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GENERAL INTRODUCTION



General Introduction

In the quantum mechanical treatment of ion-atom collisions 

much work has been done in calculating cross-sections for electron- 

capture reactions involving multi-charged ions in collision with simple 

atoms. Such reactions are of considerable interest, not only theoretically 

but also in many areas of experimental research. An example of current 

research, in which electron-capture processes may play an important 

role, can be found in connection with the practical aspects of controlled 

thermo-nuclear fusion development (see for example Barnett ).

Information such as electron-capture cross-sections is 

required in connection with the methods of producing the plasma in the 

thermonuclear fusion devices by the neutral injection of fast beams 

(150-200 keV) of hydrogen atoms in highly excited states, and also 

in the study of plasma instabilities that occur due to collisions 

between the neutral hydrogen atoms and the small percentage of highly 

stripped impurity atoms. Consequently, as stated by Barnett , atomic 

physical processes, such as electron-capture by fast singly or 

multi-charged ions,are expected to play an increasingly important role 

in the plasma physicist's and engineer's quest for thermonuclear power.

Also electron-capture from one- and two-electron atoms by 

fast projectiles is of importance in the study of post collisional 

phenomena such as projectile x-ray emission. These emissions may prove 

to be of considerable interest in the field of astrophysics which, if 

detectable, may be used in the study of cosmic ray intensities and the 

properties of interstellar gases, as discussed by Belkic and McCarroll^.

Consequently the capture of electrons by fast projectiles 

from atoms has received a great deal of attention over the years and has



been the subject of many theoretical investigations. Although at 

high energies it is the ionisation process which dominates the electron 

loss process, there has been in recent years considerable interest in 

high energy electron-capture following the suggestion of Bassel and 

Gerjouy^ that 1st order methods may be inadequate in the treatment of 

electron-capture at high energy, which is of practical significance if 

the methods of calculating electron-capture cross-sections are to 

predict accurately the high-energy dependence of such cross-sections.

The simplest electron-capture reaction is the resonant 

charge transfer process

H'*' + H(ls)— *H(1s) + , (1)

which has been the subject of many theoretical calculations in the 

region of high proton impact energies (see for example McCarroll and 

Salin^ and the work of Dettmann and Leibfried^), and has since, due 

to the exact nature of the atomic wavefunctions, served as a testing 

ground for new theories and methods. If the incident proton is denoted 

by (1) and the hydrogen nucleus by (2) and the bound electron (3), the 

exact matrix element from which the cross-section may be found is

"̂ if "CYf I 1̂2 2̂3 I ^ 'i

where are the interaction potentials between the particles i and j 

of the system, while ^  is the complete wavefunction of the total 

hamiltonian H with eigenvalue E and can be shown to satisfy the- integral 

equation

= (1 + G+ V̂ ) Y i  , (3)

where G^ is the Greens function (E - H+ ie)  ̂and is the initial 

perturbing potential which in this case is

V. = + V 3̂ ; (4)



^ and y/^ are the unperturbed wavefunctions for the initial and 

final state respectively.

Physical arguments suggest that for high impact energies, in 

particular for proton velocities much in excess of the orbital velocity 

of the captured electron (a proton energy of 25 keV for protons incident 

on hydrogen), would be accurately represented by the Born approximation,

obtained by replacing ^  î. equation (3) by the initial unperturbed

wave function such that

I 1̂2 ^23 I

The question has often been raised as to whether the inter- 

nuclear potential should be retained or omitted, and the calculations of 

cross-sections for charge-exchange, involving the Born approximation,

generally falls into two categories - those following the argument of
6 7Oppenheimer and Brinkman and Kramers that the coulomb repulsion between

the nuclei, may be neglected, such that

h f = I 2̂3 I Yi> ’
and those in which it is retained (equation (5)) and which are generally 

referred to as the 'Born approximation'.
8However, Belkic, Gayet and Salin , in a recent review of 

electron-capture in high energy ion-atom collisions have brought 

attention to the fact that at high impact energies the electron-capture 

cross-sections should not be influenced by the internuclear potential, 

and show conclusively that if the internuclear coulomb potential is 

accounted for exactly to first order in (where m is the electron

mass and yU the reduced mass) then the total cross-section for the 

forward charge-exchange is entirely independent of this potential.

This effectively means that if we wish to calculate the cross-section. 

in the limit /̂jJ-  ̂0 we may use the impact parameter method to



formulate the scattering problem (see also McCarroll and Salin^’.̂ )̂ .

In the impact parameter treatment the nuclei are assumed to behave like 

classical particles and quantum perturbation theory is applied to determine 

the chance of a transition from one electronic state to another. During 

the encounter we assume that the relative velocity vector of the nuclei 

remains constant and this then enables the internuclear potential to 

be removed from the perturbing potential in a systematic manner to give 

simply a phase factor in the transition amplitude a^^(b), which later 

disappears on forming j a^^(b) j We note that in the Brinkman and 

Kramers approximation the internuclear potential is therefore accounted 

for exactly in that it is removed from the calculation. The fact that 

the Born approximation is in better agreement with experiment than 

the Brinkman and Kramers approximation is considered to be fortuitous 

(see for example the discussion by Bransden and Cheshire ).

Before discussing the theoretical methods which go beyond

the first Born approximation it is important to understand what the

first Born approximation represents in terms of quantum perturbation

theory. The matrix element in the first Born approximation (equation

(5)) can be sho’wn, by expanding the integral equation for ^  j_'*' (equation

(3)) to be the first term in a series expansion called the 'Born series'.

Obviously the convergence of this'Born series' is of utmost importance.

The argument for the use of the first Born approximation for

rearrangement collisions is that at high impact energies, E, distortions

will be small and the series will converge, one hopes rapidly, to the

first term as E — » , and that as a result T^^ represents the leading

term in an asymptotically converging series. Consequently the convergence

of the Born series and of the physical matrix element for rearrangement
12 13 14collisions has received a considerable amount of attention ’ ’ . Of

15 11particular interest however is the work of Drisko who has suggested



that for electron-capture the Born series does not converge to its

first term in the high energy limit and therefore in order to obtain

accurate cross-sections at high impact energies one must use at least

a second order method.

The work of Drisko showed that in the second Born approximation

the capture cross-section for reaction (1) behaves at high energies as

(0.2946 + 5 TT V 2 )Qgĵ (where is the Brinkman Kramers cross-
-12section and behaves at high energies as v , where v is the impact

velocity). Drisko also estimated that the third order Born approximation

would again have a different high energy dependence, namely 
—12(0.319 + 3TTV 2 )Q although essentially both the second and third

-11/2order approximations predict a behaviour of E for large impact

energy E, which is in full agreement with the prediction given by 

Thomas^^ using classical trajectory theory.

Among the calculations going beyond first order methods, 

which are valid at high impact energies, is the impulse approximation
11 17(see Bransden and Cheshire , Cheshire ). In this method the 

unperturbed wavefunction in the matrix element, equation (3), is 

replaced by one employing outgoing wave boundary conditions, and 

although the internuclear potential is included in the matrix element 

its importance and contribution to the cross-section is very much 

reduced. Although the total cross-sections derived from the impulse 

and Born approximations are similar, virtually the whole of the impulse 

approximation cross-section is derived from the Brinkman-Kramers term. 

Furthermore, at high energies, E > 1 MeV, the impulse approxiimation
-11/2behaves like E , which is in full agreement with Drisko's

prediction for a second order Born approximation mentioned earlier.

Thus, physically the impulse approximation is an improvement over the. 

first Born approximation and the similarity in cross-sections between



the two methods adds further evidence to the suggestion that the success 

of the ’Born approximation' for total cross-sections must be to some 

extent accidental.

The most recent and successful second order method developed 

for calculating electron-capture cross-sections, at high impact 

energies, is the Continuum Distorted Wave (CDW) method introduced by
18Cheshire . Unlike the impulse approximation the CDW method incorporates 

wavefunctions which have the correct asymptotic form, and indeed this 

was one of the factors that motivated Cheshire in its derivation. The 

correct initial and final boundary conditions of the problem are ensured 

in the CDW method and this is achieved by taking full account of the 

continuum intermediate states in the charge-exchange process, in both 

the entrance and exit channels. This is an important feature of the 

CDW method since when the incident velocity is high the dominant 

inelastic transitions will be ionization and excitation, and, since 

all intermediate channels are open, it is not surprising that the 

charge-exchange cross-section will be influenced by the inclusion of 

the continuum intermediate states. Also the internuclear interaction 

V(R) is removed from the perturbing potentials in the CDW transition 

amplitude in a consistent manner. This is done in such a way that V(R) 

is exactly accounted for within the total wavefunction (to first order

¥
in ) so as to give zero contribution to the final cross-section.

Originally the CDW method was introduced by Cheshire"'̂  within 

the scheme of the well known impact parameter method, but the main 

features with respect to scattering theory,are shown in the formal
19 8quantal treatment by Gayet (see also the review by Belkic et al ).

Essentially the problem that arises when trying to obtain a second

order approximation to T^^ in equation (2), as pointed out by Greider 
20and Dodd , is that terms arise in the expansion of T̂ ^̂  which bring



about the divergence of the operator Born series. However, Dodd and 
21Greider have suggested a means by which the divergence can be overcome. 

The basic feature of their method is the introduction of an arbitrary 

perturbing potential, say v̂ , into the distorting potential, which 

could then be chosen hopefully 'to achieve a satisfactory compromise 

between realism and tractability’. Exploiting the work of Dodd and
21̂  19Greider , Gayet makes a suitable choice for v^ and arrives at a

18transition amplitude equal to that of Cheshire’s multiplied by an

arbitrary phase factor. We note also that the high energy behaviour of

the method is in full agreement with that of the second Born approximation.

In the work presented here the derivation of transition

amplitudes is achieved using the somewhat more transparent and elementary
18approach based on the impact parameter formalism, as used by Cheshire 

However, for the purpose of completeness an outline of the so-called
19wave formalism of the CDW method, as presented by Gayet , is given in 

Appendix A of this thesis.
18Since its introduction by Cheshire the CDW method has been

22 23investigated thoroughly by workers such as Salin , Belkic and Janev ,
24 2Belkic and Gayet , and Belkic and McCarroll , for the purpose of

comparing the calculated cross-sections with experimental data. For

impact velocities greater than the Bohr orbit velocity of the target

electron the theoretical cross-sections were found to be in good agreement

with experiment. Therefore, the CDW approximation has proved to be an

adequate second - order method for calculating charge exchange cross-

sections at large impact energies, and is thus an improvement over that

of the Born calculations. This is particularly so in the case of electron-

capture by highly charged ions which was examined within the CDW framework

by Belkic and McCarroll^.



For electron-capture from targets having more than one electron

the question arises as to the sensitivity of the method in question with

respect to the target electronic wavefunction. The CDW method was
24examined with this respect for the He target by Belkic and Gayet , who 

found it to be more sensitive than the corresponding first Born 

calculations. An improvement in the electronic wavefunction usually 

involves an inclusion of electron correlation and its effect on the CDW 

cross-sections for electron-capture from the He and H was the subject of 

an investigation by the workers Banyard and Szuster^^ and Moore^^.

In Part 1 of this thesis the work of Banyard, Szuster and

Moore is extended to include electron-capture from Di^ by fast protons 

and alpha-par tides. The sensitivity of.the cross-sections with respect 

to changes in the Di^ wavefunction is examined and a study is made of 

the trends in cross-sections obtained when the target nuclear charge is 

systematically increased. By analysing the CDW expression for the cross- 

section, it is noted that the cross-section obtained is sensitive to 

the description of the electrons in the two-electron target and, in 

particular, the shape of the electronic wavefunction close to the origin 

for electron-capture at high projectile velocities.

In Part 2 the CDW method is applied to electron-capture by

fast protons from a three-electron target, and cross-sections are

calculated for protons on Li. When performing a calculation involving

a many-electron atom approximations are invariably made to remove the

difficulties which arise due to the presence of the inter-electron

potential terms. In this section a modification is suggested to the

so-called 'perfect screening' approach used by others for two-electron 
23targets - The resulting cross-sections are compared with experiment and 

agreement is found to be more satisfactory than that obtained from previous 

theoretical calculations. The mqdification of the 'perfect screening'

8



method is applied also to the Li^ ion and to complete the ionization 

series, cross-sections are calculated for the one-electron target Lî"*".

As demonstrated in Parts 1 and 2, electron-capture from small 

atomic targets by fast structureless projectiles, such as protons or 

alpha-particles, can be described quite successfully by modifying the
18CDW method of Cheshire . However, also of interest is the problem of 

charge-exchange involving structured projectiles (e.g. atoms or ions with 

one or two electrons). This presents a more difficult problem due to 

the interaction between the target active electron and the passive 

electrons residing on the projectile.

Despite the success of the CDW method in predicting electron-
27capture cross-sections for fast structureless projectiles, Belkic , in

28referring to the work of Shakeshaft ,has stated that the agreement 

between the CDW method and the second Born approximation in the limit 

of high impact projectile velocity is accidental since it results from 

the incorrect asymptotic behaviour of the CDW transition amplitude at
27large impact parameters • As a consequence Belkic has proposed 

another second order method called the Continuum Intermediate States 

(CIS) approximation. The CIS method is not only satisfactory in providing 

an accurate total capture cross-section for fast protons (E > 25 keV) 

incident on H, but also, in contrast to the CDW method, it predicts a 

transition amplitude for large impact parameters, and large incident 

velocities, which is*essentially in agreement* with the second Born 

approximation and the classical treatment of Thomas^^.

The CIS method differs from that of the CDW approach in that 

it takes account of distortion effects by inclusion of the continuum 

intermediate states in only one of the collision channels. For example, 

in the prior form, the prior interaction is treated as a perturbing 

potential while the post interaction is treated fully as a coulomb distorted



wave. Although this feature of the method leads to the boundary 

condition of the problem being preserved in only one channel, we show 

in Part 3 that as a consequence of this the CIS method is rendered in 

a form which is particularly suitable for adaptation to the more 

general case of ion-atom collisions.

For the reasons stated above the CIS method will be especially

applicable to electron-capture into excited states for incident heavy

ions at high impact energies, for which large impact parameters will

be important. This subject has in recent years attracted renewed 
29 2interest , not only from a theoretical point of view but also in

1connection with the practical aspects of thermonuclear fusion and 
2astrophysics , as stated earlier.

Therefore, in Part 3» the subject of electron-capture with 

respect to the more general case of ion-atom collisions is discussed, 

and a procedure is presented, based on an adaptation of the CIS method, 

for determining cross-sections for charge exchange between simple 

structured systems. A critical test of the scheme proposed is provided 

by application to H-H collisions in which H is formed in the exit 

channel. Finally, total cross-sections for electron-capture by 

Li^, Li^^ and Lî"*" incident on H a toms are calculated and compared with 

experiment.

Since in the present work calculations are performed 

involving electron correlated wavefunctions we now present a brief 

summary of the correlation problem.

In order to obtain the exact wavefunction for an atomic or 

molecular system it is necessary to find an exact solution to the 

relevant Schrodinger equation. For the hydrogen atom and hydrogen 

molecular ion, each with a single electron, the Schrodinger wave 

equation may be solved exactly. However, for a large atom or molecule

10



the problem is made more complicated by the presence of potential 

energy terms which arise from the mutual repulsion between any two 

electrons. In practice the exact solution to the Schrodinger equation 

for a many-electron system is unobtainable and therefore varying degrees 

of approximation to the exact wavefunction must be made.

The electronic structure of many atoms and molecules has 

been studied, with some success, by means of the independent particle 

approximation. The simplifying assumption of the model is that the 

inter-electronic potential field experienced by an electron, located 

at some point in space, will depend only on the average position of 

all the other electrons. The Schrodinger equation describing an 

N-electron system is then reduced to N single-particle wave equations 

coupled together only through an average coulomb field. The total 

wavefunction is then written as a simple product of one-particle 

wavefunctions, and when evaluated numerically it is called the Hartree 

wavefunction . Unfortunately, when the total wavefunction is 

determined according to this prescription it does not take into account 

the indistinguishibility of the electrons, nor does it obey the Pauli 

exclusion principle. These difficulties are overcome by writing 

^  as a single Slater determinant^^ of one-electron wavefunctions, 

known as the atomic spin orbitals. -Any spin orbital may be written 
as the product of a spatial orbital and a spin function. If ^  is 

determined numerically in this way, it is called a Hartree Fock (HF)
32function . Interchanging the coordinates of any two electrons merely 

interchanges the corresponding rows in the Slater determinant and, by 

the theory of determinants, causes to change sign - this antisymmetry 

is the wave mechanical fulfilment of the Pauli exclusion principle.

Within the HF approximation the probability of finding two
33 34electrons with parallel spins at the same point in space is zero ’

11



35Such a point may be termed the centre of a "Fermi hole" and is a 

consequence of the antisymmetry of the wavefunction. Although the HF 

method allows electrons with the same spin properties to avoid one 

another, no allowance is made for any spatial correlation between 

electrons with opposite spins. The effect of correlation between all 

electrons can only be examined by means of wavefunctions which are more 

flexible than the HF determinant. When described by wavefunctions 

beyond the HF level each electron lies in a "coulomb hole"^^: a region 

of space which is largely devoid of other electrons due to coulombic 

repulsions.

A wavefunction that incorporates the description of the so-

called ’coulomb hole’ and has an eigenenergy beyond is termed an

electron correlated wavefunction. The energy change ^6 arising from

the allowance for electron correlation is clearly not measurable by
37experiment but is usually defined as <f £ = ^ EXACT ” ^HF’

£ exact "̂ be true non-relativistic energy and is generally deduced 

from experimental observation.

The correlation energy of an atom or molecule is usually of 

the order of magnitude of 1% of the total energy. Although this is 

relatively small it can be comparable to spectral transition energies, 

binding energies and dissociation energies in molecules. For example,

the description of H is particularly sensitive to electron 

correlation since without correlation the existence of the ground-state 

is not even predicted. Electron correlation also plays an important 

role in the determination of the correct dissociation products of the 

H^ molecule. When the ground state of H^ is described by using the HF

scheme there is equal probability of dissociation into H and H as

there is for the observed dissociation into two H atoms. This is a

consequence of the HF method allowing electrons of opposite spins to

12



accumulate on the same atom. Hence, at large internuclear distances, a 

total energy is obtained which is higher than that for the true 

dissociation products.

Although the recent development of high-speed computers has 

made the electron correlation problem more tractable, it was first
"z O

discussed as early as 1929 by Hylleraas who proposed three methods 

of constructing correlated wavefunctions. The procedure used in this 

work is of the configuration-interaction (CI) type. In this approach the 

wavefunction is expanded as a linear combination of Slater determinants, 

each of which is composed from a basis set of orbitals; the problem 

being to determine the configuration coefficients. The term configuration 

refers to a combination of Slater determinants which has the required 

angular and spin dependence of the state under study. This mixing 

together of various electronic states of the system under study, subject 

to certain angular momentum requirements, can be shown to introduce 

spatial correlation between the electrons. Clearly provided that the 

set of basis orbitals can be made complete and provided that all possible 

configurations are used, we can, in principle, calculate a Cl wavefunction 

that will yield an exact eigenenergy for the system under consideration.

In practice, of course, there is a restriction on the number of 

configurations that can conveniently be handled, although the more terms 

that can be accommodated, the better the calculated energy. The main 

drawback of the Cl calculation is that, at the outset, it is not certain 

which configurations will be most effective in lowering the energy. In 

addition it is found that the energy convergence is notoriously slow.

These difficulties can be overcome by expressing the wavefunction in 

terms of the so-called natural spin-orbitals^^(NSC’s). Lowdin 

has defined these (orthonormal) spin-orbitals TL (x̂ ) as being those 

which produce a diagonal representation of the first order density

13



matrix ç , x^  ̂'

 ̂(2/ >ii) = N J J/(x, ,Xg, •••.,̂)li' (x,,X2,..-.2fj)*S2‘̂ --%

= Ç = i  -Ci(x'|) iliCx,) (7)

where x^ refers to the collective space and spin coordinates of electron

i. The coefficient ĉ  ̂is known as the occupation number of the i^^ natural

orbital (NO), and clearly satisfy ) ĉ  = N. Using a theorem due to
4l ^Schmidt it can be shown that any spin-orbital whose population is

negligible may be omitted from a Cl expansion. In other words the

convergence of a Cl wavefunction can be vastly improved by including 

only those natural spin orbitals having the highest occupation number.

This result may appear to be of little value, since in order to determine 

the natural orbitals it is first necessary to calculate the density, 

which in turn requires a knowledge of the exact wavefunction. Never­

theless, by diagonalising the density matrix at any stage in a Cl 

calculation and then selecting the configurations involving the most 

heavily populated NSO’s, one may dramatically shorten the expansion.

However, for the purpose of calculating such quantities as 

the electron-capture cross-sections it is the use of the natural 

orbitals as a means to further our understanding of electron correlation 

that is of primary importance here. This end is achieved by expanding 

the existing Cl wavefunction in terms of natural orbitals which are then 

grouped into natural configurations. Such a representation is generally 

known as the natural expansion of the wavefunction, and exhibits 

features which are of particular relevance to our present work. Firstly, 

the terms appearing in the natural expansion are found to be well- 

ordered by virtue of their energetically decreasing importance.

Secondly, the correlation within the wavefunction is conveniently

14



partitioned both in terms of its radial and angular components and also 

according to the size of its correlation contributions. It is thus in 

a convenient form for our electron correlation study.

In Parts 1 and 3 the natural expansion representation of the 

Cl wavefunction is used to demonstrate how the radial and angular 

correlation, included within the Cl wavefunction, influences the 

calculated electron-capture cross-sections. In particular, in Part 3 

attention is drawn to the opposing effects of radial and angular 

correlation.

15
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PART ONE

The calculation of electron-capture cross-sections for 

fast protons and alpha-particles in Li"̂  using the Continuum Distorted 

Wave (CDW) method, plus an analysis of the effects of electron'* 

correlation and of the trends in capture cross-sections for two- 

electron targets.



CHAPTER 1.1 

Introduction

The continuum distorted wave (CDW) approximation was introduced 
']by Cheshire who used it to calculate cross-sections for the resonant 

charge transfer process

H"̂ + H(ls) --► H(ls) + (1.1.1)
2 3 4and compared his results with those of the Bates , Born and impulse

approximations. Although no comparison with experiment was made,

Cheshire showed that the CDW method, when formulated with wavefunctions

having the correct boundary conditions, has a correct high energy
5/behaviour which is in full agreement with the second Born approximation 

but, at low energies, the cross-sections were found to increase too 

rapidly with decreasing energy. The CDW approximation was extended 

to more complex collisions by Salin^, who calculated individual capture 

cross-sections, Q'(rL/), for the reactions

H*̂ + Eds) --> H(ni) + H'̂ (1.1.2)

and + He(ls^)— ► H(rJ) + He^(ls) (1.1.3)

for ni = Is, 2s, 2p and 3s in the impact energy range 400 keV ̂  É 4 3MeV.
-3 7Using the Oppenheimer n rule to estimate individual cross-sections

y
for n > 2, Salin evaluated the total cross-sections Q = (T"(n/) and

found them to be in good agreement with experiment throughout the whole
g

energy range. Belkic and Janev generalised the method to electron- 

capture from any two-electron system by a fast nucleus and applied it 

to the reactions

He^+ + Eds) > Ee'̂ (ni) + E^ (1.1.4)

and Ee^+ + Ee(ls^) ►Ee'̂ (nZ) + Ee+(ls) , (1.1.3)

for ni = Is, 2s, 2p, 3s and 3p; the energy of the alpha-particles ranged 

from 25 keV to 3 MeV. The total cross-sections Q were obtained using the

7 see also reference 25, p.395-
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same n  ̂sum rule^ employed by Salin and, for reaction (1.1.5), the

results were found to be in satisfactory agreement with experiment when

E > 600 keV, Belkic and Janev comment that it can be expected, from 
9the work of Gayet , that the CDW approximation for charge exchange processes

should be reliable down to 50-50 keV. However, such a comparison of Q

with experiment will be restricted in this energy region by the
-5 7reliability of the Oppenheimer n rule . As a consequence, Belkic and

Gayet^^'^^ have calculated the CDW individual cross-sections Ô (ni) for

reactions (1.1.2-5), when nX = Is,2s,2p,3s,5p,3d and 4s, for the

purpose of comparing them with experimental data. The total cross-sections
-3 10Q were evaluated using a more appropriate n sum rule which was

expected to be valid at low impact energies - down to about 50 keV for

the H* - H collisions. For reactions (1.1.2) and (1.1.3), they reported

that the total cross-sections were in excellent agreement with experiment

for E > 40 keV and E > 80 keV, respectively. A satisfactory agreement

with experiment for alpha-particles was observed down to 100 keV for

reaction (1.1.4) and dô wn to 5OO keV for reaction (1.1.5).

For electron-capture into atomic hydrogen states with non-zero

values of the angular quantum number JL , Belkic and Gayet reported

that no firm conclusion could be drawn on the accuracy of the CDW method

until more extensive measurements have been performed. However, for the

formation of atomic hydrogen in the Is, 2s, 3s and 4s states, the CDW

method works well for the H and He targets down to proton impact energies of

roughly 50 keV and 80 keV, respectively.

In the earlier work of Salin^ the CDW cross-sections were found to

be sensitive to the nature of the He wavefunction. Using the simple
12one-parameter variational wavefunction of Hylleraas and the open-shell

13wavefunction of Eckart , discrepancies between the two sets of results
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were quite significant. The difference was about 1,0% for E < 1 MeV

and within 20% for E > 1 MeV. In view of this large percentage change,
l4Banyard and Szuster studied reaction (1.1.3), for 25 keV ^ E ^ 3 MeV,

and examined the sensitivity of the CDW individual and total cross-sections

with respect to improvements in the He wavefunction up to and beyond the

Hartree-Fock description. In going from the Hartree-Fock (HF) wavefunction

of Clementi"'̂  to the correlated wavefunction of Weiss"'changes in Q

were relatively small - of the order of 4% - although for capture into

the individual hydrogen states the percentage changes were slightly

larger- However, improvement in the target wavefunction from a simple

one-parameter wavefunction up to the HF level produced, at E > 1000 keV,

much larger changes in Q: the relative•changes were about 25-30%. A

study of the cross-section dependence for reaction (1.1.5) revealed 
17similar trends. Banyard and Szuster concluded that it is essential

to describe the target by at least an HF wavefunction if meaningful

comparisons are to be made with experiment. An atomic system for which

it is essential to go beyond the HF description is the hydrogen negative

ion - since without an allowance for electron-correlation H is essentially

unstable. Moore and Banyard"'^’  ̂studied H as a target for electron

capture by protons and alpha-particles over an energy range 100 keV ^

E ^ 10 MeV and 500 keV ^ E ^ 10 MeV, respectively, with emphasis

on the change in cross-sections due to variations in the H wavefunction.
1Using the correlated function of Weiss and the HF function of Curl and 

Coulson^^ they found that correlation reduced Q by at least l6% over both 

energy ranges. As for He, they also observed that percentage changes 

for capture into the individual hydrogen states, nl - Is,2s, and 2p, 

were larger, roughly 26-30% for both protons and alpha-particles.
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The factors that influence the cross-section for an electron-capture

process include not .only the nature of the bound state atomic wavefunctions

but also such features as the distorting or perturbing potentials (acting

either in the inward or outward channels), the changes in the electronic

binding energies, and the relative velocity of the incident projectile.

These may be coupled together in a complicated manner and their individual

effects upon the cross-sections is often lost in the mathematical analysis

and the final numerical calculations involved. However, the analysis

and study of these factors may not only be pleasing from an aesthetic

point of view but could prove useful in understanding both the relative

magnitudes of capture cross-sections for different targets or projectiles

and the changes which occur when improving the target wavefunctions. Such

knowledge can be helpful when attempting to modify the method itself.

In the chapters that follow we evaluate the CDW electron-capture cross-

sections for fast protons and alpha-particles incident on the Li''’ ion.

This not only extends the work already done on two-electron systems but,

in particular, it will allow us to examine the trends in Q obtained when

systematically increasing the target nuclear charge. Thus we analyse

the CDW expression for the general capture cross-section CT (n/,n(/ ) for

the three systems H , He and Li^ at progressively increasing projectile

velocity. The quantum numbers nJt and represent the bound states

of the ’active’ (or captured) and ’passive’ electrons, respectively. For

protons and alpha-particles incident on Li^ the capture cross-sections are

calculated in the energy ranges 100-3000 keV and 100-10000 keV. The

cross-sections CT(n/ ) for each reaction are calculated for the capture

states nX - Is, 2s and 2p and the total cross-sec Lion, Q = Xj O^(ni),
-3 ^is determined by using the n rule. We also examine the sensitivity of 

the cross-sections with respect to changes in the Li^ wavefunction in order
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to study the variation of the effect of electron-correlation as the 

nuclear charge of the two-electron target is increased. Finally, the 

total cross-sections are compared with recent experimental data.

In order to facilitate the analysis of the cross-sections mentioned 

above, and to aid the resulting discussion, it is clearly appropriate 

that we first present a derivation of the CDW transition amplitude.

Thus, in Chapters 2 and 3 we derive the CDW method for the general case 

of electron-capture from a two-electron atom by a structureless projectile, 

and then discuss the evaluation of the transition amplitude and resulting 

cross-section. The method is developed within the somewhat more transparent 

scheme of the impact-parameter approach used by Cheshire but the full
9quantal treatment of the CDW approximation, due to Gayet , is presented 

in Appendix A.
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CHAPTER 1.2 

The CDW transition amplitude

Consider an encounter in which a nucleus A, of charge is 

incident on an atom or ion consisting of two electrons (1) and (2)

bound to a nucleus B, charge Z . Let x. and x^ be the position vectorsD — I —d.
of electron (1) and (2) with respect to the nucleus of B and ŝ  , ŝ̂

the corresponding vectors relative to the nucleus A. The reaction we are 

considering is therefore of the type (see Figure 1.1):

2a + [%B' ' 2(2)] .  . [Z^ , e(1)] + [z^ , e(2)J ,

(1.2.1)
where i and f denote the initial and final states respectively. We shall

calculate the cross-section for capture of electron 1 (the so-called

’active’ electron) and, since the electrons are indistinguishable

and therefore the capture of either electron is equally probable, the final

cross-section is simply twice that for the capture of electron 1.
'\We shall adopt the approach of Cheshire and formulate the problem 

using the Impact Parameter (IP) method . In the IP approximation it is 

assumed that A moves with a constant velocity v with respect to the fixed 

nucleus B. Thus if R is the position vector of A relative to B then

R = b + vt (1.2.2)

where t is the time, chosen such that at t = 0 the nuclei A and B have 

a minimum separation b - this being the impact parameter for the collision. 

Let 0 be an arbitrary origin along AB, and let r̂  and r̂  be the position 

vectors of electrons (l) and (2) with respect to the origin 0. Bates 

and McCarroll have shown that the results of the theory are independent 

of the choice of origin 0; therefore for convenience we shall always take

see reference 25, p.lOS.
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0 to be the mid-point of the line AB. The complete Schrodinger equation 

describing the motion of the electrons during collision is

-1 -2 Xg ŝ  s^ x^2 R

(1.2.3)- i à 5^ (£̂  , £2  ̂ t) 

à t

where x^^ is the distance between electrons (1) and (2).

In the frame of reference with an origin at point 0 the active

electron (l) has, in addition to its orbital motion about the target B,

a velocity by virtue of being bound to B. Similarly, an electron

bound to the nucleus A would have a velocity ^v. If a collision produces

only the excitation of the target atom, the active electron continues

to move with the nucleus B and its translational motion remains unchanged

since y is assumed constant. However, in the case of a rearrangement

collision, the electron, which was originally moving with B, is captured

by A and must therefore acquire the linear velocity of A. The consequent

change in momentum of the electron might be- expected to have an increasingly

important effect on the electron capture cross-section as the projectile
21energy is increased. It was therefore suggested by Bates and McCarroll 

that a set of wavefunctions which take into account the energy and 

momentum associated with the translational motion of the active electron 

should be used as the basis for the expansion of the electronic wave­

function ̂ (r^ , £2 , t).

The complete electronic wavefunction ^(r^ 1 £2 ' )̂ will satisfy 

the following boundary conditions:

î £l ’£2 ’  ̂ 1 Ip f —--> ^f^£'i»£2’̂  ̂ 1

(1.2.4)
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where
/ i zyz - 2) \

, Zg , t) = n  , rg, t)exp^    Xn^rR - v t)J

(-1.2.5)

ajiu
T r. f 2 \

’ £2 ’ f ^ -1  ’ £2 ’     -6\(vR+v t)J .

(1.2.6)
It follows that the functions ^  ̂  f̂ £'|»£2’̂  ̂are the solutions to the

equations

iiSJ^ + i SJ^ + ^  + ^  - ^
—1 -2 %2 x^2 B yE

(1.2 .7)

+ i + ià)|yr^,r,,t) = 0  .

(1.2.8)
-1 -2 ŝ  x̂  R &t

2Following the suggestion of Bates we may write 

JTI j^(r,, , ^ , t )  = ,Xg )exp  ^ - i [ i  v.r,^ + i v.r  ̂ + + 6j^t] j

(1.2 .9)
and

n  .Ig.t) =y/j (Xg)exp/ -i [-4i.£.| + iz-^2 *
i 2 I

+(ê|. + » (1.2 .10)

where 5̂ 2  ̂’ ^£1^’ £̂2  ̂ are the bound state electronic
wavefunctions in the initial and final states with corresponding eigen-

energies ^ ^ , £ „ such that
1 i/j ^2

("■JV + ?  V r  + + f â  - _ 1 _ + ^ i ( £ i  , Xg) = 0 > (1.2 .11)-1 42 x̂  X2 x^2 / X 1
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2
( i V r  * fi + Ef ) (s ) = 0 , (1.2.12)
' - 1 s  1' ' 1

and
2

( i V r  + f: + (E ) ): (x ) = 0 . (1.2.13)
 ̂ -2 2' 2

We now introduce the distorted waves 'X ̂ and 0(^ defined as the 

solutions of the equations

fiVr + - _ L  Ù + a 1 K y r  ,£̂ ,t) = 0
>■ -1 %2 3̂  E St  ̂ ^

(1.2.14)

and
2 2

i V r  + i V r   ̂! a A  d + là ̂
-1 4.2 x^ R . S t

(1.2 .15)

with the boundary conditions

0(i . |»i aiid 0<f----. - (1.2 .16)
t --» - t  » +®o

Clearly the distorting potentials and must be chosen such that they 

will vanish in the limit of large internuclear separation.

If \p ̂ and ^  f are the solutions of equation (1.2.5) with boundary 

conditions (1.2.4) then the 'prior' transition amplitude a^^is obtained 

by projecting the initial state on to the complete wavefunction \px-« 

Therefore

a^^ = lim

lim 
t ► — .6

J d£i iEs §i

j* — 'I — 2 ^  f 0(i • (1.2.17)

Now consider the term
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*
f Tt"

Using equation (1.2.140, the right-hand side of the above equation becomes

it K l  ^ 2  = T I  dTg I X i  +

^  %B .1
Xxj %2 ^12 ^ ^- E.)

(1.2.18)
By noting the relation that

j  ■ •

when Q is an Hermitian operator, and by making use of equation (1.2.3) 

we find that ( 1.2.18) becomes

Q V'b = J % y^a y/bI dr (1.2.19)

dt
r c z  z
J d r ^ d x ^ l ^ j  0<i = I  J d£-| d£a 'îf ^  ^  X i  .

(1.2.20)
Let us consider the integral

P.p= - — lim I  dt } dr̂  dTg (* - h ^ h j _ h
ŝ  R - O  'Xi

which by equation (1.2.20 ), is
oO r _

- li* J J it  J <^1 'Xi

(1.2.21)

(1.2.22)

Now provided 

lim
t— » +-.0 J d£i dTg (p* -Xi = 0 ,

we can integrate equation (1.2.22) to obtain

P.r - lim
t _ - «

(1.2.23)

(1.2.24)
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Therefore we have shown that, provided condition (1.2.23) holds,
+ oO

(1.2.23)
Alternatively we could consider the time reversed reaction to obtain 

the 'post' transition amplitude b^^ in the form

h f  = ^ f  f <^1 d£2 f f fi - n _  - !» - !i + 1 - ^î)'X* l^'i ’.1 •' \ Sg E R E / Jl

(1.2.26)
which is true provided that

lim [ K *  Api d£2 = 0 . (1 .2 .2? )
t  ► + #6 J 1

The cross-section OT ̂ is obtained by integrating over all possible

impact parameters

CT-Lf = 2 j b |a.^| db (Wa^) = 2 j b|b^^| dbCTTâ ) . (1.2.28)
o o

The Distorted Wave Functions

We represent the solutions and in the form

T  i h i  = r i i ( £ - i > - 2 ’ *  ̂ i (Ë i 'Ë 2 ' t )  C l .2.29)

and

V j/ f^ £ v 4 2 ’ ^̂  X. " (T-2 .30)

Clearly, in the limit, and must tend towards the correct phase 

factors given in equations (1.2.3) and (1.2.6) in order that the solutions 

for and will have the correct asymptotic behaviour. Substituting 

for Vpĵ  and into equation (1.2.3), we see that and are solutions

of

r?2 t5_,2 h  h  ^A^B i n  i r?V  + — i i - V  - i i - v  +£l l2  ̂ £2

28 (1.2.31)



i - 1 - ^A^B + i Y.y? -i V . T 7  + ià
L \/£i \/r2 ;; --ir- 2 - 2 %t

2

^f^£v42 ’̂  ̂- " ^  t^4j ^  £̂i '£2̂ ^

(1.2 .32)

Equations (1.2.31) and (1.2.32) are exact. The exact solution to 

^ a n d  cannot be obtained without solving the complete scattering 

problem. First-order approximations to ^ and , denoted by and 

^  ̂  , are obtained by neglecting the right-hand sides of equations

(1.2.31) and (1.2.32). In solving such equations for and ^

attention should be paid to the fact that the dominant contribution to 

the single electron-capture amplitude in reaction (1.2.1) comes from the 

region of small values of j j . This implies that in the equations 

for ^  ̂  and  ̂we can replace l/s^ by 1/R and l/x^^ by 1/x̂  to a good 

approximation. We will refer to this as the 'perfect-screening’ 

approximation, since we are effectively saying that the ’passive’ electron 

perfectly screens the target nucleus such that the ’active’ electron 

experiences a charge of - 1. In this way' the coordinate of the

’passive’ electron disappears from these equations reducing our two-electron 

problem to a one-electron problem. The functions and then

become solutions of

( i V r  ~ - i l  *Vr + il) 7i^-1 ' *) = 0' - I s , ,  g 2 -1 St / "*-1

(1.2.33)
and

( ? V r  + + i v.V^ + ill /f(li.t) = 0 ,
\ R 2 4i at /

(1.2.34)

with the boundary conditions

lim = exp j ^A^^B ~ A(vR - v̂ t) | (1.2.33)
t ► — «0 4 V J
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and

lim 
t— ^+oa

= exp ^ -î Â ~ ~ /i(vR + v^t)| . (1.2.36)

Solving* for ^ and we obtain

7 i(s,,t)=N̂ (v),,F,, [iV,,; 1 ; i(vs,,+v.s,)j exp f /n(vR - v̂ t)j.
(1.2.37)

and

7f(x,j ,t)=Ng(v),,Fl [-iVg; 1 ; -i(vx,,+v.x,)] expj 2n(vE+v^t)| ,

(1.2.38)
where 

'A
7Î V / 2  „

N,̂ (v) = e r  (1 - i V p  (1.2.39a)

V,, = / V (1.2.39b)

*■ IT V  y  2 _
Ng(v) = e r  (1 + i Vg) (1.2.40a)

•Vg = (Zg - 1) / V . (1.2.40b)

The confluent hypergeometric functions | F, are the coulomb wavefunctions 

that describe the distortion of the active electron by a coulomb potential, 

and have the following asymptotic forms

N^(v)^ Fi [iV^; 1 ; i(vs + y.s)j exp ̂ / ^ n ( v s  + y.s)j ,

(1.2.41)

and 

N.g(v)^F^ [”^'^2’"'*’ +v.x) j exp f 4-̂ ^̂ B ^n(vx + y.x)% .
X— ». oO  ̂ ^

(1.2.42)

It follows that the boundary conditions (1.2.35) and (1.2.36) are obeyed 

since we have
M I .rW _lim 

t — :

* see reference 2 5,P. 2 39
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and 2

lim /n f -P—  - -■ I = 0 . (1.2.43b)
t—  ̂ + 1-2 J

We now look for solutions of the distorted wave equations (1.2.14) and

(1.2.15) io. the form

Xi^li ' £2 ' =Xli(£i . £g , t) , t) (1.2.44)
and

0<f(£l ' £2 ' t) = A f ( r , ,  , £2 , t) 7f(£i > t) (1.2.45)

by making the appropriate choice for the distorting potentials and Û .

In the CDW method these turn out to be

U. = - ^^A + A. (1.2.46)
 ̂ ^  ^

and
= _^ + ^  - J L  + , (1.2.47)

®2 ^12 ^ R R

where and A^ are perturbing potentials that vanish at large internuclear 

separations and are chosen so as to obtain the desired solutions for  ̂

and 0( Substituting (1.2.44) and (1.2.4$) into equations (1.2.14) and
y  / y  /

(1.2.15) we find that ^ a n d  ^  ̂  are given by equations (1.2.33) and

(1.2.34) provided we define the potential operators A. „ such that ̂1 ̂

h  'Xi = -ni[Vr7°Se ^  i(ll • [Vr,, (1.2.48)
and

A f = -Df [Vr7°Sefyf ̂ (£l ) X  f^(2a)}] * [ ̂ r,, 7  f̂ Sl ’ *> ] '^ — 'I I" I d J — 'I ' -
(1.2.49)

Substituting for U. and in equations (1.2.2$) and 1.2.26), we obtain

= -i J dt J d£,| d£g h  "Xi î'f (1.2 .51)
and

b.f = -i I  dt J dr,, dTg A* X f  Ÿ i  • (1.2.52)
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The continuum distorted wave approximation consists of the replacement of 

^ i  1 ^  equations (1.2.26) and(1.2.2$) by ^  ̂  , 'X £ respectively.
It is easily seen that in this approximation the distorted wavefunctions 

^  ̂  and 'X £ have the correct asymptotic conditions: from equations (1.2.44) 

and (1.2.4$) we have that Xj_ = ^  £ and 'X£ ~ i^£ ’

therefore, by virtue of equations (1.2.3$) and (1.2.36),

'X £ --- > £ and ^  £ --- » &  £  > f ’ wbich
t-^— t— t t ^

are the required conditions.
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CHAPTER 1.3

Evaluation of the CDW cross-section

Let us now examine, in detail, the evaluation of the CDW cross- 

section , nV] for the general reactionif

Z. +A [^B ’ ®1 ’ 2̂]  [̂ A ’ ®l] [^B ’ 2̂ ] ’ C'1-3.1)

where the target atom will be considered to be in its ground state - hence

i = 1ŝ , and n^ = Is, 2s, and 2p. The nature of the steps involved

will depend upon the type of wavefunction employed to describe the ground-

state target atom. In the present work we describe the two-electron
22target atom by the natural expansion of the 33-term configuration- 

interaction (ci) wavefunction of Weiss"'̂ ', which is of the general form

5  ( z ÿ n )

The Weiss function is given by x = 1$ although varying approximations to 

^(1,2) can be obtained by suitable truncation of the expansion in

(1.3.2). The normalised natural orbitals are linear combinations

of the fifteen normalised STO’s, n^, m  , used by Weiss in the 

construction of his Cl wavefunction:

^  _ . (1.3 .3)
t - .1 ' -̂.1]=

For ease of discussion and to assist in writing down the equations we 

re-write ^(1,2) as

> Ig) = . (1.3.4)

where
13 13

X r  E  r  z ,
“‘='' (2Z( +D? '”='^ P""'

(1.3 .5)
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^ ' (1.3.6)

■ «̂/y  ̂ ® x^ ’̂ x^^ ’ ('lo.?)

and
^R^p(r) = N(?^ ) r e  ̂ . (1.3.8)

The functions ^  (x̂ ) and represent the basis orbitals

describing the 'active' and 'passive' electrons, respectively, within the 

natural expansion and and N( are the appropriate normalisation

constants. The following analysis is general for any two-electron 

wavefunction which is separable into the form (1.3-4) and thus the steps 

involved can easily be reduced or adapted to the case of an HF or split- 

shell (Isis ) wavefunction^^, i.e.

\ngp(1,2) = N ^  <p (Xg) (1.3.9)

'jplsls'̂ ''*̂  ̂ 9i«(Xg)j . (1.3.10)

The transition amplitude we wish to evaluate is given by equation

(1.2.31)

a(nV , ViJL* ) = -i J dt J dr̂  dn^ ^±'X±‘̂ f » (1-3-11)

where
Ai ^ i  "^i [ ’̂ 2^] *[ Vr^ ^  î £l ’ ] * (1-3-12)

24The integral representation for the coulomb function is given by

dw 1 \,F, (iV; 1 ; iq) = J Z7 C   ̂à  ) e , (1-3-13)

where the contour encloses the points 0 and -1. Substituting for ^  ̂  

from equation (1.2.37) and making use of the representation (1.3 -13), 
equation (1.3-12) then becomes
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dua
ua

-i<o(vŝ + y._ŝ ) 
e exp [ Zn(vR - v^t)] j (1.3.14)

where Z = Z^(Zg - 1). Therefore,

a.{njL ,n'j^)= -i J dt dr̂  J dr^ exp -̂ n( vR-v^t)j^ ̂
— oO

Sl=1 VX,,J èx,| [ l°Se ,Xo) 1 <^duafl +1 I I VJ ' w

-iw(vs^ + v.s ) ) "%
( T p f  . (1.3.15)

Replacing by X  j = fi j ;?Cf ’ “ “I substituting for fi ^ and  ̂ ,

we obtain

a(n/,nV^ )= -
vN^(v)Ng(v)

(bv)2i Z/̂
41T

-V-OÔf dt e dS
•• ôto

 ̂f)  ̂I  <̂ 1 [<'£2 'X 2(/' (2z) ^

-i y* r̂  -iu»( vŝ +̂y.y.̂ ) -i%(vx^+y.x^) r
£r£i + Z'£i

V X,

(1.3 .16)

where ’̂ 2̂  ’ V^n.f^4l^’ ̂  the target atom, the final
capture state and residual target atom electronic wavefunctions with the 

corresponding eigenenergies 6g(ls^), g ̂ (n-/) and G g(n'Z^ ) and where 

the energy decrement A 6  = €g(ls^)-

(1.3.16) may be re-written in the form

vN.(v)N^(v) 2iZ/v 
a(n/,n'.£' ) = -------- ^--  (bv)

4TÏ
-iV-

i-tr R

A(nl)-

f-
^aC^r !'9 oO

R«y% 9

-iA6t
i f .

(1.3 .17)
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where I «cy = I  d£2 is (22) (€^(22) (1.3 .18)

and

p = I “̂1

-iÇ(vx^ + y.x^)

-iy.r^ -iw(v6^ + y.s^)

1 • 5 i
V (1.3 .19)

Using the Fourier transform method of evaluating two-centre integrals , 

it is easily shown that

vN.(v)N^(v)
4oO

a(ni, n'/')=------------ (bv)^^^/^ D ^ y  | c
• ot>

-iA€f
4TT"(2TT) 

-iV. . . . -iV

J dw J dX

i 2 • 2-1 -i 2 . X,,
e e

(K) X

(1.3 .20)

where

(K) = j d2i j  d£i ) e
-i/»j(vs..j + y.s^)

-ik.s. \ , -is(vx +V.X.) iK.x. 2 • 2i ®i • 2i
V X, J

After noting that

s.x--= COS 6 COS 6 + sin 0 sin 0
SX X s X

F*"(k)G(K) then becomes

F * (k)G(K)
4

m=1

s X

(1.3 .21)

(1.3.22)

see reference 2 5, p.213<
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where

f̂ ^(k) = d£̂  (1.3.23)

¥ i*»q ik.ŝ
f^(k) = G cos 0 ̂ d ' dŝ  (1.3.24)

f^(k)
iWq ik.ŝ

= j(^n^(si) e sin 0 ̂ cos e dâ  (1.3.25)

r ik.s.
(k) - j G sin 6  ̂ sin<^^ e dŝ  (1.3.26)

with

q = V ŝ  + y.s^  ̂ (1.3 .27)

and

;̂ (K) = ĝ (K)
r  X - i T p  Î4.X

K) = j ^   ̂ COS 0^^ e dx̂  (1.3 .28)

r "X “tÇp iK.x
= J ï Î ; W -7 ® sin COS 4» e -1

(1.3 .29)

-ifp _ , iX.x,
' ^1

(1.3 .30)

with p = V x^ + y.x,j .

The f and g integrals were then evaluated by making use of the expansions

®  ̂ = ( i i f  (1.3.31)

and J

7(=°"4ks) = l2Z?iT £ / / , m  %  - 9»s) L,m ) • (1-3.32)

Returning now to equation (1.3.20) we have, for the coordinate 

system describing the collision process (see Figure 1.1), the relationships 

x,̂ = r̂  -(- -Jr and ŝ  = r̂  - -Jr . Substituting for x.̂ and _s.̂ using the Dirac 

relationships
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(2TT

and

, r i(k-k ).r f
)"^J e d £ = é ( k - k ^ )  (1.3 .35a)

If(k) (J (k - k̂ ) dk = f(£̂ ) (1.3.33b)
we can then integrate over the variables j  and k in equation (1.3.20).

The substitution u = vt and use of (1.3.3]a)enables us to evaluate the 

integral over time t. Taking cartesian coordinates for K and y with 

y defining the z-direction we may then integrate over by making further 

use of equations (1.3.33&-33b).The result is

a(ni, n'y )= - Ê ('")Eb(v) ^ f /1 + %
4n2(2Tt)2 ^ ̂_ +-Ô

—iVp f —ibK r ^
(1 - 1 ) W  J dK^ e J  dKy I -  A i )  ( V y ' - i  --i!) •5 k V V

(1.3.34)

By making the substitution = 7| cos 0 and sin 0 and then

integrating over 6 , u? and 'Ç the expression for a(û , ) may be

reduced further to yield ^
2iZ/v r

a(n/,nV)= -(bv) J , (1.3.35)
o

where q = 0 for n U  - 1s,2s,2p^ and q = 1 for n-£ = 2p^ ;

Jq(b7l) is a Bessel function of order q and (ŷ  ) is given by

V n ' l ' ^ Y = N x f ]  iz E  E
(2ŵ +1 )  ̂ ^--JLl ^=1 ^=1

/*̂ (‘*l?v,Ĉ ^̂ (x.̂ )jA6) .̂ l( 7q,v,C^^(xi) ,Y?n̂ (s..|), V.|, Vz» Aé ). (1.3.36)

We note here that in the evaluation of the integrals in (1.3*34) the 

polar axis % is defined along the direction of the velocity y of the 

incident projectile and the impact parameter b is chosen to lie along 

the x-axis. As a consequence of this choice the cross-section for capture 

into the 2p state of projectile A is given by
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o ' (2p,nX' ) = cr(2p̂ ,n'/' ) + 0"(2p , n V  ) (1.3.37)

since, in the present mathematical framework, (2p^,n^ ) is

identically zero.

Before proceeding with the evaluation of QT l! ) it is of

interest to examine the quantity Io<y defined in equation (1.3«18).

Iĉ y is the overlap integral between the initial and final-state 

orbitals of the 'passive' (or uncaptured) electron. This is easily 

demonstrated since by using the Fourier transform technique we have that

= j* d£-2 ~ (l = o) ,
where, generally,

which means

= J ^ 2  • (1.3.38)

The wavefunction (x̂ ) is the description of the residual target atom

and, in our case, (x̂ ) are the basis orbitals used in describing the

'passive' electron within the natural expansion representation of the 

target wavefunction. From a correlation point of view, the behaviour 

of has a significant effect on the transition amplitude. The

wavefunction yjy (x2  ̂ is given by

(Xg) = (Xg) ïj ■ (1-3-39)

Therefore

(xg) ^(Gxg,<^Xg) ^®Xg-^Xg^ %  ,

(1.3.40)

where we have made use of equation (1.3*7 ). Consider the integral over

the azimuthal angle ; the integral will be of the form
^2

i(m' -m)ĵ  ( 21T if m = m'
l e  ^2 d0 =J 2̂o

39

(1.3.41)
0 if m / m'



and therefore m is restricted to the value of . This means that equation

(1.3.40) can be written as
«0 w  zn

O d o

d0^ . (1.3.42)
2 2

However, we know that

f r ( 6, ' ( G ,j2)sin6 d9 <30 = f  ^  .
J J .e xg xg ^  I  0 if J U * r

(1.3.43)
Thus, the contribtions to ) from all natural configurations

using basis functions with will be zero. If we consider the

most likely case, when nC/^ = Is, then only radial correlation terms

within the target wavefunction will contribute to the cross-section

Q" , 1sJ . It is also evident that if we were considering, for

example, a process in which the residual target atom is left in a 2p

state then only configurations involving Â-d, - 1 will contribute to the

cross-section. Consequently, within the present approximation, a zero

cross-section would be predicted for such a process unless angular

correlation is included in the description of the target atom ground

state. The orthogonality condition (1.3.43) in I^y has arisen because,

in equations (1.2.33-34), we have eliminated the 'passive' electron from

the distorted wavefunction 5̂ . and If this had not been done, an
io/(vs2^+ y.s^)

operator of the type e would have been.introduced into

locy - destroying the orthogonality condition and therefore retaining 

contributions from all angular-type correlation terms.

In order to evaluate C7̂  ] it is not necessary to

perform the integration in (1.3.35) since, by substituting equation

(1.3.35) into (1.2 .28) and noting that
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eO
J^(b%) J^ihri) b db = S { ri - ri ) , (1.3.44)

o
where the order t is arbitrary, we obtain for the capture cross-section

7  2q- , nU'] = 4 j (7j)j d7̂  . (1.3.45)
o

In the above equation q = 0 for iijd = 1s,2s,2p^ and q = 1 for n-^ = 2p̂ .

Let us now restrict the description of the target atom ground-state 

wavefunction to that of an HF wavefunction (see equation ( 1.3*9). The 

form for W ^  (r̂ ) is easily obtained by considering only the first

term in the expansion (1.3*2), setting Cj = 1 and removing the summation 

over m since £  ̂= 0 for a 1 * S state. The cross-section can now be 

written

g "  (nJ.,n'J.‘ ) = 4^l(2byC£y(x2) (xg))|

oO

o ^

,V2>A€)| dri , (1.3.46)

where the functional form of contains the initial orbital description 

of electron 1 whilst involves the orbital description of the active 

electron in both its initial, C^^(x^),and final capture state , 

V^^y(s^). We note that i n t h e  initial and final capture-state 

are linked together in an intricate manner due to the distortion in the 

outward channel via  ̂i this feature will prove to be of importance 

when we analyse our results in Chapters 1.4 and 1.3.
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CHAPTER 1.4

Electron-capture from Li~̂  by fast protons and alpha-particles

In this chapter we present and discuss our results for the capture 

cross-sections U"(rut) obtained within the continuum distorted wave 

(CDW) approximation for the reactions

H"̂ + Li+(ls^) ---► H(ni) + Lî '̂ (ls) ni = 1s,2s,2p (1.4.1)

and He^^+ Li^(ls^) ---► He^(ni)+ Lî '*’(ls) ni = 1s,2s,2p, (1.4.2)

for the impact energy range 100 keV ^ E ^ 3000 keV and 100 keV ̂  E ^  10 MeV,

respectively. The ground-state Li"*" atom was described by the 35 term

configuration interaction (01) wavefunction of Weiss"'̂  expressed in its

natural expansion form, and in order to assess the influence of electron

correlation calculations were also performed using the Li"̂  HE wavefunction
26of Clementi and Roetti . The cross-sections correspond to the 'prior* 

form of the CEW transition amplitude â ,̂ see equations (1.3-11 - 16), 

and the results for the above reactions are presented in Tables 1.1 and 

1.2, respectively. The total cross-section Q is calculated using the 

Oppenheimer n rule by means of the formula

Q = ^  c r ( n i )  =û=C-(1s) + 1.6i6(0-(2s) +CT(2p)). (1.4.3)

We note that the cross-section cT(2p) is given by C3T(2p) = cr(2p^)+<TX2p^) , 

since, as a consequence of our coordinate system, we have that 

C'(2py) = 0. Although we have not tabulated the cross-sections0'(2p^) 

andCT(2p^), we found that throughout the energy ranges 0"( 2p̂ ) > 2p^).

Of particular interest to us are the percentage changes, A  (HE— ►Cl), 

in cross-sections due to improving the Li wavefunction from the HE to 

the Cl description. These are reported for both H"̂ and He^^ projectiles
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at selected impact energies in Tables 1.3 and 1.4, respectively. Comparing

the values of A  (HE.— »CI) for the three capture states n Z = Is, 2s and 2p
14we see the same trend that was observed by Banyard and Szuster in their 

studies on He: that is, for proton projectiles, a strong similarity in 

the values of A  (HF— ►Cl) for ^  (is) and O" (2s) while both are slightly 

different from the values for ^(2p), particularly for large E. Since 

the percentage changes for Li"*" axe small this is best seen when 

A  (HE— »CI) is plotted against the proton impact energy, see Figure 1.2.

As the impact energy increases the major contribution to the electron- 

capture cross-section comes from smaller and smaller impact parameters.

This means that the 'active' electron is captured from regions of high 

momentum within the target atom and consequently is captured into 

corresponding regions in the final capture state i.e. regions close to the 

origin. Thus the reason for the trends in A  (HE— ►Cl) is no w apparent 
since the 2p orbital in H(n/) is quite distinct in shape from the Is 

and 2s orbitals and will thus have different high momentum characteristics. 

In contrast, the Is and 2s orbitals are very similar in shape at the 

origin^. Throughout the energy range the ordering in cross-sections with 

respect to the capture state is \J'( Is) , > 0^(2s) > 0~(2p) and V ( 1s) is

found to represent SCFA of the total cross-section in the case of 

proton projectiles and 73-80% for alpha-particle projectiles.

In Figure 1.3 we compare our total cross-sections for reaction
27(1.4.1) with the recent experimental data of Sewell et al and with

20
the earlier experimental curve due to Bodgonav et al . Also shown is

29the theoretical curve cue to Gbyedkov and Pavlov obtained using the

Brinkman-Kramers method^^. Unfortunately, experimental data could not

be found for E > 221 keV for which the CDW method should become more
27accurate. The experimental points of Sewell et al appear to reach a

/ see reference 3̂1, page 142
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turning point at approximately E = 40 keV, at which the CDW cross-sections 

become too large. However, for E > 200 keV, the CDW curve appears to 

be tending towards the experimental curve and we have an agreement within 

the experimental error bars at E = 221 keV. Our theoretical CDW results 

strongly suggest that the data of Bogdanov et al is much too low. Their 

data was obtained from experiments concerned with the formation of a high- 

temperature plasma in which fast protons are formed within a lithium arc 

by the dissociation of Ĥ "̂  ions. Bogdanov clearly states that in such a 

method the study of charge-exchange is complicated by a number of inter­

fering factors, such as charge-exchange with residual gases and the

presence in the proton beams of Ĥ'"' ions with energies equal to half of
27those of the protons. Thus the experimental data of Sewell et al , 

obtained using pure proton beams in a standard beam crossing technique, is 

the more reliable of the two sets of data.
29The theoretical curve due to Obyedkov and Pavlov obtained using 

the Brinkman-Kramers method^^ clearly predicts a different high-energy 

result from that of the CDW method. However, the success of the CDW 

method in predicting the correct high energy behaviour of electron-capture
6 1 0 1 1cross-sections from one and two-electron atoms ’ ’ suggests that the

curve of Obyedkov and Pavlov may be inaccurate at high impact energies.
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CHAPTER 1.3

An analysis of trends in capture cross-sections for two-electron targets

In order to compare the three systems H , He and Li"'’ as targets 

for electron-capture we report in Table 1.3 the total cross-sections for 

both proton and alpha-particle projectiles at selected E; in each case 

the target electrons are described by the 33-term Cl wavefunction of 

Weiss"'To assess and compare the influence of electron correlation 

within the three systems we also quote, for each E, the percentage change 

A(HE— ►Cl) in Qvhen going from the HE to the Cl description of the 

target electrons. The HE wavefunctions for He and Li^ were those of 

Clementi and Roetti^^ and for H the fitted function of Curl and Coulson^^ 

was used. The A(HE— ►Cl) values are seen to reflect a rapid decrease 

in the importance of electron correlation as we progress from H to Li"*".

Eor a given target it was also noted that, at a common projectilq 

velocity, the proton and alpha-particle reactions possessed similar 

A(HE— ►Cl) values - the magnitudes being almost identical at high 

velocities.

Since the electrons are very weakly bound in the H atom one might 

expect H to have the largest electron-capture cross-section - this would 

certainly be true for small impact energies. However, Table 1.3 shows that, 

for E ^ 100 keV, the ordering in Q for each projectile is Li^ > He > H , 

and that as E becomes larger the differences between the cross-sections 

for the three systems increases; for example, for protons at 200 keV,

Q(Li^) dh 9 X Q(H ) whilst at 3000 keV, we have Q(Li^) dh130 x Q(H”).

In attempting to account for the above ordering in Q there are 

three main points of interest.
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(i) The essential feature of the CDW method is that it takes into 

account the Coulomb distortions acting on the 'active' electron in both 

the entrance and exit channels. It does this by taking full account of 

the continuum intermediate states in the charge-exchange process via 

the Coulomb wavefunctions of the 'active' electron with respect to the 

incident projectile in the inward channel,and the residual target in the 

outward channel (see equation 1.2.37,38). Since, in the present formulation 

of the CDW method with respect to two-electron targets, the outward 

distortion is a function of the net charge on the residual target (see 

equation 1.2.38-40b) and thus opposes electron capture, its effect for the 

three systems considered should be to produce an ordering of Q which is 

the reverse of that observed.

(ii) Although the energy decrement (defined as the difference

in energy between the initial and final atomic states and determined 

here from the theoretical values) is different for each of the three 

systems it appears in the expression for the cross-section in the terms 

V + ^6 and, as a result, the cross-sections are found to become
2 V

insensitive to A6 in the limit of high projectile velocities.

(iii) An obvious difference in the systems will be the description of 

the 'active' electron in the parent atom. Thus it follows from (i) and 

(ii) that the observed trends in Q must be dominated by the differences 

in the target wavefunctions.

We now proceed, by analysis of the individual CDW cross-seCtions 

0^[ni, n V  ] , to account for the trends in Q for the more general

reaction

^A ®1’ ^2} ^^A’ ®1^ni ®2̂ n(/' (''•5.1)

when the target electrons are described by an HF wavefunction

^ (1,2) = ^  b̂  (̂ p( 1 ) ^  (2), where each member of the basis
P r
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set ice} is normalized and the coefficients and by are the 

usual variation constants. It follows from equation (1.3-46) that the 

CDW cross-section O^^n-^ ,n(Z' j for a relative impact velocity v 

corresponding to an energy E, when the capture-state wavefunction is 

(l), can be expressed as

Q-[ni,n'^'] = N [l(£ b^(^y(2)|n'^')] j | (T(, v,C2p( 1 ) , Aé) .

, 2
, CCp(l),V'^(1), V i ,V2,A6) I dT|_ . (1.3.2)

where N is a constant and I( E  b|'(£y(2) | n(̂ ' ) is the overlap integral
V

between the initial and final states which describe the 'passive' electron 

ê . The integration over is a result of performing a Fourier transform 

of the transition amplitude from position‘space to a two-dimensional vector 

space T\ (see Appendix A)-, and the functions V  and V ^  arise from the 

Coulomb distortions acting in the entrance and exit channels, respectively, 

and are defined as V^ = Z^/v and V  2 = (Zg- l)/v. We note that and 

are both functions of <̂ p(l) and hence the strong dependence of the 

ordering in the cross-sections on ̂  (1,2) is still not apparent. However, 

since the occurrence of the distortion in the exit channel inhibits 

capture, we can - without prejudice - proceed with our analysis by setting 

\>2 = 0 for the general reaction (I.5.I). As a consequence of this the 

(1) dependence in is now removed and the expression forÇr[ru/,n'̂ '] 

when V 2 = ^ becomes

2 r 2
CT-[ni,nr] V  =0 = "  ̂' j V, 2^, (gp(D,Ae) ) .

• ) y 1 ’ I • (1*3*3)

Except for the presence of the energy decrement A é  , the functional form 

of is independent of the target parameters. At high projectile
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velocities, is found to be insensitive to and thus, for a

particular capture state (n.Z), the function Ĝ  becomes identical for our 

three examples of a two-electron target (Ẑ , e^, ê ). When the basis set 

is represented, for example by Slater-type orbitals (STO’s), the

function takes the form

/»

(1.5.4)

where , and N( hp, are the principal quantum number, orbital

exponent and normalisation constant, respectively, of the basis function

. Analysis of F^^ shows that it represents the probability density of 

finding the ’active* electron, ê  with a z-component of momentum equal to 

I Z I or, conversely, of finding e. with a total momentum
12 V I

p ^ I ^ I and, therefore, F^^ can be interpreted as a two-

dimensional momentum density. We note that the z-component of momentum 

is not unique and its definition is simply a consequence of choosing our

coordinate system such that T[ . ^ = 0, with v = (0,0,v^).

Let us now particularise equation 1.5-3 by choosing Ẑ  to be a

proton and by setting n̂ f = njt* = Is for the targets H and Li'**. In
2 2Figure 1.4, for each system, we plot F̂  and Ĝ  as a function of for

O'[is,Is] at E = 500, 1000 and 2000 keV. We note here that for the
=0

case of H the residual target is the neutral H atom and therefore the 

captured electron experiences no Coulomb distortion in the exit channel. 

Thus we only need to set = 0 for the He and Li"*̂ systems since this is

already the case for H for which 0"[ls,1s ] = O' [is,Is J . For
*H.=o

subsequent discussion and ease of comparison. Table 1.6 contains

[ls,1s j and 0'[ls,1s j at a few selected E; R - defined later -
V^=0
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is a ratio of the cross-sections for different targets when

Throughout Fig. 1.4 and Table 1.6 each target was described by the HF
2wavefunction. As anticipated, Fig. 1.4 shows that the functions for

each target are very similar - particularly at large E values. Therefore,

the ordering of the cross-sections in Table 1.6 is a direct consequence

of the differences in the electron densities in momentum space as 
2represented by F̂  . When the projectile velocity is increased, the 

'active' electron is captured from regions of increasingly higher momentum 

within the target atom; thus the cross-sections reflect the characteristics 

of the target wavefunctions near the origin. Indeed, in the limit v— > oo 

the function F̂  may be expressed as

and hence

à x^=0

I ' '̂ l̂  ’ (1.5.6)

where x̂  is the position vector of the 'active' electron with respect to 

the target nucleus. The 1% and v dependence in equation (1.5.6) occurs 

only in the new function G^ and, in the limit, we note that this function 

is also independent of A€ . Therefore, if we examine the ratio R [ru/, n^' ] 

of the cross-sections for two targets 'a' and 'b', when the distortion 

in the exit channel is removed, we obtain
I ^ s ^
* * , (1.5.7)

where S is the slope or gradient of the HF wavefunction for the 'active' 

electron at the origin (x̂  = 0) and, as before, I is the 'passive' overlap
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integral. In Table 1.6 we present the ratios r [ 1s,1s] for (i) a =  He 

and b =  H , and (ii) a =  Li"*" and b =  He. As E increases, these ratios 

are seen to approach the values of 52.8 for (1) and 8.86 for (ii) as pre­

dated by equation ( 1V5.7) ,which again illustrates how the ordering of the 

cross-sections is dictated by the relative behaviour of the target 

wavefunctions. In passing, we note that when H , He and Li”*" are described 

by HF wavefunctions, the ’passive’ overlap integral for nJi* = Is is 

0 .922, 0.984 and 0.993, respectively; thus the limiting ratios in this 

instance are governed essentially by the relative values of S.

If ^ ( 1,2) is a correlated wavefunction, it is of interest to 

examine the form of the function, say *3 ̂ , which replaces I^F^^ in equation

(1.5.3). For an examination of electron .correlation the most convenient 

form of a Cl wavefunction is its natural expansion which was discussed 

in Chapter 1.3.

Thus, by setting 0 in equation (1.3-36) we find that for the

Weiss"'̂  function the functional form of 3 ̂  can be written

^  \ 2
• , V, (x ),A€)l , (1.5 .8)

^  J
where the basis set used to describe the electrons consist of

normalised S.T.O's. The natural orbitals are represented by the .summation 

over p  and Y and the summation over all the natural configurations o< 

represents the total Cl wavefunction. When > 1, each natural

configuration in the summation corresponds to the addition of a correlation 

terra composed of ’s with either radial or angular symmetry; when o4 = 1

1
2 2only, we recover the I F. term in equation (1.5-3). Thus, by using the
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natural expansion and by setting V 2 = 0 , the nature of the influence of 

the correlation terms on the CDW cross-section becomes transparent and 

we see that the relative importance of each natural orbital is determined 

solely by its occupation coefficient , and the passive overlap 

integral • As a consequence, when improving the target wavefunction 

up to a Cl description, any change in the cross-section at large v will 

-be independent of the projectile charge (since at large v, — » 0) 

but may be strongly influenced by the final state of the passive electron. 

For example, in the case of electron-capture from H by protons, Moore 

and Banyard"'̂  reported a percentage change A  (HF— ►01) 247% for

TT'(ls,2s) as compared to -27% for 0 '(ls,1s)..

As discussed in Chapter 1.3, equations (1.3-38-43), when the 

residual target atom is left in its ground state, or an excited state of 

radial symmetry i.e. ^  = 0 , then the passive overlap loc is found to 

be zero for those natural orbitals which have angular symmetry as opposed 

to radial symmetry. As a consequence only radial correlation terms in 

the target wavefunction ^ (1,2) contribute to the cross-section in

the present CDW calculations. In Figure 1.3 we show, for O' (ls,1s)>̂
2  ̂plots of the first three radial terms of ^  , i.e. cI«c F.< , as a

function of at E = 1000 keV. For He and Li"*" the first three radial

terms correspond to <x = 1,3 and 6 while for H they are oi = 1,2 and 6. 

The curves indicate clearly not only the dominance of the oc = 1 term, 

but also that as we go from H to Li'*' the higher natural orbitals become

rapidly less important; note that at = 0 for H ,

^2% ̂ 2p ̂  ^ Gipy for Li+,

3̂1(̂ 3^  3ÔÔ ̂  îpy' ^ly^ip *
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CHAPTER 1.6

Conclusion

In view of the success of the CDW method in calculating the 

electron-capture cross-sections for the He target it is not too 

surprising that a reasonable agreement with experiment would be 

obtained for electron-capture from Li^ by fast protons. By comparing 

with available experimental data we were able to give credibility to
27the data of Sewell et al . Although the total cross-sections

were below the experimental points the agreement is satisfactory

considering the fact that the CDW method is an appropriate approximation

for large impact energies. Also, in order to evaluate Q, we have used 
“3the n sum rule based on individual capture cross-sections for

n 2. At lov; impact energies this may lead to an under-estimation of

the total cross-section since, at these energies, electron capture at large

impact parameters and thus capture into highly excited states becomes
-3important and may result in a breakdown of the n rule for n 4 3» The

_3use of a more accurate n sum rule may give us a better agreement with
27the data of S'ewell et al although this would mean calculating 

cross-sections for capture into the various n = 3 quantum states. Also
29by comparing with the theoretical work of Obyedkov and Pavlov we 

have also demonstrated the inadequacy of using a first-order method such 

as the Brinkman-Kramers approximation^^ to predict electron-capture cross- 

sections at large impact energies.

In attempting to rationalize the trends in the CDW cross-sections 

for the three targets H , He and Li"̂  we have analysed the individual 

capture cross-sections ?" [n/, n(Z^] , which became tractable by setting

=0- As a result, not only were we able to explain the ordering in
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Q observed for the three systems, but we also gained insight into the way 

factors such as relative impact velocity, energy decrement, electron 

correlation and the target wavefunction combine to influence the CDW 

cross-section. We have demonstrated that, as the projectile velocity 

increases, the 'active* electron is captured from regions of increasingly 

higher momentum within the target atom, and that in this region it is the 

characteristics of the wavefunction for small electron-nuclear separations 

which govern the trends in total cross-section when comparing different 

targets. Thus the accuracy of the wavefunction near the origin is of 

importance if a meaningful comparison with experiment is to be made at 

large impact energies.

Whenever any method is applied to cases involving more than one

electron difficulties arise due to the electron-electron repulsive potential

terms which render equations insolvable. Inevitably, the many-electron

problem is usually reduced to a one-electron problem by making some suitable

approximation to the potential terms involving l/x̂ ^̂  (where x^^ is the

separation between any two electrons i and j). In this work we have used

the formulism of the CDW method as originally devised by Cheshire and,

in applying the method to a two-electron problem, we have followed the
8

suggestion of Belkic and Janev which is to replace l/x̂  ̂t)y l/x̂  and l/ŝ  

by 1/R (see equations 1.2.31-34). We call this the 'perfect screening' 

approximation and this results in the removal of the coordinates of the 

'passive' electron from the problem. This simplification, which ultimately 

meant that only pure radial correlation terms would contribute to the cross- 

section, means that we have effectively removed electron correlation from 

within the method itself but still allow it to be included in the target 

wavefunction. In the case of a two-electron target the perfect screening 

approximation seems very reasonable and is appropriate to the physics of ̂
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the capture process, i.e. that maximum contribution to the capture cross- 

section will occur when the ’active’ electron experiences perfect shielding 

of the target nucleus by the ’passive’ electron. However, in the case of 

electron-capture from the ’K’ shell of a many-electron atom having more 

than two electrons the application of the perfect screening approximation 

to the outer-shell electrons becomes questionable due to the low probability 

of finding the outer, say 2s or 2p, electrons lying within the ’K’ shell.

This suggests that, for electron-capture from a many electron target, 

approximations concerning the ’passive* electrons would have to be made 

that are more suitable to the physics of the particular capture process 

involved. As already pointed out, at large impact energies we expect the 

electron to be captured from regions close to the target nucleus. Thus, 

electron-capture from the ’K’ shell will dominate the total capture cross- 

section at large energies, although for small impact energies and for capture 

into excited states the capture from the outer shells will give a non- 

negligible contribution. Therefore it will be interesting to apply the 

CDW method to charge transfer reactions of the type

+  ^(N+1)+

where is a structured projectile and A ̂ i s  a many-electron atom or 

ion, for which Li, Be"*" or Be would provide an ideal simple first example.
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E keV c r d s ) c r  ( 2s) 0"(2p)

100 1.074 1.098”^ 8.816'^ 1.3935'^

200 2.934-^ 3.632"^ 1.005"^ 3.683'^

300 9.393"^ 1.250"^
-42.502

_21.202

400 3.766"^ 4.992"^ 8.580'^ 4.711"^

300 1.695"^ 2.260"^ 3 . 54o'5 2.118"^

600 8 . 46l"^
-4

1.129 1.657"^ 1.033"^

700 4.373“^ 6.094"^ 8.517'®
-4

5.695

800 2.633"^ 3.303"^ 4.706'® -4
3.273

900 1.396“^
-3

2.119 2.756'® 1.983'^

1000
-41.010 1 .338"^ 1.692'® 1.254'^

1300 1.601"^ a.100'̂ 2.423'^ 1.979"^

2000 4 . 049"^
-7

3.277 5.781'® 4.995'®

2300 1.349"^
-7

1.730 1.857'® 1.662'®

3000 3.389"^ 6.967'® - 7 . 255'^ 6.633

Table 1.1 Individual CT(rL̂ ) and total capture cross-sections Q, 

at selected impact energy E. for the reaction 

h'*' + Li^(ls^)— ►H(ni) + Lî "*"(1s) in units of TTa^ 

where a^ is the atomic unit of length. The target 

electrons are described by the 33-term configuration 

interaction (Cl) wavefunction of Weiss^^.

(a) The total capture cross-section Q was obstined from
-3the"Oppenheimer n rule”:

Q ,feC r(ls ) + 1 .6 l6 (c r(2 s ) + c r ( 2 p ) ) .

(b) The superscript denotes the power of ten by which 

each entry should be multiplied.
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E keV cr (Is) cr (2s) cr (2p) aQ

100
b

3.835+1 6.322-"' 4.667 4 .693^̂

300 3.118 3.332-̂ -13.777 6.302
300 1.617 1.876-"* -1

1.013 2.084

800 4.8l7~^ 7 .036-̂ 2.966-2 6.437*^
1000 -1

2.333 3.963"^ 1.336-̂ 3.446""'

2000 2.691“̂ 4 .374-3 1.397*3 3.624-2

3000 3.884-3 -49.309 ' 2.346-^ 7.800-3

3000 7 .063“̂ 1.061-̂ 2.313*3 -49.132
8000 8.397"^ -5

1.203 2 .109*̂ 1.069-̂

10000 2.900-3 4 .083-̂ 6.462 3.664-3

Table 1.2 Individual O'(ni) and total capture cross-sections Q, 

at selected inpact energy E, for the reaction

Hê"*" + Ei^(ls^)— ►He'*’(ni) + Ei^^ (is) in units of IT 

where â  is the atomic unit of length. The target 

electrons are described by the 33-term configuration 

interaction (Cl) wavefunction of Weiss"'̂ .

(a) The total capture cross-section Q was obtained from
-3the "Oppenheimer n rule":

Q ^ C T ( l s )  + 1.6l6(cr(2s) -Kr(2p)).
(b) The superscript denotes the power of ten by which 

each entry should be multiplied.

.2+
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E keV or(is) cr (2s) cr (2p)

A(HF— ♦CI)'̂ A  (HF— CI) A ( h f— »ci) A  (HF— CI)

100 -4.98% -3.47% -1.37% -4.44%

400 -1.33% -1.13% -1.67% -1.32%

600 -1.32% -1.18% -1.70% -1.33%

800 -1.39% -1.26% -1.41% -1.37%

1000 -1.44% -1.33% -1.09% -1.42%

2000 -1.62% -1.32% +0.22% -1.37%

3000 -1.73% -1.64% +1.23% -1.66%

Table 1.3 The percentage change A  (HF— >CI) in individual and

total capture cross-sections, at selected impact energy E,
2 2+ for the reaction H^ + Li"*"(ls ) -■■■» H(n^) + Li (Is) when

going from the Hartree-Fock (HF) to the Cl description

for the target electrons.

(a) The total capture cross-section Q is given by 

Q =s= CTds) 4- 1.6i6(CT(2s)+ 0'(2p)), and

A ( H F — »CI) is defined as ^CI ~ ^HF 
^HF

X 100%.

(b) For the individual cross-sections — >CI) is

defined as (or(ni)ç^ - G"(n^)^ 
CT(ni)̂ Î ,

X 100%.
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E keV
0-(ls) O'(2s) cr (2p)

A(HF— CI)'̂ A ( hf-+ ci) A  (HF— CI) A(HF— CI)

100 -6.55% -5.29% -6.64% -6.54%

500 -1.71% -2.52% -0.74% -1.75%

1000 -1.31% -1.36% -1.56% -1.34%

3000 -1.44% -1.29% -1.41% -1.41%

5000 -1.53% -1.42% —1.62% -1.52%

10000 -1.71% -1.63% -1.69% —1.69%

Table 1.4 The percentage change A  (HF— ►Cl) in individual and total 

capture cross-sections, at selected impact energy E, for 

the reaction He^^ + Li^(1s2)— ► Hetiift+Li2'*’( 1 s) when going 

from the Hartree-Fock (HF) to the CI description for the 

target electrons.

(a) The total capture cross-section Q is given by 

Q rihr tr(ls) + 1.6l6(qr(2s) +CT(2p)), and
A  (HF— ►CI) is defined as ^CI ~ ^HF

QHF,
X 100%.

(b) For the individual cross-sections A ( H F — »Cl) is

defined as (CT(ni)ç,j - TT(n^)^)
cr(ni)HF

X 1009L
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Table 1.5

Total electron-capture cross-sections Q, in units of

TT a^ for targets H , He and Li"*̂ for both proton and alpha-

particle projectiles. Each system is described by the
1655-term configuration-interaction (CI) function of Weiss 

and, in squa_re brackets, we give the percentage change 

A(HF— »CI) in going from the Hartree-Fock (HF) to the 

CI description for the target electrons; A (HF— ►CI) 

is defined as  ̂(Q^^ - Q^)/Q^ j x 100%.

(a) The results for He supercede those reported by
14Banyard and Szuster which contained a small 

computing error.

(b) Total capture cross-section Q was obtained from the 

"Oppenheimer n ^ rule", Q —  Q̂ (1s) + 1.6l6(CX2s') + CT(2p3 )

(c) The superscript denotes the power of ten by which each 

entry should be multiplied.
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Table 1*6

Cross-sections 1̂1 s , 1s j and O^^ls, 1s j.y
2 ^ in units of TT a^, at selected E for electron capture by

protons from the targets H , He and Li'*'. Since the 

distortion in the exit channel due to the Coulomb 

interaction is zero for H (i.e. =0), we note that

[ls, 1s] = O' 1̂1 s , 1s . We also tabulate '

values of R = ( [ls, 1s] / O ^  [ls, 1s] ) ̂

for (i) a 5  He and b 5  H , and (ii) a =  Li”*" and b S. He 

In each instance, the target electrons are described by 

Hartree-Fock wavefunctions.

(a) The superscript denotes the power of ten by which 

each entry should be multiplied.



(1)

B

e ’ ( 2 )

Figure 1.1 Coordinate system for reaction (1.2.1). The 
arbitrary origin is shown here to be at the 
mid-point of the internuclear line.
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îgure 1.2 The percentage changes A  (HF *CI), listed in Table 1.3,
for individual cross-sections CT(n^), plotted against 
impact energy E.
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-16

Experimental data,Sewell et al'

Experimental data and fitted, 
curve due to Bogdanov et al.'

r17

c\i
Eu
c
o>uOjmI1/1
o
V .

-19 6004 0 0200
E(keV)

Figure 1.3 The theoretical total cross-sections Q for protons impinging 
on Li' compared with the experimental data of Sewell 

al and that due to Bogdanov et al^^ Present CD;/ 
theoretical curve due to Cb’yedkov and

e L
results
Pavlov^^ using the Brinkman-Kramers^^ method
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Figure 1.5 Plots of Collet vs. Y| , defined in equation (1.5.3) ,
where each oL value represents a natural configuration
within the natural expansion formulation of Ct[1s ,
for a proton impact energy of 1000 keV. (a) K for 
o( = 1,2 and 6, (b) He for ot = 1,3 and 6, and (c) Li"̂  
for«t=1,3 and 6. Each target was described by the 
natural expansion of the 33-term 01 wavefunction of Weiss 
and the U  values quoted represent natural configurations 
constructed from orbitals of radial symmetry.
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PART T W O

Application of the Continuum Distorted Wave (CDW) method 

to electron-capture from a many-electron target and the calculation 

of capture cross-sections for the three-electron target atom Li, and 

its ions, by fast protons.



CHAPTER 2.1

Introduction

As an aid to the experimental program into plasma heating 

considerable experimental work has been done to obtain a multiplicity 

of charge transfer cross-sections, involving many-electron atoms, that 

may be of importance in the development of thermonuclear fusion. Multi­

electron atoms, such as Li, may prove to be useful in the production of 

fast beams of neutral hydrogen atoms for injection into plasma devices,

and the Li atom itself is of practical interest in the production of hot
2plasmas with the use of lithium arcs in devices such as ”OGRA”.

As stated in the general introduction, when calculating charge 

transfer cross-sections which involve fast structureless projectiles 

the correct high energy behaviour requires the use of a second order 

method, and that one of the most recent satisfactory second order methods 

is the continuum distorted wave (CDW) method developed initially by Cheshire^ 

for proton-hydrogen collisions. In applying any method or performing 

a calculation involving a many-electron atom the calculations are complicated 

by the presence of the inter-electron potential terms. Invariably approxi­

mations are made to remove any difficulties which arise and usually involve 

either an averaged potential or, as in the case of the CDW method, the 

introduction of some screening effect. For instance, in the generalisation
ifof the CDW method to a two-electron target Belkic and Janev comment that 

the probability of capturing the so-called 'active' electron should be 
greatest when the 'passive' electron is very close to the tai'get nucleus, 

and as a consequence of this we saw in Part 1, Chapter 1.2, how the 'passive' 

electron could then be removed from the equations defining the distorted 

waves by invoking maximum or 'perfect' screening of the target nucleus. .

Thus, in the description of the outward channel, for example, the residual
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target was represented by the target nucleus with its charge decreased

by unity. This ’perfect screening’ approximation was used in Part 1 for the

Li"*" target and it was also used in the first application of the CDW method

to electron-capture by protons from Ee.by Salin^ and also in the later

examinations of electron-capture from H by Janev and Salin^ and by Moore 
nand Banyard • This approximation not only makes physical sense but it 

also ensures that the outward-channel distorted wave has the correct 

phase factor in the asymptotic limit as t— However, when consider­

ing multi-electron target atoms the invoking of perfect screening may not 

reflect the true picture, particularly when capturing from say the K shell 

of the atom.

The calculation of capture cross-sections from large atoms is

still relatively rare and generally restricted to first order methods.
8 9For example, Mapleton applied the first Born approximation to oxygen

10 11 12 and Mapleton , Nicolaev , and Lodge and May have studied various
13target atoms, such as He, Li, Ne, N and Ar, using the Oppenheimer

l4Brinkman-Kramers approximation. It is partially due to their convenience 

that the OBK cross-sections are widely used in estimating capture cross- 

sections, and it is important to note that the absolute agreement with 

experiment is achieved by the introduction of screening corrections and by 

applying appropriate scaling factors.

Therefore, in Part 2 we apply the CDW method to a many-electron 

system and, as a simple example, we evaluate the K- and L— shell capture 

cross-sections for a Li target atom in its ground-state. For such a system, 

a ’passive’ electron will now exist in a different shell from that of the 

’active’ electron. Thus, a modification is suggested to the ’perfect 

screening' procedure used by others for two-electron targets. We also 

examine the effect of such a modification on the capture cross-sections
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for the related ion Li^ and, finally, to complete the ionization series, 

cross-sections are calculated for the one-electron target Lî "*". In each 

instance the projectiles are protons within an energy range of 200 keV ̂  

E < 10 MeV - the lower limit being a rough measure of the minimum E for 

which the CDW calculations, involving lithium ions, can be considered 

reliable.
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CHAPTER 2.2

The application of the CDW method to electron-capture 

from a many-electron atom by fast protons

Before applying the CDW method directly to electron-capture from 

Li we first present a generalisation of the CDW transition amplitude 

for electron-capture from a many electron atom. As in the case of a two- 

electron target the many-electron problem is reduced to a one-electron 

problem by applying the 'perfect screening' approximation to the 'passive' 

electrons. However, we also present an alternative procedure to the 

'perfect screening' approach which will be more appropriate for capture 

from the inner shells of a many-electron target atom. Both models are 

then applied to electron-capture from Li and Li^ by fast protons. Let us 

consider a high energy nucleus charge Ẑ , energy E and velocity v, in 

collision with a stationary many electron target atom whose nuclear charge 

is Z^ and having N orbital electrons such that N ^ Z,̂ . It follows fromO D
a generalisation of equation (1.2.3) that the Schrodinger equation for 

such a reaction is

' N N M
Z (i 9̂  + - Z Z _ L  - + il1=1 —i i=1 j=1 R 31

= 0 . (2.2.1)
Following the procedure of the CDW method, presented in Chapter 1.3, it 

follows from equations (1.3 .11-16) that for capture of electron j, say, 

into any state n£ the transition amplitude a -(b), where b is theILc
impact parameter and F signifies the final state of the remaining target 

electrons, can be expressed as
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2iZ [ Z -(N-1)] /v 
= i Nĵ (̂v)NgCv) (bv) .

- -iv.r.
J dt fdr^ J dTj ... J d^
>ao

X i?*^(£jX%(x-,.22.---,2j.i>ij+V"V fl CiVg;1;i(vXj+v.x^)3

X ^Y(x^,Xg,...,Xj,...x^) ^F^[iV^;1;i(vs^+v.Sj)] .
3 3

(2.2.2)
The energy decrement A€ is the difference between the initial state

energy of the target and the sum of the energies of the charge exchange

products, i.e. As = € - , • The initial and final states of the1 J? nJL

target are described by the normalized antisymmetric wavefunctions 

N'̂ 2Sv -2’** *’-j’ and %p(x-] ,252 ' ’-j-1 ' "  " ' respectively, and
the capture state of the active electron is represented by L^^^(s^).

Since we have N indistinguishable electrons the projectile may capture 

any one of the target electrons, labelled from 1 to N, with equal probability, 

and thus the description of the total system in its final state nj&%F 

should also be normalized and antisymmetric. The net effect of such a

requirement is to multiply the transition amplitude a^^ (̂b) in equation
± ’(2.2.2) by N“. N̂ (v) and N^(v) are the normalization constants associated

with the confluent hypergeometric functions for the inward and outward

channels, respectively, and

= Z^/v and Vg = - (N-1)] / v. (2.2.3)

The expression for *V _ is a consequence of invoking the'perfect screening'Jd
approximation to represent the interaction between the 'active' and 'passive' 

electrons. Its magnitude is a function of the net charge on the residual 

target as seen by the captured electron at infinity, and is a consequence 

of making the following approximations
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^  \  and 1 = (N-1) .

i-1 " ■ ■ ' r=i *‘i - "3
î j i/j

(2.2.4)

Such a model has the particular advantage of ensuring that the incoming 

and outgoing waves have the correct asymptotic behaviour as t — ► - ^ and 

+ , respectively. However, a relaxation of the asymptotic constraint

allows us to adopt a simple but somewhat more realistic way of accounting

for the 'passive' electrons in a many-electron system. For capture from 

the target quantum state n' , say, an effective charge for the residual 

target, as seen by the captured electron, can be obtained from the 

experimental ionization energy by using the hydrogen-like expression

Ionization Energy / 2n ,

(in atomic units)

hence ^eff = V t. 2 n̂  . ' (2.2.5)

In this way the value of reflects the charge seen by the active

electron as it is ionized into the continuum prior to capture. Thus, 

in the expression for a ^  (̂b) we redefine Vg to be Therefore

for capture from a particular shell of a many electron atom we must define 

a Z^2  ̂value which will incorporate the amount of screening produced by 

all the passive electrons. It achieves this through the ionization energy 

which, via the hydrogen-like expression above, will reflect the 

probability of finding a proportion of the charge cloud arising from 

the outer shell electrons, to be lying within the shell of the active 

electron and as a result partially screen the target atom nucleus.
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CHAPTER 2.3

+ 2+Electron-capture from Li, Li and Li by fast protons

Electron-capture from the ground state of Li can occur from 

either the K- or L-shell and therefore the reactions considered here 

are

H"̂ + Li — ». H(ni) + Li+(F) , (2.3.1)

1 1  3where F is 1 S, 2 8 or 2 8 and nV = Is, 2s and 2p. The same (ni)- 

states were chosen when considering capture from the ground states of 

Li"*" and Li^^. The Hartree-Fock wavefunctions of Clement! and Roetti^^ 

were used to describe the initial states of Li and Li"*" and the excited- 

state wavefunctions for Li^, used in the calculation of the passive 

overlap integral for reaction (2.3.1), were taken from Cohen and 

McEachran.^^ The ionization energies, used in the calculation of the
17energy decrement A G and the value for were obtained from Moore ,

18 19Wiese et al and Tennant . For the Li atom target, the Z^^^ values
1 1  3corresponding to F =  1 S, 2 S and 2 S, from eequation (2.2.5) , are

1.260, 2.208 and 2.177, respectively, and when the target is a Li'*’ ion

then Z^^^ = 2.359. The Li^^ ion was described by using the exact energy

and eigenfunction.

The total cross-section (n/,F] for electron-capture into a

state (nU) may be expressed as
•a

CTDi/jF] = 2 j b I p(b)|  ̂db (in units of TTa^ ) , (2 .3 .2)o ^
where a , n(b) is the total antisymmeterised transition amplitude given n/,f
by a^^ ̂ (b) in equation (2.2.2) multiplied by 3 for the Li atom target 

and 2̂  for the Li’*'. The O' [nJjFj values for Li and Li’*’ targets are 

presented in Table 2.1: the initial entry is based on the Z^^^ 

approximation and the underlined entry refers to the 'perfect screening'
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(ps) model. For the Li atom, the total cross-section for all

capture states nÂ was obtained from

= QCJs) + QCaW) + Q(2^S) , (2 .3 .3)

where each contribution Q(F) was determined by using the appropriate

n  ̂sum rule (see Chapter 1.4, equation (1.4.3)). For reaction (2.3.1)

we note that the integration over spin in the antisymmetri'z.ecl expression
']for a . ^(b), when F S  IS, produces exchange-type terms in the nx

transition amplitude in which the label for the active electron is

associated with the Is orbital in Li as well as the expected terms

arising from the initial occupation of the 2s orbital; and vice versa 
  1when F =  2 S. However, due to the near orthogonality between the 2s

15and Is orbitals in the Clementi and Roetti HF wavefunction the passive 

overlap integral associated with the exchange-type term is very small, 

and as a consequence contributions to the capture cross-sections 

attributable to exchange-type terms account for less than 0.3% of the 

magnitude of CT [nj, 1̂ s] and O'(n/, 2̂ s] in each instance; no such 

exchange-type terms arise when F S  2^8. Therefore, for ease of discussion, 

we will refer to Q(2^S) + Q(2^S) as K-shell capture, and Q(1^S) as L-shell 

capture. For the evaluation of for the Li'*’ and Lî"*" targets the

n  ̂sum rule was again used and the results for all three systems are 

listed in Table 2.2_at selected E lying between 200 keV and 10 MeV. As 

before, the values obtained from the ps-model are underlined. In Table 

2 .3 the difference between the and the ps-values for each cross-

section is expressed as a percentage change A  , with respect to the 

ps-value, for both Li and Li"*" at selected E.

To enable graphical comparison to be made with the experimental 

curve of l'Un et al^^ for Li, values of were calculated for both

models over the energy range IO-I8O keV. The curves are shown in Figure

2.1 and 2.2 along with the theoretical results for electron-capture from
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the individual K- and L-shells. In Figure 2.3, the Z^^^-values for .

over this energy range are compared with the Li calculations of II’in et
21 11 12 9 al , Nikolaev , and Lodge and May . II’in et al used a Born method in

the one-electron approximation and the other workers employed the Brinkman-
14 11Kramers approximation along with a correction factor. Nikolaev described

the Li atom in terms of hydrogen-like wavefunctions whereas the Lodge 
12and May curve was derived using the Hartree-Fock descriptions given by

22Roothaan, Sachs and Weiss

In Figure 2.4 the total cross-sections for the Li"*" ion, for both

the ps and Z^^^-models, are compared with the experimental data of 
25Bogdanov et al and with the more recent experimental data of Sewell

24 25et al,-’. Also shown are the theoretical results of Ob'yedkov and Pavlov .

No experimental comparison could be found for the Lî"*" ion.

Results and Discussion

In the analysis of the CDW approximation, presented in Part 1, we 

saw that the only direct reference to the 'passive' electrons in the 

transition amplitude occurs as an overlap integral between their initial 

and final quantum states. Thus, the influence of the interelectronic 

interactions within the present form of the CDW calculations, arises 

solely from the correlation effects contained in the target wavefunctions 

^  and p' Although electron correlation is important for a target such
_ n

as H (see, Moore and Banyard ) the calculations in Part 1, in the present 

energy range, suggest that the use of a correlated wavefunction for the Li 

series should produce a decrease in each cross-section, with respect to the 

Hartree-Fock value, of less than 2%.

Comparison of the values of Z^^^ for electron capture from the 

Kyshells of Li and Li"*" suggests that, for capture from the Li K-shell, 

about 20% of the shielding arises from the 2s electron: this reflects the 

probability of finding the L-shell electron within the K-shell. For Li, a
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comparison of the results for with the ps-model is also of some

interest. It is found that the Z^^^ values for K-shell capture correspond

to only about of the shielding in the ps-model whereas, for L-shell

capture, the result for Z^^^ indicates that the K-shell provides 87% of

perfect screening. The sensitivity of each O ' [n/,F] to a change in

nuclear shielding can be judged by inspecting the Z^^^- and ps-results in

Table 2.1; see also the A values in Table 2.3. At low energies, Table

2.1 shows that when n^ =  Is and 2s the Z^^^-cross-sections are larger than

the ps-values whereas, for the 2p capture states, the ordering is reversed -
']ar exception being Li when F =  2 S. However, for E > 1000 keV, the use 

of Z^^^ decreases all CT"[nV,Fj . This latter feature is most noticeable 

for capture from the K-shell of the Li atom where, as Table 2.3 shows, 

the effect becomes larger with increasing E. At 10 MeV, for example, the 

Z^^^-calculation yields K-shell cross-sections for the 2p capture state 

which are only about one-fifth of the magnitude of the ps-values.

For each F-state Table 2.3 reveals that, as E increases, a strong 

similarity occurs between the A values for (nJi) =  Is and 2s; the 

similarity does not extend to the 2p state. A corresponding trend was 

observed by Banyard and Szuster in a correlation study of charge exchange 

in proton-helium collisions. Following their rationalization, we find 

that, at high projectile velocities, the major contribution to each 

O'[n.̂ ,F] occurs at small values of the impact parameter. Consequently, 

the A values reflect the similarity in the characteristics of the Is and 

2s hydrogen orbitals at small electron-proton separations; such character­

istics are, in turn, quite distinct from those of a 2p hydrogen orbital.

When E > 8OO keV, the Li cross-sections are ordered as qr^nY,2̂ s] > 

<T'[n/,2"'s j ^ O' [n/,1^s]for each choice of (nZ) and, as might be 
expected, for any given F state we have Ct[1.s,f]> O'[2s,f] >0T'^2p,Fj .

The latter ordering also holds for Li'*’. Inspection of the total cross-
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sections in Table 2.2 for the ionization series shows that, for the

model, Q̂ (Li'*’)- > CKli) ^ Q̂ (Lî )̂ throughout the whole energy

range. We also note that, at high energies, the Z^^^-results for

are less than the ps-values by about 21% for Li and 6% for Li^.

A comparison between the total cross-sections per K-shell electron
. + .2.+for the ion targets reveals that, at low energies, Li > Li whereas,

when E is large, the Li cross-sections are significantly greater than

the Li'*’ values. Since the transition amplitudes are evaluated in terms

of momentum space, the larger momentum possessed by the unshielded
2+active electron in Li emphasizes that, as the projectile velocity 

increases, the major contribution to each cross-section arises increas­

ingly from the high momentum region within the target.

When compared with experiment, the Z^^^ and ps-values of for

Li reveal some interesting features. Although the results of II'in et

al^^ extend only as far as l80 keV, Figures 2.1 and 2.2 indicate that

each CDW curve for Q^is in general accord with experiment - the better

agreement being achieved by the Z^^^ approximation. For electron-capture

from the K-shell, the ps-results are seen to reach a turning point at

about 15 keV, whereas the Z^^^ approximation produces an inflexion at

about 40 keV which is similar in shape to that seen in the experimental

curve at E 60 keV. However, Figure 2.1 shows that the increase in the

L-shell capture cross-section with decreasing E masks this inflexion when

evaluating the total curve.

For Li, the comparisons in Figure 2.3 between the various

theoretical Q curves and experiment show that, except for the very good 
11Nikolaev curve, the CDW result is superior - especially in the higher

energy region. It is to be noted that, unlike the CDW calculation, the 
11Nikolaev curve involved the use of an empirically derived velocity- 

dependent correcting function.
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When the target is a Li'*' ion, Figure 2.4 shows that both the CDW

curves are a considerable improvement on the theoretical results of
25Ob’yedkov and Pavlov , when compared with the experimental data of 

24Sewell- et al _ . For impact energies E > 50 keV the cross-sections

exceed those obtained by using the ps-model, and for E > 100 keV are in 

slightly better agreement with experiment. Overall the agreement with 

the experimental data of ‘Sewell et al,̂  ̂looks very good, and as in 

the case of the Li atom target, it would be very useful if the comparisons 

could be extended to much higher energies.
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CHAPTER 2.4 

Conclusion

Electron-capture cross-sections have been evaluated for fast

protons in collision with the Li atom and its related ions. Such

reactions are of interest in the production of hot plasmas which occur

in some fusion processes. The calculations were based on the continuum-

distorted wave (CDW) approximation and a simple procedure was introduced

for assessing the screening of the target nucleus due to the passive

electrons which, for capture from the inner shells of a many-electron

target, will reflect more closely the physics of the capture process

with respect to the distortion acting on the captured electron in the

outward channel. The application of the CDW approximation to electron-

capture from a many-electron atom becomes tractable, at present, only

by reducing it to an equivalent one-electron problem. Consequèntly,

when attempting to replace the 'perfect screening’ procedure for an

N-electron system by a somewhat more physical model based on the

ionization energy, it was appropriate to use a hydrogen-like formula to

determine Z _ ef f
It was observed that capture into the higher quantum states (ni) 

of hydrogen appeared to be quite sensitive to changes in the screening 

effects - particularly at high projectile energies E and especially 

for capture from the K-shell. This latter feature is of importance since 

for high impact energies the largest contribution to the capture cross- 

section for a many electron target will come progressively from the 

K-shell capture as the projectile velocity v increases. Although a 

comparison with experiment of the total cross-sections was limited to 

relatively low impact energies E - where both the CDW method and the n 

rule tend"to become less reliable - the general agreement was, nevertheless,

82



quite satisfactory for the Li target, particularly for impact energies 

E > 80 keV, and for the Li"*" target for E > 100 keV. Comparison with 

experiments at larger E would obviously be most informative.

For Li we obtain for K-shell capture a kink or inflexion similar

in shape to that observed in the experimental curve. This is probably

fortuitous, particularly since we are at impact energies for which the 

CDW method cannot be considered reliable for capture from the Li target 

Is shell. Note that a similar kink was obtained in the theoretical 

curve for capture from the Li'*' ion when using the model although

no such kink was observed in the experimental curve. The correct cross-

section curve for K-shell capture from Li is probably such to reach a

maximum at E 75 keV and then decrease rapidly to zero as E decreases. 

We also note, for Li, that as the projectile velocity increases capture 

from the K-shell makes a greater contribution to Q than that from the 

L-shell, and that for E > I50 keV the contribution to Q from,the

L-shell can be considered negligible. This emphasises once again the 

importance of the high momentum descriptionof the target electrons 

and hence the need to use accurate wavefunctions in any 'a priori’ 

calculation - even at high projectile velocities.
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E(keV) Li Li*̂ Li^+

200 3 .968-2 4 .369-2 1.361-2
3.367-2 3-691-2

500 1.804-3 2.219-3 1.240-3
1.860-3 2.138-3

800 2 .661-4 3.312-4 2 .156-4
3.003-4 3.318-4

1000 1.005-4 1.252-4 8.506-5
1.172-4 1.272-4

2000 3 .916-6 4.864-6 3-441-6
4.894-6 5 -078-6

5000 3-644-8 4 .493-8 2 .998-8
4 .732-8 4.764-8

8000 2.918-9 3 .389-9 2 .306-9
3.827-9 3.819-9

10000 8.604-10 1.057-9 6.686-10
1.133-9 1.126-9

Table 2.2 Total captur.e cross-sections for the Li, and

targets; the units are ITa^. The initial entry for 

a given E is derived from the Z^^^-model and the ps-value 

is quoted below it. For the Li atom,

= Q(1 Ŝ) + Q(2 Ŝ) + Q(2 ^S); see equation (2.3-3). 

The superscript denotes the power of ten by which each 

entry should be multiplied.
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îgure 2.1 A comparison between experiment (II’in et al ) and the uotal 

capture cross-sections Q for Li derived from the CD';/ calcula­
tions using the Z -model. Also shown are the calculated  ̂
results for the capture of a K-shell electron^ [Q(2 S) + c/2 S)J 
and the capture of the L-shell electron [ Q( 1 S)j ; see 
equation (2.3-3)-
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Figure 2.2 A comparison between experiment (Il'in et al̂ )̂ and the 

the total capture cross-sections for Li derived from 
the CDW calculations using the ps-model. Also shown are 
the calculated results for the capture of a K-shell electron 
Q(2^S)+Q(2^S)] and the capture of the L-shell electron 
0(1^S)] ; see equation (2.3«3)«
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® 21 . 11other curves were calculated by II'in et al , Nikolaev
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PART THREE

The Continuum Intermediate States (CIS) method and its 

application to electron-capture from hydrogen by a simple 

structured projectile in the form of (a) fast H atoms, and 

(b) fast Li ions.



CHAPTER 3.1 

Introduction

The subject of electron-capture by a structured projectile

covers a variety of interactions such as H, He"*", H , Li^^, Be^^ etc.

incident on H or He. These reactions, particularly in the low impact

energy region of 1 eV E ^  1000 eV, have been investigated using

curve-crossing techniques , and methods based on an expansion in terms

of molecular eigenfunctions^. An example of the latter approach is the

"Perturbed Stationary States" or "P.S.S." method which xas introduced by

Massey and Smith^. However, electron-capture involving structured

projectiles at higher impact energies such as 1 keV E 200 keV

is also of considerable interest. For example, structured projectiles

incident on H are of importance, not only theoretically, but also in
ifconnection with the thermo-nuclear fusion research program . The 

heating of a fusion plasma by injection of H or D atoms will be seriously 

affected by the presence of a small percentage (1-10%) of highly stripped 

impurity ions such as 0, N, C, Fe, Au etc. These positively charged 

systems will ionize the H or D atoms either by charge-transfer or ionization, 

thus causing them to be magnetically deflected out of the plasma to strike 

the container walls and thereby release more impurities into the plasma.

Such reactions were the subject of a theoretical investigation by Olson and 

Salopé using the classical trajectory method to calculate charge-transfer 

and ionization cross-sections. Electron-capture by heavy charged 

projectiles is also of great importance in the study of X-ray production 

which occurs when the electron is captured into an excited state and then 

undergoes a radiative decay to the ground state. The cross-sections for 

X-ray production are of interest to the astrophysicist in, for example, 

cosmic-ray research, where the detection of such X-rays may possibly lead
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to a direct measure of the interstellar cosmic-ray intensity. Calculations
g

of X-ray production rates have been made by Watson using the Brinkman-
7Kramers approximation to evaluate charge-exchange cross-sections. His 

work on incident on H, however, has been superseded by that of Belkic
g

and McCarroll who, using the CDW method, obtained much better agreement 

with experiment.

When the incident structured projectile is a neutral hydrogen atom, 

charge-exchange reactions may give rise to the formation of the hydrogen 

negative ion H . The production of H is of importance in astrophysics, 

since it is found in the atmospheres of stars, and indeed accounts for 

part of the opacity of our own sun. However, the main and current interest 

in H lies in the experiments concerned with the building of the first 

prototype fusion reactor in which neutral hydrogen beams are needed at 

energies in the range 150-200 keV. The H ions once formed are 

accelerated to the desired energy and then stripped in a suitable gas

target to form the neutral hydrogen atoms. The formation of H in H-H
9collisions was investigated experimentally by McClure and the corresponding

10theoretical cross-sections, calculated by Mapleton using a Born 
11approximation , for impact energy E > 50 keV were too large by almost

a factor of 10.

The application of the CDW method to charge-exchange between 

structured systems presents a more difficult problem due to the necessary 

approximations required with respect to the so called 'passive', electrons 

which may now reside on both the target and projectile. However, when 

such collisions involve a one-electron target, the cross-sections may be 

evaluated by applying the CDW approach to the reverse reaction, and then 

by dividing by the appropriate factor the desired cross-section is
12 13obtained. For example, this procedure was used by Janev and Salin ’

14and Moore and Banyard when comparing theory with experiment for the 

reaction
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H(1s) + H(ls) — > h"(1s )̂ + , (5.1.1)

and Moore and Banyard showed that the use of a highly correlated 

wavefunction for H produced reasonable agreement with experiment down 

to a projectile energy E of about 25 keV.

In Part 1 we saw how, for proton projectiles at high impact-

energies, the main contribution to the capture cross-section came from

regions close to the target nucleus and therefore from small impact

parameters. However, when we consider heavy-ion projectiles the

probability of capture from large impact parameters increases, with the

result that capture into excited-states becomes more important.
15Shakeshaft has shown that the CDW method is unsatisfactory in

predicting a transition amplitude at large impact parameters. The work
16of Shakeshaft is reviewed in a more recent paper by Belkic , in which 

he introduces a second-order approximation called the continuum 

intermediate states (CIS) method. This new method not only predicts a 

correct transition amplitude at large impact parameters, but is found 

to be in excellent agreement with experiment for electron-capture by 

fast Ĥ  on H atoms. The CIS approach, devised by Belkic"*̂  for electron- 

capture by a structureless projectile, is closely related to the CDW 

method but accounts for distortion effects by inclusion of the continuum 

intermediate states in only one of the two channels. This feature not 

only produces considerable simplification from both the analytical and 

computational viewpoint, but also gives the method greater flexibility 

for adaptation to the more general case of ion-atom collisions.

Therefore, in Part 5 we present an alternative procedure for 

determining cross-sections for charge-exchange between simple structured 

systems (e.g. atoms and ions with one or two electrons). The scheme is 

based on a modification of the CIS method which, for reasons just 

outlined, appears to be an appropriate method particularly for heavy-ions
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incident on H atoms at large impact energies. In Chapters 5.2 and 5.3

we derive and evaluate the CIS cross-section for capture of an electron

1, say, by a projectile system (Z^,e(2)) in collision with a target

(Zg,e(l)) and show that, as a result of the approximations, the scheme is

most applicable to the case when > Ẑ . However, as a simple test

of the proposed scheme we first apply it to reaction (3.1.1) for which

Z^ = Zg. Although this reaction may be complicated by the fact that

electron correlation may play a non-trivial role, the reaction has the

advantage that capture into excited states need not be considered due to

the very low probability of finding the H system existing in any other

state than its ground state. In fact it is highly questionable whether

H can exist at all in an excited state. Indeed the proof that H only

exists in its ground state has been the subject of a theoretical
17investigation by Hill . Also in an experiment designed to measure 

electron-capture cross-sections in H-H collisions, any H atoms being 

formed in an excited state, should it exist, would be quickly ionized 

and the process would be detected as an ionization process, i.e.

H + H—► Ĥ  + H + e. Therefore, the electron capture cross-section is 

calculated for the reaction, H(ls) + H(1s)— ►HOs^) + H"*" , for impact 

energies in the range 10 keV <T E 200 keV and we compare the
9results with the experimental data of McClure •

For any method, the sensitivity of the calculations with respect 

to the wavefunction employed is of importance if the general physics of 

the method is to be understood.

In the case of the Born and CDW cross-section calculations there 

have been many theoretical investigations with respect to this aim. As 

emphasised in Part 1 of this thesis the effects of electron correlation 

on the electron-capture cross-section may be significant when the 

H (lŝ ) system is involved. Thus, in applying the new scheme to reaction
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(5.1.1) we use both Hartree-Fock and configuration interaction wave-
— 2functions to describe the H (Is ) system: this allows us to comment 

on the influence of electron correlation.

A more appropriate application of the proposed scheme is in the 

calculation of electron-capture from H atoms by fast Li ions, which 

has been the subject of a recent experimental investigation by Shah,
18Goffe and Gilbody . Thus the individual cross-sections for electron 

capture into the final states n£ = Is, 2s, 2p, 5s, 5p and are 

examined for Li"*", Li^^ aind Li^ incident on H atoms with impact energies 

in the range 100 keV <( E 10,000 keV. The individual cross-sections 

are then used in conjunction with an appropriate n ^ sum rule to evaluate 

the total cross-sections which are then compared with the experimental 

data.
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CHAPTER 5.2

Derivation of the Continuum Intermediate States (CIS) transition 

amplitude for electron-capture by a simple structured projectile

In this derivation many of the steps involved are similar, if 

not identical, to those in the derivation of the CDW transition 

amplitude. Therefore, for the purpose of brevity, we will not repeat 

steps when it is easier to refer back to Chapter 1.2. Again we will 

formulate the problem within the impact parameter method and the geometry 

and labelling of position vectors will be as used in Part 1 for reaction 

(1.2.1), see Figure 5.1. Let us consider the general reaction:

(Z^,e(2))^ + (Zg,e(1))^---» (Z^,e(1) ,e(2))^ + Zg ,
A B

(3.2.1)

where i and f denote the initial and final states, respectively. The 

complete Schrodinger equation for the reaction will be

iiVl + 1  1  1  -  % )

_  (r,,r^,t) , (3.2.2)
a

where again we will choose the reference origin 0 to be the mid-point between 

and Zg. The correct asymptotic conditions for ^£^>£2 ’̂  ̂ will be

(3 .2.3)

where

$  i^£l’£2’̂  ̂ “ -TL ±(£i £̂2 ' exp^-i^^A"^)(^B"^) In(vR-v^t)^

(3.2.4) .
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and
(Z^-2)Zg 2

Çf(£v-2’̂  ̂= n,f(£i>£2 ’t)exp(-i— ^  ln(vE + v t)J .

(5.2.5)

The functions ^ . and I „ are the asymptotic wavefunctions satisfying 

the asymptotic Schrodinger equation, obtained by setting

1/5 2̂ — » 1/B. , '^p/s^— Z^/R and Z^/x^— > Z^/R for the initial channel, 

and ZLg/x̂ — » Z^/R and Zg/x2— * 21g/R for the final channel. The func­

tions andn^ are given by

n  ill '£z't) = Y i  (^2) "X i (£i)exP ( -i[iv.r.,4 v.r2+iv^t+(£.^+ j

(3.2.6)
and

n  /£i,£2't) = 0f(s^,Sg)exp ( -i t'ïl.r,-J;v.r2+'îv^t+e^t"] ) ,

(3.2.7)
where Vp . , and are the corresponding bound-state electronic
wavefunctions with eigenvalues ̂  . , ( and £ _ given by the

A B̂
solutions of

2ii ̂  + ^ + £ . \  \U . = 0 1 (3.2 .8)
-2 ^ ̂ A

/ 2 2
^ f  + e J  X i  = 0  (3.2.9)

^  ^ 1 B B

and

(i V  + i V  + - ^  + 1  -  - L  + 6  = o .1 2 S/| S2 6/| 2 f t (3.2 .10)

It follows that the distorted waves ^  ̂ and 0(^ are defined by the

equations
2 2

[j 7r. • ^  ^  . a  . .J

(3.2 .11)
=2 ^
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cLnd

[ i v /  + i v /  + ^  + ih + K f l i  .£2-t) = 0
— 1 — 2  s.^ S j  S.J2 R  . i t

(3-2. 12)

Ideally, we would like

"Xi — . |i X f    (5.2.13)
t  - *o t -- *. +

since, with the correct choice of potentials, and should vanish 

in the limit of large internuclear separation.

Adopting the procedure outlined in Chapter 1.2, see equations

(1.2.3) to(1.2 .25), we can obtain an expression for the 'prior* 

transition amplitude a^^. Thus, it follows from the equation defining 

that a^^ is given by

if
+ *

= i J dt J d£2 +
1 12

2  +
c.. R

- n.) .

03.2.14)

provided that

lim j" JÉE.2 "ÿ ̂  "X i " ^ " (3.2.15)
t— ► + "o

Alternatively, we may consider the time reversed reaction to obtain 

bif, the 'post' transition amplitude

= i f  dt J dr dr ^  - U *) %\ X. X_ R

provided

lim 
t — » +

I ii i g  Xf* Y = 0 .

f i  ’

(3.2 .16)

(3 .2 .17)

We will find, as discussed later, that the role played by the passive 

electron in the evaluation of a._ appears in a different form to that 

in the determination of b̂ ,̂ and that, as a result, the choice between
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the use of and becomes a matter of expediency.

The Distorted Wave Functions

As in Chapter 1.2 we represent the solutions of ̂  and 

in the form

(3.2.18)

and

^  f » £ , 2 ’ ~ JO. f ̂£̂ 1’£2 ’ * (3.2.19)

Substituting \p^ and into equations (3.2.2) we find that and 

are solutions of

V   ̂ - ^A^B “ i £. V  ■*■££• Vr + £^
-1 -2 ^2 ^12 R 2 ^  2 -2 ht

= “ E  [ V p  ^^1^L -Ü A B Vr.&(^1 '252*̂  ̂
—3

and

^  ^  + i Z - V r + 1 I-V-r +II £p x^ 2 -*1 -2 ^ 2  St

(3 .2.20)

E Vp 0£(s^
3=1

V r  ./f^-1 '-2'̂ ^. -3
(3.2 .21)

respectively. In solving equations (3.2.20, 21) to first-order we 

neglect the right-hand side and then make the appropriate approximations 

concerning the passive electron e(2) in order that the first-order 

solutions, and , will have the correct asymptotic behaviour.

This last condition is satisfied by making the approximation

_  1 . (3 .2 .22)^B __ ^B and 1
•R S12

The equations for and are then given by
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( i V /  + - i v.V, - à )
^ -1  s . E -. 2 -1  i t  /1

(3-2.23)

and
2

[iVj, + fâ - + i v.y + ii\ /  (x.,,t) = 0
1  X., E 2 -1  &t V ^

( 3 . 2 . 24)

Solving for and ̂  we obtain

/.I ,t) = N^(v) [iV^ ; 1 ; i(vs^4^.s)j exp i(Z^-1)Zg 2n(vR-v^t)

and

/̂(x.,,t) = Ng*(v)̂ F̂  [-i-Vg ; 1 ;-i (vx,,+v.x.,) exp

V

(3.2.25)

- i (Z ^ -1)Zgln(vR+\^t)
V

(3.2.26)
where = (Z^-l)/v , = Z^/v , and N̂ (v) and Ng(v) are defined in

equations (1.2.39a, 40a). Note that by using conditions (1.2.41— 43b)

and and hence \p ̂ “ *^i f “ *^f be
shown to have the correct asymptotic behaviour given by (3.2.3).

As a result of the approximations (3.2.22), the distortion, by 

Ẑ , of the passive electron wavefunction centred on Z^ has been 

effectively removed. In the cases for which the scheme is proposed, 

i.e. Z^> Zg in which e(2) will be tightly bound to Z^ compared with 

the binding of e(l) to Zg, this is a reasonable approximation to make.

In addition, any influence on the formation of (Ẑ , e(l), e(2))^, in 

reaction (3.2.1), due to the distortion of e(2) by Zg will arise from 

the influence of e(2) on e(l), and this will thus involve an electron 

correlation effect. Thus for Z^ 3, when electron correlation effects 

in reaction (3.2.1) should be minimal, the contribution from such a two- 

step process is expected to be negligible.
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However, it is also important to note that in making the 

approximation s^g ^  have effectively pushed the passive electron

e(2) into the projectile nucleus and therefore it will screen the projectile 

nuclear charge by unity. This latter feature contradicts the rational­

isation that the maximum contribution to the cross-section will occur when 

e(l) experiences the full charge of Z^. Fortunately the approximation that 

s.|2 —  ŝ  appears only in equation (3-2.20) and, as we shall see later, 

the formulation of the CIS method is such that only one of the distortion 

functions, or , need be used,depending on whether we use

^if îf"
Up to this point the formulation of a^^ and b^^ is quite general 

and the method we finally employ, CDW on CIS, depends ultimately on the 

choice for U^ and U^. We now turn our attention to solving equations 

(3-2.11, 12) within the framework of the CIS method as presented by 

Belkic^^. Following Belkic"'̂ , we choose U^ and U^ such that the distorted 

waves 0( ̂  and 0^^ will involve only the unperturbed eigenfunctions 

and _n respectively, along with the appropriate phase functions, say 

ĝ (t) and ĝ ( t). Thus we look for solutions to ^  and in the form

,Zg,t) = n  g^(t) (5 .2.27)
and

(3-2.28)

where g^(t) and ĝ (t) are given by

g^(t) = exp i(Z^-l)Zg 2n(vR-\/̂ t) (3.2.29)

and

.( t) - exp -i(Za -1)Zb ia(vR+v^t) (5 .2 .30)

It follows therefore that the necessary choice for U^ and U^ will be
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U. = and U = jfs . (3 .2.31)
 ̂ - R - R.

Note that and are simply the distorting potentials acting on e(1) 

at large internuclear separations since, in this limit, s.̂ —  R. With 

this choice of and the solutions obtained for and are

such that the boundary conditions (3-2.13) are not obeyed since and 

do not vanish in the limit of large internuclear separation, but vary . 

as /R. We note also that ^  ̂ and are devoid of any continuum

intermediate states which arise via the Coulomb functions,

|Fj i V  f 1 ; - i(vr + v.r^ , such as those found in the solutions 

of and By substituting for and into equations (3-2-14)

and (3-2,16) we finally obtain the CIS 'prior* and 'post* transition 

amplitudes for reaction (3-2-1),
■¥<30

^if i f  dt J ^  dr^ \ D f V A  -  _ L  + f s  -  M  'X i
-to ^  \ ŝ 2 ^2 ^

(3-2.32)

and
—  r

b = i  f  dt j  ^  ( f s .  fB -  0 ( f *  Y i  •

(3-2.33)
We recall that in solving for and the distorting

potential Zg/x^, in the equations for and (see equations

(3-2.20) and (3-2.21)), was set equal to Zg/R. This approximation 

enabled the distortion of the passive electron wavefunction to be 

removed from the problem and, as argued, is a good approximation for 

Z^ ^ Zg. A consequence, however, of removing the distortion potential

- ^B/^ from the equations for ^  ̂  aud is that it now appears

as a perturbing potential in the matrix elements a^^ and b̂ .̂ Thus, it 

would appear reasonable and consistent to make the same approximation in 

equations (3-2.32) and (3-2.33)- Therefore in the scheme presented here
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for reaction (3-2.1) we will assume that we can set equal to R 

consistently throughout the analysis, and obtain for the prior and post

transition amplitudes

= i J dt J dr̂  dTg J/ / ^  - 1 W  , (3-2.34)
^ f ^ ŝ ĝ/ i

and

h f =  " 1 dt J dr^ dr. Y i  ’ (5.2.35)

respectively.

The post transition alnpl-itude b^^ involves the solution to

via in which we had to invoke 'perfect* screening of the projectile

nucleus by the passive electron e(2) using the approximation l/s^^= 1/ŝ . 

However, in a^^ the relevant potential (l/ŝ )̂ now appears as a 

perturbing potential within the matrix element and therefore lends 

itself to the possibility of a more flexible approximation. It also

turns out that a^^ is the more desirable of the two forms from the point

of view of evaluating the cross-section, particularly if complicated 

wavefunctions are used to describe the excited states of the captured 

electron.

Finally, we note that for the one-electron reaction

+(Zg, e(l))-»(Z^, e(l))+ Zg the transition amplitude a^^ is easily

obtained by removing the 1/s^g term and by substituting the appropriate

one-electron wavefunctions for and  ̂. Furthermore,

i,
16

for Z^ = Zg = 1 i.e. protons incident on H, we will obtain the expression

given by Bellcic
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CHAPTER 3-3 

Evaluation of the transition amplitude

In this chapter we evaluate the CIS transition amplitude a^^ and 

the cross-section for reaction (3-2.1). We will first consider capture 

into the ground-state only and treat capture into excited-states 

separately later. Let us describe the ground-state of the final 

projectile by the natural expansion of a Cl wavefunction, the form of 

which was described in Chapter 1.3, equation (1.3-2)., We can then always 

reduce the resulting equations to correspond to a simple Hartree-Fock 

wavefunction as was done in the CDW calculations. For simplicity we will 

only consider the most usual case of the target and initial projectile 

being in its ground-state. Thus we have for the bound electronic 

wavefunctions

e , (3.3.1)

= f Z  - (3.3.2)
IT

and jZ) 2̂ -1 ’ (sg) , (3-3-3)
1 s

where the form of D̂ cpy ,(i2oc/j sind are defined in Chapter 1.3,

equations (1.3-5-8). In order not to repeat trivial steps we will 

mention only the major features of the analysis and will refer back 

to Chapter 1.3 when possible.

After substituting the solutions for and 0( ̂  from equations 

(3-2.19) and (3-2.2?) into the expression for â ,̂ equation (3-2.34), 

we multiply the phase functions together, substitute fori^^ and 

from equations (3-2.6,?) and replace the Coulomb function in by its 

integral representation (see Chapter 1.3, equation (1-3-13)) to obtain
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for the expression
2iZ^^

- i ^  (vx^+v.x^)

(3.3.4)

where A 6 = £ ̂ (ls) + €g(ls) - 6g(ls^), Z = (Z^-1)Zg, and b is the

impact parameter. V° _ is the perturbing potential acting on the active

electron e(l) due to the approaching projectile i.e. V° Z^/s^- 1/s^^.

At this point we must decide how to handle the electron-electron

potential term. If we are to be consistent with the approximation made

with respect to x^ we should set V°  ̂= ‘(Z^-l)/s^ which invokes perfect

screening of the projectile nucleus Z^ by e(2). This approximation would

seem reasonable for large Z^ although it does not allow e(l) to experience

the full charge of Ẑ  for which the probability of capture would be a

maximum. A more appropriate approximation to V° _ is obtained by' 1 ̂
replacing the electron-electron potential by the average electrostatic

potential acting on e(1) due to the distribution of charge around Z^.

Thus V° is given by its approximate form _I , ̂  I , ̂

1 7
2 = - A  - _ L  + e + _L) , (3.3.5)

which has the following useful features

v] , ___^ ~  ̂ (3.3.6)
1,2

and v] . ^A . (3.3.7)1,2

Substituting for the bound-state electronic wavefunctions (3.3-1-3),
1̂

a^^ may be re-written in the form
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2iZ
-iV,

a (Is) = Ng(v)(bv) D y r ^ ll. fl+ 1\ ^
2TT .L f

(3.3 .8)

where lot» = f dr^ (ŝ ) (3.3.9)

and K̂ |, = I dr,, (g_̂ (s,,)V̂ 2̂'Xls^ï?®*, 1 , "^Z-£l -iVvx^+v.x,,)

(3.3 .10)

Using the Fourier transform method to evaluate the above integrals it is 

easily shown that
2iZ ^

a.f(1s) = J dte-iAft

-IV.r
X  I-o4y j dr.̂ e  ̂J dk I dX F^k) G(K)

i k.s. -i K.x X e e , (3.3.11)
where

^ p (k )  = I  '€< |i(s ,) V i_2 e “ ~  ̂ ds,, ( 3 . 3 . 12)

and
f -ii(vx +V.X.) ik.x.

G,,g(K) = J K,,̂ (X,,) e e dx̂  (3.3.13)

Both the F* and G integrals can be solved quite easily by making use of 

the expression given in Chapter 1.3, equations (1.3-31,32). Carrying out 

the integrations over r and k (remembering that y is defined in the 

z-direction) and finally over time t, we obtain that h = K + £ and that 

K„ = -v/2 - Aé/v. Thus (3-3-11) becomes
2iZ _ . y

N (v)(bv) ^ i d ?  / 1 \ ^
= ' ■ (2TT)3-“  V J T  ( ^ + t )

+ 0»
j dK^ e j dKy v/2-4^)0, -v/2-^) .

(3.3.14)108



*We recall that in the CDW method the F G function consisted of 
»four f integrals and four g integrals which results in the final form 

*of F G not being separable with respect to the description of the

initial and final states of the 'active* electron - the initial and

final states being connected through the final distortion via In

the CIS approach we only have one integral for each of the F and G

functions. Consequently F G is separable with respect to the 'active*
*electron description, F being a function of the final capture state and 

G being a function of the initial projectile state. As we shall see, 

this helps considerably in reducing the amount of calculation necessary 

if we wish to consider either capture into excited states or capture 

from different targets.

As in Chapter 1.3 we now transform (3«3-l4) into Tt space, where
2 2 2Tt = K  + K  ,K = y\ Sin 9 and K = Tt Cos 0. Integrating over 9 and V X y ’ x * y

using Cauchy’s Theorem to perform the integration over 'f , the expression 

for a.„ may be written

N_(v)(bv)  ̂ r - *

o
(3 .3 .15)

Substituting (3-3.15) into equation (1.2.28) and noting that

oO

V w  Ĵ (bT|^)J^(bTx )b db = S(yi-ri) , (3-3-16)
o

we obtain for the capture cross section O'(is) (in units of TT â )̂

00

CT (Is) =  ̂ I I U y l ’-f (n)] |Gig(Tl)| dTi .
0 ■

(3 .3 .17)

Following Chapter 1-3, we again obtain a 'passive* overlap integral
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which, for reasons outlined in the discussion of equations 

(1.3.38-43), will be non-zero only for those basis orbitals in the 

natural expansion which have angular symmetry identical to the initial 

bound state of the projectile. Thus in this particular case only natural 

orbitals having radial symmetry will contribute to the cross-section.

Let us now examine the solution for ILcp (1%) and G^^(T^ ) separately. 

The solution to equation (3*3.13) for G^^(K) turns out to be

/z 5\ TY (z + itv)
. (3.3.18)

After performing the complex integration over and transforming into 

space, we finally obtain for Ĝ (̂"T̂ ). the expression
A-3. 2 .... -iV_

-iZg(C-D)1 '’

(3 .3.19)2
where C = Z ^  +Tt^ + (J/2 + ' (3-3-20)B

Aéand D = 2v (^2 + + i 2ZgV - (3-3-21)

The solution for (T|_ ) will depend on the form of the potential

V p. Let us first write down the solution, f. (ir\ ) , for a potential of
-çsi

the form e / ŝ , when (s^) is a simple Is S.T.O. i.e.
- 1 _

N Ç5 e : where 5^ is the exponent and Np the normalization

constant. After integrating over s,̂ in equation (5-3-12) and then 

transforming into space we arrive at the result

 ^  - - (3-3-22)
( ( fp +w)^+
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It follows that if (_ŝ ) is an S.T.O. having radial symmetry with

a principal quantum number n p , we can write

= ( -1 )
np — 1 np -1

o___
=e np-1 L

(3-3.23)

Also by using the partial differential of f<,ĉ  (T%) with respect 

to w it can be shown that for a potential  ̂in the form

( 4  + J L )  ,,1 (3-3-24)
1

(T\) is given by

(T̂ ) = (z -1) f-tp (n) ■ 4  - Lw=o o w
f-f, (T\.)

- w=2Ẑ .

+ f<p (t  ̂) (3 .3 .25)
w=2Z,

Due to the separable form of the integrand in (3-3-17), the cross- 

section for capture into the v\Ji = Is, 2s and 2p states, for example, 

can be written as

cr  (ni ) =
N b ( v )

2

2v

r 2 2Î J Tq.2'l+'' I’w^ (1̂ )} |4s(n)| ,
(3 -3 .26)

where q depends on the angular symmetry of the capture state, i.e. 

q = 0 for ni = Is, 2s, 2p^ and q = 1 for ni = 2p^, and T  is a

multiplication factor equal to 1 if we capture into a singlet state
1 3tv S, and equal to 3 for capture into a triplet state rv S. The CIS

integrand is in a particularly convenient form since, for capture into

different states, we simply re-calculate Wni (r̂) which is a function of
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the 'passive' overlap integral I and the F function which depends on the 

orbital description of the captured state­

let us now examine the structure of Wni(*>̂ ) when e(l) is 

captured into an excited state, and the spatial wavefunction describing 

^Z^,e(l), e(2)J  ̂is of the form

0.(1,2) = —  f u(1)v(2) i v(1)u(2)} , (3 .3 .27)
 ̂ V2 '

where u and v are sepaxately normalized ground-state and excited-state 

orbitals, respectively. N± is the total normalization constant 

given by

N± = (1 i  s 4   ̂ , ( 3 . 3 . 28)

with S equal to the overlap integral ( U { v3 . Usually the 

orbitals u and v are constructed to be orthogonal for which 9=0. 

Because of the form of 0^(1,2) and the fact that we label the,'active' 

electron e(l), a probability exists in our analysis for the capture of 

electron(1)into the ground state of projectile (Z^,e(2)) while, at the 

same instant, electron (2) is being projected into the excited-state 

orbital. This is an exchange effect, similar to that observed in 

Part 2 for electron-capture from Li, and is a direct consequence of 

having to antisymmetrize the total wavefunction in order to obey the 

Pauli exclusion principle. The size of the contribution arising from 

this exchange term will normally be very small if not zero due to the 

passive overlap integral that occurs between the excited-state orbital 

v(2) and the ground-state wavefunction V^^^(2) of the initial state 

projectile. For each orbital in 0^(1,2) we calculate a corresponding 

F( ) function, say F^(l^) and F_̂ (?%) , representing capture into the 

orbitals u and v respectively; Wn^ (r^) then becomes either Wri/ (r^) + ’ 

or VInX )- given by
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N+" , ^
Wn^ (ri)± y f  |̂ I(lf/̂ (̂2)|v(2))F̂ (t|) - l(V/̂ (̂2)|u(2))F̂ (l|)J

( 3 . 3 . 29)

It follows from the integration over spins that, for the singlet case 

we use Wrt̂ (7̂ )_ and ̂  equal to 1, and for the triplet case we use

and *T equal to 3- Consequently, once we have calculated 

'̂ fJL̂ yO for all the required capture states we will now have the cross- 

sections for capture from any general one-electron target of charge

"b -
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CHAPTER 3-4

An examination of electron-capture in H-H collisions

As a somewhat severe test of the scheme presented in the previous 

chapters we now examine the cross-sections for electron-capture in H-H 

collisions. This is a particularly interesting reaction to consider 

from the theoretical point of view since in the inward channel the 

perturbing potential acting on the 'active* electron is due to an 

approaching neutral atom. Thus we would expect, particularly for capture 

into a weakly bound state such as H , that electron-capture will occur when 

the 'active' electron sees the full charge of the H projectile nucleus. 

Applying the procedure just outlined to. reaction (3.1-1) we obtain for 

the perturbing potential ^, in equation (3-5-10), for 2̂ =1,

<,2 = • (5.4.1)

V. „ now tends to zero for the approaching H atom at large internuclear1
1 1 separations and equals /ŝ  for small s^. Thus  ̂is an appropriate

potential for the H-H capture process-

The capture cross-sections for reaction (3-1-1) a.re calculated

using the transition amplitude â ^̂  defined in equation (3-2-34-) - The
2wavefunction for H (is ) was described, firstly, by the HF fitted

19function of Curl and Coulson and, secondly, by a 'fixed core'
']representation of the form Isis in which the exponent of the valence-

±
electron orbital is chosen to be (2Ç)^, where E is the experimental value 
of the single-ionisation energy, and the 'fixed core' is a Is hydrogen 

orbital. The latter description of H has the advantage of having one 

electron loosely bound whilst the other electron remains comparatively 

tightly bound. Such a wavefunction, albeit empirical, could be 

particularly appropriate at the intermediate energies represented by
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experiment since contributions to the capture cross-section from

relatively large values of the impact parameter may then be significant.
_  2 20 We have also described H (1s ) by the Cl wavefunction of Weiss . This

function not only allowed for the high degree of electron correlation

in H , and satisfied the energy variation principle, but also enabled

us to make numerical comparisons with the CDW results of Moore and 
14Banyard . The energy decrement 2^6 used in conjunction with the HF 

and Cl wavefunctions was derived in each case from the corresponding 

theoretical energies whereas, for the * fixed-core’ description of H , 

we used the experimental value.

In Figure 3»2 the cross-sections O'(1s) are compared with the
9experimental results of McClure . Also shown are the 'post' and 

'prior' theoretical curves of Mapleton^^, which were used by McClure^
10for comparison with experiment- Mapleton employed a Born approximation

to describe reaction (3.1.1) with the ground-state of H being represented
21by the correlated wavefunction of Chandrasekhar . In Table 3.1 the 

CIS results, using the HF and Cl wavefunctions, are compared, at a
iZffew selected energies, with the CDW results of Moore and Banyard • The 

theoretical cross-sections of Moore and Banyard were obtained by dividing 

the CDW cross-section for the reverse reaction (i.e. H^ + H (is,Is)

H(1s) + H(1s )) by 8. This factor arises from the fact that for protons 

incident on H (is,Is) there is an equal probability of capturing either 

of the Is shell electrons, and that for the formation of H (is,Is) in 

H(1s )-H(1s ) collisions only /̂4 of the possible reactions lead to the 

singlet (̂ S) H atom.

Of the curves presented in Figure 3.2, that derived from the HF 

wavefunction is perhaps the best. This is somewhat surprising, 

particularly since for the formation of H we would expect that 

contributions arising from electron correlation terms to be non-negligible,
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This may, as discussed below, arise from the cancellation of opposing

effects. The more reasonable split-shell description of H embodied

in the empirical 'fixed core' model and the Weiss wavefunction is

seen to be reflected in the closeness of curves (b) and (c). Our

CIS-based approximation is only capable of responding to a split-shell

or radial component of electron correlation and makes no allowance for

the effects of angular correlation in H . This arose due to an

orthogonality condition in the passive overlap integral and, in this

method, is a direct consequence of the form taken for  ̂which, in

turn, arises as a result of the approximation applied to the internuclear

potential term l/s 2̂ " Since the transition amplitude a^^ is evaluated

in terms of momentum space, it is possible that the opposing effects of
22angular and radial correlation - known to exist in momentum space 

may produce some cancellations with the result that cross-sections 

incorporating angular correlation terms may now lie in close proximity 

to the rather fortuitous HF based curve.

A more correct approach to the electron-electron potential term
1 1 in 2 would be to expand /s^2 terms of its spherical harmonics

by use of the expansion

4  = Z  ( 2 7 %  #  Z  Tv • ( 3 - 4 - 2 )
Z.-0 m=-J-

The Y/ 's are the normalised spherical harmonics and s< and s> are 

defined as the lesser and greater of the magnitude of position vectors 

_ŝ and ̂ 2 electrons (1) and (2) respectively.

Applying the expansion (3-4.2) in the matrix element (3-3-4) while 

representing the H system by the Cl wavefunction expressed in its 

natural expansion form, results, as a consequence of evaluating the 

angular integrals, in a series of matrix elements each
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one involving a natural orbital within the natural expansion of the Cl 

wavefunction. It is found that the orthogonality condition arising 

in the integration over the ’passive' electron coordinates acts such 

that contributions to the cross-section may now result from natural 

orbitals having the same angular symmetry as the terms in the above 

expansion. Thus, for terms for which,/ = 0 only radial correlation 

terms contribute, for terms for which ,/ = 1 only natural orbitals having 

p symmetry contribute and for X  - Z only dl orbitals contribute - and so on. 

Consequently by suitable truncation of expansion (3-4.2) at a particular 

X. value, we are able to observe the effect of progressively introducing 

the angular correlation terms within the Cl wavefunction.

The integration over electron coordinates and ̂  divides into 

two parts and contributions to the transition amplitude arise from when 

the radial coordinate ŝ  is s< , in the range 0 to s,j and when s^ is ŝ. , 

in the range s,̂ to** . However, because we have a neutral hydrogen 

atom projectile and since H is such a weakly bound system we might 

expect that the contribution to the cross-section for s^ 4 s,̂ to be 

very small compared with that which arises when ŝ  ^ This follows

from the fact that ŝ  < s,̂ corresponds to the situation in which the

passive electron screens the nuclear charge of the projectile. For a 

hydrogen projectile this would mean an effective charge of almost zero.

Thus, in the calculation.; ŝ  may be set to be s> for all values of s,̂ .

This approximation simplifies the calculation a great deal while still 

allowing angular correlation terms to contribute. Note that we still

have a passive overlap integral except that it now contains the potential
, 1 / ^ +1 operator /s.

Therefore, in order to obtain some idea of the relative influence 

of the radial and angular correlation within the H wavefunction on the 

cross-sections for reaction (3-1-1-), the cross-sections were re-calculated
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using the expansion (3-4-2) representation for /s^^ instead of the

average-static potential used previously. The 33-term Cl wavefunction
20 —  of Weiss was used to describe the H atom, and the cross-section was

19also calculated using the Hartree Fock wavefunction of Curl and Coulson 

in order to assess the influence of the radial correlation terms in the 

Cl wavefunction of Weiss. In the calculations s,̂ was set to s< and ŝ  

set to s> for all ŝ  and s^ as discussed above.

The cross-sections G^( Y =0)^^, CT( Y  =1)^^, and 0'(,/=2)^j 

corresponding to the truncation of expansion (3-4.2) at -/ = 0, 1 and 2 

respectively, when describing the H system with the Cl wavefunction, are 

listed in Table 3-2. For comparison with experiment, we chose an 

energy range of 20-100 keV. Each cross-section 0**(^=Dqj includes 

contributions from all the radial correlation terms within the 01 

wavefunction plus contributions from all angular correlation terms 

having angular quantum numbers equal to i, (i-1 ), (i-2) ,....,( i-.( i-1 )). 

Thus for example, O'(/=2) will include, from the Cl wavefunction, all 

radial correlation terms, and all angular correlation terms which have 

either p or d symmetry only. Also shown in Table 3-2 is the cross- 

sections o '(X =0)jjp obtained using the HF wavefunction of Curl and 

Coulson^^ to describe H , for which only the first radial term {X=C>) in 

expansion (3-4.2) contributes to the /ŝ ,̂ potential. The percentages, 

A q ’ : A 2 ’ reported in Table 3-2 show the changes in cross-section 

as one goes from 0*(X =0)^ to 0'(/ =2)̂ ,̂ , and therefore reflects the 

change in cross-section brought about by progressively including first 

radial correlation ( A  q) , then angular correlation having p symmetry 

( A  )̂i and finally angular correlation having d symmetry (A  ̂ ) into 

the description of the H system.

As shown in Table 3-2 the percentage changes in cross-section, 

brought about by introducing electron correlation of successively
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increasing angular symmetry, are seen to alternate in sign. This

demonstrates the opposing effects of electron-correlation terms which

have different angular symmetry, and which is known to exist in 
22momentum space as discussed earlier.

In Figure 3-3 we compare the cross-sections with the experimental
9data of McClure . The agreement with experiment when using the Cl 

wavefunction is now reasonably good for E > 30 keV, and is a slight 

improvement on that obtained when using the average static potential 

for results of which were shown in Figure 3-2. We recall

that in the average static potential approach only radial correlation 

could contribute to the cross-section whereas, by using the /s^^ 

expansion, we have been able to include both radial and angular 

correlation effects. It is interesting to note that the curve 

corresponding to the truncation of expansion (3-4.2) at X  = 1 and 

^  = 2 is in close agreement with curve (a) in Figure 3-2, which 

corresponds to the Hartree-Fock description of H when using the 

average static potential approach. As stated earlier, the slightly 

better agreement between curve (a) and experiment compared to curves (b) 

and (c) in Figure 3-2 was attributed to the omission of the angular 

correlation effects. Therefore, by using expansion (3-4.2) for /s^^ 

we have been able to show that this is the case, and is the result, as 

demonstrated in Table 3-2, of the opposing effects of angular and radial 

correlation.
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CHAPTER 3-3

Electron-capture from H atoms by fast Li ions

We now present and discuss our results obtained by applying the 

CIS method outlined in Chapters 3-2 and 3-3 to the general electron- 

capture reaction

Li%* + H — » + H+ , (3-5-1)

for q = 1, 2 and 3 and for impact energies 100 keV < E < 10000 keV.

For ease of discussion we will examine the three cases separately in

reverse order q = 3, 2 and 1. All the cross-sections are calculated

using the 'prior' form of the transition amplitude â ^, and the total

cross-sections are compared with the experimental data of Shah, Goffe and 
18Gilbody . Thus, the first reaction we consider is

Li^ + H(ls)— ► Lî "̂  (ni) + H'̂ . ( 3 - 3 -2)

The electron-capture cross-sections were calculated using .both 

the CIS and CDW methods for nX = Is, 2s and 2p, and the total cross- 

sections obtained by means of the formula

Q = c r ( l s )  + 1 .6 l6 (cr (2s)  + c r ( 2 p ) )  , (3 -3-3)
2 3  -3which assumes the Oppenheimer n rule for n > 2, The evaluation of 

the CIS and CDW total cross-sections, by means of equation ( 3 -3 - 3) ,  not 

only allowed us to compare the two methods but provided an initial 

comparison with experiment. This showed that, for this reaction, equation 

(3-3-3) underestimates the contributions arising from capture into 

higher excited states, and that capture into n X = 3s, 3p and 3d has to 

be considered if a meaningful comparison with experiment is to be made.

As a result, the CIS capture cross-sections for n X  = 1s,2s,2p,3s,3p and 

3d were calculated and the total cross-sections obtained from

Q =cr( is )  +cr(2s) +cr(2p) + 2.081 (cr(3s)+cr(3p) +cr(3d)) . ( 3 -3 -4)
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The wavefunctions used for reaction (3-3»2) are obviously 'H-like* 

eigenfunctions and are therefore, along with the eigenenergies 

and energy decrement, exact. The results are listed in Table 3-3, and 

in Figure 3-4 we compare the total cross-sections with the experimental 

data.

The CIS curve calculated by equation (3.3.4) is an improvement 

over that calculated with equation (3.3-3), and the CIS curve is in 

reasonable agreement with experiment for E > 400 keV particularly with 

respect to the slope and trend at high impact energies. We see from 

Table 3-3 that for the energy range considered. O' (n = 2)>Cr(ls) for 

E ^ 3000 keV, O'"(n = 3)> O'(1s) for E ̂  2000 keV and that for 

E 1000 keV 0'(n = 3)> O' (n = 2) . In the light of these trends it 

would seem unlikely that the CIS curve, calculated using equation (3-3-4), 

would be improved with respect to the experimental data by calculating 

capture cross-sections into the n = 4 levels, since a lowering of the 

appropriate curve in Figure 3-4 would imply a larger decrease in cross-

section in going fromC'(n = 3) to G'(n = 4) below that predicted by
-3 - -3the n rule. We note also that errors due to the use of the n rule

usually cause an underestimation of the total cross-section.

Although the CIS aind CDW approximations may yield very similar 

total cross-sections we find that, for this reaction, the relative 

contributions from capture into excited states may be quite different 

for the two methods. In order to demonstrate this fact we report in 

Table 3-4, for both methods, ratios of O'(nZ) /O'(ls) at selected 

energies for nX = 2s, 2p, 3s and 3p, and in Table 3-3 ratios of 

CT(n/)ç,jg / <J’(n/)^^^ are shown at the same energies. From Table 3-3 

we see that for E 3000 keV the CIS and CDW ratios for O'(n/) /O'(is) 

become similar to each other for njf = 2s and 3s, while for nJ = 2p and 

3p the CIS ratios are approximately twice the corresponding CDW ratio.
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However, below 3000 keV there appears to be no agreement or 

recognisable trend between the two methods whatsoever, although the 

CDW ratios are much larger than those derived from the corresponding 

CIS results. The reason for this is not due to the larger CDW cross- 

sections for capture into excited states, but due to the much smaller 

CDW cross-sections for nX = 1s as compared to the CIS method; note 

that at 500 keV O' I6 x O'( 1s)^^^ .

As the impact energy increases we see from Table 3-3 that the CIS 

and CDW cross-sections are similar in magnitude for capture into the s 

states while for capture into the p states we have :£= 2 x .

This could be a consequence of the CIS method predicting a different 

transition probability for capture at large impact parameters from that 

of the CDW method, as reported by Belkic^^ in his original paper on the 

CIS method. This may become important for capture into excited states 

having angular quantum number £  ̂  0 and particularly if projectiles - 

in the form of highly charged nuclei are involved, for which electron- 

capture at large impact parameters is more likely to occur.

We now turn our attention to a reaction of the type for which the 

CIS method was modified in the scheme outlined in Chapter 3-2, i.e.

Li^* (Is) + H(ls) ► Li+(ls,n/) + H"̂ . (3-3-3)

In reaction (3-3-3) we have a structured projectile consisting of

a one-electron ion, and therefore the CIS capture cross-sections were

calculated using the 'prior' transition amplitude defined in equation

(3-2.34), with the perturbing potential Z^/s^ - l/s^^ being replaced by 
1V. _ defined in equation (3-3-3)- The capture states considered are1,2
n/ = Is, 2s, 2p, 3s, 3p and 3d, and the total cross-section is evaluated

by means of equation (3-3-4). For capture into the ground state nX - Is
2L.the HF wavefunction of Clementi and Roetti was used to describe the
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final ground state Li"̂  ion. For the purpose of obtaining a meaningful 

comparison with experiment, and also to provide a good test of the 

scheme proposed in Chapter 3-2, it is imperative to use the best 

possible wavefunctions to describe the excited states of the final 

Li^ ion. For this reason we decided to use the excited-state wavefunctions 

of Cohen and McEachran^^’̂ ^. Since the calculations involving the 

excited-state orbital descriptions proved to be non-trivial and interest­

ing, we first present a description of the Cohen and McEachran^^’ 

wavefunctions together with the resulting calculation of defined

in Chapter 3-3, equation (3-3-29).

The excited-state wavefunctions ôf Cohen and McEachran^^’ are

constructed within the framework of the "fixed-core" approximation.

That is the 1s orbital is described by an hydrogenic wavefunction and the

appropriate radial equation for the excited-state orbital solved keeping

the Is orbital fixed. A theoretical advantage of the fixed-core method

arises from the fact that the various Is n/ total wavefunctions are

mutually orthogonal. The wavefunctions, as reported by Cohen and

M c E a c h r a n ^ , were found to predict ionization energies in close

agreement with experiment and produced expectation values for one-electron

operators in good agreement with the (effectively) exact values calculated 
27by Pekeris . The excited-state radial wavefunction is written in the 

form

0f(i,2) = —  (u(i)v(a) ± vd)u(a)) Y°(e ,0)y“(9 ,0) ,
V F

(3-3-6)

where u and v are separately normalized, mutually orthogonal orbitals.
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3/2The 1s orbital u is represented by the hydrogenic form u = 2Z^ 

exp(-Z^r), while the valence orbital v is expanded in a series of 

associated Laguerre functions

V = N â  exp(-aLr)r^ L̂ "̂ "̂*(2«<.r) . (3-3.7)
j=2i +1

N is a normalization constant, a. are the expansion coefficients, X the3
angular quantum number of the excited state and «4 = Z^/n. Thus for any 

excited-state wavefunction we simply have a list of expansion coefficients 

appropriately truncated to provide an accurate description of the excited 

state orbital. The associated Laguerre function is defined by the 

expansion

L  ^  ( r )  -  ( - 1 ^  _  * <  ( « ^  -  p )  I ( o ^ - l )  ( « < - / ) )  ^ - A - 1 ) ^ - f r - %

I " d. 2)

- ...................I . (3-5.8)

It follows that we can conveniently express the orbital v in the form 
MAX j-2/

V = N a^exp(-«ir) } A^^ r̂  ^  ̂ , (3-3-9)
3=2/ +1 i=1

such that the coefficients A. . are given by

A . .    .  ( 3 . 5 . 1 0 )

^  (i-1)! ( j-i+1)! (j-2/-i)!

In Chapter 3-3 it was shown that, for a wavefunction of the form 

(3-3-6), ) can be written

= ■p-(l('/'ls(2) I v(2))F^(rl) t | u (2))F^(T()} .
aj2

(3-5-11)
The function I is the passive overlap integral and, since in this case 

Vj4-]g(2) is identical to u(2), I(ŷ ,|̂ (2) | v(2)) is zero due to the 

orthogonality of u and v. Thus ) becomes
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where, for a simple orbital of the form * e

(3.3.12)

given by equations (3.3.22-23). It follows that by substituting the 

excited-state orbital of the form (3-3.9) for in equation (3-3-12),

and performing the necessary integrations, F.̂ (?̂  ) can be expressed as

j-2/ ^
V n >  = N E  ^3 Z  Aij(-i) 

0=2/+1 i=1 A1/+1
A*1

i _________

with i l .  = 3 - 22 - i ,

«< = /n
X = + 2Z. ,

A1 =

à
JL

' + (V2 -
A2 = X" H-n* + (V2 -

A2i+1
(3-3-13)

For the excited state wavefunctions of Li"̂  it turns out that -H- may 

have a value as large as 13 - To perform fifteen differentiations of

a function of the form (A1) — /  —1 would be both tedious and exhausting.

The multi-differential calculations needed in F^(iq) were performed by
28an algebra manipulation computer programme called CAOS , which is a

recent, and much improved, addition to the already existing generation
28of software designed for algebraic manipulation. CAOS calculated and 

produced all the differential forms required in F_̂ (7[ ) in less than two 

seconds of computer time. Thus, the availability of CAOS not only meant 

a saving in labour but made the Cohen and McEachran wavefunctions viable 

for cross-section calculations. Therefore a computer programme was
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written which, could calculate a cross-section for capture into any-

excited state, and with the orbital being described by a large number of

terms in the expansion defining v. The calculated cross-sections O'(n/ )
1and the total cross-sections Q,j and corresponding to two forms of ^

i.e. = (Z -̂1) / s+exp(-2 Z^s).(Z^ + s and = (Ẑ  - 1) / s,

are listed in Tables 3-6 and 3-7, respectively. In Figure 3-5 the CIS

curves are compared with experiment. As expected the total cross-sections

calculated with , i.e. , are larger than those calculated with ,

i.e. at the same impact energy, the difference between the two

becoming larger as the impact energy increases. For exsimple at

E = 500, 1000, 3000 and 10000 keV is successively 1.07, 1.32, 1.84

and 3*11 X The same trend is seen for the individual capture-states

over the total energy range, with the exception of O'(2s) and O'(3s)
for which is larger than oiily for E ^ 400 keV and E X 800 keV,

respectively. This is a consequence of V,| and differing in form for

small electron-nuclear separations, see Figure 3*6, which will become

most important at large E when the capture cross-section is dominated
1by regions of high momentum. From Figure 3*5 we see that for 2 ~ ^2 

the CIS curve is slightly lower than the experimental points for 

E > 400 keV, however, for ^ the agreement with experiment is

exceptionally good for E > 300 keV. In Figure 3*7 we show the curve for 

together with the individual cross-section curves for capture into the 

individual quantum levels n = 1, 2 and 3* For the energy range displayed 

on the graph we see that O'(n=2) , i.e. C'(n=2) =O'(2s) + 0'(2p) , and 
O' (n=3) , i.e.Cr(n=3)=CT(3s)+Cr(3p) + Cr(3d), are greater thanO'(ls), and 
that the exaggerated total cross-sections at low impact energies is due 

to the over exaggerated cross-sections for capture into the excited states. 

For impact energies greater than 3000 keV the ordering in cross-sections 

becomes O'( 1 s) >0'(n=2) > O' (n=3), and for the whole energy range 
0 ”(2p) > O'(2s) and 0^(3?) ^ O ' (3s).
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The final reaction we consider in the Li ion series is

Li+(ls^)•+ H(ls) Lids ,n/) + . (3.3.14)

For this reaction we have a structured projectile having two bound-electrons 

in the ground state. Thus the reaction is of the general form

(Z^,e(2),e(3)). + (Zg.ed))^ »(Z^,e( 1 ) ,e(2) ,e(3) ) ̂ + Zg .
A B

(3 .3.13)
Performing a similar analysis as described in Chapter 3.2 the prior and 

post transition amplitudes turn out to be

f dt r dr. dr, dr, \I/ * P - 1 - 1 + W

(3.5.16)

and

hf = i 1 -it J d£i d£2 dr f C ̂  ^  ^  -X/ ] xpi
-A g  1 ^ 2  ^ 3  2  -*

(3.3.17)
respectively, where the necessary choices made for the distorting

potentials and are

Ü. =1 ----------- and U„ = (3 .3.17)
R R

If we now follow the arguments as presented in Chapter 3*2, 

equation (3 *2 .32) to equation (3 -2.38), and neglect contributions to aif
and b^^ arising from potentials of the form 

for a^^ and b̂ ^̂

%  -

X  R
, we obtain

if = i J dt j dr̂ dTg dr̂  ^ 8)

and

b.̂  = i. J dt dr̂  d£2 d£j ( ! b ) X /  Tpi • (5.5.19),
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In solving for for reaction (3-3-14), f will correspond to the
- 2a product of the three-electron wavefunction for Li(ls , nX) and the 

coulomb wave acting on the active electron due to , and will be

the product of the two-electron wavefunction for Li^(1s^) ajid the 

hydrogen wavefunction, multiplied by the appropriate phase factor 

analogous to that occurring in the solution for in Chapter 3-2

equation (3-2.27).

If the Li"*" ion electrons are described by the HF wavefunction of
p /

Clementi and Roetti , which is constructed from a basis set of 1s 

S.T-O.'s only, then it follows that the two possible approximations to the 

perturbing potential in a . i . e .  say - 1 - 1 , that we
1̂ ^12 ®13

shall consider are

1

and

''2V, = —   , (3-5-21)

where are the S.T.O. orbital exponents and ĉ  ̂the usual

variational coefficients within the wavefunction. The potential

is of course the average static potential of the Li^(ls^) ion as seen

by the active electron and is the perfect screening potential.

Since we consider the ground state of the Li^ ion to be filled,

the capture states considered are n X  = 2s, 2p, 3s, 3p and 3d, and the

total cross-section is calculated using equation (3-3-4) with O'(1 s) = 0.
For capture into the 2s level we simply form a neutral Li atom and, for

2this cross-section, the Li(ls ,2s) electrons are described by the HF
Of,wavefunction of Clementi and Roetti . Since no suitable excited-state 

wavefunctions could be found for Li it was decided to generate our own
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very simple excited-state orbitals within the framework of the 'fixed
2 2 core' approximation. Thus, the 1s shell of the Li(ls , nX) atom is

24 2described by the HF orbitals of Clementi and Roetti as for Li(ls , 2s), 

and the n X  orbital as described by an 8TO having an orbital exponent 

defined by the experimental ionization energy, , of the particular

excited-state. The excited-state eigenfunction is then finally 

constructed to be orthogonal to all lower eigenfunctions by the Schmidt^^ 

orthogonalisation technique. Thus we obtain for the orthogonal 

excited-state orbitals

V'3. = *«3s - 1 •€3s> - <^2s 1 %3s> ^2s ’

(3.5.22)

y^2p (3.5.23)

V'3p = ^ 3 p ■  < k 2 p 1 ^  3p^ ̂  2p (3.5.24)

and y  3d = 3d (3.5.25)
where = )"+?(2ml) — n—1 f r exp(- ?^r) .Yp e,0) (3 .5.26)

and ): nJ given by -

ï n / = nJ (3 .5 .27)

The energy decrements for all the cross-sections were determined using

the experimental ionization energies , obtained from the tables of

Charlotte E. Moore

With these wavefunctions the cross-sections were calculated for 
1both forms of  ̂ and , and the results are listed in Tables

3-8 and 3-9- In Figure 3-8 we compare the total cross-sections Q, and 

with the experimental data with which there seems to be good 

agreement, with the perturbing potential again providing a better

description of  ̂- .̂s in the case of reaction (3-5-5) the two curves
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and deviate apart from each other as the impact energy increases, 

the ratio Q^/Q^ increasing from 1.5 to 4 as the energy increases from 

1000 keV to 10000 keV.

For the individual capture cross-sections in Tables 3-8 and 3-9

we note an interesting trend that is most clear for 100 keV 4 E 4 1000 keV.

We see that for capture into nX = 2s and 3s the capture cross-sections,
1for both forms of V, _ at the same impact energy, differ by more than a

factor of two, while for capture into nX = 2p, 3p and 3d the two sets

of cross-sections are very similar to each other. At larger energies

the difference between the two sets of results for nX = 2p, 3p and 3d

increases and the trend is not so noticeable although the differences

are still largest for capture into the s-states. A similar trend was
31observed by Banyard and Szuster - when examining the effect of electron- 

correlation on electron-capture from He by fast protons into the Is and 

2s states as compared to capture into the 2p state. The reason for 

the trend is simply due to the difference in characteristics between 

the capture-state wavefunctions which possess angular symmetry compared 

with capture states which have only radial symmetry. It is the 

characteristics of the radial wavefunctions at the origin that are of 

interest since it is this region which contributes most to the cross- 

section at large impact energies. While the different s-states will 

have similar characteristics near the origin, the characteristics of 

the p and d states are quite distinct, the wavefunctions being-zero a± 

the origin. Thus it is not surprising that the differences in sensitivity 

of the cross-sections (for capture into different states) to quantities 

such as the target description and, as we have seen, approximations 

made with respect to the perturbing and distorting potentials, will be 

most enhanced at large impact energies.

130



Of interest is the extent to which the electron-capture cross- 

sections for ions of different charge q in collision with atomic hydrogen 

scale according to q̂ , where n is an integer. For the Li-ions considered
18here Shah, Goffe and Gilbody have stated that the experimental capture

cross-sections scale approximately as q^ at high impact energies, although

for the ions L i ^ , Ee^^ and %  in collision with hydrogen Shah et al^^
2found the capture cross-sections to scale approximately as q . In order

to see if such a scaJ.ing is reflected in the theoretical cross-sections

derived here in the CIS approximation, the scaled total cross-sections

Q(q)/q^ for the reaction Li^^ + H(1s) ►Lî *̂  are presented in

Table 3-10, for q = 1, 2 and 3» The values for Q are those given in

Tables 3-3 to 3-9, and therefore for q-= 1 and 2 correspond, with

respect to the form taken for the perturbing potential in the transition

amplitude, to either the average static potential approximation, in the

case of Q = , or to the perfect screening approximation, in the case of

Q = . As shown in Table 3-10 the better agreement between Q(2) / 2^

and Q(1)/1̂  with that of Q(3)/  3^ is obtained for the total capture cross-

sections . The conclusion overall, however, is that the q̂  scaling rule
18is not seen to hold as clearly as suggested by Shah et al for the

experimental cross-sections, although there is fair agreement between

0,^(2)/ 2? and Q^(1)/ 1̂  over the energy range 8OO keV ̂  E ^ 2500 keV.

This is seen mere clearly in Table 3-11 where the values for

(Q(q) / q̂ ) / (Q(q') / q'̂ ) are shown, when Q is given by the Q, values.

Since the agreement with experiment was exceptionally good in the case 

of the Li^^ ion in collision with hydrogen, see Figure 3-5, the rather 

poor results (compared with unity) for q̂  = 3 can be attributed to the 

overestimation in the CIS cross-sections for Li^^ incident on hydrogen 

compared with experiment, as can be seen in Figure 3-4.
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A natural extension of this work, time permitting, would have

been to calculate the individual and total electron-capture cross-sections

for Li-ions in hydrogen using the continuum distorted wave (CDW) method.
tAs discussed in Chapter 3-2, this would have meant imposing the ps- 

approximation when handling the passive electron(s) residing on the Li^ 

and Lî"*" projectiles in order that the boundary conditions of the problem 

are preserved, which of course is a natural feature of the exact CDW 

method as discussed in Part 1. This is achieved indirectly by defining 

the coulomb wave in the entrance channel in the form of the hyper-geometric 

function ,F, [iV; 1 ; i(vs + v.̂ ) ] , such that V = q/v, where v is the 
projectile velocity. Alternatively we could have defined V = q^^^v,

2  j_

where q^££ is given by ( - 2.?n ) ̂ and & is the binding energy of the 

active electron in its final quantum state n of the Li-ion projectile.

In this way q^^^ is analogous to defined in Chapter 2.2, equation

(2.2 .3), and therefore reflects a measure of the effective charge of the 

incoming projectile as seen by the active electron, as it is gradually 

ionised into the continuum state of the Li-ion projectile prior to 

being captured into the quantum state n .

Fortunately, shortly after the completion of this work,such
32a calculation was reported by Crothers and Todd who have examined

3 1 8theoretically the q scaling rule for electron-capture by fast multiply-
32charged ions in hydrogen. Crothers and Todd have performed calculations

of electron-capture cross-sections for Li-ions incident on hydrogen using

the CDW method over the low end of our energy range, and have compared
18their results with the experimental data of Shah, Goffe and Gilbody 

It is interesting to note that in calculating total cross-sections for 

Li""" incident on H within the CDW approximation, Crothers and Todd^^ 

have used an effective charge for Lî , when capturing into the quantum 
state n = 1, equal to 1.260 as given by Banyard and Shirtcliffe^^.
'ps = perfect screening
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This was derived from equation (2.25) in Chapter 2.2. Crothers and Todd 

did not, however, use an effective charge in the case of Lî'*' incident

on H.

Therefore, in Figure 3-9 we compare the CDW total capture
32cross-sections of Crothers and Todd with our own CIS cross-sections,

and with the experimental data of Shah, Goffe and Gilbody^^ for Li^,
2+ +Li and Li incident on hydrogen. In calculating the total capture cross-

section Crothers and Todd have performed a sum over the individual

capture cross-sections O'(ni) for n = 1 to 7 and have assumed the

Oppenheimer^^ n^ rule for n % 8, a rather good approximation. For
34 3+comparison the CDW calculation of Belkic, Gayet and Salin for Li

34in H is also shown in Figure 3-9- Belkic et al calculate the total
*3capture cross-section. using the Oppenheimer n rule expressed in

equation (3-5-4) but did not consider capture into the 3d state of Li^^.

Note that of the CIS total capture cross-section given in Table 3-3,

CT (3d) contributes, via equation (3-5-4), approximately 57% and 40% to

the total cross-section for E = 500 keV and 1000 keV, respectively. For

the same energies capture into the n = 3 state of Li^^ contributes

37% and 31% respectively to the total capture cross-section. The.

importance of capture into the n = 3 states is expected since the third

energy level of Li^^ is in resonance with H(ls), and this will lead to an

enhancement of the capture cross-section as a consequence of a zero energy

decrement A6 - This will be particulairly noticeable at lower impact

energies since A£ appears in the equations in the form (^/2 + ) ,

where v is the projectile velocity (see equations (3-3-14) to (3-5-22)

of Chapter 3-3)-

From Figure 3-9 it can be seen that the CDW cross-sections of 
32Crothers and Todd are similar to those of the CIS method particularly 

at high impact energies. For Li^ in hydrogen, for which the atomic
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wavefunctions used are exact, the CDW method appears to be in slightly 

better agreement with the experimental points, compared with the CIS 

method, for impact energy E > 800 keV, Most encouraging, however, is 

the excellent agreement with experiment obtained for the Lî"*" projectile, 

for E > 300 keV, when the total cross-sections are derived using our 

modified CIS approach. The underestimation in total cross-sections for 

the Li^^ projectile, due to assuming the n^ sum rule for capture into 

states n 4 (see equation (3-5-4)) is not expected to be too serious, 

since we note that for this reaction 0'(n=2) — 2 x Q T ( n = 3 )  over 

the experimental energy range.

Finally, the rather good agreement for Li^^ in hydrogen 

certainly justifies our use of the rather cumbersome but good excited 

state wave-functions for Li^(ls, ni) of Cohen and McEachran^^for 

which the prior form of the CIS transition amplitude was ideally suited 

due to the omission of the coulomb wave in the entrance channel, as 

discussed in Chapter 3-2 and 3-3- It is this feature of the CIS method 

that allowed us to modify the perturbing potential in the entrance 

channel. Such a flexibility, which is not possible in the exact treat­

ment of the CDW method, may prove useful for other more general cases 

of ion atom collisions.
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CHAPTER 3-6 

Conclusion

Working within the scheme of the continuum intermediate states

(CIS) approximation devised by Belkic"'̂  we have examined a possible

procedure for calculating cross-sections for electron-capture from H

by one or two electron atom or ion projectiles. Using the proposed

method we have investigated electron-capture in H-H and Li^^-H

collisions and have obtained very satisfactory results, for impact

energies greater than those for which the CIS method is expected to 
3+work. For the Li projectile the cross-sections were obtained using 

the CIS method as presented by Belkiĉ '̂ . Compared to the CDW method 

the CIS method was found to be more suitable for adaptation to high 

energy electron-capture by a structured projectile such as a one or 

two-electron atom or ion. This arose due to the fact that in the CIS 

approximation distortion of the active electron is retained in only one 

of the reaction channels while the perturbing potential corresponding 

to the other channel is retained in the matrix element, and therefore 

lends itself more readily available to approximations. In contrast, 

for the CDW method distortion functions are defined in both the 

entrance and exit channels and thus for a structured projectile in the 

entrance channel it is found that only two types of approximation are 

possible. One is the perfect screening approximation, in which the 

active electron experiences a charge due to the projectile equal to 

Ẑ -N, where N is the number of passive electrons on the projectile and 

Ẑ  the projectile nuclear charge. The other alternative is to define 

an effective charge as seen by the active electron due to the approaching 

projectile in a similar way as was done in the case of electron-capture 

from a many-electron atom seen in Part II. Both these approximations
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are not totally satisfactory since they do not allow the active electron 

to experience the full charge of the projectile nucleus. This may be very 

important for reactions in which the structured projectile forms, on 

capturing the electron, a negative ion such as H , and in particular at 

high impact energies when, as we have seen, the electron is captured into 

regions of small electron-nuclear separations. In the CIS method, however, 

the electron-electron potential terms in the matrix element may be 

treated exactly by using their expansion representation (see equation 

(3-4.2)}, or they may be approximated by some type of average static 

potential that the active electron experiences due to the passive electron 

charge cloud residing on the projectile nucleus. In this way the 

resulting perturbing potential is such that not only may the active 

electron see the full (unscreened) charge of the projectile nucleus at 

small electron-nuclear separations, but for large electron-nuclear 

separations the perturbing potential reduces to tliat of a perfect 

screening approximation. Thus in the CIS scheme we were able to simulate 

the physics of the capture process more accurately.

In an investigation of H production in H-H collisions, using the 

proposed scheme, we were successful in predicting accurate cross-sections 

for impact energies E > 25 keV. Due to the importance of electron 

correlation in H the magnitude of the cross-sections were improved when 

the expansion representation for 1/s^^ was used, which allowed both radial 

and angular correlation to contribute to the cross-section. We noted 

that any agreement with experiment obtained using the HF wavefunction 

for H must be fortuitous and results from the fact that the effect on 

the cross-section upon including angular type correlation terms having 

a P symmetry is opposite to the effect of adding the radial correlation 

terms. Thus, there is an "add-subtract" mechanism in operation when we 

systematically include electron correlation,via the natural expansion
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representation of the correlated wavefunction for H , as a consequence of 

including the higher angular terms within the l/s^^ expansion. As 

a result the final cross-section curve obtained using a fully correlated 

wavefunction for H may well lie on or near to the curve obtained using 

the HF wavefunction. Note that in the work of Banyard and Szuster'' 

on electron-capture from He by fast protons the inclusion of radial 

correlation terms within the He wavefunction caused the cross-sections to 

worsen with respect to experimental data; the inclusion of angular 

correlation terms may well reverse this trend.

A more appropriate test of the proposed scheme was obtained by
2+ +applying it to electron-capture from H by fast Li ions, to form Li

in both its ground and excited states. .A difficulty arising in such

reactions involving a one-electron projectile will be in obtaining

suitably accurate excited-state wavefunctions used to describe the final

two-electron projectile in the exit channel when the electron is

captured into an excited state. For the Li^^ projectile excited state

capture was of major importance since it contributed 90% of the total

cross-section over the energy range for which good agreement with

experiment was obtained. This justified our using the rather cumbersome

but good excited state wavefunctions of Cohen and McEachran^ As

stated earlier, for high impact energies the accuracy of the wavefunction

in the vicinity of the origin is of importance if a meaningful comparison

with experiment is to be made, and thus using a simple hydrogen-like

wavefunction to describe the excited state orbital may not be good

enough if accurate cross-sections for capture into the excited states

are required. Note that in the case of Li^-H collisions although the

agreement with experiment was fairly good the gradient of the theoretical

curve appeared to be too great and thus the agreement at large impact

energies may be doubtful. This was probably due to the rather simple
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wavefunctions used to describe the excited states of Li.

In calculating the electron-capture cross-sections for a one or

two-electron projectile incident on H, using the proposed CIS scheme,

we recall that during the analysis we have omitted contributions to

the transition amplitude that come from matrix elements containing the

perturbing potentials of the form __B and - _B (see Chapter 5-2,
x^ R

equations (3*2.22-35)• It was argued that the contributions from these 

terms would be small and that for projectiles having a large nuclear 

charge the approximation that x^ —  R should be reasonably accurate.

In view of the rather good results for Li^^ and Li^ incident on H and 

in the light of the excellent agreement with experiment for the H-H 

collision electron-capture cross-sections we may conclude that the 

approximation is a good one, and that for electron-capture by a one- 

electron projectile incident on H, when using the prior form of the 

transition amplitude, we need only consider contributions to the transition 

amplitude from matrix elements containing the perturbing potential

 ̂ In general this approximation should be most accurate

for projectiles having a nuclear charge greater than the nuclear charge 

of the target, for which the distortion of the projectile's passive 

electrons, which may contribute to the capture of a target electron via 

indirect electron-correlation effects, will be relatively small.
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Tables and Figures to Part 3



E(keV)
CIS CDW

HF Cl HF Cl

25 1.681-17 1.175"̂ ^ 2 .886-17 2 .067-17

50 3.023-1® 2 .067"̂ ^ 5.095"^^ 5 .526-1G

100 3 .268-19 2.268-19 5.227-19 5.600-19

200 2.325-2° 1.650-2° 5 .410-2° 2.579-^°
400 1.202-21 8.696-22 1.527"̂ ^ 1.087-^1

800 4 .845-23 5.656-23 4 .990-23 5.618-23

1000 1.688-23 1.284-23 1.570-23 1.145-23

Table 3.1 A comparison of the electron-capture cross-sections cT(1s) 
measured in cmŝ , for the reaction H(ls)+H(ls)— »H (ls^)+H. 
The continuum-intermediate states (CIS) results are
calculated here for the forward reaction whereas the continuum-

'ikdistorted wave (CDW) results are those of Moore and Banyard
and were derived by them from the calculated results for the_ 2
reverse reaction. For H (1s ), the Hartree-Fock (HF)function

19was that of Curl and Coulson and the configuration-inter­
action (ci) description was taken from Weiss^^. The super­
scripts indicate the power of ten by which each entry is to be 
multiplied.
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E(keV) CT(i=0)c,

[Ao] [û,j

CT(i=2)^j

[Az]

20 2.753-17 3.163-17
[+26.0%]

2 .579-^?
[-18.46%]

2 .779-'̂
[+7.8%]

40 5.096-1® 6.689-''®
[+20.4%]

5.178-1® 
[-22.% ]

5.648-1®
[+9.1%]

60 2.083-1® 2.194-1®
[+14.

1.440-1® 
[-34.4% ]

1.637-'®
[+13-7%]

80 8 .834-19 8 .971-'^ 
[+9 .1% ]

5.067-19 
[-̂ 3 .% J

6.032-19 
[+19.C%]

100 4 .203-19 4.212-19
[+4.W ]

-19 2.121 ^
[-4 9.6%]

2.649-19
[+24.%]

150 9.954-20 9.286-2° 
[-7.9°/ ]

4 .019-^°
[-36.7%]

5.654-29
[+40.1%]

200 3.199-2° 2 .867-2°
[_-8.Œ/oJ

1.203-^°
[-58.CP/é]

1.879-2° 
[+66.%]

Table 3-2 The CIS electron-capture cross-sections in cm , for the 
reaction H(1s)+H(ls) H (1s2)+h "̂ when the electron-electron
potential in  ̂(see Chapter 3-3 equation (3.3.4)) is
represented by truncation of expansion (3.4.2) at -£ = 0,1 and
2, and the H system is described by either the configuration

20interaction (Cl) wavefunction of Weiss , or the Hartree-Fock
19(HF) wavefunction of Curl and Coulson , for which only the 

first radial term (^ =0) in expansion (3.4.2) contributes.
The percentage changes A  are defined as follows:

X  100 
X  100 
X  100
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Table 3»3

The CIS individual O'(ni) and total capture cross-sections,
Q, at selected impact energy E, for the reaction
Lî"*" + H(ls)— »Li^^(ni) + H'*' in units of cm̂ . The total

*”3capture cross-section Q was obtained from the Oppenheimer n 
rule: Qth ( T ( 1s )+ c r(2s) + 0'(2p)+ 2.08l(CT(3s)+cr(3p)+<r(3d) ) . 
The superscript denotes the power of ten by which each entry 
should be multiplied.
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Table 3*6-

The CIS individual 0^(ni) and total capture cross-sections , 
at selected impact energy E, for the reaction 
Lî "'"(1s) + H(1s)— »Li^(ls,ni) + H"*" in units of cm̂ , when the 
interacting potential V in Chapter 3.3, equation (3.3.12),

I , d.
is defined as (Z^-1)/s + exp(-2Z^s)(Z^+1/s). The total 
capture cross-section Q was obtained from the Oppenheimer n^ 
rule: Q:^ O '(ls)+CT(2s) + <r(2p) + 2.081 ( CT( 3s)+0 ' (3p)+ CT( 3d) . 
The superscript denotes the power of ten by which each entry 
should be multiplied.
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Table 3-7

The CIS individual O*(ni) and total capture cross-sections 
at selected impact energy E, for the reaction
Lî '*’( 1s)+H( 1s)— ►Li’̂(ls,nX)+H'*’ in units of cm^ when the inter-

1 / \ ' acting potential ^ Chapter 3*3) equation (3*3.12), is
defined as (Z.-1)/s. The total capture cross-section Q was

—3obtained from the Oppenheimer n rule: Qf:QT( 1s)+C(2s) + CT(2p) + 
2.081 (0 ^(33)+ Œ*(3p)+Q”(3ci) . The superscript denotes the power 
of ten by which each entry should be multiplied.
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Table 3.8

The CIS individual CT ( ni) and total capture cross-sections ,
at selected impact energy E, for the reaction
Li^(1s^)+H(1s)— »Li(1s^,ni)+H^ in units of cm̂ , when the
perturbing potential in the transition amplitude, equation
(3.3.18), is represented by the average static potential
(see equation (3.5.20)). The total capture cross-section Q

-3was obtained from the Oppenheimer n rule:
Q ti: G^(1s)+CT(2s)+Cr(2p) + 2 . 08l ( c r ( 3s)+O '(3p )+ cr(3d )) .  The 
superscript denotes the power of ten by which each entry should 
be multiplied.
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Table 3-9

The CIS individual QC(nji) and total capture cross-sections Q̂ , 
at selected impact energy E, for the reaction 
Li"*'(1ŝ )+H(ls)— »Li(ls^,n^)+H^ in units of cm̂ , when the 
perturbing potential in the transition amplitude, equation
(3 .3.18), is represented by the perfect screening potential 

= (Z^-2)/s. The total capture cross-section Q was obtained 
from the Oppenheimer n^ rule: Q —  G^( 1s)+CT(2s) + 0"(2p) +
2.081 (Q*(3s) + 0’(3p)+0'(3d) . The superscript denotes the povî er 
of ten by which each entry should be multiplied.
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E keV Q(3)/3? Ql(2 )/2 3 Q^(1)/1^ Q2(2 )/23

100 7.703+̂ 8.011*^ 1.286*^ 7 .468*̂ 1.216^^

200 1.793+̂ 1.748+̂ 3.149'"'' 1.598^^ 2 .950+̂

300 6.740° 6.037° 9-873° 5.398° 8.975°

400 3 .184° 2.638° 3.798° 2.295° 3.321°

500 1.714° 1.204° 1.701° 1.129° 1.424°

600 9.992"̂ -17.312 8 .559"'' 3 .408”^ 6.842

800 3.993"̂ 2.707"'' 2.767"'' -12.132 2.029-^

1000 1.855"^ 1.196"'' 1.144"'' 9.091-^ 7 .640-2

1500 4.090"^ 2.507"^ _2
2.221

_21.715 1.246-2

2000 1.285"^ 8.015"^ 6.818-3 3.001-3 3.378-3

2500 5.043"^ 3.289"^ 2.689-3 1.901-3 1.214-3

3000 2.309"^ 1.585'^ 1.242-3 8.393^4 -45.203

5000 2.463-4 -42.009 1.338-4 9.000-3 4 .346-3

10000 1.036"^ 1.097"^ 5.518-^ 3 . 5 3 2 - G 1 . 3 9 6 - G

Table 3.10 Ratios of Q(q)/q^, in units of 10 where Q is the
total capture cross-section for the reaction
Li^"^+H(ls)-- ►Li^*^ ^ (ni)+H'*' calculated within the CIS
approximation. The values of Q, and Q_ are those given 
in Tables 3.3 , 3.6 , 3«7, 3.8 and 3.9 , and were obtained from 
the Oppenheimer n rule: Q —  CT(1s) +0T(2s) +O'(2p)+2 .081(CT(3s) + 
0^(3p)+ C ( 3d)). The superscript denotes the power of ten by 
which each entry should be multiplied.
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E keV
Ql(2) 27 Ql(1) 27 Qi(2)

Q(3) 8 Q(3) Qi(i) 8

100 1.04 1.669 0.623

200 0.975 1.756 0.056

300 0.899 1.465 0.613

400 0.829 1.193 0.695

500 0.702 0.992 0.708

600 0.732 0.857 0.854

800 0.678 0.693 0.978

1000 0.645 0.617 1.045

1500 0.613 0.543 1.129

2000 0.624 0.531 1.176

2500 0.652 0.533 1.223

3000 0.686 0.538 1.276

5000 0.815 0.542 1.501

10000 1.059 0.532 1.988

ü or

Table 3.11 Ratios of {Q(q)/q3j/ [ , where Q is the total
capture cross-section for the reaction Li^^+H(ls) »

calculated within the CIS approximation.
q(or q^)=1 or 2, Q is given by the values of Q. in Tables

—33.6 and 3.8, and were obtained from the Oppenheimer n rule: 
Q :^ c r ( ls )  + cr(2s) + c r(2p)+2 . 08l ( c r ( 3s) + < r(3p) + c"(3d)) . The 
values for Q(q)/q3 are given in Table 3 . 10.
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Figure 3-1 Coordinate system for reaction (3.2.1). The 
arbitrary origin is shown here to be at the 
mid-point of the internuclear line.
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'igure 3-2 Electron-capture cross-sections O'(1s) for H(1s) +

K(1s)— (1ŝ ) + The CIS resul ts are shov/n in
curves (a), (b) and (c) and are derived, respectively,

1 ofrom the use of the Hartree-^’ock (HF) function ,

the ’fixed core’ model and the configuration-interaction
_ 2

(Cl) description for H (1s ). Curves (d) and (e) are
10the ’prior’ and ’post’ results of î-apleton calculated 

using a Born approximation. The experimental points 
are those of McClure ̂ .
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Figure 3-3 The GIS electron-capture cross-sections CT(1s) for

H(1s)+H(1s)— (1s^0+H^ obtained using expansion (3-4.2) 
for the potential term l/s^2 Tn V° ^, as defined in equation 
(3-3-4). The curves shown correspond to successive trunca­
tions of expansion (3-4.2) at =0 (—  ̂» —  *) , =1(----- — )

2and X  =2(------- ), when describing the H (1s ) system by the
Weiss 01 wavefunction^^. For comparison the curves corres­
ponding to l/s^p=0 is also shown. The experimental points are 

gthose of McClure
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Figure $.4 The theoretical total electron-capture cross-sections, 0,

for Li^^ ions incident on hydrogen compared with the experi-
18mental data of Shah, Goffe and Gilbody . The broken curves 

represent the CIS — —̂ and CDW— —  » — cross—sections
evaluated using Q =cr('1s)+ 1.6l6( 0"(2s)+0'(2p) ) , and the full 
curve is the CIS cross-sections evaluated using Q =CT(ls)+ 
cr(2s) + o-(2p) + 2.081 (cr(3s)+cr(3p)+cr(3d)).
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Figure 3-5 The theoretical total electron-capture cross-sections, Q,

for Li^^ ions incident on hydrogen (see reaction (3-5-5))
compared with the experimental data of Shah, Goffe and 

18Gilbody . The total cross-sections, Q.(full line) and 
Q^(broken line), corresponding to the two forms of  ̂
i.e. V^=(Z^-l)/s+exp(-2Z^s).(Z^+s ^) and V2=(Z^-1)/s,
as defined in Chapter 3-3, equation (3-3-4), are as listed 
in Tables 3-6 and 3 -7 ,  respectively.- The total cross-section 
Q is evaluated using Q=G*( 1s) + C"(2s)+0>"(2p) + 2.08l(cT(5s) +
c r (5 p )+ c r (3 d ) .
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Figure 5-7 The theoretical total electron-capture cross-sections,

Q., for Lî "̂  ions incident on hydrogen (see reaction
(5-5-5)) plus the individual cross-section curves 
GT(n=1 ) ,cr(n=2) andO'(n=5) for capture into the 
individual quantum levels n=1, 2 and 5, when setting
V. .equal to the average-static-potential as defined
in Chapter 5-5 equation (5-5-5)• The total and 
individual cross-sections are as listed in Table 5-6 
and the experimental points are those of Shah, Goffe
and Gilbody^^.
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'ig’ore 3*3 The theoretical total electron-cacture cross-sectlore,

for Li"*" ions incident on hydrogen (see reaction (3»5«'1̂ ) 
CO"cared with the excerimental data of Shah, Goffe and 

. 18ull C0( The total cross-sections, 0 (full line)
2-(broken line), corresponding to the two forns of V)(
as defined in equations (3.3.20) and(3.3.2l), are as 
listed in Tables 3.3 and 3.9, respectively.
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Figure 5,9 Comparison of the total theoretical capture cross-section Q 
with the experimental data of Shah, Goffe and Gilbody, when 
the projectile system is: A. Lî '*’, B. li^^(ls) and C. Li’̂.(lŝ ).

 ),The theoretical curves correspond to the CIS method (
.32the CDW results of Crothers and Todd (--

and the CDW calculation of Belkic et al^^ ( - )  • •
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APPENDIX A

The.formal quantal derivation of the 
CDW transition amplitude

The most conventional formulation of the charge-exchange

problem is by means of the Lippraan-Schwinger development in which the

total state wavefunction is expressed in terms of the Greens function

operator and the unperturbed eigenfunctions of the system. The validity

of such an approach was questioned by Aaron et al , who proved the

divergence of the Born series for rearrangement collisions. However,
2 3Dettman and Leibfried and Corbett have shown that the divergence of 

the operator series does not necessarily imply the divergence for both
4vector series and physical matrix element series. Dodd and Greider

have derived a three body theory for rearrangement collisions and

provided a possible way of preventing the divergence of the Born operator

series in the important case when the mass of one particle is much less

or much greater than the other two. Exploiting the work of Dodd and 
4 5Greider , Gayet has shown that, by a suitable choice of distorting 

potentials, the calculation of a second order charge-exchange cross- 

section becomes tractable, and that the expression for the transition 

amplitude can be shown to be equivalent to that given by the continuum 

distorted wave method of Cheshire^ derived within the impact parameter 

scheme.

Thus, in this appendix we give a description of the wave 

parameter presentation of the continuum distorted wave method as presented 

by Gayet^. Where appropirate, a comparison is made between the wave 

parameter presentation and the more transparent impact parameter present­

ation of the continuum distorted wave method as given in Chapter 1.2.
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A1 Formal theory for rearrangement collisions

Let , p and ^ be three particles interacting through two 

body potentials V* , Vp , Vy where is the interaction between the two 

particles not labelled by i; we consider the process

o( + ( p + y ) * ( o 4 + y ) + p  A1.1

with complete hamiltonian

H = K + + Vp + V, , A1.2

where K is the kinetic energy operator for the relative motion of the 

three particles.

The unperturbed hamiltonian for the entrance channel is 

H,< = K + VaL = H - v̂  , , A1 .3

where v̂  is the perturbing potential due to the incident projectile. 

Conversely for the exit channel we have

= K + Vp = H - Vp ,  ̂A1.4

where v̂  is the perturbation due to the remaining target nucleus p 

If ôt and are the respective eigenfunction of and Hp with the

same eigenvalue E, then the exact transition amplitude for the process 

A1.1 is given by

= < ' { ' p i '^<1 § - >  • A1.5

The total wavefunctions and Ipp are eigenfunctions of the total

hamiltonian with eigenvalue E and can be shown to satisfy
+

riot Î ÿp ■ rip ,
+

where the Miller operator is defined as

A1 .6

lim ê -̂t . AI.7

t — > + «Û
7 TUsing the limiting functions of Gell-Mann and Goldberger , and

can be shown to satisfy
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IŸ-<)= (1 + s'" Vrf )|̂ -c> A1.8

and

|^p>= (1 + G" Vp )|(^,) , Al.9
+

The Greens function G is given by

g" = ( E - H - i £ ) ”  ̂ , (£>o) A1.10

where the limit S — » 0 is to be taken eventually.

Therefore ,A7.3 may be written as

A1.11

with

= Vp (1 + G+ v^ ). , A1.12

where is called the transition operator. This can be shown to 

satisfy the integral equation

= Vp + G ^  v ^  ^ ' A 1 .1 5

where

G.^ = (E - + i€ )“  ̂ A1.14
g

At this point Greider and Dodd introduces the so-called distorting 

potentials Wo( and Wp in order to simplify eventually the integrals 

involving the potentials v^ and Vp , but also with the hope that they 

would be able to prevent the divergence of the operator Born series. 

With these potentials are associated the Green functions

= (E - - W^ +i€)"^ A1.15

= (E - Hp - Wp - i€ )"̂  , A1.16

and the corresponding wave operators

= 1 + w A1.17

Wp = 1 + W , A1.18
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from which Greider and Dodd^ derive the transition operator U'*' which 

satisfies the integral equation

U'̂ = {wp (vp - Wp ) + G^ (v̂  - W^ )]u^ , , AI.I9
8 "Tprovided that Wp does not lead to the rearrangement state .

8Unfortunately Greider and Dodd found that equation AI.I9

always contains disconnected diagrams, and as a consequence diverges.
4Thus to overcome this Dodd and Greider introduce an intermediate channel 

’x’ corresponding to a perturbing potential v^ with an associated Greens 

function
-1■̂ = (E - H + V + i£ )“ , A1.20

and showed that U satisfies the integral equation

n"" = - Wp ) [ 1  + - w* )|

+ o’" Gt< , A1.21

which is useful if the so-called kernel of the integral equation for 

U''’, namely

k  = (V^ , A1.22

does not diverge as a result of disconnected diagrams, and the equations 

involving ^  and G ^  are manageable. The first condition will be

satisfied if, for example, v^ is a two-body potential which does not 

appear in - W_̂  , and the second condition is found to be fulfilled in

the limit of p »  My" , due to the equations becoming separable

with respect to the electron position coordinates and the internuclear 

separation vector.

Under these conditions a meaningful first order approximation 

to Tip is given by

To<p = ^  j lOp (vp - Wp ) 1̂ + ̂ ^  ("Yk “ I

A I .23
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A2 Application to proton-hydrogen charge transfer

Following Gayet^ we now proceed to derive a solution to 

(AI.23) for the general proton-hydrogen. charge transfer reaction

+ H(n,i) » H(n' A2.1

as follows:

Let r..̂, £2 and r^ be the respective position vectors of proton 1,

electron 2 and proton 3, for which the electron is initially bound to proton

1, with respect to an arbitrary origin. The scattering problem can now 

be solved with respect to the more convenient coordinates (see Figure A.1),

= £2 ■ ’ £< = £3 - '+ £2

M + 1
2. “ £3 " £-1 A2.2

s. = £2 - £3 ; £? = £1 - "£3 + £2 ,
M + 1

where x and s are the electron position coordinates, R the internuclear 

separation vector, and £.< and r^ are the position vectors of the

hydrogen centre of mass with respect to the proton in the incident and 

exit channel respectively; M is the ratio of the proton mass to the 

electron mass. Identifying particles 1, 2, and 3 with p , Y  and «  it

is readily seen that
1 1  1 1  v^ = - — + ^ and Vp = - — + ^ * A2.3

and the unperturbed solutions for the entrance and exit channels are

(x) exp( ik . r ) A2.4

and “ jZ)p (_s) exp(-ikp . r ) , A2.5

where j2)ĝ(x) and 0p(s ) are respectively the initial and final bound state 

solutions. In order to evaluate T^p given by expression AI.23 let us 

first derive a solution for say given by

170



|Sl>= (l + . A2.6

Setting I 'Xoi.y = I Wot 1 ) it is clear from the expression for

that I ̂ , in the limit of £ = 0, satisfies the equation

(E - Hot - Wot ) I > = 0 . A2.7
5 +Gayet now choses Ŵ ( such that Oĉ t is of the form

I = |0ot(x) f(£ot)> » A2.8
where f(r^ ) has the asymptotic form exp(ik^ •£«<.)•

Since we have that

(E - )| = 0  , A2.9

an obvious choice for Wot is W«t = 0. Otherwise W«t must be chosen

such that all potentials depending on ( or R in the limit M »  1)

decrease more rapidly than £o< at infinity.

However, the general solution for ̂  ̂  is given by

t?I>= A2.10

such that in the limit £ = 0 we have

(E - H + v̂ ) I (E - H + v^ + v̂  . A2.11

Since 0(ot satisfies equation A2.7, equationA2.11 reduces to

(E - H + 11];>= v̂ l > . A2.12

The main feature in Gayet’s work is the choice made for v^ such that

'"x I ° ' A2.15

and that, as a result, the remaining equation for ^  , , namely 

( E - K + ; l  + ^ -  . l + v ) | t >  = 0 ,R

becomes solvable. Writing j in the form

A2.14

ltl>= |)Z!,x(x) h^> , A2.15
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where 0^ (x) satisfies

(E^ - K + i) I (x)_> = 0 , A2.16

then the equation for ĥ  becomes

(E' _ K + 1 - 1) h+ + h+

+ v̂ ( 0^(x)h"^) = 0 , A2.17

where E = E - E^ and Ê ( is the energy of the bound state
/

Thus, E is the kinetic energies of the system. Gayet choses as an

operator such that when applied to an arbitrary function y(x, r^), or

y(s, £p), the following relationship holds

, .2.»
M + 1V V  = - -----

With this form for equation A2.13 is satisfied and equation 

A2.17 reduces to

(E^ - K + ~ ) h"̂ = 0 . A2.19

For M »  1 we have that R dir - r and equationA2.19becomes separable.
— “ r

The kinetic energy operator K may be written in two forms

T V :  - ÿ V l T V V :  -
where yuL = M(M+1)/(2M+1) is the reduced mass of the whole system relative 

to the centre of mass of the electron and of either proton 1 or 3- The 

general solution to equation A2.19 is therefore given by the product of 

two coulomb wavefunctions^ Thus we have

h(s,£p)''' = exp(ik^.£p+ ik^.s)

X F (- 2^ ; 1 ; ik̂ P̂p - ik.̂ .£« )

X F (+-^ ; 1 ; ik2S - ik2"S ) . A2.22

/ See page 239 of reference 12



Tor M >3 1 we have that,

-iSoC A2.23
M+1 M — .o

and k, = - = -v A2.24
(M+1) ^

and h^ may be written as

h''’(s_,r̂ ) = I P(l+iV) I ̂  exp(ik^ . r̂ ) F(iV ; 1 ; ivs+iv.s)

X F(-iV ; 1 ; ik̂ r̂  + ikp .r̂  ) . ( V * 1 / v )  A2.2 5

At this point it is interesting to note that the solution 

obtained for | 'f = | 0«<. is, in the limit of M— ►oo ,

analogous to the solution obtained for our continuum distorted wave
y  /

functions 5L % obtained within the impact parameter formulation 

presented in Chapter 1.2. The choice made for v^ corresponds to neglecting 

the right-hand side of equation (1.2.31) which is done to obtain a first 

order approximation ^  ̂ to the exact solution ..

The calculation of Tt<p given by expression A1.23 will now 

be complete upon deriving a solution for | ^ since we then have

A2.26

where I I § P >  A2.27

The solution to 0(p will obviously depend on the choice made for Wp and,
6as in the CDW method of Cheshire , Gayet proceeds to make a choice for 

Wp such that "Xp represents a continuum distorted wave.

From the definition of top in Al.lS we have that, in the 

limit of £ =0, |'Xp^ satisfies the equation

(E - K + i ) I > = (E - Ĥ )| §,) , A2.28

where
Up = Vp - Wp . A2.29
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Writing | OCp > in the form | 0^ (s_) g > and noting that is an

eigenfunction of Hp. with eigenvalue E we find that, in the same way 

as for , equation A2.28 reduces to

- K  + l . l )  S-+ 0,(3) - T  S'

+ Up (0p (s)g“) = 0 . A2.30

Thus, if Up is chosen either as a distorting potential

U,> = - ^ V s  l°Se l°Se s’ ’ *2.31

or as an operator, analogous to v̂ .

then the solution for g is determined exactly in the same way as for 

ĥ . Thus, in the limit M »  1, we have

g"(x,%<)= I r(1+iV) I ̂  exp(-ikp .£p)F(-iV;1; -ivx-iv.'x)

X  F( iV ; 1 ;-ik^ r,̂  -ik^ . £ ^  ) . A2.33

Clearly Gayet's solution for | OCp ^ = | g ^ is comparable to the

distorted wave solution = -0-f given in equation (1.2.43) of

Chapter 1.2,and the choice made for Wp is analogous to the choice made 

for the distorting potential U^ in equation Cl.2.4?), with U^^ corresponding 

to the perturbing potential operator A^ defined in equation (1.2.49) of 

Chapter 1.2.

Consequently we may now write down the final expression for 

the transition amplitude, which is analogous to the expression for b̂ ^ given 

in equation (1.2.52). Therefore we have

= < K ’ |(^ - W, )| , A2.34

, A2.35
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= - 1 Pd+iV) I J ds exp(ik^. + ikp .£p)0^(x)
X F ^iV ; 1 ; i(vs+v.s)J F -̂iV; 1 ; i(k̂ r̂  £p

x^' 0^(s) 1"̂  [iV; 1 ; i(vx+v.x)]

X F [-iV; 1 ; i(k^r^ + k ^ . r^j]^ . A2.36

If now we make the impact parameter assumption that M  *»co it follows

that

£ct --► ~ £ p — ^E = b + Vt , A2.37
9where _b is the impact parameter such that b.v = 0. McCarroll and Salin

have showed that in the limit of M  > ̂  we can replace the product of

the hyper-geometric functions involving r ̂  and r ̂ by e ^ ( ^ v b ) ^ ^ ^  . 

Introducing also the transverse momentum transfer vector ( r[.v = vj .b = 0) , 

and the total momentum transfer defined as

k«t - k« = _ (E^-Ep) V - n , A2.38
r 2 —

V

it can be shown that reduces to

Tip =lr()-iV)| I ds dK b̂ '̂̂ exp ^ + — -2jiv̂ t-ij.b-iv.ŝ

0^(x)F [iV; 1 ;i(vs+v.s)] x ^  F [iV;1 ;i(vx+v.x)] . A2.39(s p

The total cross section is then given by
2

dît. A2.40Q
r 1^  
J 2TT^  J I 2TTv

The integrand can be shown to be equivalent to that given by 

Cheshire^ who, using the impact-parameter formalism, obtained a total 

cross-section in the form
r 2Qif = J l®(n)| dn . A2.d-
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This is derived from the impact-parameter formula^

Qif = I  hifi  ̂ A2.42
with

1a ' (2V)2
J  R(n) e'̂ B̂ dY[ , A2.43

where a^^ is the transition amplitude. In the CDW method of Cheshire^, 

a^^ for reaction A2.1 can be written (see Dz Belkic et al^^equation (11.12a))

^if = -i |r(1-iv)| ê '̂ (yj.bv)̂ ^̂  j"dt J dr exp j" -i(E,( - Ep)t - iv.r ̂

P _ _  ^
X ^(x) F [iV;1;i(vs + v.s) j 0^ (s)

• F [ i V; 1 ;i( vx + v.x)J . A2.44

If we now, in our full quantal formulism, set our arbitrary origin to be 

mid-point between proton 1 and 3 such that £2 ~ ’

the scattering amplitudeA2.39becomes »

T^ = |r(1-iY)| e (̂ bv)̂ '̂̂ v j" dt Jdb Jdr exp £-i(E^ -Ep) t - i b

-iv.r ̂

X  0^(x)F [iV ; 1 ; i(vs + v.s)J jZjg (ŝ)

^[ivî ; i(vx + V.x)j . A2.43

We note here that T̂ _̂̂  is derived by integrating over all impact 

parameters b. Defining a transition amplitude a^^ for a particular 

impact parameter we have that

= J  a^^ e"^^“- db , A2.46
V

where

/ See page 208 of reference 12
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s-oLp = I e"̂ — dn . A2.47

(2TT)̂  V
Comparing equation A2.44 and A2.45 we see that a^^ = -i a ^  , and 

therefore
Tc&(n)R(n) = -i   . A2.48

~  V

Consequently the wave and impact parameter treatments are

shown to be equivalent to within an arbitrary phase factor e^^ in the

transition or scattering amplitudes.
2

It is important to note that on forming ja^^j in equation

A2Jf2.the factor ( yĵ bv) disappears and thus may be omitted in the

expression for or , indicating that the internuclear potential

does not contribute to the capture process when it is treated exactly to

first order in 1/M or in the limit as M > oO . This result was
11examined in detail by Drisko who showed that the contribution from the

proton-proton potential, which plays an important role in the first Born

approximation, is exactly cancelled (to order 1/M) in the high-energy

limit by two of the second Born approximation terms.

Summarising, we note that the essential feature of Gayet’s

work is in the choice for the perturbing potential v̂ , which was chosen

to contain the potential operator only depends

upon X while v^ - depends only on £ and R. Thus the conditions,
4originally laid down by Dodd and Greider , concerning the avoidance of 

disconnected terms in the kernalK of the integral equation for the 

transition operator written in A1.21 are satisfied. Thus Gayet^ has

shown that the continuum distorted wave approximation leads to a second 

order method whose transition amplitude is a meaningful first order 

approximation in a perturbation series.
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y(m)

X

R«(M,)
k J LM,+ M,R MaM,+ M,'R

Figure A1 The coordinate system for the reaction ot+ (  ̂+ y ) — 
( ot + ) + p , where c< , p and Y are particles of
mass M̂ , and m respectively.
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Abstract. The continuum-distorted wave (CDw) method is used to calculate cross sections 
for electron capture by fast protons from the lithium atom and its related positive ions. With 
the exception of Li^'^(l^S), each target electronic state is described by a Hartree-Fock 
wavefunction. The capture states considered are (nl) =  Is, 2s and 2p and the proton energy 
range is 200 keV ^  i: ^  10 MeV, the lower limit being chosen to be roughly appropriate for 
a C D W  description of capture from the lithium ions. For the lithium atom, capture can occur 
from either the K or L shell and the resulting ion can exist either in its ground state I'S  or in 
one of the excited states 2^S or 2^S; cross sections are tabulated for each of these three states 
for capture into the above hydrogen levels {nl). Results for the individual capture states {nl) 
are also reported for the Li^ target. Total capture cross sections are calculated for each 
target by means of the Oppenheimer n~^ rule. For Li and Li^, total cross sections are also 
evaluated a t E <  200 keV in order that graphical comparisons can be made with the limited 
experimental data. A procedure for determining the effective screening of the target 
nucleus by the uncaptured or passive' electrons is discussed and the sensitivity of the cross 
sections with respect to such screening is examined.

1. Introduction

When calculating charge-transfer cross sections which involve fast structureless pro­
jectiles, the correct high-energy behaviour requires the use of a second-order method. 
For light target atoms, such as hydrogen or helium, comparison with experiment has 
shown that one of the most satisfactory second-order procedures is the continuum- 
distorted wave (cDw) method. This was developed initially by Cheshire (1964) for a 
proton-hydrogen collision and later modified by Salin (1970) for application to a 
helium target. In a generalisation of the method for some two-electron systems, Belkic 
and Janev (1973) comment that the probability of capturing the ‘active’ electron should 
be greatest when the ‘passive’ electron is very close to the target nucleus. The ‘passive’ 
electron was then removed from the equations defining the distorted waves by invoking 
maximum shielding of the nucleus. Thus, in the description of the outward channel, for 
example, the residual target was represented by the target nucleus with its charge 
decreased by unity. This ‘perfect screening’ approximation was also used in a recent 
examination of electron capture from H “ (Moore and Banyard 1978, Banyard and 
Moore 1978).

Calculations of capture cross sections from large target atoms are still relatively rare 
and generally restricted to first-order methods. For example, Mapleton (1965) applied 
the first Born approximation to oxygen and Mapleton (1963, 1965, 1966, 1968), 
Nikolaev (1967) and Lodge and May (1968) have studied various target atoms using the

0 0 2 2 -3700 /79 /19 3247 -f-10$01.00 ©  1979 The Institute of Physics 3247



3248 K  E  Banyard and G  W  Shirtcliffe

Brinkman-Kramers approximation. In the present work our main interest is to apply 
the C D W  method to a many-electron system and, as a simple first example, we evaluate 
cross sections for the capture of an electron from a Li target atom in its ground state 
when the resulting ion exists in either a l^S, 2^S or 2^S state. For such a system, a 
‘passive’ electron will now exist in a different shell from that of the ‘active’ electron. 
Thus, a modification is suggested to the ‘perfect screening’ procedure used by others for 
two-electron targets. We also examine the effect of such a modification on the capture 
cross sections when the target is the related ion Li^(l^S) and, finally, to complete the 
ionisation series, results are reported in brief for the one-electron target Li^^(l^S). In  
each instance the projectiles are protons within an energy range of 200 keV ^  E  ^  
10 M e V — the lower limit being a rough measure of the minimum E  required for a c d w  
calculation involving lithium ions. However, in order to achieve a graphical comparison 
with the limited experimental data, some of the cross sections are evaluated at lower 
energies. Such reactions are of considerable practical interest in understanding the hot 
plasmas which occur with the use of lithium arcs in devices such as ‘o g r a ’ (Bogdanov et 
al 1965).

2. Theory and calculations

For a high-energy projectile of charge Z a , energy E  and velocity u, in collision with a 
stationary target system, whose nuclear charge is Zb, the cross section for electron 
capture into a state {nl) may be expressed as

-C O

cr[/i/,F] =  2 b \ a n i , F { b ) \ ^  d b  (1)
Jo

(in units of ttaq) where a n i , p { b )  is the transition amplitude, b  is the impact parameter 
and F signifies the final state of the remaining target electrons; ao is the atomic unit of 
length. Using standard notation (Cheshire 1964, Salin 1970), the prior form of the c d w  
approximation for ani,F{b) for the capture of electron /, say, from an V-electron target, 
where N  ^  Zb, becomes

cinï,F{b) = \Ĵ {vĵ Ĵ {vB){bv)̂ '̂ ^̂ ^̂  I dr e dn j dr2 .. . | dr^ e

^ < t > n i { S j ) x F { x u  , X j - i ,  X j + i ,..., arjv)iFi[iz/B; 1; i(t>xy +  r. j:/)]

X X 2 , . . .  , X f ,  . . . , JCa/)V̂ . i F i \ \ V a \ 1 ; i(u5/ +  V . Sy)]. (2)
(jJCj

The position vectors Sp, Xp and rp locate electron p, for example, when measured, in 
turn, from the projectile A , the target nucleus B, and the mid-point of R — the 
internuclear separation A B — where R  =  b  + vt and r is time; spin coordinates in the 
wavefunctions are to be taken as read. The energy decrement Aé is the difference 
between the initial-state energy of the target and the sum of the energies of the 
charge-exchange products. The initial and final states of the target are described by 
the normalised antisymmetric wavefunctions ^ (jf i,  X2, , X j y , Xs) and
Xf(xu  %2, . . . ,  Xj-u Xj+u • • •,  Xn), respectively, and the capture state of the active 
electron is represented by 4 > n i { S j ) . Since we have N  indistinguishable electrons, the 
description of the total system in its final state ( f>n iXF should also be normalised and
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antisymmetric: the net effect of such a requirement is to multiply the transition 
amplitude derived from equation (2) by and are the normalisations
associated with the confluent hypergeometric functions for the inward and outward 
distortions, respectively, and

fa =  Z a I v vb =  [ Z b - { N  - l ) ] / v .  (3)

The expression for pb is a consequence of invoking the ‘perfect screening’ approxima­
tion to represent the interaction between the active and passive electrons, and its 
magnitude is a function of the net charge on the residual target as seen by the captured 
electron at infinity. Such a model has the particular advantage of ensuring that the 
incoming and outgoing waves have the correct asymptotic behaviour as t -» -oo and +oo, 
respectively. However, a relaxation of the asymptotic constraint allows us to adopt a 
simple but somewhat more realistic way of accounting for the passive electrons in a 
many-electron system. For capture from the target quantum state n \  an effective 
charge for the residual target can be obtained from the experimental ionisation energy 
by using the hydrogen-like expression

Ionisation energy (in atomic units) =  Z \ f [ j l n ’ .̂ (4)

In this way the value of Zeo reflects the charge seen by the active electron as it is ionised 
into the continuum prior to capture. Thus, in the expression for ani,F(b) we re-define fb 
to be Zeff/u. For comparison, both models were used to determine the capture cross 
sections for Li and Li^.

Electron capture from the ground state of Li can occur from either the K or L  shell 
and therefore the reactions considered here are

H^ + U ^ H { n l )  +  U^{F )  (5)

where F  is l/S , 2^S or 2^S and {n l )=  Is, 2s and 2p. The same {nl) states were chosen 
when considering capture from the ground states of Li^ and lP ^ . The Hartree-Fock  
wavefunctions of Clementi and Roetti (1974) were used to describe the initial states of 
Li and Li^ and the excited-state wavefunctions for Li^ were taken from Cohen and 
McEachran (1967a, b). The ionisation energies were obtained from Moore (1949), 
Wiese et al  (1966) and Tennent (1971). For the Li atom target, the Z^n values 
corresponding to F = 1 ^ S , 2 ’S and 2^S in equation (5) are 1 260, 2*208 and 2*177, 
respectively, and when the target is a Li^ ion then Z^n =  2*359. The Li^^ ion was 
described by using the exact energy and eigenfunction. For reaction (5), we note that 
integration over spin in the antisymmetrised expression for ani,F{b)y when F =  l^S, 
produces terms in the transition amplitude of an exchange type (in which the label for 
the active electron is associated with the Is orbital in Li) as well as the expected terms 
which arise from the initial occupation of the 2s orbital; and vice versa when F  =  2^S. 
However, in the present method, contributions to the capture cross sections attribut­
able to exchange-type terms account for less than 0*3% of the magnitude of cr[n/, 1*8] 
and cr[rt/, 2\S] in each instance; no such terms occur when F  =  2^S. Therefore, for ease 
of discussion when considering the Li atom target, we regard ct[az/, 2^S] and 2^S] as 
arising from the capture of the appropriate K-shell target electron and a-[«/, l^S] as 
representing the capture of the L-shell electron.

The (j\nl,  F ]  values for the Li and Li^ targets are presented in table 1 : the initial 
entry is based on the Zeff approximation and the italics refer to the ‘perfect screening’
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(ps) model. For the Li atom, the total cross section 2, for all capture states {nl) was 
obtained from

I  =  2(1 'S ) +  I(2 'S )  +  I(2^S) (6)

where each contribution 2 (F ) was determined by using the appropriate form of the 
Oppenheimer n~^ rule (see, for example. Salin 1970). The n~^ rule was also used to 
calculate 2  for the Li^ and Li^^ targets and the results for all three systems are given in 
table 2. As before, the values obtained from the ps model are given in italics. In table 3, 
the difference between the and the ps values for each cross section is expressed as a 
percentage change A, with respect to the ps value, for both L i and Li^ at selected F.

Table 2. Total capture cross sections 1  for the Li, Li^ and Li^^ targets; the units are rrao- 
The initial entry for a given E  is derived from the Zeff model and the PS value is quoted 
below it in italics. For the Li atom, 1  = S(TS) + S(2’ S) + 2(2^S); see equation (6). The 
superscript denotes the power of ten by which each entry should be multiplied.

F(keV) Li Li+ Li^+

200 3-968“^ 4-369“^ 1-361"^
3367^^ 3 -6 9 r ^

500 1-804"^ 2 -219-3 1-240“3
l-860~^ 2-138~^

800 2 bbr"* 3-312"^* 2-156“'*
3 003'"^ 3-318~'^

1000 l-005~“ 1-252"'* 8-506“"
l-272~'*

2000 3-916'^ 4-864"^ 3-441“^
4 -894 5-078~^

5000 3-644 ® 4-493“® 2-998“®
4-732~^ 4-764~^

8000 2-918“^ 3-589“^ 2-306“^
3-827^^ 3-819~^

10000 8-604'*° 1-057“^ 6-686“*°
1-133~^ 1-126 '^

To enable graphical comparisons to be made with the experimental curve for Li 
( I l ’in et al 1965), values of 2  were calculated for both models over the energy range 
10-180 ke V. The curves are shown in figure 1 along with the corresponding theoretical 
results for 2(2^8) + 2(2^8) and 2(1^8), these two quantities represent total cross sections 
for electron capture from the K and L shells, respectively. In figure 2, the Zeff values for 
2  over this energy range are compared with the Li calculations of I l ’in et al  (1967), 
Nikolaev (1967) and Lodge and May (1968). I l ’in et al used a Born method in the 
one-electron approximation and the other workers employed the Brinkman-Kramers 
approximation along with a correction factor: Nikolaev described the Li atom in terms 
of hydrogen-like wavefunctions whereas the Lodge and May curve was derived from 
the Hartree-Fock description given by Roothaan et al (1960).

The 2  values for the Li^ ion are compared in figure 3 with the experimental curve of 
Bogdanov et al  (1965) and the theoretical results of O b’yedkov and Pavlov (1967). No 
experimental comparison could be found for the Lp^ ion.
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Figure 1. A comparison between experiment (Il’in et al 1965) and the total capture cross 
section 1 for Li derived from the c d w  calculations using in (a) the ps model and in (b) the 
ZeH model. Also shown in (a) and (6) are the calculated results for electron capture from the 
K shell (i.e. l ( 2 ‘S)-t- I(2^S)) and for capture from the L shell (i.e. 1(1 ’S)); see equation (6).

3. Discussion

The application of the c d w  approximation to describe electron capture from a 
many-electron target atom becomes tractable, at present, only by reducing it to an 
equivalent one-electron problem. Consequently, when attempting to replace the 
‘perfect screening’ procedure for an N-electron system by a somewhat more physical 
model based on the ionisation energy, it was appropriate to use a hydrogen-like formula 
to determine Zeff. In addition, we note that the only direct reference to the passive 
electrons in the transition amplitude occurs as an overlap integral between their initial 
and final quantum states. Thus, the influence of inter-electronic interactions within the 
present form of a cow calculation arises solely from the correlation effects contained in 
the target wavefunctions ^  and xf- Although electron correlation is important for a 
target such as H~ (Moore and Banyard 1978), trial calculations in the present energy 
range suggest that the use of correlated wavefunctions for the Li series should produce a 
decrease in each cross section, with respect to the Hartree-Fock value, of less than 2%.

Comparison of the values of Zeff for electron capture from the K shells of Li and Li^ 
suggests that, for capture from the Li K shell, about 20% of the shielding arises from the 
2s electron: this reflects the probability of finding the L-shell electron within the K shell. 
For Li, a comparison of the results for Zeff with the ps model is also of some interest. It is 
found that the Zeff values for K-shell capture correspond to only about 40% of the 
shielding in the ?s model whereas, for L-shell capture, the result for Zeff indicates that 
the K shell provides 87% of perfect screening. The sensitivity of each o-[nl, F ] to a
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Figure 2. A comparison between various theoretical curves for 1 and experiment (H'in etal 
1965) for the Li atom. The c d w  results were obtained by using the model and the other 
curves were calculated by H’in e! al (1967), Nikolaev (1967) and Lodge and May 11968).
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Figure 3. A comparison between the theoretical curves for 1 and experiment (Bogdanov et 
al 1965) for the Li^ ion. The c d w  results were obtained by using, in turn, the ps and ZgR 

models and the other curve was calculated by Ob'yedkov and Pavlov (1967).
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change in nuclear shielding can be judged by inspecting the Zê fi and PS results in table 1 ; 
see also the A values in table 3. A t low energies, table 1 shows that when [nl) =  Is and 2s 
the Zeff cross sections are larger than the ?s values whereas, for the 2p capture states, the 
ordering is reversed— an exception being Li when F  =  2^S. However, for 
1000 keV, the use of decreases all a\_nf F ] . This latter feature is most noticeable 
for capture from the K shell of the Li atom where, as table 3 shows, the effect becomes 
larger with increasing F. A t 10 M eV , for example, the Zeff calculation yields K-shell 
cross sections for the 2p capture state which are only about one-fifth of the magnitude of 
the PS values.

For each F  state table 3 reveals that, as E  increases, a strong similarity occurs 
between the A values for {nl) =  Is and 2s; this similarity does not extend to the 2p state. 
A  corresponding trend was observed by Banyard and Szuster (1977) in a correlation 
study of charge exchange in proton-helium collisions. Following their rationalisation, 
we find that, at high projectile velocities, the major contribution to each <r[rt/, F ]  occurs 
at small values of the impact parameter. Consequently, the A values reflect the 
similarity in the characteristics of the Is and 2s hydrogen orbitals at small electron- 
proton separations; such characteristics are, in turn, quite distinct from those of a 2p 
hydrogen orbital.

When F  ^  800 keV, the Li cross sections are ordered as cr[nU 2^S]>cr[rt/, 2^S]>  
cr[rt/, l /S ] for each choice of {nl) and, as might be expected, for any given F  state we 
have <t[1s, F] >  cr[2s, F ]  >  cr[2p, F ]. The latter ordering also holds for Li^. Inspection 
of the total cross sections 1  in table 2 for the ionisation series shows that, for the Zgff 
model, 2(L i^) >  2 (L i) >  2(Li^^) throughout the whole energy range. We also note that, 
at high energies, the Zeff results for S are less than the ps values by about 21% for Li and 
6%  for Li^.

A  comparison between the total cross sections per K-shell electron for the ion 
targets reveals that, at low energies, Li^ >  Li^^ whereas, when F  is large, the Li^^ cross 
sections are significantly greater than the Li^ values. Since the transition amplitudes are 
evaluated in terms of momentum space, the larger momentum possessed by the 
unshielded active electron in Li^^ emphasises that, as the projectile velocity increases, 
the major contribution to each cross section arises increasingly from the high momen­
tum region within the target.

When compared with experiment, the Z^n and ps values of 1  for Li reveal some 
interesting features. Although the results of I l ’in et al (1965) extend only as far as 
180 keV, figure 1 indicates that each c d w  curve for 2  is in general accord with 
experiment— the better agreement being achieved by the Zes approximation. For 
electron capture from the K shell, the ps results are seen to reach a turning point at 
about 15 keV, whereas the Zgff approximation produces an inflexion at about 40 keV  
which is similar in shape to that seen in the experimental 2  curve at F  ~  60 keV. 
However, figure \ { b )  shows that the increase in the L-shell capture cross section with 
decreasing F  masks this inflexion when evaluating the total curve.

For Li, the comparisons in figure 2 between the various theoretical 2  curves and 
experiment show that, except for the very good Nikolaev curve, the c d w  result is 
superior— especially in the higher energy region. It  is to be noted that, unlike the c d w  
calculation, the Nikolaev curve involved the use of an empirically derived velocity- 
dependent correcting function.

When the target is a Li^ ion, figure 3 shows that although both the c d w  curves are a 
considerable improvement on the theoretical results of O b’yedkov and Pavlov (1967), 
when compared with the limited experimental data, the agreement is still poor. Since,
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as observed earlier, a Zeff cross section exceeds a ps result at low F , the 2  curve derived 
from the Zgff values is seen to be the poorer cross section. As with the Li atom target, it 
would be very useful if the comparisons with experiment could be extended to much 
higher energies.

4. Conclusion

Electron-capture cross sections have been evaluated for fast protons in collision with 
the Li atom and its related ions. Such reactions are of interest in the hot plasmas which 
occur in some fusion processes. The calculations were based on the continuum- 
distorted wave (c d w ) approximation and a simple procedure was introduced for 
assessing the screening of the target nucleus due to the passive electrons.

It was observed that capture into the higher quantum states {nl) of hydrogen 
appeared to be quite sensitive to changes in the screening effects— particularly at high 
projectile energies F  and especially for capture from the K shell. Although a 
comparison with experiment of the total cross sections 2  was limited to low F —  where 
both the C D W  method and the n~^ rule tend to become less reliable— the general 
agreement was, nevertheless, quite satisfactory for the Li target but still poor for Li^. 
Comparisons with experiments at larger F  would be most informative.

For Li, a systematic increase in the projectile velocity eventually causes capture 
from the K shell to make a greater contribution to 2  than that from the L  shell. This 
emphasises once again the importance of the high momentum description of the target 
electrons and hence the need to use accurate wavefunctions in any ‘a priori' cal­
culation— even at high projectile velocities.
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Ordering of cross sections for electron capture from He-like targets by fast projectiles
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The continuum-distorted-wave (CDW) method is used to determine total electron-capture cross sections 
Q = E„,o-[n/] for proton and a-particle projectiles incident on Li+ in energy ranges of 100 <£ <3000 keV 
and 100<£ < 10000 keV, respectively. A configuration-interaction (Cl) wave function is used to describe 
the Li  ̂ electrons; for comparison, capture cross sections for H“ and He are examined. For each system the 
percentage change in Q, A(HF-+CI), is given for progression from a Hartree-Fock (HF) to a Cl description 
of the target electrons. The main emphasis in this work is devoted to a rationalization of the trends 
observed in the ordering of Q for these three targets. This was achieved by an analysis of the CDW 
expression for an individual capture cross section <r[nl, n'V], where nl and n'V are the states of the 
“active” (captured) and “passive” electrons, respectively.

I. INTRODUCTION

For a helium target the cross sections for elec­
tron capture by fast protons are adequately des­
cribed by the continuum-distorted-wave (CDW) 
method (see, for example, Salin  ̂ and Belkid and 
Gayet^). Banyard and Szuster® examined the sen­
sitivity of such cross sections with respect to 
improvements in the He wave function up to and 
beyond the Hartree-Fock (HF) description; a 
similar study was made by Moore and Banyard^ 
for H". The CDW method is used here to evaluate 
the total cross sections Q =T/„^a[nl] for the fol­
lowing reactions:

H*+LF(ls®)-H^5^«ij +Li®*(ls), 

He®++Lr(ls®)-He*^% zj +Li®*(ls)

(1)

(2)
in the energy ranges 100-3000 and 100-10000 
keV, respectively. For each reaction we cal­
culated the cross sections a[nZ] for the capture 
states n l^ ls , 2s, and 2p, and Q was then deter­
mined by using the w"® rule (see, for example, 
Salin^). Besides examining, in brief, the sensi­
tivity of Q with respect to changes in the Li*(ls®) 
wave function, we also analyze the CDW expres­
sion for a general capture cross section a[n l,n 'V ], 
where nl and n'V are the states of the “active” 
(captured) and “passive” electrons, respectively, 
in order to rationalize the trends observed when 
comparing the cross sections for capture from 
H-, He, and Li".

n. RESULTS AND DISCUSSION

The capture cross section a[nl] for a given 
projectile energy E may be written as

(j[n l\=2 j 6|a„j(6)|®rf&

(in units of m l, with as the atomic unit of 
length), where a„,(&) is the prior form of the CDW 
transition amplitude and b is the impact parame­
ter. In Table I we report the total cross sections 
Q for reactions (1) and (2), and for comparison 
we tabulate the corresponding results for He and 
H"; in each case the target electrons are des­
cribed by the 35-term configuration-interaction 
(Cl) wave function of Weiss.® To assess the in­
fluence of electron correlation we also quote for 
each energy E the percentage change A(HF—Cl) 
in Q when going from the HF to the Cl descrip­
tion of the target electrons. The HF wave func­
tions for He and Li" were those of Clementi and 
Roetti,® and for H" the fitted functions of Curl and 
Coulson  ̂were used. The A(HF-*CI) values are 
seen to reflect a rapid decrease in the importance 
of correlation as we progress from H" to Li".
For a given target it was noted that at a common 
projectile velocity the proton and a-particle reac­
tions possessed similar A(HF-*CI) values, the 
magnitude being almost identical at high veloci­
ties.

When F >100 keV, Table I shows that the order­
ing in Q for each projectile is Q(Li") >Q(He) > Q(H"). 
As E  becomes larger the difference between the 
cross sections for the three systems increases; 
for example, for protons at 200 keV, Q(Li")
~ 9Q(H"), whereas at 3000 keV we have Q(Li") 
^150Q(H“).

In attempting to account for the above ordering 
in Q, we note first that the three systems differ 
in the size of the distortion acting on the cap­
tured, or active, electron in the exit channel.
Since in the present form of the CDW method the 
distortion is a function of the net charge on the 
residual target (see Belkid and Janev®) and thus 
opposes electron capture, its effect should be to 
produce an ordering of Q which is the reverse of 
that observed. Second, although the energy de-

21 1197 © 1980 The American Physical Society
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TABLE I. Total electxon-capture cross sections Q, In units of for targets H", He, and Li* for both {aroton and 
XX-particle projectiles. E âch system  is described by the 3S-térm configuration-interaction (Cl) function o f Weiss,® and 
in square brackets we give ihe percentage change [A(HF —Cl)] in going from the Hartree-Fock (HF) to the Cl descrip­
tion for the target electrxms; A(HF —Cl) is  defined as ((%% -  Q hf)/9hf1   ̂100%.

E
^ eV )

H-
[A (H F-CI)J

Protons
He» 

[A(HF — CD]
Li*"

[A (H F -C D ]
E

(keV)

a  particles 
H' He» 

[A(HF-*CD] [A(HF-*CD]
Li*" 

[A(HF— CD]

100 6.681'®®
[-19.8%]

3.482'®
[-4.0%]

1.394'®
[-4.5%] 100 1.630*4

[-16.4%]
5.196*4
[-4.7%]

4.695*4
[-5.8%]

200 3.922-®
[-17.1%]

3.477'®
[-3.8%]

3.683"®
[-2.2%]

500 1.700^
[-16.9%]

1.512®
[-3.8%]

2.084®
[-1.9%]

500 5.585'®
[-15.9%]

8.456*4
[—4.2%]

2.118-®
[-1.3%] 1000 1.268*®

[-16.6%]
1.661*4
[-4.1%]

3.446*4
[-1.4%]

800 5.200*®
[-15.9%]

9.912*®
[-4.3%]

3.275-4
[-1.4%] 2 000 6.619*4

[-16.4%]
1.203"®
[-4.1%]

3.624'®
[-1.3%]

1000 1.622-®
[-16.0%]

3.418*®
[-4.3%]

1.254-4
[-1.4%] 4 000 2.460-®

[-16.0%]
5.947-4
[-4.4%]

2.396-®
[-1.5%]

2000 3.864"®
[-16.2%]

1.064"®
[-4.4%]

4.995"®
[-1.6%] 6 000 3.138"®

[-16.1%]
8.794*®
[-4.5%]

4.052-4
[-1.6%]

3000 4.083'®
[-16.3%]

1.270'^
[-4.4%]

6.633'®
[-1.7%] 10 000 2.104'®

[-16.3%]
6.932"®
[-4.5%]

3.664-® 
[-1.7%]

‘The results for He supersede those reported by Banyard and Szuster (Ref, 3), which contained a sm all computing er ­
ror.

bTotal capture cross section Q was obtained from the “Oppenheimer n"® rule” : o [ls] + 1.616(o-[2s] +tr[2/>]).
Superscript denotes the power of 10 by which each entry should be multiplied.

crement Ac (defined as the difference in energy 
between the initial and final atomic states and de­
termined here from the theoretical values) is 
different for each of the three systems, the cross 
sections are found to become insensitive to Ac in 
the lim it of high projectile velocities. Therefore 
it would appear that the observed trends in Q 
must be dominated by the differences in the ta r­
get wave functions.

We now proceed by analysis of the individual 
CDW cross section a[rd,n 'V] to account for the 
trends in Q for the more general reaction

1̂» ̂2) l̂)|»l ■*' (̂B> (̂)

when the target electrons are described by an 
HF wave function

where each member of the basis set \<p\ is norm­
alized and the coefficients and are the usual 
variation constants. The CDW cross section 
a[nl, n 'V ] for a relative impact velocity v corres­
ponding to an energy E, When the capture state 
wave function is W„,(l), can be expressed as

o [n l,« T ] =N|/ÇÇc,<p^(2)|n'Z'^j |Ç s / i ( r ) ,  v,^v(l), ^€)^i(Tj,t;,<p^(i),^,,(l), Û , A«) d-n, (4)

where JV is a constant and I^ ^ c jp ^ {2 )\n 'V ) is an 
overlap integral between the initial and final 
states which describe the passive electron e .̂ The 
integration over is a result of performing a 
Fourier transform of the transition amplitude 
from position space to a two-dimensional vector 
space ^ (see Belkid and Janev^), and the functions

I----------------------------------------------- ‘ '

i/j and i/g arise from the distortions due to Cou­
lomb interactions acting in the entrance and exit 
channels, respectively, and are defined as 
= Z j v  and i/g =(Zg -  l ) / f .  We note that fy and gy 
are both functions of <p (̂l), and hence the strong 
dependence of the ordering in the cross sections 
on $ (1 ,2) is still not apparent. However, since
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the occurrence of the distortion in the exit channel 
inhibits capture, we can, without prejudice, pro­
ceed with our analysis by setting =0 for the 
general reaction (3). As a consequence of this, 
the dependence in is now removed and the 
expression for o [n l,n 'V ] when becomes

=Npf^

x\G ^{r},v ,% ^ ,u„A e)\^dr]. (5)

Except for the presence of the energy decrement 
A€ , the functional form of is independent of 
the target parameters. At high projectile velo­
cities, is found to be insensitive to Ae, and 
thus for a particular capture state (nl) the func­
tion Gi becomes identical for our three examples 
of a two-electron target (Z^, e )̂. When the
basis set is represented, for example, by 
Slater-type orbitals (STO’s), the function takes 
the form

+tj2 +(̂ /2 +A€/ü)2p (6)
where ŝ , and N(s ,̂ are the principal quan­
tum number, orbital exponent, and normaliza­
tion constant, respectively, of the basis function 
(fp. Analysis of F l  shows that it represents the 
probability density of finding the active electron 
ey with a z component of momentum equal to 
|y /2 + A € /y | or, conversely, of finding with 
a total momentum p > 11>/2 + Ag/u | , and there­
fore F \  can be interpreted as a two-dimensional 
momentum density. We note that the z component 
of momentum is not unique, and its definition is 
simply a consequence of choosing our coordinate

system such th a tr).v = 0 , with v = (0,0,
Let us now particularize reaction (3) by choos­

ing Zjy to be a proton and by setting nl =n'V  = ls  

for the targets H", He, and Li*. In Fig. 1 for 
each system we plot F \  and Ĝ  as a function of 77 
for a [ l s ,  ls ]p 2 =o E  = 500, 1000, and 2000 keV.
For subsequent discussion and ease of compari­
son Table I I  contains a [ l s , Is ]  and a [ I s , ls ]^ 2 =o 
a few selected E; R (as defined later) is a ratio 
of the cross sections for different targets when 
1̂2 =0. Throughout Fig. 1 and Table I I  each ta r ­
get was described by the HF wave function; for 
H" we note that a [ l s .  I s ]  = [ l s ,  Is ],,^ ^ . As antici­
pated, Fig. 1 shows that the G\ functions for each 
target are very sim ilar, particularly at large E 
values. Therefore the ordering of the cross sec­
tions in Table I I  is a direct consequence of the 
differences in the electron densities in momentum 
space as represented by F f. When the projectile 
velocity is increased, the active electron is cap­
tured from regions of increasingly higher mo­
mentum within the target atom; thus the cross 
sections reflect the characteristics of the target 
wave functions near the origin. Indeed, in the 
lim it as f  ̂ 00 the function Fy may be expressed 
as

1
(7)

and hence

\  P  /  X y=0

(8)
where x̂  is the position vector of the active elec­
tron with respect to the target nucleus. The tj 

and V dependence in Eq. (8) occurs only in the new 
function G,, and in the lim it we note that this

1000 keV 2000 keVE = 500 k*V

cn

F IG . 1. P lo ts  a t th re e  se lec ted  im p a c t e n e rg ies  E  o f F\ and Gj aga ins t rj fo r  each o f the ta rg e ts  H ", He, and L i*  c o r ­
respond ing  to  a [ l s , l s ] ^ 2=o Eq. (5). The p ro je c t ile s  a re  p ro tons and the ta rg e t e le c tro n s  a re  described  by the H a rtre e - 
F ock  wave fu n c tion s  sta ted in  te x t. C urves fo r  cj a re  long-dashed H " , sho rt-dashed  He, and dotted L i* .
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TABLE n. C ross sections (r [ ls ,ls ]  and in units of irâ, at selected  E  for e lec ­

tron capture by protons from the targets H", He, and Li*. Since the distortion in the exit 
channel due to the Coulomb interaction is zero for H" (i.e ., 1^2 = 0), we note that o -[ls ,ls]
= o-[ls,ls]^ ,o* We also tabulate values of R=  (o;;[ls,ls]/or^[ls,ls])„g^ for (i) a = He and 6 = H" 
and (ii) a=  Li* and b= He. In each instance the target electrons are described by Hartree- 
Fock wave functions.

E
(keV)

H" He Li* He 
(̂ 2= 0)

Li*
(1̂ 2-0) (̂11)

500 4.760-5* 6.880-i 1.718-5 8.239-* 17.3 1.986-5 2.4
1000 1.427-5 2.833-5 1.025-* 3.621-5 25.4 1.382-* 3.8
3 000 3.665-5 1.068-̂ 5.484-'' 1.420-' 38.7 8.465-'' 6.0
5 000 2.077-̂ ® 6.766-5 3.880-5 9.063-5 43.6 6.137-5 6.8
10 000 4.042-̂ 2 1.434-̂5 9.181-̂ 5 1.944**5 48.1 1.483-5 7.6

^Superscript denotes the power of 10 by which each entry should be multiplied.

function is also independent of Ac. Therefore, if 
we examine the ratio R [iil,n * l'] of the cross sec­
tions for two targets a and h when the distortion in 
the exit channel is removed, we obtain

(9)

where S is the slope or gradient of the HF wave 
function for the active electron at the origin 
-0 ) and, as before, I  is the passive overlap inte­
gral. hi Table H we present the ratios i2[ls. Is]

for (i) a = He and 6 = H" and (ii) a = Li* and 6 = He.
As E  increases, these ratios are seen to approach 
the values of 52,8 for (i) and 8.86 for (ii) pre­
dicted by Eq. (9), which again illustrates how the 
ordering of the cross sections is dictated by the 
relative behavior of the target wave functions.
In passing, we note that when H", He, and Li* are 
described by HF wave functions the passive over­
lap integral for n*V = ls is 0.922, 0.984, and 0.993, 
respectively; thus, the limiting ratios in this in­
stance are governed essentially by the relative

0 14
(b)He (c)Li0014 0 06

0100 010
0 04II

iSc 0060 006
002u

005005
0020-002

j=6 0-0 0-000-000 0-00

-002
- 0-1

- 0-1

- 0-2

yQ

FIG. 2. Plots of Cfl^Ff vs tj, defined in Eq. (10), corresponding tojth  natural configuration within natural expansion 
formulation of for a proton impact energy of 1000 keV. (a) H" for j  = l ,  2, and 6, (b) He for j  = l ,  3, and 6,
and (c) L i*for j  = l ,  3, and 6. Each target was described by the natural expansion of 35-term  Cl wave function of 
W eiss,  ̂and die j  values quoted represent natural configuratiais constructed from orbitals of radial symmetry.
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values of S.
If $ (1 ,2) is a correlated wave function, it is of 

interest to examine the form of the function, say 
which r e p l a c e s in Eq. (5). For a discus­

sion of electron correlation, a particularly con­
venient form for any C l wave function is to ex­
press it as a natural expansion (see, for example, 
Lowdin®). Thus {F̂  can then be written as

(10)

where for the Weiss® function the basis set {ç } , 
which is used to describe $ (1, 2), consists of 
normalized STO’s. The coefficients bij and b^j, 
together with {cp}, define the natural orbitals 
which are given by the summations over i and k; 
the summation of all the natural configurations j ,  
each weighted by the coefficient Cj, represents the 
total C l wave function. When j > l ,  each natural 
configuration in the summation corresponds to 
the addition of a correlation term composed of 
<p’s with either radial or angular symmetry; when 
j  = l  only, we recover the p F l  term in Eq. (5). 
Thus, by using the natural expansion and by set­
ting =0 , the nature of the influence of the cor­
relation terms on the CDW cross section be­
comes transparent and we see that the re lative  
importance of each natural orbital is determined 
solely by its occupation coefficient Cy and its 
passive overlap integral As a consequence, 
when improving the target wave function up to a Cl 
description, any change in the cross section at 
large v w ill be independent of the projectile charge

Zĵ  but may be strongly influenced by the final 
state of the passive electron. When n'V = ls , 
is nonzero only for those natural orbitals of 
radial symmetry; therefore, only radial correla­
tion terms in $ (1, 2) contribute to the cross sec­
tions in the present CDW calculations, hi Fig. 2 
we show, for a[ls,ls]^g=o, vs 77 fo r ;  =1, 3, 
and 6 for He and Li* and 7 = 1 ,  2, and 6 for H" at 
£  = 1 0 0 0  keV. The curves not only indicate the 
dominance of the y = 1 term but also show that as 
we go from H" to Li* the higher natural orbitals 
become rapidly less important; it is noted that at 
77 = 0  for H", ^  7 while for L i* at t j  = 0 ,

^ 3̂ 3̂ Î -

111. SUMMARY

The rationalization of the trends in the present 
CDW cross sections became tractable by setting 
1̂2 =0. Hence we have shown that, as the projec­
tile velocity increases, the active electron is 
captured from regions of increasingly higher 
momentum within the target atom and that in this 
region it is the characteristics of the wave func­
tion which govern the trends in Q when comparing 
different targets. The nature of the distortion 
acting on the captured electron in the exit channel 
(i.e., when i/g# 0) is such that it reduces the size 
of each cross section, and this effect w ill in­
crease as increases. Thus, when considering 
two-electron targets of large nuclear charge, it 
would be interesting to see if the final distortion 
could ever dominate the wave function in its in­
fluence on Q and so produce trends which are the 
reverse of those examined here.
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Charge exchange between simple structured projectiles in high-energy collisions
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The continuum-intermediate-states approximation has been adapted for application to charge-exchange 
collisions between high-energy structured projectiles. A critical test of the scheme is provided by the 
reaction H (ls) -f H ( ls ) ^ H “(ls ') -|- H*; the overall agreement with the limited experimental data is 
encouraging.

I. INTRODUCTION

Electron capture from small atomic targets by 
fast structureless projectiles such as protons and 
a  particles can be described quite successfully by 
modifying the continuum-distorted-wave (CDW) 
method developed by Cheshire.* However, its ap­
plication to charge exchange between structured 
systems is more difficult. Therefore, in a desire 
to examine such high-energy collisions between 
simple atoms, or ions, we suggest an adaptation 
of the method of continuum intermediate states 
(CIS). The CIS approach, devised by Belkic® for 
electron capture by a structureless projectile, is 
closely related to the CDW method but accounts 
for distortion effects in only one of the two chan­
nels. This feature not only produces considerable 
simplification from both the analytical and compu­
tational viewpoint, but also provides flexibility for 
generalization to electron capture by structured 
projectiles. In addition, the CIS method has the 
particular advantage of being more reliable than 
the CDW approximation for describing capture at 
large impact parameters (Shakeshaft,® Belkic®).

The reliability of the approximations involved in 
the proposed scheme is tested here by examining 
the reaction

H (ls) + H (ls )  -  H"(Is®) + H* . (1)
For this example, a comparison can be made with 
capture cross sections derived from the results of 
a CDW calculation for the reverse reaction; see 
Janev and Salin *̂® and Moore and Banyard.® The 
former workers described the H“ target by a Is is ' 
wave function, whereas, in an electron correlation 
study, the latter workers used the wave function 
of Weiss.' The only experimental results available 
for reaction (1) are those of McClure® and, un­
fortunately, these are restricted to impact ener­
gies E < 63 keV.

U. METHOD

The cross section a{nl) for the capture of elec­
tron 1, say, by a fast structured projectile system

(Z^, gg) of energy E  in collision with a target 
(Za,gi) considered to be at rest, is written as

(x(nl) = 2 j b\aif(b)\^db (2)

(in units of tial) , where 6 is the impact parameter 
and (nl) is the capture state. Atomic units are 
used throughout unless stated otherwise. It fo l­
lows from  the definition of the prior form  of the 
transition amplitude (see, for example, Cheshire* 
that, for this reaction, can be expressed as

(3)

R

where Xi is the in itia l distorted wave satisfying

±LB .

J-iA (4)

The position vectors s^,x,, and r̂  locate electron; 
relative to Z^, Zg, and the midpoint of R , re ­
spectively, where R  is the inter nuclear separation. 
The final-state complete wave function 'iff is de­
termined in the same manner as in the CDW 
method and therefore it incorporates the ground- 
state electronic wave function of the (Z^,gi, gg) 
system and the distortion effects due to inclusion 
of continuum intermediate states which arise from  
the interaction of the active electron 1 with Zg in 
the outward channel. In the CIS approximation, we 
choose the arbitrary distorting potential f/, such 
that Xi involves only the eigenfunctions for (Z^,gg) 
and (Zg,gJ along with an appropriate phase func­
tion of the form defined by Belkic.® This require­
ment is satisfied by f/, = -(Z ^  -  l)i2“* and, as a 
consequence, Eq. (3) becomes

22 1452 © 1980 The American Physical Society
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(5)

When the passive electron 2 remains tightly bound 
to throughout the whole interaction, then it is 
not unreasonable to suppose that the second matrix 
element provides a negligible contribution to 
Thus, in the calculation of a{nl), we consider only 
the firs t term in Eq, (5). The reliability of this 
approximation should increase when »  Z^; 
such a relationship between the nuclear charges 
should also emphasize the importance of capture 
at large impact parameters and thus support our 
use of the CIS approach. Consequently, a very 
severe test of the present scheme is provided by 
applying it to the forward direction of reaction (1).

For this initial calculation, the interelectronic 
interaction was approximated by the average elec­
trostatic potential due to the passive electron being 
described by a I s  hydrogen atom orbital. Thus, in 
Eq. (5),

(6)

when Z ^  = 1 .  I T ( l s ^ )  was described, firstly , by the 
Hartree-Fock (HF) fitted function of Curl and Coul­
son® and, secondly, by a “fixed-core” representa­
tion of the form Is is ' in which the exponent of the 
valence-electron orbital is chosen to be (2e)̂ '̂ ,̂ 
where e is the experimental value of the single- 
ionization energy, and the fixed core is a I s  hydro­
gen orbital. The latter description of H" has the 
advantage of having one electron loosely bound 
whilst the other electron remains comparatively 
tightly bound. Such a wave function, albeit em piri­
cal, could be particularly appropriate at the inter­
mediate energies represented by experiment® since 
contributions to c r ( l s )  from relatively large values 
of the impact parameter may then be significant. 
Finally, we used the configuration-interaction (Cl) 
wave function of Weiss. This function not only 
allowed for the high degree of electron correlation 
in H“, and satisfied the energy variation principle, 
but it also enabled us to make numerical compari­
sons with the CDW results® at large E  values. The 
energy decrement Ae used in conjunction with the 
HF and Cl wave functions was derived in each case 
from the corresponding theoretical energies, 
whereas, for the fixed-core description of H", we 
used the experimental value.

HI. RESULTS AND DISCUSSION

Although the CIS method, like the CDW approach, 
is essentially a high-energy approximation, the

comparison of our theoretical capture cross sec­
tions with experiment is limited to the data of 
McClure® (see Fig. 1). Also shown in Fig. 1 are 
the “post” and “ prior” theoretical curves of Maple- 
ton^° used by McClure® for comparison with exper­
iment. Mapleton^” employed a Born approximation 
to describe reaction (1) with the ground state of H" 
being represented by the correlated wave function 
of Chandrasekhar.^^ In Table I we compare the 
CIS-based results, using the HF and Cl wave func­
tions, with the CDW cross sections® for projectile 
energies E up to 1 MeV. The difference between 
the HF and Cl values measures the influence of 
electron correlation within the current formula­
tions of the CIS and CDW methods.

Figure 1 shows that the three CIS-based curves 
represent a considerable improvement on the 
Mapleton cross sections when compared with ex­
periment, although at low energies the peak values 
are still too large. It is to be noted that, as ob­
served for the CDW results,^"" each theoretical 
curve appears to fa ll off too rapidly as E  increases 
in value. Additional experimental cross sections 
at higher energies would provide a most useful 
check with theory.

Of the curves presented in Fig. 1, that derived 
from the HF wave function is perhaps the best— 
this is somewhat surprising and may, as discussed

E
It3
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u

,-ie
40 60 800 20

E(keV)
FIG. 1. Electron-capture cross sections o-(ls) for 

H(ls) +H (ls) +H*. The CIS results are shown
in curves (a), (b), and (c) and are derived, respectively, 
from the use of the Hartree-Fock (HF) function, the 
“ fixed-core" model, and the configuration-interaction 
(Cl) description for H"(ls^). Curves (d) and (e) are the 
“prior" and “post" results of Mapleton (Ref. 10) calcu­
lated using a Born approximation. The experimental 
points are those of McClure (Ref. 8).
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TABLE 1. A comparison of the electron-capture cross sections o-(ls), measured in cms^, 
for the reaction H (Is) + H (Is) — H"(ls^) + H*. The continuum-intermediate-states (CIS) re­
sults are calculated here for the forward reaction, whereas the continuum—distorted-wave 
(CDW) results are those of Moore and Banyard (Ref. 6) and were derived by them from the 
calculated results for the reverse reaction. For H"(ls^), the Hartree-Fock (HF) function 
was that of Curl and Coulson (Ref. 9) and the configuration-interaction (Cl) description was 
taken from Weiss (Ref. 7).

E (keV) HF
CIS

Cl HF
CDW

Cl

25 1.681 x io-l^ 1.173 X 10-1^ 2.886 X 10-1^ 2.067 X 10-1^
50 3.023 X 10-18 2.067 X 10-18 5.093 X 10-18 3.526 X 10-18

100 3.268 X 10-18 2.268 X 10-18 5.227 X 10-18 3.600 X 10-18
200 2.325 X 10-88 1.650X 10-88 3.410 X 10-88 2.379 X 10-88
400 1.202 X 10-81 8.696 X 10-88 1.527 X 10-81 1.087 X 10-81
800 4.845 X 10-88 3.636 X 10-88 4.990 X 10-88 3.618 X 10-88

1000 1.688 X 10-88 1.284 X 10-88 1.570 X 10-88 1.143 X 10-88

below, arise from  a cancellation of opposing ef­
fects. The more reasonable sp lit-shell description 
of H" embodied in the em pirical fixed-core model 
and the Weiss wave function is seen to be reflected  
in the closeness of curves (b) and (c); both curves 
lie slightly below the experimental points when 
E >  25 keV. Our CIS-based approximation is only 
capable of responding to a sp lit-shell or rad ial 
component of electron correlation and makes no 
allowance fo r the effects of angular correlation in 
H“. Since the transition amplitude Uif is evaluated 
in term s of momentum space, it is possible that 
the opposing effects of angular and radial co rre la ­
tion—known to exist in momentum space^®— may 
produce some cancellations. Thus, if the present 
method could be modified to allow for angular cor­
relation, curve (c) might be raised. This is now 
under investigation.

For both descriptions of H", Table I  indicates 
that fo r E < 800 keV, the CIS values are sm aller

than the corresponding cross sections derived 
from  a CDW calculation for the reverse reaction. 
The relative m erit of the two schemes is difficult 
to judge since, ideally, the comparisons with 
experiment should be made in the higher-energy 
region of Table I.

IV. SUMMARY

In view of the severity of the test of the present 
method, represented by its application to reaction 
(1), the comparison between theory and experiment 
was, overall, quite encouraging. The general pro­
cedure outlined above is now being examined in 
more detail and the method is also being applied 
to electron capture by fast L i ions impinging on 
H atoms. Such reactions have been the subject of 
a recent experimental investigation by Shah, Goffe, 
and Gilbody.^® The prelim inary comparisons are 
pleasing.
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