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INTRODUCTION

There is a class of binary liquid alloys whose electrical
properties closely resemble those normally associated with solid
semiconductors over a restricted range of compositions. They
are often referred to as liquid semiconductors. These are low
conductivity liquids, with conductivities which increase with
temperature, and Hall coefficients that depart markedly from the
free electron behaviour. Liquid Cu-Te, Ag-Te, T1-Te, In-Te, Mg-Bi
and all alloys involving selenium as one component are some of the
alloys classified as semiconducting. This thesis constitutes a
theoretical study of liquid semiconductors made up of components
which are metallic in the pure liquid state (e.g., Mg-Bi, Li-Bi),
since it is possible to continually follow the transition from the
metallic to the semiéonducting behaviour.

Chapter I introduces the electrical behaviour of liquid alloys
posing the problems presented by the liquid semiconducting systems.
The possibility of the formation of chemical complexes Mg,Bi,,
LiSBi in liquid semiconducting Mg-Bi, Li-Bi has been put forward
(c.f. Enderby, 1974). Chapters II, III and IV look at charge
transfer in ordered and disordered alloys as a means to understanding
the nature of the bonding within such systems. The suitability of
electronegativity difference as a meaningful parameter in determining
the degree of ionicity within chemically bonded disordered alloy
systems, as well as the problem of defining the atomic cell size,
are considered in depth. Chapter V examines the binding of the

hydrogen molecule in an electron gas serving as a basis for the
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treatment in Chapter VI of the covalently bonded MgyBi, complex in
molten Mg-Bi. The final chapters present a phenomenological study
carried out on the Mg-Bi system using the multiple scattering
techniques appropriate in the muffin-tin approximation for the
atomic potentials. Chapter VII introduces the muffin-tin concept
and that of associated scattering phaseshifts for the atomic
potential, while Chapter VIII gives details of the calculation
performed on the liquid Mg-Bi system. The conclusions reached

represent a departure from the thinking of the previous chapters.



CHAPTER 1

LIQUID ALLOYS

1.1 INTRODUCTION

The electrical behaviour of liquid alloys has been extensively
studied by means of measurements of the conductivity (6), the Hall
coefficient (R) and the thermoelectric power (S). Several workers
have been able to distinguish the existence of at least three
groups of liquid alloys, each with its own characteristic electrical
properties. |

One group is made up of liquid alloys whose electron transport
parameters are typical of the metallic state. The conductivity is
in excess of 3000@ 'cm !, the thermopower less than +50uV deg !,
the Hall coefficient is approximately equal to Ro, the free electron
value, and.%% is always negative. Liquid Ag-Au, Mg-Cd, In-TI,
Pb-Sn, Bi-Sb are some of the alloys known to fall within this group.

A second group includes liquids with intermediate conductivities
(50000 'em™ ! > 6 > 18000 'em™ ), positive values of %9, and metallic
type Hall coefficients and thermoelectric powers. Liquid Cu-Sn,
Bi-Te, Sb-Te, Au-Te, Cd-Sb are some of the alloys known to fall in
this gfoup.

The final group is made up of liquid alloys for which the
transport parameters are substantially different from those typical
of the metallic state over a restricted range of compositions. They
are low conductivity liquids (6 < 2002 'am™!) with positive values
of<%% and Hall coefficients which are quite distinct from those of

normal liquid alloys. This final group includes liquid Cu-Te, Ag-Te,



T1-Te, In-Te, Mg-Bi and all liquid alloys involving selenium as one
component.

Enderby and Collings (1970) have classified liquid alloys into
two groups, one appreciably more metallic in character than the other.
Type I alloys are characterized by Hall coefficients, thermoelectric
powers and conductivities which are essentially smooth functions of
composition. The first group of liquid alloys above are type I,

known as simple liquid alloys. The second group are type I alloys

in which %% is positive. There is good reason to believe

(Enderby, 1974) that type I liquid alloy transport properties may
be treated by the theoretical techniques of Faber and Zimgn (1965).
Alloys in the final group are type II liquid alloys, usually

referred to as liquid semiconductors. Joffe and Regel (1960) first

thought that alloys in the second group could also be classed as
liquid semiconductors, but subsequent experimental evidence
(Enderby and Simmons, 1969; Allgaier, 1969) ruled out such a
classification, in spite of a positive g%. Type II alloys are
characterized by Hall coefficients, thermoelectric powers and
conductivities which vary sharply over a well defined composition
range, deviating markedly from values typical of the metallic state.
They are usually referred to as liquid semiconductors because they
exhibit most of the properties associated with the solid
semiconductors.

The second section of this chapter looks at the electrical
behaviour of the type I, or more metallic, liquid alloys. The
experimental features which characterize these systems, and the

theoretical methods appropriate to their understanding, are



presented. The third section looks in detail at the electrical
properties of the liquid semiconducting systems, while the final
section spells out the problems they present. In order to make
matters more definite these systems will be subdivided into five
categories depending upon the electrical nature of the constituents
of each alloy in the pure liquid state. Liquid Mg-Bi, for example,
is made up of two components which are both metallic in the liquid
state, hence this alloy system is a metal-metal liquid semiconductor.
Particular attention is paid to the metal-metal liquid semiconductors
since it is possible to follow the gradual transition from the
metallic to the semiconducting state. The theoretical models offered

for these systems are presented and criticised in subsequent chapters.

1.2 THE 'METALLIC' ALLOYS

1.2.1 Transport Properties

The nearly free electron theory expresses the conductivity (6)

of electrons in the form

_ ne?t
6 = = (1.2.1)

where n is the electron number density, e, the electron charge, m,
the electron mass and t, the mean free time between collisions.
This may readily be expressed in temms of the mean free path, L:

2
e LSF

6 = (1.2.2)

3n2h
where SF =z area of Fermi surface = 4"KF2’ with KF the Fermi wavenumber.

If a is denoted as the average interatomic spacing, in the

limit L>a, the so called weak scattering limit (c.f. Mott, 1973),



conductivities are in excess of about 30002 'cm™'. This has been
observed to be a regime into which many liquid metals and alloys
fall, and it has been possible to evaluate the conductivity from
(1.2.2) for pure metals (Ziman, 1961) and alloys (Faber-Ziman, 1965)
using appropriate precriptions for L. In this same limit, the

thermoelectric power (S) is related to the conductivity through

K.2T
S = %2 B [ din(6) ]E_E (1.2.3)

e dE

This is often expressed in terms of the resistivity (p) through

2
S = g ol X
2 eEF
- & [ - g [L38] g [lae oK
where x EF [ =F ) EF S 3E|.. EF 5K 3E| ..
E-—EF E-EF E—EF

(1.2.4)
Providing it is assumed that all valence electrons contribute to
the conduction process, the Hall coefficient (R) is given by the

elementary expression

_ 1
R - % (102.5)

In the limit L < a(v 3 ), Mott postulates that conduction
in disordered systems is still largely due to the extended electron
states, with the conductivity strongly dependent on the density
of states at the Fermi level. (1.2.2) has been generalised to
give

e2LSF
g2 (1.2.6)

& 3x2h

nEp)
. where g = EfTEET is in the range 1 to 0.3,
)



with n(EF), the real density of states, no(EF), the free electron
density of states, both evaluated at the Fermi energy. In this
regime, liquid conductivities fall between 30000 ‘cm™' and

2000 cm™ . The thermopower is expressed in temms of the
density of states at the Fermi energy

12 %°T  rdin neg)
S = 2 (1.2.7)
3 e [ dE ] E-E,

It is not easy to go beyond free electron theory to obtain a
sensible expression for the Hall coefficient.

Below a conductivity of ZOOQ_1Cm-1, Mott argues that
conduction processes do not involve extended electron states.

1.2.2 Faber-Ziman Theory

The Faber-Ziman nearly free electron theory for liquid
alloys determines the resistivity and thermoelectric power in
terms of pseudopotentials through the structure factor, a(q).

The structure factor is defined to be (Appendix 1):

a(@ = § ] exp(-i q.r;)
¢ T

(1.2.8)

[+

1+ % L{g(r)-l} -Slqﬂlji Anr2dr

where N is the number of scatterers, q, the wavenumber, ri,the
position of the nuclei, V, the volume of the sample, and g(r),

the radial distribution function. The resistivity (p) is then

given as
3‘"’ N 2
=y <v:@ a@) > (1.2.9)
he” “VE '

where v(q) is the atomic pseudopotential, VF’ the Fermi velocity,



and K

F
<F(q)> = average over q from O to ZKF = J F(q) q%dq
0

In a liquid alloy there are three radial distribution functions
811> 822 g, Where the mmbers 1 and 2 refer to the alloy components,
and, consequently, there are three partial structure factors a,,,

a,,, 8, The partial structure factors are related to the radial

distribution functions through

(-]

N .
P 1+ V'[ {gas(r)—l} 532;91 4nr2dr (1.2.10)

(o]
where 8,g Tepresents the distribution of a-type atoms from a g-atom

origin, o and B being dummy suffices which take on values 1 and 2.

The binary alloy resistivity is then given by

N
PALLOY = iﬁl.v___.< c(1-c)vy2+ c(1-c)vy? - 2c(1-c)vyv,
he? “vg?

+ c?vy2a;, + (1-c)?vy2a,, + 2c(1-c)vyvya;,>

. N
i.e. P ALLOY =4§§%. v, < vi2{c(l-c) + c2a;;} + vy2{c(1-c) + (1-c)2ay,}
F
+ 2c(1-c)vyva(a;o-1)> (1.2.11)

where c is the concentration of component 1, v,, the pseudopotential

of component 1, and v,, the pseudopotential of component 2.

A considerable simplification occurs in the case of an alloy
in which the two constituents are so similar that they may be
substituted one for the other. Provided

(1) the scattering is weak,

(2) ay; =az; =a) =a,

(3) v;, v, are concentration independent,

and (4) the Fermi wavenumber remains practically constant in the



alloying process,

the resistivity is given by

I N

PALLOY =S v cale v12+(1-c)vy?+c(l-c) (1-a) (vi-v2) %> (1.2.12)
hes v
F

(1.2.12) describes accurately the concentration dependence of the
resistivity for the simple liquid alloys, Ag-Au and Na-K.

The thermopower parameter x from (1.2.4) can be expressed

3
. _EoK |, Kav, , _, FERO < SpF (2K K)>
ALLOY ~ X 3E v 3K <F12KF,K5> <F(ZKp,K)>

(1.2.13)
where <F(q,K)> = < vy2{c(1-c)+c2a}+v,2{ (1-c)c+(1-c)2a}

+v1v,{2c(1-c) (a-1) }>

1.2.3 Experiment and Theory: A Comparison

The metallic' 1iquid alloys fall into two basic categories each
characterized by Hall coefficients, thermoelectric powers and
conductivities which are essentially smooth functions of composition.
Liquid Ag-Au, Na-K, Mg-Cd, In-T@, Pb-Sn, Bi-Sb are some of the alloys

which belong to the first category, known as simple liquid alloys.

With conductivities greater than 30000~ !an"1, thermopowers less
than +50uV deg™! and Hall coefficients not significantly different
from the free electron value, these alloys possess transport
parameters usually associated with liquid metals. Liquid
monovalent Ag-Au was the first of theseAsystems to be studied

in which sound agreement was found between the Faber-Ziman theory
and experiment (Howe and Enderby, 1967). The resistivity and
thermopower curves are given in figure 1.2.1. Enderby et al

(1968) went on to compare experimental data for Mg-Cd, In-T1,
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Pb-Sn, Bi-Sb with theory and again found reasonable agreement
(figure 1.2.2).  Faber-Ziman theory appears to work well for the
simple liquid alloys.

The second category of liquid alloys, considered more metallic
in character by Enderby and coworkers, are distinctive in that they

are alloys in which g% is positive, for which reason they were

once thought to be semiconducting (Joffe and Regel, 1960).
Conductivities fall between 30000~ !cm~! and 18002~ lcm™!,
thermoelectric powers and Hall coefficients are metallic in
character. Figure 1.2.3 presents the conductivity of liquid

(a) ZnSb, (b) Bi,Te;, (c) Sb, Té; taken from Enderby and Walsh
(1966). The smooth variation of conductivity with composition

for molten Bi-Te at 585°C is depicted in figure 1.2.4. Systematic
investigations of 6, S and R as functions of composition for the
liquid Cu-Sn alloy have been carried out by Enderby and Howe (1968)
and Enderby, Hasan and Simmons (1967). A Faber-Ziman nearly free
electron picture is found to provide a good basis for understanding
the electron transport phenomena. For the Hall coefficient in
particular, Enderby et al suppose that R is always inversely
proportional to the glectron number density, n. However, as a
result of the composition fluctuations in the liquid alloy, the
effective valence of the Sn atoms is either two or four, depending
upon the enviromment. In order to approximate this effect it is
assumed that the effective valence of Cu is always one, while that
for Sn varies linearly from two at the Cu-rich end to four at the

Sn-rich end. The electron number density is thus given by

= (+c+2c?)Np
n &ﬁm (1.2.14)
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where MO, M, are the atomic weights of Cu and Sn respectively,

c is the concentration of Sn, N is Avogadro's number and p is

the alloy density. The free electron Hall coefficient for Cu-Sn
calculated from (1.2.5) and (1.2.14) can be seen from figure
1.2.5 to agree remarkably well with experiment.

A direct comparison between Faber-Ziman theory and experiment
for those alloys in which g% is positive has not been carried out
on a wide scale because the relevant partial structure factors are
not known. On the strength of the reasonable agreement which
exists for the Cu-Sn system, Enderby groups these alloys with
the simple liquid alloys, stating that the positive g%-arises
from the temperature dependence of the partial interference

functions without justification.

1.3 THE LIQUID SEMICONDUCTORS

1.3.1 Introduction

Several liquid alloys have very low electrical conductivities
(<2002~ lcm™1) over a restricted range of concentrations. When
none of the components is naturally a semiconductor or insulator
in the liquid state then these concentration ranges are narrow
and around well defined ratios of small integers. Alternatively,
the conductivity can be low over a large range of concentrations
if one of the pure liquid components has a low conductivity.

Many other electronic properties, e.g. thermopower, Hall
coefficient of such systems demonstrate an anomalous behaviour
quite distinct from the properties of normal liquid alloys.

These are all properties which are dependent on the electron
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distribution at the Fermi energy. As well as possessing very curious
transport properties, these are also alloys in which g% is positive.
Such alloys are often referred to as liquid semiconductors because
they exhibit most of the properties usually associated with
conventional solid semiconductors. As far as is known all

liquid semiconductors are also amorphous semiconductors, although

the reverse is not true. Table 1.3.1 lists some of the alloy

systems considered to be liquid semiconducting, together with

their electrical conductivities at the critical composition.

In order to make matters more definite it is often
convenient to subdivide the liquid semiconductors into five groups
distinguished by the electrical nature of the alloy components in
the pure liquid state:

(i) metal-metal systems, e.g. Mg-Bi, Li-Bi

(ii) metal-semimetal systems, e.g. Ag-Te, Cu-Te, T1-Te

(iii) metal-semiconductor systems, e.g. Ni-S, CoS

(iv)  semimetal-semiconductor systems, e.g. Te-Se

(v) semiconductor-semiconductor systems, e.g. As-Se
The following sections will outline the experimental features of
each group. Any explanations which have been offered for the
semiconducting behaviour of certain systems will be briefly
mentioned.

1.3.2 Metal-Metal Systems

Liquid Mg-Bi, Li-Bi, Mg-Sb alloys fall into this category.
~Although experimental studies on these systems are limited they
are of special interest since it is possible to follow the gradual

change from the metallic to the semiconducting state. The
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TABLE 1.3.1

Liquid Semiconductors
LIQUID CRITICAL CONDUCTIVITY
ALLOY COMPOSITION (@ lem™1)
S-Ag Ag,S 200
S-Pb PbS 110
S-Cu Cu, S 50
S5-Sn SnS 24
S-Ge GeS 1.34
S-T1 T1,S; 1.7 x 1072

T1,S; 6.5 x 1073
S-Sb Sb, S; 1.5 x 10~2
Te-Cu Cu,Te 200
Te-Ag Ag,Te 150
Te-Fe Fe Te, 400
Te-T1 T1,Te 70
Te-Cd CdTe 40
Te-Zn ZnTe 40
Te-In In,Teq 25
Te-Ga Ga,Tes 10
Bi-Mg Mg3Bi, 45 + 15
Bi-Li Li3Bi ?

References
Allgaier (1969)
Enderby and
Collings (1970)
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conductivity and thermopower of liquid Mg-Bi have been measured
by Ilschner and Wagner (1953) and Enderby and Collings (1970) and
are shown in figure 1.3.1 (a) and (c). The curves are striking:
at the composition cofresponding to Mg3Bi, the conductivity drops
dramatically, and the thermopower changes sign. Near this
composition, the conductivity increases with increasing temperature.
Phase diagrams for these liquid alloys are available, (Hanson,
1958). These, together with thermodynamic data (Hultgren et al,
1963), indicate that there is a major change in bonding as you go
from pure liquid A to pure liquid B in these metal-metal
semiconductors. Further discussion of the nature of the bonding
is delayed until later chapters.

1.3.3 Metal-Semimetal Systems

' This group includes liquid Ag-Te, Cu-Te, Ga-Te and T1-Te.
Selected experimental data on the conductivity, thermopower and
Hall coefficient for the T1-Te, Ag-Te, Cu-Te alloys are presented
in figure 1.3.2 - 1.3.5, taken from Dancy (1965), Cutler and
Mallon (1966), and Enderby and Simmons (1969). Phase
boundaries for T1-Te and Mg-Bi (the metal-metal system) are
shown in figure 1.3.6, taken from Hanson (1958). The following
remarks appear to be valid for the metal-semimetal semiconductors:

(1) the alloys possess a two-phase liquid region in the
range 0.7 < x < 1, where x is the atamic percentage
of the metallic component;

(2) the Hall coefficient is negative at all compositions
achieving a maximum at the composition where the

conductivity is a minimum;
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(3) the thermopower varies rapidly close to the critical

composition.

Cutler and Peterson (1970) have measured the transport
coefficients of liquid Tl, Tel_X above 600°C.  They observe
that their results within the 0.7 < x < 1 range can be accounted
for by assuming that the alloy consists of a solution of semi-
conducting T1,Te molecules and Tl atoms. This model has been
extended (Cutler, 1971) to the O < x < %-region where molecules
of the form T1 Ten T1l, with n > 1, are presumed to form.

Enderby and Hawker (1972) have carried out detailed
structural studies on liquid Cu, Te using neutron diffraction
techniques in which the partial structure factors acuCu? @TeTe’
acuTe have been isolated within experimental error. One of
the features noted is the similarity between acuCu and the
structure factor for pure liquid copper which would suggest
that the packing of the copper ions in liquid Cu, Te is a
highly disordered one, dominated by a hard-core interaction
similar to that for copper ions in pure liquid copper. A
significant difference between ATeTe and the structure factor
for pure liquid tellurium is also observed which would indicate
that the covalent character of pure liquid tellurium disappears
as copper is added. These observations indicate that models
involving copper substitution into covalent tellurium chains
are unlikely to prove a starting point for explaining the
properties of liquid Cu-Te alloys. One further significant
conclusion from their study is that the cluster models of

Cohen and Sak (1972) and Hodgkinson (1974) for Cu-Te type
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semiconducting alloys - islands of semiconducting liquid (10-100 R
across) dispersed in a metallic matrix - are inapplicable. No
evidence of long range is found in any of the partial radial
functions. |

1.3.4 Metal-Semiconductor Systems

Ni-S, Co-S, T1-Se, In-Se, Bi-Se are some of the alloys which
belong to this group. Their electrical properties closely resemble
those of the metal-semimetal systems.

1.3.5 Semimetal-Semiconductor Systems

Liquid Te-Se, a member of this group, has been extensively
studied by Cutler and Mallon (1962) and Perron (1967). The
electrical conductivity of liquid Tel__x Sex alloys taken from
Perron are shown in figure 1.3.7. The electrical properties
vary smoothly from those typical of pure selénium to those of
pure tellurium.

1.3.6 Semiconductor-Semiconductor Systems

This group includes liquid As-Se (Te). It appears as
though a change in the sign of the thermopower does not occur

around the stoichiometric compound As, Ses.

1.4 THE LIQUID SEMICONDUCTOR PROBLEM

If an understanding of the very remarkable electronic
properties of the liquid semiconductors is to be realised, it
is necessary to know something of the structure which exists
in these systems. It will subsequently be seen that there is
a dispute as to whether an ionic or a covalent model is the most

appropriate starting point, if, indeed, such suppositions are
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reasonable! The metal-metal liquid semiconductors are the
obvious systems to look at first since they are metallic,
except at compositions close to a critical composition, when
they became semiconducting. Hence it may be possible to get
a clearer picture of the behaviour of the liquid semiconductors
by examining the metal to semiconductor transition. Liquid
Mg-Bi is the semiconductor to which reference will frequently
be made. It should, however, be pointed out that a common
explanation of these systems need not apply. Indeed, in view
of the different chemical natures of the wide variety of elements
which occur in such alloys, it appears unlikely that a single

explanation can explain all the liquid semiconductors.
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CHAPTER TII

CHARGE TRANSFER IN ORDERED AND DISORDERED ALLOYS

2.1 CHARGE TRANSFER, IONICITY AND COVALENCY

The type of bond which exists between atoms in a crystal
depends upon the electron charge distribution about each atom.
The covalent and ionic bonds are two extremes which characterize
two different types of electron charge distributions which may be
found to exist in certain crystals. Covalent crystals such as
silicon and germanium have bonds characterized by electron sharing,
the covalent bond. This involves sharing between atoms of an
even number of valence electrons, two per single bond. The result
of this sharing is that the electron charge distribution is high
in the region between the atams. Each atom is limited in the
number of covalent bonds it can make, and there is a marked
directionality in bonding. The ionic bond is that which results
from the electrostatic interaction of oppositely charged ions,
the crystal being made up of ions so arranged that the attraction
between ions of opposite sign is stronger than the Coulomb
repulsion between ions of the same sign. In an ionic solid
such as sodium chloride, there is electron transfer from the
sodium to the chlorine, leading to an inert gas structure
about each ion. Associated with the closed shell structure
about each ion, an approximately spherically symmetric charge
distribution exists which is high about the negatively charged

ion. The distinction between covalent and ionic bonds is then,
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in principle, quite clear: the former leads to a piling up of
charge between atoms, the latter to complete charge transfer
from one atom to anothef.

For certain liquid semiconductors, one author (Enderby,
1974B), has suggested that the striking electron transport
features observed near the critical composition are a direct
result of total ionic bonding within the system, charge being
localized about ionic sites. It is generally accepted that
the transfer of charge from one constituent element in a
binary alloy to the other is one of the principal mechanisms
in the formation of the alloy. Interatomic forces are thought
to be partly ionic in nature. The type of bond which exists
between atoms and the amount of charge transfer are therefore
very important features which characterize electron behaviour
within alloy systems. A knowledge of both will lead to a
fuller description of electron transport properties.

The concept of partial ionicity within binary alloy systems
is a crucial one and may be understood more precisely by
considering atomic levels within the fully ionic sodium chloride
crystal. If the level on the sodium atom lies a few electron
volts below the chlorine levels, one would expect the extra sodium
electron to remain on the sodium atom. This is not observed
in sodium chloride. The level on the sodium atom is therefore
higher than that on the chlorine atom, but lower than the first
excited chlorine state. The extra sodium electron goes to the
chlorine, causing a lowering of the unfilled levels of the chlorine

to the extent where they are lower than the level on the sodium ion.
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The electron wavefunction then contains an admixture of states
associated with the chlorine ion. There is still, however, a
contribution from the state about the sodium site which will
mean that although thé electron is more likely to be localized
about the chlorine site, there is a finite probability of it
remaining on the sodium, or between the two atoms. Hence,
although classically a model in which the electron is bound

to one atom electronstatically gives sound agreement with
experimental data on cohesive energy, quantum mechanically there
is always a finite probability that it may remain on the parent
atom, or between the two atoms. It is unlikely that the bonds
between atoms can either be fully ionic or covalent in character.
Indeed, in most bonds, some electronic charge is transferred from
one atom to another, in which case the bond is said to be partly
ionic and partly covalent. The situation is described as one
of resonance between the covalent and ionic extreme.

The degree of ionicity in the bonds between atoms is
considered to be an important feature in the formation of an
alloy. It is a problem, however, to derive the amount of charge
transfer since quantitative estimates depend upon the atomic cell
size prescribed. In an ionic crystal, sensible radii for the
constituent atoms can be obtained by considering the position of
the minimum charge density. However, the values derived will
not be indenpendent of the crystal under consideration, and hence
ionic radii of the type defined by Pauling and Goldschmidt may be
of more value, even though they have no definite meaning in terms
of the charge distribution within the crystal. In an obviously

non-ionic crystal of an element, such as a metal, or a crystal like
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silicon or germanium, the minimum of density will fall midway
between the atoms, by symmetry. Since a different atomic cell
size will lead to a different derived amount of charge transfer
for a disordered alloy, the problem must be faced as to whether
a meaningful definition for the atomic cell size in an alloy can

be found.

2.2 THE IMPORTANCE OF CHARGE TRANSFER IN DISORDERED ALLOYS

Several attempts have been made to relate charge transfer to
the alloy heat of formation. Hnpirical observations of Miedema,
de Boer and de Chatel (1973) and Miedema (1973A) on the metallic
alloy heat of formation emphasise the role of charge transfer
in alloys. Hume Rothery was the first to point out that when
two alloy constituents differ considerably in electrochemical
properties, the interatomic forces are often partly ionic in
nature. Band structure calculations indicate non-uniform
electron charge density distributions. Electronegativity
difference is one of the most common parameters used to estimate
the ionic contribution to the alloy formation energy. The
approach contrasts that of Varley (1954), whose two band model
for the concentrated disordered alloy, one for each element,
determines charge transfer by the relative positions of the
Fermi levels in the pure metals. Efforts have been made to
relate electronegativity and Fermi level differences since both
are measures of the charge transfer. The work of Miedema and
co-workers, in particular, illustrates very well the basic

physical principles which have been employed to tackle the
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problem of determining the heats of formation of 50-50 concentrated
disordered alloys.

Miedema et al propose a scheme to estimate the formation energy
of metallic binary alioys in which only two energy contributions
are considered. Alloys are regarded as being made up of atomic
cells (different cells for different kinds of atoms), which in a
first order approximation are similar to the atomic cells of the
atoms in the pure metallic state. As a correction to this first
order approximation they suggest that there are two main effects.
First, the chemical potential, ¢, for electrons at the two types
of cells should be equal, leading to a negative energy
contribution proportional to (A¢)2. Second, the discontinuity
in the electron density present at the boundary between dissimilar
cells has to be smooth, leading to a positive energy contribution
proportional to (An)2, where n is the electron density at the cell
boundary. When charge is transferred from the more electropositive
to the more electronegative element, the charged atomic cell will
differ from that of the neutral ones. The model results in a

simple expression for the alloy heat of formation:

AH = f(c){- Pe(a¢)? + Q(an)?} (2.2.1)

where f(c) is a symmetrical function of concentration, P and Q are
approximately constant, e is the electronic charge. (2.2.1) is

derived purely on the basis of empirical observations on the heats
of formation of a number of metallic transition and non-transition

alloy systems. In the analysis of the heat of formation data,



- 21 -

the cross temm A¢An might also have been present but was not found
and, hence, assumed small. Dn is derived empirically from the

bulk modulus, B, and the molar volume Vﬁ, for the pure metallic
element; it is found fo be proportional to (B/V'm)i for non-transition
elements./y ¢, approximately equal to the experimental work function
of pure metals, is judged to be a good description for the stability
of alloys in terms of (2.2.1). In a subsequent examination the
experimental work function is found to vary linearly with the
Pauling electronegativity so that ¢ is interpreted as an
electronegativity parameter. The charge transfer, Az, of electrons
from the more electropositive to the more electronegative element |

is proportional to the electronegativity difference, 4¢:
Az = 2R 8¢ (1-c) (2.2.2)

where R is an empirical proportionality constant.

From equations (2.2.1) and (2.2.2) it can be seen that the
electron transfer plays a very important role in the alloy heat
of formation. The relationship between charge transfer and
electronegativity difference has, however, been established
on an empirical, not a quantitative basis, and is in need of
justification. Chapter III investigates the relationship
between the formally derived amount of charge transfer within
concentrated disordered alloys and electronegativity difference
to determine whether or not the latter is a meaningful parameter
in estimating the amount of charge transfer. The problem still
remains as to a definition for the atomic cell size in the alloy.

This is dealt with in detail in chapter IV.
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2.3 COHERENT POTENTIAL APPROXIMATION AND BINARY DISORDERED ALLOYS

2.3.1 Coherent Potential Approximation

The coherent potential approximation (CPA) has been introduced
as a reasonable approach to the problem of calculating the electronic
density of states in a disordered substitutional A B, _  alloy within
the framework of multiple scattering theory (Soven, 1967). It is
a single-site description in which electrons are described in the
single-particle approximation, single-particle properties being

derived from the one-particle Green function
G(z) = (z - B! (2.3.1)

where H denotes the one-electron Hamiltonian. The coherent
potential replaces the random potential by an ordered lattice with
the same effective potential. The true potentials at the site,
either v, ({ - %) or v, (r - &), are replaced by an, as yet,
unknown potential, v, (f - %), the formal Green function for the

lattice of potentials v  being defined by

Gy = G, + GOZ Vo(r - 2)Gy (2.3.2)
L

where G, is the free space Green fuiction. GM(ietermines the
propagation through the, as yet undetermined medium. Relative
to the medium, the actual system consists of perturbing potentials
(V1 - vo) and (v2 - vo). The t-matrix describes the scattering
of an electron which is propagating according to GM when it

encounters the perturbing potential (Vi - vo) defined by

t; = (vi - vo) + (vi - vo) GMti (2.3.3)
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These quantities combine to yield an expression for the actual Green

function
G=Gy+ g Gyt Gy * E B;a GMtaGMtBGM *oeeen (2.3.4)

The effective medium is chosen self-consistently by requiring that

on average there is no scattering from any site - that is,

xt; + (1-x) t, =0 (2.3.5)

with this definition, the average of (2.3.4) is

<G> = GM + g Bia yis 6% <GMtaGMtBGMtyGMt<SGM> + ... (2.3.6)

and the approximation is made

<G> = GM (2.3-7)
The electronic density of states is then given by
p(E) = - = In Tr <G> (2.3.8)

The average component density of states are given by

1

w

MBE) = - L <o]<(E+io-HB) 1505 (2.3.9)

2.3.2 Single Band Model For The Alloy

A great deal of effort has been put into the study of the
binary substitutional alloy A,x B, x of increasing complexity, the
simplest model for which is that developed by Velicky, Kirkpatrick,
Ehrenreich (1968). The model assumes a single band for the alloy.
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A single orbital, |n>, is associated with each site, n. A single
band would result in the case of the pure crystal, but two sub-bands
may occur in the alloy under certain conditions.

The one-~electron Hamiltonian is taken to be

H = rzl |n>e <n| + n;n [n>t <m| =D+ W (2.3.10)

The second line represents the decomposition of the model Hamiltonian,
H, into a diagonal part, D, and an off-diagonal, W, with respect to
the Wannier representation. The matrix elements of H depend upon
the configuration of A and B agtom in the crystal. The assumptions
on which the model is based, which are physically realizable when
the orbitals are sufficiently localized and the atomic potentials

are not too different are:

(1) the diagonal elements, ey Can be considered to be atomic levels
which assume one or two possible values gA and eB depending on
whether an atom A or B occupies n;

(2) the hopping integrals, tmn’ which describe the transfer of
electrons between sites, are completely independent of alloy
composition.

W may therefore be interpreted as the Hamiltonian of a pure crystal

A B A B

for which ¢ =¢” =0, ¢ + Wand ¢ + W, respectively, are the
Hamiltonians for the pure A and B crystal., The disorder is
reflected in D and is cell localized., The elements of D are
diagonal but random, those of W off-diagonal but translationally

invariant. The operator W is diagonal in the Bloch representation:



<k[Wlk'> = 6, Tt et XAz s ws(l) (2.3.11)
n
. -1 i kca
where k> =N2) e 2D |n> (2.3.12)
n

relates the Bloch and Wannier bases and w is one-half the bandwidth.
s(k) is the dispersion relation describing the k-dependence of the
band energy and is dimensionless. It is also convenient to use
the same energy units to express éA and EB, and to define the zero

energy such that

€ = iws, €& = =-iwé (2.3.13)
(2.3.13) defines the dimensionless parameter
s = (N - eByjw (2.3.14)

'Significantly the entire behaviour of the Hamiltonian can be
specified in terms of the two parameters x and 6. The bandwidth,
which is determined by the hopping integrals, simply scales the
energy. It is convenient to choose units such that w = 1,

In the single site description, the medium Hamiltonian, qm’

is diagonal in the k-representation:

<k|ﬂn(z)]k'> = [s(k) + Z(k,z)]dkk, (2.3.15)

(2.3.15) defines the quantity :(k,z) which contains full information
about the scattering corrections to the medium Hamiltonian, He. It
is the self-energy with respect to the perfect crystal having

Hamiltonian W. The (average) density of states per atom,

p(E) = N°! Tr <§(E-H)> (2.3.16)
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may be expressed in terms of the Green function.
p(E) = - (N)=! ImTr <G(E+io)> (2.3.17)
(2.3.16) may be expressed in the Wannier and Bloch representations:
p(E) = - 17! Im<n=0|<G(E+io)>|n=0> (2.3.18)
Introducing the auxiliary quantity
F(z) = N"! Tr <G(z)> = <0|<G(z)>|0> (2.3.19)

which in view of (2.3.18) has the property

p(E) = - 77! Im F(E+io) (2.3.20)
so that |
F(z) = j -Z-‘l_EEp(E) (2.3.21)

Explicit calculation of the average component density of states pA’B

is possible since
<O|<(z-HA’B)'1>[O> = <O|[z-ﬂm(z)-|0>Ee?’B-Z(z)]<O[]'1IO> (2.3.22)

where e_ is replaced by ) (z) everywhere except at the zeroth site

n
where €y = eA’B, and, therefore,
oMBE) = - 1 mgE - (VBN (2.3.23)
z=E+io
pA’B satisfy
p(B) = x o'(®) + ypo(B) (2.3.24)

where y = (1-x)
2.3.3 Single Band Model: CPA

Section 2.3.1 has demonstrated that the CPA can be used to define

a medium Hamiltonian, }%V from the average Green function <G>
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G, = (z - }gn)"l (2.3.25)
where Gm = <G>, In terms of the original Hamiltonian (2.3.10),

Velicky et al define a function u(z) via the equation

H, = W+ [|mu(z)<n| = W+ u(z)1 (2.3.26)
n -~

The self-energy required is related to u and is k-independent. It
is useful to define solutions for the pure crystal with Hamiltonian

W:

@) = -W-1, Ek,z) = [z-sk)]" (2.3.27)

F°(z)

r dz (z-E) "1p° (E) (2.3.28)

where p®(E) is the density of states. For H, defined by (2.3.25)
the unperturbed Green function is

G
m

[z-u(z)-W] !

°[z-u(z)] (2.3.29)
The function corresponding to (2.3.19) is then

<O|Gm(z)|0> = F°[z-u(z)] = F(z2) (2.3.30)
Equations (2.3‘.29) and (2.3.30) express results for the medium in
terms of the pure crystal Hamiltonian W, It is this feature which
makes the model tractable,

With H L defined as above,
H-H = rlem [e,~u(z)] <n| (2.3.31)

To express H‘% as a sum of single scatterers

H-H = 121 Vn (2.3.32)
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so that

.

Vv, = In>fe u@)]<n| = |n>v, <n] (2.3.33)
From (2.3.3) and (2.3.30) it can be shown that
t (2) = |n>vn[1—vnF(z)]'1<n| (2.3.34)

where tn(z) represents the scattering off a single site n in the

medium. The configurational average of (2.3.34) is

A B
<t_(z)> = |n> x[e -u] » e -] ] < (2.3.35)
n() = o [1-[EA‘U.JF 1-[e5-u] F A

The self-consistency condition determining u(z) = £(z) is

according to (2.3.5), <tn(z)> = 0, so that from (2.3.35),

p(z) = {BGLL [EA-Z(Z)}F(Z)[EB-E(Z)J (2.3.36)

(2.3.26) is thus the self-consistent condition for the effective
medium in the coherent potential approximation.

2.3.4 Model Density Of States

For computational purposes, Velicky et al assume a model density

of states to exist of the form first suggested by Hubbard (1964):

1
() = =5  (W2-E?)?, |E|<w (2.3.37)
TW
(o]
p (E) =0, |E|>w

which is such that
p°(E) = o°(-E)

and has a simple shape against which all distortions due to alloying
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are clearly revealed. The function F(z) yielding the form (2.3.37)
for o°(E) is

F(z) = = [z-(z2-w2)ﬂ (2.3.38)

w2

Substitution of (2.3.38) into the coherent potential criterion results

in the cubic equation for F(z):
1
15 F3-12F2 + (2. zlr - €2 - xys2)F-(z+e) = 0 (2+3.39)

with e =x e vyl (2.3.40)

Equation (2.3.39) may be solved for real z, From (2.3,20) it can be
seen that the density of states, p, is obtained from the complex root
in the lower half plane. The component densities of state, pA’B,
are given by (2.3.23)., Units are taken such that w = 1,

The CPA is found to yield correct results for the density of
states in the appropriate limits. In the weak scattering limit
(6<<1), the common band characteristic of the Wirtual crystal is
reproduced. In the strong scattering limit, for sufficiently large
8@ 1), the band splits into the component sub-bands. Further, it

interpolates correctly over the entire concentration range.

2.3,5 A Calculation On Binary Disordered Alloys

At'SO-SO concentration set i electron on each site. There

are two quantities of interest:

(1) the number of electrons at any one site at a fixed concentration;
andr

(2) the density of states at the Fermi level, p(EF), as a function of

concentration, X.



The former is calculated to find out if, at a particular energy
level separation, 6, a polarization of electrons onto one of the
sites occurs corresponding to ionic behaviour. The latter uses
p(EF) as a measure of the conductivity of the alloy to see if

a significant drop in the density of states at the Fermi level
occurs, explaining the behaviour of the liquid semiconductors at
the critical concentration. The density of states, p(E), is
calculated in the CPA for binary disordered alloys in the single
band model proposed by Velicky et al using the model density of
states of section 2.3.4. p(E) is thus obtained by solving
equations (2.3.30) and (2.3.39). The Fermi energy is obtained

using

Ep
J o(E,x) dE =n =} (2.3.41)

The number of electrons on each site, nA’B, are obtained from the

local densities of state, pA’B, using

E
AB J FoABE ) aE (2.3.42)

where B are given by (2.3.23). Tables 2.3.1 and 2.3.2 refer
specifically to points (1) and (2) respectively

Table 2.3.1
The variation of the mumber of electrons on one atomic site, nA, with

the energy level separation, 6, in a 50-50 binary disordered alloy

0.25}0.,50 {0,75 |}0.80 |0.85 [0.,90 |0.95 |1.00 1.05 11.10 |1.15 |1.20 |1.25

0.39§ 0.29410,201(} 0,184 10,168 ]0,15310,1380,125 }0.113|0,103}0.095{0.087]0.080;
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Table 2.3.1 shows the change in the number of electrons on one
atomic site, nA, with increasing energy level separation, §. It
can be seen quite clearly that despite a large separation of the
baads, there remains a considerable fraction of an electron on the
atomic sites, Complete polarization is not possible with sensible
energy level separations.

Table 2.3.2

The density of states at the Fermi energy, p(EF), and the number of

. . A .
electrons on one atomic site, n, across the concentration range

and with increasing energy level separation, 6.

TP (EF) _ _

5 — x=0.20 | x=0.35 | x=0.50 | x=0.65 | x=0.80
b (Bp) 1.963 1.944 | 1.936 | 1.944 | 1.963

0.25
nft 0.337 0.365 | 0.395 | 0.427 0.459
o (Ep) 1.888 1.791 | 1.732 | 1.791 1.888

0.50
ot 0.210 | 0.243 | 0.204 | 0.362 | 0.428
o (Ep) 1.831 1,632 1.323 1.633 1.831

0.75
A 0.131 | 0.152 | 0.2010 | 0.313 | 0.408
o (Ep) 1.800 | 1.547 | 0.218 | 1.548 1.801

1.00
o 0.086 | 0.098 | 0.125 | 0.284 | 0.397
o (Ep) 1.784 | 1.508 | 0.097 | 1.509 | 1.784

1.25
A 0.0600 | 0.067 | 0.080 | 0.268 | 0.391
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Table 2.3.2. shows the variation in the density of states at
the Fermi energy, p(EF), and the number of electrons on one atomic
site, nA, across the concentration range and with increasing energy
level separation, §. Once more it can be seen that complete
polarization of an electron to any one site is not possible for
sensible 6, The density of states at the Fermi energy does drop
as the critical composition is approached, and as the energy level
separation is increased, but not as dramatically as explained in
the liquid semiconductor systems.

A very important point to come out of this study of the
electronic properties of substitutional binary disordered alloys
in the CPA is that no bonding can be completely ionic if only

one-electron effects are important.

2.4 CHARGE TRANSFER IN LIQUID SEMICONDUCTORS

Liquid semiconducting systems such as Cu-Te, Ag-Te, Tl-Te,
Mg-Bi, Li-Bi are characterized by phase diagrams which show a
peak at a critical composition, and which are also knownto possess
marked heats of formation at the same composition. For the Mg-Bi
system, for which detailed measurements of the heats of mixing are
available, careful comparisons can be made with the phase diagrams
(figure 2.4.1). This indicates the strength of bonding which must
exist at the critical composition.

It has been argued, (Enderby and Collings, 1970; Enderby, 1974;
Faber, 1972), that the chemical bond must have a significant effect
on the density of states af the critical compositions since electron

states may become localized as a result of bonding. One model for
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bonding in liquid semiconductor systems i§ the ionic model of
Enderby (1974A). In this Enderby notes that if, at the critical
composition a system is campletely ionic with electrons localized
in ionic sites, then the Stillinger-Lovett (1968) condition for

electrical neutrality must be obeyed:

1 1
a)) - az, = - 2.4.1
P I il oy ( )
where a8 is the long wavelength limit of the partial structure

factor. A comparison between (a); - a;,) and Q%r-tia is given
for liquid Cu-Sn and Mg-Bi in figure 2,4.,2. The 'ionic' curve
appears to fit the data for the Mg-Bi system about Mg Bi,. This,
supported by experimental evidence of electromigration in liquid
Mg-Bi (Epstein, 1972), confirmed a notion that liquid Mg-Bi
(amongst others) was essentially ionic in character about the
critical composition, made up of Mg; Bi, molecules in excess
magnesium or bismuth,- each molecule being bound tégether by
simple ionic electrostatic interactions. The bismuth atom
is regarded as the strongly electronegative component. The
electronegativity difference of 0.85 on the revised Pauling
" scale (Sanderson, 1960) falls within the 0.4 to 0.9 liquid
semiconductor range and is considered to be a fair measure of
the atomic potential difference.

For the case of a liquid semiconductor system such as Mg-Bi,
Enderby's model gives the following pictures of the density of

states across the concentration range.



A"(O)‘AZZ(O) -~ T T 8|0 At°lo
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Fi_g. 2.4.2. Dependence of A;(0)-A,(0) on
composition for several alloys.
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E 7P
Mg
" (5 (a) The density of states are free
electron-like for the pure
elements.
En

be formed on the bismuth s, p

states.

\
/ On alloying, bound states may

NE)

] (b) For the Mg; Bi, composition, the

/ bound states will be mostly full
with electrons localized about the

gﬁ bismuth atoms. Only a few electrons

will be thermally excited into higher

\
NE) states. The result is low conductivity

an.l thermopower.
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m

Mq,Bi, + Mg N(E)
(c)
E
>
Mg, Bi,+ Bi N(E)

If excess Mg is added to Mgj; Bi,,

‘the density of states is modified

as shown. The thermopower will be
negative. As mo}e Mg is added the
Fermi level may move up but the density
of states may change as shown by the
dotted line. The rate of change of
conductivity with composition may
therefore be small.

The dip in N(E) - the Mott pseudogap -
becomes most marked at Mgs Bi;

If excess Bi is édded to Mgz Bi, the
Fermi level may move back., Because
the rate of change of the density of
states is high in this region, the
thermopower and conductivity will vary

rapidly with composition.

The ionic model of Enderby therefore drains electrons out of the

conduction band, localizing them about one site at the critical

concentration, inferring large transfer. Note that the CPA calculations

of the previous section do not substantiate this ionic model.

Faber (1972) has proposed an alternative model which requires

more structure in the density of states., The model is illustrated

in figure 2.4.1.



- 36 -

7

N(E) /

Fig. 2.4.1

localized
& states
()

—

7

E
The Fermi level position depends upon the nature of the excess element
at the critical composition. As this composition is approached, the
Fermi level will move to pass through the minimum in the density of
states, localizing electron states, giving rise to the observed
minimum in conductivity and zero thermopower. The sign of the

thermopower will derive from the structure in the density of states.
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CHAPTER III

CHARGE TRANSFER AND ELECTRONEGATIVITY DIFFERENCE

3.1 ELECTRONEGATIVITY DIFFERENCE

The electronegativity of an atom has been defined by Pauling
(1939) to be the '"power of an atom in a molecule to attract electrons
to itself''. The concept of relative electronegativity arose when it
was noted that binary compounds with large electronegativity differences
tended to form rocksalt structures, whereas those with smaller electro-
negativity differences favoured more open covalent structures. When
the difference was large the heat of formation of the binary compound
was noted to be large, providing a thermochemical use of the concept of
electronegativity. The greater the electronegativity difference, the
more ionic the bond, and the greater its heat of formation. Hume
Rothery was the first to argue that the electronegativity difference
might be a useful parameter in determining the charge transfer in a
binary alloy since the atom with the greater electronegativity would
cause charge to pile up around itself. Indeed, several authors have
tried to relate charge transfer and electronegativity difference, but
there is some confusion as to which electronegativity scale best
describes alloying behaviour. The most commonly used electronegativity
scales are those of Pauling and Coulson. Phillips (1970A,B) has argued
that both these scales are unsatisfactory since neither can predict
crystal structure in chemical compounds. It is not the purpose of this
work to argue the merits of using either of these, or any other scale,
but to investigate whether or not a crude correlation exists between
electronegativity difference and charge transfer. A brief introduction

to both these scales will prove helpful.
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Pauling (1939) advocates a thermochemical rather than quantum
mgchanical approach to electronegativity and ionicity, turning from
charge distributions to bond energiés. When two elements, A and B,
differ in electronegativity (XA and Xz respectively), the heat of

formation, DAB’ of the AB bond satisfies the relation

Dyg > (Dps + Dgp)/2 (3.1.1)

where DAA and DBB represent the bond energies of elements A and B,
respectively. According to Pauling this extra energy is ionic in
origin, arising from charge transfer from the less electronegative
(electropositive) to the more electronegative atom. Thus he defines

electronegativity by the relation

2
DAB - (

Dap * DBB)/Z a (XA - XB) (3.1.2)
where the constant of proportionality is chosen to have energy
dimensions.

Fractional ionic character is defined by
£(AB) = 1 - exp [-(X, - Xp)°/4] (3.1.3)

The stability ratio, or Coulson electronegativity, S, of an element
is defined as the ratio of the electron density of the element, D,

to that of a hypothetical atom of the same atomic number of inert gas
configuration. The electron density, D;» of the hypothetical element
is determined by linear interpolation between the higher and lower
inert gas density. Thus,

S = D/Di (3.1.4)
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Sanderson (1960) finds the following empirical relationship relating

the Pauling electronegativity, X, and the stability ratio, S:

D=

X% =0.21 S + 0.77 (3.1.5)

Further, Sanderson states that when the two scales disagree, the
physical and chemical evidence invariably favours the stability ratio.
Stability ratios will be quoted in accordance with (3.1.5). It is
significant to note that Miedema et al (1973) found no correlation
between the heats of formation and the stability ratios in their

analysis of metallic alloy data.

3.2 [ELECTROCHEMICAL EFFECTS IN ALLOYS OF CADMIUM, MAGNESIUM AND MERCURY

3.2.1 Introduction

One of the principal applications of pseudopotential theory to
alloy structures has been that of Inglesfield (1969 A,B) to alloys of
cadmium, magnesium and mercury. The valuable feature of such systems
is that the components have the same valency and roughly the same
atomic size so that the electron density will be sufficiently uniform
for a nearly free electron theory to work well. The calculations of
Inglesfield form a quantitative theory of the effects of electro-
negativity difference on alloy properties when electronegativity
difference is represented by the difference of the two pseudopotentials.
In particular the tendency to aséume an ionic structure and ordering
energy with increase of electronegativity difference is described. It
is found that alloys of metals which have a large electronegativity
difference form ordered compounds. Enderby extended these conclusions

to include the liquid semiconducting alloys by stating that a 0.4 to
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0.9 electronegativity difference for such systems was large enough to
lead to ionic bonding. It is important to have a closer look at

Inglesfield's work.

3.2.2 Pseudopotential Theory of Alloy Structures

Take a crystal of N atoms which contains concentration ¢ of B
atoms and (1 - c) of A atoms. This gives a total of cN B atoms and
(1 - ¢c)N A atoms. In producing the total pseudopotential for the

crystal V(r), add the pseudopotential (VA) of the A atom at sites Ty

n
and the pseudopotential of the B atom (vB) at all the sites Ty
N
occupied by B atoms:
Vir) =) vy [r-1] + vy [r- 1] (3.2.1)
N T n N T N 4"

A B

Fourier transform this to obtain V(q):

V(q) = %Z Vi@ exp (-iq.r,) + -ﬁ,— ! vg(@) exp (-iq.rp)  (3.2.2)
TA o rB NN

where vA(q) and VB(q) are the transforms of the two ion pseudopotentials.
This can be re-expressed in a more convenient form by writing an

average pseudopotential V as the weighted mean of the pseudopotentials:

V= a - c)vA *+ cvg

The crystal can now be built by placing this at all lattice sites and
then placing the difference potentials (VA - V) and (vB - 3) at A and
B sites respectively. There is an average lattice with an average

potential vV at every site, and a difference lattice with (VA - V) at
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all A sites and (VB - 3) at all B sites. The difference lattice may

be expressed more simply by noting that

Vy - V= c(vA - VB)

and Vg =V -1 - c)(vA - VB)

Accordingly, a single difference potential may be defined:
Vg = (Vp = vp)

and (1 - c)va may be placed at all B sites and cvy at all A sites.

The total pseudopotential is then

Y - ry) + y cvylr - 1) - Yy (1 - cvy(r - ry) (3.2.3)
i N N rA n, rB n,

n N

Vi) =}
N T

where the r; Tun over all lattice sites and the Ty and Ty only include
n 4" N

A and B atoms respectively.

The Fourier transform is now

V@) = %.2 V(q) exp (-iq.r;) +~% ) cvy(@) exp (-iq.r,)
r; LYY Ty v

-5l -0 vy@ exp(-ig.1p) (3.2.4)

g
where V(q) and vd(q) are the transforms of the average and difference

potentials, (3.2.4) may be re-written:

va@ I§ T exp(-iqury) - L€l T exp(-iqurp)|
n T N

A v B

V(q)

= V4@ () - (1 - ¢) Sp) (3.2.5)
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where the structure factors SA and SB are

1 . .. 1 .
Sy = N'z exp (-iq.r,) and Sy = N-Z exp (-iq.rp)
rA NN rB LA

Treating V(q) as a small perturbation, using perturbation theory,
the total energy of the conduction electrons and ions, U, may be

written:

U= UO + UBS + UE (3.2.6)

where UO is the structure-independent energy of an atomic sphere, and
(UBS + UE) is structure dependent, being called the structural energy
term. Since the mean atomic volume is kept constant, then the
structure-independent energy interpolates linearly as a function of

concentration:

UO =(1-0c) UOA + cUOB (3.2.7)

Ug

the positive ions in a uniform negative background. Ug for the alloy

is an electrostatic energy term giving the electrostatic energy of

is the same as Ug for A and B. UBS’ the 'band structure' energy, is
the second order contribution of the matrix element V(q) to the energy
of the Fermi sphere of electrons. Heine (1968) has shown that the

second-order contribution of V(q) to the Fermi sphere is

V(@1 e(@ x@ (3.2.8)
2 2
K. K.°-q°/4 q+2K
4 F F F
wmere stw = 1 q’ =28 2q - m[q'ZKF] (3.2.9)
ZQ
x@ = (1 - e(@) g—

(atomic units e =h =m = 1),



- 43 -

The total band structure energy is obtained by substituting (3.2.5)

into (3.2.8)

2
Ups

] @l F@l’x@e@ *+ ) [v4 (@] (@) e (@) (cS,- (1-c)Sp)
=g q7g

VY]

] B@]F@ + § Fi@ (S, - (1-c)Sy)° (3.2.10)
g q;g d A B

where the first sum is over all non-zero reciprocal lattice vectors

g of the basic lattice, and the second sum is over all wavevectors q.

n, N
?(q) is the average wavenumber characteristic:

n

F@) = F@]%@x@
and Fd(q) is the 'alloying energy wavenumber' characteristic:

Fy(@ = [vg(@]%c@x(@ (3.2.11)

The first term in Upg is the band structure energy of the lattice
with the alloy crystal structure and the virtual crystal potential at
each site. The second term, called Us» contains all information
regarding the particular arrangement of the A and B atoms on the
lattice.

For a random distribution of A and B atoms over atomic sites

Inglesfield was able to show that
U, (disordered) = c(1-c)N'! | F,(a) (3.2.12)
q

in the order-disorder transition. When A and B have the same volume

and valency the total energy, U, can be expressed in terms of the
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energies of pure A and pure B with the same crystal structure as the

alloy:
A=U-T=U, - CA-ON? J'[S(e)]%Fy(e) (3.2.13)
| g

where U is the means of the energies of A and B with the same crystal

structure. (3.2.13) contains only the alloying difference potential
Vd .

3.2.3 The Square Well Alloying Potential

To obtain Fd(q), the alloying potential was taken as the
difference between the two pseudopotentials calculated by Animalu
and Heine (1965). Inglesfield fits the alloying potentials by a
spherically symmetric square well described by two parameters - the
well depth, A, and radius, R, The matrix elements of the square

well model are

v (@ = (4nA/2q”) [sin(@R) - (R ) cos(aR)] (3.2.14)

Hence,

Fy(@ = (4A /247)? [sin(@R ) - (aR,) cos(aR)]*x(@)e(@)

(3.2.15)

A2 is chosen so that Fd(q) is fitted to the same minimum as the
computed Fd(q). Rm is the same for the three alloys taken as

R, = 2.6 a.u. The volume per ion is 150 a.u.

3.2.4 Ordering and Electronegativity

The values of A used by Inglesfield are shown in table 3.2.1,

and in figure 3.2.1 these are plotted against electronegativity



ELECTRONEGATIVITY DIFFERENCE

WELL DEPTH, A (a.u.)

¢ Pauling scale
X Coulson scale

Fig.321. Plot of electronegativity difference against
alloying potential square well depth
(Inglesfield 1969).

)
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differences for the three systems.

TABLE 3.2.1
System Cd-Hg Cd-Mg Hg-Mg
A(A.UL) 0.10 0.14 0.25
Pauling
Electronegativity
Difference 0.2 0.5 0.7
Coulson
Electronegativity
Difference 0.19 0.52 0.71

The electronegativity differences and well depths are roughly propor-
tional. Inglesfield claims that since charge transfer is related to
the differences in pseudopotentials, it must therefore in turn be
related to the electronegativity difference.

The important point about the square well potential is that for
any crystal structure the ordering energy is proportional to A2
(c.f. 3.2,13). The values of the ordering energy calculated for an
arbitrary choice of A = 1, are shown in table 3.2.2 together with a

description of the basic crystal structure and ordered energies

calculated for the same choice of A.

TABLE 3.2.2
Basic Structure U, (ordered) Ordering Energy
Type Description (A.U, per ion) (A.U. per ion)
HgMg bcc -0.285 0.060
CdMg hcp(distorted) -0.262 0.037

CdHg bct -0.270 0.045
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Ua disordered is equal to -0.225 a.u. per ion so that in all three
cases it is energetically favourable to have ordering. The energy
difference between the ordered and disordered structures is similar for
the three structures. The effect of increasing the well depth
(electronegativity difference) is to increase the order-disorder

transition for a given crystal structure.

3.2.5 Basic Structures

For each structure, the value of A when A = 1, by is given

in table 3.2.3.

TABLE 3.2.3
oy
Structures (A.U. per ion)
HgMg -0.169
CdMg -0.149
CdHg -0.157
NaCl -0.172

The typically ionic structures (NaCl and HgMg) have the largest
values of Bye B favours structures of the ionic type simply because
they give large ordering energies. '

Rewriting (3.2.13) in terms of A, Inglesfield was able to explain

basic structures on the basis of the competition of two effects:

U = T+a
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U, the mean energy of the two component metals evaluated for the same
crystal structure, is found to be the primary determinant of the alloy
structures of MgCd and Cdllg. It favours structures closely related

to the observed structures of the component metals. ~The remaining

~ term A, which is proportional to AZ, comes into the reckoning when
MgHg is considered since A is the largest for this system. It favours

ionic type structures. The MgHg structure is one such structure.

3.2.6 Summary

The calculations of Inglesfield form a quantitative theory of
the effects of electronegativity difference on the properties of the
Cd, Mg, Hg alloy systems. In particular, the increase of charge
transfer, tendency to assume an ionic structure, and ordering energy

with increase of electronegativity difference are all described.

3.3 ELECTROCHEMICAL EFFECT IN SIMPLE METAL ALLOYS

3.3.1 Introduction

The pseudopotential theory techniques used by Inglesfield work
well for alloys of magnesium, cadmium and mercury, but the problem for
two elements with different valences is not so simple. Consider a
substitutional alloy of elements having similar atomic volumes in
the pure metal (e.g. LiMg) so that all atoms in the alloy may be
thought of as occupying Wigner-Seitz cells of identical shape and
size. It then seems natural that the net electric charge in a cell
should give a measure of the charge transfer. In pseudopotential
theory one starts with the alloy ions immersed in a uniform electron

gas, a situation in which charge transfer has already taken place.
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Generally the ion of higher valence will have the more attractive
pseudopotential. However, as the electrons relax, a large part of
the pseudopotential difference will be exhausted in shifting charge
from one cell to another in a tendency towards charge neutrality.
This means that the difference in pseudopotential well depths is no
longer the only factor determining electrochemical effects. Hodges
and Stott (1972) recognised this problem and devised a scheme to
calculate charge transfer and heats of formation of simple metal alloys
based on the theory of the inhomogeneous electron gas proposed by
Hokenberg and Kohn (1964). Their approach is similar to that of
Varley (1954) and constitutes a justification of his two band model
for concentrated disordered alloys.

Consider a metal-metal interface across which no charge transfer
has taken place. Electron charge will flow from the metal with the
higher Fermi level to that with the lower Fermi level, setting up an
electric dipole which produces an additional electrostatic potential
which balances the two Fermi levels. Hodges and Stott suggest that
the boundary between atomic polyhedra belonging to different elements
is similar to such an interface and propose that it may be treated in
a similar fashion. They bring the Wigner-Seitz cells of the consti-
tuents to the same atomic volume (that appropriate to the alloy),
build up the alloy of these cells, and ultimately let the charge
distribution relax at the boundaries. The charge transferred they
define to be the amount crossing the cell boundary in the relaxation
process, and it corresponds to equalisation of the two Fermi levels.
The next two sections will put all these ideas on a formal basis

with an improvement upon the Hodges and Stott model. The final two



sections will contain results of the charge transfer calculated using
this model for some 50-50 simple metal alloys with a discussion of
the connection between the amount of charge transferred and electro-

negativity differences.

3.3.2 Formalism

The ideas discussed in the introduction may be developed formally
using the Hohenberg-Kohn density variational principle for an electron
gas. The density-functional formalism is based on the theorem that
the ground state energy of a system of electrons moving in a static
external potential v(f) is a unique functional E[h] of the density.

It follows from the vzriational principle that for the ground state
density distribution EVInI is a minimm with respect to other distri-
butions involving the same total number of electrons. The constancy
of the number of particles is imposed in the variational problem by

means of the Lagrange multiplier u, and the condition for the

correct density is

SElnl = (3.3.1)

where p is independent of position. The advantage of using this
formalism is that it allows determination of the alloy charge distri-
bution and ene;gy starting from a trial density function nt(r) which,
instead of being uniform, may be chosen so that nt(r) is con:inuous
at the cell boundaries. Suppose the trial functiongl n, gives a

functional derivative

én
n=n

[iﬁfﬂJ = (@) (3.3.2)

t
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which instead of being constant has some small r-dependence, one may
then expect nt(z) and the trial functional E(nt; to be close to the
ground state density and energy. ut(z) will be interpreted as a kind
of local Fermi level taking on Hp OT Mg in A or B cells respectively.
A suitable choice for the functional E[n] is that proposed by

Hohenberg and Kohn valid for a slowly varying density:

2 ()n(r'
e = [ vigncgar « - Jfaat T [ comr v

(3.3.3)

where e(n) is the ground state energy per electron of a uniform
electron gas generalised to include exchange and correlation, and

g' [n] is a functional of the electron density expressed in terms of
the derivatives of the density n(r). The variational principle applies
to the total electronic density, ;ncluding the core electrons, which
will cause rapid variation of the electronic density in the core
region. It is unsure how well the theory will work in such a region,
and so it is convenient to regard v(r) as a local energy independent
approximation to the valence electro; pseudopotential, in which case
n(r) represents the more slowly varying pseudo-electron charge density.
Si;ce electron redistribution will be considered to take place at

the cell boundary, the distinction between the pseudo-electron charge
density and the true valence electron density is unimportant. The
density gradient term g' [n] which is found to reproduce the wave-

number dependent density-density response function is that of Von

Weisacker:
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g'[n] = A——J )’ o (3.3.4)
v
Hodges and Stott have looked at the problem in detail and conclude that
the choice A = 1/9 ensures the correct response of the electron gas at
low q while overestimating the response for g > 2 kF in the alloy
prob;em, following Jones and Young (1971). The gradient terms represent
a contribution to the kinetic energy of the electrons not already
included in the local energy e(n). They are also responsible for
eliminating any discontinuities in the distribution n(r).

4"

3.3.3 Gradient Terms - Charge Transfer

no(r) is taken to be constant within each cell, nc(r) is chosen
n n

so that the trial density nt(r) is continuous at the cell boundaries:
n

nt(r) = no(r) + nc(r) (3.3.5)

in which case the gradient terms may be written:
2 ’Vn lZ
g'[nJ =2 n J nc dr (3.3.6)

where the prime denotes exclusion of an infinitesimal region at the
boundaries between A and B cells. Expanding E[n.] to second order in

n. about n, so that

E[nt] =E +E +E (3.3.7)

where Eo = E'[no] is the sum of the energies of the parent metals after

they have been adjusted to the alloy atomic volume and structure.
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Thus only El and E2 contribute to the alloy formation energy. E1 is

linear in n. and is given by

N

E1 = J [_@E@l] nc(r) dr
n=n_. "

J uo(r)nc(r) dr (3.3.8)

Y] Y N

where O(r) is interpreted to be the local Fermi level of the distri-
N

bution n,, and is equal to A and wp according to whether r is in an
~ _
A or a B cell. The term E, which is second order in n. may be deduced

from (3.3.3) and (3.3.6) to be

2 n (;{)n ({') du
_ e s C C 1 2
By = 5 |[ arar S22y [;H‘%J n(ner

oA |r-r* |
n N o
2
2 (/||
h C
+ A T J _—ﬁ(')—— d:: (3.3.9)

where Wy is the chemical potential of an electron gas of uniform

density n.

Integrating by parts inside regions A and B,

2 (n.(x")
SRR Ik

2
du 2 V°n 2 n n
1 u _,h ¢ L o+ _ _o-
T [a}rJ n, nc(z) * m n_ ] df, * 2 om J [n n JVnt.ds

o+ o= v

(3.3.10)
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where the last term is a surface integral taken over the boundary
between the A and B cells, and Neys Doy D, Ny are the values of
the discontinuous functions n. and n, close to and on either side of

this surface. (3.3.10) gives for the functional

2
n_(r') 5 2 V'n
R e TR
N |r=r'| ~ “n, T o
V)
(3.3.11)

At this stage é%é&l can be set equal to a constant in which case n

will be the ground state distribution:

e

t

"

ut ’
n=n

Hp» @ constant inside A cells (3.3.12)

vgs @ constant inside B cells

Equations (3.3.11) and (3.3.12) give an integro-differential equation

for n. which may be converted using Poisson's equation to a linear

differential equation with constant coefficients (inside A regions or

B regions)
| 2,2
du 2 (VI)™n
2 u 2 h c _
dne DC - ‘Va-n—-:I n v ]'IC + A ZITII- ———n—c-)—- =0 (3.3.13)

Equation (3.3.13) may be solved analytically by assuming that n. is

localised near the A-B cell boundary.



Hodges and Stott treat the alloy problem as that similar to an
infinite, plane A-B interface. They construct a solution n” which
gives n® and its first derivative continuous across the interface as
well as giving zero charge transfer. A second correcting distribution
n”(r) 1is then constructed which governs the amount of charge transferred
in the alloying process. This model can be improved upon by considering
the three-dimensional case of the S0O-SO alloy with A and B atoms in an
effective medium chosen such that the charge lost by one atom is

gained exactly the other. n™(r) is

chosen as in (3.3.3) so that n"(r) and

r
o o
EFFtCTW t 5

MEDIUM, IC its first derivative are continuous

across the respective cell-effective
medium boundary, as well as giving the
charge transfer across the boundary.
Solving (3.3.13) then in this three

dimensional situation gives the correcting

distributions :
sinh 6 r
n°(r) = A sinh a*r - — — in n*
, (3.3.14)
_ sinh (3r+n)
n™(r) = Be in n

with a~®, given by
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where

~
[}

2mn - 2, 2 1 1
{ o] (du) + (du)Z _ 4mxeh” |2 12
) mZ [Eﬁno | Hﬁno mn_ ] ]

(3.3.15)

>
L}

2mn 2,2
: d du, 2 4mre"h 1.1
o~ 1 xhoz [(a%)n - [(—cﬁyi)n - ﬂms 1:]
o o o

The subscripts O refer to either an A or a B atom, expressions being
evaluated at n, or np respectively. «o,B correspond to the above
expressions evaluated at n, the density of the effective medium.

The boundary conditions that n_ and its derivative be continuous

t

at the cell boundary, r_, enables one to evaluate the constants A and

O’
B in terms of n. n may be evaluated from the condition that the total

charge throughout the system is constant:

J 4nr2nc(r)dr =0 (3.3.16)

o

These conditions result in the values for A and B given by

(n—no)ro[Bro-(ar0+l)tanh(6ro+n)]
sinhaorosinhsoro[Bro-arotanh(Bro+d)]-Xtanh(Bro+ﬁ)

where
X = aorocoshaorosinhsoro+Borocosheorosinhaor0
' 2 2
YBr +X'Z[(a"-8") r ~2a8]
tanh(8r0+n) = (3.3.17)
- Y(ar#1)-X'2 [ (a®-87) (ar_-1) +207]
where

t = Yoci :
X X 51nhaor051nh80ro
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_ 252 . :
Y = (ao-Bo)(a0r051nh60rocoshaoro-Borocosh80r051nhaoro)

2.2 - .
(a0+60)51nhaoroslnh60ro+2a060(coshBorocoshaoro-1)
K
2= 7

The charge transfer is then given by

ATAY
q = ——"—-2—7 (3.3.18)

2
(eC-82)
The charge transfer in the alloying process is that derived when n is
chosen in a self-consistent manner such that the charge flow from one
atom into the medium exactly equals the charge flow from the medium

into the other atom.

3.3.4 Charge Transfer Calculations

Hodges and Stott estimate the value of the alloy cell radius,
Ra’ Qf a series of binary 50-50 simple metal alloys by minimising the
elastic energy necessary to compress or dilate the parent metal cells.
Their values for R and their charge transfer across the infinite, plane
interface are given in table 3.3.1 together with the charge transfer
calculated with the aid of (3.3.18). Electronegativity differences
on both the Pauling and Coulson scales are also given. Plots of
charge transfer at the alloy cell radius against electronegativity

difference are given in figures 3.3.la (Pauling) and 3.3.1b (Coulson).
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Charge transfer calculated with the aid of (3.3.18) disagrees
sgbstantially with that calculated by Hodges and Stott. A revision
of the problem along the lines suggésted may give the better agree-
ment with experiment on heats of formation data which the Hodges and
Stott calculation lacks. The important point to note is the total
lack of correlation between charge transfer and electronegativity
difference on both scales (figure 3.3.1). Charge transfer calculated
with unchanged Wigner-Seitz cell radii for the alloy constituents
gives slightly better correlation with electronegativity difference
(in particular on the Pauling scale), but it is still poor. One is
led to conclude that electronegativity difference is not as meaningful
a parameter for determining the amount of charge transfer in solid
disordered alloys as it is in ionic solids. Indeed, it is not clear
that a simple empirical relationship can exist between charge
transfer and electronegativity can exist when electronegativity
differences are so small. Further, the formally derived amount of
charge transfer for the alloy systems considered is much smaller
than one would expect if the solids were ionically bonded.

The theory of the previous section assumes that core levels
are localized within the boundaries of the Wigner-Seitz cell and
that there is no contribution to charge transfer across cell boun-
daries. The assumption is not strictly valid for alloy systems
involving transition or noble metals, which have therefore been
excluded. The validity of the assumption is questionable for
elements Hg and Cd included in the alloy systems since it is not
certain that a clear distinction exists between core and valence

electrons.
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3.3.5 Conclusion

The work presented in this chapter does not support the view
that electronegativity difference is a significant parameter in
estimating electrochemical effects in solid binary disordered alloys.
The ability to determine the degree of ionicity appears to be lost
when electronegativity differences are small. Electronegativity
differences for liquid semiconductors fall within the range 0.4 to
0.9 on both the Pauling and Coulson scale, which is within the range
looked at. This implies that total ionic bonding is improbable
within liquid semiconductor systems. Indeed, the amount of charge

transfer is likely to be small.
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CHAPTER IV

CHARGE TRANSFER AND ATOMIC CELL SIZE

4,1 THE PROBLEM

It is not clear which is the physically most meaningful definition
for the charge transfer in ordered and disordered alloys since quanti-
tative estimates of the quantity depend upon the atomic cell size
prescribed. Hodges and Stott (1972) adopt a purely geometric defini-
tion by bringing the Wigner-Seitz cells of the constitutents to the
alloy atomic volume, building up the alloy of such cells, and letting
the charge distribution relax at the cell boundaries. The charge
transfer is that which crosses the cell boundaries in the relaxation
process. Miedema et al (1973) view alloys as being constructed from
atomic cells (different cells for different atoms) which in the
first order approximation are similar to the atomic cells of the
atoms in the pure metallic elements. As a result of charge transfer,
the atomic cell sizes may change. Their approach is similar to
that of Varley (1954) which mathematically relates the charge trans-
fer with the change in atomic cell size (see section 4.2). In
chapter II it was seen that the charge density in an alloy must
extend continually from one atom to the next. In the region between
atoms, the tails of the wavefunction overlap, with a resulting
charge density which does not go to zero. It is obvious that the
charge density goes to a minimum value between atoms and it seems
natural to construct spheres about each atomic site touching each
other at the point of minimum density between them, defining the

charge about each atom as that within the sphere so constructed.
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Different definitions for the atomic cell size clearly will result

in the amount of charge taken up, gpd therefore the meaning of the
formally derived amount of charge is not obvious. It is the purpose
of this chapter to investigate many of the points raised here, and,
in particular, to look at atomic cell size description within ordered
and disordered solid alloys. If a suitable definition for the atomic
cell size can be found, fuller descriptions for liquid alloy and

semiconductor systems may be at hand.

4.2 THE CHANGE IN ATOMIC CELL SIZE WITH CHARGE TRANSFER

4.2.1 Introduction

In an attempt to calculate the heat of formation of binary
alloys Varley proposes a two band model for electron states in
concentrated disordered alloys, assuming that free electrons exist
in two sets of energy levels associated with the two elements in
the alloy which are superposed to give a non-uniform electron
density. This is a commonly accepted model. With such a descrip-
tion for the electron states, Varley determines not only heats of
formation but also charge transfer by allowing the atoms to grow
as they take up charge. The change in atomic cell size, which
Varley envisages as charge is transferred, is a reasonable and
interesting proposition worthy of close examination in the form
presented. Suggestions will be made as to possible improvements

on the calculation.

4.2.2 General Considerations
Consider the disordered alloy containing N(1-c) A atoms and Nc

B atoms. With the nearly free electron two band description, electrons
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in A cells have an average energy given by

3 Zi/s w9 .2/3
E, = Egp * I k A ; k = Zn (;;7 ) (4.2.1)
A

while those in B cells have a corresponding energy EB, provided there
is no charge transfer from A cells (say) to B cells. Zy and ZB are
the numbers of free electrons per atom cell of pure A and pure B;

TA and rg are the corresponding equilibrium cell radii in the pure

states; E,, and EOB are the pure state bottoms of the band. The

OA
total energy, NE, of the system is then

Suppose that on average a charge n leaves each A cell and is uniformly
distributed over Nc B cells. The number of electrons within each cell
is changed so that the average energy of an electron in an A cell will
change from E, to E! and similarly EB will change to Eé. The total

A A
energy, NE', of the disordered alloy will be

NE' = N(l-c)(ZA-n)EA + NC(ZB+n(1-c)/c)Eé (4.2.3)

The alloy will form only if the resultant energy of the system is
lowered as a consequence, hence E' - E < 0. The chargé transfer will
give a negative contribution to the alloy heat of formation. The
donor cells (A) will become smaller when they lose charge and the
cells which accept charge, (B), will expand. The minimum electron

energies, Ej, in the A and B cells will change as will also the
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additional kinetic energy per electron. The change in the relative
cell sizes when charge is transferred results in a strain energy

being present.

4,2.3 Variation in Eo and Atomic Cell Radius With Charge Transfer

In a pure metal, the equilibrium radius, T, of the atomic cell

is approximately determined by

3E 3 (E,(Z
[—2} o pEed (4.2.4)

or 3T
T T
0o (o}

where the atomic volume Q = %-nrg, and (4.2.4) neglects the effect

of closed shell interactions upon - If on average, there is a
change n in the amount of charge in a cell, the new equilibrium

radius is determined from

or
rO I‘O

FEQ] . [a[EP(Zm)]J @.2.5)

oE
Assuming that 3?9 is constant in the region r = L neglecting the

direct dependence of EO upon n (assumed to be small), then

BEO BEO
3?_- = 55 (4.2.6)

T, T
so that
3 [E.(Z+n) 3|Ex(2)
_[__Ii_.__.__] - _.E_F___]_ (4.2.7)
3T T
T T
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Since
. 2/3 2/3
_3k 2 . _ 3k (Z+n)
Ep(@) =+ e [Ep(z+n)]= == N
o

it follows from equation (4.2.7) that
r=1, (1+32%° (4.2.8)
0 Z LN ]

which is an approximate relationship between the cell size and the

charge transfer n. E, may now be expressed as a function of r and n

as
3E
E,(1) = E (r) + (x-1) (—2) (4.2.9)
rO
When, using (4.2.8) and (4.2.9),
| 2/3
- 6kz n2/9
E,(r) = E (r,) - e -0+ (4.2.10)
o

4.2.4 Change in Interaction Energy, and the Strain Energy, with
- Charge Transfer

If a charge n' enters a cell already containing ZB electrons,
ZBn' interactions of average energy (qOB/rB) are produced. Varley
follows the Wigner-Seitz cellular construction to get this average
interaction energy. The Coulomb interaction energy of 1.2 ez/r per
electron pair in an atomic cell r is offset by 0.916 ez/r per electron

pair from exchange interactions and -bez/r per electron pair from

correlation interactions between electrons of opposite spin. The
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total interaction energy charge is thus,

)
. Z.n' Z,n'e”(0.284 - b(r~y))
qof E . B o8 (4.2.11)

’ rop( 1+ n/2)%/?

Varley was able to make a rough estimate of the strain energy to

be

Eg = N(r, - rB)Z c( - o) kr, (4.2.12)

where K is the bulk modulus for a particular atom, and KrA is taken as

an average over the two pure camponents.

4.2.5 Formation Energy and Charge Transfer

The average energy per atom, E, at absolute zero of an alloy

containing NcB atoms and N(1-c) A atoms is

E = By, (Z,n) (1-¢) + Ep [z + 2d=D]c - 32“ n(1-c) (2,-1)
sz 2Bnd-o) L3k ;53 1 (4.2.13)
B r c S .2 ‘A vt
B r
A
" %KZ (25 + ILl;E)_ )3/3 ¢4 p c(1-c) (r, - rB)2

B
where P = KrA

where an amount of charge n has, on average, left each A cell and
distributed itself uniformly over Nc B cells. The sizes of A and

B cells have changed so that



r, = Toy (- ZA)2/9 ;T = Tp( * né;;c))2/9 (4.2.14)

where Toa» Top 2re the atomic radii in pure A and B.
The ground state energies [E ] are also n dependent:

6kz2/3

[Eon) = Egp - —7— 1 - (- “/ZA)Z/Q}
5r
oA
(4.2.15)

oKz (1-c),2/9
n(l-c
Bop = —7— U=

[Eop)] .
OB

Substitution of equations (4.2.14) and (4.2.15) into (4.2.13) gives

kzs/3 kzs/3
E—ZEOA(1C)+ZE C"‘-S’——z-——(lC)"'———Z—-C
oA ToB
2 (4.2.16)
2 -
+ P(1-C) (1~ Top)” + n(1-C)X + E-él—El Y
where
2/3 2/3 )
. kg , Yo% _ 9BV
X={E+, ~ E~, + -
0B~ foa T T2 2 Tog Ton
OB ToA
(1 C) TAAC
4P OA
* 5 (Top = Ton) G“‘];“'+ z, )}

and
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k3 1axgt/s 20,5(1-C) 24, (Z,-1)c
Y= {—A ————%;——-(l-c) - = B - A .
4SrgA 4510p ToB Toa“A
, 2P [7c2 ., 70-0)% | 4c(1-c) (4.2.17
8T L7 T2 T 05 ] ToaTop -2.17)
A B
2 2 2 2
(e fof Top(1-c) 1
8T ZZ ZZ
A B

Since the first four terms for E in equation (4.2.16) represent the
energy of phase mixture of pure A and pure B, the alloy heat of

formation is

2
= Pc(1- - 1. )2 - n-(1-c).

AE = Pc(1 c)(roA OB) + n(l-c)X + c Y (4.2.18)
where n must satisfy Eiégl = 0. This gives a value for the charge
transfer

n = -Xc/2Y (4.2.19)

Hence the alloy heat of formation is given by

2

o ) 2
8E = c(1-c) {P(rg, - Top)” - X“/4Y}) (4.2.20)

4.2.6 Possible Improvements

Two quantities which Varley has difficulty in estimating are the
pure metal Fermi level difference and bottom of the band difference
for various alloy systems. It is now possible to determine these

very accurately using band structure calculations. In his calculations
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Varley includes alloys with noble metal constituents without taking

account of d-bands; band structure calculations will give a far

more accurate determination of the néarly free electron bandwidths.

It will not prove fruitful to examine Varley's approach to this

problem in detail, but a comparison of these difference parameters

is of interest.

The results for the Fermi level difference and

difference in bottoms of the band for the pure noble metals Cu, Ag

and Au, listed in tables 4.2.1 and 4.2.2, respectively, come from

the band structure calculations of 0'Sullivan, Switendick, Schirber

(1970).
TABLE 4.2.1
Band Band Band Band
Varley | Structure [Structure | Structure | Structure
System E.,-E E E E.,-E E_ -E
B A OA “OB OA OB OA OB OA 0B
Acceptor| Donor | (eV) (Ryd.) (Ryd.) (Ryd.) (eV)
Ag Cu 1.63 -0.02112 | -0.0142 -0.093 -0.17
Au Cu 0.99 -0.02112 | ~0.0325 0.0114 0.16
Au Ag 2.62 -0.0142 -0.0325 0.0183 0.15
TABLE 4.2.2
Band Band Band Band
Varley Structure | Structurd Structurg Structure
System B _ B B _ B _
B s - Ep Ep Ep Ep - Ep | Ep - B
Acceptor| Donor| (eV) (Ryd.) (Ryd.) (Ryd.) (eV)
Ag Cu .05 . 5003 .6303 -0.13 -1.77
ALI Cu 2.63 0289 06303 -0034 -4063
Au Ag | 2.68 .289 . 5003 -0.31 -4,22

The acceptor-donor classification is that of Varley.
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Not only does Varley get the ground state energy difference and the
Fermi level difference wrong in magnitude, the prediction for the
direction of charge flow is also incorrect. This must lead to poor
descriptions for the charge transfer and heats of formation.

Varley also deliberately omits to include core exchanges and van
der Waal's interactions for noble metals. Once charge transfer has
taken place the resultant electrostatic interaction is deemed to be

small, and then ignored:

Ee

2.2
enp(l-c) , 1 1 2
v 5 {r + Ten T } (4.2.21)

where Taa> Tppe Tap are the nearest neighbour bgnd lengths, and p is
the lattice coordination number. Such an n2 variation may be an
important factor in determining the charge transfer in equation

(4.2.18) and the heat of formation, and should be included.

4.2.7 Summary

Varley's attempt to calculate the charge transfer and heats of
formation for alloys rely upon the concept of change in atomic cell size
with charge transfer. Improvements upon his theoretical treatment have
been offered, but the important point to note is the view that charge

transfer and atomic cell size are closely related.

4.3 THE ONE-DIMENSIONAL BINARY ALLOY

4,3.1 Introduction

The calculations of section 2.3 demonstrated that in a 50-50
substitutional binary disordered alloy whose potentials are know to differ,

electrons will not totally polarize about one of the atomic sites no
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matter how different the potentials are made. This effect may be
demonstrated in ope dimension using the Kronig-Penney model for an
ordered binary alloy. Two atoms, whose potentials are modelled by
delta-functions of different strengths, are placed in an ordered array
throughout the crystal with two atoms per unit cell, the crystal being
made up of N such cells. The electron number density across the unit
cell is the physical quantity which will give information about polari-
zation effects in the alloy. The probiem in ordered and disordered
binary alloys is in defining the atomic cell size, For the one-
dimensional model, one possible definition for the cell size is half
the unit cell, another is the minimum in the electron density, in which
case charge transfer has already taken place. Comparisons of electron
number densities about each atomic site within the cells so defined in
one dimension will advance our understanding of the three-dimensional

problem.

4.3.2 Theoretical Treatment

| : | F
- %. 7\‘ 0 I +-9'£
T | pae AL I

Figure 4.3.0

Consider a one-dimensional ordered binary alloy built up with unit
cells of length a such as that illustrated in figure 4.3.0 located
-a/2 < x s a/2. Representing atomic potentials by attractive delta

functions of strength A and Ay located at -a/4 and +a/4, respectively,
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the potential within the unit cell is thus

in atomic units

v(x) =,-A16(x + a/d) .- Aza(x - a/4) (4.3.1)

2 1

(hZ/Zm = 1, e“ = 2) where X has units of L ",

The solutions between any two delta functions are

p(x) = Ae"X + BeTWX (4.3.2)

where u may be real or imaginary (E = —uz), and A and B change from

region to region within cells.

For this calculation we shall choose u real. In the three regions

marked in figure 4.3.0

vy (x)

b =

It may be shown

in the slope of

AeMX + Be7HX -a/2 < x < a/4
ce’® + peHX¥ ~a/4 < x < a/4 (4.3.3)
Ee"* + FeHX a/d < x < a/2

that delta function potentials introduce a discontinuity

the wavefunction. The matching through a delta function

located at x = X,» SaY, is

v = ()
(4.3.4)
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where the probability density wi(x)qu) is given using (4.3.3) in the
three separate regions specified. kF is the Fermi wavevector restricted
to positive values. kF = n/2a for one electron per unit cell, kF = n/a
for two electrons per unit cell, etc. To find the fractional charge
contained within a particular region of the cell, integrate (4.3.10)

over X:

n(region) = J _ n(x)dx (4.3.10)
region

4.3.3 Results and Conclusion

Figures (4.3.1) and (4.3.2) show the variation in the electron
number density across a unit cell containing one electron and two
electrons respecti;ely. P is fixed at two units, P, is varied as shown.
The figures clearly show that as A, is increased with respect to 14,
electrons tend to pile up about the more attractive atom. However, no
matter how large the attractive power of Ay is made, there is always
a finite probability of the electron remaining on the weaker atom.

This reinforces our ideas that no bond in such a system can be fully
ionic in nature. Since the attracting power of atoms in alloys is
generally agreed not to be as strong as it is in ionic compounds, it is
improbable that solid, or liquid, ordered or disordered, alloys will
be ionic in the sense that sodium chloride is.

Table 4.3.1 gives the charge enclosed about the less attractive
atom site for atomic cell sizes described by

(1) half the unit cell size, and

(ii) from minimum to minimum in the electron density.

P, is again fixed at two units.



- 74 -

TABLE 4.3.1

One Electron ’ Two Electrons

Per Unit Cell Per Unit Cell

Charge in Charge in Charge in Charge in
P2 at. cell at cell P2 at. cell at. cell

size (1) size (ii) size (i) size (ii)
2 0.5 0.5 2 1.0 1.0
2.25 0.384 0.343 2.25 0.622 0.501
3.5 0.257 0.202 2.5 0.409 0.260
3 0.119 0.054 3 0.167 0.063
3.5 0.053 0.014 4 0.044 0.004

The different definitions for the atomic cell size give enclosed
charges which do not substantially disagree for relative electron
attracting powers likely to be found in the majority of ordered binary
alloy systems. It is expected that for the three-dimensional alloy
situation, a definition for the cell size to be that from minimum to
minimum in the electron density, will give quantitative estimates of
the charge transfer not too different from that using the pure metal

Wigner-Seitz radius.

4.4 THREE-DIMENSIONS

This section is an extension of the revised Hodges and Stott
calculation of section 3.3. The aim is to compare the amount of charge
transferred when a different definition for the cell size is used.
Charge transfer is calculated self-consistently for a 50-50 disordered

alloy with the help of equation (3.3.18). Table 4.4.1 gives the results



of the charge transfer calculated:

(1) at the alloy cell radius, as estimated by Hodges and Stott,

and

(i1) at the pure element Wigner-Seitz cell radii.

TABLE 4.4.1

Charge Transfer at
'Alloy' Cell Radius

Charge Transfer at
Wigner-Seitz Radius

Altoy (i) (i1)
o B (fraction of electron)| (fraction of electron)

Hg Na 0.163 0.119
Hg Li 0.091 0.067
Cd Na 0.167 0.125
Cd Mg 0.014 0.009
cd Hg 0.016 0.010
Mg Hg 0.002 0.001
Al Zn 0.069 0.036
Ga Ccd 0.101 0.056
In cd 0.042 0.025
Zn Cd 0.078 0.039
Ga Zn 0.034 0.018
In Hg 0.050 0.034
In Hg 0.098 0.049
Al Mg 0.150 0.08
Zn Mg 0.077 0.066
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Table 4.4.1 demonstrates that although the different atomic cell size
does alter the amount of charge traqsfer, it does not do so by a
great amount. Charge transfer calculated at the Wigner-Seitz radii
is smaller than that calculated at the alloy cell radius - that is,
different cell size leads to different amount of charge transfer.
Hence it may well be reasonable to retain the Wigner-Seitz radius

as a definition for the atomic cell size in disordered systems,

recognising that the cell size will change the charge transfer.
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CONCLUSION: PART I

It has become clear over the last three chapters that it is
improbable that concentrated disordered alloys and liquid semi-
conductors are ionic in the sense that the alkali halides are
ionic. This is in disagreement with the proposal of Enderby that
it is the existence of ionically bonded molecules which account for
the remarkable electronic properties of metal-metal liquid semi-
conductors at the critical composition. Arguments based on the
premise that electronegativity difference is a useful measure of
the relative attracting power of atoms for electrons within these
systems are not substantiated, since the differences are too small
for it to be clear that a correlation does exist between charge
transfer and electronegativity difference. The problem of atomic
cell size within alloys has been raised. A cell size definition
using the minimum in the electron density around each atom site in
an ordered alloy is prescribed. It is unlikely, however, that the
values derived will practically prove useful since they will not be
independent of the systems under consideration. Instead, the Wigner-
Seitz cell radii for the pure metal may be used as a first approxi-
mation with charge transfer altering cell sizes. It is also clear
how difficult it is to determin§ the degree of ionicity for various
systems just by inspection of the charge density. The question as
to whether a system is ionic or not is unanswerable, or meaningless,
when considered from the operational point of view of starting with

the charge density.



- 78 -

- CHAPTER V

- 'THE 'HYDROGEN MOLECULE IN AN ELECTRON GAS

5.1 "INTRODUCTION

Enderby's model for the liquid semiconducting metal-metal
systems has assumed the formation of chemical complexes at or near the
critical concentration which are ionically bonded. The discussions
of the previous chapters have effectively ruled out this as a possi-
bility. If these complexes do exist, however, then the bonding may
well be covalent. Away from the critical composition the covalent
complexes will be present in a sea of electrons provided by the
constituent ions. The effect of the free electrons will be to screen
potentials within each chemical complex so that the molecular binding
will be weakened and internuclear separations lengthened, even to the
extent that the molecule may be broken up. Thus the molecular binding
energy will vary in a changing free electron environment. It is the
purpose of this chapter to demonstrate this point for the case of a
single hydrogen molecule located in an electron gas.

Experimental observations have found the binding energy of the
hydrogen molecule in free space to be 4.75 eV, with an internuclear
separation of 0.742. Two methods for calculating the change in the
binding energy of the hydrogen molecule have been adopted. The first
is based upon the original Heitler-London calculation, but with all
Coulomb potentials screened, falling off exponentially with distance
(section 5.2). The second uses the density functional formalism of
Hohenberg-Kohn-Sham, and is discussed in detail in section 5.3. Both
will be seen to confirm the notion of the change in molecular binding

energy with electron density for the hydrogen molecule, even though



binding energies calculated at particular electron densities using
both models will not agree. In such a situation, binding energies
calculated using the density functional formalism are considered to
be the more realistic, particularly near to electron densities in

the metallic regime.

5.2 HYDROGEN MOLECULE IN AN ELECTRON GAS I

5.2.1 Treatment

The method of calculation to be employed is a simple one based
upon the Heitler-London calculation for the hydrogen molecule in free
space (see, for example, Margenau and Murphy (1955)). The coordinate
system to be used will be clear from figure 5.2.1. Particles 1 and 2
are electrons; A and B are the protons whose positions are regarded

as fixed.

Figure 5.2.1

A convenient coordinate system for the two electrons will

contain the six variables Al’ Bl’ BZ’ T2 ¢1, ¢2,
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B, - Byl s 7, s B + B, 0 <By <

N

B -R | <A <B *+R ° 0<B <o

1

The volume element dr = drldrz, where

2 .
drl = AldA, smeldeld(p1

Now,
2 _ .2 2
B1 = A1 + R1 - ZAchose1
i.e. ZBldB1 = 2A.1Rsin®1do1
dr, = iy A dA B.dB.d¢
1 RE'1717171771
Similarly, using B1 as a base line,
dr, = L T, ,dr. ,B,dB,d¢
2 B, "12771272 2772
Hence,
_ 1

Equation (5.2.1) gives a volume element which is very convenient in
the numerical work involved in this problem. Several similar
volume elements may be constructed by the same method.

The Schrodinger equation for the hydrogen molecule in the

electron gas is taken to be given by
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2
Hy = (- h— (V + ) - e” ( My %— e B+ Loy
1 2 y
1 -)B 1 -AT 1 -AR
B1 T R
=E1P

where the Coulomb potentials, screened by the electron gas, fall off

exponentially with distance with a screening radius, %-. A is given
by (Kittel, 1966)
, _6me? 12 . 2 12/3

where n, is the electron number density for the electron gas.
If H did not contain the last four terms in parenthesis multiplying

e2, it would simply be the sum of two hydrogen atom Hamiltonians, and

= U, (1) Ug(2) (5.2.4)

where

U, () = (ra) V%A |y = (rad) MR/ R

are hydrogen 1s orbital functions centred about A and B respectively.
The same is also true if one considers the trial function UB(l)UA(Z).

Both of these solutions are equally good approximations to the state
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wavefunction and must be included in the trial function. They differ
with respect to an exchange of electrons, hence the normalised wave-

function

v —5_17 [U, (UL (2) + Up(1)U, (2)] (5.2.5)

is adopted, where A is the overlap integral given by
1 _
A= J UA(l)UB(l)dc1 = (1+p +-§ pz)e e (5.2.6)
where p = R/ao.

The total energy is found by minimising J yHydr using (5.2.5)

as the trial function. This energy may be written in the form

E, = W, + == (5.2.7)
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2 1 -AB. 1 )
H = e thﬂﬂ%uﬂhaﬂ%&)(-ﬁze 1—KIe 1
1 -\T 1 -XR
+ Er—-e 12 + R e ) drlde
12
22
= 2KA + K' + eRA e~ R (5.2.9)

and WH=-EEZ is the ground state energy of the hydrogen atom.
2h

J, J', K are x-dependent integrals given by

2 -1 -
J = J(8) = -e? J Ur (U (2)B;" €1 dujdr,
£ 1 -208  ~2p 2
= - T T 77 {e - ¢ |(1"B Jo + ll} (5.2.10)
(1-87)
2 (2 2oy =l =
J'=J'(8) = e J U (UG (2)1]; e Ay dr,dr,
e 1 -208  ~20 2
b {e -e |1 + (1-8%)p
(1-87)
+ 30692 (0+20%) + §(1-89)3 (042074 30}
(5.2.11)
3 _ 2 -1 _-AB
K = K(B) = -e J U, (1)U (1) B"e "1 dy
e2 -p 1 1, =208
= - r e VPR, {B(1+8)p + '2'(9 -1)}

B”(1+8)

(5.2.12)
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Aa
where B = —79 .

The final integral for K':

K' = K'(B) = e? J UA(l)UB(l)UA(Z)UB(Z)rié e T2 dt,dr,
(5.2.13)

is a difficult one to evaluate. Interpreting UA(l)UB(Z) as an exchange
point charge, total amount A, located on the B nucleus and UB(I)UA(Z)
as an equal exchange point charge located on the A nucleus (Slater,
1963), K' represents the Coulomb repulsion of one exchange charge for
another, the repulsion being weakened by the presence of the electron
gas. As the distance between the nuclei is increased, the repulsion
will decrease. Thus the electron gas and the increase in inter-
nuclear separation seek to weaken the exchange point charge repulsion.

Near the energy minimum, this behaviour is modelled by writing

K'(8) = e} k' (0) . (5.2.14)
where R, a constant, may be determined from

J1(8) = e R 31 (0) (5.2.15)

with

2
3O =g [L-e®a g+l v )]

Sugiura (1927) has evaluated K'(8) in the 1limit B tending to

zero (free space), K'(0):
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2 . .
K'(0) = g—a—l {e 5 " 7° -3p
)

-280"Ei(-2p) + A'2Ei(-4p)]} (5.2.16)

where y = 0.5772157 (Euler-Mascheroni constant),

v = (1-p+g0))

and Ei(x) is an abbreviation for the exponential integral

X Qu
Ei(x) = J a—-du

which is tabulated, for instance, in Abramowitz and Stegun (1965).

5.2.2 Results and Conclusions

E, in equation (5.2.7) refers to the upper signs in the expressions
throughout, and hence is a symmetric function of coordinates, while E_
refers to the lower signs, and is an antisymmetric function of coordi-
nates. Only the symmetric state has a minimum in energy corresponding
to binding. Figure 5.2.2 illustrates the change in the length of the
covalent bond, and the decrease in the molecular binding energy with
increasing electron gas number density. Table 5.2.1 gives the inter-
nuclear separation and the energy minimum with increasing B (increasing
number density). B8 = 0.3 to 0.6 corresponds to the metallic region
Atomic units are taken such that‘hz/Zm =1, e2 = 2, a, =‘h2/me2, the
Bohr radius, is the unit of length, 1 Rydberg (= 13.6 eV) is the

unit of energy.
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TABLE 5.2.1
Internuclear Separation and Energy Minimum
with Increasing B.

Aa . .
8= — (Eqn(SI.iZ.lS)) (}:Tf.l) (Rjg.) -

0 | 1.65 ~2.2319

0.1 2.01 2.27 -2.2300

0.2 1.90 2.15 -2.2131

0.3 1.81 2.04 -2.1985

0.4 1.72 1.95 -2.1852

0.5 1.65 1.86 -2.1729

0.6 1.58 1.79 -2.1616

0.7 1.51 1.72 -2.1510

0.8 1.45 1.65 -2.1412

0.9 1.40 1.59 -2.1323

It is clear from the table and the figure that, if the approxi-
mation (5.2.14) is a reasonable one to the integral for K' near the
energy minimum, then the important feature which arises is that the
hydrogen molecule persists even at very high electron number
densities, but with a lengthened and weakened covalent bond. For
larger molecules the closeness of approach of the nuclei is limited
by the closed-shell repulsion. This would eliminate the bond

length features evident at high number densities in the above results.
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5.3 HYDROGEN MOLECULE IN AN ELECTRON GAS II

5.3.1 Introduction

The Hohenberg-Kohn-Sham dehsity functional formalism (Hohenberg
and Kohn (1964), Kohn and Sham (1965)) is a theoretical description
of many-electron systems in which the mutual Coulomb interaction
between the atoms - exchange and correlation effects - which are
basically non-local potentials, are treated as a local exchange-
correlation potential. For systems which have a net spin, such as
the hydrogen atom, the formalism has been extended to include spin.
Gunnarsson and Johansson (1975) have applied the spin-density-
functional (SDF) formalism with a local-spin-density (LSD) approxi-
mation to the study of many small molecules. For the singlet state
of the hydrogen molecule, in particular, the experimental energy curve
has been reproduced to within an accuracy of 0.25 eV or better.
Gunnarsson, Johansson, Lundqvist and Lundqvist (1975) argue that the
SDF formalism with the LSD approximation is physically superior to any
other method of calculation of the hydrogen molecule energy curves.

It has become clear that the density functional formalisms do provide
calculated energy curves for small molecules which are faithful to
experimentai observations. This section calculates the binding energy
of the hydrogen molecule in an electron gas using the Hohenberg-Kohn-
Sham density functional formalism. The treatment is similar to that
offered by Smith, Ying and Kohn (1973) for the calculation of the
interaction energy between hydrogen adatoms in chemisorption, the
atoms being treated as present in a constant electron density environ-

ment.
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5.3.2 Theoretical Treatment

The treatment will be developed by considering the hydrogen
atom in the electron gas and then by extending the treatment to that
of two hydrogen atoms in the electron gas. The theoretical advance
offered here for the hydrogen atom in the electron gas stems from the
requirement that Poisson's equation be satisfied from point to point
in the electron gas - that is to say, there is complete self-consistency

between the electrostatic potential used and the charge density obtained.

5.3.2(i) Hydrogen Atom in Electron Gas

The unscreened (or zeroth order) configuration of the hydrogen
atom is taken as a proton sitting in the electron gas with the electron
joining the conduction band.

Poisson's equation must be satisfied from point to point in the

electron gas so that
vV = 4an(r) - n] - 4ns () (5.3.1)
n n

where §(r) represents a proton situated at r = O and [n(r) - n&] is
N n N

the deviation of the electron density from its constant value n,.

The units taken are h=m=e =1 in which case the unit of distance
is the Bohr radius, and the unit of energy is the Hartree
(= 2 Rydbergs = 27.2 eV). n(r) may be found self-consistently by

N
minimising the Hohenberg-Kohn-Sham energy functional:
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2)2/3

1 ex
>0 (x)-e " () In(x*)
[2 v E‘}n i d3rdr + %5 (3

IR

w0 - )]

o2
J 3¢ - 23 f 3% + 1 J () (532

N v

where the integrands of the fwmmms#§ second and third terms represent,
respectively, kinetic and exchange energy densities. The fourth term

is the von Weisacker correction to the kinetic energy (see section 3.3),

e (x) = 057 (@) ¥ 5,(0)

where psx (r) is the charge density produced by the uniform positive
N

background.

The minimisation proceeds subject to the restriction that
ex 3. _
J (@) - o ()] dr=0
n N v

V(r) is the electrostatic potential produced by the proton and its
" .
screening charge and is written

dr’
[r-r'l n
n, n

n(r")-o" ("
V(r) = - J

N

On minimising the energy functional, using the Euler equation, one

finds that
2 . | 2
%6 Y0 v ) - %(3n2)2/3n2/3 . (%)1/3n1/3 5 %’Z QVﬁ) -0
N

(5.3.3)
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Now writing the electron density n(r) with some correction nc(r)
n n

to the constant electron density n,:

n(r) = n, +n (r) (5.3.4)

N C a

and expanding equation (5.3.3) to the first order in nc/n0 gives

2

_ 1 1.2 1/3 1/3
v nc —_— VnOVn v n

3
ng + 12(3) o

1 2
+n { (——. m ) -
nO cC ¢ nO 0 Ilo

_12(375) 2/3n§/3} +36 0V =0 (5.3.5)

Further n, constant then implies that equation (5.3.5) reduces to

2 3n

vhn_ - (1203 )3 - 12 (3

} n. + 36noV =0 (5.3.6)

Equation (5.3.6) must then be solved in conjunction with equation

(5.3.1).

5.3.2(ii) Hydrogen Molecule in Electron Gas

So far as all the electrons are concerned the addition of a
further electron is not important since there are so many. The

Hamiltonian for two protons at ry and r, is then taken as

n,o. n
H = H(all electrons, n(r)) + T—lf;—r rgli) (- [rl—r L }r ])}
n b k) i™h1 i
N all N oA N
electrons
T.

1
"
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This corresponds to taking

N

o=po+gd(r—r1)-+g6(r-r2)
o, N o,

which gives the correction to the electron gas density, n, (r), to be
N

m(r) =gn(r-r,) +gn(r-r7,) (5.3.7)
14 (SR & ch, A2
The inclusion of the coupling constant g(EeZ) will now become
obvious since the Hellmann-Feynman theorem will be needed to evaluate
the total energy, and then the energy of molecular formation (see

Appendix 2). The interaction energy, Eint’ is given by

= J [no(::) + nl(,f)]g [Ir}rll Ir' I] ds

'\J’\J

int

8n

1 k. -ik.
- —é-n-gjfn(k)+nl(kﬂ 2[1N£1+e1m§2]d1£
Now,
% no(,lf) = -Vo(k) since VZV = -4mup
whilst
| ~ o s
%TZ‘ n () = V(0 since V() = V(k) - ;(%

(5.3.8)

- _.17 J [no(z) + nl({):] i}’:—% [eik‘(::'zl) + eik'(}:'}:z)] dr dk

N
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Also, from the definition of nl(r),
4"

.k. i L] ’
n () = (2T + e T2) g
N v
_ 1 v (oikery L Jiker, oo -ikery . -iker
Eint = g;g J {Vb(k) + gV(k) (e ol te, 2 He ol e ] 218 dE

0Qf

Bie = Volr) + Vo({z) + 2gV(0) + g[V(:l - 52) + ’V(zz - 1))]

n N

Since the ground state energy, E,» is given by

dEo -1
-H—g— =g Eint(g) (5.3-9)
ez 2
J g B (@)dg = PV (r)) + V,(r,) + eV(0)+ 36°[V(r; - 1))
o N n N Y
+V(r, - ]} (5.3.10)
v v

notice then that [Vo(zl) + %-V(O)l + [Vb(:z) + %—V(O]] is the totalt
energy of the isolated protons. The remainder,V(r1 - rz) is the
interaction energy between the proﬁons - that is, the egergy of
molecular formation.

The Fourier transforms of equations (5.3.1), (5.3.6) and (5.3.8)

give the Fourier transform of the interaction energy between the

protons, now written as V(k):

V() = -8
K (k*- kP +g)

(5.3.11)

where B = 144 ™M,
w = 12(%%) 13 (1 - st

L
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Writing
! Huk?8) = (K%+a) (KPb) (5.3.12)

this leads to

. -r/a . _-rb
1 rra
Vo) = - G B

where a, b must be chosen so that Re(va, vb) > O.

To this V(r) must be added the Coulomb repulsion between the
n

protons which gives for the total energy of the molecule

-tb _ -T2

E(r) = & EEOE; (5.3.13)

Notice that E(r) has the correct behaviour as r tends to zero and to
infinity. E(r) in (5.3.13) will be split into ranges (from (5.3.11)

and (5.3.12)). The results are as follows:

E(r) =0 Osm < —-—1-5
81n
E(r) = r51n20 51n(26 qr) "'3 n, < —g
81m K3
. s _ 1 -1r/48 Ul
with p = Asino where 0 = > tan” [/~ - 1] g <0 <0
1/4 "
q = Acoso A =8

...CONt.,
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- "PT

e . 1 "9
E(r) = TS0 sin(26+qr) g;g § < ;E
with p = Acoso A,0 as above
q = Asine
E(r) > 0, £ <0 -no binding n_3 2 (5.3.14)
> 3r & o * ;3 *e

The relations (5.3.14) give the energy of molecular formation in an

electron gas of number density n,.

5.3.3 Results and Conclusions

Table 5.3.1 gives the binding energy of the hydrogen molecule
as a function of the electron number density calculated from equations
(5.3.14). Figure 5.3.1 illustrates the variation close to the low

density limit and the onset of the metallic regime.

TABLE 5.3.1
Variation of Hydrogen Molecule Bond Length and Energy
With Increasing Number Density
n, s
(electfg;s o o -3 Bond Length | Bond Energy
x 10 ™) (electrons a.u. ) (a.u.) (eV)
.047 6.99 3.412 -6.2828
.082 12.10 3.668 -3.1421
141 20.96 3.733 -1.8987
. 245 36.31 3.725 -1.2134
.424 62.89 ' 3.693 ~-0.7765
.735 108.93 3.665 -0.3650
1.273 188.66 3.667 -0.2709
2.205 326.77 3.731 -0.1319
3.8197 565.99 3.914 -0.0483
6.615 980.33 4,358 -0.0096
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Equations (5.3.14) leads one to conclude that the typical form
of interaction energy for a covalent bond will be replaced by a
screened oscillatory interaction for electron densities satisfying
EI%E g n, <'g%§ . The bond length is increased compared to that
in the free space situation and the bond energy weakened. The greater
the electron gas density, the weaker the bond until at large enough
densities (nO 2 —%-) the bond cannot form. At very low electron
densities NoziBrZ's believes (private communication) that there is

a Mott transition which may well explain the curious behaviour in

the binding energy over this region.

5.4 CONCLUSION

- The two distinct methods set out in the previous sections for
investigating what happens to a hydrogen molecule when placed in
an electron gas both agree in two qualitative features: one, there
is a lengthening of the bond; two, the energy required to separate
the protons is reduced from the free space value of 4.7 eV. Further,
as the electron density is increased, the binding energy is decreased.
It is thought that the approximation made in the Heitler-London
calculation with screened potentials make it a cruder model for
the change in the molecular binding energy with electron number
density than that derived using the density functional formalism.
The latter is believed to be exact for reasonably high electron

20

number densities (v 8 x 10~ electrons cm-s). A particular feature

of the density functional model is that for electron number densities

at the 'high' end of the metallic regime (~ 20 x 1022 electrons cm-s),

the molecule will not form.
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"~ CHAPTER VI

" 'THE CHEMICAL COMPLEX IN MOLTEN Mg-Bi AND T1-Te

6.1 INTRODUCTION

Ratti and Bhatia (1975) have examined the electrical properties
of the compound forming magnesium-bismuth and tellurium—gg;g;g;ﬁ
systems, demonstrating th;t the concenfration dependence of the
electronic transport coefficients may be understood on the basis of
the formation of chemical complexes and the consequent depletion of
the free electron density. Following Enderby and Simmons (1969),
the formation of the chemical complexes AnBv with low lying electron
states is postulated where y and v are small integers specified by
the composition at which the system forms in the solid phase. The
equilibrium numbers n;, ny, ng of the separate A and B ions and of
A B respectively as a function of the temperature, T, pressure, P,
and the concentration, ¢, of A atoms, or, (1-c), B atoms in the AmB
binary alloy are determined from the thermodynamic properties of
the system. The conduction process is treated in the nearly free
electron approximation, except close to the compound concentration,
Coe Nothing, however, is said about the nature of the bonding
which exists in these chemical complexes. It has become clear
from previous chapters that the bonding within liquid magnesium-
bismuth is unlikely to be totally ionic, leading one to suspect

the possibility of the covalently bonded complex. The calculations

of Chapter V have shown that the binding energy of a molecule does
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vary with a changing electron environment, in which case covalently
bonded MgsBi2 molecule complexes must have binding energies which
vary away from the critical concentration. This behaviour has been
modelled with the aid of the hydrogen molecule calculations and

the Ratti and Bhatia equations reformulated. The final section of
this chapter looks at‘the curious consequences of the assumption

of covalency, while the intermediate sections set out the original
and revised theory and results of Ratti and Bhatia. Most of the

discussions are confined to the liquid magnesium-bismuth system.

6.2 THERMODYNAMIC PROPERTIES

6.2.1 Basic Equations

The treatment is in the newly free electron approximation so
that if ZA denotes the number of conduction electrons contributed
by a separate A atom and ZB by a B atom, the number of conduction

electrons per atom in the mixture is given by N = ZAn1 + Zan.

From the conservation of atoms,

n, =c-ung;; N, = 1 - éf - Vg
hence,

N = cZA + (1 - c)ZB - (uZA + vZB)n3 (6.2.1)

In the nearly free electron approximation, the Hall coefficient, R,

is

RL = - N|e|/a (6.2.2)



- 98 -

where © 1is the volume per atom, e the electronic charge. Thus,
to determine N and R, it is necessary to know n.
In a series of papers (Bhatia énd Thornton, 1973; Bhatia and
Hargrove, 1973, 1974) the functional form for the free energy of
-mixing (per gm mole of binary alloy A-B) for the Mg-Bi and T1-Te

systems in particular was introduced:

3
Gy = -nsg + RT [ ) n,lnn; + npln(u+y)| + ) (ninj)vij]
i=1 i<j

(6.2.3)

g is the (free) energy of formation of the chemical complex per gm
mole of Aqu, so that (-nsg) represents the lowering of the (free)
energy due to the formation of the chemical complexes. The second
term in (6.2.3) is Flory's approximation for (-T) times the entropy
of mixing of the three species. The assumption made is that the
volume per atom of A and B atoms is nearly the same, say v, and the
volume of Aquis (u+v) v,

v.. are the pairwise interactions. The equilibrium condition

1)
(BGM/anZ)T c = 0 gives

n‘{ n\z’ = ng k £ (ng,0) (6.2.4)

where k = exp(-g/RT) and f(nS,c) involves vij and is a slowly
varying function of ng and c. g and vij in equation (6.2.3) are
determined from the thermodynamic data on Gy From (6.2.3) and
(6.2.4) the experimental free energy of mixing, GM’ heat of mixing,

H (involving BGM/BT), and concentration fluctuations, a.c (involving
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BZG/acz), are reproduced well over the concentration range for

both Mg-Bi and T1-Te. The temperature dependence of g and Vi are
thought to be small, hence neglected. The success of (6.2.3) and (6.2.4)
in studying the thermodynamic properties of the two systems encouraged
Ratti and Bhatia to apply it to é study of the electronic transport

coefficients. Various thermodynamic parameters for the Mg-Bi and

T1-Te systems are shown in figure 6.2.1.

4 o 30

For Mg-Bi and T1-Te, g/R = 1.6 x 10 K

K and 9.5 x 10
respectively, so that at temperatures of observation (v 1000°K) K << 1.
Further £ ~ 1. Under these conditions, (6.2.4) may be solved to a

first approximation (K -~ 0),
0 0 0 0
ng ) - c/u nf ) - 0 n§ ) - l-c¢c- vng ) (6.2.5)
for 0 < c < Cys where C, = u/(u+v). For Co < €< 1,

ngo) =@ - ngo) -0 n{o) -c- ungo) (6.2.6)

These equations are not valid in the ¢ > O or (1 - c¢) - O limits,
or if p or v >> 2 (Bhatia and Hargrove, 1974). Thus to a first
approximation the mixture can be regarded as a pseudobinary mixture
of A+Aquin the A rich region and B+AuAvin the B rich region.

n; may be determined to a higher approximation by writing
ng = n§0) - Ang in (6.2.4) and keeping only the terms linear in
Ans. For c < SR

A AT S (6.2.7)
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where Kb =K f (n§0)’ c). The solution is valid when vin, << ngo).

For ¢ > Cqo the solution corresponding to (6.2.7) is obtained by
(0) 4y ()

replacing n, 1 and interchanging u and v. At c = R
where both n{o) and n§O) tend to zero,
ang = (K /] (ueu)ty¥ ]yl O) (6.2.8)

6.2.2 The Covalent MgsBi2 Complex in an Electron Sea

. The thermodynamic and electronic studies of Bhatié and coworkers
accept the possible existence of chemical complexes Aqu but make no
statements about the type of bonding which exists within these
complexes. It has been argued in previous chapters that the Mg3B12
complex in molten Mg-Bi is more likely to be covalently rather than
ionically bonded. In the coﬁalent extreme the calculations of
Chapter V have demonstrated that the binding energy of a molecule in
an electron gas must change with varying electron number density, in
which case one would expect covalently bonded MgSBi2 complexes to
have binding energies which vary away from the critical concentration.
Hence in equation (6.2.3), g must vary with N. It is possible to
model this behaviour and reformulate the equations of section 6.2.1
for the 1iqﬁid Mg-Bi system.

The binding energy of the hydrogen molecule in an electron gas
decreases as the electron number density increases. Although the
calculation of the preceding chapter is that for the hydrogen
molécule, if a Born-Mayer repulsion term of the form A expl-(r-ro)/pl
is included in the calculation, it is possible to model the closed
ion core repulsion effect experienced in larger molecules. A is a

constant of value 5.588 x 10'2 Rydbergs appropriate for ions of
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unlike sign, and p another constant equal to 0.652 atomic units
(Mott and Gurney, 1940). r, is chosen to be the interionic separa-
tion at the energy minimum of the.hydrogen molecule without the
repulsion term. Figure 6.2.2 gives a plot of the new energy

minima obtained (in Rydbergs) against a parameter B related to the
conduction electron density, n,, through B = (Sag/n no)l/G, where

a, is the atomic unit of distance. The binding energy decreases
almost linearly with B passing through energies of 0.1259 and

0.1212 Rydbergs associated with electron densities corresponding to
magnesium and bismuth respectively. The variation is not linear
very close to the binding energy calculated for this larger molecule
(0.1797 Rydbergs). Increasing the free electron number density then
leads to a bend weakening for the larger molecule. In order to
simulate the variation of the binding of the Mg3B12 molecule in a
sea of electrons provided by excess magnesium or bismuth ions in

liquid Mg-Bi one can retain the approximately linear behaviour and

write
@M =-g {1-al/%  0<c<c
g 158 2 °
(6.2.9)
= - g {1-enl/% ¢, <c<1
with a = 0.0585 referring to the Bi end
0
B = 0.0538 referring to the Mg end
0

and g, is the free energy of binding of the MgSBi2 molecule at the
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critical concentration (v O.1 Rydbergs): It is assumed that the
majority of nearly free electrons come from excess ions not trapped
in molecular MgSBiZ' The thermodynamic and electronic properties
can now be formally derived.

The functional form for the free energy of mixing per gm mole
of the alloy becomes

Gy = Nz&() + RT{n;Inn, + n,Inn, + ngIn(u+v)ns} +'ZE (ninj)vij

i<j
(6.2.10)

The condition (BGM/an = 0 will give the equilibrium value of

S)T,c
ng determined from

g -5 1
nsf(ns,c)exp{— ﬁ% [l-anz /6(n2— Bwns)]} 0<cc«< <,

H_ oV
mn,

(6.2.11)

8 -5/ 1
= nf(ns,c)exp{- ﬁ% [l-Bnls/ﬁ(n1 - Buns)]} €, <c<1

f(ns,c) is the same slowly varying function of ng and c given in
(6.2.4); it; explicit form is omitted for brevity. g, and Vij are
fixed from the best fit on the observed experimental data of the
free energy of mixing Gye (6.2.11) must be solved numerically for
ng, enabling one to determine the free energy of mixing from (6.2.10)

and the number of conduction electrons in the mixture from (6.2.1).
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6.3 'HALL EFFECT, CONDUCTIVITY AND ENERGY OF MIXING

For Mg-Bi, ZA = ZMg =2 and 2, = Z,. = 5. Alsou = 3 and

B Bi
v = 2, The volume per atom, @ = CQMg + (1 - c)QBi, since the
departure from linearity is small and produces negligible effect

on (N/Q). Figure 6.3.1 gives:

(a) The resistivity, p, calculated from Faber-Ziman theory
assuming no depletion on N - that is, N = cZMg + (1 - C)ZBi' The

free electron expression used for the resistivity is,

1

LA
Ep Legs

F

(6.3.1)

where A is the constant 3n2h/e2 and EF = (SWZN/Q)Z/S.

Leff is a
mean free path which is a composite of the mean free path due to
scattering by the complexes and a mean free path arising from
scattering by excess Bi or Mg ions (following Enderby and Simmons,
Schaich and Ashcroft (1970)). Leff = Leff(c, EF) and will have

different values in pure Mg and Bi.
(b) Keeping Leff the same and changing EF in (6.3.1) according
to Ratti and Bhatia solving (6.2.4) for ns.

(c) Keeping Leff the same as in Ratti and Bhatia, for the sake

of comparison solving (6.2.11) for n;.
(d) The experimental curve from Enderby and Collings (1970).
Curve A clearly does not agree with experiment even well away

from the compound composition. Curve B indicates the depletion of

N as stoichiometry is approached, even though the assumption that
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Fig.6.3.1.

Resistivity of Mg-Bi system as a function of concentration
¢ of Mg. Curves (a) and (b) as explained in the text.Curve
d is experimental. Curve c is calculated from (6-2.11)
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Logs is the same as in Faber-Ziman theory is unjustified. Curve C
shows a sharper peak in the resistivity compared with Curve B,
apparently modelling well the dramatic reduction in the free electron
number density near the critical concentration. However, whereas
detailed calculations of %‘%# (table 6.3.1) using (6.2.4) show a
maximum close to S, dropping sharply both sides of the maximum,

those determined using (6.2.11) do not.

TABLE 6.3.1

Temperature Dependence of the Conduction Electron Density
in Mg-Bi. C is the fraction of Mg atoms. The second and
third columns refer to ng determined by (6.2.4) and

(6.2.11) respectively.

N 10t N 10
c N N ,
(6.2.4) (6.2.11)
0.50 2.0 0.82
0.55 5.0 1.31
0.57 6.5 1.41
0.58 13.0 1.14
0.59 20.0 0.33
0.60 25.0 -
0.61 25.0 0.04
0.62 18.0 0.30
0.63 11.0 0.44
0.65 3.8 0.44
0.70 0.8 0.25
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Figure 6.3.2 plot$>%%ﬂand n; as functions of concentration for

liquid Mg-Bi. The solid curve gives those results calculated using
the model of Bhatia and coworkers tequations 6.2.3 and 6.2.4).
The broken curve gives those calculated on the assumption of the
covalent Mg3B12 complex (equations 6.2.10 and 6.2.11). The solid
circles are data for GM taken from Hultgren et al (1963) at
T = 973°K. The free energy of mixing curves show quite clearly
that a model which assumes covalent bonding within the Mg3B12
complex and an associated variation in binding energy with changing
electron environment cannot reproduce the thermodynamic data,
whereas a model in which the binding energy remains constant can.
This latter model, however, is unable to show the dramatic reduction
in the number of conduction electrons near the critical concentration.
Figure 6.3.3 gives the experimental and theoretical values for
the Hall effect as a function of the concentration of Tl. ZTl =3,
and u = 2, v = 1 corresponding to the compound value T1,Te. The
value of ZTe was calculated at 800°K from matching the Hall
coefficient as ZTe = 1.8. The agreement between the curves is good,

as is the experimental ratios of resistivities p(0.1)/p(c).

6.4 CONCLUSION

Ratti and Bhatia have demonstrated that the concentration
dependence of the Hall coefficient and the resistivity in liquid
Mg-Bi and T1-Te can, at least qualitatively, be understood on the
basis of the formation of chemical complexes and the consequent
depletion of the free electron density. The work presented in this

chapter has attempted to attain a deeper understanding of these
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liquid semiconductors by looking more closely at the nature of

the bonding within the chemical complexes formed, and the effect
.that this has on the thermodynamic and electronic properties of
the system. For liquid Mg-Bi, in particular, whose constituents
are simple liquid metals and which are considered to have a strong
tendency to form chemical complexes, there is a greater likelihood
of covalent rather than ionic bonding within each complex. The
calculations of the previous chapter would lead one to believe
that should such covalently bonded complexes exist, then their
binding energy must vary away from the critical concentration.
This variation in binding energy has been simulated with the aid -
of the hydrogen molecule calculations, and the theory of Bhatia and
coworkers reformulated for this change. The result is to worsen
agreement with experimental data for heats of mixing and the
electronic transport coefficients. It would appear as though
covalent MgSBi2 complexes behave as if they do not interact strongly
with an electron gas environment provided by excess‘magnesium or
bismuth ions in liquid Mg-Bi. A very curious situation has thus
arisen in which the molecular binding energy remains constant
across the concentration range. There is, however, enough discre-
pancy between the experimental heats of mixing data and that
calculated in the Bhatia formulation to suggest that this cannot
be the case. Indeed, a matching can be obtained if the molecular
binding energy is assumed to increase across the concentration

range away from the critical concentration.
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CHAPTER VII

MUEFIN-TINS "¢ PHASESHIFTS

7.1 INTRODUCTION

This chapter introduces many of the concepts which form the
basis of a calculation carried out on the liquid semiconducting
magnesium bismuth system, a discussion of which is given in the
following chapter. The many-body pfoblem for the system is
treated by replacing the electron-electron interactions by a
self-consistent potential within which only a one-electron
Schrodinger equation need by solved. The single particle
potential will be assumed to consist of spherical non-overlapping
spheres with a constant interstitial potential, taken as the zero
of energy. The construction of such a potential about each site
is described in section (7.2). The power of multiple scattering
formalism lies in the observation that the wavefunction outside
each scattering centre depends only upon the scattering phaseshifts
of the potential. Section (7.3) introduces the concept of
phaseshifts for a single isolated scattering centre, Particular
attention is paid to the interpretation of phaseshifts for different
systems. The local electronic density of states for each scattering
centre of a system of several non-overlapping potentials is an important
concept. Section (7.4) relates this local property for each scatterer
to the scattering path operator which itself is related to the total
scattering for the entire system.

Atomic units are used throughout this and the next chapter. The
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unit of energy is the Rydberg given by 1 Ryd = %ez/ao, where e 1is the

electronic charge, and the unit of length is the ?ohr radius, a, = h2
meZ

7.2 CONSTRUCTION OF THE MUFFIN-TIN POTENTIAL

7.2.1 The Muffin-Tin Potential

A B

A/

._’°<e.

WV L)\

Fig. 7.2.1 The muffin-tin potential with respect to the line ABABA, Vb
The muffin-tin potential is a one-electron potential in which each
atan of the crystal is surrounded by a sphere inside of which the
potential is approximately spherically symmetric and rather like the
potential in a free atom. Between spheres there is a shared influence
coming from neighbouring atoms which leads to a flattening of the
potential in these regions; hence the potential is assumed to be a
constant, Vb (figure 7.2.1). The spheres are usually chosen to be
large enough to touch, so as to minimise the region between them,
Thus the sum of muffin-tin potentials in an approximation to the real
crystal potential.

7.2.2 Potential Construction: Mattheiss Prescription

Ideally one would like to calculate the potential function V(r)
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inside each sphere in a self-consistent manner. However, in many
cases it is possible to obtain fairly accurate energy-band results
by using "muffin-tin'' potentials derived from self-consistent atomic
charge densities. Hartree-Fock-Slater charge densities obtained
from Herman and égllman (1963) are usually employed.

Mattheiss (1964) treats Coulomb and exchange contributions to

v(r) separately. The Couloumb contribution is given by
V,(r) = Vc(r) + Vc;(r) (7.2.1)

Vb(r) is the atomic Coulomb potential for the atom and is obtained

from
2
vV, (1) = —rz - U, () (7.2.2)

where z is the nuclear charge and Uo(r) is the electronic contribution

which is determined from a numerical solution of Poisson's equation:

veU,(r) = - 8mp (1) (7.2.3)
where o (x) = ) |y, |2 (7.2.4)
© occupied m

po(r) is the atomic electronic density taken from Herman and Skillman
Vg(r) is the spherical average of the contribution to the Coulomb
potential about the atom due to neighbouring atoms and is determined
using the Lowdin alpha-expansion technique (see Loucks, 1967):

Ja*r]

] — 1 1 ] ]
Vb(r) = % 7T T V;(r )dr (7.2.5)

a7

Here ay is the distance between the neighbour m and the point about
which Vb is being expanded. Since only the magnitude of a, enters,

the sum over neighbours can be converted to a sum over shells of
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neighbours, each shell being weighted by the number of neighbours it
contains. The most significant results of adding these contributions
to the atomic potential are a lowering and flattening of the potential
in the vicinity of the sphere radius.

The exchange potential is treated in an analogous manner. The
electronic charge density about a given atom is represented by the
appropriate atomic charge density plus the spherical average of

overlapping charge densities due to its neighbours:

|lag+r]
) =0 * I gy | Teg () dr' (7.2.6)
m m
la -]

The exchange potential is then treated according to Slater's free

electron exchange approximation:
| 1
V@) = -6 G e /2 (7.2.7)

The exchange potential is added to the total Coulomb contribution

to give the total potential, VT(r), about the atom:
VT(r) = Vt(r) + Vx(r) (7.2.8)

This is a spherically symmetric potential which will be slowly varying
in the region between the spheres. The muffin-tin zero is obtained
by performing a spherical average of VT(r) over the region between
the sphere radius, A, and the Wigner-Seitz sphere radius, Tey since

VT(r) will generally be very flat in this region. Thus,

T
3 J s VT(r)rzdr
vV = A (7.2.9)
0

3_A3
s A
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Hence inside the spheres the muffin-tin potential is taken to be

V(r) = VT(r). - vo' (7.2.10)

7.3 SINGLE SCATTERER: PHASESHIFTS

7.3.1 . Introduction

When considering a system of scatterers, at energies above
muffin-tin zero, conveniently chosen as..energy zero, electrons can
be thought of as propagating freely in the interstitial region, and
being scattered by the muffin-tin potentials. Scattering from a
single site with a potential V(r), where V(r) = O for r > A, the
muffin-tin radius, then becomes important.

Consider a single spherically symmetric muffin-tin potential
at the origin of position coordinates. The solution of the time-
independent SchrSdinger equation for the potential V(r) may be
expanded in angular momentum eigenstates. Inside the sphere the
solution is expanded in terms of products of radial wave functions

and spherical harmonics.
¢(f) = E ay Ry (r) YL(E) (7.3.1)
YL(;) is the real spherical harmonic of angular momentum L = (&,m)

© +Q,

Y= 1 1 (7.3.2)
L 2=0 m=-2

is the convention used. RL(r) satisfies the radial wave equation

{- %—% r+ i%;‘ll +V(r)} R () = E R _(r) (7.3.3)
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where E is the energy. Outside the sphere the solution of (7.3.3)
must be a linear combination of independent free space solutions.

A general solution can thus be written, for r > A,
R (r) = 4ni* A (cos 6, j,(VB) - sin 6, n WED)) (7.3.4)

where jz(x) and nl(x) are spherical Bessel and Neumann functions
respectively (as defined in Abramowitz and Stegun, (1965)). The
4ni* factor in (7.3.4) is introduced to correspond with the plane

wave expansion,

exp(i kx) = dr ] i* 5,000 Y, () Y* ()

The constants GL(E) which appear in (7.3.4) are the phaseshifts.
Other conventional forms for the radial wave function given in
(7.3.4) can be used depending upon the context in which the
scattering is being considered. Two alternative forms which

differ only by an amplitude factor are}

R (1) = 4ni* A {h WED) + exp(2is;) h,"@WED) } (7.3.5a)

4ni' A { j,WEF) - i/E [ - sin s, exp(is,)//E]h,* (/B
(7.3.5b)

where h2+(x) and hz_(x) are spherical Hankel functions given by
+ . .
h,"(x) =3, (x) #n (x) (7.3.6)

(7.3.5a) 1is convenient in the description of the scattering in terms

of the true wave packets and defines the scattering factor
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S (E) = exp(Zisz(E)) (7.3.7)
(7.3.5b) defines the transition factor

t; (E) = - sin ¢, exp(idl)//E' (7.3.8)

which gives the rate of scattering from an incident plane wave of
electrons into the L th partial wave.

Phaseshifts are determined from matching conditions of the
interior and exterior wave functions at the muffin-tin radius.
At this radius the radial wave function and its derivative must

be continuous so that

R - ) s
1 dR’ i k [coss jl-sins n '] _, 7.3.9)
Rﬁn dr - [cosé J -sind n | _»

(7.3.9) may be solved for tan Y Given V (r), the left-hand side
of (7.3.9) may be found by numerical integration of the radial
SchrSdinger equation out from the origin. The scattering properties
of the potential are expressed entirely in terms of the phaseshifts
8, The "modulo #" ambiguity can be removed by setting 62(E) =0
at E = 0. The alternative convention is to take 62(m) =0 (at
sufficiently high energies the incident electron will not be

affected by the scattering potential), then to make the reduction
since Levinson's theorem states that 52(0) - 62(”) =P, where

Pe is the number of bound states of angular momentum % in the
potential.
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7.3.2 Wigner Delay Time

Consider the scattering of a wave packet of prescribed velocity.
For simplicity one may regard the packet as made up of two homogenous
beams of nearly equal'energies E + AE and wave numbers 5 + Ag
respectively, so that the wave function describing the incident
packet will be asymptotically

V.

ine = T Hexp i[(keak).x - § (E+E)Y) + exp i[(lf—Alf).f - & (E-B)])

The centre of the wave packet is located at the point where the two

waves are in phase so that
Ak.r - 1 AEt =0 i.e. v, = 1y
. .ﬁ --G -ﬁ__Ek

Scattering of the packet by the central potential introduces phaseshifts
6+A8 in the outgoing waves of wave numbers k + Ak respectively, so that,
at a great distance from the scatterer, the wave function for the

outgoing wave packet will be

v

out = THexp i[(keak).r - L(E+E)T + 2(6+86)]

+ exp i [(k-ak).r - F(E-aE)T + 2(6-26)]}

The centre of this wave packet is now located where

AI}.E‘-%AEt+2A6=O
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Thus the outgoing wavepacket is retarded by a time

v, = g (7.3.10)
relative to the time in the absence of the scattering potential.
If 6§(E) is a very rapidly varying fupgtion of energy, the Wigner
delay time can be very long, as in the case of a scattering resonance
(Figure 7.3.1)
The attractive potential V(r)
combines with the centrifugal

potential l(igl to give rise

to a metastable state. The

phaseshift near a resonance

behaves like
V(r)

§(E) - tan™! |r/(E-E)]

Fig. 7.3.1 Effective radial potential
giving rise to a metastable state and

a scattering resonance.

showing that it passes rapidly but continuously through the value
1r/2 at E = Er' Thus for a resonant state the delay time becomes
extremely large. For a bound state the ''delay time'" is in fact
infinite.

7.3.3. The Friedel Sum Density Of States

Consider the introduction of the single scattering centre into
a free electron gas. The presence of the scatterer leads to an
accunulation (or deficit) of the electron density in its neighbour-

hood, since an incoming flux of electrons, of given angular momentum,
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is delayed by the Wigner delay time T before being converted into

the outgoing flux. Flux is defined.by

!
I=mi [W’A‘P - IPAW*]
The basic radial wave is 4ni j (VEr) and since jg =1 |h2+ +h |
%

the incoming flux through a sphere of radius r is

2 h -*d - _ 4 -d T _ 4n%h

rm[hz Fh ohowh T
The accumulation of density is given by the incoming of flux multiplied
by the delay time so that the additional number of electrons in the

neighbourhood of the scattering centre is given by

_ ds
= kzdk "2 T LN L
N(E) = 2 L@/E YL [4n2h/mk] I”QZO(Z“DHF ]
=.12F I (1) 8, (B) (7.3.11)
2=0

This is the well known Friedel sum rule (Friedel, 1953). It can also

be derived from the radial wavefunction by taking

[

_ k2dk ) 2 2 ik 2
N(E) = 2 Jk=@m)-3 Jo r2 dr { ;o (22+1) | IR, (1) | [4ni” j, (kr)|2|}

where the radial function R/ (r) is given by equation (7.3.4). It
follows that the integrated density of states per atom, N'(E), is

given by
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N'(E) = N_(B) + 2] (2241) 6, (E)
L

where NO(E) is the free electron contribution, and

8E) = g, + 3] (D)

7.3.4 Interpretation Of Phaseshifts

For the muffin-tin potentials and energies with which one is
usually concerned, only the 2=0,1,2,3 phaseshifts are significant.
Typical phaseshifts calculated using equation (7.3.9) for a simple
free electron metal, transition metal, and a semiconductor are
given in figure 7.3.2, taken from Greenwood (1973). Figure
7.3.3 shows the phaseshifts calculated for copper, a typical
noble metal. The &=3 phaseshifts are negligible for these systems.

For sodium, the phaseshifts and their energy derivatives are
all small up to the Fermi energy. The Friedel sum will be small,
the Wigner delay time short. These are characteristics of a weak
scatterer of which sodium must be one. This contrasts the
transition metal, iron, in which the d-phaseshift is important.
The energy derivative of the d-phaseshift is large near the Femmi
energy which implies a d-resonance of long Wigner delay time at
this energy. Iron is a strong scatterer. For copper the
d-phaseshift is small near to and far away from muffin-tin zero,
although its energy derivative is large over an energy range below
the Fermi energy. The d-resonance lies below the Fermi energy,
electrons are well localised within the muffin-tins, and therefore

behave somewhat like core electrons (House and Smith, 1973). All

-
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phaseshifts and their energy derivatives are small at the Fermi energy;
it is this feature which enables one, to treat noble metals as weak
scatterers at this energy. For germanium the s- and p-phaseshifts
are approximately equél to - %-and + %, respectively, at the Fermi
energy. Close to the muffin-tin zero the phaseshifts and their
derivatives are large which would imply that germanium is a strong
scatterer near this energy; away from muffin-tin zero the phaseshift
derivatives are small which suggests some free electron qualities.
There is an apparent duality in which nearly free electron theory

is acceptable at higher energies, but not near muffin-tin zero.
Germanium is an elemental semiconductor whose atoms are characterized
by long range order in a crystal array.

In Chapter VIII the electronic properties of the liquid
magnesium-bismuth system will be discussed with reference to the
phaseshifts characteristic of each constituent atom across the
concentration range. The sodium and germanium phaseshifts
considered above will serve as a useful introduction to the

discussion.

7.4 LOCAL ELECTRONIC DENSITY OF STATES: SCATTERING PATH OPERATOR

The muffin-tin density of states for a single scatterer in. a
system of several (- 1023) scatterers, nL“(E), is defined as the
integral of the particle density over the volume of a spherical

scattering centre:

A d3k *
n () = [ﬂ dir J Tk @) w@) sEEY  (7.4.1)
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In a review article, Smith and Lloyd (1972) have related nLa(E) to
“the single site muffin-tin density of states, nLd(E), using the

Ry

scattering path operator ¢
nL°‘(E) =nl(E) Im |- /E Taa(E)/31n26 (E) | (7.4.2)

The scattering path operator 1°® is defined by the relations

(Gyorrfy, 1973):

I

P =%+ ; t* g ¢'°
aB :
yFa
(7.4.3)

L tadas + ; %Y G tB
Y¥8

where t%, t? are the scatterings from an o and a B site respectively

% js the

(angular momentum components given in (7.3.8)), and t
scattering from an o« to a 8 site. Summing over all « and B sites,
the total scattering for the entire system, T (the total T-matrix),

is given by

T=J§ % (7.4.4)

. X . t . .
Thus t*® is the site decomposition of the tgel T-matrix, relating to
the scattered wave from one site to an incident wave andanother.

G is a matrix whose angular momentum components are defined by

ivVE IE;-' hyy

4ni2_2'+2" [ (E ra) Y ,‘(r g) CEL' |r

GLL' (ruB) =
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It is a propagator which describes the motion of electrons between

site o and B at energy E. h£“+(x) is the spherical Hankel function

defined in equation (7.3.7), given in Abramowitz and Stegun (1965),
YL"(;aB) is a real spherical harmonic.

CLII

LL ! = J YL(Q) Y., (R) Y (Q)de

are integrals over spherical harmonics (known as Gaunt numbers).
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CHAPTER VIII

A CALCULATION ON THE SEMICONDUCTING MAGNESIUM-BISMUTH SYSTEM

8.1 INTRODUCTION

As far as is known, all liquid semiconductors are also amorphous
semiconductors. The electrical behaviour of amorphous materials
which are semiconductors or semimetals in the crystalline state is
not fully understood. In ordered crystals the periodic lattice has
the effect of carving the energy distribution of the conduction
electrons into a series of bands. Each band can contain two electrons
per unit cell and they are filled up depending upon the number of atoms
per unit cell and the number of electrons per atom. The last two
bands to be filled are known as the valence and conduction bands
and tﬁese are sometimes separated from each other by an energy gap
where electron states are not allowed. Consider a small amount of
disorder introduced into an otherwise ordered crystal by assuming
that there are different regions of the crystal with slightly
different crystal structure and lattice spacing. There will exist
electron states in some of these regions with energies in the gap of
the full sample which are not allowed in most fegions. In some
sense these are localized states which give rise to tails in the
valence and conduction bands. Mott (1969) has suggested that there
are tails to both the valence and conduction bands in amorphous
materials which, depending on the disorder present, can result in
a pseudogap corresponding to a minimum in the density of states

(figure 8.1.1). In this region electron states may be localized
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Fig.8.1J

Suggested density of states in amorphous semiconductors

(c) and semimetals (d) compared with crystalline 1a)

and (b).The region of localized states is shaded,and

the Fermi level is indicated by a vertical line.
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with the electrons moving by thermally activated hopping. The
conductivity is low (<2000~lcm™1). .Moving away from the

composition at which the alloy is a semiconductor or semimetal

(e.g. Mg Biy), the Fermi level will move out of the pseudogap

and the region of localized states will fall to zero. As localization
weakens, each localized wavefunction will overlap a large number of
others until the conduction is no longer by hopping but by extended
states.

Ferrier and Herrell (1970) have investigated the electrical
properties of amorphous Mg-Bi measuring the electrical conductivity
and thermoelectric power of the alloy as a function of temperature
and composition (figure 8.1.2). At the composition corresponding
to Mgz Bi, the thermopower changes sign and the conductivity shows
a pronounced minimum, although the drop is not as narrow as in the
liquid state. Particular attention is given to the region near the
Mg3 Bi, composition. Here they find the properties to be in
agreement with a model of localized states, with the electrons
moving by thermally activated hopping. From their data Ferrier
and Herrell (1970a) have deduced the form of the density of states
around the gap for amorphous Mg-Bi, estimating a gap width of 0.02
Rydbergs. They propose that the electrical properties of the liquid
state may also be understood by assuming the existence of a
pseudogap in the density of states. The origin of the gap is not,
however, clear.

Keller and Ziman (1970) have looked at the general problem of
generating an energy gap in a system without long ricce order.  For

amorphous semiconductors it has been shown that sh¢ inge order
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tends to produce a low density of states in the gap region. Indeed,
the analysis of Ferrier and Herrell (1970b) reveals that the nearest
neighbour distance falls to a sharp minimum at the Mg; Bi, composition
suggesting that some short range structural chahges are taking place.
It is the purpose of this chapter to invesfigate how and why an energy
gap is produced. The general theoretical approach adopted is outlined
in the following section. Section 8.3 gives the approximate
expression for the bottom of the conduction band in a liquid alloy
usded to facilitate the estimation of the Fermi energy. Section 8.5
suggests a simple interpretation for the origin of the band gap in
liquid Mg-Bi based on the calculations and results presented in Section
8.4. The implications of this model for the transport coefficients
are given in section 8.6, while section 8.7 is a brief summary of the
chapter. The work presenredrin this chapter follows from an invest-
igation carried out by Jewsbury and Dooley on the liquid semiconducting

Mg-Bi system.

8.2 THEORETICAL APPROACH

Ziman (1972) has reviewed a wide variety of theoretical techniqueé
which are available for studying the electronic properties of condensed
systems. For a general alloy comprising strong and weak scatterers,
the most useful approach to apply to a disordered system is the
multiple scattering method as developed by Korringa (1947). The
technique relies on being able to subdivide the total potential into
non-overlapping parts, centred on the nuclei. It is usual to employ‘
muffin-tin potentials in such calculations, as described ih Chapter

VII.
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The muffin-tin approximation was first applied to metallic
crystalline solids assuming the crystal potential to consist of
spherical non-overlapping spheres around the nuclei with a constant
interstitial potentiai. Systems which have a spherically symmetric
local environment (large co-ordination numbers) and non-directional
bonding are most suitable for this approximation. The success of
this approximation has led many workers (e.g. Evans et al, 1973)
to suggest its use in liquid systems. The basic features of a
spherically symmetric central core region and a fairly flat inter-
stitial potential apply equally to a solid or liquid, but it is
unlikely that the local enviromment of a general atom in the liquid
will be spherically symmetric. Furthermore, in a practical
calculation all the muffin-tin potentials of a species in the liquid
are likely to be taken equal. As the potentials are not allowed
to overlap this implies that the apparent interstitial volume
increases from about 30% in the solid to about 60% in the liquid.
Hence although the muffin-tin approximation appears reasonable
in a liquid, the error must be greater than in the equivalent
solid.

Close ta the critical composition the Mgs Bi, alloy is
semiconducting, and semiconductors generally have directional
bonding. Muffin-tin calculations have been carried out on
amorphous elemental semiconductors (eg. Keller and Smith, 1972;
Keller and Fritz, 1974) in the multiple scattering cluster approximation
(McGill and Klima, 1970) producing satisfactory densities of states
including a reasonable energy gap. This is encouraging for a

muffin-tin calculation on the Mgy Bi, alloy.



- 125 -

In a phenomenological study of the behaviour of the transport
properties of liquid Mg-Bi, as opposed to a detailed calculation
of them, it seems reasonable to believe that calculating muffin-tin
potentials across the concentration range will provide realistic
information on those properties. Calculations of these potentials
have been carried out using the Mattheiss precription, details of
which are given in section 8.4 together with the relevant necessary
data and results. With such potentials many details of the system
may be determined directly. One of the properties which is useful
in descriptive accounts is the energy of the bottom of the extended
states. A simple expression which may be used to calculate this
quantity will be given in section 8.3. Two complications, however,
should be considered for a calculation of the type described. If Chcuje
transfer takes place it is not clear that the muffin-tin method will
be as valid for an alloy as for a pure substance. A calculation on
the magnesium-bismuth 50-50 alloy finds a charge transfer of the
order of 0.05 electrons from the magnesium to the bismuth atom
(c.f. Chapter III). Also, for a heavy element, such as bismuth,
spin orbit and relativistic corrections are required for a full
description of electronic properties (Herman and Skillman, 1963).
Energy level splittings arise because of the large kinetic energies
and velocities of the outer electrons of the atom where the potential
energy is small. Nevertheless, a non-relativistic description
should include the same features, e.g. an energy gap arising from
the same mechanism, as a more complete relativistic calculation.
The true width of the gap will be reduced by these corrections.

Energy level separations can be estimated from atomic spectra to be
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of the order of %-eV.

8.3 THE BOTTOM OF THE 'BAND "IN ‘A 'LIQUID ALLOY

Several simple abproximate expressions exist to calculate the
bottom of the band energy, EB, in single component systems.
However, the expression which most accurately evaluates EB,
usually within 2 milli-Rydbergs, is the Ziman (1965) expression.
In an ordered solid the energy eigenvalue versus Block vector K,
must have a minimum (or maximum) at K = O and this generally, but
not always, corresponds to the bottom of the band. K = O is nearly
always assumed to be the bottom of the band. When this is true, |
it is generally believed that, close to the energy Ej, the band
structure is free electron like (parébolic) and the electron
wavefunction is s-type. This suggests that the non-s phaseshifts
should be small at energy EB and if they are not, then it is likely
that K = O is not the bottom of the band.

The Ziman approximation is to include only the reciprocal lattice

vector, g = 0, contributions to the KKRZ secular determinant - 1i.e.

Here Fgg are components of an effective pseudopotential given by

~ o~

'

. _ _ 4t jg(gr) jz(g' r ) g'g
Pog (K=0) = - ==} n (A7) PyTeTTE
~~ {cot 62 - ) jz(yér)j (£1) -
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Jz( er' )

(8.3.2)
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where n is the atom number density, EMTZ the muffin-tin zero energy,
jl(x) and nn(x) spherical Bessel and Neuman functions and Pz(x) the
Legendre polynomial. If no approximations are made r and E' are
arbitrary position vectors within a unit cell subject to ' >,

The approximation of including the g=g = O term only
necessarily implies that only s-wave scatteriﬁg is important since
jR(O) = 62’0. If this is adopted as a proposition then the Ziman
expression may be derived directly from KKR theory. The KKR

determinant (Kohn and Rostoker, 1954) is just

det || ALk -8 Il =0 (8.3.3)
12 2 1 2

where kL(E) = --%E tan 6Z is the single site k-matrix. The

coefficients AL1L2 are given as the sum over lattices sites

= 1 . 1=+ ~ -i k.R
AL, °N aze L23 4n Cp oy, d /e n23(f5 Rye) ¥, (Rgle™ X laB
a%B
where C are Gaunt mumbers and R _ the position vector between

L,L,L3 ~aB |
sites o and 8. Including only the L=0 terms in the KKR determinant

(8.3.3) taking only the g = O term in an expression for AL1L2 written
as a sum over reciprocal lattice vectors, and selecting r = r' = A,

the muffin-tin radius, the Ziman condition is obtained:

tan 6. A AD -
=1+ o | lAmAT | o ot(/EA)| =0  (8.3.4)

Zf
Ve sin? (Ve A)
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Hence the Ziman starting energy, EB, for the band of conduction
electrons in a single component system with referenge to muffin-tin
zero, EB - Brze is obtained as the solution of the implicit
equation (8.3.4). |

In a general system the equivalent expression to the KKR

determinant (Smith and Lloyd, 1974) is

aB , B _ aB =
det || GL1L2 kL2 6L1L2 || =0 (8.3.5)

where Gngs is given by

aB g-2p+Lg -
Gp L, = (178.) 12,34“ CLL,L, b /e “23(‘/; R.g) YL, Ryg)

-ives 8

L1L2 G.B

and the determinant of (8.3.5) is taken over angular momentum and
site variables. Including only g = O contribution isAzeroth order
in the structure and can be generalized in the liquid alloy by
assuming that site occupancies are also unimportant. The choice
of values for r and r' is not, however, straightforward. It is
therefore suggested that it is reasonable to include them with the

averaging as appropriate muffin-tin radii. Thus the determinant

becomes

det || <Ay K > -y |1 =0 (8.3.6)
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_ a ,a b ,b
where <A00 k0> = Ca A.oo ko + Cb Aoo ko

Here a and b represent the alloy species and the Agéb are expressed
by the Ziman approximation. Hence the generalization of the Ziman
condition for the bottom of the band in a binary liquid alloy yields

the condition

(8.3.7)

where Ca and Cb are the concentrations of species a and b, and Zfa/b

is defined as in (8.3.4) with the s-phaseshift and muffin-tin radius
appropriate to'the a/b type muffin-tin.

In the Mg-Bi system, the Bi p-phaseshift is large ( %J at the
solution of (8.3.4). Thus, although this formula has been employed,

it is unlikely to be very accurate, with an error of 0.1 Rydbergs, say.

8.4 CALCULATION AND RESULTS

In order to perform calculatiors on the liquid semiconducting
Mg-Bi system using one electron mu ffin-tin potentials over a wide
range of compositions, it is necessary to have some knowledge of
the Mg-Bi structure. The structural studies of Ferrier and Herrell
(1970) on amorphous Mg-Bi and Waseda and Suzuki (1972) on liquid
bismuth provide the near-neighbour distances and co-ordination
numbers which appear in table 8.4.1.

In view of the lack of knowledge of the Mg-Bi structure only
the nearest neighbour shell of atomic wavefunctions were overlapped.
This is generally found to be as realistic as including contributions

from all shells. The atomic wavefunctions for magnesium and bismuth
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- 'TABLE '8.4.1

Data relevant to the potential construction

Nearest
Bismuth Neighbour | Co-ordination | Atomic Volume
Concentration Dis&sfce Number (x1024) cm3
0 3.20 12.2 120.2
0.2 3.08 8.4 24,2
0.4 2.83 5.5 27.6
0.6 3.22 4.2 29.5
0.8 3.37 4.8 32.1
1.0 3.38 8.8 34.6
atoms were taken from Herman and Skillman (1963). Muffin-tin

potentials for magnesium and bismuth atoms were calculated across
the composition range in the Mattheissprecription with Slater
exchange, a recipe which should ensure realistic potentials to be
calculated iﬁ a reasonable approximation to sélf-consistency
(equations (7.2.1) to (7.2.8)). The muffin-tin radii were taken
to be half the nearest neighbour distance, and the muffin-tin
zeros appropriate to the type of centre atom (magnesium or bismuth)
were calculated by averaging the potential between the muffin-tin
radius, A, and the Wigner-Seitz radius, T, according to equation

(7.2.9). The alloy muffin-tin zero was taken as a concentration
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weighted average of the muffin-tin zeros calculated for the different
atoms.  The energy of the bottom of the conduction and valence bands
arising from the hybridisation between the atomic 3s(on Mg site) and
6s and 6p (un Bi site) states was determined according to equation
(8.3.7). Solutions were only found at energies above alloy muffin-
tin zero.

Values of the alloy muffin-tin zero energies and bottom of the
band energies are given in table 8.4.2.

TABLE 8.4.2

Relevant energies with respect to atomic zero, in Rydberg, for Mg-Bi.

Bismuth Bvrz Ep EpEp
Concentration - (Rydbergs) (Rydbergs) (Rydbergs)
0 -0.957
0.2 | -0.996 -0.899 0.557
0.4 -1.134 -0.963 0.578
0.6 -0.847 -0.613 0.482
0.8 -0.819 -0.570 0.433
1.0 -0.965 -0.747 0.499

Phaseshifts for these potentials are shown in figures 8.4.1 and

8.4.2. The magnesium phaseshifts are small whereas the bismuth

s and p phaseshifts are large. Indeed the difference is sufficiently
marked that for many purposes the magnesium phaseshifts may‘be
neglected - that is to say, even in the alloy the magnesium exhibits

very free electron behaviour.
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Fig.8.4.2 Calculated phaseshifts for magnesium
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muffin-tin zero.
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The addition (subtraction) of Mg to an alloy of Mg Bi is
therefore comparable to the addition (subtraction) of electrons
to a '"liquid Bi system'" since the Mg atoms do not contribute
significantly to the total scattering, However, since the system
remains neutral at all times, the appropriate positive charge
background is also added. Of course, in addition the volume of
the system also changes. The effect of the background is to

contribute to changes in E, as described by Table 8.3.2, and the

B
effect of the addition of electrons, coupled with the volume change,
is to alter the band width. Making this comparison enables an
intuitive understanding of this system to be grasped more easily.
The Fermi energy can be estimated by using the Friedel (1958)
sum rule which will yield exact answers in the low Bi atom density
limit. For this calculation phaseshifts for the Bi atoms were
used which represented a single Bi atom in a free electron
environment starting from the alloy bottom of the band. The
Friedel sum rule gives the excess number of states above the

free electron number per Bi atom created by these potentials.

Hence the Fermi energy, EF, is approximately given by

- (Bp - Ep)'2 - 2
_.%_ ) SQ(EF) =5 + ..CC_ME. (8.4.1)
3 nCyk "L Bi

where 32 are the phaseshiftswith respect to the bottom of the band
EB. The deduced band widths are also given in Table 8.4.2.

The Bi phaseshifts (Figure 8.4.2) look very like those of the
elemental semiconductors C, Si and Ge (Figure 7.3.2). At the

Fermi energy only the s and p phaseshifts are large, the s
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phaseshift is large and negative, the p phaseshift is close to
"]2 and both%;"- andidsﬁl- are negative. The negative energy
gradients me@A that electrons at these energies are to a certain
extent kept out of the muffin-tin regions. This has been
discussed in detail by Greenwood (1973) who has shown that
causality restricts the magnitude of this gradient.

The conductivity of a specimen is determiﬂed by its ability
to impede the flow of electrons by elastically scattering them.
The Qork of Evans et al (1973) suggests that it is the ratio of
the muffin-tin density of states to the single site muffin-tin
density of states nLa(EF)/nLl(EF) which appears in an expression
for the conductivity. This ratio is determined by the multiple
scattering of the system, being given by the imaginary part of

the diagonal matrix elements of the scattering path operator:
n *(E) = n}E) I | -/E TI"J‘E(E)/stag(E)I (8.4.2)

The bonding and energy gap within the liquid bismuth system can now
be investigated by calculating DQ(E) given by

+2

D, (E) = }_l nL“(B)/nLl(E) (8.4.3)

for the idealised situation in which § = - %3 §, = %3 and other
phaseshifts are zero. This will give a qualitative account as to

how a pseudogap may arise.
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For a single atom surrounded by a constant potential equal to
the muffin-tin zero of energy, D, (E)-= (22+1). For two such atoms
a distance R apart, bonding can take place giving DR(E) an energy
dependence, and in this case the cluster equations are simple.

Thus, if ﬁLle is given by

. e - 0 vy, 0o o
MLllj" -1 @Y =/ E - (8.4.4)

0 0 0 Y-

then o =1-n M (ER) +3m°ER
8 =230, ER b, M ER (3.4.5)
v =1- 0, 0ER -0,V 0ER)?
v, =1+30 " ER - o, 0ER - 2, 0 R)2
v =1- 0, CER + 0, D E )2

where hn(+)(x) are spherical Hankel functions. The reciprocal of

gives D (E) by
MLlLl. 2

+2 ~
D, (E) = Real (8.4.6)

The result is shown in figure 8.4.3. Electrons are displaced from
low energies to form a bond around v/ER = 4.26. Note also that
DE(E) = (22+1) for vER > 2r which specifies the maximum range of
the band and hence the minimum size of a cluster‘required in a

cluster calculation.
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In the archetypal semiconductors such as silicon and germanium,
the free atoms have four valence electrons one of which occupies an s
state and three p states. In the solid all the states occupied
and empty combine into hybrid, or mixed, states. Four of these are
low energy bonding states with electron density heaped up between
ions along four directions. In energy terms there is a gap between
these states and the higher antibonding states. This energy gap is
the one responsible for the semiconducting behaviour. For the Mg-Bi
system one can investigate samething like the same with a simple cluster
calculation by recognising that the single atom pairs with the
addition of further near neighbours will have bonds which interact
strongly. This may be crudely modelled by increasing the strength
of the second atom to represent a shell of 3.3 near neighbours with
results as shown in figure 8.4.4. The interaction between the bonds
produces an energy gap between vER = 4.43 and 4.53. Thus, for Mgs Bi;
with R = 5.33 Bohr radii the gap occurs between 0.69 and 0.72
Rydbergs. This is close to the estimated Fermi energy of 0.75
Rydbergs (table 8.4.2) and energy gap of width 0.02 (Ferrier and
Herrell, 1970) or 0.05 Rydbergs (Sik and Ferrier, 1974).

8.5 DISCUSSION

In an atomic representation the energy gap can be regarded as
arising from the filling of the bismuth s-p band. The criteria
for a semiconductor AxBy of the same type as that of Mgz Bi, can
be summarised as:

(1) the phaseshifts of A are small at the Fermi energy;
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(2) the s and p phaseshifts of B are large negatively and
positively at the Fermi energy respectively. Higher
phaseshifts are small.

Further, if VA and VB are the number of valence electrons

contributed by A and B respectively then the critical concentration

is achieved when

VA; = (8 - VB)y
which is the nommal condition for molecular combination.

The above criteria (1) and (2) specify certain groups within
the periodic table. Most elements of groups I and II satisfy
criterien (1) while most elements of groups IV, V and VI satisfy
criterien (2). Indeed LiF might be regarded as an extreme case,
although charge transfer complicates the issue.

In some circumstances noble metals may replace the more usual
simple metal component A. In pure Cu, for instance, the Fermi
energy falls above the band and at the Fermi energy all the
phaseshifts are small. The d electrons are well localized
(House and Smith, 1973) within the muffin-tins and therefore behave
somewhat like core electrons. Hence, provided the Fermi energy
does not fall when Cu is added to the other component, B, it will
behave like a monovalent simple metal. Away from the critical
concentration specified by equation (18), on the B rich side the
alloy can still be semiconducting if B is a liquid semiconductor.
One obvious way is e the alloy to consist of regions of Ax B

y
1
and B. However, in the example of Cux Tel-x - a semiconductor
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for x > %-- the structural data of Hawker et al. (1974) suggests
that no phase separation occurs. In the Mg, B12 case it was
demonstrated in section 8.4 how the near neighbour environment
determines whether‘a band gap exists - the same is true in the
covalent semiconductors. Thus the appropriate covalent B-B
bonding in local regions of excess B could ensure the semi-
conducting behaviour of the AB alloy on the B rich side of AxBy'

In the covalent semiconductors, individual atoms have their
valence requirements satisfied locally - that is, they obey the
(8=v) rule. Specifically the rule states that within a covalent
semiconducting alloy an element with vV valence electrons has (8-v)»
near neighbours. Many such alloys are listed in the second column
of table 8.5.1. This table is a proposed classification scheme for
elements and binary alloys indicating whether the alloy is semi-
conducting in the crystalline (C), amorphous (A) and liquid (L)
phases.

The latter members of the group which satisfy the model
requirements are known to be highly covalently bonded systems which
are not semiconducting in the liquid state. As crystalline solids
they crystallize in the zinc blende structure, each atom being
tetragdnally bonded. In the amorphous state their local environments
are little disturbed from that found in the crystalline phase and
they remain semicbnductors. Such alloys can be III-V's or II-VI's
and within this range there is a gradual loss of covalency. Their
properties are somewhere between those of a fully covalent groupAIV
element and a fully ionic alkali halide. In an alkali halide a

very disordered local environment will not destroy the band gap
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" 'TABLE 8.5.1

Classification scheme for semiconductors satisfying model requirements
(colum 1), (8-v) rule (colum 2). The third column lists semiconductors

which satisfy neither set of requirements.

Semiconductors Satisfying
Model

_Requirements | C| AJL|(8-v) Rule |C{A|L |Neither [C|A|L
Mg Bi V|V |C ani
°32
Li3Bi v |Si Y|V |x]| MoS; A%
Mg38b2 a4 Ge Y|/ |x| NbSe, v
Cu, (Se,Te; ) V| As x|V
Ange v vV | Se Y Y|V
ZnTe v V| Te YV ]|x
CdTe 4 /| Se,Te; /Y
CuZS /1S v v

Ge(SexTel_X) x|V
GaAs ARAP Sb28e3 aARaRs
InSb Viv/]x szTe3 v/ v
GaSb V|V x ASZSe3 AR AR,
InAs ARAPS AszTe3 v
InP /v

whereas it will in the group IV semiconductors. Also a whole
electron can be considered to have been transferred from the

alkali ion to the halogen ion.
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From the work of previous chapters it is clear that it is
improbable that solid, or liquid, ordered or disordered, alloys
can be ionic in the sense that an alkali halide is ionic. It
is quite likely that all the alloys listed in the first column
of table 8.5.1 have properties between the extremes of a group
IV semiconductor and an alkali halide. We suggest that the
liquid semiconductors, listed here, should be regarded as more
ionic, but without an excessive amount of charge transfer, and the
others as more covalent with properties requiring a tetrahedrally

symmetric local environment.

8.6 BEHAVIOUR OF TRANSPORT PROPERTIES

Having discussed the origin of the band gap we are now in a
position to discuss its shape and é%eral relevance to the transport
properties. The alloy potentials constructed correspond to near
neighbour enviromments differing, as throughout the sample, in near
neighbour distance, co-ordination number and composition. These
changes only have a small effect on the scattering phaseshifts and
hence on the local criteria for a band gap throughout the liquid
alloy. However, this does not prevent some localized regions
possessing states within the energy gap for special local
structural configurations. These states cannot be extended and
are most probably localized in the Mott sense. The Fermi energy
should reside in the gap.

At the critical concentration, heating the sample increases the
conductivity according to an exponential law but also as structural

disorder increases, the energy gap may narrow. +f—the—energy—gap
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may-parrew. If the energy gap becomes narrower than that appropriate
to minimum metallic conductivity then the alloy will become metallic
as observed by Andreev, Turgunov and Alekseev (1975). Conversely, if
the temperature is reduced the liquid becomes an amorphous solid which
should also be semiconducting, perhaps with an even larger band gap.
The temperature coefficient of resistance and thermopower (equation
1.2.3) essentially yield different aspects of the same basic
information as the conductivity.

. The other important transport property is the Hall coefficient,
RH’ which is a measure of the charge carrier density. 1In a singlg
component semiconductor the addition of a lower valence dopant would
be expected to make the semiconductor p-type. However in the presence
of excess Mg in a Mg-Bi alloy system, the model implies that the Fermi
energy lies in the conduction band and the alloy is n type. Similarly
a dearth of Mg makes the alloy p-type. This behaviour arises from
the association of the density of states with the Bi atoms. It
also represents another distinction between the "more ionic' and
"more covalent" semiconductors in colum 1 of table 8.5.1.

Thus in the general AB alloy of this type (1) the thermopower
will pass through zero at AxBy from negative (A rich) to positive
(B rich), (2) the Hall coefficient will be singular at the critical
composition being negative infinite on the B rich side, (3) the
temperature coefficient of ;esistance will be negative at the
critical composition rising to a positive value on the A rich side
and at least remaining negative over a wider concentration range on

the B rich side.
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8.7 'SUMMARY

A study of the electronic properties of the liquid semiconductor
Mg Bi has been carried out. Muffin-tin potentials, phaseshifts,
energies of the bottom of the bands and bandwidths were calculated
across the composition range of liquid Mg-Bi. It was shown that
the main roles of the Mg atoms are to influence the volume, electron
density and energy of the bottom of the valence band; whereas in
addition to these roles the Bi atoms are dominant in determining
the density of states. As far as the scattering was concerned, the
screened Mg ions betrayed their free electron character and were
shown to be unimportant. Thus the system could be considered to
a reasonable approximation as Bi atoms dissolved in an electron gas.
A simple cluster calculation revealed that the large Bi phaseshifts
were capable of creating an energy gap at the Fermi energy for the
critical composition. The Bi atoms are thus solely responsible for
an energy gap occurring when the s-p band is fulled. No presumptions
of molecular formation at the critical concentrations are made, nor
do these results show that molecules form.

A general consideration of many semiconductors led to the three
classifications shown in table 8.5.1. The alloys in the first column
all approximately satisfy the criteria deduced for the semiconducting
behaviour of Mg, Bi,. These were subdivided into those considered
as more covalent and those considered more ionic. Alloys within
these subdivisions do indeed behave differently with respect to
disordering of the local environment and doping.

The analysis also reveals that the set of transport coefficients

for Mg; Bi, type semiconductors will behave in a distinctive manner.
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CONCLUSION : PART 1I

By the end of chapter IV it became fairly clear that it is
unlikely that the liquid semiconductors are ionic in the same sense
as sodium chloride. There is strong thermodynamic evidence that
chemical complexes do form, particularly in the Mg-Bi and T1-Te
systems, and the natural assumption is that since they cannot be
ionically bonded they must be covalently bonded. Two separate
calculations on the single hydrogen molecule in an electron gas
show that the binding energy decreases with increasing electron
number density. This leads one to suspect that the molecular
complexes must have binding energies which decrease away from the
critical composition, since there will be an electron gas
environment provided by the constituent ions. This behaviour,
has been modelled for the liquid Mg-Bi system, only to find that
a model which assumes a constant binding energy for the Mgs Bi,
complexes across the concentration range provides better agreement
with experimental thermodynamic and electron transport data.

" The final chapters have studied the liquid semiconducting
Mg-Bi system adopting an approach distincly different from that
of the previous chapters. A phenomenological study of this
system has demonstrated that it is possible for an energy gap
in the density of states to occur at the critical composition
with the filling of the s-p bands on the bismuth atoms. No
presumptions of molecular formation are made. Furthermore,
it does appear that this interpretation can provide a scheme,

in terms of the positions of the elements within the periodic
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table, to explain the occurrence of many liquid semiconductors.
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APPENDIX 1

The Pseudopotential and Ziman Theog}

Electrons in solids have wavefunctions which are essentially
smooth for most of the time but which oscillate violently close to
the ion centres. Orthogonalized plane waves (|OPW>) describe this
behaviour relating plane wave states outside the atomic core (|PW>) to

the core states (|c>):
|OPW> = |PW> - )} |c><c|PW> (A1.1)
c

The strong oscillations near the ion centres give rise to a large
kinetic energy which partially cancels out the effect of the strong
potential. This is expressed as:

Wseudo ~ Vreal ion + g (E - EC)|C><C| (A1l.2)

where |E_| < |E| and ]wbseudol < |Voeal ion!*

The resistivity (p) can be expressed in terms of the electron number
density (n), the relaxation time (rz) and the free electron mass (m)

as:

m 1
p=— — (A1.3)
ne> 'z

The total pseudopotential W(r) scatters electrons from state |k1>
n Y]

to state |k2> with matrix elements given by:
n
V
5 -1 s .
<+§2 W(r)|k1> =7 Joexp( iq.T) W (:) d: QKP(LE.QXC%S (A1.4)

LAV V) VYY)



_ L
where plane wave states of the form (V) ‘2e ik.x have been taken and

q = (K, - K;). (Al.4) is identified as the Fourier transform:
4] n

N

<k W@ Ky > = § W) (AL.5)
v v Y N

The relaxation rate is expressed as:

2.

1.
T

D N (p— R AL
3 7 |W(g)|® sino(1-cose)d e (Al1.6)
Z 2m 0

=

where W(q) is a time average.

The total pseudopotential is defined by:

W) = Ju(r - Ry) (A1.7)

where w(r - Ri) is the individual ion pseudopotential
V) n

W) = ) fw(r - R;)exp iq.(r - R;)exp iq.R;dr
N i N N N N NNy
= w(q) ] exp iq.R; (A1.8)
i N
W@1? = jo@]® I e 9. () - R) (AL.9)
ij [AVEEAY] n

Hence the resistivity may be given by:

o = m_ mkF Iﬂ ]w(q)|2N S(q) (1 - coso)sinodo (A1.10)
ne2 27h 6 0

Using
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Now
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1

23 .
4m°v> N 2
p = ——-2——h3e'§k v Jolw(q)l S(q) [—ﬂ—z F]
F .

which is usually written

2
3mm N 2
p = 7 < lo@]” s@@>
el v

F

(A1.11)

? d(m%é"’ (A.12)
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APPENDIX 2

The HMellmann-Feynmann Theorem

Given the Hamiltonian

H=H, +gH . (A2.1)
and the value of
Eint(g) = <¢O(g)|g Hint|¢o(g)> (AZ2.2)
then the exact value of the total ground-state energy
E,(@) = <o (@) [H, + g H; .| (g)> (A2.3)
is given by
- g1
E,(2) = E,(0) + [0 LB @ dg | (A2.4)
where g is a coupling constant and Ho the kinetic energy.
(A2.4) follows from (A2.2) and (A2.3) since
dEO;.lE ()+E()d<q>()|¢()> (A2.5)
dg T g Cint ‘8 08 Jg “%'8/1%:'8 )

The second term on the right-hand side is zero because the
normalization is independent of g. Eo(g) is the exact eigenvalue
and ¢o(g) the exact eigenfunction. Hence we have a special case of

the Hellmann-Feynmann theorem:

dEo 1
&~ g it @ (A2.6)

Integrating (A2.6) gives (A2.4).
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- ABSTRACT

'The Electronic Structure Of Disordered Systems' by P. M. Dooley

A theoretical study has been carried out on the electronic structure
of concentrated disordered alloys and liquid semiconductors made up of
components which are metallic in the pure liquid state (e.g. Mg-Bi,
Li-Bi). For the latter there is strong evidence to suggest that
chemical complexes form at the critical concentration (Mg, Bi,, Li,Bi).
The nature of the bonding is discussed in depth to reveal that it is
unlikely that the bonding is ionic in the same sense as sodium chloride.

Two separate calculations on the single hydrogen molecule in an electron

- gas show that the binding energy decreases with increasing electron

complex, and thgqagéociatedchange in binding energz‘y§g?rv§ryipg

number density. The assumption of the covalently bonded Mg, Bi,
eléctf;nagnvironment away fromnthe critical composition, does not
provide good agreement with experimental thermodynamic and electron
transport data. Charge transfer within disordered systems is an
effect associated with interatomic bonding. Its relationship with
electronegativity difference and atomic cell size is considered in
detail. No simple correlation is found to exist between charge
transfer and electronegativity difference.

A phehomenological study carried out on the liquid semiconducting
Mg-Bi system has demonstrated that it is possible for an energy gap to
occur at the critical composition with the filliné of the s-p bands on
the bismuth atoms. No presumptions of molecular formation are made.

It does appear that this interpretation can provide a scheme, in terms



of the positions of the'elements within the periodic table, to explain

the occurrence of many liquid semiconductors.



