θdh
)
t

∥∥∥∥
ψ

}2

+
∥∥θdh∥∥2

ψ,L∞(0,t;L2(Ω))
+ |‖θdh|‖2

ψ + |θdh|2ψ,A ds
)
.

We can then use (4.5.3), Theorem 4.9, Lemma 4.11 and Lemma 4.13 to show that:

‖e‖2
ψ,L∞(0,t;L2(Ω)) +

∫ t

0

|‖e|‖2
ψ ds

. exp

(∫ t

0

max
Ω

δ2

L
(s) ds

)(
‖e(0)‖2

ψ +

∫ t

0

ζ̃2
S1

ds

+

∫ t

0

∑
F∈Fh

min

{
‖L−

1
2‖2

ψ,ω̃F ,∞,
ψ ω̃F
ε

}
hF ‖JθhtK‖

2
F ds

+ max
0≤s≤t

∑
F∈Fh

ψ ω̃FhF ‖Jθh(s)K‖
2
F

 .

Thus, we have the following theorem.

Theorem 4.18 (An a posteriori error bound on the semi-discrete convection-diffu-

sion problem). Let e = θ−θh be the difference between the solution θ of the equation

(2.7.1) and its semi-discrete dG approximate solution satisfying (4.5.1). Then we

have the a posteriori error bound

‖e‖2
ψ,L∞(0,t;L2(Ω)) +

∫ t

0

|‖e|‖2
ψ ds

. exp

(∫ t

0

max
Ω

δ2

L
(s) ds

)(
‖e(0)‖2

ψ +

∫ t

0

ζ̃2
S1

+ ζ̃2
S2

ds+ max
0≤s≤t

ζ̃2
S3

)
.

4.6 A bound on the discrete problem

We can now discuss the analogous bound for the fully discrete problem.

Let θih, i = 0, . . . , N be the solution to

∑
K∈T nh

(
θnh − θn−1

h

τn
, vnh

)
K

+ areac,h (θnh , v
n
h) = (fn + δnθnh , v

n
h) ∀vnh ∈ V n

h . (4.6.1)
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We define An ∈ V n
h , n ≥ 1 as the solution of

areac,h (θnh , v
n
h) = (An, vnh) ∀vnh ∈ V n

h ,

and then define the elliptic reconstruction wn ∈ H1
D(Ω) as the solution of

areac (wn, v) = (An, v) ∀v ∈ H1
D(Ω),

where

An = Πn (fn + δnθnh)−
(
θnh − Πnθn−1

h

)
/τn, (4.6.2)

where Πn is the L2-projection into Xn
h,1.

We decompose the dG solution θnh at each timestep into its conforming and noncon-

forming parts, θn,ch ∈ H1
D(Ω) ∩ V n

h and θn,dh ∈ V n
h , respectively.

In order to make sense of time integrals, we define θh(t) to be the linear interpolant

at intermediate times, that is,

θh(t) := `n(t)θnh + `n−1(t)θn−1
h ,

on the interval [tn−1, tn], where `n is the standard linear Lagrange basis function on

[tn−1, tn]. Additionally we extend the definition of πn := wn − θnh .

Defining

βn := δn − δ + αnun · ∇ηn − αu · ∇η − (∇ · un −∇ · u) ,

we can define the following estimator terms for n ≥ 1:

ζ2
S1,n

:=
∑
K∈T nh

ρ2
K ‖An + ε∆θnh − un · ∇θnh − δnθnh‖

2
K

+
∑
F∈FnI

ρωF ‖Jε∇θnhK‖
2
F

+
∑
F∈Fnh

(
σε

hF

(
ψωF + %ωFσε+

ψFα
2ε∇η2

F

LωF

)
+ ρωF ‖u‖2

F,∞

+ hF‖L‖ψ,ω̃F ,∞ +
ψ ω̃FhF

ε
‖u − αε∇η‖2

ω̃F ,∞

 ‖JθnhK‖2
F ,



An a posteriori error bound 82

ζ2
S2,n

:=
∑

K∈T n−1
h ∪T nh

ρ2
K

∥∥∥∥(I − Πn)

(
fn + δnθnh +

θn−1
h

τn

)∥∥∥∥2

K

,

ζ2
S3,n

:=
∑
F∈Fnh

ψ ω̃FhF ‖Jθ
n
hK‖

2
F ,

ζ2
S4,n

:=
∑

F∈Fn−1
h ∪Fnh

min

{
‖L−

1
2‖2

ψ,ω̃F ,∞,
ψ ω̃F
ε

}
hF

∥∥∥∥sθnh − θn−1
h

τn

{∥∥∥∥2

F

,

ζ2
T1,n

:=
∑

K∈T n−1
h ∪T nh

ε−1
∥∥`n (un − u) θnh + `n−1

(
un−1 − u

)
θn−1
h

∥∥2

ψ,K
,

ζ2
T2,n

:=
∑

K∈T n−1
h ∪T nh

∥∥∥min
{
L−

1
2 , ε−

1
2

}(
f − fn + δθh − δnθnh + `n−1

(
An − An−1

)
+`nβ

nθnh + `n−1β
n−1θn−1

h

)∥∥2

ψ,K
.

By rearrangement we can show that for v ∈ H1
D(Ω) and t ∈ (tn−1, tn],

(et , ψv) + areac (e, ψv) = (θt , ψv)− (θht , ψv) + areac (θ, ψv)− areac (θh, ψv)

= (f − fn + δθ − δnθnh , ψv) + (fn + δnθnh − θht − A
n, ψv)

+ areac (πn, ψv) + areac (θnh , ψv)− areac (θh, ψv)

= (fn + δnθnh − θht − A
n, ψv)

+
(
f − fn + δθh − δnθnh + `n−1

(
An − An−1

)
, ψv

)
+ `nareac (θnh , ψv) + `n−1areac

(
θn−1
h , ψv

)
− areac (θh, ψv)

+ `nareac (πn, ψv) + `n−1areac

(
πn−1, ψv

)
+ (δe, ψv).

(4.6.3)

By using (4.6.2) and the property (4.4.2) we have

(fn + δnθnh − θht − A
n, ψv) = (fn + δnθnh − θht − A

n, (I − Πn) (ψv))

. ζS2,n|‖v|‖ψ .

We can bound the next four terms thus:

(
f − fn + δθh − δnθnh + `n−1

(
An − An−1

)
, ψv

)
+ `nareac (θnh , ψv) + `n−1areac

(
θn−1
h , ψv

)
− areac (θh, ψv)
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=
(
f − fn + δθh − δnθnh + `n−1

(
An − An−1

)
, ψv

)
+ `n(βnθnh , ψv) + `n−1

(
βn−1θn−1

h , ψv
)

−
(
`n (un − u) θnh + `n−1

(
un−1 − u

)
θn−1
h , ψ∇v

)
. ζT2,n|‖v|‖ψ + ζT1,n|‖v|‖ψ .

In a similar fashion to the semi-discrete case, by Lemma 4.8 we have

`nareac (πn, ψv) + `n−1areac

(
πn−1, ψv

)
. `2

n (|‖πn|‖ψ + |πn|ψ,A)2 + `2
n−1

(
|‖πn−1|‖ψ + |πn−1|ψ,A

)2
+ |‖v|‖2

ψ

. `2
nζ

2
S1,n

+ `2
n−1ζ

2
S1,n−1 + |‖v|‖2

ψ .

Returning to (4.6.3), and testing with v = ec we have, via Young’s inequality,

(et , ψe
c) + areac (e, ψec) . `2

nζ
2
S1,n

+ `2
n−1ζ

2
S1,n−1 + ζ2

S2,n

+ ζ2
T1,n

+ ζ2
T2,n

+ |‖ec|‖2
ψ + (δe, ψec),

(4.6.4)

thus(
‖ec‖2

ψ

)
t

+ |‖ec|‖2
ψ . `2

nζ
2
S1,n

+ `2
n−1ζ

2
S1,n−1 + ζ2

S2,n
+ ζ2

T1,n
+ ζ2

T2,n

+ min

{∥∥∥∥ 1√
L
(
θdh
)
t

∥∥∥∥
ψ

,

∥∥∥∥ 1√
ε

(
θdh
)
t

∥∥∥∥
ψ

}2

+
(
|‖θdh|‖ψ + |θdh|ψ,A

)2

+

∥∥∥∥ δ√
L
e

∥∥∥∥2

ψ

. `2
nζ

2
S1,n

+ `2
n−1ζ

2
S1,n−1 + ζ2

S2,n
+ ζ2

T1,n
+ ζ2

T2,n

+ ζ2
S4,n

+ ζ2
S1,n

+

∥∥∥∥ δ√
L
e

∥∥∥∥2

ψ

.

(4.6.5)

Then, by a completely analogous argument to the semi-discrete case, we have the

following theorem.



An a posteriori error bound 84

Theorem 4.19 (An a posteriori error bound on the fully discrete convection-diffusion

problem). Let e = θ − θh be the difference between the solution θ of the equation

(2.7.1) and its dG approximate solution satisfying (4.6.1). Then we have the a pos-

teriori error bound

‖e‖2
ψ,L∞(0,T ;L2(Ω)) +

∫ t

0

|‖e|‖2
ψ ds

. exp

(∫ t

0

max
Ω

δ2

L
(s) ds

)
(
‖e(0)‖2

ψ +
N∑
n=1

∫ tn

tn−1

ζ2
S1,n

+ ζ2
S1,n−1 + ζ2

S2,n
+ ζ2

S4,n
ds

+
N∑
n=1

∫ tn

tn−1

ζ2
T1,n

+ ζ2
T2,n

ds+ max
0≤n≤N

ζ2
S3,n

)
.

(4.6.6)

It is worthwhile here highlighting the effect that the use of the Gronwall inequality

may have upon the sharpness of the resulting bound, and upon the efficacy of the

resulting error indicator as an adaptivity indicator. By splitting the
∥∥∥ δ√
Le
∥∥∥
ψ

term

apart, we lose the local dependence of the inequality upon δ√
L . This reduces the

sharpness of the bound in some cases. This in turn means that the possibility

exists that the resulting error indicator may not generate local values that directly

correspond in order to the local contribution to the true error. However, we still

consider the error indicator to, in practical usage, be a good choice. Consider again

(4.6.5): this is an a priori bound on the error before the time integration step. On

the right hand side are a number of terms, including the term
∥∥∥ δ√
Le
∥∥∥
ψ

. Unless this is

the dominant term locally, then most of the information is encoded in the remaining

terms on the right hand side. In this case, these terms will act as a good adaptivity

indicator. In other cases, it is possible that this term will be dominant, and thus the

adaptivity indicator will not act in an optimal manner. In this case, it may instead

rank cells in an order different to their local contribution to error.

4.7 Parameter choices

We now comment upon the choice of α and δ, which are as yet unchosen.
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We know from Lemma 4.7 that we require

δ(x) ≥ max {0,−2 (α∇η −∇) · (u − αε∇η) (x)} , (4.2.9)

to assert continuity. Since (4.6.6) contains an exponential term of maxΩ

(
δ2

L

)
, it is

of paramount importance to reduce the value of δ wherever possible. Thus, choosing

δ to be equal to this quantity is a sensible manner in which to ensure continuity

while also minimising the use of added reaction, and thus minimising the exponential

term.

The correct choice of α is less clear. Dimensional analysis shows that α must have

units of seconds per metre, but further analysis and calibration of the choice of value

has not been undertaken. However, two main concerns should guide further work

upon this subject.

Firstly, as above, we wish to reduce the required δ needed wherever possible. In

some circumstances, a judicious choice of the value of α may lead to the method

requiring no δ anywhere, in which case no exponential term will be incurred (see

Section 4.8).

Secondly, the choice of α affects the weight ψ, and thus the weighted norm upon

which we provide an error bound. It also affects the value of L. Through these

quantities, an injudicious choice of α may have the undesirable effect of weighting

the norm in too extreme a way, such that the derived error bound is not useful for

our purposes. If a very large value of α is used, such that the weight ψ = exp(−αη)

is very small in most areas, and a larger value in only a small area, then the resulting

norm informs us little about the global behaviour of the solution.

It is, thus, clear that the optimal choice of α is a non-trivial problem, and is de-

pendent upon the desired weighted norm which we wish to bound, and upon the

behaviour of the given convection field.

However, it is also clear that the validity of the results of this chapter rely purely

on a choice of constant α ∈ R+, and δ satisfying (4.2.9).
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4.8 Relation to existing results

Given the bound (4.6.6), we can now relate this to existing results, and show it to

be an extension of the existing literature.

Firstly, we consider the first example given in this chapter, with an imposed negative-

divergence flow field
(
1, 1

2
− 1

2
y − x

)ᵀ
on the unit box, illustrated in Figure 4.1. Since

this flow is characterised (using the shorthand for z-independent vector fields as

defined in Remark 4.1) by

u = ∇
(
x− y2

4

)
+ curl

(
−x+

x2

2
+ y

)
,

we have that

(α∇η −∇) · (u − αε∇η) ≥ 1− 3

2
ε,

on the box domain [0, 1]2. Thus, we do not require to add an artificial reaction term,

for a small ε, instead deriving an error bound in a weighted dG norm, with

ψ = exp

(
−α
(
x− y2

4

))
,

which we may view as an alternative bound to that proven in [27].

More strongly, if we are able to say that the field is exactly the curl of another field,

i.e., ∇η = 0, then, since we can choose our constant, we choose η = 0, and thus we

have ψ = 1. So, we recover the unweighted norms, with the L2 term equal to δ,

which we may choose to be zero if we wish. Thus for the case where the convection

is exactly a curl (i.e. it is divergence-free), the equation can be written in divergence

form as

−ε∆θ +∇ · (u(x)θ) = f (x).

Returning to (4.6.4), we can see that setting δ = 0 here removes the need for the

use of the Gronwall result, and the resulting addition of an exponential term, and

so we recover the bound of [27] for this case.

As a general conclusion, the above analysis improves upon and refines known results,

while offering the possibility of reduced dependence upon the “worst case” Gronwall

constant for a number of relevant scenarios.
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4.9 Conclusions

In this chapter, we have presented the derivation of a new error estimate for the

convection-diffusion problem, under very general assumptions upon the convection

field. By assuming only that u ∈ [W 1,∞(Ω)]
d
, with bounded divergence, we are

unable to guarantee the validity of the usual assumption that there exists a constant

γ0 > 0 such that

−1

2
∇ · u(x, t) + b(x, t) > γ0.

Instead, we use an exponential-fitting technique, combined with some added reaction

term, to prove an a posteriori error bound in a modified norm. The combination

of the two techniques gives us the ability to prove a bound on all such flows, while

minimising the incurred penalty of a Gronwall-type exponential factor where possi-

ble. This means that for some flows we are able to recover previously known results,

while we also prove bounds upon problems with a broader class of convection fields.

The flexibility of this combined approach is a novel and useful tool for the study of

geodynamic flows, in particular mantle convection. The complexity and nonlinearity

of these systems mean that a priori knowledge of the flow characteristics is often

extremely limited. The ability to handle a wide class of convection fields with a

single technique allows the use of this method in simulations, especially as an a

posteriori adaptivity indicator, without overly restricting the (a priori unknown)

permissible flows.

The implementation of the calculation of the error bound, and the implementation of

a simplified version for use as an adaptivity indicator, are presented in the following

chapters. Chapter 5 presents an implementation of the full error bound and indicator

within a small code. This allows the exploration of the behaviour of the bound

and indicator. Chapter 6 presents the implementation of the adaptivity indicator

within a larger, community-maintained code, which enables the exploration of the

behaviour, and utility, of the adaptivity indicator under a wide range of conditions

that are of interest to geodynamists.



Chapter 5

Parallel implementation

In this chapter, we discuss the implementation of a mantle convection simulation

finite element code to numerically approximate the system (2.5.1) using the solution

process outlined in Algorithm 3.1, with a focus on the parallelisable nature of the

implementation.

In particular, this includes an explanation of the implementation of the dG and FE

methods in parallel, as well as the implementation of an adaptivity routine using a

cellwise error indicator based on the error estimate derived in Chapter 4. This is

used to direct the finite computational resources in such a manner as to maximise

the accuracy of the simulation while minimising the computational cost. Finally, it

includes details of the implementation of the full error estimate from Chapter 4, in

order to explore the behaviour of this bound under certain conditions.

We use the deal.II library [15] to build the dG/FE implementation in parallel. In

choosing a library to build upon, we consider as essential the accessibility of the

codebase and its possible modification. We require the ability to use dG and FE

methods simultaneously, including mixed methods for the Stokes element. In addi-

tion, we wish to be able to implement a scheme making use of multiple processors,

with the ability to scale to large numbers of processors in a reasonable manner. In

order to be able to assess the behaviour of a new adaptivity indicator, we require

the ability to calculate such, and to be able to use this to drive an h-adaptive mesh

refinement strategy. Finally, a well-documented, widely-tested and well-maintained

88
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library is essential, in order to have a ready understanding of the library and its

modification, and reasonable trust in the correctness of the results.

The library chosen for our implementation is the deal.II library, which is built in

the C++ language. It interfaces to the p4est library [24] for its distributed-mesh

capabilities, and the Trilinos [53, 54] and PETSc [14, 13, 12] libraries for solvers and

distributed linear algebra. It utilises the MPI (Message Passing Interface) framework

within these and within the main library to facilitate parallelism across multiple

nodes, and the Threading Building Blocks library for parallelising many operations

across cores within a node.

The deal.II library satisfies the above requirements, and so is an ideal fit for such

a project. In addition, it contains the step-32 tutorial code, which models mantle

convection. This is also the basis for a much more advanced mantle simulator, built

using deal.II, called ASPECT, which uses enhanced techniques to simulate mantle

convection in a modular, extensible fashion, with a focus upon ensuring the code is

usable by geophysicists in research. This is another strength of the choice of deal.II

as our underlying library for this application, and in fact, Chapter 6 deals with

a further implementation of some of the results of Chapter 4 into the ASPECT

codebase.

For the purposes of this current chapter, we present here a basic summary of the

characteristics of the original step-32 tutorial code. step-32 implements a parallel

Boussinesq system approximation, with the three primary variables of temperature,

velocity and pressure each discretised by the FE method. It follows a variant of

Algorithm 3.1, which is identical for our purposes, and uses an entropy viscosity

method to stabilise the convection-dominated temperature equation.

The core modifications to this code here are an implementation of the dG method

for the temperature variable, and an implementation of the a posteriori error bound

derived in Chapter 4, along with the use of an adaptivity indicator based upon the

a posteriori error bound. This is to explore the behaviour of the error bound and its

handling of non-zero divergence velocity fields, and the behaviour of the adaptivity

indicator, as well as to demonstrate the usage of the dG method to compute it.
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5.1 A bird’s-eye view of the distributed finite

element infrastructure of deal.II

We now introduce the basic infrastructure and associated terminology for the deal.II

library and its functionality in providing for distributed processing: the typewriter

font denotes deal.II classes or functions.

A parallel::distributed::Triangulation class provides the underlying frame-

work of the mesh. This stores information about the cells and edges of the mesh,

without exposing the internal information of how this is stored and computed to the

end-user. Instead, it allows access to iterators over the cells and edges. In partner-

ship with the p4est library, it uses a Z space-filling curve algorithm [81] to order the

cells, and to split these cells’ ownership between the processors. Thus exactly one

process owns each cell, and so, from the processor’s point of view, we can refer to

the set of locally-owned cells. In addition to this set, each processor also has access

to a single layer of ghost cells around the cells it owns. In this way, every edge of

a locally-owned cell will either (a) be a boundary edge; (b) have a locally-owned

neighbour behind it; (c) have a ghost cell behind it. The combined set of cells which

are locally-owned or ghost cells of a given processor are referred to as locally-relevant

cells.

This framework for the triangulation allows the library to distribute ownership of the

degrees of freedom (DoFs) of a finite element space defined over the triangulation,

by means of a DoFHandler class. All DoFs associated to a given cell or edge are

owned by the processor claiming ownership of the cell or edge, and are given a

local numbering. DoFs on edges at the boundaries between processors are owned

by just one of the processors, decided by an ordering. Each processor has access

to the DoFs associated to all locally-relevant cells. This requires communication

between processors, which, on the largest machines, can be a bottleneck in the

solution process, but is infinitely preferable to communication of the data for the

full problem.

With the DoFs distributed between the processors, we are then able to define dis-

tributed vectors, which hold the value of each DoF. A distributed vector contains

values on only locally-owned or locally-relevant DoFs, with the choice between these
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two options determined by the user, based on the purpose of the vector in the com-

putation.

Finally, there exists functionality to communicate changes to the mesh across pro-

cessors. In particular, the effects of local refinement and coarsening are handled

such that the representation of the mesh is consistent across processors after these

operations. In addition, vectors defining finite element fields across the domain are

interpolated after these operations, to ensure the result approximates the original

field in the new finite element space. Lastly, either during or after these adaptivity

operations, the repartition function allows the number of cells owned per proces-

sor to be approximately equilibrated, with the information held in the finite element

vectors communicated as appropriate to ensure data on each processor matches the

ownership patterns of the new configuration. This load-balancing operation is a

crucial step in the algorithm to ensure processors share work evenly amongst them-

selves, and is handled by the deal.II library.

Through the above framework, the full problem is able to be distributed across many

processors. Each processor owns only a portion of the data associated to a physical

portion of the computational domain, and has knowledge of an area slightly larger

than the owned area, just enough to facilitate the assembly and solution process.

5.2 An introduction to step-32

The main outcome of this chapter is a modified code based upon step-32, which

implements a combination of conforming FE and dG methods to build a mantle

simulator with a rigourously derived error estimator for the convection-diffusion

equation, and a subsequent error indicator for use in driving the h-adaptivity of the

scheme. It is built to be parallelised in the sense explained above, with a focus on

calculating as much as possible in a local manner. This code can be viewed as a

stepping-stone to a fully-dG code with an associated error bound and error indicator

that would take into account the full nonlinearity of the interdependence between

the Stokes and convection-diffusion parts. While some of the largest benefits of

the dG method would be realised by implementing the Stokes system in dG, the

current code explores the ability of the error estimate, derived in Chapter 4, to
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handle convection fields with small, but potentially positive, divergence. This is a

necessary bridging step in our understanding towards a fully non-linear a posteriori

estimate upon the error of the full system, and an error indicator that is able to

direct h-refinement taking into account the full problem.

The basic outline of the modified code is presented in Algorithm 5.1, although the

final form is, ultimately, significantly modified in order to implement the full error

bound calculation (see Section 5.6).

Algorithm 5.1

while stopping criterion is not satisfied do
Assemble dG system for temperature
Solve temperature system
Assemble FEM system for Stokes
Solve Stokes system
Calculate error bound, and indicators for adaptivity
Apply adaptivity algorithm to mesh
Step forwards in time

end while

In the following, we present details of the implementation of several of these steps.

5.3 Assembly and solution for Stokes

The Stokes equations are solved using a Taylor-Hood mixed finite element scheme,

which is implemented in the deal.II code for step-32 [67, 66], upon which this code is

built. The implementation described below is largely unchanged from this original

implementation, and the description here is provided for completeness and for com-

parison against the dG implementation used for the convection-diffusion equation.

The system of equations (3.4.2) for the discretised Stokes system is written in matrix

form as:

find vector X =

(
U

P

)
∈ Rm×1 satisfying

SX =

(
A BT

B 0

)(
U

P

)
=

(
GU

0

)
= G,
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where the matrix block A corresponds to the bilinear form sh (·, ·) and the block B

corresponds to bh (·, ·).

Due to the simplicity of the FEM scheme, this is relatively easy to assemble. All

terms are defined as integrals over the cells of the scheme, with continuity over edges

guaranteed by the choice of the finite element scheme. Assembly of these terms is

implemented by looping over all degrees of freedom associated to each cell, and all

quadrature points on each cell, weighting each appropriately to form a numerical

integration scheme that evaluates the integral.

Efficient solution of this system is an area of ongoing research. Preconditioning of

this system is extremely difficult in many cases beyond the simple isoviscous setting.

The implemented scheme leverages the inherent block structure of the problem, and

utilises preconditioners on the separate blocks within a Schur complement solution

scheme. Details of this process are given in [66, 67].

5.4 Assembly of the discontinuous Galerkin terms

A feature of the dG method is the large number of terms in the bilinear form

ah (·, ·) of equation (3.3.3). This complexity translates into a complicated assembly

procedure for the matrix M corresponding to this bilinear form.

We begin by splitting the bilinear forms on the left-hand side of (3.3.3) into four

subforms in the following manner:

ah (θnh , vh) = ah,M (θnh , vh) + ah,S (θnh , vh) + ah,C (θnh , vh) + ah,O (θnh , vh) ,

where

ah,M (θnh , vh) :=
1

τn

∑
K∈Th

(θnh , v)K ,

ah,S (θnh , vh) :=
∑
K∈Th

(ε∇θnh ,∇v)K ,

ah,C (θnh , vh) :=
∑
K∈Th

(u · ∇θnh , v)K ,
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ah,O (θnh , vh) :=
∑
F∈Fh

−〈ε {∇θnh} , JvhK〉F + Υ〈ε {∇vh} , JθnhK〉F +
σε

hF
〈JθnhK , JvhK〉F

−
∑
K∈Th

(〈
(u · n)(θnh)+, v+

h

〉
∂−K∩ΓD

+
〈
(u · nK)bθnhc, v+

h

〉
∂−K\ΓD

)
.

This can be viewed as being equivalent to decomposing the matrix M into its four

submatrices, namely

M = M1 +M2 +M3 +M4.

We have that M1, M2 and M3 are sums of integrals over cells, while M4 consists of

sums of integrals over edges.

The first three matrices are relatively easy to implement, even in a distributed

setting, since cell integrals are an inherently asynchronous operation, allowing com-

putation in parallel in a natural manner. Since all cells will be owned by exactly

one processor, it is enough to allow each processor to assemble the terms for each

cell it owns, before using this local matrix to update the global matrix.

The final matrix, M4, is significantly more complicated to assemble, which we shall

now explore.

5.4.1 Edge ownership algorithm

Since M4 consists of integrals over edges, we require an algorithm to determine the

iteration process over all edges in the mesh.

Due to the data structures used in deal.II, edges are accessed through their bordering

cells. Since all internal edges are shared by two cells, an iteration over the cells of

the triangulation will entail a double-iteration over all internal edges. There are two

strategies to cope with this double-iteration: the first is to use both occurrences of

access to the same edge, and to assemble only half the integral term from each side

of the edge. This is a fairly natural way to build jumps across edges – summing from

each side in turn, with the outward-pointing normal from each cell, will yield the

jump as required. However, on an adaptively refined mesh this causes some issues

in the presence of hanging nodes. Since an edge on a refined neighbour corresponds
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to only part of an edge on a coarse cell, the approach of integrating from both sides

is less natural.

Instead, we take a second approach, whereby all edge integrals are computed from

one side. This requires an algorithm to determine which cell should take ownership

of the integration task on each edge, to ensure that edges are treated just once. The

algorithm presented in Figure 5.1 handles this choice.

To explain this algorithm, it is necessary to understand the way cells are stored over

differing refinement levels and differing processors.

The triangulation is based upon a coarse triangulation. This has no hanging nodes

and all cells are on the same base ‘level’. The full triangulation is built up by refine-

ment from this coarse level. Since refinement happens by splitting each quadrilateral

into four in an isotropic manner (or each hexahedra into 8 sub-hexahedra), we have

a forest-of-quadtrees (respectively, octrees) structure to the mesh. In the case of

a single processor, a cell’s level is defined as the number of refinements that are

required to travel from the coarse mesh to the cell. Within the set of all cells at a

given level, a unique index is assigned to each cell, thus providing a unique identity

for the cell by means of the (level, index) pair. In contrast, on a distributed mesh,

the triple (subdomain id, level, index) is required to uniquely identify a cell, since

the pairing (level, index) is not unique over the whole mesh, but only within a single

processor.

The algorithm for choosing ownership of edges is then as follows. Iterating over

all cells, we inspect each edge of that cell in turn. For any edge F , if F is on the

boundary then it borders just the current cell, which takes ownership of that edge.

Otherwise, we have an interior edge and we have the following options:

1. the edge contains a hanging node, as the neighbouring cell is more refined;

2. the edge forms only part of the neighbour’s edge, as the current cell is more

refined;

3. the edge forms the whole of both the current cell’s edge and neighbour’s edge,

with both in the same subdomain;



Parallel implementation 96

Is face at
boundary?

Calculate
boundary term

Interior face

Has
children?

(1) Has refined
neighbour.
calculate

face term on
each subface

Neighbour
is no more

refined

Is equal-
sized face

Is neighbour
coarser?

Is neighbour
locally
owned?

Is subface.
Don’t assemble.
Handled by (1)

cell index <
neighbour

index?

cell domain
id < neighbor

domain id?

Don’t assemble.
Will be handled

by neigh-
bour in (2)

(2) Assemble

Don’t assemble.
Will be handled

by neigh-
bour in (2)

yes
no

yes
no

yes

no

yes no

yes
no

yes
no

Figure 5.1: An algorithm for determining the ownership of edges in a distributed
mesh.
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4. the edge forms the whole of both the current cell’s edge and neighbour’s edge,

and the current cell and neighbour are in distinct subdomains.

In the first case, the current cell takes ownership of the edge, while in the second it

ignores the edge. In this manner, all edges between cells on differing levels will be

owned by the larger cell.

In the third case, we still need a deterministic choice on which cell should take

ownership. Since the two cells are both on the same subdomain, then they must

have differing indices: the lower index is to take ownership.

In the final case where the two cells are not on the same subdomain, they may have

identical indices and levels. Thus, we instead compare the subdomain ID of each

subdomain, allowing the cell on the subdomain with lower ID to form the integral

over the edge.

5.5 WorkStream

We describe very briefly here the use of the WorkStream class [103] in parallelis-

ing the assembly of the matrices and vectors across cores. The WorkStream class

utilises the fact that assembly of matrices and vectors involves iterations over cells

and edges, with local contributions from each cell and each edge then combined into

a global object. WorkStream enables deal.II to share the task of assembling local

contributions from cells and edges owned by a given processor between as many

processors as are available in the shared-memory setting of this processor. It also

implements a graph colouring strategy to add local contributions to the global ob-

jects in an efficient and scalable manner. To the end user, this process is nearly

transparent, requiring only the use of scratch and data objects to package the nec-

essary data. This is particularly useful in the case of complicated coefficients and

equations, which reduce the ability to parallelise via GPUs, which do not handle

complicated or branching code efficiently.
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5.6 Error indicator and bound

In order to drive an h-adaptivity algorithm, we need some criteria to decide which

cells should be refined or coarsened at a given timestep. We follow the standard

approach of using a cell-wise error indicator in the following manner.

Typically, adaptive mesh simulations utilise the logical loop in Algorithm 5.2. That

is, after solving the problem on a given mesh and time step, the solution is used to

generate error indicators for each cell or edge. These indicators are used to mark

cells or edges for refinement (or coarsening), after which the marked cells are refined

(resp. coarsened), to generate a new mesh. This new mesh is then used to solve the

problem, and the cycle repeats until some given stopping criterion is satisfied.

Algorithm 5.2

while stopping criteria is not satisfied do
Solve system
Calculate indicators
Mark cells for refinement (or coarsening)
Refine (resp. coarsen) marked cells to generate new mesh

end while

In order to validate the theory of the a posteriori error estimate proven in (4.6.6),

we would like to be able to compute the estimate, or its approximation. This is in

addition to the error indicator which drives the adaptivity scheme.

Let us recall the various terms in the error estimate (4.6.6) that will need to be

computed for each timestep n ∈ {0, . . . , N}. The spatial estimator terms are:

ζ2
S1,n

=
∑
K∈T nh

ρ2
K ‖An + ε∆θnh − un · ∇θnh − δnθnh‖

2
K

+
∑
F∈FnI

ρωF ‖Jε∇θnhK‖
2
F

+
∑
F∈Fnh

(
σε

hF

(
ψωF + %ωFσε+

ψFα
2ε∇η2

F

LωF

)
+ ρωF ‖u‖2

F,∞

+ hF‖L‖ψ,ω̃F ,∞ +
ψ ω̃FhF

ε
‖u − αε∇η‖2

ω̃F ,∞

 ‖JθnhK‖2
F ,
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ζ2
S2,n

=
∑

K∈T n−1
h ∪T nh

ρ2
K

∥∥∥∥(I − Πn)

(
fn + δnθnh +

θn−1
h

τn

)∥∥∥∥2

K

,

ζ2
S3,n

=
∑
F∈Fnh

ψ ω̃FhF ‖Jθ
n
hK‖

2
F ,

ζ2
S4,n

=
∑

F∈Fn−1
h ∪Fnh

min

{
‖L−

1
2‖2

ψ,ω̃F ,∞,
ψ ω̃F
ε

}
hF

∥∥∥∥sθnh − θn−1
h

τn

{∥∥∥∥2

F

.

The temporal estimator terms, which will be integrated over time, are:

ζ2
T1,n

=
∑

K∈T n−1
h ∪T nh

ε−1
∥∥`n (un − u) θnh + `n−1

(
un−1 − u

)
θn−1
h

∥∥2

ψ,K
,

ζ2
T2,n

=
∑

K∈T n−1
h ∪T nh

∥∥∥min
{
L−

1
2 , ε−

1
2

}
(f − fn + δθh − δnθnh

+`n−1

(
An − An−1

)
+ `nβ

nθnh + `n−1β
n−1θn−1

h

)∥∥2

ψ,K
.

A number of the quantities in these estimator terms are standard, and are com-

putable (up to an approximation for patchwise-defined quantities, see Section 5.6.6)

from the solution pair (θnh ,u
n
h) defined on the triangulation T nh . Their computation

is by a process identical to the assembly of the discontinuous Galerkin terms in

Section 5.4. These standard terms include:

•
∑

K∈T nh
‖ε∆θnh − un

h · ∇θnh − δnθnh‖
2
K ,

•
∑

F∈Fnh
‖Jε∇θnhK‖

2
F ,

•
∑

F∈Fnh
hF‖un‖2

F,∞ ‖JθnhK‖
2
F .

What is not standard are calculations of the following quantities:

• Helmholtz-based terms, e.g., ∇η and ψ;

• quantities projected from one mesh to another, e.g., Πnθn−1
h ;

• all quantities defined over the union mesh T n−1
h ∪ T nh ;

• integration-in-time of quantities that are nonlinear or non-polynomial in time,

e.g., ψ.
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We begin by discussing the implementation of the approximate calculation of the

Helmholtz decomposition term η. We note that this provides a calculation of the

weight ψ through the formula ψ := exp(−αη). We then briefly present the im-

plementation of the standard terms, before proceeding to discuss how we might

implement the non-standard terms, which require us to fundamentally modify our

algorithm and ultimately require a new auxiliary-mesh method. This uses a second

mesh that lags behind the main triangulation, exactly following the same pattern of

refinement and coarsening, but in a delayed manner.

5.6.1 Calculating the Helmholtz-decomposition term η

The Helmholtz decomposition (see Lemma 4.2) is the decomposition of the convec-

tion field un
h(x) into the sum of a curl-free term ∇η̂n and a divergence-free term

curlφ̂n
h. Since our estimator includes terms dependent on η̂n and ∇η̂n, we calculate

an approximation to the field η̂n within the simulation.

Since ∇ · curlφ̂n
h = 0, then η̂n satisfies

∇ · un
h = ∆η̂n.

Thus we are able to compute the approximate field ηnh by solving the FEM problem:

find ηnh ∈ Y n
h such that

(∇ · un
h, v

n
h) = (∇ηnh ,∇vnh)

for all vnh ∈ Zn
h , where

Y n
h := Xn

h,k ∩ C0(Ω) ∩
{
vh ∈ L2(Ω) : vh|Γ = 0

}
,

Zn
h := Xn

h,k ∩ C0(Ω),

with k the polynomial degree of the velocity field.

This can be calculated simply by forming the necessary stiffness matrix and load

vector at each timestep, evaluating ∇ · un
h at the necessary points.

We note that knowledge of ηn allows us to calculate ψn and Ln.
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build T 0
h , n ← 0

solve for θnh ,u
n
h, p

n
h

calculate ηn, ψn

calculate estimator

execute adaptivity
T n−1
h 7→ T nh

transfer solution,
inc. repartitioning

++n

Figure 5.2: Mesh adaptivity workflow with Helmholtz term

In simple cases, for example numerical experiments in which we impose the velocity

field explicitly, we may be able to also explicitly evaluate the value of ηnh , and so we

provide functionality to impose this if desired, noting that in this case we do not

impose zero Dirichlet boundary conditions. We also note that, if we expect to have a

very good incompressibility approximation, then we can forget about η in practice,

setting it to 0.

5.6.2 A basic workflow with Helmholtz term

With the calculation of η and ψ as above, we are able to implement a basic workflow

in the way illustrated in Figure 5.2. We use the common notation ++n to denote

the incrementation of n by 1.

We note that this is simple to implement in the distributed case, since we need only

interpolate the solution pair (θnh ,u
n
h) onto the triangulation T n+1

h , and then transfer

data between processes in the repartition stage, both of which are handled by the

deal.II library.
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5.6.3 The projection term

The first extension of the previous workflow is to include the term Πnθn−1
h , which

appears in the term ζ2
S2,n

.

Note that it is not enough to simply interpolate θn−1
h to T nh , since the equivalence

of projection and interpolation will not hold anywhere that mesh coarsening takes

place between T n−1
h and T nh . Instead, we require a full projection to the mesh T nh .

To project a function from the dG space on one triangulation to another, both trian-

gulations must exist simultaneously. This is an issue for the workflow illustrated in

Figure 5.2, since there we replace T n−1
h directly with T nh in the “execute adaptivity”

stage. In order to project between the triangulations, we need to have both existing

at once. We therefore consider the workflow in Figure 5.3.

This requires a copy of T nh to be made (denoted by the red, rounded box) and a copy

of θnh stored with it. After adapting the main mesh, we can use the FEFieldFunction

functionality, which evaluates the FE function θn−1
h at any point in the domain.

This allows us to interpolate θn−1
h at all points necessary to create the load vector

for the projection operation. With this in place, we can complete the projection

operation by using the mass matrix for the temperature field (which has already

been assembled for the solution step), and inverting this against the load vector.

With this setup, we are able to add Πnθn−1
h to the set of functions we are able to

compute. We are also then able to use Πnθn−1
h to calculate An via the formula

(4.6.2), after also calculating the projection of functions fn and δnθnh by inverting

the mass matrix for the current mesh. This completes the calculation of terms ζ2
S1,n

and ζ2
S3,n

at each timestep tn, n ∈ {0, . . . , N}.

However, implementing this functionality in the distributed case requires a different

approach, for the reasons to be explained in the next section. This is due to the

dependence of terms on the union mesh T n−1
h ∪ T nh .
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build T 0
h , n ← 0

solve for θ0
h,u

0
h, p

0
h

calculate η0, ψ0

calculate initial estimator

copy mesh T nh and θnh

execute adaptivity
T n−1
h 7→ T nh , ++n

transfer solution,
inc. repartitioning

solve for θnh ,u
n
h, p

n
h

calculate ηn, ψn

project for Πnθn−1
h

calculate An

calculate estimators

FEFieldFunction(T n−1
h , θn−1

h )

Figure 5.3: Mesh adaptivity workflow with Πnθn−1
h . Blue (rectangular) boxes

denote work on the main triangulation. Red (rounded) box denotes work on
copied triangulation. Red (dashed) arrow denotes selected information flows.

5.6.4 Union mesh in shared memory

Consider the estimator terms ζ2
S2,n

, ζ2
S4,n

, ζ2
T1,n

, and ζ2
T2,n

. For the computation of

each of these terms, we are required to form the union mesh T n−1
h ∪ T nh . We also

wish to retain the ability to calculate the projection of functions from one mesh to

the other. Happily, the deal.II library provides the create_union_triangulation

function, which, given two meshes defined from the same coarse mesh, outputs the

union triangulation. With this functionality, we are able to follow the algorithm

outlined in Figure 5.4.
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build T 0
h , n ← 0

solve for θ0
h,u

0
h, p

0
h

calculate η0, ψ0

calculate initial
estimator

copy mesh T nh
and θnh ,u

n
h etc.

execute adaptivity
T n−1
h 7→ T nh , ++n

transfer solution

solve for θnh ,u
n
h, p

n
h

calculate ηn, ψn

project for Πnθn−1
h , An

project for Πn(fn+δnθnh)
create

T n−1
h ∪ T nh

interpolate θnh ,
Πnθn−1

h , An etc. back-
ward to union mesh

interpolate θn−1
h ,

un−1
h etc. forward
to union mesh

calculate union
estimators

calculate standard
estimators

FEFieldFunction(T n−1
h , θn−1

h )

T nh

T n−1
h

θn−1
h

etc

θnh , Πnθn−1
h etc.

Figure 5.4: Mesh adaptivity workflow with terms defined on the union mesh.
Blue (rectangular, left-hand side), red (rounded), and green (rectangular, right-
hand side) boxes denote work on the main triangulation, copied triangulation, and
union triangulation respectively. Red arrows (dashed) denote selected information

flows.
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Here, we create the union triangulation T n−1
h ∪ T nh , and then in turn interpolate

the necessary functions from T n−1
h and T nh onto this union mesh, including the

projection Πnθn−1
h . Since the union mesh is at least as fine as both T n−1

h and T nh ,

these interpolations are just the embedding operator.

Ultimately though, this approach is unsatisfactory for two reasons: firstly, the pres-

ence of three triangulation objects is potentially expensive to maintain. Secondly,

the deal.II library lacks an analogue of the create_union_triangulation function

for distributed triangulations. This is not unreasonable, since repartitioning hap-

pens after adaptivity to balance work across processors. Such a function would rely

on delaying repartitioning until after the following timestep, or the ability to com-

pare cells which, while occupying the same physical location in the computational

domain, may exist on different processors at different timesteps. We instead take

an alternative approach, which does not require this functionality. This reduces the

number of triangulation objects from three to two, but does affect the resulting mesh

sequences.

5.6.5 Union mesh in distributed memory

As noted previously, the union mesh T n−1
h ∪ T nh is exactly the mesh generated by

applying only the refinement operations required to move from T n−1
h to T nh . Based

on this identity, we are able to utilise the following strategy.

Instead of making a copy of the triangulation at each timestep, we keep an auxiliary

triangulation Snh throughout the simulation which follows the main triangulation.

By saving and re-using the refinement and coarsening flags used on the main tri-

angulation, we can ensure that the auxiliary triangulation follows exactly the same

pattern of refinement and coarsening as the main, but at a delayed time in the

simulation process.

This allows the workflow detailed in Figure 5.5.

Here, the auxiliary triangulation Sn−1
h is held in the unadapted state while the main

triangulation is adapted. This then allows a FEFieldFunction to facilitate projec-

tion onto T nh as before. Once this is completed, we apply only the refinement process
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build initial main mesh T 0
h

build initial auxiliary mesh S0
h

solve for θ0
h,u

0
h, p

0
h

calculate η0, ψ0

calculate initial estimator

copy θnh ,u
n
h, η

n

execute adaptivity
T n−1
h 7→ T nh , ++n

project for Πnθn−1
h , An

solve for θnh ,u
n
h, p

n
h

calculate ηn, ψn

execute refinement Sn−1
h 7→ Sn−

1
2

h ,
and interpolate, e.g.,

vn−1
h → I

n− 1
2

h vn−1
h ,

An−1 → I
n− 1

2
h An−1

interpolate to Sn−
1
2

h , e.g.,:

θnh → I
n− 1

2
h θnh ,

Πnθn−1
h → I

n− 1
2

h Πnθn−1
h ,

An → I
n− 1

2
h An

calculate union estimator terms

execute coarsening, Sn−
1
2

h 7→ Snh

repartition, and transfer solutions

repartition

calculate standard estimators

FEFieldFunction(T n−1
h , θn−1

h )

Figure 5.5: Simplified mesh adaptivity workflow with terms defined on the union
mesh in a distributed simulation. Blue (rectangular) and red (rounded) boxes
denote work on the main triangulation and auxiliary triangulation respectively.

Red (dashed) arrow denotes selected information flows.
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to Sn−1
h , yielding Sn−

1
2

h . Note that this may not be exactly the union triangulation,

as in principle a cell may be refined and then its children be coarsened during the

same step. However Sn−
1
2

h is at least as refined as the union mesh. Interpolation to

Sn−
1
2

h of all the FE functions from Sn−1
h amounts to the identity operator. We then

use the interpolate_to_different_mesh function to interpolate the necessary FE

functions defined on T nh to Sn−
1
2

h . Note that, through this approach, only two meshes

are stored at any one time. We then have all the necessary information on Sn−
1
2

h to

calculate the full estimator, so long as we are prepared to pay a small price by inter-

polating some non-linear functions, such as ψ, by linear-in-time functions. Finally,

we apply the coarsening operations to Sn−
1
2

h , ensuring Snh = T nh , and we repartition

both meshes, to ensure that work is spread evenly over the set of processors.

In the next subsection, we discuss limitations on our ability to exactly compute some

of these terms, but we remark here briefly on the mesh generated by this process.

Crucially, the error indicators are used by the adaptivity processes in deal.II only as

‘hints’, that is, they form the basis of the adaptivity process but do not fully define

it. Since many applications depend on ‘well-behaved’ meshes, the library applies

smoothing algorithms to the meshes generated under adaptivity. This ensures a

number of desirable properties are inherited by new meshes. For example, limits are

placed upon the difference in size between edge-adjacent and vertex-adjacent cells,

to ensure we have only one hanging node per edge, and that all cells sharing a vertex

differ in size by no more than a single level of refinement.

This process of smoothing is applied once per adaptivity stage (refinement, coarsen-

ing, or both refinement and coarsening). This means that, in general, the process of

adapting by pure refinement, followed by adapting by pure coarsening, is not identi-

cal to a single combined stage of refinement and coarsening. To ensure identical main

and auxiliary meshes, we simply adapt the main triangulation in two stages, sepa-

rate refinement and coarsening steps, which ensures the auxiliary mesh will exactly

replicate it. While none of the intermediate meshes will be badly-behaved under this

regime, it is possible (but not seen in the author’s experience) that such a method

could reduce the mesh quality compared to the approach of applying smoothing to

the combined operations of refinement and coarsening. We note that any effect in

this regard can be checked by monitoring ζS2,n.
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The resulting full algorithm for the calculation of all estimator terms, including the

treatment of the adaptivity flags, is shown in Figure 5.6.

5.6.6 Estimator implementation approximations

There are a number of limitations upon our ability to accurately calculate the value

of the bound on the error. These fall under two categories: the calculation of maxima

over large patches, and integration over time intervals.

The first of these, calculation of maxima over large patches, is manifested in our

calculation of ψ ω̃F , ‖un − αnε∇ηn‖2
ω̃F ,∞, and ‖Ln‖ψ,ω̃F ,∞ in ζS1,n; ψ ω̃F in ζS3,n; and

‖L− 1
2‖ψ,ω̃F ,∞ and ψ ω̃F in ζS4,n.

Each of these requires the calculation of a maximum over all values within ω̃F ,

namely the set of all cells that share at least a vertex with the edge F . However,

this calculation is not easily amenable to the setup we have for calculating the

estimator. Since the estimator works by iterating over all cells, and all faces of each

cell, we in general only have access to the cells on either side of the given edge F .

In general, we have no guarantee that all cells in ω̃F are edge-neighbours of the cells

on either side of F . Thus, we make an approximation by instead calculating the

maximum over the edge patch ωF ⊂ ω̃F . This allows us to compute with access to

only the two cells sharing F as an edge.

The second approximation is that of integration in time. For example, we have that

∫ tn

tn−1

ζ2
S2,n

ds =

∫ tn

tn−1

∑
K∈T n−1

h ∪T nh

ρ2
K

∥∥∥∥(I − Πn)

(
fn + δnθnh +

θn−1
h

τn

)∥∥∥∥2

K

ds

=
∑

K∈T n−1
h ∪T nh

∥∥∥∥(I − Πn)

(
fn + δnθnh +

θn−1
h

τn

)∥∥∥∥2

K

∫ tn

tn−1

ρ2
K ds.

The cell weight ρ2
K is varying in time, since

ρK =
1√
ψ
K

min

{
ψK√
LK

, hK max

{
∇ψK√
LK

,
ψK√
ε

}}
,
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recalculate and save coarsen flags
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An−1 → An−
1
2

calculate union estimator
terms using v

n− 1
2

h , An−
1
2 and
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Figure 5.6: Mesh adaptivity workflow with space-estimator terms defined on
the union mesh in a distributed simulation. Blue (rectangular) and red (rounded)
boxes denote work on the main triangulation and auxiliary triangulation respec-

tively. Red (dashed) arrow denotes selected information flows.
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and, due to the presence of the exponential function in the weighting function ψ, is

in general non-polynomial. Its exact integration is therefore a challenge, but since

it is smoothly varying we do not expect its approximate integration to be such.

We take different approaches to computing this quantity in the terms ζ2
S1,n

and

ζ2
S2,n

for simplicity of implementation. Since ζ2
S1,n

is defined on a single mesh, we

evaluate ρ2
K only at the end of the time interval. In contrast, for the term ζ2

S2,n
,

the implementation has access to the union mesh, and the values of the necessary

quantities at both ends of each time interval. As such, in ζ2
S2,n

we can take the

approximation that ∫ tn

tn−1

ρ2
K ds ≈ τn max

{
ρ2
K |tn−1 , ρ2

K |tn
}
,

with little extra effort. We can treat the coefficient ‖L− 1
2‖2

ψ,ω̃F ,∞ in ζ2
S4,n

in an

identical manner, approximating∫ tn

tn−1

‖L−
1
2‖2

ψ,ω̃F ,∞ ds ≈ τn max
{
‖L−

1
2‖2

ψ,ω̃F ,∞|tn−1 , ‖L−
1
2‖2

ψ,ω̃F ,∞|tn
}
.

Finally, we have the integrals

∫ tn

tn−1

ζ2
T1,n

ds

=
∑

K∈T n−1
h ∪T nh

ε−1

∫ tn

tn−1

∥∥`n (un − u) θnh + `n−1

(
un−1 − u

)
θn−1
h

∥∥2

ψ,K
ds,

and∫ tn

tn−1

ζ2
T2,n

ds

=
∑

K∈T n−1
h ∪T nh

∫ tn

tn−1

∥∥∥min
{
L−

1
2 , ε−

1
2

}
(f − fn + δθh − δnθnh

+`n−1

(
An − An−1

)
+ `nβ

nθnh + `n−1β
n−1θn−1

h

)∥∥2

ψ,K
ds.

Replacing u by `n−1u
n−1+`nu

n and making the approximation ψ ≈ `n−1ψ
n−1+`nψ

n,

we have that, on each cell, the first integral is approximately
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ε−1

∫ tn

tn−1

∥∥`n (un − u) θnh + `n−1

(
un−1 − u

)
θn−1
h

∥∥2

ψ,K
ds

≈
∑
q∈Q

(`n−1ψ
n−1 + `nψ

n)[q] ∗ `2
n`

2
n−1

(
un − un−1

)2 (
θnh − θn−1

h

)2
[q] ∗ JxW[q],

a fifth-order polynomial in time. Here, JxW[q] is the value of the Jacobian times

the quadrature rule weight, evaluated at the quadrature point q. This leads us to

use the 3rd-order Gaussian quadrature scheme to exactly compute the approximate

integral in time.

The second time integral is more complicated. By approximating L ≈ `n−1Ln−1 +

`nLn and ψ ≈ `n−1ψ
n−1 + `nψ

n, and evaluating all other terms exactly as their

linear Lagrangian interpolant, we come to a similar equation on each cell, which

this time shows the integral to be a rational function, with a quartic polynomial

in the numerator and a linear polynomial in the denominator. We note that the

approximation of ψ by its linear interpolant is second-order, and so will not affect

the order of convergence of this term. For ease of implementation, we apply the

same 3rd-order Gaussian quadrature scheme to approximate this integral.

5.7 Error indicator choice

While all the above terms form the error estimate, it is a more flexible approach to

use only a subset of these as the error indicator. Specifically, we use only the term

ζ2
S1,n

when indicating refinement and coarsening areas.

Since we refine and coarsen in a cellwise manner (that is, we refine and coarsen based

on the indicator associated with a cell or patch of cells) rather than an edgewise

manner (where weights are associated to each edge and refinement or coarsening

occurs in the cells neighbouring such), we map the edge weights of the error indicator

to both neighbouring cells, so that the per-cell estimator is

ζ2
n,K := ρ2

K ‖An + ε∆θnh − un · ∇θnh − δnθnh‖
2
K

+
∑

F∈∂K\Γ

ρωF ‖Jε∇θnhK‖
2
F
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+
∑
F∈∂K

(
σε

hF

(
ψωF + %ωFσε+

ψFα
2ε∇η2

F

LωF

)
+ ρωF ‖u‖2

F,∞

+ hF‖L‖ψ,ωF ,∞ +
ψωFhF

ε
‖u − αε∇η‖2

ωF ,∞

 ‖JθnhK‖2
F .

As an alternative, the code also provides for use of the Kelly error estimator [64] as

an error indicator, for the purpose of comparison. While this is a widely-used error

indicator among h-refinement codes, it is derived by considering a much simpler

problem, without many features of the Boussinesq system (2.5.1). Thus we may ex-

pect the two error indicators to exhibit different characteristics and lead to differing

adaptivity patterns.

Finally, once we have calculated our error indicators, we have two mesh adaptivity

strategies available to us here and in Chapter 6. We begin by ordering the cells by

their error indicator value. Strategy 1, which we call adaptivity by fraction of error,

uses a pre-defined percentage value (say, 30%) and then marks cells, from highest

indicator to lowest, until it has marked enough to account for 30% of the sum of

all indicator values. We then mark the lowest-indicator cells for coarsening, until,

say, 5% of the sum of indicator values is accounted for. Adaptivity then takes place

using these markers, but subject to refinement level and mesh smoothing limits.

This strategy offers the ability to adjust the number of cells in the mesh to ensure

a certain amount of indicated error is refined per adaptivity step, but is difficult to

use in the case where the total number of cells is required to be limited in some way.

Strategy 2, which is adaptivity by fraction of cells, marks cells in order of indicator

value, but takes 30%, say, of the total number of cells, rather than referring to the

sum of all indicator values. This has the benefit of offering greater control over the

number of cells in the simulation, but offers less in the way of user-defined control

of error.

5.8 Examining the error bound behaviour

In this section, we use the code developed above to examine the behaviour of the full

error estimate under some simple conditions. In the following examples, the initial
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Figure 5.7: The initial temperature field in examples 1a, 1b, 2, 3a, 3b.

temperature field is defined by

1− (1− y + 0.15 sin(4πx) sin(2πy)),

on a box domain Ω = [0, 1]2, with Dirichlet boundary conditions enforced on all

boundaries, with values compatible with the initial temperature field. The diffusion

is constant, ε =1e−6, and a uniform mesh is used. This setup is illustrated in Figure

5.7. On each example, we impose a fixed velocity throughout the domain.

We use the notation

ζ2
S,k :=

k∑
n=1

∫ tn

tn−1

(
ζ2
S1,n

+ ζ2
S1,n−1 + ζ2

S2,n
+ ζ2

S4,n

)
ds+ max

0≤n≤N
ζ2
S3,n

,
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and

ζ2
T,k :=

k∑
n=1

∫ tn

tn−1

ζ2
T1,n

+ ζ2
T2,n

ds,

to refer to the full spatial estimate, and time estimate, respectively.

We also use the notation ζ2
k to refer to the full error estimate bound as in the right

hand side of (4.6.6), apart from the initial discretisation error ‖e(0)‖2
ψ .

ζ2
k := exp

(∫ tk

0

max
Ω

δ2

L
(s) ds

)(
k∑

n=1

∫ tn

tn−1

(
ζ2
S1,n

+ ζ2
S1,n−1 + ζ2

S2,n
+ ζ2

S4,n

)
ds

+
k∑

n=1

∫ tn

tn−1

(
ζ2
T1,n

+ ζ2
T2,n

)
ds+ max

0≤n≤k
ζ2
S3,n

)
.

In the following, we repeatedly make use of the shorthand for z-independent vector

fields as defined in Remark 4.1), that is, we may denote a vector field of the form

Ψ := (0, 0, g(x, y))ᵀ, where g(x, y) is constant in the z-direction, by g(x, y).

5.8.1 Case 1a

We impose the divergence-free flow u = curlφ, where φ = x2+y2

2
. This means

u =

(
y

−x

)
, and η = 0. Thus the weight ψ is equal to 1, and we recover an

un-weighted dG norm. Under these circumstances, we have L = δ, and so we may

choose δ = 0 to remove the exponential term in the estimator, but have only an H1

seminorm bound. Figure 5.8 shows the behaviour of the dominant term ζ2
S1,k

in the

estimator, along with ζ2
S,k, ζ

2
T,k and ζ2

k .

5.8.2 Case 1b

Identically to Case 1a, u = curlφ, where φ = x2+y2

2
, with u =

(
y

−x

)
, and η = 0.

In contrast, we choose δ as a constant, e.g., δ = 0.1, and we have L = δ. Thus the

error estimate has an exponential term of e0.1T , but includes an L2 term of 0.1 ‖e‖2
K .

Comparing Figures 5.8 and 5.9, we observe the following. In Case 1a, the lack of an
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Figure 5.8: Estimator terms in Case 1a.

L2 term forces the estimator to rely on inequalities related to the diffusion ε. This

leads to an instant factor of 1e6 in several estimator terms, and so this estimator has

a large absolute value, but exhibits only linear growth after t = 1.5. On the other

hand, in Case 1b we bound the full dG norm including an L2 term. We are thus

able to rely on inequalities involving L = 0.1, leading to a much smaller absolute

value for the estimator at small times, but the exponential nature of the error bound

begins to show at later times (since the exponent is only 0.1t, this example exhibits

very slow exponential growth, but will eventually overwhelm the estimate of Case

1a).

5.8.3 Case 2

In this example, we take

u =

(
ex sin y + y

ex cos y − x

)
= ∇(ex sin y) + curl

x2 + y2

2
.
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Figure 5.9: Estimator terms in Case 1b.

This flow field can no longer be characterised as u = curlφ, but it is still divergence-

free, and η is harmonic but not zero. Since ∇ · u = 0, then

L = δ +
1

2
α
(
u · ∇η − αε|∇η|2

)
= δ +

1

2
αex ((1− αε) ex + y sin y − x cos y) .

Since we are considering the box [0, 1]2, then L > δ, and so we can choose δ = 0.

Thus we once again have no exponential term, but we do also have an L2 term in

the norm. See Figure 5.10.

5.8.4 Case 3

To consider a case in which the existing literature is not well equipped, we impose

the flow (
x

y

)
= ∇

(
x2 + y2

2

)
,

which has positive divergence (∇ · u = 2) on [0, 1]2. In this example then,

1

2
(α∇η −∇) · (u − αε∇η) =

1

2
(1− αε)

(
α
(
x2 + y2

)
− 2
)
.
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Figure 5.10: Estimator terms in Case 2.

Thus we must add an artificial reaction term δ = 2 (1− αε) (2− α (x2 + y2)) to

satisfy (4.2.9).

We consider the two approaches offered by the error estimate. We first take the

simple choice of α = 1. Then the minimal artificial reaction we can impose is

δ = 2 (1− ε) (2− x2 − y2). This leads to an exponential term

exp

(∫ T

0

max
Ω

δ2

L
dt

)
= exp

(
8

3
(1− ε) t

)
,

in the error estimator. See Figure 5.11 for the result. The full error bound (which is

shown against a log scale) shows a clear exponential behaviour, eventually becoming

too large for double precision arithmetic to represent.

We remark that, if we had not used the exponential fitting technique, then we would

have been required to add enough reaction δ to handle 1
2
∇ · u , i.e., we would have

required δ = 4, leading to an exponential term exp
(

8
3
t
)
, and so the exponential

fitting here has enabled us to slightly reduce the factor in the exponential. It is

easy to see that there will be examples where this difference is more substantial,

particularly in the case where u 6= ∇η and ∇ · u 6= 0.
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Figure 5.11: Estimator term in Case 3, with ζ2
k plotted against a log scale.

Alternatively, we could use the other freedom afforded us by the estimator, and alter

our value of α to improve this behaviour. However, in the author’s experience this is

not usually useful in the case of a small diffusion coefficient – to have a measurable

effect on the exponential term requires a very large α ∼ ε−1, but since the weight

ψ depends upon α, we experience terms of the type α exp (−α), which for large α

quickly stretches the ability of double precision arithmetic routines.

5.8.5 Case 4

Finally, we look at the case of a positive-divergence field with a non-zero curl part.

Taking

u =

(
x

x2 + y2

)
= ∇

(
x2

2
+ x2y

)
+ curl

(
−xy2

)
,

and choosing α equal to 1, we have that

1

2
(α∇η −∇) · (u − αε∇η)

=
1

2

(
(1− ε)

(
x4 + x2 − 1− 2y

)
+ (2− 4ε)x2y + (1− 4ε)x2y2

)
,



Parallel implementation 119

0

2000

4000

6000

8000

10000

12000

14000

0 0.5 1 1.5 2 2.5
1

1× 1020

1× 1040

1× 1060

1× 1080

1× 10100

1× 10120
E

rr
or

es
ti

m
at

or
p
ar

ts
va

lu
e

E
rr

or
b

ou
n
d

va
lu

e

Time (s)

Case 4: Selected error estimator parts

ζ2
S1,k

ζ2
S,k

ζ2
T,k

ζ2
k

Figure 5.12: Estimator terms in Case 4, with ζ2
k plotted against a log scale.

and so we must add reaction

−2
(
(1− ε)

(
x4 + x2 − 1− 2y

)
− (2− 4ε)x2y − (1− 4ε)x2y2

)
.

This leads to an exponential term of exp (8 (1− ε) t), which is demonstrated in

Figure 5.12, where ζ2
k is plotted against a log scale.

5.9 Comparison between Kelly and new

indicators

In this section, we run two identical simulations, comparing the behaviour of the

newly-derived adaptivity indicator to that of the Kelly adaptivity indicator. We run

a simulation based upon the thermochemical convection benchmark of [63]. In this

case, we initialise the system with a base of warm material below a colder material,

with a small perturbation imposed on the interface to reliably initiate a convective

flow. The temperature boundary conditions in this example are fixed Dirichlet,

compatible with the initial field. This means that there is a discontinuity in the
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boundary conditions where the temperature jumps from 0 to 1 on the left and right

boundaries.

Figure 5.13 shows the results of the two simulations, with both discretised by the dG

method. Adaptivity strategy 2, (by fraction of cells) is employed. The two estimators

behave very similarly in this example, with near-identical refinement patterns, and

near-identical numbers of DoFs at each timestep (see Figure 5.14).

In order to explore this behaviour, we illustrate a number of the indicator terms in

Figure 5.15. Subfigure 5.15a and 5.15b demonstrate the reason for the close matching

of adaptivity results: the Kelly indicator and derived indicator agree largely upon

the ordering of the cells in terms of per-cell indicator. Subfigure 5.15d confirms

that, as we expect, the edge value jump terms dominate in most areas. Finally,

subfigures 5.15e and 5.15f show a key difference between the two indicators. By

plotting on a linear scale, we can identify that the derived estimator is strongly

(a) Kelly, t = 0 (b) Derived, t = 0

(c) Kelly, t = 1.2 (d) Derived, t = 1.2
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(e) Kelly, t = 2.4 (f) Derived, t = 2.4

(g) Kelly, t = 3.6 (h) Derived, t = 3.6

Figure 5.13: A comparative display of two dG simulations through time, plotting
the temperature spatial distribution and mesh in the two cases of Kelly-driven and

derived-indicator-driven adaptivity.

dominated by values near to the discontinuities of the boundary data, although our

mesh refinement limits do not allow the adaptivity process to act upon this. On

the other hand, the Kelly indicator does not identify this area strongly, instead

attributing a more evenly spread indicator to the areas of motion. Thus, if we were

to use the strategy of adaptivity by fraction of error, we would expect the derived

indicator to produce few refined cells away from the singularities.

In order to illustrate the effect of the two indicator choices upon the accuracy of the

solution, we present another set of numerical simulations. Using the same thermo-

chemical convection benchmark as before, we first calculate a reference solution on

a uniform, highly refined mesh. In this case, the simulation consists of a 128-by-128

uniform grid. Since the exact solution is unknown, this high-resolution simulation
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Figure 5.14: Graph comparing the DoF counts of two simulations, using Kelly
indicator and derived indicator.

acts as a proxy for the exact solution. We are then able to calculate a proxy for

the exact error by calculating the difference between the reference solution and the

simulation in question, at the end of the simulation, t = 5. In these simulations we

refer to the error in the dG norm as defined in (4.2.6), and additionally present the

L2-error for a more usual view of the solution.

With this setup, we explore the relationship between weighted average number of

DoFs, and the resulting error, for a range of adaptivity parameter choices, both

adaptivity indicator choices, and both adaptivity strategies. The results are pre-

sented in Figures 5.18–5.17. These demonstrate that in the L2 norm there is little

to distinguish the two adaptivity indicators under both adaptivity strategies. Figure

5.16 demonstrates a small decrease in the dG norm of the error under adaptivity

strategy 1, for smaller numbers of DoFs. The results towards the right of this graph

demonstrate that both adaptivity indicators are able to resolve the solution suffi-

ciently when the initial mesh is more greatly refined. However, those results towards

the left suggest the derived adaptivity indicator is in some cases able to produce a

roughly 25% decrease in the dG norm of the error when the initial mesh does not

fully resolve the problem. Under adaptivity strategy 2, we see no such similar effect.
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This can be explained by the fact that the two adaptivity indicators result in sim-

ilar ordering of cells, but with different weights. Using an adaptivity strategy that

ignores the relative weights of cells beyond their ordering therefore results in both

adaptivity indicators recommending very similar adaptivity patterns.
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(a) Kelly indicator on a log scale (b) Edge value jump terms on a log scale

(c) Gradient jump terms on a log scale (d) Derived indicator on a log scale

(e) Kelly indicator (f) Derived indicator

Figure 5.15: Figures illustrating values of terms within the Kelly and derived
indicators, for a simulation based upon the van Keken thermochemical benchmark.
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Figure 5.16: ψ-weighted dG error computed against a reference solution, ver-
sus average weighted DoFs, under Kelly and derived indicators, using adaptivity

strategy 1.
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Figure 5.17: L2 error computed against a reference solution, versus average
weighted DoFs, under Kelly and derived indicators, using adaptivity strategy 1.
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Figure 5.18: ψ-weighted dG error computed against a reference solution, ver-
sus average weighted DoFs, under Kelly and derived indicators, using adaptivity

strategy 2.
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Figure 5.19: L2 error computed against a reference solution, versus average
weighted DoFs, under Kelly and derived indicators, using adaptivity strategy 2.



Chapter 6

ASPECT implementation

ASPECT is a community-developed and maintained mantle convection simulation

code, built upon the deal.II C++ library, with a focus on extensibility and research

usability. As such, it includes a great many features that the step-32 code does not,

as well as improving in many areas in respect to solution speed and extensibility for

use with varied scenarios. It allows modelling of equations that do not fit within

the restrictions in Chapters 4 and 5, for example including compressibility, varying

diffusivity, and the inclusion of compositional fields. A number of material, grav-

ity, and heating models are available, covering a number of models used within the

geodynamical modelling community. The inclusion of compositional fields allows

the user to model the transport of material with varying properties within the sim-

ulation. Compositional field may advect either passively, following the flow of the

material but not affecting it, or actively, in which the properties of the advected

compositional field feed back into the Stokes and temperature equations, altering

the course of the simulation.

This chapter discusses the implementation within ASPECT of the discontinuous

Galerkin method for both the temperature and compositional fields, along with

an adaptivity indicator based upon that derived in Chapter 4 and implemented in

Chapter 5.

127
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6.1 Details of implementation of dG

Implementing the dG method within ASPECT largely follows identical logic to its

implementation within step-32, save that it is also implemented for the composi-

tional fields. These fields do not diffuse, being merely advected. Thus the partial

differential equation is that of time-dependent convection, lacking the terms found

in the temperature equation that derive from the diffusion term.

6.2 Details of implementation of simplified

estimator

Since ASPECT is a community code built mainly for use in geodynamical mod-

elling, it is not realistic to implement the full estimator as in step-32. Indeed, this

would require modifying the kernel substantially, in a way that would not reflect

the needs of other users. In a research code, where the focus is upon the scientific

research output for the geodynamic and geophysical communities, it would be un-

reasonable to make such wide-reaching changes as are necessary to implement the

full estimator. Instead, we make use of the mesh refinement plugin functionality to

build a self-contained plugin to guide the adaptivity process. The aim is to be able

to present an error indicator for the purposes of adaptivity, in order to minimise the

error of the simulation while also minimising the computational cost.

There is a balance to be struck here. Calculating the error indicator is not a free

operation, and particularly so if it requires the solution of another linear system.

This costs both time in computation and memory for the storage of the necessary

matrices and vectors. However, balanced against this are the benefits to be gained

by adapting in the ‘best’ way. In the worst case, a field with for example a corner

singularity is dependent upon correct adaptivity to gain any accuracy – refinement

far away from the singularity will yield almost no benefit compared to the benefit

of a single judicious refinement in the area around the singularity.

This simple example illustrates that ‘smart’ adaptivity is perhaps worth investing

some computation in.
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Generally, it is only acceptable for the process of error indicator calculation to take

a few percent of the total time. Thus, the indicator is restrained in what it is able to

afford. However, adaptivity usually only occurs at intervals throughout a simulation,

rather than at each timestep. This is particularly so in the case of fluid moving as

slowly as mantle, with negligible inertial effects.

The error indicator uses only the simplest terms from that shown in the previous

example, identically to the discussion in Section 5.7.

ζ2
n,K := ρ2

K ‖An + ε∆θnh − un · ∇θnh − δnθnh‖
2
K

+
∑

F∈∂K\Γ

ρωF ‖Jε∇θnhK‖
2
F

+
∑
F∈∂K

(
σε

hF

(
ψωF + %ωFσε+

ψFα
2ε∇η2

F

LωF

)
+ ρωF ‖u‖2

F,∞

+ hF‖L‖ψ,ωF ,∞ +
ψωFhF

ε
‖u − αε∇η‖2

ωF ,∞

 ‖JθnhK‖2
F .

In particular, this does not contain any of the estimator terms defined on the

union mesh T n−1
h ∪ T nh , nor does it contain the term ζS3,n which bounds the term∥∥θdh∥∥2

ψ,L∞(0,tn;L2(Ω))
.

Note that we make the approximation that maxima and minima over ω̃F are instead

computed only over ωF .

We also make another adjustment to the cell residual term. We recall (4.6.2), which

states that

An = Πn (fn + δnθnh)−
(
θnh − Πnθn−1

h

)
/τn,

where Πn is the L2-projection into Xn
h,1. We are unable to fully compute An without

projecting the old temperature θn−1
h forwards onto the new mesh. As we do not

have the ability to cheaply project forward, but we do have access to the interpo-

lated previous solution, we make the approximation that Πnθn−1
h ≈ Inh θ

n−1
h , where

Inh is the interpolation operator onto V n
h . This difference can be bounded, of optimal

order. Additionally, in most computations we do not adapt on every timestep, but

on every k timesteps, for some k ≥ 2. In this scenario, each time that we evalu-

ate the adaptivity indicator, the current and previous meshes will be identical, and
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thus θn−1
h = Inh θ

n−1
h = Πnθn−1

h . We note that, additionally, in geophysically rele-

vant scenarios we expect to take large timesteps τn. Thus it suffices to calculate

Ãn = Πn (fn + δnθnh) −
(
θnh − Inh θn−1

h

)
/τn, in the knowledge that in almost all use-

ful scenarios this will be identical to (4.6.2), and in circumstances where it is not

identical then it can be bounded with optimal order. The error indicator is then

ζ2
ASP,n,K := ρ2

K

∥∥∥∥Πn (fn + δnθn)− θnh − Inh θn−1
h

τn
+ ε∆θnh − un · ∇θnh − δnθnh

∥∥∥∥2

K

+
∑

F∈∂K\Γ

ρωF ‖Jε∇θnhK‖
2
F

+
∑
F∈∂K

(
σε

hF

(
ψωF + %ωFσε+

ψFα
2ε∇η2

F

LωF

)
+ ρωF ‖u‖2

F,∞

+ hF‖L‖ψ,ωF ,∞ +
ψωFhF

ε
‖u − αε∇η‖2

ωF ,∞

 ‖JθnhK‖2
F .

This estimator is computed using the same algorithms as in Chapter 5, iterating

over locally owned cells and, as a subiteration, looping over faces of each cell.

6.3 Comparisons with alternative strategies

In this section, we examine a number of simple examples, which highlight the dif-

ferences between the existing strategies (using FEM and the Kelly error indicator)

and the new strategies (using dG and the derived error indicator).

6.3.1 Example 1a

In our first example, we compare the behaviour of an FE simulation against a dG

simulation. We choose the example of a box domain, with prescribed, variable

velocity boundary conditions. This example is found in the ASPECT manual,

§5.2.3, and begins with a smooth temperature gradient through the domain, from

0 at the top to 1 at the bottom. Flow is thus a product of buoyancy and of the

boundary velocities.
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We examine the case where we use the default ASPECT mesh adaptivity algo-

rithm, with default parameter choices, and set 6 initial refinements and 2 adaptive

refinement stages. The only change is the discretisation choice for the temperature

variable. Figure 6.1 compares the effect of the choice of discretisation upon the Kelly

error indicator, the mesh adaptivity, and the full solution. Here, we use adaptivity

strategy 1, that marks cells for adaptation based on their contribution to the total

error.

We observe that the dG discretisation results in the Kelly indicator focussing on a

smaller area for refinement, and allowing more cells to be coarsened. The resultant

lower number of DoFs (see Fig 6.2) results in a faster execution time (on 12 pro-

cessors, this simulation took 1.43 · 104 s for the FE case, and 3.87 · 103 s for the

dG case). It is clear that the dG discretisation highlights the region at the front of

the downwelling strongly, as well as the region of the discontinuity in the variable

velocity on the upper boundary. However, it is not clear whether this results in a

better per-cost solution. On the contrary, it seems that the combination of the dG

method and the Kelly error indicator means that the indicator is dominated by a

small number of cells, so that the mesh adaptivity strategy ignores most other areas,

to the detriment of the total solution.

6.3.2 Example 1b

We re-run the same experiment, but this time with 5 levels of initial global refine-

ment and 2 adaptive refinements, and with adaptivity strategy 2, refining a given

percentage of cells, rather than the cells that make up a certain percentage of the

total estimated error. This is an attempt to overcome the difficulties of the previous

example, in which a small number of cells dominated the Kelly error indicator. The

results are shown in Figures 6.3 and 6.4. These show that the dG discretisation

initially results in a lower number of DoFs, but this gradually grows. On the other

hand, the FE method quickly reaches a large number of DoFs, but then plateaus.

The proportions of cells to refine (10%) and coarsen (5%) are such that, given entirely

free reign, the adaptivity algorithm should reduce the number of cells on average.

However, since we limit the refinement levels allowed, and smooth the mesh to avoid
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(a) FE, t = 0 (b) dG, t = 0

(c) FE, t = 3 (d) dG, t = 3

(e) FE, t = 6 (f) dG, t = 6

(g) FE, t = 9 (h) dG, t = 9

(i) FE, t = 12 (j) dG, t = 12

Figure 6.1: Example 1a, comparing FE and dG methods under Kelly refinement
with adaptivity strategy 1.
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Figure 6.2: Example 1a: DoF count per timestep, for the FE and dG methods
under Kelly refinement, using adaptivity strategy 1.

difficulties, we see a net gain in the numbers of cells. These results suggest that

the FE method results in the Kelly indicator progressively refining cells in different

parts of the mesh, with refinement significantly affecting the indicator, so that more

refined cells no longer feature amongst the greatest contributors to the error. On

the other hand, the dG method seems to result in an indicator behaviour which is

not so strongly affected by the mesh size, and is more strongly affected by the values

of the solution itself. Thus, refinement of cells does not always significantly reduce

their ordering amongst the largest contributors to the error.

6.3.3 Example 2

In this example, we compare the results of using the dG method versus the FE

method, in the case of a purely hyperbolic problem: composition-based flow. The

van Keken composition benchmark, introduced in [63], models a Rayleigh-Taylor

instability between two fluids of differing density. A fluid of density 1010 sits above

a second fluid of density 1000, in a box of size 0.9142–by–1, with zero velocity at

the top and bottom boundaries, and free-slip flow on the left and right. The less
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(a) FE, t = 0 (b) dG, t = 0

(c) FE, t = 3 (d) dG, t = 3

(e) FE, t = 6 (f) dG, t = 6

(g) FE, t = 9 (h) dG, t = 9

(i) FE, t = 12 (j) dG, t = 12

Figure 6.3: Example 1b, comparing FE and dG methods under Kelly adaptive
refinement with adaptivity strategy 2.
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Figure 6.4: Example 1b: DoF count per timestep, for the FE and dG methods
under Kelly refinement, using adaptivity strategy 2.

dense material is initially at the base of the box, with a perturbed top surface (see

Fig 6.5). The simulation is run for 2000 simulated seconds. The temperature field

is zero everywhere, thus the flow is entirely buoyancy-driven.

In our example, we compare the results from discretisation of the compositional

field by FE and dG elements, on a fixed, uniform grid. For a compositional field,

we set the diffusion parameter to zero: even in the hyperbolic limit, the dG upwind

flux results in a stable method. Thus we are interested in this example not in the

indicator choice, but in the ability of the dG method to approximate a sharp moving

boundary, and a zero-diffusion field.

Since the composition fields follow a purely hyperbolic flow law, there should be

no diffusion of the composition field. Figure 6.6 demonstrates that the use of the

dG method can effectively conserve the sharp interfaces of the composition field,

resulting in much less ‘smearing’ of the field as time increases. This is in comparison

to the FE case, which imposes an artificial diffusion term to stabilise the field.

However, it should be noted that the dG method also has drawbacks in this situation.

Firstly, it is more expensive to compute, as illustrated in Table 6.1: the increase in

DoFs translates into increased setup time for the DoF systems, and the assembly
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Figure 6.5: Example 2: The initial distribution of the less dense composition in
the van Keken benchmark, on a 7-times refined mesh.

time for the composition system, and composition preconditioner, are both increased

significantly, leading to a slower computation. It is expected that the cost of the

preconditioner could be reduced, along with the composition solve, by adjusting

parameters to values more suited to the form of the dG system – the values used in

this simulation are those which have been shown to work well in the FE case, and

thus there is further research to do to identify the best parameter choices for the dG

case.

Secondly, the dG method produces overshoots and undershoots near to the disconti-

nuities. This is a sign that we are not fully resolving the solution with this mesh-size.

Worse still, however, is that these overshoots can be a numerical instability within

the simulation, since material properties dependent on composition concentration

may be ill-defined for negative, or larger than one, values of composition concen-

tration. Thus further work is necessary to limit the size of these overshoots for use

within complex material models. The dG method is able to incorporate flux limiters,

and such techniques have in fact been implemented in ASPECT for this reason [52],

limited to the case of divergence-free flow, building on the methods introduced in
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(a) FE discretisation

(b) DG discretisation

Figure 6.6: Example 2: A comparison between (A) FE and (B) dG discretisation
for the van Keken isoviscous composition benchmark. Mesh used is refined 7 times.

Field shown is the value of the less dense fluid, at time t = 2000.
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Section FE time (s) dG time (s)
Assemble composition system 268 514
Build composition preconditioner 38.5 201
Solve composition system 45.9 55.1
Assemble Stokes system 89.6 80.6
Solve Stokes system 388 368
Setup DoF systems 0.38 2.52

Total 950 1320

Table 6.1: Comparison of FE and dG method computational time for the
van Keken benchmark, on 8 CPUs. Figures shown cover only some sections of
the code, thus the total per run is not the sum of the individual timings shown.
Composition DoFs number 66,049 for the FE case, and 147,456 for the dG case.

Stokes DoFs number 148,739 in both cases.

[115] and [116], although we opt not use this in this work, in order to separate the

effect of the dG method from the limiter.

6.3.4 Example 3a

We return to the case of variable velocity boundary conditions, as used in Example

1. We compare the effect of the choice of adaptivity indicator upon the solution and

mesh, in the case where both simulations use the dG method. We begin again with

a linear vertical temperature profile from 0 to 1, use the default ASPECT mesh

adaptivity algorithm parameter choices, and set 6 initial refinements and 2 adaptive

refinement stages. We examine the difference between the Kelly error indicator and

the derived error indicator. We employ adaptivity strategy 1, refining and coarsening

cells responsible for a fraction of the total indicated error.

Figure 6.7 clearly indicates that in this case the derived error indicator is overly-

focussed upon the top boundary, which contains a large velocity area. Under these

conditions, it is clear that the error indicator is dominated by the velocity contri-

butions to the face-jump term. In this example, the derived indicator results in a

faster solve, because of the reduced number of DoFs (see Fig 6.8), but it is unlikely

to be resulting in a more accurate solution, being overwhelmed by the velocities at

the upper boundary, and thus neglecting the rest of the simulation.
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(a) Kelly, t = 0 (b) Derived, t = 0

(c) Kelly, t = 3 (d) Derived, t = 3

(e) Kelly, t = 6 (f) Derived, t = 6

(g) Kelly, t = 9 (h) Derived, t = 9

(i) Kelly, t = 12 (j) Derived, t = 12

Figure 6.7: Example 3a: Comparing mesh behaviour under Kelly and derived
error indicators, adaptivity strategy 1.
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Figure 6.8: Example 3a: DoF count per timestep, for the dG method under
Kelly and derived indicator refinement, using adaptivity strategy 1.

6.3.5 Example 3b

To explore the effect of the dominance of a few cells upon the total error, we run an

identical simulation, but this time use adaptivity strategy 2, refining a fixed fraction

of the total cells. This is shown in Figure 6.10.

This shows much closer agreement between the Kelly and derived indicator strate-

gies, suggesting that, while Example 3a showed that the derived indicator shows the

majority of indicated error to be at the top of the domain, the overall ordering of

cells by indicator size remains similar between the two indicators. Figure 6.9 shows

that, after the derived indicator initiates an extended period of initial refinement,

the two indicators follow very similar paths in terms of total cells added at each

timestep.

6.3.6 Example 4

In our final example, we compare three 3D simulations, this time based on the exam-

ple in the ASPECT manual §5.2.2. In the first simulation, we use the FE method
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Figure 6.9: Example 3b: DoF count per timestep, for the dG method under
Kelly and derived indicator refinement, using adaptivity strategy 2.

and the Kelly indicator; in the second, we use dG and the Kelly indicator; and in

the third we use the dG method with the derived indicator. Figure 6.11 shows the

solution from the three simulations, using isocontours to visualise the temperature

field in 3D. This shows the methods show large agreement in the solution.

Figures 6.12 and 6.13 compare the meshes generated adaptively by the three meth-

ods. Figure 6.12 shows the outer surface of the meshes, and Figure 6.13 shows the

full meshes. It is clear that the Kelly indicator generates similar meshes in both

the FE and dG case, but the derived indicator favours more localised refinement,

resulting in a less-refined mesh overall. This is very evident in the disparity between

the cell numbers shown in Figure 6.14.
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(a) Kelly, t = 0 (b) Derived, t = 0

(c) Kelly, t = 3 (d) Derived, t = 3

(e) Kelly, t = 6 (f) Derived, t = 6

(g) Kelly, t = 9 (h) Derived, t = 9

(i) Kelly, t = 12 (j) Derived, t = 12

Figure 6.10: Example 3b: Comparing mesh behaviour under the Kelly and
derived error indicators, adaptivity strategy 2.
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(a) FE, Kelly indicator

(b) dG, Kelly indicator

(c) dG, Derived indicator

Figure 6.11: Example 4: Comparison of solutions between the three methods
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(a) FE, Kelly indicator

(b) dG, Kelly indicator

(c) dG, Derived indicator

Figure 6.12: Example 4: Comparison of outer meshes generated by the three
methods
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(a) FE, Kelly indicator

(b) dG, Kelly indicator

(c) dG, Derived indicator

Figure 6.13: Example 4: Comparison of full meshes generated by the three
methods
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of discretisation and indicator.



Chapter 7

Conclusions and future work

In this thesis, we have improved and expanded the mathematical tools available in

the simulation of mantle convection. We have derived an a posteriori error bound

for the convection-diffusion equation, in a modified norm, without the usual restric-

tions placed upon the divergence of the velocity field. This bound is subject to an

exponential term in the event of non-negative divergence. However, this must occur

in any result capable of handling a general flow. Further work remains to under-

stand the full consequences of varying choices of parameter α in this bound, and to

identify the exact circumstances under which this result improves on existing known

bounds. The error bound leads to an adaptivity indicator designed for the prob-

lem in question, enabling the adaptivity strategy to be guided in a more rigorously

supported fashion.

We have presented an implementation of the discontinuous Galerkin method in a

convection simulation code, coupled to an FE Stokes simulation, built upon the

step-32 tutorial code of deal.II. This code is parallelised for a distributed comput-

ing setting, and makes use of well-tested and documented code libraries to ease its

development and maintenance. It includes a novel auxiliary-mesh method to en-

able calculation of terms defined over the union mesh between meshes at adjacent

timesteps, while preserving the distributed computing capabilities. This bears fruit

in illustrating the behaviour of the a posteriori error bound and adaptivity indicator

within simulations of interest. We intend to use this code for further numerical ex-

periments, to better understand the regimes in which the derived indicator is more

147
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effective than an ad hoc, cheaper indicator, particularly in the setting of more com-

plex geometries and geodynamically-relevant flow regimes. We also intend to use

this to address the issue of appropriate choice of parameters and the behaviour of

the error bound in situations which do not easily lend themselves to analysis.

An area which we have not explored is the use of the discontinuous Galerkin method

in the Stokes discretisation. This offers the hope of improving the solution process for

this part of the algorithm, which in most cases in 3D dominates the computational

time. In addition to this, an a posteriori error bound upon the full nonlinear system

of convection-diffusion coupled to Stokes flow is not yet possessed. Work on this

should lead to an adaptivity indicator that takes into account the mutual dependence

of the Stokes flow and temperature solution, and is truly designed for the entire

solution algorithm.

Finally, we presented an implementation of the dG method within the commu-

nity code ASPECT, and demonstrated its abilities in reducing the number of cells

required in some simulations. Much work is needed to understand how to best pre-

condition the resulting systems. These exhibit a natural block structure that could

be the basis for further attempts to improve the speed of solution of the dG method

within ASPECT. We note that the use of flux limiters holds promise in combating

the over- and undershoots witnessed when discretising with the dG method.

Future work lies in comparing the performance of the implemented methods relative

to other available methods. We expect the new adaptivity strategy based on the

a posteriori error estimator presented here to result in better approximation of full

mantle simulations, since, so far, it appears to give computational savings with no

detriment to the observed convection patterns. Additional implementation optimi-

sations remain possible, particularly in terms of using the block structure of the

matrices, to improve the competitiveness of the dG method against FE methods on

fixed grids.

This research used the ALICE High Performance Computing Facility at the University

of Leicester.



Appendix A

Proof of bounds for L2 projection

Let I be the identity. The L2-projection Π : Vh+H1
D(Ω)→ Xh,1 (the space of linear

polynomials as defined by (3.2.1)–(3.2.2)) is defined as the unique wh = Πw such

that

(w, vh) = (Πw, vh) ∀vh ∈ Xh,1.

We begin by the following observations, under the assumption L > 0:
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We note that, in the case where L ≤ 0, we must have η = 0 and, thus, ψ = 1. In

this case, (A.0.2) collapses to the statement

‖∇(ψv)‖2
K = ‖∇v‖2

K ≤
1

ε
|‖v|‖2

ψ,K .

Then for any v ∈ H1
D(Ω), we have

‖(I − Π) (ψv)‖K ≤ ‖ψv‖K + ‖Π (ψv)‖K . ‖ψv‖K ,

by the triangle inequality, the stability of Π, and (A.0.1).

On the other hand, by [85, (3.5.22)],
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or, in the case of L ≤ 0,
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hK√
ε
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Thus, we are able to say

ρ−1
K ‖(I − Π) (ψv)‖K . |‖v|‖ψ,K ,

with ρK defined as in (4.3.1).

We prove the edge-based bound by combining the cell-based result above with the

following multiplicative trace inequality (e.g., [31, Lemma 3.1]): for every cell K,

and every edge F ⊂ ∂K, and for every function v ∈ H1(K), we have that
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Then, since (I − Π) (ψv) ∈ H1(K), and additionally using the stability of the L2-

projection,

‖(I − Π) (ψv)‖2
F . h−1

K ‖(I − Π) (ψv)‖2
K + ‖(I − Π) (ψv)‖K ‖∇ (I − Π) (ψv)‖K

. h−1
K ‖(I − Π) (ψv)‖2

K + ‖(I − Π) (ψv)‖K ‖∇ (ψv)‖K



Proof of bounds for L2 projection 151
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with ρωF defined as in (4.3.1). The results (4.4.2) and (4.4.3) follow.
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[36] Ern, A., and Vohraĺık, M. A posteriori error estimation based on

potential and flux reconstruction for the heat equation. SIAM J. Numer.

Anal. 48, 1 (2010), 198–223.

[37] Evans, L. C. Partial differential equations, vol. 19 of Graduate Studies in

Mathematics. American Mathematical Society, Providence, RI, 1998.

[38] Fowler, A. Mathematical geoscience, vol. 36 of Interdisciplinary Applied

Mathematics. Springer, London, 2011.

[39] Fowler, C. The Solid Earth: An Introduction to Global Geophysics.

Cambridge University Press, 2005.

[40] Georgoulis, E. H., Hall, E., and Houston, P. Discontinuous Galerkin

methods for advection-diffusion-reaction problems on anisotropically refined

meshes. SIAM J. Sci. Comput. 30, 1 (2007/08), 246–271.

[41] Georgoulis, E. H., Hall, E., and Makridakis, C. An a posteriori

error bound for discontinuous Galerkin approximations of

convection-diffusion problems, Submitted for publication.

[42] Georgoulis, E. H., Lakkis, O., and Virtanen, J. M. A posteriori

error control for discontinuous Galerkin methods for parabolic problems.

SIAM J. Numer. Anal. 49, 2 (2011), 427–458.

[43] Gerya, T. V., and Yuen, D. A. Characteristics-based marker-in-cell

method with conservative finite-differences schemes for modeling geological

flows with strongly variable transport properties. Phys. Earth Planet. Inter.

140, 4 (2003), 293–318.

[44] Gilbarg, D., and Trudinger, N. S. Elliptic partial differential equations

of second order. Classics in Mathematics. Springer-Verlag, Berlin, 2001.

Reprint of the 1998 edition.

[45] Girault, V., and Raviart, P.-A. Finite element methods for

Navier-Stokes equations, vol. 5 of Springer Series in Computational

Mathematics. Springer-Verlag, Berlin, 1986. Theory and algorithms.



Bibliography 157

[46] Golub, G. H., and Van Loan, C. F. Matrix computations, third ed.

Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins

University Press, Baltimore, MD, 1996.

[47] Guermond, J.-L., Pasquetti, R., and Popov, B. Entropy viscosity

method for nonlinear conservation laws. J. Comput. Phys. 230, 11 (2011),

4248–4267.

[48] Hansen, U., and Ebel, A. Experiments with a numerical model related

to mantle convection: boundary layer behaviour of small-and large scale

flows. Phys. Earth Planet. Inter. 36, 3 (1984), 374–390.

[49] Haskell, N. The motion of a viscous fluid under a surface load. J. Appl.

Phys. 6, 8 (1935), 265–269.

[50] Haskell, N. The motion of a viscous fluid under a surface load. part II. J.

Appl. Phys. 7, 2 (1936), 56–61.

[51] Haskell, N. A. The viscosity of the asthenosphere. Am. J. Sci., 193

(1937), 22–28.

[52] He, Y., Puckett, E. G., and Billen, M. I. A discontinuous Galerkin

method with a bound preserving limiter for the advection of non-diffusive

fields in solid Earth geodynamics. Phys. Earth Planet. Inter. 263 (2017),

23–37.

[53] Heroux, M., Bartlett, R., Hoekstra, V. H. R., Hu, J., Kolda, T.,

Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger, A.,

Thornquist, H., Tuminaro, R., Willenbring, J., and Williams, A.

An Overview of Trilinos. Tech. Rep. SAND2003-2927, Sandia National

Laboratories, 2003.

[54] Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J.,

Hu, J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski,

R. P., Phipps, E. T., Salinger, A. G., Thornquist, H. K.,

Tuminaro, R. S., Willenbring, J. M., Williams, A., and Stanley,

K. S. An overview of the Trilinos project. ACM Trans. Math. Software 31, 3

(2005), 397–423.



Bibliography 158

[55] Houston, P., Perugia, I., and Schötzau, D. Mixed discontinuous
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