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A B S T R A C T

The work of Banyard and Shull on a series of two-electron 
pseudomolecular ions ZHZ  ̂has been extended to four electron 
systems of the form ZHZH^^ These systems may be regarded as an
approximate representation of a fragment of a more complex molecule, 
therefore, noninteger Z values were used in an attempt to make some 
allowance for the nuclear shielding caused by the presence of other 
electrons which were otherwise unaccounted for in the calculations.
The effective nuclear charge Z was allowed to take values of 1.0, 1.2,
1.4, 1 *8 and 2.2 and the optimum bond angle ZHZ was studied as a 
function of Z. Within a limited basis set of Slater-type Is orbitals, 
the calculations were complete configuration interaction treatments.
The C.I. wave functions were reformulated in terms of natural spin 
orbitals. Consequently, changes in the electron density distributions 
have been investigated as a function of Z and bond angle. For Z = 1.0,
1.4, 1.8 and 2.2, and ZHZ = 100° and 120°, the electron densities of 
the ZHZH*^ ^ ion have been compared with those of the ZHZ^^  ̂ systems.

The nuclear framework of the diborane "bridge" was adopted 
for a second series of four-centre, four-electron calculations: a
similar investigation has been carried out by Hamilton. Once again an 
allowance was made for nuclear shielding by using effective nuclear 
charges - the boron nuclear charge, B^, was given values of 2.0, 2.5 
and 3*0. Slater-type Is orbitals were centred on the hydrogen nuclei 
and 2s orbitals on the boron nuclei. For each value of B^ the energy 
was minimi zed with respect to the orbital exponents. The electron 
density at points along the intemuclear axes was then evaluated for 
the optimized systems.



-1-

C H A P T E R  1 

INTRODUCTION

The discovery, by Schrodinger in 1926^^ \  of a fundamental 
differential equation describing the motion of an electron and 
accounting for its wave-like nature laid the foundations of present 
day wave mechanics. The Schrodinger equation

if
(2)stands in approximately the same relation to the Hamilton-Jacobi' ' 

equations as does wave optics to geometrical optics. In fact, the 
Schrodinger equation is often written in Hamilton-like form

= £${■>) (1-2)

where ̂ ^)is a function of the coordinates of all the particles of the 
system. The Hamiltonian operator H can be defined by referring to one 
of the basic postulates of the new quantum theory:- "for every physically 
measurable property of a system there corresponds a linear operator such 
that the eigenvalues of that operator are the possible results of measure­
ment of the observable p r o p e r t y I f  the time independent energy 
levels of a system are the desired physical observables, the corres­
ponding linear operator is the Hamiltonian, H, and if one can find the 
eigenfunctions $(^), of H, then the desired stationary energy levels can 
be calculated.

Assuming then that Schrodinger*s equation does describe 
atomic-scale systems correctly, it might appear, at first sight, that 
the calculation of atomic and molecular structure is merely an exercise 
in applied mathematics; however, this is not so. The wave equation for
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.a molecule, for example, is a second order differential equation 
in 3N variables, where N is the number of particles in the molecule.
No general analytical solution can be found for such an equation, and 
the use of direct numerical solutions does not help; the amount of 
numerical data required to specify the wave function of comparatively 
simple molecules, would be enormous. In order to make the problem 
tractable it is necessary to have recourse to the use of approximate 
methods. This is where a knowledge of the physics of the problem 
becomes important. Any approximations which are made in solving the 
problem must be physically reasonable if meaningful results are to be 
obtained.

The approximation developed by Eartree^^) and Fock^^^ was 
a major step in simplifying the solution of the many-electron atom 
wave equation. The essence of the approximation - now known as the 
Hartree-Fock method - is that each electron is considered to be under 
the influence of the nuclear potential field and the total average 
charge distribution of all the other electrons in the atom. Each 
electron is thus considered to be independent of the instantaneous 
position of the others. When this independent particle approximation 
is used the total wave function for the atom (at least one with a 
closed shell structure) may be written as a single determinant, that is

.......

(1.3)
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where^ is the total wave function of the system and 4̂  ^4^  ̂ " 4^ 
areaie-electron wave functions known as atomic orbitals. Using this 
type of wave finction and applying the variational method the problem 
reduces to the solution of a set of equations

= (1.4)

knom as the Fock equations. F is an operator defined in terms of 
the4 5̂ , so the equations must be solved iteratively until a self- 
consistent set of orbitals is obtained.

Due to the nature of its basic approximation the Hartree-Fock 
method incorporates an inherent error known as 1he correlation error.
The distribution of electrons within the atomic system will be such that 
thqy tend to avoid each other in the<ir motion about the nucleus, that is
their motion is correlated. The Hartree-Fock method does not take
sufficient account of this and consequently will always predict an 
energy value which is too hi^. But even so this method has been
widely applied to calculations on atomic structure, and seems to give an
accurate description of the distribution of electrons within an atom. 
However its application is still tedious and complicated, and attempts 
have been made to simplify the problem. This has been done by replacing 
the copious numerical data obtained by the Hartree-Fock method by simple 
analytical one-electron functions which approximately reproduce the 
self-consistent field atomic orbitals. These attempts have met with 
a good deal of success and as a 'result these simple functions, in 
particular those of Slater^^\ have been applied extensively in atomic 
problems.



The problem of solving the wave equation of a molecule is 
complicated by the presence of the atomic nuclei. Fortunately, because 
of the great disparity between the electronic and nuclear masses the 
total wave equation of a molecule may be separated into two parts, one 
describing the nuclear motion and the other the distribution of the 
electrons. The electronic wave equation arising from the application 
of this approximation may be solved by the Hartree-Fock method.
However, because of the many-centre nature of the nuclear potential 
field this is an extremely complex problem. As a result either the

(7)approximation developed by Hoothaan' ' or a complete configuration 
interaction method is usually used. In Roothaan's method the one- 
electron wave functions, which are now molecular orbitals, are written 
as linear combinations of atomic orbitals (the LCAO approximation)

(1.5)

Using this approximation a set of equations analogous to the 
Fock equations (1.4) is obtained, and these are solved by varying the 
coefficients until self consistency is achieved. The configuration 
interaction method, the one used in this work, builds up the total wave 
function in a somewhat different way. Slater determinantal wave functions 
are constructed for each electronic configuration. The total wave 

function for the k̂ ^̂  energy state of the system is expressed as

(1.6)

where are coefficients to be determined. Once the detailed forms 
of the configurations are specified the molecular energy and the
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corresfponding total wave function may be obtained by application of the 
variation method.

The chief difficuliy in both the configuration interaction 
and Eoothaan's method lies in the evaluation of the many-centre integrals 
which arise. However, the advent of high speed digital ccanputers have 
made these calculations possible. For this same reason the theoretical 
study of the structure and physical properties of small molecules has 
received a great deal of attention in recent years. A major part of 
the work has been centred around the study of the "normal" two-electron 
bond. However, as early as 1927 it was recognised that there were some 
relatively simple sub stances which defy classification within the Lewis- 
Langmuir-Sidgwick scheme. These substances are classified as being

(j i )electron deficient' and the work described here attempts to further 
our understanding of the three-centre two-electron bond. The four- 
electron systems studied in this work may be regarded as an approximate 
representation of a fragment of a more complex molecule which is itself 
electron deficient. The systems which have been investigated in this 
work and the reasons for doing so are discussed in Chapter 2.

Footnote A. The most restrictive and perhaps the most clear cut 
definition of electron deficiency is that, in general, the number of 
valence electrons in a molecule is less than 2(n—1), where n is the 
number of atoms contained in the molecule. In such molecules the idea 
of anelectron pair bond can be retained if we allow that some bonds 
involve atomic orbitals from more than two atoms of the molecule.
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C H A P T E R  2 

COMPLEXES INVESTIGATED

The electron deficient bonds which occur in the boron 
hydrides and certain aluminium and beryllium hydrides are also present 
in the H^ molecular ion. It is for this reason that the H^ ion has 
been the subject of several recent investigations^^^^ \  One of these 
calculations, that of Christoffersen, is of particular significance with 
regard to this study; this is revealed in the work on Banyard and 
S h u l l a n d  Banyard and Tait^^^\ The details of the connections 
between the four-electron complexes investigated here and the work of 
Christ off ersen are outlined below.

The H^ molecular ion is the simplest of the electron deficient 
systems. and the work of Christoff ersen was concerned wi1h the geometry 
and stability of this molecule. A similar type of bonding to that of 
H^ is probably the diborane bridge. A detailed study of the 
"bridge" or "banana" bond in diborane is naturally a difficult problem. 
Ideally, for each boron atom, the conventional bonds with the terminal 
hydrogen atoms and also the relatively unperturbed inner-shell electrons 
should be considered. However, as an initial attempt to contribute 
towards the understanding of the three-centre two-electron bonds, Banyard 
and Shull extended Christoffersen * s treatment of H^ to a series of 
pseudomole cular ions of the form .

The two-electron systems ZHZ"^^^^ were regarded as an approxi­
mate representation of a fragment of a more complex molecule. The system 
contained two outer nuclei which had identical, non-integer charges Z.
The "central" nucleus always had a charge of unity and was, therefore, . 
a bare hydrogen nucleus. The use of non-integer Z values was an attempt
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to create an approximate nuclear framework which allowed, in part, 
for the nuclear shielding caused by the presence of electrons which 
were otherwise unaccounted for in the calculation*

Nuclear Charges Zg = = Z
Distances AB = AC = 1.66 au.
Bond Angle ZHZ = 0^

Figure 201. Geometry of the ZHZ^^^^ ions

By studying the behaviour of the two electrons within such a 
modified nuclear framework. Figure 201, it was hoped that some under­
standing of the nature of the electron deficient bond could be obtained.
To this end, the effective nuclear charge Z was allowed to take values 
of 0.80 (0.2) 2.2 and the optimum bond angle ZHZ was investigated as a 
function of Z. For each Z a study was also made of the angular 
dependence of the molecular energy for a fixed value of the bond 
length AB.

The study gave rise to several interesting features, two of which 
were the initial decrease in the optimum bond angle ZHZ as the effective 
nuclear charge Z was increased, and the occurrence of a double minimum 
in the angular dependence of the molecular energy for Z 1.8. It was 
found that, in general, all the results could be understood by making 
the tentative suggestion that the electron density was composed of two 
main components. For convenience, these two forms of the electron 
density were referred to as the "shared*' density and the "local" density:
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the foiraer was associated with the inter-nuclear regions and the latter 
was situated, primarily, about each nucleus.

The initial intention of the investigation was to
obtain some understanding of the diborane - like bridge bond. In 
spite of the interesting results, this work revealed that the behaviour 
and nature of the bridge bond was still left in considerable doubt.
The sizeable initial decrease in the bond angle with increasing effective 
nuclear charge indicated that the threes-centre model was unable to 
simulate the bridge bond. Consequently there were two paths open for 
the furtherance of the ZHZ***̂ *̂* work; the unusual and rather intriguing 
results obtained from this work and the problem of the bridge bond 
representation both required further investigation.

The first path was followed by Banyard and Tait. The con­
figuration-interaction wave functions for the pseudomole cular ions 
ggg+2Z-1 reformulated in terms of natural orbitals^^^^. Con­

sequently, changes in the one-particle electron density due to variation 
of Z and the bond angle ZHZ were able to be investigated by means of the 
population analysis suggested by Mulliken^^^\ The "local" and "shared" 
densities interpretation of results was given reasonable support by this 
work and, in particular, it was of real interest to observe how the 
systematic variations of Z and 0^ were reflected in tbs movements of 
electronic charge throughout the system.

Since the three-centre approach to the diborane-like bridge 
system was unsatisfactory, it was decided that a different model should 
be used. The obvious extension of the ZHZ^^^^ arrangement was to 
consider both bridge bonds together. Clearly, it was also of great 
interest to ask how the presence of the "other bridge" would affect the
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findings and analysis of the previous calculation, since, within a 
constrained system, such calculations present an intriguing picture 
of charge movement and consequent energy changes due to variations in 
either nuclear charge or bond angles, or both. The two bridge bonds 
together constitute a four-electron four-centre problem - the subject 
of the present investigation.

The four-centre four-electron investigation was conducted in a 
similar manner to that adopted for the investigation. Non­
integer Z values were once again used to make some allowance for nuclear 
shielding effects. To enable comparison to be made with the earlier 
work, the bond lengths AB, BC, CD and AD, Figure 302, were set at 
1.66 au, the value used in the ZHZ^^^^ calculations. Slater-type 
Is atomic orbitals were centred on each nucleus and within this minimal 
basis set the calculation was a complete four-centre configuration inter­
action treatment. The effective nuclear charge Z was allowed to take 
values of 1.0, 1.2, 1.4, 1 #8 and 2.2. It was then possible to study 
the optimum bond angle ZHZ as a function of Z. The method of calculation 
and the results are desribed in the later chapters.

The four—centre four—electron work described so far is an 
extension of the ZHZ^^^  ̂ calculations rather than a schematic represen­
tation of the "diborane bridge" complex since the details of the geometrical 
arrangements of the two systems are somewhat different. For this reason, 
a second series of calculations were carried out using the diborane bridge
geometry determined by electron diffraction m e t h o d s T h e s e

(17)calculations were similar to those of Hamilton' 'since both were four- 
centre four-electron studies and both used the true geometry. The main 
differences between the two studies was that Hamilton used a "Roothaan
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self consistent field, linear combination of atomic orbitals" method 
of calculation and hyridized orbitals on the boron atoms. However, 
in his work the three and four-centre integrals were evaluated using 
the approximation suggested by Mulliken' , rather than evaluated 
explicitly. In the present calculations a Is Slater-type orbital was 
centred on the hydrogen nuclei and a 2s Slater-type orbital on the boron 
njiclei. By introducing tne 2s orbital, an attempt was being made to

(b  ̂obtain a more realistic model of the diborane bridge' '. The boron 
nuclear charge was replaced by a series of "effective" values, i.e.
2.0, 2*5 and 3.0, which make some partial allowance for inner-shell 
nuclear shielding. The variation of the energy with respect to the 
effective nuclear cnarge was then investigated.

Where possible the results of the energy calculations were 
compared with the results of Hamilton. The full extent of these 
comparisons, along with the results, are described in the later chapters. 
Subsequent analysis of the wave function in terms of charge distribution 
should also be of some considerable interest, especially when compared 
with earlier work.

Footnote (b ) Althou^ the introduction of 2'pa' and 2pTT orbitals would 
have been desirable, at the time of calculation the programmes available 
for evaluating four-centre electron repulsion integrals were restricted 
to 8-type Slater orbitals only. It was for this reason that the cal­
culations were limited to s-type orbitals.
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C H A P T E R  3

THE METHOD OF CALCULATION

3.1 Background Development

If relativistic effects, spin-orbit and orbit-orbit 
interactions are ignored, the Hamiltonian operator for an n-particle 
system can be written as

n , ____,

H =% /  ̂-i-. V  (i) + ) ZtZj (3-')

where t , h is Plank*s constant, is the vector distance from
some reference coordinate system to particle i, and mi and Zi are the 
mass and charge, respectively, of the i^^ particle. The first term 
represents the kinetic energy of the system and the second the potential 
energy.

On account of the mass of the proton being about I836 times 
as great as the mass of the electron, the nuclei move much more slowly 
than the electrons. This means that when calculating the energy of 
electrons, the nuclei within a molecule may be treated as fixed. Such

(19)an approach, known as the Bom-Oppenheimer' approximation, means 
that the vibrational and rotational motions of a molecule are effectively 
quite separate from the electronic motions. Hence, corresponding to 
any given position of the nuclei, there is a definite energy or set of 
energies for the electrons. Despite this, only in the case of molecules 
with a single electron can the wave equation be solved exactly. A means 
of obtaining energies of any desired accuracy, even through the exact
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wave function is not known is provided by the variation theorem.
This theorem states that, if ^  is an approximation of the exact 
wave function then the following condition will always be 

observed:

E  =  i £ H l i t  \ [  (3.2,

J 'J'' dt ^  °

where is an eigenvalue of the operator H for the system; the 
integration is over the total electron configuration space. There is 
one particular form of the variation method, called the "Metnod of 
Linear Combinations", which is outstandingly convenient to use and 
is most pertinent for the study of molecular systems. With this method 
the eigenfunction ̂  associated with the operator H is approximated by 
a function ^  , which is turn is written as a linear combination of 
functions^, i.e.

i

The functions are linearly independent functions appropriate to 
the system under consideration. By requiring that the energy which 
is calculated fromÇ be a minimum, a system of linear equations is 
obtained which must be solved for the coefficients and the energy 
E^. The system of equations vAiich arises can be conveniently written 
out in matrix fozm as

(H -A5)C =0 (3-4)
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and are oommozily referred to as the secular equations. The above 
mentioned matrix equation represents the familiar matrix eigenvalue 
problem. Written out in full the matrix elements and are

Hy- Jî*.’ H dt .
„ (3-5)

I ' J

and C is a column vector of the coefficients . If the eigenvalues 
Xk are arranged in ascending order, then Xo represents the ground 
state energy of the system described by the approximate wave function ^  . 
The remaining eigenvalues Xi (i = 1,...n) are approximations to the 
excited state energies.

The methods and theorems described above were employed in 
constructing the secular equations which describe a molecular complex 
of four electrons and four nuclei. Each procedure was systematically 
followed and a detailed account of the results appears in the following 
sections.
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3.2 The Hamiltonian Operator
The Bom-Oppenheimer approximation was adopted, and the total 

molecular Hamiltonian H for a system of four nuclei and four electrons 
was written in atomic units^^^^ as:

1=I

There are four groups of terms.
The first group represents the kinetic energy of the electrons, 

the second represents the attraction of the i^^ electron to each of the 
nuclei (A, B, C and D), the third represents the mutual repulsion of 
the nuclei and the last, the mutual repulsion of the electrons* This 
particular form of the Hamiltonian was generated from the general form 
described in section 3.1. The Bom-Oppenheimer approximation allowed 
the terms representing the kinetic energy of the nuclei to be neglected.
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3.3 The Geometry of the System

In molecular calculations Group Theory provides a powerful 
tool for utilising the symmetry properties of the molecule. The diborane- 
like bridge, whose geometry is shown below, belongs to the point 
group

H---

Figure 301. Geometry of the Diborane Bridge

This is a highly symmetrical group with three axes of 
symmetry and three reflection planes which intersect at right angles 
at the point 0. If this geometry had been adopted the possible appli­
cations of the work would have been greatly reduced. A much lower 
symmetry was thought to be useful in order to encompass as many molecular 
complexes as possible. For this reason the geometry shown below was

♦X

chosen

A
Figure 302. The Geometry of the *General* System



-16-

Centres A and 0 are identical. The distances AB and BC 
are equal, so too are CD and AD. The plane of the molecule is a 
reflection plane and a C^ axis of symmetry passes through the centres 
B and D. A second reflection plane perpendicular to the plane of the 
molecule also passes throu^ centres B and D. This molecular configuration 
belongs, therefore, to the point group C^^. Since the symmetry operations 
which form the C^^ group are contained within the group, the former 
is a sub-group of the latter. Because the lower symmetry had been chosen 
the following systems were also within the scope of this work:-

1. The ion.
2. The complex.
3. The molecular ion complex LiH*̂ .
4. The beryllium hydride_ion BeH**" .

Systems 1 and 2 were investigated for the purpose of checking 
the computer programmes used in “this work* A detail account of these 
calculations can be found in Chapter 4# Unfortunately time did not 
allow systems 3 and 4 to be investigated. The way in which the symmetry 
properties were used in the construction of the wave function for the 
four-centre four-electron system of symmetry, Figure 302, is dis­
cussed in the next section.
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3*4 Construction of the Wave Function

The most efficient way of constructing the total wave function 
was through the methods of group theory* The advantages of adopting 
this formalism can he seen in the following discussion. The Hamiltonian 
for the system shown in Figure 302 is invariant under four symmetry 
operation, E, 0̂ , Cfxy and fi'yz. These operations form the group

the character table fbr this group is given in Table 301 •

Table 301 • The Character Table of the Group

^2v B ^2 (TvCxz) d'v(yz)

4 1 1 1 1

4 1 1 -1 -1

4 1 -1 1 -1

^2 1 -1 -1 1

An s-type Slater orbital was centred on each nucleus and the 
usual methods of group theory were used to construct the symmetry 
adapted molecular orbitals describing this system. Since four basis 
functions were being considered four symmetry adapted molecular orbitals 
^  should result. These were

- Isb
led
(Isa + Isc)

^ 4  = (Isa - Isc)

) symmetry

Bg symmetry

(3.7)
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for the case of Is orbitals being centred on each nucleus. The symmetry 
adapted molecular orbit al^^ is orthogonal to ̂ ^,^2 and^^ because it 
belongs to a different irreducible representation.

The problem was now at the stage where the total wave function 
for the system,^ ̂  ^  , could be constructed. Since only one
state was being investigated, only those which transformed in the 
same manner as this state needed to be considered. The ground state 
was the state of interest and it was assumed to belong to the 
irreducible representation. Thus, only the configurations which 
transformed under the various symmetry operations in the same manner 
as the irreducible representation were constructed. Table 302 was 
employed in formulating these configurations. Each acceptable configura­
tion was formed from a product of symmetry adapted molecular orbitals 

^4^, whose direct product of irreducible representations contained only 
an Â  component•

Table 302. Direct Product Table

°2V 4 ®2

4 4 ®2

4 ^2 ®2
®2 ^2

®2 *2 4

(21)The Pauli principle' ' demands that the total wave function 
describing the motion of electrons must be antisymmetric with respect 
to interchange of any two electrons. It is a property of determinants 
that, if any two rows or columns are interchanged, the sign, of the
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determinant changes, but the numerical value is unaffected* Therefore,
the configurations 0^ were set up in the form of determinants in which
the permutation of a pair of electrons was equivalent to the interchange
of a pair of rows. The Pauli principle was thereby automatically satisfied.

Two restrictions have been placed on the total wave function, it
must be antisymmetric with respect to interchange of electrons and it
must belong to the irreducible representation. The spacial part of
the total wave function was constructed in such a way that these rules
were obeyed * The term "spacial part" is used because an electron has
four degrees of freedom, three associated with its position in space
and the fourth arising from the possibility of different orientations

(22)of the spin axis • The consequence of spin had to be investigated 
(C )next . Each of the orbital configurations was multiplied by a spin 

function. A singlet state was being considered, therefore, the spin 
functions were such that -

2a) The total wave function was an eigenfunction of the S and
(23) operators .

2b) The eigenvalue of the S and operators was zero.
(24)Lowdins* projection operator technique was used to construct the 

spin functions which satisfied the above conditions. The total wave
function, constructed from ^mmetry adapted spin orbitals was, therefore,

JZ.
of the form - K /

L=l

Footnote C . Spin-orbit interaction causes a small term containing the
(25)spin operator to appear in the Hamiltonian of atoms and molecules. 

However, for calculations such as ours, this term is normally neglected. 
To this approximation the Hamiltonian is independent of spin.
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Ü5oc Ù s  
1 1 2 2

ll/<̂ lb /Ô IhcK )lĵ
1 1 3  3

Ü5<̂  Tb f %b* Ibf2 2 3 3

Ik 4 ikf lb* Ibv* 
1 1 2  3

tioc ik/g Xhfi 
1 1 2 3

8

10

11

12

$«( l|j/3 Uî<̂
2 2 1 3

llSoC lll̂  l(Ŝ
3 3 1 2

l]5o(
1 1 4  4

ijjoc Uf^ Uf<< î|î(S
2 2 4 4

lj5o< lko(
3 3 4 4

$«( l|T/« 11S4
4 4 1 2

l|f,& IjlX 
4 4 1 3

i|5«< Î)Ĵ
4 4 2 3

Ijjet. I|54 IjSja Ijl-x 
2 2 1 3

1p«k ( I f f  li3o<

3 3 1 2

Z|i «( î|ij« l|5y4 
4 4 1 2

l\io~
4 4 1 3

2)i«( l|f/« l|f*(
4 4 2 3

(3.8)
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The symbol I m n p

configuration where

% i )  «̂ (1) 
% 2 )  &(2) 

^(3) <(3) 
^(4) =t(4)

represents the determinantal

4̂ m(l) 4(1)
*^m(2)4(2) 

^m(3)4(3) 

^m(4) ? (4)

V„(i ) X(1 ) 

tn(2) *.(2) 
^n(3) «<(3) 

^n(4) *<4)

%(1) 4(1) 
Vp(2) f(2) 

%(3) 4(3) 
%(4) 4(4)

and ^  , for example, is a symmetry adapted molecular orbital and oLand ^ 

are spin functions.
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3.5 Construction of the Matrix Elements

The analytical form of the total wave function was known, 
therefore, the secular equations (g - X§)C = 0 could he constructed. 
Because spin-orbit interaction had been neglected the Hamiltonian 
was spin independent. In other words, the space and spin parts of the 
matrix elements were independent and therefore could be integrated 
separately.

Each matri± element was comprised of one or more functions 
of the form

citsPACE (ifSPIN

which were re-written(26)as

k
^ dfsR^CtdtspiN

(3.9)

The constant k was, at this stage, absorbed into the coefficients C^., 
Because of the orthogonality of the spin eigenfunctions cL and all the 
farms in equation (3.9) vanish except those for which the spins match 
exactly. For example, integration over spin in H^^ and gave 
the results:



-23-

Hr i [ <js(D 1̂ (2)

. + 4g:l) %2) î|(3) ̂ (4)-2i]5(|) 45(2) 1̂ (3) il5W] atà PACE
(3.10)

1
5 ,1“   ̂ Ijj(l)* (|f(2)'l^(3)'t|^(4)'[%jl(l) î|i(2) Ç 3 )lji(4 )  

+  1̂ 0) 4f(2)?l|(3) i}5(4)-2!^l) 2jJj2) ?jsj3) dlj(4) d t S P A C E
(3.11)

Each determinantal function, equation (3.9), was reduced to a linear 
combination of four terms. In some cases two of the terms were 
identical, this occurred in and

Both the H and S matrices were symmetrical about the leading 
diagonal ; therefore only terms in the upper triangle were evaluated. 
Symmetry adapted molecular orbitals belonging to different irreducible 
representations are orthogonal. Thus, for certain matrix elements, 
integration over space was greatly simplified since some of their 
constituent terras were zero. To describe the consequences of the 
orthogonality conditions Figure 303 is used. The matrices are split 
into four blocks and each one is considered separately.

I —  H

I B L O C K  A

I 6

H 6 I H6 6

H

H

7 I H?

B L O C K  D

12 H 12 6

H| f ------------------ H

B L O C K  B

Hô 7--------

I 12

12

H7 7 H 7 12

B L O C K  C I

H|2 7------------ ,2

Figure 303. Sub-divisions of the Matrix Elements
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The S matrix is sub-divided and labelled in exactly the 
same manner as in Figure 303. All the symmetry adapted molecular 
orbitals contained im blôck A are of Â  symmetry; therefore, there 
was no reduction of terms due to orthogonality conditions. to

were constructed from and only).
Configurations to were constructed from two molecular 

orbitals of Â  symmetry and two of symmetry. Therefore all the 
one-electron terms in block B were zero. Only the two electron terms 
of the form

i|i(l)î|5(l) 1 43(2)l|î(2) d u t.
Al . 2  t j j  Al B2

4̂ (3) 4<3)(|t
Al Al 4i(4)4J(4)dl

Al Al
(3.12)

remained, where d1/ ̂  denotes integration over the coordinates of 
electron i. All the configurations contained in block 0 were con­
structed from two orbitals of Â  symmetry and two of Bg symmetry. Only when 
the Bg orbitals matched exactly were the one electron terms not zero.
The .two electron terms of'xhe type

4X1) # )  1  43(2) # )  d U t
B2 82 B2 ‘ ^

# )  43(3>atj

4X1) 43(1) 1. 43(2) 43(2) d iu t 45(3) 430)dt
B2 B2 Al Al ' B? B2 SI

4XD 43(1) ^  43(2) #)dt,df
Al B2 ^2 ^2 Al

Al Al

i  «

45(4) 4$f4)dlt
Al Al

12. 430)^(3)d^

4X4) 4r(4)K
Al Al

4 X 4 )  4 X 4 ) d t ^
Al Al

(3.13)

were also non-zero.



-25-

The consequences of the orthogonality conditions are summarized
below.
For the S matrix - block A was unaffected, blocks B and D were everywhere

zero and the terms in block C were reduced in number 
For the H matrix - block A was unaffected, blocks B and D contained only

two electron terms and block C wais again reduced.

The next stage in the work was the integration of the remaining
terms. To perform this operation, computer programmes obtained from
the "Quantum Chemistry Programme Exchange" were adapted for use on

(27)the S.R.0.Chilton "Atlas", • Several sections of the programmes 
had to be re-written; these details and a description of each routine 
appear in Appendix I.
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3.6 Evaluation of the Secular Equation

To determine the energy eigenvalues of the matrix equation 
(H -X§)£ * 0, a two part computer programme was written. The 
function of the first part was to calculate the numerical values 
of the individual matrix elements. This was accomplished by giving a 
code name to each integral, specifying the matrix elements in terms 
of the code, then reading into the programme the values of the integrals. 
The second section of the programme transformed the equation

( H - X S ) S  -  0

into the form ^2

(h'*-Xi )c  ̂ = 0

where I represents a unit matrix, represents the H matrix when 
transformed in the same manner as the S matrix and denotes the 
column eigenvector corresponding to the transformed matrices. The 
Jacobi method was used to diagonalize the S matrix and also to solve 
equation (3.14)* The details of the programme are described in 
Appendix II.

The results were printed out so that underneath each energy 
eigenvalue were the corresponding twelve eigenvectors. Of the 
twelve sets of results, the lowest eigenvalue represented the ground 
state energy and the elements of the appropriate column vector gave 
the detailed form of the ground state wave function.
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C H A P T E R  4 

TESTING THE PRuGRAIAŒ

The programme can he divided into two main sections (l) the 
evaluation of integrals and (II) the setting up and solution of the 
secular equations.

Section(I) was reasonably easy to check: each integral
routine was used to compute known results^^\ The routines were 
considered correct viien there was correspondence to six places of 
decimals. Testing Section (ll) of the programme proved to be much 
more difficult since there was no "absolute" against which to check 
our work. Consequently several tests were employed.

The initial check was designed to give a guide to the 
accuracy and correctness of the methods used in Section (ll) of the 
programme. For this purpose the energy of four hydrogen atoms at 
relatively large separations was calculated.

C

B

A

D

Figure 401

Distances A3 = BC = CD = AD 
Nuclear Charges =* * Z
Angle ABC = 90°

Geometrical Arrangement of Four Hydrogen Atoms

D
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The bond length AB was set, in turn, at 5>7 a»d 9 au. In 
the limit of infinite separation the energy of the system should be 
- 2 au. The results were just slightly more positive than the limiting 
value and progressed towards it in the order expected.

The nearness of these results to - 2 au was vey encouraging 
since, at the separations considered, the overlaps were very small and 
thus very little interaction was expected. Furthermore, the increase 
in energy with increased bond length indicated that the routine was at 
least predicting physically reasonable results. To complete this check, 
energies for bond lengths at which relatively large interaction took 
place were calculated. For this purpose, it was convenient to choose 
separations of 1.4 au and 1.66 au. The results of all five calculations 
are shown in Table 401 •

Table 401. Energy of Four Hydrogen Atoms

Bond Length AB Energy

1.4 au - 1.55110 au
1.66 au - 1.74591 au
5 au - 1.99708 au
7 au - 1.99987 au
9 au - 1.99999 au

Each energy result recorded in Table 401 was optimised with respect 
to all orbital exponents. This simplicity of the calculations was the 
virtue of the above test. The results being as expected, moving on to 
more detailed and time consuming tests was therefore justifiable.
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The second test of the programme was based on the work of
(29)

Maccias. One of his calculations on the H^ion used a total wave 
function constructed from three 1s atomic orbitals. This wave function 
was built up in the manner described in Section 2.4» Thus, repeating 
Maccias’ calculation was a very exacting test of the programme. Such 
a test was possible since the present programme was written in such a 
manner that a nuclear centre could be suppressed, hence producing 
H 2 when = 0, Z^ = * Z^ * 1 and angle ABC = 180°, This facility
was available since the expressions for the orbitals centred on B and 
D were multiplied by constants k̂  and k^ respectively; to suppress 
either of these centres the value of the appropriate constant was set 
to zero, otherwise it was set at unity.

The geometry and parameters for the ion are defined in 
Figure 402 below:

Angle PQS = 180° Distance PQ = QP = 2.209» au.
Zp = Zq = Zĝ  = 1.0 ' Orbital exponents Y = O.84

1.2

Figure 402. Linear

The bond length PQ, was set at 2.2098 au and the orbital exponents 
were ^ = O.84 and E = 1.2, these being the values used by Maccias.
The calculation was carried out first with centre D suppressed and 
secondly with centre B suppressed and angle ABC = ADC = 180°, see 
Figure 402. To five decimal places the results checked exactly with
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those of Maccias and are shown in Table 402.
It must be mentioned that some of the matrix elements in our 

four-centre programme were identically zero in both calculations for 
the system. This was an unfortunate consequence of suppressing a 
centre. Obviously the matrix elements not mentioned in Table 402 had 
to be checked by an alternative method. Nevertheless, the test did 
prove that the method of solving the matrix equation (E - A 8) g = 0* was 
correct. In addition many of the matrix elements were proved to be 
properly constructed, which in turn proved that the configurations

^2* ^7 ^6’ ^9’ 1̂1 ^12 correctly formulated. Therefore,
in principle, sections (l) and (H) of the programme were checked out 
successfully.

* See Appendix II.
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Tàble 402# Comparison of Results for the E ̂  Ion

Centre D Suppressed Centre B Suppressed Maccias
Matrix Elements 

H(2,2) 
H(2,7)=(7,2) 
H(2,9)=H(9,2) 
H(2,11)=H(11,2) 
H(7,7) 

H(7,9)=H(9,7) 
H(7,11)=H(11,7) 

H(9,9) 
H(9,11)=H(11,9)

H(3.3)
H(3,8)=H(8,3)
H(3,9)=H(9,3)
-H£3,12)=H(12,3)

H(8,8)
H(8,9)=H(9,8)
H(8,12)=H(12,8)
H(9,9)
H(9,12)=H(12,9)
H(12,12)

—2.482868 
0.668613 
1.679077
1.640730
-0.964537
-1,732925 
-2.653028 
-19.766161 
-10.737523 
-11.915733 

0 
0 
0 
0 
0 
0 
0

-19.766161
0
0

0 -2,482868
0 0.668615
0 1 .679078
0 1.640750
0 -0.964557
0 -1.752925
0 -2.655028

■19.766161 -19.766159
0 -10.757521
0 -11.915752

-2.482868 - 2.482868
0.668615 0.668615
1 .679077 1.679078
1.640750 1.640750
-0.964557 -0.964557
-1 .752925 -1.752925
-2.655028 -2.655028
-19.766161 -19.766159
-10.757525 -10.757521
-11.915755 -11.915752

Ground State 
Energy (au) -1.581077 -1 .581077 -1.581076

Eigenvectors

11

'6

'12

0.111006
-0.041780
-0.507091
-0.598075

0
0

-0.507091
0

0
0

-0.507091
0

0.111006 
-0.041780
-0.507091
-0.598075

0.111006
-0.041781
-0.507091
-0.598075

0.111006 
-0 .041781 
-0.507091 
-0.598075
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The third major test of the programme was aimed at checking 
the matrix elements not covered hy the previous work. The symmetry of the 
following type of system provided some useful information.

B

Distances AB = BC = CD = AD
Figure 403. Geometry Used in the Symmetry Test

Both the nuclear charges and orbital exponents ( % andT ) were set 
equal to unity. The symmetry of this system in D^^ which is much 
hi^er than the minimum required by the programme. This implies that 
many of the matrix elements should have identical values. For example, 
the values of the matrix elements H(1,2) and H(l,3) should be equal.
The reason for this equality can be best understood when the analytical

CD)forms are examined.

H(1,2) - J  .  J  I jbdd |*H | bb (a+c)(a^c) | df

H (1 ,3 ) « f  .  f I bbdd f|H |dd (a+o)(a+o) I i t
J 1 J  J I I of A •

(4 .1 )

Alternatively H(l,3) can be written as -
H(1,3) = f dfadLat = f I ddbb I h  |dd (a+o)(a+c) I dt (4.2)

Ü ' J  J \ ci ̂ ^ I

The Cg axis of symmetry through the centres A and C means that the 
atomic orbitals 1sb and 1 sd will have identical roles in the wave

Footnote D. The symbol b, for example, in equations (4.1),(4^2) and (4.3) 
denotes the spin-orbital 1'sboc.
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function, The matrix element H(1,3) can he generated from H(1,2) by 
interchanging 1sb for led and vice-versa; consequently H(1,2) and 
H(1,3) must have equal values. Many of the matrix elements were checked 
in this way since a large number of corresponding pairs existed. A 
complete list is shown below:

For all combinations of i and k:-

H(i,k) « H(i,k+1) 

for i « 1,6,9,10 and k = 2,4,7,11;
and H(i,k) = H(i+1, k-1 )
for i * 2,4,7,11 and k = 3,5,8,12;
and H(i,k) « H(i+1, k)
for i = 2,4,7,11 and k = 6,9,10;
and E(i,k) = H(i+1, k+1 )
for i = 2,4,7,11 and k » 2,4,7,11

The programme output contained a list of evaluated matrix elements.
Thus, fulfillment of the conditions listed above was checked. For 
each pair of matrix elements the required equality existed.

A further consequence of the preceding discussion is that the 
configurations within each of the following pairs

jifg and flly and pfg, and ĵ g, and

should carry equal weight in the total wave function %  . This 
consequence was apparent in the eigenvectors: for each eigenvalue
the associated eigenvectors were such that = Ĉ , = Ĉ ,

Cy = Cg and  ̂= ^12*
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A fourth test of the programme was again based on symmetry 
properties* The following systems, which had the same geometry as 
that shown in Figure 403 were examined.

1 ) = Z^ = Zg = 25p «1 1.6$ S"=1*7
2) Z^ B Zg B Zq B Zg ss1 1*7 (Ta 1.6$

z« B 1, Zg B ZgB 1,4 1.65 ^B i.y
^ - -Q - 1.4, Zg B Zjj B 1 X= 1 .7 Ses 1.65
- "C 

4) Z. - Z

Again the symmetry of the systems, was much higher than the
minimum required by the programme. For each individual system the
inherent equalities of certain pairs of matrix elements and eigen­
vectors were again observed. However, the main reason for these 
calculations was to obtain comparisons for pairs of "identical systems" 
specified in different ways. The second system cf each pair can be 
obtained by rotating the first through 90°• The ground state energies 
of systems 1 and 2 were equal; this was also true for the other pair. 
Further, after allowing for normalization constants, H(1,1) in system 
1 was equal to H(9,9) in system 2. This calculation was performed 
to show that the roles of configurations and were interchanged 
in the two systems, thereby indicating a compatible and consistent 
formulation. Hence, only configurations and still needed to be 
investigated. To check these two remaining configurations the matrix 
elements H(6,6) and H(10,10) were considered in detail. The analytical 
expression for H(6,6) was expanded and then evaluated. Since

(4.3)

(a+c) (a+c) bd (a+c) (a+o) bd

i “ ot 01̂ —

(a-c) (a-c) bd (a-c) (a-c) bd
and «< —



-35-

a change of the sign of 1sc in the input data for H(6,6) should, 
and in fact did, generate the value obtained for H(10,10).

Summarizing, we can say of the tests described above :- 
(a ) The reproduction of Maccias* results proved that the

general formulation of the wave function and programme 
was correct.

(B) a  large number of the matrix elements were proved to be
correctly constructed by the symmetry tests and also by 
Maccias * results.

(C) The eigenvectors Ĉ , Ĉ , Ĉ , Ĉ , and â id the
corresponding configurations and
^12 shown to be correct by comparison with Maccias*
results. The symmetry tests supported this evidence and
also showed that C. and C_, and and were correct.4 5 4 5

(D) Configurations and were shown to be correctly
constructed by comparing, under certain conditions, the matrix 
element H(1,1) with H(9,9) and H(6,6) with H(10,10).

(E) The ground state energy was proved to be invarient with
respect to rotation of the labelling.

In the li^t of the above evidence, it was considered that 
the programme was ready to be used in the calculations of interest.
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C H A P T E R  5

Results and Discussion
For ease of presentation and discussion the results have been 

split into two parts. In Part I the results for the double arbitrary Z 
ions, ZHZH*^^ are presented and Part II covers the Hamilton-like systems.

+2Z—2 'Part I - The double arbitrary Z ions, ZHZH .
+2Z—2The geometry of the ZHZH ions is shown in Figure 302. As

previously mentioned the bond angle BCD was labelled and the Is Slater-type
orbitals centred on A and C had an exponent and on B and D an exponent .
The nuclear charges at B and D were Z and at A and C unity. For preselected

+2Z—2values of Z and 0^ the total molecular energy of the ZHZH complexes was
minimized with respect to % and f . The values of the variational parameters 
( i  and r ) for minimum energy were obtained by an iterative trial and error 
technique. A range of values for Z = 1.0, 1.2, 1.4, 1.8 and 2.2 allowed 
the minimum molecular energy, E^, for each system to be determined as a function
of V, S' and ©g. The results for the whole range of these calculations are
shown in Figures 501, 502 and 503, and Table 501. For the fully optimized 
systems the energy, E^, orbital exponents ^ and S , and optimum bond angle 
©jj(opt) are shown as a function of Z in Figure 504* These results are also 
presented in tabular form. Table 502. The total wave function 0^
describing these systems was normalized to unity, the eigenvectors C ^  of 
the wave functions corresponding to the energies Eĵ  are given in Table 503.
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Figure 501

The angular dependence of the molecular energy E, 
after minimization with respect to the orbital exponents 
Vand r , for the systems when Z = 1,0.
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Figures 502

The angular dependence of the molecular energy E, 
after minimization with respect to the orbital exponents 
Ï and ̂  for the systems ^ when Z» 1.2, 1.4, 1 *8

and 2.2.
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Figure 503

The optimum values of the orbital exponents Y and & 
plotted as a function of 0^ for fixed values of Z.
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Figure 504

The optimum hond angle Gg(opt), molecular energy 
and the corresponding orbital exponents expressed as 
a function of Z.
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4*22—?Table ^0  ̂• Results for the optimized ZHZH systems.

z E (au) % %

90 - 1.74591 1.088 1.088
100 - 1.80310 1.195 1.055

1.0 110 - 1.89246 1.344 1.045120 - 1.93731 1.475 1.053
130 - 1.95613 1.530 1.070
135 - 1.94593 1.536 1.081

90 - 2.31989 1.446 1.196
100 - 2.37018 1.497 1.190

1.2 110 - 2.41212 1.533 1.195
120 - 2.44220 1.548 1.210
130 - 2.45353 1.559 1.231
135 - 2.44396 1.561 1.240

90 - 2.90849 1.594 1.340
100 — 2.96186 1.580 1.351

1.4 110 - 2.99900 1.571 1.365
120 - 3.02152 1.570 1.380

-i30 - 3.02113 1.589 1.402
90 — 4.36901 1.675 1.680
100 - 4.40250 1.638 1.698

1 8 110 - 4.41870 1.621 1.710
120 - 4.41732 1.637 1.720
130 - 4.38397 1.675 1.742

90 - 6.20818 1.715 2.025
100 •- 6.21870 1.684 2.031

o o 110 — 6.21086 1.670 2.040
120 - 6.18431 1.689 2.054
130 - 6.13750 1.774 2.074
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j P2—2Table 502. Results for the ZHZH systems optimized with
reject to Y , S' and Ô,H

z Ojj(opt) &  ( a u ) % S'
1.0 129 - 1.95651 1.527 1.069
1.2 128 - 2.45418 1.555 1.226
1.4 125 - 3.02555 1.576 1.390
1.8 114 - 4.42020 1.623 1.712
2 . 2 101 - 6.21871 1.684 2.031
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Table 503. The eigenvectors of the wave functions
corresponding to the energies E.., for the

+2Z-2 ZHZH systems

Z = 1.0 Z * 1.2 z = 1.4 Z « 1.8 Z = 2.2

\1 0.0567112 0.0770042 0.1227676 0.2223854 0.3413128

^k2 0.0768374 0.0503600 0.0267652 0.0023283 -0.0070364
0.0768374 0.0503600 0.0267652 0.0023283 -0.0070364

^k4 0.1545528 0.1445333 0.1392078 0.1215760 0.0871157
0.1545528 0.1445333 0.1392078 0.1215760 0.0871157

"k6 -0.1640399 -0.1424194 -0.1092606 -0.0594450 -0.0216080

-0.0199632 -0.0151766 -0.0127637 -0.0083194 -0.0047103

^k8 -0.0199632 -0.0151766 -0.0127637 -0.0083194 -0.0047103

^k9 0.0011360 0.0010520 0.0008732 0.0004823 0.0002098

\io 0.0303583 0.0259311 0.0232537 0.0163160 0.0083477
-0.0031687 -0.0030692 -0.0026889 -0.0017167 -0.0007866

\l2 -0.0031687 -0.0030692 -0.0026889 -0.0017167 -0.0007866

& -1.95651 -2.45418 -3.02555 -4.42020 -6.21871

These energy calculations exhibit several interesting features 
especially when compared with the ZHZ^^^^ study. At Og(opt) the Z-dependence 
of the orbital exponents Ï and S' is almost linear and, as with the ZHZ"̂ ^̂   ̂

system, 5» increases more rapidly than ̂  . For very large Z we anticipate 
that the exponent S will have a value similar tothat of a helium-like atom, 
that is S —> (Z - 5/16). The electron density distribution along the inter- 
nuclear axes (which is reported later in this chapter) substantiates this
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prediction since, as Z increases, the electron density in the vicinity of 
the Z nuclei increases and therefore the system is tending to behave as two 
helium atoms and two protons. Under the same conditions the value of S for 
the ZHZ^^^^ systems approached Z. However, as Z —>0 the Ŝ -curve extrapolates 
to give 0 . 3 0 . 4 ;  a result similar in magnitude to that obtained when the 
ZHZ^^^^ system was reduced to H . When Z^1.7, Figure 504 shows that 

ï y S , this is not unreasonable since the corresponding value for Gg(opt) 
indicates that the H-H distance is considerably smaller than the Z - Z 
distance.

The Z-variation of 0g(opt) is of particular interest. At Z = 1.0 
the value of Gg(opt) is 129°, consequently the rhombic diagonals BD and AC
are about 3.0 and 1.4 au in length - the smaller H-H distance being almost

I
identical with the bond length in the hydrogen molecule H^. Such a value for
0g (opt ) implies that the energy for H^ will increase when the bond angle is
fixed at 90°* the results for this calculation gave an energy of -1.74591 au
and orbital exponents of X = = 1.088. When Z = 1.0 the systems with
Ojj = X° or (160 - X)° are identical. Therefore, the E against 0g curve is
symmetric about a potential barrier situated at Q„ = 90°. This curve hasti
minima at 51° and 129° and, as 9^-» 0° or 180°, the magnitude of E(9g)
increases sharply. Also, symmetry about 9^ = 90° is apparent in the
orbital exponents. For example, at 9^ = 90° the exponents are identical,
at 9g = 100° we have X = 1.195 and 1.055 and at 9^ = 80° the parameters
were found to be interchanged, i.e. ^ = 1.055 and «= 1.195» The energetically

I of the Î 
(30; 31)

unfavourable nature of the square nuclear framework for H^ is somewhat surprising
- but already known

For values of Z greater than unity the symmetry of the E(9g) curve 
is destroyed such that an absolute minimum will occur at 90° ̂ Gg(opt) ( 180°.
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The E(Gg) curves for Z = 1.2, 1.4, 1.8 and 2.2, and 9g ranging from $0° 
to 130° are given in Figures 502. These curves show that 0jj(opt) 
decreases when Z ^1.0; consequently, the Z-Z distance decreases from its 
value of 3.0 au (at Z = I.O). Therefore the nuclear repulsion of the Z 
nuclei increases due to increasing Z and also due to 0^ decreasing. As 
with the ZHZ*^^  ̂ ions the increased charge cloud in the Z-Z region more 
than compensates for this effect. Evidence for this arguement is provided 
by the distribution of electron density along the GZ axis - an increase in 
Z is accompanied by an even larger increase in the charge cloud in the 
vicinity of Z. As a result of keeping the Z-H distances fixed 0g(opt) 
will ultimately pass through a minimum since, as Z increases the nuclear 
repulsion terms will cause 0g(opt) to approach 180° asymptotically. A 
test calculation at Z = 10 gave a value of 0g(opt) of 156°. The orbital 
exponent ^ of this calculation had a value of 8.8 which is in keeping with 
Z-> Z-5/16 vdien Z is large. At Z = 0 the ZHZH^^^^ system becomes

(32)with the molecular orbitals Isb and Isd now acting as *floating orbitals'' 
located at specific points in space. Hence 0g(opt) will approach zero in 
order to maximize the bond len^h within the constrained H^ system.

The against Z curve in Figure 504, which is for a Z-H distance
+2Z—2fixed at 1.66 au, shows that the ZHZH is energetically stable with 

respect to a theoretical dissociation of the type 2Z**’̂ ^^^+ 2H. for 
Z ̂  1.2. The dissociation to give 4H at Z = 1.0 contrasts with the marginal 
stability of square H^ at R ^ 1.66 au predicted by the considerably more 
elaborate - and presumably more accurate - calculation of Conroy and Malli. 
For both calculations, H^ is energetically unstable with respect to 2H2.

The electron density distribution along the three internuclear 
axes was examined for each system reported in Table 50I. The results of



-49-

these calculations have already been used in the earlier discussion. Also,
the electron density distribution allows us to examine the movement of
charge as a function of Z and G^. Reformulating the wave function for
each system in terms of natural spin orbitals (NSO's ) provided the most
efficient method of calculating the electron density at various points in
the system. A brief description of NSO's and a listing of the computer
programmes used to evaluate the electron densities are presented in
Appendix III. For completeness, the coefficients and occupation numbers
of the NSO's for the systems opitimized with respect to <T and 0^ are
also given in Appendix III. The distribution of electron density along

+2Z—2the internuclear axes of the ZHZH systems is shown in Figures 505-530.
The densities along axes 00 and CD are symmetrical about 0 and Y = 0
respectively, and the cusps in the densities coincide exactly with the
nuclear sites. The electron density distribution of the fully optimized
systems are shown in Figures 528, 529 2̂ 8. 530. It has been possible to

+2Z—2compare the electron densities of the ZHZH systems with those of the
ZHZ**'̂ ”̂'’ ions for 0g = 100° and 120° when Z = 1.0, I.4, 1.8 and 2.2. The 
densities of the two-electron systems are presented in the same diagrams 
as the corresponding four electron systems.

There is a general tendency when Z ^ I . O  for the electron density 
around the Z nuclei to decrease as 0^ increases, this can be seen in Figures 
510, 513, 518 and 523. This is reasonable since an increase in the Z-Z 
distance causes the Z-Z nuclear repulsion to decrease, hence less of the 
electron density is required to shield the Z nuclei. As a result the 
density along the H-H direction increases as 0^ increases (see Figures 5II, 
514, 519 and 524). As one would expect the electron density along H-H and 
and Z-Z is dependent on the magnitude of Z - the greater the value of Z the 
smaller the density along H-H. A particularly interesting feature is shown
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in Figures 519 and 524, as y increases from zero the electron density for 
the systems with 0^ = 90° drops to a minimum at about y^O.5 au. This 
seemingly strange 'hump', at y « 0 in this instance, is due to the inter­
nuclear charge cloud being concentrated along the Z-Z axis. A similar effect 
can be seen in the x-direction when Z is small and 0^ = 130°, the charge 
build-up in this case being along H-H. This can be seen in Figures 510,
513 and 518. The electron density along the ZH direction is given in 
Figures 512, 515, 520 and 525. As 0^ increases there is a noticeable 
movement of charge from the vicinity of Z to regions near the H nucleus.
Since the Z-H distance is fixed the density curves along Z-H are super­
imposed for all values of 0^; for this reason only the curves for 0^ = 90°
and 130° are given in Figures $0?, 512, 515, 520 and 525*

' For the Z = 1.0 systems the electron density distribution as a
function of 0^ does not, in general, follow the pattern set by the systems 
when Z2>1.0. For example, when Z = 1.0 the density at Z increases with 
increasing 0^ whereas, when Zj>1.0, the reverse is true. As one would 
expect, when 0^ = 90°, the electron density is symmetrical about the mid­
points of all the internuclear axes. In the central regions of H-H and 
Z-Z, at 0 ̂ x 4.0.5 au, O ^ y ^ O .5 au, the electron density is much smaller 
when 0g - 90° than when 0^ = 130°. The 'hump' in the density for 0^ = 130°,
X  = 0 in Figure 505 shows that the build up of charge in these central
regions (as 0g increases) is primarily along the H-H direction. The 
electron density along the Z-H axis. Figure 507, shows that the charge in 
the vicinity of H decreases as 0g increases. This charge is redistributed 
along H-H and also in the proximity of Z (Z = I.Ô). This movement of 
charge towards Z does not occur when Z>1.0. However, when Z « 1.0 and 
0jj> 60°, the ZH nuclear repulsion is greater than the ZZ nuclear repulsion; 
consequently, the movement of electron density from Z to H maintains a 
balance in the ZH internuclear shielding. These results for Z « 1.0 fit
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into a definite pattern; as 0^ increases from $0° to 130° the system 
changes from four interacting hydrogen atoms to two hydrogen atoms inter­
acting with a hydrogen molecule. Not surprisingly the latter system is 
the most stable energetically. In fact, the optimum energy occurs when 
0g = 129° which gives an H-H distance that is almost identical with the 
bond length in H^.

The most unusual feature of this work is the decrease in 0g(opt) 
as Z increases. To a great extent, the optimum geometry of the systems 
investigated here is dependent on the contribution to the total energy of 
the H-H 'bond*. For Z = 1.0 and 0^ = 129° the charge build up along H-H 
provides a large negative contribution to the total energy of approximately 

(Eg (opt) ” ®0 “ 90°), which is 10^ of the total energy. When Z « 2.2 
thé contribution of this bond is very small for two reasons, (a) the charge 
build-up along H-H is less and (b) the total energy of the system increases 
with increasing Z. The minimum energy of the Z = 2.2 system will probably 
occur when the four nuclei are most effectively shielded from each other by 
the electron density. For the Z = 2.2 system 0g(opt) is 101°, and it can 
be seen from Figures 523 and 524 that for 0^ = 100° the internuclear density 
is flattest. Therefore, the electron density is concentrated in the proximity 
of the nuclear sites. It is reasonable, then, to assume that the electron 
density for 0^ 100° affords the most effective shielding of the nuclei.
The values of 0g(opt) for the systems with Z = 1.2, 1.4 and 1.8 are 128°,
125° and 114° respectively. As Z increases the contribution of the H-H 
'bond' to the total energy decreases and the nuclear-nuclear repulsions 
increase. Therefore, for these systems the most stable geometry is a 
function of both the H-H 'bond' and the nuclear shielding. It can be 
assumed, because of the magnitude of 0^(opt), that for Z = 1.2 and 1.4
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the H-B 'bond* contzdbutes significantly to the optimum energy* The con­
tribution it hsis when Z = 1.8, 6^(opt) = 114° is certainly much smaller*
One most then ask why, if the nuclear-nuclear repulsions are dominant, is 
Og(opt) for Z = 1*8 greater than that for Z = 2*2? The probable answer to 
this point stems from the fact that as Z increases the electron density in 
the proximity of Z increases; consequently the density in the vicinity of H 
decreases* Therefore as Z increases from 1*8 to 2*2 the H-B nuclear repulsion 
increases, hence 6g(opt) decreases* This argument assumes that the increased 
Z-H and Z-Z nuclear repulsions of the larger Z value are more than compen­
sated for by the increased electron density in the proximity of Z. This 
assumption appears to be reasonable when the electron densities in the 
vicinity of Z, for Z = 1 *8 and 2*2, are compared in Figures 518 and 525*

There are two fundamental differences between the ZHZH*̂ ^̂  ^ 
and  ̂systems -

(a) The ZHZ  ̂ion is constructed from three nuclei and two electrons
whereas the ZHZH*̂ ^̂  ^ complex contains two extra electrons and only
one more nucleus - a proton*

(b) The Z nuclei in the ZHZ^^  ̂ system are in terminal positions, but,
in the ZHZH^^ ^ complex, this characteristic is destroyed by the 
extra proton*
The electron density distributions of these two systems are 

compsœed for = 100° and 120°, when Z = 1*0, 1 *4, 1 *8 and 2*2* For 
each value of Z the effects that (a) and (b) have on the density distributions 
are assessed*

When the value of the effective nuclear charge Z is unity the 
electron density along the Y-axis (0-H) is almost identical for both systems* 
The build up of charge that occurs along H-H in the four electron system is
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Just beginning to show when = 120°. Along the X-axis (Z-Z) the shapes
of the density distributions are similar, but the magnitudes of the
densities, especially in the vicinity of Z, are very different. Therefore,
the addition of a proton and two electrons to the ZEZ^^^  ̂ system (Z « 1.0)
conserves the density near the hydrogen nuclei and the remaining electron
density is distributed in the vicinity of the Z nuclei. This charge movement

+2Z-2is reasonable since Z = 1.0 and therefore all four nuclei of the ZHZH 
system will have local densities that are very similar to the density near H 
in the corresponding ZEZ^^^^ system (Z = 1.0). In this context the corres­
ponding ZEZ**"̂ ^̂  systan is one which has a bond angle 9^ when the centres
A and C of ZHZE*‘^ ^ ^ are being considered and (l80° - 9^) when centres B and

+2Z—2D are considered. Clearly, the densities near H and Z in the ZHZH
(Z S3 1.0) systems are more alike when 9^ = 100° than when s= 120°, see
Figures 508 and 509.

When Z =s 1.4 the density distributions along OH, Figure 513, are
similar for ©^ = 120°. However, at ©^ s= 100° the density in the vicinity of

+2Z—2H is greatest for the two-electron system. For the ZHZH complex the
density along OH is known to increase as ©^ increases, the build up of the 
density in the centre of H-H is already showing in both diagrams. The 
addition of a proton and two electrons to the ZHZ^^^^ system causes a 
decrease in the density near the hydrogen nuclei and a marked increase in 
the density near Z. The density is certain to increase in the vicinity of 
Z since, as far as the Z nucleus is concerned, the system is changing from 
ZHZ^^^^ to something more like HZH***̂ .

For both the two and four electron systems an increasein Z from 
1.4 to 1.8 results in an increase in the electron density along the X-axis.
When ©g = 120° the density along OH is greatest for the four electron system, 
but for ©g = 100° the two density distributions are almost alike. This pattern 
is similar to that observed v/hen Z = 1.4 althou^ the changes in density are
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not so marked. This is to he expected since for both the two and four 
electron complexes most of the electron density is held in the vicinity of 
the Z nuclei. Consequently, destroying the terminal nature of the Z 
nuclei does hot have as great an effect as when Z « 1.0 or 1.4. For 
Z = 2.2 the characteristics of the electron density distributions are 
similar to those for Z = 1.8. Again the density is not greatly affected 
by the addition of a proton and the density of the extra two electrons is 
distributed throughout the system, see Figures 526 and 527*
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Figures 505 - 509

The electron density distributions along the 
three internuclear axes for the ZHZH and
ZHZ***̂ ^̂  systems when Z = 1.0. The densities 
of the two electron systems are distinguished 
by the dotted lines.

Figure 505 The electron density along 0 - Z.

Figure 506 The electron density along 0 - H .

Figures 507, 508 and 509 The electron density
along Z - H
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Figures 5 1 0 5 1 2

The electron density distribution along the
+2Z—2three internuclear axes for the ZHZH 

systems when Z « 1.2

Figure 510 The electron density along 0 - Z.

Figure 511 The electron density along 0 - H .

-Figure 512 The electron density along Z - H .
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Flgures 313 ~ 317

The electron density distributions along the 
three internuclear axes for the ZEZR*'^  ̂  ̂

and  ̂ systems when Z *= 1.4* The densities
of the two electron systems are distinguished by 
the dotted lines.

Figure 513 The electron density along 0 - Z.

Figure 514 The electron density along 0 - H .

Figures 515, 516 and 517 The electron density along Z-H,



m
lO

O
OJ

in in
6

1
o
6

o
6



Figure 514
130®

0 4

100'
\9Cf

0.2

0-0
1000 20

Figure 515

1300.5

00

H

Y(au.)

Figure 51715

10

0 5

00

H

Figure 516

0 5

00

H Z



—61—

Figures 518 - 522

The electron density distributions along the
+22—2three internuclear axes for the ZHZH 

and ZHZ systems when Z = 1.8. The densities 
of the tv;o electron systems are distinguished by 
the dotted lines.

Figure 518 The electron density along 0 - Z.

Figure 519 The electron density along 0 - H .

Figures 520, 521 and 522 The electron density along Z-H.
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Figures 523 - 527

The electron density distributions along the
+22—2three internuclear axes for the ZHZH 

and ZHZ"*"̂ ^̂  systems when Z « 2.2. The densities 
of two electron systems are distinguished by the 
dotted lines.

Figure 523 The electron density along 0 - Z.

Figure 524 The electron density along 0 - H .

Figures 525, 526 and 527 The electron density along Z - H .
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-Figure 528

The electron density distribution along
+?Z—p0 — Z for the fully optimized ZHZH 

systems.
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FifTure 529

The electron density distrihution along
0-H for • 
systems.
0-H for the fully optimized
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Figure 530

The electron density distribution along Z-H 
for the fully optimized systems.
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Part II - The Hamilton-like Systems
We recall that the ^ study is an extension of the

ZHZ. calculations rather than an attempt to represent the bridge
in diborane. A more realistic representation of the bridge in 
diborane is provided by the Hamilton-like system given in Figure 301 , 
since the true bridge geometry is used. With this system a 2s Slater- 
type orbital, with an exponent jS , was centred on each boron nucleus and a 
Is Slater-type orbital with an exponent cC v/as centred on each proton. The 
use of 2s rather than Is orbitals was an attempt to provide a more realistic 
description of the outer boron electrons. Although we realised that a 
2s orbital would not give an accurate description of the electron density 
near the boron nuclei, the integral routines available restricted us to 
■s-type orbitals. Nevertheless these calculations, particularly the 
electron densities along the intemuclear axes, provide interesting results

+P7--1 j _pwhen compared with ZHZ , ZHZH and Hamiltons work.
The boron nucleus was given an effective nuclear charge, B^, of 

2.0, 2.5 and. 3.0 in an attempt to allow for the shielding of inner ̂ shell 
electrons. For each value of the molecular energy was minimised with 
respect to the orbital exponents. The results of these calculations are 
given in Table 504 and Figure 531. The total wave function, /

I ^
was normalized to unity and the eigenvectors, of the wave functions
corresponding to minimum energy are given in Table 505. For each optimized 
system the electron density distribution along the three intemuclear axes 
is shown in Figures 532, 533 and 534. The method used to evaluate the 
electron densities is given in Appendix III, along with the occupation 
numbers and transformation matrices that define the NSO's of the optimized 
Hamilton-like systems.
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Table 504. The optimum molecular energy and orbital exponents
of the Hamilton-like systems.

DC E (au)

2.0 

. 2.5

3.0

1.040

0.964

0.883

2.795

3.401

4.071.

-4.01235

-5.91719

-8.41555
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Table 505. The eigenvectors of the wave functions which 
describe the optimized Hamilton-like systems,

2.0 2.5 3.0

°k1 0.2094148 0.3284251 0.4100744

^k2 0.0253939 0.0133735 0.0063996

0.0253939 0.0133735 . 0.0063996

°k4 0.1312437 0.1112413 0.0800614

°k5 0.1312437 0.1112413 0.0800614

°k6 -0.0927936 -0.0395411 -0.0160403

°k7
-0.0078919 -0.0025653 -0.0007215

°k8 -0.0078919 -0.0025653 -0.0007215

°k9 0.0003991 -0.0000008 -0.0000027

®k10 0.0297865 0.0066428 0.0014164

°k11 "0.0008129 -0.0000455 -0.0000230

°k12 0.0008129 -0.0000455 -0.0000230

E (au) -4.01235 -5.91719 -8.41555
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Figure 531

The variational parameters and optimum energy plotted 
as a function of Z for the Hamilton-like systems.
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Figiire 532

The electron density distribution along 
the 0-B axis of the Hamilton-like systems.
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Figure 533

The electron density distribution along the 
0-H axis of the Hamilton-like systems.
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Figure 534

The electron density distribution along the 
Z-H axis of the Hamilton-like systems.
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The energy and variational parameters of the Hamilton-like 
systems vary smoothly over the range of effeotive boron nuclear charge 
2 .0 4  Bg ̂  3.0 (see Figure 531). As expected, when is increased 
from 2 .0 to 3.0 both the orbital exponent and the electron density 
in the vicinity of the boron nucleus show a marked increase. These 
changes are accompanied by a decrease in oc and a decrease in the electron 
density near the protons. In fact, when B^ = 3.0 there is only a small 
cusp in the electron density at the H nucleus. A measure of the inter­
action of the 1s and 2s orbitals was. obtained by comparing the electron 
density within a radius of 1 au of the boron nucleus with that of an 
isolated 2s orbital which has the same exponent. It can easily be
shown that the peak density of an isolated 2s Slater-type orbital occurs

2at a distance r^ = ^ from the nucleus, where  ̂is the orbital exponent. 
Table ^06 goves the distances r^ and the equivalent distances in the 
Hamilton-like systems. These results, along with the density distri­
butions, indicate that the system tends to have doubly occupied 2s 
orbitals and bare protons as B„ increases. This comparison was taken 
a stage further by evaluating the peak densities of the isolated equivalent 
2s orbitals. The expression

/2s 96 TT

gave peak densities of 0.0392, O.O7O6 and 0.1211 for orbital exponents 
2.795, 3.401 and 4.071 respectively. These peak density values are for 
orbitals containing a single electron, the density doubles when two 
electrons are present. For the Hamilton-like systems the peak densities 
near the boron nucleus are 0.0721, O.I36O and 0.2400 for B^ = 2.0, 2.5
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and 3 .0 respectively. These results provide further evidence to 
support the prediction that the electrons populate the 2s orbitals 
to a greater extent as increases from 2.0 to 3.0.

The proton in the Hamilton-like system becomes more acidic 
as the effective nuclear charge B^ is increased, see Figure 533. Even 
when Bg = 2.0 the electron density at proton sites is 0.1245» which is 
only 35*8^ of the peak density of a corresponding isolated equivalent 
Is Slater-type orbital. Obviously this percentage decreases as B^ 
increases. Since the diborane bridge proton is known to be hydridic 
the density near the proton in the Hamilton-like system does not give 
an accurate description of the diborane bridge proton. In fact the 
charge distribution in the vicinity of the proton in the Hamilton-like
I
system with B^ = 2.0 is similar to that near the hydrogen nucleus in 
the ZHZH'*’̂ ^^ system with Z = 2.2 and = 90°. Hamilton, in his study 
of the diborane bridge, used an effective boron nuclear charge of 3.0  

and orbital exponents of 1.0 and 2.6 for the orbitals centred on the 
hydrogen and boron nuclei respectively. The protons in this system 
were slightly hydridic. This is not surprising since his hybridized 
molecular orbitals give a preferred direction, B-H, for the distribution 
of charge. In both Hamilton’s work and the work described here the 
electron density in the vicinity of B^ is not an accurate representation 
of the charge distribution near the boron nuclei in the diborane bridge.

The electron density distributions along the three intemuclear 
§xes were used to obtain approximate contour maps of the Hamilton-like 
systems. For the system with B^ *= 2 .0 the contours proved to be 
particularly interesting since there is evidence of a "bent bond" along
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the B-H direction. The density line of maximum charge, i.e. 
minimum slope, as we move between centres B and D is curved inwards 
towards the centre of the nuclear framework. (This line is such that 
the density always decreases in magnitude when evaluated at adjacent 
positional co-ordinates along its normal, provided that the co-ordinates 
are in the same quadrant of the x, y axes). This effect was observed 
in the system and also in Christoffersen's study of The
"bent bonds" would appear, therefore, to be characteristic of calculations 
on electron deficient systems which have s-type basis orbitals.

The total energy of Hamilton’s best single configuration was 
-2.53 au and he estimated that configuration interaction would lower this 
value to about -2.55 au. The energies found for the systems investigated 
here are'more negative. A direct comparison of energies is not particularly 
meaningful since Hamilton's calculation uses a different molecular orbital 
description. In fact, Hamilton’s calculation was an attempt to provide 
-firmer grounds for discrimination between several bonding descriptions 
that had been proposed for diborane and, due to the approximations 
involved, the energy results were only of secondary interest. The work 
described here provides accurate energies but, because of the limited set 
of basis orbitals, the electron density distributions are not good represen­
tations of the diborane bridge bond.

Table 508* The distance of peak density from the boron nucleus.

^Z P isolated 2s 
orbital

inside - outside 
the Hamilton nuclear 

framework.
2.0 2.795 0.716 0.773 0.707
2.5 3.401 0.588 0.615 0.587
3.0 .4.071 0.492 0.498 0.493
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S U M M A R Y

The most interesting feature of the results for the ^
systems is the decrease in Gg(opt) when the magnitude of the effective
nuclear charge Z is increased from unity. This effect occurs throughout
the range 1.0 4  Z 4  2.2, although a calculation with Z « 10 showed that
0g(opt ) will ultimately pass through a minimum and then approach 180° when
the value of Z is very large. A similar effect was found with the ZHẐ '̂  ̂^
complexes for 1.0 4 z 4 l*7« The electron density distributions of both
molecular systems indicate that the increased nuclear repulsion energy due
to the decrease in 0^ is more than offset by the energy changes due to the
increased charge cloud in the Z-Z regions.

Each fully optimized ZHZH'*’̂ ^  ̂system has a different geometry and,
not surprisingly, individual characteristics. For example,-when Z = 1.0

the system behaves as a hydrogen molecule interacting with two hydrogen
atoms. However, when Z ̂  2.2 the molecular complex has the characteristics
of two helium like atoms (which have a nuclear charge Z) interacting with
two protons. The systems with 1.0 <CZ<C2.2 show the transition between
the two limiting cases. For the range of Z used in the calculations the
fully optimized systems with Z ^ 1.2 are energetically stable with respect to

4'Z—1a theoretical dissociation of the type 2Z + 2H. The dissociation to
give 4H at Z = 1.0 contrasts with the results of Conroy and Malli, but for
both calculations is unstable with respect to 2H2.

The electron density along the three intemuclear axes of the
ZHZH*^^^^ systems show the movement of charge as a function of 9^ and Z.
These results were used in conjunction with the energy calculations to
determine the characteristics of the fully optimized systems. The com-
parison of electron density distributions in the ZHZH and ZHZ
complexes shows that the most marked differences occur when Z 4 l.4. The

+2Z-1terminal nature of the Z nuclei in ZHZ accounts for this effect. As
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Z increases beyond 1.4 the charge builds up in the vicinity of the 
Z nuclei and the terminal nature of the Z nuclei in the two-electron 
systems becomes less important. Consequently, the electron density 
distribution of the corresponding tv/o- and four-electron systems are more 
alike for the larger values of Z.

The study of the Hamilton-like system, was restricted to a 
single nuclear geometry - the diborane bridge configuration. For the 
range of the effective boron nuclear charge, namely 2.0-^Bg4 3 .0, the 
optimized systems have smoothly varying orbital exponents and molecular 
energy. The probability of finding an electron in the 2s orbitals 
centred on the boron nuclei increases as B^ increases. By comparing 
these results with those of Hamilton it must be concluded that the 
bridge bonds representation of diborane cannot be described accurately 
by a wave function that is constructed from s-type orbitals only. A 
much more realistic representation is obtained by using molecular 
orbitals compounded of approximately tetrahedral hybrids at the two 
boron atoms and a 1s orbital at the appropriate hydrogen.
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A P P E N D I X  I

Evaluation of Integrals
The most serious technical difficulty in many calculations t>f 

molecular theory lies in the analytical complexity of the integrals 
which arise as soon as two or more centres of force become involved. 
Calculations of the properties of molecules containing four or more 
nuclei entails the evaluation of one-, two-, three- and four-centre 
integrals. All of the integrals involving one-electron operators over 
Slater-type orbitals can be written as closed form expressions with 
the exception of one of the nuclear attraction integrals. Thus, the 
molecular integral problem can be expressed quite simply as the 
evaluation of the electron repulsion integral of the form

TCC^.A^.I) ^(CgiAg.l) ^  T(Cj ,Aj2) tCĈ .Aĵ a) dr., dt2, 1(1)

and the three-centre nuclear attraction integral

‘Pec., .A., ,1 ) ^  ^(Cg.Ag.l )dt., 1(2 )

The synibol ̂ (C,X,i) denotes a one-electron atomic orbital for an electron 
i, referred to an atomic nucleus X as origin, and with an analytical form 
that is specified by the label C. The distance between electrons labelled 
1 and 2 is r^g* and integration is over the space of these two electrons; 
dt  ̂and dt'̂  denote the volume elements. represents the distance
between electron i and nucleus X. If (r . , 0 ., 0 . ) are the polarXI’ XI’ XI
co-ordinates of electron i, measured from nucleus X as origin, each 
Slater type orbital is of the form

N(n,/^,m) r^^ e ^  P^ (Cos 0^ )  Sin ®
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where N(n,^,m) represents a normalizing factor and the Legendre functions 
(Cos G) are those defined by H o b s o n I n  the notation*f(c,X,i), 

the label c summarizes the qtp^tumnumbers n, /and m and the screening 
parameter k. In equation 1(1), the nuclei to Â  ̂may be distinct, 
or may coincide in different combinations. When all four nuclei 
are coincident a one-centre or mononuclear integral results* When 
Â  and A^ coincide, and A^ and Â  ̂also coincide equation 1(1) is termed 
a two-centre Coulomb integral* Coincidence between Â  and A^ and also 
between A^ and A^ results in a two-centre exchange integral, whereas when 
Â  , A^ and A^ are a common centre and A^ is distinct, equation 1(1) then 
gives rise to a hybrid integral* When Â  and A^ coincide, but A^, A^ 
and A^ are all distinct we obtain a three-centre Coulomb integral * If 
Â  and A^ coincide, but Â  , A^ and Â  ̂are all distinct, 1(1 ) is called 
a three-centre exchange integral* The case in which the nuclei Â  to 
A^ are all distinct defines the four-centre integral*

The technique that was employed to evaluate the "non-closed
(34)form integrals” was first formulated by Coulson to obtain values

for three-centre nuclear attraction integrals* The general technique,
usually called the zeta-funetion method, was developed by Barnett and 

(35 )Coulson in such a manner that it is applicable to all multicentre 
integrals* The essence of the zeta-function method is that the entire 
integrand can be expressed as a function of the polar co-ordinates of 
one of the atoms, say atom A* To this end the zeta-function series 
is introduced; the portion of the integral which involves orbitals 
centred on nucleus B can be written:
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00

t^-o
I (4)

00

(̂ =0

where t = |3 r^ and ^ •

A BR 'AB

Fiprure 1(1 ) Co-ordinates used in the Zeta-Function Expansion 
In the case that m = o, the expansion takes on a particularly simple 
form

where I and K , Bessel functions of purely imaginary argument. 
If r^ ̂  R ^  the roles of Tb and t in equation 1(5) are interchanged. 
The ze ta-f unctions of higher m values can be computed by means of 
simple recurrence formulas.

The one- and two-electron, one- and two-centre integrals 
-appearing in the calculation were evaluated using MIDIAT, a programme 
supplied by the Atlas Computer Laboratory. This programme uses 

formulae based on the zeta-function expansion in the evaluation of
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the Coulomb, exchange and hybrid integrals, and closed form expressions
for all the other integrals.

The three and four centre integrals appearing in the calculation
were evaluated using programmes supplied by the "Quantum Chemistry

(37)Programme Exchange" • Each programme was based on the zeta-function 
method for evaluating molecular integrals* One programme per integral- 
type was necessary, namelyi

(a) Q.C.P.E.: 22A for the evaluation of three-centre Coulomb integrals*
(b) Q.C.P.E. * 22B for the evaluation of three-centre one-electron

nuclear attraction integrals*
(c) Q*C.P*E*: 23 for the evaluation of three-centre exchange integrals *
(d) Q.C .P.E. : 24 for the evaluation of four-centre integrals.

Most sections of the programmes listed above were coded in 
Fortran II, the remainder coded in F .A *P. (Fortran Assembly Programme).
Access to an I.B.M.Computer-was not readily avauLlable, therefore the 
programmes were adapted for use on the Atlas computer. The "dialect" 
of the Fortran accepted by the Atlas compiler is derived from Fortran 
II and known as Hartan. The Fortran II sections of the programmes, 
therefore, required very little alteration. The F .A.P. sections had 
to be completely re-written in either Hartran or Atlas machine code.
Hartran was chosen since we were more familiar with this code. Unfortun­
ately other difficulties were encountered with Q.C.P.E.programmes 22A and 
22B. Errors, which proved particularly difficult to locate, were 
present in some of the dimension statements. With the help of 
Mr.M.E.Claringbold of the Atlas Computer Laboratory, these errors 
were corrected.
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A P P E N D I X  II

The Eigenvalue Problem

After all the necessary integrals had been calculated and the 
matrix elements formulated, the problem remained of finding the 
eigenvalues X ,  of the equation

(H - XS) C = 0 II (1)

The formalism adopted for this purpose was as follows - 
A matrix ÏÏ was calculated which was consistent with the equation

5^§ 5 = I II (2)

where I denotes a unit matrix and g denotes the complex conjugate 
transpose of U. In other words, the matrix transformation which 
diagonalized and normalized the overlap matrix was found. The
trainsformation which had been applied to S wais then applied to the 
H matrix. Equation 11(1 ) was then of the form

(HI - Xi)ci = 0  n (3)
where HI = gTg j. For the convenience of the programme notation HI 
and Ç1 were adopted such that, for example, C1 denotes the column 
eigenvector corresponding to the transformed matrices.

The system of homogeneous equations Il(3), has non-trivial 
solutions, if, and only if

ŝ i.rA at,,2.... Hi
det H1 - X : ?2,1  H1

H1

1,12 

:’2,i2
12,1 HI12,2 ,H112,12"A

= 0 II (4)
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The expansion of the determinant yields a polynominal 0 ( \ )  of degree 12. 
The equation 0(A) = 0 is described as the characteristic equation of 

matrix HI and its roots » X 2* •••X-^2 ^  characteristic, 
roots. Described more technically, HI is a twelve-square Hermitian 
matrix with characteristic roots Xi * A 2 * ^ property of
Hermitian matrices is that there exists a unitary matrix W, such that

W+H1 W = diag ( Xi, X 2* —  A 12) “  (5)

where the i.. column of matrix W is the column eigenvector of HIth /V « A/
corresponding to the eigenvalue • Therefore, the solution of 
equation 11(3) was found from diagonalizing HI. The energy eigenvalues 
(or characteristic r o o t s ) a n d  their corresponding column vectors 

were found from the single operation. The column eigenvectors 
C of equation 11(1) were auLso requiredJ they were calculated using 
the relationship

U Cl = C n  (6)Af A/ ^
The column eigenvectors Cl and C are comprised of twelve terms, for 
convenience the individual terms are described as eigenvectors and 
collectively as column eigenvectors.

A computer programme was written which set up and solved equation 
U(1). This programme is shown on page97 gmd the function of each 
procedure called in the programme was as follows -

The procedure TRANS (A,B,M,N) transposes the matrix A and stores 
the result in array B. The dimensions of matrix A are M  by N . 
SIGMA (TK, K,A,B) is a procedure which evaluates the sum over K, 
from A to B, of TK, with positive unit increments in K. The
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procedure MXHJLT (A,B,C,M,N,P) multiplies matrix A by 
matrix B and stores the result in array C. The dimensions 
of matrices A, B and C are M by N, N by P and M by P, 
respectively. The procedure JACOBI (A,B,N,RHO) computes 
the eigenvalues and eigenvectors of the matrix A. After 
execution of the procedure, the eigenvalues are contained in 
A î, ^  and the eigenvectors in B |i,^, B ji,jj being the 
i^^ component of the column eigenvector which belongs to the 
^th Diagonalization is considered complete when
the absolute value of the off diagonal terms is less than 
EHO. The value of EHO was set at 10*^ because experimental 
tests showed the eigenvectors and eigenvalues were accurate 
to six decimal places if this value was used. The integer 
N denotes the dimension of the square matrix A.

The method employed in solving equation H(1) has already been discussed 
and each stage in the solution can now be identified in the programme 
listing. The S matrix is doubly stored in the arrays S and D, lines 
1r3. If the matrix had been stored only once access to it in the 
later stages of the programme would have been lost. Line 4 diagon- 
alizes the matrix. D and lines 3"9 normalize it. The transformation 

S U = I is checked in lines 10-12. If this condition is violated 
the offending terms are printed out by lines 17-19# The matrix HI 
is constructed by lines 13 and 14, and diagonalized by line 15. The 
eigenvectors are calculated from 01 in line 16. The remainder 
of the programme is comprised of print format statements which cause 
the results to be displayed in the following way -
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\ A

'1,1 '1,2 '1,6

'2,1

'3,1

'2,2
'3,2

'2,6
'3,6

'12,1 '12,2 '12,6

A. A12

'1,7 '1,12

'2,7 '2,12

'3,7 '3,12

'12,7 '12,12
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"P20CEDÜEB’* TRANS(A,B,M,N); ”VALUE"M,N; "INTEGER" M,N;"ARRAY" A,B; 
"BEGIN" "INTEGER" I,J;

"FOR" I:=1 "STEP" 1 »TJNTIL" M "DO"
"FOR" J:=1 "STEP" 1 »nJNTIL" N "DO"

B [j,i3 .:=A [i,j] t
"END" TRANS I

"REAL" "PROCEDURE" SIGMA(TK,K,A,B),• "VALUE" A,B;"INTEGER" K,A,B; 
"REAL" TK;
"COMMENT" ELLIOTT APPLICATIONS GROUP PROGRAM 138;
"BEGIN" "REAL" SUM;

suM:=o.o;
"FOR" K:=A "STEP" 1 ‘*UNTIL" B "DO"

SUM:=SUM+TK;
SIGMA:= SUM;
»»END" SIGMA;

"PROCEDURE" MXMULT(A,B,C,M,N,P); "VALUE" M,N,P;
"INTEGER" M,N,P; "ARRAY" A,B,C;

"COMMENT" C(1: M,1 tP)t=A(1 ,M,1 ;N)*B(1 iN,1 :P);
"BEGIN" "INTEGER" I,J,K;

"FOR" I:=1 "STEP" 1 *™TIL" M "DO"
"FOR" J;=1 "STEP" 1 *UJNTIL" P "DO"

C [l,j] := SIGMA(a [i ,kJ *b [k ,jJ ,K,1,N);
"END" MXMULT;
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"PROCEDURE" JACOBI(A,S,N,RHO);
"VALUE" NjRHO;"INTEGER" N; "REAL" RHO; "ARRAY" A,8; 

"BEGIN" "REAL" NORTH ,N0RM2,THR,MU,OMEGA,SINT,COST,INTI ,V1 ,V2,V3; 
"INTEGER" I,J,P,Q,IND;
"SWITCH" s s :=ma in,maini ;
"FOR" l:= 1 "STEP" 1 »*UNTIL" N "DO"
"FOR" J:= 1 "STEP" 1 ‘UJNTIL" I "DO"
"IF" I=J "THEN" S [l,jJ 1=1.0 "ELSE" S [l,jj »=0;
INTI:= 0;
"FOR" Ii= 2 "STEP" 1 "UNTIL" N "DO"
"FOR" J:= 1 "STEP" 1 "UNTIL" 1-1 "DO"
INTI 1= INTI+2*A [l,j] Î 2;
NORM!:=SQRT(INT1);
N0RM2:= (RHO/N)*NORMI;
THRi= N0RM1;
INDi= 0;
MAIN:THR:= THR/N;
MAIN1î"F0R" Q:= 2 "STEP" 1 "UNTIL" N "DO"

"FOR" P:= 1 "STEP" 1 »»UNTIL" Q-1 "DO"
"IF** ABS(A [P,Q] ) "GE** THR *'THEN"

**BEGIN" IND:= 1;
VI := a [p ,p] ; V2:= A [p ,q] j V3:= A [q ,q] ;
MU:= 0.5*(V1-V3);
0MEX3A;= "IF" MU-O.O **THEN" H  .0
"ELSE -SIGN(MU)*V2/SQRT(V2*V2+MU*MU)j

SINT:= 0MEGA/SQRT(2*(1+SQRT(l - OMEGA*OMEGA)));
COST:= SQRTd-SINT* SINT);
"FOR** I:= 1 **STEP** 1 **UNTIL** N "DO**
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«BEGIN*» IHT1:=A[l,p]*C0ST-A[l,Qj*SIirr;
A^, q]:* a [i ,p]*SINT+a [i ,q]*COST; 
a [i ,p]:=IMT1;
EîT1:= s[Î,p]*CX)ST-s[i,q]*SINT; 
s[Î,q]:= s[i,p]*SINT+s[i,q]*COST; 
s [ i , p ] ; =  INT1;

«END*»;
*»POE" I:= 1 "STEP" 1 "UNTIL" N "DO**

-BEGIN" a [p ,i] î= a [i ,^ ; a [q ,i]:« a [i ,q];
«END»* ; _

a |p ,pJ := V1*COST*COST+V3*SINT*SINT-2*V2*SINT*CuST5 
a [q ,^ := V1^»SINT*SINT+V3*C0ST*C0ST+2*V2*SINT*C0ST; 
a |p ,q]:= a [q ,^ := (V1-V3)*SINT*C0ST+V2*(C0ST*C0ST -SIND*SINT);

«END"f
"IF" IND = 1 "THEN"

«BEGIN»» IND;= 0;
"GO TO" MAIN1

"END";
"ELSE" "IF" THR>N0EM2 "THEN" "GO TO" MAIN 

«END*» "JACOBI" ;
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Solution of equation II(l)
"FOR** I:=1 "STEP" 1 "UNTIL" 12 "DO"
"FOR" J:=1"STEP" 1 "UNTIL" 12 "DO"
d [i ,j] !=s [i ,j];
JACOBI(D, W, 12,1•0,q-08);
"FOR" I:=1 "STEP" 1 "UNTIL" 12 "DO"
"FOR" J:=1 "STEP" 1 "UNTIL" 12 "DO"
"BEGIN" SYM:=iCHECKR(d [j ,j] );

U [l, j] l«W [l, j] /SQRT (D [j, J J ) ;
"END" ;
TRMS(U,UT,12,12);
MXMULT(UT,S,US,12,12,12)5
MXMULT(US,U,II,12,12,12);
MXMULT (UT,H,UH, 12,12,12);
MXMULT(UH,U,H1,12,12,12);
JACOBI(HI,Cl,12,1,0 q̂-08);
MXMULP(U,C1,C, 12,12,12);
"FQR"J:=1 "STEP" 1 "UNTIL" 12 "DO"
"IF" ABS(II[J,jI]-1.0)>1.0^q-07 "THEN"
"PRINT" **L**DIGITB(2),J,SMELINE,»*S3**,SCALED(9), Il[j,j];
"PRINT" *'L4'*,SAMELINE,SCALED(9),H1[1,3 ,'*S3'',Hl[2,2],*'S3*',

HI [3,33, * '53' ' ,H1 [4,43, * '53' ',H1 , ' '53' ' ,H1 g, 6|,' 'L2* ' ;
"FOR" I:=1 "STEP" 1 "UL̂ TIL" 12 "DO"
"PRINT" " L " ,  SAMELINE,SCALED(9),c[l,i] ,"S3’*,C|1,23,**S3", 

C[l,3],"S3",cIl,43,"S3",c[l,53,"S3",Cp:,g;
"PRINT" »*L4",SMELINE,SCALED(9), HI [?,?],''S3'',HI [8,8],''S3''

HI [9,9] , ' 'S3' 'HI [10,103, ' 'S3* ',H1 [11,113 , "S3" ,
HI [12,12],"L2";

"FOR" I;=1 "STEP" 1 "UNTIL" 12 "DO"
"PRINT" " L " ,  SAMELINE,SCALED(9),c[l,7] , " S 3",c[i,8],"S3",C'[l,9], 

"S3",c[i,1(3 ,."S3",C|I,1i3 ,"S3",C[i,1^ ;
"END";
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A P P E N D I X  III 

N.S.O's and Electron Density Distribution

(14)Natural spin orbitals are defined as forming a basis 
set which diagonalizes the generalized first-order density matrix. 
Further, if a many-partie le wave function^, expressed as a super­
position of configurations over some arbitrary basis set, is formulated 
in terms of configurations built up from natural spin orbitals, then
this natural expansion of ̂  is distinguished Eis the superposition of

(24)configurations of most rapid convergence . This definition can 
be described mathematically by writing the first-order reduced density 
matrix of an N-electron system in terms of the configuration
interaction wave function and its natural expansion,

î((x;k)=Nĵ *(x;,x̂ ,  ,xj(dx;j 111(1)

and

111(2)

where ̂ (X^X^...,X^) represents the normalized (to unity) configuration 
interaction wave function of a system of N electrons and is the 
space-spin co-ordinates of electron i. The notation (dX^) indicates 
that the integration takes place over all co-ordinates except X^. The 
prime on the X^ co-ordinate indicates that, when calculating the

Iexpectation value of some operator, X ̂ is put equal to X̂  after the 
operation has been performed. Thus the operator works simply on the 
umprimed co-ordinates.
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The symbol denotes the NSO and n^ its occupation
number* The occupation numbers satisfy the relation

n. =  N k
111(3)

The absence of cross terms in equation III(2) is due to the fact that 
the NSO's form an orthonormal set, i.e.

( x j d x ,  = H I  (4 )

Consequently, the calculation of the electron density at any point
in a i^stem is greatly simplified when the wave function is expressed
in terms of NSO's*

The procedure used in this work for evaluating the electron
density at points along the internuclear axes was as follows* The
molecular framework and basis orbitals were expressed in terms of a
common co-ordinate ^stem* Both the Hamilton-like and ZHZH^^ ^
^sterns were specified by the co-ordinates shown din Figure III(1)*

Y

B
>X

A /

Distance 00 = OA = a 
Distance OB = CD - b
The orbitals centred onBand D are identical as are the ones centred 
on A and C.
Figure III(l) A representation of the systems in x,y co-ordinates
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In all the calculations described here the molecular orbitals 
were constructed from Is or 2s Slater-type functions. The analytical 
expressions for these orbitals in terms of x,y co-ordinates are given 

in equation III(5)

Isb =

sd

sa =

\l̂
 E X P - S t  =  

ÏÏ

S EX P—S t  — 
ÏÏ

EXP-% =
TT

l !  E X P - I  
TT

, , f 2(x + b) + y

l !  E X P - V  
n|TT

F  E X P - X  
\|TT

(x-bft /

2
X 4-(y+aj

EXP-Xt- =  
Tf ^

r  E X P - I  
TT

111(5)

2sb =

2sd “

t  E X P - A t  
\|3n ^ ^

l !  t E X P - A t
\I3TT <*

l !
\|3TT

(t+x)^+y^ E X P
\

31T\|
E X P - ^

\

= f )
/, ? 2 (b -x )  + y

where V ,S  and ̂  are the orbital exponents and r^, for example, is the 
scalar distance of centre B from the point (x,y).

The basis spin molecular orbitals describing each system were 
then set up and evaluated at chosen points along the internuclear axes. 
NSO's were then constructed from the evaluated spin molecular orbitals by 
using the relationship

111(6)
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+2Z—2The normalized basis spin molecular orbitals of the ZHZH 
systems are given in equation IIl(7) and the elements of the 
transformation matrix A are presented &t the end of this appendix.

^  =  IsboC 4^ =  Isb ̂2

4^ = N(lsa-+- Isc)f< 4^ =  N(lsa+ Isc)^

4 ^ =  Npsa- 4̂  — Npsa~ Isc)̂8
ahd Ng are normalization constants whose values are given by

' 111(8)

where ac represents the overlap between atomic orbitals Isa and Isc.
The electron density at the point (x,y), denoted by |o(x,y) was 

then evaluated quite simply since,

111(9)

0
n. being the occupation number of the NSO.

/

The computer programmes used in this part of the work are 
listed below. Also, the code names used in the programmes are identified 
in order to clarify each step in the calculation. The programme 
"ELECTRON DENSITY ALONG THE X AND Y AXES" calculates the density along the 
CD and 00 directions at the points x = 0.0(0.1)3.0 au, y=0.0 and x=0.0, 
y=0.0(0.1)3.0 au. Along these axes the expressions for the normalized 
basis molecular orbitals are simplified since one or other of the x,y
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co-ordinates are zero. The second programme "ELECTRON DENS TTY ALONG 
THE CD DIRECTION" calculates the electron density at the points 
xs(a-y)Tan y for y=-1.0(0.1)3.0 au. Both programme listings refer

+22i—2to the calculation of the ZHZH densities; when the Hamilton-like 
systems were considered the expressions for Slater-type 2s orbitals replaced 
the Is functions centred on B and D.

Programme code names
LOOP - the number of calculations in the batch.
ALPHA — the exponent of the orbitals centred on A and C.
BETA - the exponent of the orbitals centred on B and D.
AC - the overlap of the orbitals Isa and Isc.
A - the distance OC (a).
B — the distance OD (b).
X,Y - the co-ordinates of the point at which the density is calculated.
OSB — the analytical expression of the orbital centred on B.
OSD - the analytical expression of the orbital centred on D.
OSAP - the analytical expression of the normalized molecular orbital 

(isa + Isc).
OSABI - the analytical expression of the normalized molecular orbital

(Isa - Isc).
Et[j] - the NSO
A[i ,j1- the elements of the transfoimation matrix A. 
n [j] - the occupation number of the NSO.
RHO - the electron density at the point x,y.
PHI - the angle ^
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1 • ELECTRON DENSITY ALONG THE X AND Y AXES;
2. "BEGIN" "INTEGER" K, LOOP;
3. "READ" LOOP;
4. "FOR" K;=1 "STEP" 1 "UNTIL" LOOP "DO"
5. "BEGIN" "INTEGER" I,J;
6. "REAL" ALPHA, BETA, AC,A,B,X,Y,OSB,OSD,OSAP,OSAM,RHO,PI;
7. "ARRAY" Aa [1:8,1 :8],N,KI,R0[l;8'];
8. "READ" ALPHA,BETA,AC,A,B;
9. "FOR" I:=1 "STEP" 1 "UNTIL" 8 "DO"
10. "FOR" J:=1 "STEP" 1 "UNTIL" 8 "DO"
11. "BEAD" AA[i ,j];
12. "FOR" J:=1 "STEP" 1 "UNTIL" 8 "DO"
13. "READ" n [jJ;
14. "PRINT" t ipi I.

15. PI:= 3.14159265;
16. "FOR" X:«0 "STEP" 0.1 "UNTIL" 3.0 "DO"
17. "BEGIN"
18.- OSBi= SORT(BETAf3/PI)*EXP(-BETA*(B+X) ) ;
19. OSD :« SQRT (BETAt3/PI )*EXP(-BBTA*ABS (X-B ) ) ;
20. OSAP:= SQRT (ALPHA t3/(PI*2* ( 1+AC ) ) )*2*EXP(-ALPHA*SQRT(A*A+X*X) ) ;
21. OSAM:= 0;
22. RHO:= 0;
23. "FOR" J;=1 "STEP" 1 "UNTIL" 8 "DO"
24. "BEGIN"
25. Kl[j] ;= 0SB*AA[1 ,j]+0SB*AA[2,^ +OSD*AA[3,j]+OSD*AA[4,j]
26. + oasp*aa[5,j]+ oasp*aa[6,j]+ osam*aa[7,j]+osam*aa[8, j] ;
27. Ro[j] ;= N [j] *KI [j] *KI [j] ;
28. RHO:= RH0+R0[j];
29. "END";
30. "PRINT" * ’L'RHO' ,SAMELINS, "S2‘ * ,SCALED(9),'X= » ,X, * *S5* * ,RHO;
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31. "END" ;
32. "FOR" T:=0 "STEP" 0.1 "UNTIL" 3.0 "DO"

33. "BEGIN"
34. 0SB:= SQBT(BETAÎ3/PI)*EXP(-BETA*SQRT(B*B+Y*Y));
35. OSD:= OSB;
36. OSAP;* SQRT(ALPHAT3/(PI*2*(1+AC)))*(EXP(-ALPHA*(A+Y))+
37. EXP(-ALPHA*ABS(Y-A)));
38. OSAM;* SQRT(ALPHAÎ3/(PI*2*(l-AC)))*(EXP(-ALPHA*(A+Y)) -
39. EXP(-ALPHA*ABS(Y-A)));
I4O. RH0:*0.0;
41. "FOR" J:=1 "STEP" 1 "UNTIL" 8 "DO"
42. "BEGIN"
43. Kl[j]:= OSB*Aa [i ,j]+ 0SB*Aa [2,jJ+ 0SD*AA [3,j]+OSD*Aa [4,j]
44. +OSAP*AA[5,oT|+OSAP*AA [6,j]+OSAM*AA[7,j] + oasm*aa[8, j};
45. RO[j] :* N [j]*îŒ [j]*KI [j] ;
46. RHO:* RHO+RO[jJ;

47. "END";
48. "PRINT" • »L*RHO* ,SAMELINE,SCALED(9), '*S3'*,'Y=',Y,' *S5* * ,RHO;
49. "END";
50. "END";
51 "END" ;

The programme for evaluating the electron densities along 
the X and y axes of the Hamilton-like systems require lines I8, I9 and 
34 to he replaced hy:-
18. OSB:* SQRT(BETAt5/(3*Pl))*(B+X)*EXP(-BBTA*(B+X));
19. OSD:* SQRT(BEIAf5/(3*Pl))*ABS(B-X)*EXP(-BETA*ABS(B-X));
34. OSB:= SQRT(BETAÎ5/3*PI))*SQRT(B*B+Y*Y)*EXP(-BETA*SQRT(B*B+Y*Y));



-105-

1. ELECTRON DELÎSITT ALONG THE CD DIRECTION;
2. "BEGIN»' "INTEGER" E,LOOP;
3. "READ" LOOP;
4. "FOR" E:*1 "STEP'( 1 "UNTIL" LOUP "DO"
5. "BEGIN" "INTEGER" I,J;
6. "REAL" ALPHA,BETA,AC,A,B ,X,Y,OSB,OSD,OSAP,OSAM,RHO,PHI,PI;
7. "ARRAY" AA[1:8,1:8],N,KI,R0[1:8];
8. "READ" ALPHA,BETA,AC,A,B,PHI;
9. "FOR" I;= 1 "STEP" 1 "UNTIL" 8 "DO"
10. "FOR" J:* 1 "STEP" 1 "UNTIL" 8 "DO"
11. “BEAD" AA[I,J];
12. "POE" Ji= 1 "STEP" 1 "UNTHi" 8 "DO"
13. 1'EEAD" n [j]j
14. "PRINT" " P " ;
15. PI:= 3.14159265;
16. "POE" T;= -1.0 "STEP" 0.1 "UNTIE" 3.0 "DO"
17. "BEGIN"
18. X:= (A-T)*SIN(PHI)/C0S(PHI)|
19. OSB:= SQET(BBTAf3/^1)*EXP(-BETA*SQRT( (X+B)f2 +I*ï));
20. OSD:= SQRT(BETAf3/Pl)*EXP(-BETA*SQRT((B-X)f2 +T*l));
21. OSAP:= SQET(ALPHAt3/(PI*2*(l+AC)))*(EXP(-ALPHA*S(3ET(X»X+(A+T)t2))
22. +EXP(-ALFHA*SQET(X*X+(A-T)Î2)));
23. OSAMi- SQET(ALFHAt3/(PI*2*(l-AC)))*(EXP(-ALPHA»SQPT(X»X+(A+Y)t2))
24. -EXP(-ALPHA<fSQRT(X*X+(A-Y)Î2)));
25. EHOs= 0.0;
26. "POE" J:=1 "STEP" 1 "UNTIL" 8 "DO"
27. "BEGIN"
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28. IŒ[jJ:= OSB*Aa[i,j]+ 0SB*AA[2,^+0SD*AA[3,j]+0SD*AA[4,J]
29. + OSAP*AA[5,j] +OASP*AA[6,j]+0SAM*Aa[7,^ +0SAM*AA[8,j] ;
30. RO [jj ;= N [j]*KI [jJ * Kl [j] 5
31. RHO:* RHO + Ru[j] ;
32. "END" ;
33. "PRINT" "L'RHO*, SMELINE, ''82'', SCALED (9),
34. 'X * ',X,"S2",'Y* ',Y,"S5",RH0;

35. "END"
36. "END";

37. "END";

The programme for evaluating the electron densities along 
the CD axis of the Hamilton-like systems required lines I9 and 20 to he 
replaced hy:-

19. OSB := SQRT (BETA Î 5/( 3*PI ) )*S(ÿEîT( (X+B) t2+Y*Y)*EXP (-BETA*SQJIT( (B+X)f2+Y*Y) ) ;
20. OSD:= SQRT(BETAt5/(3*Pl) )*SQRT( (X-B)t2+Y*Y)*EXP(-BETA*SQRT((X-B)Î2+Y*Y) ) ;
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The occupation numbers n^ and elements of the transformation 
matrix A for the fully opitimized .systems are given in Tables III (i).
Only the NSO's of o( spin are described in these tables since the spin 
eigenfunctions and f> are degenerate. The transformation matrix is 
consistent with the relationship

111(10)

where the basis spin molecular orbitals (for the systems)
are given in equation III(7). Each column of the tables is headed by 
n^ and followed by A^^, v/here i = 1 to 8. This NSO description represents 
a system of 4 electrons.

Table Ill(a) The ZHZH***^^^ system where Z = 1.0.

".1
0.989504 0.993531 0.011858 0.005107

0.849279 0.265199 -0.889221 0.0
0.0 0.0 0.0 0.0

-0.849279 0.265199 -0.889221 0.0
0.0 0.0 0.0 0.0
0.0 0.638708 1.357368 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0
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Table Ill(b) The system where Z = 1.2

“j 0.988626 0.994473 0.012629 0.004272

0.804791 0.298876 -0.855027 0.0
0.0 0.0 0.0 0.0

-0.804791 0.298876 -0.885027 0.0

A 0.0 0.0 0.0 0.0
10

0.0 0.605349 1.332928 0.0
0.0 0.0 0.0 0.0

' 0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0

Table IIl(c) The +2Z—2ZHZH system where Z = 1.4

. “d 0.995155 0.990309 0.010796 0.003740 .

0.356679 -0.780477 -0.849424 0.0
0.0 0.0 0.0 0.0

0.356679 0.780477 -0.849424 0.0

A 0.0 0.0 0.0 0.0
id

0.534537 0.0 1.309924 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0,0 0.0 0.0 0.0
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Table Ill(d) The ZHZH+2Z-2 system where Z * 1.8 ,

0.996982 0.994306 0.006645 0.002067

0.464909 -0.750915 -0.742651 0.0

0.0 0.0 0.0 0.0

0.464909 0.750915 -0.742651 0.0

^id
0.0

0.400739

0.0

0.0
0.0

1.244456

0.0
0.0

0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0

Table Ill(e) The +2Z—2
ZHZH system where Z * 2.2

^d 0.998826 0.998234 0.002341 0.000598

0.565517 -0.741619 -0.607137 0.0
0.0 0.0 0.0 0.0

0.565517 0.741619 -0.607137 0.0

*id
0.0
0.248822

0.0
0.0

0.0

1.200043

0.0
0.0

0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0
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Table Ill(f) The Hamilton-like system where = 2.0

0.984839 0.993253 0.014302 0.007605

0.716836 0.467293 -0.611820 0.0
0.0 0.0 0.0 0.0
-0.716836 0.467293 -0.611820 0.0
0.0 0.0 0.0 0.0
0.0 0.511747 0.977468 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0

Table Ill(g) The Hamilton-like system where B^ = 2.5

0.998980 0.997747 0.002872 0.000400

0.576716 -0.709580 -0.476402 0.0
0.0 0.0 0.0 0.0
0.576716 0.709580 -0.476402 0.0

A. . 0.0 0.0 0.0 0.0
ij

0.362217 0.0 0.997652 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0
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Table Ill(h) The Hamilton-like system where B_ = 3.0

0.999802 0.999677 0.000501 0.000020

0.641335 -0.707599 -0.355920 0.0
0.0 0.0 0.0 0.0

0.641335 0.707599 -0.355920 0.0
\ 0.0 0.0 0.0 0.0

0.241871 0.0 1.009443 0.0
0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0
0.0 0.0 0.0 0.0
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