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ABSTRACT

In Section (I), the origins and nature of the correlation 
problem are discussed, and two approaches to its solution 
are outlined. Some of the methods by which correlation 
effects in the ground state of helium have been analysed in 
the past are briefly reviewed.

In Section (II.1), position-space correlation effects in 
the 2^s, 2?S, 2̂  P and 2 P states of helium are studied. The 
investigation is performed by examining the effects of 
correlation on various radial, angular and interparticle 
distribution functions and expectation values; where 
possible, comparisons are made with the ground state. For 
each of the four excited states studied, it was found that 
correlation causes a significant inward movement of electron 
density from the outer regions of the atom, due to a 
reduction in nuclear shielding.

In the light of the results obtained in position space, 
a parallel momentum-space investigation of the 2 S, 2^P and 
2^P states was performed, and the results are presented in 
Section (II.2). Differences between the interparticle 
correlation properties of the three states were rationalised 
by considering the varying interactions between the radial 
and angular components of correlation in each instance. For 
2^3 and 2^P, as for the ground state, radial and angular 
correlation have opposing effects on the interparticle 
momentum distributions; for 2^p, on the other hand, the two 
effects act together.

In Section (III), a partitioning technique used 
previously to examine correlation effects in individual 
electron pairs within many-electron atoms is applied to a 
momentum-space study of the (1s^2s)^S and (1s^2p)^P states 
of lithium. For both states, the effects of correlation 
observed in the K-shell electron pairs show a strong 
resemblance to those found in Li^. As for the excited 
states of helium, the rationalisation of the behaviour of, 
and differences between, the interparticle correlation 
properties of the intershell electron pairs was achieved by 
considering the varying interactions between the radial and 
angular components of correlation in each instance.
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ELECTRON CORRELATION EFFECTS 
IN

SOME S AND P STATES 
OF

HELIUM AND LITHIUM 

Paul Kenneth Youngman

ABSTRACT

In Section (I), the origins and nature of the correlation 
problem are discussed, and two approaches to its solution 
are outlined. Some of the methods by which correlation 
effects in the ground state of helium have been analysed in 
the past are briefly reviewed.

In Section (II.1), position-space correlation effects in 
the 21 s, 2^S, 2^P and 2^P states of helium are studied. The 
investigation is performed by examining the effects of 
correlation on various radial, angular and interparticle 
distribution functions and expectation values; where 
possible, comparisons are made with the ground state. For 
each of the four excited states studied, it was found that 
correlation causes a significant inward movement of electron 
density from the outer regions of the atom, due to a 
reduction in nuclear shielding.

In the light of the results obtained in position space, 
a^ parallel momentum-space investigation of the 2^5, 2^P and 
2 P states was performed, and the results are presented in 
Section (II.2). Differences between the interparticle 
correlation properties of the three states were rationalised 
by considering the varying interactions between the radial 
and angular components of correlation in each instance. For 
2 S and 2 P, as for the ground state, radial and angular 
correlation have opposing effects on the interparticle 
momentum distributions; for 2^P, on the other hand, the two 
effects act together.

In Section (III), a partitioning technique used 
previously to examine correlation effects in individual 
electron pairs within many-electron atoms is applied to a 
momentum-space study of the (1s 2s)^S and (1s^2p)^P States 
of lithium. For both states, the effects of correlation 
observed in the K-shell electron pairs show a strong 
resemblance to those found in Li*. As for the excited 
states of helium, the rationalisation of the behaviour of, 
and differences between, the interparticle correlation 
properties of the intershell electron pairs was achieved by 
considering the varying interactions between the radial and 
angular components of correlation in each instance.



SECTION (I)

GENERAL INTRODUCTION



CHAPTER (1.1.1)
THE CORRELATION PROBLEM

The predictive and explanative abilities of quantum 
mechanics are embodied in the mathematics of the 

Schrodinger*^^ equation, which relates the energy of an 
atomic or molecular system to its wavefunction. For an 
N-electron atom of atomic number Z, the non-relativistic, 

fixed-nucleus, time-independent Schrodinger equation has the 
form

N N N
[-1/2 E - Z E (1/r^) + E (1/r. ) ] Y = E Y , ( I I )

1 = 1 ^  1 = 1 i < j ‘

where Y is the system wavefunction, E is the energy, r^ is 
the radial separation of the i'th electron from the nucleus 
and r^ j is the distance between electrons i and j . (Atomic 
units are used^.) Unfortunately, the presence of the term

N

which describes the Coulombic repulsion between the 
electrons, means that Equation (1.1) cannot be solved 

exactly for any system containing more than one electron. 
Consequently, for neutral atoms a precise analytic solution 

to the Schrodinger equation can be obtained only for

^The atomic unit (a.u.) of length is the Bohr radius, 
0.52918 X 10~^*^m, the atomic unit of momentum is 
0.19926 X lO'^^Ns and the atomic unit of energy is 27.210eV. 

For a more complete discussion see Pilar* ̂  ̂ .



hydrogen; for all other atoms, recourse must be made to 

approximate methods.

One of the earliest attempts to obtain an approximate 
solution to the Schrodinger equation of a 'many-electron' 
atom was that by Hartree*^* . In Hartree's method, it is 
assumed that each electron moves in a central field, which 

is computed from the nuclear charge and the spherically 
averaged charge distribution of all the other electrons. 
Hartree's idea was almost entirely intuitive in its origin; 
the first steps in fitting it into the broader picture of 
quantum mechanics were taken approximately simultaneously, 
but independently, by Gaunt*** and Slater*^*. These authors 
were able to show that the equations derived by Hartree are 
the conditions which optimise an approximate solution to 
Equation (1.1) having the form

Y(x^ ,Xg ,x^ . . (x^ ) *2(^2) *3(3^) . . V^Cx^) , (1.2)

where x. represents the space and spin coordinates of the 
i'th electron, and the one-electron functions are known 
as space-spin orbitals -- an expression first used by 
Mulliken* ® * .

It is clear that when Y is expressed in this way, it 
neither obeys the Pauli exclusion principle* ̂  * , nor takes 
into account the indistinguishability of the electrons. 

Both of these defects may be rectified by expressing Y in 
the following form



Y = (N!) - 1 / 2

*2(3^) *3(21) • • ̂ N^-1 ^
<P, (3tj) (&2 ) fa (&2 ) • • >fN^^2>

(Xg ) Y 2 ( X g )  Yg C X g )  . . V w f X g )

■P, U n ' * 2(2%) * 3(2* )  ■ • * * (% *)

(1.3)

This form of wavefunction was suggested originally by 

Heisenberg*®* and Dirac*®*, and then applied to the 
many-electron problem by Slater*^***, with the result that 
Equation (1.3) is usually referred to as a Slater 
determinant. The optimisation of any approximate
wavefunction may be obtained by application of the variation 
principle* ̂  ̂ * . The conditions for optimising a
determinantal wavefunction in this way were derived by

When Y is
constructed from the resulting N 'best-possible'
Slater*^^* and independently by Fock*^®*

spin-orbital functions , it is known as the Hartree-Fock 

(HF) wavefunction.

One of the principal assumptions of the Hartree-Fock 
method is that the interelectronic potential energy of an 
electron, located at some point in space, depends only on 
the averaged positions of all the other electrons. It is, 

however, intuitively obvious that two electrons, repelling 
each other by virtue of the Coulombic forces which exist 
between them, will be less likely to be found at the same 
point in space than at points separated from each other. 
The determinantal form of the HF wavefunction means that the 
probability of finding two electrons with parallel spins



occupying the same point in space is zero. Since a 

fundamental requirement of quantum mechanics is that the 
wavefunction be smooth and continuous, it follows that the 
wavefunction (and hence the probability density associated 

with it) will tend to zero as two electrons with parallel 
spins approach each other in space. As a result, it is said 
that each electron is surrounded by a 'Fermi hole' -- a 

region of space in which electrons with parallel spins are 
less likely to be found than those with antiparallel spins. 

From this, it is seen that the Hartree-Fock method describes 
the motions of electrons with parallel spins rather more 
realistically than it does those of electrons whose spins 

are opposed. Clearly, any attempt to improve on the 
accuracy of the Hartree-Fock method must take into account 
the effects of the "correlation" between the motions of 
electrons with antiparallel spins.

Some idea of the extent to which the HF wavefunction of 
an atom is in error may be obtained by calculating the 
correlation energy of the system. Since the term was first 
used in 1934 by Wigner*^**, a number of different 

definitions of the correlation energy have been suggested in 
the literature*^®* ; today, the most widely used is that of 

Lowdin* ̂ ® * :

"The correlation energy for a certain state with 
respect to a specified Hamiltonian is the 
difference between the exact eigenvalue of the 
Hamiltonian and its expectation value in the 
Hartree-Fock approximation for the state under 
consideration."



Of course, the exact eigenvalue of the non-relativistic 
Hamiltonian is not known, and in practice it is necessary to 
calculate this quantity by making relativistic 

corrections*^^* to experimental data*^®*. Hartree-Fock 
calculations for light atoms indicate that the correlation 
energy is usually of the order of 1% of the exact value. 
Initially, therefore, it would appear that there is quite 
good agreement between the HF and 'exact' energies of an 
atom. However, it must be recalled that total energies 
per se are generally of little significance in the problems 
of physics and chemistry. Instead, the quantity of interest 
is usually an energy difference -- for example, the energy 
difference between two spectroscopic states. Unfortunately, 
these energy differences themselves are often of the order 
of 1% of the total energy of either state, and small 
absolute errors in the total energies may easily lead to 
large relative errors in their differences. As a result, 
there is considerable interest in quantum-mechanical 
calculations which yield energies better than those 
predicted by the Hartree-Fock method.

Not surprisingly, most early attempts to construct 
correlated wavefunctions concentrated on the ground state of 

the helium atom, since this system forms a 'bridge' between 
the exactly soluble problem of the hydrogen atom, and that 

of the more complicated many-electron systems. As early as 
1929, Hylleraas*^®* noted that the wavefunction for the 
ground state of helium can be regarded as a function of 

only three variables: r ^ , r ^ , the distances of the two
electrons from the nucleus, and r^^, the distance between



the two electrons. It is the dependence on  ̂ which 

introduces correlation into the description of the system. 
Hylleraas suggested handling this dependence by a procedure 
which, in its simplest form, amounts to including in the 

wavefunction a multiplicative factor, such as (1 + br^^), 
which causes the wavefunction to increase with r^^- By 
expanding this 'correlating factor' to a more complicated 

form, involving powers of r ^ , r^ and r^^, Hylleraas was able 

to secure excellent agreement with the experimentally 
observed energy of helium.

The central idea of Hylleraas's method is the 
re-expression of the problem in terms of the elliptic 

coordinates

s =
t = 2̂

and u = 2

In 1958, Pekeris*^®* suggested using instead the perimetric 
coordinates

X = ( 2̂ + ^ 2 -
) / 2

y = ( + 2 -  2̂ ) / 2

z = ( *̂1 + 2̂ -  *̂ 12 ) / 2

and began a series of calculations on helium which have 

remained virtually unsurpassed in accuracy until the present 
day. Unfortunately, attempts to extend the methods of 

Hylleraas and Pekeris to heavier atoms have met with little



success. There are two principal reasons for this.
Firstly, the number of terms that must be handled increases

rapidly with the number of electrons in the system.
Secondly, elliptic and perimetric coordinate systems cannot

(21)be set up for three or more electrons , and integrals 
involving powers and functions of r̂  ̂  are much more

difficult to evaluate in other coordinate systems. In view 
of these difficulties, it is fortunate indeed that 
Hylleraas*^^* had earlier suggested another technique by
which correlation effects may be included in an atomic
wavefunction; this method has come to be known as that of 
Configuration Interaction (Cl).

In the method of Configuration Interaction, the 
wavefunction is expanded as a linear combination of Slater 
determinants

Y = E c^ (x^ ,Xg ,Xg . . .)(̂  ) , (1.4)

where each of the *'s (configurations) is an antisymmetrised 
product of one-electron spin orbitals, and the coefficients 

c. are taken as those which minimise the total energy 
according to the variation principle. The major advantage 
of this technique is that if the set of configurations is 
allowed to become infinitely large, the trial wavefunction Y 
will approach the exact wavefunction of the system. In 

practice, of course, there is a restriction on the number of 
configurations that can be conveniently handled; the more 
terms that can be accomodated, the better the calculated 
energy becomes. The principal disadvantages of the method



are that the energy convergence of a Cl expansion is often 

extremely slow, and it is by no means obvious which 
configurations will be most effective in lowering the 
energy. These difficulties, once considered almost

insuperable, should now be viewed in the light of the 
considerable improvements in computer hardware design, 

computational procedures and theoretical techniques that 
have occurred over the last three decades. Taking these 

factors into consideration, it seems that Configuration 
Interaction is the most likely method by which accurate 

wavefunctions for small- and medium-size atomic systems may 
be obtained.

The majority of the early attempts to produce atomic 
wavefunctions more accurate than the Hartree-Fock function 
were concerned principally with calculating the best 
possible value for the energy of the system. Since the 
energy of an atom could be measured experimentally with 

great precision, it was possible to tell how good a 
wavefunction was on an absolute scale by simply comparing 
the calculated energy with experimental results. 
Furthermore, the variation principle afforded a method by 
which the accuracy of any two wavefunctions could be 

compared on a relative scale by simply determining which
function produced the lowest energy. Consequently, the

almost exclusive preoccupation with the effects of
correlation on the energy seems, at first sight, to be quite 
reasonable. However, it is clear from Equation (1.1) that 
the exact energy of an atom is related directly to the 
interelectronic separation r^ ̂  it seems somewhat



surprising that it was not until 1961 that Coulson and

Neilson*^®* first computed the electron-electron 
distribution function ffr^^) from a quantum-mechanical
wavefunction. By analogy with the correlation energy, these 
authors defined the Coulomb h o l e . AfCr^^), (c± the Fermi
hole, discussed earlier) as the difference between the

values of f(r^^) when evaluated from a correlated 
wavefunction and the corresponding Hartree-Fock function. 
This definition provides a simple physical picture of the 
average extent to which electronic charge is repelled from 
an electron as a result of its instantaneous (as opposed to 
averaged) interaction with other electrons. For any given 

value of r^g, Af(r^^) will be negative if the probability of 
two electrons being separated by that distance is reduced by 
the introduction of correlation, and positive if the 
probability is increased. For the ground state of helium, 
Coulson and Neilson found that Af(r^^) is negative for all 
r^ 2  less than 1.1 a.u. and positive for all r^^ greater than 
this; they concluded that the radius of the Coulomb hole for 
this system is 1.1 a.u. Since 1961, at least two other 
definitions of the Coulomb hole have been proposed. 
Gilbert*^** has suggested that Af(r^^) should be weighted by 

a factor of r^^, thereby providing a better indication of 
the relationship between the correlation energy and the size 
of the Coulomb hole; Tatewaki and Tanaka*^®*, on the other 

hand, claim that Af(r^^)r^^ is a more appropriate quantity 

for investigation, since the resulting hole shows how the 
density per unit volume of the interelectronic separation 
probability decreases following the introduction of
correlation. Neither of these two alternative definitions



appears to have found much favour in the literature, 
possibly due to the fact that both lack some of the 

conceptual simplicity of the original suggestion.

As early as 1952, Taylor and Parr*^®* had shown that 
correlation effects in an atom may be considered as the sum 
of radial and angular components. In the radial sense, 
electrons tend to occupy regions of space which are at 

different distances from the nucleus, whereas from an 
angular point of view, the propensity of the electrons is to 
be on opposite sides of the nucleus. Clearly, by its very 
nature, the Coulomb hole will be sensitive to both the 
radial and angular components of correlation contained 
within a wavefunction. As a result, it became of interest 
to study the effects of correlation on the radial and 
angular distributions of the electrons in an atom. In 1969
Baker and B a n y a r d * a n a l y s e d  radial effects in the
isoelectronic series H~ to 0®* by examining the two-particle 
radial density function and a number of one- and
two-particle expectation values at both the correlated and
Hartree-Fock levels. More recently, Boyd*^®* and Gupta and

(29)Boyd have analysed the effects of correlation on the
one-electron radial density function for a number of He-like 

ions. The effects of correlation on the angular
distribution of electrons have been studied by Banyard and 
Ellis*®®*, and also by Tatum*®^* . Banyard and Ellis defined 

a distribution function for the angle between the electron 
position vectors, and then studied correlation effects in 
the ground state of He by evaluating angular holes'.

Tatum, on the other hand, derived an expression for the

10



cosine of the interelectronic angle as a function of the 
radial locations of the two electrons. It should be noted, 
however, that Tatum's work considered only correlated 
wavefunctions, without reference to the corresponding 
Hartree-Fock results. As a consequence, his analysis cannot 
be said to constitute a correlation study in the same spirit 

as, for example, Coulson and Neilson's study of the Coulomb 
hole'::'.

Naturally, these studies of the ground state of the
helium atom were only able to provide information about the
effects of correlation on the interaction of 1s electrons
with other Is electrons. Intuitively, it is to be expected
that in a system where the electrons are described at the HF
level by orbitals with different principal quantum numbers
or different symmetries, the introduction of correlation
will produce effects somewhat different from those
encountered in (1s)^ systems. Therefore, in an effort to
compare helium with a more complicated atom, Banyard and
Mashat analysed electron correlation effects in

(33)beryllium, using the partitioning technique of Sinanoglu 
to factorise the problem into a number of two-electron 

interactions. Their study revealed a number of interesting 
effects, not the least of which was the inversion of the 
Coulomb ' holes for the intershell electron pairs by 
comparison with the intrashell curves. Recently,
Al-Bayati*®* * has used a similar approach to analyse 
correlation effects in the lithium isoelectronic sequence, 

and has produced results of similar complexity.

11



Aims of the Present Work

Investigations such as those discussed above indicate that 
conclusions drawn from a study of correlation effects in the 
ground state of helium suffer from a lack of generality, and 
show that there exists an obvious need for further

investigation of systems in which electron-electron
interactions other than 1s:1s occur. The simplest systems

of this type are the excited states of helium, and in
Section (II.1) we present a study of correlation effects in 

the 2^S, 2®S, 2^P and 2®P states of helium.

During recent years, there has been a growing interest 
in the study of correlation effects in momentum space, where 
it has been shown that radial and angular correlation can 
have opposing effects, with radial correlation reducing the 
probability of the two electrons having equal values of 
scalar momenta and angular correlation increasing the angle 
between the momentum vectors. Accordingly, in

Section (II.2) we analyse the effects of correlation on the 
momentum distributions of three of the states investigated 
in Section (II.1).

In Section (III) we investigate momentum-space 
correlation effects in two low-lying states of lithium. 
This study not only complements the position-space work of 
Al-Bayati*®* * mentioned earlier, but also permits comparison 
with the momentum-space results for the excited states of 
He, presented in Section (II.2).

12
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(II.1) POSITION-SPACE CORRELATION EFFECTS IN THE 
z \s ,  2^S. 2^P AND 2^P STATES OF HELIUM



CHAPTER (II.1.1)
INTRODUCTION

One of the first investigations of the effects of
correlation in excited states was that of Brickstock and

Pople*^* in 1952. Using methods which had been applied
earlier to the ground state of He by Lennard-Jones and

( 2 )Pople , they analysed the consequences of introducing
correlation into various singlet and triplet P states of He

and Be. Although their discussion was largely qualitative,
they measured the effects of angular correlation on the
angle subtended at the nucleus by the position vectors of
the two electrons. In particular, they calculated numerical

values for < (cos 0 .i ̂  ) ; r.̂ , r̂  > and (cosG^^), where the former
quantity is used to denote the average value of cosB^^ a
given pair of values Unfortunately, Brickstock and
Pople used the term 'correlation' in the statistical rather
than quantum-mechanical sense, and the conclusions drawn by
them must be viewed in the light of such a distinction. In

1 3particular, they claimed that for the 2 P and 2 P states of
He, the average angle between the electron position vectors
would, in the absence of correlation, be 90*. For two
statistically uncorrelated particles, this would indeed be
the case, since all angles between O' and 180’ would be
equally likely, yielding 90* as the mean value. For two

1 3electrons described by a 2 P and 2 P Hartree-Fock function 
however, such a statement is demonstrably incorrect, despite 

the fact that the electrons are then described as auantum- 
mechanicallv uncorrelated. Such confusion was by no means 
uncommon, but fortunately, in 1959, the matter was largely
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resolved when Lowdin's*^* definition of the correlation 
energy provided a quantity by analogy with which all other 

correlation properties could be defined. However, the 
resolution of this one difficulty did little to overcome the 
wide-spread pre-occupation with the ground state problem, 
and interest in excited states virtually ceased for well 
over a decade.

In 1973, Boyd and Coulson*** analysed correlation
effects in the 2^S and 2^S states of He using Coulomb holes, 
partial Coulomb holes and various expectation values. Of 
particular interest was their discovery that in these 
states, the Coulomb hole is more complicated than in the 
ground state; in addition to the expected reduction in

probability of small values of ^ ^ 2 ’ correlation also 
produces a reduction in probability of large values of this 
variable, with the result that the expectation values (r^^) 
and <r^2 > are both reduced. A year later, in response to
the obvious need for further investigation, Boyd and 
Katriel*^* evaluated the Coulomb hole for the 2^S state of a 

series of He-like ions. The most striking feature of their 
results was that the neutral atom was the only system in the 
series for which the Coulomb hole was found to display a 

reduction in probability of large r^^ values. All the other 
ions possessed curves which resembled the shape previously 
found for the ground state. In 1977 Moiseyev, Katriel and
Boyd* ̂  * examined the corresponding problem in the 2^ S state 

of the same iso-electronic series. Interestingly, they 
found that for this state the discontinuity in results 
between He and Li^ was much less pronounced than in 2^S and
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that although the Coulomb hole for the neutral atom was 

noticeably different from the curves for the other ions, the 
changes with increasing atomic charge were more gradual than 
in the triplet state.

Interest in states with non-zero total angular momentum 
was even more limited than that in the S states. In 1974, 

E l l i s * e x t e n d e d  an earlier ground-state analysis*®* to 
examine the behaviour of the interelectronic angular 

distribution function pfG^^) for a number of excited states 
of neutral He. For the 2®S, 2^P and 2^P states he evaluated 
the 'angular holes' ApCG^^) and found that despite certain 
differences in characteristics between the Hartree-Fock 
pCB^g) curves for the P states, the holes for all three 
excited states were of the same general shape and roughly 
the same width as that obtained for the ground state. A 
year later, Moiseyev and Katriel examined the correlation 
corrections to a number of interparticle expectation values 
for the same three excited states of the helium iso
electronic series. They confirmed the findings of Boyd and
Katriel*®* with regard to the correlation induced changes in

-  1 3<r^2 > and (r^^) for the 2 S state and also found that for
the neutral atom, correlation increases (r^^> in both the P
states.

Since the early days of quantum mechanics, it had been 

argued that the introduction of correlation would cause 
electrons to avoid each other in a more efficient manner, 
with a consequent reduction in the interelectronic repulsion 

and an increase in the average distance < r ^ ^ >  between the
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electrons ; evidence in support of such an argument had been 

found in studies of the molecule* ̂  ® * and the ground state 

of the He-like ions*^^'^®*. The results for the excited S 
and P states, discussed above, demonstrated the inadequacy 

of such a simple minded approach to the problem and provided 
much of the motivation for the present study.

In Section (II. 1) we present a comprehensive 
investigation of position-space correlation effects in the 

2^S, 2®S and 2^P and 2®P states of He. Previous studies of
these states have tended to concentrate on one aspect or 
another of the electron distribution, thereby preventing an 
overall view of the consequences of correlation from being 
obtained. In an attempt to overcome this, our analysis is 
performed using a wide variety of one- and two-particle 
distribution functions and expectation values. In 
particular, we shall consider the way in which changes in 
interparticle properties can be rationalised in terms of the 
combined changes in radial and angular properties. The 
correlated and Hartree-Fock wavefunctions used in our 
investigation are described in Chapter (II.1.2).

Atomic units are used throughout this work.^

^See the footnote on page 1 , or for a more complete 
discussion see P i l a r * .
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CHAPTER (II.1.2)
WAVEFÜNCTIQNS

One of the reasons for the apparent lack of interest in 
excited states is the relative paucity of appropriate 
wavefunctions by which such systems can be described at 

either the correlated or Hartree-Fock level. For the 
present investigation, the number of suitable wavefunctions 

from which a choice could be made was reduced further by the 
requirement that the correlated wavefunctions should not 
contain explicit reference to the interelectronic distance 

2 • This constraint on the nature of the wavefunction was 
a result of our intention to extend the analysis of 
correlation effects by examining the corresponding 
properties in momentum space.

For the description of the 2®S, 2^P and 2®P states of He 
at the correlated level we chose the wavefunctions of 
T w e e d * T h e s e  functions have been used previously by 
Ellis*^* to study 'angular holes'. The functional form of 
each configuration m(r.^ ) in the Tweed functions is as
follows ;

T z

+ (-1): (II. 1.1)

where the summation is over the allowed values of m and m
1 2

and the quantum numbers L, M and S refer to the angular 
momentum, azimuthal angular momentum and the total spin.
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respectively. The spin parts of the wavefunction are

separable and normalise to unity. The are Clebsch-mi m 2  n
Gordan coefficients which weight the orbital products so 
that their linear combinations are correct eigenfunctions —  

for the state in question -- of the angular momentum 

operators*^®*. Thus, the wavefunctions contain
configurations formed from the basic angular term 

supplemented by configurations containing basis terms of a 

different behaviour but coupled to provide the same angular 
momentum. The states differing in M are degenerate, so for 
simplicity the states with M=0 were examined.

For the 2®S state, we repeated the calculations using 
the Cl wavefunctions of W e i s s * a n d  selected results are 
included here for the purposes of comparison. The form of 
the Weiss function is

,r ^ ) = [Is,2s,3s,1s',2s] + [2p,3p,2p',3p] +
[3d,4d,3d' ]

(II.1.2)

where the square bracket notation is shorthand for a linear 

combination of all possible combinations of the enclosed 
orbitals. The form of the configurations used is then

(M>X) = [2D.] - 1 / 2

L { |q>*^(1)a(1)x^^(2)0(2) I - | x* ̂  ( 1 )a ( 1 )(|>̂  ̂( 2 ) p ( 2 ) | } ,
(II.1.3)

where the symmetry species of each orbital is labelled by A, 
the degeneracy by D^ and the subspecies by m . Summing over
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this latter quantity from -X to +X yields the S state 
required. The basis set of one-electron functions used by 
Weiss consisted of the normalised Slater type orbitals 
defined by

♦ , = ( ( )/([(2n) !]’'^ ) ) r"’ ’ e‘ “  Y (a,q>)n 1 in 1 t in

(II. 1.4)

Ideally, it would have been desirable to extend the full 
analysis of correlation effects to the 2 ^S state. 
Unfortunately, no Tweed wavefunction exists for this state, 
and no other comparable wavefunction was available. For 
completeness, therefore, we include in Chapter (II. 1.4) some 
of the results obtained by Boyd and Coulson*** using the 
explicitly-correlated wavefunction of Perkins*^®* .

For each of the states examined, the description at 
Hartree-Fock level was given by the wavefunctions of 
Davidson* ̂ ® * . These single-configuration functions have the 
form

♦ (£, iX^) = 2"'/^ (X^ )(p2  (Xg ) ±  tPj (X^ )q>̂  (Xj ) ] I (II. 1.5)

where the orbitals tp are constructed from linear 
combinations of primitive functions. In Equation (II. 1.5), 

the upper sign corresponds to the singlet state and the 
lower to the triplet state. The normalised spin components 
have been separated out of the description. The correlated 
and Hartree-Fock functions are summarised in Table (II. 1.1).
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In Chapter (II.1.3) we define and discuss the various 

distribution functions and expectation values which we have 
used to analyse the effects of correlation.
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CHAPTER (II. 1.3)
EVALUATION OF CORRELATION PROPERTIES.

The theoretical study of the electron distribution in an 

atomic or molecular system is greatly facilitated by the use 
of density functions*^®*. which reduce significantly the 
number of variables to be considered. We begin this Chapter 

by defining the functions from which all one- and two- 
particle properties can be derived. In the analysis that 

follows, we shall adopt the convention that unless otherwise 
stated, integrations are performed over all possible values 

of the specified variables.

For any N-electron wavefunction +(&^ ,2 ^̂  . . .&^) ,
normalised to unity, we may define the spinless one-particle 
probability density function q .(r ^ ) as

Qj(r^) = ( x ^ ...x^) *(x^,x^.. ) X

dr^dr^...dr^_^ d%^^,...dr^ ds.̂  ds^ . . ds ̂ . . ds^ , (II. 1.6)

where 2  ̂ denotes the usual space (r^) and spin (s^) 
variables collectively. g^(r^) is then the probability 

density of finding the i'th electron at position r^ , 
irrespective of its spin. When defined by

Equation (II. 1.6), g.(r^) is clearly normalised to unity.

In an entirely analogous fashion, we can define the 

spinless two-particle probability density g.^(r^,r ^ ) by

23



e.j(r^,rj) = /♦ (x^,X2 *--^n^ ♦ )  x

3^1 dr,.. d£^_,dr^^,..d£^_,d£^,,..d£^ ds, ds^ . .ds^ . ,d£^ . ,d£^ .
(II.1.7)

Oj^CXjiX^) is then the probability density of finding, 
simultaneously, electrons i and j at positions r^ and r ^ , 
irrespective of their spins. Once again, Q_(r^,£^) is 
normalised to unity. Since the quantities defined in 
Equations (II.1.6) and (II.1.7) refer to the specific 
electrons i and j, we may use the fact that is
completely symmetric in the variables of the N electrons and 
so define two related electron densities by

q (x ) = N q . (r. ) (II.1.8)
1 1

and TI(r,r') = N (N-1 )  ̂( r ̂ ) (II.1.9)

where g(r) is the probability density of finding anv 
electron at position r. and ïï(£,r') is the probability 
density of finding simultaneously anv two electrons at 
position X  and r '. We note that g(£) is normalised to the 
total number of electron pairs. The factor N(N-1) in
Equation (II. 1.9), represents the total number of pairs, 
whereas the number of distinct pairs is N(N-1)/2.

The effects of correlation on the probability densities 
defined above can be analysed by examining various inter
particle, radial and angular properties derived from them. 
We shall now define each of the properties used in the
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present study. The results of our investigations are

discussed in Chapter (II. 1.4).

Interparticle Properties
A quantity which is particularly sensitive to the 

effects of correlation is the electron-electron distribution 

function, f^r^^)- Physically, f(r^ 2 )dr ^ 2  is interpreted as 
the probability that the distance separating two electrons 

lies between r^^ and r^gt dr^g- The function was initially 
used by Coulson and Neilson* ̂  ̂ * in their study of 
correlation effects in the ground state of helium. For this 
spherically symmetric system it was shown that since * * is 

effectively a function of r^fr^ and r̂  ̂  only, has a
particularly simple form, expressed by

r^r^dr^dr^. (II.1.10)

In Equation (II.1.10), r̂  and r^ are allowed all values
2compatible with a given value of r^^, and the factor Sir

occurs as a result of integrating over the angular
variables. Many systems, of course, are not spherically
symmetric, in which case Equation (II.1.10) no longer
applies. For this reason, the original definition by

(2 1 )Coulson and Neilson has since been generalised to yield

an expression for f(r^^) for anv N-electron system in terms 
of the appropriate two-particle density function, thus ;-

(r^g) = iGigfr^^r^) dr^.dr^/dr^^ (II.1.11)

We have assessed the effects of correlation on by
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evaluating the Coulomb hole, defined by

In Equation (II.1.12), fcorr the electron-electron

distribution function calculated from Equation (II. 1.11) 
using a correlated wavefunction and f is the same quantity 

evaluated at the Hartree-Fock level.

In his study of the generalised definition of fXr^g), 
Benesch observed that in those cases where the wave
function is expressed as a linear sum of one or more

Slater-type determinants, the derivation of fXr^^) is
reduced to the problem of solving a number of integrals of
the general form ^

I = UgfZi) ^^(rg) u+frg) X

<3m3"»2'''2) ?l4m4(9i'*i) dr,.dr, /dr,, ,(11.1.13)

where the subscripts on the u(r) terms signify the 

collection of appropriate quantum numbers. Throughout this 
work, angular integrals such as those occurring in 
Equation (II.1.13) were evaluated analytically using 
expressions derived by Calais and Lowdin*^^* . (Details of 
the solution of these integrals have since been recorded

^There is an obvious misprint in Equation (22) of
Reference * ̂  ̂ .
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elsewhere - see Reed*^^*). The calculations of the radial 
integrals, on the other hand, were performed numerically by 

computer, using the NAG*^** library of algorithms. The NAG 
library is a set of independent sub-programs, stored in 
compiled form, which can be called upon to perform various 
numerical tasks such as integration, differentiation, 

interpolation e t c . The double integrals over the radial 
variables necessitate the use of some form of quadrature for 

their evaluation, and the NAG routine which was used for 
this purpose is based on a technique described by

(25)Patterson . Essentially, the method improves the economy 
of a Gaussian formula by augmenting it with a set of points 

in such a way that the accuracy of a numerical integration 
can be considerably improved without wasting integrand 

evaluations at the Gaussian abscissae.

The magnitude of a Coulomb hole can be expressed in 
terms of the percentage Y of the f (r^^) distribution 
function which is redistributed as a result of the 
introduction of correlation; we have evaluated Y for each of 

the Coulomb holes presented here.

From the theory of probability and statistics it is well
known that distribution functions can be characterised by a

(26)number of moments derived from them. For a general
distribution function of a single variable, these moments 

are defined by

<x"> = Jf(x) x"dx (II.1.14)
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where different regions of f(x) are emphasised by the 

function x" for each value of n. The moment <x^ > is known 
as the mean or expectation of x, and in quantum mechanics 

this latter name has been generalised so that all moments 
are referred to as expectation values. We have gained 
insight into the nature of the various f(r^^) curves by 

calculating from each the expectation values

< 2  4^12 (II.1.15)

for n = -1, 0, +1 and +2. The expectation value (r®^) is 
simply the normalisation of , which, from the
definition of  ̂ ) , is unity. This observation
therefore offers a useful, but by no means conclusive, check 
on the calculated distributions. The value (r^^) is of
additional importance since it gives directly the electron- 
electron repulsion energy. The discrepancy which exists at 
the Hartree-Fock level in this energy term accounts for a 
large fraction of the correlation energy and so is
expected to be particularly sensitive to correlation*^^* .

A useful concept for quantifying the spread of the
(26)general function f(x) is the standard deviation , defined 

by

o(x) = /[<x^> - <x>2] , (II.1.16)

and we have evaluated 0 (1 ^ 2 ) for each f(r^^^ function. It 
is interesting to note that the use of the standard 
deviation applied to electron densities dates back to the
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1940's, when statistical theory was applied to the results
of X-ray crystallography experiments in an attempt to assess

. (2 8 ) their accuracy

The distribution function fCr^^) i s , of course, obtained 
by averaging over all positions of the electrons. To 
investigate the nature of the interelectronic distribution 
when one electron (the test electron) is at a specified 
distance r̂  from the nucleus, one can define a new 
distribution function, The original definition
of this function by Boyd and Coulson* * * was applicable only 
to the S-states of He, so, by analogy with 
Equation (II.1.11), we have generalised the definition to be

9(2,2 '^1  ̂ Te,2 '^2 ) dr^.dr^/dr^^dr^ . (II.1.17)

From Equation (II. 1.17) it is seen that

l9(ri 2  »ri )dri = f ( r̂  ̂  ) (II.1.18)

which again offers a useful check on the calculated

distributions. The existence of gir^g'f,) leads naturally 
to the concept of the partial Coulomb hole, and we have 
evaluated

2 ,r, ) - . (II.1.19)

In the past, the visual representation of functions of 

two variables has been limited either to the use of contour
diagrams or to the depiction of sections through the surface
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defined by the function at fixed values of one or other of 

the variables. Recently, however, advances in computer 
graphics software have led to the possibility of producing 
computer-drawn isometric projections of three-dimensional 
objects such as these surfaces. The routines used for the 
preparation of the surface diagrams presented in this work 

are part of the G H O S T * g r a p h i c a l  package. Like the 
NAG*^** library, GHOST is a collection of pre-compiled 
programs which can be called from other programs to perform 

various specialised tasks —  in this case, all related to 
graph-plotting. Essentially, to draw the surface defined by 
f(x,y), one evaluates f(x,y) at regular intervals in the x 
and y directions, and stores the results in a data file. 
This file is then used as the input data for a plotting 
program which calls various GHOST routines. For most of the 
surfaces presented here, this was a relatively straight
forward procedure. For the 2^S state, however, the partial 
Coulomb hole was constructed using the g^°^^ (r^^» ) values 
provided by Boyd*®®* . This data was not available on a 
regular grid of r̂  ̂  values and considerable numerical
manipulation was required to obtain an accurate 

representation of the 2^S Agfr^^if,) surface. The function 
g was evaluated at all the required grid coordinates 

(r^2 ,r, ) and if the corresponding ° value was also 
available, the appropriate value of Ag(r^^,r^ ) was 

calculated. Interpolation routines from both the NAG and 

GHOST libraries were then used to evaluate AgCr^^'Z,) at all 
those coordinates where g^°^^ data was not available. The 
resulting grid of values was then plotted in the normal way.
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For those systems which possess an axis of symmetry, 

such as the 2 ^P and 2 ®P states of helium, the position of 
the test electron can be described in more detail than given 

by Equation (II.1.17). Specifically, we can define a 
distribution function

; 8 i) = ,£;) .d£,/dr, ,dr, sin 8 , d 0 ,,
(II.1.20)

where 0  ̂ is the angle between the position vector of the 
test electron and the symmetry ax i s . Within this definition 
it is seen that

TTg(r^ 2 ,r^; 8 ^)sin 0 ^d 0 ^dr^ = Jg ( r̂  ̂  , r̂  )dr^ = 1 2 1 )

once again allowing the calculated densities to be verified 
against each other. To investigate how the effects of 
correlation change as the angular orientation of the test 
electron changes we have, where appropriate, evaluated the 
partial Coulomb hole defined by

Ag(r,,.r, ;8 ,) = g‘° ”  (r, , , r, ; 8 , ) - g"F(r,,,r, ;8 ,) (II.1.22)

for the values 0.̂ = 0", 30", 60* and 90*.

Radial Properties
To investigate the radial distribution of electrons, 

irrespective of their angular orientation, it is necessary 
to eliminate from the two-particle probability density all 
reference to the angular variables. From Equation (II. 1.7)

31



one can define the joint radial probability density 

.r, ) by

r=r: do,do, , (II.1.23)

where and refer to the collective angular variables of 
electrons i and j respectively. Within this definition, 

D _( r ^ , r ^ )  is normalised so that

jD^^(r^,r^) dr^dr^ = 1 . (II.1.24)

In order to gain insight into the effects of correlation on 
D^j(r^,rj) we have, where possible, calculated the two- 

particle 'radial hole' AD^^(r^ , r^ ) defined by

ADi,(ri,r,) = D'°''’'(ri,r,) - D “^(r, ,r,) , (II.1.25)

where fZ^) is derived at the correlated and Hartree-
Fock levels, respectively. We have also analysed the 
concomitant changes which occur in the related expectation 
values

<r'Jr"> = ,2,) r^r^dr^dr^ (II.1.26)

for n = -2, -1, +1 and +2. By analogy with the <r"g> values 
discussed earlier, these expectation values allow us to 

compare the correlated and uncorrelated two-particle 
distribution functions in different regions of (r^,r^) 
space.
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The radial behaviour of one electron, irrespective of 

the position of the other, is described by the one-electron 

radial probability density D^(r^) and the associated 

expectation values <r"> defined by

D, (r, ) = X b , (r, )r^dO, (II.1.27)

and <r"> = JD (r )r"dr, , (II.1.28)

respectively. From these definitions it can be seen that

;jD. . (r ,r ) dr. dr = JD. (r. )dr = 1 . (II.1.29)I ] 1 j J I X I X

To investigate the effects of correlation on the one- 
particle radial density we have used Equation (II.1.27) to 
evaluate (r^) at both the correlated and Hartree-Fock
levels, thereby producing the one-particle 'radial hole'.

AD, (r, ) = D=°''(r, ) - D"f(r, ) . (II. 1.30)

We have also calculated the expectation values <r"> for 

n = -2, -1, +1 and +2. The expectation values for both 
electrons may be obtained by using Equation (II.1.8);

<r"> = JD (r )r"dr + JD (r )r^dr_= <r"> + <r">•2 - 2  - I  > +  < <

= 2JD. (r^)r"dr. = 2<r"> (II.1.31)

A number of the expectation values defined by
Equation (II.1.31) are of some practical interest. In
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addition to being directly related to the electron-nuclear

potential energy of the system, <r'^> occurs in the
definition of the nuclear diamagnetic shielding factor
This quantity is a measure of the extent to which the

effective magnetic field acting on a nucleus differs from
some externally applied field (the change is due to the

(32)shielding effect induced by the Larmor precession of the
electron). Similarly, the magnetic moment induced within a 

system by an external magnetic field is related to the
intensity of the field by the diamagnetic

(33) 2susceptibility , which is a function of <r >. We have
already pointed out the usefulness of the standard deviation
(defined in Equation (II.1.16)) in assessing the diffuseness
of a distribution about its mean. Accordingly, we have
evaluated o(r^) at both levels of approximation to enable us
to examine the effects of correlation on the shape of the
radial distribution function, D^(r^).

Angular Properties
The effects of correlation on the angular distribution 

of the electrons have been investigated by calculating the 
expectation values

<£, •r,/r';r^> = (£,,£,) (£, . r,/r"; r," ) d£, d£ 2
(II.1.32)

for n=0, 4-1 and 4-2 at the correlated and Hartree-Fock

levels. Each of the quantities evaluated using

Equation (II.1.32) involves the term cosG^g- Since
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cose = (4ir/3) r Y, (8,,<P, ) Y (8,,q),) (II.1.33)
I £ l i n i i  1 im c &m

the angular integrals occurring in Equation (II. 1.32) all 

have the general form

J = ; SitieAeJL^ (II.1.34)

and from Rose* , J is found to have the solution

J=[(21,+1)(21,+1) / 4.(21,+ 1)]' c"o'o"o'
(II.1.35)

where the C's are the usual Clebsch-Gordan coefficients. We 
note that, according to the cosine rule.

<rj, > = < r ^ >  + <r^> - 2<£, .r,> . (II. 1.36)

The use of Equations (II. 1.36), (II. 1.15), (II.1.28) and
(II.1.32) therefore provides an extremely valuable check on
the consistency of the results obtained for each quantity.
For n=1. Equation (II.1.32) yields the expectation value

<cos 8 ^ 2 >r which is the average of the cosine of the angle
between the position vectors of the electrons. The

expectation value <r^ . > ,  obtained from Equation (II.1.32)
with n= 0 , is of some practical importance since it occurs in

(34)the definition of the atomic dipole polarisability 
This quantity relates the dipole moment induced in an atom 
to the magnitude of an externally applied field.

35



Presentation of Results

In Figure (II.1.1) we present the uncorrelated interparticle

distribution functions f^^fr^^) for the 2 ^S, 2^5, 2 ^P and
2^P states of helium. The effects of correlation on these
distributions are seen in the corresponding Coulomb holes,

Aftr^g), shown in Figure (II.1.2). The Hartree-Fock and

correlated expectation values (r"^> are shown in
Table (II.1.2); also given in this table is the standard

deviation, o^r^^), of each of the f(r^^^ distributions, as
well as the value of Y for each Coulomb hole. In
Figure (11,1.3) we present the uncorrelated distributions

g (r^g'^i) as surfaces. As an aid to the understanding of
the structure of these surfaces, we show in Figure (II. 1.4)

H Fa single-contour representation of the g 
distribution for the 2^S state. In Figure (II. 1.5) we 
present for each state the partial Coulomb hole Ag^r^^'r^ ) , 
again in the form of a surface; alternative views of these 
surfaces are shown in Figure (II. 1.6). For the 2^S state, 
Ag(r^ 2 ,fi) was calculated using results derived from the 
correlated wavefunction of P e r k i n s * f o r  the other three 
states, the partial Coulomb hole was derived from the 
energetically better Tweed*^^^ function in each instance. 
Figure (II. 1.7) shows the uncorrelated distributions 
g (r^^,r^; 8 ^) for the two P states; surfaces for 0^=0’, 

30*, 60* and 90* are presented. The corresponding partial

Coulomb holes, ;8 ^), for the energetically better

Tweed functions are shown in Figure (II. 1.8).

In Figure (II.1.9) we show the uncorrelated one-particle 
radial distribution, o"^(r^), for the 2 ^5 , 2 ^S, 2 ^P and 2 ^P
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States. The corresponding radial holes, AD^ (r^), are seen 

in Figure (II.1.10). The hole for 2^S was calculated using 
results derived from the correlated wavefunction of Perkins ; 

the AD^ (r̂  ) curves for the other states are for the 
energetically better Tweed function in each instance. The 
Hartree-Fock and correlated one-particle radial expectation 

values, <r">, are presented in Table (II.1.3); also given in 
this table is the standard deviation, o(r^), of each of the 

(r̂  ) distributions. In Figure (II.1.11) we present the 

uncorrelated two-particle radial distribution functions, 

*̂ 1 * 2  ̂ ' ̂ 2  ̂ ' for the 2^S, 2^P and 2^P states. The
corresponding two-particle radial holes, AD^^(r^ ,r^), for 

the energetically better Tweed wavefunctions are seen in 
Figure (II.1.12). The two-particle radial expectation
values, <r”r">, are given in Table (II.1.4).

Finally, in Table (II. 1.5) we present the angular 

expectation values (r^.rg/r^r^) for n= 0 , 1 and 2  for each 
state.
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CHAPTER (II.1.4)
DISCUSSION

Comparisons between Figure (II.1.2) and the results of 
Coulson and Neilson* ̂  ̂  ̂ reveal that the Coulomb holes for 
the (1 s,nl) excited states studied here are more complicated 

than that for the ground state. We begin by examining the 
excited S states.

In order to discuss the effects of correlation, it will 
be useful to consider first the distribution of electrons as 
described by the Hartree-Fock (HF) wavefunctions. In this 
way, we may construct a theoretical 'model' of each system 
at the uncorrelated level, and then analyse the changes 
which occur in that model as a result of introducing 
correlation into the description. As we might anticipate, 
the 0̂  (r^) curves shown in Figure (II.1.9a) both possess
two maxima, corresponding to the most probable radial 
locations of the two electrons. The sharp peak at small r̂  

corresponds to the tightly-bound core electron, while the 

second, relatively diffuse, peak at larger r^ is 
attributable to the outer electron. For the purposes of 

discussion, we shall refer to the values of r^ at which 
these two maxima in (r^) occur as r^ and r ^ ; electrons at 
radial locations close to these values will be described as 
being in the K and L shells respectively.

We consider next the g (r^^,r^) surfaces, presented in 

Figure (II.1.3a,b). We shall analyse the 2^S surface in 
some detail and make comments on the 2 ^S surface only when
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it differs substantially from that for the singlet state. 
To aid our discussion, it will be useful to refer to 

Figure (II.1.4), which illustrates, by the use of a single 
contour, the relative locations of the principal features of 

the g (r^gff,) surface for 2 S. It is seen that there are 
three main regions of probability density:

Region (A) - in the small (r^^fZ,) region.
Region (B) - at small r^, parallel to the r^^ axis

and Region (C) - along the (r^2 =z,) diagonal axis.
We now discuss the significance of each of these features in
turn.

Consider a test electron located somewhere in the
K-shell region, such that r̂  % r^. The changes in the shape
of g (r^^,r^) with changing r^^ should then illustrate the
behaviour of the second electron. As we increase r^^ from

1 2
zero, keeping r̂  constant, we encounter Region (A) at small 
values of r^g- This region of probability density results 
from the situation in which the radial location of the 
second electron is also close to r ^ , and hence corresponds 
to a double occupancy of the K-shell region. Now, at the HF 
level, the most probable angle between the position vectors 

of the two electrons is 90*, and hence the maximum in Region 
(A) occurs when r̂  = r^ and r̂  ̂  = /(2r^). This corresponds 

to the two electrons both being at a distance r^ from the 
nucleus, with their position vectors orthogonal to each 
other.

As r^ 2  is increased further, we encounter Region (B), 
which arises from the more probable situation of the second
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electron being located somewhere in the L-shell region.

That Region (B) is so extensive in the r^^ ” direction
merely reflects the diffuse nature of the L shell, which,
with the test electron confined to the K shell, gives rise
to a large spread of probable r^^ values. (By a similar
argument, the relatively small spread of Regions (A) and (B)
in the r^ direction indicates the localised nature of the K
shell and hence the restricted range of probable locations

for a test electron at small r^). The maximum in Region (B)
2 2occurs when r̂  = r^ and corresponding to

electrons at distances r^ and r^ from the nucleus, with 
their position vectors again orthogonal to each other.

To understand the origin of Region (C), we must consider
a test electron somewhere in the L-shell. The change in
shape of g (r^^'Z^) with increasing r^^ zs then determined
by the behaviour of the tightly bound K-shell electron,

which explains the relatively small spread of probable r^^
values for any given r̂  . The maximum in Region (C) appears
to be located on the (r^2 =z^) diagonal axis, but in fact

2 2occurs when r̂  = r̂  and r̂  ̂  = /(r^+r^). The data grid from 
which the g (r^^,r^) surface is plotted is not sufficiently 
detailed to allow such a distinction to be made visually. 

Clearly, the maxima in Regions (B) and (C) both correspond 
to the same relative orientation of the two electrons, but 
seen from different 'viewpoints'.

Inspection of the g (r^^'Z^) surface for 2 S reveals 
that it is broadly similar to that for 2̂  S except that the 
structure seen at small (r^^'Z^) in the singlet state is
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absent from the triplet. This is a result of the Fermi 

effect in 2 ^S restricting the two electrons from approaching 
each other too closely, thereby preventing the double 

occupancy of the K shell.

As we have seen in Chapter (II.1.3), the f"^(r^ 2 ) curves
in Figure (II.1.1) are obtained by integrating the
corresponding g (r^^'Z^) functions with respect to r^ . For

H Fboth S states, f (r^^) is seen to possess a maximum located
2 2at a value of r^^ ~ /(r^+r^). The difference in the

location of this maximum between the two states is due to 
the different radial locations of the L shell in each 
system, since r^ is effectively the same in 2^S and 2^S. In 
keeping with our earlier comments regarding the g (r^^fZ^) 

surface for 2 S, the f (r^^) curve for the singlet state 
displays a local maximum at r ^ 2 ~ /(2r^^). This feature is 
absent from the 2 ^ S curve.

Having thus established the nature of the uncorrelated
electron distributions for the S states, we now examine the

1 3effects of correlation in 2 S and 2 S, and begin by 
considering in more detail the Coulomb holes presented in 

Figure (II.1.2a). The balance between the positive and 

negative contributions in each Af(r^^) curve is, of course, 
a consequence of the normalisation conditions on f ̂ ° and 
f , but the magnitude and, in particular, the location of 
each extremum in a Coulomb hole can be rationalised in terms 

of changes which occur in the HF 'model' discussed above.

Inspection of the Boyd and Coulson* ̂  ̂ Coulomb hole for
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2 ^s reveals that at large values of r^g, correlation causes

a significant reduction in ffr^^), while at intermediate r^^
there is an enhancement of probability of roughly the same

magnitude. At small r^^ (that i s , 0 < r^^ < 2), Af(r^ 2 ^
possesses a shape similar to that of the Coulomb hole in the

ground state. The first zero in Af(r^^) zs almost
coincident with the value of r,^ which locates the first

1 2
HP 1maximum in f (r^^) for 2 S, indicating that at small r^^ 

the structure of Af(r^^) zs determined by the effects of 
correlation on the double occupancy of the K shell. Without 
additional information, it is not possible to explain the 
shape of the remainder of the curve. Accordingly, to gain 
further insight into the effects of correlation, we turn our 
attention to the Ag(r^ 2 ^z^) surface for 2 ^S presented in 
Figure (11.1.5a). An alternative view of this surface is 
shown in Figure (II.1.6a).

The partial Coulomb hole Ag(r^ 2 'Z^) shows the change in

behaviour of the Coulomb hole as the position of the test
electron is varied. It follows from our earlier discussion 

H Fof the g (r^^fZ^) surface that when r^ is small, and the
test electron is thus located in the K shell, the
corresponding Ag r^ 2  behaviour should illustrate the
effects of correlation on the L-shell electron. On the 
other hand, when the test electron is located somewhere in 

the L shell, the Ag vs. r^ 2 characteristics are largely a 
result of correlation effects within the K shell.

For a test electron located in the L-shell region.
Figures (II.1.5a) and (II.1.6a) reveal that the main
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features in Ag occur about the diagonal (r^2 =r^) axis. 

These features, which extend over quite a large range of r̂  

values, indicate a density decrease on the near side of the 
nucleus . From this, it would appear that
correlation causes the average angle between the position 
vectors to be increased. Confirmation of such an increase 

in 8 ^ 2  is provided by a comparison of the HF and correlated 

values for <cos 8 ^2 >f presented in Table (II. 1.5). Now, in 
the uncorrelated description of this state, the outer 
electron experiences a high degree of nuclear shielding, due 
to the spherically symmetric nature of the K shell. 
Following the introduction of correlation, and the 
consequent increase in the angular separation of the 
electrons, the nuclear shielding is seen to be reduced. 
Comparison of the radial holes, AD^ (r^), shown in 
Figure (11.1.10a), with the o"^(r^) curves in 
Figure (II.1.9a) reveals that correlation then causes a 
large shift in probability from the outer to the inner 
regions of the loosely bound L shell, thereby minimising the 
energy of the system. The magnitude of AD^ (r^) at small r.̂ 

is, by comparison, relatively insignificant, indicating that 
correlation induces only a minimal change in the radial 
location of the more tightly bound K-shell electron. From 

the foregoing, it is seen that the reduction in probability 

of large interelectronic separations seen in Af(r.^2  ̂ is a 
result of the reduction in the radial separation of the two 
shells, which is itself a consequence of the increase in the 
angular separation of the two electrons.

In keeping with our earlier comment concerning the shape
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of AfCr^^) at small examination of Agfr^^'Z^) for 2̂  S
in the region 0  < (r^gfZ^) < 2  reveals that the surface
possesses characteristics which are almost identical to 
those of the ground-state surface obtained by Banyard and 
Reed*^^* . Finally for the 2^S state, we note that the

Ag(z^ 2 ,r^) surface as a whole is remarkably similar in shape 
to the 2 ^S intershell surface in Be*^^*, again in keeping 

with a comparison between the corresponding Af(r^ 2  ̂ curves.

We consider now the effects of correlation in the 2^S

state. Inspection of Figure (II.1.2a) reveals that at large
3and intermediate values of r^ 2 ' the Coulomb hole for 2 S 

displays the same sort of structure as that found in the 
singlet curve. However, whereas in 2^S the increase in 
probability at intermediate r̂  ̂  was approximately 
commensurate with the decrease at large ẑ  2  » zn the triplet 
state the enhancement at intermediate r^^ is only partially 
accounted for by the reduction at large r^ 2 - At very small
values of r^ 2 , the Fermi effect in 2 S causes f (r^2 ),
fCorr(r^ 2 ) and hence Af(r^ 2 ) to be vanishingly small. As 

r^ 2  zs increased, Af(r^ 2  ̂ becomes increasingly more negative 
and it is the reduction in probability here which balances 
the larger part of the probability increase at intermediate 
r^ 2 " The Y values, presented in Table (II.1.2), reflect 
quite clearly the differences in magnitude between the 

Coulomb holes for the 2^S and 2^S states.

For 2^5, the Ag surface in Figures (II.1.5b) and 

(II.1.6b) possesses maxima and minima which are smaller than 
the 2^S values. However, except at small (r^2 'Z^), the

44



surface is very similar in shape to that for the singlet 

state. The absence of structure in the 2^S surface when 

0 < (r^gfr^) < 2 is obviously the result of the Fermi effect 
in the triplet state obviating the need for Coulomb 
correlation at small r.̂ ̂  • For a test electron located in 
the L-shell region, the main characteristics of the 2^S 
surface occur, as for the singlet state, about the )
diagonal axi s . It is seen that there is a density decrease 

when r^ 2 < z.̂ , and an increase when r^g) z^ . The deepest
minimum and highest maximum in this region both occur at the 
same value of r ^ . This value is found to be the same as 
that which locates the maximum in the corresponding AD^ (r̂  ) 
curve. Furthermore, the principal diagonal features in the 
Ag(r^ 2 'Z^) surface are separated in their r^g-coordinates by 
a value equal to 2 r^, where, it will be recalled, r^ is the
most likely radial location of the K-shell electron at the
HF level. From Figure (II.1.10a) it is seen that this inner 
electron experiences a relatively insignificant radial 

movement following the introduction of correlation. 
Consequently, for a test electron located at a large value 

of r.j , the reduction in density on the near (r^ 2 <z, ) side of 
the nucleus can only occur as the result of the angular 
component of correlation. Inspection of the HF and 
correlated values for (cosG^^) in Table (II. 1.5) confirms 
that correlation does indeed produce an increase in the

average angular separation of the position vectors of the
two electrons.

The AD.J (r^) curve in Figure (11.1.10a) reveals that, as 
for 2 ^S, correlation produces a shift of probability from
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the outer to the inner regions of the L shell. However, for

2 ^S the change in the radial distribution is considerably
smaller than that in the singlet state. To understand this

difference it is useful to consider again the (r^) curves
in Figure (II. 1.9). At the uncorrelated level, Fermi
correlation lowers the energy of the triplet state relative
to the corresponding singlet by a more subtle and economic

packing of the electron density. As we noted earlier, the

principal difference between the (r^) curves for the 2 S
and 2^S states occurs in the L-shell region; at small values
of r̂  , the two curves are nearly coincident. Inspection of
the uncorrelated expectation values in Table (II. 1.3)
reveals that as we progress from the singlet to the triplet
state, <r^> and o(r^) are decreased by 30.1% and 18.1%,
respectively, while <r^^>, which emphasizes the K-shell
region, experiences an increase of about 1.75%. Thus, for
the radial density, the main effect of introducing Fermi
correlation is to produce a contraction of the L-shell
charge cloud. It is then hardly surprising that the
subsequent L-shell contraction caused by the introduction of

3 1Coulomb correlation should be smaller in 2 S than in 2 S.

Although it is not immediately obvious from either of
3the presented views of the Ag^r^^'Z^) surface for 2 S, there 

is a deep minimum when r̂  ̂  * 1.75 and r.̂ % 1.0. From

Figure (11.1.10a) it is seen that AD^(r^%i.O) is very small, 

indicating a minimal change in the radial position of an 
electron located at this value of r^ . It therefore seems 
that the deep negative region in the 2 ^S surface arises from 
the increase in the angular separation of the electrons when
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the decrease in the radial separation is very small.
Furthermore it would appear that it is this feature, 

combined with the negative region on the side of
the diagonal axis, which gives rise to the principal minimum 

in the corresponding AfCr^^) curve.

Finally for the 2^S state, inspection of Figure (II.1.2) 
and the expectation values in Tables (II.1.2) to (II.1.5) 

reveals that the various wavefunctions used for the 
correlated description exhibit similar correlation 
characteristics, thus helping to substantiate our physical 
interpretation of the Coulomb holes.

We now examine the effects of correlation in the P 
states. As before, it is useful to consider first the
nature of the electron distribution as described by the HF 
wavefunctions. For both P states we can, from
Figure (II.1.9), identify two maxima in (r^), located at 
r̂  values which, for obvious reasons and future convenience, 

will again be referred to as r^ and r^ . As in the S states,
the value of r^ is effectively the same in both singlet and
triplet. In contrast to this, we note that r^(2^P) > 

r^(2?P), thus indicating that once again the main effect of 

Fermi correlation is to cause a contraction of the L shell 
towards the nucleus. That this effect should be so much 
smaller in the P states than in the S states may be 

understood by inspection of the analytical form of the HF 
wavefunctions. For the 2^S state, Fermi correlation gives a 
zero value for the two-particle density whenever | r.̂ | = 
Ir^I, whereas for 2 ^P the density is zero only for the more
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limited condition represented by — 2 ' consequently Fermi
correlation is less powerful in the P states than in the S 
states.

In a study of the distribution function of the
( 7 )interelectronic angle Ellis has shown that at the HF

level, the most probable value of G.̂ ̂  zn 2 ^P is less than
90", while in 2^P it is greater than 90*. Thus, in the
uncorrelated description of the singlet state, the electrons

tend to be located on the same side of the nucleus, while in
the triplet state they favour opposite sides. This
difference in the angular orientation of the electrons
between the singlet and triplet P states is also revealed by

examining an angular expectation value, such as <cosG^ 2 *̂
The HF results for both S states are, of course, identically
zero, but Table (II.1.5) shows that, as expected, the

1 3uncorrelated values of (cosG^g) for 2 P and 2 P differ in 
both magnitude and sign. These differences can be accounted 
for by examining the corresponding two-particle densities 
when expressed in terms of their component orbitals ' 1 s' and 

'2p'. A non-zero contribution to KcosG^^) arises only from 
the cross term in the HF density and therefore the sign of 
this expectation value follows that of the appropriate 

exchange term. The magnitude of (cosG^^) depends on the 
overlap of the radial parts of the Is and 2 p oribitals and, 
since Fermi correlation produces a contracted L shell, the

32 P state will yield the larger value.

The g"^(r^ 2 'Zi) surfaces in Figure (II.1.3c,d) display 
features parallel to the axis and along the (r^g^z,)
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diagonal axis which are similar to those seen in the S-state

surfaces. However, there is one obvious point of contrast

between the surfaces for 2^S and 2^P. In the P state, the
difference in symmetry between the K- and L-shell orbitals
means that when both electrons are in the vicinity of the
nucleus, the system does not bear any resemblance to the
ground state. As a consequence, the structure seen in the

2 ^S surface in the region 0  < < 2  is not found in
the surface for 2^P. Naturally, this difference between the
singlet S and P states is also reflected in the f (r^^)
curves in Figure (II.1.1).

Having established the differences between 2^P and 2^P
at the HF level, we now consider the effects of Coulomb
correlation in both states. An examination of the Coulomb
holes in Figure (II.1.2b) reveals an overall similarity
between the Af(r^ 2 ) characteristics for the singlet and
triplet P states, which is in marked contrast to the
comparison between the  ̂S and ^S curves. A further point of
contrast is that for the P states the Coulomb holes for the
triplet are larger than for the singlet; this difference is
reflected in the (r"^) values presented in Table (II.1.2).
The reversal in the relative magnitudes of correlation
effects in the singlet and triplet states as one progresses
from S to P states has also been noted by Moiseyev and

( 9 )Katriel . Figure (II.1.2b) also reveals that, as for the
32 S state, an energy improvement in the Tweed description of

the P states produces a slightly deeper Coulomb hole in each
instance; a similar effect occurs in the ground state of 

(37)He . Interestingly, the Y values, also presented in 
Table (II.1.2), indicate that the effects of Coulomb
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correlation are approximately three times greater in 2 ^P 

than in 2^5. This is consistent with our earlier 
observation that the effects of Fermi correlation are 

greater in the S state.

A comparison of the Agfr^^'Z,) surfaces for the 2^P and 
2^P states in Figures (II.1.5c,d) and (II.1.6c,d) shows them 
to be broadly similar. However, the 2^P surface is more 
negative in the 'small (r^^fZ^)' region, which accounts for 

the greater depth of Affr^^) at small r^^ zn the triplet 
state. Furthermore, for the singlet state, the maximum 
which occurs in Agfr^^rZ^) when r̂  % 0.5 is quite distinct 

from that at r̂  * 2.25, whereas for 2^P the two maxima merge 
together. Such an effect was also observed, to a much 
lesser extent, in the g^^fr^g'Z^) surfaces, but from the 
orientation of those surfaces in Figure (II. 1.3) the effect 
is barely noticeable. At the uncorrelated level, the 
overlapping of the K- and L-shell contributions to 
g (r^2 'Z^) in the triplet state is a result of Fermi 
correlation allowing a more subtle interaction between the 
two electrons, thereby producing a more compact two-particle 
density. Naturally, this effect is also present in the 

partial Coulomb holes, but the degree of merging seen in the 
2^P Ag(r^ 2 'Z^) surface indicates that it is Coulomb. rather
than Fermi, correlation which is principally responsible for 
the infilling which occurs as we progress from the singlet 
to the triplet state. We shall return to this point in due 
course.

For both P states, the shape of the Ag(r^ 2 'Ẑ  ) surface
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about the (r^2 =r,) diagonal indicates that, as for the S 
states, correlation causes an increase in the 

interelectronic angle 8  ̂̂  ““ see also the expectation values 
in Table (II. 1.5). The subsequent reduction in nuclear 
shielding by the inner electron again causes a contraction 
of the L shell, as indicated by the AD^ (r̂  ) curves in 

Figure (11.1.10b). Although the radial holes for the P 
states appear to possess the same general characteristics of 
shape as those for the S states, closer inspection reveals a 
number of significant differences, especially when the 
ÙD^ (r.| ) curves are compared with the corresponding HF 
distribution. For the S states, the minimum in AD^ (r^) at 
large r.̂ in the singlet state is considerably deeper than 
that in the triplet. In contrast to this, for r.̂ > 6 . 0 ,  the 
2 ^P radial hole is remarkably similar to that for 2 ^P, with 
the triplet curve being marginally deeper than that for the 
singlet. For both P states, the value of r̂  at which the 
principal minimum in AD.̂  ( r̂  ) occurs is noticeably larger 
than the value at which the same feature occurs in the 
corresponding S state. Inspection of the (r^) curves in 

Figure (II. 1.9) shows that this difference between the 
radial holes is not simply due to a dissimilarity at the
uncorrelated level, and indicates that Coulomb correlation 
acts on different regions of the L shell in the S and P 
states.

For values of r^ < 6.0,  the AD^ (r̂  ) curves for 2^P and 
2 ^P display differences in shape and magnitude which 
contrast strongly with the near coincidence of the curves at 
larger r.̂ . Referring once again to the (r^) curves in
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Figure (II.1.9b), we see that for both P states, the

principal maximum in AD^ (r^) occurs very close to the
H Fcorresponding 'intershell' minimum in (r^). In the

singlet state, the enhancement of probability is spread over
a larger r^ range than in the triplet, and new insight into

this difference between the 2 ^P and 2 ^P radial holes is

obtained by considering the ^ 1 2  '^2  ̂ and AD.̂  ̂  , r^ )
surfaces in Figures (II. 1.11) and (II. 1.12) respectively.

1 3Although the uncorrelated distributions for 2 P and 2 P are 

very similar, the shapes of the AD^^fz^ '^2  ̂ surfaces are 
quite different. In the singlet surface, the principal 
maxima occur when the radial locations of the two electrons 
are different, indicating that correlation tends to maintain 
the K/L structure of the HF model, while producing a 
contraction of the L shell towards the nucleus. In

3contrast to this, the surface for 2 P demonstrates that 
correlation produces the greatest enhancement of probability 

when r^ “ ^ 2 ' thereby producing a reduction in the
'split-shell' structure of the system. This difference 
between the AD^^tz^ , r^) surfaces for the singlet and triplet 
P states is consistent with the previously mentioned 
differences in the partial Coulomb holes; in particular, the 
maximum in AD̂ ^^^z.^ , r^) for 2 ^P accounts for the merging 
together of the features in the corresponding AgXr^^fZ^) 
surface. Furthermore, for 2^P it is seen that there is à

reduction in 2 ^ '^2  ̂ small (r^,r 2 ), the local minimum 
again occurring when the two electrons are located at the 
same radial distance from the nucleus. This feature is in 
keeping with the previously observed negative region at

3small (r^gfZ^) seen in the 2 P partial Coulomb hole.
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Interestingly, in ,r^) both of the features found on

the (r^=r 2 ) diagonal axis for the 2 ^P state are absent from 
the corresponding S state surface, reflecting, no doubt, the 
difference between the Fermi effect in the S and P states.

Finally for the P states, the g^^tr^^fZ^ ;8 ^) and 
Ag(r^ 2 ,z^; 8 ^) surfaces, shown in Figures (II.1.7) and
(II.1.8), respectively, demonstrate the effect of varying

the angular orientation of the position vector of the test 
electron with respect to the symmetry axis of the p orbital. 
For both P states, it is seen that when 8 = 0 ’, the g and 
Ag surfaces display the same general characteristics of 

shape as do their angularly integrated counterparts. As 8 .̂ 
increases from 0 *, the components of the surfaces which lie 
parallel to the r̂  ̂  axis remain approximately constant in 
magnitude, while those in the region of the )
diagonal become progressively less significant, until they 
disappear completely when 8  ̂ = 90*. This behaviour is most 
easily explained by noting that a test electron at small r̂  

(that is, in the K shell) is most likely to be described by 

contributions to the two-particle density from the
spherically symmetric s orbital, and will be relatively

unaffected by changes in 8 ^; on the other hand, a test 
electron which is at a large value of r.̂ is more likely to 
be described by contributions from the angle-dependent p 

orbital. When 8 = 90*, the test electron lies in the nodal 
plane of the p orbital and is therefore described solely by 

the K-shell distribution, which rapidly becomes very small 
as is increased beyond r ^ . As a consequence, for this

value of 8 .J , the diagonal features, which arise from a test
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electron located at large r^,are absent from the g 

and Ag(r^ 2 ,z^) surfaces of both P states.

We conclude our discussion by noting that the
expectation values presented in Tables (II.1.2) to (II.1.5)
support our interpretation of the correlation effects in all
four states. Of particular interest are the interparticle

properties, such as At the HF level, we have seen

that as we progress from 2 S to 2 S, the principal effect of
Fermi correlation is to cause the L-shell electron to
approach the nucleus, and hence the K-shell electron. As a
consequence, we anticipate that <r^2 >"^( 2 ^S) > <r^ ̂  >” *̂ (2^ S )
and this is confirmed by inspection of Table (II.1.2). When

1 3we make the transition from 2 P to 2 P, the changes in the 
radial and angular properties produce opposing effects, but 
the common radial contraction of the L shell more than 
compensates for the increase in the angle 0 ^2 ' with the
result that <r^2>"^(2*P) > Cr^^^^^fZ^P). Since the effects 
of Fermi correlation are so much greater than those of 
Coulomb correlation, the same ordering also holds at the
correlated level. Similar comments may also be made with 

regard to the o^r^^) values, also presented in 
Table (II.1.2).

The introduction of Coulomb correlation causes the
interelectronic angle to increase in all four states, and
this is reflected, as we have seen, in the angular
expectation values presented in Table (II. 1.5). In the
absence of any other effect, such a change in the
orientation of the electrons would cause <r > to be

1 2
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increased. However, in each state the subsequent reduction 

in the radial separation of the K and L shells actually 

produces a reduction in <r^ 2 >-

In Table (II. 1.4), we present the two-particle radial

expectation values <r"r 2 > for 2^S, 2^P and 2^P (results for
2^S are not available). For all three states, correlation

2 2causes Kr^r^) and <r^r^> to be reduced. Such a change also
occurs in these expectation values in the ground state ,
and without additional information it would be tempting to
assume a common change in the corresponding radial
densities. However, for the 1  ̂S state it has been shown*
that correlation reduces the two-particle radial density
D^ 2 (r^,r 2 ) along the (r^=rg) axis, where it is a maximum at
the uncorrelated level, and increases the density in the
off-diagonal regions, thereby producing the usual 'in-out'
radial correlation effect, and the observed reduction in
<r"r 2 > for n=1,2. In contrast to this. Figure (II.1.11)
shows that in the excited states the value of

along the (r^^^r^) diagonal is either identically zero or
2 2very small, and correlation reduces Kr^r^) and r^ > by 

producing the previously discussed increase in and
inward shift of the L-shell density. This contraction of 

the outer shell, seen clearly in the AD^^Cz^ , r^) surfaces in 
Figure (II.1.12), produces an increase in (r^^r^^); in the 

2 S and 2 P states, is also increased, but in 2^P

the minimum in AD^^fz^ , r^ ) at small (r^^jr^) causes a 
decrease in this expectation value.
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CHAPTER (II.1.5)
SUMMARY

Electron correlation effects in the 2^S, 2^3, 2̂  P and 2^ P

states of He have been analysed in terms of a number of 

electron density distributions and expectation values.

Examination of the expectation values (r^.r^/r^r^) 

showed that the principal angular effect of correlation in 

all four states is an increase in the interelectronic angle, 
0.J 2  I which reduces the degree of nuclear shielding provided 
by the K-shell electron. As a result of such a reduction, 
the major radial effect of correlation in each state is a 
contraction of the outer-orbital electron density towards 
the nucleus, as may be seen from the shape of the one- and

two-particle radial holes (AD^ (r^) and AD^ 2 (Zi '^2 '̂
respectively). The combination of the radial and angular
effects was found to produce a significant reduction in the 
probability of large interparticle separations, as 

illustrated by the shape of the Coulomb holes, Af(r.i2 '̂ at 
large values of r^ 2 - The maximum in each Af(r.^2  ̂ curve at 
intermediate values of r.̂ ̂  is largely associated with the 
inner- and outer-orbital electrons being located on opposite 
sides of the nucleus. In particular, it was noted that the 
effects of Coulomb correlation in 2^S are smaller than in 
2̂  S--a result which is not unreasonable in view of the Fermi 
correlation present in the triplet state. Such reasoning 
does not, however, carry over to the P states, where 
electron correlation in the triplet was found to be 
noticeably larger than in the singlet.
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The use of partial Coulomb holes facilitated the 
examination, individually, of the effects of correlation in 

the K and L shells. When presented in the form of surfaces, 
these partial holes are especially useful in understanding 
the mechanisms by which overall correlation effects come 

about. Close to the nucleus, the Ag(r^^,r^) surface for 2^S 

shows characteristics similar to those for the ground state, 

indicating a partially doubly-occupied K shell. Such a 
feature is not present in the 2^P surface because of the 
symmetry difference between the two shells.

Examination of the radial two-particle expectation 
values revealed trends similar to those already observed for 
the ground state. Interestingly, it was found that the 
corresponding changes in the appropriate two-particle 
densities were completely dissimilar. The differences were, 
nevertheless, found to be quite compatible with our 
understanding of the Coulomb holes.
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Figure (II.1.1)

The distributions for the (a) 2^S and 2^S
and (b) 2^P and 2^P states of He.

58



0. 008

 T(32)
 T (48)
—  W0. 004

0. 000

-0. 004

(b)

—  T (30) 
 T(A5)

0. 004

0. 002

0. 000

-0. 002

Figure (I I .1 . 2 )

The Coulomb holes Af(r^^) for the (a) 2^S and 2^S 
and (b) 2^P and 2^P states of He.
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Figure (II.1.3)
(see over)
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A single-contour representation of the 

distribution for the 2^s state of He.
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Figure (II.1.5)
(see over)

62



<U
S

Q) M-l
jC 0

(0
M 3)
0 X>

M-t nJ
-P
(Q

cu
m

(M r j

M
If) T3

• O'
T— <

• 73
H Ui Ü
M (U (d

1—1
0 04

0) JS r-
k CN
Z3 X)
Ü S .—•

•H 0 U
In iH '—-

p
0 -
u 0Î

rv
iH CM
(d

•H
4J XI
M
(Ü
A ~

W
0)
X: CM
H

<d



<z>
o

( i j  Jij) By { i j  zij) By

o
o

m m m

m m m m
m m m m



oo
<=>
L

en<

oCD
CDL

CJ»<

in
m ’” •-

fN! •
T- M

M M

O'< 03
P

0) 3VD
-P

D*•H
4-1

k

M O C
M •H
'—' 3

Qi T3
(U -H 03
>4 > ■P
3 C
D1 0) 03

0 0 "H > W
m -H

-P
03
P

CSJ (d
C

a
^ - M w
_ o (U 03

-Pr4
03

C
<

U
03

44
P
3
<n

CDCD
CDL

< 1

m m m

63



Figure (II.1.7)
(see over)
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Figure (11,1.7)
The distributions for the

a)2^P and b)2^P states of He.
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Figure (II.1.8)
(see over)
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Figure (11.1.8)

The partial Coulomb holes A g ( r ^ ^ ;®i ) for the 
a)2^p and b)2^P states of He.
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The D"^(r^) distributions for the (a) 2 ^S and 2^S 
and (b) 2^P and 2^P states of He.
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The one-particle radial holes (r^ ) for the 
(a) 2 ^S and 2^S and (b) 2^P and 2^P states of He.
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The two-particle radial holes AD^^tr^fr^) for the 
(a) 2^S, (b) 2̂  P and (c) 2^ P states of He.
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State Wavefunction Number 
of Terms

Orbital
Configuration
Types

Energy 'Exact'
Energy

2̂ 3 Perkins (P) — - -2.14589 -2.14597
Davidson (D) 1 (HP) ss -2.14344

2̂ 3 Tweed (T) 32 SS/pp -2.17516 -2.17523
Tweed (T) 48 ss/pp/dd -2.17520
Weiss (W) 19 ss/pp/dd -2.17521
Davidson (D) 1 (HF) ss -2.17425

2 P̂ Tweed (T) 30 sp/pd -2.12346 -2.12384
Tweed (T) 45 sp/pd/df -2.12355
Davidson (D) 1 (HF) sp -2.12246

2 ^P Tweed (T) 30 sp/pd -2.13276 -2.13316
Tweed (T) 45 sp/pd/df -2.13279
Davidson (D) 1 (HF) sp -2.13143

Table (II.1.1)

A summary of the wavefunctions used in the correlation 

analysis presented in Section (II). The 'exact' energy for 
each state was taken from Accad, Pekeris and Schiff’ 

Atomic units are used.

(40)
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State * <r-;> <'l2 > odi^) Y(%)

2̂ S *P 0.24950° 0.52733^ O.32330f 0.21266' 1.61
D(HF) 0.24971° 0.53340' 0.33075^ 0.21503' -

2̂ S T(32) 0.26740° 0.44478' 0.23041^ O.I8O49' 0.38
T(48) 0.26872° 0 .44470' 0.2303cf O.I8O40' 0.41
W 0.26810° 0.44483' 0.23095^ 0.18186' 0.34
D(HF) 0.26898° 0.44506' 0.23122^ 0.18205' -

2 P̂ T(30) 0.24492° 0 .51311' 0.31350^ 0 .22411' 0.97
T(45) 0.24506° 0.51256' 0.31286^ 0 .22392' 1 .05
D(HF) 0.24365° 0.51913' 0.32262^ 0.23049' -

2̂ P T(30) 0.26716° 0.46775* 0.26199^ 0.20788' 1.20
T(45) 0.26718° 0.46759' 0.26181^ 0 .20777' 1 .23
D(HF) 0.26613° 0 .47433' 0.27202^ 0.21686' -

* Taken from Boyd and Coulson ( 4 )

Table (II.1.2)
Values of Cr"^) when n = -1, +1 and +2, the standard 

deviation, o^r^^), and Y, the percentage of f(r^^)

redistributed by correlation, for the 2^S, 2?S, 2̂  P and 2̂  P 
states of He. The superscripts denote the power of ten by 
which each entry is to be multiplied.
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State ♦ < ^ r > a(r^ )

2 's *P - 0.11353* 0.29748* 0.16106^ 0.26938*
D(HF) 0.38787* 0.11344* 0.30130* 0.16538% 0.27312*

2 ^S T(32) 0.41686' 0.11544* 0.25507* 0.11461% 0.22259*
T(48) 0.41713* 0.11548* 0.25502* 0.11456% 0.22255*
W 0.41703* 0.11546* 0.25525* 0.11491% 0.22306*

D(HF) 0.41711* 0.11543* 0.25599* 0.11561% 0.22378*

2 'p T(30) 0.40421* 0.11230* 0.29089* 0.15659% 0.26828*
T(45) 0.40419* 0.11230* 0.29062* 0.15628% 0.26799*
D(HF) 0.40474* 0 .1 1 2 2 0 * 0.29444* 0.16153% 0.27356*

2°P T(30) 0.40139* 0.11332* 0.26645* 0.13006% 0.24302*
T(45) 0.40138* 0.11332* 0.26637* 0.12996% 0.24292*
D(HF) 0.40189* 0.11320* 0.27064* 0.13560% 0.24971*

*Supplied by Boyd (41)

Table (II. 1 .3)

The one-particle radial expectation values <r"> when n = -2, 

- 1 , + 1  and + 2 , and the standard deviation, o(r^ ), for the 
2 's, 2°S, 2 'P and 2°P states of He. The superscripts denote
the power of ten by which each entry is to be multiplied.
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State
4  >

2*S * D(HF) 0.29492* 0.55778° 0.39790* 0.24514%

2°S T(32) 0.78658° 0.56047° 0.32315* 0.16366^
T(48) 0.78719° 0.56073° 0.32298* 0.16348%
W 0.78730° 0.56045° 0.32337* 0.16407%
D(HF) 0.77957° 0.55812° 0.32430* 0.16489%

2*P T(30) 0.63612° 0.48990° 0.37997* 0.22915%
T(45) 0.63771° 0.49045° 0.37959* 0.22869%
D(HF) 0.61549° 0.48333° 0.38463* 0.23521%

2°P T(30) 0.82586° 0.55028° 0.34459* 0.19112%

T(45) 0.82642° 0.55046° 0.34447* 0.19099%
D(HF) 0.83309° 0.54643° 0.35218* 0.20177%

* Results at the correlated level are not 

Table (II.1.4)

available.

The two-particle radial expectation values <r" r"> when
n = -2, -1, +1 and +2, for the 2*S, 2°S, 2* P and 2° P states
of He. The superscripts denote the power of ten by which 

each entry is to be multiplied.
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State
^ - 1 <cos 8 ^2 >

2* S *TS - -0.14659"* -

D(HF) 0 . 0  ' 0 . 0 0 . 0

2°S T(32) -0.70051"% -0.16025"* -0.59539"*
T(48) -0.69532’% -0.15879’* -0.58908"*
W -0.68971"% -0.15534"* -0.56237"*
D(HF) 0 . 0 0 . 0 0 . 0

2*P T(30) 0.11293"% -0.15153"% -0.15975"*
T(45) 0.12551"% -0.12691"% -0.15091"*
D(HF) 0.58804"% 0.86393"% 0.22367"*

2°P T(30) -0.21313"* -0.33050"* -0.94470"*

T(45) -0.21290"* -0.32968"* -0.94056"*
D(HF) -0.13345'* -0.17129"* -0.41018"*

*Taken from Thakkar and Smith**%*

Table fII.1.5)

Values of < r ^ . r ^ / r " > when n = 2, 1 and 0, for the 2*5, 2°S, 
2*P and 2°P states of He. The superscripts denote the power 

of ten by which each entry is to be multiplied.
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(II.2) HOHENTUM-SPACE CORRELATION EFFECTS IN THE 
2^S. 2^P AND 2^P STATES OF HELIUM



CHAPTER (II.2.1)

MOMENTUM SPACE

The primary effort in quantum-mechanical calculations is 
directed towards the determination of the appropriate 
wavefunction for a given system. Usually, this function is 

defined with .respect to the positions of the constituent 
particles of the system, but such a representation is by no 

means unique. For example, given an N-electron atom, it is 
equally possible to discuss the behaviour of the electrons 

in terms of their momenta. Instead of describing the 
electrons in a space whose coordinates are the distances 

from some fixed spatial origin (usually a nucleus), we can 
consider them in a space where the coordinates are the 
components of momentum of an electron, and the origin 
corresponds to a particle at rest. More formally, we can 
consider the problem of evaluating the system wavefunction 
not in position space but in momentum space. Recently, a 
number of studies have shown that momentum-space 
calculations can provide valuable new insight into the 
effects of electron correlation in atoms and molecules. A 

full appreciation of the advantages afforded by this new 
investigative technique requires at least some knowledge of 

the history of the determination of electron momentum 
distributions. Accordingly, we present here a relatively 
brief, and necessarily simplified, account of a story which 
spans more than three quarters of a century. (For a more 
detailed description of the curious and disjointed 
historical development of this subject, see the excellent 
review by Williams*^°*).
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In a series of -y-ray scattering experiments conducted in 
1904, Eve*^** found that for a number of different target
materials, the scattered radiation was much less penetrating 
(softer) than the original beam. At the time, not only the 
nature of the scattering process, but even the very nature 
of "Y-rays was barely understood, and Eve was unable to 
provide an explanation of his observations. Over the next 

few years, Eve's findings were investigated by a number of 
other workers, most notably B r a g g * , Florance*^^* and

Gray*^^*, and following the invention of the Bragg 
spectrometer and the Coolidge X-ray tube, the experiments 

were extended to X-rays. During one such experiment 
performed in 1920, Gray**^* established that when X-rays are 
scattered by matter, they experience an increase in
wavelength; he also found that the magnitude of the increase 
is dependent on the scattering angle but independent of the 
nature of the scatterer. An explanation of this phenomenon, 
together with experimental evidence, was provided by
Compton in 1922; a more rigorous mathematical treatment
was published in the following year*^°*. Compton's 
formulation of the scattering process was expressed in terms 
of the conservation of energy and linear momentum during the 
inelastic scattering of a photon by an electron. The 

theory, which considers the electron to be initially free 
and stationary, predicts that a wavelength X will experience 
an increase AX upon scattering, defined by

AX = (4ïï/c) sin^(c|)/2) , (II.2.1)
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where q> is the angle of scattering and c is the velocity of 

light (atomic units are used). Compton continued to pursue 
his experimental investigations and, in 1923*^^*, noted that 
the 'Compton scattered' line in his spectrum appeared to be 
broader than could be explained by the known inhomogeneity 
in the scattering angle or in the imperfect resolution of 

the spectrometer. The following year, Jauncey*^^* explained 
the broadening by pointing out that electrons are not 
stationary, and that the magnitude of the Compton shift 
should depend on the initial momentum of the scattering 
electron. In 1929, Dumond*^^* showed that the effect of the 
electron's motion on the Compton scattering process could be 
described as a Doppler broadening process which is 
independent of the precise atomic model chosen for the 
analysis. Mathematically, the result of Dumond's work was 
to introduce a second term into Compton's scattering 
equation (Equation (II.2.1)), thus:

AX = X -X = ( 4 tt/ c ) sin^(tp/2) - (2Xp^/c) sin(«p/2) , (II.2.2)

where p^ is the component of the electron momentum along the 

scattering vector. The interpretation of Equation (II. 2.2) 
is that photons emerging from the scattering process with a 
wavelength X’ will have been scattered by electrons whose 
z-component of momentum is p^. Since it is reasonable to 

assume that the probability of a photon interacting with any 
particular electron is independent of the value of p^ for 
that electron, the intensity of scattered radiation at 
wavelength X’ should be proportional to the distribution 
function J(p^) for the momentum component p ^ . For an array
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of electrons with a momentum distribution g(&) =

q (P^,P^,P^), the probability that an electron has a 
particular value of p^ is given by

J(P ) = IX q (P ,P ,P ) dp dp . (II.2.3)z X y z X y

This quantity is known as the directional Compton profile, 
and is simply the projection of the three-dimensional 

electron momentum density onto the scattering direction. 
Together, Equations (II.2.2) and (II.2.3) represent a method 
by which direct access to the full momentum distributions of 
electrons in atoms and molecules may be achieved. To obtain 

such a distribution one need only, in principle at least, 
measure the spectrum of the scattered radiation, relate the 
wavelengths to momenta and then invert Equation (II.2.3). 
The complexity of this inversion process depends to a large 
extent on the physical state of the sample being examined.

The problem of inverting Equation (II. 2.3) can be 
avoided completely by calculating q(J2 ) and then comparing 
the theoretical Compton profile derived from it with the 

measured line shape. The momentum density q(ê) is, of 
course, directly related to the momentum-space wavefunction 

of the system, and it is appropriate at this point to 
consider how such a function may be obtained.

There are two distinct approaches to the determination 

of momentum-space wavefunctions. One can either formulate, 
and attempt to solve, the Schrodinger Equation directly in 
momentum space, or one can solve it at some level of
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approximation in position space and then transform the 

results to momentum space. Despite the complementarity 
which exists between the position and momentum 
representations, there is a striking asymmetry between the 
relative degrees of success obtained using these two 
methods. We shall consider the 'direct' approach first.

For the one-dimensional problem, the language of 
classical mechanics may be transformed into that of the 
quantum-mechanical position representation by substitution 
of the multiplicative operator x' for position and the 
differential operator '-i 3/ôx' for momentum. In a similar 
manner, we can transfer from classical mechanics to the 
momentum representation of quantum mechanics by substituting 
'i 3/3p' for position and 'p ' for momentum; in this case the 
Schrodinger Equation takes the form of a differential 
equation in momentum space. Unfortunately, the potentials 
encountered in atomic and molecular systems are generally 
dependent on position rather than momentum, and this 
approach has consequently met with very little success.^ An 
alternative 'direct' method of obtaining wavefunctions in 
momentum space is to perform a Fourier transform of the 
complete Schrodinger Equation, which converts it from a 
differential equation in position space to an integral 
equation in momentum space. For the one-particle problem we 

find

^This method has, however, been used by Hylleraas*^^* to 

obtain the momentum space wavefunctions for the discrete 

spectrum of hydrogen.
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(P^/2) Y(E) + [u(E) - E]ÿ(e) = 0 (II.2.4)

where 'K(jp) is the wavef unction and u(£) is related to the 
Fourier transform of the position-space potential energy 

term V ( r ) . For the case of the hydrogen atom,
Equation (II.2.4) has been solved exactly by Fock*^^* , but 
for more complicated systems, the results have been 

disappointing. In 1945, Svartholm developed an
iterative method for solving integral equations in momentum 
space, while working on the problem of evaluating the 
binding energies of light nuclei. Four years later, McWeeny 
and Coulson*^^* attempted to use the same technique to solve 
the N-electron analogue of Equation (II.2.4) for a chemical 
system, but found that the calculation of successive 
itérants was exceedingly difficult. Starting from a simple 
product wavefunction for the helium atom they were able to
obtain a first, but not a second, iterative correction;

(58)similarly disappointing results were obtained by McWeeny 
for the hydrogen molecular ion and the hydrogen molecule. 

As a result of the computational difficulties that they 
encountered, McWeeny and Coulson concluded that their method 
was impracticable for larger systems. In 1951 a related, 
but more general, approach to the solution of 
Equation (II.2.4) was proposed by Levy*^^*. Unfortunately, 
his treatment, like the iterative technique developed by 
Salpeter*^^* at about the same time, appears useful only for 

problems involving a single particle experiencing a central 
potential; such a limitation is clearly more restrictive in 
chemical problems than it is in those problems of nuclear
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physics to which these methods have been applied with some 

success* ® ̂ .

In view of the difficulties experienced in these varied 
attempts to solve the Schrodinger Equation directly in 
momentum space, it is fortunate indeed that a second,

considerably easier, approach to the problem exists. The 
basis of this alternative method is the expansion of the 

single-particle position-space wavefunction 4»(r) in terms of 
the continuous set of momentum eigenfunctions, u(r) = 

e^^' — , such that

♦ (£) = (2m)"3/2 j. Y(g) glE-X , (II.2.5)

where the integral is understood to be performed over all
possible values of £  (that is, over all momentum space).
The expansion coefficients Y(pJ are a continuous function of 
Ë. and are given by the projection of the eigenfunction u(r) 
on the state function 4»(r). We have then

T(E) = (2n)"3/2 ; ♦(£) d£ , (II.2. 6 )

where, in this instance, the integral is performed over all
position-space. Examination of Equations (II.2.5) and
(II. 2. 6 ) reveals that *(rj and Y(&) are Fourier transforms
of one another, and it is obvious that H'(jd) is the momentum-
space analogue of the original position-space wavefunction

*(r). The application of transformation theory to the
problems of quantum mechanics was considered first by 

( fi 2 )Dirac , and for that reason. Equations (II.2.5) and
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(II.2. 6 ) are known as 'Dirac transforms'. For an N-electron 
atomic system, Equation (11.2.11) takes the form

,J&2 f • - •  ̂ ( 2 I T ) " ^ ^ ^ ^  X ♦ ( r ^  ,^2 , . . . ) X

ÏÏ e ^  d£^dr 2 ...dr^ (II.2.7)
j = 1 , N

Perhaps the most attractive feature of the transformation 

defined by Equation (II.2.7) is that it preserves the form 

of the wavefunction. Thus, if ♦ (r^ , £ 2  , . . . ) is a single
Slater determinant or a multiconfiguration sum of such 

terms, each involving a number of orbitals ip(r) , then the 

momentum space wavefunction Y(^^ , £ 2  » • • • ) is obtained by
replacing the individual position space orbitals <p(£) by 
their momentum-space counterparts, 4)(jg) . Interestingly, it 
is found that for position-space orbitals of the form

<P(£) = f „ ,  (r) ,

where 8  and q> are the angular variables in position space, 
the angular dependence of the corresponding momentum-space 

orbitals is the same, so that

>!)(£) = (P) -«>.)

where 9^ and q>̂  are the angular variables in momentum space. 
Furthermore, Parseval's t h e o r e m * m a y  be used to show that 
normalisation and overlap integrals are also invariant under 
the transformation. In a comprehensive study, Kaijser and 
S m i t h * h a v e  derived the u , (p) terms corresponding to
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those forms of f (r) most commonly used in the construction 

of atomic and molecular wavefunctions.

Considering the vast array of methods available for the 
computation of wavefunctions in position space, it is hardly 

surprising that the Dirac transform approach to momentum- 
space wavefunctions has been far more widely applied and 

considerably more successful than the 'direct' methods 
considered earlier. Within months of Dumond's*
explanation of the Compton scattering process, Podolsky and 

Pauling*®^* used Equation (II.2.7) to calculate the momentum 
wavefunctions of the hydrogen atom. However, the first 
quantitative comparisons between theory and experiment did 
not occur until 1937, when Hicks*®®* calculated the Compton 
profiles of helium and molecular hydrogen from the 

momentum-space transforms of a number of different 
wavefunctions. The measurements of Dumond and
Kirkpatrick on helium were in excellent agreement with
Hicks's predictions, but the hydrogen profile obtained by 

Kirkpatrick and Dumond*®®* was considerably broader than the 
calculated one -- a discrepancy which seems to have resulted 
from deficiencies in the wavefunction.

The years 1941 and 1942 saw a new and important
development in the theoretical study of electron momentum
distributions. In a series of interesting and innovative

(69)analyses, Coulson and Duncanson examined the changes
which occur in momentum distributions when a chemical bond 

is formed. The fundamental principle on which their 
investigations were largely based is most conveniently
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explained with reference to the Gaussian or 'normal 

distribution function, defined by

g(x) = (2 ïïo^)”^^^ exp(-x^/ 2 o^)

It is found that g(x) has a full width at half maximum 

(FWHM)^ of 2/(21og^2)o. In contrast to this, the Fourier
transform of g(x) has the form

G(k) = exp(“k^ 0 ^ / 2 )

which has a FWHM of 2/(21og^2 )o~V Although the similarity 
of the analytical forms for g(x) and G(k) is a feature 
peculiar to this particular distribution, the qualitative 
conclusion is completely general: the Fourier (Dirac)
transform of a narrow function is a broad one and v i c e  

v e r s a . In chemical terms, this implies that inner orbitals, 
which are usually highly localised, will have broad,

relatively flat momentum distributions, while the more 
diffuse outer orbitals will be sharply peaked in momentum 

space. A study of Compton profiles reveals that the 
principal features of the line shape are effectively 
governed by the behaviour of the outer electrons; the core 
electrons merely provide a relatively slowly varying 

background contribution. As a result, electron momentum 
distributions provide an effective means of studying the

2For an even function f(x) possessing a single maximum at 
x = 0  such that f(x= 0 ) = f^, the full width at half maximum is 

defined as 2 x^, where f(x=x^) = (f^/ 2 ).
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behaviour of the valence electrons, which are, of course, 
precisely those electrons which are responsible for chemical 

bonding. By studying simple systems like and , as 
well as a series of hydro-carbon gases, Coulson and 
Duncanson derived considerable insight into the chemically 
significant aspects of electron momentum distributions. 

Interestingly, they also found that improvements in the 
wavefunction often resulted in a broader calculated Compton 

profile and momentum distribution.

With the exception of the aforementioned attempts by 
McWeeny and Coulson to calculate wavefunctions directly in 
momentum space, the next few years saw relatively little 
interest in the theoretical study of electron momentum 
distributions. After this period of almost complete
inactivity on the part of theoreticians and experimentalists 
alike, the mid-1960s then saw a resurgence of interest in 
the subject. With this revival of interest came changes in 
technology which brought, in turn, significant improvements 
in experimental accuracy. Taking advantage of this 
increased accuracy, the experimentalists began to point to 
the shortcomings of the theory as the reason for the 
discrepancies between the measured and calculated momentum 

distributions. In particular, W e i s s * s u g g e s t e d  that 

electron correlation effects could account for the fact that 
experimental Compton profiles frequently display a greater 

intensity at larger momenta than do those line shapes 
calculated from Self Consistent Field or more approximate 
wavefunctions. Physically, it was argued that electrons 
must speed up to avoid each other, thereby giving rise to
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the enhancement in the high momentum region of the profile. 

Of course, a converse argument could be that electron 

correlation should lead to a more diffuse charge cloud 
which, as a consequence of the Fourier transformation, would 
predict a narrower momentum density and Compton profile. 

Since some experiments*^^* did give results which supported 
this latter argument, the situation regarding correlation 
was rather confused.

In an attempt to clarify matters, Benesch, Smith and 
B r o w n * u s e d  an elegant formalism involving the natural 
orbital representation of the momentum density matrix to 
calculate the electron momentum distributions of He, Li*, 

Li, Be, Hg and Ne. They concluded that correlation effects 
produce a significant improvement in the description of 
open-shell systems, but make only very minor contributions 
to closed-shell systems. With regard to Compton profiles, 

their results showed that, in general, correlation produces 
no high momentum tail. In 1976, Ahlberg and Lindner 
examined the effects of Fermi correlation in Be, Ne, Ar and 

Zn. They concluded that the rules governing this type of 
correlation in momentum space are the same as in position 
space. Two years later, Banyard and Moore investigated

the effects of electron correlation on the Compton profiles 
of the iso-electronic systems H’ , He and L i * . Contrary to 

the findings of Benesch et a i . they found that correlation 
does cause an increase in the probability that an electron 
has a high momentum. In the same study, Banyard and Moore 
calculated a number of momentum expectation values and 
correlation coefficients.*®*** In contrast to the findings
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of an earlier position-space analysis*®^*, they discovered 
that for these systems, the radial and angular components of 

correlation create opposite trends in momentum space; radial 
correlation causes a negative effect (as in position space), 
whereas angular correlation causes a positive effect and 

therefore tends to align the momentum vectors.

In 1978, Banyard and Reed*®®* defined the momentum-space 

Coulomb 'shift', Af(p^ 2 »̂ by analogy with Coulson and 
Neilson's*^^* definition of the Coulomb hole in position 
space. For the ground states of H ~ , He and Li*, Banyard and 
Reed found that, relative to the HF description, radial 
correlation increases the probability of a large momentum 
separation  ̂= I.E., -Bg I and decreases the occurrence of 
smaller values of 2 ‘ Conversely, the effect of
introducing angular-based configurations is to produce, on 
average, an enhanced alignment between the momentum vectors 

and £ g . As anticipated by Moore , the two types of 
correlation combine to produce changes in fXp^g) which are 
considerably more complex than those which arise in the 

corresponding position-space function f(r^ 2 -̂ In 1979, 
Doggett*®®* examined the distribution of electron momenta in 

the Hg , LiH and BH molecules. By analogy with an earlier 
position-space analysis*®^*, he showed that partial 
integration of the two-electron momentum density functions 
for these systems yields longitudinal and transverse 
distribution functions which can be used to construct 

coresponding 'holes' in momentum space. More recently, 
Mobbs and Banyard*®®* have studied momentum-space 
correlation effects in Be. To examine the Coulomb shift in
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specific electronic shells, they used the Many-Electron 
Theory of Sinanoglu*®®* to partition the two-particle 
density-difference function from which Affp^g) is 
calculated. In keeping with the results of Banyard and 
Reed*®®*, they found that the structure of the Coulomb shift 

in any given shell reflects the nature of the dominant 

correlation component for that shell.

The complementary nature of the information obtained 

from the position and momentum representations suggests that 
a full understanding of electron correlation effects 
requires the analysis to be performed in both spaces. In 
accordance with this, we have extended our earlier analysis 
of correlation in excited states of helium by examining the 
corresponding problem in momentum space. Specifically, we 
have studied momentum-space correlation effects in the 2®S, 
2^P and 2®P states of helium. In Section (II.1), the 
position-space results for 2^S provided by Boyd*®^* were 
based on Hylleraas-type wavefunctions, which contain 

explicitly the interelectronic coordinate r^g- For such 
functions,the transformation defined by Equation (11,2.7) is 

extremely difficult to evaluate, and in 1979, Benesch and 
Thomas*®®* concluded that Hylleraas-type wavefunctions are 
not suited to momentum-space calculations. As a result, no 
attempt has been made to study the 2 ^S state in momentum 

space.

In Chapter (II.1.2) we make brief comments regarding the 
Dirac transformation of the relevant Hartree-Fock and 
correlated wavefunctions, and also discuss the methods by
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which we have analysed correlation effects in momentum 
space. Atomic units are used throughout this work.
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CHAPTER (II.2.2)
WAVEFUNCTIONS AND CORRELATION PROPERTIES 

IN MOMENTUM SPACE

To study momentum-space correlation effects in the 2®S , 

2̂  P and 2®p states of helium we have used the' same 
correlated and Hartree-Fock wavefunctions that were employed 

in the position-space analysis presented in Section (II.1) 
(see Chapter (II. 1.2) and Table (II. 1.1)). In each case, 
the momentum-space function was obtained by evaluating the 
Dirac transform of each orbital or primitive function used 
in the formation of the position-space wavefunction.

The W e i s s * w a v e f u n c t i o n  for the 2®S state is
constructed from a basis set of Slater-type orbitals; the 
method by which these orbitals were converted to momentum 
space has since been described in some detail by Reed*®®* , 
and we merely quote the result here. A position-space 
Slater-type orbital having the form

u , (r , 8  ,ip ) = N r""’ e'“  Y, ( 8  ,(p ) , (II.2. 8 a)
n , i  , m r  r  1 , m r r

where N is the normalisation constant, transforms to the 

momentum-space function

) = (-1)" N (2pi)l (1!) /(2/m) x

g n - l  / a " - I  [ ( o t ^ + p 2  )- I 1 + 1 I (®)>.^/>)(II.2.8b)

In this instance, subscripts on the angular arguments
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emphasize the different spaces in which the angles are 
measured. After trivial changes of variables, the Tweed**®* 

orbitals and the primitive terms used to construct the 
Davidson**®* Hartree-Fock orbitals were transformed by 
similar techniques.

The isomorphism of . the transform which links 
Equation (II.2. 8 a) to Equation (II.2. 8 b) implies that the 

investigation of correlation effects in momentum space may 
be accomplished by using the same analytical techniques that 
were used in position space. Accordingly, we have studied a 
number of radial, angular and interparticle distribution 
functions, each of which is defined by analogy with its 
position-space counterpart. Since the definitions and 
properties of the position-space distributions were
considered in some detail in Chapter (II. 1.3), we present 
here only a comparatively brief description of the
corresponding momentum functions. To avoid the confusion of 
introducing a complete new nomenclature for the 
momentum-space analysis, we shall adopt the convention that, 

unless otherwise stated, the space to which a given 
distribution function applies is defined by the argument(s) 

of that function. Thus, for example, D^(r^) is understood 

to be a one-particle radial distribution function in 
position space, while D^(p^) is the analogous function in 
momentum space. As before, it is assumed that integrations 

are performed over all possible values of the specified 
variables.

Given an N-electron momentum-space wavefunction
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(s., fÇtg • ) f where denotes the collective momentum-space
and spin ^  coordinates of the i'th electron and Y is 

normalised to unity, we can define the spinless one- and 

two-particle momentum distributions g^(E^) and g.j(g^,Ej) by

Qj (Ej ) = /'<'* ,^2 ' ) X

dE, dE, . . . dE, - d E _  , . . . dE do do ..do. ..do (II. 2. 9)1 c 1 - 1  1 f 1 n I 6 1 n

and

i/Ej.Ej) = j-Y ( a , Y ( a ,  .a^ • • .a„ ) %

d E ^ d E j .  . . d E j . , d E j ^ ,  . .d E „  d o ,  d a ^  . . d a ,  . .d a ^  . . d a „ .

(II.2.10)

Both g^(Ej ) and g.^(E^fEj) are normalised to unity; g^(E^) 
is the probability density of finding the i'th electron with 

a momentum , while g^j(E^fEj) is the probability of
finding, simultaneously, a pair of electrons i and j with 

momenta e  ̂ and .

Despite the similarities between Equations (II. 2.9) and 
(II. 1.6) and Equations (II.2.10) and (II. 1.7), there is an 

important practical difference between the subsequent 
derivations of distribution functions in the two spaces. In 

position space, the radial components of atomic orbitals are 
always real, and hence the complex conjugation of the total 
wavefunction affects only the angular term of each orbital.
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Inspection of Equation (II.2. 8 ) reveals that in momentum 
space, the radial term can be imaginary and therefore the 
conjugation must be applied to each complete orbital. One 
further point of practical interest makes use of the fact, 
noted earlier, that the Dirac transformation leaves overlap 
integrals unchanged; in deriving Equation (II. 1.9) from 
Equation (II.1.10), the overlap integrals which arise have 
precisely the same values that were calculated in the 

position-space analysis, and need not, therefore, be 
evaluated again in momentum space.

Radial Properties
To investigate the changes in the radial distribution, 

we have studied the joint radial momentum density, 

DiaCP^jfPz)» defined by

D,2(P, .Pg) = J o ,2(E, ,Ej )P^P2 dQ^dQ^ , (II.2.11)

and the associated density difference AD^gCP^ , Pg), defined
by

AOlz'Pi'Pz) = D=°''(p, ,9;) - 0"F(p,.P;) . (II.2.12)

In Equation (II.2. 11) and refer to the collective
angular variables of electrons 1 and 2. We have also 

calculated the expectation values <p"p"> defined by

<p"p"> = XD^^tPifPg) P^Pg^IP^'iPj (II.2.13)

for n = -2, -1, 0, +1 and +2. As a result of the form of
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the momentum-space orbitals, the integrations occurring in 
Equation (II.2.13) were evaluated numerically by computer; 

once again, the expectation value <p®p®> was a valuable 
check on the accuracy of the integration techniques.

Although one-particle densities and expectation values 
are less sensitive to correlation than two-particle
properties, they are, nevertheless, conceptually easier to 
visualise. Accordingly, we have studied the one-particle 

radial momentum density, D^(p^) defined by

D, (P, ) = Xe, (E, ) P^ do, , (II.2.14)

and the associated 'radial shift' AD^ (p^ ) defined by

AD, (p, ) = (p, ) - d ”''(p, ) . (II.2.15)

For each wavefunction a number of one-particle radial 

expectation values <p"> have also been obtained using

<P"> = (p̂  )p"dp^ (II.2.16)

with n = -2, -1, 0, +1, and +2. Expectation values for both 
electrons are defined by

<p" > = <P"> + <P"> = (P̂  )p"dp.j + jD 2 (P2 )P2 dP 2

= 2JD^ (p̂  )p"dp^ . (II.2. 17)

Like their position-space counterparts, the <p"> values are
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(8 9 )of some practical importance. It may be shown that

<P”*> is equal to twice the maximum height of the 
spherically-averaged Compton profile, while for n=0, 

Equation (II.2.17) is simply equal to the number of 
electrons in the system. Epstein*®®* believes that it may 
be possible to relate <p> to a molecular property such as 

the nuclear magnetic resonance spectrum, but such a 
connection has yet to be established. The expectation value 

<p®> is simply twice the kinetic energy of the system when 
expressed in atomic units.

(89)It is interesting to note that it may be shown that

<p"> = 2(n+1) 7 q" J(q)dq , (II.2.18)
0

where J(q) is the spherical average of the directional
(91)Compton profile, J(p^). In 1973, Epstein investigated

the possibility of using Equation (II.2.18) to obtain <p"> 
values from experimental Comptort profiles. He considered 
both the effects of a finite momentum range^ and of 
experimental error, and concluded that, although values of 
<p®> could easily be obtained under the standard 
experimental conditions of the time, reasonably accurate 
determination of <p> stood at the limit of available 
techniques. The accurate evaluation of <p®> (and hence, by 
the virial theorem, the total energy of the system) by 
Compton scattering experiments required vast improvements in 
experimental accuracy at high values of q, -- an opinion 

borne out by Gadre and Narasimhan*®®*, who in 1975 attempted

The profile is only measured to some finite q*
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to use experimental Compton profiles to evaluate the total 

energies of He, Ne, H ^ , N^ and 0^ with only limited success. 
However, since 1976, a number of improvements in
experimental accuracy have taken place, thereby increasing 
the reliability of experimental data to the point where 

useful estimates of the energy might be obtained.

Angular Properties

To study the effects of correlation on the angular 
distribution of the electron momenta, we have evaluated the 
expectation values defined by

<E^ Eg/P^Pg > = (E^ fEg ) (E^ ^ 2  ̂  * ^ ^ 1  ^ ^ 2  (II 2.19)

for n = 0 , + 1  and + 2 , at both the correlated and 

Hartree-Fock levels. The quantity <E., Eg > is of some
practical importance because, except for a constant factor, 
it is the so-called mass-polarisation correction to the 
total energy*®®* .

To obtain additional insight into the angular effects of 
correlation momentum space, we have examined the 

distribution function P(*r), defined by

P('ï) = XGigf&irEg) dE^j.dEj/df , (II.2.20)

and the angular shift' AP(t), defined by

AP(-r) = P=°'"(T) - P"^(T) , (II.2.21)
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where *y is the angle between the momentum vectors of the two 

electrons and P(*y ) is evaluated at the correlated and HF 
levels, respectively. The definition of P(t) in
Equation (II. 2.20) is broadly similar to that of the
distribution function p(9^^) used by E l l i s * i n  his study 

of position-space 'angular holes'. However, it should be 
noted that the definition of P(*y ) includes the factor 

'sin(-Y)', so that the normalisation of P(ir) is expressed by

XP(-r) d-r = 1, (II. 2 .2 2 )

whereas Ellis arbitrarily defined p^G^^) such that

XP(8,g) ®12 36,2 ^ (1/2w)

In the present work, the change in the average relative 
angular orientation of the electron momentum vectors was 
obtained, for each state, by calculating the expectation 

value <*r>, defined by

<*Y> = XP(-Y) y d-Y, (II.2.23)

at both the correlated and Hartree-Fock level. It is 
interesting to note that for n=1, Equation (II.2. 19) yields 
the expectation value <cos^>; this quantity can also be
obtained from

<cos*Y> = XP(*y) c o s *y d*Y, (II.2.24)

which provides yet another check on the consistency of the
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results obtained.

Interparticle Properties
Following Banyard and Reed*®®*, we define the 

interparticle momentum distribution ffp^^) by

Jo^ 2  ̂ dE^-dE^/dp^^ ' (II.2.25)

where p̂  ̂  is the momentum difference Ie ^-Ej I • For each 
state, we measured the effects of correlation on by

evaluating the quantity Af(p^ 2 )» defined by

where fXp^g) is evaluated at the correlated and Hartree Fock

levels, respectively. Clearly, Af(p.j2  ̂ is the
momentum-space analogue of the Coulomb hole, and Banyard and
Reed referred to it as the Coulomb 'shift' -- partly to
avoid confusion with the position-space quantity and partly

because the complicated shape of Af(p^ 2 ) for S He is less
easily recognised as a hole'. We have adopted the same

terminology as Banyard and Reed throughout this work. To
gain some insight into the relative magnitudes of the

various Coulomb shifts, we have evaluated for each Af(p^g)
H Fcurve the fraction Y of the f (p^^) distribution which has 

been redistributed as a result of the introduction of 
correlation.

For each wavefunction, the expectation values <p"g> were 
calculated from
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<p;,> = XffPi;) p " 2  dp ^ 2  (II.2.27)

with n=- 1 , 0 , + 1  and + 2 , together with the standard

deviation o^p^^), defined by

Although lacking the obvious physical' significance of the 

corresponding quantities in position-space, the <p"g> values 
help to characterise different regions of the f(P.,2  ̂ curves; 
in addition, (p®^> and <p®g> provide necessary (but not 
sufficient) checks on the accuracy of the calculated 
distributions. The former value is just the normalisation 
of the wavefunction, while the latter quantity can be 
obtained independently by combining two other expectation 
values, defined above. According to the cosine rule we have

<P^ 2 > = <pf> + <P;> - 2<e, .E2 > , (II.2.29)

which provides, as in position space, a check on the 
accuracy and consistency of the calculated distributions and 
expectation values. Inspection of Equation (II. 2.29)

reveals that for a wavefunction not possessing angular terms 
of any type, such as the HF description of an S state, (p®^> 
is exactly equal to the kinetic energy term, <p®>, since 

^ 2  ̂  is identically zero for such a function.

Since Af(p^g) is obtained from two averaged
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distributions, it is of interest to investigate the shape of 

the 'shift' when electron 1 , say, has a specific momentum. 
Thus, again following Banyard and Reed, we have examined the 

partial Coulomb shift, Ag(p^ 2 ,p^), defined such that

XAg(p, 2 ,P,)dp, = Xg'"”  (p, 2  ,p, )dp, - Xs"^(P, g.P, )dp,

= A£(p, J ) . (II.2. 30)

For the P states, we have also studied the angle-dependent 

partial Coulomb shift, AgCp.^ 2  » P̂  ) f for 8 ^= 0", 30*, 60* 
and 90", where

XAg(p^ 2  »Pi ; ) sine^dB^ = Ag(p^ 2 'Pi^» (II.2.31)

and 8  ̂ is the angle, measured in momentum space, between the 
test-electron momentum vector and the symmetry axis of the 
system. The angular integrals which occur in the
definitions of the Coulomb shift and partial Coulomb shifts 

are of the same type as those that occur in the 
corresponding position-space expressions, and were evaluated 

in the same way. The radial integrals were once again 
evaluated numerically, but as a result of the more 
complicated nature of the orbital expressions in momentum 
space, the computing time required to evaluate the Coulomb 
shifts was found to be considerably greater than that 
required to evaluate the position-space 'holes'.
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Presentation of Results

In Figure (II.2.1) we present the uncorrelated 
one-particle radial momentum distribution functions, 

for the 2^S, 2^P and 2^P states of helium. The
effects of correlation on these distributions are shown in 

the corresponding radial shifts, (p^), presented in

Figure (II.2.2). The two-particle radial momentum

distributions, D^^tP^ , p^), are shown as surfaces in 
Figure (II. 2.3), and the associated radial shifts, 

^ ^ 1 2  ^ ^ 1  '^2 '̂ similarly displayed in Figure (II. 2.4). In
Figure (II. 2.5) we present cross-sections of the D^^(p^,P 2 ) 

and AD^^tP, , Pg) surfaces when p^= p^ , for both the P states. 
For all three states, the one- and two-particle radial 
shifts presented here are those for the energetically better 
Tweed wavefunction in each instance. The one- and two- 
particle expectation values, <p"> and <p"p">, derived from 
the Hartree-Fock and correlated radial distributions are 
presented in Tables (II.2.1) and (II.2.2), respectively.

The angular distributions of the electron momenta are 
illustrated by the P (*y) curves shown in Figure (II. 2.6); 
the effects of correlation on these distributions are shown 
by the angular shifts, AP(*y ), presented in Figure (II.2.7). 
Once again, the energetically better Tweed function was used 

for the correlated description of each state. In 
Table (II. 2.3) we present the Hartree-Fock and correlated 

angular expectation values (p^.^g/P^Pg) &nd <^>.

The uncorrelated interparticle momentum distributions
H Ff (p^g) are shown in Figure (II.2. 8 ); the effects of
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correlation on these distributions are seen in the 

associated Coulomb shifts, presented in
Figure (II. 2.9). In Table (II. 2.4), the Hartree-Fock and 
correlated expectation values <p"g> are presented; also 

given in this table is the standard deviation of

each of the various f^p^^) distributions, as well as the 
value of Y for each Coulomb shift. The uncorrelated 

distribution functions g"^(p^ 2 ,R,) are shown as surfaces in 
Figure (II.2.10); alternative views of these surfaces are 

provided in Figure (II.2.11). Two views of the

corresponding partial Coulomb shifts, Ag^P^gfR,)' are 
presented in Figures (II.2.12) and (II. 2. 13), respectively. 
In Figures (II.2.14) and (II.2.15) we show, for the two P 
states, two different aspects of the uncorrelated 

distributions g”^ (P^ 2 '  ̂ for 8  ̂ = O', 30", 60* and 90"; 
the corresponding views of the associated 8 ^-dependent 

partial Coulomb shifts, Ag(p^ 2 »P̂  ;8 ^), are presented in 
Figures (II.2. 16) and (II. 2. 17). For the partial Coulomb 
holes, the energetically better Tweed function is used for 
the correlated description in each instance.

Finally, to aid our discussion, we present in 
Figure (II. 2.18) a purely schematic, 2-D representation of 

the electron distributions in 1 s 2 s and 1 s 2 p states of helium 
in both position and momentum space.
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CHAPTER II.2.3 
DISCUSSION

One of the principal problems encountered when attempting to 

describe atoms or molecules in momentum space is that of 
disorientation. Since physical reality seems so -firmly 

rooted in position space, it is often extremely difficult to 
visualise even the simplest system when it is described in 

the momentum representation. Accordingly, in an attempt to 
compensate for this lack of familiarity, we shall preface 
our discussion of momentum-space correlation effects with a 
thorough analysis of the corresponding Hartree-Fock 
properties; where possible we shall also relate these 
properties to those already studied in position space. As 
before, we shall attempt to combine all the various facets 
of the Hartree-Fock description into a consistent 'model', 
and then examine how the various effects of correlation in 
momentum space combine to change that model. We begin by 

studying the uncorrelated momentum-space description of the 
1? S state.

The o"^(p ) curve for 2^S, shown in Figure (II.2.1),
1

reveals two distinct regions, corresponding to the two
(62)shells in the system. From the nature of the Dirac 

transform which relates the position and momentum 
representations, it is clear that the larger, localised peak 
at small p̂  corresponds to the momentum distribution of the 
L shell, while the much more diffuse region at large p̂  

corresponds to the K shell. For later convenience we shall
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denote the values of which locate the maxima in D^^(p^) 

for the K and L shells by p^ and p^, respectively. Not

surprisingly, the two-shell nature of the momentum
distribution is also clearly visible in shown in
Figure (II. 2.3). For this surface, it is seen that there 
are two principal regions of probability density, each
corresponding to one electron being in the K shell and the

other in the L shell. Interestingly, although it is not
obvious from the orientation of the surface shown in
Figure (II.2.3), the two-particle radial momentum 
distribution function, like its position-space counterpart, 
is identically zero along the leading diagonal. In position 

space, the zero probability when ^^-^2 the result of the 
Fermi effect preventing two electrons from being the same 
distance from the nucleus. Since the Dirac transform 
preserves the determinantal form of the Hartree-Fock

wavefunction, the Fermi effect manifests itself in momentum
space by preventing the two electron momenta from having the 
same magnitude.

In Chapter (II.2.1) we saw that the angular nature of an 
orbital is unchanged by transformation to the momentum

3representation, and consequently at the HF level the 2 S 
state is spherically symmetric in momentum space, as it was 

in position space. As a result of this symmetry, the shape 
of the angular distribution function, P (■y) , shown in 

Figure (II.2.6), depends solely on the 'sin *y' term included 
in the definition. This curve is included primarily for 

later comparison with the corresponding functions for the P 
states; as expected, P^^(-y ) for 2^ S is symmetric about
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*y=90* , where the function is a maximum, and consequently 

<T^=90" .

Naturally, the radial and angular properties of the 
system influence the interparticle distributions. The 

f^^Cp^g) curve for 2^S, shown in Figure (II. 2. 8 ), displays a 
single maximum, the location of which is related to p^ and 

P|_ by Pythagoras's Theorem, as was the case in position 
space. For comparative purposes, we have also calculated 

the f"^(p^ 2 ) distribution for the 2 ^S state, and this 
function is included as the 'chain' curve in 
Figure (II.2. 8 ). It is interesting to note that for 2^S, 

f”^(p^^) is vanishingly small for very small values of p^g, 
with the result that near to the origin the triplet curve 
displays a distinct 'flatness' which is absent from the 2 ^S 
curve. A similar contrast between the interparticle
distribution curves for the 2 ^S and 2 ^S states was also 
observed in position space. In the latter representation, 

the flatness of f (r^^) near to the origin was attributed 
to the action of Fermi correlation, which prevents electrons 
of like spin from achieving very small interelectronic 
separations. The existence of a similar effect in momentum 
space, together with our earlier comments regarding the 

behaviour of on the (p^=Pg) diagonal, appears to
confirm the findings of Ahlberg and L i n d n e r * w h o  claimed 
that the same rules govern the effects of Fermi correlation 

in momentum space as in position space. However, for 2^S 

the behaviour of (^^(r^^) at small r^ ̂  ^as found to be 
primarily the result of the Fermi effect preventing both 

electrons from occupying the K shell. Examination of the
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(P̂  ) curve in Figure (II.2.1) reveals that in momentum
space, a double occupancy of the K shell would be
characterised by both electron momenta being large. Since
the momentum vectors are, on average, orthogonal to each

other at the uncorrelated level, it is clear that both
electrons being located in the K shell would give rise to

large values of P., 2  • Consequently, it might be expected
that any differences between the 2̂  S and 2^ S f^^Cr^^) curves

at small r^^ should manifest themselves in f (p^g) at
large. not small, values of p^g. Given the average angular
orientation of the momentum vectors, it seems likely that

small values of p^^ will be achieved only when p^ and p^ are
themselves both small. Consequently, for 2^S the behaviour

of f (p^g) as p^ 2  approaches zero would appear to be the
result of the Fermi effect preventing the electrons from
both occupying the L shell. Of course, in reality the Fermi
effect prevents the double occupancy of both shells in both
representations. However, the diffuse nature of the K shell
in momentum space leads to such a wide range of large p̂
values that in order to prevent both electrons being in the
K shell, Fermi correlation must be effective over large

ranges of p^ ^ ■ As a result, the effects of Fermi
correlation in the K shell are spread out more than in the L

shell, and are consequently less easily observed.
Naturally, these arguments apply equally well to other
spherically symmetric systems in which Fermi correlation
occurs. For example, it has been shown that the

uncorrelated interelectronic distribution functions for the 
1 3S and S electron pairs in the ground state of Be display 
the same differences in the two representations as the
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singlet and triplet states of He discussed above.

We conclude our examination of the uncorrelated 

description of the 2^S state of He by examining the
g distribution function, shown in
Figure (II.2.10); an alternative view of this surface is 

given in Figure (II.2.11). This distribution, like its 
position-space counterpart, displays two principal features: 

a region of probability density lying parallel to the p^^ 
axis at small values of p^, and a second region, located 

along the (p^2 =P,) diagonal axis. For convenience, we shall 
refer to these as the 'parallel' and 'diagonal' features 

respectively. To aid our understanding of the g"^(p^ 2 ,p^)
surface for 2^S we present in Figure (II.2.18) a purely 
schematic representation of the 2 ^S state in position and 
momentum space. Since this system is spherically symmetric 
in both spaces, the principal difference between the 
appearance of the 2 ^S state in the two representations is 
simply the radial ordering of the two shells. As a 
consequence of this, the appearance of the system in
momentum space should bear a strong resemblance to its 

appearance in position space. Previously, we were able to 

rationalise the shape of the g"^(r^ 2 ,r,) surface by 
examining the system from a viewpoint located in each shell 

in turn; the same procedure should now be equally applicable 
in momentum space.

Consider a test electron in the L shell. Since the 
radial momentum distribution of that shell is highly 
localised, the range of momenta that such a test electron
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can have is quite restricted, and consequently is quite 

small and close in value to p ^ . On the other hand, the 
relatively diffuse nature of the K shell gives rise to a 
large range of possible p^^ values for the two electrons.
This view of the system therefore gives rise to the

'parallel' feature in g Consider now a test
electron located somewhere in the K shell, so that p̂  is now 
somewhat larger than its earlier value. The diffuse form of 

the K shell in momentum space gives rise to a wide range of 

possible p̂  values, while the compact nature of the L shell 
results in a more restricted band of possible p^ values for 
the second electron. The most probable value of p^^ for a 
given choice of p̂  is then obtained by averaging over all 
possible angular orientations of the two electron momentum 
vectors. The interparticle separation in momentum space 

therefore ranges from p̂  ̂  “ (p^+Pg), which corresponds to 
the two electrons moving parallel to each other, to p ^ 2  ~ 
(p^-P2 ), which results from the electrons moving in opposite 
directions. Recalling the spherically symmetric nature of 

the two shells, the mean value of p ^ 2  is then simply the 
average of the two extreme orientations, whereupon p^^ = P^- 
Clearly, this view of the system gives rise to the

'diagonal' feature on the g (p^ 2 'Pi^ surface. Not
surprisingly, both of the principal regions of probability 

density possess a maximum at the same value of p^g, since
both maxima correspond to the same, most probable,
orientation of the two electrons, simply viewed from
different shells.

Having thus described the nature of the Hartree-Fock
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momentum distributions for the 2 ^S state, we now consider 
the effects of introducing correlation into the description, 

and begin by studying the AD^ (p̂  ) curve, shown in 

Figure (II.2.2). The most obvious characteristic of this 
curve is that at small values of p ^ , correlation has caused 

a shift to higher momenta. The first zero in AD^ (p^ ) occurs 

at a value of p̂  close to p ^ , which indicates that this 

movement of probability density is an L-shell correlation 
effect. This is consistent with our findings in position 
space, where we saw that correlation causes the L-shell 
electron to approach the nucleus; such a movement would, of 
course, cause an increase in the momentum of the electron. 

The existence of a second, very much less significant, 
negative/positive feature in AD^ (p^) at larger values of p^ 
suggests that the K-shell electron has also undergone a 
shift to higher momentum. Since the negative region located 
between p̂  % 0 . 8  and p^ % 1 . 0  is obviously not comparable in 
magnitude to the positive region which exists beyond 1 .0 , it 
seems likely that the K- and L-shell correlation effects 
actually overlap, so that the probability enhancement in the 
high-p^ region of the L shell offsets the probability 
reduction in the low-p^ region of the K shell.

The AD^gtP, , Pg) surface shown in Figure (II. 2.4) appears
to confirm that both electrons do indeed experience a shift
to higher momentum; if we consider the positive feature

located parallel to the p^ axis, the coordinates at which
the maximum for this region occurs are greater, in both
directions, than the coordinates of the corresponding

H Fmaximum in the D^^tP,rPg) surface. In keeping with the
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observed changes in the radial distribution of the 
electrons, it is seen from Tables (II.2.1) and (II. 2.2), 

respectively, that the expectation values <p"> and (p^p^> 
are increased for n > 0  and decreased for n < 0 ; the

standard deviation o(p^), presented in Table (II.2.1), is 
also decreased, indicating a 'tightening up' of the D^(p^) 

distribution about its mean, <p^>. Similar changes in the 
one- and two-particle expectation values have been noted for 
the ^S inter-shell electron pair in the ground state of 

, and also for the ground state of . This
latter observation is quite surprising, since a comparison 
between the AD^ 2 (p̂  , p^) surfaces for the ground* and 2 ^S
states reveals them to be quite different; it will be 
recalled that a similar effect was also observed in position 
space.

We consider now the effects of correlation on the 
relative angular orientation of the two momentum vectors. 
Inspection of the AP(^) curve in Figure (II.2.7) reveals 
that the introduction of correlation reduces the probability 
of large values of -f and increases the probability of small 
values; the zero of AP(-y) occurs very close to 90*, which 
was, of course, the most probable value of -y at the HF 
level. The reduction of the average angle between the 
momentum vectors is reflected in the changes in the angular 
expectation values given in Table (II. 2.3), and contrasts 

strongly with the corresponding situation in position space, 
where it has been shown that correlation causes the angle 

between r̂  and r^ to increase; see for example, the Ap( 8 ^2  ̂

curves of Ellis* or the <cos values quoted in
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Table (II.1.5). This difference between the angular effects 

of correlation when analysed in the position and momentum 
representations, which has also been observed in the ground 
state of and in the various intra- and inter-shell
electron pairs of can be rationalised by means of
the following model. At the Hartree-Fock level, the two 

electrons in the 2^S state of He are described by orbitals 
with zero angular momentum, and consequently the momentum 

vector of each electron must be parallel or antiparallel
to its position vector . Furthermore, as we have already 
noted, the HF description indicates that the average angle 
between the electronic vectors is 90* in both spaces. If 
the two electrons are thought of as oscillating about the 
nucleus along a pair of perpendicular axes, it is reasonable 

from the point of view of minimising the electron- 
electron repulsion energy -- to assume that there is a phase 
difference of tt/2 between their motions. Thus, for example, 
as the 2 s electron starts to approach the nucleus, the Is 
electron moves away from the nucleus along a line orthogonal 
to the direction of motion of the 2s electron. Simple 

geometrical arguments then dictate that any increase in the 
angle between the position vectors of the electrons must be 

accompanied by a corresponding decrease in the angular 
separation of the momentum vectors.

Having discussed the effects of correlation on the 
radial and angular distributions of the electron momenta, we 
can consider now how these effects combine to change the 
interparticle momentum distributions, and we begin by 

examining the Ag(p^ 2 'P-|) surface shown in Figure (II. 2. 12);
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an alternative view of this surface is presented in 

Figure (II.2.13). For 0 < p̂  < p^, it is seen that

correlation reduces g^p^gfP^) for all values of p^^- As p^ 
is increased through p^ , the surface shows an enhancement of 
probability -- again for all p^^. This behaviour clearly 
illustrates the increase in the momentum of the L-shell 
electron. It is interesting to note that if we denote the 

value of p̂  at which the two maxima in AD^ (p̂  ) occur as p*** 

and p***, then the coordinates of the maximum in the 

'parallel' feature of Ag(p^ 2 »P.|) are found to be very close
_  m a x  _ m  a X _ m a x  . . _to p̂  2  =P^ - P^ and p^ =P^ . Thus, the principal

enhancement of probability in the 'parallel' feature occurs 

when the K- and L-shell electrons have momenta p*** and 
p"**, respectively, and are both moving in the same 
direction. This is in keeping with our earlier observation 
that correlation causes an increase in the probability of 
small angles between the momentum vectors.

As we increase p^ still further, we find that for a 

given value of p̂  , Ag(p^ 2 »Pi) is initially positive and then 
negative as p ^ 2  is increased from zero. The alternative 
view of the surface shown in Figure (II. 2. 13) reveals that 
the zero contour between the maxima and minima in this 
region is almost exactly coincident with the (p^2 =P^ ) 
diagonal. This structure, with an increase in probability

when p ^ 2 < P̂  and a decrease when p ^ 2  > P^, illustrates once 
again the reduction of the angle between the momentum 
vectors.

Finally in our discussion of correlation effects in the
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2^s state, we consider the Coulomb shifts, presented in 
Figure (II.2.9). The three correlated wavefunctions produce 

Af(Pi 2 > curves which are similar in shape and magnitude, the 
principal characteristic of all the curves being a general 

shift from large to small values of p^g- At very small 2 ' 

the AfXp^^) curves are all 'flat' -- the result of the Fermi 
effect causing both the Hartree-Fock and correlated 
distributions to be vanishingly small near to the origin. 

The o(p^ 2 ) values, presented in Table (II.2.4), reveal no 
definite trend with the introduction of correlation.
However, in keeping with the shape of the Coulomb shifts, 
inspection of the (p"^> expectation values reveals that 

<p^2 > is increased by correlation, while <p^ 2 > and <p^ 2 > are 
both reduced. The Y values, also presented in
Table (II. 2.4), give an indication of the relative 
magnitudes of the Coulomb shifts produced by the three
correlated wavefunctions. Interestingly, the 32-term Tweed

wavefunction gives rise to a marginally deeper Coulomb shift
than the energetically better 48 term function; this is in 
contrast to the results in position space, which showed that 
the larger wavefunction produces a slightly deeper Coulomb 
h o l e .

A comparison of the Coulomb shifts for 2^S with the
3Af(p^ 2  ̂ curve for the S inter-shell electron pair in the 

ground state of reveals that the two shifts are
inverted with respect to each other; a similar inversion was 

also found when comparing the corresponding Coulomb holes. 
As we have already noted, in momentum space the principal 

radial effect of correlation is the same in both of these
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systems, producing an increase in the momentum of the 
L-shell electron. In the absence of any other effect, it is 

clear that this radial change would lead to an overall 

increase in 2  * Furthermore, the angular effect is also 
the same for both electron pairs, and results in the 

reduction of the angular separation of the momentum vectors. 
Taken in isolation, this change would produce an overall 

reduction in P., 2  • From the different behaviour of the 
Coulomb shifts for He and Be, we may conclude that the 

relative magnitudes of the radial and angular effects are 
different in the two systems, with the angular effect being 
dominant in He, and the radial change being more powerful in 
Be. Evidence in support of this is found in a comparison of 
the changes due to correlation in the various radial and 
angular expectation values for the two systems. Thus, for 
example, as a fraction of the Hartree - Fock value <p^ 

the correlation change in <p^ > is found to be more than 
eight times greater for the Be inter-shell electron pair 
than for the 2^S state of He, while the corresponding change 
in > is nearly three times smaller^. It should be noted, 
of course, that for Be, intershell correlation effects are 

influenced by those in the closed K and L shells.

We now turn our attention to a consideration of the 2̂  P 

and 2 ^P states and, as before, we begin our discussion by 
examining the uncorrelated radial momentum distributions. 

For the P states, the (p^) curves, presented in

^For Be, the change was evaluated from [arc cos(Ax'')] -- see 

Reference (85) for the definition of Ax".
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Figure (II.2.1), display considerably less shell structure
than the corresponding distribution in the 2 ^S state; this

is also reflected in the uncorrelated o(p^) values given in
Table (II.2.1). In position space, the radial distributions
for all three states possessed a local minimum,

corresponding to the intershell region, whereas in momentum
space, such a feature is found only in the S state. Careful

inspection of the (p^) curve for 2 P reveals that there

is a slight change of slope at large p^, where a K-shell
maximum might be anticipated, but the 2 ^P curve displays no
such structure, and the most probable radial momentum of the
K-shell electron cannot be predicted. Differences between
the shell structure of a system when described in the
position and momentum representations have also been noted
by Gadre, Chakravorty and Pathak*^^*, who have concluded
that the number of discernible shells in an atom in momentum
space is not necessarily equal to that in its position-space
description. Returning to Figure (II.2.1), we see that all 

H Fthree D^ (p^) curves are very similar at large p ^ , and that

the lack of shell structure in the P state is due primarily
to the differences in the location and spread of the peak in 
H FD̂  (p^) at small p ^ . In the P states, this peak not only

occurs at slightly higher momentum values than in the S

states, but it is also more diffuse. This latter
observation is in keeping with the findings of Duncanson and 

(95)Coulson , who noted a similar difference between the

momentum distributions of ' s '  and ' p '  electrons. In the
present work, the similarities and differences among the 
H FD̂  (p^) curves are particularly well illustrated by 

comparison of the uncorrelated one-particle radial
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expectation values for the three states. Thus, for example, 

»<p^>, which emphasizes large values of p ^ , shows relatively 
little variation among the three states, whereas the value 

of <p~^>, which emphasizes very small values of p ^ , is some 
three times larger for 2^S than for either of the P states. 
These observations are, of course, consistent with our 
findings in position space, where it was seen that the 

principal variation among the o"^(r^) curves occurred at 

large values of r ^ .

As a result of the degree of overlap between the 
contributions from the K- and L-shell electrons to the 
o"^(p^) curves for the P states, it is difficult to obtain a 
value for p ^ , the most probable momentum of an electron in 
the K shell. Since the two basis orbitals for the P states 
are orthogonal in their angular terms, (p^) could be 
decomposed into contributions from the ' 1 s' and '2 p' 
orbitals, thereby allowing the location of the maximum in 
the '2p' component to be determined. However, inspection of 

the Djgtp^ , Pg) surfaces for the P states, shown in 
Figure (II. 2.3), reveals that this is not necessary. The 

surfaces for both P states each display two principal 
regions of probability density, and from the location of the 
maximum in these two regions, it is possible to obtain good 
approximations to p^ and p^ . From Figure (II.2.5a), it is 
seen that, in contrast to the corresponding surface for 2 ^S , 
which is identically zero for all p̂  = p^ , the 

surfaces for the P states both display non-zero 

probabilities on the (p^=p^) diagonal axis. A similar 
observation also holds in position space, of course, and in
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both instances, this is a result of the Fermi effect being
more powerful in S states than in P states. However, in

0 ^ 2  (r̂  '^2  ̂ 2 ^P, for example, the ratio of the maximum
height on the diagonal to the maximum height in one of the
off-diagonal probability regions was of the order of 13.1:1,
whereas in momentum space the corresponding ratio is closer

to 1.52:1. This is consistent with the different behaviour
of the D^^(r^) and o"^(p^) curves, discussed earlier.
Further inspection of Figure (II.2.5a) also reveals that

3 H Fexcept at small p^ and p^ , the height of the 2 P '^2 ^
surface on the (p^=p^) diagonal is greater than that of the 
singlet. This is somewhat surprising when one recalls that 
in the triplet state, the Fermi effect is known to prevent 
the condition that • In the light of this, we
anticipate that the angular distributions of the electron 
momenta will be different in the 2 ^P and 2 ^P states, such 
that the electrons in the 2 ^P state are less likely to be 
located in the same angular regions of space; inspection of 
the P^^(*r) curves in Figure (II. 2. 6 ) reveals that this is 
indeed s o .

By comparison with the symmetrical distribution for the 
2^S state, it is seen from Figure (II.2. 6 ) that the p"^(^) 
curve for 2 ^P is skewed towards ^= 0 ’, so that small angles 

have a higher probability of occurrence than larger ones. 
Physically, this corresponds to the two electrons having a 
greater probability of moving in the same direction. The 

P** (̂*f) curve for 2 ^P, on the other hand, is skewed towards 

*t=180*, so that the two electrons are more likely to be 

moving in opposite directions. This difference between the
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angular distributions of the electron momenta in the two 
states is, of course, also shown in the uncorrelated angular 

expectation values, listed in Table (II.2.3); for example, 
for 2̂  P we find = 85.824*, while for 2^P, =
95.855*. Of particular interest are the values of <cos 
which, although having the same sign as the corresponding 

<cos 8 ^ 2 > values, are significantly larger (numerically) 
than their position-space counterparts. In Chapter (II.1.4) 

we noted that for these 2P states, the sign of <cos 8 ^2 >"^ 
follows that of the exchange term in the appropriate two- 

particle density, whereas the magnitude of this expectation 
value is directly related to the degree of radial overlap 
which exists between the 'Is' and '2p' orbitals. Since the 
analytical form of the two-particle density is unchanged in 
momentum space, it follows that <cos -y> must necessarily 
have the same sign as <cos Furthermore, the greater
numerical magnitude of the momentum-space values is seen to 
be a direct consequence of the greater degree of intershell 
overlap exhibited by D"^(p^) when compared to o"^(r^) for a 
given state.

We conclude our discussion of the uncorrelated
description of the P states by considering the various

interparticle distributions. Inspection of Figure (II.2. 8 )
reveals that the principal difference between the

1 3curves for the 2 P and 2 P states occurs at very small 2 • 

In this region, the triplet curve exhibits the same 
flatness' that was seen in the 2 ^S curve, and this feature 

is once again attributable to the effects of Fermi 
correlation. This behaviour near to the origin, together
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with the greater degree of radial overlap exhibited by the

two shells, causes the 2^ P f^^fp^^) as a whole to be
slightly more compact than the corresponding singlet curve
-- as evidenced by a comparison of the otp^g) values for the
two states (see Table (II.2.4)). As before, the value of

p ^ 2  at which each f (p^g) curve is a maximum can be related
to the corresponding values of p ^ , p^ and where the
latter quantity is the most probable angle between the two

H Fmomentum vectors and is obtained from P (f) for each state.

For the 2^S state, we have seen that there is some 
degree of correspondence between the appearance of the 

system in the position and momentum representations —  in 
both spaces the atom appears to consist of two concentric 
spherical shells. For the 2^P and 2^P states, on the other 
hand, the lack of spherical symmetry introduced by the '2 p' 
orbital results in a quite different appearance in the two 
spaces, as seen from the position- and momentum-space 

representations of a 2P state shown in Figure (II. 2. 18). 
Once again, these are two-dimensional, purely schematic 
depictions, and we have deliberately not specified whether 

the system illustrated is a singlet or triplet state. Since 
the angular description of the system is invariant under the 
Dirac transformation which links the two spaces, the 'shape' 
of the momentum distribution of the '2 p' orbital has the 

same general form as that of the corresponding position 
distribution. However, as we have already noted, the 'Is' 

orbital is characterised by large momenta, while the '2 p' 
orbital displays a more compact distribution at smaller 
momentum values, and therefore appears 'inside' the 'Is'
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orbital in momentum space. Evidence in support of this view

of the P states is provided by the g^^Cp^^fR, ;8 ^) surfaces
displayed in Figure (II.2.14). When 8  ̂ = 0", the momentum
surfaces for both P states bear a strong resemblance to
their position-space counterparts. As 8  ̂ is increased, the

'diagonal' feature remains virtually constant in magnitude,
while the 'parallel' feature reduces in height, until it
disappears entirely when 8  ̂ = 90*. This behaviour is in
contrast to that observed in position space, where it was
the 'diagonal' feature which became less significant as 8 ^
was increased. Inspection of the alternative view of the 
H Fg surface given in Figure (II. 2. 15) reveals a

further difference between the position and momentum space 
8 ^-dependent surfaces. For 8  ̂ = O', it is seen that the 
'diagonal' feature in the g (p^ 2  distribution of
both P states actually displays a local minimum along the 
exact (p^2 =p^) diagonal. Of the two regions which flank 
this minimum, the maximum on the (p^2 <Pi) side of the 
diagonal is the greater in magnitude in 2 ^P, while in 2 ^P, 

it is the feature on the (p^2 ^Pi^ side which is greater. As 
8  ̂ is increased, the local minimum in both states becomes 
less noticeable and then disappears altogether.

H FTo explain the behaviour of the g (P^ 2 »Pi'®i  ̂ surfaces, 
we shall concern ourselves specifically with the 2 ^P state, 
and shall discuss the 2 ^P state only where it differs 

substantially from the singlet. For 8  ̂ = 0*, consider a 
test electron with a small value of p ^ , which corresponds to 
the electron being located on the symmetry axis of the 

system and in the L shell. The compact L-shell distribution
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in momentum space means that the range of small p^ values 

that such a test electron can possess is quite restricted, 
whereas the diffuse nature of the K shell produces a wide

torange of p^^ values. Clearly, this situation gives rise

the 'parallel' feature in the g^^tp^^'P,;8 ^) surface. If we
now retain the same small p̂  value, but allow 0  ̂ to
increase, the locus of probable locations for the test
electron intersects smaller and smaller fractions of the

L-shell distributions, with the result that the 'parallel'
feature decreases in magnitude. When 8  ̂ = 90*, the test
electron lies in the nodal plane of the '2p' orbital. The
only possibility that the test electron has a small momentum
p̂  and is also situated in the nodal plane is that it is now
located (in position space) in the far outer regions of the
K shell, where the probability density is vanishingly small.
Consequently, as 0̂  approaches 90* the parallel feature in 

H Fthe g (P^2 'Pi surface disappears.

Let us now consider a test electron with a somewhat
larger value of p ^ , such that it is located in the K shell.
The diffuse nature of this shell in momentum space gives 
rise to a wide range of possible p^ values for the test 

electron. In contrast to this, the localised nature of the 
L shell means that the range of momentum values displayed by 
the second electron is quite restricted. Furthermore, since 

the L shell is not spherically symmetric, its 'appearance' 
to a test electron located at large p̂  will depend on that 
part of the K shell from which it is viewed, and will

consequently be strongly dependent on 8 ^. Consider again
the schematic representation of the 2P state shown in
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Figure (II. 2.18). When 0^= 0*, the test electron is located
on the symmetry axis of the system. The momentum

distribution of the second electron corresponds to the
familiar lobes of the '2 p' orbital, which appear on the

g surface as the two maxima lying parallel to

the (p^2 =Pi) diagonal. The positive lobe of the orbital
gives rise to values of p^^ < p^. The local minimum, which
lies exactly along the diagonal, corresponds to the nodal

plane of the '2 p' orbital, where an electron with small
momentum has a relatively small probability of being
located. To explain the difference in height between the
two maxima which flank the diagonal, we need only recall
that in 2 ^P, values of ^ close to 0 * are more probable than
those close to 180". As a consequence, when 8 ^= O' a test
electron at large p̂  will detect a greater probability
distribution from the positive lobe of the '2 p' orbital than
from the negative, with the result that in 2 ^P, p^g^ P^ will
be found to have a greater probability than p^^) P^- In the
triplet state, on the other hand, the presence of the Fermi
effect means that values of *y closer to 180* are now more

likely, and this gives rise to the maximum on the (p^^^P-i )
side having the greater height. If we now maintain the test
electron at the same large value of p^ and allow 8  ̂ to
increase, similar arguments still hold, but the difference

H Fbetween the contributions to g (P^ 2 'Pi»®i^ from the two
lobes of the '2 p' orbitals becomes progressively smaller.
When 8  ̂ = 90*, both lobes of the orbital 'appear' the same 
to the test electron, with the result that both

g (Pi 2 'Pi'^i"^^") surfaces display only one maximum, 
located very close to the diagonal.
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The surfaces for the 2^P and 2^P states are
presented in Figure (II.2.10), and are seen to bear a strong

3resemblance to the corresponding surface for the 2 S state. 
In the alternative view of these surfaces provided in 

Figure (II.2.11), the different degrees of radial overlap in 
the three states are revealed by the extent to which the 
parallel and diagonal features in each surface are merged 
together. Interestingly, the different angular
distributions which occur in the three states are not so 
easily observed.

We can now discuss the effects of correlation on the
momentum distributions of the 2P states. Inspection of the
AD^ (p̂  ) curves presented in Figure (II.2.2) reveals that in

1 3the small p̂  region, both the 2 P and 2 P states display a 
shift to higher momentum. The first zero in both AD^ (p̂  ) 
curves occurs, as for the 2 ^S state, quite close to the 

corresponding value of p^ , indicating that this shift of 
probability density is once again an L-shell correlation 
effect; this is, of course, consistent with the inward 
radial shift of the '2 p' electron seen in position space. 
At large values of p ^ , there are slight differences between 
the AD^ (p̂  ) curves for the two states. Although it is 

difficult to associate these changes with any specific 
relocation of the electrons, it is interesting to note that 
the radial momentum shift for the 2 ^P state displays a local 

minimum at p̂  = 0.85, which imparts to the AD^ (p^ ) curve a 
very slight 'two-shell' structure. This is particularly 
surprising in view of the complete lack of distinction
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between the K- and L-shell contributions to the 

corresponding D^^(p^) curve. The changes in AD^ (p^ ) are 

reflected in the one-particle radial expectation values 
presented in Table (II.2.1). For both states, it is seen
that correlation reduces <p"> for n < 0  and increases it for 
n > 0. The o(p^) values, also shown in that Table, indicate 
that correlation causes the D^(p^) distributions for both 
states to be 'sharpened up' about their respective means.

Further insight into the radial effects of correlation 

is afforded by an examination of the AD^gCP, , Pg) surfaces, 
shown in Figure (II.2.4). In the regions parallel to the 
axes, the surfaces for both states display structures which 
are consistent with the increase in momentum of the L-shell 
electron. Elsewhere on these surfaces, however, there are 
significant differences between the two 2P states 
particularly in the region of the (p^=Pg) diagonal. In 

particular, for 2 ^P, AD^^fP, , Pg) displays a single maximum, 
which occurs when both electrons have the same momentum; in 

contrast to this, the principal enhancement of probability 
in the triplet state occurs when the electron momenta are 

different -- as seen from the two off-diagonal peaks in the 
2^P surface. These effects differ strongly from our 
findings in position space, where we saw that the 

AD^^fr^ , Eg) surface for the singlet state displayed two 
off-diagonal maxima, while that for the triplet possessed a 
single enhancement of probability when r^= rg. A comparison 
of the coordinates of the principal maxima in the 

AD^g(p^ , Pg) surfaces with the positions of maximum 
probability in the corresponding D^g(p^,Pg) surfaces shows
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that for 2^P, the L-shell electron has its momentum
increased by correlation and the K-shell electron has its
momentum reduced. A similar comparison for 2^P reveals that
for this state, correlation produces an increase in the

momentum of both electrons. The nature of each , Pg)

surface is, to some extent, reflected in the associated
two-particle radial expectation values, presented in
Table (II.2.2). Thus, for both P states it is seen that

<p"Pg> is reduced by correlation when n<0. Interestingly, 
1 2 2in 2 P, <p^Pg> and <p^ Pg > are both increased, whereas in

3 2 2
2  P , <p^Pg> is increased but <p^ Pg > is marginally reduced.
Such observations illustrate once again the difficulty of
predicting correlation effects from expectation values
alone.

To illustrate the behaviour of AD^^CP^ ,Pg) in the region
of the leading diagonal, we present in Figure (II.2.5b) a
section through both of the P state surfaces when p^=Pg. In
passing, we note that the curve for 2 ^P displays a local
minimum when p^= Pg % 0.85, which is the same as the value
of p̂  at which a similar minimum occurred in the one -
particle radial shift AD^ (p̂  ) for 2^ P. When p̂  and p^ %
2 .0 , the section through the 2 ^P surface is seen to be

slightly negative, and this offers an explanation of the
2 2reduction by correlation of the <p^ p^ > expectation value for 

this state. Inspection of the AD^^CP^ , Pg ) data for 2^P has 

revealed that for all large (p^,Pg), AD^^fPi , Pg) is slightly
reduced by correlation, and it is this feature which

2 2produces the observed change in <p^Pg>.
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We now turn our attention to the AP(-y ) curves presented 

in Figure (II. 2.7). It is seen that the angular effects of 

correlation in the 2 ^P state are quite different to those in 
2^P. The AP(*y ) curve for the singlet state reveals an 
increase in probability at small angles of 7 , a reduction at 

large values and then a second, relatively insignificant, 
increase in probability as -y approaches 180*. The curve for 
2 ^P, on the other hand, shows a reduction in probability at 

small values of t, an enhancement at larger values and a 
minor reduction as *y approaches 180*. In the 2 S state, we 
saw that the single zero in AP(*y ) occurred at a value of -y 
very close to 90*, which is where the P (*y) curve is a
maximum. For the 2^P state, the first zero in AP(t) also
occurs quite close to the value of y which locates the peak 
of the singlet P (-y) curve. In contrast to this, the first

3zero in the AP(*y) curve for 2 P, although close to the
corresponding point in the singlet angular shift, does not

H Fappear to relate to any significant point in the P (*y) for 
the triplet state. However, it is interesting to note that

3the principal maximum in the AP(*y) curve for 2 P occurs very
close to the value at which the peak in the corresponding
P ( y )  curve is located.

The differences between the angular effects of 
correlation in the 2 P and 2 P states are also seen in the 
expectation values in Table (II.2.3). In particular, we 
note that for 2 ^P, the average angle between the momentum 
vectors, <‘y>, is less than 90* at the HF level, and 
correlation reduces the angle still further. In the triplet 
state, the uncorrelated value of <-y> is greater than 90*,
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and correlation increases this expectation value. In

keeping with the uncorrelated values of <*y>, the expectation

value <2 .  ̂.£2  ̂ for 2 P is seen to be positive, while the
corresponding quantity for 2^P is negative. However, for
this expectation value, the introduction of correlation

causes an increase (in the absolute sense) in both P states.
In Chapter (II.2.2) we noted that this expectation value is

related to the mass polarisation correction, e . Values of
1 3e have been evaluated for the 2 P and 2 P states of He by 

Accad, Pekeris and Schiff*^°*, who used highly accurate, 
explicitly correlated wavefunctions for their calculations; 

for both P states, the values derived from those
terms also show an increase relative to the Hartree-Fock 
results.

We now consider the ways in which the radial and angular 
effects of correlation change the interparticle distribution 
for the 2P states, and we begin by examining the partial 
Coulomb shifts presented in Figure (II.2.12). The surfaces 
for both P states display their principal features parallel 
to the p̂  2  axis at small p ^ , and in the region of the 

(p^2 =Pi) diagonal; as before, these 'parallel' and 
'diagonal' features can be identified with test electrons 

located in the L and K shells, respectively. The 'parallel' 

features in both Ag(p^ 2 fP-,) surfaces are quite similar to 
that seen in the 2 ^S surface, and reflect the previously 
noted shift to higher momentum of the L-shell electron in 
each state. In contrast to this similarity, the 'diagonal' 
features for the two P states display significant 

differences, which are best illustrated by the alternative
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view of the surfaces, provided in

Figure (II.2. 13). For 2^P, we see that when p^^ and p^ are 
both greater than approximately 1 .0 , there is a negative 

region along the exact (p^2 =P,) axis, bounded on each side 
by a local maximum lying parallel to the diagonal. At 

smaller values of p^^ and p ^ , the 'parallel' and 'diagonal' 
features merge together, resulting in a single maximum. 
This merging is consistent with the shape of the 

corresponding AD^^CP, , Pg) surface, which, as we have already 
noted, indicates that for this state, the greatest 
enhancement of probability occurs when both electron momenta 
have the same magnitude. For the 2^P state, on the other 

hand, when p^^ and p̂  are both greater than approximately
1.5, the 'diagonal' feature consists of positive and 

negative regions parallel to the diagonal on the (p^g^P,) 
side, and a significantly larger positive region, also 

parallel to the (p^g^P,) axis, on the (p^2 >Pi) side; the 
correlation change on the exact diagonal is quite small. In 
contrast to the singlet state, the maxima associated with 
the parallel' and 'diagonal' features in the 2 ^P surface 

are quite distinct from one another. This observation is in 

accord with the shape of the AD^^ (P., , P^) surface for this 
state, from which we surmised that the greatest enhancement 

of probability in 2 ^P occurs when the two electron momenta 
have different magnitudes.

To gain some understanding of the differences which 

exist between the Ag(p^ 2 'P^) surfaces for these two states, 
we now turn to the Ag(p^ 2 'P-| surfaces, presented in
Figure (II.2.16), and begin by considering the 2^P state.
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When 0^= 0*, the 'parallel' feature in the Ag(p^ 2 'P̂  ;8 ^)
surface is quite similar to that in the corresponding 

A 9 (P^2 'Pi) surface, and clearly results from the 
correlation-induced shift to higher momentum of the L-shell 

electron. As 8  ̂ is increased, this feature becomes
progressively smaller, disappearing completely when 8  ̂= 90*. 
Such behaviour is consistent with that seen in the 

'parallel' feature in the g (p^2 'Pi'®i^ surfaces, and 
simply reflects the fact that at both levels of 

approximation, the probability of an electron having a small 
momentum and being located in the nodal plane of the '2 p' 

orbital is vanishingly small.

The form of the 'diagonal' feature in A g (p̂  2  ' P.; î ® ̂  ̂ is
best illustrated by the alternative view of the surfaces
presented in Figure (II. 2. 17). When 8  ̂ = 0*, the 'diagonal'
feature is quite complicated, and consists of negative, and
then positive, regions flanking the diagonal on each side,

with minimal change along the exact (p^2 ~Pi ) axis. To
understand this structure, we recall the explanation of the

shape of the 'diagonal' feature in the corresponding 
H Fg P̂-1 2 ' ^ 1  surface. At the uncorrelated level, this
feature of the g(p^ 2 'P-j zQ,) distribution is characterised by 
two local maxima, one on each side of the exact diagonal, 

with a local minimum along the (p^2 =P,) axis. These maxima 
are attributed to the average effects of the two lobes of 

the '2 p' orbital as they 'appear' to a test electron on the 
symmetry axis at large p̂  (see Figure (II.2.18)). As we have 
already noted, the principal radial effect of correlation in 
this state is to increase the momentum of the '2 p' electron.
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and this causes an expansion of the two lobes of the orbital 

away from the origin. In the AgCp^^fP^ ;8 ^) surface, this 
expansion manifests itself as a reduction, and then an 
increase, in probability on both sides of the diagonal as we

move away from the P̂-|2 ”^ 1  ̂ axis. The difference in
magnitude between the two positive regions which then flank 
the diagonal in Agfp^^fP^iG^) may be explained by noting 
that, in addition to the radial effect described above, 
correlation also produces an increase in probability of
small angles between the momentum vectors. As a
consequence, there is an enhancement of probability when 

P^2 < P̂  and a reduction when P^g^ Pi • The behaviour of the 

Ag(P., 2  ' ̂ 1  ’ ®i  ̂ surface on the exact diagonal is due to the 
presence of the nodal plane; for the reasons given earlier, 
both the HF and correlated description of the system predict 

a small probability when p^ 2 “Pi ' so that the difference 
between these two values is very small.

As 8  ̂ is increased, our ability to distinguish between 
the two lobes of the 2 p orbital decreases markedly, with the

result that the Ag(p^ 2 'P-| ;G^) surface eventually displays
only a negative region along the diagonal, flanked on each 
side by the previously noted positive features. It is 
interesting to note that when 8  ̂ = 90* the disappearance of 

the 'parallel' feature from the Ag(p^ 2 'Pi ;G\) surface allows 
us to trace the 'diagonal' feature back to smaller values of 

p ^ 2 and p^ than was previously possible. Furthermore, for 
this value of 9^, the principal maximum in the surface 

occurs when P^ 2  ̂ ^ 1  ' which again reflects the form of the
angular shift AP(-y ) for this state.
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3Let us now consider the 0^-dependent surfaces for 2 P. 

As before, we shall begin by examining the 0^= 0* surface. 
The parallel' feature in this surface is seen to be broadly 
similar to that for 2 ^P and can be explained in the same 
manner. Inspection of the alternative view of the surfaces 

given in Figure (II. 2. 17) reveals that for 2^P, the 
'diagonal' feature consists of a positive region on the 

side of the (p^^'P^^ axis, a negative region on the 
(Pi2 <Pi) side and, just beyond that, a further, minor 
positive feature. This basic structure of a negative region 
flanked by two positive features is similar to that observed 
in 2 ^P, and reflects the shift to higher momentum of the 
'2p' electron. It is interesting to note that, as for the 
singlet state, the influence of the nodal plane again 
results in minimal change along the exact leading diagonal;

3for 2 P, this line corresponds to the boundary between the 
major positive and negative features which flank the 
(p^ 2 =P,) axis. However, in contrast to 2^P, the enhancement 

of probability on the (P.,2 ^Pi^ side of the diagonal in the 
2 ^P surface is now smaller than that on the (p^2 ^Pi^ side. 
This is obviously a reflection of the difference between the 
angular shifts for the two states; in 2 P, correlation 
causes a reduction in probability of small values of y ,  

whereas in 2^P it causes an increase. In further contrast 

to the singlet state, the surface for 2 ^P displays a much 
greater degree of a symmetry about the diagonal than is seen 
in the 2^P surface. This dissimilarity between the two 2P 
states may arise from the fact that when comparing Figures
II.2 . 6  and II.2.7 we noted that for 2^P, APCy) possesses a
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zero in the region of the corresponding value of while

the angular shift for 2 ^P displays a maximum close to.its 
associated

As 8  ̂ is increased, the behaviour of the 'parallel'
feature in the 2 P surface follows that seen in the singlet
state, gradually reducing in magnitude until it disappears

completely when 8  ̂ = 90". At the same time, the locations

and magnitudes of the positive and negative features in the 

region of the diagonal also change; the major positive
feature is reduced in height, while the smaller positive 

feature approaches the axis. When 8  ̂ = 90", the
triplet surface, like that for 2 ^P, displays a negative
region along the diagonal, with positive features flanking 
it on both sides. However, in contrast to the surface for 

2^P, the principal maximum in the Ag(p^ 2 'P-| ;8^=90") surface 
for 2^P occurs when P^ 2  ̂ P^ . This difference is, of course, 
consistent with the dissimilarity which exists between the 
AP(^) curves for the two states.

Finally for the P states, we consider the overall 
effects of correlation on the interparticle distributions by 

examining the Coulomb shifts, presented in Figure (XI.2.9). 

It is seen that the Affp^^) curves for 2^P display an

enhancement of probability at small P^ 2 ' ^ reduction at

large values; as p^^ is increased further, the Coulomb shift 
for the larger Tweed wavefunction shows a slight positive 
feature. We have already seen that the major radial effect 
of correlation in this state is an increase in the momentum 
of the L-shell electron. In the absence of any other
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correlation effects, such a change would be expected to 

produce an overall increase in p^^- However, we have also 
seen that in addition to this radial change, correlation 
produces an overall reduction in the angle y between the 
momentum vectors. In the absence of other effects, this 
change would produce a general decrease in p^^- From the 

shape of the Coulomb shifts for 2^P, we must conclude that 
in the singlet state the angular effect of correlation is 

dominant, and therefore governs the change in the ffp^g) 
distribution. Interestingly, there is a significant
difference in magnitude between the Coulomb shifts produced 
by the two Tweed wavefunctions for this state. The 
difference, which may be quantified by inspection of the Y 
values presented in Table (II.2.4), suggests that the 
balance between the radial and angular effects produced by 
these two wavefunctions in momentum space is somewhat 
different to that in position space, where the variation 

between the Af(r^^) curves was less pronounced.

In direct contrast to the behaviour of the 2^P curves, 
the Coulomb shifts for 2^P show a decrease in probability at 

small 2 ' with an increase at large values; as p^^ is 
increased further still, both Af(p^g) curves for this state 
become slightly negative once more. For 2^P, the principal 
radial effect of correlation is again an increase in the 

momentum of the L-shell electron, but the major angular 

change is now a shift to larger values of y .  Both of these 
effects lead to increased interparticle separations in 

momentum space, with the result that the Af(p^g) curve for 
2^P displays a shift from small to larger p^^- From the Y
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values in Table (II.2.4), the difference between the Coulomb
shifts evaluated from the two Tweed wavefunctions is seen to

be somewhat smaller in this state. The 'flatness' of these
Coulomb shifts near to the origin is, as for the 2^S state,
due to the Fermi effect, which causes both and
H Ff (p^g) to be vanishingly small as p^^ tends to zero.

The different shapes of the Coulomb shifts for both P 

states is reflected quite clearly in the (p"^) expectation 

values, presented in Table (II. 2.4). For 2^P, <p^2 > is 
increased by correlation, and (p^g) and are both
decreased, whereas each of these changes is reversed in 2 ^ P. 

In the singlet state, correlation causes to increase
slightly, indicating a slight spreading out of the inter
particle distribution, while for the triplet state, this 
quantity is reduced, indicating a 'sharpening up' of fXp^^)-
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CHAPTER (II.2.4)

SUMMARY

Electron correlation effects in momentum space for the 2^S, 
1 32 P and 2 P states of He have been analysed in terms of 

various radial, angular and interparticle momentum density 

distribution functions and expectation values. In view of 
the relatively unfamiliar nature of momentum space, the 

corresponding Hartree-Fock quantities were also analysed in 
some detail.

Examination of the one- and two-particle radial shifts, 

AD^ (p^ ) and AD^^Cp^ , p^), revealed that the principal radial 
effect of correlation in each of the three states is an 
increase in the momentum of the L-shell electron; such an 
effect is in keeping with the inward movement of probability 
seen in position space.

In contrast to the similarity of the radial effects
within the three states, it was found that there is a
significant difference between the angular effect of

correlation in 2^P and that in the other two states. For 
3 12 S and 2 P, angular correlation produces a shift of 

probability towards smaller values of y ,  the angle between
3the momentum vectors of the two electrons. For 2 P, on the 

other hand, the introduction of correlation increases y ;  

this change in the angular behaviour can be traced to the 

triplet nature of the spin multiplicity, combined with the 
specific P-symmetry of this (1s,nl) state.
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Not surprisingly, the fundamental difference in the 

behaviour of the angular component of correlation resulted 

in the Coulomb shift, Affp^^), for 2^P being markedly 
different from those for the other two states. For 2^S and 

2 ^p, angular and radial correlations clearly have opposing 
effects on the p^^“distribution function; as in the ground 
state, radial correlation tends to increase the value of 

P^ 2 f whereas angular correlation produces a shift in 

probability towards smaller p^^. For the triplet P state, 
on the other hand, both radial and angular correlation 
emphasize larger p^^ values, and hence the two components of 
correlation work in unison, as in position space.

The partial Coulomb shifts, Agfp^g'R,), for these
excited states were exceedingly complex by comparison with
that for the ground state. This complexity could, however,
be rationalised by considering the combined radial and
angular effects of correlation, together with a detailed
analysis of the corresponding g functions, the

form of which tended to dictate the shape of the Ag(p ^ 2  ' P-, )
surfaces. In particular it was of interest to examine the

H Fcharacteristics of both the g (p^g'Pi) and AgCp^^'P^) 
surfaces when the test electron, with momentum p̂  , was 

located firstly in the L shell, and then in the K shell.
Finally, for the P states, the distributions g

and Ag(p^ 2 'Pi; 8 ,) illustrated the influence of Fermi and
Coulomb correlation on the lobes of the 2p orbitals in

momentum space.

136



FIGURES AND TABLES - SECTION (II.2)



X  r-
Q

6

L shell. 2

8

4 K shell

0

Pi0. 0 0. 5 1.0 1.5 2 . 0 2. 5

Û- 0

u_X  *-
Q  0

Q.
u_3= ̂

. 6

(b)
L shell. 2

K shell

. 0

Pi
0 . 0 0. 5 2. 51.0 1.5 2.0

. 6

L shell 2  3 R
. 2

4 K shell

. 0

Pi0. 0 2.50. 5 1.0 1.5 2 . 0

Figure (I I .2.1)

The (p^ ) distributions for the (a) 2^5, (b) 2̂  P

and (c) 2^p states of He.

137



0. 008 

0. 004 

0. 000 
-0. 004 

-0. 008 

-0. 012 

-0. 016

(a)

0. 04

0. 02
0. 00

-0. 02 2 .5

-0 .  04

-0 . 06

-0 . 08

0. 04

0. 02

0. 00

-0. 02

-0 . 04

-0 . 06

-0 .  08

Figure (II.2.2)
The one-particle radial shifts AD^ (p^ ) for the 
(a) 2^S, (b) 2^P and (c) 2^P states of He.
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The p j distributions for the
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Figure (II.2.4)
The two-particle radial shifts the

(a) 2^S, (b) 2̂  P and (c) 2^P states of He.
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The angular shifts AP(^) for the (a) 2^S, (b) 2^P

and (c) 2^P states of He.
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The Coulomb shifts Af(p^^) for the (a) 2^5, (b) 2̂  P

and (c) 2^P states of He.
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Figure (II.2.10)

The distributions for the
2^S, (b) 2̂  P and (c) 2̂  P states of He
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An alternative view of the surfaces

presented in Figure (II.2.10).
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The partial Coulomb shifts Ag(p ) for the
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Figure (II.2.13)

An alternative view of the Ag(p^^,p^ ) surfaces

presented in Figure (II. 2. 12).
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Figure (II.2.14)
(see over)
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Figure (II.2.141 

The g”*" (p^ 2 'Pi '  ̂ distributions for the
(a)2‘‘p and (b)2^P states of He.
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Figure (II.2.15)
(see over)
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Figure (II.2.15)
An alternative view of the g"^(p  ̂

surfaces presented in Figure (II.2. 14).
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Figure (II.2.16)
(see over)

152



Fiqurs (11 ,2 ,16)
The partial Coulomb shifts Ag(p^^»P, ; 0^) for the 

(a)2^P and (b)2^P states of He.
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Figure (II.2.17)
(see over)
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An alternative view of the ; 8^)
surfaces presented in Figure (II.2.16).
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(a) Is 2s: Position Space
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(b) Is 2p: Position Space
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(c) Is 2s:Momentum Space (d) Is 2p : Momentum Space

Figure (II.2.18)
A schematic, 2-D representation of the electron 
distributions in 1s2s and 1s2p states of He in position 
and momentum space (not to relative scale).
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State y < p ; ^ <p ; S <Pl> <Pl> o(p^ )

2^S T(32) 0.15723^ 0.25469' 0 .1 0 4 1 9 ' 0 .2 1 7 5 2 ' 0.10438'
T(48) 0.15715^ 0.25463' 0.10423' 0 .2 1 7 5 2 ' 0 .1 0 4 3 5 '
W 0.15853^ 0.25536' 0 .1 0 4 1 9 ' 0 .2 1 7 5 3 ' 0 .1 0 4 3 9 '

D(HF) 0.15931% 0.25605' 0 .1 0 4 1 0 ' 0 .2 1 7 4 3 ' 0 .1 0 4 4 4 '

2^P T O O ) 0.53092' 0.17908' 0 .1 0 7 2 7 ' 0 .2 1 2 3 5 ' 0.98628°

T(45) 0 .5 3 0 0 1 ' 0.17895' 0.10729' 0.21236' 0.98613°

D(HF) 0.5487l' O.I 8 I4 3 ' 0 .1 0 7 0 1 ' 0 .2 1 2 2 4 ' 0.98865°

2^P T O O ) 0 .4 5 4 5 9 ' 0.16722' 0 .1 0 9 1 9 ' 0 .2 1 3 2 7 ' 0.96984°

T(45) 0 .4 5 4 3 0 ' 0.16718' 0 .1 0 9 1 9 ' 0.21328' 0.96979°

D(HF) 0 .4 7 7 2 1 ' 0.17017' .0.10883' 0.21314' 0.97310°

Table (II.2.1)

The one-particle radial expectation values <p"> when n = -2, 

-1, +1 and + 2 ,  and the standard deviation o(p^), for the 2 ^ S ,

1 32 P and 2 P states of He. The superscripts denote the power 

of ten by which each entry is to be multiplied.
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State y <PlP2> <p;p^>

2°S T(32) 0.22597% 0 .3 2 1 6 0 ' 0.53895° 0.48748°

T(48) 0.22570% 0 .3 2 1 4 3 ' 0.53924° 0.48817°
W 0.22812% 0.32263' 0.53836° 0.48723°

D(HF) 0.22962% 0.32380' 0.53569° 0.48025°

2'p T(30) 0.11560% 0.23156' 0.75788° 0.96567°
T(45) 0.11580% 0 .2 3 1 3 5 ' 0.75869° 0.96817°

D(HF) 0.12037% 0 .2 3 5 2 9 ' 0.74686° 0.93493°

2°P T(30) 0 .9 9 5 3 9 ' O. 2 1 2 8 1 ' 0.83593° 0 .1 1 9 9 2 '
T(45) 0.99476* 0 .2 1 2 7 4 ' 0.83622° 0 .1 2 0 0 2 '
D(HF) 0.10631' 0.21856' 0.82782° 0 .1 2 0 0 5 '

The
Table (II.2.2)

two-particle radial expectation values (p^p^) when
n = -2, -1, +1 and + 2 , for the 2°S, 2'P and 2°P states of He. 

The superscripts denote the power of ten by which each entry 

is to be multiplied.
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State Y <COS ‘Y> <2l'22> <-Y>C)

2%S T(32) 0.21469"' 0.11156"' 0.76469"% 89.361
T(48) 0.21298"' 0.11040"' 0.74917"% 89.368
W 0.19637"' 0.10319"' 0.71470"% 89.409
D(HF) 0.0 0.0 0.0 90.000

2'p T(30) 0.28967° 0.78390"' 0.43625"' 85.504
T(45) 0.28996° 0.78554"' 0.43622"' 85.495
D(HF) 0.28711° 0.72819"' 0.35147"' 85.824

2°P T(30) -0.32853° -0.10568° -0.65054"' 96.067
T(45) -0.32871° -0.10586° -0.65306"' 96.077
D(HF) -0.32512° -0.10201° -0.66098"' 95.855

Table (II.2.3)

Values of <E^.E 2 /p"p"> when n = 2, 1 and 0, and <t>, the
3 1average angle between the momentum vectors, for the 2 S, 2 P 

and 2%P states of He. The superscripts denote the power of 

ten by which each entry is to be multiplied.
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State y <Pl2> < p % > °(Pl2) Y(%)

2%S T(32) 0.72527° O.I 8 O 5 4 ' 0 .4 3 3 5 1 ' 0 .1 0 3 7 2 ' 0.265°
T(48) 0.72498° O.I 8 O 6 0 ' 0 .4 3 3 5 5 ' 0.10362' 0.231°
W 0.72512° O.I 8 O 5 9 ' 0.43362' 0.10368' 0.228°

D(HF) 0.72356° O.I 8 O 9 2 ' 0.43486' 0.10369' —

2 'p T(30) 0.87041° 0 .1 7 2 7 9 ' 0 .4 1 5 9 7 ' O.IO 8 3 5 ' 0.344°

T(45) 0.86828° 0 .1 7 2 1 5 ' 0 .4 1 5 9 9 ' 0.10938' 0.513°

D(HF) 0.86525° 0.17326' 0.41746' 0.10828'

2°P T(30) 0.72249° O.I 8 2 1 5 ' 0.43956' 0.10382' 0.490°

T(45) 0.72253° O.I 8 2 2 0 ' 0.43962' 0 .1 0 3 7 5 ' 0.509°

D(HF) 0.72674° O.I 8 I8 2 ' 0 .4 3 9 5 0 ' 0.10436' -

Table (II.2.4)
Values of when n = -1, +1 and + 2 ,  the standard

deviation, and Y, the percentage of ^(P.,2  ̂ shifted by

correlation, for the 2%S, 2 'P and 2°P states of He. The 

superscripts denote the power of ten by which each entry is 

to be multiplied.
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SECTION (III)

MOMENTUM-SPACE CORRELATION EFFECTS IN THE 
2^S AND 2^P STATES OF LITHIUM



CHAPTER (III.1.1)
INTRODUCTION

The effects of correlation in open-shell excited states 
of helium are quite different to those which occur in the 
ground state of the atom. This suggests that in a 

many-electron system, the interaction between two electrons 
in the same shell will be quite distinct from that which 

occurs between electrons in different shells. Of course, it 
might be argued that the relatively long range of Coulombic 
potentials means that, in reality, the motion of any one 
electron will be inextricably linked with that of all the 
others, so that attempts to differentiate between 
correlation effects in this way are meaningless. However, 
comparisons between experimental electron densities and 
those calculated from Hartree-Fock wavefunctions indicate 
that the exact electron density of an atom possesses a shell 
structure very similar to that predicted by the uncorrelated 

description*^*. As a consequence, electron-electron
interactions in a many-electron atom can indeed be 
classified broadly as intrashell or intershell effects. If 
we are to be able to extend our analysis of electron 

correlation from two-electron atoms to more complicated 
systems, we must consider how these different effects may be 

isolated and quantified.

For an N-electron atom described by a normalised 

position-space wavefunction ♦ (x^iXg» • * * '  ̂' the
distribution function of the distance r between electrons

m n

m and n is defined by

164



f(r ) = X ïï(x ,x ) dx .dx /dr . (III.1.1)
mn  m n m n m n

The spin-dependent two-particle density, 1T(x ,x ) , is
m n

defined in turn by

= (2 ) “

X  ^  f 2 5 ^ 2  I '' ' ' — m  t ' ‘ f • * * f — ^  f 2 ^ 2  I ' ‘ ^ “ m  ' ' ' ^ “ n  ’ ' ' ' f )

X dx dx ...dx dx ...dx dx ...dx . (III.1.2)
1 c I B- 1  i B+ 1  n - 1  n + 1 N

NThe binomial factor (^) ensures that the two-particle 
density is normalised to the number of electron pairs in the 
system. In Chapter (II.1.2) we saw that, by analogy with 
the work of Coulson and Neilson*^* , the total Coulomb hole 
for the electron pair (m,n) can be defined by

Af(r ) = f=°'"(r ) - f"F(r ) , (III.1.3)
IB n IB n IB n

where f(r ) is evaluated at the correlated and Hartree-Fock
IB n

levels respectively. Now, in a helium atom, there is only 

one pair of electrons, and the Coulomb hole therefore 
measures the average extent to which those two electrons 

avoid each other. For larger atoms, however, the
indistinguishability of the electrons and the averaging 
process which is implicit in Equation (III.1.2) together 
imply that Af(r ) will only measure the average extent to

IB n

which any two electrons avoid each other. As a consequence.
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Equation (III.1.3) gives no indication of how the various 

intrashell and intershell effects in the system differ in 
magnitude or characteristics; similar problems occur when we 
consider any other correlation property derived from the 

two-particle density. Clearly, if we are to obtain a 
complete understanding of correlation effects in a 

many-electron atom we must first find a way to divide the 
system into identifiable electron pairs, each of which can 
be studied in relative isolation from the remainder.

A number of attempts have been made to describe atomic 
systems in terms of separated groups of electrons.*^* One 
of the earliest was that of Hurley, Lennard-Jones and 
Pople*^** in 1953. In their approach, which has become 
known as the Separated Pair Approximation, the wavefunction 
for an N(=2n) electron atom is written in the form

) = ACa^ (2Ç̂  A^ (X3 ,x^ ) . . . (x^ ,x^ )3 ,
(III.1.4)

where the antisymmetrising operator includes an
appropriate normalising constant, and the two-electron 

functions (now usually referred to as geminals^**)
describe localised electron pairs. One of the disadvantages 
of the method is that the equations determining the optimum 
geminals are coupled, and rapidly become difficult to solve 

as the number of electrons increases. Furthermore, in order 
to obtain tractable formulae for the determination of the 

geminals, it is necessary to introduce the arbitrary 
condition that
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XAp(x^,x^) A^(]ç^ ,j{̂ ) dx. H 0 . (III.1.5)

P#q

As Arai*^* and Lowdin*^* have pointed out, the strong
orthogonality condition expressed by Equation (III. 1.5) 

implies a complete separation of the Hilbert space into n 
distinct and orthogonal sub-spaces. Each geminal has an 

expansion within one of these subspaces only, with the 
result that no intershell correlation effects are taken into 

account. Several attempts*^* have been made to extend the 
method by considering more than two electrons at a time, but 
most of the methods suffer from the restrictions of 
arbitrary orthogonality conditions of some form.

Following the success of Brueckner and Gammel in
calculating the energy and density of nuclear matter, it was 
suggested that Brueckner's many-body theory of nuclear
structure might be equally applicable to atomic and

molecular problems. In contrast to the familiar Hartree- 
Fock approach, in which one considers a particle moving in 
the potential due to an undisturbed charge distribution, the 
Brueckner theory allows nucleons to correlate in pairs while 
moving in a medium which they are constantly polarising. 
Unfortunately, although the method is useful for dealing 

with idealised problems involving infinite 'seas' of matter, 
complications arise when the theory is applied to systems of
finite size, such as atoms or molecules. For example, the
potential due to the polarised medium is strongly dependent 

on the orbital upon which it acts; as a consequence, the
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orthogonal ground state orbitals cannot be obtained 
easily*^ ° .

Other attempts to describe many-electron systems have 
made use of the theory of the 'infinite electron gas'*^^* . 
In this approach, which is concerned principally with 

metals, one replaces the periodic lattice of nuclei by a 
smeared out, positive charge distribution. However, for 

such a system it is found that the Hartree-Fock 'orbitals' 
are, in fact, plane waves, and the resultant delocalisation 
of the electrons prevents anv meaningful partitioning of the 
system into identifiable particle groups.

In an effort to avoid the problems associated with the 
introduction of a d  h o c  constraints or simplifications such 
as those which occur in the methods discussed above, 
Sinanoglu* ̂  ̂  * and his coworkers have developed a method of 
describing an N-electron atom by considering the electrons 
in groups of 1,2,3,...,N at a time. The method takes as its 
starting point an orbital description of the system, which 

can be (but is not necessarily) the Hartree-Fock wave- 
function. This particular choice is appropriate for our
present purposes, since it allows correlation effects 
between progressively larger numbers of electrons to be 

introduced in a systematic way.

A complete discussion of Sinanoglu's formulation, which 
has become known as 'Many-Electron Theory' (MET), lies 
beyond the scope of the present w o r k * ^ ^ . However, in order 
to appreciate the application of MET to the analysis of
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correlation effects, it is necessary to have both an 
understanding of the basic principles involved and some 
familiarity with the nomenclature used.

According to Sinanoglu, the exact wavefunction

♦ (2^ fXg' ' an N-electron atom can be written as

♦ (x^ ,x^ , . . . ,x^ ) = A C  ( (x^ ) (Pg (x^ ) . . . (x^ ) ) X

(1 +
(: (2^ )/«Pj (2j ) ) +
i

+ . . . +

(III. 1 .6 )

In Equation (III. 1.6), x^ denotes the space and spin 
coordinates of the 'i'th electron, A  is the antisymmetrising 
operator (which also contains the normalisation factor 

(N!)”^^^), (2 j ) is a normalised orbital, f^(x^) is the
orbital correction term corresponding to tp̂ (x^ ) , and

j (2  ̂,2 j ) is the pair correction function associated with 
(2j ) and ip̂  (3^̂  ) ; the higher order U terms represent 

correction functions corresponding to larger aggregates of 

electrons. The f and U functions satisfy orthogonality 
conditions of the form

< q>i I f i > = 0

<M>i l^i ̂ > = 0
<tPl|Ui^j^>= 0 etc, (III.1.7)
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where, for example.

It is important to note that these orthogonality conditions 

are rigorous and are not, therefore, arbitrary 
simplifications such as Equation (III. 1.5) was.

If we select the y^(x.) terms in Equation (III.1.6) to 

be Hartree-Fock orbitals, we can rewrite ♦(2  ̂» 2 3  r • • • ? )  in 
the form

*(2^ ,2g , . . . ,2^ ) = (2^ ,2g,... ,2^ ) + X(x^,&2,...,x^) ,
(III. 1. 8 )

where * (x.̂  , x^ , . . . , x^ ) is the Hartree-Fock wavefunction 
(normalised to unity), defined by

♦ (2^ ,2%, ' ,2^) = A[*i (2, )V2 (X2 )...v^(x^)], (III .1.9)

and X(x^,x^f•••f2^ ) is the correlation correction to it, 
defined by

x(a,,&2, = 4[(ip, (2 , )<(>2 (Xj) . . . ( 2 ^)) X

((t (2,)) +

(2!)*’'^ a  Uj J (2, ,2j )/tPj (2, )<Pj (2j ) )

+ . . . +

( N ! ) " 1 / 2  (U^ 2 . . . N ^“ 1 '-2 ' • • • '-N  ̂ (̂ 1 ) * 2 ( 2 ^ ) . . . * M ( 2 H ) ) ) ] '
(III.1.10)
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It is important to note that it is not necessary for the 

(Xj) terms in Equation (III.1.6) to be Hartree-Fock
orbitals; the first term on the RHS of Equation (III.1.8)
could be constructed from any other suitable set of spin
orbitals, but would not then be the Hartree-Fock wave

function. Similarly, in such circumstances, the second term 
in Equation (III.1.8), although still a correction function, 

would not be solely a correlation correction function.
Thus, for the purposes of the present analysis, the choice

of (2 £̂  ) as Hartree-Fock orbitals will be seen to be the
most convenient. From the orthogonality conditions
(Equations (III.1.7)), we have

|X> = 0, (III.1.11)

where < |> denotes integration over all appropriate space and 
spin variables. As a result, 4* and 4* obey the so called 
intermediate normalisation condition

!♦> = 1, (III.1.12)

so that the normalisation of 4» is arbitrarily expressed as 

<♦!♦> = 1 + <X|X>. (III.1.13)

The technique by which Sinanoglu obtained 
Equation (III.1.6) has become known as the Method of 
Successive Partial Orthogonalisations*^^* (MSPO). The same 

procedure may be used to obtain expressions for the 
correction functions f ^ ^  etc. For convenience, we
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define the product of all occupied Hartree-Fock orbitals by 

^ = (M>̂  (x^ )q> 2 (x^ ) . . . (2^ ) ) . (III. 1.14a)

In a similar manner, we define

= '^-1 + i (2£.^,)...M>,(2,))
(III.1.14b)

and

"ij = (a, ) * 2  (a,

• (III.1. 1 4 0

Furthermore, to simplify our notation we shall, unless 
stated otherwise, adopt an 'implied labelling' convention. 
That is, prior to the action of any antisymmetriser, the 
functions f. and are functions of  ̂ is a function
of X and , and so on. Multiplication of
Equation (III. 1.6) by ÏÏ*, followed by integration over the 

space-spin variables , 2 i _ , , 2 . ..,2^ results in
the following expression

<TT̂  !♦> = M((p̂  + f^) , (III. 1 .15)

where the integration denoted by < |> is understood to be 

over all variables which are common to both the bra and k e t . 
The constant M in Equation (III.1.15) arises from the 

normalising constant implicit in the antisymmetriser A

Multiplying Equation (III. 1.15) throughout by tp* (2^ ) and
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integrating over 2 ,̂ we find

<n|+> = M, (III.1.16)

whereupon we have

f^(x^) = <n^| + >/<%! + > - (III.1.17)

By means of a similar process we may obtain an explicit 

expression for the pair functions U.^. Thus, multiplication 

of Equation (III.1.6) by ïï*̂  and integration over the 
space-spin coordinates 2  ̂f x^ , . . . ,2  ̂_ f x^ ̂  ̂ . ,2  ̂_ x^ ̂  ̂ ,

. . .2 ,̂ yields

<n.jl+> = M[ (q>. (2^ ) M>. (Xj ) - *^(2j)Vj(x^)) +

- *i(Xj)fj(2i)) +

( f j  ( 2 j  )»Pj  ( X .  ) -  f ^ ( 2 j ) V .  ( x ^ ) )  +

(2)'/: (%,,%,)] (III.1.18)

Substitution for M from Equation (III. 1.16) and some 

rearrangement then yields

*|) - (f. ] (III.1.19)

173



In Equation (III.1.19) we have introduced the additional 

convention that the explicit dependence on electron
coordinates is indicated by the ordering of the product
functions; thus, for example,

(x^ ) (Pj (Xj ) - (P̂ (2j )»Pj (2j ) ) .

Clearly, the method of Successive Partial Orthogonalisations 

may be used to obtain explicit expressions for any of the 
other correlation functions in Equation (III.1.6). 
Furthermore, although the analysis given here has been for 
the exact wavefunction, it is obvious that, given an 
appropriate set of Hartree-Fock orbitals (x^ ) we may apply 
this procedure to anv approximate wavefunction and thereby 
obtain expressions for the various correlation effects which 
are implicitly contained in that function. At this point it 
is appropriate to consider the physical significance of the 

various terms in Equation (III. 1.6).

The effects of electron correlation in an atom or 
molecule are due to the difference between the instantaneous 
Coulomb potential experienced by each electron and the 
average potential predicted by the Hartree-Fock 
wavefunction; Sinanoglu has referred to this difference as 

the 'fluctuation p o t e n t i a l ^ ^ . The major features of this 

potential are that it has a shorter range than the full 
Coulomb potential, and that it possesses attractive as well 
as repulsive characteristics. When two electrons approach 

each other to within the range of their mutual fluctuation 
potential, the event is described as a 'collision' between
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the electrons. In Equation (III.1.8), may be thought of

as a medium in which the N electrons ar..e moving, each seeing 

a static potential. The function f^ in Equation (III.1.10) 

then adjusts orbital to the field of the other electrons
to an extent beyond the HF potential, and the U terms 
correct for collisions among progressively larger groups of 
electrons at a time. (References to 'time' are permissible 

since the theory could have been based equally well on a 
time-dependent formalism such as the one used by 

Goldstone*^^*.) Clearly, an 'n-electron' correlation term 
will be large only when the probability of finding n 
electrons within the range of each others fluctuation 
potential becomes appreciable. By analogy with the theory 

of imperfect g a s e s * w e  may refer to the successive 
correlation terms in Equation (III.1.10) as one-, two-, 
three-, e t c  electron 'clusters'. The further classification 
of these clusters into 'linked' or unlinked' types has been 
discussed by Sinanoglu* ̂ ® * .

In terms of Cl nomenclature, the f̂  functions depend on 
the presence of configurations in the wavefunction which 
arise from single excitations within a basis set of HF 

orbitals. A consideration of Brillouin's theorem*^^*
indicates that the f̂  functions will appear in the 
wavefunction to second order only, and will therefore 
contribute to the total energy only in the fourth order. In 
1963, Sinanoglu and Tuan*^*** gave a number of reasons for 
expecting these orbital correction functions to be small. 
Since then, however, a number of workers have suggested that 
the f̂  functions could be significant when determining

175



properties other than the energy; in particular, Stanton* 

has claimed that orbital correction functions may be 
important when evaluating electron densities. In an effort 
to gain further insight into the importance of the f̂  terms, 

Taylor and Banyard*^^* studied the orbital correction 
functions derived from Cl wavefunctions for a number of 
two-, three-, and four-electron atomic ions. They evaluated 

the changes produced by the f̂  functions in the one-particle 
radial densities, and attempted to rationalise those changes 
in terms of the corresponding fluctuation potentials. Of 
particular interest was their discovery that for the Be-like 
ions, where the 2s and 2p orbitals are nearly degenerate, 
the orbital correction function produces a relatively large 
change in the 2s orbital density - an effect apparently not 
anticipated by Sinanoglu and Tuan*^°*.

Banyard and T a y l o r * t h e n  extended their analysis to 
an examination of the pair correlation functions for the 
same set of ions. From a correlation point of view, these 

j terms, which result from doubly-excited configurations 
in the Cl expansion, play the most important role in the 
correlation function X because they represent a direct 
change in the wavefunction due to the instantaneous 

electron-electron correlation interactions. Since is a
function of six space variables, any pictorial 

representation of it can be accomplished only by specifying 
explicit values for some of those variables, and then 

varying the others. Using a series of contour diagrams
obtained in this manner, Banyard and Taylor were able to 
highlight several differences between K- and L-shell pair
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correlation effects in the four-electron ions. Furthermore, 

when compared with the results obtained by other workers, 
their analysis was also particularly fruitful in revealing 
certain deficiencies in the Be intershell description 

afforded by the wavefunction of Weiss*

To overcome the difficulties encountered in the 

graphical description of the U.^ functions, Banyard and 

Mashat*^^* then proposed a more compact method of analysing 
correlation effects between specific electron pairs, based 
on a partitioned form of the Coulomb hole. Using 
Many-Electron Theory, they were able to show that, with 
certain approximations. Equation (III.1.3) can be written in 
partitioned form as

Af(r ) *» E Af,,(r ) , (III. 1 .20)m n I J m ni < i

Where Af (r ) = ff®'*'*(r ) - f”*'(r ) (III.1.21)ij ran i j mn Ij mn

-  f n"F(x ,s. ) ds ,d2  /dr . (III. 1.22)i j m n  m n mn

In each case, the ordered pairs (i<j) refer to occupied HF 

orbitals. The Hartree-Fock and correlated densities 

and n"^ are obtained by substituting Equations (III.1.9) and 
(III.1.6) respectively into Equation (III. 1.2) and then 
partitioning the resulting total densities into their 
pairwise components. For a single-determinant Restricted 
Hartree-Fock (RHF) wavefunction, this procedure is exact.
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whereas the resolution of ÏÏ (x ,x ) into intrashell and 
intershell terms alone can be achieved only approximately. 
(Inspection of Equation (III.1.10) reveals that the 
relatively insignificant higher order correlation correction 
terms involving three or more electrons cannot be 
partitioned unambiguously, and must be omitted from the 
expansion of ♦ before its substitution into 
Equation (III.1.2)).

For a series of Be-like ions, Banyard and Mashat*^^* 
used Equation (III.1.22) to obtain the Coulomb hole 
corresponding to each pair of Hartree-Fock orbitals. For 
the correlated description of each system they used the Cl 
wavefunctions of W e i s s * w h i c h  are constructed from a 
non-orthogonal basis set; to make the resulting analysis 
more tractable, terms of second order in the correlation 
correction to 4* were omitted from the final expressions 

for ,X ). Although the single Af(r ) curve
* j  IB n IB n

obtained for each electron pair contained less detail than
(23)the contour diagrams used by Banyard and Taylor , it 

possessed the particular advantage of providing an immediate 
visual comparison, not only between systems, but also 
between different effects in the same system.

Banyard and Mashat found that the Af(r ) curves for the
IB n

K shell were very similar to those obtained for the 
corresponding two-electron ions. The Coulomb holes for the 
(Isa 2sa) and (Isa 2sp) pairs were particularly interesting; 
the (Isa 2sa) curves were inverted by comparison with the 
'holes' obtained by Boyd and Katriel*^^* for thé 2^S state

178



of the He-like ions. To investigate the possibility that 
such findings were the result of restrictions imposed by 
Weiss when constructing his wavefunctions, Banyard and 

Mobbs*^^* then applied a similar analysis to a variety of 
other accurate wavefunctions, each describing the ground 

state of Be. For the comparison of these relatively 
sophisticated wavefunctions, the partitioning technique used 

to obtain ,x ) was extended to a higher level of* J r a n

approximation by the retention of all the 'second-order'
(25)product terms omitted by Banyard and Mashat

Banyard and Mobbs*^^* found that for the K- and L-shell 
Coulomb holes, the differences among the various wave- 
functions were relatively small. For both shells, all the 
wavefunctions produced curves of the same general shape and 
magnitude as the corresponding Coulomb holes obtained by 
Banyard and Mashat using the Weiss wavefunction. In 
contrast to this, although all the Coulomb holes
corresponding to a given intershell electron pair possessed 
the same general characteristics, the variation among the 
curves calculated from the different wavefunctions was quite 
marked; these differences were sufficiently large to 
produce significant changes in the total Coulomb holes.

To examine the sensitivity of their results with respect 

to the approximations made in the partitioning of the 
correlated two-particle density, Banyard and Mobbs also 
calculated the Coulomb holes for the energetically best 
wavefunction using the simplified analysis of Banyard and 
Mashat. The K-shell curve was found to be essentially
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unchanged to within graphical accuracy, and the changes in

the intershell holes' were also small. The greatest effect 

occurred for the 2 s- 2 p near-degeneracy effect which exists
in Be. It was calculated that for systems in which such

effects do not occur, the partitioning technique of Banyard 
and Mashat should prove to be adequate for the analysis of 
correlation effects.

Following the observation that momentum space provides 
an interesting alternative view of the effects of electron 
correlation, Mobbs and Banyard*^** then extended their 
analysis by performing a momentum-space study of Be.
Interestingly, they found that, whereas in position space 
the correlation effects in the K and L shells are of 
comparable magnitude, in momentum space the effects in the 
L-shell are significantly greater than those in the K-shell

so much so that the total Coulomb shift is almost 
completely dominated by the L-shell component. This is in 
direct contrast to the results in position space, where it 

is found that the total Coulomb hole for Be exhibits 
distinct intershell effects.

(29)Recently, Al-Bayati has extended the earlier work of
Taylor and B a n y a r d * b y  using Many-Electron Theory to 
examine the Coulomb holes and a variety of other 
position-space correlation effects in the 2 S and 2 P states 

of a series of Li-like ions. To complement his analysis, we 
present here a study of the same two states of the neutral 
Li atom in momentum space. For both states, we have treated 
the atom as three identifiable electron pairs, and have
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assessed the effects of correlation on each component pair 

by examining several different aspects of the corresponding 
two-electron distribution. In keeping with our earlier 
study of . excited states of helium, we have attempted to 
construct, for each electron pair, a self-consistent model 
of electron correlation which encompasses all of the 
observed effects. Where appropriate, comparisons are made 
with the corresponding position-space results of Al-Bayati, 

as well as with the results of earlier momentum-space 
studies of other two- and four-electron systems.

In Chapter (III. 1.2), we consider how the necessary 
partitioning of the description of the Li atom may be 
achieved at both the Hartree-Fock and correlated levels.

181



CHAPTER fill.1.2)

PARTITIONING OF THE TWO-PARTICLE MOMENTUM DENSITY

Our investigation of electron correlation effects in Li 
is based on properties derived from the spin-dependent 

two-particle momentum density, T(x ,2£ ). For an N-electron
in n

m o m e n t u m - s p a c e  w a v e f u n c t i o n ,  , x ^  , x ^  ) , n o r m a l i s e d  t o

u n i t y ,  r ( X  ,x  ) i s  d e f i n e d  b y

r(2̂ ,x̂ ) = (g) J Y*(x,rX̂ .-.x̂ ) Y(x̂ ,x̂ ...2̂ ) x 
d2, dX2....dx^_^ d2^,,...dx^_^ dx^^^...dx^ ,

(III. 1 .23)

where x. denotes the momentum space and spin coordinates of 
the i'th electron, and P(x ,x ) normalises to the number of 
distinct electron pairs in the system. Due to the 
indistinguishability of the electrons, the choice of m and n 
in Equation (III. 1.23) is quite arbitrary, and for
convenience we set m = 1 and n = 2. For the Li atom. 
Equation (III. 1.23) then becomes

r(x^ ,2g ) = 3 J Y*(x^ ,Xg ,x^ ) Y(x.j ,x^ , 2 3  ) d23 . (III. 1.24)

At the Hartree-Fock level, the partitioning of 
Equation (III.1.24) into pairwise components is relatively 
straightforward. We assume that the Restricted Hartree-Fock 

wavefunction, Y (2 ., ,2  ̂, 2 3  ) is a single determinant, 
constructed from orthonormal orbitals . (If the are not
orthonormal, they can be made so by application of the
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Schmidt*^*** procedure, prior to the analysis presented 
he r e .) We have then

.gg.x,) = A (D, (X, (III.1.25)

where A is an antisymmetriser, which also contains the 

normalisation factor (3!)“^^^. The usual interpretation of 
the operator A is that it permutes the electron coordinates 
within the expression that it acts upon, while maintaining 

the ordering of the orbital labels, so that

A (2^ )<P2 (X^ )«P3 (x^ ) ) = (3!)"^^^ [ (2^ ) < < > 2 ( ^ 2  ̂ * ^ 3  ̂ -3 ̂

-(Pl (2^ )(pg (Xg)*] (Xg )
(2^ )(Pg (x^ )tp̂  (Xg )

etc ] .

It is, of course, equally correct to maintain the ordering 
of the coordinates in the expression, while permuting the 
orbital labels. Thus we can write

A (Y, (2^ )*P2 (2g )M>3 (2g ) ) = (3!)"^/^ [ (2^ ) <p2 (22 )<p3 (2g )

(2^ )M>3 (Xg )(p̂  (2g )

+IP3 (2  ̂)<P.j (2 2 ) ^ 2  ( ^ 3  ) 
etc ] .

Although the difference between these two approaches appears 
to be trivial, the latter grouping of terms is significantly
more convenient for the analysis that follows, since it

provides a means of factorising out all references to 
electron coordinates x.̂ and x^ , thereby facilitating the
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integration over required by Equation (III.1.24).

Accordingly, Equation (III.1.25) can be rewritten as

) =

Ol)"'*''^ E ((p̂  (x^ )(p̂  (Xg ) - tp̂ (x^ )(p̂  (x^ ) ) y^CXg) (-I)P,

(III.1.26)

where p represents the permutation from the product

( «P., (x^ ) (x^ ) ̂ 3  (x^ ) ) . To simplify our notation, we shall
hereafter assume that each occurrence of the symbol "E " 
implies a summation over all allowed values of the summation 
index (or indices) on the terms that follow it. Thus, for 
example, in Equation (III.1.26) the summation is taken over 
the ordered pairs (i<j). Further simplification is achieved 
by again adopting an 'implied-labelling' convention, so that 
Equation (III.1.26) becomes

H'” ''(X, ,22'^3> = (3 ! ) " ' t  (-I)". (III.1.27)

Substitution of Equation (III.1.27) into Equation (III.1.24) 
then yields

r^^x^^x^) =

(2)'^ E E ( M>, ip*-ip* (p* ) (M>. tp -tp.tp, ) (-1)^*P Jcp*<P^dx .
I J J I  I  j  J I K k 3

(III.1.28)

Now, since the HF orbitals are orthonormal, we have
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, (III. 1.29)

and when K = k, the ordered pairs (I < J) and (i < j) must 
be the same. As a result, the permutations P and p must 
also be identical, so that Equation (III. 1.28) becomes

,Xg ) - (2) E ) I (III. 1.30)

or = z r"j(x^,x 2 ) ,

where

(III.1.31)

(2 ^, 2 2 ) = (2)"' (tp* ) ( ( p ^ t p ^ «P. ) , (III.1.31a)

which is the (exact) partitioned form of the Hartree-Fock
two-particle momentum density. Thus, the uncorrelated
spin-dependent two-particle momentum density has been

partitioned into a number of component densities, 
H Fj (2 ., , Xg ) , each of which is associated with an identifiable

pair of occupied spin orbitals ip̂ and (p̂ in the Restricted
Hartree-Fock representation of the system. The analogous
spin-less component two-particle momentum densities, 
H F6^ j (B., , ^ 2  ) ' may then be defined in the usual way by

8 1,(2 , ,2 3 ) = X r"j(%, .X;) ds,dSj , (III. 1.32)

where is the spin coordinate of the i'th electron.

As we saw in the previous Chapter, the partitioning of
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the correlated two-particle momentum density requires the 

use of Many-Electron Theory. Although MET was developed by 

S i n a n o g l u * 1 3 )  gor application to position-space problems, 

the principles of the theory are equally valid in momentum 
space. Furthermore, as a result of the isomorphism of the 

D i r a c * 31) transform which connects the position and momentum 
representations, the cluster expansion of a correlated 

N-electron wavefunction in momentum space has exactly
the same form as its position-space counterpart,

Thus can be expressed in the form

: \  '-s. )

+ .

(III.1.33)

where we have retained the symbols q>̂ , f ̂ ^  etc to denote 

respectively HF orbitals and correction functions in
momentum-space. and the HF orbital products, ÏÏ, ÏÏ. etc are 

defined by analogy with the corresponding position-space 

terms (see Equation (III.1.14)). The orthogonality
relations expressed in Equation (III. 1.7) also apply in 

momentum-space.
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Clearly, for the three-electron systems studied here, 

the complete expansion of would terminate with the

U . t e r m s  in Equation (III. 1.33). However, in order to 
decompose the wavefunction, and hence the momentum density, 
into contributions from identifiable electron pairs, it is 

necessary to truncate the expansion of Y^°^^ after the  ̂

terms, whereupon for the Li atom, we have

,x^,x^) .

C A ( n + [ ) + (2!)-'/: t n  ̂ ) ) ,

(III.1.34)
or

Y*'®'* (x^ ,X^ ,x^ ) a: C [ Y***" (X^ , X^ ,x^ ) + \|)(x̂  ,X^ ,x^ ) ] .

(III. 1 .35)

In Equation (III.1.35), y”  ̂ is the Hartree-Fock wavefunction 
of the system, 4» is the truncated correlation correction 
function defined by

4)(x  ̂,x^ ,x^ ) =

A ( I Tt.f.Cx,) + (2!)'1/= t  U;j(x^,%j) ),

(III.1.36)

and the introduction of the constant c ensures that Y^*^^ 

now normalises to unitv (compare Equation (III.1.13)).

If we now substitute Equation (III.1.35) into
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Equation (III.1.23) we obtain

,%2) -

3 ; (y”*" (x^ ,x^ ,x^ ) + Y(X^ ,x^ ,x^ ) )* X

(Y"^(2i,22,Xg) + 4*(2̂  ,Xg ,x^ ) ) dx^ , (III. 1.37)

or

r=°''(x^,x2) *

3 c { <y "^|y"'‘>̂  + <Y |*>2 + <*|Y"^>2 + <v|)|4>>3 > ,

(III.1.38)

where < I >3 denotes integration over x^ only. Now, following 
Banyard and M a s h a t * , we discard the last term in 
Equation (III. 1.38) and renormalise, so that

r = ° ' " ( X ,  , X , )  a:

3 { <y ***'|y”^>^ + <Y"^|4^3 t <Y"F|*>^ } . (III.1.39)

(The new normalisation constant is unity). From symmetry 

considerations, it can be shown that

whereupon

(x^ ,x^) a: 3  ( <Y"F|Y"F>^ + 2 <Y"F|*>^ >. (III.1.41)

The first term in Equation (III. 1.41) is, of course, the
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Hartree-Fock two-particle momentum density, which we have 

already expressed in partitioned form (see

Equation (III.1.30)). We have then

° ( X . J  , x ^  ) [  ( 2 ) ' ^  I ( (p* t p * - t p *  (p* ) (M>  ̂ < P j- ip ^ tp ^  ) ]

+ [ 6<Y"f|*>2 ]. (III.1.42)

We consider now the evaluation of <Y 14)>̂  , and begin

by partitioning the correlation correction function, 4>.

From Equation (III.1.36) we can write

(-1 '-2 '-3 ̂ ' (III-1 43)

where

<l>, (a, .Xj.Xj) = 4 [ E n,f|(%|) ] (III.1.44)

and

*2 (3 , .ag.a, ) = (2!)"'/: A [ E ]. (in.1.45)

Now from Equation (III.1.44)

4)̂ (x^ ,Xg ) = A  [ (x^ )Y2 (2 « 2 )M> 3 (X3  )

+ (x^ )f2 (X2 (^3 )

+ (X^ )*P2 (^2 ^^3 ̂ -3 ̂ ̂  ' (III. 1.46)

and to partition this, we note that the action of the
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antisymmetriser produces a total of 18 terms, which fall 
into three distinct categories :

1) Those where the f term is a function of ,

2) Those where the f term is a function of

and 3) Those where the f term is a function of x ^ .

By analogy with Equation (III.1.26) for the HF wavefunction,

the partitioned form of may then be written as

= (3 E [ ( <P|̂

+ -(Pj ) f^ ) ( - 1 )^ ] ,

(III.1.47)

where p represents the permutation from the reference term.

We now attempt to partition in a similar manner.
Following the action of the antisymmetriser,
Equation (III.1.45) also produces 18 terms, which now fall 
into two categories :

1) Those where the pair function  ̂ contains a 

reference to x̂  a n d  x^,

and 2) Those where the pair function Ü. ̂  contains a 
reference to x̂  or x^ b u t  n o t  b o t h .
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Now, it can be shown that

"i4 =  -u. (a ,2 ) , (III.1.48)4 j  m n i j n m

and therefore we can write the partitioned form of the 6 

terms in the first category as

(2!)" 1/2 (3!)-1/2 [ 2 (p̂ (-1)^.

Clearly, by their very nature, the terms in the second 

category cannot be partitioned so that references to 
electrons (1) and (2) can be factorised out simultaneously. 
Fortunately, this difficulty can be resolved quite easily, 
as we shall demonstrate in due course. For convenience, we 
introduce a new antisymmetriser, >A, which, like 4, includes 
a factor of but which now produces all
permutations except those where the pair function contains a 

reference to x^ a n d  x ^ • Thus, A  does not yield any
of the terms already accounted for. Furthermore, it is 

important to note that all the terms produced by the action 

of A  involve the pair function being a function of x ^ .

Making use of A i we can then write

>l>2 (X, ,22-̂ 3 ’ " (2!)"''̂  E [ ( 2(3!)’’'̂ Ü  ̂ (-1)’’ )
+ ( À ) ] ,

(III.1 .49)

and substituting Equations (III. 1.47) and (III. 1.49) into
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Equation (III.1.43), we obtain

*(%, ,2 2 ,2 3 ) = { (3!)-''2 Z [ (

+ ) (-1)' ] )

+ ( 2(2!)"1/2 (3!)-1/2 z [ ( (-1)’’ )

+ (((3!)’'^/2) ) ) ] ).

(III.1.50)

Now, by analogy with Equation (III.1.19), the momentum-space 
pair function is defined by

U|j(2,,2j) = (2)"’^^ [ I^^ - (q)|<Pj-iPj iPj )

- (*.fj-fj*|) ], (III.1.51)

where

i.j = ( <%.. )

and, it will be recalled, <|> denotes integration over all 

variables common to the bra and ket. Using
Equation (III. 1.51) to substitute for the first occurrence 

of j in Equation (III.1.50), we find

192



4)(X̂  ,Xg ) = (3! )-1/2 £ [ ( (f ) ip,

+ IP,

+ -*Pj <Pj ) f, ) (-1)* ]

+ 2(2!)" 1/2 (3!)-1/2 [ [ ( (2)" 1/2 (

- -<Pj «P. )

(III.1.52)

Clearly, p and P represent the same permutation, so after 
some cancelling we obtain

0 (2 l .2 2 .2 3 ) = (3!)"’'^ I  [ ( (- 1 )" )

+ ( I.j (-1)' >

- ( IP̂ ) tp|̂ (-1)P )

+ (((3 1)1/2/(2!)-1/2) A (U\j*^))]

(III.1.53)

Then from Equations (III. 1.26) and (III. 1.53) we find
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(3! )"1 { E E

[ ((*!*]-*]**) (-1)̂ *̂  S **f, dx̂  )

+ ((***]-*]**) I. j (-1)^*P f dx^ )

- ((*!*]-*]**) (-1)^*^ X ***, dx^ )

+ ((****-****) ; ip[ (((3!)1/2/2(2!)’1/2) ^ (Ujj^P,)) da,) ]) ,

(III.1.54)

where the sub- and super-scripts in upper case now refer to 
the conjugated term, while those in lower case refer to
the i|) term.

Now, from the orthogonality relations expressed in 
Equation (III. 1.7), the first term in Equation (III. 1.54) is 
identically zero. Furthermore, the operator A was defined 
in such a way that (U^^«p^) produces only terms where  ̂

is a function of x , . Thus, the orthogonality conditions 
also imply that

X q>* ( iA (Uî (Pl̂ ) ) dx, = 0 , (III. 1.55)

and hence the last term in Equation (III.1.54) is also zero. 
Using Equation (III.1.29) to substitute for the overlap 
integrals we find
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l$>, =

(3!> 1 { E E [ ( ( «Pj (Pj “(pj j (-1)^*^ 5^ ̂ )

- ( (v*Vj-V***) (tp̂ tp̂ -tp̂  cp̂ ) (-1)^** 5^^ ) ] }

(III.1.56)

When K = k, the ordered pairs (I < J) and (i < j) must be 

the same. The permutations P and p are then identical, and 
Equation (III. 1.56) becomes

|lll>3 =

(3!)'’ ( E [ ( (v'v*-****)

- ( (ip̂  <P̂ -<P̂  ip̂ ) ((p̂ (p̂ -tp̂  (P̂ ) ) ] } . (III.1.57)

We can now substitute Equation (III. 1.57) into
Equation (III.1.42), and after some cancelling we obtain

* * * *
E C ( j )

-  ( ( 2 ) ' 1  ( (p *  i p * - ( p * t p *  ) ( y ^ * j - * j V ^ )  ) ]  .

(III.1 .58)

Thus,

r=*''(x, ,x^) s: E r=J""(x^,X 2 ) , (III.1.59a)
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where

r c o r r ,   ̂ ^  ̂ * t k  *ij (a,,a,) = [ ( )

- ( (2) (tp̂ (p̂ -q>̂  (p̂ ) ) ] ,

(III.1 .59b)

which is the (approximate) partitioned form of the 

correlated spin-dependent two-particle momentum density. 
The corresponding correlated spin-less component densities 
are then defined by

corr... _ .   " (III. 1.60)o;; (2,.a,) = / r ; " ( 2 ,,2 3 ) ds,da,,

where once again denotes the spin coordinate of the i'th 
electron.

To proceed further with this analysis requires the 
assumption of a particular form for the function and
hence results in a loss of generality; accordingly, we 

terminate our development at this point. In
Chapter (III. 1.3) we discuss the wavefunctions which have 

been used for the evaluation of  ̂(J2., r ̂ 2   ̂*
In addition, we also consider the various aspects of the 

momentum density which have been used to analyse correlation 
effects in the 2^3 and 2^p states of lithium.
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CHAPTER(III.1.3)

WAVEFUNCTIONS AND 
EVALUATION OF CORRELATION PROPERTIES

For consistency with the position-space analysis of 
Al-Bayati*29)p have performed our analysis of

momentum-space correlation effects in lithium using the same 
wavefunctions. Thus, for the correlated description of the 

ground state we used the configuration interaction (Cl) 
wavefunction of W e i s s * 2** in position space, this

wavefunction has the form

) = E c. (21̂  ,x, ,2&3 ) , (III. 1.61)

where x denotes the collection of space and spin
coordinates for the i'th electron. The coefficients c^ are
those which minimise the total energy of the system, and
each configuration is an antisymmetrised product of
one-electron spin orbitals. Two general types of linearly

independent configuration were constructed by W eiss. The
first type corresponds to the situation in which two
electrons couple together to produce  ̂S symmetry, and the
resulting pair is then coupled with the orbital description

2of the third electron to produce the overall S symmetry of 

the state. In the second type of configuration, the two 
electrons are coupled to produce ^S symmetry, and the 
resulting pair is again coupled with the third electron to 

produce a 2g state. The two types of configuration have the 

forms
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(P L X = (X X ) S X,p q k , A p q k

(6D^)"1/2 j- [jx^^ad) X^^p(2) X^a(3) I

+ iXq^^Pd) Xp^^a(2) X^a(3)|] (III.1.62)

and

(P L 1 = (X X ) X p q k , A p q k

= (1/3) (2D^)"'/2 j; [2|xy^o(1) %y^a(2) 8(3) |

ixy^ad) X#^8(2) X^a(3) |

|X|^o(1 ) xP^8(2) Xÿ^a(3) I ]
(III.1.63)

respectively, where = (2A+1) and, for example.

IX^^ad) Xÿ^8(2) X^a(3) |

represents the determinant

xfel̂ ad) xÿ^pd) X|̂ o(1)

X#^a(2) Xÿ^8(2) X^a(2)

X^^a(3) xÿ^p(3) X^a(3)

The basis set (X) consists of non-orthogonal Slater-type 
orbitals (STO's), which have the form
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X (r,Q,+;e) = [(2e)2"*'/(2n!)]'/2 r " " ’ e Y, (G,+)n 1 m 1 , m
(III.1.64)

where each function X , is normalised to unity. Inn 1 m
Equations (III. 1.62) and (III. 1.63) the a and p functions 
represent spin functions, and the summations are over the 

azimuthal quantum number p, which takes on values from -A to 
+A. This ensures that the electron pair forms either  ̂S or 

2s symmetry, respectively. The orbital angular momentum 
quantum number A specifies the symmetry of the space orbital 
X, and D denotes its degeneracy. Finally, the occurrence 
of a ( "') over some of the orbitals denotes the complex 
conjugate of the angular part of the given orbital.

The wavefunction contains 45 configurations, formed from 

20 basis orbitals; these 20 orbitals are subdivided into 
seven of "s " symmetry (Is, Is', Is'', 2s, 2s', 2 s ' ,  3s'), 

six of "p" (2p, 2p', 2 p ' ,  3p, 3p', 3p''), four of "d" (3d, 
3d', 4d, 5d), two of "f" (4f,5f) and one of "g" symmetry
(5g). The primes associated with orbitals of the same 
quantum number (1) indicate a different orbital exponent 
(c). The STO exponents for the K-shell basis functions were 
identical to those obtained by Weiss from a 35-term Cl study 
of the 11S state of h e l i u m * For lithium, Weiss then 
optimised the exponents of the basis functions for the outer 

shell and all the Cl coefficients by means of the energy 
variation method.

For the uncorrelated description of the ground state we 
used the restricted Hartree-Fock (RHF) function also
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constructed by W e i s s * in position space, this 

wavefunction is written as a single determinant of
one-electron functions, namely

,x ) = (3!)"''2 a(i) P(2) <p a(3)|
I t  j  1 3  I S  £ »

(III.1.65)

The function tp , (r,8,*;e) is the spatial part of then 1 m
one-electron spin-orbital, and is constructed from a basis 
set of s-type orbitals.

(p = E c ‘ x‘ , (III. 1 .66)n 1 n n 1

where the summation over i contains six terms. The basis 
functions X were again taken as standard normalised STO's, 
as defined in Equation (III. 1.64), and to obtain his 
wavefunction, Weiss minimised the energy of the system with 
respect to all parameters, including the orbital exponents.

For the analysis of correlation effects in the state
(32)of lithium, we again used wavefunctions by Weiss These

functions are constructed in much the same way as those for

the ground state, and consequently we shall present only
2brief details here. The correlated description of the P 

state was provided by a 45-term Cl wavefunction formed from 

a basis set (X) of 38 STO's extending as far as the "5g" 
orbitals. In the basis set used by Weiss, the functions Is, 

Is', 2s, 2s', 2p, 2p', 3s', 3p, 3p', 3d, 4d, 4f, 5d, 5f and 
5g were obtained from the energy minimisation calculations 
for the 11S ground state of He. Weiss then introduced
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additional basis functions to describe the outer electron in 

the p state of lithium. As for the ground state, all the 
configuration coefficients for the excited state 

wavefunction were optimised, along with the orbital 
exponents, by the energy variation method.

The uncorrelated description of the system was provided 
2by the P restricted Hartree-Fock wavefunction, again by 

W e i s s * 2 2 ), The wavefunction, which is constructed from a 

basis set of four s-type and 5 p-type orbitals, is written 
in position space as

. X j . a i j )  =  ( 3 ! ) - ' ' 2  c p ^ , p ( 2 )  * 2 ^ 0 ( 3 )  I ,

(III.1.67)
where

ip = E ĉ  X* , (III. 1 .68)n 1 n ni

and the summation over i contains either 4 or 5 terms, 
depending on whether nl = 1s or 2p. Once again, the 
functions X are standard normalised STO's, as defined in 

Equation (III.1.64), and Weiss minimised the total energy of 
the system with respect to all parameters, including the 
exponents e .

Since our interests in the present investigation are the 
effects of correlation on the momentum distributions in the 
2^S and 2^p states of lithium, it was necessary to obtain 
the momentum-space counterpart of each of the position-space 
wavefunctions discussed above. In Chapter (II.2.1), we saw 
that the conversion of a position-space wavefunction, 4», to
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its momentum-space equivalent, Y , is achieved by the

application of a Dirac transformation to ♦. We also saw
that the isomorphic nature of this process means that it is

actually only necessary to transform the component
spin-orbitals from which 4> is constructed, since the
analytical form of the wavefunction is the same in both
spaces. Thus, to obtain the momentum-space description of 

2 2the S and p states of lithium, we constructed the Weiss 
functions using the momentum-space form of the Slater-type 
orbitals. The method by which each position-space STO was 
transformed to momentum space has been described in some 
detail by Reed*^^)

In the previous chapter we saw that the spin-free 
two-particle momentum density of lithium may be partitioned 

into a number of component densities, each of

which is associated with an identifiable pair of occupied 
spin-orbitals and ip̂ in the RHF description of the

system. For each orbital pair (i,j) we analysed the effects 
of correlation on the momentum distribution of the electrons 
by studying a number of one- and two-particle distribution 

functions and expectation values derived from the component 
densities For any such component, the
definitions of the various radial, angular and interparticle 

momentum distribution functions, as well as those of the 
associated expectation values, are exactly the same as those 

given in Chapter (II.2.2) for the excited states of helium; 
clearly there is no need to repeat those definitions here.

In addition to studying properties associated with
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individual electron pairs, we also examined the 
corresponding quantities for the 'total' atom. Thus, for 

example, in addition to studying the (p^) distribution 

for each of the electron pairs (1,2), (1,3) and (2,3), we
also evaluated the (renormalised) sum of these quantities, 
defined by

p H F ( T O T A L )  J =

(p ) + [/^*1'2)(p ) + D"F(2'3)(p )] / 3.

In this way, we were able to compare, in an approximate 
manner, each component of the uncorrelated one-particle 
radial momentum distribution with the corresponding quantity 
for the whole atom. Finally, we note here that for the 2^S 
state, the (i,j) pairs (1,2), (1,3) and (2,3) were taken to
represent the electron pairs (1sa Isp), (Isa 2sa) and 
(Isp 2sa) respectively, while for the 2^P state, the same 
(i,j) pairs correspond to the electron pairs (Isa Isp), 
(Isa 2pa) and (Isp 2pa).

Presentation of Results
In Figures (III.1.1) and (III.1.2) we present the 

uncorrelated one-particle radial distribution functions 

D^^(p^) for the ^S and ^P states respectively. The effects 
of correlation on these distributions are seen in the 

AD^(p^) curves shown in Figures (III.1.3) and (III.1.4). 

The uncorrelated two-particle radial distributions, 

(P.J ,P 2 ) I are presented as surfaces in Figures (III. 1.5) 
and (III.1.7); in order to maximise the information provided 

by these surfaces, we present alternative views of the
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distributions in Figures (III. 1.6) and (III.1.8), 

respectively. The , p,) surfaces are shown in

Figures (III. 1.9) and (III.1.11), with alternative views 
being presented in Figures (III.1.10) and (III.1.12). In 
Table (III. 1.1) we present the one-particle radial 

expectation values <p” >, as well as the standard deviation, 

a(p^). The corresponding two-particle expectation values, 

<p"p,> are given in Table (III.1.2) The uncorrelated 
angular distribution functions ( y )  for the ^P state are 
shown in Figure (III. 1.13). (The distributions for the 

ground state are identical to that for the 1s2s state of 
helium, presented in Section (II. 2); see Chapter (III. 1.4) 
for further comments.) The effects of correlation on the 
angular distribution of the electron momenta is shown in the 
AP(-y ) curves presented in Figures (III. 1.14) and (III. 1.15).

The angular expectation values <2., . /p"Pg > and < y >  are

presented in Table (III.1.3); as before, y is the angle 
between the momentum vectors of electrons 1 and 2.

In Figures (III. 1.16) and (III. 1.17) we show the
uncorrelated interparticle momentum distributions f (9 ^ 2 ) 

2 2for the S and P states, respectively. The Coulomb shifts,

Af(Pi 2 ), corresponding to these distributions are presented

in Figures (III.1.18) and (III.1.19). The g”*'(p^2 'Pi^ 
2  2surfaces for S and P are shown in Figures (III.1.20) and 

(III.1.22); alternative views of these surfaces are
presented in Figures (III.1.21) and (III.1.23),
respectively. The corresponding partial Coulomb shifts, 

Ag(p^ 2 'P-|̂ ' presented in Figures (III. 1.24) and
(III. 1.26), with alternative views again being presented in
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Figures (III.1.25) and (III. 1.27). In Figure (III.1.28) we

present the 2 '  ̂ surfaces for 0  ̂ = 0 ", 30", 60'
2and 90* for the intershell electron pairs of the P state; 

as before, 0  ̂ is the angle between the momentum vector 2  ̂

and the symmetry axis of the 2 p orbital in momentum space. 
An alternative view of these surfaces is shown in 
Figure (III.1.29). The effects of correlation on these 

distributions are shown in the Ag(p^,,p^ ;0 ^) surfaces 

presented in Figures (III.1.30) and (III. 1.31). Finally, in 
Table (III.1.4) we present the various interparticle 

expectation values Also given in this table are the

standard deviations, 0 (9 ^,), of the various f^p^g) 
distributions, and the fraction, Y, of probability density 
which is redistributed as the result of introducing 
correlation into the description of each electron pair.
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CHAPTER (III.1.4)
DISCUSSION

We shall begin our discussion of momentum-space
2 2correlation effects in lithium by examining the (1s) 2s S 

(ground) state. As we have seen, this system can be 
partitioned in such a way as to allow us to examine three 
distinct electron pairs, and we shall refer to these as 
(Isa Isp), (Isa 2sa) and (Isp 2sa). In our discussion of 
the excited states of helium, we saw that a knowledge of the 

Hartree-Fock properties of a system is often central to the 
understanding of the corresponding correlation effects. 

Accordingly, we shall include here a description of each of 
the electron pairs in lithium at the uncorrelated level. 
For convenience, we shall consider first the (Isa Isp) 
intrashell electron pair, and then move on to compare and 
contrast the two intershell pairs.

We begin by examining the u"^(p^) curve for (Isa Isp), 

presented in Figure (III.1.1a). With both electrons in the 
same shell, the one-particle radial momentum density 
displays a single maximum. We shall denote the value of p̂  

at which this maximum occurs by p ^ . Recalling the nature of 
the Fourier transform which connects the momentum- and 

position-space descriptions of a system, we note that the 

D"^(P^) curve is considerably more diffuse than the u"^(r^ ) 

curve obtained by Al-Bayati*^^* ; the ratio of o(p^) to o(r^) 
is found to be (1.48:0.34). Not surprisingly, the 

two-particle radial momentum density, D^gfP,,Pg), presented 
in Figure (111.1.5b), also displays a single peak.
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distributed symmetrically about the diagonal, with

the maximum occurring when p =p =p1 2 K

Since (1sa Isp) is spherically symmetric at the 
uncorrelated level, the angular distribution function p"^(^) 
for this electron pair is exactly the same as that for the 

1s2s state of helium, presented in Figure (II.2. 6 a);
consequently, we have not presented the intrashell curve 

here. As a result of the spherical symmetry exhibited by 
(Isa 1sp), <^>"^=90* for this electron pair. Therefore, at
the HF level, we may consider the 1 sa and Isp electrons as 
having the same momentum, while moving in directions which 
are orthogonal.

In keeping with this model, the g (p^gfP^) distribution
function, shown in Figure (III. 1.20b), displays a single
peak, the coordinates of which are found to be

(p^2 = /(2p^), p^=p^). At this point, it is interesting to
make the following observation. For the excited states of
helium, where the two electrons are in different shells, it

H Fwas found that g (p^2 »Pi^ displays two principal features:
one parallel to the p^^-axis and one lying along the

(p^2 “P-|J diagonal. These two features were explained by
considering a test electron at small and large values of p̂  ,
respectively. It was also seen that the extent to' which
these two features are merged together is directly related
to the degree of radial overlap which exists between the two
shells in the system -- the greater the radial overlap, the
less distinction there is between the features in 
H Fg (P^2 'Pi)- If we now return to an examination of the
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g"^(Pi 2 'Pi) surface for the (Isa 1 sp) electron pair in 
lithium, it is relatively easy to imagine this surface as 
the limiting case of a split-shell distribution. Thus, when 
there is total radial overlap between the descriptions of 
the two electrons, such as there is for (Isa tsp), there is 
no distinction at all between the 'parallel' and 'diagonal' 

features in g (p^g'P,)- As a result, we see only a single 

feature, largely confined to the (p^^^P-i ) region.

The f"^(p^ 2 ) curve, obtained by integrating g"^(p^ 2 ,P,) 
over all p̂  , is presented in Figure (III.1.16a). Like the 
radial momentum distribution, the interparticle momentum 
distribution is more diffuse than its position-space 

counterpart, as may be seen if one compares the o^p^^) value 
in Table (III. 1.4) with the corresponding o (r^,) result 
obtained by Al-Bayati*^^* .

Having established the nature of the electron
distribution for (Isa Isp) at the Hartree-Fock level, we
consider now the effects of introducing correlation into the
description. In position space, Boyd e t  have shown
that for the ground state of the helium isoelectronic

series, the principal radial effect of correlation is to
produce some 'splitting' of the one-particle radial
distribution. This is characterised by a reduction in

probability when r̂  %r^, and increases in probability when r^
.(29)is smaller or greater than this. Recently, Al-Bayati 

has shown that the AD^ (r̂  ) curve for the (Isa Isp) electron 
pair in the ground state of lithium also displays this sort 
of structure. Recalling the similarity between the
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description of an S state in the position and momentum
representations, we might anticipate that this effect should
manifest itself in the AD^ (p̂  ) curve as a reduction in

probability when p̂  %p^, with increases in probability at
lower and higher values of p̂  . However, comparison of the

AD^(p^) curve in Figure (III.1.3a) with the corresponding 
H F (p^) distribution in Figure (III.1.1a) appears to

indicate that correlation actually causes the greatest
increase in probability when p^%p^, with the greatest

reduction occurring on the 'large-p^' side of this increase.
In view of this somewhat unexpected finding, we turn to the 

surface for (Isa Isp), presented in 
Figure (III.1.9b), in the hope that it will provide further 
insight into the problem; an alternative view of this 
difference function is provided in Figure (III.1.10b). The 
principal minimum in this surface occurs on the (p^=P 2 > 
axis, and closer inspection reveals that, except at very 

small values of momentum, AD^^tP, » Pg “P., ) is always 
negative. In contrast to this, the two principal maxima in 

the surface occur in the off-diagonal regions. A comparison 
of the coordinates of these maxima with the coordinates of 

the single peak in the corresponding D^^tP^ , Pg) surface 
reveals that correlation causes a significant increase in 
the momentum of one electron and a marginal reduction in 
that of the other. Thus, correlation does indeed cause a 

'splitting' of the radial momentum distribution. The 
conflicting picture created by inspection of the AD^ (p^ ) 
curve is apparently an unfortunate consequence of the 

'cancelling' of various regions of the AD^gtP, » P g ) surface 
which occurs as a result of integrating over the momentum of
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electron 2. It is interesting to note that the AD^^(p^ ,p^) 

surface for ( 1 sa 1 sp) in the ground state of lithium is very- 
similar to the corresponding surface for the Li'*' ion,
obtained by Reed*^^*

The one-particle radial momentum expectation values, 
presented in Table (III.1.1), are seen to be in accord with

the shape of AD^ (p̂  ); for n< 0 , <p"> is seen to be slightly
reduced by correlation, whereas for n> 0 , this expectation 
value is increased. Furthermore, correlation also increases 
o(p^), thereby indicating that the one-particle radial 
momentum distribution is indeed made more diffuse by the
introduction of correlation. Similar results have been 
found by M o o r e * f o r  the Li* ion. For the two-particle 
radial momentum expectation values, it is found that 

correlation reduces <p"Pg> for all n -- a result which is 

obviously in keeping with the reduction in fPg) for

all (p̂  =Pg ) .

We consider next the effects of correlation on the 
angular distribution of the electrons. Inspection of the 

AP(^) curve in Figure (III.1.14a) reveals that the major 
angular effect of correlation is to reduce the probability 
of large values of y and to increase the probability of 
small values; the cross-over in the angular shift occurs at 

y ^ 9 4 * . Not surprisingly, this reduction in the angular
separation of the electron momentum vectors is also 

reflected in the Eg /P" Pg > expectation values, presented

in Table (III.1.3). It is seen that correlation increases 
each quantity from its Hartree-Fock value of zero. In
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contrast to this, Al-Bayati found that the values of 

-£2 /r" r^ > were all decreased. indicating that correlation 
causes an increase in the angular separation of the electron 
position vectors. It will be recalled that a similar 
difference between the angular effects of correlation in the 
position and momentum representations was also observed in

3the 1s2s S state of helium. As in that instance, the two 
effects can again be rationalised by considering the 

electrons as oscillating about the nucleus along paths which 
are orthogonal, with a phase difference of ir/ 2  between their 
motions. (For a more complete discussion of this point, see 
Chapter (II.2.3)). Interestingly, comparison of the AP('y) 
curve for (1sa 1sp) in Figure (III.1.14a) with that for the 
1s2s ^S state of helium in Figure (II.2.7a) reveals that the 
angular effects of correlation are much greater for the 
lithium intrashell electron pair. This is particularly 
evident when one notes that for (Isa Isp), correlation 
reduces < y > by 2.16%, while for the excited state of helium, 
the reduction in <-y> is only 0.64%. In contrast to this, a 
comparison of the corresponding AD^ (p̂  ) curves reveals that 
the radial shift for (Isa Isp) is much smaller than that for 
helium.

Thus far, we have seen that in momentum space, the 
radial and angular effects of correlation in (Isa Isp) act 

in opposition. The radial effect decreases the momentum of 
one electron and increases that of the other, thereby 
tending to increase the interelectronic momentum variable. 
The angular effect, on the other hand, produces a reduction 
in the angular separation of the momentum vectors, which

211



leads to a decrease in Clearly, it is now of interest

to study the manner in which these two effects combine to 
change the interparticle momentum distributions. In
particular, it will be interesting to compare the partial 
Coulomb shift with the corresponding partial Coulomb hole. 
The Ag(r^^,r^) surface obtained by A l - B a y a t i * r e v e a l e d  
that in ( 1 sa Isp), r^^ is always increased by correlation, 
whatever the radial location of the test electron. This is 

due to the fact that in position space, the radial and
angular effects of correlation reinforce each other. 
Inspection of the Ag(p^g,p^) surface presented in 
Figures (III.1.24b) and (III.1.25b) reveals that it is very 
similar, in both shape and magnitude, to the corresponding
surface for the Li* ion, obtained by Reed*^^*. For a test
electron with a small value of p^, correlation causes an
increase in p^^. However, as we increase the momentum of

the test electron, the shape of the Ag^p^^'P^ ) surface 
changes, and it is seen that for a test electron with a 
large value of p ^ , correlation causes a reduction in p^g. 
The value of p̂  at which the boundary between these two 
effects occurs is found to be very close to p ^ . Thus, for a 
test electron with a momentum p̂  <p^, the radial effects of 
correlation are seen to be dominant, while for a test 

electron with p^>p^, the angular effect dominates. Clearly, 

this ability to distinguish between the radial and angular 
effects of electron correlation is one of the major 
advantages that a momentum-space study has over the more 

traditional position-space approach.

We conclude our analysis of correlation effects in
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(Isa Isp) by considering the Coulomb shift, which is 
presented in Figure (III.1.18a). At large and intermediate 

values of p^,, the Af(p^^) curve bears a strong resemblance 

to the Coulomb shift obtained by Reed*^^* for the Li* ion. 
In particular, the principal maxima in the two shifts occur 

at approximately the same values of p^^ in the two states, 
and are of roughly equal magnitudes; a similar observation 
holds for the two principal minima. In contrast to this, 
the local minimum seen at very small p̂  ̂  in 

Figure (III.1.18a) is barely discernible by comparison with 

the corresponding feature in the Li* curve obtained by Reed. 
For the positively charged Li-like ions, A l - B a y a t i * h a s  

demonstrated that the Coulomb shift for the (Isa Isp) 
electron pair displays no local minimum at small p^g. Since 
each Coulomb shift is obtained by integration (with respect 
to p^ ) of the associated Ag(p^g,p^) surface, it is clear 
that such differences among the Af(p^g) curves should also 
be evident in the partial Coulomb shifts. The Ag(p^g,p^ ) 
surfaces obtained by Al-Bayati for the (Isa Isp) electron 
pair in the positive Li-like ions all possess a distinct 
positive feature in the region very close to the origin; 
careful inspection of the partial Coulomb shift for the 

neutral atom, shown in Figure (III.1.24b), reveals that this 
surface also has a very slight positive feature in this 
region. On the other hand, the Ag(p^^,p^) surface for the 

Li* ion is found to possess no such feature. From this, it 
is clear that the differences between the Af(p^g) curves as 
p^g approaches zero are due principally to the differences 
in the partial Coulomb shifts when p^, and p̂  are both very 
small. To gain further insight into this, it is useful to
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discuss the position-space representation of the K-shell 

electrons in Li, If p^^ and p^ are small, it follows that 

in position space, both electrons must be located in the far 
outer regions of the K shell, where they are in close 
proximity to the L shell. For the ground state of the
Li-like systems, this shell is occupied by an orbiting 2s 
electron. Although the properties of this electron are 

effectively 'integrated out' during the partitioning
process, its presence will still be felt, in an averaged 
way, by any electron which approaches the L shell closely. 
We have already noted that in position space, the principal 
radial effect of correlation for the intrashell electron 
pair is to cause one electron to approach the nucleus, and 
the other to move away from it. For the Li-like systems, if 
the Isa and Isp electrons are both located close to the L 
shell, the outward movement of either electron will be 
suppressed by the presence of the 2 s electron; as a 
consequence, the radial effect of correlation is reduced, 
while the angular effect is enhanced. In momentum space, 
this dominance of angular over radial effects leads to an 
increase in the probability of very small p^ ̂  values for a 

given p̂  . In contrast to this, in the Li* ion, the radial 
effect of correlation is obviously not affected by the 

presence of a third electron, and is therefore dominant. In 
momentum space this leads to a reduction in the probability 

of very small p^, values for a given p^ . From the 

foregoing, we may conclude that the differences among the 
various Coulomb shifts near to the origin are due 
principally to the presence of the L-shell electron in the 

Li-like systems. With this in mind, it is interesting to
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note that for Be, the Coulomb shift for the K-shell electron 
pair obtained by Mobbs and Banyard*^^* reveals no local 

minimum at small ^ . This suggests that the presence of 

the two orbiting 2 s electrons in the system causes an even 
greater suppression of radial correlation effects in the K 

shell. Finally, we note that the overall shape of Aftp^^) 

for (1sa 1sp) in Li suggests that, on average, the angular 
effect of correlation is dominant, leading to a general 

reduction in 2 ‘ keeping with this observation,
inspection of Table (III.1.4) reveals that when n<0, (p"^) 

is increased by correlation, but when n> 0 , this expectation 
value is increased; the reduction in ofp^g) indicates that 
correlation also produces a 'sharpening up' of the 
interelectronic distribution in momentum space.

Let us now consider the two electron pairs (Isa 2sa) and 
(Isp 2 sa); as for the intrashell pair, we begin by examining 
the Hartree-Fock properties. In Figure (III.1.1b) we 

present the (p^) distributions for the two intershell
electron pairs. Inspection of the corresponding analysis 

reveals that these two functions are, in fact, identical, 
and consequently only one curve is displayed here. It is 

seen that this (p^) curve is very similar to that for the 
1s2s ^S state of He. The larger, localised peak at small p^ 
is associated with the L-shell electron, while the more 

diffuse peak at larger p^ corresponds to the K-shell 
electron. For convenience, we denote the values of p̂  at 
which these peaks occur by p^ and p^, respectively.

The two-particle radial distributions for (Isa 2sa) and 
(Isp 2sa) are presented in Figure (III. 1.5). Unlike the
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corresponding one-particle functions, there are differences

between the distributions for the two intershell

pairs. Inspection of the alternative view of these
surfaces, presented in Figure (III. 1.6), confirms that this
is indeed so. For (Isa 2sa) the Fermi effect prevents the
two electrons from having the same momentum, and

consequently for this electron pair, D^^CP, rPg) is
identically zero for all (p̂  =p^). In contrast to this, the

surface for (Isp 2 sa) possesses a local positive feature on
the (p^=p^) diagonal; this corresponds to the situation in
which one electron is in the hiah-momentum region of the L
shell, while the other is in the low-momentum region of the
K shell, which results in both electrons having the same
momentum. In position space, Al-Bayati*^^* has noted the
existence of a small local maximum, near to the origin of

the fZg) surface for (Isp 2 sa) , which corresponds to
both electrons being in the K-shell region. (Recall that in
Chapter (II. 1.4) we saw that the g^*^(r^^,r^) surface for the
2̂  S state of helium also reveals a small positive region at
small again due to the double occupancy of the K
shell). In contrast to the results for (Isp 2sa), Al-Bayati

H Ffound that the surface for (Isa 2 sa) possesses no
such local maximum near to the origin due, of course, to the 

presence of Fermi correlation. In the light of these 
observations, we might anticipate that somewhere on the

DigfPi f ̂ 2  ̂  surface for (Isp 2 sa) there should exist a
H Ffeature, corresponding to the local maximum seen

by Al-Bayati, which is absent from the , Pg) surface
for (Isa 2sa). The view of the two-particle radial 
distribution function presented in Figure (Ill.I.Sd) shows
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no evidence of any such structure. However, the alternative 
view of this surface shown in Figure (III.1.6d) reveals that 

as we move out from the origin along the (p^=Pg) diagonal, 

we encounter first the local maximum discussed earlier, and 
then a second, barely discernible, positive feature. The 
coordinates of this second feature, which is absent from the 
(Isa 2 sa) surface, are found to be the same as those of the 
principal maximum in the (1sa 1sp) surface. Clearly, this 
supports the view that this feature does indeed correspond 

to a double occupancy of the K shell.
Like that of the intrashell electron pair, the momentum 

distributions of both (Isa 2sa) and (1sP 2sa) are 
spherically symmetric at the uncorrelated level. As a 
result, the P (f) distributions for these intershell

3electron pairs are exactly the same as that for the 1s2s S 
state of He, presented in Figure (II.2. 6 a). In view of the 
identity between the angular distributions, and bearing in 
mind the similarity of the radial descriptions, noted 

earlier, it is not surprising that the g (P^giP^) surfaces 

for both intershell electron pairs are also very similar to 
that for the excited state of He. Both of the Li intershell 
surfaces presented in Figure (III.1.20) possess the 
'parallel' and 'diagonal' features which we have come to 
associate with test electrons possessing small and large 
momenta, respectively. It is seen that the surface for 

(Isa 2sa) is 'flatter' at very small values of p^^ than that 

for (Isp 2sa). We have already established that such 
'flatness' in a g^^(p^grP^) surface is due to the effects of 
Fermi correlation. The alternative view of the two 

g”^(p^ 2 »P-|) surfaces, presented in Figure (III. 1.21),
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reveals the slightly smaller degree of merging between the
'diagonal' and 'parallel' features in the (Isa 2 sa) surface.
This is also due to the presence in this electron pair of

the Fermi effect, which produces a greater radial separation
of the two electrons in momentum space. This contrast 

H Fbetween the g surfaces for the two intershell

electron pairs is consistent with the differences seen on
H Fthe (P^=Pg) diagonal of the corresponding D^^tP^ , Pg)

surfaces, discussed above.
Earlier, we noted the existence of a small local maximum 

on the (p^=Pg) diagonal axis of the D^^tP, #Pg) surface for 
(1 sp 2 sa), which we attributed to the double occupancy of 
the K shell. Such an e f f ^ t  should, presumably, also

manifest itself in the corresponding g (p^g,p^) surface. 
However, comparison between the intershell surfaces 
presented in Figure (III.1.20) reveals no obvious local 
maximum in the (Isp 2 sa) surface which could be ascribed to 
such an effect. To gain further insight into this somewhat 
unexpected observation we evaluated and plotted the 
Hartree-Fock density difference function defined by

This function is simply the difference between the 

uncorrelated g(P^g,P,) distribution functions for the 
(Isp 2sa) and (Isa 2sa) electron pairs. Although not shown 
here, the resulting surface displayed a distinct local 
maximum at values of p^ ̂  and p^ which correspond quite 

closely to a double occupancy of the K shell. That this 
effect is not observable in a straightforward comparison of
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the g (p^g,p^) surfaces for the intershell electron pairs 
seems to be due to the location (between the two principal 
maxima) and diffuse nature of the region of increased 
probability in the (1 sp 2 sa) surface.

The f”*^(p^^) curves derived from the g”^(p^gfP^) 

distributions are presented in Figure (III.1.16b). The 

value of p ^ 2  at which f (p^^) peaks can be related to the 
corresponding values of p^ and p^ by Pythagoras's Theorem. 
Not surprisingly, the Fermi effect causes the curve for 

(Isa 2sa) to be somewhat 'flat' at very small values of P^g * 
This feature results in the distribution for
(Isa 2sa) being slightly less diffuse than that for 
(Isp 2sa) -- compare, for example, the uncorrelated o(p^ 2  ̂

values presented in Table (III. 1.4).

Having discussed the Hartree-Fock momentum distributions 
for the intershell pairs, we now consider the effects of 
introducing correlation into the descriptions. In 
Figure (III.1.3b) we present the AD^ (p^ ) curves for the 
(Isa 2sa) and (Isp 2sa) electron pairs. For 0<p^<0.75, it 
is seen that the two curves are nearly coincident, with both 

showing an initial reduction in probability and then, as p^ 
is increased, an enhancement, with the cross-over occurring 
at a value of p^ very close to p ^ . This shift to higher 
momentum in the L-shell region is consistent with the 
results of Al-Bayati , who found that in position space, 
correlation causes the outer electron to approach the 
nucleus. Returning to Figure (III.1.3b), we see that the 
correlation effects in the K-shell region are significantly
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smaller than in the L shell. The oscillatory form of the 

AD^(p^) curve for (Isa 2sa) appears, to suggest that 
correlation also causes a shift to higher momentum for the 
K-shell electron. For (Isa 2sa), on the other hand, the 
situation is rather less clear cut; although this curve also 

displays a local minimum at p^*1.3, it does not pass below 

the p^-axis. Similar differences between the radial effects 
of correlation in the K-shell region have also been noted in 
position space by Al-Bayati*^^* and are, no doubt, due to 
the effects of Fermi correlation. The overall form of the 

AD^ (p̂  ) curves is reflected in the one-particle radial 

expectation values, presented in Table (III. 1.1). It is 
seen that for both intershell electron pairs, correlation 
reduces <p"> for n<0, and increases it for n>0. However, 
the o(p^) values, also presented in Table (III. 1.1), reveal 

that for (Isa 2sa), correlation increases slightly the 
spread of (p̂  ), but for (Isp 2sa), it produces a marginal 
'tightening up' of the one-particle radial distribution.

We consider next the AD^^tP, , Pg) surfaces presented in 
Figures (III.1.9c&d). The surface for (Isa 2sa) shows 
clearly the increase in the momentum of the L-shell 

electron. Furthermore, inspection of a contour diagram of 
this density difference function (not included here) 

confirms that the K-shell electron does indeed also 
experience an increase in momentum; the coordinates of the 

principal maxima in AD^^tR, , Pg) for this electron pair are 
greater, in both directions, than those of the corresponding 
maxima in the , Pg) distribution. A similar analysis
of AD^gCP,,Pg) for (Isp 2sa) reveals that while the momentum
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increase of the L-shell electron is quite clear, the K-shell
electron appears not to undergo any such change.

Interestingly, the coordinates of the principal minima in

are identical to those of the maxima in the
associated uncorrelated distributions. Inspection of the

alternative view of the ,Pg) surfaces presented in
Figure (III.1.10) reveals that the principal differences
between (Isa 2sa) and (Isp 2sa) occur in the region of the

(p^=p^) diagonal. We have already noted that the Fermi
H Feffect causes  ̂( P-| » P 2 "Pi ) to be identically zero, and this 

is naturally true for the correlated distribution also, with 

the result that ( P̂  , Pg) for (Isa 2 sa) is zero on the
(p^ =Pg) diagonal. For (Isp 2sa), however, we see that for
some values of p^, correlation causes a significant increase 
in the probability that the two electrons have the same 
momenta. As we increase p ^ , we encounter a local minimum on 
the (p^=p^) diagonal of the (Isp 2sa) surface. The position 
of this minimum coincides exactly with that of the local 

maximum seen in the D^gfP,,Pg) surface for this electron 
pair. Thus, it would appear that this feature results from 

the more loosely bound L-shell electron drifting into the 
K-shell region; the effects of correlation are similar to 

those already observed for the (Isa Isp) electron pair, 
where there was a reduction in probability when p̂  =p^ , and 
an enhancement in the off-diagonal regions. Naturally, for 
(Isa 2sa), the Fermi effect prevents the double occupancy of 
the K shell. A similar contrast between the effects of 
correlation in the K-shell regions of the intershell 
two-particle radial distributions has also been noted in 
position space by Al-Bayati
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The two-particle radial expectation values presented in 
Table (III. 1.2) are in keeping with the above observations. 

Thus, for both intershell electron pairs <p"p"> is increased 

by correlation when n<0. The quantity (p^p^) is increased 

by correlation in both (Isa 2sa) and (Isp 2sa). However, 
correlation increases <p^P 2 > in the (Isa 2sa) pair, but 
reduces it in (Isp 2sa) -- a difference which is almost 
certainly due to the local minimum in the (Isp 2sa) 

ADigfPi'Pz) surface, discussed above.

We now turn our attention to the effects of correlation

on the angular distribution of the electrons in the 
intershell electron pairs. The AP(-y ) curves, presented in
Figure (III.1.14b), show that for both (Isa 2sa) and
(Isp 2sa), correlation causes an enhancement in the
probability of small values of -y and a reduction in that of
large values. Despite this overall similarity, there are 
differences between the curves. For (Isa 2sa) , AP(’y) 

crosses the -y-axis very close to *y=90*, which was the
location of the maximum in P (■y) . On the other hand, the 
crossover for the (Isp 2sa) curve occurs at a slightly 
smaller value of -y. Furthermore, it is interesting to note 
that the angular shift for (Isa 2sa) is larger than that 
for (Isp 2sa). The shift to smaller values of *y displayed 
by both curves is similar to that observed for (Isa Isp), 
but the intershell angular shifts are both seen to be
considerably smaller than that for the intrashell electron 
pair. Similarly, a comparison of Figure (III.1.14b) with 
the AP(-y) curve for the 1s2s ^S state of He reveals that.
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although the characteristics of the curves are quite 
similar, the angular shift in the excited state of He is 
somewhat larger than those for the lithium intershell 
electron pairs.

The angular expectation values presented in 
Table (III. 1.3) are seen to be in accord with our 

observations regarding AP('y) . Interestingly, the

.r^/r"r^ > expectation values calculated by Al-Bayati* 
reveal that in position space, correlation produces an 
increase in the interparticle angular separation Thus,
the intershell electron pairs in lithium are two more 
examples of 'systems' in which the angular effects of 
correlation are different in the position and momentum 
representations.

Thus far, we have established that the principal radial 
effect of correlation in the two intershell electron pairs 
is a shift to higher momentum of the L-shell electron, there 
being a minimal change in the momentum of the K-shell 

electron in each instance. Taken in isolation, this radial 
effect would lead to an increase in the interparticle 

momentum difference g * On the other hand, the major
angular effect of correlation is to reduce the angular 
separation of the two electron momentum vectors, and this 
feature leads to reduced values of P,g. As a consequence, 

we might anticipate that when we study the Ag(p^^ » ) ^.nd
Af(Pi 2 ) functions, we should see a combination of these two 
opposing effects. We begin by examining the partial Coulomb 
shifts, presented in Figures (III. 1 .24cScd) . Broadly
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speaking, both Ag(p^^,p^) surfaces are similar to that for 

the 1s2s state of He, with each displaying its principal 
characteristics in the region parallel to the p^^-axis at 

small p̂  , and in the region of the (p^g=p^) diagonal. For 
both electron pairs, the parallel feature, which results 

from a test electron with a small momentum, reveals the 
shift to higher momentum of the L-shell electron. If we 

then consider a test electron with a large value of p ^ , it 
is seen that both surfaces show an increase in probability 

when p^ 2 <p^, a reduction when p^g=p^ and a further increase 

when p̂  2  >p^ . These characteristics may be understood by
considering the following. At the uncorrelated level, there 
is a positive feature along the (p^g=p^) diagonal of the 

g (P^g'R,) surface for both electron pairs; this feature is 
due to the 'appearance' of the tightly bound, spherically 
symmetric L-shell momentum distribution, as viewed from a 
test electron in the K shell. Following the introduction of 
correlation, the radial momentum distribution of the L-shell 
electron undergoes an expansion. Naturally, this radial 

expansion leads to a reduction in probability along the 

(p^2 =P,) diagonal and commensurate increases in probability 

when p^ 2 <Pi and p^2 >P, • We have already noted that, in 
addition to the radial effect, there is an angular

relocation of the electrons following the introduction of
correlation; this change causes an additional shift of 

probability to the (p,g<p^) side of the (P^g^Pi) axis. 

Clearly, the combination of radial and angular effects 
should lead to a greater probability enhancement on the 

(P, 2  ) side of the diagonal than that on the (p^g>p^)
side, and inspection of Figures ( III. 1 . 25c8cd) reveals that
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this is indeed the case. Interestingly, as the momentum of 
the test electron is reduced from this large value, the 

positive feature on the side of the diagonal is

seen to disappear from the (1sa 2sa) surface; this effect is
presumably related to the presence of the Fermi effect in 

this intershell electron pair. Finally for the partial 
Coulomb shifts, we note that the (Isa 2sa) surface possesses 
a small 'flat' region near to the origin, which is the 

result of Fermi correlation causing both g (p^g,p^) and 
gcorr (p^^ p̂  j to be vanishingly small when p^ ̂  p^ both

tend to zero.

We conclude our discussion of correlation effects for 
the intershell electron pairs by considering the Coulomb 
shifts, which are presented in Figure (III.1.18b). As 
expected, the Af(p^ 2 ) curves for both electron pairs display 
an overall shift to smaller p^^- However, although the
shapes of the two Coulomb shifts are quite similar, the 

spread between the values of Af(p^^) at the principal 
maximum and minimum is much greater for (Isp 2sa) than for 
(Isa 2sa). Inspection of the Y values given in
Table (III.1.4), reveals that the Coulomb shift for
(Isp 2sa) is approximately 1.7 times greater than that for 
(Isa 2sa). This result is, no doubt, a reflection of the
fact that the angular shift for (Isa 2sa) was somewhat 
larger than that for (Isp 2sa); since the angular effect of
correlation acts in opposition to the radial effects in

these two electron pairs, the total effect of correlation
should be smaller in (Isp 2sa). Surprisingly, despite the 

basic similarities in shape between the Af(p^ 2 ) curves, the

225



changes due to correlation in the <P"g> expectation values, 

presented in Table (III. 1.4), are found to be quite 
different. Thus, for the (Isa 2sa) electron pair <P^g> is 

reduced by correlation, while (p^^) and (pf^) are both 
increased; for (Is# 2sa), on the other hand, these changes 
are reversed. Similar differences are to be found in the 

<r" 2 > expectation values calculated by A l - B a y a t i * .

Having discussed the effects of correlation in each of

the three individual electron pairs, we shall complete our
discussion of the  ̂S state of lithium by making a few very
brief comments regarding the 'total' correlation effects in
the system. As we might anticipate, the total (p^) curve
in Figure (III.1.1c) displays two clear peaks, which
correspond to the K and L shells. When compared with this
uncorrelated distribution, the AD^ (p^ ) curve shown in
Figure (III.1.3c) reveals a clear shift to higher momentum
in the L shell, and a shift to lower momentum in the K-shell

H Fregion. The D^gCP^fPg) surface, presented in
Figures (111.1.5a) and (III.1.6a) shows quite clearly the 

different contributions from the individual electron pairs. 

On the other hand, the AD^^tP, » Pg ) surface in 
Figures (III.1.9a) and (III.1.10a) is quite complicated, 

due to various cancellations and enhancements of 
probability. It is interesting to note that, in spite of 

this, both AD^ (p̂  ) and AD^^ (P̂  , Pg) reveal quite clearly the 

extent to which the total radial correlation effects are 
dominated by contributions from the intershell electron 
pairs. In direct contrast to this, the total AP(-y ) curve in 
Figure (III.1.14c) shows that it is the intrashell electron
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pair which dominates the angular effect of correlation. 
Finally, the Coulomb shift (Figure (III.1.18c)) and partial 
Coulomb shift (Figures (III.1.24a) and (III.1.25a)) are seen 
to be quite complicated. This reinforces our earlier 
comments concerning the necessity of some form of 
partitioning technique for the sensible analysis of 
correlation effects in many-electron atoms, particularly 
with regard to interparticle properties.

We now turn our attention to the 1s^2p (excited)

state of lithium. The use of the Sinanoglu partitioning
technique described in Chapter (III. 1.1) allows us once
again to separate the system into three electron pairs,
which we shall denote by (1sa 1sp), (Isa 2pa) and (Isp 2pa).
As before, we shall begin by studying the (Isa Isp) pair; to
distinguish clearly between this pair in the ^P state and
the corresponding pair in the ground state, we shall

2henceforth refer to the intrashell electron pairs in the S 
and ^P states as (Isa Isp)^ and (Isa Isp)^, respectively.

Inspection of the (Isa Isp)^ component of the 

partitioned uncorrelated two-particle density for the P 
state reveals that it is identical, in analytical form, to 
the K-shell description in the state. This

correspondence between the density expressions for the 
ground and excited states is also found to extend to the 
one- and two-particle radial momentum distributions for this 
electron pair. Indeed, the o"^(p^) curve and , p^)

surface for the (Isa Isp)^ electron pair, shown in 
Figures (III.1.2a) and (111.1.7b), respectively, are found
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to be virtually indistinguishable from their  ̂S

counterparts. Furthermore, the uncorrelated angular

distributions, P ( y ) , for the two intrashell electron pairs
are identical. (All systems possessing S symmetry have the
same P (-y) distribution —  we have already shown this curve

in relation to our earlier discussion of the 1s2s S state
of helium). Not surprisingly, the uncorrelated
interparticle distributions for (1sa IsP)** are also found to

2be very similar to the corresponding quantities in the S 
state. Thus, the curve in Figure (III.1.17a) is
seen to be graphically indistinguishable from that in 
Figure (III.1.16a). A similar observation holds for the 

g"^(p^ 2 'Pi) surface for (Isa Isp)^, shown in
Figures (III.1.22b) and (III.1.23b); this distribution is 
almost coincident with that for the S intrashell pair.

Having established the near identity of the uncorrelated 
descriptions of (Isa Isp) and (Isa Isp) , we consider now 
the effects of correlation in the excited state intrashell 
pair, and begin with an examination of the radial shift.

pComparison of the AD^ (p^) curve for (Isa Isp) , shown in
Figure (III.1.4a), with the corresponding difference
function for the state, shown in Figure (III.1.3a),
reveals them to be very similar in shape. However, for the

^P curve, the difference between the principal maximum and

minimum values of AD^ (p^) is seen to be smaller than that in
^ S . In contrast to this, the reduction in probability at

small p̂  is found to be greater in depth, and more extensive
in its p^-spread, in the P radial shift than in the

2corresponding S curve. The AD^ 2 (P^ » Pg ) surface for
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(Isa 1sp)**, shown in Figures (III. 1.11b) and (III. 1.12b), is 
also seen to be quite similar to that for (Isa 1s#)^. Not 
surprisingly, the changes in the one- and two-particle 

radial expectation values, presented in Tables (III.1.1) and 
(III. 1.2), reflect the nature of the AD^(p^) and 

functions.

pInspection of the AP(-y ) curve for (Isa Isp) , presented 
in Figure (111.1.15a), reveals that it is graphically 
indistinguishable from that for (Isa Isp)^. The
near-identity of these two difference functions is 

emphasized by noting that the value of for
(Isa Isp)^ is 87.838* , while that for (Isa Isp)** is 87.885* 
-- a difference of only 0.047* between the electron pairs.

Having established that both the radial and angular
effects of correlation are largely unchanged in passing from
(Isa Isp)^ to (Isa Isp)**, we anticipate that the effects of
correlation on the interparticle momentum distributions of
these electron pairs will also be quite similar. Comparison

of the Ag(p^ 2 'R,) surface for the ^P intrashell electron
pair, shown in Figure (III.1.26b) and (III.1.27b), with its 
2S counterpart reveals the two surfaces to be almost

identical, except at very small values of p̂  2  ^.nd p̂  . It

will be recalled that for (Isa Isp)^, Ag(p^ 2 fP^) displays a
very slight positive feature close to the origin. The
existence of this feature was rationalised by noting that

2the orbiting 2s electron in the S state will, to some 
extent, suppress the radial effects and enhance the angular 
effects of correlation in the K-shell electron pair.
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2Clearly, in p the angular orthogonality which exists
between the 1s and 2p electrons will prevent any such
interference in the K-shell correlation effects by the
orbiting L-shell electron; as a consequence, it is hardly 

surprising that the Agfp^^rR,) surfaces for the two 
intrashell electron pairs are somewhat different in the 
region close to the origin.

We conclude our discussion of the correlation effects in 
(Isa Isp)** by studying the Coulomb shift, presented in 

Figure (III.1.19a). Comparison with the Af(p^^) curve for 
(Isa Isp)^ in Figure (III.1.18a) reveals that for p^>4.5,
the two curves are graphically indistinguishable. For
p^2<4.5, slight differences do exist; most notable of these 
is the fact that the local minimum at p^ 2 = 1  0 is
significantly deeper than the corresponding feature in the 
 ̂S intrashell curve. This is due principally to the 
differences between the partial Coulomb shifts when p̂  2  ^.nd 
p̂  are both small, discussed above, and demonstrates quite 
clearly the greater significance of radial correlation 

effects in (Isa Isp)** when p^ 2 is small.

Of course, the difference in the symmetry of the outer 
2 2orbital in the S and P states should be most noticeable 

when examining the intershell electron pairs, and we now 
turn our attention to (Isa 2pa) and (Isp 2pa). Inspection 
of Figure (III. 1.2b) reveals that, as for ^S, the D*Ĵ  (p̂  ) 
curves for both the P-state intershell electron pairs are 

identically equal. However, by comparison with the
intershell o"^(p^) curves for the state, the one-particle
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radial distribution for the (Isa 2pa) and (1sp 2pa) electron 
pairs possess very little structure; the obvious intershell

minimum seen in the curve for ^S is now absent, and the only
2evidence for the existence of two shells in the P curve is 

a slight change in slope at p^=1.5. Closer inspection
reveals that the principal difference between the intershell
H F 2 2(p̂  ) curves in S and P occurs in the location and
spread of the peak at small p̂  ; at larger values of momentum
the difference becomes negligible. These findings are most

clearly illustrated by examination of the radial expectation

values <p">"^, presented in Table (III.1.1). Thus, the
value of <pT^>"^ for the intershell electron pairs is
found to be about 3 times larger than the corresponding
quantity for the ^P state, whereas the <pf>"^ values are

quite similar in the two states.

A similar difference in the degree of structure
exhibited by (p^) was observed when comparing the
one-particle radial momentum distribution functions of the
excited S and P states of helium, studied in Section (II.2).
In that instance, the two-shell nature of the electron

momentum distribution was revealed by examining the
corresponding surface. Inspection of the
uncorrelated two-particle radial momentum distributions for

(Isa 2pa) and (Isp 2pa) presented in Figure (III.1.7)
2confirms that both the P intershell electron pairs also 

give rise to a two-shell distribution. Interestingly, 
examination of the associated analysis reveals that 

o" 2 (Pi'P 2 ) for (Isa 2pa) is identical to that for (Isp 2pa). 
This is in contrast to our findings for the intershell
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pairs, where the two uncorrelated distributions were seen to

be different - principally in the region of the

diagonal. For the ground state, this difference arose as a
result of the presence of Fermi correlation in the (1sa 2sa)
pair, which prevented the two electron momenta from having

the same magnitude. In the P state, the angular
orthogonality between the 1s and 2p orbitals obviates the

need for Fermi correlation to impose any restrictions on the
two-particle radial distribution. Earlier, we noted that 

H Fthe D^^Cp,,Pg) surface for (Isp 2sa) possesses a slight
local maximum on the diagonal which is not seen in the 
surface for (Isa 2sa). This feature was attributed to the 
possibility of the L-shell electron drifting into the
K-shell region, thereby causing the (Isp 2sa) electron pair 
to bear a strong resemblance to the (Isa Isp) pair. 
Clearly, in (Isp 2pa) the difference in symmetry of the two 
orbitals precludes the possibility of such an occurrence; in
keeping with this, inspection of the alternative view of the
H F 2D^ 2 (p^,Pg) surfaces for the P intershell pairs, presented

in Figure (III. 1.8), reveals no local maximum on the (p^=Pg)
diagonal of the (Isp 2pa) surface.

The identity between the uncorrelated two-particle 
radial distribution for the ^P intershell electron pairs 
leads us to anticipate that Fermi correlation will cause the 
corresponding angular distributions to be different, with 
(Isa 2pa) favouring orientations such that the angular 
coordinates of the electron momenta are different; 
inspection of the p"^(^) curves in Figure (III.1.13b) 
provides confirmation of this. For (Isp 2pa), the
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uncorrelated angular distribution is found to be the same as 
that for the S state, whereas for (Isa 2pa), p"^(^) is seen 
to predict higher probabilities for large values of y ;  

physically, this corresponds to the two electrons having a 

greater tendency to be moving in opposite directions. The 
degree of 'skewness' exhibited by the (Isa 2pa) P (^) curve 

may be quantified by noting that for this electron pair, 

= 93.258', whereas for (Isp 2pa) , = 90'.

The g"^(p^ 2 'Pi) surfaces for (Isa 2pa) and (1sp 2pa) , 
presented in Figure (III. 1.22), appear to be broadly similar 
to their S-state counterparts. However, inspection of the 
alternative view of the surfaces for ^P, presented in 
Figure (III.1.23), reveals a significantly greater degree of 
merging between the 'parallel' and 'diagonal' features of 
the surface than is seen in the ^S state. This is in 
keeping with our earlier comments regarding the greater 
degree of radial overlap exhibited by (Isa 2pa) and
(Isp 2p a ) .

H FThe g surfaces for the two P-state
intershell electron pairs are shown in Figure (III.1.28).

H FIt is seen that when 8̂  is small the g (P^gfP^;0^ ) surfaces 
for both (Isa 2pa) and (Isp 2pa) possess the same general 
characteristics as their angularly integrated counterparts. 

However, as 8̂  is increased from 0' to 90*, the feature 
lying parallel to the p^^-axis reduces in height, while the 
diagonal' feature remains fairly constant in magnitude. It 

will be recalled that the g (P^g'^i'^i) surfaces for the 
2 P and 2 P states of He showed a similar behaviour; the
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reasons for this effect are discussed in Chapter (II.2.3). 

The alternative view of the intershell (p^ 2  ' P-|  ̂ )
surfaces given in Figure (III.1.29) reveals the effects that 
the different angular distributions in the two electron 
pairs have on the shape of the diagonal feature, especially 

when 0̂  is small.

Finally in our discussion of the uncorrelated momentum 
distributions for (Isa 2pa) and (Isp 2pa) , we examine the 

f"^(p^ 2 ) curves, presented in Figure (III.1.17b). It is 
seen that the curve for (Isa 2pa) is somewhat 'flatter' at 
very small values of p ^ 2  than that for (Isp 2pa). As in the 
S state, this difference between the two intershell f"^(p^ 2 ) 
distributions is attributable to the presence in (Isa 2pa) 
of Fermi correlation, which prevents the occurrence of very 
small interelectronic momenta. Interestingly, it is seen 
that the difference between the two curves is smaller in ^P 
than in ; this is presumably a reflection of the fact that 
Fermi correlation is more powerful in the S state.

We consider now the effects of correlation on the 
momentum distributions of (Isa 2pa) and (Isp 2pa), and begin 

by examining the AD^ (p̂  ) curves, presented in
Figure (III.1.4b). It is seen that for p^<0.8, the

2one-particle radial shifts for the P intershell electron 
pairs are very similar to those for the corresponding 

electron pairs in S, discussed earlier. In both (Isa 2pa) 
and (Isp 2pa), the L-shell electron undergoes a shift to 
higher momentum, with the difference between the curves for 

the two intershell electron pairs being slightly greater in
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^p than in ^S. In the ^P state, both AD^ (p̂  ) curves also 
show a local minimum in the region of p^=1.0; it is

interesting to note that the position of this minimum
coincides with the location of the barely detectable change 
in slope of the corresponding (p^) curve which indicated 

the intershell nature of the uncorrelated radial momentum 
distribution. At larger values of momentum, the changes in 

(p^) due to correlation are seen to become negligible.

Interestingly, despite the similarity between the AD^ (p̂  ) 

curves for (1sa 2pa) and (1sp 2pa), the changes in the
one-particle expectation values, presented in
Table (III.1.1), are found to be quite different. A similar 
observation may be made with regard to the momentum-space 
results for the N4+ion, obtained by Al-Bayati.

As for the  ̂S state, inspection of the AD^^tP, , Pg) 
surfaces for the ^P intershell electron pairs, presented in 
Figure (III. 1.11), reveals quite clearly the increase in 
momentum of the L-shell electron in both instances. 
However, the alternative view of the AD^^tR, ,Pg) surfaces 
presented in Figure (III. 1.12) reveals that there are 

significant differences between these density difference 
functions and their S counterparts. For (Isa 2sa), we saw 

that, as expected, the change in D^^fPi , Pg=P, ) is 
identically zero, due to the presence of Fermi correlation 
in that electron pair. For (Isa 2pa), however, the angular 
orthogonality between the Is and 2p orbitals leads to a 

non-zero probability for D^^tP^ , Pg) when ”P2  the
introduction of correlation sometimes actually increases the 
probability that the two electron momenta are the same.
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Furthermore, the f Pg ) surface for (Isp 2pa) shows no
trace of any structure due to the effects of correlation on

a double occupancy of the K-shell, such as was observed on
the (p^=Pg) axis of the corresponding (Isp 2sa) surface;
such an observation is to be expected, of course, since we

have already noted in our discussion of the D^^CP,,Pg )

surfaces that the difference in symmetry between the Is and 
2p orbitals prevents the possibility of the (1sp 2pa) 
electron pair resembling a doubly occupied K shell. The 

two-particle radial expectation values derived from the
D^g(p^ , Pg) distributions are presented in Table (III. 1.2); 
interestingly, for (1sa 2pa) correlation reduces <p"p” > for 
all n, whereas for (Isp 2pa), <p"Pg> is reduced for all n 
except n = 1 . This observation, together with our earlier
comments concerning the effects of correlation on the <p">
values, reinforces the idea that changes in expectation 
values are a fairly insensitive guide to the detailed 
effects of correlation.

Having discussed the radial effects of correlation in 
2the P intershell electron pairs, we now consider how 

correlation affects the angular distributions. Inspection

of the AP(‘y) curves for (Isa 2pa) and (Isp 2pa) , presented 
in Figure (111.1.15b), reveals that they are inverted by 
comparison with the corresponding curves for the ^S state. 

For both P-state intershell pairs, it is seen that 
correlation produces a reduction in probability of small 
values of y and an increase in large values, with the 
greatest change occurring in (Isp 2pa). Interestingly, both 
AP(*y) curves cross the axis at -y=90* , despite the fact that
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the values of y at which the uncorrelated angular 
distributions displayed their maxima were found to be 
different; in contrast to this, the P i y )  curves for 
(1sa 2sa) and (Isp 2sa) were identically equal but the 
corresponding AP(^) curves crossed the -y-axis at different 
values of y .  Comparison of the AP(-y) curves for (1sa 2pa) 
and (1sp 2pa) with those for the excited P states of helium, 
studied in Section (II. 2), reveals that the angular shifts 

for both the Li intershell electron pairs have the same 
general form as that for the 2^P state of helium (except at 

very large values of -y) . In passing, it is to be recalled 
that for the excited states of He, the angular shift for 2^P 

is inverted with respect to that for 2^P. For lithium, the 
shapes of the AP(‘y) curves for (1sa 2pa) and (Isp 2pa) are 
reflected in the angular expectation values, presented in 
Table (III.1.3). Thus, for example, it is seen that for 
both (Isa 2pa) and (Isp 2pa), correlation reduces the value 
of <cos*y>.

Finally in our discussion of the P-state intershell 
electron pairs, we consider the effects of correlation on 

the interparticle distribution functions, and begin by 
considering the intershell Ag(p^^,p^) surfaces in 
Figures ( III. 1 . 26c&cd) . These surfaces, like their ^S-state 
counterparts, both display features parallel to the p^^ and 

(p^2 =p^) axes. The 'parallel' features in both surfaces are 
seen to possess the same general characteristics of shape as 

the corresponding surfaces for (Isa 2sa) and (Isp 2sa), 
shown in Figure (III.1.24); in each instance, the shift to 
higher momentum of the L-shell electron is clearly visible.
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In distinct contrast to this similarity between the
'parallel' features in all the intershell surfaces, the
'diagonal' features in the (Isa 2pa) and (Isp 2pa) surfaces
are found to be quite different to their counterparts in the
(1sa 2sa) and (Isp 2sa) surfaces. This difference is most
clearly illustrated by inspection of the alternative view of

the Ag(p^g,p^) surfaces, provided in Figures (III.1.25) and

(III.1.27). For the ^S state, we found that the radial
effect of correlation produced a shift of probability from

the (p, 2 =Pi) axis to the (p^g<p^) and (p^g>p^) regions; at
the same time, the angular effect of correlation was to
enhance the probability of small values of the
interelectronic angular separation, thereby causing the
greatest enhancement of probability in the Ag(p^^,p^)
surface to occur when p^g<p^ . For the ^P intershell
electron pairs, the radial effect of correlation is
effectively the same as in (Isa 2sa) and (Isp 2sa).
However, the principal angular effect is now a shift to
larger values of -y, and this causes the greatest enhancement

of probability to occur when p^^>p^ . From the foregoing, it
is quite clear that the difference between the intershell

2 2Ag(p^ 2 ,P|) surfaces for the S and P states in the region 

of the (p^2 =P^ ) diagonal axis is primarily the result of the 
different angular effects of correlation in the two states.

Further inspection of the alternative views of the 

Ag(p^ 2 'P^) surfaces for all four intershell electron pairs 
suggests that there are greater differences between the 
surfaces for (Isa 2sa) and (Isp 2sa) than there are between 
those for (Isa 2p a ) and (Isp 2pa). This is consistent with

238



our earlier comments concerning the relative magnitudes of 

the effects of Fermi correlation in the S and P states. 
Since the Fermi effect is quite powerful in (1sa 2sa), it is 

to be expected that there should be distinct differences 
between the effects of Coulomb correlation in the intershell 
electron pairs of the S state. In the P state, on the other 

hand, the effect of Fermi correlation is less pronounced, 
and consequently produces less significant differences 

between the effects of Coulomb correlation in the two 
intershell electron pairs.

The 0^-dependent partial Coulomb shifts, presented in
Figure (III.1.30), show how the effects of correlation
change with the angular orientation of the test electron,
measured relative to the symmetry axis of the 2p orbital.
When 0^=0", the surfaces for both (Isa 2pa) and (Isp 2pa)
bear a strong resemblance to their angularly integrated

counterparts. As 0^ is increased, the 'parallel' features
diminish in magnitude until they disappear completely when
0^=90"; such behaviour is, of course, a reflection of the
behaviour of the corresponding uncorrelated distributions, 
H Fg From the view of the Ag( p̂  2  » ) surfaces

presented in Figure (III.1.30), it would appear that for the 

'diagonal' features, the principal effect of increasing 0̂  

is simply to reduce slightly the height of the maxima which 

flank the (p^ 2 =P^) diagonal. However, inspection of the 
alternative view of the density difference surfaces, 

provided in Figure (III. 1.31), reveals that the situation is 
actually somewhat more complicated. When 0^=0", both 
surfaces display a positive feature lying parallel to the
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(P^2 ~Pi^ axis, on the (p^2 >p^) side, and a negative region, 
also lying parallel to the axis, on the (p^g^P,) side. The 
zero contour between these two regions is almost coincident 

with the (p^2 =Pi) axis. As 0̂  is increased, the positions 
and magnitudes of the positive and negative features change; 

when 0^=90', we see a negative region along the (p^ 2 =p^) 

diagonal, with positive features flanking this axis on both 
sides. For both intershell electron pairs, the positive 

feature on the (p,2 >Pi) side of the diagonal is greater in 
magnitude than that on the (p^g^P,) side. Furthermore, the 
difference in height between the two positive features is 
relatively greater in (Isa 2pa) than it is in (1sp 2pa). 
For the former electron pair, the ratio of the maximum 
heights of the two features is 1.96:1, while for the latter 
pair the ratio is only 1.66:1. The shape of the diagonal 
features in the surfaces for 0^=0* and 0^=30" seems to 
indicate quite firmly a dominance of angular correlation
effects at small values of 0^. (If the radial effects of 
correlation were of any significant magnitude we would 
expect to see a positive feature on both sides of the
diagonal, due to the radial expansion of the L-shell

momentum distribution). When 0^=90", it appears that the 
radial effect of correlation has increased, as indicated by 

the presence of the two positive features flanking the 
diagonal. The angular effects are, however, still
significant, as evidenced by the different magnitudes of 
these positive regions. Finally, we note that the 
difference in the relative magnitudes of these two positive 
features for the two electron pairs is consistent with the 

difference in magnitude of the angular shifts in (Isa 2pa)
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and (1sp 2pa), discussed earlier.

We conclude our discussion of correlation effects in the 

 ̂P intershell electron pairs by considering the Af(p^^) 
curves. Inspection of Figure (III.1.19b) reveals that there 
are significant differences between the Coulomb shifts for 
the intershell electron pairs of the state and those of 
the ground state. For both (Isa 2sa) and (Isp 2sa), the 

principal feature exhibited by Af(p^^) was a shift to 
smaller values of p^^; for (Isa 2pa) and (Isp 2pa), on the 
other hand, there is a major shift to larger values of p^g. 
It will be recalled that the radial shifts for the 
intershell electron pairs indicate a barely discernible 
change in momentum of the K-shell electron, and a shift to 
higher p̂  for the L-shell electron. Recalling that 
<*Y> >90" for these intershell electron pairs, such an
effect would, in isolation, clearly lead to larger values of 
p^ 2 • At the same time, the angular shifts for these 
electron pairs indicated an increase in the probability of 

large angles between the electron momentum vectors; this 
change would, by itself, also produce an enhancement in the 

probability of large values of p^^- Clearly, the shapes of 
the Coulomb shifts for (Isa 2pa) and (Isp 2pa) reflect the 
fact that for these electron pairs, the radial and angular 
effects of correlation reinforce each other. In P, as in 
S, the intershell pair in which the electron spins are the 

same undergoes a smaller Coulomb shift than that in which 
the two spins are opposed; inspection of Table (III.1.4) 
reveals that the ratio of Y for (Isa 2sa) to that for 
(Isp 2sa) is 1.7:1 and the corresponding ratio for the ^P

241



intershell pairs is 1.9:1. At the same time, comparison of 

the intershell Y values with those for (Isa Isp)^ and 

(Isa Isp)^ reveals just how small the intershell Coulomb 
shifts are by comparison with the intrashell shifts.

Returning to Figure (III.1.19), we see that when 

p^2=3.5, there is a local minimum in the Coulomb shift for 

(Isa 2pa), where Af(p^^) is negative; a minimum also occurs 
in the curve for (Isp 2pa), but in that instance, Af(p^ 2  ̂

remains positive. A similar distinction may also be 
observed in the corresponding Coulomb shifts for the 
state of the positive ions. Finally, we note that the (p"^) 
expectation values presented in Table (III.1.4) are in 
keeping with the shapes of the Coulomb shifts, discussed 
above. Thus, for both intershell electron pairs, (p"^) is 
reduced by correlation for n<0 and increased by correlation 
when n>0; the increase in for each pair reflects the
increase in the spread of the f(p^g) distribution in both 
instances.

2We conclude this discussion of the P state of lithium
by commenting briefly on some of the more interesting

2aspects of the total effects of correlation. As for the S 
state, these effects were obtained by summing the component 
quantities corresponding to the individual electron pairs 
and then renormalising.

Of particular interest is the total angular shift for 
^P, shown in Figure (III.1.15c). We have already seen that 

the angular shift for (Isa Isp)** predicts an increase in the
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probability of small values of *y , while the shifts for the

two intershell electron pairs show an increase in the
probability of larger values of -y. When combined to produce 
the total angular shift, there is some 'cancellation' 
between these effects; however, due to the significantly 

greater magnitude of correlation effects in the intrashell 
electron pair, the overall effect of correlation in the
whole atom is an increase in the probability of small values

of “Y. A similar total shift was found in ^S, but in that 
state, all the component AP(-y ) curves were seen to predict a 
shift to small -y. Clearly, without the use of the 
partitioning technique, it would have been impossible to 
distinguish between all the various angular effects 
occurring in the two states.

Finally, comparison of the total Coulomb shift for ^P,
presented in Figure (III.1.19c), with that for ^S, in

Figure (III.1.18c), reveals that the two Af(p^ 2  ̂ curves have
essentially the same characteristics. That is, correlation
causes a reduction in the probability of small and large

values of P., 2  » an enhancement in the probability of
2intermediate values. In S, this enhancement displayed a 

certain amount of 'structure', due to the overlapping of 

various features in the three component Coulomb shifts. In 
contrast to this, the total curve for ^P is quite smooth, 
indicating a greater coincidence in the positions of the 

principal maxima of the three component shifts.
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CHAPTER (III.1.5)

SUMMARY

Momentum-space correlation effects have been studied in the 

1s^2s ^S and 1s^2p ^P states of lithium. The analysis was
performed by using a partitioning technique to divide each 

system into a number of identifiable electron pairs; radial, 
angular and interelectronic momentum distributions and 

expectation values were then examined for each pair. Where 
possible, the results obtained were compared with those from 

studies of other systems —  in particular, the ground and 
excited states of helium-like systems, and the various 
electron pairs in beryllium.

The effects of correlation in the intrashell electron 
pair of both states were found to be very similar to those 
found in L i * . Examination of the two-particle radial shift, 

ADigfPi'Pz)' revealed that in both (Isa 1sp)^ and (1sa 1sp)** 
the major radial effect of correlation is a 'splitting' of 

the radial momentum distribution, with the momentum of one 
electron being significantly increased, and that of the 

other undergoing a marginal reduction. Taken in isolation, 
such an effect would lead to an increase in the 
interelectronic momentum variable In contrast to this,
inspection of the angular shifts, AP(*y ), revealed that the 
principal angular effect of correlation -- a shift to 
smaller angles between the momentum vectors -- would lead to 

a reduction in P^g * Thus, in both the intrashell electron 
pairs, as in Li*, radial and angular correlation have 
opposing effects on the interelectronic distribution.
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Furthermore, the Coulomb shifts, AfCp^^)! showed that 
angular correlation is the dominant effect in both 
instances, again in keeping with the findings for Li*. The 

partial Coulomb shifts, AgCp^^'R,), revealed the presence of 
both radial and angular correlation effects, with radial and 
then angular correlation dominating the shape of the surface 

as the momentum, p̂  , of the test electron was increased.
Certain differences were detected between the partial
Coulomb shifts for (1sa 1sp)^ and (1sa Isp)**. These
differences, although small, could be accounted for in terms

of the change in symmetry of the L-shell electron associated 
with each of the K-shell electron pairs.

The intershell electron pairs of both states all reveal 
a shift to higher momentum for the L-shell electron, with 
the change in the K shell being negligible in each instance. 
In contrast to this similarity among the radial effects of 
correlation, the angular effects in (Isa 2sa) and (Isp 2sa) 
were found to be quite different from those for (Isa 2pa) 
and (1sp 2pa) . For the S state, the angular shifts, AP(-y),
for the intershell electron pairs revealed that the angle
between the momentum vectors of the two electrons is reduced 
by correlation, whereas in (1sa 2pa) and (1sp 2pa) ,
correlation was found to increase .

The differences among the angular characteristics of 
correlation in the intershell electron pairs resulted in the 

Coulomb shifts, Af(p^ 2 '̂ for (Isa 2sa) and (1sp 2sa) being 
markedly different from those for (1sa 2pa) and (1sp 2pa). 
In the S state intershell pairs, radial and angular
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correlation have opposing effects on the interelectronic 
momentum distribution; since the shapes of the corresponding 
Coulomb shifts both indicate an overall movement towards 

smaller values of p^^, it would appear that angular 
correlation is the dominant effect in both pairs. For the 
P state, on the other hand, the effect of both radial and 
angular correlation is to increase the interelectronic 

momentum, with the result that the Coulomb shifts for both 
these electron pairs reveal an overall increase in p^^.
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The o"^(p^) distributions for the various electron
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Figure (III.1.5)
(see over)
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Figure (III.1.7)
(see over)
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Figure (III.1.9) 
(see over)
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Figure (III.1.11) 
(see over)
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The ("f ) distributions for the various electron
pairs and the total' atom in the 2^P state of Li.
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The distributions for the various electron
pairs and the 'total' atom in the 2^s state of Li.
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Figure (III.1.17)

The distributions for the various electron
pairs and the 'total' atom in the 2^P state of Li.
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Figure (III.1.18)

The Coulomb shifts Aftp^^) for the various electron
pairs and the 'total' atom in the 2^5 state of Li.
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Figure (III.1.19)

The Coulomb shifts Af(p^^) for the various electron
pairs and the 'total' atom in the 2^P state of Li.
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Figure (III.1.20) 
(see over)
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Figure (III.1.22) 
(see over)
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Figure (III.1.24) 
(see over)
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Figure (III.1.26)
(see over)
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Figure (III.1.28)
(see over)
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Figure (III.1.28)

The g"^(p^ 2 ,Pi; 8 ^) distributions for the 
intershell electron pairs in the 2^P state of Li.
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Figure (III.1.29)
(see over)

275



Figure (III.1.29)
An alternative view of the surfaces

presented in Figure (III.1.28).
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Figure (III.1.30)
(see over)
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Figure (III.1.30)

The partial Coulomb shifts A g (p ^ ^ ) for the 
intershell electron pairs in the 2^P state of Li.
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Figure (III.1.31)
(see over)
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Figure (III.1.31)

An alternative view of the Ag(p^ 2 'Pi ; 8̂  ) surfaces 
presented in Figure (III.1.30).
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SHELL f <p;:> <?;’> <P,> <Pi> o(p, )

(Isa Isp) •
CI 0.76336° 0.65710° 0.22461 

HF 0.76439° 0.65712° 0.22460

(Isa 2sa)

2^S

(Isp 2sa)

TOTAL

CI 0.12621% 0 . 2 2 4 5 3 1  0.13332

HF 0.12826% 0.22612' 0.13298

CI 0.12620^ O. 2 2 4 5 5 I 0.13309 

HF 0.12826% 0.22612' 0.13298

CI O.8 6 6 8 I' O.I7 I6 0 ' 0.16367

HF O. 8 8 O5 5 ' 0.17265' 0.16352

0.72288

0.72238

0.38365

0.38206

0.38215

0.38206

0.49623
0.49550

0.14778
0.14762

0.14349

0.14326

0.14319

0.14326

0.14482

0.14471

(Isa Isp)
CI 0.76384" 0.65729 0.22463

HF 0.76422 0.65742 0.22456

CI 0.46656' 0.16284' 0.13603
(Isa 2pa)

HF 0.47340 0.16363 0.13605

CI 0.46617 0.16272 0.13626
(Isp 2pa)

TOTAL

HF 0.47340 0.16363 0.13605

CI 0.33637' 0 .1 3 0 4 3 ' 0.16564 

HF 0 .3 4 1 0 7 ' 0 .1 3 1 0 0 ' 0.16555

0.72323

0.72237

0.37518

0.37529

0.37629

0.37529

0.49157

0.49098

0.14787

0.14768

0.13789

0.13791

0.13807

0.13791

0.14128

0.14117

Table (III.1.1)

The one-particle radial expectation values <p"> and the 

standard deviation, o(p^), for the 2^S and 2^P states of Li. 

The superscripts denote the power of ten by which each entry 

is to be multiplied.
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Shell Y <p;^P,-s -1 -1 <P, P, > <PlP2>

Cl 0.58208° 0.42599° 0.49152' 0.46063^
(1sa 1sp)

HF 0.58430° 0.43181° 0.5044?' 0.52184%

Cl 0.11754% 0.22827' 0.78950° 0.10879'
(Isa 2sa)

HF 0.12011% 0.2305?' 0.78041° 0.10708'
2 h

Cl 0.18607% 0.25182' 0.93345° 0.29108'
(1sp 2sa)

0.25400' 0.30163'HF 0.19024% 0.92897°

Cl 0.10314% 0.17423' 0.2212?' 0.16687^
TOTAL

0.17592' 0.22514'HF 0.10540^ 0.18757%

Cl 0.53806° 0.42260° 0.49064' 0.45888%
(Isa 1sp)

HF 0.58403° 0.43220° 0.50429' 0.52183%

Cl 0.65100' 0.17069' O.IO6 6 1 ' 0.20058'
(Isa 2pa)

0.17193' 0.10675' 0.20378'2 HF 0.66517'
2 P

Cl 0.64901' 0.1703?' 0.10706' 0 .2 0 3 7 1 '
(1sp 2pa)

0.17193' 0.10675' 0.20378'HF 0.66517'

Cl 0.45127' 0.1277?' 0 .2 3 4 7 7 ' 0.16644%
TOTAL

0.12903' 0.23926'HF 0.46291' 0.18753%

Table (III.1.21
The two-particle radial expectation values (p^p^) for the 2%S 

2and 2 P states of Li. The superscripts denote the power of 

ten by which each entry is to be multiplied.
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Shell <cos*r> <2^ .2g > <^>(*)

(Isa 1sp)
CI 0.82779

■HF 0.0

(Isa 2sa)

2^S

(Isp 2sa)

CI

HF

CI
HF

TOTAL

- 2

0.75108 

0.0

0.82630 
0.0

-2

- 2

CI 0.80172

HF 0.0

- 2

0.37721
0.0

0.57920"
0.0

0.42097 
0.0

0.15908 
0.0

- 1

- 2

- 1

0.31598 87.838
0.0 90.000

0.59736 
0.0

0.57793 
0.0

-2

- 2

89.668
90.000

89.759
90.000

0.10924" 89.088
0.0 90.000

(Isa Isp)

(Isa 2pa)

CI 0.75891

HF 0.0

CI -0.17687'
HF -0.17111

(Isp 2pa)

TOTAL

-2

CI -0.61787
HF 0.0

- 2

CI -0.58487

HF -0.57037'

-1

0.36897

0.0

-0.61741

-0.56824

-0.39261
0.0

-0.95900

-0.18941'

- 1

- 1

- 1

-2

-2

0.31403" 87.885
0.0 90.000

-0.47157'

-0.41880'

-0.38280'
0.0

1 93.540

93.258

90.225
90.000

0.87682"' 90.550

-0.13960"' 91.086

Table fIII.1.3)

Values of < 2 ^ / p " > for n = 2, 1 and 0, and <^>, the
average angle between the momentum vectors for the 2% S and 
2%P states of Li. The superscripts denote the power of ten 

by which each entry is to be multiplied.
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Shell T <P-> <p„> a(P,j) Y(».)

(Isa Isp)

(Isa 2sa)

2^S

(Isp 2sa)

TOTAL

CI 0.42814" 0.32384
HF 0.42559" 0.32923

CI 0.57493" 0.23511

HF 0.57528" 0.23490

CI 0.63398" 0.23137

HF 0.63378" 0.23156

CI 0.54568° 0.26344 

HF 0.54388° 0.26523

0.13804 0.18212

0.14423‘ 0.18931

0.75820' 0.14333

0.75632' 0.14302

0.7538?' 0.14783

0 .7 5 5 5 3 ' 0.14810

0.96416' 0.15776

0.98472' 0.16014

1.13

0.91

0.16

0.36

(Isa Isp)

2V

(Isa 2pa)

(Isp 2pa)

TOTAL

CI 0.42720" 0.32322

HF 0.42594" 0.32825

CI 0.59032" 0.23336

HF 0.59130" 0.23318

CI 0.62917" 0.23079

HF 0.63149 0.23028

CI 0.54890" 0.26246
HF 0.54958" 0.26390

0.13598' 0.17751

0.14192 0.18486

0 .7 5 2 2 3 ' 0.14410

0 .7 5 1 0 2 ' 0.14398

0.74578' 0.14599

0.7426?' 0.14573

0.95260' 0.15587
0.97096' 0.15819

1.24

0.10

0.19

0.48

Table (III.1.4)

The interparticle expectation values the standard

deviation, o(p^2 ), and the fraction. Y, of probability
2 2redistributed due to correlation, for the 2 S and 2 P states 

of lithium. The superscripts denote the power of ten by 

which each entry is to be multiplied.
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