A Thesis Entitled

## AN APPROACH TO RATIONAL DECISION MAKING IN THE DRIENTATION DF MINERAL EXPLORATION EFFORTS.

```
Submitted for the Degree of
```

    DOCTOR OF PHILOSOPHY
                in the
    Faculty of Science, University of Leicester
by
K. M. CLEWS

All rights reserved

## INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.


UMI U342090
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.


ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

## TABLE OF CONTENTS


6.3 Depth to the Base of the Deposit6. 4 Depth to the Top of the Deposit
6.5 Relative Water Table Position
6.6 Rock Mass Fracture Intensity
6.7 Orebody Thickness
6.8 Strategic Implications of Mining MethodSelection
6.. 9 Degree of Mining Difficulty
6.9.1 Rock Strength
6.9.2 Deposit Dip
6.9.2.1 Ease of Material Transport
6.9.2.2 Mining Loss and Dilution
6.9.3 Depth to the Base of the Deposit
6.9.4 Water Conditions
6.9.5 Other Conditions6.9 .6 Bias
6.10 Mineral Processing
7.0 SOCIO - POLITICAL CLASSIFICATION
8.O PRICE CONSIDERATIONS
8. 1 Price Ranking
9.0 COMMODITY PROFITABILITY THRESHOLD
9.1 Indirect Solution
9.2 Direct Solution
9.2.1 Decision Making in Perspective
9.2.2 The Principles of Direct Solution
9.3 Price - Time Definition

```
10.0 COMMODITY SOURCE PROFILE
11.0 FUNDAMENTALS OF DECISION MAKING
    11.1 Overlap Index
    11.2 Commodity Comparison
    11.3 Relative Overlap Index
12.O DEVIATION IN THE COMMODITY PROFITABILITY
    THRESHOLD
    12.1 Changes in the Required Rate of Return
    12.2 Changes in Capital Cost
    12.3 Changes in Net Smelter Return
    12.4 Changes in Operating Cost
    12.5 Changes in Operating Parameters
    12.6 Net Effect
    12.7 Quantified Significance
1S.O DEVIATION IN THE COMMODITY SOURCE PROFILE
14.0 PROBABLE SUCCESS
15.0 DEPOSIT TYPE SPECIFICATION
16.0 GENERAL SUMMARY
PART 2 A Numerical Example to Illustrate the
                    Application of the General Theory
17.0 DERIVATION OF COMMODITY SOURCE PROFILE
    17.1 Commodity
    17.2 Deposit Type
    17.3 Tonnage
    17.4 Grade
    17.5 Curve Fitting
18.0 PRICE PREDICTIONS
    18.1 Base Data
```

18.2 Inflation
18.3 Variograms of Price Changes vs Time
18.4 Price Kriging Procedure
19.0 CAPITAL AND OPERATING COST CALCULATION
20.0 CALCULATION OF COMMODITY PROFITABILITY THRESHOLDS
21.0 CALCULATION OF PROBABLE SUCCESS
22.0 CALCULATION OF GENERAL EXPLORATION POTENTIALS
22.1 RSPI Calculation
22.2 RPTI Calculation
22.3 RMI Calculation
22.4 Relative Commodity Exploration Index Calculation
22.5 General Exploration Potential Calculation
23.0 CALCULATION DF EXPLORATION BUDGET ALLOCATION
24.0 CALCULATION OF DEFOSIT TYPE ALLOCATION
25.0 GRADE - TONNAGE CUTOFF CALCULATION
26.0 INVENTORY EVALUATION
27.0 SUMMARY AND CONCLUSION
REFERENCES
APPENDICIES
A Details of Direct Solution of Commodity Profitability Threshold
B Proof of Minimum Reserve Analysis
C Basic Deposit Data Sorted by Commodity and Deposit Type
D Statistical Analysis of the Basic Data
E Details of the Exponential Models of the Commodity Source Profiles of Copper Lead, Zinc, Gold, Silver and Nickel
F Predicted Values for Inflation and Commodity Price

G Details of Capital \& Dperating Costs, Operating Parameters \& Financial Factors used for each Mining Method as Input to the Minimum Reserve Analysis

H Results of Minimum Reserve Analysis of Copper, Lead, Zinc, Gold and Silver

I Details of the Calculation of Operating Cutoff Grades
$J$ Details of the Realive Socio Political Index Calculation
$K$ Details of the Deposit Allocation Calculation

L Details of the Grade - Tonnage Cutoff Calculations

M Case Study Results For Copper, Lead, Zinc, Gold and Silver

## LIST OF ILLUSTRATIONS

Figure \# Title

General System Flow - Metalliferous Mining Method Selection

Rock Strength - Standard Score Relationship

Transportation - Standard Score Relationship

Mining Loss \& Dilution - Standard Score Relationship

Depth Below Surface - Standard Score Relationship

Water Conditions - Standard Score Relationship

Other Factors - Standard Score Relationship

Grade - Price Relationship for a Typical USA Copper Mine

Grade - Price Relationship for USA Copper Mines

Grade - Tonnage Relationships for USA Copper Deposits Minimum Required Targets

Risk in the Life of a Project
Commodity Source Profile
Decision Process
Commodity Comparison
Effect of Changes in Required DCFROR
Effect of Changes in Depth on CPT
Effect of Changes in Net Smelter Return on CPT

Effect of Changes in Operating Cost on CPT

Effect of Changes in Operating Parameters on CPT

Uncertainty and the CPT
Vector Diagram for a Specific Deposit Type

Probable Commodity Source Profile
Probable Target Definition
Deposit Allocation Diagram
Copper - Commodity Source Profile
Lead - Commodity Source Profile
Zinc - Commodity Source Profile
Gold - Commodity Source Profile
Silver - Commodity Source Profile
Nickel - Commodity Source Profile
Inflation Factors
Deflated Copper Price - Time Values
Deflated Lead Price - Time Values
Deflated Zinc Price - Time Values
Deflated Gold Price - Time Values
Deflated Silver Price - Time Values
Value - Time Variogram for Inflation
Price - Time Variogram for Copper
Price - Time Variogram for Lead
Price - time Variogram for Zinc
Price - Time Variogram for Gold
Price - Time Variogram for Silver
Inflation Factors - 1983 Base
Predicted Copper - Time Values 1983
Predicted Lead - Time Values 1983 \$

| 46 | Predicted Zinc - Time Values 1983 |
| :---: | :---: |
| 47 | Predicted Gold - Time Values 1983 \$ |
| 48 | Predicted Silver - Time Values 1983 \$ |
| 49 | $\begin{aligned} & \text { Copper - Commodity Profitability } \\ & \text { Threshold } \end{aligned}$ |
| 50 | Lead - Commodity Profitability Threshold |
| 51 | Zinc - Commodity Profitability Threshald |
| 52 | Gold - Commodity Profitability Threshold |
| 53 |  |
| 54 | Copper - Deposit Allocation Diagram |
| 55 | Lead - Deposit Allocation Diagram |
| 56 | Zinc - Deposit Allocation Diagram |
| 57 | Gold - Deposit Allocation Diagram |
| 58 | Silver - Deposit Allocation Diagram |
| 59 | Copper - Case Study Example |
| 60 | Lead - Case Study Example |
| 61 | Zinc - Case Study Example |
| 62 | Silver - Case Study Example |
| 63 | Gold - Case Study Example |

## LIST OF ACRONYMS

| AI | Available Investment |
| :---: | :---: |
| BCEI | Basic Commodity Exploration Index |
| CPT | Commodity Profitability Threshold |
| CS | Chance of Success |
| CSP | Commodity Source Profile |
| DA | Deposit Allocation |
| DCFROR | Discounted Cashflow Rate of Return |
| DTN | Deposit Type Number |
| GEP | General Exploration Potential |
| INEA | Investment in Non-Exploration Alternatives |
| LME | London Metal Exchange |
| MBC | Maximum Budget per Commodity |
| MCB | Minimum Confidence Boundary |
| MEI | Market Exploration Index |
| MIC | Modified Investment per Commodity |
| MJEB | Maximum Justifiable Exploration Budget |
| MRA | Minimum Reserve Analysis |
| NJB | Non-Justifiable Budget |
| NPV | Net Present Value |
| NSR | Net Smelter Return |
| OI | Overlap Index |
| PTI | Price Time Index |
| RELOI | Relative Overlap Index |
| RCEI | Relative Commodity Exploration Index |
| RCS | Relative Chance of Success |
| RMI | Relative Market Index |

RPTI Relative Price Time Index

RSPI Relative Socio - Political Index
SD Standard Deviation
SPI Socio - Political Index
TCS Total Chance of Success
TJB Total Justifiable Budget

## ABSTRACI

The problem of strategic decision making in the metalliferous minerals industry has, to date, tended to have been solved by a stochastic process. This thesis describes a new approach to this problem involving rational decision making for the orientation of mineral exploration efforts.

The thesis is composed of two basic parts, the first being the specific statement of the problem, underlaying assumptions and constraints, and its theoretical solution. The second part being an example of the use of the theory by a hypothetical mining company to determine the best exploration strategy, and a review of the status of known deposits in the light of the results of the strategy developed.


#### Abstract

Success is defined, in general, as the excess of reality over desire. Using this concept in exploration, reality $i s$ expressed as a series of grade-tonnage curves representing the sources of the commodity. Financial desire is initially defined as an internal rate of return, but this is then translated to equivalent grade-tonnage combinations and is then also depicted as a series of grade-tonnage curves. The chances of exploration success are then determined by overlaying the grade-tonnage curve of reality on that of desire.


On the basis of this overlaying specific deductions are made regarding the relative amount of effort that can be rationally justified for each commodity. In addition, specific, attractive deposit types are identified and minimum grade and tonnage criteria are calculated for each deposit type within each commodity.

[^0]
## PARI 1

Derivation of a General Theoretical Approach to the Solution of the Problem of the Rational Orientation of Exploration Efforts.

### 1.0 INTRODUCTION

### 1.1 General Review

The basic objective of the work
described in this thesis was to try to develop a
system of reasoning that would solve the problem of
how to best orient the investment of a company in
exploration. The logic system developed would be
expected to work at the strategic planning level
within the management framework.

This study then, was an examination of strategic behaviour as exhibited by an organization. For the purposes of this study the meaning of "strategic behaviour" as defined by Ansoff (1) was used, namely:
"Strategic behaviour is the process of
interaction of an organization with its environment,
accompanied by a process of changing internal
configurations and dynamics"

Such strategic studies have become routine in many industries; but little evidence is available to justify the belief that formalized decision systems are widely used in the mining and exploration industries. The usual level of sophistication in

```
decision making is exemplified by a quotation from the
CIM's 1970 conference on Decision Making in the
Minerals Industry (2):
```

"A well known geologist with long experience in metals exploration describes a typical decision by a firm as "let's spend $\$ \mathrm{X}$ in the $Z Y$ area to see what's there", giving no explict weight in budgeting expenditures to expectations for mineral prospects and mineralization"

Stermole (3) also has a comment on the state of decision making in exploration management:
"The whims of management should not be the basis for reaching decisions".

Having seen the results of such a stochastic system of decision making Stermole (4) draws the following conclusion:
"If systematic methods are not used to compare
the economic considerations of investment
alternatives, it seems evident that in certain
investment decision making situations the wrong
choices may be made from an economic viewpoint".

From the above, it may be argued that much


#### Abstract

decision making in exploration management is based upon stochastic rather than rational processess, with the consequence that incorrect decisions are made. If wrong decisions are made, it means that a less than optimal strategy is being employed.


At this point it is helpful to consider the nature of decisions themselves. The requirement for, and quality of decisions is succintly expressed by Thuesen (5):
"..- the need for action demands decisions in many situations not fully covered by concrete facts. Then decisions must often be based upon qualitative knowledge".

Thus it is clear that decisions must be made in order for an organization to be successful; and, that many of these decisions will be made in conditions of uncertainty. The risk is then that wrong decisions will be made. This problem is compounded by the linkage between decisions, as explained by Thuesen(6):

[^1]strategies".

So, incorrect individual decisions mean an incorrect overall strategy. Moreover, the linkage between decisions means that a stochastic decision making system is biased towards failure.


#### Abstract

If using a stochastic decision making process tends to produce failure, then it is desirable to use a rational system to reverse such a tendency. However, is such a rational system possible to construct? ? Hillier (7) concluded it should be possible to identify a rational decision making process, provided that:


".-. the decision maker can:

1. Give a consistent preference order for all alternatives or events of interest, and
2. express consistent preferences for combinations of events and stated probabilities".

Such constraints mean that the problem must be limited and a specific goal or set of goals stated explicitly.

```
From the above examination of the nature of decisions, it would appear that the reason for making
```

```
a correct decision is to achieve success. It is then,
appropriate to consider what is understood by the term
"success". According to the Drford Dictionary, success
i5:
```

"accomplishment of an end aimed at"

For the purposes of this study the "end aimed at" is defined as the maximization of the rate of return on an investment. Having said that, comments may be made on the relationship between strategic behaviour and success. According to Pryor (8):
"The risks are spread so that the combine is not dependent on the full success of all its ventures, nor are its interests confined to any one mineral."

Pragmatically, this may be translated as hedging your bets. Thuesen (9) and (10) had some general comments about the relationship between success and strategy:
"Attention may be focused on doing worth-while things or on doing things very well. Economic success depends to an extent on each",
and;
"... it is apparent that the extent of the success of a venture depends upon its potentialities for income less the sum of the costs of finding it and carrying it on",
therefore,

```
".-. it appears warranted to draw the conclusion that the outcome of an understanding is jointly dependent upon the potentialities of the undertaking itself and upon how well it is prosecuted".
```

Success may therefore be defined as the relative excess of what is actually possible over what is actually required. In short, success is the excess of reality over desire. Such a definition permits not only the determination to be made as to whether a strategy is successful, but also how successful. In other words, it allows for the relative ranking of one strategy compared to others.

Reality in geologic terms may be expressed by the size and quality of a deposit. As was stated above, desire in financial terms is expressed by a rate of return. Clearly, before success could be evaluated common modes of measurement are needed. Part of the work of this thesis was to translate financial desire, as expressed by a rate of return, in to geologic terms
of tons and grade. Once such a conversion is made, both reality and desire are expressed in the same terms and an evaluation of success may be made for a variety of choices. The alternatives giving the greatest success can then be put together to form a "best" strategy.

The necessity for determining how much success is associated with an alternative is explained by Thuesen (11), as follows:
"..- many economic efforts are unfruitful for the reason that there is not sufficient economic input to pass the threshold of success.",
and,
"The threshold idea should be taken in to consideration in evaluating opportunities."

In other words, there is a threshold which must be passed before success results. In exploration terms that threshold is set by financial desire. If that desire is set too high, then failure will result from all exploration activities. On the other hand, if it is set too low, whilst it will be possible for geologic reality to exceed desire and for success to result; the resultant success will be below that which
could have been achieved had the investment been made in other, non-exploration alternatives. A method must, therefore, be found to devise a rational decision process which, in general terms, will answer the following questions:

1. Can investment in exploration be justified in competition with other alternatives?
2. If 50 , how much of the potential investment may be reasonably consummed by exploration?
3. What is the blend of commodities, deposit types, sizes and grades that will yield the most success ?

Again, part of this thesis was devoted to devising such a method.

### 1.2 The Nature of Previous Work

Exploration has been carried out for millenia, and decisions have clearly had to be made for this process to occur. Decision Theory itself encompasses a whole body of scientific endeavour and some of its techniques such as characteristic analysis (12), decision trees (13), and probabilistic simulation (14) have been widely used and described in the context of mineral exploration. Papers on the methodology of project evaluation in the mining industry and descriptions of the techniques used
abound, and are typified by Brown (15), Slavich (16), Q'Hara (17), Whitney (18), Baker (19) and Rendu (20), to name but a few. Strategic management, as a concept has also been well developed over many years, and is well described, in general terms by Ansoff (1).

The current methods used in investment analysis are well described by $\mathrm{a}^{\prime}$ Neil (21) \& (22). Essentially, they comprise cashflow analysis and the calculation of a variety of indices such as payback, net present value ( NPV ) and discounted cashflow rate of return ( DCFROR ). The resultant cashflows are subjectively factored in an attempt to bias the information towards the real world. This process is less than scientific as it is not, by its very nature, independently repeatable, and if the correct strategy is developed, as the result of this decision process, then it is achieved by chance.

```
In specific terms the items which are of interest to the decision maker in exploration were summarized by Pryor (8), as follows:
```

"The essential facts which will govern the financing and operation of a prospect which survives the exploratory stages can be summarized thus:-
3. Extent and value of the deposit
b. Long term forecasts of markets for products.
c. Economic rate of depletion
d. Terms proposed for capitalization
e. Political stability of the government issuing title
f. Legal and fiscal conditions to be observed
9. Working conditions likely to influence exploitation"


#### Abstract

It will be noted that not all the above criteria are of prime interest during the initial stages of decision making with which this thesis is concerned. Turning to those which are of relevance, the extent and quality of deposits has been well documented over the years both in the mining press (23) and in specific publications such as Dixon (24). The key factors in classifying deposits in engineering terms were identified by Botbol (12) some time ago, as dip of fractures, rock type and mineral type. Using such key factors, Botbol did, in fact, classify copper, lead and zinc deposits. However, Botbol"s work was limited to a specific geographic area and was not expanded in to a general theory.


The long term forecasts of markets for products is a subject of ongoing concern for many workers. Three summaries of this are provided by the United States Bureau of Mines ( USBM ) (25) \& (29) and Fischman et al. (26). Current market situations and inflation behaviour patterns are well covered by the American

Metal Market (27). In terms of price forecasting, conventional statistical analysis as described, for example, by Davis (28) is widely used; but no previous examples of the application of regionalized variable analysis, as described by David (14), have come to the author's attention.
The working conditions that effect exploitation
depend to a large extent on the type of exploitation
methods used. Mining methods have been classified in
terms of support systems by Atkinson (30), but this
seems to be treating the symptoms rather than the
disease. No previous attempt to classify mining
methods in terms of the key factors identified by
Botbol (12) have been found by the author. Mineral
processing systems have been well classified as a
function of mineralogy by orHara (31).

### 1.3 Nature of the Resultant Decision System

The decision system resulting from this study must fulfill certain requirements of engineering economy if it is to be of use. These requirements were summarized by Thuesen (32):

```
    "The functions of engineering economy are:
    . determination of objectives
    - determination of strategic factors and
    means
- evaluation of engineering alternatives
- interpretation of economic significance
    of engineering proposals
- assistance in decision making"
```

```
The question then arises of which methods are appropriate for the evaluation of economic decisions, Stermole (3З) answers this question specifically:
```

"Only three methods ... consistently lead to correct economic decision making for all situations. (They) are DCFROR, net present value and net future worth."

In accordance with this dictum, DCFROR and NPV are used as the basis for decision making in this thesis.

The problem being considered is complex, therefore, it might be expected that the decision system developed will be complex also. However, Rendu (20) concluded that as far as exploration is concerned that:
"Even very simple models will lead to acceptable results"

But what is "acceptable" in terms of the results yielded ? Aristotle may be used for guidance in this regard:


#### Abstract

"It is the mark of the educated man to look for precision in each class of things just so far as the nature of the subject admits; it is evidently foolish to accept probable reasoning from a mathematician and to demand from a rhetorician scientific proofs."


#### Abstract

In other words, high precision is not required for strategic decisions, therefore, combining the conclusion of Rendu with the logic of Aristotle, it may be deduced that a simple model will produce an acceptable result.


### 1.4 Possibly New Ideaㅡ

The following paragraphs are intended to briefly highlight potentially new ideas.

The method of classifying mining methods as a function of geologic parameters directly, rather than indirectly as a function of support system type appears to be new; as does the estimate of exploitation difficulty expressed by a bias factor. It is expected that these particular concepts will be

```
contentious; but it is hoped that they will stimulate discussion of a rational classification system.
```


#### Abstract

The idea that orebodies can be classified in engineering terms by consideration of a few simple key parameters is, of itself, not new; it was described by Botbol (12) same time ago. However, it is believed that the extension of this idea from the particular to the general, and its integration with a reclassification of exploitation technology to produce a match for all deposit types is new.


#### Abstract

The author has been unable to locate any previous description of the concept of transforming the internal rate of return equation and solving directly for the specific grade-tonnage combination that will produce a pre-defined DCFROR.


The concept of Commodity Source Profiles has been partially addressed by Harris et.al., (34), but not so named. The grade-tonnage combinations that were produced by that study were expressed in terms of subjective probability tables, rather than as gradetonnage curves at various levels of confidence.
A multitude of studies investigating the
sensitivity of grade and tonnage to changes in
required return have been performed over the decades.

However, no specific reference has been found to the concept of translating required rate of return in to grade-tonnage terms and of then formalizing it as a Commodity Profitability Threshold.


#### Abstract

Further, evidence of the prior use in the mining industry of the definition of success illustrated by the overlap of the Commodity Source Profile on the Commodity Profitability Threshold, has not been found.


#### Abstract

Hence, no published material has been found by the author dealing explicitly with the consequential methods described in this thesis for determining the Chance of Success in exploring for a given commodity, or the Total Chance of Success in exploring for all commodities, or for determining the best scheme of allocating budgets as expressed in the Deposit Allocation Diagram, or determining the minimum gradetonnage requirements for specific deposit types within a specific commodity based upon the interpretation of the Deposit Allocation Diagram.


```
No published evidence could be found describing the application of regionalized variable analysis to the prediction of future commodity prices.
```

[^2]the threads mentioned above, both old and potentially new, in to one whole, repeatable, quantified system of reasoning.

### 1.5 Nature of the Thesis

In discussion of the ideas and concepts mentioned above it became clear to the author that this thesis was somewhat unusual for a scientific, geologic study. Therefore, it was felt that it would be appropriate to say something about the nature of the study so that the reader may view the subsequent chapters in the correct context. In writing this preamble the author has leaned heavily on the work of Professor Ansoff (1) and his description of strategic thinking and scientific reasoning. The following paragraphs on the character of complexity and the supporting axioms are quoted, virtually intact, from his description of his ideas on these subjects. In the author's opinion Professor Ansoff has expressed clearly and succinctly the philosophy underlying the author"s approach to the topic of this thesis, therefore, no apology is made for the somewhat lengthy quotations.
"( This thesis ) is an exercise in the comprehension of complexity. There are several ways to
achieve this goal. The "scientific method", which may be described as an empirical heuristic which holds that the truth or untruth of any assertion about the real world is established only through a process of expermental verification. This means only empirically testable problems may be solved."

Unfortunately, the author is not in a position of controlling a major investment company, therefore, the use of the scientific method to test the validity of the propositions in this thesis is precluded. Therefore a different philosophical approach is needed. Rather than analysing the problem and arriving at understanding by examination of its detailed constituents, it is necessary to synthesize the complexity from simple ideas until reality is mirrored. According to Ansoff:
"This method was first used by Euclid some 2200 years ago, and is today known as complexity aggregation or complexity compression. This method is based upon the assumption that it is possible to identify a small number of relatively simple axioms which have two properties:
(i) they explain complexity at the highest level
(ii) explanations of lower levels of complexity can be derived from the higher levels by logical inference.

This theory was expanded by Chester Barnard (1), who determined that no matter how complex a management problem, it is usually possible to identify a small number of "strategic variables" which determine the essential shape of the solution."
This thesis is written in the Euclidean
complexity aggregation tradition and should be
evaluated in that light. Again, according to Ansoff
the criteria that should be used for that judgement
are:
" 1. Conformity to intuitative experience
2. Clarity of propositional content
3. Internal logical consistency
4. External logical consistency
5. Status of a logical scheme with:
a. widespread conformity to experience
b. no discordance with experience
c. coherence among its categorical notions
d. methodological consequences "

Required as a starting point for complexity compression is a statement of the basic assumptions or axioms upon which the logic will stand. The following section, therefore, contains suitably modified versions of several original axioms upon which this thesis is based. The original axioms are attributed to the mentioned authors:

## Whithead or Maslow's Axiom

1. The behaviour of a company is motivated by an aspiration for security and an aspiration for achievement. Since achievement entails risk, each company makes a different trade-off between two aspirations.
2. The vigour with which a company pursues its aspirations is determined by the strength of its achievement drive and the power at its disposal.

## Machiavelli's Axiom

1. Companies seek to attain their aspirations by influencing others to behave in accordance with their preferences.
2. Their influence depends on the degree of control which they possess over allowing and/or denying others the fulfillment of their aspirations.

Emery = Trist Axiom

The environment determines the modes and conditions of behaviour necessary for survival and/or achievement of organizational aspiration.

## Chandler ${ }^{\prime}$ S Axiom

The success of an organization depends on the alignment between its behaviour in the environment and the conditions for success defined by the environment.

So, the general scene has been set, the previous
work reviewed, some potentially new ideas highlighted and a perspective has been given for the appraisal and understanding of the logic. Finally, a few words of caution before the description of the logic begins.

No theory, however elaborate, can completely eliminate risk from the exploration process. However, such a condition can not, logically, be allowed to prevent the application of quantitative thought to minimize the inherent risk. Moreover, the reliablity of the results obtained from the application of the theory contained in this thesis will not exceed the reliability of the data input to that theory. Consequently, if the mechanics of the theory do not materially alter the reliability of the input data, then the theory may be regarded as useful and preferable to a stochastic decision making process.

There are certain constraints on the basic problem which become apparent, including:
. financial

- level of profit
- level of investment
- level of risk
- time
- commodity characteristics
- market characteristics
- geologic reality
- exploitation technology limitations
- socio-political limitations
To be useful these constraints must be measured
and classified in standard, quantitative ways, and
their effects translated into exploration target
requirements in terms of specific grade and tonnage
ranges for particular deposit types. These desires may
then be matched against real opportunity and the
chances of success in a particular scenario assessed.

The succeeding chapters will put forward an
approach to this problem, leading to the development of a unified process.

### 2.0 EINANCIAL CONSTRAINTS

### 2.1 Level of Profit

The required level of profit for a company
is defined for the purposes of this thesis as the internal rate of return produced by a project on an after tax basis when viewed from the $100 \%$ equity point of view. This will vary depending upon the type of project under consideration, it’s location, etc., and will be set by the company at some level.
2.2 Level of Risk

Some companies are limited in the size of investment that they can accommodate, this constraint may well preclude certain types of exploitation systems, particularly those requiring high initial capital input. In turn, this restriction will limit the type of deposit, and hence, possibly a commodity that a given company may reasonably include in its exploration portfolio.

### 2.3 Time

Time appears as a financial constraint because of the time value of money. It is desirable for exploration to take place in a timely manner, that is to say neither too soon nor too late. It is clearly poor strategy to bring on-stream a new project just as
the market starts a protracted downturn.
Moreover, even the largest companies have a
finite amount of resources at their disposal for
exploration, so the question of when precisely this
activity should take place must be addressed.

### 3.0 COMMODITY CHARACTERISTICS

```
    In order to limit the problem so that it may
actually be solved, it is necessary to classify
commodities with respect to the stated goal, i.e.;
making a profit. Certain characteristics may be
regarded as beneficial to the aim of achieving that
goal, namely:
```

- high unit value
- common occurrence
- amenable to standard technology
- high, sustained demand
- low supply
- non - monopoly supply
- non - strategic supply
- located near consumption centers
- in an area of political stability
- low ratio of known reserves to future
demand
- majority of current supply imported
- located in an area of little or no
environmental or other bureaucratic rest-
riction
- other

The fact that some of the above criteria would seem to be mutually contradictory does not preclude them from inclusion as benefits, it merely makes perfection difficult to achieve.

It is not enough simply to say that because a source or deposit is located in, say, a politically unstable area this is bad. It is necessary to quantify what " bad " means. This may be done by ordinal ranking. That is a quantitative value may be
assigned, in a qualitative way to political stability. A very stable system may be given a value of 100 , and a very unstable system a value of 1 . Thus one may classify political stability on a scale of 1 - 100 with regard to exploration. This logic may be applied to other qualitative characteristics, specifically: common occurrence, amenability, location, environmental impact, bureaucratic impact and other. The remaining parameters are commonly measured in terms of percentage, and 50 all characteristics are now classified on the same scale.

With all significant characteristics of a commodity quantified it is possible to assess both the absolute utility of a specific commodity and the relative utilities of various commodities in terms of satisfying the stated goal.

### 3.1 Basic Commodity Exploration Index

The way in which this may be achieved can be outlined as follows. The significant characteristics are each assigned a value; these values are combined in some standard way to produce a Basic Commodity Exploration Index, BCEI. The significant characteristics are:-

| Unit value | $C(1)$ |
| :--- | :--- |
| Abundance | $C(2)$ |
| Amenability | $C(3)$ |
| Removal | $C(4)$ |
| Supply | $C(5)$ |
| Monopoly | $C(6)$ |
| Strategic significance | $C(7)$ |
| Location | $C(8)$ |
| Political stability | $C(9)$ |
| Reserve/demand ratio | $C(10)$ |
| Import situation | $C(11)$ |
| Environmental impact | $C(12)$ |
| Bureaucratic impact | $C(13)$ |
| Other | $C(14)$ |

$$
\mathrm{BCEI}=\{[\mathrm{C}(1)+\ldots .[\mathrm{C}(\mathrm{n})] /[\mathrm{n} * 50]\}
$$

- where, $n=$ number of characteristics.

50 is used to express BCEI on a relative basis with respect to an "average" value of 1.0.

It was decided to express this and other qualitative and quantitative indices with respect to "1", an average condition, in order to convey more meaning to the reader. In general usage it is conventional to express departures from a norm as more or less difficult or attractive. Therefore, if these indices are expressed with respect to "1", then it is possible to ascertain what a rating of, say, 1.5 means. It would mean that conditions would be one and a half times better than normal. This technique has the advantages of being easily translated in to intuitive perception and, therefore, of reinforcing the ability of the reader to modify the course of the strategic planning process by subjective judgement and
feedback.


#### Abstract

The above equation defines the Basic Commodity Exploration Index as the average value of the sum of the component characteristics. This may not actually be true. However, currently social science is unable to supply a quantitative theory which links these components. Faced with such a situation and needing to produce an answer as to a commodity's basic desirability as an exploration target, the best theoretical solution is to assume that they are independent, random activities and, therefore, the best quantitative measure of their combined significance is the arithmetic mean of their scalar assessments. As was mentioned in the Introduction, this clearly limits the reliability of the results of such an analysis.


The BCEI equation also assigns equal weight to each component. In reality this may not be true, but, currently, no uniform, quantified method of assessing weights exists, and so, under the same logic expounded above, the most reasonable solution is to assign equal, unit weights to each component.

## 3. 2 Relative Commodity Exploration Index

This process may be repeated for each commodity and a Basic Commodity Exploration Index derived for each one. Commodities are real things and exploration is a real process, therefore, BCEI must
yield ratio type scalar values, ie: a BCEI can not have a negative value. Given BCEI's are ratio scalar, and that they are measured on the same uniform scale, they may be compared in a relative way with one another. Conclusions also may be drawn regarding the desirability of exploring for one commodity rather than another.

These ideas are explicitly quantified by the Relative Commodity Exploration Index ( RCEI ), where RCEI is defined as follows:-

```
RCEI = {[ BCEI(i)]/[BCEI(i) + ... BCEI(n)]}
```

- where, $n=$ number of commodities.
$i=$ the $i t h$ commodity.


### 3.3 General Strategy

For example, assuming the BCEIs" listed
bel ow: -

| Commodity | BCEI | RCEI |
| :--- | :---: | :---: |
| Gold | --0 | --0 |
| Silver | 0.70 | 0.23 |
| Copper | 0.30 | 0.10 |
| Tin | 0.10 | 0.04 |
| Molybdenum | 0.05 | 0.02 |
| Tungsten | 0.60 | 0.21 |
| Lead | 0.80 | 0.27 |
| Zinc | 0.15 | 0.06 |
| Total | 0.20 | 0.07 |
|  | 2.90 | $1.00 *$ |

* Note: the sum of the RCEI's must be equal to 1.00 because it repesents the total real effort
available for exploration.

The RCEI's may then be used to rank commodities from an exploration point of view, and also to assign budget expenditure.

For example, suppose a company had a total exploration budget of say $\$ 50 \mathrm{million}$, the expenditure would be best oriented as follows:-

| Rank | Commodity | RCEI | \$, M |
| :--- | :--- | :--- | ---: |
| 1 | Tungsten | 0.27 | 13.5 |
| 2 | Gold | 0.23 | 11.5 |
| 3 | Molybdenum | 0.21 | 10.5 |
| 4 | Silver | 0.10 | 5.0 |
| 5 | Zinc | 0.07 | 3.5 |
| 6 | Lead | 0.06 | 3.0 |
| 7 | Copper | 0.04 | 2.0 |
| 8 | Tin | 0.02 | 1.0 |
|  |  | -1.00 | 50.0 |

Doubts about assuming a linear relationship between RCEI and expenditure are addressed in Chapter 9, section 9.2.1.

Such an approach has the benefit of directing effort in to the areas most likely to prove successful in relation to their actual chances of achieving success. By definition, this must increase the chances of successful exploration. On the other hand, it does not eliminate a company’s risk of failure altogether, later in this thesis a method of determining this chance of failure will be advanced. However, this approach, even at this qualitative stage, does
rationally limit the amount of expenditure that should be channelled into exploration for any particular commodity. Further, given such a ranking a company may choose to eliminate certain commodities from its list, because compared to others they have little potential. This will increase the amount of effort that may be expended in the search for less risky commodities.
Summarizing, the above approach allows a company
to allocate the correct amount of effort to a
commodity as a direct function of the expected chance
of success in exploration for that commodity. This
permits a preliminary screening of commodities and
sets-up a rational strategy for exploration. As this
is a quantified approach, the effects of changes to
the scalar values of the input characteristics may be
measured using both deterministic sensitivity and
probabilistic techniques to assess how, and under what
conditions , initial ideas about strategy may be
affected. affected.

## 4.O MARKEI CHARACTERISTICS

Rational exploration decisions require areasonable, quantified understanding of the variouscommodity markets. In the same way that beneficialcharacteristics could be identified for a commodity,useful characteristics can be defined for the markets
themselves. Such a list would include:-
. market size

- ratio of domestic market to total market
- significance of recycling
- Size of tariff barrier
- bureaucratic impact
- environmental impact
- political impact
- monopoly share
- cartel impact
- potential substitutability
- alternate potential
- price - time cycle
- other
Similarly these characteristics all may be described on a scale of $1-100$, either on the basis of the units in which they are actually measured, or by subjective rating in the range "very good" to "very bad".


### 4.1 Market Exploration Index

Consequently, a measure may be derived of the potential of a given market in terms of successful exploration. Such a measure could be called the Market Exploration Index, ( MEI), and would be defined as
follows:-

```
        MEI = {[MM(1) + ...M(i) + ...MM(n) ]}/(n * 50)
    - where, i = ith characteristic
            n = number of characteristics
                            50 is used to produce an MEI value
expressed relative to an "average" value of 1.0.
```

Once again equal weight is given to each component.

It can, of course, be argued that a "correct" price - time cycle is of more significance than, say, recycling. This may well be true, but, again, there is no quantified theory for assessing the relative significance of these market characteristics. However, as the classification system is quantified, the effect of changing the relative weights on the final outcome may easily be measured by performing a sensitivity analysis.

For the purposes of this thesis all characteristics have been assumed to have equal significance.

### 4.2 Relative Market Index

This approach may be repeated for a variety of commodities and a Relative Market Inder, ( RMI ), derived as follows:-

```
    RMI = {[ MEI(i) ]/[ MEI(i) +... MEI(n) ]}
```

    - where, \(i=i t h\) commodity
    \(n=\) number of commodities.
    The explorationist may now rank markets in terms of exploration success. Moreover, by joint use of the Relative Commodity Index and the Relative Market Index together, he is able simultaneously to evaluate not only the technical desirabilty of a commodity, but also its market potential.
4.3 General Exploration Potential

The combination of BCEI and RMI finds quantitative expression in the General Exploration Potential, ( GEP ), where:-

GEP(i) $=[\operatorname{RECI}(i)+R M I(i)]$

- where, $i=i t h$ commodity.

The above approach utilizes a simple linear model and it is arguable how precisely it simulates reality. The requirement for precise simulation is addressed later in section 9.2.1.

### 5.0 GEOLOGIC REALITY

In order to make the general problem of how to orient exploration in a profitable way tractable, it is necessary to limit the scope of possible geologic scenarios to some finite number. This means that a method of classifying geology in a way which reflects profit potential is required. Conventional geologic classifications were not devised with a view to satisfying this requirement.
A new method of classification is therefore
needed. If geology is to be profitable it must be
exploited. The current range of feasible technical
solutions to the problem of exploitation is limited.
It then becomes merely necessary to determine the
characteristics of the constraining parameters in
exploitation technology and to apply these standards
to the classification of geology.

It will be shown later, in Chapter 6 , that the main characteristics needed for the classification of gealogy with respect to profit are:-

- spatial location
- structure
- geometry

This type of real or hypothetical information is available for a deposit type, even at a conceptual level. Moreover, having classified geology in terms of
these parameters it becomes possible not only to match a deposit to an exploitation system, but also to decide if it is technically feasible to exploit such a deposit; and if so, with what degree of difficulty.

The three parameters mentioned above enable mining systems to be matched to geology. The addition of some real or hypothetical knowledge about the mineralogy of the deposit, also permits a suitable mineral processing system to be selected.
Such a classification, aids the successful
orientation of an exploration programs, because it
will identify a set of deposits which may not be
exploited by currently proven technology, irrespective
of economic considerations. Such deposit types are, by
definition, not candidates for exploration.

### 6.0 EXPLOITATION TECHNOLOGY CLASSIFICATION

```
    Exploitation technology is a constantly evolving
field; however, from a pragmatic point of view, the
number of ways in which a given deposit may be
exploited in a standard and reasonable manner is
limited. Splitting exploitation in to two sections:-
    - mining
    - mineral processing.
    The practical alternatives may be defined as
foll ows: -
```

- mining
- open pit systems
- natural caving systems
- artificial caving systems
- self-supporting systems
- artificially supported systems
- other
- borehole slurry mining
- in-situ leaching
- alluvial mining
- mineral processing
- gravity concentration
- selective flotation
- basic flotation
- cyanidation

It should be noted that the system limits of the problem have been drawn at the point when the concentrate is loaded ready for shipment from the mineral processing plant. The reasoning for this was that virtually all deposits have associated with them, some kind of concentration activity, but not all
either have or need their own smelter and refinery. It therefore seemed reasonable that the end product should be defined as the concentrate rather than the finished metal. This means that the value assigned to each commodity must be its net smelter return rather than the price quoted on the London Metal Exchange or any similar place.
In terms of standard mining systems the
technology classification is limited to currently
standard systems, therefore, the new systems such as
borehole slurry mining and in-situ leaching are
excluded from consideration in this thesis because
they have not yet attained the same status of standard
proven technology.

Similarly, for mineral processing, the list above encompasses technology classifications that account for the great majority of concentration systems. Again, for the purposes of this thesis, special systems which fall beyond the above defined scope will be ignored.

### 6.1 Seleletion Logi드

Having defined exploitation possiblities, the general logic flow inherent in technology selection is illustrated in Figure 1. The basic information needed to classify the geologic concept


```
of a deposit being tested as a potential exploration
target comprises:-
```

. consolidation

- depth to base of deposit
- depth to top of deposit
- relative water table position
- rock mass fracture intensity
- orebody thickness

Such information is available to a geologist, even at the hypothetical stage, because in order to begin considering an exploration target the geologist must have some category of deposit in mind. For these categories the above information is known, or may be inferred.

## 

A knowledge of the absolute consolidation of both the deposit and the overburden is needed in order to determine the technical feasibility of applying alluvial mining for the exploitation of the deposit. If the material is well consolidated, then current technology limits will preclude the use of alluvial mining. By the term "consolidation", in this context, is meant the degree to which the material possesses shear strength. In alluvial mining excavation of material depends upon failure of the mass in shear due to the action of water jet impingement or dredge bucket impact. It is unreasonable to expect a geologist to have knowledge of such engineering characteristics of
material, therefore, the classification shown in Table 1 may be used as a basis for decision making.

From Table 1 it will be seen that alluvial mining applies to "soft" rocks, that is material with a shear strength below 350 psi. Naturally, it is debatable precisely where to draw the line, however, suffice it to say that the 350 psi figure is within the bounds of currently available technology.

Table 1 CONSOLIDATION CLASSIFICATION


The above table was generated after reference to Jaeger \& Cook (36) and Attewell \& Farmer (42).

Using the classification shown in Table 1 , all the geologist needs is some general description which will fit in to one of the 13 categories above. Given this information, not only may a start be made on selecting appropriate mining methods, but an assessment of the degree of mining difficulty may also be started. This point will be amplified later.

### 6.3 Depth to the Base of the Deposit

Mining technology has limits to what it can achieve. These limits are not fixed for all time, but will move with advances in knowledge. However, all possible deposits may not be mined. In general the limit on mining may be regarded as depth. Today this depth 1 imit is about 10,000 feet below the surface. For the purposes of this thesis then, 10,000 feet will be regarded as the practical limit to exploitation and no deposits deeper than this will be considered.

In the case of alluvial mining, current equipment limits preclude excavation at depths greater than about 120 feet. This value is used in the analysis as one test of the technical viability of alluvial mining.

### 6.4 Degth to the Iop of the Deposit

The basic objective of mining is to make a profit. In order to achieve this goal, capital and operating costs must be minimized. Revenue will only be generated when ore is produced. It is also desirable to produce this revenue as soon as possible after the investment of capital. Further it is desirable to minimize the pre-production development cost within the constraints of maximizing ore grade mined and recovery of resource achieved.

The rigorous solution of such a problem is difficult, and requires a knowledge of the deposit that is not available at the exploration stage. Indeed, if such information were available, the exploration process would not be needed. It is therefore hard to say how a deposit should be exploited before it has even been found. However, we need to have some general rule that will allow for such a decision to be made in a way that will probably be correct, because the type of mining method chosen to exploit a particular deposit will to a large extent determine its economic viability. Therefore, in the absence of a rigorous solution an empirical guide is needed.

[^3]between existing mines is whether they are open-pit or underground operations.

In order for open pit mines to make the maximum profit it is necessary to minimize the pre-strip volume. This volume is a function of pit geometry and is driven by one variable, depth. Hence, in order to maximize profit pits must minimize the distance from the surface to the top of the orebody.

Theoretically then all that is required is to examine the data linking pre-strip depth to subsequent profit and to derive a general rule for determining, at this early stage, whether a deposit will be mined by open-pit or underground methods. Unfortunately, such data is not available. So we must then assume that all pits that have been started have been profitable. This we know is false. However, it may reasonably be assumed that pits which have been in production for a reasonable length of time, have been profitable or they would not have been continued: Examining existing long-term pits shows that about 300 feet appears to be the limiting depth to the top of the orebody that can be tolerated by current technology. At Twin Buttes in Arizona the pre-strip depth was 320 feet, and the pit has never made a profit. So maybe 300 feet is being a little over generous; however, consultation with senior design
engineers in the mining industry would seem to indicate that 300 feet of pre-strip depth is a reasonable assumption for the cutoff depth between open-pit and underground mining, certainly for the purposes of exploration decision making. It will, therefore, be used in this thesis.

### 6.5 Relative Water Table Position

The position of the water table with respect to the orebody is of significance in determining the technical feasibility of alluvial mining. Clearly, if the orebody is above the water table it becomes very difficult to mine it with a dredge.

In the case of hydraulicing, it is not a technical requirement that the orebody be below the water table. Pumps could be used. It is more a question of efficiency. The necessary hydraulic head for the monitors is usually developed, at least in part, by a gravity potential as this reduces the cost. The cost of generating high water pressure for monitoring is significant, as the grade of these deposits is usually low. Moreover, if the deposit is below the water table, the pore water pressure will reduce the effective shear strength of the material, making it more amenable to exploitation by alluvial methods.

So, for the purposes of this thesis, it will be assumed that in order to be exploited by alluival
methods the deposit must be below the water table.
6.6 Ro뫁 Mass Fracture Intensity

Mining requires that the rock mass is subjected to a set of mechanical processes. Therefore, in order to determine which of these sets is the most appropriate to a given geologic scenario it is necessary to know something about the mechanical properties of the deposit.

Mining is a large scale activity; therefore, it is not of direct interest to know about the small scale properties of intact rock specimens. This leads directly to an unsolved problem, how to assign mechanical properties to large rock volumes such as orebodies. As the problem remains currently intractable, a way must be found around this dilemma.

Mining is a relatively low energy activity, which functions through the inherent discontinuities, fractures and joints in the rock mass. It follows, then, that, if a rock mass is characterized by its fracture intensity, it should be possible to identify broad types of mining schemes which are applicable to its exploitation.

```
    Using the same class descriptions as in Table 1
above, the following classification may be made:-
```

| Class | Fracture Intensity | Block Size,in. |
| :--- | :---: | :---: |
| Soft | 10.00 | minus sand |
| Very weak | 8.00 | $3^{\prime \prime}-6 "$ |
| Weak | 6.50 | $1 f t-2-2 f t$. |
| Medium strong | 3.25 | $2 f t-4 f t$. |
| Strong | 1.70 | 1 arge |
| Very strong | 1.00 | intact |

The fracture intensity list above is not on any absolute scale, as no generally accepted scale for the calibration of fracture intensity from the strength point of view exists. The scale used is a qualitative one, loosely based upon the shear strength values given in Table 1. In terms of the mining method selection logic shown in Figure 1, highly fractured rock is regarded as having a fracture intensity of equal to or greater than 6.5 on the above scale. That is to say, the deposit is composed of material having a typical size range of 1 foot to 2 foot blocks.

Therefore, rock masses may be divided in to two major relative classes; highly fractured and sparsely fractured. Underground mining systems may also be divided in to corresponding groups; those which rely upon highly fractured rock masses for their implementation, and those which require a relatively intact rock mass.

If the ground is relatively intact, then either it 'must be artificially fractured in order to allow for its physical removal, or use can be made of its natural "strength" to reduce the amount of ground
support required.


#### Abstract

If the ground is highly fractured, then either it must be artificially supported or use can be made of this weakness in order to allow failure by selfinduced caving to occur.


### 6.7 Orebogdy Thickness

The final differentiation between underground mining methods may be made by consideration of the specific geologic concept itself, characterized by the expected thickness of the deposit.

In the case of those mining systems applicable to highly fractured rock masses: natural caving, systems such as block caving, require a certain minimum undercut width before spontaneous and continuous caving can be induced. This undercut width is a function of the tendency to arching in the material, and will vary according to the resistance generated in the rock mass by internal friction.

In section 6.6 above, highly fractured rock masses were defined in terms of the classes in Table 1, as weak, very weak and soft. The specific undercut width depends upon the combination of rock mass strength, depth, density and the general state of stress. However, because mining is a real process, its
mechanical limits may be applied to define a minimum orebody thickness which will allow for access of men and equipment to generate the undercut. Current practice would set this minimum dimension at about 30 metres. So, for this analysis, any deposit which is highly fractured and has an average thickness of greater than 30 metres, will be regarded as a suitable candidate for exploitation by natural caving systems. Any deposit in this group which has an average width of less than 30 metres, will be assumed to be exploited by artificially supported mining, such as cut-and-fill.

[^4]
#### Abstract

fore, it will be assumed that, if a deposit in this group has an average thickness of less than 15 metres, it will be exploited by self-supporting methods, such as room-and-pillar. If the average thickness is greater than 15 metres, then it will be assumed exploited by an artificial caving system, such as sublevel caving.


### 6.8 Strategic Implications of Mining Method Selection

Using the logic described above, all deposits may be classified into a set of exploitation categories. Each category has, inherently, certain levels of required capital investment and operating cost. For instance, cut-and-fill tends to be applied to small, high grade deposits; as the deposit is small the initial capital required will probably also be small when compared to the capital needed to start a block caving operation. Further, because it is an underground operation, the chances are that the preproduction time will be longer than for an open-pit. It is also quite likely that the characteristics of the deposit will be known with less precision than for a shallower deposit; this will increase the risk associated with the investment. Again, as it is a small deposit then it is likely that the amount of actual cash generated by the operation will be relatively small.
small.

Most companies set levels of risk, payback time, available capital and revenue requirement that may be used to decide that deposits requiring exploitation by artificially supported mining methods are not attractive primary exploration targets. Such a philosophical approach allows for a better orientation of an exploration program, as it will more nearly fit the company"s basic situation.

So it is now, conceptually, possible for a company to decide not to seek for deposit types $X, Y$ \& $Z$ because they are most unlikely to be exploitable within the company's financial constraints. This then provides a direct, easily understood link between the field geologist and the company's fundamental goal.

### 6.9 Degree of Mining Difficulty

In order to calculate capital and operating costs for mining it is not sufficient merely to decide upon an appropriate mining technique. The degree of difficulty likely to be encountered in implementing that technique must also be assessed.

For standard mining technology, defined above this assessment may be made on the basis of a limited number of additional deposit parameters:-

```
- rock strength
```

- deposit dip
- water conditions
- depth to the base of the deposit
- other factors


### 6.9.1 Rock Strength

There is no body of theory currently available linking directly rock strength and ease of exploitation. Therefore, it is necessary to rely on inductive logic to produce an empirical relationship that will quantify their interaction.
A further problem arises in assigning units
to both rock strength and the degree of mining
difficulty. Dne way around this problemis to rank
rock strength on some scale, for example:-

| Very weak | $1-10-$ |
| :--- | ---: |
| Weak | $10-30$ |
| Medium | $30-50$ |
| Fairly strong | $50-65$ |
| Very strong | $65-90$ |

This scale may then be linked to a standard score expressing ease of exploitation on a scale of, say, 1 - 100. This is illustrated in Figure 2.

The logic behind this particular curve is as follows. In terms of ease of exploitation stronger rock masses make for easier mining, but, once the mass starts to become very strong, the benefits associated with increasing strength begin to accumulate at a slower rate. Translating this to real life, as the

Fig. 2. Rock Strength - Standard Score Relationship

rock gets stronger stability increases, but beyond a certain point the work needed for the actual excavar tion of the rock pushes standard technology very close to its limits.

Obviously, the precision of such a relationship is not high, but it does allow for a first approximation of a quantitative comparison between different rock types to be made.

### 6.9.2 Degosit Dip

The dip of the deposit affects two
aspects of mining:-

- ease of material transport
- mining loss and dilution


### 6.9.2.1 Ease of Material Iransgort

Using the same technique for
assigning quantitative values to a qualitative assessment, a relationship between dip and transport difficulty may be derived. Such a relationship is illustrated in Figure 3.

The justification of the relationship is as follows. The best situation, from the transport point of view, would be to have a horizontal dip, because then cheap, high capacity haulage systems like belts and rail can be used. Once the dip has passed beyond about 5 degrees, then productivity declines

Fig. 3 Transportation - Standard Score Relationship


Average Orebody Dip in Degrees


#### Abstract

fairly rapidly. When the orebody is vertical the situation is bad, because a high infrastructure cost is needed to allow for the extraction of the orebody. This adverse situation is to some extent mitigated by the fact that gravity may be used in collecting the broken rock in some central point for subsequent transport to the surface.

The worst case occurs at a dip of about 45 degrees, because this provides for the maximum horizontal and vertical dispersion of the transport system, but does not allow for the use of gravity for the collection of rock.


### 6.9.2.2 Mining Lㅡㅡsㅗ and Dilution

Mining loss and dilution are controlled by several poorly understood processes. However, loss and dilution are significant factors in determining the final profitability of a project, and so some way has to be found to assess their influence.

The relative geometry and physical characteristics of the deposit and the surrounding rock mass are the main factors governing the amount of loss and dilution that may be expected. Clearly small deposits are more sensitive to the impact of waste infiltration than large ones. Similarly, if there is a large difference in particle size and density between the deposit rock and the surrounding rock, percolation
of waste into the ore may become severe under gravity flow conditions.


#### Abstract

The size of deposits may be typified by the ratio of surface area to volume. The larger the surface area the greater the opportunity for dilution to occur. Unfortunately, the same type of deposit may have a wide variety of shapes, and hence surface area/volume ratios. At the strategic planning stage it is unlikely that the shape of the target deposit will be known. So this factor is of little use for this type of analysis.


Dilution and loss are dynamic processes that is to say, they take place as the result of the relative motion of ore and waste particles under conditions that may be broadly described as gravity flow. This statement contains within it the implicit assumption that the orebody is of sufficient width to allow for its removal by standard real equipment. The relative motion of the ore and waste is governed by the geometry of the deposit. Since gravity flow acts downwards, it is sufficient to consider a one dimensional index of its action; ie, dip. At the strategic stage it is reasonable to assume some knowledge of the deposit dip, because the exploration geologist may be expected to have some general environment in mind when planning an exploration program.

Any doubts about this assumption
may be calmed once some quantitative relationship between dip and loss/dilution has been derived. One such relationship is suggested in Figure 4. There are two "best" geometries in terms of loss/dilution; horizontal and vertical. If the deposit is vertical only the top will be subjected to significant dilution/loss, and this will tend to take place either during initial production or at the end of the mine life. As the mining moves down, the top of the ore shields the rest of the deposit from the effects of dilution. The major dilution and $105 s$ will take place at the end of the life of the mine when crown pillar robbing is undertaken. Similarly, for a horizontal dip the major effects of loss and dilution will be felt at the top of the deposit. Therefore, both geometries are regarded as "good" by this analysis.

The worst geametry from the loss/dilution point of view is that which exposes the deposit to the maximum amount of exposure. That is dips of around 45 degrees. This dip is then defined as "bad" from the point of view loss/dilution. A simple first order relationship has been assumed in this analysis and is illustrated in Figure 4.

Fig. 4 Mining Loss and Dilution - Standard Score Relationship


Average Orebody Dip in Degrees

### 6.9.3 Depth to the Base of the Deposit

The depth to the base of the deposit clearly influences the ease with which the deposit may be exploited. The ideal situation would be to find the orebody lying fully exposed on the surface. The worst possible case would be to find it 10,000 feet below ground.

Splitting mining depths in to three categories - shallow, medium and deep - allows for a general non-linear relationship to be developed. Shallow deposits are basically categorized as "good", and deep deposits as "bad", with an approximately first order graduation between the two limits. This relationship is illustrated in Figure 5.

### 6.9.4 Water Conditions

The amount of water encountered will affect mining ease. On the one hand, high water inflows, such as those found in Zambia or New Guinea, make mining almost impossible, whereas complete absence of water, such as in some coal or uranium mines, make equipment availablity very poor.

[^5]Fig. 5 Depth Below Surface - Standard Score Relationship

mining completely, whereas too little can be overcome, and some is just right.

This qualitative reasoning is reflected in the relationship shown in Figure 6.

### 6.9.5 Other Conditions

The above relationships cover the main factors affecting the degree of difficulty of mining a deposit. However, there are others such as the presence of gas, a particularly bad footwall, etc., which will affect mining ease. Their presence is not always assured and their impact not always major. Individual consideration of these non-standard factors would make the input to this analysis both unnecessarily difficult and tedious, therefore, a general catch-all category of "other" may be used to compensate for these minor factors. The simple first order of such a relationship is shown in Figure 7.

### 6.9.6 Bi큳

The degree of mining difficulty for a given mining method, and for a given deposit may be called "bias". This bias is the compound expression of the above described factors. The difficulty is now presented as to how to combine these factors quantitatively to produce an index of mining ease. There is no general theoretical framework of mining to

Fig. 6 Water Conditions - Standard Score Relationship


Water Conditions on a Qualitative Scale 1-90

Fig. 7 Other Factors - Standard Score Relationship


Other Factors on a Qualitative Scale $1-90$

```
assist in this problem. The factors under
consideration are:-
```

    1. Rock strength
    2. Transport ease
    3. Mining loss/dilution
    4. Depth to deposit base
    5. Water conditions
    6. Dther conditions
    All these factors may be assigned standard scores, all measured to the same scale, and to the bases of the relationships described in the preceeding sections. Let these scores be symbolized as follows:-

| Factors | Standard Score |
| :--- | ---: |
| Fock strength | 51 |
| Transport | 52 |
| Loss/dilution | 53 |
| Depth | 54 |
| Water | 55 |
| Other | 56 |

In the case of open-pit mining it may be argued that the degree of dilution and recovery of a deposit is not determined by gravity flow, because the waste material is being physically removed before the ore is extracted, thus eliminating loss/dilution as a significant factor. This being the case, the bias must be calculated in one of two different ways depending on whether the deposit would be exploited by surface or underground methods.

The question still remains as to what relative significance, or weight, may be given to each of the individual factors. The bias will affect both the
capital and operating costs of a project. If mining conditions are poor, productivity of individual equipment will be low, therefore, in order to maintain a given level of production more items of equipment will be needed than for a good, high productivity situation. Hence, capital costs will be higher. Similarly, under adverse conditions, operating costs will increase.

Pragmatically, capital and operating costs will vary within finite ranges for all sets of conditions. For this type of strategic analysis, high precision is not required. It may, therefore, be concluded that it is not necessary to agonize for too long on the question of the relative weights of individual factors. As no general theory exists to assist in the assignment of relative weights, all factors will be given equal significance. Moreover, bias is simply an expression, on average, of the likely difficulty that might be expected in a qualitatively defined scenario. The following definitions are therefore used for this analysis:-

```
Underground bias = 1.0/[(51+52+53+54+55+56)/300]
Surface bias =1.0/[(51+52+53+54+56)/250]
```

The resulting bias will tend to increase costs in poor conditions and decrease them in good ones, with respect to some mean value.

```
These average values of capital and operating cost may be obtained from published data, or from an empirical approach such as that described by 0'Hara (31) or Hoskins \& Green (37) or Straam (38).
```


## 6. 10 Mineral Processing

The method chosen for processing ore
to produce a saleable concentrate depends upon the
mineralogy of the deposit being considered. For the
major base metals o’Hara's (31) paper covers how
metallurgy may be determined and costed. Using the
empirical relationships fescribed therein,
metallurgical recovery may be related to the average
mined grade, and resultant revenue thus calculated.
Hence, revenue and costs may be derived and thus the
economic desirability of potential targets determined.
7.0 SOCIO = PQLITICAL CLASSIFICATION
At first glance it may seem that there is little
connection between politics and geology, however,
exploration takes place in the real world, and so
potential targets must be classified in terms of socio

- political attractiveness. In many cases this may
well be the over-riding consideration. The main
factors may be summarized as follows:-

| Factor | Index Symbol |
| :--- | :--- |
| Attitude of government to capitalism | P1 |
| Long term political stability | P2 |
| Short term political stability | P3 |
| Environmental impact | P4 |
| Ecological sensitivity | P5 |
| Employment generation | P6 |
| Land use conflict | P7 |
| Infrastructure status | P8 |
| Tax policy | P10 |
| Royalty policy | P11 |
| Legal climate | P13 |
| Indigenous labour skills |  |

As was described in earlier sections these
factors may be assigned values on a scale of $1-100$,
where 100 is very good and 1 is very poor, with respect to their impact upon a potential mining complex. Thus a Socio - Political Index (SPI ) may be derived: -

```
SPI = (P(1) +P(2) + ..PP(n) )/(n * 50)
    n = number of characteristics
    50 is used to express SPI as a value
relative to an "average" state of 1.0
```

This will result in an absolute number for the deposit whose significance is not at first obvious. So, again, a Relative Socio - Political Index, RSPI, may be defined by considering all potential deposits for all commodities, whose value is more descriptive. In fact, it may be useful as a first approximation, simply to derive a RSPI for each country and to assume that all deposits that lie within the borders of that state will have the same RSPI. Whichever assumption is taken the RSPI is defined as follows:-

```
RSPI(i) = SPI(i)/[ SPI(i) + ... SPI(n) ]
```

- where: $i=i t h$ commodity

```
    n = the total number of commodities.
```

Thus commodities may be ranked according to their socio - political risk, by proportionally adding either on the basis of a deposit - by - deposit basis,
or by adding the relative contribution made to the potential production of a given commodity by a given country.
Further the definition of General Exploration
Potential may be expanded to include this socio -
political component:
GEP(i) $=[\operatorname{RECI}(i)+\operatorname{RMI}(i)+\operatorname{RSPI}(i)]$

- where: $i=i t h$ commodity
- all other terms defined as before.

Hence, a quantitative, repeatable approach to the ranking of risk with respect to somewhat elusive phenomena is now available. Consequently, general corporate strategy can now be outlined in a broad way, and the affects of changes in assumptions on the final strategy may be measured. Thus giving greater confidence to management in the decision making process.

### 8.0 PRICE CONSIDERATIONS

At several points in the preceeding argument the question of price has been touched upon, but not examined in any detail. The way in which price varies has a major impact on the risk associated with making the choice to exploit commodity "A" rather than commodity "B". So it is clearly necessary to establish some way not merely to predict prices, but, more significantly, to quantify the amount of risk associated with the prediction. Commodities may then be ranked according to this risk in a useful way.

Currently, there are two main ways in which price predictions may be made:

- use of statistical techniques
such as time-series analysis and
regression.
- use of some form of qualitative ranking as
described for socio - political risk above:

There are limitations associated with both approaches. The first alternative, normal price forecasting, is known to be inaccurate; moreover, it does not provide a useful measure of risk. The second alternative may produce a correct result, but only by chance.


#### Abstract

There is, however, another possibility geostatistics. So far, the theory of variograms and regionalized variable analysis has been applied largely to grade distributions. In principle, however, there is no reason why it should not be applied to any dependent variables, including price and time.


#### Abstract

In the strict sense of the word, there is no dependency between price and time. Price does not vary just because time passes. Price varies due to the interplay of a whole host of factors that are conventionally indexed to time. Therefore, it may be deduced at this stage that, if we are treating the symptoms rather than the disease, the precision of our answer is likely to be low. However, as social science is unable to provide a quantitative theory linking price and time, we are obliged to fall back on statistical approaches. The regionalized variable technique produces the best estimator of likely grade distributions that is currently available to us. Given that price and time may be assumed dependent, then analagously it would seem reasonable to use it to predict future prices.


[^6]```
predictions - all things tieing equal. The range gives
an idea of the maximum time span beyond which we may
not reasonably make predictions. The nugget value
indicates how much inherent error we may expect in
even our most accurate analyses. None of this
information is given by conventional statistical
analysis.
```

The analysis being descibed in this thesis should be regarded as a "steady - state" type of study. This being the case it is necessary to remove the effects of inflation from historical price data. An example of this approach will be given later.

The significance of price predictions decreases as time recedes in to the future; this is because of the influence of discounting. The revenue generated next year has less value than that same revenue generated today. Therefore, the significance of the error of estimation of future price is also decreasing with time. The rate of discounting depends upon the profit demanded from the project.

## 8. 1 Price Ranking

Suppose that variograms have been calculated for a group of $n$ commodity prices, and the the values
of sill, nugget and range are known for each commodity.

```
Let sill values be, S(i) = maximum risk for i
    nugget values, N(i) = minimum risk for i
    range values, R(i).
    predicted average price value be P(i)
```

- where, "i" is the ith commodity.

It is first necessary to define "good" in planning terms. Ideally, a price should be stable for long periods. It should be emphasized that this is an ideal from a planning rather than a speculative point of view.

The limits of price variability are given by the sill and nugget values, in absolute terms, and may usefully be re-expressed in terms relative to the predicted average price. They are then expressed as percentages in conformity with the definitions of the other qualitative indices.

Relative Sill, $R S(i)=[1.0-(S(i) / P(i))] * 100$ Relative Nugget, $\operatorname{RN}(i)=[1.0-(N(i) / P(i))] * 100$ Relative Range, $\quad R R(i)=R(i) / R^{\prime}$

```
-where, R" = the average range over all
    commodities.
```

Thus a Price - Time Index, for each commodity may be derived as follows:

```
    PTI(i) = [RS(i) + RN(i) + RR(i) ]/[ 3 * 50 ]
```

- where: PTI(i) = relative price - time index for commodity i.

50 expresses the PTI with respect to an "average" condition of 1.0

The relative price time index may be quantified thus: -

```
        RPTI(i) = PTI(i)/[PTI(i) ... + PTI(n)]
            - for commodities i to n
```

Sa, following the above procedure, the commodities may be ranked in terms of price as exploration alternatives. This particular ranking is useful as it makes some quantified statements about the future which may be checked as the exploration effort progresses. Such feedback may be used for subsequent modification or re-orientation of exploration activity in such a way as to reduce risk.

The General Exploration Potential, GEP(i), may be modified to include the RPTI(i) as follows:

```
GEP(i) = (RPTI(i) + RCEI(i) + RMI(I) + RSPI(i) )
```

- all definitions as previously described.

```
    Most of the elements needed to start a
strategic analysis have now been assembled, with two
major exceptions: the expression of desire and real
possibility.
```

For the purposes of this argument "desire" means financial requirement, specifically the achievement of a defined DCFROR. "Real possibility" means the actual deposits that are available for discovery and/or acquisition.

Actual deposits are normally characterized in terms of tons of ore at some grade, or grades. The financial desire is defined in terms of DCFROR. Clearly, in order to match the two it is necessary to express them both in the same terms.

Bearing in mind that these actual deposits must be found, and that this work will be carried out by geologists, it would seem logical to express the financial constraint in terms of tons and grade.

There are two ways in which the translation of financial units into geologic terms may be achieved:

- by conventional indirect solution

```
. by direct solution - a new technique.
```

The conventional solution will be examined first as this will throw light on its shortcomings, and set the scene for the development of a new, direct solution.

## 

The usual way rates of return are translated in to tons and grade is by performing a cashflow analysis on a wide range of real or hypothetical deposits, including measuring the sensitivity of a project to changes in deposit size, grade, net smelter return, capital cost, operating costs, and determining the DCFROR of each resultant cashflow. These DCFROR's may then be contoured in a variety of ways to show the effect of changes of each of the several variables mentioned above.

As different types of deposit are exploited in different ways, it is useful to categorize the results in terms of mining method. Figure 8 illustrates, for an open - pit copper mine, for a particular size of $125 M$ tons, the relationship between copper price and grade for a given rate of return. Should the size of the deposit change, naturally, the characteristics
Minimum tonnage $=125,000,000$

will be of a somewhat different shape; and a whole suite of such curves may be developed for various sizes and rates of return, etc.

However, the point is that certain significant information may be gained from such a relationship. If the price of the commodity for the life of the deposit is defined, we may define the average in-situ grade that is required in the deposit in order to obtain the required rate of return. So now, rather than setting an exploration target as "find an open - pit copper deposit that will achieve $15 \%$ DCFROR", we may say "in order to achieve $15 \%$ DCFROR you must find a deposit of copper amenable to open - pit exploitation that contains at least 125 M tons of ore at an average grade of not 1 ess than $1.25 \%$ Cu.". This makes the 1 ife of the explorationist a good deal easier and, hence, his chances of success a good deal higher.

Similarly for the other standard mining methods. The results of this are illustrated in Figure 9. Given a price for the commodity, the characteristic defined in Figure 10 may be derived. This characteristic defines the relationship between grade and tons that will achieve some specific rate of return for a given commodity. Deposits having a size and quality which fall below the 1 ine on Figure 10 will not meet the stated financial goal, and would not be deemed


suitable as exploration targets. The line on Figure 10 represents a barrier which must be exceeded in order for a deposit to be acceptable. Therefore, this relationship may be defined as the Commodity Profitability Threshold, CPT.

From Figure 10 , it can be seen that if a company wishes to make a certain DCFROR, it must seek deposits of copper having a grade greater that $1.25 \% \mathrm{Cu}$, regardless of size. Such information is fundamental in a rational decision making process.

### 9.2 Direct Solution

It is apparent from the above discussion that a great deal of work is involved in a conventional approach to the problem of translating financial units in to geologic units. This is because the mechanics of the indirect solution are inefficient. In order for a rational decision making theory to be viable, it must be relatively easy to use, or its utility becomes sub-marginal. The clear necessity is, therefore, to simplify the mechanics of the process.

How far is it reasonable to go in simplifying the process ? Obviously, over - simplification will produce useless results, whereas, over - elaboration

```
is already the hallmark of the conventional solution.
```


### 9.2.1 Decisign Making in Perspective


#### Abstract

The decision theory being developed is aimed at defining an exploration strategy that will increase a company's chances of success.


At any point in the life of a project risk is inherent. Figure 11 illustrates the stages in the life of a typical project in terms of risk. The general form of the graph in Figure 11 is well known for projects in general, and has been described by Kennedy (40) for the mining industry in particular. At the moment of concept, the risk of not actually putting a mine into production that will produce an acceptable rate of return is maximum, and total. The function of the exploration process is to reduce that risk to a point where a decision may be made as to whether to turn this prospect in to an actual mine.

During the development process much detailed engineering and construction work is carried out, and the risk is being continuously reduced. However, even during the actual production process there is still a significant risk associated with the project as uncertainty exists about precisely what grade,
tonnage, operating conditions, price, etc. will be encountered by the mine.
From Figure 11 it is clear that it is
unreasonable to look for greater precision in the
theoretical approach to the problem than is demanded
by real life. The phase to which the theory elaborated
in this thesis applies requires a precision of between
$25-100 \%$ The position of the lower boundary is
somewhat debatable, it could be argued that
exploration takes place in the $50-100 \%$ range.

Hence, it may be concluded that first order, linear assumptions are quite adequate for the task to be undertaken.

### 9.2.2 The Frincigles of the Direct Solution

In conventional cashflow analysis the DCFROR is defined as that discount rate at which the cumulative net present value of the cashflow is zero.. Hence, for that discount rate the cumulative NPV of the capital expenditure during the pre-production phase of the project is equal to the cumulative NPV of the profit made during the production life of the project.

Figure 11
RISK IN THE LIFE OF A PROJECT


That is:
CPNV"X" Capital = CNPV"X" Profit ... (1)

- where: $X=$ discount rate

CFNV = cumulative NPV.

Considering the terms in equation (1) individually:

- capital - may be defined or calculated
. X - may be defined
. profit $=$ revenue - cost ... (2)

Considering the terms in equation (2) individually:

- cost $=$ all cost charged to the project in any given year.
- revenue $=$ net revenue at the mine calculated as follows:

```
Revenue \(=\) ( In-situ grade - dilution ) *
    Mining Recovery * Price * Tons *
    Processing Recovery ...(3)
``` individually:
- grade is known, it must fall in the range \(0-100 \%\)
- dilution is known, again it must fall in the range \(0-100 \%\)
- mining recovery is known, it too must fall in the range of \(0-100 \%\)
- processing recovery is known, 0-100\%
- price, or net smelter return, may be defined in any range depending upon predictions.
. Tons, unknown.

Hence, it can be seen that "tons", or deposit size is the only unknown. So for a specific profit level and for defined ranges of capital, preproduction life, grade, etc., it is possible to solve for the deposit size.

Fundamentally, the direct solution is simple; everything but the size of the deposit is known or may be estimated quite readily. The details of the workings of the direct solution are given in Appendix A.

Computationally the direct solution is easy because the iterative determination of DCFROR is not required. Thus the simplicity of the direct approach makes the derivation of a Commodity Profitability Threshold a relatively trivial matter. In turn, this makes the whole philosophical approach described in this thesis not merely acaedemically interesting, but, practically, viable.

\section*{9-3 Price \(=\) Time Definition}

In order to perform either a direct or an indirect solution to the problem of the drivation of a CPT a price - time forcast is needed. As stated in Chapter 8 this analysis will be performed on a steady - state basis.

For a commodity of interest a maximum time span for the projection must first be defined. This may be achieved either by picking some number or by using a rule-of-thumb such as the one suggested by the Northwest Mining Association (37):

LIFE \(=20 \% *[(S I Z E) * * 0.25]\)
- where: LIFE \(=\) operating life of the mine

SIZE = size of the largest deposit of a given commodity in tons.
Given the operating life and adding say three
years for a pre-production period, will produce a
total, maximum project life for that commodity which
defines the period for which a price projection is
required. This process is repeated for all commodities
of interest, and price projections may then be made
for periods which have some geologic meaning.

\subsection*{10.0 COMMODITY SOURCE PROEILE}

Up to this point the arguments presented have been oriented towards defining what it is desired to achieve in geologic terms. Merely defining what is necessary is not really very helpful in terms of making a decision about exploration targets. In order to make rational decisions it is also necessary to define what is actually available, so that the two sides of the problem may be balanced.

In order to compare two quantities; desire and reality, they must first be measured in the same units. Financial desire is now measured in terms of grade and tons, specifically with a grade - tonnage curve. Clearly then, geologic reality must be expressed in the same way.

The problem becomes to produce, for each commodity, a characteristic curve which describes in grade - tonnage terms the available sources of that commodity. Such a curve may be called a Commodity Source Profile, CSP. This profile will, of course, be independent of any technical or financial contstraints.

Fortunately, grade - tonnage curves are commonly used to describe deposits, so the construction of a

CSP is not overly taxing.

Not all commodities occur in all grade - size combinations of all possible deposit types, so it is reasonable to expect fairly distinctive CSP’s for different commodities. In order to build a CSP for a given commodity the types of deposit in which that commodity occurs as a primary component must first be identified, and then grade - tonnage values assigned to each of these types. The general shape that may be expected in a CSP is shown in Figure 12.

The Deposit Type Numbers, DTN, represent which particular type of deposit gives rise to the specific commodity "X". By implication, referring to Figure 12 ,"X" does not occur in DTN \(2-10\), etc.

Copper, for instance, may occur as a porphyry, contact metamorphic or stratiform type of deposit. In the form of a porphyry, it may average 500M tons a \(0.30 \%\) Cu. Such an estimate would define say point 55 in Figure 12. Dbviously, grade - tonnage estimates for a given deposit type will vary, and the way in which this may be dealt with is described later. For the time being establishing the concept of a CSP, and describing it's derivation is sufficient.

Figure 12 COMMODITY SOURCE PROFILE


\subsection*{11.0 FUNDAMENTALS OF DECISION MAKING}

We have now derived, in the same units, the two basic elements needed in decision making - reality and desire. All that is now necessary is compare these twos and a decision may be made as to what is a reasonable exploration target, and hence, an overall strategy developed.

This process is illustrated in Figure 13.

For successful exploration, or indeed any other activity, the results which are really possible must be equal to, or exceed, those results which are actually desired. Plotting the CSP and CPT on the same basis and applying this definition of success produces the decision process shown in Figure 13.

In zone 1, desire exceeds reality, therefore, by definition failure must ensue. Conversely, success is assured in zone 2.

Therefore, given that a new prospect is typified by grade and tonnage, a decision can be made immediately as to its utility as an exploration proposition. Conversely, a set of characteristics may be defined from this graph which can be used as minimum target constraints for all possible grade -

\section*{Figure 13} DECISION PROCESS

```

tonnage combinations on the line bc.

```

\subsection*{11.1 Qverlag Index}

In addition, the chance of being successful, should it be decided to explore for commodity "x", is equal to the proportion of the characteristic for which reality exceeds desire. Referring to Figure 13, one way in whoh this may be measured is by considering the overlap of the CSP on the CPT. This may be characterized as an Dverlap Index, OI. Where:
```

Overlap Index = bc / ac

```
11.2 Commodity Comparison

If this evaluation is repeated for several commodities then strategic comparisons may be made of the likely relative chances of success of one commodity compared with another. This process is illustrated in Figure 14.

Using the information from Figure 14 the utility of each commodity may be used as a basis for ranking.

\section*{Figure 14}


Commodity "C"


Tons
———— Reality

Commodity "B"


Commodity "D"


Desire
\begin{tabular}{cc} 
Commodity & Qverlap Index \\
D & 0.95 \\
A & 0.40 \\
B & 0.15 \\
C & 0.10
\end{tabular}

This ranking means that exploration for commodity "D" is more likely to produce success than exploration for commodity " \(C\) ". The next question is "how much more likely \({ }^{\prime \prime}\) ". As a common index has been used it is possible to answer this merely by recalculating these probabilities on a relative scale.

\subsection*{11.3 Relative Qverlap Index}

The Relative Qverlap Index, RELDI, may be defined as follows:
```

RELOI(i) = OI(i) / [ OI(i) + ... + OI(n) ]

```
- where: \(i=i t h\) commodity
\(n=\) total number of commodities.

So in this example:
\begin{tabular}{cc} 
Commodity & Relative Overlap Index \\
\hdashline D & 0.59 \\
A & 0.25 \\
B & 0.09 \\
C & 0.07 \\
Total & 1.00
\end{tabular}

This relative ranking then provides an explicit, quantified assessment of how much effort should be expended in looking for each of the different commodities under consideration, not just in terms of the chances of finding a deposit, but in terms of actually being successful in generating a minimum acceptable profit form an eventual operation.

This then is the information that makes rational decision making possible, because it answers directly the question fundamental to the existance of the organization.

This approach also has the property of not over emphasizing the value of a specifically attractive commodity, whilst at the same time not eliminating commodities which "on average" do not show promise but which do have the potential, albeit limited, to produce the occasional bonanza. In other words, to each its due, but only to the extent of its relative promise.

The RELOI may be used to divide an exploration budget. For example, if a budget of \(\$ 10 M\) were available, then a rational division of this money in terms of RELOI would be:
\begin{tabular}{ccr} 
Commodity & RELOI & Budget, \(\$\) \\
\hline A & 0.25 & \(2,500,000\). \\
B & 0.09 & \(900,000\). \\
C & 0.07 & \(700,000\). \\
D & 0.59 & \(5,900,000\). \\
- & Total & \(10,000,000\).
\end{tabular}

So, in principle, it may be stated that it is worth spending \(\$ 2.5 M\) looking for commodity "A", but only \(\$ 0.7 M\) looking for "C".

While this is better than no knowledge at all, it still does not help the people who actually have to find "A". The information generated so far is too general, expressed in unhelpful terms and based upon single point estimates of the input values and assumptions. What would really be useful would be a refinement of this technique so that specific deposit types at known grade and size ranges necessary for success are identified, for expected variations in grade, price, etc. These refinements will now be addressed

\section*{THRESHOLD}

\begin{abstract}
To this point only single valued estimates of input variables have been used. This has been done deliberately in order to allow for the explanation of concepts in a clear and simple manner. However, for this approach to have relavance to the real world a way to deal with uncertainty must be found.
\end{abstract}

The uncertainty arises because of lack of knowledge about the values of many inputs, specifically; capital cost, deposit grade, commodity price, operating parameters and operating costs. In addition, varying the financial requirements of the corporation will cause a redefinition of acceptable targets.

A two step approach is taken to the solution of these problems:
- first, a qualitative description of the affects of these changes.
- second, a quantitative analysis of the changes.

\subsection*{12.1 Changes in the Reguired Rate of Return}

\begin{abstract}
The initial selection of a suitable rate of return will depend upon two factors - the amount of risk associated with the project, and the nature of the analysis being performed.
\end{abstract}

If the analysis is using inflated values for cost and price, then a higher rate of return will be demanded than if a constant value analysis is being run. An idea of just how low a constant value rate of return might be can be obtained by consideration of the interest rates in the West at the moment (1982).

The rate of interest for long term lending is currently about \(16 \%\). On the other hand inflation is running at about \(14 \%\). This indicates, that for a long term project like a mine, a reasonable constant value rate of return would be about \(2 \%\) whereas an inflated value analysis would demand at least \(16 \%\).

The risk associated with an exploration or mining venture is of course greater than that a bank exposes itself to when accepting a long term loan: therefore, this extra risk would be reflected in a higher than minimum demanded rate of return before investment in a mining or exploration project could be justified. Precisely what the demanded DCFROR should be is not an

\begin{abstract}
easy matter for the company to decide. Therefore, the decision making logic used, must allow for the analysis to be easily repeated at a variety of rates so that managment can find out just what the maximum potential DCFROR will be, and to measure the effects of changing the demanded DCFRDR on the overall strategy.

The effect of changes in the desired return is shown in Figure 15. The shape of the graphs on Figure 15 may be generated intuitively. Clearly, higher profits demand higher grades and tonnages; the converse is equally true.
\end{abstract}

\subsection*{12.2 Changes in Canital Cost}

\begin{abstract}
It will be appreciated that certain capital costs will be a function of the size of the deposit, whereas some will depend upon the depth to the deposit from surface. So a three - dimensional plot is really needed to visualize profit changes accurately. Such a plot is given in Figure 16.

In Figure 16 the line "AB" is not parallel to the depth axis because increased depth will mean higher capital costs, which in turn will require a higher grade - tonnage combination to repay.
\end{abstract}

Figure 15 EFFECT OF CHANGES IN REQUIRED DCFROR ON CPT

CPT for Commodity "X"


Note: Net Smelter Return Constant
Operating Costs Constant
Operating Parameters Constant


Note: Nei Smelter Return Constant Operating Costs Constant

Operating Parameters Constant

So far variations in only two of the constraints - profit and capital - have been considered, and all three graphic dimensions have been used. Not only that, but a rather difficult complex graph has resulted. It becomes, therefore, necessary to fix the variations of these constraints in a different manner. For the sake of clarity, profit and capital cost will be fixed for the moment. This will eliminate the third dimension of the graph. The resulting two dimensional graph will represent the situation at a given profit level and depth. Similar characteristics, of course, could be generated for other depth - profit combinations.

\subsection*{12.3 Changes in Net Smelter Return}

\begin{abstract}
Variations in the net smelter return result from two main causes - geographic location and market volatility. If the deposit is in a remote location with respect to the smelter, higher transportation charges will accrue for thé conncentrates, which will thus reduce the net smelter return. Obviously, any changes in the market will show directly in the NSR. The effects of such changes are shown in Figure 17.
\end{abstract}

Again the derivation of Figure 17 is fairly obvious, the lower the NSR, the higher must be the

Figure 17 EFFECT OF CHANGES IN NET SMELTER RETURN ON CPT


Note: Operating Costs Constant
Operating Parameters Constant
grade - tonnage combination to offset this, and viceversa.
12.4 Changes in Operating Cogst

Changes in operating cost will occur due to increased cost of labour and supplies, changes in royalty and taxes, and variations in actual operating conditions themselves. The effects of these changes are shown in Figure 18, note also in this case that net smelter return too is fixed. So there will be similar characteristics for each depth - profit - NSR combination.

Considering Figure 18, higher operating costs will have to be offset by higher grade - tonnage combinations, and vice-versa.

\subsection*{12.5 Changes in Qperating Parameters}

These will occur because machinery may not always perform at a constant level of efficiency due to wear, change in ground conditions, operator skill and so forth. The affects of such changes are shown in Figure 19. In this case operating costs have also been fixed.

Figure 18 EFFECT OF CHANGES IN OPERATING COSTS ON CPT


Notei Operating Parameters Constant

Figure 19 EFFECT OF CHANGES IN OPERATING PARAMETERS ON CPT


For a given depth, profit, NSR, \& operating cost

\subsection*{12.6 Net Effect}
. As may be appreciated from the preceeding descriptions, the number of possible combinations of all factors is large. To reduce these to a managable number consideration must be given to the actual decision making process itself. In this process the required profit is defined, therefore, this element of variability is removed.

From conventional cashflow analysis it is known that the remaining variable groups - capital, operating cost, operating parameters and price - do not have equal impact upon the results. Their order of impact may be listed as follows:
- net smelter return
- capital cost
- operating cost \& parameters.

Considering capital cost, part of this cost is a function of size, and part of depth, hence both become dependant rather than independant variables. This is futher explained in Appendix A.

Regarding operating parameters, mining recovery only appears in the calculation when translating from mineable to in-situ reserves as a linear function of

\begin{abstract}
tons. So it too becomes a dependant variable. Moreover, for a given mining method, applied to a particular deposit type, it may be assumed that the likely mining recovery will vary within a relatively narrow range, and hence the significance of the uncertainty associated with the estimate of mining recovery is small.
\end{abstract}

\begin{abstract}
Processing recovery does have a relatively dramatic affect on the CPT as it directly affects net grade. However, for a given mineralogy it is possible quantitatively to link processing recovery to head grade, and thus turn it in to a dependent variable. These linking functions are usually empirically generated, but if the sample set is reasonably large then the precision of these relationship should be sufficient for the needs of this analysis.
\end{abstract}

Similarly, assuming that mining bias has been calculated in the way outlined above, the operating cost and recovery for mining should also have been estimated with sufficient accuracy for this requirement.

For processing cost, this will also be linked to the operating parameters via head grade and capacity, and again empirical relationships exists that will
turn mineral processing operating cost in to a dependant variable.

So, of the constraints identified above, this leaves only net smelter return as an independent variable. Methods for determining reasonable values for this variable were discussed in detail above.

Summarizing, the proposed approach will be similar to the conventional sensitivity analysis commonly carried out in conjunction with cashflow modelling. The least significant independent variables. are initially fixed, and investigation made in to changes in the more significant variables. Once their behaviour has been understood, the significance of variations in the lesser variables is studied. Thus in a stepwize process, a full understanding of the characteristics of the CPT of a particular commodity is built - up.

\subsection*{12.7 Quantified Significance}
Under the terms of the above argument,
NSR or price, remains the only independent variable.
Moreover, it is a variable whose value is subject to
constant change. There is, therefore, significant
uncertainty associated with any estimate of its
value. The easiest way to deal quantitatively with
this uncertainty is to index it in units of standard deviation about the mean value. Then decisions made on the basis of results generated by variable input price, may be taken at some known confidence level. This allows management to plan rationally as the uncertainty associated with a decision is known. For the purposes of this thesis a range of \(+/-\) two standard deviations will be used.

The CPT that will result from this approach is illustrated in Figure 20. This profit envelope will meet corporate goals for \(97.73 \%\) of the time under normal circumstances.

The lower limit of this envelope forms a Minimum Confidence Eloundary, MCB, which gives the minimum grade - tonnage combinations that can be tolerated. A function can be fitted to this line and used as a general corporate guide to provide a simple screen for submittals. The position of the MCB will change with changes in demanded return and confidence levels.

Figure 20 UNCERTAINTY AND THE CPT

\(\qquad\) Mean value
_- \(+1 / 1\) standard deviation of price —.- +/- 2 standard deviations of price

\section*{Note:}

At constant required DCFROR, depth, operating costs \& parameters
In the original definition of CSP, single -
point values of grade and tonnage were used to typify
deposit types. In reality such estimates are
unreliable as both the grade and tonnage of a
particular type classification will vary.

These variations will be in a finite range, and the mode of variation will change from type to type. Furthermore, grade - tonnage variations will not be independant, but will interact in some complex manner. However, in order to determine the maximum extent of uncertainty associated with the CSP, it is only necessary to know the maximum and minimum values of grade and tonnage bounding the ranges of variation, at some defined confidence level. Therefore, the mean and standard deviation of grade and tonnage ranges can be calculated in the normal way, and setting confidence at the same level as for the CPT, bounds can be drawn at +/- two standard deviations about the mean.

The grade and tonnage will vary simultaneously, reflecting the degree of dependance between them, the net result of this simultaneous variation can be represented by the resultant grade tonnage probability vector. This is illustrated in Figure 21.

This particular diagram happens to be for a

Figure 21 VECTOR DIAGRAM FOR A SPECIFIC DEPOSIT TYPE

probabilty range of \(+/-\) one standard deviation,
obviously similar diagrams can be produced for any
level of confidence desired. To reflect the
simultaneous variation in grade and tonnage, the
vertex of the resultant vector is contoured, rather
than the vertices of the grade and tonnage vectors.
The result of following such a procedure for all the
deposit types for a given commodity is shown in Figure
22.
Assuming normal models, the chance of the grade
being higher than \(+25 D\) above the mean would be \(2.28 \%\),
and similarly the chance of the tonnage being greater
than \(+25 D\) above the mean would also be \(2.28 \%\). Thus
the chance of finding a deposit that had both a grade
at \(+25 D\) above the mean and a tonnage of \(+25 D\) above
the mean, would be the product of the two
probabilites, about o. os\%. At one standard deviation
the same chance would be about \(3 \%\) Hence, normally,
the lower limit of the csp, the - \(2 S D\) ine, would
capture about g9. \(95 \%\) of all source deposits of that

Figure 22 PROBABLE COMMODITY SOURCE PROFILE


\subsection*{14.0 PRDBABLE SUCCESS}

Now uncertainty has been addressed for both the Commodity Source Profile and the Commodity Profitability Threshold, the probably successful targets may be identified by overlaying the two sets of characteristics. This is illustrated in Figure 23.

The shaded portion, "b", of the CSP envelope represents the probable success region, and the other fraction of the CSP envelope, "a", represents the probable failure zone.
```

Hence, it will be readily appreciated that, at a given confidence level, and given all the input assumptions are correct, then the total chance of finding a profitable deposit of a given commodity, "i", CS(i), will be given as follows:
$C S(i)=\{(b) /(a+b)\} * 100.0 \%$
This is, of course, an absolute chance. In order to use this information to formulate a strategy it must be transformed to a relative base:

```
\(\operatorname{RCS}(i)=\{[\operatorname{CS}(i)] /[\operatorname{CS}(1)+\operatorname{CS}(2)+\ldots . . \operatorname{CS}(n)]\} * 100 \%\)
- where, RCS(i) = relative chance of success for commodity \(i\)
and \(n=\) number of commodities.

Thus commodities may be ranked in order of their

Figure 23 PROBABLE TARGET DEFINITION

chances of making a profit, and the exploration budget may be split accordingly.

Furthermore, the sum of all absolute CS(i) values is the total chance of finding any profitable deposits at all. This chance may then be used to judge the attractiveness of investment in mineral exploration as opposed to some other competitive oppurtunity.

Thus, Total Chance of Success, TCS, is defined as follows:
```

TCS = [ CS(i) + ... + CS(n) ]/( n * 100 )

```

\subsection*{15.0 DEPOSIT TYPE SPECIFICATION}

So far the method for determining in general the chances of exploration success has been described. However, it is necessary to provide more specific guidance to field exploration teams. In order for an efficient program to be run specific deposit types must be identified, and not merely general grade tonnage guidelines. This chapter will explain how this may be accomplished.

In order to make the logic clear it is necessary to consider the Commodity Source Profile; this is illustrated in Figure 24.

Suppose deposit type "X" had a mean grade and tonnage which plotted as shown on Figure 24. The variability of this type is expressed in terms of a zone around the mean bounded at \(+/-\) two standard deviations of grade and tonnage.

The polygon EFG represents the limits of the CSP at a \(97.73 \%\) confidence level. Of that, only the portion bounded by polygon HFG exceeds the Minimum Confidence Boundary and is therefore a potential target zone. The chance of a deposit of type "X", if found, satisfying corporate financial requirements is given by the proportion of the bounding area ABCD that exceeds the MCB. In this case that excess or chance,

Figure 24 DEPOSIT ALLOCATION DIAGRAM

called \(X S(i, j)\), is \(100 \%\). Where "i" is the deposit type within the commodity "j" The proportion of exploration effort for the given commodity that should be expended in looking for deposit type "X" is equal to the proportion of the area ABCD that exceeds the MCB as a percentage of the Probable Target Zone, HFG. This percentage is defined as the Deposit Allocation, DA(i).

So, \(\mathrm{DA}(\mathrm{i})=[\mathrm{ABCD} * X S(i, j)] / \mathrm{HFG}\)

If the total area occupied by the different deposit types is not equal to that of the probable target zone, then the deposit allocations can be recast on a relative basis, and the expenditure apportioned accordingly.

The geologic search constraints have thus been defined, it now only remains to pull all the threads together to form one unfied strategy.
In the preceeding chapters various indices
have been identified, in an attempt to make the
qualitative aspects of the decision - making process
more systematic, namely:-
- Relative Socio - Political Index, RSPI
- Relative Price - Time Index, RPTI
- Relative Market Index, RMI
- Relative Commodity Exploration Index, RCEI
- all of which find combined expression in the General Exploration Potential, GEP(i), for a given commodity.

The General Exploration Potential of a commodity attempts to quantify in a simple, logical way the intangibles.

On the other hand, from a purely technical point of view, the chance of actually achieving a desired return from investment in exploration has been derived and is expressed in the Total Chance of Success, TCS. This may be used to determine what is the maximum proportion of the total capital available for investment that should be allocated to exploration, as follows:
```

Maximum Justifiable
Exploration Budget, MJEB = TCS * AI

```
- where: AI is Available Investment.
and hence:

Investment in Non-Exploration Alternatives, INEA \(=(1.0-T C S) *\) AI
Once the Maximum Justifiable Exploration Budget
has been determined, then this may be divided
appropriately between commodities by use of the
Relative Chances of Success, RCS(i), for each
commodity, as follows:

Maximum Budget/Commodity, MBC(i) = MJEB * RCS(i)

At this point the intangible feelings on each commodity can be appropriately introduced to modify the theoretical solution to fit with the real world, by use of the General Exploration Potential as follows:

Modified Investment per
Commodity, MIC(i) = MBC(i) * GEP(i)

The sum of all the MIC's produces the Total Justifiable Exploration Budget. This will only rarely be equal to the Maximum Justifiable Exploration Budget, usually it will be less, so that there will be a Non - Justified Exploration Budget, which should be added to the Investment in Non - Exploration Alternatives, thus:
```

Total Justifiable Budget, TJB = MIC(i) + ... + MIC(n)
Non - Justified Budget, NJB = MJEB - TJB

```
Investment in Non -
Exploration Alternatives, INEA \(=\) INEA + NJB

In the case where \(T J B\) is greater than MJEB, either additional capital must be provided from the Available Investment at the expense of other alternatives, or the GEP's must be re-assessed less optimistically, or both.

Given the Modified Investment per Commodity, the expenditure on given deposit types may be determined using the Deposit Alloctaions, DA(j), as described in Chapter 15:
```

Investment / deposit type
within a commodity = MIC(i) *DA(j)
- where: i = ith commodity
j = jth deposit type.

```

The amount of investment justified for a specific prospect within a deposit type, within a commodity, may then be determined according to the relative position of the expected grade - tonnage potential of the prospect in the success envelope.

The limits of the envelope are set at \(+/-25 D\); therefore, to eliminate negatives add 2SD to all prospect positions ( expressed in co-ordinates of standard deviation , then express the resultant values on a relative basis, and hence determine investment. Numerically, for example:

Suppose we have four prospects; A, B, C, D at various standard deviations from the mean:
\begin{tabular}{cc} 
Prospect & SD \\
\hline\(A\) & +1.65 \\
\(B\) & +1.02 \\
C & -0.10 \\
\(D\) & -0.85
\end{tabular}

Add two standard deviations to determine their distances above the threshold, and express on a relative basis:
\begin{tabular}{ccc} 
Prospect & Excess & Relative Excess \\
\hline A & 3.65 & 0.34 \\
B & 3.02 & 0.28 \\
C & 2.90 & 0.27 \\
D & 1.15 & 0.11 \\
\hline & 10.72 & 1.00
\end{tabular}

Hence, expenditure per prospect may be determined

Assume: MIC(i) \(=\$ 1 . O M\), then:
\begin{tabular}{ccr} 
Prospect & Relative Excess & Expenditure \\
\hline A & 0.34 & 340,000 \\
B & 0.28 & 280,000 \\
C & 0.27 & 270,000 \\
D & 0.11 & 110,000
\end{tabular}

So, the rational process can be seen to run logically from initial hypothetical concept, to detailed disbursement of funds for each prospect. This then provides a unified, integrated approach to rational decision making in the orientation of mineral exploration efforts.

\section*{PARI 2}

A Numerical Example to Illustrate the Application of the General Theory.
A literature search was undertaken in journals
23) \& (41) and reference books (24) \& (25) to collect
data on several hundred prospects and operating mines.
The following information was collected on each
property:-
- name
- commodity
- deposit type
- tonnage
- grade

The list was then sorted by commodity and by deposit type. The results of this sort are given in Appendix C. The list was then resorted so that all deposit types having only one representative were eliminated from the list. The mean and standard deviation was then calculated for each deposit type. In addition a chi-squared test was performed on each group to test for normalcy. The resorted list, together with the relevant statistical information is given in Appendix D .

At this point a note on the definitions of the above categories will be helpful.

\subsection*{17.1 Commodity}

In many cases a deposit contained more than one commodity. Bearing in mind the object of this numerical example is to illustrate the use of the theory, rather than to produce a universally applicable solution, it was decided to eliminate the concept of multi-commodity orebodies. That is to say, if a deposit contained say, \(A u, A g\), and \(C u\), it would be listed three times with the same tonnage and deposit types, but with different commodity and grade classifications. Were this analysis to be performed in earnest, decisions would have to made concerning the classification of element groups, and a primary commodity from within each group would have to be chosen. The other associated commodities would then be expressed as equivalent grade additions to the primary. However, for the purposes of this illustrative example, such complications were regarded as a diversion, and the study was performed on a single commodity per orebody basis. Indeed, it could be argued that the sirigle commodity approach is better, in that it is easier, and any secondary commodities within a deposit could be expressed as smelter credits, thus increasing the net smelter return used for the primary. Whichever approach is used for multi-commodity deposits, if correctly applied, will produce the same answer.

\title{
Based upon the information revealed by the literature search of all possible types of deposit, only ten seem to be in common usage. Therefore, the classification used for this study was limited to these common ones, namely:-
}
- porphyry
- sedimentary
- contact metamorphic
- stratiform
- oxide
- volcanogenic massive sulphide
- complex
- hydrothermal
- tri-state
- laterite

\subsection*{17.3 Tonnage}

The largest published tonnage was always used in this study.
17.4 Grade

The highest published average grade was always used in this study for each commodity in a deposit.

\subsection*{17.5 Curve Fitting}

\begin{abstract}
Given the grade - tonnage data for all deposits within a given commodity, curves were fitted to the mean grade - tonnage values; and also to the values at +/- two standard deviations about the mean.
\end{abstract}

The results of this process are presented in Figures 25 to 30, for copper, lead, zinc, gold, silver and nickel. Insufficient data was avaiable on other commodities to allow for Commodity Source Profiles to be generated. Details of the fitted curves are given in Appendix \(E\), together with the correlation coefficient showing the goodness of fit between the models and the actual data. It should be noted that in all subsequent calculations the model values will be used rather than the actual data.
Figure 25 COPPER-COMMODITY SOURCE PROFILE


Figure 27 ZINC - COMMODITY SOURCE PROFILE

Figure 28 GOLD - COMMODITY SOURCE PROFILE

Figure 29 SILVER - COMMODITY SOURCE PROFILE


COMMODITY SOURCE PROFILE

Figure 30


\subsection*{18.0 PRICE PREDICTIONS}

\begin{abstract}
Geologic reality having been defined, in terms of the Commodity Source Profiles, it was next necessary to define desire. That is to say, the Commodity Profitability Thresholds must be generated for each commodity. The first step in such a process is to generate a price prediction for each commodity over the period of interest. As was suggested in Part 1, regionalized variable analysis was used to define the range of predictability, future prices and error of estimation.
\end{abstract}

\subsection*{18.1 Basic Data}

\begin{abstract}
The basic data for any price prediction exercise is the history of price movement with time. The question is, how far is it reasonable to look back in time ? In the case of gold, data can be obtained at least as far back as the 14th century, but how much of this information is relevant to the future ?
\end{abstract}

The price of a commodity is to a large extent controlled by demand. Demand in turn is a function of complex, non-quantified, socio-political processes. It could then be argued that so long as the socio-political state in the past seems to be directly related to the present and forseeable future, then
prices in that time frame should be considered. Applying this logic, it would seem that the end of World War II marks the start of the present sociopolitical state. Therefore, prices from 1945-1982 have been used as base data for this study. The prices quoted are average annual values on the following bases: -
- copper - US producer price \$/1b.
- lead - US producer price \$/lb.
- zinc - US producer price \$/lb.
- gold - LME cash \$/oz.
- silver - LME Cash \$/oz.

Suitable information for nickel was not readily available, consequently this commodity was dropped from further consideration in this study.

\subsection*{18.2 Inflation}

As was also stated in Part 1, it is preferable to perform a constant value analysis, therefore, the quoted prices had to be deflated. Moody's Average Commodity Price Index for each year from 1945 to 1982 was used to adjust all values to a 1945 basis. Details of the adjusted prices are given for each commodity, together with the Moody Index values in Appendix F. The same information is presented graphically in Figures 31 to 36 . It should

Tigure 31
INFLATION FACTORS


\section*{Figure 32}


Figure 33


Figure 34

DEFLATED GOLO PRICE : TIME VALUES

DEFLATEO SIVVERPRTC - TIME VALUES

be noted that hereafter, the word "inflation" will be used to mean "Moody"s Commodity Price Index". These data were taken from the American Metal Market (27).

\subsection*{18.3 Variograms of Price Change vs. Time}

\begin{abstract}
Using the data in Appendix \(F\) variograms were produced for the change in commodity price against time for copper, lead, zinc, gold, silver and inflation. The results are shown in Figures 37 to. 42. On the basis of these variograms the following parameters were obtained:-
\end{abstract}
\begin{tabular}{lrrr} 
Data Set & Range,years & Nugget & \multicolumn{1}{c}{ Sill } \\
\hline Inflation & 14 & 0.02680 & 0.51900 \\
Copper & 10 & 0.00060 & 0.00454 \\
Lead & 5 & 0.00018 & 0.00021 \\
Zinc & 6 & 0.00015 & 0.00019 \\
Gold & 13 & 180.83510 & 526.12010 \\
Silver & 22 & 0.11821 & 0.43780
\end{tabular}

Feferring to Figures 37 to 42 it can be seen that the fit of a spherical variogram model to inflation, copper, gold and silver is reasonable. However the fit to lead and zinc is very poor. Indeed it could be argued that a spherical model will not fit to these data sets at all. In order not to divert attention away from the main thrust of the thesis it was decided to fit a spherical model to these data rather than to search for a different model that produced a better fit. To this end the average semi-variance was used to
Figure 37

Price - Time Variogram for Copper

Price - Time Variogram for Lead

Price - Time Variogram for Zinc

Price - Time Variogram for Gold

Price - Time Variogram for Silver


\begin{abstract}
define the sill value, and the semi-variance at zero lag was taken as the nugget value. It is clear from this limited exercise that considerable future work remains to investigate the applicability of variogram modelling to price forecasting. However, such work is beyond the scope of this study, therefore, no futher effort was expended in this direction.
\end{abstract}

\subsection*{18.4 Price Kriging Procedure}

At this stage in the analysis all prices were on a 1945 basis, clearly a more relevant base was required. It was decided to base all calculations on 1983 US dollars. Hence, it was necessary to predict inflation forward and then recalculate it with respect to the 1983 predicted value. Subsequent price predictions could then be adjusted from a 1945 to a 1983 base. Dnce time extended beyond the range of any data set the predicted value was set equal to the mean value of the values within the range. Standard point kriging was used, with the solution of the simultaneous equation set being achieved by use of the augmented matrix method, rather than by matrix inversion, Davis (28).

The results of this process are given in Appendix F, together with the relevant statistical information
on the results. The precision of the estimate was defined as the ratio of the average error of estimation to the average undiscounted predicted value, expressed as a percentage.

As can be seen from the results, the kriging consistently produced conservative results at levels of precision which appear to relate to the sill value. These predicted values are illustrated in Figures 43 to 48.

The predicted price values were discounted at a variety of rates to illustrate the effect of varying levels of profit demand on effective prices. This data is also presented in Appendix F. The price values used in subsequent parts of this study, were the mean undiscounted predicted price and plus and minus one and two standard deviations about this mean.

Figure 43

PREICTEO COPPER PRICE TIME VALUES 1 YR3


Figure 45

PREUICTSO ZINC PRICE - IIME VALUES 1983



PQEDICTE SILVEK PRICE - TIME VALUES 199シ \&


\subsection*{19.0 CAPIIAL AND QPERATING COSI CALCULATION}

\begin{abstract}
The next step in producing a CPT for each commodity was to derive the operating costs and parameters, capital costs and financial factors required by the minimum reserve analysis described in Appendix A.
\end{abstract}

Lack of accurate published data on the parameters meant that estimates had to be used for the derivation of the various values. A variety of methods are available to perform such estimates, including those described by 0;Hara (31) and Straam (38); however, it was decided to use the generally available computer based "MINING" system (43) because it produced repeatable results in a convenient format.

The results of this analysis for copper, lead, zinc, gold and silver are given in Appendix G. Six mining methods were used for each commodity, namely:-
- zero strip pit
- open pit mining
- natural caving
- artificical caving
- self-supporting
- artificially supported

These were matched to appropriate average deposit types. Porphyry was matched to the first three
methods, volcanogenic massive sulphide to the fourth, sedimentary to the fifth and contact metamorphic to the last.

For the purposes of this illustrative example it was arbitrarily decided to demand a constant rate of return of \(5 \%\) DCFROR on long term mineral investments. This figure is approximately 2.5 times the interest demanded, in constant terms, by banks for long term, low risk investments. The higher rate demanded for mining reflects the risky nature of the investment.

Using the information generated by the procedures described in the previous chapters, minimum reserve analyses were run for each commodity for each type of mining method. In each case the average grade +/- one and two standard deviations, together with the average price \(+/-\) one and two standard deviations were used as grade and price input ranges. For depth, open pit mines were assumed exploited down to 1000 feet from surface, with \(10 * 100\) foot increments being investigated. For underground mines, the operating limit was assumed to be 10,000 feet, with \(10 * 1000^{-}\) foot increments in this range being used.

This generated 250 cases for each mining method for each commodity. So each commodity was subjected to 1500 iterations, producing a total of 7500 cases.

No other input parameters were varied.
```

Justification for this lies in the fact that this
exercise is by way of being an illustrative example
rather than a universal solution. In each case it was
assumed that standard sulphide flotation was the
processing method used. A summary of the results of
is given in Appendix H.

```

In order to reduce the amount of work involved in this example rather than take all possible cases, values were averaged over depth for both surface and underground mines. The resultant data was plotted overlaying the CSP's and is presented in Figures 49 to 53.

The lower grade limit on the CPT was derived from a calculation of the operating cutoff grade. That is to say, the grade below which an operating loss would result. Details of this calculation and a summary of the results are given in Appendix 1.
COPPER - COMMODITY PROFITABILITY THRESHOLD
Figure 49


Figure 51 ZINC - COMMODITY PROFITABILITY THRESHOLD

GOLD - COMMODITY PROFITABILITY THRESHOLD
Figure 52

Figure 53 SILVER - COMMODITY PROFITABILITY THRESHOLD


\subsection*{21.0 CALCULATION OF PROBABLE SUCCESS}

Referring to Figures 25 to 30 , it will be appreciated that the realms of possible source of the various commodities are governed by the confidence level used. At the upper limit in this study, the grade and tonnage range is bounded by plus two standard deviations. This produces the polygon ABCD on each CSP, the area of this polygon was measured for each commodity, and is tabulated below.

Referring to the CFT's given in Figures 49 to 53, the region of probable success for each commodity lies between the minimum confidence boundary and the plus two standard deviations limit. That is to say the area bounded by polygon EBF. The region of probable failure is defined by polygon AEFCD. The area of each of these polygons was also measured for each commodity and the Chance of Success, Relative Chance of Success and Total Chance of Success were calculated according to the logic described in Chapter 16. The results are given below.
\begin{tabular}{lrrrrr} 
Commodity & \multicolumn{1}{c}{ ABCD } & EBF & AEFCD & CS(i)\% & RCS (i)\% \\
\hline Copper & 96.78 & 71.05 & 25.73 & 73.41 & 20.79 \\
Lead & 186.66 & 155.21 & 31.45 & 83.15 & 23.55 \\
Zinc & 157.32 & 84.82 & 72.50 & 53.92 & 15.27 \\
Gold & 54.13 & 47.27 & 6.86 & 87.34 & 24.74 \\
Silver & 164.51 & 90.86 & 73.65 & 55.23 & 15.65 \\
\hline-
\end{tabular}
```

Total Chance of Success = 353.05 / ( 5 * 100)
= 70.16 %

```

Summarizing, therefore, it may be stated that assuming all models and inputs to be correct, under normal circumstances at a confidence level of \(97.73 \%\), for the commodites cosidered there is no more than a \(70.16 \%\) chance of discovered deposit yielding, on exploitation a DCFROR of \(5.0 \%\).

In order to complete this illustrative example it is now necessary to calculate the indices as described in Chapter 16, for each commodity under consideration.

\section*{}

Referring to the original definition in Chapter 7:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Factor} & \multicolumn{8}{|c|}{Region} \\
\hline & \multicolumn{3}{|l|}{: East Europe N.Am} & \multicolumn{2}{|l|}{Australia} & \multicolumn{3}{|l|}{Africa USSR S.Am} \\
\hline Capital & 1 50 & 50 & 1100 & 160 & ; & 20 & ) 1 & 1 30 \\
\hline Long term & : 10 & 100 & 1100 i & - 100 & ; & 1 & : 100 & - 10 \\
\hline Short term & : 50 : & 100 & 1100 i & : 90 & ! & 10 & : 100 & - 20 \\
\hline Environm. & : 60 & 10 & ; 1 : & 150 & , & 100 & 1100 & 1100 \\
\hline Ecology & 1 70 & 1 & 1 1 : & : 60 & ; & 100 & : 100 & : 100 \\
\hline Land use & 1 50 & 10 & ; 50 ; & : 100 & ! & 100 & :100 & : 70 \\
\hline Infrastr. & ; 10 i & 100 & 1100 & : 30 & , & 1 & 1 20 & - 10 \\
\hline Taxes & 1 20 : & 50 & :100 & 150 & I & 50 & : 1 & 1 50 \\
\hline Royalty & : 70 & 10 & :100 : & : 70 & ; & 20 & I 1 & - 50 \\
\hline Legal & : 40 & 100 & : 40 i & : 100 & ; & 1 & 1 1 & - 20 \\
\hline Labour & ; 10 & 100 & :100 & 1 100 & , & 1 & : 50 & - 30 \\
\hline Social & ; 10 i & 100 & \(: 100\) & 180 & ' & 1 & - 30 & 1 30 \\
\hline Total: & 1450 & 731 & ; 892 & 1 890 & , & 405 & 1584 & 1520 \\
\hline SPI & 10.69: & 1.13 & 11.37: & 11.37 & ; & 0.62 & 10.90 & 10.80 \\
\hline
\end{tabular}

The above SPI's, Socio-Political Irdices, have been devloped on a regional basis, they were then converted to a commodity basis by factoring the above SPI's as a function of the reserves of that commodity in that region. Details of this calculation are given
in Appendix J. The results are summarized as follows:
\begin{tabular}{lcr} 
Commodity & SPI & RSPI \\
\(-\quad 0.94\) & 0.18 \\
Copper & 0.94 & 0.22 \\
Lead & 1.15 & 0.23 \\
Zinc & 1.22 & 0.18 \\
Gold & 0.96 & 0.19
\end{tabular}
22.2 Relative Price Time Index

Referring to the original definition in Chapter 8 above, and using the data generated in Chapter 18, the following calculation was made:
\begin{tabular}{lrrrr} 
Commodity & Sill & Nugget & Range & Av. Price \\
\hline Copper & 0.00454 & 0.00060 & 10 & 0.8549 \\
Lead & 0.00021 & 0.00018 & 5 & 0.3426 \\
Zinc & 0.00019 & 0.00015 & 6 & 0.4494 \\
Gold & 526.12010 & 180.83510 & 13 & 271.0279 \\
Silver & 0.43780 & 0.11821 & 22 & 7.3123
\end{tabular}

Average range \(=11.2\) years
\begin{tabular}{lrrrrr} 
Commodity & RS & RN & RR & PTI & RPTI \\
\hline Copper & 94.69 & 99.93 & 89.29 & 1.89 & 0.23 \\
Lead & 99.39 & 99.95 & 44.64 & 1.63 & 0.20 \\
Zinc & 99.96 & 99.97 & 53.57 & 1.69 & 0.21 \\
Gold & -94.12 & 33.28 & 116.07 & 0.37 & 0.05 \\
Silver & 94.01 & 98.38 & 196.43 & 2.59 & 0.31 \\
\hdashline Total & & & & & \\
\hline
\end{tabular}

Using the definition from Chapter 4, the RMI's were calculated as follows:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Factor} & \multicolumn{9}{|c|}{Commodity} \\
\hline & Cu & ; & PB & : & \(\bigcirc \mathrm{ZN}\) & : & AU & ; & AG \\
\hline Market size & 100 & ; & 10 & ; & 50 & : & 100 & ; & 50 \\
\hline Domestic market sizel & 80 & ! & 10 & ; & 50 & : & 100 & ! & 50 \\
\hline Recycling & 50 & 1 & 10 & ; & 70 & , & 1 & ! & 1 \\
\hline Tariffs & 50 & ! & 50 & , & 50 & : & 50 & ; & 50 \\
\hline Bureaucratic impact & 50 & ! & 10 & ; & 50 & : & 1 & : & 50 \\
\hline Political impact & 50 & ! & 50 & ; & 50 & 1 & 1 & ! & 50 \\
\hline Monopoly & 50 & ! & 50 & ; & 50 & ! & 50 & ; & 50 \\
\hline Cartel & 50 & : & 50 & : & 50 & ; & 50 & 1 & 50 \\
\hline Substitution & 50 & : & 5 & ; & 50 & ; & 100 & : & 100 \\
\hline Alternate potential & 5 & ! & 1 & ; & 80 & , & 100 & - & 70 \\
\hline Price time cycle & 50 & ! & 10 & : & 50 & ! & 50 & : & 50 \\
\hline Other & 50 & ! & 1 & ! & 50 & 1 & 100 & I & 50 \\
\hline Market Explore Index & 0.98 & 1 & 0.40 & ! & 1.00 & : & 1.08 & & . 96 \\
\hline RMM & 0.22 & : & 0.09 & : & 0.23 & : & 0.24 & & . 22 \\
\hline
\end{tabular}

The above scalar values were determined qualitatively.
22.4 Felative Commodity Exploration Index Calc.

Using the definitions of Chapter 5, and assigning values qualitatively, the following results were produced:


\subsection*{22.5 General Exploration Potential Calculation}

All the elements are now in - place for the calculation of the General Exploration Potential for each commodity, according to the definitions made in Chapter 8. The following were the results:
\begin{tabular}{lccccc} 
Commodity & RSFI & RPTI & RMI & RCEI & GEP \\
\hdashline Copper & 0.18 & 0.23 & 0.22 & 0.19 & 0.82 \\
Lead & 0.22 & 0.20 & 0.09 & 0.14 & 0.65 \\
Zinc & 0.23 & 0.21 & 0.23 & 0.18 & 0.85 \\
Gold & 0.18 & 0.05 & 0.24 & 0.25 & 0.82 \\
Silver & 0.19 & 0.31 & 0.22 & 0.24 & 0.96
\end{tabular}

As will be appreciated, the sensitivity of the individual elements of these indices may be investigated.

\subsection*{23.0 CALCULATION OF EXPLORATION BUDGET ALLOCATION}

Thus far in the example it has been demonstrated that investment in mineral exploration does in fact have the potential to generate a real rate of return of \(5 \%\). Moreover, for the commodities considered this required rate of return will only be satisfied for \(70.16 \%\) of discovered deposits. Using the logic developed in Chapter 16, the following allocation of the exploration budget was made.
```

    Assuming, the Available Investment = $ 50.0M
    Maximum Justifiable Exploration
    Budget = TCS * AI
    = $ 35.08M
    and, Investment in Non-exploration
    Alternatives = \$ 14.92M
Maximum Justifiable Budget per Commodity may be
calculated as follows:

| Commodity | RCS (i)\% | MJEB(i), \$M | MBC(i), \$M |
| :--- | :---: | :---: | :---: |
| Copper | 20.79 | 35.08 | 7.29 |
| Lead | 23.55 | 35.08 | 8.26 |
| Zinc | 15.27 | 35.08 | 5.36 |
| Gold | 24.74 | 35.08 | 8.68 |
| Silver | 15.65 | 35.08 | 5.49 |

The intangibles are now introduced by use of the General Exploration Potential for each commodity to produce a Modified Investment per Commodity as follows:

```
\begin{tabular}{lccc} 
Commodity & MBC(i), \$M & GEP(i)\% & MIC(i), \(\$ M\) \\
\hline Copper & 7.29 & 82.0 & 5.98 \\
Lead & 8.26 & 65.0 & 5.34 \\
Zinc & 5.36 & 85.0 & 4.56 \\
Gold & 8.68 & 82.0 & 7.12 \\
Silver & 5.49 & 96.0 & 5.27 \\
\hline Total & & & \\
\hline
\end{tabular}
From which it was found that the Total
Justifiable Budget was \(\$ 28.27 M\), compared to the Maximum Justifiable Exploration Budget of \(\$ 35.08 \mathrm{M}\). The difference, \(\$ 6.81 \mathrm{M}\) is non - justifiable exploration expense. Thus on the basis of quantified analysis and qualified "hunches", it has been found that only \$28.27M of the available \(\$ 50.00 M\) can actually be justified for investment in mineral exploration, for the considered commodities, ie, some \(57 \%\) of the original. So, in this case, it could be argued that a rational decision making approach has saved \$21.73M of investment in mineral exploration, which, at a \(97.73 \%\) confidence level, would have failed to yield the required return on investment.

\subsection*{24.0 CALCULATION OF DEPOSIT TYPE ALLOCTAION}

Using the logic described in Chapter 15, and the Commodity Source Profiles generated in Chapter 20, the Deposit Allocation Diagrams, presented in Figures 54 to 58 were produced. From these diagrams the following Deposit Allocations were calculated. The details of these calculations are presented in Appendix K.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Deposit & \multicolumn{11}{|c|}{Budget / Deposit Type, \$M.} \\
\hline Type & : Cu & ; & PB & 1 & ZN & ! & AU & ! & AG & ; & Total \\
\hline Porphyry & 13.53 & 1 & 3.95 & : & 0.00 & I & 2.14 & 1 & 3.80 & : & 13.42 \\
\hline Sediment. & 1 0.00 & ! & 0.00 & : & 0.00 & ; & 1.78 & ! & 0.00 & ; & 1.78 \\
\hline Cont. Met. & 10.00 & ; & 0.16 & ! & 0.50 & - & 0.00 & ! & 0.00 & : & 0.66 \\
\hline Stratiform & : 1.91 & I & 0.21 & - & 1.09 & i & 0.00 & : & 0.00 & : & 3.21 \\
\hline UMS & 10.30 & ; & 0.69 & ; & 1.19 & ! & 0.21 & - & 0.95 & : & 3.34 \\
\hline Hydrotherm & : 0.00 & , & 0.06 & 1 & 0.05 & , & 2.70 & & 0.26 & : & 3.07 \\
\hline Complex & : 0.24 & ! & 0.27 & ! & 1.73 & , & 0.29 & ; & 0.26 & : & 2.79 \\
\hline Total, \({ }^{\text {PM. }}\) & : 5.98 & ; & 5.34 & & 4.56 & ; & 7.12 & ! & 5.27 & ; & 28.27 \\
\hline
\end{tabular}

From the above distribution of funds, the orientation of exploration effort becomes clear in detail. The remaining step required to complete this example is the specification of guidelines for the minimum size and grade of the various deposit types within each commodity. This is discussed in the next chapter.
Figure 54 COPPER - DEPOSIT ALLOCATION DIAGRAM

Figure 55 LEAD - DEPOSIT ALLOCATION DIAGRAM



SIlver - deposit allocation diagram
Figure 58


\subsection*{25.0 GRADE = IONNAGE CUTOFE SPECIFICATION}
The final task to be completed is the
specification of guidelines to the minimum grade
tonnage limits for each deposit type that justifies
exploration within each commodity. The logic behind
the task is as follows.

At \(97.73 \%\) confidence level the upper limit of grade and tonnage is plus two standard deviations above the mean. The possible range of grade and size thus runs from zero to plus two standard deviations. The proportion of that range that will produce a successful result is defined by the excess, \(X S(i, j)\), described in Chapter 15. Therefore, the cutoffs may be derived as follows:

Lower grade limit \(=0.00\)
Lower tonnage limit \(=0.00\)

Upper grade 1 imit \(=\) mean grade \(+(2.0\) * \(5 . d)\)
Upper size limit \(=\) mean size \(+(2.0 * 5 . d)\)

Proportion of the grade
range that will meet
cutoff criteria \(\quad=\) upper grade limit * XS(i,j)
and, for tonnage \(=\) upper size limit * XS(i,j)

So, limiting cutoff = upper limit - acceptable range

Hence, the cutoff for grade and tonnage are determined. This calculation was carried out for each deposit type justifying expenditure for each commodity. The details of the calculation are given in Appendix \(L\), and the results are summarized below:

Cutoff Grades, \% or oz./ton
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Deposit & \multicolumn{3}{|l|}{:} & \multicolumn{3}{|l|}{Commodity} & & & & \\
\hline Type & : & Cu & ; & PB & ; & ZN & ! & AU & ! & AG \\
\hline Porphyry & : & 0.66 & ; & 2.07 & ! & - & ; & 0.0410 & ! & 2.05 \\
\hline Sedimentary & ! & - & ; & - & ; & - & ; & 0.1640 & ; & - \\
\hline Contact Meta. & : & - & - & 4.79 & 1 & 8.56 & 1 & . - & ! & - \\
\hline Stratiform & 1 & 1.63 & ; & 4.75 & ; & 9.36 & 1 & - & ; & - \\
\hline VMS & : & 2.84 & ; & 4.25 & 1 & 7.68 & ; & 0.1150 & ; & 3.32 \\
\hline Hydrothermal & ; & - & ; & 7.76 & , & 8.89 & , & 0.3380 & : & 9.01 \\
\hline Comple\% & ; & 3.00 & ; & 3.75 & & 10.05 & ; & 0.1000 & ; & 4.49 \\
\hline
\end{tabular}

Cutoff tonnages, \(M\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Deposit & ; & \multicolumn{6}{|c|}{Commodity} \\
\hline Type & ; & CL & PB : & ZN & AU & ; & AG \\
\hline Porphyry & \multicolumn{3}{|l|}{:658.40:328.79:} & - \(\quad 1\) & 661.66 & : 1 & 19.28 \\
\hline Sedimentary & ; & - 1 & - ! & : & 16.90 & ! & - \\
\hline Contact Meta. & ; & , & 13.45: & 33.861 & - & ! & - \\
\hline Stratiform & ; & 71.141 & 16.80: & 15.26: & - & I & - \\
\hline UMS & ! & 47.00: & \(50.45: 1\) & 117.071 & 29.10 & , & 76.11 \\
\hline Hydrothermal & , & - i & 34.60: & 43.911 & 9.86 & ; & 46.07 \\
\hline Complex & : & 46.341 & 22.65: & 22.65: & 32.27 & : & 55.37 \\
\hline
\end{tabular}

\section*{26. 0 INVENTORY EVALUATION}

\begin{abstract}
A brief evaluation of the inventory of basic deposits was performed in order to further illustrate the consequences of the application of the theory described in this thesis. The results of the numerical example were applied to the inventory of deposits from which the Commodity Source Frofiles were derived.
\end{abstract}

The data used in this evaluation comprised the basic deposit information for copper, lead, zinc, gold and silver as presented in Appendix C; the Commodity Profitability Thresholds as illustrated in Figures 49 to 53; and the cutoff grades and tonnages calculated in Chapter 25.

The potential of each deposit within each of the above mentioned commodities was assessed by testing if the grade - tonnage combination recorded in Appendix C, fell above or below the threshold on the appropriate CPT diagram. Deposits which fell above the threshold were deemed to have passed this test and could be considered potentially satisfactory investment targets. Deposits which fell below the threshold were adjudged to have failed to satisfy the corporate financial requirement. The reason for failure, either too low a grade or insufficient tonnage, is indicated in the results of this analysis,
Figure 59 COPPER - CASE STUDY EXAMPLE

Tons \(\times 1,000,000\)

Figure 61 ZINC - CASE STUDY EXAMPLE

Figure 62 SILVER - CASE STUDY EXAMPLE


which are presented in Appendix \(M\), by an arrow ( \(<==\) ) following the relevant characteristic.

A few illustrative examples, taken from the list in Appendix M, are presented in Figures 59 to 63. Referring to these figures it is apparent that the potential of a particular deposit is a function of the relative position of the deposit and the profitabilty threshold. Possible targets from an inventory may, therefore, be ranked and assessed in this manner, without the need for a detailed feasibility study of each deposit. Thus the use of such strategic guidelines allows for the unified evaluation of many oppurtunities within a short time. This wider examination of possible oppurtunities will of itself increase the corporation"s chance of successful investment in exploration.

It should be re-emphasised that all the deposits contained in the list in Appendix \(M\) are treated as single commodity deposits. In fact some are multicommodity deposits and should, more correctly, be treated in the grade equivalent terms described in Chapter 17, section 17.1. Such a procedure will result in certain deposits, which fail when treated on a single element basis, passing the threshold when viewed as multi-commodity deposits because of the
effective addition of extra grade in to the original tonnage.
Useful information may also be gleaned from an
examination of the manner in which unsuccessful
deposits have failed. If a deposit is found to have a
reasonable grade, but lacks tonnage, there may be
sufficient geological encouragement to justify
continued exploration. On the other hand, if the
results of continuing exploration show only an
increase in tonnage with little or no change in grade,
then if the deposit is of too low a grade a decision
may be made to terminate exploration. Deposits which
fail because they do not meet the grade grade
requirement may be re-examined to see if they contain
a smaller higher grade section, and its potential may
in turn be tested. A prospect lacking both grade and
tonnage may be relegated to a less significant
position in the scheme of things.

Going beyond the stratgeic planning use of these guidelines, insight may be gained during the actual exploration process by monitoring the progress of the potential of a prospect towards the goal defined by the threshold. The achievement of the threshold may be regarded as the point at which exploration ceases, the prospect becomes a project and development starts.

\subsection*{27.0 SUMMARY AND CONCLUSION}

\begin{abstract}
In the preceeding chapters a framework for rational decision making in the orientation of mineral exploration efforts has been developed. This logic was then used to illustrate how an exploration investment strategy may be developed for a hypothetical corporation.
\end{abstract}

In the Introduction it was argued that complexity compression was the appropriate method for investigating the problems addressed by this thesis. This method requires that a basic objective be stated. For this thesis the basic objective was defined as the deduction of a rational decision - making process which answered in general terms the following questions:-
- Can investment in exploration be justified in competition with other alternatives ?
- If so, how much of the potential investment may reasonably be consummed by exploration ?
. What is the best blend of commodities, deposit types, sizes and grades?

The constraints on the decision - making system to be deduced were defined by Thuessen (32).

The basic axioms underlying the deduced logic
were also stated in the Introduction. According to the rules of complexity aggregation these axioms must have two properties:-
- they explain complexity at the highest level, and
- explanations of lower levels of complexity can be derived from the higher levels by logical inferrence.

\begin{abstract}
It is apparent, a priori, that the axioms, as stated, possess these properties, therefore, it may be concluded that they were reasonable basic assumptions.
\end{abstract}

In the Introduction five appropriate criteria were defined against which to judge the validity of the deduced logic:-
1. Conformity to intuitative experience.
2. Clarity of propositional content.
3. Internal logical consistency.
4. External logical consistency.
5. Status of a logic scheme.
```

In the author"s opinion the system of reasoning described in this thesis satisfies all five criteria. The justification for this opinion is as follows.

```

The illustrative example in Part 2 of this thesis

\begin{abstract}
demonstrates, by the absence of contradiction in its numerical flow, that the system of reasoning possesses internal logical consistency. This satisfies the third criteria.
\end{abstract}

The logic takes externally defined financial and gealogic concepts, treats them in a numericially consistent manner and provides results expressed in these same originally defined terms. This then provides a coherent interface to external systems of reasoning, and in so doing satisfies Criteria 4, the need for external logical consistency.
Fegarding Criteria 5 , its status as a logical
scheme, this may be judged from the general results
produced in fart 2 . These results would indicate that
the effort that should be aportioned to each of the
five commodities considered is as follows:-
\begin{tabular}{llc} 
Commodity & RCS(i)\% & Effort, \(\%\) \\
\hline Copper & 20.79 & 21.53 \\
Lead & 23.55 & 18.89 \\
Zinc & 15.27 & 16.13 \\
Gold & 24.74 & 25.19 \\
Silver & 15.65 & 18.64
\end{tabular}

The effort percent is a re-expression of the budget distribution presented in Chapter 24.

Referring to the above table, the difference
between RCS and effort is due to the influence of the qualitative factors. From this table the commodities may be ranked in order of attraction gold, copper, lead, silver and zinc; with gold very much to the fore. In simple terms the strategy would seem to indicate that finding a gold mine was a very good scheme. To that extent the logic is in accord with experience. Looking at the results in more detail, gold is indicated as justifying \(56 \%\) more effort in exploration than zinc, with copper at \(34 \%\) and lead and silver both at approximately \(16.5 \%\).

An examination of the change in potential induced by consideration of the qualitative influences indicates that gold is a very good exploration target not only from a geological point of views but also from a qualitative view as the potential increases from one to the other. Whereas for lead the reverse is true. Copper and zinc stay about the same and silver increases markedly. The significant difference between the geologic and qualitative assessments of silver can be translated as the rarity of primary silver deposits on the one hand and the relatively good price performance of silver since the last war on the other. The decrease in the lead potential is due to the fall in the use of this commodity and the general pessimism surrounding its future. Regarding zinc, geologically
it is hard to find a profitable deposit, and the qualitative optimism associated with this commodity is insufficient to raise its potential above relatively poor. Copper would seem to have a reasonable geologic potential and only an indifferent qualitative potential prevents it being top of the ranking. This indifferent qualitative potential reflects its relative abundance and consequent poor profit potential.

Summarizing, the logic described in this thesis produces a strategy for investment which indictates that gold should receive the most attention followed by copper at \(86 \%\) that of gold, lead and silver at \(75 \%\) and zinc at \(64 \%\) Current ( 1983 ) performances in the minerals industry do in fact agree with this conclusion, with gold mining being about the only sector, of those considered, that is showing sustained profit and exploration activity. The other commodities copper, lead, silver and zinc are not showing significant exploration activity at the moment. Clearly then the logic produces the same strategy as current industrial practice, therefore, it may be concluded that it status as a valid logic scheme is demonstrated, and so satisfies Criteria 5.

The most difficult criteria to satisfy is the
second - clarity of propositional content. It is paradoxical to demand of a philosopher that he prove that his logic is clear. The question arises, clear to whom ? The propositions may be as clear as day to the philosopher but not so to the reader. Lack of understanding on the part of the reader may not be caused by cloudy propositional content on the part of the philosopher, but rather because of lack of perception on the part of the reader. Cosequently, all the author may do is to remind the reader that the basic objective has been defined in the Introduction to this thesis. As have the underlying assumptions and constraints. In subsequent chapters the arguement has been developed in a step-by-step manner until a general theory satisfying the basic objective, based upon the fundamental axioms and within the defined constraints was deduced. The use of this theory was then exemplified by a detailed numerical example. Having completed these requirements the author now claims to have fulfilled his part of the obligation to provide propositional content, and consequently to have satisfied Criteria 2.

Regarding the first Criteria, substantiation of the the author's claim is also difficult. The difficulty arises in producing a universally accepted definition of "intuitative experience" in the context of the strategic planning of mineral exploration. If
an explicit definition existed, then there would be no need for this thesis. However, general experiences may be defined. Usually successful mines have certain characteristics:-
. they are large
- they are relatively high grade
. their commodity is of relatively high unit value.

There may well be other contributions to success like good management, but, all things being equal, a large, high grade deposit of a valuable commodity should provide a significant profit and, therefore, attract a large proportion of any potential investment. In fact, in general useage, a good investment is said to be a "gold mine".

Consequently, if the logic directs exploration towards large, high grade deposits of high unit value commodities then it may be concluded that the logic does actually conform to intuitative experience. Examination of the results summarized above confirms that the system of reasoning described in this thesis does satisfy Criteria 1.

Having addressed each Criteria in turn, the author rests. The reader is invited to assess the
```

validity of the author*s contention to have satisfied
the requirements of philosophical deduction defined by
the rules of complexity compression.

```

It is undoubtedly true that many of the detailed steps, in the reasoning described in this thesis are open to debate. Indeed, the promotion of such a debate was one of the initial objectives of this research. It is not claimed that the above approach has produced a final solution to the problem of strategic planning of exploration. It is to be expected that as more knowledge is gained concerning the decision making process, and the workings of the component systems, the precision of specific parts of the overall approach will be enhanced by the modification of certain assumptions and logical steps. However, it is argued that the fundamental approach could provide a reasonable and repeatable logic for use in the rational orientation of exploration efforts.

\section*{REFERENCES}

18. Whitney J. W. \& Whitney R. E.

Investment \& Risk Analysis in the Minerals industry Whitney \& whitney Inc. May 1979
19. Baker A. J. Investment, Valuation and the Management Theory of the Firm Saxon House 1978
20. Rendu J. M. Some Applications of Geostatistics To Decision Making in Exploration CIM Special Volume 根 121970
\(\begin{aligned} & \text { 21. O'Neil T. J. Mine Evaluation in a Changing } \\ & \begin{array}{r}\text { Investment Climate } \\ \\ \\ \text { Mining Engineering Nov. } 1982\end{array}\end{aligned}\)
22. D'Neil T. J. Mine Evaluation ia a Changing Investment Climate Mining Engineering Dec. 1982
23. Mining Magazine Annual Review 1964-1982
24. Dixon C. J. Atlas of Economic Mineral Deposits Cornell Univ. Press 1978
25. USBM Mineral Facts and Problems 1976 Edition
26. Fischman L. L. World Mineral Trends and US Supply Problems
Resources for the Future 1980
27. American Metal Market - Metal Statistics 1980
28. Davis J. C. Statistics and Data Analysis in Geal ogy Wiley 1973
29. USBM Mineral Commodity Summaries 1979
30. Atkinson T. Notes to Mining Engineering Undergraduates Royal School of Mines 1965
31. D'Hara T. A. Quick Guides to the Evaluation of Orebodies CIM Bull. Feb. 1980
32. Thuesen H. G. as above, page 6
33. Stermole F. J. as above, page 245
34. Harris D. P. \& Freyman A. J. \& Barry G. S.
Mineral Resource Appraisal of the
Canadian Northwest using Subjective
Probabilities and Geological Opinion
CIM Special Volume \# 12 1970

APPENDIX A

Details of the Direct Solution for the Commodity Profitablity Threshold.
```

A minimum reserve analysis is one which determines the grade-price-tonnage combination which will generate a predefined DCFROR.

```

The first step in such an analysis is to determine if any profit at all is generated. Clearly, if no operating profit is produced, then there is no possibility of producing a rate of return.

\section*{A1-1 Operating Cost}
Bearing in mind the desire to consider
concepts in geologic terms, it is helpful to convert
operating costs in to equivalent grades. This is
illustrated by the following example:

Let, \(Y Y=\) mining cost in \(\$ /\) ton, \(Z Z=\) processing \& other costs in \(\$ /\) ton.

PRICEVAL \(=\) net smelter return in \(\$ / 1 b\). of commodity.

All tons are short tons, hence:

If VAL7 \(=\) operating cost grade equivalent, VAL7 \(=(Y Y+Z Z) /(P R I C E V A L * 20) \ldots(1)\)

The resulting value will be in grade percent.
```

In any mining operation a certain
amount of waste is retained in the material delivered
to the mill for processing, i.e. dilution. This
material has a grade which is different, and usually
lower, than that of the ore. Therefore, the in-situ
grade must be converted to a diluted grade after being
subjected to the mining process. This diluted grade
may be calculated thus:
Diluted grade = (ABG * (1 - PERDIL ) + GD * PERDIL )
- where: ABG = in-situ grade %
PERDIL = percent mining dilution
GD = grade % of the diluting material.
The results of this equation (2) are in % grade.

```

\section*{A1. \(\overline{3}\) Fecovered Grade}

Depending upon the value of the head grade and mineralogy the recovered grade of the commodity will be less than the feed grade to the processing plant, as a function of the mineral processing recovery- Hence,
```

    Recovered grade = Diluted grade * 51 ... (3)
    ```
    - where: 51 = mineral processing recovery.

\section*{A1. 4 Qperating Profit \(=\) Net Grade}
 the orebody may be obtained.

A븓 Cummulative Capital

In the event that a positive net grade results, the analysis continues by consideration of
capital investment. This capital investment is composed of several elements:

\section*{A1.5.1 Mine Develogment Canital}

This is the expenditure incurred for the basic operating infrastucture of the mine. For underground mines this includes such items as shafts, raises, passes, drifts, etc., needed before ore can be produced on a continuous basis. For an open-pit this would include pre-strip, roads, etc.
This initial development cost is a function of
the location of the deposit, that is to say depth
below surface. The deeper the shaft the higher its
cost and so on. As the precision required for the
analysis is first order, then a simple linear
dependency between depth to the base of the deposit
and mine development cost is sufficient. Hence:

Mine development
Capital, \(=\) DEPTHVAL * D
- where: DEPTHVAL = unit infrastructure cost \(\$ / f t\)
\[
D=\text { depth to base of deposit, ft. }
\]

\section*{A1.5.2 Pre-Proiect Expenditure}
This is the amount of money spent
before a decision is made to go to the development
phase of a project. So it is a lump sum including the
cost of such items as exploration drilling,
feasibility studies, etc.

This expenditure has taken place by time zero in the project life, and is therefore, increasing in value during the pre-production period, at a rate equal to the DCFROR demanded for the project. So the amount of expenditure to be amortized over the production life is:

Cummulative pre-production cost, SIGPROD \(=\) CAP \(*(1+\) DISPCT. I \() * * W\)
\[
\begin{aligned}
- \text { where: } W= & \text { pre-production time, yr. } \\
\text { DISPCT. I }= & \text { required DCFROR } \\
\text { CAP }= & \text { pre-project expenditure } \\
& \text { at time zera. }
\end{aligned}
\]

\section*{A1.5.3 Amortizatle Base}

The mine development capital and
the pre-project expenditure represent an investment in discovery that must be repaid by the mine over its life, and one which is independent of production rate.

In order to bring them in to consideration in a consistent manner the discounted value of this basic expenditure must be calculated.


This calculation is simplified by the assumption that investment takes place in equal, annual amounts. This may be illustrated as folloes:

Let the annual investment \(=a(i)\)
- where: i = year,
and let the discount factor for year \(i=d(i)\).
Then,
Cumulative value \(=a(1) * d(1)+\ldots+a(n) * d(n)\)
but, \(a(1)=a(2)=\ldots=a(n)\)

Therefore,
```

    Cumulative value = a * (d(1) + ... + d(n) ).
                Let VAL5 = (d(1) + ... d(n) ).
    ```

Therefore, in this case, including the adjustment for ITC, the amortizable base, SIGDEEP, may be calculated as follows:

SIGDEEP \(=((1.0-B 1) *((\) DEPTHVAL * D \()+(\) CAP \(*((1.0+\) DISPCT.I) ** W)) (/W)) * VAL5
where: B1 = investment tax credit factor.

Consideration must now be given to variables which are a function of production rate.

\section*{A. 6 Working Capital}

> This is assumed to be equal to three months:
operating cost. So:
```

Working Capital, SIGWRK = 0.25*(((1.0+F1)*YY)+ZZ)

- where: F1 = mine development factor
YY = mining cost / ton
ZZ = processing \& other
costs / ton.

```

A word of explanation on Mine Development Factor may help at this point. In any mining method a
certain effort is put in to work which does not directly produce ore, but which is indirectly necessary for its production, such as the driving of access drifts. This effort is here expressed as a percentage of the effort expended in mining ore.

The repayment of working capital at the end of the life of the project is ignored in this analysis.

\section*{A﹎ㅡ Dngoing Development}

As was explained above, once the mine is operating, continuous ongoing development is needed to assure the continuity of ore production. This may be calculated as follows:

Dngoing dev., SIGDEV \(=F 1\) * YY
(Symbols as above).

\section*{A.⽇ Net Revenue}

This may be calculated on a per ton basis as a function of net grade and net smelter return. In this analysis short tons are used:
```

Net revenue, SIGREV = NGRAD * 20 * PRICEVAL

```
- where, PRICEVAL = net smelter return, \$/1b.

A으 믈르드르츠으
```

            In order to make this analysis as accurate
    as possible, after tax cashflow must be considered.
Therefore, depreciation and depletion allowances must
be applied. Depreciation may be determined as follows:

```

\section*{A여은 Initial Depreciable Capital}
```

            Let initial depreciable value = NDEPR
            NDEPR =(1.O + QPCT) * (K + E1)
    ```
            - where: E1 = mine equipment capital factor \$/TPY
            \(K=\) mill equipment capital factor \$/TPY
            QPCT \(=\) other capital factor
                    This is assuming a linear relationship
                    between the amount of mine or mill equipment capital
                    needed and annual production rate. The other capital
                    needed for the infrastructure, etc.g of the mine is
                    expressed as a percentage of the sum of the mine and
                mill capital.
                    Assuming that this expenditure is made in
equal annual increments over the pre-production period
of the project, its cumulative discounted value may be calculated as follows:

Cum. Disc. Value \(=\) ( NDEPR/W ) *VAL5

According to the rules on depreciation this value may be written down over the life of the equipment. These equipment lives are set in arbitrary ranges for various categories of machinery, and the write down method may be varied. Dver - sophisication in the depreciation schedule is not required in this analysis, therefore an average depreciable life of eight years will be used for all equipment, and the depreciation will be calculated on a straight line basis, with a salvage value of zero assumed. Hence, the annual equipment write - down may be calculated thus:

Annual write down \(=(N D E P R / W) *(V A L 5 / B)\)

\section*{Aㅡ․․․ 2 Ongoing \& Replacement Depreciation}

The chances are, in real operations, that the initial equipment will wear out and need replacement before the end of the project. Hence, the depreciation due to ongoing and replacement capital equipment must be calculated.
```

For simplicity it may be assumed that the working life of the equipment is equal to its depreciable life. Therefore, the number of sets of replacement equipment required is a function of mine production life and depreciable life. So,
Number of replacement sets needed $=(M 1-W) / 8$
-where, M1 is the project life and $W$ is the pre production period. The cost of each set of equipment in a constant value analysis will be NDEPR.

```

Therefore, the annual ongoing and replacement ccist, assuming annual increments, will be:
\(((M 1-W) / 8) *(1 . O /(M 1-W))=\) NDEPR/B

The cumulative discounted value of this cost over the production life of the project will be:

\section*{( NDEPR/B ) * VAL6}
-where, VAL6 is the sum of the discount factors at the demanded rate over the production period.

Writing down the cumulative ongoing and replacement cost over an eight year period produces equal annual depreciation amounts \(=(N D E P R / 64) *\) VAL6.
```

    Therefore, the total depreciation available in
    any one year ( SIGDEPR ) may be defined as follows:
SIGDEPR = Initial depr. + Ongoing depr.
= (NDEPR/W) * (VAL5/8) + (NDEPR/64) * VAL6
This estimate is, of course, only an
approximation, but is sufficiently accurate for this
analysis.
A.1O Depletiong
The cost depletion method of calculation is
used, thus:
Maximum allowable depletion = SIGDEPL1
SIGDEPL1 = (SIGREV - SIGDEPR ) * 0.5
The depletion permitted for commodity " x ", SIDEPL2
may be calculated as follows:
SIGDEPL2 = H1 * SIGREV
- where; H1 = depletion factor allowed.
Assuming USA rules, then the IRS states that :
(i) Depletion deductions may be taken
if depreciation is less than revenue.

```
(ii) The depletion taken must be the
lesser of maximum allowable depletion and the
depletion permitted for that commodity.

Expressing these rules mathematically, and using the terms as defined above, the depletion actually taken ( SIGDEPLS ) may be calculated as follows:

IF ( SIGDEPR.GE.SIGREV ) SIGDEPL \(\overline{3}=0\)
IF ( SIGDEPL2.LT.SIGDEPL1 ) SIGDEPLS = SIGDEPL2
IF ( SIGDEPL2.GE.SIGDEPL1 ) SIGDEPLJ \(=\) SIGDEPL1

In a situation where a depletion deduction is not allowed, setting the depletion fatcor to zero will eliminate any depletion deduction.

\section*{A﹎ㅡ1 1 Dedu브두으으}


SIGDED \(=\) SIGDEPR + SIGDEPL3

\section*{A. 12 After Tax Profit}
```

In order to calcuate the after tax profit in
\$/ton of ore (SIGPROF ) it is first necessary to
determine the taxable income in \$/ton of ore ( PRO1 ).
This may be done as follows:
PRO1 = SIGREV - SIGDEV -SIGDED
If PRO1 is equal to or less than zero, then the
effective tax rate (N1 ) is also equal to zero, in
the following equation:

```
SIGFRDF \(=\) PRO1 * ( \(1.0-N 1)+\) SIGDED

Note: tax deductions are not real cash expenditures, but rather accounting conveniences, therefore, they need to be added back into the cashflow.

\section*{A. 13 Eabse Tonnage}

Now that after tax cashflow has been calculated, the base tonnage (SIGTON1 ) required to amortize the development and pre - project capital may be calculated as a function of that profit:
```

SIGTON1 = SIGDEEP/((SIGPRDF/(M1-W))*VALG)

```

This profit is, naturally, accumulated at the appropriate discount rate over the life of the mine.

\section*{A. 14 Initial Eguigment Capital Investment}

\begin{abstract}
In addition to the amortizable base, capital is needed for mining and processing equipment, other facilities and working capital. Investment tax credit may be taken on this expenditure. This initial capital investment is a function of production rate, and, for the sake of this analysis, it is assumed to be a linear function; thus, the initial equipment capital investment ( SIGCAP ) may be determined as follows:
\end{abstract}

SIGCAP \(=((1.0+\) QPCT \() *(K+E 1))-B 1(C 1 * K+E 1)+\) SIGWRK
- where, Ci is the proportion of mill capital that can be depreciated.

\section*{A﹎ㅡㄴ Minimum Reguired Mineable Tonnage}
The minimum required mineable tonnage ( TR )
may now be calculated as a function of the base
tonnage and the ratio between the cumulative net
present value of the capital investment and the
cumulative net present value of the profit. Hence,

TR \(=\) SIGTON1* (1.O+((SIGCAP/W)*VALS)/((SIGPROF/(M1-W)))*VAL6)) or conceptually:
```

TONS = BASE * (( 1 + CAPITAL )/ PRDFIT)

```

\section*{A. 16 Minimum Reguired \(\operatorname{In}=\) Situ Ionnage}


\section*{APPENDIX B}

Proof of Minimum Reserve Analysis

\begin{abstract}
Before going any further it is necessary to prove the validity of the technique described in Appendix A. The best way of doing this is to take a project and analyse it in two ways. First, using minimum reserve analysis, and second using conventional cashflow analysis, the results may then be compared. For the purposes of this study, if the results are within \(+/-\) \(25 \%\), then it may be concluded that the minimum reserve analysis is suitable for use as a data reduction tool in strategic studies, such as those proposed by this thesis: It will also mean that a direct solution to the problem of generating a Commodity Source Profile will have been found.
\end{abstract}

\section*{B. 1 Example Proiect}

\section*{For the purposes of this exercise, an} underground copper mine using block caving as the mining method, and conventional sulphide floatation as the concentrating system will be assumed. It will further be assumed that the operation is in the USA, and that advantage of the depletion allowance will be taken.

The project parameters may be summarized as follows:
\begin{tabular}{|c|c|}
\hline Project life, M1 & 13 years \\
\hline Pre - production life, W & 3 years \\
\hline Required return, DISPCT. I & \(15 \%\) \\
\hline Mill capital factor, K & \$10./TPY \\
\hline \multicolumn{2}{|l|}{Mine equipment capital} \\
\hline factor, E1 & \$14./TPY \\
\hline Mine capital depth factor, D & \$9000./foot \\
\hline Depth to base orebody, DEPTHVAL & 3000. feet \\
\hline Investment tax credit, B1 & \(10 \%\) \\
\hline \multicolumn{2}{|l|}{Proportion of mill capital} \\
\hline depreciable, C1 & 75 \% \\
\hline Pre - project expenditure, CAP & \$5.0 M \\
\hline Mining cost, \(Y Y\) & \$5.00/ton \\
\hline Processing \& other cost, \(Z Z\) & \$2.50/ton \\
\hline Mine development factor, Fi & \(15 \%\) \\
\hline Commodity & copper \\
\hline In - situ copper grade, ABG & \(2.00 \% \mathrm{Cu}\). \\
\hline Mining dilution, PERDIL & \(10.00 \%\) \\
\hline Grade of dilution, GD & \(0.50 \% \mathrm{Cu}\). \\
\hline Net smelter return, PRICEVAL & \$1.00/1b. Cu. \\
\hline Mining recovery, R1 & \(100.0 \%\) \\
\hline Processing recovery, 51 & \(90.0 \%\) \\
\hline Tax rate, N1 & \(50.0 \%\) \\
\hline Depletion factor, H1 & \(15.0 \%\) \\
\hline Other capital factor, QPCT & \(25.0 \%\) \\
\hline
\end{tabular}

\section*{B. 2 Gpergach}
The first step is to calculate the
cumulative discount factors for the production and
pre-production periods. Using the standard definition
of net present value, the discount factor for any one
year is given by:
```

Discount factor $=1.0 /(1.0+i) * * n$

- where, $\quad i=$ discount rate
$n=$ year.

```

In this case, \(i\) is 0.15 , and \(n\) is 1 to 3 for the pre - production period and 4 to 13 for the production period.

Therefore, cumulative discount factors for the pre - production period, VALS \(=\) 2.28. Cumulative discount factors for the production period, VAL6 \(=3.3\)

\section*{Amortizab브르 Baㅡㅗㄹ}

SIGDEEP \(=((1.0-B 1) *(((D E P T H V A L * D)+(C A P *((1.0+\) DISPCT. ()**W)) )/W)) *VAL5

Substituting, SIGDEEP \(=\$ 23,670,000.00\)

Depreciation
```

    NDEPR = (1.0 + QPCT ) * (K + E1)
    ```

So, \(N D E P R=30.00\)
```

And, SIGDEPR = 0.125*NDEPR*((VAL5/W)+(0.125*VALG))
So, SIGDEPR = \$ 4.40 / TPY
Working Capital
SIGWRK = 0.25*(((1.O+F1)*YY)+ZZ)
So, SIGWRK = \$ 2.06 TPY

```

\section*{Ongoing Devel opment}
```

    SIGDEV = F1 * YY
    SO, SIGDEV = \$0.75 / TPY
Net Grade
NGRAD $=(((A B G *(1.0-P E R D I L)+G D * P E R D I L) * S 1)-V A L 7$
VAL7 $=(Y Y+Z Z) /(P R I C E V A L * 20)$
SO, $\quad$ VAL7 $=0.375 \%$
And, NGRAD $=1.290 \%$

```

\section*{Net Revenue}
```

SIGREV $=$ NGRAD*20*PRICEVAL
So, SIGREV $=\$ 25.80 /$ ton.

```

\section*{Depletion}
```

SIGDEPL1 $=($ SIGREV-SIGDEPR) $* 0.5$
So, SIGDEPL1 $=$ \$ $10.7 /$ ton
SIGDEPL2 $=$ H1*SIGREV
So, SIGDEPL2 $=\$ 3.87 /$ ton
IF(SIGDEPL2.LT.SIGDEPL1) SIGDEPLJ = SIGDEPL2
IF (SIGDEPL2.GE.SIGDEPL2) SIGDEPL3 = SIGDEPL1
So, SIGDEPL3 $=\$ 3.87 /$ ton

```

\section*{Deduction}
```

    SIGDED = SIGDEPR + SIGDEPLJ
    So, SIGDED = \$8.27 / ton
After Tax Profit
PRO1 = SIGREV - SIGDEV - SIGDED
SIGPROF = PROI*(1.O-N1)+SIGDED
So, PRO1 = \$ 16.78/ ton
And, SIGPROF = \$ 16.66 / ton
Bagse Ionnagge
SIGTON1 = SIGDEEP/((SIGFROF/(M1-W))*VALG
So, SIGTON1 = 4,305,000.0 tons
Initial Cagital Investment
SIGCAF = ((1.O+QPCT)*(K+E1))-B1*(C1*K+E1)+SIGWRK
So, SIGCAF = \$ 29.91 / ton
Minimum Keguired Mineablele Tonnage
TR = SIGTON1*(1.O+((SIGCAP/W)*VAL5)/{(SIGPRDF/(M1-
(H)))*VAL6))
From which, TR = 22,105,000.0 tons
Minimum Reguired In = situ Resereve
ISTR = TR / R1
So, ISTR = 22,105,000.0 tons

```
    That is to say, in order to make a DCFROR of \(15 \%\)
at a NSR of \(\$ 1.00\) /pound of copper, a deposit of at least 22 million tons is needed if the average grade is \(2.0 \% \mathrm{Cu}\) and the depth to the base of the deposit is 3000 feet. This can now be cross - checked using conventional cashflow analysis.

\section*{B. \(\mathbf{S}_{\text {Cashflow Analysis Aperoach }}\)}

In order to achieve a positive rate of return the investment capital must be repaid, at the desired profit, by the net cashflow over the life of the project.

\section*{Cal드니므르 the Value of the Net Cagshflow}
```

    Mine production life \(\quad=10\) years
    deposit size \(\quad=22.105 \mathrm{~m}\) tons
    Hence, annual production rate \(=2,211,000\) tons.
    ```

The net profit calculated above was \(\$ 16.66 /\) ton of ore, so the annual profit \(=\$ 36,835,000.00\). Assuming, for the sake of consistency with the MRA model that this cashflow is occurs in each of the production years. Thus the NPV © \(15 \%\) of the cumulative cashflow may be found as follows:
\[
\begin{aligned}
\text { Cum. NPV15 } & =36835000 * \text { VAL6 } \\
& =\$ 121,556,000.00
\end{aligned}
\]

\section*{Calculate Initial Cagital Investment}

Annual production rate \(=2,211,000\) tons.
Again to be consistent with the MRA model, assume that the same linear relationships are true for determining the capital investment, independent of the financial modelling used. Thus:
- mine equipment \(=\quad 2,211,000 * E 1\)
\[
=\$ 30,954,000.00
\]
- mill equipment \(=\quad 2,211,000\) * \(K\)
\(=\$ 22,110,000.00\)
- working capital \(=2,211,000\) * SIGWRK
\(=\$ 4,555,000.00\)
- mine development cost \(=\) DEPTHVAL * D
\(=\$ 27,000,000.00\)
- pre- project expenditure = SIGPROD
\(=\$ 7,604,000.00\)
- sub - total \(=\$ 92,223,000\)
- other capital a \(25 \%\) of

- Total initial capital \(=\$ 105,489,000.00\)

Compare Expenditure and Profit
- initial expenditure \(=\$ 105,489,000.00\)
- cumulative profit \(=\$ 121,556,000.00\)
- correlation \(=0.87\)
- apparent error \(=13 \%\)

Now according to the original definition, if the error between the two methods was less than \(25 \%\) then MRA would be considered as suitable for the purposes of this type of strategic analysis. Clearly then, such a conclusion may be drawn.
```

    However, consideration of the workings of
    the cashflow analysis is useful, as it reveals a
further reduction in the apparent error.

```

\section*{B. 4 Apparent Error}


During the pre - production period the initial capital investment is neither charged interest nor discounted because the opportunity cost and the
```

potential profit are assumed equal. Hence, the net
effect is offsetting. However, once production starts
it becomes necessary to compare the actual return with
the opportunity cost, so interest at a rate equal to
the expected return is charged.

```

In this case payback of the initial capital does not actually occur until early in the fifth production year. The assumption is also made that the profit is received at the end of each production year.

The total profit required to service the initial capital investment was \(\$ 147.996 \mathrm{M}\). The initial capital investment was \(\$ 105.489 \mathrm{M}\), hence the interest paid was \$ 42.507M.

The cumulative discount factor for the interest payments for the years 4 to 7 is 1.88. The final \(\$ 0.656 M\) payment in year 8 is ignored.

Hence, averaging and adding:
Cumulative NPV15 of the interest \(=(42.507 / 4) * 1.88\)
\[
=\$ 19.98 \mathrm{M}
\]

This should be deducted from the accumulated profit, hence the adjusted cumulative NPV15 of the profit \(=121.556-19.98=\$ 101.576\) M.

Comparing this with the initial expenditure of \(\$ 105.489 \mathrm{M}\) produces a correlation of \(96.3 \%\) or an apparent error of \(3.7 \%\) Such an error is clearly insignificant in terms of the problem being solved, and 50 MRA may be regarded as accurate. In fact, this actual error will tend to lead to a slight over estimate of the tonnage needed. If an error is to occur such an over - estimate is preferrable to an under - estimate.

APPENDIX \(\mathbb{C}\)
Basic Deposit Data Sorted by Commodity and Deposit Type
```

COPPER
=ニニ==ニ=ニ==
==20RFHYRY
NANE
Gpatroioc
INGEROELLE
SINILKAMEE'
LAKEHEAD 1
GIGHLANi) VALLEY
CEKRO VFROE
CASA GHA..NE
GivCOUNvEKl
Grinex i
aULGAINVILLE I
GKEENAVLE I
SAR CHESNH'IS.
MukUCUCHA
SACUTUH
SACOTON ?
SAN HANUEL.
EAST JEHSEY
ASPE
CUAJBINE
CHALCURANBA
GOGUEHAL,A
GAUUA
ATLAS
PHILEX 1
THO NINO
AAWI INDUOUE?
GLACK HUUNTAIN
SAGUIU
VALLEY COPPER
SALHAFT CREEK
CUPREK CREE
LA CARIOAU
CuluH
CEKRO CULU 1
L JALVADUJR I
GIIVGHAN
SUTGHAN
palabuka 1

```
            TONS.S GRADE \% OR OZ/TON
            32500000 .
    32500000.
43500000 .
    45500000 .
4500000 .
150000000 .
    \(1405000000^{\circ}\)
            800000 .
200000000 .
180000000 .
4880000000 .
448000000 .
180000000 .
293000000
293000000 .
\(760000000:\)
45000000 :
    45000000.
300000000 .
    300000000 .
    183000000
    185000000
17000000
    17000000.
\(12000000:\)
592000000.
592000000.
505000000 .
    70000000 .
    60000000.
    500000000 :
120000000 .
    120000000.
35000000 .
    35000000 .
450000000 :
    400000000.
23000000.
    23000000.
189700000 .
    60000000 .
    50000000 .
    50000000.
    50000000 .
20000000
    20000000 .
    24000000 .
70000000
S00000000.
200000000.
200000000.
200000000.
100000000 .
    80000000 :
    80000000 :
50000000
    50000000
    40000000.
1000000000 :
4000000000 .
2000000000 :
200000000.
000000000 .
400000000 :
        1.9300
.5600
        .8700
        .8700
.9000
        .4000
.4000
        .4000
.7900
        .7900
.4500
        1.0900
        .7000
        .
.4200
.4270
        .4270
.4700
        .4700
.1000
        1. 1000
        1.3000
        .8000
.8000
    .8000
.8000
    .8000
1.5000
        1.7500
.7500
        .7200
    .6000
1.0000
    1.0000
    1.0000
.5100
    .5100
1.5000
    1.5000
1.0000
        1.0000
.5000
        . 50000
        .
.
.7000
.
. 0000
        - .6000
        . 0500
        .0300
.5500
        . 5500
        -0000
-5000
        .3000
.4000
        .4000
-9000
.8000
        .8000
    1:0000
    1.0000
.8000
    .8000
.5000
    .2000
.0000
    1.0000
.0000
    2.4300
    .0900

NUMAER II THIS GRUUP \(=46\)

\section*{COPPER}
＝ニッニニニニニニ \(\qquad\)
        SEDIMENTARY

NAME
MICILL MUSUSHI
HURNE

\section*{TONS．S GRADE \％OK UZ／TON \\ 2000000 ． \\ 30000000 ． \\ 1000000 ： \\ 3300000 ． \\ 2.5000
\(C=800\) \\ 2.6000
.8900 \\ 2．4400}

NUMBER IIV THIS GFUUP \(=4\)
```

COPREH
ニニニニニニニニニニ

```


NUMGER I IV THIS GRUUP \(=20\)
\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
\[
\begin{aligned}
& \text { COPPER } \\
& ========z
\end{aligned}
\] \\
CONTACI
\end{tabular} & ME TAMUKPHIC \\
\hline & NAHE \\
\hline & URAIVGE 1 \\
\hline & ABtrLO＊ 1 \\
\hline & SABEIA \\
\hline & VAL D＇OK \\
\hline & T1FPEKAKY 1 \\
\hline & SNuN LAKE \\
\hline & GUUJREAU 1 \\
\hline & FLexar 1 \\
\hline & Ingoakari 1 \\
\hline & AMUS 1 \\
\hline & BATIALO 2 \\
\hline & GECO 1 \\
\hline & HUSIIA \\
\hline & HUALALA 3 \\
\hline & FATCHLESS \\
\hline & TIMNA \\
\hline & AL AMAR 1 \\
\hline & SCOIIA 2 \\
\hline & M．ISA 0 \\
\hline & MT．ISA 7 \\
\hline & MT．LYELL \\
\hline & WAKKEGO \(\frac{1}{3}\) \\
\hline & LEPANTO 3 \\
\hline & CUPPEKMIVE RIVER \\
\hline & SAN AIVTUMIU 1 \\
\hline
\end{tabular}

TONS．S GRADE \％OR UZ／TON
2540000
2540000.
3000000 ．

4000000 ：
500000 ：
6000000 ．
1000000 ．
500000
500000
1170000
270000
4400000
2500000
2500000
500000
27000000
3689000
2200000 ．
2400000.
6420000 ．
11000000.
5500000 ．
15250000.
1250000.

1500000
45000000
41900000
3500000
500000
3900000 ．
3000000 ．
5000000 ．
1.0550
1.2000
1.2000
.7000

500000
3.2300
1.2000
3.0000
1.2000
1.5600
1.560
.6700
4.2300
2.0000

4．0000
2.1000

2． 2500
1.0000
1.0000
1.7000
2.2400
1.6000
1.6000
.7000
.2500
3.8000
3.200
1.200
3.2000
1.4000
2.0000
4.0000
\begin{tabular}{l}
4.0000 \\
\(\frac{1}{3} .2000\) \\
\hline .4800
\end{tabular}

MUMBER IN THIS GROUP \(=28\)
```

COPPEH
=ニ二,
EXUTICA
1015.S
153000000. 1.0100

```
    NUNBER IA IHIS GHUUF \(=1\)
COPPEH
COPREK \(=ニ===\)

VOLCANGGEIC MASSIVE SULPHIDE
ERISNERG 1
PIKNE
SELIHE


104S． 33000000 27670000 13500000 ． 62500000 ． 7000000 ． 7000000.
9530000 ． 9530000 ．
8900000 ：
40000000 ． 40000000. 10000000 10000000 。

GRADE \％OR OZITON
 2． 2000 1.5760 1．3300 3.0000 1．4800 2．4700 2.7500

NUMBER IN THIS GRULP \(=10\)

COPPER
ニッマニニッマニニニ
COMPLEX SULPMIUE


TONS．S GRADE Z OR UZITON
3200000
60800000 ：
13000000 ．
18000000 ．
17600000 ．
1000000 ：
7000000
8650000.

1．0400
1.0400
1.2800

1． 1400
1.3700
.3 .300

3．0000
3.0000
.8700
.8200

NUMAER IN THIS GROUF \(=9\)
GOLU
\(=\approx=\)
\(\begin{aligned} & 2======= \\ & \text { PORPHYRY }\end{aligned}\)
    PORFHYRY
WAME
WHILEA
MEILLE 2
CEKRGCOLO 2.
LL SALVANUR II
HUTF
NUMBER IN THIS GHUUT \(=5\)
COPPER
＝＝ニニニニニニニ
HYDROTHERMAL
，Al位
Juive \(\frac{1}{2}\)
IVANHUE 1
onainue
Iows：
GRAUE \％OR OZITON
200000.
900000
100000
100000 ．
3.5000
3．0000
2.2000
2.5000
NUMBER IN THIS GFUUP \(=4\)
BRAKEN
E.G. MAI'A
-G. KINHERLFY
GKUUTVLEI MAIN
BHUUTVLE
LESLIt
AKIVALE MAI
    AARIVALE NIM
    ST. HFLEWA
    CORIE
    \(A G L\)
    JUVALUA
    IrGIVIA SA 1
    VIRGINIA SA 1
    VAGGEAFONTEI
    VAAL KEEFS
    DUNE
    AAPBELL REU LAK
    UZ
    DUCRINGUTEIN
E. URIEFUNTEIN
    E. UR
    UIPFAんDUSVLI
    SPAARABATEK
    UE IGEL
    VETVEKSHIST
    LARFUNIEIH
    EASI DRGGAT
    A.S.CFDMA
    - DKANU
    P: STEYN
    S.A. Lainos
    CLKOHA
    \%. UEEPS
    - MGLDINGS
    \(\because\) KEEFS
    CLYVGUK
    E. KARDP PROF.
    \(\therefore E S I F K\) AKEAS
    , RUOTVLEI
    JUFFELSFOWTEIN
    S. kOUDFtuOR
    STILFUNTEIM
    HAMTEOLESTFOF.IEI
    HARTEOE
LUKAINH
    -AMU LEASES
    ZAlUPA A
    KALGUOFLIE
    GHEAT BUULDER
    . a al gourle if
    くOLAB
\begin{tabular}{|c|c|}
\hline Toivs．s & GRADE \％OR UZ／TON \\
\hline 28100000. & .4000 \\
\hline 20600000 ． & ． 0400 \\
\hline 4210000. & .2700 \\
\hline 28000000. & ． 4700 \\
\hline 2000000. & － 2500 \\
\hline S000000． & .2300 \\
\hline 14000000. & ． 2100 \\
\hline 18000000 ． & －22v0 \\
\hline 23000000. & －Sb00 \\
\hline 37000000 ． & .3300 \\
\hline 10000000 ． & －2600 \\
\hline 17000000. & －26u0 \\
\hline 95000000 ． & － 2200 \\
\hline 50000000 ． & .3000 \\
\hline 3400000. & ． 2900 \\
\hline 1600000 ． & .4100 \\
\hline 3150000. & ． 3500 \\
\hline 54000000 ． & .3500 \\
\hline 37000000 ． & － 2980 \\
\hline 16000000 ． & － 2800 \\
\hline 24800000. & .1700 \\
\hline 60100000. & ． 4800 \\
\hline 2030000. & ． 2740 \\
\hline 1300000. & ．6900 \\
\hline S2d0000． & .0950 \\
\hline 29060000. & .4300 \\
\hline 100000000. & ． 4400 \\
\hline 11590000. & －． 5500 \\
\hline 25900000. & .4000 \\
\hline 6360000. & －2760 \\
\hline 710000. & .3600 \\
\hline 2660000. & .4300 \\
\hline 21880000. & ． 4400 \\
\hline 9340000. & ． 4 hu0 \\
\hline 64850000. & ． 0110 \\
\hline 24270000. & .3000 \\
\hline 49540000. & 1.2700 \\
\hline 75550000. & ．Onul \\
\hline 68900000. & － 3800 \\
\hline 13850000 ． & ． 5900 \\
\hline 53650000. & ． 4000 \\
\hline 49150000. & .0500 \\
\hline 70180000. & .7000 \\
\hline 482ち0000． & .4300 \\
\hline 58740000 ． & ． 7000 \\
\hline 38600000 ． & － 2000 \\
\hline 52500000 ． & － 2700 \\
\hline 54890000. & －sevo \\
\hline 53980000. & ． 3500 \\
\hline 32000000. & －2200 \\
\hline 68380000 ． & .4700 \\
\hline 8020000. & ． 3100 \\
\hline 22520000. & ． 4000 \\
\hline 34920000. & －z2u0 \\
\hline 52760000. & .4100 \\
\hline 80440000 ． & .4100 \\
\hline 60000000 ． & .4100 \\
\hline 28080000 。 & .4000 \\
\hline 37000000 ． & 1.0400 \\
\hline 6100000 ． & ． 1900 \\
\hline 1530000. & － 2400 \\
\hline 2100000. & － 2500 \\
\hline 45300000 ． & ． 2900 \\
\hline
\end{tabular}
```

G(OLO

```

NUMBER IH THIS GRUUP \(=1\)
```

GOLD
=ニニ=ニ=ニ==ニ二NTACI METANOKPHIC
ivAme
GUUDREAU 2
FLEXAK S
\AMIALOR1
WAKMEGO
LEPANIO
NUMBER IN THIS GKUUP = 0
GOLD
=ニ=ニッ=ッ=ニ=
VOLCANOGENIC MASSIVE SULPHIDE
\#AME
EKISOERG4
HT. MRGAN
LEPAOTOG
K.T. PATINIUC
NUMBER IN THIS GKUUP $=6$
ニニニニッニッニニニ
VOLCANOGEIVIC MASSIVE SULPHIDE

$$
\begin{aligned}
& \text { EKISOEFG } 4 \\
& \text { ATAUNGAN } 2 \\
& \text { LEPANTOR } \\
& \text { K.T. PATINIU }
\end{aligned}
$$

```

TONS．S
33000000 ．
9530000.
8900000 8900000 ？
40000000 ：
\begin{tabular}{rr}
\(500000:\) & .1350 \\
\(270000:\) & .5300 \\
\(500000:\) & 3000 \\
\(50000:\) & .5000 \\
\(500000:\) & 3.5000 \\
50000
\end{tabular}

NUMBEK IN THIS GKUUP \(=4\)
GRADE \(Z\) OR OZ／TOA
.0200
-090
.1730
.0700
GOLO

        COMPLEX SULPHIUE
                ANE
            LEADVILLE 4
ANOERSVN LAKE
RUSHMUG S

TONS．S
GRADE \％OR UZITON
2401000.
11600000. 58050000. COMPLEX SULPHIUK
                                58000000 .
.\(\cup 840\)
.030
.1100
NUMEEK IT THIS GHOUP \(=\) a
```

SILVER

```
にニニニニーニニニ
    PURPHYKY
                CEMKU CULU 3 SAL
GUTIE 5 SUUK 111
    NUMBER IN THIS GRUUP \(=3\)
GOLD
ニニニニニニニニニニ
        HYDROIHEKMAL
                            NAME
                            EL JALVADUR 1
                    BULLFINCH
                    FALCun
                FERGUSSO4
                EL DOKADO
                    EU(V) SAL 1
                    EL SAL
JUMO
PEMO
                    PEKU
IVANTIJE
                    I VAintuE
EMPEROIR
                    HULLIVGER 1
                HOMESIAKE 1

NUMBEK IN THIS GRUUP \(=12\)

SILVER

CONTACT 价TAMOKPHTC
```

NAlit:
ATLIN,
ATLIM 1
ABEKLUARZ 2
FLEXAKA
INGUARAIV 2
FAKHFLL
MO:ISA S

```
SANEULAILA 3


FUMOEK IN THIS GROIJP \(=10\)
```

SILVER

```

    COMPLEX SULPHIUE


NUMBER IN THIS GRUIJP \(=9\)
SILVFR
ニニニニンスニニニ
        VOLCAIVUGENIC PASSIVE SULHHIDE
            NANE
                            ERISBEHG 3
                    IOD CEEEK 3
                    ANVIL 3
                    COMUENHILL 2
                    SULLIVAN 3
HKUKEA HILL 3
\(1045 . S\)
3200000
2401000
60800000
18000000
17600000
1000000
7000000
\(8650000:\)
80000000.

8.

TONS．S
33000000. 62500000. 63000000 ． 45000000 ． \(40000000^{\circ}\) 170000000 ． 120000000 ．

GRADE Z OR OZ／TUR .3000
4.8500 1． 1.0000 1.0000
7.3900 1.7000
1.7700 1.9300

MUritER It，THIS Grour \(=7\)
```

SILVEH
ニニニニニニ=ニ=

```


NUFEER IN THIS GRUUR \(=2\)
```

SLLVEK
ニニニニニニニニ

```
    HYURUTHEK:AAL
        AA)
            EL SALVADUH 2
            FMAINCES LAKE 1
            EL JAL?
            HULLINGER
            BULAKER HILL 1
\begin{tabular}{rr} 
TONS．S & GRADE \(\%\) \\
118000. & 10.0000 \\
00000. & 6.9000 \\
400000. & 10.2000 \\
118000. & 3.2000 \\
60000000. & \\
40000000. &
\end{tabular}

NUMBEK IT THIS GRUUP \(=6\)
```

Lt. ========*

```

```

                C.AME
                ANGUUMAN 1
    NUMBER IA THIS GROUP = 1
    LEAD
=ニニニ==ニニニ二,

| TONS．S | GRADE $\%$ OR UZITON |
| ---: | ---: |
| 4400000. | 12.3000 |
| 10200000. | 2.8000 |
| 14000000. | 2.8000 |

NUMBER IN THIS GRUUP $=3$

```
ニニニニニニニニニ
```

```
LEAD
```

LEAD
=ニ====
=ニ====
CGNTACT METANORPHIC
HADEE
ATLIHZ?
FArMELL
FArkELL
MT: ISA 3
SAI: AUTUNIO}
NUMBER IA THIS GRUUP = 7
LE AD
ニニニ=ニニニニ=
PGRPHIYRY
BUTIE 4

```
\begin{tabular}{|c|c|}
\hline TONS．S & GRADE \％OR OZ／TUN \\
\hline 150000. & 5.0000 \\
\hline 2200000. & 7．0000 \\
\hline 60000. & 12.8000 \\
\hline 600000. & 2．5000 \\
\hline 34000000 ． & 7.4000 \\
\hline 5000000 ． & ． 9000 \\
\hline 35000000 ． & 12.0000 \\
\hline
\end{tabular}

NUMBER IA THIS GRUUP \(=7\)

ニニニニニニニニニニ
PGRPHYRY
GRADE \％OR UZITON 40500000 ． 5.0000 2.1000

\[
\begin{aligned}
& \text { PIMEE } \\
& \text { BUTIE } \\
& \text { BULI }
\end{aligned}
\] 00000000 ．

TONS．S GKADE \％OR OZ／TUN
7.0000

```

IH THIS GROUP $=1$
LEAD
＝－ェー＝ーニーニース TRA I I F ORM

```
                NAME
ZBA 1
MOGUL ?
                NAME
ZBA 1
MOGUL ?

```

Cuntact metanorphic

```

1025.5
00000
400000
1300000
110000
40000000
```

GKAUE YKUQZTUS

```

NUMBEK IH IHIS GRUUP \(=5\)

```

            COMPLEX SULPHIUE
                FAME
                    LEAUVILLEE 
                    AATDFKSON 7 AKE S
                    ANDEKSON LAKE 3
                    MAUKIGAL
                    OELAEATANA 己
                    OELANATANA
                        BELTANA 4
                    AKE
    NUMBER IH 1 HIS GROUP $=10$

```
```

LEAB

```
LEAB
===ニ===###
===ニ===###
                    NANE
                    NANE
                ANE
                ANE
                PITCHER ?
```

                PITCHER ?
    ```
2401000
00800000
18000000
17600000
1000000
7000000
730000
97000
8650000
80000000 .
GRADE Z OK OZITOH
        5.1300
        3.5000
        2. 3500
        6.2000
        6.0800
10.5000
        10.5000
c. 4000
        1ट. 2.0000
            C. 0.000
5.0000
            5.0000
4.3000
200000000.
GRADE Z UK UZ/TON
                                    .0000
LEAD

VOLCANUGEIIC NASSIVE SULFHIDE
                NABE
                ALVVI
                AWVILI 1 HKUKEALL 1
                AA AKOKERHILL
                MADAIKUDAM
                bKCKEIV HILL 1
                GKCKEA HILL 1

TONS．S
63000000 ．
4500000 ．
3000000 ．
\(70000000^{\circ}\)
10000000 ：

GRAUE \％OR OZITUN
4.0000
12.9700
1.2000
4.0000
13.0000
1.7000

FUMHEK IN THIS GRUUH \(=6\)
\(\stackrel{\text { ZINC }}{=}=\)

ニニニ

\section*{A．A E}

GUNAER IN THIS GHOLT＝

\section*{ZINC}
＝ッニニニニニニニン
STRATIFOK：

－AHt
HATTAGAMI 1
AnTANINA 2
\(\angle B A\)
GGU
SUGULI I INES 2

\section*{TONS．S GKADE Z OR UZITUN \\ 28.0000}
\(\qquad\)


TONS：S GRADE \％OR OZ／TON
18000000 10．0000
\(11000000 . \quad 1.5000\)
\(44100000^{\circ}\)
10200000 ．
14000000 ． 20.3000
8.2000 7.4000

NUMBER I＇THIS GRUUP \(=5\)

\section*{ZINC}
＝ニニニニニーニ
CONTACT ME TAMORPHIC


NUMEER IN THIS GRUUP \(=9\)
```

ZINC
ニニ=ニ=ニ====
HUKPHYKY
NANE
GUTTE ?
NUNBER I: THIS GPOUR == 1

```

TONS．S
50000000 ． 50000000. 270000000 ． 27000000.

5200000 ．
60000 ．
34000000 ．
5000000 ．
35000000 ．
GRADE ：OR OZITON
5.0000
.4000
5.1000
5.1000
13.0000
5.0000

7． 5000
5.6000
1.6000
11.0000
                            3 (tis
\[
\frac{\text { TONS.S }}{000000 .}
\]
\(\underset{\sim}{L I N D}=\)
マニニニニニニニニン
HY゙リスかけににはAL
AAME
\begin{tabular}{rr} 
TONS．S & GRAUE \\
60000. & 6.7000 \\
\(400000:\) & 9.0000 \\
\(110000:\) & 5.4000 \\
0000000. & \\
\hline
\end{tabular}

NUMBER IN THIS GRUUP \(=4\)

2 INC
CINC
\(=\) N
CUMPLEX SULPHIUE
RANE
LEAUVILLE 2
BATHVRSI 1
HATHURST 6
TONS．S GRADE \％OK OZ／TUR


NUMBER IN THIS GHOUP \(=10\)
ANDEKSON LAKE？
MAUKIGAL
RELTANA 1
RELTANA \(\frac{1}{3}\)
HUSERURG
0000
```

$\stackrel{21 v C}{=}=$

```


NUMBER IN IHIS GRUUP \(=1\)

ZINC
ニンニニニニニニー
VGLCANUGEIIC MASSIVE SULPRIDE


T0NS．
40500000
62500000
63000000
45000000
3000000
170000000
120000000
10000000.
GRADE Z OR UZ／TOR

5．0000
5.0800
5.0000
13.7000
5.0000
11.0000
5.0000
\(\stackrel{\text { Ifot }}{=}=\)

    TONS.S GRADE 2 OK OZITUN
280000000. 33.0000
IVUMBER IN THIS GRUUR \(=1\)
IRON
ニニニニニニニンニ CUNTACT MEIAMORPHIC
\begin{tabular}{lrr} 
NAME & TONS．S & GRADE \％OR UZITON \\
\hdashline ORANGE 2 & 5100000. & 44.6000
\end{tabular}
NumEER IN THIS GROUP \(=1\)
1 RON
－ニンニーニンニン
SED IMERIAKY
HAN
CASSASWANIPI
CADIA
40000000 ．
500000000 ． 6040000 ． 1000000000 ．
5000000
40000000
50000000 ．
000000000 ．
350000000 ．
50000000 ．
50000000.
10000000
200000000 ：
300000000 ．
3000000000 ．
50000000 ．
800000000 ．
200000000 ．
450000000 ．
450000000.
650000000.
800000000 ．
400000000 ．
MUMDER IH TAIS GROUR \(=21\)

\section*{UKANIUM \\ ニッニンニンニニニニ}
SEUI侯NIAFY
in A

KEXSPA
KITIS
FERMAIIDEZ
MERGITIA SA 2
MECUSVE CALDA
\begin{tabular}{|c|c|}
\hline TONS．S & GRADE \％OR UZITON \\
\hline 28100000. & .0340 \\
\hline 1700000 ． & .0930 \\
\hline 250000. & － 5000 \\
\hline 1350000. & － 1200 \\
\hline 37000000. & .0360 \\
\hline 16000000. & － 0040 \\
\hline 1000000. & ． 7500 \\
\hline 5500000 ． & － 0400 \\
\hline
\end{tabular}
TUMEEK IN IHIS GRULP \(=\) \＆
```

MICKEL
SFDD\&TAGY
M
MONS.S GHADE % 0k 07/T01/
NUMHER I% THIS G,RUUP = 2

```
\(\stackrel{\text { NICKEL }}{===}====\)
    Forphyty
        PORPHYNY
                WAME
GAREHEAUL2
GREMALE
    lons.S
40500000.
45000000.
GRADE \% OK UZITON
.2000
1.5000
NUMBER IN THIS GROUP \(=\) C
MANGANESE
\(====\approx=====\)
        SEDIME NTABY
                NANE
        IONS.S GRAUE Z OR UZITON
        NUNGER It. THIS GRUUR \(=1\)
MANGAVESE
\(========\)
\(=\)
=ニニニニニニニニ二
    PORPHYKY
    GRADE \% OR UZITUN
800000000 .
    NU*DER IM IHIS GROUP \(=1\)
IRC:
マニニニ
        VOLCANGGFNIC VASSIVE SULPHIUE

            ERTSIRFR 2
            TONS.S GKADF \% OR OZITON
                                    33000000 . 40.0000
    NUMOFR IA IHIS BTOUR \(=1\)

VULCAMUGE IC MASOIVE SULPHIDE
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline ruisses & GKAUE \% OR UZ/TUN \\
\hline 27670000. & 1.4900 \\
\hline 13500000. & . 6 hu0 \\
\hline 14290000. & 3.4000 \\
\hline 14300000. & 3.4000 \\
\hline 14300000. & S.6500 \\
\hline 1000000 . & 2.0000 \\
\hline
\end{tabular}

NUMBEK IN IHIS GRUUF \(=6\)
```

MICKEL
0\times10E
1.AM, 亘
GIFOUULDER OX.

```
        \(\begin{array}{ll}\text { TONS.S GKAUE } & \text { GR UZITON } \\ 250000 . & 1.1300 \\ 250000: & 1300\end{array}\)
    NUMBEK IA THIS GRUUP \(=\) ?
NICKEL

    LATERIIE


NU:YHER IU THIS GRUUP \(=10\)
```

NICKEL

```
        SIRAIIFGKN
            \(1 \rightarrow\) Ar

        500000 GKADE 2 OK OZITUN
\(\begin{array}{ll}1000000: & 4.0000 \\ 1.5000\end{array}\)
NICKEL
\(======\sim\)
    CONTACI ME IAMOKPHIC



TUNBER IN THIS GKOUP \(=7\)
```

MCLYADE:UH
MMLYADENUHY

```
\begin{tabular}{|c|c|c|}
\hline A A． t & TuNs． & （大ム） \\
\hline VAactuvta？ & 180000000. & .1350 \\
\hline LUrivex e & 293000000． & － 1140 \\
\hline He：itersum & 303000000. & ． 2000 \\
\hline Eivonio & 234000000. & －0499 \\
\hline FIMA 2 & 120000000. & － 0100 \\
\hline EL SALVAi）utr IV & 1000000000. & － 0200 \\
\hline HINTHAN & 2000000000. & － 0300 \\
\hline CLIfiAx & 550000000． & ． 1200 \\
\hline
\end{tabular}

NUMBER IH THIS GKOUP \(=\) \＆

\section*{MERCURY \\ ニニニニニニニニニ} COFITACT METGMONFHIC

NAME
TYAUGHTUN CR。
GRADE \％OR OLITON
1400000 ． .0550

T．UNGER IN THIS GRUUP \(=1\)

11 N
 HYDKUTHERNAL

HAME
PHEAL JAGE
WHITE CKYSTAL
PILU CHE
TONS．S
GRADE Z OK UZITON
5000000 ．
660000.
930000.
340000
－－－2．－2500
－ \(2: 3700\)

WUMBEK I／THIS GRUUP \(=4\)
```

IIN
ニニッニニニニ=
SF(1)IMEFITARY
Trumisuay IS.

```
        TONS.S GKAJE 2 OK UZITUN
    10500000 .
        .1000
```

CAON.IUM
=====マ====
uxI!t
ANEE

```

```

                                    c.jev:
    NUMBER IN THIS GROUF = 1
    IITANIUM
SEDIMENTARY
VAIE
TONS.S GNNJた z OK UZIT0N
NUMGER IH THIS GROUP = 1
COLUMR IH/A
ニニニニニニニニニー
SEDIMENTARY
NAME
OKA
2500000
GRADE % OR UZITON
.4000
WUNBFK IN THIS GRUUP $=1$
CDBAL 1
ニッニニニニニニニ LATERITE
GHEEIVILLE ट
GEHMVALE?
45000000 ． 45000000 ． 05000000 ．
TKADF ：3N UZ／TUN －1000
－1， GEKMVALE？ －Ilv
N（14．BEK IN THIS GRUUP $=3$
MOLYBDEVUM
ニニニニニニニニン
COMTACT NETAMORPHIC

```

NUNHER II：THIS GRUUP \(=1\)

TURGSTEN
－ニニニニンニニニ
CUNTACT AETAMORPHIC
IONS．S GNAUL U UR UZITUN
500000 ． 1.4000

NUMBER IIN THIS GKOLP \(=2\)

NUMBER UF LINEU IN HASE FILE \(=421\)
＊＊＊＊ANALYSIS CDRPLETE＊＊＊＊

BISMUTH
ニニニニニニニニニン
HYOROTHERIHAL
AANE
JUNU 2
TONS．S GKAUE OK UZITON 200000 1．000

RUMBER IN THIS GRUUF \(=1\)

APPENDIX D
Statistical Analysis of the Basic Deposit Data
STATISTICAL IHFORMATION FOR COPPER.
DEPOSIT TYPE HYOROTHEFMAL

STATISTICAL INFORMATION FOR COPPER
DEPOSIT TYPE COMPLEX SULPMI OE
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TONS & GRADE & S.N. TONS & S.N. GRAUE & LOG TONS & LOG GRAOE & SNL IONS & SNL GRADĖ \\
\hline & & & & & & & \\
\hline \(6{ }^{3} 800000\). & 1.2403
\(1 \cdot 2300\) & \(\therefore .7774\) & \[
-1: 56=\frac{3}{3}
\] & E. 5051 & \(\square\)
\(\therefore 5528\) & -.2592 & -.2144
-1.6 .84 \\
\hline \(1303000 .\). & 1. \(1+0\) & -. 34.9 & -. 59.4 & \(7 \cdot+1{ }^{\text {7 }} 3\) & - 5659 & \(\because 126\) & -:1152 \\
\hline \[
\begin{aligned}
& 19000050 . \\
& 176000:
\end{aligned}
\] & & -: 1273 & -1.93 \(9^{3} 15\) & & \(-438\) & - 612 & \(-1.32 .2\) \\
\hline \[
\begin{array}{r}
1760 \\
100000 \\
10000 .
\end{array}
\] & 3.0300 & -: 1415 & .94
\(: 98\)
9 & 7:2455 & :4771 & -1.8456 & :9191 \\
\hline 7000000. & 3.6600 & - 6796 & 1.5329 & -. 8.30 & - 5635 & -.36)3 & 1. \(\cdot 318\) \\
\hline 8654000. & .89.8 & -. 5,54 & -. 685 & 9.9375 & \(\cdots 505\) & -.1986 & -.3011 \\
\hline 58000000. & 2.40 .0 & 1.6425 & . 5097 & 7.7634 & - 3812 & 1. 2549 & . 6303 \\
\hline
\end{tabular}
```

SIATISTICAL INFORMATION FOR CUPP:E
OEPOSIT TYPE VOLGANOGENIC MASSIVE SULPHIDE
33000000.

```
STATISTICAL INFORMATION FOR COPPEF





\(\qquad\)
\(\qquad\)









    1





    TONS
    !
STATISTICAL INFORMATION FOR COPPZR
OEPOSIT TYPE SEOIMENTAQY
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TONS & GRADE & S.N. TONS & S.N. GरADE & LOG TONS & LOG GRADE & SILL TONS & SNL GRADE \\
\hline \[
\begin{array}{r}
2003000 \\
30000000 \\
1000000: \\
3300000 .
\end{array}
\] & \[
\begin{array}{r}
2.5069 \\
2.6000 \\
2: 8900 \\
2.440
\end{array}
\] & \[
\begin{aligned}
& -5053 \\
& 1: 4966 \\
& -: 5775 \\
& -.4133
\end{aligned}
\] & \[
\begin{array}{r}
4920 \\
-1548 \\
-4351 \\
: 4383
\end{array}
\] & 503015
0.472
0.85 & \[
\begin{array}{r}
3979 \\
: 455 \\
-: 3874 \\
: 359
\end{array}
\] & \begin{tabular}{l}
\(=: 4278\) \\
\(: 0494\) \\
\hdashline-872
\end{tabular} & \[
\begin{array}{r}
.4098 \\
: 5533 \\
-.4101 \\
.4430
\end{array}
\] \\
\hline
\end{tabular}


Tons



.

RADE



```

M,

```

```

M,

```


**** ANALYSIS COMPLSTE ****

20.8
OR LCG - GRADE CALCULATEO CHI \(=5.304\)
F ACTUAL CHI IS LESS THAN THEORETICAL CHI THEN OISTRIBUTION IS NORMAL .435
5.304
\(\begin{array}{c:c}\because & \vdots \\ \therefore & \vdots\end{array}\)
5.9
-7.04

5.304 EQUIVALENT LOG - TONNAGE MELN = 103107400
EQUIVALENT LOG - TONNAGF STANOAFO DEVIATION =
EOUIVALENT LOG - GRADE MELN = .7201
EQUIVALENT LOG - GRAOE STANOARD DEVIATION = \(\mathbf{1 . 6 5 6 4}\) BASIC MEAN TONNAGE =
BASIC TONNAGE STANOARD DEVIAT
657916115 .
.4167
***** ANALYSIS COMPLETE ***** BASIC MEAN TONNAGE \(=\quad 32\) Y967ミ91
BASIC TONNAGE STANOARD DEVIATION \(=\)
GASIC GPADE STANOARO OEVIATI

STATISTICAL INFORMATION FOR LEAO

STATISTICAL INFORMATION FOR LEAO
79
75
89
59
18
93

\(\because \because \because\)
0,10008
\(3,2,02\)
onacos
oncuorn
ogruos

03500
00300
0,100


STATISTICAL INFOPMATION FOR LEAD

STATISTICAL INFORMATION FOQ LEAO
OEPOSIT TYPE CONTACT METAMOFPHIC

```

STATISTICAL INFORMATION FOR LENO
ohyry

```

```

TONS
DEP
SNL TONS SNL GRADE
-:6990
.4.31
:707%
-1.000
.707%1
-.7%7%

```
 THEORETICAL CHI = FOR TONS CALCULATED CHI = FOR GRAOE CALCULATEO CHI = FOR LOG - TONS CALCULATED CHI FOR LCG - GRADE CALCULATCD CHI actual chi is less rhat EQUIVALENT LOG - TONNAGE MEAH gUIVALENT LUG - TONNAGE STAM

EOUIVALENT LOG - GRAOE MEAN = EQUIVALENT LOG - URAOE STANOARO DE BASIC TONNAGE STANDARO DEVIATION =

BASIC MEAN GRADE \(=4,50[0\)
BASIC GRADE STANDARJ OEVIATION = 2.6977
\begin{tabular}{llllll} 
CUNFIOENCE LEVEL \(\%=\) & 2.0 & 5.0 & 2.0 & 2.0 \\
THEORETICAL CHI \(=\) & 5.63 & 5.02 & 3.84 & 2.72 & 1.64
\end{tabular}
nommal
I
OEPOSIT TYPE CONTACT 1 ETAMODDHIC

STATISTICAL INFORMATION FOR ZIUC
STATISTICAL INFORMATION FOR ZING


STATISTICAL IMFORMATION FOR ZIHO
OEPOSIT TYPE STRATIFOFM

STATISTICAL INFORMATION FOR ZI:C
 \(\because \because \because \because \because\) \(\begin{array}{ll}0 & 0 \\ 4 & 3 \\ 10 \\ 0 & j \\ 0 & 3 \\ 2 & 0 \\ 6 & 3 \\ 6 & 0 \\ 0 & 0\end{array}\)


\footnotetext{

}
STATISTICAL INFORMATION FOR URANIUM


STATISTCAL IHFONHATIOA FOR UPANIUK CONFIOENCE LEVEL \(\%=2.1\)
THEORETICAL CHI \(=6.63\)

FOR TONS CALCULATE.O CHI \(=1.0 .90\)
FOR GRADE CALCULATEO CHI = 7.000
-
0
0
0
0
3
3
-
CHI


QUIVALENT LOG - GRADE MEAN = .0791
EQUIVALENT LOG - GRADE STANDARO OEVIATION BASIC MEAN TONNAGE \(=11112500\),

BASIC TONNAGE STANDARO DEVIATION
BASIC MEAN GRADE \(=.1970\)
.2749
***** ANALYSIS COMPLETE *****

NFIDENCE LEVEL \(\%=1.0\)
R TCNS CALCULATEO CHI =
GRADE CALCULATEO CHI =
LCG - TONS CALCULATEO CHI
LOG - GRADE CALCULATEO CHI



SIC MEAN TONNAGE
SIC TONNAGE STANOARD DEVIAT
IC MEAN GRADE \(=6.5350\)
SIC GRADE STANDARO DEVIGTION = 2.3339

BASIC MEAN GRAOE = 11.6460
BASIC GRADE Stanoard deviation \(=11.6840\)

STATISTICAL INFORMATION FOR GOLO
DEPOSIT TYPE HYOR̃OTHEKMAL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TONS & GRADE & S.N. TONS & S.N. GRADE & LOG TONS & LOG SKADE & SNL TOWS & SHL GRAD= \\
\hline  &  &  &  & \[
\begin{aligned}
& 5: 729 \\
& 5: 8638 \\
& 4: 7782 \\
& 5: 0040 \\
& 5: 719 \\
& : 9542 \\
& : 2641 \\
& 5: y 560 \\
& 7: 7783 \\
& 8: 23
\end{aligned}
\] & \[
\begin{array}{r}
-0: 39 \\
-: 4949 \\
-: 555 \\
\hdashline: 183 \\
-: 4799 \\
-: 440 \\
-: 1499 \\
-: 4969 \\
-: 4949
\end{array}
\] &  &  \\
\hline
\end{tabular}
STATISTICAL INFORMATION FOR GOLG

STATISTICAL INFORMATION FOR GOLD
OEPOSIT TYPE VOLCANOGENIC MASSIVE SLLPHIDE
TONS GRADE S.N. TONS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline TONS & Grade & S.N. TONS & S.N. GRADE & LOG TONS & LOG & GRADE & SNL TONS & SNL GRADE \\
\hline \[
\begin{aligned}
& 33000000 . \\
& 95300000 \\
& 8990009 \\
& 40600000 .
\end{aligned}
\] &  &  & \[
\begin{array}{r}
-1: \begin{array}{r}
713 \\
: 375 \\
3 \\
\hdashline \\
2355
\end{array}
\end{array}
\] &  & &  &  &  \\
\hline
\end{tabular}
STATISTICAL INFORMATION FOR GOLO
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TUNS & GRADE & S.N. TONS & S.N. GNAJE & LOG & TONS & LOG & GFADE & S'u & Tuns & SNL & GRADE \\
\hline 500000. & & -. 3740 & -. 5693 & & .699u & & . 8597 & & & & \\
\hline 27700. & - 5 3 \({ }^{\text {a }}\) & \(=: 5537\) & 73.2 & & - \({ }^{\text {a }}\) & & . 5229 & & -65? & & 1079 \\
\hline \(5{ }^{5}\) & -50 & -:35 \({ }^{-1}\) & \(\because 2.473\) & & 724? & & , 10 & &  & & -142 \\
\hline 350000 . & -06.0 & 2.035 & -.7128 & & 54. & & .22-8 & & 5+3 & & . 2473 \\
\hline 500000 . & 3.500 & -. 374 & 1. \(3 \rightarrow 8\) & & 6990 & & . 5441 & & 67 & & -.,68 \\
\hline
\end{tabular}












    Fig






    俍



    隹


STATISTICAL INFORMATION FOR GOLO


CONFIOENCF LEVEL \% = \(\underset{.2}{ }\) \begin{tabular}{l}
\(\sim\) \\
\(\vdots\) \\
\hline
\end{tabular}

FOR TCNS CALCULATEO CHI =
FOK GRADE CALCULATEO CHI
FOR LOG - GRADE CALCULATEO CHI
IF ACTUAL CHI IS LESS THAN THLOR
EQUIVALENT LOG - TONVAGE NEAN =
QUI VALENT LOG GRADE MEDN =
QUIVALENT LOG - GRAOE - GRAOE STANOA
EQUIVALENT LOG - GRAUE
BASIC MEAN TONNAGE =
BASIC TONNAGE STANOARD
BASIC MEAN GRADE = . 1.030
BASIC GRADE STANDARO DEVIATION = .0593

STATISTICAL INFORMATION FOR SILVER

STATISTICAL INFORMATION FOR SILVER
OEPOSIT TYPE COMFLEX SULPHIOE

STATISTICAL INFOFMATION FOQ SILV:R
DEPOSIT TYPE VOLCANOGENIC MASSIVE SULPHIOE
GRAOE
monneso
Dinfor rin
mocththo

\(=.8579\)
\(=: 2723\)
\(=: 2529\)
\(=: 7188\)
\(=: 96\)
\(=8691\)
r

ouce 0 go
muthingor
mwit
iniinivi




EPOSIT
DEP
Mosmy
STATISTICAL INFORMATION FOR SILVER
\(\begin{array}{rr}3598 & -1: 133 \frac{1}{7} \\ \mathbf{0} 508 & : 3728\end{array}\)
-
STATISTICAL INFORMATION FOR SILV:
\(: 9000\)
10200000
\(14000000:\)

CONFIDENCE LEVEL \% = FOR TCNS CALCULATED CHI = FOR GRADE CALCULATEO CHI = FOR LOG - TONS CALCULATEO CHI

OR LOG - GRADE CALCULATEC CMI
EQUIVALENT LOG - TONNAGE MEAN =
EQUIVALENT LOG - TONNAGE STANDARD
EQUIVALENT LOG - GRAOE MEAN =
EQUIVALENT
\(\begin{array}{ll}\text { BASIC MEAN TONNAGE }= & 22372333 . \\ \text { BASIC TONNAGE STANDARD OEVIATION }= & 28474847 .\end{array}\)
BASIC MEAN GRADE \(=2.3733\)
BASIC GRADE STANDARO DEVIATION \(=2.0170\)


FOR TCNS CALCULATEO CHI \(=\quad 2.714\)
FOR GRAOE CALCULATEO CHI \(=2.714\) FOR GRAOE CALCULATEO CHI \(=2.714\)
FOR LOG - TONS CALCULATEO CHI \(=2.714\)
FOR LOG - GRADE CALCULATEO CHI \(=1.571\)
IF ACTUAL CHI IS LESS THAN THEORETICAL CHI THEN OLSTRIOUTIOV IS NOMMAL FOR LOG - TONS CALCULATEO CHI \(=2.714\)
FOF LOG - GRADE CALCULATEO CHI \(=2.714\)
IF ACTUAL CHI IS LESS THAN THEORETICAL CHI THEN OLSTRIOUTIOV IS NORMAL FOR LOG - TONS CALCULATEO CHI \(=2.714\)
FOF LOG - GRADE CALCULATEO CHI \(=2.714\)
IF ACTUAL CHI IS LESS THAN THEORETICAL CHI THEN OLSTRIOUTIOV IS NORMAL IF ACTUAL CHI IS LESS THAN THEORETICAL CHI THEN OLSTRIDUTION IS NONMAL
EQUIVALENT LOG - TONHAGE MEAN \(=\quad 64749122\). EQUIVALENT LOG - TONNAGE STANOAFD EQUIVALENT LOG - TONNAGE STANOAFD OEVIATION =
EQUIVALENT LOG - GRADE MEAN = \(1.8 O 51\)
EQUIVALENT LOG - GRADE STANOARO DEVIATION =

EQUIVALENT LOG - GRADE STANOAR
EQUIVALENT LOG - GRADE STANOARO DEVIATION \(=2.841 \%\)
BASIC MEAN TONNAGE \(=\)
\(7621428 \in\). BASIC TONNAGE STANDARD OEVIATION \(=50330103\). BASIC MEAN GRADE \(=2.7257\)

BASIC GRADE STANDARD OEVIATION \(=2.5075\)
50390103.


\footnotetext{
**** ANALYSIS COMPLET: *****
}
STATISTICAL I'LFORMATION FOR IRJN
STATISTICAL IMFORMATION FOR NICKEL
DEPOSIT TYPE VOLCANOGENIC MASSIVE SULPHIOE

STATISTICAL INFOPMATION FOR NICKEL

STATISTICAL INFORMATION FOR HICKEL








6257
579
3962
775
2290
7075
243
379
33
771

\(\qquad\) 111

ITE
GRA





statistical information for nickel.
DEPOSIT TYPE STRATIFORM

STATISTICAL INFORMLTION FOQ NICKEL

statistical information for nickel
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TONS & GRAOE & S.N. TONS & S.N. GRADE & LOG TOHS & LOG GRADE & SNL TONS & SNL GRADC \\
\hline 450000000. & 4.0003
1.550 & -:707\% & - 07372 & 5.6998 & - 6021 & -.7571 & - \(\quad .7571\) \\
\hline
\end{tabular}
STATISTICAL INFURMATION FOR NICKEL
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline TONS & GRADE & S.N. TONS & S.N. GRAJE & LOG TONS & LOG GRADE & SNL TUNS & SNL GRADS \\
\hline 40500000.
4500000 & \(1: 2009\) & -. 7371 & .7375 & \(7.6 \bigcirc 75\) & -. 6997 & . 787071 & . 77071 \\
\hline
\end{tabular}
***** ANALYSIS COMPLETE *****

OEPOSIT TYPE CONTACT METAMOWPAIC
\[
\begin{array}{c:c}
\sim & \check{v} \\
\vdots & \stackrel{5}{2}
\end{array}
\]

CONFIOENCE LEVEL \% =
THEORETICAL CHI \(=6.63\)
FOR TONS CALCULATEU CHI =
FOR GRADE CALCULATEO CHI \(=2.714\)
7.285

FOR LOG - GRADE CALCULATEO CHI = \(2.7: 4\) EOUIVALENT LOG TOANAGE MEAN = 7.725
EOUIVALENT LOG - TOANAGE MEAN =
eurnalent log - tonnage stanoano orvia
EQUIVALENT LOG - GRADE MEAN = 2.2271
BASIC MEAN TONNAGE \(=783714\).
BASIC TONNAGE STANOARO DEVIATION =
BASIC MEAN GRADE \(=2.8314\)
BASIC GRADE STAMDARO DEVIATION \(=1.5764\)


\footnotetext{
***** ANALYSIS COMPLETE *****
}

OEPOSIT TYOZ SEDIMENTLZY
IDENCE LEVEL \%
I
\(\qquad\) FOR GRADE CALCULATEO CHI
for log - tons calculateo
FOR LCG - Grane calculateo ch
IF ACTUAL CHI IS LESS THAN THLOLETICAL CHI THEH OISTRIEUTION IS NOGMAL
EQUIVALENT LOF - TONNAGE MEAN \(=\quad\) T4386456. EQUIVALENT LOG - TOANAGE MEAN = 74386456.
EQUIVALENT LUG - TONNAGE STANDAGO DEVIATIO\% = EQUIVALENT LUG - TONNAGE STANDAGO DEVIATIO』 =
EQUIVALENT LUG - GRADE MEAN = 1.5315
EQUIVALENT LOG - GRADE STANOARO OEVIATION = \(1.157 ?\) BASIC MEAN TONNAGE = 3317900T.
61005829 .
.2385
BASIC MEAN TONNAGE \(=3317002\)
BASIC TONNAGE STANOARO DEVIATION \(=\)
BASIC MEAN GRADE \(=1.5970\)
BASIC GRADE STANOARO OEV́IATION
**** ANALYSIS COMPLETE *****

IDENCE LEVEL \(\%=1.4\) RETICALCHI \(=6.63\) TCNS CALCULATEO CHI = GRADE CALCULATEO CHI =

LCG - TONS CALCULATEO CHI \(=2.003\)
LCG - GRADE CALCULATEO CHI \(=2.03\)
CTUAL CHI IS LESS THAN THZORETICAL VALENT LOG - TOANAGE MEAN =

VALENT LOG - TONNAGE STANJAFO DEVIA
VALENT LOG - GRAOE MEAN = 1.1350
NN TONNAGE = STANDAR
C MEAN TONNAGE =
CMEAN GRADE = 1.1350
C MEAN GRADE \(=1.1350\).
C GRADE STANIARO DEVIATI
.0071

IF ACTUAL CHI IS LESS THAN THLORETICAL CHI THEN OISTRIBUTIO: IS NORMAL
EQUIVALENT LOG - TONNAGE MEAN = 10147383.
EQUIVALENT LOG - TONNAGE STANDARD DEVIATION =
EQUIVALENT LOG - GRADE MEAN = 2.2385 IF ACTUAL CHI IS LESS THAN THLORETICAL CHI THEN OISTRIBUTIO: IS NORMAL
EQUIVALENT LOG - TONNAGE MEAN = 10147383.
EQUIVALENT LOG - TONNAGE STANDARD DEVIATION =
EQUIVALENT LOG - GRADE MEAN = 2.2385 IF ACTUAL CHI IS LESS THAN THLORETICAL CHI THEN OISTRIBUTIO: IS NORMAL
EQUIVALENT LOG - TONNAGE MEAN = 10147383.
EQUIVALENT LOG - TONNAGE STANDARD DEVIATION =
EQUIVALENT LOG - GRADE MEAN = 2.2385 IF ACTUAL CHI IS LESS THAN THLORETICAL CHI THEN OISTRIBUTIO: IS NORMAL
EQUIVALENT LOG - TONNAGE MEAN = 10147383.
EQUIVALENT LOG - TONNAGE STANDARD DEVIATION =
EQUIVALENT LOG - GRADE MEAN = 2.2385

DEPOSIT TYPE VOLCANOGENIC YASSIV SULPHIDE
2.5 \(\quad 5.0\)
2.5
-0.02
1.3
6.63

CONFIDENCE LEVEL \(\%\)
THEORETICAL CHI =
FOR TONS CALCULATED CHI \(=2.020\)
FOR GRADE CALCULATED CHI \(=3.23 ?\)
FOR LOG - TONS CALCULATE CHI
3.333 EQUIVALENT LOG - GRADE STANDARD DEVIATION = 1.9499
BASIC MEAN TONNAGE \(=14176667\). EQUIVALENT LOG - GRADE STANDARD DEVIATION =
BASIC MEAN TONNAGE \(=1.9499\)

BASIC TONNAGE STANDARD DEVIATION = 8441329 .
BASIC MEAN GRADE \(=2.4333\) BASIC GRADE STANDARD DEVIATION \(=1.2306\)
2 5. 08 FOR LOG - GRADE CALCULATED CHI =

TATLSTCAL IHFUSMATIO: FUR NICKEL
STATISTICAL INFORMATION FOR TI'
STATISIICAL INFORMATION FOR MOLYBJENLM


CONFIDENCE LEVEL \(\%=\ldots .2 .5\) _
\(\because \ddot{~}\)
\(\begin{array}{ll}\therefore & + \\ \bullet & 0 \\ 0\end{array}\)
2.5
-2.32 \(m\)
\(\stackrel{0}{0}\)
\(\stackrel{0}{2}\)

FOR GRADE CALCULATED CHI = 2.060
FOR LOG - TONS CALCULATED CHI \(=\)
FOR LOG - TONS CALCULATED CHI
FOR LOG - GRADE CALCULATE O CHI
IF ACTUAL CHI IS LESS Than THe
equivalent log - tonnage mean =
eQUIVALENT LOG - TONNAGE STA
EQUIVALENT LOG - GRADE MEAN \(=0.8292\)
EQUIVALENT LOG - GRADE STANDARD DEVIAT BASIC MEAN TONNAGE = 173250. .
- 1 or o

BASIC GRADE STAMJARO DEVIATION
STATISTICAL INFUGMATION, FOR CUBALT


OEPOSIT TYPE CONTACT NETAMOROHIC
\[
\text { CONFIDENCE LEVEL } \%=\ldots, 1 \quad 2.5 \quad \frac{5}{2} \quad 120 .
\]
\[
\text { THEOKETICAL CHI }=6.65
\]
FOR TCNS CALCULATEO CHI =
FOR GRADE CALCULATEO CHI
\[
\begin{aligned}
& \text { FUR LOG - TONS CALCULATED CHI } \\
& \text { FOR LOG - GRADE CAL CHITO }
\end{aligned}
\]
IF ACTUAL CHI IS LESS THAN THEORETICAL CHI THEN OISTKIBUTION IS NOFMAL
EQUIVALENT LOG - TONNAGE MEAN =
2. 3606 e.
equivalent log - tonnage stanjafo oeviation =
EQUIVALENT LOG - GRADE STANOARO JIVIATION = 2.425
BASIC MEAN TONNAGE \(=525 J 000\).
BaSic mean grade = •90IOM
BASIC GRADE STANOARO DEVILTION

\footnotetext{
***** ANALYSIS COMPLETE *****
}

\section*{APPENDIX E}

\author{
Details of the Exponential Models of the Commodity Source Profiles of Copper, Lead, Zinc, Gold, Silver and Nickel.
}

\section*{COMMODITY SOURCE PROFILE DATA}

\section*{COPPER}


Note: Certain abbreviations have been used in the above table and are used elsewhere in this thesis, the definition of the terms is as follows:
\begin{tabular}{ll} 
PORFH & \(=\) porphyry \\
SED & \(=\) sedimentary \\
STRAT & \(=\) stratiform \\
CM & \(=\) contact metamorphic \\
VMS & \(=\) volcanogenic massive sulphide \\
COM & \(=\) complex \\
HYD & \(=\) hydrothermal \\
LAT & \(=\) laterite \\
OX & \(=\) oxide
\end{tabular}

GOLD
\begin{tabular}{lcc:c:c:c}
\hline Type & Mean Grade: Mean Tons & SD Grade & SD Tons \\
\hdashline PORPH & 0.028 & 527.60 & 0.030 & 455.40 \\
SED & 0.400 & 32.50 & 0.210 & 26.00 \\
CM & 1.290 & 1.00 & 1.720 & 1.25 \\
VMS & 0.088 & 22.90 & 0.064 & 16.00 \\
COM & \(:\) & 0.103 & 21.70 & 0.059 & 25.00 \\
HYD & \(:\) & 0.784 & 16.60 & 1.300 & 41.00 \\
\hline
\end{tabular}
\begin{tabular}{lccc:c:c}
\hline Type & \(:\) & Mean Grade: Mean Tons & SD Grade & SD Tons \\
\hdashline PORFH & \(:\) & 1.18 & 606.00 & 1.06 & 519.00 \\
CM & \(:\) & 5.45 & 8.70 & 6.66 & 13.70 \\
STRAT & 0.89 & 12.10 & 0.02 & 2.70 \\
VMS & \(:\) & 2.71 & \(:\) & 76.20 & 2.51 \\
COM & \(:\) & 2.37 & 22.10 & 50.40 \\
HYD & \(:\) & 5.73 & 16.80 & 3.02 & 28.50 \\
\hline
\end{tabular}

LEAD
\begin{tabular}{lccc:c:c:c} 
Type & : Mean Grade: & Mean Tons & SD Grade & SD Tons \\
\hline PORFH & \(:\) & 2.55 & 420.30 & 3.47 & 537.10 \\
CM & 7 & 7.23 & 11.00 & 4.12 & 16.20 \\
STRAT & 5.97 & \(:\) & 22.80 & 5.49 & 18.60 \\
VMS & \(:\) & 6.15 & \(:\) & 61.80 & 5.42 & 70.00 \\
COM & \(:\) & 5.26 & \(:\) & 19.70 & 3.61 & 27.90 \\
HYD & \(:\) & 4.60 & \(:\) & 8.40 & 2.61 & 17.70 \\
\hline
\end{tabular}

ZINC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Type & ; & \multicolumn{2}{|l|}{Mean Grade:} & Mean Ton & & SD Gra & & SD Tons \\
\hline CM & 1 & 6.00 & ; & 17.70 & & 4.02 & & 18.90 \\
\hline STRAT & ; & 10.68 & ; & 19.50 & ; & 9.30 & & 14.10 \\
\hline UMS & ! & 6.54 & : & 64.30 & ; & 2.83 & : & 56.00 \\
\hline COM & ; & 11.65 & ; & 19.70 & ; & 11.68 & : & 27.90 \\
\hline HYD & : & 6.78 & : & 10.10 & : & 1.66 & ; & 19.90 \\
\hline
\end{tabular}

NICKEL
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Type & \multicolumn{3}{|l|}{) Mean Grade} & : Mean Ton & ; & Grad & ! & D Tons \\
\hline PORPH & 1 & 0.85 & ; & 42.80 & ! & 0.92 & ! & 3.20 \\
\hline SED & 1 & 2.78 & ; & 22.78 & ; & 1.73 & ; & 31.50 \\
\hline CM & ! & 2.83 & ; & 0.79 & ; & 1.58 & ! & 0.37 \\
\hline STRAT & ! & 2.75 & ; & 0.75 & : & 1.77 & ! & 0.35 \\
\hline LAT & ! & 1.60 & ; & 88.20 & ! & 0.24 & ; & 61.00 \\
\hline OX & ; & 1.14 & ; & 0.25 & 1 & 0.01 & ; & 0.01 \\
\hline VMS & : & 2.43 & ; & 14.20 & ; & 1.23 & ; & 8.40 \\
\hline
\end{tabular}

\section*{Exponential Model Parameters}

The general form of the curve fitted was:
\[
y=e^{m x} \cdot b
\]
"m" parameter values
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Commodity} & \multicolumn{5}{|c|}{Standard Deviations} \\
\hline & :-2.0 & -1.0 & Mean & +1.0 & +2.0 \\
\hline Copper & : - & 1 0.1215 & 1-0.0030 & : -0.0010 & : -0.00061 \\
\hline Lead & ; - & : & :-0.0020 & : -0.0005 & : -0.00026 \\
\hline Zinc & ; - & ! & :-0.0037 & : -0.0034 & : -0.00276 \\
\hline Gold & - & :-5. 1724 & :-0.0050 & : -0.0026 & : -0.00172 \\
\hline Silver & - & :-0.0208 & 1-0.0015 & : -0.0007 & : -0.00039 \\
\hline Nickel & - & : 0.0074 & 1-0.0056 & : -0.0028 & : -0.00201 \\
\hline
\end{tabular}
"b". parameter values
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Stand.} & \multicolumn{3}{|c|}{Commodity} & & \\
\hline Dev. & : Copper & : Lead & : Zinc & : Gold & : Silver & : Nickel \\
\hline -2.0 & : - & : - & : - & 1 - & 1 - & ) - \\
\hline -1.0 & 10.80414 & : - & 1 - & 1 - & 10.64339 & 11.11952 \\
\hline Mean & 12.24080 & 16.048 & 18.837 & 10.362 & :2.93646 & :2.14714 \\
\hline +1.0 & 13.37861 & : 10.17 & : 15.56 & 10.699 & 14.88977 & 13.08233 \\
\hline \(+2.0\) & 14.52504 & 114.28 & :22.22 & :1.021 & 16.64194 & 13.98610 \\
\hline
\end{tabular}

Correlation Coefficients for Models Fits

```

APPENDIX E
Predicted Values for Inflation and Commodity Prices

```


\begin{tabular}{|c|c|c|}
\hline & RANGE OF PREDI & ON IN YEARS \(=14\) \\
\hline YEAR & deflated value & 1983 BASEO VALUE \\
\hline 1983 & 4.2586 & 1.0063 \\
\hline 1984 & 4.1010 & －．9631 \\
\hline 1985 & 3.9254 & －92\％？ \\
\hline 1986 & \(3 \cdot 7+61\) & ． 8797 \\
\hline 1987 & 3.5850 & －84土4 \\
\hline & 3.4641 & － 8154 \\
\hline 1989 & － 3 ＋68 & － 7859 \\
\hline 1990 & \(3 \cdot 2209\) & － 7563 \\
\hline 1991 & \(3.13<4\) & － 7285 \\
\hline \(\pm 992\) & ＜．990」 & － 7321 \\
\hline 1993 & 2.8906 & － 6753 \\
\hline 1994 & 2．8106 & －66．\({ }^{\text {j }}\) \\
\hline 1995 & 2.7575 & －6475 \\
\hline 1996 & 2．7393 & －64こ？ \\
\hline AVERAGE STANDARD & VALLE 1983 क＝ DEVIATICN＝ & \[
\begin{array}{r}
.7874 \\
\cdot \\
\cdot 198
\end{array}
\] \\
\hline
\end{tabular}

RANGE OF PREOICTION IN YEARS \(=10\)

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{PREDICTED VALUES FOR LEAD} \\
\hline \multicolumn{7}{|c|}{RANGE OF PREDICTION IN YEARS \(=5\)} \\
\hline YEAR & DEFLATED VALUE & 198 & 3 BASED V & VALUE & & \\
\hline \[
\begin{aligned}
& 1983 \\
& 1984 \\
& 1985 \\
& 1986 \\
& 1987
\end{aligned}
\] & .0521
-0721
.8843
.0930 & & \begin{tabular}{l}
.2647 \\
－ 3071 \\
－ \(359 \frac{1}{3}\) \\
－3959
\end{tabular} & & & \\
\hline \multicolumn{7}{|l|}{\[
\begin{aligned}
& \text { AVERAGE VALUE } 1983=0.3426 \\
& \text { STANDARD DEVIATION }
\end{aligned}=\quad .0556
\]} \\
\hline \multicolumn{7}{|l|}{} \\
\hline AVERAGE & DISCOUNTED PRICE & จ \(0 \%\) & －DISCOUNT & T KATE & \(=\) & －34́c6 \\
\hline AVEPAGE & OISCOUNTED PRICE & a \(5 \%\) & －oiscount & t rate & \(=\) & ．1240 \\
\hline AVERAGE & DISCOUNTED PRICE & 入 \(10 \%\) & Discount & t RATE & \(=\) & －． 6674 \\
\hline AVERAGE & DISCOUNTED PRICE & （1） \(15 \%\) & OISCOUNT & T RATE & \(=\) & .3450 \\
\hline AVERAGE & OISCOUNTEO PRICE & a \(20 \%\) & －oISCOUNT & t RATE & \(=\) & ．03こ5 \\
\hline AVERAGE & OISCOUNTEO PRICE & a \(25 \%\) & di Scount & T f．ATE & \(=\) & －0こ66 \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { PREDICTED VALUES FOV ZINC } \\
& ===================================
\end{aligned}
\]
\[
\text { RANGE OF PREDICTION IN YEARS }=E
\]

```

OREOICTED VALUES FOR GOLO

```

\begin{tabular}{|c|c|c|}
\hline YEAR & deflateo value & 1983 BASEO VALUE \\
\hline 1983 & 79.2058 & 337 ここも5 \\
\hline 1984 & 75.4760 & 321．42 \({ }^{\text {a }}\) \\
\hline 1985 & 72.0829 & 306.9728 \\
\hline 1986 & 68.8688 & \(293 \cdot 2853\) \\
\hline 1987 & 65.0153 & \(28 \pm .135\) \\
\hline 1988 & 63.7970 & 271．E4この \\
\hline 1989 & 60．9709 & 259.6511 \\
\hline 1990 & 57.4481 & 244．6487 \\
\hline 1991 & 54.4420 & 234.8469 \\
\hline 1992 & 52.9081 & 225．315 \({ }^{5}\) \\
\hline 1993 & 55.6318 & \(256 \cdot 9159\) \\
\hline 1994 & 59.7149 & \(254 \cdot 3525\) \\
\hline 1935 & 60.7992 & 258．92\％ \\
\hline
\end{tabular}
AVERAGE VALUE \(1983=2=21.0279\)
STANDARD DEVIATION \(=3.2931\)
\begin{tabular}{ll} 
AVERAGE ERROR OF ESTINATION & \(=-5 \div 3.422\) \\
STANOARONEVIATION OF ERROR & \(=-46.3695\) \\
PFECISION OF THE ESTIMATE \(+1-\%\) & \(=-41.7057\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline AVERAGE & DISCOUNTED & PRICE & จ & 0 & OISCOUN & RATE & \(=\) & 271．4279 \\
\hline AVEFAGE & DISCOUNTEO & PRICE & 3） & 5 & OISCOLNT & RATE & \(=\) & 99.9899 \\
\hline AVERAGE & OISCOUNTED & PRICE & 园 & 10 & OISCOUN： & RATE & \(=\) & 55.2949 \\
\hline AVERAGE & OISCOUNTED & PFICE & a & 15 & DISCOUNT & pate & \(=\) & 37．8362 \\
\hline AVERAGE & DISCOUNTEO & price & a & 20 & DISCOUNT & Rate & \(=\) & 28．9827 \\
\hline AVERAGE & DISCOUNTED & Pfice & j） & C5 & OISCOUNT & RATE & \(=\) & 2 \\
\hline
\end{tabular}
```

PREOICTEO VALUES FOR SILVEF

```

RANGE OF PREDICTION IN YEARS \(=22\)


\section*{APPENDIX G}

Details of the Capital and Operating Costs, Operating Parameters and Financial Factors used for each Mining Method as Input to the Minimum Reserve Analysis


\footnotetext{
INFUT UALUES NEEDED FGR
MINIMUM RESERVE ANALYSIS
SCENARIO: CUFIT
ofen fit mining
CAFITAL COST FACTORS
MINE EQUIFMENT CAPITAL FACTOR \(\$ / T F Y\)
MINE CAFITAL DEFTH FACTOR \(\$ / F T\). DR \(\$ / M\).
MILL CAPITAL FACTOR \(\$\) /Tfy
EXFLORATION \& FEASIGTLITY EXFENGITURE \(\$\)
other capital factor
MODIFIEE MINING COST \(\$\) /ton
OPERATING FARAMETERS
FROCESSING \& OTHER COSTS \(\$ /\) TON
FRE-STRTP REQUIREMENT TONS
average oferating strif ratio w:o
Frocessing recovery
mine mevelofiment factor
mill tieprectititon factor
investment tax creint factor
effective tax rate
***** analysis complete *****
What do you want to to
1. SElect a mining method
}


 SCENARIO: CUSELF

> CAPITAL COST FACTORS
MINE EQUIPMENT CAPITAL FACTOR \$/TPY
MINE GAPITAL DEPTH FACTOR \$/FT. OR \$/M.
MILL CAPITAL FACTOR \$/TPY
EXPLDRATJON : FEASIBILITY EXPENDITURE *
OTHER CAPITAL FACTOR
OPEN STOFING
MODIFIED MINING COST \(\$ / T O N\)
OPERATING COSTS


\footnotetext{
PROCESSING * OTHER COSTS S/TON
OPERATING PARAMETERS

}

effective tax rate.
WHAT DO YOU WANT TO DO
***** ANALYSIS COMPLETE *****
1. GELEET A MINING METHOD
2. CALCULATE CAFITAL \& OPERATING COSTS
3. EXIT FROM THE SYSTEM
enter a number fram 1 to 3



\(\stackrel{n}{\square} \underset{\sim}{?}\)

INFUT VALUES NEEDEL FOR
MINTMUM FIESERVE ANALYGIS
SCENAFIO: CUNC: MTNIMUM REESERVE ANALYSIS
SCENARIO: CUNC
פningo THBClyn
CAFITAL COST FACTORS MINE EQUIPMENT CAPITAL FACTOR \(\$ / T P Y\)
MINE CAPITAL DEPTH FACTOR \(\$ / F T\). OR \(\$ / M\).
MILL CAFITAL FACTOR \(\$ / T F Y\)
EXFLORATION \& FEASIEILITY EXFENDITURE \(\$\)
OTHER CAPITAL. FACTOR
DFERATING COSTS
OFERATING FARAMETERS
FINANCIAL FACTORS

effective tax rate

\section*{***** ANALYSIS COMFLETE *****}

> WHAT DO YOU WANT TO EO
1. SELECT A MINING METHOL
2. CALCULATE CAFITAL \& OFEFATING COSTS
3. EXIT FROM THE SYSTEM
3. EXIT FROM THE SYSTEM
ENTER A NUMBER FROM 1 TO 3
F6.ET
\(\angle 6.900 \mathrm{ET}\)
18.10
5000000.

NOLI/\$ 1 SOO GNINIW GGIAIIOW
FROCESSING \& OTHER COSTS \(\$ /\) TON

\(\qquad\)

INFUT UALUES NEEDEL FOR
MINIMUM RESERVE ANALYSIS
SCENARIO: CUAC

CAPITAL COST FACTORS MINE EQUIPMEMT CAPITAL. FACTOR \$/TPY
MINE CAPITAL DEFTH FACTOR \$/FT. OR \$/M. MILL CAPITAL FACTOR s/tPy EXPLORGTION \& FEASIBILITY EXPENDITURE s OTHER CAPITAL FACTOR oprenting cost OPERATING COSTS
OPERATING PARAMETERS W:0
FINANCIAL FACTORS
PROCESSING \& OTHER COSTS \$/TON modified mining cost s/ton
fre-strip remuirement tons mining tilution mining recouery processing recovery
tailings grade
 nevelopment factor
nepreciation factor
stment tax cremit factor
**tive tax rate
analysis complete *****
\(\rightarrow 6.6\) 20.SもIと

 \(\circ\)
\(\vdots\)
in
 \(\stackrel{a}{\square}\)
\(\stackrel{n}{\square} \stackrel{\circ}{\square}\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline
\end{tabular}
natural. cauing
CAFITAL COST FACTORS
MINE EQUIPMENT CAPITAL FACTOR 3/TPY
mine capital depth factor \(\$ / f t\). or \(\$ / M\).
MILL CAPITAL FACTOR s/tpy EXPLORATION \& FEASIBILITY
other capital factor
modified mining cost s/ton
PROCESSING \& OTHER C.OSTS S/TON
operating parameters
FINANCIAL. FACTORS
Mine devel.ofment factor
Mill. depreciation factor
inuestment tax credit factor
effective tax rate
***** ANALYSIS COMPLETE *****

\section*{mining nilution}
mining recovery
frocessing recovery
tailings brade
OENDITURE :
OPERATING COSTS


-


\footnotetext{
What do you want to do
1. select a mining method
1. select a mining method -...............
}


CAPITAL COST FACTORS


MINE EQUIPMENT CAPITAL. FACTIR s/TPY
MINE: CAPITAL. DEPTH FACTOR \(\$ / F T\). DR \(\$ / M\). MINE CAPITAL. DEPTH FAC,TOR s/FT. OR
MILL CAPITAL FACTOR \(\$ / T P Y\)

EXPLORATION \& FEASIBILITY EXPENNITURE *
OTHER CAPITAL FACTOR
OPERATING COSTS

MODIFIEN MINING COST \(\$ / T O N\)
FROCESSING OTHER COSTS \(\$ / T O N\)
OFERATING PARAMETERS FINANCIAI. FACTORS

MINE REVELOFMENT FACTOR
MIIL DEPRECIATION FACTOR
INUESTMENT TAX CREDIT FACTOR
EFFECTIUE TAX RATE.
noIInIIU gNINIW
MINING RECOUERY
PROCESSING RECOUERY
tailings brade
\(\qquad\)


\(\stackrel{n}{\square}\)
30.66
13.19
\(\therefore \quad 2\)
\(\stackrel{2}{2}\) 숭
\(\begin{array}{r}\circ \\ \hdashline- \\ \hdashline\end{array}\)

***** ANAL.YSIS COMFLETE
WHAT OO YOU WANT TO NO
1. SELECT A MINING METHOD
***** ANAL.YSIS COMFLETE *****

> INFUT VALLIES NEEDEN FOR
> OFEN STOPING \(\begin{aligned} & \text { MINIMUM RESERVE ANALYSIS } \\ & \\ & \\ & \\ & \\ & \text { SCENARIO: PBSELF }\end{aligned}\)
> CAPITAL COST FACTORS MINE EQUIFMENT C:APITAL FACTOR s/TPY
MINE CAPITAI. DEPTH FACTOR \$/FT. OR \$/M. Mill cafital. factor s/tpy
EXFLORATION \& FEASIBILITY EXPENMITURE s
other capital. factor
operating costs
OPERATING PARAMETERS FINANCIAL FACTORS
MODIfjed mining cost \$/ton
processing \& other costs s/ton
Mining nilution
Mining recouery
processing recouery
tailings grade Mine development factor
Mill. lepreciation factor
inuestment tax credit factor
effective tax rate.
WHAT DO YOU WANT TO DO
1. SELECT A MINING METHOD
2. CALCULATE CAFITAL \& OPERATING COSTS
3. EXIT FROM THE SYSTEM
***** analysis complete *****

> CAPITAL COST FACTORS
\[
\text { MINE EQUIPMENT CAPITAL FACTOR } \$ / T P Y
\]
mine capital. depth factor s/ft. or s/m.
Mill capital factor \(\ddagger / T f y\)
EXFLIORATION \& FEASIBILITY EXPENDITURE *
other capital factor
modified mining cost \$/ton OPERATING FARAMETERS
MINING DILUTION
MINING RECOUERY
FRE-STRIF RERUIREMENT TONS
AUERAGE OPERATING STRIF RATIO W:O
FROCESSING RECOUERY
TAILINGS GRADE

FINANCIAL FACTORS

INPUT UAL.UFS NEEDED FOR
MINIMUM RESERUE ANALYSIS
OPEN PIT MINING

CAPITAL COST FACTORS
MINE EQUIPMENT CAFITAI.. FACTOR \$/TPY
MINE CAFITAI DEPTH FACTOR \$/FT. OR \$/M.
MILL CAFITAL FACTOR \$/TPY
EXFLORATION \& FEASIBILITY EXPENDITURE \$
OTHER CAFITAL FACTOR
MODIFIED MINING COSI \$/TON OPEATING COSTS
PROCESSING \& OTHER COSTS \$/TON

OPERATING PARAMETERS MINING DIL.UTION
MINING RECQUERY
PRE-STRIF REQUIREMENT TONS
AUERAGE OPERATING STRIF RATIO W:O
PROCESSING RECOUERY
TAILINGS GRADE
MINE DEUEI.DFMENT FACTOR
MILL DEPRECIATION FACTOR
INUESTMENT TAX CRERIT FACTOR
EFFECTIUE TAX RATE. *\&** Anatysis
***** ANAL_YSIS COMPLETE *****

99.08
\(\circ\)
\(\stackrel{\rightharpoonup}{\top}\)
\(\stackrel{\sim}{\top}\)

\(\because \because \%\)
INFUT UAL.UES NEEDEI FOR SCENARIO: ZNAS

CAPITAL. COST FACTORS MINE EQUIPMENT CAPITAI. FACTOR \(\$ / T P Y\)
MINE EQUIPMENT CAPITAI. FACTOR \(\$ /\) TPY
MINE CAPITAL DEPTH FACTOR \(\$ / F T\), OR MILI. CAPItAL FACTOR \$/TPY
EXPLORATION \& FEASIBILITY EXPENDITURE s other capital factor
OPERATING COSTS
OPERATING PARAMETERS
MODIFIED MINING COST \$/TON
PROCESSING 2 other costs \$/TON
MINING DILUTION
MINJNG RECOVERY
PROCESSING RECOUERY
TAILINGS GRADE
FINANCIAL FACTORS Mine development factor
Mill. nepreciation factor
investment tax credit factor
effective tax rate
***** anal.ysis complete *****
What no you want to do
1. Selfect a mining methon
2. calculate. cafital. operating costs

INPUT UALUES NEEDIED FOR
MINIMM RESERUE: ANAL.YSIS
SCENARIO: ZNAC
artificial. caving
MINE ERUIPMENT CAFITAL. FACTOR \$/TPY
MINE ERUIPMENT CAFITAL.. FACTOR \$/TPY MINE CAPITAL DEPTH FACTOR \(\$ / F T\). or \(\$ / M\). MILL CAPItAL FACTOR \$/tpy
EXFL.ORATION \& FEASIBILITY EXPENDITURE \(\$\)
other cafital factor
MODIFIED Mining cost s/ton
processing \& other costs s/ton
OPERATING PARAMETERS
FINANCIAL FACTRES

> MINE DEUEL.OFMENT FACTOR
> mill mefreciation factor
> investment tax cemit factor
> effective tax rate
> What do you want to do
> ***** ANAI.YSIS COMPLETE *****
1. SEI.FCT A MINXNG METHOD
MINING IILUTJON
mining recouery
tail.ings tikade
frocessing recovery
IL. 686 T
\(\angle S .6 I\).
\(\stackrel{n}{\stackrel{\infty}{\infty}}\)

\(\stackrel{0}{0}\)
\(\dot{+}\)
N

\(\begin{array}{ll}\infty & \circ \\ \stackrel{\circ}{-} & \stackrel{+}{\square}\end{array}\)



INFUT UAIUES NEEMED FOR
MINIMUM RESERUE ANALYSIS
SCENARIO: ZNSELF

CAFITAL COST FACTORS
CAPITAL COST FAC.TORS
\$/TPY
T. OR \(\$ / M\).
ENDITURE \(\$\)
OPERATING COSTS modified mining cost */ton

FROCESSING \& OTHER COSTS \$/TON
OPERATING PARAMETERS
FINANCIAL. FACTORS

effective tax rate

\section*{What do yoli want to do}
1. Select a mining method
2. falculate cafital : operating costis


INPUT UAL.UES NEEDED FOR
MINIMUM RESERUE ANALYSIS
IINIMUM RESERUE ANALYSIS
SCENARIO: ZNZERQ
ofen fit mining
CAPITAL COST FACTORS
MINE EQUIFMENT CAFITAL FACTOR \$/TPY
Mine capital depth factior s/ft. or s/m.
MILL cafital factor s/tpy
Exploration \& feasibility expenditures
other capital factor
modifien mining cost */ton
OPERATING PARAMETERS
frocessing \& other consts s/ton
fre-strip requirement tons
average oferating strif katio w:o processing recovery
tailings grade
mine develofment factor mill nefreciation factor
investment tax creidt factor
effective tax rate



INFUT UAL.UES NEERER FOR
MINIMU RESERUE ANALYSIS
SCENARIO: AUSELF
open stoping
CAPITAL COST FACTORS
MINE EQUIPMENT CAPITAL FACTOR \(\$ /\) tpy
MINE CAPITAI DEFTH FACTOR \(\$ / F T\), OR \(\$ / M\).
MILI. CAPItAL. FACTOR //tpy
EXPLORATION \& FEASIBILITY EXPENDITURE *
other capital factor
modified mining cost \(3 / t 0 n\)
processing a other costs s/ton
OPERATING PARAMETERS
FINANGIAL FACTORS
FINANCIAL FACTORS
MINE DEUELOPMENT FACTOR
MILL DEPRECIATION FACTOR
INUESTMENT TAX CRENIT FACT
EFFECTIUE TAX RATE
***** ANAL.YSIS COMPLETE *****

\footnotetext{
1. SELECT A MINING METHOD
2. CAL.CULATE CAFITAL \& OFERATING COSTS
3. EXIT FROM THE SYSTEM

ENTER A NUMBER FROM 1 TO 3
}
WHAT NO YOU WANT TO NO


INFUT VAL.UES NEEDED FOR
MINIMUM RESERUE ANALYSIS
SCENARID: AUNC

***** ANAI.YSIS COMPLETE *****

> WHAT DO YOU WANT TO DO
1. SELECT A MINING METHON

ENTER A NUMBER FROM 1 TO 3

ofen pit mining
MINE EQUIPMENT CAPITAL FACTOR \$/TPY
MINE EQUIPMENT CAPITAL FACTOR \(\$ / T P Y\)
MINE CAPITAL DEPTH FACTOR \(\$ / F T\), OR \$/M
Mill capital factor \(\$ / t p y\)
exploration \& feasibility expenditures
other capital factor
MODIFIED MINING COST \(\$ / T O N\)
processing a other costs a/ton
operating farameters

> MINING DILLITION MINING RECQUERY
> PRE-STRIP REQUIREMENT TONS AVERAGE DPERATING STRIP RATIO W:O PROCESSING RECOUERY
> TAILINGS GRADE
> MINE DEVELGPMENT FACTOR MILI.. REPRECIATION FACTOR INUESTMENT TAX CREDIT FACTOR EFFECTIVE TAX RATE
***** ANAL.YSIS COMPLETE *****
WHAT DO YOU WANT TO DO
1. SELECT A MINING METHOD
2. CALCULATE CAFJTAL \& OPERATING COSTS

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{ofen pit mining}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{mine equipment capital factor \(\% / t \mathrm{fy}\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{MINE CAPITAI. DEPTH FACTOR \$/FT. OR \(\$ / m\).}} \\
\hline & mill capital factor s/tpy \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{EXPLORATION \&.fEASIbILITY EXPENAITURE other capital factor}} \\
\hline & \\
\hline & operating costs \\
\hline \multicolumn{2}{|l|}{modified mining cost q/ton} \\
\hline \multicolumn{2}{|l|}{FROCESSING \& OTHER COSTS \$/ton} \\
\hline  & operating parameters \\
\hline \multicolumn{2}{|l|}{mining dilution} \\
\hline \multicolumn{2}{|l|}{mining recoveriy} \\
\hline \multicolumn{2}{|l|}{fre-strip requirement tons} \\
\hline \multicolumn{2}{|l|}{average operating strjp ratio w:o} \\
\hline \multicolumn{2}{|l|}{frocessing recovery} \\
\hline \multicolumn{2}{|l|}{tailings grade} \\
\hline & financial factors \\
\hline \multicolumn{2}{|l|}{mine nevel.opment factor} \\
\hline \multicolumn{2}{|l|}{mill depreciation factor} \\
\hline \multicolumn{2}{|l|}{investment tax credit factor} \\
\hline effective tax rate & \\
\hline
\end{tabular}
what mo you want to do
1. SELECT A MINING METHOD
2. CALCULATE CAPITAL. \& operating costs

InPut val.ues neener for
MINIMUM RESERUE ANAL.YSIS
SCENARID: AUZERO

\(\begin{array}{ll}\overrightarrow{0} & \vec{i} \\ \dot{\sim} \\ \sim & \stackrel{\rightharpoonup}{n}\end{array}\)
\(\begin{array}{ll}\vec{n} & \circ \\ \cdots & \vdots \\ n & n\end{array}\)
\(\circ\)
\(\vdots\)
0
\(\square\)
\(\because \stackrel{n}{?} \because\)

\section*{i?}



INPUT UALUES NEERED FOR
MINIMUM RESERVE ANALYSIS
SCENARID: AGAS
-

mining dil.ution
frocessing recouery
tailings grade
FINANCIAL FACTORS
MINE DEVEL OPMENT FACTOR
MILL DEPRECIATION FACTOR
INUESTMENT TAX CREAIT FACTOR
EFFECTIUE TAX RATE
***** ANAL.YSIS COMPLETE *****

WHAT NO YOLI WANT TO DO
1. SELECT A MINING METHOD
2. CALLCUL.ATE CAPITAL \& OPERATING COSTS
3. EXIT FROM

Enter a number from 1 to 3


ARTIFICIAL CAUING

S／TPY
GFT．OR S／M．
OPERATING COSTS
MODIFIER MINING cost \(\$ /\) ton
PROCESSING \＆OTHER COSTS \(\$ / T O N\) MILL．CAPITAL．FACTOR s／tPy
EXPL．ORATION \(\&\) FEASIBILITY
other capital factor
OPERATING PARAMETERS FINANCIAL．FACTORS震 enter a numper from 1 to 3
INUFGTMENT TAX CREDIT FACTOR
effertive tax rate．
minf．development factor mill defreciation factor
\(\qquad\)
\(\qquad\)
\(\qquad\) mining recovery processing recovery
tailings grade


\footnotetext{
＊＊あます ANALYSIG COMPLETE＊＊＊＊＊
WHAT DO YOU WANT TO DO
1．SELECT A MINING METHOD
2．CALCULATE CAFITAL．\(\$\) OPERATING COSTS
3．EXIT FROM THE SYSTEM
}
\(\qquad\)
\(\qquad\)


INPUT UALUES NEEDEI FOR
MINIMUM RESERUE ANAL．YSIS

＊＊まれ＊ANAL．YSIS CDMPL．ETE＊＊まれ
WHAT DO YOU WANT TO DO
1．SELECT A MINING METHOD
2．CALCULATE CAPITAL \＆OFERATING COSTS
ENTER A NUMBER FROM 1 TO 3

\begin{tabular}{|c|c|}
\hline & open pit mining \\
\hline & capital cost factors \\
\hline 1.58 & MINE EQUIPMENT CAPITAI.. FACTOR \$/tpy \\
\hline 0.00 & mine capital depth factor s/ft. or \%/m. \\
\hline 7.35 & mill capital factor \(\mathrm{m}_{\text {ctpy }}\) \\
\hline 5000000 , & EXPLORATION 2 FEASIBILITY EXPENDITURE \({ }^{\text {s }}\) \\
\hline . 25 & other cafital. factor \\
\hline & operating costs \\
\hline 1.64 & Modified mining cost \%/ton \\
\hline 8.65 & PROCESSINE 2 OTher costs \$/TON \\
\hline & OPERATING PARAMETERS \\
\hline . 15 & mining dilution \\
\hline 1.00 & Mining recovery \\
\hline 0. & Pre--strip requirement tons \\
\hline 0.00 & average operating strip ratio w:o \\
\hline . 77 & processing recouery \\
\hline . 27 & tailings grade \\
\hline & FINANCIAL FACTORS \\
\hline 0.00 & mine development factor \\
\hline . 75 & mill depreciation factor \\
\hline . 10 & investment tax credit factor \\
\hline . 50 & effective tax rate \\
\hline
\end{tabular}

CAPITAL COST FACTORS

mining dilution
mining recovery
PRE.--StRIP REQUIREMENT TONS
AUERAGE OPERATING STRIP RATIO W:O
processing recovery
tailings grame
mine development factor Mill mefreciation factor
inuestment tax creinit factor
effective tax rate
WHAT DO YOU WANT TO DO
1. SELECT A MINING METHON
2. CAL.CULATE CAFITAL 8 OPERATING COSTS

APPENDIX \(H\)
Fesults of Minimum Reserve Analysis of Copper, Lead, Zinc, Gold and Silver SCENARIO: CU.ZER


\section*{MINIMUM IN - SITU RESERVE
SCENARIO: CUPIT}

\[
\begin{aligned}
& \text { MINIMUM IN - SITU RESERVE } \\
& \text { SCENARIO CUNC }
\end{aligned}
\]

DEPTH: 5003。


```

MININUM IN - SITU RESERVE

```
SCENARIO: CUAC



\section*{MINIMUM IN - SITU RESERVE \\ SCENARIO: CUSELF}

OEPTH: 50.0.
PRICE:


\section*{IINIMUM IN - SITU RESERVE}

\section*{SC-NARIO: CUAS}

RATE OF RETLRN ASSUMED FOR THIS ANALYSIS WAS \% = \(===5.00\)


```

DEDTH: 5000.

```

```

| $\begin{aligned} & \text { GRADE : } \\ & \text { GRADE } \end{aligned}$ | $\begin{aligned} & 9.4700 \\ & 6.0200 \end{aligned}$ | $\begin{aligned} & 16423439: ? \\ & 43602759: 4 \end{aligned}$ | $\begin{aligned} & 22325554 \cdot 4 \\ & 72635385: 0 \end{aligned}$ | $\begin{array}{r} 32831345 \cdot 3 \\ 142379452 \cdot 8 \end{array}$ | $\begin{array}{r} 54818970.9 \\ 786061586.7 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

```

\section*{MINIMUM IN - SITU RESERVE \\ SCENARIO: PBSELF}


\section*{MINIMUM IN - SITU RESERVE
SCENARIO: PEAS}

ASSUMED FOR THIS ANALYSIS WAS \(\%=5.00\)

OEPTH: 500).
PRICE: . +600

```

MINIMUM IN - SITU RESERVE
SCENARIO: PBZERO

```

RATE OF RETURN ASSUMED FOR. THIS ANALYSIS WAS \% = 5.00
 DEPTH: 5...............
\(\qquad\)
\(\qquad\) .3400

```

MININUM IN - SITU RESERVE

```

RATE OF RETURN ASSUMEQ FOR THIS ANALYSIS WAS \% = 5.00 DEPTH: \(\qquad\)
PRICE:

```

MINIMUM IN - SITU RESERVE

```
\(=========2.00\)

OEPTH: 50.0 .

PRICE:

```

MINIMUM IN - SITU RESERVE
SCENARIO: ZNAC

```

DEPTH: \(5 \mathrm{SOJ}\).

PRICE .4900

4700
.4500
.4300
.4160


\section*{MIMIMUM IN - SITU RESERVE \\ SCENARIO: ZNSELF}


OEPTH:
5000.

PRICE:



```

MININUM IN - SITU RESERVE
SCENARIO:AUSELF

```

```

MINIMUM IN - SITU RESERVE
SCENARIO: AUAS

```

```

| OEPTH: |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRICE: |  | 341.4100 | 336.2200 | 271.0300 | 235.8400 | 200.6500 |
| GRADE : | 4.7300 | $\therefore 15049.3$ | 131886.8 | 154101.9 | 184587.6 | 228657.6 |
| GRADE: | 3.0100 | 205659.6 | 237783.5 | 280536.6 | 339740.9 | 426080.5 |
| GRADE: | 1.2900 | 670513.2 | 786044.2 | 940766.4 | 1155896.6 | 1469723.0 |

```
```

-----------

```

RATE OF RETLRN ASSUMEO FOR THIS ANALYSIS WAS \% = 5.00
\begin{tabular}{llllllll} 
OEPTH: \\
PRICE: & & 503. \\
\hline
\end{tabular}
 DEPTH: 50〕


\section*{IINIMUM IN - SITU RESERVE
SCENARIO: AUNC}


DEPTH: 5U0J


MINIMUM IN AUSITU RESERVE

DEPTH: 5 O.

```

ATE OF RCTURN ASSUMEO FOR THIS ANALYSIS NAS % = 5.00
OEPTH: 5u0)

```


\section*{MININUM IN - SITU RESERVE \\ SCENARIO: AGPI}



\section*{MINIMUM IN - SITU RESERV \\ CZNARIO: AGNC}
```

RATE OF RETLRN. ASSUMEDGOR.THIS ANALYSIS WAS% % = = = 5.000
DEPTH: 50)?.
PRICE:
GRADE:

```
```

MINIMUM IN - SITU RESERVE
RATE OF RETURN ASSUMEOFOR THIS ANALYSIS NAS % = = 5.00
DEPTH: 5J.J.

```


```

MINIMUM IN - SITU RESERVE
SCENARIO: AGAS

```

DEPTH: 5〕. ?。
PRICE:


\section*{APPENDIX I}

Details of the Calculation of Operating Cutoff Grades

\section*{BASIC LOGIC}

In Appendix \(A\) above, two terms NGRAD, the net operating grade, and VAL7, the operating cost expressed as a grade were defined as follows:

NGRAD \(=(A B G *(1.0-P E R D I L)+G D * P E R D I L) * S 1-V A L 7\)
VAL7 \(=(Y Y+Z Z) /(P R I C E V A L ~ * ~ C D N)\)
- where, CON is either 1 for gold \& silver, or 20 for non - precious metals.

In the limit, when no profit is being made, and operating costs are only just being covered, NGRAD is equal to zero. So,
\(((\) VAL \(7 / 51)-(G D * P E R D I L)) /(1.0-F E R D I L)=\) ABG

For the purposes of this thesis the grade of the diluting material is assumed to be zero, so the above expression simplifies to:
```

ABG = (VAL7 / S1 ) / (1.0 - PERDIL )

```
-where, ABG is the 1 imiting or cutoff grade.
Hence, using the appropriate input values from Appendix G, and substituting in the above equation produced the following results:

\section*{CUTDEF GRADE RESULTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Mining:} & \multicolumn{7}{|l|}{Commodity} \\
\hline Method: & Copper & I & Lead & ; & Zinc & I & Gold & ! & Silver \\
\hline ZERD & 0.67 & ! & 1.94 & 1 & 1.46 & ! & 0.039 & I & 1.83 \\
\hline PIT & 0.79 & ; & 2.29 & ' & 1.73 & I & 0.046 & ; & 2.16 \\
\hline NAT.C.: & 1.35 & ; & 3.96 & ; & 3.10 & i & 0.080 & 1 & 3.81 \\
\hline ART.C.i & 1.73 & ; & 4.84 & ! & 4.09 & i & 0.100 & ! & 4.58 \\
\hline S.S. : & 2.72 & ; & 8.22 & 1 & 7.21 & ; & 0.150 & ! & 7.44 \\
\hline ART. S. & 3.03 & ; & 8.82 & ! & 7.60 & ; & 0.200 & ! & 8.97 \\
\hline
\end{tabular}

The above mining method abreviations have the following meanings:
```

ZERO = zero strip pit
PIT = open pit mining
NAT.C. = natural caving
ART.C. = artificial caving
S.5. = self - supporting
ART.S. = artificially supported

```

APPENDIX J

Details of the Relative Socio - Political Index Calculation.

The data used below is taken from the 1979 USBM
Mineral Commodity Summaries.

\section*{CQPPER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Region & ! & Reserves & i & Relative Reserves & i & \[
\begin{gathered}
\text { Regional } \\
\text { SPI }
\end{gathered}
\] & \[
\begin{aligned}
& \text { : } \\
& \text { : }
\end{aligned}
\] & \begin{tabular}{l}
SPI \\
Increment
\end{tabular} \\
\hline East & ; & 36000 & I & 0.07 & I & 0.69 & ! & 0.048 \\
\hline Europe & ! & 97000 & ; & 0.18 & ; & 1.13 & : & 0.203 \\
\hline N. Am. & ! & 142000 & 1 & 0.25 & 1 & 1.37 & ! & 0.343 \\
\hline Austr. & 1 & 9000 & ; & 0.02 & ; & 1.37 & ; & 0.027 \\
\hline Africa & ! & 69000 & 1 & 0.13 & ; & 0.62 & ; & 0.081 \\
\hline USSR & I & 54000 & ; & 0.10 & ; & 0.90 & ; & 0.040 \\
\hline S. Am. & ! & 142000 & ! & 0.25 & i & 0.80 & ; & 0.200 \\
\hline \multicolumn{8}{|l|}{Total SPI for copper \(=\)} & 0.942 \\
\hline
\end{tabular}

LEAD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Region & i & Reserves & : & Relative Reserves & : & Regional SPI & ; & \begin{tabular}{l}
SPI \\
Increment
\end{tabular} \\
\hline East & ! & 0 & ; & 0 & : & 0.69 & & 0 \\
\hline Europe & ! & 30000 & ! & 0.24 & ; & 1.13 & ! & 0.27 \\
\hline N. Am. & ! & 38000 & ! & 0.30 & ; & 1.37 & - & 0.41 \\
\hline Austr. & ! & 17000 & ; & 0.14 & ; & 1.37 & 1 & 0.19 \\
\hline Africa & ; & 0 & ; & 0 & ; & 0.62 & ; & \(\bigcirc\) \\
\hline USSR & 1 & 27000 & ; & 0.21 & ; & 0.90 & ; & 0.19 \\
\hline S. Am. & ! & 14000 & ; & 0.11 & ; & 0.80 & ; & 0.09 \\
\hline \multicolumn{8}{|l|}{Total SPI for lead =} & 1.15 \\
\hline
\end{tabular}

ZINC
\begin{tabular}{l:c:ccc:c} 
Region & Reserves & Relative & Regional & SPI \\
& & Reserves & SPI & Increment \\
\hdashline East & 0 & 0 & 0.69 & 0 \\
Europe & 54000 & 0.36 & 1.13 & 0.41 \\
N. Am. & 50000 & 0.34 & 1.37 & 0.47 \\
Austr. & 19000 & 0.13 & 1.37 & 0.18 \\
Africa & 0 & 0 & 0.62 & 0 \\
USSR & 17000 & 0.11 & 0.90 & 0.10 \\
S. Am. & 10000 & 0.07 & 0.80 & 0.06 \\
\hdashline Total SPI for zinc & & & & 1.22
\end{tabular}

GOLD
\begin{tabular}{l:c|ccc:c} 
Region & Reserves & Relative & Regional & SPI \\
& & Reserves & SPI & Increment \\
\hline East & 0 & 0 & 0.69 & 0 \\
Europe : & 0 & 0 & 1.13 & 0 \\
N. Am. & 155 & 0.13 & 1.37 & 0.18 \\
Austr. & 200 & 0.17 & 1.37 & 0.29 \\
Africa & 580 & 0.49 & 0.62 & 0.30 \\
USSR & 260 & 0.21 & 0 & 0.90 & 0.19 \\
S. Am. & 0 & & 0 & 0.80 & 0 \\
\hdashline Total SPI for gold & & & & 0.96 \\
\hline
\end{tabular}

\section*{SILVER}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Region & ; & Reserves & : & Relative Reserves & \[
\begin{aligned}
& i \\
& i
\end{aligned}
\] & \[
\begin{aligned}
& \text { Regional } \\
& \text { SPI }
\end{aligned}
\] & \[
\begin{aligned}
& i \\
& i
\end{aligned}
\] & \begin{tabular}{l}
SPI \\
Increment
\end{tabular} \\
\hline East & & 0 & : & 0 & ; & 0.69 & ! & 0 \\
\hline Europe & & 420 & ; & 0.07 & ! & 1.13 & ! & 0.08 \\
\hline N. Am. & ; & 2220 & , & 0.36 & ; & 1.37 & ! & 0.49 \\
\hline Austr. & , & 0 & ; & 0 & ; & 1.37 & ! & 0 \\
\hline Africa & , & 0 & ; & 0 & ; & 0.62 & ; & 0 \\
\hline USSR & ; & 2000 & ; & 0.33 & ; & 0.90 & 1 & 0.30 \\
\hline S. Am. & ; & 1460 & ; & 0.24 & ; & 0.80 & ; & 0.19 \\
\hline \multicolumn{8}{|l|}{Total SPI for silver =} & 1.06 \\
\hline
\end{tabular}

Summarizing:
\begin{tabular}{llr} 
Commodity & SPI & RSPI \\
\hline Copper & 0.94 & 0.18 \\
Lead & 1.15 & 0.22 \\
Zinc & 1.22 & 0.23 \\
Gold & 0.96 & 0.18 \\
Silver & 1.06 & 0.19
\end{tabular}

APPENDIX K

Details of the Deposit Allocation Calculation
K. 1 Calculation of DA(i) Parameter Values

\section*{COPPER}


Note:
The meaning of the abbreviations used in the above and subsequent tables is as follows:
\begin{tabular}{|c|c|}
\hline Av. grade & \(=\) mean grade \\
\hline Av. tons & \(=\) mean tonnage \\
\hline +2S.D.G & \(=+2\) standard deviations of grade \\
\hline +25D. Ton & \(=+2\) standard deviations of tonnage \\
\hline Base Ar. & \(=\) basic area \\
\hline XS (i, j) & \(=\) as previously defined \\
\hline Target & = target area \\
\hline DA(i) & \(=\) as previously defined \\
\hline
\end{tabular}

LEAD
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Deposit ; & PGRPH : & CM & STRAT & UMS & COM & HYD \\
\hline Av.grade: & \(2.55:\) & \(7.23:\) & 5.971 & 6.151 & \(5.26:\) & 4.60 \\
\hline Av.tons : & 420.30: & \(11.00:\) & 22.801 & 61.80: & 19.701 & 8.40 \\
\hline +25. D. G & 9.49: & 15.471 & 16.95: & 16.991 & 12.48: & 9.82 \\
\hline +25D. Ton:1 & 1494.50: & 43.401 & 60.001 & 201.80: & 75.501 & 43.80 \\
\hline Base Ar.1 & 147.23: & 6.121 & 8.401 & 27.89 : & 9.441 & 4.30 \\
\hline XS(i,j) & 0.78: & 0.691 & 0.721 & 0.751 & 0.701 & 0.21 \\
\hline Target & 155.21:1 & 155.211 & 155.21: & 155.21: & 155.21:1 & 155.21 \\
\hline DA(i) & 0.74 i & 0.031 & 0.041 & 0.131 & 0.051 & 0.01 \\
\hline
\end{tabular}

ZINC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Deposit & CM & ; & STRAT & : & UMS & ! & COM & & HYD \\
\hline Av-grade: & 6.00 & : & 10.68 & ! & 6.54 & ! & 11.65 & & 6.78 \\
\hline Av.tons : & 17.70 & ! & 19.50 & ; & 64.30 & I & 19.70 & I & 10.10 \\
\hline +2S.D.G : & 14.04 & : & 29.28 & : & 12.20 & ; & 35.01 & & 10.10 \\
\hline +2SD.Ton: & 55.50 & I & 47.70 & ; & 176.30 & : & 75.50 & & 49.90 \\
\hline Base Ar.: & 38.96 & : & 49.77 & ; & 99.79 & 1 & 75.45 & & 16.57 \\
\hline XS(i,j) & 0.39 & ! & 0.68 & ; & 0.37 & - & 0.70 & & 0.12 \\
\hline Target & 84.82 & ! & 84.82 & ; & 84.82 & 1 & 84.82 & & 84.82 \\
\hline DA(i) & 0.11 & ! & 0.24 & ; & 0.26 & ; & 0.38 & ; & 0.01 \\
\hline
\end{tabular}

GOLD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Deposit : & PORPH & ! & SED & & CM & UMS & COM & HYD \\
\hline Av-grade: & 0.028 & ! & 0.40 & : & 1.29: & \(0.088:\) & 0.1031 & . 748 \\
\hline Av-tons : & 527.6 & ; & 32.50 & ; & 1.001 & 22.9001 & 21.700 & 16.60 \\
\hline +2S.D.G & 0.088 & ! & 0.82 & - & 4.751 & 0.2161 & 0.221 & 3.384 \\
\hline +2SD. Ton:1 & 1438.8 & ; & 84.50 & ! & 3.501 & 54.9001 & 71.700: & 98.60 \\
\hline Base Ar.: & 12.23 & ! & 6.93 & : & \(1.66:\) & 1.1901 & 1.5901 & 9.48 \\
\hline XS(i,j) & 0.54 & ; & 0.80 & : & 0.001 & \(0.470:\) & \(0.550:\) & 0.90 \\
\hline Target & 47.27 & ! & 47.27 & : & 47.271 & 47.2701 & 47.270: & 47.27 \\
\hline DA(i) & 0.30 & ; & 0.25 & ! & 0.001 & \(0.030:\) & 0.0401 & 0.38 \\
\hline
\end{tabular}

\section*{SILVER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Deposit & : PORPH & & CM & STRAT & VMS & COM & HYD \\
\hline Av.grade & ) 1.18 & & 5.451 & 0.89 & 2.71: & 2.371 & 5.73 \\
\hline Av.tons & 1606.0 & , & 8.701 & 12.10 & 76.20: & 22.101 & 16.80 \\
\hline +2S.D.G & 3.30 & & 18.771 & 0.93 & 7.731 & 6.41 1 & 13.65 \\
\hline +25D. Ton & 1644.0 & & 36.101 & 17.50 & :177.00: & 79.101 & 69.80 \\
\hline Base Ar & 108.5 & & 4.771 & 0.02 & : 17.64: & 10.14: & 8.93 \\
\hline XS(i,j) & 0.38 & I & 0.001 & 0.00 & 0.571 & 0.301 & 0.34 \\
\hline Target & 90.86 & & 90.86: & 90.86 & 90.86: & 90.86: & 90.86 \\
\hline DA (i) & ; 0.72 & ; & 0.001 & 0.00 & O.18: & 0.05: & 0.05 \\
\hline
\end{tabular}
\(\underline{K} \cdot 2\) Calculation of Budget Allocation
COPPER
\begin{tabular}{lccc}
\hline Deposit Type : MIC(i), \$M & DA(i) & Budget/Type, \(\$ \mathrm{M}\) \\
\hline Porphry & 5.98 & 0.59 & 3.53 \\
Sedimentary & 5.98 & 0.00 & 0.00 \\
Contact Meta. & 5.98 & 0.00 & 0.00 \\
Stratiform & 5.98 & 0.32 & 1.91 \\
VMS & 5.98 & 0.05 & 0.30 \\
Complex & 5.98 & 0.04 & 0.24 \\
Hydrothermal & 5.98 & 0.00 & 0.00 \\
\hline Total & & & \\
\hline
\end{tabular}

LEAD
\begin{tabular}{lccc:c} 
Deposit Type \(:\) & MIC(i), \(\$ M\) & DA(i) & Budget/Type, \(\$ \mathrm{M}\) \\
\hline Porphry & 5.34 & 0.74 & 3.95 \\
Contact Meta. & 5.34 & 0.03 & 0.16 \\
Stratiform & 5.34 & 0.04 & 0.21 \\
UMS & 5.34 & 0.13 & 0.69 \\
Complex & 5.34 & 0.05 & 0.27 \\
Hydrothermal & 5.34 & 0.01 & 0.06 \\
\hline Total & & & 5.34 \\
\hline
\end{tabular}

ZINC
\begin{tabular}{lccc} 
Deposit Type \(:\) MIC(i), \(\$ M\) & DA(i) & Budget/Type, \(\$ M\) \\
\hline Contact Mata. & 4.56 & 0.11 & 0.50 \\
Stratiform & 4.56 & 0.24 & 1.09 \\
VMS & 4.56 & 0.26 & 1.19 \\
Complex & 4.56 & 0.38 & 1.73 \\
Hydrothermal & 4.56 & 0.01 & 0.05 \\
\hline Total & & & 4.56 \\
\hline
\end{tabular}

GOLD
\begin{tabular}{lccc}
\hline Deposit Type \(:\) MIC(i), \(\$ M\) & DA(i) & Budget/Type, \(\$ M\) \\
-7.12 & 0.30 & 2.14 \\
Porphyry & 7.12 & 0.25 & 1.78 \\
Sedimentary & 7.12 & 0.00 & 0.00 \\
Contact Meta. & 7.12 & 0.03 & 0.21 \\
VMS & 7.12 & 0.04 & 0.29 \\
Complex & 7.12 & 0.38 & 2.70 \\
Hydrothermal & & & 7.12 \\
\hline Total & & &
\end{tabular}

\section*{SILVER}
\begin{tabular}{lccc}
\hline Deposit Type & MIC(i), \(\$ \mathrm{M}\) & DA(i) & Budget/Type, \(\$ \mathrm{M}\) \\
\hline Porphry & 5.27 & 0.72 & 3.80 \\
Contact Meta. & 5.27 & 0.00 & 0.00 \\
Stratiform & 5.27 & 0.00 & 0.00 \\
UMS & 5.27 & 0.18 & 0.95 \\
Complex & 5.27 & 0.05 & 0.26 \\
Hydrothermal & 5.27 & 0.05 & 0.26 \\
\hline Total & & & 5.27 \\
\hline
\end{tabular}

\section*{APPENDIX \(L\)}

Details of the Cutoff Grade - Tonnage Calculations

\section*{CDPPER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Deposit : & PORPH & ; & STRAT & ; & UMS & ; & COM \\
\hline XS(i,j) \({ }^{\text {( }}\) & 0.60 & ; & 0.64 & ! & 0.21 & ! & 0.30 \\
\hline SD grade: & 0.42 & ; & 1.08 & ; & 0.84 & ! & 1.27 \\
\hline SD tons : & 658.00 & ; & 69.20 & 1 & 19.00 & 1 & 22.70 \\
\hline Av-grade: & 0.81 & ; & 2.37 & , & 1.92 & ; & 1.75 \\
\hline Av. tons: & 330.00 & ; & 59.20 & , & 21.50 & : & 20.80 \\
\hline CUTOFF & & , & & , & & ! & \\
\hline Grade : & 0.66 & ; & 1.63 & ; & 2.84 & ! & 3.00 \\
\hline Tonnage : & 658.40 & ; & 71.14 & ; & 47.00 & ; & 46. 34 \\
\hline
\end{tabular}

LEAD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Deposit & PORPH & CM & & STRAT & & UMS & & COM & : HYD \\
\hline XS (i,j) & 0.78 & 10.69 & & 0.72 & & 0.75 & & 0.70 & 1 0.21 \\
\hline SD grade & 3.47 & 1 4.12 & ; & 5.49 & I & 5.42 & ! & 3.61 & : 2.61 \\
\hline SD tons & 1537.10 & 116.20 & : & 18.60 & : & 70.00 & , & 27.90 & 117.70 \\
\hline Av.grade & 2.55 & : 7.23 & ; & 5.97 & ! & 6.15 & 1 & 5.26 & 14.60 \\
\hline Av. tons & :420.30 & :11.00 & ! & 22.80 & ! & 61.80 & ! & 19.70 & 18.40 \\
\hline CUTOFF & 1 & ! & ! & & & & & & ! \\
\hline Grade & 12.09 & 14.79 & ; & 4.75 & ! & 4.25 & & 3.75 & 1 7.76 \\
\hline Tonnage & 1328.79 & : 13.45 & , & 16.80 & ! & 50.45 & ! & 22.65 & 134.60 \\
\hline
\end{tabular}

ZINC
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Depo & CM & ; & 5 & ; & VMS & & COM & & HYD \\
\hline XS (i,j) & 0.38 & , & 0.68 & ! & 0.37 & & 0.70 & & 0.12 \\
\hline SD grade: & 4.02 & ; & 9.30 & ! & 2.83 & ; & 11.68 & & 1.66 \\
\hline SD tons : & 18.90 & ; & 14.10 & ; & 56.00 & : & 27.90 & & 19.90 \\
\hline Av.grade: & 6.00 & ; & 10.68 & ; & 6.54 & ; & 11.65 & & 6.78 \\
\hline Av. tons: & 17.70 & , & 19.50 & ! & 64.30 & : & 19.70 & & 10.10 \\
\hline \multicolumn{10}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l:r|r:r:r:r} 
CUTOFF & & & & & \\
Grade & 8.56 & 9.36 & 7.68 & 10.05 & 8.89 \\
Tonnage & 33.86 & 15.26 & 111.07 & 22.65 & 43.91
\end{tabular}}} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

GOLD
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Deposit : & PORPH & ! & SED & ! & UMS & ! & COM & ; & HYD \\
\hline XS(i,j) ; & 0.54 & ; & 0.80 & ! & 0.47 & ; & 0.55 & : & 0.90 \\
\hline SD grade: & 0.030 & : & 0.21 & ; & 0.064 & I & 0.059 & ! & 1.30 \\
\hline SD tons : & 455.400 & ! & 26.00 & ' & 16.00 & ! & 25.00 & ! & 41.00 \\
\hline Av.grade: & 0.028 & : & 0.40 & : & 0.088 & ; & 0.103 & ; & 0.784 \\
\hline Av. tons: & 527.600 & ; & 32.50 & ; & 22.90 & 1 & 21.70 & ; & 16.80 \\
\hline CUTOFF & & & & ! & & ! & & ; & \\
\hline Grade : & 0.041 & ; & 0.164 & : & 0.115 & ! & 0.100 & ! & 0.338 \\
\hline Tonnage & 661.660 & ! & 16.900 & ; & 29.10 & ; & 32.27 & 1 & 9.860 \\
\hline
\end{tabular}

\section*{SILVER}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Deposit : & PORFH & ! & VMS & ! & COM & ; & HYD \\
\hline XS(i,j) ; & 0.38 & ; & 0.57 & ! & 0.30 & & 0.34 \\
\hline SD grade: & 1.06 & ; & 2.51 & : & 2.02 & , & 3.96 \\
\hline SD tons : & 519.00 & ; & 50.40 & ; & 28.50 & ; & 26.50 \\
\hline Av.grade: & 1.18 & ; & 2.71 & ! & 2.37 & : & 5.73 \\
\hline Av. tons: & 606.00 & ! & 76.20 & : & 22.10 & : & 16.80 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l:r} 
CUTOFF & \\
Grade & 2.05 \\
Tonnage & 1019.28
\end{tabular}}} & & & & & & \\
\hline & & ! & 3.22 & ; & 4.49 & ; & 9.01 \\
\hline & & ; & 76.11 & ; & 55.37 & ; & 46.07 \\
\hline
\end{tabular}

\section*{APPENDIX M}

Case Study Results for Copper, Lead, Zinc, Gold and Silver.


Sedimentary
\begin{tabular}{lrll} 
Micilla & \(2,000,000 .<=\) & 2.50 & Fail \\
Musoshi & \(30,000,000 .<=\) & 2.60 & Fail \\
Cadia 2 & \(1,000,000 .<=\) & 0.89 & Fail \\
Horne & \(3,300,000 .<=\) & 2.44 & Fail
\end{tabular}

\section*{Stratiform}
\begin{tabular}{|c|c|c|c|}
\hline Bwana Mkuaba & 5,760,000. \(<=\) & 3.48 & Fail \\
\hline Avoca & \(6,000,000 \cdot<=\) & \(1.00<=\) & Fail \\
\hline Patsitama & 6,420,000. \(<=\) & 2.24 & Fail \\
\hline Skouriotissa & 20,000,000.<= & \(0.58<=\) & Fail \\
\hline kalenqwa & 250,000. \(<=\) & 3.45 & Fail \\
\hline Skouries 1 & 17,700,000. \(<=\) & \(1.05<=\) & Fail \\
\hline Vattagami 2 & 18,000,000.<= & \(0.70<=\) & Fail \\
\hline Antanina 1 & 11,000,000.< \(=\) & 1.90 & Fail \\
\hline Jabal Sayid & 8,000,000. \(<=\) & 2.50 & Fail \\
\hline ** Mufilira & 167,067,000. & 3.37 & Pass *i \\
\hline Chambishi & \(38,785,000 .<=\) & 3.05 & Fail \\
\hline ** Baluba & 112,000,000. & 2.41 & Pass ** \\
\hline ** Luanshya & 85,516,000. & 2.86 & Pass ** \\
\hline ** Rhokana & 125,327,000. & 2.77 & Pass ** \\
\hline ** Nchanga & 259,405,000. & 4.01 & Pass ** \\
\hline ** Bancroft & 96,882,000. & 3.51 & Pass ** \\
\hline Martinduque 1 & 4,800,000. \(==\) & 2.00 & Fail \\
\hline ** Roan & 93,500,000. & 3.00 & Pass ** \\
\hline *F Roan Antelope & 96,300,000. & 2.95 & Pass ** \\
\hline Naciemento & 11,000,000.<= & \(0.65<==\) & Fail \\
\hline
\end{tabular}

Contact Matanorphic
\begin{tabular}{|c|c|c|c|}
\hline Orange : & 2,540,000.<= & 1.05 \(2=\) & Fail \\
\hline Aberlow & 3,000,000. \(<=\) & 1.20<= & Fail \\
\hline Sabena & 4,000,000. \(<=\) & \(0.70<=\) & Fail \\
\hline Val d'or & 500,000. \(<=\) & 3.23 & Fail \\
\hline Tipperary 1 & 6,000,000. \(<=\) & \(1.20<=\) & Fail \\
\hline Snow Lake & 1,000,000. \(<=\) & 3.00 & Fail \\
\hline Goudreau & 500,000.<= & 1.56< \(=\) & Fail \\
\hline Black Copper & 1,170,000. \(<=\) & \(0.67<=\) & Fail \\
\hline Flexar 1 & 270,000.< \(=\) & 4.23 & Fail \\
\hline Inquaran 1 & 4,400,000. \(==\) & 2.00 & Fail \\
\hline Amos 1 & 2,500,000. \(<=\) & 1.10< \(=\) & Fail \\
\hline Batialo 2 & 500,000. \(<=\) & 4.00 & Fail \\
\hline Eeco 1 & 27,000,000. \(<=\) & 2.10 & Fail \\
\hline Rosita & 3,689,000. \(<=\) & \(1.25<=\) & Fail \\
\hline ruanzala 3 & 2,200,000. \(<=\) & 1.00< \(=\) & Fail \\
\hline Matchless & 2,400,000. \(<=\) & 1.70 & Fail \\
\hline Butrest & 6,420,000. \(==\) & 2.24 & Fail \\
\hline Tima & 11,000,000. \(<=\) & \(1.60<=\) & Fail \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Al Amar 1 & 5,500,000.<= & \(0.70<=\) & Fail \\
\hline Scotia 2 & 1,250,000.<= & \(0.25<=\) & Fail \\
\hline Mt. Isa 6 & 1,500,000.< \(=\) & 3.80 & Fail \\
\hline Mt. 1sa 7 & 45,000,000. \(<=\) & 3.20 & Fail \\
\hline pt. Lyell & 41,900,000. \(==\) & \(1.40<=\) & Fail \\
\hline Warrego 1 & \(3,500,000 .<=\) & 2.60 & Fail \\
\hline Lepanto 3 & 500,000. \(<=\) & 4.00 & Fail \\
\hline Aberlow 1 & 3,900,000.<= & \(1.20<=\) & Fail \\
\hline Coppermine River & \(3,000,000 .<=\) & 3.48 & Fail \\
\hline San Antonio 1 & \(5,000,000 .<=\) & 1. \(40<=\) & Fail \\
\hline 0xide & & & \\
\hline
\end{tabular}

\section*{Volcanogenic Massive Sulphide}
\begin{tabular}{lcll} 
Ertsberg & \(33,000,000 .<=\) & 2.50 & Fail \\
Pikwe 1 & \(27,670,000 .<=\) & \(1.16<==\) & Fail \\
Selibe 1 & \(13,500,000 .<=\) & \(1.57<==\) & Fail \\
** Kidd Creek 2 & \(62,500,000\). & 1.33 & Pass ** \\
Tintaya & \(7,000,000 .<=\) & 3.00 & Fail \\
Mt. Morgan 1 & \(9,530,000 .<=\) & \(1.08<=\) & Fail \\
Lepanto 1 & \(8,900,000 .<=\) & 2.97 & Fail \\
F. T. Fatinio 1 & \(40,000,000 .<=\) & \(0.80<=\) & Fail \\
Madankudan & \(3,000,000 .<=\) & 2.75 & Fail \\
Kusaka 1 & \(10,000,000 .<=\) & \(2.00<=\) & Fail
\end{tabular}

Complex Sulphide
\begin{tabular}{llll} 
Mt. Curson 1 & \(3,200,000 .<==\) & \(1.04<==\) & Fail \\
Bathurst 3 & \(60,800,000\). & \(0.28<=\) & Fail \\
Bathurst 5 & \(13,000,000 .<==\) & \(1.14<=\) & Fail \\
Bathurst 6 & \(18,000,000 .<=\) & \(0.37<==\) & Fail \\
Anderson Lake 1 & \(17,600,000 .<=\) & 3.00 & Fail \\
Madriga! 1 & \(1,000,000 .<=\) & 3.00 & Fail \\
Tsumeb 2 & \(7,000,000 .<=\) & 3.66 & Fail \\
Roseburg 3 & \(8,650,000 .<=\) & \(0.89<==\) & Fail \\
* Horne 1 & \(58,000,000\). & 2.40 & Pass **
\end{tabular}

Hydrothermal
\begin{tabular}{llll} 
Juno 1 & \(200,000 .\langle=\) & \(0.50<=\) & Fail \\
Peko 2 & \(900,000 .\langle=\) & 3.60 & Fail \\
Ivanhoe 1 & \(160,000 .\langle=\) & 4.20 & Fail \\
Daribo & \(400,000 .\langle=\) & 2.50 & Fail
\end{tabular}
\begin{tabular}{lcll} 
Bougainville 2 & \(760,000,000\). & \(0.020<=\) & Fail \\
Philex 2 & \(60,000,000\). & \(0.020<=\) & Fail \\
Cerro Colorado 2 & \(18,000,000 .==\) & 0.080 & Fail \\
El Salvador 2 & \(1000,000,000\). & \(0.005<=\) & Fail \\
Butte 6 & \(800,000,000\). & \(0.008<=\) & Fail
\end{tabular}

Sedimentary
\begin{tabular}{|c|c|c|c|}
\hline ** H. B. Fontein & 28,100,000. & 0.400 & Pas5** \\
\hline H. B. Fontein 2 & 20,600,000. & \(0.020<=\) & Fail \\
\hline Wit Nigel & 4,210,000. \(==\) & 0.270 & Fail \\
\hline ** Braken & 28,000,000. & 0.470 & Pass ** \\
\hline E. G. Main & 2,000,000. \(==\) & 0.250 & Fail \\
\hline E. G. Kiaberley & \(5,000,000 .<=\) & 0.230 & Fail \\
\hline Groutvlei Main & \(14,000,000 .<=\) & 0.210 & Fail \\
\hline ** Groutvlei kia. & 18,000,000. & 0.220 & Pass \#* \\
\hline ** Kinross & 23,000,000. & 0.360 & Pass ** \\
\hline ** Leslie & 37,000,000. & 0.330 & Pass ** \\
\hline Marivale Main & 16,000,000. \(==\) & 0.260 & Fail \\
\hline * Marivale kim. & 17,000,000. & 0.260 & Pass ** \\
\hline * St. Helena & 95,000,000. & 0.520 & Pass \({ }^{\text {F* }}\) \\
\hline ** Winkelhaak & \(50,000,000\). & 0.300 & Pass ** \\
\hline Cortez & 3,400,000.<= & 0.290 & Fail \\
\hline Eagle & 1,600,000. \(==\) & 0.410 & Fail \\
\hline Donalda & 3,150,000. \(==\) & 0.350 & Fail \\
\hline ** Elsburg & 54,000,000. & 0.350 & Pass ** \\
\hline ** Virginia SA ! & 37,000,000. & 0.298 & Pass ** \\
\hline Merriespruit 1 & \(16,000,000 .<=\) & 0.280 & Fail \\
\hline ** E. Daggerfontein & 17,000,000. & 0.170 & Pass ** \\
\hline ** Vaal Reets & 66,100,000. & 0.480 & Pass ** \\
\hline Dome & 2,030,000. \(==\) & 0.279 & Fail \\
\hline Camptell Red Lake & 1,300,000. \(<=\) & 0.690 & Fail \\
\hline Luz & 3,280,000. \(==\) & 0.095 & Fail \\
\hline ** Doornfontein & 29,060,000. & 0.430 & Pa55 ** \\
\hline * E. Driefontein & 100,000,000. & 0.440 & Pass ** \\
\hline 1200 t & 11,590,000. \(<=\) & 0.550 & Fail \\
\hline **Libanon & 25,900,000. & 0.400 & Pass ** \\
\hline Luipaardsvlei & 6,360,000. \(==\) & 0.270 & Fail \\
\hline 5 Sparmater & 710,000.<= & 0.360 & Fail \\
\hline Sub Nigel & 2,660,000. \(==\) & 0.430 & Fail \\
\hline * Venterspost & 21,880,000. & 0.440 & Pas5 ** \\
\hline Vlakfontein & 9,390,000. \(==\) & 0.460 & Fail \\
\hline ** H. Dreifonteín & 64,880,000. & 0.811 & Pass ** \\
\hline ** East Dagga & 24,270,000. & 0.300 & Pass ** \\
\hline ** F. S. Geduld & 49,540,000. & 1.270 & Pass \({ }^{\text {\# }}\) \\
\hline **P. Brand & 75,550,000. & 0.660 & Pass ** \\
\hline ** P. Steyn & 68,900,000. & 0.380 & Pass ** \\
\hline S. A. Lands & 13,850,000. \(<==\) & 0.390 & Fail \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline * Welkom & 53,650,000. & 0.400 & Pas5 ** \\
\hline ** H. Deeps & 49,150,000. & 0.650 & Pass ** \\
\hline **. Holdings & 70,180,000. & 0.700 & Pass ** \\
\hline ** H. Reef 5 & 48,250,000. & 0.430 & Pa55 ** \\
\hline * Blyvoor & 58,740,000. & 0.700 & Pass \#* \\
\hline * Durban Deep & 38,600,000. & 0.200 & Pass ** \\
\hline ** E. Rand Prop. & 52,500,000. & 0.270 & Pass ** \\
\hline ** Harmony & 64,890,000. & 0.380 & Pass ** \\
\hline ** Hestern Areas & 53,980,000. & 0.350 & Pass ** \\
\hline ** Grootvlei & 32,000,000. & 0.220 & Pass ** \\
\hline ** Buffelsfontein & 68,380,000. & 0.470 & Pass ** \\
\hline S. Roodepoort & 8,020,000.< \(=\) & 0.310 & Fail \\
\hline * Stilfontein & 22,520,000. & 0.460 & Pass ** \\
\hline ** W. Rand Cons. & 34,920,000. & 0.220 & Pass ** \\
\hline ** Hartebeestfontein & 52,760,000. & 0.410 & Pass ** \\
\hline ** Loraine & 80,440,000. & 0.410 & Pass ** \\
\hline ** Rand Leases & 60,000,000. & 0.410 & P355 ** \\
\hline ** Iandpan & 28,080,000. & 0.400 & Pass ** \\
\hline ** Ashanti & 37,000,000. & 1.040 & Pass \({ }^{\text {* }}\) \\
\hline Kalgoorlie & 6,100,000.<= & 0.190 & Fail \\
\hline Great Boulder & 1,530,000.< \(=\) & 0.240 & Fail \\
\hline N. Kalgoorlie & 2,100,000. \(<=\) & 0.250 & Fail \\
\hline ** Kolar & 45,300,000. & 0.590 & Pass ** \\
\hline
\end{tabular}

\section*{Stratiform}
Skouries \(2 \quad 17,700,000 . \quad 0.034<==\quad\) Fail

Contact Metamorphic
\begin{tabular}{lrll} 
Goudreau & \(500,000 .=\) & 0.135 & Fail \\
Flexar 3 & \(270,000 .==\) & \(0.030<=\) & Fail \\
Batialo 1 & \(500,000 .==\) & 3.500 & Fail \\
Norseman & \(530,000 .==\) & 0.500 & Fail \\
Warrego 2 & \(3,500,000 .=\) & 0.060 & Fail \\
Lepanto 2 & \(500,000 .<=\) & 3.500 & Fail
\end{tabular}

\section*{Volcanogenic Massive Sulphide}
\begin{tabular}{lcll} 
Ertsberg 4 & \(33,000,000\). & \(0.020<=\) & Fail \\
Mt. Morgan 2 & \(9,530,000 .\langle=\) & \(0.090<=\) & Fail \\
Lepanto 2 & \(8,900,000 .<=\) & 0.173 & Fail \\
R. T. Patinio & \(40,000,000\). & \(0.070<=\) & Fail
\end{tabular}

\section*{Complex Sulphide}
\begin{tabular}{lrll} 
Leadville 4 & \(2,401,000 .<=\) & \(0.084<==\) & Fail \\
Anderson Lake & \(17,600,000 .<=\) & \(0.038<=\) & Fail \\
Roseburg 5 & \(8,650,000 .\langle==\) & 0.110 & Fail \\
* Horne 2 & \(58,000,000\). & 0.180 & Pass \(4 *\)
\end{tabular}

Hydrothermal
\begin{tabular}{|c|c|c|c|}
\hline El Salvador 1 & 118,000.< \(=\) & \(0.150<=\) & Fail \\
\hline Bullfinch & 16,000. \(==\) & 4.000 & Fail \\
\hline Falcon & 760,000.<= & \(0.320<==\) & Fail \\
\hline Fergusson 1 & 60,000. \(<=\) & \(0.044<=\) & Fail \\
\hline E1 Dorado & 1,000,000. \(<=\) & 0.480 & Fail \\
\hline El Sal 1 & 118,000.<= & 0.150< \(=\) & Fail \\
\hline Juno 3 & 200,000. \(<=\) & 3.000 & Fail \\
\hline Peko 1 & 900,000.<= & \(0.100<=\) & Fail \\
\hline Ivanhoe 2 & 160,000.<= & \(0.070<=\) & Fail \\
\hline Emperor & 970,000.<= & 0.450 & Fail \\
\hline * Hollinger 1 & 60,000,000. & 0.320 & Pass ** \\
\hline * Homestake 1 & 135,000,000. & 0.320 & Pass ** \\
\hline
\end{tabular}

\section*{SILVER}
-a: \(=\)

\section*{Contact Metamorphic}
Atlin 1
Aberlow 2
Tipperary 2
Flexar 4
Inguaran 2
Farrell 2
Mt. Isa 2
Mt. lsa 5
Aberlow 3
San Eulaila 3
\(150,000 .<=\)
\(3,000,000 .<=\)
\(6,000,000 .<=\)
\(270,000 .<=\)
\(4,400,000 .<=\)
\(60,000 .<=\)
\(600,000 .<=\)
\(34,000,000 .<=\)
\(3,900,000 .<=\)
\(35,000,000 .<=\)
\begin{tabular}{ll}
20.00 & Fail \\
\(1.66<==\) & Fail \\
\(1.66<==\) & Fail \\
\(0.12<==\) & Fail \\
\(0.30<==\) & Fail \\
14.10 & Fail \\
\(2.00<==\) & Fail \\
5.40 & Fail \\
\(1.87<=\) & Fail \\
7.41 & Fail
\end{tabular}

Complex Sulphide
\begin{tabular}{lrll} 
Mt. Curson 2 & \(3,200,000 .<==\) & \(0.35<=\) & Fail \\
Leadville 3 & \(2,401,000 .<=\) & \(2.64\langle==\) & Fail \\
** Bathurst 4 & \(60,080,000\). & 2.40 & Pass \(* *\) \\
Bathurst 9 & \(18,000,000 .<=\) & \(1.84\langle=\) & Fail \\
Anderson Lake 5 & \(17,600,000 .<=\) & \(0.61<==\) & Fail \\
Madrigal 4 & \(1,000,000 .<=\) & 6.00 & Fail \\
Tsumeb 1 & \(7,000,000 .<=\) & \(2.13<=\) & Fail
\end{tabular}
\begin{tabular}{lcll} 
Roseburg 4 & \(8,650,000\). & \(==\) & 5.10 \\
Laisvall 3 & \(80,000,000\). & \(0.29<==\) & Fail
\end{tabular}

Volcanogenic Massive Sulphide
\begin{tabular}{llll} 
Ertsberg 3 & \(33,000,000 .<==\) & \(0.30<==\) & Fail \\
** Kidd Creek 3 & \(62,500,000\). & 4.85 & Pass ** \\
Anvil 3 & \(63,000,000\). & \(1.00<==\) & Fail \\
N. Broken Hill 2 & \(45,000,000 .\langle=\) & 7.39 & Fail \\
R. T. Patinio 3 & \(40,000,000,<=\) & \(1.70<==\) & Fail \\
Sullivan 3 & \(170,000,000\). & \(1.77<==\) & Fail \\
Broken Hill 3 & \(120,000,000\). & \(1.93<==\) & Fail
\end{tabular}

Stratiform
\begin{tabular}{llll} 
Mogul 3 & \(10,200,000 .<==\) & \(0.90<==\) & Fail \\
Silvermines 3 & \(14,000,000 .<==\) & \(0.87<==\) & Fail
\end{tabular}

Hydrothermal
\begin{tabular}{lrll} 
E1 Salvador 2 & \(118,000 .<=\) & 10.00 & Fail \\
Fergusson 2 & \(60,000 .\langle=\) & \(6.90<==\) & Fail \\
Frances Lake & \(400,000 .<=\) & \(4.20<=\) & Fail \\
Hollinger 2 & \(60,000,000\). & \(0.07<==\) & Fail \\
Bunker Hill 1 & \(40,000,000 .<=\) & \(3.22<==\) & Fail
\end{tabular}

Forphyry
--...-----
\begin{tabular}{lrll} 
Cerro Colorado 3 & \(18,000,000 .<=\) & \(1.35==\) & Fail \\
Ei Salvador 3 & \(1000,000,000 .\langle=\) & \(0.05\langle==\) & Fail \\
** Butte 5 & \(800,000,000\). & 2.15 & Pass \(* *\)
\end{tabular}

LEAD
=: \(=\)

Porphyry
\begin{tabular}{lrll} 
** Pine Point 1 & \(40,500,000\). & 5.00 & Pass ** \\
Butte 4 & \(800,000,000\). & \(0.10<==\) & Fail
\end{tabular}

Qxide
---

Angouran
\(15,000,000 .<=\quad 7.00\)
Fail

Stratifora
\begin{tabular}{llll}
\(\# \#\) Za 1 & \(44,100,000\). & 12.00 & Pass \\
Mogul 2 & \(10,200,000 .<=\) & \(2.80<=\) & Fail \\
Silvermines 1 & \(14,000,000 .<=\) & \(2.80<==\) & Fail
\end{tabular}

Contact Metamorphic
\begin{tabular}{lrcl} 
Atlin 2 & \(150,000 .<=\) & 5.00 & Fail \\
Huanzala 2 & \(2,200,000 .<=\) & 7.00 & Fail \\
Farrell 3 & \(60,000 .<=\) & 12.80 & Fail \\
Mt. Isa 1 & \(600,000 .<=\) & 5.50 & Fail \\
** Mt. Isa 3 & \(34,000,000\) & 7.40 & Pass ** \\
San Antonio 2 & \(5,000,000 .<=\) & \(0.90<==\) & Fail \\
** San Eulaila 1 & \(35,000,000\). & 12.00 & Pass **
\end{tabular}

\section*{Hydrothermal}
\begin{tabular}{lrll} 
Fergusson 3 & \(60,000 .<=\) & \(6.00<==\) & Fail \\
Frances Lake 2 & \(400,000 .<=\) & 8.00 & Fail \\
Ithmoul & \(1,300,000 .==\) & \(4.00<==\) & Fail \\
Moate 2 & \(110,000 .\langle=\) & \(1.00<==\) & Fail \\
** Bunker Hill 2 & \(40,000,000\). & 4.00 & Pass **
\end{tabular}

Complex Sulphide
\begin{tabular}{lcll} 
Leadville 1 & \(2,401,000 .<==\) & 5.13 & Fail \\
** Bathurst 2 & \(60,800,000\). & 3.50 & Pa5s ** \\
Bathurst 7 & \(18,000,000 .<=\) & \(2.35<=\) & Fail \\
Anderson Lake 3 & \(17,600,000 .<=\) & \(0.20<==\) & Fail \\
Madrigal 2 & \(1,000,000 .<=\) & 6.08 & Fail \\
Tsumeb 3 & \(7,000,000 .<=\) & 10.50 & Fail \\
Belanatana 2 & \(730,000 .<=\) & \(2.90<=\) & Fail \\
Beltana 4 & \(97,000 .<=\) & 12.00 & Fail \\
Foseburg 2 & \(8,650,000 .<=\) & 5.60 & Fail \\
** Laisvall 1 & \(80,000,000\). & 4.30 & Pas5 **
\end{tabular}

Tri - State
Pitcher \(2 \quad 200,000,000 . \quad 0.80<==\) Fail

\section*{Volcanogenic Massive Sulphide}
\begin{tabular}{lccl} 
\# Anvil 1 & \(63,000,000\). & 4.00 & Pass ** \\
H. Broken Hill 1 & \(4,500,000 .<==\) & 12.97 & Fail \\
Madankadan 2 & \(3,000,000 .<==\) & \(1.20<==\) & Fail \\
** Sullivan 1 & \(170,000,000\). & 4.00 & Pass ** \\
* Broken Hill 1 & \(120,000,000\). & 13.00 & Pass ** \\
Kosaka 2 & \(10,000,000 .<=\) & \(1.70<==\) & Fail
\end{tabular}
Oxide
4* Anqouran 2
\(15,000,000\).
28.00
Pass \({ }^{\text {f }}\)

\section*{Stratifor:}
\begin{tabular}{llll} 
** Mattagami 1 & \(18,000,000\). & 10.00 & Pass \#* \\
Antanina 2 & \(11,000,000 .<==\) & \(1.50<==\) & Fail \\
** Zba 2 & \(44,100,000\). & 26.30 & Pass ** \\
Mogul 1 & \(10,200,000 .<=\) & \(8.20<=\) & Fail \\
Silyermines 2 & \(14,000,000 .<=\) & \(7.40<=\) & Fail
\end{tabular}
Contact Metamorphic
\begin{tabular}{|c|c|c|c|}
\hline Tennesse & 50,000,000. & \(5.00<=\) & Fail \\
\hline Flexar 2 & 270,000. \(=\) & \(0.40<=\) & Fail \\
\hline Geco 2 & 27,000,000. \(<==\) & \(5.10<=\) & Fail \\
\hline Huanzala 1 & \(2,200,000 .<=\) & 13.00 & Fail \\
\hline El Amar 2 & 5,500,000. \(<=\) & \(5.00<=\) & Fail \\
\hline Farrell 1 & 60,000. \(<=\) & 7.30 & Fail \\
\hline Mt. I5a ! & \(34,000,000 .<=\) & \(5.60<=\) & Fail \\
\hline San Antonio & \(5,000,000 .<==\) & \(1.60<=\) & Fail \\
\hline San Eulaila 2 & \(35,000,000 .<=\) & 11.00 & Fail \\
\hline
\end{tabular}
Porphyry
Butte \(2 \quad 800,000,000 . \quad 0.74\langle==\) Fail

\section*{Hydrothermal}
\begin{tabular}{lrll} 
Fergusson 4 & \(60,000 .<=\) & \(6.70<==\) & Fail \\
Frances Lake 3 & \(400,000 .<=\) & 9.00 & Fail \\
Moate 1 & \(110,000 .<==\) & \(6.40<==\) & Fail \\
Bunker Hill 3 & \(40,000,000\). & \(5.00<=\) & Fail
\end{tabular}

Complex Sulphide


Volcanogenic Massive Sulphide
\begin{tabular}{llll} 
Pine Foint 2 & \(40,500,000 .\langle==\) & \(5.00<==\) & Fail \\
** Kidd Creek 1 & \(62,500,000\). & 7.08 & Pass ** \\
Anvil 2 & \(63,000,000\). & \(5.00<=\) & Fail \\
** A. Broken Hill 3 & \(45,000,000\). & 10.70 & Pass ** \\
Madankadan 3 & \(3,000,000 .\langle=\) & \(3.50<=\) & Fail \\
Sullivan 2 & \(170,000,000\). & \(5.00<==\) & Fail \\
* Broken Hill 2 & \(120,000,000\). & 11.00 & Fass ** \\
Kosaka 3 & \(1,000,000 .\langle=\) & \(5.00<==\) & Fail
\end{tabular}```


[^0]:    Finally, these specific conclusions are combined to form the best overall strategy for investment in mineral exploration by a hypothetical company.

[^1]:    "..- all decisions invalve choice between alternative courses of action. We may call each course of action a strategy, so that the task of the decision maker is to choose between a number of alternative

[^2]:    No previously published evidence has been found by the author describing the weaving together of all

[^3]:    The best expression of the mining industry's solutions to profit making are the currently existing mines. The most obvious distinction that may be made

[^4]:    For the group of deposits that are regarded as relatively intact; ie, have fracture intensities of less than 6.5, thickness is again the final deciding factor in choosing between the two sets of methods, artificial caving and self-supporting. Self-supporting systems depend, largely, for their efficiency on the strength of the rock mass when acting like a beam supported at each end. This, in turn, is largely a function of the tensile strength of the rock. At this stage of exploration planning it is hard to have any accurate knowledge of the tensile strength of the rock, so once again, it is necessary to adopt an empirical solution to the problem. It would seem in today's industry that the maximum span used in selfsupporting mining systems is about 15 metres. There-

[^5]:    However, in the case of a dry mine, water may be imported to alleviate the situation. Clearly then some water is highly desirable but too much is very bad. In the extreme, too much water can prevent

[^6]:    From a variogram we may obtain three significant parameters; the sill, the nugget and the range. In terms of price - time dependency, the sill provides an estimate of the maximum error we may expect in making

