THE SYNTHESIS AND PSEUDOROTATIONS

OF SPIROPHOSPHORANES

Ъy

JOHN BRIERLEY

A Thesis presented for the degree of Doctor of Philosophy in the Faculty of Science of the University of Leicester

1978

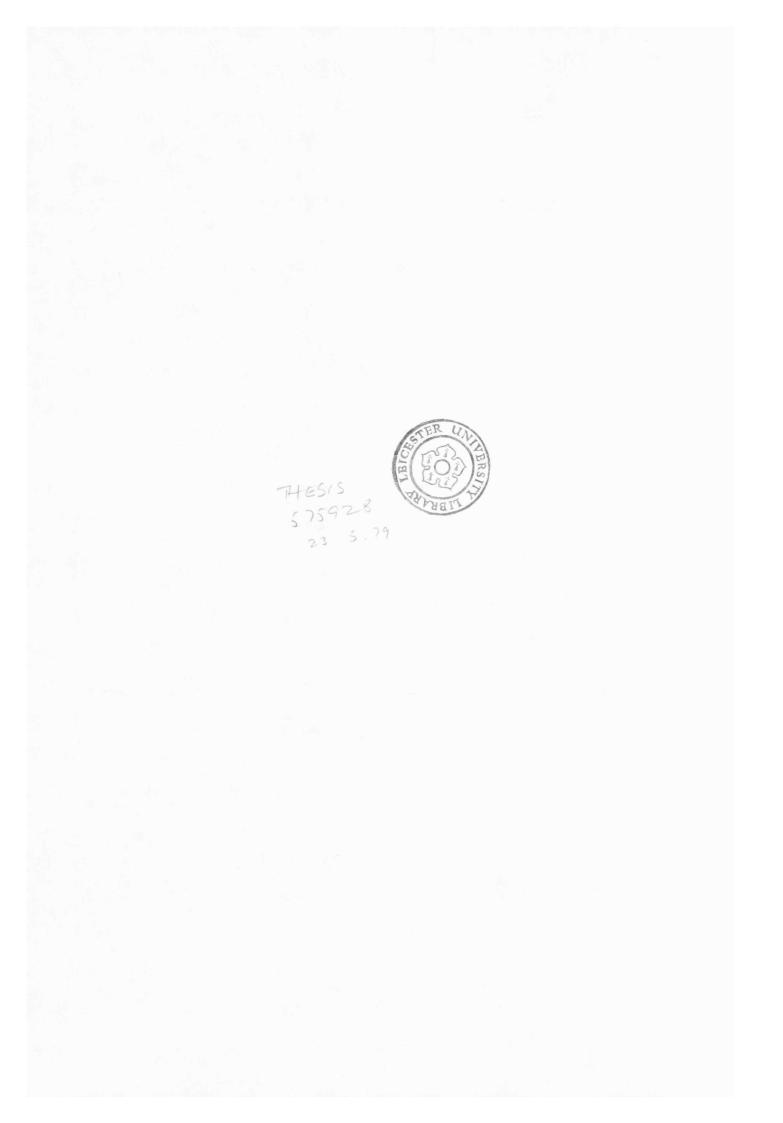
.

UMI Number: U436177

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.


In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U436177 Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106-1346

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Professor S. Trippett, for all his encouragement and help with this thesis.

For mass spectra and variable temperature n.m.r. spectra of my compounds, I would like to thank Mrs. Diana Sutherland. I am extremely grateful to Mrs. Dianne Stroud for typing this thesis.

Finally, I would like to thank my wife for her support and encouragement at all stages of this work; and the Science Research Council for a maintenance grant. TO HILARY

,

STATEMENT

The accompanying thesis submitted for the degree of Doctor of Philosophy entitled "The Synthesis and Pseudorotations of Spirophosphoranes" is based on work conducted by the author in the Department of Chemistry of the University of Leicester, during the period between September, 1974 and August, 1977. All the work recorded in this thesis is original unless otherwise acknowledged in the text or by references. None of the work has been submitted for another degree in this or any other University.

Signed John Brierley.

John Brierley.

August, 1978.

CONTENTS

I.

Page No.

CHAPTI	ER 1 : PHOSPHORANES	
1.1	Introduction	1
1.2	The Structure of Phosphoranes	2
1.3	The Synthesis of Cyclic Phosphoranes	4
1.4	The Stability of Phosphoranes	21
CHAPTI	ER 2 : LIGAND PERMUTATIONAL ISOMERISM IN	
	PHOSPHORANES	
2.1	Berry Pseudorotation	23
2.2	Alternatives to Berry Pseudorotation	24
2.3	Turnstile Rotation	26
2.4	Irregular Processes	29
CHAPTER 3 : ARRANGEMENT OF LIGANDS IN PHOSPHORANES		
3.1	The Apicophilicity of Ligands	32
3.2	Ring Strain in Five-Membered Cyclic Phosphoranes	36
3.3	Uses of Apicophilicity Values	38
3.4	Determination of Apicophilicity Values	40
3.5	Application of D.N.M.R. in Determining	
Ţ	Apicophilicity Values	42
3.6	Accuracy and Limitations of the D.N.M.R. Method	
	for the Determination of Apicophilicity Values	48
CHAPŤE	ER 4 : RELATIVE APICOPHILICITY OF SULPHUR AND	
	OXYGEN LIGANDS	

4.1 Relative Apicophilicity of Ethylthio and EthoxyGroups in Trigonal Bipyramidal Phosphoranes5

4.2	Relative Apicophilicity of the Trimethylsiloxy Group.	Page No. 64	
CHAPTER 5 : SYNTHESIS OF PHOSPHORANES USING N-CHLORO-			
	DI-ISO PROPYLAMINE		
5.1	The Preparation of Unsymmetrical Phosphoranes	71	
5.2	The Stereospecificity of the N-chlorodi-isopropyla	mine	
	Method	77	
5.3	The Relative Apicophilicity of Phenyl and Benzyl		
	Groups by a Kinetic Method	90	
CHAPTE	R 6 : REACTION OF PHOSPHITES WITH ACRYLIC		
	ACID		
6.1	With Cyclic Trivalent Phosphorus Compounds:		
	The Relative Apicophilicity of the Phenyl Group	97	
6.2	With Acyclic Trivalent Phosphorus Compounds	102	
6.3	The Thermolysis of Spirophosphoranes Containing		
	a Pinacol Ring	106	
CHAPTER 7 : THE RELATIVE APICOPHILICITY OF THE			
	CYANIDE AND CHLORINE GROUPS		
7.1	In Hexafluorobiacetyl Adducts	112	
7.2	In Tetrachloro-o-benzoquinone Adducts	114	
7.3	The Relative Apicophilicity of the Isocyanate		
	and Thioisocyanate Groups.	116	
7.4	The Relative Apicophilicity of the Azide Group and		
	the Attempted Apicophilicity of the Benzoyloxy Gro	118 up	
EXPERIMENTAL:		124	

r

REFERENCES:

SUMMARY

A review of phosphorane chemistry is presented. From a range of spirophosphoranes the relative apicophilicity of sulphur and oxygen containing ligands was determined. The conclusion reached was that the relative apicophilicities of ethylthio, ethoxy and trimethylsiloxy were similar.

The N-chlorodi-isopropylamine method for the preparation of spirophosphoranes was developed, enabling the preparation of various unsymmetrical phosphoranes, from which the relative apicophilicities of phenoxy and phenylthio groups were determined. The preparation of spirophosphoranes from phosphetans was shown to go with retention of configuration at phosphorus. The interconversion of the <u>cis</u> and <u>trans</u> spirophosphoranes prepared from phenyl and benzylphosphetans was followed kinetically, and from this study the phenyl group was shown to be more apicophilic than the benzyl group.

Cyclic and acyclic phosphites were reacted with acrylic acid. In the case of cyclic phosphites spirophosphoranes were prepared from which the relative apicophilicity of the phenyl group was determined. A series of spirophosphoranes was prepared containing a 4,4,5,5-tetramethyl-1,3,2-dioxaphospholan ring. On thermolysis these were found to give 2,3-dimethylbutadiene as the major component and some t-butyl methyl ketone.

From a series of hexafluorobiacetyl and tetrachloro-obenzoquinone adducts the relative apicophilicities of chlorine, cyanide, isocyanate and isothiocyanate were determined. It was shown that the cyanide was more apicophilic than chlorine, whilst the isocyanate and isothiocyanate were found to have a similar apicophilicity to chlorine. The first pentaco-ordinate phosphorane containing an azide ligand was prepared by direct substitution of a chlorospirophosphorane. From this spirophosphorane the relative apicophilicity of the azide group was determined; it was found to be slightly more apicophilic than the phenoxy group. By a similar procedure a spirophosphorane containing a cyanide ligand was prepared. Parts of this work have been described in the following publications:

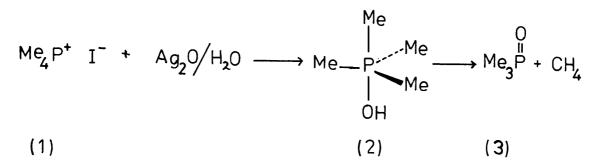
The Apicophilicity of the Ethylthio-group in Trigonal Bipyramidal Phosphoranes

By J. Brierley, S. Trippett* and M. W. White,

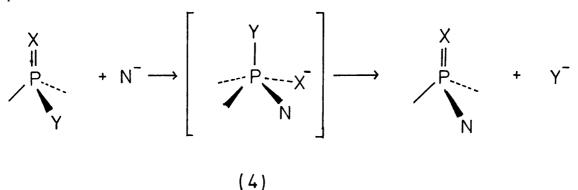
J. C. S. Perkin I, 1977, 273.

Synthesis of Phosphoranes by using N-chlorodi-isopropylamine

By S. Antczak, S. A. Bone, J. Brierley and S. Trippett,*


J. C. S. Perkin I, 1977, 278.

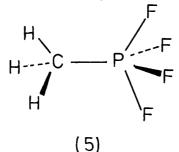
1 PHOSPHORANES


1.1 INTRODUCTION

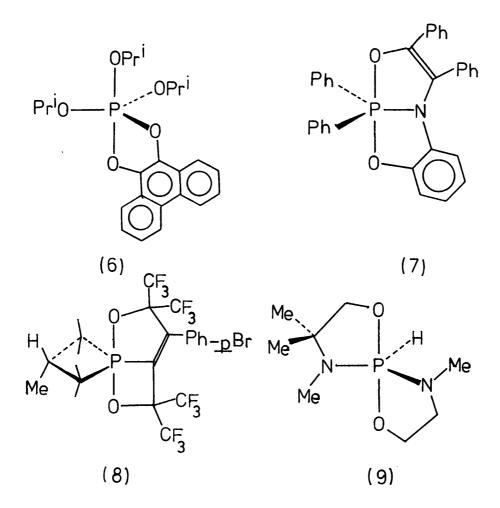
Throughout this thesis the term 'phosphorane' is used to describe a phosphorus atom with five covalently bonded ligands attached to it.

The first reported phosphorane was an intermediate (2) proposed by Ingold¹ in 1929, in the reaction of tetramethyl-phosphonium iodide (1) with moist silver oxide. On heating methane gas and trimethylphosphine oxide (3) are formed.

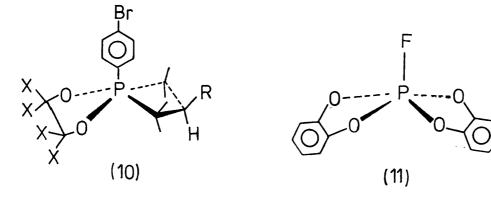
In contrast to the analogous ammonium series where discrete Me_4N^+ and OH^- ions exist, Ingold proposed that the intermediate (2) existed as a pentacovalent compound, i.e. with a covalent phosphorus – oxygen bond. Although none of these phosphorane intermediates has been isolated, many papers have been published $^{2-12}$ concerning the intermediacy of pentacovalent phosphoranes in nucleophilic attack at a tetracoordinated phosphorus compound.



The evidence for intermediates of the type (4) is therefore indirect, but there is another type of phosphorane which is reasonably stable, may be isolated and fully characterised. It is generally assumed that the structure and properties of these stable phosphoranes are applicable to the intermediate type of phosphorane (4).


1.2 THE STRUCTURE OF PHOSPHORANES

Acyclic phosphoranes with five identical ligands attached to the phosphorus atom have been shown to have trigonal bipyramidal geometry. These data have been derived from X-ray diffraction studies of pentaphenylphosphorane¹³ and pentaphenoxyphosphorane¹⁴, and electron diffraction¹⁵, infrared, and Raman studies^{16, 17} of pentafluorophosphorane. Pentachlorophosphorane has also been shown to be trigonal bipyramidal by an electron diffraction study¹⁸.


In the phosphorane (5) electron diffraction studies¹⁹ have shown the molecule to be definitely trigonal bipyramidal with only a small amount of distortion, the four fluorine atoms being bent away from the methyl group.

The incorporation of different ligands or small rings into the phosphoranes $(6)^{20}$, $(7)^{21}$, $(8)^{22}$, and $(9)^{23}$ has been shown from X-ray diffraction studies to result in only small distortions from perfect trigonal bipyramidal geometry.

However not all the distortions are small. X-ray diffraction studies of the spirophosphoranes $(10)^{24}$ and $(11)^{25}$ have shown them to be much closer to a square pyramidal configuration, with the four ring atoms taking the basal positions and the fluorine or <u>p</u>-bromophenyl group the apical position.

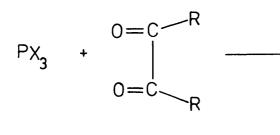
X = CF₃ R = H or <u>cis</u> Me

:

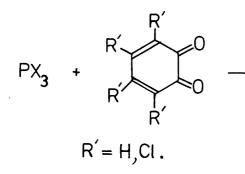
Previously the 19 F n.m.r. spectral data of the spirophosphorane (11) 26 had been interpreted in terms of the fluorine atom occupying an equatorial position in a trigonal bipyramid. Holmes 27 has shown that the n.m.r. spectral data of (11), and other spirocyclic oxyphosphoranes, are consistant with the square pyramidal structures known to exist by X-ray diffraction studies.

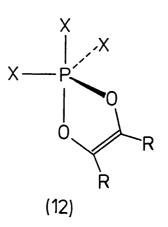
4

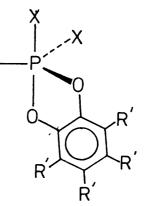
Reduced ring strain and enhanced electronic balance are cited as important factors stabilizing a square pyramidal conformation for spirophosphoranes containing highly electronegative atoms directly attached to phosphorus.

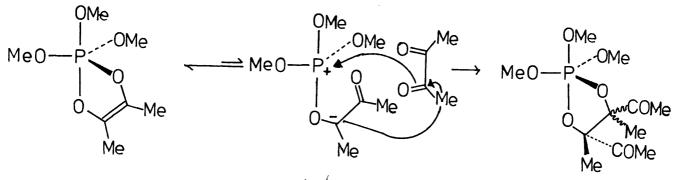

Generally speaking phosphoranes whether containing one, two or no rings are essentially trigonal bipyramidal and will be treated as such in any following discussions. The reasons for this assumption will become clear in the following chapters.

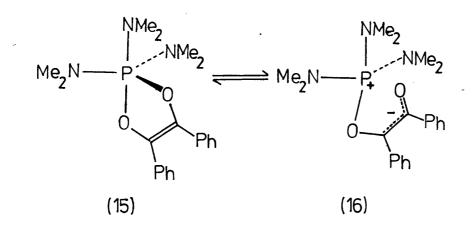
1.3 THE SYNTHESIS OF CYCLIC PHOSPHORANES


Early work on the synthesis of cyclic phosphoranes made use of the reaction of tervalent phosphorus compounds with \blacktriangleleft -diketones of the aliphatic, alicyclic and aromatic series²⁸⁻³¹ to give 1,3,2-dioxaphospholens.


Cyclic phosphoranes such as (12) are fairly reactive compounds and readily react with another molecule of the \checkmark -diketone to give a 1,3,2-dioxaphospholan ring system. (14)²⁹

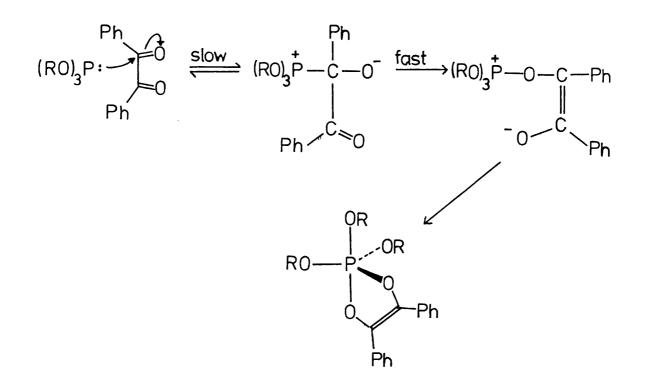

This reaction is believed to go <u>via</u> the intermediate (13) which involves ring opening and then an attack of the stabilized negative charge on the carbonyl of the second molecule of biacetyl. That similar molecules undergo ring opening can be shown in the adduct (15) made from trisdimethylaminophosphine and benzil.³²

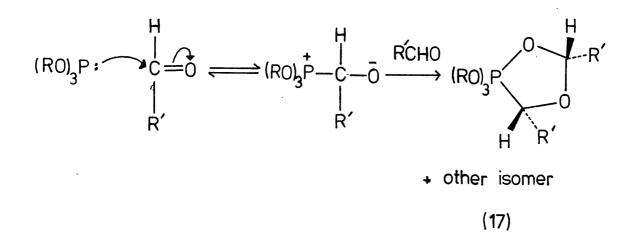

X = alkyl ,aryl ,OR,OAr, etc. $R = H, CH_3, CF_3, Ph.$



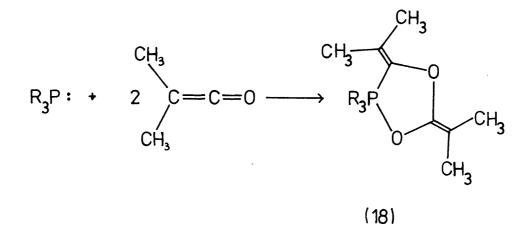
X

(13)

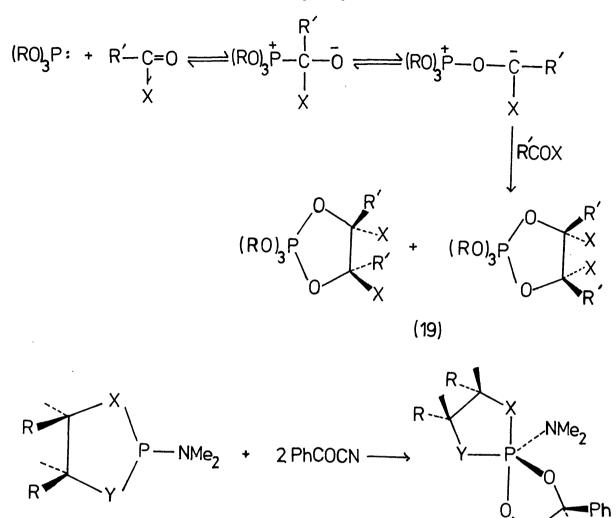

(14)

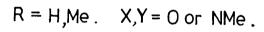

In solution this adduct (15) exists in two forms. The presence of the dipolar form (16) was deduced from the fact that the ${}^{31}P$ n.m.r. spectrum was dependant on solvent polarity, moving to low field as the solvent polarity was increased. Adduct (15) should have a positive ${}^{31}P$ n.m.r. chemical shift relative to 85% H_3PO_4 , whilst that of (16) should be negative. This gives the ${}^{31}P$ n.m.r. chemical shift observed as a weighted average of the two forms (15) and (16). Only one signal is ever observed so we can see that the equilibrium (15) \rightleftharpoons (16) is fast on the n.m.r. time scale.

Ramirez³³ has attempted to explain this result as being due to the lower electronegativity of nitrogen compared to oxygen and partly due to the fact that dimethylamino groups are more bulky than alkoxy groups.

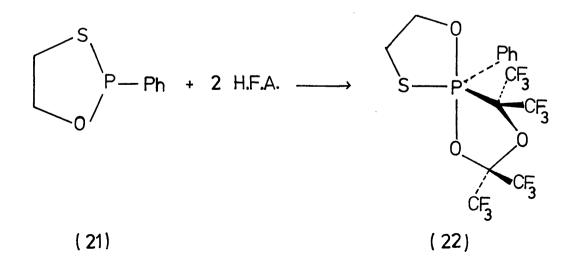

The following mechanism has been proposed³⁴ on the basis of a kinetic study of the reactions of trialkyl phosphites with benzil.

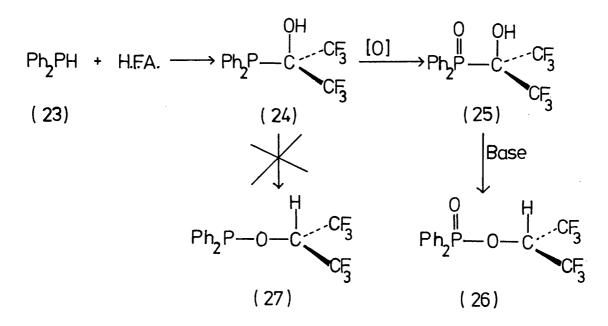
Phosphites undergo reaction with two moles of aliphatic aldehydes, under mild conditions, to give diastereomeric 1,4,2-dioxaphospholans $(17)^{35}$.



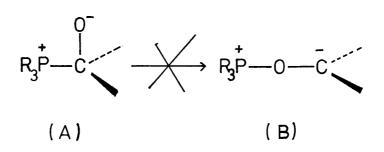

Similar 1,4,2-dioxaphospholans (18) are also formed from tervalent phosphorus compounds and dimethylketene³⁶.

If aromatic aldehydes, or ketones activated by electron withdrawing groups, e.g. $(CF_3)_2C=0$, PhCOCN, are used then the product of reaction with a tervalent phosphorus compound is a 1,3,2-dioxaphospholan ring.(19),(20).³⁷⁻⁴¹


Ramirez^{33,42} has found that the initial 2 : 1 adduct formed from trimethyl phosphite and pentafluorobenzaldehyde, at 0° , was a 1,4,2-dioxaphospholan, which on heating to 80° isomerised to the 1,3,2-dioxaphospholan. The spirophosphorane (22) has been isolated from reaction of

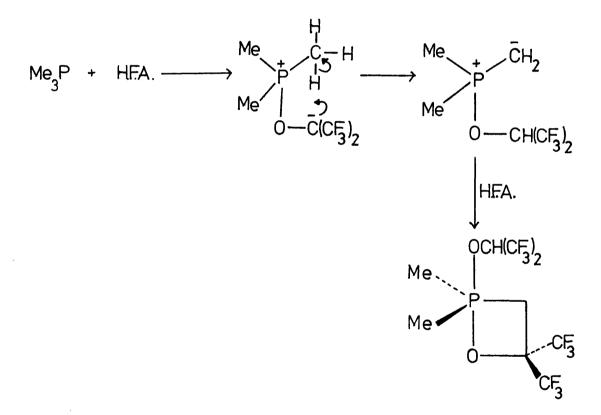


Ph

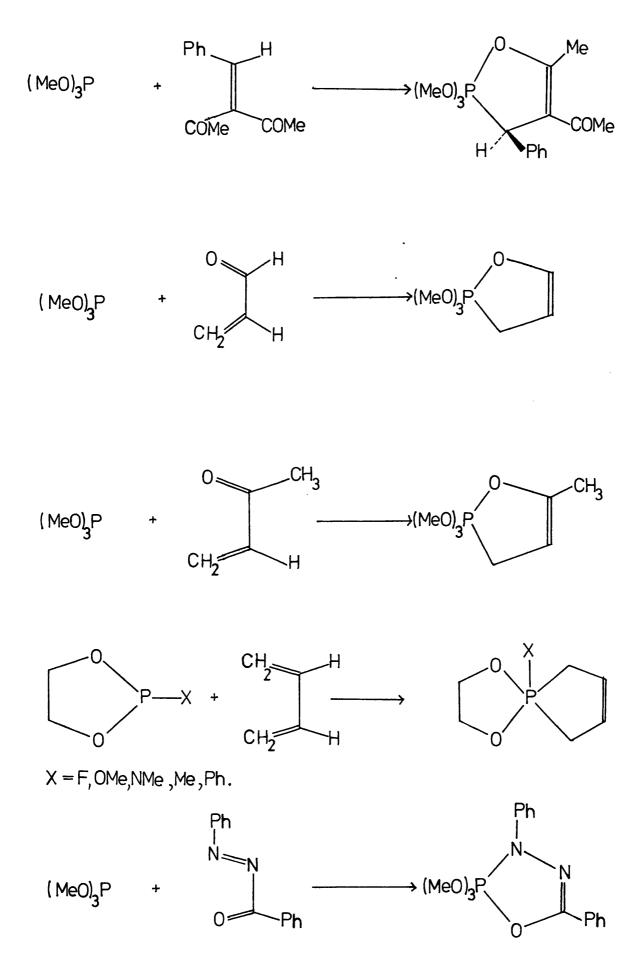


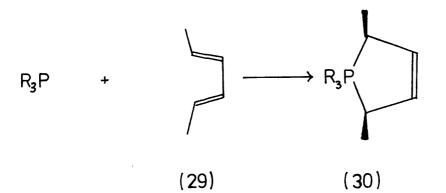
This type of adduct shows no tendency to isomerise to a 1,3,2-dioxaphospholan system, which indicates that 1,4,2-dioxaphospholans are not intermediates in the formation of 1,3,2-dioxaphospholans from H.F.A. and tervalent phosphorus compounds.

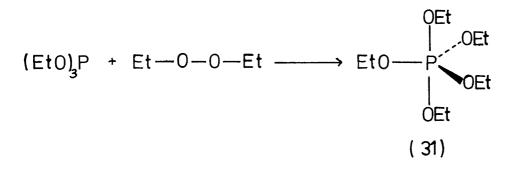
Work carried out by Janzen and Vaidya⁴⁵ on the reaction between hexafluoroacetone and diphenylphosphine (23), showed that the initial product was the phosphorus alcohol (24). This phosphorus alcohol was very susceptible to oxidation and readily gave (25), which on treatment with base rearranged to (26).



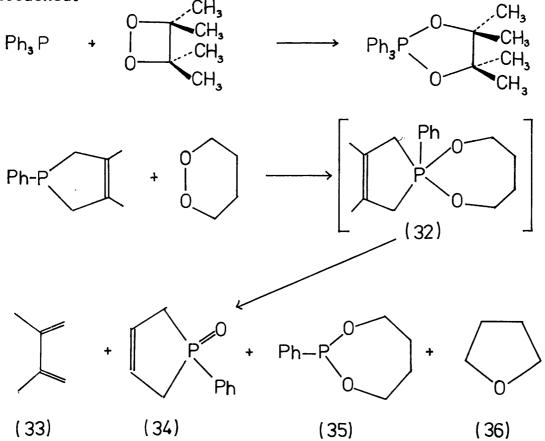
They also found that the intermediate (24) was stable and showed no tendency to isomerise to (27). This could be taken as indirect evidence that the following isomerisation $(A) \neq (B)$ will not occur.


However this assumption is not strictly valid as isomerisation of the charged betaine (A) is likely to be easier than for the unchanged phosphorus alcohol (24). So although it appears that the initial attack occurs at the carbon of the carbonyl group followed by rearrangement as in (A) \rightleftharpoons (B), we cannot rule out the possibility of direct attack on oxygen in certain cases.

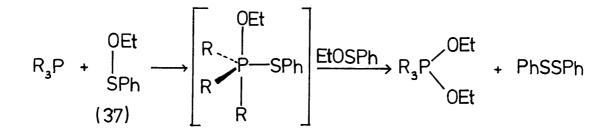

If the tervalent phosphorus compound contains a fairly mobile hydrogen atom in the α - position, then the possibility of migration occurs when the phosphine reacts with H.F.A.⁴⁶


Stable phosphoranes have been prepared from tervalent phosphorus compounds and a wide range of 1,3 - unsaturated compounds e.g. benzylideneacetylacetone^{47,48}, acrolein^{49,50}, methyl vinyl ketone⁵¹ and butadienes^{52,53}.

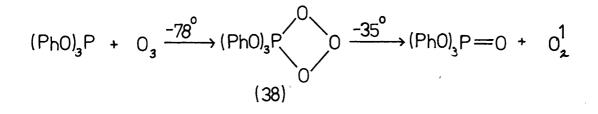
Reactions between trivalent phosphorus compounds and \underline{trans} , \underline{trans} hexa-2,4-diene(29) go by a concerted six electron disrotatory process⁵⁴ and are therefore stereospecific, e.g. give the phospholene ring (30) with the methyl groups <u>cis</u> to one another.

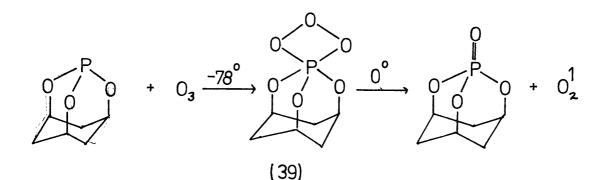


In 1964, Denney and Relles⁵⁵ prepared pentaethoxyphosphorane (31) from triethyl phosphite and diethyl peroxide.

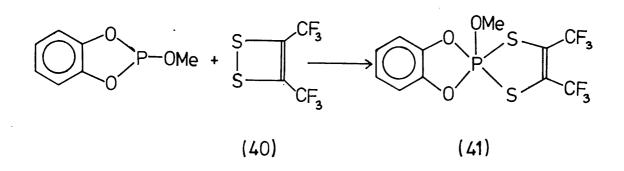


By this method many oxyphosphoranes have been prepared and by varying the peroxide 56 , 57 other groups have been attached.

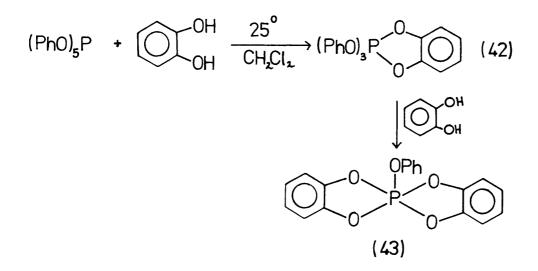


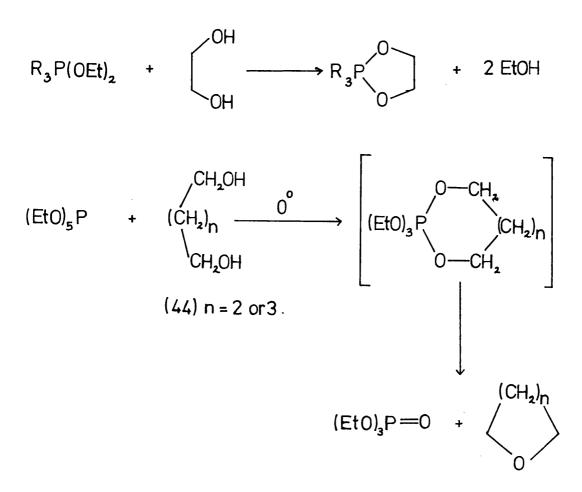

Presumably the products (33) - (36) are from an initial adduct (32) which then falls apart.

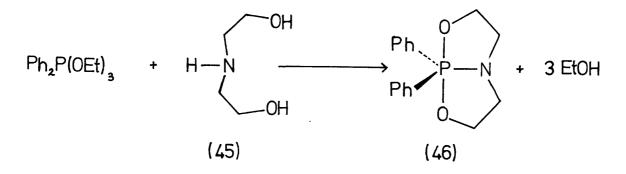
A general fault of these peroxide reactions is that they are very slow, which can lead to various side reactions and a subsequent lowering of yield. The use of ethyl benzenesulphenate $(37)^{58}$ greatly speeds up the reaction; however the diphenyl disulphide formed is difficult to remove.

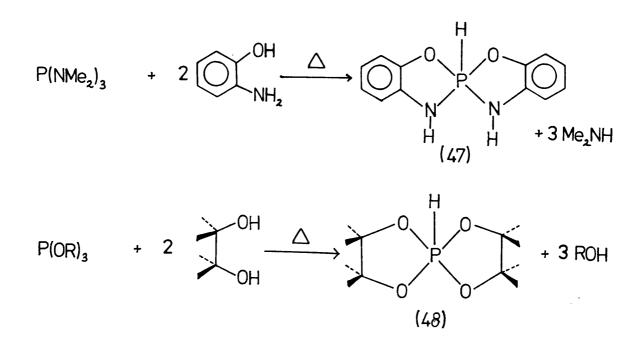


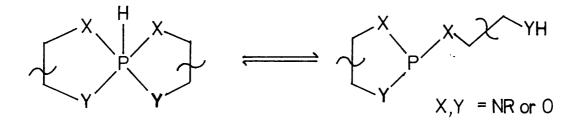
Phosphites react with ozone^{59,60} at low temperatures to give phosphoranes (38) and (39). On raising the temperature these decompose to give the phosphates and singlet oxygen.

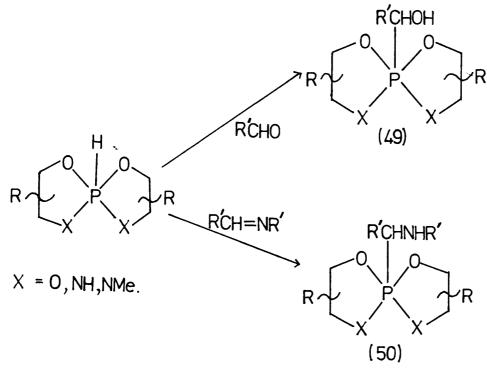


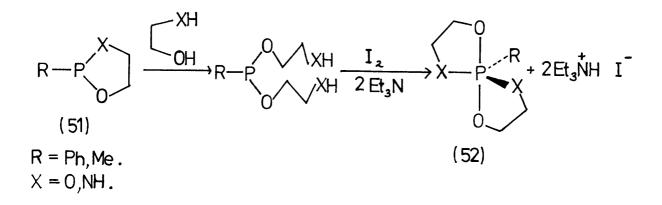

A preparation of spirophosphoranes containing two P-S bonds is facilitated by the use of bis-3,4-trifluoromethyldithieten (40), which forms fairly stable adducts (41) with cyclic phosphites.⁶¹

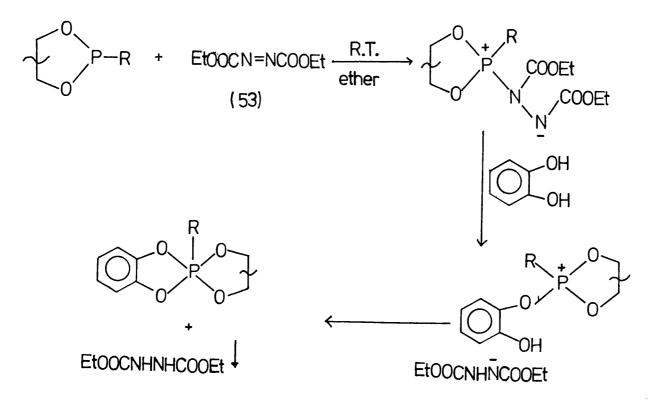

If pentaphenoxyphosphorane is reacted with one mole of catechol, in methylene chloride, at 25^oC the catechol displaces two molecules of phenol to give the cyclic phosphorane, (42). This molecule will then react with another mole of catechol to give the spirophosphorane (43).⁶²

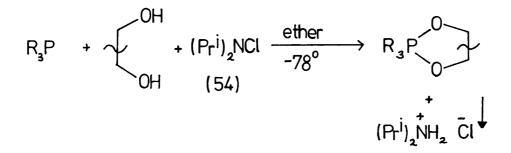

Denney^{63,64} later showed that certain diols react with acyclic oxyphosphoranes to give cyclic and spirophosphoranes. With pentaethoxyphosphorane the exchange reaction to form cyclic oxyphosphoranes only works smoothly with 1,2and 1,3-diols, since 1,4-butane diol (44,n=2) and 1,5pentane diol (44, n=3) give T.H.F. and tetrahydropyran respectively.


Denney has extended this exchange reaction by preparing bicyclicphosphorane (46) using the aminodiol (45).

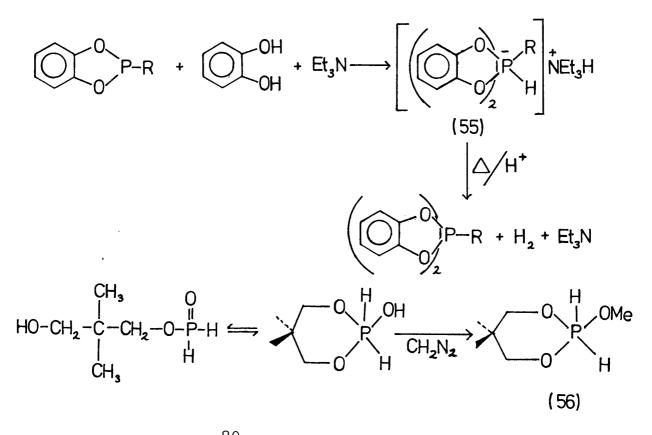

Sanchez et al^{66,67} have developed a useful method for the preparation of spirophosphoranes (47) and (48) containing a P-H bond, from reaction of diols and aminoalcohols with either trisdimethylaminophosphine or trialkyl phosphites.


Similar reactions involving cyclicphosphites⁶⁸ and cyclic phosphoramidites⁶⁹ have also been used to prepare a wide range of spirophosphoranes containing a P-H bond. A tautomeric phosphite – spirophosphorane equilibrium is characteristic of spirophosphoranes with a P-H bond derived from glycols or amino alcohols.

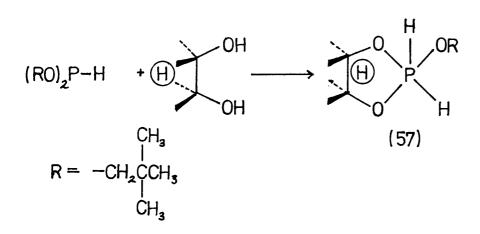

The equilibrium position depends on the temperature and the nature of the substituent in the ring and on the nitrogen atom. When X = Y = 0 the equilibrium at room temperature is almost completely displaced towards the spirophosphorane.⁶⁸ The form with a P^V atom is more characteristic of unsaturated or aromatic systems than of saturated rings or rings with alkyl substituents. In asymmetric spirophosphoranes the less substituted ring is opened preferentially.⁷⁹ These P-H spirophosphoranes will react with aldehydes⁷⁰ and imines⁷¹ to give the new systems (49) and (50).


If a cyclic phosphonite (51) is treated with one mole of a 1,2- aminoalcohol or diol followed by one mole of iodine in the presence of two moles of triethylamine, then spirophosphoranes (52) are formed in high yields.⁷²

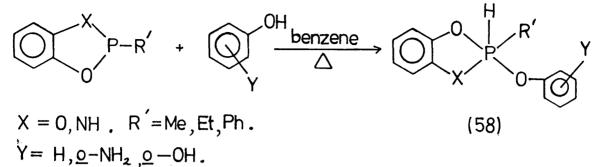
Recently two very useful methods for the preparations of spirophosphoranes have been published by Bone and Trippett.^{73,74} The first method involves the condensation of a tervalent phosphorus compound with a 1,2- or 1,3- diol (except perfluoropinacol) using diethyl azodicarboxylate.(53)

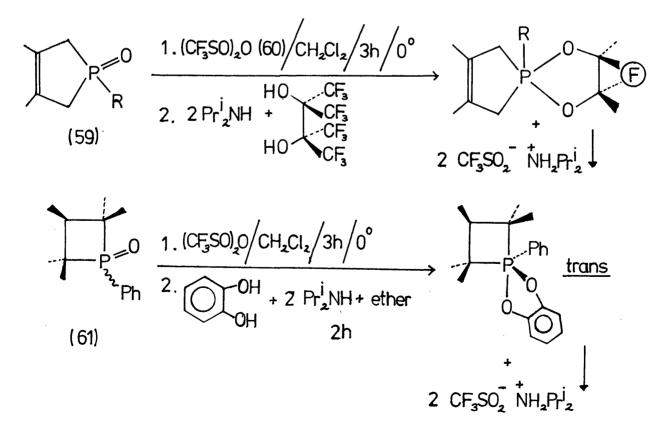


The second method involves N-chlorodi-isopropylamine (54), which reacts with tervalent phosphorus compounds in the presence of a wide range of diols according to the equation.

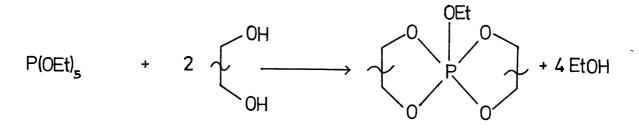


This method can be used for acyclic and cyclic phosphorus compounds with various diols and catechols.⁷⁵ Recent work has shown that certain 1,2-amino alcohols and \underline{O} -aminophenols will also undergo this reaction.⁷⁶

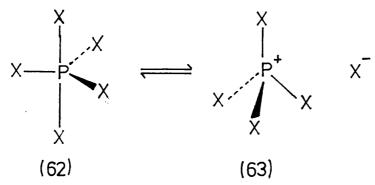

The reactions of cyclic trivalent phosphorus compounds with 1,2-glycols and 1,2-aminoalcohols leading to the formation of spirophosphoranes, takes place in acid or neutral conditions.⁶⁶⁻⁶⁹ In the presence of amines, ammonium salts (55) with a hexaco-ordinate phosphorus atom are formed, from which spirophosphoranes can be obtained by treatment with acid or on heating.^{77,78}


Recently Stec⁸⁰ has isolated stable phosphoranes (56) and (57) which have been shown to contain two P-H bonds.

Stable phosphoranes (58) have also been prepared from phenols and cyclic phosphorus compounds on refluxing in benzene.⁸¹

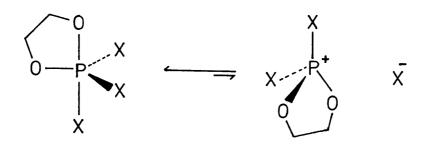


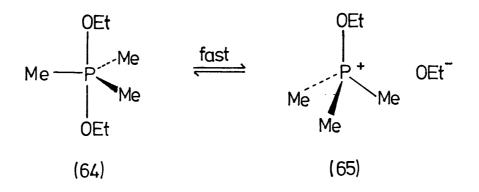
Antczak⁸² has shown that phosphoranes can be prepared directly from phosphine oxides using trifluoromethane sulphonic anhydride (60), diol and two moles of base. Acyclic phosphines and phospholen oxides (59) react very quickly, whereas phosphetan oxides (61) take up to 3 hours. The yields are usually good (30-90%) depending on the starting material. The reaction will not go if there is another oxygen atom attached to the phosphorus atom.


1.4 THE STABILITY OF PHOSPHORANES

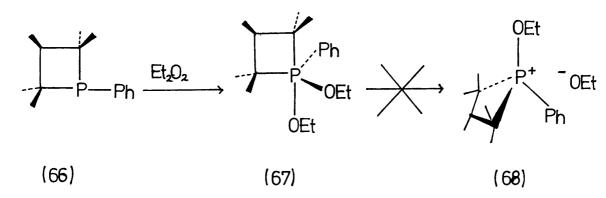
There is a lot of evidence 62,63 that suggests that phosphoranes incorporating four or five membered rings are more stable than acyclic phosphoranes.

This type of exchange reaction indicates that the thermodynamic stability of spiro and cyclic phosphorane systems is greater than that of acyclic oxyphosphoranes.

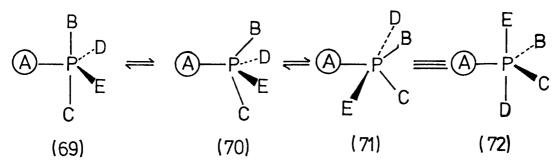

Numerous X-ray diffraction studies $^{83-85}$ indicate that there exists considerable crowding in a trigonal bipyramidal oxyphosphorane. Ramirez³³ suggests that this crowding can be reduced when the phosphorus is part of a small membered ring. As a result of this crowding in the oxyphosphorane there will be a tendency to ease this by dissociation into ions, the tetrahedral geometry of the phosphonium salt (63) being less crowded.


The incorporation of a small membered ring into (62) will have a two-fold effect on the above equilibrium.

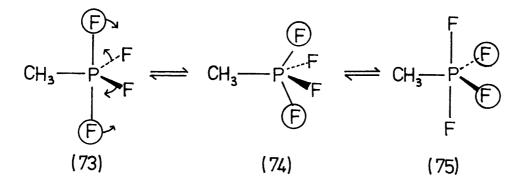
- a) according to Ramirez³³ there will be a reduction in steric crowding,
- b) in going from the trigonal bipyramidal structure of (62) to the tetrahedral geometry of (63), there would be an


increase in ring strain, which would have the effect of shifting the equilibrium position to the left.

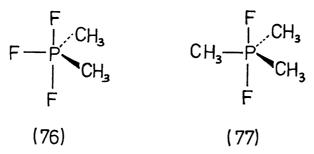
Denney⁸⁶ has shown that in the phosphorane (64), prepared from trimethylphosphine and diethyl peroxide, there was no observable P-H coupling for the methylene groups of the ethoxy ligands. This must be due to a rapid exchange <u>via</u> (65).


Compound (64) could best be described as a phosphonium ethoxide. However if the starting phosphine is one containing a small membered ring (66), then a stable phosphorane (67) is produced. There is no ionization to (68) due to the increase in ring strain which would be required to go from trigonal bipyramidal to tetrahedral geometry.

2 LIGAND PERMUTATIONAL ISOMERISM IN PHOSPHORANES

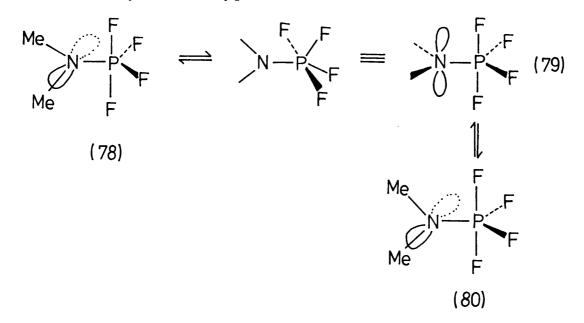

2.1 BERRY PSEUDOROTATION

Pentafluorophosphorane has been shown to be trigonal bipyramidal by electron diffraction¹⁵ and Raman studies,^{16,17}, however only one type of fluorine atom is observed in the ¹⁹F n.m.r. spectrum over the temperature range $-197^{\circ} \rightarrow +60^{\circ}$ C.⁸⁷ Berry⁸⁸ suggested that the n.m.r. result might be explained in terms of a rapid interchange of fluorine atoms, on the n.m.r. time-scale making all the fluorine atoms equivalent. The name he gave to this process was pseudorotation, and it can be illustrated as follows.



Using A as a pivot towards the two remaining equatorial positions (69) the two apical ligands move in the direction shown. In (70) an intermediate or transition state is reached, which has a square pyramidal geometry. Ligands D and E move apart from 120° to 180° , whilst the angle between B and C has moved from 180° to 120° (71). From (72) the two new apical positions are occupied by D and E, whilst B and C now occupy equatorial positions. Another series of pseudorotations, this time using B or C as the pivot, will make all the positions A to E equivalent. This feature of apical and equatorial exchange is a pairwise mechanism is known as Berry pseudorotation.

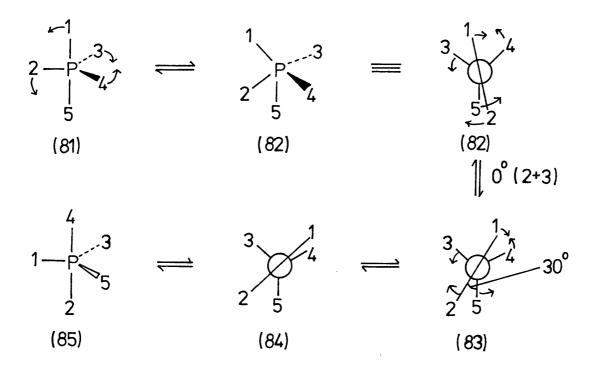
In a subsequent series of investigations, Muetterties and Schmutzler⁸⁹⁻⁹³ examined and interpreted the n.m.r. spectra of a large number of alkylfluorophosphoranes in terms of Berry pseudorotation. For example $CH_3PF_4(73)$ shows only one kind of fluorine atom from $-120^{\circ} \rightarrow +100^{\circ}C$.


If we take the methyl group as the pivot then in one Berry pseudorotation we can make all the fluorine atoms equivalent (73) \rightleftharpoons (75). In (CH₃)₂PF₃(76) there is only one type of methyl group in the ¹H n.m.r. but two different kinds

of fluorine atom in the ¹⁹F n.m.r., in the ratio of 2:1. This can be explained if both methyl groups occupy two equatorial positions in a trigonal bipyramid (see Chapter 3), $(CH_3)_3 PF_2(77)$ shows only one type of methyl group and one type of fluorine atom, with a similar chemical shift to the fluorine atoms assigned the apical positions in (76). The structures of (73), (76) and (77) have been verified by electron diffraction measurements.^{15,19}.

2.2 ALTERNATIVES TO BERRY PSEUDOROTATION

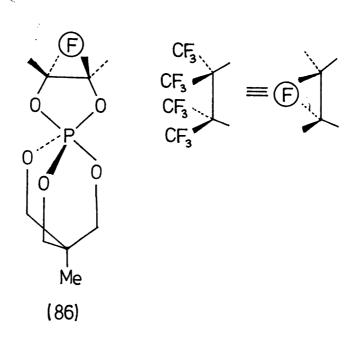
Muetterties⁹⁴ put forward several alternative mechanisms to explain the equivalence of the fluorine atoms in PF_5 . However he eliminated them on the basis of Whitesides and Mitchells experiment⁹⁵, in which they looked at the temperature dependent ³¹P n.m.r. spectrum of $Me_2N-PF_4(78)$. In order to achieve equivalence of the fluorine atoms in this molecule, rotation about the P-N bond must **b**e rapid. This is independent of the exact nature of the nitrogen co-ordination geometry, whether it is planar or pyramidal.


If the N-methyl groups are in (78) and a Berry pseudorotation then occurs, structure (79) is obtained in which the N-methyl groups are parallel to the equatorial fluorine atoms. The only way to get equivalence would be to do a 90° rotation around the P-N bond to give (80). From theoretical calculations and experimental work Hoffmann <u>et al</u>^{96,97} have shown that the phosphorane (79) is of a higher energy than (78), due to the lone pair of electrons of the nitrogen atom not being in the equatorial plane, which is the favoured position. This leads to a barrier to rotation around a P-N bond, which they found to be approximately 9 kcal mol⁻¹. Thus to get equivalence of the fluorine atoms an energy barrier of at least 9 kcal mol⁻¹ must be overcome.

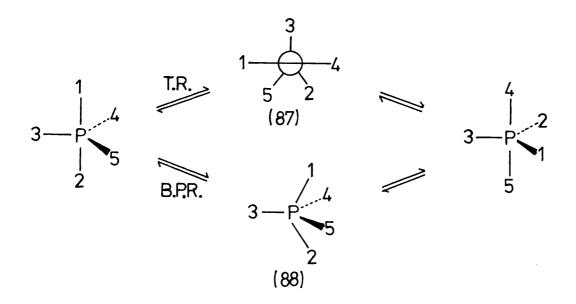
Whitesides and Mitchell found that on cooling $Me_2NPF_4(78)$ down to $-100^{\circ}C$ the ³¹P n.m.r. spectrum showed a triplet of triplets, which would be expected for a rigid trigonal bipyramid, with the NMe₂ group equatorial. On raising the temperature to $50^{\circ}C$ the ³¹P n.m.r. spectrum changed to a regular quintet, which can only be accounted for by four equivalent fluorine atoms. Using a full line shape analysis of the ³¹P n.m.r. spectrum over the temperature range $-100^{\circ} \longrightarrow -50^{\circ}$ C, Whitesides and Mitchell concluded that the equivalence of the four fluorine atoms was taking place by simultaneous interchange of the two apical with the two equatorial fluorine atoms. Of the mechanisms considered by Muetterties only the Berry pseudorotation process was consistant with such an observation.

2.3 TURNSTILE ROTATION

As an alternative to Berry pseudorotation, Ramirez, Ugiet al, 9^{8-102} proposed a mechanism which they termed Turnstile Rotation. This process is characterised by a rotation of one apical and one equatorial ligand against the other three ligands. The result of such a 60° rotation was to form a new phosphorane in which the pair of apical ligands were exchanged for one pair of equatorial ligands. The overall process exchanges ligands in a pairwise manner, in agreement with the experiment of Whitesides and Mitchell.


The actual process can be illustrated as follows.

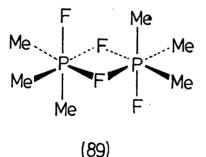
Firstly, ligands 1 and 2 move down by about 9° in the plane of the paper, these ligands are referred to as 'the pair'. Ligands 3 and 4 now move together until they are 90° to each other; the ligands 3, 4 and 5 are referred to as 'the trio'. As a result of this bending, the intermediate phosphorane (82) is formed, the name given to it is a 0° (2+3), but in fact this intermediate is never actually formed because whilst 1 and 2 and 3 and 4 are bending, there is an internal rotation of the pair against the trio of 30° , 18° by the pair and 12° in the opposite direction by the trio. This internal rotation of the hypothetical intermediate (82) gives rise to the intermediate (83), which is known as a 30° (2+3).


If the rotations are continued for another 30° , intermediate (84) is formed, which is a 0° (2+3), (the names being derived from the smallest dihedral angle between ligands in the Newman projection). Synchronous to this last rotation, there is a bending back to a trigonal bipyramid (85). This process is known as a (TR)¹ and gives the same result as a Berry pseudorotation using ligand 3 as the pivot.

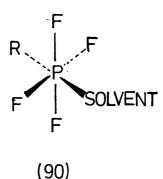
Numerous theoretical calculations based on symmetrical phosphoranes of the type PX_5 , suggest that the Berry pseudorotation process is of lower energy than the Turnstile rotation mechanism.⁹⁶, ¹⁰³ In highly strained systems this may not be the case and Ramirez¹⁰¹ has argued that the rapid ligand exchange which the caged spirophosphorane (86) undergoes, is just such a case. The rapid ligand isomerism could be explained by the Turnstile rotation mechanism in terms of a process rotating the five membered ring against the cage system. It was suggested that the equivalent exchange by the Berry pseudo-rotation process had a prohibitively high energy barrier, due to the high degree of ring strain involved in the square pyramidal intermediate, although no strong evidence was put forward

to back-up this hypothesis.

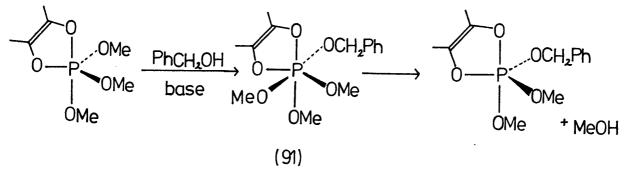
If a comparison of the geometries and energies of the intermediates from Turnstile (87) and Berry mechanisms (88) are made, they are found to be very similar, so that any differences are likely to be very small.


In the absence of more conclusive evidence to the contrary, ligand permutational isomerism will be considered to proceed <u>via</u> the Berry pseudorotation mechanism, in future discussions of d.n.m.r. data presented in this thesis.

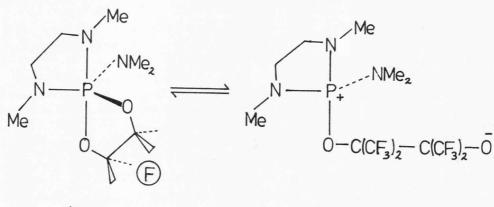
2.4 IRREGULAR PROCESSES


The ligand permutational isomerisation processes already discussed have all been unimolecular and involve no bond breakage or formation i.e. regular processes. Ligand permutational isomerism can take place <u>via</u> an irregular process which may be bimolecular or involve the formation of new bonds or bond breakage.

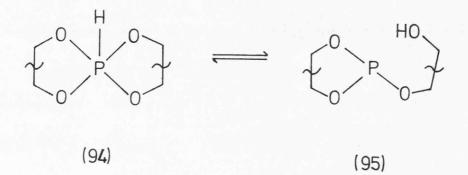
There is a lot of evidence to suggest that irregular processes are quite common in certain systems. Moreland and Doak^{104} have shown that the ligand permutational isomerisation of Ph_2PF_3 in Teflon n.m.r. tubes is an intramolecular process with first order kinetics. However if Pyrex n.m.r. tubes are used then the process becomes intermolecular. This intermolecular process is thought to be due to impurities in the pyrex tubes. Such processes make d.n.m.r. data on fluorophosphoranes open to question.


Another irregular process involving fluorophosphoranes was brought to light by $Cowley^{105}$, who observed second order kinetics and large negative entropies of activation for the ligand permutational isomerisation of Me_2PF_3 and Me_3PF_2 . The postulation was the formation of a dimeric intermediate (89) that led to equivalence of the fluorine atoms.

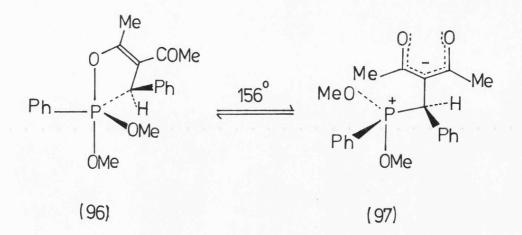
Other analogous mechanisms involve the co-ordination of a solvent molecule to the fluorophosphorane¹⁰⁶ to give the hexaco-ordinate intermediate (90). Indeed there are many examples in the literature¹⁰⁷ of stable hexaco-ordinate phosphorus


compounds. Ramirez <u>et al</u>¹² have posulated their intermediacy (91) in base-catalysed exchange reactions at pentaco-ordinate phosphorus. Hence there is always the possibility that a trace

of nucleophilic impurity may bring about an irregular process, the impurity either being supplied by the solvent or the phosphorane itself.


A common cause of irregular processes in phosphoranes is that of ionization $(92) \rightleftharpoons (93)^{108}$ usually involving ring opening. Such ring opening processes can take place without ionization¹⁰⁹, if the phosphorane is one containing a P-H bond, $(94) \rightleftharpoons (95)$.

If such processes become rapid, i.e. on heating, then this will bring about equivalence. Hence when dealing with data on ligand permutational isomerism, originating from d.n.m.r. experiments, the possibility of an irregular process operating via a ring opened species cannot be overlooked. Experimentally, a good way of detecting such a mechanism is to check if the ^{31p} n.m.r. chemical shift is dependant on solvent polarity. If marked changes occur then it is likely that ring opening is occurring. The loss of phosphorus coupling⁸⁶ is another indication that rapid ionization is occurring.



(92)

At high temperature (156°) the aliphatic methyl groups of (96) become equivalent^{47,110}, although the two methoxyl groups do not. This almost certainly results from the thermal opening and closing of the five membered ring via the zwitterion (97).

3 THE ARRANGEMENT OF LIGANDS IN PHOSPHORANES

3.1 THE APICOPHILICITY OF LIGANDS

Hoffmann's⁹⁶ molecular orbital calculations showed there are three factors which contribute to a ligand's preference for the apical positions in a trigonal bipyramidal phosphorane.

(i) electronegativity

(ii) π donation

(iii) $\hat{\mathbf{n}}$ acceptance

This preference for the apical position has been encompassed by the term 'apicophilicity'.¹⁰¹

There have been many attempts at predicting the relative apicophilicities of various ligands using n.m.r. studies of fluorophosphoranes.^{89,93} and cyclic oxyphosphoranes.^{47,48,51,111}

From kinetic studies^{5,112} of cyclic and acyclic phosphate, phosphonate and phosphinite esters, 'preference rules' were obtained.

These empirical rules state that when the phosphorus is part of a small (four or five)-membered ring, the ring prefers to span an apical-equatorial position in a trigonal bipyramid and that electronegative groups prefer the apical positions.

X-ray diffraction studies^{23,83,108} have shown the apical-equatorial preference for small rings, but other factors apart from electronegativity have been shown to affect apicophilicity values.

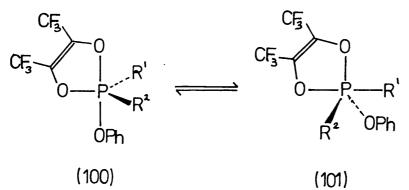
The preference for the apical position of electronegative atoms or groups can be explained by the accumulation of negative charge at the apical positions. This accumulation of negative charge was indicated from molecular orbital calculations on PH_5^{96} , though the same effect has also been found for other phosphoranes. ^{101,113,114}

π donation and π acceptance

Hoffmann⁹⁶ went on to consider the interaction of π orbitals of a substituent in both the apical and equatorial positions. π interactions between ligand donor orbitals and phosphorus were considered in terms of destabilising interactions between the phosphorane framework and the ligand π system, and stabilising interactions between the ligand π system and the phosphorus d orbitals.

Hoffmann <u>et al</u>⁹⁶ concluded that the phosphorus <u>d</u> orbitals participated only to a small extent and had only a small effect in determining the ligand arrangement around phosphorus. The small part played by the phosphorus <u>d</u> orbitals in Hoffmann's calculations differs from that in those of other workers.^{99,100,101,102} From the amount of overlap between molecular orbitals it was concluded that the greatest interaction occurred in the apical position for both \mathcal{R} acceptors and \mathcal{R} donors. Therefore \mathcal{R} donors having a destabilising effect will prefer the equatorial position, where interaction is less. \mathcal{R} acceptors having a stabilising effect will prefer the apical position where interaction is greater. So the preference of a ligand for a particular position in a trigonal bipyramid is determined mainly by the interaction of the ligand \mathcal{R} systems with the framework σ orbitals.

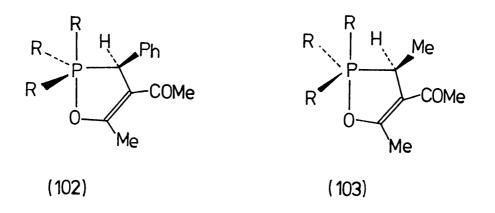
Although there is no preferential orientation of the π orbital in an apical position, an equatorial π acceptor will prefer to have its acceptor orbital perpendicular to the equatorial plane (98), whereas a π donor will prefer to have its donor orbital in the equatorial plane (99).


STERIC FACTORS

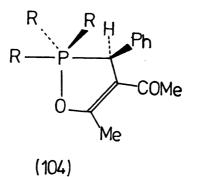
In the case of steric interactions, the apical position having three ligands at 90° may be considered to be the more

hindered position, the equatorial position having only two. This will be offset to some extent by the fact that the apical bond is longer and therefore steric interactions will be smaller.

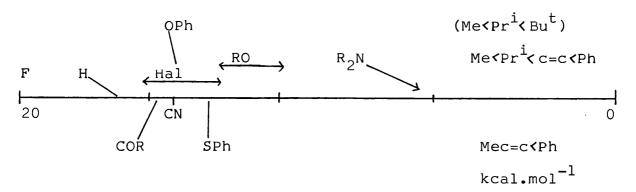
Whittle¹⁰⁸ found that steric effects in a trigonal bipyramid are relatively small unless there are at least two bulky groups attached directly to phosphorus. This information was obtained from a series of hexafluoro-biacetyl adducts (100).


The pseudorotation (100) \iff (101) can be slowed on the n.m.r. time-scale and from this information the free energy of activation can be calculated (see section 3.4).

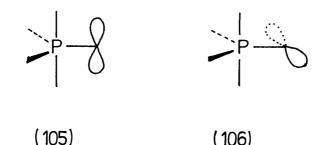
RESULTS


$$R' = Me$$
 $R^2 = Me$ $G^{**} = 10.0 \text{ kcal. mol}^{-1}$
 $R' = Me$ $R^2 = Bu^{t}$ $G^{**} = 11.1 \text{ kcal. mol}^{-1}$
 $R' = Bu^{t}$ $R^2 = Bu^{t}$ $G^{**} = 14.6 \text{ kcal. mol}^{-1}$

Gorenstein¹¹¹ found another type of steric hindrance to pseudorotation when bulky substituents are present on the \propto


carbon atom. He found that the barriers to pseudorotation in the benzylideneacetylacetone adducts (102) were a lot greater than in the corresponding methyleneacetylacetone adducts (103).

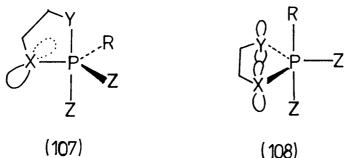
The steric hindrance in (102) arises from the eclipsing of the phenyl group and an equatorial R group when the ring carbon atom is in an apical position (104).


From a series of d.n.m.r. studies, a scale of relative apicophilicities¹²¹ has been proposed. This information was obtained from the variation in $\Delta G^{\#}$ values of a series of spirophosphoranes bearing differing ligands, the change in ligand bringing about a difference in the free energy of activation for the Berry pseudorotation processes available. Scale of Relative Apicophilicities

From the scale above it can be seen that the relative apicophilicity of a group is determined primarily by its electronegativity. However when \mathcal{T} acceptor or donor orbitals are present on the ligand corrections have to be made. This is also true when steric effects become important, as steric effects are known to reverse small differences in apicophilicities.¹²¹

3.2 RING STRAIN IN FIVE-MEMBERED CYCLIC PHOSPHORANES

Hoffmann <u>et al</u>⁹⁶ predicted the preferred orientation of π donors bearing a single π system. They concluded that in the apical position a π orbital of a substituent encountered a six-fold barrier to rotation and nence there would be little preferential orientation of the π orbital. However if the ligand occupies an equatorial site, the interaction was strongest when the π orbital was parallel to the apical bond, i.e. the interaction (105) is stronger than interaction (106).


Hoffmann concluded that as these π donor orbital will prefer to lie in the equatorial plane (106) where interaction is less.

 π acceptors stabilise the molecule, therefore the π acceptor orbital will prefer to lie parallel to the apical bonds (105) where interaction is stronger.

This preferred orientation of a substituent with a single π donor orbital will lead to a barrier to rotation around the sigma bond to phosphorus, as the orbital rotates from (106) to the unfavourable apical plane (105). Heteroatoms bonded to pnosphorus have been shown to be sp² hybridised by X-ray diffraction studies, 23,83,108 and as such act as single π systems.

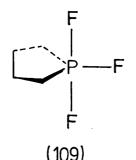
Barriers to rotation have been determined experimentally for $P-N^{90,95,97,115-117}$ and $P-S^{118}$ bonds as the temperature is lowered. The slowing down of rotation around a P-O bond has never been observed experimentally; however it has been shown to be less than 8 kcal.mol⁻¹.¹¹⁹

From a d.n.m.r. study of a range of stable spirophosphoranes Trippett et al¹²⁰ obtained data on the energies required to move various five membered rings from favoured apical-equatorial to diequatorial positions. They found that the energy required to move five-membered rings, containing heteroatoms bonded to phosphorus, to an equatorial-equatorial position is greater than is needed in the case of a phospholan ring. The energy required depends not only on the heteroatom which moves from an apical to the equatorial position, but also on the nature of the atom which remains equatorial.

The difference in energy between (107) and (108) is made up of three factors.

(i) the difference in apicophilicity between R and Y whenthe lone pair on the equatorial heteroatom Y is constrainedto an apical plane.

(ii) the strain involved in going from a 90° bond angle at phosphorus to one of 120° .

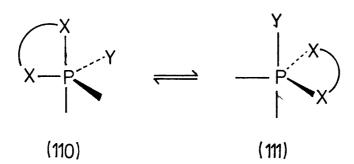

(iii) the energy required to rotate the lone-pair on X from the equatorial to an apical plane.

Therefore

 $E^{108} - E^{107} = S + R^{X} + \Delta A(Y-R) + R^{Y}$

The strain factor (S) was determined to be 8 kcal.mol⁻¹ for a phospholan ring and 10 kcal.mol⁻¹ for a phospholen ring system.

The strain factor for the phospholan ring is consistant with the value obtained by Muetterties <u>et al</u>⁸⁹ from the pseudorotation of (109).



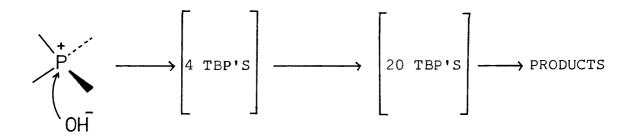
With information on the barriers to rotation around the sigma bonds between various heteroatoms and phosphorus, differences in apicophilicites and ring strain, it has proved possible to calculate approximate $\Delta G^{\#}$ values for the pseudorotation processes of a large number of phosphoranes containing five-membered rings.¹²⁰

3.3 USES OF APICOPHILICITY VALUES

A thorough knowledge of relative apicophilicity values, in theory, would provide a way of predicting the most energetically favoured arrangement of ligands in an acyclic phosphorane.

In dealing with cyclic phosphoranes one must also take into account ring strain. Small rings will prefer to span the apical-equatorial position in a trigonal bipyramid, but this arrangement may sometimes conflict with apicophilicity considerations.

If Y is more apicophilic than X, then on apicophilicity arguments, structure (111) would be the low energy phosphorane, but from ring strain considerations (110) would appear to have the lowest energy. So that the preferred arrangement of ligands in a cyclic phosphorane is dependent upon the balance of relative apicophilicites and ring strain.


The main use of apicophilicity values and ring strain data is in the field of nucleophilic substitution at tetracoordinated phosphorus. Before predictions of any sort can be made, the following assumptions have been made by workers in this field.^{5,8}

(i) The intermediates in nucleophilic substitution are trigonal bipyramidal phosphoranes.

(ii) The nucleophile enters the apical position of a trigonal bipyramid and the leaving group departs from an apical position. (iii) Phosphorane formation is under thermodynamic and not kinetic control, i.e. the most stable phosphorane is formed fastest. The presence of bulky ligands on the phosphorus might invalidate this assumption by determining the direction of attack, not by apicophilicity considerations, but by the by the ease of approach of the incoming nucleophile.¹²² (iv) Nucleophilic attack occurs at the faces of the tetrahedron and this will result in the formation of four possible trigonal bipyramids.

(v) These initial trigonal bipyramids may be sufficiently
 long-lived to undergo pseudorotation processes to give up to
 twenty phosphoranes.²⁻¹²

(vi) Any of these intermediate phosphoranes may be capable of decomposing to form products, therefore there is the possibility of a wide range of stereochemistry in the products.

The formation of products will most likely be derived from the most stable phosphorane, i.e. relative leaving group abilities will not affect the reaction pathway. Usually this will be the case, as the most apicophilic group is usually the best leaving group. However there are a few exceptions; fluorine is more apicophilic than chlorine but it is a poorer leaving group. In this case the reaction pathway might be altered by leaving group ability.

A full apicophilicity scale coupled with ring strain values would provide knowledge on the relative stabilities of the phosphorane intermediates, and hence enable prediction of what the reaction pathway is most likely to be.

3.4. DETERMINATION OF APICOPHILICITY VALUES

There are three general methods in the literature for the determination or ligand apicophilicity.

a) Berry pseudorotation rates are dependent upon the energy difference between the interconverting phosphoranes. Systems have been designed to enable the Berry pseudorotation rate to be monitored by d.n.m.r. spectroscopy.¹²³⁻¹²⁷ If the energy difference between the interconverting phosphoranes is quite high (>26 kcal mol⁻¹) then a conventional kinetic determination of the rate of conversion is possible.^{128,129}

Therefore from a knowledge of the Berry pseudorotation rate, the energy difference between the phosphoranes can be **determined** and hence information on apicophilicities can be obtained. The apicophilicity values derived from kinetic measurements will differ slightly from the true thermodynamic values (see 3.6).

b) If the stereochemical course of nucleophilic substitution at tetraco-ordinated phosphorus can be predicted by leaving group abilities and apicophilicity considerations, then Debruin¹³⁰ reasoned that the reverse must also be true. A semi-quantitative apicophilicity scale has been built up from the stereochemistry and reaction pathways of various substituents.

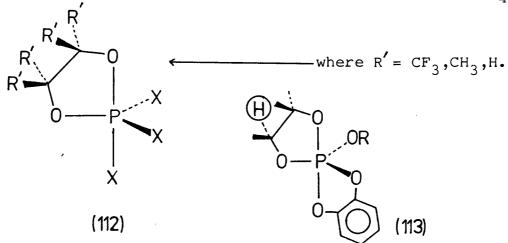
c) A limited apicophilicity scale has been determined¹³¹ by studying the ground state arrangements of ligands in certain asymmetrically substituted phosphoranes. This was accomplished by cooling the sample until all pseudorotations were slow on the n.m.r. time-scale. Analysis of the n.m.r. spectrum of the 'frozen' molecule can determine the arrangement of the ligands.^{89,93,131-133} The apicophilicity scale derived by this method is not particularly useful for obtaining quantitative data.

The apicophilicity values described in this thesis were determined by evaluation of Berry pseudorotation rates using d.n.m.r. spectroscopy or standard kinetic measurements (see Chapter 5.3). In the case of d.n.m.r. spectroscopy the rate

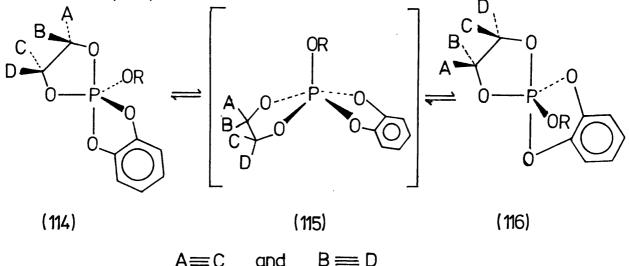
data were obtained by measurement of the coalescence temperature (T^{C}) of signals of equal intensity. Free energies of activation (ΔG^{\bigstar}) were derived from the coalescence temperature and the maximum frequency separation $(\Delta \nabla)$ of the signals below coalescence using the Eyring equation.¹³⁴

$$k_{1} = \frac{kT}{h} \quad e^{-\Delta G^{\#}} \qquad k = Boltzmann's constant$$
$$T^{C} = Coalescence temperature$$
$$h = Planck's constant$$
$$R = Gas constant$$

Where the rate of pseudorotation ${\rm k}_1$ at the coalescence temperature is given by the Gutowsky-Holm equation. 135

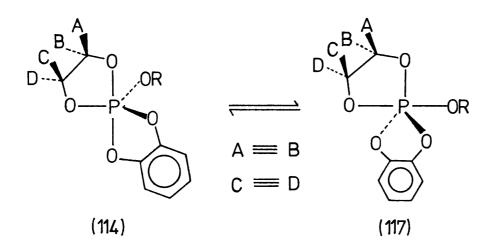

$$k_1 = \frac{\pi \Delta \gamma}{\sqrt{2}}$$

The values of $\Delta G^{\#}$ calculated in this way at different temperatures can only be compared if the entropies of activation ($\Delta s^{\#}$) are zero. Gorenstein¹¹¹ and Wolf¹²⁸ have concluded that the values of $\Delta S^{\#}$ are very small and to the first approximation may be regarded as zero.

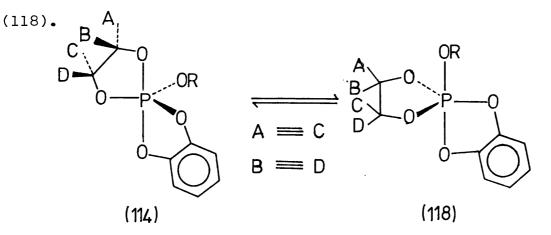

3.5 APPLICATION OF D.N.M.R. IN DETERMINING APICOPHILICITY VALUES

In order to monitor a process by n.m.r. the molecule must contain suitable groups that are clearly visible in the n.m.r. spectrum of the molecule. The apicophilicity data described in this thesis have been obtained from the following systems.

A. This system makes use of a five-membered 1,3,2-dioxaphospholan ring with four identical groups on the two carbon atoms of the ring (112), these groups can be readily monitored by n.m.r.

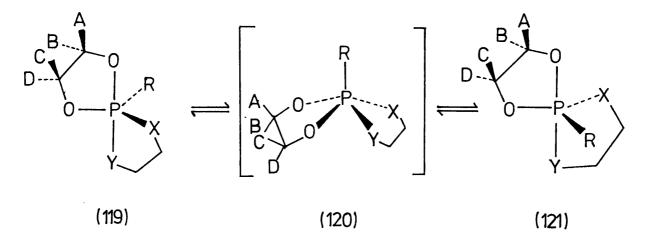


Using the spirophosphorane (113) as an example, with the methyl groups labelled A-D. (114), a possible pseudorotation is that of (114) to (116), <u>via</u> the square based pyramidal intermediate (115).


This intermediate contains a plane of symmetry, which makes A equivalent to C and B equivalent to D. The spirophosphoranes (114) and (116) are of equal energy and are known as topomeric species. This pseudorotation process cannot become slow on the n.m.r. time-scale, being a very low energy process; as a result of this topomeric pseudorotation the methyl signals in (114) appear as two equal intensity singlets in the ¹Hn.m.r. spectrum at room temperature.

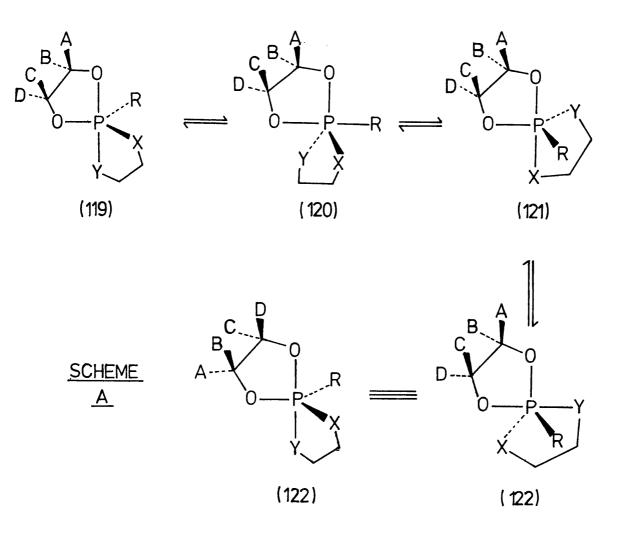
A second pseudorotation involves putting the catechol ring into a diequatorial position (114) (117), and the -OR group apical.

In (117) there is a new plane of symmetry which makes A equivalent with B and C equivalent with D. Unlike the last pseudorotation this will be of a high energy because the catechol ring is in an unfavourable diequatorial position and the -OR group has moved to the apical position. This pseudorotation will be slow on the n.m.r. time-scale at room temperature, but will become fast when the temperature is raised. When this pseudorotation is fast on the n.m.r. timescale, all the methyl groups A-D will become equivalent in the n.m.r. spectrum. This will be observed as a gradual broadening of the methyl signals as the temperature is raised, until they coalesce to a single broad peak (the coalescence temperature T^C). Further heating will cause the peak to sharpen.

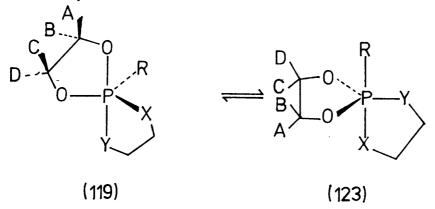

There is a third possible pseudorotation which involves putting the pinacol ring in a diequatorial position, $(114) \rightleftharpoons$

This pseudorotation has the same effect as the low energy topomeric pseudorotation (114) \rightarrow (116), and makes A equivalent to C and B equivalent to D. The only way complete

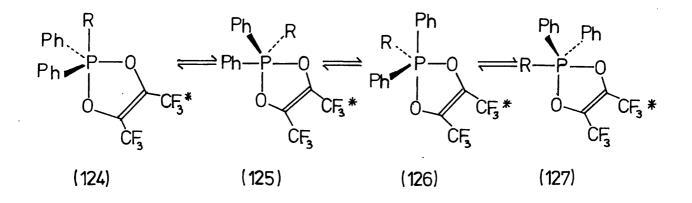
equivalence of the methyl signals can occur is if the catechol ring is forced to occupy a diequatorial position with the -OR group moving to an apical position. The energy associated with such a pseudorotation has been shown by Bone⁴⁴ to be <u>ca</u> 20 kcal. mol⁻¹.


B. If the catechol ring is replaced by a second ring which is not symmetrical (119), then the low energy topomeric pseudorotation (119) \rightleftharpoons (121) will not make any of the methyl groups equivalent.

Due to the lack of a plane of symmetry in (120), the ¹H n.m.r. spectrum at room temperature will show four equal intensity signals for the four methyl groups A-D.


Partial equivalence of the methyl groups can occur by a multistep pseudorotation pathway which has the unsymmetrical ring in a diequatorial position and the R group apical.

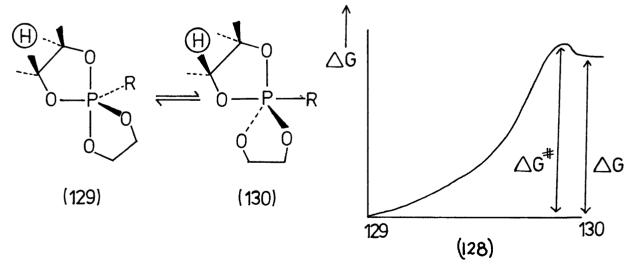
The high energy intermediates (120) and (121) are dependant to a large extent on the nature of X and Y. If for instance X = N and Y = 0, the intermediate (120) is of high energy due to ring strain, the spirophosphorane (121) is also of high energy because it contains a nitrogen group in the apical position, so a third pseudorotation takes place to give (122). The overall result is that A has become equivalent


to D and C equivalent to B. When the pseudorotation processes $(119) \rightleftharpoons (122)$ become fast on the n.m.r. time-scale as the temperature is increased, the four methyl signals coalesce to two signals.

An alternative pseudorotation involves the high energy intermediate (123) in which the pinacol ring is in a diequatorial position.

The intermediate (123) has a plane of symmetry in the plane of the paper which makes A and C equivalent and B and D equivalent. If the pseudorotations in scheme A and the one above (119) \rightleftharpoons (123) become fast on the n.m.r. time-scale, complete equivalence of the four methyl groups will be observed. Hence the theoretical possibility that in a molecule of this type two coalescences may occur, the four signals going to two as one ring goes out diequatorial, then two signals coalescing to one as both rings go out diequatorial.

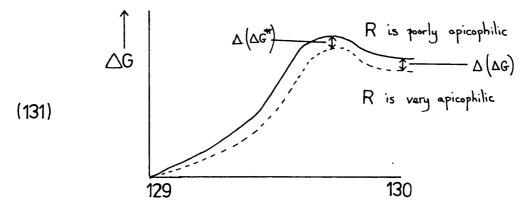
<u>C.</u> In the perfluorobiacetyl adducts (124) equilibration of the two CF_3 groups is achieved only <u>via</u> the topomers (125) and (126).


If R is more apicophilic than phenyl then the most stable conformation of the phosphorane is (124). The adducts (125) and (126) are high energy trigonal bipyramids and as the sample is cooled, the equilibrium process <u>via</u> these species will eventually become slow on the n.m.r. time-scale. When this happens the single absorption of the CF_3 groups will split out into two quartets of equal intensity and from the coalescence temperature the relative apicophilicities of the R and phenyl groups can be determined. The free energy of activation for a particular R group will overestimate the difference in apicophilicity between R and phenyl. However pseudorotations between topomers are thought to be very low-energy processes¹⁴³

and high-energy trigonal bipyramids are usually regarded as transition states rather than intermediates, (see Section 3.6).

3.6 ACCURACY AND LIMITATION OF THE D.N.M.R. METHOD FOR THE DETERMINATION OF LIGAND APICOPHILICY VALUES

a) <u>Accuracy</u>


The accuracy of the d.n.m.r. method for the determination of ΔG^{\ddagger} will depend on various factors. The Gutowsky-Holm equation has been shown¹³⁶ to be almost as accurate as a complete line shape analysis. This holds only for systems where coalescence is of signals of equal intensity; in practice even deviations from equality lead to only small errors. The sources of error lie not in the equation itself, but in the determination of the coalescence temperature (T^C) and the maximum frequency separation (ΔV). The total error in measuring T^C is of the order of \pm 0.3 kcal.mol⁻¹. The maximum frequency separation is usually obtained accurately, however problems do arise when the coalescence temperature is near the lower limit of the n.m.r. spectrometer. This source of error is very small however, an inaccuracy of 50% will lead to an error of only \pm 0.2 kcal.mol⁻¹ in the final answer.

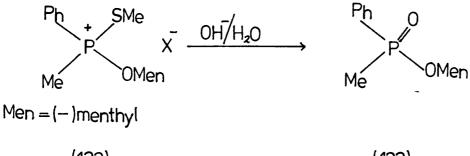
If we consider the reaction co-ordinate (128) of the pseudorotation pathway (129) \rightleftharpoons (130), the Gutowsky-Holm equation measures $\Delta G^{\#}$, the free energy of activation, whereas

the true difference in energy between (129) and (130) is given by ΔG ; hence $\Delta G^{\#}$ is an overestimate of ΔG . However the spirophosphorane (130) is a high energy species (due to the diequatorial five membered ring) and according to Hammonds Postulate, the product will closely resemble the transition state. The $\Delta G^{\#}$ for a topomeric Berry pseudorotation is no greater than 4 kcal.mol⁻¹ ¹⁴³, therefore the over-estimation in (128) is unlikely to be more and will probably be less, than this value. Thus it seems reasonable to assume that the difference between ΔG and $\Delta G^{\#}$ will be small.

In determining the relative apicophilicity of two groups, small errors can arise if these groups have a large difference in apicophilicity. The reaction co-ordinate (131) is for two phosphoranes (130), where one R group is very apicophilic and the other phosphorane has a poorly apicophilic R group.

From Hammonds Postulate the phosphorane (130) with a poorly apicophilic R group will more closely resemble the transition state, than the phosphorane with the very apicophilic R group. Hence the measured $\Delta(\Delta G^{\#})$ is smaller than the actual difference in energy between the two phosphoranes, $\Delta(\Delta G)$. Unless extremes of apicophilicity are encountered such differences are likely to be small. In order to build up a quantitative apicophilicity scale, $\Delta(\Delta G)$ must be regarded as equal to $\Delta(\Delta G^{\#})$, which is true for comparison of groups with reasonably similiar apicophilicities.

b.) Limitations

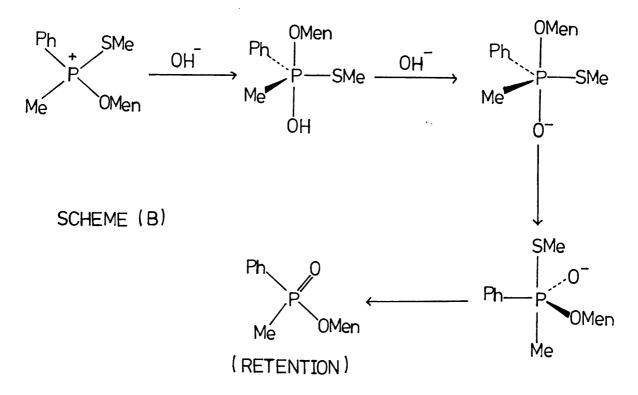

In interpreting d.n.m.r. results, care must be taken that the changes observed in the n.m.r. are due to the speeding up or slowing down of a pseudorotation and not to some other process.

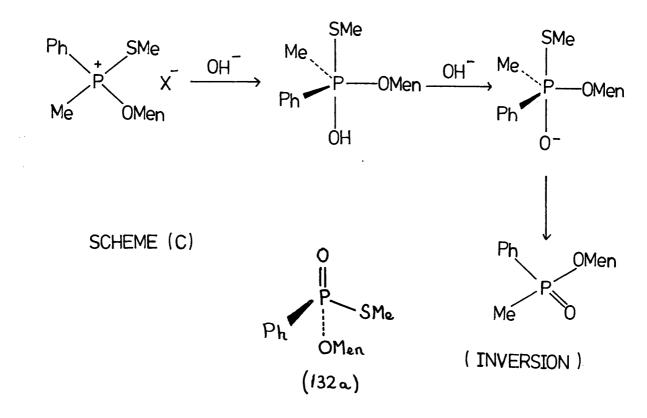
For instance coalescence may be caused by the groups under investigation becoming accidently magnetically equivalent. It is possible to eliminate this source of error by studying the line widths of the signals as they approach coalescence there should be a decrease in height of the signal and a corresponding increase in line width. In an accidental equivalence there should be no variation in peak heights or line widths.

Other possibilities for the misinterpretation of d.n.m.r. data come from the irregular processes outlined in chapter 1 page 29, in which ionic species were detected from their 31p n.m.r. chemical shifts being dependent on solvent polarity. Ramirez^{12,42} showed that a marked difference in the 31p n.m.r. chemical shift with change of solvent polarity was indicative of ionic species being present in solution. 4 RELATIVE APICOPHILICITY OF SULPHUR AND OXYGEN LIGANDS

4.1 RELATIVE APICOPHILICITY OF ETHYLTHIO- AND ETHOXY GROUPS IN TRIGONAL BIPYRAMIDAL PHOSPHORANES

Evidence on the relative apicophilicity of sulphur ligands is available from data on the hydrolysis of tetraco-ordinated phosphorus compounds.¹³⁷ For example alkaline hydrolysis of the optically active phosphonium salt (132) gives the phosphinate (133) with retention of configuration at phosphorus. Using the




(132)

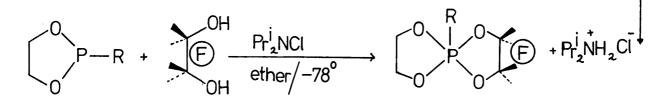
(133)

assumptions previously outlined in chapter 3, there are two possible intermediates from (132) formed by attack of the hydroxyl ion.

(i) Attack opposite O-menthyl -

Scheme (E) leads to retention whilst scheme (C) leads to inversion; experimentally the result is RETENTION. This means that the trigonal bipyramid with O- menthyl apical is more stable than with the -SMe group apical, i.e. O-menthyl is more apicophilic than -SMe in this system.

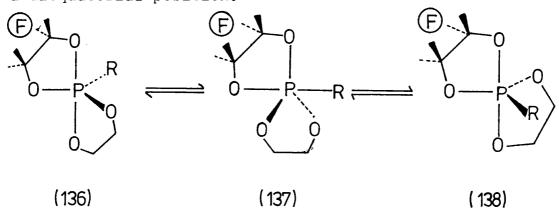
Methanolysis of (132α) is found to go with INVERSION at phosphorus, which by a similar argument is explained by the -SMe group being more apicophilic than O-Menthyl.


Clearly further information on the relative apicophilicity of sulphur and oxygen substituents would be helpful in trying to explain the unusual results sometimes observed in nucleophilic substitution at phosphorus bearing both alkoxy and alkylthio groups.¹³⁸ Debruin¹³⁹ has shown that the kinetic apicophilicities of alkoxy and alkylthio groups are similar, based on the hydrolysis of alkoxy (alkylthio-) phosphetanium salts.

Trippett <u>et al</u>¹⁴⁰ from a study of the variable temperature n.m.r. spectra of the pseudorotation processes available to

a number of spirophosphoranes having a phenoxy or phenylthio group attached to phosphorus, have shown that the relative apicophilicities of phenoxy and phenylthio groups are similar, the balance varying according to the other groups attached to phosphorus.

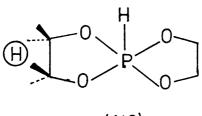
A variable temperature n.m.r. study of spirophosphoranes bearing ethoxy or ethylthic groups was considered to be of more direct relevance to the relative apicophilicity of sulphur and oxygen ligands. The systems needed for such a study had previously been difficult to synthesis by the more traditional methods. White¹⁴¹ attempted to prepare spirophosphoranes bearing ethoxy and ethylthic groups, in order to obtain information on their relative apicophilicities. The limited systems that were available to him at the time gave no information, either because of thermal instability or because their n.m.r. spectra did not show the expected multiplicity in any of the solvents investigated. Attempts were made to alleviate this problem using the shift reagent tris(dipivaloylmethanato) europium III, (Eu(dpm)₃), but they gave inconclusive results.^{141,142} However with the development of the N-chlorodi-isopropylamine method by Bone, ⁷⁴ a ready route was available to give pure spirophosphoranes, bearing ethoxy and ethylthic groups, in good yields.


The system first looked at was the spirophosphorane (135, R = OEt), obtained from the reaction of 2 -ethoxy- 1,3,2-dioxaphospholan (134, R = OEt) with perfluoropinacol in the presence of N-chlorodi-isopropylamine.

(134)

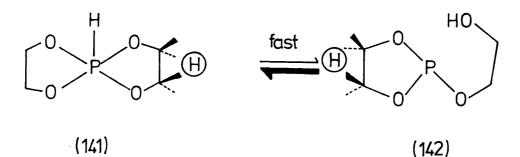
(135)

At room temperature the ¹⁹F n.m.r. spectrum of (135, R = OEt) in 1-bromonaphthalene showed two signals of equal intensity, which underwent a reversible coalescence at $116^{\pm} 2^{\circ}$ C. The free energy of activation (ΔG^{\bullet}) associated with this coalescence is <u>20.1^{\pm} 0.2 kcalmol⁻¹</u>. This corresponds to the pseudorotation process, (136) \rightleftharpoons (138), which involves the high energy intermediate (137, R = OEt) in which the ethoxy group is in an apical position with the ethylene glycol ring in a diequatorial position.

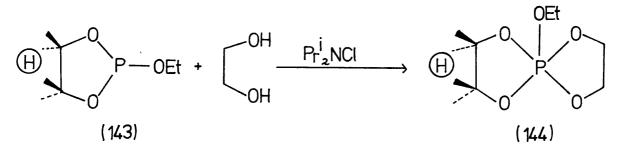

The ¹⁹F n.m.r. spectrum of the corresponding ethylthio spirophosphorane (136, R \pm SEt) also showed two signals of equal intensity in 1- bromonaphthalene. These underwent a reversible coalescence at 121[±] 2°C, with an associated $\Delta G^{\#}$ value of <u>19.1 [±] 0.2 kcalmol⁻¹</u>. In this system (136) \iff (138), the ethylthio-group is more apicophilic than ethoxy by about 1 kcalmol⁻¹.

To check the validity of this result other systems were considered. H = 0R = -SEt and -OEt

The attempted synthesis of the spirophosphorane (139, R = OEt) by the N-chlorodi-isopropylamine method resulted in the

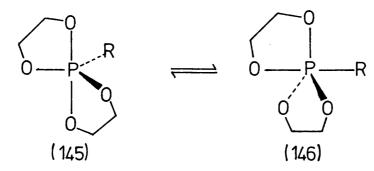

(139)

total loss of the ethoxy group on addition of pinacol and N-chlorodi-isopropylamine to the dioxaphospholan (134, R = OEt). The compound obtained was found from spectral data to be the spirophosphorane (140). The 1 H n.m.r. spectrum showed the large

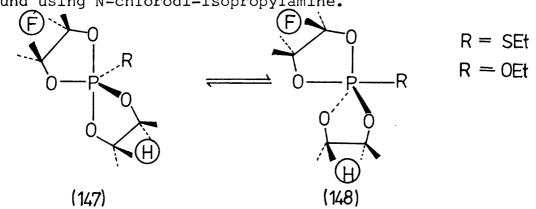


(140)

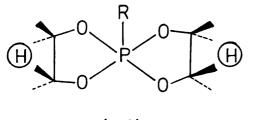
P-H coupling constant associated with such compounds. The \bigvee_{max} showed evidence of a strong -OH absorption, although no trace of the hydroxyl group was detected in the ¹H n.m.r.; this is consistant with the fast ring-opening (141), (142) found in this type of molecule^{68,79}.


The spirophosphorane (144) could be prepared in 76% yield using ethylene glycol as the diol and 2-ethoxy- 4,4,5,5, -tetramethyl-1,3,2-dioxaphospholan (143).

The ¹H n.m.r. of the adduct (144) in 1- bromonaphthalene showed the pinacol methyls as two equal intensity signals. On heating these coalesced at 92^{\pm} 2°, corresponding to a $\Delta G^{\#}$ value of <u>19.4 [±] 0.2 kcal.mol⁻¹</u>. On preparing the ethylthio analogue of (144), from ethylene glycol and the corresponding


trivalent phosphorus compound, the pinacol methyls were found to be a sharp singlet in all solvents tried at R.T. This must be a case of accidental equivalence of the methyl signals and not a coalescence brought about by putting the ethylthio group apical and the ethylene glycol ring diequatorial. Such a process would not become rapid on the n.m.r. time-scale at room temperature, as the $\Delta G^{\#}$ value for such a system would be expected to be <u>ca</u> 18 kcal.mol⁻¹.¹²⁰

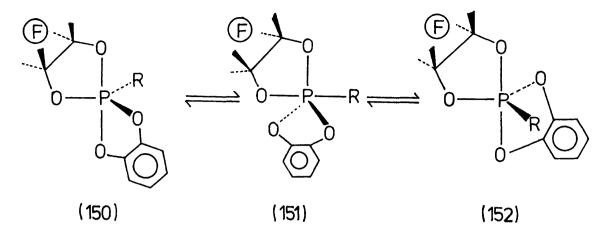
The energy barrier for the pseudorotation process $(145 \rightleftharpoons 146, R = OEt)$ had already been determined⁷⁵, the ¹H n.m.r. spectrum of the ring protons in (145, R = OEt) simplifying to a doublet at 125° in 1- bromonapthalene.


The spirophosphorane (145, R = SEt) was prepared by the N-chlorodi-isopropylamine method in order to get a direct comparison of the ethylthic and ethoxy groups. Unfortunately the ring protons of (145, R = SEt) were found to a doublet in all solvents tried; the pattern observed by Denney⁶³ for the ethoxy adduct was not observed.

Another system looked at was (147) prepared from perfluoropinacol and the corresponding trivalent phosphorus compound using N-chlorodi-isopropylamine.

The ¹⁹F n.m.r. spectrum of the spirophosphorane (147, R = OEt) was found to be a singlet in all solvents tried. A similar result was recorded by Bone⁴⁴ for the adduct (147, R-= OPh). The ¹⁹F n.m.r. spectrum of the ethylthio analogue of (147) however did contain two multiplets of equal intensity. Unfortunately they did not coalesce up to 180° (the upper-limit of the n.m.r. machine). This result corresponds to a $\Delta G^{\ddagger} > 22 \text{ kcal.mol}^{-1}$ for the pseudorotation process (147) $\overrightarrow{}$ (148), R = SEt. Obviously the placing of a pinacol ring into a diequatorial position is of much greater energy then for the ethylene glycol ring $(\Delta G^{\ddagger} 19.1 \pm 0.2 \text{ kcal.mol}^{-1})$.

The spirophosphoranes (149; R = SEt, OEt) were also prepared by the N-chlorodi-isopropylamine method.


R = SEt, OEt.

(149)

The adduct (149, R = OEt) decomposed before coalescence in 1- bromonaphthalene. The ethylthic analogue (149, R = SEt) did show two equal intensity signals for the ring methyl groups in CCl₂Br but this too decomposed before coalescence.

In an attempt to obtain another result on the relative apicophilicities of the ethoxy and ethlthic groups the systems (150, R = OEt, SEt) were prepared using perfluoropinacol as the diol and the appropriately 2- substituted - 1,3,2-benzodiooxaphosphole in the presence of N-chlorodi-isopropylamine.

The ¹⁹F n.m.r. spectrum of the compound (150, R = OEt) at R.T. showed two equal intensity signals which reversibly coalesced at $180^{\pm} 2^{\circ}$ in 1- bromonaphthalene. This corresponds to the pseudorotation (150) \iff (152) becoming fast on the n.m.r. time-scale, with an associated $\Delta G^{\#}$ of <u>22.1^{\pm}</u> 0.2 kcal.mol⁻¹. The

similar spectrum of the ethylthio anologue (150, R = SEt) also underwent a reversible coalescence at 163^{\pm} 3[°] in the same solvent, which corresponds to a $\Delta G^{\#}$ for the same process, (150) \rightleftharpoons (152), of <u>21.4^{\pm}0.2 kcal.mol</u>⁻¹. In this system the ethylthio group is again shown to be more apicophilic than ethoxy by about 1 kcal.mol⁻¹.

A summary of the d.n.m.r. data obtained for the spirophosphoranes prepared by N-chlorodi-isopropylamine is shown in Table 1.

Compound		Yield (%)	^{зı} b Р(ppm)	c D.n.mr. Results
	X = OEt	68	+ 28.8	$\Delta - 21^{a}$, T ^c 116 ± 2 [*] , ΔG^{*} 20·1 ± 0·2 ^f .
	X = SEt	78	+2.5	Δ-ν-104 , T ^c 121±2, ΔG [#] 19·1±0·2.
	X=0Et	76	+34.9	ΔΨ ⁸ , T [°] 92±2, ΔG [#] 194±0·2.
	X = SEt	78	+10.5	singlet for the pinacol methyls in all solvents tried.
		57	+7·3	ring protons doublet in all solvents tried.

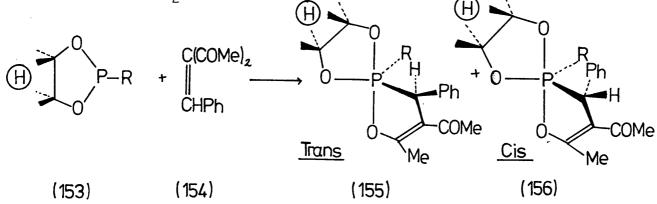
TABLE 1

TABLE 1 (continued)

Compound ^a	Yield (%)	³ 'P(pp.m.) ^b	D.n.m.r. Results
	81	+ 37-1	¹⁹ F n.m.r. singlet in all solvents tried.
0 0 X=SEt	80	+ 7·2	$\Delta = 137^{d}, T^{c} > 180^{c}, \Delta G^{\#} > 22^{f}.$
X X=OEt	82	+42•4	AV 5, decomposition before coalescence.
(H) 0 0 X=SEt	85	+23.0	AT 4.5° decomposition before coalescence.
X = OEt	85	+ 30.7	$\Delta v 98$, T° 180 ± 2, $\Delta G^{\#} 22.1 \pm 0.2$.
X=SEt	82	+10	Δ√ 76, T [°] 163±2, ΔG [#] 21·4±0·2.

a) In each case the right-hand ring as drawn was derived from the 1,2-diol.

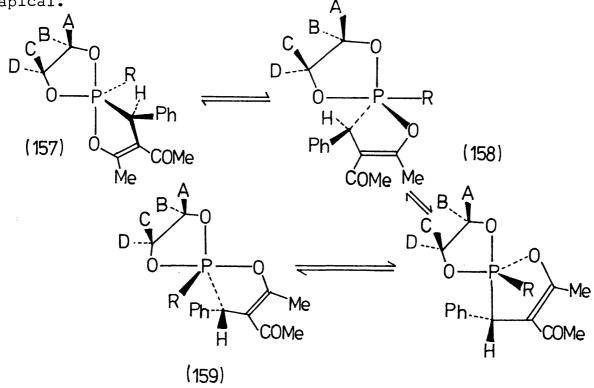
b) In CDC13 to the high-field of external 85% H3Po4.
c) On 100MH3 machine using 1-bromonaphthalene as solvent.


d) In Hz.

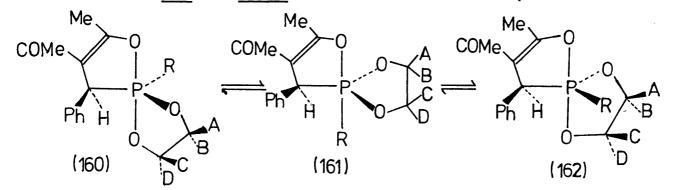
e)°c.

f) k. cal.mol⁻¹.

9) CCI3Br


To see if the results obtained from the spirophosphoranes (135, R = OEt) and (150, R = OEt, SEt) were applicable to other systems, the adducts from suitably substituted 1,3,2-dioxaphos-pholans (153, R = OEt) and 3-benzylidenepentane -2,4-dione (154) were prepared. This reaction has been shown to give mixtures of isomeric spirophosphoranes from which the major <u>trans</u> isomers (155) can be readily obtained in a pure crystalline form for R = OMe and NMe₂.

White¹⁴¹ has previously prepared a series of the <u>trans</u> spirophosphoranes (155, R = OMe, OBu^t , OPh and NMe_2). The spirophosphorane (155, R = OEt) was now prepared in almost quantitative yield and was obtained as the pure <u>trans</u> isomer on recrystallisation from ethyl acetate -light petroleum. At room temperature, in chlorobenzene solution, the methyl groups of the dioxaphospholan ring gave rise to four widely spaced signals in the 100 MHz ¹H n.m.r. spectrum, characteristic of the <u>trans</u> isomer.


On heating the two inner signals coalesced and at a higher temperature the two outer signals eventually coalesced. Both coalescences were found to correspond to the same free energy of activation ($\Delta G^{\#}$), the two different coalescence points being due to the large difference in frequency between the coalescing signals.

Equivalence of the pairs of methyl groups occurs when the pseudorotations (157) $\overleftarrow{}$ (159) become rapid on the n.m.r. time-scale. This involves the high-energy spirophosphorane (158) in which the oxaphospholen ring is diequatorial and the R group apical. Λ

Any change in the free energy of activation for the process $(157) \xrightarrow{} (159)$ will depend on the relative apicophilicity of the various R groups.

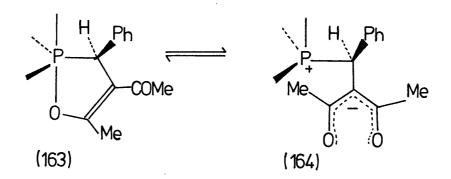
Pseudorotations which involve placing the dioxaphospholan ring diequatorially, $(160) \iff (162)$, cannot lead to equivalence of any of the methyl groups, but the process will give equilibration of the <u>cis</u> and <u>trans</u> isomers. In fact such processes are

observed to take place in the variable temperature experiments, but they are very slow in the temperature range studied, as would be expected from calculation¹²⁰ and previous experimental data on the energies involved in placing a pinacol ring in a diequatorial position and the R group (OEt or SEt) in an apical position, (see page 57).

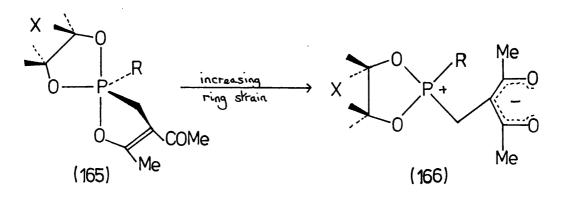
On preparing the ethylthic analogue (157, R = SEt) this adduct was obtained predominantly as the <u>trans</u> isomer but on recrystallisation from light petroleum the pure <u>cis</u> isomer was obtained. The d.n.m.r. work was carried out on the <u>trans</u> isomer so that comparisons with the ethoxy-spirophosphorane (157, R = OEt) would be more reliable.

The results obtained from the variable temperature n.m.r. work on the 3-benzylidene pentane-2,4-dione adducts (157, R = OEt, SEt) are summarised in Table 2.

	INNER PAIR OF METH YL ^C SIGNALS			OUTE	R PAIR C SIGNA	F METHYL LS
<u>R</u> group	$\Delta \mathbf{v}(\mathbf{H}_{\mathbf{z}}) = T^{C}(^{O}C)^{\mathbf{a}} \Delta G^{\mathbf{z}}(\text{kcal.mol}^{-1^{\mathbf{b}}})$			<u>\</u> \	TC	∆G.#
OEt	14	80	18.3	108	100	18.0
SEt	35	85	18.0	112	100	17.9


TABLE 2

a) $\pm 3^{\circ}$ b) ± 0.2 kcal.mol⁻¹ c) all spectra taken on a 100 MH₃ machine in chlorobenzene


The ΔG^* values obtained from the inner and outer pairs of methyl signals are in reasonably good agreement, as expected. The results show that in this system the apicophilicity of ethylthio and ethoxy are very similar.

Gorenstein and Westheimer^{51,111} have shown that in 3-benzylidenepentane-2,4-dione adducts there is an 'irregular' process, having a free energy of activation in the region of 21 kcal.mol⁻¹, which is due to the ring-opening process (163) \rightleftharpoons (164). This was based on ¹H n.m.r. evidence which showed equivalence of the phospholen methyl signals as the process became rapid on the n.m.r. time-scale.

This ring-opening step would be expected to have an even

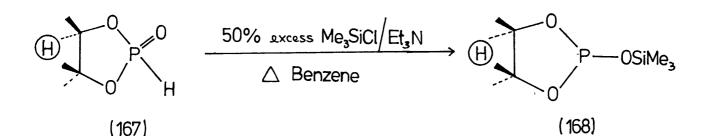
higher energy barrier in a spirophosphorane system, e.g. (157, R = OEt, SEt), due to the increase in ring strain which would be experienced in the dioxaphospholan ring as it went from the trigonal bipyramidal geometry of the spirophosphorane (165) to the tetrahedral geometry of the ring-opened dipolar species (166).

White^{141,145} has also shown that with the spirophosphorane (157, R = NMe₂) there is no coalescence up to 150° , which corresponds to a $\Delta G^{\#}$ of greater than 22 kcal.mol⁻¹. If no ring-opening occurs in (157, R = NMe₂), in which the dimethylamino group would stabilize the formation of a positive charge on phosphorus³³, then it would seem likely that the coalescences observed at lower temperatures for the adducts. (157, R = OEt, SEt) are due to the pseudorotation pathway (157), \rightarrow (159) and not to any dissociation of the adducts into dipolar species.

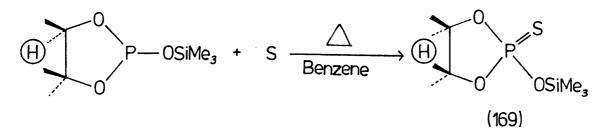
Thus it would seem from the d.n.m.r. data on the pseudorotation processes, $(136) \rightleftharpoons (138)$, $(150) \rightleftharpoons (152)$ and $(157) \rightleftharpoons (159)$ that the relative apicophilicities of the ethylthic and ethoxy groups are very similar, with the balance perhaps slightly in favour of the ethylthic group being just

more apicophilic than the ethoxy group.

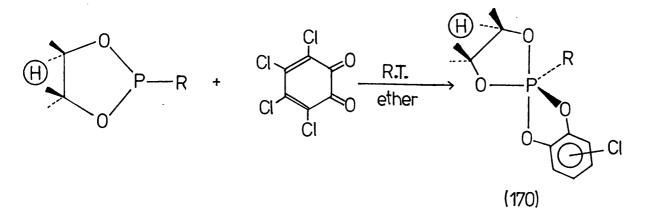
This result is rather surprising in view of the lower electronegativity of sulphur and also the strong \mathcal{N} donor properties of sulphur ligands. There is also evidence, from the high energy barrier to rotation around P-S bonds, to suggest that the \mathcal{N} donation of sulphur to phosphorus is very high.^{97,118} Both these factors would make sulphur ligands poorly apicophilic on the theories of Hoffmann <u>et al</u>⁹⁶. On the other hand sulphur does have empty 3d orbitals which could act as an acceptor of \mathcal{N} electron density from phosphorus, thus putting sulphur in a situation where it would favour the apical position. Obviously these factors must be cancelling each other out to a large extent, leaving the relative apicophilicity of sulphur roughly the same as that of oxygen.


4.2 THE RELATIVE APICOPHILICITY OF THE TRIMETHLSILOXY GROUP (-OSIMe₃)

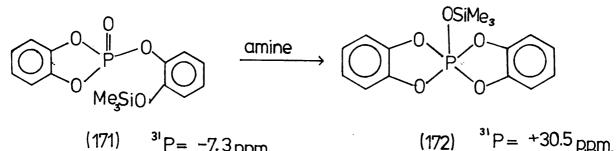
Acyclic phosphites containing the trimethylsiloxy group are readily synthesised from phosphinates (165) on refluxing in benzene with a 50% excess of chlorotrimethylsilanetriethylamine^{146,147}.



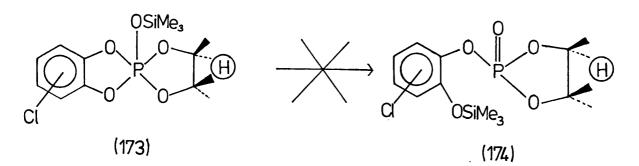
The large negative 31p n.m.r. chemical shift of (166) relative to external 85% H_3PO_4 is characteristic of a trivalent structure. 147,148


The synthesis of (168) was attempted in order to determine whether the method was applicable to cyclic phosphinates (167) and to prepare spirophosphoranes containing the trimethylsiloxy group, so that it's relative apicophilicity might be determined by d.n.m.r. studies.

The 2-trimethylsiloxy -4,4,5,5-tetramethyl-1,3,2dioxaphospholan (168) was obtained in 70% hield, it's trivalent state was not only shown from the very low ^{31p} n.m.r. chemical shift of -126.9 p.p.m., but it was also fully characterised as the sulphide (169).

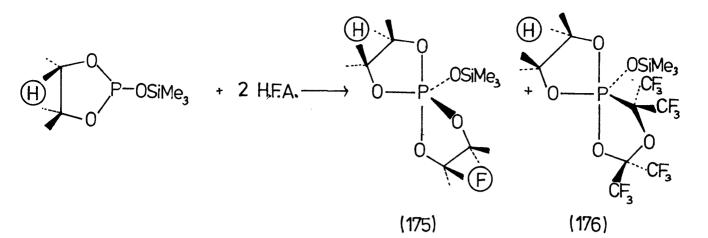


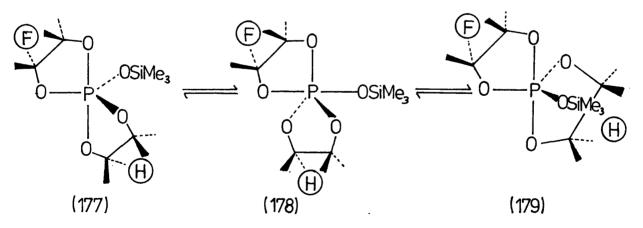
The first system looked at was (170, $R = OSiMe_3$) made from the cyclic phosphite (168) and tetrachloro-o-benzoquinone.


It was hoped that a comparison of the $-OSiMe_3$ group could be made with the series of spirophosphoranes (170, R = OPh, Cl, NMe₂) made by Bone.^{44,170} Unfortunately the methyl signals of the dioxaphospholan ring were a singlet in all solvents tried; a similar result was also obtained for the spirophosphorane

(170. R = OEt). The pentaco-ordinate nature of the compound was shown from the high ${}^{31}P$ n.m.r. chemical shift of + 35.9 p.p.m., which is typical of a spirophosphorane of this type. Ramirez et al¹⁴⁹ have concluded from their work on the isomerization of $(171) \rightleftharpoons (172)$, that the driving force of the reaction may be provided by the higher stability of the bond $(RO)_4P-O-SiR_3^{-1}$ verses the aryl-O-SiR₃¹ bond.

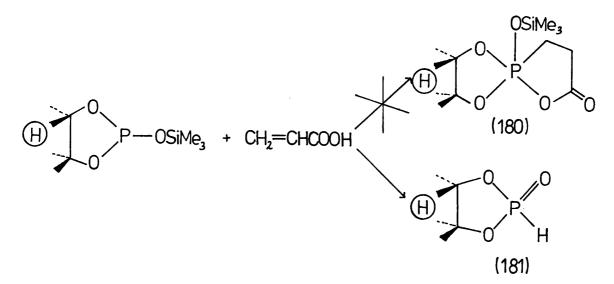
(171) $^{31}P = -7.3 \text{ppm}.$ (172)


Therefore it would seem unlikely that an irregular process, which involves the transfer of the trimethylsilyl group from the phosphorus oxygen to the aryl oxygen is occurring, $(173) \rightleftharpoons (174)$, and that the singlet for the pinacol methyl signals is due to accidental equivalence.

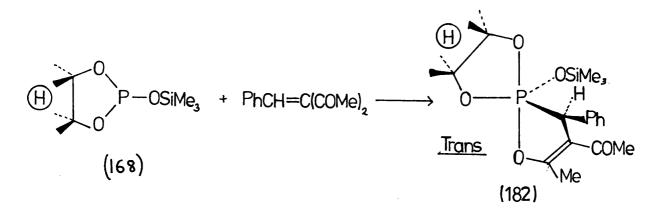

Many attempts were made to synthesis spirophosphoranes from the trimethylsiloxy phosphite (168) and various 1,2-diols using N-chlorodi-isopropylamine, but in no case was any pentacoordinate phosphorus compound isolated.

A spirophosphorane containing the trimethylsiloxy group was prepared using hexafluoroacetone and the phosphite (168). However not only was the 1,3,2-dioxaphospholan (175) formed but also the 1,4,2-dioxaphospholan adduct (176).

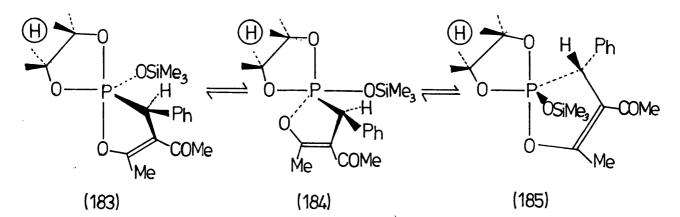
67



As expected,⁴⁴ the adduct (176) showed no tendency to isomerize on heating to give the 1,3,2-dioxaphospholan (175). However the ratio of (175) : (176) was improved from the 50 : 50 reaction mixture by extraction with light petroleum up to the point where an ¹⁹F n.m.r. spectrum could be obtained which showed two equal intensity signals at room temperature. In 1-bromonaphthalene these signals underwent a reversible coalescence at $168\pm2^{\circ}$, corresponding to a $\Delta G^{\#}$ of 22.2 ± 0.2 kcal.mol⁻¹. This coalescence is when the pseudorotation (177) \rightleftharpoons (179) has become rapid on the n.m.r. time-scale.

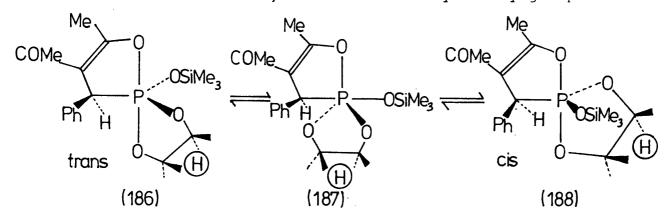

This result shows the trimethylsiloxy group to be slightly more apicophilic than the ethylthic and ethoxy groups and of the same apicophilicity as the thiophenyl group.⁴³

The search for another suitable spirophosphorane with which this result could be checked proved difficult. In attempting to make the acrylic acid adduct, 150 (see chapter 6) (180), only the 1,3,2-dioxapholan -2- oxide (181) was isolated in almost quantitative yield.



Obviously the mobility of the trimethysilyl group in trivalent phosphorus compounds is greater than in the P^{ν} or P^{ν} states.¹⁴⁹ This mobility probably accounts for the failure of the N-chlorodi-isopropylamine reactions in preparing spirophosphoranes.

Fortunately a 3-benzylidenepentane -2,4-dione adduct (182) was prepared from (168) in good yield and crystallised from ethyl acetate - light petroleum as the trans isomer.



This adduct (182) gave the expected four signals for the pinacol ring methyl groups at room temperature in 1-bromonaphthalene.¹⁴⁴ Only the coalescence of the inner methyl signals was obtainable due to the rapid formation of the <u>cis</u> isomer at elevated temperatures, unlike the ethylthio and ethoxy analogues (see section 4.1). The reversible coalescence was at $+70^{+}5^{\circ}$, $\Delta g^{\#} 17.9 \pm 0.2 \text{ kcal.mol}^{-1}$ which corresponds to the pseudorotation process (183) $\xrightarrow{}$ (185) becoming rapid on the n.m.r. time-scale.

This result shows the trimethylsiloxy group to be as apicophilic as the ethylthic group in this series of adducts, a result which compares favourably with the one obtained from hexafluoroacetone adduct. (175)

The ease with which $\underline{\operatorname{trans}} \rightleftharpoons \underline{\operatorname{cis}}$ isomerization took place at 70° was surprising in view of experience with previous adducts¹⁴⁵, whose isomerisation was observed to be slow over the temperature range studied. The isomerisation of $\underline{\operatorname{trans}} \rightleftharpoons$ $\underline{\operatorname{cis}}$, (186) \rightleftharpoons (188), involves the high energy intermediate (187) which has the pinacol ring in a diequatorial position and the trimethylsiloxy group apical. The more apicophilic the group going into the apical position, the lower the energy needed to put the pinacol ring diequatorial. The fact that this isomerisation occurs fairly readily at elevated temperatures backs up the information obtained, that the trimethylsiloxy group is

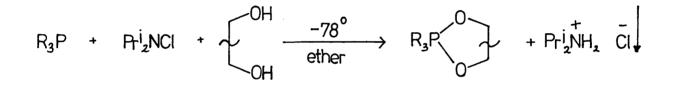
quite apicophilic and is about the same as the ethylthio and ethoxy groups.

In accounting for the high apicophilicity value found

for the trimethylsiloxy group, the large size of the ligand, as well as the electronegativity of the oxygen, is likely to be a factor, especially in the crowded 3-benzylidenepentane -2,4dione adducts (182).

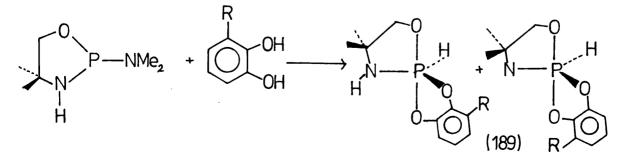
•

• •

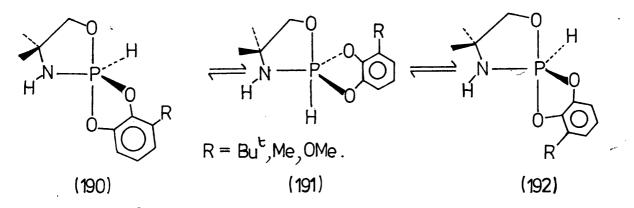

5 SYNTHESIS OF PHOSPHORANES USING N-CHLORODI-ISOPROPYLAMINE

5.1 THE PREPARATION OF UNSYMMETRICAL PHOSPHORANES

Castro¹⁵¹ has used N-chlorodi-isopropylamine in the synthesis of alkoxy-phosphonium salts according to the following equation.

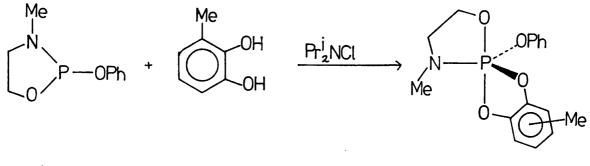

$$(Me_2N)_3P + CINPr_2^i + R'R^2CH(OH) \longrightarrow (Me_2N)_3POCHR'R^2C_i$$

Bone⁷⁴ found that when N-chlorodi-isopropylamine was added to equimolar quantities of a trivalent phosphorus compound and a 1,2- or 1,3-diol in ether at -78[°]C a precipitate of di-isopropylamine hydrochloride was formed. Filtration and removal of the solvent gave the phosphorane in good yields.



With the development of the N-chlorodi-isopropylamine method for the preparation of spirophosphoranes it now became possible to prepare a wide range of unsymmetrical spirophosphoranes, first looked at by Wolf <u>et al</u>.¹⁵²

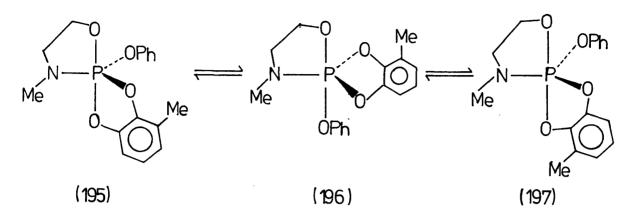
They found that the spirophosphorane (189) existed as two isomers at room temperature; this was determined by the presence of two signals for the R groups in the 1 H n.m.r. spectrum. On heating these signals coalesced reversibly,



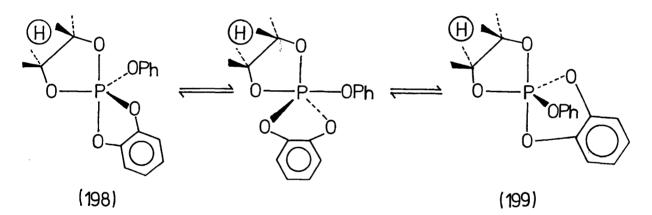
corresponding to the process (190) \rightleftharpoons (192) becoming fast on the n.m.r. time-scale. Equilibration of these isomers takes place <u>via</u> the high energy intermediate (191) in which the hydrogen atom is apical and the catechol ring diequatorial. The free energy of activation associated with this process was shown to be about 18 kcal.mol⁻¹. This energy barrier of only

18 kcal.mol⁻¹ for placing the catechol ring diequatorially shows the high apicophilicity value associated with hydrogen.

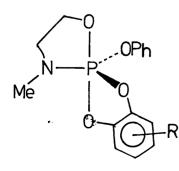
The first system attempted by the N-chlorodi-isopropylamine method was the spirophosphorane (194) made from the 1,3,2oxazaphospholidine (193) and 3-methylcatechol.



(193)

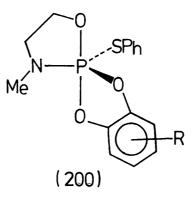

(194)

On examining the 1 H n.m.r. spectrum it was found that there were two aromatic methyl signals, corresponding to the two isomers (195) and (197), in the ratio of <u>ca</u> 1:1 at room temperature.


In 1-bromonaphthalene these two signals coalesced at $127^{\circ} \stackrel{+}{=} 2^{\circ}$ C, corresponding to a $\Delta G^{\#}$ of $20.2 \stackrel{+}{=} 0.2 \text{ kcal.mol}^{-1}$. At this temperature the process (195) $\stackrel{\rightarrow}{=}$ (197), which leads to the

equilibration of the two isomers, had become fast on the n.m.r. time-scale. The value of $20.2 \pm 0.2 \text{ kcal.mol}^{-1}$ obtained, compares well with that of Bone^{44,140}, derived from the system (198) $\xrightarrow{}$ (199), of 20.5 kcal.mol⁻¹.

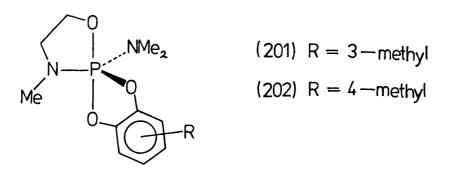
In order to show the general applicability of these systems in obtaining accurate data on relative apicophilicities, various unsymmetrically substituted catechols were used. In the case of the 4-fluorocatechol adduct excellent agreement was found with the result for the 3-methyl adduct; the d.n.m.r. data are summarised in Table 3.



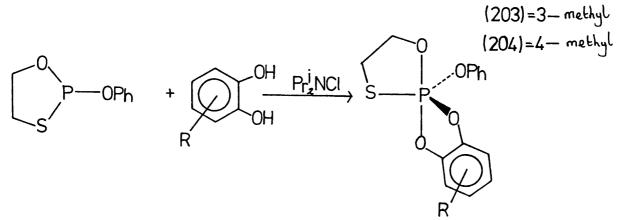
T/	4	BL	Е	3
	_		_	

R	Δv (Hz)	T ⁽ (^O C) ^a	$\Delta G^{\#}(kcalmol^{-1})$		
3-methyl	35	127 ± 2 ⁰	20.2 ± 0.2		
4 - fluoro	300	168 ± 2 ⁰	20.3 ± 0.1		
4-methyl	only one observable signal in all solvents tried.				

^aIn l-bromonaphthalene


Replacement of the phenoxy group by other ligands would give information on the apicophilicity of that ligand relative to phenoxy. The first group looked at was the phenylthio group in the spirophosphorane (200).

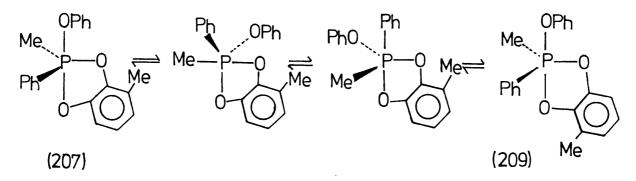
When R was 3-methyl, two separate signals were observed for the aromatic methyl group in 1-bromonaphthalene. These signals underwent a reversible coalescence at 137 \pm 2°, corresponding to a $\Delta G^{\#}$ of <u>21.7 \pm 0.2 kcal.mol⁻¹</u>. This result shows the phenylthio group to be about 1 kcal.mol⁻¹ <u>less</u> apicophilic than phenoxy in this system. Bone^{44,140} concluded, from a d.n.m.r. study of various spirophosphoranes containing phenoxy and phenylthio groups, that their relative apicophilicities are almost the same, (e.g. $\Delta G^{\#}$ 20.5 and 20.7 kcal.mol⁻¹ respectively).


When R was 4-methyl, only one signal was observed in all solvents tried for the aryl methyl group.

The next ligand to be studied was the dimethylamino group, in the spirophosphoranes (201) and (202). Both systems showed

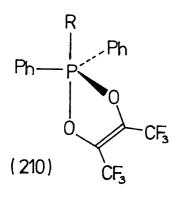
two separate aryl-methyl signals in the ¹H n.m.r. spectrum at room temperature. However on heating decomposition occurred before coalescence, in both cases. This result is hardly surprising in view of the very low apicophilicity of the dimethylamino relative to phenoxy.¹⁵³ In fact the spirophosphorane (201) did not decompose until 180° , so we can say that the ΔG^{\ddagger} value is going to be greater than 24 kcal.mol⁻¹ for putting the catechol ring diequatorial and the dimethylamino group apical (c.f. 20.5 kcal.mol⁻¹ for phenoxy).

This method of determining relative apicophilicity values has been extended by the use of other unsymmetrical trivalent phosphorus compounds; the results from spirophosphoranes (203) and 204) are summarised in Table 4.


TABLE	4

R	Δ ν (Hz)	T ^C (^O C)	$\Delta \mathcal{G}^{\#}(\text{kcal.mol}^{-1})$
(203) 3 - methyl	45.7	112 ± 2 ⁰	19.2 ± 0.1
(204) 4-methyl	7.6	82 ± 2 ⁰	18.9 ± 0.1

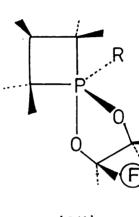
This method is even applicable to acyclic unsymmetrical trivalent phosphorus compounds (205). At room temperature there was only one aryl-methyl signal for (206) in the ¹H n.m.r. spectrum.



On cooling the sample down to $-95^{\circ}C$ in CH_2Cl_2 , the aryl-methyl group split into two signals of equal intensity; at this temperature the equilibration of the two isomers (207) \rightleftharpoons (209), had become slow on the n.m.r. time-scale.

On raising the temperature the two signals were found to coalesce at -65 \pm 2°C, which corresponds to a $\Delta G^{\text{#}}$ of <u>11.1 \pm 0.1</u> <u>kcal.mol⁻¹</u>.

Dickstein¹⁵⁴ has shown that the relative apicophilicity between phenyl and phenoxy is $12.6 \pm 0.1 \text{ kcal.mol}^{-1}$, from a series of hexafluorobiacetyl adducts (210). When slowing



down the equilibration of $(207) \rightleftharpoons (209)$ on the n.m.r. time-scale we are measuring the apicophilicity of phenoxy relative to methyl, and as methyl has been shown to be 0.5 kcal.mol⁻¹ more apicophilic than phenyl⁴⁴, this would give a value of 12.0 kcal.mol⁻¹ for methyl verses phenoxy

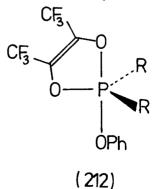
in Dickstein's system.

This discrepancy between observed and calculated values of 1 kcal.mol⁻¹ might explain why Dickstein determined the apicophilicities of phenoxy and chlorine to be similar¹⁵⁴, whereas Bone¹⁴⁰ showed chlorine to be more apicophilic than phenoxy by <u>ca</u> 1.5 kcal.mol⁻¹. (For a fuller account see Chapter 7). 5.2 <u>THE STEREOSPECIFICITY OF THE N-CHLORODI-ISOPROPYLAMINE</u> REACTION AND ITS' USE IN PREPARING GEOMETRICAL ISOMERS OF PHENYL AND BENZYL-SPIROPHOSPHETAN CATECHOL ADDUCTS.

Oram and Trippett¹²⁴, from their work on the hexafluoroaceton adducts of suitably substituted phosphetans (211), have shown that the phenyl group is very much less apicophilic than methyl or isopropyl.

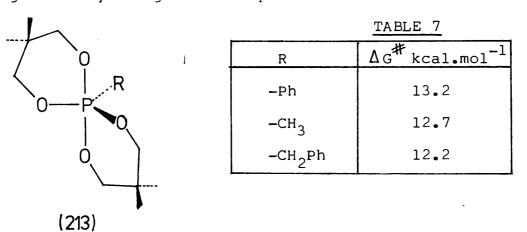
TA	١B	LE	-5
-	_		_

∆ G [#] kcal.mol ⁻¹		
16.9		
17.8		
19.6		
> 22		

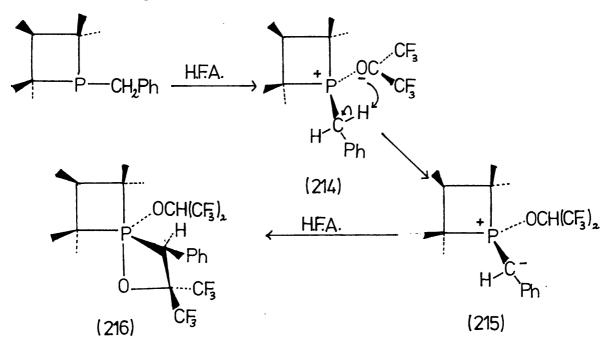

77

(211)

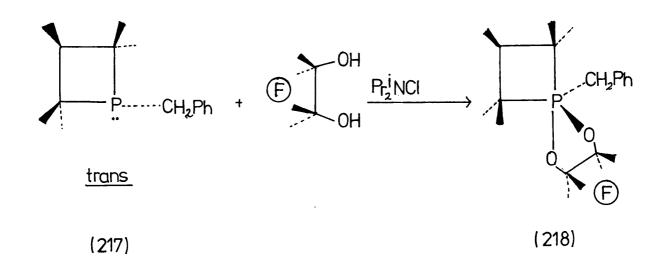
As can be seen from Table 5 there is a considerable difference in apicophilicity between <u>trans</u> phenyl and <u>cis</u> phenyl, the difference being such that the coalescence temperature for the <u>trans</u> phenyl adduct (211, $R = \underline{trans}$ Ph) was above the operating conditions of the n.m.r. spectrometer. This result


Contrasts with the work of Whittle 108 and Bone 44 who found that the apicophilicities of alkyl and phenyl groups were similar.

Whittle obtained his results from the hexafluorobiacetyl adducts (212), R = Ph and Pr^{i} .

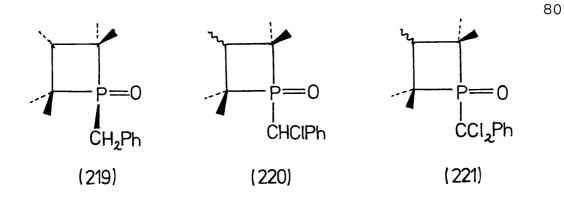

TABLE 6						
R	$\Delta G^{\#}$ kcal.mol ⁻¹					
Ph	12.6					
Pr ⁱ	12.9					

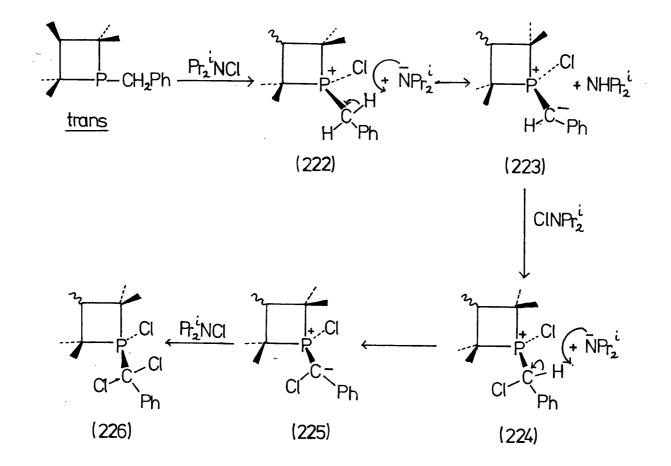
Bone prepared the spirophosphoranes (213, R = Ph, Me, -CH₂Ph) from the appropriate tervalent phosphonite and neopentylglycol using N-chlorodi-isopropylamine. The spirophosphoranes (213, R = Ph and Me) had previously been prepared by Denney's⁶³ exchange method, though in an impure state.



From these results it is clear that the benzyl group is more apicophilic than phenyl by <u>ca</u> l kcal.mol⁻¹, but that alkyl groups (methyl and isopropyl) have similar apicophilicities to the phenyl group. Oram's¹²⁴ results from the phosphetan-H.F.A. adducts (211) are thus difficult to explain.

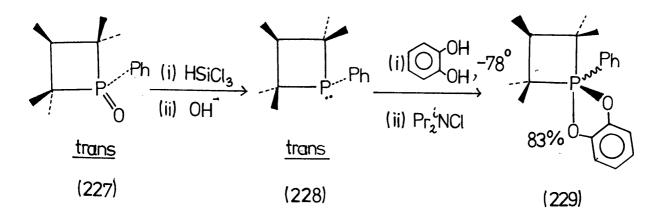
Oram was not able to obtain the relative apicophilicity of the benzyl group from his phosphetan - H.F.A. adducts due to the following reaction.


In (214) proton transfer from the benzyl group gives the hexafluoroisopropoxy group in the ylide (215). This ylide can then react with another mole of H.F.A. to give the oxaphosphetan (216). With the advent of the N-chlorodi-isopropylamine method for preparing phosphoranes, it was hoped that this method could be used to prepare the spirophosphorane (218) from <u>trans</u>-benzyl-pentamethylphosphetan (217) and perfluoropinacol.

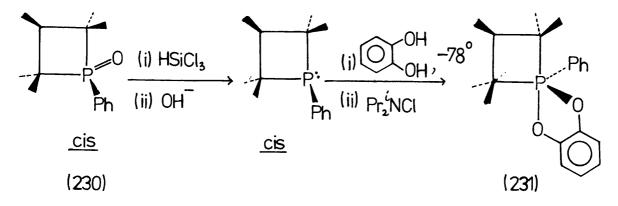

A comparison of benzyl with phenyl in this system would be useful in determining whether the results for the phenyl group were spurious.

When the N-chlorodi-isopropylamine reaction was carried out, the reaction mixture turned pale yellow indicating that something was amiss. Work-up showed that no spirophosphorane had been formed in the reaction. The reaction was carried out again and the products of the reaction separated on an alumina column (40:1) using ether as elvent. From 1 H, 31 P n.m.r., ${}^{m'}$ e and elemental analysis the following three phosphetan oxides were identified.

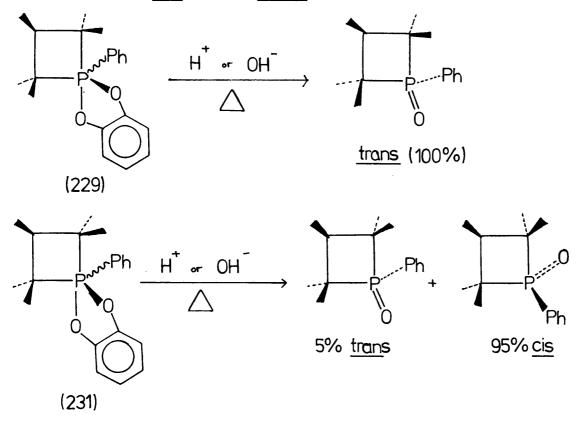
79



These phosphetan oxides are thought to originate by the following mechanism.

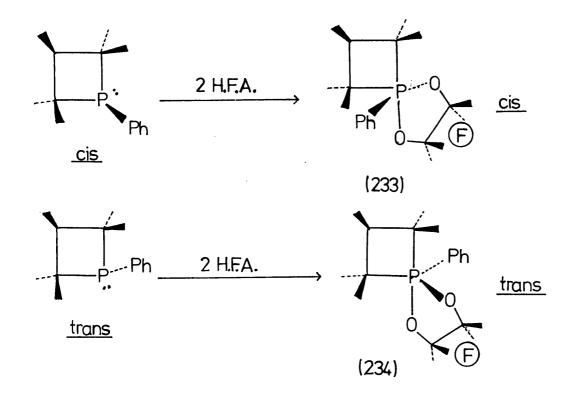


The chlorophosphonium compounds (222), (224) and (226) will hydrolyse during work-up on the column to give the phosphetan oxides (219), (220) and (221) respectively.

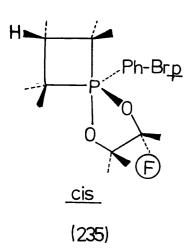

The failure of the N-chlorodi-isopropylamine method with <u>trans</u> benzylpentamethylphosphetan (217) was due to its labile hydrogen atom. This problem was overcome by using <u>trans</u> phenylpentamethylphosphetan (227) as the trivalent phosphorus compound and catechol as the diol.


The new spirophosphorane (229) was obtained in excellent yield and it's ¹H n.m.r. spectrum in 1-bromonaphthalene indicated the presence of only one isomer. The <u>trans</u> phenylphosphetan oxide (227) had been reduced with retention by the method of Corfield¹⁵⁵. The spirophosphorane (231) was prepared in a similar manner from the <u>cis</u> phenylphosphetan oxide (230); its ¹H and ^{31p} n.m.r., and melting point, were found to differ from those of the phosphorane (229) prepared from the <u>trans</u> phosphetan oxide.

The two adducts (229) and (231) were the first examples of spirophosphoranes prepared from phosphines by the N-chlorodiisopropylamine method. Although it was certain that compounds (229) and (231) were two geometrical isomers of the same spirophosphorane, it was not possible to say at this stage whether or not the reaction had given a compound with retention or inversion of configuration at phosphorus. In an attempt to answer this question, alkaline and acid hydrolysis of the spirophosphoranes was tried. Hydrolysis of the phosphorane (229) gave the <u>trans</u> phenylphosphetan oxide (227) in 100% yield. However the spirophosphorane (231), under the same conditions gave a mixture of 95% <u>cis</u> and 5% <u>trans</u> phenylphosphetan oxides.

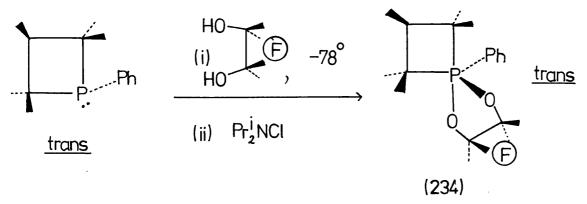


Hydrolysis reactions of most phosphetan adducts have been found by Whittle¹⁰⁸ to go with retention, although in the case of the dimethylaminophosphetan - H.F.A. adduct (232), inversion was found to take place. The results of the hydrolysis reactions seem to suggest that the N-chlorodi-isopropylamine reaction had gone with retention of configuration.

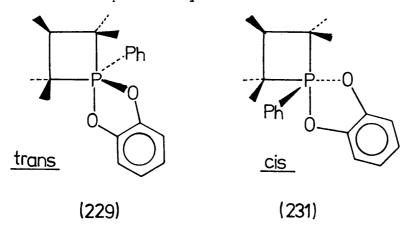


Oram¹²⁴ had prepared the H.F.A. adducts (233) and (234) of both <u>trans</u> and <u>cis</u> pentamethylphenylphosphetan. It was concluded that these H.F.A. reactions had gone with retention based on

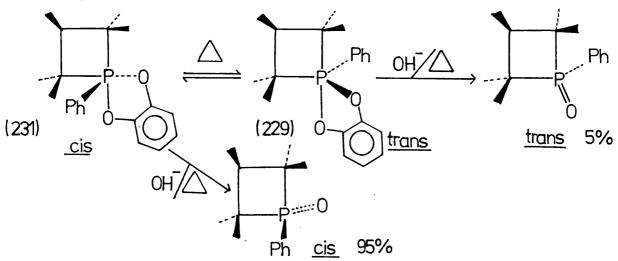
82



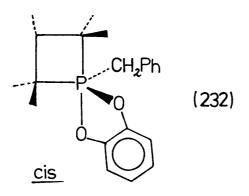
an X-ray analysis of the H.F.A. adduct (235)²⁴, prepared from

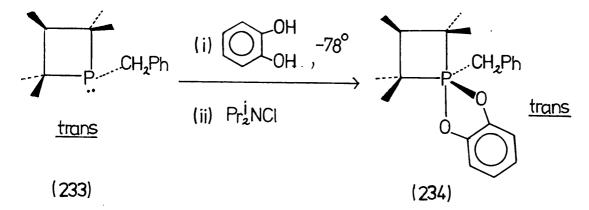


the <u>cis</u> <u>p</u>-bromophenylphosphetan and H.F.A. By preparing either one of the adducts (233) and (234) by the N-chlorodiisopropylamine method, and comparing its physical properties with those of an authentic sample it was hoped to show that the N-chlorodi-isopropylamine reaction **goes** with retention or

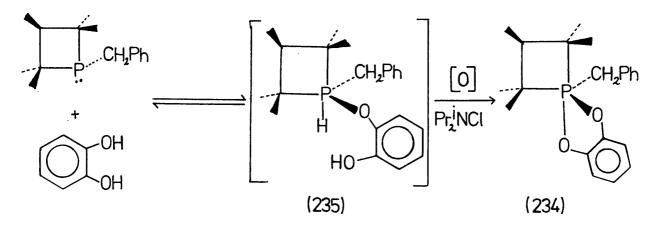

inversion of configuration at phosphorus. The adduct (234) was choosen for its remarkable stability 156 to hydrolysis.

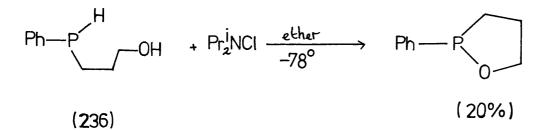
The physical properties of the adduct (234) prepared by the N-chlorodi-isopropylamine method were found to be identical to those reported by Oram¹²⁴ for the adduct prepared from the <u>trans</u> phenylphosphetan and H.F.A. Therefore it was concluded that the N-chlorodi-isopropylamine reaction had indeed gone with retention of configuration at phosphorus. Hence the catechol spirophosphoranes, (229) and (231), were the <u>trans</u> and <u>cis</u> isomers respectively.

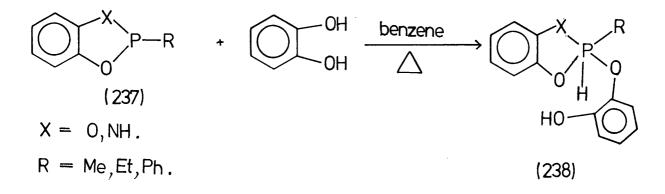

On heating a sample of the <u>cis</u> phenylspirophosphorane (231) in 1-bromonaphthalene at 100° C for 0.5 h , the appearance of the <u>trans</u> isomer was noted, (as shown by examination of the ¹H n.m.r. spectrum and comparing it with an authentic sample). It is this equilibration of the isomers (231) \rightleftharpoons (229), which is probably responsible for the small percentage of <u>trans</u> oxide found when the <u>cis</u> spirophosphorane (231) was hydrolysed.


84

As the equilibration of <u>cis</u> $(229) \rightleftharpoons \underline{\text{trans}}$ (231) was found to be very slow at room temperature, the kinetics of the process could be studied by ¹H n.m.r. in 1-bromonaphthalene ¹²⁹, (see section 5.3).

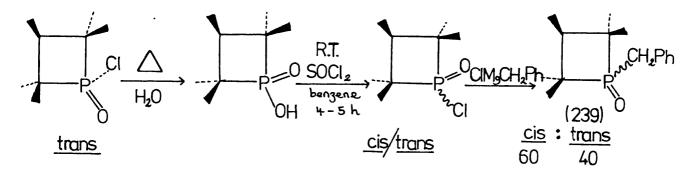

In order to obtain the relative apicophilicity of phenyl and benzyl groups using this kinetic approach, the preparation of the cis benzylspirophosphetan (232) is necessary.


In **con**trast to the attempted addition of perfluoropinacol by the N-chlorodi-isopropylamine method, the <u>trans</u> benzylphosphetan catechol adduct (234) was made in good yield. No \triangleleft


-halogenatedphosphetan oxides (220) and (221) were produced. The only difference between the reaction which gave the spirophosphorane (234) and the one which gave the \prec -halogenatedphosphetan oxides is the diol used. A way round this problem is to postulate some sort of intermediate compound, formed between catechol (and not perfluoropinacol) and the <u>trans</u> benzylphosphetan (233), which then reacts with N-chlorodiisopropylamine to give the spirophosphorane (234). The type of intermediate might even be the phosphorane (235), which is then oxidized by the N-chlorodi-isopropylamine to the spirophosphorane (234).

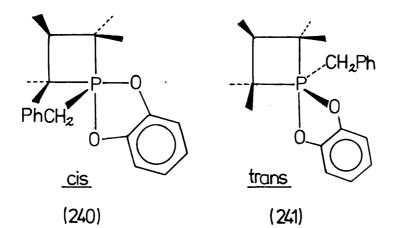
Antzcak⁸⁴ has shown N-chlorodi-isopropylamine to be capable of oxidizing similar compounds (236) under mild conditions. Reaction between tervalent phosphorus compounds

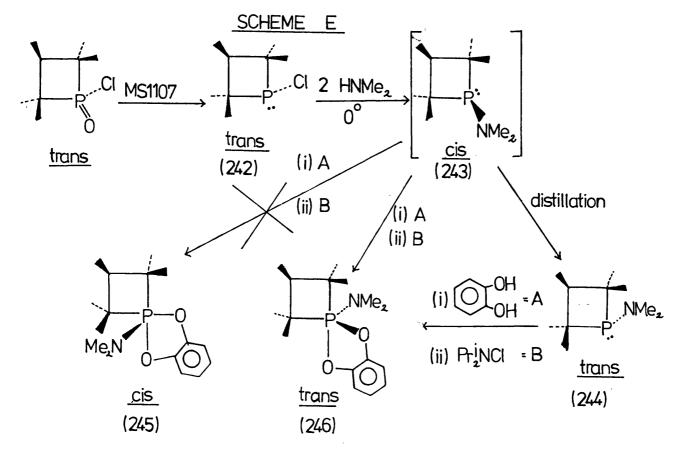
and catechol has been observed to give phosphoranes of the type (238)⁸¹. However such reactions usually need heat, but as the systems employed were 1,3,2-benzodioxaphospholes (237), the more nucleophilic phosphetans might undergo this type of reaction under the mild conditions used in the N-chlorodi-isopropylamine reaction.



Kemp¹⁵⁷ has looked at possible reactions of catechols with phenyl phosphetans using F.T. ${}^{31}P$ n.m.r., and concluded

that there was no formation of a phosphorane-type intermediate, under mild conditions. This would seem to suggest that no phosphorane intermediate is involved in the N-chlorodi-isopropylamine reaction, although this does not rule out the possibility of some hydrogen-bonded complex formed between catechol and the phosphetan, which then is oxidized by N-chlorodi-isopropylamine to the corresponding spirophosphorane.

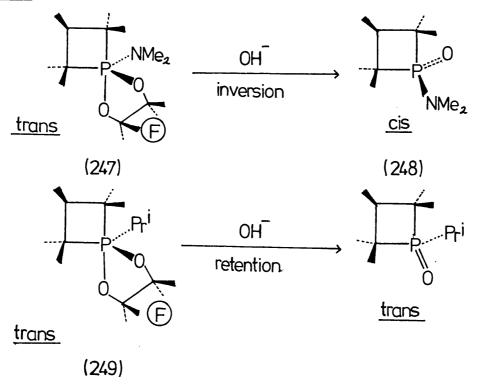

The synthesis of a <u>pure</u> sample of <u>cis</u> benzylphosphetan oxide (239) proved impossible; the best attempt was a <u>cis-trans</u> mixture having a composition of 60% <u>cis</u> and 40% <u>trans</u> (see Scheme D). The isomer ratio was determined by ¹H n.m.r., using pyridine as the solvent, the assignments being based on work carried out by Cremer and Gray¹⁵⁸.



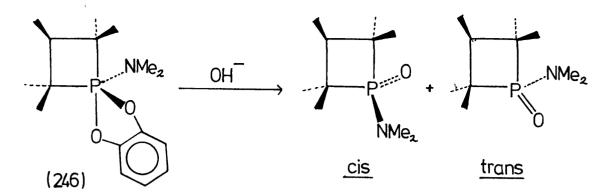
This mixture of oxides (239) on stereospecific reduction and subsequent reaction with catechol and N-chlorodi-isopropylamine at -78° C, gave the spirophosphoranes (240) and (241), which by ¹H n.m.r. consisted of two isomers in the ratio of 60:40. It is assumed that the isomer present in the larger amount is the <u>cis</u> phosphorane (240) i.e. the reaction had gone with retention of configuration at phosphorus. The percentage of <u>cis</u> isomer (240) was increased to about 80% by taking advantage of it's greater solubility in cold light petroleum, so that kinetic runs could be more easily followed (see section 5.3).

In order to obtain the relative apicophilicity of the dimethylamino group with respect to phenyl and benzyl, the <u>cis</u>

adduct (245) was desired. Unfortunately only the pure \underline{trans} isomer (246) was ever obtained (see Scheme E).


The preparation of the dimethylaminophosphetan (243) had been shown to go with inversion¹⁵⁹; this <u>cis</u> isomer on distillation then gave the <u>trans</u> isomer $(244)^{108}$. On treating the <u>cis</u> dimethylamino phosphetan (243) with catechol and N-chlorodiisopropylamine at -78° C, only the <u>trans</u> spirophosphorane (246) was obtained.

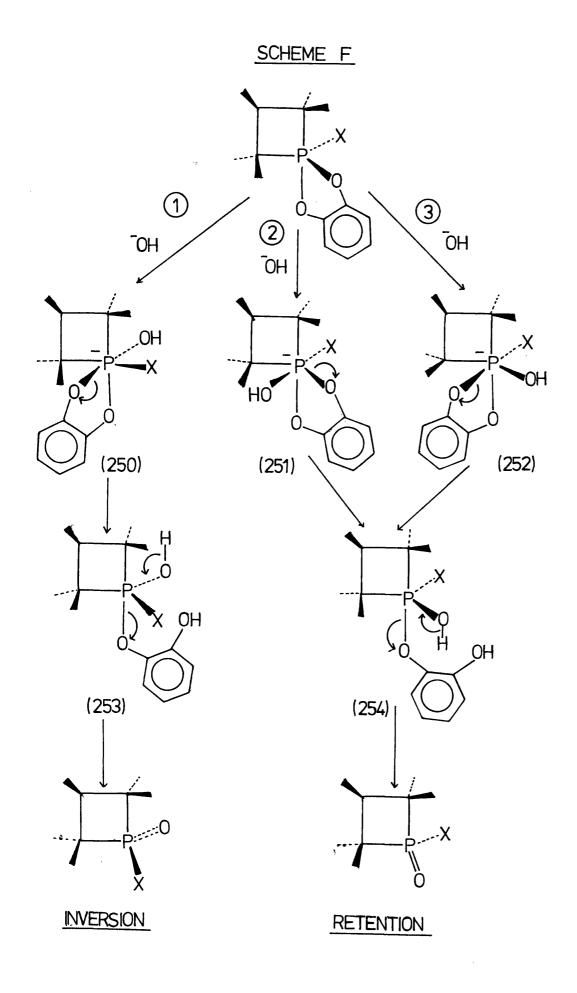
88


In this case either the N-chlorodi-isopropylamine reaction is not going with retention or the <u>cis</u> spirophosphorane (245) once formed immediately isomerises to the <u>trans</u> isomer (246).

The <u>trans</u> spirophosphorane proved remarkably stable to heat, and only a trace of the presumed <u>cis</u> isomer (245) was formed after heating at 120° for three days. This shows that the <u>cis</u> <u>trans</u> equilibrium in this case is far to the side of the <u>trans</u> isomer.

Whittle¹⁰⁸ found that the <u>trans</u> dimethylaminophosphetan - H.F.A. adduct (247) on hydrolysis gave the <u>cis</u> phosphetan oxide (248), in constrast to the usually observed retention of configuration on hydrolysis. Steric considerations were ruled out as a cause of this anomolous behaviour as hydrolysis of the <u>trans</u> isopropylphosphetan (249) adduct went with retention.

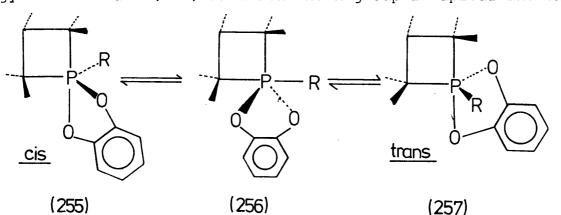
On hydrolysis of the <u>trans</u> dimethylaminophosphetan catechol adduct (246) both <u>cis</u> and <u>trans</u> oxides were formed, the exact ratio of <u>cis</u> to <u>trans</u> isomers varying with the temperature at which the hydrolysis took place.


After 24h at room temperature the ratio of <u>trans</u> : <u>cis</u> was 2 : 1 whereas if the hydrolysis was carried out at 60° C for lh the ratio of trans : cis was 1 : 3.

If we consider the possible reaction pathways outlined in scheme F, we can see that $\operatorname{attac} \mathbf{k}$ of the nucleophile can occur opposite any of the equatorial ligands to give three possible hexaco-ordinate species (250) - (252).

It is not clear why the dimethylamino adducts (246) and (247) hydrolyse by different pathways as little is known about the stereoelectronic requirements in hexaco-ordinate phosphorus compounds. A possible explanation of the results is that π donation from the dimethylamino group plays a part in determining the position of initial nucleophilic attack and this presumably controls the reaction pathway in some way.

5.3 THE RELATIVE APICOPHILICITY OF THE PHENYL AND BENZYL GROUPS BY A KINETIC METHOD


As outlined in sections 3.4 and 3.5 data on the relative apicophilicities of different ligands attached to phosphorus have mainly come from d.n.m.r. studies on suitable phosphoranes. This method is only suitable for a range of $\Delta G^{\#}$ values of about 9 - 22 kcal.mol⁻¹, due to the limited temperature range over which the n.m.r. machine can operate. It is when $\Delta G^{\#}$ values are greater than 24 kcal.mol⁻¹ that constant temperature n.m.r. studies become important.

It was found that $\underline{\operatorname{cis}} \rightleftharpoons \underline{\operatorname{trans}}$ isomerisation of suitable spirophosphetans could be followed by monitoring the ¹H n.m.r. spectra of the <u>cis</u> compound at a pre-selected <u>constant</u> temperature and at different time intervals, the temperature being such that equilibration was reached in 3-4 h¹²⁹. Integration of the phosphetan methyl signals for each isomer present in the mixture gave the relative amounts of each present at that particular time.

The pseudorotation process which brings about $\underline{\text{cis}} \xleftarrow{} \underline{\text{trans}}$ isomerisation is given by (255) $\overleftarrow{}$ (257), involving the high energy intermediate (256) in which the R group is apical and the

catechol ring diequatorial. If the R group is poorly apicophilic the process is sufficiently slow to be followed kenetically. The rate equation used to obtain the forward and backward rate constants for the isomerisation is outlined below.

For a process <u>cis</u> $\stackrel{k_{f}}{\underbrace{k_{r}}}$ <u>trans</u>.

let the initial concentration of <u>cis</u> isomer = a
and concentration of <u>trans</u> isomer at time t = x
concentration of trans isomer at equilibrium = x

Therefore, at time t, concentration of \underline{cis} isomer = a - x

$$\frac{dx}{dt} = {}^{k}f(a - x) - {}^{k}r(x) ___equation (i).$$

At equilibrium ${}^{dx}/dt = 0$

hence $k_f(a - x_e) = k_r(x_e)$ _____equation (ii) $K = \frac{k_f}{k_r} = \frac{x_e}{a - x_e}$ and $k_r = \frac{k_f(a - x_e)}{x_e}$ Substituting for k_r into equation (i) we obtain.

$$\frac{dx}{dt} = \frac{k_{f}(a-x) - k_{f}x(a-x_{e})}{x_{e}}$$

$$= \frac{k_{f}a - k_{f}x - \frac{k_{f}xa}{x_{e}} + \frac{k_{f}xx}{x_{e}}e}{\frac{k_{f}a - k_{f}xa}{x_{e}}} = \frac{k_{f}xe^{a} - \frac{k_{f}xa}{x_{e}}}{\frac{k_{f}a}{x_{e}}} - \frac{k_{f}xa}{x_{e}}$$

$$\frac{dx}{dt} = \frac{k_{f}a}{x_{e}} (x_{e} - x)$$

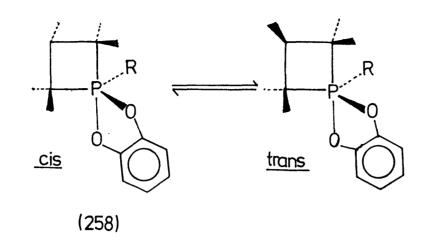
If we integrate this between the limits x = o, t = o

and
$$x = x$$
 at $t = t$.

we obtain
$$\log_n \frac{x_e}{x_e - x} = k_f \frac{at}{x_e}$$
 -------equation (iii)

from equation (ii) $\frac{k_f a}{x_e} = k_f + k_r$

Therefore substituting this into (iii) gives.


$$logn\left[\frac{x_e}{x_e - x}\right] = (k_f + k_r)t$$
$$= log_{10}\left[\frac{x_e}{x_e - x}\right] = (k_f + k_r)t$$
$$\frac{k_f + k_r}{2.303}t$$

Rearranging this becomes

$$\log_{10} x_{e} - \log_{10} (x_{e} - x) = \frac{(k_{f} + k_{r})t}{2.303}$$

Hence a plot of $\log_{10}(x_e-x)$ against time(t) should give a straight line of gradient $-\left[\frac{k_f+k_r}{2.303}\right]$ and intercept $\log_{10}x_e$

From three runs at three different temperatures, three rate constants were obtained. This process was carried out for the spirophosphoranes (258, R = Ph, CH_2Ph) and the activation parameters are summarised in Tables 8 and 9.

In compiling the tables the following equations were used.

 $\log_{10} \frac{k_{2}}{k_{1}} = \frac{e^{\#}}{2.303R} \left[\frac{1}{T_{1}} - \frac{1}{T_{2}} \right] \text{ to give } E^{\#}$ $\Delta_{H}^{\#} = E^{\#} - nRT \text{ (in this case n = 1) to give } \Delta H^{\#}$ $k = \frac{KTe^{-}}{h} - \frac{\Delta G^{\#}}{RT} \text{ to give } \Delta G^{\#}$ $\Delta_{G} = -RT\log_{n} K_{e} \text{ to give } \Delta G$ $\Delta_{G} = \Delta H - T\Delta S \text{ to give } \Delta S$ $\frac{TABLE 8}{2}$

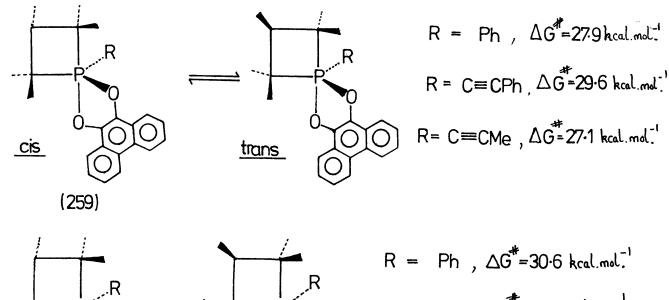
For the spirophosphorane (258, R = Ph)

Temperature	∆G	k _f	E [#]	∆H [#]	∆g [#]	∆s [#]
^O K	kcal	sec-1	kcal.mol ⁻¹	kcal.	kcal.mol ⁻¹	kcal.mol ⁻¹
363 372 382	-1.5	1.0x10 ⁻⁴ 2.5x10 ⁻⁴ 7.0x10 ⁻⁴	27.4 27.4	26.7 26.7 26.7	27.9 27.8 27.9	-3×10^{-3} -2.6×10^{-3} -3×10^{-3}

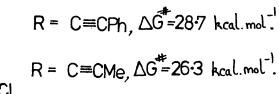
Average $\Delta_{G}^{\#} = \underline{27.9 \text{ kcal.mol}^{-1}}$ for $\underline{\text{cis}} \rightarrow \underline{\text{trans}}$ The $\Delta_{G}^{\#}$ for the reverse equilibration, $\underline{\text{trans}} \rightarrow \underline{\text{cis}}$ was $\underline{29.5 \text{ kcal.mol}^{-1}}$.

TABLE 9

Temperature ^O K	∆G kcal.	k _f sec-1	E [#] kcal.mol ⁻¹	∆н [#] kcal.	∆g [#] kcal.mol ⁻¹	∆s [#] kcal.mol ⁻¹
366		2.0×10 ⁻⁵		26.8	29.4	-7x10 ⁻³
376		5.3×10 ⁻⁵		26.8	29.4	-7×10^{-3}
386	-1.6	11.2×10 ⁻⁵	27.5	26.7	29.5	-7.1×10^{-3}

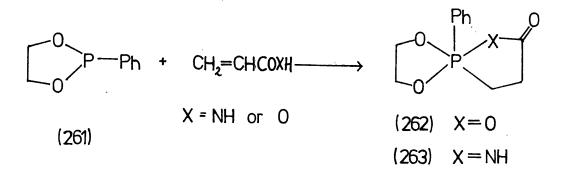

For the spirophosphorane (258, $R = CH_2Ph$)

Average $\Delta G^{\#} = \underline{29.4 \text{ kcal.mol}^{-1}}$ for $\underline{\text{cis}} \longrightarrow \underline{\text{trans}}$ and the $\Delta G^{\#}$ for the reverse equilibration $\underline{\text{trans}} \longrightarrow \underline{\text{cis}}$ was $\underline{31 \text{ kcal.mol}^{-1}}$.


From these results it is clear that the phenyl group is more apicophilic than the benzyl group in this system by <u>ca</u> $1.5 \text{ kcal.mol}^{-1}$. This result contrasts with that of Bone⁴⁴ who found the benzyl group to be more apicophilic than the phenyl by ca 1.0 kcal.mol⁻¹.

It was not possible to obtain the relative apicophilicity of the dimethylamino group as the spirophosphorane (258, R = NMe₂) could not be prepared. The rate of formation of the <u>cis</u> isomer from the <u>trans</u> could not be followed as it was much too slow. For a pseudorotation process Δs^{*} should be zero. The values found are very small and are within experimental error.

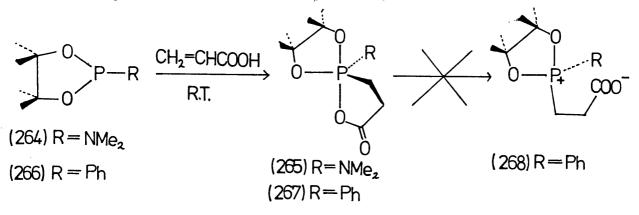
The results obtained for the spirophosphorane (258, R = Ph) are in good agreement with those obtained by Aly¹²⁹, on the systems (259) and (260).


 \cap

6 THE REACTIONS OF PHOSPHITES WITH ACRYLIC ACID

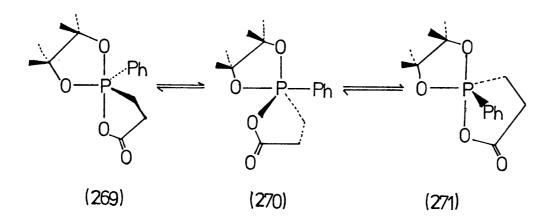
6.1 WITH CYCLIC TRIVALENT PHOSPHORUS COMPOUNDS: THE RELATIVE APICOPHILICITY OF THE PHENYL GROUP Saegusa et al¹⁵⁰ reported what they considered to be the

first pentaco-ordinate phosphorus compounds (262) and (263) obtained from reaction of acrylic acid (or acrylamide) with trivalent phosphorus compounds, in this case 2-phenyl-1,3,2dioxaphospholan (261).


The two spirophosphoranes (262) and (263) were reported as being thermally stable, crystalline and obtainable in high yields. They based their structures on the positive ${}^{31}\mathbf{P}$ n.m.r. chemical shifts (relative to 85% H₃PO₄) characteristic of phosphoranes and preliminary X-ray data for (262, x = 0) which showed it to be essentially trigonal bipyramidal.

It was hoped to prepare similar phosphoranes for a d.n.m.r. study of poorly apicophilic groups, due to the relatively low energy required (for a five-membered ring) to put the 1,2oxaphospholan ring diequatorial. Also with the presence of a carbonyl group on the carbon atom next to the oxygen-phosphorus bond, electronic interactions are possible between the carbonyl

system and the oxygen \underline{p} orbitals, which might serve to lower the energy barrier still further.


For a d.n.m.r. study the phosphonite (261) would be of little use, so the 2-dimethylamino-4,4,5,5-tetramethyl-1,3,2,dioxaphospholan (264) was used. The spirophosphorane (265) was obtained in almost quantatative yield. Its positive ${}^{31}P$ n.m.r. chemical shift was indicative of a pentacovalent species. The ${}^{1}H$ n.m.r. spectrum in 1-bromonaphthalene at room temperature, showed four separate signals for the pinacol ring methyls as expected. Unfortunately the compound (265) proved to be very thermally unstable, so that d.n.m.r. work proved impossible.

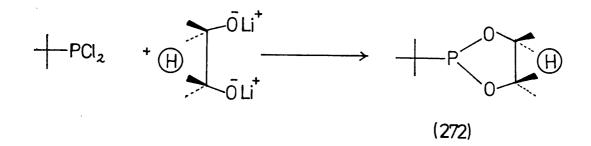
The thermally stable spirophosphorane (267) was obtained from acrylic acid and the phosphonite (266). Its Vmax, ¹H and ³¹Pn.m.r. values were consistent with it being pentaco-ordinate at room temperature and not a dipolar species (268).

An F.T. ¹³C n.m.r. spectrum of (267) showed the presence of P - C coupling for the carbon atom bearing the carbonyl group, further evidence for the oxaphospholan ring being intact.

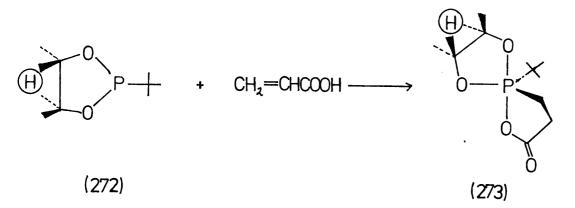
The four methyl signals of (267) coalesced to two on heating at two separate coalescence temperatures. Both coalescences have the same $\Delta G^{\#}$, the difference in T^C being due to the large difference in frequency between the coalescing signals. The process speeded up on the n.m.r. time-scale which brings about these coalescences is (269) \rightleftharpoons (271) which involves the high energy intermediate (270), in which the phenyl group is apical and the oxaphospholan ring diequatorial.

The results obtained are shown in Table 10.

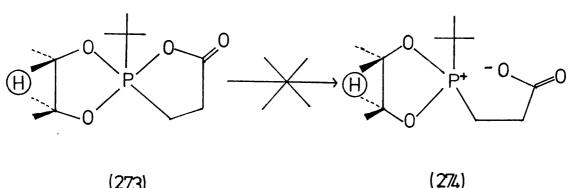
	Δ ~ (H ₂)	T ^C (^O C) ^(a)	$\Delta G^{\#}$ (kcal.mol. ⁻¹)
lst Coalescence	9	63 + 3	17.7 ± 0.1
2nd Coalescence	35	77 ± 1	17.5 ⁺ 0.1


TABLE 10

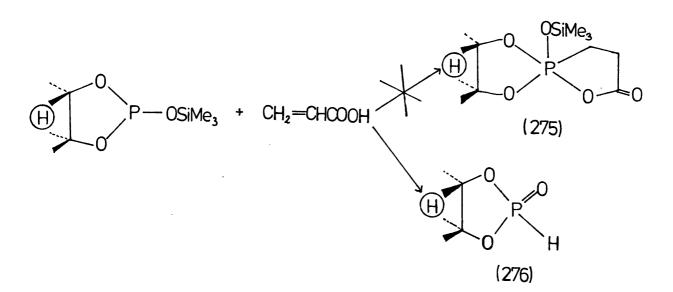
(a) in CCl₃Br


When the experimental results are compared to the calculated value¹²⁰ of between 20 - 23 kcal.mol⁻¹, we find them to be much lower than expected.

 $\Delta G^{\#}_{\text{obs.}} \gg \Delta G^{\#}_{\text{calc.}} = \mathbf{A}(\text{RingO-Ph}) + S_{90-120}(\text{C-0 ring}) + \text{RotO}$ = 8 - 12 + 8 + 5 $= 21 - 25 \text{ kcal.mol}^{-1}$

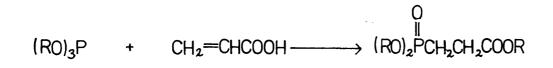

The low result could have three possible causes. Firstly the coalescences observed could be due to an irregular process such as ring-opening (267) \rightleftharpoons (268); such an ionisation would be expected to be reasonably favourable. Secondly the effect of the \prec - carbonyl group might be considerable, either in reducing the barrier to rotation about the P-O bond or reducing the ring-strain in going from 90° a.e. \rightarrow 120° e.e. Thirdly the phenyl group may be more apicophilic than previous measurements suggest, thus lowering the value of 8-12 kcal.mol⁻¹ needed in replacing apical ring oxygen by a phenyl group. If the ΔG^{\sharp} value obtained for the phenyl group is valid, then a system exists which would be useful for a comparison of the phenyl group with other poorly apicophilic groups. The first group considered was the t-butyl group. However problems arose in the preparation of the starting phosphonite (272) which could not be prepared from t-butyldichlorophosphine, pinacol and two moles of base in the usual way. The problem was solved by using the dilithium salt of pinacol and t-butyldichlorophosphine which gave the phosphonite (272) in fair yield. The phosphonite

(272) was isolated as a very air sensitive, colourless liquid, the very low ${}^{31}\text{P}$ n.m.r. chemical shift (relative to 85% H $_3\text{PO}_4$) of -204.l p.p.m. being characteristic of a trivalent phosphorus compound of this nature 148 . With acrylic acid the phosphonite (272) readily gave the adduct (273) in almost quantitative yield.

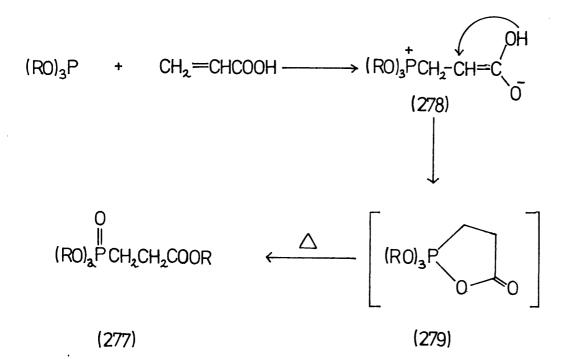

The ¹H n.m.r. spectrum of (273) showed the pinacol methyls to be a singlet in all solvents tried, and the ³¹P n.m.r. chemical shift of -10.5 p.p.m. is not in the normal range of this type of spirophosphorane. The infra-red spectrum showed no trace of any P = 0 or -0H bands thus ruling out any ring-opening to a phosphonium-type compound (274). Even if such a process was

(273)

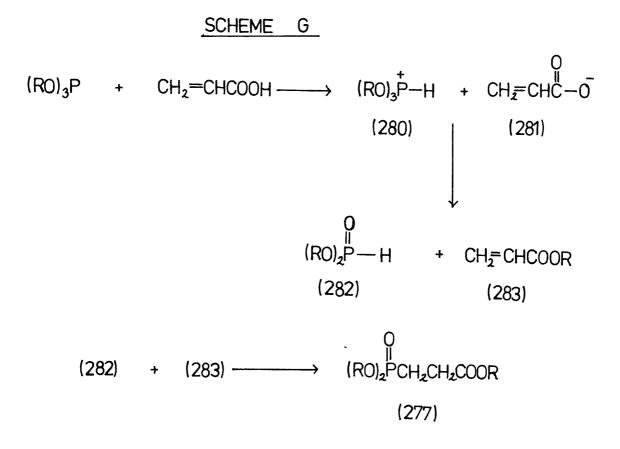
occurring the pinacol methyls should still appear as two signals in the ¹H n.m.r. spectrum. The only explanation of the spectral data is that the spirophosphorane (273) was prepared, but the pinacol methyls were accidentally magnetically equivalent.


Acrylic acid was next used in an attempt to prepare the spirophosphorane (275); however all that was isolated was the cyclic phosphinate (276) in 100% yield, (see Section 4.2).

Attempts to prepare spirophosphoranes from 2 - ethoxy -4,4,5,5-tetramethyl - 1,3,2,-dioxapholan and acrylic acid also failed, no phosphoranes were detected in the ³¹P n.m.r. It would seem from the evidence available that the formation of spirophosphoranes from acrylic acid required the presence of a cyclic phosphorus compound bearing a group not susceptible to 'Arbuzov type' reactions.

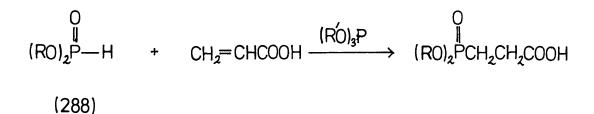

6.2 WITH ACYCLIC TRIVALENT PHOSPHORUS COMPOUNDS

Kukhtin <u>et al</u>¹⁶⁰ carried out many reactions involving acyclic phosphites and acrylic acid, the isolated products of which were not phosphoranes, but the corresponding /3 – phosphonocarboxylic esters (277). The mechanism put forward involved the

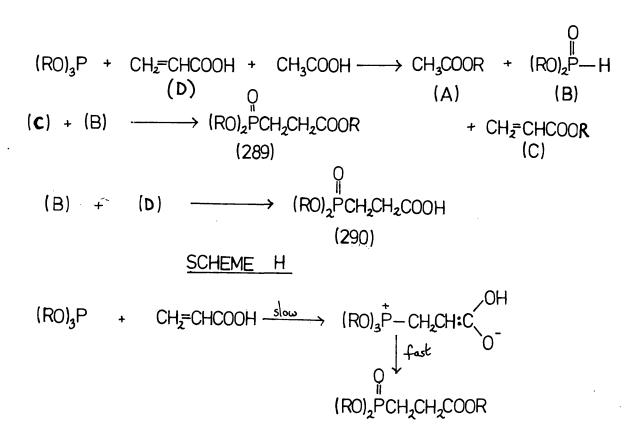

(277)

formation of the cyclic phosphorane (279), which then rearranged on heating. The only evidence for the phosphorane (279) was that

on addition of methanol or water to the reaction mixture, prior to distillation, an exothermic reaction took place, whereas there was no exothermic reaction with the distillate (277).


Clearly a re-investigation of this work using modern techniques was necessary. This was indeed carried out by Arbuzov¹⁶¹ who found no evidence to suggest a cyclic phosphorane intermediate (279) but did find evidence which suggested an alternative mechanism involving initial protonation of the phosphite to give the species (280) and (281).

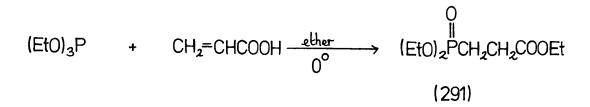
Their mechanism was based on the observations that carboxylic acids react with trialkyl phosphites to give the corresponding esters (284) and the dialkyl phosphites (285) in good yields¹⁶² and that trialkyl phosphites react with methyl


 $(RO)_{3}P + CH_{3}COOH \longrightarrow CH_{3}COOR + (RO)_{2}P \longrightarrow H$ $(284) \qquad (285)$

acrylate (286) in the presence of acetic acid to give the β phosphonocarboxylic esters (287)¹⁶³. They also found that trialkyl phosphites act as catalysts for the addition of (RO)₃P + CH₂=CHCOOCH₃ + CH₃COOH \longrightarrow (RO)₂PCH₂CH₂COOCH₃ (286) (287) + CH₃COOR dialkyl phosphites (288) to the carbon atom of an $\ll \beta$ - unsaturated acid.

As further proof of the mechanism outlined in Scheme G , they isolated small amounts of ethyl acrylate (283, R = Et) and diethyl phosphite (282, R = Et) from the reaction between triethyl phosphite and acrylic acid.

When excess protonating agent is used, whether in the form of excess \checkmark, β - unsaturated acid or added acetic acid, not only is the β - phosphinate ester (289) produced but also some of the corresponding acid (290).



As the results obtained from acyclic phosphites and acrylic acid appear to differ from those obtained with certain cyclic phosphites, a further investigation of these reactions

104

was undertaken using an F.X. 60 F.T. ${}^{31}P$ n.m.r. machine, in order to allow great sensitivity and speed to be employed in the search for ${}^{31}P$ n.m.r. signals.

The first system investigated on a preparative scale was the reaction between triethyl phosphi \mathbf{t} e and acrylic acid. The ¹H n.m.r. spectrum of the reaction mixture, after leaving

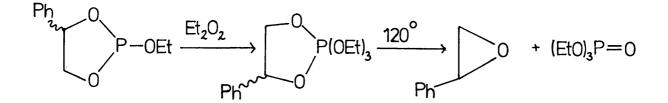
for two days at room temperature, seemed to suggest a 90% conversion into (291), but on reduced pressure distillation only 45% of (291) was actually obtained. The greater yield isolated (previously reported yield = $20\%^{164}$) was probably due to the milder conditions employed, the use of a solvent and lower temperatures. A look at the non-volatile residues showed it to contain roughly 10% of the acid, $(EtO)_2P-CH_2-CH_2-COOH$ (292). It would seem from the above results that it is the /3 - phosphonocarboxylic ester (291) which is thermally unstable and not the proposed cyclic phosphorane intermediate (279).

When this reaction was looked at by F.T. ${}^{31}\dot{P}$ n.m.r. spectroscopy in CDCl₃ solution at 0^OC, only slow formation of the ester (291) and the acid (292) was observed. There was no evidence of any other phosphorus compound such as diethyl phosphite. This would seem to suggest a mechanism such as that outlined in Scheme H.

When R was iso-propyl, the same results were obtained except that higher yields of isolated products were recorded.

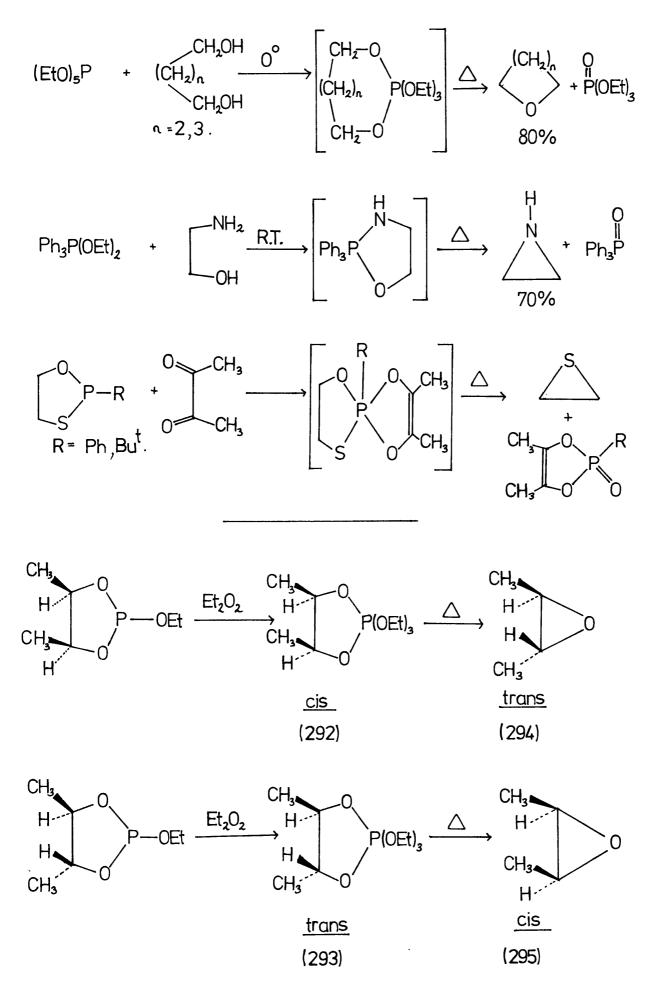
The discrepancy between initial yield, as judged by the 1 H n.m.r. spectrum of the reaction mixture, and the amount of pure distilled material collected would seem to indicate

105

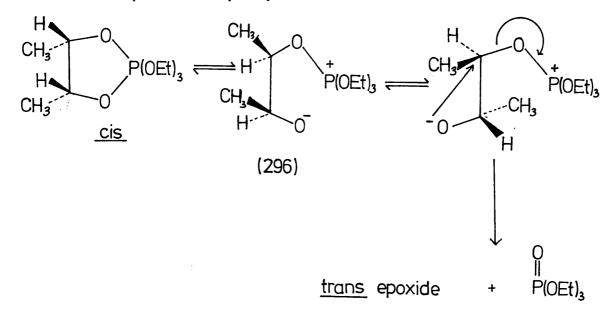

that the by-products obtained by Arbuzov¹⁶¹ are not true intermediates, but result from thermal decomposition of the

A - phosphonocarboxylic esters (291) at the high temperatures
 and low pressures involved in distillation.

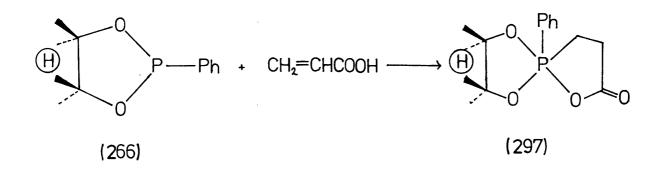
 $\begin{array}{c} 0 \\ (RO)_{2}^{\mu} P^{-} CH_{2}^{-} CH_{2}^{-} COOR \\ R = Pr^{i} b_{0.05} \quad 105-110^{\circ} \end{array}$

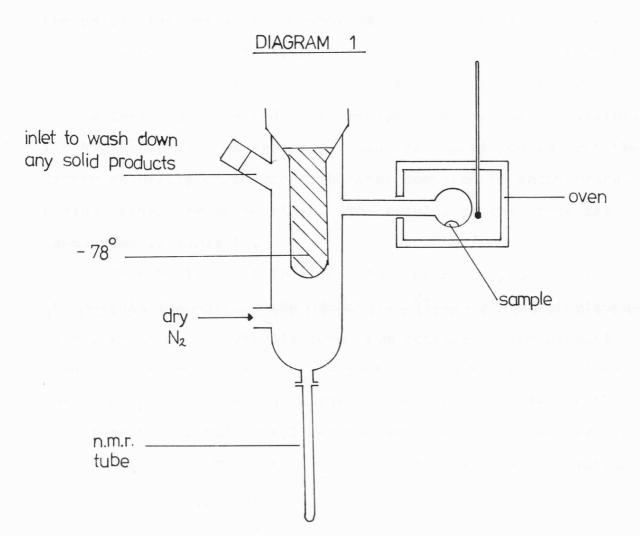

It would appear that phosphoranes are only formed from acrylic acid and phosphites, if the phosphite is cyclic and contains a group which is not susceptible to 'Arbuzov type' attack. The fact that a ring is necessary is probably another example of the stability conferred on phosphoranes by the presence of two rings.^{62,63}

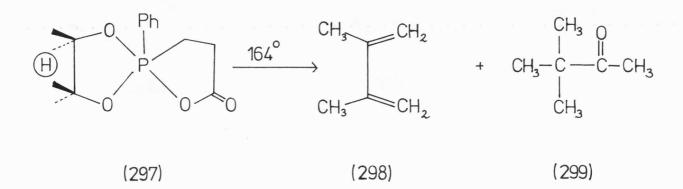
6.3 <u>THERMOLYSIS OF SPIROPHOSPHORANES CONTAINING A PINACOL RING</u> There are many examples in the literature¹⁶⁵ of small-ring heterocycles being obtained from the **th**ermal decomposition of cyclic phosphoranes, e.g.



This type of displacement reaction has been utilized as a general method for the synthesis of heterocyclic compounds in very good yields.^{63,64,166}

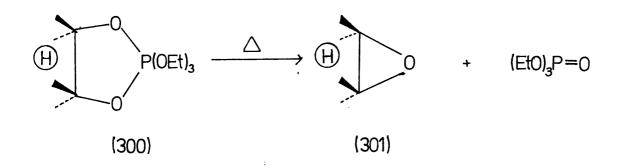

The formation of the epoxides (294) and (295) has been shown to be stereospecific by decomposition of the phosphoranes (292) and (293).


The stereospecificity of the reaction must be due to dissociation of the phosphorane into the intermediate (296) followed by rotation about the carbon-carbon bond and back-side attack to displace the phosphate.


With the preparation of the spirophosphorane (297) from 2-phenyl- 4,4,5,5,-tetramethyl-1,3,2,-dioxaphospholan (266) and acrylic acid, the oxaphospholan ring formed seemed to have

potential for thermolysis reactions. The apparatus used (Diagram 1) was that of Smith and Finlay¹⁶⁷; the sample is heated in the oven until the point where decomposition takes place. Any volatile products formed collect on the cold-finger and are collected in the n.m.r. tube for spectral analysis and gas-liquid chromatography.

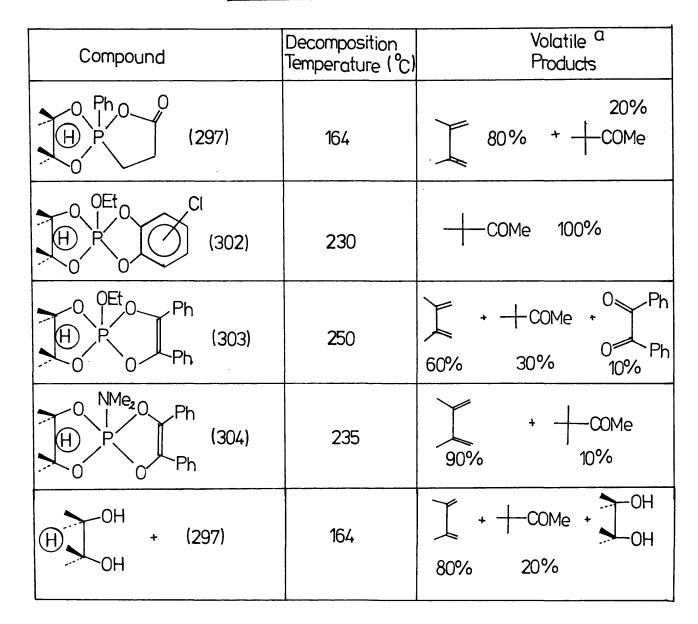
On heating the spirophosphorane (297) to 164° , a colourless liquid was collected in the n.m.r. tube. From the ¹H n.m.r. spectrum and G.L.C. the mixture was shown to consist of 2,3-dimethylbutadiene (298) as the major constituent and a small amount of t-butyl methyl ketone (299).



There was no trace of any tetramethylethylene oxide (301)which Denney¹⁶⁵ obtained from the phosphorane (300). To see if

109

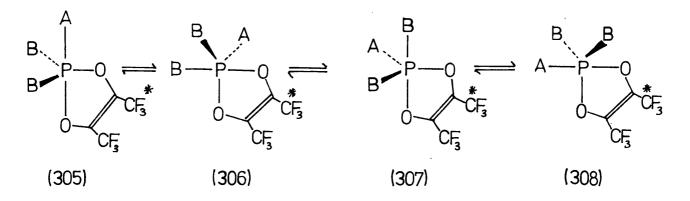
the result for the spirophosphorane (297) was typical of phosphoranes having the 4,4,5,5-tetramethyl-1,3,2-dioxaphospholan ring, a range of spirophosphoranes containing this ring was synthesised and subjected to thermolysis in the same apparatus. The high temperatures needed to cause decomposition reflect the higher stability of spirophosphoranes compared to phosphoranes having either one or no rings. The results of the study are summarised in Table 11.


From Table 11 it is clear that the major product of thermolysis (except for the adduct (302)) was 2,3-dimethylbutadiene, which must obviously come from rupture of the pinacol ring. The thermolysis of the adduct (297) with an equivalent amount of pinacol gave no change in the ratio of 2,3-dimethylbutadiene to t-butyl methyl ketone, and the pinacol was recovered unchanged. This observation makes it unlikely that the first step is loss of pinacol from the spirophosphorane, which then undergoes reaction to give the products isolated. The loss of 2,3-dimethylbutadiene and t-butyl methyl ketone is also mirrored in the mass spectral breakdown patterns of numerous spirophosphoranes containing a pinacol ring.

110

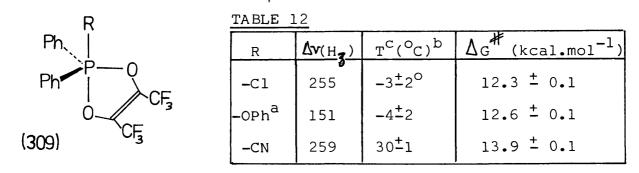
111

TABLE 11



a) Products identified by 1 H n.m.r. and G.L.C. on a 3% O.V. 17 column. The ratios of products were determined from 1 H n.m.r. spectra and are only approximate.

7 THE RELATIVE APICOPHILICITIES OF THE CYANIDE AND CHLORINE LIGANDS


7.1 IN HEXAFLUOROBIACETYL ADDUCTS

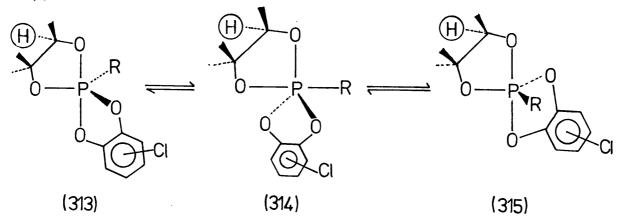
Dickstein and Trippett¹⁵⁴ have shown that the 1,3,2dioxaphospholens (305) obtained from hexafluorobiacetyl and trivalent phosphorus compounds can be used to gain information on the relative apicophilicities of groups in pentacovalent phosphoranes.

If A is more apicophilic than B then equivalence of the trifluoromethyl groups can occur <u>via</u> the higher-energy topomers. (306) and (307). The free energy of activation for this process will be a function of the relative apicophilicities of A and B. The more apicophilic A is relative to B, the higher the temperature required to make the process $(305) \rightleftharpoons (308)$ become fast on the n.m.r. time-scale.

The actual energies involved in this system, for B = Ph, are quite small $(8 - 14 \text{ kcal.mol}^{-1})^{154}$ which therefore makes this a very useful system for the study of highly apicophilic groups. The actual system employed here was (309) and the results obtained are summarised in Table 12.

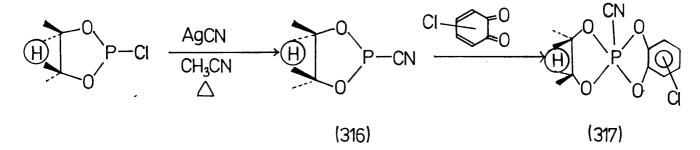
a) determined by Dickstein 154. b) CH2Cl2

It is clear that in this system the relative apicophilicities of the phenoxy and chlorine groups are very similar. The interesting thing to note however is the very high apicophilicity of the cyanide group, which must be due to a combination of its π • acceptor properties and its high electronegativity⁹⁶. This is the first time that the relative apicophilicity of the cyanide group has been determined.


Attempts were made to apply this system to the determination of the relative apicophilicity of the trifluoromethyl group. Unfortunately the trifluoromethyldiphenylphosphine adduct (309, $R = CF_3$) was not obtained from reaction of trifluoromethyldiphenyl phosphine (312) with hexafluorobiacetyl. From the ¹⁹F n.m.r. spectrum of the reaction mixture it was clear that a large number of side-reactions had occurred. Similar results were obtained with the phosphines (310) and (311). Although no apicophilicity value was found for the trifluoromethyl group, a new improved synthesis of trifluoromethyldiphenylphosphine was developed and is outlined in Scheme I. The overall yield by this

SCHEME I

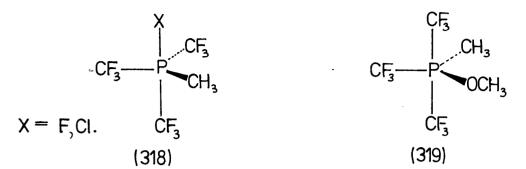
method is 48% based on chlorodiphenylphosphine which compares well with the methods of Beg and Clark^{168} who report yields of 10 - 48% for their high-pressure syntheses.


7.2 IN TETRACHLORO-O-BENZOQUINONE ADDUCTS

Bone¹⁴⁰ had found in a series of tetrachloro-<u>o</u>-benzoquinone adducts that the chlorine group was more apicophilic than the phenoxy group by approximately 2.5 kcal.mol⁻¹ for the system (313) \iff (315).

Full equivalence of the ring methyls can only occur <u>via</u> the high energy intermediate (314) in which the R group is in an apical position and the tetrachlorocatechol ring diequatorial. The energy required to place this ring diequatorial is high and as such the system can really only be used if R is very apicophilic.

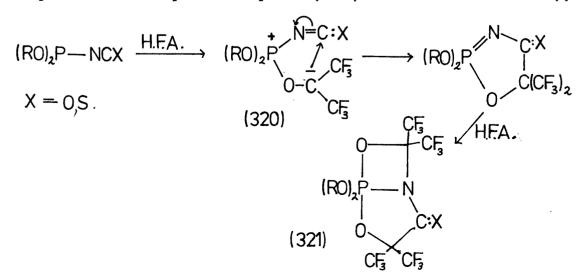
2-Cyano-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan (316) was prepared from 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan by refluxing with silver cyanide in acetonitrile. The compound (316) readily reacted with tetrachloro-<u>o</u>-benzoquinone


to give the spirophosphorane (317), its pentacovalent nature being determined from its positive ^{31}P n.m.r. chemical shift. The 1 H n.m.r. spectrum in CCl₄ showed two equal intensity signals for the pinacol methyls at room temperature. At 46 \pm 2°C these signals underwent a reversible coalescence, which corresponds to a $\Delta \underline{G}^{\#}$ of 16.9 \pm 0.1 kcal.mol⁻¹, as the process (313) \rightleftharpoons (315), R = CN, becomes fast on the n.m.r. time-scale. When compared to the result of Bone⁴⁴ for the spirophosphorane (313, R = C1), it is clear that the cyanide group is more apicophilic than chlorine by about 1 kcal.mol⁻¹ in this system.

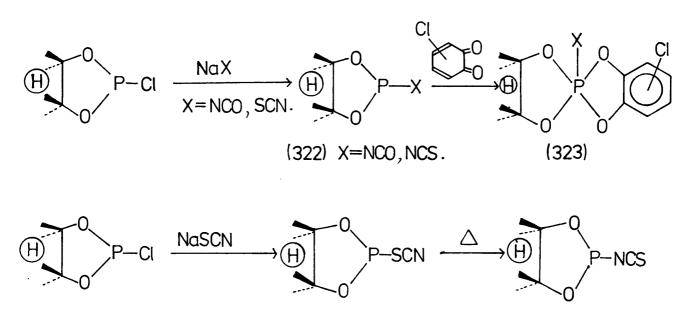
This difference of l kcal.mol⁻¹ in the relative apicophilicity of cyanide and chlorine compares favourable with the result obtained from the hexafluorobiacetyl adducts (309, R = CN, Cl), in which cyanide was found to be more apicophilic than chlorine by about 1.5 kcal.mol⁻¹.

Of course the coalescences observed in the tetrachloro-<u>o</u>benzoquinone (313, R = C1, CN) and hexafluorobiacetyl adducts (309, R = C1, CN) may be due to irregular processes involving nucleophilic impurities (phosphoranes which contain good leaving groups are very susceptible to hydrolysis). If this were so in the tetrachloro-<u>o</u>-benzoquinone systems, the 'gen**v**ine' coalescences would be at higher temperature than observed. This would have the effect of increasing $\Delta G^{\#}$ for the process (313) \rightleftharpoons (315), i.e. the apicophilicity values obtained would be exaggerated and would therefore be closer to the value obtained for the phenoxy group.

In the case of the hexafluorobiacetyl system the 'genuine' coalescences in the absence of nucleophilic impurities would occur at higher temperatures, thus increasing the $\Delta G^{\#}$ for the process (305) \rightleftharpoons (308) and making the true apicophilicity values greater than the ones recorded.

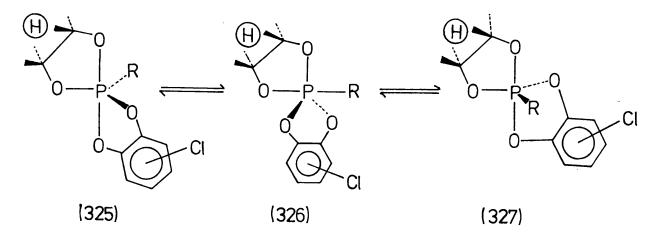

Cavell¹⁶⁹ has shown from a low temperature analysis of the ¹H, ³¹P and ¹⁹F spectra of a series of methyltris(trifluoromethyl) phosphoranes (318), that when X = F or Cl the 'frozen' molecule has X apical, but when X was methoxy, the methoxy group was in an equatorial position in the frozen phosphorane (319). So on a qualitative scale he showed that the chlorine group is

more apicophilic than the methoxy group, and as the relative apicophilicity of phenoxy and methoxy are close, the results of 'this experiment go some way to verifying that the cyanide and chlorine groups are indeed more apicophilic than phenoxy in the spirophosphoranes (313, R = CN, Cl, OPh) and the phosphoranes (309, R = CN, Cl, OPh).


7.3 THE RELATIVE APICOPHILICITY OF THE ISOCYANATE AND ISOTHIOCYANATE GROUPS

The success of the tetrachloro- \underline{o} -benzoquinone adducts in giving apicophilicity data on groups susceptible to nucleophilic attack (see 7.2) prompted an investigation of the relative apicophilicity of the isocyanate and isothiocyanate groups. Trippett $\underline{\text{et al}}^{170}$ have shown how susceptible these groups are to nucleophilic attack from their reactions with hexafluoroacetone to give ultimately the bicyclic phosphoranes. It would appear

that any attempted synthesis of a phosphorane, bearing these groups, which involved a betaine type intermediate (320) would be unsuccessful.

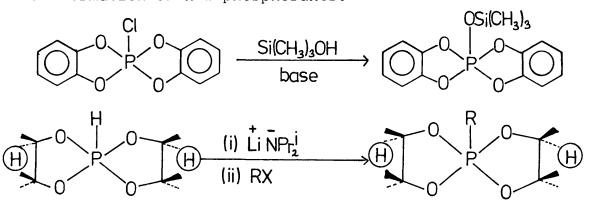

The 2-substituted 1,3,2-dioxaphospholans (322, R = NCO, NCS) were prepared from 2-chloro-4,4,5,5-tetramethyl-1,3,2dioxaphospholan and the appropriate sodium salt on refluxing in benzene-acetonitrile for four hours. The spirophosphoranes (323, R = NCO, NCS) were then prepared in the usual way. In the case of the 1,3,2-dioxaphospholan (322, R = NCS) the initially formed compound is probably a thiocyanate (324) which then rearranges on heating to the isothiocyanate¹⁷¹.

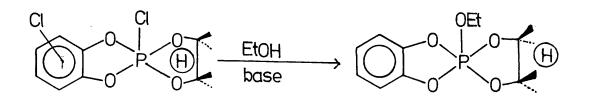
(324)

The ¹H n.m.r. spectrum of the spirophosphorane (323, R = NCO) showed two equal intensity signal at room temperature in CCl_4 . These underwent a reversible coalescence at $53^{\circ}C$, which corresponds to a $\Delta G^{\#}$ of $17.5 \pm 0.2 \text{ kcal.mol}^{-1}$ for the process (325) \rightleftharpoons (327), R = NCO.

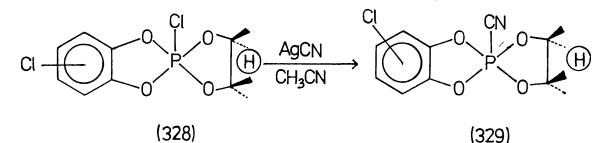
The ¹H n.m.r. spectrum of the spirophorane (323, R = NCS) was a broad singlet in CCl₄. However in <u>sym</u> – tetrachloroethane two signals were observed which coalesced at 57° C, with an

associated $\Delta G^{\text{\#}}$ of 17.8 $\stackrel{+}{-}$ 0.1 kcal.mol⁻¹ for the process (325) \rightleftharpoons (327), R = NCS.

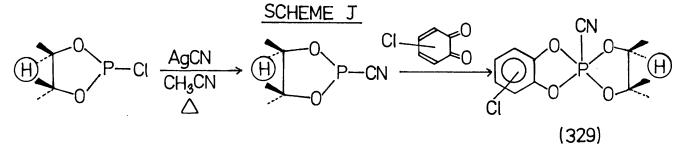

These results show that the relative apicophilicities of isocyanate and isothiocyanate are very similar and that they are very close to the value obtained by Bone⁴⁴ for the chlorine group. This would give an order of relative apicophilicities of


- CN > - NCO ≈ - NCS ≈ Cl >-OPh

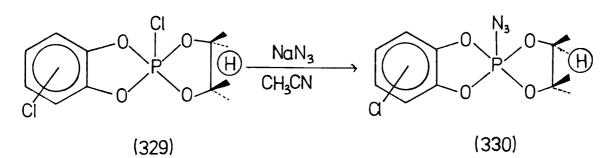
There have been no other reported values for the relative apicophilicities of the cyanide, isocyanate and isothiocyanate groups in the literature.


7.4 THE RELATIVE APICOPHILICITY OF THE AZIDE GROUP AND THE ATTEMPTED APICOPHILICITY OF THE BENZOYLOXY GROUP

There have been several reported examples of successful substitution reactions at pentacovalent phosphorus resulting in the formation of new phosphoranes.^{82,149,193}



An attempt to prepare the spirophosphorane (329) from anhydrous silver cyanide and the corresponding chlorocompound (328) resulted in the formation of a pale yellow solid.

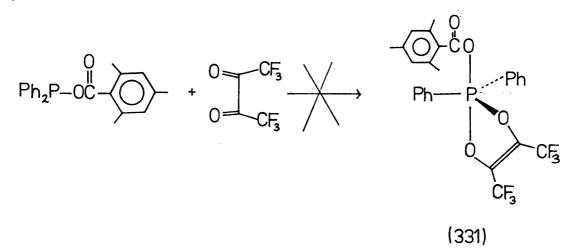

The pinacol methyls appeared as two equal intensity signals in CCl_4 at R.T., the ³¹P n.m.r. was positive as expected and the ^m/e showed the expected mass peak. However on examining the infrared spectrum only a very small obsorption was observed at 2210 cm⁻¹. It was not until an authentic sample of (329) was prepared by an unambiguous route (Scheme J) and its infrared spectrum obtained,

that the preparation of (329) directly from (328) was substantiated. The very poor absorption of the cyanide group in phosphorus compounds is not unusual ; indeed P-cyano- P,P-diphenylphosphine (Ph_2PCN) has been shown to have no cyanide absorption in the infrared region.¹⁷²

Once the success of the method $(328) \longrightarrow (329)$ had been established, the possibility of preparing the first pentacovalent phosphorus compound bearing a phosphorus-azide bond was considered. Phosphine oxides containing the azide group are well-known and reasonably stable.¹⁷³ However trivalent phosphorus compounds containing the azide group are very unstable¹⁷⁴ and, as it is the trivalent state which is usually required for phosphorane formation, the usual methods of synthesis are unlikely to be successful.

Sodium azide and P-chloro- $4^1, 4^1, 5^1, 5^1$ -tetramethyl-tetrachloro-1,3,2-benzodioxaphosphole-2-spiro- $2^1-1^1, 3^1, 2^1$ -dioxaphospholan were stirred at room temperature for two days in acetonitrile. Filtration and <u>careful</u> removal of the solvent under reduced pressure then gave the phosphorane (330).

Although the ³¹P n.m.r. chemical shift of -7.8 p.p.m. was a little low for a spirophosphorane of this nature, ¹H n.m.r., infrared and ^{m+}/e evidence was in favour of the structure (330). The ¹H n.m.r. spectrum in <u>sym</u> - tetrachloroethane showed two equal intensity signals which underwent a reversible coalescence at 76 \pm 2°C, corresponding to a $\Delta G^{\text{#}}$ of 19.3 \pm 0.1 kcal.mol⁻¹. This value shows the azide group to be more apicophilic than the phenoxy group in this system by about 1 kcal.mol⁻¹.

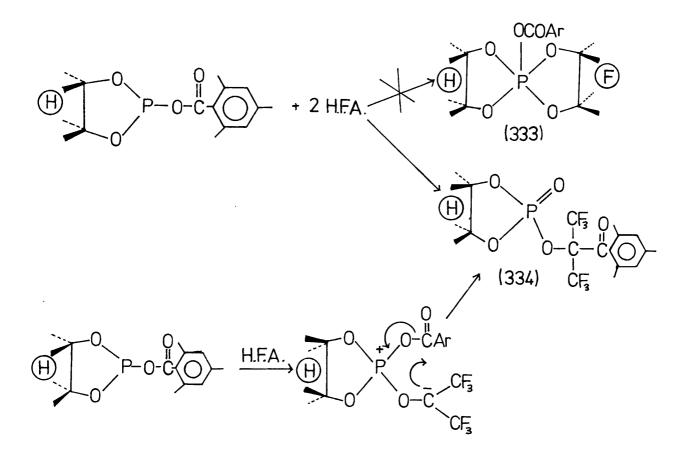

In looking at the very apicophilic groups studied in this chapter the following relative apicophilicity scale can be drawn-up.

 $CN > NCO \approx NCS \approx C1 > N_3 > OPh$

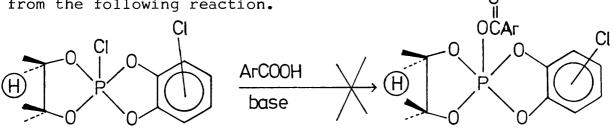
increasing apicophilicity.

In order to determine the relative apicophilicity of the benzoyloxy group (-OCOAr) the preparation of the following hexafluorobiacetyl adduct (331) was attempted. However no

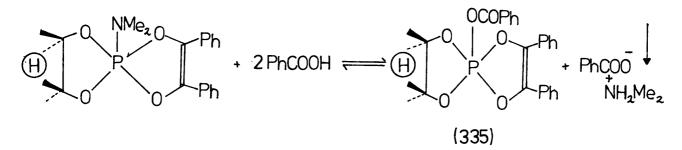
phosphorane formation was observed in the $^{31}\mathsf{P}$ n.m.r. spectrum.



The phosphite (332) was prepared in good yield in order to prepare spirophosphoranes suitable for a d.n.m.r. study. In



(332)


reacting the phosphite (332) with tetrachloro-<u>o</u>-benzoquinone a l:l adduct was formed but the low ${}^{31}P$ n.m.r. chemical shift was consistent with an oxide. Efforts to characterise fully the reaction product proved impossible due to its extreme instability to water and heat. However an insight into its possible structure resulted from a study of the reaction of (332) with hexafluoroacetone. Instead of the usual 2:1 adduct (333), the cyclic phosphate (334) was isolated in quantative yield. The formation of (334) was deduced from the low ${}^{31}P$ n.m.r. chemical shift of -3.0 p.p.m., the sharp singlet in the ${}^{19}F$ n.m.r. spectrum at both high and low temperature, as well as ${}^{m}/e$ and micro-analytical results. The formation of (334) is thought to arise by the following mechanism.

The preparation of a phosphorane containing the benzoyloxy groupdid not prove possible and no phosphorane was isolated from the following reaction. Q

In the literature¹⁷⁵ there does exist a method for the preparation of a spirophosphorane (335) containing the benzoyloxy group. However when tried using various solvents and conditions,

no new spirophosphoranes were isolated. It would appear that until further detailed experimental data are released by Bernard and Burgada the possibility of preparing a spirophosphorane containing the benzoyloxy group and hence determining its relative apicophilicity seem remote.

EXPERIMENTAL

Melting points are uncorrected and were determined using a kofler heating stage. Infrared spectra were obtained on a Perkin-Elmer 237 grating spectrometer from nujol mulls unless otherwise stated. Mass spectra were determined with either a V.G. Micromass 16 B machine or an A.E.I. MS9 machine, in each case the molecular ion is given followed by peaks of structural importance. Routine proton n.m.r. spectra were recorded on a Varian T60 instrument using deuterochloroform as solvent unless otherwise stated. Variable temperature proton and fluorine spectra were recorded on a Jeol PS100 instrument using 1-bromonaphthalene as solvent unless stated otherwise. Proton chemical shifts are relative to tetramethylsilane, fluorine n.m.r. spectra are relative to α, α, α - trifluorotoluene as internal standard. Phosphorus chemical shifts were obtained where possible by heteronuclear INDOR spectroscopy using an HD-60 heteronuclear decoupler (N.M.R. Specialities), or by a Jeol PS100 machine. Positive phosphorus chemical shifts are to high field of external 85% H₃PO₄ solution. Proton decoupled Fourier Transform ^{13}C n.m.r. and 31p n.m.r. spectra were obtained on a Jeol JNM FX 60 machine. Carbon -13 chemical shifts are relative to tetramethylsilane.

All operations involving air or moisture sensitive compounds were carried out under dry, oxygen-free, nitrogen. All solvents were dried and distilled before use. Diethyl ether, petroleum spirit, benzene and tol**u**ene were dried over sodium wire. Methanol and ethanol were refluxed and distilled from their magnesium alkoxides. Pyridine, di-isopropylamine and triethylamine were refluxed over and distilled from potassium

124

hydroxide. Tetrahydrofuran was refluxed and distilled from lithium aluminium hydride. Koch-Light Celite was used as a filtering aid and was dried before use by heating to 120^O in an oven. Small scale distillations were carried out using a Kugelrohr oven and the boiling points quoted refer to the oven temperatures over which distillation occurred.

Preparation of Phenylphosphorodichloridite

Phosphorus trichloride (0.5 mol) was added dropwise to phenol (0.5 mol) the evolution of hydrogen chloride being moderated by cooling the flask in cold water. After the initial reaction had subsided the mixture was refluxed until no more hydrogen chloride was given off. The reaction mixture was distilled under reduced pressure to give phenylphosphorodichloridite (45%); $b_{0.5}$ 59-64°, Lit. $b_{1.0}$ 90° ¹⁷⁶.

Preparation of Phenylphosphorodichloridothioite

A solution of benzene thiol (0.25 mol) in ether (50 ml) was slowly added to a stirred solution of phosphorus trichloride (0.25 mol), and pyridine (0.25 mol) in ether (200 ml). After addition the reaction mixture was refluxed for lh. Filtration followed by removal of the ether and reduced pressure distillation of the residue gave phenylphosphorodichloridothioite (59%); $b_{0.3}$ 77-79°, Lit. b_{10} 125° ¹⁷⁷.

Preparation of 3-Methyl-2-phenoxy-1,3,2-oxaphospholan (193) This was prepared by addition of 2-methylaminoethanol to phenylphosphorodichloridite in the presence of triethylamine, according to the method of Whittle.¹⁰⁸ (26%); $b_{1.0}$ 108-114°, (Lit. $b_{0.2}$ 85-87°)¹⁰⁸; δ 2.87 (3H,d,J_{P-H} 12H₃), 2.70 - 3.37 (2H,m), 4.07 -4.67(2H,m), 6.87 - 7.60(5H,m).

Preparation of 3-Methyl-2-phenylthio-1,3,2-oxazaphospholan

This was prepared by the method of Whittle¹⁰⁸ (30%); $b_{0.4}$ 115-120°, (Lit. $b_{0.4}$ 115-116°);¹⁰⁸ § 2.73 (3H,d, J_{P-H} 14H₃), 2.92 - 3.30 (2H,m), 3.95 - 4.72 (2H,m), 7.08 - 7.67 (5H,m). Preparation of 2-Phenoxy-1,3,2-oxathiaphospholan This compound was prepared by the method of Bone⁴⁴ (20%); $b_{0.5}$ 116-118°, (Lit. $b_{0.2}$ 95-98)⁴⁴; § 4.05 - 4.70(2H,m), 6.80 (2H,t, J_{H-H} 6H₃), 6.75 - 7.40 (5H,m).

Preparation of 2-Dimethylamino-3-methyl-1,3,2-oxazophospholan Prepared by the method of Sanchez $\underline{\text{et al}}^{67}$ (36%); $b_{15}^{68-76^{\circ}}$, (Lit. $b_{16} 66-68^{\circ})^{67}$. Preparation of 2-Chloro-1,3,2-dioxaphospholan High yields of this cyclic chlorophosphite were obtained using the method of Lucas¹⁷⁸ (70%); b_{15} 47-50°, Lit. b_{13} 45-47° ¹⁷⁸. General Method for the Preparation of 2-Substituted-1,3,2dioxaphospholans The alchohol or thiol (0.05) in ether (20ml) was added dropwise to a stirred mixture of 2-chloro-1,3,2-dioxaphospholan (0.05 mol), and pyridine (0.05 mol) in ether (100 ml) at 0° . When addition was complete the reaction mixture was refluxed for 2h. Filtration and removal of the ether, followed by reduced pressure distillation gave the 2-substituted-1,3,2-dioxaphospholan. By this method, the following compounds were prepared. 2-Ethoxy-1,3,2-dioxaphospholan (134, R = OEt) (75%); $b_{15} 54-57^{\circ}$, (Lit. $b_{15} 50.5 - 51.0^{\circ}$)¹⁷⁹; δ 1.20 (3H,t, J_{H-H}^{7H} , 3.50 - 4.39 (6H,m). 2-Ethylthio-1,3,2-dioxaphospholan (134, R = SEt) (61%); $b_{1,0}$ 41-48°, (Lit. $b_{1,5}$ 53-56°)¹⁸⁰; δ 1.31 (3H,t,J_{H-H} 8H3), 2.48 - 3.08 (2H,m), 3.81 - 4.57 (4H,m). Preparation of 2-Chloro-4,4,5,5-tetramethy1-1,3,2-dioxaphospholan This compound was obtained in high yields by the method of Bone⁴⁴ (86%); $b_{1,0}$ 50-51°, (Lit. b_{11} 80-89°)¹⁸¹; δ 1.36 (6H,s), 1.55(6H,s). Preparation of 2-Substituted-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholans

These were prepared by the same method as described for the preparation of 2-substituted-1,3,2-dioxaphospholans. By this method the following were prepared.

2-Ethoxy-4,4,5,5-tetramethy1-1,3,2-dioxaphospholan (143) (83%); b₁₈ 94-96[°], (Lit. b₁₄ 75-76[°])¹⁸¹; δ1.16 (6H,s), 1.29 (6H,s), 1.08 - 1.50 (3H,m), 3.46 - 4.08 (2H,m). 2-Ethylthio-4,4,5,5-tetramethyl - 1,3,2-dioxaphospholan (153, R = SEt) (32%); b_{1.0} 120-124[°], (Lit. b₂ 135 - 140[°])¹⁸⁰; δ 1.26 (6H,s), 1.32 (6H,s), 1.30 - 1.60 (3H,m), 2.57 - 3.10 (2H,m). Preparation of 2-Substituted - 1,3,2-benzodioxaphospholes These were prepared in the usual way by addition of the alcohol or thiol to 2-chloro-1,3,2-benzodioxaphole in ether, in the presence of pyridine. In this way the following compounds were prepared. 2-Ethoxy-1,3,2-benzodioxaphosphole $(75\%; b_{20} 108-110^{\circ}, (Lit. b_{19} 99-100^{\circ})^{182}; \delta$ 1.11 $(3H,t,J_{H-H}^{8H_3}),$ 3.55 (2H,q,J_8Hz), 6.82 (4H,s). 2 - Ethylthio - 1,3,2-benzodioxaphosphole (30%); $b_{1.2}$ 109-114°; § 1.30 (3H,dt,J 1.5 and 7H₃), 2.77 (2H, dq,J 1.5 and $7H_{\mathbf{x}}$), 6.81 - 7.16 (4H,m). Preparation of N-chlorodi-isopropylamine This was made by the method of Bock and Kompa¹⁸³. (80%), $b_{20} 40^{\circ}$, (Lit. $b_{10} 43^{\circ}$)¹⁸³. Preparation of Phosphoranes using N-Chlorodi-isopropylamine A solution of the diol or catechol (5 mmol) in ether (10 ml) was added slowly to a solution of the tervalent phosphorus compound (5 mmol) in ether (25ml) maintained at -78°. N-chlorodiisopropylamine (5 mmol) in ether (10 ml) was then added slowly and the mixture kept at -78° for 0.5 h. After leaving overnight at room temperature, filtration followed by evaporation gave the crude phosphorane. This was crystallised from or extracted with light petroleum. In this way the following phosphoranes were prepared.

From Perfluoropinacol

5-Ethoxy-2,2,3,3-tetrakistrifluoromethyl-1,4,6,8-tetraoxa-5-

phosphaspiro (4.4) nonane (135, R = OEt)

This was recrystallised from $40-60^{\circ}$ light petroleum at -20° . (68%); m.p. 45-47°; S 1.26 (3H,dt,J 7 and 2Hz), 4.0(4H,d,J_{P-H} 15H_g) and 3.78 - 4.32 (2H,m); 31p (CDCl₃) + 28.8 p.p.m.; 19 F (1-bromonaphthalene) + 3.51 (6F,m) and + 3.72(6F,m) p.p.m.;^m/e 468, 439, 438, 423, 421, 411, 410, 399, 380, 371, 311 and 265; V_{max} (neat film) 2990, 2920, 1480, 1400, 1250, 1220, 1070, 1005, 970, 950, 890, 865, 785, 750 and 705; T^{C} 116 $\stackrel{+}{=} 2^{\circ}$; Δv_{21H_3} ; $\Delta G^{\#} 20.1 \pm 0.2 \text{ kcal.mol}^{-1}$; (Found C,25.7; H,2.1; P,6.55. C₁₆H₉F₁₂O₅P requires C,25.65; H,1.9; P,6.65%). 5-Ethylthio-2,2,3,3-tetrakistrifluoromethyl-1,4,6,8-tetraoxa-<u>5-phosphaspiro (4.4) nonane</u>. (135, R = SEt) (78%), § 1.12 - 1.44 (3H,m), 2.46 - 3.22(2H,m) and 4.00 (4H,d, $J_{P-H}^{15H_{7}}; \stackrel{31p}{(CDCl_{3})} + 2.5 \text{ p.p.m.}; \stackrel{19}{}F (1-bromonaphthalene)$ + 2.60(6F,m) and + 3.60(6F,m) p.p.m.; ^m/e 484, 465, 423, 415, 393, 197, 159 and 129; $\neg r_{max}$ (neat film) 2990, 2900, 1480, 1385, 1245, 1220, 1120, 1060, 1000, 965, 945, 885, 850, 775, 760 and 720; T^C 121 ± 2°; Δ∨ 104H₃; Δ G[#] 19.1 ± 0.2 kcal.mol⁻¹. P-ethoxy-4¹,4¹,5¹,5¹-tetrakistrifluoromethyl-1,3,2-benzodioxaphosphole_2_spiro_2¹-(1,3,2)dioxaphospholan. (150, R = OEt) (85%); δ 1.04 - 1.58 (3H,m), 3.84 - 4.56(2H,m) and 6.90 - 7.04 (4H,m); ^{31}P (CHCl₃) + 30.7 p.p.m.; ^{19}F (1-bromonaphthalene) + 4.73 (6F,m) and + 5.60(6F,m) p.p.m.; ^m/e 516, 497, 488, 471, 469, 419, 246, 200, 161 and 155; ${f v}_{\sf max}$ (neat film) 3000, 1495, 1250, 1220, 1100, 1055, 1010, 1000, 970, 900 890, 880, 785, 745 and 715; T^{C} 180 $\pm 2^{\circ}$; $\Delta \nabla 98H_{3}$; $\Delta G^{\#}$ 22.1 \pm 0.2 kcal.mol⁻¹. P-ethylthio-4¹,4¹,5¹,5¹-tetrakistrifluoromethyl-1,3,2-benzodioxaphosphole-2-spiro- 2^1 -(1,3,2)dioxaphospholan (150, R = SEt). (82%); \$1.08 - 1.54 (3H,m), 2.42 - 3.32(2H,m) and 6.82(4H,s); ^{31p} (CHCl₃) + 1.0 p.p.m.; ¹⁹F (1-bromonaphthalene) + 3.94(6F,m)

and + 4.86(6F,m) p.p.m.; ^m/e 532, 503, 464, 426, 414, 376, 265, 224, 197 and 147; \checkmark max (neat film) 2970, 2940, 2880, 1490, 1385, 1245, 1220, 1110, 1010, 1000, 965, 895, 870, 775, 745, 720, and 690; T^C 163 \pm 2^o; $\land \checkmark$ 76H_g; $\land G^{\ddagger}$ 21.4 \pm 0.2 kcal.mol⁻¹.

<u>P-ethoxy-2,2,3,3-tetramethyl-7,7,8,8-tetrakistrifluoromethyl-</u> <u>1,4,6,9-tetraoxa-5-phosphaspiro (4.4) nonane</u>. (147, R = OEt) (81%); \$ 1.24(12H,s), 1.32 - 1.48(3H,m) and 4.06 (2H,q,J_{H-H}7H_J); ^{31p} (neat) + 37.1 p.p.m.; ¹⁹F (1-bromonaphthalene) + 4.50 (12F,s) p.p.m.; ^m/e 522, 507, 503, 479, 466, 455, 424, 408, 397, 345, 265 and 245; \bigtriangledown_{max} (neat film) 3000, 2950, 1500, 1420, 1400, 1390, 1250, 1130, 1075, 1020, 1000, 950, 900, 890, 850, 830,

805, 780, 755 and 710; T^{C} could not be obtained as the ${}^{19}F$ signal was a singlet in all solvents tried.

P-ethylthio-2,2,3,3-tetramethyl-7,7,8,8-tetrakistrifluoromethyl-

1,4,6,9-tetraoxa-5-phosphaspiro (4.4) nonane. (147, R = SEt) (80%), δ 1.28(6H,s), 1.30(6H,s), 1.32 - 1.50 (3H,t,J_{H-H}²H₃) and 2.36 - 3.12(2H,m); ³¹P (CDCl₃) + 7.2 p.p.m.; ¹⁹F (1-bromonaphthalene) + 3.06(6F,m) and + 4.52(6F,m) p.p.m.; ^m/e 538, 523, 501, 464, 439, 426, 414, 376, 281, 265, 224 and 197; ∇ max (neat film) 3000, 2950, 1450, 1390, 1380, 1370, 1240, 1140, 1120, 1020, 1010, 980, 940, 900, 805, 765, 755 and 735; T^C 180^o; $\Delta \nabla$ 137 H₃; $\Delta G^{\#}$ 21.8 kcal.mol⁻¹.

2¹,2¹-trans-3¹,4¹,4¹-pentamethyl-r-l-phenyl-4,4,5,5-tetrakistrifluoromethyl-1,3,2-dioxaphospholan-2-spiro-1¹-phosphetan.

(234). (78%); Crystallised from methanol, m.p. 94-96°, (Lit. m.p. 95-97), § 0.72 (3H,dd,J 1.5 and 7Hz), 1.35 (6H,d, J_{P-H}^{19Hz}), 1.40 (6H,d, J_{P-H}^{17Hz}) and 7.17 - 8.17 (5H,m); ³¹P (CDCl₃) - 3.4 p.p.m.

From Pinacol

<u>P-ethoxy-2,2,3,3,7,7,8,8-octamethyl-1,4,6,9-tetraoxa-5-phosphaspiro</u> (4.4) nonane. (149, R = OEt)

(82%); δ 1.22 (24H,s), 1.30 - 1.54 (3H,m) and 4.05 (2H,m); ³¹p (40-60° petroleum) + 42.4 p.p.m.; ^m/e 308, 248, 222, 208, 193, 166, 150, 138, 127 and 99; \mathcal{N}_{max} (neat film) 2990, 2940, 1470, 1385, 1295, 1155, 1080, 1015, 975, 930, 845, 820, 780 and 655; T^C the ring methyl groups gave two equal intensity signals; ΔV 5H, however the compound decomposed before coalescence. P-ethylthio-2,2,3,3,7,7,8,8-octamethyl-1,4,6,9-tetraoxa-5phosphaspiro(4.4)nonane. (149, R = SEt) (85%); δ 1.22 (12H,s), 1.32 - 1.55 (3H,m) and 2.35 - 3.12 (2H,m); ³¹p (neat) + 23.0 p.p.m.; ^m/e 263 (loss of SEt), 240, 224, 208, 181, 166, 143, 127, 105 and 99; \mathcal{V}_{max} (neat film) 3000, 2940, 1470, 1385, 1220, 1150, 1015, 970, 930, 890, 840, 800, 780, 715 and 655; T^{C} (Cl₃CBr) decomposition before coalescence; ΔV 4.5H₃. From Ethylene Glycol P-ethoxy-2,2,3,3-tetramethy1-1,4,6,8-tetraoxa-5-phosphaspiro (4.4)nonane. (144) (76%); § 1.22(12H,s), 1.25 - 2.42 (3H,m), 3.78-4.14(2H,m) and 3.65 (4H,d,J_{P-H}14H₃); ³¹^p (neat) + 34.9 p.p.m.; ^m/e 253, 208, 193, 166, 151, 137, 127, 125, 108, 99 and 82; $\boldsymbol{\bigtriangledown}_{\max}$ (neat film) 2990, 2910, 1460, 1395, 1385, 1375, 1295, 1220, 1165, 1060, 1010, 985, 930, 880, 840, 775 and 735; T^C 92 [±] 2[°]; ∆∨8H₃; $\Delta G^{\#}$ 19.4 ± 0.2 kcal.mol⁻¹. P-ethylthio-2,2,3,3-tetramethyl-1,4,6,8-tetraoxa-5-phosphaspiro (4.4) nonane. (139, R = SEt) 78%); δ 1.22 (12H,s), 1.28 - 2.56 (3H,m), 2.32 - 2.94 (2H,m) and 3.80 $(4H,d,J_{P-H}^{-1}14H_{r});$ ^{31p} $(CDCl_{3}) + 10.5 \text{ p.p.m.};$ ^m/e 268, 240, 224, 208, 181, 152, 125, 99 and 88; \mathcal{V}_{max} (neat film) 2990, 2940, 1460, 1395, 1385, 1370, 1270, 1215, 1160, 1065, 1010, 970, 920, 870, 830, 765, 680 and 650; T^C only one signal for the ring methyl protons in all solvents tried.

<u>P-ethylthio-1,4,6,8-tetraoxa-5-phosphaspiro(4.4)nonane</u>.(146, R = SEt) (57%); δ 1.0 - 1.52 (3H,m), 2.64 (2H,dq,J7 and 1.5Hg) and 3.90 (8H,d,J_{P-H}^{15H}g); ³¹P (CDCl₃) + 7.3 p.p.m.; ^m/e 212, 201, 184, 156, 152, 138, 125, 109, 94 and 91; \mathcal{V}_{max} (neat film) 2985, 2900, 1475, 1270, 1240, 1055, 1030, 945, 925, 850, 745 and 705; T^C the methylene ring protons show only the phosphorus splitting in all solvents investigated, c.f. the P-ethoxy analogue⁶³.

From 3-Methylcatechol

The following phosphoranes were obtained as approximately 1 : 1 mixtures of the 4- and 7- methyl isomers and as such could not be prepared crystalline.

3¹,4(7)-Dimethyl-P-phenoxy-1,3,2-benzodioxaphosphole-2-spiro-2¹-(1,3,2)-oxazaphospholidine. (195)

(68%); δ 1.90 (3H,s), 2.30 (3H,s), 2.94 (6H,d,J_{P-H}¹⁰H₃), 2.68 - 4.16 (8H,m) and 6.48 - 7.28 (16H,m); ³¹P (CDC1₃) + 41.2 p.p.m.; ^m/e 319, 276, 262, 246, 226, 218, 213, 163, 153, 140, 120, 104 and 94; \mathcal{V}_{max} (neat film) 3060, 3040, 2950, 2870, 1635, 1600, 1495, 1355, 1260, 1220, 1190, 1080, 1045, 960, 920, 870, 815, 760, 730 and 695; T^C 127 ± 2 for the 4- and 7- methyl groups; $\Delta \mathcal{V}$ 35H₃; $\Delta G^{\#}$ 20.2 ± 0.2 kcal.mol⁻¹.

<u>3¹,4(7)-Dimethyl-P-phenylthio-1,3,2-benzodioxaphosphole-2-</u> <u>spiro-2¹-(1,3,2)-oxazaphospholidine</u>. (200) (60%); δ 1.64 (3H,s), 2.40 (3H,s), 2.82 (6H,d,J_{P-H}10H₃),

2.46 - 3.38 (4H,m), 3.40 - 4.46 (4H,m), 6.05 - 6.74 (6H,m) and 6.84 - 7.45 (10H,m); ^{31p} (CDC1₃) + 23.4 p.p.m.; ^m/e 335, 261, 226, 212, 163, 120, 110, 104 and 84; ∇_{max} (neat film) 3070, 2950, 2800, 1585, 1485, 1470, 1440, 1350, 1265, 1255, 1220, 1180, 1060, 1035, 955, 860, 815, 745 and 690; T^C 137 ± ²⁰ for the 3¹-methyl group; $\Delta \gamma_{10H}$; ΔG^{*} 21.7 ± 0.2 kcal.mol⁻¹.

3¹,4(7)-Dimethyl-P-dimethylamino-1,3,2-benzodioxaphosphole $-2-spiro-2^1-(1,3,2)-oxazaphospholidine.$ (201) (85%); δ 2.22 (3H,s), 2.26 (3H,s), 2.70 (12H,d,J_{P-H}11H₂), 2.90 (6H,d, J_{P-H} 10H₃), 2.26 - 3.34 (6H,m), 3.48 - 4.22 (4H,m) and 6.80 (6H,m); ^{31p} (CDCl₃) + 37.9 p.p.m.; ^m/e 270, 226, 197, 185, 170, 153, 135 and 104; \sim max (neat film) 2960, 1600, 1490, 1480, 1360, 1270, 1185, 1080, 1000, 965, 870, 800, 765 and 745; T^{C} 180° for the 3¹-methyl group; $\Delta \nabla$ 8H₃; $\Delta G^{\#}$ 724.3 kcal.mol⁻¹. 4(7)-Methyl-P-phenoxy-1,3,2-benzodioxaphosphole -2- spiro $-2^{1}-(1,3,2)$ -oxathiophospholan. (203) (66%); § 1.66 (3H,s), 2.24 (3H,s), 2.85 (6H,d,J_{P-H}10H₃), 2.45 -3.35 (4H,m), 3.40 - 4.32 (4H,m), 6.0 - 6.72 (6H,m) and 6.82- 7.45 (10H,m); ^{31p} (1-bromonaphthalene) + 1.3 p.p.m.; ^m/e 324, 268, 262, 232, 181, 169, 135 and 94; γ_{max} (neat film) 2940, 2870, 1605, 1505, 1445, 1350, 1290, 1175, 1150, 1080, 980, 750 and 705; T^{C} 112 $\pm 2^{O}$ for the 4,7-methyl signals; $\Delta v 45.7 H_{3}$; ΔG^{*} 19.2 \pm 0.1 kcal.mol⁻¹. P,4(7)-dimethyl-P-phenoxy-P-phenyl-1,3,2-benzodioxaphosphole. (206) (89%); § 2.27 (6H,s), 2.35 (6H,d, J_{P-H} 16H₃) and 6.60 - 8.10 (26H,m), at -95° in CH_2Cl_2 the 4-methylgroup split out into two signals; ³¹P (CDCl₃) + 12.8 p.p.m.; ^m/e 338, 262, 245, 231, 215, 201, 182, 165, 153, 139 and 121; \sim max (neat film) 3045, 2950, 1600, 1490, 1440, 1350, 1270, 1225, 1200, 1125, 1080, 940, 895, 855, 760 and 690; T^{C} (CH₂Cl₂) - 65 $\pm 2^{\circ}$; $\Delta \nabla 4.0 H_{3}; \Delta G^{\#}$ 11.1 $\pm 0.1 \text{ kcal.mol}^{-1}.$ From 4-methycatechol 3¹,5(6)-Dimethyl-P-phenoxy-1,3,2-benzodioxaphosphole -2spiro-2¹-(1,3,2)-oxazophospholidine.

(55%); δ 2.20 (3H,s), 2.26 (3H,s), 2.85 (3H,d,J_{P-H}9H₃),

2.95 (3H,d,J_{P-H}10H₃), 2.54 - 3.26 (4H,m), 3.35 - 4.20 (4H,m), 6.50 (6H,m) and 6.62 - 7.25 (10H,m); ^{31p} (CDCl₃) + 43.9 p.p.m.; m/e 319, 276, 262, 226, 218, 213, 163, 140, 120, 104 and 94; ∇_{max} (neat film) 3040, 2950, 2870, 1610, 1595, 1505, 1490, 1345, 11260, 1220, 1080, 1040, 1025, 965, 945, 920, 870, 780, 755 and 690; No coalescence possible as only one signal for the 6-methyl group in all solvents tried.

3¹,5(6)-Dimethyl-P-phenylthio-1,3,2-benzodioxaphosphole-2-spiro-2¹-(1,3,2)-oxazophospholidine (200)

(70%); § 2.18 (3H,s), 2.20 (3H,s), 2.80 (6H,d, J_{P-H} 10H₃), 2.42 - 3.30 (4H,m), 3.35 - 4.35 (4H,m), 6.15 - 6.80 (6H,m) and 6.95 - 7.40 (10H,m); ³¹P (CDCl₃) + 22.5 p.p.m.; ^m/e 335, 261, 226, 212, 163, 120, 110, 104 and 84; ∇_{max} (neat film) 3050, 2920, 2870, 1590, 1510, 1485, 1445, 1345, 1285, 1260, 1220, 1190, 1125, 1070, 1030, 965, 950, 865, 805, 750, 705 and 695; T^C only one signal for the 5-methyl group in all solvents tried. $3^{1},5(6)$ -Dimethyl-P-dimethylamino-1,3,2-benzodioxaphosphole-2-spiro- 2^{1} -(1,3,2)-oxazaphospholidine (202) (70%); § 2.26 (6H,s), 2.70 (12H,d, J_{P-H} 10H₃), 2.88 (6H,d, J_{P-H} 9H₃), 2.60 - 3.40 (4H,m), 3.50 - 4.20 (4H,m) and 6.28 - 6.86 (6H,m); ³¹P (CDCl₃) + 33.8 p.p.m.; ^m/e 270, 226, 197, 185, 170, 153, 135

and 104; \mathcal{V}_{max} (neat film) 2940, 2830, 1650, 1610, 1495, 1450, 1345, 1250, 1075, 990, 850, 755 and 725, T^C decomposition occurred at 111[°].

5(6)-Methyl-P-phenoxy-1,3,2-benzodioxaphosphole-2-spiro-2¹-(1,3,2) - oxathiophospholan

(75%); § 2.12 (3H,s), 2.20 (3H,s), 2.52 - 3.18 (4H,m), 3.38 -4.42 (4H,m), 6.10 - 6.54 (6H,m) and 6.64 - 7.22 (10H,m); ³¹P (1-bromonaphthalene) - 1.4 p.p.m; ^m/e 324, 268, 262, 232, 181, 169, 135, 94 and 77; ∇_{max} (neat film) 2940, 2870, 1605, 1505, 1445, 1350, 1290, 1175, 1150, 1080, 980, 750 and 705; T^C 82 \pm 2^o for the 5(6)-methyl signals; $\Delta \nabla$ 7.6 H₃; $\Delta G^{\#}$ 18.9 \pm 0.1 kcal.mol⁻¹. From 4-Fluorocatechol

5(6)-Fluoro-3¹-methyl-P-phenoxy-1,3,2-benzodioxaphosphole -2-spiro-2¹-(1,3,2)-oxazaphospholidine

(60%); § 2.86 (6H,d, J_{P-H} 10H₃), 2.35 - 4.32 (8H,m), 6.08 -6.50 (6H,m) and 6.55 - 7.25 (10H,m); ³¹P (CDCl₃) + 41.3 p.p.m.; ¹⁹F (CDCl₃) + 55.96 (1F,m) and + 58.97 (1F,m) p.p.m.; ^m/e 323, 285, 230, 208, 206, 189, 164, 127, 120, 104 and 94; ∇ max (neat film) 3050, 2920, 2850, 1610, 1595, 1565, 1505, 1380, 1255, 1205, 1140, 1080, 1025, 960, 860, 790, 765, 690 and 650; T^{C} 168 \pm 2° for the 5(6)-fluoro signals; $\Delta \nabla$ 300H₃; $\Delta G^{\#}$ 20.3 \pm 0.1 kcal.mol⁻¹.

Reaction of 2-Substituted-4,4,5,5-tetramethyl-1,3,2-dioxaphospholans with 3-Benzylidene-2,4-pentanedione

A solution of 3-benzylidene-2,4-pentanedione (0.05 mol) and the 2-substituted-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan (0.05 mol) in a mixture of benzene and hexane (10 ml of a 1 : 4 mixture v/v) was allowed to react at 40° overnight. Evaporation of the solvent gave near quantitative yields of the 1 : 1 adduct. Recrystallisation from light petroleum gave predominently the <u>trans</u> isomer. The following 1 : 1 adducts were prepared by this method.

<u>8-Acetyl-2,2,3,3,7-pentamethyl-r-9-phenyl-trans-5-ethoxy-1,4,6-trioxa-5-phosphaspiro (4.4) non-7-ene</u>. (155, R = OEt) Recrystallised from light petroleum, m.p. 108-109°; § 0.21 (3H,s), 0.98 (3H,s), 1.26 (3H,s), 1.35 (3H,s), 1.34 - 1.60 (3H,m), 1.96 (3H,s), 2.60 (3H,d, J_{P-H} lHz), 3.75 - 4.4 (3H,m) and 7.30 (5H,s); ^{31P} (CH₂Cl₂) + 10.9 p.p.m.; ^m/e 380, 338, 323, 298, 280, 265, 255, 209, 188, 171, 154 and 127; \mathcal{V}_{max} 1660, 1565, 1495, 1320, 1150, 1060, 975, 930, 770, 750, 700, 670 and 640; ^{1st}T^c (chlorobenzene) 80 \pm 3°; Δ V14Hz; Δ G[#] 18.3 \pm 0.2 kcal.mol⁻¹; ^{2nd}T^c 100 \pm 3°; Δ V108 Hz; Δ G[#] 18.0 \pm 0.2 kcal.mol⁻¹; (Found C, 63.2; H, 7.75; P, 7.85. $C_{20}H_{29}O_5P$ requires C,63.15; H,7.7; P,8.15%).

8-Acety1-2,2,3,3,7-pentamethy1-r-9-pheny1-cis-5-ethy1thio-1,4,6-trioxa-5-phosphaspiro (4.4) non-7-ene (156, R = -SEt) Recrystallised from light petroleum, m.p. 136 - 137⁰; δ (chlorobenzene) 0.7 (3H,dt,J 3 and 8 H₃), 1.08 (3H,s), 1.18 (3H,s), 1.22 (3H,s), 1.26 (3H,s), 1.84 (3H,s), 2.36 (3H,d,J_{P-H}1H₃), 1.94 - 2.5 (2H,m) and 4.36 (1H,d, $J_{P-H}^{24H_3}$); ³¹P (chlorobenzene) - 2.9 p.p.m.; ^m/e 396, 353, 335, 297, 253, 224, 208, 189, 171, 147 and 129; \mathcal{V}_{max} 1660, 1395, 1375, 1320, 1155, 1135, 965, 925, 820, 740, 700 and 660; ^{1st} T^{C} (<u>0</u> - dichlorobenzene) 85 \pm 3^o; $\Delta V_{35H_{2}}; \Delta G^{*}$ 18.0 ± 0.2 kcal.mol⁻¹; ^{2nd} T^C 100 ± 3°; ΔV_{112} H₃; $\Delta G^{\#}$ 17.9 \pm 0.2 kcal.mol⁻¹; (Found: C,60.5; H, 7.4; $C_{20}H_{29}O_4PS$ requires C, 60.6; H, 7.3%). The <u>trans</u> ethylthio analogue (155, R = SEt) had δ 0.23 (3H,s), 0.82 (3H,s), 1.25 (3H,s), 1.33 (3H,s), 1.88 (3H,s), 2.38 (3H,d,J_{P-H}1 H₂), 4.08 (1H, $d_{J_{P-H}} = 17.5 H_{J}$ and 7.08 (5H,s). 8-Acety1-2,2,3,3,7-pentamethy1-r-9-pheny1- trans-5-trimethy1siloxy -1,4,6-trioxa-5-phosphaspiro (4.4) non-7-ene (182)Recrystallised from ethylacetate/light petroleum, m.p. 145 -146°, change of crystal form between 130 - 133°; δ 0.14 (3H,s), 0.23 (9H,s), 0.92 (3H,s), 1.17 (3H,s), 1.28 (3H,s), 1.89 (3H,s), 2.48 (3H,d, J_{P-H} H, 4.03 (1H,d, J_{P-H} 21H, and 7.18(5H,s); ³¹p (CDCl₃) + 18.2 p.p.m.; ^m/e 424, 409, 381, 366, 341, 324, 309, 299, 281, 253, 248, 236, 185, 171, 155, 147 and 121; \mathcal{V}_{\max} 1665, 1500, 1380, 1260, 1155, 1040, 985, 940, 850, 760, 700 and 695; T^{C} 70 \pm 5°; ΔV 12H₃; $\Delta G^{\#}$ 17.9 \pm 0.2 kcal.mol⁻¹; (Found: C, 59.45; H, 7.80; P, 7.65. C₂₇H₃₃O₅PS: requires C, 59.0; H, 7.80; P, 7.30%). The <u>cis</u> - trimethylsiloxy analogue (188) had δ 0.19 (9H,s), 1.10 (3H,s), 1.32 (3H,s), 1.43 (3H,s), 1.48 (3H,5), 1.86 (3H,s), 2.39 (3H,d,J_{P-H} 1 H₃), 4.01 (1H,d, $J_{P-H}^{20H_3}$ and 7.18 (5H,s).

Preparation of P-trimethylsiloxy-2,2,3,3-tetramethyl-7,7,8,8tetrakistrifluoromethyl-1,4,6,9-tetroxa-5-phosphaspiro(4.4) nonane (175)

Hexafluoroacetone (0.3 mol) was passed into a stirred solution of 2-trimethylsiloxy-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan (0.1 mol) in ether (30 ml) at -78°C. The solution was kept at -78°C for lh, and then the solvent removed under reduced pressure. The spirophosphorane was then extracted with light petroleum.

 δ 0.27 (9H,s), 1.42 (6H,s) and 1.56 (6H,s); ³¹p (CH₂Cl₂) + 42.7 p.p.m.; ¹⁹F (1-bromonophthalene) + 4.4 (6F,m) and 4.8 (6F,m) p.p.m.; ^m/e 568, 553, 449, 511, 464, 454, 417, 397, 386, 304, 236, 197, 155, 121, 105 and 97; ∇_{max} (neat film) 3000, 1460, 1150 - 1325, 1020, 990, 950, 915, 860, 815, 765, 715 and 660; T^C 168 ± 2°; $\Delta \nabla 40H_{\mathbf{j}}$; ΔG^{*} 22.2 ± 0.1 kcal.mol⁻¹. Preparation of 4,4,5,5-tetramethyl-1,3,2-dioxaphospholan-2-

<u>oxide</u> (181)

This was prepared from 2-chloro-4,4,5,5-tetramethyl-1,3,2dioxaphospholan by the method of Zwierzak¹⁹⁴. (97%), m.p. $104-106^{\circ}$, (Lit. m.p. $104-106^{\circ}$)¹⁹⁴.

Preparation of 2-trimethylsiloxy-4,4,5,5-tetramethyl-1,3,2dioxaphospholan (168)

This was prepared according to the procedure of Issleid and Walther¹⁴⁷. To a stirred solution of 4,4,5,5-tetramethyl-1,3,2-dioxaphospholan-2-oxide (0.15 mol), triethylamine (0.25 mol) in benzene (150 ml) was added freshly distilled chlorotrimethylsilane (0.25 mol). After addition the mixture was heated under reflux for 1h, and then left to stand overnight. Filtration, removal of the benzene, excess triethylamine and chlorotrimethylsilane followed by reduced pressure distillation of the residue gave the title compound. (70%); $b_{0.05}$ 50-55°; δ 0.20 (9H,s), 1.22 (6H,s) and 1.36 (6H,s); ³¹P (CH₂Cl₂) - 126.9 p.p.m.; ^m/e 236, 210, 155, 149, 122 and 106; V_{max} (neat film) 2985, 1400, 1380, 1260, 1150, 985, 950, 900, 855, 805, and 760. <u>Preparation of 2-trimethysiloxy-4,4,5,5-tetramethyl-1,3,2-</u> <u>dioxaphospholan-2-sulphide</u> (169)

A mixture of 2-trimethylsiloxy-4,4,5,5-tetramethyl-1,3,2dioxaphospholan (0.02 mol), sulphur (0.02 mol) in benzene, (20 ml) was refluxed until the sulphur had disappeared. The benzene was removed and the residue recrystallised from $40-60^{\circ}$ light petroleum. (96%); m.p. $50-53^{\circ}$; δ 0.30 (9H,s), 1.32 (6H,s) and 1.40 (6H,s); ³¹P (CH₂Cl₂) - 54.6 p.p.m.; ^m/e 268, 253, 210, 187, 171, 153, 137, 131, 121 and 106; V_{Max} 1400, 1380, 1260, 1145, 1035, 945, 855, 800, 765 and 740; (Found: C, 40.65; H,7.55; P,11.85. $C_9H_{21}O_3PSiS$ requires C,40.30; H,785; P,11.55%).

Preparation of 2,2-trans-3,4,4-pentamethyl-r-l-phenylphosphetan -l-oxide (227)

Was prepared by the method of Hawes and Trippett¹⁸⁴. m.p. 125° -126°; \$1.05 (3H,dd,J 1.5 and 7H₃), 1.12 (6H,d,J_{P-H}19H₃), 1.43 (6H,d,J_{P-H}16H₃), 1.90 - 2.30 (1H,m), 7.45 - 7.70 3H,m) and 7.83 - 8.20 (2H,m); ³¹P (CDCl₃) -53.0 p.p.m.

Preparation of 2,2-cis-3,4,47pentamethyl-r-l-phenylphosphetanl-oxide (230)

Was prepared by the method of Corfièld¹⁵⁵. m.p. 116-117°; δ 1,03 (3H,dd,J 1.5 and 7H₃), 1.23 (6H,d,J_{P-H}19H₃), 1.42 (6H,d, J_{P-H} 17H₃), 1.9 - 2.8 (1H,m) and 7.40 - 8.0 (5H,m); ³¹P (CDCl₃) - 55.5 p.p.m.

Preparation of r-l-chloro-2,2-trans-3,4,4-pentamethylphosphetan -l-oxide

Was prepared by the method of McBride, Jungermann, Killheffer and Clutter¹⁸⁵. (60%); m.p. 72-75[°].

Preparation of r-1-benzy1-2,2-trans-3,4,4-pentamethylphosphetan -1-oxide.

Was prepared by the method of Corfield¹⁵⁵. m.p. 180-182⁰. <u>Preparation of r-l-chloro-2,2</u>-cis-<u>3,4,4-pentamethylphosphetan</u>-<u>l-oxide</u>

Was prepared by the method of Cremer and Trivedi.¹⁸⁶ Preparation of r-1-benzy1-2,2-cis-3,4,4-pentamethylphosphetan

-1-oxide (239)

This was prepared as a <u>cis</u> rich mixture of the <u>cis</u> and <u>trans</u> benzylpentamethylphosphetan-l-oxides by the method of Gray and Cremer¹⁵⁸. (The ratio of <u>cis</u> : <u>trans</u> was 60 : 40 as determined by ¹H n.m.r. in pyridine solution.)

Trichlorosilane reduction of phenyl and benzylpentamethylphosphetan -1-oxides

The <u>cis</u> and <u>trans</u> phenyl and benzylpentamethylphosphetan-l-oxides were reduced stereospecifically to the corresponding phosphetans, using trichlorosilane, by the method of Corfield.¹⁵⁵ The phosphetans were used after removal of the solvent without any further purification.

Preparation of r-l-dimethylamino-2,2-trans-3,4,4,pentamethylphosphetan (244)

This was prepared by the method of Oram , $^{156}b_671-73^\circ$. <u>Reaction of r-1-benzyl-2,2</u>-trans-3,4,4-pentamethylphosphetan with perfluoropinacol in the presence of N-chlorodi-isopropylamine The reaction was carried out in the usual way, however no spirophosphorane was formed. The reaction mixture after leaving overnight was chromatographed on basic alumina (40:1) using ether as the elvent, and gave the following compounds. <u>r-1-Benzyl</u> <u>-2,2</u>-trans-<u>3,4,4-pentamethylphosphetan-1-oxide</u> (219) Recrystallised from light petroleum, m.p. 180-182°, (Lit. m.p 180-182°)¹⁵⁵; § 1.10 (3H,dd,J 1.5 and 7H_g), 1.35 (6H,d,J_{P-H}17H_g), 1.45 (6H,d,J_{P-H}16H_g), 3.44 (2H,d,J_{P-H}10H_g) and 7.12 - 7.66 (5H,m). <u>r-1--chlorobenzyl-22</u>-trans-<u>3,4,4-pentamethylphosphetan-1-</u> <u>oxide</u> (220) Recrystallised from light petroleum, m.p. 173-174°;

8 0.9 (3H,m), 1.20 (6H,m), 1.52 (6H,m), 2.16 (1H,m), 5.2 $(1H,d,J_{P-H}4H_{3})$ and 7.1 - 7.75 (5H,m); 31p (CDCl₃) - 60.7 p.p.m.; ^m/e 286, 284, 269, 250, 232, 216, 180, 178, 159, 141, 132, 125, 117 and 97; \mathcal{V}_{max} 1495, 1240, 1190, 1160, 1075, 930, 790, 725, 700 and 655; (Found: C, 63.2; H,7.75; Cl, 12.6. C₁₅H₂₂ClOP requires C,63.3; H,7.75; 12.5%.) <u>r-1- α, α -</u> Dichlorobenzy1-2,2-trans-3,4,4-pentamethylphosphetan-1-oxide (221) Recrystallised from light petroleum, m.p. 116-116.5°; & 0.88 (3H,dd,J 1.5 and 7H₃), 1.28 (6H,d, J_{P-H} 16H₃), 1.44 (6H,d, J_{P-H} $17H_{3}$, 2.15 (1H,m) and 7.05 - 7.98 (5H,m); 31p (CDCl₃) -64.8 p.p.m; ^m/e 324, 322, 320, 318, 284, 250, 235, 178, 159, 141, 103 and 97; \mathcal{V}_{max} 1495, 1450, 1245, 1205, 1170, 845, 775, 740, 695 and 640; (Found: C,56.5; H,6.5; C1,22.6. $C_{15}H_{21}C1_2OP$ requires C,56.4; H,6.6; Cl,22.3%). The following compounds were prepared from the corresponding phosphetans and catechol using N-chlorodi-isopropylamine. <u>P-r-phenyl-2¹,2¹</u> trans $-3^1,4^1,4^1$ -pentamethyl-1,3,2,-benzodioxaphosphole_2_spiro_1¹_phosphetan (229) Recrystallised from light petroleum, (83%); m.p. $124-125^{\circ}$; δ 0.85 (3H,dd,J 2 and 7H,), 1.26 (6H,d, J_{P-H} 19H,), 1.44 (6H,d, J_{P-H} 16H₃), 1.9(1H,m), 6.62 (4H,s) and 7.14 - 7.86 (5H,m); 31p (CDCl₃) + 5.7 p.p.m.; ^m/e 328, 256, 236, 221, 216, 168, 166, 139, 125, 119, 110, 108, 97 and 77; \mathcal{V}_{max} 1495, 1255, 1115, 1020, 880, 830, 740, 720 and 655; (Found: C,73.2; H,7.6; P,

9.5. $C_{20}H_{25}O_{2}P$ requires C,73.2; H,7.6; P,9.5%). <u>P-r-phenyl-2¹,2¹</u> - cis -3¹,4¹,4¹-pentamethyl-1,3,2-benzodioxa-<u>phosphole-2-spiro-1¹-phosphetan</u> (231)

Recrystallised from 40-60° petroleum at -20°C, (80%); m.p. 65-67°; δ 0.84 (3H,dd,J 2 and 4H₃), 1.20 (6H,d,J_{P-H}18H₃), 1.40 (6H,d,J_{P-H}15H₃), 2.02 (1H,m), 6.5 (4H,s) and 7.0 - 7.7 (5H,m); ^{31p} (CDCl₃) + 1.9 p.p.m.; ^m/e 328, 258, 243, 216, 168, 166, 150, 139, 119, 108, 97, 92 and 79; \checkmark max 1495, 1285, 1255, 1140, 1115, 1100, 1020, 880, 830, 740, 720, 700 and 650; (Found: C,72.9; H,7.7. $C_{20}H_{25}O_2P$ requires C,73.2; H,7.6%). <u>P-r-benzyl-2¹,2¹</u>-trans-3¹,4¹,4¹-pentamethyl-1,3,2-benzodioxaphosphole-2-spiro-1¹-phosphetan (234)

Recrystallised from light petroleum, (64%); m.p. $140-141^{\circ}$; § 0.82 (3H,dd, J 2 and 7Hz), 1.35 (6H,d,J_{P-H}18Hz) 1.30 (6H,d,J_{P-H} 16Hz), 3.28 (2H,d,J_{P-H}7Hz), 6.34 (4H,s) and 6.82 (5H,s); ³¹p (CDC1₃) + 4.2 p.p.m.; ^m/e 342, 272, 257, 250, 230, 182, 180, 163, 139, 110, 97 and 92; \bigvee_{max} 1600, 1460, 1250, 1100, 1010, 905, 880, 830, 775, 730, 695 and 650; (Found: C,73.55; H,7.9; P,8.95. $C_{21}H_{27}O_2P$ requires C,73.7; H,7.9; P,9.1%). <u>P-r-benzy1-2¹,2¹-cis-3¹,4¹,4¹-pentamethy1-1,3,2-benzodioxa-phosphole-2-spiro-1¹-phosphetan</u> (232)

This was prepared from the <u>cis</u> rich sample of the phosphetan (60 : 40) and on subsequent work-up and extraction with $40 - 60^{\circ}$ petroleum at -20° C gave the title compound. The isomer ratio was determined by ¹H n.m.r. using a Jeol PS100 machine and 1-bromonaphthalene as solvent. The isomer ratio of the adduct was also found to be 60 : 40. δ (1-bromonaphthalene) 0.80 (3H,dd,J 2 and 7H₃), 1.38 (6H,d,J_{P-H}19H₃), 1.32 (6H,d,J_{P-H}18H₃); 3.28 (2H,d,J_{P-H}7H₃); ^m/e 342, 272, 257, 250, 230, 182, 180, 163, 139, 110, 97 and 92.

<u>P-r-l-(dimethylamino)-2¹,2¹</u>-trans- $3^{1},4^{1},4^{1}$ -pentamethyl-1,3,2benzodioxaphosphole-2-spiro-1¹-phosphetan (246) Recrystallised from light petroleum, (90%); m.p. 120°; δ 0.80 (3H,dd,J 1.5 and 7H₃), 1.25 (6H,d,J_{P-H}18H₃), 1.30 (6H,d, J_{P-H}17H₃), 1.80 (1H,m), 2.56 (6H,d,J_{P-H}12H₃) and 6.65 (6H,s); ³¹P(CDC1₃) - 8.0 p.p.m.; ^m/e 295, 280, 251, 225, 198, 182, 156, 139, 97 and 92; \mathcal{V}_{max} (neat film) 2900, 2805, 1620, 1495, 1360, 1285, 1260, 1210, 1100, 1012, 975, 880, 830, 760, 740, 720 and 640; (Found C,65.3; H,8.90; P,9.60; N,4.75%).

141

Preparation of 2-dimethylamino-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholan (264)

This was prepared by the method of Bone⁴⁴ (90%), $b_{1.0}$ 54-57°, (Lit. $b_{2.0}$ 63°)⁶³; δ 1.23 (6H,s), 1.30 (6H,s) and 2.64 (6H,d, J_{P-H} ^{8H}**z**). Preparation of 4,4,5,5-tetramethyl-2-phenyl-1,3,2-dioxaphospholan

(266)

To a well stirred solution of pyridine (0.4 mol) in ether (1000 ml) at 0^oC, was added dropwise and simultaneously a solution of dichlorophenylphosphine (0.2 mol) in ether (50 ml) and a solution of pinacol (0.2 mol) in ether (50 ml). After addition the mixture was left overnight, filtered, the solvent removed and the residue distilled under reduced pressure. (51%); $b_{0.3}$ 90-94^o, Lit. $b_{0.5}$ 99-115^{o141}, (Lit. m.p. 103-104^o)¹⁸⁷; δ 1.25 (6H,s), 1.40 (6H,s) and 6.60 - 7.17 (5H,m).

Preparation of 2-t-buty1-4,4,5,5-tetramethy1-1,3,2-dioxaphos-

<u>pholan</u> (272)

Sodium hydride (0.2 mol) was suspended in ether (50 ml) and to this was added a solution of pinacol (0.1 mol) in ether (20 ml). The mixture was refluxed for 1.5h, cooled, and then a solution of t-butyldichlorophosphine (0.1 mol) in ether (20 ml) added, the mixture was then refluxed for a further 3h. After filtration, removal of solvent, reduced pressure distillation gave the title compound as an extremely air-sensitive colourless liquid. (52%); b_{0.7} 48-54[°]; δ 0.97 (9H,d,J_{P-H}12H₃) and 1.36 (12H,s); ^{31p} (CDCl₃) - 204.1 p.p.m.; ^m/e 204, 164, 149, 139, 123, 106, 101 and 94; \mathcal{V}_{max} (neat film) 2995, 1490, 1475, 1405, 1270, 1150, 975, 900, 805, 760 and 680. Reactions of Acrylic Acid with Trivalent Phosphorus Compounds To a stirred solution of the phosphorus compound (5 mmol) in ether (20 ml) was added a solution of acrylic acid (5 mmol) in ether (5 ml) and the mixture left stirring overnight. The

ether was removed and the residue taken-up in light petroleum. In this way the following 1 : 1 adducts were prepared. P-phenyl-2,2,3,3-tetramethyl-1,4,6-trioxa-5-phospha $(5-P^V)$ - spiro

(4.4) non-7-one (267)

Recrystallised from ethyl acetate-light petroleum. (100%); m.p. 131-131.5°; § 0.80 (3H,s), 1.16 (3H,s), 1.22 (3H,s), 1.31 (3H,s), 1.74 - 2.96 (4H,m), 7.01 - 7.46 (3H,m) and 7.52 - 8.08(2H,m); ^{31p} $(CDCl_3) + 10.7 \text{ p.p.m.};$ ¹³C-22.87, -23.52, -24.30, -24.49, -24.88, -26.31, -27.61, -33.92, -77.0 (J_{P-C} 80 H₃), -127.48, -128.19, -128.52, -128.97, -131.05, -131.25, -131.90, -132.61 and -172.8 (J_{P-C}²⁴ H₃) p.p.m.; ^m/e 296, 281, 252, 238, 224, 197, 180, 171, 152, 142 and 124; γmax 1725, 1440, 1425, 1305, 1155, 980, 920, 845, 760, 720 and 700; 1st T^{C} (CCl₃Br) 63 \pm 3^o; ΔV_{9H_3} ; $\Delta G^{\text{#}}$ 17.7 \pm 0.1 kcal.mol⁻¹; 2nd T^C (CCl₃Br) 77 \pm 1°; $\Delta V_{35H_{3}}; \Delta G^{\#}$ 17.5 \pm 0.1 kcal.mol⁻¹; (Found: C,60.35; H,7.24, P,10.40. C₁₅H₂₁O₄P requires C,60.80; H,7.15; P,10.45%). P-dimethylamino-2,2,3,3-tetramethyl-1,4,6-trioxa-5-phospha- $(5-P^{V}) - spiro (4.4) non-7-one.$ (265) (85%); δ 1.23 (6H,s), 1.40 (3H,s), 1.50 (3H,s), 2.71 (6H,d, $J_{P-H}^{10H_3}$ and 2.00 - 3.14 (4H,m); 31p (CDCl₃) + 18.7 p.p.m.; ^m/e 264, 263, 237, 219, 182, 164, 147, 137, 119 and 100; \mathcal{N}_{\max} (neat film) 2995, 1730, 1610, 1380, 1275, 1150, 965, 940 and 885; T^C decomposition before coalescence. P-t-buty1-2,2,3,3-tetramethy1-1,4,6-trioxa-5-phospha(5-P^V)-spiro (4.4) non-7-one (273) Recrystallised from ethyl acetate - light petroleum. (100%);

Recrystallised from ethyl acetate - light petroleum. (100%); m.p. 113.5 - 115°; \S 1.28 (9H,d,J_{P-H}18H_J), 1.30 (12,H,s) and 2.00 - 2.89 (4H,m); ³¹P (CDCl₃) - 10.5 p.p.m.; ^m/e 276, 261, 232, 218, 204, 176, 161, 148, 134, 120 and 100; \mathcal{V}_{max} 1715, 1380, 1210, 1160, 1010, 985, 920, 835, 780, 755 and 705; T^C singlet for the pinacol methyl's in all solvents tried; (Found: C,56.35; H,9.00; P,11.10. $C_{13}H_{25}O_4P$ requires C,56.50; H,9.10; Reaction between Acrylic acid and 2-Trimethylsiloxy-4,4,5,5tetramethyl-1,3,2-dioxaphospholan.

This reaction was carried out in the usual way but no adduct was formed, instead 4,4,5,5-tetramethyl-1,3,2-dioxaphospholan-2-oxide was recovered in a quantitative yield. M.p. and mixed m.p. $104-106^{\circ}$; δ 1.40 (6H,s), 1.52 (6H,s) and 5.44 (1H,d,J_{P-H}689 H_J) <u>Preparation of Ethyl-3-(diethoxyphosphonyl) propionate</u>.

(291)

To a solution of triethyl phosphite (0.1 mol) in ether (50 ml) at 0^oC was added acrylic acid (0.1 mol) and the mixture was allowed to reach room temperature slowly, and left overnight. Removal of the ether, followed by reduced pressure distillation gave the title compound. (45%); $b_{0.05}100-110^{\circ}$) (Lit. $b_{0.5}111-112$)¹⁶⁴; δ 1.33 (6H,dt,J 4 and 7H_g), 1.40 (3H,m), 1.80 - 3.04 (4H,m) and 3.66 - 4.60 (6H,m); ³¹P (CDCl₃) - 30.6 p.p.m., there was no phosphorane species detactable by ³¹P F.T. n.m.r. <u>Preparation of Isopropy1-3-(di-isopropoxyphosphonyl) propionate</u>

To a solution of tri-isopropyl phosphite (0.1 mol) in ether (50 ml) at 0°C was added acrylic acid (0.1 mol). The mixture was then allowed to reach room temperature slowly and then left overnight. Removal of solvent, followed by reduced pressure distillation gave the title compound. (70%); $b_{0.05}$ 105-110°; δ 1.34 (9H,d,J_{H-H}5H_J), 1.70 - 2.84 (4H,m) and 4.37 - 5.10 (3H,m); ³¹P (CDC1₃) - 28.4 p.p.m.; ^m/e 280, 239, 197, 179, 163, 155, 137, 120, 109 and 99; ∇_{max} (neat film) 2900, 1735 1470, 1375, 1245, 1180, 1110, 980, 890 and 770. There was no phosphorane species detectable by ³¹F F.T. n.m.r. After distillation the residue was recrystallised from ethyl acetate - light petroleum at -20°C to give <u>3 - Di-isopropoxy</u>phosphonyl propionic acid. (20%); \S 1.30 (6H,d,J_{H-H}6H**g**); 1.72 - 2.92 (4H,m), 4.30 - 5.09 (2H,m) and 11.44 (1H,s); ³¹P (CDCl₃) -27.2 p.p.m., ^m/e 238, 217, 197, 179, 163, 155, 137, 121, 109 and 99; \checkmark max 2720, 2640, 2565, 2500, 1730, 1265, 1215, 1180, 1105, 1010, 995, 815, 775, 760 and 710.

Preparation of Diphenylphosphine (310)

This was prepared by the method of Kuchen and Buckwald¹⁸⁸. (97%); b_{0.5}122-118°, (Lit. b₁₆156-157° ¹⁸⁸). Preparation of P-trimethylsilyl-P,P-diphenylphosphine (311) To a solution of diphenylphosphine (0.08 mol) in dry T.H.F. was added an excess of sodium wire (5g). After the initial effervescence had finished the mixture was refluxed for 2h and the excess sodium removed. The solution was colled to 0^oC and freshly distilled trimethylchlorosilane (0.08 mol) added dropwise, with stirring, after addition the mixture was refluxed for lh and then allowed to cool. The precipitate was filtered off in the dry-box, the solvent removed and the residue distilled under reduced pressure. (58%); b_{0.6} 126-128°, (Lit $b_{0.6}$ 122-126° 189); § 0.20 (9H,d, J_{P-H} 5H₃) and 7.10 - 7.65 (10H,m); ³¹p (CDCl₃) + 54.5 p.p.m., (Lit. ³¹p $(CH_3CN) + 53.7 \text{ p.p.m.}^{189}).$

Preparation of P-trifluoromethyl-P,P-diphenylphosphine (312) To a stirred solution of P-trimethylsilyl-P,P-diphenylphosphine (0.02 mol) in ether (20 ml) at -78° C was added a previously trapped amount of trifluoro-iodomethane (0.02 mol). The reaction mixture was then allowed to reach room temperature, the ether removed and the residue distilled under reduced pressure. (78%); b₁₅150-160°, (Lit. b 255-257¹⁶⁸); ¹⁹F (CH₂Cl₂) - 7.83 (3F,d,J_{P-F}72H₃) p.p.m.; \mathcal{V}_{max} (neat film) 3060, 3000, 1585, 1485, 1440, 1275, 1150, 1105, 1070, 1027, 1000, 745 and 695. Preparation of P-cyano-P,P-diphenylphosphine

To a solution of chlorodiphenylphosphine (0.05 mol) in xylene

(25 ml) was added anhydrous silver cyanide (0.05 mol). The mixture was then heated under reflux overnight. Filtration, removal of solvent, followed by reduced pressure distillation gave the title compound. (56%); $b_{1.5}$ 180-182°, (Lit. $b_{13.5}$ 187-188°)¹⁹⁰; \mathcal{N}_{max} (neat film) very small band at 2190 cm⁻¹. Preparation of P-cyano-P,P-diphenylphosphine sulphide This was prepared by refluxing P-cyano-P,P-diphenylphosphine (0.01 mol) with phosphorusthiochloride according to the method of Johns and DiPietro¹⁹¹. The sulphide was recrystallised from ethyl acetate-light petroleum in 98% yield, m.p. 49-50°, (Lit. m.p. 50-50.2°¹⁹¹); \mathcal{N}_{max} 2180 (C=N).

Preparation of Hexafluorobiacetyl

This was prepared by the method of Ramirez and Kugler,¹⁹² (12%) Preparation of 1,3,2-Dioxaphospholens from Hexafluorobiacetyl and Trivalent Phosphorus Compounds

Hexafluorobiacetyl (5 mmol) was allowed to distil into a stirred solution of the phosphine (5 mmol) in dichloromethane (5 ml) at -78°C, the apparatus being fitted with a dry-ice condenser. After addition the reaction mixture was allowed to come to room temperature over a period of 0.5h. The solvent was removed under reduced pressure and the residue taken up in light petroleum. In this way the following 1 : 1 adducts were prepared in almost quantitative yields.

P-cyano-P,P-diphenyl-4,5-bistrifluoromethyl-1,3,2-dioxaphospholene.
(309, R=CN)

P-chloro-P,P-diphenyl-4,5-bistrifluoromethyl-1,3,2-dioxaphospholene (309, R=C1)

δ 7.0 - 7.9 (10H,m); ³¹P (CH₂Cl₂) + 4.9 p.p.m.; ¹⁹F (CH₂Cl₂) + 0.42 (3F,m) and+3.08 (3F,m) p.p.m. at -40°C; ^m/e 416, 414, 395, 380, 326, 298, 235, 220, 201, 183, 154, 143 and 107; (neat film) 3350, 1790, 1600, 1490, 1450, 1250-1200, 1005, 950, 730 and 695; T^C (CH₂Cl₂) - 3 ± 2°; Δν 255 H₃; ΔG^{*}12.3 ± 0.1 kcal.mol⁻¹.

The reaction of hexafluorobiacetyl with diphenylphosphine, P-trimethylsilyl-P,P-diphenylphosphine, P-trifluoromethyl-P,Pdiphenylphosphine and P-2,4,6-trimethylbenzoyloxy-P,P-diphenylphosphinite gave no pentacovalent phosphorus adducts.

Preparation of P-2,4,6-trimethylbenzoyloxy -P,P-diphenyl

phosphinite

To an ice-cold, stirred solution of chlorodiphenylphosphine (0.05 mol) and triethylamine (0.05 mol) in ether (150 ml) was slowly added a solution of 2,4,6-trimethylbenzoic acid (0.05 mol) in ether (50 ml). After addition the mixture was stirred at room temperature for 1h, then refluxed for a further 1h. Filtration, removal of the solvent and recrystallisation of the residue from ethyl acetate - light petroleum gave the title compound. (87%); m.p. 112-114°; δ 2.25 (6H,s), 2.35 (3H,s), 6.90 (2H,s) and 7.30 - 8.20 (10H,m); ^{31p} (CH₂Cl₂) - 103.2 p.p.m.; ^m/e 348, 325, 319, 293, 262, 219, 201, 183, 164 and 146; ∇_{max} 1745, 1710, 1610, 1440, 1250, 1230, 1160, 1130, 1015, 995, 950, 835, 760, 720 and 695; (Found: C,75.45; H,6.00; P,8.89. C₂₂H₂₁O₂P requires C,75.85; H,6.08, P,8.89%). Preparation of P-2,4,6-trimethylbenzoyloxy-P,P-diphenylphosphino-

thionate

A mixture of P-2,4,6-trimethylbenzoyloxy-P,P-diphenylphosphinite (5 mmol) and sulphur (5 mmol) in benzene (10 ml) was refluxed until the sulphur had disappeared, (<u>c.a</u>. 2h). The benzene was removed and the residue recrystallised from ethyl acetate light petroleum. (95%); m.p. $115-116^{\circ}$; § 2.30 (3H,s), 2.40 (6H,s), 6.95 (2H,s) and 7.30 - 8.35 (10H,m); ³¹P (CH₂Cl₂) -77.1 p.p.m.; ^m/e 380, 341, 325, 277, 260, 234, 217, 199, 164, 146 and 119; \mathcal{V}_{max} 1745, 1610, 1250, 1230, 1160, 1010, 950, 910, 820, 795, 735 and 690; (Found: C,69.60; H,6.0; P,8.70. C₂₂H₂₁O₂PS requires C,69.46; H,5.56; P,8.43%).

Preparation of 2-2,4,6-trimethylbenzoyloxy-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan (332)

To a stirred, ice-cold solution of 2-chloro-4,4,5,5-tetramethyl -1,3,2-dioxaphospholan (0.1 mol), triethylamine (0.1 mol) in ether (150 ml) was added a solution of 2,4,6-trimethylbenzoic acid (0.1 mol) in ether (100 ml). After addition the mixture was refluxed for 1h, filtered and the ether removed. Reduced pressure distillation of the residue gave the title compound. (80%); $b_{0.45}$ 180-185°; \$ 1.31 (6H,s), 1.40 (6H,s), 2.29 (3H,s), 2.36 (6H,s) and 6.80 (2H,s); ³¹P (CH₂Cl₂) - 135.6 p.p.m.; ^m/e 310, 295, 281, 252, 227, 205, 170, 164, 147 and 119; $\neg r_{max}$ (neat film) 2980, 1710, 1615, 1450, 1260, 1165, 1140, 1065, 960, 915, 850, 765 and 670.

Reaction of Hexafluoroacetone with 2-2,4,6-trimethylbenzoyloxy -4,4,5,5-tetramethyl-1,3,2-dioxaphospholan

The reaction was carried out in the usual way, however no 2 : 1 adduct was formed. After the solvent was removed, recrystallisation from ethyl acetate - light petroleum gave 2-1,1,1,3,3,3-hexafluoro-2(2,4,6-trimethylbenzoyloxy)-2propoxy-4,4,5,5-tetramethyl-1,3,2-dioxapholan-2-oxide, (334), (100%), m.p. 120.5 - 121°; δ 1.11 (6H,s), 1.43 (6H,s), 2.24 (6H,s), 2.30 (3H,s) and 6.94 (2H,s); ^{31p} (CH₂Cl₂) - 3.0 p.p.m.; ¹⁹F (CDCl₃) + 3.23 (6F,s) p.p.m.; ^m/e 476, 395, 377, 321, 296, 280, 227, 211, 169, 147 and 119; γ_{max} 1730, 1610, 1405, 1320, 1230, 1135, 965, 945, 840, 810, 750, 725 and 665; (Found: C,48.0; H,4.85; P,6.50. C₁₉H₂₃0₅PF₆ requires C,47.90; H,4.85; P,6.50%).

Preparation of 2-cyano-4,4,5,5-tetramethyl-1,3,2-dioxaphospholan (316)

A stirred mixture of 2-chloro-4,4,5,5-tetramethyl-1,3,2dioxaphospholan (0.1 mol), silver cyanide (0.1 mol) and acetonitrile (50 ml) was heated under reflux for 6h. The solids were filtered off, the solvent removed and the residue distilled under reduced pressure. (50%); $b_{0.75}$ 74-78°; § 1.34 (6H,s), and 1.50 (6H,s); ³¹P (neat) - 174.6 p.p.m.; ^m/e 173, 149, 147, 122, 106 and 83; \mathcal{V}_{max} (neat film) 3000, 2950, 2095, 1470, 1390, 1180, 1145, 1020, 950, 845, 820 and 770.

Preparation of 2-isocyanato-4,4,5,5-tetramethyl-1,3,2-

dioxaphospholan (322, X=NCO)

A stirred mixture of 2-chloro-4,4,5,5-tetramethyl-1,3,2dioxaphospholan (0.1 mol), sodium isocyanate (0.1 mol) in acetonitrile (30 ml) and benzene (60 ml) was refluxed for 4h and left standing overnight. Filtration, removal of solvent, followed by reduced pressure distillation gave the title compound, (56%); $b_{1.3}$ 95-97°; \S 1.40 (12H,s); ³¹p (CDCl₃) - 175.2 p.p.m.; ^m/e 189, 149, 147, 124, 122, 106, 85 and 83;

 \mathcal{V}_{max} (neat film) 2990, 2240, 1455, 1375, 1300, 1170, 1135, 955, 905, 825 and 760.

Preparation of 2-isothiocyanato-4,4,5,5-tetramethyl-1,3,2dioxaphospholan (322, X = NCS)

A stirred mixture of 2-chloro-4,4,5,5-tetramethyl-1,3,2dioxaphospholan (0.1 mol), sodium thiocyanate (0.1 mol) in acetonitrile (30 ml) and benzene (60 ml) was refluxed for 4h and left overnight. Filtration, removal of solvent, followed by reduced pressure distillation gave the title compound (40%); b_{1.3} 115-118°; § 1.28 (6H,s) and 1.40 (6H,s); ^{31p} (CDCl₃) - 127.6 p.p.m.; ^m/e 205, 190, 147, 122, 107, 100, 89 and 83; \mathcal{V}_{max} (neat film) 2995, 2000, 1470, 1385, 1305, 1175, 1145, 1015, 965, 915, 840 and 770.

Preparation of Spirophosphoranes using Tetrachloro-o-benzoquinone To a stirred solution of the trivalent phosphorus compound (5 mmol) in ether (5 ml) was added a solution of tetrachloroo-benzoquinone (5 mmol) in ether (20 ml). The reaction mixture was left until the colour had discharged, the solvent was then removed and the residue taken up in ethyl acetate light petroleum. In this way the following spirophosphoranes were prepared in almost quantitative yields. P-chloro-4¹,4¹,5¹,5¹-tetramethyl-tetrachloro-1,3,2-benzodioxaphosphole-2-spiro-2¹-1¹,3¹,2¹-dioxaphospholan (328) This was prepared by Bone⁴⁴. δ (CCl₄) 1.00 (6H,s) and 0.95 (6H,s); ^{31p} (CDCl₃) + 14.5 p.p.m., (Lit. ^{31p} (CCl₄) + 13.6 p.p.m.)⁴⁴ P-ethoxy-4¹,4¹,5¹,5¹-tetramethyl-tetrachloro-1,3,2-benzodioxaphosphole-2-spiro- $2^{1}-1^{1}, 3^{1}, 2^{1}$ -dioxaphospholan (302) Recrystallised from ethyl acetate - light petroleum. M.p. 145-146°; δ 1.37 (12,H,s), 1.12 - 1.41 (3H,m) and 3.84 -4.52 (2H,m); ^{31p} (CDCl₃) + 31.5 p.p.m.; ^m/e 442, 440, 438, 436, 356, 337, 328, 310, 291, 248, 211, 165 and 141; V_{max} 1600, 1395, 1305, 1160, 1055, 1025, 980, 930, 855, 825, 795 and 675; T^C singlet for the pinacol methyls in all solvents tried; (Found: C,38.50; H,3.95; C1,32.20. C₁₄H₁₇O₅PCl₄ requires С,38.40; Н,3.90; С1,32.25%). P-trimethylsiloxy-4¹,4¹,5¹,5¹-tetramethyl-tetrachloro-1,3,2benzodioxaphosphole-2-spiro-2¹-1¹,3¹,2¹-dioxaphospholan. $(170, R = -OSiMe_3)$ Recrystallised from ethyl acetate - light petroleum. M.p. 171 -31p 172[°] (decomposition); § 0.34 (9H,s) and 1.49 (12H,s); (CDCl₃) + 35.9 p.p.m.; ^m/e 486, 484, 482, 480, 424, 399, 382, 366, 304, 269, 237, 171, 155, 147 and 121; → max 1660, 1440, 1310, 1260, 1140, 1020, 990, 960, 950, 865, 850 and 800; T^C singlet for the pinacol methyls in all solvents tried; (Found: C,37.75; H,4.20; P,7.15. C₁₅H₂₁O₅PSiCl₄ requires C,37.35; H,4.40; P,6.40%). <u>P-Cyano-4¹,4¹,5¹,5¹-tetramethyl-tetrachloro-1,3,2-benzodioxaphosphole-2-spiro-2¹-1¹,3¹,2¹-dioxaphospholan (329) § 1.43 (12H,broad singlet); ³¹P (CH₂Cl₂) + 38.9 p.p.m.; ^m/e 423, 421, 419, 417, 393, 328, 310, 294, 248, 218, 183, 165, 155, 147, 118 and 99; → max 2210, 1590, 1400, 1280, 1140, 1015, 975, 950, 875, 820, 755 and 670; T^C (CCl₄) 46 ± 2°; A√8H₃; ∆G[#] 16.9 ± 0.1 kcal.mol⁻¹. <u>P-Isocyanato-4¹,4¹,5¹,5¹-tetramethyl-tetrachloro-1,3,2-benzodioxaphosphole-2-spiro-2¹-1¹,3¹,2¹-dioxaphospholan. (323, X = NCO)</u></u>

\$1.42 (12H, broad singlet); ³¹P (CDCl₃) + 14.5 p.p.m.; ^m/e 439, 437, 435, 433, 393, 371, 345, 328, 312, 294, 277, 248, 232, 211, 183, 165, 155, 118 and 100; $√_{max}$ (neat film) 3000, 2270, 1660, 1410, 1395, 1270, 1150, 1010, 970, 945, 855, 825, 785, 760 and 660; T^{C} (CCl₄) 53 ± 2°; $Δ√6H_{z}$; $ΔG^{#}$ 17.5 ± 0.2 kcal.mol⁻¹.

P-Isothiocyanato-4¹,4¹,5¹,5¹-tetramethyl-tetrachloro-1,3,2benzodioxaphosphole-2-spiro-2¹-1¹,3¹,2¹-dioxaphospholan

(323, X = NCS)

 δ (CCl₄) 1.40 (6H,s) and 1.46 (6H,s); ³¹P (CDCl₃) + 42.7 p.p.m.; ^m/e 455, 453, 541, 449, 408, 393, 368, 352, 328, 310, 294, 218, 183, 155, 147 and 118; ∇_{max} (neat film) 2990, 2000, 1465, 1400, 1275, 1155, 1010, 975, 950, 865, 830 and 790; T^C (Cl₂CHCHCl₂) 57 ± 2°; $\Delta \nabla$ 5H₂; $\Delta G^{\#}$ 17.8 ± 0.1 kcal.mol⁻¹. Preparation of P-Azido-4¹,4¹,5¹,5¹-tetramethyl-tetrachloro-1,3,2-benzodioxaphosphole-2-spiro-2¹-1¹,3¹2¹-dioxaphospholan. (330) A mixture of P-chloro-4¹,4¹,5¹,5¹-tetramethyl-tetrachloro-1,3,2benzodioxaphosphole-2-spiro-2¹-1¹,3¹,2¹-dioxaphospholan (10 mmol) and sodium azide (10 mmol) in acetonitrile (30 ml) was stirred at room temperature for two days. The solids were filtered off, the solvent <u>carefully</u> removed under reduced pressure and the resulting solid was extracted with <u>cold</u> ethyl acetate - light petroleum to give the title compound. (60%); \$1.49 (12H, broad singlet); ³¹P (CH₃CN) - 7.8 p.p.m.; ^m/e 439, 437, 435, 433, 407, 356, 328, 310, 296, 248, 218, 209, 183, 155 and 118; V_{max} 2180, 1475, 1435, 1405, 1315, 1275, 1145, 975, 835, 750 and 715; T^C (Cl₂CHCHCl₂) 76 \pm 2^o; $\Delta V3H_3$; ΔG^{\ddagger} 19.3 \pm 0.1 kcal.mol⁻¹. By a similar procedure using silver syanide, P-cyano-4¹,4¹,5¹,5¹-tetramethyl-tetrachloro-1,3,2-benzodioxaphos-

phole-2-spiro-2¹-1¹,3¹,2¹-dioxaphospholan was prepared.

REFERENCES

- G. W. Fenton and C. K. Ingold, <u>J. Chem. Soc</u>., 1929, 2342;
 L. Hey and C. K. Ingold, <u>J. Chem. Soc</u>., 1933, 531.
- 2 M. Zanger, C. A. Van der Werf, and W. E. McEwen, <u>J. Amer</u>. <u>Chem. Soc</u>., 1959, <u>81</u>, 3806; A. Blade-Font, C. A. Van der Werf, and W. E. McEwen, ibid. 1960, 82, 2396.
- 3 F. Ramirez, B. Hansen, and N. B. Desai, <u>J. Amer. Chem. Soc</u>.,
 1962, <u>84</u>, 4588; F. Ramirez, O. P. Madan, N. B. Desai,
 S. Meyerson and E. M. Banas, <u>ibid</u>., 1963, <u>85</u>, 2681.
- 4 G. Aksnes and K. Bergesen, <u>Acta. Chem. Scand</u>., 1966, <u>20</u>, 2508.
- 5 F. H. Westheimer, Accounts Chem. Res., 1968, 1, 70.
- 6 W. Hawes and S. Trippett, <u>J. Chem. Soc. (C)</u>., 1969, 1465.
- 7 S. E. Cremer and B. C. Trivedi, <u>J. Amer. Chem. Soc</u>., 1969, <u>91</u>, 7200.
- 8 K. Mislow, <u>Accounts Chem. Res</u>., 1970, <u>3</u>, 321.
- 9 D. C. Gay and N. K. Hamer, <u>J. Chem. Soc. (B)</u>., 1970, 1123.
- 10 K. E. DeBruin and J. R. Petersen, <u>J. Org. Chem</u>., 1962, <u>37</u>, 2272.
- 11 R. D. Cook, P. C. Turley, C. E. Diebert, A. H. Fierman and P. Haake, <u>J. Amer. Chem. Soc</u>., 1972, <u>94</u>, 9260.
- 12 P. Gillespie, F. Ramirez, I. Ugi and D. Marquarding, <u>Angew</u>. <u>Chem. Internat. Edn.</u>, 1973, <u>12</u>, 91.
- 13 P. J. Wheatley, <u>J. Chem. Soc</u>., 1964, 2206.
- 14 R. Sarma, F. Ramirez, D. Mckeever, J. F. Maracek and S. Lee, <u>J. Amer. Chem. Soc</u>., 1976, <u>98</u>, 581.
- 15 K. W. Hansen and L. S. Bartell, <u>Inorg. Chem.</u>, 1965, <u>4</u>, 1775.
- 16 R. R. Holmes, R. P. Carter Jr., and G. E. Peterson, <u>Inorg</u>. <u>Chem</u>., 1964, <u>3</u>, 1748.
- 17 J. E. Griffiths, R. P. Carter Jr. and R. R. Holmes, <u>J. Chem.</u> <u>Phys.</u>, 1964, <u>41</u>, 863.

- 18 W. J. Adams and L. S. Bartell, <u>J. Mol. Structure</u>, 1971, <u>8</u>, 23.
- 19 L. S. Bartell and K. W. Hansen, <u>Inorg. Chem.</u>, 1965, <u>4</u>, 1777.
- 20 W. C. Hamilton, S. J. LaPlaca, F. Ramerez and C. P. Smith, <u>J. Amer. Chem. Soc.</u>, 1967, <u>89</u>, 2268.
- 21 W. S. Sheldrick, A. Schmidpeter and J. K. Weinmaier, <u>Angew</u>. <u>Chem. Internat. Edn.</u>, 1975, <u>14</u>, 490.
- H. A. E. Aly, J. H. Barlow, D. R. Russell, D. J. H. Smith,
 M. Swindles and S. Trippett, <u>J. C. S. Chem. Comm</u>., 1976,
 449.
- 23 M. Sanchez, J. Ferekh, J. F. Brazier, A. Munoz and R. Wolf, <u>Roczniki Chem.</u>, 1971, <u>45</u>, 131.
 - 24 J. A. Howard, D. R. Russell and S. Trippett, <u>Chem. Comm</u>., 1973, 856.
 - 25 H. Wunderlich, D. Mootz, R. Schmutzler and M. Wieber,
 - 26 G. O. Doak and R. Schmutzler, Chem. Comm., 1970, 476.
 - 27 R. R. Holmes, <u>J. Amer. Chem. Soc</u>., 1974, <u>96</u>, 4143.
 - 28 L. Horner, <u>Pure Applied Chem.</u>, 1964, <u>9</u>, 225.
 - 29 F. Ramirez, Bull. Soc. chim. France, 1966, 2443.
 - 30 F. Ramirez and N. B. Desai, <u>J. Amer. Chem. Soc</u>., 1960, <u>82</u>, 2652.
 - 31 F. Ramirez, A. V. Patwardhan and C. P. Smith, <u>J. Org. Chem</u>., 1965, <u>30</u>, 2575.
 - 32 F. Ramirez. A. V. Patwardhan, H. J. Kugler and C. P. Smith <u>Tetrahedron</u>, 1968, <u>24</u>, 2275.
 - 33 F. Ramirez, <u>Accounts Chem. Res.</u>, 1968, <u>1</u>, 168.
 - 34 Y. Ogata and M. Yamashita, <u>J. Amer. Chem. Soc</u>., 1970, <u>92</u>, 4670; <u>Tetrahedron</u>, 1971, <u>27</u> 2725; <u>J. Org. Chem</u>., 1971, <u>36</u>, 2584.
 - 35. F.Ramirez, A. V. Patwardhan and S. P. Heller, <u>J. Amer. Chem</u>. <u>Soc</u>., 1964, <u>86</u>, 514.

- 36 W. G. Bentrude, W. D. Johnson and W. A. Khan, <u>J. Amer. Chem</u>. <u>Soc</u>., 1972, <u>94</u>, 3058.
- 37 F. Ramirez, C. P. Smith, A. S. Gulati and A. V. Patwardhan, <u>Tetrahedron Letters</u>, 1966, 2151.
- 38 F. Ramirez, G. B. Bhatia and C. P. Smith, <u>Tetrahedron</u>, 1967, <u>23</u>, 2067.
- 39 F. Ramirez and C. P. Smith, <u>Chem. Comm.</u>, 1967, 662.
- 40 J. Borowitz and M. Anschel, Tetrahedron Letters, 1967, 1517.
- 41 M. Willson, R. Burgada and F. Mathis, <u>Compt. rend</u>., 1975, <u>280C</u>, 225.
- 42 F. Ramirez, C. P. Smith, J. F. Pilot and A. S. Gulati, <u>J. Org. Chem.</u>, 1968, <u>33</u>, 3787.
- 43 E. Duff, M.Sc. Thesis, University of Leicester, 1972.
- 44 S. A. Bone, Ph.D. Thesis, University of Leicester, 1975.
- 45 A. F. Janzen and O. C. Vaidya, <u>Canad. J. Chem</u>., 1973, <u>51</u>, 1136.
- 46 F. Ramirez, C. P. Smith and J. F. Pilot, <u>J. Amer. Chem. Soc</u>., 1968, <u>90</u>, 6726.
- 47 F. Ramirez, J. F. Pilot, O. P. Madan and C. P. Smith, <u>ibid</u>., 1968, <u>90</u>, 1275.
- 48 F. Ramirez, O. P. Madan and S. R. Heller, *ibid.*, 1965, <u>87</u>, 731.
- 49 B. A. Arbuzor, O. P. Zolova, V. S. Vinogradova and Yu.Yu. Samitov, <u>Dokl. Aka. Nauk. S.S.S.R</u>., 1967, <u>173</u>, 335.
- 50 B. A. Arbuzor, V. S. Vinogradova and O. P. Zolova, <u>Izv</u>. Akad, Nauk. S.S.S.R. Ser. Khim., 1968, 2290.
- 51 D. Gorenstein and F. H. Westheimer, <u>J. Amer. Chem. Soc</u>., 1970, <u>92</u>, 634.
- 52 Zh. L. Erikhar, N. A. Razumova and A. A. Petrov, <u>J. Gen.Chem</u>. <u>U.S.S.R.</u>, 1971, <u>41</u>, 471.
- 53 W. C. Hamilton, J. S. Ricci Jr., F. Ramirez, L. Kramer and P. Stern, J. Amer. Chem. Soc., 1973, 95, 6335.
- 54 B. E. Ivanov and V. F. Zhetukhin, <u>Russ. Chem. Rev. (Eng. Trans</u>. 1970, <u>39(5)</u>, 358.

- 55 D. B. Denney and H. M. Relles, <u>J. Amer. Chem. Soc</u>., 1964, <u>86</u>, 3897.
- 56 P. D. Bartlett, A. L. Baumstark and M. E. Landis, <u>J. Amer</u>. <u>Chem. Soc</u>., 1973, <u>95</u>, 6486.
- 57 L. L. Chang, D. Z. Denney, D. B. Denney and Y. F. Hsu, <u>Phosphorus</u>, 1974, <u>4</u>, 265.
- 58 L. L. Chang and D. B. Denney, Chem. Comm., 1974, 84.
- 59 R. W. Murray and M. C. Kaplan, <u>J. Amer, Chem. Soc</u>., 1968, <u>90</u>, 537; <u>ibid</u>., 1968, <u>90</u>, 4161; <u>ibid</u>., 1969, <u>91</u>, 5358.
- 60 A. P. Schaap, K. Kees and A. L. Thayer, <u>J. Org. Chem</u>., 1975, <u>40</u>, 1185.
- 61 N. J. De'ath and D. B. Denney, <u>Chem. Comm.</u>, 1972, 395.
- 62 F. Ramirez, A. J. Bigler and C. P. Smith, <u>Tetrahedron</u>, 1968, <u>24</u>, 5041; <u>J. Amer. Chem. Soc</u>., 1968, <u>90</u>, 3507.
- B. C. Chang, W. E. Conrad, D. B. Denney, D. Z. Denney,
 R. Edelmann, R. L. Powell and D. W. White, <u>J. Amer. Chem.</u>
 <u>Soc</u>., 1971, <u>93</u>, 4004.
- 64 D. B. Denney, R. L. Powell, A. Taft and D. Twitchell, <u>Phosphorus</u>, 1971, <u>1</u>, 151.
- 65 D. B. Denney, D. Z. Denney, C. D. Hall & K. L. Marsi, <u>J. Amer</u>. <u>Chem. Soc</u>., 1972, <u>94</u>, 245.
- 66 M. Sanchez, J. F. Brazier, D. Hovalla and R. Wolf, <u>Bull</u>. <u>Soc. chim. France</u>, 1967, 3930.
- 67 M. Sanchez, R. Wolf, R. Burgada and F. Mathis, <u>ibid</u>., 1968, 773.
- 68 M. Koering, A. Monoz, R. Wolf and D. H. Hovalla, <u>ibid</u>., 1972, 1413.
- 69 M. Sanchez, L. Beslier and R. Wolf, *ibid.*, 1969, 2778.
- 70 R. Burgada and H. Germa, <u>Compt. rend.</u> 1968, <u>267C</u>, 270.
- 71 C. Laurenco, D. Bernard and R. Burgada, <u>ibid</u>., 1974, <u>278C</u>, 1301.
- 72 C. Malavaud, Y. Charbonnel and J. Barrass, <u>Tetrahedron</u> <u>Letters</u>, 1975, 497.

- 73 S. A. Bone and S. Trippett, <u>J.C.S. Perkin I</u>, 1976, 156.
- 74 S. A. Bone and S. Trippett, <u>Tetrahedron Letters</u>, 1975, 1583.
- 75 S. Antczak, S. A. Bone, J. Brierley and S. Trippett, J.C.S. Perkin I, 1977, 278.
- 76 S. Singh, M. Swindles and R. E. L. Waddling, Personal Communication.
- 77 M. Weiber and K. Fovrovghi, Angew. Chem. 1973, 85, 444.
- 78 R. Burgada, D. Bernard and C. Laurenco, <u>Compt. rend.</u>, 1973, <u>276C</u>, 297.
- 79 D. Bernard, C. Laurenco and R. Burgada, <u>J. Organometal Chem</u>., 1973, <u>47</u>, 113.
- 80 W. Stec. B. Uznanski, D. Hovalla and R. Wolf, <u>Compt. rend</u>., 1975, <u>281(C)</u>, 727.
- 81 S. A. Terent'eva, M. A. Pudovik, A. N. Pudovik and Kh. E. Kharlampidi, <u>J. Gen. Chem. U.S.S.R</u>., 1975, <u>45</u>, 2515;
 C. Malavaud and J. Barrans, <u>Tetrahedron Letters</u>, 1975, 3077.
- 82 S. Antczak, Ph.D. Thesis, University of Leicester, 1977.
- M. Ul-Haque, C. N. Caughlan, F. Ramirez, J. F. Pilot and
 C. P. Smith, <u>J. Amer. Chem. Soc</u>., 1971, <u>93</u>, 5229.
- 84 R. D. Spratley, W. C. Hamilton and J. Lodell, <u>ibid</u>., 1967, <u>89</u>, 2272.
- 85 W. C. Hamilton, S. J. LaPlaca, F. Ramirez and C. P. Smith, <u>ibid</u>., 1967, <u>89</u>, 2268.
- 86 D. B. Denney, D. Z. Denney, B. C. Chang and K. L. Marsi, <u>ibid</u>., 1969, <u>91</u>, 5243.
- 87. H. S. Gutowsky, D. W. McCall and C. P. Slichter, <u>J. Chem</u>. <u>Phy</u>., 1953, <u>21</u>, 279.
- 88 R. S. Berry, <u>ibid</u>., 1960, <u>32</u>, 933.
- 89 E. L. Muetterties, W. Mahler and R. Schmutzler, <u>Inorg. Chem.</u>, 1963, <u>2</u>, 613.
- 90 E. L. Muetterties, W. Mahler, K. J. Packer and R. Schmutzler, ibid., 1964, <u>3</u>, 1298.

- 91 E. L. Muetterties and R. A. Schunn, <u>Quart. Rev</u>.(London), 1966, <u>20</u>, 245.
- 92 R. Schmutzler and G. S. Reddy, <u>Inorg. Chem.</u>, 1965, <u>4</u>, 191.
- 93 R. Schmutzler, <u>J. Amer. Chem. Soc</u>., 1964, <u>86</u>, 4500; <u>Angew.</u> <u>Chem. Internat. Edn.</u>, 1965, <u>4</u>, 496; <u>Advan. Fluorine Chem.</u>, 1965, <u>5</u>, 31.
- 94 E. L. Muetterties, <u>J. Amer. Chem. Soc</u>., 1969, <u>91</u>, 1636, 4115.
- 95 G. M. Whitesides and H. L. Mitchell, *ibid.*, 1969, <u>91</u>, 5384.
- 96 R. Hoffmann, J. M. Howell and E. L. Muetterties, <u>ibid</u>., 1972, <u>94</u>, 3047.
- 97 E. L. Muetterties, P. Meakin and R. Hoffmann, <u>ibid</u>., 1972, <u>94</u>, 5674.
- 98 I. Ugi, D. Marquarding, H. Klusack, G. Gokel and P. Gillespie, Angew. Chem. Internat, Edn., 1970, 9, 703.
- 99 F. Ramirez, S. Pfohl, E. A. Tsolis, J. F. Pilot, C. P. Smith, I. Ugi, D. Marquarding, P. Gillespie and P. Hoffmann, <u>Phosphorus</u>, 1971, <u>1</u>, 1.
- 100 I. Ugi, D. Marquarding, H. Klusacek, P. Gillespie and F. Ramirez, <u>Accounts Chem. Res</u>., 1971, <u>4</u>, 288.
- 101 P. Gillespie, P. Hoffmann, H. Klusacek, D. Marquarding, S. Pfohl, F. Ramirez, E. A. Tsolis and I. Ugi, <u>Angew</u>. <u>Chem. Internat. Edn.</u>, 1971, <u>10</u>, 687.
- 102 I. Ugi and F. Ramirez, <u>Chem. in Britain</u>, 1972, <u>8</u>, 198.
- J. A. Altmann, K. Yates and I. G. Csizmadia, <u>J. Amer. Chem</u>.
 Soc., 1976, <u>98</u>, 1450; R. R. Holmes and J. A. Deiters,
 <u>J. Chem. Res</u>., 1977, <u>4(s)</u>, 92; A. Rauk, L. C. Allen
 and K. Mislow, <u>J. Amer. Chem. Soc</u>., 1972, <u>94</u>, 3035;
 J. B. Florey and L. C. Cusachs, <u>ibid</u>., 1972, <u>94</u>, 3040;
 A. Stritch and A. Veillard, <u>ibid</u>., 1973, <u>95</u>, 5574.

- 104 C. G. Moreland, G. O. Doak and L. B. Littlefield, J. Amer. Chem. Soc., 1973, <u>92</u>, 5759.
- 105 T. A. Furtsch, D. S. Dierdorf and A. H. Cowley, <u>ibid</u>., 1970, <u>92</u>, 5739.
- 106 J. I. Musher, Tetrahedron Letters, 1973, 1093.
- 107 G. Wittig, Bull. Soc. chim. France, 1966, 1162.
- F. Ramirez, V. A. Prasad and J. F. Marecek, <u>J. Amer. Chem</u>. <u>Soc</u>., 1974, <u>96</u>, 7269; H. R. Allcock and E. C. Bissell, <u>ibid</u>., 1973, <u>95</u>, 3154.
- 108 P. J. Whittle, Ph.D. Thesis, University of Leicester, 1974.
- 109 D. Bernard, P. Savignac and R. Burgada, <u>Bull. Soc. chim.</u> France, 1972, 1657.
- 110 F. Ramirez and N. Desai, <u>J. Amer. Chem. Soc</u>., 1963, <u>85</u>, 3252; V. A. Kukhtin, K. M. Kirillova, R. R. Shagidullin, Yu. Yu. Samitov, N. A. Lyazina and N. F. Rakova, <u>Zh. Obshch</u>. <u>Khim</u>., 1962, <u>32</u>, 2039. D. Gorenstein and F. H. Westheimer, <u>Proc. Natl. Acad, Sci</u>.

U.S., 1967, <u>58</u>, 1747.

- 111 D. Gorenstein, <u>J. Amer. Chem. Soc</u>., 1970, <u>92</u>, 644.
- 112 E. A. Dennis and F. H. Westheimer, <u>ibid</u>., 1966, <u>88</u> 3431, 3432.
- 113. P. C. Van der Voorn and R. S. Drago, <u>ibid</u>., 1966, <u>88</u>, 3255.
 114 D. B. Boyd, <u>ibid</u>., 1969, <u>91</u>, 1200.
- 115 F. N. Tebbe and E. L. Muetterties, <u>Inorg. Chem</u>., 1968, <u>7</u>, 172.
- 116 J. J. Harris and B. Rudner, <u>J. Org. Chem.</u>, 1968, <u>33</u>, 1392.
- 117 J. S. Harman and D. W. A. Sharp, <u>Inorg. Chem</u>., 1971, <u>10</u>, 1538.
- 118 M. J. C. Hewson, S. C. Peake and R. Schmutzler, <u>Chem. Comm</u>., 1971, 1454.
- 119 D. V. Roberts, D. J. Costa and J. C. Riess, <u>J. C. S. Chem</u>. <u>Comm</u>., 1973, 745.

- 120 S. A. Bone, S. Trippett, M. W. White and P. J. Whittle, Tetrahedron Letters, 1974, 1795.
- 121 S. Trippett, Pure Applied Chem., 1974, 40, 595.
- 122. N. J. De'ath and S. Trippett, Chem. Comm., 1969, 172.
- 123 D. Hovalla, R. Wolf, D. Gagnaire and J. B. Robert, <u>Chem</u>. Comm., 1969, 443.
- 124 R. K. Oram and S. Trippett, J. C. S. Perkin I, 1973, 1300.
- 125 N. J. De'ath, D. Z. Denney and D. B. Denney, <u>Chem. Comm</u>., 1972, 272.
- 126 W. Mahler and E. L. Muetterties, Inorg. Chem., 1965, 4, 1520.
- 127 J. W. Gilji, R. W. Braun and A. H. Cowley, <u>Chem. Comm</u>., 1974, 15.
- 128 A. Klaebe, J. F. Brazier, F. Mathis and R. Wolf, <u>Tetrahedron</u> Letters, 1972, 4367.
- 129 H. A. E. Aly, PhD. Thesis, University of Leicester, 1976.
- 130 K. E. Debruin, A. G. Padilla and M. T. Campbell, <u>J. Amer</u>. <u>Chem. Soc</u>., 1973, <u>95</u>, 4681
- 131 R. G. Carell, D. D. Poulin, K. I. The and A. J. Tomlinson, <u>Chem. Comm.</u>, 1969, 443.
- 132 M. Eisenhut and R. Schmutzler, Chem. Comm., 1971, 1452.
- 133 A. H. Cowley and M. W. Taylor, <u>J. Amer. Chem. Soc</u>., 1969, <u>91</u>, 1934.
- 134 F. A. Bovey, '<u>Nuclear Magnetic Resonance Spectrosopy</u>', Academic Press, 1969, 183.
- 135 H. S. Gutowsky and C. H. Holm, <u>J. Chem. Phys</u>., 1956, <u>25</u>, 1228.
- 136 D. Kost, E. H. Carlson and M. Raban, <u>Chem. Comm.</u>, 1971, 656; W. Egan, R. Tang, G. Zon and K. Mislow, <u>J. Amer. Chem.</u> <u>Soc.</u>, 1971, <u>93</u>, 6205.
- 137 N. J. De'ath, K. Ellis, D. J. H. Smith and S. Trippett, <u>Chem. Comm</u>., 1971, 714; W. B. Farnham, K. Mislow, N. Mandell and J. Donahue, <u>ibid</u>., 1972, 120.

- 138 J. Donahue, N. Mandell, W. B. Farnham, R. K. Murray, K. Mislow and H. P. Benschop, <u>J. Amer. Chem. Soc</u>., 1971, <u>93</u>, 3792.
- 139 K. E. Debruin, A. G. Padilla and M. T. Campbell, <u>ibid</u>., 1973, <u>95</u>, 4681.
- 140 S. A. Bone, S. Trippett and P. J. Whittle, <u>J. C. S. Perkin I</u>, 1974, 2125.
- 141 M. W. White, Ph.D. Thesis, University of Leicester, 1974.
- 142 H. N. Chenge and H. S. Gutowsky, <u>J. Amer. Chem. Soc</u>., 1972, <u>94</u>, 5505.
- 143 R. R. Holmes, Accounts Chem. Res., 1972, 5, 296.
- 144 D. Bernard and R. Burgada, <u>Compt. rend.</u>, 1972, <u>274C</u>, 288.
- 145 J. Brierley, S. Trippett and M. W. White, <u>J. C. S. Perkin I</u>, 1977, 273.
- 146 G. R. Van Den Berg, D. H. J. M. Platenburg and H. P. Benschop, Chem. Comm., 1971, 606.
- 147 K. Issleib and B. Walther, <u>J. Organometallic Chem</u>., 1970, <u>22</u>, 375.
- 148 V. Mark, C. H. Dungan, M. M. Crutchfield and J. R. Van Wazer, <u>Topics Phosphorus Chem.</u>, 1967, <u>5</u>, 227.
- 149 F. Ramirez, M. Nowakowski and J. F. Marecek, <u>J. Amer. Chem.</u> <u>Soc</u>. 1976, <u>98</u>, 4330.
- 150 T. Saegusa, S. Kobayashi and Y. Kimura, <u>Chem. Comm</u>., 1976, 443.
- 151 B. Castro, Y. Chapleur and R. Gross, <u>Tetrahedron Letters</u>, 1974, 2313.
- 152 L. Beslier, M. Sanchez, D. Hovalla and R. Wolf, <u>Bull. Soc</u>. <u>chim. France</u>, 1971, 2563.
- 153 S. Trippett and P. J. Whittle, J. C. S. Perkin I, 1973, 2302.
- 154 J. I. Dickstein and S. Trippett, <u>Tetrahedron Letters</u>, 1973, 2203.
- 155 J. R. Corfield, Ph.D. Thesis, University of Leicester, 1971.

- 156 R. K. Oram, Ph.D. Thesis, University of Leicester, 1972.
- 157 G. Kemp, Personal Communication.
- 158 G. A. Gray and S. E. Cremer, J. Org. Chem., 1972, 37, 3458.
- 159 J. R. Corfield, R. K. Oram, D. J. H. Smith and S. Trippett, J. C. S. Perkin I., 1972, 713.
- 160 G. kh. Kamai and V. A. Kukhtin, <u>Zh. Obshch. Khim</u>., 1957, <u>27</u>, 2372; <u>C.A</u>. 1958, <u>52</u>, 7127 (d).
- 161 B. A. Arbuzov, T. D. Sorokina, V. S. Vinogradova and A. A. Musina, <u>Izv. Akad. Nauk. S.S.S.R. Ser. Khim</u>., 1969, 2727.
- 162 P. A. Chopard, <u>Helv. Chim Acta</u>, 1967, <u>50</u>, 1021.
- 163 R. Hindersinn and R. Ludington, <u>J. Org. Chem</u>., 1965, <u>30</u>, 4020.
- 164 T. Kh. Gazizov, Yu. M. Mareev, V. S. Vinogradova, A. N. Pudovik and B. A. Arbuzov, <u>Bull. Acad. Scie. U.S.S.R</u>., 1971, <u>20</u>, 1164.
- 165 D. B. Denney and D. H. Jones, <u>J. Amer. Chem. Soc</u>., 1969, <u>91</u>, 5821.
- 166 A. P. Stewart and S. Trippett, Chem. Comm., 1970, 1279.
- 167 D. J. H. Smith and J. Finlay, <u>Ph.D. Thesis</u>, University of Leicester.
- 168 M. A. A. Beg and H. C. Clark, <u>Can. J. Chem</u>., 1962, <u>40</u>, 283.
- 169 K. I. The and R. G. Cavell, <u>J. C. S. Chem. Comm</u>., 1975, 279.
- 170 E. Duff, S. Trippett and P. J. Whittle, <u>J. C. S. Perkin I</u>, 1973, 972.
- 171 A. Lopusinski and J. Michalski, <u>Angew. Chem. Internat. Edn.</u>, 1972, <u>11</u>, 838.
- 172 I. B. Johns, H. R. DiPietro, R. H. Nealey and J. V. Pustinger, Jr., <u>J. Phy. Chem</u>., 1966, <u>70</u>, 924.
- 173 F. Weissbach and W. Jugett, <u>J. Prackt. Chem</u>., 1975, <u>317</u>, 394.

- 174 K. J. L. Paciorek and R. H. Kratzer, <u>U.S. Patent</u> 3,277,170, (1960); <u>C.A.</u>, 1969, <u>70</u>, 58004r.
- D. Bernard and R. Burgada, <u>Tetrahedron Letters</u>, 1973, <u>36</u>,
 3455; R. Burgada, <u>Phosphorus and Sulphur</u>, 1976, <u>2</u>, 237.
- 176 H. Tolkmith, J. Org. Chem., 1958, 23, 1682.
- 177 J. B. Conant, V. H. Wallingford and S. S. Gandeker, J. Amer. Chem. Soc., 1923, 45, 762.
- 178 H. J. Lucas, F. W. Mitchell and C. N. Scully, <u>ibid</u>., 1950, <u>72</u>, 5491.
- 179 A. E. Arbuzov, V. M. Zoroastrova and T. N. Myasoedova, <u>Izv. Akad. Nauk. S.S.S.R. Ser. Khim</u>., 1960, 2127; <u>C.A.</u>, 1961, <u>55</u>, 14304 i.
- 180 R. S. Edmundson and N. J. Lambie, <u>J. C. S. Perkin I</u>, 1966, 1997.
- 181 A. E. Arbuzov and M. M. Azanovskaya, <u>C.A.</u>, 1950, <u>44</u>, 1905b.
- H. G. Cook, J. D. Ilett, B. C. Saunders, G. J. Stracey,
 H. G. Watson, I.G.E.Wilding and S. J. Woodcock, <u>J. C. S.</u>
 <u>Perkin I</u>, 1949, 2921.
- 183 H. Bock and K. L. Kompa, <u>Chem. Ber</u>., 1966, <u>99(4)</u>, 1347.
- 184 W. Hawes and S. Trippett, <u>J. C. S. Perkin I</u>, 1969, 1465.
- 185 J. J. McBride Jr., E. Jungermann, J. V. Killheffer and R. J. Clutter, <u>J. Org. Chem.</u>, 1962, 27, 1833.
- 186 S. E. Cremer and B. C. Trivedi, <u>J. Amer. Chem. Soc</u>., 1969, <u>91</u>, 7200.
- 187 R. Fontal and H. Goldwhite, <u>Tetrahenron</u>, 1966, <u>22</u>, 3275.
- 188 W. Kuchen and H. Buckwald, <u>Chem. Ber</u>., 1958, <u>91</u>, 2871.
- 189 R. Appel and K. Geisler, J. Organometallic Chem., <u>1976</u>, <u>112</u>, 61.
- 190 V. M. Plets, Dissertation, Kazan, 1938.
- 192 F. Ramirez and H. J. Kugler, <u>Phosphorus</u>, 1973, <u>2</u>, 203.
- 193 Ph. Savignac, B. Richard, Y. Leroux and R. Burgada, <u>J. Organometallic Chem.</u> 1975, <u>93</u>, 331.
- 194 A. Zwierzak, <u>J. Can. Chem.</u>, 1967, <u>45</u>, 2051.

J.BRIERLEY

SUMMARY

A review of phosphorane chemistry is presented. From a range of spirophosphoranes the relative apicophilicity of sulphur and oxygen containing ligands was determined. The conclusion reached was that the relative apicophilicities of ethylthio, ethoxy and trimethylsiloxy were similar.

The N-chlorodi-isopropylamine method for the preparation of spirophosphoranes was developed, enabling the preparation of various unsymmetrical phosphoranes, from which the relative apicophilicities of phenoxy and phenylthio groups were determined. The preparation of spirophosphoranes from phosphetans was shown to go with retention of configuration at phosphorus. The interconversion of the <u>cis</u> and <u>trans</u> spirophosphoranes prepared from phenyl and benzylphosphetans was followed kinetically, and from this study the phenyl group was shown to be more apicophilic than the benzyl group.

Cyclic and acyclic phosphites were reacted with acrylic acid. In the case of cyclic phosphites spirophosphoranes were prepared from which the relative apicophilicity of the phenyl group was determined. A series of spirophosphoranes was prepared containing a 4,4,5,5-tetramethyl-1,3,2-dioxaphospholan ring. On thermolysis these were found to give 2,3-dimethylbutadine, as the major component and some t-butyl methyl ketone.

From a series of hexafluorobiacetyl and tetrachloro-obenzoquinone adducts the relative apicophilicities of chlorine, cyanide, isocyanate and isothiocyanate were determined. It was shown that the cyanide was more apicophilic than chlorine, whilst the isocyanate and isothiocyanate were found to have a similar apicophilicity to chlorine.

The first pentaco-ordinate phosphorane containing an azide ligand was prepared by direct substitution of a chlorospirophosphorane. From this spirophosphorane the relative apicophilicity of the azide group was determined; it was found to be slightly more apicophilic than the phenoxy group. By a similar procedure a spirophosphorane containing a cyanide ligand was prepared.