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ABSTRACT

We investigate in three problems some effects of heat transfer in
linked ocean/atmosphere models. In all the problems the term involving
vertical thermal conduction is retained in the heat transfer equation

and both molecular and eddy values for the conductivity are considered.

In Part 1 we look at a two layer model, ignoring all macroscopic
motion; the governing/equation for both layers is therefore the heat
transfer equation. Wifh suitable boundary conditions fhe 'phase lag'
between a heat source iﬁ the upper layer ;nd the températufe At the

inteface of the layers (the sea surface) is studied.

In Part 2 we consider a one layer model. A perturbation model due
to Blinova is extended to include the heat transfer equation. One
boundary condition introduces a time dependeﬁt heat source at the bottom
of the layer, simulating a heating at the sea surface. The stream

function is obtained at the bottom of the layer.

Finally, in Part 3, the stability of a two layer liquid model.is
examined. Macroscopic motion in the iower layer is ignored. The
pefturbation equations for the two layers are solved and homogeneous
boundary equatioﬁs yield an equation of consistency for the system whicﬁ
leads to cfiteria fof stability. These criteria are found using
difference methods and, following Meks#n we produce first order correctidn
terms to Eady's well known stability results. Using Meksyn's methods
once more, the model is extended to include a variable coriolis para-

meter and a stability equation is found.
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CHAPTER 0.1

GENERAL INTRODUCTION

This thesis presents three mathematical models dealing with the
responses of the ocean/atmosphere system to differential heating. It is
useful thefefore to describe first the main heating features of the two
media.

THE OCEAN AND ATMOSPHERE

Over half the solar radiation reaching the surface of the Earth is
absorbed by the oceans (1). The oceans are comparatively opaque to
radiation of all wave lengths and all but one percent of the incoming
radiation is absorbed in the first 100m of water (1). Since héated water.
is less dense than colder water the resulting.situation is éfable and
very little convection occurs. Thé deep waters of the oceans experience
little variation in temperature and these slow changes are due to deep water
currents (2). The surface waters which respond to the radiation are called
the thermocline. The thermocline can be thought of as a thermal reservoir,
capable of storing iafge amounts of heat and in general the sea surface is
warmer than the atmosphere above (1). Also, since the oceans have a large
specific heat we can see that the oceans are sluggish in their temperature

responses and must act so as to moderate climatic change.

In contrast to the oceans, the absorption spectrum of the atmosphere
is complex since the atmosphere is composed of many gases and particles.
The most important features of the spectrum are the absorption of short
wave radiation directly from the sun by ozone (3) and the absorption of
long wave radiation emitted from the Earth by water vapour and to a lesser
extent by carbon dioxide, dust and clouds (3,4). The troposphere is well
mixed by eddies or turbulence (5); this process is important for an under-

standing of the temperature profile in the lower atmosphere. In addition
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the specific heat of the atmosphere is lower than that of the oceans and
so0 the atmosphere responds more quickly to climatic change.

We will now introduce some particular observations concerning the

oceans and atmosphere which we have tried to simulate into our models.

TIME LAGS BETWEEN TEMPERATURE RESPONSES IN THE OCEAN AND ATMOSPHERE

We have already mentioned how the oceans are much more sluggish than
the atmosphere to temperature change. This phenomenon is seen in the
diurnal and Seasonal'temperatures. The diwwrnal maximum temperature of
the oceans occurs three hours (one eighth the period of one day) behind
the maximum temperature of the atmosphere (6,2). The seasonal maximum
temperature of the ocean is approximately three months(one quarter the
period of one year) behind the maximum temperature of the atmosphere (6,2);
in the northern hemisphere these temperatures occur in mid-September and

mid-June respectively.

~SEA SURFACE TEMPERATURE ANOMALIES

Anomalies of sea surface temperatures over large areas, significantly
warmer or cooler than average values lasting for many years in the Pacific
Ocean, have been investigated by Namias (7). The pattern for the decade
1948-1957 was characterised in the  winter by anomalously warm water in the
North Central Pacific and cold water off the west coast of the United
States. During the spring of 1957 the pattern began to change and by the
following winter the warm and cold waters had become interchanged. The
effeét on the atmosphere was to force a change in the position of the jet
stream. The warm winters in the east and cold winters in the west of the
United States reversed to coldeinters in the east and warm winters in the
west., By 1972 the pattern had reversed again and the present climate of

1979 in the United States is that of the 1950's.

Similar anomalies have been observed in the Atlantic (1) with warm or

cold anomalous waters off Newfoundland. These pools of warmer or colder
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water effect the position of the Gulf Stream and the climate in North

Europe.

AIMS OF THE PRESENT WORK

In our models we have incorporated some of the properties of the
oceans and atmosphere discussed above in order to reproduce the phenocmena

cbserved.

In all three models we retain the thermal conductivity term in the
heat transfer equation because thermal conductivity is one of the principal
agents of heat transfer. Another important agent of heat transfer in the
troposphere and thermocline is turbulence which mixes these layers and
this process is modelled here by increasing the value of the molecular
thermal condﬁctivity by an appropriate amount to what is then called the
'eddy' conductivity (5). In the three models studied here, consideration
is given to both values for the thermal conductivity and we assume that

the 'eddy' values are 10s'times as large as the molecular values.

We have seen that the thermocline is a 'thermal reservoir' and as the
atmosphere absorbs long wave radiation from the Earth the_surféce waters
of the oceans can in one sense be thought of as a heat source. In a
similar way the presence of water vapour in the atmosphere can be modelled
as a heat source. The changes of the amount of radiation due to variations
of the Earth's orbit and changes in the amount of water vapour can both

be modelled as a time dependent heat source in the atmosphere.

In Part 1 we neglect all macrgsc0pic motion and assume that conduction
alone is the agent for heat transfer. We introduce a heat source in'thef
atmosphere simulating the presence of water vapour in a two layer model
and study the 'phase lag' between the heat source and the temperature at

the interface of the two'layers (the sea surface).



In Part 2 we study the response of the atmosphere to the 'thermal
reservoir' created in the thermocline. We represent this situation as
a one layer model simulating the atmosphere along with a heat source at

the base of the layer.

In Part 3 our goal was more ambitious. From the work of Namias it
could be inferred that two stable regimes can exist in the Pacific
corresponding to the two patterns of the decades 1948-1957 and 1958-1971e

non. v/iscoa”®
A shallow water”theory model of Davies (8) had been able to reproduce two
distinct regions of stability. His model consisted of two layers of liquid
in a circular cylinder rotating at a steady angular velocity, W. The
densities and angular velocilities relativeto the axes, (r,0 ,z) of the
upper and lower layers are/O"yO"Xi. andjQrespectively. A small disturbance
was introduced to the flow pattern and the homogeneous boundary conditions
of zero normal velocity at the boundaries of the cylinder lead to an
equation of consistency. From here, criteria for stability were found
and are presented in Figs. 1-3. The three diagrams are for the different
regions I, 1< A and where the non dimensional
parameter”™\) 1is defined as

Mi = 4WN
where k is the wave number and Hg and are the undisturbed heights of

the upper free surface and the interface of the two layers on the axis

r =0.

We aim to improve the model of Davies in the following ways: the two
layer model is taken on a rotating sphere, the heat transfer equation is
introduced and heat and temperature continuity are included in the
boundary conditions. The homogeneous boundary conditions again lead to

an equation of consistency from which criteria for stability are found.
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PART 1

THE PRODUCTION OF HEATING LAGS DUE TO THE

OCEAN IN A LINKED OCEAN/ATMOSPHERE MODEL



(7)

PART 1

THE PRODUCTION OF HEATING LAGS DUE TO THE OCEAN IN A LINKED OCEAN/ATMOSPHERE

MODEL

CHAPTER 1.1

INTRODUCTION

In Part I we will study a twé layer model in which the lower layer
is assumed to simulate the ocean and the upper layer a fluid atmospheres
The macroscopic motion of both layers is ignored and heat flow is assumed
to take place entirely by the process of thermal cénduction. We investigate
the phase lage between a heat source in the upper layer and the.temperature

at the boundary of the two layers i.e. the sea surface temperature.

The heat fransfer equations for the two layers produce second order
ordinary differential equations for the temperature distributions. Solutions
are found subject to four boundary conditions at the boundaries of the
layers. The phase lag for the sea surface temperature is then found for
heat sources of different periods in the upper layer. The variation of the
phase lag due to different values for thermal conductivity is also

investigated
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CHAPTER 1.2

FORMULATION OF THE MODEL

We choosespherical polar co-ordinates (@,\,r) where ©® and A\ are
the angles of colatitude and longitude respectively and r is the distance
from the centre of the Earth. The radius of the Earth is taken to be 4 .
Since this model is static it is the heat transfer equation which governs
both the upper and lower layers. This is discussed in detail in the

following sectiomns.

THE HEAT TRANSFER EQUATICN FOR THE UPPER LAYER

We shall take the general form of the heat transfer equation (9) for the

upper layer to be

de = L di
3% . v(\esmd'r)ul

(1.1)

where Q is the heat content per unit mass, £, the density, T the temperature
and h the thermal conductivity of the upper layer. The quantity 4? is any
external heating source and, for example, could arise from the absorption of
solar or terrestrial radiation by water vapour. As solar radiation varies
diurnally, seasonally and over longer periods due to variations in the Earth's
orbit, éf can be represented by a variable periodic function. The operator'éE

represents differentiation following the motion but in this static model will

reduce to g , differentiation with'respect to time.

ot

In general for a fluid(10)we have

éQ = CVJT - -2 cS/a,
P

(1.2)

where P is the pressure and Cythe specific heat at constant volume for the

upper layer. We can replace (1.1) by

cvl - Q/_a, R VT + g°
%’ r: &l 3’ (1.3)



assuming that k‘ is constant. In a class of heat transfer problems,‘ for
example the Benard convection problem (9) , it has been found that the
contribution of the %% term ié very much smaller than the %_ET term and the
conductivity term. We shall assume here also that the %% term is
negligiable. The heat transfer equation can therefore be approximated to

oT = R, V* *

I (1.4)

where

V3 & 2 4 } 2 2
57‘7-+ 24 + 72[%8" + co*&a_ée + c.osec."&gxz] ,

A general heating function can always be expressed, using Fourier

theory (11); in the terms of spherical harmonics. Thus we will take (1* and T

to consist of linear combination of terms,

‘ -
q (B A, T,k = § Zn: cfm“ce,k,r,t) ,

s (1.5)
T(B)X)P,t) = § Z\' Tmn(B))\,f"f) )
the functions %:nn and Tmq will be of the form

m -.l 1]
3:“&9,)\,9,’:) = Re{Q.(r) Prtcose) cosmhe T } >

m '|1E ,
Tma (B,A ), t) = Ke{'\j(r) P, (0s8) cosmie } , | (1.6)
where m and n are positive integers or zero. Note that Q,(r) and T, (r) will

be dependent on m and n. We substitute (1.5) and (1.6) into (1.4) to obtain

a second order differential equation for T,(r), namely

N 2
Wpoy T = 4T + 2 di0) - Al TN + 2 Q (M.
k, (h"" r dr r2 R,

(1.7)

THE HEAT TRANSFER EQUATION FOR THE LOWER LAYER

The heat transfer equation for the lower layer in the absence of a

heating function is

d9* - L dw(k,qrod T*)
e

where Q* is the heat per unit mass, @, is the density, T* the temperature
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and R, the thermal conductivity of the lower layer. For a liquid (10)
- .
8 = c, 5T*

where ¢, is the specific heat of the ocean. Assuming hz is constant the

heat transfer equation reduces to -

2%
C?.é._‘:*'-"- 32 V T .
3t P2
(1.8)
The ocean occupies the region a—hz r & a where the ocean depth
h,<<a . If we define a new variaﬁle zas z=r-a, 0<z< h;,

2
we can approximate V' to

A _A_z v L [ ¥+ coted + wsec‘&éj‘].
azz al 602. ae aA;_

For consistency between the two layers, we will take T* to consist of a

linear combination of terms,
* .
TN 2t) = 0 L Tra (8A,2)
m n

(1.9)

where Tg, will take the form
¥ Pm .lg_k
TmnteNzk) = Re{'\'z(z) o (cos®)cosmAe ,

(1.10)
The function T,(Z) is therefore dependent on m and n. We substitute (1.10)

into (1.8) to obtain a differential equation for T,(2),
dz2? o?

T@ - nne) T(2) = g e, T2 .
2 2 2
Ra

(1.11)

THE BOUNDARY CONDITIONS

Equations (1.7) and (1.11) are second order differential equations

for T,(r) and T,(2). We will now chose four boundary conditions as



follows:

(1)

(ii)

(1i1)

(iv)

11)

The Sommerfield radiation condition (12), which in this

model will imply that for large r, heat is radiating

away from the Earth, since there is a finite heat

source in the atmosphere.

Continutity of temperature at the ocean surface,

Tl = T.@
1 =0 7bzzLo ?

Continuity of heat transfer at the ocean surface,

h‘c_l;f,(r)l = kzgl_'_l',_(z)l R
dr =00 A.Z zZ=0

No heat transfer at the bottom of the ocean,

dT(| = o .

Az Z=0

We now have a complete system of equations where T, and T, must

(127) and (1.11) respectively subject to (1.12) - (1.15).

VALUES FOR CONSTANTS IN THIS MODEL

satisfy

(1.12)

(1.13)

(1.14)

(1.15)

We present average values for the constants (13, 14, 15) appearing in

this work.

We will use C.G.S. units throughout.

3

Q= 6x10° emg

LOWER LAYER UPPER LAYER

hzs 5 x 105 ems

c, =422 T/gm%

f2

) o
cy= 0-7 :r/gm c

= O-l Sm/CmSz pr = |~28xlo'33mlcms3

(1.16)
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We will use two values for both thermal conductivities (5, 13).
The smaller values are the molecular conductivities and the larger
values are the 'eddy' conductivities. The eddy values for the conductivities

may be more realistic ones in the simulation of the atmosphere and ocean.

I/cms % s MOLECULAR EDDY
R, 2:4x 1074 241
R, Se6lx 1077 5¢4) x 107

(1.17)
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CEAPTER 1.3

A SIMPLIFIED PROBLEM, NEGLECTING INERTIA

Before proceeding to solve'(1.7) and (1.11) subject to (1.12) to
(1.15), we shall flrst consider the 51mp11f1ed problem obtained by
neglectlng the time depedent term on the left hand side of (1.17) (this
term being referred to as the inertial term). This approximation is
Jjustified if gfvaries sufficiently slowly with time. The two equations

to be solved for T,(r) and T,(Z) are:

diT o+ 2 dT, - A+ T, = -/b(r)q‘(ﬂ agr<om,

47, -[n.gnt\) + igc,e,]‘l‘z=0 , 0£2< h, .,

(1.18)

SOLUTIONS FCR T, (r) AND T,(2)

We can find the general solution for’T,(r) by using the method of

variation of parameters (16). The solution of

AT 4 24T Sne) T, = O
drz r d" r

is

T‘ = Ar"* 4+ B r -n-l

where A and B are arbitary constants. We will look for a particular

solution for T,(r) in the form
-_-l
T, = A AT

(1.19)

where &(t) and ﬁ(r)are at our disposal. We take

rdder) + " e = o
i e

(1.20)
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so that (1.16) reduces to

nrﬂ-‘q\g(r) - (n+)) ".n-léé(r) = -fAQ .
dr r R,

‘ (1.21)
Thus (1.18) and (1.19) define the functions o(r) and p(r)and the general

solution for T, takes the form

r r
Tz -r* mo.m dn + ,-""-" M Q. m‘l.a
l (an+i)k, S /jd_qal‘Tl '] (an+)k, AP ']
LY 1 o
-n-i
+ Ar™ + Br . (1.22)

The function T,(r) must satisfy the Sommerfeld boundary condition

(1.12), which we will take in the form

Lim  r2dT(® —  constant.
50 a-f‘ A
(1.23)

Thus, T,(r) defined in (1.22) will satisfy (1.23) if A = O and Q,(r) is
chosen appropriately. For convenience we will take B= B, a™! so
‘that T, (r) reduces to
f- r
T(r) = -t S /:.(q)q,(q) ,l'ﬂﬂ Arl + __T___T_', [,O,(q)q,(n)anz dq

(2n9)R, Joo (an+1R, Jo
n+l
+ 8 (_(L) .
r (1.24)
The solution for T,(z) satisfying (1.16) is

T,(2) = A, emp{(mi/s)z} + Ayexp {-(m—ip)Z}

where N, and Xzare arbitary constants and

(a+ip)? = n.gv;;l) + iq %Cz . -
) .

However, for our puposes, we shall find it more convenient tc write the
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solution of Tz, which satisfies the boundary condition (1.15) in the form

T,(2) = B, Cosh{(m—i{&)(2+h,_)}
cosh { (o(+i/3)-h,_}

(1.26)
where B, = T,(0), is an arbitary constant.
The conditions (1.13) and (1.14) yield the following two relations
between B, and B,
:u ¢
Nl -fl=
8, = B, -a" I "an o+ ™24
z (2n+i)b F‘Q‘rl " +|\R; aopiq.q " ’
(1.27)
B,_h,_(ds-\-(/&)hnh[(&ﬁ/s)hz] = - (n+i)k, B, - na™ - J /D,Qq cll'
a zn+t)
n-2 *
- (n+da j/’l‘?ﬂ]nnd’]'
(an+l) oo
(1.28)

We have assumed the 1ntegrals in (1.27) and (1.28) exist and are convergent.

We flnd that
n

B, =m{ n:j’l + (A+ip)k hnh[(elﬂls) h ]}J AR, 1 sod ’]
-n-l

.._A_Lr] *5,Q, alr]

(an+1) k, (1.29)

and

B. = _an-n & .“Q,( )’ .m»tol
o2 | aeam T
(1.30)

where we define X as

Y= (nr)R, + h,.(ouiﬂ,)mh[(oui/s)hz] .
O

(1.31)



THE SEA SURFACE TEMPERATURE

. . ‘ . *®
Of particular interest here is the sea surface temperature, T (g Ao,t) .
The integral defined in (1.28) is real and X is a complex quantity. It is

therefore ’X, which produces the difference in phase between the heat source,

and the sea surface temperature; if we write X in the form

Y= Ae'®

then we have from (1.9) and (1.10)

. ‘ a
* n-t 1qé-8,) m —n#l
T co,\0,¢) = Z Z Re{ -a e T P, (cose) cosmi| A1 dq .
m n Re 0
(1.32)
It is clear from (1.30) that there is a phase lag between T*(B) }\,o’t) and

&* (9,}\,’(‘,(:) of magnitude 99/1. In addition, (1.29) and (1.23) reveal that
K is dependent on n but independent of m so that the longitudinal heating
structure plays no part in the phase lag. Also X is independent of Q,(r),

the variation of the heat source in the vertical direction.

To evaluate B, we rewrite X, in the form A+iB. It can be seen that X
jj.sna:cémlgljﬁ.cactédhcc;ml;leﬁx qunncct:i:onc a;nci tco’ Lsi{mpilikfy: (L‘I.L29L) ;vel w;Lsil fo'
approximate (dd';ﬁ») and ‘Hln\'\-[(ﬁ-l'ﬁ)hz] « It is therefore necessary to
look at orders of magnitude of the various terms. Using the quantities in
(1.16) and (1.17) we can see that from (1.23)

6

. - . 13
(ob\-\/s)"h: ~ 107+ 19xlo (molecular)

107 %+ i&x lo° (eddy)

where !1= :%1 s P being the heating period in seconds. It will be more convenient

to rewrite & in the form

é6-L

%«a 10

(1.33)

so that for L = 1 the heating period is one year, for L = 2 the heating
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period is ten years and so on. Thus

(oh-i/%)" k: =

~ -6 .
10 "+ti10 . (molecular)
\ 6 . i4-L
\0 + 10 : (eddy)
L (1.34)
We shall now consider the cases of L being small and large separately.
1) The case L<6(molecular) and L&l (eddy)
In this region we can approximate (1.2%) to
(a+iB)* = 19 pyCa
so that Ra2
. k¢
A+if = (H'L)[&/),_Cz/hz] z.
We can approximate X from (1.29) to
X~ (&+ip)k, +onh [ (d+igdh,]
and since (k+tfBYh, is large it follows that
VIR | 7Ar SN £ S
KN PR, =t [qpcrR,] .
(1.35)

We have then E,= mq, , in other words the time lag between the
heating function and the sea surface temperature is an eighth of
the period of heating. It is clear that B,is independent of L and n
and is,therefore, the same for all heating functions with

periods in this region.

2) The case L>6 (molecular) and L >1 (eddy)

For these larger values of L we can approximate (1.31) to
- ! 2
% = (r\;\) R+ Rh, (d+1p)

- (t:-\)[h‘-t-%b,_h,_] + Lclcz/ozhz . (1.36)



It follows that B, is defined as

toun &, = g.fzc'zhza .
(n+) [k, +nikh,/a]

When we substitute values for the constants in (1.37)

from (1.16) and (1.17) we find

fan 6, ~
-b
[ 4x10 (molecular)
(n+1) N
W q"(‘o-’-b . (eddy)
L () .

Thus for the ranges 6L €12 (molecular) and 1< L g7 (eddy)
we have ©,~ "/2, so that the phase lag is one quarter of the
heating period. For larger values of n, 8, decreases from 'lT/z
to zero. These results are represented in graph form in

Fig.. 1.

(18)

(1.37)
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CHAPTER 1.k

THE GENERAL INERTIA MODEL

We will now return to the original model formulated in Chapter 1.2
which includes the time dependent term on the left hand side of (1.7). The
two equations to be solved for T,(r) and T,(2) are therefore (1.7) and (1.11),

namely

2

‘r'-og_:l' + :erI [n(n+|)+ tg_ﬁrl T, 0= —A,Q,U‘)ri,.

oP_T,_-[ngn-n) + igpicz]'!'z =0 ,
dz? a? R, (1.38)

whereA=,<2LEv and A, = .
R, R
SOLUTICNS FOR T, (r) AND T,(z)

We will assume that the density of the upper layer, p, is constant to
simplify the solution of T'(r). We will again use the method of variation
of parmeters(16)to find the general solution of T,(r). The solutions of

r‘d‘\' s zr%‘L - [n(mn) +L3_nr"-] T =0
are spherlcal Bessel functions of the third klnd(17) thus T,(r) takes the

form

0] (2)
T(r) = D hytse) + D, h, (sr)
where
;ﬂ7 \
s= e *(qm' |
(1.39)
) (2)

and D, and D, are arbitary constants. The functicns hn(z) and hn (z) are

defined in terms of Hankel functions (Bessel functions of the thirdvkind)omd

Bessel functions as follows:

o (2) = (Waz)" H,H., = (M| Tou D) + cY,wz(z)] ’

h‘f(z} = (WZ-Z) V;_ Hn*,yt(z,) = (Tr/lz)l/z[ Jm-l/l(Z) - 1:\/"‘_1,2(2)] .
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Their series expansion takes the form
n
O] sl _ izz .~k
hptzy= U =2e - (nth, k) (-212) |

n
(2) . 2 -
h.n (2) = Lm"z" e" z (n*'&,k) (22) k .
°

To find a particular solution, we assume T,(r) is of the form

n
T, =C, (1) h'ntsr) r C,(sp) k‘: (sr),

(1.40)
We choose C, and C, so that
" 2)
dc, hntst) + dC, k' (sM = 0. \
dr dar ' (1.41)

Taking the form of T, as in (1.40) and using the relation (1.41) we sub- -

stitute T, back into (1.38) to obtain a second equation between C, and Cy ,

ramely

dc, ég"“(sr) + dC, &“nﬂ(sr) = -AQ, M.

dr dar dr dr
(1.42)
From (1.41) and (1.42), using the Wronskian (17) , .
W{ k‘:(zs, \1‘:)(2\} = —&zé‘ ’
we find that
2)
d_C, = - B» ST"Ql tr) kln(sr) )
dr A
)
Jﬁ_z = Rsr*Q(r) h‘; (sv) , .
2
‘ (1.43)

The complete solution for T,(F)is therefore:

o ' )
Ter) = §EJ o | WO b2 (an - hen b )] d

al Jg

v Dhoatsr) + Dk M)

(4.44)
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For T, (r) to satisfy (1.12), the Sommerfeld condition that for large
r heat is readiating a&ay from Earth, we look at the asymptotic
expansions of h(:(sr) and h.(rz: (sv) (17), namely |
W
hptlst) ~ ali/sr e;xp{ L(sr=-"%nTT - Tm.)]— s
hc:: (sP) ~ 2T/ exp L= (sr-2nT - T4 )} :
from the definition of T;in (1.6) we have for large r terms of the form
exp {C(Sr+1t)] and exp{i65r+&ﬁq. Therefore to satisfy the Sommerfeld
condition we need the coefficients of the term exp{j(sr+qﬁ)} , l.c. »J:(srx

to be zero as r->e0 . Therefore we tzke

K
D, = §_BJ Q0 k' (1) ds.
w Jy
(1.45)

The solution for T, will be the same as in the non-inertia model, namely

T2 = Bzcosh.{_(&«-i,s)(z.i-h,}}
cosh{ (x+iB) h, } (1.46)

where as before
(&-\-i{&)" = nnH) + 19PC o
L e e e co," .. e . ,,hL e o e
2
The two remaining boundary conditions, (1.13) and (1.14) yield two

equations between D, and B, ,
0] @)
B, = D,h, (sa) + D, h(sa) | (1.47)

and

) )
ka (4+(@)tanh{ (a+ipdh,] B, = DH,(sa) + D,Hq(s0)
‘ (1.48)

where

u) M .
H:\(SQ) z d_hn(sr)l , t=h,2 .
Ar f=0o
(1.49.
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Since TI(O) =B, , it is the constant B, which is of mbst interest here,

thus we eliminate D, between (1.47) and (1.48) and using (41.45) we find

B, = _R L_E'Q\(!) K2ess) dy
a"[ H(:(Sd) - h‘:(sm) %ﬂ- (d+p) hanh [(w+ip) h.,]]

(1.50)

THE SEA SURFACE TEMPERATURE

As in Chapter 1.3 we will now investigate the structure of the sea
surface temperature, T*(e,A0t).We will write the complex quantity B, in the
form

‘e,

B,=Re °.
(1.51)
Using (1.9) and (1.10), the sea surface temperature distribution takes the
form, .
Hgt"%\ m -
T‘(B,)\,O,(:) = 22 Re{ fie P, (cose) c.osm./\] .
m n
*

There is again a phase lag between T*(®A0,t) and &(B,k,f,t), the heat source of

magnitude S,/ 3_

Unlike the simple case in Chapter 1.3, the integral in (1.50)is now a
complex quantity. It is therefore necessary to define Q,(r) more precisely.
The heating function is dependent upon the water vapour distribution in the
atmosphere. The greatest amounts of water vépour are found well below ten
kilometres and fall off rapidly with height,. Therefore Q,(r) should be a
decreasing function with increasing height and a reasonable choice for Q,(r)
is

~pr
Rr) = Q, e P '

(1.52)

We will calculate a value for p by assuming that the heating function

decreases to one tenth of its surface value at a height of ten kilometres.
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From ( 1.52) we find that

-6 -
p~ 2:3%10 ems ',

(1.53)

(2)
We will take the following form for the spherical Bessel function h,(s™

(2) .nH sr 5 Pienrk) . =R
\\‘n (sr)=1L. ¢ = R (1+n-R) (‘2.!5")
* » (1.54)
so that
n 0
. MQ+nth) as-pS <k
8, = AQ "™ n_—__!(r';lm-k.) Lie (-2is%) d$
R=0 .
a’s[ H‘:‘Csa) - hl;)csu) ka2 (¢+i/s)+anh{c¢+i/s)h;|]
)
' (1.55)

B, 1s dependent on the parameter n and so we must chocse particular values of
n to find the heating lag. We have taken the values n = 0, 1, 2, 3, for

2)
relatively simple functions, kn « The even values of n imply a heating source

symmetric about the equator.

The integrals encountered for the above values of n are of the form

©0
iIs-p)S \-R
Lkn=‘jte9{9§,3Lcd§.

a , N=0,1,2,3 7,

(1.56)

where y
S= (‘%‘i)(ﬂ/ﬂlc‘,/abl) z.
When n = O,l;he integral kn can easily be evaluated but for n = 2, 3, P<n

takes the form of an Exponential Integral (18) ,

kn = En_z'(a.(P-isﬂ , n=2,3 (1.57)

where in general

o0
-n -2t
En(2) '-'J‘ t e dt n=o, 1,2 """

)

(1.58)

Substituting average values for the comnstants from (1.16), (1.17) and
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(1.53) we find

alp-is) ~ { 10+ lo‘(|-£)3"‘

(molecular)
' |
10 + ao"'(n-c’)g" (eddy) (1.59)
Therefore for all values of q a(p-is) will be large and we can use the
asymptotic expansion for Ep.,(a(p-iS)) , namely
-2 i .
En(Z)’V e [I—ﬂ + _T_mzzn_ 4.......}
2 z 2
(1.60)
and only the first term in the series is used. Thus the formulae for B,
take the foliowing-form in the four cases n = o, 1, 2, and 3¢
: k“‘(\ Le Carip)i= iq pea /b
n=0 . 2)= ) Bl = q e 2
. - . /.
Bz = -AQqte Pa[a/(‘s"P) - /t's"P)z] (1.61)
]
stlirsa +a W]
n=1: h, 2) = e (A+18)"°= “/a* + 199,27k, ,
- . \, . - !
B,= R Qe P&[a/(ls pT %(is- -p) /(IS-P)Z] (1.62)
qs3[-;§‘+9.:1_+ 21 5_1-:. )w] ?
n=a ! W m [ *3' ' 13 (R+1B) = 6/a= + 190,620k, ,
» ~P2 \/ - 3. +3
B, = =-R,Qle [-o.* G1s=p) S s’“], (1.63)
(is-p)[t"‘ "35"&- :{a,_‘ksa* 3 +[ia-3/5*§_ia]w]
- ao _ 630¢ . )
n=73; k (z) [L*‘g?. 23 24] , (Reip)'= 12/ & 1qa,e,/k
” o, . - 6304
B,: AQee L Ytis-prr ~ '®%ris-p~ Mlis-py* " Badis-p) }35‘] (1.64)

- -nm 900 ,2520¢ =L -10¢ + 90 +5go¢] ] )
o(’-["a sat s‘la3+$‘0- sS4 +[5a. S’-a‘ s3ad Tstat w

where

W= (a+ip) tanh [(o(+l‘ﬁ)h;] .
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As in Chapter 1.3 we will introduce a variable L such that
(1~ 106-"'
which implies that L = 1 corresponds to a heating period of ome year,
L = 2 corresponds to a heating period of ten years and so on. We approximate
‘\'M\'L[(e(ﬂ.ﬁ;)\nz] to 1 for L<L6 (molecular) and L€L1 (eddy) and for larger
values of L we take hnh[(okff/!)h,] to be (d&i/&) h, . The formulae are
manipulated into the form

B, = ﬂge';’°
where 8, is a function of L. Values of ©, were computed for different
values of L and the results are presented in graph form in Figs. 2 - 5.
The turning points of ©, were checked with the analytical formulae and

gave good agreement.
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CHAPTER 1.5

DISCUSSION

It will be noticed that the graphs of the results, Figs. 1-5, have
time scales up to L = 20, i.e. periods of ’IO'9 years. The age of the
Earth is approximately 5 x 10q years and it is not supposed that the
results for L»8 have any physical meaning but were included for

completeness only.

It is of interest to find that the result of replacing eddy conduc-
-tivities with molecular values in all the graphs is to displace the curve
in the direction of increased L while preserving the shape completely. The

formula (1.37) for E% for the non-inertial model is of the form

ton €, =_A - Mot "

k, + Nk, R, + ARy

where X,and Xzare con§tants. By changing k“ and hzfrom eddy to molecuiar
values we are therefore multiplying &'by 10°% or replacing L by (I+5). The
quantities k‘ and kzappear in the expressions of tanE% for the inertia
model in a similar way and so the same argument applies. Thus if we are
interested in larger values for thermal conductivity it is only necessary
to displace the curves still further. We will now discuss the graphs in

detail and it will be sufficient to discuss only the molecular curves.

A comparison of the cur&e for the non-inertial model and the four
curves of the inertial model reveal several similarities. For small L
(1€L<£5)8 is approximatelyﬁ;} and for the region 6KL£ 11, 6,1is approxi-
mately f&z‘ It is for large L (L >11) that we see marked differences in

the graphs, where the limits of &, vary from O to 2T .

We can discuss the physical significance of the above results as



(27)

follows. For eddy values for the conductivities, in the region 0<L <1

G% is épproximateiy'n% and so for diurnal heating, the maximum
temperatures for the sea surface should be an eighth of the heating period,
i.e. three hours behind that of the atmosphere; This corresponds well‘
with observed temperature distributions. For 14 L<&7 the period lag is a
quarter of the heating period. Thus for seasonal changes the maximum
temperature for the sea surface should be three months behind maximum
values for the atmosphere which again corresponds well to observed values
as discussed in the General Introducyion. For ice ages the period is
about 20,000 years corresponding to L = 4. The period lag should againAbe

a quarter of the heating period which would be 5,000 years.
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Figure 2: Variation of B, with L for n = O in the inertial model

Figure 3:

Variation of B, with L for n = 1 in the inertial model
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PART 2

THE RESPONSE OF AN ATMOSPHERE MODEL TO A TIME DEPENDENT HEAT SOURCE AT

THE SEA SURFACE

CHAPTER 2.1

INTRODUCTION |

In Part 1 we looked at a static two layer model which represented
the ocean and atmosphere. We introduced a heat source into the upper layer
and infestigated the phase lag between the sea surface temperature and
the heat source. In this second model we allow motion in the upper layer,
we omit the lower layer but retain a time dependent heating function at
the lower boundary of the layer, which is thought of as a heat source at

the sea surfaceo

In general our model extends a perturbation scheme due to Blinova (19)
(which has no differential heating) by including the heat transfer equation'
in which the vertical thermal conductivity term is retained. This produces
a fourth order partial differential equation for the stream function. Foﬁr
boundary conditions are introduced: the vertical velocity yanishes at both
boundar ies of the layer, there‘is no heat transfer at the top of the
layer and a time dependent heat source exists at the bottom of the layer.
Fourier transforms with respect to time are taken and an approximate
solution for the resulting fourth order ordinary differential equation is
obtained following methods of Heisenberg, Lin and others (20). Finally,
the inverse Fourier transforms are found for the stream function at the

lower boundary of the layer representing the sea surface.
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CHAPTER 2.2

FORMULATION OF THE MODEL

We take a spheri?:al coordinate system, (9,>\ ,v) fixed on a rotating
Earth with a being the radius of the Earth and t as the Atime dependent
variable. This is a one layer model and we will first introduce the six
governing equations, namely the three equations of motion, the equation

of continuity, the gas equation and the heat transfer equation.

THE GOVERNING EQUATIONS

The velocity vector for the layer will be V = W,V ,W) where u.‘,v s
and W are the components along the9,>\and r directions. We take the
horizontal equations of motion for the atmosphere in the form

b

- ER - WV
%% V(S+20cose)=-L dp J{:g,e(!_f)

R e
] N | s | 3 (v (2.1)
\' 28 cost )= =4 ___ - y:Vy,
&4-\).(3 r fpsing 5?\ rsing 33\( ’3.‘)

where p is the pressure and 0 the density of the layer,-o- is the angular

velocity of the Earth and d, is differentiation following the motion, namely
dt

d+ugd + VN _ + W39 . The vorticity component in the vertical

)
3%t r36  rsine ar
direction, $ is defined by

S= 4 {g_(vsin&)-c_)c_x_l.
rsun€ 24 -2 (2.2)

In (2.1) we have ignored the horizontal components of the centrifugal and
gravitational forces since these are small compared with the pressure
terms. We have also neglected frictional térms. Since the basic mass of
the atmosphere is contained in a layer whose thickness is insignificant
compared with the radius of the Earth (a) we can replace r by a in the
coefficients of our equations and the derivative _a_ by 9 y where z = r-a. .

or
The horizontal equations of motion (2.1) are replaced by

du -v(S+2f2cos®)= -1 dp - 1 9 (\_/-y
ade\ =3

dt ap 9 (2.3)

and
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dv +u (S+ancose)= -1 dp -_L_ 9 (\1-\_/)

dt | aSnBP A  AasnN® I VX
(2.4)
where
é', = _é_ ug + _V_ _3_ + w.é_
dt 3t  ade® asned Y- (2.5)
and the vorticity, 9 will also be approximated to
3= [i(vs’me)-e&]-,
cxsuns' ob EYN
(2.6)

The vertical equation of motion can be taken as the hydrostatic equation,

namely

O = —\a )
~55E 79 (2.7)
Similar arguments can be used to approximate the equation of continuity,
?i-d'w(py_) =0
14

to the form

osme [ d (using) + av} .+/a % (PW) = O
(2.8)

where it is also assumed that variations of density,/D with time are small
compared with the'density itself. In addition, we have Clapeyron's law
p= RAT
(2.9)

where T is the temperature of the atmosphere.

Finally we introduce the heat transfer equation (9) which is not
present in Blinova's theory. We take the equation in the form

4@ = L div(R,aradT)

dt r (2.10)

where Q is the heat content per unit mass and h is the thermal conductivity
of the layer. For a fluid (10)

- -1
where cp 1s the specific heat at constant pressure of the layer. We

2
assume that it is the vertical variation, h,a T which is the dominant

Szt
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part of the conduction term in the heat transfer equation, assuming that

k,, is constant. We can therefore approximate (2.10) to

CPéI"d.E = %1&

at dt oz
_ (2.11)
where @  is defined in (2.5).
dt

THE PERTURBATION EQUATIONS

The governing equations for the model are therefore (2.3), (2.4),

(2.7), (2.8), (2.9) and (2.11). We will now introduce a perturbation to

the model in three stages. At the first stage we shall take the standard

valuesof pressure, density and temperature for a static atmosphere, i.e.

'ﬁ(z), P (2) and T(2). It follows from (2.7) and (2.9) that

o= -1 dP -9,

./ac-l_z ' (2.12)
p= RAT .
(2.13)
It is easy to show
L df = -9
?392 RT
and therefore we have
Z-d-.
(D)= DO - 2 J .
P = Forexp[ -9 [ 4z
(2.14)

At the second stage we introduce a steady zonal current, from west to

east, which has no longitudinal variations. We take the dependent variables

in the form

P= P& + p(2,0) )

p= @ +p(2,0)

T= T2) + To(z.,e') >

4= © (2.15)
V= V,(2,0)

W= o) J
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The variables with the suffix o are of the same order of magnitude and
are small compared with P (2), /-5 (2) and T(2Z). We will now proceed to

transform the expressionl 9P ;

P a8’

_;_5%__ 3 ﬂTj)_ [los(pczhg,(z&)] RTJ [I03p+103(|+ﬂ,/§)]

Since P is independent of © , by expanding log (1 + R,/p') as a power

series and retaining only the first term, we obtain

1 = mgaé(_%).

R &
(2.16)
To the same order we may write
( B +p(2,8)) = RTJ fo_) =0
: (2.17)
and in a similar manner,
1 = —3_ +* R:T?_ _E_)
548 : ,
(2.18)
We can now write the equations of motion, (2.3) and (2.7) in the form
- ) = -RT d - Ve
Yo (3 +25hc0s8) 73'9(%) 509, (2.19)
o = -aT + RTJ f_)
3-_-__F 32(-% , (2.20)
where, in the small terms g'e(&/ﬁ) and Sa,z(Pc/ﬁ) , T has been approximated

to T(2). We will simplify (2.19) to the geostrophic approximation (21)

2QlceseV, = RT 3 (_pg_)
o~ =
(2.21)
We will follow Blinova and postulate that the zonal flow Ve (Z,8)
is of the form-
Vol(2,8) = o t(2) sine

(2.22)
where K (2) is an increasing function ofz which produces angular
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velocities which increase with increasing elevation. Thus from (2.21)

we have

é _&).—. 2.(10\’;&(2) sno cosé
@\ P R T(2)

so that

Po/p = Sl sinte + f(2)
RT(2)

where f‘ (Z) is a general function of z. We can therefore write

R(2,0) = f20%:(2)3(2) suin’e + p,(z,0) - (2.23)

It should be noted that the variation of P at the poles, P (2,0) is
assumed to be a known quantity. When ®(Z)>0, the pressure R (2,8 )
increases from the poles to the equator. Using (2.19) and (2.22) we can
show that
ey =2
To(2,9) = T0a* i[__s_l]sm e +RTd [&(20)] .
9 dzl¥(z 9 P (2)
(2.24)

At the third and final stage we introduce a perturbation which can

be written as

P = B2 + P20+ pltz,o,\¢) A
P A+ P20+ Pz At

-— ' J
T= T@ + T,(2,6)+ T(2,8A¢t) L (2.25)

u = u'(z,e, A t)
v = Vo(2,8) + V(2,6 A t)
W= W'z, 8 A &) |

It is assumed that the first column of variables is dominant and the

second and third columns are of decreasing importance in numerical

magnitude. The two equations of motion (2.1) and (2.2) are
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4}%- V(2fcos8 +3) = -%Iéa_e(\osp) - 19 (499,

(2.26)

dv NeoseG+3) = —-RT - 2
It““z o 6+ K%(nogp) T'igx("ﬁ)’

(2.27)
where q° = V+V. From (2.26) and (2.27) we deduce that

) ' - )
) [&(vsm&) %u] + usmes_e(z..n.coso-rs)

+Va.(2.ncose+"3) + (:z.ncoss+5)[%_e(usizz9+AV]

PN
= -R{H 3 (losp) - a.x (losp)}

Using the definition of 8in (2.3) and (2.8) we have

s € - (20cos8+3)L 3 (powW)
%% * .(.L?. (2ncose+S) + asm9 3 sL0

= - R

o1 -1 9 (logqp)
o*sn S-'SXOOSP) 6_,3_ OSP]

(2.28)

The terms in this equation are of similar orders of magnitude and so it
is relatively simple to form the linearised version of (2.28). We ignore
S compared with2fcos® (22) in the term (2fcos® +3) and the linear
form of (2.28) is therefore

3% - afsined ¢ v, 9% - 2fcoseld (Fw'
% o Fer Y Al

= =R __ éT 3 g (legp) - gX é(logp)]

o.’-Sun.& (2.29)°
where ’5 =a_s'lm_9[§§(,v‘ sune) - %lxj. ] . It can easily be shown
that, as in (2.16)
dlgp= 3 (2.
590 ()
(2.30)

Using (2.30), (2.23%) and (2.24) the right hand side of (2.29) can be
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simplified and we obtain

3% — 20 e W' + A(2)3S - 2flcose d (BwW')
ot o | X ~ A

= -2.(1::059[3_}_1}3_2 %) g_g' - __v:}r__%_{'] .
(2.31)

Using the power series method described preceeding (2.16) we obtain

Pa_gge.{-rﬂrr][ 3@*-3.(%) E‘z(g")]'

and retaining the third order terms, from the hydrostatic equation we

obtain
(%) -

We will now linearise the heat transfer equation (2.11), and it is

(2.32)

easily shown that from the third order terms we find

[§t+x§}‘:\1' + w‘dT + u' 8T,

a b

and using (2.24), the expre881on for dT becomes

dt
=[8+ud 1 7'e widl =T d p'.
AR U RRA S ACE (2.5
We also have
P = dp' —~w'dp
€8 "%
(2.34)
and thus the heat transfer equation takes the form
/acp{[%- +d9 ]T+W'd§-s-;) az %)é_g\} SE fw—? bd"T (2.35)

We assume that (2.27) can be replaced by the geostrophic equation
and using (2.30) reduces to

aNu'smnecoss = —RT dp'
ap 9 (2.36)

The dominant terms in the equation of continuity, (2.8) are the two
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horizontal terms and so we can make the approximation.

6 (U’Sme) + 6V = 0.

36 , EYN (2.37)
We can therefore introduce a stream function, Q;rsuch that
wsne = -L é?ﬁ (2.38)
L. |
o 'Xg : (2.39)
. }
With S = '/(asms)[‘}e(\/'sme)-— ‘3% ] ., we find
[ a?lr 1-c.o\'9_‘lf+coseceé ?é'] ¢r
(2.40)
If we combine (2.36) and (2.38) we deduce that
coseé 1 3 b
* " zas s
and there is no loss of generality in writing
cos e = 1 ‘.
> a5 P
(2.41)

[]
We substitute for u',S and P' in (2.31) to obtain

a2 el

SHRITY Y A Th(4)fr -semeg - 20t
' (2.42)
We will lopk at the ratio of the coefficients of %;{\/ in the second
and third terms on the left hand side of (2.42). The ratio is -
(29&059 =|‘a"-)g_ (vk)/g which can be approximated to _Q-Qv‘/sh for

& - 60°. Taking average values, a = 6 x 10 m, h = 16 x 10%m (height of

troposphere), atk = 10ms™ and g = 9.8ms™® (14, 15) we find
_ﬂ.a"'e(/ﬂ'n."' V40 and therefore we can ignore the third term on the

left hand side of (2.42), and the simplified form is

1784xd T\ 20 3% - 20coso% 8T’ = 2fcose & (WA).
i N e i A

Substituting for T' = 28 costﬁzsa_ ('?/'/"r') into (2.43) and (2.37) we
3 2
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have

N T L A IT

2 =F2 ' oy -
&) PTG AR - L@ R] SR - B
o (2.44)
where L = 2£fcos® and A =£+9£P (23), is associated with stability

of the layer. Here | and A are both assumed to be constants. Therefore

(2.44) yields two equations between Y and W'for a prescribed T(z).

Blinova has only the first equation of (2.44) since the second
expression is from the heat transfer equation. Blinova proceeds by
integrating (2.32) from z = O to z = 0 to obtain an average for

Ar (2,8, A, t).

By including the heat transfer equation we have a closed system of
equations and we proceed by eliminating W'between the two equations of

(2.44). We shall take 2 andw'as a sum of linear terms

Wz,8,M8) = 20 22 Yinn(2,8A,8)
mon (2.45)
Wz, N6 = 2 2 Wi (2,8,A,8),
where 'Z'(rmn andw'm,.,‘ are spherical harmonics of the form,
m imA
Pmn (2,87 %) = RQ{ Pz,6) P"’ (cose) e } g (2.46)

m TmA
Whn 2,028 = Re{w(z,t) Py (wsere™ |

in which m and n are zero or positive integers. Note that @(z, t) and
W(z , t) depend on m and n. We now take T(2) to be a constant, T,. Thus

! will take the form

. m '|m>\
Tz, \ t) = %, Zn: Re{ %]. gg Patostle } _

(2.47)

Substituting (2.45) into (2.44) we obtain
_g_i-tm&)n.(ﬂﬂ)(ﬁ +anmig- L’n’-cmek%% (P W),

k38 -] (mix+3)98 + (ﬁé-—mm)qb] AEa W .

Sp 323 (2.48)
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We can proceed to eliminate W in order to obtain a fourth order

differential equation for g(=zZ, t),

4 . ', .
c%f.s aa_zQ‘* - (Lmolfg_é) %’:zéz +-[Bg% + % (im« +-g_€) + lmo(B]%g

: . . =), : . " -
+[n(n+nt.(md~+AéE) - BI:-’::;tg *’,%('"‘“‘Bﬁ) + tm%] ¢ =0

*a
(2.49)
where B = A/T . From (2.13) and (2.14), we have since T = T, '
1
- -32
= e
1
r=P (2.50)

where /3= S/R,TI .

THE BOUNDARY CONDITIONS

We have a fourth order partial differential equation for @ so it is
necessary to have four boundary conditions to close the system. We will
take the following equations:

(1) W =0 at z =0,

(2) W =0 at =z =h,
(3) It is assumed that there is a time dependent heat source

V,(8,X, t) at the lower surface of the layer so that

)
%‘_l_‘ =9 (B,N, t) at z =0,
Z
(4) It is assumed that there is zero heat transfer at the
. !
top of the atmosphere, i.e. QI =0 at 2z = h.
oz
The first two boundary conditions, that vertical velocity is zero at the
top and bottom of the atmosphere were also used by Blinova. We will take
Vo (B,\, t) as a linear combination of terms
mn '
WA E) = 2 2 UM At
0 I ] m n ] )

mn
where (L will take the form of spherical harmonics, namely

Ve (e A E) = Re{_‘:af Vo) Pl Leos ) e'"‘t} .
]

Note that m and n are positive integers and that 0 (t) will depend on

m and n. By using (2.48) and (2.46) the boundary conditions can be
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expressed as conditions on @, namely,

W Cpfé'az:’ [Lm%+8]3§Q+ \'_unul' B%E]¢ =0 at z=o0,
(2) g ime+g ] 9 imd'- 8] =0 at 2=h

Eo &g - [mueg ] g + [imi'- 8y

(2.52)

@) &2 = V) at z=o,

o2z
¢ 3¢ = o at z=h.

az*

FOURIER TRANSFORMS WITH RESPECT TO TIME

To remove the time dependence from the problem we will now take
fourier transforms with respect to time of (2.49) and the boundary
conditions (2.52). We take

© .
- st
P (z,5) = J Pz, e  dt,
<o0
- w sk . (2.53)
sk

Ve = [ v e de |

-0

and remembering that the transform of gﬁé is —iéa'the system of
ot

equations reduce to

c_l_g_s -lm,na_qs + i(%-ﬂ)(B-&/&)%g

£
7 d

[1 (k-a) = T'% ﬁ(ue/i)ﬂ("]cﬁ

(2.54)

subject to the boundary conditions

£ 43¢ -n[(&—p)iﬁé + ca+8,u)¢] =0 at z= oh]

P d23

&d = V) at z=o , L G

dz?

dfé? = O at z=h y J

dz?
where

£z k, , ¥*= nin+HBq and =S
cpm Co® ™ (2.56)
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At this stage we simplify the model slightly. We ignore the terms
[-%% -3 (0"+B,¢) ] $ + This is equivalent to ignoring
variations of the Coriolisparameter in the northwafd direction when using
rectangular coordinates and is equivalent to the neglect of /5 in the model
on Part 3 (see Chapter 1, (3.35)). In Part 3 in the final chapter we
look at the case for /3 £ O. In many models this approximation is
acceptable and we therefore feel justified in neglecting these terms. We
now compare the éAQ term with a typical @ term, ¥ (L=Md) @. With an
average value of ¥h taken to be 2.k, the ratio of the two terms, Bh/3%h?
is approximately 1/90. We are therefore justified in ignoring the %%_
term. For-the equations to be consistent the terms - iB}AB— must be omitted

from the first two boundary conditions in (2.55). Thus the system of

equations reduces to

So\__j) -L(aczs—,u)[d_ci ¢ - &2 Ef]:o

7 d dz? (R (2)-u) (2.57)
subject to the boundary conditions
3¢ _. - 5 - =0 ar z=0,h .)
e %_23 l.[ (A2 /L)%Q; cz)q'pf] ‘a DAL
% V() ar z=o0 | , (2.58)
225 0 o z=h J
az? |

VALUES FOR CONSTANTS IN THIS MODEL

It is clear from (2.22) that Q™ (2) is a steady zonal current and
hence we will assume that &KX (2) is a linear function ofz ,

(2.59)
We shall take the wind speed at the bottom of the layer to be 600 cms™ (24)

and when we take h to be the height of the tropopause (h = 16 x 10%¢ms) ,

a fair estimate of the speed of the wind at the top of the layer is
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1400cms™!  (24).

We will also take the average values (13)

-} @ _ -l

co= | Igm %
P 3' > (2.60)
R, = 1.4\,(10‘43-&;'5-"55" (molecular).

As in Part 1 the eddy conductivity would be approximately 105 times

as large as the molecular value.
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CHAPTER 2.3

APPROXIMATE SOLUTION OF THE STREAM FUNCTION

The quantity € , defined in (2.56) as R,/Cp™M is small and of

order k,l o This fact will be exploited to find a solution for ,6'(2).

FOUR SOLUTIONS FOR THE STREAM FUNCTIONS, 75’

The stream function, @ must satisfy (2.57), namely

g dtg -i («cz)-/x)[@ '-'6”“5] =0.
P dz4 : dz?
There will be four independent solutions, Es(z ,}l), § = 1-4 so that

50:2,)1.) = A UWG (z ) + ALY P, (z, 1) + 93(}&)@(2,/1) + Rq.(,mai_(z,#)
| (2.61)

where the arbitrary functions Ag(M) will be determined from the boundary

conditions, (2.58). We will follow Heisenberg, Lin and others (20) in

the determination of the four solutions for &( Z,Iu).

For two solutions, we assume @ can be written as a power series in € ,

¢ = qo* £Q + e‘qz+

Substituting for b— into (2.57) we have the following expressions for

9. and &o )
4 =¥, =0
‘.L" - '61'3' = q fj .

T k=)
To a first order approximation we may take

pry <z
Pz, p) =€, (2.62)
-%z

é, tz,p) = € .

For the remaining two functions, we look for solutions in the form

$= exp{eiqezw) [frerp -] . (2.63)

We substitute (2.63) into (2.57) and by comparing the coefficients of

-1 -
€ and sgobtain equations for Q(z ,/J.) and -Fo( 2z, M) which result in



the solutions,

. ' |2
dQ = [_z(am-,u)]ﬂ 2 (2.64)
d=z? , )
. -5/
Eemw= [am-uysl .. (2.65)
We can now take, to first order approximation,
- _'-5§ -,
s = [ a-uyp] texpl-¢ gz, w0} (2.66)

)

- = 7

@Fq = [(d(z)-,ﬂ-)/’] pr{ £ "Q(.Z,,u)}
where 2

[ L umpipe] o

Qlz,\) = LY (d2)-m)3(2)]  az
and Z, is the value of z for which % (2) =M ; Z.is therefore a branch
point of B' and the correct value must be taken when 0Lz_ < h. We follow
Lin (20) in the discussion of this "Crossing substitution' problem and
take a path from O to h in the complex Z plane such that the real part
of Q increases monotonically.

In this case the path should be below the

critical point Z. for nearly real values of/u.. Thus, for real M we have

M = ld-ul , argQ="4 for 2>z, , o)
. 2.67
K-p = l-ple”) argQ="" for z <z .

Therefore, 53 decreases exponentially and 54, increases exponentially as

Z increases along the real axis.

DETERMINATION OF THE ARBI'I":A.RY CONSTANTS

We now substitute for @ from (2.61) into the boundary conditions
in (2.58) using (2.62) and (2.66) to obtain four equations for R, A, A,
and Ay. Writing M ‘-:-(u-,u)%z-*' and using the notation @, = B4(0),

zm. =Ban), o =ﬁ(_o) and /n =P-(hlthe equations in (2.58) reduce to

(47-09, g Fond, ¢ B,

Po Po % :\"maﬂ R ( ©

%ﬁ:‘;"au %»a;:‘z".“an %f;”maﬂ %hﬁ:‘z‘mﬁz f, o]
X &y Fa Pa, m| |3
| 3. Far % /) \Ael o

(2.68)
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For a non zero contribution of 53 and 64, to the first two boundary
. 3 - )

conditions it is necessary to calculate [%%—zg-' M] ¢s ’ S= 3:+,

to second order. We take

¢ = exp[€4q] [ f,+£"6]

and we can show that,; to second order approximation
3 : ! ] . =.
[s i) = [t 28+ 38] + sia] gorple™sa].
Using the crossing substitutions in (2.67) we have,
- -\
B = plE 21qeh w1 €] Fecn,,@

B explehialewie™hf 0
and as Re{e'“’*} >0 and Re{e"""r} < o,

—ae ¥
€27 i | a>o.
folo, i)

Clearly, we can take 532_ = O. Since to a first order approximation,

P ~
B3

-— -' -—

¢3:1 =€ Q'z(hwu,) ¢3Q_ the same argument as above allows us to assume

-

;ZS:;.)_ = 0. The contribution to the two boundary conditions at z = h for 33

can therefore be approximated to zero. Using exactly the same arguments
- el 1

we can show that ,64_‘ = '®+I = O and so the contribution to the two

boundary conditions at z = O for E"_ can be approximated to zero. We can

now write (2.68) as

("iﬂa‘u 'iH$:.| 3”@3: o \ R o

"‘H‘P\; -1Hpo o o W;%z A, ©
= e -t I
P ) b 29 o A3 v
-l ol -
\ ¢n. ¢27. o ¢4-2 94 ©
(2.70)
in which all the terms are to first order approximation apart from
iNIEm and iN,_E,,z which are to second order approximation in € and -

where N(Z , u) is defined as

Nz u) = tk-p) [ 20 + 3, Z-L'] + 34
fo ? (2.71)
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and N, = N(O,M) and N, = N(h,/J. )e If we write

By= Azexp- S-llzq(%/”} 5

(2.72)
-l
By= Ay exp{-a 'zq(h,pﬁ ;
and substitute into (2.70) the values for By =1, -4, j=1,2)
we have
( ~B U+, FReM e Niop o \ R, [ o\
("?u‘-‘-ﬂ\**lh)e.‘h (PRI, )e.“ o  Nyfthw A, o
¥ : %? ie"u;;x),o,ﬁ,(o,p) o A, v
“h -Th .- _
\ T'e Te o \€ '(d\‘-p)h&(h, R \Pg \ o )
(2.73)
where o(°= K (0) and o(k=0((h). '

We can generalise the coefficients of A, A,, B3 and By and write
(2.73) in the form

AP b AR+ RyB, z o :

/31 ﬁ; + ﬁzﬂz */3381- = O
| = I (2.74)
5P+ %A, +E', 8, =V

61 Rl ¥ éz& +E*539+ =0 J

where ®g,Bs »¥s and dg (S = 1,2,3) are independent of € . The solutions

for Ay, Ag, B3 and B* are therefore

0O &, %3 O 4 © &, O
AxiAl= |© B, © g, ‘AaxlAl: [p, 0 o g
V % £y e ¥,V €% o
© 6:. ° E.é; Sl o © E-'Jg

'y
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BxIAl = By Pro P B,xIAl= Pr f2 © ©

v, Y, 01 o ¥, Vs €|13 v
-l
8, §, © -953 , \ Jz c of

where VAl is defined as

/31 ﬂz ° {33
Y, ¥, €% o

s, & o €4

1Al

"

There will be singularities in A, A,, B3 and By at the points where

VAl = O. We expand |Al by the last two columns to obtain

-2 %, ®2 o A B

/51 /321 Tl Y?.

'I’ﬂ v -} d\‘ "- + o {5 ~°‘I U:.
€ 3 ]

3V3 J. J; 3 g; Sz

To a first spproximation therefore the singularities will occur when

L, Ly

n"
o

B Ba
(2.75)
When we substitute for &, ¥, , 3, and S, from (2.73) we find that the
above equaticn (2.75) results in
(Vo-p)* = U2 [‘ﬂf‘ +1 - Vh.coi'h‘d’h.]-, S
*h? 4 (2.76)
The equation (2.75), is exactly the equation of consistency found by Eady

and is discussed in detail in Chapter 3.3. This equaticn yields two
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values for/;,

Vo Us + qu'

(2.77)
Mz = U= %a'h
where q‘ is defined as
| ', l
n= [ 2+ -mw\-\ah]
4 (2.78)
It is found that q‘ is purely real or imaginary as follows:
= i o0& Fh <24,
L (2.79)
=1 > 24< Th R
where
. " k ‘/2.
= + | = Theok -an’ :
| “ ke © ] (2.80)

To approximate the values of A, A,, By and By we first note that
these constants can be expressed as power series in € . From the third
equation of (2.74) we can see that the first non zero term of the

expansion of B3 is of the order £ , thus

......

(2.81)
The fourth equation of (2.74) implies that the first non zero term for

B4 will be at least of order € and so we can take

B=0a,+ ga, + €%+ 5 ]
B, = a,+ ga, + e - (2.82)
) 2

Bq,'-' Eb+ + Ezb*’_.'""" ¢ P
The first two equations in (2.74) lead to two equations for a, and a, ,
namely

Q|o(\ + Gzelz = 0 ,

ca,@' t 06,6, ° (o] ,

resulting in the equation of consistency, (2.75). Since (2.75) only

holds for two particular values of M, we will therefore take a, = a

2 = 0.

i
From the last equation in (2.74) we find b, = O and solving for a; ,
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a'z ’ b:' and bg leads to

a = = Vkyf, )
. "53 (*l/;z— zﬁ.)
1 - -0( |.
%2 = v 3 f . (2.83)
T3 (d‘fsz—‘(zﬁl) :

ba = -J/Ts

b, = _VIpd-pda]
Y383 (R, 3y~ A2 R))

Note that three coefficients do have singularities when (X, ,- %,f3,) = 0,
as was found in (2.75).

When we substitute for &g, py, ¥y and &g (9= 1,2,3) from (2.73) we

find that to a first order approximation Pz , M) takes the form

Pz, ) = aT?(g){ (Bh*(D,-Bu) 32 he?™
P LoGu-peuouy)

— 1 kgt

[P n-m)]

Y (D, + Tu) Tk
(/""/“t\‘/‘"/uz)

exp{- € [ Cipwnn'tdz]

2z
- 28 1R oy * Loy (] exp{;_'h fk ()Y dz} }
L& wpd] ™ (uop Y0uu,)

(2.84)
where
K(2) = Vst (Fh='20U, ; K= h(0) , Ky= &CR)
(2.85)
D= YUh + T (U+U72) , Do= Uiy —w(ua+ Uira).

INVERSE FOURIER TRANSFORMS

In order to return to @(zZ , t) we use the inverse transform

w©
= . “i/u't
B2 8) —gf__ﬂr-‘- L) Fez, e’ du,

remembering that s = Mm. In general Bz i) of (2.84%) is a complicated .

function but a fairly simple result can be found for E(O,,u). Since
#4(0, 0 is small we can approximate E(O,}J) to

9_5(";/»‘-) = ﬂnév(o;,“) t szf’;(o”u.) + }9353'(0,/1.)-)
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from (2.84) we find that E(O,,u.) takes the form

Geo, ) = gV { AR L0, (-1 gh (1™t )] - 1 }
& (/u"/ul)(/u"/uz) (doM)

(2.87)
To illustrate the theory as simply as possible we now choose V (/U.) as

follows:

Vo) = Do . .
M+ D* ' (2.88)

The inverse transformations are dealt with in detail in Appe;idix A.

We find that from (A.3) the inverse transform ofV(/J.) is

-mbit)

Vi£) = Dem ¢
' 2D - (2.89)

Therefore V (t) has a maximum at t = O of D"—’m/z,b and as \tl=> o0,
V (t)>0. The constants Dg and D are at our disposal. Also from
Appendix A, (A.13), (A.14) and (A.23), we have the inverse transform of

5(0,,1:.) as follows:

; > » - }
¢(°,t) = -— Embo { (AI—(-nnlez) emoltl _ e moit

04¥h<24 2P IDCENYo+u, YN +4,)  (D(kgre1%iD)

-e + 2(M+UaN) e
(Dr4eket) 07 (DMl ) (U,-M)

—imet -imunt }
]

(2.90)

-mpitl -imdt
¢lo,£) = - im%{(A.-c—nioAge'"‘""" -_¢ - g™

24<%¥h 2/ i0( c—z)"a'oq»/x,)((-l)“-’ DEM,) iD(R D) (T+d})

—imut ~imut, t
+(>\,+/1,>\1)e.'m)" + (A,+,uz)\,)e""’“" } ,
OB I U= u,) COFe U U, -4,
(2.92)
with
N=2 for £>0 and nN=lfor £ <0

and where A, and }\zare defined as
A = phl C=-e2™, + $h(y re ™0+ U»/;)] ,

N, = pEhici+e®™y,
(2.92)
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CHAPTER 2.L

DISCUSSION

The stream function?)/(o,e,)t,t)d_efj_'ned in (2.45%and(2.48) contains
terms of the form ¢(o,1:)P:'(cose)é"'3nd thus,from the deflaition of Plo,t)

in (2.90) and (2.91),24 is a combination of waves of varying amplitudes

and speeds. In the complete range for Yhthere is a progressive wave term,

m Do e"“‘(u{,‘b—A)
2/ (05 d ) '

The speed of the wave is o = Uo—=Ui/2 ; thus the wave travels with the
thermal wind speed at z = O. There is also a damped wave term for all

values of Bh, namely
- mDIEI+IMA

Re

In the range 0<¥h< 2.4 there are also damped wave terms of the

form

A, exp { -( %{ﬂh v iAu,) mt+im)‘},t >0,

A, exp { (-9__\&'1 yioo)mluﬁm}(},g <o .

However in the range ¥h> 2.4 there aretwo extra progressive wave terms,

A, exp {-L(Uoi- Q%\ m{:ﬂm}‘}”v‘t ,

Ay exp { -1 (0= u) mErimvt .

The amplitudes A5 and A,_ are defined in (2.91) and their speeds are

Ugr UN/¥h and V-V /Bh respectivly,
The amplitudes of all the waves contain a factor (€£D4). The

amplitudes are directly proportﬁ.onal to the value of the thermal conduc-
tivity. We discussed in the General Introdﬁction how we use a larger
value than the molecular conductivity to model the turbulence in the
atmosphere. When we increase k, therefore, we directly increase the
amplitudes of the progressive waves byvthe same amount. Similarly the
amplitudes are proportional to Dy and are therefore dependent on the size
of the heating function V (t) at the surface of the ocean. The speeds

of the waves are proportional to the thermal wind speeds.
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APPENDIX A

INVERSE FOURIER TRANSFORMS FORV (M) AND F (0, M)

We use contour integral methods (25) to find the inverse transforms

ofv (}O and E(O,}A) defined in (2.88) and (2.87) respecfively.

THE INVERSE TRANSFORM OF V (W)

We have chosen V (}A) in (2.88) to take the form

V(u) = _Do | |
a MTED? . (8.1)

where Dg and D are constants. The inverse transformV (t) is .

therefore

_ et
V) = ] x)c;ne du

0 - ¢m,u.f

=ij au.

2T /A+D’- | (4.2)

We take a closed curve I’ in the complex plane of M , consisting of the

real axis and a semicircle above or below the real axis. For M =/u°+ iM,,

we have
[ )
V) = Dom J 0 emp[m/u. -—imw.,t] dt
2l J, u*+D*

and therefore for zero contribution on the semicircle we choose I' to be
above the real axis for negative t and below the real axis for positive t.

For t>0 the only si_ngularity inside M is a simple pole at M = -iD and

-mbt
V() = Dyme ) k>0
a0 ' ‘
for t£ 0, there is a simple pole at M = iD within " so that
mpt
V) = Dnlrge. , t>o .

We therefore find that

-mpitl
Vi) = Dome , WE. .
AV) (A.3)
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THE INVERSE TRANSFORM OF B(O M)

From (2.87) it can be seen that B'(o,,u) is of the form

Feom = i_eﬁfﬂ’[rsh[v. (=€) s iz ) (1€ ™)] - L ]
_ I Cuh-mn) -y ) W) J(a.b)
where M, and M,are defined as

M= Uo* iiy‘.tq M= UemWil, o< Th<d, (1.5)

{‘L'= 05*%'7; /“2=U°-%q ) 24<Th >
and \)_ (/u) is defined in (A.1). The inverse transform of Q)(o,/u) is

> -im/u.f
¢co,t) = ;_-Yf\r_f_w Plo e du
by generalising (A.4) and substituting for V (W) from (A.1) we can see

that the integrals to be evaluated are of the type,

*0 ONEAA ) é-fm/u,t )
I =_-.[° (/1"+D")()&7u,)(/u-,uz)(,(°./u) d/"( = JT(/U.)O\/M. .

(A.6)

We will evaluate I using contour integration methods and take a
closed contour I’ along the real axis and a semicircle above the real axis
for t£ 0 and below the real axis for t>O0. Fof the range 0<¥h<2.k4 there
is one singularity (U :Qo) on the real axis, two above (M= iD,M=AL, )
and two below (/U.= -iD,/U.=/LLz) the real axis. For the range 2.4<Y¥h,
there are three singularities (,u =y, lu =My, /u=/U~2) on the real axis,
one above (M= iD) and one below (M= -iD) the real axis. The contour 1
must have indentations around the singularities on the real axis. As in
Lin (20)for thesingularities M, and M,we must go below the real axis (the
crossing substitﬁtion) and for convenience. we will take all inderﬁations
on the real axis below the axis. We will evaluate @(0,t) in the two

regions, 0<¥h< 2.4 and 2.4 { Yh separately.

(1) @(0,t) IN THE RANGE 04 $h<o.4

In this region we have only one singularity along the real axis.
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Thus we have for t>»O0

S st
TO—ANE™® 4 am e 7ok +“I °+JR] J'c/u)o\/x}
DAY -iDou, -iD7h) QU2+ DY) (it )Lty A, ) TR WGE
: (A.7)
and for t£0
: ;€ R
Togior)e™  4_aliOyeur)e ™ =\<,+{[f+ | ]J’(/a)d)u}
D(giD)DAL)(ID-AL,)  GUR+D Mg ah YO M,y ) "R et (1.8)

where K, is the contribution to the integral around the singularity at
M=olg . We take the indentation around/u=o(,to be a semicircle below the

1]
real axis of radius € ; writing M = g+ Ee' K' takes the form

K = 2 o (e‘o+se‘°)kz)€x9[—imc¢°+eei°] de
VT ) —£e (D (hr 200 (ogrERiO s Y (o rER' SN, )

(A.9)
In the limit as €-90we find
t
K, = -Th(o( A+ KoMy )e‘m‘" .
R C TR (A.10)

In the llmlt as R¥0and €20 for t>0 from (A.7) we have

. , -mbt -imyt '
I- m{_ (K;!D)\ilem ' +_ 2UAru,N)E + A+ N)e ;i }
OG-0, Y Dtly)  CUd+D¥) (o) (U= A,) (b"-+ot:-)(d A (A-A,) (A.11)

and for t< 0, from (A.8) we have

‘. '* -'
I- { Aroa)e™™ 4 a0 ™ b GerdeA)E T
10(%=1DYS o-,aj(w H) B TNRGAAL ALY ORI A X My =A4s) (A.12)

Using the formulation of ,@(O,/I.L) in(A.4) and (A.11) and (A.12) we obtain

the following expressions for @(0,t):

- | - —imstot
Plot) = -amba{ A-ioA)E™ | gmPE_ M
£>0 24, L iD(=iD-4,)(=iD-uy) iD(#atiD)  (DMels")
£ 20 b h,) € }
RIVTRV (4.13)
- -mplt! -imet
dlot) = -smno{ (M +iDA) e moel g™ - _e
t<o 2P LiD(iD-u)ID-M,) iD (de=iD) (D*+dg")
-imut
F AN 6 } i

(oM )5 ,)
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where /\, and ’\z are defined as

A= phl (1-"™)U, + C1+€™™) (Upr Ul TR |
. (A.15)
>\,_ = -ﬁ‘n?“ (l+€2ﬁ)

(2) @(0,t) IN TZE RANGE 2.4<Th

In this region we have three singularities on the real axis. As
before we find that for t> O, ‘
. Mt 4ol m-d R
1 - t .
T (A-iDA)E = K ¥+ K, *{[J +J +I +J ]:\'(,u)d,u}
D (XsHD) iD= ) (-1 D 5A4;) 4 ROME L edd
(A.16)
and for t<4£0
Mee oo ped R
-mbitl
T(AiDA)e = K, +K; + Kyt ﬂj *f *J +J ]Jw)dﬁ}
D (Ag=iDY(D )b~y ) S LI B
: (A.17)

where K‘ y Ky, and K4 are the contributions to the integral at the singu-

' -larities M =M, , M =%y and M=M, respectively. Following the same method

as in the previous section we find, when €90 ,7-»0 and o0,

K, = il O‘»"’/“:M_.E;m/&t , ;
(CETTRILYTRIGTITH (A.18)
K, = —iT LA ) e Mot , |
(D™t Y (Roth, ) (kg = 1h3) (A.19)
: -imut
Kyr <N +NYE 0
(A.20)

(Ou? M te-ut, Yo~ M, )
In the limit as R>60 ,€50 ,1¥0 and §>0 we have from (A.16) for tD>O
. . - -f t -‘
I=T (A—:DA,)e"‘”. . ()\,*ﬂz}‘z\emﬂ; + A eam&t
IDWrIDN-IDUNOA) By 1y (hpty W ) (DRI o) o)

2 Oyrah ) e MAE }
(O ke i X = h, ) (A.21)

and from (A.17) we have for t<£0

- . - -i -\t
My ArAYe™™ b I E™F L el e ™
IDIDXIDUNI0M)  (BUU Nk UMD (D4l K oot gmtda)

v O U\ e } .
CORAUR) (kg th MMM )

I

1]

(A.22)
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From thé definition of B(O, M) in (A.4) and using (A.21) and (A.22) we

find the following expression for @(0,t):

¢(O)(:) = =-EmbDg ()\'_ (_l)nl'Dl\’)e_mDN:l _ ' e_mme‘

—————

ve 2P LD iom, Y oo, iDlhgt YD)

+<>‘,+;_4,)\z\é"m” e A e™E imat
Cullu)  Cam) (o) }

where

n=4 for t>0 and n=! for t<o

and A, and \, are defined in (A.15).

(A.23)
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PART 3

THE INFLUENCE OF TEMPERATURE FIELDS UPON STABILITY IN A LINKED OCEAN/

ATMOSPHERE MOLEL

CHAPTER 3.1

INTRODUCTICN

In Part 3 we consider a two layer liquid model; the lcwer layer
is assumed to simulate a static ocean and the upper layer a dynamic
atmosphere. In both Parts 1 and 2 an extérnal heating function was
introduced; however, in Part 3 the emphasis is different. Here, we
investigate the stability of the model, retaining thermal conductivity

but omitting molecular viscosity.

We choose the standard system of rectangular coordinates, widely
used in meterological wave problems. The upper layer equations of
motion and heat transfer are linearised upon a basic West-East thermal
wind. This thermal wind is produced by a basic temperature field which
varies linearly in the northward direction and in the vertical direction.
It is shown that the resulting perturbation equations lead to a fourth
order ordinary differential equation for the perturbation pressure.

The lower layer is assumed to be in a stationary state but capable of
thermal conduction; thus the heat_transfer equation results in a second
order ordinary differential equation for the perturbation temperature.
There are six boundary conditicns; two of them arise from the vanishing
of the vertical velocity at the boundaries of the upper layer and four
are heating conditions at the boundaries of both layers. The solution
for the perturbation temperature in the lower layer can be determined

so that the problem is reduced to the solution of a fourth order
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differential equation for the perturbation pressure in the upper layer

subject to four boundary conditions.

It is shown that in the absence of the lower layer and the neglect
of thermal conductivity of the upper layer the model reduces to the
well known Eady problem. Criteria for the onset of instability are

found following Eady and by using difference methods.

For the two layer model we first use difference methods to find
approximate analytical and numerical formulae for thé onset of instability.
A second approach to the two layer model, following Meksyn (26) also
results in énalytical criteria for instability, producing first order
correction terms to the Eady results. Finally, using the methods of
Meksyn again the model is extended to include a variablé coriolis

parameter and an approximate stability equation is found.

It is clear that a gaseous model for the upper layer would be more
realistic but for simplicity we have chosen a liquid model. In
Appendix B we aim to show that the main characteristics of a liquid model

will carry over to agaseous model.



CHAPTER 3.2

FORMULATION OF THE TWO LAYER LIQUID MODEL

We will use a rectangular coordinate system (x, y, z) with X
increasing eastwards, y northwafds and z vertically upward. This is
mathematically pérmissible when the leqﬁﬁ of the wave is small bompared
with the circumference of the zonal circle along which the wave moves.
However, in practice it has been found to be far more flexible than
the mathematics wouldvsuggest and‘has been widely used by Rossby'(27),
Eady (28) and Charney (24). The governing equations for the two layers

are as follows.

THE GOVERNING EQUATIONS FOR THE LOWER LAYER

The lower layer is in a static state so that the only equation
governing the layer is the heat transfer equation (9), which with no

external heating function takes the form

dQ* = L div( k,GradT™)
dt A

where Q* is the heat content per unit mass, £, is the constant density,
T* the temperature and k, the thermal conductivity of the lower layer.

For a liquid (10) we have

St = e, 8T
where c, is the specific heat of the layer. We assume that k, is
constant and that it is the vertical component, h,_é’_T: which is the
important part of the conduction term in the heat giénsfer equation.
Accordingly the heat transfer equation may be approximated to

M . ey PTT .
ok P.C2 d2* (3.1)

THE GOVERNING EQUATIONS FOR THE UPPER LAYER

We take the horizontal equations of motion in the form

(o 74
<

ud + VW - LV = -L
£ ax 0 ﬁ’-%&.’ (3.2)

|

o
«w
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OV + UQY 4 vov +lu = -Lldp

& e 3y Pidy

(3.3)
where u and v are the velocity components in the x and y directions,
p is the pressure,/% is a mean density of the upper layer, and where 1

is defined by

L = $LJQU§UNQ
(3.4)

with £l as the angular velocity of the Earth and © as the geographical
latitude. In (3.2) and (3.3) we have ignored viscous terms which would
increase the order of our final différential equation for the pertur-

bation pressure from four to ten, making the solution far more difficult.
Viscosity can cause instability (29 ) and it is not clear without a detailed
study how it would effect our conclusions if these terms were retained (+qﬁ”.

The vertical equation of motion is approximated to the hydrostatic

equation,
R oz (3.5)
For a liquid the equation of continuity is approximated to
U 4 & + AW = O
s> 9y 3z (3.8)

where W is the velocity comporment in the z direction.

The heat transfer equation (9), with no external heat sources

can be written as .
dq - \
do. - _}SAw(\e, qrod T)
where Q is the heat content per unit mass, T the temperature and k,

the thermal conductivity of the upper layer. As for the lower layer (10)

we have
Q= ¢ dT

where c¢,is the specific heat of the upper layer. Again we assume the
dominant variations of temperature are in the vertical direction and

assuming that k, is constant we approximate the heat transfer equation
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to

OT + udl + vdT 4 woT = ¥, 8T . | z
3t 3 35+ 8z 5.7:; az? 5.7

The Boussinesq approximation (9) has been used in (3.2), (2.3) and (3.7)
to replace,O by a mean density Q, and in (3.6) to ignore variations
of /3 . We will now form the linearised perturbation equations for

the two layers.

THE PERTURBATION EQUATION FOR THE LOWER LAYER

We assume that T* comprises of a basic steady temperature dist-
ribution,_T'z + (Atz-B,y) and a small departure from the basic field,
. .
T, (x, y, 2, t), so that

T = T, + (Az-BY) + T, Cx,u,2,) . | (3.8)
In the above expression

Tz >> (A, 2 "Bz.lj) >> T;. Lx‘)‘j)z>t) )
Tz is the dominant term with (Azz—Bzy) and T{ being of decreasing
importance in numerical magnitude. The orders of magnitude will be

referred to as 0(1), 0(2) and 0(3) for'Ti, (4 ,z-B,y) and T, respec-

tively. The linearised heat transfer equation for T; reduces to

A_T;. = h AT
at C'Z.pz az" (3-9)

We will look for solutions of T; in the form

1 iRCe-ct)
T (e,Yy,2,8) = Gezre . . (3.10)

It will be noticed that T; is not dependént on y so that there will
be no variation in the northward direction. This is a simplifying
device which has been used by both Eady and Charney (28,24).
Substituting for T; in (3.9) results in the second order differential

equation for @(z),

R, d2¢ +ikecd =0 .

G2, Az - (3.11)

THE PERTURBATION EQUATIONS FOR THE UPPER LAYER

As in the above section we will assume that there is a basic steady
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state and a small departure from that state. We willAaésume that the
complete temperature distribution T takes the form

T=T « (Az-By) + T'C ac.,nj,z.,t) (3.12)
o) oc2) 0C3)

where the constants A and B will be related to A, and Bz as defined in
(3.8) due to continuity ofvtemperature and heat transfer at the inter-
face of the two layers. The complete density distribution will be defined
as

P= f - &(AZ-BY) - KT'(x,y,2,¢)

(3.13)
o) o(2) ©¢3) 2130

where (, is the constant density as introduced in (3.2) and (3.3) and &
is an experimentally determined constant, being the coefficient of cubical
expansion (13). Similarly, the pressure function will be taken in the
form
. - 1 +
P= Tt + ply,zd *+ Pix,y,z,%)

o) 602) ot3) (3.14)

where p(z) is the hydrostatic pressure given by p(z) = -gp, Z + constant.

The velocity field will be as follows

w o= Utz)  + wix,y,2,t) (3.15)
v = Vix 2. %)
1 Y,2 ’ (%.16)
W = VV(:Cﬁja za't) .
(%.17)

o) o(2) o(3)

The 0(2) term, U(z) is referred to as the thermal wind as is due to
the temperature field (Az-By) and is determined as follows. When 0(2)

terms are retained in (3.2) and (3.3) we obtain

LU():—_Léo
z /%S'S’

(3.18)
dp, = 30«(92—33). >
oz
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We eliminate p, between the two equations to produce
LU - 44 [chaz By)|
Y
and hence

W) = 3__82 + c.ons\'o.n’r (3.19)
pL .

We now consider the 0(3) terms. Using the 0(2) results, (3.2) and

o

(3.3) may be rewritten in the linearised form

QU + U(z) U Uz) —Lv = =L & .
S 2 e+ w zz), 'L.'ég; - (3.20)
V + Uy v $lu = =L dp' . | .
5t sz /3.3}::; (2.21)

In addition (3.5) becomes
xT' = &p' (3.22)
oz

and for the equation of continuity we may write

ﬁ&*%“g*%"z'“" | (3.23)

In (3.7) we replace the term ng by wA andv%]: by -VB using the
Y

approximation T~ T(z) + Az-By and hence

8T + U2 %1' -VB+wh = R &T . (3.24)
at x c\p dz?
Thus (3.20)-(3.24) are the basic equations for the 0(3) terms.

Now proceeding to eliminate p! between (3.20) and (3.21) we obtain

+ UmA AV éu ¥ L Au ~3v)+ vil - Vz)dw =0

and by using (3.23) the equat:Lon can be rewritten as
\ +U(z)§_ v éu +pV = LW ¢ W V') C (3.25)
& ) 32 3y
where {3 = % This is the vorticity equation and the terms LAW and
32

U (z)éw on the right hand side are 'baroclinic' additions to the -

Y

equation. We now introduce the geostrophic approximation (21) to (3.20)

and (3.21), namely,

us= -1
Lp.%ﬁ

vV = Lf’. E%‘-_.’

(3.26)
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we (—o\\cuo Chame LM—) L the use of s o.ppmxunahon. thus

%yac-- i_ut) ) LP. 61? Fg) (3.27)

Using (3.26) and (3.27) in (3.25) results in the expression
v (& + & 12 L .
b.'i' 2 ](XB )f-ﬁ:SE Fl %T.V: t ‘2’%‘?; (3.28)

We now have in (3.28) a relation between p! and w. A second expression

_ and.
between P' andw can be found from (3.24), using(.3=22))(3°24’>)r,\ (3.27), of
the form
rUgd | dp' - a8 dp' + quAw = R, &P . |
‘.%-' Sx—] Az 31_/5' x 3 c‘p‘ 3z3 (3.29)
We look for solutions of p' (x, ¥y, z, t) andw(x, y, z, t) in the

same form as T;_ (xy ¥y 2z, t) as defined in (3.10) for consistency between

the two layers‘; thus we take
plex,y,z,k) = F(2)e )
: R Cocct) (3.30)
| -
wewx,y,z,t) = Wz)e S

where k = 21I/L with L being the wave length in the x direction. We

substitute for P’ and w into (3.28) and (3.29) to obtain

ik[-h‘(ucz)—c) +ﬁ] P = pL d_w_ . (5.3
ik | (Utz)-c)dP - g#BP bd__E: -gXAW |
[ ’ 3— (-/Jo ] ./»'. dz3 (3.32)

We can now eliminate W between (3.31) and (3.32) to form a fourth order

differential equation for P, namely

d’fP - tk(Ue)- c){ cP'P - q#AR* P }—Lk tkAqeA P= 0, (3.33)
c,p, [JL" P L2

For the earlier part of the work we take /3 = O, thus ignoring variations
in the comolis parameter but in Chapter 2.6 we consider the case when

fB:# O. At this stage, however (3.33) reduces to

AP _ 2p “Ak*P| = O.
,k,‘,‘, A;-?', e (V) - °)LA Sfa,Tz ] (3.34)
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THE BOUNDARY CONDITIONS

Thus (3.11) and (3.34) are the two basic equations we wish to
solve. To complete the system of equations we need to introduce six
boundary conditions and we choose the following:

(1) The vertical velocity is zero at the atmosphere/ocean
interface,

Wz0 afr z=o0. : (3.35)

(2) The vertical velocity is zero at the top of the atmosphere,

W=z0 at z=h. : | | (3.36)

(3) Continuity of temperature at the atmosphere/ocean

interface,

T-T" at z=0. (3.37)

(4) Continuity of heat transfer at the atmosphere/ocean

interface,
b..gl; = kzi_'."* a¥ z=o0. (3.38)
2 .

(5) It is assumed that there is no heat transfer at the

bottom of the ocean, z = -h,,
AT*=0 of z=-h, . O (3.39)
3z

(6) It is assumed that there is no heat lost at the top of

the atmosphere,

L =0 ar z=h, (3.40)
3z

Using (3.32) the first two boundary conditions become

(1) Lk, QE_E —ih[(dtz\-dg‘f - U‘(.z)P] =0 oY z=0 , (3.41)
P dz3 az |

2) R, &3P - ik [(U(z)-c') ap - u'(2) P] =0 ar z=h. (3.42)
0, az3 az
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Using (3.22), boundary conditions (3.37) and (3.38) and (3.40) become

(3) LdP=¢ at 270 , (3.43)
g% dz

() By 4P = k,d@ af z=o , (3.44)
o -y

(6) iE_P =° a\- z:h . (3.45)
dz?

THE SOLUTION FOR THE LOWER LAYER

We can now solve (3.11) and using the boundary condition (2.39) we
obtain the solution

@c2) = Decosh (S(z+h,)) (3.46)
where D is an arbitary constant and
S* = -kepye, /Ry . | (3.4

By substituting (3.46) into the boundary conditions (3.43) and (3.44) we

obtain
A df I = DCDS\’L('SH,_)
3" dz ;.o ' (3.48)
%_P = k.;S D Smh(Shz) .

230
Thus D can be eliminated between the two equations in.(3. 48) to

produce one boundary equation for P, namely

4P _ k3 tanh(sh) 4P o  at z=o. |
iz _2\5: 2 S (3.49)

We now have a fourth order differential equation,(3.324) and four boundary

conditions, (3.41), (3.42), (3.45) and (3.49) for P. We will define

&= B /ex ’ (3.50)

IEE gRRRYplt (3.51)

H = kyStanh(sh,)/k, '
(3.52)

and thus the system of equations to be solved is
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d"P i (U(z.)-r_)[ qgfz-va] =0
r A

f-) az* (3.53)
subject to the boundary conditions

g 43P -L[(Ucz)-c\c\P - Ocz)P] =0 afF z=0/h
P\
4P - HdP =0 aF z=0 L,

2

dz dz (3.54)
4P :o at z=h

dz? )

VALUES FOR CONSTANTS IN THE MODEL

In the following work we take the height of the upper layer to be
the height of the troposphere. We have taken the following average values

for the constants in the model (13, 15):

UPPER LAYER LOWER LAYER
h= lex105 em h,= 5x10°em
=1\ 33 - O -3
P‘—llsx\o,sc,m P,_..Ol gem
c, =1\ jsm-doc'\ c, = 4.9 33'“-' ocoi (3055)
k, = 241 X106 Y Feri's o k, = 5.61xi0 33 enisoc!

We have used here the molecular values of thermal conductivity. For eddy
conductivities the values of k;, and kz are approximately 105 times as
large (5). It is clear that € , being the same order of magnitude as k,
is a small quantity and thus will be exploited in the mefhods used to solve
(3.53). We have found that U¢2) is a linear function of z. Using average
values, U (0) = 600cms™ , U(h) = 1400cms™! (24) we can formulate U(z)

in the form

Ut2) = Ug + (2/h=10)) (3.56)



(70)

where

U, = 1000 ems™ }
|

- (3.57)
U.:XOO coms 227

From (3.52) and (3.47) we find that H takes the form

H= ksCi-i) [.h.cpzcz/l“z] llz"'ahh [ G-k, [Rep,eafzn,] y"] .
h| '

Using (3.50) we can rewrite H as

v, )
H= Q-0 [p,c,kz/z.h,c,] "hnh[u-i)kz[_kc/:,c,_ f2%,) y,] . (3.58)

For large waveleng£hs k, we can assume (\"z [lzc/.»‘c,,_/zk,]'&) is lérge and the
asymptotic expansion for tanh can be used. Since k, and k, are of similar
orders of magnitude,[pzcz\!,_ /Q.k,C.] '/zwill not be a large quantity. We may
theefore take H as

- . ) 1
H= geBu-DA (3.59)

where ‘ v
A= [Paczhz/z“-c‘] g
(3.60)



CHAPTER 3.3

THE EADY MODEL

(71)

Before solving the two layer problem defined by (3.53) subject to

(3.54) we will look at a simplified situation, studied by Eady (28).

FORMULATION OF THE MODEL

If we consider only the upper layer of the model the governing

equations will be (3.2), (3.3), (3.5), (3.6) and (3.7). Further if we

ignore thermal conductivity, the heat transfer equation (3.7) will

reduce to

3T + UdT 4+ vaT + woT = o.
ot dx Y g)z

(3.61)

Following the same procedure as in Chapter 3.2 we find that the pressure

function P(z) satisfies the second order ordinary differential equation

d*F - ¥v*P=zo
daz*

(3.62)

where 'fl is defined in (3,51). This is the model investigated by Eady.

The two boundary conditions chosen by Eady were
w=0 at z =0 and 2z = h.

The simplified form of (3.33) for this problem is
-q«AW = ih[w(z.) —c)é\f - V) P] )
2

thus the boundary conditions become

(Vey-¢) 4P - UItz) P = o aF z:é,h..
d2

The Eady problem thus reduces to the solution of
P -¥*P =0

az?
subject to
(W)-c)dP - U2P=0 atr z=o,h .
dz

THE SOLUTION FOLLOWING EADY

The solution of the differential equation in (3.63) is

P2y = CeT¥% 4+ De %

(3.63)

(3.64)
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where C and D are arbitary constants. If we substitute (3.64) into the

boundary conditions we obtain two equations for C and D, namely

C[T(U,-Ul/i‘c)-o'lh] + D [-V(UO‘U:Iz-c‘)-U./h.-]r- o, (3.65)

Ce™ [ (Upruin—c)-Uin] v Déﬂ‘[_-g LWet Yy -)-Yrly) = o,

where _ .
U= U+ U (2Zh-"2), :
The two equations for C and D in (3.65) leads to an equation of con-

sistency, namély

&7 | 00,02 <) -] [ 850z ) =] = € vty ontz-e -0l 305 e} 4]

After simplification this can be written as

- = U2 T thht .
(Uy=-c) w'-'“'h‘ ‘éThH Fhco (3.66)

Before discussing (3.66) we will look at another method which yields the

same equation of consistency.

THE SOLUTION BY DIFFERENCE METHODS

We will show that difference methods yield the consistency equation,
(3.66) without solving the differential equation defined in (3.63).
Using central differencing formulae (30) for the boundary conditions at
z = 0 and z = h respectively, we have the following (n + 1) equations for

P,i=0,'l,

cessally

(Urc+0,(h-1)) B- (g-c=Un)R =0,
PI: - (2+ Th) P + Py =0,

(=UpgtC =U/2) Pasy + (U=c+ 0 (2"m)) Py=o0.
The (n 4 1) equations thus result in the equation of consistency which

osisn-l, (3.67)

can be written in the form

Up-c +U,(K-%) ~Uprctth/a © o -
| —Q+Thm) | o]
0o V. -(9.+1‘!."/?‘) l. -0.
RS ) -~ . (3 . 68)
: . o 1 ~ythVm) - |
(o] (o) —-UgtC - U/ Yp-e +U, ("z’%)
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The smallest value n can take is 2, and we will show later that in the

limit as n->00 we obtain the exact consistency equation, (3.66).

For n = 2, (3.68) reduces to
-ﬁi (UO—C)Q- = O
4+ .
so that the solution for c is

C= Uo .
For n = 3 the equation of consistency reduces to
(Uo-c)2 = U} (-2+TB*h7q)
36 (a+7h*/q)
For 0< ¥h < 4.28 ¢ will be a complex quantity and for 4.28< ¥h, c is

purely real. With n = 4 we find that
We—cY? = U2 (1+3h%1g) %3

16 (2+h¥vi8)% |
so that for O ¥h <& 3.42 ¢ is complex and 3.42&¥h ¢ is real. Finally

for n = 5,
(Up-c)? = _9.3 (ar3—-12X* - 262+2)

oo A(N*-2)
2 - b"hz/25 and so for 0 €¥h £ 2.5 ¢ is complex and for

where A
2.5&%h ¢ is real. When we discuss (3.66) we will find that the values

for ¢ at n = 5 are very accurate approximations to the exact results.

We will now look at the general equation of consistency (3.68).
Using the notation that Am,‘ is the whole determinant and. AS is the
determinant of the first s rows and columns in the lower right hand

corner, the following equations can be deduced:
D= (Ve t UG5 Ay + CUp=c-U)Baoy =0, )

An = - C9.+T’h1/n’) An-] - An-ﬁ, ,

g
* o
x
1]

- (L4 3Hh/nY) As - As-\ )

Ay = - L1+'6‘§\’/n1)Az - A, , (3.69).
B, = - (2+F*hin?) A, + (Upme +Ui2)
A, = Upmer U G-h), ]




- /a)

A solution for As can be found in the form

Ag= Aeoshse + Bawnhso.

(3.70)
Using the result that ‘
Agyt Asy = 2coshe bs |
we can define © from (3.69) as
6= cosh'[-1-Wam]. | (3.91)

The equations for A’, and Az will define A and B. From the equation for
A, we have |

ﬁcosh:ze + Besunh2E = acosha[ﬂcoshe+3smh9] + Ug-CtUifg |
and hence

A= -Uptc-Ui/z . | (3.72)
The equation for A‘ leads to an equation between A and B,

Acoshe + Bsuh® = Up-c+ U, (5-%)

and by substituting for A and cosh® from (3.71) and (3.72) we obtain
an?

where from (3.71)

7
sunh& = -‘éh{\wo_:"h"
n 4n2

The equation of consistency, Am.. = O can be written as

(oo-c.-ru.('r"\"‘i))[ Acoshn€ + Bsunh n9]

¥ (Uo-c-uy/a) L Acoshin-10 + Bsmh(n-l)e] =0, (3.94)

When we substitute for A, B and © from (3.71), (3.72) and (3.73), (3.74)

becomes an equation for c.

When we substitute n = 2, 3, 4 an d 5 (3.74) will reduce to the
formulae found earlier in this chapter. We now wish to find the values of

c when n= 00 ,



From (3.74) we have

A { (Uy-c =Y1/2) [( 1+ coshB)coshng - suinhe sinhn 9:l+ Uiln f.oshne]' .

+8 {(uo-c.-U./;,)[(\S-coshe)su_\hne-sm\wecoshne]-r Ua/nsmhne} =0

(3.75)
It is necessary to find thelimits of cosh(n®) and sinh(ne) as n-»o00 .

From (3.71) we obtain
e®+ e = 2(1+vham)

and we multiply the equation by eG'to produce a quadratic equation for

ea ; taking the positive root we find

Y
ef= 1+ 3% & m[lvy_‘_h_‘] 2.
an? n 4n

When n is sufficiently large we can now write

eP= 1+ Th + o(_lﬁz) X

-8
€= 1 - ¥+ o(L,).

With the result that

. N
Lim (i+2e/m) = %
n>00
we have

: ne : " an
l;.;c_;nme = %L_;?o[l*-tg»fo(.:ﬁ,)] =e

and hence

Lim coshne = cosh¥h .
N>c0

Lim swhng = suhgh, | (3.76)
N->co

Substituting into (3.75) the values of A and B from (3.72) and (3.73) and

using the limits (3.76), retaining terms of orde1*1% yields

(~Up+c - U./z)"(uo-c-u./g) 'o‘h+anh“6h+u,] + U, (U,,—c-U-'/z) + Q;\ Yanhvh =0
: ]
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which simplifies to

(V=) = %} (1 +-%‘- TheothYh), ' (3.77)
3

This is the same equation found by solving the differential equation.

INVESTIGATION OF TEE EQUATION OF CCONSISTENCY

The equation of consistency, (3.66) found by both methods can be

written as

(uo—-c)z- = ._%‘1 ‘_ T - °°%!7L.‘][Ig - ronh ‘égl}] (3.78)

where Ug 1s the mean velocity of the zonal current and U; = S“Bhlﬂn" .
The right hand side of (3.78) has one zero at approximately YW= 2.k4.
When O < Yh £ 2.4 the right hand side of (3.78) is negative and when

2.4 < ¥h the right hand side is positive. Thus if we write

' 7
di¥w) = [V 1+ o4 - yheothyh |] * (3.79)

we have the following values for c

C= Ut Wdlwh) |, o< h<r 4, (3.80)
h
c = Ut %hol(‘b’h) , 24L& Th - (3.81)

To interpret (3.80) and (3.81) we return to the formulation of the
perturbation pressure, P' (x, z, t) which in (3.30) we defined as

' ke ¢c-ct)
Plix,2,6) = Pye .

When ¢ has a positive imaginary term, the resulting wave term grows
exponentially and is therefore unstable. For the region 2.4<& dh y, C is
purely real and so only progressive waves are formed. For the range

0 < ¥h< 2.4 however ¢ is complex. There are two values for c¢; when

c = Up- l:‘%\&(xh) the wave is damped and tends to a zero amplitude
with increasing time but when ¢ = U +iU, d tyh) an unstable wave

h
existse.
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The unstable wave will double its amplitude in a time t, given by

RU, d(sh) &, = 0.6493 .
h (3.82)

The function d(¥h) is zero at ¥h =0 and ¥h = 2.4 and attains a
maximum at Y h = 1.61 of 0.3. The maximum growth rate is associated

with a wavelength ko , where

koh [anA/p 1% =1 ¢l
_ec.. [3 Pl] (3.83)

since the definition of ¥ from (3.51) is

Y

%= %[aﬁn%,] .
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CHAPTER 3.4

AN APPROXIMATE SOLUTION OF THE STABILITY PROBLEM USING DIFFERENCE

METHODS

From Chapter 3.3 the method of differencing has been successful in
obtaining a consistency equation and so the same method will be used here
on the two layer model formulated in Chapter 3.2. The system of equations

to be solved is

e 4% _i(uez)- 2P 5| = .8l
73.%'.;_4 {-e) [ 2P - ]=o, oszsn, (3.8%4)

subject to
\

e d® - Jwey-)4P - v P]: b 220 h
P.dz?*‘{ %\E 2 © A EES™

dz?

éif =0 ab 2:=¥L .
dz? |

4P ~HdP =0 aF z=0 , (3.85)
i I

As before we take U(z) in the form .
U2 = Up + U, (2/h-'a) . (3.86)

TEE DIFFERENCE METHOD

We divide the space z = 0 to z = h into n intervals and uéing the

central differencing (30) formulae for PCN and for P[" ,

P{w = ‘.Pf.;z— +P"ﬂ t+ GP{ -4-P'_l Fe P"_z]'/ (h-/n‘+
W oAz ’ (3.87)
Pi = [ Pin - ZP[ + P{..| ] /( ’n) )

we transform (3.84) into (n-3) equations for Pj’ 2 £ jg n-1,

=1 [%‘*2_4 Du+ &P — 4P, + %—2]
Lo

- %}z‘_ Ug—C+ U.[j/n'%_]] [pjﬂ - (2*3'#11)& ¥ %""] =0, 2aen .(3.88)
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We use the following forward difference formulae (30)

p""= [ p|'+3 - 3p|'+:_ + 3Py~ Pa'] /(%)3‘

-0
{

. . 2 '
= [P - 27, +7) /(%) , (3.89)

Pl" = [ Pfﬂ- P.,] /(!it\) ,

to transform the two boundary conditions z = 0O to

F.-2P +P, -th[ A-R] = O, - (3.90)

&[n-3m +3R-R] - 1y (o-gr-c)[R-5] + l_:‘_\; U <o. Goom
Similarly using the backward difference formulae(30),

P [Pi-3P;, +3P, - P, 1/ (B)3

R [P -2p, + P, 1 /(R)7,

B'=LP-PL 1/ (R, 2%
the boundary conditions at z = h can be written in the form

€ [ a3t 3o Paa] -2 (Gt [Purfi] + B 0Raz0,  (555)

P -2P., +tPa =0 . (3.94)

We now have (n + 1) equations in (n + 1) unknowns, namely Py,

n* The equations can be written in a matrix form,

where Ay is the (n + 1) x (n + 1) matrix formed by the coefficinets of
in the equations (3.88), (3.90), (3.91), (3.93) and (3.94). The system
is homogeneous, producing an eigen value type problem. For the equations
to be consistent,

IRl =0. (3.95)

Thus there are only a finite set of values for c for which the equation
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(3.95) holds. Using the notation

: 9
Uj = (Ut (In-"2)u,-c)
6 = 2+ T‘h’l
n* 4 (3.96)
2 -
m = h*/n*
- (=)
E = &l ]
we can write (3.95) as
1+ Hy -2.-th t ° o
n ) n
~Erim{u-Y+8~¢) E-imlu-9-c) =3E E o
N S
E -&E-imy, 6E-imSu, ~-4E-imy, €
~.E =4E -imUj} se_-i.m!q‘- ~4E-imY; E =
" £ -aC-imUp, BE-imSU,, -4E-imUpn €
* o -E 3E -3€E yim(uag.-cs E-im(u,og‘.g,-g)
S L - ° 1 -2 . !
(3.97)

As in Chapter 3:..3 we can now take small values of n in (3.97) to
determine approximate.values for c. The. smallest value of n in this case
is L, producing a (5 x 5) determinant. The cases n = 4 and n = 5 are
dealt with in Appendix C. We will look at a general case immediately and

look for solutions for ¢ for general n. We will be able to check these

formulae for ¢ with the particular roots found in Appendix C.

TWO PROPERTIES OF THE DETERMINANT |Ap|

Equation (3.97) gives the general form of VAgl, an (n + 1) x (n + 1)

determinant. The determinant should produce a term of the form o(En" .

However it is easy to show that & = O. This term is found by retaining
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the first and last rows and only terms containing € in the remaining

1
rows. This determinant, An is of the form

1+hd  -a2-hH 0 o©°
n n
-\ 3 -3. { o]
| -+ 6 % L.
A = n-\
n = (&) .
1%
f'l
o

It can easily be seen that row 2 + (row 3 + ...

)
and thus Aq = O.

The second result may be obtained in the following way.

now the term independent of &

u
term, denoted as A, takes the form

1+hH ~2-Hh 1 ©
n "
UrcroGR) -Vl o o
o) - s -l
7]
A“ S UzUz"-" Un.z

.0 -1
(o
. .o

3 0
v -2

» ignoring the € dependence in H.

s -

o/ Uo'c’%
! -2

(3.98)

vee + TOW Nn-1) = row n

We consider

This

o

“UgeH(zh)

(3.99)
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The determinant in the above expression, (3.99) is a quadratic ih (Ug-c)
and it can be shown that the coefficient of (Uo c)* is independent of

H. We substitute U, = Ointo the determinant and find the coefficient of

(Ug -c)*, denoted by ,Arllu, takes the form

4hH  -2-pH V © ) .
n
\ -1 0 ©
o -t § -l o - .
) ) (3.100)
no_ ' .
R, =

By adding columns 1 and 2 it can easily be shown that Anm is independent

of H.

TWO SERIES EXPANSIONS FORc

)
When ‘An‘ is expanded, it can be written as a series in powers of £’

remembering that H = (1-1))\2"?; % We can write (3.97) in the form

EI Al T n-2 Ll U TSN TR
(&_‘\3) {Q, () + E%hrq) Cc)]-r(l%‘) % Qy ) +E7%c2Q taft - -
]

n2
vl 2T 0 ~-‘/,'/,’(Q]._._
e e et %‘(%.) [Qm_scch £7C% Qnts o)

(3.107)
Ps

where Q; (c) is a polynomial of order r in c. [Note that the two
properties shown above have been used in writing (3.101). The first

two terms in the expansion (3.101) cén be written as
n-\ - n-2 2 2
Q, o + €%l Q, (&) = UyU; = Uny "b,(uo-c) +5,(U7c)Y, + by,

+s_""c."3-(|-i)l\h_( d,(Ug-cHY, + dzU,z)} .
n



(83)

When we substitute for these terms in (3.101) the equation in c becomes

(ih‘ 03 Uy Vg | b l0sel e b 0o, ¢ b0, + €% %0-000 (d,Ctc), +d u=)]
_n...),_; n-2 | D\U5C) + b, \s 7 B34 e et A

-2 . n-2 . ni
i -2 keh ]+- - e [o'to vieha '()]:
*(%J%.[Qscc)rs c Q+(c\ _n"('ﬁ) 21".30-9_’: QL o .

(3.102)
We will now consider the roots of c¢c. The solutions fall into two classes.
In the first place there are solutions for c¢ in the form

C=CotE¢c rEC ¥+ """ | (3.103)

There are (n-1) values for Co found by equating the term E-yz to zero in

(3.102), °
-
Cazo ,
ct= U= U= (%5,
co. = Ui = 05"(}?1—‘11)04 ) o (3-104)

c,°n.2= Un.z= Uo - (’2:';2-‘,1)0' )

€ = U, +day, . J

n-
In the second place there are large roots for ¢ found by equating Q, ()

-l
and € '*cyzq':"cc) in (3.101). The series for ¢ takes the form

C= gb*&\ * a-z*

€ g¥a B : (3.105)
Thus a4 is found by equating the term {n'th' zero in (3.102) and we
obtain |
2
0y = Kcl-i)n/:hc\.U,] . (3.106)
[}

The solution a, = O does not produce a new root for ¢ as it can easily be

=0+l
shown by equating the term €

in (3.102) corresponding to ag = O,that
the next term in the expansion of ¢, namely a, is also zero. This value

of ¢ now reduces to the roct corresponding to c = cqet 'E"’c,f" e
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We have found n values for ¢ for which |Aql = O. Using a simple
example in the form. of (3.102) we aim to show that these are all roots.
We choose an equation of the form |

(c-w)3- 2" Ceopic-7) = O. (3.107)
From the expansion (3.103), c = cg + g C, + se..., We have three values
for ¢ 4 which are A , ¥ and O and from the expansion (3.105),
cs= g_”g"”. .+ we have one new root with ag = 1. If we square (3.107)

]

we pioduie a sixth order equation for c¢ with roots at approximately _O, '/g ’

/z,(twice) and ¥ (twice). We can see now that we have indeed found all

the roots of (3.107). By the same argument an equation of the form

(e-d) - £ (c-p)e-g) - Cemf) = O

has (r + 1) roots.

GENERAL FORMULAE FOR THE ROCTS OF c

We will now proceed to find the general formulae for the n roots of
Coe

(1) The (n-2) Values for c,

To find expressions for cq we need to lock at 1Aq] with & = O,

ignoring the dependence of H on € . This term, denoted by An will take

the form
H
1488 2wy o
o b © o
o -1 4 -1 o
2 -1 : .
An =Uzv3“ "Uﬂ'z {%1] . . (3.108)




b= - (V=eY+ Ui/2

(3.

S

(Ug-e) * Uv/2

p= -+ Uin
[
It is the H dependent terms of An. y denoted by An s which when

n-)

equated to zero produce the (n-1) roots, Cg 5 Cg sesecs Cq o

" .
) s ) i _
An= 0, -'-Un_z‘l_%,)sy’c%%hllﬂ) | . =0.

The first (n-2) roots are found by equating the factors outside the

n-i

determinant in (3.109) to zero as shown in (3.104). The root cg

'
is found by equating the determinant in (3.109), referred to as D, to

zero. Expanding by the first two rows D,'\ reduces to

Dr: = (a+b) . ,- ) =%|‘Dn-z'

where 1Dg.pl is of order (n-1) x (n-1).

(85)

109)

(3.110)
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We can evaluate ‘Dn-z.\ by using recurrence relationships. Using
the notation that |Dgl is the (s + 1) x (s + 1) determinant in the
bottom right hand corner of [Dn-2) , we can form the following

recurrence relationships:

Dna! = 6ID|{-3\ = 1Dn-2l,

‘Ds.ﬂ‘ = S‘Ds\ ; \Ds-]l‘

- (3.111)
10,1 = 6Dl -g.
101 = k+23, J
We will assume that
D4l = ﬁcos\\se- + Bsnhse | l1gsgn-2 ., | (3.112)

Since
IDgy! + 103yl = Al coshesre + cosh(s—i)e]' +BIsmh(s+ner+ smh(s-l)ej

= 2coshe | Dsl

we can take 6 = 2 cosh@ 'so that

cosh® = 1| + F*h*/an?, (3.113)
Using the equation for Dyl in (3.111) we find

A=p | (3.114)
and from the equation for 1D,} in (3.111) and (3.114) we deduce

Bz (+28-RBcosho)/ sinhe, | (3.115)~

Using (3.113), it can be shown that

. AL ‘./" |
sinho = 1%[\‘\'"‘5}_}\\.1] . (3.116)

We finally have for |Dp.,l

IDnoyl = sh(n-2Y8 + (L+2B-Bcoshp) snh(n-2) ,
nal = f3eo (k+ap-Be Y- (3.117)
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Substituting for € and B in (3.109) produces

== 1. - Y _vh [ ..I. -
IDqz [ Ugre+ Y (5 '&ﬂcosmn 2)e +[.ﬁ- %Fz( U,mw,(,,-i/,)] su;\?r(;:ez)e_
' ' (3.118)
Since ¢ is the value of ¢ for which |Dpez) = O we have
1 } .
ez, + U,[('%‘;';)cosh(n-z)e-("ﬁ"g%z("z"},))sinh(n-z)e/sinhe]
g T . ° .
cosh(n-2)e - '%_7"\‘-‘3 inhn-2)8 /stnh & (3.119)

(2) The (n-1) Values for c,

To find the values for c, we equate the term in 2? to zero in (3.102).

It is easily shown that the value of ¢, corresponding to cg , C& , secses

<:"::'3 and cfM™? is zero and so it only remains to find the value of ¢, ,
referred to as c:h' corresponding to c:-' . From (3.102) we can see
that

o™ 2 b Cu-el? 4 byCug-elh0, + 03 017)
Cem™Vad,UNnG-i)/n
Since, from (3.102) |Dp_41 corresponds to the term (d,(Uy-c) + 4,0, )

. (3.120)

we can easily find d, from (3.118) as it is the coefficient of (-c) and

thus

d, = _Yl‘_[- cosh(n-2)8 +(€*h/om) Smh_(”'”&/s.mhe] y (3.121)

To find an expression for the numerator in (3.120) we first take the H

independent terms of the determinant in (3.108), namely

|"2| ° ¢ 3 0 . ° .
a boo + - . -
o-t&-10 - - -+ -
1dal = . . . .
n . .o (3.122)
P SR
) « . . .0 O 3
. v s s a0 ) =21
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When we expand by the first two rows we find
\dn‘ = Lb"'iﬂ)ldn-z‘ - &‘dn-3‘

but for r&€ n-2, ld ! F ID,} and therefore

ldol = Cor20)Dpal =0 1Dass) | (5.123)
For the vaiue of the numerator of %k' in (3.120) we substitute ¢ = c§™'
into ldnl . Since 1Dp-al is zer§ when ¢ = ¢ we oﬁly need to
evaluate -a |Dna) 2t ¢ = ¢! . Thus, the formula for M s

v+ otk Gk Do B o]
d(a OAR (Ugr ""U)’z/n (3.124)

where d,/d, is the coefficient of U, in (3.119).

(3) The Value of aj

From (3.106) we find that ae is defined by
2
= [u-imho\,un/b,n-_\é
We already have an expression for d, in (3.121) So it only remains to find
b, . Since ldyl is the term [b(Use)P+ ', LUsCID, * b3 o) in

(3.102) we can find b, by substituting Uy = O in 1dnl . Using (3.123)

and (3.118) we find that

b, = cosh(n=3)® - cosh(n-2)e - ht ‘_sm\t(n-a)e—smh(.n-z)a}

antsunn®
(3.125)
and therefore
2
a,= [ a-)2hU, (-cosh (n-2)€© +B %  n2)sinh (n-2)8/s(nh &)
n [wsh (n-3)6 - cosh (N-2)6 -z-ﬁ-;smhgs'"h‘"‘?*)e 9“’*“"'”9)_] (3.126)

(4) The Value of a,

The next term in the expansion for c¢ in (3.105) is found by equating

on
the term of € ’%to zero. It is easily shown that a, is zero.

We have now found the first two terms of the expansions of the n roots
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of c.. These can be summarised as follows

c'= oCed )
1-
C'= U (3, role),
c'= Vs tht)y, +oce) |
: : ' T (3.127)
n-2 (2. -
c = =44 r o),
-t n-i ¥ n-)
C = G +EC, -+ o(E)
"= o.e” + 0(€n J

where co" ' , ¢ and a, are defined in (3.119), (3.124) and (3.126)
respectively. The formulae of (3.127) are checked by substituting n = b

and n = 5 and comparing the results with Appendix C.

LIMITING VALUES OF THE ROOTS FCR ¢

Following the method introduced in Chapter 3.3 the next step would

be to look at the coefficients in (3.127) in the limit as n->e0. The n-3

2

roots of c, c@ , «.... C4 % will tend to the continuous function,

= Uz)

which is the root produced by ignoring the fourth order differential term

in the equation for P,

3 3’«; - 1 (V) - c.)\-_ %1-11P], o,

N

Unfortunately the limiting process for c and ¢? produced difficulties,

and although a limit for cnﬂcould be found, namely

()
Lim ed? = o, + Y [ % -~ tarhYh
n->e0 Th 2

-
¢y and a, did not have finite limits. We found

. n-i
Lim /7= o, [ima,=o0.
™->00 n->00

The fact that a,=> O may imply that this root does not exist for the
exact equationé but it is hard to explain the limit of crﬂ. However for
finite n we can use the formulae in (3.127) for approximate solutions of

Ce
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RESULTS AND DISCUSSION

We have seen that the method of differencing produces n roots for
c. To investigate stability of the system we return to the formulation

of P'andw in (3.30). Both functions contain the factor

-ikel  oiRegE Rt
e = e e

where ¢ = cgp + ic Thus when ¢ > 0, an

1
unstable wave exists. Looking at the roots in (3.127) the roots

2, ceeee ¢™? are to the order 'g"‘* purely real and therefore do not
produce instabilities. From (3.126), ay is a negative imaginary term
which would produce a damped wave; the only root t§ produce an unstable

. , -1 - 1 -
wave is therefore cn =_c.°n 'y a"c.,"‘ Y e,

From (3.119) we see that cd™ is real and from (3.124) c',"" is

complex. Writing ¢ as,

it can easily be seen that c,l“"l is approximately c:" .

n=j

Forn = 4 and n = 5, the analytical solutions for ¢ are relatively

sinple and following Eady we investigate the value of C;H as a function

of ¥h. Graphs of the two functions c‘; and c;

are shown in Fig. 1 and
2 using constants as in (3.58) with wave lengths of order 100Ckms - an
average wave length for such disturbances. These values are for molecular

thermal conductivities. TFor eddy values £ is 105 times larger, thus

N«
Cr

will be unchanged and c:' which is of order E."zwill increase by a
factor of 107, Unlike the Eady model instability occurs for all ¥h
with a maximum value at ¥h = 3 for n = 4 and ¥h = 2.5 for n = 5. It
must be remembered that these unstable waves grow slowly as they are

produced by second order terms. The waves travel at a speed, CE.I which

is of the same order as the thermal wind.

For larger values of n the computer is needed to calculate c™
and we now have a choice of method. The formulae from (3.119) and (3%.124)

can be employed immediately or one could return to the initial formulation
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of the consistency equation (3‘.97) and use‘c_omputer methods to reduce
the determinant and find the roots. Both methods were used and the
results from the two methods were the same within ou'r needs of accuracy.
The details of the determinant u;ethod are given in Appendix D. Values

for c™!

are presented in the Tables 1 and 2 for n = 5-’i’l and for various
values of ¥h and wavelength L =2T/R ., The main points to notice from

these tables are:

(1) For all n, the speéd of the wave, c:.'increases with ¥h and is
independent of L and is of the order of Uy, the speed of the thermal
wind.

(2) For all n, there is a maximum of c'_{."

for a small value of 3¥h,
(n = 5, maximum at ¥h = 5, for n = 16 maximum at ¥h = 1) and the
value of Ph for the maximum ‘decreases with increasing n.

(3) As n increases, more maxima and minima occur for c';' and some

negative values do occur.

. n=4 .
(4) As L increases, Ccy 1increases.

Thus to sum up, we have found unstable waves for all values of ¥ h,
unlike the Eady model. However the growth rates are very much slower as
the imaginary part of ¢ is found in second order terms. We have not
found the Eady unstabilities in the region 0<L ffh £2.4 appearing as first
order terms in the series expansion of c.. This is perhaps to be
expected as the equation of consistency for ;chis model, (3.97) cannot
be reduced to the Eady equation of consistency, (3.68) merely by
substituting € = 0. In the next chgpter we follow methods of Meksyn
and find that the Eady results there are first order terms .in a series

expansion of c.
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Figure 1: Variation of Cgwith ¥h (L = 1000kms)
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Figure 2: Variation of Cywith¥h (L = 1000kms)
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AN APPROXIMATE SOLUTION OF THE STABILITY PROBLEM FOLLOWING MEKSYN

We now aim to find criteria for stability following methods of

Meskyn (26). From Chaper 3.2, (3.53) and (3;54), the

find a solution of

¢ d*P - (=) -0)
f% Az:

subject to the boundary conditioms,

[ %2 - %P

&

d’®P - HdP =0 ar 2=0 ,
dz? dz

é:g =0 ar z=h ,
az?

'THE SOLUTICON FOLLOWING MEKSYN

We introduce a new parameter Z defined by

problem is to

e &3 i [(ULz)-c,)dE - U'lz)P] =0 ar z=0h,
dz3 dz s

Uy-¢ = Y (2-2Z) , 0g£z«l, (3.128)
where Z is a complex constant. The above eéuations can now be
rewritten in a nondimensional form, namely

d_. -iA(Z- 23[& -3, P] (3.129)

azt
subject to

: 4
gee -ik[(z-zadP..P} =0 ot Z=o0,l,
4z° | 4z
*f - hHdP =0 ar z=0, g (3.130)
dz? dZ 313
dﬂ’ =0 ar z=)\ ]
4az2*

The nondimensional quantities, A and T. are defined by

A= U /€ <, = %h .

b
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It should be noted that A\ is a large quantity and plays the part of a

Reynolds Number (31).

Following Heisenberg and others (20) we can look for solutions of

P(Z) of the form

P2 = 2% + N'orle) + X222y e - - - (3.131)

0

so that Yr(Z) will satisfy the differential equation
d?. (] ,,‘2 - O .
"% - XY =0 (3.132)
az* | -

0
clearly the two solutions for Y (Z) are

'Z{.r°(2.) = e‘.’:’b’, Z.

It is convenient to have the first two solutions for P in a slightly

o | 4
different form from 2Yf (2) and we shall write them as P, (2) and P,(Z),

where
3,(2-2.) ,
P'(z) = ’ . (3.133)
P(2) = € &2

It can easily be seen that a boundary layer will exist in the neighbour-
hood of Z = Z . The solutions F, (Z) and P,(Z) are good approximations

of the solution to (3.129) away from the boundary layer.

We now introduce yet another new parameter, Y) defined by

1= A5 (2-Zo). | | (3.134)
The system of equation, (3.129) and (3.130) become

4P "][d"_P -R‘P] =0 (3.135)

dnt °“).’
subject to .

-P] =0 oF =

d']’s [ CL ] el »

d_E - ﬂ(_!_P:. a¥ '\"]o )

dn? a.] (3.136)

df =0 ab =1, .

an?
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where the constants'R, M, f], and qk are defined by,

-

Rz.-__ X-z/3 ,“z

M= hABH |
- (3.137)
o= '-AM;ZG‘

1, = AB(1-2)

Later it will be necessary to know where Zs lies in the complex

e

plane. As in Part 2, we use heuristic arguments to assume that

Z.= a-1b | (3.138)

where a >> b and 0L a, b, 1.

Meksyn (26) has used the Laplace Integral method to resolve equations
of the form (3.135) and so we will look for a solution for P(q ) in the

form

Pun = [ X t) exp-tne™) dt
1 1 P (3.139)

where ¢ is some curve in the complex t plane; this will be a solution of

(3.135) provided that

I(t*e'ug-iq(:‘e"'%f- inR* ) X e Pat =o (3.140)
c

where ;n“

G=~tne °,

We integrate by parts the last two terms in (3.140) to obtain

C z -2 iy, L ST
{le'w‘(e‘z 5 )y e? ]c + I(t’e~z’gx -4 (e 2e9x))efdt = o.
[
Accordingly a solution of the form (3.138) is possible provided

: R -2ilY . |
%t[ezﬂ@x“)(t-ge\fvg_Rzﬂ - C+€ 3')(“:] =0 (3.141)
and
{(t‘&e"wg_g‘ll)')((b)e¢]c' =0, (3.142)

We can rewrite (3.141) as

(£2-R%e'™?) c% + (tH+2t)X = o,
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The variables can now be separated to gifre

. W
dx +dl'[t"+ e, rte™ 2 4 __at ]=o
x

(B-r2eM) - Rie!™A (3.143)
which can be integrated to obtain the solution forx, namely
-1-RY, . gl .
- _p\ \IT, “Lid_LpiM].
X (® = (e-Re'™) (erRe™) ’-exp[ Wt - trRe ] | (3.14)
Thus a solution for P(q ) exists in the form
i e 1 .
P(rp=J(t-neW¢) 2 (trre ™) )éexp[-igﬁ-tﬁe *tne ]At (3.145)
c
where the curve ¢ is chosen so that, from (3.142)
. 3¢ .W‘ng 3 rpbi@3 -1 ] =
{({:-Re'"") Z (t+ Re'®) expt t*-tRE the ] o o. (3.146)

From (3.146) we can see that t = Re'™ ang t = -Re!™ are branch

points. If we write t = re'® then

-t3= -r3(cosze+isnaB).
Accordingly exp(- 731:3)—} O as r-»>® provided that cos38 >0} the following

cases are therefore possible

-I<3e <O e -D<b<c@ ,
2 2 ra 3
W< 386 <30T e T <6<

I < 36 <A e W< & <37 ,
2 2 é 2

and the three choices for ¢ are shown in Fig. 1. As in the case discussed
by Meksyn only two of the curves, o(.ﬁ,, A;By and A*Bq. are indeppendent.
The three paths, when d@scribed consecutively in the same direction correspond .
to a closed path round the origin. Provided the curves lie within the branch

i
points *_’Re% , the integrand is regular inside the closed contour and

the integral vanishes.

We will choose the curves A353 and A*B,, for the two independent

solutions, P3(T] ) and P*(f]) respectively so that,
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Fig. 1: Three possible paths of integration for P(f] )
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. Y 3 ta) 3 . .
(A J (t-re' ™" E (¢4 ey "R exp [-V3t3- eRe B t']é'"/‘] dn), $=3¢.

(3.148)
The two solutions P; (Z) and PZCZ) can be rewritten as
_ * nR
R2)= Bup = e’
e ' (3.149)
R@@)= R = e,
The general solution for P(Y)) is therefore
Piy) = AR + BP + CP3()) + DPyn) (3.150)

where A, B, C and D are arbiﬁéry constants.

FORMULATION OF THE EQUATION CF CONSISTENCY

We substitute (3.150) into the homogeneous boundary conditions (3.136)

to obtain four equations for the arbitary constants A, B, C and D,
ALY+ BUXIBO)  + clLridB) + DUridR) = o,
AR+ BLnIBW,)  +ClLHIRL,) + DLiRey) = o,

ATRM) + BIBMY + CIP;() + DIPM) = o, [ (3.151)

ARYMY  + BRI+ CPM) + DR = o..

-

The operators L and J in (3.151) are defined by

L= 4% -ind ,

a3 dy
JT=4d>-Md .
"

The four equations of (3.151) lead to the equation of consistency,

namely
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(LAIRMY (IR CLHIR) (LAY Ry
(L+YR()  (LdRO) (i) Pylg,) (i R,)

IR ) TP, ) T TR (3.152)

P:‘(']A) P, ) A () Py (1))

The terms in the last two columns of the determinant in (3.152) are
integrals which are evaluated by the method of stationary points and the
details of the method are presented in Appendix E. It is found that

Py( qo) and Pg( qh) are negligibly small and so their contributions to

the boundary conditions at A, and nh respectively are taken to be zero.
When we have suﬁstituted into (3.152) the functions P‘(q ) and P,( Q) from
(3.149) and using (E.43), (E.44), (E.70) and (E.71) from Appendix E, the

equation of consistency becomes

(R‘-itq,n-n)e‘fg (-R%i(q,em)éqx o R_é%‘f_é_m“. otﬁ&:‘dl
(R‘.;u)"lz-lne""’2 (-R‘+i(q,\R+méq$ nTig’?‘ ["‘lb *;‘;!;;.rv‘] ©
(Rerm)e™®  (RBaMmIE ™" OREL RO B
REe™ e ™" ¢ Rene™ )2 o

(3.153)

APPROXIMATE CRITERIA FOR STABILITY

We will look at the order of magnitude'of'the various terms in (3%.153), -

From (3.137) and Appendix E we find that

. _ .
K=o (\), 8= 0CA%), M=o(NK) ,R=0(A ), =00 "), (3.154)
After dividing the third row of the determinant in (3.153) by Ayzand the
A
fourth row of the determinant in (3.153) by A , we can write (3.153) in

the general form,



N va,  X'g +b,
N vra, N8+,
-7, '

}\.‘83 + b,

b

=%
A ‘93 + Q3

Q,

where A, aj, By, b; and &£;

© L A5
P S |
o | -L3)\v‘ =
A ‘o

(i =1, 2, 3, 4) are independent of AN
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(3.155)

and

in the last two columns we have retained the largest terms only, namely

A= (RM,
B '™

e

We expand the determinant by the last two columns to give

, -% -}
. N%pjra; A'Bytb, . AR, ra,
A, A ¥ g AT
., by
N'Ara,  N'8,+b, T EOLALY
a* b+ A-'ﬂ,_i-a-,_

X'g,rb,

A ‘H3+ as /\..%831’53

NB,+ b,

hﬁ82+bz

J\ )\b' F "\R h oy dss)\'ll'-‘- Meé"y‘ ) $+A= v(,'e'% .

= 0.

(3.156)

We will approximate the equation (3.156) by retaining the terms of order

)\3/1 and A%, namely,

. a' b' a‘ B| Qz
Nt o, * Nl # Ny
az by R, B, a3
which is
. R . ~NgR R
2”% (1-n,RYe (\+nRre s |
Be R eone | TR R
(\-q,Re” (|+q,,me ’ o™
R MR
. y Ci-N,R)e (l+r]e)e
+RMA2 o)
. 0 - R - .
- efl® e"o

(3.157)

(3.158)

At this stage we will return to the original parameters and re-
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introduce U(z), the thermal wind, remembering that

n= -ABZ, = ABG-zZ,),

Uz)-c = U, (2-2.),
U(Z) = Uy + U, (2-"2), 0g¢Z <),

Using the above formulae, with ¢ =co + ic, (3.158) becomes

L(U+Y, ‘Co‘c|)[":!|z (Vo= Cemic,)2+ 3" - ¥, cothy, + J
2 2 u? 4

_X‘U,Se'ws(0,-c°-ic,+U./2)[%: (Uomcomici Y1) + cothy, ]

+ X 3® [U+r 0 -come)] = 0. (3.159)
'i 2
Thus ¢ can be written as a series of the form

C = Ro+iR + 7\-‘(361-{3') 4‘0():3’7.) (3.160)

: -3
Note that the term of order A l"in (3.160) will arise by retaining

the term
a, b
Agdy
Qy \u,

from (3.156) in the equation of consistency, (3.157). It is also import-
ant to note that the series (3.160) is not the same series expansion

-l
found for ¢ in Part 2, which was a series in powers of A /2.

The first term, (Ao+iA;) in the series (3.160) for c, satisfies

the equation

i §
(U,-R,-iR) = U [l + 32 - co\'\n.‘d’].,
°oe ‘6,"' o) ' i (3.161)

This is, of course, the Eady result found in Chapter 3.3. If we write
Y.
2
D(x'} = { 1+ '6,‘/4- -, c.o\'h‘o’,] s

|
4
d (.T,) = [I i+ T,z/q--‘a"c.o'f\'!v,i] ,

then we find as before,

—e

DiF) =id , Agtif= U T Wd | o< <24,
A (3.162)
Dix) =d , Ao+if= uotgél_ , 244 . .
]
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To find the second term, (Bo+iB,) in the series (3.160) we sub-
stitute the first two terms of the series in (3.160) into (3.159) and

retain terms of order X" to obtain the following equation

Boti 8, = [ 2y 05iA)* V34 + T2 (05 A At Uug) coth, ] - /2 [ty -As 0]
‘6!/0'7- [Uo—ﬂo-i A 1[VetUa-As Hn]

We substitute for (Ao+i4, ) from (3.161) and find that

Bo+i8, = 032 [T (1= Brzcothy, £ Deoths,) =Tyt d), |
| tD(%td)

As for (Ao+iA, ) there are two values for (Bg+iB,) for the ranges

0< % £ 2.4 and 2.4'€< 9§, and we find that

BB, = _Uz* { (1301~ geabos 2 d o]
0L, <2-4 14(1./,*;4) 2 2 2

+ i [—% +3 ;éi + -%‘ICOH‘UI : d.A)-% Cbnl.q‘l]} )

A (3.163)
B,ri8, = _ u3z? {[.L-z. cothy, 4 eothy, -2 ;4]
4e¥,  Tda2d) * * .
i [ 43 (1 -3 coth, :':dco\-h*&.)]} .
a k2
(3.164)

The formulae for (Bo+iB,) in (3.164) and(3.165) are complicated and
so we will look at the regions <6, small, <=§,~2.4 and 'K' large in more
depth.

(1) Small Values of ¥,

2
For small ‘Sl we can approximate coth ¥, to (-!5, + ,'%» Froeeanas )
]

and D(¥,) beccmes approximately ti'ﬁ, /¥ . Thus we find that

DU =+i%, | AR~ Ug+ (U BoriB, ~ U'[g_-_;:],

Niz "
DB =-1% : Aynf~ U= iU, 9.+;3,~-su,[.—i], (3.165)

Nz s
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(2) ¥, 2.4

To approximate (Bo+iB,) near Y, = 2.4, we write ¥, = 2.4 +E€ ,
where € is assumed to be small. We substitute for 75. in (3.159) to

obtain

Py .
_;_- [uo-,-g‘ -c.,-'c,] [—3&"(0,- c,-ucl)z +/u£]
- A’l v.ze.in'lg ( uo- Q_‘C"}U./Z)L.’l/ul ( Uo"Co‘ iC,“U./z) + (‘-6\"'\7,]

+ le?; (U4 Ui/g =co=c,)) = 0O .
2 .

where M = %, coth?*vy, - cothy, -%/2. When &€ is small compared with

N we have

Uy cerie) = N0 [-1?%(o,-c.,-ic,#—{')('{;:(v:co-ig- Uig) +eoth;) + (Vg U -co-c.SJ
(Vue"' V,/2~ce-C,)

[ 4

Thus, by comparing orders of magnitude we have that,

Con Up + X' | e, v, X', (4, finite constants) (3.166)
Since from (3.160) we have that '

Co= Rg+ X'Bg+ -+

ch= A NVB s

we can see that Bo and B, remain finite in this region.

(3) Large Values of ¥,

For large ¥, we can approximate coth¥, to 1 and D( ‘dl) becomes

approximately *(1- %A and we find that,

DUt~ (1=-Tih), A~ Vs~ Boti 8,7 (N, + A7),
(%.167)
PGS~ -(1-%2) 1 Ag+ip~ VotV e,+:e.~(—)\31,-i>\,;s,‘).
2

where }\; (i = 1-4) are positive constants.

DISCUSSION
We shall return to the formulation of the perturbation pressure

as defined in (3.30),
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] 1k(xe-ct)
Pex,z,t) = Playe

and notice that when ¢ has a positive imaginary term unstable waves can

exist. Unlike the Eady model we now have instability for all values of

%, -

For the range O<."6, 4 2.4 we have shown that the‘second term in the
expansion of ¢, (By+iB,) remains finite and it is therefore the Eady term
(Ao+iA,) which dominates. However, for the region 2.4 < ¥, where instability
does not exist in the Eady model the second order term (Bo+iB,) is import-
ant. As is seen above B, can be positive and is of order '6.1 and thus
for large Tl the term i}\-'Bl .can be large and produce unstable growth.
These unstable waves will travel at great speeds as X|B° will also be

large for large ¥, .

-1
For the term X B; to be of the same order of magnitude as the

Eady instability term (U.%) , of order Uy , we find that
]

|7
'G‘NU'h(/J‘ /8) 1.
Using the values in (3.55) and (3.57) we deduce the
following :
9 o
¥, ~ 10 (for molecular conductivity) ,
X ~ 107 ‘ I
' (for eddy conductivity) .
-1
For these values Of ‘8; R )\ B° is small and so the speed of

the unstable wave is approximately Rq = U,-U/2 .
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CHAPTER 3.6

- AN APPROXIMATE SOLUTION OF THE STABILITY PROBLEM FOLLOWING MEKSYN,

RETAINING THE /3 TERM
E 4

FORMULATION CF THE ODEL :
In Chapter 3.2, we formulated a fourth order differential equation

for P(z), (3.35). At that stage, we used the approximation, (3 =0O.
Using the methods introduced in Chapter 3.5 it is now possible to retain -
the 3 term and find a solution for P(z). The differential equation for

P(z), from (3.35) takes the form

k, d%P - \\zwcz)—c)[cl’l’ -

]—\_‘3&52&.. P=o. (3.168)

C\P| AZ“’ pILz
We will denote
£= k Y= s&m‘{‘ o= éso(ﬂ
' clki ’ /"l"z ? /‘Dlt?' ')

and thus (3.168) simplifies to

e A_if -i(U(z)—c.)[ t?; -'U‘P] -imP=0.

P dz4 (3.169)
We now use the change of variable as in Chapter 3.5, namely

Uty -c = U (Z-Z)) | 0<Z<
the equation (3.169) reduces to

. ' 2 . 1

dff A (z~z,_)[ ﬁ_"z-x,zp] _iAN'P: O (3.170)

az¢ 2%
where

A=Uhp /e, =% and M'=h'm/y .
Finally we introduce the variable q ’

n= A3 (z-2.) ' , (3.171)
and the resulting equation for P is

dte iqg[ &2 -R?P] - iMP =0 (3.172)

ant h
where

R*= X3 and M= N3M'.
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The boundary equations are not changed by retaining the /3 term, from

(3.136), the boundary conditions are

3P - P _ = = 1 (W)
%?\3 ‘["?’Tn P], ° e ]
(3.173)

LA

an?
P . Y= .
%——1 =0 ar =1,
As in Chapter 3.5 we use heuristic arguments to assume that

Ze = o-ib

d_"_?-Mi%:d a\"\=']°’

-’

where
o<o,bsl |, A>>b.
THE SOLUTION FOLLOWING MEKSYN

Following the method of Meksyn (26) described in Chapter 3.5 we

will look for a solution for P(Y] ) in the form

P = I?Cce)emp[-tqe';""} dt. G
We substitu;: P(N) ) from (3.174) into (3.172) and obtain

I(ﬁ&’“"i inte ™ viqri-in) X e®dt =0 (3.175)
where° .

P = - ene e,

We integrate by parts the middle two terms in (3.175) and it then becomes
. LI
[(ete ™% -imx -%k(e“i‘we s g1yx))e®dt
c

- _
+ [ie' “(t“é'"”- R%)X ed’ ]C = 0.,

(3.176)
A solution of the form (3.174) does therefore exist provided
N o Yo
g—t [ez 1) (tze|m3—-g1)'x'] + [ t'e +lH,-J'X' o (3.177)
and
- ¢ -
‘.(ge in3 RY) %X E ]c. =0 . (3.198)

Expanding (3.177) results in the following differential equation for X (t):
. . -
(£*- R2e ™3 %% v (ttrat-iMe )X = o.

We can separate the variables in the above equation and the solution for
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X(t) takes the form

Nle) = (e-Rei™ ] (ks R ™Y exp [t tR%E™]

(3.179)
where
Ma= M+ L&‘S.
2R oy " (3.180)
Thus M, is a complex quantity with 'Re{ H,}= 23 -0 and

Re{M,} >> Im{n,}.

The solution for P( t]) is therefore

P(YP = )' (t- P.?:'“I‘)-'-H”(E+ne'"")-“’_‘2zxp [—%tf‘"—-t:k"e.'m’-tqém] dt (3.181)
. . ,
where ¢ must be chosen so that .

[e-e'™ )™ (krRe ™) ™ exp[-ftP-eR%™ Ene m‘]]: o,

If we write t = re‘e then

~tv= -r3(cos3E+ \s5LN3S)
and exp{-‘/at3} => 0 as r=> 00 provided that cos3& > 0. As in

Chapter 3.5, (3.148) we have three possible cases for © ,

I< &<y
b}
6 6 (3.182)
nleeas
2 U& )
W’s <& <3,
As in Chapter 3.5, three possible contours for ¢ are shown in Fig. 1,
namely p('{&‘ ) A3B3 and A*B+ . It has been shown that only two of these

are independent and again we will choose A3B3 and A’Bf, for two indepen-

dent solutions P3(/} ) and Pﬁ(l} ) so that

v 1M, 1 R ; -
f;(q) 3 S(b-ﬂem‘) 2 e+Re %) * "exp[—-lét?- !:R,T'e'r”’-(:'l)e 'W‘] cH:,
Psbs s=34
' »
There are however a group of three more contours, uLz/!, y AyBy and

A,B, as shown in Fig. 2 which satisfy one of the conditions in (3.182).

m,
The three curves circle the singularity -Rel 0 and tend to infinity in the
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acceptable shaded areas in which one of the conditions of (3.182) hold.

The singularity at Reimk is to be avoided since P(q )®» 66 at this point.
Again, the three curves are not independent. Since thé contribution to

the integral of the singularity -.Rﬁgug is zero (Re{_M23»>'O) the integral
inside the closed contour éf the three paths. «£,B,, 4;B, and A,B2 is
zero. We will choose A,B, and A,B, for two independent solutions

P,()) and B, (1)) so that

Ps (‘}} = J (E_Relr"{‘)'\"”l (_b - Relﬂ'/‘ )—]*Mz ex P[-—Vst‘ - kgze:”/3-tqé.mj dt Py (3 . 183)

AsBs 5=1,2,3,4.
The four solutions are independent since A\B, and A,B, cannot be deformed

into A3B3 and A By without leaving the shaded areas. The general

solution foriP(ﬂ) is therefore

P = LB + AR + IR + SB0. (3.184)

FORMULATION OF THE EQUATION OF CONSISTENCY

The equation of consistency arising from the four -homogeneous

boundary conditions, (3.173) leads to an equation of the form

[(LH)P.(Q‘) (wrivfey  (Lrify) LLt WP 0),)

i Pen) LRy, ) L) () (L) Py ln,)

(3.185)
T fu,) TR IR TPln) 3:182

v N n ot
?n Uh) ' Pz. “]h) : P3 ('h) P‘*“m
where the operators L and J are defined as

L =d? -iqé_ , T= d*-md .
343 Aq dql Aﬂ

The terms in (3.185) are calculated in Appendix Fj the determinant in

(%.185) is simplified by approximations made in the Appendix and (3.185)

becomes
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Fig. 1: E Three possible paths of integration for P(f'] )
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A1
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o

Three more possible paths of integration

for P(!')

Fig. 2:
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C, D,{C _ o %,
1
DA c.f A ©
' : = O
C4, DD o &
Dl'B | clﬁ :.' ﬁ; o
which when expanded, reduces to

RC _CB _AD +DB =0

s T Ao o (3.186)
d‘ﬁo *‘P’- [3,0(2_ q(’-/s‘ >

where

A= ;)L P(smt)(-‘c)’*w (-Ty) -\-(F(hH,)l"C,J .t }») MM W (-"c,\) )

h "'3 l;

B-= ;l\ Plar)g) W Lt,,)

N =My,

= =l M3+ MI0T,) w (-T) ur‘(\m,)t-'r\"w (~t o) ¥ (M(HAIW (- °)
[E ot "

= L)L - ThRW
D _\".:P(z.m,u To)"!,_,s'“:f:) + _t‘lmf'(ler)( T,) Nv,-nﬁ,})’

[q,R‘—H v RY ], )
Boi-p  (BE%RY):

® 'W"-RXBe'%-B«-H) .

&,

d

2

P~ t [-R'l'l\f"ﬂi . R X N

de'™ 4 R (o\ew‘+ R)®

(%.188)

\ 2
(3,_ = (.%em/‘-l-ﬁ») .

The function Wy, (°C) in the expression, (3.187) is the Whittaker
function (32) defined by

o

-
W(t) = "

0 (h-Rram)
°

gt (l-r_!_=.)h“'l"+"1 etde,
<

When we look at the orders of magnitude of the various terms in (3.186) we
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find that

X,=0N"2) ) &, =0N), g=0(X ") B2 0N

and if we assume from the recurrence regions (33) that the Whittaker

functions in (3.187) are all of the same order then

B/n = o¢ N3 , S/ =0(°) , D/a = 0(A%),

We can therefore approximate (3.186) to

Ac = 0O ' (3.189)

where the variables -c;, ’ Ty and Zc are defined as

-c°= 7-.“ Z.c_ -Ch": -l?l(\“z.c_),

)

Z.=o0-th, o0<adbal, a>>b.
The nondimensional quantity ‘6’l is of finite magnitude and in the models of
Eady and of Chapter 3.5 the important range for %, is 0 & %, < 5. Within
this range of ¥, , Cgand T) are of finite magnitude and thus the use of
asymptotic expanéions for the Whittaker function is, we note, of liﬁlited
value. Since these functions are not tabulated the solution of (3.189)

would best be found using a computer. This numerical problem is

suggested as one possible extension to the author's work.
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CHAPTER 3.7

SUMMARY

The work in Part 3 is based on the one layer model of Eady. In
his model, Eady superposed a wave perturbation on a sheared flow and solved
the linearised perturbation equations, subject to homogeneoﬁs boundary
conditions, to obtain criteria for stability. In this present work, by
using difference methods the author was ableAto find identical criteria

for stability without having to solve the perturbation equations.

It was of primary interest in Part 3 to extend the work of Eady to
a two layer model and to include thermél conducfivity in the heat transfer
process. Consequently, a second layer was introduced, the thermal
conductivity term was retained ip the heat transfer equation and the
boundary conditions of continuity of heat transfer and témperature between

the two layers were added to complete the model.

Both the method of direct solution of the perturbation equations and
of difference techniques were used to find the criteria for stability in
this extended model. Unfortunately, unlike the Eady model, the two methods
did not yield the same results: as expected, the method of direct
solution of the perturbation equations produced the staﬁility‘criteria
of Eady with first order correction terms.- By contrast, this was not the
case for the criteria found by using difference methods. Although more
weight must be placed on the results found by solving the befturbation
equations direcfly, the difference technique must not be disregarded.

This method is extremely valuable in finding stability criteria of models
where the complexity of the perturbation equations prohibits a direct

Y

solutione.

The model was developed further by including a variable coriolis
parameter. The perturbation equations were solved, subject to the same

T see new+<posg
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homogeneous boundary conditions of the authors model and a stability
equation was found. Clearly, the application of the difference method

to this model would yield interesting results.

From the work of Namias* it was assumed that two separate stable
regimes might exists. It is of interest to note that the stability
criteria of a two layer model of Davies*, in which heat transfer was not
considered, reproduced two regions of stability. However, neither the
Eady results nor those of the author's model retain this pattern. Further
study in this field is therefore necessary to fully understand stability

of one and two layer models in which heat transfer is included.

A HCkSya cud mBNcé are bW
yoS\é OLfuk ouie teG'\'€cVichfVii VKe. Vuoo uLTk*i*t0OcAe "VUe coork.
Dcujis. fuji-VWr- uxsrV. a s\godj®
AJ*jrence 'fYVeWvodi rvw" WV feroAcik' ouppoureny—

* See General Introduction
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APPENDIX B

A COMPARISON OF LIQUID AND FLUID MODELS ON A ROTATING SPHERE

In the liquid model considered in Chapter 3.2 the equations of
motion were approximated to (3.2), (3.3) and (3.5). For completeness we

will retain wadw andwdvin (3.2) and (3.3) and we have

3z ¥z
o +ud 3 U ~ bV = - ‘ .
e owety, b
AY + udV + VOV + wd tw ==L 4 |
| ®TUET fé =t 'ﬁ'.S‘;" - (B.2)

© = -1 Jp-q-
,o."-?i 3 (B.3)

The equation of continuity is approximated to (3.6), namely

Qs

._W—=o-
Zz

+

a0~
g
+
13
or

(B.4)
In the heat equation of (3.7) only the vertical component of thermal
conductivity is retained, resulting in
AT + udT + voT + waT - &k &T .,
dt dx 3y 3z c,Q, 3z2
: (B.5)
To compare the above system of equations with that of a fluid we will
introduce a new co-ordinate system and change from the(x, y, z, t)indepen-

-dent variables to(x, ¥y, p, t)where p is the pressure function. We take

the isobaric surface (39), at which the pressure is p, to be

z = H(ax,y, plx,yz,€), ).
(B.6)

It is assumed that p always satisfies the hydrostatic equation, (B.3) and
thus if we differentiate (B.6) partially with respect to x, y, z and t
respectively we find

o=H;,._+HPp,_, B.7)
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(B.8)
| = HPPZ. N (B_g)
= et tpf. (B.10)

When we combine (B.9) and (B.3) we have a new form for the hydrostatic

equation

SdH = _.L’
NC , (B.11)

SHx= L P
£ (B.12)
Hy = L
(B.13)
The quantity gH is often refered to as the geopotential.
We will take the complete transformation from (x, y, z, t) to
(x, ¥y, Py t) as follows:
x= X,
= 7Y
Y ) (B.14)
z = H(X,Y,p,‘c)‘ '
t= T,
Thus we obtain
1
= B + H a
dx *32’
=3 + Hy )
&~

> (B.15)

~

Q- Q- Q| .
oo S Yo Yo
"
T
b v]
Q| Q- Qs
le :“’lo’ Nlo’ N

il
s
+
x
~

~

Q-
(92
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with the inverse formulae

d =9 — Hed )
AZX'- éX Hpap)r
LA i
J ‘Y Hﬂ_aP L - (B.16)
d-= L | |
3z Hpdp 2
d =93 - P}
at 3t QEAP'
If we take

W :F‘{_P[N-Ht-u.H,"-va] |

(B.17)
we can write the first two equations of motion in the form
U + udu + vou + WAu —Lv = —gdH
3T X oY 3p 3%’ (B.18)
W+ udv + VOV + WOV +lu = —qdH .
oT %§ ¥y P Iy (B.19)

It can be seen that W is taking the place of the vertical velocity in the
new co-ordinate system and it can easily be shown from (B.16) and (B.17)

that

W= dp
dt (B.20)

i.e. that W is the rate of change of pressure following the motion in the
(xy ¥y 2, t) co-ordinate system. It is also interesting to note thatw
can be written as

W= He+uby+ VHy + WHP
(B.21)

so thatw is the rate of change of H(x, ¥, p,T) following the motion.
We transform the equation of continuity for a fluid,

+ 9(up) + 3 (vp) + 2 (pw) = O
A AU A ,
using the same process, to obtain

du + Vv + W =0, | '
3x Y  9p (B.22)

which now has the same structure as (B.4).
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Finally we consider the heat equation‘ in the form

dg = io,,vlT
1335 (B.23)

where Q is the heat content per unit mass and can be written as

§q=¢d8T-LSp = c,TEE
? © (B.24)

where © is the potential temperature. For a liquid therefore dQ can be
approximated to ¢8T. For a fluid, retaining only the vertical thermal

conductivity term in (B.23) we have

azl (B-25)

In the new system of co-ordinates (B 25) is transformed to

p'\'c,%@ R, 3T .

aemae,,vae*.wae-' g [é_l’ Hep ar]
ST & Y 3p G TF-:H 3P* Hp Op (B.26)

If thermal conductivity is i'gnored then the heat equation is preserved with
T being replaced by 8 . It is clear that the use of (x, y, p, t) as a new
co-ordinate system simplifies the structure of the equations of motion,
continuity and heat transfer for a fluid. Comparing the equations for a

liquid and a fluid we have:

LIQUID FLUID
%%+ué_:3" ?é-n-w%_g-w -_L%gc Au+uass; +v&x+w5u_(,v--3%3 |
%\{-ws;v‘a-v%q-wg{-rtuv.l.%g g%lmg%w%y\;m%», lu= _S'AA%_
o:-g_g..?('r ) o=gp 3H+E?-<,
e e pest g i s

where for the liquid we have taken P =«T.
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The boundary conditions for the model must also be considered when
changing from a liquid into a fluid. The conditions thatw = 0 at z = O

and z = h are transformed, using (B.14) and B.21) to

Het uHxe + vHy 4 WHp =0 at H=0,h.
(B.27)

This is a far more complicated expression for the two boundary conditions.
The formulation of the remaining boundary conditiomns, (3.44) - (3.47)

remains the same so that comparing the conditions, with T* as the femperature

of the ocean we have:

LIQUID | ~ FLUDD
W=0 af z=0o,n _ Het UH tVHY+ WHp =0 af H=0h
T=T"aF z =0 T=T*at H=0
R,T = k8T of z=0 %37 = &, 81" ot H=0
oz 3z % ¥
kz_a_]:*-'o G.\' z."hz EIBI.. o d‘ H=—kz
oz Hpdp
h,él_-_o at z=h gtéTso aF H=h
3z Hp 3P

The corresponding equations for thel fluid are now very similar to
those of the liquid with the main differences in the hydrostatic equation,
the thermal conductivity term in the heat equation and the boundary con-
-dition, w= 0 at z = O,h. Thus we can infer that some of the basic

results for a liquid will also be found, possibly in a more complicated

form, in a fluid model.
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APPENDIX C

APPROXIMATE SOLUTIONS FOR C FOR THE CASES n = 4 AND n = 5.

In the Chapter 3.4 we present the use of the difference method to
formulate an equation of consistency, (3.97). For small n, the determiﬁant
in (3.97) can be expanded and solutions for ¢ are found. We present the

cases of n = 4 and n = 5 in detail below.

(1) The Case n = 4

The equation of consistency, (3.97) for n = 4 is

ELLYY =2 -hH/4 \ o 6
~Evim(use-y/4) 3Emml-vpcetz)  -3E E (o}
\ﬂ,* = £ -4E -in;(u,-c) 6E+imSWc) ~4E-imluge) - E =0
o -£E - "3E «3Erim(Usca¥in)  E +imi-Ugc-Uk)
o o \ -2 |
(c.1)
where ‘
mz=h"16, E=€/0,, §=2 22716 = 248 . ,
The constant/g is nondimensional. The determinant is expanded and
written in powers of E,
IR,l= E‘im[— (2+shH/3) (UgC) + zw] ,
+Em’ [ (22 + BhH/2) (Uge)t + (Hh/2 + ShH/5) (UrCIW - »&gw‘]
v im® [ BCoePs (hiia 4 BRH/AN W + WA (U W?] (c.2)

where W = U, /4. We substitute for H from (3.60),
H = efc2)0-0)

to obtain
Ryl = (g.)‘im[zw-zw,,-c) - EJ&CV"A&L(I-L)(U(C)]
+ %om‘ [z/s(ue-c)'ie"éc*)\d-z)(ﬁézh(urc)‘*r (hi»fﬂ‘h)w.-c)w - !;.W’)]

+im3 [p(uo-c)i‘o +€"=¢'/;)\(1-1)( (%+/1;h)(u°-c)'*w - %(u,-c)wz )] =0,
' (c.3)
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We assume that€ can be expanded in powers of € in the following

two ways

C= Cor ghe v 8Cyr - o (C.4)

C=2Qe+*Qy + Qg+ - "
E" E"a . (005)

where the coefficientseqg , €y ¢+.s. and 0o, &, «..... are independent of
-l
€ . By comparing coefficients of e”'in (C.3) we find three possible

values for €o in (C.4), namely

C;=O)

ey | (.8

Co® = U= W/(143),

The corresponding values of ¢, to the values of €o in (C.6) are obtained by

comparing coefficients of € in (C.3) and are found to be

'
&y =0,

etz 0 (C.7)

’
3= G-0aW

RN C1473) 3 (Ug~ W/ 3113))
The second series, (C.5) for ¢ produces one more root for €. By comparing

C' :Iz -

the powers of e-% in (C.3) we find

3
Qg = -LAWXL1+f DI
2p* (c.8)
The second term in the expansion, &,, found by comparing coefficients of

-5
€ ,3, is zero. The four values for ¢ are therefore

c, = o(e), . : (c.9)
C, = Uy + 0Cg),
(C.10)

C3 = Up-W + E‘/z (1-(:)§w y * O(E), '

1+3 WA (Ug",‘—'f-h) 2 (c.11)

. 2
Cy = - {)\hw(u@)} + OCE®Y.

2 243 (c.12)

Higher order terms for the expansion of € can be found in the same way.
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The equation of comsistency, (3.97) for n

5 reduces to

(124)

| ¥ it/ -2-hi/g \ o e o
~Enmiv-aw) 3E+iml-v4+5wW) -3€ £ °
£ “AEHm (VAW) CEHME(V-W) ~4Eiml-Vew) €
\Qslz . X =0
6 £ ~4EAMIVIW) CE+IME(vEwW)  —dE HMVEw) £
o e -£ 3¢ -3Erimlv+SwW) Erim(-v3w)|..
(o) ° (<) \ -2 )

(C.13)

where .
mzW/a5, E=€/p, , &= 2+1%_‘-.2+/3 , V=Ust , Wz2Ulio.

As before we expand the determinant in powers of € , namely
3\ - . )
IRgl= (%) m.[(z+mw + s"‘c%&(t-u[-z/s (Us Q) + (-3 +/3\w]]
[ .

+(%I)"l'm.‘[(-lfe,sr/s‘)(u;c)"- (234 14BN U;OW Hog-a2IW?
+ €% 0 (1=1) [(-z+°1/sf2,s=>w:c.>"+ (94 +588)Us~C YW +(=20 +133=24/33) wﬂ}
¥ %.ims (-1 493+ 28U ~O4B) W= W ¥ (6+68-2B) (V=) W2
+ £4c40-0 [ (38381 (05 ¢ (12431 41 USOP W + (244133 ~z/3‘)(u,—e.)w"¢(n,s-vs‘)w’]]
+ m*[t-z/z-/s')cu,-c)" v 232U WEe (28-82YwW?

vt (1-0) [(-2- 8- U ) W # ( 6-2/3-28% ) (Uo=C)2W 24 (246434 2/33) (U)W

v(-6r 2+ zﬂ*)w*]]

(C.14)

where we have substituted for H from (3.60) and & is defined as

A =hA/S5.

As in the previous section we find C as series expansions in ¢ and obtain
the five roots;

¢, = oce
: o), (C.15)



"€z UgtW + O(E),

C* = Ug - (6-23-1ﬁz)w + CIQ»E‘I;_ ¥ O(E),
(2+ 63 + 23%)

r 3
cgz -ai [.Lwcuemzﬁ‘)]e“ ¥ OCE®)
(23 +32) ’

where Cfis defined as

etr= G+ L-2p-p*)uge )% 2% (Usmey YW+ (23-82)W *]

el W (3(-2-68-28)(Ug &) 2(6-28-23)(UschH IW + (2468+281W?) )

(125)

(C.16)

(c.17)

(c.18)

(C.19) -

(C.20)
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APPENDIX D

COMPUTATIONAL METHODS TO SOLVE [Rnldl = O

The p‘roblem to be solved is

\Hn(c)l=0~ (D.1)
where |AR(A)] is an (n + 1) x (n + 1) determinant with complex coefficients,
dependent on a variable € which has to be determined. The problem there-
fore breaks down into two distinct parts, the first being to multiply out
the determinant and the second to determine_ values of ¢ such that (D.1)
holds. The first part is resolved by using Crout's method and the second

by using Muller's method and discussions of both are presented below.

CROUT"S METHOD

Before describing Crout's method, let us consider the simplest
method of evaluating determinants which is attributed to Gauss(%‘f‘). We

shall consider the example

Q; oy @,

Qg Gy Qa3 . (D.2)
Q3 Q33 Og3.

We use o, to eliminate @, and Q4 by the row operations K- (a,m )V, and
G_(o.gi/a") rn where r,, r, and r, are the first, sec}ond and third rows.
We then use the new element in the second row and second column,

(8- %y /0, ) to eliminate the term in the second column and third
row thus producing an upper triangular detefmina.nt,

Xy Qg G4y

o U11 U:a

o © 033 _ ’ (DOB)

and so the value of the determinant is (@, Uso 033) « In this elimination
process the row used to eliminate terms is called the pivotal row. The
element in the pivotal row which eliminates the rest of the column is

called the pivot. In the above example &, is the pivot for the first two
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cperations. It is clear that this method breaks down when ever a pivot is
zero. A unique proéess to avoid this difficulty is to choose as pivot the
largest element in the relevant column of the detérminant, taking the
columns successively so that the other elements are eliminated in natural
order. This method is called partial pivoting. The determinant thus
formed may no longer be an upper triangular form, but can easily be
transformed by interchanging certain rows and the value of the determinant
will be (-1)P times the diagonal terms where p is the number of inter-
changes. An added advantage to this method is that by choosing the largest
element as pivot, the accuracy of the results increases when calculations

are rounded.

However, the above method forces us to compute the determinant after
each row operation, producing a lengthy computation. The more sophis-
ticated method of Crout (35, 36) has been devised so that the final form is
found without calculating and recording the elements of the intermediate
determinants. The determinant, |Al say, is found in the form of a prbduct
of determinants, JLIIUl where ILl is a lower triangular and \VUlan upper
triangular determinant. Crout's method ensures tha£ U] is a unit
triangular determinant. This can be made clearer if we consider an

example. If |A} is defined by
Cu Oy Q3 ag
Qy QR Q3 dgg

inl = - (D.4)
Q3 Qjp 33 O34

Qu 043 O43 Ogg

then the computation is performed by means of the following equations.

For the first row,

) ‘ (D.5)
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for the second row,
Nyp= 0y,

Uy = Qa3 = Ny Via s (0.6)

st= (Q.zs "n2|v|s)/022 ,$>2 )

for the third roW,

ngi= 03; )

Nap = Qap = Mg Vig |

(D.7)
Uga S

Qq3~ Mg V,3 = N3, Vas,

V3s = (O3s= N3 Vis-nqVas)/ U3 S>3,
and finally for the fourth row,
Mgy = Oy

=

f

<3
1

= Qg ~ Ny M

Og3 = Mg Vi3 =Nz3Vagy |

Y
S
|

(D.8)
Urg = Opq = MyyMa = Nyg Voq = My3Vag

so that the decomposition of \R| by Crout's method is

vy, © o ©

‘Via Vi3 Vg
Ny U © O ! Vaz Vae

1A|= (D.9)

o
Nay Ngy Up O 6 o b V3
o

Mot Ngz Mag Upg o |

We note that the first determinant on the right hand side of (D.9),
is a lower triangular determinant and the second, HJl’is a unit upper
triangular determinant. The method is similar to that of Gauss but more

complicated operations are needed to find the determinant 1Ul.

Again a breakdown of the method can occur when elements in IRl are
zero, and yet VAl is not zero. Clearly, a method similar to partial
pivoting for the Gauss elimination mustbeincorporated into Crout's method.
The pivots are chosen so that the off-diagonal elements in IL| will not

exceed unity and the diagonal elements of U] are as large as possible.
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at each stage. In the first stage the possible values of U, are the
elements in the first column of (Al and the largest element is chosen,
interchanging rows if necessary. The first column of |L| is now fixed
and the values for the elements in the first row -of U] are found but
not fixed. The term Up;is now chosen to be the largest and again it
may be necessary to interchange rows. Thus the process continues and
again the value of |Al is (-1)P times the product of diagonal terms of

L\ where p is the number of interchanges of rows.

For the methods described here we have taken real values for the
elements of 1Al. When the elements are complex the same procedure is

followed and no further discussion is needed for this case.

MULLER'S METHOD

We now have | An¢)l in the form,

18, = £¢e) + (qee)
" f 3 (D.10),

where will in general be complex, € = Cpt {c; . Thus [A(e)!l has

roots when
f(Cg‘\’ "-Cl) =0 N

q (cericy) =0,
or when the modulus of (f(c) + ig(c)) is zero, i.e.

z * ’ - 1 . -

f (cericy) + q (caticy) = O.

_ : (D.11)

A method by Muller (37,38) is used which finds any prescribed number of
zeros, real or complex of an arbitary function. The method is iterative
and converges almost quadratically in the vicinity of a root. Another
advantage is that it does not require the evaluation of the derivative
of the function. To explain briefly the method we will take a general-
example of finding the roots of f(x) = O. Let x(, X{- , X (-5 be three
distinct approximations to a root and let fy = f(xg), fpo = flxgq),

f;-a = £(x;q) be the corresponding values of f(x). Three points deter-
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mine a unique quadratic in one variable. We wish fo determine the poly-
nomial which passes through (xj, f¢), (xgy, fooy) and (xg,, foa).
Assuming the polynomial can be expressed in the form

P(x) = a,x* +o,x + 0y

(D.12)
we have that
2
0,xf + a,x; to,= f;
X
O, + a5 + &g = fi,
(D.13)

N
Ay Xig t Az ¥ Ay = £o-2
and 0,, Q and 0gcan be determined. The roots of this polynomial are
determined from the quadratic formula,

X = Q.au '/ .
-0, (02 40,0,) %

(D.14)

The sign before the radical is chosen so that the denominator isAlargest
in magnitude and the corresponding root is taken as the next approximation
Xy + The process is repeated using xyy,, x; and x;, as the new approx-

imations to the root.

For accuracy and convenience, the sequence of steps proposed by

Muller, alter slightly from above and are described below

1) Choose x:

{v X{,» X(-2 as approximations to a zero of f(x).

Compute f¢, £, fig e

2) Compute

h= -y

)\i = h
Xy = -2

S = \+)\zo

)



3)

4)

5)
6)

7)
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Compute
i fi—z )\;‘ - F.:-.‘S:z ¥ ‘F; (N+6;) -
Compute
Ao = - A
L T ke

choosing the sign so the denominator is largest.

Xig =X ¢ hXi,, is the next approximation.
Compute f(x¢y, ) =$iy *
Repeat 1) to 6) until

\‘f"-ﬂ(:&;ﬂ)l < V] '. for a prescribed n -

The above iterative alogorithm was performed using the Leicester

University Cyber 72 computer. Each root was obtained to an accuracy

of .four significant figures.
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APPENDIX E

CONTRIBUTIONS OF Pg(n) AND R*(Q) TO THE 30UNDARY CONDITIONS

To solve the e@uation of consistency in Chapter 3.5, (3.152) the
individual contributions to the boundary conditions in (3.136) from R(q),
P, (1), P;(§) and By (p) have to be evaluated. For reference purposes the

four conditions are:

5% i q J ot =1, > (1)
] =0

3 ap . |
3'\3 ‘g ot q=1, (2

p—Mdp-_- G\’ = '
Q‘a—qz fe =1, , | (3)

&P .o at =1, . - W)
e |

The contributions made by F, (1)) and P,(f)) are easily determined and we
present below the details of the evaluation of the contributions made by

Ps(q) and P4(q) only, using the method of stationary points(26)throughout.

The function Py(f)) and P, () are defined in (3.148) to be

~-ig? -1 \R
Rap= f(e Re™) = (kvre™)  *exp[- 5é-ene"‘é tqe M) de, s-3m,
A8,
] (5)
and the contours AgBg are defined in Fig. 1 of Chapter 3.5.
(1) B () ath), » (q large, argf] = 0)
We will aim to show that R+(qh) can be approximated to zero.
From (5) we have
. -Hjﬁ '
AUNE f(e-ne""‘) Flered %y * expfle,n) dt
A8,
(E.1)
where
7
Re = -yt3- eR% o ke N
(E.2)

We can use the method of stationary points to find B, (f],). The
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stationary points off (t,n,) are given by -F'(t) = 0, i.e.
“'/‘ Q? 'm/3

=—|']e
(E.3)

and since |']h\ is sufficiently large compared to R to dominate the right
hand side of (E.3), there will be two stationary points ft, where tq may

be approximated to

v, S
~ to = q 28 2 .
h - (E.4)
The path of integration A By, in the complex plane must be chosen to .

contain the stationary points. From the definition of A+Bf in Fig.1 of
Chapter 3.5 it is clear that -ty cannot lie on the curve. Thus we choose
A By to pass through t, and disregard -t5. In the neighbourhood of tq

we write

€= £,+T
and so we have, retaining terms up to 'Cz,

"
f6) = ftte) + LT £ (k)
where we can take the approximate values of f (t,) and f"(ta) to be

il

RPN L "ty = —an”
fto) = 20 e’ , feeo = e ™.

We shift the origin to te and obtain an approximate solution for P, (f),) as

W
. _‘_.'g3 . _I’;_g? .
frn)~ J eRe ™Y FeerRe™) " F gxpl £y T fleg)] dT
“w

where W is small and generally complex. The greatest part of the integral
comes from small values of T (Re[§"e)}<0) and so we can extend the

limits of integration to—"oresultlng in

P*“‘h ~t, exp?(to)Jexp[ 'c" '1] dtT .
(E.5)

We write .
=V Y
T= q e it g
h

noting that the direction 'arg'c=‘5i"' conforms with the general direction

8l

of A Bg, so from (E.5) we obtain

-0
- Eﬂ! h | -€2
B~ Eropfea[ e ] [ de
and hence - ==

2sm 3/2 ap
Pety) ~ “qua e ** exp[-3f,e |-

Thus P+(l]h)~0. ' (E.6)
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(2) Pa(q) atf), ,(Qlargé, argq =M)

Exactly the same argument can be used to show that Pa(mgnao. From

(5) we have
. _|-;_g3 “ -IH‘.!P
%(qohj(e-ee'“") 2 (erRe™) ZexpfLt, Ny dE
.8, (B.7)
with § (t,9) defined in (E.2). The two stationary points of §(t,f),) are

Again, we disregard -t, as it does not lie.on the path of integration,

A3Bz. In the neighbourhood of t, we write
t:‘:,*l-'c

and so for qo we have

gen) = Fle) + 1, T %)
where

=2
fe) 21

1.4

3, 3T, U
Je Tt fe)=-am e,

We shift the origin to t;, and obtain the approximate solution for Fg(n), A

w . :
-2 . T .
Ban) ~ ¢ e.xp(-(h.)] exp [-T* ) e 2 ] dz. , (£.8)
-t) .
As before we can extend the limits of integration toX o0 and writing

13117/, =V,
t=ee il

o
we note that the direction argtTconfirms with the general direction of

A3By. We finally have
L]
W - [ -2
P~ 2expe) [ 1) % e 2¢] f € de
=0
and hence

-5, -3W 7
Rup~T*in e *exp[7Ini e’

Thus B, (fle)~ 0. (E.9)
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(3) Boundary Conditions (2) and (&) for Pa(N)

The contribution to (2) from B, (1) will be

4 . | - .
I, = 315-‘“%-?4] = (L+i) P
o =1, = (E.10)
and using (E.1)
s . -i P . -
I)= (LH )I (e-re ™) K (e4 Re™)' Lé%?["it”-tﬁ’e'“’s-t']e "at ‘ .

ReBy ‘ =1,
We can take the operator (L+i) inside the integral sign and therefore

obtain

-] -‘ . | \ -8 \ ; Y ! ..‘
1} =J(~_e3e*f+ inte i) Ce-re™ey " Eeerre ey Fexp e e ™ eng "] dt . (B.41)
fuls ' e

The integral I, therefore is essentially the same type of integral as (E.1)
and so with no further discussion we can infer that
4 ' _ ' A

The contribution to (4) from By () will be

1) - &8

qu : (E'/|3)
1M 5
Again we can take the operator 3ﬁ1 inside the integral sign of (E.1) to
obtain
ot [ e e e g e s _ gy 2]
I, = | e "™ t-re™) % (£4Re™)  Texp[-yi-ere B-tne "] dt
PgB4
and we find again that
&
= 0.
L. (E.14)

(4) Boundary Conditions (1) and (3) for P, (1)

The contribution to (1) from P%(Q) will be

I,= & ifde-p]]|= (L+dP ] .
? d'l% L[J'IJ 3]1“10 " 3q|=q° (E.15)

We substitute for Py (q) from (5) and take the operator (L+i) inside the

integral to obtain

' R T 3 T : -iry;
I,- J -Brinte My L)(E-RE™) (ks re %) *'—:’exP["sts' tR%eB-tne ‘] dt

. Az83 X . . .
and using the same method as in the previous section we find

'I'3=°- (E.16)
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Similarly the contribution to (3) from Py(1),

1 = d°R - MdP
dn ‘*"'! =1,
, (E.17)
results in the integral
Ig’ =J(t 3Nee ‘)(c RSy’ "U:1-Re'"") 2 Mp[-l.l:‘s e t1e "‘] dt
R385
and thus
3 _ - ' - .
13 =0 . . . (E.’]8)

(5)  Boundary Condition (1) for Be(f)

For the remaining boundary conditions we will approximate Py (r?) to

B = [ (£-RE™ Y (e R Texp [-vstz- ere' ™ g™ ] dt

A, B
4+ %4
where we have ignored the terms l,_&s in the powers of (t—ke.””‘) and

(E.19)

(t +ReM™) as R is a small quantity, of order A s

The boundary condition, (1) is

d_P-c[qgf P] =0 aFf=1,

We can take the dlfferentlal equation (3.135) and write it as
d lOEE U)&f«l-tp} r iquP.-.
1L

Therefore an alternative form for the boundary condition (1) is

%o
Y
- qpdy= o
0
The contribution of P* to the boundary contribution can be written as
Mo
v 21l |
1*- -m‘] q[ce Re™) (krre ™) exp[yt’ R eqe™] dedy
We change the order of 1ntegratlon and u51ng the result that
=iy o'
J qexp[ tne ‘] Aq z - [_']__? J QKP[ tn e ]
we flnd 1 takes the form

I*-ir I [nee re ](e e} Cerre ™) expl-yy e " e %J dt.

}
[ 1
AyBa E (E.21)

(E.20)
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We will choose the path AyBy in the following way:

PBa= Al + LM + M B,

where

. 121%.
AL! t=Re ™ re O | wgrge, (B.22)
LM ! E=Re™_ge'® | 2350 <0, (.23)
MB*  t= Re'w‘*.r , E&T 00, (B.24)

. 4 :
We now look at the integral I. along the three parts of AgBy. The

integral along A4L is of the form
o0

- v afr X L '
I=- 1] [giir+(-'2‘73'f)2]+ (2Re ™, re ) exp ¢,(I‘) ar
[

(E.25)
where we approximate the exponential term to the largest coefficient of

each power of r (neglecting R compared toflg ), to @, (r), namely,

By = ~Yrd e (RrI-1 L - RY, .

(E.26)
The integral along LM becomes
2W3.7 .
. -N,R. -p R~ 11y,
12= Lﬁzj [ﬂo'&-‘-,‘] e 'ide = "Hﬁ(_lln.l) %%
s LR Rlage™ 3 R R (5.27)
and the integral along MB4 reduces to
o .
1 i/ -
1.- (gzj [1&'"" ,_an 1].!. (2R + ) exp B, cry dr
3 ¢ LRemyr (ReMe)" ] Y
(E.28)
where we approximate the exponential term to @,(r) defined as
1./ A
= -lLr3- 2_ -

Therefore

I¥=T,+1,+1;
and we can now take the limit, €—> 0 in I, and Ij. We will use the method -

of stationary points to evaluate I, and Ij.

For I, the function @,(r) is, from (E.26)

B = e 4RI -1 - Ry,

The last term is a constant which can be taken outside the integral. The

-

term iﬁf"' is small as R is of the order A 3 , and is therefore not as

important as ("/:7,7'3-1‘.1‘]07" ). From the definition ofl’ and Z ¢in (3.134) and
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(3.138) we have
—!:qo = )\‘/3 (b-Hﬂ.) .

The dominant terms of ®,(r) are therefore

-y3r3 + A3,

We will write

-NoR

I, = -iR%e™ J £.(r) exp [-'/3r3+)\/3\)r] dr (5.30)
where

(=1 20, re 2y v

i [égfr (eﬂr)]( T exp[‘ﬁ'z" ‘°)‘3"J (E.31)
The stationary points of "13"3 #X3br) aretf where

A= AVLBMZ |

) (E.32)

We disregard the negative value as -A is not along the line of integration.

In the neighbourhood of A we write

r=A+7T
and sO retaining termi’up to WEI

I =-ir* " j F(n)exp[2/393 AT*]dt

whereWw is small. As before we can extend the limits of integration to %o
and so we finally have
‘o2 ’noR ‘/z 3
I =-Re i@ exp[2/3ﬁ ]o
A2 (E.33)
We now use the same method to evaluate I,. From (3.134) and (3.138)
we have

~ it v .
-1 ‘s 2\; [(a-b) +L(~a~-bd3 )]

The dominant terms of @,(r) are
-, rds X,” Ca-b)r.
3 2

We therefore write Iz in the form

00
52~ 1R v.
= (R% " “l.r3 4+ N3¢ o-
I3 Lke fof,_(“)exp{ A +_>_;-_ (o b)r] dr

(E.34)
where |
- "y .
(MH=L] o ' ](229"76+ r)” -Re ri )% (arb3)
F [Ee‘“/‘fr*(ﬂe""vr)" QXPI- =z larbad) ]‘ (E.35)
The stationary points of (E.34) are ¥B where
!
8= [ A3a-vi/a] 2
(E.36)

and again we disregard the negative value of B as it is not along the line
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of integration. In the neighbourhood of B we write
r=08+7T

and retaining terms up to szwe have for I3,
w

I,= éR"e'q"RJ f.@) exp[#8*-8T?] dt

~w
whereWw is small. We can now extend the limits of integration tot 00 to

obtain

. =1L v,
I,=R% ° [(BYIT"? exp[z,83%].
3 SRt P[ 3 ] (E.37)

The complete contribution therefore of this boundary condition from B, (f))

is therefore
& _ 2 1R -4 ZR? ";W‘ | a 2"383]°
I, =ir% [ _H.Vz&m)e + %E_ez [qo‘*-é-] +Ié_,,z f(ere
(E.38)

(6) Boundary Condition (3) for Pq(ﬂ)

The contribution from the boundary condition (3),

d’P_MdP =0 ar =
— - (- 3R]
dnz  dy L
due to P4 would produce the following integral,

-t/ -1, -1 gyl LA -
I; = j(*ze SeMEe" ) (-re' ) ct+rze’"’s)exp[‘56t3.uz’e Tine ‘]dt.
A8
454

(E.39)
This is exactly the same form of integral as in section (5) and the path for
A4Bg will be chosen in ﬁhe same way. The two stationary points will be A
and B, defined in (E.32) and (E.36) as before. The difference is in the

functions f,(r) and £.(r). ForI,, along AL we have
o . . .
iy ; -
I-=- f (Rere' ™ )R+ re M) L (2R, re™H) axp b cr) di.
£ ‘ r

Along IM we obtain
. -qu"L‘éI
I,= T_%(mme

and along MB ,
]

I, = j (R+re'™)( R+ré‘%+m.:_. (2re ey ) N exp @00 dr,
€
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Thus we find that the contribution to the boundary condition from R* is

R L -1 3
Il e [-_TL"; g e’ +%<E+H)e"v + 1% q, ®)e ]

A% B2

(E.40)
where
B . nt -. .
rou oy ge'%, aa "3 son. S\
9,(A)= (ReRICR+IAFM)L (2Re" 6 Ao Y exp[iRA% iN%aR ] » (E.41)
‘ l‘rls

q,(8)=(R+ 8™ )R+ +M).L(,2Re. +BY exp[ _rge'™ ‘e(a+bm] (E.42)

The stationary point B is much larger than A and the term involving
B in I;'and If is dominant and so we will ignore the other two terms.
The functions gt(B) and gz(B).contain many common factors and when we

divide the fourth column of the determinant in (3.152) by these common

terms we have remaining

¢ 2

= LR + ]

I ] ‘-%_B-é_.w‘) (R+ eelﬂ’/‘)z (E-l+3)

If = (Re8e ™)(Re8E M) . (E.44)

(7)  The Boundary Condition (2) for B, ()
As for B (f]), we now approximate P;(ﬁ) to
AT) =I (b-re "™y (b rret ™) exp [T bR B - e ] A

f38, (E.b45)

W, : I
ignoring {RY in the powers of (k- Re'™) ana (k+re 4). We can take the
=z

boundary condltlon (2) in an 1ntegral form, namely
-m"] \Pdq = o
and so the contrlbutlon of Pg to the boundary condition (2) is
U i
3 . T ) ! -l \[Y A
Iz=-leIq I(t-ﬁe‘"") Cerre ™) Yex p[-ked-tR% 2 tye ]o\tdq .
=% A8

As before we can change the order of integration and the integral takes the
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form

3. ;2 IW l ;) 7 N7 "‘"76
I,=-R J U%’ +et. }(t Re' ) (£ R ™Y exp[m -tRe e ]d’cr
Ay8; L (B.46)

The path A3B3 is chosen as follows:
ﬁ383= F\sl.. + LM + HB3

where
AL ! ~Re'™ 4 reﬂs 0L S E .
>
(B.47)
LM ¢ b= -Re'._ge® & 4My¢p <>z |
(E.48)
MBy ! = -Re'M, reﬂvi g¢r < oo,
(E.49)
Along AL the integral becomes
o
1= -iR’J[Qh . ] L (-20e ™y e 3)ex
V) el T Crare ) P acr)
(E.50)
where @;(r) is approximated to
Bil/g 1A
o -1 3
Pytr) = -3+ Re r2 tne r+nR.
(E.51)
The integral along LM takes the form
4T3 )
. -QR nR-1T%
I,_=-|R‘J I ‘\n—*!\;z g, 149 = TTe ’ [-flhi'_'.]
- i 2Re™ 3 R (E.52)
and finally the integral along MBa will be
o
. 20Tz, \~=1
I = |R1 q" — ]-—l— - Wiy 3
3 f[w*-(-h"_) r (-2Re™r re ) ‘exp @, (r) A0 :
(E.53)
where ﬁf(r) is approximated to
o s
Pe () = -lpr3-ReF-ig v £ th
(E.54)

Thereforé we have that

I3= I,+I,+71,

and since I, has been evaluated we can take the limit,g-0 in I, and I3

and use the method of stationary points to evaluate the integrals.
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ny,
In I, , the term quﬁ ¢ can be written as,

-
e

AR [ (3C-ad-b) +i(1-a+bd3)]
2
d.l + Ldz M
Thus, the important terms in ﬁg(f) are
-;,3r3+d‘r

and so we write Il in the form

(E.55)

‘I, = -iR"‘eq"gj £aem exp[-l@f'ﬂ-d,r] dr
A ° (E.56)

where

! RL7
fFym) = [ﬂ iy * (—2+re‘%)"]-L( -aReyrd™s)’ e“P[Re i, id, o).

(E.57)
The stationary points of (f3 +dr ) are +« where

[}
K= ,]'a‘l\ = [}\"3(J§a—a)-b§/2] %
(E.58)

andweneglect =& as it is not along the line of integration. In the

neighbourhood of £ we take
F=k+ T

and so retaining terms up to TZ
w

I,= -ir} oM stcx‘)exp[}/se( «T*] dT .

We extend the 1im1ts of integration to*e0 and hence

we have

, R «3
I-= -iR*e™ £ T4 ey3 .
T2 (E.59)
In the integral Iz , the term -;qh in‘¢4(r) is
-n\ = A@[b-c(\-a)] (E. 6o)~

and so the important terms in @a(r) are (’%rlﬁA br) and we write I5in the

form

Ig = 1R™ qb. j {%(r)pr[ . |-3+>\13br] cl.r

' (E.61)
where v A

AGE [th +(§3;‘-‘-_)z]3-('“e pre ) e,xp[ |Rr—:r\l3(\-a]r] .
+i -

(E.62)
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The stationary points of (-'/3r3+/\"35r ) aretQ where
i I .
p= [A6]%, (E.63)

As before =B is neglected and in the neighbourhood of 3 we write

r =/3+'C
s0 that

w
.. R (
I,- iR7%e f ﬁ(p)exp{z/sps—ﬁt‘] dT .
-
We extend the limits of integration to¥od and hence
I,= e {012 e, © (B.6W)
/34&

Thus the integral I:. will be

3 .
3_ 2 ORT L L ) % 7,83
= iR -néewe - ille °f- +.L] T%2(R)e .
I,= iRe® [:ﬂa&( Te [ 1N +ﬁ'/-.’e‘fﬁ
| (E.65)
(8) The Boundary Condition (4) for P5(f})
As in section (4) the contribution of P4(f})) to the boundary
condition (4) will take the form
i, P S -1
13 = | 6™ Ceordmresna ™ tesp gt e -eq §] de (5.66)

A8,

This is exactly the same type of integral as in the previous section.
Using the same path for A,B3 the integral splits up into three parts as
before. Along AjL ‘
[ _-)
. . . —'
- - 1Tl \2 - " 41W/3
L= L(R‘H’E YL [-are ™-re ] exp PLridr,

along LM we have
411’13

R . . -1,
I,- I" ™ ide = imR oW
2y, 2Re W 3

and finally along MB
n \J
. : M/ay =
I,= j CRei?L (-2Re %t re )™ exp@atr) dr,
€ r

Following the method of the previous section we can write

3 .
3 qhg[ mk B -1 ! 2/3,43]
Loz e | Ty st0e qge =+ %‘/;3*(/3) e

(E.67)
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where
_ "T - 3 'ﬂy 4"" " -,_5!7!./6 - )
g3(x) = (Rede ");IL.L:LEQ brae’ 5] exp[R*G +'dz°‘] ) (E.68)
. =l
= (-Re i) L [-2Re ™oy 0™ 3] expl-iRg?-iNB0I-0A]
94(B)=C-Re1f3) ,3[ +pe’ 4] expl-ig A (E.69)

The stationary point L is much larger than /3 and so we can approxi-
mate the terms Ii .and I?‘_ by retaining the term involving « + The
functions Gg(o( ) and §3(k ) have terms in common as before and if we
divide the third column of the determinant in (3.152) by these factors we

have remaining

LR‘[ =Ny B
(R+ae™) * (Ra-&e'“")"] ?

Ii (R+ue' ™),

i
v
1]

- (E.70)

" (E.71)
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APPENDIX F

CONTRIBUTIONS OF P (f)), P, (#n), P3(n) AND P, () TO THE BOUNDARY

CONDITIONS OF THE MODEL RETAINING THE /3 TERM

To solve the equation of consistency in Chapter 3.6, (3.184) the
individual contributions of B, (), P,(n), P;(}) and Py(]) to the
boundary conditions in (3.173) need to be evaluated. The conditions
are presented below for reference.

4P i[qo\P-P] =0 atf=n

= = 0 ~ (1)

FTCELRET |

3 -' P- = r = ) | ’
th; a[f\%)P] o arf=1q (2)
P = <

?ﬁi Md: 0 ab f=1),  (3)

4?0 af fan .
dn? =" | (4)
The functions P (ﬂ), PI(Q), P3(Q) and P*(q) are defined in (3.183) as

follows

R = [ C-RE ™ e s re e p [-ye- e L 95 at
Augs (5)

where the contours A¢Bgare defined in Figs. 1 and 2 of Chapter 3.6.

(1) Ba() at A, and P3(W) at M,

The functions Py (f])) and P;(f)) are almost identical to the
corresponding functions P+(Q) and Pg(f|) in Appendix E, the only difference
being that %? is replaced by M;. The bghaviour of P+(qQ and P;(ﬂ)
is not altered by this change and so with no further discussion we take

PAQQ:O , BY=0,
(F.1)

and therefore

DR(=0, & =
(L*\) 4(‘]“ 3 j‘qE'I?(qh) o (F.Z)
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and

(LB 20 [3_;1- Né,“] P =0,

where the operator L is defined as

(F.3)

L & -tqd, .
ae Ty

(2)  Boundary Condition (1) for B, ")

The differential equation for Pu(¥)) in (3.172) can be written as

%‘%_f-l(t]df P ]+iR’qP-£H,P= o.

Thus the boundary condition (1) can be written as F.4)
q°
l ] (M,-1R) PdY] =0,
co
(F.5)

The contribution of P4(']) to (1) can take the form
] . 2 .
1, = ;j(ﬂ,—qa WPdn s

hence, substituting for P,(f]) from (5)

Mo
I‘ 5(" qR‘)J(t«e'“") Cerre™my” .,xp{ bt eR%ML eqe ]Atdq .

L A8
v . (F.6)
The order of integration may be changed, thus (F.6) becomes
Vo i
I=t [(R’%'”J% ,,ge ](e Rei™ " fe-rei Y e,xp[-l/t czem’tqe“’i]dt
A8y | (F.7)

We must choose a slightly different path for AgB¢than in the
previous chapter as t =£e;"“ is a singularity which must be avoided;
however the singularity at t = - Re;”" is well behaved since Ke{ﬂ;})O
and so we take
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where

N 2!!.'/
AR t=-Re™ o™ 3

»  PSTSE, | (F.8)
KN ! tz-Re™ . ge'®
N Relmee,  aacego, (F.9)
NBy ! b= -Re'%y ¢ r < oo
& b ESTs ™. (F.10)
Along A,K, using (C.8) I, becomes
) w
A2 g M ] T/ .
= -0 3 ° 1 3 Vg iy
I, e ei [R_“., +(Rnr)‘= (re’ "L age ) r axp ¢|cr) dr
(F.11)
where @, (r) is approximated to
P r) = '-I/3r3 -(Rr:- iy * R
(F.12)
On KN, the integral I; reduces to
2
. . «}=M R
I,= LJ [R‘n;ﬁ.u] (-2Re'™) 1eq" g"',_‘da > O as EO
=3
°
(F.13)
and along NBs we have
o
I q Ri ] zg IIT/‘) 7. ﬂ?“z
3=t | M g*(re“”m) (r-2Re | exp@icr) dr
(F.14)
where @,(r) is taken as
-y
Qo) = A r3; R qore' %, NoR
(F.15)

Thus IL =1, +I,+ I, and we can now let&~» O, and use the méthod of
stationary points to evaluate I,and I3. It is useful to note that the
integral I, and I are very similar to the integrals of Appendix E, (E.25)
and (E.28). The value of the stationéry péints for I, and I3 will be

exactly the same, namely
)
for I\ f=A= /\u‘b/" , (F.16)

fo o = [\ - h
r I r= 8=[Naca-p)/2]", (F.17)
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Thus we can follow the same method as Appendix E which yields

b R, v, s sl op! 7/33’]
14- e [ -in z;(a)e r L"Bl‘lz fz(B)g )

Al
(F.18)
where
1 1,“1./3 IW‘ -l-~1 -l¢M . 2. I, . .
R? 22Re ™) RATT? -{RA%+ N3 2lUM

ﬁ(m [ﬂﬂw *(HHR)](HG QXP[ t af+ ——l3—z]>
” : (F'19)

f'0)= [!l_." * }(B Zﬁew‘) " "m’up[e Re'™ _§t\v3(a+bJ‘)J
b ledh-r (Be‘“’i.e)" * (F.20)

(3)  The Boundary Condition (3) for Py ()

The contribution of P,}(q) to boundary condition (3) will take the
form
- 2 C o eeMy -1+My iy <
Ii=I(t’e'W3fMte %) t-Re ™Y (b+Re™)  expl-hti- tR'e - ¢ *Jde.
AyB, (F.21)

Using the same path as in the previous section Iz_splits up into the

following integrals, along A,K KN and NB,:

2MMe T
I= e‘T (U‘-R)(U’-Rf“)(fe % 2k r"*"*equS.m dr,
ﬂ%
1,- tac-rzm)(-me'“") ™o >0 as & >0,

7 i/, ~

1 j(re L) (re'™ “R+M)(r-are’ ‘) r“’ ‘equ&zcr)c\r, |

where the functions @, (r) and @5 (r) are defined in (F.12) and (F.15). We
can now let €= O and using the method of stationary points the resulting

value of Ii will be

-

y R 33
13- eq° [ “VZS.‘“)Q ¥ \_'\é" q (B)e ] :
(F.22)

where

2 .0 ’N;

' . 21y -l
g, (R) = (iR-R)({A-Rrr)( AE B2k B ep |- (RA%+ M58

(F.23)
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%

-l Nl lle

%R eM)(8-2R€%Y p[e ae'“"-Lek"scmea)]

(F.24)

3(3) Lee CR)(ge

As before in Appendix'E we note that B>> A and so I; and Ii are
approximated to the terms from the stationary point of B. When sub-
stituting into the fourth column of the determinant in (3.18%4%) we may
divide the column by the common factors of I; and fi and the remaining

expressions will be

[L"—Be "R (Be‘“’6 R ) ] (F.25)

I = (8e"™. &)(Be R+ M) .
(F.26)

(4)  The Boundary Condition (2) for Py ()

Taking the differential equation for P(q) in the form of 3-172) we

can write the boundary equation (2),
3P —. P" - =
dﬁ" I[q%ﬁ P] © abq=1,
in the form
n
(M- &*)Pdn=o0.

-0 (F.27)
The contribution of P3(Q) to the boundary condition takes the form

. M
13-‘- CJ(H'-"R‘)%(W) dr] '
substitugg;g for P3(q) from (5) we have
" . M , =
L= LI (R | Ce-re ™S e rre ] bap[-ye3- eR% T ege ] dt

- 00 9333
and changing the order of integration I becomes

I;= JV" Mg ﬁe%](t ~2e'™) Ceree™) e«p[kt3 R " ené" ] dt.
3 £ (F.28)
A8, .

We can choose the path A3B3 as in Appendix E,
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where
ALt Ea-ReTyre™™  wsrce, | | (F.29)
LM bz —Re e , Allpses T, h (F.30)
M8, E=- Re'% 4 re"%, E¢r g o0, : (F.31)

Using the method of stationary points we can evaluate 12 along A,B,. Along
g 3 3°3

A3L, I; becomes

00 .
. Nt fray M, oMy et
I e 3 J[R " "V 1](\' Elge ) r-"'mlex Lr) Ar
c (re'VsR) “Cre 6+R3 | P¢3 (F.32)
where i : ' (F.33)
Byr) = -ér3 + Rr"e + ’lh"em‘ * v]hR. .
For IM, the integral reduces to
4T/3
I,- tJ qR‘ M- R) (-R)(-2Re' ey’ h q“g"‘cd&—)o as £0 .
Finally for MB,;
(-]
2iltMs L 2 . -j=My
. 3 Rq‘ﬂt R ] 7.lTy3 1173 —1+m
I,=te [[Tr-sz— +a‘r‘-k.)" (re %2re’ %) r *gqu&(\') dr
(F.35)
where ¢4cr) = -y3r3 -LR\“"-[qh\“ +th. _ (F.36)
Thus I} = I, + I, + I; and we can take the limit,€-> O.
The stationary points for Iy and I3 are as in (E.58) and (E.63),
, Y2
& =[BARG-ad /2] ®.37)
[N p]" |
ﬂ - / b . ) (F 038)
Therefore we have for I;,
. 1R Y €
I,= le” [lf." fe” + 17“* f (/s)e }
wh '3 - (F.39)

where

L = s' . -
«F;(vﬂ R'lh M - 'R“ (v(e*g'l 2R€W‘) g{"He‘xP[Re '*1-_’—‘1_3“( +QII|H1.]
(he'%sR) (Re%+R)" 2 3 J(r.40)
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m T | a _
ABE Lﬁ PP L/raa m](/;e"s_zﬁe 5l expl tg/;zf‘)‘,s/;,,g,;ﬁ,:l_
(F.41)

(5)  The Boundary Condition (4) for P, (n)

The -contribution of P, () to the boundary condition (4) will be

14 Jée B (e-re ™) Cerre 3" axp[ g R e T -tne "‘]At
A38,
T (F.h2)

Using the same path as above, the integral breaks into three parts, along

AL, LM and MBy:

I:-&% f(re'““m) re™ greey™ M expyerrdr
4‘17/3 -M q N
T,= - | R(-2Re'Tey"™™ ™ g™ (dB >0 as 20 ,
2fyy -
2t 2 miry lﬂ’/g-‘-ﬁi IO-H-‘.
I,-e7 ) Gr-r)*(re "LaRre™) ¢ exp @y crd dr,

where B3(r) and @,(F) are defined in (F.33) and (F.36). Using methods

as above we find

I, 3 hvz 3("0 "z 54(/5)5’3/;]

where

(F.43)

(<) (k"™ £ RY ke S 2 T T R e Nk AN |
> L ] (F.Lk)
94 (A) = (iB-R) fﬁe@ 2ee ™y e p[-iR8*-A"AL +:z‘nm]
(F.45)

As before as S>3 we can approximate I; and Igto the terms involvingel
only. The common factors of -(-'; (®) and 9'3(0() can be cancelled through
the third column of the determinant in (3.184). The remaining terms are
therefore |

% . 2 ?
IB”“{'“"{"”I*————R zl>

‘e + R (ié"r/‘fk.) (F.46)

I: = (&é'n/‘+ R Y.
(F.47)
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(6) The Boundary Conditions (1) and (3) P, (7)

The function P,(Q) in (5) takes the path A)By defined in Fig. 2

of Chapter 3.6 which can be split up into three section
AB,= AL + LM + M8,

where ' )
AL:E=-Re™err osogrse |
(F.48)
LM: t= —Qe‘“’émew, 0 <BSs2T,
. (F.49)
MB,! t = —Re'V 4 rem: £Srgoo.
(F.50)
Along A, L we have
VL Ne1=My -
I = -I(r—zﬁe' eyt riva exp 2 (r) dr, (F.51)
£ . .
where 2[_[(?} = —Ilsr3+ R-ﬁm/‘rz-'I]!'e-m/"l’ qg. (F.52)
The term from LM is- '
2n 7
I,-= J -are ™)' e e (e ->
2 L 0 as &0 (F.53)
°
and the integral from MB, becomes
ZlIIHt . i ci=Ma
Iz I(re‘ Lare' ™%y "’"’-%pzhtr) ar ., (F.54)
2N
We can see that I =-¢ 3 I and as we can now take the limit,&—> O
we have for P, (),
) v
20 -l-M
Pip=[e -t]j(r-ue'"") P exp 7y (M,
o (F.55)

The integral in (F.55) is in fact exactly the same integral as the integral

for P4 () along NBy.

We take the formulation as in (F.5) for the boundary condition (1)

and so the contribution of P|(q) is of the form
0
! 2llith q‘o 2 ﬂ'/g S1+M2
I=(e -1) cm,—v]rz) (r-2Rd T exp2(r) dr
~ (F.56)



(153)

and by changing the order of integration we have

o
b 2MiMa 0,RM, R WLy eMy
I = ((e . -,)J[regx%_ "'(rem/‘z)] (r-2re ) \" P¢3(‘-) ar
where @a(r) is exactly the same functlon as in (F.15), namely
=111
Botrs = - gr3 + v nre ™ rn 0

Thus we can use the results from section (2) to obtain

2l ) "/383
e -l ¢ rr”z (8Ye
( ) B% fz ) (F.57)
where F,_'(B) is defined in (F.20).
For later work it is useful to write here,
\ 2
= MoR-M +___R
e o[ ke s
where
Wit ey % oy 3
Cp= (e =1)T% ""™(g-20e™) exp[8e -15/\'3m+w3>+"’)o*2’33]' (F.59)
B'% . 2

Similarly the contribution of P, (}) to boundary condition (3) will be

MM, -\t -
I (e - )J (re IT-qz)(,re LT PRV T T Sul s p¢zU‘)

° _ (F.60)
and so, using the results from section (3) we have
2MMa %83
I¥= (e e e m"* 9,(8)€ S (F.61)

where 32(8) is defined in (F.24), and we will write Ii in the form

I = C, (Be -R‘)(Be "eam), . (F.62)

(7) The Boundary Conditions (2) and (4) for Pz(Q)

The function P, (§)) in (5) takes the path A,B, defined in Fig. 2 in

Chapter 3.6 which is separated into three regions,
F\-‘Bz= QZL+ LM+ HB)_
where

. - _pe'M *“Vh |
R,L. £=-Re 4 re y ®&rYgE, (F.63) .

R .- .lﬂ'/‘ i&
LM: t=-Re “rge” | o¢e<al, (F.64)

4y, 42T
NB{.‘(:-—-RQ'W‘*-FG 3 ESr & o0,

’ ) (F.65)
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Along A,L we have
0

Qm my i =2
X 3 are™Y

(re = it exp 2, ar.
13 (F.66)
The term along LM will be

I, =-e

27
) -) - R.
L= | aee™y ™ eMeMide 20 s e 0
-]

(F.67)
and the integral along MB,; is
0
= . mM V3 AT/
13 exp["r_rl_ﬂ.u’- ' ’]J( = 2Re' ‘) r e.xpz,t,_(r) dr (F.68)
where 7.} (\") = 3r3+ Qe ./‘rz-i, qre_ m‘ q&. ' ' (F.69)

) WMy,
We can see that I, = -L I,, and as we can now take the limit, & =2 0

we have for P, (1)
0

M, 7 4TM ~1-M2 _
(rl) = [e e ]e. 3 1J(re. 3 :zze‘w‘) ¢ ""‘e,xpyz(ﬂ ar.

e , (F.70)
The integral in (F.70) is the same integral of Py(f]) along AjL.

We take the boundary condition (2) in the form of (F.27) and so the

contribution of Pz(q) is
n %

I (&™) J UMy qe)[(re 73 2Ry e 00y (1) dr

and by changing the order of 1ntevrat10n we have

2 MMy 4‘“ 2
I -(e -ie I[—gﬁwm ] € Bare ™ g o) de

r

(F.71)
where @4(r) is defined in (F.33),
5Miyg A
- - 3 2
@) = =T ¢ Rete Trn) fe TR
Thus we can use the results from section (4) to obtain
3
2 . ?.Tl'lﬂg '/
= (( 2
I‘ )e r {-'(me (F.72)
where F;(X) is defined in (F.40). We will rewrite I, in the form
1= c,i[ RN +H, ¢ R )
(ue'"/s+e) (Ke™sR ) (F.73)

where

?.n’_ *

C, =-7Ty=( l)(ote :z.ze“/‘) o(‘

< [qkwo(wke ¢ "3 ]
(F.74)
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Similarly the contribution of P,(f]) to boundary condition (L) will

be
1-(

and so using the results from section (5) we have

'l"l" 2

2“!“1

I* = (e l) ""‘ 33(&38

where gg(x) is deflned in (F.44) and thus

It = ¢, (xe™ 4 R.).

(8) Boundary Conditions (2) and (4) for P, (M)

Using the original form of boundary condition (2),

e & [ (re™ oY (re'™ e ey ey "expgyr) dr

(F.75)

(F.76)

these two

conditions (2) and (4) produce the following two integrals as the con-

tributions of P, ()):

L

-}

°

-

Teogre

where Q(F)= -i/3r3+ iRe
We have that
= A3 [(-a)+ib]

R h i " | 1= +Ma
IT - e [emﬂl]j SCraare ] re expQ,crdr,

MM, - 2 -l . . -]
en“ [ l] J(— rie W + L‘]J‘e.%ﬂ Y r- 229'%)| ”13' "’"‘exp Q,r) ar,

(F.77)

(F.78)

(F.79)

and so Re{_q“ "'m‘} 7?0 , and therefore because qk is large we can

-1y,
approximate Q, (r) to -mre ¢ . Substituting a new variable, u where

w=nre il

the integrals IT and IT become

2 )y b S . -1=M3 M, U

I‘=D'j[;lq-_3+m+t] H%q wote  du
-2 W

L)

[l
q,, -2th
where D, = q (e Mith -1)(- 2.R.e'"") pr( qhﬁ- i),

The integrals are therefore summations of Whittaker functions.

(F.80)

(r.81)
(F.82)

(F.83)

In general
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, : - |
whﬂgz) - eu?.zzh ‘( e-k-"r&m( \ -i-_t‘)b..vz*me-tAt )
) P(hekem) ) (F.84)
Thus we have
L P (T W T + PO+, W T
I ‘.q" ) (-Ty, _uyy W HL M(T,) w"‘u N (F.85)
r iR, G5 ] |
I+ D [Qt P(Z'I'H;) \I_‘!. ("‘Ch)] (F.86)
where
T 2R, (F.87)
sY2Cn
D'= D™ (- 1:) (7.88)

(9)  Boundary Conditions (1) and (3) for P, (1)

Using the original form of the boundary condition (1) the contribu-

tions of P. (I']) to (1) and (3) are

m .‘ 1 M
I,= (e (™ e ’84 _{(r’e iqre %i)re 5:zee%) r e.quzcr)ér

(F
3 zmH ﬂ 4 7 m 1o)rM
Ii=(e -1)e” mfj(r o™ Mre'ﬂ‘)f"e /3 2Re’ /‘) r 1'exptqzcﬂ dr,
(F
) -} 3 Erl 5“:/6 .“.V‘
where Q,(f)= /3\’ rkffe “+nre -, ‘ (F
Noting that fjg = —X%[a-ib] we can approximate Q,(r) to qorem"
since Ylo is large. Thus using a new variable, v where
'lﬂ'l"
-Nr
o€ (F
we have
} T3 1M oMy v
I'=p» I[—l +iv+l:‘(\+.\_v’_ ) vitite
2 r 3 o 3 _zgqo AV ) (F
Ii: DZJ' _y - Hv} ey NNy gV g :
J g NJ U Tmm, (F
where

O‘H

o= [1-€"n, 2003 exp (18 it iz} ™) . x

.89)

.90)

.91)

.92)

.93)

.94)

.95)
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Again the integrals are summations of Whittaker functions,

I =D ['—L Mt3eM, )(—'c )3"\»1 (- °)+ Ll"chm(-'c)v‘w (-'C)

+ilM) W <-m]
-H‘L,-‘/z )
(F.96)
[ 2 {2+ )(-rﬂ)v\l CT) + MU+ )(-'q,) W (- 'Co7]
' Mo (F.97)
where D,'= D, e“‘( )" (F.98)

and Ta.= 2R .
° ’\o (F.99)
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THE EFFECTS OF HEAT TRANSFER ON OCEAN/ATMOSPHERE GENERAL CIRCULATION
MODELS

BY S.K.L. JONES

ABSTRACT

We investigate in three problems some effects of heat transfer in
linked ocean/atmosphere models. 1In all the problems the term involving
vertical thermal conduction is retained in the heat transfer equation

and both molecular and eddy values for the conductivity are considered.

In Part 1 we look at a two layer model, ignoring all macroscopic
motion; the governing equation for both layers is therefore the heat
transfer equation. With suitable boundary conditions the 'phase lag'
between a heat source in the upper layer and the temperature at the

inteface of the layers (the sea surface) is studied.

In Part 2 we consider a one layer model. A perturbation model due
to Blinova is extended to include the heat transfer equation. One
boundary condition introduces a time dependent heat source at the bottom
of the layer, simulating a heating at the sea surface. The stream

function is obtained at the bottom of the layer.

Finally, in Part 3, the stability of a two layer liquid model is
examined. Macroscopic motion in the lower layer is ignored. The
perturbation equations for the two layers are solved and homogeneous
boundary equations yield an equation of consistency for the system which
leads to criteria for stability. These criteria are found using
difference methods and, following Meksyn we produce first order correction
terms to Eady's well known stability results. Using Meksyn's methods
once more, the model is extended to include a variable coriolis para-

meter and a stability equation is found.



