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Abstract

Gamma-ray bursts (GRBs) are the most luminous transient events in the Universe. The popu-

lation of observed GRBs is organised into two categories: long and short, separated by a two

second divide in gamma-ray emission duration. The short type (lasting less than two seconds)

have been shown to originate from the merger of two neutron stars, whereas as long bursts (last-

ing longer than two seconds) originate from the collapse of massive stars. There are subtypes

within both classes that challenge the standard model for GRBs. For shorts, some bursts exhibit a

re-brightening in their high-energy emission becoming dominant shortly after the initial emission

spike known as extended emission bursts. For long bursts, some exhibit flares in their X-ray af-

terglows that contain a comparable amount of energy to the prompt emission. These are so-called

giant X-ray flares.

This thesis examines the central engine that drives these extreme types of bursts since they have

the potential to discern between various proposed GRB models. A potential explanation for these

events may be a highly magnetised, rapidly rotating neutron star (magnetar) fed by fallback accre-

tion. The motivation for using this model is the late-time plateaux seen in some short GRBs that

can be interpreted as a long-lived magnetar losing angular momentum along magnetic field lines.

The fallback accretion component extends the global energy budget of the system and allows the

rotational energy reservoir of the magnetar to be refreshed.
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1
Introduction

Gamma-ray bursts (GRBs) are the brightest, most intense explosions in the Universe. They are

very brief flashes of gamma-rays that last from a fraction of a second to several thousand seconds

and occur at a rate of a few per day at random locations. While they are active, GRBs outshine

every other source of gamma-rays in the sky including the Sun. Many questions about the more

erratic features of these extreme events still remain even within the understanding of the physical

processes involved brought about from over four decades of study. This thesis will endeavour to

understand the mechanics of the central engines required to power the strangest of these already

extreme events.
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1.1 History

GRBs were discovered serendipitously by the Vela satellites in the late 1960s. This U.S. satellite

network was originally launched to monitor secret nuclear testing by the USSR in breach of the

Nuclear Test Ban Treaty (1963). However, the short bursts of gamma-ray radiation detected by

Vela were confirmed to originate neither from the Earth nor the Sun, and were finally made public

six years after detection (Klebasedel et al., 1973). The observed transient events had durations in

the range 0.1 to∼ 30 seconds, with a time-integrated flux in the region 10−5−2×10−4 erg cm−2,

in the energy range 0.2 − 1.5 MeV. Various theories arose regarding the nature of these events,

very few of which could be ruled out by the data collected at the time. It was therefore unclear

as to whether GRBs originated from within or outside our Galaxy due to the incredible energy

releases involved. It was noted that the flashes appeared to have several types due to variances in

time profiles, durations, and spectral shapes (Mazets & Golenetskii, 1981).

1.1.1 Origins

The Compton Gamma-Ray Observatory (CGRO), launched in 1991, provided the first steps to

understanding GRBs. The Burst and Transient Spectrometer Experiment (BATSE; Fishman et al.

1985) instrument onboard CGRO performed an all-sky survey of GRBs showing that they were

distributed isotropically (Meegan et al. 1992; Fig. 1.11) and possessed a broad range of fluxes.

This gave favour to a cosmological origin for GRBs, rather than a galactic or local population

origin. At cosmological distances, GRBs would outshine galaxies and quasars by a large factor

which implied a catastrophic energy release if they truly originated from outside the Milky Way.

1http://gammaray.nsstc.nasa.gov/batse/grb/skymap/
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Figure 1.1: The isotropic distribution of GRBs detected by BATSE across the sky.

1.1.2 X-ray detection

From 1997, the Dutch-Italian satellite Beppo-SAX and its on-board X-ray telescope (Boella et al.,

1997) began to observe GRBs within 5−12 hours after the trigger time, which resulted in the first

detection of fading X-ray afterglows following the gamma-ray emission and accurate localisations

to within a few arcminutes. The enhanced positions Beppo-SAX provided allowed ground-based

observatories, in various wavelengths, to perform follow-up observations that led to the first op-

tical afterglow detection (van Paradijs et al., 1997) and the first redshift measurement (Metzger

et al., 1997). This conclusively proved that at least some of GRBs occur at cosmological distances.

1.1.3 Swift era of Gamma-ray Burst detections

The Neil Gehrels Swift satellite (hereafter referred to as Swift), launched in 2004, represents the

most recent wave in significant advances in GRB physics (Gehrels et al., 2004). Swift is a multi-
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wavelength observatory dedicated to GRB hunting with rapid slewing capabilities. It therefore

achieved the long-awaited goal of acquiring accurate afterglow localisations and detailed X-ray

light curves in approximately a minute following the burst detection. Such a feat was impossible

with other available observatories of the time. The detailed light curves Swift produced demon-

strated the smooth transition between the prompt and afterglow emission phases and revealed

striking new insights into X-ray afterglow behaviour and GRB physics (Mészáros, 2006; Gehrels

et al., 2009; Gehrels & Razzaque, 2013). Swift succeeded in localising the first afterglow from

short GRBs in May 2005 which gave rise to a galaxy identification for this class. Swift also broke

through the symbolic redshift z > 6 barrier and holds the records for observing the most distant

GRBs: z = 8.2 for a spectroscopically confirmed redshift (Tanvir et al., 2009), and z ' 9.4 pho-

tometrically (Cucchiara et al., 2011). For a review of the Swift mission, see Gehrels et al. (2009);

Gehrels & Razzaque (2013); Mészáros & Rees (2014).

1.2 The Swift Gamma-ray Burst Mission

The Swift mission provided the data used in this thesis; therefore, a more in-depth look into its

operations over other missions is pertinent. Swift carries three instruments (Fig. 1.22) which are

described below.

1.2.1 Burst Alert Telescope

The Burst Alert Telescope (BAT; Barthelmy et al. 2005) is a coded-aperture imaging detector with

a wide (1.4 steradian half coded) field of view, operating over the energy band 15− 150 keV with

an energy resolution of ∼ 7 keV, and a fluence sensitivity of ∼ 10−8 erg cm−2 s−1. Within ∼ 10

seconds of detecting a burst, BAT calculates the burst’s position to within a 1− 4 arcminute accu-

racy, decides if the burst merits a spacecraft slew (> 6.5σ significance) using onboard software,

and passes the position to the spacecraft to perform an autonomous slew, bringing the burst into

2http://swift.gsfc.nasa.gov/about swift/Sci Fact Sheet.pdf
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Figure 1.2: An artists impression of the Swift satellite with the position of the three instruments indicated

(Gehrels et al., 2004).

the field of view of the X-Ray Telescope and the Ultra-Violet/Optical Telescope. The BAT field

of view includes that of the X-Ray Telescope and the Ultra-Violet/Optical Telescope so that the

GRB emission can be observed in all bands simultaneously after a slew.

BAT has a large dynamical range and multiple trigger capabilities to detect a range of intensi-

ties, durations and temporal structures. It has two operational modes: Burst, which finds burst

positions; and Survey, which collects the gamma-ray count in 5 minute time bins over 18 energy

bands to search for hard X-ray transients, as well as being used to follow up any target of opportu-

nity requests. The burst trigger algorithm looks for excesses in the count rate above the expected

background and constant sources. An imaging algorithm is then used to check the origin corre-

sponds to a point source, making a GRB the most likely source. The sky location and intensity

of the source are then immediately sent to the ground and distributed to a variety of ground- and

space-based telescopes through NASA’s Tracking and Data Relay Satellite System (TDRSS; Poza

1981) and the GRB Coordinates Network (GCN, formerly BACODINE; Barthelmy et al. 1994)

for rapid follow-up observations while the GRB is still bright.
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1.2.2 X-Ray Telescope

The X-ray Telescope (XRT; Burrows et al. 2005a) is a grazing incidence Wolter Type I imaging

spectrometer designed to measure fluxes, spectra, and light curves over a sensitivity range greater

than 7 orders of magnitude in the 0.3− 10 keV energy band. It is a narrow-field instrument with a

23.6× 23.6 arcminute field of view, with 7 arcsecond (full-width, half-maximum) resolution, and

has a sensitivity of 2×10−14 erg cm−2 s−1 in 104 seconds. The XRT can improve a 1−4 arcminute

localisation from BAT to within 2.5 arcseconds (usually ∼ 4 arcseconds including noise) within

∼ 10 seconds of target acquisition for a typical GRB. This level of precision combined with an

information delivery time of just 1−2 minutes allows ground-based telescopes to begin follow-up

observations. XRT studies X-ray counterparts from∼ 20−70 seconds after acquisition up to days

or weeks after.

The XRT has multiple readout modes that can be autonomously selected by the craft. Unfortu-

nately, one of these, Photon Diode mode, was lost due to a micrometeorite strike within the first

six months of the mission. The remaining functioning modes are as follows.

1. Imaging Mode is used when XRT first acquires the target. It produces an integrated image

measuring the total energy deposited per pixel and is used to calculate accurate positions.

Exposure times are 0.1 or 2.5 seconds. Imaging Mode produces no spectroscopic data due

to high pile up from large count rates; however, it provides reasonable flux estimates.

2. Windowed Timing Mode can perform high time resolution (2.2 ms) spectroscopy by con-

tinuously clocking the central 8 arcminutes of the CCD. Imaging information is preserved

only in one direction, hence position accuracy is lost. Windowed Timing mode is used to

protect the CCD from becoming oversaturated during high source flux periods and while

the spacecraft is slewing.

3. Photon Counting Mode uses a ‘normal’ CCD readout to provide full resolution spectral and

imaging information for fluxes in the range ∼ 10−14 − 10−11 erg cm−2 s−1, but with a 2.5

second temporal resolution. Photon Counting mode is activated once the flux has dropped
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below saturation levels (usually occurring within the first few hundred seconds of a GRB)

and is, therefore, the most commonly used mode.

Approximately 90% of BAT triggers are followed up by the XRT within ∼ 350 seconds of the

trigger, while roughly a half are followed up within ∼ 100 seconds. XRT data are automatically

analysed by the UK Swift Science Data Centre (UKSSDC3), see Evans et al. (2007, 2009).

1.2.3 Ultra-Violet/Optical Telescope

The Ultra-Violet/Optical Telescope (UVOT; Roming et al. 2005) is a 30-cm modified Ritchey-

Chrétien telescope co-aligned with the XRT and operates in the 170 − 600 nm band. UVOT

has two filter wheels both with 11 positions characterised in Roming et al. (2005) (Table 2).

UVOT creates a 100 second exposure finding chart, which is sent to ground-based observatories

via TDRSS and GCNs. The finding chart has positional accuracy of ∼ 0.3 arcseconds and, when

combined with XRT, can improve the localisation of a burst to ∼ 1 − 2 arcseconds (Goad et al.,

2007). Only ∼ 30% of BAT triggers are detected with UVOT.

1.2.4 Other Gamma-ray Burst Missions

While Swift is currently the only dedicated GRB hunter, there are other missions operating with a

focus on GRB physics. Some notable missions are listed below, though this list is not exhaustive.

• The Fermi Gamma-ray Space Telescope (Fermi; Ritz et al. 2009) mission was launched by

NASA in 2008 and carries two instruments: the Large Area Telescope (LAT; Atwood et al.

2009) and the Gamma-ray Burst Monitor (GBM; Meegan et al. 2009). The GBM has poor

localisation capabilities, whereas the LAT is a powerful instrument for observing GRBs

due to its good angular resolution for source localisation; high sensitivity over a broad field

3www.swift.ac.uk
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of view to monitor and detect transients; good calorimetry over an extended energy band

to study spectral breaks and cutoffs; and good calibration and stability for long term flux

measurement.

• The Konus-Wind instrument onboard the Global Geospace Science satellite (GGS-Wind,

launched in 1994; Aptekar et al. 1995) contributes to the Inter-Planetary Network (IPN)

which uses data from pairs of satellites to triangulate GRB positions. Other contributors

include Swift, HETE-2, and Mars Odyssey.

• The International Gamma-Ray Astrophysics Laboratory (INTEGRAL, launched in 2002;

Winkler et al. 1993) has a very high sensitivity and is therefore mostly used to detect the

faintest GRB populations.

1.3 Gamma-ray Burst Classification

A bimodal distribution in the temporal and spectral properties of GRB emission can be identified

in BATSE’s sample (Kouveliotou et al. 1993; Fig. 1.3). This results in two broad classes of GRB:

long-soft and short-hard (LGRBs and SGRBs respectively). The T90 property is defined as the

time period over which 90% of gamma-ray photons are detected and the two classes sit either side

of a T90 ' 2 seconds divide. This strong bimodality is convincing evidence for separate physical

origins for the classes of GRB. However, a strict T90 cut at 2 seconds risks including GRBs in the

tail of the other class since the distributions experience significant overlap. As a result, the T90

definition has been criticised (e.g., Bromberg et al. 2013) e.g., a third, intermediate group may

exist but could also be related to detector biases (see Ripa & Mészáros, 2015, for a review).

1.3.1 Long Gamma-ray Bursts

In 1998, supernova 1998bw was detected within the position error box of GRB 980425 (Galama

et al., 1998) and this provided the first observational clue to the origin of LGRBs. Further sup-
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Figure 1.3: The T90 bimodality observed in different energy bands (Qin et al., 2012).

porting evidence for a GRB-supernova connection arose through the detection of small ‘bumps’

at late times in some GRB optical afterglow light curves (e.g., Bloom et al. 1999b; Galama et al.

2000), which are a characteristic feature of supernovae. Finally in 2003, the ‘smoking gun’ was

detected. The HETE-2 satellite localised GRB 030329, which had an especially bright afterglow,

resulting in the first unambiguous association of a GRB with a supernova (SN2003dh). After the

optical emission had faded, characteristic features of the supernova were detected in both the light

curves and the spectra (Hjorth et al., 2003; Stanek et al., 2003).

These findings are strong evidence in support of the collapsar model (Woosley, 1993; MacFadyen

& Woosley, 1999) which describes the formation of LGRBs from the death and core-collapse

of massive stars (> 15M�). Further evidence includes LGRB host galaxies having high star

formation rates and low metallicity (Bloom et al., 1998; Djorgovski et al., 1998; Fruchter et al.,

1999; Bloom et al., 2002; Wainwright et al., 2007), since massive stars have shorter lifespans

and stellar growth can be limited by high metallicity. Studies of the LGRB population show that
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they occur closer to star forming regions in fainter, more irregular galaxies than core-collapse

supernovae (Fruchter et al., 2006; Svensson et al., 2010) which suggests that they are related to

the deaths of the most massive stars in chemically-limited environments.

1.3.2 Short Gamma-ray Bursts

SGRBs are detected less frequently than LGRBs because they are much shorter lived and have

much fainter afterglows, so the observational breakthrough regarding their progenitors has been

greatly delayed compared to that for LGRBs. It has long been considered that SGRB progenitors

are from a different population to LGRBs since their temporal and spectral properties are so dis-

tinct from each other. A lack of supernova detections in deep searches of SGRB fields (e.g., GRB

050509B, Bloom et al. 2006; GRB 050709, Fox et al. 2005) is convincing evidence to rule out

massive stars undergoing core-collapse supernovae as progenitors. SGRBs have been observed in

a range of environments including: old elliptical galaxies with very little star formation (Gehrels

et al., 2005), young galaxies similar to hosts of long bursts (D’Avanzo et al., 2009), and in the

intergalactic medium with large offsets from any potential hosts (Berger, 2010; Tunnicliffe et al.,

2014) which also indicates a different origin to LGRBs.

The most popular candidates have long been compact object binary mergers (Paczynski, 1986;

Fryer et al., 1999; Rosswog et al., 2003; Belczynski et al., 2006; Chapman et al., 2007) - most

likely a neutron star binary merger or a black hole-neutron star merger. These systems lose or-

bital angular momentum by radiating gravitational waves and spiral into each other, eventually

merging, which provides the energy release required to power the GRB. A compact object binary

system would have to evolve off the main sequence and have both stars collapse (often receiving

a large natal ‘kick’ in the process, Bloom et al. 1999a; Grindlay et al. 2006) before producing

an SGRB which explains why they are observed with offsets from star forming regions or host

galaxies.

On August 17, 2017 at 12:41:04 UTC, the Advanced Laser Interferometry Gravitational wave

Observatory (LIGO) and Advanced Virgo detector network observed gravitational waves from
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the inspiral of a binary neutron star system (GW170817; Abbott et al. 2017a) which had near-

simultaneous observations of the short burst GRB 170817A by the Fermi and INTEGRAL satel-

lites (Abbott et al., 2017b; Goldstein et al., 2017; Savchenko et al., 2017) thus providing the

‘smoking gun’ evidence that double neutron star mergers are the progenitors of SGRBs. The

localisation from the gravitational wave detectors and space-based satellites allowed for a multi-

tude of ground-based follow-up observations across all wavelengths and timescales (Abbott et al.,

2017c) inaugurating the field into era of gravitational wave/electromagnetic multi-messenger as-

tronomy.

This discovery also lead to the first well-sampled light curve of a kilonova associated with an

SGRB (Villar et al., 2017; Gompertz et al., 2017). A compact object binary merger is expected to

produce a faint optical/near-infrared transient (known as a kilonova or ‘macronova’) as neutron-

rich ejecta forms heavy elements via rapid neutron capture (r-process) nucleosynthesis, which

then decays radioactively. Since GRB 170817A was observed off-axis and no X-ray afterglow was

immediately detected (Evans et al., 2017), this allowed the kilonova to be observed completely

independently of any afterglow emission from the associated GRB. Hence Gompertz et al. (2017)

could compare this observation to previously confirmed and suspected kilonovae. Gompertz et al.

(2017) suggests that the diversity of kilonova emission and the absence of kilonovae from some

SGRBs could be a product of the merger type, i.e., double neutron star versus black hole-neutron

star, since more material can be ejected in a black hole-neutron star merger to power the kilonova.

1.4 Emission Mechanisms

GRB emission is traditionally classified as either ‘prompt’ or ‘afterglow’ emission. The prompt

emission refers to the initial burst of gamma-rays (and on occasion any simultaneous observations

in lower frequencies, such as hard X-rays or optical flashes) whereas the afterglow encompasses

all emissions in other bands, from X-rays down to radio. This nomenclature can be misleading

however (Zhang, 2007), since some hard X-ray flares can be detected by gamma-ray detectors

and central engines can remain active for long durations after the main burst (e.g., dipole spin-
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Figure 1.4: A schematic of the relativistic fireball model from Gomboc (2012) depicting the two favoured

progenitor routes.

down emission, Zhang & Mészáros 2001), driving emissions that could be classed as afterglow.

Therefore, it is often more useful to consider GRB emission to be either ‘internal’ (i.e., powered

by the central engine) or ‘external’ (i.e., produced in the surrounding medium of the GRB).

The physics of GRB emission can be explained using the fireball shock model (Goodman, 1986;

Paczynski, 1986). For reviews, see Piran (1999); Mészáros (2002); Zhang & Mészáros (2004);

Mészáros (2006). An instantaneous release of a large amount of gravitational energy forms a

relativistically expanding fireball and the GRB is borne from the dissipation of the energy con-

tained within the outflow. The prompt gamma-ray emission is produced by energy dissipation

from within the flow, while the afterglow is produced via external shocks between the outflow and

an external medium, see Fig. 1.4.
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1.4.1 Observational Constraints on Emission

GRB emission shows variability on a timescale on the order of milliseconds. This demands a very

compact emission region via a simple causality relation

D < c∆t (1.1)

where D is the size of the emitting region, c is the speed of light and ∆t is the observed minimum

variability timescale.

The cosmological distances of GRBs require that their gamma-ray energy release be of the order of

1052 erg. and the required compactness of the progenitor constrains the radiation to emit thermally

via a blackbody spectrum. However, the observed spectra are non-thermal. This is a contradiction

known as the compactness problem and it can be solved by assuming that the emission source is

moving ultra-relativistically towards the observer. The emission region would increase in size by

a factor of 2γ2 (where γ is the Lorentz factor) due to the temporal term in Equation (1.1) being

replaced with the rest frame time.

The inferred isotropic broadband energy can be as high as 1054 erg for some GRBs, which is an

astounding output that a compact progenitor would struggle to produce. The strain on the energy

budget can be relaxed by factors in the range of 100− 1, 000 if the outflow is collimated into a jet.

Observationally, this jetted structure has been supported by achromatic jet breaks in GRB light

curves (Harrison et al., 1999; Panaitescu & Kumar, 2001; Soderberg et al., 2006; Racusin et al.,

2009). The observer must be aligned very closely with the jet axis for the emission to trigger a

gamma-ray detector. This indicates that, initially, it is strongly beamed towards the observer with

an opening angle of θ = 1/Γ (where Γ is the bulk Lorentz factor of the outflow). The beaming

effect ensures that, initially, only emission from the jet is observed and it cannot be distinguished

from the isotropic case. The jetted structure of the emission becomes apparent as the blast wave

decelerates (causing a decrease in Γ) and the beaming angle becomes greater than the physical

opening angle of the jet. Lower fluxes than the isotropic case are observed which causes an

achromatic steepening in the light curves.
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1.4.2 Prompt Emission

According to the fireball model (Goodman, 1986; Paczynski, 1986), the ultimate energy source

of GRBs is a catastrophic energy release event: either the core-collapse supernova of a massive

star or the merger of a compact object binary system. The freed gravitational energy is deposited

into an explosion driven by thermal processes. The fireball expands and accelerates to relativistic

speeds (Cavallo & Rees, 1978; Goodman, 1986; Paczynski, 1986, 1990) due to internal thermal

and/or magnetic pressures and a series of shells with a range of Lorentz factors is formed from

the ejecta. As shells with higher Lorentz factors catch up with slower moving shells, a shock front

(known as an ‘internal’ shock; Rees & Meszaros 1994) is formed and the kinetic energy of the

outflow is converted into electromagnetic radiation. This is generally considered to be the main

site of the prompt emission, though magnetic dissipation could be responsible without shocks

(Zhang & Yan, 2011).

The prompt emission can consist of a series of pulses with a fast-rise, exponential-decay shape

(Norris et al., 1996) which do not appear to evolve with time (Ramirez-Ruiz & Fenimore, 2000).

LGRBs exhibit a spectral lag where lower frequency photons arrive at a later time compared to

higher energy photons with a time delay in the range of 10− 2000 milliseconds.

The spectra of prompt emission are usually fitted with the Band function (Band et al., 1993) which

is a phenomenological model consisting of a broken power law that is steeper at high energies and

has an exponential cut-off at lower energies.

1.4.3 Afterglow

The blast wave expands outwards and collides with the circumburst material, sweeping up parti-

cles as it proceeds. Strong shock fronts are formed at the head of the ejecta through the interaction

between the blast wave and circumburst material: a forward shock propagates out into the cir-

cumburst material, whilst a short-lived reverse shock travels back through the ejecta (Rees &

Meszaros, 1992; Mészáros & Rees, 1993, 1997, 1999). These shocks produce the broadband
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afterglow emission.

Electrons crossing the magnetised boundary between the ejecta and the circumburst material result

in the shock front radiating synchrotron emission. At early times, the electrons are excited into

energy states with short cooling times, known as the ‘fast cooling’ regime. The synchrotron peak

frequency corresponds to the minimum and most common Lorentz factor of the electrons and

moves to lower frequencies with time. Once this has shifted below the cooling break (where the

cooling time of the electrons becomes short compared to the expansion time, Mészáros 2002),

the system is then in the ‘slow cooling’ regime (Sari et al., 1998; Wijers & Galama, 1999). The

peak frequency will continue to move to increasingly lower frequencies until it falls below the

self-absorption frequency. At this point, the medium becomes optically thick which corresponds

to a dramatic drop in luminosity.

1.4.4 X-ray Afterglow

The detailed X-ray observations provided by Swift-XRT gave rise to a ‘canonical’ X-ray afterglow

(Nousek et al., 2006; O’Brien et al., 2006; Zhang et al., 2006), shown in Fig. 1.5, that can consist

of up to five stages characterised by an X-ray flux, FX ∝ t−α, and an energy spectrum, Fν ∝ ν−β ,

where α and β are the temporal and spectral indices respectively. Swift also demonstrated that the

transition between the prompt emission and afterglow phase is a smooth one. It should be noted

that stages 4 and 5 need not be present in all bursts.

1. An initial steep decay phase immediately follows the prompt emission and causes a rapid

drop in flux. It was thought to be most likely due to off-axis, high-latitude emission from

regions θ > Γ−1 known as the curvature effect (where θ is the jet opening angle; Kumar

& Panaitescu 2000; Dermer 2004; Panaitescu et al. 2006; Willingale et al. 2010). After

the line-of-sight gamma-rays have ceased, the off-axis emission is smaller and arrives later.

This corresponds to an observed flux decreasing as Fν ∝ t−2. Hence, the steep decay

would be delayed prompt emission with a spectrum Doppler softened into the X-ray band.

However, the spectral and temporal indices do not follow the correlation predicted by this
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Figure 1.5: The ‘canonical’ X-ray afterglow as shown in Zhang et al. (2006). Phase 0 depicts the prompt

emission and phases 1, 2, 3, 4 and 5 depict the steep decay, shallow decay, normal decay, jet breaks and

flares, respectively. Phases 1 and 3 are most common and are therefore represented by solid lines. Typical

temporal indices of the four segments are shown along with rough estimates of break times (tb).

model, making a combination of the curvature effect and afterglow the most likely origin of

the early steep decay.

2. A shallow decay phase follows stage 1, so-called because the temporal index is too shallow

to be consistent with the predicted deceleration of the forward shock in the circumburst

material by the fireball model. It is motivation for continuous energy injection from late-

time central engine activity. Sections of outflow with a low Γ arrive at later times and refresh

the forward shock, hence flattening light curves for hours and as long as days. It is often

cited in favour of the magnetar model (Fan & Xu, 2006; Rowlinson et al., 2010, 2013) and

is referred to as a ‘plateau’.

3. A normal decay phase, which unlike stages 1 and 2 was observed in the pre-Swift era,

follows stage 2. It is consistent with a decelerating shock in the slow cooling regime (Zhang

et al., 2006).

4. In some GRBs, an achromatic steepening or jet break is observed, which is interpreted as

being the drop in flux associated with the beaming angle becoming larger than the physical

opening angle of the jet. This reveals the jetted structure of the emission to the observer for

the first time, as discussed in Section 1.4.1.
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5. Flares are observed in approximately half of the GRB afterglows observed by Swift (Swen-

son & Roming, 2014). They are increases in flux up to a factor ∼ 500 above the smooth af-

terglow continuum (e.g., GRB 050502B) and are often characterised by fast-rise, exponential-

decay pulse shapes comparable to the prompt emission (though there are some exceptions,

e.g., GRB 050502B). Current theories attribute them to similar central engine activity that

produced the prompt emission (Burrows et al., 2005a; Falcone et al., 2006; Curran et al.,

2008; Chincarini et al., 2010; Margutti et al., 2011; Sonbas et al., 2013) since the energy

budget and fast-rise, exponential-decay profile are more easily satisfied and their spectra are

very similar.

1.4.5 Central Engines

GRBs have large energy demands and strict compactness criteria which severely restricts the range

of potential candidates for the central engine. Candidates must be compact, have a large reservoir

of energy, and have the capability of launching relativistic jets with Lorentz factors of at least

∼ 100. Within these requirements, the two most popular central engine candidates are accreting

black holes or highly magnetized, rapidly rotating neutron stars (known as magnetars), both of

which can be produced within the collapsar model (LGRBs; Popham et al. 1999; Dessart et al.

2008; Metzger et al. 2011) or a compact object binary merger scenario (SGRBs; Rosswog et al.

2003; Giacomazzo & Perna 2013).

Black Holes

The collapse of a super massive star (i.e., a collapsar; MacFadyen & Woosley 1999) into a black

hole, the mergers of stellar mass black holes and neutron stars or neutron star binary systems often

lead to a GRB that has a black hole of several solar masses operating as its central engine. The

resultant black hole also often has an accretion disc of mass 0.01−1M� (Woosley, 1993; Popham

et al., 1999). The GRB jets are launched through magnetic processes, e± annihilation, or neutrino

interactions (Paczynski, 1991; Narayan et al., 1992; Katz, 1997; MacFadyen & Woosley, 1999;
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Rosswog et al., 2003; Lei et al., 2013). The advantages of the black hole central engine scenario

are that the rates of black hole-neutron star and neutron star binary mergers are consistent with

the GRB rates (Narayan et al., 1991; Phinney, 1991) and a black hole provides a low-baryon envi-

ronment which does not impede a relativistic jet. However, the black hole central engine doesn’t

offer a natural explanation for the late-time flattening observed in the light curves (Rowlinson

et al., 2013).

Magnetars

A magnetar cannot be formed with black hole involvement and so they have a limited selection of

progenitor options. The most common progenitor would be a neutron star binary merger (Rosswog

et al., 2003; Belczynski et al., 2006); though a collapsar, white dwarf binary mergers and the

accretion induced collapse of a white dwarf are also probable progenitor scenarios (Chapman

et al., 2007; Metzger et al., 2008). The merger produces a hyper-massive neutron star with an

initial spin period of a few milliseconds and an intense magnetic field of the order of ∼ 1015 G.

The great success of the magnetar model is its ability to explain X-ray plateaux stemming from

extra energy tapped from the dipole spin-down and injected into the fireball (Usov, 1992; Zhang

& Mészáros, 2001; Metzger et al., 2011; Rowlinson et al., 2013). However, the model’s main

weakness is the prompt emission. A magnetar would not clear its surroundings as efficiently as a

black hole and the environment would therefore be baryon-rich, hence reducing the bulk Lorentz

factor of a relativistic jet (Drenkhahn & Spruit, 2002; Dessart et al., 2007). The magnetar is

expected to be spun down very rapidly during the prompt emission and the available energy from

a magnetar is strictly limited by the rotational energy. Hence GRBs with beam-corrected energies

exceeding a few 1052 erg would be inconsistent with the magnetar central engine model. The

available kinetic energy is approximated as:

Etotal ∼ 1052

(
P

1 ms

)−2
erg (1.2)

where P is the spin period of the magnetar in milliseconds.
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1.5 Magnetars

Evidence for magnetars within the Milky Way stems from observations of soft gamma repeaters

(Norris et al., 1991). The spectral hardness and extreme luminosities of these events implies and

magnetic field of the order ∼ 1015 G (Thompson & Duncan, 1995).

1.5.1 Neutron Stars

Neutron stars can be created during core-collapse supernovae, white dwarf binary mergers or

via the accretion induced collapse of a white dwarf. The known mass range for neutron stars

varies between 1.25 − 2.01M� (Miller & Miller, 2015). The equation of state of neutron stars

is an important concept that determines the compressibility of the neutron star material. A ‘soft’

equation of state implies a compressible composition and this will diminish the maximum mass

of a neutron star before further collapse into a black hole. In order to form a magnetar from a

neutron star binary merger and avoid collapse to a black hole (at least temporarily), the equation

of state needs to be ‘rigid’. The parent neutron stars of such a merger would likely have individual

masses ∼ 1.4M� and would produce a remnant of mass ∼ 2M�. Such high neutron star masses

have been confirmed using Shapiro delay measurements (Shapiro, 1964). Since magnetars would

be born with rapid rotation rates, they would also be supported against further collapse by the

rotational energy, at least initially.

1.5.2 Field Amplification

Magnetars possess the strongest magnetic fields in the Universe with surface dipolar fields on the

order ∼ 1014 − 1015 G (Hurley et al., 2005; Palmer et al., 2005). There are many theories on

how these fields are created. The most popular ones are an α−Ω dynamo (Duncan & Thompson,

1992; Thompson & Duncan, 1993), shear instabilities during the merger (Price & Rosswog, 2006),

and magneto-rotational instabilities during core collapse (Akiyama et al., 2003; Thompson et al.,
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2005).

1.6 This Thesis

Over the course of this thesis, I aim to understand the mechanisms available to a magnetar as a

central engine, specifically the propeller mechanism which utilises magneto-centrifugal slinging

to eject accreting material from the system producing emission through shocks. I will then ascer-

tain whether this mechanism is an energetically viable candidate for the most energetically and

morphologically challenging subtypes of GRBs, including SGRBs with extended emission and

LGRBs with giant X-ray flares. I will attempt to overcome the inherent weaknesses of the mag-

netar model, i.e., a restricted rotational energy reservoir and rapid spin down at early times, by

incorporating a fallback accretion component, which will increase the global energy budget and

allow the magnetar to be spun back up, thereby refreshing the rotational energy reservoir.

Chapter 2 introduces the theoretical framework used to model fallback accretion within the mag-

netar model and tests this against previous work before going on to develop and test a Markov

chain Monte Carlo fitting routine. Chapter 3 discusses the results of fitting the magnetar propeller

model with fallback accretion to a sample of SGRBs exhibiting extended emission and Chapter

4 applies to model to LGRBs exhibiting giant X-ray flares. I summarise my key conclusions in

Chapter 5 and outline the motivation and methodology for future works.
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2
The Magnetar Propeller Model with Fallback

Accretion

The work presented in this chapter was partially published in Gibson et al. (2017).
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Abstract

I present the propeller model of a magnetar and accretion disc system which I have modified

to include late-time fallback accretion. The fallback timescale and the global mass budget for

fallback have been parameterised in terms of the viscous timescale and the initial mass of the disc

respectively. An ordinary differential equation integrator has been used to return values of the disc

mass, MD, and angular frequency, ω, for a given time period. I show that the modifications are

capable of reproducing the phenomenological classes found in earlier models (Gompertz et al.,

2014) and explore the parameter space of the model. I then develop a Markov chain Monte Carlo

simulation to optimise this model for a sample of synthetic light curves.

2.1 Introduction

The magnetar model involves the extraction of spin energy from a rapidly rotating, highly mag-

netised neutron star (magnetar) via interactions between its intense dipole field and a circum-

stellar environment (Zhang & Mészáros, 2001). This can happen through phenomena such as

the Blandford-Znajek mechanism (Blandford & Znajek, 1977) or magnetic propellering (Piro &

Ott, 2011; Gompertz et al., 2014). Magnetic propellering involves the expulsion of mass from

a magnetar-accretion disc system due to the centrifugal barrier formed by the rapidly rotating,

intense magnetic field. Some rotational energy is removed from the magnetar by the escaping

material.

The birth and early-time spin down of magnetars has been suggested as a progenitor for GRBs

for both long (Zhang & Mészáros, 2001; Troja et al., 2007; Lyons et al., 2010; Dall’Osso et al.,

2011; Metzger et al., 2011) and short types (Fan & Xu, 2006; Rowlinson et al., 2010, 2013). This

model is a concept that is competing with black holes as the source of power in GRBs, mainly due

to its potential as a naturally long-lived central engine (see Bernardini 2015 for a review). The

magnetar model has been used to explain plateaux in GRB afterglows (Rowlinson et al., 2013;

Gompertz et al., 2013), extended emission in SGRBs (Gompertz et al., 2014), and also provides
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a favourable candidate for the source of flares in the afterglows of all GRBs since the contained

energy and timescales of flares are naturally satisfied by a compact object central engine. Also the

superposition of flares onto a background continuum indicate that they do not originate from the

same emission site as the afterglow (Chincarini et al., 2010). However, there are some issues with

the magnetar model as a GRB central engine since there is a strict energy upper limit imposed by

the rotational energy reservoir of the neutron star which is typically taken to be≈ 3× 1052 erg for

a 1.4 M� neutron star with a 1 ms spin period. Also, the magnetar is expected to be spun down

very rapidly during the prompt emission phases, thereby further limiting the amount of available

energy.

In both collapsars and compact object binary mergers, remaining material is expected to be avail-

able for fallback accretion and therefore is an important mechanism to include in GRB models.

In collapsars, fallback material would arise from stripped envelopes of massive stars before they

explode. Alternatively as compact objects spiral inwards, simulations suggest that some material

is ejected by tidal disruption into a tidal tail through the outer Lagrange point and the resulting

fallback mass could potentially be up to 0.1 M� (Rosswog, 2007; Lee et al., 2009). Adding a fall-

back mechanism into the model augments the magnetar energy budget, as it provides a mechanism

to spin the magnetar back up.

The theory of the model is presented in Section 2.2. A comparison of dipole torque equations

is performed in Section 2.3. An exploration of parameter space is performed in Section 2.4,

including classifying the burst morphologies and comparing these morphologies to previous work.

Finally, the Markov chain Monte Carlo optimisation routine is described and tested on synthetic

light curves in Section 2.5.

2.2 The Magnetic Propeller Model

The magnetic dipole moment for a magnetar with a dipole field strength B and radius R is given

by µ = BR and the magnetic field can then be described as B = µ/r3. The leads to a magnetic
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pressure for a given radius, r, as follows.

Pmag =
µ2

8πr6
(2.1)

Pmag is opposed by a ram pressure, exerted by material falling in from the accretion disc, given by

Pram =
Ṁ

4π

(
2GM∗
r5

) 1
2

(2.2)

where M∗ is the mass of the magnetar. The radius at which these two pressures are equal is one

of the two key radii that determines the behaviour of the magnetar. This is the Alfvén radius, rm,

and is the radius at which the dynamics of the gas within the disc is strongly influenced by the

magnetic field (see Appendix A for derivation). It is given by

rm ' µ
4
7 (GM∗)

− 1
7Ṁ− 2

7 (2.3)

where Ṁ = MD(t)/tν . MD(t) is the evolution of the disc mass with time and tν = RD/αcs is the

timescale for mass flowing through a viscous disc (RD is the disc radius, cs is the sound speed in

the disc, and α is a viscosity prescription). The other key radius is the co-rotation radius, rc, at

which material orbits the magnetar at the same rate as the stellar surface

rc =

(
GM∗
ω2

) 1
3

(2.4)

where ω = 2π/P is the angular frequency of the magnetar and P is the spin period. Two regimes

of magnetar behaviour are then defined by comparing Equations (2.3) and (2.4). If rc > rm, the

accretion disc is rotating more rapidly than the magnetic field (assuming the field rotates rigidly

with the magnetar surface) and the effect of this is to slow the in falling material down and allow

it to accrete. In this case, the magnetar gains angular momentum and spins up, hence the rotation

of the field increases. Conversely if rc < rm, the magnetic field is rotating faster than the material

and the result is that particles are accelerated to super-Keplerian velocities and ejected from the

system. The magnetar loses angular momentum to the ejected material and its rotation is slowed.

This condition is the propeller regime. To prevent the ejecta from exceeding the speed of light,

rm is capped at some fraction, k, of the light cylinder radius, rlc. At rlc = c/ω, the magnetic

field lines must orbit at the speed of light in order to maintain a rigid rotation with the magnetar

surface.
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The propeller and accretion regimes both have an effect on the angular frequency of the magnetar

by exerting a torque. If rm > R (where R is the radius of the magnetar), an accretion torque can

be defined as

τacc = (GM∗rm)
1
2

(
Ṁacc − Ṁprop

)
(2.5)

If rm < R, the accretion torque becomes

τacc = (GM∗R)
1
2

(
Ṁacc − Ṁprop

)
(2.6)

τacc will spin the magnetar up when rc > rm, but becomes negative and spins the magnetar down

when rc < rm to account for the loss of angular momentum to the ejected material. In Equations

(2.5) and (2.6), Ṁprop is the flow of ejected mass, given by

Ṁprop = η2
MD(t)

tν
(2.7)

and Ṁacc is the accretion rate onto the magnetar, given by

Ṁacc = (1− η2)
MD(t)

tν
(2.8)

where η2 is the efficiency of the propeller mechanism which I define as

η2 =
1

2

(
1 + tanh

[
n(Ω− 1)

])
(2.9)

This definition of η2 allows accretion to be turned off at a variable rate as the propeller switches

on and the combined efficiency of these mechanisms can never exceed 100%. In Equation (2.9),

Ω is the ‘fastness parameter’, Ω = ω/(GM∗/r
3
m)1/2 = (rm/rc)

3/2, which switches the propeller

on as Ω→ 1, and n controls how “sharp” the propeller switch-on is, as demonstrated in Fig. 2.1.

The dipole spin-down, τdip, is the final contributing factor to the torque and is given by

τdip = −µ
2ω3

6c3
(2.10)

The negative sign indicates that τdip spins the magnetar down and produces dipole emission. From

these torques, the rate of change of the spin can be calculated from

ω̇ =
τacc + τdip

I
(2.11)
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Figure 2.1: A demonstration of how quickly the propeller becomes active as a function of n. The dotted line

corresponds to n = 1, the dashed line corresponds to n = 10, and the solid line corresponds to n = 100.

where I = 4
5
M∗R

2 is the moment of inertia of the magnetar.

As the spin rate changes, the rotation parameter, β, must be monitored. For β > 0.27, a dynamical

bar-mode instability becomes important and will radiate or hydro-dynamically readjust the angular

momentum. In this case, the accretion torque will be set to zero, τacc = 0, and the magnetar

allowed to spin down until the instabilities subside. The rotation parameter is defined as β = T
|W | ,

where T = 1
2
Iω2 is the rotational energy and |W | is the binding energy. As in Piro & Ott (2011),

following the prescription from Lattimer & Prakash (2001), |W | is given by

|W | ≈ 0.6M∗c
2 GM∗/Rc

2

1− 0.5(GM/Rc2)
(2.12)

I assume an accretion disc with a surrounding global mass budget available to fallback onto the

outer radius of the disc on a ballistic timescale of t−
5
3 . I have parameterised the available fallback

mass as a fraction (δ) of the initial disc mass, Mfb = δMD,i, and the fallback timescale is similarly

parameterised as a fraction (ε) of the viscous timescale, tfb = εtν . Hence, the fallback mass flow
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is defined as

Ṁfb =
Mfb

tfb

(
t+ tfb
tfb

)− 5
3

(2.13)

Collecting together Equations (2.7), (2.8) and (2.13) defines a total mass flow rate through the disc

ṀD = Ṁfb − Ṁprop − Ṁacc (2.14)

which accounts for mass added to the disc through fallback accretion (Ṁfb) and mass lost from the

disc via accretion onto the magnetar or the propeller mechanism (Ṁacc and Ṁprop, respectively).

The critical equations here are Equations (2.11) and (2.14) since these are coupled, first order,

ordinary differential equations (ODEs) and the values of MD(t) and ω(t) can be calculated using

an ODE integrator for a given time period. The model was written in Python and made use of the

lsoda ODE solver from ODEPACK (Hindmarsh, 1983).

Fig. 2.2 demonstrates how these fallback parameters affect the disc mass and angular frequency

of a magnetar and disc system and how the propeller condition rm/rc evolves with time. For

short timescales and small fallback masses (ε = 1 and δ = 1; solid, red curve), the magnetar

spins up more slowly despite rapid fallback because the disc is only being fed small amounts

of mass. Hence, the propeller mechanism turns on earlier since the propeller condition is at a

lower frequency. For short timescales and large fallback masses (ε = 1 and δ = 10; dashed,

red curve), mass is quickly added to the disc and the magnetar spins up rapidly. The propeller

mechanism is turned on later because the conditional frequency is higher. For long timescales

and small fallback masses (ε = 10 and δ = 1; solid, green curve), the disc is fed a small amount

of mass very slowly and so the magnetar spins up gradually. Again, the propeller condition is at

a lower frequency and therefore the mechanism turns on earlier. For long timescales and large

fallback masses (ε = 10 and δ = 10; dashed, green curve), the disc mass stays constant over

a longer period providing a gentle spin-up of the magnetar. Again, the propeller condition is a

higher frequency and the mechanism turns on later. Generally speaking, an initially denser disc

makes the propeller mechanism harder to initiate, but the magnetar is spun up more rapidly and

therefore satisfies the propeller condition at an earlier time.

The terms are collected together to estimate the luminosities from the dipole and propellered
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Figure 2.2: A demonstration of how different combinations of the fallback parameters ε and δ affect the disc

mass (top panel) and angular frequency (centre panel) of a magnetar and disc system with fixed magnetic

field, initial spin period, initial disc mass and radius. The bottom panel shows the evolution of the propeller

condition rm/rc over time for each combination. The system is in the propeller regime when rm/rc > 1

(i.e., above the black, dashed line).
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components, such that

Lprop = −τaccω (2.15)

and

Ldip = −τdipω (2.16)

Equation (2.15) is an estimate of the kinetic luminosity of the propellered material and is negative

to account for the negative sign of τacc when the magnetar is spinning down. With Equation (2.15),

expulsion of the material is implicitly assumed to originate from the inner radius of the disc. The

total luminosity is given by the sum of the dipole and propeller luminosities and their relative

efficiencies, then multiplied by a beaming fraction to account for the relativistic beaming of the

jet

Ltot =
1

fB
(ηdipLdip + ηpropLprop) (2.17)

where ηprop and ηdip are the propeller and dipole energy-luminosity conversion efficiencies re-

spectively and 1/fB is the fraction of the stellar sphere which is emitting and is related to the

half-opening angle of the jet, θj, as fB = 1− cos(θj) (Rhoads, 1999; Sari et al., 1999).

2.2.1 Expelling Material from the Gravitational Potential Well of the Mag-

netar

In previous work, an extra term was added to the propeller luminosity equation so that it took the

form:

Lprop = −τaccω −
GM∗
rm

MD

tν
η2 (2.18)

where the second term accounts for the gravitational potential well the expelled material must

climb out of before emission can be produced (Gompertz et al., 2014). In the following body of

work, I have chosen not to explicitly remove the energy associated with this escaping material for

two reasons: (i) it is trivial to show that the energy relating to the gravitational potential well can

be adapted into a modified version of the propeller efficiency parameter ηprop, and (ii) explicitly

removing the escape energy excludes models where the magnetar injects angular momentum into

the accretion flow at rm while viscous torques redistribute this to expand the disc, maximising the
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energy available for conversion into electromagnetic radiation at the central engine site. The two

approaches are mathematically equivalent which I will show through the following derivations.

Using Equations (2.7), (2.8), (2.13), (2.14) and the relation η1 = 1− η2, a torque equation can be

defined in terms of the accretion, propellering and dipole components (assuming Ṁacc = Ṁprop =

MD

tν
) as follows.

τ = τacc − τprop − τdip
=
MD

tν
(GM∗rm)

1
2η1 −

MD

tν
(GM∗rm)

1
2η2 − τdip

=
MD

tν
(GM∗rm)

1
2 (η1 − η2)− τdip

=
MD

tν
(GM∗rm)

1
2 (1− 2η2)− τdip

= Iω̇ (2.19)

The spin down power of the magnetar is defined as

P = −ωτ = −Iωω̇ (2.20)

and the electromagnetic luminosity is defined as some fraction, f , of the spin down power

LEM = −fP

= −ω
[
MD

tν
(GM∗rm)

1
2 (1− 2η2) ηprop + ηdipτdip

]

= ηpropLprop + ηdipLdip (2.21)

During spin up phases (i.e., when the net effect of the accretion and propeller torques is positive),

I set Lprop to zero.

The electromagnetic luminosity accounting for the gravitational potential well of the magnetar is

now defined as follows.

LEM = −ωMD

tν
(GM∗rm)

1
2 (1− 2η2) η

′

prop −
GM∗
rm

MD

tν
η2 − ηdipτdipω (2.22)

where η′
prop is equivalent to the propeller efficiency parameter used in previous work (e.g., Gom-

pertz et al. 2014).
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Since ω =
(
GM
r3

) 1
2 then ω(GMrm)

1
2 = GM

rm
and Equation (2.22) can be rewritten as

LEM = −ωMD

tν
(GMrm)

1
2 (1− 2η2) η

′

prop − ω
MD

tν
(GMrm)

1
2η2 − ηdipτdipω

∴ LEM = −ωMD

tν
(GMrm)

1
2

[
(1− 2η2) η

′

prop − η2
]
− ηdipτdipω (2.23)

Assuming the material is fully ejected from the system, it can be shown that

(1− 2η2) η
′

prop − η2 = (1− 2η2) ηprop

and hence the relation between the modified (ηprop) and unmodified
(
η

′
prop

)
propeller efficiency

parameters is given by

η
′

prop = ηprop +
η2

(1− 2η2)
(2.24)

When η2 = 0, these two cases are equivalent but the propeller mechanism is not activated. At

maximum propellering or η2 = 1, there is an extra term of −1
2

and ηprop would have to be capped

at 50% when assuming everything escapes as electromagnetic radiation in this case. All the results

presented forthwith use ηprop, not η′
prop.

2.3 Comparing Dipole Torque Equations

In Section 2.2, I have used Equation (2.10) for the dipole torque, which is the classical solution

experienced by any rotating, magnetised body (Shapiro & Teukolsky, 1983) and I follow Piro &

Ott (2011) in implementing this. However, work done by Gompertz et al. (2014) instead uses the

following form for the dipole torque

τdip = −2

3

µ2ω3

c3

(
rlc
rm

)3

(2.25)

which is Equation (2) in Bucciantini et al. (2006).

Bucciantini et al. (2006) use a relativistic magneto-hydrodynamic treatment to solve for the plasma

winds emanating from a rotating NS and accretion disc system. They assume that the flow emerges

from open flux tubes (providing the extent and shape of the open field line region in the magnetic
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Figure 2.3: A comparison of how Equation (2.10) (solid line; Piro & Ott 2011) and Equation (2.25) (dashed

line; Bucciantini et al. 2006) affect (a) the stellar spin; (b) the dipole torque (note the dual y axes); (c) the

dipole luminosity; and (d) the total luminosity of a synthetic GRB X-ray light curve.

field is known) and that a truncation of the disc produces more open flux tubes and therefore a

greater mass loss. Equation (2.25) is then derived from these assumptions. However, I cannot

be certain that these assumptions apply within the model presented in this work and I do not

present a full magneto-hydrodynamic treatment of the magnetic propeller. Therefore, I chose to

use Equation (2.10) rather than introduce uncertain assumptions into the model. A comparison

between Equations (2.10) and (2.25) is shown in Fig. 2.3 using a synthetic GRB X-ray light curve

with arbitrary parameters.
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Table 2.1: The values used to test the effect of parameter variation on the shape of an X-ray light curve.

The total number of combinations resulted in 129, 600 synthetic light curves. B - magnetic field; Pi - initial

spin period; MD,i - initial disc mass; RD - disc radius; ε - timescale ratio; δ - fraction of initial disc mass

available in the global mass budget; n - sharpness of propeller “switch-on”; α - viscosity prescription for

the disc; cs - sound speed in the disc; k - capping fraction of rm to rlc.

B (×1015 G) 1 5 10 50 -

Pi (ms) 1 5 10 - -

MD,i (M�) 10−5 10−4 10−3 10−2 10−1

RD (km) 100 500 1000 - -

ε 1 10 - - -

δ 1 10 - - -

n 1 10 50 - -

α 0.1 0.2 0.3 0.4 0.5

cs (107 cm s−1) 1 2 3 - -

k 0.90 0.95 0.99 - -

2.4 Exploring Parameter Space

To determine how the modifications to the propeller model have affected the phenomenological

classes outlined in Gompertz et al. (2014), I repeated the parameter variation experiment they

originally performed with values from Table 2.1. I fixed the magnetar mass and radius to be

1.4 M� and 10 km respectively and set the propeller and dipole efficiencies to 100% and the

beaming fraction to 1 since they only act to normalise the luminosity here. The total combination

of parameters in Table 2.1 resulted in a sample of 97, 200 synthetic light curves.

2.4.1 Magnetar Properties

Initially, 2, 160 light curves were examined. They represented all combinations of B, Pi, MD,i,

RD, ε, δ, and nwith constant α = 0.1, cs = 107 cm s−1, and k = 0.90. The four phenomenological
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types originally outlined in Gompertz et al. (2014) were recovered and examples of each are shown

in Fig. 2.4.

Type I - ‘Humped’ A ‘humped’ burst is initially powered only by dipole emission before the

propeller is switched on after a delay. The hump in the light curve arises from the rapid increase

in propeller luminosity. The propeller regime can be delayed like this because the accretion rate,

Ṁacc, is high and/or spin period, Pi, is low so that either rc > rm holds true and the system is

in the accretion regime, or the propellered material does not have enough energy to escape the

potential well and hence falls back into the disc. Type I bursts are generated almost exclusively

by relatively low magnetic fields (1× 1015 G). Higher magnetic fields are only seen with longer

initial spin periods (5− 10 ms) since a stronger magnetic field compensates for the low spin rate

to produce the propeller effect. 222 out of the 2, 160 synthetic bursts (10.3%) are type I.

Type II - ‘Classic’ The ‘classic’ bursts exhibit a reasonably flat and well-defined propeller

plateau which then transitions into a dipole plateau. Type II bursts are also almost exclusively

generated by low magnetic fields (1× 1015 G) but their initial spin periods are longer than types

I bursts (5− 10 ms). 132 of the 2, 160 synthetic light curves (6.1%) are type II.

Type III - ‘Sloped’ ‘Sloped’ light curves result from approximately equal contributions from

both emission components. They appear to act as one and produce a poorly-defined plateau.

‘Sloped’ bursts often have a single component look in their light curves. Type III bursts are the

only type which include magnetic fields of 50 × 1015 G, suggesting such a high field makes the

propeller effect indistinguishable from the dipole emission. 626 of the 2, 160 synthetic bursts

(29.0%) are type III.

Type IV - ‘Stuttering’ ‘Stuttering’ bursts are characterised by a brief period of propellering,

followed by a dipole period before the propeller turns back on again, creating a hump. An example

of this can be seen in the middle panel of the bottom row in Fig. 2.4 which shows a peaked
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Figure 2.4: Top to bottom: Type I - ‘Humped’; Type II - ‘Classic’; Type III - ‘Sloped’; Type IV - ‘Stut-

tering’. Each row shows plots for one example of each class. They are not fully representative of the range

of energetics or morphology for their respective classes since they are intended to highlight the light curve

shapes only. Left panels: synthetic light curves representing the four phenomenological classes. Dotted

line - dipole luminosity; dashed line - propeller luminosity; solid line - total luminosity. Centre panels:

mass flow rates in the system. Solid line - mass flow rate on to the central magnetar; dashed line - pro-

pellered mass flow out of the system. Right panels: positions of key radii (in km) relative to the centre of

the magnetar. Dashed line - Alfvén radius; dotted line - co-rotation radius; solid line - light cylinder radius.

Lower horizontal dot-dashed line is the magnetar radius, upper horizontal dot-dashed line is the outer disc

radius.
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accretion event in the centre of the propellering regime. In this case, the magnetar is born in the

propeller regime (like type II) but is rapidly spun down by the expelled mass. The accretion regime

then begins, spinning the magnetar back up into the propeller regime and producing the second

hump (like type I). ‘Stuttering’ bursts are formed almost exclusively through the combination of

B = 1× 1015 G, ε = 1, and δ = 10. 122 of the 2, 160 synthetic bursts (5.7) % are type IV.

6 of the synthetic light curves were discarded due to a numerical failure of the ODE integrator

(0.3%). A further 48.7% of light curves displayed other characteristics, such as sharp drop-offs,

that were difficult to categorise into the four types. Some examples of these can be seen in the

exploded plot for a type I burst shown in Fig. 2.5. Examples of the other types are presented in

Figs. B.1, B.2 and B.3 in Appendix B. With these proportions in mind, a fitting routine will need

a robust fitting statistic, the ability to sample a large amount of parameter space and be capable

of recognising and dismissing local minima to be able to find an optimal fit. Since only type III

bursts are generated when B = 50× 1015 G, I will exclude the high end of the range for a fitting

routine since this is not the type of burst I wish to model. All values for n appeared commonly in

each type suggesting that the model is insensitive to n. Therefore, I will use a fixed value during

fitting.

After this initial examination, the parameters α, cs, and k were reintroduced as variables. As

found in Gompertz et al. (2014), this did not introduce any new class types but instead introduced

a greater range of burst shapes within each class. The effect of changing α and cs was to reduce the

delay before the onset of propellering by a few seconds, to sharpen the switch-on of the propeller,

and a small increase in propeller peak luminosity in type I bursts. The effect of varying k was

a slight increase in luminosity in the late-time dipole plateau due to there being more energy

available. These effects are very slight so the parameters α, cs, and k will be fixed to 0.1, 107, and

0.90 respectively in fitting routines, to stay consistent with Gompertz et al. (2014).
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Figure 2.5: “Exploded” view of a ‘humped’ type burst (of arbitrary parameters) depicting how the fallback

parameters effect the morphology of the burst. The fraction of the fallback timescale, ε, increases from left

to right and the fraction of the fallback mass, δ, increases from top to bottom.

2.4.2 Comparing Types to Previous Work

In order to determine how well the modified model recovered the four types, I used the parameters

given in Table 2.2 to generate light curves using the previous model described in Gompertz et al.

(2014). The fallback accretion in the modified model was turned off by setting ε = 1 and δ =

10−6, i.e., the amount of fallback mass is so negligible that the magnetar behaves as if only the

accretion disc is present and the fallback timescale becomes irrelevant. The value of n used was 1

as this is the closest approximation to the propeller switch-on modelled in Gompertz et al. (2014).

Fig. 2.6 compares the modified model without fallback to the previous work. The difference in

dipole luminosity between the two models is explained by my use of the classical dipole torque as
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Table 2.2: The main parameters used to compare light curves from the previous model (Gompertz et al.

2014) with the modified model without fallback accretion.

Humped Classic Sloped Stuttering

B (×1015 G) 1 1 10 5

Pi (ms) 5 5 5 5

MD,i (M�) 10−3 10−4 10−4 10−2

RD (km) 100 1000 1000 500

discussed in Section 2.3. However, the modified model does not recover the propeller luminosity

and has produces type II light curves in all cases. Since it has already been shown in Fig. 2.4

that the modified model is capable of reproducing all types successfully, I would suggest that they

have moved in parameter space due to the inclusion of Ṁprop and its link to Ṁacc through η2.

2.5 Preliminary Fitting

A Markov chain Monte Carlo simulation (MCMC; MacKay 2003, chap. 4) was used to optimise

the model to data as there are a minimum of six parameters and the MCMC will efficiently search

a large portion of parameter space (using an array of “walkers”) and increase the probability of

finding the global minimum of the model. However, the MCMC method requires a burn-in phase

which is loosely defined as an unknown number of steps at the beginning of the simulation where

each “walker” attempts to find the lowest region of probability space. The chain is generally

considered to be burned in when all walkers have converged onto this region of probability space.

I implemented the emcee module, written for Python, to handle the MCMC (Foreman-Mackey

et al., 2013). To construct the posterior probability distribution, a Gaussian log-likelihood function

of the following form was chosen

ln(plikelihood) =
1

2

N∑

i=1

(
yi − ŷi
σi

)2

(2.26)

where yi is a data point, σi is its associated uncertainty, and ŷi is a model point calculated at the

same x-value as yi. I chose a prior probability that is flat when the parameters are within the limits
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Figure 2.6: A comparison of light curves generated by the previous model (Gompertz et al. 2014; red

curves) and the modified model without fallback accretion (black curves). The fallback was turned off by

setting ε = 1 and δ = 10−6. n = 1 was used as the closest approximation to the switch on in the previous

model. Solid lines - total luminosity; dashed lines - propeller luminosity; dotted lines - dipole luminosity.
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Table 2.3: The upper and lower limits placed on the fitting parameters in the MCMC routine. MD,i, RD, ε,

and δ were searched in log-space for efficiency.

Lower Upper

B (×1015 G) 10−3 10

Pi (ms) 0.69 10

MD,i (M�) 10−6 10−2

RD (km) 50 2000

ε 0.01 100

δ 0.1 1000

Table 2.4: The parameter values used to generate synthetic light curves to test the MCMC routine.

Burst Type B Pi MD,i RD ε δ

(×1015 G) (ms) (M�) (km)

Humped 1 10 10−3 100 1 1

Classic 1 5 10−3 500 1 1

Sloped 1 1 10−2 100 10 10

Stuttering 1 10 10−4 100 1 10

given in Table 2.3 for fitting synthetic light curves.

ln(pprior) =





0 : xl < x < xu

−∞ : otherwise
(2.27)

Hence, the full posterior probability distribution is calculated as follows.

ln(p) = ln(plikelihood) + ln(pprior) (2.28)

To test the routine, I extracted 50 random data points (from a uniform distribution) from each type

of synthetic light curve generated in Section 2.4.1 to see if the correct values (given in Table 2.4)

could be recovered. I added Gaussian noise to the synthetic data by defining an error bar to be

an order of magnitude smaller than the luminosity value I had drawn, selected a random number

from a Gaussian distribution with a mean of zero and a width equal to the generated error bar, and

finally added this to the luminosity I had drawn. All the other parameters were given the fixed
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Table 2.5: The numerical results derived from the MCMC fitting routine to synthetic light curves and

the χ2
ν goodness of fit statistic. The presented results are the median of the sampled population and the

uncertainties represent a 95% confidence interval.

Burst Type B Pi MD,i RD ε δ χ2
ν

(×1015 G) (ms) (×10−3 M�) (km)

Humped 0.96+0.06
−0.08 9.73+0.26

−0.46 0.52+1.15
−0.35 85+70

−32 0.84+1.24
−0.31 2.48+7.68

−2.18 1.24

Classic 0.95+0.10
−0.09 4.85+0.18

−0.16 1.25+0.90
−0.79 673+467

−393 1.24+11.2
−0.63 0.62+2.24

−0.48 1.06

Sloped 1.03+0.13
−0.13 0.99+0.03

−0.03 8.24+1.67
−2.20 63+21

−12 18.1+5.19
−5.06 12.2+4.89

−2.45 1.00

Stuttering 0.98+0.06
−0.08 9.78+0.21

−0.35 0.10+0.05
−0.04 93+24

−17 1.09+0.48
−0.38 9.75+6.34

−3.46 0.79

values discussed in Section 2.4 and were not classed as fitting variables in the routine. Initially, I

ran trials consisting of 50 walkers taking 20, 000 steps with initial positions very close to the true

parameters. As a result, the burn-in phase for these trials were very short at 500 steps per walker

in each case.

When testing the MCMC routine, I found difficulties with “bad” models, i.e., models that caused

ODEPACK - which is the routine used to integrate Equations (2.11) and (2.14) - to raise integra-

tion errors. I found most of these errors were due to ODEPACK being unable to integrate over

the irregularly spaced time arrays I had generated to mimic the Swift data I intended to use. I

solved this problem by having ODEPACK integrate over a evenly spaced array and interpolated

the required data points off this “smooth” model. However, this still left some “bad” models that

were a result of numerical failures of the integrator solely due to the randomised nature of the

chosen input parameters. Since there is no way to predict these models, I developed a flag which

would assign these nuisance parameter sets an infinite probability and output them to a file so they

could be removed from the MCMC chain after the simulation had completed.

Table 2.5 presents the results of the MCMC. The values given are the median of the population and

the uncertainties represent a 95% confidence interval. I chose the median, rather than the mean

or mode, since it is less sensitive to the tails of distributions and is preserved under reversible

transformations of the data (e.g., log10 ε → ε). The MCMC is very successful in recovering the

values for B and Pi for each burst type. The results for ε and δ have a much wider and asymmetric
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uncertainty range and aren’t as close to the true values. The reasons for this will be discussed in

Section 2.5.1 where the correlations brought to light by the MCMC are discussed. The routine

performs well when fitting type I and II bursts, though there are some competing effects between

ε and δ. I have only provided here a plot for the type I burst as an example in Fig. 2.7.

2.5.1 Correlations

Fig. 2.8 shows a scatterplot matrix of the sample distribution for each parameter tested by the

MCMC routine with burn-in steps removed. It reveals some strong correlations between some of

the parameters: rB,Pi
= 0.85, rMD,i,ε = 0.70, rMD,i,δ = −0.98, rε,δ = −0.77 (where rx,y is the

Pearson’s product-moment correlation coefficient between parameters x and y; rB,P is the only

correlation coefficient not given in log-space). The correlation between B and Pi has a physical

significance as it indicates that a magnetar born with lower magnetic fields requires faster initial

spin periods in order for the propeller regime to be efficient (Rowlinson et al., 2013; Gompertz

et al., 2014). Similarly, the strong, negative correlation in log-space between MD,i and δ makes

physical sense as more mass will be required to fallback into the disc if the initial mass contained

in the disc is small.

The strong, negative correlation between ε and δ is a surprising one in terms of the physical model.

One would at least expect a positive correlation as more mass would need to fall back on a longer

timescale to produce the same effect. Investigation into the cause of this revealed that ε and δ

both affect when the condition for propellering is satisfied (rm > rc). Increasing the density of

the disc with a large amount of fallback mass or a short fallback timescale (i.e., increasing δ or

decreasing ε) increases the spin frequency of the magnetar required for propellering. However, a

denser disc promotes a higher accretion rate which spins the magnetar up to meet the propellering

condition at an earlier time. Therefore, ε and δ are competing for dominance in controlling the

propellering condition and how quickly it is met, thus generating the strong correlation shown in

Fig. 2.8. The strong correlation between MD,i and ε is an artefact of the non-Gaussian probability

density distribution generated for ε through the strong correlation with δ.
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Figure 2.7: The model generated by MCMC fitting to a type I synthetic light curve. Main panel: black

points - synthetic data with added Gaussian noise; blue curves - true synthetic light curve; red curves -

recovered light curve; dashed lines - propeller luminosities; dotted lines - dipole luminosities; solid lines

- total luminosities. Bottom panel: the residuals of the fit calculated from (yobs − ymodel) /σobs. Right

panel: histogram of the residuals with fitted Gaussian profile (blue line) of µ ' 0 and σ ' 1. This indicates

the residuals likely come from the added Gaussian noise.
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Figure 2.8: A scatterplot matrix showing all the values for each parameter the MCMC investigated after
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δ (in log-space); and ε and δ (in log-space). The blue lines indicate the true parameter values. The dashed
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Examples of the correlations when fitting other burst types are presented in Figs. C.1, C.2 and C.3

in Appendix C where it can be seen that the strong correlations between MD,i and δ, MD,i and

ε, and ε and δ remain. The correlation between B and Pi is absent in the ‘sloped’ case since the

dipole and propeller emission are indistinguishable and an effective propeller mechanism cannot

be constrained.

While these plots reveal some strong correlations, the correlations change strength and shape for

each burst type. In the ‘sloped’ burst case (Fig. C.2), the correlation between B and Pi disappears

completely because the dipole and propeller luminosity components are indistinguishable from

one another in the light curve. Therefore, the parameters cannot always be degenerate with one

another since the correlations change as the input parameters are varied and hence a treatment

of these degeneracies is not required, even when the number of free parameters is increased in

Chapters 3 and 4.

2.6 Summary

The magnetar model is a naturally long-lived central engine that can provide continuous energy

injection into a GRB fireball in order to explain phenomena such as: X-ray plateaux (Rowlinson

et al., 2013; Gompertz et al., 2013), extended emission in SGRBs (Gompertz et al., 2014), and

flares (Chincarini et al., 2010). This can be achieved by the extraction of rotational energy from the

magnetar and conversion into emission via a Blandford-Znajek mechanism (Blandford & Znajek,

1977) or magnetic propellering (Piro & Ott, 2011; Gompertz et al., 2014).

Since, after a collapsar or compact object binary merger, it is expected that a reservoir of mass

would be available for fallback (up to ≈ 0.1 M�; Rosswog 2007; Lee et al. 2009), I modified a

simple version of the magnetic propeller model to include fallback accretion. Fallback accretion

augments the energy budget of the magnetar as it provides a mechanism to spin the magnetar back

up, and hence easing the restrictions on the upper limit of the rotational energy of the magnetar.

I implemented a ballistic fallback rate of t−
5
3 (Rosswog, 2007) and parameterised the fallback
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parameters ε and δ in terms of the viscous timescale, tν , and initial disc mass, MD,i, respectively;

so that tfb = εtν and Mfb = δMD,i.

During testing of the modified model, I have shown that the four types previously defined in Gom-

pertz et al. (2014) are recoverable with the modifications, although they have moved in parameter

space, and uncovered new morphologies of light curves. I have also shown that the dipole torque

used from Bucciantini et al. (2006) has very little effect on the light curve morphology within

the modified model. Finally, I developed an MCMC optimisation routine and recovered the pa-

rameters of four light curves (one from each type) successfully. I also explored the underlying

correlations that drive the model, such as: B-Pi which has a strong positive correlation in order

to produce an effective propeller, MD,i-δ which has a strong negative correlation in log-space in

order to maximise the total amount of mass available thereby maximising the total energy budget,

and ε-δ which has a strong negative correlation due to both parameters attempting to control the

switch-on of the propeller regime and is completely artificial.
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3
Fallback Accretion on to a Newborn

Magnetar: Short GRBs with Extended

Emission

The work presented in this chapter was published in Gibson et al. (2017).
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Abstract

There are a subset of short gamma-ray bursts (SGRBs) which exhibit a re-brightening in their

high-energy light curves known as extended emission. These bursts have the potential to discern

between various models proposed to describe SGRBs as any model needs to account for extended

emission. In this chapter, I use a Markov chain Monte Carlo simulation to fit the magnetar pro-

peller model with fallback accretion to the afterglows of 15 SGRBs exhibiting extended emission

from the Swift archive. I present fits to the extended emission SGRB sample that are morpho-

logically and energetically consistent with the data provided by Swift-BAT and XRT telescopes.

The parameters derived from these fits are consistent with predictions for magnetar properties and

fallback accretion models. Fallback accretion provides a noticeable improvement to the fits of the

light curves of SGRBs with extended emission when compared to previous work and could play

an important role in explaining features such as variability, flares and long dipole plateaux.

3.1 Introduction

SGRBs with extended emission are a subset of SGRBs which show re-brightening in their high-

energy light curves after the prompt emission spike (approximately 10 s after trigger), which is

referred to as the extended emission (Norris & Bonnell, 2006). The peak flux of extended emission

is usually lower than the initial spike but it can last for a few hundred seconds, therefore the total

fluence is often higher (Perley et al., 2009). They are believed to be a subset of SGRBs due to their

hard spectra, association with galaxies with low star-forming rates and the lack of any detectable

supernovae coincident with the burst. These bursts are an interesting subset to study since any

model hoping to describe SGRBs generally needs to account for those which exhibit extended

emission and provide an argument as to why some bursts don’t, or determine whether extended

emission is just an observational artefact. Also, a model would need to explain extended emission

energetically and account for the similar total energy in the extended and the prompt emissions.

Different mechanisms have been suggested to power extended emission, including magnetar spin-
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down (Metzger et al., 2008; Bucciantini et al., 2012), a two-jet solution (Barkov & Pozanenko,

2011), fallback accretion (Rosswog, 2007), r-process heating of the accretion disc (Metzger et al.,

2010), and magnetic reconnection and turbulence (Zhang & Yan, 2011). Previously, Gompertz

et al. (2014) have implemented a propeller model with a magnetar central engine as an explanation

for extended emission bursts. The magnetar is believed to be formed during the merger of two

compact objects, i.e., a neutron star binary (Rosswog et al., 2003; Belczynski et al., 2006), a white

dwarf binary (Chapman et al., 2007), or a neutron star-white dwarf binary. Compact object binary

mergers are also the most popular candidates for SGRB progenitors. Magnetars have proven to be

a favourable central engine choice since the energy released from their magnetic field via dipole

spin-down is comparable to the energy contained within the extended emission. The magnetic

propeller model aims to extract the energy required for extended emission from mass ejected

from the system via the propeller mechanism. The version presented in Gompertz et al. (2014)

consists of a static disc which is fully formed at t = 0 and is drained via either accretion or

propellering. The results presented in Gompertz et al. (2014) run out of energy before fitting

the fading afterglow, since the energy reservoir is not replenished, and does not fit to the prompt

emission.

Models such as Rosswog (2007), Kumar et al. (2008), and Cannizzo et al. (2011) predict the

fallback of mass into a disc and so the version of the propeller model presented in Chapter 2

has been extended to include fallback accretion. This replenishes the disc and thereby increases

the overall available energy budget within the model. This means that the mass of the disc can

vary over time as opposed to the static disc presented in Gompertz et al. (2014) and affects the

spin-up of the magnetar thereby changing the morphology of the light curves produced. This

extension to the model will allow me to fit the prompt emission and retain enough energy to fit

the fading afterglow where previous models could not. The fallback rate is modelled with a t−
5
3

profile (Rosswog, 2007) and the fallback timescale, along with the available fallback mass, have

been parameterised in terms of preexisting parameters within the model. I aim to explain the

prompt emission (and hence all of the high-energy light curve) with a single model. As well as

the addition of fallback mass and disc physics into the model, I have also introduced a new model

for the propeller, fitted with variable efficiency parameters, and fitted to prompt emission data
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which were not included in Gompertz et al. (2014).

Section 3.2 introduces the sample of SGRBs with extended emission to be studied and Section 3.3

briefly revisits the method used to fit the model to the data. Results and concluding remarks are

presented in Sections 3.4 and 3.5 respectively.

3.2 Swift SGRB with Extended Emission Sample

The data for the GRB sample were collected by the Swift satellite (Gehrels et al., 2004), which is a

multi-wavelength observatory with rapid slewing capabilities that was launched in 2004. It carries

three instruments: the Burst Alert Telescope (BAT; Barthelmy et al. 2005), the X-ray Telescope

(XRT; Burrows et al. 2005a), and the Ultra-Violet/Optical Telescope (UVOT; Roming et al. 2005).

The Swift mission and the UK Swift Science Data Centre (UKSSDC1, Evans et al. 2007, 2009)

provided the data presented here.

The data need to undergo a cosmological k-correction and absorption correction, as described

in Bloom et al. (2001), to produce bolometric (1 − 10000 keV), redshift-corrected light curves

before they can be fitted by the model. This method requires the photon index, Γ, the absorption

coefficient, σ (given by the ratio of counts-to-flux unabsorbed to counts-to-flux observed, which

are all available on the UKSDCC repository) and the redshift, z, some of which were found in the

literature (see Table 3.1).

The sample studied in Gompertz et al. (2013) and Gompertz et al. (2014) has been expanded here

by selecting identified SGRBs with extended emission from Kaneko et al. (2015) (which covers

bursts to the end of 2012) that have good data available in the Swift archive. Plus GRBs 150424A

and 160410A which are identified as extended emission bursts within GCN Circulars (Norris et al.

2015 and Sakamoto et al. 2016 respectively). The data used in the fitting incorporates XRT data

and BAT data that have been extrapolated into the XRT bandpass (available from the UKSDCC

Burst Analyser tool) since the effect of the extended emission is not always evident in the XRT

1www.swift.ac.uk
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Table 3.1: The sample of SGRBs with extended emission and the parameters required for a cosmological

k-correction. For GRBs with an unknown redshift (marked with an ∗), the sample mean of 0.39 from Gom-

pertz et al. (2014) was used. †Upper limit (D’Avanzo et al., 2009). aProchaska et al. (2005); bSoderberg

et al. (2005); cPrice et al. (2006); cBerger (2007); dCenko et al. (2006); eGraham et al. (2009); fD’Avanzo

et al. (2007); gSelsing et al. (2016).

GRB Γ σ z

050724 1.58+0.21
−0.19 1.26 0.2578a

051016B 1.85+0.14
−0.13 1.31 0.9364b

051227 2.1+0.4
−0.4 1.31 2.8†

060614 1.78+0.08
−0.08 1.06 0.1254c

061006 2.1+0.6
−0.4 1.61 0.4377c

061210 2.60+1.92
−0.71 3.48 0.4095d

070714B 1.79+0.24
−0.22 1.15 0.9224e

071227 1.5+0.6
−0.5 1.02 0.381f

080123 2.46+1.04
−0.70 1.71 0.39∗

080503 2.38+0.42
−0.16 1.24 0.39∗

100212A 1.99+0.40
−0.18 1.37 0.39∗

100522A 2.40+0.17
−0.16 2.45 0.39∗

111121A 1.78+0.21
−0.20 1.42 0.39∗

150424A 1.98+0.24
−0.22 1.23 0.39∗

160410A 1.5+0.7
−0.6 1.02 1.717g

light curve alone.

3.3 Optimisation Routine

For the Markov chain Monte Carlo (MCMC), 100 affine invariant walkers (Goodman & Weare,

2010) were implemented and ran for a 50, 000 step burn-in phase to allow the walkers to test

as much of parameter space as possible. After this run, the best 100 distinct probabilities were
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Table 3.2: Upper and lower limits placed on the fitting parameters in the MCMC. MD,i, RD, ε, and δ were

searched in log-space for efficiency.

Lower Upper

B (×1015 G) 10−3 10

Pi (ms) 0.69 10

MD,i (M�) 10−3 10−1

RD (km) 50 2000

ε 0.1 1000

δ 10−5 50

ηdip (%) 1 100

ηprop (%) 1 100

1/fB 1 600

chosen to serve as the starting point for the final MCMC run of the same length. This made sure

that the parameters recovered were representative of the global minimum, not a local minimum,

and reduces the burn-in of the chain to < 1000 steps in most cases. Although, if the time series

(parameter or probability value vs. model number for each walker) showed that the chain had not

fully converged, the process of selecting the 100 best probabilities was repeated and the chain run

again until convergence was achieved. The values given in Table 3.2 were used to constrain the

walkers in the prior probability distribution (Equation 2.27). The optimal parameters were found

by taking the median of the posterior probability distributions and their uncertainties are given by

95% confidence intervals.

Fits to the SGRB sample with extended emission were produced with a range of free parameters

(p): p = 6 (B, Pi, MD,i, RD, ε and δ); 7 (original 6 plus 1/fB); 8 (original 6 plus ηdip and ηprop);

and 9 (all listed parameters). ηdip, ηprop and 1/fB were fixed to 5%, 40% and 1 respectively when

they were not free parameters, maintaining consistency with Gompertz et al. (2014). The fits were

repeated for fixed values of n = 1, 10, 100 and the corrected Akaike Information Criterion (AICc;

Cavanaugh & Neath 2011) was used to establish the best-fitting models. I chose this statistic since

it allows me to compare models of varying free parameter number (p).

52



AICc is given by the following equation

AICc = −2 ln(L) + 2k +
2k(k + 1)

N − k − 1
(3.1)

where k is the number of free parameters and N is the number of observations in the data set.

This penalises a model for ‘over-fitting’ and scales with k. I have substituted Equation (2.26) for

the maximum log-likelihood ln(L), which then cancels down to the χ2 statistic. The minimum

AICc value within a set is then representative of the optimum model fit since if the AICc value

of a model that has a large number of free parameters (and hence a large penalty) is less than a

model with fewer free parameters (and hence a smaller penalty), then it can be generally assumed

that the extra parameters improve the quality of fit.

3.4 Results and Discussion

Table 3.3 presents the AICc values for all results of the optimisation routine. The large spread of

values is representative of the difficulty χ2 (the root of the AICc) has comparing a smooth model

with highly variable data, especially in the early-time BAT data. Table 3.3 shows that the general

picture of the model is stable over all n values since there is a reasonable spread of best fits.

This also confirms the observation made in Section 2.4 that the model is reasonably insensitive to

n. Increasing n only makes features such as humps appear sharper, which does not have a great

impact on the overall quality of the fit. The best global fits to the SGRB sample with extended

emission (bold values in Table 3.3) are presented in Fig. 3.1.

The p = 6 set represents the core physics of the model by constraining the fundamental properties

of the magnetar (B and Pi), the accretion disc (MD,i andRD) and the fallback (Mfb and tfb through

δ and ε respectively) and is the most energetically restricted case compared to the p = 9 case which

has the largest energy reservoir. Furthermore, ηdip and ηprop determine the efficiency at which the

dipole and propeller mechanisms respectively need to work at in order to convert the energy to

luminosity. Lastly, fB accounts the anisotropy of the radiation (1/fB is the fraction of the stellar

sphere which is emitting).
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Figure 3.1: Best global fits to the SGRB sample with extended emission (bold values in Table 3.3). Dashed

line - propeller luminosity; dotted line - dipole luminosity; solid line - total luminosity; red points - com-

bined BAT and XRT data.
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Table 3.4: Table showing the half-opening angles (in radians) for 4 GRBs, calculated from fB = 1 −
cos (θj). θj values are from the global best fits of this work (uncertainties are 95% confidence interval); θ0

values are from Ryan et al. (2015).

GRB θj θ0

051016B 0.07+0.14
−0.12 0.35+0.11

−0.24

060614 0.35+0.93
−0.99 0.293+0.122

−0.085

061006 0.29+0.38
−0.42 0.407+0.068

−0.173

070714B 0.10+0.07
−0.11 0.33+0.11

−0.11

The results of the MCMC were analysed for parameter correlations though none were found

since my method of selecting the best probabilities after the burn-in phase removes most strong

correlations by placing the parameters in the global minimum.

The k-correction performed in Section 3.2 assumes isotropic emission, whereas in actuality, GRBs

are beamed into a very narrow opening angle due to their relativistic velocity (Fruchter et al., 1999;

Harrison et al., 1999; Frail et al., 2001). Rather than divide the data down to a beam-corrected

level, my routine works to multiply the model up to the isotropic luminosity level so that model

comparison becomes easier on the same scale. The morphologies of the fits change as each new

parameter is introduced since they handle the high luminosities at early times allowing the core

parameters to reconfigure. This means that there can be more energy available at late times to fit

the fading afterglow.

It is interesting to compare the freedom of the model (i.e., how many free parameters are used) with

the “sharpness” of the propeller (i.e., the n value). Generally speaking, the AICc value of the fit

improves as the number of free parameters increases, whereas, increasing n for the same number

of free parameters often does not improve the fit. Also, p = 8 fits often perform worse than p = 7

fits implying that the beaming fraction has a greater role within the model than the efficiencies,

but the inclusion of all 3 of these parameters are most preferable. Table 3.4 shows a comparison of

the jet half-opening angles derived from the best fits in this work with hydrodynamical modelling

performed by Ryan et al. (2015) for 4 GRBs common to both studies. My model produces jets

that are consistent with or slightly narrower than the values from Ryan et al. (2015). We are
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Figure 3.2: A graphical comparison of the beaming angle of 4 GRBs common to this work (circular point,

uncapped error bars) and Ryan et al. (2015) (square point, capped error bars).

partially consistent with Ryan et al. (2015) in errors (e.g., GRBs 051016B), and where they are

not (e.g., GRB 070714B), they are broadly consistent to ∼ 2− 2.5σ (see Fig. 3.2).

Comparing my results with that of Gompertz et al. (2014), it is shown that the inclusion of fallback

accretion within the propeller model allows for an improvement in fitting the ‘tail’ of the fading

afterglow. This is can be seen in GRBs 051227, 060614 and 061006 where Gompertz et al. (2014)

did not produce such good fits to the tail. Hence, fallback accretion is a necessary addition to the

propeller model in order to fully explain the energetics and morphologies of SGRBs with extended

emission. Additionally, the extended model handles variability and flares within the data much

more naturally than Gompertz et al. (2014) and copes with the early-time luminosity detected by

BAT.

The parameters derived from the fits in Fig. 3.1 are presented in Table 3.5. I find that the magnetic

fields derived from the fits are in the moderate to high end of the parameter space and that the

sample generally have slow initial spins. The slow initial spins are most likely due to the additional
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fallback spinning the magnetar up and, therefore, the constraints on high initial spin rates is re-

laxed. This has an impact on the value of the magnetic field derived as the fit moves along the

correlation between B and Pi discussed in Gompertz et al. (2014). The sample fits also tend to

favour massive discs and narrow jet opening angles. This is most likely due to the model extract-

ing as much of the available energy as possible to fit the high luminosities at early times in the

light curve, data which was not included in the fits of Gompertz et al. (2014). The values of ε, δ,

ηdip and ηprop are widely distributed throughout the parameter space. The derived parameters are

consistent with predictions for a magnetar (Giacomazzo & Perna 2013; Mereghetti et al. 2015;

Rea et al. 2015) and are also consistent with the results in Gompertz et al. (2014).

I will now examine how increasing the number of free parameters affects the fits in 3 arbitrarily

selected GRBs from the sample.

3.4.1 GRB 050724

Fig. 3.3 shows a comparison of fits with varying p to GRB 050724 for n = 100. For p = 6,

the model misses the high luminosity at early times and does not retain enough energy to fit the

tail after fitting the well-sampled drop in luminosity. The fit demanded a reasonable amount of

fallback, δ =
(
4.82+2.75

−1.94
)
× 10−1, on a relatively short timescale, ε = 1.68+1.05

−0.77, and a rapid initial

spin period, Pi = 0.92+0.13
−0.04 ms, in order to produce a high luminosity so early. Since the fallback

mass reaches the disc quickly, there is nothing left in the fallback budget to provide energy for the

late-time emission. The p = 8 fit suffers similar issues and also fails to fit the tail. The p = 7 run

provided an improved fit to the early-time luminosity and the tail. This fit required a small amount

of fallback mass, δ =
(
1.45+6.62

−1.33
)
× 10−4, over a reasonably long timescale, ε = 10.30+579.07

−10.17 , and

a slow initial spin period, Pi = 8.42+1.52
−3.82 ms, which kept the disc fed in order to produce sustained

luminosity. p = 9 is the best-fitting model of this bracket but requires a highly efficient emission

mechanism for the propeller, ηprop = 73+25
−38%.

It is interesting to note the late-time giant flare within the tail of GRB 050724 that the model has

not been able to fit. At present, the phenomena that cause such large outbursts at these late times
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Figure 3.3: Models fitted to GRB 050724 with n = 100 and p = 6 (top left), 7 (top right), 8 (bottom left),

and 9 (bottom right). Solid line - total luminosity; dashed line - propeller luminosity; dotted line - dipole

luminosity; red points - combined BAT and XRT data.

are still poorly understood (e.g., Falcone et al., 2006; Curran et al., 2008; Chincarini et al., 2010)).

3.4.2 GRB 060614

GRB 060614 poses a challenge to typical long/short classification scheme since it has a duration

of ∼ 100 seconds but the hard spectrum and lack of supernova connection are more indicative of

the short classification (Mangano et al., 2007; Zhang et al., 2007; Xu et al., 2009).

Fig. 3.4 presents model fits of varying p and n = 100 to data for GRB 060614. The runs for

p = 6, 7 and 8 all fit the tail of the emission but fail to fit the early-time data, instead creating a

‘humped’ feature while attempting to fit the period of rapid variability between 1− 100 s. Again,

p = 9 offers the best results for fitting to the tail and a reasonable fit to the early-time data but
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Figure 3.4: Models fitted to GRB 060614 with n = 100 and p = 6 (top left), 7 (top right), 8 (bottom left),

and 9 (bottom right). Solid line - total luminosity; dashed line - propeller luminosity; dotted line - dipole

luminosity; red points - combined BAT and XRT data.

requires extreme values of the emission efficiencies, ηdip = 100% (limit) and ηprop = 1% (limit),

and a moderate beaming fraction, 1/fB = 235+17
−8 . In the case of the emission efficiencies, the

propeller’s main job is to modulate the spin in order to achieve the desired luminosities. Since

the propeller plays a very small role in this particular fit, this indicates that that has been almost

completely taken over by the fallback.

3.4.3 GRB 111121A

Fig. 3.5 presents model fits of varying p and n = 100 to data for GRB 111121A. This is an example

of the model behaving well across all values of p. Despite the fits for p = 6, 7 and 8 looking very

similar, the spin periods (and hence energy reservoirs) derived from the fits vary. Fits p = 6 and

8 have very similar and rapid initial spin periods and Pi = 1.25+0.09
−0.19 ms and Pi = 1.82+0.32

−0.64 ms
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Figure 3.5: Models fitted to GRB 111121A with n = 100 and p = 6 (top left), 7 (top right), 8 (bottom left),

and 9 (bottom right). Solid line - total luminosity; dashed line - propeller luminosity; dotted line - dipole

luminosity; red points - combined BAT and XRT data.

respectively, whereas p = 7 has a slower initial spin period of Pi = 8.43+1.50
−3.68 ms.

Lastly, the p = 9 fit has a large magnetic field and slow spin of B = 8.47+0.44
−0.65 × 1015 G and

Pi = 9.74+0.25
−0.71 ms respectively. It has a slowly fed disc with a large amount of fallback mass,

ε = 79.62+14.49
−10.61 and δ = 7.64+1.12

−1.35. I derive a propeller efficiency of ηprop = 20+63
−15% but the

dipole efficiency could not be adequately constrained. The fit also produces a broad jet opening

angle of 1/fB = 81+212
−61 . However, this fit does use a flare to fit the early-time data which could

be indicative of over-fitting.
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3.4.4 Refitting Excluding Early-Time Data

The results presented in Table 3.5 show that the model requires quite massive discs initially. This

is most likely due to the model’s need to have a high accretion rate at early-times in order to

reach the high luminosities at those times. Since the emission produced at these times is usually

attributed to internal shocks and energy drawn from the merger rather than magnetic particle

acceleration, fitting these high early-time luminosities may not strictly be within the remit of the

model. I therefore chose to refit the sample excluding some of the early-time data.

I chose an arbitrary cut-off of 10 seconds to define the on-set of extended emission after the prompt

emission. This meant I avoided making an arbitrary cut for each individual burst since extended

emission isn’t currently well defined. The fits were performed for p = 6, 7, 8 and 9 and n = 1

for comparison with the work in Gompertz et al. (2014).

Table 3.6 presents the AICc values of the refits. The best fits (bold values) from Table 3.6 are

plotted in Fig. 3.6 and the parameters derived from these fits are presented in Table 3.7 with the

χ2
ν goodness of fit statistic. GRB 061210 has very few data points and excluding data < 10

seconds means that there are fewer data points than free parameters which resulted in negative

AICc and χ2
ν values. Therefore, it is shown here for consistency rather than as a statistically

significant result.

As is shown in Fig. 3.6, the result of excluding the early-time data is to produce more light curves

of the ‘humped’ morphology than ‘sloped’ or ‘classic’ in Fig. 3.1. But most surprisingly, this

experiment did not succeed in reducing MD,i as expected with values still reaching the moderate

to high range, suggesting the extra mass is a result of another change in the model, most likely

the use of Equation (2.10) instead of Equation (2.25), which would enhance the dipole spin-down

and mass-loss resulting in a lower initial disc mass.
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Table 3.6: AICc values for fits to the SGRB sample with extended emission with varying p values and

n = 1 and data < 10s excluded. Values in bold are the minimum value for each GRB. ∗GRB 061210 has

fewer data points than free parameters resulting in a negative AICc value which was not considered when

choosing the best fit.

GRB p = 6 p = 7 p = 8 p = 9

050724 1, 526 1, 173 1, 305 1, 138

051016B 263 198 213 144

051227 51 52 59 60

060614 45, 153 42, 746 43, 416 42, 656

061006 208 91.3 136 91.1

061210 −35∗ 509 94 279

070714B 175 204 204 234

071227 91 142 98 119

080123 426 431 387 609

080503 2, 333 2, 323 2, 336 2, 345

100212A 8, 067 7, 859 8, 168 7, 862

100522A 7, 464 6, 335 6, 461 6, 349

111121A 859 858 854 795

150424A 264 241 255 336

160410A 202 192 184 170
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Figure 3.6: Global best fit models produced from fitting to the SGRB sample with extended emission for

n = 1 and excluding data < 10 s (bold values in Table 3.6). Solid, black line - total luminosity; dashed,

black line - propeller luminosity; dotted, black line - dipole luminosity. Points are combined BAT and XRT

data: red points have been included in the fitting, blue points were excluded.
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Table 3.8: AICc values for fits to the SGRB sample with extended emission excluding data < 10 seconds

and using Equation (2.25) for the dipole torque. Bold values are the minima. ∗GRB 061210 has fewer data

points than free parameters and so these statistics should be treat with caution.

GRB p = 6 p = 7 p = 8 p = 9

050724 1, 327 1, 418 1, 206 1, 187

051016B 312 173 281 146

051227 55 48 61 93

060614 45, 783 43, 317 42, 836 43, 184

061006 109 98 106 92

061210∗ 348 447 50 71

070714B 179 233 180 306

071227 101 87 88 91

080123 440 254 292 276

080503 2, 338 2, 307 2, 291 2, 328

100212A 8, 373 8, 131 8, 369 6, 639

100522A 7, 859 6, 111 6, 929 5, 825

111121A 859 618 880 604

150424A 337 262 245 255

160410A 225 185 1, 964 216

3.4.5 Refitting with Enhanced Dipole Torque

For direct comparison with Gompertz et al. (2014), the sample was fitted once more using the

enhanced dipole torque in Equation (2.25) (Bucciantini et al., 2006) for n = 1 and p = 6, 7, 8

and 9. The AICc values for the fits are presented in Table 3.8, the best fits from this table are

shown in Fig. 3.7, and the parameters derived from those fits are presented in Table 3.9.

Including Equation (2.25) in the model provides a marginal improvement in fitting, e.g., the tail of

GRB 060614 is matched more closely in Fig. 3.7 than Fig. 3.6, though in some cases it performs
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Figure 3.7: The results of fitting to the SGRB sample with extended emission for the best global fits (bold

values in Table 3.8) excluding data < 10s and using Equation (2.25) for the dipole torque. Solid, black

line - total luminosity; dashed, black line - propeller luminosity; dotted, black line - dipole luminosity.

Data points are combined BAT and XRT data: blue points have been excluded from the fit, red points were

included.

68



Ta
bl

e
3.

9:
Pa

ra
m

et
er

s
de

riv
ed

fr
om

fit
s

to
SG

R
B

sa
m

pl
e

w
ith

ex
te

nd
ed

em
is

si
on

fo
r

th
e

gl
ob

al
s

fit
s

(b
ol

d
va

lu
es

in
Ta

bl
e

3.
8)

ex
cl

ud
in

g
da

ta
<

1
0s

an
d

us
in

g
E

qu
at

io
n

(2
.2

5)
fo

r
th

e
di

po
le

to
rq

ue
an

d
th

e
χ
2 ν

go
od

ne
ss

of
fit

st
at

is
tic

.
U

nc
er

ta
in

tie
s

ar
e

a
95

%
co

nfi
de

nc
e

in
te

rv
al

an
d

va
lu

es
m

ar
ke

d

w
ith

an
[L

]a
re

a
pa

ra
m

et
er

lim
it.
∗ G

R
B

06
12

10
ha

s
fe

w
er

da
ta

po
in

ts
th

an
pa

ra
m

et
er

s
re

su
lti

ng
in

a
ne

ga
tiv

e
χ
2 ν

va
lu

e.

G
R

B
B

P
i

M
D
,i

R
D

ε
δ

η d
ip

η p
ro
p

1/
f B

χ
2 ν

(×
10

1
5

G
)

(m
s)

(×
10
−
2

M
�

)
(k

m
)

(%
)

(%
)

05
07

24
1.

45
+
0
.1
3

−
0
.1
1

9.
93

+
0
.0
7

−
0
.3
0

0.
21

+
0
.0
3

−
0
.0
3

40
2+

8
−
8

1.
65

+
1
4
.6
6

−
1
.5
3

( 7.
31

+
3
3
.0
6

−
6
.3
4

) ×
10
−
4

1[
L

]
99

+
1
−
4

15
6+

1
7

−
1
8

5

05
10

16
B

1.
27

+
0
.4
5

−
0
.3
9

9.
10

+
0
.8
6

−
2
.7
1

6.
56

+
3
.2
4

−
4
.0
1

55
+
4
−
4

83
3.

98
+
1
5
5
.6
9

−
2
6
2
.7
9

( 6.
47

+
6
.1
3

−
3
.0
6

) ×
10
−
4

1[
L

]
85

+
1
4

−
3
5

25
4+

1
7
5

−
1
2
9

2

05
12

27
8.

49
+
1
.4
3

−
2
.8
4

7.
01

+
2
.8
6

−
3
.9
5

1.
75

+
7
.1
7

−
1
.1
0

92
+
1
2
6

−
4
0

19
2.

68
+
1
5
9
.0
4

−
1
6
1
.8
4

3.
62

+
8
.6
4

−
3
.5
6

5[
F]

40
[F

]
29

1+
2
6
3

−
2
2
2

2

06
06

14
5.

10
+
0
.2
4

−
0
.5
8

2.
07

+
0
.1
6

−
0
.2
3

6.
00

+
1
.0
9

−
0
.5
0

15
26

+
6
0

−
5
6

38
0.

59
+
2
5
.3
7

−
2
3
.8
9

2.
73

+
0
.1
8

−
0
.1
3

92
+
8
−
2
6

38
+
1
5

−
6

1[
F]

19

06
10

06
9.

56
+
0
.4
3

−
1
.2
5

8.
38

+
1
.5
4

−
2
.9
2

1.
49

+
1
.2
7

−
0
.4
2

91
+
8
−
1
3

5.
32

+
1
5
.5
2

−
5
.1
8

( 1.
30

+
8
.0
4

−
0
.6
2

) ×
10
−
4

1[
L

]
89

+
1
1

−
2
6

16
8+

8
1

−
7
7

7

06
12

10
0.

18
+
0
.2
1

−
0
.0
2

0.
72

+
0
.4
7

−
0
.0
3

2.
26

+
1
.0
0

−
0
.4
7

22
3+

9
2

−
5
6

78
.9

6+
8
0
9
.0
5

−
7
8
.7
7

( 5.
56

+
4
7
.2
6

−
5
.5
6

) ×
10
−
2

1[
L

]
98
.5

+
1
.5

−
6
.8

1[
F]

−
27
∗

07
07

14
B

2.
84

+
0
.3
3

−
0
.6
6

1.
01

+
0
.0
4

−
0
.0
6

7.
43

+
2
.2
8

−
1
.2
2

32
0+

2
1

−
2
0

25
.4

2+
1
7
.5
4

−
7
.4
3

( 1.
96

+
0
.2
2

−
0
.2
1

) ×
10
−
1

5[
F]

40
[F

]
1[

F]
2.

1

07
12

27
8.

79
+
0
.9
2

−
2
.2
2

7.
03

+
2
.7
9

−
3
.4
1

1.
71

+
2
.0
7

−
0
.5
0

23
7+

2
1

−
2
0

21
.4

0+
2
9
.9
3

−
2
1
.2
1

( 7.
45

+
2
7
.3
0

−
3
.5
1

) ×
10
−
4

5[
F]

40
[F

]
44

9+
1
4
4

−
3
0
7

2

08
01

23
8.

92
+
1
.0
4

−
2
.4
1

4.
06

+
1
.4
8

−
1
.8
9

2.
67

+
3
.4
8

−
0
.8
4

23
4+

8
−
7

56
.8

4+
7
1
.2
2

−
5
2
.3
3

( 1.
11

+
0
.6
2

−
0
.3
6

) ×
10
−
4

5[
F]

40
[F

]
43

+
2
5

−
3
1

5

08
05

03
4.

92
+
1
.3
0

−
0
.9
8

5.
30

+
0
.6
4

−
1
.6
1

1.
64

+
0
.9
6

−
0
.3
5

99
1+

1
2
6

−
1
1
8

13
8.

98
+
7
7
1
.4
3

−
1
3
1
.5
1

1.
67

+
9
.0
8

−
1
.4
8

2+
3
−
1

80
+
1
9

−
4
2

1[
F]

9

10
02

12
A

9.
96

+
0
.0
4

−
0
.1
5

1.
28

+
0
.8
3

−
0
.0
2

9.
90

+
0
.1
0

−
3
.9
3

13
5+

6
−
2

99
0.

37
+
9
.2
5

−
3
9
.5
9

( 2.
12

+
1
.2
9

−
0
.1
0

) ×
10
−
1

1[
L

]
87

+
1
2

−
1
4

51
1+

8
3

−
7
3

18

10
05

22
A

9.
98

+
0
.0
2

−
0
.0
9

6.
72

+
0
.5
8

−
0
.7
0

6.
91

+
0
.4
7

−
0
.3
5

50
[L

]
0.

21
+
0
.6
6

−
0
.1
1

0.
03

+
0
.0
2

−
0
.0
2

5.
7+

0
.3

−
0
.3

98
+
2
−
7

58
7+

1
3

−
4
0

34

11
11

21
A

6.
75

+
0
.9
4

−
1
.8
9

8.
13

+
1
.7
9

−
3
.9
2

2.
76

+
3
.7
6

−
0
.7
4

15
3+

1
1

−
1
0

26
5.

32
+
3
4
.3
8

−
3
1
.0
1

1.
08

+
0
.1
1

−
0
.1
1

10
+
6
−
6

62
+
3
6

−
3
9

25
5+

2
9
9

−
1
8
5

5

15
04

24
A

0.
85

+
0
.2
8

−
0
.2
7

5.
03

+
0
.8
8

−
1
.4
3

3.
68

+
3
.2
5

−
1
.0
4

47
0+

3
3

−
3
7

43
.3

7+
1
2
.6
9

−
9
.3
6

( 6.
36

+
2
.2
2

−
2
.1
3

) ×
10
−
2

76
+
2
4

−
4
2

10
+
2
0

−
8

1[
F]

2

16
04

10
A

2.
71

+
0
.4
8

−
0
.8
8

7.
15

+
2
.3
1

−
3
.8
7

0.
82

+
4
.1
7

−
0
.5
5

54
9+

1
2
8
4

−
4
9
6

20
.6

8+
2
1
0
.2
0

−
1
6
.0
1

21
.2

6+
2
6
.8
3

−
1
7
.0
8

5[
F]

40
[F

]
40

3+
1
8
8

−
3
1
7

4

69



much worse, e.g., GRB 100212A. The initial disc mass MD,i only approaches the upper limit

for GRB 100212A and indicates more moderate results across the rest of the sample. This is a

reflection of the enhanced energy output facilitated by Equation (2.25). Equation (2.25) does not

produce a dramatic change in the morphology or energetics of the fits, nor does it significantly

improve the fit statistics. However, the derived disc masses are more broadly in line with previous

work (e.g., Rosswog 2007).

3.4.6 The B-P Landscape

Fig. 3.8 shows where the results of this work fall in relation to other GRBs in both the long and

short classifications. It needs to be noted that the results from Gompertz et al. (2014) used fixed

efficiencies of ηdip = 5% and ηprop = 40%, whereas the work done in Rowlinson et al. (2013) uses

100% efficiency instead, and my efficiencies have been free parameters in most fitting procedures.

Also, Gompertz et al. (2014) used Equation (2.25) which enhances the dipole spin-down and so

these results appear to occupy their own region of low magnetic field and spin period. Hence,

conclusions drawn from this plot require some caution.

However, Fig. 3.8 does show that my results occupy a region of moderate to high magnetic field

and spin period, indicating that the fallback accretion relaxes the constraints on the initial spin of

the magnetar (i.e., it does not need to be born near the break-up period) since it will be spun-up

by the fallback regardless. Though this result could be due to either the addition of a t−
5
3 fallback

accretion profile or my inclusion of beaming as a fitting parameter. The results of this work still

do not approach the same same region as Gompertz et al. (2014) even when early-time, high

luminosity data is excluded and Equation (2.25) is used which consolidates that the shift in B-P

parameter space is due to the inclusion of fallback accretion.
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Figure 3.8: Plots of magnetic field strength versus initial spin period. The solid (dashed) red line represents

the break-up period for a collapsar (binary merger) progenitor (Lattimer & Prakash, 2004). Left panel -

blue stars: stable magnetars and green circles: unstable magnetars which collapse to form a black hole

(Rowlinson et al., 2013). Black ‘+’ symbols are the LGRB candidates identified by Lyons et al. (2010) and

Dall’Osso et al. (2011). Red squares (both panels) show the values found in Gompertz et al. (2014). Yellow

hexagons (both panels) represent the magnetic fields and initial spin periods of this work for the global best

fit values in Table 3.5. Right panel - magenta hexagons are theB and Pi values for fits excluding data< 10

s in Table 3.7; green hexagons are B and Pi values for fits excluding data < 10 s and including Equation

(2.25) in Table 3.9. Filled symbols have observed redshifts, open symbols use the sample average redshift,

which is z = 0.39 for extended bursts and z = 0.72 for the short bursts from Rowlinson et al. (2013).
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3.5 Conclusions

I used an MCMC to fit the modified magnetar propeller model with fallback accretion to a sample

of short GRBs exhibiting extended emission for a range of free parameters and “sharpness” of

propeller. I have found that the parameters derived from the fits produced by the propeller model

with fallback accretion are consistent with theoretical predictions for magnetars.

My model can cope with long, dipole plateaux and flare-like variability but struggles with the

early-time, short-timescale variability. However, since this variability is usually present in the

prompt emission which is generally attributed to internal shocks rather than magnetic acceleration

of particles, it is not strictly within the remit of the model to fit it.

The addition of fallback accretion provides a noticeable improvement in matching light curves

compared to those presented in Gompertz et al. (2014) and fallback accretion may play a pivotal

role in explaining the features of extended emission light curves. My model uses a smoothed rep-

resentation of fallback disc feeding as a simplest case scenario. A more “clumpy” representation

could potentially be more physical and useful to explain phenomena such as flares (Dall’Osso

et al., 2017).
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4
Fallback Accretion on to a Newborn

Magnetar: Long GRBs with Giant X-ray

Flares

The work presented in this chapter was published in Gibson et al. (2018).
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Abstract

Flares in the X-ray afterglow of gamma-ray bursts (GRBs) share more characteristics with the

prompt emission than the afterglow, such as pulse profile and contained fluence. As a result, they

are believed to originate from late-time activity of the central engine and can be used to constrain

the overall energy budget. In this chapter, a sample of 19 long GRBs observed by Swift-XRT that

contain giant flares in their X-ray afterglows has been collected. I fit this sample with a version

of the magnetar propeller model, modified to include fallback accretion. This model has already

successfully reproduced extended emission in short GRBs. The best fits provide a reasonable

morphological match to the light curves. However, 15 out of 19 of the fits require efficiencies

for the propeller mechanism that approach 100%. The high efficiency parameters are a direct

result of the high energy contained in the flares and the extreme duration of the dipole component,

which forces either slow spin periods or low magnetic fields. I find that even with the inclusion

of significant fallback accretion, in all but a few cases it is energetically challenging to produce

prompt emission, afterglow and giant flares within the constraints of the rotational energy budget

of a magnetar.

4.1 Introduction

As discussed in Section 1.1.3, the launch of the Swift satellite in 2004 (Gehrels et al., 2004) facili-

tated a break-through in our understanding of GRB physics thanks to its rapid slewing capabilities

allowing early and well-sampled observations of afterglows by the X-ray Telescope (XRT) (Bur-

rows et al., 2005a). This led to the formation of a ‘canonical’ X-ray afterglow model consisting

of the following phases (Nousek et al., 2006; O’Brien et al., 2006) (see Section 1.4.4): (i) a steep,

early decay; (ii) a plateau; (iii) a late decay; (iv) achromatic jet breaks; and (v) flares. Phases (iv)

and (v) do not always have to be present and flares are often superposed onto the plateau phase

(Curran et al., 2008).

Flares are a dramatic re-brightening in the X-ray light curve that are seen ∼ 30 − 105 seconds

74



after the burst trigger (Burrows et al., 2005b; Beniamini & Kumar, 2016) and are observed in

approximately half of all GRBs detected by Swift-XRT (O’Brien et al., 2006; Curran et al., 2008;

Swenson & Roming, 2014). Margutti et al. (2011) note that, observationally, there appears to

be two different evolutions of X-ray flare luminosity with time. The average luminosity of flares

occurring before t = 1000 s decreases as t−2.7, while the luminosity at later times decreases as

∼ t−1. Flares are characterised by a fast rise, exponential decay profile. The fluence of the largest

flares (so-called giant flares) is often comparable to the prompt emission, potentially indicating

a common origin between the two (Chincarini et al., 2010). The presence of an underlying con-

tinuum that is unaffected by the flare (i.e., the superposition of the flare on the plateau phase)

indicates that the flares do not share an emission site with the afterglow (Chincarini et al., 2010),

which is believed to be produced by the deceleration of forward shocks in the ambient medium.

GRB 050502B contains the first and the largest flare to be observed, re-brightening by a factor of

∼ 500 above the continuum (Falcone et al., 2006). The additional energy release observed in giant

flares like the one seen in GRB 050502B provide a unique test to constrain the energy budget of

GRBs.

There are a variety of models which have been suggested to explain the origin of flares, includ-

ing: ‘patchy’ shells (Mészáros et al., 1998; Kumar & Piran, 2000); refreshed shocks (Rees &

Mészáros, 1998; Zhang & Mészáros, 2002); and density fluctuations (Wang & Loeb, 2000; Dai

& Lu, 2002). The continued central engine activity model (Dai & Lu, 1998; Zhang & Mészáros,

2002) is often favoured, since the characteristics of flares are similar to the prompt emission (Chin-

carini et al., 2010). The new-born millisecond magnetar is a concept that is competing with black

holes as the source of power in GRBs, mainly due to its potential as a naturally long-lived cen-

tral engine (see Bernardini 2015 for a review). In the magnetar model, the rotational energy of

a highly-magnetised neutron star is tapped via interactions between its intense dipole field and

the circumstellar environment (see Zhang & Mészáros, 2001). This model has been successfully

applied to short (Metzger et al., 2008; Gompertz et al., 2013; Rowlinson et al., 2013) and long

GRBs (Lyons et al., 2010). However, it has a strict energy upper limit imposed by the rotational

energy reservoir of the neutron star. This is typically assumed to be ≈ 3× 1052 ergs for a 1.4 M�

neutron star with a 1 ms spin period. The magnetar is expected to be spun down very rapidly
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during the prompt emission phase, thereby decreasing the amount of energy available to power a

flare (Beniamini & Kumar, 2016). However, fallback accretion may augment the magnetar energy

budget, as it provides a mechanism to spin the magnetar back up. Recent work by Beniamini et al.

(2017) and Metzger et al. (2018) suggests that the extractable energy from an isolated magnetar

usable in a GRB is even further reduced. They predict for the same neutron star, the limit would

be ∼ 2× 1051 erg making the need for fallback accretion even more severe.

In this chapter, I investigate whether flares can be powered by the delayed on-set of a propeller

regime (Piro & Ott, 2011; Gompertz et al., 2014), in which in-falling material is accelerated to

super-Keplerian velocities via magneto-centrifugal slinging and is ejected from the system. A

magnetic propeller provides a path to a smoother emission profile than can be achieved by direct

accretion onto a compact object, matching the phenomenology of giant flares more closely. I

maximise the available energy reservoir by feeding the disc with fallback accretion, which was

successfully used to match the light curves of short GRBs with extended emission in Gibson et al.

2017, following models such as Ekşi et al. (2005); Rosswog (2007); Kumar et al. (2008); Cannizzo

et al. (2011); Parfrey et al. (2016).

I introduce the sample of long GRBs (LGRBs) with significant X-ray flares in Section 4.2. In

Section 4.3, I briefly review the optimisation routine used in Section 3.3 and Gibson et al. (2017)

and I present the results and discussion of the optimisation procedure in Section 4.4. I summarise

my conclusions in Section 4.5.

4.2 Sample of Swift LGRBs with Giant X-ray Flares

I have chosen a sample of 19 LGRBs that exhibit significant flares in their X-ray afterglows to

study. Since there is no consistent definition of a giant X-ray flare, I selected which LGRBs to

study based on the sample rate of data through the duration of the flare. I require good data

coverage near the peak of the flare and a reasonable constraint on the amplitude of the flare so that

the optimisation routine can properly constrain the free parameters, as such a prominent feature
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will drive the morphology of the fit.

The data were collected by Swift-XRT (Gehrels et al., 2004; Burrows et al., 2005a) and were

processed by the UK Swift Science Data Centre (UKSSDC1; Evans et al. 2007, 2009). As in Sec-

tion 3.2 and Gibson et al. (2017), the data underwent a cosmological k-correction (Bloom et al.,

2001) in order to produce bolometric, rest-frame light curves and were corrected for absorption

using values in Table 4.1. For those GRBs with no observed redshift, the mean of the sample in

Salvaterra et al. (2012) was used (i.e., z = 1.84).

4.3 Optimisation Routine

As in Section 3.3 and Gibson et al. (2017), I implement a Markov chain Monte Carlo (MCMC)

simulation package (Foreman-Mackey et al., 2013) to find the optimal values for the 9 free model

parameters: B - magnetic field strength of the magnetar; Pi - spin period of the magnetar; MD,i -

disc mass; -RD - disc radius; ε - fallback timescale fraction; δ - fallback mass budget fraction; ηdip

- dipole energy to luminosity conversion efficiency; ηprop - propeller energy to luminosity conver-

sion efficiency; and 1/fB - beaming fraction. These parameters are defined after the prompt phase

has ceased, which has been arbitrarily chosen to be t = 1 s. Again, I used 200 “walkers” tak-

ing 50, 000 steps each and constructed a posterior probability distribution (see Eq. 2.28) from a

Gaussian log-likelihood function (Eq. 2.26) and a flat prior function (Eq. 2.27), using the param-

eter limits given in Table 3.2, and implementing the Python module emcee to handle the MCMC

simulation (Foreman-Mackey et al., 2013). An ordinary differential equation integrator solves

the equation set in Section 2.2 to return the disc mass, MD, and magnetar angular frequency,

ω, over a time period, from which the total luminosity can be calculated. Fixed parameters are

the viscosity prescription, α = 0.1; the speed of sound in the accretion disc, cs = 107 cm s−1;

the ratio rm/rlc = 0.9, which prevents ejected material from exceeding the speed of light; and

the dimensionless parameter n = 1, which controls how rapidly the propeller emission becomes

dominant.
1www.swift.ac.uk
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Table 4.1: The parameters required to perform a cosmological k-correction as described by Bloom et al.

(2001). Γ is the photon index; σ is the absorption coefficient calculated from the ratio of counts-to-flux

(unabsorbed) to counts-to-flux (absorbed); and z is the redshift given in the literature. For those GRBs

with no observed redshift (marked with an ∗), the mean of the sample in Salvaterra et al. (2012) was used.
aAfonso et al. (2011); bMirabal & Halpern (2006); cBerger & Gladders (2006); dFugazza et al. (2006);
eBloom et al. (2006); fPenacchioni et al. (2013); gCabrera Lavers et al. (2011); hElliott et al. (2014);
iTanvir et al. (2016).

GRB Γ σ z

050502B 1.907+0.125
−0.098 1.11 5.2a

060124 1.91+0.06
−0.05 1.28 2.297b

060526 1.98+0.17
−0.12 1.15 3.21c

060904B 2.05+0.15
−0.15 1.49 0.703d

060929 3.5+1.0
−1.4 5.79 1.84∗

061121 1.82+0.06
−0.06 1.23 1.314e

070520B 2.5+0.8
−0.6 1.70 1.84∗

070704 2.3+0.5
−0.4 3.15 1.84∗

090621A 2.09+0.26
−0.25 2.42 1.84∗

100619A 2.30+0.16
−0.15 2.19 1.84∗

110709B 2.01+0.06
−0.06 1.38 0.75f

110801A 1.99+0.11
−0.10 1.25 1.858g

110820A 2.5+0.6
−0.5 2.62 1.84∗

121123A 1.85+0.11
−0.11 1.17 1.84∗

121217A 1.97+0.11
−0.11 1.66 3.1h

140817A 1.803+0.103
−0.100 1.30 1.84∗

141031A 1.85+0.32
−0.16 1.31 1.84∗

141130A 2.0+0.4
−0.3 1.15 1.84∗

160425A 2.47+0.20
−0.19 2.19 0.555i
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4.4 Results and Discussion

The best fits of the magnetar propeller with fallback accretion model to the LGRB giant flare

sample are presented in Fig. 4.1. The model provides a reasonable fit to the morphology of the

data across the sample, recreating the height and shape of the flare and fitting the emission ‘tail’ in

17 out of 19 GRBs. However in general terms, the model is struggling to meet the general energy

budget of the sample which causes some of the parameters to be forced to the extremes of their

allowed parameter space, see Table 3.5. The model consistently misses the emission preceding the

flare, falling 1-2 orders of magnitude lower than the data. However, this emission is most likely

the tail end of the prompt spike, which I do not fit in this chapter. The fits which performed the

most poorly are to GRBs 100619A and 110801A. In the case of GRB 100619A, the model has

missed the second flare entirely in favour of fitting to the first flare2. Currently, the model is unable

to fit multiple events like this as it does not contain an underlying flaring mechanism. Instead it

describes a large release of energy that fits the general energetics of large flares. The closest

approximation to multiple flares the model is currently capable of is a ‘stuttering’ type burst (see

Section 2.4.1, Gompertz et al. 2014 and Gibson et al. 2017 for details of burst types). Double

flares like this could be achieved using models such as ‘clumpy’ accretion (e.g., Dall’Osso et al.,

2017), a self-criticality regime of magnetic reconnection (similar to solar flares, e.g., Wang & Dai,

2013), or modulating the fallback rate to no longer be a smooth profile. As discussed in Chapter 3

and Gibson et al. (2017) in the context of the early time prompt emission, the model struggles to

replicate short-timescale variability in GRB 110801A, instead ‘smoothing’ through the main flare

and the smaller, preceding flare. This is another feature that may be achievable with a ‘clumpy’

accretion model, self-critical solar flare-like activity, or a modulated fallback rate. Mass would be

delivered intermittently, causing outbursts as opposed to the smooth feeding currently modelled

here.

The parameter values derived from the best-fitting models are presented in Table 4.2. Across the

sample, I have generally found low magnetic fields and slow initial spin periods, indicating that

2GRB 100619A exhibits a double flare which is most obvious in the joint BAT and XRT light curve from the

UKSSDC’s Burst Analyser found here: http://www.swift.ac.uk/burst analyser/424998.
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Figure 4.1: Fits of magnetar propeller model with fallback accretion to LGRB with X-ray flare sample. Red

points are Swift-XRT data; solid, black line - total luminosity; dashed, black line - propeller luminosity;

dotted, black line - dipole luminosity.
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the propeller mechanism would not be that strong. A low B-field and fast spin period, or a high

B-field and slow spin period have previously been shown to be necessary for an effective propeller

(Rowlinson et al., 2013; Gompertz et al., 2014; Gibson et al., 2017). The driving factor behind

these parameters is likely to be the duration of the dipole emission. The plateau duration is given

by (cf. Zhang & Mészáros, 2001):

Tem = 103I45B
−2
p,15P

2
i,0R

−6
10 s, (4.1)

where I45 is the moment of inertia of the neutron star in units of 1045 g cm2,Bp,15 is the dipole field

strength in units of 1015 G, Pi,0 is the spin period in ms and R−610 is the neutron star radius is units

of 10 km. The dipole emission in the sample typically lasts∼ 105 s, and assuming I45 = R−610 = 1,

this requires B−2p,15P
2
i,0 ≈ 100. From this it can clearly be seen that either B must be low, P must

be high, or a combination of the two.

The left panel of Fig. 4.2 shows where the LGRB giant flare sample lies on the spin period-

magnetic field plane. 13 GRBs are clustered against the 10 ms upper parameter limit and the

majority of the sample have a magnetic field of the order of 1×1015 G or less, which are consistent

with the theoretical predictions for a magnetar (Giacomazzo & Perna, 2013; Mereghetti et al.,

2015; Rea et al., 2015). The right panel shows where the sample lies in energy space as a fraction

of the initial spin energy. The cluster of 8 GRBs at the top of the plot all have low B-fields,

. 1 × 1015 G, and slow spin periods, ' 10 ms, one of the necessary conditions for an effective

propeller.

Since E ∝ P−2i , initial spin periods of ∼ 10 ms reduce the total available energy by a factor

of 100. Conversely, in most cases the efficiency of the propeller ηprop is forced to 100 per cent,

likely in order to compensate for the low total available energy in the model. The mean beaming

factor is 352, translating into a jet opening angle of θj ≈ 4.32◦. This narrow beam is likely a

further symptom of a system short of energy. I note at this point that alternative sources of energy

which have been ignored here may also make a significant contribution and lower the energy

requirements for the model. In particular, the contribution of the synchrotron emission from the

afterglow as the forward shock driven by the initial explosion decelerates has been neglected.

Reprocessing of the dipole radiation in the forward shock will also allow longer-lived afterglow
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Figure 4.2: Left panel: A plot of the magnetic field strength, B, against the initial spin period Pi of the

LGRB giant flare sample. The solid line indicates the upper limit of 10 ms and the dashed line indicates

the lower, break-up limit of 0.69 ms for a collapsar (Lattimer & Prakash, 2004). Error bars were not

included for clarity. Right panel: A plot showing the ratio of the total energy emitted to the initial spin

energy, Etot/Es,i, against the total energy, Etot. The total energy emitted through radiation is calculated by

integrating Ldip + Lprop over time of each best fit model. The initial spin energy is given by Es,i = 1
2Iω

2
i ,

where I = 4
5MR2 is the moment of inertia of the magnetar and ωi is the initial angular frequency. The

dashed line represents the rotational energy reservoir (≈ 3× 1052 ergs) for a 1.4 M� neutron star with a 1

ms spin period.

emission and enable lower values of P and/or higher values of B compared to the simplified

treatment of the dipole applied here (see e.g., Gompertz et al., 2015). Although the relatively long

initial spin periods found in the fits are primarily resultant from the need to fit the dipole emission

component, I note here that they would be broadly consistent with an episode of magnetar spin

down during the prompt emission phase.

The wide range of values in the fallback parameters ε and δ in Table 4.2 spin the magnetar up

at a later period, producing a more effective propeller mechanism. I also find more initial disc

masses at the upper parameter limit and with smaller disc radii, which shows that the model is

attempting to extract as much energy as possible through high accretion rates to fuel the flares.

The dipole and propeller efficiencies, ηdip and ηprop, are often pushed to their lowest and highest
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parameter limits respectively. This is because the flares produce such large flux increases above

the smooth continuum that the model can only reproduce a rise and drop-off of this magnitude by

having extremely opposing efficiencies for the dipole and propeller luminosities, despite this not

being observationally consistent.

Although having a mechanism with > 50% efficiency is likely unphysical and observationally

inconsistent, it was found to be necessary for both efficiencies to be allowed to vary up to 100%

in order for the MCMC simulation to find an acceptable fit with constrained parameters. I ran the

MCMC with different combinations of upper limits on the efficiencies and the χ2
ν values of these

runs are presented in Table 4.3 along with the values for the fits in Fig. 4.1 for comparison. In

each case over all the runs, the χ2
ν value was worsened by the stricter limits on the two emission

efficiency parameters. It is also shown that runs with the same value of ηprop find the same χ2
ν value

which suggests that the propeller emission is more important than the dipole in fitting the data

and hence runs with the same limits on ηprop are finding similar solutions. In addition, I ran

MCMC simulations that ignored the first 10 s after trigger, which is typically unconstrained by

data. I found consistently poor fits, indicating that my conclusions are not dominated by the

early (unconstrained) part of the light curve. The dominant limiting factor appears to be the long

duration of the emission demanding extreme values ofB and P , which forces the other parameters

to work around them.

Table 4.4 presents the values of the Lorentz factors for the X-ray flares in the sample, ΓX. These

have been calculated using Equation (4.2), which comes from Lü et al. (2012) and Mu et al.

(2016).

log ΓX = (2.27± 0.04) + (0.34± 0.03) logLX,p,52 (4.2)

where LX,p,52 is the peak luminosity of the flare in units of 1052 erg s−1.

I find that the Lorentz factor calculated from the data, ΓX,data, is broadly consistent with the

findings of Peng et al. (2014) where ΓX takes values of around ∼ 60− 150. Whereas, the Lorentz

factors calculated from the best fitting models, ΓX,model, range from ∼ 20 − 160. While this

includes the range indicated by Peng et al. (2014), the values are often lower than those required

by the data especially in the case of the most powerful flares, e.g., GRB 060124. Since the model
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Table 4.4: Lorentz factor values of the X-ray flare sample, ΓX, calculated using the Γγ − Eγ,iso relation in

Lü et al. (2012) and Mu et al. (2016). The first column corresponds to the flare Lorentz factor calculated

from the Swift data, while the second column corresponds to the flare Lorentz factor calculated from the

best fitting models. Since the model misses the second, well-defined flare in GRB 100619A, I have not

provided a value of ΓX,model for it. GRBs marked with an ∗ have no redshift and the mean of the sample in

Salvaterra et al. (2012) was used.

GRB ΓX,data ΓX,model

050502B 145.75± 0.56 105.10

060124 187.85± 0.59 87.02

060526 153.04± 0.52 89.72

060904B 46.42± 0.16 29.20

060929∗ 59.06± 0.11 44.87

061121 158.54± 0.50 155.43

070520B∗ 44.28± 0.12 38.54

070704∗ 75.49± 0.17 62.73

090621A∗ 135.58± 0.37 70.37

100619A∗ 55.24± 0.15 −
110709B 43.47± 0.13 28.60

110801A 104.93± 0.33 36.43

110820A∗ 77.57± 0.19 51.99

121123A∗ 103.35± 0.34 80.34

121217A 161.01± 0.49 89.44

140817A∗ 107.60± 0.35 82.06

141031A∗ 86.33± 0.27 54.62

141130A∗ 42.54± 0.14 34.37

160425A 41.62± 0.10 20.78
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cannot produce Lorentz factors much greater than∼ 100, this further highlights that it is struggling

to reach the energies demanded of it by the data.

4.5 Conclusions

Due to their similarity to the prompt emission, giant X-ray flares in LGRBs are often considered

to be evidence of continuing central engine activity. In this chapter, I have tested the feasibility

of one of the most natural long-lived central engines: the magnetar model, in which the rotational

energy of a highly-magnetised millisecond neutron star is released to the surrounding environment

via its intense dipole field. The model for flaring is a magnetic propeller, which accelerates local

material via magneto-centrifugal slinging and ejects it from the system. The magnetar is fed by

fallback accretion, which maximises the available energy. I have provided fits to a sample of 19

LGRBs with giant flares in their X-ray light curves using MCMC simulations.

The results show that despite a good phenomenological match of the model to the data, in all but

a few cases it is very energetically challenging to explain giant flares in LGRBs using a magnetar

alone, especially given the further reduction of usable extracted energy predicted by Beniamini

et al. (2017) and Metzger et al. (2018). This has strong implications for any models trying to

explain LGRB prompt emission or late X-ray plateaux (Beniamini & Mochkovitch, 2017) with

a magnetar, as the rotational energy budget appears to not be sufficient for flares without extra

emission components or substantial fallback. However, the energy constraints may be lessened

somewhat by the inclusion of the standard synchrotron afterglow and the reprocessing of the

dipole emission in the forward shock.
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5
Conclusions and Future Work

Throughout the science chapters of this thesis, I have modified the magnetar propeller model to

include fallback accretion and have rigorously tested it against synthetic light curves and data

from the Swift satellite of short gamma-ray bursts with extended emission and long gamma-ray

bursts with giant X-ray flares. This final chapter summarises the main findings of the work I have

undertaken thus far and presents preliminary methodologies and results for the next modelling test

these samples could be subjected to.
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5.1 Key Conclusions

The magnetar model is incredibly versatile since it is a naturally long-lived central engine that

can provide continuous energy injection into a gamma-ray burst (GRB) fireball in order to explain

phenomena such as: X-ray plateaux (Rowlinson et al., 2013; Gompertz et al., 2013), extended

emission in short GRBs (SGRBs; Gompertz et al. 2014), and flares (Chincarini et al., 2010). This

is achieved by the extraction of rotational energy from the magnetar and conversion into emission

via a Blandford-Znajek mechanism (Blandford & Znajek, 1977) or magnetic propellering (Piro &

Ott, 2011; Gompertz et al., 2014). The investigations I have outlined and discussed in the science

chapters of this thesis have yielded insights into the role of fallback accretion within the magnetar

model when applied to the subtypes of GRBs which pose the greatest challenge to the standard

fireball picture of GRB prompt and afterglow emission - specifically short GRBs (SGRBs) with

extended emission and long GRBs (LGRBs) with giant X-ray flares.

In Chapter 2, I modified a simple version of the magnetic propeller model to include fallback

accretion. Fallback accretion augments the energy budget of the magnetar as it provides a mech-

anism to spin the magnetar back up, and hence easing the restrictions on the upper limit of the

rotational energy of the magnetar. Extensive testing of this modified model showed that the four

types previously defined in Gompertz et al. (2014) are recoverable with the modifications, al-

though they have moved in parameter space, and a new set of light curve morphologies were

revealed. This allows for a more diverse range of features in Swift light curves to be accounted

for.

In Chapter 3, I began fitting the magnetar model with fallback accretion to Swift data of SGRBs

with extended emission. Fallback accretion is an appropriate addition in this context since, after a

collapsar or compact object binary merger (the most common evolutionary paths for magnetar for-

mation), it is expected that a reservoir of mass would be available for fallback (up to ≈ 0.1 M�;

Rosswog 2007; Lee et al. 2009). The parameters derived from the fits produced by the pro-

peller model with fallback accretion to the SGRB with extended emission sample are consistent

with theoretical predictions for magnetars. The model can cope with long dipole plateaux and

89



flare-like variability but struggles with the early-time, short-timescale variability. The addition

of fallback accretion provided a noticeable improvement in matching light curves compared to

those presented in Gompertz et al. (2014) and hence fallback accretion may play a pivotal role in

explaining the features of extended emission light curves.

In Chapter 4, the magnetar propeller model with fallback accretion was then applied to LGRBs

with giant X-ray flares. Due to their similarity to the prompt emission, giant X-ray flares in

LGRBs are often considered to be evidence of continuing central engine activity. The magnetic

propeller accelerates local material via magneto-centrifugal slinging and ejects it from the system

which produces the emission for the flares. The fits show that despite a good phenomenological

match of the model to the data, in all but a few cases it is very energetically challenging to explain

giant flares in LGRBs using a magnetar alone. This has strong implications for any models trying

to explain LGRB prompt emission or late X-ray plateaux (Beniamini & Mochkovitch, 2017) with

a magnetar, as the rotational energy budget appears to not be sufficient for flares without extra

emission components or substantial fallback.

Fig. 5.1 is a scatterplot matrix of the samples used to infer the best fitting parameters for the

short GRB 061006 pertaining to Table 3.5 in Section 3.4 (arbitrarily chosen). It shows that the

distributions for each parameter can be approximated by a normal distribution and have been well

constrained, except in cases where the sampler has come against a hard parameter limit and the

distribution has been distorted e.g., Pi and ηprop. Fig. 5.2 is a similar scatterplot matrix for the long

GRB 070704 pertaining to Table 4.2 in Section 4.4. As well as showing the normal distribution of

the samples and that they are well constrained, it also shows some of the underlying correlations

between the parameters, i.e., B → Pi, B → log10 (RD), Pi → log10 (RD) and log10 (ε) →
log10 (δ), some of which are discussed in Section 2.5.1. Together these figures demonstrate that

my methodology of running a full MCMC simulation, selecting the best individual probabilities,

then using them as a starting point for a second MCMC simulation worked just as well for the

real-world data as it did for the synthetic data, discussed in Section 2.5.

Overall, the application of the magnetar propeller model with fallback accretion to these chal-

lenging GRB subtypes provides mixed results. The ability to replenish the mass of the accretion
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Figure 5.1: A scatterplot matrix of the sample distributions generated by the MCMC optimisation to SGRB

061006 using n = 1 and 9 free parameters pertaining to the results presented in Table 3.5 in Section 3.4.

91



Figure 5.2: A scatterplot matrix of the sample distributions generated by the MCMC optimisation to LGRB

070704 pertaining to the results in Table 4.2 in Section 4.4.
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disc and maximise the rotational energy of the magnetar is evidently an important contribution

when considering the magnetar as a central engine for GRBs. It has been successful in improving

the fits to SGRBs with extended emission but it energetically challenged by LGRBs with giant

X-ray flares. This suggests that, if a magnetar is the central engine in a long GRB, then there

must be additional energy supplied by one or more processes external to the central engine. Such

processes that have not been accounted for in this thesis include standard synchrotron afterglow

and the reprocessing of the dipole emission in the forward shock.

5.2 Future Work

The main weakness of the magnetar propeller model with fallback accretion is the difficulty it

faces in reproducing the short timescale variability that is observed throughout the Swift light

curves. This is particularly noticeable in the flares in e.g., LGRBs 060124, 110709B and 110801A

which exhibit precursor flares or a “jaggedness” to the peak of their flares that could imply multiple

flares in a short time period. Also, SGRBs such as 060614, 080503 and 100522A show a lot of

variability in their early-time light curves that could suggest bursts of energy being released rapidly

in a short timescale rather than a smooth energy release.

Wang & Dai (2013) have performed a statistical analysis indicating that a magnetic reconnection-

driven, self-organised criticality regime causing continual solar flares may also be the origin of

flares in GRB afterglows. In this scenario, small-scale flares are regularly occurring and sum

together to create a background continuum. The amplitude population of these flares form a

power-law distribution with a negative index which leads to the less regular occurrence of a large

flare.

In the following sections, I explore a pulse model to represent the flares, outline a methodology

for drawing the pulses from statistical distributions and matching the model to a synthetic light

curve. I then discuss preliminary results from a test run of this methodology and where the pulse

model needs to be improved upon.
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Figure 5.3: Equation (5.1) plotted for τ1 = 8.10 s and corresponding τ2 = 9.24 s. An amplitude A = 9.71

(dimensionless in this example) was randomly selected from a power-law distribution of indexN = −1.11.

The corresponding peak time is τpeak = 8.65 s and the rise and decay times are τrise = 5.44 s and

τdecay = 14.69 s.

5.2.1 Pulse Model

To create the pulses, I used the model described in Norris et al. (2005) and Peng et al. (2010)

I(t) = Aλ exp

[
− τ1

t
− t

τ2

]
for t > 0 (5.1)

where A is the amplitude of the pulse which is chosen randomly from a power-law index of

−3.0 < N < −0.5; τ1 and τ2 are the two fundamental timescales of the fast rise, exponential

decay pulse - τ1 is randomly selected from a power-law distribution of index 0 < M < 3 and,

for simplicity, I have used the relation τ2 ≈ 16.6τ−0.281 (Norris et al., 2005) in order to reduce the

number of free parameters; finally, λ = exp(2µ) where µ = (τ1/τ2)
1
2 . An example pulse using

Equation (5.1) is depicted in Fig. 5.3.

It is important to note that the effects of τ1 and τ2 on the amplitude are not obvious since their

influence arises from the combination of exponentials, and both terms operate across the pulse’s
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duration. As a result, τ1 and τ2 are not respectively the rise and decay timescales - I calculate

these below. In a minimal physical sense, this model represents an exponential process supplying

energy on a timescale τ1 and a similar but separate process affects a condition necessary for the

continuance of the supply on a timescale τ2. The former could be a cascading injection of radiating

particles and the latter an explosive expansion of the source, as an example (Norris et al., 2005).

After a timescale of τpeak = (τ1τ2)
1
2 , the intensity of the pulse is at its maximum, normalised by

λ to a peak intensity of A. The width of the pulse is measured between the two points where the

intensity is equal to 1/e.

ω = ∆τ1/e = τ2 (1 + 4µ)
1
2 (5.2)

The term (1 + 4µ)
1
2 describes the inverse of the asymmetry of the pulse, κ−1, which can also

be expressed as κ = τ2/ω using Equation (5.2). This allows for a symmetric pulse in the limit

µ = (τ1/τ2)
1
2 →∞. From the definition of κ and Equation (5.2), the decay and rise timescales of

the pulse can be calculated as follows.

τdecay,rise =
1

2
ω (1± κ) (5.3)

5.2.2 Methodology

For testing purposes, a type I synthetic burst from Chapter 2 was used. The whole synthetic

light curve was integrated, using the trapezium rule, in order to place limits on the maximum

and minimum pulse amplitudes that could be drawn from the probability. These limits were

chosen to be 10−12Etot < A < 10−8Etot (where Etot is the total energy of the synthetic light

curve) as testing showed this range excluded large oscillations in the light curve, which would be

unphysical, though still allowing for a variability on the scale represented in Swift light curves.

The main fitting parameters are M , the index of the power-law distribution τ1 values are drawn

from, and N , the index of the power-law distribution the amplitudes are drawn from. Though

ideally, these would be linked so that small amplitudes have short timescales and large amplitudes

have long timescales, leaving N as the only fitting parameter. However, this would require a

physical theory to under-pin such a link - such as magnetic reconnection, a fragmented accretion
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disc causing “clumpy” fallback, or another unknown mechanism - which is beyond the scope of

this thesis.

The synthetic light curve was separated into bins of ∼ 100 s and pulses were added to each bin

until the integration of the pulsed light curve was approximately equal to the integration of the

synthetic light curve, to within a ±5% tolerance, before moving onto the next bin. An offset was

randomly selected from a uniform distribution across the bin so that the pulses were spread evenly

throughout. Any pulses that “spilled over” into the next bin were allowed to straddle the boundary

and the additional energy was accounted for in the integration before adding more pulses to that

bin. Any pulses that caused the integration of the pulsed light curve to exceed the upper 5%

tolerance of the synthetic light curve were discarded, however, this should be updated so that a

subroutine carries such a burst over to the next available bin.

5.2.3 Preliminary Results

The result of a preliminary test of the methodology is presented in Fig. 5.4. While the model

performs well when reconstructing the tail of the emission, the early-time emission and the rise

of the hump feature are poorly matched. This is largely due to the discrepancy in scaling. While

the synthetic burst and the pulsed model have been generated in linear time intervals, the features

of the synthetic curve can only be seen on a log-log scaled plot. Hence, the pulsed model does

not have the resolution at early times to adequately match the data which results in a very large

χ2
ν value. Though this could also be in part due to the lack of errors on the synthetic light curve. It

would be interesting to conduct another test using the data from Section 2.5 to ascertain whether

the errors would reduce the χ2
ν value.

Due to the random selection process for the input parameters and the processing time to individ-

ually generate pulses and regularly integrate the pulsed light curve, a standard MCMC routine

cannot be used to match the model as the random number generator seed would have to become a

fitting parameter in its own right. Instead, I propose to divide the ranges of N and M into suitable

increments and, for each N -M pairing, run the program a given number of times and calculate a
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Figure 5.4: Preliminary results of matching a pulsed light curve to a synthetic data set using integration.

Black, solid line - synthetic type I burst; red, dashed line - pulsed light curve model. The goodness-of-fit

statistic is χ2
ν = 4.62× 1089.

χ2
ν value. A histogram of the of the collected χ2

ν values would provide the most probable values

of N and M .

Presently, this model needs an improved method to provide better resolution at early times, espe-

cially since this is when a lot of variability takes place in SGRBs particularly. This would help

improve the χ2
ν values of the matching results.
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A
Derivation of the Alfvén Radius from the

Magnetic and Ram Pressures

98



By equating Equations 2.1 (magnetic pressure) and 2.2 (ram pressure) and rearranging for r, it

can be shown that the coefficient of the Alfvén radius equation is approximately unity.
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Figure B.1: “Exploded” view of a ‘classic’ type burst (of arbitrary parameters) depicting how the fallback

parameters effect the morphology of the burst. The fraction of the fallback timescale, ε, increases from left

to right and the fraction of the fallback mass, δ, increases from top to bottom.
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Figure B.2: “Exploded” view of a ‘sloped’ type burst (of arbitrary parameters) depicting how the fallback

parameters effect the morphology of the burst. The fraction of the fallback timescale, ε, increases from left

to right and the fraction of the fallback mass, δ, increases from top to bottom.
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Figure B.3: “Exploded” view of a ‘stuttering’ type burst (of arbitrary parameters) depicting how the fallback

parameters effect the morphology of the burst. The fraction of the fallback timescale, ε, increases from left

to right and the fraction of the fallback mass, δ, increases from top to bottom.
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Figure C.1: A scatterplot matrix showing correlations between fitting parameters for a fit to a type II classic

burst.
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Figure C.2: A scatterplot matrix showing correlations between fitting parameters for a fit to a type III sloped
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N., 2006, ApJ, 642, 354

Zhang B., Zhang B.-B., Liang E.-W., Gehrels N., Burrows D. N., Mészáros P., 2007, ApJL, 655,
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