RIGHT VENTRICULAR PUNCTION TR PACED PATTENTS

- A STUDY USING PULSED DOPPLER ULTRASOUND

Submitted for the Degree of Doctor of Medicine to the University of Leicester

1991

Dr MG Cheesman

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U042009
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

7501128020

SUMMAREI

There is increasing interest in right ventricular function as an important determinant of cardiac output. However, the chamber is difficult to study, because of its shape and relationship to the left ventricle. Invasive studies, radionuclide studies and two-dimensional echocardiography are all useful approaches, but all have serious limitations.

Systolic time intervals, best measured by pulsed Doppler ultrasound in the proximal pulmonary artery, offer one method of assessing right ventricular systolic function. Previous "normal" ranges, however, could be criticised on many counts. I present data from carefully checked normal controls and compare to previous publications, and explore variability and relationships between the various systolic time intervals. Most variables have skewed frequency distributions; the ranges are somewhat wider than previously described; most heart rate corrections are found to have serious limitations; and the effect of age is explored.

Complete heart block offers a model to study the the effects of varying atrioventricular intervals whilst the ventricular rate is held unphysiologically steady by an artificial pacemaker. Given the current controversy about the merits of single- versus dual-chamber pacing, the issue is of topical interest also. The effect of varying the "P-R" interval within the physiological range is explored, and "optimal" ranges identified.

A curious "nadir" effect, previously unknown, was discovered. When P waves followed paced $Q R S$ complexes at about $-50-100 \mathrm{~ms}$, forward flow into the pulmonary artery (as judged from systolic time intervals) fell in most patients, and in some subjects virtually ceased. As a small included invasive part of the study showed, this was accompanied by falls in RV systolic pressure and rises in right atrial pressure.

This study demonstrates that right ventricular
systolic time intervals can be used to study right ventricular function in pacing situations, and is further evidence of the unsatisfactory nature of single-chamber ventricular pacing。

CONTENTS

PART ONE

(a) INTRODUCTION

(i) Why study the right ventricle ?	15	
(ii)	How can the right ventricle be studied ?	17
(iii) Rationale of this study	22	

(b) HISTORICAL DEVELOPMENT OF SXSTOLIC TIME TNTERVALS
(i) Early development of systolic time intervals 35

Early studies on the left heart Early studies on right ventricular systolic time intervals
$\begin{array}{ccc}\text { (ii) The assessment of pulmonary artery dynamics } & 38 \\ \text { using systolic time intervals }\end{array}$
Studies assessing PA pressure from RVSTIs using pulmonary valve movement Studies using RVSTIs to assess PA pressure using pulsed Doppler ultrasound
(iii) PA pressure estimated from the velocity of tricuspid regurgitation and other highvelocity jets of blood
(iv) Reasons for continued interest in RVSTIs 47 Have the continuous wave Doppler techniques rendered RVSTIs obsolete ?
(v) Studies in the accuracy of measurements Variability of measurements
(vi) Studies in the use of STIs in pacing $\quad 51$

Importance of atrial synchronisation
Invasive studies on the atrial contribution to cardiac output in paced patients

Radionuclide studies on the effects of atrial synchronisation during cardiac pacing
Why do we still implant single-chamber pacing systems ?

What unwanted effects of single-chamber pacing have been identified, and can it be demonstrated that loss of atrial synchrony is involved ?
How do STIs fit into this "fine-tuning" ?
(c) STUDY METHODS
(i) Equipment 73
(ii) Selection of normal controls 75
(iii) Selection of paced patients 76
(iv) Recording techniques 77
(v) Recordings 83
(vi) Why other measurement possibilities were not persued 87
(vi) Invasive study 90
（a）Results on normal control subjects 94
Right Ventricular Pre－Ejection Period（RVPEP）Right Ventricular Ejection Time（RVET）Acceleration Time（AT）RVPEP／RVET ratioAT／RVET ratioRVPEP／AT and AT／RVPEP ratiosPulmonary artery maximum velocity of flow（PAVmax）
（b）Discussion of results on nommal control subjects and 132 comparison with previously published series
RVPEP133
Utility of the measurement and critique of previous series
Comparison of our figures with previousinvestigators＇findingsRelationship to heart rateFuture prospects
RVET．．．． 140
RVPEP／RVET。。．。 144
AT。．．． 147
AT／RVET。．．。 151
RVPEP／AT。。．。 153
PAVmax．．．。 155

PART THREE

(a) Results and discussion of results on paced patients 159
(i) Introductory notes 160

Advantages of the paced patient as a model for studying RVSTIs
Effects of abnormal ventricular sequencing Use of the model for exploring the effects of varying the PR interval using RVSTIs
Age differences
(ii) Results

Differences between controls and paced patients

Variability about the subject mean in paced patients - peak and trough effects

Data analysis
Construction of relative frequency curves
Display of results
Results of curve comparisons
Results for individual RVSTIs
RVPEP
RVET
RVPEP/RVET
AT \& AT/RVET
PAVmax
(iii) Discussion of results

- potential clinical applications

The continuing debate about the merits of atrial synchronisation

Previous studies of the deleterious effects of reverse atrioventricular sequencing Relationship to the "Pacemaker Syndrome"
(iv) Invasive study on patients undergoing insertion of permanent pacing systems

Introduction
Method
Results
Discussion
PART FOUR
Page
CONCLUSIONS 198
(1) RVSTIs are limited but still useful: comprehensive nommal 200ranges are presented(2) Complete heart block is a useful model for comparing the202effects of differing PR intervals ${ }^{\prime}$ and RVSTIS Can beapplied to the measurement of RV systolic functionin that situation
(3) RV loading conditions are important in pacing practice and 204RVSTIs can be used to study them
(4) Inappropriate atrioventricular sequencing can result in verylarge falls in forward flow from $R V$ to $\mathbb{P A}_{g}$ as measuredby RVSTIS
(5) This study is further evidence of the haemodynamically209unsatisfactory nature of asynchronous single-chandoerventricular pacing
Appendix 1
Raw data - normal control subjects 213

- for each RVSTI
Appendix 2
ANOVA on scatter within and between subjects for each 234 RVSTI
Appendix 3
Cumulative frequency data for paced patients for each RVSTI with respect to the $P R$ interval 247

List of abbreviations in text

AT	Acceleration Time
CI	Confidence Intervals
DDD	Dual-chamber pacing mode
EF	Ejection Fraction
HR	Heart Rate
LV	Left Ventricle
LVET	Left Ventricular Ejection Time
LVPEP	Left Ventricular Pre-Ejection Period
LVSTIs	Left Ventricular Systolic Time Intervals
PA	Pulmonary Artery
PAP	Pulmonary Artery Pressure
PAVmax	Maximum velocity in the proximal pulmonary artery
PV	Pulmonary Valve
PVR	Pulmonary Vascular Resistance
PR interval	Interval from onset of P wave on electrocardio-
	gram to onset of QRS complex
QRS complex	Inscription of ventricular depolarisation on
	the electrocardiogram
RVET	Right Ventricular Ejection Time
RVETI	Right Ventricular Ejection Time "corrected" for
	heart rate
RVOT	Right Ventricular Outflow Tract
RVPEP	Right Ventricular Pre-Ejection Period
RVSTIs	Right Ventricular Systolic Time Intervals
SEM	Standard Error of the Mean
STIs	Systolic Time Intervals
VSD	Ventricular Septal Defect
VVI	Single-chamber ventricular demand pacing mode
Vmax	Maximum velocity

tist of rigures

Figure	Title	Page
1	Area of Interest	2
2	Imaging Plane	78
3	Doppler sample position	79
4	Imaging planes	80
5	Measurement of systolic time intervals from PA flow	84
6	RVPEP: frequency distribution	97
7	RVPEP: means and 95\% C.I.s	98
8	Scattergram: RVPEP vs Rate	100
9	RVET: frequency distribution	102
10	RVET: means and 95\% C.I.s	103
11	RVETI: means and 95\% C.I.s	104
12	Scattergram: RVET vs Rate	107
13	AT: frequency distribution	109
14	AT: means and 95\% C.I.s	110
15	Scattergram: AT vs Rate	113
16	RVPEP/RVET: freq. distribution	115
17	RVPEP/RVET: means \& 95\% C.I.s	116
18	Scattergram* RVPEP/RVET vs Rate	118
19	AT/RVET: frequency distribution	120
20	AT/RVET: means and 95\% C.I.s	121
21	Scattergram: AT/RVET vs Rate	123
22	RVPEP/AT: frequency distribution	125
23	PAVmax: frequency distribution	130
24	PAVmax: means ${ }^{\text {s }} 95 \%$ C.I.s	131
25	Age comparison of controls and paced patients	164
26	Fall in RVET with "retrograde" P waves	167
27	Specimen PA flow trace demonstrating nadir effect	168
28	RVPEP: cumulative frequency of nadirs and peaks	174
29	RVET: cumulative frequency of nadirs and peaks	175
30	AT: cumulative frequency of nadirs and peaks	178
31	PAVmax: cumulative frequency of nadirs and peaks	179
32	RV sys.press.: varying PR ints.	191
33	RV sys. time: varying PR ints.	192
34	RVEDP: varying PR ints.	193
35	RV sys press.: varying PR ints	195
36	RA press. waveform: PR varying 12	196

PART ONE

INYRODUCTION

HISTORX
METHODS

Introduction

(i) Why study the right ventricle ?

There is increasing recognition of the importance of the right ventricular contribution to cardiac output. In its most extreme form, RV infarction (as in 50\% of inferior myocardial infarctions[1-2]), may cause a distinct syndrome of cardiogenic shock with high jugular venous pressures but without pulmonary oedema[3]. In other catastrophes such as peri-infarction ventricular septal defect, RV function is both of prognostic significance[4], and can be observed to improve after successful surgical repair[5]。

A large population of young adults is emerging who have had sucessful repairs of complex congenital defects in childhood. Not only was RV function of paramount importance in deciding their fitness for surgery, but there is increasing interest in estimation of RV function to determine which patients should be intensively followed to see if repair really was adequate[6,7]. At least one author has already used Doppler echocardiography to assess results after a modified Fontan operation[8]. RV ejection fraction is highly after-load sensitive, and usually improves after repair of congenital defects $[6,9,10,11]$, or after vasodilator treatment of left ventricular dysfunction[12-14].

Right ventricular function is of importance during cardiac surgery. "Loading" of the RV during weaning from bypass is a frequently-used manoeuvre, with high filling pressures being often required. There is increasing concern that the RV is inadequately protected during cardioplegia[15,16], unlike the left ventricle(LV), and that this may contribute to postoperative morbidity and mortality[17].

RV function is being increasingly studied in chronic obstructive airway disease(COAD). A low RV ejection fraction is associated with a high chance of progression to cor pulmonale and a reduced life expectancy[18,29]: this is of particular importance because these patients live longer and are improved symptomatically on long-term domiciliary oxygen[19]. Many bronchodilators are also vasodilators, and so have complex actions on RV function[20]。

In addition, the RV has become more interesting to physicians specialising in cardiac arrythmias because of the recognition of the syndrome of RV cardiomyopathy[21] and dysplasia associated with ventricular tachycardia。Although still an uncommon cause of sudden death, most Departments of Cardiology are reviewing several such patients, who are often young and otherwise fit.
(ii) How can the RV be studied ?

It must be admitted at once that numerous difficulties beset any study of RV function. The chamber is a difficult wedge-shaped entity which changes further on contraction[22,23]. Casts of the "normal" RV (usually in end-diastolic conditions) have been used to investigate various formulae, but their application to situations of signficant volume overload (for instance) has yet to be validated. Methods of assessing RV ejection fraction from bi-plane angiography with reference to these models have not found wide application.

The proximity of the left ventricle, around which the RV is wrapped, is also a problem. The shared interventricular septum may contribute to either ventricle's output. Disease processes may affect both ventricles simultaneously, and poor LV function raises pulmonary resistance and hence affects RV function。

Clinical and radiographic examination are at best crude instruments for assessing RV function, and serious RV disease can be present despite a normal electrocardiogram[24].

Cardiac catheterisation has provided much of the published data on RV function[25]: but it is invasive, expensive, and neither without risk nor easily repeatable. It is always difficult to know how much a stiff catheter placed across a heart valve in a low-pressure system like the right heart in itself changes the very parameters one wishes to measure. In addition, invasive investigation of RV function is insensitive, with other methods such as radionucleid study consistently producing higher figures for RV dysfunction in many medical conditions $[2,4]$ 。

Pressure-volume loops offer important insights into RV function, demonstrating how different RV and LV physiology really are; they can be used to monitor the effects of changing loading conditions [26-27], and have been used during cardiac surgery[29] to look at the $R V$ effects of cold cardioplegia. However, they require both invasive pressure monitoring and biplane angiography simultaneously, so despite being the reference standard at the moment for assessing RV function, they are unlikely to find widepsread clinical application.

```
Radionuclied study can produce accurate figures for cardiac output by first-pass study [29], and partly side-steps the geometry problem by relying on count-related summation methods to estimate RV ejection fraction[30-33] (although the problem of proximity to the \(L V\) remains, and subtraction techniques are necessary). The hardware involved is neither cheap nor portable. Obviously, the methods expose patients to small doses of radioactivity, so limiting repeatability. Assessment of beat-to-beat variability is difficult in both first-pass and multiple-gated acquisition studies. Dilated atria (by increasing "background" counts) and the presence of atrial fibrillation (both frequent in heart disease) further reduce the value of this method[34]. However, it has remained a valuable tool for the study of exercise effects[35].
Two-dimensional echocardiography (2D-echo) is comparatively cheap and usually portable: serial studies are easy, harmless and non-invasive. Standard views and normal ranges have been proposed[36-40]. However, the problem of geometry persists, and measurement of RV ejection fraction remains difficult. There is not even an "easy" measurement such as fractional shortening, as has been used in the LV [41-42]. Further, multiple views are required for accurate assessment, and this is often difficult to achieve in the elderly or in patients with respiratory disease.

Echocardiographically-guided Doppler imaging of blood flow has many advantages in the non-invasive appraisal of RV function. Pulsed Doppler has been used to assess RV inflow velocities and assess age-, rate- and respiration-induced changes[43]; this work is in early stages. The finding that regional pressure gradients exist in the RV[44], as they do in the LV, complicates matters; although only a few millimetres of mercury pressure in magnitude, they further illustrate the complexity of the problem.

Estimations of RV systolic function are much easier, and have already found clinical uses. For estimates of Pulmonary Artery(PA) pressure, the method of Yock [45] and Hatle [46] utilising tricuspid regurgitant velocity offers good agreement with invasively measured values [46]. However, beat-to-beat variability is difficult to study: right atrial pressure is assumed to be an arbitrary constant (which it certainly is not in more than very mild tricuspid regurgitation), and sensitivity is insufficient to study the effect of interventions. Even with very sensitive machines, tricuspid regurgitation is not detectable in everyone. Nonetheless, clinically useful estimates of PA pressure can be obtained [47-50].

An alternative approach is to time ventricular outflow and to study the RV outflow waveform. Systolic time intervals (STIs) have come a long way since Weissler[51,52] and Hirshfeld [53] pioneered their use in the early 1970s. RV STIs were originally measured using pulmonary valve (PV) movement[54]; but whereas this is broadly satisfactory in children in whom imaging is usually easy, it is much harder to get reliable images in adults. Considerable variation was found in correlation with invasive methods[55-63]. It is also often difficult to time the end of RV systole using this method [64]. However, the use of pulsed wave ( pw ) Doppler ultrasound allows great accuracy even when the valve leaflets cannot easily be seen [65-67] and in addition creates new parameters such as the time-to-peak flow or acceleration time (AT) [68,71], which are themselves useful. "Rules-of-thumb" e.g. that an acceleration time of <100ms almost always means significant pulmonary hypertension emerged \([64,65,67,71]\) 。
(iii) Rationale of this study

RVSTIs require further development. Firstly, the range of normality has been inadequately explored. Many "normal ranges" were obtained from studies on patients referred for suspected heart disease[54,61,73]. The effects of age (outside infancy), sex, beat-to-beat variation and inter-personal variation have not been adequately studied.

Are RVSTIs sufficiently constant within individuals and from beat-to-beat for studies on interventions?

Is between-person variation sufficient to make a normal range
of limited application anyway?
What are the effects of age, heart rate and sex?

Part One of this study therefore set out to determine normal ranges for all the commonly-used RVSTIs and to study their variability within and between subjects.

In addition, the effect of RV loading conditions requires investigation because of the steep Frank-Starling curve in the RV[74] and the importance therefore of RV preload. One major determinant of RV preload is the PR interval[77], and correct timing is important for RV output [74,75]. One would wish to have access to a model that would change the PR interval on a predictable basis, whilst keeping other variables almost unphysiologically constant.

Complete heart block, in which there is complete atrioventricular (AV) dissociation with continuing "disconnected" atrial activity, provides an approximation to this ideal. There is continuous variation of the atrioventricular interval combined with a very constant ventricular rate supplied by an electrical pacemaker.

Of course, this situation is not just of academic interest. There is increasing disenchantment with single-chamber ventricular pacing without any attempt at atrial synchronisation, and increasing interest in the benefits of dual chamber pacing[74,76,77]. The North Atlantic Society for Pacing and Electrophysiology (NASPE) has already laid down guidelines which include the use of dual-chamber pacemakers in most of such cases [78]: but it would be fair to say that many fewer such devices are implanted in the UK, largely for economic reasons, and the debate is far from over.

Important questions remain. Most research attention has been focused on effects on the left ventricle: but does variation in the AV interval significantly affect RV output? Is there an "optimum" PR interval for most patients? Can one still perceive the effects of atrio-ventricular variation in the presence of aberrant ventricular excitation such as an artificial pacemaker produces?

How does the effect on the RV compare with the fairly small changes reported in left ventricular function?[79] (The wire is, after all, in the right ventricle).

The second part of this study therefore looked at 30 patients with apparently normal left ventricular function, ventricular demand (VVI) pacemakers, and complete heart block with continuing atrial activity, to study intra-subject changes in RVSTIs as variation in AV interval occurred spontaneously.

\section*{References}
(1) Rigs \(P\), Murray M, Taylor \(D R\) et al

Right ventricular dysfunction detected by gated scintiphotography in patients with acute inferior myocardial infarction Circulation 1975 52 268-172
(2) Wackers FJ, Lie KI, Sokale EB, Res J, van der Schoot JB, Durrer D.
Prevalence of right ventricular involvement in inferior wall infarction assessed with myocardial imaging with Thallium 201 and Technetium 99 pyrophosphate. Am J Cardiol 197842 358-362
(3) Cohn JN, Guiha \(\mathrm{NH}_{\text {, }}\) Broder MI, Linas CJ Right ventricular infarction: clinical and haemodynamic features \(\begin{array}{lllll}\text { Am J Cardiol } & 1974 \quad 33 & 209-214\end{array}\)
(4) Radford \(M J\), Johnson \(R A\), Daggett WM et al Ventricular septal rupture: a review of clinical and physiologic features and an analysis of survival Circulation \(1981 \quad 64 \quad 545-53\)
(5) Goldman ME, Horowitz SF, Meller J, Mindich B, Teichholz LE Recovery of right ventricular function following repair of acute interventricular defect Chest 198282 59-63
6) Liberthson RR, Boucher CA, Strauss HW, Dinsmore RE, McKusick KA, Pohost GM Right ventricular function in adult atrial septal defect: pre-operative and post-operative assessment and clinical implications \(\begin{array}{llll}\text { Am J Cardiol } & 1981 & 47 & 56-60\end{array}\)
(7) Fuster V, McGoon DC, Kennedy MA, Ritter DG, Kirklin JW Long-term evaluation (12-22 years) of open-heart surgery for tetralogy of Fallot Am J Cardiol 198046 635-642
(8) Qureshi SA, Richeimer R, McKay R, Arnold R Doppler echocardiographic evaluation of pulmonary artery flow after modified Fontan operation: importance of atrial contraction \(\begin{array}{llll}B r & \text { Heart J } 1990 \quad 64 & 272-6\end{array}\)
(9) Jablonsky G, Hilton JD, Liu PP et al

Rest and exercise ventricular function in adults with congenital ventricular septal defects
Am J Cardiol 198351 293-298
(10) Benson LN, Bonet J, McLaughlin P et al

Assessment of ventricular function during supine bicycle exercise after Mustard's operation Circulation \(1982 \quad 64\) 1052-1059
(11) Liberthson RR, Boucher CA, Strauss HW, Dinsmore RE, McKusick KA Right ventricular function in adult atrial septal defect: pre-operative and post-operative assessment and clinical implications \(\begin{array}{llll}\text { Am J Cardiol } & 1981 & 47 & 56-60\end{array}\)
(12) Colucci WS, Holman BL, Wynne J et al

Improved right ventricular function and reduced pulmonary vascular resistance during prazocin therapy of congestive heart failure \(\begin{array}{llll}\text { Am J Med } & 1981 \quad 71 & 75-80\end{array}\)
(13) Polak JF, Holman BL, Wynne J, Colucci WS

Right ventricular ejection fraction: an indicator of increased mortality in patients with congestive heart failure associated with coronary artery disease J Am Coll Cardiol \(1983 \quad 2\) 217-224
(14) Massie BM, Kramer BL, Topic N, Henderson SG

Haemodynamic and radionuclide effects of acute Captopril therapy for heart failure: chnages in left and right ventricular volumes and function at rest and during exercise Circulation 198265 1374-1381
(15) Christakis GT, Fremes SE, Weisel RD, Ivanov J, Madonik MM, Seawright SJ, McLaughlin PR
Right ventricular dysfunction following cold potassium cardioplegia J Thorac Cardiovasc Surg \(1985 \quad 90 \quad\) 243-251
(16) Mullen JC, Weisel RD, Fremes SE, Christakis GT, Ivanov J, Madonik MM, Houle S, Mc Laughlin PR
Right ventricular function: a comparison between blood and crystalloid cardioplegia Ann Thorac Surg 1987 43 17-24
(17) Rabinovich MA, Elstein J, Chiu RCJ, Rose CP, Artin A, Burgess J
Selective right ventricular dysfunction after coronary artery bypass grafting (brief communication)
J Thorac Cardivasc Surg \(1983 \quad 86444\)
(18) Burghuler O, Bergmann \(H\), Silberbauer K, Hofer R

Right ventricular performance in chronic airflow obstruction Respiration \(1984 \quad 45\) 124-130
(19) Report of the MRC Worlsing Party

Long-term oxygen therapy in chronic hypoxic cor pulmonale, complicating chronic bronchitis and emphysema Lancet 1981 i 681-685
(20) Brent BN, Mahler D, Berger HJ, Matthay RA, Pytlik L, Zaret BL Augmentation of right ventricular performance in chronic obstructive pulmonary disease by Terbutaline: a combined radionuclide and haemodynamic study Am J Cardiol 198249 313-319
(21) Thiene G, Nara A, Corrado D, Rossi L, Pennelli N Right ventricular cardiomyopathy and sudden death in young people New Eng J Med \(1988 \quad 318 \quad 129\)-133
(22) Gentzler RD, Briseli MF, Gault JH Angiographic estimation of right ventricular volume in man Circulation 197450324
(23) Ferlinz J, Bechtel D, Hermann MV, Cohn PF, Gohrlin R A new geometric model for right ventricular volume determination (Abstr) Circulation 1974 50(Suppl 3) p225
(24) Scott R

The electrocardiographic diagnosis of right ventricular hypertrophy: correlation with anatomical findings Am Heart J 196060659
(25) Sarnoff SJ, Berglund F

Ventricular function. I. Starling's law of the heart studied by means of simultaneous right and left ventricular function curves in the dog。 \(\begin{array}{llll}\text { Circulation } & 1954 \quad 9 \quad 708\end{array}\)
(26) Redington AN, Rigby ML, Shinebourne EA, Oldershaw PJ Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified BrHeart J \(1990 \quad 63\) 45-49
(27) Redington \(A N\), Gray HH, Hodson ME, Rigby ML, Oldershaw PJ
Characterisation of the normal right ventricular pressure -volume relation by biplane angiography and simultaneous micromanometer pressure measurements Br Heart J \(1988 \quad 59\) 23-30
(28) Christakis GT, Weisel RD, Mickle DAG, Inanov J, Tumiati LC Zuech PE, Madonils MM, Liu P
Right ventricular function and metabolism Ciruclation 1990 82(Suppl IV): IV-322 - IV340
(29) Starling MA, Dell'Italia LJ, Claneddron TK, Boros BL, O'Rourlse RA.
First transit and equilibrium radionucleid angiography in patients with inferior transmural myocardial infarction: criteria for a diagnosis of associated haemodynamically significant right ventricular infarction. J Am Coll Cardio 19844 923-930
(30) Kue QF, MacNee W, Flenday DC, Hannam WJ, Adie CJ, Muir AL Can right ventricular performance be assessed by equilibrium gated radionucleid ventriculography ? Thorax 198338 486-493
(31) Schuler H, Hofman M, Schwarz F, Mehmel HC, Kubler W Right ventricular performance may determine outcome in thrombolysis in inferior infarction (Abtsr) Ciruclation 198368 (Suppl III) III-209
(32) Berger HJ, Matthay RA, Loke J, Marshall RC, Gottschalk A, Zaret BL Assessment of cardiac performance with quantitative radionucleid angiography: right ventricular ejection fraction with reference to findings in chronic obstructive airway disease
(33) Sharpe DN, Botvinick GH, Shames DM et al The non-invasive assessment of right ventricular infarction. Circulation \(1978 \quad 57\) 483-490
(34) Manno BV, Iskandrian AS, Hakki AH

Right ventricular function: methodologic and clinical considerations in non-invasive scintigraphic assessment J Am Coll Cardiol 19843 1072-1081
(35) Slutsky R, Hooper \(W\), Berber \(K\) et al

Assessment of right ventricular function at rest and during exercise in patients with coronary artery disease: a new approach using equilibrium-gated radionucleid ventriculography
Am J Cardiol \(1980 \quad 45\) 63-71
(36) Popp RL, Wolfe SB, Hirata T, Feigenbaum H Estimation of right and left ventricular size by ultrasound Am J Cardiol 196924523
(37) King ME, Braun H, Goldblatt A, Liberthson R, Weyman AE Interventricular septal configuration as a predictor of right ventricular systolic hypertension in children: a cross-sectional echocardiographic study Circulation 68 68-75
(38) Panachio IP et al Two-dimensional echocardiographic estimation of right ventricular volume J Am Coll Cardiol \(1983 \quad 2 \quad 911\)
(39) Levine RA, Gibson TC, Aretz T, Gillam LD, Guyer DE, King ME, Weyman AE Echocardiographic measurement of right ventricular volume Circulation 198469497
(40) Foale R, Nihoyannopaulos P, McKenna \(W\), Kleinebenne \(A\) Echocardiographic measurement of the normal right ventricle British Heart Journal 198656 33-44
(41) Quinones MA, Pickering E, Alexander JK

Percentage shortening of the echocardiographic left ventricular dimension. Its use in determining ejection fraction and stroke volume. \(\begin{array}{llll}\text { Chest } & 1978 & 74 & 59\end{array}\)
(42) Bennett DH, Evans DW Correlation of left ventricular mass determined by echocardiography and vectorcardiography and electrocardiographic voltage measurements British Heart Journal \(1974 \quad 36 \quad 981\)
(43) Zoghbi WA, Habib GB, Quinones MA

Doppler assessment of right ventricular filling in a normal population
\(\begin{array}{llll}\text { Circulation } & 1990 \quad 82 \text { 1316-1324 }\end{array}\)
(44) Courtois M, Barzilai B, Gutierrez F, Ludbrook PA

Characterisation of regional pressure gradients in
the right ventricle
\(\begin{array}{llll}\text { Circulation } & 1990 & 82 & \text { 1413-1423 }\end{array}\)
(45) Yock PG, Popp RC

Non-invasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation
Circulation \(1984 \quad 70\) 657-662
(46) Hatle L, Angelson BAJ, Tromsdal A

Non-invasive estimation of pulmonary artery systolic pressure with Doppler ultrasound. British Heart Journal 198145 157-165
(47) Skjaerpe T, Hatle L

Non-invasive estimation of pulmonary artery pressure by Doppler ultrasound in tricuspid regurgitation
In: Spencer MP, ed.
Cardiac Doppler Diagnosis
Boston: Martinus Nijhoff publishers
1983 247-254
(48) dePrada JAV, Runno \(T\), Martin-Duran R, Laracan M, Znero J, deMurna JAO, Torres A, Figuerson A
Non-invasive determination of pulmonary artery systolic pressure by continuous wave Doppler
Int J Cardiol 198716 177-184
(49) Currie PJ, Seward JB, Chan KL

Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheter study in 127 patients
\(\begin{array}{llll}\mathrm{J} A m & \text { Amll Cardiol } 1985 \quad 6 \quad 750-756\end{array}\)
(50) Berger M, Maimowitz A, Tosh AV, Berdoff RL, Goldberg E Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound J Am Coll Cardiol \(1985 \quad 6359\)
(51) Leighton RF, Weissler AM, Weinstein PR et al

Right and left ventricular systolic time intervals. Effects of heart rate, respiration and atrial pacing
Am J Cardiol \(1971 \quad 27\) 66-72
(52) Weissler AM, Garrard L

Systolic Time intervals in cardiac disease
Modern Concepts in Cardiovascular Diseases \(1971 \quad 40 \quad 1-8\)
(53) Hirschfeld S, Meyer R, Schwartz DC, Koryhagin J, Kaplan S Measurement of right and left ventricular systolic time intervals by echocardiography. Circulation \(1975 \quad 51 \quad 304\)
(54) Nanda NC, Graniak R, Robertson TI, Shah PM Echocardiographic evaluation of pulmonary hypertension Circulation 1974 50 575-581
(55) Parker ME, Just HG

Systolic time intervals in coronary artery disease as indices of left ventricular function: fact or fantasy ? British Heart Journal \(1974 \quad 36368\)
(56) Cokkins DV, DePuey EG, Rivers HH, de Castro CM, Burdine JA Leecham RD, Hall RJ
Correlation of systolic time intervals and radionucleid angiography at rest and during exercise Am Heart \(J\) 1985 : 109(1) 104-112
(57) Weissler AM, Peeler RG, Roehill WH

Relationship between left ventricular ejection time, stroke volume and heart rate in normal individuals and patients with cardiovascular disease Am Heart J 1961 62 367-378
(58) Tabley RC, Meyer JF, McNay JL Evaluation of the pre-ejection period as an estimate of myocardial contractility in dogs Am J Cardiol 197127284
(59) Acqientella H, Schiller NB, Sharpe DN, Chatterjee K Lacks of correlation between echocardiographic pulmonary valve morphology and simultaneous pulmonary artery pressure Am J Cardiol 1979 43 946-950
(60) Stevenson JG, Kawabori I, Ganteroth WG Non-invasive estimation of peak plumonary artery pressure by M-mode echocardiography J Am Coll Cardiol \(1984 \quad 43\) 946-950
(61) Spooner EW, Perry BL, Stern AM, Signaan JM Estimation of pulmonary/systemic resistance rations from echocardiographic systolic time intervals in young patients with compensated or acquired heart disease Am J Cardiol 197842810
(62) Garcia EJ, Riggs T, Hirschfeld S, Leibmann J Echocardiographic assessment of the adequacy of pulmonary artery banding
Am J Cardiol 197944478
(63) Johnson GL, Meyer RA, Korfhagen J, Schwartz DC, Kaplan S Echocardiogrphic assessment of pulmonary artery pressure in children with complete right bundle branch block \(\begin{array}{lllll}\text { Am J Cardiol } & 1978 & 41 & 1264\end{array}\)
(64) Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J Non-invasive evaluation of pulmonary hypertension by pulsed Doppler technique \(\begin{array}{llll}\text { Circulation } & 1983 \quad 68 & 302-309\end{array}\)
(65) Kosturakis D, Goldberg SJ, Allen HD, Loeber C Doppler echocardiographic prediction of pulmonary arterial hypertension in congenital heart disease Am J Cardiol 198453 1110-1115
(66) Dabestani A, Mahan G, Gardin JM, Tanenaka K, Burn C Allfie A et al
Evaluation of pulmonary artery pressure and resistance by pulsed Doppler echocardiography Am J Cardiol 198759 662-668
(67) Jiang \(L\), Stewart \(W J\), King ME, Weyman AE An improved method for estimation of pulmonary artery pressure using Doppler velocity time intervals (Abstro) J Am Coll Cardiol 1984 3(2) 613
(68) Matsuda M, Sekiguchi T, Sugishita Y, Kuwato K, Iida K, Ito L Reliability of non-invasive estimates of pulmonary hypertension by pulsed Doppler echocardiography British Heart Journal 198656 158-164
(69) Hatle L

Non-invasive methods of measuring plumonary artery pressure and flow velocity
In: Cardiology: an international perspective
New York: Plenum Press 1984 783-790
(70) Hatle L, Angelson B

Doppler ultrasound in cardiology: physical principles and clinical applications
Philadelphia: Lea and Febinger 1985 257-264
(71) Gardin JM, Burn CS, Childs WJ, Henry WI

Evaluation of blood flow velocity in the ascending aorta and the main pulmonary artery of normal subjects with Doppler echocardiography
Am Heart J \(1984 \quad 107\) 310-319
(73) Martin-duran R, Larman M, Trugeda A, de Prada JA, Ruano J, Torres A, Figueroa A, Pajarou A, Nistal F
Comparison of Doppler-determined elevated pulmonary artery pressure with pressure measured at cardiac catheter -isation
Am J Cardiol \(1986 \quad 57\) 857-863
(74) Goldstein JA, Harada A, Yagi Y, Barzilai B, Cox JL The haemodynamic importance of systolic ventricular interaction, augmented right atrial contractility and atrioventricular synchrony in acute ventricular dysfunction
\(\begin{array}{lllll}J \text { J Am Coll Cardiol } 1990 \quad 16 & 181-189\end{array}\)
(75) Gillespie WJ, Greene DC, Karatzus NB, Lea GJ

Effect of atrial systole on right ventricular stroke volume
Br Med J 1967 1 75-79
(76) Nanda NC, Bhandari A, Barold SS, Falkoff M

Doppler echocardiographic studies in sequential atrioventricular pacing
PACE 19836 811-814
(77) Sutton R, Citron P

Electrophysiological and haemodynamic basis for the application of new pacemaker technology in sick sinus
syndrome and atrioventricular block
British Heart Journal 197941 600-612
(78) Parsonnet V, Furman S, Smyth NPD

Indications for dual-chamber pacing
\(\begin{array}{llll}\text { PACE } & 1984 & 718-319\end{array}\)
(79) Stewart WJ, Dicola VC, Harthorne JW, Gillam LD, Weyman AE Doppler ultrasound measurement of cardiac output in patients with physiologic pacemakers. Effects of left ventricular function and retrograde ventriculo-atrial conduction
Am J Cardiol \(1984 \quad 54 \quad\) 308-312

HISTORICAL DEVELOPMENT OF SYSTOLIC IRIME INTERVALS
(i) Early development of systolic time intervals

Early studies on the left heart

The Frenchman Marey [80] is credited with the first graphic recordings of the arterial pulse in man, as far back as 1860 . His contemporary, Garrod [81], noted the inverse relationship between heart rate and duration of systole, and this was confirmed by others [82-84]. The classic studies by Wiggers [ 85,86 ] in the 1920 s greatly added to understanding of the timings of the cardiac cycle, and of the relationship of systole and diastole to the heart rate. Katz and Feil [87,88] applied electronic recording methods and explored variability in atrial fibrillation and hypertension; and Blumberg studied a wide range of cardiac disorders [89]. Coblentz [90] gave the first modern description of STIs in 1949, demonstrating the links between electrical and mechanical activation, backed up a few years later by Braunwald [91]. However, all these descriptions were of largely theoretical interest, with little practical application.

Weissler and associates first foresaw and developed the clinical potential of STIs, by a series of seminal papers on their studies in normal individuals and then in patients with heart disease [92-94]. They explored the effect of digoxin, betaadrenergic agonists and beta-blocking drugs on left ventricular function by these methods [95]. Electrical activation of the ventricles was taken from the onset of the QRS complex of the electrocardiogram, onset of ejection was taken as the beginning of the rise of the carotid upstroke, and the end of ejection was determined from aortic valve closure on a phonocardiogram.

Although open to criticism now, as there is a delay between the onset of systole and the rise in the carotid waveform, these careful studies on the left heart laid the foundations for future development, set out normal ranges, and remain the most-quoted papers in the whole field。

Early studies on right ventricular STIS

Although the earliest papers on STIs contained some descriptions of right ventricular STIs (RVSTIs) \([90,91]\), the difficulty of noninvasively recording right ventricular (RV) systole retarded their development. In addition, right heart function was thought to be much less important. Leighton et al [96] produced a painstaking study of RVSTIs, and their relationship to left ventricular (LV) STIs, in 1972. They used invasive methods, studying pulmonary artery (PA) waveform, and used intracardiac phonocardiography to accurately fix the pulmonary component of the second heart sound (P2). LVSTIs were determined noninvasively, by Weissler's method. Twenty-seven patients (of whom only five were normal - most were under investigation for cardiac murmurs) underwent cardiac catheterisation and timings were made at rest using catheter-tip transducers to minimise any errors. Atrial pacing was used in each patient to study the effect of heart rate. They found that RV ejection time (RVET) was longer than LV ejection time (LVET) in each individual (as had been previously found in animals [97]); that the effect of deep inspiration was measurable though small in RVSTIs and unimportant in LVSTIs; that RVET and LVET were strongly negatively associated with heart rate but that the pre-ejection periods were not; and they were the first to suggest that RVSTIs could perhaps be developed to predict PA
```

pressure, demonstrating a moderate correlation of the RV
pre-ejection period (RVPEP) with the pulmonary artery
diastolic pressure.

```
(ii) The assessment of PA dynamics using STIs

Studies assesing PA pressure from RVSTIs using pulmonary valve movement

However, RVSTIs would be of little practical use if their measurement required invasive investigation, as PA pressure could also be directly measured by that technique. Following description of pulmonary valve imaging by Gramiak and Nanda[98] in 1972, Hirschfeld[99] used the method to measure RVSTIs on 11 normal children (aged 3-14 yrs) and compared them with LVSTIs obtained by imaging the aortic valve. Ingeniously, he compared these values (the first non-invasively determined "normal range") with those obtained from 15 children who had transposition of the great arteries. He found a LVET/RVET ratio of 0.8 and a LVPEP/RVPEP ratio of 1.26 in normals, with these figures being approximately reversed in Transposition. He concluded (correctly) that pressure and vascular resistance were the main determinants of STIs.

It seemed logical, then, for him to go on and later that year to assess the pulmonary vascular beds of 62 young patients with congenital heart disease [100]. He enlarged his series of "normals" to 45 (still mostly children), describing the effects of ageing on RVPEP and RVET (minor in his age range) and on the ratio RVPEP/RVET (no effect). All of his 62 patients with congenital heart disease were catheterised, and pulmonary artery pressure and cardiac output were measured, and from these determinations pulmonary vascular resistance was estimated. The ratio RVPEP/RVET was found to moderately correlate with pulmonary artery diastolic pressure (PADP), although the scatter was fairly broad. Association with pulmonary vascular resistance (PVR) and mean PAP were less good. He concluded that for the first time, useful estimates of pulmonary artery pressure and resistance could be made from non-invasive methods.

Nanda and Gramaik[101] went on to study adult patients. They performed cardiac catheterisation on 63 adult patients with a a variety of cardiac disorders ( 25 had mitral valve disease, 12 had ischaemic heart disease, 16 were in atrial fibrillation, etc.) and measured right ventricular pre-ejection period corrected for heart rate by a Bazzett-style[102] formula. In only \(35 \%\) of their patients was a good-quality pulmonary valve echogram achieved, and they did not attempt to record
pulmonary valve closure. Stevenson and associates[103] fared better when studying infants and children (95 out of 125), and noted that sedation improved the correlations considerably.

The differing chest shape of older children and adults is largely to blame for the generally poorer imaging and hence accuracy compared to infants, in whom reliable images are usual[103]. However, Silverman[104] was unable to duplicate Hirschfeld's results, finding no correlation between RVPEP/RVET and mean PAP or PVR.

Boyd[105] noted that high right atrial pressures and the presence of right bundle branch block also diminished any such association. With increasing disaffection with the technique, other pointers such as the waveform of pulmonary artery ejection (as judged from pulmonary valve movement) and depth of the "a" wave were explored[106,107] but no consensus was achieved here either[108,109].

Studies using RVSTIs to assess PA pressure using pulsed Doppler ultrasound

The situation was rescued by the arrival of pulsed Doppler ultrasound. Even if the pulmonary valve could not be clearly imaged, flow in the right ventricular outflow tract or proximal pulmonary artery could be obtained in almost every case, and it was much easier to determine the end of right ventricular ejection. Light[110] first studied PA flow using continuous wave Doppler ultrasound, but this was a "blind" technique, and in adults it could be difficult to be sure that one was not lined up on aortic flow, especially when the aorta is tortuous, as it frequently is in adults. Pulsed Doppler ultrasound can be combined with real-time two-dimensional imaging, and much greater anatomical accuracy can be achieved. The pulsed Doppler mode does carry with it limitations as regards velocity measurement, but as PA flow is usually less than \(1 \mathrm{~m} / \mathrm{sec}[111]\), these are usually containable.

Gardin and associates [112] studied 20 normal individuals, comparing and contrasting left- and right-sided STIs derived from Doppler measurements of aortic and pulmonary artery flow. They confirmed previous findings that LVET is shorter than RVET, and addressed the new parameter of acceleration time, or "time-to-peak" flow. This was found to be much longer in the PA (mean of 160 ms in the PA vs. 98 ms in the aorta) and to take up a much greater part of the ejection time in the PA. Peak
velocity was higher in the aorta \((0.9 \mathrm{~m} / \mathrm{sec} \mathrm{vs} 0.6 \mathrm{~m} / \mathrm{sec}\) in the PA). These data suggested that despite the systemic vascular resistance being much higher than the pulmonary, blood was accelerated two or three times more rapidly in the aorta. No attempt was made to confirm these findings invasively.

Kitabatake[113] studied the correlation between invasive and Doppler data in 33 patients, almost all of whom had heart disease. This should be remembered when using his muchquoted range of normal values (in his patients without elevation of pulmonary artery pressure). He studied flow in the RV outflow tract (RVOT) and noted a useful inverse relationship between acceleration time (AT) and mean PAP, which improved slightly with logarithmic transformation. Even better was the ratio AT/RVET which was also inversely associated with mean PAP, and improved with log。 transformation. This kind of accuracy was clearly clinically useful, and several attempts were made to duplicate his work.

Kosturakis[114] achieved similar results when studying seventeen children (age range \(2 / 12\) to 13 yrs) but could only achieve moderate correlations.

Isobe's group[115] studied 45 adults with varied cardiac disease and demonstrated similar figures to Kitibatake, but also showed that neither RBBB nor low cardiac index significantly diminished the usefulness of the technique; they also demonstrated good correlations between the ratio RVPEP/AT and mean PAP.

Matsuda and colleague[116] studied 67 patients with heart disease and confirmed previous findings; they found that an acceleration time of 90 ms or less always meant a high PAP, but unfortunately this was not very sensitive as 12 of their 22 patients with mean PAPs of \(>25 \mathrm{mmHg}\) had ATs of more than 130 ms . Confirming associations with pulmonary vascular resistance and pulmonary blood flow, they found these poorer than others.

However, in Martin-Duran's series[117] of 51 patients not only were AT and AT/RVET found to accurately predict mean PAP, but PVR was also strongly negatively associated.

General agreement was reached that meaningful estimations of pulmonary flow dynamics could be made from pulsed Doppler recordings of PA flow.

As early detection of pulmonary artery hypertension is
important in neonates, normal ranges for neonates [118,119]
and even for the human foetus [120] were constructed.

Attempts were made to quantify intracardiac[121] and extracardiac[122] shunting by the ratios of LVSTIs and RVSTIs, and Hatle[123] and Marx[122] went one stage further and produced good estimates of PAP from such data. Amid renewed enthusiasm, Hsieh et al[124] looked at RVSTIs derived from M-mode and Doppler and demonstrated their essential identity, showing clearly that Doppler ultrasound was much better at pinpointing end-systole.

Lighty[125] and Panadis[126] cleared up some of the confusion of different "normal ranges" by showing that the position of the sampling beam in the pulmonary artery substantially altered the AT and peak velocity measured。 and other high-velocity jets of blood

Studies assessing PR pressure from continuous wave Doppler ulitrasound

In parallel with these developments, Hatle et al[69,127] found that PAP could also be measured from the velocity of jets of blood across ventricular septal defects. Using a modification of the Bernouille equation that became widely accepted [69], she found that transeptal jet velocity could be used to estimate pressure drop across the defect, and therefore if left ventricular systolic pressure was known (via cuff blood pressure) right ventricular systolic pressure could be estimated with degrees of accuracy which were clinically useful. In general, high velocity jets across VSDs meant low or normal RV pressure, and hence a good prognosis.

Going one stage further, she showed [69] that the velocity of tricuspid regurgitant jets, which had been noted to be present in a majority of normal individuals[128,129], could be added to either a notional right atrial pressure or a clinical estimate of the jugular venous pressure to give PA systolic pressure. de Prada[131], Yock[132], Currie[133] and Berger[134] rapidly confirmed Hatle's findings, with correlation co-efficients generally in the region of \(>.9\); the method has become accepted as the best and most accurate technique for non-invasively
```

measuring PAP where tricuspid regurgitation can be detected by
Doppler ultrasound. Fortunately, the higher the PAP, the more
likely it is that tricuspid regurgitation will be detectable.
It became apparent that many people[135] (perhaps as many as 40%
of normal populations tested [136]) also had pulmonary
regurgitation; similar logic could be applied to these jets to
estimate PA diastolic pressure and mean PAP[137], and impressive
correlations were again found.

```
(vi) Reasons for continued interest in RVSTIS

Have these CW Doppler techniques rendered RVSTIs obsolete ?

At first sight it might appear as though these latter methods of non-invasively measuring PAP have totally superseded the previous, more cumbersome ones. However, this is not so. TR and PR are not detectable in "useable" amounts in everyone, and even when they are detected, complete "envelopes" allowing confident estimation of pressure are not always available. Clinical estimates of right atrial pressure are crude and unreliable, and accuracy is improved when a notional figure of 10 mmHg is taken for RA pressure ! When the right atrial pressure is very high the velocity of right-ventricular-to-right-atrial jets falls (because the pressure difference is less) and one can only say that the pressure is "at least" a given figure. Whilst this is
indeed often sufficient for clinical work, Hatle and Yock's method is insensitive to small changes in PAP and is unsuitable for analysis of beat-to-beat variability. Using a formula involving squaring the velocity[69] means a non-linear relationship, and a difference of say, \(1 \mathrm{~m} / \mathrm{sec}\) due to a poorly- aligned Doppler beam may involve an error of 30 mmHg .

Severe TR distorts right atrial mechanics [104] and then the right atrial pressure certainly does not stay unchanged during ventricular systole !

Thus I believe that RVSIIIs still have a useful place in the assessment of pulmonary artery pressure and pulmonary vascular resistance, remain the only non-invasive method of determining beat-to-beat effects, and remain useful for longitudinal studies. The advent of pulsed Doppler has made the widespread application of the technique to adults possible, and created new useful parameters which themselves reflect aspects of RV function not readily discernible by other methods.

\section*{(v) Studies in the accuracy of measurements}

\section*{Variability of measurements}

Beat-to-beat variability in RVSTIs is small in normal individuals at rest in sinus rhythm [13,14] breathing quietly. Respiratory effects, no doubt partly mediated through changes in heart rate [92,137], occur with deep breathing[139], and are large when R-R' intervals vary markedly, as in atrial fibrillation[140]。 In pericardial effusion, STIs have been used thus to explain the mechanism of pulsus paradoxus[141]。

The study of variability has even had its comic side: one set of authors (a husband and wife team, it seems) even explored the effects of sauna on STIs (but made no effort to try to control for the large number of variables involved !)[142].

Some STIs vary with the heart rate: although there is some disagreement about RVPEP[92,93,96], RVET varies inversely with heart rate \([92,93,96]\). AT also varies inversely with heart rate (at least in pigs!) and Gardin suggested the use of a Bazett-style formula to correct it[143]. He found, like Weissler[92] and Leighton[96], that RVPEP/RVET did not seem to vary with heart rate, and found that AT/RVET did not do so either.

The question of consistency and inter-observer variation was addressed by Lang-Jenson[144]; he found intra-observer co-efficients of variation of around \(7 \%\), and inter-observer rates not much higher at \(10.6 \%\), for assessments of peak velocity. However (encouragingly), the figures for STIs were very much lower again at less than \(2.5 \%\), indicating how easy and accurate these measurements can be. It should be noted, nonetheless, that all his subjects were young women, who are usually very easy to study by echocardiography.
(vi) Studies in the use of STIs in pacing technology

\section*{Importance of atrial synchronisation}

One situation where beat-to-beat changes have come to the fore is in complete heart block with ventricular pacing systems. Most patients with complete heart block have continuing but "disconnected" atrial activity, such that the atrio-ventricular interval (the "PR" interval) is continuously varying; electrical pacing systems can either just maintain a ventricular rate of around 70-90 bpm, or the more sophisticated ones may attempt to raise ventricular rate according to body needs by a variety of mechanisms. The most physiological way to do this is to make the ventricular pacing rate follow the spontaneous atrial rate. This approach will also keep normal atrioventricular intervals (often programmable over a range of around \(50-250 \mathrm{~ms}\) ) and, it is thought, preserve ventricular filling and function. Although single chamber pacing (VVI) in complete heart block saves life[145] and restores life expectancy to normal[146] or near-normal[147] (depending on the presence or absence of cardiac failure and other pathology[148]), there is evidence that dual-chamber pacing improves survival in both complete heart block [149] and sino-atrial disease[150], and that this effect is more marked in patients already in heart failure[148,149].

Invasive studies on atrial contributions to cardiac output in paced patients

An impressive body of opinion now exists as to the superiority of some form of atrial synchronisation over VVI pacing。 Pacing is an abnormal method of activation, and does not lead to normal contractility[151], producing an effect similar to left bundle branch block[152]; and there was, for some years, some dispute about the relative importance of pacing site and atrial contribution to cardiac output. However, the careful studies by Daggett[153], Mitchell[154], Linden[155] and Sayder[156] on dogs with surgically-induced complete heart block demonstrated that atrial contributions to cardiac output, stroke volume, \(d P / d t m a x ~ a n d ~ m y o c a r d i a l ~ s e g m e n t ~ l e n g t h s ~\) were much more important than the site of ventricular activation. They also showed that atrial function actually became more important at higher heart rates[154] but was less affected than might be supposed by fluid loading conditions[156]. This early animal work was confirmed by human studies undertaken initially by cardiac catheterisation by Samet[157] and Benchimol[158] in patients with normal hearts and in a variety of heart diseases by Karlof[159]. Myocardial oxygen consumption, coronary sinus lactate and arterial blood lactate, and coronary blood flow (all measures of cardiac work) were the same at rest in VVI and dualchamber pacing, but cardiac output was higher in dual-chamber pacing in these and Nordlanders[160] study, confirming increased myocardial efficiency.

On vigorous exercise by bicycle ergometry cardiac output and work capacity are higher in dual-chamber pacing[161,162], and arterio-venous oxygen difference is much lower[163].

Radionuclied studies on the effects of atrial synchronisation during cardiac pacing

Radionuclieds have also been used to assess ventricular blood volume and ejection fraction (EF) in patients with pacemakers that could be programmed to VVI or dual-chamber (DDD) function. Ejection fraction is higher at rest with a physiological PR interval[164,165]. Ambulatory intra-arterial blood pressure monitoring in similar patients has also shown that mean blood pressures are higher and variations in blood pressure much less frequent in DDD pacing[166]. Patients much prefer DDD mode[166].

Why do we still implant single-chamber systems?
It might be asked, therefore, why DDD pacemakers are not routinely implanted for the treatment of complete heart block where there is continuing atrial activity. It would be unfair to suggest that dual-chamber pacing systems are without their own problems.

Displacement of the atrial lead, which was a relatively frequent problem in early days, has been largely solved by the increasing use of active fixation atrial electrodes.
"Endless loop" tachycardias[167-170] are usually avoidable by careful programming of refractory periods[172-175].

There is undoubtedly a need for increased sophistication of programming equipment and support staff.

But the main reason is cost: at present a VVI system and wire can be bought for around five hundred pounds (with minimal programmability), whereas a DDD system and its two wires costs around fifteen hundred pounds. With numbers of elderly expected to rapidly increase in the next ten years, the cost of providing a pacing service will rise substantially.

It is often said that elderly people do not need the sophistication of high technology devices as they live somewhat sedentary lives. Needless to say, this may become a self-fulfilling prophecy: Because of fiscal restrictions, a good case has to be made; investigation of the unwanted effects of single-chamber(VVI) pacing should be part of this. Although most old people who receive pacemakers are, for the moment, likely to receive VVI systems, investigation into the effect on their health is vital. Quality of life is as important for many old people as quantity of life.

What unwanted effects of VVI pacing have been identiried, and can it be demonstrated that loss of atrial synchrony is involved ?

Unwanted effects of single-chamber pacing do occur, and are related to the "PR" interval fluctuations inherent in singlechamber pacing. An entity comprising fluctuating blood pressure, pulsations in neck veins, breathlessness and dizziness (sometimes with syncope) was described by a number of authors in the early 1970s[176-180], and the term the "Pacemaker Syndrome" was coined [181-185]. Accompanying the falls of arterial blood pressure were raised atrial pressures \([186,191,192]\) and retrograde atrial flow into systemic and pulmonary veins, demonstrated by contrast echocardiography[187,188] and Doppler ultrasound [189,190]. Nishimura, in a series from the Mayo Clinic[193], showed that this syndrome was abolished by conversion to dual-chamber pacing. He advised careful fine-tuning of the PR interval to obtain optimal haemodynamics.

How do STIs fit into this "Fine-tuning" ?

Shuster and Nanda[194] were amongst the first to foresee the potential of a non-invasive technique such as Doppler ultrasound to "fine-tune" the atrioventricular interval. Some studies looked at left ventricular filling by pulsed Doppler timings of mitral valve flow [195-198] and increments of around 20\% were added to cardiac output when measuring left ventricular outflow[199-202]. Stewart[203] did suggest that perhaps looking at the differences with and without atrial synchronisation could be used to select patients for \(\operatorname{DDD}\) pacing. Several studies (mostly measuring cardiac output by transcutaneous aortovelography rather than STIs) concluded that the optimal \(P R\) interval at rest was around 100-150 ms, but that perhaps a shorter timing of \(50-100 \mathrm{~ms}\) might be appropriate on exercise \([197,198,201,203]\). But little effort was made to explore the effects of "inverted" atrioventricular sequencing (i.e. \(P\) waves following ventricular activation)[205], such as occur in VVI pacing; almost all these studies were performed on dual-chamber systems, and in this mode this event cannot occur. These studies exclusively concentrate on the left heart, and no studies using STIs or flow integrals have been published on right heart dynamics in this situation.

But pacing is a right ventricular event; and it is also logical to study the right ventricle because of its lower pressures, which should make the effects of atrial timing (or mistiming) more obvious. The pressure/output curve for the right ventricle is also much steeper, making loading conditions very important. A determinant of RV loading is the PR interval.

Thus this area is still largely unemplored: the effect of vaxying but "physiological" \(P R\) intervals has been poorly studied in the right heart, despite the clinical importance through pacing: and the effects of inverted atrio-ventricular sequencing are unknown.

\section*{References}
（80）Marey EJ
De l＇emploi du sphygmographe dans le diagnostic des affections valvulaires du coeur et des aneurismes des arteres；extrait d＇une note de M．Marey CR Acad Sci（D）Paris \(1860 \quad 51 \quad 813-817\)
（81）Garrod AH
On some points connected with the circulation of the blood， arrived at from a study of the sphygmograph－trace Proc．Roy Soc London 1874－1875 23 140－151
（82）Thurston E
The length of systole of the heart，as estimated from sphygmograph tracings \(\begin{array}{lllll}J \text { Anat Physiol } & 1876 & 10 & 494-501\end{array}\)
（83）Chapman PM，Lond MD
Abstract of the Goulstonian Lectures on the physiology of the circulation．
Br Med J 1894 1 511－515
（84）Bowen WP
Changes in heart rate，blood pressure and duration of systole resulting from bicycling。 \(\begin{array}{lllll}\text { Am J Physiol } & 1904 \quad 11 & 59-77\end{array}\)
（85）Wiggers CJ
Studies on the consecutive phases of the cardiac cycle
1：the duration on the consecutive phases of the cardiac cycle and the criteria for their precise determination Am J Physiol 192156 415－438
（86）Wiggers CJ
Studies on the consecutive phases of the cardiac cycle
2：the laws governing the relative durations of ventricular systole and diastole．
Am J Physiol \(1921 \quad 56\) 439－459
（87）Katz LN，Feil HS
Clinical observations on the dynamics of ventricular
systole．I．Auricular fibrillation。
Arch．Intern Med \(1923 \quad 32\) 672－69
（88）Feil HS，Katz LN
Clinical observations on the dynamics of ventricular
systole．II。 Hypertension。
Arch Intern Med \(1923 \quad 33\) 321－329
(89) Blumberger K
VI. Die untersuchung der dynamik des herzens beim menschen.
Ergeb Inn Med Kinderheiks \(1942 \quad 62\) 424-531
(90) Coblentz B, Harvey RM, Ferrer MI

The relationship between electrical and mechanical events in the cardiac cycle in man
Br Heart J 194911 1-22
(91) Braunwald E, Fishman AP, Cournand A Time relationships of dynamic events in the cardiac chambers, pulmonary artery and aorta in man.
Circ Res 19564 100-107
(92) Weissler AM, Peeler PG, Roehill WHT

Relationships between left ventricular ejection time, stroke volume and heart rate in normal individuals and patients with cardiovascular disease Am Heart J 1961 62 367-378
(93) Weissler AM, Harris WS, Schoenfeld CD Systolic time intervals in heart failure in man Circulation 196837 149-159
(94) Weissler AM, Garrard CL

Systolic time intervals in cardiac disease
Mod Conc Cardiovasc Dis \(1970 \quad 40\) 1-8
(95) Harris WS, Schoenfeld CD, Brooks RH

Effect of beta-adrenergic blockade on the haemodynamic responses to epinephrine in man
Am J Cardiol 196617 484-492
(96) Leighton RF, Weissler AM, Weinstein PB, Wooley CF Right and left systolic time intervals Am J Cardiol 1971 66-72
(97) Katz LN

The asynchronism of right and left ventricular contractions and the independent variations in their duration
Am J Physiol \(1925 \quad 72\) 655-681
(98) Gramiak R, Nanda NC, Shah PM

Echocardiographic detection of the pulmonary valve
Radiology \(1970 \quad 961\)
(99) Hirschfeld S, Meyer R, Schwartz DC, Korfhagen J, Kaplan S Measurement of right and left ventricular systolic time intervals by echocardiography
Circulation \(1975 \quad 51 \quad 304-309\)
(100) Hirschfeld S, Meyer R, Schwartz DC, Korfhagen J, Kaplan S The echocardiographic assessment of pulmonary artery pressure and pulmonary vascular resistance. Circulation \(1975 \quad 52 \quad 642-650\)
(101) Nanda NC, Gramiak R, Robinson TI, Shah PM Echocardiographic evaluation of pulmonary hypertension \(\begin{array}{llll}\text { Circulation } & 1974 & 50 & 575-581\end{array}\)
(102) Bazett HC

An analysis of the time relationship of electrocardiograms Heart 19207 353-70
(103) Stevenson JG, Kawabori I, Guntheroth WG

Non-invasive estimation of peak pulmonary artery pressure by M-mode echocardiography J Am Coll Cardio 1984 4(5) 1021-1027
(104) Silverman NH, Snider AR, Rudolph AM

Evaluation of pulmonary hypertension by M-mode echocardiography in children with ventricular septal defect. Circulation \(1980 \quad 61\) 1125-1132
(105) Boyd MJ, Williams IP, Turton CWG, Brooks \(\mathbb{N}\), Leach G, Millard FJC
Echocardiographic method for the estimation of pulmonary artery pressure in chronic lung disease
Thorax \(1980 \quad 35 \quad 914-919\)
(106) Lew W, Karliner JS

Assessment of pulmonary valve echogram in normal subjects and in patients with pulmonary arterial hypertension Br Heart J 1979 42 147-161
(107) Heger JJ, Weyman AE

A review of M -mode and cross-sectional echocardiographic findings of the pulmonary valve
J Clin Ultrasound 1979 7 98-107
(108) Acquatella H, Schiller NB, Sharpe DN, Chatterjee K Lack of correlation between echocardiographic pulmonary valve morphology and simultaneous pulmonary artery pressure
Am J Cardiol 197943 946-950
(109) Kerber RE, Martins JB, Barnes R, Manuel WJ, Maximov M Effects of acute haemodynamic alterations in pulmonic valve motion. Experimental and clinical echocardiographic studies
\begin{tabular}{llll} 
Circulation & \(1979 \quad 60 \quad 1074-1081\)
\end{tabular}
(110) Light LH

Initial evaluation of transcutaneous aortovelography new non-invasive technique for haemodynamic measurements in the major thoracic vessels.
In: Reneman RS, ed. Cardiovascular applications of ultrasound. Amsterdam: North-Holland Publishing Company 1974: 325-360
(111) Graettinger WF, Greene ER, Voyles WF

Doppler predictions of pulmonary artery pressure, flow, and resistance in adults.
\(\begin{array}{llll}\text { Am Heart J } 1987 \quad 113 & \text { 1426-1437 }\end{array}\)
(112) Gardin JM, Burn CS, Childs WJ, Henry WL

Evaluation of blood flow velocity in the ascending aorta and main pulmonary artery of normal subjects by Doppler echocardiography \(\begin{array}{llll}\text { Am Heart J } 1984 & 107 & 310-319\end{array}\)
(113) Kitabatake A, Inoue \(M\), Asao \(M\), Masuyama \(T\), Tanouchi J, Morita \(T\), Mishima M, Uematsu M, Shimazu T, Hori M, Abe H Non-invasive evaluation of pulmonary hypertension by a pulsed Doppler techinique
Circulation \(1983 \quad 68\) 302-309
(114) Kosturakis D, Goldberg SJ, Allen HD, Loeber C Doppler echocardiographic prediction of pulmonary arterial hypertension in congenital heart disease Am J Cardiol 198453 1110-1115
(115) Isobe M, Yazaki Y, Takaku F, Koizumi K, Hara K, Tsuneuoshi H, Yamaguchi T, Machii K Prediction of pulmonary arterial pressure in adults by pulsed Doppler echocardiography.
Am J Cardiol \(1986 \quad 57 \quad 316-321\)
(116) Matsuda M, Sekiguchi T, Sugishita Y, Kuwako K, Iida K, Ito I Reliability of non-invasive estimates of pulmonary hypertension by pulsed Doppler echocardiography Br Heart J 198656 158-64
(117) Martin-Duran R, Larman M, Trugeda A, Vazquez de Prada JA, Ruano J, Torres A, Figueroa A, Pajaron A, Nistal F Comparison of Doppler-determined elevated pulmonary arterial pressure with pressure measured at cardiac catheterisation Am J Cardiol \(1986 \quad 57\) 859-863
(118) Shiraishi H, Yanagisawa M

Pulsed Doppler echocardiographic evaluation of neonatal circulatory changes
Br Heart J 198757 161-167
(119) Yoshida Y, Baylen BG, Emmanouilides GC

Ventricular systolic time intervals by simultaneous echocardiographic recording of the semi-lunar valves during the first days of life: a study of new-born infants. \(J\) Clin Ultrasound 198311 431-436
(120) Machado MVL, Chita SC, LD Allan

Acceleration time in the aorta and pulmonary artery
measured by Doppler echocardiography in the mid-trimester normal human foetus
Br Heart J 198758 15-18
(121) Marx GR, Allen HD, Goldberg SJ

Doppler echocardiographic estimation of systolic pulmonary artery pressure in paediatric patients with
interventricular communications
\(\begin{array}{llll}J \\ J & \text { Am Coll Cardio } & 1985 \quad 6 \quad 1132-1137\end{array}\)
(122) Marx GR, Allen HD, Goldberg SJ

Doppler echocardiographic estimation of systolic pulmonary artery pressure in patients with aorto-pulmonary shunts J Am Coll Cardio \(1985 \quad 7 \quad\) 880-885
(123) Hatle L, Angelson B

In: Doppler ultrasound in cardiology
Philadelphia: Lea \& Febinger, 1985: 2nd Ed.
(124) Hsieh KS, Sanders SP, Colan SD, Macpherson D, Holland C Right ventricular systolic time intervals : comparison of echocardiographic and Doppler-derived values. Am Heart J 1986 112 103-107
(125) Lighty GW, Gargiulo A, Kronzon I, Politzer F Comparison of multiple views for the evaluation of pulmonary artery blood flow by Doppler echocardiography Circulation 1986 74 1002-1006
(126) Panidis I, Ross J, Miatz GS

Effect of sampling site on assessment of PA blood flow by Doppler echocardiography
Am J Cardiol \(1986 \quad 58\) 1145-1147
(127) Hatle L, Rokseth R

Non-invasive diagnosis and assessment of ventricular septal defect by Doppler ultrasound. Acta Med Scand 1981 Suppl 645 47-56
(128) Michelson S, Harlen M, Otterstad JE

Prevalence of tricuspid and pulmonary regurgitation diagnosed by Doppler in apparently healthy women. Eur Heart \(J\) 1988 9 61-71
(129) Upward J, Challenor V, Sutherland GR
"Physiological" tricuspid and pulmonary regurgitation: the varying incidence in a representative adult cardiac population Br Heart J 1987618
(130) Skjaerpe \(T\), Hatle L

Non-invasive estimation of pulmonary artery pressure by Doppler ultrasound in tricuspid regurgitation In Spencer MP, ed. Cardiac Doppler Diagnosis Boston: Martinus Nijhoff publishers 1983 247-254
(131) de Prada JAV, Ruano J, Martin-Duran R, Larman M, Zuero J de Murna JAO, Torres A, Figueroa A Non-invasive determination of pulmonary artery systolic pressure by continuous wave Doppler Int J Cardiol 198716 177-184
(132) Yock PG, Popp RL

Non-invasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. \(\begin{array}{llll}\text { Circulation } & 1984 & 70 & 657\end{array}\)
(133) Currie PJ, Seward JB, Chan K-L

Continuous wave Doppler determination of right ventricular pressure: a simultaneous Doppler-catheterisation study in 127 patients
J Am Coll Cardiol \(1985 \quad 6 \quad\) 750-756
(134) Berger M, Maimowitz A, Tosh AV, Berdoff RL, Goldberg E Quantitative assessment of pulmonary hypertension in patients with tricuspid regurgitation using continuous wave Doppler ultrasound. J Am Coll Cardiol \(1985 \quad 6 \quad 359\)
(135) Yock PG, Naasz C, Schnittger I, Popp RC Doppler tricuspid regurgitation and pulmonary regurgitation in normals - is it real? Circ 198470 Suppl II II-40 (Abstr)
(136) Takao S, Miyatake K, Izami S, Kinoshiti \(\mathbb{N}\), Sakakibara \(H_{\text {, }}\) Nimura \(Y\)
Physiological pulmonary regurgitation detected by the Doppler technique and its differential diagnosis J Am Coll Cardiol \(1985 \quad 5 \quad 499\) (Abstr)
(137) Masuyama \(T_{f}\) Kodama K, Kitabatake \(A\), Sato \(H_{f}\) Nanto \(S_{g}\) Inuoe M
Continuous wave Doppler echocardiographic detection of pulmonary regurgitation and its application to noninvasive estimation of pulmonary artery pressure Cixculation \(1986 \quad 74(3) \quad 484-492\)
(138) van Leeuwen \(P\), Keummell HC

Respiratory modulation of cardiac time intervals Br Heart J 198758 129-135
(139) Nanda PS, Pigott \(\mathrm{VM}_{\text {; }}\) Spodick DH

Sequential cardiac responses during the respiratory cycle: patterns of change in systolic intervals Chest 197363 380-385
(140) Cieslinski A, Hui WKK, Oldershaw PJ, Gregorato G, Gibson D Interaction between systole and diastole time intervals in atrial fibrillation
Br Heart J \(1984 \quad 51\) 431-437
(141) Carter WH, McIntosh HD, Orgain ES

Respiratory variation on left ventricular ejection time in patients with pericardial effusion Am J Cardiol \(1972 \quad 29\) 427-431
(142) Ishiwaka M, Ishiwaka K

Influence of profuse sweating on systolic time intervals Br Heart J \(1986 \quad 56\) 176-8
(143) Gardin J, Henry WL

Effect of acute changes in heart rate of Doppler pulmonary arterial acceleration time in a porcine model.
Chest 1988 94(5) 994-997
(144) Lang-Jensen \(T\)

Blood flow velocity and systolic time intervals measured by pulsed Doppler ultrasound: reproducibility of measurements Cardiovasc Res 198721 582-586
(145) Siddons H

Deaths in long-term paced patients
Br Heart J 1974 36 1201-1209
(146) Greenbaum \(R A\), Balcon \(R\)

Eleven years' experience of pacemaker insertion and therapy in a cardiothoracic centre.
Br Heart J 1987615 (Abstr)
(147) Ginks W, Leatham A, Siddons H

Prognosis of patients paced for chronic atrioventricular block
Br Heart J \(1979 \quad 41\) 633-636
(148) Alt E, Volker R, Wirtzfeld A, Ulon K Survival and follow-up after pacemaker implantation: a comparison of patients with sick sinus syndrome, complete heart block and atrial fibrillation. PACE 19858 849-855
(149) Alpert MA, Curtis JJ, Sanfelippo JF, Flaker GC, Walls JT, Mickerji V, Villarreal D, Kitti SK, Madigan NP, Krol RB Comparative survival after permanent ventricular and dualchamber pacing for patients with chronic high degree atrioventricular block with and without pre-existent congestive cardiac failure
J Am Coll Cardiol 19867 925-932
(150) Alpert MA, Curtis JJ, Sanfelippo JF, Flaker GC, Walls JT, Mickerji V, Villarreal D, Kitti SK, Madigan NP, Morgan RJ Comparative survival following permanent ventricular and dual chamber pacing for patients with chronic symptomatic sinus node disease with or without congestive heart failure Am Heart J 1987 113(4) 958-65
(151) Verna E, Casucci R, Repetto S, Binaghi G Regional asynchrony of ventricular contraction during pacing studied by Fourier analysis of radionucleid angiography.
In Cardiac Pacing: Ed Francisco Gomez. Editorial Grouz 1985 Madrid, Spain.
(152) Vasallo JA, Cassidy DM, Miller JM, Buxton AE, Marchlinski FE, Josephson ME Left ventricular endocardial activation during right ventricular pacing - effect of underlying heart disease. \(\begin{array}{llll}\mathrm{J} A m & \text { Coll Cardiol } 1986 \quad 7 & 1228-1233\end{array}\)
(153) Daggett WM, Bianes JA, Powell WJ

Relative contributions of the atrial systole - ventricular systole interval and patterns of ventricular activation to ventricular function during electrical pacing of the dog
heart.
Circ Res. \(1970 \quad 27\) 69-79
(154) Mitchell JH, Gupta DN, Payne PM

Influence of atrial systole on effective ventricular stroke volume
Circ Res \(1965 \quad 17 \quad 11\)
(155) Linden RJ, Mitchell JH

Relationship between left ventricular diastolic pressure and myocardial segment length and observations on the role of atrial systole.
Circ Res 19608 1092-1099
(156) Sayder JH, Bender F, Kitchen AH

Atrial contribution to stroke volume in dogs with complete heart block
Circ Res 1965
(157) Samet P, Castillo C, Bernstein WH Haemodynamic consequences of sequential atrioventricular pacing
\begin{tabular}{llll} 
Am J Cardiol & \(1968 \quad 21 \quad\) 207-212
\end{tabular}
(158) Benchimol A, Ellis JC, Dimond EG

Haemodynamic consequences of atrial and ventricular pacing in patients with normal and abnormal hearts
Am J Med \(1965 \quad 39 \quad 911\)
(159) Karlof I

Haemodynamic effect of atrial-triggered versus fixed rate pacing at rest and on exercise in complete heart block Acta Med Scand 1975197195
(160) Nordlander R, Petersson SK, Astrom H, Karlsson J Myocardial demands of atrial-triggered versus fixed rate venrticular pacing in patients with complete heart block PACE 198710 1154-1159
(161) Kruse I, Arnman K, Conradson TB, Ryden L

A comparison of the acute and long-term haemodynamic effects of ventricular inhibited and atrial synchronous ventricular inhibited pacing.
Circulation \(1982 \quad 65\) 846-855
(162) Kappenburger L, Gloor HO, Babotai I. Steinbrunn W, Turin M Haemodynamic effects of atrial synchronisation in acute and long-term ventricular pacing PACE \(1981 \quad 5 \quad 639-645\)
(163) di Carlo L, Morady F, Krol RB, Baermann JM, de Bintleir M, Schok A, Sereiken SM, Schwig L
The haemodynamic effects of ventricular pacing with and without atrio-ventricular synchrony in patients with normal and reduced left ventricular function
Am Heart J 1987114746
(164) Videen JS, Huang SK, Bazgan ID, Mechling E, Putton DD Haemodynamic comparison of ventricular pacing, atrioventricular sequential pacing and atrial synchronous ventricular pacing using radionucleid ventriculography Am J Cardio \(1986 \quad 57\) 1305-1308
(165) Coskey RL, Feit TS, Plaia R, Zicari T Atrioventricular pacing and left ventricular performance PACE \(1983 \quad 6\) 631-640
(166) Boon NA, Frew AJ, Johnston JA, Cobbe SM A comparison of the symptoms and intraarterial blood pressure during long-term dual-chamber atrioventricular synchronous (DDD) and ventricular inhibited (VVI) pacing \(\begin{array}{llll}\mathrm{Br} & \text { Heart } J \quad 1987 \quad 58 \quad 34-39\end{array}\)
(167) Furman S, Fisher JD

Endless loop tachycardia in an AV universal (DDD)
pacemaker
\(\begin{array}{llll}\text { PACE } & 1982 \quad 5 & 486-489\end{array}\)
(168) Den Dulk K, Lindemans FW, Bar FW, Wellens HJJ

Pacemaker-related tachycardias
PACE \(1982 \quad 5 \quad 476-485\)
(169) Klementowicz P, Furmas S

Stability of atrial sensing and pacing after dual chamber pulse generator implantation
J Am Coll Cardiol 19856 1338-1342
(170) Littleford P, Curry C, Schwartz K, Pepine C

Pacemaker-mediated tachycardias: a rapid bedside technique induction and observation
Am J Cardiol 1985 287-291
(171) Furman S, Hurzeler P, DeCaprio V

The ventricular endocardial electrode and pacemaker sensing J Thorac Cardiovasc Surg \(1977 \quad 93\) 794-801
(172) Barold SS, Ong LS, Heinle RA

Stimulation and sensing thresholds for cardiac pacing:
electrophysiologic and technical aspects
Prog Cardiovasc Dis \(1981 \quad 24 \quad 1-24\)
(173) Luceri R, Castellanos A, Zaman L, Myerberg R

The arrhythmias of dual-chamber pacing and their
management
Ann Intern Med 1983 354-359
(174) Patel AK, Yap VU, Thomsen JH

Adverse effects of right ventricular pacing in a patient with aortic stenosis. haemodynamic demonstration and management Chest \(1977 \quad 72103\)
(175) Edberg O, Fagrell B, Lagergren H

Deleterious effects of cardiac pacing in a patient with mitral insufficiency Acta Med Scand 1977202331
(176) Haas JM, Strait GB

Pacemaker-induced left ventricular failure: haemodynamic and angiographic observations
Am J Cardiol \(1974 \quad 33 \quad 295\)
(177) Lewis ME, Sung RJ, Alter BR

Pacemaker-induced hypotension
Chest 198179354
(178) Alicandri C, Fouad FM, Tarazi RC

Three cases of hypotension and syncope with ventricular pacing. Possible role of atrial reflexes
\(\begin{array}{lllll}\text { Am J Cardiol } & 1978 \quad 42 \quad 137\end{array}\)
(179) Furman S

Cardiac pacing and pacemakers. VI: analysis of pacemaker malfunction
Am Heart J \(1977 \quad 9 \quad 378\)
(180) Werres R, Parsonnet V, Gilbert L

Symptomatic unilateral cannon "a" waves in patients with
a ventricular pacemaker
Chest 197973539
(181) Erbel R

Pacemaker syndrome (letter to editor)
Am J Cardiol 197944771
(182) Ogawa S, Dreifus LS, Shenoy PN

Haemodynamic consequences of atrioventricular and
ventriculoatrial pacing
PACE 197818
(183) David D

Atrioventricular and ventriculoatrial pacing
PACE 197818
(184) David D, Naito M, Minbekson EL

Inappropriate atrioventricular synchrony: a cause of the so-called Pacemaker Syndrome
PACE \(1980 \quad 3 \quad 368\) (Abstr)
(185) Raizada V, Benchimol A, Desser KB, Shensby C Echocardiographic features of pulsus alternans during right ventricular pacing in man
Chest \(1977 \quad 72\) 90-91
(186) Morgan DE, Norman R, West RO, Burggraf G Echocardiographic assessment of tricuspid regurgitation during ventricular demand pacing Am J Cardiol 58 1025-1029
(187) Pierard LA, Allaf D, d'Orio V, Carlier J Contrast echocardiography for diagnosing systemic venous and tricuspid regurgitation induced by ventricular pacing In Cardiac Pacing: Ed F Gomez. Editorial Grouz, Madrid 1985
(188) Jacobs P, Vandenbossche J-L, de Marneffe M, Wozniak B, Englert M
Pseudo tricuspid regurgitation in ventricular pacing Am Heart J 1985 110(4) 886-888
(189) Raugi M, Pauletti M, Bini G, Belli P, de Fazio A, del Bene P Blood flow anomalies in the right atrium in pacemaker patients evaluated by pulsed Doppler echocardiography In Cardiac Pacing: Ed Gomez F: Editorial Grouz Madrid 1985
(190) Keren G, Sherez J, Mehidish R, Levitt B, Laniado S Pulmonary venous flow pattern - its relationship to cardiac dynamics
Circulation \(1985 \quad 71\) 1105-1112
(191) Nishimura RA, Gersh BJ, Vlietstra RF, Osborn MJ, Ilestrup DM, Holmes DR
Haemodynamic and symptomatic consequences of ventricular pacing
PACE 19825 903-910
(192) Hayes DL。 Furman S

Atrioventricular and ventriculoatrial conduction times in patients undergoing pacemaker implant
PACE \(1983 \quad 6 \quad 38-46\)
(193) Nishimura RA, Gersh BJ, Homes DR, Vlietstra RE, Broadbent JC Outcome of dual-chamber pacing for the pacemaker syndrome Mayo Clin Proc 198358 452-456
(194) Schuster AH , Nanda NC

Doppler echocardiography and cardiac pacing
PACE 1982 5 607-612
(197) Fricke GR, Kikis D, Esser H, Matteru H Blood flow velocity in the caval vein during sequential versus ventricular pacing
PACE \(1980 \quad 3 \quad 370\) (Abstr)
(198) Pearson \(A C\), Janosik \(D L, ~ R e d d ~ R R, ~ B u c k i n g h a m ~ T A, ~ B l u m ~ R I, ~\) Labovitz AJ
Doppler echocardiographic assessment of the effect of varying atrioventricular delay and pacemaker mode on left ventricular filling
\(\begin{array}{llll}\text { Am Heart } J & 1988 & 115 & 611-621\end{array}\)
(199) Iwase M, Sotobata I, Yokata M, Takagi S, Jing HX, Kaurai \(\mathbb{N}\) Hayashi H, Murase M Evaluation by pulsed Doppler echocardiography of the atrial contribution to left ventricular filling in patients with dual-chamber pacemakers Am J Cardiol 198658 104-109
(200) Freedman RA, Yock PG, Echt DS, Popp RC Effect of variation in the \(P Q\) interval on the pattern of atrioventricular valve motion and flow in patients with normal ventricular function
J Am Coll Cardiol 1986 7 595-602
(201) Nanda NC, Bhandari A, Barold SS, Falkoff M

Doppler echocardiographic studies in sequential
atrioventricular pacing
\(\begin{array}{llll}\text { PACE } & 1983 & 6 & 811-814\end{array}\)
(202) Zugibe FT, Nanda NC, Barold SS, Akiyama T

Usefulness of Doppler echocardiography in cardiac pacing: assessment of mitral regurgitation, peak aortic flow
velocity and atrial capture
PACE \(1983 \quad 6 \quad 1350-1357\)
(203) Faerestrand S, Ohm O-J

A time-related study of the haemodynamic benefit of atrioventricular synchronous pacing evaluated by Doppler echocardiography
\(\begin{array}{llll}\mathrm{PACE} & 1985 & 8 & 838-848\end{array}\)
(204) Labowitz A, Williams GA, Redd RM, Kennedy HL Non-invasive assessment of pacemaker haemodynamics by Doppler echocardiography: importance of left atrial size J Am Coll Cardiol 1985 б 196-200
(205) Stewart WJ, Dicola VC, Harthorne JW, Gillam LD, Weyman AE Doppler ultrasound measurement of cardiac output in patients with physiological pacemakers Am J Cardiol \(1984 \quad 54 \quad 308-312\)

STUDY METHODS

\section*{Study Methods}
(i) Equipment

All recordings were made using a Toshiba Sonolayer SS-60a dedicated echocardiography and Doppler apparatus. This equipment allows simultaneous two-dimensional imaging and a display of steerable pulsed Doppler images. Twodimensional echocardiograms and Doppler examinations of the valves were first obtained on all control subjects to ensure the absence of any detectable abnormality. Pulsed Doppler recordings of pulmonary artery flow were obtained at 2.8 MHz using a combined echocardiographic/ Doppler transducer, Doppler shifts being processed by Fast Fourier Transformation and displayed as frequency change versus time. The time delay between acquisition of data and its display on the FFT trace is around \(5-10 \mathrm{~ms}\) on this machine (Toshiba, personal communication).

This must be borne in mind when quoting minor changes
in beat-to-beat variation, but should be constant throughout the recording. The magnitude of this change is not addressed in any other published series of pulsed Doppler data of which I am aware. Recordings were made onto silver recording paper with a speed of \(100 \mathrm{~mm} / \mathrm{sec}\). There are markers on the trace corresponding to 10 ms each for calibration purposes. Run speeds were checked and found to be correct with an error of \(73 \pm 2 \%\) 。

An electrocardiogram, the lead chosen to optimally display atrial activity, was displayed simultaneously.

A minimum of ten cardiac cycles on controls, and thirty cycles on patients with pace-makers, were recorded per patient for analysis. Measurement of intervals was performed manually from these traces and the data so extracted entered and processed on the University of Wales mainframe computer, using a commercially available statistical software package (Minitab) for the bulk of the calculations.

\section*{(II) Selection of Controls}

Controls were selected from volunteers of all age groups who were free of cardiac symptoms and signs on careful examination. All controls had normal 12-lead electrocardiograms, and normal two-dimensional and Doppler examinations. I did not think it ethical to submit my control patients to radiological examination, especially as echocardiographic means are considerably more sensitive in detecting cardiac disease. I believe this to be the only control series of measurements where such rigorous exclusion of abnormalities has been undertaken.

All controls freely gave informed consent to the procedure.

Three of eighty would-be controls were excluded: in one case becasue of the clinically unsuspected finding of moderate aortic regurgitation, and in two cases because the proximal pulmonary artery could not be imaged despite repeated attempts.

\section*{(iii) Selection of paced patients}

Patients with complete atrioventricular block with singlechamber ventricular-inhibited pacemakers were considered for study if they had continuing co-ordinated atrial activity, and adequate images and Doppler signals could be recorded from the proximal pulmonary artery.

Patients with clinically apparent congestive cardiac failure were excluded from the study.

Patients with valvular heart disease apparent clinically or on two-dimensional echocardiography were excluded also.

Patients with ischaemic heart disease were allowed into the study provided that left ventricular function appeared normal on two-dimensional echocardiography. Of 55 patients initially screened, 25 were excluded because LV or RV function did not appear normal on two-dimensional echocardiography. Tricuspid regurgitation, where present, was also used to screen for pulmonary hypertension, and velocities of \(>3.0 \mathrm{~m} / \mathrm{sec}\) were considered abnormal; however, all such had already been excluded on the two-dimensional echocardiographic appearances. No patients were excluded because of failure to obtain adequate images.
Thirty such patients were recruited and intensively studied. All patients freely gave informed consent to the procedure: the study had been approved by the Ethical Committee of the Leicester Hospitals.

All patients were examined in a darkened soundproofed room after ten minutes quiet rest on a couch. The proximal pulmonary artery was imaged using a short-axis parasternal [Fig 2] view, and a 1 cm "window" for pulsed Doppler was positioned in the centre of the pulmonary artery trunk [Fig 3], just beyond the pulmonary valve leaflets, under two-dimensional echocardiographic control. This position was chosen because of its reproducibility and to enable the use of pulmonary valve leaflet motion artefacts in timing [Fig 4].
This position was then adjusted to find the highest velocity and the longest acceleration time of any sample (as Panadis et al[126], Lighty et al[125]). Filters were adjusted to include motion artefacts from the pulmonary valve leaflets to assist timing. In fact, unlike Matsuda et al[116], but in concert with the majority of authors, we found no difficulty in timing the end of RVET, taking the return to baseline as its end[113,114,115, 117,118]. Using PV motion artefacts to time end-systole draws support from Hsieh et al, who demonstrated an excellent correlation between M-mode and Doppler-derived estimates of timing [91].
A single-lead electrocardiogram, the lead chosen to optimally display atrial activity, was recorded simultaneously on the same paper trace. 77


Fig. 2
IMAGING PLANE


Fig. 3
DOPPLER SAMPLE POSITION

Fig. \({ }^{4}\) IMAGING PLANE


Extra-systolic and immediately post-extrasystolic beats were excluded.

The effects of the previous QRS complex on the subsequent filling associated with the next PR or PF interval must be considered. As paced rates were \(70 / \mathrm{min}\) throughout the study, and the mean heart rate of the normals was also 73 beats a minute, the groups are broadly comparable; in all paced patients, the P-Pi interval was much shorter than the R-Ri interval.

All recordings were made with the subjects in relaxed endexpiration, without previous hyperventilation. This was done to eliminate the effect of thoracic movement on right heart blood flow, and to keep the angle of incidence of the Doppler beam to the direction of flow constant. There is, in fact, good evidence that respiratory alterations affect right heart function: inspiration has been shown to increase RV ejection fraction (as assessed by radionucleid angiography) by about \(6 \%\); the Valsalva manouvre decreases forward flow into the pulmonary artery [208] and slows RV transit time [207] and PA pressure rises [209]. During respiration, inspiration produces negative intrathoracic pressures and increases blood flow from the great veins into the \(R A\) and \(R V\) : simultaneously, pulmonary veins dilate as the lungs expand, causing a fall in PA pressure and pulmonary vascular impedance (i.e. a fall in RV afterload)。

I believed the best data would be obtained with constant beam position (important especially for \(A T\) and PAVmax and ratios that include \(A T\) ) and removal of as many other variables as possible, so I used relaxed apnoea. I am not therefore in a position to comment on how respiration would affect the changes discovered in the paced group, although I do not believe they would be materially altered.

This must be borne in mind when interpreting my data. Some previous authors obtained data in relaxed apnoea, and some during quiet breathing; most authors do not say. Most of the children's studies make no comment, but we presume no attempt was made to control breathing in young children.

No controls or patients were excluded because of failure to comply with these instructions.
(v) Recordings

From the paper traces heart rate, PR interval, RVPEP, RVET, AT, and Vmax (peak PA flow velocity) were measured (Fig 5). Heart rate corrections using an inverse root formula (vide supra) were attempted on RVPEP, RVET and AT. The ratios RVPEP/RVET, AT/RVET and RVPEP/AT were calculated.

Intra-observer and inter-observer variation are approximately \(5-7 \%\) and are similar whether aortic or pulmonary flow is being measured[212]. Measurement of cardiac output by this method requires accurate assessment of PA diameter, which is sometimes difficult[213,214]. Measurement of systolic time intervals, however, does not require complex software nor measurement of vessel diameters, and has similar variability. Regrettably, the software available to us did not allow calculation of pulmonary flow integrals, which have been shown to correlate well with dye dilution and oximetry methods of calculating cardiac output.


\section*{EJECTION TIME}

Fig. 5
MEASUREMENT OF SYSTOLIC TIME INTERVALS FROM PA FLOW

RVPRP was measured from the earliest inscription of the QRS complex (the beginning of the \(Q\) wave in controls, and the pacing stimulus artifact in paced patients) to the start of right ventricular ejection detected by Doppler. Although Benito et al [206] had difficulty here because of premature opening of the pulmonary valve, this was because most of his patients had pulmonary hypertension or constrictive pericarditis, and the effect was largely due to an inspiratory rise in right atrial pressure. I did not have similar problems.

RVET was measured from the earliest onset of forward flow in the pulmonary artery to its cessation and return to baseline zero flow. This was synchronous with PV leaflet closure in all my controls and cases.

AT was measured from the earliest onset of forward flow into the pulmonary artery to its peak. Although differing waveforms were encountered in both cases and controls, determination of the point of peak velocity was easy in all. Views were adjusted to give the longest AT of any position in each subject, although all views were parasternal shortaxis.

Vmaxs was taken as the peak velocity recorded by pulsed
Doppler. As most velocities were \(<.7 \mathrm{~m} / \mathrm{s}\), aliasing was not
a limiting factor. In the few cases where a clean "envelope"
could not be obtained because of aliasing, shifting the
baseline upwards was sufficient in each.

\section*{Why other measurement possibilities were not pursued}

Many other sideline and "add-on" studies were considered during pilot studies. The study as described generated huge amounts of data, most of which had to be manually processed from the traces; this took nearly one year in itself whilst doing busy clinical jobs, and a limit had to be placed somewhere. In addition, some other possibilities have already been explored in the literature, and some were found to have distinct difficulties during pilot studies.

In particular:
(i) Simultaneous left ventricular STIs would have been interesting to study.

However, some authors have already looked at the left ventricle [199-202], and no data existed on the right ventricle. Of the three patients in whom simultaneous studies were undertaken, changes as previously descibed in the literature (but of lesser magnitude than I demonstrate in the right heart) were seen. Because I had to accept spontaneously occurring PF intervals in the paced study, it would have been difficult to compare differences because the PF intervals would not have been identical. Our machine did not allow two simultaneous pulsed Doppler beams, but such equipment is now available, and could be so used.
(ii) Right ventricular inflow studies on trans-tricuspid flow would have added additional infomation about RV filling

During the pilot study, we found that artefact from the pacing wire in the paced patients made inflow difficult to study. In addition, several patients had holosystolic tricuspid regurgitation, and some had tricuspid regurgitation in diastole also, which would have made interpretation difficult. These problems made me abandon such studies. In addition, when the work was undertaken (in 1984-5), atrioventricular valve inflow integrals were in a much earlier stage of development.
(iii) A further interesting side-study would have been in patients with transposition of the great vessels to view the \(\mathbb{R} V\) as the systemic ventricle。

Hirschfeld[99] had already done this, before and after correction by the Mustard procedure, and shown that LVSTIs and RVSTIs responded importantly to afterload. In addition, only a few sick neonates passed through the Department before and after a Rashlsind procedure on their way to definitive surgery elsewhere. Too few patients with previously corrected transposition were seen to draw any conclusions.
(iv) The pulmonary incompetent waveform could be used to study the right ventricular/pulmonary artery interaction
Around \(40 \%\) of normals have pulmonary regurgitation(PR) in previously reported series \([123,136,137]\). In our population only 20-25\% of the normal subjects had detectable PR. As we decided to use the middle of the pulmonary trunk beyond the pulmonary valve cusps as the sampling site, a whole new set of data with a standardised sample position in the RV outflow tract would have to be generated, and resources did not permit. In addition, colour flow Doppler, which is of great use in determining the site of these small jets, was not at that time available。
(vi) Methodology of the invasive study

Invasive studies were planned on six patients undergoing pacemaker implantation for complete heart block in the face of continuing atrial activity. Three patients were to be studied with particular reference to right atrial waveform, and three with particular reference to right ventricular waveform。

Pacing wires were placed, via the left subclavian vein, in the right atrial appendage and the tip of the right ventricle: a conventional fluid-filled catheter was passed either to the right ventricle or right atrium for pressure measurement, and a catheter-tip transducer was also placed there for accurate timing。

Pacing was initiated with an \(R R\) interval of 700 ms , and the \(P R\) interval was varied from 200 ms through \(150 \mathrm{~ms}, 100 \mathrm{~ms}, 50 \mathrm{~ms}\), simultaneous activation, and retrograde sequencing of 50 ms , \(75 \mathrm{~ms}, 100 \mathrm{~ms}, 150 \mathrm{~ms}\), and 200 ms .

In between measurements, dual chamber pacing in the previously described "optimal" PR interval of 150 ms was done.

A minimum of twelve measurements was taken for each pressure and timing reading and mean and \(95 \%\) confidence intervals were calculated for each reading for each \(P R\) interval.

\section*{References}
[206] Benito F, Lopez-Sendon J, Oliver J, Garcia-Fernandez MA, Coma-Canella I, Lomberas F。 Echocardiographic premature pulmonary valve opening: a sign of reduced right ventricular distensibility. Am Heart \(J \quad 1984 \quad 107 \quad 1029-1032\)
[207] Caplan JL, Flatman WD, Dyke L, Wiseman MN, Dymond DS Influence of respiratory variations on right ventricular function Br Heart J \(1986 \quad 62\) 253-9
[208] Wilkinson PL, Stowe DF, Tyberg JV, Parmley WW Pressure and flow changes during Valsalva-like manoeuvres in dogs following volume infusion Am J Physiol \(1977 \quad 222\) H93-99
[209] Little WC, Burn WK, Crawford MH Altered effect of the Valsalva manouvre on left ventricular volume in patients with cardiomyopathy Circulation \(1985 \quad 71 \quad 227-233\)
[210] Niclosi GL, Pungeric E, Cervasto E, Pavan D, Modenal L, Moro E, Dall'Aglio V, Zanuttini D Feasibility and variability of six methods for the echocardiographic and Doppler determination of cardiac output. \(\begin{array}{lll}\mathrm{Br} \text { Heart } J & 59 & 299-303\end{array}\)
[211] Jenni R, Rilter M, Viela A, Hirzel H, Schonider G, Griam JG, Turina M Determination of the ratio of pulmonary blood flow to systemic blood flow by derivation of amplitude-weighted mean velocity from cardiovascular Doppler spectra Br Heart J 198961 167-171
[212] Jenni R, Pfuger \(N\)
Doppler echocardiographic evaluation of stroke volume and cardiac output Echocardiography 19883 149-153
[213] Goldberg SJ, Allen HD, Mark GR, Flinn CJ Flow computation In: Doppler Echocardiography

Philadelphia: Lea and Febinger 1985 68-91
[214] Valdes-Cruz LA, Herowitz S, Mesel E, Sahn DJ, Fisher DC, Larson D
A pulsed Doppler echocardiographic method for calculating pulmonary and systemic blood flow in atrial level shunts: validation studies in animals and initial human experience Circulation \(1984 \quad 69 \quad 80-86\)

\section*{PART TWO}

RESULTS ON NORMAL CONTROL SUBJECTS
DISCUSSION OF RESULTS ON NORMAL CONTROL SUBJECTS

RESULTS ON NORMAAL CONTROL SUBJECTS

\section*{Results}

\section*{（1）Control series}
（a）Right ventricular pre－ejection period（RVPEP）

RVPEP in 77 control subjects supine at rest in relaxed
end expiration had a mean of 102.7 ms （median 100.2 ms ）
with standard deviation 12.8 ms and SEM 1.46 ．
The range was \(79-133 \mathrm{~ms}, 95 \%\) confidence intervals
being 99．8－105．5ms．

RVPEP
n 77
\begin{tabular}{lr} 
Mean & 102.7 ms \\
Variance & 163.7 ms \\
S．d。 & 12.8 ms \\
St。Err。 & 1.5 ms \\
& \\
Max & 132.8 ms \\
Upper Qtile & 113.3 ms \\
Median & 100.2 ms \\
Lower Qtile & 92.9 ms \\
Minimum & 79.0 ms \\
Range & 53.9 ms
\end{tabular}

Distribution was significantly positively skewed（see Fig 6）

Both reciprocal and logarithmic transformations
substantially reduce skew although their physiological
meaning is unclear.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{RecipRVPEP} \\
\hline 7.5301E-03 & * & 1 \\
\hline 8.5573E-03 & *********** & 11 \\
\hline \(9.0709 \mathrm{E}-03\) & \%*\%********* & 12 \\
\hline \(9.5846 \mathrm{E}-03\) & \% \% \% \% * * \% & 7 \\
\hline 1.0098E-02 & \% \(\%\) \% \(\%\) \% \(\%\) \% \(\%\) \% & 11 \\
\hline 1.0612E-02 & ********** & 10 \\
\hline 1.1125E-02 & ************** & 14 \\
\hline \(1.1639 \mathrm{E}-02\) & \%\%\%\%\% & 5 \\
\hline \(1.2153 \mathrm{E}-02\) & \% \% & 2 \\
\hline 1.2666E-02 & \% \% \% \% & 4 \\
\hline \multicolumn{3}{|l|}{LogRVPEP} \\
\hline 1.89352 & * & 1 \\
\hline 1.94521 & *\% \% \% \% & 5 \\
\hline 1.965106 & \%********** & 11 \\
\hline 1.98769 & \%********** & 11 \\
\hline 2.010275 &  & 15 \\
\hline 2.03286 & \% \% \% \% \% \% \% \% & 8 \\
\hline 2.055444 & \% \% \% \% \% \% \% & 8 \\
\hline 2.078029 & ******** & 8 \\
\hline 2.100613 & \% \% * * \% \% \% & 7 \\
\hline 2.123198 & \%\% * & \\
\hline
\end{tabular}

Within-patient variation was small with tight \(95 \%\)
confidence limits around each subject mean (see Fig 7)。

Variability between subject means was much greater than withinpatient beat-to-beat variation ( \(\mathrm{F}=62.5\), \(\mathrm{df}=76\), \(\mathrm{p}<.001\) ).
(See Appendix 2 for plot)

RVPEP
Normals
Means and


RVPEP was not significantly associated with heart rate (see Fig。8) \((\mathrm{r}=-.11, \mathrm{p}=.43 \mathrm{NS})\). and "correction" for heart rate by the formula
```

RVPEPC(ms) = RVPEP(ms)
/ R-R1 interval (secs)

```
considerably broadened the confidence intervals.

The use of inverse root formulae to "correct" RVPEP for heart rate therefore seems inappropriate.

RVPEP was weakly associated with age ( \(\mathrm{r}=.288\), \(\mathrm{p}<.05\) )。

Somewhat suprisingly, RVPEP was not associated with the PR interval ( \(\mathrm{r}=.088, \mathrm{p}=\mathrm{NS}\) )

(b) Right ventricular ejection time (RVET)

Right ventricular ejection time in the 77 control subjects supine at rest in relaxed end-expiration was mean 299.5ms (median 300.8 ) with standard deviation 28.6 ms and SEM 2.6 .

The range was \(227-369 \mathrm{~ms}\), \(95 \%\) confidence intervals being 293.2-305.9ms.
\begin{tabular}{lrr} 
& \multicolumn{1}{l}{ RVET } & RVETI \\
n & \multicolumn{1}{c}{} \\
& 77 & 77 \\
Mean & 299.5 ms & 321.6 ms \\
Variance & 818.7 ms & 441.4 ms \\
St. Dev. & 28.6 ms & 21.0 ms \\
St. Err. & 3.3 ms & 2.4 ms \\
Maximum & 369.3 ms & 373.6 ms \\
Upper Qtile & 315.8 ms & 337.1 ms \\
Median & 300.8 ms & 320.9 ms \\
Lower Qtile & 285.0 ms & 306.0 ms \\
Minimum & 227.3 ms & 279.7 ms \\
Range & 142.0 ms & 93.9 ms
\end{tabular}

RVET
Normal
Means

RVETI
Normals
Means

```

Distribution was approximately normal (see Fig. 9)
The distribution of the rate-corrected RVET, RVETI, was mildly
positively skewed:
RVETI
279.70ms % 1
298.48ms **********
10
307.87ms
317.26ms
326.65ms
336.04ms
345.43ms
354.82ms
364.21ms

```

```

*)

*%%***%%%*}1

10

```

Within-patient variation was minor with tight \(95 \%\)
confidence intervals about each subject mean in both RVET (Fig 10)
and RVETI (Fig 11)

Variability between subject means was much greater than within-subject beat-to-beat variation ( \(\mathrm{F}=129.06\), df=76, p<.001) 。
(See Appendix 2 for plot)

As expected，RVET was strongly negatively associated with heart rate（ \(\mathrm{r}=-.79, \mathrm{p}=.000001\) ）
（See Fig 12 overleaf）

The equation of the regression line was
\(\mathrm{y}=-1.770315 \mathrm{X}+424.7825\)
（95\％CIs for \(r=-.859227\) to－． 682988 ）

However，use of the more familiar inverse root formula thus：
\(\operatorname{RVETC}(\mathrm{ms})=\quad \frac{\operatorname{RVET}(\mathrm{ms})}{/ \mathrm{R}-\mathrm{R} 1}\) interval（secs）
removed any signifcant association with heart rate （ \(\mathrm{r}=\mathrm{o} 2, \mathrm{p}=\mathrm{NS}\) ）。

This corrected RVET（RVETI）had a mean of 321.8 ms （median 320.9 ）standard deviation of 21.0 and a SEM of 2.4 （i．e．a slightly tighter scatter than crude RVET）．Range was 279．9－373．6ms， \(95 \%\) confidence intervals being 317．0－326．5．

RVET was not associated with age（ \(\mathrm{r}=-.065, \mathrm{p}=\mathrm{NS}\) ）． the PR interval（ \(\mathrm{r}=.21, \mathrm{p}=\mathrm{NS}\) ）or RVPEP（ \(\mathrm{r}=-.083\) ， \(\mathrm{p}=\mathrm{NS})\) 。

An association with acceleration time（AT）was confirmed （ \(\mathrm{r}=.55, \mathrm{p}\)＜．001）。
(C) Acceleration time (AT)

Acceleration time in the 77 control subjects supine at rest in relaxed end-expiration was a mean of 135.4 ms with standard deviation 23.2 ms and SEM 2.64 ms . The range was broad at \(91-197 \mathrm{~ms}\), 1 st and 3 rd quartiles being 115.8 ms and 151.1 ms .
\begin{tabular}{lr} 
& \multicolumn{1}{c}{ AT } \\
n & \multicolumn{1}{c}{77} \\
Mean & 135.4 ms \\
Variance & 537.1 ms \\
St. Dev. & 23.2 ms \\
St. Err. & 2.6 ms \\
Maximum & 196.9 ms \\
Upper Qtile & 151.1 ms \\
Median & 135.6 ms \\
Lower Qtile & 115.8 ms \\
Minimum & 91.1 ms \\
Range & 105.8 ms \\
Centile 95 & 175.9 ms \\
Centile 5 & 99.8 ms
\end{tabular}

Acceleration Time
Normals
Means and \(95 \%\) C.I

```

Distribution was significantly positively skewed (see Fig 13)

```
(mean 135 ms , median 134 ms ):

Logarithmic, but not reciprocal, transformation did
reduce the skewness of the distribution:
Logat
\begin{tabular}{l|ll}
1.959709 & \(*\) & 1 \\
2.026616 & \(* * * * * * * *\) & 8
\end{tabular}
2.06007 ********* 9
2.093524 ********* 9
2.126977 \% \(2 \times \% \% \% \% \% \% \quad 9\)
\(2.160431 * * * * * * * * * * * * \quad 12\)
\(2.193885 * * * * * * * * * * * * * * *\)
2.27338 ********** 10
2.260792 \% 1
2.294246 \%\% 3

The fifth centile of our population with respect to this measurement was below the "lower limit" of 100 ms at 99.8 ms .

Four controls had acceleration times less than 100 ms , previously thought to indicate abnormality, and a further four had acceleration times of less than 105ms. Careful review of the clinical and echocardiographic data did not reveal any evidence of heart disease in any of these。

Scatter around subject means was tight（see Fig 14）．

Within－subject beat－to－beat variability was much smaller than the difference between subject means（ \(\mathrm{F}=73.27\) ， \(d f=76, p<.001)\) 。
（See plot in Appendix 2）

AT was negatively associated with heart rate but the scatter was broad（ \(\mathrm{r}=.44, \mathrm{p}=.000065\) ）。
（See fig 15 overleaf）

The regression equation was：
```

 Y = -.800609X + 192.1629
    ```
(95\% confidence intervals for \(r\) were -.6037 to -. 2386)
＂Correction＂for heart rate by dividing the AT by the root of the R－R1 interval in seconds removes an association with heart rate （ \(\mathrm{r}=.1,2 \mathrm{p}=.38\) ）。 However，there is no improvement of scatter， with the breadth of confidence intervals hardly changing：
\begin{tabular}{lrl} 
& \multicolumn{1}{c}{ AT } & ATI \\
Median & 135.6 ms & 145.5 ms \\
Centile 95 & 175.9 ms & 183.1 ms \\
Centile 5 & 99.8 ms & 110.2 ms
\end{tabular}

Median difference of ATI from AT was 10.5 （95\％C．I．s 2．9－17．6）．

AT fell with age but the association was weak（ \(r=-.26\) ， \(p<.05)\) 。
AT(TTP)

The ratio RVPEP/RVET was calculated for each beat and each patient.

The mean figure for the 77 control subjects supine at rest in relaxed end-expiration was . 35 (median .33) with standard deviation of .06 and SEM .00067. Range for the 77 controls was broad at .24-.53, and 95\% confidence intervals much less so at .33-. 36 .

RVPEP/RVET

\section*{n}

Mean
Variance
St. Dev.
St. Err。
Maximum
Upper Qtile
Median
Lower Qtile
Minimum
Range
Centile 95
Centile 5

77
.347
. 354
.059
. 0067
.53
. 37
\(\begin{array}{r}.33 \\ \hline .33\end{array}\)
.31
.25
.25
.46
.46
. 26

RVPEP/RVETI
77
。 321
.0025
.05
.0058
.46
.36
.31
.28
. 23
.23
.42
.25

RVPEP/RVET
Normals
Means and \(95 \%\)


Distribution was markedly positively skewed（see Fig 16）

Within－patient variation was minimal with tight 95\％
confidence intervals for each subject：differences
between subject means were much greater than intra－ subject variations（ \(\mathrm{F}=67.52, \mathrm{df}=76, \mathrm{p}<.001\) ）。
（See plot in Appendix 2）

Despite previous claims to the contrary，calculation of this ratio did not remove an association with heart rate \((\mathrm{r}=.41, \mathrm{p}=.000198)\) 。
（See Fig 18 overleaf）
（Regression equation \(Y=1.915818 \mathrm{E}-03 \mathrm{X}+.2106963\) ）
This is as expected as RVET is strongly influenced by heart rate and RVPEP is not．

One could correct the RVET for rate（using RVETI）and construct the ratio RVPEP／RVETI（see above）． This ratio is not related to heart rate（ \(r=-.154,2 p=.1818\) ） but has not been validated．

RVPEP／RVET was weakly associated with age，with a similar association \((r=029, p<.05)\) to that of RVPEP with age。

(e) AT/RVET

The ratio AT/RVET was calculated for each beat and each patient.

The mean value of AT/RVET for the 77 control subjects supine at rest in relaxed end-expiration was .452
(median .455) with standard deviation of .064 and SEM of . 00072 。

The range was .316-.595, with \(95 \%\) confidence intervals \(.43-.56\)

AT/RVET
n
Mean
Variance
St. Dev. \(\quad .4063\)
St. Err。 .0072
\begin{tabular}{lr} 
Maximum & .59 \\
Upper Qtile & .49 \\
Median & .46 \\
Lower Qtile & .40 \\
Minimum & .32 \\
Centile 95 & .56
\end{tabular}

The distribution was mildly negatively skewed (see Fig 19), as for AT, but approximately normal (mean .452, median .451).


AT/RVET
Normals
Means and
Fig 20
Fig.
C.I.s

95\%


Within-patient variation was small with tight \(95 \%\)
confidence intervals about each subject mean (see Fig 20):
beat-to-beat variability was much smaller than the difference
between subject means ( \(\mathrm{F}=53.41\), \(\mathrm{df}=76, \mathrm{p}<.001\) ).
(See plot in Appendix 2)
Calculation of this ratio appeared to remove any
significant association with heart rate ( \(\mathrm{r}=.008\), \(p=.94)\), and this ratio should therefore be useful
in a wide range of circumstances.
(See Fig 21 overleaf)

One could argue that dividing AT by RVET is just another way of correcting the AT for rate, as RVET and rate are so strongly associated, and indeed the correlations are similar;
\begin{tabular}{llll} 
AT/ root R-R interval & vs AT & \(r=.84\) & \(2 p<.0001\) \\
AT/RVET & vs AT & \(r=.83\) & \(2 p<.0001\)
\end{tabular}

AT/RVET was weakly associated with age ( \(x=.29\), \(p<.05\) ).
[AT/rootRR vs age \(r=033,2 p<.0036]\)

(f) RVPEP/AT

The ratio RVPEP/AT was calculated for each cycle and each patient.

The mean value for the 77 control subjects supine at rest in relaxed end-expiration was 079 with standard deviation . 18 and SEM .021; 1st and 3rd quartiles were . 67 and .88.

The range was very wide at \(0.50-1.35\) 。
\begin{tabular}{lcc} 
& RVPEP/AT & AT/RVPEP \\
n & 77 & 77 \\
Mean & .79 & 1.34 \\
Variance & 3.31 & .071 \\
Std。Dev. & .179 & .266 \\
Std.Err. & .02 & .03 \\
Maximum & 1.32 & 2.01 \\
Upper Qtile & .87 & 1.51 \\
Median & .73 & 1.37 \\
Lower Qtile & .66 & 1.15 \\
Minimum & .50 & .76 \\
Range & .83 & 1.26 \\
Centile 95 & 1.12 & 1.78
\end{tabular}


The distribution was strongly positively skewed (mean .791, median .779): (see Fig 22).

Both logarithmic and reciprocal transformations substantially "normalised" the distribution, and it might therefore be better to routinely calculate AT/RVPEP instead (mean 134, median 137.5: standard deviation 26.7, SEM 3.04: 95\% confidence intervals 128.8-140.7) 。
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{AT/RVPEP} \\
\hline . 7563486 & * & 1 \\
\hline 1.008480 & *********** & 11 \\
\hline 1.134545 & *\% \% \% & 4 \\
\hline 1.260611 &  & 12 \\
\hline 1.386677 & \% \% \(\%\) \% \(\%\) \% \(\%\) \% \(\%\) \% & 13 \\
\hline 1.512742 &  & 17 \\
\hline 1.638808 & *** \% \% \% \% \% \% & 9 \\
\hline 1.764873 & \% \% \% \% \% \% & 6 \\
\hline 1.890939 & \% \% \% & 3 \\
\hline 2.017004 & \% & 1 \\
\hline
\end{tabular}

Within-patient variation was small with tight 95\%
confidence intervals around each subject mean ( \(\mathrm{F}=48.39\) \(d f=76, p<.001\) )
(See plot in Appendix 2)

With either ratio, significant though weak associations with heart rate \((r=.31, p=.006)\) and age ( \(r=.41\), p <.001) persisted; as RVPEP is not associated with heart rate, and AT is, this is as expected.

Both ratios were strongly associated with RVPEP/RVET ( \(\mathrm{r}=.765, \mathrm{p}<.000001\) ), as they share RVPEP and AT is a fraction of RVET.

Vmax, the peak detected velocity in the pulmonary artery in systole in mid-vessel just beyond the pulmonary valve, was measured with each cardiac cycle and a mean calculated in each patient. Care had been taken to place the Doppler sample such that the largest value for Vmax and the longest AT were taken to indicate optimal positioning. In almost all cases this was centrally in the vessel.

\section*{PA Vmax}
n
Mean
Variance
St. Dev.
St. Err。
Maximum
Upper Qtile
Median
Median
Lower Qtile Minimum Range Centile 95

77
63. 1
506. 2
22.5
2.57
144.7
68.8
57.5
49.2
40.2
104.5
115.4

RecipPAVmax
77
1. 78
.0168
.13
.0149
2. 16
1.84
1.76
1.69
1.60
.556
2.06

Median value for PA Vmax in the 77 control subjects
lying supine in relaxed end-inspiration was \(57.5 \mathrm{~cm} / \mathrm{sec}\). The distribution was strongly positively skewed (mean 63.09, median \(57.5 \mathrm{~cm} / \mathrm{sec}):(\) see Fig 23)

Scatter around subject means was tight, with inter-personal variation being much greater than beat-to-beat variation (see Fig 24).

PAVmax was not associated with any of the values or ratios thought to reflect \(R V\) function, and was not associated with sex, heart rate or age。

PA Vmax velocity
Normals
Means and \(95 \%\) C.I.s

운
126
\(P A^{78} V \max \left(\mathrm{~cm} / \mathrm{sec}^{102}\right)\)
(
op

DISCUSSION OF RESULTS ON NORMAL CONTROL SUBJECTS AND COMPARISON WITH PREVIOUSLY PUBLISHED SERIES

Discussion of results on normall subjects and comparison with previously published sexies
(1) RVPEP
wtility and problems of the measurement: - critique of previous series

RVPEP was suggested by Kosturakis[114] as a good index of both systolic and diastolic pulmonary artery pressure in his population of 17 children with congenital heart disease who underwent cardiac catheterisation. However, his impressive associations (RVPEP vs systolic PA pressure \(r=-.82, ~ p<.001\), RVPEP vs diastolic PA pressure \(r=-.7, p<.001\) ) could not be confirmed by subsequent work. Curtiss[215], using PV movement for timing, found different mean values in children with high and normal PA pressures, but the overlap was too great for the measurement to have any clinical value. Isobe[115] came to much the same conclusion using Doppler-derived values. Interest in the measurement continued, however, as part of the ratio RVPEP/RVET[100]. Early measurements of RVPEP used simultaneous ECG and pulmonary valve(PV) echogram recordings: the onset of electrical systole was taken from the earliest part of the QRS complex, and pulmonary valve opening was taken as the end of RVPEP. The latter is sometimes difficult to accurately time because the valve opens with atrial systole in some patients. Leatham[216] used full opening of the PV in his paper, and this accounts for his longish figure of 120 ms or more. Riggs[217] studied 85 normal children and young
people（ages 2 months to 21 years）and，using the onset of pulmonary valve motion，arrived at a mean（ \(\pm\) s．d．）figure of 109 ms （11ms），and Torlicki［218］，studying 25 ＂controls＂ （unspecified）， 101 ms （15．8）．These figures are in good agreement with mine（102．7ms \(\pm 12.8\) ）。 Hirshfeld＇s series of 45 subjects，mostly children［100］，were measured from＂the first part of the QRS complex，usually the Q wave＂，and the earliest onset of electrical activation may therefore have been measured differently．His figure of 67 ms （ \(\pm 14.9\) ）is lower than most estimates．

Shiraishi＇s neonatal series［118］is clearly not comparable， although it is interesting to note that the figure for newborns was 94ms at birth falling over one month；the heart rates of his children were，as expected，rapid at 117－142．

Nanda［101］presents data on 22 patients with a broad age range （16－61 yrs，mean 42），but almost the only thing they had in common was a normal PA pressure：all were being evaluated for suspected heart disease．He does not present raw RVPEP data，but only as RVPEPC（i．e．＂corrected＂for heart rate， which is，as we have seen，is less than satisfactory）。His point of interest is the stress on the opening slope of the PV，a measurement not taken up by other authors as too subjective。


His figure of \(88 \mathrm{~ms} \pm 3 \mathrm{~ms}\) suggests a very tight scatter of results not achieved by most investigators. His range of 72-104ms is, however, enclosed by mine.

Comparison of our rigures with previous investigators* figures


Mean and 95\% CIs for published series of "normals" with respect to RVPEP

I believe that I present the most carefully checked series of "normal" individuals from a wide age range. My mean of 103ms is similar to Isobe[115], Riggs[217] and Torlicki[218], and two standard deviations either side suggests a working range of \(77-128 \mathrm{~ms}\). It is possible that lower mean figures obtain in children (there were none in our study), but within my age-range there was no significant association with age. Shirashi[118] also studied the effect of age, but only within the neonatal period, when large changes in pulmonary vascular resistance are known to occur.

\section*{Relationship to heart rate}

There is some disagreement in the literature about the relationship of RVPEP to heart rate Riggs[217], in his cross-sectional study of 85 children, found a strong inverse relationship \((r=-.71, ~ p<.001)\) over a very wide heart rate range (50-185 beats per minute). He offers a regression equation to "correct" for heart rate of
```

RVPEPC = 108.9-0.369(HR) Or RVPEPC = RVPEP + . 369(HR)

```

Nanda[101] converts his data by means of a inverse root formula:
\[
\operatorname{RVPEPC}(\mathrm{ms})=\frac{\text { RVPEP }}{/ \mathrm{R}-\mathrm{R}} \text { interval (secs) }
\]
but does not offer any validation.
Curtiss[215], however, found no relationship at all, but
Hirschfeld[100] found an inverse relationship. Sundberg[219]. studying LVPEP in 19 normal adults using pulsed Dopplex, found none. Spodick[220] and Cokkinos[221] also found no relationship in their studies. Leighton[96] studied 27 patients invasively and found no relationship between resting heart rate and RVPEP: on 4 normal volunteers, however, when he proceeded to do an atrial pacing study, he found that there was an immediate rise in RVPEP at the start of pacing, even when the pacing rate was only just above sinus rate, and that there was also a rate-related further rise, although LVPEP did not
change. This is curious: pacing catheter position and pacinginduced conduction delay (i.e. early Wenckebach effects) may have been additional variables.

A regression equation was suggested of
RVPEPC \(=0.7(H R)+\) either 35 or 12 depending
on whether the patient was in expiration or inspiration at the time. It must be remembered that these calculations arise from only 4 (albeit highly-studied) subjects.

I did not find any significant association between RVPEP, measured with pulsed Doppler, and heart rate on a population basis. I did not think it ethical to subject my 77 control subjects to atrial (or oesophageal) pacing. \(95 \%\) confidence limits around each subject mean were tight, with betweensubject variability much greater ( \(F=62.53, d f=76\) ) than intra-subject variability, despite widely differing heart rates. I cannot support any form of "correction" for heart rate from my data, although it is possible that at much higher rates (as in childhood) there is a real effect.

Somewhat to my suprise, the PR interval did not affect RVPEP, although it is known to affect RV loading conditions.

\section*{ruture prospects}

It is difficult to know how useful this measurement really is. The data available are mostly drawn from pre-Doppler days when the newer variables such as Acceleration Time and direct measurements of flow were not available. Correlations with PA pressure and resistance are modest in most investigators' hands. The lack of variation with heart rate might be an attraction, or perhaps the measurement might be useful where it is genuinely difficult to decide on the end of the ejection period, possibly in combination with AT (vide infra).

My normal ranges for these intervals and their combinations are the first comprehensive ones.
(2) RVET

Utility and problems of the measurement - critique of published series

Right ventricular ejection time (RVET) is longer than simultaneously-measured LVET[96]。Measurements, whether using PV motion, or Doppler timings of pulmonary artery systolic forward flow, are essentially identical[124]. It is difficult in adults (although often easy in children) to accurately time the moment of PV closure on an M-mode echocardiogram, and the valve may move after that. One author gave up in disgust[117].

Measurement of RVET using pulsed Doppler is complicated by the differing waveforms[114,222] that can exist. In fact, these cause more problems when attempting to measure "time-to-peak" flow or acceleration time. End-systolic flow reversal[222] has also been cited as a problem, but I found no difficulty in measuring end-systole in any subject.

The raw RVET, corrected for heart rate, is negatively associated with PA pressure \([100,113,114,215,217]\), but overlaps between patients with normal and raised PA pressure are such that RVET alone is not a clinically useful predictor [113,114] and Riggs[217] found the relationship non-linear with a broad scatter.

No good longitudinal studies exist: Mishra[223] and Wassir [224] present serial measurements of RVET in pulmonary hypertensive patients during calcium blockade therapy, but invasive validation is lacking。

Length of systole may also be affected by the contractile state of the myocardium; Gardin[112], using pulsed Doppler, demonstrated that RVET was significantly shorter in patients with congestive cardiomyopathy than in his control subjects. Changes in the LVET were of similar magnitude。 LVET, as a measure of systolic function, has been used to find an optimum "PR" interval during dual chamber pacing [155], but this effect has not before been explored in the right heart.

Comparison of my figures with previous investigators" figures

My figure for a mean value of RVET of \(300 \mathrm{~ms}( \pm 28.6)\) and that for RVETI of \(321.77( \pm 21.04)\) is in good agreement with most authors:
\begin{tabular}{lllll} 
Isobe & {\([115]\)} & 317 ms & \(( \pm 33)\) \\
Gardin & {\([112]\)} & 315 ms & \(( \pm 23)\) \\
Martin-Duran & {\([117]\)} & 280 ms & \(( \pm 84)\) \\
Kitibatake & {\([113]\)} & 304 ms & \(( \pm 38)\) \\
Hirschfeld & {\([100]\)} & 276 ms & \(( \pm 43)\) \\
Curtiss & {\([215]\)} & 344 ms & \(( \pm 27]\)
\end{tabular}

Kosturakis's[114] figure of \(385 \mathrm{~ms}( \pm 32)\) seems out of line; he studied children, but the reasons for the discrepancy are unclear; Riggs[217] found a modest positive association between RVET and age, even after correcting for heart rate, but no other author does, and the difference is still in the wrong direction. I found no association with age at all, over the range \(17-84\) yrs in my 77 subjects.


Relationship to heart rate

RVET is strongly negatively associated with heart rate, and the relationship is linear in humans \([96,94,100,217]\) and in pigs [143]. Various regression equations have been produced, but an inverse root formula of
```

RVETC(ms) = % RVET (ms)
has gained widespread popularity.

```

From my data, I confirm a strong negative association between RVET and heart rate ( \(\mathrm{r}=-.79, \mathrm{p}<.001\) ) ; calculation of RVETC by the above formula removed this association. As an alternative, our regression equation is
\[
y=-.35 x+176
\]

Unlike acceleration time and peak velocity, RVET is resistant to distortion by beam alignment[125], and is probably the easiest right ventricular systolic time interval to measure using Doppler ultrasound.
ruture propects

RVET is likely to remain as an useful index of RV systolic function because of the wealth of literature surrounding its history and its predictability: the relationship to heart rate has been worked out, although regression equations are probably preferable to Bazett-style approximations. It is resistant to distortion by beam alignment, and \(I\) do not believe the problems of end-systolic flow reversal are serious. Although flow velocity integrals are of considerable interest, the software is not universally available。 This normal range should be a useful contribution to the continued use of the measurement.

\section*{(3) RVPEP/RVET}

Utility and problems of the measurement
- critique or published series

Weissler[92-94] first popularised LVPEP/LVET as a clinically useful ratio because he found no relationship to mean heart rate in 90 normal individuals, and an inverse relationship to cardiac output, stroke volume and ejection fraction. He found the ratio a better predictor of these measurements than either LVPEP or LVET alone: he also found that infusion of inotropic agents "improved" the ratio in patients with heart failure proportionally to improvements in cardiac output. Leighton, studying 27 patients with normal pulmonary artery pressures at rest, found that RVPEP was not associated with mean resting heart rate, but RVET was: he did not study the ratio but it would be expected from his findings that RVPEP/RVET would be related to heart rate. In Hirschfeld's [99,100] series of 45 normal young people neither age nor heart rate were related to the ratio. There was a significant association between RVPEP/RVET, PA pressure and pulmonary vascular resistance in his invasively studied group, but the pulmonary hypertension had to be moderately severe (systolic \(>70 \mathrm{mmHg}\), diastolic \(>50 \mathrm{mmHg}\) ) , or the pulmonary vascular resistance markedly raised (>8 Wood units), for there to be a clear separation from normal individuals.

In Riggs's study[217] RVPEP/RVET was significantly but non-linearly related to \(P A\) pressure, but scatter again was broad; however, he again found only a small association between the ratio and heart rate or age. Shiraishi's neonatal findings were interesting in that the ratio declined sharply within a few days of birth, mainly due to a marked fall in RVPEP [118]. Kosturakis [114], using pulsed Doppler, confirmed that patients with pulmonary hypertension had higher ratios than patients with normal PA pressures, but found that sensitivity was poor (58\%) and specificity worse (33\%)。 In Isobe's series[115] neither RVPEP nor RVET was significantly associated with heart rate: in 45 adults with pulmonary hypertension, RVPEP/RVET was not a useful predictor of raised pressure. Although Wasir[224] and Mishra[223] did find a fall in the ratio when calcium antagonists were given to patients with pulmonary hypertension, there was no invasive confirmation of pressure reduction, and most of the change was a fall in RVPEP.

Comparison of my figures with previous investigators" rigures

My mean figure for RVPEP/RVET of .347 ( \(\pm .06\), range .24-.53) is similar to Kosturakis's (.35 \(\pm .035)\) and Isobe's (.36). Riggs does not quote a mean figure, but most patients in his series with ratios up to .35 had normal PA pressures. Scatter was broad in most studies. Hirschfeld's figure of .24 (range \(.16-.30\) ) is shorter than most because his range for RVPEP is short.


Future prospects

RVPEP/RVET has been all but abandoned as a clinically useful index of PA pressure. Its original attraction (that is was not significantly related to heart rate) was been disputed (because a majority of authors find RVPEP not to be raterelated), and although associations exist between the ratio and PA pressure however measured, sensitivities and specificities are too poor for widespread clinical application.
(4) Acceleration time

Utility and problems of the measurement
-. critique of published series
The advent of pulsed Doppler measurements in the pulmonary artery trunk enabled a new measurement to be determined. The time-to-peak flow (TTP) or acceleration time (AT) can be calculated regardless of waveform [116] and correlates inversely with PA pressure. Care needs to be taken, however, in aligning the beam to produce the longest value for this measurement, as errors of up to \(50 \%\) can be made if multiple views are not used and the maximum value sought [125,126]. AT is much longer in the right heart than the left [112]. AT has been found to be inversely associated with pulmonary artery pressure [143] but the relationship was found by most investigators to be non-linear \([113,115,116]\); logarithmic transformation is helpful, and Isobe[115] proposes a regression equation of
\(A T(\mathrm{~ms})=-198(\log \mathrm{PA}\) mean pressure in mmHg\()+387\).

Gardin[143] found that in the steep part of the curve, with values less than 100 ms , the relationship became linear and suggested this value as a "cut-off" for suspicion of high PA pressures.

However this measurement in its crude state presents several difficulties. Apart from measurement error described above, most authors find a wide range and broad scatter of data around their means in normal subjects.

Comparison of our figures with previous investigators figures
\begin{tabular}{|c|c|c|c|c|}
\hline Matsuda & [116] & 110 ms & \(( \pm 30)\) & \\
\hline Martin-Duran & [117] & 143 ms & ( \(\ddagger\) 30) & \\
\hline Gardin & [112] & 159 ms & (range & 125-185) \\
\hline Shiraishi & [118] & 101 ms & ( \(\pm 21]\) & \\
\hline Kosturakis & [114] & 151 ms & ( \(\ddagger\) 25) & \\
\hline Isobe & [115] & 144 ms & ( \(\ddagger 16\) ) & \\
\hline Kitabatake & [113] & 137 ms & (企 24) & \\
\hline Lighty & [125] & 143 ms & (̇ㅗ 24) & \\
\hline
\end{tabular}

It is possible that some of the above differences are due to beam alignment, as various authors used the RV outflow tract, PA artery proximally and distally, etc.

My mean figure of \(135( \pm 23.19)\) is similar to most of the above authors', and my range similarly broad at 91-170ms. The distribution was mildly positively skewed, and a median figure of 136 ms with upper and lower quartiles of \(116 / 151\) describe the population. Four of my control subjects had acceleration times of \(<100 \mathrm{~ms}\) without detectable cardiac abnormalities, and another four had acceleration times <105ms. The normal range may thus be broader than previously described.
 subjects for acceleration time

Relationship to heart rate
Gardin [143] noted that AT was significantly heart-ratedependent in his pacing study in pigs. Isobe[115] did not find any relationship at rest, and Kosturakis[114] did not improve his correlation with PA pressure by heart rate correction. However, I agree with Gardin's[143] data and find a weak association with heart rate ( \(r=.44, \mathrm{p}<.001\) ). He also suggested that as both AT and RVET are inversely associated with heart rate, calculation of the ratio AT/RVET might make the measurement rate-independent as well as being
physiologically interesting。

Future prospects
Acceleration time is a useful measurement. The correlations with PA pressure and resistance are reasonable, although the association is probably non-linear. Most of the time the value is easy to measure, although it is clearly important to optimise beam position and sample location. It can, like RVPEP (or possibly, with RVPEP) be used when the end of RVET is difficult to time (infrequent though that may be) 。 The relationship to heart rate is still somewhat problematic. Although I find a modest correlation, scatter is too broad to apply a simple corrective formula. This must be borne in mind when applying it to clinical situations.

A rule-of-thumb seems to have grown up that a value of less than 100 ms (or slightly more) usually means that PA pressure or resistance is elevated. Although I did not feel it ethical to perform invasive studies to measure PA pressure on my halfdozen subjects with values of \(<105 \mathrm{~ms}\), I have no reason to suspect any abnormality in any. This notional figure may have to be reviewed as a guide. The above normal range, although a little wider than some others, illustrates the breadth of normality in a wide agerange。

Utility and problems of the measurement
－critique or published series
Several authors comment that expressing AT as a function of RVET improved predictive accuracy of PA pressure as well as removing the association with heart rate \([111,113,117,143]\) ， although Kosturakis found no advantage over crude AT［114］． Isobe［115］and Kitabatake［113］note that the relationship is still inverse and non－linear．Because it contains \(A T\) ，the ratio is dependent on the beam position，as before．

I also find no significant relationship to heart rate \((r=-.007, p=N S)\) and beat－to－beat variation was minimal （ \(F=53.41\) ，df 76， \(\mathrm{p}<.001\) ）。

Comparison of my figures with previous investigators＂ figures

My mean figure of \(.45 \pm .064\) is similar to most other authors：
\begin{tabular}{llllll} 
Kosturakis & {\([114]\)} & .438 & \(\pm\) & .051 & \\
Isobe & {\([115]\)} & .45 & \(\pm\) & .05 & （range \\
Kitabatake & {\([113]\)} & .45 & 士－．62） \\
Martin－Duran & {\([117]\)} & .44 & 士 & .7 & \\
Panadis & {\([126]\)} & .49 & 士 & .08 & \\
Okamoto & {\([111]\)} & .46 & 士 & .03 & \\
Shiraishi & {\([118]\)} & .52 & \(\pm\) & .05 &
\end{tabular}

It will be seen that one thing this ratio does seem to achieve is a remarkable degree of unanimity amongst various investigators! Most also find scatter much less broad than for crude AT.


\section*{Future prospects}

This seems a good and useful ratio: the inverse relationship to PA pressure is better than with crude AT in most authors' series, and the lack of association with heart rate is an added bonus. It is relatively easy to measure in most patients whatever the waveform, and has not been shown to alter with age outside the neonatal period.

My range for normality is very similar to most other investigators'。 I find no important associations with age or rate. It is also interesting as a reflection of the proportion of ejection occuring in early systole, and future studies should possibly look at proportions of flow integrals.
(6) RVPEP/AT and AT/RVPEP

Utility and problems of the measurement -Critique of published series

The attraction of this measurement is that in a situation where it is difficult to determine the exact point of endsystole (as may occur with end-systolic flow reversal), an estimation can still be made of the PA pressure.

Isobe[115] is its principal supporter: his mean figure for RVPEP/AT was .7 ( \(\pm .07\), range . 37-1.02), which is similar to mine (mean \(.79 \pm .18\) ).

He found impressive associations with mean PA pressure (RVPEP/AT vS PA mean pressure \(r=093, p<.001\) ) and offered a regression equation of RVPEP/AT \(=.023(\) PA mean pressure \()+.48\)

This work needs to be confirmed by other investigators.

Comparison of Isobe's and my figures
However, the distribution of RVPEP/AT in my normal control subjects was very markedly positively skewed and I
should rather be quoting the median figure of 074 ; my range is very broad and similar to his (.49 to 1.34).

Inversion of the ratio substantially "normalises" the distribution, as does logarithmic transformation: reciprocal transformation is easier, with a mean of 1.347 and median of 1.372 ( \(\pm .027\) ), and contains the same clinical information. However, validation studies are awaited。
(7) PA Vmax
wtility and problems of the measurement
Peak velocity in the pulmonary artery trunk is lower than that simultaneously measured in the aorta (Gardin's data: mean PA Vmax \(.62 \mathrm{~m} / \mathrm{sec}\), aorta \(.92 \mathrm{~m} / \mathrm{sec}[112]\) ) and the same is true in cardiomyopathy[143], although PA Vmax is lower in these patients (as is aortic velocity, although the fall in aortic velocity was greater than the fall in PA Vmax). Gardin did not measure PA pressure directly, and studies of PA Vmax against PA pressure are awaited. He went on to demonstrate lower flow velocity integrals, as would be expected. Lighty[125] showed that beam alignment had a major influence on recorded peak velocity (varying from .66 to .96 ) and multiple views should be sought.

Comparison of my figures with previous investigator's figures

My mean figure of \(.63 \mathrm{~m} / \mathrm{sec}( \pm .225)\) is in good agreement with Gardin's, but I find the distribution very markedly positively skewed with a median value of .575 and range of \(.40-1.45 \mathrm{~m} / \mathrm{sec}\). Again, logarithmic and reciprocal transformations substantially normalise the distribution and are of unclear clinical significance, unless it is shown that there is a clear relationship to PA pressure. Therefore, if crude PA peak velocity is used, non-parametric methods are mandatory in analysis.

Future prospects
Flow integrals are potentially more interesting, with measurements of stroke volume and cardiac output, but require more sophisticated software. Measurements of peak velocity in this study showed a wide variation amongst normal subjects (even when beam alignment had been carefully checked), and were unrelated to age or rate to any important degree.

Used alone, PA Vmax is therefore of limited usefulness across a population: as a serial measurement it may find a niche; intra-personal variation was particularly small. "Normal range" for an individual may be more important than for a population.

\section*{References}
[215] Curtiss EJ, Reddy PS, O'Toole JD, Shaver JA
Alterations of right ventricular systolic time intervals by chronic pressure and volume overloading Circulation 1976 53(6) 997-1000
[216] Brooks N, Leech G, Leatham A Complete Right Bundle Branch Block; echophonocardiographic study of the first heart sound Br Heart J 1979 41 637-646
[217] Riggs T, Hirschfeld S, Borkut G, Knoki J, Leibman J Assessment of the pulmonary vascular bed by echocardiographic right ventricular systolic time intervals Circulation 1978 57(4) 939-947
[218] Torbicki A, Hawrykiewicz I, Zielinski J Value of M-mode echocardiography in assessing pulmonary artery pressure in patients with chronic lung disease.
[219] Sundberg S
Influence of heart rate on systolic time intervals Am J Cardiol 198658 1144-1145
[220] Spodick DH, Yoshinsri LD, Bishop RL, Hashimoto T Re-evaluation of the pre-ejection period: absence of a relationship to heart rate.
Am J Cardiol 1984 53 1667-1670
[221] Cokkinos DV, Herimonas ET, Demopoulos JV, Haralambakis A, Tsartsalis A, Gardikas CD
Influence of heart rate increase on uncorrected preejection period/ left ventricular ejection time (PEP/LVET) ratio in normal individuals Br Heart J 197638 683-688
[222] Okamoto M, Miyatake K, Kinoshita N, Sakakibara H, Nimura Y Analysis of blood flow in pulmonary hypertension with the pulsed Doppler flowmeter combined with cross-sectional echocardiography Br Heart J 198451 407-415
[223] Mishra M, Kumar N, Thakur R, Bhandri K, Puri VK Comparative evaluation of the acute effects of sublingual Nifedipine and oral diltiazem by echocardiographic right ventricular systolic time intervals in pulmonary hypertension. \(\begin{array}{llrr}\text { Indian Heart J } & 1986 & 38(3) & 198-201\end{array}\)
[224] Wasir HS, Mohan JC, Bhatia MC
Acute effect of sublingual Nifedipine on right ventricular systolic time intervals in pulmonary hypertension
Indian Heart \(J \quad 1985\) 37(2) 78-81

\section*{PART THRER}

RESULTS AND DISCUSSION OF RESULTS ON PACED PATIENTS

Results and discussion of results on paced patients

\section*{Introductory notes}

Advantages of paced patients as models for studying RVSTIs

One model for examining the effect of differing PR intervals on right ventricular systolic time intervals would be complete heart block. Assuming continuing atrial activity and a very constant heart rate maintained by an artificial electrical pacing system, the constantly varying " \(P-R\) " interval would provide a means of examining the effect of atrioventricular timings on RVSTIs.

The "PR" interval here would be measured from the onset of the \(P\) wave to the pacing stimulus artefact: this would constantly vary if there was complete atrioventricular dissociation.

In addition, a further advantage of such a model would be that the \(R-R\) interval would be entrained by the pacing system within extremely slender limits (much more than would be the case in health)。

As some RVSTIs are rate-dependent, this would be particularly important。

Effects of abnomal ventricular activation

It must, of course, be recognised that activation of
the right ventricle by an artificial electrical pacemaker is
a markedly unphysiological event. Even when the "PR" interval
is similar to sinus rhythm, as during dual-chamber (DDD) pacing, right ventricular ejection fraction[151] and RV dP/dtmax[156]
remain abnormally low. Right ventricular pacing produces a
pattern of activation similar to left bundle branch block[152]
although this clearly depends on the exact position of the wire tip, and any myocardial disease. Varying amounts of the HisPurkinje system are involved[152]

Although the effects of pacing on the left ventricle are relatively well studied, the chronic effects of right ventricular pacing on RV function are largely unknown, and (as in the left heart) difficult to disentangle from the loss of atrial transport, and the possibility that conducting system fibrosis (the commonest cause of complete heart block in old age) might be part of a more generalised cardiomyopathy. Animal studies do, however, confirm that chronic ventricular pacing is associated with myofibrillar disarray[172].

Certainly, life expectancy in complete heart block is improved by asynchronous ventricular pacing \([145,146,147]\), but there is less evidence that it is returned to that expected for an ageand sex-matched population \([148,149,150]\) 。

\footnotetext{
Use of the model for exploxing the effects of varying \(\mathbb{P R}\) intervals on RVSTIs

It must be recognised, therefore, that even with appropriately timed atrial contractions, ventricular function as measured by RVSTIs might be abnormal. However, as the pacing stimulus and pattern of activation will be the same regardless of the "PR" interval the effect of atrial synchrony can still be meaningfully studied on a beat-to-beat basis by Doppler. Indeed, the ability to control the important parameters within fine limits represents the best opportunity in clinical medicine without resorting to the previously decribed invasive techniques [153, 157, 158, 159].

No such data on RVSTIs exists in human subjects. Previous attempts to measure left ventricular output in paced patients have used integrals of mitral valve inflow[198] or aortic valve outflow [201,202]. Whilst these give evidence that PR timing is important for optimal cardiac output, and suggest that (at rest at least) a figure for the \(P R\) interval of around 150ms is best \([191,192,198]\), no attempt is made to look at the effects on the two ventricles separately. However, artificial cardiac pacing is primarily a right ventricular event, and an attempt to look at right heart function in this situation seems eminently worthwhile。
}

Age differences

A further difference between the paced and control groups was age. [Fig 25].

Young people constitute only a small percentage of the total population who have permanent pacing devices in situ. We wanted to study the effects of RVSTIs throughout all age ranges, so the control group has a wide age spread.

However, most patients with pacing devices are over age 60, and our paced population is representative of them.

Unavoidably, therefore, the mean ages of the two populations are quite different. This should be borne in mind when comparing them. The mean age of paced patients was 69 yrs ( \(£ 12.73\) ) as against 39.5yrs ( \(\pm 16.2\) ) for the controls ( \(\mathrm{p}<.001\) ). However, as we have already seen, correlations between most RVSTIs and age are weak or non-existent, and between-patient variability is actually greater in younger rather than older patients.


\section*{Results}

Differences between controls and paced patients

Descriptive statistics for RVSTIs for the sum of all recorded beats in paced patients are easy to calculate and suggest an overall reduction in measures of right ventricular systolic function as compared to controls，as expected．
Controls Paced patients
\(\mathrm{n} \quad 77\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Mean & Range & Mean & Median & Range \\
\hline RVPEP（ms） & 103 （土 13） & 79－100 & 143 （ \(\pm 29)\) & 150 & 45－225 \\
\hline RVET（ms） & 300 （ \(\ddagger\) 29） & 227－369 & 269 （ \(\pm 3\) ） & 270 & 105－380 \\
\hline RVETI（ms） & 322 （士 21） & 374－278 & 293 （亡 47） & 296 & 113－408 \\
\hline PEP／ET & \(.35( \pm .09)\) & ．24－． 53 & .55 （ \(\pm .16)\) & ． 53 & ．13－1．56 \\
\hline AT（ms） & 135 （土 23） & 91－136 & \(91( \pm 25)\) & 90 & 30－185 \\
\hline AT／RVET & ． 45 （土 ． 06 ） & ．31－． 59 & ． 34 （土．09） & ． 34 & ．13－． 70 \\
\hline PEP／AT & .79 （土．18） & ．5－1．3 & 1.70 （士．64） & 1.65 & ．33－5．16 \\
\hline \begin{tabular}{l}
PA Vmax \\
（cm／sec）
\end{tabular} & \(63.1( \pm 23)\) & 40－145 & \(47.8( \pm 15)\) & ） 45 & 20－120 \\
\hline
\end{tabular}

Although the mean values for the two groups are clearly different， the striking feature of the values from paced patients
is the extraordinary range of results，which far exceeds that of the control subjects，despite a smaller sample size．This suggests much more beat－to－beat variability in the paced population；this is apparent from the recording traces．

Variability about the subject mean in paced patients - pealk and trough effects

However, the increased variability is not at all uniform around a mean. Where PR intervals occur in "normal" relationships (hence called positive PR intervals), as in sinus rhythm, RVSTIs in fact approximate to that of the control subjects. A "peak" phenomenon is discernible with "best" values for RVET, AT and the ratio AT/RVET and PAVmax occuring at mean \(P R\) values of \(100-200 \mathrm{~ms}\). This is similar to previous data gathered invasively in animals[141] with regard to RV function.

A peculiar "nadir" phenomenon ("worst" values for the STIs)[Fig 26], not previously reported, and of much greater magnitude than the peak phenomenon, is also manifest upon study of the traces [Fig 27] and derived data. PR intervals that are "negative" (i.e. the \(P\) wave follows rather than precedes the pacing flicks are associated with lower values in general than when the \(P R\) interval is positive. At negative values of -50 ms to -150 ms , gross reductions in RVET, AT and AT/RVET occur in many patients, and the effect is at least clearly discernible in most. In some patients the effect is dramatic, with falls of \(50 \%\) or more. It should be stressed that none of the patients studied had any symptoms referable to this effect, and none had symptoms suggestive of the Pacemaker Syndrome; this is in fact even more suprising when pulmonary artery forward flow virtually ceased in some patients, albeit for a few beats only.



It was not possible to predict from the data nor from the previously known characteristics of the patients those in whom the magnitude of this effect would be significant.

\section*{Data analysis}
(a) Construction of relative frequency curves

These nadir and peak effects are very striking in some patients and less so in others. To study the paced population as a whole requires a weighting system to reconcile the differing number of observations available on each and to construct a cumulative frequency of nadirs and peaks for the entire group.

Because I was observing spontaneous changes in PR interval I had to accept the figures for \(P R\) interval that occurred. This lead to differing numbers of observations and different sets of \(P R\) data in each subject.

For example, the first paced subject (of the 30 available) had 53 beats available for analysis, spread between \(P R\) values of -350 ms and +410 ms . A relative frequency of \(1 /(30 \mathrm{x} 53)\) was put into each of his PR interval "bins"。

The second subject had 45 available complexes and 4 of them occur at a PR interval of -200 ms : a relative frequency of \(4 /(30 \mathrm{x} 45)\) is therefore assigned to his PR value of -200 ms (he has 3 data 169
points at -195 ms therefore this \(P R\) interval is given a weight of 3/30 x 45, etc.) 。 In this way, a relative frequency distribution can be built up for the entire population of subjects, with each subject having a total "weight" of \(1 / 30\) (in deference to the principle of the subject as the unit of data). The same is then done for nadirs and peaks. For example, subject No. 1 has 2 complexes attaining the lowest value of, say, RVPEP. The corresponding PR interval value receives a contribution of \(1 / 30 \times 2\). Subject No. 2 has a single nadir for RVPEP, so this \(P R\) interval in this patient recieves a weight of \(1 / 30\) 。

The same is done for each patient and also for the nadir and peak values for RVPEP, RVET, AT, AT/RVET, RVPEP/AT and PAVmax. This method of construction of a frequency distribution gives equal weight to all subjects irrespective of the degree of replication of nadirs or peaks.
(b) Display of results

If the data is now displayed as a cumulative frequency distribution, 3 curves can be superimposed. The curve corresponding to "all observations" climbs steadily, as each data point on the curve corresponds to a PR interval actually observed.

The columns of nadirs and peaks, however, climb from the baseline in steps of \(1 / 30\) s or fractions of \(1 / 30\). The steepest parts of these curves for nadirs and peaks correspond to the most rapid accumulation of numbers of nadirs and peaks, and can be compared to the speed of accumulation of "all data", as estimated from the middle curve.

The vertical difference between these curves, or degree of difference between them can be compared with the Kolmogrov-Smirnoff statistic (used for comparing relative cumulative frequencies). If there is a significant difference in the curves (such as a maximum rate of accumulation of nadirs at a different PR interval than the rest of the PR population), one can deduce that trough values for, say, RVPEP are significantly more likely to occur at this PR value. The lines cross over, and the reverse reasoning can be used to see if there is a significant difference in the rate of accumulation of peaks at one PR interval relative to the others.
(c) Results of curve comparisons

\section*{Kolmogorov-Smirnoff (KS) differences in relative cumulative} frequency between nadirs/peaks and "all complexes" studied:
Measurement No。 informative Nadirs Peaks
subjects

Max diff \(P R\) Max diff \(P R\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline RVPEP or RVPEPC & 30 & . 209 & -85 & . 129 & +55 \\
\hline RVET or RVETC & 30 & . \(483 \%\) \% & -20 & . \(515 \%\) & 0 \\
\hline RVPEP/RVET & 30 & . \(446 \%\) \% & \(+25\) & . \(483 \% \%\) & -20 \\
\hline AT (TTP) & 28 & . \(289 \%\) & +20 & . 251 \# & -15 \\
\hline AT/RVET & 28 & . 236 & -45 & . 251 \# & +85 \\
\hline RVPEP/AT & 28 & . 210 & -80 & - 253\# & \(+30\) \\
\hline PA VMax & 26 & . 266 & \(\pm 55\) & . \(384 \%\) \% & \(+80\) \\
\hline & & \multicolumn{4}{|r|}{\[
\begin{array}{r}
* * \mathrm{p}<\mathrm{o}_{0} 01 \\
\text { (Highest sig level } \\
\text { tabulated for KS } \\
\\
\text { statistic) }
\end{array}
\]} \\
\hline
\end{tabular}

\section*{Results for individual RVSTIs}
（a） \(\mathbb{R V R E P}\)［Fig 28］
For RVPEP（or＂RVPEPC＂），although lowest figures were obtained at a PF value of -85 ms and a peak at +55 ms ， the differences between the nadir and peak lines and the＂all data＂line are only ． 209 and ． 129 （differences in cumulative frequency）and \(p>.05\) for all RVPEP observations．RVPEP did not，therefore，vary significantly with the PF interval．This is perhaps＂not suprising＂ in view of the dubious significance of this RVSTI when ventricular electrical activation is so abnormal as in artificial pacing。
（b）RVET［Fig 29］

Analysis of similar cumulative frequency curves for RVET，however，demonstrates highly significant differences．

All 30 nadirs（including joint ones）are confined to the interval －210ms to -20 ms for PF 。So，on a population basis，there was a significantly greater chance of a subject＇s lowest RVET occuring in this range of PF 。

Similarly，almost all peak RVETs occur in the PF intervals \(0-+210 \mathrm{~ms}\) ，with a peak around \(100-150 \mathrm{~ms}\) ．This is also apparent from perusal of most patients＇scatter－plots of RVET vs PF interval．



Maximum differences between the nadir and "all data"
lines was. \(483(p<.01)\) and between the peak and "all"
lines even greater at .515 of cumulative frequency
( \(\mathrm{p}<.01\) ) 。
Thus, the PR interval markedly influences RVET (or RVETC):
"physiological" PR intervals are associated with longest
RV ejection times but "retrograde" \(P\) waves are associated with gross shortening of this measurement, reflecting
marked reductions in flow.
(C) RVPEP/RVEI

Analysis of the ratio RVPEP/RVET confirms a pattern approximately the inverse of RVET: this would be expected if RVET is influenced by \(P R\) interval and RVPEP is not. Peak differences of 0446 for nadirs ( \(p<.01\) ) and .483 for peaks ( \(p<.01\) ) are similar in magnitude to values for RVET, and this ratio therefore appears to mean little more than the reciprocal of RVET in this situation.
(d) \(\operatorname{AT}(\mathbb{T P P})\) [Fig 30]

Acceleration time (or time-to-peak flow) shows a basically similar, but less pronounced pattern. Peak differences between the nadir and peak and "all" cumulative frequency curves are .289 ( \(p<.05\) ) and .251 ( \(\mathrm{p}=.05\) ) respectively.

This shows that inverse atrioventricular sequencing significantly affects acceleration time: it is not clear whether there is an effect within "physiological" ranges for PR.

Disappointingly, neither the ratio AT/RVET nor RVPEP/AT were an improvement on crude AT: differences were nonsignificant at \(p\) values of around . 05 。
(e) PAVmax [Fig 31]

There is, however, no doubt about the difference between the peak line and the "all data" line with PA maximum velocity. The peak difference was 0384 at around +80 ms ( \(p<.01\) ). It would have been nice to calculate PA flow integrals on a beat-by-beat basis had the software been available at the time.
Fig. 30
ACCELERA TION TIME
Cumulative frequency
(Nadirs/all data/peaks)



By contrast, although nadirs do tend to congregate around a \(P R\) value of -100 ms , significance on the \(K F\) statistic is borderline ( \(p=.05\) approx). Although in individual patients, therefore, the very low peak velocities associated with inverse atrioventricular sequencing are manifest, this could not be demonstrated over the entire population.

Discussion of results: - potential clinical applications (particularly to pacing technology and practice)

The continuing debate about the merits of atrial synchonisation

Although single-chamber ventricular pacing without any attempt at atrio-ventricular synchronisation prolongs life in complete heart block, survival is better in heart failure when dual-chamber pacing is used [149,150]. Dual-chamber pacing is associated with smallex end-diastolic and end-systolic chamber dimensions and a higher cardiac output. Maximal work ability is higher and arteriovenous oxygen differences are smaller \([160,161]\), despite no change in coronary blood flow or myocardial oxygen uptake, suggesting increased efficiency [159]. Not only is cardiac output around \(30 \%\) higher whether in heart failure or not [191] but patients much prefer dualchamber pacing [ 160,165 ].

There is some evidence that patients paced for sick sinus syndrome are more likely to end up in atrial fibrillation if VVI rather than atrial or dual-chamber pacing is used [225]. Although patients with normalsize left atria are most sensitive to loss of atrial
transport [204], long-term VVI pacing is associated with larger left atria eventually [199].

Previous studies of the deleterious effects of reverse atrioventricular sequencing
- relationship to the "Pacemalter Syndrome"

Ogawa [182], in a classic experiment with seven open-chest
dogs, demonstrated that during atrioventricular dissociation, pacing the atria after the ventricles (a "negative" PR interval) caused a fall in forward flow and ventricular filling pressures, and a sharp rise in systemic and pulmonary venous pressures. This is the basic haemodynamic situation in the "Pacemaker Syndrome", which only occurs with single-chamber ventricular pacing and continuing atrial activity.

There is less agreement about why atrial pressures (which are the probable cause of the increased incidence of atrial fibrillation and poorer output) are raised. Negative flow waves can be detected in both systemic veins (cannon waves) [185] and pulmonary veins[226], and conventional wisdom has it that these are due to atrial contraction against a closed atrioventricular valve. Clinically, the waves look like tricuspid regurgitation in the neck; pressure waves in the right atria look like those of marked tricuspid regurgitation
[ \(180,185,226]\). Blood regurgitates into the pulmonary veins also [227] but this could happen by either mechanism。

Contrast echocardiography shows "packets" of contrast echos in the inferior vena cava during negative \(P R\) intervals, but this could also be due to atrial contraction against a closed valve [186]。 Pierard [187] demonstrated echocardiographic contrast refluxing into both great veins in all his patients but in only about \(1 / 3\) did he see contrast clearly moving backwards across the tricuspid valve.

It is known that mitral regurgitation can be increased by long or very short PR intervals [202], and there is even a case report of the production of mitral valve prolapse by VVI pacing [228]. But although mitral regurgitation was noted in some studies [226], others could not show the production of mitral regurgitation in any pacing mode [203].

Thus, the mechanism for high, pulsatile pressures in the atria remains in dispute.

There is no real disagreement, however, about the effect of mis-timed atrial contractions on ventricular filling. The onset of atrioventricular valve closure bears a constant temporal relationship to the P wave [198]. Although the atrial contribution to cardiac output is probably less in cardiac failure [229], and a long PR interval might be best in those circumstances [163], most studies report that left ventricular output and filling pressures are optimal in patients with normal ventricular function at around a PR interval of \(100-150 \mathrm{~ms}\) [ \(164,194,202,226]\) 。On exercise in a normal adult in sinus rhythm, physiological shortening of the PR interval occurs [230], and cardiac output is higher (as assessed by continuous wave Doppler) with a shorter PR interval of 75 ms on exercise rather than 150 ms at rest [231]. Similar data does not exist for the right heart.

My data suggests that peak right heart output, as judged by length of ejection time and acceleration time, and by ejection velocity, also occurs at around a PR interval of \(100-150 \mathrm{~ms}\) at rest in individuals with normal ventricular function.
```

However, the extent of the fall in forward flow during negative $P R$ intervals was very suprising; none of my patients had been shown to have intact retrograde ventriculo-atrial conduction, (which is only thought to occur in about 1 in 7 patients with complete antexograde heart block[232]).
This phenomenon, which appears to be of much greater magnitude than anything reported in the left heart, may be a reflection of the greater sensitivity of the right heart to loading conditions. As most patients receiving pacemakers are elderly, the fact that maximal late diastolic (i.e. atrial) flow rises with age [233] both absolutely and as a proportion of all diastolic filling (suggesting decreased ventricular compliance), may further magnify this effect.

```

\section*{References}
[225] Markewitz \(A\), Schad \(N\), Hemmer W, Bernheim C, Ciavolella M Weinhold C
What is the most appropriate stimulation mode in patients with sinus node dysfunction ?
\(\begin{array}{llll}\text { PACE } & 1986 \quad 9 & 1115-1120\end{array}\)
[226] Moreira LFP, Costa A, Fernandes PMP, Stolf NAG, Jatene AD, Armelia E
Re-evaluation of the role of atrial systole in the closure of atrioventricular valves
Inः Cardiac Pacing Ed: Gomez FP Editorial Grouz Madrid
[227] Naito M, Dreifus LS, David D, Michelson EL, Mardelli TJ, Kmetzo JJ
Re-evaluation of the role of atrial systole to cardiac haemodynamics: evidence for pulmonary venous regurgitation during abnormal atrioventricular sequencing。
Am Heart J \(1983105 \quad 295\)
[228] Klein HO, di Segni F, David D, Lang R, Levi A, Libhaler C, Sareli P, Kaplinsky E Mid-systolic click and echocardiographic evidence of mitral valve prolapse during electrical pacing. PACE 1981 4 615-621
[229] Greenberg B, Chatterjee K, Parmley WW et al The influence of left ventricular filling pressure on atrial contribution to cardiac output. Am Heart J \(1979 \quad 98 \quad 742\)
[230] Daubert C, Ritter P, Mabo P et al
Physiological relationship between the atrioventricular interval and heart rate in healthy subjects: application to dual-chamber pacing. PACE 1986 9 1032-1039
[231] Mehta D, Gilmour S, Ward DE, Camm AJ
Optimal atrioventricular delay at rest and during exercise in patients with dual-chamber pacemakers: a non-invasive assessment by continuous wave Doppler Br Heart J 198961 161-166
[232] Hayes DC, Furman S
Atrioventricular and ventriculoatrial conduction times in patients undergoing pacemaker implant \(\begin{array}{llll}\text { PACE } & 1983 \quad 6 \quad 38-36\end{array}\)
[233] Spirito P, Maron BJ Influence of ageing on Doppler echocardiographic indices of left ventricular diastolic function Br Heart J 1988 59 672-679

\title{
Invasive study on patients undergoing insertion of permanent pacing systems
}

The original protocol submitted to the ethical committee for this study involved invasive studies on patients (six were planned) undergoing permanent pacing implant. Because of recurrent equipment failure, only two patients could be studied. Fortuitously, one of each group was studied.

Repeated equipment malfunction, in particular the catheter-tip transducer, on which 1 relied for accurate timing of pressure waves, prevented the study reaching a conclusion. There were no funds available to buy any more.

I therefore include the data from this investigation for illustrative purposes only.

Method:

After the initial subclavian puncture, temporary wires were inserted via the left subclavian vein and advanced to the right atrium and right ventricular apex. A conventional fluid-filled catheter was placed in the right ventricle for pressure measurement and a catheter-tip transducer was also placed there for accurate systolic timing. A third line was placed either in the right atrium or right ventricle, for RA pressure or RVEDP measurement. Pacing was initiated with a R-Ri interval of 700 ms , and the \(P R\) interval was varied from 200 ms through 150 ms , \(100 \mathrm{~ms}, 50 \mathrm{~ms}\), simultaneous activation, and retrograde sequencing of \(50,75,100,150\) and 200 ms . In between recordings at each setting, dual-chamber pacing with a PR interval of 150 ms was performed for 3 minutes, to allow a return to "steady-state"。

A minimum of twelve measurements was taken and mean and 95\% CIs calculate for each PR interval.

\section*{Results:}

Patient (1):

PR interval
(ms)
RV sys. pressure ( mmHg )

RVEDP
( mmHg )
Mean \(95 \%\) CIs Mean \(95 \%\) CIs Mean \(95 \%\) CIs
\begin{tabular}{lllllll}
-200 & 42.7 & \(41.7-43.8\) & 373 & \(365-382\) & 8.7 & \(8.3-9.1\)
\end{tabular}
\begin{tabular}{llllllll}
-150 & 43.9 & \(42.9-44.9\) & 369 & \(361-377\) & 8.3 & \(7.8-8.8\)
\end{tabular}
\(\begin{array}{llllllll}-100 & 45.6 & 44.8-46.5 & 377 & 369-385 & 8.4 & 8.0-8.8\end{array}\)
- 75 47.2 \(46.5-48.0 \quad 370365-374 \quad 8.8 \quad 8.3-9.3\)
\begin{tabular}{llllllll}
- & 50 & 47.7 & \(46.7-48.8\) & 370 & \(363-376\) & 9.2 & \(8.8-9.6\)
\end{tabular}
\(0 \quad 48.3 \quad 47.0-49.6 \quad 368 \quad 0-375 \quad 9.6 \quad 9.2-10.0\)
\(50 \quad 58.1 \quad 56.3-59.9 \quad 391 \quad 382-401 \quad 10.410 .4-10.9\)
\(10063.1 \quad 61.8-64.3 \quad 426 \quad 418-433 \quad 12.7 \quad 12.2-13.1\)

150 60.2 59.0-61.4 401 394-408 12.8 12.3-13.4
\(200 \quad 43.4 \quad 42.3-44.4 \quad 383 \quad 378-386 \quad 10.6 \quad 10.0-11.1\)
RV systolic pressure ( mmHg )
Varying PR intervals
( \(95 \%\) confidence intervals)
RV press ( mmHg )

RV systolic time (ms)
Varying PR intervals
( \(95 \%\) confidence interva
( \(95 \%\) confidence intervals)
RV systolic time
\[
\text { Fig. } 33
\]

RV end-diastolic pressure ( mmHg )
Vars, 36
(asying PR intervals
( \(5 \%\) confidence intervals)


\section*{Patient (2)}

PR interval (ms)

RV syst press RV syst time ( mmHg ) (
(ms)

RA pressure
( mmHg )
A wave \(V\) wave

Mean \(95 \%\) CIs Mean \(95 \%\) CIs Mean \(95 \%\) CIs Mean \(95 \%\) CIs
\begin{tabular}{rrrrrrrrr}
-200 & 15.0 & \(15.0-15.0\) & 421 & \(405-437\) & & 14.4 & \(14.2-14.7\) \\
-150 & 16.7 & \(15.7-17.7\) & 402 & \(395-409\) & & & 14.5 & \(14.3-14.8\) \\
-100 & 13.8 & \(13.4-14.3\) & 431 & \(417-445\) & & & 13.8 & \(13.5-14.0\) \\
-75 & 14.2 & \(13.8-14.4\) & 409 & \(404-413\) & & & 16.6 & \(16.1-17.1\) \\
-50 & 22.4 & \(21.8-23.0\) & 489 & \(481-496\) & & & 18.3 & \(17.8-18.8\) \\
0 & & & & & & & & \\
50 & 22.7 & \(18.4-23.8\) & 409 & \(402-415\) & 9.9 & \(9.1-10.6\) & 7.3 & \(6.8-7.8\) \\
100 & 21.9 & \(20.7-23.0\) & 408 & \(402-415\) & 7.8 & \(7.6-8.0\) & 6.3 & \(6.0-6.5\) \\
150 & 21.5 & \(21.0-22.1\) & 444 & \(437-450\) & 7.6 & \(7.3-7.9\) & 6.2 & \(6.0-6.5\) \\
200 & 22.4 & \(22.0-22.9\) & 444 & \(439-450\) & 6.9 & \(6.5-7.2\) & 6.3 & \(6.1-6.5\)
\end{tabular}

No data is recorded for the "a" wave in RA pressure at negative PR intervals, because the large "v" wave completely obscured it.
RV systolic pressure
Varying PR intervals
Pressure
(mmg) 26 Pressure
RA pressure - \(V\) wave
Varying PR intervals


\section*{Discussion}

It will be immediately noted that RV systolic pressure [Fig 32, Fig 35] and time [Fig 33] were significantly less at all negative PR intervals than at positive or "normal" ones, the decrease in RV systolic pressure in both cases being about one third of the highest systolic pressure recorded. The effect of atrial systole on LV output has been previously found to be about \(25-30 \%\) in most subjects with normal hearts [163], and are here documented to be the same in the right ventricle.

The RVEDP [Fig 34] and atrial pressure data [Fig 36] are very interesting. The RVEDP rises with appropriate PR intervals from a nadir of 8.3 mmHg to a peak of 12.8 mmHg at a PR interval of 150 ms , and RV systolic pressure and systolic time rise in parallel. It looks as though RV preload is an important determinant of RV output in this patient, and that the PR interval is markedly affecting RVEDP: there is a small change with variation in "positive" PR intervals, with a peak at 150 ms , but "negative" or retrograde PR intervals are all associated with much lower RVEDPs and RV systolic pressures.

Patient two offers an explanation for this. The right atrial pressure wave is normal with equal "a" and "v" waves with appropriately timed PR intervals, but when atrioventricular sequencing becomes negative the "a" wave is completely obscured by a very large "v" wave reminiscent of tricuspid regurgitation. Not only does the RV systolic pressure fall at this point, but the RA pressure becomes similar to the RV systolic, suggesting equalisation of pressures between the chambers. A plausible explanation would be gross tricuspid regurgitation.

This phenomenon can also be observed during complete heart block (see later).

\section*{Conclusions}

\begin{abstract}
The physiologies of the right and left ventricles have recently been demonstrated to be very different. Invasive measurements of RV volume and pressure reveal very disimilar so-called "pressurevolume loops" in the two chambers, reflecting the differing sensitivities of the two ventricles to loading conditions. The pressure against which the ventricle contracts to eject its contents (afterload) is the major determinant of the shape of the pressure-volume loop (PVL). The normally triangular PVL in the RV [234] is retained whatever the filling pressure (preload), and volume-loading itself does not greatly distort the shape [235]: but increasing afterload progressively changes the shape of the PVL to a left-ventricular-like "square" shape [235]. Relief of this increased afterload causes a resumption of the triangular pattern. Conversely, vigorous after-load reduction in the left ventricle, by vasodilator treatment [236] or in severe mitral regurgitation [237] causes the PVL to assume a triangular or "RV" type of curve.
\end{abstract}
(1) RVSTIS are limited but still useful: comprehensive normal ranges are presented

The timing of ejection from the ventricle is influenced by the shape of the PVL. In the LV, there is a more clearly-defined isovolumetric contraction phase, and ejection commences during rising pressure with subsequent loss of pressure and volume; however, in the right ventricle, ejection may occur during falling RV pressure, and an isometric contraction period is less well defined[234] . Afterload variation would therefore be expected to have a major effect on systolic time intervals, and it was on this premise that they were introduced for the study of pulmonary artery pressure and resistance (both measures of RV afterload). However, success has been very patchy: general associations have been confirmed between these variables and most of the RV systolic time intervals but predictive accuracies have varied from the apparently clinically usable [113-117] to studies coming to the opposite conclusion [108,109,111].

A very abnormal set of RVSTIs should arouse suspicion of seriously elevated pulmonary artery pressures, and, being noninvasive, the technique retains some usefulness. Serial studies are easy and informative, and should probably be undertaken more often.
```

This study describes a carefully-constructed set of "normal"
values for a wide age range.
The ranges appear to be considerably wider than previously
accepted for normal subjects from previous investigators'
reports: in addition, many of the frequency distribution are
markedly skewed: in some this can be partly compensated-for
by transformations.
Means, medians and measures of dispersion are presented for
all the commonly used variables.
The effects of heart rate, age and other variables are
explored, and the limitations of the various "corrections" examined.
Measurements of dispersion about individual subject means show that intra-personal variation is very small, and (at least at the same "sitting") sufficiently so to allow the examination of interventions such as variation of $P R$ intervals: inter-subject variation was much wider, and population studies are therefore more difficult.

```
(2) Complete heart block is a usetul model for comparing the effects of differing \(\mathbb{R R}\) intervalls and RVSTIs can be applied to the measurement of RV systolic function in that situation

The evidence that filling pressure affects RV systolic function is extensive, and application of RVSTIs as a study method here has not been previously undertaken. I chose complete heart block as a model because the continuously varying \(P R\) intervals cause continuously varying RV filing conditions on a beat-to-beat basis; if a permanent pacemaker is in place the ventricular response is held unphysiologically steady and allows a fairly "pure" assessment of the effects of changing the RV loading conditions.

I show that such an approach is practical, and yields positive results: variation of RVSTIs is much greater than would be expected from random intra-personal variationg and follows a distinct pattern.

Although manipulation of the \(P R\) interval by programming in a dual-chamber system is easy enough, there is no way that the effect of reversal of atrioventricular sequencing can be simulated; simply observing spontaneously varying atrioventricular sequencing (although generating much more "untidy" data) offers this prospect. In addition, it is of importance to clinical practice.

Right ventricular loading conditions have clinical importance。 During myocardial infarction with significant right ventricular involvement, optimal RV filling pressure is around 10-14 \(\mathrm{mmHg}[238\) ] and relatively minor departures from this may produce large reductions in overall cardiac output; volume-loading in hypotension and cardiogenic shock caused by RV infarction is well-established treatment \([239,240]\). There is, however, some evidence that in some patients at least, too high a pressure may also be deleterious to cardiac output during RV infarction \([234,240]\). One possible explanation for reliance on a higher filling pressure would be decreased compliance of the infarcted area.

Age is also a determinant of compliance. The isovolmetric period and maximal late diastolic (atrial) flow both rise with age, suggesting increased stiffness of the heart [241]. Although most of the work on this subject has been done in the LV, it seems reasonable to assume that a similar process occurs in RV muscle. This would suggest that RV loading conditions are even more important in older folk for the maintenance of cardiac output. The rapidity with which elderly patients become shocked during volume depletion supports this view, although clearly other factors such as diminished vasomotor reserve, coronary and renal blood flow and concomitant disease are also important.
(3) RV loading conditions are important in pacing practice, and RVSTHs can be used to study then.

Complete heart block with ventricular demand pacing provides a situation for study of continuously varying right atrial pressures. Ill-timed atrial contractions (during or falling just after ventricular systole) cause large pressure waves in the right atrium, reminiscent of tricuspid regurgitation(TR)[185]。 There has, in fact, been some considerable discussion as to whether these waves really represent atrial contraction against a closed tricuspid valve[186,189]. The point is not merely academic: asynchronous ventricular pacing, with no attempt to keep atrioventricular sequencing constant, is associated with atrial enlargement[183]; and this is less so in those with dual-chamber pacemakers[242]. As would be expected, patients with normalsized atria are more sensitive to the loss of atrial synchrony[204]. The atria would be activated after the ventricles (at just the "wrong" time) if electrical impulses originating in the ventricles (be they artificial or naturally-occurring ventricular ectopic beats) were carried retrogradely up the heart's conducting system to the atria, activating that chamber. Intact retrograde ventriculo-atrial conduction can be demonstrated in around two-thirds of those undergoing pacemaker implant for sick sinus syndrome; and \(14 \%\) of those with complete heart block, even if there is complete anterograde block [243]. Most patients with severe "Pacemaker Syndrome" have intact conduction.

But Ogawa's meticulous experiments [182] on seven dogs with surgically-induced complete heart block (and therefore no chance of retrograde conduction) still demonstrated marked rises in right and left atrial pressures during mis-timed atrial contractions; RV and PA pressures and cardiac output all fell at the same time. Changes in LV dynamics were less marked but still detectable, perhaps because of the differing sensitivities of the two ventricles to volume-loading.
It might therefore be asked, in the light of these findings, and my own (showing a striking fall in forward flow during mis-timed atrial contractions), whether the fall in pressure and forward flow was the result of backward flow into the atrium i.e. tricuspid regurgitation; or just poor RV loading. The literature is contradictory on this point.

Pressure waves in the RA are striking[183] and do mimic TR[191], as I demonstrate in my abortive invasive study, and there is little doubt that inappropriately short or long PR intervals can increase atrioventricular valve regurgitation[202]. "Packages" of echocardiographic contrast medium seen in the inferior vena cavae of patients [188,187] undergoing ventricular pacing could be (and were) explained in both ways, although Pierard [187] states that he clearly saw bubbles refluxing across the TV in thirteen of his patients. However, other workers could not detect AV valve regurgitation in any pacing mode [201].

Whatever the mechanism, RV loading is clearly sub-optimal during inappropriately-timed atrial contractions.

The optimal PR interval for dual-chamber atrioventricular pacing has been addressed in many studies \([244,245,256,247,201,248,249]\); all concentrate on \(L V\) function. There is general agreement that the \(P R\) interval profoundly affects atrioventricular valve closure. With physiological PR intervals, AV valve closure occurs towards the end of diastole \([250,251]\) : if ventricular systole starts before atrial emptying is complete, the proportion of ventricular filling caused by atrial transport is reduced [252]. If the atrial contraction is late in diastole, ventricular systole starts with the valve cusps wide apart and regurgitation may result [251,252], especially in early systole[253,254]. If atrial systole is premature, LV filling time is reduced by the premature closure of the \(A V\) valve reducing venous inflow.

Most authors agree that during dual-chamber pacing, cardiac output at rest is optimal with a PR interval of approximately \(150 \mathrm{~ms}[165,201,244,246,248,249,255,256]\). During exercise the \(P R\) interval physiologically shortens in a normal individual [257], and shorter paced PR intervals of around 80 ms are better[244,249] The same is true in situations of cardiac stress such as in acute myocardial infarction \([164,246,256]\) and following cardiac surgery where heart block develops [258]. Videen [164] suggests that longer \(P R\) intervals are better during chronic pacing in 206
patients with congestive heart failure (almost all the other studies only examined patients with normal ventricular function) and this should prove to be an interesting area for future research; it may be that the flattening of the Frank-Starling curve during heart failure in the \(R V\) will mean that the atrial contribution is less important in progressive heart failure.

Apart from early invasive studies on dogs [182], no study has addressed the optimal PR interval for right ventricular output in patients with normal RV function. It cannot be assumed that it will be the same as in the \(L V\), because of the differing FrankStarling curves and PV loops in the two ventricles. Signs of right, (rather than left) ventricular origin, such as ankle oedema, abdominal discomfort and high JVPs are common in most pacing clinics.
(4) Inappropriate atrioventricular sequencing cam result in very large falls in forward flow from \(R V\) to \(\mathbb{P} \mathbb{A}_{g}\) as measured loy RVSTIS

This finding has not been previously reported.
I find that the optimal resting \(P R\) interval, as judged by the longest RVET, AT and AT/RVET ratio, is indeed around 100150 ms , as in the left ventricle at rest. The consequences of inappropriate atrioventricular sequencing, however, with atrial contractions falling \(100-150 \mathrm{~ms}\) after pacing stimulus artefacts, are severe.

RVET, AT and PA velocity fell to \(50 \%\) or less of their optimal values in many patients, indicating marked reductions in forward flow into the pulmonary artery. In some patients forward flow became difficult to detect at all at this point. The duration of this situation was clearly related to the atrial rate, and was sometimes prolonged to \(10-15\) seconds when the atrial and ventricular rates became similar. The patients, (supine and relaxed) were asymptomatic, somewhat suprisingly. These changes are considerably greater than those reported under similar conditions in the LV [161], and it is likely that some of the reported reduction in cardiac output with mistimed atrial contraction is due to loss of RV rather than LV output.

It is still not clear whether the RV is "unloaded" into the RA (as the pressure waves in the RA suggest) in the form of tricuspid regurgitation when atrial contractions are mis-timed, or whether sudden falls in filling to the RV alone are responsible for these changes.
(5) This study is further evidence of the haemodynamically unsatisfactory nature of asynchronous single-chamber ventricular pacing.

The debate continues as to whether it is ethical to implant single-chamber asynchronous pacemakers into most patients presenting with complete heart block who are not in atrial fibrillation。

Although most such patients are elderly, and relatively uncomplaining, the proportion of the population at large who are over \(75 y r s\) is rapidly rising, and contains many more highly articulate patients who wish to be as active as possible. The rise in such numbers itself suggests a formidable economic burden, not only in cardiology, and arguments based on cost will also have increasing force.

We hope this study will add weight to the view that "VVI" or single--chamber asynchronous ventricular pacing has very significant haemodynamic drawbacks; and that these may become more important as paced patients live so much longer. It also suggests a method for exploring future pacing refinements. 209

\section*{References}
[234] Redington AN, Gray HH, Hodson ME, Rigby ML, Oldershaw PJ Characterisation of the normal right ventricular pressure-volume relation by biplane angiography and simultaneous micromanometer pressure measurements \(\begin{array}{llll}B r & \text { Heart } J & 1988 \quad 59 & 23-30\end{array}\)
[235] Redington AN, Rigby ML, Shinebourne EA, Oldershaw PJ Changes in the pressure-volume relation of the right ventricle when its loading conditions are modified Br Heart J \(1990 \quad 63 \quad 45-49\)
[236] Weber KT, Janicki JS
Instantaneous force-velocity-length relations in isolated dog heart Am J Physiol \(1977 \quad 232\) 241-249
[237] Bunnell IL, Grant C, Greene DG
Left ventricular function derived from the pressurevolume diagram \(\begin{array}{llll}\text { Am J Med } & 1965 \quad 35 \quad 881-894\end{array}\)
[238] Berisha S, Kastrati \(A_{\rho}\) Goda \(A_{\rho}\) Popa \(X\) Optimal value of filling pressure in the right side of the heart in acute right ventricular infarction Br Heart J \(1990 \quad 63\) 98-102
[239] Crexells C, Chatterjee K, Forrester JS, Dikshit K, Swan HJC
Optimal level of filling pressure in the left side of the heart in acute myocardial infarction N Eng J Med \(1973 \quad 289\) 1263-1266
[240] Coma-Canella I, Lopez--Sendon J, Adanez JV
Volume loading in patients with ischaemic right ventricular dysfunction \(\begin{array}{llll}\text { Eur Heart J } 1981 \quad 2 & 329-39\end{array}\)
[241] Spirito P, Maron BJ
Influence of age on Doppler echocardiographic indices of left ventricular function
\(\begin{array}{llll}\mathrm{Br} \text { Heart J } & 1988 & 59 & 672-679\end{array}\)
[242] Markewitz A, Schad N, Hemmer W, Bernheim C, Ciavocella M Weinhold C What is the most appropriate stimulation mode in patients with sinus node dysfunction?
PACE 1986 9 1115-1120
[243] Hayes DL, Furman S Atrioventricular and ventriculoatrial conduction times in patients undergoing pacemaker implantation \(\begin{array}{llll}\text { PACE } & 1983 & 6 & 38-46\end{array}\)
[244] Mehta D, Gilmour \(S_{p}\), Ward D, Camm AJ Optimal atrioventricular delay at rest and during exercise in patients with dual-chamber pacemalsers: a noninvasive assessment by continuous wave Doppler Br Heart \(\mathrm{J} \quad 1989 \quad 61 \quad 161-6\)
[245] Samet P, Bernstein WH, Nathan DA Atrial contribution to cardiac output in complete heart block
Am J Cardiol 1965 16 1-10
[246] Leinbach RC, Chamberlain DA, Kastor JA, Harthorne JW, Sanders CA
A comparison of the haemodynamic effects of ventricular and sequential AV pacing in patients with heart block Am Heart \(J \quad 1969 \quad 78\) 502-508
[247] Stewart WJ, Dicola VC, Harthorne JW, Gillam LD, Weyman AE
Doppler ultrasound measurement of cardiac output in patients with physiological pacemakers: effects of left ventricular function and retrograde VA conduction Am J Cardiol \(1984 \quad 54\) 308-312
[248] Nitsch J, Seiderer M, Bull U, Luderitz B
Evaluation of left ventricular performance by
radionuclide ventriculography in patients with AV versus ventricular demand pacemakers Am Heart J 1984 107 906-911
[249] Leman RB, Kartz JM
Radionuclide evaluation of dual chamber pacing: comparison between variable atrioventricular intervals and ventricular pacing
PACE \(1985 \quad 8 \quad 408-414\)
Henderson V, Johnson FE
The modes of closure of the heart valves Heart 1912 \& 69-82
[251] Dean AC
The movement of the mitral cusps in relation to the cardiac cycle
\begin{tabular}{llll} 
Am J Physiol & \(1916 \quad 40\) & \(20-27\)
\end{tabular}
[252] Carleton RA, Passovoy M, Grattinger JS The importance of the contribution and timing of left atrial systole \(\begin{array}{llll}\text { Clin Sci } & 1966 & 30 & 151-154\end{array}\)
[253] Skinner \(\mathbb{N} S\), Mitchell JH, Wallace AG, Sarnoff SJ Haemodynamic effects of altering the timing of atrial systole Am J Physiol \(1963 \quad 205 \quad 499-454\)
[254] Little RC
The mechanism of closure of the mitral valve
- a continuing controversy

Circulation \(1979 \quad 59\) 615-618
[255] Haskell RJ, French WJ
Optimal PR interval in dual-chamber pacemakers
PACE \(1986 \quad 9 \quad 670-675\)
[256] Chamberlain D, Leinbach RL, Vassaux CE, Kastor JA, DeSanctis RV, Sanders CA
Sequential pacing in heart block complicating acute myocardial infarction
New Eng J Med \(1970 \quad 282\) 577-582
[257] Daubert C, Ritter \(P_{\text {, Mabo }} P\)
Physiological relationship between the atrioventricular interval and heart rate in healthy subjects: applications to pacing technology
PACE 1986 9 1032-1039
[258] Hartzler GO, Mahoney JD, Curtis JJ, Barnhorst DA
Haemodynamic benefits of atrioventricular sequential
pacing after cardiac surgery
\(A m\) J Cardiol \(1977 \quad 40 \quad 232-236\)

RAW DATA

RVSTIS ON NORMAL CONTROL SUBJECTS

\section*{PA Flow Values}

No.Sex Age Rate RVPEP RVET RVETI PEP/ETAT AT/ET PEP/ATAT/PEP
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & 26 & 74 & 10 & 302 & 33 & 33.07 & 146 & 48.39 & . 6915 & 1.46 \\
\hline 13 & 2 & 21 & 63.12 & 127.3 & 294.6 & 302 & 43.26 & 175 & 59.48 & . 7302 & 1.375 \\
\hline 19 & 1 & 31 & 65.87 & 78.95 & 306.3 & 320.9 & 25.82 & 140.3 & 45.82 & . 5654 & 1.777 \\
\hline 22 & 1 & 40 & 56.5 & 80.23 & 310.9 & 301.7 & 25.86 & 118.4 & 38.05 & . 6876 & 1.476 \\
\hline 24 & 1 & 26 & 58.66 & 117.5 & 322.9 & 319. & 36.47 & 184.2 & 56.99 & . 6432 & 1.567 \\
\hline 24 & 2 & 30 & 57.76 & 114.4 & 335.6 & 329 & 34.11 & 185.2 & 55.17 & . 6231 & 1.619 \\
\hline 20 & 2 & 28 & 74.82 & 93 & 298.3 & 323.0 & 31.28 & 157 & 52.68 & . 5965 & 1.688 \\
\hline 24 & 2 & 64 & 70.29 & 97.29 & 300.8 & 325. & 32.38 & 109.2 & 36.34 & . 9005 & 1.122 \\
\hline 21 & 1 & 52 & 52 & 87.86 & 349.3 & 325. & 25.23 & 136.4 & 39.11 & . 6518 & 1.553 \\
\hline 24 & 1 & 30 & 74.62 & 100.2 & 302.9 & 337.6 & 33.14 & 147.1 & 48.60 & . 6904 & 1.468 \\
\hline 21 & 1 & 55 & 69.78 & 108.6 & 284.3 & 306.5 & 38.23 & 102.9 & 36.16 & 1.098 & . 94.74 \\
\hline 20 & 2 & 20 & 76.68 & 97. 25 & 303 & 342.2 & 32. 18 & 131.8 & 43.54 & . 7439 & 1.355 \\
\hline 24 & 2 & 26 & 70.68 & 98.13 & 301.5 & 327.2 & 32.66 & 143.5 & 47.67 & . 6892 & 1.463 \\
\hline 18 & 2 & 28 & 81.67 & 98.06 & 290.3 & 338.5 & 33.95 & 136.9 & 47.17 & . 7254 & 1.396 \\
\hline 22 & 1 & 16 & 69.91 & 103.0 & 304.8 & 328.5 & 33.92 & 138.4 & 45.48 & . 7447 & 1.344 \\
\hline 14 & 2 & 42 & 58.45 & 100.4 & 314.3 & 310.2 & 31.95 & 153.6 & 48.88 & . 6584 & 1.530 \\
\hline 24 & 1 & 22 & 58.73 & 87.92 & 333.3 & 329.7 & 26.43 & 105.2 & 31.58 & . 85 & 1.197 \\
\hline 17 & 2 & 23 & 75.21 & 91.76 & 327.1 & 365.8 & 28.22 & 142.1 & 43.48 & . 6523 & 1.548 \\
\hline 22 & 1 & 39 & 73.9 & 99. 32 & 289.1 & 320.8 & 34.43 & 132.5 & 45.81 & . 7582 & 1.334 \\
\hline 18 & 2 & 42 & 90.76 & 95 & 273.6 & 336.5 & 34.79 & 148.9 & 54.40 & . 6429 & 1.567 \\
\hline 32 & 1 & 66 & 63.18 & 102.0 & 302.3 & 316.4 & 33.16 & 131.7 & 42.78 & . 7794 & 1.291 \\
\hline 20 & 2 & 22 & 75.34 & 116 & 333.3 & 373.0 & 34.89 & 120 & 36.05 & . 9717 & 1.034 \\
\hline 24 & 2 & 40 & 62.76 & 84.37 & 309.4 & 316.2 & 27.34 & 149.6 & 48.35 & . 5667 & 1.773 \\
\hline 24 & 1 & 60 & 71.56 & 111.5 & 300.6 & 328.3 & 37.17 & 137.9 & 45.86 & . 8175 & 1.237 \\
\hline 20 & 1 & 32 & 82.65 & 91.5 & 248 & 291.0 & 36.95 & 120.3 & 48.57 & . 7715 & 1.314 \\
\hline 24 & 2 & 56 & 56.82 & 122.7 & 317.3 & 308.8 & 38.75 & 154.8 & 48.76 & . 8017 & 1.261 \\
\hline 21 & 2 & 20 & 78.95 & 91.9 & 287.9 & 330.2 & 31.97 & 152.6 & 53.06 & . 6044 & 1.661 \\
\hline 22 & 1 & 58 & 63.42 & 100.9 & 322. 1 & 331.1 & 32.42 & 116.6 & 36.19 & . 8764 & 1.155 \\
\hline 20 & 1 & 24 & 54.16 & 112.3 & 330.5 & 314 & 34.06 & 166.8 & 50.41 & . 6806 & 1.486 \\
\hline 19 & 2 & 26 & 99.93 & 91.58 & 228.7 & 295.1 & 40.09 & 118.7 & 51.92 & . 7798 & 1.296 \\
\hline 16 & 2 & 16 & 75.87 & 91. 25 & 277.5 & 312.0 & 32.88 & 103.8 & 37.35 & . 8886 & 1.137 \\
\hline 31 & 2 & 23 & 66.97 & 94. 19 & 353.7 & 373 & 26.67 & 135.5 & 38.34 & . 7008 & 1.438 \\
\hline 17 & 2 & 44 & 93.69 & 113.5 & 257.4 & 321.6 & 44.13 & 111.5 & 43.36 & 1.034 & . 9819 \\
\hline 21 & 2 & 60 & 77.37 & 100.2 & 300 & 340.4 & 33.49 & 121.7 & 40.58 & . 8291 & 1.214 \\
\hline 40 & & 65 & 86.33 & 115 & 268.1 & 321 & 42.99 & 103.8 & 38.67 & 1.127 & . 9022 \\
\hline 20 & 1 & 41 & 87.35 & 92.5 & 275.8 & 332.4 & 33.59 & 133 & 48.21 & . 7048 & 1.438 \\
\hline 24. & 2 & 24 & 73.91 & 88.94 & 300.4 & 333.4 & 29.65 & 133.8 & 44.54 & . 6676 & 1.504 \\
\hline 2 & I & 19 & 61.83 & 116.7 & 313.3 & 317 & 37. 32 & 162.7 & 51.95 & . 7249 & 1.395 \\
\hline 18 & 2 & 22 & 79.3 & 95.28 & 296.7 & 340.9 & 32.18 & 159.4 & 53.77 & . 6005 & 1.673 \\
\hline 20 & 1 & 53 & 51.72 & 98.25 & 327.8 & 304.3 & 30.00 & 147 & 44.84 & . 6747 & 1.496 \\
\hline 21 & 1 & 55 & 66.14 & 81.67 & 332. 6 & 349.2 & 24.6 & 121.9 & 36.64 & . 6794 & 1.493 \\
\hline 24 & 1 & 51 & 60.11 & 107.7 & 326.3 & 326.5 & 33.10 & 123.1 & 37.69 & . 9189 & 1.143 \\
\hline 15 & 1 & 53 & 68.87 & 120 & 294.7 & 315.7 & 40.83 & 148.3 & 50.45 & . 8107 & 1.236 \\
\hline 18 & 2 & 22 & 81.33 & 81.11 & 296.1 & 344.7 & 27.40 & 134.7 & 45.50 & . 6043 & 1.661 \\
\hline 24 & 1 & 40 & 59.46 & 107.1 & 297.3 & 295 & 36.24 & 99.38 & 33.63 & 1.090 & . 9281 \\
\hline 18 & 1 & 63 & 82.04 & 96.39 & 296.9 & 347.2 & 32.56 & 110.3 & 37.16 & . 8912 & 1. 144 \\
\hline 16 & 1 & 63 & 101.0 & 118.1 & 229.4 & 297.7 & 52.02 & 91. 25 & 40.00 & 1.317 & . 7725 \\
\hline 21 & 1 & 59 & 43.8 & 113.1 & 369.3 & 315 & 30.66 & 167.1 & 45.26 & . 6817 & 1.478 \\
\hline 33 & 2 & 21 & 76.15 & 93.64 & 305.2 & 343.5 & 30.79 & 134.7 & 44.16 & . 7018 & 1.438 \\
\hline 17 & 2 & 25 & 62.27 & 92.94 & 299.4 & 304.9 & 31.05 & 147.7 & 49.29 & . 633 & 1.589 \\
\hline 14 & 1 & 49 & 72.71 & 115.7 & 263.2 & 289.7 & 44.23 & 106.8 & 40.63 & 1.096 & . 9229 \\
\hline 21 & 2 & 46 & 57.77 & 93.33 & 317.4 & 311.4 & 29.46 & 167.4 & 52.79 & . 5597 & 1.793 \\
\hline 24 & 1 & 45 & 51.88 & 102.7 & 300.8 & 279.7 & 34. 17 & 99.79 & 33. 15 & 1.058 & . 9716 \\
\hline 24 & 1 & 66 & 55.75 & 107.3 & 334.2 & 322.0 & 32. 13 & 157.5 & 47.13 & . 685 & 1.468 \\
\hline 29 & 1 & 27 & 62 & 89.69 & 308.1 & 313.0 & 29.16 & 148.8 & 48.29 & . 6067 & 1.659 \\
\hline 16 & 1 & 53 & 55.86 & 131.6 & 296.3 & 285.9 & 44.49 & 165.9 & 55.92 & . 8091 & 1.261 \\
\hline 3 & 1 & 25 & 82.77 & 120 & 259.5 & 304.2 & 46.64 & 107.4 & 41.38 & 1.134 & . 8948 \\
\hline 14 & 1 & 27 & 79.36 & 102.9 & 302.9 & 348.2 & 34.04 & 132.9 & 43.91 & . 7807 & 1.292 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline 18 & 1 & 22 & 61.69 & 97.5 & 308.9 & 313.0 & 32.03 & 147.8 & 47.88 & . 674 & 1.516 \\
\hline 23 & 1 & 21 & 80.37 & 93. 26 & 254. 1 & 293.6 & 36.81 & 115 & 45.24 & . 8169 & 1.233 \\
\hline 23 & 2 & 40 & 92.58 & 89.78 & 285.7 & 354.6 & 31.52 & 153.0 & 53.57 & . 5918 & 1.705 \\
\hline 23 & 1 & 66 & 66.78 & 132.8 & 283.9 & 299.5 & 46.87 & 114.8 & 40.41 & 1.170 & . 8641 \\
\hline 22 & 1 & 69 & 91.65 & 120.5 & 227. 3 & 280.9 & 53.22 & 91.14 & 40.10 & 1.350 & . 7567 \\
\hline 18 & 1 & 46 & 92 & 83.33 & 230.8 & 285.7 & 36.24 & 112.2 & 48.48 & . 7635 & 1.347 \\
\hline 22 & 1 & 65 & 83.22 & 108.9 & 303.2 & 356.9 & 36.00 & 149.1 & 49.25 & . 7344 & 1.370 \\
\hline 23 & 1 & 51 & 75.82 & 92.83 & 278.5 & 313 & 33.40 & 102.6 & 36.9 & . 9129 & 1.105 \\
\hline 17 & 2 & 37 & 78.64 & 90.29 & 307.7 & 352.2 & 29.41 & 124.4 & 40.43 & . 7404 & 1.378 \\
\hline 21 & 1 & 60 & 57.88 & 97.62 & 348.1 & 341.8 & 28.07 & 196.9 & 56.57 & . 4989 & 2.017 \\
\hline 19 & 1 & 24 & 62.32 & 101.1 & 310.3 & 316.1 & 32.67 & 158.2 & 50.96 & . 6496 & 1.565 \\
\hline 24 & 2 & 65 & 78.39 & 124.6 & 305.2 & 348.9 & 40.86 & 128.5 & 42.12 & . 9744 & 1.032 \\
\hline 23 & 1 & 26 & 42.42 & 112.4 & 344.8 & 289.6 & 32.64 & 159.8 & 46.38 & . 7068 & 1.422 \\
\hline 24 & 1 & 20 & 58.69 & 104.8 & 321.9 & 318.4 & 32.61 & 154.2 & 47.86 & . 6857 & 1.471 \\
\hline 10 & 1 & 52 & 77.28 & 115.5 & 278.5 & 316.0 & 41.57 & 107.5 & 38.53 & 1.094 & . 9307 \\
\hline 19 & 1 & 41 & 67.71 & 119.7 & 287.6 & 305.4 & 41.71 & 114.2 & 39.72 & 1.057 & . 9538 \\
\hline 21 & 2 & 50 & 79.01 & 107.4 & 282.9 & 324.5 & 38.09 & 141.2 & 49.95 & . 7717 & 1.315 \\
\hline 21 & 1 & 48 & 61.43 & 110.7 & 299.3 & 302.8 & 37.04 & 131.0 & 43.76 & . 8525 & 1.183 \\
\hline 22 & 1 & 19 & 86.95 & 120.7 & 274.1 & 329.9 & 44.05 & 144.3 & 52.64 & . 8429 & 1.196 \\
\hline 21 & & 39.5 & 70.80 & 102.7 & 299.5 & 321.6 & 34.75 & 135.4. & 45.22 & . 7908 & 1.337 \\
\hline 40 & & 69 & 101.0 & 132.8 & 369.3 & 373.6 & 53.22 & 196.9 & 59.48 & 1.350 & 2.017 \\
\hline 10 & & 16 & 42.42 & 78.95 & 227. 3 & 279.7 & 24.6 & 91.14 & 31.58 & . 4989 & . 7614 \\
\hline & & & 70.68 & 100.2 & 300.8 & 320.9 & 33.4 & 135.5 & 45.5 & . 7404 & 1.375 \\
\hline & & & 12.72 & 12.79 & 28.63 & 21.04 & 5.952 & 23.19 & 6.246 & . 1818 & . 2669 \\
\hline & & & 1.45 & 1.46 & 3.26 & 2.4 & . 678 & 2.64 & . 723 & . 0207 & . 0304 \\
\hline & & & 60.77 & 92.89 & 285.0 & 305.9 & 31.35 & 115.8 & 40.05 & . 6708 & 1.164 \\
\hline & & & 79.16 & 113.3 & 315.8 & 337.0 & 37.25 & 151.1 & 49.27 & . 8825 & 1.521 \\
\hline
\end{tabular}

Heart Rate
Individual means and confidence intervals for subjects
Pt No. Mean HR SD
Rt No. SEM 95\%- 95\%
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1 & 24 & 74.62 & 4.62 4.898979 & .9430536 & 72.77162 & 76.46838 \\
\hline 2 & 13 & 63.12 & 3.673 .605551 & 1.017875 & 61.12497 & 65.11503 \\
\hline 3 & 19 & 65.87 & 2.93 4.358899 & . 6721881 & 64.55251 & 67.18749 \\
\hline 4 & 22 & 56.5 & 1.524 .690416 & . 3240651 & 55.86483 & 57.13517 \\
\hline 5 & 24 & 58.66 & 1.614 .898979 & . 3286399 & 58.01587 & 59.30413 \\
\hline 6 & 24 & 57.76 & 1.664 .898979 & . 3388461 & 57.09586 & 58.42414 \\
\hline 7 & 20 & 74.82 & 2.454 .472136 & . 5478367 & 73.74624 & 75.89376 \\
\hline 8 & 24 & 70.29 & 2.24 .898979 & -4490731 & 69.40982 & 71.17018 \\
\hline 9 & 21 & 52 & 1.674 .582576 & -3644239 & 51.28573 & 52.71427 \\
\hline 10 & 24 & 74.62 & 4.624 .898979 & . 9430536 & 72.77162 & 76.46838 \\
\hline 11 & 21 & 69.78 & 2.794 .582576 & . 6088279 & 68.58670 & 70.97330 \\
\hline 12 & 20 & 76.68 & 7.084 .472136 & 1.583136 & 73.57705 & 79.78295 \\
\hline 13 & 24 & 70.68 & 4.034 .898979 & . 8226203 & 69.06766 & 72.2923 \\
\hline 14 & 18 & 81.67 & 4.844 .242641 & 1.140799 & 79.43403 & 83.90597 \\
\hline 15 & 22 & 69.91 & 4.574 .690416 & .9743273 & 68.00032 & 71.81968 \\
\hline 16 & 14 & 58.45 & 2.583 .741657 & . 6895340 & 57.09851 & 59.80149 \\
\hline 17 & 24 & 58.73 & 2.54 .898979 & . 5103104 & 57.72979 & 59.73021 \\
\hline 18 & 17 & 75.21 & 5.89 4.123106 & 1.428535 & 72.41007 & 78.00993 \\
\hline 19 & 22 & 73.9 & 3.014 .690416 & . 6417342 & 72.64220 & 75.15780 \\
\hline 20 & 18 & 90.76 & 1.914 .242641 & .4501913 & 89.87763 & 91.64237 \\
\hline 21 & 32 & 63.18 & 555.656854 & .0972272 & 62.98943 & 63.37057 \\
\hline 22 & 20 & 75.34 & 6.544 .472136 & 1.462388 & 72.47372 & 78.20628 \\
\hline 23 & 24 & 62.76 & 4.144 .898979 & . 8450740 & 61.10366 & 64.41634 \\
\hline 24 & 24 & 71.56 & 1.864 .898979 & . 3796709 & 70.81585 & 72.30415 \\
\hline 25 & 20 & 82.65 & 1.66 4.472136 & - 3711873 & 81.92247 & 83.37753 \\
\hline 26 & 24 & 56.82 & 984.898979 & . 2000417 & 56.42792 & 57.21208 \\
\hline 27 & 21 & 78.95 & 2.184 .582576 & .4757150 & 78.01760 & 79.88240 \\
\hline 28 & 22 & 63.42 & 2.654 .690416 & . 5649819 & 62.31264 & 64.52736 \\
\hline 29 & 20 & 54.16 & 1.39 4.472136 & . 3108134 & 53.55081 & 54.76919 \\
\hline 30 & 19 & 99.93 & 3.294 .358899 & . 7547778 & 98.45064 & 101.409a \\
\hline 31 & 16 & 75.87 & 2.43 4 & . 6075 & 74.6793 & 77.0607 \\
\hline 32 & 31 & 66.97 & 4.615 .567764 & . 8279804 & 65.34716 & 68.59284 \\
\hline 33 & 17 & 93.69 & 1.74 .123106 & . 4123106 & 92.88187 & 94.49813 \\
\hline 34 & 21 & 77.37 & 5.154.582576 & 1.123822 & 75.16731 & 79.57269 \\
\hline 35 & 40 & 86.33 & 1.75 6.324555 & . 2766993 & 85.78767 & 86.87233 \\
\hline 36 & 20 & 87.35 & 6.674 .472136 & 1.491457 & 84.42674 & 90.27326 \\
\hline 37 & 24 & 73.91 & 2.52 4.898979 & . 5143928 & 72.90179 & 74.91821 \\
\hline 38 & 24 & 61.83 & 5.744 .898979 & 1.171673 & 59.53352 & 64.12648 \\
\hline 39 & 18 & 79.3 & 3.544 .242641 & . 8343860 & 77.66460 & 80.93540 \\
\hline 40 & 20 & 51.72 & 2.624 .472136 & . 5858498 & 50.57173 & 52.86827 \\
\hline 41 & 21 & 66.14 & 1.59 4.582576 & . 3469664 & 65.45995 & 66.82005 \\
\hline 42 & 24 & 60.11 & 1.164 .898979 & . 2367840 & 59.64590 & 60.57410 \\
\hline 43 & 15 & 68.87 & 13.872983 & . 2581989 & 68.36393 & 69.37607 \\
\hline 44 & 18 & 81.33 & 3.274 .242641 & . 7707464 & 79.81934 & 82.84066 \\
\hline 45 & 24 & 59.46 & 4.184 .898979 & . 8532389 & 57. 78765 & 61.13235 \\
\hline 46 & 18 & 82.04 & 4.374 .242641 & 1.030019 & 80.02116 & 84.05884 \\
\hline 47 & 16 & 101.04 & 2.14 & 525 & 100.011 & 102.069 \\
\hline 48 & 21 & 43.8 & 2.814 .582576 & . 6131923 & 42.59814 & 45.00186 \\
\hline 49 & 33 & 76.15 & 6.945 .744563 & 1.208099 & 73.78213 & 78.51787 \\
\hline 50 & 17 & 62.27 & 3.914 .123106 & .9483143 & 60.41130 & 64. 12870 \\
\hline 51 & 14 & 72.71 & 33.741657 & . 8017837 & 71.13850 & 74.28150 \\
\hline 52 & 21 & 57.77 & 2.174 .582576 & . 4735328 & 56.84188 & 58.69812 \\
\hline 53 & 24 & 51.88 & 794.898979 & . 1612581 & 51.56393 & 52.19607 \\
\hline 54 & 24 & 55.75 & 2.664 .898979 & . 5429702 & 54.68578 & 56.81422 \\
\hline 55 & 29 & 62 & 3.45 .385165 & . 6313641 & 60.76253 & 63.23747 \\
\hline 56 & 16 & 55.86 & 2.7 a & . 675 & 54.537 & 57.183 \\
\hline 57 & 38 & 82.77 & 7.3 6.164414 & 1.184216 & 80.44894 & 85.09106 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 58 & 14 & 79.36 & 2.54 & 3.741657 & . 6788436 & 78.02947 & 80.69053 \\
\hline 59 & 18 & 61.69 & 3.47 & 4.242641 & . 8178868 & 60.0869a & 63.29306 \\
\hline 60 & 23 & 80.37 & 7.18 & 4.795832 & 1.497133 & 77.43562 & 83.30438 \\
\hline 61 & 23 & 92.58 & 4.46 & 4.795832 & . 9299743 & 90.75725 & 94.40275 \\
\hline 62 & 23 & 66.78 & 2.12 & 4.795832 & . 4420506 & 65.91358 & 67.64.642 \\
\hline 63 & 22 & 91.65 & 2.11 & 4.690416 & . 4498535 & 90.76829 & 92.53171 \\
\hline 64 & 18 & 92 & 4 & 4.242641 & . 9428090 & 90.15209 & 93.84791 \\
\hline 65 & 22 & 83.22 & 4.25 & 4.690416 & . 9061030 & 81.44404 & 84.99596 \\
\hline 66 & 23 & 75.82 & 3.06 & 4.795832 & . 6380541 & 74.56941 & 77.07059 \\
\hline 67 & 17 & 78.64 & 1.55 & 4.123106 & . 3759302 & 77.90318 & 79.37682 \\
\hline 68 & 21 & 57.88 & 1.53 & 4.582576 & . 3338734 & 57.22561 & 58.53439 \\
\hline 69 & 19 & 62.32 & 2.99 & 4.358899 & . 6859530 & 60.97553 & 63.66447 \\
\hline 70 & 24 & 78.39 & - 66 & 4.898979 & .1347219 & 78.12595 & 78.65405 \\
\hline 71 & 23 & 42.42 & 3.4 & 4.795832 & . 7089490 & 41.03046 & 43.80954 \\
\hline 72 & 24 & 58.69 & 1.93 & 4.898979 & . 3939596 & 57.91784 & 59.46216 \\
\hline 73 & 10 & 77.28 & 5.14 & 3.162278 & 1.625411 & 74.09419 & 80.46581 \\
\hline 74 & 19 & 67.71 & 4.08 & 4.358899 & . 9360162 & 65.87541 & 69.54459 \\
\hline 75 & 21 & 79.01 & 5.17 & 4.582576 & 1.128186 & 76.79875 & 81.22125 \\
\hline 76 & 21 & 61.43 & -94 & 4.582576 & . 2051248 & 61.02796 & 61.83204 \\
\hline 77 & 22 & 86.95 & 3.61 & 4.690416 & . 7696546 & 85.44148 & 88.45852 \\
\hline Av & 21.5 & 70.79584 & 3.190390 & 4.603377 & . 7006259 & 69.42262 & 72.16907 \\
\hline Max & 40 & 101.04 & 7.3 & 6.324555 & 1.625411 & 100.011 & 102.069 \\
\hline Min & 10 & 42.42 & . 55 & 3.162278 & .0972272 & 41.03046 & 43.80954 \\
\hline
\end{tabular}

\section*{RVPEP}
\begin{tabular}{|c|c|c|}
\hline P & No. & Mean \\
\hline 1 & 24 & 100 \\
\hline 2 & 13 & 127.31 \\
\hline 3 & 19 & 78.95 \\
\hline 4 & 22 & 80.23 \\
\hline 5 & 24 & 117.5 \\
\hline 6 & 24 & 114.37 \\
\hline 7 & 20 & 93 \\
\hline 8 & 24 & 97.29 \\
\hline 9 & 21 & 87.86 \\
\hline 10 & 24 & 100.21 \\
\hline 11 & 21 & 108.57 \\
\hline 12 & 20 & 97.25 \\
\hline 13 & 24 & 98.13 \\
\hline 14 & 18 & 98.06 \\
\hline 15 & 22 & 102.95 \\
\hline 16 & 14 & 100.36 \\
\hline 17 & 24 & 87.92 \\
\hline 18 & 17 & 91.76 \\
\hline 19 & 22 & 99.32 \\
\hline 20 & 18 & 95 \\
\hline 21 & 32 & 102.03 \\
\hline 22 & 20 & 116 \\
\hline 23 & 24 & 84.37 \\
\hline 24 & 24 & 111.46 \\
\hline 25 & 20 & 91.5 \\
\hline 26 & 24 & 122.71 \\
\hline 27 & 21 & 91.9 \\
\hline 28 & 22 & 100.91 \\
\hline 29 & 20 & 112.25 \\
\hline 30 & 19 & 91.58 \\
\hline 31 & 16 & 91.25 \\
\hline 32 & 31 & 94. 19 \\
\hline 33 & 17 & 113.53 \\
\hline 34 & 21 & 100.24 \\
\hline 35 & 40 & 115 \\
\hline 36 & 20 & 92.5 \\
\hline 37 & 24 & 88.94 \\
\hline 38 & 24 & 116.67 \\
\hline 39 & 18 & 95.28 \\
\hline 40 & 20 & 98.25 \\
\hline 41 & 21 & 81.67 \\
\hline 42 & 24 & 107.71 \\
\hline 43 & 15 & 120 \\
\hline 44 & 18 & 81.11 \\
\hline 45 & 24 & 107.08 \\
\hline 46 & 18 & 96.39 \\
\hline 47 & 16 & 118.13 \\
\hline 48 & 21 & 113.1 \\
\hline 49 & 33 & 93.64 \\
\hline 50 & 17 & 92.94 \\
\hline 51 & 14 & 115.71 \\
\hline 52 & 21 & 93.33 \\
\hline 53 & 24 & 102.71 \\
\hline 54 & 24 & 107.29 \\
\hline 55 & 29 & 89.69 \\
\hline 56 & 16 & 131.56 \\
\hline 57 & 38 & 120 \\
\hline 58 & 14 & 102.86 \\
\hline
\end{tabular}

RENO. SEM \(95 \%-95 \%+\)
\begin{tabular}{|c|c|c|c|c|}
\hline . 76 & 4.898979 & 1.379879 & \[
97.29544
\] & \[
102.7046
\] \\
\hline 4.39 & 3.605551 & 1.217567 & 124.9236 & 12 \\
\hline 3.15 & 4.358899 & . 7226596 & 77.53359 & 80.36641 \\
\hline 6.81 & 4.69 & 1.451 & 77. 384 & \\
\hline 7.94 & 4.898979 & 1.620746 & 114.3233 & 120 \\
\hline 7.56 & 4.898979 & 1.543179 & 111.3454 & 117.3946 \\
\hline 16 & 4.47213 & 377418 & 90.3002 & \\
\hline 6.59 & 4.898979 & 1.345178 & 94.65345 & \\
\hline & 4.582576 & 1.811208 & 84.3100 & 91.40997 \\
\hline 6.51 & 4.8 & 1.328 & & \\
\hline 6.15 & 4.58257 & 1.342040 & 105.939 & 111.2 \\
\hline 38 & 4.472136 & 1.42661 & 94.4538 & 100.0462 \\
\hline 6.73 & 4.8989 & 1.373755 & 95.437 & \\
\hline 9.87 & 4.242641 & 2.326381 & 93.5002 & 102.6197 \\
\hline 8.68 & 4.690416 & 1.850582 & 99.3228 & 106.5771 \\
\hline 5.36 & & & & \\
\hline & 4.8989 & 1.408457 & 85.1594 & 90 \\
\hline 9.67 & 4.123106 & 2.345319 & 87.1631 & 96. 35683 \\
\hline & 4.6904 & 1.407125 & & \\
\hline 7.28 & 4.242641 & 1.715912 & 91.63681 & 98.36319 \\
\hline 61 & 5.656854 & 1.345271 & 99.3932 & 104.6667 \\
\hline 5.76 & 4.472136 & 1.287975 & 113.4756 & \\
\hline 6.48 & 4.898979 & 1.322724 & 81.77746 & 86. \\
\hline 0.48 & 4.898979 & 2.139221 & 107.2671 & 115.6529 \\
\hline 6.51 & 4.472136 & 1.455680 & 88.64687 & 94.35313 \\
\hline 9.44 & 4.898979 & 1.926932 & 118.9332 & 126.4868 \\
\hline 5. & 4.582576 & 1.169648 & 89.60749 & 94. 19251 \\
\hline 8.82 & 4.690416 & 1.880430 & 97. 22436 & \\
\hline 8.03 & 4.472136 & 1.795563 & 108.7307 & 115.7693 \\
\hline 5.79 & 4.358899 & 328317 & 88.97650 & \\
\hline 9.92 & & 2.48 & 86.3892 & \\
\hline 6.84 & 5.567764 & 1.228500 & 91.78214 & 96.59786 \\
\hline 8.06 & 4.123106 & 1.954837 & 109.6985 & 117.3615 \\
\hline 6.61 & 4.582576 & 1.442420 & 97.41286 & \\
\hline & 6.324555 & 1.375591 & 112.3038 & 117.6962 \\
\hline & 4.472136 & 1.560775 & 89.44088 & 95.55912 \\
\hline 4.42 & 4.898979 & -9022287 & 87.17163 & 90.70837 \\
\hline 7.47 & 4.898979 & 1.524807 & 113.6814 & 119.6586 \\
\hline 52 & 4.242641 & 53677 & 92.26791 & \\
\hline 5.2 & 4.472136 & 1.162 & 95.97100 & 100.5290 \\
\hline . 83 & 4.582576 & 1.053992 & 79.60417 & \\
\hline , & 4.898979 & 1.702395 & 104.3733 & \\
\hline 8.45 & 3.872983 & 2.181781 & 115.7237 & 124. 2763 \\
\hline 6.08 & 4.242641 & 1.433070 & 78.30118 & 83.91882 \\
\hline 6.06 & 4.898979 & 1.236992 & 104.655 & 109.5045 \\
\hline 8.37 & 4.242641 & 2828 & 92.52326 & \\
\hline 8 & & 1.7 & 114.798 & \\
\hline 98 & 4.582576 & 523161 & 110.1146 & 116.085 \\
\hline 7.73 & 63 & 45620 & 91.00258 & \\
\hline 5.32 & 4.123106 & 1.290290 & 90.41103 & 95.46897 \\
\hline 5.5 & 3.741657 & 1.469937 & 112.8289 & 118.5911 \\
\hline 13 & 576 & 1.555894 & 90.28045 & \\
\hline 5.3 & 4.898979 & 1.081858 & 100.5896 & 104.8304 \\
\hline 6.08 & 4.898979 & 1.241075 & 104.8575 & 109.7225 \\
\hline 6.35 & 385165 & 65 & & \\
\hline 9.26 & & & 127.0226 & \\
\hline 8.62 & 6.164414 & . 398349 & 117.2592 & \\
\hline 0.32 & & & & \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrr}
59 & 18 & 97.5 & 9.74 & 4.242641 & 2.295740 & 93.00035 & 101.9997 \\
60 & 23 & 93.26 & 8.48 & 4.795832 & 1.768202 & 89.79432 & 96.72568 \\
61 & 23 & 89.78 & 6.12 & 4.795832 & 1.276108 & 87.27883 & 92.28117 \\
62 & 23 & 132.83 & 9.39 & 4.795832 & 1.957950 & 128.9924 & 136.6676 \\
63 & 22 & 120.45 & 6.53 & 4.690416 & 1.392201 & 117.7213 & 123.1787 \\
64 & 18 & 83.33 & 8.22 & 4.242641 & 1.937473 & 79.53255 & 87.12745 \\
65 & 22 & 108.86 & 8.16 & 4.690416 & 1.739718 & 105.4502 & 112.2698 \\
66 & 23 & 92.83 & 6.37 & 4.795832 & 1.328237 & 90.22666 & 95.43334 \\
67 & 17 & 90.29 & 5.99 & 4.123106 & 1.452788 & 87.44253 & 93.13747 \\
68 & 21 & 97.62 & 5.84 & 4.582576 & 1.274392 & 95.12219 & 100.1178 \\
69 & 19 & 101.05 & 8.59 & 4.358899 & 1.970681 & 97.18746 & 104.9125 \\
70 & 24 & 124.58 & 6.41 & 4.898979 & 1.308436 & 122.0155 & 127.1445 \\
71 & 23 & 112.39 & 7.37 & 4.795832 & 1.536751 & 109.3780 & 115.4020 \\
72 & 24 & 104.79 & 8.01 & 4.898979 & 1.635034 & 101.5853 & 107.9947 \\
73 & 10 & 115.5 & 9.26 & 3.162278 & 2.928269 & 109.7606 & 121.2394 \\
74 & 19 & 119.74 & 8.41 & 4.358899 & 1.929386 & 115.9584 & 123.5216 \\
75 & 21 & 107.38 & 9.17 & 4.582576 & 2.001058 & 103.4579 & 111.3021 \\
76 & 21 & 1100.71 & 5.76 & 4.582576 & 1.256935 & 108.2464 & 113.1736 \\
77 & 22 & 120.68 & 9.04 & 4.690416 & 1.927334 & 116.9024 & 124.4576 \\
Av & 21.5 & 102.6635 & 7.235974 & 4.603377 & 1.592259 & 99.54268 & 105.7843 \\
& & 0 & & & & & \\
Max & 40 & 132.83 & 10.48 & 6.324555 & 2.928269 & 128.9924 & 136.6676 \\
Min & 10 & 78.95 & 3.15 & 3.162278 & .7226596 & 77.38428 & 80.36641
\end{tabular}

\section*{RVET}

Individual means and confidence intervals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline  & NO. & & SD & Rt.No & SEM & 95\%- & 95\%+ \\
\hline \[
1
\] & 24 & 302 & & & 2.104520 & 29 & 307 \\
\hline \[
\overline{2}
\] & 13 & 294.62 & 9.23 & 3.605551 & 2.55994 & 289.602 & 299.6375 \\
\hline 3 & 19 & 306.32 & 12.57 & 4.358899 & 2.883756 & 300.6678 & 311.9722 \\
\hline \[
4
\] & 22 & 310.91 & 9.59 & 4.690416 & 2.044595 & 306.9026 & 314.9174. \\
\hline 5 & 24 & 322.92 & 10.42 & 4.898979 & 2.126974 & 318.7511 & 327.0889 \\
\hline 6 & 24 & 335.62 & 7.56 & 4.898979 & 1.543179 & 332.5954 & 338.6446 \\
\hline 7 & 20 & 298.25 & 11.39 & 4.472136 & 2.546881 & 293.2581 & 303.2419 \\
\hline 8 & 24 & 300.83 & 10.29 & 4.898979 & 2.100437 & 296.7131 & 304.9469 \\
\hline \[
9
\] & 21 & 349.29 & 12.38 & 4.582576 & 2.701537 & 343.9950 & 354.5850 \\
\hline 10 & 24 & 302.92 & 10.31 & 4.898979 & 2.104520 & 298.7951 & 307.0449 \\
\hline 11 & 21 & 284.29 & 8.56 & 4.582576 & 1.867945 & 280.6288 & 287.9512 \\
\hline 12 & 20 & 303 & 13.61 & 4.472136 & 3.043289 & 297.0352 & 308.9648 \\
\hline 13 & 24 & 301.46 & 13.23 & 4.898979 & 2.700562 & 296. 1669 & 306.7531 \\
\hline 14 & 18 & 290.28 & 14.29 & 4.242641 & 3.368185 & 283.6784 & 296.8816 \\
\hline 15 & 22 & 304.77 & 13.49 & 4.690416 & 2.876078 & 299.1329 & 310.4071 \\
\hline & 14 & 314.29 & 6.75 & 3.741657 & 1.804013 & 310.7541 & 317.8259 \\
\hline 17 & 24 & 333.33 & 11.39 & 4.898979 & 2.324974 & 328.7731 & 337.8869 \\
\hline 18 & 17 & 327.06 & 18.03 & 4.123106 & 4.372917 & 318.4891 & 335.6309 \\
\hline 19 & 22 & 289.09 & 10.08 & 4.690416 & 2.149063 & 284.8778 & 293.3022 \\
\hline 20 & 18 & 273.61 & 7.24 & 4.242641 & 1.706484 & 270.2653 & 276.9547 \\
\hline 21 & 32 & 302.28 & 10.75 & 5.656854 & 1.900349 & 298.5553 & 306.0047 \\
\hline 22 & 20 & 333.25 & 14.53 & 4.472136 & 3.249007 & 326.8819 & 339.6181 \\
\hline 23 & 24 & 309.38 & 9.01 & 4.898979 & 1.839159 & 305.7752 & 312.9848 \\
\hline 24 & 24 & 300.63 & 9.81 & 4.898979 & 2.002458 & 296.7052 & 304.5548 \\
\hline 25 & 20 & 248 & 11.05 & 4.472136 & 2.470855 & 243.1571 & 252.8429 \\
\hline & 24 & 317.29 & 8.59 & 4.898979 & 1.753426 & 313.8533 & 320.7267 \\
\hline 7 & 21 & 287.86 & 9.95 & 4.582576 & 2.171268 & 283.6043 & 292.1157 \\
\hline 8 & 22 & 322.05 & 11.2 & 4.690416 & 2.387848 & 317.3698 & 326.7302 \\
\hline 29 & 20 & 330.5 & 12.24 & 4.472136 & 2.736947 & 325.1356 & 335.8644 \\
\hline 30 & 19 & 228.68 & 6.2 & 4.358899 & 1.422378 & 225.8921 & 231.4679 \\
\hline 31 & 16 & 277.5 & 8.16 & & 2.04 & 273.5016 & 281.4984 \\
\hline 32 & 31 & 353.71 & 13.41 & 5.567764 & 2.408507 & 348.9893 & 358.4307 \\
\hline 33 & 17 & 257.35 & 6.64 & 4.123106 & 1.610437 & 254.1935 & 260.5065 \\
\hline 34 & 21 & 300 & 11.94 & 4.582576 & 2.605522 & 294.8932 & 305.1068 \\
\hline 35 & 40 & 268.12 & 8.96 & 6.324555 & 1.416700 & 265.3433 & 270.8967 \\
\hline & 20 & 275.75 & 11.95 & 4.472136 & 2.672101 & 270.5127 & 280.9873 \\
\hline 37 & 24 & 300.42 & 8.59 & 4.898979 & 1.753426 & 296.9833 & 303.8567 \\
\hline 38 & 24 & 313.33 & 11.29 & 4.898979 & 2.304562 & 308.8131 & 317.8469 \\
\hline 9 & 18 & 296.67 & 10.29 & 4.242641 & 2.425376 & 291.9163 & 301.4237 \\
\hline 40 & 20 & 327.75 & 10.57 & 4.472136 & 2.363524 & 323.1175 & 332.3825 \\
\hline 41 & 21 & 332.62 & 11.47 & 4.582576 & 2.502959 & 327.7142 & 337.5258 \\
\hline 42 & 24 & 326.25 & 11.63 & 4.898979 & 2.373964 & 321.5970 & 330.9030 \\
\hline 43 & 15 & 294.67 & 11.09 & 3.872983 & 2.863426 & 289.0577 & 300.2823 \\
\hline 44 & 18 & 296.11 & & 4.242641 & 2.121320 & 291.9522 & 300.2678 \\
\hline 45 & 24 & 297.29 & 22.26 & 4.898979 & 4.543803 & 288.3841 & 306. 1959 \\
\hline 46 & 18 & 296.94 & 12.73 & 4.242641 & 3.000490 & 291.0590 & 302.8210 \\
\hline 47 & 16 & 229.37 & 20.48 & & 5.12 & 219.3348 & 239.4052 \\
\hline 48 & 21 & 369.29 & 7.46 & 4.582576 & 1.627905 & 366.0993 & 372.4807 \\
\hline 49 & 33 & 305.15 & 13.26 & 5.744563 & 2.308270 & 300.6258 & 309.6742 \\
\hline 50 & 17 & 299.41 & 5.83 & 4.123106 & 1.413983 & 296.6386 & 302.1814 \\
\hline 51 & 14 & 263.21 & 17.5 & 3.741657 & 4.677072 & 254.0429 & 272.3771 \\
\hline 52 & 21 & 317.38 & 12.61 & 4.582576 & 2.751728 & 311.9866 & 322.7734 \\
\hline 53 & 24 & 300.83 & 7.61 & 4.898979 & 1.553385 & 297.7854 & 303.8746 \\
\hline , & 24 & 334.17 & & 4.898979 & 1.265570 & 331.6895 & 336.6505 \\
\hline 55 & 29 & 308.1 & 8.28 & 5.385165 & 1.537557 & 305.0864 & 311.1136 \\
\hline 56 & 16 & 296.25 & 9.4 & & & 291.644 & 300.856 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrr}
57 & 38 & 259.47 & 18.52 & 6.164414 & 3.004341 & 253.5815 & 265.3585 \\
58 & 14 & 302.86 & 9.75 & 3.741657 & 2.605797 & 297.7526 & 307.9674 \\
59 & 18 & 308.89 & 29.38 & 4.242641 & 6.924932 & 295.3171 & 322.4629 \\
60 & 23 & 254.13 & 8.87 & 4.795832 & 1.849523 & 250.5049 & 257.7551 \\
61 & 23 & 285.65 & 11.11 & 4.795832 & 2.316595 & 281.1095 & 290.1905 \\
62 & 23 & 283.91 & 9.41 & 4.795832 & 1.962121 & 280.0642 & 287.7558 \\
63 & 22 & 227.27 & 12.6 & 4.690416 & 2.686329 & 222.0048 & 232.5352 \\
64 & 18 & 230.83 & 8.95 & 4.242641 & 2.109535 & 226.6953 & 234.9647 \\
65 & 22 & 303.18 & 11.6 & 4.690416 & 2.473128 & 298.3327 & 308.0273 \\
66 & 23 & 278.48 & 12.47 & 4.795832 & 2.600175 & 273.3837 & 283.5763 \\
67 & 17 & 307.65 & 9.54 & 4.123106 & 2.313790 & 303.1150 & 312.1850 \\
68 & 21 & 348.1 & 11.45 & 4.582576 & 2.498595 & 343.2028 & 352.9972 \\
69 & 19 & 310.26 & 10.6 & 4.358899 & 2.431807 & 305.4937 & 315.0263 \\
70 & 24 & 305.21 & 6.51 & 4.898979 & 1.328848 & 302.6055 & 307.8145 \\
71 & 23 & 344.78 & 8.85 & 4.795832 & 1.845353 & 341.1631 & 348.3969 \\
72 & 24 & 321.88 & 9.98 & 4.898979 & 2.037159 & 317.8872 & 325.8728 \\
73 & 10 & 278.5 & 10.55 & 3.162278 & 3.336203 & 271.9610 & 285.0390 \\
74 & 19 & 287.63 & 11.83 & 4.358899 & 2.713988 & 282.3106 & 292.9494 \\
75 & 21 & 282.86 & 11.57 & 4.582576 & 2.524781 & 277.9114 & 287.8086 \\
76 & 21 & 299.29 & 8.7 & 4.582576 & 1.898496 & 295.5689 & 303.0111 \\
77 & 22 & 274.14 & 7.32 & 4.690416 & 1.560629 & 271.0812 & 277.1988 \\
& & & & & & &
\end{tabular}
\begin{tabular}{lrrr} 
Max & 40 & 369.29 & 29.38 \\
Min & 10 & 227.27 & 5.83
\end{tabular}

\section*{RVETI}

Individual means and confidence intervals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & SD & RtNo. & SEM & 95\%- & 95\% \\
\hline \[
1
\] & 24 & 337.55 & 13.27 & 4.898979 & 2.708727 & 332.2409 & 342.8591 \\
\hline \[
2
\] & 13 & 302.11 & 14.03 & 3.605551 & 3.891222 & 294.4832 & 309.7368 \\
\hline 3 & 19 & 320.9 & 15.82 & 4.358899 & 3.629357 & 313.7865 & 328.0135 \\
\hline 4 & 22 & 301.68 & 10.14 & 4.690416 & 2.161855 & 297.4428 & 305.9172 \\
\hline 5 & 24 & 319.32 & 12.61 & 4.898979 & 2.574005 & 314.2749 & 324.3651 \\
\hline 6 & 24 & 329.23 & 6.92 & 4.898979 & 1.412539 & 326.4614 & 331.9986 \\
\hline 7 & 20 & 322.99 & 13.4 & 4.472136 & 2.996331 & 317.1172 & 328.8628 \\
\hline 8 & 24 & 325.58 & 12.47 & 4.898979 & 2.545428 & 320.5910 & 330.5690 \\
\hline 9 & 21 & 325.17 & 13.77 & 4.582576 & 3.004860 & 319.2805 & 331.0595 \\
\hline 10 & 24 & 337.55 & 13.27 & 4.898979 & 2.708727 & 332.2409 & 342.8591 \\
\hline 11 & 21 & 306.47 & 9.44 & 4.582576 & 2.059977 & 302.4324 & 310.5076 \\
\hline 12 & 20 & 342.19 & 21.73 & 4.472136 & 4.858976 & 332.6664 & 351.7136 \\
\hline 13 & 24 & 327.16 & 19.02 & 4.898979 & 3.882441 & 319.5504 & 334.7696 \\
\hline & 18 & 338.46 & 18.6 & 4.242641 & 4.384062 & 329.8672 & 347.0528 \\
\hline 15 & 22 & 328.54 & 12.11 & 4.690416 & 2.581861 & 323.4796 & 333.6004 \\
\hline 16 & 14 & 310.17 & 10.45 & 3.741657 & 2.792880 & 304.6960 & 315.6440 \\
\hline 7 & 24 & 329.71 & 12.84 & 4.898979 & 2.620954 & 324.5729 & 334.8471 \\
\hline 18 & 17 & 365.8 & 23.28 & 4.123106 & 5.646229 & 354.7334 & 376.8666 \\
\hline 19 & 22 & 320.78 & 13.26 & 4.690416 & 2.827041 & 315.2390 & 326.3210 \\
\hline & 18 & 336.5 & 9.69 & 4.242641 & 2.283955 & 332.0234 & 340.9766 \\
\hline 21 & 32 & 316.36 & 11.37 & 5.656854 & 2.009951 & 312.4205 & 320.2995 \\
\hline 22 & 20 & 373.03 & 22.28 & 4.472136 & 4.981959 & 363.2654 & 382.7946 \\
\hline 23 & 24 & 316.2 & 12.49 & 4.898979 & 2.549511 & 311.2030 & 321.1970 \\
\hline 24 & 24 & 328.3 & 11.79 & 4.898979 & 2.406624 & 323.5830 & 333.0170 \\
\hline 5 & 20 & 291.03 & 12.68 & 4.472136 & 2.835334 & 285.4727 & 296.5873 \\
\hline & 24 & 308.75 & 8.47 & 4.898979 & 1.728932 & 305.3613 & 312.1387 \\
\hline 27 & 21 & 330.15 & 11.43 & 4.582576 & 2.494230 & 325.2613 & 335.0387 \\
\hline 28 & 22 & 331.05 & 14.19 & 4.690416 & 3.025318 & 325.1204 & 336.9796 \\
\hline 9 & 20 & 314 & 12.8 & 4.472136 & 2.862167 & 308.3902 & 319.6098 \\
\hline 30 & 19 & 295.06 & 8.64 & 4.358899 & 1.982152 & 291.1750 & 298.9450 \\
\hline 31 & 15 & 312.04 & 11.16 & 3.872983 & 2.881500 & 306. 3923 & 317.6877 \\
\hline 2 & 31 & 373.55 & 20.9 & 5.567764 & 3.753751 & 366. 1926 & 380.9074 \\
\hline 33 & 17 & 321.56 & 7.9 & 4.123106 & 1.916031 & 317.8046 & 325.3154 \\
\hline 34 & 21 & 340.36 & 15.14 & 4.582576 & 3.303819 & 333.8845 & 346.8355 \\
\hline 5 & 40 & 321.6 & 10.95 & 6.324555 & 1.731347 & 318.2066 & 324.9934 \\
\hline 36 & 20 & 332.41 & 18.85 & 4.472136 & 4. 214988 & 324.1486 & 340.6714 \\
\hline 37 & 24 & 333.37 & 10.62 & 4.898979 & 2.167798 & 329.1211 & 337.6189 \\
\hline 8 & 24 & 317.78 & 18.71 & 4.898979 & 3.819163 & 310.2944 & 325.2656 \\
\hline 39 & 18 & 340.94 & 13.07 & 4.242641 & 3.080629 & 334.9020 & 346.9780 \\
\hline 40 & 20 & 304.29 & 12.92 & 4.472136 & 2.889000 & 298.6276 & 309.9524 \\
\hline 1 & 21 & 349.24 & 13.64 & 4.582576 & 2.976492 & 343.4061 & 355.0739 \\
\hline 42 & 24 & 326.52 & 11.85 & 4.898979 & 2.418871 & 321.7790 & 331.2610 \\
\hline 43 & 15 & 315.67 & 11.23 & 3.872983 & 2.899574 & 309.9868 & 321.3532 \\
\hline 44 & 18 & 344.68 & 12.6 & 4.242641 & 2.969848 & 338.8591 & 350.5009 \\
\hline 45 & 24 & 295.33 & 17.98 & 4.898979 & 3.670152 & 288. 1365 & 302.5235 \\
\hline & 18 & 347.16 & 18.55 & 4.242641 & 4.372277 & 338.5903 & 355.7297 \\
\hline , & 16 & 297.7 & 27.31 & & 6.8275 & 284.3181 & 311.0819 \\
\hline 48 & 21 & 315.34 & 11.14 & 4.582576 & 2.430947 & 310.5753 & 320.1047 \\
\hline 49 & 33 & 343.49 & 22.42 & 5.744563 & 3.902821 & 335.8405 & 351.1395 \\
\hline 50 & 17 & 304.87 & 11.01 & 4.123106 & 2.670317 & 299.6362 & 310.1038 \\
\hline 51 & 14 & 289.67 & 19.59 & 3.741657 & 5.235648 & 279.4081 & 299.9319 \\
\hline 20 & 21 & 311.41 & 14.43 & 4.582576 & 3.148884 & 305.2382 & 317.5818 \\
\hline 53 & 24 & 279.74 & 7.26 & 4.898979 & 1.481941 & 276.8354 & 282.6446 \\
\hline 54 & 24 & 322.01 & & 4.898979 & 1.837117 & 318.4093 & 325.6107 \\
\hline 5 & 29 & 313.03 & 10.59 & 5.385165 & 1.966514 & 309.1756 & 316.8844 \\
\hline 56 & 16 & 285.91 & 14.75 & & 3.6875 & 278.6825 & 293.1375 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrr}
57 & 38 & 304.2 & 22.05 & 6.164414 & 3.576982 & 297.1891 & 311.2109 \\
58 & 14 & 348.2 & 10.44 & 3.741657 & 2.790207 & 342.7312 & 353.6688 \\
59 & 18 & 312.98 & 29.97 & 4.242641 & 7.063997 & 299.1346 & 326.8254 \\
60 & 23 & 293.62 & 12.08 & 4.795832 & 2.518854 & 288.6830 & 298.5570 \\
61 & 23 & 354.62 & 13.72 & 4.795832 & 2.860818 & 349.0128 & 360.2272 \\
62 & 23 & 299.52 & 11.88 & 4.795832 & 2.477151 & 294.6648 & 304.3752 \\
63 & 22 & 280.86 & 15.61 & 4.690416 & 3.328063 & 274.3370 & 287.3830 \\
64 & 18 & 285.72 & 11.3 & 4.242641 & 2.663436 & 280.4997 & 290.9403 \\
65 & 22 & 356.93 & 15.68 & 4.690416 & 3.342987 & 350.3777 & 363.4823 \\
66 & 23 & 313 & 15.85 & 4.795832 & 3.304953 & 306.5223 & 319.4777 \\
67 & 17 & 352.18 & 10.76 & 4.123106 & 2.609683 & 347.0650 & 357.2950 \\
68 & 21 & 341.82 & 11.27 & 4.582576 & 2.459316 & 336.9997 & 346.6403 \\
69 & 19 & 316.06 & 11.83 & 4.358899 & 2.713988 & 310.7406 & 321.3794 \\
70 & 24 & 348.87 & 7.61 & 4.898979 & 1.553385 & 345.8254 & 351.9146 \\
71 & 23 & 289.57 & 11.07 & 4.795832 & 2.308255 & 285.0458 & 294.0942 \\
72 & 24 & 318.35 & 12.37 & 4.898979 & 2.525016 & 313.4010 & 323.2990 \\
73 & 10 & 316.03 & 18.31 & 3.162278 & 5.790130 & 304.6813 & 327.3787 \\
74 & 19 & 305.35 & 14.07 & 4.358899 & 3.227879 & 299.0234 & 311.6766 \\
75 & 21 & 324.46 & 17.36 & 4.582576 & 3.788263 & 317.0350 & 331.8850 \\
76 & 21 & 302.83 & 9.14 & 4.582576 & 1.994512 & 298.9208 & 306.7392 \\
77 & 22 & 329.9 & 9.62 & 4.690416 & 2.050991 & 325.8801 & 333.9199
\end{tabular}

AT (TTP)
Individual means and confidence intervals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & SD & RENO. S & SEM & 95\%- & 95\% \\
\hline 1 & 24 & 146.46 & 14 & 4.898979 & 2.878150 & 140.8188 & 152. 1012 \\
\hline 2 & 13 & 175 & 12.25 & 3.605551 & 3.397539 & 168.3408 & 181.6592 \\
\hline 3 & 19 & 140.26 & 9.64 & 4.358899 & 2. 211568 & 135.9253 & 144.5947 \\
\hline 4 & 22 & 118.41 & 11.79 & 4.690416 & 2.513636 & 113.4833 & 123.3367 \\
\hline 5 & 24 & 184.17 & 14.72 & 4.898979 & 3.004707 & 178.2808 & 190.0592 \\
\hline 6 & 24 & 185.21 & 15.21 & 4.898979 & 3.104728 & 179.1247 & 191.2953 \\
\hline 7 & 20 & 157 & 10.93 & 4.472136 & 2.444022 & 152.2097 & 161.7903 \\
\hline 8 & 24 & 109.17 & 9.17 & 4.898979 & 1.871818 & 105.5012 & 112.8388 \\
\hline 9 & 21 & 136.43 & 14.59 & 4.582576 & 3.183799 & 130.1898 & 142.6702 \\
\hline 10 & 24 & 147.08 & 14.59 & 4.898979 & 2.978171 & 141.2428 & 152.9172 \\
\hline 11 & 21 & 102.86 & 18.41 & 4.582576 & 4.017391 & 94.98591 & 110.7341 \\
\hline 12 & 20 & 131.75 & 10.17 & 4.472136 & 2.274081 & 127.2928 & 136. 2072 \\
\hline 13 & 24 & 143.54 & 12.55 & 4.898979 & 2.561758 & 138.5190 & 148.5610 \\
\hline 14 & 18 & 136.94 & 12.5 & 4.242641 & 2.946278 & 131.1653 & 142.7147 \\
\hline 15 & 22 & 138.41 & 8.51 & 4.690416 & 1.814338 & 134.8539 & 141.9661 \\
\hline 16 & 14 & 153.57 & 12.77 & 3.741657 & 3.412926 & 146.8807 & 160.2593 \\
\hline 17 & 24 & 105.21 & 11.84 & 4.898979 & 2.416830 & 100.4730 & 109.9470 \\
\hline 18 & 17 & 142.06 & 12 & 4.123106 & 2.910428 & 136.3556 & 147.7644 \\
\hline 19 & 22 & 132.5 & 12.79 & 4.690416 & 2.726837 & 127.1554 & 137.8446 \\
\hline 20 & 18 & 148.89 & 10.23 & 4.242641 & 2.411234 & 144.1640 & 153.6160 \\
\hline 21 & 32 & 131.72 & 10.21 & 5.656854 & 1.804890 & 128.1824 & 135.2576 \\
\hline 22 & 20 & 120 & 8.11 & 4.472136 & 1.813451 & 116.4456 & 123.5544 \\
\hline 23 & 24 & 149.58 & 8.33 & 4.898979 & 1.700354 & 146.2473 & 152.9127 \\
\hline 24 & 24 & 137.93 & 12.33 & 4.898979 & 2.516851 & 132.9970 & 142.8630 \\
\hline 25 & 20 & 120.25 & 13.62 & 4.472136 & 3.045525 & 114.2808 & 126.2192 \\
\hline 26 & 24 & 154.79 & 13.55 & 4.898979 & 2.765882 & 149.3689 & 160.2111 \\
\hline 27 & 21 & 152.62 & 7.52 & 4.582576 & 1.640999 & 149.4036 & 155.8364 \\
\hline 28 & 22 & 116.59 & 10.62 & 4.690416 & 2.264192 & 112.1522 & 121.0278 \\
\hline 29 & 20 & 166.75 & 14.98 & 4.472136 & 3.349630 & 160.1847 & 173.3153 \\
\hline 30 & 19 & 118.68 & 10.12 & 4.358899 & 2.321687 & 114.1295 & 123.2305 \\
\hline 31 & 16 & 103.75 & 9.57 & & 2.3925 & 99.0607 & 108.4393 \\
\hline 32 & 31 & 135.48 & 11.57 & 5.567764 & 2.078033 & 131.4071 & 139.5529 \\
\hline 33 & 17 & 111.47 & 11.96 & 4. 123106 & 2.900726 & 105.7846 & 117.1554 \\
\hline 34 & 21 & 121.67 & 8.11 & 4.582576 & 1.769747 & 118.2013 & 125.1387 \\
\hline 35 & 40 & 103.75 & 12.18 & 6.324555 & 1.925827 & 99.97538 & 107.5246 \\
\hline 36 & 20 & 133 & 14.55 & 4.472136 & 3.253479 & 126.6232 & 139.3768 \\
\hline 37 & 24 & 133.75 & 8.24 & 4.898979 & 1.681983 & 130.4533 & 137.0467 \\
\hline 38 & 24 & 162.71 & 16.35 & 4.898979 & 3.337430 & 156. 1686 & 169.2514 \\
\hline 39 & 18 & 159.44 & 11.49 & 4.242641 & 2.708219 & 154. 1319 & 164.7481 \\
\hline 40 & 20 & 147 & 13.51 & 4.472136 & 3.020928 & 141.0790 & 152.9210 \\
\hline 11 & 21 & 121.9 & 14.79 & 4.582576 & 3.227443 & 115.5742 & 128.2258 \\
\hline 42 & 24 & 123.12 & 19.88 & 4.898979 & 4.057988 & 115.1663 & 131.0737 \\
\hline 43 & 15 & 148.33 & 9.57 & 3.872983 & 2.470963 & 143.4869 & 153.1731 \\
\hline 44 & 18 & 134.72 & 10.07 & 4.242641 & 2.373522 & 130.0679 & 139.3721 \\
\hline 45 & 24 & 99.38 & 9.48 & 4.898979 & 1.935097 & 95.58721 & 103.1728 \\
\hline 46 & 18 & 110.28 & 12.77 & 4.242641 & 3.009918 & 104.3806 & 116.1794 \\
\hline 47 & 16 & 91.25 & 12.18 & & 3.045 & 85.2818 & 97.2182 \\
\hline 48 & 21 & 167.14 & 13.28 & 4.582576 & 2.897934 & 161.4601 & 172.8199 \\
\hline 49 & 33 & 134.7 & 11.72 & 5.744563 & 2.040190 & 130.7012 & 138.6988 \\
\hline 50 & 17 & 147.65 & 9.86 & 4.123106 & 2.391401 & 142.9629 & 152.3371 \\
\hline 51 & 14 & 106.79 & 11.2 & 3.741657 & 2.993326 & 100.9231 & 112.6569 \\
\hline 52 & 21 & 167.38 & 9.83 & 4.582576 & 2.145082 & 163.1756 & 171.5844 \\
\hline 53 & 24 & 99.79 & 16.52 & 4.898979 & 3.372131 & 93.18062 & 106.3994 \\
\hline 54 & 24 & 157.5 & 10.22 & 4.898979 & 2.086149 & 153.4111 & 161.5889 \\
\hline 55 & 29 & 148.79 & 10.66 & 5.385165 & 1.979512 & 144.9102 & 152.6698 \\
\hline 56 & 16 & 165.94 & 21.77 & & 5.4425 & 155.2727 & 176.6073 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrr}
57 & 38 & 107.37 & 11.01 & 6.164414 & 1.786058 & 103.8693 & 110.8707 \\
58 & 14 & 132.86 & 9.14 & 3.741657 & 2.442768 & 128.0722 & 137.6478 \\
59 & 18 & 147.78 & 18.49 & 4.242641 & 4.358135 & 139.2381 & 156.3219 \\
60 & 23 & 115 & 7.39 & 4.795832 & 1.540922 & 111.9798 & 118.0202 \\
61 & 23 & 153.04 & 12.41 & 4.795832 & 2.587664 & 147.9682 & 158.1118 \\
62 & 23 & 114.78 & 12.29 & 4.795832 & 2.562642 & 109.7572 & 119.8028 \\
63 & 22 & 91.14 & 11.85 & 4.690416 & 2.526428 & 86.18820 & 96.09180 \\
64 & 18 & 112.22 & 15.55 & 4.242641 & 3.665170 & 105.0363 & 119.4037 \\
65 & 22 & 149.09 & 9.96 & 4.690416 & 2.123479 & 144.9280 & 153.2520 \\
66 & 23 & 102.61 & 7.67 & 4.795832 & 1.599306 & 99.47536 & 105.7446 \\
67 & 17 & 124.41 & 17.67 & 4.123106 & 4.285604 & 116.0102 & 132.8098 \\
68 & 21 & 196.9 & 15.85 & 4.582576 & 3.458754 & 190.1208 & 203.6792 \\
69 & 19 & 158.16 & 18.42 & 4.358899 & 4.225838 & 149.8774 & 166.4426 \\
70 & 24 & 128.54 & 8.78 & 4.898979 & 1.792210 & 125.0273 & 132.0527 \\
71 & 23 & 159.78 & 10.5 & 4.795832 & 2.189401 & 155.4888 & 164.0712 \\
72 & 24 & 154.17 & 12.22 & 4.898979 & 2.494397 & 149.2810 & 159.0590 \\
73 & 10 & 107.5 & 14.19 & 3.162278 & 4.487272 & 98.70495 & 116.2951 \\
74 & 19 & 114.21 & 10.44 & 4.358899 & 2.395100 & 109.5156 & 118.9044 \\
75 & 21 & 141.19 & 16.5 & 4.582576 & 3.600595 & 134.1328 & 148.2472 \\
76 & 21 & 130.95 & 11.14 & 4.582576 & 2.430947 & 126.1853 & 135.7147 \\
77 & 22 & 144.32 & 11.16 & 4.690416 & 2.379320 & 139.6565 & 148.9835
\end{tabular}

RVPEP/RVET\%
Individual means and confidence intervals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pt & & & SD & RtiNo. & SEM & 95\%- & 95\% + \\
\hline  & 24 & 33.065 & 2.755 & 79 & . 5623620 & 31.962 & 34 \\
\hline 2 & 13 & 43.261 & 2.239 & 3.605551 & . 6209869 & 42.04387 & \\
\hline 3 & 19 & 25.821 & 1.564 & 4.358899 & . 3588062 & 25.11774 & 26.52426 \\
\hline 4 & 22 & 25.859 & 2.705 & 4.690416 & . 5767079 & 24.72865 & 26.98935 \\
\hline 5 & 24 & 36.466 & 3.273 & 4.898979 & . 6680983 & 35.15653 & 37.77547 \\
\hline 6 & 24 & 34.114 & 2.665 & 4.898979 & . 5439908 & 33.04778 & 35. 18022 \\
\hline 7 & 20 & 31.277 & 3.039 & 4.472136 & . 6795411 & 29.94510 & 32.60890 \\
\hline 8 & 24 & 32.378 & 2.498 & 4.898979 & . 5099021 & 31.37859 & 33.37741 \\
\hline 9 & 21 & 25.233 & 3.014 & 4.582576 & . 6577087 & 23.94389 & 26.52211 \\
\hline 10 & 24 & 33.137 & 2.722 & 4.898979 & . 5556259 & 32.04797 & 34.22603 \\
\hline 11 & 21 & 38.23 & 2.599 & 4.582576 & . 5671483 & 37.11839 & 39.34161 \\
\hline 12 & 20 & 32.18 & 2.817 & 4.472136 & . 6299003 & 30.94540 & 33.41460 \\
\hline 13 & 24 & 32.66 & 3.263 & 4.898979 & . 6660571 & 31.35453 & 33.96547 \\
\hline 14. & 18 & 33.954 & 4.626 & 4.242641 & 1.090359 & 31.81690 & 36.09110 \\
\hline 15 & 22 & 33.915 & 3.907 & 4.690416 & . 8329752 & 32.28237 & 35.54763 \\
\hline 16 & 14 & 31.951 & 1.898 & 3.741657 & . 5072618 & 30.95677 & 32.94523 \\
\hline 17 & 24 & 26.429 & 2.527 & 4.898979 & . 5158217 & 25.41799 & 27.44001 \\
\hline 18 & 17 & 28.221 & 3.982 & 4.123106 & .9657769 & 26.32808 & 30.11392 \\
\hline 19 & 22 & 34.429 & 3.007 & 4.690416 & . 6410946 & 33.17245 & 35.68555 \\
\hline 20 & 18 & 34.791 & 3.339 & 4. 242641 & . 7870098 & 33.24846 & 36.33354 \\
\hline 21 & 32 & 33.158 & 3.022 & 5.656854 & . 5342192 & 32.11093 & 34.20507 \\
\hline 22 & 20 & 34.89 & 2.586 & 4.472136 & . 5782472 & 33.75664 & 36.02336 \\
\hline 23 & 24 & 27.337 & 2.74 & 4.898979 & . 5593002 & 26.24077 & 28.43323 \\
\hline 24 & 24 & 37.172 & 4.251 & 4.898979 & . 8677317 & 35.47125 & 38.87275 \\
\hline 25 & 20 & 36.954 & 2.974 & 4.472136 & . 6650066 & 35.65059 & 38.25741 \\
\hline 26 & 24 & 38.746 & 3.711 & 4.898979 & . 7575047 & 37.26129 & 40.23071 \\
\hline 27 & 21 & 31.971 & 2.294 & 4.582576 & . 5005918 & 30.98984 & 32.95216 \\
\hline 28 & 22 & 32.419 & 3.499 & 4.690416 & . 7459893 & 30.95686 & 33.88114 \\
\hline 29 & 20 & 34.057 & 3.318 & 4.472136 & . 7419274 & 32.60282 & 35.51118 \\
\hline 30 & 19 & 40.087 & 2.957 & 4.358899 & . 6783823 & 38.75737 & 41.41663 \\
\hline 31 & 16 & 32.879 & 3.33 & & 8325 & 31.2473 & 34.5107 \\
\hline 32 & 31 & 26.667 & 2.195 & 5.567764 & . 3942336 & 25.89430 & 27.43970 \\
\hline 33 & 17 & 44.126 & 3.091 & 4.123106 & . 7496776 & 42.65663 & 45.59537 \\
\hline 34 & 21 & 33.491 & 2.903 & 4.582576 & . 6334865 & 32.24937 & 34.73263 \\
\hline 35 & 40 & 42.994 & 4.198 & 6.324555 & . 6637621 & 41.69303 & 44.29497 \\
\hline 36 & 20 & 33. 59 & 2.724 & 4.472136 & . 6091049 & 32.39615 & 34.78385 \\
\hline 37 & 24 & 29.653 & 2.022 & 4.898979 & . 4127390 & 28.84403 & 30.46197 \\
\hline 38 & 24 & 37.323 & 3.304 & 4.898979 & . 6744262 & 36.00112 & 38.64488 \\
\hline 39 & 18 & 32.181 & 2.842 & 4.242641 & . 6698658 & 30.86806 & 33.49394 \\
\hline 40 & 20 & 30.002 & 1.789 & 4.472136 & . 4000326 & 29.21794 & 30.78606 \\
\hline 41 & 21 & 24.6 & 1.927 & Q. 582576 & . 4205059 & 23.77581 & 25.42419 \\
\hline 42 & 24 & 33.102 & 3.391 & 4.898979 & . 6921850 & 31.74532 & 34.45868 \\
\hline 43 & 15 & 40.829 & & 3.872983 & .9940657 & 38.88063 & 42.77737 \\
\hline 44 & 18 & 27.403 & 2.008 & 4.242641 & .4732901 & 26.47535 & 28.33065 \\
\hline 45 & 24 & 36.238 & 3.693 & 4.898979 & . 7538305 & 34.76049 & 37.71551 \\
\hline 46 & 18 & 32.557 & . 6 & 4.242641 & . 8485281 & 30.89388 & 34.22012 \\
\hline 47 & 16 & 52.024 & 6.848 & & 1.712 & 48.66848 & 55.37952 \\
\hline 48 & 21 & 30.658 & 2.298 & 4.582576 & . 5014647 & 29.67513 & 31.64087 \\
\hline 49 & 33 & 30.79 & 3.313 & 5.744563 & . 5767193 & 29.65963 & 31.92037 \\
\hline 50 & 17 & 31.054 & 1.907 & 4.123106 & -4625154 & 30.14747 & 31.96053 \\
\hline 51 & 14 & 44.228 & 4.601 & 3.741657 & 1.229669 & 41.81785 & 46.63815 \\
\hline 52 & 21 & 29.457 & 2.582 & 4.582576 & 5634386 & 28.35266 & 30.56134 \\
\hline 53 & 24 & 34.173 & 2. 142 & 4.898979 & .4372339 & 33.31602 & 35.02998 \\
\hline 54 & 24 & 32.132 & 2.202 & 4.898979 & -4494814 & 31.25102 & 33.01298 \\
\hline 55 & 29 & 29.157 & 2.538 & 5.385165 & . 4712948 & 28.23326 & 30.08074. \\
\hline 56 & 16 & 44.494 & 4.037 & & 1.00925 & 42.5158 & 46.47213 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrr}
57 & 38 & 46.644 & 6.234 & 6.164414 & 1.011288 & 44.66187 & 48.62613 \\
58 & 14 & 34.042 & 3.995 & 3.741657 & 1.067709 & 31.94929 & 36.13471 \\
59 & 18 & 32.029 & 5.774 & 4.242641 & 1.360945 & 29.36155 & 34.69645 \\
60 & 23 & 36.813 & 4.192 & 4.795832 & .8740924 & 35.09978 & 38.52622 \\
61 & 23 & 31.517 & 3.01 & 4.795832 & .6276284 & 30.28685 & 32.74415 \\
62 & 23 & 46.868 & 4.152 & 4.795832 & .8657518 & 45.17713 & 48.56487 \\
63 & 22 & 53.219 & 4.837 & 4.690416 & 1.031252 & 51.19775 & 55.24025 \\
64 & 18 & 36.24 & 4.723 & 4.242641 & 1.113222 & 34.05809 & 38.42191 \\
65 & 22 & 36.004 & 3.581 & 4.690416 & .7634718 & 34.50760 & 37.50040 \\
66 & 23 & 33.404 & 2.771 & 4.795832 & .5777934 & 32.27152 & 34.53648 \\
67 & 17 & 29.406 & 2.544 & 4.123106 & .6170106 & 28.19666 & 30.61534 \\
68 & 21 & 28.07 & 1.884 & 4.582576 & .4111225 & 27.26420 & 28.87580 \\
69 & 19 & 32.667 & 3.582 & 4.358899 & .8217672 & 31.05634 & 34.27766 \\
70 & 24 & 40.859 & 2.682 & 4.898979 & 5474610 & 39.78598 & 41.93202 \\
71 & 23 & 32.635 & 2.546 & 4.795832 & \(\circ 5308777\) & 31.59448 & 33.67552 \\
72 & 24 & 32.609 & 2.956 & 4.898979 & \(\circ 6033910\) & 31.42635 & 33.79165 \\
73 & 10 & 41.57 & 4.131 & 3.162278 & 1.306337 & 39.00958 & 44.13042 \\
74 & 19 & 41.707 & 3.54 & 4.358899 & .8121317 & 40.11522 & 43.29878 \\
75 & 21 & 38.085 & 4.207 & 4.582576 & .9180427 & 36.28564 & 39.88436 \\
76 & 21 & 37.043 & 2.514 & 4.582576 & .5485998 & 35.96774 & 38.11826 \\
77 & 22 & 44.052 & 3.489 & 4.690416 & .7438573 & 42.59404 & 45.50996
\end{tabular}

AT/RVET x 100
Individual means and confidence intervals
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & 。 N & & & Rt No. & SEM & 95\%- & \(5 \%\) \\
\hline 1 & 24 & 48.387 & 4.786 & 4.898979 & . 9769382 & 46.47220 & 50.30180 \\
\hline 2 & 13 & 59.475 & 4.872 & 3.605551 & 1.351250 & 56.82655 & 62.12345 \\
\hline 3 & 19 & 45.816 & 3.019 & 4.358899 & . 6926061 & 44.45849 & 47.17351 \\
\hline 4 & 22 & 38.05 & 3.246 & 4.690416 & . 6920495 & 36.69358 & 39.40642 \\
\hline 5 & 24 & 56.99 & 3.481 & 4.898979 & . 7105561 & 55.59731 & 58.38269 \\
\hline 6 & 24 & 55.173 & 4.204 & 4.898979 & . 8581379 & 53.49105 & 56.85495 \\
\hline 7 & 20 & 52.681 & 3.778 & 4.472136 & . 8447865 & 51.02522 & 54.33678 \\
\hline 8 & 24 & 36.343 & 3.481 & 4.898979 & . 7105561 & 34.95031 & 37.73569 \\
\hline 9 & 21 & 39.11 & 4.343 & 4.582576 & . 9477203 & 37.25247 & 40.96753 \\
\hline 10 & 24 & 48.603 & 5.052 & 4.898979 & 1.031235 & 46.58178 & 50.62422 \\
\hline 11 & 21 & 36.163 & 6.436 & 4.582576 & 1.404450 & 33.41028 & 38.91572 \\
\hline 12 & 20 & 43.538 & 3.473 & 4.472136 & . 7765864 & 42.01589 & 45.06011 \\
\hline 13 & 24 & 47.666 & 4.251 & 4.898979 & . 8677317 & 45.96525 & 49.36675 \\
\hline 14 & 18 & 47.173 & 3.631 & 4.242641 & . 8558349 & 45.49556 & 48.85044 \\
\hline 15 & 22 & 45.479 & 3.14 & 4.690416 & . 6694502 & 44.16688 & 46.79112 \\
\hline 16 & 14 & 48.876 & 4.071 & 3.741657 & 1.088021 & 46.74348 & 51.00852 \\
\hline 17 & 24 & 31.584 & 3.571 & 4.898979 & . 7289273 & 30.15530 & 33.01270 \\
\hline 18 & 17 & 43.481 & 3.519 & 4.123106 & . 8534829 & 41.80817 & 45.15383 \\
\hline 19 & 22 & 45.805 & 3.757 & 4.690416 & . 8009951 & 44.23505 & 47.37495 \\
\hline 20 & 18 & 54.397 & 3.014 & 4.242641 & . 7104066 & 53.00460 & 55.78940 \\
\hline 21 & 32 & 42.784 & 3.71 & 5.656854 & . 6558415 & 41.49855 & 44.06945 \\
\hline 22 & 20 & 36.052 & 2.608 & 4.472136 & . 5831665 & 34.90899 & 37.19501 \\
\hline 23 & 24 & 48.347 & 2.211 & 4.898979 & . 4513185 & 47.46242 & 49.23158 \\
\hline 24. & 24 & 45.863 & 3.676 & 4.898979 & . 7503604 & 44.39229 & 47.33371 \\
\hline 25 & 20 & 48.569 & 5.83 & 4.472136 & 1.303628 & 46.01389 & 51.12411 \\
\hline 26 & 24 & 48.764 & 3.732 & 4.898979 & . 7617913 & 47.27089 & 50.25711 \\
\hline 27 & 21 & 53.064 & 2.893 & 4.582576 & . 6313044 & 51.82664 & 54.30136 \\
\hline 28 & 22 & 36.187 & 2.822 & 4.690416 & . 6016524 & 35.00776 & 37.36624 \\
\hline 29 & 20 & 50.409 & 3.449 & 4.472136 & . 7712198 & 48.89741 & 51.92059 \\
\hline 30 & 19 & 51.924 & 4.52 & 4.358899 & 1.036959 & 49.89156 & 53.95644 \\
\hline 31 & 16 & 37.354 & 2.969 & 4 & . 74225 & 35.89919 & 38.80881 \\
\hline 32 & 31 & 38.338 & 3.345 & 5.567764 & . 6007797 & 37.16047 & 39.51553 \\
\hline 33 & 17 & 43.362 & 4.957 & 4.123106 & 1.202249 & 41.00559 & 45.71841 \\
\hline 34 & 21 & 40.583 & 2.588 & 4.582576 & . 5647479 & 39.47609 & 41.68991 \\
\hline 35 & 40 & 38.674 & 4.144 & 6.324555 & . 6552239 & 37.38976 & 39.95824 \\
\hline 36 & 20 & 48.214 & 4.779 & 4.472136 & 1.068617 & 46.11951 & 50.30849 \\
\hline 37 & 24 & 44.542 & 2.787 & 4.898979 & . 5688940 & 43.42697 & 45.65703 \\
\hline 38 & 24 & 51.947 & 5.081 & 4.898979 & 1.037155 & 49.91418 & 53.97982 \\
\hline 39 & 18 & 53.773 & 3.84 & 4.242641 & .9050967 & 51.99901 & 55.54699 \\
\hline 40 & 20 & 44.838 & 3.703 & 4.472136 & . 8280160 & 43.21509 & 46.46091 \\
\hline 41 & 21 & 36.638 & 4.173 & 4.582576 & . 9106233 & 34.85318 & 38.42282 \\
\hline 42 & 24 & 37.692 & 5.943 & 4.898979 & 1.213110 & 35.31430 & 40.06970 \\
\hline 43 & 15 & 50.446 & 4.287 & 3.872983 & 1.106899 & 48.27648 & 52.61552 \\
\hline 44 & 18 & 45.502 & 3.22 & 4.242641 & . 7589613 & 44.01444 & 46.98956 \\
\hline 45 & 24 & 33.633 & 4.324 & 4.898979 & . 8826328 & 31.90304 & 35.36296 \\
\hline 46 & 18 & 37.157 & 4.143 & 4.242641 & . 9765145 & 35.24303 & 39.07097 \\
\hline 47 & 16 & 39.999 & 5.743 & 4 & 1.43575 & 37.18493 & 42.81307 \\
\hline 48 & 21 & 45.256 & 4.418 & 4.582576 & . 9640866 & 43.36639 & 47.14561 \\
\hline 49 & 33 & 44.164 & 3.556 & 5.744563 & . 6190201 & 42.95072 & 45.37728 \\
\hline 50 & 17 & 49.294 & 2.78 & 4.123106 & . 6742490 & 47.97247 & 50.61553 \\
\hline 51 & 14 & 40.626 & 3.879 & 3.741657 & 1.036706 & 38.59406 & 42.65794 \\
\hline 52 & 21 & 52.794 & 3.322 & 4.582576 & . 7249198 & 51.37316 & 54.21484 \\
\hline 53 & 24 & 33.151 & 5.333 & 4.898979 & 1.088594 & 31.01736 & 35.284.64 \\
\hline 54 & 24 & 47.132 & 2.917 & 4.898979 & . 5954301 & 45.96496 & 48.29904. \\
\hline 55 & 29 & 48.287 & 3.078 & 5.385165 & . 5715703 & 47.16672 & 49.40728 \\
\hline 56 & 16 & 55.918 & 6.271 & 4 & 1.56775 & 52.84521 & 58.99079 \\
\hline
\end{tabular}
\begin{tabular}{lrrrrrrr}
57 & 38 & 41.377 & 2.881 & 6.164414 & .4673599 & 40.46097 & 42.29303 \\
58 & 14 & 43.91 & 3.396 & 3.741657 & .9076192 & 42.13107 & 45.68893 \\
59 & 18 & 47.879 & 4.193 & 4.242641 & .9882996 & 45.94193 & 49.81607 \\
60 & 23 & 45.243 & 2.228 & 4.795832 & \(\circ 4645701\) & 44.33244 & 46.15356 \\
61 & 23 & 53.571 & 3.738 & 4.795832 & .7794269 & 52.04332 & 55.09868 \\
62 & 23 & 40.413 & 3.879 & 4.795832 & .8088274 & 38.82770 & 41.99830 \\
63 & 22 & 40.096 & 4.758 & 4.690416 & 1.014409 & 38.10776 & 42.08424 \\
64 & 18 & 48.479 & 5.355 & 4.242641 & 1.262186 & 46.00512 & 50.95288 \\
65 & 22 & 49.252 & 3.929 & 4.690416 & .8376656 & 47.61018 & 50.89382 \\
66 & 23 & 36.9 & 3.033 & 4.795832 & .6324242 & 35.66045 & 38.13955 \\
67 & 17 & 40.431 & 5.458 & 4.123106 & 1.323759 & 37.83643 & 43.02557 \\
68 & 21 & 56.57 & 4.207 & 4.582576 & \(\circ 9180427\) & 54.77064 & 58.36936 \\
69 & 19 & 50.957 & 5.379 & 4.358899 & 1.234027 & 48.53831 & 53.37569 \\
70 & 24 & 42.117 & 2.773 & 4.898979 & \(\circ 5660363\) & 41.00757 & 43.22643 \\
71 & 23 & 46.379 & 3.34 & 4.795832 & .6964381 & 45.01398 & 47.74402 \\
72 & 24 & 47.864 & 2.989 & 4.898979 & \(\circ 6101271\) & 46.66815 & 49.05985 \\
73 & 10 & 38.531 & 4.066 & 3.162278 & 1.285782 & 36.01087 & 41.05113 \\
74 & 19 & 39.724 & 3.457 & 4.358899 & \(\circ 7930902\) & 38.16954 & 41.27846 \\
75 & 21 & 49.948 & 5.868 & 4.582576 & 1.280503 & 47.43821 & 52.45779 \\
76 & 21 & 43.759 & 3.584 & 4.582576 & .7820929 & 42.22610 & 45.29190 \\
77 & 22 & 52.643 & 3.794 & 4.690416 & .8088835 & 51.05759 & 54.22841 \\
& & & & & & & \\
Ave & 21.45 .22221 & 3.928065 & 4.603377 & .8685763 & 43.51980 & 46.92462 \\
& & & & & & & \\
Max & 40 & 59.475 & 6.436 & 6.324555 & 1.56775 & 56.82655 & 62.12345 \\
Min & 10 & 31.584 & 2.211 & 3.162278 & .4513185 & 30.15530 & 33.01270
\end{tabular}

RVPEP/AT
Individual means and confidence intervals
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Pt & No & Mean & - SD & & Rt.No. & SEM & 95\%- & 95\% + \\
\hline 1 & & 4 & . 6915 & . 1014 & 4.898979 & . 0206982 & .6509316 & . 7320684 \\
\hline 2 & & 3 & . 7302 & .0494 & 3.605551 & . 0137011 & . 7033459 & . 7570541 \\
\hline 3 & & 9 & . 5654 & . 0458 & 4.358899 & .0105072 & -5448058 & . 5859942 \\
\hline 4 & & 2 & . 6876 & -1172 & 4.690416 & . 0249871 & . 6386252 & . 7365748 \\
\hline 5 & & 4 & . 6432 & . 0785 & 4.898979 & . 0160237 & . 6117935 & . 6746065 \\
\hline 6 & & 4 & . 6231 & . 078 & 4.898979 & .0159217 & . 5918935 & . 6543065 \\
\hline 7 & & 0 & . 5965 & . 071 & 4.472136 & . 0158761 & . 5653829 & . 6276171 \\
\hline 8 & & 4 & . 9005 & . 125 & 4.898979 & . 0255155 & . 8504896 & -9505104 \\
\hline 9 & & 1 & . 6518 & . 0965 & 4.582576 & . 0210580 & . 6105263 & . 6930737 \\
\hline 10 & & 4 & . 6904 & . 1025 & 4.898979 & . 0209227 & . 6493915 & . 7314085 \\
\hline 11 & & 1 & 1.0976 & . 2557 & 4.582576 & . 0557983 & .9882353 & 1.206965 \\
\hline 12 & & 0 & . 7439 & . 0913 & 4.472136 & .0204153 & . 7038860 & . 7839140 \\
\hline 13 & & 4 & -6892 & . 0823 & ¢. 898979 & .0167994 & . 6562731 & . 7221269 \\
\hline 14 & & 8 & . 7254 & . 1256 & 4.242641 & .0296042 & . 6673758 & . 7834242 \\
\hline 15 & & 2 & . 7447 & . 0881 & 4.690416 & . 0187830 & . 7078854 & . 7815146 \\
\hline 16 & & 4 & . 6584 & . 0724 & 3.741657 & .0193497 & . 6204746 & . 6963254 \\
\hline 17 & & 4 & . 85 & . 1468 & 4.898979 & . 0299654 & . 7912678 & . 9087322 \\
\hline 18 & & 7 & . 6523 & . 1005 & 4.123106 & . 0243748 & . 6045253 & . 7000747 \\
\hline 19 & & 2 & . 7582 & . 1037 & 4.690416 & . 0221089 & . 7148665 & . 8015335 \\
\hline 20 & & 8 & . 6429 & . 0815 & 4.242641 & .0192097 & . 6052489 & . 6805511 \\
\hline 21 & & 2 & . 7794 & . 086 & 5.656854 & . 0152028 & . 7496025 & . 8091975 \\
\hline 22 & & 0 & . 9717 & . 0906 & 4.472136 & . 0202588 & .9319928 & 1.011407 \\
\hline 23 & & 4 & . 5667 & .0633 & 4.898979 & . 0129211 & . 5413747 & . 5920253 \\
\hline 24 & & 4 & . 8175 & . 1308 & 4.898979 & . 0266994 & . 7651691 & . 8698309 \\
\hline 25 & & 0 & . 7715 & . 1148 & 4.472136 & . 0256701 & . 7211867 & . 8218133 \\
\hline 26 & & 4 & . 8017 & -1178 & 4.898979 & . 0240458 & . 7545702 & . 8488298 \\
\hline 27 & & 1 & . 6044 & . 056 & 4.582576 & . 0122202 & . 5804484 & . 6283516 \\
\hline 28 & & 2 & . 8764 & . 1427 & 4.690416 & .0304237 & . 8167695 & .9360305 \\
\hline 29 & & 0 & . 6806 & . 0961 & 4.472136 & .0214886 & . 6384823 & . 7227177 \\
\hline 30 & & 9 & . 7798 & . 1104 & 4.358899 & . 0253275 & . 7301581 & . 8294419 \\
\hline 31 & & 6 & . 8886 & . 1431 & 4 & . 035775 & . 818481 & -958719 \\
\hline 32 & & 1 & . 7008 & . 0835 & 5.567764 & . 0149970 & . 6714058 & . 7301942 \\
\hline 33 & & 7 & 1.0336 & . 1654 & 4.123106 & .0401154. & .9549738 & 1. 112226 \\
\hline 34 & & 1 & . 8291 & . 0945 & 4.582576 & . 0206216 & . 7886817 & . 8695183 \\
\hline 35 & & 0 & 1.1265 & . 1755 & 6.324555 & .0277490 & 1.072112 & 1.180888 \\
\hline 36 & & 0 & . 7048 & . 1037 & 4.472136 & . 0231880 & . 6593515 & . 7502485 \\
\hline 37 & & 4 & . 6676 & . 0531 & 4.898979 & . 0108390 & . 6463556 & . 6888444 \\
\hline 38 & & 4 & . 7249 & . 0925 & 4.898979 & . 0188815 & . 6878923 & . 7619077 \\
\hline 39 & & 8 & . 6005 & . 0616 & 4.242641 & . 0145193 & . 5720423 & . 6289577 \\
\hline 40 & & 0 & . 6747 & . 0813 & 4.472136 & .0181792 & .6390687 & . 7103313 \\
\hline 41 & & 1 & .6794 & . 0912 & 4.582576 & . 0199015 & . 6403931 & . 7184069 \\
\hline 42 & & 4 & . 9189 & . 3067 & 4.898979 & . 0626049 & . 7961944 & 1.041606 \\
\hline 43 & & 5 & . 8107 & . 0582 & 3.872983 & . 0150272 & . 7812467 & . 8401533 \\
\hline 44 & & 8 & . 6043 & .053 & 4.242641 & . 0124922 & . 5798152 & . 6287848 \\
\hline 45 & & 4 & 1.0904 & . 1492 & 4.898979 & . 0304553 & 1.030708 & 1.150092 \\
\hline 46 & & 8 & - 8912 & . 1712 & 4.242641 & .0403522 & . 8121096 & -970290a \\
\hline 47 & & 6 & 1.3166 & . 1926 & 4 & .04815 & 1.222226 & 1.410974 \\
\hline 48 & & 1 & . 6817 & . 0792 & 4. 582576 & . 0172829 & . 6478256 & . 7155744 \\
\hline 49 & & 3 & . 7018 & . 096 & 5.744563 & . 0167115 & . 6690455 & . 7345545 \\
\hline 50 & & 7 & . 633 & . 0663 & 4. 123106 & . 0160801 & . 6014830 & . 6645170 \\
\hline 51 & & 4 & 1.0964 & . 1406 & 3.741657 & . 0375769 & 1.022749 & 1.170051 \\
\hline 52 & & 1 & . 5597 & . 056 & 4.582576 & . 0122202 & .5357484 & . 5836516 \\
\hline 53 & & 4 & 1.058 & . 1958 & 4.898979 & . 0399675 & . 9796637 & 1.136336 \\
\hline 54 & & 4 & . 685 & 071 & 4.898979 & . 0144928 & . 6565941 & 7134059 \\
\hline 55 & & 9 & . 6067 & . 0699 & 5.385165 & . 0129801 & . 5812590 & . 6321410 \\
\hline 56 & & 6 & . 8091 & . 1449 & & 036225 & 738099 & 880101 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 57 & 38 & 1.1342 & . 1772 & 6.164414 & . 0287456 & 1.077859 & 1.190541 \\
\hline 58 & 14 & . 7807 & . 1186 & 3.741657 & . 0316972 & . 7185735 & . 8428265 \\
\hline 59 & 18 & . 674 & . 1334 & 4.242641 & .0314427 & . 6123723 & . 7356277 \\
\hline 60 & 23 & . 8169 & . 1113 & 4.795832 & .0232077 & . 7714130 & . 8623870 \\
\hline 61 & 23 & - 5918 & .0743 & 4.795832 & .0154926 & . 5614345 & . 6221655 \\
\hline 62 & 23 & 1.1704 & . 1567 & 4.795832 & . 0326742 & 1.106359 & 1.234441 \\
\hline 63 & 22 & 1.3498 & . 2363 & 4.690416 & .0503793 & 1.251057 & 1.448543 \\
\hline 64 & 18 & . 7635 & . 173 & 4.242641 & .0407765 & . 6835781 & . 8434219 \\
\hline 65 & 22 & . 7344 & .0847 & 4.690416 & . 0180581 & . 6990061 & . 7697939 \\
\hline 66 & 23 & -9129 & - 1267 & 4.795832 & . 0264188 & . 8611192 & -9646808 \\
\hline 67 & 17 & . 7404 & -1209 & 4.123106 & . 0293226 & . 6829278 & . 7978722 \\
\hline 68 & 21 & .4989 & . 0512 & 4.582576 & . 0111728 & . 4770014 & . 5207986 \\
\hline 69 & 19 & . 6496 & -1089 & 4.358899 & .0249834 & . 6006326 & . 6985674 \\
\hline 70 & 24 & -9744 & . 095 & 4.898979 & . 0193918 & .9363921 & 1.012408 \\
\hline 71 & 23 & . 7068 & . 0702 & 4.795832 & . 0146377 & . 6781101 & . 7354899 \\
\hline 72 & 24 & -6857 & . 0914 & 4.898979 & . 0186569 & . 6491324 & . 7222676 \\
\hline 73 & 10 & 1.0935 & . 1781 & 3.162278 & . 0563202 & -9831125 & 1.203888 \\
\hline 74 & 19 & 1.0572 & . 1247 & 4.358899 & . 0286081 & 1.001128 & 1.113272 \\
\hline 75 & 21 & . 7717 & . 1172 & 4.582576 & . 0255751 & . 7215727 & . 8218273 \\
\hline 76 & 21 & . 8525 & . 0957 & 4.582576 & . 0208835 & .8115684 & . 8934316 \\
\hline 77 & 22 & . 8429 & . 1092 & 4.690416 & . 0232815 & . 7972682 & . 8885318 \\
\hline Ave & 21. & . 7907623 & 1113299 & 4.603377 & . 0244804 & . 7427808 & 838743 \\
\hline Max & 40 & 1.3498 & . 3067 & 6.324555 & . 0626049 & 1.251057 & 1.448543 \\
\hline Min & 10 & . 4989 & . 0458 & 3.162278 & . 0105072 & 4770014 & 5207986 \\
\hline
\end{tabular}

PAVmax (cm/sec)
Individual means and confidence intervals

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 57 & 38 & 96.71 & 6.81 & 6.164414 & 1.104728 & 94.54473 & 98.87527 \\
\hline 58 & 14 & 92.5 & 3.8 & 3.741657 & 1.015593 & 90.50944 & 94.49056 \\
\hline 59 & 18 & 144.72 & 6.29 & 4.242641 & 1.482567 & 141.8142 & 147.6258 \\
\hline 60 & 23 & 59.35 & 1.72 & 4.795832 & . 3586448 & 58.64706 & 60.05294 \\
\hline 61 & 23 & 70.22 & 3.84 & 4.795832 & . 8006953 & 68.65064 & 71.78936 \\
\hline 62 & 23 & 61.74 & 3.57 & 4.795832 & . 7443965 & 60.28098 & 63.19902 \\
\hline 63 & 22 & 55.45 & 3.42 & 4.690416 & . 7291464 & 54.02087 & 56.87913 \\
\hline 64 & 18 & 56.39 & 4.47 & 4.242641 & 1.053589 & 54.32497 & 58.45503 \\
\hline 65 & 22 & 68.18 & 4.24 & 4.690416 & . 9039710 & 66.40822 & 69.95178 \\
\hline 66 & 23 & 52.83 & 3.31 & 4.795832 & . 6901827 & 51.47724 & 54. 18276 \\
\hline 67 & 17 & 68.82 & 3.32 & 4.123106 & . 8052183 & 67.24177 & 70.39823 \\
\hline 68 & 21 & 41.19 & 4.45 & 4.582576 & . 9710696 & 39.28670 & 43.09330 \\
\hline 69 & 19 & 57.11 & 3.46 & 4.358899 & . 7937784 & 55.55419 & 58.66581 \\
\hline 70 & 24 & 58.12 & 4.38 & 4.898979 & . 8940638 & 56.36764 & 59.87236 \\
\hline 71 & 23 & 56.09 & 3.68 & 4.795832 & . 7673330 & 54.58603 & 57.59397 \\
\hline 72 & 24 & 73.96 & 3.9 & 4.898979 & . 7960842 & 72.39968 & 75.52032 \\
\hline 73 & 10 & 44.5 & 3.69 & 3.162278 & 1.166880 & 42.21291 & 46.78709 \\
\hline 74 & 19 & 53.95 & 3.94 & 4.358899 & . 9038980 & 52.17836 & 55.72164 \\
\hline 75 & 21 & 42.86 & 2.54 & 4.582576 & . 5542734 & 41.77362 & 43.94638 \\
\hline 76 & 21 & 63.33 & 3.29 & 4.582576 & . 7179369 & 61.92284. & 64.73716 \\
\hline 77 & 22 & 53.41 & 3.58 & 4.690416 & . 7632586 & 51.91401 & 54.90599 \\
\hline Ave & 21.5 & 63.09831 & 3.562727 & 4.603377 & . 7811482 & 61.56726 & 64.62936 \\
\hline Max & 40 & 144.72 & 9.08 & 6.324555 & 2.27 & 141.8142 & 147.6258 \\
\hline Min & 10 & 40.21 & 1.02 & 3.162278 & . 2082066 & 39.28670 & 40.61808 \\
\hline
\end{tabular}

APPENDIX TWO

ANOVA ON SCATTER WITHIN AND BETWEEN SUBJECTS FOR EACH RVSTI

One-way analysis of variance RVPEP
Individual \(95 \%\) confidence intervals based on pooled s.d.
Sub No. Mean SD



Analysis of variance on RVREP
\begin{tabular}{lcrcl} 
Source & Degrees freedom & Sun squares Mean squares & F \\
Subjects & 76 & 259847.2 & 3419.0 & 62.53 \\
Error & 1575 & 86113.4 & 54.7 & \\
Total & 1651 & 345960.6 & &
\end{tabular}

\section*{One-Way malysis of Variance on RVET}

Individual 95\% confidence intervals based on pooled s.d.
Pt N Mean SD


\begin{tabular}{lcrrr} 
Source & Deg. Freedom & Sum Sq Mean Sq & \multicolumn{1}{l}{ P } \\
& & & & \\
Subjects & 76 & 1331763 & 17523 & 129.06 \\
Error & 1575 & 213844 & 136 & \\
Total & 1651 & 1545608 & &
\end{tabular}

One-way amalysis of variance - Am (Acceleration Time)
Mean and \(95 \%\) confidence intervals based on pooled s.d.



One-way analysis of variance on \(\mathbb{R}\) mass velocity
Mean and 95\% confidence intervals based on pooled s.d.
Sub No. Mean S.d.



Analysis of variance on AN
\begin{tabular}{lcccc} 
Source & Deg. Freedom & Sum squares & Mean squares & F \\
& & & & \\
Subjects & 76 & 871653 & 11469 & 73.22 \\
Error & 1525 & 246544 & 157 & \\
Total & 1651 & 1118197 & &
\end{tabular}

One-way analysis of variance on \(\mathbb{A T} / \mathbb{R} V E T\)
Mean and \(95 \%\) confidence intervals based on pooled s.d.



Analysis of variance on AM/RVET
\begin{tabular}{lcccc} 
Source & Deg. freedom & Sum squares & Mean squares & F \\
Subjects & 76 & 64413.8 & 847.6 & 53.41 \\
Error & 1575 & 24992.8 & 15.9 & \\
Total & 1651 & 89406.7 & &
\end{tabular}

One-way analysis of vaxiance on RVPEP/RVET is \(100 \%\)
Means and 95\% confidence intervals based on pooled s.d.



Analysis of variance on PA Vmax
\begin{tabular}{lcccc} 
Source & Deg. Freedom & Sun squares & Plean squares & F \\
& & & \\
Subjects & 76 & 898478.4 & 11822.1 & 773.11 \\
Error & 1575 & 24084.2 & 15.3 & \\
Total & 1651 & 922562.6 & &
\end{tabular}

APPENDIX THREE

CUMULATIVE FREQUENCY DATA FOR PACED PATIENTS FOR EACH RVSTI WITH RESPECT TO THE PR INTERVAL

Results on paced patients
Cumulative frequency nadirs/all/peaks RVPEP
\begin{tabular}{|c|c|c|c|c|}
\hline PR interval & Nadirs & A11 & Peaks & \\
\hline -520 & 0 & . 000463 & 0 & \\
\hline -490 & 0 & . 001664 & 0 & \\
\hline -480 & 0 & . 002772 & 0 & \\
\hline -470 & 0 & . 003698 & 0 & \\
\hline -460 & 0 & . 004936 & 0 & \\
\hline -450 & 0 & . 00784 & 0 & \\
\hline -445 & 0 & . 00852 & 0 & \\
\hline -440 & 0 & . 009711 & 0 & \\
\hline -435 & 0 & . 011934 & 0 & \\
\hline -420 & 0 & .012447 & 0 & \\
\hline -405 & 0 & . 01493 & . 008333 & -400 \\
\hline -395 & 0 & . 015953 & . 008333 & \\
\hline -390 & 0 & . 017143 & . 008333 & \\
\hline -380 & 0 & . 019707 & . 019444 & \\
\hline -375 & 0 & . 020994 & . 019444 & \\
\hline -370 & 0 & . 022659 & .019444 & \\
\hline -360 & . 011111 & . 027003 & . 019444 & \\
\hline -355 & .011111 & .027837 & . 019444 & \\
\hline -350 & . 011111 & . 034368 & . 052778 & \\
\hline -340 & . 011111 & . 037731 & . 052778 & \\
\hline -335 & . 011111 & . 038757 & . 052778 & \\
\hline -330 & . 011111 & . 041762 & . 052778 & \\
\hline -325 & . 011111 & .044912 & .052778 & \\
\hline -320 & . 011111 & . 050261 & . 052778 & \\
\hline -315 & . 011111 & . 050724 & . 052778 & \\
\hline -310 & . 034444 & . 057056 & . 052778 & \\
\hline -305 & . 034444 & . 059687 & . 052778 & \\
\hline -300 & . 034444 & . 067745 & .052778 & -300 \\
\hline -295 & . 034444 & .068579 & . 052778 & \\
\hline -290 & . 034444 & . 074738 & . 052778 & \\
\hline -285 & . 034444 & .07592 & . 052778 & \\
\hline -275 & . 034444 & . 085754 & . 052778 & \\
\hline -270 & . 034444 & .099952 & . 052778 & \\
\hline -265 & . 034444 & . 102971 & . 061111 & \\
\hline -260 & . 034444 & . 107626 & .061111 & \\
\hline -255 & . 034444 & . 109645 & .061111 & \\
\hline -250 & .034444 & . 118071 & .069444 & \\
\hline -245 & . 034444 & . 121907 & . 069444 & \\
\hline -240 & . 034444 & . 130217 & .069444 & \\
\hline -235 & .034444 & . 133674 & . 069444 & \\
\hline -230 & .034444 & . 144375 & . 077778 & \\
\hline -225 & .034444 & . 149428 & . 077778 & \\
\hline -220 & .067778 & . 164112 & . 111111 & \\
\hline -215 & .076111 & . 169154 & .111111 & \\
\hline -210 & .076111 & . 174659 & . 111111 & \\
\hline -205 & .076111 & . 177311 & .144444 & \\
\hline -200 & .076111 & . 191959 & . 152778 & -200 \\
\hline -195 & .076111 & . 196112 & . 152778 & \\
\hline -190 & .076111 & . 206392 & . 152778 & \\
\hline -185 & . 109444 & . 210319 & . 152778 & \\
\hline -180 & . 109444 & . 22253 & . 152778 & \\
\hline -175 & . 12254 & . 227392 & . 152778 & \\
\hline -170 & . 135635 & . 24726 & -159444 & \\
\hline -165 & . 135635 & . 255366 & . 192778 & \\
\hline -160 & . 135635 & . 273516 & . 232778 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline -155 & . 135635 & . 278594 & . 239444 & \\
\hline -150 & . 146746 & . 301896 & . 287778 & \\
\hline -145 & . 146746 & . 308698 & . 304444 & \\
\hline -140 & . 146746 & . 321716 & . 346111 & \\
\hline -135 & . 151508 & . 325759 & . 379444 & \\
\hline -130 & . 172937 & . 341827 & . 379444 & \\
\hline -125 & . 172937 & . 346391 & . 379444 & \\
\hline -120 & . 172937 & -359032 & . 379444 & \\
\hline -115 & . 20627 & . 369755 & . 398889 & \\
\hline -110 & . 20627 & . 37802 & . 398889 & \\
\hline -105 & . 20627 & -379731 & . 398889 & \\
\hline -100 & . 20627 & . 393307 & . 407222 & -100 \\
\hline -95 & . 20627 & . 398538 & . 407222 & \\
\hline -90 & - 20627 & . 409637 & . 407222 & \\
\hline -85 & . 20627 & . 415615 & . 407222 & \\
\hline -80 & . 239603 & . 424731 & . 435 & \\
\hline -75 & . 250714 & . 429753 & . 435 & \\
\hline -70 & . 250714 & . 439468 & . 479444 & \\
\hline -65 & . 250714 & . 443885 & . 512778 & \\
\hline -60 & . 300714 & . 459777 & . 512778 & \\
\hline -50 & . 300714 & . 473575 & . 512778 & \\
\hline -45 & . 300714 & . 477096 & . 512778 & \\
\hline -40 & . 300714 & . 481461 & . 512778 & \\
\hline -35 & . 300714 & . 485614 & . 523889 & \\
\hline -30 & . 300714 & . 495962 & . 573889 & \\
\hline -25 & . 317381 & . 504897 & . 607222 & \\
\hline -20 & . 317381 & . 517476 & . 607222 & \\
\hline -15 & . 317381 & . 519766 & . 607222 & \\
\hline -10 & . 317381 & . 524096 & . 607222 & \\
\hline 0 & . 342381 & . 548122 & . 607222 & 0 \\
\hline 10 & . 342381 & . 550448 & . 607222 & \\
\hline 15 & . 359048 & . 555723 & . 607222 & \\
\hline 20 & . 359048 & . 560637 & . 607222 & \\
\hline 25 & . 359048 & . 562477 & . 607222 & \\
\hline 30 & . 425714 & . 568805 & . 66 & \\
\hline 35 & . 430476 & . 574833 & . 66 & \\
\hline 40 & . 451905 & . 583648 & . 693333 & \\
\hline 45 & . 451905 & . 588498 & . 693333 & \\
\hline 50 & . 458571 & . 592701 & . 693333 & \\
\hline 55 & . 458571 & . 597647 & . 726667 & \\
\hline 60 & . 458571 & . 603646 & . 726667 & \\
\hline 65 & . 458571 & . 605905 & . 726667 & \\
\hline 70 & . 491905 & . 617468 & . 726667 & \\
\hline 75 & . 508571 & . 623355 & . 733333 & \\
\hline 80 & . 546667 & . 633062 & . 733333 & \\
\hline 85 & . 546667 & . 637684 & . 733333 & \\
\hline 90 & -586667 & . 651326 & . 733333 & \\
\hline 95 & . 586667 & . 654428 & . 733333 & \\
\hline 100 & . 586667 & . 665552 & . 733333 & 100 \\
\hline 105 & . 586667 & . 67104 & . 733333 & \\
\hline 110 & . 586667 & . 680849 & . 788889 & \\
\hline 115 & . 586667 & . 685461 & . 788889 & \\
\hline 120 & . 586667 & . 701679 & . 788889 & \\
\hline 125 & . 586667 & . 708071 & . 788889 & \\
\hline 130 & . 586667 & . 722775 & . 788889 & \\
\hline 135 & . 586667 & . 725957 & . 8 & \\
\hline 140 & . 62 & . 733711 & . 8 & \\
\hline 145 & . 62 & . 741148 & . 8 & \\
\hline 150 & . 626667 & . 752762 & . 811111 & \\
\hline 155 & . 626667 & . 758154 & . 827778 & \\
\hline 160 & . 626667 & . 766386 & . 861111 & \\
\hline 165 & . 626667 & . 769247 & . 861111 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 170 & ． 626667 & ． 77726 & ． 869444 & \\
\hline 175 & ． 633333 & ． 782359 & ． 869444 & \\
\hline 180 & ． 666667 & ． 791193 & ． 869444 & \\
\hline 185 & ． 7 & ． 797033 & ． 886111 & \\
\hline 190 & ． 711111 & ． 804111 & ． 886111 & \\
\hline 195 & ． 711111 & ． 805369 & ． 886111 & \\
\hline 200 & ． 711111 & ． 812549 & ． 902778 & 200 \\
\hline 205 & ． 711111 & ． 814369 & ． 902778 & \\
\hline 210 & ． 711111 & ． 822538 & ． 902778 & \\
\hline 215 & ． 711111 & ． 827307 & ． 911111 & \\
\hline 220 & ． 711111 & ． 836256 & ． 944444 & \\
\hline 225 & ． 761111 & ． 842505 & .944444 & \\
\hline 230 & ． 761111 & ． 846574 & .944444 & \\
\hline 235 & ． 761111 & ． 847798 & ． 944444 & \\
\hline 240 & ． 769444 & ． 853921 & ． 977778 & \\
\hline 245 & .769444 & ． 858176 & 。977778 & \\
\hline 250 & ． 811111 & ． 868674 & ． 977778 & \\
\hline 255 & ． 811111 & ． 869269 & ．977778 & \\
\hline 260 & ． 811111 & ． 875782 & ．977778 & \\
\hline 265 & ． 811111 & ． 882973 & ．977778 & \\
\hline 270 & －844444 & ． 890078 & ．977778 & \\
\hline 275 & ． 844444 & ． 892037 & ． 977778 & \\
\hline 280 & ． 844444 & ． 899047 & ．988889 & \\
\hline 285 & ． 844444 & ． 90056 & ．988889 & \\
\hline 290 & ． 855556 & －90869 & ． 988889 & \\
\hline 295 & ． 888889 & ． 911272 & ． 988889 & \\
\hline 300 & ． 897222 & ． 91646 & ． 988889 & 300 \\
\hline 305 & ． 897222 & ． 919688 & ． 988889 & \\
\hline 310 & ． 897222 & ． 931219 & ． 988889 & \\
\hline 315 & ． 897222 & ． 933927 & ． 988889 & \\
\hline 320 & －897222 & ． 940411 & ． 988889 & \\
\hline 325 & ． 897222 & ． 942718 & ． 988889 & \\
\hline 330 & ． 897222 & ． 946005 & ． 988889 & \\
\hline 335 & ． 897222 & ． 94724 & ． 988889 & \\
\hline 340 & ． 897222 & ． 956257 & ． 988889 & \\
\hline 345 & －897222 & ．956822 & ．988889 & \\
\hline 350 & ． 947222 & ． 962504 & ． 988889 & \\
\hline 355 & ． 947222 & ． 963954 & ． 988889 & \\
\hline 360 & ．947222 & ． 968693 & ． 988889 & \\
\hline 365 & －947222 & ． 970481 & ． 988889 & \\
\hline 370 & ． 955556 & ． 974061 & ． 988889 & \\
\hline 375 & ． 955556 & ． 97469 & ． 988889 & \\
\hline 380 & ． 955556 & ． 976512 & ． 988889 & \\
\hline 385 & ． 966667 & ． 977902 & ． 988889 & \\
\hline 390 & ． 966667 & ．983607 & ． 988889 & \\
\hline 395 & ． 966667 & ． 984462 & ． 988889 & \\
\hline 400 & ． 966667 & ． 985663 & ． 988889 & 400 \\
\hline 405 & ． 966667 & ． 986176 & ． 988889 & \\
\hline 410 & ．977778 & ． 988486 & ． 988889 & \\
\hline 420 & ． 988889 & ． 990186 & ． 988889 & \\
\hline 425 & －988889 & ． 990815 & ． 988889 & \\
\hline 430 & ．988889 & ． 991328 & ． 988889 & \\
\hline 435 & ． 988889 & ． 991923 & ． 988889 & \\
\hline 440 & ． 988889 & ． 993254 & ．988889 & \\
\hline 445 & ． 988889 & ． 993849 & ． 988889 & \\
\hline 465 & ． 988889 & ． 994312 & ． 988889 & \\
\hline 470 & －988889 & ． 994908 & ． 988889 & \\
\hline 475 & ． 988889 & ． 995514 & ． 988889 & \\
\hline 480 & ． 988889 & ． 995977 & ． 988889 & \\
\hline 485 & ． 988889 & ．997167 & ． 988889 & \\
\hline 490 & 1 & ． 99768 & ．988889 & \\
\hline 500 & 1 & ． 998881 & 1 & \\
\hline
\end{tabular}

Kolmogorov-Smirnov max d for nadirs .209345 at PR interval - 8
Kolmogorov-Smirnov max d for peaks 。129020 at PR interval 50

Results on paced patients
Cumulative frequency RVET

PR interval
interval
---------
\(-520\)
-490
-480
-480
-470
\(-460\)
\(-450\)
-445
-440
\(-435\)
\(-430\)
-420
-405
\(-400\)
-395
-390
-380
-375
-370
-360
\(-355\)
\(-350\)
-340
-335
-330
-325
-320
\(-315\)
\(-310\)
-305
-300
-300
-295
-290
-285
-280
-275
-270
-265
-260
\(-255\)
\(-250\)
\(-245\)
-240
-235
-235
-230
\(-225\)
-220
\(-215\)
\(-210\)
-205
-200
-195
-190
-190
-185
\(-180\)
\(-175\)

Nadirs All
Peaks
\begin{tabular}{|c|c|c|c|}
\hline 0 & . 000463 & 0 & \\
\hline 0 & . 001664 & 0 & \\
\hline 0 & . 002772 & 0 & \\
\hline 0 & .003698 & 0 & \\
\hline 0 & . 004936 & 0 & \\
\hline 0 & . 00784 & 0 & \\
\hline 0 & . 00852 & 0 & \\
\hline 0 & .009711 & 0 & \\
\hline 0 & . 011934 & 0 & \\
\hline 0 & . 012447 & 0 & \\
\hline 0 & . 014205 & 0 & \\
\hline 0 & . 01493 & 0 & \\
\hline 0 & . 015525 & 0 & \(-400\) \\
\hline 0 & . 015953 & 0 & \\
\hline 0 & . 017143 & 0 & \\
\hline 0 & .019707 & 0 & \\
\hline 0 & . 020994 & 0 & \\
\hline 0 & .022659 & 0 & \\
\hline 0 & . 027003 & 0 & \\
\hline 0 & . 027837 & 0 & \\
\hline 0 & .034368 & 0 & \\
\hline 0 & . 037731 & 0 & \\
\hline 0 & .038757 & 0 & \\
\hline 0 & .041762 & 0 & \\
\hline 0 & .044912 & 0 & \\
\hline 0 & . 050261 & 0 & \\
\hline 0 & . 050724 & 0 & \\
\hline 0 & .057056 & 0 & \\
\hline 0 & .059687 & 0 & \\
\hline 0 & .067745 & 0 & -300 \\
\hline 0 & .068579 & 0 & \\
\hline 0 & .074738 & 0 & \\
\hline 0 & . 07592 & 0 & \\
\hline 0 & . 082776 & . 033333 & \\
\hline 0 & . 085754 & . 033333 & \\
\hline 0 & .099952 & . 033333 & \\
\hline 0 & . 102971 & . 033333 & \\
\hline 0 & . 107626 & . 033333 & \\
\hline 0 & . 109645 & .033333 & \\
\hline 0 & . 118071 & . 033333 & \\
\hline 0 & . 121907 & . 033333 & \\
\hline 0 & . 130217 & . 033333 & \\
\hline 0 & . 133674 & . 033333 & \\
\hline 0 & . 144375 & . 033333 & \\
\hline 0 & . 149426 & . 033333 & \\
\hline 0 & . 164112 & . 033333 & \\
\hline 0 & . 169154 & . 033333 & \\
\hline .016667 & . 174659 & . 033333 & \\
\hline .016667 & . 177311 & . 033333 & \\
\hline .016667 & . 191959 & . 033333 & -200 \\
\hline . 05 & . 196112 & . 033333 & \\
\hline . 05 & . 206392 & .033333 & \\
\hline . 05 & . 210319 & . 033333 & \\
\hline . 06667 & . 22253 & . 033333 & \\
\hline . 072222 & . 227392 & . 033333 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline -170 & . 155556 & . 24726 & . 033333 & \\
\hline -165 & . 205556 & . 255366 & . 033333 & \\
\hline -160 & . 205556 & . 273516 & . 033333 & \\
\hline -155 & . 261111 & . 278594 & .033333 & \\
\hline -150 & . 288889 & . 301896 & . 033333 & \\
\hline -145 & . 288889 & . 308698 & . 033333 & \\
\hline -140 & . 305556 & . 321716 & . 033333 & \\
\hline -135 & . 305556 & . 325759 & . 033333 & \\
\hline -130 & . 372222 & . 341827 & . 033333 & \\
\hline -125 & . 372222 & . 346391 & .033333 & \\
\hline -120 & . 405556 & . 359032 & . 033333 & \\
\hline -115 & . 405556 & . 369755 & . 033333 & \\
\hline -110 & . 438889 & . 37802 & . 033333 & \\
\hline -105 & . 438889 & . 379731 & .033333 & \\
\hline -100 & . 544444 & . 393307 & . 033333 & -100 \\
\hline -95 & . 55 & . 398538 & . 033333 & \\
\hline -90 & . 55 & . 409637 & . 033333 & \\
\hline -85 & - 6 & . 415615 & . 033333 & \\
\hline -80 & . 733333 & . 424731 & . 033333 & \\
\hline -75 & . 733333 & . 429753 & . 033333 & \\
\hline -70 & . 783333 & . 439468 & . 033333 & \\
\hline -65 & . 816667 & . 443885 & . 033333 & \\
\hline -60 & . 9 & . 459777 & . 033333 & \\
\hline -50 & . 916667 & . 472575 & . 033333 & \\
\hline -45 & . 95 & . 477096 & . 033333 & \\
\hline -40 & . 95 & . 481461 & . 033333 & \\
\hline -35 & . 966667 & . 485614 & . 033333 & \\
\hline -30 & .966667 & . 495962 & . 033333 & \\
\hline -25 & . 966667 & . 504897 & . 033333 & \\
\hline -20 & 1 & . 517476 & . 033333 & \\
\hline -15 & 1 & . 519766 & . 033333 & \\
\hline -10 & 1 & . 524094 & . 033333 & \\
\hline 0 & 1 & . 548122 & . 033333 & 0 \\
\hline 10 & 1 & . 550448 & . 05 & \\
\hline 15 & 1 & . 555723 & . 083333 & \\
\hline 20 & 1 & . 560637 & . 083333 & \\
\hline 25 & 1 & . 562447 & . 083333 & \\
\hline 30 & 1 & . 568805 & . 083333 & \\
\hline 35 & 1 & . 574833 & . 083333 & \\
\hline 40 & 1 & . 583648 & -1 & \\
\hline 45 & 1 & . 588498 & . 116667 & \\
\hline 50 & 1 & . 592701 & . 116667 & \\
\hline 55 & 1 & . 597647 & . 133333 & \\
\hline 60 & 1 & . 603646 & . 2 & \\
\hline 65 & 1 & . 605905 & . 216667 & \\
\hline 70 & 1 & . 617468 & . 233333 & \\
\hline 75 & 1 & . 623355 & . 266667 & \\
\hline 80 & 1 & . 633062 & . 283333 & \\
\hline 85 & 1 & . 637684 & . 3 & \\
\hline 90 & 1 & . 651326 & . 316667 & \\
\hline 95 & 1 & . 654428 & . 361111 & \\
\hline 100 & 1 & . 665552 & . 377778 & 100 \\
\hline 105 & 1 & . 67104 & . 37778 & \\
\hline 110 & 1 & . 680849 & . 377778 & \\
\hline 115 & 1 & . 685461 & . 388889 & \\
\hline 120 & 1 & . 701679 & . 455556 & \\
\hline 125 & 1 & . 708071 & . 455556 & \\
\hline 130 & 1 & . 722775 & . 472222 & \\
\hline 135 & 1 & . 725957 & . 488889 & \\
\hline 140 & 1 & . 733711 & . 522222 & \\
\hline 145 & 1 & . 741148 & . 566667 & \\
\hline 150 & 1 & . 752762 & . 594444 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 155 & 1 & . 758154 & . 594444 & \\
\hline 160 & 1 & . 766386 & . 616667 & \\
\hline 165 & 1 & . 769247 & . 616667 & \\
\hline 170 & 1 & . 77726 & . 627778 & \\
\hline 175 & 1 & . 782359 & . 661111 & \\
\hline 180 & 1 & . 791193 & . 705556 & \\
\hline 185 & 1 & . 797033 & . 738889 & \\
\hline 190 & 1 & . 804111 & . 738889 & \\
\hline 195 & 1 & . 805369 & . 738889 & \\
\hline 200 & 1 & . 812549 & . 75 & 200 \\
\hline 205 & 1 & . 814369 & . 783333 & \\
\hline 210 & 1 & . 822523 & . 816667 & \\
\hline 215 & 1 & . 827307 & . 816667 & \\
\hline 220 & 1 & . 836256 & . 816667 & \\
\hline 225 & 1 & . 842505 & . 861111 & \\
\hline 230 & 1 & . 846574 & . 861111 & \\
\hline 235 & 1 & . 847798 & . 861111 & \\
\hline 240 & 1 & . 853291 & . 872222 & \\
\hline 245 & 1 & . 858176 & . 872222 & \\
\hline 250 & 1 & . 858176 & . 872222 & , \\
\hline 255 & 1 & . 869269 & . 872222 & \\
\hline 260 & 1 & . 875782 & . 872222 & \\
\hline 265 & 1 & . 882973 & . 883333 & \\
\hline 270 & 1 & . 890078 & . 883333 & \\
\hline 275 & 1 & . 892037 & . 905556 & \\
\hline 280 & 1 & . 899047 & . 905556 & \\
\hline 285 & 1 & -90056 & . 905556 & \\
\hline 290 & 1 & . 90869 & . 938889 & \\
\hline 295 & 1 & . 911272 & . 972222 & \\
\hline 300 & 1 & . 91646 & . 972222 & 300 \\
\hline 305 & 1 & .919688 & . 972222 & \\
\hline 310 & 1 & .931219 & . 972222 & \\
\hline 315 & 1 & .933927 & . 972222 & \\
\hline 320 & 1 & . 940411 & . 972222 & \\
\hline 325 & 1 & . 942718 & . 972222 & \\
\hline 330 & 1 & . 946005 & . 972222 & \\
\hline 335 & 1 & -94724 & . 972222 & \\
\hline 340 & 1 & -956257 & . 988889 & \\
\hline 345 & 1 & .956822 & . 988889 & \\
\hline 350 & 1 & -962506 & .988889 & \\
\hline 355 & 1 & . 963954 & . 988889 & \\
\hline 360 & 1 & .968693 & . 988889 & \\
\hline 365 & 1 & . 970481 & . 988889 & \\
\hline 370 & 1 & . 974061 & . 988889 & \\
\hline 375 & 1 & . 97469 & . 988889 & \\
\hline 380 & 1 & . 976512 & . 988889 & \\
\hline 385 & 1 & . 977902 & . 988889 & \\
\hline 390 & 1 & . 983607 & 1 & \\
\hline 395 & 1 & . 984462 & 1 & \\
\hline 400 & 1 & . 985663 & 1 & 400 \\
\hline 405 & 1 & . 986176 & 1 & \\
\hline 410 & 1 & . 988486 & 1 & \\
\hline 420 & 1 & . 990186 & 1 & \\
\hline 425 & 1 & . 990815 & 1 & \\
\hline 430 & 1 & . 991328 & 1 & \\
\hline 435 & 1 & . 991923 & 1 & \\
\hline 440 & 1 & -993254 & 1 & \\
\hline 445 & 1 & . 993849 & 1 & \\
\hline 465 & 1 & -994312 & 1 & \\
\hline 470 & 1 & -994908 & 1 & \\
\hline 475 & 1 & -995514 & 1 & \\
\hline 480 & 1 & .995977 & 1 & \\
\hline
\end{tabular}
\begin{tabular}{rrrr}
485 & 1 & .997167 & 1 \\
490 & 1 & .99768 & 1 \\
500 & 1 & .998881 & 1 \\
510 & 1 & 1 & 1
\end{tabular}

Kolmogorov-Smirnof max \(d\) for nadirs 0.482524 at PR interval -20
Kolmogorov-Smirnov max \(d\) for peaks 0.514789 at \(\operatorname{PR}\) interval 0

\section*{Cumulative frequency:}
\begin{tabular}{|c|c|c|c|c|}
\hline PR interval & Nadirs & All & Peaks & \\
\hline -520 & 0 & -.000496 & 0 & \\
\hline -490 & 0 & -.001785 & 0 & \\
\hline -480 & 0 & -.00297 & 0 & \\
\hline -470 & . 017857 & . 003962 & 0 & \\
\hline -460 & . 017857 & . 005288 & 0 & \\
\hline -450 & . 017857 & .0084 & 0 & \\
\hline -445 & . 017857 & . 009129 & 0 & \\
\hline -440 & . 017857 & . 010404 & 0 & \\
\hline -435 & . 017857 & . 012787 & 0 & \\
\hline -430 & . 017857 & . 013336 & 0 & \\
\hline -420 & . 017857 & . 01522 & 0 & \\
\hline -405 & . 017857 & . 015996 & 0 & \\
\hline -400 & . 017857 & . 016634 & 0 & \(-400\) \\
\hline -395 & . 017857 & . 017092 & 0 & \\
\hline -390 & . 017857 & . 018368 & 0 & \\
\hline -380 & . 017857 & . 021115 & 0 & \\
\hline -375 & . 017857 & . 022493 & 0 & \\
\hline -370 & . 017857 & . 024277 & 0 & \\
\hline -360 & . 017857 & . 028932 & 0 & \\
\hline -355 & . 017857 & . 029825 & 0 & \\
\hline -350 & . 017857 & . 036823 & 0 & \\
\hline -340 & . 017857 & . 040426 & 0 & \\
\hline -335 & . 017857 & . 041525 & 0 & \\
\hline -330 & . 017857 & . 044645 & 0 & \\
\hline -325 & . 017857 & .04727 & 0 & \\
\hline -320 & . 035714 & . 053001 & 0 & \\
\hline -315 & .035714 & . 053497 & 0 & \\
\hline -310 & . 035714 & . 060281 & 0 & \\
\hline -305 & . 035714 & . 0631 & 0 & \\
\hline -300 & . 071429 & . 070033 & . 035714 & \(-300\) \\
\hline -295 & .071429 & . 070926 & . 035714 & \\
\hline -290 & . 071429 & . 076676 & . 035714 & \\
\hline -285 & . 071429 & . 077941 & . 071429 & \\
\hline -280 & . 071429 & . 084437 & . 107143 & \\
\hline -275 & . 071429 & . 087628 & . 107143 & \\
\hline -270 & . 071429 & . 101074 & . 107143 & \\
\hline -265 & . 071429 & . 104308 & .107143 & \\
\hline -260 & . 071429 & . 109296 & . 107143 & \\
\hline -255 & . 071429 & . 111459 & .107143 & \\
\hline -250 & . 071429 & . 119636 & . 107143 & \\
\hline -245 & . 071429 & . 123746 & . 107143 & \\
\hline -240 & .071429 & . 13265 & . 107143 & \\
\hline -235 & . 071429 & . 136355 & . 107143 & \\
\hline -230 & . 071429 & . 147819 & . 142857 & \\
\hline -225 & . 071429 & . 153231 & . 142857 & \\
\hline -220 & . 107143 & . 164583 & . 142857 & \\
\hline -215 & . 107143 & . 168219 & . 142857 & \\
\hline -210 & . 107143 & . 174118 & . 142857 & \\
\hline -205 & . 107143 & -176959 & . 142857 & \\
\hline -200 & -142857 & . 192654 & . 178571 & -200 \\
\hline -195 & . 142857 & . 197104 & . 178571 & \\
\hline -190 & . 142857 & . 208118 & . 178571 & \\
\hline -185 & . 154762 & . 212325 & . 178571 & \\
\hline -180 & . 190476 & . 223642 & . 196429 & \\
\hline -175 & . 190476 & . 228851 & . 196429 & \\
\hline -170 & . 220238 & . 248372 & . 196429 & \\
\hline -165 & . 291667 & . 257057 & . 196429 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline -160 & . 291667 & . 276504 & . 214286 & \\
\hline -155 & . 291667 & . 281944 & . 214286 & \\
\hline -150 & . 327381 & . 306911 & . 232143 & \\
\hline -145 & . 363095 & . 314198 & . 232143 & \\
\hline -140 & . 363095 & . 328147 & . 232143 & \\
\hline -135 & . 380952 & . 332479 & . 232143 & \\
\hline -130 & . 434524 & . 347928 & . 232143 & \\
\hline -125 & . 470238 & . 352818 & . 232143 & \\
\hline -120 & . 470238 & . 361914 & . 232143 & \\
\hline -115 & . 506952 & . 371637 & . 232143 & \\
\hline -110 & . 505952 & . 380492 & . 232143 & \\
\hline -105 & . 505952 & . 382325 & . 232143 & \\
\hline -100 & . 52381 & . 395956 & . 232143 & -100 \\
\hline -95 & -571429 & - 40156 & . 232143 & \\
\hline -90 & . 571429 & . 411686 & . 232143 & \\
\hline -85 & . 571429 & . 41809 & . 232143 & \\
\hline -80 & . 571429 & . 424326 & . 232143 & \\
\hline -75 & . 571429 & . 429706 & . 232143 & \\
\hline -70 & . 60119 & . 440115 & . 232143 & \\
\hline -65 & . 60119 & .444848 & . 232143 & \\
\hline -60 & . 630952 & . 461875 & . 232143 & \\
\hline -50 & .684524 & . 475587 & . 232143 & \\
\hline -45 & . 696429 & . 480431 & . 232143 & \\
\hline -40 & . 696429 & . 485108 & . 267857 & \\
\hline -35 & . 714286 & . 489558 & . 267857 & \\
\hline -30 & . 714286 & . 498879 & . 267857 & \\
\hline -25 & . 714286 & . 508452 & . 267857 & \\
\hline -20 & . 75 & . 516631 & . 267857 & \\
\hline -15 & . 785714 & . 519085 & . 267857 & \\
\hline -10 & . 785714 & . 523721 & . 303571 & \\
\hline 0 & . 821429 & . 5477 & . 303571 & 0 \\
\hline 10 & . 821429 & . 550193 & . 321429 & \\
\hline 15 & . 821429 & . 555844 & . 339286 & \\
\hline 20 & . 821429 & . 561109 & . 339286 & \\
\hline 25 & . 821429 & . 563081 & . 375 & \\
\hline 30 & . 857143 & . 568095 & . 375 & \\
\hline 35 & . 857143 & . 574553 & . 375 & \\
\hline 40 & . 857143 & . 583997 & . 375 & \\
\hline 45 & . 857143 & . 589194 & . 392857 & \\
\hline 50 & . 857143 & . 593698 & . 464286 & \\
\hline 55 & . 857143 & . 598996 & . 5 & \\
\hline 60 & . 857143 & . 605424 & . 571429 & \\
\hline 65 & . 857143 & . 607844 & . 571429 & \\
\hline 70 & . 857143 & . 620233 & . 571429 & \\
\hline 75 & . 892857 & . 62654 & . 571429 & \\
\hline 80 & . 892857 & . 636941 & . 607143 & \\
\hline 85 & . 892857 & . 641894 & . 642857 & \\
\hline 90 & . 892857 & . 652978 & . 642857 & \\
\hline 95 & . 892857 & . 656302 & . 642857 & \\
\hline 100 & . 892857 & . 66822 & . 660714 & 100 \\
\hline 105 & . 892857 & . 674099 & . 696429 & \\
\hline 110 & . 928571 & . 68461 & . 803571 & \\
\hline 115 & . 928571 & . 68955 & . 803571 & \\
\hline 120 & . 940476 & . 703395 & . 803571 & \\
\hline 125 & . 940476 & . 710243 & . 821429 & \\
\hline 130 & . 940476 & . 724232 & . 857143 & \\
\hline 135 & . 940476 & . 727641 & . 857143 & \\
\hline 140 & .940476 & . 735949 & . 857143 & \\
\hline 145 & . 940476 & . 742151 & . 857143 & \\
\hline 150 & .940476 & . 752829 & . 857143 & \\
\hline 155 & .940476 & . 758606 & . 857143 & \\
\hline 160 & .940476 & . 767425 & . 857143 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 165 & . 940476 & . 770491 & . 857143 & \\
\hline 170 & . 940476 & . 77731 & . 857143 & \\
\hline 175 & . 940476 & . 782774 & . 857143 & \\
\hline 180 & . 940476 & . 792238 & . 892857 & \\
\hline 185 & .940476 & . 79673 & . 892857 & \\
\hline 190 & . 940476 & . 804313 & . 892857 & \\
\hline 195 & .940476 & . 805661 & . 928571 & \\
\hline 200 & .940476 & . 811587 & . 928571 & 200 \\
\hline 205 & . 940476 & . 813538 & . 928571 & \\
\hline 210 & .940476 & . 82229 & . 928571 & \\
\hline 215 & . 940476 & . 8274 & . 928571 & \\
\hline 220 & .952381 & . 836988 & . 946429 & \\
\hline 225 & . 952381 & . 844684 & . 982143 & \\
\hline 230 & . 952381 & . 848043 & . 982143 & \\
\hline 235 & .952381 & . 849355 & . 982143 & \\
\hline 240 & . 952381 & . 855915 & . 982143 & \\
\hline 245 & . 952381 & . 860474 & . 982143 & \\
\hline 250 & . 952381 & . 869956 & . 982143 & \\
\hline 255 & . 952381 & . 870593 & .982143 & \\
\hline 260 & . 952381 & . 877572 & . 982143 & \\
\hline 265 & . 952381 & . 885276 & .982143 & \\
\hline 270 & .952381 & . 890272 & . 982143 & \\
\hline 275 & . 952381 & . 892371 & .982143 & \\
\hline 280 & . 952381 & . 899881 & . 982143 & \\
\hline 285 & . 964286 & . 901503 & .982143 & \\
\hline 290 & -964286 & . 910214 & . 982143 & \\
\hline 295 & . 964286 & . 91298 & . 982143 & \\
\hline 300 & . 964286 & . 918538 & .982143 & 300 \\
\hline 305 & -964286 & . 921997 & . 982143 & \\
\hline 310 & . 964286 & . 932586 & . 982143 & \\
\hline 315 & -964286 & . 935487 & .982143 & \\
\hline 320 & . 964286 & . 940668 & .982143 & \\
\hline 325 & . 964286 & . 94314 & .982143 & \\
\hline 330 & .964286 & . 945745 & . 982143 & \\
\hline 335 & . 964286 & . 947069 & . 982143 & \\
\hline 340 & 1 & . 954964 & .982143 & \\
\hline 345 & 1 & . 955569 & . 982143 & \\
\hline 350 & 1 & . 961659 & . 982143 & \\
\hline 355 & 1 & . 963211 & .982143 & \\
\hline 360 & 1 & . 967372 & .982143 & \\
\hline 365 & 1 & . 969289 & 1 & \\
\hline 370 & 1 & . 973124 & 1 & \\
\hline 375 & 1 & . 973798 & 1 & \\
\hline 380 & 1 & . 97575 & 1 & \\
\hline 385 & 1 & -97724 & 1 & \\
\hline 390 & 1 & . 983352 & 1 & \\
\hline 400 & 1 & . 984639 & 1 & 400 \\
\hline 405 & 1 & . 985189 & 1 & \\
\hline 410 & 1 & . 987664 & 1 & \\
\hline 420 & 1 & . 989485 & 1 & \\
\hline 425 & 1 & . 990159 & 1 & \\
\hline 430 & 1 & . 990709 & 1 & \\
\hline 435 & 1 & . 991346 & 1 & \\
\hline 440 & 1 & . 992772 & 1 & \\
\hline 445 & 1 & . 99341 & 1 & \\
\hline 465 & 1 & . 993906 & 1 & \\
\hline 470 & 1 & . 994544 & 1 & \\
\hline 475 & 1 & . 995193 & 1 & \\
\hline 480 & 1 & . 995689 & 1 & \\
\hline 485 & 1 & . 996965 & 1 & \\
\hline 490 & 1 & . 997514 & 1 & \\
\hline 500 & 1 & .998801 & 1 & \\
\hline
\end{tabular}

Komogorov-Smirnof max \(d\) for nadirs .289048 at \(P R+30\)
Kolmogorov-Smirnof max d for peaks . 251228 at PR -15

Results on paced patients
Cumulative frequency for PA Vmax
\begin{tabular}{|c|c|c|c|c|}
\hline PR interval & Nadirs & All & Peaks & \\
\hline -520 & 0 & . 000542 & 0 & \\
\hline -490 & 0 & . 001241 & 0 & \\
\hline -480 & 0 & . 00252 & 0 & \\
\hline -470 & 0 & . 003603 & 0 & \\
\hline -460 & 0 & . 005031 & 0 & \\
\hline -450 & 0 & . 007855 & . 009615 & \\
\hline -445 & 0 & . 00864 & . 009615 & \\
\hline -440 & 0 & . 009327 & .009615 & \\
\hline -435 & 0 & . 011206 & . 009615 & \\
\hline -430 & 0 & . 011798 & .009615 & \\
\hline -420 & 0 & .013826 & .009615 & \\
\hline -405 & 0 & . 014662 & .009615 & -400 \\
\hline -395 & 0 & . 015155 & . 009615 & \\
\hline -390 & 0 & . 015842 & .009615 & \\
\hline -380 & 0 & . 018809 & .009615 & \\
\hline -375 & 0 & . 020293 & . 009615 & \\
\hline -370 & 0 & . 022214 & . 009615 & \\
\hline -360 & 0 & . 02654 & . 009615 & \\
\hline -355 & 0 & . 027512 & . 009615 & \\
\hline -350 & 0 & . 034351 & . 009615 & \\
\hline -340 & . 003497 & .038247 & . 009615 & \\
\hline -335 & .003497 & . 03943 & . 009615 & \\
\hline -330 & . 003497 & . 042898 & . 022436 & \\
\hline -325 & . 003497 & . 045617 & . 022436 & \\
\hline -320 & .003497 & . 050384 & . 022436 & \\
\hline -315 & . 003497 & . 050926 & . 022436 & \\
\hline -310 & . 003497 & . 056827 & . 022436 & \\
\hline -305 & .003297 & . 059862 & . 022436 & \\
\hline -300 & .003497 & . 066618 & . 022436 & -300 \\
\hline -295 & . 003497 & . 06758 & . 022436 & \\
\hline -290 & .003497 & . 073046 & . 024359 & \\
\hline -285 & .011189 & . 074409 & . 024359 & \\
\hline -280 & . 011189 & . 080679 & . 024359 & \\
\hline -275 & . 011189 & . 083428 & . 024359 & \\
\hline -270 & . 040035 & . 097916 & . 041026 & \\
\hline -265 & . 040035 & . 101406 & . 044872 & \\
\hline -260 & . 040035 & . 106053 & . 044872 & \\
\hline -255 & . 043531 & . 107656 & . 044872 & \\
\hline -250 & . 043531 & . 116462 & . 044872 & \\
\hline -245 & . 047028 & . 120889 & . 044872 & \\
\hline -240 & .047028 & . 129805 & . 083333 & \\
\hline -235 & . 047028 & . 133802 & . 083333 & \\
\hline -230 & . 06014 & . 146164 & . 084872 & \\
\hline -225 & . 06014 & . 151999 & . 08641 & \\
\hline -220 & . 063098 & . 163522 & . 08641 & \\
\hline -215 & . 063098 & . 166751 & .087949 & \\
\hline -210 & . 063098 & . 171659 & .087949 & \\
\hline -205 & . 063098 & . 174727 & . 087949 & \\
\hline -200 & . 066057 & . 191628 & . 089872 & -200 \\
\hline -195 & . 066057 & . 195734 & . 089872 & \\
\hline -190 & . 066057 & . 20687 & . 095366 & \\
\hline -185 & . 07305 & . 211401 & .095366 & \\
\hline -180 & . 117429 & . 223588 & . 100861 & \\
\hline -175 & . 117429 & . 228472 & . 102784 & \\
\hline -170 & . 178618 & . 249495 & . 104707 & \\
\hline -165 & . 178618 & . 258863 & . 1104.76 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline -160 & . 222996 & . 278415 & . 128791 & \\
\hline -155 & . 245186 & . 284297 & . 128791 & \\
\hline -150 & . 256374 & . 309046 & . 138022 & \\
\hline -145 & . 256374 & . 315482 & . 138022 & \\
\hline -140 & . 264067 & . 328341 & . 147363 & \\
\hline -135 & . 283297 & . 333006 & . 149286 & \\
\hline -130 & . 286794 & . 348193 & . 19478 & \\
\hline -125 & . 325256 & . 352733 & -19478 & \\
\hline -120 & - 328214 & . 361078 & . 194278 & \\
\hline -115 & . 337829 & . 370823 & . 202473 & \\
\hline -110 & . 35706 & . 378946 & . 204011 & \\
\hline -105 & . 35706 & . 38092 & . 204011 & \\
\hline -100 & . 379788 & . 394148 & . 205549 & - -100 \\
\hline -95 & . 379788 & . 400183 & . 205549 & \\
\hline -90 & . 379788 & . 408957 & . 205549 & \\
\hline -85 & . 389403 & . 415862 & . 205549 & \\
\hline -80 & . 416326 & . 421851 & . 205549 & \\
\hline -75 & . 474018 & . 42692 & . 205549 & \\
\hline -70 & . 539481 & . 437443 & . 207088 & \\
\hline -65 & . 549096 & . 441853 & . 207088 & \\
\hline -60 & . 56674 & . 458778 & . 216319 & \\
\hline -50 & . 60816 & . 472132 & . 216319 & -50 \\
\hline -45 & . 617775 & . 477348 & . 216319 & \\
\hline -40 & . 621272 & . 480934 & . 216319 & \\
\hline -35 & . 640503 & . 485047 & . 216319 & \\
\hline -30 & . 640503 & . 495084 & . 216319 & \\
\hline -25 & . 678964 & . 503217 & . 230678 & \\
\hline -20 & . 724419 & . 512033 & . 230678 & \\
\hline -15 & . 734034 & . 514675 & . 230678 & \\
\hline -10 & . 734034 & . 519668 & . 230678 & \\
\hline 0 & . 750882 & . 544773 & . 239634 & 0 \\
\hline 10 & . 789343 & - 547458 & . 239634 & \\
\hline 15 & . 792302 & . 553543 & . 239634 & \\
\hline 20 & . 809609 & . 558495 & . 239634 & \\
\hline 25 & . 812568 & . 559932 & . 239634 & \\
\hline 30 & . 812568 & . 565332 & . 239634 & \\
\hline 35 & . 816841 & . 5716 & . 241172 & \\
\hline 40 & . 836072 & . 581053 & . 244634 & \\
\hline 45 & .836072 & . 586649 & . 244634 & \\
\hline 50 & . 855303 & . 591499 & . 244634 & 50 \\
\hline 55 & . 862995 & . 597205 & . 244634 & \\
\hline 60 & . 867269 & . 603402 & . 246172 & \\
\hline 65 & . 867269 & . 606008 & . 246172 & \\
\hline 70 & . 879235 & . 61729 & . 246172 & \\
\hline 75 & . 879235 & . 624082 & . 246172 & \\
\hline 80 & . 879235 & . 635283 & . 251557 & \\
\hline 85 & . 879235 & . 640616 & . 293095 & \\
\hline 90 & . 879235 & . 651874 & . 296941 & \\
\hline 95 & . 879235 & . 654735 & . 304634 & \\
\hline 100 & . 887782 & . 667578 & . 3213 & 100 \\
\hline 105 & . 887782 & . 673223 & . 3213 & \\
\hline 110 & . 887782 & . 684549 & . 366795 & \\
\hline 115 & . 887782 & . 689152 & . 370641 & \\
\hline 120 & . 899747 & . 703382 & . 409103 & \\
\hline 125 & . 899747 & . 710039 & . 409103 & \\
\hline 130 & . 909363 & . 724425 & .424487 & \\
\hline 135 & . 909363 & . 728096 & -424487 & \\
\hline 140 & .909363 & . 735638 & . 428333 & \\
\hline 145 & . 909363 & . 742325 & -457179 & \\
\hline 150 & . 909363 & . 753823 & . 554872 & \\
\hline 155 & .909363 & . 760045 & . 608077 & \\
\hline 160 & . 909363 & . 769558 & . 619231 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline 165 & .909363 & . 772859 & . 619231 & \\
\hline 170 & . 909363 & . 779477 & . 625 & \\
\hline 175 & .909363 & . 784675 & . 625 & \\
\hline 180 & .913636 & . 792775 & . 63141 & \\
\hline 185 & . 913636 & . 79762 & . 641026 & \\
\hline 190 & . 913636 & . 805099 & . 660513 & \\
\hline 195 & . 913636 & . 806551 & . 660513 & \\
\hline 200 & . 917133 & . 812941 & . 668846 & 200 \\
\hline 205 & . 917133 & . 814355 & . 670385 & \\
\hline 210 & .917133 & . 823781 & . 684487 & \\
\hline 215 & . 917133 & . 829283 & . 692179 & \\
\hline 220 & .917133 & . 838922 & . 692179 & \\
\hline 225 & .936364 & . 846133 & . 692179 & \\
\hline 230 & . 936364 & . 850835 & . 696026 & \\
\hline 235 & . 936364 & . 852561 & . 696026 & \\
\hline 240 & . 936364 & . 858626 & . 696026 & \\
\hline 245 & . 936364 & . 863535 & . 734487 & \\
\hline 250 & . 936364 & . 871662 & . 790513 & \\
\hline 255 & . 936364 & . 872349 & . 790513 & \\
\hline 260 & . 93986 & . 879864 & . 790513 & \\
\hline 265 & . 93986 & . 887474 & . 790513 & \\
\hline 270 & . 947552 & . 892854 & . 790513 & \\
\hline 275 & . 947552 & . 895122 & . 790513 & \\
\hline 280 & .947552 & . 903218 & . 790513 & \\
\hline 285 & .947552 & .904964 & . 792051 & \\
\hline 290 & . 954545 & . 91294 & . 797821 & \\
\hline 295 & . 954545 & . 915919 & . 836282 & \\
\hline 300 & .958042 & .921912 & . 840128 & 300 \\
\hline 305 & .958042 & -925638 & . 87859 & \\
\hline 310 & .958042 & -936354 & . 882436 & \\
\hline 315 & . 961538 & . 939478 & . 882436 & \\
\hline 320 & . 961538 & . 944378 & . 884359 & \\
\hline 325 & .961538 & .947041 & . 884359 & \\
\hline 330 & . 961538 & . 949849 & . 88782 & \\
\hline 335 & . 961538 & . 951271 & . 88782 & \\
\hline 340 & . 961538 & .957674 & . 88782 & \\
\hline 345 & . 961538 & .958326 & . 88782 & \\
\hline 350 & . 961538 & . 964892 & . 910256 & \\
\hline 355 & . 961538 & . 966563 & . 929487 & \\
\hline 360 & . 961538 & . 971053 & . 942308 & \\
\hline 365 & 1 & . 973116 & . 942308 & \\
\hline 370 & 1 & . 977255 & . 942308 & \\
\hline 375 & 1 & . 97798 & . 942308 & \\
\hline 380 & 1 & . 980083 & . 942308 & \\
\hline 385 & 1 & . 981686 & . 942308 & \\
\hline 390 & 1 & . 987582 & . 942308 & \\
\hline 400 & 1 & .988282 & . 942308 & 400 \\
\hline 405 & 1 & . 988873 & . 942308 & \\
\hline 410 & 1 & .991539 & . 951923 & \\
\hline 420 & 1 & . 993508 & . 951923 & \\
\hline 430 & 1 & . 9941 & . 951923 & \\
\hline 440 & 1 & . 995635 & . 951923 & \\
\hline 465 & 1 & .996177 & . 951923 & \\
\hline 475 & 1 & .998876 & . 990385 & \\
\hline 480 & 1 & . 997418 & . 990385 & \\
\hline 490 & 1 & . 99801 & 1 & \\
\hline 500 & 1 & .998709 & 1 & \\
\hline 510 & 1 & 1 & 1 & \\
\hline
\end{tabular}```

