
THE ELECTRONIC STRUCTURE OF DISORDERED SYSTEMS

1976

P. M. DOOLEY



UMI Number: U431420

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U431420
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346





STATEMENT

The accompanying thesis submitted for the degree of Ph.D. 
entitled ’The Electronic Structure of Disordered Systems’ is based 
on work conducted by the author in the Department of Physics of the 
University of Leicester mainly during the period between October,
1972 and September, 1975.

All the work recorded in this thesis is original unless other
wise acknowledged in the text or by references. None of the work 
has been submitted for another degree in this or any other university.

Signed : . .P. .DO. .>.   Date : . .1917 ̂



DEDICATION

To my mother and father for all they denied themselves over the 
past years so that this thesis could be written.



ACKNQIVLEDGEMËNTS

I wish to thank Professor John L. Beeby for encouragement, 
patience and excellent supervision over my three years with the 
physics department at the University of Leicester. I should also 
like to thank Dr. Peter Jewsbury for countless helpful discussions 
and guidance for part of the work presented in this thesis. Miss 
Janet Carbone, Mrs. Jacky Plews, and Mrs. Rosemary Lit tier are to 
be thanked for their preparation of the manuscript. I also wish 
to thank my wife Elizabeth for her support and encouragement at all 
times. Finally thanks are due to the University of Leicester for 
the receipt of a research demonstratorship during the period of this 
work.



CONTENTS

INTRODUCTION i

CHAPTER I LIQUID ALLOYS
1.1 Introduction 1
1.2 The 'Metallic' Alloys 3
1.3 The Liquid Semiconductors 9
1.4 The Liquid Semiconductor Problem 14

CHAPTER II CHARGE TRANSFER IN ORDERED AND DISORDERED ALLOYS
2.1 Charge Transfer, lonicity And Covalency 16
2.2 The Importance Of Charge Transfer In Disordered Alloys 19
2.3 Coherent Potential Approximation and Binary Disordered Alloys 22
2.4 Charge Transfer In Liquid Semiconductors 32

CHAPTER III CHARGE TRANSFER AND ELECTRONEGATIVITY DIFFERENCE
3.1 Electronegativity Difference 37
3.2 Electrochemical Effects In Alloys Of Cadmium, Magnesium 39

And Mercury
3.3 Electrochemical Effect In Simple Metal Alloys 47

CHAPTER IV CHARGE TRANSFER AND ATOMIC CELL SIZE
4.1 The Problem 60
4.2 The Change In Atomic Cell Size With Charge Transfer 61
4.3 The One-Dimensional Binary Alloy 69
4.4 Three-Dimensions 74

CONCLUSION : PART I 77



CHAPTER V THE HYDROGEN MOLECULE IN AN ELECTRON GAS
5.1 Introduction 78

5.2 Hydrogen Molecule In An Electron Gas I 79
5.3 Hydrogen Molecule In An Electron Gas II 87
5.4 Conclusion 95

CHAPTER VI THE CHEMICAL COMPLEX IN MOLTEN Mg-Bi AND Tl-Te
6.1 Introduction 96
6.2 Thermodynamic Properties 97

6.3 Hall Effect, Conductivity and Energy Of Mixing 103
6.4 Conclus ion 105

CHAPTER VII MUFFIN-TINS : PHASESHIFTS
7.1 Introduction 107
7.2 Construction Of The Muff in-Tin Potential 108
7.3 Single Scatterer; Phaseshifts 111

7.4 Local Electronic Density Of States: Scattering Path Operator H 8

CHAPTER VIII A CALCULATION ON THE SEMICONDUCTING MAGNESIUM-
BIMJTH SYSTEM

8.1 Introduction 121

8.2 Theoretical Approach 123
8.3 The Bottom Of The Band In A Liouid Allov 126
8.4 Calculations And Results 129
8.5 Discussion 135

8.6 Behaviour Of Transnort Pronerties I39

8.7 Summary 141

CONCLUSION : PART II 142



Appendix I 
Appendix II 
Bibliography



(i)

INTRODUCTION

There is a class of binary liquid alloys whose electrical 
properties closely resemble those normally associated with solid 
semiconductors over a restricted range of compositions. They 
are often referred to as liquid semiconductors. These are low 
conductivity liquids, with conductivities which increase with 
temperature, and Hall coefficients that depart markedly from the 
free electron behaviour. Liquid Cu-Te, Ag-Te, Tl-Te, In-Te, Mg-Bi 
and all alloys involving selenium as one component are some of the 
alloys classified as semiconducting. This thesis constitutes a 
theoretical study of liquid semiconductors made up of components 
which are metallic in the pure liquid state (e.g., Mg-Bi, Li-Bi), 
since it is possible to continually follow the transition from the 
metallic to the semiconducting behaviour.

Chapter I introduces the electrical behaviour of liquid alloys 
posing the problems presented by the liquid semiconducting systems. 
The possibility of the formation of chemical complexes Mĝ Big,
LigBi in liquid semiconducting Mg-Bi, Li-Bi has been put forward 
(c.f. Enderby, 1974). Chapters II, III and IV look at charge 
transfer in ordered and disordered alloys as a means to understanding 
the nature of the bonding within such systems. The suitability of 
electronegativity difference as a meaningful parameter in determining 
the degree of ionicity within chemically bonded disordered alloy 
systems, as well as the problem of defining the atomic cell size, 
are considered in depth. Chapter V examines the binding of the 
hydrogen molecule in an electron gas serving as a basis for the



(ii)

treatment in Chapter VI of the covalently bonded MggBi2 complex in 
molten Mg-Bi. The final chapters present a phenomenological study 
carried out on the Mg-Bi system using the multiple scattering 
techniques appropriate in the muff in-tin approximation for the 
atomic potentials. Chapter VII introduces the muffin-tin concept 
and that of associated scattering phaseshifts for the atomic 
potential, while Chapter VIII gives details of the calculation 
performed on the liquid Mg-Bi system. The conclusions reached 
represent a departure from the thinking of the previous chapters.
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CHAPTER I 

LIQUID ALLOYS

1.1 INTRODUCTION
The electrical behaviour of liquid alloys has been extensively 

studied by means of measurements of the conductivity (6), the Hall 
coefficient (R) and the thermoelectric power (S). Several workers 
have been able to distinguish the existence of at least three 
groups of liquid alloys, each with its own characteristic electrical 
properties.

One group is made up of liquid alloys whose electron transport 
parameters are typical of the metallic state. The conductivity is 
in excess of 3000fi ĉm \ the thermopower less than ±50yV deg \ 
the Hall coefficient is approximately equal to R̂ , the free electron 
value, and ̂  is always negative. Liquid Ag-Au, Mg-Cd, In-Tl,
Pb-Sn, Bi-Sb are some of the alloys known to fall within this group.

A second group includes liquids with intermediate conductivities 
(50000 xm  ̂> 6 > 18000 ĉm , positive values of and metallic 
type Hall coefficients and thermoelectric powers. Liquid Cu-Sn, 
Bi-Te, Sb-Te, Au-Te, Cd-Sb are some of the alloys known to fall in 
this group.

The final group is made up of liquid alloys for which the 
transport parameters are substantially different from those typical 
of the metallic state over a restricted range of compositions. They 
are low conductivity liquids (6 < 200 ”̂ ĉm~̂ ) with positive values 
of ̂  and Hall coefficients which are quite distinct from those of 
normal liquid alloys. This final group includes liquid Cu-Te, Ag-Te,
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Tl-Te, In-Te, Mg-Bi and all liquid alloys involving selenium as one 
component.

Enderby and Codlings (1970) have classified liquid alloys into 
two groups, one appreciably more metallic in character than the other. 
Type I alloys are characterized by Hall coefficients, thermoelectric 
powers and conductivities which are essentially smooth functions of 
composition. The first group of liquid alloys above are type I, 
known as simple liquid alloys. The second group are type I alloys 
in which ̂  is positive. There is good reason to believe 
(Enderby, 1974) that type I liquid alloy transport properties may 
be treated by the theoretical techniques of Faber and Zimqp (1965). 
Alloys in the final group are type II liquid alloys, usually 
referred to as liquid semiconductors. Joffe and Regel (1960) first 
thought that alloys in the second group could also be classed as 
liquid semiconductors, but subsequent experimental evidence 
(Enderby and Simmons, 1969; Allgaier, 1969) ruled out such a
classification, in spite of a positive Type II alloys are
characterized by Hall coefficients, thermoelectric powers and 
conductivities which vary sharply over a well defined composition 
range, deviating markedly from values typical of the metallic state. 
They are usually referred to as liquid semiconductors because they 
exhibit most of the properties associated with the solid 
semiconductors.

The second section of this chapter looks at the electrical 
behaviour of the type I, or more metallic, liquid alloys. The
experimental features which characterize these systems, and the
theoretical methods appropriate to their understanding, are
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presented. The third section looks in detail at the electrical 
properties of the liquid semiconducting systems, while the final 
section spells out the problems they present. In order to make 
matters more definite these systems will be subdivided into five 
categories depending upon the electrical nature of the constituents 
of each alloy in the pure liquid state. Liquid Mg-Bi, for example, 
is made up of two components which are both metallic in the liquid 
state, hence this alloy system is a metal-metal liquid semiconductor. 
Particular attention is paid to the metal-metal liquid semiconductors 
since it is possible to follow the gradual transition from the 
metallic to the semiconducting state. The theoretical models offered 
for these systems are presented and criticised in subsequent chapters.

1.2 THE 'METALLIC ALLOYS
1.2.1 Transport Properties

The nearly free electron theory expresses the conductivity (6) 
of electrons in the form

6 = (1.2.1)m
where n is the electron number density, e, the electron charge, m, 
the electron mass and t ,  the mean free time between collisions.
This may readily be expressed in terms of the mean free path, L;

ê LSp
6 =    (1.2.2)

37r̂ h

where Sp = area of Fermi surface = 4iTKp̂ , with Kp the Fermi wavenumber.
If a is denoted as the average interatomic spacing, in the 

limit L>a, the so called weak scattering limit (c.f. Mott, 1973),



- 4 -

conductivities are in excess of about 300W ĉm \  This has been 
observed to be a regime into which many liquid metals and alloys 
fall, and it has been possible to evaluate the conductivity from 
(1.2.2) for pure metals (Ziman, 1961) and alloys (Faber-Ziman, 1965) 
using appropriate precriptions for L. In this same limit, the 
thermoelectric power (S) is related to the conductivity through

S = din (6)
ÏË E=E,

(1.2.3)

This is often expressed in terns of the resistivity (p) through

S =_  IT
7 "eE:

where x = -E, M M = -E.
E=E,

1 ̂22^
p 9E = - E.

-*E=E, E=E,'F
(1.2.4)

Providing it is assumed that all valence electrons contribute to 
the conduction process, the Hall coefficient (R) is given by the 
elementary expression

(1.2.5)

In the limit L < a(̂  3 S), Mott postulates that conduction 
in disordered systems is still largely due to the extended electron 
states, with the conductivity strongly dependent on the density 
of states at the Fermi level. (1.2.2) has been generalised to 
give

eZLSp
S' = ------------------------(1.2.6)

where g = n(Ep)
( F̂

3*2%

is in the range 1 to 0.3,
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with n(Ep), the real density of states, n̂ (Ep), the free electron 
density of states, both evaluated at the Fermi energy. In this 
regime, liquid conductivities fall between 3000fi ĉm ̂  and 
2000 ^cm \  The thermopower is expressed in terms of the 
density of states at the Fermi energy

n2 V T din n(E)
dé (1.2.7)

E=E,T
It is not easy to go beyond free electron theory to obtain a 
sensible expression for the Hall coefficient.

Below a conductivity of 2000  ̂cm \  Mott argues that 
conduction processes do not involve extended electron states.
1.2.2 Faber-Ziman Theory

The Faber-Ziman nearly free electron theory for liquid 
alloys determines the resistivity and thermoelectric power in 
terms of pseudopotentials through the structure factor, a(q).
The structure factor is defined to be (Appendix 1):

a(q) = ̂  ̂  expC-i q.r̂ )

(1.2.8)
(g(r)-l) 4ïïr̂ dr

0 ^
where N is the number of scatterers, q, the wavenumber, r̂ , the 
position of the nuclei, V, the volume of the sample, and g(r), 
the radial distribution function. The resistivity (p) is then 
given as

P = < v2(q) a(q) > (1.2.9)
-he *VF

where v(q) is the atomic pseudopotential, Vp, the Fermi velocity.
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2Kp
<F(q)> E average over q from 0 to 2Kp = F(q) q̂ dq

In a liquid alloy there are three radial distribution functions 
Su» Ê22» gi2 ̂ Eere the numbers 1 and 2 refer to the alloy components, 
and, consequently, there are three partial structure factors â ,̂
^22» &12' The partial structure factors are related to the radial 
distribution functions through

where ĝ  ̂represents the distribution of a-type atoms from a 6-atom 
origin, a and 6 being dummy suffices which take on values 1 and 2.
The binary alloy resistivity is then given by

Pmloy = —  ' c(l-c)vM+ c(l-c)V2  ̂ - 2c(1-c)ViV2ALUJI .̂ g2 V 2

+ c^Vi^ai! + (l-c)^V2^a22 + 2c(l-c)ViV2ai2> 

i.e. Paiioy ~  < Vi2{c(l-c) + ĉ aii) + V2 {̂c(l-c) + (l-c)2a22>He2 Vp2

+ 2c(l-c)viV2(ai2“l)> (1.2.11)

where c is the concentration of component 1, v%, the pseudopotential 
of component 1, and V2, the pseudopotential of component 2.

A considerable simplification occurs in the case of an alloy 
in which the two constituents are so similar that they may be 
substituted one for the other. Provided

(1) the scattering is weak,
( 2 )  a%1 = a22  = &12 =

(3) Vi, V2 are concentration independent,
and (4) the Fermi wavenumber remains practically constant in the
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alloying process, 
the resistivity is given by

Paiioy ° a(c vM+(l-c)v2 }̂+c(l-c)(l-a)(vi*V2)2> (1.2.12)I ALLUÏ .J.g2 V 2

(1.2.12) describes accurately the concentration dependence of the 
resistivity for the simple liquid alloys, Ag-Au and Na-K.

The thermopower parameter x from (1.2.4) can be expressed
3

= E 3K 
^ALLOY T

. K 3v . . . < # : ( 2KF,K):
V W  <t(2kp,K)> " <F(2Kp,K)>

(1.2.13)
where <F(q,K)> = < Vj^fc(l-c)+ĉ a}+V2 {̂(l-c)c+(l-c)̂ a}

+ViV2(2c(1-c)(a-l)}>

1.2.3 Experiment and Theory: A Comparison
The Metallic’ liquid alloys fall into two basic categories each 

characterized by Hall coefficients, thermoelectric powers and 
conductivities which are essentially smooth functions of composition. 
Liquid Ag-Au, Na-K, Mg-Cd, In-Tf, Pb-Sn, Bi-Sb are some of the alloys 
which belong to the first category, known as simple liquid alloys. 
With conductivities greater than 3000fi"kjn“ ,̂ thermopowers less 
than +50yV deg"̂  and Hall coefficients not significantly different 
from the free electron value, these alloys possess transport 
parameters usually associated with liquid metals. Liquid 
monovalent Ag-Au was the first of these systems to be studied 
in which sound agreement Was found between the Faber-Ziman theory 
and experiment (Howe and Enderby, 1967). The resistivity and 
thermopower curves are given in figure 1.2.1. Enderby et al 
(1968) went on to compare experimental data for Mg-Cd, In-Tl,



20 40 _  60 80 Too
at%  Ag

The resistivity of liquid Ag-Au at 113^0. O Hcwe& Enderby, 1967 
A fôll&Motz,1957.

T

cn

Thermopower of liquid Au-Ag at 1 1 3 ^ 0  O Howe & Enderby, 1967- 
I Theoretical curve derived from Faber-Ziman theory.

Fig. 1.2.1



- 8 -

Pb-Sn, Bi-Sb with theory and again found reasonable agreement 
(figure 1.2,2). Faber-Ziman theory appears to work well for the 
simple liquid alloys.

The second category of liquid alloys, considered more metallic 
in character by Enderby and coworkers, are distinctive in that they 
are alloys in which ̂  is positive, for which reason they were 
once thought to be semiconducting (Joffe and Regel, 1960). 
Conductivities fall between 3GQ0fi” ĉm“  ̂and 180Qj2“^cm" ,̂ 
thermoelectric powers and Hall coefficients are metallic in 
character. Figure 1.2.3 presents the conductivity of liquid 
(a) ZnSb, (b) Bi2Te3, (c) Sb2 Tég taken from Enderby and Walsh 
(1966). The smooth variation of conductivity with composition 
for molten Bi-Te at 585̂ C is depicted in figure 1.2.6". Systematic 
investigations of 6 , S and R as functions of composition for the 
liquid Cu-Sn alloy have been carried out by Enderby and Howe (1968) 
and Enderby, Hasan and Simmons (1967). A Faber-Ziman nearly free 
electron picture is found to provide a good basis for understanding 
the electron transport phenomena. For the Hall coefficient in 
particular, Enderby et al suppose that R is always inversely 
proportional to the electron number density, n. However, as a 
result of the composition fluctuations in the liquid alloy, the 
effective valence of the Sn atoms is either two or four, depending 
upon the environment. In order to approximate this effect it is 
assumed that the effective valence of Cu is always one, while that 
for Sn varies linearly from two at the Cu-rich end to four at the 
Sn-rich end. The electron number density is thus given by
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where M̂ , are the atomic weights of Cu and Sn respectively, 
c is the concentration of Sn, N is Avogadro’s number and p is 
the alloy density. The free electron Hall coefficient for Cu-Sn 
calculated from (1.2.5) and (1.2.14) can be seen from figure
1.2.5 to agree remarkably well with experiment.

A direct comparison between Faber-Ziman theory and experiment 
for those alloys in which ̂  is positive has not been carried out 
on a wide scale because the relevant partial structure factors are 
not known. On the strength of the reasonable agreement which 
exists for the Cu-Sn system, Enderby groups these alloys with 
the simple liquid alloys, stating that the positive ̂  arises 
from the temperature dependence of the partial interference 
functions without justification.

1.3 THE LIQUID SEMICONDUCTORS
1.3.1 Introduction

Several liquid alloys have very low electrical conductivities 
(<200f2“icm”i) over a restricted range of concentrations. When 
none of the components is naturally a semiconductor or insulator 
in the liquid state then these concentration ranges are narrow 
and around well defined ratios of small integers. Alternatively, 
the conductivity can be low over a large range of concentrations 
if one of the pure liquid components has a low conductivity.
Many other electronic properties, e.g. thermopower. Hall 
coefficient of such systems demonstrate an anomalous behaviour 
quite distinct from the properties of normal liquid alloys.
These are all properties which are dependent on the electron
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distribution at the Fermi energy. As well as possessing very curious 
transport properties, these are also alloys in which ̂  is positive. 
Such alloys are often referred to as liquid semiconductors because 
they exhibit most of the properties usually associated with 
conventional solid semiconductors. As far as is known all 
liquid semiconductors are also amorphous semiconductors, although 
the reverse is not true. Table 1.3.1 lists some of the alloy 
systems considered to be liquid semiconducting, together with 
their electrical conductivities at the critical composition.

In order to make matters more definite it is often 
convenient to subdivide the liquid semiconductors into five groups 
distinguished by the electrical nature of the alloy components in 
the pure liquid state:

(i) metal-metal systems, e.g. Mg-Bi, Li-Bi
(ii) metal-semimetal systems, e.g. Ag-Te, Cu-Te, Tl-Te
(iii) metal-semiconductor systems, e.g. Ni-S, CoS
(iv) semimetal-semiconductor systems, e.g. Te-Se
(v) semiconductor-semiconductor systems, e.g. As-Se

The following sections will outline the experimental features of 
each group. Any explanations which have been offered for the 
semiconducting behaviour of certain systems will be briefly 
mentioned.
1.3.2 Metal-Metal Systems

Liquid Mg-Bi, Li-Bi, Mg-Sb alloys fall into this category. 
Although experimental studies on these systems are limited they 
are of special interest since it is possible to follow the gradual 
change from the metallic to the semiconducting state. The
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TABLE 1.3.1

Liquid Semiconductors

LIQUID
ALLOY

CRITICAL
COIPOSITION

CŒDUCTIVITY
(n'lcm'i)

S-Ag AgjS 200

S-Pb PbS 110

S-Cu CU2S 50
S-Sn SnS 24
S-Ge GeS 1.34
S-Tl TI2S3 1.7 X  10-2

TI4S3 6.5 X 10-3
S-Sb Sb2Sg 1.5 X  10-2

Te-Cu Cû Te 200

Te-Ag Ag2Te 150
Te-Fe Fe Te2 400
Te-Tl Tl2Te 70
Te-Cd CdTe 40
Te-Zn ZnTe 40
Te-In In̂ Teg 25
Te-Ga Ga2Teg 10

Bi-% MgaBi2 45 ± 15
Bi-Li LigBi 7

References 
Allgaier (1969) 
Enderby and 
Collings (1970)
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conductivity and theimopower of liquid Mg-Bi have been measured 
by Ilschner and Wagner (1953) and Enderby and Collings (1970) and 
are shown in figure 1.3.1 (a) and (c). The curves are striking: 
at the composition corresponding to MggBi2 the conductivity drops 
dramatically, and the thermopower changes sign. Near this 
composition, the conductivity increases with increasing temperature, 
Phase diagrams for these liquid alloys are available, (Hanson,
1958). These, together with thermodynamic data (Hultgren et al, 
1963), indicate that there is a major change in bonding as you go 
from pure liquid A to pure liquid B in these metal-metal 
semiconductors. Further discussion of the nature of the bonding 
is delayed until later chapters.
1.3.3 Metal-Semimetal Systems

This group includes liquid Ag-Te, Cu-Te, Ga-Te and Tl-Te. 
Selected experimental data on the conductivity, thermopower and 
Hall coefficient for the Tl-Te, Ag-Te, Cu-Te alloys are presented 
in figure 1.3.2 - 1.3.5, taken from Dancy (1965), Cutler and 
Mai Ion (1966), and Enderby and Simmons (1969). Phase 
boundaries for Tl-Te and Mg-Bi (the metal-metal system) are 
shown in figure 1.3.6, taken from Hanson (1958). The following 
remarks appear to be valid for the metal-senimetal semiconductors:

(1) the alloys possess a two-phase liquid region in the 
range 0.7 < x < 1, where x is the atomic percentage 
of the metallic component;

(2) the Hall coefficient is negative at all compositions 
achieving a maximum at the composition where the 
conductivity is a minimum;
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(3) the thermopower varies rapidly close to the critical 
composition.

Cutler and Peterson (1970) have measured the transport 
coefficients of liquid Tl̂  Te^above 600°C. They observe 
that their results within the 0.7 < x < 1 range can be accounted 
for by assuming that the alloy consists of a solution of semi
conducting Tl2Te molecules and Tl atoms. This model has been

2extended (Cutler, 1971) to the 0 < x < y region where molecules 
of the form Tl Te^ Tl, with n > 1, are presumed to form.

Enderby and Hawker (1972) have carried out detailed 
structural studies on liquid Cu2 Te using neutron diffraction 
techniques in which the partial structure factors ^eTe'
aCuTe been isolated within experimental error. One of 
the features noted is the similarity between â ^̂  ̂and the 
structure factor for pure liquid copper which would suggest 
that the packing of the copper ions in liquid Cu2 Te is a 
highly disordered one, dominated by a hard-core interaction 
similar to that for copper ions in pure liquid copper. A 
significant difference between and the structure factor
for pure liquid tellurium is also observed which would indicate 
that the covalent character of pure liquid tellurium disappears 
as copper is added. These observations indicate that models 
involving copper substitution into covalent tellurium chains 
are unlikely to prove a starting point for explaining the 
properties of liquid Cu-Te alloys. One further significant 
conclusion from their study is that the cluster models of 
Cohen and Sak (1972) and Hodgkinson (1974) for Cu-Te type
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semiconducting alloys - islands of semiconducting liquid (10-100 R 

across) dispersed in a metallic matrix - are inapplicable. No 
evidence of long range is found in any of the partial radial 
functions.
1.3.4 Metal-Semiconductor Systems

Ni-S, Co-S, Tl-Se, In-Se, Bi-Se are some of the alloys which 
belong to this group. Their electrical properties closely resemble 
those of the metal-semimetal systems.
1.3.5 Semimetal-Semiconductor Systems

Liquid Te-Se, a member of this group, has been extensively 
studied by Cutler and Mallon (1962) and Perron (1967). The 
electrical conductivity of liquid Tê _̂  Sê  alloys taken from 
Perron are shown in figure 1.3.7. The electrical properties 
vary smoothly from those typical of pure sélénium to those of 
pure tellurium.
1.3.6 Semiconductor-Semiconductor Systems

This group includes liquid As-Se (Te). It appears as 
though a change in the sign of the theimopower does not occur 
around the stoichiometric compound As2 Seg.

1.4 THE LIQUID SEMICONDUCTOR PROBLEM
If an understanding of the very remarkable electronic 

properties of the liquid semiconductors is to be realised, it 
is necessary to know something of the structure which exists 
in these systems. It will subsequently be seen that there is 
a dispute as to whether an ionic or a covalent model is the most 
appropriate starting point, if, indeed, such suppositions are
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reasonable! The metal-metal liquid semiconductors are the 
obvious systems to look at first since they are metallic, 
except at compositions close to a critical composition, when 
they become semiconducting. Hence it may be possible to get 
a clearer picture of the behaviour of the liquid semiconductors 
by examining the metal to semiconductor transition. Liquid 
Mg-Bi is the semiconductor to which reference will frequently 
be made. It should, however, be pointed out that a common 
explanation of these systems need not apply. Indeed, in view 
of the different chemical natures of the wide variety of elements 
which occur in such alloys, it appears unlikely that a single 
explanation can explain all the liquid semiconductors.
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CmPTER II

CHARGE TRANSFER IN ORDERED AND DISORDERED ALLOYS

2.1 CHARGE TRANSFER, lONICITY AND COVALENCY
The type of bond which exists between atoms in a crystal 

depends upon the electron charge distribution about each atom.
The covalent and ionic bonds are two extremes which characterize 
two different types of electron charge distributions which may be 
found to exist in certain crystals. Covalent crystals such as 
silicon and germanium have bonds characterized by electron sharing, 
the covalent bond. This involves sharing between atoms of an 
even number of valence electrons, two per single bond. The result 
of this sharing is that the electron charge distribution is high 
in the region between the atoms. Each atom is limited in the 
number of covalent bonds it can make, and there is a marked 
directionality in bonding. The ionic bond is that which results 
from the electrostatic interaction of oppositely charged ions, 
the crystal being made up of ions so arranged that the attraction 
between ions of opposite sign is stronger than the Coulomb 
repulsion between ions of the same sign. In an ionic solid 
such as sodium chloride, there is electron transfer from the 
sodium to the chlorine, leading to an inert gas structure 
about each ion. Associated with the closed shell structure 
about each ion, an approximately spherically symmetric charge 
distribution exists which is high about the negatively charged 
ion. The distinction between covalent and ionic bonds is then.
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in principle, quite clear: the former leads to a piling up of
charge between atoms, the latter to complete charge transfer 
from one atom to another.

For certain liquid semiconductors, one author (Enderby,
1974B), has suggested that the striking electron transport 
features observed near the critical composition are a direct 
result of total ionic bonding within the system, charge being 
localized about ionic sites. It is generally accepted that 
the transfer of charge from one constituent element in a 
binary alloy to the other is one of the principal mechanisms 
in the formation of the alloy. Interatomic forces are thought 
to be partly ionic in nature. The type of bond which exists 
between atoms and the amount of charge transfer are therefore 
very important features which characterize electron behaviour 
within alloy systems. A knowledge of both will lead to a 
fuller description of electron transport properties.

The concept of partial ionicity within binary alloy systems 
is a crucial one and may be understood more precisely by 
considering atomic levels within the fully ionic sodium chloride 
crystal. If the level on the sodium atom lies a few electron 
volts below the chlorine levels, one would expect the extra sodium 
electron to remain on the sodium atom. This is not observed 
in sodium chloride. The level on the sodium atom is therefore 
higher than that on the chlorine atom, but lower than the first 
excited chlorine state. The extra sodium electron goes to the 
chlorine, causing a lowering of the unfilled levels of the chlorine 
to the extent where they are lower than the level on the sodium ion.
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The electron wavefunction then contains an admixture of states 
associated with the chlorine ion. There is still, however, a 
contribution from the state about the sodium site which will 
mean that although the electron is more likely to be localized 
about the chlorine site, there is a finite probability of it 
remaining on the sodium, or between the two atoms. Hence, 
although classically a model in which the electron is bound 
to one atcxn electronstatically gives sound agreement with 
experimental data on cohesive energy, quantum mechanically there 
is always a finite probability that it may remain on the parent 
atom, or between the two atoms. It is unlikely that the bonds 
between atoms can either be fully ionic or covalent in character. 
Indeed, in most bonds, some electronic charge is transferred from 
one atom to another, in which case the bond is said to be partly 
ionic and partly covalent. The situation is described as one 
of resonance between the covalent and ionic extreme.

The degree of ionicity in the bonds between atoms is 
considered to be an important feature in the formation of an 
alloy. It is a problem, however, to derive the amount of charge 
transfer since quantitative estimates depend upon the atomic cell 
size prescribed. In an ionic crystal, sensible radii for the 
constituent atoms can be obtained by considering the position of 
the minimum charge density. However, the values derived will 
not be indenpendent of the crystal under consideration, and hence 
ionic radii of the type defined by Pauling and Goldschmidt may be 
of more value, even though they have no definite meaning in terms 
of the charge distribution within the crystal. In an obviously 
non-ionic crystal of an element, such as a metal, or a crystal like
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silicon or germanium, the minimum of density will fall midway 
between the atoms, by symmetry. Since a different atomic cell 
size will lead to a different derived amount of charge transfer 
for a disordered alloy, the problem must be faced as to whether 
a meaningful definition for the atomic cell size in an alloy can 
be found.

2.2 THE IMPORTANCE OF CHARGE TRANSFER IN DISORDERED ALLOYS
Several atten̂ ts have been made to relate charge transfer to 

the alloy heat of formation. Empirical observations of Miedema, 
de Boer and de Chatel (1973) and Miedema (1973A) on the metallic 
alloy heat of formation emphasise the role of charge transfer 
in alloys. Hume Rothery was the first to point out that when 
two alloy constituents differ considerably in electrochemical 
properties, the interatomic forces are often partly ionic in 
nature. Band structure calculations indicate non-uniform 
electron charge density distributions. Electronegativity 
difference is one of the most common parameters used to estimate 
the ionic contribution to the alloy formation energy. The 
approach contrasts that of Varley (1954), whose two band model 
for the concentrated disordered alloy, one for each element, 
determines charge transfer by the relative positions of the 
Fermi levels in the pure metals. Efforts have been made to 
relate electronegativity and Fermi level differences since both 
are measures of the charge transfer. The work of Miedema and 
co-workers,in particular, illustrates very well the basic 
physical principles which have been employed to tackle the
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problem of determining the heats of formation of 50-50 concentrated 
disordered alloys.

Miedema et al propose a scheme to estimate the formation energy 
of metallic binary alloys in which only two energy contributions 
are considered. Alloys are regarded as being made up of atomic 
cells (different cells for different kinds of atoms), which in a 
first order approximation are similar to the atomic cells of the 
atoms in the pure metallic state. As a correction to this first 
order approximation they suggest that there are two main effects. 
First, the chemical potential, (j), for electrons at the two types 
of cells should be equal, leading to a negative energy 
contribution proportional to (6*)Z. Second, the discontinuity 
in the electron density present at the boundary between dissimilar 
cells has to be smooth, leading to a positive energy contribution 
proportional to (An)̂ , where n is the electron density at the cell 
boundary. When charge is transferred from the more electropositive 
to the more electronegative element, the charged atomic cell will 
differ from that of the neutral ones. The model results in a 
simple expression for the alloy heat of fonnation;

AH = f(c){- Pe(A*)2 + Q(An)2} (2.2.1)

where f(c) is a symmetrical function of concentration, P and Q are 
approximately constant, e is the electronic charge. (2.2.1) is 
derived purely on the basis of empirical observations on the heats 
of formation of a number of metallic transition and non-transition 
alloy systems. In the analysis of the heat of foimation data.



- 21 -

the cross term A*An might also have been present but was not found 
and, hence, assumed small. A n  is derived enpirically from the 
bulk modulus, B, and the molar volume V̂ , for the pure metallic
element; it is found to be proportional to  ̂for non-transition
elements.^ <j), approximately equal to the experimental work function 
of pure metals, is judged to be a good description for the stability 
of alloys in terms of (2.2.1). In a subsequent examination the 
experimental work function is found to vary linearly with the 
Pauling electronegativity so that <() is interpreted as an 
electronegativity parameter. The charge transfer, Az, of electrons 
from the more electropositive to the more electronegative element 
is proportional to the electronegativity difference, A(|):

Az = 2R A(j) (1-c) (2.2.2)

where R is an empirical proportionality constant.
From equations (2.2.1) and (2.2.2) it can be seen that the 

electron transfer plays a very important role in the alloy heat 
of formation. The relationship between charge transfer and 
electronegativity difference has, however, been established 
on an empirical, not a quantitative basis, and is in need of 
justification. Chapter III investigates the relationship 
between the formally derived amount of charge transfer within 
concentrated disordered alloys and electronegativity difference 
to determine whether or not the latter is a meaningful parameter 
in estimating the amount of charge transfer. The problem still 
remains as to a definition for the atomic cell size in the alloy.
This is dealt with in detail in chapter IV.
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2.3 COHERENT POTENTIAL APPROXIMATION AND BINARY DISORDERED ALLOYS
2.3.1 Coherent Potential Approximation

The coherent potential approximation (CPA) has been introduced 
as a reasonable approach to the problem of calculating the electronic 
density of states in a disordered substitutional A^B^_^ alloy within 
the framework of multiple scattering theory (Soven, 1967). It is 
a single-site description in which electrons are described in the 
single-particle approximation, single-particle properties being 
derived from the one-particle Green function

G(z) = (z - H)-i (2.3.1)

where H denotes the one-electron Hamiltonian. The coherent 
potential replaces the random potential by an ordered lattice with 
the same effective potential. The true potentials at the site, 
either v% (r - &) or V2 (r - £), are replaced by an, as yet, 
unknown potential, v̂  (r - &), the formal Green function for the
lattice of potentials v^ being defined by

G» = Go + Gj v̂ (r - £)Ĝ  (2.3.2)
a

where Ĝ  is the free space Green function. G^ determines the 
propagation through the, as yet undetermined medium. Relative 
to the medium, the actual system consists of perturbing potentials 
(Vj - Vq) and (v̂  - v̂ ). The t-matrix describes the scattering 
of an electron which is propagating according to G^ v;hen it 
encounters the perturbing potential (v̂  - v̂ ) defined by

- Vq) (2.3.3)
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These quantities combine to yield an expression for the actual Green 
function

G ° ^  * I  ̂ G^^aSlS*^ + .... (2.3.4)
a a 3fcx

The effective medium is chosen self-consistently by requiring that 
on average there is no scattering from any site - that is,

X tl + (1-x) t2 = 0 (2,3.5)

with this definition, the average of (2.3.4) is

<G> - + I I L  1 ' Va GM ^ e V y V i G M »  + ..• (2.3.6)
a 3ta Yf3 ôfy

and the approximation is made

<G> = Ĝ  (2.3.7)

The electronic density of states is then given by

p(E) = - i Im Tr <G> (2.3.8)

The average canponent density of states are given by

p̂ '̂ (E) = - i Im <0|<(E+io-Ĥ '®)‘*>|0> (2.3.9)

2.3.2 Single Band Model For The Alloy
A great deal of effort has been put into the study of the 

binary substitutional alloy A^ B̂ _̂  of increasing complexity, the 
simplest model for which is that developed by Velicky, Kirkpatrick, 
Ehrenreich (1968). The model assumes a single band for the alloy.
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A single orbital, |n>, is associated with each site, n. A single 
band would result in the case of the pure crystal, but two sub-bands 
may occur in the alloy under certain conditions.

The one-electron Hamiltonian is taken to be

H = I |n>E^<n| + I |n>t^<m| = D + W (2,3.10)
n n^i

The second line represents the decomposition of the model Hamiltonian, 
H, into a diagonal part, D, and an off-diagonal, W, with respect to 
the Wannier representation. The matrix elements of H depend upon 
the configuration of A and B atom in the crystal. The assumptions 
on which the model is based, which are physically realizable when 
the orbitals are sufficiently localized and the atomic potentials 
are not too different are;
(1) the diagonal elements, ê , can be considered to be atomic levels

A Bwhich assume one or two possible values e and e depending on 
whether an atom A or B occupies n;

(2) the hopping integrals, t^, which describe the transfer of 
electrons between sites, are completely independent of alloy 
composition.

W may therefore be interpreted as the Hamiltonian of a pure cr)"stal 
for which = 0, e'̂ + W and + W, respectively, are the
Hamiltonians for the pure A and B crystal. The disorder is 
reflected in D and is cell localized. The elements of D are 
diagonal but random, those of W off-diagonal but translationally 
invariant. The operator W is diagonal in the Bloch representation:
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<k|W|k'> = 6 Ĵ., I = 6)j,,ws(k) (2.3.11)

where |k> = N‘  ̂I ê  |n> (2.3.12)
n

relates the Bloch and Wannier bases and w is one-half the bandwidth. 
s(k) is the dispersion relation describing the k-dependence of the 
band energy and is dimensionless. It is also convenient to use
the same energy units to express and ê , and to define the zero
energy such that

e* = Jw6, e® = -iwS (2.3.13)

(2.3.13) defines the dimensionless parameter

6 = (ê  - e®)/w (2.3.14)

Significantly the entire behaviour of the Hamiltonian can be 
specified in terms of the two parameters x and 6. The bandwidth, 
which is determined by the hopping integrals, simply scales the 
energy. It is convenient to choose units such that w = 1,

In the single site description, the medium Hamiltonian, Ĥ ,
is diagonal in the k-representation:

<k|Ĥ (z)|k'> = [s(k) + %(k,z)]6%%, (2.3.15)

(2.3.15) defines the quantity z(k,z) which contains full information
about the scattering corrections to the medium Hamiltonian, Ĥ . It 
is the self-energy with respect to the perfect crystal having 
Hamiltonian W. The (average) density of states per atom,

p(E) = N-i Tr <6(E-H)> (2.3.16)
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may be expressed in terms of the Green function.

p(E) = - ImTr <G(E+io)> (2.3.17)

(2.3.16) may be expressed in the Wannier and Bloch representations: 

p (E) = - ir“  ̂ Im <n=0| <G(E+io)> |n=0> (2.3,18)

Introducing the auxiliary quantity

F(z) = N’l Tr <G(z)> = <0|<G(z)>|0> (2.3.19)

which in view of (2.3.18) has the property

p(E) = - iT-i Im F(E+io) (2.3.20)

so that

F(z) = ^ p ( E )  (2,3.21)

A BExplicit calculation of the average component density of states p ' 
is possible since

<0|<(z-h''-'®)'1>|0> = <0|[z-Hm(z)-|0>[ê 'B-%(z)]<0|]-l|0> (2.3.22)

where is replaced by [(z) everywhere except at the zeroth site 
A Bwhere e = e * , and, therefore.

p̂ *̂  satisfy

pA.B(E) = . ^-1 Im(F[l - (p*'̂ -%)F]-l) (2.3.23)
z=E+io

p(E) = X p̂ (E) + yp®(E) (2.3.24)

where y = (1-x)
2.3.3 Single Band Model; CPA

Section 2.3.1 has demonstrated that the CPA can be used to define 
a medium Hamiltonian, Ĥ ,̂ from the average Green function <G>
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Gm = (z - (2.3.25)

where = <G>. In terms of the original Hamiltonian (2.3.10), 
Velicky et al define a function u(z) via the equation

EL = W + }]|n>u(z)<n| = W + u(z)l (2.3,26)
n

The self-energy required is related to u and is k-independent. It
is useful to define solutions for the pure crystal with Hamiltonian 
W;

G°(z) = (z-W)-i, G°(k,z) = [z-s(k)]-i (2.3.27)
• 00

F°(z) = J dz(z-E)-lp°(E) (2.3.28)

where p°(E) is the density of states. For H defined by (2.3.25) 
the unperturbed Green function is

Ĝ  = [z-u(z)-W]"i

= G°[z-u(z)] (2.3.29)

The function corresponding to (2.3.19) is then

<0|Ĝ (z)|0> = F°[z-u(z)] s F(z) (2.3.30)

Equations (2.3.29) and (2.3.30) express results for the medium in
terms of the pure crystal Hamiltonian W. It is this feature which
makes the model tractable.

With H defined as above, m '
H - . I|n>[ejj-u(z)] <n| (2.3.31)

To express H-I  ̂as a sum of single scatterers

H - %  = I (2.3.32)
n
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so that

(2.3.33)

From (2.3.3) and (2.3.30) it can be shown that

(2.3.34)

where t̂ (z) represents the scattering off a single site n in the 
medium. The configurational average of (2.3.34) is

<tn(z)> = |n>
- l-[e -u]F l-[e -u]F -

<n (2.3.35)

The self-consistency condition determining u(z) = Z(z) is 
according to (2.3.5), <t̂ (z)> = 0, so that from (2.3.35),

%(z) . _ ê -Z(z) F(z)[eg-I(z)l (2 .3 .36 )

(2.3.26) is thus the self-consistent condition for the effective 
medium in the coherent potential approximation.
2.3.4 Model Density Of States

For computational purposes, Velicky et al assume a model density 
of states to exist of the form first suggested by Hubbard (1964):

P°(E)

P°(E)
TTW'
0,

(wZ-Ef):, E| <w 

E|>w

(2.3.37)

which is such that

p ° (E )  = p ° ( - E )

and has a simple shape against which all distortions due to alloying



- 29 -

are clearly revealed. The function F(z) yielding the form (2.3.37) 
for p°(E) is

F(z) = jz-(zZ-wZ)2 (2.3.38)

Substitution of (2.3.38) into the coherent potential criterion results 
in the cubic equation for F(z):

F̂ -jzF̂  + (%2_ ^ - gZ _ xy6^)F“(z+e) = 0 (2.3.39)

with e = X  + y (2.3.40)

Equation (2.3.39) may be solved for real z. From (2.3.20) it can be
seen that the density of states, p, is obtained from the complex root

A Bin the lower half plane. The component densities of state, p * ,
are given by (2.3.23). Units are taken such that w = 1.

The CPA is found to yield correct results for the density of
states in the appropriate limits. In the weak scattering limit 
(6<<1), the common band characteristic of the Virtual crystal is 
reproduced. In the strong scattering limit, for sufficiently large 
6(jv 1), the band splits into the component sub-bands. Further, it
interpolates correctly over the entire concentration range.
2.3.5 A Calculation On Binary Disordered Alloys

At 50-50 concentration set J electron on each site. There 
are two quantities of interest:
(1) the number of electrons at any one site at a fixed concentration; 

and,
(2) the density of states at the Fermi level, p(Ep), as a function of 

concentration, x.
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The former is calculated to find out if, at a particular energy 
level separation, 6, a polarization of electrons onto one of the 
sites occurs corresponding to ionic behaviour. The latter uses 
p(Ep) as a measure of the conductivity of the alloy to see if 
a significant drop in the density of states at the Fermi level 
occurs, explaining the behaviour of the liquid semiconductors at 
the critical concentration. The density of states, p(E), is 
calculated in the CPA for binary disordered alloys in the single 
band model proposed by Velicky et al using the model density of 
states of section 2.3.4. p (E) is thus obtained by solving 
equations (2.3.30) and (2.3.39). The Fermi energy is obtained 
using

p(E,x) dE = n = i (2.3.41)

A BThe number of electrons on each site, n * , are obtained from the
A Blocal densities of state, p ' , using
E

nA,B _ (2.3.42)

,A,Bwhere P * are given by (2.3.23). Tables 2.3.1 and 2.3.2 refer 
specifically to points (1) and (2) respectively

Table 2.3.1
The variation of the number of electrons on one atomic site, n , with 
the energy level separation, 6, in a 50-50 binary disordered alloy

6 0.25 0.50 0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25

n* 0.395 0.294 0.201 0.184 0.168 0.153 0.138 0.125 0.113 0.103 0.095 0.087 0.080
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Table 2,3.1 shows the change in the number of electrons on one 
Aatomic site, n , with increasing energy level separation, 6. It 

can be seen quite clearly that despite a large separation of the 
bOflds, there remains a considerable fraction of an electron on the 
atomic sites. Complete polarization is not possible with sensible 
energy level separations.

Table 2.3.2
The density of states at the Fermi energy, p (Ep), and the number of

Aelectrons on one atomic site, n , across the concentration range 
and with increasing energy level separation, 6.

6
p(Ep)
n^

xO.20 x=0.35 x=0.50 x=0.65 x=0.80

0.25
p(V 1.963 1.944 1.936 1.944 1.963

n* 0.337 0.365 0.395 0.427 0.459

0.50
pCEp) 1.888 1.791 1.732 1.791 1.888

n^ 0.210 0.243 0.294 0.362 0.428

0.75 p(V 1.831 1.632 1.323 1.633 1.831

n^ 0.131 0.152 0.201 0.313 0.408

1.00
PCp) 1.800 1.547 0.218 1.548 1.801

n* 0.086 0.098 0.125 0.284 0.397

1.25
PCEp) 1.784 1.508 0.097 1.509 1.784

n* 0.060 0.067 0.080 0.268
. . . . .

0.391
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Table 2.3.2. shows the variation in the density of states at 
the Fermi energy, p (Ep), and the num.ber of electrons on one atomic

Asite, n , across the concentration range and with increasing energy 
level separation, 6. Once more it can be seen that complete 
polarization of an electron to any one site is not possible for 
sensible 6. The density of states at the Feimi energy does drop 
as the critical composition is approached, and as the energy level 
separation is increased, but not as dramatically as explained in 
the liquid semiconductor systems.

A very important point to come out of this study of the 
electronic properties of substitutional binary disordered alloys 
in the CPA is that no bonding can be completely ionic if only 
one-electron effects are important.

2.4 CHARGE TRANSFER IN LIQUID SEMICONDUCTORS
Liquid semiconducting systems such as Cu-Te, Ag-Te, Tl-Te, 

Mg-Bi, Li-Bi are characterized by phase diagrams which show a 
peak at a critical composition, and which are also knovato possess 
marked heats of formation at the same composition. For the Mg-Bi 
system, for which detailed measurements of the heats of mixing are 
available, careful comparisons can be made with the phase diagrams 
(figure 2.4.1). This indicates the strength of bonding which must 
exist at the critical composition.

It has been argued, (Enderby and Ceilings, 1970; Enderby, 1974; 
Faber, 1972), that the chemical bond must have a significant effect 
on the density of states at the critical compositions since electron 
states may become localized as a result of bonding. One model for
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bonding in liquid semiconductor systems iS the ionic model of 
Enderby (1974A). In this Enderby notes that if, at the critical 
composition a system is completely ionic with electrons localized 
in ionic sites, then the Stillinger-Lovett (1968) condition for 
electrical neutrality must be obeyed:

^11 " ^22 ” ̂  "" ̂  (2.4.1)

where â  ̂is the long wavelength limit of the partial structure 
factor. A comparison between (an - a2z) and (^ - ̂ ) is given 
for liquid Cu-Sn and Mg-Bi in figure 2.4.2. The 'ionic* curve 
appears to fit the data for the Mg-Bi system about Mgg Bi2. This, 
supported by experimental evidence of electromigration in liquid 
Mg-Bi (Epstein, 1972), confirmed a notion that liquid Mg-Bi 
(amongst others) was essentially ionic in character about the 
critical composition, made up of Mg3 Bi2 molecules in excess 
magnesium or bismuth, each molecule being bound together by 
single ionic electrostatic interactions. The bismuth atom 
is regarded as the strongly electronegative component. The 
electronegativity difference of 0.85 on the revised Pauling 
scale (Sanderson, 1960) falls within the 0.4 to 0.9 liquid 
semiconductor range and is considered to be a fair measure of 
the atomic potential difference.

For the case of a liquid semiconductor system such as Mg-Bi, 
Enderby* s model gives the following pictures of the density of 
states across the concentration range.



6040 80 At

SnCu

Cu-Sn 
Mg~ Bi

1 -  1 
I .  c .

Mg Bi

Fig. 2.4-2, Dependence of A-n ( 0 ) -A22(0) on 
composition for several alloys.
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(a) The density of states are free 
electron-like for the pure 
elements.

On alloying, bound states may 
be formed on the bismuth s, p 
states.

£ (b) For the Mg 3 Bi2 con̂ osition, the 
bound states will be mostly full 
with electrons localized about the 
bismuth atoms. Only a few electrons 
will be thermally excited into higher 
states. The result is low conductivity 
an i thermopower.
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If excess Mg is added to Mg3 Bi2,
•the density of states is modified 
as shown. The themopower will be 
negative. As more Mg is added the 
Fermi level may move up but the density 
of states may change as shown by the 
dotted line. The rate of change of 
conductivity with composition may 
therefore be small.
The dip in N(E) - the Mott pseudogap - 
becomes most marked at Mg3 Bî
If excess Bi is added to Mg3 Bi2 the 
Fermi level may move back. Because 
the rate of change of the density of 
states is high in this region, the 
thermopower and conductivity will vary 
rapidly with composition.

The ionic model of Enderby therefore drains electrons out of the 
conduction band, localizing them about one site at the critical 
concentration, inferring large transfer. Note that the CPA calculations 
of the previous section do not substantiate this ionic model,

Faber (1972) has proposed an alternative model which requires 
more structure in the density of states. The model is illustrated 
in figure 2,4,1,
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Fig. 2.4.1

The Femi level position depends upon the nature of the excess element 
at the critical composition. As this composition is approached, the 
Fermi level will move to pass through the minimum in the density of 
states, localizing electron states, giving rise to the observed 
minimum in conductivity and zero themopower. The sign of the 
themopower will derive from the structure in the density of states.
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CHAPTER III

aiARGE TRANSFER AND ELECTRONEGATIVITY DIFFERENCE

3.1 ELECTRONEGATIVITY DIFFERENCE
The electronegativity of an atom has been defined by Pauling 

(1939) to be the ’’power of an atom in a molecule to attract electrons 
to itself”. The concept of relative electronegativity arose when it 
was noted that binary compounds with large electronegativity differences 
tended to form rocksalt structures, whereas those with smaller electro
negativity differences favoured more open covalent structures. When 
the difference was large the heat of formation of the binary compound 
was noted to be large, providing a thermochemical use of the concept of 
electronegativity. The greater the electronegativity difference, the 
more ionic the bond, and the greater its heat of formation. Hume 
Rothery was the first to argue that the electronegativity difference 
might be a useful parameter in determining the charge transfer in a 
binary alloy since the atom with the greater electronegativity would 
cause charge to pile up around itself. Indeed, several authors have 
tried to relate charge transfer and electronegativity difference, but 
there is some confusion as to which electronegativity scale best 
describes alloying behaviour. The most commonly used electronegativity 
scales are those of Pauling and Coulson. Phillips (197QA,B) has argued 
that both these scales are unsatisfactory since neither can predict 
crystal structure in chemical compounds. It is not the purpose of this 
work to argue the merits of using either of these, or any other scale, 
but to investigate whether or not a crude correlation exists between 
electronegativity difference and charge transfer. A brief introduction 
to both these scales will prove helpful.
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Pauling (1939) advocates a thermochemical rather than quantum 
mechanical approach to electronegativity and ionicity, turning from 
charge distributions to bond energies. When two elements, A and B, 
differ in electronegativity (X̂  and Xg respectively), the heat of 
formation, D^, of the AB bond satisfies the relation

^AB  ̂ ^̂ AA B̂B̂ /̂  (3.1.1)

where and represent the bond energies of elanents A and B, 
respectively. According to Pauling this extra energy is ionic in 
origin, arising from charge transfer from the less electronegative 
(electropositive) to the more electronegative atom. Thus he defines 
electronegativity by the relation

“ (̂ A - (3.1.2)

where the constant of proportionality is chosen to have energy 
dimensions.

Fractional ionic character is defined by

£(A,B) = 1 - exp [-(X̂  - Xg)̂ /4] (3.1.3)

The stability ratio, or Coulson electronegativity, S, of an element 
is defined as the ratio of the electron density of the element, D, 
to that of a hypothetical atom of the same atomic number of inert gas 
configuration. The electron density, D̂ , of the hypothetical element 
is determined by linear interpolation between the higher and lower 
inert gas density. Thus,

S = D/D̂  (3.1.4)
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Sanderson (1960) finds the following empirical relationship relating 
the Pauling electronegativity, X, and the stability ratio, S:

X̂  = 0.21 S + 0.77 (3.1.5)

Further, Sanderson states that when the two scales disagree, the 
physical and chemical evidence invariably favours the stability ratio. 
Stability ratios will be quoted in accordance with (3.1.5). It is 
significant to note that Miedenn et al (1973) found no correlation 
between the heats of formation and the stability ratios in their 
analysis of metallic alloy data.

3.2 ELECTROCHEMICAL EFFECTS IN ALLOYS OF CADMIUM, MAGNESIA AND MERCURY

3.2.1 Introduction

One of the principal applications of pseudopotential theory to 
alloy structures has been that of Inglesfield (1969 A,B) to alloys of 
cadmium, magnesium and mercury. The valuable feature of such systems 
is that the components have the same valency and roughly the same 
atomic size so that the electron density will be sufficiently uniform 
for a nearly free electron theory to work well. The calculations of 
Inglesfield form a quantitative theory of the effects of electro
negativity difference on alloy properties when electronegativity 
difference is represented by the difference of the two pseudopotentials. 
In particular the tendency to assume an ionic structure and ordering 
energy with increase of electronegativity difference is described. It 
is found that alloys of metals which have a large electronegativity 
difference form ordered conpounds. Enderby extended these conclusions 
to include the liquid semiconducting alloys by stating that a 0.4 to
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0.9 electronegativity difference for such systems was large enough to 
lead to ionic bonding. It is important to have a closer look at 
Inglesfield*s work.

3.2.2 Pseudopotential Theory of Alloy Structures

Take a crystal of N atoms which contains concentration c of B 
atoms and (1 - c) of A atoms. This gives a total of cN B atoms and 
(1 - c)N A atoms. In producing the total pseudopotential for the 
crystal V(r), add the pseudopotential (v̂ ) of the A atom at sites r  ̂
and the pseudopotential of the B atom (Vg) at all the sites rg 
occupied by B atoms:

f\j

'\j

V(r) = I [r - rJ + I Vg [r - rg] (3.2.1)
'V/ r^ 'h % rg a»

Fourier transform this to obtain V(q):

V(q) = ̂  I v̂ (q) exp (-iq.r^) + ^ I Vg(q) exp (-iq.Tg) (3.2.2)
rg

where v^(q) and Vg(q) are the transforms of the two ion pseudopotentials, 
This can be re-expressed in a more convenient form by writing an 
average pseudopotential v as the weighted mean of the pseudopotentials:

V = (1 - C)V^ + CVg

The crystal can now be built by placing this at all lattice sites and 
then placing the difference potentials (v̂  - v) and (Vg - v) at A and 
B sites respectively. There is an average lattice with an average 
potential v at every site, and a difference lattice with (v̂  - v) at
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all A sites and (v̂  - v) at all B sites. The difference lattice mayB
be expressed more simply by noting that

= c(Va - Vg)

and Vg - V = -(1 - c) (v̂  - Vg)

Accordingly, a single difference potential may be defined;

""d = (̂ A -

and (1 - c)v̂  may be placed at all B sites and cv̂  at all A sites.
The total pseudopotential is then

V(r) = I V(r - rj) + % cv^(r - rJ - (1 - c)v^(r - rg) (3.2.3)'x. r. r. Tj.
'\j 'h '\j

where the r̂  run over all lattice sites and the r̂  and rg only include
f\j 0» 'Vj

A and B atoms respectively.
The Fourier transform is now

V(q) = i  I v(q) exp (-iq.r.) + i I cv.(q) exp (-i<).r.)rĵ 'x, 'b ^
- è I (1 - c) v^(q) exp(-iq.rg) (3.2.4)

rg

'X/.where v(q) and v̂ (q) are the transforms of the average and difference 
potentials.(3.2.4) may be re-written:

V(q) = v̂ (q) 1̂  I exp(-iq.r̂ ) - ^ I exp(-iq.Tg) |

(3.2.5)= v̂ (q) (cŜ  - (1 - c) Sg)
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where the structure factors and Sg are

Sa = H ̂  exp (-iq.r̂ ) and Sg = ̂  j; exp (-iq.tg)
B i\, f\j

Treating V(q) as a small perturbation, using perturbation theory, 
the total energy of the conduction electrons and ions, U, may be 
written:

(3.2.6)

where Uq is the structure-independent energy of an atomic sphere, and 
(Ugg + Ug) is structure dependent, being called the structural energy 
term. Since the mean atomic volume is kept constant, then the 
structure-independent energy interpolates linearly as a function of 
concentration:

Uq = (1 - c) 4- cU,OA VB (3.2.7)

Ug is an electrostatic energy term giving the electrostatic energy of 
the positive ions in a uniform negative background. Ug for the alloy 
is the same as Ug for A and B. Ugg, the 'band structure* energy, is 
the second order contribution of the matrix element V(q) to the energy 
of the Fermi sphere of electrons. Heine (1968) has shown that the 
second-order contribution of V(q) to the Fermi sphere is

where e(q) =

lV(q)r e(q) x(q)
q+2Kp

X(q) = (1 - c(q))

(3.2.8)

(3.2.9)

(atomic units e = Ti = m = 1).



- 43 -

The total band structure energy is obtained by substituting (3,2.5) 
into (3.2.8)

Ubs= I [S(g)]^[v(q)]\(q)e(q) + I [v.(q)]̂ x(q)E(q) (cS -(l-c)Ŝ )̂  
q=g q̂ g

= I [S(g)]̂ F(q) + I Fj(q) (cŜ  - (l-c)Sg)̂  (3.2.10)
g qrg

where the first sum is over all non-zero reciprocal lattice vectors 
g of the basic lattice, and the second sum is over all wavevectors q. 
&(q) is the average wavenumber characteristic:

F(q) = [v(q)]̂ e(q)x(q)

and F̂ (q) is the 'alloying energy wavenumber' characteristic:

FjCq) = [Vd(q)]^e(q)x(q) (3.2.11)

The first term in Ugg is the band structure energy of the lattice
with the alloy crystal structure and the virtual crystal potential at
each site. The second term, called Û , contains all information
regarding the particular arrangement of the A and B atoms on the 
lattice.

For a random distribution of A and B atoms over atomic sites 
Inglesfield was able to show that

Û (disordered) = c(l-c)N~̂  I F̂ Oq) (3.2.12)

in the order-disorder transition. When A and B have the same volume 
and valency the total energy, U, can be expressed in terms of the
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energies of pure A and pure B with the same crystal structure as the 
alloy:

A = U -  U = -  C (1 -c)N '2 I '[S (g ) ]Z F j(g )  (3.2.13)
g

where U is the means of the energies of A and B with the same crystal 
structure. (3.2.13) contains only the alloying difference potential

d̂"

3.2.3 The Square Well Alloying Potential

To obtain F̂ (q), the alloying potential was taken as the 
difference between the two pseudopotentials calculated by Animalu 
and Heine (1965). Inglesfield fits the alloying potentials by a 
spherically symmetric square well described by two parameters - the 
well depth. A, and radius, R̂ . The matrix elements of the square 
well model are

Vg(q) = (47iA/!2q̂ ) [sin(qR̂ ) - (ql̂ ) cos(qR̂ )] (3.2.14)

Hence,
Fj(q) = (4itA /fiq̂ )̂  [sin(qRJ - (qt̂ ) cos(qR̂ ĵ )](q)e(q)

(3.2.15)

2A is chosen so that F̂ (q) is fitted to the same minimum as the 
computed F^(q). R^ is the same for the three alloys taken as 
R^ = 2.6 a.u. The volume per ion is 150 a.u.

3.2.4 Ordering and Electronegativity

The values of A used by Inglesfield are shown in table 3.2.1, 
and in figure 3.2.1 these are plotted against electronegativity
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differences for the three systems.

TABLE 3.2*1

System Cd-Hg Cd-Mg Hg-Mg

A(A.U.) 0.10 0.14 0.25
Pauling
Electronegativity
Difference 0.2 0.5 0.7
Coulson
Electronegativity
Difference 0.19 0.52 0.71

The electronegativity differences and well depths are roughly propor
tional. Inglesfield claims that since charge transfer is related to 
the differences in pseudopotentials, it must therefore in turn be 
related to the electronegativity difference.

The important point about the square well potential is that for
2any crystal structure the ordering energy is proportional to A 

(c.f. 3.2.13). The values of the ordering energy calculated for an 
arbitrary choice of A = 1, are shown in table 3.2.2 together with a 
description of the basic crystal structure and ordered energies 
calculated for the same choice of A.

Basic Structure 
Type

TABLE 3. 

Description

2.2

(ordered) 
(A.U. per ion)

Ordering Energy 
(A.U. per ion)

HgMg bcc -0.285 0.060
CdMg hep(distorted) -0.262 0.037
CdHg bet -0.270 0.045
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disordered is equal to -0.225 a.u. per ion so that in all three 
cases it is energetically favourable to have ordering. The energy 
difference between the ordered and disordered structures is similar for 
the three structures. The effect of increasing the well depth 
(electronegativity difference) is to increase the order-disorder 
transition for a given crystal structure.

5.2.5 Basic Structures

For each structure, the value of A when A = 1, Â , is given
in table 3.2.3.

TABLE 3.2.3

Structures (A.U. per ion)

HgMg -0.169
CdMg -0.149
CdHg -0.157
NaCl -0.172

The typically ionic structures (NaCl and HgMg) have the largest 
values of A^. A favours structures of the ionic type simply because 
they give large ordering energies.

Rewriting (3.2.13) in terms of A, Inglesfield was able to explain 
basic structures on the basis of the competition of two effects:

U = U + A
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U, the mean energy of the two component metals evaluated for the same 
crystal structure, is found to be the primary determinant of the alloy 
structures of MgCd and CdHg. It favours structures closely related 
to the observed structures of the component metals. The remaining 
term A, which is proportional to A , comes into the reckoning when 
MgHg is considered since A is the largest for this system. It favours 
ionic type structures. The MgHg structure is one such structure.

3.2.6 Summary

The calculations of Inglesfield form a quantitative theory of 
the effects of electronegativity difference on the properties of the 
Cd, Mg, Hg alloy systems. In particular, the increase of charge 
transfer, tendency to assume an ionic structure, and ordering energy 
with increase of electronegativity difference are all described.

3.3 ELECTROCHEMICAL EFFECT IN SIMPLE METAL ALLOYS

3.3.1 Introduction

The pseudopotential theory techniques used by Inglesfield work 
well for alloys of magnesium, cadmium and mercury, but the problem for 
two elements with different valences is not so simple. Consider a 
substitutional alloy of elements having similar atomic volumes in 
the pure metal (e.g. LiMg) so that all atoms in the alloy may be 
thought of as occupying Wigner-Seitz cells of identical shape and 
size. It then seems natural that the net electric charge in a cell 
should give a measure of the charge transfer. In pseudopotential 
theory one starts with the alloy ions immersed in a uniform electron 
gas, a situation in which charge transfer has already taken place.
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Generally the ion of higher valence will have the more attractive 
pseudopotential. However, as the electrons relax, a large part of 
the pseudopotential difference will be exhausted in shifting charge 
from one cell to another in a tendency towards charge neutrality.
This means that the difference in pseudopotential well depths is no 
longer the only factor determining electrochemical effects. Hodges 
and Stott (1972) recognised this problem and devised a scheme to 
calculate charge transfer and heats of formation of simple metal alloys 
based on the theory of the inhomogeneous electron gas proposed by 
Hô enberg and Kohn (1964). Their approach is similar to that of 
Varley (1954) and constitutes a justification of his two band model 
for concentrated disordered alloys.

Consider a metal-metal interface across which no charge transfer 
has taken place. Electron charge will flow from the metal with the 
higher Fermi level to that with the lower Fermi level, setting up an 
electric dipole which produces an additional electrostatic potential 
which balances the two Fermi levels. Hodges and Stott suggest tliat 
the boundary between atomic polyhedra belonging to different elements 
is similar to such an interface and propose that it may be treated in 
a similar fashion. They bring the Wigner-Seitz cells of the consti
tuents to the same atomic volume (that appropriate to the alloy), 
build up the alloy of these cells, and ultimately let tlie charge 
distribution relax at the boundaries. The charge transferred they 
define to be the amount crossing the cell boundary in the relaxation 
process, and it corresponds to equalisation of the two Fermi levels.
The next two sections will put all these ideas on a foimal basis 
with an improvement upon the Hodges and Stott model. The final two
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sections will contain results of the charge transfer calculated using 
this model for some 50-50 simple metal alloys with a discussion of 
the connection between the amount of charge transferred and electro
negativity differences.

3.3.2 Formalism

The ideas discussed in the introduction may be developed formally 
using the Hohenberg-Kohn density variational principle for an electron 
gas. The density-functional formalism is based on the theorem that 
the ground state energy of a system of electrons moving in a static 
external potential v(tT) is a unique functional E[n] of the density.
It follows frcsn the variational principle that for the ground state 
density distribution Ey|n| is a minimum with respect to other distri
butions involving the same total number of electrons. The constancy 
of the number of particles is imposed in the variational problem by 
means of the Lagrange multiplier y, and the condition for the 
correct density is

6n^  = y (3.3.1)

where y is independent of position. The advantage of using this 
formalism is that it allows determination of the alloy charge distri
bution and energy starting from a trial density function n̂ (r) which,

o-
instead of being uniform, may be chosen so that n̂ (r) is continuous

'h
at the cell boundaries. Suppose the trial functional n^ gives a 
functional derivative

6E[n1 • 
6n = ŷ (r) (3.3.2)

n=n̂
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which instead of being constant has some small r-dependence, one may 
then expect n. (r) and the trial functional E(n.) to be close to the

a.
ground state density and energy. ŷ (r) will be interpreted as a kind 
of local Fermi level taking on or yg in A or B cells respectively.

A suitable choice for the functional E[n] is that proposed by 
Hohenberg and Kohn valid for a slowly varying density:

.2
Elnl =

f\j f\j ryj

n(r)n(r')
a. |r-r'

f\j f\j
f\j f\j

v(r)n(r)dr + y- jdrdr̂  + e(n)n(r)dr + g' [n]

(3.3.3)

where e(n) is the ground state energy per electron of a uniform 
electron gas generalised to include exchange and correlation, and 
g* [n] is a functional of the electron density expressed in terms of
the derivatives of the density n(r). The variational principle applies

%
to the total electronic density, including the core electrons, which 
will cause rapid variation of the electronic density in the core 
region. It is unsure how well the theory will work in such a region, 
and so it is convenient to regard v(r) as a local energy independent 
approximation to the valence electron pseudopotential, in which case 
n(r) represents the more slowly varying pseudo-electron charge density. 
Since electron redistribution will be considered to take place at 
the cell boundary, the distinction between the pseudo-electron charge 
density and the true valence electron density is unimportant. The 
density gradient term g' [n] which is found to reproduce the wave- 
number dependent density-density response function is that of Von 
Weisacker:
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r (vn)S'[n] = (3.3.4)/ 'V

Hodges and Stott have looked at the problem in detail and conclude that 
the choice X = 1/9 ensures the correct response of the electron gas at 
low q while overestimating the response for g > 2 kp in the alloy 
problem, following Jones and Young (1971). The gradient terms represent 
a contribution to the kinetic energy of the electrons not already 
included in the local energy e(n). They are also responsible for 
eliminating any discontinuities in the distribution n(r).

3.3.3 Gradient Terms - Charge Transfer

n (r) is taken to be constant within each cell, n (r) is chosen 
SO that the trial density n̂ (r) is continuous at the cell boundaries;

a.

n (r) = n (r) + n (r) (3.3.5)
a. a.

in which case the gradient terms may be written:

( [vn l2
S'KJ = ̂ -ffi J (3.3.6)

where the prime denotes exclusion of an infinitesimal region at the 
boundaries between A and B cells. Expanding E[nJ to second order in 
n̂  about n^ so that

E[n̂ ] = (3.3.7)

where E = E'[n ] is the sum of the energies of the parent metals after 
they have been adjusted to the alloy atomic volume and structure.
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Thus only and Ê  contribute to the alloy formation energy. Ê  is
linear in n  ̂and is given by

=
r«E[n]1

6n n=n
n (r) dr

'V %

Oi
(3.3.8)

where u (r) is interpreted to be the local Fermi level of the distri-
bution n̂ , and is equal to and yg according to whether r is in an
A or a B cell. The term E2 which is second order in n̂  may be deduced 
from (3.3.3) and (3.3.6) to be

En =
f\j f\j I r-r'

a. Oi
n (r)dr

no

r' I’̂ cl
n dr (3.3.9)

where y  ̂is the chemical potential of an electron gas of uniform 
density n.

Integrating by parts inside regions A and B,

E[nJ - E'[nJ = n̂ (r)
' Oi

  dr’
r-r * I ~
r\j f\j

^2 v̂ n
■o ■ * s  — ] *  * “

'"0+ "0-
"0+ "o-

Vn̂ .ds
a.

(3.3.10)
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where the last term is a surface integral taken over the boundary
between the A and B cells, and n. n. n , n are the values ofC+ . 0+ c- o-
the discontinuous functions n_ and n close to and on either side ofc o
this surface. (3.3.10) gives for the functional

dr’ +
Ir-r’I ~
0» %

(3.3.11)

can be set equal to a constant in which case n̂At this stage 
will be the ground state distribution:

6Efn1
ôn

n=n.

= a constant inside A cells (3.3.12)

= yg, a constant inside B cells

Equations (3.3.11) and (3.3.12) give an integro-differential equation 
for n̂  which may be converted using Poisson’s equation to a linear 
differential equation with constant coefficients (inside A regions or 
B regions)

du
4ire n^ - u

dn = 0 (3.3,13)

Equation (3.3.13) may be solved analytically by assuming that n̂  is 
localised near the A-B cell boundary.



- 54

Hodges and Stott treat the alloy problem as that similar to an 

infinite, plane A-B interface. They construct a solution n^ which 

gives n^ and its first derivative continuous across the interface as 

well as giving zero charge transfer. A second correcting distribution 

n^(r) is then constructed which governs the amount of charge transferred 

in the alloying process. This model can be improved upon by considering 

the three-dimensional case of the SO-SO alloy with A and B atoms in an 

effective medium chosen such that the charge lost by one atom is

gained exactly the other. n^(r) is

chosen as in (3.3.S) so that n^(r) and
%

its first derivative are continuous 

across the respective cell-effective 

medium boundary, as well as giving the 

charge transfer across the boundary. 

Solving (3.3.13) then in this three 

dimensional situation gives the correcting 

distributions :

Ê F F t C T W t

M E D I U M ,  IC

sinh 6 r
n°(r) = A sinh a^r —  -- —  in n^

n^(r) = Be-ar
sinh (3r+n)

in n
(3.3.14)

with â , given by
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where

(3.3.15)
An o 0 0

0̂ = ^ 5  [(^)n - [ -An o 0 0

The subscripts 0 refer to either an A or a B atom, expressions being 

evaluated at n^ or n^ respectively, a,3 correspond to the above 

expressions evaluated at n, the density of the effective medium.

The boundary conditions that n^ and its derivative be continuous 

at the cell boundary, r^, enables one to evaluate the constants A and 

B in terms of n. n may be evaluated from the condition that the total 

charge throughout the system is constant:

4nr^n^(r)dr = 0 (3.3.16)

These conditions result in the values for A and B given by

(n-Ho) Tq [$r^-(ar^+lHanh ( gr̂ +n)] 
sinhagr̂ sinhB̂ r̂ [gr̂ -or̂ tanhtgr̂ +nJ]-Xtanh(6r̂ +nJ

where

where

X = a^r^cosha^r^sinhg^r^+B^r^coshg^r^sinha^r^

Ygr +X'Zr(c«^-g^)Br -2ag] 
tanh(Brg+n) = ---     (3.3.17)

Y(ar^+l}-X'Z[(a^-g^) (ar^-l)+2a^]

X* = X-sinha_r_sinh3_rO O  0 0
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Y = ( Ve^) (a^r^sûihg^r^coshc^r^-B^r^coshg^r^sinha^r^)

(a2+g2)sinhâ r̂ sinh6̂ r̂ +2â Ŝ (coshB̂ r̂ coshâ r̂ -l)

The charge transfer is then given by

q ° "2*̂ 2 '2 (3.3.18)
( « r

The charge transfer in the alloying process is that derived when n is 
chosen in a self-consistent manner such that the charge flow from one 
atom into the medium exactly equals the charge flow from the medium 
into the other atom.

3.3.4 Charge Transfer Calculations

Hodges and Stott estimate the value of the alloy cell radius,
R̂ , fiy a series of binary 50-50 simple metal alloys by minimising the 
elastic energy necessary to compress or dilate the parent metal cells. 
Their values for and their charge transfer across the infinite, plane 
interface are given in table 3.3.1 together with the charge transfer 
calculated with the aid of (3.3.18). Electronegativity differences 
on both the Pauling and Coulson scales are also given. Plots of 
charge transfer at the alloy cell radius against electronegativity 
difference are given in figures 3.3.1a (Pauling) and 3.3.1b (Coulson).
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Charge transfer calculated with the aid of (3.3.18) disagrees 
substantially with that calculated by Hodges and Stott. A revision 
of the problem along the lines suggested may give the better agree
ment with experiment on heats of formation data which the Hodges and 
Stott calculation lacks. The important point to note is the total 
lack of correlation between charge transfer and electronegativity 
difference on both scales (figure 3.3.1). Charge transfer calculated 
with unchanged Wigner-Seitz cell radii for the alloy constituents 
gives slightly better correlation with electronegativity difference 
(in particular on the Pauling scale), but it is still poor. One is 
led to conclude that electronegativity difference is not as meaningful 
a parameter for determining the amount of charge transfer in solid 
disordered alloys as it is in ionic solids. Indeed, it is not clear 
that a simple empirical relationship can exist between charge 
transfer and electronegativity can exist when electronegativity 
differences are so small. Further, the formally derived amount of 
charge transfer for the alloy systems considered is much smaller 
than one would expect if the solids were ionically bonded.

The theory of the previous section assumes that core levels 
are localized within the boundaries of the Wigner-Seitz cell and 
that there is no contribution to charge transfer across cell boun
daries. The assumption is not strictly valid for alloy systems 
involving transition or noble metals, which have therefore been 
excluded. The validity of the assumption is questionable for 
elements Hg and Cd included in the alloy systems since it is not 
certain that a clear distinction exists between core and valence 
electrons.
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3.3.5 Conclusion
The work presented in this chapter does not support the view 

that electronegativity difference is a significant parameter in 
estimating electrochemical effects in solid binary disordered alloys. 
The ability to determine the degree of ionicity appears to be lost 
when electronegativity differences are small. Electronegativity 
differences for liquid semiconductors fall within the range 0.4 to
0.9 on both the Pauling and Coulson scale, which is within the range 
looked at. This implies that total ionic bonding is improbable 
within liquid semiconductor systems. Indeed, the amount of charge 
transfer is likely to be small.
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CHAPTER IV 

CHARGE TRANSFER AND ATOMIC CELL SIZE

4.1 THE PROBLEM
It is not clear which is the physically most meaningful definition 

for the charge transfer in ordered and disordered alloys since quanti
tative estimates of the quantity depend upon the atomic cell size 
prescribed. Hodges and Stott (1972) adopt a purely geometric defini
tion by bringing the Wigner-Seitz cells of the constitutents to the 
alloy atomic volume, building up the alloy of such cells, and letting 
the charge distribution relax at the cell boundaries. The charge 
transfer is that which crosses the cell boundaries in the relaxation 
process. Miedema et al (1973) view alloys as being constructed from 
atomic cells (different cells for different atoms) which in the 
first order approximation are similar to the atomic cells of the 
atoms in the pure metallic elements. As a result of charge transfer, 
the atomic cell sizes may change. Their approach is similar to 
that of Varley (1954) which mathematically relates the charge trans
fer with the change in atomic cell size (see section 4.2). In 
chapter II it was seen that the charge density in an alloy must 
extend continually from one atom to the next. In the region between 
atoms, the tails of the wavefunction overlap, with a resulting 
charge density which does not go to zero. It is obvious that the 
charge density goes to a minimum value between atoms and it seems 
natural to construct spheres about each atomic site touching each 
other at the point of minimum density between them, defining the 
charge about each atom as that within the sphere so constructed.
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Different definitions for the atomic cell size clearly will result 
in the amount of charge taken up, and therefore the meaning of the 
foimally derived amount of charge is not obvious. It is the purpose 
of this chapter to investigate many of the points raised here, and, 
in particular, to look at atomic cell size description within ordered 
and disordered solid alloys. If a suitable definition for the atomic 
cell size can be found, fuller descriptions for liquid alloy and 
semiconductor systems may be at hand.

4.2 THE CHANGE IN ATOMIC CELL SIZE WITH CHARGE TRANSFER

4.2.1 Introduction
In an attempt to calculate the heat of formation of binary 

alloys Varley proposes a two band model for electron states in 
concentrated disordered alloys, assuming that free electrons exist 
in two sets of energy levels associated with the two elements in 
the alloy which are superposed to give a non-uniform electron 
density. This is a commonly accepted model. With such a descrip
tion for the electron states, Varley determines not only heats of 
formation but also charge transfer by allowing the atoms to grow 
as they take up charge. The change in atomic cell size, which 
Varley envisages as charge is transferred, is a reasonable and 
interesting proposition worthy of close examination in the form 
presented. Suggestions will be made as to possible improvements 
on the calculation.

4.2.2 General Considerations
Consider the disordered alloy containing N(l-c) A atoms and Nc 

B atoms. With the nearly free electron two band description, electrons
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in A cells have an average energy given by

° ®0A I  ̂ (4.2.1)r ^  ^  4it

while those in B cells have a corresponding energy Eg, provided there 
is no charge transfer from A cells (say) to B cells. and Zg are 
the numbers of free electrons per atom cell of pure A and pure B; 
r^ and rg are the corresponding equilibrium cell radii in the pure 
states ; E^^ and E ĝ are the pure state bottoms of the band. The 
total energy, NE, of the system is then

NE = N(l-c)Z Ê̂  + NcZgEg (4.2.2)

Suppose that on average a charge n leaves each A cell and is uniformly 
distributed over Nc B cells. The number of electrons within each cell 
is changed so that the average energy of an electron in an A cell will 
change from E^ to E^ and similarly Eg will change to Ê . The total 
energy, NE', of the disordered alloy will be

NE» = N(l-c)(Z^-n)E  ̂+ Nc(Zg+n(l-c)/c)Ê  (4.2.3)

The alloy will form only if the resultant energy of the system is 
lowered as a consequence, hence E» - E  ̂0. The charge transfer will 
give a negative contribution to the alloy heat of fonnation. The
donor cells (A) will become smaller when they lose charge and the
cells which accept charge, (B), will expand. The minimum electron 
energies, Ê , in the A and B cells will change as will also the
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additional kinetic energy per electron. The change in the relative 
cell sizes when charge is transferred results in a strain energy 
being present.

4.2.3 Variation in and Atomic Cell Radius With Charge Transfer 

In a pure metal, the equilibrium radius, r̂ , of the atomic cell
is approximately determined by

3[Ep(Z)]'
9r

^0
ar

^0

(4.2.4)

where the atomic volume 2̂ = -̂ Trr̂ , and (4.2.4) neglects the effect 
of closed shell interactions upon r̂ . If on average, there is a 
change n in the amount of charge in a cell, the new equilibrium 
radius is determined from

P^o' 'a[Ep(Z+n)]
ar r_ . 9r

(4.2.5)

3E
Assuming that is constant in the region r = r̂ , neglecting the 
direct dependence of Ê  upon n (assumed to be small), then

faE 1 faE ■0 _ oar ar*- r
(4.2.6)

so that

3 [Ep(Z+n)]‘ 'a[Ep(z)]
3r 3r (4.2.7)
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Since

it follows from equation (4.2.7) that

r = ro ( l + 2)2/9 (4.2.8)

which is an approximate relationship between the cell size and the 
charge transfer n. may now be expressed as a function of r and n
as

3E
E o M  = + (r-r̂ ) (-^ ) (4.2.9)

ro

Vdien, using (4.2.8) and (4.2.9),

2/3
Ê (r) = Ê (r̂ ) - (1 - (1 + 2)2/9} ,-4,2.10)

4.2.4 Qiange in Interaction Energy, and the Strain Energy, with 
Charge Transfer

If a charge n* enters a cell already containing Zg electrons,
Zgn' interactions of average energy (Ogg/rg) are produced. Varley
follows the Wigner-Seitz cellular construction to get this average

2interaction energy. The Coulomb interaction energy of 1.2 e /r per
2electron pair in an atomic cell r is offset by 0.916 e /r per electron 

pair from exchange interactions and -be /r per electron pair from 
correlation interactions between electrons of opposite spin. The
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total interaction energy charge is thus.

cû Ẑ n* Z_n'ê (0.284 - b(r^J)
(4.2.11)

rog( 1 + n'/Z)̂ /̂

Varley was able to make a rough estimate of the strain energy to
be

Eg = N(r̂  - rg)2 c(l - c) Kr^ (4.2.12)

where K is the bulk modulus for a particular atom, and Kr^ is taken as 
an average over the two pure components.

4.2.5 Formation Energy and Charge Transfer
The average energy per atom, E, at absolute zero of an alloy 

containing NcB atoms and N(l-c) A atoms is

E = + EoB P b " ÿ  n(l-c)(Ẑ -l)

+ Zg ̂  n ( ^  C + I ̂  (Ẑ  - n)̂ /̂  (1-c) (4.2.13)

(^B+ c * P c(l-c)(r^ - rg)2
B̂

where P = Kr̂

where an amount of charge n has, on average, left each A cell and 
distributed itself uniformly over Nc B cells. The sizes of A and 
B cells have changed so that



— 66 -

’'a = ’'ûa ^A D

where r̂ ,̂ r̂ g are the atomic radii in pure A and B.
The ground state energies [Ê ] are also n dependent:

[ V  = PQA - (1 - (1 -
^OA

(4.2.15)

[ V  = %B - ^  a  -brQB b

Substitution of equations (4.2.14) and (4.2.15) into (4.2.13) gives

,5/3 ,„5/3
3 "̂̂ A  ̂ .3 ^̂ B

^OA ÔB

where

2 n^ri-d (4.2.16)+ Pc(l-c)(rô - r̂ g)̂  + n(l-c)X + 2_il_Sl Y

and
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Y t  ̂ c 2 (1“̂ ) " ""g% “-gT 7
45r^ 45rjg ^ W A

 ̂ W O B  (4.2.17)Za Zg A B

lop  ̂ Il
-gr L-2—  — ;2 b

A B

Since the first four terms for E in equation (4.2.16) represent the 
energy of phase mixture of pure A and pure B, the alloy heat of 
formation is

2
AE = Pc (1-c) (Tĝ  - TQg)2 + n(l-c)x + BJIzEIy (4.2.18)

where n must satisfy = 0. This gives a value for the charge
transfer

n = -XC/2Y (4.2.19)

Hence the alloy heat of formation is given by

AE = c(l-c) {P(rQ̂  - r̂ g)̂  - X̂ /4Y) (4.2.20)

4.2.6 Possible Improvements
Two quantities which Varley has difficulty in estimating are the 

pure metal Fermi level difference and bottom of the band difference 
for various alloy systems. It is now possible to determine these 
very accurately using band structure calculations. In his calculations
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Varley includes alloys with noble metal constituents without taking 
account of d-bands; band structure calculations will give a far 
more accurate detemiination of the nearly free electron bandwidths. 
It will not prove fruitful to examine Varley's approach to this 
problem in detail, but a conparison of these difference parameters 
is of interest. The results for the Fermi level difference and 
difference in bottoms of the band for the pure noble metals Cu, Ag 
and Au, listed in tables 4.2.1 and 4.2.2, respectively, come from 
the band structure calculations of O'Sullivan, Switendick, Schirber 
(1970).

TABLE 4.2.1

System Varley
F -F

Band
Structure

Band
Structure

p

Band
Structure
F -F

Band
Structure
F -FB A ^OA ̂ OB ^OA ^OB ^OA ̂ OB ^OA ̂ OB

Acceptor Donor (eV) (Ryd.) (Ryd.) (Ryd.) (eV)
Ag Cu 1.63 -0.02112 -0.0142 -0.093 -0.17
Au Cu 0.99 -0.02112 -0.0325 0.0114 0.16
Au Ag 2.62 -0.0142 -0.0325 0.0183 0.15

TABLE 4.2.2

System
Varley

(eV)

Band
Structure

E^

Band
Structure

4
(Ryd.)

Band
Structure
4 - 4
(Ryd.)

Band
Structure
Ep- 4
(eV)

B
Acceptor

A
Donor (Ryd.)

Ag Cu .05 .5003 .6303 -0.13 -1.77
Au Cu 2.63 .289 .6303 -0.34 -4.63
Au Ag 2.68 .289 .5003 -0.31 -4.22

The acceptor-donor classification is that of Varley.
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Not only does Varley get the ground state energy difference and the 
Fermi level difference wrong in magnitude, the prediction for the 
direction of charge flow is also incorrect. This must lead to poor 
descriptions for the charge transfer and heats of formation.

Varley also deliberately omits to include core exchanges and van 
der Waal's interactions for noble metals. Once charge transfer has 
taken place the resultant electrostatic interaction is deemed to be 
small, and then ignored:

Eg ~ eVp(l-c) ^  (4.2.21)
 ̂ ^AA ÂB

where r^, r̂ g, r^ are the nearest neighbour bond lengths, and p is
2the lattice coordination number. Such an n variation may be an 

important factor in determining the charge transfer in equation 
(4.2.18) and the heat of formation, and should be included.

4.2.7 Summary
Varley's attempt to calculate the charge transfer and heats of 

formation for alloys rely upon the concept of change in atomic cell size 
with charge transfer. Improvements upon his theoretical treatment have 
been offered, but the important point to note is the view that charge 
transfer and atomic cell size are closely related.

4.3 THE ONE-DIMENSIONAL BINARY ALLOY

4.3.1 Introduction
The calculations of section 2.3 demonstrated that in a 50-50 

substitutional binary disordered alloy whose potentials are know to differ, 
electrons will not totally polarize about one of the atomic sites no
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matter how different the potentials are made. This effect may be 
demonstrated in one dimension using the Kronig-Penney model for an 
ordered binary alloy. Two atoms, whose potentials are modelled by 
delta-functions of different strengths, are placed in an ordered array 
throughout the crystal with two atoms per unit cell, the crystal being 
made up of N such cells. The electron number density across the unit 
cell is the physical quantity which will give information about polari
zation effects in the alloy. The problem in ordered and disordered 
binary alloys is in defining the atomic cell size. For the one
dimensional model, one possible definition for the cell size is half 
the unit cell, another is the minimum in the electron density, in which 
case charge transfer has already taken place. Comparisons of electron 
number densities about each atomic site within the cells so defined in 
one dimension will advance our understanding of the three-dimensional 
problem.

4.3.2 Theoretical Treatment

-  a

m

Figure 4.5.0

Consider a one-dimensional ordered binary alloy built up with unit 
cells of length a such as that illustrated in figure 4.3.0 located 
-a/2 < X   ̂a/2. Representing atomic potentials by attractive delta 
functions of strength and located at -a/4 and +a/4, respectively.
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the potential within the unit cell is thus

v(x) = -X 6̂(x + a/4) - X 6̂(x - a/4) (4.3.1)

2 2 —1 in atomic units (h /2m = 1, e = 2) where X has units of L” .
The solutions between any two delta functions are

i|<(x) = Ae^^ + Be (4.3.2)

where y may be real or imaginary (E = -y ), and A and B change from 
region to region within cells.

For this calculation we shall choose y real. In the three regions 
marked in figure 4.3.0

i|;j(x) = Ae + Be

= Ce''̂  +

-a/2 < X   ̂a/4 

-a/4 < X   ̂a/4 

a/4 < X  $ a/2

(4.3.3)

It may be shown that delta function potentials introduce a discontinuity 
in the slope of the wavefunction. The matching through a delta function 
located at x = x̂ , say, is

(4.3.4)
9i|j
9X

9i|)
9x = -Xii)(x̂)
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where the probability density is given using (4.3.3) in the
three separate regions specified, kp is the Fermi wavevector restricted 
to positive values, kp = ir/Za for one electron per unit cell, kp = fi/a 
for two electrons per unit cell, etc. To find the fractional charge 
contained within a particular region of the cell, integrate (4.3.10) 
over X:

n(region) = n(x)dx (4.3.10)
region

4.3.3 Results and Conclusion
Figures (4.3.1) and (4.3.2) show the variation in the electron 

number density across a unit cell containing one electron and two 
electrons respectively. is fixed at two units, ?2 is varied as shown, 
The figures clearly show that as is increased with respect to X̂ , 
electrons tend to pile up about the more attractive atom. However, no 
matter how large the attractive power of X2 is made, there is always 
a finite probability of the electron remaining on the weaker atom.
This reinforces our ideas that no bond in such a system can be fully 
ionic in nature. Since the attracting power of atoms in alloys is 
generally agreed not to be as strong as it is in ionic compounds, it is 
improbable that solid, or liquid, ordered or disordered, alloys will 
be ionic in the sense that sodium chloride is.

Table 4.3.1 gives the charge enclosed about the less attractive 
atom site for atomic cell sizes described by

(i) half the unit cell size, and 
(ii) from minimum to minimum in the electron density.

?2 is again fixed at two units.
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TABLE 4.3.1

One Electron 
Per Unit Cell

Two Electrons 
Per Unit Cell

^2

Charge in 
at. cell 
size (i)

Charge in 
at cell 
size (ii) ^2

Charge in 
at. cell 
size (i)

Charge in 
at. cell 
size (ii)

2 0.5 0.5 2 1.0 1 .0

2.25 0.384 0.343 2.25 0.622 0.501
3.5 0.257 0.202 2.5 0.409 0.260
3 0.119 0.054 3 0.167 0.063
3.5 0.053 0.014 4 0.044 0.004

The different definitions for the atomic cell size give enclosed 
charges which do not substantially disagree for relative electron 
attracting powers likely to be found in the majority of ordered binary 
alloy systems. It is expected that for the three-dimensional alloy 
situation, a definition for the cell size to be that from minimum to 
minimum in the electron density, will give quantitative estimates of 
the charge transfer not too different from that using the pure metal 
Wigner-Seitz radius.

4.4 THREE-DIMENSIONS

This section is an extension of the revised Hodges and Stott 
calculation of section 3.3. The aim is to compare the amount of charge 
transferred when a different definition for the cell size is used.
Charge transfer is calculated self-consistently for a 50-50 disordered 
alloy with the help of equation (3.3.18). Table 4.4.1 gives the results
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of the charge transfer calculated;

(i) at the alloy cell radius, as estimated by Hodges and Stott,
and

(ii) at the pure element Wigner-Seitz cell radii.

TABLE 4.4.1

Alloy
Charge Transfer at 
*Alloy' Cell Radius

(i)

Charge Transfer at 
Wigner-Seitz Radius

(ii)a 6 (fraction of electron) (fraction of electron)

Hg Na 0.163 0.119
Hg Li 0.091 0.067
Cd Na 0.167 0.125
Cd Mg 0.014 0.009
Cd Hg 0.016 0.010

Mg Hg 0.002 0.001

A1 Zn 0.069 0.036
Ga Cd 0.101 0.056
In Cd 0.042 0.025
Zn Cd 0.078 0.039
Ga Zn 0.034 0.018
In Hg 0.050 0.034
Zn Hg 0.098 0.049
A1 Mg 0.150 0.08
Zn Mg 0.077 0.066
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Table 4.4.1 demonstrates that although the different atomic cell size 
does alter the amount of charge transfer, it does not do so by a 
great amount. Charge transfer calculated at the Wigner-Seitz radii 
is smaller than that calculated at the alloy cell radius - that is, 
different cell size leads to different amount of charge transfer. 
Hence it may well be reasonable to retain the Wigner-Seitz radius 
as a definition for the atomic cell size in disordered systems, 
recognising that the cell size will change the charge transfer.
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CONCLUSION: PART I

It has become clear over the last three chapters that it is 
improbable that concentrated disordered alloys and liquid semi
conductors are ionic in the sense that the alkali halides are 
ionic. This is in disagreement with the proposal of Enderby that 
it is the existence of ionically bonded molecules which account for 
the remarkable electronic properties of metal-metal liquid semi
conductors at the critical composition. Arguments based on the 
premise that electronegativity difference is a useful measure of 
the relative attracting power of atoms for electrons within these 
systems are not substantiated, since the differences are too small 
for it to be clear that a correlation does exist between charge 
transfer and electronegativity difference. The problem of atomic 
cell size within alloys has been raised. A cell size definition 
using the minimum in the electron density around each atom site in 
an ordered alloy is prescribed. It is unlikely, however, that the 
values derived will practically prove useful since they will not be 
independent of the systems under consideration. Instead, the Wigner- 
Seitz cell radii for the pure metal may be used as a first approxi
mation with charge transfer altering cell sizes. It is also clear 
how difficult it is to detemine the degree of ionicity for various 
systems just by inspection of the charge density. The question as 
to whether a system is ionic or not is unanswerable, or meaningless, 
when considered from the operational point of view of starting with 
the charge density.
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CHAPTER V

THE HYDROGEN MOLECULE IN AN ELECTRON GAS

5.1 INTRODUCTION

Enderby's model for the liquid semiconducting metal-metal 
systems has assumed the formation of chemical complexes at or near the 
critical concentration which are ionically bonded. The discussions 
of the previous chapters have effectively ruled out this as a possi
bility. If these complexes do exist, however, then the bonding may 
well be covalent. Away from the critical composition the covalent 
complexes will be present in a sea of electrons provided by the 
constituent ions. The effect of the free electrons will be to screen 
potentials within each chemical complex so that the molecular binding 
will be weakened and intemuclear separations lengthened, even to the 
extent that the molecule may be broken up. Thus the molecular binding 
energy will vary in a changing free electron environment. It is the 
purpose of this chapter to demonstrate this point for the case of a 
single hydrogen molecule located in an electron gas.

Experimental observations have found the binding energy of the
hydrogen molecule in free space to be 4.75 eV, with an intemuclear

o
separation of 0.74A. Two methods for calculating the change in the 
binding energy of the hydrogen molecule have been adopted. The first 
is based upon the original Heit1er-London calculation, but with all 
Coulomb potentials screened, falling off exponentially with distance 
(section 5.2). The second uses the density functional formalism of 
Hohenberg-Kohn-Sham, and is discussed in detail in section 5.3. Both 
will be seen to confirm the notion of the change in molecular binding 
energy with electron density for the hydrogen molecule, even though
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binding energies calculated at particular electron densities using 
both models will not agree. In such a situation, binding energies 
calculated using the density functional formalism are considered to 
be the more realistic, particularly near to electron densities in 
the metallic regime.

5.2 HYDROGEN MOLECULE IN AN ELECTRON GAS I

5.2.1 Treatment

The method of calculation to be employed is a simple one based 
upon the Heitler-London calculation for the hydrogen molecule in free 
space (see, for example, Margenau and Murphy (1955)). The coordinate 
system to be used will be clear from figure 5.2.1. Particles 1 and 2 
are electrons; A and B are the protons whose positions are regarded 
as fixed.

Figure 5.2.1

A convenient coordinate system for the two electrons will 
contain the six variables Â , B̂ , B2, r^2>
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1^2 ” ^1'  ̂^12 * * *̂2 0 < B2 < ™

|Bp - R I s $ Bp + R ' 0 < B̂  < «>

The volume element dx = dT d̂x2, where

2
dx^ = ApdA, sinQ^de^dcj)^

Now,
Bp - Ap + Rp - 2ApRcosQp

i.e. 2BpdBp = 2ApRsin0pd0p

dx p  — ApdApBpdBpd(})p

Similarly, using Bp as a base line.

Hence,

dx = ̂  ApdApB2dB2rp2drp2dBpdOpd*2 (5.2.1)

Equation (5.2.1) gives a volume element which is very convenient in 
the numerical work involved in this problem. Several similar 
volume elements may be constructed by the same method.

The Schrodinger equation for the hydrogen molecule in the 
electron gas is taken to be given by
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W  = s  (i + '2) -  ̂i: ^  e-^^2
1 l L{̂

+ ̂  e"̂ ®l - i— e'̂ ’̂lZ - i } ,(, (5.2.2)
“ 1 ^12

= El|)

where the Coulomb potentials, screened by the electron gas, fall off 
exponentially with distance with a screening radius, j  . X is given 
by (Kittel, 1966)

2
9 6 n̂ e 2 9 9 /?

, with Ep = V  (5-2-3)F

where n̂  is the electron number density for the electron gas.
If H did not contain the last four terms in parenthesis multiplying

2e , it would simply be the sum of two hydrogen atom Hamiltonians, and

where

ip = Û (l) Ug(2) (5.2.4)

U^Cl) = , Ug(2) = (wa3)-l/2e"B2/*o

are hydrogen Is orbital functions centred about A and B respectively. 
The same is also true if one considers the trial function Ug(l)Û (2). 
Both of these solutions are equally good approximations to the state
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wavefunction and must be included in the trial function. They differ 
with respect to an exchange of electrons, hence the normalised wave
function

* [UAa)UB(2) 1 V l  V ) ]/1+A
(5.2.5)

is adopted, where A is the overlap integral given by

A = 1 2\_-pÛ (l)Ug(l)dÇp = (1 + P + Y P (5.2.6)

where p = R/â .
The total energy is found by minimising Ĥ̂ dx using (5.2.5)

as the trial function. This energy may be written in the form

Hpl»! 
1 +

(5.2.7)

where

= e'

= 2J + J
Ï Ï "

(5.2.8)
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H, = e'

+ ̂  e' ^ 1 2  + ïï e"'*) d.pdT2

= 2KA + K' + (5.2.9)

and W„= is the ground state energy of the hydrogen atom.
" 2ĥ
J, J', K are X-dependent integrals given by

J E J(3) = -e' Û (l)Û (2)B"̂  e’ ®̂l dTpd?2

= - I 1 t7  (e'ZpG. e'2P|(l-g2)p + 1|} (5.2.10)
^ (1-B )

J' E J'(B) = e‘ U^(l)U (̂2)r"̂  e' ^ ’^12 dTpdi2

= I V t - e'ZP |1 + (l-gZ)p
 ̂ (1-B )

+ ^(1-6^)^ (p+2p2) + i(l-6^)^(p+2p2+^^)}

(5.2.11)

K 5 K(B) = -e‘ U^(l)Ug(l) B'^e‘^®l dTp

= - I- e‘P , (B(l+6)p + ke'^P^-D)R 6̂  (1+3)̂

(5.2.12)



— 84 —

where ê = - y

The final integral for K'

K’ E K' (B) = ê

(5.2.13)

is a difficult one to evaluate. Interpreting Û (l)Ug(2) as an exchange 
point charge, total amount A, located on the B nucleus and Ug(l)Û (2) 
as an equal exchange point charge located on the A nucleus (Slater, 
1963), K' represents the Coulomb repulsion of one exchange charge for 
another, the repulsion being weakened by the presence of the electron 
gas. As the distance between the nuclei is increased, the repulsion 
will decrease. Thus the electron gas and the increase in inter- 
nuclear separation seek to weaken the exchange point charge repulsion. 
Near the energy minimum, this behaviour is modelled by writing

K'(B) = K'(0) (5.2.14)

where R, a constant, may be determined from

J'(8) = J'(0) (5.2.15)

with

J '(0 )  = [1 -  e -2 p (l + + ^ ^ ) J

Sugiura (1927) has evaluated K'(3) in the limit 3 tending to 
zero (free space), K'(0):
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K'(0) = ^  -3pZ - |p3) + i [Â (Y+lnp)

-2AA'Ei(-2p) + A'̂ Ei(-4p)]} (5.2.16)

where y = 0.5772157 (Euler-Mascheroni constant),

A> = (1 - p + i p̂ )

and Ei(x) is an abbreviation for the exponential integral

rX U
Ei(x) = —  du

which is tabulated, for instance, in Abramowitz and Stegun (1965).

5.2.2 Results and Conclusions
Ê  in equation (5.2.7) refers to the upper signs in the expressions 

throughout, and hence is a symmetric function of coordinates, while E_ 
refers to the lower signs, and is an antisymmetric function of coordi
nates. Only the symmetric state has a minimum in energy corresponding 
to binding. Figure 5.2.2 illustrates the change in the length of the 
covalent bond, and the decrease in the molecular binding energy with 
increasing electron gas number density. Table 5.2.1 gives the inter- 
nuclear separation and the energy minimum with increasing 3 (increasing
number density). 3 = 0.3 to 0.6 corresponds to the metallic region

2 2 2 2 Atomic units are taken such that ti/2m=l, e = 2, â  =1h /me , the
Bohr radius, is the unit of length, 1 Rydberg (= 13.6 eV) is the
unit of energy.
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TABLE 5.2.1
Intemuclear Separation and Energy Minimum

with Increas ing 3.

ÏÏ
(Eqn(5.2.15)) (a.u.)

:min
(Ryds.)

0 1.65 -2.2319
0.1 2.01 2.27 -2.2300
0.2 1.90 2.15 -2.2131
0.3 1.81 2.04 -2.1985
0.4 1.72 1.95 -2.1852
0.5 1.65 1.86 -2.1729
0.6 1.58 1.79 -2.1616
0.7 1.51 1.72 -2.1510
0.8 1.45 1.65 -2.1412
0.9 1.40 1.59 -2.1323

It is clear from the table and the figure that, if the approxi
mation (5.2.14) is a reasonable one to the integral for K* near the 
energy minimum, then the important feature which arises is that the 
hydrogen molecule persists even at very high electron number 
densities, but with a lengthened and weakened covalent bond. For 
larger molecules the closeness of approach of the nuclei is limited 
by the closed-shell repulsion. This would eliminate the bond 
length features evident at high number densities in the above results.
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5.3 HYDROGEN MOLECULE IN AN ELECTRON GAS II

5.3.1 Introduction

The Hohenberg-Kohn-Sham density functional formalism (Hohenberg 
and Kohn (1964), Kohn and Sham (1965)) is a theoretical description 
of many-electron systems in which the mutual Coulomb interaction 
between the atoms - exchange and correlation effects - which are 
basically non-local potentials, are treated as a local exchange- 
correlation potential. For systems which have a net spin, such as 
the hydrogen atom, the formalism has been extended to include spin. 
Gunnarsson and Johansson (1975) have applied the spin-density- 
functional (SDF) formalism with a local-spin-density (LSD) approxi
mation to the study of many small molecules. For the singlet state 
of the hydrogen molecule, in particular, the experimental energy curve 
has been reproduced to within an accuracy of 0.25 eV or better. 
Gunnarsson, Johansson, Lundqvist and Lundqvist (1975) argue that the 
SDF formalism with the LSD approximation is physically superior to any 
other method of calculation of the hydrogen molecule energy curves.
It has become clear that the density functional formalisms do provide 
calculated energy curves for small molecules which are faithful to 
experimental observations. This section calculates the binding energy 
of the hydrogen molecule in an electron gas using the Hohenberg-Kohn- 
Sham density functional formalism. The treatment is similar to that 
offered by Smith, Ying and Kohn (1973) for the calculation of the 
interaction energy between hydrogen adatoms in chemisorption, the 
atoms being treated as present in a constant electron density environ
ment.
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5.3.2 Theoretical Treatment

The treatment will be developed by considering the hydrogen 
atom in the electron gas and then by extending the treatment to that 
of two hydrogen atoms in the electron gas. The theoretical advance 
offered here for the hydrogen atom in the electron gas stems from the 
requirement that Poisson’s equation be satisfied from point to point 
in the electron gas - that is to say, there is complete self-consistency 
between the electrostatic potential used and the charge density obtained.

5.3.2(i) Hydrogen Atom in Electron Gas

The unscreened (or zeroth order) configuration of the hydrogen 
atom is taken as a proton sitting in the electron gas with the electron 
joining the conduction band.

Poisson's equation must be satisfied from point to point in the 
electron gas so that

v̂ V = 47r[n(r) - nj - 4n6(r) (5.3.1)
a. ^

where 6(r) represents a proton situated at r = 0 and [n(r) - nj is
a.

the deviation of the electron density from its constant value n̂ .
The units taken are ti = m = e = lin which case the unit of distance
is the Bohr radius, and the unit of energy is the Hartree
(= 2 Rydbergs - 27.2 eV). n(r) may be found self-consistently by

'\y
minimising the Hohenberg-Kohn-Sham energy functional :
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= r - r’ f\j f\j

n^/Vr -
'\i

( n 4 / V r . ^ ( l ^ d \
f\j J qj (5.3.2)

where the integrands of the second and third tems represent,
respectively, kinetic and exchange energy densities. The fourth term 
is the von Weisacker correction to the kinetic energy (see section 3.3),

pGX(r) = p̂ *(r) + 8o(r)
f\j 0« '\y

where p®̂  (r) is the charge density produced by the uniform positive 
background.

The minimisation proceeds subject to the restriction that

[n(r) - p̂ (̂r)] d'̂ r = 0

V(r) is the electrostatic potential produced by the proton and its 
screening charge and is written

V(r) = -
'V

n(r').pexqr')
|r - r’
r\j r\j

dr’

On minimising the energy functional, using the Euler equation, one 
finds that

72 n
(5.3.3)
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Now writing the electron density n(r) with some correction n̂ (r)
'X, o>

to the constant electron density n̂ :

n(r) = n + n (r) (5.3.4)q, ° c q.

and expanding equation (5.3.3) to the first order in n̂ /n̂  gives

^  + 12 (|) 1/5 n̂ l/5

-12(3%2)2/3n2/3) + 35 „  y  = 0 (5 .3 .5 )

Further n  ̂constant then implies that equation (5.3.5) reduces to

V̂ n - (12(3%2n )2/3 _ 12 (^)V3j ^ + 36n V = 0 (5.3.6)C O TT C O

Equation (5.3.6) must then be solved in conjunction with equation 
(5.3.1).

5.3.2(ii) Hydrogen Molecule in Electron Gas

So far as all the electrons are concerned the addition of a 
further electron is not important since there are so many. The 
Hamiltonian for two protons at r. and r̂  is then taken as

H = H(all electrons, n(r)) + r ■l__-r + g { I (- i -r - 1̂  L p  -r)}
7  ̂ 21 ' I i  I I '  '1% I I '

electrons
I i
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This corresponds to taking

p = p + g 6(r - ri)'+ g 8(r - r_)
a. 'Xj

which gives the correction to the electron gas density, n.(r), to be
%

n, (r) = g n (r - rj + g n (r - r̂ )
%  fh 'Xj q.

(5.3.7)

The inclusion of the coupling constant g(=e ) will now become 
obvious since the Hellmann-Feynman theorem will be needed to evaluate 
the total energy, and then the energy of molecular formation (see 
Appendix 2). The interaction energy, is given by

^ i n t  ■  I  ^  A  r - t i  I *  I r - T g  P

8 tt'

' [„^(D . n,(r)] iîf dk
o. 'V k 'Xj %

1

Now,
since = -4np

whilst
4 IT n. (k) = -V(k) since V(k) = V(k) -

k̂
(5.3.8)
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Also, from the definition of nĵ (r)

" i W  = g njk)\̂j >\j

I înt " "" ̂ 0 (̂ 2) " 2gV(0) + g[ÿ(r̂  - r^) + VCl^ - r̂ )J° '\j f\j '\j fXi % '\j

Since the ground state energy, Ê , is given by

dE
“3g " S (5.3.9)

g"̂  E^^(g)dg = e2{Vg(r̂ ) + V̂ (r2) + e2y(0)+ - r̂ )
Oj a» Oi O/

+ V(r2 -ri)]} (5.3.10)
O/ O.

notice then that |V̂ (r̂ ) + -̂ V(0) | + |V̂ (r2) + y V(0)] is the total
<v Oi

energy of the isolated protons. The remainder, V(r^ - r̂ ) is the
i\j i\j

interaction energy between the protons - that is, the energy of 
molecular formation.

The Fourier transforms of equations (5.3.1), (5.3.6) and (5.3.8) 
give the Fourier transform of the interaction energy between the 
protons, now written as V(k) :

m  = 2^1 z ..k (̂k -̂yk +̂6)
(5.3.11)

where 3 = 144 Trn̂
p = 12 1/5 {1 - 3ir5n̂ )l/3

' TT '
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Writing

(k̂ -pk̂ +e) = (k2+a)(k2+b) (5.3.12)

this leads to

where a, b must be chosen so that Re(/a, /b) > 0.

To this V(r) must be added the Coulomb repulsion between the 
protons which gives for the total energy of the molecule

 ̂-r/b , -r/a

Notice that E(r) has the correct behaviour as r tends to zero and to 
infinity. E(r) in (5.3.13) will be split into ranges (from (5.3.11) 
and (5.3.12)). The results are as follows:

E(r) = 0 0 ̂  n < —
° 81n̂

E W  = Tifile sin(20-qr) 1 j < 1
o l i T  j n

with p = XsinO where 0 = ̂  tan “ 1] -J < 0 < 0
1/4 '' ^q = XCOS0 X = 3

...cont.
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E(r) = HÎH20 sln(20+qr)

with p = XcosO 
q = XsinO

X,0 as above

E(r) > 0, |~ < 0 no binding n̂  %
TT

(5.3.14)

The relations (5.3.14) give the energy of molecular formation in an 
electron gas of number density n̂ .

5.3.3 Results and Conclusions

Table 5.3.1 gives the binding energy of the hydrogen molecule 
as a function of the electron number density calculated from equations 
(5.3.14). Figure 5.3.1 illustrates the variation close to the low 
density limit and the onset of the metallic regime.

TABLE 5.3.1
Variation of Hydrogen Molecule Bond Length and Energy 

With Increasing Number Density
"o , 

(electrons cm
X 10"23) -3(electrons a.u. )

Bond Length 
(a.u.)

Bond Energy 
(eV)

.047 6.99 3.412 -6.2828

.082 12.10 3.668 -3.1421

.141 20.96 3.733 -1.8987

.245 36.31 3.725 -1.2134

.424 62.89 3.693 -0.7765

.735 108.93 3.665 -0.3650
1.273 188.66 3.667 -0.2709
2.205 326.77 3.731 -0.1319
3.8197 565.99 3.914 -0.0483
6.615 980.33 4.358 -0.0096
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Equations (5.3.14) leads one to conclude that the typical form
of interaction energy for a covalent bond will be replaced by a
screened oscillatory interaction for electron densities satisfying 

1 1 r $ < — r . The bond length is increased compared to that
81tt̂ ° 37t̂
in the free space situation and the bond energy weakened. The greater 
the electron gas density, the weaker the bond until at large enough 
densities (n̂   ̂—^ ) the bond cannot form. At very low electron

•S TTdensities Noziere's believes (private communication) that there is 
a Mott transition which may well explain the curious behaviour in 
the binding energy over this region.

5.4 CONCLUSION

The two distinct methods set out in the previous sections for 
investigating what happens to a hydrogen molecule when placed in 
an electron gas both agree in two qualitative features: one, there
is a lengthening of the bond; two, the energy required to separate 
the protons is reduced from the free space value of 4.7 eV. Further, 
as the electron density is increased, the binding energy is decreased. 
It is thought that the approximation made in the Heitler-London 
calculation with screened potentials make it a cruder model for 
the change in the molecular binding energy with electron number 
density than that derived using the density functional formalism.
The latter is believed to be exact for reasonably high electron

70 —3number densities (~ 8 x 10 electrons cm ). A particular feature
of the density functional model is that for electron number densities
at the 'high' end of the metallic regime 20 x 10^̂  electrons cm )̂,
the molecule will not form.
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QiAPTER VI

THE CHEMICAL CWLEX IN MOLTEN Mg-Bi AND Tl-Te

6.1 INTRODUCTION

Ratti and Bhatia (1975) have examined the electrical properties
WTCillium

of the compound forming magnesium-bismuth and tellurium-tontaltm
»

systems, demonstrating that the concentration dependence of the 
electronic transport coefficients may be understood on the basis of 
the formation of chemical complexes and the consequent depletion of 
the free electron density. Following Enderby and Simmons (1969), 
the formation of the chemical complexes Â B̂  with low lying electron 
states is postulated where y and v are small integers specified by 
the composition at which the system forms in the solid phase. The 
equilibrium numbers n̂ , n̂ , n̂  of the separate A and B ions and of 
A B respectively as a function of the temperature, T, pressure, P, 
and the concentration, c, of A atoms, or, (1-c), B atoms in the AjaB̂; 
binary alloy are determined from the thermodynamic properties of 
the system. The conduction process is treated in the nearly free 
electron approximation, except close to the compound concentration, 
Cq. Nothing, however, is said about the nature of the bonding 
which exists in these chemical complexes. It has becane clear 
from previous chapters that the bonding within liquid magnes ium- 
bismuth is unlikely to be totally ionic, leading one to suspect 
the possibility of the covalently bonded complex. The calculations 
of Chapter V have shown that the binding energy of a molecule does
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vary with a changing electron environment, in which case covalently 
bonded Mg^Bi2 molecule complexes must have binding energies which 
vary away from the critical concentration. This behaviour has been 
modelled with the aid of the hydrogen molecule calculations and 
the Ratti and Bhatia equations reformulated. The final section of 
this chapter looks at the curious consequences of the assumption 
of covalency, while the intermediate sections set out the original 
and revised theory and results of Ratti and Bhatia. Most of the 
discussions are confined to the liquid magnes ium-bismuth system.

6.2 THERMODYNAMIC PROPERTIES

6.2.1 Basic Equations

The treatment is in the newly free electron approximation so 
that if denotes the number of conduction electrons contributed
by a separate A atom and Zg by a B atom, the number of conduction
electrons per atom in the mixture is given by N = Ẑ n̂  + 1^2*

From the conservation of atoms,

n^ = c - pn^ ; n2 = (1 - cf - vn^

hence,

N = cZ^ + (1 - c)Zg - (yẐ  + vZgJn̂  (6.2.1)

In the nearly free electron approximation, the Hall coefficient, R, 
is

R“̂  = - N|e|/fi (6.2.2)
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where  ̂is the volume per atom, e the electronic charge. Thus, 
to determine N and R, it is necessary to know n̂ .

In a series of papers (Bhatia and Thornton, 1973; Bhatia and 
Hargrove, 1973, 1974) the functional form for the free energy of 
mixing (per gm mole of binary alloy A-B) for the Mg-Bi and Tl-Te 
systems in particular was introduced:

3
= -njg + RT [ I n̂ lnn̂  + n̂ lnCy+v) | + H (n̂ n̂ )Vy-| 

i=l i<j
(6.2.3)

g is the (free) energy of formation of the chemical complex per gm 
mole of Â B̂ , so that (-n̂ g) represents the lowering of the (free) 
energy due to the formation of the chemical complexes. The second 
term in (6.2.3) is Flory's approximation for (-T) times the entropy 
of mixing of the three species. The assumption made is that the 
volume per atom of A and B atoms is nearly the same, say v, and the
volume of A B is (y+v)v.y V

v̂ j are the pairwise interactions. The equilibrium condition 
(aCĵ /ôn̂ )̂ ^̂  = 0 gives

n̂  n̂  = n3 k f (n̂ ,c) (6.2.4)

where k *= exp(-g/RT) and f(n̂ ,c) involves v-. and is a slowlyo Ij
varying function of n̂  and c. g and v-• in equation (6.2.3) areÛ ij
determined from the thermodynamic data on From (6.2.3) and
(6.2.4) the experimental free energy of mixing, Ĝ , heat of mixing,
H (involving 9Ĝ /BT), and concentration fluctuations, â  ̂(involving
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2 29 G/9c ), are reproduced well over the concentration range for 
both Mg-Bi and Tl-Te. The temperature dependence of g and v̂ j are 
thought to be small, hence neglected. The success of (6.2.3) and (6.2.4) 
in studying the thermodynamic properties of the two systems encouraged 
Ratti and Bhatia to apply it to a study of the electronic transport 
coefficients. Various thermodynamic parameters for the Mg-Bi and 
Tl-Te systems are shown in figure 6.2.1.

For Mg-Bi and Tl-Te, g/R = 1.6 x 10* °K and 9.5 x 10̂  °K 
respectively, so that at temperatures of observation ('̂z lOOÔ K) K << 1. 
Further f ~ 1. Under these conditions, (6.2.4) may be solved to a 
first approximation (K 0),

n(°) = c/w nj°) = 0 n̂ °) = 1 - c - vn̂ °̂  (6.2.5)

for 0 < c < ĉ , where ĉ  = y/(y+v). For ĉ  < c < 1,

n^^) = (1 - c)/v n^^^ = 0 nj^) = c - yn^^^ (6.2.6)

These equations are not valid in the c -> 0 or (1 - c) -> 0 limits, 
or if y or V >> 2 (Bhatia and Hargrove, 1974), Thus to a first 
approximation the mixture can be regarded as a pseudobinary mixture 
of A+A B̂ în the A rich region and B-tÂ Â in the B rich region.

n^ may be determined to a higher approximation by writing 

3̂ ~ 3̂̂  ̂" ^̂ 3 ^  (6.2.4) and keeping only the terms linear in 
An̂ . For c < ĉ

An̂  = [k̂ n̂ ^̂ /ŷ (n̂ ^̂ ) (6.2.7)
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where = K f , c). The solution is valid when vAn̂  << n^^^, 
For c > ĉ , the solution corresponding to (6.2.7) is obtained by 
replacing n̂ ^̂  by n|̂  ̂and interchanging y and v. At c = ĉ  
where both nĵ  ̂and n̂ ^̂  tend to zero,

An̂  = {KQ/|(y+v)y*vV|}l/(w+v) (6.2.8)

6.2.2 The Covalent Mg^Bi2 Complex in an Electron Sea

The themodynamic and electronic studies of Bhatia and coworkers
accept the possible existence of chemical complexes Â B̂  but make no
statements about the type of bonding which exists within these
complexes. It has been argued in previous chapters that the Mĝ Bî
complex in molten Mg-Bi is more likely to be covalently rather than
ionically bonded. In the covalent extreme the calculations of
Chapter V have demonstrated that the binding energy of a molecule in
an electron gas must change with varying electron number density, in
which case one would expect covalently bonded Mg^Bi2 complexes to
have binding energies which vary away from the critical concentration.
Hence in equation (6.2.3), g must vary with N. It is possible to
model this behaviour and reformulate the equations of section 6.2.1

for the liquid Mg-Bi system.
The binding energy of the hydrogen molecule in an electron gas

decreases as the electron number density increases. Although the
calculation of the preceding chapter is that for the hydrogen
molecule, if a Bom-Mayer repulsion term of the form A exp| -(r-r̂ )/p |
is included in the calculation, it is possible to model the closed
ion core repulsion effect experienced in larger molecules. A is a

— ?constant of value 5.588 x 10 Rydbergs appropriate for ions of
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unlike sign, and p another constant equal to 0.652 atomic units 
(Mott and Gumey, 1940). r̂  is chosen to be the interionic separa
tion at the energy minimum of the hydrogen molecule without the 
repulsion term. Figure 6.2.2 gives a plot of the new energy 
minima obtained (in Rydbergs) against a parameter 3 related to the 
conduction electron density, n̂ , through 3 = (Sâ /n n̂ )̂ ^̂ , where 
â  is the atomic unit of distance. The binding energy decreases 
almost linearly with 3 passing through energies of 0.1259 and 
0.1212 Rydbergs associated with electron densities corresponding to 
magnesium and bismuth respectively. The variation is not linear 
very close to the binding energy calculated for this larger molecule 
(0.1797 Rydbergs). Increasing the free electron number density then 
leads to a bond weakening for the larger molecule. In order to 
simulate the variation of the binding of the Mg^Bi2 molecule in a 
sea of electrons provided by excess magnesium or bismuth ions in 
liquid Mg-Bi one can retain the approximately linear behaviour and 
write

(6.2.9)
g(n) = - go {1 - an̂ /̂ } 0 < c < ĉ

= - go (1 - 3n]̂ /̂ > Cq < c < 1

with a = referring to the Bi end
ô

3 = referring to the Mg end
ô

and ĝ  is the free energy of binding of the Mg^Bi2 molecule at the
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critical concentration 0.1 Rydbergs): It is assumed that the 
majority of nearly free electrons come from excess ions not trapped 
in molecular Mg^Bi2. The thermodynamic and electronic properties 
can now be formally derived.

The functional form for the free energy of mixing per gm mole 
of the alloy becomes

= n^gCn) + RT{n^lnn^ + n^lnn^ + n^lnCw+vjng} + H
i<3

(6.2.10)

The condition (BĜ B̂n̂ )̂   ̂= 0 will give the equilibrium value of 
n^ determined from

^1^2  ̂n^f (n2»c)exp{- ̂  [l-an’ '̂̂ (̂n2-  ̂ 0 < c < ĉ

(6.2.11)

= n2f(n2,c)exp{- ̂  [l-3n” /̂̂ (n̂  - -̂ n̂ )] ) ĉ  < c < 1

f(n2»c) is the same slowly varying function of n̂  and c given in
(6.2.4); its explicit form is omitted for brevity, ĝ  and V̂ j are 
fixed from the best fit on the observed experimental data of the 
free energy of mixing Ĝ . (6.2.11) must be solved numerically for
n̂ , enabling one to determine the free energy of mixing from (6.2.10) 
and the number of conduction electrons in the mixture from (6.2.1),
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6.3 HALL EFFECT, CONDUCTIVITY AND ENERGY OF MIXING

%For Mg-Bi, = Ẑ  = 2 and Ẑ  = Ẑ  ̂= 5. Also y = 3 and
V = 2. The volume per atom, P = + (1 - since the
departure from linearity is small and produces negligible effect 
on (N/fi). Figure 6.3.1 gives:

(a) The resistivity, p, calculated from Faber-rZiman theory 
assuming no depletion on N - that is, N = cẐ  ̂+ (1 - c)Zĝ , The 
free electron expression used for the resistivity is,

p = P r-^ (6.3.1)Ep Egpp

2 2 2 2/3where A is the constant 3tt h/e and Ep = (3tt N/fi) ' . L̂ pp is a
mean free path which is a composite of the mean free path due to
scattering by the complexes and a mean free path arising from
scattering by excess Bi or Mg ions (following Enderby and Simmons,
Schaich and Ashcroft (1970)). L̂ pp = L̂ £p(c, Ep) and will have
different values in pure Mg and Bi.

(b) Keeping L̂ pp the same and changing Ep in (6.3.1) according 
to Ratti and Bhatia solving (6.2.4) for n̂ .

(c) Keeping L̂ pp the same as in Ratti and Bhatia, for the sake 
of comparison solving (6.2.11) for n̂ .

(d) The experimental curve from Enderby and Collings (1970).

Curve A clearly does not agree with experiment even well away 
from the compound composition. Curve B indicates the depletion of 
N as stoichiometry is approached, even though the assumption that
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Fig. 6.3.1.

Resistivity of Mg-Bi system as a function of concentration 

c of Mg. Curves (a) and (b) as explained in the text. Curve 
d is experimental. Curve c is calculated from (6 211)
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L̂ ££ is the same as in Faber-Ziman theory is unjustified. Curve C 
shows a sharper peak in the resistivity compared with Curve B, 
apparently modelling well the dramatic reduction in the free electron 
number density near the critical concentration. However, whereas 
detailed calculations of ̂  ̂  (table 6.3.1) using (6.2.4) show a 
maximum close to ĉ  dropping sharply both sides of the maximum, 
those determined using (6.2.11) do not.

TABLE 6.5.1
Temperature Dependence of the Conduction Electron Density 
in Mg-Bi. C is the fraction of Mg atoms. The second and 
third columns refer to n̂  determined by (6.2.4) and
(6.2.11) respectively.______________________________

(6.2.4) (6.2.11)

0.50
0.55
0.57
0.58
0.59
0.60
0.61
0.62
0.63
0.65
0.70

2.0
5.0
6.5'
13.0
20.0
25.0
25.0
18.0 
11.0
3.8
0.8

0.82
1.31
1.41
1.14
0.33

0.04
0.30
0.44
0.44
0.25
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Figure 6.3.2 plots — Mand as functions of concentration for 
liquid Mg-Bi. The solid curve gives those results calculated using 
the model of Bhatia and coworkers (equations 6.2.3 and 6.2,4).
The broken curve gives those calculated on the assumption of the 
covalent Mg^Bi2 complex (equations 6.2.10 and 6.2.11). The solid 
circles are data for taken from Hultgren et al (1963) at 
T = 973°K. The free energy of mixing curves show quite clearly 
that a model which assumes covalent bonding within the Mĝ Bî  
complex and an associated variation in binding energy with changing 
electron environment cannot reproduce the thermodynamic data, 
whereas a model in which the binding energy remains constant can.
This latter model, however, is unable to show the dramatic reduction 
in the number of conduction electrons near the critical concentration.

Figure 6.3.3 gives the experimental and theoretical values for 
the Hall effect as a function of the concentration of Tl. = 3,
and y = 2, v = 1 corresponding to the compound value Tl2Te. The 
value of was calculated at 800°K from matching the Hall 
coefficient as Ẑ  ̂= 1.8. The agreement between the curves is good, 
as is the experimental ratios of resistivities p(0.1)/p(c).

6.4 CONCLUSION
Ratti and Bhatia have demonstrated that the concentration 

dependence of the Hall coefficient and the resistivity in liquid 
%-Bi and Tl-Te can, at least qualitatively, be understood on the 
basis of the formation of chemical complexes and the consequent 
depletion of the free electron density. The work presented in this 
chapter has attempted to attain a deeper understanding of these
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Fig. 6.3.3

Hall coefficient of Tfi-Te system as a function of concentration 
c of Te. Dashed curve is experimental and continuous curve 
is theoretical.
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liquid semiconductors by looking more closely at the nature of 
the bonding within the chemical complexes formed, and the effect 
that this has on the thermodynamic and electronic properties of 
the system. For liquid Mg-Bi, in particular, whose constituents 
are simple liquid metals and which are considered to have a strong 
tendency to form chemical complexes, there is a greater likelihood 
of covalent rather than ionic bonding within each complex. The 
calculations of the previous chapter would lead one to believe 
that should such covalently bonded complexes exist, then their 
binding energy must vary away from the critical concentration.
This variation in binding energy has been simulated with the aid 
of the hydrogen molecule calculations, and the theory of Bhatia and 
coworkers reformulated for this change. The result is to worsen 
agreement with experimental data for heats of mixing and the 
electronic transport coefficients. It would appear as though 
covalent Mg^Bi2 complexes behave as if they do not interact strongly 
with an electron gas environment provided by excess magnesium or 
bismuth ions in liquid Mg-Bi. A very curious situation has thus 
arisen in which the molecular binding energy remains constant 
across the concentration range. There is, however, enough discre
pancy between the experimental heats of mixing data and that 
calculated in the Bhatia formulation to suggest that this cannot 
be the case. Indeed, a matching can be obtained if the molecular 
binding energy is assumed to increase across the concentration 
range away from the critical concentration.
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CHAPTER VII

MUFFIN-TINS : PHASESHIFTS

7,1 INTRODUCTION
This chapter introduces many of the concepts viiich form the 

basis of a calculation carried out on the liquid semiconducting 
magnesium bismuth system, a discussion of which is given in the 
following chapter. The many-body problem for the system is 
treated by replacing the electron-electron interactions by a 
self-consistent potential within which only a one-electron 
Schrodinger equation need by solved. The single particle 
potential will be assumed to consist of spherical non-overlapping 
spheres with a constant interstitial potential, taken as the zero 
of energy. The construction of such a potential about each site 
is described in section (7.2). The power of multiple scattering 
formalism lies in the observation that the wavefunction outside 
each scattering centre depends only upon the scattering phaseshifts 
of the potential. Section (7.3) introduces the concept of 
phaseshifts for a single isolated scattering centre. Particular 
attention is paid to the interpretation of phaseshifts for different 
systems. The local electronic density of states for each scattering 
centre of a system of several non-overlapping potentials is an important 
concept. Section (7.4) relates this local property for each scatterer 
to the scattering path operator which itself is related to the total 
scattering for the entire system.

Atomic units are used throughout this and the next chapter. The
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unit of energy is the Rydberg given by 1 Ryd = where e is the
electronic charge, and the unit of length is the Bohr radius, a = "ĥ

 ̂ mê

7.2 CONSTRUCTION OF THE MUFFIN-TIN POTENTIAL
7.2.1 The Maffin-Tin Potential

Fig. 7.2.1 The muff in-tin potential with respect to the line ABABA,
The muff in-tin potential is a one-electron potential in which each 

atom of the crystal is surrounded by a sphere inside of which the 
potential is approximately spherically symmetric and rather like the 
potential in a free atom. Between spheres there is a shared influence 
caning from neighbouring atans which leads to a flattening of the 
potential in these regions; hence the potential is assumed to be a 
constant, (figure 7.2.1). The spheres are usually chosen to be 
large enough to touch, so as to minimise the region between them.
Thus the sum of muffin-tin potentials in an approximation to the real 
crystal potential.
7.2.2 Potential Construction: Mattheiss Prescription

Ideally one would like to calculate the potential function V(r)
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inside each sphere in a self-consistent manner. However, in many
cases it is possible to obtain fairly accurate energy-band results
by using "muffin-tin" potentials derived from self-consistent atomic
charge densities. Hartree-Fock-Slater charge densities obtained 

kfrom Herman and ^llman (1963) are usually employed.
Mattheiss (1964) treats Coulomb and exchange contributions to 

v(r) separately. The Couloumb contribution is given by

V̂ (r) = V̂ (r) + r(r) (7.2.1)

V̂ (r) is the atomic Coulomb potential for the atom and is obtained 
from

VqW  = ̂  - Û Cr) (7.2.2)

where z is the nuclear charge and Û (r) is the electronic contribution 
which is determined from a numerical solution of Poisson's equation:

v̂ Ug(r) = - Snp̂ Cr) (7.2.3)

where p (r) = I |Y, (7.2.4)
occupied

Pg(r) is the atomic electronic density taken from Herman and Skillman 
V̂ (r) is the spherical average of the contribution to the Coulomb 
potential about the atom due to neighbouring atoms and is determined 
using the Lowdin alpha-expansion technique (see Loucks, 1967):

r' V̂ (r')dr' (7.2.5)

Here a^ is the distance between the neighbour m and the point about 
which Vq is being expanded. Since only the magnitude of a^ enters,, 
the sum over neighbours can be converted to a sum over shells of
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neighbours, each shell being weighted by the number of neighbours it 
contains. The most significant results of adding these contributions 
to the atomic potential are a lowering and flattening of the potential 
in the vicinity of the sphere radius.

The exchange potential is treated in an analogous manner. The 
electronic charge density about a given atom is represented by the 
appropriate atomic charge density plus the spherical average of 
overlapping charge densities due to its neighbours:

p(r) = P q W  + I
m m

r'p̂ (r') dr' (7.2.6)

The exchange potential is then treated according to Slater's free 
electron exchange approximation:

V̂ (r) = - 6 (^ p(r))‘/3 (7.2.7)

The exchange potential is added to the total Coulomb contribution 
to give the total potential, Vj(r), about the atom:

V̂ (r) = V̂ (r) + V̂ (r) (7.2.8)

This is a spherically symmetric potential which will be slowly varying 
in the region between the spheres. The muffin-tin zero is obtained 
by performing a spherical average of V̂ (r) over the region between 
the sphere radius. A, and the Wigner-Seitz sphere radius, r̂ , since
V̂ (r) will generally be very flat in this region. Thus,

rr_
'̂T’ ̂V (̂r)r2dr

(7.2.9)
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Hence inside the spheres the muffin-tin potential is taken to be

V(r) = VyCr) - (7.2.10)

7.3 SINGLE SCATTERER; PHASESHIFTS
7.3.1 .Introduction

When considering a system of scatterers, at energies above 
muffin-tin zero, conveniently chosen as.energy zero, electrons can 
be thought of as propagating freely in the interstitial region, and 
being scattered by the muffin-tin potentials. Scattering from a 
single site with a potential V(r), where V(r) =0 for r > A, the 
muffin-tin radius, then becomes important.

Consider a single spherically symmetric muffin-tin potential 
at the origin of position coordinates. The solution of the time- 
independent Schrodinger equation for the potential V(r) may be 
expanded in angular momentum eigenstates. Inside the sphere the 
solution is expanded in terms of products of radial wave functions 
and spherical harmonics.

4(r) = p L  (7.3.1)

Y, (r) is the real spherical harmonic of angular momentum L = (t,m)

00 +%

1 = 1  I (7.3.2)
L £=0 m=-£

is the convention used. R̂ (r) satisfies the radial wave equation 

F aP? r + Bi/r) = E R̂ (r) (7.3.3)
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where E is the energy. Outside the sphere the solution of (7.3.3) 
must be a linear combination of independent free space solutions.
A general solution can thus be written, for r > A,

Î (r) = 4ïïî  Â (cos 6̂  j^(VS^ - sin 6̂  n̂ (Vffî ) (7.3.4)

where ĵ (x) and n̂ (x) are spherical Bessel and Neumann functions
respectively (as defined in Abramowitz and Stegun, (1965)). The 

£4TTi factor in (7.3.4) is introduced to correspond with the plane 
wave expansion,

exp(i k.x) = 4n % i* ĵ (kx) (x) Ŷ * (k)

The constants 6̂ (E) which appear in (7.3.4) are the phaseshifts. 
Other conventional forms for the radial wave function given in 
(7.3.4) can be used depending upon the context in which the 
scattering is being considered. Two alternative forms which 
differ only by an amplitude factor arê

Rĵ (r) = 4ïïî  A  ̂{ĥ  (a/0F) + exp(2iô̂ ) ĥ (̂VffiO ) (7.3.5a)

= 4ni* A^ { - i/F [ - sin 6̂  exp(i6̂ )/i/̂ ĥ '̂ (Æt)>

(7.3.5b)
+where ĥ  (x) and ĥ  (x) are spherical Hankel functions given by

ĥ '(x) = ĵ (x) ±in̂ (x) (7.3.6)

(7.3.5a) is convenient in the description of the scattering in terms 
of the true wave packets and defines the scattering factor
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Ŝ CE) = exp(2i6̂ (E)) (7.3.7)

(7.3.5b) defines the transition factor

t̂ (E) = - sin 6̂  exp(i5̂ )//E (7.3.8)

which gives the rate of scattering from an incident plane wave of 
electrons into the L th partial wave.

Phaseshifts are determined from matching conditions of the 
interior and exterior wave functions at the muffin-tin radius.
At this radius the radial wave function and its derivative must 
be continuous so that

r=A
(7.3.9)

(7.3.9) may be solved for tan 6̂ . Given V (r), the left-hand side 
of (7.3.9) may be found by numerical integration of the radial 
Schrodinger equation out from the origin. The scattering properties 
of the potential are expressed entirely in terms of the phaseshifts 
5̂ . The "modulo tt" ambiguity can be removed by setting 6̂ (E) =0 
at E = 0. The alternative convention is to take 6̂ («) =0 (at 
sufficiently high energies the incident electron will not be 
affected by the scattering potential), then to make the reduction 
since Levinson's theorem states that 5̂ (0) - 6̂ («) = where 
p̂  is the number of bound states of angular momentum z in the 
potential.
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7,3.2 Wigner Delay Time
Consider the scattering of a wave packet of prescribed velocity. 

For simplicity one may regard the packet as made up of two homogenous 
beams of nearly equal energies E ± AE and wave numbers k ± Ak 
respectively, so that the wave function describing the incident 
packet will be asymptotically

= r"i{exp i[(k+Ak).r - i (E+AE)t] + exp i[(k-Ak).r -i  (E-AE)t]}

The centre of the wave packet is located at the point where the two 
waves are in phase so that

Ak.r AE t = 0 i.e.

Scattering of the packet by the central potential introduces phaseshifts 
6±A6 in the outgoing waves of wave numbers k ± Ak respectively, so that, 
at a great distance from the scatterer, the wave function for the 
outgoing wave packet will be

iĵout " r’ {̂exp i[(k+Ak).r -ĵ {E+AE)t + 2(6+Aô)]

+ exp i [(k-Ak).r - .̂ (E-AE)t + 2(6-A6)]}

The centre of this wave packet is now located where

Ak.r AE t + 2 A5 = 0

so r = Vg (t - 2h since 6 =
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Thus the outgoing wavepacket is retarded by a time

(7.3.10)

relative to the time in the absence of the scattering potential.
If 6(E) is a very rapidly varying fuQttion of energy, the Wigner 
delay time can be very long, as in the case of a scattering resonance 
(Figure 7.3.1)

The attractive potential V(r) 
combines with the centrifugal
potential to give riseA(&+1) 

r2
to a metastable state. The 
phaseshift near a resonance 
behaves like

6(E) - tan-1 |r/(Ej.-E)|

Fig. 7.3.1 Effective radial potential 
giving rise to a metastable state and 
a scattering resonance.

showing that it passes rapidly but continuously through the value 
V 2 at E = Ê . Thus for a resonant state the delay time becomes 
extremely large. For a bound state the "delay time" is in fact 
infinite.
7.3.3. The Friedel Sum Density Of States

Consider the introduction of the single scattering centre into 
a free electron gas. The presence of the scatterer leads to an 
accumulation (or deficit) of the electron density in its neighbour
hood, since an incoming flux of electrons, of given angular momentum.



- 116 -

is delayed by the Wigner delay time before being converted into
the outgoing flux. Flux is defined-by

[I = jni

The basic radial wave is 4ïïi j (Ær) and since j = I |h.* + h,
I

the incoming flux through a sphere of radius r is

8mi mk

The accumulation of density is given by the incoming of flux multiplied 
by the delay time so that the additional number of electrons in the 
neighbourhood of the scattering centre is given by

N(E) = 2

= 1 I (2&+1) (E) (7,3.11)
&=0

This is the well known Friedel sum rule (Friedel, 1953). It can also 
be derived from the radial wavefunction by taking

N(E) = 2
k=Æ

k̂ dk •2 dr { I (2&+1)
£=0

4ni* ĵ (kr)|2 }

where the radial function R̂ (r) is given by equation (7.3.4). It 
follows that the integrated density of states per atom, N'(E), is 
given by
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N-(E) = N̂ (E) + I I (2)1+1) 6%(E)

where N̂ (E) is the free electron contribution, and

g(E) = go(E) + I J (2)1+1) ^

7.3.4 Interpretation Of Phaseshifts
For the rauffin-tin potentials and energies with which one is 

usually concerned, only the £=0,1,2,3 phaseshifts are significant. 
Typical phaseshifts calculated using equation (7.3.9) for a simple 
free electron metal, transition metal, and a semiconductor are 
given in figure 7.3.2, taken from Greenwood (1973). Figure
7.3.3 shows the phaseshifts calculated for copper, a typical 
noble metal. The £=3 phaseshifts are negligible for these systems.

For sodium, the phaseshifts and their energy derivatives are 
all small up to the Fermi energy. The Friedel sum will be small, 
the Wigner delay time short. These are characteristics of a weak 
scatterer of which sodium must be one. This contrasts the 
transition metal, iron, in which the d-phaseshift is important.
The energy derivative of the d-phaseshift is large near the Fermi 
energy which implies a d-resonance of long Wigner delay time at 
this energy. Iron is a strong scatterer. For copper the 
d-phaseshift is small near to and far away from muff in-tin zero, 
although its energy derivative is large over an energy range below 
the Feimi energy. The d-resonance lies below the Fermi energy, 
electrons are well localised within the muff in-tins, and therefore 
behave somewhat like core electrons (House and Smith, 1973). All



s,
0 2

0*22 Ry

(fi

t t /2

(c) A

TT/2

Fig. 7̂ 3.2. Typical muffin-tin phaseshifts for 
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phaseshifts and their energy derivatives are small at the Fermi energy; 
it is this feature which enables one.to treat noble metals as weak 
scatterers at this energy. For germanium the s- and p-phaseshifts 
are approximately equal to - and + j , respectively, at the Fermi 
energy. Close to the muffin-tin zero the phaseshifts and their 
derivatives are large which would imply that germanium is a strong 
scatterer near this energy; away from muffin-tin zero the phaseshift 
derivatives are small which suggests some free electron qualities.
There is an apparent duality in which nearly free electron theory 
is acceptable at higher energies, but not near muffin-tin zero. 
Germanium is an elemental semiconductor whose atoms are characterized 
by long range order in a crystal array.

In Chapter VIII the electronic properties of the liquid 
magnesium-bismuth system will be discussed with reference to the 
phaseshifts characteristic of each constituent atom across the 
concentration range. The sodium and germanium phaseshifts 
considered above will serve as a useful introduction to the 
discussion.

7.4 LOCAL ELECTRONIC DENSITY OF STATES: SCATTERING PATH OPERATOR
The muffin-tin density of states for a single scatterer i|̂ a 

system of several 1023) scatterers, n̂ °̂ (E), is defined as the 
integral of the particle density over the volume of a spherical 
scattering centre ;

=

A
d3r

r=0
d k̂

(7.4.1)
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In a review article, Smith and Lloyd (1972) have related n̂ ^̂ (̂E) to 
the single site muffin-tin density of states, n^^(E), using the
scattering path operator

i1l“(E) = ni(E) Im |- Æ T**(E)/sin26̂ (E)| (7.4.2)

The scattering path operator t is defined by the relations 
(Gyorrfy, 1973):

= t*5 a + y t“ Ga3 fY f a

= t“6 + I G t'
yh

(7.4.3)

where t“, t are the scatterings from an a and a g site respectively 
(angular momentum components given in (7.3.8)), and is the 
scattering from an a to a 6 site. Summing over all a and 3 sites, 
the total scattering for the entire system, T (the total T-matrix), 
is given by

T = I (7.4.4)
a,3

Thus is the site decomposition of the toal T-matrix, relating to
A

the scattered wave from one site to an incident wave an/another.
G is a matrix whose angular momentum components are defined by

i Æ  (Æ r̂ g) , (r̂ g)
"lL- "

(7.4.5)
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It is a propagator which describes the motion of electrons between 
site a and 3 at energy E. ĥ ,/(x) is the spherical Hankel function 
defined in equation (7.3.7), given in Abramowitz and Stegun (1965), 
Yĵ ,,(r̂ 3) is a real spherical harmonic.

are integrals over spherical harmonics (known as Gaunt numbers)
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CHAPTER VIII

A CALCULATION ON THE SEMICONDUCTING MAGNESIUM-BISMUTH SYSTEM

8.1 INTRODUCTION
As far as is known, all liquid semiconductors are also amoiphous 

semiconductors. The electrical behaviour of amorphous materials 
viiich are semiconductors or semimetals in the crystalline state is 
not fully understood. In ordered crystals the periodic lattice has 
the effect of carving the energy distribution of the conduction 
electrons into a series of bands. Each band can contain two electrons 
per unit cell and they are filled up depending upon the number of atoms 
per unit cell and the number of electrons per atom. The last two 
bands to be filled are known as the valence and conduction bands 
and these are sometimes separated from each other by an energy gap 
where electron states are not allowed. Consider a small amount of 
disorder introduced into an otherwise ordered crystal by assuming 
that there are different regions of the crystal with slightly 
different crystal structure and lattice spacing. There will exist 
electron states in some of these regions with energies in the gap of 
the full sample which are not allowed in most regions. In some 
sense these are localized states which give rise to tails in the 
valence and conduction bands. Mott (1969) has suggested that there 
are tails to both the valence and conduction bands in amorphous 
materials which, depending on the disorder present, can result in 
a pseudogap corresponding to a minimum in the density of states 
(figure 8.1.1). In this region electron states may be localized
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with the electrons moving by thermally activated hopping. The 
conductivity is low (<200Jî"̂ cm“^). . Moving away from the
composition at which the alloy is a semiconductor or semimetal 
(e.g. Mg3 Bi2), the Fermi level will move out of the pseudogap 
and the region of localized states will fall to zero. As localization 
weakens, each localized wavefunction will overlap a large number of 
others until the conduction is no longer by hopping but by extended 
states.

Perrier and Herrell (1970) have investigated the electrical 
properties of amorphous Mg-Bi measuring the electrical conductivity 
and thermoelectric power of the alloy as a function of temperature 
and composition (figure 8.1.2). At the composition corresponding 
to Mg3 Bi2 the thermopower changes sign and the conductivity shows 
a pronounced minimum, although the drop is not as narrow as in the 
liquid state. Particular attention is given to the region near the 
Mg3 Bi2 composition. Here they find the properties to be in 
agreement with a model of localized states, with the electrons 
moving by thermally activated hopping. From their data Perrier 
and Herrell (1970a) have deduced the form of the density of states 
around the gap for amorphous Mg-Bi, estimating a gap width of 0.02 
Rydbergs. They propose that the electrical properties of the liquid 
state may also be understood by assuming the existence of a 
pseudogap in the density of states. The origin of the gap is not, 
however, clear.

Keller and Ziman (1970) have looked at the general problem of 
generating an energy gap in a system without long ranqe order. For 
amorphous semiconductors it has been shown that sh< mge order
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tends to produce a low density of states in the gap region. Indeed, 
the analysis of Ferrier and Herrell (1970b) reveals that the nearest 
neighbour distance falls to a sharp minimum at the Mg3 Bi2 composition 
suggesting that some short range structural changes are taking place.
It is the purpose of this chapter to investigate how and viiy an energy 
gap is produced. The general theoretical approach adopted is outlined 
in the following section. Section 8.3 gives the approximate 
expression for the bottom of the conduction band in a liquid alloy 
usded to facilitate the estimation of the Feimi energy. Section 8.5 
suggests a simple interpretation for the origin of the band gap in 
liquid M -̂Bi based on the calculations and results presented in Section 
8.4. The implications of this model for the transport coefficients 
are given in section 8.6, while section 8.7 is a brief summary of the 
chapter. The work presented in this chapter follows from an invest
igation carried out by Jewsbury and Dooley on the liquid semiconducting 
Mg-Bi system.

8.2 THEORETICAL APPROACH
Ziman (1972) has reviewed a wide variety of theoretical techniques 

which are available for studying the electronic properties of condensed 
systems. For a general alloy comprising strong and weak scatterers, 
the most useful approach to apply to a disordered system is the 
multiple scattering method as developed by Korringa (1947). The 
technique relies on being able to subdivide the total potential into 
non-overlapping parts, centred on the nuclei. It is usual to employ 
muffin-tin potentials in such calculations, as described in Chapter 
VII.
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The muffin-tin approximation was first applied to metallic 
crystalline solids assuming the crystal potential to consist of 
spherical non-overlapping spheres around the nuclei with a constant 
interstitial potential. Systems which have a spherically symmetric 
local environment (large co-ordination numbers) and non-directional 
bonding are most suitable for this approximation. The success of 
this approximation has led many workers (e.g. Evans et al, 1973) 
to suggest its use in liquid systems. The basic features of a 
spherically symmetric central core region and a fairly flat inter
stitial potential apply equally to a solid or liquid, but it is < 
unlikely that the local environment of a general atom in the liquid 
will be spherically symmetric. Furthemore, in a practical 
calculation all the muffin-tin potentials of a species in the liquid 
are likely to be taken equal. As the potentials are not allowed 
to overlap this implies that the apparent interstitial volume 
increases from about 30% in the solid to about 60% in the liquid.
Hence although the muffin-tin approximation appears reasonable 
in a liquid, the error must be greater than in the equivalent 
solid.

Close to the critical composition the Mgg Big alloy is 
semiconducting, and semiconductors generally have directional 
bonding. Muffin-tin calculations have been carried out on 
amorphous elemental semiconductors (ê . Keller and Smith, 1972;
Keller and Fritz, 1974) in the multiple scattering cluster approximation 
(McGill and Klima, 1970) producing satisfactory densities of states 
including a reasonable energy gap. This is encouraging for a 
muffin-tin calculation on the Mg3 Big alloy.
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In a phenomenological study of the behaviour of the transport 
properties of liquid Mg-Bi, as oppos.ed to a detailed calculation 
of them, it seems reasonable to believe that calculating muffin-tin 
potentials across the concentration range will provide realistic 
information on those properties. Calculations of these potentials
have been carried out using the Mattheiss precription, details of 
which are given in section 8.4 together with the relevant necessary 
data and results. With such potentials many details of the system 
may be determined directly. One of the properties which is useful 
in descriptive accounts is the energy of the bottom of the extended 
states. A simple expression which may be used to calculate this 
quantity will be given in section 8.3. Two complications, however, 
should be considered for a calculation of the type described. If cha.r̂ 6 

transfer takes place it is not clear that the muffin-tin method will 
be as valid for an alloy as for a pure substance. A calculation on 
the magnes ium-bismuth 50-50 alloy finds a charge transfer of the 
order of 0.05 electrons fran the magnesium to the bismuth atom 
(c.f. Chapter III). Also, for a heavy element, such as bismuth, 
spin orbit and relativistic corrections are required for a full 
description of electronic properties (Herman and Skillman, 1963).
Energy level splittings arise because of the large kinetic energies 
and velocities of the outer electrons of the atom where the potential 
energy is small. Nevertheless, a non-relativistic description 
should include the same features, e.g. an energy gap arising from 
the same mechanism, as a more complete relativistic calculation.
The true width of the gap will be reduced by these corrections.
Energy level separations can be estimated from atomic spectra to be
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2of the order of -j eV.

8.3 THE BOTTOM OF THE BAID IN A LIQUID ALLOY
Several simple approximate expressions exist to calculate the 

bottom of the band energy, Ê , in single component systems.
However, the expression which most accurately evaluates Eg, 
usually within 2 milli-Rydbergs, is the Ziman (1965) expression.
In an ordered solid the energy eigenvalue versus Block vector K, 
must have a minimum (or maximum) at K = 0 and this generally, but 
not always, corresponds to the bottom of the band. K = 0 is nearly 
always assumed to be the bottom of the band. When this is true, 
it is generally believed that, close to the energy Eg, the band 
structure is free electron like (parabolic) and the electron 
wavefunction is s-type. This suggests that the non-s phaseshifts 
should be small at energy Eg and if they are not, then it is likely 
that K = 0 is not the bottom of the band.

The Ziman approximation is to include only the reciprocal lattice 
vector, g = 0, contributions to the KKRZ secular determinant - i.e.

 ̂“ B̂ “ &rz 0̂0 (8.3.1)

Here Pgg are components of an effective pseudopotential given by

(8.3.2)
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where n is the atom number density, the muffin-tin zero energy, 
ĵ (x) and n̂ (x) spherical Bessel and Neuman functions and P̂ (x) the 
Legendre polynomial. If no approximations are made r and r’ are 
arbitrary position vectors within a unit cell subject to r' > r.

The approximation of including the g = g* = 0 term only 
necessarily implies that only s-wave scattering is important since 
ĵ (0) = 6  ̂g. If this is adopted as a proposition then the Ziman 
expression may be derived directly from KKR theory. The KKR 
determinant (Kbhn and Rostoker, 1954) is just

det II Ag g - ôg g 11=0 (8.3.3)
12 2 12

where kg(E) = " 7^ tan 6  ̂is the single site k-matrix. The 
coefficients are given as the sum over lattices sites

 ̂ a . 3 L3 1  ̂ J 3
af3

where C, , , are Gaunt numbers and R _ the position vector betweenL1L2L3 â3 ^
sites a and 3 . Including only the L=0 terms in the KKR determinant
(8.3.3) taking only the g = 0 term in an expression for written
as a sum over reciprocal lattice vectors, and selecting r = r* = A, 
the muffin-tin radius, the Ziman condition is obtained:

:f = 1 +
tan 6 A-rriiÂ

sin2(/Ê A)
+ /ê cot(/Ê A) = 0 (8.3.4)
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Hence the Ziman starting energy. Eg, for the band of conduction 
electrons in a single component system with reference to muffin-tin 
zero. Eg - E^^* is obtained as the solution of the implicit 
equation (8.3.4).

In a general system the equivalent expression to the KKR 
deteiminant (Smith and Lloyd, 1974) is

det II kL, " II = ° (8.3.5)

where G, is given byLiLg

GL.Lg = Z î i-2 .3 /T n̂  (/F R,,)Yĝ (R̂ ,)

- i /e 6t T 6LjL2 ct3

and the deteiminant of (8.3.5) is taken over angular momentum and
the

site variables. Including only g = 0 contribution iŝ zeroth order 
in the structure and can be generalized in the liquid alloy by 
assuming that site occupancies are also unimportant. The choice 
of values for r and r' is not, however, straightforward. It is 
therefore suggested that it is reasonable to include them with the 
averaging as appropriate muffin-tin radii. Thus the determinant 
becomes

det II <Aĝ ĝ  kĝ > - ôĝ ĝ  II - 0 (8.3.6)
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where k̂ > = ^  ̂ oo

o  /T̂Here a and b represent the alloy species and the are expressed 
by the Ziman approximation. Hence the generalization of the Ziman 
condition for the bottom of the band in a binary liquid alloy yields 
the condition

Zj alloy ̂  + Cy (8.3.7)

3- /bwhere and are the concentrations of species a and b, and Ẑ  
is defined as in (8.3.4) with the s-phaseshift and muffin-tin radius 
appropriate to the a/b type muffin-tin.

In the Mg-Bi system, the Bi p-phaseshift is large ( J) at the 
solution of (8.3.4). Thus, although this formula has been employed, 
it is unlikely to be very accurate, with an error of 0.1 Rydbergs, say,

8.4 CALCULATION AND RESULTS
In order to perform calculâtiorE on the liquid semiconducting 

Mg-Bi system using one electron muffin-tin potentials over a wide 
range of compositions, it is necessary to have some knowledge of 
the Mg-Bi structure. The structural studies of Ferrier and Herrell 
(1970) on amorphous Mg-Bi and Waseda and Suzuki (1972) on liquid 
bismuth provide the near-neighbour distances and co-ordination 
numbers which appear in table 8.4.1.

In view of the lack of knowledge of the Mg-Bi structure only 
the nearest neighbour shell of atomic wavefunctions were overlapped. 
This is generally found to be as realistic as including contributions 
from all shells. The atomic wavefunctions for magnesium and bismuth
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TABLE 8.4a

Data relevant to the potential construction

Bismuth
Concentration

Nearest
Neighbour
Distance

(8)
Co-ordination

Number
Atomic Volume 
(xl02̂ ) cm3

0 3.20 12.2 20.2
0.2 3.08 8.4 24.2
0.4 2.83 5.5 27.6
0.6 3.22 4.2 29.5
0.8 3.37 4.8 32.1
1.0 3.38 8.8 34.6

atoms were taken from Herman and Skillman (1963). Muffin-tin 
potentials for magnesium and bismuth atoms were calculated across 
the composition range in the Mattheiss precription with Slater 
exchange, a recipe which should ensure realistic potentials to be 
calculated in a reasonable approximation to self-consistency 
(equations (7.2.1) to (7.2.8)). The muffin-tin radii were taken 
to be half the nearest neighbour distance, and the muffin-tin 
zeros appropriate to the type of centre atom (magnesium or bismuth) 
were calculated by averaging the potential between the muffin-tin 
radius. A, and the Wigner-Seitz radius, r̂ , according to equation
(7.2.9). The alloy muffin-tin zero was taken as a concentration
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weighted average of the muffin-tin zeros calculated for the different 
atoms. The energy of the bottom of the conduction and valence bands 
arising from the hybridisation between the atomic 3s(on Mg site) and 
6s and 6p (un Bi site) states was determined according to equation 
(8.3.7). Solutions were only found at energies above alloy muffin- 
tin zero.

Values of the alloy muffin-tin zero energies and bottom of the 
band energies are given in table 8.4.2.

TABLE 8.4.2
Relevant energies with respect to atomic zero, in Rydberg, for Mg-Bi.

Bismuth
Concentration

&rz
(Rydbergs) (Rydbergs) (Rydbergs)

0 -0.957
0.2 -0.996 -0.899 0.557
0.4 -1.134 -0.963 0.578
0.6 -0.847 -0.613 0.482
0.8 -0.819 -0.570 0.433
1.0 -0.965 -0.747 0.499

Phaseshifts for these potentials are shown in figures 8.4.1 and 
8.4.2. The magnesium phaseshifts are small whereas the bismuth 
s and p phaseshifts are large. Indeed the difference is sufficiently 
marked that for many purposes the magnesium phaseshifts may be 
neglected - that is to say, even in the alloy the magnesium exhibits 
very free electron behaviour.
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The addition (subtraction) of Mg to an alloy of Mg Bi is 
therefore comparable to the addition (subtraction) of electrons 
to a "liquid Bi system" since the %  atoms do not contribute 
significantly to the total scattering, However, since the system 
remains neutral at all times, the appropriate positive charge 
background is also added. Of course, in addition the volume of 
the system also changes. The effect of the background is to 
contribute to changes in Eg as described by Table 8.3.2, and the 
effect of the addition of electrons, coupled with the volume change, 
is to alter the band width. Making this comparison enables an 
intuitive understanding of this system to be grasped more easily.

The Fermi energy can be estimated by using the Friedel (1958) 
sum rule which will yield exact answers in the low Bi atom density 
limit. For this calculation phaseshifts for the Bi atoms were 
used which represented a single Bi atom in a free electron 
environment starting from the alloy bottom of the band. The 
Friedel sum rule gives the excess number of states above the 
free electron number per Bi atom created by these potentials.
Hence the Fermi energy, Ep, is approximately given by

where 6̂  are the phaseshifts with respect to the bottom of the band 
Eg. The deduced band widths are also given in Table 8.4.2.

The Bi phaseshifts (Figure 8.4.2) look very like those of the 
elemental semiconductors C, Si and Ge (Figure 7.3.2). At the 
Feimi energy only the s and p phaseshifts are large, the s



- 133 -

phaseshift is large and negative, the p phaseshift is close to 
 ̂: d5 . .d6̂
/̂2 and both-^ and-^ are negative. The negative energy 
gradients meo«. that electrons at these energies are to a certain 
extent kept out of the muffin-tin regions. This has been 
discussed in detail by Greenwood (1973) who has shown that 
causality restricts the magnitude of this gradient.

The conductivity of a specimen is determined by its ability 
to impede the flow of electrons by elastically scattering them.
The work of Evans et al (1973) suggests that it is the ratio of 
the muffin-tin density of states to the single site muffin-tin 
density of states ng°‘(Ep)/npHEp) which appears in an expression 
for the conductivity. This ratio is determined by the multiple 
scattering of the system, being given by the imaginary part of 
the diagonal matrix elements of the scattering path operator;

i1l“(E) = n̂ (E) Im | -Æ T̂ (E)/sin2Sĵ (E) | (8.4.2)

The bonding and energy gap within the liquid bismuth system can now
be investigated by calculating D̂ (E) given by

+£
D,(E) =  ̂ n^“(E)/n,l(E) (8.4.3)

m=-£

for the idealised situation in which 6̂  = - "Y* <5̂ = ̂ , and other 
phaseshifts are zero. This will give a qualitative account as to 
how a pseudogap may arise.



- 134 -

For a single atom surrounded by a constant potential equal to 
the muffin-tin zero of energy, D̂ (E)*= (2&+1). For two such atoms 
a distance R apart, bonding can take place giving D̂ (E) an energy 
dependence, and in this case the cluster equations are simple.
Thus, if given by

a 0 3 0

0 0 0

3 0 0

0 0 0

(8.4.4)

then a

3
Y

1 - R) + 3 R)
2/3 R) hẑ ^^C/E R)
1 - (hgM(/E R) - R))2
1 + 3 R) - R) - 21̂  (Æ R))2
1 - (h R) + R))2

(8.4.5)

where h„ ^̂ (x) are spherical Hankel functions. 

"L T gives D (E) by
'iV %

+t
D (E) = Real \ (M-i)„

m=-t

The reciprocal of

(8.4.6)

The result is shown in figure 8.4.3. Electrons are displaced from 
low energies to form a bond around ÆR = 4.26. Note also that 
D̂ (E) = (2&+1) for ÆR > 2tt which specifies the maximum range of 
the band and hence the minimum size of a cluster required in a 
cluster calculation.
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In the archetypal semiconductors such as silicon and germanium, 
the free atoms have four valence electrons one of which occupies an s 
state and three p states. In the solid all the states occupied 
and empty combine into hybrid, or mixed, states. Four of these are 
low energy bonding states with electron density heaped up between 
ions along four directions. In energy terms there is a gap between 
these states and the higher antibonding states. This energy gap is 
the one responsible for the semiconducting behaviour. For the Mg-Bi 
system one can investigate something like the same with a simple cluster 
calculation by recognising that the single atom pairs with the 
addition of further near neighbours will have bonds which interact 
strongly. This may be crudely modelled by increasing the strength 
of the second atom to represent a shell of 3.3 near neighbours with 
results as shown in figure 8.4.4. The interaction between the bonds 
produces an energy gap between ÆR = 4.43 and 4.53. Thus, for Mg3 Bi2 

with R = 5.33 Bohr radii the gap occurs between 0.69 and 0.72 
Rydbergs. This is close to the estimated Fermi energy of 0.75 
Rydbergs (table 8.4.2) and energy gap of width 0.02 (Ferrier and 
Herrell, 1970) or 0.05 Rydbergs (Sik and Ferrier, 1974).

8.5 DISCUSSION
In an atomic representation the energy gap can be regarded as 

arising from the filling of the bismuth s-p band. The criteria 
for a semiconductor A^B^ of the same type as that of Mg 3 Bi£ can 
be summarised as:

(1) the phaseshifts of A are small at the Fermi energy;
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(2) the s and p phaseshifts of B are large negatively and 
positively at the Fermi energy respectively. Higher 
phaseshifts are small.

Further, if and Vg are the number of valence electrons 
contributed by A and B respectively then the critical concentration 
is achieved when

V^x = C8 - Vg)y

which is the noimal condition for molecular combination.
The above criteria (1) and (2) specify certain groups within 

the periodic table. Most elements of groups I and II satisfy 
criterion (1) while most elements of groups IV, V and VI satisfy 
criterion (2). Indeed LiF might be regarded as an extreme case, 
although charge transfer complicates the issue.

In some circumstances noble metals may replace the more usual 
simple metal conponent A. In pure Cu, for instance, the Fermi 
energy falls above the band and at the Fermi energy all the 
phaseshifts are small. The d electrons are well localized 
(House and Smith, 1973) within the muffin-tins and therefore behave 
somewhat like core electrons. Hence, provided the Fermi energy 
does not fall when Cu is added to the other component, B, it will 
behave like a monovalent simple metal. Away from the critical 
concentration specified by equation (18), on the B rich side the 
alloy can still be semiconducting if B is a liquid semiconductor. 
One obvious way is the alloy to consist of regions of A^ B̂  
and B. However, in the example of Cû  Te _̂̂  - a semiconductor
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2for X > Y - the structural data of Hawker et al. (1974) suggests 
that no phase separation occurs. In the Mĝ  Bî  case it was 
demonstrated in section 8.4 how the near neighbour environment 
determines whether a band gap exists - the same is true in the 
covalent semiconductors. Thus the appropriate covalent B-B 
bonding in local regions of excess B could ensure the semi
conducting behaviour of the AB alloy on the B rich side of Â B̂ .

In the covalent semiconductors, individual atoms have their 
valence requirements satisfied locally - that is, they obey the 
(8-v) rule. Specifically the rule states that within a covalent 
semiconducting alloy an element with v valence electrons has (8-v) 
near neighbours. Many such alloys are listed in the second column 
of table 8.5.1. This table is a proposed classification scheme for 
elements and binary alloys indicating whether the alloy is semi
conducting in the crystalline (C), amorphous (A) and liquid (L) 
phases.

The latter members of the group which satisfy the model 
requirements are known to be highly covalently bonded systems which 
are hot semiconducting in the liquid state. As crystalline solids 
they crystallize in the zinc blende structure, each atom being 
tetragonally bonded. In the amorphous state their local environments 
are little disturbed from that found in the crystalline phase and 
they remain semiconductors. Such alloys can be III-V's or 11-Vi's 
and within this range there is a gradual loss of covalency. Their 
properties are somewhere between those of a fully covalent group IV 
elonent and a fully ionic alkali halide. In an alkali halide a 
very disordered local environment will not destroy the band gap
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TABLE 8.5.1

Classification scheme for semiconductors satisfying model requirements 
(column 1), (8-v) rule (column 2). The third column lists semiconductors 
which satisfy neither set of requirements.

Semiconductors Satisfying

Model
Requirements C A L (8-v) Rule c A L Neither C A L

Mg Bi^3 2
/ y C / /

Li Bi3 / SÎ / / X M0S2 / /

/ / Ge / / X NbSe2 /

/ As X /

Ag^Te / / Se / / /

ZnTe / / Te / / X

CdTe / / / /

Cu S2 / S
Ge(Sej^Te^_^)

/
X /

/

GaAs / / X Sb Se2 3 / / /

InSb / / X Sb Te2 3 / /

GaSb / / X As Se2 3 / / y

InAs / / X As Te2 3 /

InP / /

whereas it will in the group IV semiconductors. Also a whole 
electron can be considered to have been transferred from the 
alkali ion to the halogen ion.
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From the work of previous chapters it is clear that it is 
improbable that solid, or liquid, ordered or disordered, alloys 
can be ionic in the sense that an alkali halide is ionic. It 
is quite likely that all the alloys listed in the first column 
of table 8.5.1 have properties between the extremes of a group 
IV semiconductor and an alkali halide. We suggest that the 
liquid semiconductors, listed here, should be regarded as more 
ionic, but without an excessive amount of charge transfer, and the 
others as more covalent with properties requiring a tetrahedrally 
symmetric local environment.

8.6 BEHAVIOUR OF TRANSPORT PROPERTIES
Having discussed the origin of the band gap we are now in a

g,position to discuss its shape and gneral relevance to the transportA
properties. The alloy potentials constructed correspond to near 
neighbour environments differing, as throughout the sanple, in near 
neighbour distance, co-ordination number and composition. These 
changes only have a small effect on the scattering phaseshifts and 
hence on the local criteria for a band gap throughout the liquid 
alloy. However, this does not prevent sane localized regions 
possessing states within the energy gap for special local 
structural configurations. These states cannot be extended and 
are most probably localized in the Mott sense. The Feimi energy 
should reside in the gap.

At the critical concentration, heating the sample increases the 
conductivity according to an exponential law but also as structural 
disorder increases, the energy gap may narrow. If the energy gap
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may narrow. If the energy gap becomes narrower than that appropriate 
to minimum metallic conductivity then the alloy will become metallic 
as observed by Andreev, Turgunov and Alekseev (1975). Conversely, if 
the tenperature is reduced the liquid becomes an amorphous solid which 
should also be semiconducting, perhaps with an even larger band gap.
The tenperature coefficient of resistance and thermopower (equation 
1.2.3) essentially yield different aspects of the same basic 
information as the conductivity.

The other important transport property is the Hall coefficient,
R̂ , which is a measure of the charge carrier density. In a single 
component semiconductor the addition of a lower valence dopant would 
be expected to make the semiconductor p-type. However in the presence 
of excess Mg in a Mg-Bi alloy system, the model implies that the Fermi 
energy lies in the conduction band and the alloy is n type. Similarly 
a dearth of Mg makes the alloy p-type. This behaviour arises from 
the association of the density of states with the Bi atoms. It 
also represents another distinction between the "more ionic" and 
"more covalent" semiconductors in column 1 of table 8.5.1.

Thus in the general AB alloy of this type (1) the thermopower 
will pass through zero at A^B̂  from negative (A rich) to positive 
(B rich), (2) the Hall coefficient will be singular at the critical 
composition being negative infinite on the B rich side, (3) the 
temperature coefficient of resistance will be negative at the 
critical composition rising to a positive value on the A rich side 
and at least remaining negative over a wider concentration range on 
the B rich side.
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8.7 SIM4ARY
A study of the electronic properties of the liquid semiconductor 

Mg Bi has been carried out. Muffin-tin potentials, phaseshifts,
energies of the bottom of the bands and bandwidths were calculated 
across the composition range of liquid Mg-Bi. It was shown that 
the main roles of the Mg atoms are to influence the volume, electron 
density and energy of the bottom of the valence band; whereas in 
addition to these roles the Bi atoms are dominant in determining
the density of states. As far as the scattering was concerned, the
screened Mg ions betrayed their free electron character and were 
shown to be unimportant. Thus the system could be considered to 
a reasonable approximation as Bi atoms dissolved in an electron gas.
A simple cluster calculation revealed that the large Bi phaseshifts 
were capable of creating an energy gap at the Fermi energy for the 
critical composition. The Bi atoms are thus solely responsible for
an energy gap occurring when the s-p band is fulled. No presumptions
of molecular formation at the critical concentrations are made, nor 
do these results show that molecules foim.

A general consideration of many semiconductors led to the three 
classifications shown in table 8.5.1. The alloys in the first column 
all approximately satisfy the criteria deduced for the semiconducting 
behaviour of Mĝ  Bî . These were subdivided into those considered 
as more covalent and those considered more ionic. Alloys within 
these subdivisions do indeed behave differently with respect to 
disordering of the local environment and doping.

The analysis also reveals that the set of transport coefficients 
for Mg3 Bi2 type semiconductors will behave in a distinctive manner.
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CONCLUSION : PART II

By the end of chapter IV it became fairly clear that it is 

unlikely that the liquid semiconductors are ionic in the same sense 

as sodium chloride. There is strong thermodynamic evidence that 

chemical complexes do form, particularly in the Mg-Bi and Tl-Te 

systems, and the natural assumption is that since they cannot be 

ionically bonded they must be covalently bonded. Two separate 

calculations on the single hydrogen molecule in an electron gas 

show that the binding energy decreases with increasing electron 

number density. This leads one to suspect that the molecular 

complexes must have biiüing energies which decrease away from the 

critical composition, since there will be an electron gas 

environment provided by the constituent ions. This behaviour, 

has been modelled for the liquid Mg-Bi system, only to find that 

a model which assumes a constant binding energy for the Mg3 Bi2 

complexes across the concentration range provides better agreement 

with experimental thermodynamic and electron transport data.

The final chapters have studied the liquid semiconducting 

Mg-Bi system adopting an approach distincly different from that 

of the previous chapters. A phenomenological study of this 

system has demonstrated that it is possible for an energy gap 

in the density of states to occur at the critical composition 

with the filling of the s-p bands on the bismuth atoms. No 

presumptions of molecular formation are made. Furthermore, 

it does appear that this interpretation can provide a scheme, 

in terms of the positions of the elements within the periodic
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table, to explain the occurrence of many liquid semiconductors.
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APPENDIX 1

The Pseudopotential and Ziman Theory

Electrons in solids have wavefunctions which are essentially 

smooth for most of the time but which oscillate violently close to 

the ion centres. Orthogonalized plane waves (|OPW>) describe this 

behaviour relating plane wave states outside the atomic core (|PW>) to 

the core states (|c>):

|OPW> = |PW> - I |cxc|PW> (Al.l)
c

The strong oscillations near the ion centres give rise to a large 

kinetic energy which partially cancels out the effect of the strong 

potential. This is expressed as:

V e u d o  = W i o n  ( E - E ^ l c x c l  (A1.2)

where |E^1 < |E| and < l^^al ioni'

The resistivity (p) can be expressed in terms of the electron number 

density (n), the relaxation time (i^) and the free electron mass (m) 

as:

p  = 2 - ,  i -  (A1.3)
nê

The total pseudopotential W(r) scatters electrons from state |k^>
f\j %

to state |k_> with matrix elements given by:
~ -, rV

<fk2 W(r)|k^> = ÿ  exp(-iq.r) W (r) dw (A1.4)
f\, f\j fh



where plane wave states of the fom (V) ê have been taken and 
q = (K̂  - K^). (A1.4) is identified as the Fourier transform;
'\j f\j f\j

:-k2|WCr)|k̂  > = 1 W(q)
f \ j f\ j >\, ' \ j

(A1.5)

The relaxation rate is expressed as;

mkp  ̂ rïï
2nh3 V IW(q)I sin0(l-cos0)d 0 (A1.6)

where W(q) is a time average.
The total pseudopotential is defined by:

W(r) = Iw(r - R^)
t\j '\j 'X)

C M . 7)

where ui(r - R.) is the individual ion pseudopotential
'\j '\j

W(q) = I w(r - R̂ )exp iq. (r - R̂ )exp iq.R̂ dr
a. o- •Xi '\j

= o)(q) I exp iq.R̂
'Xi 'X)

|W(q)l = |w(q)| I I exp iq. (R̂  - R-)
'X, 'Xj O.-'1]

Hence the resistivity may be given by:

(A1.8)

(A1.9)

P =
ne^ zïïïv •’ 0

|w(q)| N S(q)(l - cos0)sin0d0 (Al.lO)

Using



p =
8m̂ kp
Zrrnen̂

1 3 
Ÿ S(q) [̂ ][̂ ] à (Al. 11)

Now

n = 4
3ir

P =
hVk; V u>(q)r S(q) (A. 12)

which is usually written

3ïïm ^ < |w(q)|2 S(q)> (A.13)



APPENDIX 2

The Hellmann-Feynmann Theorem 

Given the Hamiltonian

H = Ho + 8 Hint (*2.1)
and the value of

Eint(g) = <*o(8)ls Hû,tl%(8> (*2-2)

then the exact value of the total ground-state energy

Eo(g) = <$oCg)|Ho + g (A2.3)
is given by

Ê Cg) = Ê (0) + I  Eint (S) dg (A2.4)o ^
where g is a coupling constant and Ĥ  the kinetic energy.

(A2.4) follows from (A2.2) and (A2.3) since

dE
a r  ' g ^int (8) + EqCg) ^  <*o(8)l*o(g)> (A2.S)

The second term on the right-hand side is zero because the 
normalization is independent of g. Ê (g) is the exact eigenvalue 
and ô Cg) the exact eigenfunction. Hence we have a special case of 
the Hellmann-Feynmann theorem:

dÊ  T

a f  " i  ^int (8) (*2-6)

Integrating (A2.6) gives (A2.4).
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ABSTRACT

'The Electronic Structure Of Disordered Systems' by P. M. DOdley

A theoretical study has been carried out on the electronic structure 

of concentrated disordered alloys and liquid semiconductors made up of 

components which are metallic in the pure liquid state (e.g. Mg-Bi,

Li-Bi). For the latter there is strong evidence to suggest that 

chemical complexes form at the critical concentration (Mg3 Bi^, Li^Bi). 

The nature of the bonding is discussed in depth to reveal that it is 

unlikely that the bonding is ionic in the same sense as sodium chloride. 

Two separate calculations on the single hydrogen molecule in an electron 

• gas show that the binding energy decreases with increasing electron 

number density. The assumption of the covalently bonded Mg3 Bi2 

complex, and the associated change in binding energy with varying 

electron environment away from the critical composition, does not 

provide good agreement with experimental thermodynamic and electron 

transport data. Charge transfer within disordered systems is an 

effect associated with interatomic bonding. Its relationship with 

electronegativity difference and atomic cell size is considered in 

detail. No simple correlation is found to exist between charge 

transfer and electronegativity difference.

A phenomenological study carried out on the liquid semiconducting 

Mg-Bi system has demonstrated that it is possible for an energy gap to 

occur at the critical composition with the filling of the s-p bands on 

the bismuth atoms. No presumptions of molecular formation are made.

It does appear that this interpretation can provide a scheme, in terms



of the positions of the elements within the periodic table, to explain 

the occurrence of many liquid semiconductors.


