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GENERAL INTRODUCTION



General Introduction

In the quantum mechanical treatment of ion-atom collisions
much work has been done in calculating cross-sections for electron-
capture reactions involving multi-charged ions %n collision with simple
atoms. Such reactions are of considerable interest, not only theoretically
but also in many areas of experimental research. An example of current
research, in which electron~capture processes may play an important
role, can be found in comnection with therpractical aspects of controlled
thermo-nuclear fusion development (see for example Barnett1).

Information such as electron-capture cross-sections is
required in connection with the methods of prodﬁcing the plasma in the
thermonuclear fusion devices by the neutral injection of fast beams
(150-200 keV) of hydrogen atoms in highly excited states, and also
in the study of plasma instabilities that occur due to collisions
between the neutral hydrogen atoms and the small percentage of highly
stripped impurity atoms. Consequently, as stated by Barnettq, atomic
physical processes, such as electron-capture by fast singly or
multi-charged ions,are expected to play an increasingly important role
in the plasma physicist's and engineer's quest for thermonuclear poWer.

Also electron-capture from oﬁe- and two-electron atoms by
fast projectiles is of importance in the study of post collisional
phenomena such as projectile x-ray emission. These emissions may prove
to be of considerable interest in the field of astrophysics which, if
detectable, may be used in the study of cosmic ray intensities and the
properties of interstellar gases, as discussed by Belkic and McCarrollZ.

Consequently the capture of electrons by fast projectiles

from atoms has received a great deal of attention over the years and has



been the subject of many theoretical investigations. Although at
high energies it is the ionisation process which doﬁinétes the electron
loss process, there-has been in recent years considerable interest in
high energy electron-capture following the suggestion:of Bassel and
Gerjouy3 that 1st order methods may be inadequate in the treatment of
electron-capture at high energy, which is of practical significance if
the methods of calculating electron-capture cross-sections are to
predict accurately the high-energy dependence of such cross-sections.
The simplest electron-capture reaction is the resonant

charge transfer process
+ + . '
H™ + H(1s) —s H(1s) + H (1

which has been the subject of many theoretical calculations in the
region of high proton impact energies (see for example McCarroll and
SatlinL+ and the work of Dettmann and LeibfriedB), and has since, due

to the exact nature of the atomic wavefunctions, served as a testing
ground for new theories and methods. If the incident proton is denoted
by (1) and the hydrogen nucleus by (2) and the bound electron (3), the

exact matrix element from which the cross-section may bve found is

Te= {Wr | iz + Vo3 | ‘:Pi+> , (2)

where Vij are the interaction potentials between the particles i and jJ
of the system, while q)i+ is the complete wavefunction of the total
hamiltonian H with eigenvalue E and can be shown to satisfy the integral

equation
+ + i
where G is the Greens function (E -~ H+ ie)'1 and Vi is the initial

perturbing potential which in this case is

Vl = V12 + V13 H ' (4)



v;i and qu are the unperturbed wavefunctions for the initial and
final state respectively.

Physical arguments suggest that for high impact energies, in
particular for proton velocities much in excess of the orbital wvelocity
of the captured electron (a proton energy of 25 keV for protons incident
on hydrogen) , Tif would be accurately represented by the Born approximation,
obtained by replacing \I/i+ in equation (3) by the initial unp‘ert.urbed |

wave function \Pi such that
Ty = <‘Pf | Vaz + Va3 | ‘I’i> : (5)

The question has often been raised as to whether the inter-
nuclear potential should be retained or omitted, and the calculationsof
cross-sections for charge-exchange, involving the Born approximation,
generally falls into two categories - those following the argument of

7

Oppenheimer6 and Brinkman and Kramers' that the coulomb repulsion between

the nuclei, qu, may be neglected, such that

Tir = <‘Vf | Vo5 | ‘P1> ’ (6)

and those in which it is retained (equation (5)) and which are generally
referred to as the 'Born approximation'.

However, Belkic, Gayet and Séling, in a recent review of
electron-capture in high energy ion-atom collisions have brought
attention to the fact that at high impact energies the electron-capture
cross~sections should not be influenced by the internuclear potential,

and show conclusively that if the internuclear coulomb potential is

accounted for exactly to first order in m4‘ (where m is the electron

mass and M the reduced mass) then the total cross-section for the
forward charge-exchange is entirely independent of this potential.
This effectively means that if we wish to calculate the cross-section.

in the limit 94;-—* O we may use the impact parameter method to




formulate the scattering problem (see also McCarroll and Saling’jo

).
In the impact parameter treatment the nuclei are éssumed to behave like
élassical particleé ahd quantum perturbation theory is applied to determine
the chance of a transition from one electronic state to another. During
the encounter we assume that the relative velocity vector of the nuclei
remains constant and this then enables the internuclear potential to
be removed from the perturbing potential in a systematic manner to give -~
simply a phase factor in the transition amplitude aif(b), which later
disappears on forming Iaif(b)l 2. We note that in the Brinkman and
Kramers approximation the internuclear potential is therefore accounted
for exactly in that it is removed from the calculation. The fact that
the Born approximation is in better ag?e;ment with experiment than
the Brinkman and Kramers approximation is considered to be fortuitous
(see for example the discussion by Bransden and Cheshire11).

Before discus§}ng the theoretical methods which go beyond
the first Born approximation it is important to understand what the
first Born approximation‘represents in terms of quantum perturbation
theory. The matrix element in the first Born approximation (equation
(5)) can be shown, by expanding the integral equation for \Pi+ (equation
(3)) to be the first term in a series expansion called the 'Born series'.
Obviously the convergence of this'Born series' is of utmost‘importance.
The argument for the use of the first Born apﬁroximation for
rearrangement collisions is that at high impact energies, E, distortions
will be small and the series will converge, one hopes rapidly, to the
first term as E—2 « , and that as a result ’I‘if represents the leading
term in an asymptotically converging series.v Consequently the convergence
of the Born series and of the physical matrix element for rearrangement

12,13,14

collisions has received a considerable amount of attention of

15,11

particular interest however is the work of Drisko who has suggested



that for electron-capture the Born series does not converge to its
first term in the high energy iimit and therefore in order to obtain
accurate cross-sections at high impact energies one must use at least
a second order method.

The work of Drisko showed that in the second Born approximation
the capture cross-section for reaction (1) behaves at high energies as

-12 . .
)QBK(where QBK is the Brinkman Kramers cross-

(0.2946 + STT v 2
section and behaves at high energies as v-12, where v is the impact
velocity). Drisko also estimated that the third order Born approximation
would again have a different high energy dependence, namely

=12

(0.319 + 5Tv 2 )QBK’ although essentially both the second and third

order approximations predicf a behaviour of E for large impact
energy E, which is in full agreement with the prediction given by
Thomas16 using classical trajectory theory.

Among the calculations going beyond first order met@ods,
which are valid at high impact energies, is the impulse approximation
(see Bransden and Cheshire11, Cheshire17).._In this method the
unperturbed wavefunction in the matrix element, equation (5), is
replaced by one employing outgoing wave boundary conditions, and °
although the internuclear potential is included in the matrix element
its importance and contribution to the cross-section is very much
reduced. Although the total cross-sections derived from the impulse
and Born approximations are similar, virtually the whole of the impulse
approximation cross-section is derived from the Brinkman-Kramers term.
Furthermore, at high energies, E > 1 MeV, the impulse approximation

-11
behaves like E /2

, which is in full agreement with Drisko's
prediction for a second order Born approximation mentioned earlier.

Thus, physically the impulse approximation is an improvement over the.

first Born approximation and the similarity in cross-sections between



the two methods adds further evidence to the suggestion that the success
of the 'Born approximation' for total cross-sectioﬁs must be to some
extent éccidental. -

The most recent and successful second ordef method developed
for calculating electron-capture cross-sections, at high impact
energies, is the Continuum Distorted Wave (CDW) method introduced by
Cheshirqu. Unlike the impulse approximation the CDW method incorporates'
wavefunctions which have the correct asymptotic form, and indeed this
was one of the factors that motivated Cheshire in its derivation. The
correct initial and final boundary conditions of the problem are ensured
in the CDW method and this is achieved by taking full account of the
continuum intermediate states in the charge-exchange process, in both
the entrance and exit channels. This is an important feature of the
CDW method since when the incident velocity is high the dominant
inelastic transitions will be ionization and excitation, and, since
all intermediate channels are open, it is not surprising that %he
charge-exchange cross-section will be influenced by the inclusion of
the continuum intermediate states. Also th; internuclear interaction
V(R) is removed from the perturbing potentials in the CDW transition
amplitude in a consistent manner. This is done in such a way that V(R)
is exactly accounted for within the total wavefunction (to first order
in WOu.) so as to give zero contribution to thg final cross-section.

Originally the CDW method was introduced by Cheshire’-]8 within
the scheme of the well known impact parameter method, but the main
features with respect to scattering theory,are shown in the formal
quantal treatment by Gayet19 (see also the review by Belkic et al8).
Essentially the problem that érises when trying to obtain a second
order approximation to T, . in equation (2), as pointed out by Greider

and Doddao, is that terms arise in the exﬁansion of T;; which bring



about the divergence of the operator Born series. However, Dodd and
Greider21 have suggested a means by which the divergence can-be overcome.
The basic feature of their method is the introduction of an arbitrary
perturbing potential, say Vo into the distorting poténtial, which
could then be chosen hopefully 'to achieve a satisfactory compromise
between realism and tractabilit&'. Exploiting the work of Dodd and
Greider21: Gayet19 makes a suitaﬂle choice for Vo and arrives at a
transition amplitude equal to that of Cheshire's18 multiplied by an
arbitrary phase factor. We note also that the‘high energy behaviour of
the method is in full agreement with that of the second Born approximation.
In the work presented here the derivation of transition
amplitudes is achieved using the somewhat more transparent and elementary
approach based on the impact parameter formalism, as used by Cheshirqu.
However, for the purpose of completeness an outline of the so-called

wave formalism of the CDW method, as presented by Gayet19

, 1s given in
Appendix A of this thesis.

Since its introduction by Cheshire18 the CDW method has been

: 23

investigated thoroughly by workers such as Saiinzzf Belkic and Janev 7,
Belkic and Gayetzq, and Belkic and McCarrollz, for the purpose of
comparing the calculated cross-sections with experimental data. For
impact velocities greater than the Bohr orbit velocity of the target
electron the theoretical cross-sections were found to be in good agreement
with experiment. Therefore, the CDW approximation has proved to be an
adequate second - order method for calculating charge exchange cross-
sections at large impact energies, and is thus an improvement over that

of the Born calculations. This is particularly so in the case of electron-

capture by highly charged ions which was examined within the CDW framework

by Belkic and McCarrollz.



For electron-capture from targets having more than one electron
the questién arises as to the sensitivity of the method in question with
respect to the target electronic wavefunction. The CDW method was
examined with this respect for the He target by Belkié and Gayetaq, who
found it to be more sensitive than the corresponding first Born
calculations. An improvement in the electronic wavefunction usually
involves an inclusion of electron correlation and its effect on the CDW
cross-sections for electron-capture from the He and H was the subject of

25

an investigation by the workers Banyard and Szuster ~ and Moore26.

In Part 1 of this thesis the work of Banyard, Szuster and
Moore is extended to include electron-capture from Li* by fast protons
and alpha-particles. The sensitivity of .the cross-sections with respect
to changes in the Li* wavefunction is examined and a study is made of
the trends in cross-sections obtained when the target nuclear charge is
systematically increased. By analysing the CDW expression for the cross-
section, it is noted that the cross-section obtained is sensitive to |
the description of the electrons in the two-electron target and, in
particular, the shape of the electronic wavefunction close to the origin
for electron-capture at high projectile velocities.

In Part 2 the CDW method is applied to electron-capture by
fast protons from a three-electron target, and cross-sections are
calculated for protons on Li. When pe?forming a calculation involving
a many-electron atom approximations are invariably made to remové the
difficulties which arise due to the presence of the inter-electron
potential terms. In this section a modification is suggested to the
so-called 'perfect screening' approach used by others for two-electron
targetszz.‘ The resulting cross-sections are compared with experiment and

agreement is found to be more Satisfactory than that obtained from previous

theoretical calculations. The mqdification of the 'perfect screening'’



method is applied also to the Li* ion and to complete the ionization
series, cross-sections are calbulated for the one—eiectron target Li2+.

As demonsérated in Parts 1 and 2, electron-capture from small
atomic targets by fast structureless projectiles, such as protons or
alpha-particles, can be described quite successfully by modifying the
CDW method of Cheshire18. However, also of interest is the problem of
charge-exchange involving structured projectiles (e.g..atoms or ions with
one or two electrons). This presents a more difficult problem due to
the interaction between the target active electron and the passive
electrons residing on the projectile.

Despite the success of the CDW method in predicting electron-
capture cross-sections for fast structurgless projectiles, Belki027, in
referring to the work of Shakeshaft28,has stated that the agreement
between the CDW method and the second Born approximation in the limit
of high impact projectile velocity is accidental since it results from
the incorrect asymptotic behaviour of the CDW transition amplitﬁde at
large impact parameters . As a conseqguence Belkic27 has proposed
another second order method called the Contiﬁuum Intermediate States
(CIS) approximation. The CIS method is not only satisfactory in providing
an accurate total capture cross-section for fast protons (E ) 25 keV)
incident on H, but also, in contrast to the CDW method, it predicts a
transition amplitude for large impact parameters, and large incident
velocities, which is'essentially in agreement' with the second Born
approximation and the classical treatment of ThomasTé.

The CIS method differs from that of the CDW approach in that
it takes account of distortion effects by inclusion ofbthe continuum
intermediate states in only one of the collision channels. For example,

in the prior form, the prior interaction is treated as a perturbing

potential while the post interaction is treated fully as a coulomb distorted



wave. Although this feature of the method leads to the boundary
condition of the problem being preserved in only one channel, we show
in Part 3 that as a consequence of this the CIS method is rendered in
a form which is particularly suitable for adaptation to the more
general case of ion-atom collisions.

For the reasons sﬁated above the CIS method will be especially
applicable to electron-capture.into excited states for incident heavy
ions at high impact energies, for which large impact parameters will
be important. This subject has in recent years attracted renewed

interestzg’2

, not only from a theoretical point of view but also in
connection with the practical aspects of thermonuclear fusion1 and
astrophysicsa, as stated earlier.

Therefore, in Part 3, the subject of electron-capture with
respect to the more general case of ion-atom collisions is discussed,
and a procedure is presented, based on an adaptation of the C?S method,
for determining cross-sections for charge exchange between simple
structured systems. A critical test of th? scheme proposed is provided
by application to H-H collisions in which H is formed in the exit
channel. Finally, total cross-sections for electron-capture by

* and Li3+ incident on H atomsare calculated and compared with

1i*, Li
experiment.

Since in the present work calculations are performed
involving electron correlated wavefunctions we now present a brief
summary of the correlation problem.

In order to obtain the exact wavefunction for an atomic or
molecular system it is necessary to find an exact solution to the
relevant Schrgdinger equation. For the hydrogen atom and hydrogen

molecular ion, each with a single electron, the Schrodinger wave

equation may be solved exactly. However, for a large atom or molecule

10



the problem is made more complicated by the presence of potential

energy terms which arise from the mutual repulsién between any two
electrons. In préctice the exact solution to the Schrodinger equation
for a many-electron system is unobtainable and therefore varying degrees
of approximation to the exact wavefunction must be made.

The electronic structure of many atoms and molecules has
been studied, with some success, by means of the independent particle
approximation. The simplifying assumption of thé model is that the
inter-electronic potential field experienced by an electron, located
at some ?oint in space, will depend only on the average position of
all the other electrons. The Schrodinger equation describing an
N-electron system is then reduced to N single-particle wave equations
coupled together only through an average coulomb field. The total
wavefunction.'q) is then written as a simple product of one-particle
wavefunctions, and when evaluated numerically it is called the Hartree

30

wavefunction” . Unfortunately, when the total wavefunction ‘P is
determined according to this prescription‘it does not take into account
the indistinguishibility of the electrons, nor does it obey tﬁe Pauli
exclusion principle. These difficulties are overcome by writing
gP as a single Slater determinant31 of one-electron wavefunctions,
known as the atomic spin orbitals. -Any spin orbital may be written
as the product of a spatial orbital and a spin function. If @P is
Aetermined numerically in this way, it is called a Hartree Fock (HF)
functionsz. Interchanging the coordinates of any two electrons merely
interchanges the corresponding rows in the Slater determinant and, by
the theory of determinants, causes YP to change sign - this antisymmetry
is the wave mechanical fulfilment of the Pauli exclusion principle.
Within the HF approximation the probability of finding two

33,34

electrons with parallel spins at the same point in space is zero

1
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Such a point may be termed the centre of a "Fermi hole'"”” and is a
consequence of the antisymmetry of the waveéunction. Although the HF
method allows electrons with the same spin properties to avoid one
another, no allowance is made for any spatial correlation between
electrons with opposite spins. The effect of correlation between all
electrons can only be examined by means of wavefunctions which are more
flexible than the HF determinant. When described by wavefunctions
beyond the HF level each electron lies in a '"coulomb hole”36: a region
of space which is largely devoid of other electrons due to coulombic
repulsions.

A wavefunction that incorporates the description of the so-
called 'coulomb hole' and has an eigenenergy beyond SHF is termed an
electron correlated wavefunction. The énergy change &€ arising from
the allowance for electron correlation is clearly not measurable by

37

experiment but is usually defined as dg = EEXACT - EH‘F’ where

£ EXACT is the true non-relativistic energy and is generally deduced
from experimental observation.

The correlation energy of an atom er molecule is usually of
the order of magnitude of 1% of the total energy. Although this is
relatively small it can be comparable to spectral transition energiés,
binding energies and dissociation energies in molecules. For example,
the 1S description of H is particularly sensitive to electron
correlation since without correlation the existence of the ground-state
is not even predicted. Electron correlation also plays an important
role in the determination of the correct dissociation products of the
H2 molecule. When the ground state of H2 is described by using the HF
scheme there is equal probability of dissociation into H and g as

there is for the observed dissociation into two H atoms. This is a

consequence of the HF method allowing electrons of opposite spins to

12



accumulate on the same atom. Hence, at_iarge internuclear distances, a
total energy is obtained whichiis higher than that for the true
dissociation products.

Although the recent development of high-séeed computers has
made the electron correlation problem more tractable, it was first
discussed as early as 1929 by Hylleraa538 who proposed three methods
of constructing correlated wavefuﬁctions. The procedufe used in this
work is of the configuration-interaction (CI) type. In this approach the
wavefunction is expanded as a linear combination of Slater determinants,
each of which is composed from a basis set of orbitals; the problem
being to determine the configuration coefficients. The term configuration
refers to a combination of Slater determinants which has the required
angular and spin dependence of the state under study. This mixing
together of various electronic states of the system under study, subject
to certain angular momentum requirements, can be shown to introduce
spatial correlation between the electrons. Clearly provided tﬁat the
set of basis orbitals can be made complete and provided that all possible
configurations are used, we can, in principie, calculate a CI wavefunction
that will yield an exact eigenenergy for the system under consideration.
In practice, of course, there is a restriction on the number of
configurations that can conveniently be handled, although the more terms
that can be accommodated, the better the calculated energy. The main
drawback of the CI calculation is that, at the outset, it is not certain
which configurations will be most effective in lowering the energy. In
addition it is found that the energy convergence is notoriously slow.
These difficulties can be overcome by expressing the wavefunction in
terms of the so-called natural spin-orbitalng’L+O (NSO's) . Lowdin
has defined these (orthonormal) spin-orbitals fL (é;)ras being those

which produce a diagonal representation of the first order density

13



matrix e (_:51' )y Xq )0

v

e (.51 ,21)

(R [} JEIESERRIS) JC R L SRRt

. .
;ci N iz (7)

where X5 refers to the collective space and spin coordinates of electron
i, The coefficient cy is known as the occupation number of the ith natural
orbital (NO), and clearly satisfy z::ci = N. Using a theorem due to
SchmidtLH it can be shown that any spﬁn—orbital whose population is
negligible may be omitted from a CI expansion. In other words the
convergence of a CI wavefunction can be vastly improved by including
only those natural spin orbitals having the highest occupation number.
This result may appear to be of little‘value, since in order to determine
the natural orbitals it is first necessary to calculate the density,
which in turn requires a knowledge of the exact wavefunction. Never-
theless, by diagonalising the density matrix at any stage in a CI
calculation and then selecting the configurations involving the most
heavily populated NSO's, one may dramatically shorten the expansion.
However, for the purpose of calculating such quantities as
the electron-capture cross-sections it is the use of the natural |
orbitals as a means to further our understanding of electron correlation
that is of primary importance here. This end is achieved by expanding
the existing CI wavefunction in terms of natural orbitals which are then
grouped into natural configurations. Such a representation is generally
known as the natural expansion of the wavefunction, and exhibits
features which are of particular relevance to our present work. Firstly,
the terms appearing in the natural expansion are found to be well-
ordered by virtue of their energetically decreasing importance.

Secondly, the correlation within the wavefunction is conveniently

14



partitioned both in terms of its radial and angular components and also
according to the size of its correlation contributions. It is thus in
a convenient form for our electron correlation study.

In Parts 1 and 3 the natural expansion repfesentation of the
CI wavefunction is used to demonstrate how the radial and angular
correlation, included within the CI wavefunction, influences the
calculated electron-capture cross-sections. In particular, in Part 3

attention is drawn to the opposing effects of radial and angular

correlation.

15
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PART ONE

The calculation of electron-capture cross-sections for
fast protons and alpha-particles in Li* using the Continuum Distorted
Wave (CDW) method, plus an analysis of the effects of electron--
correlation and of the trends in capture cross-sections for two-

electron targets.



CHAPTER 1.1

Introduction

The continuum distorted wave (CDW) approximation was introduced
by Cheshire1 who used it to calculate cross-sections for the resonant
charge transfer process

+ +

H + H(1s) — H(1s) + H 7(1.1._1)

and compared his results with those of the Batesa, Born3 and impulseL+
approximations. Although no comparison with experiment was made,
Cheshire showed that the CDW method, when formulated with wavefunctions
having the correct boundary conditions, has a correct high energy
behaviour which is in full agreement with the éecond Born57 approximation
but, at low energies, the cross-sections were found to increase too
rapidly with decreasing energy. The CDW approximation was extended

to more complex collisions by Salin6, who calculated individual capture

cross-sections, ¢ (nf), for the reactions

H  + H(1s) —» H(nd) + H' (1.1.2)

and B+ He(1s2)—> H(nt) + He'(4s) (1.1.3)
for nd = 1s, 2s, 2p and 3s in the impact energy range 400 keV £ E £ 3MeV.

3

Using the Oppenheimer n” rule7 to estimate individual cross-sections
for n» 2, Salin evaluated the total cross-sections Q = z;; T (nf) and
found them to be in good agreement with experiment throughout the whole
energy range. Belkic and Janev8 generalised the method to electron-
capture from any two-electron system by a fast nucleus and applied it
to the reactions
Bt 4 H(1s) —> He (nd) + H' (1.1.4)

and HeZ" 4 He(1sa)—-—>He+(nl) + HeT(1s) , (1.1.5)

for nd = 1s, 2s, 2p, 3s and 3p; the energy of the alpha-particles ranged

from 25 keV to 3 MeV. The total cross-sections Q were obtained using the

] see also reference 25, p.395.
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3 sum rule6 employed by Salin and, for reaction (1.1.5), the

same n~
results were found to be in satisfactory agreement with experiment when

E > 600 keV. Belkic and Janev comment that it can be expected, from

the work of Gayetg, that the CDW approximation for charge exchange processes
should be reliable down to 30-50 keV. However, such a comparison of Q

with experiment will be restricted in this energy region by the

7

reliability of the Oppenheimer n-3 rule’'. As a consequence, Belkic and

Gayet 101

have calculated the CDW individual cross-sections @ (nf) for
reactions (1.1.2-5), when n{ = 1s,2s,2p,3s,3p,3d and 4s, for the
purpose of comparing them with experimental data. The total cross-sections

3

Q were evaluated using a more appropriate n - sum rule10 which was
expected to be valid at low impact energies = down to about 50 keV for
the H' - H collisions. For reactions (1.1.2) and (1.1.3), they reported
that the total cross-sections were in excellent agreement with experiment
for E > LO keV and E > 80 keV, respectively. A satisfactory agreement
with experiment for alpha-particles was observed down to 100 keV for
reaction (1.1.4) and down to 500 keV for reagtion (1.1.5).

For electron-capture into atomic hydrogen states with non-zero
values of the angular quantum number £ , Belkic and Gayetqo reported
that no firm conclusion could be drawn on the accuracy of the CDW method
until more extensive measurements have been performed. However, for the
formation of atomic hydrogen in the 1s, 2s, 3s and 4s states, the CDW
method works well for the H and He targets down to proton impact energies of
roughly 50 keV and 80 keV, respectively.

In the earlier work of Salin6 the CDW cross-sections were found to
be sensitive to the nature of the He wavefunction. Using the simple

one-parameter variational wavefunction of Hylleraa512 and the open-shell

wavefunction of Eckart13, discrepancies between the two sets of results
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were quite significant. The difference was about 10% for E < 1 MeV

and within 20% for E > 1 MeV. In view of this large percentage change,
Banyard and Szuster14 studied reaction (1.1.3), for 25 keV £ E £ 3 MeV,
and examined the sensitivity of the CDW individual and total cross-sections
with respect to improvements in the He wavefunction up to and beyond the
Hartree-Fock description. In going from the Hartree-Fock (HF) wavefunction
of Clementi15 to the correlated wavefunction of Weiss16, changes in Q

were relatively small - of the order of 4% - although for capture into

the individual hydrogen states the percentage changes were slightly

larger. However, improvement in the target wavefunction from a simple
one-parameter wavefunction up to the HF level produced, at E » 1000 keV,
much larger changes in Q: the relative-changes were about 25-30%. A

study of the cross-section dependence for reaction (1.1.5) revealed

similar trends.17' Banyard and Szuster concluded that it is essential

to describe the target by at least an HF wavefunction if meaningful
comparisons are to be made with experiment. An atomic system for which

it is essential to go beyond the HF descript?on is the hydrogen negative
ion - since without an allowance for electron-correlation H is essentially

Q
b

unstable. Moore and Banyard18’ studied H as a target for electron
capture by protons and alpha-particles over an energy range 100 keV

E £ 10 MeV and 500 keV { E § 10 MeV, respectively, with emphasis

on the change in cross-sections due to variations in the H wavefunction.
Using the correlated function of Weiss’I and the HF function of Curl and
CoulsonZO they found that correlation reduced Q by at least 16% over both
energy ranges. As for He, they also observed that percentage changes

for capture into the individuwal hydrogen states, nd = 1s,2s, and 2p,

were larger, roughly 26-30% for both protons and alpha-particles.
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The factors that influence the cross-section for an electron-capture
process include not .only the nature of the bound state atomic wavefunctions
but also such features as the distorting or perturbing potentials (acting
either in the inward or outward channels), the changes in the electronic
binding energies, and the relative velocity of the incident projectile.
These may be coupled together in a complicated manner and their individual‘
effects upon the cross-sections is often leost in the mathematical analysis
and the final numerical calculations involved. However, the analysis
and study of these factors may not only be pleasing from an aesthetic
point of view but could prove useful in understanding both the relative
magnitudes of capture cross-sections for different targets or projectiles
and the changes which occur when improving the target wavefunctions. Such
knowledge can be helpful when attempting to modify the method itself.

In the chapters that follow we evaluate the CDW electron-capture cross-
sections for fast protons and alpha-particles incident on the L%+ ion.
This not only extends the work already done on two-electron systems but,
in particular, it will allow us to examine t@e trends in Q obtained when
systematically increasing the target nuclear charge. Thus we analyse

the CDW expression for the general capture cross-section (7'(nlﬂ{l‘) for
the three systems H , He and it at progressively increasing projectile
velocity. The quantum numbers nd and n{l’ represent the bound states
of the 'active' (or captured) and 'passive' electromns, respectively. For
protons and alpha-particles incident on Li* the capture cross-sections are
calculated in the energy ranges 100-3000 keV and 100-10000 keV. The
cross-sections @ (nf ) for each reaction are calculated for the cap-ure
states nd = 1s, 2s and 2p and the total cross-seclion, § = z: o (ud),

3 nt

is determined by using the n- rule. We also examine the sensitivity of

. . . .+ . .
the cross=-sections with respect to changes in the Li wavefunction in order
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to study the variation of the effect of electron-correlation as the
nuclear charge of the two-electron target is increased. Finally, the
total cross-sections are compared with recent experimental data.

In order to facilitate the analysis of the cross-sections mentioned
above, and to aid the resulting discussion, it is clearly appropriate
that we first present a derivation of the CDW transition amplitude5
Thus, in Chapters 2 and 3 we derive the CDW method for the general case
of electron-capture from a two-electron atom by a structureless projectile,
and then discuss the evaluation of the transition amplitude and resulting
cross-secticn. The method is developed within the somewhat more transparent
scheme of the impact-parameter approach used by Cheshire but the full

9

quantal treatment of the CDW approximation, due to Gayet”, is presented

in Appendix A.
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CHAPTER 1.2

The CDW transition amplitude

Consider an encounter in which a nucleus A, of -charge ZA’ is
incident on an atom or ion consisting of two electrons (1) and (2)

bound to a nucleus B, charge ZB. Let x, and %5 be the position vectors

1

of electron (1) and (2) with respect to the nucleus of B and s be

10 2
the corresponding vectors relative to the nucleus A. The reaction we are
considering is therefore of the type (see Figure 1.1):

ZA + [ZB, e(1) , e(Z)] T [ZA s e(1)] f1 + [ZB , e(Z)J fg ,

(1.2.1)

where 1 and f denote the initial and fiﬁal states respectively. We shall
calculate the cross-section for capture of electron 1 (the so-called
'active' electron) and, since the electrons are indistinguishable
and therefore the capture of either electron is equally probable, the final
cross-section is simply twice that for the capture of electron 1.

We shall adopt the approach of Cheshire1 and formulate the problem
using the Impact Parameter (IP) method* « In the IP approximation it is

assumed that A moves with a constant velocity v with respect to the fixed

nucleus B. Thus if R is the position vector of A relative to B then

R = b + vt (1.2.2)
where t is the time, chosen such that at t = O the nuclei A and B have
a minimum separation b - this being the impact parameter for the collision.
Let C be an arbitrary origin along AB, and let I, and r, be the position
vectors of electrons (1) and (2) with respect to the origin O. Bates
21

and McCarroll have shown that the results of the theory are independent

of the choice of origin O; therefore for convenience we shall always take

* see reference 25, p.108.
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O to be the mid-point of the line AB. The complete Schrodinger egquation

describing the motion of the electrons during collision is

. ‘7 2, 3 ‘7 2, Zg 4 25 1+ % & By o 1 - Zp%p q> (r, , r, , t) =
I, L % % s, 8, X R -1 =
1 1 2 12
-iQ g)(gq y Iy s E) (1.2.3)

where X, is the distance between electrons (1) and (2).

In the frame of reference with an origin at point O the active
electron (1) has, in addition to its orbital motion about the target B,
a velocity —3v by virtue of being bound to B. Similarly, an electron
bound to the nucleus A would have a velocity %X' If a collision produces
only the excitation of the target atom; the active electron continues
to move with the nucleus B and its translational motion remains unchanged
since v is assumed constant. However, in the case of a rearrangement
collision, the electron, which was originally moving with B, is captured
by A and must therefore acquire the linear velocity of A. The consequent
change in mcmentum of the electron might be- expected to have an increasingly
important effect on the electron capture cross-section as the vrojectile
energy 1s increased. t was therefore suggested by Bates and McCérroll21
that a set of wavefunctions which take into account the energy and
momentum associated with the translational motion of the active electron
should be used as the basis for the expansion of the electronic wave-
function ‘-'P(f.q v I5 s t). |

The complete electronic wavefunction \P(£1 , 'y , t) will satisfy

2
the following boundary conditions:

?1(51’52’t)—_’§j(£1’£2’t) and (Pf —_ @f(£11£2,t) .
t—» - t—p +eo

(1.2.4)
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where
i ZA(ZB
\'

- 2)

éi(z'l y Iy s ) = L0z, o, t)exp(— An(vr - v2t))

(1.2.5)

e | ( )( )
i(Z2,=1)(Z2,-1
éf(g » Ipy B) = ﬂf(3_1 » Iy s t)exp(— A B Ln(vR+v2t)> 3

v

(1.2.6)

It follows that the functions éi f(£1 ,ze,t) are the solutions to the
,

equations
PR 2, (2,-2). .
3V, +3 V¥V, +2+3-_1 2% 1) $ (x5t =0
=1 -2 X X X R Y
1 2 12
(1.2.7)
2 2
-1 - .
(+V, +3 ¥, +2 -+ - (21 8) (x5, t) = 0
=1 =2 S, X, R At
(1.2.8)
Following the suggestion of Bates2 we may write
' . 2
_O.i(_z;,l 1I5st) =¢i(§1 ,_}gz)exp{-l[% VeI, + 3 eI, + 4Vt o+ Eit]}
(1.2.9)
and
: : 2
- - - a a
_(')_f(_lz1 'Isyt) —\[in(gq)xfz(za)exp{ i [ BVer, + BVeT, + TV E
HE, + €, >t}} , (1.2.10)
1 2

where ¢i(_)5,|,x ), Wf1(§1), Xfa(}ﬁa) are the bound state electronic
wavefunctions in the initial and final states with corresponding eigen-

energies ei , ef ) éf such that
1

2
2 2
1 1 Z Z _
(3V, +2V,  +B+B- 1 +€;) $ilx; ) =0 , (1211
=1 =2 X, X5 X5 .
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1 Z _
(2V£1 ¥ ﬁ* Ef,|) We (8 = © (1.2.12)
and
2, |
(%v v B ef) X () = 0 . (1.2.13)
ES X5 2 2

We now introduce the distorted waves "Xi and /Xf defined as the

solutions of the equations

2 2
[%v + %vr + 284 % 0 4 —ZA(ZB_2)+ id + Ui] ’Xi(£1 ’Ee’t) =0

=1 = X, X X, R 3t
(1.2.14)
and
1\72 + % ° ¢ Oaalp (2N (Zg=1) oy bU X.( t) = O
iV, +3V/, +A+B-TA7 87 0 v i+ Uy | X(z,m,,t) =
=1 -2 5, %5 R R 2t
(1.2.15)
with the boundary conditions
X , @i and X — @f . ‘ (1.2.16)

t—s - t — +o0

Clearly the distorting potentials Ui and U, must be chosen such that they

f

will vanish in the limit of large internuclear separation.
If \I/i and ? ¢ are the solutions of equation (1.2.3) with boundary
conditions (1.2.4) then the 'prior' transition amplitude a;ris obtained

by projecting the initial state on to the complete wavefunction ?f'

Therefore
- A ¥
3¢ = Hm dry &, Yy éi
t—> ~o0
' dr * (1.2.17)
= 1lim j 21 dr, \Pf ’Xi . 2.7
t—s =0

Now consider the term
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- e

Using equation (1.2.14), the right-hand side of

e [A % g

*

w]
Y

the above equation becomes

& e e, s X - R XA
dt J = =2 Tf M ‘Pf'? 2V 5
ZB Zg ZA(ZB—2) )
x0T * R -0 Xy .
1 %2 %2 -
(1.2.18)
By noting the relation that
* * ¥
wre w, & = [dyly e (1.2.19)
when Q is an Hermitian operator, and by making'use of equation (1.2.3)
we find that (1.2.18) becomes
¥ ,2 zZ 27
d * 1 A “A A
E?fdf-nd-llz‘}’f /Xi_fjd{1d£2\1’f(;+-s_2— 'Ui) Ky -
(1.2.20)
Let us consider the integral
-~ ¥ 7 z 27
1 . A A A -
it T T Idtjdr1d£2q)£(—+_-T'dl> Xy
t—3 =<0 + 1 2
(’].2.21)
which by equation (1.2.20 ), is
"3 x
. d
P = - lim J'dt[IEE Jd{,] a, P, ')(i] . (1.2.22)
t——e =
t
Now provided
lim . = 0 (1.2.23)
ts Geo a, dr, q?f i ’
we can integrate equation (1.2.22) to obtain
¥
P, = lim J’d1_~1 dr, \Pf X ap - (1.2.24)

te—s -
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Therefore we have shown that, provided condition (1.2.23) holds,

+ o
»
. Z, %, 2%
J'dtJ'dg,ld_g_eLPf(g&+_A_- A-U)'Xl .
- ol

1 52 R

(1.2.25)
Alternatively we could consider the time reversed reaction to obtain

the 'post' transition amplitude bif in the form

+ o0
x ¥*
b., =1 dt dr, dr ZB+ZA— 1 -'ZB-ZA+1_U ’X .
if -1 =2 —_ — — = = = f £ i

(1.2.26)

which is true provided that

lim [’X: \Pi dr, &r, = O . (1.2.27)

t—b+ 00

The cross-section . . is obtained by integrating over all possible

if
impact paragg;ters +ad
2 2
2 - 2
O.=2 j b la, .| ab (Wad) =2 J blbifl ao(Tra) . \ (1.2.28)
(=] (=]

The Distorted Wave Functions

We represent the solutions 'Pi and ‘}!f in the form

?i(z"l 122,t) Zﬂi<£1 ’E‘_ayt) 'ti(é'l aEest) (1-.2.29)
and
U (zyorpe ) =l plzmp, ) L pGxph501) (1.2.30)

Clearly, in the limit, ii and if must tend towards the correct phase
factors given in equations (1.2.5) and (1.2.4) in order that the solutions
for \Pi and \Pf will have the correct asymptotic behaviour. Substituting

for \Pi and \Pf into equation (1.2.3), we see that ii and if are solutions

of
Z 2, 72,7
Rk 2 A A A"B i i
2 + 3 ts . ts. "R "3Y- ->v. +
[2v£1 2v£2 S, S, R 2 — vgq > 2 V_Z
2
i Sb%:l i(E’I’EZ’t): - g [VEJ lOge¢i(X,‘,X 1 [v Z (S ,_2,t)] ’

28 C(1.2.31)



[% v;]+%viz+é_+i_A- —i\_§§+%1.v —%V.V+if] X

B 1
1 %2 %12 =1 E2c)

" 2
/{f(§1,§2,t) = - Z [Vr loge{‘\//fq(_%) 'sz(ga)}] .[vr‘;{f(zws t)]
=] - =3

J=1

(1.2.32)

Equations (1.2.31) and (1.2.32) are exact. The exact solution to

Z.

5 and “{f cannot be obtained without solving the complete scattering:

problem. First-order approximations to ,{ 5 and /{ , denoted by 4{ : and
Z; , are obtained by neglecting the right-hand sides of equations

4 /
(1e2¢31) and (1.2.32). In solving such equations for /{'i and Zf
attention should be paid to the fact that the dominant contribution to
the single electron-capture amplitude in reaction (1.2.1) ccmes from the
region of small values of |)_c2| « This implies that in the equations
for z,i and zlf we can replace ‘I/s2 by 1/R and 1/}(,I2 by ’l/x,l to a good
approximation. We will refer to this as the 'perfect-screening'
approximation, since we are effectively saying that the 'passive' electron
perfectly screens the target nucleus such that the 'active'! electron

experiences a charge of Z_ - 1. In this way the coordinate s, of the

B 2

‘vassive' electron disappears from these equations reducing our two-electron
/ / '
problem to a one-electron problem. The functions '(i and ,{f then

become solutions of

2 /
(27, «B-%%-" . ) Zice 0 = 0
S

iv .v + i)
=Y 2 2 I 3
(1.2.33)
and
( 2 «(z 1) 2,02 1) v 3 4{,
a + 9B~ - A°B T + i v. +i) (x,,t) = 0,
i v£1 %, R 2 L 5/ AT
(1.2.34)
with the boundary conditions
/ : .
lim :{i = exp { lZA(ZB -2) ,Zn(vR - vzt)} (1.2.35)
t—>-w v .
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and

‘i .
lim Zf = exp {-i(ZA - 1)(ZB -1 Zo(vR + v2t)} . (1.2.36)

v
t—>+o00

Solving* for ‘(i and '{f we obtain

/ .
.{1(51’t)=NA(V)1F1 [iv,]; 13 i(vs,]+y_.§,‘)] exp { IZA(ZB-']) Lo - vzt)}

v

(1.2.37)
and

’ .
zf(ﬁ,l,t):N;(v),lF,‘ [-iva; 13 -i(vx1+z.lc_,|)] exp{-lZA(ZB-ﬂ .[n(vR+v2t)} .

v
(1.2.38)
where
Tv,/2 :
N() = e Fa-1v) (1.2.39)
YV, = %,/ v (1.2.39Db)
* TV/2
MW = e 4 T iy (1.2.40a)
VN, = @Eg=-1D/v . (1.2.40v)
The confluent hypergeometric functions F, are the coulomb wavefunctions

that describe the distortioun of the active electron by a coulomb potential,

and have the following asymptotic forms

NA(V),] F, [i\),l; 1 3 il(vs + z._s_)] exp{ _A. Ln(vs + v. s)} ,
S—» a0 v
(1.2.41)
and ‘
NB(V)’IF’I [-i\)a;’l; -1(vx +V.x) } exp {+i(ZB-1) Ln(vx + z.zc_)} .
X =3 o0 v
(1.2.42)

It follows that the boundary conditions (1.2.35) and (1.2.36) are obeved

since we have

lim &{W’Vﬂ -0 (1.2.42a)

£ —p = o0 vs + Vv

* see reference 25,P. 239
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2 X
1im ln{M} = 0 . (1.2.43b)

VX + V.X
t—>+a0 L=
We now look for solutions of the distorted wave equations (1.2.714) and

(1«2.15) in the form

/
’Xi(z'] ’ £2 y t) =Qi(£1 1£2 y t) ;(i(_?_,] , t) (1.2.44)
and
/
Xelzy 115 0 8 =.ﬂ.f(£1 » Iy o t) ;ﬁf(_>51 , t) (1.2.45)

by making the appropriate choice for the distorting potentials Ui and Uf.

In the CDW method these turn out to be

U; = N S Ay . (1.2.46)
S, S5 R
and
7
u.= %% + % - 1 - %y _ Zy w1 4+ A , (1.2.47)
t ¥ = . ® TR *® £
X 2 %2

where Ai and A_. are perturbing potentials that vanish at large internuclear

f

»

separations and are chosen so as to obtain the desired solutions for QK 5

and Q(f. Substituting (1.2.44) and (1.2.45) into equations (1.2.14) and
/ ’ -

(1.2.15) we find that ;:i and ;ff are given by equations (1.2.33) and

(1.2.34) provided we define the potential operators Ai such that

£
A Xy

i /
-Q; _quloge @ . (x, ,52)] . [ng ii(gq,t)] (1.2.48)
and

1

t X = Q[ onfe @0 X @} - [V, £rz0] -

(1.2.49)
Substituting for U, and U, in equations (1.2.25) and 1.2.26), we obtain
+o0
*
a;p = -1fdt jdl_r1 ar, Ay X \Pf (1.2.51)
-l
and
400
b= -i f dt dr, dr, Az X, \Pi . (1.2.5;)
- D

N



The continuum distorted wave approximation consists of the replacement of

\Iji s \Pf in equations (1.2.26) and(1.2.25) by "X i X ¢ respectively.

It is easily seen that in this approximation the distorted wavefunctions

X ; and X ¢ have the correct asymptotic conditions: from equations (1.2.44)
4 )

and (1.2.45) we have that ’xi = 'D'i ii and 'Xf = _ﬂ_f ;(f ;

therefore, by virtue of equations (1.2.35) and (1.2.36),

. and ‘X é , which
le _——ﬁ-w@ t—) «0 1 f —E:M f t—»+-o .\ij

are the required conditions.
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CHAPTER 1.3

Evaluation of the CDW cross-section

Let us now examine, in detail, the evaluation of the CDW cross-

section G’if =Q’[nl ’ n’l'] for the general reaction

Z, + [ZB v &g e2]_’[ZA , e,l] n£+ [ZB , e2] e , (1.3.1)

where the target atom will be considered to be in its ground state - hence
i= 182, and nd = 1s, 2s, and 2p. The nature of the steps involved
will depend upon the type of wavefunction employed to describe the ground-
state target atom. In the present work we describe the two-electron
target atom by the natural ey:pa.ns:i.onz'2 of the 35—term configuration-

interaction (CI) wavefunction of Weiss16‘, which is of the general form

X 2i . .
(1,2 =N °q N0 e . es
¥ * ?';1‘ (Z+n? m=Z-:1i i &

The Weiss function is given by x = 15 although varying approximations to
\Ijx(’l,B) can be obtained by suitable truncation of the expansion in
(1e3.2). The normalised natural orbitals Q;} are linear combinations
of the fifteen normalised STO's, (.an, ,(j,m, used by Weiss in the

construction of his CI wavefunction:

i 15 i
N, 7 2 % @upgm (139
J=

For ease of discussion and to assist in writing down the equations we

re-write \P X(’1,.2) as

\Px(gc_,] %) = Dupr WQup(xy) (@ (%) (1.3.4)
where < if 15 15
Degy =N Z o« b“ bd ’
e res e S
(1.3.5)
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m
@ =) = Rap (z) Ty B, é ) (1.3.6)

1
-m
W% = Ray (%) Y (O o) o (1.3.7)
and E
N, -1 - r
Re® = M gdr T e T (1.3.8)

The functions te-(p (5,]) and ceeLb’(EZ) represent the basis orbitals
describing the 'active' and 'passive'! electrons, respectively, within the
natural expansion and Nx and N( nP’EP) are the appropriate normalisation
constants. The following analysis is general for any two-electron
wavefunction which is separable into the form (ﬁ.}.’-t) and thus the steps‘
involved can easily be reduced or adapted to the case of an HF or split-

shell (1s1s’) wavefunctionZB, i.e.

\P m(w,a)

\IJ,IS,]SI(’I@) J'g [¢«(§1) ¢P (x) + ¢F(51) ¢“(52)] . (1.3.10)

NP (x) P (x) (1.3.9)

¥

The transition amplitude we wish to evaluate is given by equation

(1.2.51)
V. ]
(nd 'l')—'J'dt dr, dr, A X (1.3.11)

alns ., n Y o odr, A X Ps o -3-

where
’

Ai ’Xi = -éi [vquoge q’x(E’I ’52)] '[v£1 Zi(i’l’t)] - (1.3.92)

The integral representation for the coulomb functionZA' is given by

=iV  -iwgq
. . 1 dw 1
lFl (iv; 1 3 iq) = ST § vy ('] +;) e ’ (1.3.13)

’
where the contour encloses the points O and -=1. Substituting for Z 5

from equation (1.2.37) and making use of the representation (1.3.13),

equation (17.3.12) then becomes

34



NA(V)

dw 1"V
X = -9, V£110ge P otz Vi { R E § Tw (+a) =

-ie(vs, + Ves,) ro.
e = exp [ i;_é ln(vR - vzt)]} , (1.3.14)

where Z2 = ZA(ZB - 1). Therefore,

+0
a(ntd ,n’2)= -i Ldt Jd£,| J- dr, {%,“,NA(V)exp [1—3 ln(vR-vzt)]Qi x

BqeXq 4 XXl )y [ log \Px(g,],x ) } §dw(1 + l)-i\’:
S1%, VX, bx,] © w
-iw(vs, + Ve.s,) %
e T = 2 '\Pf . _ (1.3.15)

£ » ' *
Replacing \P*f by 'X:. =Q £ ;(;. , and substituting forn £ a.ndn i

we obtain
oD

vN, (v)N_(v) . -iAet
a(nt,n'2’ )= - 22— (™ 2/ I dt e § dwfﬁ X
LT e ¥

-iv -V .
(’l +£) "(’] +%) 2Jd£1 [d£2 \P:z (_S_,])'IX:/Ic(ZC_a) B%,]\PX(E’I’EZ) X

-i ve r, —w(vs,ﬁy_.gq) -1§(vx1+x._§1) — vox
e e e =1*=1 + ==

1] ,
1 VX

(1.3.16)

5, X

/]

where \I)X(_§1,x ), y)n.f(é’l)’ ,Xn,’el (52) are the target atom, the final
capture state and residual target atom electronic wavefunctions with the
corresponding eigenenergies € B(182), eA(nl) and eB(n',ll ) and where
the energy decrement A€ = EB(152)— E,A(n{)- eB(n',e' ). Equation

(1.3.16) may be re-written in the form

o, (VNG (v) 2i72/v 2 _iae€t S
a(ng,n’2’ )= - —_— (bv) Dxpr Idt e - } dw §— x
4T 4 13
1y "V 1Y
(1 +;) (1 + g) Iay  Rag (1.3.17)
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¥
where Iy = j dr, ')( 1s (x,) Woux (x,) (1.3.18)

and

—1x.£,] -J.w(vs,I + X‘E’l)

e
=[d£w‘z"nx<i°‘-w’a?1%<iw)e ° x

-i8(vx, + v.x Y[ v.x S, « X
e T == [ ] + =1 = ] . (1.3.19)
v X, S

E 3
Using the Fourier transform method of evaluating two-centre integrals |,

it is easily shown that

+
vN, (v)N_(v) -iA€t
a(nd, wf)= - B L (BT fdt ° %‘*"P‘g *
KT2(2T) Al §
=iy -i¥ -iv.r 7 *
G+3) "(+g) Crea e T 1f<ﬂ_<]‘dz<_ P0G, (O x
i kes -i K.x )
e = e T TV, (1.3.20)
where
- ¥ -iw(vs,] + X'E'])
Fnl(E)de (K) = j ds, J‘ dx, 'l)l/n.e(g,]) e X
i —1§(vx +V.X, ) iK. Xy | Y. X 54« X
e BX (Q‘F(x e e ["vx,] + —S—W .
(1.3.21)
- After noting that
_E_;;;—c = cos BX cos es + sin Gx sin GS cos( ,QSS - ;Zix)
»
F (k)G(K) then becomes
* a ¥
F (k)G(K) = Z £, (&) gng_zg) , (1.3.22)

m="

* see reference 25, p.213.

36



¥ . . ,
£, (k) = I‘,an(§1) U ke ds, (1.3.23)
¥ 1q iE'E*[
f2 (k) = j'v)n.l(§1) e 008981 d ds, ~ (1.3.24)
. wg ik.s,
f3 (k) = f‘)unl(é’l) e 51n9s1 cos¢s1 e ds, (1.3.25)
* iwg _ ' ik.s ,
fL+ (k) ='(I}ln1(§4) e sin 651 Sln¢s,1 e d§_,‘ (1.3.26)
with
q = Vs, + Ves; (1.3.27)
and .
; 3 P g JEE (1.3.28)
g,(8) = g,(K) = ) Qug (x)e  cos x, © dx, 3.
'i§P iK.x,
83(}9 = j'b—?—‘—q_ (245(51) e sin Qx’l cos ¢x1 e dx,
_ ' (1.3.29)
) -i§p . j{{_'}_{q
gq(g) = J—S—}; (Qo(p (x) e sin qu sin ¢x,| e &,
) (1.3.30)

with F:vx + VeX

1 1 °

- The f and g integrals were then evaluated by making use of the expansions

2Ty 2L+ 1) .4
e = (E—S-) I:ZO —T 1 J[-l-%( kS) Pl (COS eks) (103031)
and Y,
4T * '
Pl(cosﬂks) = W mzz.:l‘.{l,m (98 ’¢S) Y—(,m (gk’ ¢h ) . (1-3-32)

Returning now to equation (1.3.20) we have, for the coordinate

system describing the collision process (see Figure 1.1), the relationships

Xy =T, 4 2R and 54 =I4 - 2R. Substituting for x, and s, using the Dirac
relationships
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ilk-k ).r
(ZV)‘BI e ~7° dr = 5(5 - k) (1.3.333)

and _

jf(E)J(E - l_io) dk = f(EO) . (1.3.33b)
we can then integrate over the variables I, and k in equation (1.3.20).
The substitution u = vt and use of (1.3.33%)enables us to evaluate the -
integral over time t. Taking cartesian coordinates for K and v with

v defining the z-direction we may then integrate over KZ by making further

use of equations (1.3.33a=33b).The result is

, -iv
a(nd, o€ )= - YLD () 2387 § dwﬁ_d_i (+1) 'ox
’§ (¥

e (2w
+od

(1.3.34)

By making the substitution Ky =N cos & and K, = N sin©® and then
integrating over 8, W and § the expression for a(nd, n'L) may be

)

reduced further to yield
2iz/v

D
190N _ q+1
a(nd,n’£")= -(bv) J n Jq(bn)wnl,r_l'll (n)dn , (1.3.35)
3 :
where q = O for nd = 1s,2s,2p, and q = 1 for nd = 2p. 3
Jq(h‘r]) is a Bessel function of order gq and wn,l,n'_t’ (‘rl) is given by

X c +4a 15 15 o «
Wogng DN, S i S Y S b (@) | X )
=1 (z,g‘m)? m=-L B=1 ¥=1
f‘,] (n,V,LQ‘P(§1)’Ae) ’g,]( n’v,(edP(z,l) ,wn'z(g,') [} \)1 9 VEQ Aé ) . . (1 -5-36)
We note here that in the evaluation of the integrals in (1.3.34) the
polar axis Z 1is defined along the direction of the velocity v of the
incident projectile and the impact parameter b is chosen to lie along
the x-axis. As a consequence of this choice the cross-section for capture

into the 2p state of projectile A is given by
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g (2pn’s’ ) = g(2p, 0’2l ) + O (2p, n'£') (1.3.37)
since, in the present mathematical framework, (J~ (Efy,n’l' ) is
identically zero. |

Before proceeding with the evaluation of T (nf,n’Z’ ) it is of
interest to examine the quantity Iy defined in equation (1.3.18).
Tx¥ 1is the overlap integral between the initial and final-state
orbitals of the 'passive' (or uncaptured) electron. This is easily

demonstrated since by using the Fourier transform technique we have that

¥ E
Tuy = j ary X oy () @oy(x) = By (L=0)

where, generally,
iL.x

hyy (B = j')(nllz(ﬁa)LQad(_)ga) e ° dx,

which means

Iy - j"xn,l, (£ Q0 (xp) %, - (1.3.38)
The wavefunction 'Xn,‘el (52) is the description of the Vresidual target atom
and, in our case, CQ-LB’ (52) are the basis orbitals used in describing the
'passive' electron within the natural expansion representation of the
target wavefunction. From a correlation point of view, the behaviour
of T4y Thas a significant effect on the transition amplitude. The

wavefunction ,Xn'.l' (_}52) is given by
/

m
X pegr ) = Ruplx) Ty (ex2 , ¢X2) 7 (1.3.39)
Therefore
i
o -m
Ty = [ Rungr () Rar () 1B, 6,0 (0, 6 ) ax,
(1.3.40)

where we have made use of equation (1.3.7 ). Consider the integral over

the azimuthal angle ,@X ; the integral will be of the form

2
Al i(m’ -m)@ 2T ifm=nm
I e Y2 4 = (1.3.47)
) 2 0 if m#£Zm

39



and therefore m is restricted to the value of m . This means that equation

(1.3.40) can be written as

0 w
2 m’ -m’ .
Tay = J Rnr g () Reg(25)%; dx, J' I Yl'(exz’ ¢x2)¥4<.( 9x2’ ¢x2)51n9x2
o o o
dgxa d¢x2 . (1.3.42)
However, we know that
™ 2% o _ gt
[ [ % (0, 8 vz (e Meine do o - { HE RS
X2 X2 . l/
5 o 0 if Au#
(1.3.43)

Thus, the contribtions to o"(n#,n'Z’ ) from all natural configurations
using basis functions with /L_-'#,e’ will be zefo. If we consider the
-most likely case, when n',l' = 1s, then only radial correlation terms
within the target wavefunction will contribute to the cross-section

g [nl s ’Is] . It is also evident that if we were considering, for
example, a process in which the residual target atom Qis left in a 2p
state then only configurations involving j«x = 1 will contribute to the
cross-section. Consequently, within the present approximation, a zero
cross-section would be predicted for such a process unless angular
correlation is included in the description of the target atom grou.rid
state. The orthogonality condition (1.3.43) in I4y has arisen because,
in equations (1.2.33=34), we have eliminated the 'passive' electron from
’

/
the distorted wavefunction :( and ‘(f
iw’(v52 + V.5,)

operator of the type e would have beenintroduced into

If this had not been done, an

Ty - destroying the orthogonality condition and therefore retaining
contributions from all angular-type correlation terms.

In order to evaluate (@7 [nl s n'l'] it is not necessary to
perform the integration in (1.3.35) since, by substituting equation

(1.3.35) into (1.2.28) and noting that
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R

/'m‘.( 3 (o) 3 (b)) b ab = e n-n'), (1.3.44)

o
where the order t is arbitrary, we obtain for the capture cross-section

D
2

T [0k, oe] = b I n2e !anz,n’z' ()| dan . (1.3.45)

o

In the above equation q = O for nd = 1s,28,2pz and q = 1 for nd = ZpX.
Let us now restrict the description of the target atom ground-state

wavefunction to that of an HF wavefunction (see equation (1.3.9). The

form for wnl,nZ'(yt) is easily obtained by considering only the first

term in the expansion (1.3.2), setting ¢j = 1 and removing the summation

over m since ‘[j = 0 for a 1' S state. The cross-section can now be

written

) 2
T (nd,n'l ) =4 {I( gbx‘ex(ﬁz) IIXn’.e’ (x,) )} *

J- l;b,fq(n Vo (x ), A€). F0,V Q@ (x )0 Y (5
o}

2
v, ,vz,Ae)I dn , (1.3.46)

where the functional form O:t‘j',I contains the initial orbital description

of electron 1 whilsts% involves the orbital description of the active

electron in both its initial, QQF(Eq),and final capture state ,
\Vrh£(§1)° We note that injr:1 the initial and final capture-state

are linked together in an intricate manner due to the distortion in the

outward channel via \’2 ; this feature will prove to be of impoftance

when we analyse our results in Chapters 1.4 and 1.5.
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CHAPTER 1.4

Electron-capture from Li* by fast protons and élpha—particles

In this chapter we present and discuss our results for the capture
cross-sections T (nf) obtained within the continuum distorted wave

(CDW) approximation for the reactions

gt o+ LiT(18%) — H(nf) + 1i%F(1s) nf = 18,25,2p (1.b4.1)

2

and  He2t+ 1it(182) — He'(nh)+ 1i%(1s) ns 15,2s5,2p, (1.4.2)

1

for the impact energy range 100 keV £ E & 3000 keV and 100 keV £ E £ 10 MeV,
respectively. The ground-state Li+ atom was described by the 35 term
configuration interaction (CI) wavefunction of Weiss16 expressed in its
natural expansion form, and in order to assess the influence of electron
correlation calculations were also performed using the Li* HF wavefunction

of Clementi and RoettiZ6. The cross-sections correspond to the 'prior!'

form of the CIW transition amplitude a; . See equations (1.3.11 - 16),

and the results for the above reactions are presented in Tables 1.1 and

1.2, respectively. The total cross-section @ is calculated using the

3

Oppenheimer7 n ~ rule by means of the formula

Q= Y o) aTs) + 1.616(T(2s) + T (2p)). (1.4.3)
n,¢

We note that the cross;;ection g’(2p) is given by Cr(2p)=tr(2pz)+cf(2px),

since, as a consequence of our coérdinate system, we ha&e that

<r(2py) = 0. Although we have not tabulated the cross—sectionsﬁITsz)

andCT(2px), we found that throughout the energy ranges (f(sz)) cr(apx).
0f particular interest to usare the percentage changes, N (AF—CI),

in cross-sections due to improving the Li* wavefunction from the HF to

+ 2+ . .
the CI description. These are reported for both H and He  projectiles
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at selected impact energies in Tables 1.3 and 1.4, respectively. Comparing
the values of A (HF —CI) for the three capture states n£ = 1s, 2s and 2p
we see the same trend that was observed by Banyard anq Szuster14 in their
studies on He: that is, for proton projectiles, a strong similarity in
the values of A (HF—CI) for T (1s) and T (2s) while both are slightly
different from the values for Y (2p), particularly for large E. Since
the percentage changes for Li* are small this is best seen when

D (HF—»CI) is plotted against the proton impact energy, see Figure 1.2.
As the impact energy increases the major contribution to the electron-
capture cross-section comes from smaller and smaller impact parameters.
This means that the 'active' electron is captured from regions of high
momentum within the target atom and consequently is captured into
corresponding regions in the final capture state i.e. regions close to the
origin. Thus the reason for the trends in A (HF—CI) is now apparent
since the 2p orbital in H(nd) is quite distinct in shape from thF 1s
and 2s orbitals and will thus have different high momentum characteristics.
In contrast, the 1s and 2s orbitals are veryv§imilar in shape at the
origin%. Throughout the energy range the ordering in cross-sections with
respect to the capture state is ¥ (1s).> U (2s) > U (2p) and U(1s) is
found to represent <~ 80% of the total cross-section in the case of
proton projectiles and - 75-80% for alpha-particle projectiles.

In Figure 1.3 we compare our total cross-sections for reaction
(1.4.1) with the recent experimental data of Sewell et a127 "and with
the earlier experimental curve due to Bodgonav et a128. Also shown is
the theoretical curve cue to Obyedkov and Pavlovzgobtained using the
Brinkman-Kramers methodBo. Unfortunately, experimental data could not
be found for E > 221 keV for which the CDW method should become more

27

accurate. The experimental points of Sewell et al appear to reach a

/ see reference 31, page 142
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turning point at approximateiy E = 40 keV, at which the CDW cross-sections
become too large. However, for E > 200 keV, the CDW.curve appears to

be tending towards the experimental curve and we have an agreement within
the experimental error bars at E = 2271 keV. Our theoretical CDW results
strongly suggest that the data of Bogdanov et al is much too low. Their
data was obtained from experiments concerned with the formation of a high-
temperature plasma in which fast protons are formed within a lithium arc
by the dissociation of H2+ ions. Bogdanov clearly states that in such a
method the study of charge-exchange is complicated by a number of inter-
fering factors, such as charge-exchange with residual gases and the

presence in the proton beams of H2+ ions with energies equal to half of

27

k]

those of the protons. Thus the experimental data of Sewell et al
obtained using pure proton beams in a stahdard beam crossing technique, is
the more reliable of the two sets of data.

29

The theoretical curve due to Obyedkov and Pavlov ” obtained using
the Brinkman-Kramers method30 clearly predicts a different high-energy
result from that of the CDW method. However, the success of the CIDW
method in predicting the correct high energy behaviour of electron-capture

6,10,11

cross—sections from one and two-electron atoms suggests that the

curve of Obyedkov and Pavlov may be inaccurate at high impact energies.
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CHAPTER 1.5

An analysis of trends in capture cross-sections for two-electron targets

In order to compare the three systems H , He and it as targets
for electron-capture we report in Table 1.5 the total cross-sections for
both proton and alpha-particle projectiles at selected E; in each case
the target electrons are described by the 35-term CI wavefunction of
Weiss16. To assess and compare the influence of electron correlation
within the three systems we also quote, for each E, the percentage change

D (HF—CI) in Qvhen going from the HF to the CI description of the
target elec&rons. The HF wavefunctions for He ahd 1i* were those of
Clementi and Roetti26 and for H the fitted function of Curl and Coulson20
was used. The A (HF—CI) values are seen to reflect a rapid decrease
in the importance of electron correlation as we progress from H +*o i,
For a given target it was also noted that, at a common projectile
velocity, the proton and alpha-particle reactions possessed similar

A (HF—CI) values - the magnitudes being almost identical at high
velocities.

Since the electrons are very weakly bound in the H atom one might
expect H to have the largest electron-capture cross-section - this would
certainly be true for small impact energies. However, Table 1.5 shows that,
for E D 100 keV, the ordering in Q for each projectile is Li+> He > H ,
and that as E becomes larger the differences between the cross-seétions
for the three systems increases; for example, for protons at 200 keV,
Q(Li") = 9 x Q(H”) whilst at 3000 keV, we have Q(Li*) =150 x Q(H7).

In attempting to account for the above ordering in Q there are

three main points of interest.
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(i) The essential feature of the CDW method is that it takes into
account the Coulomb distortions acting on the 'active' electron in both
the entrance and exit channels. It does this by taking full account of
the continuum intermediate states in the charge—exchanée process via
the Coulomb wavefunctions of the 'active' electron with respect to the
incident projectile in the inward channel,and the residual target in the
outward channel (see equation 1.2.37,38). Since, in the present formulation
of the CDW method with respect to two-electron targets, the outward
distortion is a function of the net charge on the residual target (see
equation 1.2.38-40b) and thus opposes electron capture, its effect for the
three systems considered should be to produce an ordering of Q which is
the reverse of that observed.

(ii) Although the energy decrement A€ (defined as the difference
in energy between the initial and final atomic states and determined
here from the theoretical values) is different for each of the three
systems it appears in the expression for the cross-section in the terms

v + A€ and, as a result, the cross-sections are found to become

2 v -
insensitive to A€ in the limit of high projectile velocities.

(iii) An obvious difference in the systems will be the description of
~ the 'active' electron in the parent atom. Thus it follows from (i) and
(ii) that the observed trends in @ must be dominated by the differences
in the target wavefunctions.

We now proceed, by analysis of the individual CDW cross-sections
cy'[nl, nﬂt'] , to account for the trends in Q for the more general
reaction

ZA +(ZE, e,‘, 62)———> (ZA’ e’])nl +(ZB9 ez)nul (1'5‘1)

when the target electrons are described by an HF wavefunction

§ (1,2) = z Ya ‘85(1) Z by 2y (2), where each member of the basis
P r
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set {(_e} is normalized and the coefficients bP and by are the
usual variation constants. It follows from equation'(’l.3.46) that the
CDW cross=section U"[n.t ,n',t'] for a relative impact velocity v
corresponding to an energy E, when the capture-state wavefunction is

\Pnl (1), can be expressed as
2 oD
T [at,n2'] = N {1(E byee(2)| e} ll;bpﬁ(q,v,qp(’l),Ae).

2
. T, a1y, (1), v, v,880 | dn , (1.5.2)

where N is a constant and I( z‘; byey(2) | n’¢’ ) is the overlap integral
between the initial and final states which describe the 'passive' electron
e5e The integration over M is a result of perfdrming a Fourier transform
of the transition amplitude from position 'space to a two-dimensional vector
space _1 (see Appendix A), and the functions V , and ¥V, arise from the

Coulomb distortions acting in the entrance and exit channels, respectively,

and are defined as W

4= ZA/V and ¥V, = (ZB- 1)/v. We note that_f_‘,I and

3’1 are both functions of lel,(’l) and hence the strong dependence of the
ordering in the cross-sections on é (1,2) is si_:ill not apparent. However,
since the occurrence of the distortion in the exit channel inhibits
capture, we can - without prejudice - proceed with our analysis by sefting
v, = O for the general reaction (1.5.1). As a consequence of this the
LQP (1) dependence in 5L is now removed and the expression foro‘[nl,n‘ ']

when VZ = O becomes

e 2
cr[nﬁ,n'z:]vzzo =N 1% f (F,l(vt, V., gbp cePM),Ae) ) .
o

2
clenaviy, Va0 an o (105.3)

Except for the presence of the energy decrement A€ , the functional form

of 61 is independent of the target parameters. At high projectile
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velocities, G, is found to be insensitive to A€ and thus, for a

1

particular capture state (n£), the function G, becomes identical for our
three examples of a two-electron target (ZB, €1 e2). When the basis set
{Lei is represented, for example by Slater-type orbitals (STO's), the

function F,] takes the form

RN 3 t
F = b (-1) N(“ 9 ) Ty
17 Lo R (8% +n° +(3 + 462 2

(1.5.4)
where n,, Eg , and N( n,,f,) are the principal quantum number, orbital
exponent and normalisation constant, respectively, of the basis function
LEP e Analysis of F,]2 shows that it represents the probability density of

finding the 'active' electron, e, with a z-component of momentum egqual to

’I

I v + 08¢ I or, conversely, of finding e, with a total momentum
2 v

p > ‘§+ ae l and, therefore, F 2

< , can be interpreted as a two-~

dimensional momentum density. We note that the z-component of momen tum
is not unique and its definition is simply a consequence of choosing our

coordinate system such that M. v = O, with v = (O,O,VZ).

Let us now particularise equation 1.5.3 by choosing ZA to be a

proton and by setting nd = n’l' = 1s for the targets H and Li*. In
Figure 1.4, for each system, we plot F,]‘2 and C%,1‘2 as a function of M for
O’[’Is,’ls] at E = 500, 1000 and 2000 keV. We note here that for the
case of H}%’E;g residual target is the neutral H atom and therefore the
captured electron experiences no Coulomb distortion in the exit channel.
Thus we only need to set v, = 0 for the He and Li” systems since this is
already the case for H for which G'[’Is,’)s] =O"[’!s,’|s ]\9 o. For
2=

subsequent discussion and ease of comparison, Table 1.6 contains

(e [1s,1s] and O"['ls,1s] at a few selected E; R - defined later -
¥, =0
2
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is a ratio of the cross-sections for different targets when 3J,=0.
Throughout Fig. 1.4 and Table 1.6 each target was described by the HF
wavefunction. As anticipated, Fig. 1.4 shows that the qu functions for
each target are very similar - particularly at large E values. Therefore,
the ordering of the cross-sections in Table 1.6 is a direct consequence

of the differeﬁces in the electron densities in momentum space as

represented by an.

When the projectile velocity is inecreased, the
'active' electron is captured from regions of increasingly higher momentum
within the target atom; thus the cross-sections reflect the characteristics
of the target wavefunctions near the origin. Indeed, in the limit v— <o

k)

the function F, may be expressed as

1
3@(1) ’
F, —— bp ~—
T (v w0) Z . o o + vo/1)° (1.5.5)
.=

and hence

(0, (1) 2
b ____bff“}

Q"[n] 2’ ]\; =0 (v-re0) NIE[;P

x4 4=0 \
I |G2(n, V"f’nz"’w)l “ (1.5.6)
[+]

where X4 is the position vector of the 'Tactive' electron with respect to

. the target nucleus. The N and v dependence iﬁ equation (1.5.6) occurs
only in the new function G2 and, in the limit, we note that this function
is also independent of A&. Therefore, if we examine the ratio R [n_l, n'.i']
of the cross-sections for two targets 'a' and 'b', when the distortion

in the exit channel is removed, we obtain
v“[nl,n'l'] I~S
1, _ a o -
R[”“’nl ] = U—b[n_l,n‘Z'] Ve—> 00 2 2 i (1.5.7)
\E:O b b

where S is the slope or gradient of the HF wavefunction for the ‘'active'’

electron at the origin (x1 = 0) and, as before, I is the 'passive' overlap
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integral. In Table 1.6 we present the ratios R[1s,1s] for (i) a = He
and b=H , and (ii) a= Li" and b= He. As E increases, these ratios
are seen to approach the values of 52.8 for (i) and 8.86 for (ii) as pre-
dicted by equation (1.5.7),which again illustrates how‘ the ordering of the
cross-sections is dictated by the relative behaviour of the target
wavefunctions. In passing, we note that when H , He and Li* are described
by HF wavefunctions, the 'passive' overlap integral for n',l' ‘= 1s is
0.922, 0.984 and 0.993, respectively; thus the limiting ratios in this
instance are governed essentially by the relative values of S.

If é(’I,Z) is a correlated wavefunction, it is of interest to
examine the form of the function, say '3 2, which replaces I2F 2

1

(1.5.3). TFor an examination of electron .correlation the most convenient

in equation

form of a CI wavefunction is its natural expansion which was discussed
in Chapter 1.3.
Thus, by setting V= O in equation (1.3.36) we find that for the

v

Weissq6 function the functional form of '32 can be written

> X c + Ity
i { Z —— Z RIPIEL HE | Kurgr %)) -
=1

=1 (2Le+ 12 m=-Lg ¥

s 2
- B (n, v, Z(e“?(&), a€)l , (1.5.8)
F=1

where the basis set {QZ used to describe the electrons consist of
normalised S.T.O's. The natural orbitals are represented by the summation
over B and ¥ and the summation over all the natural configurations e
represents the total CI wavefunction. When & > 1, each natural
configuration in the summation corresponds to the addition of a correlation
term composed of {g's with either radial or angular symmetry; whenol =1

only, we recover the 1'2F,12 term in equation (*t.5.3). Thus, by using the
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natural expansion and by setting Va = 0, the nature of the influence of
the correlation terms on the CDW cross-section becémes transparent and
we see that the relétive importance of each natural orbital is determined
solely by its occupation coefficient c, , and the péssive overlap
integral I«4 . As a consequence, when improving the target wavefunction
up to a €I description, any change in the cross-section at large v will
‘be independent of the projectile charge ZA (since at large v, \32—5 0)
but may be strongly influenced by the final state of the passive electron.
For example, in the case of electron-capture from H by protons, Moore
and Banyard18 reported a percentage change A (HF—CI) ~ 247% for

U~ (1s,2s) as compared to -27% for T (1s,1s).

As discussed in Chapter 1.3, equations (1.3.38-43), when the
residual target atom is left in its ground state, or an excited state of
radial symmetry i.e. llz O, then the passive overlap I« is found to
be zero for those natural orbitals which have angular symmetry as opposed
to radial symmetry. As a consequence only radial correlation tex;ms in
the target wavefunction é (1,2) contribute to the cross-section in
the present CDW calculations. In Figure 1. 5 we show, for @~ (1s, ’Is)v =0’
plots of the first three radial terms of '} s 1e€e Cat It Fue , as a
function of W at E = 1000 keV. For He and Li® the first three radial
terms correspond to &« = 1,3 and 6 while for H  they are « = 1,2 and 6.
The curves indicate clearly not only the dominance of the & = 1 term,
but also that as we go from H to Li' the higher natural orbitals become
rapidly less important; note that at Y] = O for H-,

while for LiT,

Cpw oy Fop == /7 x <, 1p¥ TusF1p
X C

;
“sp¥ Txg"3™ 300 * Capy Tuwp
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CHAPTER 1.6

Conclusion

In view of the success of the CDW method in calculating the
electron-capture cross-sections for the He target it is not too
surprising that a reasonable agreement with experiment would be
obtained for electron-capture from Li* by fast protons. By comparing
with available experimental data we were able to give credibility to
the data of Sewell et al 27. Although the total cross=-sections
were below the experimental points the agreement is satisfactory
considering the fact that the CDW method is an éppropriate approximation
for large impact energies. Also, in ordér to evaluate Q,we have used
the n-3 sum rule based on individual capture cross-sections for
n & 2. At low impact energies this may lead to an under-estimation of
the total cross-—sectior since, at these energies, electron capture at large
impact parameters and thus capture into highly excited states becomes
important and may result in a breakdown of the n-3 rule for n € 3. The
use of a more accurate n-3 sum rule may give us a better agreement with
the data of Sewell et al 27 although this would mean calculating
cross-sections for capture into the various n = 3 quantum states. Also
by comparing with the theoretical work of Obyedkov and Pavlov29 we
have also demonstrated the inadequacy of using a first-order method such
as the Brinkmen-Kramers approximationBo to predict electron—captﬁre cross-
sections at large impact energies.

In attempting to rationalize the trends in the CDW cross-sections
for the three targets H , He and Li" we have analysed the individual
capture cross-sections ﬁT‘[nl, nfl'] , which became tractable by setting

\)2 = 0. As a result, not only were we able to explain the ordering in
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Q observed for the three systems, but we also gained insight into the way
factors such as relative impact velocity, energy decrement, electron
correlation and the target wavefunction combine to influence the CDW
cross-secticn. We have demonstrated that, as the projectile velocity
increases, the 'active' electron is captured from regions of increasingly
higher momentum within-the target atom, and that in this region it is the
characteristics of the wavefunction for small electron-nuclear separations
which govern the trends in total cross-section when comparing different
targets. Thus the‘accuracy of the wavefunction near the origin is of
importance if a meaningful comparison with expériment is to be made at
large impact energies.

Whenever any method is applied to cases involving more than one
electron difficulties arise due to the electron-electron repulsive potential
terms which render equations insolvable. Inevitably, the many-electron
problem is usually reduced to a one=-electron problem by making some suitable
approximation to the potential terms involving ’I/xij (where Xij is the
separation between any two electrons i and j). In this work we have used
the formulism of the CDW method as originally'Aevised by Cheshire1 and,
in applying the method to a two-electron problem, we have followed the
suggestion of Belkic and Janev?which is to replace ’1/}‘:,]2 by ’l/x1 and 1/51
by 1/R (see equations 1.2.31-34). We call this the 'perfect screening'
approximation and this results in the removal of the coordinates of the
'passive' electron from the problem. This simplification, which ultimately
meant that only pure radial correlation terms would contribute to the cross-
section, means that we have effectively removed electron correlation from
within the method itself but still allow it to be included in the target
wavefunction. In the case of a two-electron target the perfect screening

approximation seems very reasonable and is appropriate to the physics of
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the capture process, i.e. that maximum contribution to the capture cross-
section will occur when the 'active' electron experiences perfect shielding
of the target nucleus by the 'passive' electron. However, in the case of
electron-capture from the 'K' shell of a many-electroﬁ atom having more
than two electrons the application of the perfect screening approximation
to the outer-shell electrons becomes questionable due to the low probability
of finding the outer, say 2s or 2p, electrons lying within the 'K' shell.
This suggests that, for electron-capture from a many electron target,
approximations concerning the 'passive' electrons would have to be made
that are more suitable to the physics éf the particular capture process
involved. As already pointed ouf, at large impact energies we expect the
electron to be captured from regions close to the target nucleus. Thus,
electron-capture from the 'K' shell will dominate the total capture cross-
section at large energies, although for small impact energies and for capture
into excited states the capture from the outer shells will give a non-
negligible contribution. Therefore it will be interesting to apﬁly the
CDW method to charge transfer reactions of the type

At Lo N+ X(q—’|)+ . A(hl+1)+_

where X%7 is a structured projectile and AhJ+ is a many-electron atom or

ion, for which Li, Be' or Be would provide an ideal simple first example.
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E keV o (1s) S (2s) o~ (2p) Q”
100 1.074’1 1.098‘2 8.816™> 1.3935’1
200 2.93472 3.63270 1.00572 3.6837°
300 9.593 1.2507° 2.502'1+ 1.20272
ele) 3.7667> 4.992‘L+ 8.580™7 L7117
500 1,695 2,260 3.54077 2.11872
600 84617 1.1‘29'LP 1.65772 1.0557>
700 4.573'4 6.004~7 8.517".6 5.695‘1+
800 2.633'L+ 3,503 4.706"6 3.27’5'1+
900 1.596'L'r 2.11977 2.756‘6 1.983'L+

1000 1.010 1.33877 1.692'6 1.254'1+
1500 1.60177 2.1007° 2.423_? 1.97977
2000 404970 5.2777" 5.7817 49957
2500 1.34970 1.75077 1.857~C 1.6627°
3000 5.38977 6.967~° 7.25572 6.63377
Table 1.1 Individual O (nf) and total capture cross-sections Q,

at selected impact energy E. for the reaction
H + Li+(152)-—>H(n1) + Li2+(1s) in units of TYai
where a, is the atomic unit of length. The target:
electrons are described by the 35-term configuration
interaction (CI) wavefunction of Weissqs.
(a) The total capture cross-section Q was obstined from
the'"Oppenheimer n-3 rule':
Q=T (1s) + 1.616(0°(2s) + G (2p)).
(b) The superscript denotes the power of ten by whkich

each entry should be multiplied.
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E keV G~ (1s) T (2s) o~ (2p) Q?
100 3.835" 6.522"" 667 4.695""
300 5.118 3.5527" 3.777" 6.302
500 1.617 1.8767 1.013 2.084
800 4.8177" 7.0567% 2.96672 6.4377"

1000 2.553" 3.9657% 1.556~2 34467
2000 2.6917° 3742 1.3977> 3.6247°
3000 5,884 9.309'4. 2.5L+6'L+ 7.8007
5000 7.063'1+ 1.0617 2.31372 9.152'LF
8000 8.39777 1,205 2.109'6 1.069'”
10000 2.900™° 4.083'6 6.4627" 3.@64’5
Table 1.2  Individual O (n) and total capture cross-sections Q,

at selected inpact energy E, for the reaction

2

He<t &+ Li+(152)——oHe+(nﬂ) + Li

where 2, is the atomic unit of length.

.2+

(1s) in units of TTai

The target

electrons are described by the 35-term configuration

interaction (CI) wavefunction of Weiss16.

(a) The total capture cross-section Q was obtained from

the "Oppenheimer n-'3 rule':

Q& O (1s) + 1.616(a(2s) +37(2p)).

(b) The superscript denotes the power of ten by which

each entry should be multiplied.
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AT AR SRR e T

T RS

= ey o-(1s) g (2s) o (2 Q?
AETE—CD® | A (FF—CI) |AEF—CI) | A (FF—CI)
100 -4,98% -3.47% -1.37% L. 449
Loo -1.3%% -1.15% ~1.67% -1.32%
600 -1.32% -1.18% -1.70% =1.33%
800 -1.3% -1.26% -1.41% -1.37%
1000 -1.449% -1.33% -1.09% -1.42%
2000 -1.62% -1.52% +0.22% -1.57%
2000 -1 .73 -1.64% +1.25% -1.66%
Table 1.3  The percentage change A (H"_F—>;I) in individual and

total capture cross-sections, at selected impact energy E,

for the reaction H' + Li+(1s2)-——>H(n£) + Li2+(1s) when

going from the Hartree-Fock (HF) to the CI descriptiun

for the target electronms.

(a) The total capture cross-section Q is given by

Q'..‘.‘:

A (IF—+CI) is defined as [QCI - Qgp

T (1s) + 1.616(0°(2s)+ O (2p)), and

QHF

(») For the individual cross-sections &

defined as [

(Cf(nﬂ)CI ~ cr(nﬂ)HF
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O (1s) T~ (2s) 0’(2p)_ ?
E keV - —
A(HF-—»CI)b AHF—CI) | A(HF—CI) | A(HF—CI)
100 -6.55% -5.2% -6.64% -6.54%
500 =1.71% -2.52% ~0.74% -1.75%
1000 -1.3% -1.36% -1.56% -1.34%
3000 -1.44% -1.29% -1.41% -1.41%
5000 -1.5%% -1.42% . -1.62% -1.52%
10000 -1.71% -1.6%% -1.6% -1.6%

Table 1.4 The percentage change A (HF—CI) in individual and total
capture cross-sections, at selec;ted impact energy E, for
the reaction He2+ + Li+(152)—> Hetn!)+Li2+(’ls) when going
from the Hartree-Fock (HF) to the CI description for the
target electrons.

(a) The total capture cross-section Q is given by

Q == U (1s) + 1.616(T(2s) + O (2p)), and

A (HF—»CI) is defined as QCI - QI{E‘ x 100%.
QHE

(b) For the individual cross-sections A (EF— CI) is

(0"(n1)CI - U‘(nI)HF) © 100%.

defined as [
T ( nl)H.F
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Table 1.5

Total electron-capture cross-sections @, in units of
TT'ai for targets H , He and Li* for both proton and alpha-
particle projectiles. Each system is described by the
35-term configuration-interaction (CI) function of ‘.‘!eiss']6
and, in square brackets, we give the percentage change
A (HF—»CI) in going from the Hartree-Fock (HF) to the
CI descrivtion for the target electrons; & (HF—CI)
is defined as [(QCI - QHF)/QHF] x 100%.
(a) The results for He supercede those reported by
Banyard and Szuster14 which containéa a small
computing error.
(b) Total capture cross-section § was obtained from the
"Oppenheimer n-3 rule", Q== g{1s) + 1.616{02s) + g°(2p) ).
(¢) The superscript denotes the power of ten by which each

entry should be multiplied.
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Table 1.6

Cross-sectionsO"[’ls, ’Is] and 0'"[15, ’Is]v -0
' 2

in units of WM ai, at selected E for electron capture by
protons from the targets H—, He aI;d Lit. Since the
distortion in the exit channel due to the Coulomb
interaction is zero for H (i.e. '\72 = 0), we note that
0'[15, ’ls] = g [’ls, ’Is]\)2 _, - We also tabulate '
values of R = (C’:1 [’15, ’Is] /O’b [’Is, ’Is} )v2:0

for (i) a = Heand b= H , and (ii) a = Li* and b

He.

M

In each instance, the target electrons are described by
Hartree~Fock wavefunctions.
(a) The superscript denotes the power of ten by which

each entry should be multipiied.



e (1)

e (2)

Figure 1.1 Coordinate system for reaction (1.2.1). The
arbitrary origin is shown here to be at the

mid~point of the internuclear line.
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Figure 1.3 The theoretical total cross-sections Q@ for protons impinging
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Figure 1.5
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Plots of € I« Fyvs. M , defined in equation (1.5.3),
where each « value represents a natural configuration
within the natural expansion formulation of O'[’Is,’ls]vz___o

for a proton impact energy of 1000 keV. (a) H for

o = 1,2 and 6, (b) He for = 1,3 and 6, and (c) Li*
for=1,3 and 6. Each target was described by the .
natural expansion of the 35-term CI wavefunction of Weiss
and the o values quoted represent natural configurations
constructed from orbitals of radial symmetry.
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PART TWO

Application of the Continuum Distorted Wave (CDW) method
to electron-capture from a many-electron target and the calculation
of capture cross-sections for the three-electron target atom Li, and

its ioms, by fast protons.



CHAPTER 2.1
Introduction

As an aid to the experimental program into plasma heating
considerable experimental work has been done to obtain a multiplicity
of charge transfer cross-sections, involving many-electron atoms, that
may be of importance in the development of thermonuclear fusion. Multi-
electron atoms, such as Li, may prove to be useful in the production of
fast beams of neutral hydrogen atoms for injection into plasma devices,
and the Li atom itself is of practical interest in the production of hot
plasmas with the use of lithium arcs in devices such as ”OGRA”.2

As stated in the general introduction, when calculating charge
transfer cross-sections which involve fast structureless projectiles
the correct high energy behaviour requires the use of a second order
method, and that one of the most recent satisfactory second order methods
is the continuum distorted wave (CDW) method developed initially by Cheshire”
for proton-hydrogen collisions. In applying any method or performing
a calculation involving a many-electron atom the calculations are complicated
by the presence of the inter-electron potential terms. Invariably approxi-
mations are made to remove any difficulties which arise and usually involve
either an averaged potential or, as in the case of the CDW method, the
introduction of some screening effect. For instance, in the generalisation
of the CDW method to a two-electron target Belkic and Janevﬂfcomment that
the probability of capturing the so-called 'active' electron should be
greatest when the 'passive' electron is very close to the tai'get nucleus,
and as a consequence of this we saw in Part 1, Chapter 1.2, how the 'passive'
electron could then be removed from the equations defining the distorted
waves by invoking maximum or ‘'perfect' screening of the target nucleus.

Thus, in the description of the outward channel, for example, the residual
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target was represented by the target nucleus with its charge decreased
by unity. This 'perfect screening' approximation was used in Part 1 for the
it target and i; was also used inﬁthe first application of the CDW method
to electron-capture by protons from He . by Salin5 and also in the later
examinations of electron-capture from H by Janev and Salin6 and by Moore
and Banyard7. This approximation not only makes physical sense but it
also ensures that the outward-channel distorted wave has the correct
phase factor in the asymptotic limit as t-+ +¢0., However, when consider-
ing multi-electr;n target atoms the invoking of perfect screening may not
reflect the true picture, particularly when capturing from say the K shell
of the atom.

The calculation of capture cross=-sections from large atoms is
still relatively rare and generally restricted to first order methods.

9

For example, Mapleton8 applied the first Born approximation” to oxygen

and Mapletonqo, Nicolaequ, and Lodge and May12 have studied various
target atoms, such as He, Li, Ne, N and Ar, using the Oppenhei:ner13
Brinkman-Kramers approximation.14 It is partially due to their convenience
that the OBK cross-sections are widely used in estimating capture cross-
sections, and it is important to note that the absolute agreement with
experiment is achieved by the introduction of screening corrections and by
applying appropriate scaling factors.

Therefore, in Part 2 we apply the CDW method to a many-electron
system and, as a simple example, we evaluate the K- and L— shell capture
cross-sections fcr a Li target atom in its ground-state. For such a systen,
a 'passive! electron will now exist in a different shell from that of the
'a;tive' eiectron. Thus, a modification is suggested to the 'perfect
écreeniﬁg' procedure used by others for two-electron targets.' We also

examine the effect of such a modification on the capture cross-sections

A



for the related ion it and, finally, to complete the ionization series,
cross-sections are célculated for the one-electronAtarget Li2+. In each
instance the projecéiles are protons within an energy range of 200 keV €
E < 10 MeV - the lower limit being a rough measure of the minimum E for
which the CDW calculations, involving lithium ions, can be considered

reliable.
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CHAPTER 2.2

The application of the CDW method to electron-capture

from a many-electron atom by fast protons

Before applying the CDW method directly to electron-capture from
I1i we first present a generalisation of the CDW transition amplitude
for electron-capture from a many electron atom. As in the case of a two-
electron target the many-electron problem is reduced to a one-electron
problem by applying the 'perfect screening'! approximation to the 'passive!
electrons. However, we also present an alternative procedure to the
'perfect screening' approach which will be more appropriate for capture
from the inner shells of a many-electron target atom. Both models are
then applied to electron-capture from Li and it by fast protons. Let us
consider a high energy nucleus charge ZA’ energy E and velocity v, in
collision with a stationary many electron target atom whose nuclear charge

is Z_, and having N orbital electrons such that N £ Z

B It follows from

B.

a generalisation of equation (1.2.3) that the Schrodinger equation for

such a reaction is

N N =1 : -
Z(% Vi + i3_ + %f\._) - Z Z 1 - %% 4 1) \P (I’l’rZ"ri"-‘:N’ t)
i=1 =i = s i=1  j=1 xij R 3t

= 0. (2.2.7)
Following the procedure of the CDW method, presented in Chapter 1.3, it
follows from equations (1.3.11-16) that for capture of electron‘j, say,
into any state nf the transition amplitude an!,F(b)’ where b is the
impact parameter and F signifies the final state 6f the remaining target

electrons, can be expressed as
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2iz, [ 25-(N-1)1 /v
anﬂ,F(b) =1 NA(V)NB(V) (bv) S

+0 ) . —iV.I‘.
x [ ot e7OEE fd;_,] | dr, .- [ar, e — 79
' -0

* *
% ‘enl(ij)(.xf‘(§1 ,_}52,...,53._,] ’§j+’l’°'°§N) 1F4 [1VB;1;1(vxj+z.3c_j)]

% 3—3;‘}‘(3{_1 ’}-(2”"’5;]"”5N) VEj 1F4 [i\’A;’I;i(vsj+X.§_j)] .
(2.2.2)
The energy decrement A€ is the difference between the initial state
energy of the target and the sum of the energies of the charge exchange
products, i.e. A€ =€, - €, -€,, - The initial and final states of the
target are described by the normalized antisyﬁmetric wavefunctions
\y(51 ,_}52,...,53,...)_(.1\1) and XF(3C~’1 ,52,.;. ,1(_._,‘,...,2_CN), respectively, and

J
the capture state of the active electron is represented by (@nt(s ).

oh

Since we have N indistinguishable electrons the projectile may capture

any one of the target electrons, labelled from 1 to N, with equal probability,
and thus the description of the total system in its final state Q 4 Xp
should also be normalized and antisymmetric. The net effect of such a
requirement is to multiply the transition amplitude anl,F(b) in equation
(2.2.2) by N%. NA(V) and NB(V) are the normalization constants associated
with the confluent hypergeometric functions for the inward and outward
channels, respectively, and

v, = %,/v and vy = [zB - (N-1)]Y / v | (2.2.3)

The expression for W B is a consequence of invoking the'perfect screening'
approximation to represent the interaction between the -';active' and 'passive'
electrons. Its magnitude is a function of the net charée on tl;xe residual
target as seen by the captured electron at infinity, and is a consequence

of making the following approximations
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i£j 1£]

(2.2.4)

Such a model has the particular advantage of ensuring that the incoming
and outgoing waves have the correct asymptotic behaviour as t—» - and
+ e , respectively. However, a relaxation of the asymptotic constraint
allows us to adopt a simple but somewhat more realisticvway of accounting
for the 'passive' electrons in a many-electron system. For capture from
the target quantum state nf, say, an effective charge for the residual
target, as seen by the captured electron, can be obtained from the

experimental ionization energy by using the hydrogen-like expression

Ionization Energy € = Ziff / 2n'2 )

(in atomic units)

hence 7 = NE2 nfa . Y (2.2.5)
eff

In this way the value of Zeff reflects the charge seen by the active
electron as it is ionized into the continuém prior to capture. Thus,
in the expression for anl,F(b) we redefine Vg to be Zeff/v' Therefore
for capture from a particular shell of a many electron atom we must define
a Zeff value which will incorporate the amount of screening produced by
all the passive electrons. It achieves this through the ionization energy
which, via the hydrogen-like expression above, will reflect the
probability of finding a proportion of the charge cloud arising from

the outer shell electrons, to be lying within the shell of the active

electron and as a result partially screen the target atom nucleus.
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CHAPTER 2.3

Electron-capture fromxii, Li’ and Li2+ by fast protons

Electron-capture from the ground state of Li can occur from
either the K- or L-shell and therefore the reactions considered here
are

B + Li — H(ng) + Lit(®) (2.3.1)

where F is 11S, 21S or 238 and nd = 1s, 2s and 2p. The same (nf)-

states were chosen when considering capture from the ground states of

Li+ and Li2+. The Hartree-Fock wavefunctions of Clementi and Roetti15

were used to describe the initial states of Li.and Li* and the excited-
state wavefunctions for Li+, used in the calculation of the passive
overlap integral for reaction (2.3.1), were taken from Cohen and
McEachran.16 The ionization energies, used in the calculation of the

17

energy decrement A€ and the value for Ze were obtained from Moore

19

fr

Wiese et a118 and Tennant “. For the Li atom target, the Ze values

ff
corresponding to F = ’118, 215 and 238, from equation (2.2.5), are
1.260, 2.208 and 2.177, respectively, and when the target is a Li* iom
then Zeff = 2.359. The Li2+ ion was described by using the exact ehergy
and eigenfunction.

The total cross-section O~ [n,l,F] for electron-capture into a

state (nd) may be expressed as

- _
o hterFl] =2 _f b Ianl F(b)| 2 4 (in units of Tl-ai ) , (2.3.2)
o ?

where a (b) is the total antisymmeterised transition amplitude given

nt,F

|
by & =(b) in equation (2.2.2) multiplied by 3% for the Li atom target

N

N

and 2% for the Li'. The o (nl,F] values for Li and it targets are

presented in Table 2.1: the initial entry is based on the Zeff

approximation and the underlined entry refers to the 'perfect screening'
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(ps) model. For the Li atom, the total cross-section Q,.r for all

capture states nf .was obtained from

ar = a1 + QE@'s) + a@s) (2.3.3)
where each contribution Q(F) was determined by using the appropriate
0™ sum rule (see Chapter 1.4, equation (1.4.3)). TFor reaction (2.3.1)

we note that the integration over spin in the antisymmetrized expression

il

(b), when F 118, produces exchange-~type terms in the

for ant,F
transition amplitude in which the label for the active electron is
associated with the 1s orbital in Li as well as the expected terms
arising from the initial occupation of the 2s orbital; and vice versa
when F = 218. However, due to the near orthogonality between the 2s
and 1s orbitals in the Clementi and Roe'citi’]5 HF wavefunction the passive
overlap integral associated with the exchange-type term is very small,
and as a consequence contributions to the capture cross-sections
attributable to exchange-type terms account for less than 0.3% of the
magnitude of o [ne, 1181 and O [n4, 215] in each instance; no such
exchange=type terms arise when F = 238. Therefore, for ease of discussion,
we will refer to Q(2qs) + Q(EBS) as K-shell capture, and Q(118) as L-shell
capture. For the evaluation of QT’ for the Li* and Li2+ targets the
n"3 sum rule was again used and the results for all three systems are
listed in Table 2.2.at selected E lying between 200 keV and 10 MeV. As
before, the values obtained from the ps-model are underlined. In Table
2.% the difference between the Zeff and the ps-values for each éross-
section is expressed as a percentage change A, with respect to the
ps-value, for both Li and Li* at selected E.

To enable graphical comparison to be made with the experimental
curve of I'lin et alao for Li, values of QT were calculated for both

models over the energy range 10-180 keV. The curves are shown in Figure

2.1 and 2.2 along with the theoretical results for electron-capture from

n



the individual K- and L-shells. In Figure 2.3, the Ze -values for QT )

ff

over this energy range are compared with the Li calculations of Il'in et

a121, Nikolaev1,1 and Lodge and May12. I1'in et al used a Born method9 in

the one-electron approximation and the other workers employed the Brinkman-
Kramers14 approximation along with a correction factor. Nikolaev11 described
the Li atom in terms of hydrogen-like wavefunctions whereas the Lodge
and May12 curve was derived using the Hartree-Fock descriptions giﬁen by
Roothaan, Sachs and Weisszz.

In Figure 2.4 the total cross-sections for the 1i* ion, for both

the ps and Ze -models, are compared with the experimental data of

ff
23

and with the more recent expefimental data of Sewell ™

2k X
et al7™ . Also shown are the theoreticdl results of Ob'yedkov and Pavlovzs.

Bogdanov et al

No experimental comparison could be found for the Li2+ ion.

Results and Discussion

In the analysis of the CDW approximation, presented in Part 1, we
saw that the only direct reference to the 'passive' electrons in the
transition amplitude occurs as an overlap integral between their initial
and final quantum states. Thus, the influence of the interelectronic
interactions within the present form of the CDW calculations, arises
solely from the correlation effects contained in the target wavefunctions

\Il and 'XF. Although electron correlation is important for a target such
as H (see, Moore and Banyard7) the calculations in Part 1, in the present
energy range, suggest that the use of a correlated wavefunction for the Li
series should produce a decrease in each cross-section, with respect to the
Hartree-Fock value, of less than 2%.

Comparison of the values of Ze for electron capture from the

ff
K-shells of Li and Lit suggests that, for capture from the Li K-shell,
about 20% of the shielding arises from the 2s electron: this reflects the

probability of finding the L-shell electron within the K-shell. For Li, a
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comparison of the results for Zef with the ps-model is also of some

f

interest. It is found that the Ze values for K-shell capture correspond

ff
to only about 40% of the shielding in the ps-model whereas, for L-shell

capture, the result for Zef indicates that the K-shell provides 87% of

f
perfect screening. The sensitivity of each O'[nl,F] to a change in

nuclear shielding can be judged by inspecting the Zef - and ps-results in

£
Table 2.1; see also the A values in Table 2.3. At low energies, Table

2.1 shows that when nl = 1s and 2s the Zeff-cross—sections are larger than
the ps-values whereas, for the 2p capture states, the ordering is reversed -
an exception being Li when F = 21S. However, for E 2 1000 keV, the use

of Zeff decreases all U~ [nI,F] . This latter feature is most noticeable
for capture from the K-shell of the Li gtom where, as Table 2.3 shows,

the effect becomes larger with increasing E. At 10 MeV, for example, the
Zeff—calculation yields K-shell cross=-sections for the 2p capture state
which are only about one-fifth of the magnitude of the ps-values.

For each F-state Table 2.3 reveals that, as E increases,\a strong
similarity occurs between the A values for (nd) = 1s and 2s; the
similarity does not extend to the 2p state. A corresponding trend was
observed by Banyard and Szuster26 in a correlation study of charge exchange
in proton-helium collisions. Following their rationalization, we find
that, at high projectile velocities, the major contribution to each
O'[nl,F] occurs at small values of the impact parameter. Consequently,
the A values reflect the similarity in the characteristics of the 1s and
2s hydrogen orbitals at small electron-proton separations; such character-
istics are, in turn, quite distinct from those of a 2p hydrogen orbital.

When E 2 800 keV, the Li cross-sections are 'ordered as O"[nI,ZBS] >
O'[n1,2qs ]7 0'[n1,118]for each choice of (nd) and, as might be
expected, for any given F state we have a'[T.s,F]>O’[25,F]>O"[2p,F] .

The latter ordering also holds for tit. Inspection of the total cross-
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sections QT in Table 2.2 for the ionization series shows that, for the
Z_pp model, QT(L:‘L+)- > QL) > QT(Liz"') throughout the whole energy

range. We also note that, at high energies, the Ze -results for QT

fT
are less than the ps-values by about 21% for Li and 6% for Li'.

A comparison between the total cross—sections per K-shell electron
for_the iog'targets reveals that, at low energies, Lit > .Liz+ whereas,
when E is large, the L:i.z+ cross—-sections are significantly greater than
the Li* values. Since the transition amplitudes are evaluated in terms
of momentum space, the larger momentum possessed by the unshielded
active electron in Li2+ emphasizes that, as the projectile velocity
increases, the major contribution to each crosé-section arises increas-
ingly from the high momentum region within the target.

eff

Li reveal some interesting features. Although the results of Il'in et

When compared with experiment, the 2 and ps=-values of QT for

alzo extend only as far as 180 keV, Figures 2.1 and 2.2 indicate that
each CDW curve for G%is in general accord with experiment - the better
agreement being achieved by the Zeff approximation. For electron-capture
from the K-shell, the ps-results are seen to reach a turning point at

about 15 keV, whereas the Z approximation produces an inflexion at

eff
about 40 keV which is similar in shape to that seen in the experimental
curve at E ~ 60 keV. However, Figure 2.1 shows that the increase in the
L-shell capture cross-section with decreasing E masks this inflexion when
evaluating the total curve. |

For Li, the comparisons in Figure 2.3 between the various
theoretical Q curves and experiment show that, except for the very good
Nikolaev11 curve, the CDW result is superior - especially in the higher
energy region. It is to be noted that, unlike the CDW calculation, the

Nikolaev11 curve involved the use of an empirically derived velocity-

dependent correcting function.
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When the target is a Li' ion, Figure 2.4 shows that both the CDW
curves are a considerable improvement on the theoretical results of
Ob'yedkov and Pavlov25, when compared with the experimental data of

Sewell et al ,24. For impact energies © > 50 keV the Ze cross-sections

ff
exceed those obtained by using the ps-model, and for E > 100 keV are in
slightly better agreement with experiment. Overall the agreement with
the experimental data of Sewell et aLl.ZL+ looks very good, and as in

the case of the Li atom target, it would be very useful if the comparisons

could be extended to much higher energies.
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CEAPTER 2.4

Conclusion

Electron-capture cross-sections have been evaluated for fast
protons in collision with the Li atom and its related ions. Such
reactions are of interest in the production of hot plasmas which occur
in some fusion processes. The calculations were based on the continuum-
distorted wave (CDW) approximation and a simple procedure was introduced
for assessing the screening of the target nucleus due to the passive
electrons which, for capture from the inner sbells of a many-electron
target, will reflect more closely the physics of the capture process
with respect to the distortion acting én the captured electron in the
outward channel. The application of the CDW approximation to electron-
capture from a many-electron atom becomes tractable, at present, only
by reducing it to an equivalent one-electron problem. Consequently,
when attempting to replace the 'perfect screening’ procedure for an
N-electron system by a somewhat more physical model based on the
ionization energy, it was appropriate to use a hydrogen-like formula to
determine Zeff'

It was observed that capture into the higher quantum states {(nf)
of hydrogen appeared to be quite sensitive to changes in the screening
effects - particularly at high projectile energies E and especially
for capture from the K-shell. This latter feature is of impcrtance since
for high impact energies the largest contribution to the capture cross-
section for a many electron target will come progressively from the
K-shell capture as the projectile velocity v increases. Although a
comparison with experiment of the total cross-sections was limited to
3

relatively low impact energies E - where both the CDW method and the n

rule tend"to become less reliable - the general agreement was, nevertheless,
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quite satisfactory for the Li target, particularly for impact energies
E > 80 keV, and for the Li+ target for E > 100 keV. Comparison with
experiments at larger E would obviously be most informative.

For Li we obtain for K-shell capture a kink or inflexion similar
in shape to that observed in the experimental curve. This is probably
fortuitous, particularly since we are at impact energies for which the
CDW method cannot be considered reliable for capture from the Li target
1s shell. Note that a similar kink was obfained’in—the theoretical
curve for capture from the Li" ion when using the Zeff model although
no such kink was observed in the experimental curve. The correct cross-
section curve for K-shell capture from Li is probably such to reach a
maximum at E ~ 75 keV and then decrease rapidly to zero as E decreases.
We also note, for Li, that as the projectile velocity increases capture
from the K-shell makes a greater contribution to Q than that from the
L-shell, and that for E > 150 keV the contribution to @ from, the
L-shell can be considered negligible. This emphasises once again the
importance of the high momentum description_of the target electrons
and hence the need to use accurate wavefunctions in any 'a priori'

calculation - even at high projectile velocities.
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E(keV) Li Li* List
200 3,968-2 4.369-2 1.361-2
500 1.804-3 2.219-3 1.240-3

1.860-3 2.138-3
800 2.661-4 3.312-4 2.156-4
2.003-4 23,3184
1000 1.005-4 1.252=4 8.506-5
1.172-4 1.272-4
2000 3.916-6 T 4,.864-6 3.441-6
4 894-6 5.078-6
5000 3.644-8 4,492.8 2.998-8
4.722-8 L ,764-8
8000 2.918-9 2.589-9 2.306-9
3.827-9 3.819-9
10000 8 .604-10 1.057-9 6.686-10
1.133=9 1.126-9

Table 2.2

Total capture cross-sections QT for the Li, Li" and
Li2+ targets; the units are 1Tai. The initial entry for
a given E is derived from the Zeff-model and the ps-value
is quoted velow it. For the Li atom,

Qr = Q1 18) + Q(2 1S) + Q(2 3S); see equation (2.3.3).

The superscript denotes the power of ten by which each

entry should be multiplied.
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Figure 2.1

E(keV)

A comparison between experiment (I1'in et al ") and the total
cavture cross-sections Q. for Li derived from the CDV calcula-
tions using the Z_.. -model. Also shown are the ca}culated 3
results for the cablure of a K-shell electron, {a2'8) + 2(2 Sﬂ
and the capture of the L-shell electron [Q(1 S)] ; see
equation (2.3.3).
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Also shown are
calculated results for the capture of a K-shell electron
[Q(215)+Q(238)] and the capture of the L-shell electrdn
[Q(118)] ; see equation (2.3.3).
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PART THREE

The Continuum Intermediate States (CIS) method and its
application to electron-capture from hydrogen by a simple
structured projectile in the form of (a) fast H atoms, and

(b) fast 1i ions.



CHAPTER 3.1

Introduction

The subject of electron-capture by a structured projectile
covers a variety of interactions such as H, He+, H, Li2+, Be2+ etc.
incident on H or He. These reactions, particularly in the low impact
energy region of 1 eV 1& E é% 1000 eV, have been investigated using
curve-crossing techniquesq, and methods based on an expansion in terms
of molecular eigenfunctionsa. An example of the latter approach is the
"Perturbed Stationary States" or '"P.S.S." method which was introduced by
Massey and SmithB. However, electron-capture involving structured
projectiles at higher impact energies such as 1 keV Z E % 200 keV
i8 also of considerable interest. For example, structured projectiles
incident on H are of importance, not only theoretically, but also in
connection with the thermo-nuclear fusion research programq. The
heating of a fusion plasma by injection of H or D atoms will be\seriously
affected by the presence of a small percentage (1-10%) of highly stripped
impurity ions such as O, N, C, Fe, Au etc. ihese positively charged
systems will ionize the H or D atoms either by charge-transfer or ionization,
thus causing them to be magnetically deflected out of the plasma to strike
the container walls and thereby release more impurities into the plasma.
Such reactions were the subject of a theoretical investigation by Olson and

Salop5

using the classical trajectory method to calculate charge-transfer
and ionization cross-sections. Electron-capture by heavy charged
projectiles is also of great importance in the study of X-ray production
which occurs when the electron is captured into an excited state and then
undergoes a radiative decay to the ground state. The cross-sections for

X-ray productionare of interest to the astrophysicist in, for example,

cosmic=ray research, where the detection of such X-rays may possibly lead
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to a direct measure of the interstellar cosmic-ray intensity. Calculations
of X-ray production rates have been made by Watson6 using the Brinkman-
Kramers approximation7 to evaluate charge-exchange cross-sections. His
work on F* incident on H, however, has been superseded by that of Belkic
and McCarroll8 who, using the CDW method, obtained much better agreement
with experiment.

When the incident structured projectile is a neutral hydrogen atom;
charge-exchange reactions may give rise to the formation of the hydrogen
negative ion H . The production of H is of importance in astrophysics,
since it is found in the atmospheres of stars, and indeed accounts for
part of the opacity of our own sun. .However, the main and current interest
in H lies in the experiments concerned with the building of the first
prototype fusion reactor in which neutral hydrogen beams are needed at
energies in the range 150-200 keV. The H ions once formed are
accelerated to the desired energy and then stripped in a suitable gas
target to form the neutral hydrogen atoms. The formation of H; in H-H

9

collisions was investigated experimentally by McClure” and the corresponding
theoretical cross-sections, calculated by Me:pleton’]O using a Born
approximatioan, for impact energy E > 30 keV were too large by almost

a factor of 10.

The application of the CDW method to charge-exchange between
structured systems presents a more difficult problem due to the necessary
approximations required with respect to the so called 'passive' electrons
which may now reside on both the target and projectile; Howevér, when
such collisions involve a one-electron target, the cross-sections may be
evaluated by applying the CDW approach to the reverse reaction, and then
by dividing by the appropriéte factor the desired cross-section is
obtained. For example, this procedure was used by Janev and Salinqa’13
and Moore and Banyard14 when comparing theory with experiment for the ‘

reaction
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H(1s) + H(1s) — B (1s9) + © (3.1.1)
and Moore and Banjy‘all.t‘d-14 showed-that the-uéé of a highly correlated
wavefunction for H_ produced reasonable agreement with experiment down
to a projectile energy E of about 25 keV.

In Part 1 we saw how, for proton projectiles at high impact-
energies, the main contribution to the capture cross-section came from
regions close to the target nucleus and therefore from small impact
parameters. However, when we consider heavy-ion projectiles the
probability of capture from large impact parameters increases, with the
result that capture into excited-states becomes more important.
Shakeshaft15 has shown that the CDW method is unsatisfactory in
predicting a transition amplitude at large impact parameters. The work
of Shakeshaft is reviewed in a more recent paper by Belki016, in which
he introduces a second-order approximation called the continuum
intermediate states (CIS) method. This new method not only predicts a
correct transition amplitude at large impact parameters, but i; found
to be in excellent agreement with experiment for electron-capture by
fast B on H atoms. The CIS approach, de;ised by Belkicq6 for electron-
capture by a structureless projectile, is closely related to the CDW
method but accounts for distortion effects by inclusion of the continuum
intermediate states in only one of the two channels. This feature not
only produces considerable simplification from both the analytical and
computational viewpoint, but also gives the method greater flexibility
for adaptation to the more general case of ion-atom collisions.

Therefore, in Part 3% we present an alternative procedure for
determining cross-sections for charge-exchange between simple structured
systems (e.g. atoms and ions with one or two electrons). The scheme is

based on-a modification of the CIS method which, for reasons just.

outlined, appears to be an appropriate method particularly for heavy-ions
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incident on H atoms at large impact energies. In Chapters 3.2 and 3.3
we derive ana evaluate the CIS cross-section fbr-ﬁapture of an electron
1, say, by a projéctile systeﬁ (ZA,e(2)) in collision with a target
(ZB,e(1)) and show that, as a result of the approximations, the scheme is
most applicable to the case when ZA > ZB. However, as a simple test
of the proposed scheme we first apply it to reaction (3.1.1) for which
ZA = ZB. Although this reaction may be complicated by the fact that
electron correlation may play a non-trivial role, the reaction has the
advantage that capture into excited states need not be considered due to
the very low probability of finding the H system existing in any other
state than its ground state. In fact it is highly questionable whether
H™ can exist at all in an excited state. Indeed the proof that H only
exists in its ground state has been the subject of a theoretical
investigation by Hi1117. Also in an experiment designed to measure
electron-capture cross-sections in H-H collisions, any H atoms being
formed in an excited state, should it exist, would be quickly ionized
and the process would be detected as an ionization process, i.e.

H+ H—>H + H + e. Therefore, the electron capture cross-section is
calculated for the reaction, H(1s) + H(1s)—H(1s2) + H' , for impact
energies in the range 10 keV < E < 200 keV and we compare the
results with the experimental data of McClureg.

For any method, the sensitivity of the calculations with respect
to the wavefunctionemployed is of importance if the general physics of
the method is to be understood.

In the case of the Born and CDW cross-section calculations there
have been many theoretical investigafions with respect to this aim. As
emphasised in Part 1 of this thesis the effects of electron correlation

on the electron-capture cross-section may be significant when the

H-(152) system is involved. Thus, in applying the new scheme to reaction
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(3.1.1) we use both Hartree-Fock and configuration interaction wave-
functions to describé the H-(1sz) system: this allows us to comment
on the influence of electrbn—corfelation.

A more appropriate application of the proposéd scheme is in the
calculation.of electron-capture from H atoms by fast Li ions, which
has been the subject of a recent experimental investigation by Shah,
Goffe aﬁd Gilbody18. Thus the individual cross-sections for electron
capture into the final states nf = 1s, 2s, 2p, 3s, 3p and 3d are

3+

examined for Li+, Li2+ and Li” 1incident on H atoms with impact energies

in the range 100 ke¥ < E < 10,000 keV. The individual cross-sections
5

are then used in conjunction with an appropriate n"~ sum rule to evaluate
the total cross-sections which are then compared with the experimental

data.
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CHAPTER 3.2

Derivation of the Continuum Intermediate States (CIS) transition

amplitude for electron-capture by a simple structured projectile

In this derivation many of the steps involved are similar, if
not identical, to those in the derivation of the CDW transition
amplitude. Therefore, for the purpose of brevity, we will not repeat
steps when it is easier to refer back to Chapter 1.2. Again we will
formulate the problem within the impact parameter method and the geometry
and labelling of position vectors will be as used in Part 1 for reaction
(1.2.1), see Figure 3.1. Let us consider the general reaction:

(ZA,e(z))i + (Zg,e(1); — (Z,,e(1),e(2)); + 2

A B B

(3.2.7)
where i and f denote the initial and final states, respectively. The

complete Schrodinger equation for the reaction will be

2 2
Z Z Z Z n
3V +3V, + 2B B2 1 -2AB) Plrm,,0
=1 =2 S Sv X X5 S15 R .

= -i ) (r,,r.,t) , (3.2.2)
R B

where again we will choose the reference origin O to be the mid-point between

ZA and ZB. The correct asymptotic conditions for gP (Eq’fa’t) will be

\}} 1(31 ,zz,t) —_— @1(21 ,£2’t) and ?f(z'] a_{zyt) -_—> éf(z'] 7£2at) 9

(3.2.3)

where

@ 1(21 v{zvt) = ﬂ l(-r-'l ,52115) eXP('.FZA—1?(ZB-1) ln(VR—Vat))
v

(3.2.4)
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and

(z,-2)2Z :
éf(g,ga,t) =‘,ﬂ_f(£1 ,52,t)e@(-i%‘r_3 In(vR + vzt)) .

(3.2.5)

The functions . and are the asymptotic wavefunctions satisfyin
i F ying

-

the asymptotic Schrodinger equation, obtained by setting

1/5',]2—-9’1/12 , ZA/S'I-'ZA/R and ZB/XZ—) ZB/R for the initial channel,
and ZB/x,]——. ZB/R and ZB/xz—-» ZB/R for the final channel.The func-—

tions J; andf); are given by
, 2
O i (zrs.t) =y (s55) . (x,)exp (-i[%z.r Av.r v t+(€. + €, )t])
1it=1'=2 \FlA—Z 'XlB—'l 1 =2 i, i

(3.2.6)
and
n f(5‘_1,_1_"2,t) = zif(_s_1,§2)exp ( -i [";‘X-rq'%_‘i-rg'*%vat*“ Eft]) ,

(3.2.7)

where \Pi y ')(i and ﬂf are the corresponding bound-state electronic
A B

wavefunctions with eigenvalues € i 1 € i and € £ given by the
B
solutions of
(39, + °
q
= + _A + €. . = 0 , (5':2-8)
L s 1A) \PlA
2
(2 v, + !
1
z + Bioe. X. =0 (3.2.9)
-:1 X] lB) lB )
and
2 2
Z Z
i 1
(2 qu * 2V£2 + B, A 1, f\¢£:o . (3.2.10)

81 %2 ®12

It follows that the distorted waves O(i and ‘)(f are defined by the

équations
2 2
7Z z. (z,-1)(zZ_-1) .
1V, +2V,_ +A 3T e b u] X (g, 0)=0

(3.2.11)
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2 2 .
[%V Ly R T e id + Ut;] X (z;,25,t) =0«

=1 =2 51 52 542 ) R . At
(3.2.12)
Ideally, we would like
X i @i and X §f (3.2.13)

t— - t— +e0
since, with the correct choice of potentials, Ui and Uf should vanish
in the limit of large internuclear separation.
Adopting the procedure outlined in Chapter 1.2, see equations
(1.2.3) to(1.2.25), we can obtain an expression for the 'prior'

transition amplitude ajpe Thus, it follows from the equation defining

X 0 that a e is given by
' iz o1 % 1
ae=if at §oar ar, \Pf(s—A's— 22 B"Ui) Xi o
== 1 712 2
(3.2.14)
provided that
* -
lim Iir_q ar, ‘Pf X 5 0. (3.2.15)

t—> +v0

Alternatively, we may consider the time reversed reaction to obtain

bif’ the 'post' transition amplitude
>+.° * *
. Z Z 27
by =i | a Jdr1 s [(—B““—B-'——B'Uf_) 'Xf] Pi v
- X X, R
1 2 A
(3.2.16)
provided
*
lim ng g_r_e 'Xf‘ \Pi = 0 . (3.2.17)
t—> +a2 -

We will find, as discussed later, that the role played by the passive
electron in the evaluation of a, p appears in a different form to that

in the determination of bif’ and that, as a result, the choice between
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the use of a._. and bi

if becomes a matter of expediency.

f

The Distorted Wave Functions

As in Chapter 1.2 we represent the solutions of‘ﬁpi and q?f

in the form

\}’i(f-'] ’EZ’t) :ﬂi(.r_'] ’£27t) Zi(-s-’] 1§2at) (3.2.18)
and
\P f(£1 ’£2’t) = ﬂ f(£’| 7£2?t) x f(z’] 1?521 t) . (3.2.19)

Substituting \Pi and q,f into equations (3.2.2) we find that Xi and

JZf are solutions of

o[+

1V2 1V2 T N WY/ i v.V id ( t)
AV, +3V, +aeB-_ -2 -iv.V, + 1wV, 13 f£i(sxs,
r r —

2
=X [Vr Log. Y; (520X (-”-‘-1)] -[Vr.fi@« ’52’t)]
j=1 = 7Y A B —J
(3.2.20)
and
[%ﬂ] ¢ + 2 . + ZB + ZB ZAZB + 1 v ‘7 + i v ‘7 + 13 ;( (x,,%4,t)
= - __‘ i L] ]
I, T, - g < 3 41 .3 I, §3 |~ =R

(3.2.21)

respectively. In solving equations (3.2.20, 21) to first-order we
neglect the right-hand side and then—make the abpropriate approximations
concerning the passive electron e(2) in order that the first-order

/ / - -
solutions, ;{i and ;(f , will have the correct asymptotic behaviour.

This last condition is satisfied by making the approximation

B — B and 1 1 . (3.2.22)
%5 R S12 51 . -
/

. /- v
The equations for 3{ and sz are then given by
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2 /
1V s W GE g + ib) (5.,t) = O
(2 I s R - e v£1 3t *{1‘ ,
' (3.2.23)
and ) ‘
2 /
1V o+ Z8- GV, 5. . ib) (x,,£) = O .
(? n % T ® 3T Ve, 3 £

(3.2.24)

/ /
Solving for ;(i a.nd4 we obtain

/ .
'{i (_5_1,1:) = NA(V) 1Fq [iV,l 51 i(vs,‘+\_/._s__)] exp [1(ZA-1)ZB ln(vR—th)]
' v

(3.2.25)

and

Zf/ (ic,],t) = N];(v),|F1 [-iVa ;1 -1 (vx1+_\£;3_c1)J exp [-i(ZA—1)ZBln(vR+v2t)}
v
(3.2.26)

where WV, = (ZA—1)/V , V2 = ZB/v , and NA(V) and NB(v) are defined in
equations (1.2.39%a, 40a). Note that by using conditions (1.2.41 — 43b)

l’i and Zfl and hence \IIi :ﬂi ;(: and \szﬂf ;Zlf can be

shown to have the correct asymptotic behaviour given by (3.2.3).

As a result of the approximations (3.2.22), the distortion, by
ZB’ of the passive electron wavefunction centred on ZA has been
effectively removed. In the cases for which the scheme is proposed,
i.e. ZA> Zg in which e(2) will be tightly bound to Z, compared with
the binding of e(1) to Zgs this is a reasonable approximation to make.
In addition, a.ny-influence on the formation of (ZA’ e(1), e(2))'f, in

reaction (3.2.1), due to the distortion of e(2) by Z ‘will arise from

B
the influence of e(2) on e(1), and this will thus involve an electron
correiation effect. Thus for ZA % 3, when electron correlation effects

in reactior (3.2.1) should be minimal, the contribution from such a two-

step process is expected to be negligible.
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However, it is also important to note that in making the

approximation s,, £ s

12 we have effectively pushed the passive electron

1
e(2) into the projectile nucleus and therefore it will screen the projectile
nuclear charge ZA by unity. This latter feature contradicts the rational-
isation that the maximum contribution to the cross-section will occur when
e(1) experiences the full charge of Zy. Fortunately the approximation that
Sq5 ) s, appears only in equation (3.2.20) and, as we shall see later,
the formulation of the CIS method is such that only one of the distortion

/ /
functions, J{i or 4ff , need be used,depending on whether we use

a.. or b.
i

if f°

Up to this point the formulation of a, and bif is quite general

f
and the method we finally employ, CDW or- CIS, depends ultimately on the
choice for Ui and Uf. We now turn our attention to solving equations
(3.2.11, 12) within the framework of the CIS method as presented by
Belkicqé. Following Belkic16, we choose Ui and Uf such that the distorted
waves ’Xj_and ﬁif will involve oniy the unperturbed eigenfunctions flj.

and {) £ respectively, along with the approgriate phase functions, say

gi(t) and gf(t). Thus we look for solutions to ﬁK,i and 1Xf in the form

X (zrt) = 0L (xgHz,,t) g;(t) (3.2.27)
and
')(f(f.q 1_1121t) = ﬂ f(_r_'»l 7129t) gf(t) ) (3-2.28)

where gi(t) and gf(t) are given by

gi(t) = exp ri(ZA'”ZB ln(vR-vat) (3.2.29)
oo - v e
and
gf(t) = exp _i(ZA;ﬁjzﬁ 1n(vR+v2t) . (3.2.30)
- v -

It follows therefore that the necessary choice for Ui and Uf will be
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v, = &Y e o, = B (3.2.37)
1 R _ R ) .

g are simply the distorting potentials acting on e(1)

Note that Ui and U
at large internuclear separations since, in this limit, S, %= R. With
this choice of U; and U, the solutions obtained for ’Xi and ’)(f are
such that the boundary conditions (3.2.13) are not obeyed since Ui and
Uf do not vanish in the limit of large internuclear separation, but vary .
as 1/R. We note also that ’Xi-and ’)(f are devoid of any continuum
intermediate states which arise via the Coulomb functions,

vy [i iV ;31 : i(vr + z.z)} , such as those found in the solutioms
of \Pi and \Pf. By substituting for U, a.nd' U, into equations (3.2.14)

and (3.2.16) we finally obtain the CIS 'prior' and 'post' transition

amplitudes for reaction (3.2.1),

+ad
. x, 7 7 7
& = 1jdtjd__r_1_d£2 \I/f(_‘.A.'__l_*'__'_B:)’xi
-0 Sy Sip ¥ R
(3.2.32)
and s
' 7. 7. 7 *
bip T 1.{“]9-195-2[(—}3-*—}31—3) ,XfJ\?i y
- x,] X2 R
(3.2.33)

We recall that in solving for \Pi and \ij the distorting.
potential ZB/X , in the equations for \;Ui and \Pf (see equations
(3.2.20) and (3.2.21)), was set equal to ZB/R. This approximation
.enabled'the distortion of the passive electron wavefunction to be
removed from the problem and, as argued, is a good approximation for

ZA > ZB. A consequence, however, of removing the distortion potential

: 2

as a perturbing potential in the matrix elements ay

Z . . .
- £ r
B/R from the equations for \P i and LPf is that it now appears
£ and bif‘ Thus, it
would appear reasonable and consistent to make the same approximation in

equations (3.2.32) and (3.2.33). Therefore in the scheme presented here
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for reaction (3.2.1) we will assume that we can set-x2 equal to R
consistently throughout the analysis, and obtain for the prior and post

transition amplitudes

+00
. * 7
g7 £ dt J dry drp \I/f ( A - _L)')(i, (3.2.34)
B 51 %12
and
+=0
. Z. * .
- x"
respectively.

The post transition smplitude bif involves the solution toEPi
via gfi, in which we had to invoke 'perfeet' screening of the projectile
nucleus by the rpassive electron e(2) using the approximation 1/312= 1/51.
However, in aj¢ the relevant potential (1/512) now appears as a
perturbing potential within the matrix element and therefore lends
itself to the possibility of a more flexible approximation. It alsc
turns out that a s is the more desirable of the two forms from éhe point
of view of evaluating the cross-section, particularly if complicated
wavefunctions are used to describe the excitéd states of the captured
electron.

Finally, we note that for the one-electron reaction
Z, +(ZB, e(1))———+(ZA, e(1) + Zy the transition amplitude a,. is easily
obtained by removing the 1/512 term and by substituting the appropriate
one-electron wavefunctions for ’Xi, ’X;, \Pi and \P; . Furthermore,

for ZA = ZB = 1 i.e. protons incident on H, we will obtain the expression

. X .
given by Belkic 6.
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CHAPTER 3.3

Evaluatiorn of the transition amplitude

In this chapter we evaluate the CIS transition amplitude e and
the cross-secfion for reaction (3.2.1). We will first consider capture
into the ground-state only and treat capture into excited-states
separately later. Let us describe the ground-state of the final
projectile by the natural expansion of a CI wavefurction, the form of
which was described in Chapter 1.3, equation (1.3.2).. We can then always
reduce the resulting equations to correspond to a simple Hartree-Fock
wavefunction as was done in the CDW calculationé. For simplicity we will
only consider the most usual case of the %arget and initial projectile

beirng in its ground-state. Thus we have for the bound electronic

wavefunctions

: 3
Z =%, s .
W islea) = —wA— e M° , (3.3.1)
.. .3 =Z_X
Motz = BB e BT (3.3.2)
v
and B 5(sy 4 85) = Dapy Woupls)) War(sy) (3.3.3)
1s

where the form of D“P" ,Lde and (Q .y are defined in Chapter 1.3,
eguations (1.3.5-8). In order not to repeat trivial steps we will
mention only the major features of the analysis and will refer back
to Chapter 1.3 when possible.

After substituting the solutions for g)f and 0(1 from equations
(3.2.19) and (3.2.27) into the expression for a;r» equation (3.2.324),
we multiply the phase functions together, substitute for.fli anduflf
from equations (3.2.6,7) and replace the Coulomb function in.?% by its

integral representation (see Chapter 1.3, equation (1.3.13)) to obtain
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for a._. the expression

if +obd '
. L. N 21Z v . .
N_(v) (bv)=F . § -1V -iv.r
* o . -i? (VX1+E._}£1)
25152(31 185) Vo Waglsp) Kqglxye ’
(3.3.4)

where A€ = é'A('ls) + GB(’ls) - GF(152), Z = (ZA—1)Z and b is the

B’

impact parameter. V is the perturbing potential acting on the active

o

1,2

electron e(1) due to the approaching projectile i.e. V: 5= ZA/S1- 1/512.
9

At this point we must decide how to handle the electron-electron
potential term. If we are to be consistent with the approximation made

with respect to %, we should set V? 5 = '(ZA-’I)/s1 which invokes perfect
?

screening of the projectile nucleus ZA by e(2). This approximation would

seem reasonable for large Z, although it does not allow e(1) to experience

A

the full charge of Z, for which the probability of capture would be a

A
0
1,2

replacing the electron-electron potential by the average electrostatic

maximum. A more appropriate approximation to V is obtained by

potential acting on e(1) due to the distribution of charge around Zy -

Thus Vo . is given by its approximate form V1
1,2 , 1,2
-27, s
1 Z AT
Vo= A - 81 + e (zA + 81 ) , (3.3.5)
S1 ® 1
which has the following useful features
1 Zz, -1
V - A. (3'306)
1,2 ?
S,‘_’& S,I .
and le > . Z_A . (3.3.7)
?
S,]-)o 51

Substituting for the bound-state electronic wavefunctions (3.3.1-3),

a.

i TAY be re-written in the form
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2172

-+ -

a;¢(1s) = NBFV);?_ ) Ducp¥ _:[ are 14T § % (1+ % )'iva Ly Rap
| (3.3.8)
wbere oy = [ dzy o(e)) Qur () | (3.3.9)
s Rep s j I, Lq;ii(-s-pvl,a 'X1s(51)e-iz.£1 e-ig(vx1+l'x1) .
(3.3.10)

Using the Fourier transform method to evaluate the above integrals it is

easily shown that

242w

v . -i¥Y
o, (1) = MOV Ty Jdte_lAet §g§ 1) e
| T V3

cem’ ~eo

ik.s, -iK.x, .
X e e , (3.3.11)
where
* 1 k.59 ]
F‘P(}:_) = j Lup(s,) V1’2 e ds, (3.3.12)
and
'i‘g(vxq"’_‘l'ﬁq) iE'_}E']
6, ® = [ X, &) e e ax, . (3.3.13)

Both the F* and G integrals can be solved quite easily by making use of
the expression given in Chapter 1.3, eqﬁations (1.3.31,32). Carrying out
the integrations over r and k (remembering that v is defined in the

z-direction) and finally over time t, we obtain that k = K + v and that

K, = -v/2 - A€/v. Thus (3.3.11) becomes

2iZ iy
N,(v) (ov) V e 2
B d 1
a. (1s) = =————— D §—~ 1+ 3 IgY
if (EW)BV dFa' ¥ ( 'g)
40 +
-ibK »*
X A€ _ 3
J'de e j de Fug (Kx,Ky,v/Z- —;)G,‘S(Kx,Ky, v/Z-«é;) .
- - ad
N (3.3.14)
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We recall that in the CDW method the F* G function consisted of
four f* integrals and four g integrals whiéh results in the final form
of F* G not being separable with respect to the description of the
initial and final states of the 'active' electron - fhe initial and

final states being connected through the final distortion via ¥ In

Pe
the CIS approach we only have one integral for each of theﬁF* and G
functions. ConsequentlyfF* G is separable with respect to the 'actiQe'
electron description, Fﬁ*being a function of the final capture sfate and
G being a function of the initial projectile state. As we shall see,
this helps considerably in reducing the amount of calculation necessary
if we wish to consider either capture into excited states or capture

from different targets.

As in Chapter 1.3 we now transform (3.3.14) into M space, where
2 2 2

n" =K+ Ky » Ko=1 Sin @ and Ky = M Cos O . Integrating over & and
using Cauchy's Theorem to perform the integration over ¢ , the expression
for a,, may be written
217
NB(V)(bV) v - *
= J (M) Iy Fuy(MG, (MIdm -
a;5(1s) v Degr | M I, 5 (G g
°
(3.3.15)
Substituting (3.3.15) into equation (1.2.28) and noting that
od
er’J Jo(bq)Jo(bn’ )b db = 5(11-71') ; (3.3.16)
° -

2y

we obtain for the capture cross section @ (1s) (in units of 'Trao

2 T 2 2
T (e = 21 JWL[D‘P, Lar Fug (M} }G1S<n)l dn -
2 A |

(3.3.17)

Following Chapter 1.3, we again obtain a 'passive' overlap integral
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I.y which, for reasons outlined in the discussiqn of equations
(1.3.38—43), will be gﬂ-zero only for those basis orbitals in the
natural expansion which have angular symmetry identical to the initial
bound state of the projectile. Thus in this particular case only natural
orbitals having radial symmetry will contribute to the cross-section.

Let us now examine the solution for EgP (") and G1s(7\) separately.

The solution to equation (3.3.13) for G1s(§) turns out to be

/5y

23\ T (z, + %)
) . (3.3.18)

G, (K) = 8( > 2
8= i ® 4+ 212, % v-2_l§.y_§]

>
[ZB+ K

After performing the complex integration over'? and transforming into

T space, we finally obtain for G1S(TL) the expression

7 3 2 : -iV2
G, (M) = 8?(-%-) . CZ?;:)) (CED) . {—iv\)EC+V2ZBD
-iZB(C—D)} Yy
(3.3.19)
where  © = 2" +n% + (V2 + 45) : - (3.3.20)
and D=o2v(Y2+ AVé—) + i 2z . (3.3.21)

The solution for Fug (M) will depend on the form of the potential
1

V, 5+ Let us first write down the solution, qu(Y\), for a potential of
! -0 s
the form?e 1 / s,» when Q24§(§h) is a simple 1s S.T.0. i.e.
- FS’] )
Ng e : where ‘fp is the exponent and NP the normalization

constant. After integrating over s, in equation (3.3.12) and then

1

transforming into M space we arrive at the result

a

g (0 - (5 - 857

£,4(M0
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It follows that if qup (51) is an S.T.0. having radial symmetry with

a principal quantum number ng , we can write

ng-1 -1
fup G =0T D

- [: f1s(1\)
w=Q Bfnp—1

J . (3.3.23)
=R

Also by using the partial differential of f“F,(TO with respect

to w it can be shown that for a potential V1 in the form

1,2
. -27,s L

1 (Z-1) 1N

Vi = LA +e (2, + 1) ) (3.3.24)
S,] 5,]

Fap (M) is given by

Fug (M) = (2, - 1) fup (M)

-7, _%_ [:f.‘P ()

wW=0 w

w=2Z;]

+ f-ge (TL) . (‘3-3-25)

w=2ZA
Due to the separable form of the integrand in (3.3.17), the cross-
section for capture into the nf = 1s, 2s and 2p states, for example,

can be written as

S22
T (nh) = l—ﬁa—-zl— [ meer fue O} for 0] e
v
o

(3.3.26)
where q depends on the angular symmetry of the capture state,'i.e.
q =0 for nd = 1s, 2s, 2p, and q = 1 for nd = 2p_, and 17 is a
multiplication factor equal to 1 if we capture into a singlet state
n1s, and equal to 3 for capture into a triplet state nBS. The CIS
integrand is in a particularly convenient form since, for capture into

different states, we simply re-calculate Wng () which is a function of
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the 'passive' overlap integral I and the F function which depends on the
orbital description of the captﬁred state:
Let us now éxamine the structure of Wn1(7l) when e(1) is
captured into an excited state, and the spatial wavefunction describing
[ZA,e(1), e(2)] g 1s of the form
5,01, = X fuv fowu@) , Gaen)
A2
where u and v are separately normalized ground-state and excited-state
orbitals, respectively. Nx 1is the total normalization constant
given by

+ 2, 2

Nne = (11§89, (3.3.28)

with § equal to the overlap integral (4 | vd . Usually the
orbitals u and v are constructed to be orthogonal for which $ = O.
Because of the form of ﬁf(1,2) and the fact that we label the  ‘'active!'
electron e(1), a probability exists in our analysis for the capture of
electron(1)into the ground state of projectile (ZA,e(Z)) while, at the
same instant, electron (2) is being projected into the excited-state
orbital. This is an exchange effect, similar to that observed in
Part 2 for electron-capture from Li, and is a direct consequence of
having to antisymmetrize the total wavefunction in order to obey the
Pauli exclusion principle. The size of the contribution arising from
this exchange term will normally be very small if not zero dué to the
passive overlap integral that occurs between the excited-state orbital
v(2) and the ground-state wavefunction QJ1S(2) of the initial state
projectile. For each orbital in ﬁf(1,2) we célculate a corresponding
F(n) function, say Fu(71) and FV(TL), representing capture into the
orbitals u and v respectively; wnl_(rl) then becomes either Wnt (rt)+‘

or Wag (1 )- given by
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=4

ine 2 = — {10y, @]vIr @) * 1y, @|uer@]
A2
(3.3.29)
It follows from.the integration over spins that, for the singlet case
we use Wmth)_ and T equal to 1, and for the triplet case we use
Wnt @1)+ and T equal to 3. Consequently, once we have calculated
Wag ™M) for all the required capture states we will now have the cross-

sections for capture from any general one-electron target of charge

ZB.
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CHAPTER 3.4

An examination of electron-capture in H-H collisions

As a somewhat severe test of fhe scheme presenfed in the previous
chapters we now examine the cross-sections for electron-capture in H-H
collisions. This is a particularly interesting reaction to consider
from the theoretical point cf view since in the inward channel the
perturbing potential acting on the 'active' electron is due to an
approaching néﬁtfal atom. Thus we Qould eﬁpect, particularly for capture
into a weakly bound state such as H™, that electron-capture will occur when
the 'active' electron sees the full charge of the H projectile nucleus.
Applying the procedure just outlined to.reaction (3.1.1) we obtain for
the perturbing potential V}’z, in equation (3.3.10), for ZA=1,

-25

V1,2 - e 1(1 +;—1-) ) (3.4.1)

)

Vl o now tends to zero for the approaching H atom at large internuclear
?

separations and equals 1/s1 for small Sy Thus V} > is an appropriate
9

potential for the H-H capture process.

The capture cross-sections for reaction (3.1.1) are calculated
using the transition amplitude a,. defined in equation (3.2.34). The
wavefunction for H_(152) was described, firstly, by the HF fitted
function of Curl and Coulson19 and, secondly, by a 'fixed core'
representation of the form 15151 in which the exponent of the &alence—

1
electron orbital is chosen to be (2€)2, where € is the experimental value

- of the single-ionisation energy, and the 'fixed core' is a 1s hydrogen

orbital. The latter description of H has the advantage of having one
electron loosely bound whilst the other electron remains comparatively
tightly bound. Such a wavefunction, albeit empirical, could be

particularly appropriate at the intermediate energies represented by
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experiment since contributions to the capture cross-section from
relatively large values of the impact parameter may then be significant.
We have also described H-(182) by the CI wavefunction of Weisszo. This
function not only allowed for the high degree of electron correlation
in H , and satisfied the energy variation principle, but also enabled
us to make numerical comparisons with the CDW results of Moore and
Banyardqh. The energy decrement A€ used in conjunction with the HF
and CI wavefunctions was derived in each case from the corresponding
theoretical energies whereas, for the 'fixed-core' description of H—,
we used the experimental value.

In Figure 3.2 the cross-sections CT(15) are compared with the
experimental results of McClure9 « Also shown are the 'post' and
'prior' theoretical curves of Mapletonho, which were used by McCluregv
for comparison with experiment. MapletondO employed a Born approximation
to describe reaction (3.1.1) with the ground-state of H being represented
by the correlated wavefunction of Chandrasekharzq. In Table 3.1 the
CIS results, using the HF and CI wavefunctions, are compared, at a
few selected energies, with the CDW results of Moore and Banyard14. The
theoretical cross-sections of Moore and Banyard were obtained by dividing
the CDW cross-section for the revefée reaction (i.e. H + H (1s,1s)
H(1s) + H(1s)) by 8. This factor arises from the tact that for protons
incident on H (1s,1s) there is an equal probability of capturing either
of the 1s shell electrons, and that for the formation of H-(1;,1s) in
H(1s)-H(1s) collisions only 1/4 of the possible reactions lead to the
singlet (18) H atom.

Of.thé curves presented in Figure 3.2, that derived from the HF
wavefunction is perhaps the best. This is somewhat surprising,
particularly since for the formation of H we would expect that

contributions arising from electron correlation terms to be non-negligible.
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This may, as discussed below, arise from the cancellation of opposing
éffects. The more reasonable split-shell description of H embodied
in the empirical ’fixed core' model and the Weiss wavefunction is

seen to be reflec£ed in the ;loseness of curves (b) and (c). Our
CIS-based approximation is only capable of responding to a split-shell
or fadial component of electron correlation and makes no allowance for
the effects of angular correlation in H . This arose due to an
orthogonality condition in the passive overlap integral and, in this

" method, is a direct consequence of the form taken for V1

1,2 which, in

turn, arises as a result of the approximation applied to the internuclear
potential term 1/512. Since the transition amplitude a; ¢ is evaluated
in terms of momentum space,_it is pdssible that the opposing effects of
angular and radial correlation - known to exist in momentum spacez22 -
may produce some cancellations with the result that cross-sections
incorporating angular correlation terms may now lie in close proximity
to the rather fortuitous HF based curve. ‘

A more correct approach to the elegtrqn-electron potential term

in Vliz would be to expand 1/812 in terms of its spherical harmonics
, e :

by use of the expansion

. o ¥ 4
Z s *
1 Lt 5< m m
el Z DT Z vy (8,,8)1, (6,,8) . (3.4.2)
£=0 m==A4

The I? 's are the normalised spherical harmonics and s¢ and s, are
defined as the lesser and greater of the magnitude of position vecters

s, and s, of electrons (1) and (2) respectively.

=1 2
Applying the expansion (3.4.2) in the matrix element (3.3..4) while
representing the H system by the CI wavefunction expressed in its

natural expansion form, results, as a consequence of evaluating the

angular integrals,in a series -of matrix elements each
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one involving a natural orbital within the natural expansion of the CI
wavefunction. It is found that the orthogonality condition arising N
in the integration over the 'passive! electron coordinates acts such
that contributions to the créss-section may now result from natural
orbitals having the same angular symmetry as the terms in the above
expansion. Thus, for terms for which / = O only radial correlation
terms contribute, for terms for which £ = 1 only natural orbitals having
p symmetry contribute and ford = 2 only d. orbitals contribute - and so on.
Consequently by suitable truncation of expansion (3.4.2) at a particular
£ value, we are able to observe the effect of progressively introducing
the angular correlation terms within the CI wavefunction.

The integration over electron coordinates éq and S5 divides into
two parts and contributions to the transition amplitude arise from when
the radial coordinate S, is s¢ , in the range O to 84 and when S5 is sy ,

in the range s, to - . However, because we have a neutral hydrogen

1
atom projectile and since H is such a weakly bound system we might
expect that the contribution to the cross-section for S, < S4 to be
very small compared with that which arises when S5 2 Sq- This follows
from the fact that s

< s, corresponds to the situation in which the

2 1

passive electron screens the nuclear charge of the projectile. For a
hydrogen projectile this would mean an effective charge of almost zero.
Thus, in the calculation: S, may be set to be sy for all values of Sqe
This approximation simplifies the calculation a great deal while still
allowing angular correlation terms to contribute. Note that we still
have a passive overlap integral except that it now contains the potential
operator 1/séz+1 .

Therefore, in order to obtain some idea of the relative influence

of the radial and angular correlation within the H wavefunction on the

cross-sections for reaction (3.1.1.), the cross-sections were re-calculated
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using the expansion (3.4.2) representation for 1/5 instead of the

12

~ -

average-static potential used previously. The BB-term CI wavefunction
of Weiss20 was useé to describe the H atom; and the croés-section was
also calculated using the Hartree Fock wavefunction 6f Curl and Coulson19
in order to assess the influence of the radial correlation terms in the
CI wavefunction of Weiss. In the calculations S was set to s¢ and S5
sef to sy for all 54 and S, as discussed above. |

The cross-sections @ (£ =0) T ( .(:1)01, and O (L =2)CI

CcI’
corresponding to the truncation of expansion (3.4.2) at £ =0, 1 and 2
respectively, when describing the H system with the CI wavefunction, are
listed in Table 3.2. For comparison with experiment, we chose an
energy range of 20-100 keV. Each crossfsecfion Cf(,ezd)CI includes
contributions from all the radial correlation terms within the CI
wavefunction plus contributions from all angular correlation terms
having angular quantuﬁ numbers equal to i, (i-1),(i=2),eee.,(i={i=1)).
Thus for example, @ (£ =2) will include, from the CI wavefunction, all
radial correlation terms, and all angular correlation terms which have
either p or d symmetry only. Also shown in.fable 3.2 is the cross-
sections O (£ =O)HF obtained using the HF wavefunction of Curl and
Coulson/I9 to describe H~, for which only the first radial term (£ =0) in
expansion (3.4.2) contributes to the 1/512 potential. The percentages,
Ay Ay D> reported in Table 3.2 show the changes in cross-section
as one goes from @ (£ =O)HE‘ to O(L =2)CI, and therefore reflects the
change in cross-secfion Brought anut By progressively including first
radial correlation (13(3), then angular correlation having p symmetry
(A 1), and finally angular correlation having d symmetry (15,2) into
the description of the H system.

As shown in Table 3.2 the percentage changes in cross-section,

brought about by introducing electron correlation of successively
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increasing angular symmetry, are seen to alternate in sign. This
demonstrates the opposing effects of electron-correlation terms which
have different anguiar symmetry, and which is known to exist in
momentum space22 as discussed earlier.

In Figure 3.3 we compare the cross-sections with the experimental
data of McClure 9. The agreement with experiment when using the CI
wavefunction is now reasonably good for E > 30 keV, and is a slight
improvement on that obtained when using the average static potential
for 1/812, the results of which were shown in Figure 3.2. We recall
that in the average static poténtial approach only radial correlation
could contribute to the cross-section whereas, by using the 1/s12
expansion, we have been able to include both radial and angular
correlation effects. It is interestingﬂto note that the curve
corresponding to the truncation of expansion (3.4.2) at £ = 1 and

A =2 is in close agreement with curve (&) in Figure 3.2, which
corresponds to the Hartree-Fock description of H when using the
average static potential approach. As stated earlier, the slightly
better agreement between curve (a) and experiment compared to curves (b)
and (c) in Figure 3.2 was attributed to the omission of the angular
correlation effects. Therefore, by using expansion (3.4.2) for 1/512
we have been able to show that this is the case, and is the result, as
demonstrated in Table 3.2, of the opposing effects of angular and radial

correlation.
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CHAPTER 3.5

Electron-capture from H atoms by fast Li ions

We now present and discuss our results obtained by applying the
CIS method outlined in Chapters 3.2 and 3.3 to the general electron-
capture reaction

(g-1)+ + H , (3.5.1)

Li%Y + E—>1i
for ¢ = 1, 2 and 3 and for impact energies 100 keV < E < 10000 keV.
For ease of discussion we will examine the three cases separately in
reverse order g = 3, 2 and 1. All the cross-sections are calculated
using the 'prior' form of the transition amplitﬁde a, ¢ and the total
cross-sections are compared with the experimental data of Shah, Goffe and
Gilbody18. Thus, the first reaction we consider is

> o H(1s)—» LiST (ng) + HY . (3.5.2)

Li
The electron~capture cross=-sections were calculated using .both
the CIS and CDW methods for nd = 1s, 2s and 2p, and the total cross-
sections obtained by means of the formula
Q = 0 (1s) + 1.616(C(2s) + T (2p)) , (3-5.3?
which assumes the Oppenheimer23 n"3 rule for n > 2. The evaluation of
the CIS and CDW total cross-sections, by means of equation (3.5.3), not
only allowed us to compare the two methods but provided an initial
comparison with experiment. This showed that, for this reaction, equation
(3.5.3) underestimates the contributions arising from capture into
higher excited states, and that capture into n£ = 3s, 3p and 3d has to
be considered if a meaningful comparison with experiment is to be made.
As a result, the CIS capture cross-sections for nd = 1s,2s,2p,3s,3p and

3d were calculated and the total cross-sections obtained from

Q =G(1s) +0(2s) +T(2p) + 2.081@(3s) +T(3p) +T(3d)) . (3.5.4) '
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The wavefunctions used for reaction (3.5.2) are obviously 'H-like!'
eigenfunctions and are therefore, aléng wi%h the eigeneneréies

and energy decremenf, exact. The results are listed in Table 3.3, and
in Figure 3.4 we compare the total cross-sections with the experimental
data.

The CIS curve calculated by equation (3.5.4) is an improvement
over that calculated with equation (3.5.3), and the CIS curve is in
reasonable agreement with experiment for E > 400 keV particularly with
respect to the slope and trend at high impact energies. We see from
Table 3.3 that for the energy range comsidered, O (n = 2)> QT (1s) for
E £ 3000 keV, T (n = 3)> T (1s) for E & 2000 keV and that for
E £ 1000 keVT (n = 3)> T (n = 2). Ip the light of these trends it
would seem unlikely that the CIS curve, calculated using equation (3.5.4),
would be improved with respect to the experimental data by calculating
capture cross-sections into the n = 4 levels, since a lowering of the
appropriate curve in Figure 3.4 would imply a larger decrease ﬁn Cross-—
section in going from T (n = 3) to T (n = 4) below that predicted by

3 3

the n~~ rule. We note also that errors due to the use of the n ~ rule
usually cause an underestimation of the total cross-section.

Although the CIS and CDW approximations may yield very similar
total cross-sections we find that, for this reaction, the relative
contributions from capture into excited states may be quite different
for the two methods. In order to demonstrate this fact we report in
Table 3.4, for both methods, ratios of O (rd) /T (1s) at selected
energies for nd = 2s, 2p, 3s and 3p, and in Table 3.5 ratios of
G’(n.l)CIS /G‘(nl)CDW are shown at the same energies. From Table 3.5
we see that for E ~ 5000 keV the CIS and CDW ratios for O (nt) /T (1s)

become similar to each other for nf = 2s and 3s, while for nd = 2p and

3p the CIS ratios are approximately twice the corresponding CDW ratio.
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However, below 3000 keV there appears to be no agreement or
recognisable trend.between the two methods whatsoever, although the
CDW ratios are much larger than those derived from the corresponding
CIS results. The reason for this is not due to the larger CDW cross-
sections for capture into excited states, but due to the much smaller
CDW cross-sections for nd = 1s as compared to the CIS method; note
that at 500 keV T (18) o= 16 x T (18) -

As the impact energy increases we see from Table 3.5 that the CIS
and CDW cross-sections are similar in magnitude for capture into the s
states while for capture into the p states we have O"CIS-’-‘- 2 XO—CDW .
This could be a consequence of the CIS method'predicting a different
transition probability for capture at Targe impact parameters from that
of the CDW method, as reported by Belkic16 in his original paper on the
CIS method. This may become important for capture into excited states
having angular quantum numbsr £# 0 and particularly if projectiles
in the form. of highly charged nuclei are involved, for which electron -
capture at large impact parameters is more likely to occur.

We now turn our attention to a reaction of the type for which the

CIS method was modified in the scheme outlined in Chapter 3.2, i.e.

1i%* (1s) + H(1s) —» Li*(1s,ns) + ® . (3.5.5)

In reaction (3.5.5) we have a structured projectile consisting of
-a one-electron ion, and therefore the CIS capture cross-sections were
calculated using the 'prior' transition amplitude defined in eguation
(3.2.34), with the pefturbiﬁg potential ZA/S1 - 1/512 being replaced by
V1,2 defined in equation (3.3.5). The capfure states considered are
nd = 1s, 2s, 2p, 3s, 3p énd Bd; and the total cross-section is evaluated
by means of equation (3.5.4). For capture into the ground state nf = 1s
2l

the HF wavefunction of Clementi and Roetti was used to describe the
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final ground state Li* ion. For the purpose of obtaining a meaningful
comparison with experiment, and also to provide a good test of the

scheme proposed in Chapter 3.2, it is imperative to use the best

possible wavefunctions to describe the excited states of the final

Li* ion. For this reason we decided to use the excited-state wavefunctions
of Cohen and McEachran25’26. Since the calculations involving the
excited-state orbital descriptions proved to be non-trivial and interest- -
ing, we first present a description of the Cohen and McEachran25’26

wavefunctions together with the resulting calculation of wnl (n_)+ defined

in Chapter 3.3, equation (3.3.29).

The excited-state wavefunctions of Cohen and McEachran25’26 ar

e
constructed within the framework of the '"fixed-core' approximation.

That is the 1s orbital is described by an hydrogenic wavefunction and the
appropriate radial equation for the excited-state orbital solved keeping
the 1s orbital fixed. A theoretical advantage of the fixed-core method
arises from the fact that the various 1s n/ total wavefunctions are
mutually orthogonal. The wavefunctions, as reported by Cohen and

25,26

McEachran swere found to predict ionization energies in close

agreement with experiment and produced expectation values for one-electron

operators in good agreement with the (effectively) exact values calculated
27

by Pekeris * . The excited-state radial wavefunction is written in the

form

p.(1,2) = A/-l—(umv(a) T ov(Mu(2) Y8 AV e B
2

(305.6)

where u and v are separately normalized, mutually orthogonal orbitals.

123



3
: . 2
The 1s orbital u is represented by the hydrogenic form u = ZZA /
exp(-ZAr), while the valence orbital v is expanded in a series of

associated Laguerre functions

O

v = N Z' aj exp(-aLr)r‘l b?lH(Zatr) . (3.5.7)
j=24 +1
N is a normalization constant, aj are the expansion coefficients, £ the
angular quantum number of the excited state and « = ZA/n. Thus for any
excited-state wavefunction we simply have a list of expansion coefficients
appropriately truncated to provide an accurate description of the excited
state orbital. The associated Laguerre function is defined by the

expansion

Li(r) = () =i 7 {rﬂ _ wlz=p) gt s &P e opel) wpen
(t=p3: 11 2!

SUSUUURIUN oD L TR SERNCTNR:

It follows that we can conveniently express the orbital v in the form

MAX j=24
Y 3 j=2-i
v =N ajexp(-dlﬁ Aij r ] , (3.5.9)
j=24 +1 i=1

such that the coefficients Aij are given by
(-3 (Ghe
(=D (3-1+M) (5-22-1)]

. (3.5.10)

ij
~In Chapter 3.3 it was shown that, for a wavefunction of the form
(3.5.6), an(7l) can be written
. ”f +
v, ) =E{I<w1s<a) | v(@)E, @) £ Ty, (@ | w@)F e .

(3.5.11)

The function I is the passive overlap integral and, since in this case
V,(2) is identical to w(2), I(y,_(2) | v(2)) is zero due to the

orthogonality of u and v. Thus Wnl(rz) becomes
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w o n) = t——{Frm} (3.5.12)
'nlin-ﬂ N [_th'} ) ‘

- -%53S .
where, for a simple orbital of the form Np st e % , FV(TL) is
given by equations (3.3.22-25). It follows that by substituting the
excited-state orbital of the form (3.5.9) for LQ‘F in equation (3.3.12),

and performing the necessary integrations, Fv(‘rl) can be expressed as

«d j—al n. e e . N+ - .
SUPEL RIS NS T TR A
j=24+1 i=1
* AA?. A21+1 1 (3.5.13)

with L= j-2f-1i,

<

ZA/TI )
A= +2ZA ’

2

2
A1 o< +'0‘C+(v/2—-A—v6—-2 ,

3

2 = X o+ + (T2 - 55 .

For the excited state wavefunctions of Li* it turns out that St may
have a value as large as 15 . To perform fifteen differentiations of
a function of the form (A’I)-'l -1 would be both tedious and exhausting.
The multi-differential calculations needed in Fv(n) were performed by
an algebra manipulation computer programme called CAOSZS, which is a
recent, and much improved, addition to the already existing geqeration
of software designed for algebraic manipulation. CAOS28 calculated and
produced all the differential forms required in FV(TL) in less than two
seconds of computer time. Thus, the availability of CAOS not only meant

a saving in labour but made the Cohen and McEachran wavefunctions viable

for cross-section calculations. Therefore a computer programme was
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written which could calculate a cross-section for capture into any
excited state, and with the orbital being described by a large number of

terms in the expansion defining v. The calculated cross-sections O (n/Z)

1

and the total cross-sections Q1 and Q2 correspondingAto two forms of V1 5
9

ie. V, = (ZA—1) / s+egp(-2 ZAS)°(ZA + s-1) and V, = (ZA -1/ s,

are listed in Tables 3.6 and 3.7, respectively. In Figure 3.5 the CIS
curves are compared with experiment. As expected the total cross-sections
calculated with V1, i.e. Q1, are larger than those calculated with V2,
l.e. Q2, at the same impact energy, the difference between the two
becoming larger as the impact energy increases. For example at

E = 500, 1000, 3000 and 10000 keV Q, is successively 1.07, 1.32, 1.84
and 3.11 x QZ' The same trend is seen for the individual capture-states
over the total energy range, with the exception of O (2s) and O (3s)

for which Q, is larger than Q, only for E » 400 keV and E » 800 keV,
respectively. This is a consequence of v, and V2 differing in form for
small electron-nuclear separations, see Figure 3.6, which will gecome
most important at large E when the capture cross-section is dominated
by regions of high momentum. From Figure 3.5 we see that for Vl 5> = V2

the CIS curve is slightly lower than the experimental points for
E > 400 keV, however, for Vl’a = V1 the agreement with experiment is
exceptionally good for E > 300 keV. In Figure 3.7 we show the curve for
Q1 together with the individual cross-section curves for capture into the
individual quantum levels n = 1, 2 and 3. For the energy range -displayed
on the graph we see that O (n=2), i.e. T (n=2) =0 (2s)+0(2p), and
T (n=3), i.e.T(n=3)=0(3s)+0 (3p)+T (3d), are greater than T (1s), and
that thé exaggerated>totél éross-séctionsvat low impact energies is due
to the over exaggerated cross-sections for capture into the excited states.
For impact energies greater than 3000 keV the ordering in cross-sections
becomes @ (1s) 2T (n=2) > © (n=3), and for the whole energy range
T (2p) > T (2s) and T (3p) > T (3s). |
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The final reaction we consider in the Li ion series is

Li*(18°) -+ H(1s) ——Li(1s°,n2) + H . (3.5.14)
For this reaction we have a structured projectile having two bound-electrons

in the ground state. Thus the reaction is of the general form

(ZA,e(2),e(3))iA + (ZB,e(1))i£——-*(ZA,e(1),e(2),e(B))f + Zg .

(3.5.15)
. Performing a similar analysis as described in Chapter 3.2 the prior and

post transition amplitudes turn out to be

+ o0 .
N o .
a,, = i dt | dr, dr, dr ZA -1 - 1 + ZB + ZB - 2ZB X
if =1 =2 =3 Is —_— — —— — = — .
J s s s X R 1
1 12 13 2 3
(3.5.16)
and
+e0
: *
b.:ijdtjdrdrdr g . %p 4 % . Ty .
if -1 =2 =3 —_— = = == f i
-co X X pd R
1 2 3
(3.5.17)
respectively, where the necessary choices made for the distorting
potentials Ui and Uf are -
o= (Zy -2 and Uy = = _Zg . (3.5.17)
R R

If we now follow the arguments as presented in Chapter 3.2,

equation (3.2.32) to equation (3.2.38), and neglect contributions to a,

if
and bif arising from potentials of the form EE - _B ], we obtain
X R :

for aif and bif

8, = fdtjdrdrdrB\}'/f(_Sé-_s’]_

- 1 (3.5.18)
513) ﬁKi

12
and
+ =0
_ - .
big= 1 ,( dt  dmg drp drg [(;E)’xf ] \Pi . (3.5.19),
- . . /'
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In solving for ay for reaction (3.5.14), \{If will correspond to the

£
é product of the three-electron wévefunc%ion for ii(152, nd) and the
coulomb wave actiﬁg on the active electron due to H+, and 0<i will be
the product of the two-electron wavefunction for Li+(152) and the
hydrogen wavefunction, multiplied by the appropriate phase factor
analogous to that occurring in the solution for c(i in Chapter 3.2
equation (3.2.27).

If the it 1on electrons are described by the HF wavefunction of

Clementi and Roetti24, which is constructed from a basis set of 1s

S.7.0.'s only, then it follows that the two possible approximations to the

perturbing potential in a4 ps i.e. say V: 2.3 = Eé - 1 - 1 , that we
b 9
51 512 513
shall consider are .
Z, -2 -2 E. s
_ A E 1 1
V1 = —_— 2 ¢ ( Fi + 2 ) (3.5.20)
s 1
and
ZA -2
v, = A7, (3.5.21)
s

where ‘Ej_are the S.T.0. orbital exponents and cy the usual
variational coefficients within the wavefunction. The potential V1

is of course the average static potential of the Li+(152) ion as seen

"by the active electron and V2 is the perfect screening potential.

Since we consider the ground state of the 1i* ion to be filled,
the capture states considered are nf = 2s, 2p, 3s, 3p and Bdt and the
total cross-section is calculated using equation (3.5.4) with @ (1s) = O.
For capture into the 2s level we simply form a neutral Li atom and, for
this cross-section, the Li(132,2s) electrons are described by the HF
24

wavefunction of Clementi and Roetti '. Since no suitable excited-state

wavefunctions could be found for Li it was decided to generate our own
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very simple excited-state orbitals within the framework of the 'fixed
core' approximation. Thus, the 152 shell of the Li(152, nd) a;:om is
desc:;'ibed by the HF orbitals of Clementi and Roett124 as for Li(’lsZ, 2s),
and the nf orbital as described by an STO having an orbital exponent
defined by the experimental ionization energy, Enl s of the particular
excited-state. The excited-state eigenfunction is then finally
constructed to be orthogonal to all lower eigenfunctions by the Schmidtag
orfhogonalization technique. Thus we obtain for the orthogonal

excited-state orbitals

\PBS = LQBS- (,@18 l "e35> ¢1s- A<¢25 I‘e35> Ja2&;’

(3.5.22)

Vop = @2 (3.5.23)

Wip = Wiap <ol 3pdezp - (3.5.24)

and \IUBd = l‘e3d S (3.5.25)

where W = (2fn )n+%(2n‘,)_% rn-1 exp( - Emr) .Yf( 6,8 (3.5.20)

and Yn,l is given by

Yor = AJ2E, . (3.5.27)

The energy decrements for all the cross-sections were determined using
the experimental ionization energies En,! , obtained from the tables of
Charlotte E. Moore 3.

With these wavefunctions the cross-sections were calculated for

both forms of V1 , V,] and V

1.2 and the results are listed in Tables
bl

2,
3.8 and 3.9. In Figure 3.8 we compare the total cross-sections Q, and
Q2 with the experimental data with which there seems to be good

agreement, with the perturbing potential V,] again providing a better

description of V} > - As in the case of reaction (3.5.5) the two curves
1
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Q,l and Q2 deviate apart from each other as the impact energy increases,
the ratio Q,]/Q2 increasing from 1.5>to L4 as the énergy increases from
1000 keV to iOOOO-keV.

For the individual capture cross-sections in Tables 3.8 and 3.9

we note an interesting trend that is most clear for 100 keV € = £ 1000 keV.

We see that for capture into n€ = 2s and 3s the capture cross-sections,
for both forms of V} > at the same impact energy, differ by more than a

9
factor of two, while for capture into nd = 2p, 3p and 3d the two sets

of cross-sections are very similar to each other. At larger energies
the difference between the two sets of results for nd = 2p, 3p and 3d
increases and the trend is not so noticeable although the differences
are still largest for capture into the s-states. A similar trend was
observed by Banyard and Szustersjvwhen examining the effect of electron-
correlation on electron-capture from He by fast protons into the 1s and
2s states as compared to capture into the 2p state. The reason for

the trend is simply due to the difference in characteristics bétween

the capture-state wavefunctions which poséess angular symmetry compared
with capture states which have only radialvéymmetry. It is the
characteristics of the radial wavefunctions at the origin that are of
interest since it is this region which contributes most to the cross-
section at large impact energies. Wﬁile the different s-states will
have similar characteristics near the origin, the characteristics of

the p and d states are quite distinct, the wavefunctions being.zero 23
the origin. Thus it is not surprising that the differences in sensitivity
of the cross-sections (for capture into different states) to quantities
such as the target description and, as we have seen, approximations

made with respect to the perturbing and distorting potentials, will be

most enhanced at large impact energies.
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Of interest is the extent to which the electron-capture cross-
sections for ions of different charge g in collision with atomic hydrogen
scale according to qﬁ, where n is an integer. For the Li-ions considered
here Shah, Goffe and Gilbody18 have stated that the experimental capture

3

cross-sections scale approximately as q” at high impact energies, although

for the ioms Li3+, He2+ and H in collision with hydrogen Shah et a118
found the capture cross-sections to scale approximately as q2. In order
fo see if such a scaling is reflected in the theoretical cross-sections
derived here in the CIS approximation, the scaled total cross-sections

(q-1)+ + H are presented in

Q(q)/q3 for the reaction Li%' + H(1s)—>1Li
Table 3.10, for q = 1, 2 and 3. The values for Q are those given in

Tables 3.3 to 3.9, and therefore for q-= 1 and 2 correspond, with

respect to the form taken for the perturbing potential in the transition
amplitude, to either the average static potential approximation, in the
case of Q = Qq, or to the perfect screening ‘approximation, in Fhe case of

Q = Q,. As shown in Table 3.70 the better agreement between Q(2)/23

and Q(’l)/13 with that of Q(B)/B3 is obtained for the total capture cross-
3

sections Qq. The conclusion overall, however, is that the g7 scaling rule
is not seen to hold as clearly as suggested by Shah et a118 for the
experimental cross-sections, although fhere is fair agreement between
Q1(2)//23 and Q1(1)/’I3 over the energy range 800 keV £ E £ 2500 keV.

This is seenmre clearly in Table 3.11 where the values for

Qlg) / q3) / (Q(q’) / q/3) are shown, when Q is given by the Q1 values.
Since the agreement with experiment was exceptionally good in the case

of the L12+ ion in collision with hydrogen, see Figure 3.5, the rather
poor results (compared with unity) for q/ = 3 can be attributed to the

3+

overestimation in the CIS cross-sections for Li incident on hydrogen

compared with experiment, as can be seen in Figure 3.k4.
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A natural extension of this.work, time permitting, would have
been to calculate the individual and total electron-capture cross-sections
for Li-ions in hydrogen using the continuum distorted wave (CDW) method.
As discussed in Chapter 3.2, this would have meant iﬁposing the psi
approximation when handling the passive electron(s) residing on the Lit
and Li2+ projectiles in order that the boundary conditions of the problem
are preserved, which of course is a natural feature of the exact CDW
method as discussed in Part 1. This is achieved indirectly by defining
the coulomb wave in the entrance channel in the form of the hyper-geometric
function F, [i\J; 1 5 i(vs + i.é)] , such that ¥V = g/v, where v is the
projectile velocity. Alternatively we could have defined VY = qeff/v,

a
where q is given by (- Z.En?)g and _E is the binding energy of the

eff

active electron in its final quantum state n of the Li-ion projectile.

In this way deorf is analogous to Ze defined in Chapter 2.2, equation

ff

(2.2.5), and therefore reflects a measure of the effective charge of the

incoming projectile as seen by the active electron, as it is gradually
ionised into the continuum state of the Li-ion projectile prior to
being captured into the quantum state n .

Fortunately, shortly after the completion of this work, such
32

a calculation was reported by Crothers and Todd” who have examined

theoretically the q3 scaling rule18 for electron-capture by fast multiply-

32

charged ions in hydrogen. Crothers and Todd” have performed calculations

of electron-capture cross-sections for Li-ions incident on hydrogen using

the CDW method over the low end of our energy range, and have compared

18

their results with the experimental data of Shah, Goffe and Gilbocy .

It is interesting to note that in calculating total cross-sections for

32

1i* incident on H within the CDW approximation, Crothers and Todd

have used an effective charge for Li+, when capturing into the quantum

state n = 1, equal to 1.260 as given by Banyard and ShirtcliffeBB.

'ps = perfect screening
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This was derived from equation (2.25) in Chapter 2.2. Crothers and Todd
did not, however, use an effective charge in the case of Li2+ incident
on H.

Therefore, in Figure 3.9 we compare the wa total capture

32

cross~sections of Crothers and Todd” with our own CIS cross-sections,

and with the experimental data of Shah, Goffe and GilbOdqu for Li3+

LiZ+ and Li* incident on hydrogen. In calculating the total capture cross-

b

section Crothers and Todd have performed a sum over the individual

capture cross-sections O°(nf) for n = 1 to 7 and have assumed the

3

rule for n » 8, a rather good approximation. For

3k 3+

Oppenheimer23 n
comparison the CDW calculation of Belkic, Gayet and Salin for Li
in H is also shown in Figure 3.9. Belgic et al34 calculate the total
capture cross-section: using the Oppenheimer 53 rule expressed in
equation (3.5.4) but did not consider capture into the 3d state of Li2+.
Note that of the CIS total capture cross-—section given in Table 3.3,
O (3d) contributes, via equation (3.5.4), approximately 57% ;nd LO% to
the total cross-section for E = 500 keV and 1000 keV, respectively. For
the same energies capture into the n = 3 state of L12+ contributes
37% and 31% respectively to the total capture cross-section. The.
importance of capture into the n = 3 states is expected since the third
energy level of Li2+ is in resonance with H(1s), and this will lead to an
enhancement of the capture cross-section as a consequence of a zero energy
decrement A€ . This will be particularly noticeable at lower im_p_apt
energies since A€ appears in the equations in the form (/2 + —AVE ),
where v is the projectile velocity (see equations (3.3.14) to (3.32.22)
of Chapter 3.3).

From Figure 3.9 it can be seen that the CDY cross-secticns of

32

Crothers and Todd” are similar to those of the CIS method particularly

at high impact energies. For Li3+ in hydrogen, for which the atonmic
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wavefunctions used are exact, the CDW method appears to be in slightly
better agreement with the experimental points, compared with the CIS
method, for impact energy E » 800 keV. Most encouraging, however, is
the excellent agreement with experiment obtained fér the Li2+ projectile,
for E Y 300 keV, when the total cross-sections are derived using our
modified CIS approach. The underestimation in total cross-sections for

3

the Li2+ projectile, due to assuming the n” sum rule for capturé into
states n ) 4 (see equation (3.5.4)) is not expected to be too serious,
since we note that for this reaction @O (n =2) == 2 x G (n = 3) over
the experimental energy range.

Finally, the rather good agreement for Li2+ in hydrogen
certainly justifies our use of the rather cumbersome but good excited

state wave-functions for Li'(1s, nf) of Cohen and McEachran25’26,

for
which the prior form of the CIS transition amplitude was ideally suited
due to the omission of the coulomb wave in the entrance channel, as
discussed in Chapter 3.2 and 3%.3. It is this feature of the‘CIS method
that allowed us to modify the perturbing potential in the entrance
channel. Such a flexibility, which is no£ possible in the exact treat-

ment of the CDW method, may prove useful for other more general cases

of ion atom collisions.
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CHAPTER 3.6

Conclusion

Working within the scheme of the continuum intermediate states
(CIS) approximation devised by Belkic16 we have examined a possible
procedure for calculating cross=-sections for electron-capture from H
by one or two electron atom or ion projectiles. Using the proposed
method we have investigated electron-capture in H-H and il g
collisions and have obtained very satisfactory results. for impact
energies greater than those for which the CIS method is expected to
work. For the Li3+ projectile the cross-sections were obtained using
the CIS method as presented by Belkicqﬁ. Compared to the CDW method
the CIS method was found to be more suitable for adaptation to high
energy electron-capture by a structured projectile such as a one or
two-electron atom or ion. This arose due to the fact that ig the CIS
approximation distortion of the active electron is retained in only one
of the reaction channels while the perturb%ng potential corresponding
to the other channel is retained in the matrix element, and therefore
lends itself more readily available to approximations. In contrast,
for the CDW method distortion functions are defined in both the
entrance and exit channels and thus for a structured projectile in the
entrance channel it is found that only two types of approximation are
possible. One is the perfect screening approximation, in which the
active electron experiences a charge due to the projectile equal to
ZA—N, where N is the number of passive electrons on the projectile and
ZA the projectile nuclear charge. The other alternative is to define
an effective charge as seen by the éctive electron due to the approaching
projectile in a similar way as was done in the case of electron-capture

from a many-electron atom seen in Part II. Both these approximations
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are not totally satisfactory since they do not allqw the active electron
to experience the fgll charge of the projectile nucleus. This may be very
important for reactions in which the structured projectile forms, on
capturing the electron, a negative ion such as H , aﬁd in particular at
high impact energies when, as we have seen, the electron is captured into
regions of small electron-nuclear separations. In the CIS method, however,
the electron-electron potential terms in the matrix elemént may be |
treated exactly by using their expansion representation (see equation
(3.4.2)), or they may be approximated by some type of average static
potential that the active electron experiences due to the passive electron
charge cloud residing on the projectile nucleus. In this way the
resulting perturbing potential is such that not only may the active
electron see the full (unscreened) charge of the projectile nucleus at
small electron-nuclear separations, but for large electron-nuclear
separations the perturbing potential reduces to that of a perfect
screening approximation. Thus in the CIS scheme we were able to simulate
the physics of the capture process more accurately.

In an investigation of H production in H-H collisions, using the
proposed scheme, we were successful in predicting accurate cross-sections
for impact energies E » 25 keV. Due to the importance of electron
correlation in H the magnitude of the cross-sections were improved when
the expansion representation for 1/512 was used, which allowed both radial
and angular correlation to contribute to the cross-section. We noted
that any agreement with experiment obtained using the HF wavefunction
for H must be fortuitous and results from the fact that the effect on
the cross-section upon including angular type correlation terms having
a P symmetry is opposite to the effect of adding the radial correlation
terms. Thus, there is an "add-subtract'" mechanism in operation when we

systematically include electron.correlation,via the natural expansion
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representation of the correlated wavefunction for H , as gvgbﬁseQﬂéncé"bf
including the highe; angular terms within the 1/512 expansion. As
a result the final cross-section curve obtained using a fully correlated
wavefunction for H may well lie on or near to the cﬁrve obtained using
the HF wavefunction. Note that in the work of Banyard and Szuster31

on electron-capture from He by fast protons the inclusion of radial
correlation terms within the He wavefunction caused‘the cross=-sections fo.'
worsen with respect to experimental déta; the inclusion of angular
correlation terms may well reverse this trend.

A more appropriate test of the proposed scheme was obtained by

applying it to electron~capture from H by fast'Li2+ ions, to form Li*
in both its ground and excited states. A difficulty arising in such
reactions involving a one-electron projectile will be in obtaining
suitably accurate excited-state wavefunctions used to describe the final
two-electron projectile in the exit channel when the electron is
captured into an excited state. For the L12+ projectile exciteé state
capture was of major importance since it contributed ~ 90% of the total
cross-section over the energy range for whiéh good agreement with
experiment was obtained. This Jjustified our using the rather cumbersome
but good excited state wavefunctions of Cohen and McEachran25;26. As
stated earlier, for high impact energies the accuracy of the wavefunction
in the vicinity of the origin is of importance if a meaningful comparison
with experiment is to be made, and thus using a simple hydrogen-like
wavefunction to describe the excited state orbital may not be good

enough 1f accurate cross-sections for capture into the excited states
are required. Note that in the case of Li*-H collisions although the
agreement with experiment was fairly good the gradient of the theoretical

curve appeared to be too great and thus the agreement at large impact

energies may be doubtful. This was probably due to the rather simple
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wavefunctions used to describe the excited states qf Li.

In calculating the electron-capture cross-sectibns for a one or
two-electron projectile incident on H, using the proposed CIS scheme,
we recall that during the analysis we have omitted céntributions to
the transition amplitude that come from matrix elements containing the

perturbing potentials of the form Eg and - EE (see Chapter 3.2,
X R . ,

2
equations (3.2.22-35). It was argued that the contributions from these
terms would be small and that for projectiles having a large nuclear
charge the approximation that xzﬁ R should be reasonably accurate.
In view of the rather good results for Li2+ and Li" incident on H and
in the light of the excellent agreement with experiment for the H-H
collision electron-capture cross-sectioﬁs we may conclude that the
approximation is a good one, and that for electron-capture by a one-
electron projectile incident on H, when using the prior form of the

transition amplitude, we need only consider contributions to the transition

amplitude from matrix elements containing the perturbing potential

N

A - 1 In general this approximation should be most accurate
s, s
for projectiles having a nuclear charge greater than the nuclear charge
of the target, for which the distortion of the projectile's passive

electrons, which may contribute to the capture of a target electron via

indirect electron-correlation effects, will be relatively small.
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Tables and Figures to Part 3



CIS - cDw
E(keV)
HF cI HF cI
25 1.681717 1,193 17 2.8867"7 2.067" "7
50 3.023‘18 2.067'18 5.093'18 3.526‘18
100 3268719 2.268~17 5.227" 17 3.6007 7
200 2.325720 1.650™0 3.410™%° 2.3797%°
100 1.20272" 8.696722 1.52772 1.087~%"
800 s 845723 3.636™%2 4.990™22 3.6187%2
1000 1.68877 1.284722 1.570722 1.143722

Table 3.1 A comparison of the electron-capture cross-sections o (1s)

measured in cmsz, for the reaction H(1s)+H(1s)—4H—(152)+HT

The continuum-intermediate states (CIS) results are

calculated here for the forward reaction whereas the continuum-
distorted wave (CDW) results are those of Moore and Banyard1
and were derived by them from the calculated results for the
reverse reaction. For H-(152), the Hartree-Fock (HF)function

19

was that of Curl and Coulson ~ and the configuration-inter-~

action (CI) description was taken from Weisszp. The super-
scripts indicate the power of ten by which each entry is to be

multiplied.
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E(keV) | O7(£=0) g =0 o o U= o o (£=2)
[A] [54] [As]

20 2.753717 3,163/ 2.5797 7 2.7797 V7
[+26.0%] | [-18.46%] [+7.8% ]
4o 6.096'18 6.689'18 5.178’18 5.648'18
[+20.49%] [-22.6% ] [+9.1% ]
60 2.085"18 2. 194’18 1 .440'18 1 .637‘18
I:+1L+.3%:| [—34.4% ] [+’I3.’7%]
80 8.834"19 8.971'19 5.067'19 6.032‘19
[+9.1% ] [43.5% ] [+19.0%]
100 4.203'19 212”19 2.121719 2.649'19
[+4.%% ] [-49.6% | [+2k. %]
150 9.964'20 9.286'20 L.,01 9'20 5.65l+'EQ
[-7.9% ] [-56.7% ] [+40.1%]
200 3.1 99'20 2. 867'20 1 .203'20 1.87 9"20

[-8.0% ] [-58.0% ] [+66.%%6]

Table 3.2 The CIS electron-capture cross-sections in cmg, for the

reaction H(1s)+H(1s)—4H-(1sz)+H+ when the electron-electron

2 5 (see Chapter 3.3 equation (3.3.4)) is

represented by truncation of expansion (3.4.2) at £ = 0,1 and

potential in V

2, and the H system is described by either the configuration

interaction (CI) wavefunction of Weissao

19

, or the Hartree-Fock
(HF) wavefunction of Curl and Coulson “, for which only the
first radial term (£ =0) in expansion (3.4.2) contributes.

The percentage changes A are defined as follows:
A, = [ ((L=0), -T(L=0) ) /T (£=0) ] x 100
Aq = [ (a(l=n) -a(L=0) ) /T(£=0) ] x 100

As = [(0‘(1:2)01-0’(1=1)CI) /cr(1=1)CI] x 100
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Table 3.3

The CIS individual ¢~ (nf) and total capture cross-sections,
Q, at selected impact energy E, for the reaction

Li%" 4 H(1s)—Li% (nd) + B in units of cm>. The total

capture cross-section @ was obtained from the Oppenheimer n
rule: Q== g (1s)+T(2s)+T(2p)+ 2.081( T (3s)+T(3p)+T(34d)) .
The suverscript denotes the power of ten by which each entry

should be multiplied.
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Table 3.6

The CIS individual ¢~(nf) and total capture cross-seétions Q1,
at selected impact energy E, for the reaction

Li2+(1s) + H(1s)—Li*(1s,n8) + H™ in units of cm2, when the
interacting potential Vl,a in Chapter 3.3, equation (3.3.12),
is defined as (ZA—1)/5 + exp(—ZZAs)(ZA+1/s). The total
capture cross-section @ was obtained from the Oppenheimer 55
rule: Q= O (1s)+T(2s)+T(2p)+ 2.081 (T(3s)+T(3p)+T(3d).
The superscript denotes the power of ten by which each entry

should be multiplied.
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Table 3.7 .

The CIS individual G (nf) and total capture cross-sections QZ’
at selected impact energy E, for the reaction
Li2+(1s)+H(15)——»Li+(1s,n£)+H+ in units of cm® when the inter-
acting potential V1,2 in Chapter 3.3, equation (3.3.12), is
defined as (ZA-ﬂ)/s. The total capture cross-section ¢ was
obtained from the Oppenheimer 53 rule: Q=g (1s)+0C(2s)+T(2p) +
2.081 (O (3s)+0(3p)+0(3d). The superscript denotes the power

of ten by which each entry should be multiplied.
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Table 3.8

The CIS individual O (nf) and total capture cross-sections Q1,
at selected impact energy E, for the reaction
Li+(152)+H(15)——»Li(152,n1)+H+ in units of cm2, when the
perturbing potential in the transition amplitude, equation‘
(3.5.18), is represented by the average static potential v,
(see equation (3.5.20)). The total capture cross-section Q
was obtained from the Oppenheimer 53 rule:

Q== T (15)+T (2s)+T(2p) + 2.081(T(3s)+T (3p)+T(3d)). The
superscript denotes the power of ten by which each entry should

be multiplied.
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Table 3.9

The CIS individual & (nd) and total captu;e cross-sections Q2’
at selected impact energy E, for the reaction
Li+(152)+H(1s)——»Li(152,nI)+H+ in units of cmZ, when the
perturbing potential in the transition amplitude, equation
(3.5.18), is represented by the perfect screening potential

v, = (ZA—2)/s. The total capture cross-section Q@ was obtained
from the Oppenheimer 22 rule: QE= T (18)+T(28)+0 (2p) +
2.081(G(35)+T(3p)+Q(3d) . The superscript denotes the power
of ten by which each entry should be multiplied.
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E keV A3/ Q22 a0 | @72 (/1
100 7.7057  8.0117" 1.286"% | 7.468"" 1.216%¢
ébo 17951 1.u8*] 3.149"" 1.598%" 2.950""
300 6.740° 6.057° 9.873° 5.398° 8.975°
400 3.184° 2.638° 3.798° 2.295° 3.321°
500 1.714° 1.204° 1.701° 1.129° 1.424°
600 9.992" 7.3127 8.5597" 5.4087 6.8427"
800 3.995" "  2.70077 2.7677 2.1527" 2.0297"

1000 1.855" 1.1967" 7.1447" 9.09172 7.6407%
1500 h.09070  2.5072  2.2217% | 1.9157° 24672
2000 1.2857%  8.0157 6.81877 5.00177 3.37877
2500 5.0437>  3.2897° 2.6897> 1.9017° 1.21472
3000 2.3097°  1.58570 1.24272 8.593 7 5.203'4
5600 2.L+65“L+ 2,009~ 1.338’4 9.000~7 45462
10000 1.03677 1.09772 5.518’6 3.532'6 1.396'6
Table 3.10 Ratios of Q(q)/qB, in units of 107 cn, where Q is the

total capture cross-section for the reaction

110 H(18)— 11l V() +i calculated within the CIS

approximation. The values of Q, Q,I and Q2 are those given

in Tables 3.3, 3.6, 3.7, 3.8 and 3.9, and were obtained from
the Oppenheimer HB rule: Q=G (1s)+0(2s)+a(2p)+2.081( T (3s) +
U (3p)+0(3d)). The superscript denotes the power of ten by

which each entry should be multiplied.
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5 ey Q2 27 Q1) 27 Q,(2)
Q(3) 8 Q(3) Q,(1) 8
100 1.04 1.669 0.623
200 0.975 1.756 0.056
300 0.899 1.L465 0.613
Mole) 0.829 1.193  0.695
500 0.702 0.992 0.708
600 0.732 0.857 0.854
800 0.678 0.693 0.978
1000 0.645 0.617 1.045 ‘

1500 0.613 0.543 1.129
2000 0.624 0.531 1.176
2500 0.652 0.533 ._ 1.223
3000 0.686 0.538 1.276
5000 0.815 0.542 1.501
10000 1.059 0.5%2 1.988

Table 3.11 Ratios of {Q(q)/qB}/ { Q(q’)/q’B} . where Q is the total
capture cross-section for the reaction Liq++H(1s)-——*
Li(q—1)+(nl)+H+ calculated within the CIS approximation. For
q(or q/)=1 or 2, Q is given by the values of Q1 in Tables
3.6 and 3.8, and were obtained from the Oppenheimer 0

Q=0 (18)+T(28)+T(2p) +2.081( T (3s)+ T (3p) +T(3d)) . The

values for Q(q)/q3 are given in Table 3.10.

rule:
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eft)

Figure 3.1 Coordinate system for reaction (3.2.1). The
arbitrary origin is shown here to be at the

mid-point of the internuclear line.
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10°6

Cross section(cm?)

(e)

Figure 3.2

80

E (keV)

Electron-capture cross-sections @ (1s) for H(1s) +
H(1s)——»H-(1sa) + H'. The CIS results are shown in
curves (a), (b) and (c) and are derived, respectively,
from the use of the Hartree-fock (HF) functionqg,
the 'fixed core' model and the configuration-interaction
(CI) description for H—(182). Curves (d) and (e) are
the 'prior' and 'post' results of Eapleton1o calculated
using a 3orn approximation. The experimental points

are those of lMcClure 9
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Cross section (cm?)

80

E(keV)

Figure 3.3 The CIS electron-capture cross-sections O (1s) for

H(1s)+H(’ls)—>H-(’|sz)+H+ obtained using expansion (3.4.2)

for the potential term 1/512 in V:,Z’ as defined in equation
(3.3.4). The curves shown correspond to successive trunca-
tions of expansion (3.4.2) at £d-0(—e—0o), £a1f———)
and £ =2(—————), when describing the H_(ﬂsa) system by the
Weiss CI wavefu.nctionzo. For comparison the curves corres- |
ponding to ’1/512:0 is also shown. The experimental points are
those of McClure9 . .
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Figure 3.4

E (keV)
The theoretical total electronecapture cross-sections, 9,

for Li3+ ions incident on hydrogen compared with the experi-

mental data of Shah, Goffe and Gilbody18. The broken curves
represent the CIS —— e———and CDWe=+ —— « —cross-sections
evaluated using Q = & (1s)+ 1.616(C(2s)+T(2p)), and the full
curve is the CIS cross-sections evaluated using Q =G (1s)+

g (2s)+9(2p) + 2.081 (T (3s)+T(3p)+o(3d)).
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Figure 3.5 The theoretical total electron-capture cross-sections, Q,

for Li'2+ ions incident on hydrogen (see reaction (3.5.5))
compared with the experimental data of Shah, Goffe and

Gilbodng. The total cross-sections, Q,‘(full line) and

Qa(broken line), corresponding to the two forms of V:: >
)

) . -1 ]
i.e. J,I-(ZA-1)/s+exp(-ZZAs).(ZA+s ) and V2_(ZA-1)/S,
as defined in Chapter 3.3, equation (3.3.4), are as listed

in Tables 3.6 and 3.7, respectively.- The total cross-section
Q is evaluated using Q=0 (1s)+@(2s)+T(2p) + 2.081(F(3s)+

g (3p)+(3d).
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Figure 3.7

100 1000 10000
E (keV)

The theoretical total electron-capture cross-sections,
Qq, for Li2+ ions incident on hydrogen (see reaction

(3.5.5)) plus the individual cross-section curves

g (n=1),0(n=2) and O (n=3) for capture into the

individual quantum levels n=1, 2 and 3, when setting

Vl gequal to the average-static-potential as defined
’ .

in Chapter 3.3 equation (3.3.5). The total and

individual cross-sections are as listed in Table 3.6

and the experimental points are those of Shah, Goffe

and Gilbody18.
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'igbre 3*3

The theoretical total electron-cacture cross—-sectlore,

for Ii"™' ions incident on hydrogen (see reaction (3»5«'1l")

CO"cared with the excerimental data of Shah, Goffe and
. 18

ull QO( The total cross-sections, 0 (full line)
2= (broken line), corresponding to the two forns of V)(

as defined in equations (3.3.20) and(3.3.21),

are as
listed in Tables 3.3 and 3.9, respectively.
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Figure 3,9 Comparison of the total theoretical capture cross-section Q
with the experimental data of Shah, Goffe and Gilbody, when
the projectile system is: A. Li>*, B. Lic*(1s) and C. Li*(1s2).

The theoretical curves correspond to the CIS method (——mm ——),

the CDW results of Crothers and Todd32 ( . . o —)

and the CDW calculation of Belkic et a134 ( —) o
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APPENDIX A

The. formal guantal derivation of the

CDW transition amplitude

The most conventional formulation of the charge-exchange
problem is by means of the Lippman~Schwinger development in which the
total state wavefunction is expressed in terms of the Greens function
operator and the unperturbed eigenfunctions of the system. The validity
of such an approach was questioned by Aaron et a11, who proved the
divergence of the Born series for rearrangement collisions. However,

3

Dettman and Leibfried2 and Corbett” have shown that the divergence of

the operator series does not necessarily imply.the divergence for both
vector series and physical matrix element series. Dodd and GreiderL+

have derived a three body theory for rearrangement collisions and
provided a possible way of preventing the divergence of the Born operator
series in the important case when the mass of one par%icle is much less
or much greater than the other two. Exploiting the work of Dodd and

Greideru, Gayet5

has shown that, by a sultable choice of distorting
potentials, the calculation of a second order charge-exchange cross-
section becomes tractable, and that the expression for the transition
amplitude can be shown to be equivalent to that given by the continuum
distorted wave method of Cheshire6 derived within the impact parameter
scheme.

Thus, in this appendix we give a description of the wéve
parameter presentation of the continuum distorted wave method as presented
by GayetB. Where appropirate, a comparison is made between the wave

parameter presentation and the more transparent impact parameter present-

ation of the continuum distorted wave method as given in Chapter 1.2.
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A1 Formal theory for rearrangement collisions

Let ¢ , p and ¥ be three particles interacting through two
body potentials Vo , Vg , Vy where Vi is the interaction between the two

particles not labelled by i; we consider the process

oL + (p+¥)— (L +¥) +p A1.1
with complete hamiltonian

H = K + Vg + Vg +Vy ) A1.2
where K is the kinetic energy operator for the relative motion of the
three particles.

The unperturbed hamiltonian for the entrance channel is

H.g = K + V‘ = H - Ve - y A1 .3

where v, 1is the perturbing potential due to the incident projectile.
Conversely for the exit channel we have

Ho= K + Vg = H-vp , L AL
where Vp is the perturbationdue to the remaining target nucleus p .
If é,‘ and @F are the respective eigenfunction of Hy and Hg with the

same eigenvalue E, then the exact transition amplitude for the process

A1.1 is given by

* =
Tap = CPplve| ) = Sl vl ) - 2105
The total wavefunctions \P: and T{J; are eigenfunctions of the total

hamiltonian with eigenvalue E and can be shown to satisfy

+ + - -
?4: ﬂd @c‘ 3 \I/p = QF @F , A1.6
*
where the Mgller operator ) is defined as

O = 1im HE THRE A1.7
t—F 0
7 +
Using the limiting functions of Gell-Mann and Goldberger ‘Pa( and

WPP can be shown to satisfy
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IY-(>= (1 +a" vy )l@,(> | A1.8

'\PF>= (1+a Ve )I§p> . A1.9
+

The Greens function G is given by

+
G = (E-Hiis)—’l, (€>0) A1.10

where the limit € —» O is to be taken eventually.

Therefore,Al.5 may be written as

(Pl U1 $D> A1

T‘F

with

<+

U A1.12

Vp (1 +a" Vg )

b

where U' is called the transition operator. This can be shown to

satisfy the integral equation

[an]
1}

vg + U7 Gl ve ' A1.13

where

Gl = (E - He + i€)"1 - A1k

"

At this point Greider and Dodd8 introduces the so-called distorting
potentials Wa and Wg in order to simplify eventually the integrals
involving the potentials vy and vgp , but also with the hope that they
would be able to prevent the divergence of the operator Born series.

With these potentials are associated the Green functions

5= (BE-Ha -Wa +i€)7 A1.15

73

and the corresponding wave operators

(E-Hp -Wp - ie)7" , A1.16

+
We= 1+4 W A1.17
Wy = 1+§F W , A1.18
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from which Greider and Dodd8 derive the transition operator U which

satisfies the integral equation

vt o= {u;*(vF - w; ) + U ah (ye - Wy )}w: , A1.19
provided8 that WF does not lead to the rearrangement state QL‘.
Unfortunately Greider and Dodd® found that equation A1.19
always contains disconnected diagrams, and as a consequence dive;gesf
Thus to overcome this Dodd and G’rreide;rL+ introduce an intermediate channel
'x' corresponding to a perturbing potential Ve with an associated Greens

function

£+=(E-H+v+i€)_1 , A1.20
X p.s .

and showed that U' satisfies the integral equation
+ ~* *
A L A A {1+fx("°'~ - wad}

+ _+ + +
+ U Gx v, gx (vg —wd)]h}‘ ) A1.21

which is useful if the so-called kernel of the integral equation for

U+, namely
+
K= 6l v, ;XJ' (v - W)Wy |, A1.22

does not diverge as a result of disconnected diagrams, and the equations
involving ?;xf and G«T are manageable. The first condition will be
satisfied if, for example, Vo is a two-body potential which does not
appear in v, - W_, , and the second condition is found to be fulfilled in
the limit of ﬁﬁ«m » Mr due to the equations becoming separable
with respect to the electron position coordinates and the internuclear
separation vector.
Under these conditions a meaningful first order approximation

to T:F is given by

e = (Rl o ) g - wobed 13D

A1.23
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A2 Application to proton-hydrogen charge transfer
5

Following Gayet” we now proceed to derive a solution to

T;; (A1.23) for the general proton-hydrogen charge'transfer reaction

5 + H(n,l) —s H(n' ,2’) + = A2.1

as follows:

Let iy In and 33 be the respective position vectors of proton 1,

electron 2 and proton 3, for which the electron is initially bound to proton
1, with respect to an arbitrary origin. The scattering problem can now

be solved with respect to the more convenient coordinates (see Figure A.1),

X = I-r; i I« = I3-Mpern
M+ 1
B' = £3 - _1:1 AZ.Z
= r. -r r = r, = Mr, +r
= =2 "3 ; Le I -3 72,
M+ 1

»

where x and g are the electron position coordinates, R the internuclear

separation vector, and r« and r, are the position vectors of the
hydrogen centre of mass with respect to the proton in the incident and
exit channel respectively; M is the ratio of the proton mass to the
electron mass. Identifying particles 1, 2, and 3 with g , ¥ and « it
is readily seen that '
1

_ 1 _ 1
Vg = ——s- + ﬁ and VF = - ; + ° A2.3

o)

and the unperturbed solutions for the entrance and exit channels are

bu

and QP = ﬂp (s) exp(—i_lgp .r ) , A2.5

Ba (x) explik ¢ - r ) A2.L
where @,(x) and @,(s) are respectively the initial and final bound state

solutions. In order to evaluate T;F given by expression A1.23 let us

first derive a solution for say lfi.> given by
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+ + +
1500= {1+ fatw - vobudl g . a2
+ +
Setting I'X,,( D = |Uu.| @,() it is clear from the expression for
I.o: that |’X:> , in the limit of &€ = O, satisfies the equation

(E - Ha -Wa)|XXD> =0 . A2.7

5

+
Gayet” now choses Wy such that X, is of the form

12> = | B (0 £z )> 12.8
where f(id) has the asymptotic form exp( igd '-£°L)'
Since we have that
(E-H)| P> =0, 42.9
an obvious choice for Wee 1s We = O. . Otherwise Wy must be chosen
such that all potentials depending on ry (or R in the limit M >> 1)
decrease more rapidly than 321 at infinity.

However, the general solution for f T is given by

|?:>= {r - j:(‘k - Wy )}'|'X:> A2.10

such that in the limit € = O we have

(E-H+vx)|§:)= (B - H+ v+ 7 -w‘)]x:) . A2.11

+
Since ‘X« satisfies equation A2.7, equationAZ2.l11reduces to
' +
_ +
E -1+ v)|ED= v |xD . A2.12

The main feature in Gayet's work is the choice made for v such that
-+
vxl'xd) =0 CA2.13

+
and that, as a result, the remaining equation for \gd , namely

+
(E'K+%+%“%+Vx)l§x> =0 , A2k

+
becomes solvable. Writing ‘f"( in the form

+
1$.0= 240 8") £2.15
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where @, (x) satisfies
. :’1’ .
(Bx -K + 9 | fa®> =0 £2.16

then the equation for n* becomes

’/ 1 1 + M+ 1 ' +
G -keg-R e V,8,0-V_n

+v (paouh = o 82.17

]
where E =E - Ey4 and Ex 1is the energy of the bound state
’
Thus, E 1is the kinetic energies of the system. Gayet choses v_ as an

operator such that when applied to an arbitrary function y(x, Ty ), or

y(s, EF) , the following relationship holds

ny = sV 2@V (S 42,18

M (%)
With this form for Vo equation A2.13 is satisfied and equation
A2.17 reduces to

’ 1 1
(E-K+75-E)h_0. A2.19

For M> 1 we have that R == - E‘F and equation A2.19becomes separable.

The kinetic energy operator K may be written in two forms
N vi oMt vi =-._Lvi - Mivi . A2.20,21
2/u. = M = 2/u. -B M =)
where = M(M+1)/(2M+1) is the reduced mass of the whole system relative
to the centre of mass of the electron and of either proton 1 or 3. The
general solution to equation A2.19 is therefore given by the product of

two coulomb wavefu.nctionsz Thus we have

+ + : :
h(E,_I_‘_F) = Np N_ exp(1_k_1.£P+ 152.5)
i . .
x F (-5, ik, - 151.£P)
k
1 :
x F (rg 5 15 ikps - ikses) A2.22
2 :

F See page 239 of reference 12



¥or M >»» 1 we have that,

k, = - > - Ko A2.23
M+1 Me— oo
and k, = - " . -3 - , A2.24
) # Mo
and nt may be written as
+ . 2 . . . .
h'(s,rg) = ]F‘(1+1v) l exp(ike » Ie) F(iV; 1 5 ivs+iv.s)
x F(-i¥; 1 5 ikgz + ikp org ) . (V=1/v) A2.25

At this point it is interesting to note that the solution
obtained for |‘§:) = l'ﬁ" (_)5)h+> is, in the limit of M—s» o ,
analogous to the solution obtained for our continuum distorted wave
functions ﬂiii/ obtained within the impact parameter formulation
presented in Chapter 1.2. The choice made for v corresponds to neglecting
the right-hand side of equation (1.2.31) which is done to obtain a first
order approximation ;C; to the exact solution zj_ .

The calculation of Tt‘F given by expression A1.23 wiELl now

be complete upon deriving a solution for LOP.I éf") since we then have

- +
Tp <X AR A2.26

where

we | @F> | 82.27

The solution to 'X; will obviously depend on the choice made for WF and,

|X; >

as in the CDW method of Cheshire6, Gayet proceeds to make a choice for
WP such that 'X; represents a continuum distorted wave.
From the definition of uo,__g in A1.18 we have that, in the

limit of € = O, |'X;) satisfies the equation
(E-K+x-ve +0 | %X D =(2-8),) A2.28
s [ P P P Llp ’ :

where

UF = VP - WF . ’ A2 .29



Writing | /XP> in the form Iﬁ? (s) g > and noting that ép is an
eigenfunction of HP' with eigenvalue E we find that, in the same way

+
as for Ed. , equation A2.28 reduces to

u

(£ -k+z-9) g+ GV, f@ .V, &

Ll B

+ Ug (B (s)g’) =0 . A2.30

Thus, if UP is chosen either as a distorting potential

iy ol

Up = Vs log, ,QSF(E).VS log, g A2.31

or as an operator, analogous to Vo

U;P - _.b’l_;[_lvEyj (s) VE(EF%ET) , A2.32

then the solution for g is determined exactly in the same way as for

n. Thus, in the limit M DD 1, we have

g (x,n4)= lr(’|+i\)) lz exp(-iEF .EP YF(-1iv;1; -ivx—i_\_r.é)

x F(1V;15-1ka 1¢ =ik -Ig) - £2.33
Clearly Gayet's solution for | ’XF-)z lﬁp(é) g ) 1is comparable to the
distorted wave solution /xf = ﬂf ifl given in equation (1.2.45) of
Chapter 1.2,and the choice made for WP is analogous to the choice made
for the distorting potential U, in equation(1.2.47), with uoP corresponding

B

to the perturbing potential operator A_ defined in equation (1.2.49) of

f
Chapter 1.2.
Consequently we may now write down the final expression for

the trensition amplitude, which is analogous to the expression for bif given

in equation (1.2.52). Therefore we have

- +
T:p < 1KF|(V? - Wg )| f; > A2.3h

<Xl opl 525 : h2.35
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= - | Tauaw | * Jd_s_ dr , exp(iky. Iy + ikg -EF)Q&(;}Q
X F [i\) ;' 1 i(vs+i.§)] F [-iv; 15 ilkyr, 5# iF )]
VA 25:(5) V§ {F [iVs 1 5 ilvery.x)] |
xF [-iV; 15 il + k- &)]} . A2.36

If now we make the impact parameter assumption that M —»oc0 it follows

that

£¢——»-£P—->E=b+zt , A2.37

9

where b is the impact parameter such that b.v = 0. McCarroll and Salin
have showed that in the limit of M—— 20 we can replace the product of
the hyper-geometric functions involving. r 4 and Tg by e'n‘v* (f‘Vb) 21y .

Introducing also the transverse momentum transfer vector 7_'( ( n-v = }l.‘g = 0),

and the total momentum transfer defined as

ka -kp = r-n h2.38
> =
v
it can be shown that T:P reduces to -

2 : : . Ex-Ej ‘

Ty 21V

T:‘F =‘r(1—i\))| e (IMV) * ds dr b21vexp{-(—;- + Zp)ivat-izl._b-iz.ig
v

X ,ﬁ‘t(éc_)F [iv;1;i(vs+y_._s_)] XVE Qj,:(-g)'v_s_ F [i\?;’l;i(vx+z.£)] LA2.39

The total cross section is then given by

2
Q"‘F= J

The integrand can be shown to be equivalent to that given by

Tug Y]
2T

dn . A2.40

Cheshire6 who, using the impact-parameter formalism, obtained a total

cross-section Qif in the form
1 2 :
Qig = —=> j RM) dn . A2.b1
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This is derived from the impact-parameter formula7

2 2
e _ flaifl do (a") A2.42

with
tl

qif T T J R() B2 gy

5 A2.43
(2T

?

where a s is the transition amplitude. In the CDW method of Cheshire6,

a;; for reaction A2.1 can be written (see D% Belkié et al,,‘oequation (11.12a))
| P1os |2 ™, | 2iv g . .
a,p = -i (1-iv)| e ({Abv) dt | dr exp[-l(E,{ - Ef)t - 11.5}

%* .
X ¢d(§) F [iv;’l;i(vs + X'E)] \7_§¢F (s)

.vx F [iV;'];i(Vx + X.'_}E)] . A2 Lk

If we now, in our full quantal formulism, set our arbitrary origin to be

mid-point between proton 1 and 3 such that r, = 53 = %_13 and I =r

the scattering amplitude A2.39becomes ,
+ f\ 2 v 21V
T = l (1-iv)| e (pbv) vfdt fdg jch_n exp {-i(E,( -Bg)t - iN. b

x B, (x)F [i\’; 15 i(vs + X'.S.)] Vs ,@:(g)

'Vx F[iv; 1 5 ilvx + i.g)] . A2.45

We note nere that T:‘P is derived by integrating over all impact
parameters b. Defining a transition amplitude aZP for a particular

impact parameter we have that

+

jaJP ~ilL-2 db ’ A2.46
v

where

£ See page 208 of reference 12
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+ . '
a;‘s 1 [ Tap 02 g | A2.47

2
- (2m v
Comparing equation A2.44 and A2.45 we see that ajp =i a;a$ , and
therefore
Tog (M)
RM) = =i —— . A2.48
v

Consequently the wave and impact parameter treatments are
shown to be equivalent to within an arbitrary phase factor eiTT in the
transition or scattering amplitudes.

It is important to note that on forming Iaifl ° in equation
A?2f2the factor (/va)Zi‘)disappears and thus may be omitted in the
expression for Qif’ or Q"F , indicating that the internuclear potential
does not contribute to the capture process when it is treated exactly to
first order in 1/M or in the limit as M—— w0 . This result was
examined in detail by Driskoqj who showed that the contributi?n from the
proton~proton potential, which plays an important role in the first Born
approximation, is exactly cancelled (to order 1/M) in the high-energy
limit by two of the second Born approximation terms.

Summarising, we note that the essential feature of Gayet's
work is in the choice for the perturbing potential Voo which was chosen
to contgin the potential operator Vx ﬁd(z) . vx which only depends
upon é while v,y = Wa depends only on é_and g. Thus the conditioms,
originally laid down by Dodd and Greiderh, concerning the avoidance of
disconnected terms in the kernal K of the integral equation for the
transition operator U" written inAl2laresatisfied. Thus Gayet5 has
shown that the continuum distorted wave approximation leads to a second

order method whose transition amplitude is a meaningful first order

approximation in a perturbation series.
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Figure A1  The coordinate system for the reaction L+ (g +¥ )—
(¢ +%¥) + B, where, g and ¥ are particles of

mass M3’ M1 and m respectively.
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Abstract. The continuum-disterted wave (CDW) method is used to calculate cross sections
for electron capture by fast protons from the lithium atom and its related positive ions. With
the exception of Li**(1%S), each target electronic state is described by a Hartree—Fock
wavefunction. The capture states considered are (n/) =1s, 2s and 2p and the proton energy
range is 200 keV < E < 10 MeV, the lower limit being chosen to be roughly appropriate for
a cDW description of capture from the lithium ions. For the lithium atom, capture can occur
from either the K or L shell and the resulting ion can exist either in its ground state 1'S or in
one of the excited states 2'S or 235; cross sections are tabulated for each of these three states
for capture into the above hydrogen levels (n/). Results for the individual capture states (n!)
are also reported for the Li™ target. Total capture cross sections are calculated for each
target by means of the Oppenheimer n~? rule. For Liand Li*, total cross sections are also
evaluated at E <200 keV in order that graphical comparisons can be made with the limited
experimental data. A procedure for determining the effective screening of the target
nucleus by the uncaptured or ‘passive’ electrons is discussed and the sensitivity of the cross
sections with respect to such screening is examined.

1. Introduction

When calculating charge-transfer cross sections which involve fast structureless pro-
jectiles, the correct high-energy behaviour requires the use of a second-order method.
For light target atoms, such as hydrogen or helium, comparison with experiment has
shown that one of the most satisfactory second-order procedures is the continuum-—
distorted wave (cpbw) method. This was developed initially by Cheshire (1964) for a
proton-hydrogen collision and later modified by Salin (1970) for application to a
helium target. In a generalisation of the method for some two-electron systems, Belkié
and Janev (1973) comment that the probability of capturing the ‘active’ electron should
be greatest when the ‘passive’ electron is very close to the target nucleus. The ‘passive’
electron was then removed from the equations defining the distorted waves by invoking
maximum shielding of the nucleus. Thus, in the description of the outward channel, for
example, the residual target was represented by the target nucleus with its charge
decreased by unity. This ‘perfect screening’ approximation was also used in a recent
examination of electron capture from H™ (Moore and Banyard 1978, Banyard and
Moore 1978).

Calculations of capture cross sections from large target atoms are still relatively rare
and generally restricted to first-order methods. For example, Mapleton (1965) applied
the first Born approximation to oxygen and Mapleton (1963, 1965, 1966, 1968),
Nikolaev (1967) and Lodge and May (1968) have studied various target atoms using the

0022-3700/79/193247+10%$01.00 © 1979 The Institute of Physics 3247



3248 KE Banyard‘ and G W Shirtcliffe

Brinkman-Kramers approximation. In the present work our main interest is to apply
the cow method to a many-electron system and, as a simple first example, we evaluate
cross sections for the capture of an electron from a Li target atom in its ground state
when the resulting ion exists in either a 1'S, 2'S or 2°S state. For such a system, a
‘passive’ electron will now exist in a different shell from that of the ‘active’ electron.
Thus, a modification is suggested to the ‘perfect screening’ procedure used by others for
two-electron targets. We also examine the effect of such a modification on the capture
cross sections when the target is the related ion Li*(1'S) and, finally, to complete the
ionisation series, results are reported in brief for the one-electron target Li**(1%S). In
each instance the projectiles are protons within an energy range of 200keV<E <
10 MeV—the lower limit being a rough measure of the minimum E required for a cow
calculation involving lithium ions. However, in order to achieve a graphical comparison
with the limited experimental data, some of the cross sections are evaluated at lower
energies. Such reactions are of considerable practical interest in understanding the hot
plasmas which occur with the use of lithium arcs in devices such as ‘OGrRA’ (Bogdanov et
al 1965).

2. Theory and calculations

For a high-energy projectile of charge Z4, energy E and velocity v, in collision with a
stationary target system, whose nuclear charge is Zg, the cross section for electron
capture into a state (n/) may be expressed as

olnl, F]=2 L blanr(b)|* db (1)

(in units of wa3) where a.,r(b) is the transition amplitude, b is the impact parameter
and F signifies the final state of the remaining target electrons; ao is the atomic unit of
length. Using standard notation (Cheshire 1964, Salin 1970), the prior form of the cbw
approximation for a,;, r(b) for the capture of electron j, say, from an N -electron target,
where N < Zg, becomes

+00
anI,F(b) =iJV‘(VA)Jv‘(VB)(bv)2iZA[ZB"(N—1)]/v I d: e—iAelJ. dry J— drs ... I dry e—iu.r'.

X @ m(S)XE (X1, X2, . ., Xj21, Xja1s - - -, Xn 1 Filive; 15 i(ox; + 0. x;)]
d
Xa‘l’(xl, B & PRNINES o XN)V,-' 1F1[iVA; 1; i(US,' +uv. S]')]. (2)
i

The position vectors s,, x, and r, locate electron p, for example, when measured, in
turn, from the projectile A, the target nucleus B, and the mid-point of R—the
internuclear separation AB—where R = b+ vt and ¢ is time; spin coordinates in the
wavefunctions are to be taken as read. The energy decrement Ae is the difference
between the initial-state energy of the target and the sum of the energies of the
charge-exchange products. The initial and final states of the target are described by
the normalised antisymmetric wavefunctions W(x;,x2,...,%,...,%Xy) and
xF(X1,X2,...,Xj—1, Xj+1, - . . , XN ), Tespectively, and the capture state of the active
electron is represented by ¢.(s;). Since we have N indistinguishable electrons, the
description of the total system in its final state ¢,;xr should also be normalised and
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antisymmetric: the net effect of such a requirement is to multiply the transition
amplitude derived from equation (2) by N 12 N(va) and N (vg) are the normalisations
associated with the confluent hypergeometric functions for the inward and outward
distortions, respectively, and

va=Zalv vg=[Zg— (N —-1)]/v. (3)

The expression for vy is a consequence of invoking the ‘perfect screening’ approxima-
tion to represent the interaction between the active and passive electrons, and its
magnitude is a function of the net charge on the residual target as seen by the captured
electron at infinity. Such a model has the particular advantage of ensuring that the
incoming and outgoing waves have the correct asymptotic behaviour as ¢ » —o0 and +00,
respectively. However, a relaxation of the asymptotic constraint allows us to adopt a
simple but somewhat more realistic way of accounting for the passive electrons in a
many-electron system. For capture from the target quantum state »n’', an effective
charge for the residual target can be obtained from the experimental ionisation energy
by using the hydrogen-like expression

Ionisation energy (in atomic units) = Z2g/2n'%. (4)

In this way the value of Z.4 reflects the charge seen by the active electron as it is ionised
into the continuum prior to capture. Thus, in the expression for a,,;, - (b) we re-define vg
to be Z.q/v. For comparison, both models were used to determine the capture cross
sections for Li and Li".

Electron capture from the ground state of Li can occur from either the K or L shell
and therefore the reactions considered here are

H*+Li-»H(nl)+Li"(F) (5)

where F is 1'S, 2'S or 2°S and (nl) = 1s, 2s and 2p. The same (nl) states were chosen
when considering capture from the ground states of Li" and Li**. The Hartree—Fock
wavefunctions of Clementi and Roetti (1974) were used to describe the initial states of
Li and Li* and the excited-state wavefunctions for Li* were taken from Cohen and
McEachran (1967a,b). The ionisation energies were obtained from Moore (1949),
Wiese et al (1966) and Tennent (1971). For the Li atom target, the Z.s values
corresponding to F=1'S, 2'S and 2°S in equation (5) are 1-260, 2-208 and 2-177,
respectively, and when the target is a Li" ion then Z.;=2-359. The Li** ion was
described by using the exact energy and eigenfunction. For reaction (5), we note that
integration over spin in the antisymmetrised expression for a,; r(b), when F= 1's,
produces terms in the transition amplitude of an exchange type (in which the label for
the active electron is associated with the 1s orbital in Li) as well as the expected terms
which arise from the initial occupation of the 2s orbital; and vice versa when F=2'8S.
However, in the present method, contributions to the capture cross sections attribut-
able to exchange-type terms account for less than 0-3% of the magnitude of o[nl, 1'S]
and o[nl, 218] in each instance; no such terms occur when F =23S. Therefore, for ease
of discussion when considering the Li atom target, we regard o[nl, 2!S]and o[nl, 2°S] as
arising from the capture of the appropriate K-shell target electron and o[nl, 1'S] as
representing the capture of the L-shell electron.

The o[nl, F] values for the Li and Li" targets are presented in table 1: the initial
entry is based on the Z.5 approximation and the italics refer to the ‘perfect screening’
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(ps) model. For the Li atom, the total cross section X for all capture states (nl/) was
obtained from

S=3(1'S)+=(2'S) +2(2%S) (6)

where each contribution X(F) was determined by using the appropriate form of the
Oppenheimer n > rule (see, for example, Salin 1970). The n " rule was also used to
calculate 3. for the Li* and Li** targets and the results for all three systems are given in
table 2. Asbefore, the values obtained from the ps model are given in italics. Intable 3,
the difference between the Z.; and the ps values for each cross section is expressed as a
percentage change A, with respect to the ps value, for both Li and Li" at selected E.

Table 2. Total capture cross sections = for the Li, Li* and LiZ* targets; the units are frag.
The initial entry for a given E is derived from the Z.q model and the ps value is quoted
below it in italics. For the Li atom, ¥ =3(1'S)+=(2'S)+ £(23S); see equation (6). The
superscript denotes the power of ten by which each entry should be multiplied.

E(keV) Li Li* Li**
200 3-968 72 4-36972 1:36172
336772 369172
500 1-80473 221973 1-2407°
1-86073 2-1387°3
800 2-6617° 3-3127° 2-1567*
3.0037* 331877
1000 1-0057* 1-25274 8-506°
117274 1.2727¢
2000 3.9167° 4-8647° 3-4417°
4.894°° 5.078°°
5000 3.644°8 4-49378 2-99878
4-73278 4-76478
8000 2-9187° 3.589°° 2:3067°
3.827°° 3-8197°
10000 8:604°'° 1-0577° 66860
1-1337° 1-126 %

To enable graphical comparisons to be made with the experimental curve for Li
(IVin et al 1965), values of X were calculated for both models over the energy range
10-180 keV. The curves are shown in figure 1 along with the corresponding theoretical
results for £(2'S) + 2(23S) and 2(1'S), these two quantities represent total cross sections
for electron capture from the K and L shells, respectively. In figure 2, the Z.g4 values for
Y over this energy range are compared with the Li calculations of II'in ef al (1967),
Nikolaev (1967) and Lodge and May (1968). Il'in e al used a Born method in the
one-electron approximation and the other workers employed the Brinkman—Kramers
approximation along with a correction factor: Nikolaev described the Li atom in terms
of hydrogen-like wavefunctions whereas the Lodge and May curve was derived from
the Hartree-Fock description given by Roothaan et al (1960).

The = values for the Li” ion are compared in figure 3 with the experimental curve of
Bogdanov et al (1965) and the theoretical results of Ob’yedkov and Pavlov (1967). No
experimental comparison could be found for the Li*" ion.
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Figure 1. A comparison between experiment (II’in et al 1965) and the total capture cross
section 1 for Li derived from the c d w calculations using in (a) the ps model and in (b) the
ZeH model. Also shown in (a) and (6) are the calculated results for electron capture from the
K shell (i.e. I(2 ‘S)4-1(27S)) and for capture from the L shell (i.e. 1(1’S)); see equation (6).

3. Discussion

The application of the c»w approximation to describe electron capture from a
many-electron target atom becomes tractable, at present, only by reducing it to an
equivalent one-electron problem. Consequently, when attempting to replace the
‘perfect screening’ procedure for an N-electron system by a somewhat more physical
model based on the ionisation energy, it was appropriate to use a hydrogen-like formula
to determine Zeff. In addition, we note that the only direct reference to the passive
electrons in the transition amplitude occurs as an overlap integral between their initial
and final quantum states. Thus, the influence of inter-electronic interactions within the
present form of acow calculation arises solely from the correlation effects contained in
the target wavefunctions » and xf- Although electron correlation is important for a
target such as H~ (Moore and Banyard 1978), trial calculations in the present energy
range suggest that the use of correlated wavefunctions for the Li series should produce a
decrease in each cross section, with respect to the Hartree-Fock value, of less than 2%.

Comparison of the values of Zeff for electron capture from the K shells of Li and Li*
suggests that, for capture from the Li K shell, about 20% of the shielding arises from the
2s electron: this reflects the probability of finding the L-shell electron within the K shell.
For Li, acomparison of the results for Zeff with the ps model is also of some interest. It is
found that the Zeff values for K-shell capture correspond to only about 40% of the
shielding in the ?s model whereas, for L-shell capture, the result for Zeff indicates that
the K shell provides 87% of perfect screening. The sensitivity of each o-[nl, F] to a
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Figure 2. A comparison between various theoretical curves for 1 and experiment (H'in eta/
1965) for the Li atom. The c d w results were obtained by using the model and the other
curves were calculated by H’in e/ al (1967), Nikolaev (1967) and Lodge and May 11968).
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Figure 3. A comparison between the theoretical curves for 1 and experiment (Bogdanov et
al 1965) for the Li* ion. The cdw results were obtained by using, in turn, the ps and zgr
models and the other curve was calculated by Ob'yedkov and Paviov (1967).
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change in nuclear shielding can be judged by inspecting the Z.g and ps results in table 1;
see also the A valuesin table 3. Atlow energies, table 1 shows that when (nl/) = 1sand 2s
the Z.g cross sections are larger than the ps values whereas, for the 2p capture states, the
ordering is reversed—an exception being Li when F=2'S. However, for E=
1000 keV, the use of Z.q decreases all o[nl, F]. This latter feature is most noticeable
for capture from the K shell of the Li atom where, as table 3 shows, the effect becomes
larger with increasing E. At 10 MeV, for example, the Z 4 calculation yields K-shell
cross sections for the 2p capture state which are only about one-fifth of the magnitude of
the ps values.

For each F state table 3 reveals that, as E increases, a strong similarity occurs
between the A values for (n/) = 1s and 2s; this similarity does not extend to the 2p state.
A corresponding trend was observed by Banyard and Szuster (1977) in a correlation
study of charge exchange in proton—helium collisions. Following their rationalisation,
we find that, at high projectile velocities, the major contribution to each o[nl, F] occurs
at small values of the impact parameter. Consequently, the A values reflect the
similarity in the characteristics of the 1s and 2s hydrogen orbitals at small electron-
proton separations; such characteristics are, in turn, quite distinct from those of a 2p
hydrogen orbital.

When E =800 keV, the Li cross sections are ordered as o[nl, 2°S]>o[nl, 2'S]>
o[nl, 1'S] for each choice of (nl) and, as might be expected, for any given F state we
have o[1s, F]1> o[2s, F]>o[2p, F]. The latter ordering also holds for Li*. Inspection
of the total cross sections X in table 2 for the ionisation series shows that, for the Z.g
model, 3(Li") > 3(Li) > 2(Li*") throughout the whole energy range. We also note that,
at high energies, the Z.g results for X are less than the ps values by about 21% for Li and
6% for Li".

A comparison between the total cross sections per K-shell electron for the ion
targets reveals that, at low energies, Li* > Li®* whereas, when E is large, the Li** cross
sections are significantly greater than the Li* values. Since the transition amplitudes are
evaluated in terms of momentum space, the larger momentum possessed by the
unshielded active electron in Li** emphasises that, as the projectile velocity increases,
the major contribution to each cross section arises increasingly from the high momen-
tum region within the target.

When compared with experiment, the Z.g and ps values of X for Li reveal some
interesting features. Although the results of II'in et al (1965) extend only as far as
180 keV, figure 1 indicates that each cpw curve for X is in general accord with
experiment—the better agreement being achieved by the Z.z approximation. For
electron capture from the K shell, the ps results are seen to reach a turning point at
about 15 keV, whereas the Z.4 approximation produces an inflexion at about 40 keV
which is similar in shape to that seen in the experimental ¥ curve at E~60keV.
However, figure 1(b) shows that the increase in the L-shell capture cross section with
decreasing E masks this inflexion when evaluating the total curve.

For Li, the comparisons in figure 2 between the various theoretical £ curves and
experiment show that, except for the very good Nikolaev curve, the cpw result is
superior—especially in the higher energy region. It is to be noted that, unlike the cow
calculation, the Nikolaev curve involved the use of an empirically derived velocity-
dependent correcting function.

When the targetis a Li* ion, figure 3 shows that although both the cDW curves are a
considerable improvement on the theoretical results of Ob’yedkov and Pavlov (1967),
when compared with the limited experimental data, the agreement is still poor. Since,
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as observed earlier, a Z.g cross section exceeds a Ps result at low E, the 2 curve derived
from the Z. g values is seen to be the poorer cross section. As with the Li atom target, it
would be very useful if the comparisons with experiment could be extended to much
higher energies.

4. Conclusion

Electron-capture cross sections have been evaluated for fast protons in collision with
the Li atom and its related ions. Such reactions are of interest in the hot plasmas which
occur in some fusion processes. The calculations were based on the continuum-
distorted wave (cDw) approximation and a simple procedure was introduced for
assessing the screening of the target nucleus due to the passive electrons.

It was observed that capture into the higher quantum states (n!/) of hydrogen
appeared to be quite sensitive to changes in the screening effects—particularly at high
projectile energies E and especially for capture from the K shell. Although a
comparison with experiment of the total cross sections X was limited to low E— where
both the cbw method and the n~> rule tend to become less reliable—the general
agreement was, nevertheless, quite satisfactory for the Li target but still poor for Li".
Comparisons with experiments at larger E would be most informative.

For Li, a systematic increase in the projectile velocity eventually causes capture
from the K shell to make a greater contribution to X than that from the L shell. This
emphasises once again the importance of the high momentum description of the target
electrons and hence the need to use accurate wavefunctions in any ‘a priori’ cal-
culation—even at high projectile velocities.
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The continuum-distorted-wave (CDW) method is used to determine total electron-capture cross sections
Q =X ,o[nl] for proton and a-particle projectiles incident on Li* in energy ranges of 100 < E <3000 keV
and 100 < E < 10000 keV, respectively. A configuration-interaction (CI) wave function is used to describe
the Li* electrons; for comparison, capture cross sections for H™ and He are examined. For each system the
percentage change in Q, A(HF—CI), is given for progression from a Hartree-Fock (HF) to a CI description
of the target electrons. The main emphasis in this work is devoted to a rationalization of the trends
observed in the ordering of Q for these three targets. This was achieved by an analysis of the CDW
expression for an individual capture cross section ofnl, n'l'], where nl and n'l’ are the states of the

“active” (captured) and “passive” electrons, respectively.

I. INTRODUCTION

For a helium target the cross sections for elec-
tron capture by fast protons are adequately des-
cribed by the continuum-distorted-wave (CDW)
method (see, for example, Salin' and Belkié and
Gayet?). Banyard and Szuster® examined the sen-
sitivity of such cross sections with respect to
improvements in the He wave function up to and
beyond the Hartree-Fock (HF) description; a
similar study was made by Moore and Banyard*
for H. The CDW method is used here to evaluate
the total cross sections @ =25, o[n!] for the fol-
lowing reactions:

H' +Li+(132)-n(znz) +Li?*(Ls), 1)

He2++Li+(1s2)~He*(En1) +Li2%(1s) 2)

in the energy ranges 100-3000 and 10010 000
keV, respectively. For each reaction we cal-
culated the cross sections o{nl] for the capture
states nl =1s, 2s, and 2p, and Q was then deter-
mined by using the #™® rule (see, for example,
Salin'). Besides examining, in brief, the sensi-
tivity of @ with respect to changes in the Li*(1s?)
wave function, we also analyze the CDW expres-
sion for a general capture cross section o[nl,n'l'],
where nl and n'l’ are the states of the “active”
(captured) and “passive” electrons, respectively,
in order to rationalize the trends observed when
comparing the cross sections for capture from
H°, He, and Li".

II. RESULTS AND DISCUSSION

The capture cross section o[n!] for a given
projectile energy E may be written as

olnt]=2 “b]a,,6)|d

(in units of maZ, with a, as the atomic unit of
length), where a,,(b) is the prior form of the CDW
transition amplitude and b is the impact parame-
ter. In Table I we report the total cross sections
@ for reactions (1) and (2), and for comparison
we tabulate the corresponding results for He and
H-; in each case the target electrons are des-
cribed by the 35-term configuration-interaction
(CI) wave function of Weiss® To assess the in-
fluence of electron correlation we also quote for
each energy E the percentage change A(HF—CI)
in @ when going from the HF to the CI descrip-
tion of the target electrons. The HF wave func-
tions for He and Li* were those of Clementi and
Roetti,® and for H- the fitted functions of Curl and
Coulson’ were used. The A(HF—CI) values are
seen to reflect a rapid decrease in the importance
of correlation as we progress from H™ to Li".

For a given target it was noted that at a common
projectile velocity the proton and a-particle reac-
tions possessed similar A(HF —CI) values, the
magnitude being almost identical at high veloci-
ties.

When E>100 keV, Table I shows that the order-
ing in @ for each projectile is @(Li*)>@(He)> Q(H").
As E becomes larger the difference between the
cross sections for the three systems increases;
for example, for protons at 200 keV, @(Li*)
~ 9Q(H"), whereas at 3000 keV we have Q(Li*)
~ 150Q (H").

In attempting to account for the above ordering
in @, we note first that the three systems differ
in the size of the distortion acting on the cap-
tured, or active, electron in the exit channel,
Since in the present form of the CDW method the
distortion is a function of the net charge on the
residual target (see Belkié and Janev®) and thus
opposes electron capture, its effect should be to
produce an ordering of @ which is the reverse of
that observed. Second, although the energy de-

1197 © 1980 The American Physical Society
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TABLE I. Total electron-capture cross sections @, in units of ra}, for targets H-, He, and Li* for both proton and
w-particle projectiles. Each system is described by the 35-térm configuration-interaction (CI) function of Weiss,’ and
in square brackets we give the percentage change [A(HF —CI)] in going from the Hartree-Fock (HF) to the CI descrip-
tion for the target electrons; A(HF —Cl) is defined a8 [(Qq; — Qgr)/Quyr] X 100%.

Protons o particles
E H- He® Li*® E H- He? Li*?
&eV) [A@HF —CI)] [A(HF —CD) [A(HF —CD)] (keV) [AHF —~CD)] [A(HF —~CI)] [A(HF —~CD)]
100 6.681-2°¢ 3.482 1.3941 100 1.6304 5.196* 4.695%
[-19.8%] [(—4.0%] [-4.5%] (-16.4%) [~4.7%] [-5.8%]
200 3.922°% 3.47772 3.683%2 500 1.700% 1.512° 2.084°
[-17.1%)] [-3.8%) [-2.2%] [-16.9%] [-3.8%] [-1.9%]
500 5.585% 8.4564 2.118°3 1000 1.2682 1.661- 3.446"1
[~15.9%) (-4.2%] [-1.3%] [-16.6%) [~4.1%] [~1.4%]
800 5.200%- 9.912°% 3.2754 2000 6.6194 1.203% 3.6242
[-15.9%) [-4.3%] [~1.4%] [-16.4%] [-4.1%) [<1.3%)
1.622-% 3.418% 1,254 2,460 5.9474 2.396-3
1000 [~16.0%] (~4.3%] [~1.4%) 4000 [~16.0%) [=4.4%) [=1.5%]
3.864° 1.064% 4.995% 3.138% 8.794%% 4,052
2000 [~16.2%] [—4.4%] [-1.6%] 6000 [~16.1%) [=4.5%] (~1.6%)
4.083"? 1.2707 6.633" 2,104 6.932% 3.664°°
3000 [-16.3%) [-4.4%) [-1.7%] 10000 [-16.3%) [-4.5%] [-1.7%]

2The results for He supersede those reported by Banyard and Szuster (Ref. 3), which contained a small computing er-

ror.

® Total capture cross section @ was obtained from the “Oppenheimer »= rule”: @~ o[ls] +1.616(o[2s] + o[2p]).
© Superscript denotes the power of 10 by which each entry should be multiplied.

erement A¢ (defined as the difference in energy
between the initial and final atomic states and de-
termined here from the theoretical values) is
different for each of the three systems, the cross
sections are found to become insensitive to A¢ in
the limit of high projectile velocities. Therefore
it would appear that the observed trends in @
must be dominated by the differences in the tar-
get wave functions.

We now proceed by analysis of the individual
CDW cross section o{nl,n'l'] to account for the
trends in @ for the more general reaction

Z, +(Zy,€,,€,)—~ (Z4, 80, +(Zg, ez)n' (3)

when the target electrons are described by an
HF wave function

®(1,2) =) c,0,(1)3 ¢, (2),
[ q

where each member of the basis set {¢} is norm-
alized and the coefficients ¢, and ¢, are the usual
variation constants. The CDW cross section
olnl,n'l’'] for a relative impact velocity v corres-
ponding to an energy E, when the capture state
wave function is ¥, (1), can be expressed as

o[nl,n'l'] =N[I(Zcqqaq(2) | r‘ulf)] : I N lZcpfl(n,v,tp’(l), Ae)gl(n,v,gap(i),\llm (1), v, v,, A€) zdn , (4)
q ] [

where N is a constant and I(2, ¢,¢,(2)|#'') is an
overlap integral between the initial and final
states which describe the passive electron e,. The
integration over 7 is a result of performing a
Fourier transform of the transition amplitude
from position space to a two-dimensional vector
space 1) (see Belkié¢ and Janev®), and the functions

v, and v, arise from the distortiorns due to Cou-
lomb interactions acting in the entrance and exit
channels; respectively, and are defined as v,
=Z,/v and v,=(Z, -1)/v. We note that f, and g,
are both functions of ¢,(1), and hence the strong
dependence of the ordering in the cross sections
on &(1,2) is still not apparent. However, since
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the occurrence of the distortion in the exit channel
inhibits capture, we can, without prejudice, pro-
ceed with our analysis by setting =0 for the
general reaction (3). As a consequence of this,
the dependence in is now removed and the
expression for o[nl,n'V] when becomes

=Np£*

x\G™r},v,% ™ u,,Ae)\"dr]. (5)

Except for the presence of the energy decrement
A€, the functional form of is independent of
the target parameters. At high projectile velo-
cities, is found to be insensitive to Ae, and
thus for a particular capture state (nl) the func-
tion Gi becomes identical for our three examples
of a two-electron target (Z*, e?). When the
basis set is represented, for example, by
Slater-type orbitals (STO’s), the function takes
the form

IR+ (V/2 +2E/i1) 20 @

where s?, and N(s*, are the principal quan-
tum number, orbital exponent, and normaliza-
tion constant, respectively, of the basis function
(fo. Analysis of FI shows that it represents the
probability density of finding the active electron
ey with a z component of momentum equal to
|lyl2+A€ly| or, conversely, of finding with

a total momentum p > 11>/2+Ag/u |, and there-
fore F\ can be interpreted as a two-dimensional
momentum density. We note that the z component
of momentum is not unique, and its definition is
simply a consequence of choosing our coordinate

E=500 k*V

1000 keV

system such thatr).v=0, with v=(0,0,

Let us now particularize reaction (3) by choos-
ing Zjy to be a proton and by setting n/ =n'V =is
for the targets H", He, and Li*. In Fig. 1 for
each system we plot F\ and G* as a function of 7
for a[ls, Is]lp-= E =500, 1000, and 2000 keV.
For subsequent discussion and ease of compari-
son Table Il contains a[ls,Is] and a[ls,Is]*:=
a few selected E; R (as defined later) is a ratio
of the cross sections for different targets when
¥2=0. Throughout Fig. 1 and Table Il each tar-
get was described by the HF wave function; for
H" we note that a[ls. Is] =[Is, Is],,A*. As antici-
pated, Fig. 1 shows that the G\ functions for each
target are very similar, particularly at large E
values. Therefore the ordering of the cross sec-
tions in Table Il is a direct consequence of the
differences in the electron densities in momentum
space as represented by Ff. When the projectile
velocity is increased, the active electron is cap-
tured from regions of increasingly higher mo-
mentum within the target atom; thus the cross
sections reflect the characteristics of the target
wave functions near the origin. Indeed, in the
limit as f ~00 the function Ffy may be expressed
as

™

and hence

S

where x* is the position vector of the active elec-
tron with respect to the target nucleus. The w
and V dependence in Eq. (8) occurs only in the new
function G,, and in the limit we note that this

2000 keV

FIG. 1. Plots at three selected impact energies E of F\ and Gj against rjfor each of the targets H", He, and Li* cor-
responding to a[ls,Is]”"2= Eq. (56). The projectiles are protons and the target electrons are described by the Hartree-
Fock wave functions stated in text. Curves for cj are long-dashed H", short-dashed He, and dotted Li*.
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TABLE II. Cross sections ofls,1s] and ¢r[1s,1s],2_.,m in units of wa‘}. at selected E for elec-
tron capture by protons from the targets H, He, and Li*. Since the distortion in the exit
channel due to the Coulomb interaction is zero for H- (i.e., v,=0), we note that ¢[ls,1s]
=o[ls,ls],2 .0- We also tabulate values of R= (g, [1s,1s]/0p[1s, ls]),,ﬁ, for (i) a=He and b=H"
and (ii) a=Li* and b= He. In each instance the target electrons are described by Hartree-

Fock wave functions.

E H- He Li* He Li*
(keV) (Vz>= 0) R(U (V2=0) R
500 4.7607%° 6.8804 1.718°3 8.2394 17.3 1.986 2.4
1000 1.427% 2.833% 1.025% 3.621°% 25.4 1.382+4 3.8
3000 3.665™ 1.068 5.4847 1.4207 38.7 8.4657 6.0
5000 2.077-10 6.766~ 3.880°8 9.063° 43,6 6.137°8 6.8
10000 4,042-12 1.434-10 9.18140 1.94410 48.1 1.483%9 7.6

#Superscript denotes the power of 10 by which each entry should be multiplied.

function is also independent of Ae. Therefore, if
we examine the ratio R[nl,n'l’] of the cross sec-
tions for two targets a and b when the distortion in
the exit channel is removed, we obtain

»pr129alnd, 'l ] — IS,
Rlnl, ] = o] o @IS

(&)

where S is the slope or gradient of the HF wave
function for the active electron at the origin (x,
=0) and, as before, I is the passive overlap inte-
gral. In Table II we present the ratios R[1s, 1s]

1)

Cjlj Fj(j

for (i) a=He and b=H" and (ii) 2=Li* and b = He.
As E increases, these ratios are seen to approach
the values of 52.8 for (i) and 8.86 for (ii) pre-
dicted by Eq. (9), which again illustrates how the
ordering of the cross sections is dictated by the
relative behavior of the target wave functions.

In passing, we note that when H-, He, and Li* are
described by HF wave functions the passive over-
lap integral for »'l' =1s is 0,922, 0.984, and 0.993,
respectively; thus, the limiting ratios in this in-
stance are governed essentially by the relative
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FIG. 2. Plots of C;I;F; vs 7, defined in Eq. (10), corresponding to jth natural configuration within natural expansion
formulation of 0'[13.151,2.4 for a proton impact energy of 1000 keV. (a) H™ for j=1, 2, and 6, (b) He for j=1, 3, and 6,
and () Li*for j=1, 3, and 6. Each target was described by the natural expansion of 35-term CI wave function of
Weiss, 5 and the j values quoted represent natural configurations constructed from orbitals of radial symmetry.
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values of S.

If (1,2) is a correlated wave function, it is of
interest to examine the form of the function, say
&2, which replaces I?F? in Eq. (5). For a discus-
sion of electron correlation, a particularly con-
venient form for any CI wave function is to ex-
press it as a natural expansion (see, for example,
Lowdin®). Thus 32 can then be written as

5 =[;C,I,(Z:b‘ 2| n’l')
XF, (n, v,Zh: B, %(1), Ae)]z , (10)

where for the Weiss® function the basis set {¢},
which is used to describe &(1,2), consists of
normalized STO’s. The coefficients b, and b,,,
together with {¢}, define the natural orbitals
which are given by the summations over i and k;
the summation of all the natural configurations j,
each weighted by the coefficient C;, represents the
total CI wave function. When j>1, each natural
configuration in the summation corresponds to
the addition of a correlation term composed of
¢’s with either radial or angular symmetry; when
j =1 only, we recover the I’FZ term in Eq. (5).
Thus, by using the natural expansion and by set-
ting v, =0, the nature of the influence of the cor-
relation terms on the CDW cross section be-
comes transparent and we see that the relative
importance of each natural orbital is determined
solely by its occupation coefficient C, and its
passive overlap integral I,. As a consequence,
when improving the target wave functionuptoa CI
description, any change in the cross section at
large v will be independent of the projectile charge

Z, bat may be strongly influenced by the final
state of the passive electron. When »'l' =1s, I,
is nonzero only for those natural orbitals of
radial symmetry; therefore, only radial correla-
tion terms in ®(1,2) contribute to the cross sec-
tions in the present CDW calculations. In Fig. 2
we show, for ofls,1s],,.,, CJ,F, vs n for j =1, 3,
and 6 for He and Li*and j=1, 2, and 6 for H" at
E=1000 keV. The curves not only indicate the
dominance of the j =1 term but also show that as
we go from H- to Li* the higher natural orbitals
become rapidly less important; it is noted that at
n=0 for H", C,I,F,~%C,I|F,, while for Li* at =0,
Col Fy~ ml_oclllFl‘

III. SUMMARY

The rationalization of the trends in the present
CDW cross sections became tractable by setting
v, =0. Hence we have shown that, as the projec-
tile velocity increases, the active electron is
captured from regions of increasingly higher
momentum within the target atom and that in this
region it is the characteristics of the wave func-
tion which govern the trends in @ when comparing
different targets. The nature of the distortion
acting on the captured electron in the exit channel
(i.e., when v, +#0) is such that it reduces the size
of each cross section, and this effect will in-
crease as Zg increases. Thus, when considering
two-electron targets of large nuclear charge, it
would be interesting to see if the final distortion
could ever dominate the wave function in its in-
fluence on @ and so produce trends which are the
reverse of those examined here.
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The continuum-—intermediate-states approximation has been adapted for application to charge-exchange
collisions between high-energy structured projectiles. A critical test of the scheme is provided by the
reaction H(ls) 4+ H(1s)—>H™(1s %) + H*; the overall agreement with the limited experimental data is

encouraging.

I. INTRODUCTION

Electron capture from small atomic targets by
fast structureless projectiles such as protons and
a particles can be described quite successfully by
modifying the continuum-distorted-wave (CDW)
method developed by Cheshire.! However, its ap-
plication to charge exchange between structured
systems is more difficult. Therefore, in a’'desire
to examine such high-energy collisions between
simple atoms, or ions, we suggest an adaptation
of the method of continuum intermediate states
(CIS). The CIS approach, devised by Belkic? for
electron capture by a structureless projectile, is
closely related to the CDW method but accounts
for distortion effects in only one of the two chan-
nels. This feature not only produces considerable
simplification from both the analytical and compu-
tational viewpoint, but also provides flexibility for
generalization to electron capture by structured
projectiles. In addition, the CIS method has the
particular advantage of being more reliable than
the CDW approximation for describing capture at
large impact parameters (Shakeshaft,® Belkic?).

The reliability of the approximations involved in
the proposed scheme is tested here by examining
the reaction

H(ls)+H(ls)~ H (1s?)+ H' . (1)

For this example, a comparison can be made with
capture cross sections derived from the results of
a CDW calculation for the reverse reaction; see
Janev and Salin*® and Moore and Banyard.® The
former workers described the H™ target by a 1s1s’
wave function, whereas, in an electron correlation
study, the latter workers used the wave function

of Weiss.” The only experimental results avaijlable
for reaction (1) are those of McClure® and, un-
fortunately, these are restricted to impact ener-
gies E €63 keV.

1. METHOD

The cross section o(n!) for the capture of elec-
tron 1, say, by a fast structured projectile system

22

(Z4, e,) of energy E in collision with a target
(Zg,e,) considered to be at rest, is written as

onl)=2 [bla,,(b)lzdb (2)

(in units of maZ), where b is the impact parameter
and (nl) is the capture state. Atomic units are
used throughout unless stated otherwise. It fol-
lows from the definition of the prior form of the
transition amplitude (see, for example, Cheshire!
that, for this reaction, a;, can be expressed as

e - e fZ 1 Z
a,-,=i'[ dt J’drldrz‘llf*(-;—;z‘*}‘f

1-2,-2)
AT LT Lpl
+ ( - U,-) Xi »
(3)
where ¥, is the initial distorted wave satisfying

Zg Z
(%Vf+§v§+—3 +=4

¥ Sz
(Zy-1)(Zz-1) .2 _
——‘L———B——R +Zat+U‘ x; = 0. 4

The position vectors 5,,X,, and ¥, locate electron j
relative to Z,, Z;, and the midpoint of R, re-
spectively, where R is the internuclear separation.
The final-state complete wave function ¥/ is de-
termined in the same manner as in the CDW
method and therefore it incorporates the ground-
state electronic wave function of the (Z,,¢e,, e,)
system and the distortion effects due to inclusion
of continuum intermediate states which arise from
the interaction of the active electron 1 with Z, in
the outward channel. In the CIS approximation, we
choose the arbitrary distorting potential U, such
that y, involves only the eigenfunctions for (Z,, e,)
and (Z,,e,) along with an appropriate phase func-
tion of the form defined by Belkic.? This require-
ment is satisfied by U,=-(Z,-1)R' and, as a
consequence, Eq. (3) becomes

1452 © 1980 The American Physical Society
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wrni L7 |G-
+<‘I'f- ZB(xlz “%)l X¢>]dt. (5)

When the passive electron 2 remains tightly bound
to Z, throughout the whole interaction, then it is
not unreasonable to suppose that the second matrix
element provides a negligible contribution to a;,.
Thus, in the calculation of g(nl), we consider only
the first term in Eq. (5). The reliability of this
approximation should increase when Z, >> Z,;
such a relationship between the nuclear charges
should also emphasize the importance of capture
at large impact parameters and thus support our
use of the CIS approach. Consequently, a very
severe test of the present scheme is provided by
applying it to the forward direction of reaction (1).
For this initial calculation, the interelectronic
interaction was approximated by the average elec-
trostatic potential due to the passive electron being
described by a 1s hydrogen atom orbital. Thus, in

Eq. (5),

(-%A—L)_.e“251(1+l>, (6)
S1  Si12 S

when Z,=1. H (1s%) was described, firstly, by the
Hartree-Fock (HF) fitted function of Curl and Coul-
son® and, secondly, by a “fixed-core” representa-
tion of the form 1sls’ in which the exponent of the
valence-electron orbital is chosen to be (2¢)!2,
where ¢ is the experimental value of the single-
ionization energy, and the fixed core is a 1s hydro-
gen orbital. The latter description of H™ has the
advantage of having one electron loosely bound
whilst the other electron remains comparatively
tightly bound. Such a wave function, albeit empiri-
cal, could be particularly appropriate at the inter-
mediate energies represented by experiment® since
contributions to o(1ls) from relatively large values
of the impact parameter may then be significant.
Finally, we used the configuration-interaction (CI)
wave function of Weiss.” This function not only
allowed for the high degree of electron correlation
in H-, and satisfied the energy variation principle,
but it also enabled us to make numerical compari-
sons with the CDW results® at large E values. The
energy decrement Ae used in conjunction with the
HF and CI wave functions was derived in each case
from the corresponding theoretical energies,
whereas, for the fixed-core description of H™, we
used the experimental value.

II. RESULTS AND DISCUSSION

Although the CIS method, like the CDW approach,
is essentially a high-energy approximation, the

comparison of our theoretical capture cross sec-
tions with experiment is limited to the data of
McClure® (see Fig. 1). Also shown in Fig. 1 are
the “post” and “prior” theoretical curves of Maple-
ton'® used by McClure® for comparison with exper-
iment. Mapleton'® employed a Born approximation
to describe reaction (1) with the ground state of H™
being represented by the correlated wave function
of Chandrasekhar.! In Table I we compare the
CIS-based results, using the HF and CI wave func-
tions, with the CDW cross sections® for projectile
energies E up to 1 MeV, The difference between
the HF and CI values measures the influence of
electron correlation within the current formula-
tions of the CIS and CDW methods.

Figure 1 shows that the three CIS-based curves
represent a considerable improvement on the
Mapleton cross sections when compared with ex-
periment, although at low energies the peak values
are still too large. It is to be noted that, as ob-
served for the CDW results,* ® each theoretical
curve appears to fall off too rapidly as E increases
in value. Additional experimental cross sections
at higher energies would provide a most useful
check with theory.

Of the curves presented in Fig. 1, that derived
from the HF wave function is perhaps the best—
this is somewhat surprising and may, as discussed

10"6

S

107 -

(e)

Cross section (cm?)

10-!8

E (keV)

FIG. 1. Electron-capture cross sections o(ls) for
H(ls) + H(ls) =~H"(1s%) +H*. The CIS results are shown
in curves (a), (b), and (c) and are derived, respectively,
from the use of the Hartree-Fock (HF) function, the
‘“fixed-core” model, and the configuration-interaction
(CI) description for H-(1s?). Curves (d) and (e) are the
“prior” and “post” results of Mapleton (Ref, 10) calcu-
lated using a Born approximation. The experimental
points are those of McClure (Ref, 8).
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TABLE I. A comparison of the electron-capture cross sections o(ls), measured in cms?,
for the reaction H(ls) + H(ls) — H"(1s?) + H*, The continuum-—intermediate-states (CIS) re-
sults are calculated here for the forward reaction, whereas the continuum-distorted-wave
(CDW) results are those of Moore and Banyard (Ref. 6) and were derived by them from the
calculated results for the reverse reaction. For H-(1s?), the Hartree-Fock (HF) function
was that of Curl and Coulson (Ref. 9) and the configuration-interaction (CI) description was

taken from Weiss (Ref. 7).

CIS CDW

E (keV) HF HF CI
25 1.681 x10-17 1.173 x 1017 2.886 x 1077 2,067 x 1017
50 3.023 x10-18 2.067 x 10-18 5.093 x 10-18 3.526 x 1018
100 3.268 x 1012 2.268 x 1012 5,227 x 1019 3.600 x 10-1°
200 2.325 x 1020 1.650 x 10-20 3.410 X 10-20 2.379 x 1020
400 1.202 X102 8.696 X 1022 1,527 x 1021 1.087 x 10~
800 4.845 X102 3.636 x 1072 4,990 X 1072 3.618 X102
1000 1.688 X102 1.284 x10-%8 1.570 x 10-% 1.143 x 103

below, arise from a cancellation of opposing ef-
fects. The more reasonable split-shell description
of H™ embodied in the empirical fixed-core model
and the Weiss wave function is seen to be reflected
in the closeness of curves (b) and (c); both curves
lie slightly below the experimental points when
E> 25 keV. Our CIS-based approximation is only
capable of responding to a split-shell or radial
component of electron correlation and makes no
allowance for the effects of angular correlation in
H™. Since the transition amplitude g,, is evaluated
in terms of momentum space, it is possible that
the opposing effects of angular and radial correla-
tion—known to exist in momentum space'?’—may
produce some cancellations. Thus, if the present
method could be modified to allow for angular cor-
relation, curve (c) might be raised. This is now
under investigation.

For both descriptions of H", Table I indicates
that for £ <800 keV, the CIS values are smaller

s

than the corresponding cross sections derived

from a CDW calculation for the reverse reaction.
The relative merit of the two schemes is difficult
to judge since, ideally, the comparisons with
experiment should be made in the higher-energy
region of Table L

IV. SUMMARY

In view of the severity of the test of the present
method, represented by its application to reaction
(1), the comparison between theory and experiment
was, overall, quite encouraging. The general pro-
cedure outlined above is now being examined in
more detail and the method is also being applied
to electron capture by fast Li ions impinging on
H atoms. Such reactions have been the subject of
a recent experimental investigation by Shah, Goffe,
and Gilbody.'® The preliminary comparisons are
pleasing.
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