STUDIES ON THE PALAEONTOLOGY

OF THE LOWER OXFORD CLAY

OF SOUTHERN ENGIAND

A thesis submitted for the degree of Doctor of Philosophy In the Faculty of Science of the University of Leicester.

by

Keith Leslie Duff B.Sc. (University College, Cardiff)

Volume I, text

November 1974

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI U419705
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author. Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

THES IS

- 27.

$x 75-338695-9$

CONTENTS

Page No.

Volume I

Ahstract i
Acknowledgements iii

Chapter 1. General introduction 1

Chapter 2. A monograph of the Lower Oxford Clay 10
Bivalvia of southem England

Contents vi
2.1 Introduction and general remarks 10
2.2 Previous work 13
2.3 Stratigraphy 15
2.3.1 Geographical extent and thickness 17
of the Oxford Clay
2.3.2 Exposures in the Lower Oxford Clay 18
2.3.3 Facies analysis of the Lower

Oxford Clay 19
2.3.3.1 Silts and silty clays 19
2.3.3.2 Shell beds 19
a) Nuculacean shell beds 20
b) Gryphaea shell beds 20
c) Grammatodon shell beds 20
d) Meleagrinella shell beds 20
2.3.3.3 Bituminous shales 21
a) Deposit-feeder
bituminous shales

Page No.
b) Grammatodon-rich 22 bituminous shales
c) Foram-rich bituminous 22 shales
2.3.3.4 Blocky claystone 22
2.3.3.5 Calcareous clays 23
2.3.3.6 Concretionary linestones 24
a) Septarian concretions 24
b) Earthy limestones 25
2.3.4 Descriptions of the four major pits 27examined
2.3.4.1 Norman Cross, Peterborough 28
2.3.4.2 Stewartby, Bedford 30
2.3.4.3 Bletchley 32
2.3.4.4 Calvert 33
2.4 Palaeoecology 35
2.4.1 Epifaunal suspension-feeders 37
2.4.2 Infaunal suspension-feeders 42
2.4.2.1 Infaunal non-siphonate 43 suspension-feeders
2.4.2.2 Infaunal siphonate 44suspension-feeders
2.4.2.3 Infaunal mucus-tube feeders 48
2.4.3 Deposit-feeders 49
2.4.4 Other fauna 50
2.5 Conventions and techniques 53
2.5.1 Teminology 53
Page No.
2.5.2 Type material 56
2.5.3 Variation 57
2.5.4 Localities 59
2.5.5 Preparation 59
2.5.6 Taxonomic considerations 60
2.6 Preservation 61
2.7 Acknowledgements 65
Bibliography 67
Systematic Descriptions 97
Genus Nuculome 97
Nuculoma pollux (Raspail) 99
N. kathryni sp . nov. 102
Genus Palaeonucula 106
Palaeonucula triangularis sp. nov. 108
P. cottaldi (de Loriol) 114
Genus Mesosaccella 121
M. morrisi (Deshayes) 123
Genus Solemya 131
S. woodwardiana Leckenby 133
Genus Granmatodon 137
G. minima (Leckenby) 138
G. concinna (Phillips) 146
G. montaneyensis (de Loriol) 151
G. clathrata (Leckenby) 155
Genus Modiolus 161
M. bipartitus J. Sowerby 162
Page No.
Genus Pinna 168
P. mitis Phillips 169
P. Ianceolata J. Sowerby 173
Genus Pteroperna 176
P. ? pygmaea (Dunker) 177
Genus Parainoceramus 184
P. subtilis (Lahusen) 185
Genus Bositra 189
B. buchii (Roemer) 190
Genus Oxytoma 195
0 . inequivalvis (J. Sowerby) 197
Genus Meleagrinella 208
M. braamburiensis (Phillips) 210
Genus Mntolium 220
I. corneolum (Young \& Bird) 222
Genus Byssentolium 229
B. hudsoni sp . nov. 231
Genus Camptonectes 234
C. auritus (Schlotheim) 235
Genus Chlamys 242
Subgenus Chlamys s.s. 242
C. (C.) bedfordi sp . nov. 244
Subgenus Radulopecten 248
C. (R.) scarburgensis 249(Young \& Bird)
C. (R.) fibrosa (J. Sowerby) 255
C. (R.) drewtonensis Neale 261
Page No.
Genus Plicatula 264
P. of. fistulosa Morris \& Lycett 265
Genus Gryphaea 268
Subgenus Bilobissa 270
G. (B.) dilobotes nom nov. 272
G. (B.) Iituola I Iamarck 285
Genus Nanogyra 292
N. nana (J. Sowerby) 293
Genus Myophore11a 296
M. irregularis (Seebach) 298
M. caytonensis nom nov. 306
Genus Discomiltha 312
D. Iirata (Phillips) 314
Genus Neocrassina 319
N. ungulata (Lycett) 321
N. calvertensis sp . nov. 326
Genus Trautscholdia 329
T. carinata (Phillips) 331
T. phillis (Cottreau) 333
Genus Protocardia 340
P. striatulum (J. de C. Sowerby) 341
P. Sp. 347
Genus Rollierella 348
R. minima (J. Sowerby) 350
Genus Anisocardia 356
A. tenera (J. Sowerby) 358
Page No.
Genus Isocyprina 363
Io roederi Arkell 365
Genus Corbulomima 369
C. macneillii (Morris) 370
C. Obscura (J. de C. Sowerby) 374
Genus Pleuromya 377
P. alduini (Brongniart) 378
P. uniformis (J. Sowerby) 383
Genus Thracia 388
T. depressa (J. de C. Sowerby) 390
Incertae sedis 394
Anomalodesmatan sp. A. 394
Anoraalodesmatan sp. B. 397
Chapter 3. Palaeoecology of a bituminous shale: the 399Lower Oxford Clay of central England.
Introduction 399
Stratigraphy 399
Nature of the fauna 401
Preservation 402
Methods of analysis 404
Biofacies analysis 408
Palaeoecological assumptions 412
Lower Oxford Clay environments 415
Silts and silty clays 418
Bituminous shales 419

Page No.

Shell beds 423
Blocky claystone 427
Calcareous clays 428
Relations between the biofacies 429
Comparisons with other facies 435
Evolutionary changes - comparison with 442
Palaeozoic and Recent assemblages
Conclusions 447
References 448
Chapter 4. Summary of conclusions 456
Volume IIText-figures, Tables and Plates arranged in chapter orderAppendices 1-3.
Appendix 4 in pocket

i.

ABSTRACT

The Lower Oxford Clay (Middle Callovian, Upper Jurassic) of southern Ingland has been studied in detail, in order to elucidate the stratigraphy, bivalve taxonomy and palaeoecology of the formation.

Examination of four quarries in the Midlands, between Feterborough and Calvert (Bucks.), has allowed a detailed stratigraphy to be established, based upon that of Callomon (1968), and to which it has been possible to relate the range and occurrence of all the invertebrate species collected. The position of the Obductum - Grossouvrei Subzonal boundary at Stewartby (Bedford), which was not located by Callomon, has been established, on the basis of recurrent bivalve populations. The taxonomy of the bivalve fauna has been treated monographically, 48 species, 7 of which are new, having been described. One new genus, Byssentolium gen. nov. is introduced, with B. hudsoni sp . nov, as its type species. The subgenus Trautscholdia Cox \& Arkell is elevated to full generic rank, and the generic assignations of several of the most well-known Upper Jurassic bivalve species are amended. The remainder of the Lower Oxford Clay invertebrate fauna has been considered in general terms, and its palaeoautecology inferred; the palaeoautecology of the bivalve fauna has been dealt with in detail.

By using the mass of detailed information collected at the four major quarries, a palaeoecological reconstruction of the environmental conditions established during the deposition

ii.

of the Lower Oxford Clay has been made. Ten biofacies types have been defined and recognised at all the major quarries, and are characterised by 5 ecologically defined parameters. The benthonic fauna of several other Jurassic and Cretaceous Clay Formations has been compared with that of the Lower Oxford Clay, showing that only the Upper Lias of England is closely comparable. Consideration of the composition of deposit-feeder dominated communities since the Lower Palaeozoic has shown the major difference to be the replacement of the suspension-feeding brachiopods by suspension-feeding bivalves, a consequence of mantle fusion and siphon formation.

ACKKOOWLEDGEMENTS

My main vote of thanks must go to my supervisor, Dr. J.D. Hudson, of the Geology Department of the Tniversity of Leicester, for initiating the research project and providing useful suggestions and encouragement throughout the course of my work. I would also like to thank Professor P.C. SylvesterBradley for the use of the facilities of the Leicester University Geology Department, and for providing stimulating discussion on several taxonomic points. I also take this opportunity of thanking the many other members of the Leicester University Geology Department who heve assisted me in matters of discussion.

Thanks are also due to Mr. Richard Sykes of the Department of Geology, Oxford University, Mr. Mike Barker of the Department of Geology, Portsmouth Polytechnic, Dr. J. H. Callomon of the Department of Chemistry, University College, London, Dr. N.J. Morris, Mr. R.J. Cleevely, Mr. C.P. Nuttall and Mr. C. P. Palmer of the British Museum (Natural Fistory), and Professor D.W. Boyd of the University of Wyoming, all of whom heve given advice or assistance on various aspects of my research.

Many of my colleagues in museums have greatly assisted my work by allowing me access to their collections, and making some of the specimens available for loan. In particular, I would like to thank again my colleagues at the British Nuseum (Natural History); Dr. C.I. Forbes of the Sedewick Museum, Cambridge; Mr. J.M. Edmonds and Mr. H.P. Powell of the Oxford

University Museum; Miss B.M. Cox of the Institute of Geological Sciences, London; Dr. M. L.K. Curtis of the City Museum, Bristol; Mr. M. Jones of the City Museum, Leicester; Miss B.J. Pyrah of the Yorkshire Museum, York; Mr. A. Cross of the Peterborough Museum, and Dr. J. Sornay of the Laboratoire Paléontologique du Musée National de'Histoire Naturèlle, Paris. Dr. A. Konrad of the Roemer-Pelizaeus Fuseum, Hildesheim, W. Germany has kindly provided me with information concerning the type specimens of Bositra buchii and Solemya voltzii. Finally, and most sincerely, I would like to offer my deepest thanks to Dr. R.J. King and Dr. R.G. Clements, curators of the Leicester University Geology Department, for assisting me so uncomplainingly over the period of my research.

Heartfelt thanks are due to the London Brick Company, for allowing me unrestricted access to their pits over the last 4 years. Without their help, this project would have been impossible. In particular, I would like to thank Mr. J.I. Horrell, London Brick Company chief geologist, for his unstinting help on many occasions.

The technical assistance of several members of the Geology Department and the Central Photographic Unit of Leicester University is also much appreciated. Particular thanks are due to Mr. G.I.C. MoTurk for his assistance in the development of my photographic technique and Mrs. J. Westermann for her advice in the preparation of diagrams. Mrs. N. Corby of the Department of Astronomy has put a great deal of effort into the typing of this thesis, for which I offer my deepest thanks.

v.

My parents and Miss J. Russell of the Geology Department are sincerely thanked for their help in the final preparation of the thesis.

Finally, I wish to acknowledge the financial assistance of a NERC research studentship at Leicester University, which enabled me to carry out this research.

1.

CHAPTER 1

GEIVERAL INTRODUCTION

The Lower Oxford Clay (M. Callovian, U. Jurassic) is a series of up to 18 m of dark grey-green bituminous shales, bounded below by the sandy Kellaways Rock (L. Callovian) and above by the lighter grey, more plastic, non-bituminous clays of the Middle and Upper Oxford Clay (U. Callovian - L. Oxfordian) The British Callovian deposits represent a major marine transgressive phase after the regressive, dominantly lagoonal and estuarine, deposits of the Bathonian, and show what is believed to be a deepening water sequence of sediments, from near-shore sands and limestones, through bituminous shales, into massive unlaminated clays. The shales of the Lower Oxford Clay were chosen for study because of the interest in bituminous shale ecology, together with the diversity and abundance of fossils which they contain. Originally, it was hoped to produce an overall ecological synthesis of conditions of deposition within the whole of the English Oxford Clay, but it very quickly became apparent that this was an impossible task in the time available. The main cause of this realisation was the discovery that the Oxford Clay bivalve fauna, although diverse and abundant, was very poorly-known, and so needed a taxonomic basis before ecological work could properly be conducted. Accordingly the aims became modified, so that the major part of the project became a taxonomic study of the bivalves of the Lower part of the Oxford Clay, together with an ecological study of the same
part. This is how the project has developed, and the bias is obvious from the relative size of the Chapters.

Lithologically, the Lower Oxford Clay consists dominantly of well-laminated bituminous shales, with occasional shell-beds, more calcareous clays, and some silts at the base. The detailed lithologies are discussed in Chapter 2. There is a. very diverse and often abundant fauna to be found in the Lower Oxford Clay, dominated by molluscs, with cephalopods and bivalves being overwhelmingly the most common elements, although gastropods are frequent, and scaphopods locally abundant. There is, however, a varied accessory fauna consisting of inarticulate brachiopods (Lingula), which are locally common in the bituminous shales, rhynchonellid brachiopods, small decapod crustacea, annelid worm tubes, occasional ophiuroids and some trace fossils. A well-known characteristic of the Lower Oxford Clay is the presence of well-preserved and relatively common vertebrate xemains, especially reptiles (Ichthyosaurs, Plesiosaurs, Pliosaurs) and fish the skeletons of the reptiles are often articulated, although isolated skeletal fragments such as teeth, ribs and centra are fairly common in the shell beds.

The thesis considers several aspects of the palaeontology of the Lower Oxford Clay of southern England. There are two Chapters, Chapter 2 being a monographic study of the Lower Oxford Clay bivalve fauna, and also comprising the major part of the thesis, and Chapter 3 being a study of the palaeoecology of the Lower Oxford Clay of central England. Finally, there is a short chapter summarising the conclusions reached from the

3.

work. Both Chapters 2 and 3 have been written in a style suitable for publication, and have been submitted to the Palaeontographical Society and to the journal 'Palaeontology' respectively. Thus each of these chapters is completely selfcontained, with introduction, methods and results, conclusions and bibliography; for this reason, a general bibliography is not given separately at the end of the thesis.

The work is the result of three years study of the Lower Oxford Clay as seen at four quarries owned by the London Brick Company between Peterborough (Hunts.) and Calvert (Bucks.). These exposures have been compared with those seen on the Dorset coast in the area around Weymouth. The sections seen at the four I.B.C. pits have been described by Callomon (1968), and these measured sections formed the basis of the detailed collections made in this study. Some minor discrepancies between this work and that of Callomon (op. cit.) were found, and the sections measured by the author are shown in Fig. 2.3 and Appendix 1. As the revised sections were measured, extensive collections of the contained fauna were made, and it is these collections which form the basis of the work in both Chapters 2 and 3. However, in order to make the monographic work as comprehensive as possible, collections housed in all the major British museums were also examined.

The remainder of this introductory chapter will present a general summary of the contents of the two major chapters in this thesis.

Chapter 2 occupies the bulk of the thesis, and comprises a monographic study of the bivalve fauna of the Lower Oxford Clay of southern England. A general introduction is followed by a consideration of previous work, which discusses earlier work on the stratigraphy, taxonomic palaeontology and palaeoecology of the Lower Oxford Clay. The most obvious point which becomes apparent from this section of the work, is the need for taxonomic revision of virtually all of the invertebrate groups present in the Lower Oxford Clay, especially the molluscs (excluding the ammonites).

The next section (2.3) considers the stratigraphy of the Midlands Lower Oxford Clay at some length. Notes on the geographic extent and thickness of the deposit are followed by detailed facies analysis and description of the four quarries examined. Five lithofacies types are recognised in the Midlands, which may be divided, on the basis of their combined fauna, into ten biofacies. Each biofacies may be recognised at all of the quarries (with the exception of the blocky claystone, which is peculiar to Calvert), and is usually found in the same stratigraphical position relative to the other biofacies. Section 2.3.4 describes the biostratigraphy of each of the quarries, and compares them in very general terms. More detailed comparison, together with consideration of the overall environmental conditions, is given in Chapter 3. These descriptions, in section 2.3, are the basic stratigraphic framework for further study of the Lower Oxford Clay fauna, and complement Callomon's (op. cit.) consideration of the subzonal stratigraphy of the Middle Callovian.

Section 2.4 deals with the palaeoautecology of the bivalves, with the species being first placed in feeding groups, and then being considered individually. The autecology of each species has been detemined by a combination of functional morphology and consideration of the life habits of Recent related species. Detailed assemblage studies have not been considered here, but are left until Chapter 3. The main aim of the palaeoautecology section is to consider the life habits of the individual bivalve species. This section is brought to a close by a description of the rest of the invertebrate fauna of the Lower Oxford Clay, where the faunal elements other than bivalves are discussed. However, the species here are not treated taxonomically; the aim of the section is to show the diverse invertebrate fauna present in the Lower Oxford Clay. Most groups are in need of thorough taxonomic revision.

Chapter 2 is concluded by a section on conventions and techniques (2.5), in which terminology, type material, variation within species, preparation methods and taxonomic considerations are discussed, and by 2 section (2.6) on preservation in the Lower Oxford Clay. Four main preservation types are seen in the Lower Oxford Clay; preservation as primary shell material (calcite or aragonite), primary shell with pyrite overgrowths (usually only on shells with nacreous aragonite), primary shell with calcite overgrowths, and complete replacement of the shell material by pyrite. These preservation types are considered in section 2.6, and it is proposed to study Lower Oxford Clay shell preservation in more detail. The effects of crushing of shells

6.

are also considered, showing that articulated shells, containing a void between the valves, are more likely to suffer crushing than are single disarticulated valves.

The "introductory" part of Chapter 2 ends with acknowledgements and a comprehensive bibliography, before going on to the taxonomic part of the work, in which 48 species of bivaive, 7 new and 3 undescribed but as yet indeterminate, are described. One new genus, Byssentolium gen. nov. is described, with Byssentolium hudsoni as its type species; this genus is separated from Entolium s.s. on the basis of the presence of a byssal notch throughout life. In all the specimens of the type species of Entolium, E. demissum, which have been examined, there is no evidence of a byssal notch in any development stages, including the earliest. One subgenus, Trautscholdia Cox \&o Arkell is elevated to full generic rank, and the generic placement of several well-known Upper Jurassic bivalve species has been changed.

There has been some overlap of species in this study with those considered by Arkell (1929-1937) in his monograph of Corallian lamellibranchs, and those considered by Morris \& Iycett (1851-1855) and Lycett (1863) in their monographs on the Mollusca of the Great Oolite. In the case of the Great Oolite monographs, the species were in need of redescription, which has been done here, whilst the work of Arkell has proved to be still valid in most cases. Thus, in the case of the species described by Arkell, unless new information has come to light, the descriptions and remariss given herein supplement, rather than supercede, those of Arkell.

Chapter 3 is a consideration of the palaeoecology of the Lower Oxford Clay of central fingland, and in particular, is concemed with the status of the Lower Oxford Clay as a bituminous shale. As it is written in the style required by the joumal 'Palaeontology', the lay-out is completely different to that of Chapter 2. The introduction and section on the stratigraphy in many ways repeat what has been said in Chapter 2, to which frequent reference is made; the same is broadly true of the section on the nature of the fauna and preservation. After these introductory sections, there is a general consideration of the methods of ecological analysis used here, in which the uses of five parameters are discussed, together with a general section on palaeoecological assumptions. The ten biofacies characterised in Chapter 2 are then considered at some length, by the use of the five parameters noted above, triangular plots, rarefaction curves, trophic nuclei, trophic group composition and diversity index.

Having described the biofacies divisions, and their relationship to each other at a.11 the major exposures, a synthesis of the environment of deposition of the Lower Oxford Clay in central Fhgland is presented, showing the presence of two cycles of deposition over the whole of the area studied. Central England, between Peterborough and Buckinghamshire is shown to be an area of gradual subsidence throughout Middle Callovian times, with similar environmental conditions being present over most of the area, although the thinning of the M. Callovian sequence northwards, and the presence of marginal
deposits of this age in Yorkshire (Wright, 1968), indicate that the shoreline lay to the north.

Comparison of the Lower Oxford Clay bituminous shales with other Jurassic and Cretaceous dark or bituminous shale facies reveals that the Lower Oxford Clays is, in many ways, unique, in that there is frequently a fauna dominated by infaunal deposit-feeding protobrenchs and epifaunal suspension-feeding bivalves such as Bositra, Oxytoma and Meleagrinella. The palaeoautecology of these three genera has been considered in Chapter 2, showing them to elmost certainly have been attached to floating organic material at some distance above the seafloor (the "pendent" mode of life). Such an association of species is not recorded from any of the other British Jurassic or Cretaceous Clay Formations, with the exception of the Upper Lias (Melville, 1956), and so environmental conditions during this time must have been rather unusual. The work of Hallam (1967a) on the depth significance of bituminous shales is of relevance here, and his hypothesis that bituminous shales are deposited early in the history of a major marine transgression, seems valid in this case. Other Clay Pormations are compared, and shown, in most cases, to be characteristic of rather betteraerated water than was present during the deposition of the Lower Oxford Clay.

As a final consideration, the relative importance of evolutionary changes in the development of deposit-feeder dominated bivalve communities has been discussed, and it becomes apparent that the role of the slowly-evolving deposit-feeding

9.

Nuculacea has remained constant since the Lower Palaeozoic. The main change appears to be the replacement of epifaunal suspension-feeding brachiopods by bivalves, the development of mantle fusion in the bivalves rendering them much more competitive, leading to the replacement by them of brachiopods as the main epifaunal elements of Mesozoic assemblages. The final chapter summarises the major conclusions of the work.

REFERENCES

AFUSELL, W.J. 1929-1937
CALLOMON, J.H. 1968
HALLARI, A. 1967a
LYCEIT, J. 1863
MELVILLE, R.V. 1956
MORRIS, J. \& J. LYCETT 1851-1855
WRIGHT, J.K. 1968

See p. 68
See p. 72
See p. 451
See p. 83
See p. 451
See p. 85
See p. 95

vi.

A MONOGRAPH OF THE LOWER OXFORD CLAY BIVALVIA OF SOUTHERN ENGLAND

CONTENTS

Page No.
INTRODUCTION 10
General remarks 10
Previous work 13
Stratigraphy 15
Palaeoecology 35
Conventions and techniques 53
Preservation 61
Acknowledgements 65
BIBLIOGRAPHY 67
SYSTKMATIC DESCRIPTIONS 97Class BivalviaSubclass PalaeotaxodontaOrder NuculoidaSuperfamily Nuculacea
Family Nuculidae
Nuculoma Cossmann 97
Nuculoma pollux (Raspail ex d'Orbigny) 99
Nuculoma kathryni sp. nov. 102
Palaeonucula Quenstedt 106
Palaeonucula triangularis
sp. nov. 108
Palaeonucula cottaldi(de Loriol) 114

vii.

Page No.
Superfamily Nuculanacea
Family Malletiidae
Mesosaccella Chavan 121
Mesosaccella Morrisi (Deshayes) 123
Subclass Cryptodonta
Order Solemyoida
Superfamily Solemyacea
Fanily Solemyidae
Solemya Lamarck 131
Solerya woodwardiana Leckenby 133
Subclass Pteriomorphia
Order Arcoida
Superfamily Arcacea
Family Parallelodontidae
Subfanily Grammatodontinae
Grammatodon Meek \& Hayden 137
$\frac{\text { Gramnatodon (Grammatodon) minima }}{\text { (Leckenby) }} 138$
$\frac{\text { Grammatodon (Grammatodon) concinna }}{\text { (Phillips) }} 146$
Grammatodon (Grammatodon) montaneyensis (de Loriol) 151
$\frac{\text { Grammatodon (Grammatodon) clathrata }}{\text { (Leckenby) }} 155$
Order Mytiloida
Superfamily Mytilacea
Family Mytilidae
Subfamily Modiolinae

```
                viii.
```162
```

Superfamily Pinnacea

```Family Pinnidae
```

Pinna Linnaeus ..... 168
Pinna (Pinna) mitis Phillips ..... 169
Pinna (Pinna) Ianceolata J. Sowerby ..... 173
Order Pterioida
Suborder Pteriina

```Superfanily PteriaceaFaroily Pteriidae
```

Pteroperna Morris \& Lycett ..... 176
Pteroperna? pygmaea (Tunker) ..... 177
Family Inoceramidae
Parainoceramus Voronetz ..... 184
Parainoceramus subtilis (Lahusen) ..... 185
Superfanily Pectinacea
Family Posidoniidae
Bositra de Gregorio ..... 189
Bositra buchii (Roemer) ..... 190
Family Oxytomidae
Oxytoma Meek ..... 195
$\frac{\text { Oxytoma (Oxytoma) inequivalvis }}{(\mathrm{J} . \text { Sowerby })}$ ..... 197
Meleagrinella Whitfield ..... 208
Meleagrinella braamburiensis

```
 Page No.
```

                                    Page No.
            Modiolus Lamarck 161
            Modiolus Lamarck 161
            Modiolus (Modiolus) bipartitus
            Modiolus (Modiolus) bipartitus
                        J. Sowerby
    ```
 J. Sowerby
```


## ix.

Page No.
Family fintoliidae
Entolium Meek 220
Entolium (Entolium) corneolum (Young \& Bird) 222

Byssentolium gen. nov. 229
Byssentolium hudsoni sp. nov. 231
Family Pectinidae
Camptonectes Agassiz 234
Camptonectes (Camptonectes)
auritus (Schlotheim) 235
Cnlauys Röding 242
Chlamys (Chlamys) bedfordi sp.nov. 244
$\frac{\text { Chlamys (Radulopecten) scarburg- }}{\text { ensis (Young \& Bird) }} 249$
$\frac{\text { Chlanys (Radulopecten) fibrosa }}{\text { (J. Sowerby) }} 255$
$\xrightarrow{\text { Chlamys (Radulopecten) drewtonensis }}$ Neale 261
Family Plicatulidae
Plicatula Lamarck 264
Plicatula (Plicatula) of. fistulosa Morris \& Lycett 265

Suborder Ostreina
Superfamily Ostreacea
Family Gryphaeidae
Subfamily Gryphaeinae
Gryphaea Lamarck 268
Bilobissa Stenzel 270

```
 x.
Page No.
\(\frac{\text { Gryphaea (Bilobissa) dilobotes }}{\text { nom. nov. }} 272\)
```

Gryphaea (Bilobissa) lituola Lamarck ..... 285
Subfamily Exogyrinae
Nanogyra Beurlen ..... 292
Nanogyra nana (J. Sowerby) ..... 293
Sublcass Palaeoheterodonta
Order Trigonioida
Superfamily Trigoniacea
Tamily Trigoniidae
Iyyophorella Bayle ..... 296
Myophorella (Myophorella)irregularis ..... 298
Myophorella (Myophorella) caytonensis nom. nov. ..... 306
Subclass Heterodonta
Order Veneroida
Superfanily Iucinacea
Family Lucinidae
Subfamily Myrteinae
Discomiltha Chavan ..... 312
Discomiltha lirata (Phillips) ..... 314
Superfamily Crassatellacea
Family Astartidae
Subfamily Astartinae
Neocrassina Fischer ..... 319
Neocrassina (Neocrassina) ungulata ..... (Lycett) 321

Page No.
Neocrassina (Neocrassina)
celvertensis sp. nov. 326
Trautscholdia Cox \& Arkell ..... 329
Trautscholdia carinata (Phillips) ..... 331
Trautscholdia phillis (Cottreau ex d'Orbigny) 333
Superfanily Cardiacea
Pamily Cardiidae
Subfamily Protocardiinae
Protocardia von Beyrich ..... 340
Protocardia (Protocardia) striatulum
(J. de C. Sowerby) 341
Protocardia (Protocardia) sp . ..... 347
Superfamily Arcticacea
Family Arcticidae
Rollierella Cossmann ..... 348
Rollierella minima (J. Sowerby) ..... 350
Anisocardia Munier - Chalmas ..... 356
Anisocardia (Anisocardia) tenera ..... 358
Isocyprina Roeder ..... 363
Isocyprina (Isocyprina) roederi Arkell 36 ..... 365
Order Myoida
Suborder Myina
Superfamily Myacea
Family Corbulidae
Subfamiy Corbulinae
Corbulomima Vokes ..... 369
Page No.
Corbulomima macneillii (Morris) ..... 370
Corbulomima obscura (J.de C.Sowerby) 374
Subclass Anomalodesmata
Order Pholadomyoida
Superfamily Pholadomyacea
Fomily Pleuronyidae
Pleuromya ..... 377
Pleuromya alduini (Brongniart) ..... 378
Pleuromya unifortis ( J . Sowerby) ..... 383
Superfamily Pandoracee
Pamily Thraciidae
Thracia J. de C. Sowerby ..... 388
Thracia (Thracia) denressa (J. de C. Sowerby) ..... 390
Incertae sedis ..... 394
Anomalodesmatan sp. A. ..... 395
Anomalodesmatan sp . B. ..... 397

## 10.

## CHAPTER 2

THE BIVALVE FAUNA OF THE LOUER OXFORD CLAY OF SOURHERII EMGLAFD

### 2.1 Introduction and general remarks

This work constitutes Part I of a three-part study of the bivalve fauna of the British Oxford Clay (Jurassic, Niddle Callovian - Middle Oxfordian), and is concerned only with the bivalves found in the Lower Oxford Clay (Middle Callovian) of southern England. Part II will deal with the Middle and Upper Oxford Clay (Upper Callovian - Lower Oxfordian) of England, and Part III with the Oxford Clay (Lower Callovian - ILiddle Oxfordian) of Scotland. The bivalve faunas of much of the British Middle and Upper Jurassic are well-known, due to the monographs of Morris \& Iycett (1853-1855), Lycett (1863) and Lycett (1872-1879) on Great Oolite bivalves, Blake (1905-1907) on the Cornbrash, and Arkell (1929-1937) on the Corallian. However, certain parts of the Jurassic, including the Oxford Clay, have very poorly documented bivalve faunas, in spite of the abundance of molluscan remains, and in the course of studies on the palaeoecology of the Lower Oxford Clay of southern England, the need for such a monograph became apparent. Accordingly, large collections have been made from the British Oxford Clay, and it is the specimens in these, together with the collections housed in the major museums, which make up the material described here.

The outcrop of the Lower Oxford Clay (Fig. 2.1) Iuns from the Dorset coast at Weymouth, across Bngland to the Yorkshire
coast at Scarborough, and is considered in more detail in section 2.3.1. Fossils are abundant throughout, molluscs dominating the fauna, which is discussed in general terms in section 2.2 on "previous work" and at the end of the "palaeoecology" section (Section 2.4.4). Preservation is variable, but usually very good, the original shell material often being preserved unchanged; the abundance of wellpreserved specimens allow variation studies to be made.

There is some overlap in species with both the Great Oolite beneath, and the Corallian above, and as monographs exist for both these formations, the coverage of the species in question is anended accordingly. In the few cases where Bathonian species persist into the Oxford Clay, it has been necessary to redescribe and discuss the species in question, as there has been no adequate modern study of British Bathonian bivalves, with the exception of Cox \& Arkell's synoptic supplement of 1948-1950. This causes overlap with the work of Morris \& Lycett (1853-1855), Lycett (1863) and Lycett (1872-1879), but in view of the many advances in the last century, the author is of the opinion that this is fully justified. However, the work of Arkeli (1929-1937) on the Corallian bivalve fauna is much more thorough in its treatment of morphology and synonymy, and the problems of overlap are much greater. In order to bring the species in question (about 10) in line with the others considered here, and in view of Arkell's sometimos scant descriptions, the diagnoses and description are given in detail, while the discussions are structured such that they are
complementary to those of Arkell, except on points of contention, which are considered more fully. As regards the synonymies of species described by Arkell, only the first record and selected important British records ane given here, together with records made since Arkell's work was published. For a comprehensive synonymy list, the lists herein should be used in conjunction with those of Arkell.

The synonymies of species not discussed by Arkell are given in full, the British figured and cited specimens having been examined where available. In the case of foreign species and records, the type specimens or photographs of them, have been examined where possible, although several appear to have been lost. The system advocated by Richter (1948) and discussed by Matthews (1973), of attaching signs to the synonymy list to indicate the degree of confidence with which a record is referred to any species, is used in this work, Mathews (op. cit.) defines the signs used as follows:

1881 Year in italics. this work has a mention of the species, but no description or illustration.

1881 Year in roman: the work has a description and/or illustration, and contributes to our knowledge of the species.
[cop. Anton 1856]: the illustration merely copies that of Anton, 1856.
*1881 * in front of years with the publication of this work, the species can be regarded as valid under the terms of Article 11 of the ICZN.
. 1881 . in front of year: we accept responsibility for attaching this reference to the species in question. no sign in front of year: we have no right expressly to accept responsibility for attaching this reference to the species under discussion; but at the same time, we have no cause to doubt such an allocation.
? in front of year: the allocation of this reference must be subject to some doubt because of the way in which it was presented. $v$ in front of year: we have checked the deposited specimen that relates to the work cited, and on this evidence have chosen the additional sign used. Thus:
$\mathrm{V} * 1881$ We have seen the type of the species. V. 1881 because of the evidence of the deposited specimens we are able to take responsibility for this assignment. v 1881 we do not accept responsibility. v?1881 the condition of the original specimens is such that no clear decision is possible.

### 2.2 Previous work

Early workers on the Jurassic tended to be concerned with general fauna and stratigraphy, rather than on any specific
formation such as the Oxford Clay, although many fossils from the Oxford Clay were figured by Phillips (1829), J. Sowerby (1812-1823) and J. de C. Sowerby (1823-1829). Later workers studied specific faunal elements found in the Oxford Clay, such as the ammonites (Pratt, 1841; Leckenby, 1859; Backman, 19091930; Brinkmann, 1929a; Arke1I, 1939a; Callonon, 1955; Tintant, 1963), belemites (Owen, 1844; Pearce, 1847; Mantell, 1848, 1850; Phillips, 1865-1870), crustacea (McCoy, 1849; Carter, 1886; Woods, 1924-1931) or mollusca (Morris, 1850; Leckenby, 1859; Hudleston, 1884-1885; Arkell, 1939a; Walker, 1972). In spite of this, no comprehensive study has been made of any part of the invertebrate fauna of the Oxford Clay, with the exception of Tintant's (1963) work on the Kosmoceratidae (Mollusca: Ammonoidea) from the Lower and Middle Callovian of Western Europe. The status of the Oxford Clay within the Jurassic, and its local stratisraphy, were discussed at length by Voodward (1895), Brinkmann (1925), Arkell (1933a) and Callomon (1955, 1968); these last works, together with those of Bucknan (1913), Morley Davies (1916) and Neaverson (1925), attempting to fit the Oxford Clay into the standard system of Jurassic zones. The zonal sequence for the Callovian used here (Table 2.1), is that ratified by the International Geological Congress at their Luxembourg colloquium of 1962 (Callomon, 1964, p. 288), a modification of that originally introduced by Callomon (1955, p. 256). This sequence has been exhaustively discussed by Callomon (1955, 1964, 1968), and does not need further
consideration here. Earlier zonal systems, often based on local occurrences of various ammonites, were suggested by Bucknan (1913), Morley Davies (1916) and Neaverson (1925), and are compared with modern usage in Table 2.2.

### 2.3 Stratis aphy

The Lower Oxford Clay occupies the whole of the Middle Callovian, and parts of the Upper and Lower Callovian stages, and is delimited at its base by the junction with the sandy Kellaways Rock. This junction usually occurs in southern Bngland at the base of the Enodatum Subzone, although the change from silt to cley is gradual, and sometimes is not completed until the top of the Nedea Subzone. The top of the Lower Oxford Clay is not so clearly marked palaeontologically or lithologically, and is placed about one-third of the way up the Athleta Zone. The junction with the Middle Oxford Clay divides the biduminows shales with abundant crushed aragonitic fossils of the Iswer Oxford Clay, from the blue or grey-green, plastic, appanantly vastreifified, clays with fewer crushed fossils, of the Middle Oxford Clay; this change also heralds the appearance of pyritic amonites.

This subdiviaion of the Oxford Clay only applies to the areas of England south of the Humber, as north of the Narket Weighton region, most of the Middle Callovian is cut out by an unconformity at the base of the Grossouvrei Subzone (Wright, 1968, p. 366), and what remains of the Middle Callovian is developed in a wuch core marginal facies of sandstones and
16.
limestones (Fig. 2.2). In Yorkshire, the Grossouvrei Subzone is up to 20 m thick (Wright, op. cit., p. 368), and is represented by massive or flaggy fine and medium-grained sandstones, the Langdale Beds, in which bivalves are not frequent. The overlying Hackness Rock (up to 2.40m thick) belongs to the Athleta and Lamberti Zones, and consists of poorly sorted sandy limestones and calcareous sandstones, becoming a chamosite oolite towards the top. W/right (op. cit., p. 385) showed that there was another period of erosion at the base of the Hackness Rock, the oldest parts of the Fackness Rock appearing to be of Upper Callovian age, with rocks of Lower Athleta Zone age being absent. Thus the only rocks of Middle Callovian age proved in Yorkshire are the Langdale Beds. Early workers (Damon, 1860, 1884; Juतd, 1875; Roberts, 1889, 1892) on the Oxford Clay divided the formation into beds on the basis of preservation and fossil types, but it was not until the classic work of Brinkmann (1929), on the Lower and Middle Oxford Glay of Peterborough, that detailed bed by bed sections were recorded. Woodward (1895) and Arkell (1933a) summarized the early records of Oxford Clay exposures, but these are now of little more than historical interest. Detailed descriptions of parts of the Middle and Upper Oxford Clay of Buckinghamshire and Wiltshire were given by Arkell (1939a, 1941), and of the Lower Oxford Clay of the Midlands by Callonon (1955, 1968).

### 2.3.1 Geographical extent and thickness of the Oxford Clay

The Oxford Clay crops out in a wide belt extending from the Dorset coast at Weymouth across southern and eastern Fngland to the Humber (Pig. 2.1). There it disappears in the area of Market Weighton, to reappear from beneath the Chalk cover further north, before swinging around the Vale of Pickering to meet the Yorkshire coast in the region of Scarborough. The clay facies is only to be found in its full development south of Naricet Weighton, as in the northern part of the Yorkshire outcrop, the cley facies does not begin until the Mariae Zone, and much of the Ifidale Callovian is absent. Maximurn thickness (up to 200II) appears to be in the Wiltshire region (Cailomon, 1968, p. 264), with the sequence thinning northwards and southwards, $130-170 \mathrm{~m}$ of Oxford Clay being seen at Weymouth (Arke11, 1947, p. 25), 150m in Berkshire (Falcon \& Kent, $1960, \mathrm{p} .14$ ) and 85 m in Huntingdonshire (Callomon, op. cit., p. 264). The northward thiming is due in part to decrease in the amount of sediment deposited, and in part to subsequent erosion, there being particularly well-marked erosion surfaces at the base of the Ampthill Clay (Upper Oxfordian) and of the Lower Greensand (Aptian).

The Lower Oxford Clay has a fairly constant thickness of between $16-25 \mathrm{~m}$ in the Iiidlands (Callomon, 1968, p. 265), and 20 m in Dorset (Smith in Torrens, 1969, p. A42), but data for the regions north of Huntingdonshire is not available, although it seems likely that there is overall thinning of all divisions of the Oxford Clay towards Market Weighton.

### 2.3.2 Exposures in the Lower Oxford Clay

At the present tine, exposures are very limited, the only natural section being in the cliffs of the East Fleet near Charlestown, Weymouth (1Tat. Grid SY6478-6479), where bituminous shales of the Jsson, Coronatum and Athleta Zones are intemittently exposed in the low degraded cliffs and on the foreshore. The nature of the exposures is such that detailed stratigraphic data are unobtainable, although it is possible to find the zonal ammonites. Better sections are available in the disused brickpit owned by the Dorset Brick \& Tile Co. at Crook Hill, Chickerell (SY 644797), where Smith (in Torrens, 1969, p. A41) has described a detailed succession of beds belonging to the Jason - U. Athleta Zones. Iower zones (Koenigi - Medea Subzones) vsed to be visible in the adjacent Putton Lane brickyard (SY 649798), but the pit is now flooded and used for the culture of wator plants. The section at Putton Lane was described by $\Lambda x k e l 1$ ( $1947,1.27$ ), and many specimens from this locality are preserved in the major museums.

The only othse pexmanent exposures in the Lower Oxford Clay of England are in the series of brickpits, mostly owned by the London Brick Company, between Calvert (Bucks.) and Peterborough (Funts.). These pits, which are concentrated in four areas (Calvert, Iletchley, Bedford and Peterborough), have been described in detail by Callomon (1968), and it is his sections which have provided the basis for detailed collecting at the pits, although some slight modifications to his stratigraphy have been made. The revised sections are shown in Fig. 2.3.

The detailed descriptions may be found in Appendix 1.

### 2.3.3 Facies analysis of the Lower Oxford Clay

Study has ravealed the presence of several different lithologies within the apparently homogeneous mass of shale, each having several biofacies developed within it. Lach biofacies will now be briefly discussed, with reference to its lithological and faunal characteristics.

### 2.3.3.1 Silts and silty clays

These represent the transition beds between the silts and sandstones of the underlying Kellaways Rock and the overlying Oxford Clay, and are greenish silts, and clays with a variable silt content, both showing strong bioturbation. Fossils often occur concentrated into plasters, usually consisting dominantly of ammonites or oysters, although many other bivalves, especially Pinna, Trautscholdia, Protocardia, Meleagrinella and Corbula occur throughout, and belemnites are often abundant.

### 2.3.3.2 Shell Beds

Four different types of shell bed, each characterised by a different faunal association, have been recognised, a shell bed here being defined as an accumulation of shells, regardless of the lithology in which it occurs. Occasionally the shells within a shell bed have been replaced by pyrite, or have pyrite overgrowths.
a) Nuculacean shell beds

These have a restricted-diversity bivalve fauna, dominated by the Nuculaceans Palaeonucula and Iiesosaccella, accompanied by anmonites, belemites, and reptile bones. Other bivalves and gastropods occur, but are not usually of numerical importance.
b) Gryphaea shell beds

This type of shell bed is intimately associated with the Kellaways Beds - Oxford Clay transition beds, occurring most frequently in the Inodatum and Medea Subzones, and consists of an accumulation of soli¿ shell debris, mainly gryphaeate oysters, belemnites, ammonites and bone fragments. It appears to represent a high energy environnent, in which all but very robust skeletal naterial was destroyed.
c) Granmatodon sheil beds

These have a diverse fauna of epifaunal and infaunal suspension-feeding bivalves, the dominant genera being

Gramatodon, Oxytoma, Isocyprina, Discomiltha, Protocardia, Trautscholdia, Neocrassina, Myophorella, Ostrea and arcids. Althrugh these shell beds axe commonest in the upper parts of the Coronatum Zone, the 'basal' shell bed at Calvert, and beds 11 and 13 at Norman Cross also belong here.
d) Meleagrinella shell beds

Most commoniy, these occur as packed masses of Meleagrinella (up to 0.20 m thick), with diagenetic overgrowths of secondary calcite on their shells. The secondarily thickened shells occur in a gritty clay matrix, the gritty feel being imparted by
calcite growth within the clay, and there is a sparse subsidiary fauna of deposit-feeding bivalves (Palaeonucula and Mesosaccella) and gastropods (Procerithium).

Within the deposit-feeder bituminous shale biofacies there are occasional plasters, less than 1 cm thick, consisting solely of abundant Meleagrinella shells (often articulated), which are thought to represent phases of mass mortality.

### 2.3.3.3 Bituminous shales

This is the dominant lithology within the Lower Oxford Clay, attaining its maximum development at Bletchley and Calvert, where the whole of the Jason and Obductum Subzones, and much of the Grossouvrei Subzone, are developed in this lithology. The rocks are olive-green in colour when fresh, blocky, usually fissile and well-lamineted, and contain a variable fauna of infaunal and epifaunal bivalves. Three biofacies may be recognised within this facies:
a) Deposit-feeder bituminous shales

In this biofacies there is a rich fauna of benthonic deposit-feeders (Palaeonucula, Mesosaccella and Procerithiun), usually associated with a prolific fauna of epifaunal suspensionfeeders (Oxytoma, Meleasrinella, Bositra), which are thought to have lived attached to floating weed or wood ("pendent" - see 'Palaeoecology', section 2.4.2, for explanation of this tern); a few shallow infaunal suspension-feeders (Pinna, Corbula, Solemya) occur sporadically. A notable feature of this biofacies is the preservation of fragile faunal elements such as
articulated ophiuroids, crustacea (Mecocheirus) and brachiopods (Lingula), together with bivalve spat, fish teeth and fish scales. This suggests that conditions on the seafloor were extremely quiet, and that predation must have been negligible at times.
b) Granmatodon-rich bituminous shales

In this biofacies, the lithology and faunal content is similar to that of the deposit-feeder biturinous shales, but infaunal suspension-feeding bivalves Grammatodon, Isocyprina, Thracia) have appeared, and are an important component of the fauna ( $15-20 \%$ ). Deposit-feeders are still common, but are not the only abundant benthonic bivalves. Pendent epifaunal suspension-feeders are also much leas abundant than in the deposit-feeder biturrinous shales.

## c) Foram-rich bituminous shales

The shaly clays of this biofacies are often greener and better laminated than the other types of bituninous shales, and contain abundant foraminifera (Brotzenia). The benthonic macrofauna is sparse, not abundant, and limited to forms such as Mesosaccella and Corbula, together with some pendent epifaunal suspension feeders (Bositra, Inoceramus). Anmonites and scaphopods (Prodentalium) are locally abundent, and usually well-preserved.

### 2.3.3.4 Blocky claystone

This unusual lithology is restricted to bed 3B (Jason Subzone) at Calvert, where it is about 1.00 m thick, and may be

## 23.

easily distinguished from the bituminous shales by virtue uf its much lighter colour (pale grey), lack of clearly-developed lamination, and different faunal content. Black streaks of organic material are abundant throughout, and there is also much disseminated fine organic matter. The fauna is dominated by 'pendent' epifaunal suspension-feeders (Bositra and Meleagrinella comprise 55\% of the total fauna), with deposit-feeders such as Palaeonucula, Mesosaccella and Procerithium making up only $17 \%$ of the fauna. The most characteristic faunal element is Lingula, which comprises $11 \%$ of the fauna, and is locally the only benthonic organistu present. A unique feature of this facies is the occurrence of uncrushed body chanbers of a macroconch kosmoceratid, named Kosmoceras (Gulielmites) effulgens by Buckman (1925, pI. 597, fig. A, B), but which is probably referable to K. (Zugokosmoceras) jason (Reinecke). The occurrence of these body chambers may be due either to exceptional preservation being possible in the claystone facies, perhaps caused by greater resistance to flattening, or it may be that the deposits represented at Calvert by bed $3 B$ have been cut out at the other pits by a non-sequence. A thind possibility is that the blocky claystone was only a local deposit, limited to the area near Calvert.

### 2.3.3.5 Calcareous clays

At the four pits examined, the upper part of the Grossouvrei Subzone consists of an alternation of Meleagrinella shell beds and Calcareous clays, in beds about 0.20 m thick. The Calcareous
clays are light grey or grey-green, rather plastic, apparently unlaminated, and have a soluble fraction as high as 40\%, the equivalent figure for the bituninous shales being $10-20 \%$ (Fig. 2.4, and Appendix 2). Faunally, deposit-feeding Nuculacea (Mesosaccella, Palaeonucula) persist, but are joined by a new fauna of infaunal and benthonic epifaunal suspensionfeeders such as Discomiltha, Isocyprina, Myophorella, Byssentolium and Ostrea, together with the annelid worm Genicularia. Particularly characteristic of this biofacies is the abundance of small specimens of Byssentolium hudsoni, this species comprising 10-35\% of the fauna.

### 2.3.3.6 Concretionary limestones

Two major types of limestone are developed within the Iower Oxford Clay, a band of septarian concretions, and a band of lenticular earthy limestone, both having formed after deposition of the clay/shale sequence.
a) Septarian concretions

These take the form of isolated wheel-shaped concretions up to 2.00 m in diameter and 0.20 m thick, which occur at a different level in each pit. In the southermost pit (Calvert), the septaria occur just below the top of the Obductum Subzone, but as the concretions are traced northwards, they become gradually lower, appearing low in the Obductum Subzone at Bletchley and Stewartby, and at the base of the Jason Subzone at Norman Cross. At all localities the nodules are clearly septarian, consisting of a fine microsparite veined with

## 25.

calcite, with some local variation in accessory minerals; at Calvert, vugs containing calcite, baryte and celestite, often associated with collapse structures with an earthy infill, occur within the septaria, whilst at Bietchley, some of the septaria have the calcite veins lined with a thin film of pyrite, and a pyritic outer skin to the concretion.

There is no obvious correlation between the position of the septaria and the Iithology in which they ocour, although at all the pits other than Bletchley the concretions are sandwiched between, or in close proximity to, distinct shell beds. At Noman Cross and Calvert the septaria occur within a thin band of Foran-rich bituminous shale, whilst at Stewertby they are found within a particularly thick Melearrinella shell bed, and at Bletchley within a thick development of deposit-feeder bituminous shales.

Fossils within the nodules are wsually unomshed, and often show the effects of expansion, being rather strained and cracked, which together with the carbon and oxygen isotope values (Hudson, Ms.), suggest early formation of the concretion itself, but late formation of the calcite veins.
b) Earthy Ijnestones

The main earthy Iimestone, known as the Acutistriatum Band (after the ammonite Komoceras (Spinikosmocoras) acutistriatum Buckman), occurs at the base of the Athleta Zone at Stewartby, Bletchley and Calvert, but is absent at Norman Cross, although the non-limestone facies of the Acutistriatun band is present. The limestone occurs as lenticular masses which pass laterally
26.
into bituminous shales , weathered surfaces of the limestone clearly showing the presence of the sanae primary sedimentary structures as can be seen in the interdigitated shales, indicating the replacement origin of the limestone. The limestone itself is of microsparite grade is more earthy and contains more relict clay material than the septaria. Locally, there is sone late-stage calcite veining within the Acutistriatum Limestone, especially at Calvert, where subregular concentric veins, joined by cross-veins, are present in most of the lenticles . The limestone has developed within several lithologies, and often transgresses into the beds above and below the bituminous shales of the Acutistriatum Band proper, with the result that at all the three pits where the limestone is developed, the shell beds beneath the Acutistriatum Band are also sometimes developed in the limestone facies. Within the limestone, preservation is similar to that within the surrounding shales, with crushing of the ammonites, and some solution of aragonitic bivalve shells. Carbon and oxygen isotopes (Hudson Mis.) support the view that this limestone formed durine diagenesjis, and after some burial. Lenticles of a similar earthy limestone, but without the calcite veining, occur within the pyritic shell bed (bed 14) at the top of the Obductum Subzone at Bletchley. These lenticles are much smaller than those of the Acutistriatum Band, rarely exceeding a diameter of 0.50 m and a thickness of 0.15 m , and show similar preservation to thet found in the Acutistriatum Band Iimestone.

### 2.3.4 Descriptions of the four major pits examined

The detailed successions at these pits are shown in Fig. 2.3 and recorded in Appendix 1, so only general points will be considered here. In all the pits except Calvert, the lowest beds seen are the transition beds from the Kellaways Beds to the Oxford Clay, these being followed by a clear section up into the Athleta Zone. At Calvert, however, the pit is worked down to a tough pyritic shell bed within the Jason Subzone, and the transition beds below are not seen.

The Acutistriatum Band forms a well-defined marker horizon, instantly recugnisable on palaeontological and litholorical grounds, and as this represents the highest marker band seen at all four pits, detailed ecological and stratigraphical studies have been restricted to the beds below and including the Acutistriatum Band. Collections made from the deposit feeder bituminous shales of the Lower Athleta Zone reveal that faunally these shales belong with the Lower Oxford Clay, as noted by Callomon ( $1968, \mathrm{p} .274$ ), but they have not been studied in detail.

In the placenent of the subzonal and zonal boundaries, the work of Callomon (1968) has been largely used, especially within the thick shale sequences at Stewartby, Bletchley and Calvert. Examination of Fig. 2.3 shows the variation in thickness of the various subzones between Calvert and Norman Cross, and reveals that there is a general thickening of the subzones southwards from Peterborough. This is most marked in the Fnodatum and Medea Subzones, which are very condensed at Norman Cross and
thicken rapidly southwards, reaching their greatest thicknesses in the Bletchley area. The Obductum and Grossouvrei Subzones have a much more constant thickness over the whole of the East Midlands region (with the exception of the Obductum Subzone at Stewartby), indicating that conditions had become stable over a more widespread area by that time. This view is supported by the succession seen in the Grossouvrei Subzone at all four pits, where Gramnatodon-rich bituminous shales are followed by Foram-rich bituminous shales and then an alternation of Calcareous Clays and Meleagrinella Shell Beds, the subzone being capped by a shell-bed. No such close correlation of the sequences is possible within the Calloviense or Jason Zones, partly because of the variation in thickness, and partly because the Jason Zone is usually represented by a thick horizon of bituninous shale.

### 2.3.4.1 Norman Cross, Peterborough (TL 172916)

The sequence here is more condensed than at any of the other pits, but the presence of a large drainage suap in the floor of the pit allows examination of the transition beds and the uppermost part of the Kellaways Rock, in addition to the Lower Oxford Clay.

The lowest 1.00 m exposed belongs to the Calloviense Subzone, and consists of nassive yellow-green microcrosslaminated silts and siltstones, becoming more clayey towards the top, with occasional partings of green shaly clay; this is all placed within the Kellaways Rock. The fauna is dominated by
belemites (Cylindroteuthis) and oysters (Catinula - Gryphaea grade), with local lenses rich in Trantscholdia, Meleagrinella and Grammatodon concinna.

The Enodatum and Melea Subzones are very thin (0.63m combined thickness), and consist of an alternation of Gryphaea shell beds and shaly clays, dominated by gryphaeate oysters and belemnites. The shaly clays are grean and fissile, although not as well-laminated as the biturninous shales to be found higher in the sequence, and have a fauna dominated by Bositre, Meleagrinella and G. concimna. These transition beds are taken as belonging to the Oxford Clay, the junction with the Kellaways Rock being placed at the top of the Calloviense Subzone, with the disappearance of the cross-laminated silts. At the base of the Jason Subzone are two shell beds, separated by a thin hand of papery bituminous shale containing occasional septarian concretions; the concretions often contain uncrushed ammites preserved in aragonite infilled by sparry calcite. The shell bed above the paper shale has a rich fauna of G. concinna, Trantscholdia and Protocardia, with an ammonite plaster at its base. The rest of the Jason Subzone, and the whole of the Obductum Subzone, with the exception of a thin Nuculacean shell bed at their junction, consists of a thick sequence of deposit-feeder bituminous shales, with occasional Meleagrinella plasters, especially towards the top. The base of the Grossouvrei Subzone coincides with the appearance of Granmatodon minima, a situation which prevails throughout the East Iidlands, and which also appears to be true
af the sucnessinn.in Iorset, ar mllecting at Grook Hill, Chickerell, has shown. The 'normal' Grossouvrei Subzone succession, as detailed above in section 2.3.4, and in Fig. 2.3, is developed at Normal Cross, except that the place of the Calcareous Clay fecies is sometines repleced by deposit-feeder bituminous shale. The topmost bed of the Grossouvrei Subzone here, as at all the pits in the East Midlands (except Stewartby), is the Comptoni Bed, named fron the ammonite 'Binatisphinctes' comptoni (Pratt), which consists of a Nuculacean shell bed containing abundant specimens of amnonites transitional between perisphinctuaee and Peltoceras. This is overlain by the depositfeeder bituminous shales of the Acutistriatum Band, heralding the base of the Athleta Zone; there is no concretionaxy limestone development at this level at Normal Cross.

### 2.3.4.2 Stewartby (Bedford) (SPO17412)

In the Bedford region, the silts of the Kellaways Rock continue to the top of the Rodatum Subzone, where they are overlain by the pyritic 'basal shell bed' (bed 5). Close examination reveals that the 'basal shell bed' consists of two shell beds separated by 2 cm of green clay containing Bositra and many conminuted shell fragments, the shell beds belonging to different biofacies. The upper shell bed consists of an ammonite plaster at the top, resting on a Gramatodon shell bed with a diverse bivalve fauna also containing occasional reptile bones and fish teeth, whilst the lower shell bed is a Gryphaea shell bed with Gryphaea, belemnites and ammonites.

The Medea, Jason and lower half of the Obductur Subzones are developed in the deposit-feeder bituminous shale facies, the fauna being doninated by Palaeonucula, Miesosaccella, Procerithium and 'pendent' epifaunal suspension-feeders. The upper half of the Obductum Subzone differs from its development elsewhere in that the bituninous shale facies is replaced by a thick Neleagrinella shell bed, and 0.75 m of Foram-rich bituninous shale, with a pyritic shell bed immediately beneath the Meleagrinella shell bed. Isolated septarian nodules occur towards the top of the Meleagrinella shell bed, but are notably less clearly septarian than at other pits, and contain fewer uncrushed fossils.

The Obductum - Grossouvrei Subzonal boundary at this pit was not defined by Callomon (1968, p. 281), and the authors collections have also proved inconclusive as to where K. (Zugokosmoceras) grossouvrei replaces K. (Z.) obductum, although other species may also be of use in defining the boundary. The sppearance of K . (Spinikosmoceras) pollux and species of Hecticoceras are features usually associated with the start of the Grossouvrei Subzone, but as shown at the other three pits, the appearance of G. ninima is possibly as useful. At Stewartby, the appearance of G.minima, K. (Sp.) pollux and Hecticoceras is almost synchronous, G. minima appearing in bed 9, while both K. (Sp.) pollux and Hecticoceras appear in bed 10D, only 0.10 m higher, and so for this reason, the base of the Grossouvrei Subzone is placed at the base of bed 9, a welldeveloped pyritic shell bed. The Grossouvrei Subzone shows the
same development as at the other East Midlands pits, except at the top, where the Comptoni Band (bed 19) Iies above the Acutistriatun Bend Iimestone (bed 17), the two being separated by 0.35 m of deposit-feeder biturinous shales. The concretionary limestone is developed within the same Iithology as the overlying bed, but there is a total lack of the diagnostic index, K. (Sp.) acutistriaturn Buckman, which is only found above the Comptoni Band, indicating that the term Acutistriatum Band should not be applied to the concretionary limestone at Stewartby; the Athleta Zone does not start until some 0.40 m above the concretionary linestone.

### 2.3.4.3 Bletchley (SP 862325)

As between Norman Cross and Stewartby, the transition beds between the Kellaways Beds and the Oxford Clay continue to become prosressively younger southwards, and reach up almost to the top of the Medea Subzone. Again, these beds consist of an alternation of silts and silty clays, shell beds and bituninous shales, all in rapid alternation; the shell beds are all Gryphaea shell beds with a gryphaeate oyster-belemnite-amonite association, whilst the bituninous shales are of deposit-feeder type.

The Jason Subzone has a thin pyritic shell bed (Gryphaea shell bed) at its base, overlain by a very thin Meleagrinella shell bed, passing up into a thick sequence of deposit-feeder bituminous shales which persist for the remainder of the Jason Subzone and virtually the whole of the Obductum Subzone, except for a iNuculacean shell bed at its top. The septarian concretions
occur near the middle of the Obductum Subzone, but seem to be spread randomly within a metre band of deposit-feeder bituminous shale, rather than occurring at one well-defined horizon. Sone of the concretions have a pyritic coating, and fine pyrite linings to the calcite veins. Occasional earthy limestone concretions occur within the shell bed at the top of the Obductur Subzone, a feature unique to this pit.

The normal Grossouvrei Subzone succession is developed here, although it is slightly thinner than at Norman Cross and Stewartby. There is also a slieht discrepaicy in that the alternation of Meleagrinelle shell beds and calcareous clays gives way to an alternation of deposit-feeder bituninous shales and calcareous clays imnediately beneath the Comptoni Band. The Acutistriatum Band has earthy linestone concretions developed within it, the concretions being notable for the wellpreserved armonites to be found in them.

### 2.3.4.4 Calvert (SP 695232)

The lowest beds seen here belong to the Jason Subzone, although Callomon (1968, p. 287) records 0.28m of Medea Subzone beneath this. From the data given by him, it appears that the transition beds must Iie within the Enodatum Subzone, as the Medea Subzone is said to consist of an alternation of bituninous shales and shell beds, with no silty horizons.

The base of the Jason Subzone consists of a well-developed pyritic shell bed (Grammatodon shell bed) with a rich and diverse fauna of bivalves and amonites, all of which are
pyritised and very well-preserved, This is overlain by a thin band of deposit-feeder bituminous shale, and then 1.05 m of blocky claystone, the only place from which this lithology is known. The claystone forms a clear marker horizon near the base of the pit, its light grey colour being very distinctive. Faunally it is also rather distinctive, the dominant fauna being keleagrinella and Bositra, with accessory Lingula, Solemya and Palaconucula, and a good deal of wood. Above the blocky claystone there is a reversion to deposit-feeder bituninous shale, although in the lowest metre there is a fauna dominated by N1nejula, the aporrhaid gastropod Dicroloma, 'pendent' epifaunal suspension-feeders (Bositra, Oxytoma) and protobranchs, suggesting a continuation of the fauna of the blocky claystone benerth. Above this rather unusual biofacies, the normal deposit-feeder bituminous shale returns, and persists for the remainder of the Jason Subzone and virtually all of the Obducturs Subzone, very much as at Stewartby. The topmost part of the Obductum Subzone consists of two thin pyritic Nuculacean shell beds, separated by a thin band of Foram-rich bituminous shales containing many scaphopods (Prodentalium calvertensis Palmer Ms.), and the septarian concretions, these concretions are unique in the Lower Oxford Clay in that they contain vugs filled with calcite, celestite and baxyte.

The basal bed of the Grossouvrei Subzone shows the development of lenses of fibrous calcite up to 4 mm thick, within the deposit feeder bituminous shale biofacies, a feature not usually seen outside the Meleagrinella shell beds, where
the fibrous calcite never attains such a thickness. This is followed by the normal Grossouvrei Subzone succession, of about the same thicloness as that seen at Bletchley, with the Comptoni Band shell bed being overlain by the lenticular limestone of the Acutistriatum Band. Here, the Acutistristum Iimestone facies often extends down into the Comptoni Band beneath, so that many lenticles of limestone contain both the Comptoni and Acutistriatum faunas. A characteristic feature of the Acutistriatum Band is the frequent occurrence of large ( 30 mm diameter) amonites transitional between perisphinctids and Peltoceras, a situation also seen at Bletchley.

### 2.4 Palaeoecology

A palaeoecological reconstruction of the environments of deposition within the Lower Oxford Clay will be puolished elsewhere (Duff, in prep.: see elso Chapter 3), but nevertheless, it is useful to consider the molies of life of the bivalves at this point, as it adds substantially to our understanding of the bivalves themselves. There are of course many difficulties involved in attempting to deduce the modes of life of fossil species, especially in groups which have left no living relatives, and even where there is documentation of the habits of Recent species, there are often problens of interpretation. However, by utilising the observation made by Stanley (1968, p. 217), namely that all living representatives of any given superfarily fall within one, or rarely two, feeding groups, coupled with an analysis of the functional
morphology of each genus, it is possible to decide with a high level of confidence what feeding habits and ecological niche any genus occupied. Stanley (1970) has further considered the field of bivalve functional morphology in great detail, and it is his observations which have been used as a basis for many of the interpretations of life habits suggested here. Previous workers, such as Yonge (1939, 1946, 1949, 1953) and Allen (1958) had concentrated on the functional adaptations of particular taxonomic groupings, but Stanley went much further, and produced a general study of the relationships between the form of the bivalve shell and the mode of life of the animal which lived within it. One of the nost important observations made by Stanley was that some structural adaptations occur in more than one taxonomic group, although the animals which possess them occupy similar niches, indicating that there has been parallel evolution of morphological foatures. Observations of this type are the basis from which interpretations of functional morphology are made.

There have been many suggestions as to ways in which bivalves may be united into "meaningful" ecological groups, the most popular groupings being based on mode of life, substrate type or feeding groups. Hudson \& Palframan (1969) used mode of life and feeding groups in their study on the palaeoecology of the Middle-Upper Oxford Clay of Woodhan (Bucks.), while Rhoads et al. (1972) have emphasized the importance of feeding groups in palaeoecological analysis, and suggested that it is sedimentary and hydrographic conditions which most closely control the
distribution of both deposit and suspension feeding bivalves. The latter authors have recognised several trophic groupings in an Upper Cretaceous bivalve assemblage from South Dakota on this basis. The distribution of suspension-and deposit-feeding bivalves is controlled in part by the sediment grain size and texture, by the degree of bottom turbidity and by the availability of food resources, suggesting that feeding groups are the most valid means of splitting bivalves into ecological groups, as data gleaned from substrate type is also used. Mode of life observations may be used to further subdivide the feeding groups.

On this basis, three major feeding groups may be recognised in most Recent and fossil assemblages, including the Iower Oxford Clay. The suspension-feeders are divided by mode of life into epifaunal and infaunal types, while all depositfeeding bivalves are infaunal although epifaunal deposit-feeding gastropods are known. In the sections below, each major feeding group is considered in general terns, and individual genera are then discussed. Table 2.3 gives a sumary of the life habits, siphon lengths and feeding groups of the bivalve genera occurring in the I. Oxford Clay, and relates these to the various superfamilies present.

### 2.4.1 Epifaunal suspension-feeders

Bivalves of this type lived on or above the sedinent surface, and most were attached by a byssus at some stage in their life history, although there is some doubt as to whether
all genera were attached to objects on the sea floor. The animals fed by filtering suspended food particles out of the water which was drawn over the ctenidia by ciliary currents. The recognition of epifaunal suspension-feeders in the Oxford Clay is relatively easy, as most species possess a byssal notch, and most belong to the Pectinacea.

Modiolus A nestling mytilid (Stanley, 1972, p. 171), byssally attached to the substrate, the byssus energing through the anterior ventral region, although there appears to be no byssal gape in the Oxford Clay forms.

Parainoceramus An equivalve pteriacean lacking an obvious byssal spparatus, and possessing hinge teeth in addition to the multiple ligament pits. Kauffman (1967, p. 104) believed that Inoceramus (Mytiloides) Iabiatus (Schlotheim), an Upper Cretaceous species comparable to P. subtilis, lay weakly attached or free on the substrate, and was most abundant in middle shelf clays. A similar mode of life seems probable for P. subtilis, although there is a tendency for the species to occur in clusters, and Sykes (1973, pers. comm.) has noted inoceramid plasters associated with wood bands in the Oxford Clay of Scotland, Stanley (1972, p. 189) on the other hand, compared I. (Mytiloides) labiatus with mytilids, and suggested that it was semi-infaunal and byssally attached. In view of the clustering of the specimens
found in the Lower Oxford Clay, this interpretation seems unlikely.

Eteroperna A subequivalve pteriacean with a long pointed posterior auricle, but no apparent byssal notch. Recent species of Pteria, a genus rather similar in form to Pteroperna, oiten live byssally attached to alcyonarian sea whips (Stanley, 1972, p. 189), the posterior auricle serving as a means of keeping the inhalent and exhalent currents separate. A similar mode of Iife is here assuned for Pteroperna, although preservation does not allow the recognition of a byssal notch; it is also unlikely that the attachment substrate was an alcyonarian.

Pinna Yonge (1953) has shown thet Recent pinnids live vertically embedded in the sedinent, pointed anterior end downwards, with much of the shell protruding above the sediment surface. A sinilar life style is invoked for the Jurassic species, some specimens of P. nitis from the Oxford Clay of Woodham being found upright in presumed life position (Hudson \& Palfranan, 1969)。

Bositra The palaeoecology of B. buchii is considered in depth by Jefferies \& Minton (1965), and in the taxonomic part of this work (p. I93), so the argunents concerning its mode of life will not be repeated here. B. buchii is thought to have been nektoplanktonic, but may possibly have been attached to floating weed,
or other organic material, although it is possible that the organic material was rooted to the sea floor. The tem pendent is here used for this mode of Iife.

Oxytoma An inequivalve pectinacean with a deep byssal notch, but no ctenolium, although some specimens have weak nodes on the external surface of the right anterior auricle. There is a marked tendency for specimens of 0. inaequivalvis to occur in clusters. In view of the very soft nature of the Oxford Clay substrate, It is unlike?y that a pectinacean could have survived lying airectly on the sea floor, so an attached mode of Iife is postulated. As with Bositra, it is believed that Oxytoma was bysselly attached to floating or rootod organic material, although there is no direct evidence for the existence of either. Meleagrinella Another subequivalve pectinacean with a deep byssal notch but no ctenolium, often found in clusters. The same arguments apply as for Oxytoma, and it is believed to have lived byssally attached to organic neterial, not directly on the sea floor.

Entolium A thin-shelled subequivalve pectinid, sometimes byssally attached in its juvenile stages, but rapidly losing the byssus and byssal notch. The large unbonal angle (about $100^{\circ}$ ) and the thinness of the shell, together with the lack of a byssus in the adult state, suggests a free-living form, capable of swimming.

## 41.

Byssentolium 4 small pectinacean with a byssal notch but no ctenolium, only becoming ahundant in the calcareous clays at the top of the Grossouvrei Subzone. The swall size, and persistence of the byssal notch indicate a functional byssus. The most likely mode of life for this genus is byssally attached to nearbotton or floating organic material, the soft nature of the sediment surface precluding attachment directly to the sea floor.

Canptonectes Strongly byssate in all life stages, with a welldeveloped ctenolium; attached closely to the substrate through life. For further details see Speden (1967, p. 17).

Chlanys Both Chlamys s.s. and C. (Radulopecten) are inequivslve pectinids with clearly developed byssal notches, the M. Callovian forms (with the exception of C. (R.) scarburgensis) being of small size. The latter species may have been free-swimming in the adult state, but it is probable that all the other species were byssally attached throughout life, to objects on the sea floor.

Plicatula A cemented inequivalve pectinacean, attached to the substrate by the right valve throughout life (Yonge, 1973).

Gryphaea Pree-living oyster, cemented to the substrate in its juvenile stages, but lying free at the sediment surface for most of its life, convex left valve
downwards, lid-like right valve horizontal. Sessile after spat settlement.

Nanogyra A cemented oyster, fixed to the substrate by the left valve throughout life, although in a few cases, the attachment may be lost, the shell then lying free in the sediment.

### 2.4.2 Infaunal suspension-feeders

Stanley (1968, p. 217) recognised the existence of three groups of infaunal suspension-feeding bivalves, all of which may be found in the Oxford Clay. Infaunal non-siphonate suspension-feeders are mostly active burrowers (Trigonacea, Astartacea, some Carditacea and Arcacea), which move about at or near the sediment/water interface, and draw in water currents through the sediment. Infaunal siphonate suspension-feeders have shown the greatest evolutionary radiation, this life habit being known in 15 superfamilies; they burrow to varying depths, draw in water currents through their inhalent siphons, and may be active or more or less sedentary. Stanley (op. cit., p. 220) pointed out that the great adaptive radiation of infaunal siphon feeders in the Mesozoic was due to the development of mantle fusion, allowing the formation of separate inhalent and exhalent siphons. The third group - infaunal mucus-tube feeders are represented solely by the Lucinacea (and possibly Thracia as well), and draw water into the mantle cavity through a long anterior mucus-lined tube constructed by the foot (Allen, 1958).

### 2.4.2.1 Infaunal non-siphonate suspension feeders

Although Stanley (1970) Iists several criteria for distinguishing infaunal from epifaunal arcids, and states that free-burrowing forms do not appear until tho Cretaceous (op. cit., p. 22), the functional morphology of the M. Callovian species dees not support this view. All three Lower Oxford Clay species lack byssal sinuses, possess entire margins, and have the maximum region of inflation placed near the dorsal margin, which together with the broadly truncate flattened posterior region, are features indicative of burrowers. In contrast, the L/H ratio of all three species is preater tian 1.35, which according to Stanley sugesests that they were epifaunal. The weight of evidence seems to point more strongly towards a shallow burrowint infaunal mode of life, the posterior region placed at or near the sediment surface, although there is a slight possibility that the II. Callovian species were semi-infaunal nestlers, with a very weak byssal apparatus.

Myophorella The only living representative of the Trigonacea, Neotrigonia margaritacea Lamarck, is a very active shallow burrower, with a large byssal apparatus functional only in juveniles (Gould, 1969, p. 1129). Myophorella possesses many features, such as a thick shell, strong ornamentation and divaricate ribbing (at least in the irregularly-ribbed forms), which
suggest a similar shallowly-buried rapid-burrowing mode of life. Stanley (1970, p. 75) notes that many short, robust shallow burrowers (such as cardiids) have a Plattenod posterior margin which lies at or just beneath the sodiment surface, and it seems probable that the posterior area of trigoniids fulfils a similor function.

Neocrassina A small suborbicular astartid of low inflation, the shell form suggesting that it was a rapid burrower which used a large angle of rotation in burrowing. Most Recent astartids live just beneath the sediment surface, posterior end uppermost, and move slowly through the sediment; this mode of life is assumed for $\mathbb{N}$. ungulata and $\mathbb{N}$. calvertensis. Trautscholdia Another small astartia, of high inflation, with a suborbicular outline and strone concentric ribs. The high inflation, strong ribbing patterm and thick shell are all features which slow down the burrowing rate, and the denticulate ventral margin suggests that it is a shallow burrower. A similar mode of life to Neocrassina is postulated here, the animal moving slowly through the sediment, just beneath the surface.

### 2.4.2.2 Infaunal siphonate suspension-feeders

Solemya Stanley (1970, p. 120) shows that Recent Solemya maintain a deep open U-tube burrow, resting at its deepest point, and drawing in a water current
anteriorly; the suspended food material is then sorted on the gills. Stanley also notes the existence of a deep vertical extension to the burrow, and suggests that it may supply nutrients such as bacteria. Is in Recent species, S. Woodwardiana has a very thin shell, which gives a low whole-animal density, a foature which allows Recent species to make rapid swimming movements; in view of the similarity between Recent and fossil species of Solenya, it is probable that S. woodwardiana was also capable of swlmuning movements when necessary, although for most of the timo, it presumably functioned as a deep-burrowing siphonate suspension-feeder.

## Protocardia A small cardiacean with a radially ribbed

 flattened posterior area, and high inflation. Stanley (1968, p. 216) classes all members of the Cardiacea as infaunal siphon feeders, although pallial sinuses are rarely seen in marine forms. It is most Iikely that Frotocardia lived just bencath the surface, its posterior region lying more or less at the sediment/water interface, the radial ribbing perhaps helping to camouflage the shell when covered with a thin veneer of sediment.Rollierella A suborbicular, globose arcticacean, with very fine cancellate ornament, and tightly enrolled umbones. The globose nature of the shell, together
with the cancellate ormament, are indicative of a slow burrower, as also is the ventral marginal
denticulations. As with Recent Arcticacea, it is believed that Rollierella lived just below the sediment surface, its very short siphons only just protruding from the shell, there being no pallial sinus present.

Anisocardia Closely related to Rollierella, but differs by being less inflated and more rostrate. The mode of life must have been similar to that of Rollierella, but the lesser inflation sugsests a more rapid burrower, and the more clearly-developed rostrum suggests a slightly deeper burrower, although, as in Rollierclla, there is no pallial sinus.

Isocyprina A medium sized, suborbicular, compressed arcticacean with a smooth, polished external shell surface. The compressed nature of the shell, coupled with the smooth surface, suggests that it was a rapid burrower, and the heterodont dentition is suggestive of a shallow burrower. Some specimens have a slight pallial sinus, but it is unlikely that Isocyprina lived very far beneath the sediment surface.

Corbulomima Yonge (1946) has shown that some Recent corbulids are shallow-burrowing siphonate suspension-feeders, some of which plant byssal threads and become sedentary; the siphons lie or move less flush with

## 47.

the sediment surface. C. macneillii and C. obscura have rather truncate posterior margins, suggesting that they lived more shallowly than the more rostrate C. mosae, in which siphon development was presumably Ereater.

Pleuromya Although very similar in form to Recent species of Mya, P. alduini and P. uniformis lack comissure gapes anteriorly and posteriorly, suggesting that the valves were eithar permanently open, or else the siphons could be completely rotracted into the shell; the large size of the pallial sinus makes it possible that the siphons could not be fully retracted. All other features, such as the desmodont dentition, thin largely uncrnamented shell and large pallial sinus, are features typical of a deep-burrowing siphon feeder. If, as seems likely, the siphons were too large to be fully retracted, Pleuromya must have been virtually sessile after the attainment of the adult state. The more elongate and cylindrical form of $P$. uniformis suggests that it may have been a deeper and more effective burrower than

## P. alduini.

## 48.

### 2.4.2.3 Infaunal mucus-tube feeders

Discomiltha A typical lucinoid with an elongate anterior adductor tuscle scar and a strong posterior sulcus. The lucinoid mode of life has been described by Allen (1958) and seems to heve continued more or less unchanged since the Palaeozoic, the animal living deep below the sediment surface with an anterior inhalent and a posterior exhalent mucuslined tube reaching to the surface; strong water currents are produced by the cilic of the elongate anterior adactor muscle scar and the gills. Once settled, lucinoids seem to be more or less sedentary.

Thracia A deep burrowing suspension-feeder showing all the typical features seen in Pleuromya, although the more triangulor shape of Thracia suegests that it was less deeply buried. Yonge (1937, p. 338) showed that Thracia is notable for the production of mucus-lined tubes through which the inhalent and exhalent currents flow? this apparently enables the siphons to be free of the danger of predation, and allows the animal to burrow slightly deeper, as the siphons need not be permanently extended so far.

## 49.

### 2.4.3 Deposit-feeders

Bivalves which belong to this feeding group collect and digest organic material that has settled to the sea floor, and is either incorporated into the sediment, or forms a thin veneer on the sediment surface. This deposited material is collected in two ways: the Nuculoida are infaunal, and feed on material within the sedinent, collecting it by means of labial palps, while the Tellinacea (which are also infaunal) feed on the thin veneer of organic matter at the sediment surface, using slender siphons which suck the organic material into the mantle cavity. In the Oxford Clay, only the Nuculoida are represented. Palaeonucula A short triangular shelled form, very similar in outline to Recent species of Nucula, the modes of Iife of which have been described by Yonge (1939). All nuculids live just beneath the sediment surface, moving sluggishly about in search of food, which is collected by the ventrally-emergent palp proboscides. No siphons are present, and the weak inhalent current is drawn directly through the sediment.

Mesosaccella An elongate cylindrical malletiid with a clearly developed pallial sinus and a wholly external ligament. Mesosaccella closely resembles Recent species of Yoldia, a nuculanid whose life habits were noted by Yonge (1939); it is likely that it occupied a similar niche, buried anterior downwards with the siphons reaching to the surface, collecting organic material from within the sediment by means of the palp proboscices.

### 2.4.4 Other fauna

In addition to the rich bivalve fauna of the Lower Oxford Clay, there is also an abundant invertebrate and vertebrate fauna, most of which was described in the last century. The authors of the major works on the invertebrate fauna are listed in the section on 'previous work' (Section 2.2).

The most common associates of the bivalves are amonites, mainly belonging to the Kosmoceratidae (see Bucknan, 1909-1930; Brinkann, 1929a; Callomon, 1955 and Tintant, 1963), although Hocticoceratidae (Pratt, 1841; Zeiss, 1956), Pachyceratidae (Morris, 1850) and sone Perisphinctidae transitional to Peltoceras (Pratt, 1841; Mangold, 1970) become locally abundant in the Coronatum Zone. Callomon (1968) gives a useful sumary of the anmonite faunas of the Lower Oxford Olay. Together with the annonites, there is also an abundant fauna of belermites, Cylindroteuthis puzosiana (d'Orbigny) being comnon throughout, Belemnopsis sulcata (Miller) restricted to the transition beds at the base, and Belemnoteuthis antiquus Pearce being common in the bituminous shales of the Jason Zone.

Gastropods occur throughout, but are not a diverse element of the fauna, only five species having been recognised. The most frequently occurring species are Dicroloma bispinosa (Phillips), D. trifida (Phillips) and "Procerithium" damonis (Iycett), although Spinigera spinosa d'Orbigny and an unidentified Pleurotomariid have also been found. By analogy with the Recent species Aporrhais serresiana (see Yonge, 1937), it seems probable that the Jurassic species of Dicroloma were infaunal,
had mucus-lined tubes for the inhalent and exhalent currents, and collected deposited vegetal material with their mobile proboscis. Both D. bispinosa and D. trifida are found most comnonly in the deposit-feeder bituminous shales, conditions which agree well with those described for A. serresiana by Yonge (op. cit.). Procerithium is thought to feed on a probable detrital algal filn at the sediment surface (1. Barker, 1973, pers. conm.), and so may be described as an epifaunal depositfeeder. Procerithium occurs most frequently in the depositfeeder and Granmatodon-rich bituminous shales, but is found in all other lithologies too, and does not seem as closely controlled by the substrate as Dicroloma. The gastropod fauna of the British Callovian is very poorly known, and in urgent need of revision, the last work of any consequence being that of Hudleston (1884-1885). Scaphopods (Prodentalium calvertensis Palmer Ms.) are abundant in bed 6 at Calvert, and occur sporadically elsewhere.

In the deposit-feeder bituminous shales of the Jason Zone, and more rarely in the Coronatum Zone, a malacostracan crustacean, Mecocheirus pearcei McCoy, is locally very abundant, and although crushed flat, is extremely well-preserved. The ecology and relationships of this species have been considered by Forrster (1971). The calcified shells of polychaet worms, identified as Genicularia vertebralis (J. de C. Sowerby), are common constituents of the Coronatum Zone fauna, being particularly characteristic of the Calcareous Clays. In the Jason Zone, and parts of the Coronatum Zone, there are occasional specimens of
poorly-calcified serpulid worms, as yet unidentified. Inarticulate brachiopods - Lingula craneae Davidson - are a fairly common member of the Jason Zone fauna at all the pits, and are especially abundant in the deposit-feeder bituminous shales and the blocky claystone. Crushed Rhynchonellids have been found in the silts and silty clays at Norman Cross and Bletchley. The final constituent of the invertebrate fauna is an ophiuroid, still to be described, which occurs rarely in the deposit-feeder bituminous shales. It is possible that it is identifiable as 'Ophioderna' weymouthensis Lycett (in Damon), from the Oxford Clay of Weymouth.

The Oxford Clay is fanous for the profusion of wellpreserved vertebrate rempins to be found in it, especially in its lower parts. The abundant reptile fauna includes ichthyosaurs, described by Andrews (1910) and Appleby (1956, 1958, 1961, 1967), plesiosaurs (Andrews, 1910; Persson, 1963), pliosaurs (Andrews, 1913; Tarlo, 1960) and crocodiles (Andrews, 1913; Leeds, 1908; Lydekker, 1899; A.S. Woodward, 1885). More recont general reviews of the Oxford Clay reptile fauna have been published by Leeds (1956) and Delair (1958-1960, 1966). In the well-laminated bituminous shales of the Lower Oxford Clay, it is not unusual to find complete articulated skeletons of representatives of all the reptile groups listed above, although disarticulated bones are more common in the shell beds. The most commonly found disarticulated bones are centra, ribs, teeth and paddle bones. In addition to the varied reptile fauna, there is also a diverse fauna of fish, represented by
disarticulated bones (mainly scales, teeth and centra) and occasional complete skeletons. There are nany papers concerned with the Oxford Clay fish fauna, the most important being those by Egerton (1844), A.S. Moodward (1888, 1889-1901, 1890, 1892, 1896, 1897) and Jain \& Robinson (1963).
2.5 Conventions and Techniques

### 2.5.1 Terminology

The morphological tems used in this work are broadly those Iisted and defined by Cox (1969, p. N102-M109) and Stenzel (1971, p. N1028-11034) in the Treatise on Invertebrate Paleontology, although some terms, such as escutcheon and corcelet, have been anended in the taxonomic discussions. However, there is sone ambiguity over the parameters used for measurements, so these are discussed below, and shown in Fig. 2.5. Measurements were made using a pair of stainless steel vernier calipers, giving neasurenents correct to 0.1 ma , although in crushed specimens, and in some specimens which proved impossible to isolate from the matrix, the accuracy is to the nearest mm. Angular measurenents were made with a simple contact gonioneter constructed from a clear plastic protractor. Length (L) was measured parallel to the long axis of the ligament in most heterodonts (Fig. 2.5a) and the Trigonacea (Fig. 2.5c). This axis is nearly parallel to the line joining the centres of the adductor muscle scars, thus enabling measurements to be made on specimens with a poorly defined ligament. In superfamilies possessing a long straight hinge
line (Fig. 2.5b), length was measured parallel to the hinge line, at the widest point of the shell.

Height (H) in all superfamilies was measured as the maximun dimension perpendicular to the length, passing through the umbones and the ventral margin.

Likewise, in all superfanilies, inflation (I) was measured perpendicular to length and height, and is the distance between the plane of the cormissure and the point on the shell exterior furthest away from this plane perpendicularly. All the measurements given in the tables are for the combined inflation of both valves, except in the Pteriacea and Pectinacea, where the inequivalve nature of the shells means that the inflation of opposing valves of the same specinen is different. The inflation of each valve is lister separately in these superfamilies.

Arterior length (AL) is defined as the distance from the points of the umbones to the anterior margin of the shell, measured parallel to length (Tig. 2.5a-5c).

In the Arcacea, Pteriacea, Pectinacea and Nytilacea (Fig. 2.5b) it is possible to measure the length of the straight hinge line (Ih), which can be further subdivided into the portions anterior (ALh) and posterior (PLh) to the umbones. In the Nuculoida, hinge line lengths are measured directly along their long axes, regardless of the axis of shell length.

In the four superfamilies mentioned above (Fig. 2.5b), it is also possible to measure the degree of obliquity of the shell in two ways: the oblique length (OL) is measured from the umbones to the posteroventral angle, while the angle $\theta$ is the
angle between the hinge line and the oblique length. In some Arcacea, the posterodorsal angle is also measured.

In the Trigonacea (Fig. 2.5c), the presence of the posterion area introduces more terms which may be used to define shell form. The escutcheon length (IE) is measured from the urnbones to the point where the escutcheon carina meets the margin, while the length of the area (IA) is measured from the umbones to the posteroventral angle. Both these measurements are taken as straight lines, and do not follow the contours of the shell. The escutcheon width (EN) is measured across both valves, perpendicular to the plane of the comnisure. The number of tubercle rows is represented by the letters TR. In the Pinnacea (Fig. 2.5d), length is measured from the umbones, which are placed anteriorly, to the point where the median carina meets the posterior margin; height is measured perpendicular to this, near the posterior extremity. The length of the dorsal margin (IDM) is measured in a straight line from the unbones to the posterodorsal angle. In many specinens, the posterior is incomplete, making precise measurenent impossible.

Where the terms length and height are applied to features such as muscle scars, the features are measured parallel to the major shell dimensions. In the tables length is recorded in man, and the other neasurements are recorded as percentages of it, in order to facilitate comparisons between species, and give a clear idea of the variation of each measured character. Measurements of the figured specimens are given in the taxonomic
descriptions, and details of all other measured specimens are given in Appendix 3. In the descriptions, the terms small, medium and large are defined by the following size ranges: small, up to 10 mmin long; modiun, 11-30 mm; large, over 31 mm . This classification is designed for the bivalves of the Lower Oxford Clay, which are generally smaller than other bivalve asseriblages. The criterion of adulthood in all species is the crowding of growth-lines towards the ventral margin.

### 2.5.2 Type Material

In the taxononic work, the following abbreviations are used to denote the repositories containing collections of type and other relevant material, the nore important collections being shown in brackets.

BM British Museum (Natural History), London.
(Sowerby colln=)
SIM Sedgwick Museun, Cambridge. (Leckenby colln.)
GSM Institute of Geological Sciences, London.
(Morris \& Lycett; Lycett; Arkell)
OUM University Museum, Oxford. (Phillips; Arkell)
MM The Yorkshire IMuseun, York. (Phillips; Reed)
CMB City Museum, Bristol. (Pratt; Chaning Pearce)
CML City Museun, Leicester.
BU University of Bristol.
LU University of Leicester. (Authors colln.)
RMH Roemer Museum, Hildesheitn, Germany. (Roemer colln.)
MHNP Laboratoire Paleontologique du ivusée National d'Histoire Naturèlle, Paris. (d'Orbigny colln.)

### 2.5.3 Variation

Study of the large collections made by the author has revealed a high degree of variability in Middle Callovian bivalves, in both form and omamentation. Variation is usually continuous, however, and there are no reasons for separating: distinct variants at any horizon, meaning that some way of presenting this variation data must be found. Simple statistics are used here, and are presented in Appendix 3, although basic parameters, such as $\mathbb{N}, \overline{\mathrm{x}}, \mathrm{Max}, \mathrm{Min}$ and $O \mathrm{R}$ are tabulated in the species descriptions. The terns used here were discussed at length by Invie (1956), so only a brief sumary of their value will be given here. For nore involved statistics, and a critical discussion of their importance, the work of Temple (1968) and Cooper (1973) should be consulted.

The tems used in this work are tabulated below:

| N | $=$ number of observations made. |
| :---: | :---: |
| $\bar{x}$ | $=$ arithmetic mean of the observations. |
| Max | $=$ maximun observed value of each group of |
|  | observations. |
| Min | $=$ minimum observed value of each group of |
|  | observations. |
| OR | $=$ observed range of the observations. |
| s | $=$ standard deviation: this gives a measure of |
|  | absolute variation of the sample. It is |
|  | expressed in the same units as the original |
|  | data, and may be compared directly with |
|  | the mean. |

58. 

|  | $s=\sqrt{\frac{\sum\left(d^{2}\right)}{N-1}}$ where $d=x-\bar{x}$ |
| :---: | :---: |
| $s^{2}$ | $=$ variance: the mean of the squares of |
|  | deviations from the arithmetic mean. |
| V | $=$ coefficient of variation $\frac{100 s}{\overline{\bar{x}}}$; it is |
|  | used to compare the variability of animals of different sizes. |
| ${ }^{\sigma} \frac{}{x}$ | $=$ standard error of the mean $\frac{\mathrm{S}}{\sqrt{\mathrm{N}}}$; |
|  | the population mean cannot be directly |
|  | measured, as it is impossible to observe the |
|  | entire local fossil population; thus |
|  | standard erron is used to judge the |
|  | reliability of the arithnetic mean as an |
|  | estimate of the population mean. |

In addition to the numerical data Iisted above, scatter diagrams and regression lines have been plotted for certain species where it is required that a contrast between different populations should become apparent. The slopes and positions of the regression lines were obtained by using a Hewlett-Packard Model 10 programable calculator, and plotted on arithmetic scales; the results are discussed at the relevant points in the text. However, in certain species, such as Palaeonucula triangularis and Trautscholdia phillis, variation is so great that it is not possible to give a complete picture of the variation pattern in this way, and the pictograph technique
has been used, supplemented by a larger number of plate figures.

### 2.5.4 Localities

The grid references for the localities of the authors collections from England are given below. Fig. 2.6 shows the geographical locations of the localities.

Chickerell brickyard, near Weymouth, Dorset SY644798
Fleet Shore, near Weymouth, Dorset SY638791
Calvert brickpit, Bucks. SP695232
Newton Longville brickpit, Bletchley, Bucks. SP862325
Marston Moretaine brickpit, Bedfordshire SP001402
Stewartby brickpit, Bedfordshire SPO17412
Norman Cross brickpit, Peterborough, Hunts. TL172916
Cayton Bay, near Scarborough, Yorks. TA075841
It is not possible to give details of the provenance of most museum specinens, as the details provided in the museun registers are frequently inadequate, and often the locality itself is in doubt.

### 2.5.5 Preparation

In view of the softness of the matrix containing most of the specimens, preparatory techniques were usually restricted to picking with a mounted needle. However, in some of the limestone bands and pyritised shell beds it was necessary to use a 'Burgess' vibro--engraver, or even a Desoutter VP2 compressed air-pen, to remove harder matrix. The friability of the shell of many species meant that it was essential to harden the shell material to prevent breakage, and for this purpose, a solution
of Vinamul 6525 dissolved in toluene proved the most useful, although it sometimes gave a slight gloss to the surface, making photography slightly more difficult.

Serial sections were made of one species of bivalve (Rollierella minima), in order to show details of the dentition. To produce these sections, the specimen was mounted in 'Cristablik' and the resulting block stuck onto a retal plate with Lakeside 70 adhesive. Serial sections were then taken at regular intervals by grinding down the block on a Speedlap rotary grinder, and making an acetate peel of the resulting surface.

Rubber casts were made of many specinens preserved as external moulds, using a qixture of ICI Silkoset 105 and carbon black. This meant that the resulting casts were the ideal colour for coating with amonivn chloride for photographic purposes. The fine-grained nature of the shales and clays is very conducive to the moking of good cests.

The photographs were taken by the author with a Leica canera and bellows, the specimens first being coated with a filn of amonium chloride to give evenness of tone and emphasize the surface ornament. Jtony specimens were first darkened with a thin solution of Barlows opaque before chloriding, to bring out the shell detail.

### 2.5.6 Taxonomic considerations

The classification of the bivalves used here is that utilised by Newell (1969, N205) in the Treatise on Invertebrate

Paleontology (part N, Mollusca 6, Bivalvia), a slight emendation of the system first introduced by Newell in 1965. In only one case has it been necessary to alter the placement of a genus, Mesosaccella Chavan having been transferred from the Muculanidae to the Malletiidae on the basis of the absence of an internal Iiganent. All other genera are placed as in the Treatise. Likewise, most of the generic descriptions and synonymies are based on data given in the Treatise, although it has proved expeditions to anend then on occasion. Where this has occurred, the fact is noted in the relevant generic discussion. Generic ranges are not given; for this data, the relevant entry in the Treatise should be consulted.

### 2.6 Preservation

Several different modes of preservation are present in the Lower Oxford Clay, and will be discussed in detail elsewhere (Duff, in proparation). However, preservation plays an important role in deterrining how much detail may be seen in any particular shell, and so is given sone consideration here.

Most of the bivalves found are preserved with their original shell mineralogy, which is dominantly aragonite, except for the mainly calcitic Pectinacea and Ostreacea. The original shell material may be preserved in a crushed or uncrushed state, often dependent upon the degree of inflation of the species, and whether it is an isolated valve or an articulated shell. In general, articulated shells are much more frequently crushed than are isolated valves, probably due to the fact that
they were buried without having the space between the valves completely filled with clay. It is difficult to extract aragonitic valves from the rock in an unbroken state, and it is usually only possible to examine one surface of any aragonitic bivalve specimen. However, examination of many specimens allows a complete picture of the morphology to be built up, especially when the species sometimes occurs as pyritised casts, as in the Nuculoida. The aragonite usually shows no signs of having been even partially dissolved, although it is never as strong as the aragonite of Recent shells, suggesting that there nust have been some slight chemical change; it is so well-preserved that it is possible to recognise the shell micro-structure.

Calcite shells appear to be more resilient than aragonitic ones, and are usually preserved uncmshed, either as isolated valves or articulated shells. It is often possible to extract calcitic shells from the rock, so both inner and outer surfaces of the same specimen may be examined. Again, preservation is so good that shell micro-structure is easily seen.

Many shells, both aragonitic and calcitic, have variably developed overgrowths of pyrite, particularly in the more bituminous horizons. The pyrite is usually rather patchily developed on shells found in the massive shaly clays, and in these beds, seems to be concentrated on aragonitic shells such as Thracia, Pinna and Palaeonucula, where it occurs as small patches on the surfaces of the shell. Hudson \& Palframan (1969, p. 404) describe somewhat similar situation in the

## 63.

Middle and Upper Oxford Clay of Woodhnm, Bucks., where pyrite is patchily developed on the surfaces of bivalves preserved as clay moulds, with na aragonite preserved. They attribute the pyrite formation to local sulphate reduction by bacteria scting on the organic matrix of the dissolving shell. It is possible that the patchy pyrite developed on aragonitic shells in the Lower Oxford Clay formed in a similar mermer, although the aragonite has not dismpperred. In the shell beds belonging to the transition beds between the Kellaways Rock and the Oxford Clay, Gryphaea dilobotes is frequently found thickly encrusted with pyrite, the pyrite having grown from the shell surfaces. This pyrite is much too abundent to heve formed by local bacterial reduction of sulphates, and 28 in the other shell beds, it is belicved that the pyrite formed by combination of $\mathrm{Fe}{ }^{++}$ from one source, and $S^{--}$from mother source, the shell bed acting 35 a sort of aquifer (Berner 1969, 1971).

The shell beds developed in the Jason and Coronatum Zones ofter contain shells and valves which have been completely replaced by pyrite, rather than merely having pyrite overgrowths. The same mode of preservation is sometimes seen in the transition beds as well, and affects Palseonucula, Mesosaccella, Myophorella, Discomilthn, Cucullaee, Grammatodon, Trautscholdia, Neocrassina and Isocyprina. Nost of the pyrite is a stable form which does not rapidly disintegrate, and it is from these pyrite-replaced velves that details of the dentition and shell interior may frequently be obtained. Because of its origin as a replacive material, no shell microstmucture is visible in
these pyritised moulds. The pyrite presunably originntes in the same way as that which encrusts oysters in the transition beds. At Norman Cross, Peterborough, crushed articulated shells of Palaeonucula are often preserved in pinkish calcite, indicating late replacement of the originally axagonitic shell by calcite. This is a very unusual preservation type, only found in beds 17-18 at Norman Cross, and must indicate a particulnrly chemicelly active phase of dingenesis.

A final preservation type is that where the original shell material, calcite or aragonite, has been wholly or partially covered with a layer of secondary calcite, which has the effect of obscuring surfoce detril. The celcite is not easily removed, and often will not psct fron the original shell material, rendering the making of detailed observations impossible. This type of preservation is dominant in the Melengrinella shell beds at the top of the Grossouvrei Subzone, but also occurs throughout the Lower Oxford Clay. It is seen most frequentIy on Pteriacea and Eectinacea, although Polaeonucula and Mesosaccella are also particularly susceptible.

It must be emphasized thet unlike the situation described from Woodhan by Fudson \& Palframen (op. cit.), these preservation types are not controlled by shell mineralogy, as several different preservation types are known in most species. This suggests that in the more bituminous Lower Oxford Clay, it was physico-chemical factors, wather than the original shell composition, which governed the type of preservation to occur. Because of the range of preservation types found in many species,
it is sometimes possible to get more detailed information than it would be if there was only a single mode of preservation. For example, it is easy to see details of the cardinal regions on pyritised shells, but in order to exmine the shell microstructure, specimens preserved as the original sheil material must be used. It is also possible to see colour banding in sone aragonitic specimens of Palaeonucula, although it is uncertain whether or not this represents original shell markings.

### 2.7 Acknowledgements

In the course of my studies, I have become indebted to many people for their advice and assistance, and would like to take this opportunity to thank those whon I an unable to mention personally. Their efforts have not been forgotten.

In particular, I would like to thark most sincerely my supervisor, Dr. J.D. Hudson of Leicester University, for suggesting the topic, and offering invaluable suggestions on many aspects of the work. Thanks are also due to Professor P.C. Sylvester-Bradley of the same geology department for allowing the use of facilities in that department and stimulating discussion on several taxonomic points, especially those concerning the oysters. I an also grateful to the many other members of the Leicester University Geology Department who have assisted me in matters of discussion or technique, especially Mr. G.L.C. MoTuxk, on photographic tachniques, Mr. R.N. Wilson
on X-ray diffraction techniques and Nres. J. Westermann who offered invaluable advice on the drafting of the diagrams.

Mr. Richard Sykes of the Department of Geology, Oxford University, and Mr. Mike Berker of the Department of Geology, Portsmouth Polytechnic, have greatly assisted Hy studies by contributing discussion on the palaeontology of the Scottish Oxford Clay, and on the mode of Iife of Jurassic gastropods respectively. Dr. J.H. Callomon of University College, London, is gratefully acknowledged for advice concerning Oxford Clay amonites and Callovian stratigraphy=

Heartfelt thanks are due to the London Brick Company for allowing me unrestricted access to their pits over the last four years. In particular, I must thank Mr. J.I. Horrell, London Brick Company Chief Geologist, for accompanying me in the field on many occasions, keeping me infomed as to when temporary sections appeared, and affording me the use of his research laboratories for storage space.

Many of iny colleagues in museuns have greatly assisted me by allowing me access to their collections, and naking some cf the specimens available for loan. In particular, I would like to thank Dr. N.J. Morris, Mr. C.P. Palmer and Mr. R.J. Cleevely of the British Museun (Natural History); Dr. C.I. Forbes of the Sedgwick Museun, Cambridge; Mr. J.M. Edronds and Mr. H.P. Powell of the Oxford University Museum; Miss B.M. Cox of the Institute of Geological Sciences, London; Dr. M.I.K. Curtis of the City Museum, Bristol; Dr. R.J.G. Sevage of Bristol University; Mr. M. Jones of the City Museun, Leicester;

Miss B.J. Pyrah of the Yorkshire Museun, York, and last, but by no means least, Dr. R.J. King and Dr. R.G. Clements of Leicester University. Dr. J. Sornay of the Laboratoire Paleontologique du Musee National d'fistoire Naturelle, Paris, has been of great assistance in allowing me to examine material from the d'Orbigny collection.

Finally, I should like to acknowledge the financial aid received fron the award of a NERC research studentship during the period 1970-1973.

## BIBLIOGRAPHY

AGASSIZ, L. 1842-1845. Études critiques sur les Mollusques fossiles. Monographie des Myes. 287 pp., 93 pls. Neuchâtel. ALIEEN, H.A. 1906. Catalogue of types and figured specimens of British Lamellibranchiata fron the Lower, Middle and Upper Oolites, preserved in the Museus of Practical Geology, London. Meri. geol. surv. Surn. Pros. (1905), 175-195.

ALLENI, J.A. 1958. On the basic forn and adaptations of habitat in the Iucinacea (Eulamellibranchia). Phil. Trans. R. Soc. Lond. Ser. B. 241, 421-484, p1. 18. ANDRENS, C.W. 1910-1913. A descriptive catalogue of the marine reptiles of the Oxford Clay. 1 (1910) xxiv +205 pp., 10 pls. $\underline{2}$ (1913) xxiv $+206 \mathrm{pp} ., 13 \mathrm{pls}$. London.

APPIEBY, R.M. 1956. The osteology and taxonoray of the fossil reptile Ophthalmozaurus. Proc. zool. Soc. Lond. 126, 403-447, pls. 1-3.

APPLEBY, R.M. 1958. A cetalogue of the Ophthalmosauridae in the collections of the Leicester and Peterborough Museums. 47 pp., 7 pls. Leicester.
1961. On the cranial morphology of ichthyosaurs. Proc. zool. Soc. Lond. 137, 333-370.
1967. The reptile families Ichthyosauridae and Ophthalmosauridae. Proc. geol. Soc. Lond. 1640, 137-138. ARCHIAC, A. d'. 1843. Description géologique du departement de I'Aisne. Mén. Soc. géol. Fr. 2, 129-419, pls. 21-31. ARKELL, W.J. 1926. Studies in the Corallian lamellibranch fauna of Oxford, Berks., and Wilts. II. Pectinidae. Geol. Mag. 63, 534-555, pls. 31-34.
_-- 1927. The Corallian rocks of Oxford, Berks., and north Wilts. Phil. Mrans. R. Soc. Lond. Ser. B. 216, 67-181, pls. 1-2.
_-.- 1929-1937. A monograph of British Corallian
Lamellibranchiata. Palaeontogr. Soc. FMonogr. 7: (1), 1929, $1-72$, pls. $1-4 ;(2), 1930,73-104$, pls. $5-8 ;(3), 1931$, 105-132, pls. 9-12; (4), 1932, 133-180, pls. 13-20; (5), 1933, 181-228, pls. 21-28; (6), 1934, 229-276, pls. 29-36; (7), 1934, 277-324, pls. 37-44; (8), 1935, 325350, i-xvi, pls. $45-49$; (9), 1936, 351-376, xvii-xxii, pls. 50-56; (10), 1937, 377-392, xxiii-xxxviii, Title page and Index.

1930a. The generic position and phylogeny of some Jurassic Arcidae. Geol. Mag. 67, 297-310, 337-352, pls. 14-16.

ARKELL, W.J. 1932a. An unknown Kellaways locality in Dorset?
Geol. Mag. 69, 44-45.
1933a. The Jurassic System in Great Britain.
681 pp . Oxford.
1934a. The oysters of the Fullers Earth; and on the evolution and nomenclature of the Upper Jurassic Catinulas and Gryphaeas. Proc. Cotteswold Nat. Pld. Club, 25, 21-68, pls. 1-5.
1939. The Richardson collection of lanellibranchs from the Fullers Earth Rock. Proc. Dorset nat. Hist. antic. Fld. Clu³, 60, 165-174.

1939a. The amonite succession at the Woodhan Brick Company's pit, Akeman Street Station, Buckinghanshire, and its bearing on the classification of the Oxford Clay. Q. J1. geol. Soc. Lond. 25, 135-222, pls. 8-11.
1940. Fossils from the Fullers Farth of the Weymouth Anticline. Geol. Mag. 71, 42-49, pl. 1.
1941. The Upper Oxford Clay at Purton, Wiltshire, and the zones of the Lower Oxfordian. Ibid, 78, 161-172,316.
1947. The geology of the country around Weymouth, Swanage, Corfe and Lulworth. Mer. Geol. Surv. U.K. xii + 386 pp., 19 pls.

1947a. The Geology of Oxford. 267 pp . 6 pls. Oxford. BAYLE, E. 1878. Fossiles principaux des terrains. Explication de la Carte géol. de France. 4, (1) Atlas. 158 pls. Paris. BEAN, W. 1839. Catalogue of fossils in the Combrash of Scarborough. Ann. Mag. nat. Hist. N.S. 3, 57-62.

BERNER, R.A. 1969. Migration of iron and sulfur within annerobic sediments during early diagenesis. An. J. Sci. 267, 19-42.
1971. Principles of Chenicel Sedimentology. 240 pp. New York.

BLAKE, J.F. 1905-1907. A monograph of the fauna of the Cormbrash. Palaeont. Soc. Livonogr.7. (1), 1905, 1-100, pls. 1-9; (2), 1907, 101, 102, title page and index.

BODEN, K. 1911. Die Fauna des Unteren Oxford von Popilany in Iithauen. Geol. paläont. Abh., N.S. 10, 125-200, pls. 1-8. BORISSIAK, A, 1904. Die Pelecypoden der Jura-Ablagerungen im Iuropaeischen Russland. I. Nuculidae. Trudy geol. Kom. N.S. 11, 1-49, pls. 1-3.
--_ 1905. Die Pelecypoden der Jura-Ablagerungen im Europaeischen Russland. II. Arcidae. Ibid, 12, 1-63, pls. 1-4.
1909. Die Pelecypoden der Jura-Ablagerungen im Furopaeischen Russland. IV. Aviculidae. Ibid, 44, 1-26, pls. 1-2.

BRANSON, C.C. 1942. Parallelodon, Grannatodon and Beushausenia ( $=$ Cosmetodon new name). J. Paleont. 16, 247-249.

BRAUNS, D. 1874. Der Obere Jura in Nordwest-Deutschland. 434 pp., 3 pls. Braunschweig.

BRINKMANN, R. 1929. Statistisch-Biostratigraphische Untersuchungen an Mitteljurassischen Ammoniten "ber Artbegriff und Stamesentwicklung. Abh. Akad. Wiss. Göttingen Math. Phys. KI. N.T. 13 (3), 1-249, pls. 1-5.

BRINKMANN, R. 1929a. Monographie der Gattung Kosmoceras. Ibid, 13 (4), 1-124, p1. 1.

BRONN, H.G. 1829. Verzeichniss der in dem Heidelberger Mineralien-Komptoir vorhandenen Konchylien-Pflanzentheir und andern Versteinerungen. Z. Miner. Geol. Paläont., 23 (1), 72-80.
.-.- 1830, Goea Heidelbergensis, oder Mineralogische Beschreibung der Gegend von Heidelberg. xii +237 pp . Heidelberg \& Leipzig.

BROIGNIART, A. 1821. Sur les Caractères Zoologiques des Formations. Annls. Mines. Carbur., Paris, 6, 537-572, pls. 7, 8.

BROWN, T. 1837-1849. Illustrations of the Fossil Conchology of Great Britain and Ireland. viii $+273 \mathrm{pp} ., 98 \mathrm{pls}$. London \& Edinburgh.

BUCKMAN, S.S. 1909-1930. Yorkshice Iype Amonites, vols. 1, 2; Type Ammonites, vols. 3-7. Iondon.
-.-. 1913. The 'Kelioway Rock' of Scarborough. Q. J1. geol. Soc. Lond., 69, 152-163.

BUVIGNIER, A. 1852. Statistique gélogique, minéralogique, minérallurgique et paléontologique du department de la Meuse. Atlas. 52 pp., 32 pls. Verdun.

CALLOMON, J.H. 1955. The ammite succession in the Lower Oxford Clay and Kellaways Beds at Kidlington, Oxfordshire, and the zones of the Callovian stage. Phil. Trans. R. Soc. Lond., Ser. B. 232, 215-263: pla. 2, 3.

CALLOMON, J.H. 1964. Notes on the Callovian and Oxfordian stages. C.r. Mem. Coll. J. rassique, Luxembourg, 1962. 269-291. 1968. The Kellaways Beds and Oxford Clay. In SYLVESTER-BRADLEY, P.C. \& T.D. FORD (eds.). The Geology of the Bast Midlands, 264-290. Leicester.

CALLOMON, J.H. \& J.C.W. COPE. 1971. The stratigraphy and anmonite succession of the Oxford and Kimmeridge Clays in the Warlingham borehole. Bull. geol. Surv. Gt. Br., 36, 147-176, ple. 6-12.

CARTER, J. 1886. On the decapod crustaceans of the Oxford Clay. Q. J. geol. Soc. Lond. 42, 542-559, pl. 16.

CARTGR, R.M. 1967. On the nature and cefinition of the lunule, escutcheon and corcelet in the bivalvia, Proc. malac. Soc. Lond., 37, 243-263, pls. 1, 2.

CASEY, R. 1952. Some genera and subgenera, mainly new, of Mesozoic heterodont Ianellibranchs. Ibid., 29, 121-176, pls. 7-9.

CHAVAN, A. 1945. Les lanellibranchos hétérodontes des Sables Astartiens de Cordebugie (Calvados). J. Conch. Paris. 86 (2) , 41-86, p7. 1.
1946. I''évolution des faunes marines des mollusques dans le nord-ouest de l'Europe, de la fin du Crétacé à celle de 1'Éocene, Bull. Soc. géol. Fr. (5), 16, 193-212.
1952. Les pélécypodes dos Sables Astartiens de Cordebugle (Calvados). Abh, schweiz, paläont. Ges. 69, 1-132, p1s. 1-4.

CHAVAN, A. 1969. Superfanily Lucinacea. In MOORE, R.C. (ed.). Treatise on Invertebrate Paleontology. Part N. Mollusca 6, Bivalvia. N491-N518. Boulder. COOPER, R.A. 1973. Texonomy and evolution of Isograptus Moberg in Australesia. Palaeontology: 16, 45-115. COPE, J.C.W., \& B.M. COX 1970. A Kelleways Beds locality in north Dorset. Proc. Dorset nat. hist. archaeol. Soc. 21, 120-122.

CORROY, G. 1932. Le Callovien de la bordure orientale du bassin de Paris. Mén. Carte géoi. Fr.

COSSMANN, M. 1907. Lercription de quelques pélécypodes jurassiques récuellis en Irance. $2^{e}$ Article. C.r. Ass. Fr. Avanc. Sci. (Congr. Iyons) 273-283, pls. 1, 2.
1908. Description de quelques pélécypodes Jurassiques récueillis en France. $3^{\text {ent }}$ article. C.r. Ass. Fr. Avanc. Sci. (Congrès de Reims, 1907), 1-14, pls. 2, 3.
--- 1910. In 'Paiseontologia Universalis', Centuria 3, no. 230. (Anon).
1915. Description de quelques pélécypodes du Bradfordien et du Callovien de Pouges-Ies-eaux (Nièvre). Bull. Soc, nivern. Lett. Sci., (3) 15, 1-15, pls. 1-3.
1923. Description de pélécypodes Jurassiques récueillis en Brence. II Ser. $2^{e}$ article. C.r. Ass. $\operatorname{Fr}$. Avanc. Sci. (Congr. Montpèllier 1922), 1-22, pls. 5, 6.
1924. Extension dans Ies Deux-Sèvres de Ia faune du Callovien de Montrêuil-Bel lay. Mén. Soc. géol. Minér. Bretagne, I, 53 pp. 97 pls.

COSSMANN, M. \& P. THIERYY. 1907. Note sur le Callovien de la Haute-Marne. Bull. Soc. Agric. Lett. Sci. Haute-Saône. 1907 (2), 69-147, p1s. 1-3.
Comtreau, J. 1925-1932. Types du Frodrone de Paléontologie stratigraphique universelle d'Alcide d'Orbigny. 2, Callovien-Portlandien. I-222, pls. 37-68, Annls. Paléont. 14-21.
COUFFON, 0. 1917-1919. Le Callovien du Châlet. Text (1917), 245 pp. Atlas (1919), 18 pls . Angers. COX, L.R. 1925. In CUNVINGRON, R.H. Note on Geology. Proc. Dorset nat. hist. archaeol. Fld. Club, 16, 196-198.
--- 1929. A synopsis of the Lamellibranchiata and Gastropoda of the Portland Beds of England. Proc. Dorset nat. hist. archaeol. Soc. I, 131-202, pls. 1-6.
..-. 1935. Jurassic Gastropoda and Lanellibranchia. In The Mesozoic Palseontology of British Somaliland, 148-197, pls. 14-21. London.
1936. The Gastropoda and Ianellibranchia of the Green Amonite Beds of Dorset. Q. J1. geol. Soc. Lond. 22, 456-471, p1. 34.
-.-. 1937. Fotes on Jurassic Lanellibranchia. I. On the occurrence of the genus Palaeoneilo in the Jurassic of Great Britain. Proc. malac. Soc. Lona. 2?, 190-193, p1. 15.
--- 1940. The Jurassic lamellibranch fauna of Kachh
(Cutch). Mem. geol. Surv. India Palaeont, indica, (9)
3 (3), $157 \mathrm{pp} ., 10 \mathrm{pls}$.

COX, I.R. 1941. Notes on Jurassic Lanellibranchiata. VII. On the identity of Echinotis Marwick with Meleagrinella Whitfield. Proc. malac. Soc. Lond. 24, 133-135. 1947. The lanellibranch fanily Cyprinidae in the lower Oolites of England. Ibid., 27, 141-184, pls. 8-10. 1952. The Jurassic lamellibranch fauna of Cutch (Kachh). No. 3, Panilies Pectinidae, Amusiidae, Plicatulidae, Limidae, Ostreidae and Trigoniidae (Supplement). Mem. geol. Surv. India Palaeont. indica, (9). 2 (4), 128 pp., 12 pls. of fossil Bivalvia (mainly Mesozoic). Proc. malac. Soc. Lond. 36, 39-48, p1. 1.
1965. Jurassic Bivalvia and Gastropode fron Tanganyika and Kenya. Bull. Br. Mus. nat. Hist. (Geol.) Suppl. 1, $213 \mathrm{pp} ., 30 \mathrm{pls}$.
1969. General features of Bivalvia. In MOORE, R.C. (Ed.). Treatise on Invertebrate Paleontology, Part in, Mollusca 6, N2-M129. Boulder. 1969a. Superfarily Soleryacea. In MOORE, R.C. (Ed.). Treatise on Invertebrate Paleontology, Part $\mathbb{N}$, Mollusca 6, N241-N243. Boulder.

1969b. Superfanily Trigoniacea. In MOORE, R.C. (Ed.). Treatise on Invertebrate Paleontology, Part N, Mollusca 6, N471. Boulder.

COX, I.R. \& ARKELL, W.J. 1948-1950. A survey of the Mollusca of the British Great Oolite Series, primarily a nonenclatorial revision of the monographs by Morris \& Iycett (1851-1855), Iycett (1863) and Blake (1905-1907). Palaeontogr. Soc. Monogr.]: (1), 1948, i-xiii, 1-48, revised explanation of plates, Morris \& Lycett (Bivalves) 1-15; (2), 1950, xiv-xxiv, 49-105, revised explanation of plates, Morris \& Iycett (Univalves) 1-15, Lycett (Supplementary Monograph) 31-45, and Blake (Cormbrash) 2-9.

CRICKIMAY, C.K. 1932. Cuntributions towards a monograph of the Trigoniidae. An. J. Sci. 24, 443-464.

DAMON, R. 1860. Handbaok to the geology of Weymouth and the Isle of Portland. 199 pp . London.
---- 1880. Supplement to the seology of Weymouth and the Isle of Portland. 18 pls. London.
1888. Supplement to the Eeology of Weymouth and the Isle of Portland. 2nd (revised) edition. 20 pls. Iondon. DAVIES, A.M. 1916. The zones of the Oxford and Ampthill Clays in Buckinghamshire and Bedfordshire. Geol. Mag., 53, 395-400. DECHASEAUX, C. 1935. Pectinidés jurassiques de l'est du Bassin de Paris. Annls. Paléont. 25, 148 pp ., 10 pls. DELAIR, J.B. 1958-1960. The Mesozoic reptiles of Dorset. Proc. Dorset nat. hist. archaecl. Soc. (1), 1958, 72, 47-72; (2), $1959,80,52-90 ;(3), 7960,59-85$.
1966. New records of dinosaurs and other fossil reptiles from Dorset. Ibid, 87, 57-66.

DESHAYES, G.P. 1839-1853. Traité élémentaire de Conchyliologie. ㄱ (1), 1839, 1-272; (2), 1853, 273-368, i-xii. Paris. DICKINS, J.M. 1963. Permian pelecypods and gastropods from

Western Australia. Aust. Bur. Miner. Res., Bull. 63, 150 pp., 26 pls.

DOUGLAS, J.^. \& W.J. ARKELL 1928. The stratigraphical
distribution of the Cornbrash. I. The south-western area. Q. J1. geol. Soc. Lond. 84, 117-178, p1s. 9-12. --.- 1932. The stratigraphical
distribution of the Cornbrash. II. The north-eastern area. Ibid, 89, 112-170, pls. 10-12.

DOUVILLÉ, H. 1921. La charnière dans les lanellibranches
hétérodontes et son évolution. Bull. Soc. géol. Fr. (4), 21, 116-124.

EGHRTON, P. de M.G. 1844. On some new species of fossil fish
from the Oxford Clay at Christian Malford. Proc. geol.
Soc. Lond. 4, 446-449.
EGGIETON, T.E. \& G.N. DAVIS 1962. Hinge tooth reversel in
populations of Ohio Sphaeriidae. An. malac. Un. Pacif.
Div., Rep. 28, 19-20 (Abstract).

FALCON, N.L. \& P.E. KENT 1960. Geological results of petroleum
exploration in Britain 1945-1957. Geol. Soc. Lond.,
Mem. 2, 56 pp .
FAVRE, F. 1876. Description des fossiles du terrain Oxfordien
des Alpes fribourgoises. Abh. schweiz. palant. Ges.,
2, 76 pp., 7 pls.

FISCHER, P.H. 1880-1887. Manuel de conchyliologie et de paléontologie conchyliologique. xxv $+1369 \mathrm{pp} ., 23 \mathrm{pls}$. Paris.

FITTON, W.H. 1837. Observations on some of the strata between the Chalk and the Oxford Oolite, in the south-east of Fingland. Trans. geol. Soc. Iond. (2), 4, 103-388, pls. 1-18. FORBES, E. 1851. On the Estuary Beds and the Oxford Clay of Loch Staffin, in Skye. Q. Jl. geol. Soc. Lond., I, 104-113, p1. 5.
"
FORSTER, R. 1971. Die Mecocheiridae, eine spezialisierte Fanilie der Mesozoischen CIypheoidea (Crustacea, Decapoda). Neues Jb. Geol. Paläont. Abh., 137, 396-421.

FOX-STRANGNAYS, C. 1892. The Jurassic Rocks of Britain. II: Yorkshire. Tables of Fossils. 250 pp . Nen. geol. Surv. U.K. 1904. The geology of the OoIitic and Cretaceous rocks scuth of Scarborough. vi +119 pp . Mem. geol. Surv. U.K.

GILLENT, S. 1924. Remarques sur le rameau d'Avicula (Oxytoma) inaequivalvis Sowerby. Bull. Soc, géol. Fr., (4), 23 450-455.

GOLDFUSS, G.A. 1833-1840. Petrefacta Germaniae. Pt. 2. (1), 1833, 1-68, pls. 72-96; (2), 1836, 69-140, pls. 97-121; (3), 1837, 141-224, pls. 122-146; (4), 1840, 225-312, pls. 147-165. Dusseldorf.

GOULD, S.J. 1969. The byssus of Trigonian clams: phylogenetic vestige or functional organ. J. Paleont., 43, 1125-1129.

GRAS, A. 1851. Catalogue des corps organisés fossiles du departement d'Isère. Bull. Soc. Statist. Sci. nat. Arts ind. Dep. Isère, (2), 2, 1-54, pls. 1-4.

GUILLAUME, L. 1928. Revision dea Posidonomyes jurassiques. Bull. Soc. géol. Fr., (4), 27, 217-234, p1. 10.

HALL, A. \& W.J. KRMNEDY 1967. Aragonite in fossils. Proc. R. Soc. Lond. Ser. B., 168, 377-412.

HALLAM, A. 1968. Morphology, palaeoecology and evolution of the genus Gryphaea in the British Lias, Phil. Trans. R. Soc. Lond. Ser. B. . 254, 91.-128, p1s. 10-12.
HERTIEIN, I.G. 1969. Fanily Entoliidae. In MOORE, R.C. (Ed.). Treatise on Invertebrate Paleontology, Part N, Mollusca 6, N346-347. Boulder.

HUDLESTON, W.H. 1884-1885. Contributions to the palacontology of the Yorkshire Oolites. No, 2. Gastropoda of the Oxfordian and Lower Oolites. Geol. Mag. (3), 1-2. (1), 1884, 49-63, p1. 3; (2), 1884, 107-115, p1. 4; (3), 1884, $145-154$, p1. 6; (4), 1884, 193-204, p1. 7; (5), 1884, 241-252, p1. 8; (6), 1884, 293-303, p1. 9; (7), 1885, $49-59, \mathrm{pl} .2 ;(8), 1885,121-129, \mathrm{pl} .3 ;(9), 1885,151-$ 159, p1. 4; (10), 1885, 201-207, p1. 5; (11), 1885, 252-257. HUDSON, J.D. \& D.F.B. PALFRAMAN 1969. The ecology and preservation of the Oxford Clay fauna at Woodhem, Buckinghanshire. Q. J1. geol. Soc. Lond., 124, 387-418, pls. 19-20.

ICHIKAWA, K. 1958. Zur Taxonomie und Phylogenie der Triadischen 'Iteriidae' (Iamellibranch.) mit besonderer Berücksichtigung der Gattungen Claraia, Eumorphotis Oxytoma und Monotis. Palaentographica, Ser. A., 111, 131-212, pls. 21-24.

ILOVAISKY, D. 1904. L'Oxfordien et le Séquenien des gouvernements de Moscou et de Riasan. Bull. Soc. imp. Nat. Moscou, N.S. 17, 222-292, p1s. 8-12.

IMBRIE, J. 1956. Biometrical methods in the study of invertebrate fossils. Bull. An. Mus. nat. Hist., 108, 211-252. JAIN, S.L. \& P.L. ROBINSON 1963. Some new species of the fossil fish Tepidotus from the English Upper Jurassic. Proc. zoo1. Soc. Lond., 141, 119-135, p1s. 1-4.

JEFTERIES, R.P.S. \& P. MINTON 1965. The mode of life of two Jurassic species of 'Posidonia'. Palaeontology, 8, 156185, 21. 19.

JUDD, J.W. 1875. The geology of Rutland. Xr +320 pp . Mem. geol. Surv, U.K.

KAUFFMAN, E.G. 1967. Coloradoan macroinvertebrate assemblages, central Western Interior, United States. In Paleoenvironments of the Cretaceous Seaway - a Symposium, p.67-143. Golden. Kafins A.M. 1969. Fenily Nuculidae. In MOORE, R.C. (Ed.). Treatise on Invertebrate Paleontology, Part N, Mollusca 6, N230-231. Boulder.

KEFRT, A.M. \& R. CASEY 1969. Family Arcticidae. Ibid, 15645-650.
" "
KLUPFEL, W. 1919. Uher den Lathringer Jura. Jb. preussisch. geolog. Landesanstalt für 1917, 38 (1). 252-346.

KOCH, C.I. \& W. DUNKER 1837. Beiträge zur Kenntniss des Norddeutschen Oolithgebildes und dessen Versteinerungen. 64 pp., 7 pls. Braunsweig. KREINKEL, E. 1915. Die Kelloway-Fauna von Popilani in

Westmussland. Palaeontographica 61, 191-368, pls. 19-28. KRUMBECK, I. 1921. Die Brachiopoden, Lamellibranchiaten und Gastropoden der Trias von Timor, I. I. Stratigraphischer Teil; 2. Paläontologischer Teil. In Psläontologie von Timor, 10 (7), 1-142.

LAHUSEN, I. 1883. Die Fauna der jurassischen Bildungen des Rjasancchen Gouromments. Tmudy geol. Koin., I (I), 94 pp., 11 pls.

LAMARCK, J.B. de 18U1. Système des aninaux sans vertébres. viii +432 pp. Paris.
_-_ 1818-1819. Histoire naturelles des animaux 3ans vertéhres. 5, 1818, 612 pp; 6, 1819, 343 pp. Paris. LAIMPLUGH, G.W. \& F.L. KITCHIN 1911. On the Mesozoic rocks in some of the coal explonations in Kent. vi +212 pp . Mer. geol. Surv. U.K.

IAMPLUGH, G.W. F. I. KTYCHTN \& J. PRIIGLE 1923. The concealed Mesozoic rocks in Kent, iv +248 pp., 1 pl. Men. geol. Surv. U.K.

LAUBE, G.C. 1867. Die Bivalven des Braunen Jura von Balin. Denkschr. Akad. Wiss., Wien Math. nat. K1., 27, 11-61, pls. 1-5.

LECKENBY, J. 1859. On the Kelloway Rock of the Yorkshire Coast. Q. J1. geol. Soc. Lond. , 15, 1-15, pls. 1-3.

LEFDS, E.T. 1908. On Metriorhynchus brachyrhynchus (Deslongchanps) from the Oxford Clay near Peterborough. Ibid, 64, 345-357, pls. 40, 41.
--- 1956. The Leeds collection of fossil reptiles from the Oxford Clay of Peterborough. 104 pp . Oxford. IEWIMSKI, J. 1923. Monographie géologique et paléontologique du Bononien de la Pologne. Mér. Soc. géol. Fr. Paléont., No. 56.
LEYYMFRIE, A. 1846. Statistique, géologique et minéralogique du department de 1'Aube, xii +676 pi., pls. 1-10. Troyes. LISSAJOUS, M. 1912. Jumassique Maconnais. Fossiles caractèristiques, 208 pp., 19 pls. Maçon.
1923. Étude sur la faune du Bathonien des environs de Maçon. Trav. Lab. Géoi. Univ. Lyon, Mén. 3. 286 pp., 33 p1s.

LISTER, M. 1678. Historiae Animaliun Angliae tres tractatus. $\mathrm{vi}+250 \mathrm{pp} \cdot$. pls. 1-9. London.
LORIOL, P. de 1896-1901. Stude sur les nollusques et
brachiopodes de I'Oxfordien supérieur et moyen du Jura bernois. Abh. schweiz. paläont. Ges., 23, 24, 28. (1), 1896, 1-77, pls. 1-11; (2), 1897, 78-158, pls. 12-17; $1^{\text {er. }}$ suppl., 1901, 1-119, pls. 1-7. 1898-1899. Étude des nollusques et brachiopodes de I'Oxfordien inférieur ou Zone à Ammonites renggeri du Jura bernois. Ibid., 25-26. (1), 1898, 1-116, pls. 1-7; (2), 1899, 117-220, pls. 8-12.

LORIOL, P. de 1902-1904. Étude sur les mollusques et
brachiopodes de 1'oxfordien supérieur et moyen du Jura
lédonien. Ibid., 22-31. (1), 1902, 1-76, pls. 1-5; (2),
1903, 77-160, pls. 6-19; (3) 161-303, pls. 20-27.
LORIOI, P. de \& G. COTMEAU 1868. Monographie paléontologique et géologique de I'étage portlandien du departement de I'Yonne. Bull. Soc. Sci. hist. nat. Yonne, (2), 1, $260 \mathrm{pp} .$, pls. 1-15.

LORIOL, P. de \& E. PELLAT 1875. Monographie paléontologique et géologique des étages jurassiques supérieurs de Boulonge sur Mer. Mér. Scc. Phys. Hist. nat. Génève, 24, 326 pp., 15 pls.

IORIOL, P. de, E. ROYTE \& A. TOMBECK 1872. Description
géologique et paléontologique des étages Jurassiques supérieurs de la Haute-Marne. Mén. Soc. Iinn. Nornandie, 13, 484 pp., 26 pls.

LYCETT, J. 1850. Tabular view of fossil shells from the middle division of the Inferior Oolite in Gloucestershire. Ann. Mag. nat. Hist. (2), 6, 401-425, p1. 11.
1863. Supplementary nonograph on the Mollusca fron the Stonesfield Slate, Great Oolite, Forest Marble and Cornbrash. Palaeontogr. Soc. MMonogr.7. 129 pp., 15 pls. --. 1872-1883. A monograph of the British Fossil Trigoniae.

Palaeontogr. Soc. Monogr.7. (1), 1872, 1-52, pls. 1-9; (2), 1874, 53-92, pls. 10-19; (3), 1875, 93-148, pls. 20-27; (4), 1877, 149-204, pls. 28-40; (5), 1879, 205-245, p1. 41, title page; suppl. no. 1., 1881, 1-3; suppl. no. 2, 1883, 5-19, pls. 1-4, title page.

IYDEK/FHR, R. 1899. Note on a fossil crocodile from Chickerell.
Proc. Dorset. nat. Hist. antiq. Fld. Club, 20, 171-173.
MAKOWSKI, H. 1952. La faune callovienne de Lukow en Pologne.
Palaeont. pol., 1, 64 pp., 9 pls.
MANGOLD, C. 1970. The Bathonian and Callovian Perisphinctidae (Anmonitina) of the southern Jura. Docums. Lab. geol. Univ. Iyon, 41 , (2), 246 pp., 16 pls.

MATTHENS, S.C. 1973. Notes on open nomenclature and on synonymy lists. Palaeontology, 16, 713-719. MANSELI-PLEYDELI, J.C. 1879. On the Dorset Trigoniae. Proc. Dorset net. Hist. antiq. Fld. Club, 3, 111-134, pls. 1-5. MARCH, M.C. 1911. Studies in the morphogenesis of certain pelecypoda. (3). The ornanent of Trigonia clavellata and some of its derivatives. Men. Froc. Manchr. lit. phil. Soc., 55, I-13.

MANTELL, G.A. 1848. Observations on sone Belemnites and other fossil remains of Cephalopoda discovered by lif. R. IV. Mantell in the Oxford Clay near Trowbridge (Wiltshire). Phil. Trans. R. Soc. Iond., Ser. B., 138, 171-181, pls. 13-15.
1850. Supplementary observations on the structure of the belemnite and Belermoteuthis. Ibid, 140, 393-398, pls. 28-30.

MARWICK, J. 1935. Some new genere of the Myalinidae and Pteriidae of New Zealand. Trans. R. Soc. N.Z., 65, 295-303, pls. 34-36.

McALESTER, A.L. 1968. Type species of Paleozoic nuculoid bivalve genera. Geol. Soc. An., Mem. 105. 143 pp ., 36 pls . McCOY, F. 1849. On the classification of sone British fossil crustacea with notices of new forms in the University Collection at Cambridge. Ann. Mag. nat. Hist. (2), 4, 161-179, 330-335, 392-414.

MEHK, F.B. 1865. Description of fossils from the auriferous slates of Califomia. Geol. Surv. Calif., Geology, 1, 477-482.

MILASCHEWITSH, K.O. 1881. Geological research for the year 1878; the soutiwestern parts of the Kostromsk district. Mat. geol. Russiand, 10, 133-331, pIs. 1-11.

MOLENGRAAF, G.A.F. von 1917. De Timor expeditie en hare palaeontologische resultaten. Hand. ned. nat. en geneesk. Congr. (16, 's Gravenhage). [Not seen].

MORRIS, J. 1850. List of orgenic remains obtained from the railway cuttings described by R.N. Mantell at Christian Malford, Wilts. Q. Jl. geol. Soc. Lond. 6, 315-319, pl. 30.

MORRIS, J. \& J. LYCEIT 1851-1855. A monograph of the Mollusca from the Great Oolite. Palaeontogr. Soc. [Monogr.]: (1), 1851, Univalves, i-viii, 1-130, pls. 1-15; (2), 1853, Bivalves, 1-80, pls. 1-8; (3), 1855, Bivalves, 81-147, pls. 9-15.

MURCHISON, R.I. 1827. On the coalfield of Brora in Sutherlandshire, and some other stratified deposits in the north of Scotland. Trans. seol. Soc. Lond. (2), 2, 293-326.

MURCHISON, R.I. 1828. Supplementary remarks on the strata of the Oolitic Series, and the rocks associated with them, in the counties of Sutherland and Ross, and in the Hebrides. Ibid, (2), $2,353-368$.

NEALE, J.W. 1956. Chlanys (Radulopecten) drewtonensis sp. nov. Proc. Yorks. geol. Soc., 30, 371-374, pl. 28.

NEAVERSON, E. 1925. The zones of the Oxford Clay near
Peterborough. Proc. Geol. Ass. 36, 27-37.
NENELL, N.D. 1939. Transposed hinge in a Paleozoic pelecypod. Ап. J. Sci., 237, 178-180.
---- 1965. Classification of the Bivalvia. An. Mus. Novit., no. 2206, 25 pp.
1969. Classification of Bivalvia. In MOORE, R.C. (Dd.). Treatise on Invertebrate Paleontology, Part $\mathbb{N}$, Mollusca 6, N205-218. Boulder.
---. 1969a. Earily Entoliidae. Ibid, N346-N347. Boulder.
ORBIGNY, A. d' 1845. Système jurassique (Étage Oxfordien). Mollusques. In Murchisonf, R.I., E. de VERNEUIL \& A. de KEYSERLING, Geologie de la Russie d'Europe et des montagnes de 1'Oural. 2, 419-488, pls. 28-42. Paris. ORBIGNY, A. d' 1850. Prodrome de Paléontologie stratigraphique universelle des animaux mollusques et rayonnes. $1,1 x+$ 394 pp; 2, 428 pp. Paris.

OSBORNE-WHITE, H.J. 1925. The geology of the country around Marlborough. xi +112 pp. Mer. geol. Surv. U.K.

OWEN, R. 1844. A description of certain belemnites, preserved with a great proportion of their soft parts, in the Oxford

Clay, at Christian Malford, Wilts. Phil. Trans. R. Soc. Lond. Ser. B., 134, 65-85, pls. 2-8. PEARCE, J.C. 184. On the fossil cephalopoda constituting the 'genus Belemnoteuthis'. Geol. J. Iondon. Record of Discoveries, Brit. \& Foreign, Palaeont., l, 75-78, pls. 15-16.

PERSSON, P.O. 1963. A revision of the classification of the Plesiosauria, with a synopsis of the stratigraphical and geographical distribution of that group. Acta Univ. Iund. N.F. Ard. 2, 52, no. 1.

PHILIIPS, J. 1829. Illustrations of the geology of Yorkshire. xvi + 192 pp., 24 pls. York. 1865-1870. A monograph of British Belemnitidae. Palaeontogr. Soc. Monogr.7. (1), 1865, 1-28; (2), 1866, 29-52, pls. 1-7: (3), 1867, 53-88, pls. 8-20; (4), 1869, 89-108, p1s. 21-27; (5), 1870, 109-128, p1s. 28-36. 1871. Geology of Oxford and the valley of the Thanes. xxiv +523 pp., 17 pls. Oxford. PLOT, R. 1676. The Natural History of Oxfordshire. vii +358 pp., 16 pls. Lcndon. POPENOE, W.P. \& W.A. PINDIAY 1933. Transposed hinge structures in lanellibranchs. Trans. S. Diego Soc. nat. Hist., I, (26), 299-315, p1. 19.

PRATT, S.P. 1841. Description of some new species of anmonites found in the Oxford Clay on the line of the Great Western Railway, near Christian Malford. Ann. Mag. nat. Hist., 8, 161-165, pls. 3-7.

PURI, H.S. 1969. Family Nuculanidae. In MOORE, R.C. (Eả.). Treatise on Invertebrate Paleontology, Part N, Mollusca 6, N234-N241. Boulder. QUFANSTEDP, F.A. 1851. Handbuch der Petrefaktenkunde. 792 pp., 62 pls. Th"bingen.

1856-1858. Der Jura. (1), 1856, 1-576, p1s. 1-72;
(2), 1857, 577-823, pls. 73-100; (3), 1858, Title-page and Index. Thubingen.

QUEITSTEDT, W. 1930. Die Anpassung an die grabende Lebensweise in der Geschichte der Solenomyiden und Nuculaceen. Geol. paläont. Abh., N.S. 18, 1-119, p1s. 1-3.

RASPAIL, J. 1901. Contribution a $l^{\prime}$ 'etude de la falaise
Jurassique de Villers-sur-Mer. Callovien, Oxfordien. Feuille jeun. Nat., (4), 31, 125-126, 145-149, 169-172, 193-198, pls. 10-12.

READ, H.H., G. ROSS, J. PHMMISTER \& G.W. IEE, I925. The geology of the country around Golspie, Sutherlandshire, including a description of the Mesozoic rocks of east Sutherland and Ross. vi $+1 / 43$ pp. Mern. geol. Surv. U.K.

RHOADS, D.C., I.G. SPEDEN \& K.M. WAAGE. 1972. Trophic group analysis of Upper Cretaceous (Maestrichtian) bivalve asserblages fron South Dakota. Bull. An. Ass. Petrol. Geol., 56, 1100-1113.

RICHTER, R. 1948. Einführung in die Zoologische Nomenklatur. 252 pp. Prankfurt.

ROBERTS, T. 1889. The Upper Jurassic clays of Lincolnshire.
Q. J1. geol. Soc. Lond., 45, 545-560.

ROBERTS, T. 1892. The Jurassic rocks of the neighbourhood of Cambridge. vii +96 pp . Cambridge.

ROEDER, H.A. 1882. Beitrag zur Kenntniss des Terrain a Chailles und seiner Zweischalen in der Ungegend von Pfirt im OberElsass. 110 pp., 4 pls. Inaug. Diss. Math. naturw. Fak. Kaiser-Wilhelnsuniversität Strassbürg.

ROEIER, F.A. 1836-1839. Die Versteinerungen des Norddeutschen Dolithen-Gebirges. (1), 1836, $218 \mathrm{pp},. 16 \mathrm{pls} ;(2)$, Nachtrag, 1839, 59 pp., pls. 17-20. Hannover.
ROLLIER, I. 1911-1918. Fossiles nouveaux ou peu connus des terrains secondeives (Mesozoiques) du Jura et des contrees environnantes. 1 , xx +696 pp., 40 pls. Abh. schweiz. paläont. Ges., 37-42.

ROUILIIER, C. 1846. Explication de la coupe géologique des environs de Moscou. Bull. Soc. inp. Nat. Moscou, 19, (1), 444-500; 12, (2), 359-467.
SAUVAGE, C. \& A. BUVIGNIER 1812. Statistique minéralogique et géologique du departement des Ardennes. xlv $+554 \mathrm{pp} .$, pls. 1-4. Mézieres.

SCHENK, H.G. 1934. Classification of nuculid pelecypods.
Bull. Mus. r. Hist. nat. Belg., 10, no. 20, 1-78, pls. 1-5.
SCHLOTHEIM, E.F. von 1813. Beiträge zur Naturgeschichte der Versteinerungen in geognostischer Hinsicht. Taschenb. miner., I, 3-134, pls. 1-4.

SEEBACH, K. von 1864. Der Hannoversche Jura. 158 pp., 10 pls. Berlin.

SOWERBY, J. 1812-1822. The Mineral Conchology of Great Britain: ㄹ, (1), 1812, i-vii, 9-32, p1s. 1-9; (2), 1813, 33-96, pls. 10-44; (3), 1814, 97-178, p1s. 45-78, (4), 1815, 179-236, pls. 79-102; 2, (1), 1815, 1-28, p1s. 103-114; (2), 1816, 29-116, p1s. 115-150; (3), 1817, 117-194, pls. 151-186; (4), 1818, 195-239, pls. 187-203; 3, (1), 1818, 1-40, pls. 204-221; (2), 1819, 41-98, pls. 222-253; (3), 1820, 99-126, pls. 254-271; (4), 1821, 127-186, p1s. 272-306; 4, (1), 1821, 1-16, pls. 307-318; (2), 1822, 17-104, pls. 307-327. London.

Sorterby, J. He C. 1822-1846. The Mineral Conchology of Great Britain: 4, (3), 1822, 105-114, pls. 328-383; (4), 1823, 115-151, ple. 384-407; 2, (1), 1823, 1-64, pls. 408-443; (2), 1824, 65-138, p1s. 444-485; (3), 1825, 139-171, p1s. 486-503; 6. (1), 1826, 1-86, pls. 504-545; (2), 1827, 37-156, ple. 546-580; (3), 1828, 157-200, pls. 581-597; (4), 1829, 201-235; pls. 598-609; Preface to the General Indexes and Systematic Index to the 6 volunes, 1835, 239-250; I. (1), 1840, Alphabetic Index to volumes 1-6, 1-11; p. 1-8, p1s. 610-618; (2), 1841, 9-16, pls. 619623; (3), 1843, 17-24, pls. 624-628; (4), 1844, 25-56, pls. 629-643; (5), 1846, 57-80, p1s. 644-648. London. 1840. Description of fossils from the Upper Secondary Formation of Cutch collected by C.W. Grant. Trans. geol. Soc. Lond. (2), 2, pls. 21-23 + explanation. SPATH, L.T. 1932. The invertebrate faunas of the BathonianCallovian deposits of Janeson Land, East Greenland. Meddr. Grqnland, 87, no. 7, 158 pp., 26 pls.

SPATH, L.F. 1936. The Upper Jurassic invertebrate faunas of Cape Leslie, Milne Land. 2. Upper Kimneridgian and Portlandian. Ibid, 22, no. 3, 180 pp., 50 pls.

STAESCHE, K. 1926. Die Pectiniden des schwق̈bischen Jura. Geol. paläont. Abh., N.F. 15, $136 \mathrm{pp} \cdot, 6$ pls.

STANLEY, S.M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve nolluscs - a consequence of mantle fusion and siphon formation. J. Paleont., 42, 214-229. 1970. Relation of shell forn to life habits in the Bivalvia (Mollusca). xiii +296 pp., 40 pls. Geol. Soc. Anerica, Men. 125. Boulder.
1972. Functional morphology and evolution of bysally attached bivalve mollusks. J. Paleont., 46, 165-212. STENZEL, H. B. 1971. Oysters. In MOORE, R.C. (Ed.). Treatise on Invertebrate Paleontology, Part N, Mollusca 6, N953-N1224. Boulder.

STOLICZK 1, F. 1871. The Pelecypoda, with a review of all known genera of this class, fossil and Recent. In The Cretaceous fauna of India, 3, xxii +537 pp., 50 pls. Men. geol. Surv. India. Paleeont. indica.

STOLI, E. 1934. Die Brachiopoden und Mollusken der ponnerschen Dogger-geschiebe. Abh. geol. palaeont. Inst. Greifswald, 13, 1-62, pls. 1-3.

STOLL, E. von 1939. Malletia Ricantea (Smith). Acta Zool., 20, 339-341.

STRAHAl, A. 1898. The geology of the Isle of Purbeck and Weymouth. xi +278 pp . Meri. geol. Surv. Eng. Wales.

SPEDEN, I.G. 1967. Revision of Syncyclonema (Upper Cretaceous) and comparison with other small pectinid bivalves and Entolium. Postilla no. 110, 36 pp . 7 pls.
1970. The type Fox Hills Formation, Cretaceous (Maestrichtian), South Dakota. Pt. 2. Systematics of the Bivalvia. Bull. Peabody Mus. nat. Hist., 33, 222 pp., 42 pls.

SYLVESTER-BRADLEY, P.C. 1959. Iterative evolution in fossil oysters. Proc. 15th int. Congr. Zool., London, 193-196. TARLO, I.B. 1960. A review of Upper Jurassic Pliosaurs. Bull. Br. Mus nat. Hist. Geol., 4, 145-189, pls. 20-28. TEMPIE, J.T. 1968. The Lower Llandovery (Silurian) brachiopods from Keisley, Westmorland. Palaeontogr. Soc. [Monogr.7. $58 \mathrm{pp},. 10 \mathrm{pls}$.

TERQUEM, O. 1855. Observations sur les étuces critiques des mollusques fossiles, comprénant la Monographie des Myaires de M. Agassiz. Mén. Acad. Metz, 36, 253-357, pls. THIÉRY, P. \& M. COSSMANN 1907. Note sur le Callovien de la Haute-Marne. Bull. Soc. Agric. Haute-Saône, Vésoul. 69-147, pls. 1-3.

ThURIIANN, J. 1833. Essai sur les soulèvenents jurassiques de Porrentruy, Mér. Soc. Hist, nat. Strasbourg, (1), 2, pt. 2, $85 \mathrm{pp} ., 5 \mathrm{pls}$.
THURMANN, J. \& A. ETALLON, 1861-1864. Lethea Bruntrutana, ou études paléontologiques et stratigraphiques sur le Jura bernois et en particulier les nnvirons de Porrentruy. Neue Denkschr. allg. schweiz. Ges. ges. Naturw. (1), 1861,

18, 1-145; (2), 1862, 19, 146-353; (3), 1864, 20, 354-500.
TINTANT, H. 1963. Les Kosnocératidés du Callovien inférieur et moyen d'Burope occidentale. Publs. Univ. Dijon, no. 29, 500 pp., 108 pls .

TORRENS, H.S. 1969 (Ed.) International Field Symposium on the British Jurassic. Excursion no. 1. Guide to Dorset and South Somerset. 71 pp. Geol. Dept., Keele Univ.

TRAUTSCHOLD, H. 1860. Récherches géologiques aux environs de Moscou: couche jurassique de Galiowa. Bull. Soc. inp. Nat. Moscou, 33 (3), 338-361, pls. 6-8.

VANI de POEL, L. 1955. Structure du test et classification des nucules. Bull. Inst, Sci, nat. Belg. 31 (3), 1-11.

VOKBS, H.F. 1945. Supraspecific groups of the pelecypod family Corbulidae. Bull. An. Nus, nat. Hist., 86, 1-32, pls. 1-4.

VORONETZ, N.S. 1936. The Mesozoic fauna of the Kharaulakh mountain range. Trudy arkt. nauchno-issled. Inst., 37, $30-36$, pls. $1-3$.

WAAGIN, L. 1901. Der Fornenkreis des Oxytoma inaequivalve Sowerby. Jb. geol. Bundesanst. Wien., 51, 1-24, pI. I. WatkER, K.R. 1972. Trophic analysis: a method for studying the function of ancient cormunities. J. Paleont., 46, 82-93.
WOHLEGEMUPH, J. 1883. Récherches sur le Jurassique Moyen à 1'Est du Bassin de Paris. Stratigraphie. Paris. Unpubl. Ph.D. thesis. (Reference from DEECKE, W. 1930. Fossilium Catalogus, 1. Animalia, Pars 30 Trigoniidae mesozoicae).

WOODS, H. 1924-1931. The Fossil Macrurous Crustacea of Fingland. Palaeontogr. Soc. Monogr. . (1), 1924, 1-16, pls. 1-4; (2), 1925, 17-40, pls. 5-8; (3), 1926, 41-48, pls. 9-12; (4), 1927, 49-64, p1s. 13-16; (5), 1928, 65-72, pls. $17-20 ;(6), 1930,73-88$, pls. $20-24 ;(7), 1931$, 89-122, pls. 25-27, title page and index.

WOODWARD, A.S. 1885. On the literature and nonenclature of British fossil Crocodilia. Geol. Mag., (3), 2, 496-510. 1888. On some renains of the extinct selachian Asteracanthus from the Oxford Clay of Peterborough, preserved in the collection of $A . N$. Leeds, Esq., of Eyebury. Inn. Mag. nat. Hist., (6), 2, 336-342, pl. 12. 1889-1901. Catalogue of the fossil fishes in the British Museum: (1), 1889, xlvii + 474 M9., $27 \mathrm{pls} ;$ (2), 1891, xliv $+567 \mathrm{pp} ., 16 \mathrm{pls} ;(3), 1895, x \operatorname{lii}+$ $544 \mathrm{pp} ., 18 \mathrm{pls} ;(4), 1901$, xxxviii $+636 \mathrm{pp} ., 19 \mathrm{pls}$.
1890. Notes on the gill-rakers of Leedsia problematica - a gigantic fish from the Oxford Clay. Geol. Mag., (3), I, 292-293, pl. 10.
1892. On the skeleton of a chimaeroid fish (Ischyodus) from the Oxford Clay of Christian Malford, Wiltshire. Ann. Mag. nat. Hist., (6), 2, 94-96. 1896. On some remains of the pyonodont fish Mesturus discovered by A.N. Leeds, Esq., in the Oxford Clay of Peterborough. Ibid, (6), $\pm$ I. $1-15$, pls. $1-3$. 1897. On a new specimen of the Mesozoic gancid fish, Pholidophorus, fron the Oxford Clay of Weymouth.

Proc. Dorset nat. hist. antiq. Fld. Club, 18, 150-152, pl. 7.

WOODNARD, H.B. 1894. The Jurassic Rocks of Britain. 4. The Lower Oolitic rocks of England. xiv +628 pp. Mem. Eeol. Surv. U.K.
1895. The Jurassic rocks of Britain. 2. The Middle and Upper Oolitic rocks of England. xiv +499 pp. Mer. geol. Surv. U.K. WRIGHT, J.K. 1968. The stratigraphy of the Callovian rocks between Newtondale and the Scarborough coast, Yorkshire. Froc. Geol. Ass., 72, 363-399.

YONGE, C.M. 1937. The fomation of siphonal openings by Thracia pubescens. Proc. malac. Soc. Lond., 22, 337-338. _-- 1939. The protobranchiate mollusca; a functional interpretation of their structure and evolution. Phil. Trans. R. Soc. Lond. Ser. B. , 230, 79-147, p1. 15. --- 1946. On the habits and adaptations of Aloidis (Corbula) gibba. J. mar. biol. Ass. U.K., N.S. 26, 358-376.
1949. On the structure and adaptations of the Tellinacea, deposit-feeding eulamellibranchs. Phil. Trans. R. Soc. Lond. Ser. B., 234, 29-76.
1953. Form and kabit in Finna carnea Gmelin. Ibid, 237, 335-374.
1973. Functional morphology with particular reference to hinge and liganent in Spondylus and Plicatula, and a discussion on relations within the superferily
96.

Pectinacea (Mollusca: Bivalvia). Ibid, 267, 173-208. Younv, G. \& J. BIRD 1822. A geological survey of the

Yorkshire coast: describing the strata and fossils occurring between the Hurber and the Tees, from the Gernan Ocean to the plain of York. 235 pp., 17 pls. Whitby.
---- 1828. Op. eit., seconà edition. $366 \mathrm{pp} .$,
17 pls. Whitby.
ZAKHAROV, V.A. 1970. Late Jurassic and early Cretaceous bivalves of the Siberia north and their ecology. Pt. 2. Family Astartidae. Trans. Acad. Sci. U.S.S.R. Siberian branch, Inst. geol. geophys. 113, 1-114, pls. 1-15. ZEISS, A. 1956. Hecticoceras und Reineckeia in Mittel- und Ober-Callovien von Blumberg (Süđbaden). Abh. bayer. Akad. Wiss. Math.-naturw. K1., N.F. 80, 1-101, pls. 1-4. ZIETEN, C.H. de 1830-1833. Les pétrifications de Wurtemberg: (1), 1830, 1-16; (2), 1831, 17-32; (3), 1832, 33-64; (4), 1833, 65-96. Stuttgart. ZITTEL, K.A. 1881-1885. Handbuch der Palaeontologie. 1.

Abtheilung - Palaeozoologie. 2. Mollusca und Arthropoda. 893 pp . München und Leipzig.

## 97.

## SYSTMTATIC DESCRIPTIONS

Class BIVALVIA Linnaeus, 1758<br>Subclass PALAEOTAXODONTA Korobkov, 1954<br>Order NuCULOIDA Dall, 1889 Superfanily NUCULACRA Gray, 1824<br>Family NUCULIDAE Gray, 1824<br>Genus nJCULOMA Cosswann, 1907 (p.124)

Type species. By monotypy, Nuculoma castor Cossmann ex d'Orbigny, 1907, p.124, pl.2, fics. 14, 15, fros the Callovian Oxford Clay of the Haute-Marne, France.

Diagnosis. Mediwn sized genus (un to 26.0 m L), subtrigonal to subtrapezoidal in outline, well-inflated; umbones very strongly opisthogyrate, usually narkedly enrolled, often near terminal; posterodorsal area usually deeply inpressed, cordate in outline; anterodorsal nargin evenly arched and convex, ventral margin evenly convex, often straightening posteriorly and becoming sinuate; anterior margin bluntly rounded; anterior row of teeth evenly arched, muci larger than the posterior row, which has only about 4-6 teeth, placed more or less vertically above each other; ornanent of fine interdigitate concentric striae, or fine regular concentric striae without interdigitation.

Remarks Nuculoma is an easily recognised Jurassic genus characterised by its strongly opisthogyrate, enrolled wribones, and its distinctive omament pattem, and as noted below (in discussion of Palaeonucula [D. 106 7) is clearly distinguished from Palaeonucula. Although the unbones are terminal, or nearly so, in the type species, in species such as N. pollux (Raspail ex d'Orbigny), the urbones are more centrally placed (AL $\bar{x} 66.5 \%$ ). However, it is very difficult to compare measurements of nuculids given by different authors, as the orientation of the measurements is not constant. Most authors have measured length in nuculids parallel to the direction of the anterodorsal margin, thus virtually ensuring that the postorodonsal margin is vertical, and the unbones almost terminal. The prosent author sees no reason to measure nuculics any differently from other dimyarian bivalves, and so length is measured parallel to a line drawn through the adductor muscle scars. Framination of steinkerns shows the adductor soara to be placed at the distal ends of the hinge line, and so the measurement of length is made between the posteroventral angle and the anterodorsal angle. This has the effect of reducing the AL \% of many species, notably those placed in Nuculoma, and increasing the H \% The author believes that standardisation of measurements allows easier comparisons at the generic level, and should be adopted where possible.

The developnent of irterdigitate omanentation within Wuculona is, as yet, of uncertain disiribution, apparently absent from the type species (Cossmann, 1907; Cottreau, 1925)
and some Indian Upper Jurassic species described by Cox (1940, p.23, p.24), but present in N. pollux Raspail ex d'Orbigny and N. chassyana Cottreau ex d'Orbigny. There is no reason to doubt that the type species lacks interdigitate ormament, as the phenomenon is recognised in N. pollux and N. chassyana by Cottreau (pl. 39, fig. 27; pl. 40, fig. 5), although it is usually on a microscopic scale, and is easily overlooked. It is possible that forms with interdigitate ornament may prove distinct from forms with regular concentric ornament, but as yet there is no reason to separate them, and there are too many other close similarities.

1. Nuculoma pollux (Raspail ex d'Orbigny, 1901) P1. 1, figs. la-ld.

- 1850 Nucula Pollux sp. nov.; d'Orbigny, p.339, no. 179.
* 1901 N. Pollux ${ }^{\text {d'Orbigny; Raspail, p.194, pl.12, fig. } 13 .}$ - 1925 N. Pollux d'Orbigny; Cottreau, p.22, pl.39, figs.25,26,27. $^{2}$

Type specimen The specimen figured by Raspail (op. cit.) has not been traced, but agrees perfectly with the type specimen of d'Orbigny's earlier nomina nuda, figured in 1925 (pl.39, fig. 25-27) by Cottreau. D'Orbigny's holotype is preserved in the d'Orbigny collection (no. 3347A) in the Laboratoire Paleontologique du Musee National d'Histoire Naturelle in Paris.

Diagnosis Medium-sized species (up to 18.9 mm L ), trigonal in outline, height about $80 \%$ of length (H 70.9-83.7\%, $\bar{x} 79.1 \%$ ) posterodorsal margin evenly concave, anterodorsal margin of
approximately equal length, very gently convex; ventral margin short, evenly convex, not sinuate, inflation always slightly less than anterior length (I 55.6-64.1\%, $\bar{x} 58.7 \%$; AL 63.6$70.2 \%, \bar{x} 66.5 \%$ ); umbones slightly posterior to median, rounded markedly opisthogyrate, slightly enrolled; corcelet large, cordate, excavate, escutcheon well-developed, cordate, with a narked escutcheon pout protruding above about half of the posterodorsal margin; lunule elongate, lanceolate, clearly differentiated; omament interdigitate.

## Measurements

See Appendix 3.

|  | L | II | I | AL |
| :--- | :---: | :---: | :---: | :---: |
| N | 7 | 7 | 6 | 3 |
| $\overline{\mathrm{x}}$ | 15.1 mm | $79.1 \%$ | $58.7 \%$ | $66.5 \%$ |
| Max | 18.9 | 83.7 | 64.1 | 70.2 |
| Min | 9.9 | 70.9 | 55.6 | 63.6 |
| OR | 9.0 | 12.8 | 8.5 | 6.6 |

## Description

Small to medium-sized species, equivalve, inequilateral, umbones posterior to median ( $\bar{x} 66.5 \%$ ), opisthogyrate, rounded, slightly enrolled, salient about 2 min above the hingeline. Outline trigonal, anterodorsal, posterodorsal and ventral margins of subequal length, variably curved; anterodorsal margin straight to gently convex, posterodorsal margin markedly concave, ventral maxgin evenly convex, with no posterior
sinuosities; posteroventral angle sharp, prominent, but not produced, about a right angle; anteroventral angle more rounded, and less prominent than the posteroventral angle. Outline of the posterodorsal margin broken by the proninent, evenly convex escutcheon pout (Fig. 2.7), which protrudes above about half the length of the posterodorsal margin, Ornament consisting of interdigitate concentric striae over the body of the shell, with no appacent growth halts; dorsal areas ornamented with faint growth striae, not interdigitate.

Corcelet large, excavate, cordate, occupying the whole of the posterodorsal region, bounded by sharp umbonal carinae running to the posteroventral angles; escutcheon smaller, prominent, cordate, two arcuate elevated ridges running from the unbones to the posterior end of the hingeline, protruding above the posterodorsal idargin as the escutcheon pout; irmer part of the escutcheon excavate; corcelet and escutcheon omamented by fine growth striae. Iunule elongate, lanceolate, extending from the umbones to the anteroventral angle, bounded by rounded carinae; lunule biconcave in outline, a slight rise occurring along the comoissure and dividing the Iunule into two separated excavate areas; ornamented by faint growth striae. Ligament internal.

Dentition, details of Iigament and musculatuxe unknown.

Remarks This ensily recognised species nay be distinguished fron the similarly-shaped Palaeonucula triangularis sp. nov. by its much more concave posterodorsal margin, its nore envolled
umbones, its lower inflation and its interdigitate ornament. These two species have many close similarities of form, but because of differences in ornanent pattern and twisting of the umbones, are placed in different genera. N. pollux is less inflated, and has much more median umbones than the genotype, N. castor, and may clearly be separated from other Eluropean Upper Jurassic species of Nuculoma, such as N. chassyana (Cottreau ex d'Orbigny). The clear development of a differentiated lunule is an unusual feature in nuculids, but is well seen in N. pollux, although it is not as prominent as the corcelet. N. pollux has been recorded only from France (d'Orbigny, 1850; Raspail, 1901; Cottreau, 1925), and seems to be rare, as such a distinctive species is hardly likely to have been continually overlooked elsewhere. Two specimens from the Oxford Clay of Wiltshire (YM KD1974/1 ), whose exact horizon and locality are unknown, belong to this species and are described above. Range and occurrence Oxford Clay of Wiltshire; Middle to Upper Oxford Clay (Athleta - Mariae Zones) of Villers-sur-Mer (France).
2. Nuculoma kathryni sp. nov. Pl. 1, figs. 2-6.

Type specimen Holotype, GSM 114030, from the Oxford Clay (horizon unknown) of Lydlinch (Wiltshire). Nine paratypes from the same locality and horizon (GSM 114031-114039).

Diagnosis Small species (up to 10.8 mm L ), subtrigonal in outline, usually rather elongate in form (H $76.5-84.7 \%$,
x $81.0 \%$ ); posterodorsal margin evenly concave, much shorter than anterodorsal margin, usually interrupted by a large escutcheon pout; anterodorsal margin gently concave to gently convex, ventral margin evenly convex, sometimes straightening posteriorly; well-inflated ( 1 61.9-74.4\%, $\bar{x} 70.9 \%$ ), but inflation always less than anterior length (AL 76.5-85.7\%, - $\overline{\mathrm{x}}$ 81.1\%); umbones prominent, rounded, strongly opisthogyrate, enrolled, placed near the posterior extremity of the shell; corcelet broad, cordate, lightly impressed, the bounding carinae rounded in outline; escutcheon well-developed, with a prominent escutcheon pout; Iunule not aifferentiated; ormament interdigitate; posterior part of hinge with up to 8 teeth.

## Measurements

See Appendix 3.

|  | L | H | I | AI |
| :--- | :---: | :---: | :---: | :---: |
| N | 6 | 6 | 5 | 6 |
| $\bar{x}$ | 9.8 mm | $81.0 \%$ | $70.9 \%$ | $81.1 \%$ |
| Max | 10.8 | 84.7 | 74.4 | 85.7 |
| Min | 8.5 | 76.5 | 61.9 | 76.5 |
| OR | 2.3 | 7.8 | 12.5 | 9.2 |

Description Small, equivalve, inequilateral, elongatesubtrigonal in outline, with the anterodorsal and ventral margin of subequal length, about twice the length of the posterodorsal margin; anterodorsal margin usually gently convex, but occasionally straight or slightly concave, the anteroventral angle prominent, rounded, produced; posterodorsal
margin evenly concave, the outline usually broken by the welldeveloped escutcheon pout, which occupies about half the length of the posterodorsal margin; posteroventral angle sharply rounded, produced, about a right angle; ventral margin gently and evenly convex, sometimes straightening posteriorly and becoming subparallel to the anterodorsal margin. Inflation high, (I $\bar{x} 70.9 \%$ ) giving the shell a globular appearance. Umbones prominent, inflated, rounded, strongly opisthogyrate, enrolled, placed close to the posterior extremity of the shell (AI $\overline{\mathrm{x}} 81.1 \%$ ), salient about $I \mathrm{~mm}$ above the hingeline. Ormanent consisting of interdigitate concentric striae, except on the dorsal areas, where there are only faint growth Iines.

Corcelet broad, cordate, not deeply excavated, occupying the whole of the posterodorsal legion to the posteroventral angle, the bounding umbonal carina being rounded and not prominent. Escutcheon small, cordate, prominent, reaching about halfway to the posteroventrgl angle, the two arcuate ridges broad and clearly elevated as the escutcheon pout. Lunule not differentiated, lacking bounding carinae and distinctive ornanent pattern. Liganent internal.

Hinge line $72.9 \%$ of length of dorsal margins (only measurable on one specimen), the anterior part twice as long as the dorsal part $(48.6 \%$ to $24.3 \%)$, the two parts set at an angle of about $110^{\circ}$; the anterior tooth row is gently convex and contains 15 small, chevron-shaped taxodont teeth, the angles of the chevrons pointing towards the umbones, the teeth increasing in size distally; the posterior row is straight and
has 8 smell, sinilarly-shaped teeth, more closely spaced than the anterior row; chondrophore tooth not visible, but preservation in the umbonal region is poor. Resilifer placed on a short, narrow, anteroventrally directed chondrophore, which only protrudes very slightly into the shell cavity.

Musculature largely obscured, the adductor muscle scars suborbicular, subequal, normally placed, the anterior scar slightly larger than the posterior; no other muscle scars visible. Pallial line entire.

Remarks N. kathryni is superficially similar to N. castor, but there are several important differences, notably the more enrolled, nearly terminal, umbones of the latter species. These cause reduction of the posterior tooth row, so that, as shown by Couffon (1919, pl. 5, fig. 14g) and Schenck (1934, pl. 4, fig. 5c), there are only about four small peglike teeth, arranged subvertically, in $\mathbb{N}$. castor. In contrast, N. kathryni has the posterior part of the hinge plate longer with 8 teeth. The escutcheon and escutcheon pout are much better developed in N. kathryni, the specimens of $\mathbb{N}$. castor figured by Schenck and Couffon (op. cit.) appearing to lack a clearly-differentiated escutcheon, presumably due to reduction of the posterior tooth row.

Range and occurrence The species is known solely by 10 specinens from the Oxford Clay (horizon unlonown) of Lydlinch (Wiltshire), preserved in the Geological Survey Museur, London (GSM 114030-114039).

Genus PALAEONUCULA Quenstedt, 1930 ( $\mathrm{p}, 110$ )
Type species Originally designated by Guenstert, 1930 ,
p. 110 , pl. 2, fig. 9 , Mucula hameri Defrance, 1825, p. 217 ,
from the 0 . Lias of Fronce.

Diagnosis Medium sized genus (up to $\approx 35 \mathrm{~m} \mathrm{~L}$ ), elongate, subtrapezoidal to subtrigonal in outline, well inflated; umbones slightly opisthogyrate, sonetines gently enrolled, posteriorly placed, occasionally terminal; posterodorsal area often deeply impressed, cordate in outline; anterodorsal margin usually slightly arched, ventral margin gently convex, often sinuate posteriorly; anterior margin bluntly rounded; anterior row of teeth often gently arched, posterior row shorter than anterior, its length dependent upon how near the posterior the umbones are placed; ornament consisting of irregularly spaced concentric growth lines of variable strength, no radial sculpture; valve margins not denticulate.

Remarks Quenstedt's original diagnosis (1930, p. 112) has been emended by Schenck (1934, p. 36) and Cox (1940, p. 11), as it was not strictly applicable to the genotype. Schenck (op. cit.) recognised a 'chondrophore tooth', adjoining the posterior margin of the chondrophore in several specimens of $\mathbb{N}$. hemneri, the type-species; Quenstedt (op. cit.) believed a chondrophore tooth to be absent, but this conclueion was based on exanination of an incomplete specimen.

The relationships between the Jurassic nuculid genera Palaeonucula and Nuculoms, and the Cretaceous-Recent gerns Nucula s.I., have been a source of great confusion in the past, mostly due to imprecise understanding of the type species. Quenstedt (1930) believed all three genera to be distinct, as did Schenck (1934), although the latter author thought Palaeonucula to be a subgenus of the Palaeozoic genus Nuculopsis Girty. As noted by Cox (1940, pl. 12), Nuculopsis has a rather more primitive type of chondrophore than Palaeonucula, the chondrophore being wider and shorter, and not projecting into the shell covity; accraingly, Cox placed Palaeonucula as a subgenus of Nucula, and accepted Nuculoma as a valid genus. Later (1965, pl 25), Cox placed Palaeonucula as a subgenus of Nuculoma, an opinion based on the shell structure studies of Van de Poel (1955). At the present time, the name Nucula s. I. is restricted to forms with radial ribbing on the shell exterior (Keen, 1969, pl. N231), and thus Nucula s. must be considered distinct fron Palaeonucula and Muculoma, not appearing until the Cretaceous. Study of the genotypes of the two Jurassic genera reveals several important differences, enabling a clear distinction to be made between then. The diagnostic features of Nucuiona are discussed above, the main differences between it and Palaeonucula being its rore opisthogyrate, strongly enrolled unbones which overhang the posterior margin, and the fine concentric ribbing, occasionally interdigitate, all over the shell.

## 1. Palaeonucula triangularis sp. nov. Pl. 1, figs. 7-11, Pl. 2, figs. 1-12.

Type specimen Holotype, BM LI27713 from L. Oxford Clay, Bed 7 (Callomon, 1968), Coronatun Zone, Obductum Subzone of Stewartby, Bedfordshire. Paratypes (BM LL27714-27721 ) from the same locality and horizon.

Diagnosis Mediun-sized species (up to 18.4 mm L ), subtrigonal (H $73.0-88.1 \%, \bar{x} 79.6 \%$ ) in outline, with posterior margin straight to gently concave, the posteroventral angle about $90^{\circ}$, often produced; corcelet broad, cordate, its margins clearly defined by the ridge running from the umbones to the posteroventral angle; ventral margin short, evenly convex, sometimes straightening and becoming slightly sinuate posteriorly; escutcheon cordate, elevated, usually protruding above the posterior margin as a slight pout; anterior margin straight to gently conver, anteroventral angle rounded; well inflated (I 56.I $82.0 \%, \vec{x} 66.9 \%$ ); umbones posterior of median (AL 55.8$80.0 \%, \vec{x} 70.1 \%)$, opisthogyrate, not enrolled; sculpture of irregularly spaced concentric growth lines, locally coarsened as growth halts.

## Measurements

See Appendix 3.

|  | II | H | I | AL |
| :--- | :--- | :--- | :--- | :--- |
| N | 158 | 158 | 158 | 158 |
| $\overline{\mathrm{x}}$ | 14.7 mm | $79.6 \%$ | $66.9 \%$ | $70.1 \%$ |
| Max | 18.4 | 88.1 | 82.0 | 80.0 |
| $\operatorname{Min}$ | 10.7 | 73.0 | 56.1 | 55.8 |
| OR | 7.7 | 14.9 | 25.9 | 24.2 |

Description Snall to medium-sized species, trigonal to subtrigonal in outline, with anterior and ventral margins of approximately equal length; anterior margin straight to gently convex, the outline of the body of the shell obscuring the hingeline (as seen laterally) for most of its length; the anterior extremity of the hinge line not elevated above the anterior margin; posterior margin straght to gently concave, the body of the shell obscuring the hingeline for all of its length, except where the escutcheon pout protrudes above the margin for a short wey; posteroventral angle about a right angle, ofter produced, thus eraphasizing the concavity of the posterior margin, and the sinuosity of the posteroventral margin; ventral margin evenly convex, often straightening posteriorly, and often becoming very slightly sinuate in forms with a produced posteroventral angle; anteroventral angle acute, rounded, passing evenly between the ventral and anterior nargins. Umbones prominent, opisthogyrate, placed posterior of median (AI $\bar{x} 70.1 \%$ ), selient up to 2 mm above the hinge line, not enrolled. Well inflated ( $\bar{x} 66.9 \%$ ), inflation tending to increase throughout ontogeny. Ornament consisting solely of irregularly spaced concentric growth lines over the whole shell surface, including the dorsel regions; no interdigitate ornament, but on some very well preserved specinens, there are very faint traces of radial strise in places.

Posterodorsal region of the shell generally rather flattened, corcelet and escutcheon well-developed lunuliform; corcelet large, broad, cordate, ocoupying the whole of the
posterocorsal region of the shell, bounded by the ridges running from the umbones to the posteroventral angle; corcelet flattened to excavate in outline, ornamented by concentric growth lines which continue onto the body of the shell. Escutcheon shorter and narrower, cordate, placed within the corcelet, extending about two-thirds of the way to the posteroventral angle; its outer margin taking the form of a rounded ridge extending in an are from the unbones to the comissure, usually protruaing above the outline of the posterodorsal margin as an escutcheon pout; inside the marginal ridge, the escutcheon slopes gently to the comsissural margin. Lunule absent.

Hinge line about two-thirds of the length of the dorsal margin (Lh 61.8-72.6\%, 信 67.8\% [Th as \% of Idr7), anterion part straight to very gently convex, posterior part cently convex, with known naxima of 16 anterior teeth and 10 posterior teeth. Dentition taxodont, teeth chevron-shaped, the points of the chevrons directed towards the urbo, projecting about I rm above the comissure; teath beconing more widely spaced distally, the largest tooth occurring about 3 teeth from the distal end of each tooth row; the proxinal teeth of the anterior row continue above the chrondrophore as very small peglike teeth which prove impossible to count. A strong chondrophore tooth occurs at the anterior end of the posterior tooth row of the left valve, forming the posterior margin of the chondrophore, the next three or four teeth of the posterior row being narrow and blade-like; the chondrophore tooth is matched by a socket in the right valve. Resilifer located on a short, excavate chondrophore directed
anteroventrally from the umbo and projecting a little way into the shell cavity.

Muscle insertion areas weakly impressed, best seen on steinkerns. Adductor scars subequal, ovate, placed close to the dorsal margin, immediately beneath the distal ends of the hinge line marked by prominent growth lines. Posterior adductor scar slightly more ovate than the anterior, with a slight buttress dorsally and anterodorsally: anterior adductor scar buttressed dorsally and posterodorsally. Pedal muscles unequal, sited near the comissure; anterion senr I-shaped, slightly Ioneer than pocterior scar, the long arm of the I running parallel to the comissure from the posterion end of the anterior adductor scax, about one-third of the way to the uwiones, the short arm perpendicular to it, qbout one-third of the length of the long arm, parallel to the posterior mangin of the anterior adductor scar, posterior scar about two-thirds of the length of the anterior scar, straight, subparallel to the comissure, running anterodorsally from the dorsal margin of the posterior adductor scer, about haifway to the umbones; both pedal scars ornanented with fine growth lines. Visceral muscle impressions occupy a marked chamel on the steinkerns, fumning anteroventrally from the anterior side of the uabones, fading at the level of the dorsal margins of the adductor scans; two or three suborbicular discrete muscle scars may sometimes be seen at the ventral end of the groove (Fig. 2.8). Pallial line simple. Valve margins not crenulate.

Remarks The large collections of pyritized whole shells to be found in many of the pyritic shell beds of the Lower Oxford Clay allow detailed studies of variation to be made in $P$. triangularis, revealing its polymorphic nature (Fig. 2.9). The variation is continuous, however, and no valid reasons for further subdivision have been found. The 'nom' of the population is a shell of trigonal outline, relatively short ( $H \simeq 82 \%$ ) and well-inflated ( $I \simeq 72 \%$ ), with a short, smoothly-curved ventral margin. Elongation varies quite considerably (H $73.0-88.1 \%, \vec{x} 79.6 \%$ ), the ventral margin becoming more gently chrved as length increases; elongation is often coupled with increasing concavity of the posterior marging and slight sinuosities which appear at the posterior end of the ventral margin. Inflation does not vary systematically with eny shell parameter except perhaps overall size (measured as L), smell shells tending to have a lower I percentage, but this relationship does not always hold. The development of the escutcheon pout is a very inconsistent feature, which cannot be directly correlated with any other major shell paraneter, but which seems to be rolated to the degree of convexity of the posterior row of teeth; the more arched the teeth, the more pronounced is the pout. The degree of excavation of the corcelet is apparently unrelated to the strength of the escutcheon pout. The terms escutcheon and corcelet are used as defined by Carter (1967, p. 261), and although they have not traditionally been used in the description of nuculids, the author feels that they may usefully be employed in the description of the
posterodorsal area in this family. The escutcheon is defined as representing the track on the outer surface of the valve of the posterodorsal edge of the hinge during shell growth, and even a cursory glance at specimens of P. triangularis shows that the escutcheon corresponds with the posterior end of the tooth row. The corcelet is rather more loosely defined, but represents a further differentiated area posterior to the umbones, outside the escutcheon; its structural significance is unknown. The musculature is best seen on limestone steinkerns which may occasionally be extracted from the septarian concretions that occur in the Lower Oxford Clay of the Midlands, especially at Stewartioy. Careful removal of the inner nacreous layer reveals well preserved adductor and pedal muscle scars, and a faint chamel representing the visceral muscle attachment area (Fig. 2,8). The pedal musculature of Jurassic nuculids is not. well-documented, and these specimens are valuable in that the pedal musculature of Palaeomoula is described for the first time. Teminology for the musculature is taken from Speden (1970, p. 30), who described the muscle scars of two Cretaceous species of Nucula S.S.: these differ from Palaeonucula in the shape of the pedal scars, and the shape and position of the visceral muscle scars, thus showing that the musculature is of some taxononic importance in this family.

There are many available specific names for Callovian and Oxfordian nuculids, but none of then are applicable to the species described here. In general outline, P. triangularis is close to Nuculoma pollux (Raspail ex d'Orbigny), but N. pollux is less

## 114.

inflated ( $I \overline{\times} 58.7 \%$ ), and has the interdigitate concentric ribbing which places it in Truculoma. The specimen figured by Makowski (1952, p. 5, pl. 5,figs. 2,2a) as Nucula calliope d'Orbigny is probably also referable to N. pollux, although it is a little nore inflated than the type. In general outline, Makowski's specimen is similar to P.triangularis but again, it has interdigitate ornanent. Nucula calliope Couffon (1919, p. 79, pl. 5, fig. 13, 13a-13i) appears to belong to Palaeonucula, lacking regular concentric ornament, but the posterior margin is not concave enough, and the escutcheon pout not pronounced enough for P. trianeularis.

Range and occurrence Abundant in the L. Oxford Clay, Jason L. Athleta Zones of the English Midlands (Calvert, Bletchley, Stewartby, Norman Cross) and Dorset (Crook Hill). ? Jason Zone, M4 Road Cutting, Dodford Farn, Christian Malford, Wilts. (OUM J28238). Also Calloviense Zone, Enodatum Subzone of Stewartby and Bletchley and Peterborough; four specimens (GSM Bx7515) from the Geological Survey borehole at Upwood (Hunts.), and one specimen from the Oxford Clay of Christian Malford (Wilts.) (GSM Lowe Collection, 14).
2. Palaeonucula cottaldi (de Loriol, 1875). Pl. 2, figs. 13-19. v? 1829 Nucula (cast); Phillips, pl. 5, fig. 4. 1850 Nucula Calliope sp. nov.; d'Orbigny, p. 339, no. 177. 1856 N. pectinata Zieten; Quenstedt, p. 505, pl. 67, fig. 24. 1860 N. ornata Quenstedt; Damon, pl. 2, figs. 6-8 (non Quenstedt).

1875 N. Cottaldi sp. nov.; de Loriol in de Loriol and Pellat, p. 295, pl. 17, figs. 11-15.
non 1883 N. Calliope d'Orbigny; Lahusen, p. 86, p1. 2, figs. 21.a-b, 22a-b.

1897 N. Cottaldi de Loriol; de Loriol p. 113, pl. 11, figs. $15,15 \mathrm{a}-\mathrm{b}, 16,17,17 \mathrm{a}-\mathrm{b}, 18$.

1901 N. Calliope ${ }^{\prime}$ 'Orbigny; Raspail, p. 194, pl. 11, fig. 16.
non 1904 IN. Calliope d'Orbigny; Borissiak, p. 36, pl. 2, fig. 2.
non 1907 N. Cottaldi de Loriol; Cossmann, p. 9, p1. 3, figs. 10,11.
non $1915 \mathbb{N}$. Calliope d'Orbigny; Krenkel, p. 306, pl. 26, figs. 19-22 Ifigs. 19-21 = $\mathbb{N}$. chassyana d'Orbigny, fig. $22=$ N. inconstans Roeder 7 .
non 1919 N. Calliope d'Orbigny; Couffon, p. 79, pl. 5, figs. 13, 13a-13i.

1925 N. Calliope d'Orbigny; Cottreau, p. 21, p1. 39, figs. 21,22.
1952 N. ornati Quenstedt; Makowski, p. 5, pl. 5, figs. 1-la (non Quenstedt).
non 1952 N. calliope atOrbigny; Makowski, p. 5, pl. 5, figs. 2-2a.

Type specimen Lectotype here designated, the specimen
figured by de Loriol in de Loriol \& Pellat, 1875, p. 295, p1. 17, figs. 11-15, as Nucula Cottaldi, from the Oxfordian of Bouloge-sur-Mer, France. Preserved in the Polytechnicum à Zurich.

Diagnosis Medium-sized species (up to 19.0 mm I), subrectangular (H $67.4-81.8 \%$, $\bar{x} 75.0 \%$ ) in outline, the posterodorsal margin short, straight to gently concave, the
posteroventral angle rounded, greater than $90^{\circ}$, not produced; anterodorsal margin markedly concave in outline, a faint carina running from the unibo to the anteroventral angle, the anterior part of the hinge line protruding above the level of the overall shell outline to give the anterior end of the shell a subrectangular outline; the whole shell outline giving the irapression of being elongated posteriorly; well inflated (I 61.8$74.8 \%, \bar{x} 67.3 \%$ ); unbones markedly opisthogyrate, placed close to the posterior nargin (AL 73.3-84.4\%, 到 79.1\%), not enrolled; corcelet shorter and narrower than in P. triangularis, its margins not so cleariy lefined, and of a generally concave outline; escutcheon smail, not well-developed, pout not visible above the posterior margin; sculpture of irregularly spaced concentric growth lines.

## Measurements

See Appendix 3.

|  | I. | H | I | AL |
| :--- | :---: | :---: | :---: | :---: |
| If | 9 | 9 | 7 | 8 |
| $\bar{x}$ | 16.4 rom | $75.0 \%$ | $67.3 \%$ | $79.1 \%$ |
| Max | 19.0 | 81.8 | 74.8 | 84.4 |
| Min | 14.4 | 67.4 | 61.8 | 73.3 |
| OR | 4.6 | 14.4 | 13.0 | 11.1 |

Description Small to mediun sized, equivalve,
inequilateral, subrectangular to subelliptical in outline, the whole shell appearing to be elongated posterodorsally. Posterior margin short, gently conceve or straight, depending on the
inflation of the umbones; posteroventral angle sharply rounded, greater than a right angle (approximately $120^{\circ}$ ), not produced posteriorly; outline of anterodorsal margin concave, the anterior end of the hinge line appearing above the cutline of the body of the shell in its anterior half; the hinge line itself is straight; the outline of the anterior part of the unbonal region is continued to the anteroventral angle as a rounded carina, marking off a broad, lanceolate, obliquely sloping anterodorsal area; anterior margin short, oblique, truncate, straight to very gently concave or convex, forming an angle of about $145^{\circ}$ wits the hinge line; anteroventral angle slightly produced, evenly rounded, about a right angle; ventral margin evenly convex, not straightening anteriorly, and without sinuousities. Umbones prominent, rounded, opisthogyrate, not enrolled, placed close to the pesterior margin (AL $\bar{x} 79.1 \%$ ). Well inflated ( $\bar{\pi} 79.1 \%$ ), at maximun near the centre of the shell. Ornament consisting of irregulaxly spaced concentric growth lines, often coarsened into prominent growth halts near the ventral maxgin; the growth lines continue uninterrupted over the dorsal areas; no radial elementa or interdigitate pattern. Posterodorsal region of the shell slightly excavate, corcelet and escutcheon poorly developed, cordate; corcelet smail, suboval, not deeply impressed, gently concave in outline; its margins marked by a rounded carina running from the umbones to the posteroventral angle, but not as clearly marked as in
P. triangularis. Escutcheon snall, cordate, very weakly developed, only a very faint arcuate ridge developed; escutcheon pout very small, not protruding above the outline of the posterior margin.

Anterodorsal area of the shell differentiated into two areas, both of lanceolate shape; the inner area extends from the unbones to the anterodorsal ancle, its margins being marked by faint carinae sometimes omamented by darkened patches of shell slightly elongated alons growth Iines; itis floor is flat. The outer area extends from the unbones to the posteroventral angle, lies outside the inner area, and is limited by the umbonal carina running to the posteroventral angle; it slopes obliquely downwards from the umhonal carina to the bounding carina of the inner area. Both areas are ormamented by concentric growth lines continuous onto the body of the shell. Ligament internal.

Hinge line occupying noarly the wole of the dorsal margin, reaching as far as the anterodowsal angle and nearly to the posterodorsal angle; anterion tooth row straight to very gently convex, maximum number of teeth seen being 20: posterior row genily convex, the hingeline broken in the only available specimen, so the number of teeth is unknown, but at least 6 . Dentition taxocont, teeth chevion-shaped, details as in
P. triangularis. Chondrophore and resilifor not seen because of breakage of the only available shell, but probably as in

## P. triangularis.

Muscle insertions deeply impressed, best seen on steinkerns. Adductor scars subequal, the anterior scar slightly lerger, both scars subovate, placed immediately beneath the distal ends of the hingeline, ornamented by pominent growth lines. Posterior scar slightly more ovate than the anterion, which tends to be slightly subtrigonal, a veak buttress developed dorsally; the
anterior scar nore strongly buttressed dorsally and posteriorly. Pedal muscles of unequal size and different shape anteriorly and posteriorly, both placed close to the comissure; anterior scar triangular, about 1 mm lone, the long axis of the triangle directed towards the unbones, subparallel and very close to the comissure, located immediately anterior of the anterior adductor scar; posterior sear elongate, as in Po triangularis about 1.5 mm long, located about midway between the posterior adductor and the urbo, its long axis subparallel to the conmissure and directed umbonally; both scars ornamented with fine growth lines. Visseral muscle scars faint, two elongate muscle scars placed in line, running directly ventrally from the anterior side of the umbo, fading at about the level of the dorsal marrin of the adductor scars; just anterior to these scars, a faint groove on the steinkern runs towards the anteroventral ancle, fading at about the same level as the visceral scans. Pallial line simple. Valve nargins not crenulate.
Remarks The description is based on well-preserved
material from Lukow, Foland, kindly donated by Dr. A. Radwanski,
together with reference to the descriptions and figures of de
Loriol (1897) and Cottreau (1925). Variation is not as great
as in P. triangularis, degree of elongation being the rast
variable feature, inflation and anterior length tending to be
more constant. D'Orbigny's original (1850, p. 339) diagnosis
was very brief - "Espece voisine du N. Caecilia, mais plus
renflee, plus courte dans son ensenble, tronquee sur la region
anale" - and fror the diagnosis alone, recognition is difficult,
several authors (see symonomy) having misidentified the species before Cottreau figured the type. The first valid description of the species is that of de Loriol (1875 in de Loriol \& Pellat), Who ignored d'Orbigny's vame, and introduced the name Nucula cottaldi; his figures show it to be indistinguishable fron d'Orbigny's species, and so his name takes priority. Nucula ornati Quenstcdt ( 1856, p. 505, pl. 67, figs. 22, 23) has been confused with $N$. calliope by authors such as Damon (1860) and Makowski (1952), but Quenstedt's figure is clearly of a different species, being more elongate, and with the umbones more centrally placed; it is probably conspecific with N. caecilia d'Orbigny. The composite nould figured by Prillips (1829, p1. 5, fig. 4) ss Nucula (cast), from the Mariae Zone Oxford Clay of Scarborough, is preserved in the Yorkshire Museum (YM ISp 580 ), together with several topotypes, and it is likely that this represents the earliest figure of the species as the specimens agree well with the continental specimens. Phillips figure is reversed.

The musculature is more deeply impressed than in
P. triangularis, a feature probably related to the greater thickness of the shell in P. cottaldi. Placement of the muscles is similar to that seen in P. triangularis, but there are marked differences in the pedal muscle scars, the anterior scar being triangular rather than I-shaped, and smaller than the posterior scar. The visceral muscle scars are more disjunct in P. cottaldi, most likely due to increased shell thickness.

Range and occurrence Mariae Zone, Scarborough (YM Tsp
and Warboys, Hunts. (GSM Dr 2829); Cordatum Zone, Warboys, Hunts. (GSM Dr 2508, Dr 2526, Dr 2538); Oxford Clay, Osmington, Dorset (GSM Y2049).

Callovian of France (d'Orbigny, 1850; Cottreau, 1925), Lukow, Poland (Lamberti - Athleta Zones, Makowski, 1952), and Germany (Quenstedt, 1856). Oxfordian of Switzerland (de Loriol, 1897). Type specimens from the Oxfordian of Boulonge-sur-Mer, France, (de Loriol in de Loriol \& Pellat, 1875).

Superfanily iNUCULANACEA H. Adams \& A. Adans, 1858<br>Family MAlimilidae H. Adams \& A. Adams, 1858

Genus MESOSACCELIA Chavan, 1946 (p. 197)

Type Species Originally designated by Chavon, 1946, p. 197, Nucula forsteri Mülor, 1847, p. 17, pl. 2, fig. 1, from the U. Cretaceous of Germany .

Diagnosis Elongate oval in outline, inflated, the antero- and posterodorsal margins straight, set at an obtuse angle to each other, the posterodorsal margin about $1 \frac{1}{2}$ to 2 times the length of the anterodorsal margin; posterodorsal angle sharply rounded, about a right angle, the posterior margin truncate to gently convex, posteroventral angle more evenly rounded; no resilifer, ligament external, amphidetic, nymphs elongate and very small; slight depression beneath the umbo
between the anterior and posterior rows of teeth; anterior and posterior rows of teeth straight, not gently concave, as in the similarly-shaped Saturnia; ornament of irregular concentric growth lines; pallial sinus small.

Remarks Puri (1969, p. N235) placed Mesosaccella in the Nuculanidae, although as Chavan (1946, p. 197) originally observed "Le ligament reste donc externe, en marge du bord immediatenent derriere le crochet, ce qui exclut l'attribution aux vraies Nuculana et notamment au sous-genre Saccella". The lack of a resilifer, the ligament being wholly external, indicates that Mesosaccella should properly be classified in the Malletiidae, and it is here placed in that family. The range is here extended down to the Callovian, the genus only being known previously from the Campanian and Maestrichtian ( V . Cretaceous).

Cox (1937, p. 192) referred M. morrisi to the genus Palaeoneilo Hall, a genus orieinally described from the Devonian of the United States, on the basis of similarities in outline and dentition. However, Palaeoneilo, Elthough believed by some authors to extend into the Mesozoic, is primarily a Palaeozoic genus, characterised by a faint radial posterior sulcus, and with the end teeth of the posterior series tending to pass above the anterior series in the area beneath the umbo. This means that there can be no development of a slight depression beneath the unbo, a necessary feature of Mesosaccella. Examination of well-preserved specimens of M. morrisi reveals the presence of
this slight fossette, thus invalidating their placement in Palaeoneilo; M. morrisi also lacks the posterior radial groove, and is much more elongate and subequilateral than Palaeoneilo. Cox also maintained (1937, p. 193; 1940, p. 6) that in Palaeoneilo (including $P$. morrisi), the pallial line was entire, with no sinus, and in his 1940 paper, this caused him to place Palaeoneilo in the Ctenodontidae, a family characterised by the lack of a pallial sinus. Specimens of M. morrisi from the English Midlands show the presence of a clearly developed pallial sinus, and so Cox's conclusions about the Jurassic species he assigned to Palaeoneilo must be amended. The status of Palaeoneilo has been considered, and a series of probable topotypes of the type species figured, by McAlester (1968, p. 4l, pl. 15, figs. 1-15).

Mesosaccella morrisi (Deshayes, 1853). Pl. 3, figs. 1-19.
? 1828 Nucula nuda sp. nov.; Young \& Bird (Bean, Ms.), p.230.
v? 1829 N. nuda Young \& Bird; Phillips, pl. 5, fig. 5.
1850 Nucula (Leda) Phillipsii sp. nov.; Morris, p.318, pl. 30, figs. I, la. (non N. phillipsii McCoy, Carboniferous species). 1850 Leda alpina sp. nov.; d'Orbigny, p. 336, no. 136.

1853 Leda morrisii nom. nov.; Deshayes, p. 282. (nom. nov. pro N. phillipsii Morris non McCoy).
? 1904 Palaeoneilo choroschowensis sp. nov.; Borissiak, p. 32, p1. 2, figs. 1la; Ilb.
? 1925 Leda alpina d'Orbigny; Cottreau, p. 11, pl. 38, fig. 3.
v. 1937 Palaeoneilo phillipsii (Morris); Cox, p.192, pl.15, figs.l-3.

1940 P. morrisii (Deshayes); Cox, p.6.

Type specimen The holotype of Morris' 1850 (pl. 30, figs. I, la) figure of Nucula (Leda) Phillipsii is not preserved with the rest of Morris' types in the $B M$ (NH), and must be considered lost. The specimen figured by $\operatorname{Cox}$ ( 1937, p1. 15, fig. 1) from the Oxford Clay of Christian Malford, Wiltshire (the type locality) is here designated neotype (BMI L67154). The two other specimens figured by Cox (op. cit., figs. 2, 3) from the same locality are neoparatypes (BM L67155, IM L67148 respectively).

Diagnosis Medium-sized species (up to 17.6 mm L), equivalve, subequilateral, subovate in outline (H 48.8-73.8\%, $\bar{x} 60.4 \%$ ); inflation relatively high (I 41.1-56. $8 \%, \bar{x} 51.1 \%$ ), always greater than anterior length in any particular shell (AL 34.5-52.3\%, $\bar{x} 42.5 \%$ ). Urrbones small, broadly rounded, orthogyrate, only very slightly salient to the hinge line (max. salience $I \mathrm{~mm}$ ), no umbonal sulcus on carina present. Dorsal margin an acute angle ( $\left.\mathbb{4} 131-160^{\circ}, \vec{x} 141.2^{\circ}\right)$, posterodorsal part straight to very Elightly conceve, anterodorsal part straight to very slightly convex. Omament consisting of fine growth lines, oceasionally coarsened into growth rugae.

May be distinguished from the closely-related M. galatea (Dumortier ex d'Onbigny) [See Cox 1936s p. 465; 1937, p. 1917 by its much greater inflation, greater anterior length (AL 32.3$38.7 \%$, $\bar{x} 34.5 \%$ in M. gelatea), smaller unbonal angle ( < 146$157^{\circ}, \bar{x} 150.8^{\circ}$ in M. gaiatea) and difference in ornament; M. Relatea is ornamented by very fine, regularly spaced, incised concentric striae, slightly oblique to the growth lines.

## Measurements

See Appendix 3.

|  | L | H | I | AI | $<$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbb{N}$ | 125 | 124 | 35 | 122 | 111 |
| $\overline{\mathrm{X}}$ | 11.4 mm | $60.4 \%$ | $51.1 \%$ | $41.5 \%$ | $141.2^{\circ}$ |
| Max | 17.6 | 73.8 | 56.8 | 52.3 | 160 |
| $\operatorname{Min}$ | 4.8 | 48.8 | 41.4 | 34.5 | 131 |
| OR | 12.8 | 25.0 | 15.4 | 17.8 | 29 |

M. galatea (Measurements from Cox, 1937)

| If | 4 | 4 | - | 4 | 4 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $\bar{x}$ | 8.6 mm | $57.9 \%$ | $34.5 \%$ | $150.8^{\circ}$ |  |
| Max | 11.1 | 61.8 | 38.7 | 157 |  |
| Min | 7.1 | 55.1 | 32.3 | 146 |  |
| OR | 4.0 | 6.7 | 6.4 | $11^{\circ}$ |  |

Description Small to medium-sized species (I up to 17.6 $\mathrm{mm})$, equivalve, inequilateral to subequilateral, subovate in outline, posterior elongate to a varying extent. There is a relationship between overall size (measured as length), and the outline of the shell, smaller specimens (up to about 10 mm L ) tending to be subequilateral, with submedian umbones and relatively high $H$, while large specimens tend to be much more elongate, with the posterior becoming lengthened, the umbones moving anteriorly, and the height decreasing relative to $I$. Umbones small, pointed, placed between subinedian and about $34.5 \%$ of the length behind the anterior margin (AL $\bar{x} 11.5 \%$ ), orthogyrate, rounded, moderately prominent, but only slightly salient ( $\simeq I \mathrm{~mm}$ )
to the hinge margin. Dorsal margin an obtuse angle about the slightly salient umbones ( $\left\langle\bar{x} 141.2^{\circ}\right.$ ), the anterodorsal margin short (AL $\bar{x} 41.5 \%$ ), very slightly concave in juveniles, straight to slightly convex in larger specimens; anterodorsal angle evenly rounded, not produced; posterodorsal margin elongate, straight to slightly concave in all specimens; posterodorsal angle sharply rounded, even in juvenile forms, passing via a slightly obtuse angle into the rounded truncete posterior margin; posterior part of the shell not rostrate, but evenly produced; ventral margin evenly convex to elongate, convexity often dependent upon length, the median part of the ventral margin often tending to become straight in large forms, although not invariably; anteroventral angle not demarcated, the anterior margin passing evenly into the ventral margin, and being sharply rounded; posteroventral angle variably developed, usually an evenly rounded angle of about $90^{\circ}$, but often not clearly developed, the ventral and posterior margins being continuously curved. Ornament consicting of faint concentric growth lines, sometimes locally coarsened to form growth rugae; no radial or regular concentric ribbing developed. Shell margin entire, with no gapes.

Dorsal areas clearly differentiated; a small ovate depression (up to about 1.5 mm long) immediately in front of the umbones, and a lanceolate, slightly impressed area (up to about 2.0 mm long), located immediately posterior to the umbones, which represents the attachment site for the external amphidetic liganent. A longer (up to about 6.5 mm long) shallower,
lanceolate depression, delimited laterally by a sharp break of slope, lies immediately posterior to the umiones, and reaches almost to the posteroventral angle; this probably represents a primitive escutcheon.

Hinge teeth arranged in two straight rows, set at an obtuse angle of about $141^{\circ}$ to each other, not meeting, each terminating just either side of the umbo, leaving a gap occupied by a very faint depression imnediately beneath the umbo; this depression probably foreshadows a resilifer, but is not well enough developed to be a functional attachment site for an internal lisanent. Meoth normally developed, taxodont, chevronshaped, the points directed towards the umbo, interlocking well with the teeth of the opposite valve, increasing in size distally, the posterior row about $30 \%$ longer than the anterior row, a specimen 10.3 mm long possessing 21 posterior teeth and 16 anterior teeth. Anterior adductor muscle scar small, subovate (about 1 mm long in a specimen 14.7 mm long), placed immediately ventral of the anterior end of the hinge plate; posterior adductor muscle scar small ( 1.5 mm long in the specimen mentioned above), subrectangular, less deeply impressed than the anterior scar, placed immediately ventral of the posterior end of the hinge plate, about 4 teeth from the posterior extremity. Posterior pedal retractor nuscle scars very narrow and elongate, deeply impressed, placed parallel to the posterodorsal margin, imnediately ventral of the hinge plate, reaching from above the posterior adductor scar almost to the umbones (Fig. 2.10). Anterior pedal retractor scars narrow and short, placed parallel
to the anterodorsal margin, immediately ventral of the hinge plate, located about one-third of the distance between the anterior adductor scar and the umbo. A narrow elongate scar often runs anteroventrally from the anterior point of the umbo towards the pallial line, dying out just above and anterior to the anterior adductor scar (Fig. 2.10); this scar could perhaps be analogous with the visceral mass integument scar found in species of Solemya, or could represent the intestinal scar (Stoll, 1939, p. 351).

Remarks The specimen figured by Phillips (1829, pl. 5, fig. 5) as Nucula nuda Young \& Bird, from the Oxford Clay of Scarborough, Yorkshire, is preserved in the Yorkshire Museum (YM Tsp 188), and is a poorly-preserved steinkem showing no diagnostic features. No dentition or muscle scars are visible, and the only similarities with M. morrisi are ones of general shape. It is possible that N. nuda Phillips is conspecific with M. morrisi, but in view of the poor preservation of the type material of the former species, and the lack of better preserved topotypes, it is not possible to unite the two species; a further point of note is that no certain specimens of M. morrisi have yet been found above the Athleta Zone. The name Nucula nuda was introduced by Young \& Bird (1828, p. 230) from a Bean Ms name, for "a smaller nucula, a little more oblong, ...... from the second shale at Scarborough", and was a nomen nudum until figured by Phillips the following year.

The species was first described properiy by Morris in 1850, based on specimens collected from the Oxford Clay of Christian

Malford, Wiltshire, but he unfortunately gave it a neme already preoccupied by a Carboniferous species, Nucula phillipsii McCoy. Three years later, Deshayes (1853, p. 282) renamed the species Leda morrisii, and this specific name has remained valid since that date.

Leda alpina d'Orbigny (1850, p. 336, no. 136) from the Callovian of Castellane (Trance), figured by Cottreau (1925, pl. 38, fig. 3), is clearly close to M. morrisi, but the posterodorsal margin seems much too concave for this species, and the posterior margin too elongate and pointed. Further study of a population of topotype material wculd greatly aid in the proper interpretation of this French species.

Borissiak (1904, p. 31) described five species of Palaeoneilo from the ? Volgian of the Moscow region, one of which, P. choroschowensis, agrees very well with the English specimens of M. morrisi. However, in view of the age of Borissiak's specimens, it is possible that they belong to Mr danmariensis (Buvignier), a Portlandian species with a clearlydeveloped umbonal carina and a markedly truncate posterior margin. The specimen figured by Borissiak (op. cit., pl. 2, figs. lla, 11b) appears to lack the carina, and the posterior margin is of M. morrisi type, so on purely morphological grounds, reference to M. morrisi is possible. On the same plate, Borissiak figured four other species of Palaeoneilo from the same horizon, all of which could lie within the range of variation of a single species. Taken from this point of view, the overall population is rather more equilateral and less elongate than the British Callovian species.

Nucula symmetrica Borissiak (Makowski, 1952, p. 6, pl. 5, figs. 3, 3a) from the Callovian of Lukow, Poland (specimen courtesy of Dr. A. Radwanski), lacks a pallial sinus, and clearly cannot be assigned to liesosaccella. In general outline, it closely resembles Recent species of Malletia, with a faint posterior carina giving a truncate posterior margin, but differs from Malletia in the lack of a pallial sinus (Fig. 2.10).

The large collections of this species which may be made at many localities in central England indicate that this is a very variable species, the greatest variation being in degree of elongation and inzletion, anterior length and height normally being dependent on overall length. There does seem to be an increase in elongation up the stratigraphical sequence, Grossouvrei Subzone specimens tending to be more elongate, with more rounded ventral and posterior margins, than specimens from the Medea Subzone, which are often more subequilateral. However, there is no reason to split the species into chronological subspecies, as there is an overlapping range of variation at all levels, and no clear-cut distinctions may be made between 'varieties'.

Pyritized specimens from Stewartby, Beds., (bed 7), and some other well-preserved specimens from bed $8 B$ at the same locality and at Kempston, Beds. (GSM 75695-75703), show the dorsal regions very clearly, allowing the recognition of small external ligament sutures on either side of the umbones. Thus Chavans (1946, p. 197) statement that the ligament in

Mesosaccella is posterior needs slight emendation. Speden (1970,

## 131.

p. 42) described similar ligament sutures in the U. Cretaceous Malletia evansi. The interpretation placed on the anterior and posterior pedal retractor scars is based on the descriptions of M. evansi given by Speden (op. cit., p. 43), the main difference being in the position of the anterior pedal retractors.

Renge and occurrence Lower Oxford Clay of England, very abundant in the Jason - Athleta Zones at all exposures. Possibly present in the Mariae Zone Upper Oxford Clay of Scarborough, Yorkshire. Possible records also from the Callovian of France (d'Orbigny, 1850).

Subclass CRYPTODONTA Neumayc, 1884<br>Order SOLETYYOIDA Dall, 1889<br>Superfamily SOIFMYACEA H. Adams \& A. Adams, 1857<br>Family SOLEMYIDAE H. Adams \& A. Adams, 1857

Genus SOLEMYA Lamarck, 1818 ( p . 188)

Synonyms: Solenimya Bowdich, 1822
Solenomy Children, 1823
Stephanopus Scacchi, 1833
Solenymia Swainson, 1840
Solenymya Schaufuss, 1869

Type species Subsequently designated by Children, 1823, p. 27 , Solemya mediterranea Lamarck, 1818, p. 488 (= Tellina togata Poli, $1795, \mathrm{p} .42$ ), Rocent, Mediterranean, O. Atlantic, N. Pacific.

Mediterranean - W. Atlantic.

Diagnosis
Elongate-oval in form, compressed, umbones placed near the posterior maxgin, and level with hinge margin; valves with narrow anterior and posterior gapes; ligament opisthodetic to slightly amphidetic, located between dorsal shell margin and large internal chondrophore; anterior adductor scar large, with a continuation ascending obliquely posteriorly from the posteroventral comer of the adductor, towards the dorsal margin, where it broadens out, marking the visceral mass attachment area; pallial line obscure, but entire; ornament consisting of irregularly arranged radial ribs.

Discussion Solemya has been divided into several subgenera on the basis of internal shell features, such as the relative positions of the ligament and chondrophore, thus making determination of fossil forms very difficult. ${ }^{15}$. Woodwardiana has an internal ridge running from below the umbones (Fig. 2.11) obliquely towards the posteroventral margin, which suggests that it is not a Solemya s.s., but in the absence of better-preserved material, it is not possible to make a subgeneric assignation. The discovery of better preserved specimens should allow subgeneric placement.

Roemer (1839, p. 43) states that in S. voltzii (U. Lias, Germany) "Jede Schale hat einen breiten, zusammengedrückten, sehr schrägen, das halb äusserliche, halb innexliche Band aufrehmenden Zahn." This suggests the presence of a chondrophore, as Solemya is edentulous, which necessitates placement within

Solemya s.1., rather than Acharax or Adulomya.

Solemya woodwardiana Leckenby, 1859, P1. 3, figs. 20-31. v* 1859 S. woodwardiana sp. nov.; Leckenby, p. 14, pl. 3, fig. 7.

Type specimen The holotype of Leckenbys pI. 3, fig. 7 and three paratypes, all from the "Xelloway Rock" of Scarborough, Yorkshire, are preserved in the Sedgwick Museun, Cembridge (SM J6008, J12568-12570).

Diagnosis Compressed Solemya with riblets radiating from the umbonal area, more marked towards the anterior and posterior extremities.

## Measurements

See Appendix 3.

|  | L | H | AL |
| :--- | :--- | :--- | :--- |
| N | 19 | 19 | 19 |
| $\overline{\text { X }}$ | 19.5 mm | $45.6 \%$ | $78.5 \%$ |
| Max | 38.0 | 50.0 | 84.6 |
| Min | 11.0 | 39.1 | 72.7 |
| OR | 27.0 | 10.9 | 11.9 |

Description Medium to large in size (up to 38 mm long), equivalve, inequilateral, elongate-elliptical in shape (H 39$50 \%, \bar{x} 46 \%$ ) with umbones situated close to the posterior margin (AL $73-84 \%, \bar{x} 78 \%$ ); dorsal and ventral margins subparallel, anterior and posterior margins almost semicircular in smaller forms, becoming more pointed in larger forms;
inflation low, but not accurately measurable; umbones not prominent, but apparently opisthogyrate; hinge edentulous, ligament not visible; Iunule and escutcheon apparently absent; shell thin and fragile, ornamented by riblets radiating from the umbonal area, more marked at the anterior and posterior extremities, especially in large forms, and by faint concentric growth lines, with relict colour banding of brown and buff in some examples; adductor scars unequal (Fig. 2.11), anterior scar larger, with a visceral mass integument scar running from its posteroventral corncr obliquely towards the dorsal margin; posterior scar small ard obscure, its anterior margin marked by a radial ridge on the shell interior, running obliquely posteroventrally from the umbonal aree; ventral margin cracked radially in some examples, a feature associated with cracking of the periostracum in Recent species of 'Solemya'.

Remarks S. woodwardiana occurs as 2 distinct geographical morphotypes in Great Britain, with the type series (SM J6006, J12568-70) holding an intermediate position. In the Lower Oxford Cley of the Midlands, the species occurs as a small, finely striated form up to 17 mm long, whilst in the Athleta Zone shales of Brora, Sutherlandshire, a laxger, more coarsely ribbed form, up to 38 mm lonc, is found. The holotype, and three paratypes, from the "Kelloway Rock" of Scarborough are intermediate in both size and ornament, with a maximum observed length of 25 mm , and the beginnings of coarse radial riblets over the posterior parts of the valves. The early growth lines of the Scottish specimens reproduce the shell form of the
smaller morphotypes from Yorkshire and the Midlands, and in addition, the early stapes are smooth or finely striated, exactly as in the English forms. The bulk of the evidence, then, is in favour of uniting these three series of geographically separated populations into a single variable species, the variability most probably being environmentally controlled. Length/height and length/anterior length regression Iines (Fig. 2.12) show the close correlation between the three populations.

The radial ridge which delimits the anterior margin of the posterior adductor scar (Fig. 2.11), originates beneath the chondrophore in Recent species of 'Solemya', and is usually confined to forms with a chondrophore, suggesting that in . woodwardiana, a chondrophore is present, although it has not been definitely seen. A specimen from the Lower Oxford Clay of Wiltshire, presented to the author by Mr. S.R.A. Kelly, shows a depression on the inner surface of the dorsal margin which may mark the position of the chondrophore (Fig. 2.13).

The cracking seen at the ventral extremities of the shell in specimens of S. Woodwardiana from Brora may represent a parallel to the condition seen in Recent Solemya (Solemyarina), where the ventral raagins of the shell are frequently seen to break along wide radial fissures (Cox, 1969a, p. 242, fig. 2a). This is associated with radial lines of weakness in the periostracum, which extends beyond the shell margins in the Solemyidae.
S. voltzii Roemer (1839, p. 43, pl. 19, fig. 20) from the L. Toarcian Posidonienschiefer of Germany is closely related, as
noted by Leckenby ( 1859, p. 14), but appears to be slightly more elongate (AL $\overline{\times} 71.7 \%$; II $\overline{\times} 37.7 \%$ ) than the British forms, and is probably distinct. Roemer mentioned (op. cit.) that the umbones were closer to the anterior (sic) margin than shown in his plate, and so the AL valve should be greater than that measured from his plate. However, the lack of comparative material from the type area, and the uncertainty about the location of the type material, make specific comparison difficult.
Range and occurrence Common in the I. Oxford Clay of the
English Midlands (Jason and Grossouvrei Subzones at Calvert;
Grossouvrei Subzone at Bletchley; Obductum and Grossouvrei
Subzones at Stewartby, Jason and Crossouvrei Subzones at Norman
Cross), where the small, finely-ribbed form is found; the
same form also occurs in the Grossouvrei Subzone of Crook Hill
brickpit, near Weymouth. The internediate form is found in the
Hackness Rock (Athleta - Lamberti Zones) of Scarborough,
Yorkshire, and the large, coarsely-ribbed form in the Athleta
Zone Oxford Clay (Brora Brickclay Member of Sykes, 1973, pers.
comn.) of Brora, Sutherlandshire. The overall range of the
species thus appears to be M - U Callovian (Jason - Athleta Zones).

Subclass PTERIOMOPPFIIA Beurlen, 1944
Order ARCOIDA Stoliczka, 1871
Superfamily ARCACEA Lamarck, 1809
Family PARALLELODONTIDAE Dall, 1898
Subfamily GRAMMATODONTINAE Branson, 1942

Genus GRAMMATODON Meek \& Hayden, 1861 (p. 419)

Synonyms: Pseudomacrodon Stoll, 1934

Type species Originally designated by Meek \& Hayden, 186I, p. 419, Arca (Cucullaea) inornata Meek \& Hayden, 1859, p. 51, from the L. Jurassic of the Black Hills, Dakota, U.S.A.

Diagnosis Subrectangular to ovate in form, height greater than 50\% length, umbones placed about 30-35 \% behind the anterior margin; valve flanks smooth or costellate; valve margins closed; inner margin of hinge plate straight or slightly curved, with several nearly parallel and horizontal posterior pseudolaterals, and a series of small, oblique, cardinals, mainly anterior, converging to a point below the umbones;

## Subgenus GRAMMMATODON S.s.

Diagnosis Umbonal carina well-developed, marking off a distinctly-ornamented posterior area with closely spaced radial striae; coarsening of the radial riblets on the anterior extremity is often present.

Discussion The generic status of Grammatodon was discussed by Arkell (1930b), who considered it (together with Beushausenia) to be a subgenus of Parallelodon, a view which
cannot (as pointed out by Branson 1942, p. 248) be considered valid, as Grammatodon has priority as a name. Thus Branson (op. cit.) unites Grammatodon, Parallelodon and Cosmetodon (nom. nov. pro Beushausenia Cossmann), but considers them as subgenera of Grammetodon. Cox (1940) was followed by Dickins (1963) and Hewell (1969) in separating Parallelodon and Gramatodon, a decision based mainly on external dissimilarities, Parallelodon being more elongate, often posteriorly alate and having a well-marked byssal sinus; Parallelodon also has fewer posterior pseudolaterals and anterior cardinals.

1. Grammatodon (Grammatodon) minima (Leckenby, 1859), P1. 4, figs. 1-11.
v* 1859 Cucullaea minima sp. nov.; Leckenby, p. 13, pl. 3, fig. 5.
1881 Macrodon pictum sp. nov.; Milaschewitsch, p. 145 (nom. nov. pro Cucullaea cancellata Rovillier, 1846).
? 1883 M. pictum Milaschewitsch; Lahusen, p. 80, pl. 2, figs. 13a, 13b.

1905 M. ctiom Milaschewitsch; Borissiak, p. 15, pl. 2, figs. 16a-c, 17a-c.

1905 M. pictum Milaschewitsch; var. a nov.; Borissiak, p. 18, p1. 2, figs. 18a-d.

1905 M, pictum Milaschewitsch var. b nov.; ibid, p. I8, pl. 2, figs. 19a-c.

1905 M. pictum Milaschewitsch var. c nov.; ibid, p. 19, pl. 3, figs. 2a, 2b.

1905 M. pictum Milaschewitsch var. d nov.; ibid, p. 19, pl. 3, figs. lanc.
? 1905 M . of. pictum Milaschewitsch; ibid, p. 17, pl. 3, figs. 6a, 6b.
? 1911 Cucullaea so.; Boden, p. 65, pl. 7, figs. 7, 7a. 1915 M. pictum Milaschewitsch; Krenkel, p. 309, p1. 26, figs. 9, 10 .

1919 Arca (Nemodon) Golafussi (Roemer); Couffon, p. 68, pl. 5, figs. 1-1c.

1923 Cucullaea couffoni nom. nov.; Cossmann p. 12, pl. 6, figs. 5-7 (nom. nov. pro A. (Nemodon) Golafussi Couffon non Roemer)
1930a Prarllelodon (Gramatodon) Schourovskii (Rouillier); Arkell, p. 340, pl. 15, figs. 7-7b. (non Rouillier).

1930a P. (G.) picturn (Milaschewitsch); Arkell, p. 341, p1. 15, figs. $8-8 \mathrm{~b}$.
? 1934 Pseudomacrodon pictum (Milaschewitsch); Stoll, p. 9, pl. 1, fig. 12.

Type specimen Holotype of Leckenby (1859, p. 13, pl. 3, fig. 5) preserved in the Sedgwick Museum, Cambridge (SM J6007), together with I paratype (SII J12359), both from the 'Kelloway Rock' of Scarborough, Yorkshire.

Diagnosis Medium-sized (up to 15 mm L), subrectangular to subquadrate species (H $62-84 \%$, $\bar{x} 73 \%$ ), with variable but often high inflation ( $I 36-76 \%, \bar{x} 55 \%$ ) ; outline extremely variable, subquadrate to elongate - oval in form; hinge line length correlates closely with shell height (Ih 66-82\%, $\bar{x} 73 \%$ ); posterodorsal angle varies from 99-120 ${ }^{\circ}\left(\overline{\mathrm{x}} 111^{\circ}\right)$; sculpture
dominated by regular concentric riblets, with faint radial threads over the whole of the valve surface, producing a finely cancellate pattern; no coarsening of radial threads at the anterior extremity of the valves, a major point of difference fron most other species of Granmatodon; margin entire; 3-5 horizontal posterior pseudolaterals, 5-7 oblique anterior cardinals, converging to a point below the umbones.

## Measurements

See Appendix 3.

|  | I | H | I | AL | Lh | $<$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| N | 47 | 47 | 27 | 47 | 46 | 46 |
| $\overline{\mathrm{X}}$ | 10.3 mm | $72.6 \%$ | $55.1 \%$ | $41.4 \%$ | $73.4 \%$ | $110.9^{\circ}$ |
| Max | 14.5 | 84.3 | 76.1 | 50.5 | 82.1 | 118 |
| Min | 6.0 | 62.4 | 36.5 | 31.0 | 66.4 | 99 |
| OR | 8.5 | 21.9 | 39.6 | 19.5 | 15.7 | 19 |

Description Small to medium sized, subrectangular to subquadrate, inequilateral, equivalve species, with an extremely variable form; unbones situated between 30-50\% of the shell length behind the anterior margin (AL $\bar{x} 41.0 \%$ ), prominent, inflated and slightly prosogyrate, salient up to 3 rm above the hinge-margin, not contiguous; ligament area of variable form, but usually occurring as an elongate diamond, up to 3 mm wide in very inflated specimens; area stretches almost the entire length of the hinge-margin, and is ornamented by chevron-shaped grooves radiating from beneath the umbones; dorsal margin straight to slightly concave, often having the anterodorsal angle protruding
above the general level of the dorssl margin; anterior margin very strongly convex, its anteriomost point lying anterior to the anterodorsal angle, curving evenly into the gently convex to straight ventral margin; form of the ventral margin depends on shell length, being evenly curved with the anterior margin in short forms, and becoming straight, but not parallel to the hingemargin, in more elongate forms; in elongate forms, the ventral margin is oblique to the hinge margin, and if extended, would meet the hinge-margin at a distance of about $1 \frac{1}{2} \mathrm{x}$ shell length behind the posterodorsal angle; posterior margin obliquely truncate and very slightly convex, meeting the ventral margin at the prominent, but rounded, posteroventral angle; posterodorsal angle variable from $99-120^{\circ}\left(\bar{x} 111^{\circ}\right)$, tending to be greater in the more elongate forms; umbonal carina present, of variable sharpness depending on valve inflation, more inflated forms having more rounded carinae, and forms with low inflation having more angular carinae; sculpture distinctive, with concentric riblets dominant over rather faint radial striae, which become slightly stronger anteriorly and posteriorly, giving a very finely cancellate pattorn over the whole of the shell; there is no marked coarsening of the radial striae on the anterior or posterior extremities; margin entire, and not crenulated; adductor scars suborbicular, subequal, not raised on buttresses, and placed close to the hinge plate; pallial line entire; dentition of typical Grammatodon type, with $3-5$ horizontal posterior pseudolaterals, and 5-7 oblique anterior cardinals converging on a point beneath the umbones (Fig. 2.14); dorsal

## 142.

and ventral margins of all teeth are very finely crenulate.

Remarks G. minima is a very distinctive species, whose main diagnostic features are the subquadrate form, and the finely cancellate ornament pattern. Leckenby's holotype (SM J6007) is a well-preserved left valve which shows the ornanent particularly well; on the same slab is a paratype (un-numbered) showing more closely-packed concentric riblets, and allowins examination of the ligament area. Both specimens agree closely with the abundant material from the Lower Oxford Clay, and there can be no doubt that they are conspecific.
G. minima is identical to the species from the Oxfordian of Russia whose variation has been discussed at length by Borissiak (1905, p. 49), and which was placed oy him in M. pictum Milaschewitsch. Borissiak recognised five varieties of M. picturn, based on slight differences in outline, inflation and position of the umvones, occurring in beds dated as Oxfordian - Sequanian at several localities. Exactly the same range of variation may be seen in the British material, collected mainly at Calvert and Stewartby, where the great abundance of the species allows detailed study of the variation to be made. Whereas Borissiak found that two of his varieties (var. c. and var. d.) were apparently restricted to deposits of 'Sequanian' age, specimens fitting with all his varieties may be found together in the same bed in Britain, suggesting that variation is continuous, and not stratigraphically controlled. In the Lower Oxford Clay of the English Midlands, G. minima appears quite. suddenly at the base of the Grossouvrei Subzone (Coronatum Zone),
invariably in great numbers, and study reveals that continuous variation does occur, siving a species of very diverse form, and which it is not advisable to split into stratigraphical subgroups. Study of pl. 4 and the statistical data (Appendix 3) reveal the range of variation of the species, the most variable characters (inflation and anterior length) having high values of $V$ and $s^{2}$.

The most marked difference between individuals is in degree of inflation, very tumid and very flat specimens being found side by side, and if large samples were not available, it is likely that Borissiak's classification would be accepted. The degree of inflation has a profound effect on the width and shape of the liganent acea, wider, rather triangular areas occurring in very trinid specimens, whilst specinens of Iow inflation usually have areas of lanceolate form. It is also noticeable that it is only the very inflated forms ( $I>60 \%$ ) which show the development of an obliquely elongate ventral marein, more subquadrate forms usually being considerably less inflated. Examination of the very inflated forms reveals that it is only in the late stages of growth that high inflation and obliquity develop, the latest-formed parts of the shell being very steepsided, together with the relatively rapid expansion of the anterior parts of the shell. The most obvious difference between the specimens described by Borissiak and the British forms, is one of maximun size; the largest British specimen know is 14.5 mm long, whilst the maximun size of Borissiak's specimens is 23 mm . However, all other parameters have the same
range of proportions as the British specimens, and the most likely explanation is that the Russian forms are larger due to genetic or ecological effects.

A good deal of variation in the strength of the fine radial striae occurs in G. minima, there being a gradation from forms where the flanks of the shell are almost devoid of radial elenents to forms in which radial striae are much more obvious, and a clear cancellate pattern is developed. There is no apparent correlation between strength of radial striae and any other shell parameter, cancellate development occurring in each morphotype to varying degrees. A11 specimens share, however, the lack of conspicuous radial riblets on the anterior extremities, although there is slight coarsening of the striae anteriorly and posteriorly. This is in direct contrast to miost other Jurassic specics of Granmatodon, inoluding G. concinna and G. montanevensis, which usually have up to 6 prominent anterior radial riblets. The same is true of the posterior area, which in other species of Gramatodon is usually ornamented with 12-15 coarsened radial striae, whilst in G. minirua, although there is slight coarsening of the radiel striae on the posterior area, they are still very fine, and neod to be examined under the microscope. Borissiak's description and figures suggest that Russian forms of the species have more prominent radial sculpture over the whole shell, although a good deal of veriation may be seen from his figures. In view of the variation in strength of ornament to be found in British forme, it seems most unlikely that this feature is of use in specific separation of collections
145.
from the two areas, and when all the other similarities are taken into account, there can be little doubt that the Russian and British forms belong to the same species.

The specimen figured by Lahusen (1883, p. 80, pl. 2, figs. 13a, 13b) as M. pictum appears also to be decorated with rather prominent radial stria, which are coarsened over the anterior and posterior areas, and there is some doubt as to whether or not his identification is correct.

Stoll (1934, p. 9) erected the new genus Pseudomacrodon, with Macrodon pictun Milaschewitsch as type, on the premise that the dentition is nst that of Macrodon (now known as Parallelodon) or Cucullaea, although it is closer to the former. Pseudomacrodon is synonymous with Grammatodon.

Range and cccurrence Abundant in the Lower Oxford Clay (Grossouvrei Subzone) of Central and Southern Engtand (found at Weymouth, Calvert, Bletchley, Stewartby and Norman Cross at this level), sonetimes also occurring as rare individual specimens in the Jason and Obductun Subzones at these localities: Hackness Rock (Athleta - Lamberti Zones) of Scarborough, Yorkshire, the type locality.

On the continent, it has been recorded from the Callovian af Maine-et-Loire and Deux-Sevres (France) by Couffon (1919) and Cossmann (1922); the M. Callovian of Pommerania (Stoll, 1934); the "M.-U. Kelloway, Jason - Ornaten horizont" (Jason Coronatum Zones) and "Lamberti - Schichten" (Lamberti Zone) of Popilani, Russia (Krenkel, 1915); the Cordatum Zone of Russia (Lahusen, 1883; Boden, 1911), and the "Oxfordien und Sequanien"
of Central Russia (Borissiak, 1905).
Thus the overall range in Britain and N.W. Europe appears to be Jason - Lemberti Zones, whilst in Russia it continues to the top of the Oxfordian.

```
2, Grarmatodon (Graruatodon) concinna (Fhillips, 1829)
 P1. 4, figs. 12-21.
v* 1829 Cucullaea concima sp. nov.; Phillips, pl. 5, figs. 9, 31 (?).
- 1850 Arca gnoma sp. nov.; d'Orbigny, p. 339, no. 186. v.non 1853 Cucullaea concinna Phillips; Morris \& Lycett, p. 50,
``` pl. 5, fig. 7. EGrammatodon bathonicus Cox \& Arkell] .? 1856 Cucullaea concinna Fhillips; Quenstedt, p. 504, pl. 67, figs. \(15,16\).
non 1882 C. ef. concinna Phillips; Roeder, p. 64, pl. l, figs. \(5 a-5 e\).

1883 . . concinna Fhillips; Lehusen, p. 86, pl. 2, fig. 17.
1897 Arca (Macrodon) concinna (Phillips); de Loriol, p. 109, p1. 14, figs. 5-11.
? 1899 A. (Macrodon) concinna (Phillips); de Loriol, p. p1. 10, figs. 6-6a, 7-7a. 1901 A. enoma d'Orbigny; Raspail, p. 194, pl. 11, fig. 10.
? 1919 A. (Nemodon) gnoma d'Orbigny; Couffon, p. 68, p1. 5, figs. 2-2c, 3-3b.
non 1919 A. (Beuschausenia) concinna (Phillips); Couffon, p. 71, p1. 5, figs. 6-6c.

1923 Parallelodon enoma (a'Orbigny); Cossmarm, p. 14, pl. 6, figs. 8-12.

1925 A. gnoma d'Orbigny; Cottreau, p. 23, pl. 40, figs. 8, 9 (non figs. 10, 11).
- 1930a Parallelodon (Gramatodon) concinnum (Phillips); Arkell, p. 341, p1. 15, figs. 2-4.
v.? 1972 G. concinnus (Phillips); Walker, p. 118.

Type specimen Holotype of Phillips (1829, pl. 5, fig. 9)
is preserved in the Phillips collection at the Yorkshire Museum, York (Tsp 135), from the Oxford Clay (Mariae Zone), near Scarborough, Yorkshire. A clay steinkern.

Diagnosis MoGerately elongate Grammatodon (H \(\bar{x} 62.1 \%\) ) with a prominent umbonal carina; posterior area ornamented by 12-15 fine radial striae, anterior area with \(3-5\) coarse radial riblets; the striae are often developed over the flanks of the shell, being more elevated towards the posterior; ventral margin smoothly convex, curving evenly into the anterior margin, posterior margin oblique, with a clear posterodorsal angle ( \(\bar{x} 106^{\circ}\) ).

Description Equivalve, inequilateral, umbones placed anterior of median (AL 32.6-45.7\%, \(\bar{x} 39 \%\) ); large sized shells (up to 24 mm I), obliquely subrectangular in outline (H 52.2\(73.5 \%\), \(\bar{x} 62.1 \%\) ), with a long straight hingeline occupying nearly the whole length of the shell (In 69.4-96.8\%, 部 \(83.2 \%\) ); umbones small, prosogyrate, distinctly salient to the hingeline (up to 3 mm ) and not contiguous (up to 3 mm separation observed); straight dorsal margin truncated anteriorly by the sharp anterodorsal angle, approximating a right angle; anterior and

\section*{248.}
ventral margins evenly and convexly curved, meeting the oblique posterior margin at the ventral end of the umbonal carina and forming the acute posteroventral angle; posterodorsal angle obtuse \(\left(92-126^{\circ}, \vec{x} 105^{\circ}\right)\). Shamply defined umbonal carina runs from the posterior side of the umbones nore or less directly to the posteroventral angle, marking off the radially striated posterior area (12-15 striae) flanks of the shell often ornamented by fine radial striae, giving a finely cancellate pattern where they cross the growth lines; \(3-5\) coarse, widelyspaced radiel riblets diverge from the anterior side of the umbones, anc ase separated by intercalatory fine radial striae. Inflation noderate ( \(40.0-64.8 \%, \vec{x} 56.0 \%\) for both valves). Liganent duplivincular, cardinal area broad, widening with age, well-defined and ornamented with chevron-shaped grooves radiating from beneath the umbones.

Dentition taxodont, teeth radiating upwards from a point immediately beneath the umbones, the anterior series being short and oblique, while the posterior series flex over and run subparallel to the hinge maxgin. Margins entire, not crenulated. Musculature not seen.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lcccccc} 
\\
& I & H & AL & (2 valves) & I & Lh
\end{tabular} Posterodorsal <

Remarks
Etheridge ( 1875 , p. 326), in the 3 rd edition of Phillips 'Geology of Yorkshire', claimed that the holotype of G. concinna was in the Bean collection, although the specimen in the Yorkshire Museum labelled as the holotype bears a label referring it to the Reed collection. There is thus some doubt as to the authenticity of the supposed holotype, although the specimen bears a label in Phillips handwriting, and agrees with the original figure. The balance of evidence seems to suggest that Etheridge's record was in emror. Phillips paratype from the 'Kelloway Rock' (1829, p1. 5, fig. 31), an indeterminate steinkern, is not in the Phillips collection at York, and must be considered lost.
G. concinna is a very variable species (see Appendix 3), as may easily be seen from study of populations from Yorkshire and the English Midlands. The holotype, and all other topotypes seen, are steinkerns with no preserved shell material, so relationships with shelled specimens are rather difficult to establish with certainty, but the external form measurements, and ornament of the Yorkshire specimens agree well with those from the Lower Oxford Clay of central and southern Bngland, with which they axe united here. The most notable difference between the two populations is in the value of the posterodorsal angle, the Yorkshire specimens having a slightly greater angle (110-120 \({ }^{\circ}\) ) than the central England ones \(\left(92-125^{\circ}\right)\). Other measurements are more or less equally variable (Appendix 3), with overlap between the two regions. Within the Midlands population, strength of cancellate ornamentation on the flanks of the shell is the most
variable feature, some specimens having virtually no radial striae whilst others have a strongly cancellate pattern. In all specimens, however, the anterior and posterior radial riblets and striae remain clearly defined. The presence of the anterior and posterior riblets and striae on the Yorkshire steinkerns suggest that they are in fact composite internal and external moulds, but no evidence of radial striae on the flanks is apparent.

Cottreau's (1925) figures of d'Orbigny's types, preserved in the Institut Paleontologique du Fusee Nationale d'Histoire Naturelle in Paris, leare no doubt that Arca gnoma d'Orbigny is synonymous with G. concinna. Cottreau also suggested (op. cit., p. 23) that 4. moma is merely a juvenile form of A. galathea d'Orbigny (1850, p. 339, no. 183), as both species occur together, with similar presarvation, at Villers-sur-Mer, A. gnoma being consistently smaller and having finer (but similar) ornament. Study of the specimens in question (d'Orbigny colln. numbers 3358 and 3359 respectively) reveals that A. galathea has a considerably different shape to A. gnoma, and is probably a Cucullaea. A. gnoma Couffon (1919) lacks anterior radial riblets, and cannot be considered synonymous.

The specimens figured by Morris \& Lycett (I853) as Cucullaea concinna, from the Great Oolite (Bathonian) of Gloucestershire, differ from the Oxford Clay species in being more subrectangular in outline, and having distinct regular concentric ornament. This species wes renamed G. bathonicus by Cox \& Arkell (1948), and both the holotype (GSM 49029) and three
topotypes (GSM 9.465, 83402, 83403) are preserved in the Geological Survey Museum, London. Walkers (1972) figure of G. concinnus from the Kellaways Rock of South Cave (Yorkshire) show a specimen with subparallel anterior and posterior tooth rows, suggesting closer affinities with Cucullaea. Study of Walkers specimens, preserved in the Hull University Geology Department supports this view.

Range and occurrence Kellaways Rock to Lower Oxford Clay (Calloviense to Jason Zones) of central and southern England; Kellaways Rock of Yorkshire (Walker); Oxford Clay (Mariae Zone) of Yorkshire (the type area); Callovian - Oxfordian of France, Germany, Switzerland and Poland.
3. Gramnatodon (Grammatodon) montaneyensis (de Loriol, 1901) P1. 4, figs. 22-24.
. 1850 Arca hersilia sp. nov.; d'Orbigny, p. 368, no. 343
(nom. nud.)
.? 1888 A. Quenstedtii nom. nov.; Iycett in Damon, pl. 2, fig. 9. (nom. nov. pro A. aemula Quenstedt, non Phillips)
* 1901 A. (Macrodon) rontaneyensis sp . nov.; de Loriol, p. 83, p1. 5, figs. 12-14.
- 1919 Arca (Beushausenia) concinna (Phillips); Couffon, p. 71, pl. 5, figs. 6-6c. (non Phillips)
- 1927 A. hersilia d'Orbigny; Cottreau, p. 59, pl. 47, figs. 12,13.
- 1930a Parallelodon (Gramnatodon) montaneyensis (de Loriol); Arkell, p. 341, pl. 15, fig. 6.
152.

Type specimen Lectotype designated herein, the specimen figured by de Loriol (1901, pl. 5, fig. 12) as Arca (Macrodon) montaneyensis sp. nov., from the 0xfoxdian of Montaney. Specimen preserved in the Polytechnicum à Zurich.

Diagnosis Large subrectangular Gramnatodon (up to 28 mr L) with a prominent umbonal carina; posterior area ornemented by 6-8 radial riblots, with faint intercalated secondaries, anterior area ornamented by 4-6 coarse radial riblets; flanks of the shell covered by regular radial striae, occasionally becoming obsolete; ventral margin subparallel to dorsal margin, anterior and posterior margins also subparallel, giving some specimens a rather rhomboidal outline.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lcccccc} 
& & \multicolumn{5}{c}{ (2 valves) } \\
& I & H & I & AL & Ih & posterodorsal < \\
N & 5 & 5 & 4 & 5 & 5 & 5 \\
\(\bar{x}\) & 23.8 nmm & \(63.0 \%\) & \(58.0 \%\) & \(38.5 \%\) & \(85.8 \%\) & \(108.8^{\circ}\) \\
Max & 28.0 & 66.7 & 62.8 & 42.9 & 91.1 & 116 \\
Min & 20.0 & 58.8 & 55.0 & 35.3 & 80.0 & 99 \\
OR & 8.0 & 7.9 & 7.8 & 8.6 & 11.1 & 17
\end{tabular}

Description
Equivalve, inequilateral, with umbones
situated anterior of median (AL 35.3-42.9\%, " \(\mathbf{x}\). \(8.5 \%\) ); outline subrectangular (H \(58.8-66.7 \%, \bar{x} 63.0 \%\) ), with most of the length being occupied by the long straight hingeline (Ih 80.0-91.1\%, \(\bar{x} 85.8 \%\) ); hingeline meeting the oblique posterior margin at the
obtuse posteroảorsal angie (99-116 \({ }^{\circ}, \bar{x} 108^{\circ}\) ); posteroventral angle well-marked, about a right angle, located at the point where the umbonal carina reaches the ventral margin; anterodorsal angle about a right angle, anterior margin curving evenly into the straight to slightly convex ventral margin, itself subparallel to the dorsal margin. Umbones inflated, prosogyrate, anterior of median, salient up to about 3 mm above the hingeline, not contiguous. Umbonal carina delimits the posterior area, which is ornamented with 6-8 radial riblets and faint intercalatories; the anterior parts of the valves are covered by 4-6 coarse radial riblets, diverging from beneath the umbones; flanks of the shell covered by regular radial striae which continue onto the anterior and posterior areas as the intercalatories; concentric growth lines of variable strength, occasionally showing marked growth halts. Overall inflation of both valves about equal to that of G. concinna (I 55.0-62.8\%, \(\bar{x} 58.0 \%\) ), giving a rather tumid shell, with maximum inflation slightly ventral of the hinge line. Iigament duplivincular, cardinal area broad (widening with growth), ornamented by chevron-shaped grooves radiating from beneath the umbones.

Dentition taxodont, with short oblique anterior cardinal teeth and long posterior pseudolaterals subparallel to the hinge margin; point of origin of the teeth is below the umbones, and the teeth radiate upwards. Margins entire, not denticulate. Musculature not seen.

Remarks The first record of this species is attributable to d'Orbigny (1850) in the Prodrome, but his
description was not diagnostic, and not being accompanied by a figure, must be considered as a nomen nudum. The species was validated by Cottreau in 1927, but by then, the species had already been described under another name by de Loriol (1901), accompanied by a recognisable description and figures, and so de Loriol's name must stand. There are similarities in general form between this species and G. concinna, as is apparent from comparison of the measurement tables and the regression lines (Fig. 2.15) although G. montaneyensis is slightly more rectangular. The main differences concern the position of the posteroventral angle, which in G. montaneyensis is not the most ventral part of the shell, the greater tendency for the ventral margin of \(G\). montaneyensis to be parallel to the hinge line, and the much more regular radial striae on the flanks of the latter species. The differences between these two species are not great, as is seen above, but none of the British specimens of G. concinna approach the subrectangular outline of G. montaneyensis, nor do they show such regular: ribbing. However, a specimen assigned to G. concima, from the Kellaways Kock of Sutton Benger, Wilts. (GSM Zr 1699), occurs in association with two specimens of G. montaneyensis at the same locality (GSM Zr 1698, 1700), and it is possible that G. montaneyensis is merely an extreme variant of G. concinna. The differences in riblet and striae density on the anterior and posterior areas remain, however, and until further specimens become available, the two species will be considered to be separate. Arca subtetragona Morris ( 1850 , p. 318, p1. 30, figs. 5-5b),
from the Kellaways Rock of Wiltshire, resembles G. montaneyensis in its strongly rectangular outline, but is not as elongate, and lacks the radial striae on the flanks of the shell. The specimen figured by Morris is lost, and no comparable specimens are preserved in any of the major museums, so the status of this species must remain uncertain. Arca Quenstedtii Lycett in Damon (1888), from the Oxford Clay of Weymouth raises similar problems, as it closely resembles A. subtetragona, differing only in the possession of regular radial striae on the flanks of the shell. In this respect, the similarities between A. Quenstedtii and G. nontaneyensis are very close, but again, Lycett's figured specimen is lost, and the exact status of the former species must remain in doubt.

Range and occurrence Kelleways Rock (Calloviense Zone) of Wiltshire, and possibly the Lower Oxford Clay (Jason Zone) of central Ingland (Stewartby). Oxfordian of France and Switzerland.
4. Grammatodon (Gramatodon) clathrata (Leckenby, 1859). F1. 4, figs. 25-26, PI. 5, figs. 1-4.
** 1859 Cucullaea clathrata \(\operatorname{sp}\). nov.; Leckenby, p. 13, pl. 3,
fig. 4.
v. 1863 C. clathrata Leckenby; Lycett, p. 44, pl. 39, figs. 4, 4a.
- 1867 C. clathrata Leckenby; Laube, p. 34, pl. 2, fig. 11.
- 1905 C. cf. clathrata Leckenby; Borissiak, p. 56, pl. 3.
figs. 15, 15a.
- 1948 C. clathrata Leckenby; Cox \& Arkell, p. 2. (pars).

Type specimen Holotype of Leckenby, 1859, pl. 3, fig. 4, a left valve from the Hackness Rook (Athleta - Lamberti Zones) of Castle Hill, Scarborough, Yorkshire, preserved in the Leckenby collection at the Sedgwick Museum, Cambridge (SM J6005).

Diagnosis Large elongate Gramnatodon (H \(\overrightarrow{\mathrm{x}} 60.9 \%\) ), rather variable in form, up to 50.7 mm long; inflation moderate ( \(\bar{x} 48.6 \%\) ), umbones anterioz of median (AL \(\bar{x} 35.4 \%\) ); hingeline shorter than in other species ( \(\operatorname{Lh} \bar{z} 72.0 \%\) ), posterodorsal angle larger ( \(\overline{\mathrm{x}} 135^{\circ}\) ); ornament finely cancellate, with wider, flatter radial riblets over the posterior parts of the shell. Differs from 'Cucullaea' contracts Fhillips by virtue of being more elongate, less inflated, and lacking the coarsened radial ornament on the anterior flank, having instead coarse flattened radial posterior \(2 i b s\),

Description Equivolve, inequilateral species, of large size (up to 50.7 mm L) and mbraperoidal outline (H 53.9-66.7\%, 자 \(60.9 \%\) ), with the umbones placed 27.5-40. \(2 \%\) of shell length ( \(\bar{x} 35.4 \%\) ) behind the antertios nocgins umbones inflated, prominent, prosogycete, fition up to about 4 ra above the hingeline, not contiguous. Ilingeline straight, relatively short (Ih 68.1-76.6\%, ※ \(72.0 \%\) ), measing the obliquely truncate posterior margin at an angle of ahout \(235^{\circ}\) (posterodorsal angle 126-140 ; \(\bar{x} 135^{\circ}\) ); anterioz mecgin evanly curved, meeting the dorsal margin at an obtuee englo of between \(100-120^{\circ}\), passing smoothly into the ventrel margin, which is itself subparallel to the hingeline; posteroventrel engle acute, marking the point
at which the rounded umbonal carina reaches the ventral margin. Ornament consists of fine radial riblets over the anterior and median parts of the valves, becoming wider and flatter over the posterior regions; fine concentric growth lines produce a cancellate pattern where they cross the costellae. Ligament duplivincular, cardinal area diamond-shaped and clearly-defined, ornamented with chevron-shaped grooves diverging from beneath the unbones. Inflation moderate ( \(140.0-56.8 \%, \bar{x} 48.6 \%\) ). Dentition taxodont, with the pseudolaterals being subparallel to the hingeline at both ends of the hingeline, and having fine crenulation running vertically up their dorsal and ventral faces. Margin entire, with no denticulations. Adductor muscle scars subequal in size, the posterior scar slightly the larger, but not being raised on a myophoric buttress; scars ovate, placed beneath the anterior and posterior ends of the hingeline; pallial line entire.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{llllccc} 
& L & H & I & AI & Ih & posterodorsal \(《\) \\
N & 9 & 9 & 9 & 8 & 7 & 8 \\
\(\overline{\mathrm{x}}\) & 33.3 mn & \(60.9 \%\) & \(48.6 \%\) & \(35.4 \%\) & \(72.0 \%\) & \(135.5^{\circ}\) \\
Max & 50.7 & 66.7 & 56.8 & 40.2 & 76.6 & 140 \\
Min & 23.5 & 53.9 & 40.0 & 27.5 & 68.4 & 126 \\
OR & 27.2 & 12.8 & 16.8 & 12.7 & 8.2 & 14
\end{tabular}

Remarks The variability of G. clathrata may be seen from the table of measurements and the plates, and agrees in
this respect with Arkell's (1929, p. 42) description of 'Cucullaea' contracta Phillips from the Corallian, a species which it resembles in form. The dentition and musculature of 'C'. contracta are not known, so its exact generic position is uncertain. These two are, however, distinct species, differing in form and ornamentation, as noted in the diagnosis above. \({ }^{1} C^{\prime}\). contracta has an average height of \(72.7 \%\), and an inflation of \(65.2 \%\), both considerably higher than in G. clathrata. The specimens from the Lower Oxford Clay of Stewartby and Chippenham (GSM 113414) are less inflated than the Yorkshire Cornbrash and Hackness Rock specimens, and very similar in all other respects, so it is likely that these differences are merely ecologically or geographically controlled.

The pyritised valves from Stewartby allow close examination of the dentition and ligament aceas, and show them to be of rather abnormal grammatodontinid type. Both the anterior and posterior pseudolaterals are horizontal, with very little evidence of either central vertical teeth, or oblique anterior pseudolaterals. In this respect they are very similax to the condition seen in the Cucullaeidae, although the pseudolaterals are somewhat shorter and more massive in that family. However, in the other typically cucullaeid features, such as a prominent series of central subvertical teeth, a prominent posterior myophoric buttress, and a subquadrate outline, G. clathrata is notably lacking, and the balance of evidence favours placement within the Gramatodontinae. It should be noted that this is the first occasion on which the species has been placed in this

\section*{159.}
family, previous authors having referred it to Cucullaea on the basis of its external form and ornament. The ornament pattern differs from that of a 'typical' grammatodontinid in that it lacks the strengthened anterior and posterior radial striae seen so often in the subfamily, and in this respect, agrees well with G. minima. The good state of preservation also allows recognition of the finely crenulated sides of the pseudolaterals, a feature which gives tighter interlocking of the two valves. Many British and Continental species of 'Cucullaea' closely resembling G. clathrata have been described in the Iiterature, although it is doubtful whether they are in fact true cucculaeids. Arca harpax a'Orbigny (1850) was shown by Cottreau (1928, p. 57, p1. 47, figs. 4-6) to be superficially close to G. clathrata, and have similar Cucullaea-like dentition. However, Arkell (1935, p. vii) united A. harpax and A. halie d'Orbigny (1850) in C. contracta Phillips, as he could recognise overlap in the variation rances of the three species, and all were of Oxfordian age. The French Oxfordian specimens agree with the English specimens of 'C' contracta in being more elongate and less inflated than G. clathrata. C. cancellata Phillips (1829, p1. 9, fig. 24) from the Scarborough Limestone (Bathonian) of Yorkshire is also closely related, but study of topotypes in the Yorkshire Museum reveals that the radial ornament is virtually obsolete, and the posterior margin is more truncate than oblique. Also, elongation is considerably less.
Cox \& Arkell (19.48, p. 2) unite Lycett's (1963) figures
of C. corallina Damon (p. 43, pI. 39, fig. 3) and G.clathrata
\[
160 .
\]

Leckenby (p. 44, pi. 39, fig. 4) in C. clathrata, together with C. corallina Iycett in Damon of Laube (1867). The originals of Leckenby's figures are preserved in the Sedgwick Museum Cambridge (SM J5670, J5669 respectively), and appear to represent two distinct species, vindicating Lycett's identifications. In addition to SM J5670, from the Cornbrash of Yorkshire, there are four specimens of C. corallina from the Yorkshire 'Kelloway Rock' in the Sedgwick Museum (SM J12360J12363), all of which are clearly distinct from G. clathrata. They agree well with Arkell's (1929, p. 42) conception of C. contracta Phillips (of which C. corallina Lycett in Damon is a junior synonym) in form and omementation. In the absence of specimens transitional between C. clathrata and 'C'. contracta, it seems best to extend the range of \({ }^{\prime} C^{\prime}\). contracta down to the Cornbrash, so as to include the Yorkshire Cornbrash and 'Kelloway Rock' forms. C. corallina Laube (1867, p. 34, pl. 2, fig. 11) fits into the extended range of the species.

Range and occurrence Cornbrash, Scarborough (the paratypes); Lower Oxford Clay (Medea Subzone, Jason Zone), Stewartby; Hackness Rock (Athleta - Lamberti Zones), Scarborough (the type locality); Oxford Clay, Chippenham, Wilts. (horizon unknown).

Order MYTILOIDA Ferussac, 1822 Superfamily MYPITACEA Rafinesque, 1815
Family MYIILIDAE Rafinesque, 1815
Subfamily MODIOLINAE Keen, 1958

Genus MODIOLUS Lamarck, 1799 (p. 87) nom. subst. pro Volsella Scopoli, 1777 (ICZN Opin. 325, 1955). Synonymy: Modiola Lamarck, 1801

Perne Adams \& Adams, 1858
Eurnodiolus Thering, 1900
Maudioia Monterosata, 1917

Type species Subsequently designated by Gray, 1847, p. 198, Mytilus modiolus Linnaeus, 1758, p. 706, Recent, Buropean seas.
```

Diagnosis Shell more or less trapeziform in outline, usually transversely elongate, with angle of obliquity usually less than 45°; inflation variable; anterior margin usually corvex, protruding in front of the umbones, which are never terminal; anteroventral region expanded, usually marked off from the body of the shell by a rounded ridge running from the umbones to the posternventral margin; hingeline smooth, lacking teeth; ligament extemal, long; shell smooth, or with concentric ornament.

```

\section*{Subgenus MODIOLUS s.S.}
```

Diagnosis Shell transversely elongate, well-inflated,
umbonal region frequently prominent and inflated; diagonal
bounding ridge of the anteroventral area well-defined; shell
smooth, sometimes with weak concentric plications; periostracum
hirsute in Recent specimens.

```

Remarks After introducing Modiolus in 1799, Lamarck decided two years later (1801, p. 113) to amend the name to Modiola, the latter name then becoming generally accepted by himself and later workers. However, priority must take precedence over usage, and the ICZN ruling of 1955 (Opinion 325) declared Modiola to be invalid, thus reintroducing Modiolus into general acceptance.

Modiolus is a very long-ranging genus (Devonian - Recent), in which several subgenera have been distinguished, all (except Gibbomodiola Sacco [Oligocene - Recent]) of Recent age. The fossil species of Huarolus do not readily lend themselves to subgeneric classification, and most are left in Modiolus s.s. (Cox, 1940, p. 63). The status of Modiolus, and ite relationship with Mytilus and other Mytilidae, is discussed by Cox (1937, p. 339).

Modiolus (Modiolus) bipartitus J. Sowerby. Fl. 5, figs. 5-12. V* 1818 Modiola bipartita sp. nov.; J. Sowerby, 2, p. 17, p1. 210, fig. 4 (non fig. 3).
. 1829 M. bipartita J. Sowerby; Phillips, pl. 4, fig. 30.
. 1860 II. bipartita J. Sowerby; Damon, pl. 2, fig. 12.
- 1860 M. cuneata J. Sowerby; Damon, pl. 2, fig. 13 (non J. Sowerby).
. 1871 M. bipartita J. Sowerby; Phillips, pl. 13, fig. 25.
? 1901 M. Villersensis (Oppel); Raspail, p. 193, pl. 12, fig. 10.
. 1911 M. aequiplicata Strombeck; Boden, p. 68, p1. 7, figs. 13, 13 a only.
- 1915 M. tulipaea Lamarck; Cossmann, p. 10, pl. 5, fig. 10.
v. 1928 M. bipartita J. Sowerby; Douglas \& Arkell, p. 174. pl. 12, figs. 8, 9.
v. 1929 M. bipartita J. Sowerby; Arkell, p. 55, pl. 2, figs. 1-4.
? 1934 M. aequiplicata Strombeck; Stoll, p. 23, pl. 2, fig. 29.
v. 1940 M. of. bipartitus J. Sowerby; Cox, p. 67, pl. 5, figs. 11, 12.
- I948 Modiolus bipartitus J. Sowerby; Cox \& Arkell, p. 4. 1952 Modiola aequiplicata Strombeck; Makowski, p. 18, pl. I, fig. 15.

Type specimen Lectotype, designated by Arkell, 1929, p. 56, the specimen figured by J. Sowerby, 1818, p. 17, pl. 210, fig. 4, from the Oxford Clay, Osmington, Dorset, as Modiola bipartita, preserved in the Sowerby Colln, at the BM (NIH), specimen no. BM 43231.

Diagnosis Large species (up to 70 mm L), elongately oblique \(\left(\theta\right.\) about \(30^{\circ}\) ), height very variable ( \(H 66.0-100.2 \%\), \(\bar{x}\) \(77.6 \%\) ) ; hingeline about half the length of the shell (Ih 35.7\(58.0 \%\), \(\bar{x} 45.4 \%\) ), straight to very gently convex, passing via a rounded posterodorsal angle into the long, gently convex posterior margin; anterior margin short, truncate, slightly convex, the anteroventral angle variable rounded, about a right angle, passing into the sinuate ventral margin, which is often subparallel to the posterior margin; umbones subteminal, small, prosogyrate, their tips enrolled; umbonal ridge runs from the umbones in a straight line towerds the posteroventral aregle,
marking off the bulging anteroventral area; inflation equal to about half the length of the shell ( I 39-5 5.5\%, 信 45.8\%), at a maximum in the central part of the body of the shell, not along the umbonal ridge; ornament of concentric growth lines, locally raised into growth mugae, not imbricete.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lllll} 
& L & H & I & Ih \\
\(N\) & 29 & 29 & 25 & 26 \\
\(\bar{X}\) & \(50.1 \operatorname{mm}\) & \(77.6 \%\) & \(45.8 \%\) & \(45.4 \%\) \\
Max & 70.0 & 100.2 & 54.5 & 58.0 \\
Min & 36.5 & 66.0 & 39.0 & 35.7 \\
OR & 33.5 & 34.2 & 15.5 & 22.3
\end{tabular}

Description Medium to large sized, equivalve, markedly inequilateral and oblique, umbones subterminal; elongate elliptical to subtrapezoidal in outline, very variable in relative proportions of length and height (H 66.0-100. \(2 \%\), \(\bar{x}\) \(77.6 \%\) ). Hinge line long, about half the length of the shell (Lh \(\bar{x} 45.4 \%\) ), straight or gently convex, reaching anteriorly to the umbones; anterior margin short, obliquely truncate, convex, the anteroventral angle varying from a sharply-rounded right angle to a continuous smooth curve, passing into the gently convex anteroventral margin; the ventral margin becomes gently concave in the region where the umbonal suicus reaches the margin, then straightens out posteriorly and becomes convex again, passing evenly into the sharply convex, semicircular,

\section*{165.}
posteroventral angle; posterior margin meeting the hinge line at a variably rounded angle of about \(150^{\circ}\), the margin itself being obliquely elongate and gently convex, often subparallel to the posteroventral margin, passing smoothly into the posteroventral angle. Umbones small, pointed, subterninal, prosogyrate, their tips tightly enrolled, salient up to about 5 mm above the hinge margin. A rounded ridge runs fron the apex of the umbones in a more or less straight line to the anterior side of the posteroventral angle, dividing the inflated body of the shell from the small, trigonal, anteroventral region of the shell; a prominent rounded depression runs along the anteroventral side of the umbonal ridge; the anteroventral region bulges prominently anteriorly, and attains its maximum inflation near the anterior margin; maximum inflation of the body of the shell (I \(\bar{x} \quad 45.8 \%\) ) occurs in the median region of the shell, not along the umbonal ridge. Ornament consisting of irregularly spaced concentric growtin lines, locally coarsened and elevated as growth rugae; no imbricate ornament.

Ligament elongate, external, opisthodetic, parivincular, nymphs long, parallel to the hinge line. Hinge teeth absent. Musculature and pallial line not visible.

Remarks The synonomy of this very conmon Upper Jurassic species has been discussed by Arkell (1929, p. 56) and Cox (1940, p. 68), and little need be added to their conclusions. Arkell showed that the holotype of Modiola tulipaea Lamarck (refigured by de Loriol, 1897, p1. 15, fig. 1-3) agrees perfectly with that of M. bipartita J. Sowerby, thus simplifying the
continental usage considerably. The holotype of Mytilus halesus d'Orbigny, from the Callovian of Pas-de-Jeux, figured by Cottreau (1925, pl. 40, fig. 21-22) is a poorly preserved specimen which seems close to Mo bipartitus, but more topotype materials needs to be exmined before definite conclusions can be drawn. The specimen figured by Corroy (1932, op, cit.) as Modiola holesa (d'Orbigny), from the I. Callovian of the Paris Basin, agrees perfectly with topotypes of M. bipartitus, as does the specimen figured by Makowski (1952, op. cit.) from the M. Callovian of Lukow as Modiola aequiplicata Strombeck. Seversl topotypes of Makowski's species have been generously presented to the author by Tr. A. Radwanski of Narsaw University, and show, without any doubt, that the species is identical to M. bipartita.
M. aequiplicata Strombeck, a species usually recorded from the Oxfordian and Kimmeridgian of Europe, was considered by Cox on several occasions (1935, p. 162; 1940, p. 66; 1965, p. 36) to be synorymous with liodiola imbricata J. Sowerby (1818, p. 21, p1. 212, figs. 1, 3), a Bajocian to Callovian species. Cox believed that no valid distinctions could be drawn between these two species, and that they should be united in M. imbricatus, which had its range extended to include forms found in deposits of Rajocian to Kimmeridgian age. M. imbricatus seems to be restricted to the Bajocian - Callovian in Britain, and differs from M. bipartitus in its style of ormament (it has fine concentric threads, with pronounced crowth lamellae, imbricated at irregular intervals) and in its overall form. M. imbricatus
is usually less elongately oblique than M. bipartitus, with a less well-developed anteroventral bulge, the umbonal ridge being arcuate, usually fading before it reaches the ventral margin; the point of maximum shell inflation is also located on the umbonal ridge.

The holotype of Mytilus Consobrinus a'Orbigny, figured by Cottreau (1928, op. cit.) also agrees well with topotypes of M. bipartitus from Weymouth. Arkell (1929, p. 56) cleared up the confusion over the provenance and identity of the type specimen of M. bipartitus, designating Sowerby's plate 210, fig. 4 (BM 43231) as lectotype. Most continental authors seem to have been led into error by Sowerby's admittedly sparse notes on this species.

A species of Modiolus occurs rarely in the Lower Oxford Clay of the Midlands, but is invariably crushed Plat and considerably distorted, and as yet, no specimens identifiable at the specific level have been found. It is likely that these specimens belong to M. bipartita, as identifiable examples of the species occur in the Calloviense Zone at Stewartby and the Athleta Zone at Woodhan, and the crushed Lower Oxford Clay specimens seem to show no distinguishing features.

Range and occurrence Cornbrash - Corallian of Great Britain, especially common in the Cornbrash, Upper Oxford Clay and Corallian, but also being found in the Kellaways Rock, Lower and Middle Oxford Clay. Specimens recorded from the Enodatum and Grossouvrei Subzones at Stewartby, Medea Subzone at Bletchley, Obductum and Grossouvrei Subzones at Calvert, and Athleta Zone of

\section*{168.}

Woodham.
Many records from the Callovian - Oxfordian of Europe and India (Arkell, 1929; Cox, 1940).

\author{
Superfamily PIFNACEA Leach, 1819 \\ Family PIINIDAE Leach, 1819
}

Genus PINNA Linnaeus, 1758 ( p .707 )

Synonyms: Chimaeroderma Poli, 1795
Pinnarius Drmeril in Froriep, 1806
Pinnigenus Renier, 1807
Pinnula Rafinesque, 1815
Pinnites von Schlotheim, 1820
Pennaria MO゙rch, 1853 (non Oken, 1815)
Pinua Seguenza, 1877
Pina Koch, 1922

Type species Subsequently designated by Children, 1823, p. 34, Pinna rudis Linnaeus, 1758 , as figured in Lamarck, 1819, p. 60 , pl. 2, fig. 80. Recent, West Indies.

Diagnosis Equivalve, wedge-shaped, umbones terminal; valves with median carina, at least in juvenile stages; ribbing predominantly radial, but sometimes with growth undulations on the ventral region.

Subgenus PINNA s.s.

Synonyms: Chimaera Poli, 1795 (non
Linnaeus, 1758)
Sulcatooinna Hyatt, 1892
Sulcatipinna Girty, 1915
Quantulopinna Iredale, 1939
Subitopinna Iredale, 1939

Diamosis
Wedge-shaped; ventral margin straight to concave in outline; median carina well-defined; sculpture of radial ribs or rows of scales.
1. Pinna (Pinna) mitis Phillips, 1829. P1. 6, figs. 2-10. \(\mathrm{v}^{*} 1829\) Pinna mitis sp. nov.; Phillips, p1. 5, fig. 7.
? 1850 P. rugoso-radiata sp. nov.; d'Orbigny, p. 340, no. 190.
1883 P. mitis Phillips; Lahusen, p. 86, p1. 2, fig. 12.
1907 P. rugoso-radiata d'Orbigny; Cossmann \& Thierry, p. 51, pl. 3, fig. 1.
? 1925 P. rugoso-radiata d'Orbigny; Cottreau, p. 24, pl. 40, figs. 14-16.

V 1933 P. mitis Phillips; Arkell, p. 222, pl. 26, fig. 7 .
? 1934 P. mitis Phillips; Stoll, p. 19, pl. 2, fig. 9.
? 1940 P. ef. mitis Phillips; Cox, p. 132, pl. 10, fig. 11.
v. 1952 p. mitis Phillips; Makowski, p. 16, pl. 1, fig. 14.

Type specimen Holotype, the original of Phillips (1829, pl. 5, fig. 7) figure of Pinna mitis from the Oxford Clay

\section*{170.}
(Mariae Zone) of Scarborough, Yorkshire, preserved in the Yorkshire Museum (YM Tsp 219).

Diagnosis Large wedge-shaped Pinna with the dorsal margin straight to slightly convex, and the ventral margin strongly convex, ornamented with 13-22 fine, closely-packed radial ribs on the dorsal part of the valves, and 6-14 on the ventral part. Ventral part also covered with coarse, subconcentric growth rugae. P. mitis may easily be distinguished from P. lanceolata by its much smaller size, concave ventral margin, lack of puckerings on the posterior parts of the shell, and much finer ornament (fig. 2.16); P. Ianceolata has about 8-10 radial ribs on the dorsal part of each valve, and 3-5 on the ventral part.

\section*{Measurements}

See Appendix 3.

L

21
48.2 mrl
82.4
25.0
57.4

H
\begin{tabular}{cc} 
No. & No. \\
Dorsal ribs & Ventral ribs \\
18 & 18 \\
14.7 ribs & 9.2 ribs \\
22 & 14 \\
14 & 6 \\
8 & 8
\end{tabular}

Description Medium to large sized Pinna, up to 83 mm long, with low inflation and rapidly diverging dorsal and ventral margins; maximum height varies from 35-50\% of length, with mean at \(44.2 \%\). Umbones terminal, pointed, but often rather eroded. Dorsal margin straight to very slightly convex, ventral
margin markedly concave for up to 40 mm from umbones, then becoming straight or slishtly convex, curving evenly into the rounded truncate posterior margin; posterodorsal angle about \(110^{\circ}\), clear and well-marked. Median carina weak and not clearly visible, apparently because of the low inflation; region dorsal to the carina ornamented by 13-22 fine, densely packed radial riblets, with more intercalatories coming in posteriorly, the riblets being crossed by faint concentric growth lines, giving a fine reticulate pattern under the microscope; ventral region with 6-14 fine radial riblcts, increasing in number posteriorly occupying only the hale of the region nearer the carina, crossed by concentric growth welts strongest at the ventral margin and rarely reaching the median carina. No internal features are visible on any of the specimens examined, as the shell is so thin and fragile.

Remarks There has been a good deal of confusion in faunal lists about the name to be given to the Oxford Clay Pinna. Arkell (1933, p. 222) clarified the position by figuring the type of P. mitis and comparing it with P. lanceolata Sowerby, from the Corallian. Study of the diagnosis above and the plates show that the two are clearly distinct, P. lanceolata tending to expand gently away from the umbones, while P. mitis widens rapidly to give a fan-shaped shell. (See Fig. 2.16). At first sight, it appears to be a clear cut distinction between the large, slowly-widening P. lanceolata of the Corallian, and the smaller, wider P. mitis of the Oxford Clay. However, specimens from the Oxford Clay of Wiltshire (Christian Malford,

Chippenham and Wootton Bassett) preserved in the major museums all appear to belone to the form with widely-spaced ribs of lanceolata-type. They are mostly fragnentary, and so overall shape is hard to judge. The level is dateable by ammonites to top Coronatum - low Athleta zones, where one would expect to find P. mitis, as it occucs above and below this in other parts of England. Their general shape appears to fit better the mitis-form, as the dorsal margin is straight, not concave, and there is no suggestion of the curved form so typical of lanceolata. It is possible that these specimens belong to a coarsely-ribled variant of P. mitis, on even that they are just conceivably a new species. Unfortunately, not enough specimens are preserved to allow a clear decision to be made, and it is better at this stage to keep them in P. mitis. It should be noted, however, that they closely resemble some of the small forms of P. lanceolata from the Malton Oolite (Corallian), figured by Arkell (1933, pl. 29, figs. 1, 2). They share the same style of ribbing, with few, rather strong, wire-like ribs, and no intercalatories.
P. mitis and P. lanceolata may easily be distinguished, as noted in the diagnosis, by their different overall shape (Fig. 2.16). Young forms are rather more difficult to separate, as the similarities are greater in the juvenile stages. However, the ribbing in P. lanceolata is stronger and more wire-like, and also lacks the fan-shape of the rapidly expanding P. mitis.
P. rugosa-radiata d'Orbigny, from the Callovian of Pizieux, and also recorded by Cossmann from the Haute-Marne and Deux-

Sevres is synonymous with P. mitis, as study of the holotype reveals.
P. Cf. mitis Cox, from the Callovian - Divesian of Kachh is probably identical, but appears to have rather weak concentric growth welts on the ventral parts of the valves, unlike the British specimens. Intercalation of ribs as growth proceeds is well seen in this specimen.

Range and occurrence Abundant in the Jason - Coronatum Zones of the Lower Oxford Clay of the English Midlands, occurring at all the pits; Athleta - Mariae Zones (Mo-U. Oxford Clay) of Woodham, Bucks.; Mariae Zone Oxford Clay of Scarborough, Yorkshire; Cordatum Zone of Warboys, Hunts.; Coronatum Athleta Zones of Wiltshire; Kelleways Rock of Wiltshire.

Also found in the Callovian of France, Germany, Poland, European Russia, and probably India.
2. Pinna (Pinna) lanceolata J. Sowerby, 1821 P1. 6, figs.11-14.
** 1821 Pinna lanceolata sp. nov.; J. Sowerby, p. 145, p1. 281.
1822 P. capricomus sp. nov. ; Young \& Bird, p. 240, pl. 9, fig. 5.

1829 P. lanceolata J. Sowerby; Phillips, p1. 4, fig. 33. v. 1933 P. lanceolata J. Sowerby; Arkell, p. 219, pl. 28, fig. 5; p1. 29, figs. 1-3; pl. 55, fig. 3.

Type specimen Neotype designated by Arkell, 1933, p. 222, pl. 28, fig. 5, from the Lower Calcareous Grit, Olivers Mount, Scarborough, Yorks; probable topotype. Preserved in the

Sedgwick Museum, Cambridge, SM J511.

Diagnosis Very large, long (over 220 mm occasionally), narrow Pinna with dorsal and ventral margins diverging regularly, not unevenly as in P. mitis. Dorsal margin gently concave, ventral margin gently convex. Valves with median carina wellmarked, and inflation much greater than in P. mitis. Dorsal part of valve ornamented with 8-10 sharp wire-like radial ribs, fading posteriorly, ventral part with 3-5 radial ribs, on part of valve nearest median carina; subconcentric growth welts on ventral margin. Posterior part of valves marked by coarse concentric growth puckers, along growth lines.

\section*{Measurements}

See Aphendix 3.
\begin{tabular}{lccccc} 
& I & H & I & \begin{tabular}{c} 
No. \\
dorsal ribs
\end{tabular} & \begin{tabular}{c} 
Nontral ribs
\end{tabular} \\
\(\mathbb{1 7}\) & 7 & 7 & 6 & 7 & 5 \\
\(\bar{X}\) & 90.1 mm & \(34.6 \%\) & \(17.1 \%\) & 7.3 ribs & 4.2 ribs \\
Max & 170.0 & 38.9 & 26.5 & 8 & 5 \\
Min & 37.6 & 24.3 & 11.0 & 6 & 3 \\
OR & 132.4 & 14.6 & 15.5 & 2 & 2
\end{tabular}

Remarks This well-known Corallian species has been well-described by Arkell (1933, p. 219) and needs no further description; the differences between it and \(P\). mitis are considered above, and shown in Fig. 2.16. The range of P. Ianceolata is extended downwards to include two specimens from the Mariae Zone Oxford Clay of Scarborough, collected by

Leckenby, and preserved in the Sedgwick Nuseum, Cambridge (SM J26725, J26726). These two examples of the species are indistinguishable from specimens found in the Corallian (especially the Lower Calcareous Grit), and although they raise questions about the genetic relationships with the smaller P. mitis, morphological criteria demand their separation. It is tempting to suggest that \(P_{\text {P Ianceolata }}\) represents the adult stage, and P. mitis the juvenile, of a single species, but this is unlikely on two grounds. Firstly, there is always a difference in lateral outline of the two species (Pig. 2.16), P. mitis being more wadge-shepec, and as there is no shell resorption in bivalves, it is necessary to assume that these shape differences are original. Secondly, the rib density and strength differs markedly, P. mitis always having more, finer, ribs than ever the very early stages of \(P_{0}\) lanceolata. Added to this the fact that the two forms are only rarely found together (the Mariae Zone Oxford Clay of Yorkshire is the only known occurrence), it becomes unlikely that the two species represent different growth stages of a single species.

Range and occurrence Oxford Clay (Mariae Zone) of Scarborough, Yorkshire, where it is rare; abundant in the Corallian (Arkell, 1933) in many parts of Britain. There is one specimen in the Sedgwick Nuseum, Cambridge (SM J28813) from the Kellaways Rock of South Cave, Yorkshire, which may belong to P. Ianceolata.

\section*{176.}

Order PTERIOIDA Newell, 1965
Suborder Pleritina Newell, 1965
Superfamily FTERIACEA Gray, 1847
Family PTERIIDAE Gray, 1847

\title{
Genus PIEropteriva Morris \& Iycett, 1853 (p. 16) (ex Lycett, 1850 (p. 413, 420), nom. nud. \\ Synonymy: Pterinoperna Whitfield, 1891
}

Type species Originally designated by Morris \& Lycett, 1853, p. 17, Gervillia costatula Fudes-Deslongchamps, 1824, p. 131, pl. 5, figs. 3-5, from the Bathonian of Europe. Diagnosis Subequivalve (left valve more convex than right valve), inequilateral, oblique, bielate, with a long pointed posterior auricle and a short, rounded or pointed, anterior auricle; hinge line long, straight, thickened and transversely crenulated anteriorly, with one (IV) or two (RV) elongate posterior lateral teeth, subparallel to the hinge margin; resilifer wide, flattened, triangular, munning posteroventrally from beneath the points of the umbones; externally, the posterior auricle bears up to four elongate grooves, subparallel to the hinge margin, the lowest of which corresponds to the lateral teeth; ornament dominantly concentric, but radial ribs present on the eariy growth stages in some species.

Remarks The name Pteroperna was first introduced by Iycett (1850, op. cit.) for a species (P. pibbosa Lycett, nom.
nud.) from the Inferior Oolite of Gloucestershire, but no figures of the genus or species were published, and it was not until three years later that the name was validated (with a different type-species) by Morris \& Iycett (op. cit.).

Cox ( \(1940, \mathrm{p} .88\) ) pointed out that the ligamental area of Pteroperna is external and obtusely triangular, not "internal and nearly parallel with the external margin", as stated by Morris \& Lycett (1853, p. 17). The external grooves subparallel to the hinge margin are of use in distinguishing Pteroperna from Pteria and most bakevelliids, although similar grooves may sometimes be seen in some species of Bakevellia s.s. These grooves are of considerable use in specimens where it is not possible to see the interior of the hinge, and where only external features may bo used in generic placement. Morris \& Lycett (1853, op. cit.) slso claim that a small anterior adductor scar is present, but the existence of this scar is doubtful (Cox, op. cit.).

Pteroperna? pygmaea (Iunker) PI. 5, figs. 13-17, PI. 6, fig. 1. * 1837 Avicula pygmeea sp. nov. ; Dunker, in Koch \& Dunker, p. 37, p1. 3, figs. 6a-6c.
v.non 1853 Pteroperna pygmea (Dunker); Morris \& Lycett, p. 19, pl. 2, figs. 11, 11a \(\equiv\) P. costatula (EudesDeslongchamps)_7.

1874 Gervillia pygmaea (Dunker); Brauns, p. 309.
? 1882 Avicula pygmaea Druker; Roeder, p. 59, pl. 3, fige. 1a,1b.

1915 Pteroperna pygmaea (Duniker); Krenkel, p. 290, pl. 25, fig. 43.
non 1915 P. pypmaea (Dunker); Krenkel, p. 290, pl. 26, figs. 1,2. non 1934 P. pysmaea (Dunker) var. baltica nov.; Stoll, p. 16, pl. 2, figs. 3, 4.
v.non 1972 Gervillia pygmaea (Drnker); Walker, p. 121, p1. 8, fig. 18.

Type specimen Lectotype, here designated, the specimen figured in Dunker, 1837, p1. 3, figs. 6a, 6b, as Avicula pygmaea sp. nov., from the Corallian of Hannover. Present location of the type specimen unknown.

Diagnosis
Small to medium-sized species (up to 15.3 mm L), markedly inequilateral, oblique; hinge line long, straight, almost as long as the body of the shell (Lh \(80.7-93.8 \%\), \(\bar{x} 86.8 \%\) ), the anterior auricle about half as long as the posterior auricle (ALh 20.8-32.3\%, " \(27.4 \%\); PLh \(50.5-68.8 \%\), " \(59.5 \%\) ); anterior auricle relatively large and deep, posterior auricle pointed, with two strong riages subparallel to the hinge margin, neither auricle clearly marked off from the body of the shell; height \(57.3-73.0 \%\), \(\bar{x} 63.0 \%\); oblique leneth \(78.6-100.0 \%\), \(\bar{x} 88.7 \%\); angle of obliquity \(30-38^{\circ}, \bar{x} 32.9^{\circ}\); ornament consisting of fine, regularly spaced concentric lines, about 0.5 mm apart, becoming more densely packed on the auricles.

\section*{Measurements}

See Appendix 3, and fig. 2. 17 for the measurements used.
\begin{tabular}{llllclcc} 
& L & Ih & ALh & PIh & OL & H & \(\theta\) \\
N & 11 & 11 & 9 & 9 & 11 & 11 & 9 \\
\(\bar{x}\) & 11.5 mm & \(86.8 \%\) & \(27.4 \%\) & \(59.5 \%\) & \(88.7 \%\) & \(63.0 \%\) & \(32.9^{\circ}\) \\
Max & 15.3 & 93.8 & 32.3 & 68.8 & 100.0 & 73.0 & 38 \\
Min & 5.1 & 80.7 & 20.8 & 50.5 & 78.6 & 57.3 & 30 \\
OR & 10.2 & 13.1 & 11.5 & 18.3 & 21.4 & 15.7 & 8
\end{tabular}

Description
Small to mediun sized species, subequivalve, left valve slightly more inflated than the right valve, inequilateral, oblique, pteriiform. Hinge margin long (Lh \(\bar{x} 86.8 \%\) ), straight, the enterior part about half the length of the posterior part (ALh \(\bar{x} 27.4 \%\); FIh \(\overline{\times} 59.5 \%\) ); anterodorsal angle sharp, acute, passing into the sinuate anterior margin; anterior margin of guricle convex, becoming concave in the area where the faint bounding sulcus reaches the margin, then convex again, passing smoothly into the evenly convex ventral margin; posterior margin emarginate and deeply concave dorsally, becoming gently convex ventrally, and passing into the ventral margin via a sharply rounded, acute, posteroventral angle; shell markedly oblique, the angle between the hinge line and the oblique length about \(33^{\circ}\), the oblique length usually slightly greater than the length of the hinge margin. Umbones small, rounded, slightly prosogyrate, placed about a quarter of the shell length behind the anterior margin (AL \(\bar{x} 27.4 \%\) ), those of the left valve salient about 0.5 mm to the hinge line, those of the right valve hardly salient. Posterior auricle longer and narrower than anterior auricle, with a sharp-topped ridge munning from the umbones to the posterior emargination,
presumably marking the position of the posterolateral tooth; another ridge, slightly less elevated, runs along the posterior part of the hinge margin of the posterior auricle; posterior auricle marked off from the body of the shell by a wide sulcus running to the dorsal side of the posteroventral angle. Anterior auricle shorter, deeper, with a faint ridge along the hinge margin, marked off from the body of the shell by a very faint depression running subperpendicularly from the hinge margin. Ormament consisting of faint concentric lines, regularly spaced on the body of the shell, about 0.5 mm apart, becoming more closely packed on the posterion auricle; at the dorsal extremities of the anterior euricle the lines bifurcate and become more elevated; on the body of the shell the concentric Iines are seen to be fine grooves.

Ligament area extemal, oblique, flattened, the small resilifer placed imnediately below the unbo, and running posteroventrally from it. The hinge margin anterior to the unbones is obliquely flattened, and has a series of about 12 very fine, rather faint, vertical teeth. Just anterior to the umbo, on the ventral edge of the hinge margin of the left valve, is a rounded peglike apophysis, with a central depression on the upper surface; immediately anterodorsal of the apophysis is a slightly smaller triangular-shaped socket (Fig. 2.18). Posteriorly, a long, narrow posterior lateral tooth runs from the umbo about two-thirds of the way to the posterion end of the hinge line, immediately ventral of the ligamental area, Musculature and pallial line unknown. Inner ostracun of nacreous aragonite, outer ostracum of prismatic calcite.

Remarks Five well-preserved specimens of P? pygmaea from the Oxford Clay of Christian Malford (Wiltshire), housed in the Bristol City Museum (BCM Cb4777-4781), are the basis of the above description, and between them they demonstrate clearly the nature of the species. In size, shape and ornament, they agree closely with the specimens described and figured by Dunker from the Corallian of the Hannover area, and there can be little doubt of their identity. In one of the Bristol Museum specinens (Cb4777), it has been possible to remove the shell from the clay steinkern and examine the hinge (Fig. 2.18), thus proving that the specirens concerned are pteriids rather than bakevelliids, as they lack multiple ligament pits. In most respects, the hinge of P? pygmaea agrees with that of the type species (P. costatula ), but differs in possessing a peglike divided tooth just anterior to the urabo of the left valve, and in the much weaker development of the series of short anterior teeth. In some ways, P?? pymmaea is closer to Pteria than Pteroperna, especially in the presence of the toothlike processes below the unbo and the single posterior lamina, making exact generic placement within the Pteriidae uncertain. It appears to represent a transitional stage between Pteria and Pteroperna, having certain features (i.e. the 'dentition') typical of Pteria, and others (i.e. the external grooves on the posterior auricle) typical of Pteroperna. Further material would greatly help in clarification of the generic relationships, but unfortunately, the shell is so fragile that examination of the hinge almost invariably results in the destruction of the
specimen. Thus in our present state of knowledge, it is not possible to place this species with certainty, but as a concession to historical usage, it is left, for the moment, in Pteroperna.

There has been a good deal of confusion over the identity of P . pygmaea in the literature, few authors having correctly interpreted the species. Morris \& Iycett (1853, op. cit.) figured two specimens from the Bathonian of Minchinhampton under the name P. pygmaea, but this is a misidentification of P. costatula (Deslongchamps), characterised by the sharplydifferentiated, finger-like anterior wing, and frequent radial ribbing on the early growth stages. P. emarginata Morris \& Lycett (1853, p. 19, pl. 2, fig. 10), from the same horizon and locality, has a minute anterior wing, and is clearly different. Avicula pygmaea Roeder (op. cit.) is undoubtedly closely related to Dunker's species, but is much too large (H 45 mm ) and has rather a short hinge (Ih 71.9\%); identity with P. pygmaea is doubtful. Krenkel (1915) appears to have caused much of the subsequent confusion by figuring a Gervillella, which clearly shows the serial ligament pits (pl. 26, figs. 1, 2), under the name F. pygmaea. On the previous plate (pl. 25, fig. 43) he figured a correctly identified P. pyomaea, but this figure has been largely overlooked by later authors (Cox, 1940, p. 90; Walker, 1972, p. 121). Stoll (1934, p1. 2, figs. 3, 4) figured two specimens of \(P\). pygmaea \(\operatorname{var}\). baltica nov, which are specifically distinct from P. pygmaea, being much larger ( I 35 mm ), with very narrow, elongate posterior auricles, and
a virtually obsolete anterior auricle. Her figures also seem to have suffered by being mercilessly trimmed around the edges, and it is quite possible that some of the outline has been lost. Gervillia pymaea Walker (1972, p1. 8, fig. 18) is fer too oblique ( \(\theta 21^{\circ}\) ), has too short a hinge line (Lif \(67.0 \%\) ) and not great enough height (H35.2\%) for P. pygnaea. Walker accepts Krenkels figure (pl. 26, figs. 1, 2) showing the serial ligament pits as belonging to P. pygmaea, and on this basis places his species in Gervillia.

Other similar species axe p? blakei Cox (1940, p. 89, p1. 6, fig. 8) from the Athleta Zone of Cutch (India), in which the anterior auricle is far too elongate, narrow and pointed; Avicula obliqua Buvignier ( 1852 , p. 27, p1. 16, figs. 38-40) from the Kimeridgian of Prance, sirilar in form to P? blakei; and Avicula polyodon Buvignier (in Sauvage \& Buvignier, 1842, p. 533, pl. 4, figs. 1, 2) from the Corallian, which is much closer to P. costatula then P. pygmaea.

Range and occurrence Occurs rarely in the Lower Oxford Clay (Enodatum Subzone - Athleta Zone) of the Midlands, and in the Coronatum - Athleta Zone Oxford Clay of Christian Malford, Wilts.

The type series comes from the Corallian of the Hannover area, Germany, and specimens are also recorded from the M.

Callovian of Lithuania (Krenkel, 1915).

Tamily INOCEPAMIDAE Giebel, 1852

Genus Parainoceranus Voronetz, 1936 (p. 23)

Type species Sulsequently designated by Cox, 1954, p. 47, Parainoceramus bulkurensis Voronetr, 1936, p. 34, pl. 1, figs. 2, 8, 10, from the U. Triassic (Carnian) of Russia.

Diagnosis Mediun to large-sized genus (up to at least \(80 \mathrm{~mm} H)\), equivalve, moderately inflated, rectangular to trapeziform in outline, with hingeline of variable length; posteriorly zubalate, wing not clearly differentiated fron the body of the shell; umbones protruding only slightly above the hinge margin, subterminal, prososyoateg anterior face of shell flattened, more or less impressed; liganent area flat, with variable number of pits; short anterios and elongate posterion teeth present in some species, at, leaat: in early growth stages; surface smooth or with weak concentric plication; shell structure of normal inoceranid type.

Remarks Perainoccramus was introduced by Voronetz (1936) to contain the Triassic to Jurassic equivalve inoceramids with an impressed, flattened anterior region and small, only very slightly salient umbones; it is also the only inoceramid genus to have hinge teeth, al though they are not always present. Po subtilis (Iahusen) shows all the features typical of the genus, and is one of the toothed species, having two small mytiliform teeth beneath the umbo of the right valve. The fragility of the shell renders the ninge of \(P_{0}\) subtilis difficult
to develop, but from the few specimens seen which show the hinge, it is apparent that there are fewer ligament pits than in other species of Parainoceramus, only five being seen in any specimen. As in other gonera of inoceramids, there is a great deal of variation in ribbing strength and density within any species of Parainoceramus, including P. subtilis, and all intermediate stages between an almost srooth form and a form with regular concentric ribs may be seen.

Parainoceramus subtilis (Lahusen). Pl. 7, figs. 1-9. * 1883 Perna subtilis sp. nov.; Lahusen, p. 86, pl. 2, figs. 10, 11.
.? 1904 Mytilus nikitiniensis sp. nov.; Ilovaisky, p. 253, pl. 8, fig. 9.

Type specimen Lectotype, here designated, the specimen figured by Lahusen (1883) as pl. 2, fig. 10, from the Coronatum Zone Oxford Clay of Tschulkowo, Russia. Present location of the specimen unknown, probably lost.

Diagnosis Large species (up to 72.5 mm L ), equivalve, subrectangular in outline, with umbones small, subterminal, slightly prosogyrate, not prominent; height exceeding length (H 110.3-143.0 \% " X \(124.3 \%\) ), hinge line length about half overall shell length (in 40.9-67.2 \%, 伩 53.0 \%) ; anterior margin straight to evenly convex, forming an obtuse angle with the hinge line; posterior margin straight to evenly convex, continuous with the ventral margin; inflation low; ligament
narrow, only five pits seen, the interspaces wider than the liganent pits; two small mytiliform teeth lie beneath the wimbo of the right valve; ornament very variable, from almost smooth to forms with regular concentric ridges.

\section*{Measurements}

See Appendix 3, and Fig. 2. 19 for the measurements used.
\begin{tabular}{lccl} 
& L & H & Lh \\
N & 25 & 25 & 25 \\
\(\bar{X}\) & 20.9 mm & \(124.3 \%\) & \(53.0 \%\) \\
Max & 72.5 & 143.0 & 67.2 \\
Win & 3.3 & 110.3 & 40.9 \\
OR & 69.2 & 32.7 & 26.3
\end{tabular}

Description Large species, equivalve, inequilateral, subrectangular to subovate in outline, of low inflation. Hinge margin straight, posterodorsal angle rounded, obtuse, sometimes clearly marked, in other specimens not well angulated; posterior margin straight to evenly and fully convex, passing into the evenly curved ventral margin without angulation; anterior margin evenly convex, occasionally almost straight in the half nearest the umbones, forming an obtuse angle with the hinge margin, passing smoothly into the ventral margin. Umbones small, rounded, only very slightly salient to the hinge margin, gently prosogyrate, not enrolled, often subterminal. Anterior area flattened more or less at right angles to the commissure; no anterior auricle. Posterior part of the shell subalate, slightly compressed, but not clearly separated from the body of the shell.

No differentiated dorsal areas. Omment of faint concentric growth lines, with variable development of irregular or regular concentric ridges, sometimes restricted to the umbonal regions and fading distally, but usually persisting to the ventral margin; the spacinc and elevation of the ridges varies within individual specimens. Outer ostracum of prisnatic calcite, inner ostracum of nacreous aragonite; inner layer welldeveloped. Comnissure planar, lacking gapes.

Ligament area narrow, elongate, flattened, with five widely spaced, convex-sided ligament pits, the interspaces between the pits being at least as wide as the pits thenselves, excent in the region imnediately beneath the umbo, where the pits become crowded together; ventral margins of the pits are convex, but protrude only very slightly into the shell cavity. Immediately beneath the umbo of the right valve, two small 1 shaped teeth mark the anterior extremity of the hinge line, the anterior tooth being narrow, bladelike and elevated, the posterior tooth wider, lower and more peglike; between then is a small socket divided horizontally into two, the lower part being about twice the size of the upper part (Fig. 2.20).

Musculature and pallial line not visible.

Remarks
Lohusen's two specimens from the Coronatum Zone of Russia are indistinguishable from specimens to be found in the Lower Oxford Clay of England, and although he gives no indication of the nature of the hinge, there can be little doubt that Lahusen's figures represent an inoceramid. The hinge is occasionally seen in well-preserved specimens, showing that the
ligament pits are fewer and pore widely spaced than in other species of Parainoceramus, such as P. substriata (rilinster in Goldfuss) from the I. Lias. The short anterior teeth sometimes found in Parainocererns are well seen in P. subtilis (Fig. 2.20), but the elongate posterior teeth have not been seen, due to incompleteness of the shells examined. P. Substriate (intuster) closely resembles P. subtilis in shape, out is more inflated and has more densely packed ligment pits.

Perna lamellosa Lahusen (1883, p. 91, p1. 2, fig. 9) is closely related to P. subtilis, but is much narrower and higher, with rather prominent imbones forming an acute anglo between the antero- and posterodorsal margins. No specimens of P. Subtilis comparable with P . lamellosa have been seen.

Mytilus nikitiniensis Ilovaisky, from the Cordatum Zone of the Moscow region closely resembles \(P\). Subtilis, and undoubtedly is an inoceranid rather than a mytilid. Ilovaisky's figure shows a specimen with a slightly more acute umbonal angle than is seen in P. subtilis, but agrees well in all other respects, and could be synonymous.

Inoceramus inoceramoides (Hudleston) from the British Corallian, well-described and figured by Arkell (1933, p. 217, pl. 28, figs. 1, la), is clearly different, being markedly suborbicular with prominent umbones, the antero- and posterodorsal margins being concave in outline. Io nitiscens Arkell (1933, p. 218, pl. 28, figs. 2, 3), also from the Corallian, differs in having regularly spaced, distant, concentric lines over the whole shell, and in its much more equilateral outline, with
prominent submedian umbones, and a concave anterior margin.

Range and occurrence Common in the Lower Oxford Clay (Enodatum Subzone - Athleta Zone) of the English Midlands, occurring at all the major pits, and at Chickerell, Weymouth, and Chippenham, Wilts.

Also known from the Coronatun Zone (type horizon) and possibly from the Cordatum Zone (Ilovaisky, 1904) of Russia.

\author{
Superfamily PECTINACEA Rafinesque, 1815 \\ Family POSIDONIIDAE Trech, 1909
}

Genus BOSITRA de Gregorio, 1886 (p. 11)

Type species Subsequently designated by Cox, 1964, p. 47, Posidonia ornati Quenstedt, 1856, p. 501, pl. 67, fig. 27, from Brown Jura \(z\) of Gammelshaufen, Germany.

Diagnosis Ovate to subquadrate shells with regular concentric undulations; axricles absent or poorly developed in adults; ligament Elivincular.

Remarks The name Bositra is here applied to the posidoniids occurring in abundance in the Toarcian - Oxfordian of Europe, and which have been described under various specific names (see synonomy below). The main point in which Bositra differs from Posidonia is in the possession of an alivincular ligament of a pteriid, rather than an arcid type, i.e. it lacks the external ligament chevrons on the dorsal part of the cardinal area.

Bositra buchii (Roemer, 1836). P1. 7, figs. 10-18.
.* 1836 Posidonia buchii sp. nov.; Roemers p. 81, pl. 4, fig. 8.
. 1851 Posidonia ornati sp. nov.; Quenstedt, p. 517, pl. 42, fig. 16.
- 1852 Posidonomve alpina sp . nov.; Gras, p. 11, 48, pl. I, fig. 1.
. 1856 Posidonia ornati Quenstedt; Quenstedt, p. 501, p1. 67, fig. 27.
. 1856 Posidonia Parkinsoni sp. nov. ; Quenstedt, p. 501, pl. 67, fig. 28.
- 1856 Fosidonia ornati Quenstedt; Quenstedt, p. 551, p1. 72, fig. 29.

1883 Posidonomya ornati (Quenstedt); Lahusen, p. 86, pl. 2, fig. 8.
. 1928 Posidonomya alpina Gras; Guillaume, p. 22, p1. 10, figs. 4-13.
. 1934 Posidonomya alpina Gras; Stoll, p. 19, pl. 2, fig. 14.
. 1940 Posidonia omati Quenstedt; Cox, p. I03, pl. 7, figs. 10-11.
1964 ? Bositra buchii (Roemer); Cox, p. 39.
v. 1965 Bositra buchi (Roemer); Jefferies \& Minton, p. 156, p1. 19, figs. 1-4, 6-9.

1965 Bositra buchii (Roener); Cox, p. 50, p1. 6, fig. I.

Type specimen Holotype of Roemer's p. 81, pl. 4, fig. 8, from the Walker - Erde (Fullers Earth, Bathonian) of Geerzen, Germany, not present in the Roemer collection at the Roemer Museum in Hildesheim, W. Germeny, and must be considered lost.

Diagnosis Small to medium in size, up to 15 mm high, witll strong concentric folds. Shell extremely thin and fragile; rather variable in shape, although generally suborbicular. Diffors from 'Posidonia' bronni Goldfuss in being rather smaller and more oblique.

\section*{Measurements}

\section*{See Appendix 3.}
\begin{tabular}{lllll} 
& L & \(H\) & Lh & AL \\
N & 50 & 50 & 50 & 50 \\
\(\overline{\mathrm{X}}\) & 7.7 m & \(83.9 \%\) & \(48.8 \%\) & \(35.1 \%\) \\
Max & 15.0 & 97.7 & 62.1 & 45.0 \\
Min & 2.4 & 67.7 & 40.0 & 22.4 \\
OR & 12.6 & 30.0 & 22.1 & 22.6
\end{tabular}

Description Equivalve, inequilateral, suborbicular, with height 67.7-97.7 \% of length, \(\bar{x} 83.9 \%\). Umbones prosogyrate, anterior to median (AL 22.4-45.0 \%, "X \(35.1 \%\) ), only slightly salient to the hingeline; maximum shell height located posterior to the umbones, giving a slightly oblique appearance. Dorsal margin straight, the rest of the shell margin a continuous sweeping curve. Ornament consists of strong concentric folds affecting the whole thickness of the shell; crests of the folds rounded, being separated by angular furrows; spacing of folds varies within a population, but is usually fairly constant within any given specimen. Wide anterior and posterior gapes. Shell very thin, with prismatic calcite outer layer and nacreous inner layer. Cardinal area thicker shelled than the rest of the
shell, consisting of a central triangular resilifer (approx. 45\% length of hingeline) bordered anteriorly and posteriorly by the external ligament attachment areas, each approx. \(27 \%\) length of hingeline.

Remarks It was Cox (1964, p. 39) who first tentatively referred Posidonia buchii to the genus Bositra, although he noted that more detailed work on the hinge structure was necessary before such a placement could be verified. Consequently, the work of Jefferies \& Minton (1965), who figured an internal view of a M. Callovian specimen (reproduced here as Fig. 2.21), showed that Cox's tentative assignment was in fact correct. The taxonomy and mode of life of this long-ranging species have been considered in detail by Jefferies \& Minton (1965), who concluded that Posidonia buchii, P. ornati and Posidonomya alpina were synonymous. Comparison of the original figures of P. ornati and P. alpina leaves no doubt that those two species were in fact one, but the relationship between them and pochii is a little more difficult to ascertain. Roemer's figure of P. buchii shows a rather smooth-shelled elongate form, with the umbones situated close to the anterior margin, and a rather produced posterior. Elongate forms of the other species do occur, however, and the most likely conclusion is that Roemer's figure is of a poorly preserved form, rather more elongate than usual. The fact that Roemer ( p .81 ) says that P. buchii is thin-shelled, and has a straight hingeline, and is shown in his plate in the characteristic valves-open position, leaves little doubt that it represents the same species as were described by quenstedt and Gras.

The thinness of the shell makes study of the hinge area very difficult, as the shell is so fragile. No specimens showing details of the cardinal area have been found by the author, so Fig. 2.21, showing the cardinal area, has been reproduced froin Jefferies \& Minton (their fig. 1, p. 157). Evidence for anterior and posterior gapes has been taken from the same source (Fig. 2.22).

Ecology Because the ecology of this species is of great importance in the understandine of the environnental conditions existing during the deposition of the Lower Oxford Clay, and because it is well-documented, it is considered here. B. buchii is a very widespread species with pelagic facies relationships, occurring ahundantly where there is no benthos, as well as in facies with a rich benthonic fauna; it also appears to be independent of lithofacies. Two main modes of Iife have been postulated for B. buchii because of its unusual facies relations. Ichikawa (1958) suggested that posidoniids were pseudoplanktonic, being attached to floating seaweed, whilst many other authors, such as Molengraaf (1917), Krumbeck (1921) and Guillaume (1928) favoured a free-swimming peladic habit, Krumbeck comparinc them with pteropods. Jefferies \& Minton (1965), using the evidence of facies, geographical distribution and functional morphology, attempted to show that B. buchii was nektoplanktonic, having a free-swimming pelagic habit similer to that originally postulated by Molengraaf (op, cit.). Their stuaies showed that wide anterior and posterior gapes were present, that the valves had a wide angle of opening in life, and
that the shell was very thin. They concluded that the mantle was fringed by prominent tentacles, and that the animal was nektoplanktonic.

There are, however, some problems concerning this interpretation, such es the apparent lack of large attachment Pectinacean scars for the adductors; a free-swiming valve-clapping pteriid. would surely have needed well-developed adductor muscles to eroble valve-clapping. On the other hand, adults are totally non-auriculate, and equivalve, and so the existence of a functional byssus seems rather unlikely. The commonest mode of occurrence of B. buchii, especially in the L. Oxford Clay, is as articulated shells, with the valves spread wide open, and Jefferies \& Winton (op. cit.) point out that this would be most likely to occur if the living shell was able to gape very widely; wide-gaping potential would be expected to be greatest in a valve-clapping swimmer.

A benthonic mode of life is precluded because of the very wide geographical spread of the species, and its frequent occurrence in sediments with little or no benthos. The likelihood of such a small suspension feeder being able to live on a seafloor of very soft unstable mud is small, and there are no structural features which suggests byssel attachment. On balance, however, it seems necessary to invoke a byssally attached mode of life, probably via only a very few byssal threads, to floating or rooted organic material. The reason for this is primarily the fact that no nektoplanktonic bivalves are known at the present time, and it seems an unlikely mode of life for a bivalve,
especially one without well-developed muscle scars. Attachment to organic material would also explain the clustering of individuals which so comonly occurs in the L. Oxford Clay. The absence of a byssal notch may be explained by the animal having only a few byssal threads, and not needing a functional ctenolium.

Range and occurrence The species ranges from the 'Toarcian Oxfordian, and is of almost cosmopolitan extent, having been recorded from Europe, Russia, E. Africa, Madagascar, S. America and India. In Britain, it is found in the Fullers Earth (Bathonian) and Oxford Clay, apparently commonest in lithologies with a sparse benthonic fauna. The youngest British specimen so far recorded is from the Mariae Zone, and it is abundant in the Jason and Coronatum Zones, less common above this.

Fanily OXYTOMIDAE Ichikawa, 1958

Genus OXYTOMA Meek, 1864, (p. 39)

Type species Originalily designated by Meek, 1864, p. 39, Avicula mlnsteri Bronn, 1830, v. 164 (the species first being figured by Goldfuss, 1836, p. 131, p1. 118, figs. 2a-2h), from the Braunjura delta of Thurnau (Oberfranken), Germany.

Diagnosis Suborbicular and acline to ovate, or broadly lunate and prosocline, inequivalve, left valve larger than the right valve; left valve convex in section, variably inflated, right valve flat or feebly convex; bialate, posterior auricles of both valves produced and sharply pointed, with a variably
developed sinus below them; left anterior auricle small, blunt, right anterior auricle short and prominent; byssal notch deep, acute, usually with otenoliun, angular projection of shell margin extending on inner side of notch; ligamental area subparallel to comissure in left volve, subperpendicular to commissure in right valve; edentulous.

\section*{Subgenus OXYTOMA s.s.}

Diagnosis Mediun sized shell; left valve ornamented with ribs and riblets devoloped to theee orders of streneth, although only primaries and secondaries are present in some specimens: primaries well separated, interspaces much wider than the ribs; right valve smooth, or with weak radial threads; adductor scar placed posteriorly.

Remarks \(\quad\) Bronn first introduced the name Avicula münsteri in 1829 (p.76), and mentioned it again in 1830 (p. 164), but both these records are nomina nuda; the species was not figured until 1836, by Goldfuss (p. 131, pl. 118, figs. 2a-2h), and since then, it has often been accepted that this apecies is synonymous with the earlier described A. inequivalvis J. Sowerby (1819). However, Iohikawa (1958, pl. 24, figs. 1, 2) has refigured the types of A. munnsteri Bromn in Goldfuss, together with several other examples of the species (op. cit., p1. 24, figs. 3-7), and shown them to be equivalve, thus precluding them from being conspecific with the markedly inequivalve A. inequivalvis. This invalidates the conclusions
of Cox (1940, p. 92), who believed the two species to be synonymous.

Meleagrinella is closely related to Oxytome, but may readily be distinguished by the greater inflation of its left valve, the finer ornanent pattern, the smaller posterior auricle (and the lack of a left anterior auricle), and the presence of a tooth-like protuberance on the ventral margin of the cardinal plate.

Oxytoma (Oxytoma) inequivalvis (J. Sowerby). P1. 7, figs. 19-23, v* 1819 Avicula inequivalvis sp. nov.; J. Sowerby, p. 78, pl. 244, figs. 2, 3.
- 1851 Monotis inequivalyis (J. Sowerby); Quenstedt, p. 518, p1. 42, figs. 18, 19.
v. 1855 Avicula mllnsteri Bronn; Morris \& Lycett, p. 129, pl. 14, fig. 6 (non Bronn).
v.? 1863 A. subcostata Roemer; Lycett, p. 36, pl. 40, fig. 24 (non Roemer).

1882 A. (Oxytora) Münsteri Bronn; Roeder, p. 58, p1. 1, figs. 10a, 10b (non Bronn).

1883 A. inaequivalvis J. Sowerby; Lahusen, p. 91, pl. 2, fig. 5.
1904 A. of. Münsteri Bronn; Ilovaisky, p. 252, pl. 8, figs. 18, 19 (non Bronn).

1907 A. (Oxytoma) inaecuivalvis J. Sowerby; Cossmann \& Thierry, p. 49, pl. 3, figs. 5-7.

1909 Oxytoma inaequivalvis (J. Sowerby) var. borealis nov.; Borissiak, p. 19, pl. 1, figs. 3-8.
```

 1909 O. inaequivalvis (J. Sowerby); Borissiak, p. 19, pl. 1,
 fig. 10.
 ? 1909 O. cf. interlaevigata (Quenstedt); Borissiak, pl. 21,
pl. 1, fig. 9.
1915 0. inaequivalvis (J. Sowerby) var. borealis Borissiak;
Krenkel, p. 289, p1. 25, figs. 25-31.
1915 Pteria phillipsi nom. nov.; Rollier, p. (nom. nov. pro
A. inequivalvis J. Sowerby, 1819, pl. 244, fig. 2).
1919 A. (Oxytoma) inaequivalvis J. Sowerby; Couffon, p. 62,
pl. 4, figs. 7-7c.
1924 Oxytona ingequivalvis (J. Sowerby); Gillet, p. 450.
V* 1933 O. ingequivalvis (J. Sowerby); Arkell, p. 194, pl.24, fig.9.
1935 0. inequivalve (J. Sowerby); Cox, p. 165, pl.15, figs.11,12.
1939a 0. interlaevigata (Quenstedt); Arkell, p. 137.
1940 0. inequivalve (J. Sowerby); Cox, p. 98, p1. 6, figs. 9-12.
1948 O. inequivalve (J. Sowerby); Cox \& Arkell, p. 7.
1958 O. (Oxytoma) sp.; Ichikawa, p. 161, pl. 24, fig. 8.
1965 0. inequivalvis (J. Sowerby); Cox, p. 47, pl. 5, fig. 7.
Type specimen Lectotype (designated by Arkell, 1933, p. 194)
of Avicula inequivalvis J. Sowerby, 1819, p. 78, pl. 244, fig. 2
(the left hand figure), from the M. Lias of Dursley, Gloucester-
shire, preserved in the BM (NH), number 43259.
Diagnosis Medium to large sized species (up to 39.8 mm L), very inequivalve, right valve about half the size of the left valve; bialate, posterior auricles long and pointed, right anterior auricle short and pointed, left anterior auricle small,

```
blunt; inflation relatively high (IV \(\bar{x} 25.0 \%\) ) ; hingeline long, invariably broken, seen to be up to \(91.2 \%\) of shell length; ornament very variable, left valve usually with primary and secondary ribs, sometimes with tertiaries also, occasionally with primaries alone, or with primaries and tertiaries only; right valve smoother, ornanented with faint radial riblets of only one strength.

\section*{Measurements}

See Appendix 3.
LV
\begin{tabular}{llclllll} 
& If & H & I & AL & OL & Lh & \(\theta\) \\
II & 30 & 30 & 13 & 23 & 19 & 14 & 5 \\
\(\bar{x}\) & 23.1 mII & \(89.0 \%\) & \(25.0 \%\) & \(27.1 \%\) & \(101.0 \%\) & \(71.6 \%\) & \(31.2^{\circ}\) \\
Max & 39.8 & 108.9 & 33.8 & 33.7 & 126.6 & 91.2 & 40 \\
Min & 11.4 & 72.6 & 18.8 & 20.0 & 86.7 & 50.4 & 27 \\
OR & 28.4 & 36.3 & 15.0 & 13.7 & 39.9 & 40.8 & 13
\end{tabular}

RV
\begin{tabular}{lllllcc} 
N & 19 & 19 & 17 & 16 & 6 & 12 \\
\(\overline{\mathrm{x}}\) & 14.0 mm & \(90.3 \%\) & \(15.2 \%\) & \(32.6 \%\) & \(94.7 \%\) & \(79.2 \%\) \\
Max & 19.6 & 99.4 & 17.4 & 38.2 & 111.6 & 100.0 \\
Min & 7.4 & 63.5 & 10.7 & 25.7 & 67.6 & 46.8 \\
OR & 12.2 & 35.9 & 6.7 & 12.5 & 44.0 & 53.2
\end{tabular}

Description Mediun to large sized, suborbicular to obliquely subovate in outline, prosocline; inequilateral, unbones slightly prosogyrate, rounded, salient about 2 mm above the hinge margin, placed within the anterior third of the shell (IV AL \(\bar{x} 27.1 \% ; \mathrm{RV} A L \overline{\mathrm{x}} 32.6 \%\) ); strongly bialate, inequivalve,
left valve about twice the size of the right valve.
Left valve obliquely subovate to suborbicular in outline (H \(72.6-108.9 \%\), \(\bar{x} 89.0 \%\) ), inflated ( I 18.8-33.8 \(\%\), \(\bar{x} 25.0 \%\) ), with umbones placed near the anterior margin (AL 20.0-33.7 \%, \(\bar{x} 27.1 \%\) ); oblique length variable, about equal to overall shell length ( 0 I, \(86.7-126.6 \%, \bar{x} 101.0 \%\) ). Hingeline long (Ih \(50.4-91.2 \%\), \(\bar{x} 71.6 \%\) ), straight, most of its length placed posterior to the unbones, forming the dorsal margin of the strongly developed posterior auricle; posterior auricle elongate, flattened, pointed, with a deep subauricular simus; the posterior auricle is wall differentiated from the body of the shell by a deep auricular sulcus; posterior margin of the body of the shell gently concave to straight, passing via the smoothly rounded posteroventral angle into the evenly and gently convex ventral and anterior margins, which form a long, sweeping curve; at its dorsal extremity, the anterior margin straightens, and sometines reflects back a little to meet the snall, vestigial anterior auricle; anterior auricle small, not clearly differentiated from the body of the shell, bluntly terminated at the anterior end. Ornanent very variable, consisting of arrangements of primary, secondary and tertiary radial riblets, the primaries usually strong and wirelike, extending all the way to the umbo, the secondaries becoming intercalated between the primaries about 15-20 mm from the umbo, and the tertiaries appearing between these; in some forms, such as those from the Kellaways Clay of Chickerell, Dorset, only primaries and very faint tertiaries occur, whilst forms from the Lower Oxford Clay
usually show primaries and secondaries, sometimes with tertiaries also. The primaries carry onto the anterior auricle, but not onto the posterior auricle, although faint radial threads are sometimes visible on the posterior auricle. On the body of the shell, the riblets are crossed bry scelloped concentric growth linos, better seen on some specimens than others, but the interaction of growth lines and riblets never produces a reticulate pattem.

Right valve smaller, suborbicular to sulbovate (H 63.5\(99.4 \%\), \(\bar{x} 90.3 \%\) ), of very low thickness ( 1 10.7-17.4 \%, 坟 \(15.2 \%\) ), more or less flat, with unbones placed about a third of the shell length behind the anterior margin (AL 25.7-38.2 \%, \(\bar{x} 32.6 \%\); umbones small, sligintly prosogyrate, pointed, not salient to the hinge margin. Hingeline long (IH 46.8-100.0 \%, 자 \(79.2 \%\) ), but frapile, and casily broken; well-preserved specimens from the Lower Oxfond Clay have maximus shell length along the hingeline, so it is probable that the measurements of hingeline length on other shells are rather too low. Posterior auricle large, flattened, very elongate, sharply pointed, with a less well-developed subauricular sinus than occurs in the left valve; anterior auricle small, pointed, with a deep byssal notch beneath it, the whole auricle well-differentiated from the body of the shell by a strong auricular sulcus; no suricular sulcus separates the postcrior auricle from the shell body. Posterior margin of shell straight to evenly convex, passing smoothly into the semicircular swee ing curve of the ventral and anterior margins. Ornament consisting of faint radial striae,
beconing slightly stronger ventrally, but without secondaries and tertiaries; these striae do not continue onto the auricles; concentric growth lines hardly visible, but there are occasional well-narked growth halts.

Iiganental area of the left valve (Fig. 2.23) subparallel to the commissure, the resilifer present as a narrow triangular area running posteroventrally from innediately beneath the umbo, reaching almost to the auricular sulcus. There is a slight elongate depression parallel to the hinge margin, and imnediately beneath it at its anterior end, for receipt of the anterior part of the hings rea of the right valve. Interior of the posterior auricle flattened, dropping sharply into the shell cavity along the line of the auriculse sulcus. Posterior adductor muscle scar large, elliptical, with the concave side placed dorsally, its posterior margin reaching to the euricular sulcus, and its anterior margin reaching lalfway to the midaxis; the scar is slightly closer to the cardinal plate than to the ventrel margin. Curving anterodorsally from the anteroventral margin of the posterior adductor scar is a disjunct pallial line (Fig. 2.23) consisting of about 25 tiny pallial muscle scars, running beneath the cardinal plate at the point where the anterior articulation for the right valve is situated; anterior adductor scar not seen.

Iigamental area of right valve (Fig. 2.24) flattened subperpendicular to the commissure, the resilifer a narrow triangular depression running posteroventrally from imnediately beneath the umbo, reaching to the area of the posterior auricle. A deeply incised byssal notch is present beneath the anterior
auricle, running obliquely into the shell interior; a ctenolium appears to be absent. Posterior adductor muscle scar suborbicular, placed slightly nearer to the ventral margin than to the cardinal plate, its posterior margin meeting the edge of the posterior auricle, and its anterior margin reaching to approximately below the midpoint of the resilifer. Running anterodorsally from the ventral margin of the adductor scar is a disjunct pallial line (Fig. 2.24) consisting of about 18-20 tiny pallial muscle scars; the anterior adductor muscle scar is very small, suborbicular, and placed on the lower margin of the cardinal plate, about 1.5 mm posterior of the inner end of the byssal notch.

Remarks In his original description of 0 . inequivalvis,
J. Sowerby (1.819, p. 78, pl. 244, figs. 2, 3) figured two forms, identified as var. \(\alpha\) and var. \(\beta\), from the M. Lias and Kellaways Rock respectively, the two being distinguished by their different styles of ribbing. Var. \(\alpha\) (said by Sowerby to have come from the Kellaways Rock of Dursley, Gloucestershire, but actually from the M. Lias [Arkell 1933, p. 1947) was described as having slender striae between the divergent primary ribs, while var. \(\beta\) had strong striae between the primaries, but Sowerby did not believe these differences to be of specific importance. In the years since Sowerby, some authors, notably Arkell (1933, p. 194), have claimed that the M. Lias and Kellaways Rock forms should be considered as distinct species, on the basis of differences in ornament pattern and overall size. Arkell (op. cit.) believed that the M. Lias species, which he referred
to as 0. inaequivalvis, had 14-15 primary ribs, no secondaries, and numerous tertiaries, whilst the Kellaways Rock species, referred to 0. expansa (Phillips), had \(16-20\) primaries, with a secondary between each pair, and numerous tertiaries. However, re-examination of the Iectotype block (BM 43259) and several other specimens from the Sowerby collection (EM 66351) reveals that there is much vaxiation in ribbing style in M. Lias specimens, examples possessing secondary ribs being by no means uncommon. Iikewise, populations from the Lower Oxford Clay, which Arkell (op. cit., p. 195) would probably have referred to 0. expansa, contain many specimens lacking secondary ribs and which are indistinguishable from M. Lias forms.

Cox (1940, p. 99) considered the 0. inequivalvis problem, and having examined specimens from many horizons within the British, Buropean and Asian Jurassic, followed Waagen (1901) and Gillet (1924) in concluding that there was but one species, showing no gradual evolutionary change in any particular direction between the Rhaetic and the L. Cretaceous, and that the name 0. inequivalvis had priority。 Cox's work showed that although there may be local races at any given horizon, most of these morphological types were imitated at a different horizon in a different region, and that no pattern could be made out for this variation; the only workable conclusion was to consider them all as part of a single, very variable species.

Having examined many specimens from the British Lias, Cornbrash, Kellaways Rock, Oxford Clay and Corallian, the author believes that 0 . inequivalvis is a very variable species
(Fig. 2.25), ranging at least from the Lies to the Oxford Clay, but that it is indeed distinct from 0. expansa. Phillips, a species appearing in abundance in the Furopean Corallian. However, the basis for the scparation of these two species is not the ornament pattem, but rather the relative sizes of the two valves. As the name susgests, 0, inequivalvis is markedly inequivalve, the left valve being about twice as long and high as the right valve, whilst in 0 . expansa, the two valves are of approximately equal size. Waagen (1901) believed that the apparent smaller size of the right valve of 0 . inequivalvis was caused by the right valve being formed of more delicate tissue (sic) than the left, and was more easily abraded, but bivalved specimens from the Kellaways Rock of Kellaways, and elsewhere, reveal that the size difference between the two valves was original. Owing to the greater size attained by the right valves of O. expanse, the ribbing is much coarser than in 0. inequivalvis, and the division into primaries, seconderies and tertiaries is rather irregulax. There is also a difference of inflation, 0. expansa having an extremely flat left valve, even in large specimens, the average inflation being \(18 \%\), compared with \(25 \%\) in

\section*{O. inequivalvis.}

The ornment pattern and the prominence of the auricles are of no value in the specific discrimination of the two species, as 0. inequivalvis is so variable, and often parallels the form of the left valve of 0 . expansa. Indeed, it is very difficult to separate these two species in the absence of associated left and right valves, the character of inflation being on its own an
unreliable index, and where only single valves are found in the Corallian, it is probably beat to identify them as Oxytoma sp. For this reason, the lower end of the range of 0 . expansa is not known with certainty, as no associated loft and right valves have been found lower then the Corallian, although Arkell (1933, p. 195), and Cox \& Arkell ( \(1948, \mathrm{p} .7\) ) record 0. expansa from the Cornbrash, Kollaways Beds. and Hackness Rock. These records cannot be verified until articulated or associated valves are found at these horizons.

An unusual feature of 0 . inequivalvis is its apparent lack of a ctenolitu, there being no sign of one on the well-preserved right valves from the Lamberti Zone Oxford Clay of Woodhan, Bucks. It is uncertain whether this is merely an unusual feature of specimens from this horizon, or whether it is true of the species as a whole, specimens from other horizons not being well enough preserved to show the feature. In a species with such a well-developed byssal notch as 0 . inequivalvis, it seems strange that a ctenolium should be absent, unless there were so few byssal threads that the ctencliun beome unnecessary.

The specimens from the Kellaways Clay of Patton Lane brickyard, Chickerell, Weymouth, Dorset, mentioned in Arkell (1933, p. 194) are preserved in the Sedgwick Museum (SM J47646) and Oxford Thiversity ifuseum (OUN J8612, J13127). The specimens (about 35 in all) are mostly left valves, preserved in 3 small concretions, showing very strong, wire-like prinary ribs, separated by wide interspaces bearing only very faint tertiaries in some specimens. By virtue of the ribbing style, the wirelike nature of the ribs, and the slightly greater inflation,

Arkell separated these specimens from 0 . inequivalvis and 0. expansa. However, these specimens agree well in ribbing style with many specimens from the Lower Oxford Clay, which themselves grade into forms indistinguishable from 0 . inequivalvis, although there are four specimens with very strongly divergent prinary ribs of a style not seen elsewhere. Regarded as a population, these specimens belong to 0oinequivalvis, being merely one of the more extreme local races which sporadically occurred.

The synonomy of this species is relatively straight forward as regards the Dritish specimens, but notoriously complex with regerd to foreign ones, in view of the many races occurring at different horizons in different areas. For this reason, only the British references, and the most important continentri ones are recorded here. The few British specimens which have been referred to 0. milnsteri (Morris \& Iycett, 1855, p. 129, p1. 14, fig. 6) are inequivalved examples, and cannot be considered to belong to Bronn's species. Examination of Morris \& Lycett's figured specimen (SM J4109), fron the Inferior Oolite of Yorkshire, revenls that it clearly belongs within
0. inequivalvis. The same is true of the specimens figured by Roeder (1882, p. 58, pl. 1, figs. 10a, 10b) from the Zweischalerbank (Corallian) of Oherlerg, Gernany, which axe clearly inequivalve, and extend the range of 0 . inequivalvis up into the Oxfordian. Rollier (1914 , p. 400 ) belicved the specimens figured by Sowerby as his figs. 2 and 3 of pI. 244 to belong to different species, accepted Sowerby's pI. 244, fig. 3 ns A. inequivalvis sensu stricto, and introduced the name Iteria phillipsi nom. nov,
for Sowerby's pl. 244, fig. 2. As this specimen was later designated lectotype of A. inequivalvis by Arkell (op. cit.), Rollier's name is a synonym of A. inequivalvis.

Arkell (1939, p. 137) thought that the species of Oxytome which occurs in the Lamberti Limestone (Lamberti Zone) and basal Mariae Zone of Woodham, Bucks., was distinct from both 0. inequivalvis and 0. expansa, and referred it to 0. interlaevigata (Quenstedt) on the basis of the figure of that species given by Borissiak (1909, p. 21, pl. 1, fig. 9). Examination of a population of ' 0 . interlaevigata' from Woodham reveals that this species properly belongs with 0 . inequivalvis.

Range and occurrence Lias - Kimmeridgian of Europe, widespread. In Britain, it occurs in the Lias, Inferior Oolite, Great Oolite, Fullers Earth, Kellaways Rock, Oxford Clay and extends into the Kimmeridge Clay (Cox \& Arkell, 1948, p. 7). It is abundant in the Kellaways Rock (Calloviense Zone) of southern Englend, and throughout the L. Oxford Clay, occurring most comonly in the bituminous shale facies. It is more restricted in the M. Oxford Clay, but is abundant in the upper part of the Lamberti Zone at Woodham (the Lamberti Limestone), and is rare in the U. Oxford Clay. It occurs throughout the Kellaways Rock and Hackness Rock of Yorkshire.

Genus MELEAGRINELLA Whitfield, 1885 ( p . 71)
\begin{tabular}{rl} 
Synonyms: & Clathrolima Cossmann, 1908 \\
& Echinotis Marwick, 1935 \\
Echinotus & Cox, 1969
\end{tabular}

Type species Subsequently designated by Cox, 1941, p. 134, Avicula curta Hall, 1852, p. 412, pl. 2, fig. 1, from the Upper Jurassic of the U.S.A.

Diagnosis Small to mediun sized shells, suborbicular in outline; left valve strongly convex, right valve flat or very feebly convex, the left valve much larger than the right; both valves usually with small pointed posterior auricles, right valve with small anterior auricle, and a deep, narrow, subauricular notch; left valve lacking anterior auricle; ligament area almost in plane of valve margins in left valve, perpendicular to it in right valve; resilifer broadly trigonal, with toothlike protuberance anterior to it in the left valve; left valve ornamented with narrow squamose radial riblets, right valve smooth or with weak radial riblets.

Remarks.
As Cox (1941, p. 133) has shown, Meleagrinella is the earliest valid name for the group of small pectinacea which includes Avicula echinata Smith. This name was overlooked by Cossmann (1908, p. 296) and Marwi.ck (1935, p. 301), who introduced the names Clathrolima and Echinotis for the same group. Several specimens of Avicula curta Hall, the type species, are preserved on a slab of rock from the Oxfordian Sundance Formation of South Dakota, U.S.A., now in the BM (NH) (no. I 58878) and show many close similarities to the British Callovian species M. braanburiensis (Phillips).

Meleagrinelle braamburiensis (Phillips ex J. de C. Sowerby Ms) Pl. 8, figs. 14-21, P1. 9, figs. 1-10, 12.
. 1829 Avicula braamburiensis sp. nov.; J. de C. Sowerby in Murchison, p. 323 (nom, nud.)
\(\mathrm{v}^{*} 1829\) A. Uraamburiensis sp. nov.; Phillips, pl. 6, fig. 6. v.non 1855 A, braamburiensis Phillips ; Morris \& Iycett, p. 129, p1. 25, figs. 6, 7 i. Iycetti (Rollier).
.? 1860 Pecten sp.; Damon, pl. 3, fig. 2.
- 1883 Pseudomonotis subechinata sp. nov.; Lahusen, p. 85, pl. 2, figs. 6, 7.
.non 1894 A. braamburiensis Phillips; Woodward, p. 44, fig. 13. \(=\) M. Iycetti (Rollier)
- 1909 P. subechinata Lahusen; Borissiak, p. 24, pl. 2, figs. 14-21.
- 1915 P. subechinata Lahusen; Krenkel, p. 290, pl. 26, figs. 13-15.
v* 1932 P. bramburiensis (Phillips); Douglas \& Arkell, p. 163, p1. 12, figs. 5, 6.

1934 P. ornati (Quenstedt); Stoll, p. 17, pl. 2, fig. 5 (non Quenstedt).
- 1934 P. substriata (Munster) S Stoll, p. 18, pl. 2, fig. 6.
v. 1972 Melearrinella 3raamburiensis (Fhillips); Walker, p. 122, pl. 7, fig. 5.

Type specimen Nootype designated by Douglas \& Arkell, 1932, p. 168, pI. 12, fig. 6, from the Hackness Rock of

Scarborough, Yorkshire, preserved in the Yorkshire Museun
(no. YM 872). The specimen figured by Phillips (1829, pl. 6, fig. 6) is lost (Arkell, op. cit.).

Diagnosis Mediun to large sized species (up to 33.7 mm L), suborbicular, left valve about twice the size of the right valve; left valve suborbicular to subquadrangular, convex, usually slightly higher than long (H 91.7-122.2 \%, \(\bar{x}\) \(103.2 \%\) ), of low inflation ( I 20.8-44.6 \%, "- \(33.0 \%\) ), with umbones slightly anterior of median (AL 42.2-46.5 \%, \(\bar{x} 46.5 \%\) ); right valve suborbicular, flattened to gently convex (I 18.4\(29.7 \%\), \(\bar{x} 23.3 \%\) ), height less than length (H 83.4-100.7 \%, \(\overline{\mathrm{x}} 93.5 \%\) ), with submedian umbones ( \(\Lambda \mathrm{I} .44 .3-51.9 \%\), \(\overline{\mathrm{x}} 49.5 \%\) ); left valve ornanented with \(35-55\) fine primary radial riblets, usually squamose, with intercalated secondaries on the middle regions of the shell; right valve smooth (in juveniles), or ornamented with \(35-50\) fine radial riblets, more delicately squamose, sometimes with faint secondaries.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{cccccc} 
& IV & H & I & AL & Lh \\
N & 59 & 58 & 14 & 8 & 4 \\
\(\bar{X}\) & 19.6 man & \(103.4 \%\) & \(33.0 \%\) & \(46.5 \%\) & \(46.9 \%\) \\
Max & 33.7 & 122.2 & 44.6 & 46.5 & 51.8 \\
Min & 8.0 & 91.7 & 20.8 & 42.2 & 38.2 \\
OR & 25.7 & 30.5 & 23.8 & 4.3 & 13.6
\end{tabular}


Description Medium to large sized species, suborbicular to subquadrancular in outline, inequilateral, inequivalve, left valve about twice the size of the right valve; left valve subquadrangular in outline, up to 33.7 mm long, usually slightly higher than long (II \(\vec{x} 103.4 \%\) ); left valve with a short, prominent, pointed posterior auricle, ite dorsal margin straight, its posterior margin oblique, giving rise to a slight concavity in the posterior shell margin; no left anterior auricle; anterior part of the dorsal margin short, straight, passing into the evenly convex anterior margin via a rounded angle; anterior margin curved continuously with the ventral margin; posterior margin oblique, nearly straight to gently convex, never as rounded as the anterior margin; posteroventral angle rounded, not prominent; umbones slightly anterior (AL \(\bar{x}\) \(46.5 \%\), inflated, rounded, orthogyrate, salient about 2 mm above the hinge margin; inflation variable, but usually low (I \(\overline{\mathrm{x}} 30.0 \%\) ). Left valve ornamented with 35-55 fine primary
radial riblets, separated by interspaces about three times the width of the ribs, and extending onto the posterior auricle, often with seconary riblets becoming intercalated ventrally; usually the riblets are squamose, to a variable extent, although in many examples there is no evidence of squamosity; the squamae occur at the junctions of the radial riblets and the concentric growth lines. Hingeline straight, gbout half the length of the shell (Ih 38.2-51.8 \%, 伩 \(46.9 \%\) ), two-thirds of its length being anterion to the umbones; resilifer subrectangular in outline, deep, located below and posterior to the umbones, placed more on less in the plane of the comaissure, extending almost halfway to the posterion end of the hinga margin. Imnediately anterior of the resilifer is a prominent, rounded, tooth-like protuberance which projects ventrally into the shell cavity (Bie. 2.26a). On the anterodorsal extremities of the shell, directly adjacent to the anterior end of the hingeline, are several obliquely directed corrugations, which may represent byssal grooves. Fosterior adductor muscle scar placed halfway between the cardinal plate and the ventral margin, elliptical in shape, with its concave side ventrally, its anterior extremity just posterion of the midaxis of the shell, and its posterior extremity almost reaching to the posterior margin; anterior adductor not visible. Pallial line not seen.

Right valve about half the size of the left valve, suborbicular (II X \(93.5 \%\) ) in outline, inequilateral, bialate; posterior auricle broad, flattened, pointed, not clearly differentiated from the body of the shell; anterior auricle
very small, pointed, marked off fron the body of the shell by a deep auricular sulcus, with a well-dcveloped byssal notch beneath it. Hingeline straight, about half the length of the shell ( Ih \(\overline{\mathrm{x}} 48.6 \%\) ), almost ail of its length being posterior to the umbones; anterior, ventral and posterior margins continuously curved to give a suborbicular outline, the dorsal part of the posterior margin sometimes gently reflexed, sweeping into the obliquely truncate posterior margin of the posterior auricle. Umbones submedian (AL \(\bar{x} 49.5 \%\) ), small, pointed, orthogyrate, hardly salient to the hinge margin. Inflation low, but valves olways convex in section ( I \(\bar{x} 23.3 \%\) ). Ornamented by 35-50 fainter primary radial riblets, with some intercalated secondaries, becoring more prominent as the shell increases in size; in larger examples ( \(\mathrm{L}>20 \mathrm{~mm}\) ), weak squamae may sometimes be seen, but more often, only a faint reticulate pattern of ornamentation is visible, and in most smaller specimens, concentric growth-lines dominate over radial elements; When present, the radial ribs continue onto the posterior auricle. Resilifer small, triangular, located immediately posterior of the umbo, and placed almost perpendicular to the plane of the comrissure on a flat cardinal platform (Fig. 2.26b). Byssal notch deep and narrow, placed directly beneath the anterior auricle, ctenolium apparently absent. Posterior adductor muscle scar large, orbicular, its centre about two-thirds of the shell height below the hinge margin, its anterior edge just posterior to the mid-axis of the shell, the scar reaching almost to the posterior margin of the valve; anterior scar not visible,
pallial line simple.

Remarks The name Avicula Uraamburiensis was published independently by both J. de C. Sowerby and Phillips in 1829, for specimens fron Brora and Scarborough respectively, but as Sowerby's record was a nomen nudum, whilst Fhillips was accompanied by a figure, Phillips specimen must be taken as the type. It is now known that both Sowerby's and Phillips' records refer to specimens from approximately the same horizon (Athleta - Lamberti Zones) and comparison of specimens from the two areas shows that they do in fact belong to the same species. It also seems probable that Phillips followed Sowerby in using the name A. braamburiensis, as the name cones from the locality where Murchison collected the specimens later identified by Sowerby, Braambury Hill, Brora, Sutherlandshire, and it is difficult to see from where else Phillips could have derived his name. It would thus be more correct to record the species as A. braamburiensis Phillips (J. de C. Sowerby Ms). The type is lost, and a neotype has been designated by Douglas \& Arkell (York. Mus. YM 872).

In 1932, Arkell (in Douglas \& Arkell, p. 163) redescribed and figured topotypes of this species from the Hackness Rock of Scarborough, placing thom in the genus Pseudomonotis, but the material he used in his study consisted solely of steinkerns, and details of the ornament pettern could not be made out. Arkell (op. cit. p. 164) states that P. braamburiensis has "the left valve ornamented with 25-30 fine, thread-like ribs, which are faintly knotted at long intervals where crossed by some
of the more prominent of the indistinct growth-lines". However, not all the ribs on the shell of this species are strongly enough inpressed to show up on a steinkern, and so Arkell's diagnosis of the number of rius is too low.

Variation within a population of M. braamburiensis is very great, and is reflected mainly in the degree of inflation, and the style of omamentation (Fig. 2.27). Variation between populations found at different levels in the Lower Oxford Clay is even greater, but on the basis of general features of the populations, the range of variation within each, and the lack of any systematic variation, there is no justification for splitting the species into geographical or stratigraphical subspecies. At most horizons within the Callovian where M. braamburiensis is common, the dominant form is one of small to medium size, with low inflation and ornament pattern of strong radial riblets, with traces of squanosity. At a few horizons, such as bed 12F (Grossouvrei Subzone) of Stewartby, the dominant form is of medium size, low inflation, and strongly squamose, agreeing perfectly with the specimens figure by Borissiak (1909, p. 24, pl. 2, figs. 14-21) as Pseudomonotis subechinata Lahusen. In association with this strongly squamose form are more 'normal' forms with much fainter squanae, suggesting that variation is continuous. In both these forms there is a strong tendency for the young specimens to be very much more inflated than the older ones (assuming a simple relationship between age and size), and so at any one horizon it is possible to find three apparently different morphotypes, which prove to grade into one another if
a large enough population is studied. For this reason it seems unwise to introduce further confusion by splitting the species, although perhaps the coarsely squamose form could be referred to var. Subechinata Lahusen.

Most of the Lower Oxford Clay specimens are too fracile to allow close exanination of the hinge area, but four specimens fron the Oxford Clay (horizon unknown) of Cock Hill, Trowbridge, Wilts. (GSM Y2087-Y2090, Ifudleston Colln.) are thicker-shelled than the specimens from the Midlands, and show the cardinal area clearly. The most obvious feature is the tooth-like protuberance anterior to the umbo of the left valve, which apparentily fits into a corresponding socket in the right valve, acting as a safeguard against excessive lateral movement of the valves. There is usually a slight depression anterior to the protuberance, which accommodates the small right anterior auricle. The arrangement of the ligemant is such that the resilifers of the left and right valves are set at right angles to one another, their ventral mareins more or less touching.

There are marked fifferences between M. braamburiensis and its close stratigraphical relatives M. echinata (Smith) from the Combrash, and M. ovalis (Phillips) from the Corallian. M. echinata may be distinguished by its smaller size (I up to 20 mm ) ; its greater inflation; its fewer number (up to 40) of wire-like, more widely spaced ribs on the left valve, the ribs being densely squamose, especially on the anterior and posterior extremities; the more elongate and pointed posterior auricle of both valves; and the ornament of the right valve, which is only
very slightly smeller than the left valve, and has an omament pattern of up to 16 low, faint, very divergent radial riblets with no squamae. \(\operatorname{Cox}(1940, p .95)\) believed, on the basis of specimens of Pseudomonotis echinata from the Bathonien of Cutch (India), that the form present in the Fnglish Lower Cornbrash, and icentificd as F. cchinata, was merely a fairly well-defined race of a long-ranging species, which showed much greater variability in other parts of the world. However, the British Bathonian and Callovian species of Meleagrinella are clearly separable, and the author believes that it is more useful to retain them as two separate species, rather then unite them, as Cox would have liked.
M. ovalis is more difficult to separate from M. braamburiensis, but nevertheless, several features serve to distinguish them: in M. ovalis, the posterior auricle is much smaller and less welldeveloped; the hingoline of the left valve is rather longer (Lh \(\bar{x} 61.9 \%\) ) ; the ribbing style consists of densely-packed fine radial riblets on both valves, the difference between this style and the ribling on the right valve of M. braanburiensis being particularly well-marked; neither are the squamae clearly developed in M. ovalis, although the concentric elements of ornamentation are much stronger than in M. braamburiensis.

The specimens collected from boreholes in the Kellaways Rock and L. Oxford Clay of the Kent coalfield, mentioned by Lamplugh \& Kitchin (1911) and Lamplugh, Kitchin \& Pringlc (1923) as Pseudomonotis sy. nov. are preserved in the Geological Survey Museum and have been examined by the author. Lamplugh \&

Kitchin (1911) stated that this species was characterised by its "relatively greater height then length, its strongly inflated left valve and its low obliquity" and had "fine radial ribs, showing no asperities, with irregularly intercalated secondary ribs". Study of the specinens reveals that they are all referable to M. braamburiensis, shoving a range of variation compatible with that seon elsewhere, and that in fact, inflation is not any greater than in topotypes of \(M\). bramburiensis; there is also a greater range of obliquity than Lamplugh \& Kitchin admitted, and most of the specimens are steinkerns with remnants of imperfectly preserved shell material.

\section*{Monotis substriata Munster seems closely comparable with} M. braamburiensis, although it appears to lack the squanae so often seen in the lritish species. The specimen figured by Damon (1860, pl. 3, fig. 2) as Pecten sp. is now unfortunately lost, but appears to be the might valve of a Meleagrinella. Pseudomonotis echinata Lahusen (1883) agrees well with the strongly squanose variety of \(M\). bramburiensis, and is elmost certainly synonymous.

Range and occurrence Corwion in the Kellaways Beds (L. Callovian) of the Kent coalfield, and Wiltshire. Abundant throughout the L. Oxford Clay of England (Calloviense - Athleta Zones), and in the Hackness Rock of Yorkshire (Athlete - Lamberti Zones). Also recorded from the Kellaways Rock of Yorkshire, the Shales of the Combrash, Yorkshire (Wright, 1968), and the Clynelish Quarry Sandstone of Brora, Sutherlandshire.

In Furope, it is found in the Callovian of Germany and Russia.

Family ENTOLIIDAE Korobkov, 1960 Genus ENTOLIUM Meek, 1865 (p. 478)

Type species Originally designated by Meek, 1865, p. 478, Pecten demissus Phillips, "as illustrated by Quenstedt, 1858, p. 353, pl. 48, figs. 6, 7" (non Phillips; = Pecten disciforme Schuebler in Zieten, 1833, p. 69, pl. 53, figs. 2), from the Aalenian of Germany.

Diagnosis Byssal notch absent in all stages of development; margins closed laterally; incised ligamental area usually present and extending parallel to the hingeline on either side of the resilifer; cardinal crura variably developed, auricular crura present; imer layer of foliated calcite, outer layer radially fibrous.

Subgenus Entolium s.s.

Synonymy: Protamusium Verrill, 1897
Protamussium Paris \& Richardson, 1915

Protomusium Stewart, 1930
Entholium Tzankov \& Boncev, 1932
Etolium McLearn, 1948

Diagnosis Shell exterior smooth; auricles of left valve projecting above the hinge line, usually as angular wings. Discussion Hertlein (1969, p. N346) believed that Quenstedt's figure ( \(1858, \mathrm{pl} .48\), figs. 6, 7) of Eo demissum (Phillips) from the Aalenian represents a species distinct from that of Phillips (1829, pl. 6, fig. 5), and is referable to E. disciforme (Schuebler in Zieten, 1833, p. 69, p1. 53, fig. 2). Other authors, including Cox (1952, p. 34) have united these two species into a long-ranging one, to which Phillips name was applied. In either case, Meek (1865, p. 478) designated Quenstedt's figures as the genotype. There is some doubt as to which valve is which in Entolium, as the adductor muscle scars have not been seen, and traditionally the valve with the elevated dorsal wings has been thought of as the right valve. Newell (1969a, p. N347) suspects, by analogy with Pernopecten Winchell from the Upper Palaeozoic, that it is in fact the left valve which possesses elevated dorsal auricles, and his views are followed here. Speden (1967, p. 15) has discussed the generic status of Entolium, and in particular, its relationships with Syncyclonema Meek, a genus of ten placed in the symonymy of Entolium, even though it predates Entolium. Much of the confusion concerning the two genera was caused by the fact that the original diagnosis and figures of Syncyclonema (Meek, 1864, p. 31; figured in Hall \& Meek, 1856, p. 31, pl. I, figs. \(4 a-4 c\) as Pecten rigida sp. nov. [non J. Sowerby, 1818]) were brief and inadequate. However, Speden \(h^{6}\) s redescribed the type
species (P. rigida Hall \& Meek [non J. Sowerby] = P. halli Gabb), designated and figured a lectotype, and shown Syncyclonema to be a valid genus, distinct from 登tolium on the basis of external and internal shell morphology. Syncyclonema has a chlanyiid shape, with a deep byssal notch, strong cardinal crura, and no auricular crura.

Entolium (Entolium) corneolum (Young \& Bird). P1.9, figs.11,13-16,21.
* 1828 Pecten corneolus sp. nov.; Young \& Bird, p. 234, pl. 9, fig. 5.
? 1829 Pecten SL. ; Phillips, pl. 5, fig. Il.
v 1829 P. demissus sp. nov.; Phillips, pl. 6, fig. 5.
.? 1833 P. phillipsii nom. nov.; Voltz in Thurmann, p. 32
(non, nov. pro Pecten Sp. Pnillips, 1829).
1836 P. demissus Phillips; Goldfuss, p. 74, pl. 99, fig. 2.
non 1836 E. cingulatus nom, nov.; Golafuss, p. 74 , p1. 99, figs. 3a, 3b. (nom, nov. pro Pecten sp. Phillips, 1829. non Phillips).
v. 1855 P. demissus Philiips; Morris \& Lycett, p. 127, pl. 14, fig. 70
```

non 1858 P. demissus Phillios; Quenstedt, p. 353, pl. 48,

``` figs. 6, 7 (= E. disciforme Schübler).
- 1858 P. demissus Phillips; Quenstedt, p. 553, pl. 72, fig. 27.
v. 1859 P. demissus Phillips; Leckenby, p. 8.

1860 P. demissus Phillips; Damon, pl. 9, fig. 3.
v. 1930 Entolium demissum (Phillips); Arkell, p. 91, pl. 7, fig. 4; pl. 9, fig. 8.
- 1932 E. dernissum (Phillips); Spath, p. 112, pl. 26, fig. 2.
v. 1932 E. Rhypheum (Schlippe ex d'Orbigny); Douglas \& Arkell, p. 157.
- 1934 Pecten (Entolium) demissus Phillips: Stoll, p. 22, pl. 2, fig. 21.
v. 1935 E. demissum (Phillips); Arkell, p. x, pl. 53, fig. 3.
- 1935 P. corneolus Young \& Bird; Arkell, p. xi.
- 1948 E. corneolum (Young \& Bird); Cox \& Arkell, p. 15.
- 1965 E. corneolum (Young \& Bird); Cox, p. 51.
v. 1967 E. demissum (Phillips); Speden, p. 15, pl. 3, fig. 3.

Type specimen Holotype of Young \& Bird's p. 234, pl. 9, fig. 5, from the Corallian of Malton, Yorkshire, is lost, the whereabouts of none of Young \& Bird's specimens being known. The specimen figured by Arkell (1930, p1. 7, fig. 4) from the Osmington Oolite Series (Corallian) of Malton, Yorkshire, preserved in the Oxford University Museum (oun J8151), is herein designated neotype.

Diagnosis Very variable species, suborbicular to subovate in form, large to small in size (H 11.1-72.0 mn), length \(80.2-95.2 \%\), \(\bar{x} 88.5 \%\) auricles subequal, those of the left valve projecting above the hingeline; lacking the pair of narrow sharp-edged internal laminae diverging from the umbo and making a very acute angle with the auricular margin, distinguishing it from the group containing E. proteus (d'Orbigny), E. renevieri (Oppel), E. cinpulatum (Goldfuss) and E. partitum (J. de C.

Sowerby); ornament consisting solely of very fine concentric growth lines, not paired, thus differentiating it from E. briconense (Cossmann); occasionally with faint radial growth striae or crumples; E. disciforme (Schulbler in Zieten), from the Bajocian, is lower and more orbicular, usually having the length greater than the height.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lllc} 
& H & L & umbonal angle \\
N & 15 & 15 & 7 \\
\(\overline{\mathrm{X}}\) & 29.7 mm & \(88.5 \%\) & \(100.7^{\circ}\) \\
Max & 72.0 & 95.3 & 110 \\
Min & 11.1 & 80.2 & 95 \\
OR & 60.9 & 15.1 & 15
\end{tabular}

Description Valves, excluding auricles, equilateral, equivalve, suborbicular to subovate, up to 72 mm high; auricles small, subequal, those of the left valve projecting above the level of the hingeline, most marked at the distal extremities, meeting the anterodorsal and posterodorsal margins close to the umbo, at an obtuse angle \(\left(95-110^{\circ}, \overline{\mathrm{x}} 100.7^{\circ}\right)\). Length variable ( \(80.2-95.3 \%\) of \(H, \bar{x} 88.5 \%\) ), but always less than height, giving a subovate outline, although the outline becomes almost suborbicular in some forms with a relatively large length/ height ratio; shell outline appears to be independent of size, both subovate and suborbicular forms being found in the juvenile and adult stages. Umbones small, median, pointed, orthogyrate,
not salient to the dorsal margin. Anterodorsal margin straight to very gently concave, byssal notch absent; posterodorsal margin gently concave, diverging ai an umbonal angle of about \(100^{\circ}\left(<110^{\circ}-95^{\circ}, \bar{x} 100.7^{\circ}\right)\); anterior, posterion and ventral margins forming a continuous sweeping curve, of near semicircular outline; anterodorsal and posterodorsal angles rounded, placed about one-third of the shell height below the umbones. Auricular sulcus well-developed, the auricles being clearly mariced off from the body of the shell. Ornament of both valves similar, consisting of regular closely-packed, concentric growth lines, occasionally slightly elevated into very faint concentric riblets, and sometimes showing marked growth halts; in well-preserved material, very faint radial striae may be seen to cover the entire body of the shell, giving rise to a fine cancellate pattern of ormament on a submacroscopic level; some small specimens from the Inverbrora Shale Member (Medea Subzone) of Irora show faint radial growth crumples in the shell exterior, superimposed on the fine concentric growth lines. Shell thin, often shiny and 'smooth', with a foliated calcitic inner layer, and a radially fibrous calcitic outer layer. Margin entire, closed.

Iigament placed in a small triangular resilifer, but rarely seen, due to fragility of the shell; incised ligamental area parallel to the dorsal margin not visible for the same reason. Cardinal crura faint, narrow, one on either side of the ligament on each valve, placed very close to the dorsal margin, becoming more clearly defined distally. Auricular crura clearly developed,
reflecting in part the well-defined exterior auricular sulcus, becoming more elevated above the auricles as they are traced distally, and usually swelling out into a small tubercle at the distal extremity (Fies. 2.28). Byssal notch absent in all stages of development, ctenolium absent. Adductor muscle scar and pallial line not visible.

Remarks This species was covered by Arkell (1930, p. 91) in his monograph of British Corallian Lamellibranchs, and a full synonymy was given there. The synonomy given above refers to the most important British references to the species, and also lists many occurrences not recorded by Arkell; it should be referred to in conjunction with that of Arkell.

The variability of this species may be well seen in populations collected from horizons such as the Hackness Rock and the Corallian, where narrow subovate specimens occur together with much wider suborbicular forms, Arkell (1930, p. 93; 1935, p. xi) originally claimed to be able to distinguish Middle from Upper Jurassic specimens of Bntolium, end referred the Bathonian forms to E. Phyc'reum (Schlippe ex d'Orbigny), on the basis of their more orbicular outline and larger umbonal angle. However, he later (Cox \& Arkell 1948, p. 15) amended this view, and agreed that the Bathonian forms were indistinguishable from the Upper Jurassic forms, on the basis of the great range of variation at all horizons. Study by the author of collections of British Middle and Upper Jurassic Sntolium in all the major British museums, has led him to agree with the view that E. corneolum is a very variable, long-ranging species, specimens
from the Bathonian being indistinguishable from many occurring: in the Upper Jurassic.

The specimen of Pecten sp. figured by Phillips (1829, pl. 5, fig. Il) from the Oxford Clay may be referable to E. corneolum, but the holotype is lost, and no topotypes have been seen in the major British collections. The subequal nature of the auricles, the apparent lack of a byssal notch, and its general outline suggest that it is an Entolium, although the dorsal margins seem a little too concave; this could be due to poor preservation or bad drawing, but in the lack of comparable specimens, no definite conclusions can be drawn. Voltz, in Thurmann (1833, p. 32), proposed the name Pecten phillipsii nom. nov. for Phillips figure, and so this name should also be noted. Goldfuss (1836, p. 74, pl. 99, figs. 3a, 3b) compounded the confusion by introducing the name Pecten cingulatus nom. nov. for the specimen figured by Phillips, (ignoring the prior name of Voltz), figuring a specimen clearly different from that of Phillips, in that it possessed a pair of sharp-topped radial laminae on the inner shell surface, passing almost to the ventral margin. E. cingulatum (Goldfuss) has recently been well-figured by Cox (1965, p. 52, pl. 6, fig. 5). The identity of Pecten vitreus Roemer and P. Solidus Roemer with E. corneolum were noted by Arkell (1930, p. 93).

The small specimens of \(E\). corneolum from the Inverbrora Shale Member of Brora (Sutherlandshire) are particularly noteworthy for the fact that they show the inner surface of the valves, enabling examination of the cardinal plate and auricular
areas to be made for the first time. Most British specimens of E. corneolum are seen only in external view, and details of the hinge area were not previously known, although Speden (1967, p. 15) noted the hinge structure of some other species of Entolium (Fig. 2.28).
E. corneolum belongs to the group of species which lacks internal laminae, but the generic significance of these internal laminae is still uncertain, as noted by Speden (op. cit.), and more work on Jurassic Entolium in general is needed to clarify this matter.

Range and occurrence This species has been recorded at most levels from the Inferior Oolite to the Kimmeridge Clay (Cox \& Arkell, 1948, p. 15). In the English Lower Oxford Clay, it is found in the Jason Subzone of Calvert, the Enodatum, Medea and Jason Subzones of Norman Cross, the Calloviense Subzone at Stewartby, and the Medea and Jason Subzones of Bletchley. It is also common in the Hackness Rock (Athleta - Lamberti Zones) of Scarborough, the Calloviense and Jason Zones of Brora, the Oxford Clay of the Kent coalfield, the Athleta - Lamberti Zones (M. Oxford Clay) of Woodham, Bucks., and the Kellaways Rock of Wiltshire.

It has been recorded at equivalent levels in the Callovian Oxfordian of France, Germany, Switzerland, Poland, Russia, Greenland and India.
? Family ENTOLIIDAE Korobkov, 1960

Genus BYSSENTOLIUM gen. nov.

Type species. Byssentolium hudsoni sp. nov., from the Grossouvrei Subzone, Coronatum Zone, Lower Oxford Clay of the East Midlands.

Diagnosis Shell externally resembling Entolium, but differing from it in the possession of a byssal notch beneath the right anterior auricle throughout life, giving a slightly chlanyiid shape (Fig. 2.29); no ctenolium; auricles small, subequal, the anterior slightly larger than the posterior, those of the right valve tending to project a little way above the dorsal margin; auricular crura well-developed; cardinal crura weakly-developed, that of the anterior auricle of the right valve most clearly-developed; hinge edentulous.

Remarks Some species of Entolium (Cteniopleurium) are thought to have a byssal notch in their juvenile stages (Hertlein, 1969, p. N347), but this is a rare feature, and most Entolium lack a byssal notch at all stages of growth; an exception is E. frontalis (Dumortier), which appears to possess a notch throughout life (N.J. Morris, 1973, pers. comm). Meeks original diagnosis (1865, p. 478) of Entolium stated that a byssal notch is absent, and study of many examples of the type species - E. demissum (Phillips) - supports this observation, as even in their very youns stages (heights of 5 mm or less) there is no trace of a byssal notch. The abundant material of

Byssentolium hudsoni to be found in the Grossouvrei Subzone Oxford Clay of the English Midlands reveals that even in the largest specimen known (If 12.3 mm ), a byssal notch is still clearly developed, although there is never any trace of a ctenolium. For this reason, B. hudsoni must be considered separate from the E. demissum group.

The relationship of \(B\). hudsoni to other species of Entoliidae is not clear, placement in that family being based on the many gross similarities to Entolium. The projection of the auricles of the right valve above the hingeline, the welldeveloped aurjcular crexa, the posterior crus swelling out into a prominent peglike feature at its distal extremity, and the overall similarity of ornament all serve to emphasize the close relationships between Byssentolium and Bntolium s.s. It can be demonstrated that in B. hudsoni it is the right valve which has the auricles projecting above the hingeline, as the same valve has the byssal notch. This appears to support the 'traditional' view that it is the right valve of Entolium which has elevated auricles, not the left, as was suggested by Newell (1969a, p. N347) on the premise of analogy with Pernopecten, an Upper Palaeozoic Entoliid. However, until the discovery of muscle scars in Entolium s.s., it is not possible to make clear cut decisions.

The overall chlarayiid shape of Byssentolium could equally well suggest that the genus should be placed in the Pectinidae, but it is difficult to decide where it should belong if that was the case; in view of the several similarities to Entolium, it
231.
is best placed in the Entoliidae in our present state of knowledge.

Byssentolium hudsoni sp. nov. Pl.9,figs.17-20, Pl.10,figs.1-2,4.

Type specimen Holotype from bed 30, Grossouvrei Subzone, Coronatum Zone of Norman Cross brickpit, Peterborough, EM LLL27723 - Paratypes (BM LLL27724, 27746 ) from the same locality and horizon, EM LL27748 from bed 14G, Calvert, LU 69939 - 69940 from bed 14E, Calvert, LU 69936 from bed 25, Norman Cross, LJ 69934 - 69935 from bed 15 , Stewartby and BM LL27750 - 27751 from bed 33, Norman Cross, all from the Grossouvrei Subzone.

\section*{Diagnosis}

Small to medium-sized species (up to 12.3 mm high), suborbicular to subovate in outline, length always less than height (L \(80.2-93.8 \%, \bar{x} 87.3 \%\) ); umbones small, median, orthogyrate, not salient to the dorsal margin; byssal notch beneath right anterior auricle in all stages of growth; ctenolium absent. Cardinal crura weakly-developed, except for the right anterior crus, which is usually stronger. Auricular crura strongly-developed. Auricles of right valve projecting above the hingeline.

\section*{Measurements}

See Appendix 3.
232.
\begin{tabular}{lclc} 
& H & I & umbonal angle \\
N & 15 & 15 & 11 \\
\(\bar{X}\) & 7.3 mm & \(87.3 \%\) & \(100.9^{\circ}\) \\
Max & 12.3 & 93.8 & 105 \\
Min & 4.3 & 80.2 & 93 \\
OR & 8.0 & 13.6 & 12
\end{tabular}

Description Small to medium-sized species, equivalve, inequilateral, of chlanyiid shape, with a marked byssal notch beneath the right anterior auricle; height always greater than length ( \(\bar{x} 87.3 \%\) ), giving a subovate outline in forms with a low I value and a suborbicular outline in forms with a high L value. Umbonal angle \(93-105^{\circ}, \bar{x} 100.9^{\circ}\). Left valve not seen. Dorsal margin straight to gently concave, often with the auricles elevated slightly above the level of the hingeline; auricles subequal, the anterior auricles larger than the posterior, longer and higher, meeting the anterior margin further away from the dorsal margin than does the posterior auricle; a well-developed byssal notch is present beneath the right anterior auricle, giving the anterior margin a concavoconvex outline as it is followed ventrally (Fig. 2.29); ctenolium absent; posterior margin slightly concave to evenly convex, the posterior margin curved continuously with the ventral margin in forms where the posterior margin is convex; anterior angle variably rounded, never angular, passing smoothly into the semicircular ventral margin. Ornament not visible, the shells being coated with overgrowths of secondary calcite, but as the ornament is reproduced in other species preserved in this way,
it is likely that they are virtually smooth; the translucent shell, viewed from the inside, shows faint regular concentric markings, which raay be faintly represented on the external surface; no radial elements visible. Auricles appear to be smooth.

Auricular crura well-developed, that of the anterior auricle stronger and wider than that of the posterior, the posterior crus swelling out distally into an elevated tubercle. Cardinal crura faint, narrow, placed very close to the hinge margin, formed of the inner shell layer only; the anterior crus much more prominent than the posterior, both becoming betterdeveloped as traced away from the resilifer (Fig. 2.29); Resilifer not seen, all the shells being broken in the centre of the cardinal plete, but judeing from the height of the cardinal plate, the resilifer must be very amall; no ligament band seen. Adductor muscle scar not visible. Nargin entire.

Remarks The uncertain taxonomic position of B. hudsoni has been discussed above, and need not be considered further here. It appears to be a very restricted species, only having been found in the Grossouvrei Subzone of central England (Calvert to Peterborough), and also at Crook Hill, near Weymouth. However, whenever it occurs, the species is found in great abundance, being commonest in the calcareous clay facies, although it also occurs in the Grammatodon shell bed facies and the Meleagrinella shell bed facies, always in the Grossouvcei Subzone. There also seems to be a close relationship between the appearance of B. hudsoni and the onset of rapidly alternating
facies which occurs in the upper part of the Grossouvrei Subzone, and it seems probable that if similar lithologies were found elsewhere, they would contain B. hudsoni. Further study will hopefully reveal the geographical extent of such facies altemations. No comparable species has been recorded or figured in the literature, although in view of the small size, and frequently poor preservation of the species, this is not totally unexpected.

Range and occurrence Abundant in the upper part of the Grossouvrei Subzone (Coronatum Zone) of central and southern England. One specimen recorded from the Medea Subzone (Jason Zone) of Nomnen Cross, Peterborough.

Family PECIINIDAE Rafinesque, 1815

CAMPTONECPES Group Hertlein, 1969

Genus CAMPTONECTES Agassiz in Meek, 1865 (p. 28, 39)

Type species Subsequently designated by Stoliczka, 1871, p. 425, Pecten Iens J. Sowerby, 1818, p. 3, pl. 205, figs. 2, 3 ( \(=\) Chamites auritus Schlothein, 1813, p. 103), from the Corallian of the Oxford district.

Diagnosis Inequivalve, left valve more inflated than right; large byssal notch developed beneath the right anterior auricle; ornament consisting of fine curved divaricate striae, a punctate pattern being produced by their intersection with the fine concentric growth Iines.

Canpitonectes Salisbury, 1939
Camponectes Vyalov \& Korobkov, 1939

Diagnosis
As Camptonectes S.I., but with very fine
concentric growth lines, never elevated into ribs; radial elements consisting of fine divaricate striae, never strengthened into radial ribs.

Remarks Camptonectes is one of the best known genera of British Jurassic Pectinacea, and nothine need be said about its identity. There has, however, been some controversy over the authorship of the genus, the name first being used by Meek (1865, p. 39). In his diagnosis of Camptonectes, Meek (op. cit.) clearly indicates that the concept of the genus was due to Agassiz (Ms), and thus under the ICZN rules, the name should be oredited to Agassiz. Meck neglected to designate a type species, and it was not until 1871 that Stoliczka (1871, p. 425) designated Pecten lens Sowerby as the type species. The status of Camptonectes has recently been discussed by Speden (1967, p. 17).

Carmptonectes (Camptonectes) auritus (Schlotheim). Pl.10,figs.3,5-6.

1676 Pectinites Plot; p. 104, pl. 4, fig. 11.
1813 Chamites auritus sp. nov.; Schlotheim, p. 103
(reference to Lister, 1678 , pl. 9, fig. 51).

1818 Pecten lens sp. nov.; J. Sowerby, p. 3, pl. 205, figs. 2, 3.

1818 P. arcuatus sp. nov.; J. Sowerby, p. 3, pl. 205, figs. 5, \(7 \cdot\)

1822 p. maltonensis sp. nov.; Young \& Bird, p. 235, pl. 9, fig. 1.

1828 P. maltonensis Young \& Bird; Young \& Bird, p. 233, p1. 9, fig. 1.
? 1828 P. Iens J. Sowerby; Young \& Bird, p. 234, pl. 9, fig. 18.
1845 p. lens J. Sowerby; d'Orbigny, p. 476, pl. 42, figs. 1,2.
non 1846 P. lens \(J\). Sowerby; Rouillier, pl. C, fig. 13.
non 1853 P. lens J. Sowerby; Morris \& Lycett, p. 11, pl. 2, fig. 1. (= E. Iaminatus J. Sowerby, Bathonian).
non 1853 p. arcuatus J. Sowerby; Morris \& Iycett, p. 11, p1. I, fig. 18 ( \(=\) P. rigida J. Sowerby, Bathonian).

1871 Pa Iens J. Sowerby; Phillips, pl. 13, fiE. 24.
1901 P. Iens J. Sowerby; Raspail, p. 193, pl. 12, fig. 14.
1930 Camptonectes Iens (J. Sowerby); Arkell, p. 94, pl. 7, fig. 1; pl. 9, figs. 4-7.

1935 C. Iens (J. Sowerby); Arkell, p. xii.
1936 C. Iens (J. Sowerby); Dechaseaux, p. 30, p1. 4, figs. 9, 9a, 11, 14.

1948 C. auritus (Schlotheim); Cox \& Arke11, p. 14.
1952 C. auritus (Schlotheim); Cox, p. 23, pl. 2, fig. 6.
1967 C. auritus (Schlotheim); Speden, p. 17, pl. 4, figs. \(1,3,6\).
1972 C. auritus (Schlotheim); Valker, p. 123, pl. 7, fig. 10. Oxfordshire. The specimen figured by Plot is lost, and so a neotype is here designated. The two syntypes of Pecten Iens J. Sowerby also come from the Corallian ("Shell-cum-Febble bed") of Headington, and are preserved in the Sowerby collection at the EM (NH), numbers L80525, L80526, and as these are the earliest figured topntypes stili extant, one (BM I80525, J. Sowerby, 1818, pl. 205, fig. 2) is designated neotype. It has been refigured by Arkell (1930, pl. 9, fig. 4).

Diagnosis Medium to large sized species (H up to 58 mm ), suborbicular in outline, with length only slightly less than height ( I 86.8-98.5 \%, 部 \(94.6 \%\) ), and umnonal angle \(105^{\circ}\) \(110^{\circ}\); ormament similar on both valves at all growth stages, consisting of closely packed, fine divaricate radial striae, densely punctate, rendered finely reticulate by a series of lightly impressed concentric growth lines, Auricles small, those of the left valve, especially the anterior auricle, covered by densely packed, fine vertical growth lines; posterior auricle of the right valve with punctate radial striae only.
C. auritus may easily be distinguished from the closely related, but slightly older (Bajocian - Bathonian) C. laminatus (J. Sowerby, 1818), as the latter species is narrower and more subovate ( \(\overline{\bar{x}} 85 \%\), umbonal angle \(\bar{x} 90^{\circ}\) ), has a tendency for
the ornanent of the left valve to coarsen in larger speciinens, the divaricate striae becoming almost riblets, and has different ornanent patterns on the auricles; the anterior auricle of the left valve has about 10 conspicuous, raised vertical lamellae, and the posterior auricle of the right valve has a similar pattern of ornament.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lccc} 
& H & L & umbonal angle \\
\(\mathbb{N}\) & 8 & 8 & 7 \\
\(\overline{\mathrm{X}}\) & 39.5 mm & \(94.6 \%\) & \(107.0^{\circ}\) \\
Max & 58.0 & 98.5 & 110 \\
Min & 28.0 & 86.8 & 104 \\
OR & 30.0 & 11.7 & 6
\end{tabular}

Description Wediun to large sized shell (up to 58 mm high), inequivalve, planoconvex, the right valve almost flat, the left valve convex; inequilateral, auricles small, unequal, the anterior auricles larger than the posterior, the anterior auricle of the right valve larger than that of the left valve, with a large byssal sinus beneath it. Outline suborbicular to subovate, height always slightly greater than length (I 86.8\(98.5 \%\), \(\bar{x} 94.6 \%\), umbonal angle \(105-110^{\circ}\), widest in the suborbicular forms.

Anterior auricle of right valve elongate, dorsal margin straight to very gently concave, anterior margin truncate, becoming more convexly rounded ventrally, passing into the
concavely rounded byssal fasciole, and meeting the anterodorsal margin of the body of the shell at about a right angle; auricular sulci deeply impressed on all four auricles; the right anterior auricle also with a well-developed ridge running from the umbo to the posteroventral tip of the main part of the auricle, forming the dorsal edge of the byssal fasciole; right posterior auricle with straight dorsal margin, shorter than that of the anterior auricle, its posterior margin obliquely truncate, becoming gently concave ventrally, and meeting the posterodorsal margin of the body of the shell at an obtuse angle; anterior auricie of the left valve not as elongate ds that of the right valve, its dorsal margin straight, the anterior margin obliquely trmeate to gently convex, meeting the body of the shell at a very obtuse angle; Ieft posterior auricle short, its dorsal margin gently corvex, the posterior margin obliquely truncate, meeting the body of the shell at a very obtuse angle. Auricles of the left valve omamented with tightly packed fine vertical growth lines, particularly well seen on the anterior auricle; right posterior auricle with punctate diagonal radial striae, anterion auricle with fine concentric growth lines.

Main body of shell suborbiculax; umbones small, submesial, orthogyrate, not elevated above the dorsal margin, rounded. Valves of similar outline, but unequally inflated, the right valve almost planar, the left valve markedly convex. Anterodorsal margin evenly concave, the anterior auricle meeting it at about its midpoint; anterior angle sharply rounded, passing evenly into the semicircular ventral maxging postero-
dorsal margin gently convex, the posterior angle more rounded than the anterior, passing smoothly into the ventral margin. Ormament of both valves similar, consisting of closely packed, fine, divaricate striae, densely punctate, markedly divergent at the anterior and posterior extremities; fine concentric growth lines interact with the divaricate striae to produce a finely reticulate pattern upon which the punctae are superimposed.

Inner surface of hinge margin with fine vertical ridges and grooves, particularly well-developed anterior of the resilifer, for articular restraint. Resilifer not seen, but it must be small, because of the low height of the hinge plate in the umbonal region. One cardinal crus on each valve, anterior and posterior to the resilifer, placed very close to the hinge margin and parallel to it, the crura becoming more strongly developed distally. Auricular crura absent (Fig. 2.30). A strong ridge runs from the area of the resilifer to the posteroventral extremity of the main part of the right anterior auricle, marking the dorsal edge of the byssal fasciole; a second ridge runs from the resilifer to the part of the right anterior auricle above the byssal notch, which may represent a vestigial auricular crus, although crura are absent on the posterior auricle of the right valve and on both auricles of the left valve. Ctenolium well-developed, placed along the anterodorsal margin of the right valve, immediately anterior to the location of the byssal notch. Pallial line and musculature unknown.

Remarks The provenance of J. Sowerby's two syntypes of \(P\). lens, said to be "the forest marble near Oxford", has been shown by Arkell (1930, p. 95) to actually be the Corallian (Berkshire Oolite Series) of Headington, Oxford. Arkell has also shown thet several species of Camptonectes may be distinguished in the Fiiddle and Upper Jurassic of Europe, and that there is no justification for uniting all Miadle and Upper Jurassic specimens in C. Iens, as was done by Staesche (1926). Arkell also noted that much of the confusion over the species of Camptonectes was caused by French and German workers using Sowerby's seteral names without checking the types. The common Callovian - Kinmeridgian species C. guritus may be distinguished from the Bajocian - Pathonian C. Iaminatus (J. Sowerby), in details of outline and ornement, as noted in the diagnosis above. Several entries omitted by Arkell have been placed in the synonomy here. Pecton naltonensis Young \& Bird is clearly conspecific, their figure showing a well-preserved right valve, and it is probable that their 1828 (pl. 9, fig. 18) figure of P. lens represents a poorly-preserved left valve, although there seems to be a lack of divaricate omment. Couffons (1919) figure of \(P\). lens shows a poorly preserved steinkern of similar shape to Camptonectes, but lacking all external ornament.

Range and occurrence Upper Cornbrash, Kellaways Rock, Hackness Rock, Corallian and Kinmeridge Clay of Britain. Also in the Inverbrora Shale (Callovian) of Brora (Sykes collection). In the Lower Oxford Clay of the Midlands, it has been found in the transition beds (Enodatum Subzone) at Stewartby, and in a
similar lithology (Medea Subzone) at Bletchley. Arkell (1930, p. 96) records a possible occurrence froin the Forest Marble of Chipperham (GSM 49043).

Widespread in the Callovian - Kimmeridgian of Europe; see Arkell, 1930, p. 94.

Genus Cillamys Röding, 1798 (p. 161) [ex Bolten Ms]

Type species Subsequently designated by Hermannsen, 1847, p. 231, Pecten islandicus Müler, 1776, p. 248. Recent, circumboreal.

Diaenosis Suborbicular, often slightly higher than long, commonly somewhat oblique; both valves convex, left valve usually more so then the right valve, but in some species, valves of almost equal convexity; auricles clearly delimited, usually large, with large byssal notch beneath the right anterior auricle; ctenolium usually present; sculpture of radial (usually stronger) and concentric elements, with scalelike spines often developed at their junctions, especially on the left valve; in the adult stages, intercalatory ribs are often present in the interspaces; margin scalloped; cardinal crura variable in number and size.

\section*{Subgenus CHIAMYS s.s.}

Synonymy: Clamys Leach, 1815
Chalmys Dollfus \& Dautzenberg, 1886

Actinochlanys Roberto, 1898
Myochlanys von Thering, 1907
Chlamydina Cossmann, 1907
Zygochlamys von Thering, 1907
Belchlarys Iredale, 1929
Mimachlanys Iredale, 1929
Scaeochlarys Iredale, 1929
Talochlanys Iredale, 1929
Veprichlanys Iredale, 1929

Diagnosis Usually higher than long, anterior auricles longer than posterior auricles; sculpture of numerous, generally frooved or striated and spinose, radial ribs; inner margin comnonly with rounded, grooved, weak riblets; cardinal crura weak or nearly obsolete.

Remarks
Chlaroys s.s. is readily distinguished from other Jurassic subgenora such as Radulopecten by virtue of its much greater rib density, which often gives a strong, finely reticulate ornament pattern on both valves. The ornament is similar to that seen in Camptonectes (Camptochlamys), a member of the Camptonectes group, where strong concentric lamellae interact with radial riblets to give a similar, but slightly coarser, reticulate pattern. Camptochlamys may also be distinguished by the presence of faint Camptonectes-type ornament on the auricles and adjacent areas, and by its larger byssal notch and fasciole.

In Chlamys s.s., the strength of the concentric lamellae is rather variable, most Recent species, including the type species C. islandicus, having only very faint concentric ornament, usually developed as spinose protuberances on the radial riblets. In contrast, most Jurassic species, such as C. bedfordi sp . nov., C. splendens (Dollfus), C. nattheimensis de Loriol and C. qualicosta (Etallon) have stroncer concentric lamellae, often forming conspicuous features which give rise to a marked reticulate ornament pattem.

Chlamys (Chlamys) bedfordi sp. nov. Pl. 10, figs. 7-11.

Type specimen Holotype, M. LLi27724 , from bed 10A, Grossouvrei Subzone, Coronatun Zone, M. Callovian of Calvert, Sucks. Four syntypes (BM LI27725 - 27728 ) from bed 10D, Stewartby (Obductum Subzone); bed 10D, Calvert (Grossouvrei Subzone); bed 16, Horman Cross (Grossouvrei Subzone), and bed 6, Calvert (Obauctum Subzone).

Diagnosis Smail species (up to 9.7 mm L ), suborbicular, with length and height about equal (H 100-103.0 \%, 部 \(101.5 \%\); right valve with a narrow byssal notch below the anterior auricle, byssal fasciole small; right valve slightly more convex than the left valve; both valves ornamented by very fine, densely packed radial riblets, about 70 in the right valve, and 40 in the left valve, crossed by regular fine concentric lamellae, to give a microscopically reticulate pattern.

\section*{Measurements}

See Appendix 3.


Description Small species (up to 9.7 mm L ), suborbicular in outline (H \(\bar{x} 101.5 \%\) ), subequilateral, bialate, subequivalve, the right valve slightly more inflated than the left valve. Hingeline straight, about two-thirds of the overail length of the shell (Ih \(60.6-71.4 \%, \bar{x} 66.0 \%\) ), the auricles of the left valve subequal, those of the right valve unequal, the right
anterior auricle higher and longer than the posterior. In the right valve, the anterodorsal margin of the shell is gently concave, and marks the position of the deeply excavate auricular sulcus; the posterodorsal margin is very gently concave in the region where it abuts against the excavate auricular sulcus, then becomes gently convex; there is no perceptible angle between the posterodorsal margin and the ventral margin, which is evenly rounded in a semicircular outline; the anterodorsal angle is more clearly defined, and takes the form of a rounded obtuse angle. The right anterior auricle is marked off from the body of a shell by a deeply excavate auricular sulcus, but as there is no well-marked byssal fasciole, the auricle is closely applied to the body of the shell; the outer surface of the auricle is gently arched, the anterior end curving gently down to the anterodorsal margin. The posterior auricle of the right valve is shorter and more trigonal than the anterior, but is clearly marked off from the body of the shell by a deep auricular sulcus; its posterior margin forms an obtuse angle of about \(115^{\circ}\) with the hingeline, and is gently concave in outline, meeting the posterodorsal margin not far below the hingeline.

In the left valve, both the antero- and posterodorsal margins are very gently concave, the subequal, trigonal auricles being marked off from the body of the shell by deep auricular sulci; at the anterior and posterior extrenities of the valve, the margins become more convex, and pass evenly into the semicircular shaped ventral margin, with no clearly difforentiated
antero- or posterodorsal angles. In both valves, the umbones are placed in a submedian position (AL 42.4-53.2 \%, 部 \(48.9 \%\) ). Both valves are ornamented by densely-packed fine radial riblets, the right valve bearing about 70 , and the left valve about 40 at the ventral margins; faint intercalatory riblets appear in some of the interspaces towards the ventral margin in both valves; thesc are crossed by regularly-spaced fine concentric lamellae, which are present over the whole of the body of the shell, and give rise to a mioroscopically reticulate pattern. Both the concentric lamellae and the radial riblets persist onto the auricies, where the lamellae are strengthened relative to those on the body of the shell; the lamellae are very narrow and wirelike, and usually rather finer than the radial riblets.

A pair of small, weak cardinal crura is present on the cardinal plate of each valve, each crus being short, low and placed subparallel to the hinge margin, and fading distally (Fig. 31). Resilifer not seen. Auricular crura absent, but there is a slight ridge along the line of the auricular sulcus of the right anterior auricle; this being out in the region of the byssal sinus by the narrow, deeply excavate, transverse byssal notch, which runs subparallel to the hinge margin. Ctenolium not visible. Ventral margin of the shell finely scalloped where the radial riblets reach the margin. Inner shell layer of nacreous aragonite, outer layer of crossed-lamellar calcite.

This small, distinctive species, which occurs sporadically throughout the Lower Oxford Clay of southern Fingland, does not appear to have been described before; its small size, high rib density and suborbicular outline make it an unistakable member of the fauna. There are similarities in overall size, general outline and preservation, to specimens of Byssentolium, but C. bedfordi may easily be distinguished by its ribbing style and larger aricles.

Pecten mantochensis Etallon, a small, densely ribbed species from the Portlandian of France, is rather similar to C. bedfordi, but diffeis in being higher and more trigonal than the British Callovian species. Chlamys subtextoria (Munster), from the Upper Jurassic of Europe has simi:ar ornamentation to C. bedfordi, and shares its small size, but the density of ribbing is much less, only 33 ribs being present; it is also rather higher and more trigonal than C. bedfordi.

Range and occurrence A rare constituent of the Lower Oxford Clay fauna of central Ingland, occurring in the Coronatum Zone of Calvert, Stewartby and Noman Cross.

Diagnosis Right valve usually more inflated than the left valve, but not always so. Ornamentation variable, typically with 5-6 pairs of twinned ribs on the right valve, but in many species this twinnine is faint or obsolete, in which case there are 11-12 prominent radial ribs; left valve ornament closely allied to that of the right valve, with \(5-6\) radial ribs in forms with twinned ribs on the right valve, and 10-11 radials in forms without paired ribs; right valve also ornamented with faint regular concentric growth lines, the left valve with prominent, regular, wire-like concentric lamellae.

Remarks Cox's (1952) emended interpretation of the nature of ribbing in Radulopecten has been accepted here, so that the subgenus includes all of the Jurassic species placed by Staesche (1926) in the "Group of Aequipecten fibrosus Sowerby". Thus forms with poorly developed paired ribs on the right valve, such as C. (R.) fibrosus and some specimens of C. (R.) scarburgensis and C. (R.) drewtonensis may be included, together with the more 'typical' members of the subgenus, such as C. (R.) hemicostatus. In essence, Radulopecten now includes most of the Jurassic species referred to Chlamys.
1. Chlanys (Radulopecten) scarburgensis (Young \& Bird).
PI. 10, figs. 12-15, PI. 11, figs. 1-6, 8.

1822 Pecten Scarburgensis sp. nov.; Young \& Bird, p. 234, pl. 9, fig. 10.

1828 P. Scarburgensis Young \& Bird; Young \& Bird, p. 235, pl. 9, fig. 13.

1829 P. fibrosus J. Sowerby; Phillips, pl. 6, fig. 3.
(non J. Sowerby).
1845 P. discrepans nom. nov.; irown, p. 157, pl. 65, fig. 17. (nom. nov. pro P. fibrosus Phillips non J. Sowerby).
? 1860 P. fibrosus J. Sowerby; Damon, pl. 3, figs. 1, la. (non J. Sowerby).

1883 Po fibrosus J. Sowerby; Lahusen, p. 23, pl. 2, fig. 3. (non J. Sowerby).

1901 P. fibrosus J. Sowerby; Raspail, p. 193, p1. 12, fig. 9. (non J. Sowerby).

1924 P. fibrosus J. Sowerby; Cossmann, p. 28, pl. 4, figs. 19-21. (non J. Sowerby).

1932 Chlenys fibrosa (J. Sowerby); Corroy, p. 188, p1. 27, figs. 15,16 . (non J. Sowerby).

1934 Pecten (Aequipecten) fibrosus J. Sowerby var. duplicostatus nov.; Stoll, p. 21, p1. 2, fig. 16 only (non figs. 17,\(18 ;=\) C. (R.) fibrosa).
1935 Chlamys scarburgensis (Young \& Bird); Arkell, p. xiii.
1936 Aequipecten fibrosus (J. Sowerby); Dechaseaux, p. 47, pl. 6 , figs. \(15,18,18 a, 19\); pl. 7, fig. I (non J. Sowerby).
1948 Chlamys (Radulopecten) scarburgensis (Young \& Bird); Cox \& Arkell, p. 13.

Type specimen Neotype, here designated, Sedgwick Museum Cambridge, SM J12398, Leckenby collection, from the Hackness Rock (Athleta - Lamberti Zones), Scarborough, Yorkshire (topotype). Neoparatypes, SM J12399-J12401, same locality and horizon, also

Leckenby collection.

Diagnosis Medium to large-sized species, up to 76 mm long, with 9-11 narrow, flat- or round-topped radial ribs on each valve; these ribs are equal in width or narrower then the intervening sulci; right valve slightly more convex than the left valve; radial striae absont from the sulci; ribs on the left and right valves are of equal prominence; height usually greater than length (if \(\bar{x} 108 \%\) ), inflation low ( \(\bar{x} 30.5 \%\) ); umbonal angle \(83-108{ }^{\circ}, \bar{x} 97^{\circ}\).

Differs from C. (R.) fibrosa (J. Sowerby) in having fewer, more divergent ribs, of equal prominence on each valve, the ribs being narrower than in C. fibrose; it also lacks the radial striae which occur in the sulci of C. (R.) fibrosa. C. (R.) drewtonensis Neale differs in that the left valve is slightly more inflated than the right, and in the possession of a very prominent anterior auricle on the right valve. The anterior auricle is omamented by 9 fine radial striae in its proximal 6.5 mm .

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lccccc} 
& L & II & I & Umbonal angle & Ribs \\
N & 12 & 12 & 5 & 10 & 12 \\
\(\overline{\mathrm{X}}\) & 27.1 mm & \(108.0 \%\) & \(30.5 \%\) & \(97.2^{\circ}\) & 9.7 ribs \\
Max & 41.5 & 116.3 & 34.3 & 108 & 11 \\
Min & 10.4 & 99.4 & 28.3 & 83 & 9 \\
OR & 31.1 & 16.9 & 6.0 & 25 & 2
\end{tabular}

Description Medium to large-sized species, up to 76 mm long, inequivalve, the right valve slightly more inflated than the left, inequilateral; umbonal angle very variable \(\left(83-108^{\circ}\right.\), \(\overline{\mathrm{X}} 97.2^{\circ}\) ), height slightly grecter than length (H 99.4-116.3 \%, \(\overline{\mathrm{x}} 108.0 \%\) ); suborbicular in outline, with prominent, subequal auricles; in the right valve, the anterior auricle is slightly larger than the posterior auricle, has a distinct byssal notch beneath it, and is ormamented by fine sinuous concentric growth lines, with no radial elements; the posterior auricle of the right valve is ommented by fine vertical striae, the hinge margin having about 8 cuarse tuberculations acting as hinge teeth, Ieft valve auricles subequal, but not known in detail; auricular sulci well-developed; ornament of right valve consisting of 9-11 coarse radial ribs, usually round-topped, but occasionally flattened and showing pairing of the ribs, the ribs beins equal in width or norrower than the intervenine sulci; the ribs are markedly divergent, the sulci widening towards the ventral margin, rathor than having the ribs widening, as is the case in C. (R.) £ibrosa; the radial ribs are crossed by fine concentric striae, crossing both ribs and sulci, numbering about 55 to the centimetre; in some specimens, the anterior- and posteriomost ribs have weakened radial elements, and are maxked more clearly by a Ine of squamae which represent coarsened concentric striae; omament on the left valve similar to that of the right valve, the ribs being round-topped, of approximately equal strength, numbering 9-11, and again being markedIy divergent; the sulci are wider than the ribs, often as much as
twice as wide; the ribs and sulci of the left valve are crossed by coarse, wire-like concentric costellae, numbering about 17 to the centimetre, the spacing remaining constant throughout growth. Ventral margin scalloped.

Remarks C. (R.) scarburgensis, having been described in Young \& Bird's (1822) somewhat obscure work on the geology of the Yorkshire coast, was overlooked for over a century before Arkell (1935, p. xiii) recognised its existence as a valid species. At least part of the confusion was caused by the similarity between this species and C. (R.) fibrosa (J. Sowerby), which ranges from the Kellaways Rock to the Upper Oxfordian, and must be considered a very close relative. There are, however, marked differences between the two species, as noted in the diagnosis above, and it is possible to separate ever young forms on the basis of rib density and divergence. The neotype (SM J12398), from the Hackness Rock of Scarborough is the largest specimen known (I. 41.5 mm ), but Young \& Bird (1822, p. 234) in their original diagnosis state that "some specimens are three inches long", and it is from this measurement that the maximum size (L 76 mm ) is inferred.

Phillips (1829, p1. 6, fig. 3) figured a topotype of C. (R.) scarburgensis, which he identified as P. fibrosus J. Sowerby, but there can be little doubt from Phillips plate that his specimen, now lost, does not belong to Sowerby's species. Brown (1845, p. 157) realised that Phillips had misidentified his specimen, and renamed it Pecten discrepans nom. nov., overlooking Young \& Bird's prior name. Several continental
authors (see synonymy) followed Phillips in misidentifying Sowerby's species, and referred specimens of C. (R.) scarburgensis to C. (R.) fibrosa. Stoll (1934, p. 2I, pI. 2, figs. 16-20) described Pecten (Aequipecten) fibrosus J. Sowerby, together with two new varieties of the species, from erratic boulders of Upper Jurassic age in N.J. Germany. Study of large collections of C. (R.) fibrose and C. (R.) scarburgensis shows the variability in form of the two svecies, and from this it is clear that all of Stoll's figures, except her plate 2, figure 16, belong to C. (R.) fibrosa s.s. The specimen mentioned above agrees well in size and ribbireg style with topotypes of C. (R.) scarburgensis, and is here assigned to that species. Dechaseaux (1935, p. 47) also confused the two species, placing Wll her specinens in Aequipecten fibrosus, but it is clear from her plates (pl. 6, figs. 15-20; pl. 7, figs. 1-3) that more than one species is represented. In ract, Dechaseaux fisured specimens referable to more than two species, her p1. 6, figs. 17, \(17 a\), and 20 being clearly different from both C. (P.) fibrosa and C. (R.) scarburgensis, as are her pl. 7, figs. 2, 3. Nuch work on her actual specimens is needed before they may be correctly interpreted, but fron her two plates, it seems likely that the specimens she figured on p1. 6, figs. \(15,18,18 a, 19\), and PI. 7, fig. I may be placed in C. (R.) scarburgensis.

Range and occurrence In Britain, this species is known from the Upper Cornbrash of Scarborough, the Kellaways Rock of Kellaways, Wiltshire, the Hackness Rock of Scarborough, and the Oxford Clay of Brill, Wiltshire (GSM 42985). One fragmentary
specimen is know from bed 5 (Enodatun Subzone) of Stewartby, but the species is more abundent in the Middle - Upper Oxford Clay of Oxfordshire and at Woodham (many specimens in the Oxford University Museum).

On the continent, the species appears to have been widespread, being known from the Callovian of Germany (Stoll, 1934), France (Raspail, 1901; Cossmann, 1924) and Russia (Lahusen, 1883), and the Oxfordian of France (Dechaseaux, 1936). The range agrees well with that known in Britain, and this appears to be an essentially Callovian species.
2. Chlamys (Radulopecten) fibrosa (J. Sowerby). Pl. I1, figs. 7, 9-12, 16.

1816 Pecten fibrosus sp. nov.; J. Sowerby, p. 84, p1. 136, figs. 1, 2.

1822 P. fibrosus J. Sowerby; Young \& Bird, p. 233, pl. 9, fig. 12.

1822 E. sulcatus sp. nov.; Young \& Bird, p. 233, p1. 9, fig. 3. (non P. sulcatus Bosc).
non 1829 P. fibrosus J. Sowerby; Phillips, pl. 6, fig. 3.
1860 P. vagans J. de C. Sowerby; Damon, pl. 9, fig. 4. (non P. vagans J. de C. Sowerby, 1826, Bathonian species).
non 1860 P. fibrosus J. Sowerby; Damon, pl. 3, figs. 1, la.
( \(=\) C. (R.) scarburgensis).
non 1882 p. fibrosus J. Sowerby; Roeder, p. 50, pl. I, figs. 11a, 11b.

\section*{256.}
non 1901 P. fibrosus J. Sowerby; Raspail, p. 193, p1. 12, fig. 9. (= C. (R.) scarburgensis)
non 1919 Chlanys fibrosus (J. Sowerby); Couffon, p. 119, pl. 3, figs. 17, 17a, 18.
non 1924 P. fibrosus J. Sowerby; Cossmann, p. 28, p1. 4, figs. 19-21. ( \(=\) C. (R.) scarburgensis)

1926 Aequipecten fibrosus (J. Sowerby); Arkell, p. 546, pl. 34, figs. 2-5.

1927 Chlamys (Aequipecten) fibrosus (J. Sowerby); Arkell, p. 165, pl. 2, figs. 6a, 6b.

1931 C. (A.) fibzosa (J. Sowerby); Arkell, p. 112, p1. 11, figs. 6-12.

1934 Pecten (Aequipecten) fibrosus (J. Sowerby); Stoll, p. 21, pl. 2, fig. 19.

1934 P. (A.) fibrosus (J. Sowerby) var. duplicostatus nov.; Stoll, p. 21, pl. 2, figs. 17, 18.

1934 P. (A.) tenuicostatus nom. nov.; Stoll, p. 22, pl. 2, fig. 20. (nom. nov. pro E. fibrosus Goldfuss, non J. Sowerby).

1936 Aequipecten fibrosus (J. Sowerby); Dechaseaux, p. 47, pl. 6, figs. 16, 16a.
non 1936 A. fibrosus (J. Sowerby); Dechaseaux, p. 47, pl. 6, figs. 15, 17, 17a, 18, 18a, 19, 20; pl. 7, figs. 1, 2, 3. (non J. Sowerby)

1952 Chlamys (Radulopecten) fibrosa (J. Sowerby) var.; Chavan, p. 36, pl. 2, fig. 14.

Type specimens The two syntypes figured by J. Sowerby (1816, p. 84, p1. 136, figs. 1, 2) are preserved in the Sowerby Collection at the EM (NH), both numbered 43305. The former (the left hand figure of Sowerby) is labelled "? Cornbrash, Chatley, near Frome", and the latter (the right hand figure of Sowerby) comes from the Corallian of Oxfordshire. Arkell (1931, p. 114) designated the latter specimen as lectotype, and suggested that it is probable that the other specimen came not from the Cornbrash, but from the Kellaways Rock (Arkell, in Douglas \& Arkell, 1928, p. 165).

Diagnosis Mediun to large-sized species, up to 35 mm long, with 11-14 tightly packed radial ribs, flat-topped in the right valve, and rounded in the left valve; the ribs of the right valve are markedly flat-topped, often show evidence of pairing, and are wider than the sulci; in contrast to C. (R.) scarburgensis, it is the ribs, rather than the sulci, which broaden ventrally; the ribbing of the left valve is much more prominent than on the right valve, and the ribs are narrower, often not being as wide as the sulci; radial striae occur in the sulci of both the left and the right valves; height exceeds length, varying from \(104-114 \%\), \(\bar{x} 110 \%\), umbonal angle 89-104 , " \(97^{\circ}\) 。

The differences between this species and C. (R.) scarburgensis have been discussed in the diagnosis of the latter species. C. (R.) drewtonensis Neale, from the Calloviense Zone of the Kellaways Rock of South Cave, Yorkshire, is undoubtedly closely related, but differs in the nature of ornament on the
```

anterior auricle, C. (R.) drewtonensis having radial striae on
the proximal part of the right anterior auricle, and in the
wider, flatter, more prominent ribs on the angle valve of
Neale's species.

```

\section*{Measurements}

See Appendix 3.
\begin{tabular}{llccc} 
& L & H & unbonal angle & ribs \\
N & 11 & 11 & 11 & 9 \\
\(\bar{x}\) & 25.8 mm & \(110.2 \%\) & \(97.2^{\circ}\) & 12.3 ribs \\
Max & 34.2 & 113.9 & 104 & 16 \\
Min & 12.3 & 104.5 & 89 & 11 \\
OR & 21.9 & 9.4 & 15 & 5
\end{tabular}

Description Mediun to large, up to 35 mm long, inequilateral, subequivalve, left and right valves with very marked differences in ornamentation; umbonal angle very variable (89-104 \({ }^{\circ}, \bar{x} 97.2^{\circ}\) ) appearing to increase with growth, height slightly greater than length; auricles subequal, the right anterior auricle with a byssal sinus beneatil it; ornament of right anterior auricle consists of sinuous raised comarginal striae, the striae being comarginal and vertical in the posterion auricle; in the left valve the auricles are subequal, and both anterior and posterior are ornamented by slightly coarse, vertical, raised comarginal striae; there are no radial elements present on any of the auricles; right valve ornamented by 11-14 wide, flat-topped radial ribs, always considerably wider than the intervening sulci, and widening
ventrally; in large specimens there is a tendency for the wide primary ribs to becone paired at their ventral margins; faint radial striae are present in the sulci; both ribs and sulci are crossed by regular fine concentric striae, numbering about 70 to the cm , which pass onto the auricles as the comnarginal striae; ornament of left valve more prominent, with narrower, higher, round-topped radial ribs, which are narrower than the sulci; as in the right valves of large specimens, there is a tendency for intercalation of secondary ribs in the sulci towards the ventral margin; both ribs and sulci alike are crossed by coarse, wire-like concentric striae, numbering about 15 to the cm, and passing onto the auricles as the commarginal striae; faint radial striae are present within the sulci of both the left and right valves; ventral margin scalloped.

Remarks The synonomy and range of variation of this species has been fuily discussed by Arkell (1931, p. 112), and little need be added here. As with many of Sowerby's types, the horizon of the syntype (BM 43305) is uncertain, beirn labelled Cornbrash, but Douglas \& Arkell (1928, p. 165) believe that it did in fact come from the Kellaways Rock. Certainly, specimens referable to C. (R.) fibrosa occur in the Hackness Rock of Yorkshire, and the Lower Oxford Clay of Bedfordshire and Northamptonshire, and so the extension of this mainly Corallian species down to the I. Callovian is quite acceptable.

The few Oxford Clay specimens known, from Stewartby, Norman Cross and "Chippenham", are medium-sized specimens which show clearly the wide flat-topped ribs on the right valve, 1l-16
in number, and the commarginal striae passing over the auricles. GSM 113408, from the "Oxford Clay of Chippenhan" is urnsual in that there appear to be sbout 16 radial ribs on the right valve, but as it is only possible to gain an internal view of the valve, style of ornanent and rib pattern camot be examined, and this specimen is assigned to C. (R.) fibrosa only spectulatively. However, the ctenoliurn, and the vertical ridge and groove system along the hinge margin, to aid articulation, are very well seen, and it may be inferred from this that there was a functional byssus in the adult. A pair of cardinal crura, radiatine from the apex of the resilifer and running subparallel to the hinge margin is also well seen (Fig. 2.32). Another unusual feature of this specimen is the size and extension of the anterior auricle, which seems rather too large for C. (R.) fibrosa. However, in the lack of other specimens, it is better to mention the specimen here than to assign it elsewhere.
\[
\text { Stoll's (1934, p. 21) division of } \mathrm{C} \text {. (R.) fibrosa into }
\] three is, as noted by Arkell (1934, p. xiii), unacceptable, as all her figured specimens fit the variation seen within Sowerby's species. Chavan's (1952, op. cit.) C. (R.) fibrosa var. also belongs to the range of variation of this species. Only one of Dechaseaux's (1936, p. 47, p1. 6, figs. 16, 16a) specimens may be referred to C. (R.) fibrosa, the other specimens belonging to C. (R.) scarburgensis, as well as at least two other species.

Range and occurrence This species is abundant at many levels between the Kellaways Rock and Corallian (Arkell, 1931, op. cit.), and occurs sparingly within the Oxford Clay of England, having been found in the Medea and Grossouvrei Subzones of Stewartby, and in the Medea and Jason Zones at lloman Cross; the specimen from the "? Oxford Clay of Chippenhan" (GSM 113408) probably belongs here, as does a specimen from the Kellaways Rock of the Snowsdown borehole, Kent (GSM M1342). It also occurs in the Middle - Upper Oxford Clay of Oxfordshire (OUM), and in the Hackness Rock of Scarborough (SMI J12610).

On the continents it has been recorded from many localities
in the Callovian and Oxfordian of France, Germeny, Switzerland and Tussia (see Arkel1, 1931, and the synonymy above).
3. Chiarys (Radulopecten) drewtonensis Neale. P1. 11, figs. 21-15.
** 1956 Chlamys (Radulopecten) drewtonensis, sp. nov.; Neale, p. 371, p1. 28, fies. 1-5。
- 1972 C. (R.) drewtonensis Neale; Valker, p. 122.

Type specimens Tolotype of Chlanys (Radulopecten) drewtonensis, figured by Neale, 1955, pl. 28, figs. 2, 3, preserved in the BM (NII), number L88737, together with one paratype, no. L88738 (Neale, p1. 28, fig. 1); both specimens from the Kellaways Rock (Calloviense Zone), South Cave, Yorkshire. Two additional paratypes from the same horizon and
locality are preserved in the Geological Collections of Hull University (figured in Neale, pl. 28, figs. 4, 5).

Diagnosis Large species (up to 37.5 mm L), with the left valve slightly more inflated than the right valve; umbonal angle about \(100^{\circ}\), height about \(108 \%\) Iength; right anterior auricle very produced, ornamented by sinuous commarginal striae, together with 9 radial striae on the proximal 6.5 min ribs of the right valve wide and flat-topped, Il in number, the posterior three or four becoming paired by the development of a median sulcus along each primary rib; right valve ornanented by fine concentric growth lines, about 40 to the centimetre, these growth linas tending to become accentuated on the anterior and posterior extremities; left valve omamented by 11 narrower, round-topped ribs which are not as wide as the sulci, there being also a tendency towords the development of secondary radial ribs in the posterior three sulci, corresponding with the pairing of the ribs in the right valve; concentric growth lines stronger than on the right valve, but not as wire-like as in C. (R.) fibrosa and C. (R.) scarburgensis; auricles ornamented with fine cormarginal striee.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lcccc} 
& I. & Hi & umbonal angle & ribs \\
IH & 2 & 2 & 2 & 2 \\
\(\overline{\mathrm{X}}\) & 36.5 mm & \(109.7 \%\) & 100 & 11 ribs \\
Max & 37.5 & 111.3 & 100 & 11 \\
Min & 35.5 & 108.0 & 100 & 11 \\
OR & 2.0 & 3.3 & 0 & 0
\end{tabular}

Description Neale's (1956, p. 371) description remains valid, and is not repented here. Welker (1972, p. 123) noted that the posterior auricle of the left valve, which was not seen by Neale, is ornmented by vertical lanellee, the spaces between them widening away from the umbo.

Remarks C. (R.) drewtonensis is apparently restricted to the Calloviense Zone of the Kellaways Rock in East Yorkshire, only having been found at two quarries in the area of South Cave. It appears to have certain affinities with both C. ( \(\mathrm{F}_{\text {. }}\) ) fibrosa and C. (R.) scarburgensis, although it is not possible to unite it with either because of a shortage of material. The ribbing style of the right valve recalla that of C . fibrosa insofar as the ribs are wide and flat-topped, but no examples of the latter species with such marked pairing of the ribs have been seen. The density of concentric striae on the right valve is also less than in C. fibrose. The most obvious differences, however, axe the presence of radial striae on the anterior auricle of c. drevtonensis, a. fenture not seen in the other species, and the weaker concentric omament on the left valve of C. drewtonensis. It is possible that the discovery of more material will show that this species may be united with either C. fibrosa or C. scarburgensis, but until that time, it is best left as a separate species.

Range and occurrence Kellaways Rock (Calloviense Zone, Enodatum Subzone) of Kettlethorpe Main Quarry, South Cave, Yorkshire (Neale, 1956, p. 372; Walker, 1972, p. 123), and South

Cave Station Quarry (Walker, op. cit., p. 123).

Family PLICATULIDAE Watson, 1930

Genus PLICATULA Lanarck, 1801 ( p . 132)

Synonym: Plicatuligenus Renier, 1807
Micatula Carpenter, 1859
Plycatula Konterosato, 1877

Type species Subsequentiy designated by Schmiat, 1818 , Spondylus plicatus Linneeus, 1764, p. 511, Recent, Java. Diagnosis Small to medium-sized genus, subequivalve, the right valve usuclly nore convex than the left valve; attachnent area small to moderately large; cardinal area manll, resilifer acutely triangulax; cmura straight, narrow, prominent, namowly-divergent, crenulated, those in the right valve adjacent to the resilifer; adductor scar situated in a relatively posterior position.

\author{
Subgenus PLICATULA s.s. \\ Synonymy: Harpax Parkinson, 1811
} Plicatulopecten Neumann, 1907

Diamosis Auricles absent or very poorly defined; most species having radial ornament, which may range from fine costellae to broad costae, and with imbricating growth lamellae;
short spines present in many forms.

Remarks
Yonge (1973), having studied the anatomy and shell structure of Recent species of Plicatula and Spondylus, has shown that the teeth and ligament structure of Plicatula are radically different from those of Spondylus and other Pectinacea. Yonge suggested that evolution of the four Pectinacean families began in the Palaeozoic, with modifications of the organs of the mantle cavity, all four families having the same original set of structures. In the Propeamussiidae and Pectinidae, it was the organs of the mantle cavity which evolved, whilst in the Plicatulidae and Spondylidae, the ligament became adapted, the organs of the mantle cavity remaining virtually unchanged. However, the great differences between the liganent and hinge of Plicatulidae and Spondylidae led Yonge (op. cit., p. 205) to suggest that perhaps the Plicatulidae should be elevated to the status of a new superfamily.

Plicatula cf. Iistulosa Morris \& Iycett. Pl. 11, figs. 13, 17, P1. 12, figs. 2-4.

1853 Plicatula fistulosa sp. nov.; Morris \& Lycett, p. 15, pl. 2, fig. 5.

1907 P. fistulosa Morris \& Lycett; Cossmann, p. 273, pI. 1, figs. 1, 2.

1923 P. fistulosa Morris \& Lycett; Lissajous, p. 150, j1. 29, figs. 10-18.

1948 P. fistulosa Morris \& Iycett; Cox \& Arkell, p. 15.

Type specimen
Holotype of Plicatula fistulosa Morris \& Iycett, 1853, p. 15, pI. 2, fig. 5, preserved in the GSIM, Iondon (no. 9166), from the Great Oolite (Bathonian) of Minchinhampton, Gloucestershire.

Diagnosis Large-sized species (up to 31.8 mm I ), of very irregular and variable outline, covered with tubiform spines arising from ill-defined radial ribs; left valve slightly less spinose than the right valve.

Measurements See Appendix 3.
L \(\bar{X}\)
H \(\bar{x}\)
\(29.9 \mathrm{~mm} \quad 112.8 \%\)
\[
\begin{array}{cc}
\text { I (both valves) } & \text { AL } \overline{\mathrm{x}} \\
31.3 \% & 56.0 \%
\end{array}
\]

Description Large -sized species (up to 31.8 mm L), subovate in outline, inequivalve, the left valve flatter than the right; inequilateral, the posterior region slightly produced, no differentiated auricles. Umbonsl region rounded, passing smoothly into the evenly and contiruously-rounded anterior and ventral margins; posterior margin rounded, slightly produced, the posterodorsal margin slightly convex, umbones situated just posterior of medion (AL \(56.0 \%\) ). Inflation low (I both valves \(31.3 \%\) ) . Margins closed.

Right valve slightly convex, with a suboval attachment area 11.5 mm high by 8.2 mm long, in the umbonal region; the remainder of the external surface of the valve is covered by irregular rows of sharply tubifom spines, with a central hollow core; the spines are roughly arranged in radial rows,
about 15 in number, and there are about six spines per row. Left valve very slightly convex, bearing a xenomorphic attachment area in the umonal region; as in the right valve, much of the rest of the valve is covered with hollow tubiform spines, of slightly larger size than those of the opposing valve, which are best developed along the ventral margin; the radial arrangement of the spines is less well-marked than on the right valve, and spines are fewer in number.

As the specimen is preserved as a pyritised articulated shell, it is not possible to see any of the internal structures of the shell

Remarks Damon (1860, pl. 9, fig. 7) described P. wey= mouthiana from the Trigonia clavellata Beds of the Corallian, and since then, many other specimens have been found in the Corallian (Arkell, 1928, p. 91). This is the first record of a Callovian Plicatula in Britain, and in view of the lack of other material, and the known variability of Plicatulids, it is not possible to unite these specinens with this species, although there are similarities of shape and ornamentation with Damon's species. The spines of the Oxford Clay species appear to be rather more delicate than those of \(\mathbb{E}\). Weymouthiana however, and are not so well-aligned on radial elevations.

It seems probable that the Oxford Clay species is more closely related to P. fistulosa Morris \& Iycett (1855, p. 15, pl. 2, fig. 5) from the Great Oolite of Minchinhampton, a much more finely-ribbed species of similar shape; however, in view of the rarity of the Callovian specimen, it is impossible
to assign it to P. fistulosa at the present time.

Range and occurrence Lower Oxford Clay, bed 10 (Medea Subzone), Jeson Zone) of Peterborough and bed 14 (Obductum Subzone, Coronatum Zone) of Bletchley, Bucks. The known range of P. fistulose Morris \& Lycett is Inferior Oolite to Great Oolite (Bajocian - Bathonian).

Suborder OSTREINA Ferussac, 1822 Superfamily OSTREACEA Rafinesque, 1815

Fanily GRYPHAEIDAF Vyalov, 1936
Subfamily GRYPHAEINAE Vyalov, 1936

Gemus GRYPHAFA Lemarck, 1801, p. 398

Synonyms: Gryphoea Bosc, 1802
Gryphaeigenus Renier, 1807
Gryphites Schlotheim, 1813
Griphaea de Blainville, 1821
Griphoea de Blainville, 1821
Griphea Brongniart, 1822 in Cuvier \& Brongniart

Gryphea Brongniart, 1823
Liogryphaea Tischer, 1886
non Gryphaea Fischer, 1886 (= Crassostrea
Sacco, 1897)
Gryphaae White, 1887
Liogryphaea Douville, 1904
Ghyphaee Scalia, 1912

\section*{269.}

Lyogryphaea Couffon, 1917
Jurogryphaea Arke11, 1934
Incurva Arkell, 1934
Gryphace Jaworski, 1935
Rygepha Vyalov, 1946
Iiogriphaea Vyalov, 1948
Liographaea Charles, 1949
Liogryphanaea Krach, 1951
Gruphea Ciric, 1951
Griphea Ciric, 1951
Cryphaea Zaprudskaya, 1953

Type species Subsequently designatod by ICZN opinion
number 338, p. 127 , 1955, Gryphaea arcuata Lamarck, 1801, p. 398, from the I. Lias of France.

Diagnosis Shell medium to large in size (up to 160 mm L), very inequivalve, with left valve strongly convex and enrolled, and right valve slightly concave, flat or slightly convex; shape very variable, ranging from high narrow forms, where H greatly exceeds \(I_{1}\), through suborbicular forms ( \(\mathrm{I}>\mathrm{H}\) ) to triangulate forms, with or without the development of bilobation; left valve with posterior radial sulcus, weak or strong, forming the anterior margin of the posterior flange, which is of varying size and prominence; the deeper the sulcus, the more prominent is the flange; umbones slightly opisthogyrate to orthogyrate; left valve ormamented by concentric growth squamae or undulations, occasionally smooth, with or without radial elements; umbo of
left valve often strongly coiled, although it is frequently teminated by an attachment area; right valve omamented with concentric growth squarae or undulations, with or without radial striae; adductor scar slightly posterior to the midline, and placed nearer the hinge than the ventral margin; dorsal margin always convex, ventral margin usually slightly elevated; quensteat muscle insertions close to the hinge-plate and posterior to the midline; umbonal cavity below the hinge-plate is small, and almost entirely filled by shell material; resilifer excavate, varying from one to five times the length of each bourrelet; resilifer of right valve terminates the dorsal margin of the valve at a right angle to the body of the shell, and projects ventrally into the shell cavity, where it is supported by a buttress; comissural shelf well developed, but lacking chomata.

Subgenus BILOBISSA Stenzel, 1971 (D. N1099)

Synonymy: Bilobata Arkell, 1934

Type species Originally designatea by Stenzel, 1971, p. W1099, Gryphaea bilobata J. de C. Sowerby, 1840, p. 4, from the Inferior Colite (Bajocian) of England. (= G. dilatata var. B J. Sowerby, 1816, p. 113, pl. 149, fig. 2).

Diagnosis Small to medium in size (up to about 90 mm L), left valve with strongly developed posterior radial sulcus, and very well-marked and pronounced posterior flange; radial
elements present only as faint striae on the right valve; attachment area often large.

Remarks The generic synonymy reveals much about the controversy concerning the taxononic position of Gryphaea, and it was not until the ICZN ruling of 1955 (Opinion no. 338), that the identity and type species of the genus were clarified. Gryphsea is now restricted to fossil species, of Triassic to Jurassic age, with a variably developed posterior sulcus. A full taxonomic revision of the Gryphaeidae has recently been produced by Stenzel (1971, p. N1097).

Stenzel took the unusual step of erecting the subgenus Bilobisse in the Treatise on Invertebrate Paleontology, for the reception of the strongly bilobate Gryphaca with a well-developed posterior flange from the Middle - Upper Jurassic. The provenance and horizon of the type species - G. (Bilobissa) bilobata - has been a source of much confusion since \(J\). de \(C\). Sowerby ( 1835, p. 244) introduced the name for the specimen figured by J. Sowerby (1816, p. 113, pl. 149, fig. 2) as G. dilatata var B , from the "Kellaways Rock". Study of the type specimen of G. bilobata, preserved in the Sowerby Collection at the BM (NiI) (no. 43349 ) led Richardson (1923 Ms) to the conclusion that it cane from the Inferior Oolite. C. P. Palmer (1973, pers. comn.) has examined the matrices of the type, and specimens from the Inferior OoIite and Kellaways Rock, and shown that the type of G. bilobata has a whitish-oolitic matrix adhering to the right valve, exactly as in other specimens from the Inferior Oolite. Until the work of Stenzel (op. cit.), the
horizon of G. bilobata had always been taken as Kellaways Rock, and the name applied to Lower and Middle Callovian Gryphaea in general. Thus a new nane is required for the Lower - Midale Callovian forms and the nane G. dilobotes Sylvester-Bradley Ms is introduced here.
1. Gryphaea (Bilobissa) dilobotes nor. nov. (SylvesterBradley Ms). P1. 12, figs. 5-15, P1. 13, figs. 1-6, P1. 14, figs. 1-5, P1. 15, figs. 1-7, P1.16, figs.1-5,8.
? 1829 Gryphaea dilatata var. B. J. Sowerby; Phillips, pl. 6,
fig. 1.
1892 G. bilobata J. de C. Sowerby; Fox-Strangways, p. 279, pl. 14, fig. \(f\).

1892 G. dilatata J. Sowerby; Fox-Strangways, p. 293, pl. 15, fig. a.
1895 G. bilobeta J. de C. Sowerby; Woodward, p. Il, fig. 8.
1898 G. bilobata J. de C. Sowerby; Strahan, p. 17, fie. 31.
1904 G. bilobata J. de C. Sowerby; Fox-Strangways, p. 29, fig. \(3 f\).
1915 G. dilatata J. Sowerby; Krenkel, p. 300, pl. 25, figs. 36-39.
? 1919 G. (Iyogryphaea) bullata J. Sowerby; Couffon, p. 52, pl. 3, figs. 14-14b.
1932 G. bilobata J. de C. Sowerby; Arkell, p. 172.
1934a G. bilobata J. de C. Sowerby; Arkell, p. 58, 60.
1934a Ostrea (Bilobata) gryphaea non. nov.; Arkell, p. 64.
1947 G. bilobata J. de C. Sowerby; Arkell, p. 27.
1947a Ostrea (Gryphaea) bilobata (J. de C. Sowerby); Arke11, p. 68.

1952 G. bilobata J. de C. Sowerby \({ }^{2}\) Cox, p. 81, pl. 8, figs. 1,2,4.
1955 G. bilobata J. de C. Sowerby; Callomon, p. 221.
1958 G. dilobotes Ms non. nov.; Sylvester-Bradley, p. 2,3.
1968 G. bilobata auctt; Callomon, p. 270.
1970 G. bilobata J. de C. Sowerby; Cope \& Cox, p. 122.
1971 G. aff. bilobata J. de C. Sowerby; Callomon, p. 168.
1972 G. bilobata J. de C. Sowerby; Walker, p. 124.

Iype specimen Holotype, from the Enodatum Subzone, Calloviense Zone, of Stewartby, Beds., preserved in the BM (NH), number LI 27729.

Diagnosis Large species, up to 80 mm , very variable in form, but usually subtrigonal to suborbicular in outline, with the antero- and posterodorsal margins forming an acute or obtuse angle with each other \(\left(\theta 66-128^{\circ}, \bar{x} 97.7^{\circ}\right)\); height usually greater than length (H \(89.3-144.8 \%\), \(\bar{x}\) 114.7 \%), other characters vexy variable (see measurements); umbones prominent, rounded, opisthogyrate; posterior flange generally well-developed, although of variable wiath \(\left(\left\langle 11-42^{\circ}, \bar{x} 31^{\circ}\right)\right.\), placed high on the posterior margin, the deeply excavate bounding posterior radial sulcus not usually reaching more than two-thirds of the way to the ventral margin; attachment area often large, and frequently xenomorphic; right valve often with radial striae.

The distinctions between G. dilobotes, G. Iituola and
G. dilatata are considered in the discussion below, but the most important difference in respect of G. dilobotes is its variable height, and the position of the posterior flange, placed high on the posterior margin.
\[
\begin{aligned}
& 274 .
\end{aligned}
\]
\[
\begin{aligned}
& \text { Hै }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 두둑 ค }
\end{aligned}
\]

Description Large species, up to about 80 mm in length, of very variable form, outline subtrigonal to subovate, often with a well-developed posterior flange. Very inequivalve, left valve strongly inflated ( \(128.7-87.9 \%, \bar{x} 57.6 \%\) ) and highly convex, right valve flat or slightly concave. Umbones prominent, rounded, slightly opisthogyrate and not tightly coiled, the extremity often truncated by a large attachment area, xenomorphic on the right valve. Anterior margin slichtly concave to slightly convex, curving smoothly into the evenlyrounded ventral margin; posterior margin usually produced into a well-developed posterior flange, delimited anteriorly by a deenly excavate posterior radial sulous, angle \(\alpha\) varying between \(11-42^{\circ}\left(\bar{x} 27.7^{\circ}\right)\) in the left valve, and \(24-34^{\circ}\) ( \(\bar{x}\) \(28.1^{\circ}\) ) in the right valve; the posterior radial sulcus tends to be sukparallel to the posterior margin, but never reaches to the ventral margin, usually terminating about two-thirds of the vay to the ventral margin; this places the posterior flange high on the shoulders of the valve, quite distinct from the body of the shell, usually as a clearly triangular feature; posterior margin deeply concave where the posterior radial sulcus reaches the margin; posterior flange often not well-developed in young forms (up to 35 mm ), these tending to be high and subtrigonal in outline. Surface of left valve covered by coarse concentric growth squamae, with faint radial elements sometimes visible in the juvenile stages; right valve ornamented similarly, but the radial elements tend to be stronger and more apparent.

Adductor muscle scar placed slightly closer to the dorsal than the ventral margin, or subequidistant (HMS 45-102 \%, \(\bar{x}\) \(64.5 \%\) in the left valve; \(54.6-100.0 \%\), \(\bar{x} 68.4 \%\) in the right valve), and just posterior to the mid-axis; shape variable, but usually more or less orbicular to subquadrate in the left valve, suborbicular to subovate in the right valve. Quenstedt muscle small, situated close to the hinge-axis, posterior to the midaxis, usually more or less below the posterior bourrelet in both valves. Resilifer up to 5 times the length of each bourrelet, covered by fine parallel growth lines which cross onto the bourrelets; bourrelets not well differentiated from the resilifer (Fig. 2.33). In the right valve, the resilifer projects ventrally into the shell cavity, forming a small ligamentary buttress, the whole liganent area being perpendicular to the plane of the valve. Comissural shelf present on the dorsal half of the left valve, but not strongly developed. Proximal gill wheal faint, stretching from the vicinity of the quenstedt muscle to the branchitelluni. Umbonsl cavity shallow. Hinge edentulous.

Flat ecomorphs from the basal shell beds and the clay
facies. In the population of \(G\). dilobotes from the basal shell bed (Medea Subzone) at Stewartby, there is a large number of individuals with very large attachment areas, which greatly affects the overall shape of the shells. In their juvenile stages, the left valves took the form of a negative mould of the substrate to which they were attached, with the right valve assuming a xenomorphic positive mould of the substrate. Stenzel
(I971, p. N1021) gives a good discussion of the nature and mechanics of xenomorphism in oysters. As the oysters grew, and became too large and heavy to remain in their original postlarval settlement position, they toppled over onto their left valves and then developed in the manner usual for Gryphaea, i.e. resting free, half-buried in the sediment, with the right valve uppermost in a more or less horizontal position (Stenzel, 1971, p. N1072). By the time that the shells were large and heavy enough to overbalance, they were also strong enough to withstand the attacks of most predators, and so the attached enomusting iffe habit was no longer necessary.

This gives a population of two distinct morphotypes the juveniles, of flattened shape with the whole or most of the Ieft valve directly attached to the substrate, and the gryphshaped 'adults', with large residual attachment areas. The size at which the onset oi the gryph-shape occurred is variable, apparently depending on the size of the shell fragment being used as a substrate, but most individuals appenr to have assumed independence of the post-larval settlement site by the time they were 10 mm high.

The spat apperr not to have been specific in their choice of settlement site, as they are found attached to ammonites, belemnites, bivalves, indeterminate shell material, fragments of wood, and occasionally to other oysters. The commonest attachment site is an amonite shell or fragment, but this is probably due to ammonites being more numerically abundant and easily recognised es fragments. Attachment to the anmonites Kosmoceras
(Gulielmiceras) spp., Kosmoceras.spp. s.1., the belemite Cylindroteuthis and the bivalves Ieleagrinella, Oxytoma and Gryphaea (Bilobissa) has been observed.

The adoption of this fixed juvenile mode of life has led to peculiarities in the hinge area in many young individuals, the commest being the blurring of the distinction between the resilifer and bourrelets, and an overall lengthening of the Iigamental area. As growth proceeds, and the gryph-shape is acquired, the ligament area develops normally.

The probable explanation for this dimorphic population is that the individuals wese reacting to the environment, the high number of examples with large attachment aress being due to the greater number of potential post-larval settlement sites. The fact that the substrate, being much richer in shells and shell fragments, was likely to have been harder and more coherent than the silty sands of the Kellaways Beds or the mud of the Oxford Clay, may also have freant that it was necessary to remain attached to a stable area for a longer part of post-larval development, not only for stability, but also for protection from predators capable of breaking smaller shells. Bottom turbulence may also have been greater, necessitating the growth of a thicker shell before the free-living stage could be assumed.

Similarly-shaped econorphs may be collected from the clay facies throughout the Lower Oxford Clay, and may be interpreted as being ecolngically equivalent to the forms in the transition beds at the base of the Oxford Clay. In the clay facies, however, the dominant form is rather small and flat, and often
encrusts other shells or fragments of wood. Cheracteristically, the left valves (which are much less commonly found than right valves) have a large xenomorphic attachment area, occupying up to \(50 \%\) of the external surface of the valve, the remainder of the valve being gently cup-shaped; the large size of the attachment area prevents the acquisition of the true gryph-shape with enrolled umbones. In form, many of these left valves agree closely with similar valves found in the shell beds. As in the transition beds forras, the right valves are generally flat or gently concave in outline, sometimes with faint radial striae, and often bear a large positive xenomorphic mould of the substrate. In a few rare cases, a truly gryph-shaped individual develops, showing the strong posterior sulcus and relatively loose coiling of \(G\). dilobotes, but these are very much the exception to the rule. The dominant form of oyster in the bulk of the Lower Oxford Clay is a flattened, non-Exyphaeate fom of \(G\). dilobotes, truly grophaeate oysters not reappearing in the Thelish Oxford Clay until the Middle Athleta Zone (Upper Callovian), with the appearance of G. Iituola.

Remarks The questions of the name of the Kellaways Beds and Lower Oxford Clay Gryphaea, and of the provenance of the holotype of G. bilobata have been considered above (in the subgeneric discussion) and need not be repeated here. Examination by the author of the holotype of G. bilobata J. de C. Sowerby (BM (NH) 43349 ) convinces him that it did come from the Inferior 0olite, having a yellow-whitish oolitic matrix. Rollier (1915, p. 582) overlooked J. de C. Sowerby's name G. bilobata
and introduced the name Ostrea (Gryphaea) calloviensis for the specimen figured by J. Sowerby (1816, p. 113, pl. 149, fig. 2) as G. dilatata \(\operatorname{var} \beta\), believing it to be of Callovian age. However well he gay heve meant, his name must be considered a junior symonym of G. bilobata, and camot be used for the Lower Callovian species.

Sylvester-Bradley (1958, p. 2, Iig. 4) introduced three manuscript names for species of Gryphaea in the Calloviense Zone of Britain, G. renata, G. connexiva and G. dilobotes, the three species being successive forms in a continuously evolving lineage. No diagnoses, descriptions or figures were given for the species, and so the names must rank as nomina nude. Sylvester-Bradley (1973, pers. conm.) believes C. ailobotes to be the youngest of these three specien, characterised by a welldeveloped posterior lobe, its type horizon being the Enodatur Subzone (Kellaways Rock) of South Cave, Yorkshire. This appears to be the earliest applicable name for the strongly bilobate Lower Callovian Gryphaea, and its use is here validated. The question of the status of Sylvester-Sradley's two other Ms species, G. renata and G. connexiva is uncertain, and will be considered at a later date, but at the present time, the autnor favours using G. dilobotes to include all the Calloviense Zone Gryphaea. Phillips (1829, pl. 6, fig. 1) applied J. Sowerby's name to a form found in the 'Kellaway Rock' (= Hackness Rock?) of Hackness. The specimen, claimed to be in the Yorkshire Museum, seems to be lost, and so it is not possible to tell whether this is a C. dilobotes or a C. Iituala. The horizon (Athleta Zone of

Hackness Rock is correct) suggests the latter, and if so, then the likelihood is that the figure represents a bilobate form of that species close to G. dilobotes. Arkell (1932, p. 160) placed Phillips specimen in G. dilatata, but the horizon is too low, and the form far too bilobate.

Iissajous (1912), Couffon (1919) and Cossmann (1924)
separated the Callovion species of Grypheea, from G. dilatata, but overlooked the name bilobeta, and referred it instead to
G. bullata J. Sowerby, a species from the Kimmeridge Clay, which is not lobate. Krenkel (1915, pI. 25, figs. 36, 38) figured two right valves with good xenomorphic attachment areas.

The characters measured in \(G\). dilobotes and the other species of Gryphaea are shown in Fig. 2.33, and are largely self-explanatory, although they differ from the parameters used by Hallan (1968). As in all other bivalves, length is measured parallel to the hinge axis, and most other orientations are related to this basic parameter. Hi is measured from the tip of the umbo (the apex of the resilifer) to the ventral margin, and gives a measure of how much of the umbo is dorsal to the hinge Iine. HMS, measured from the hingeline to the ventral margin of the adductor scar, Gives the location of the adductor scar, and is easily measured, as the ventral margin of the scar is raised above the general shell surface. Angle \(\theta\), measured from the tip of the resilifer to the most anterior and posterior points of the shell gives a measure of elongation, and angle \(\alpha\), measured from the resilifer tip to the posterior margin and the posterior radial sulcus, gives a measure of the development of
the posterior flange. Lengths of the bourrelets and resilifer are taken parallel to the hinge margins, and height of the resilifer perpendicular to it. Study of the measurements table above shows the great vrxiability of all the main characters, a feature better apprecinted diagramnatically (Tig. 2.34). The most obviously variable characters are height, inflation and development of the posteriox flange, but other than there being a tendency for young forms to be higher and have wesker flanges, systematic variation is not obvious.

Three species of Gryphaea (Bilobissa) may be recognised in the British Oxford Jlay, G. dilobotes in the Kellaways Beds and Iowermost Oxford Clay, G. Iituola in the Midale Oxford Clay, and G. dilatata in the Upper Oxford Clay. Traditionally, their status has been confused, and it was not until 1932 that Arkell clarified the differences between G. Iituola and G. dilatata, with \& passing reference to G. bilobata. All three species are extremely variable in ell their characters, but it is nevertheless possible to distinguish specimens of each, although distinction is more suitably carried out on large populations. The differences may be considered under several headings:
a) Size. G. Ailatata attains a very large size (up to 198 Hu H), gerontic speoimens becoming very high, and with great extension of the Iigament. Both G. Iituola and G. dilobotes attain an approximately equal length \((=80 \mathrm{~mm})\), but G. Iituola tends to be slightly higher (II up to \(150 \%\) ).
b) Shape. All three species have a posterior flange developed, which affects the gross shell outline to varying
degrees, being most maxiked in \(G\). dilobotes and least in G. dilatata. Disregarding gerontic specimens, G. dilatata may be distinguished by its low height (90-106 \%) from Ge dilobotes \((89-145 \%, \bar{x} 115 \%)\) and \(G_{0}\) 1ituola ( \(102-128 \%\), mean \(116 \%\) ), and also by its low inflation - 20-50 \%, compared with 28-88 \% ( \(\bar{x} 58 \%\) ) in G. dilobotes and \(54-77 \%(\bar{x} 65 \%\) ) in G. Iituola. As is obvious, G. dilobotes and G. lituola cannot easily be seperated using these criteria. In overall shape, G. dilatata tends to be wide and flat, with the posterior flange usually only weakly developed, and the umbones are not strongly incurved, often forming an approsiruate right angle to the plane of the comissure. The low degree of inflation and low prominence of the umbones may be seen from the fact that ilis only slightly less than H. G. dilobotes and G. Iituola are similax in shape, being subtrigonal in outline and well-inflated, but the umbones of G. Iituola tend to be more incurved than those of G. dilobotes, even when terminated by a large attachnent area. The shell of G. Iituola is also thicker than in G. dilobotes, and the comissural platform better-developel and more extensive, with consequent elongation of the ligament area perpendicular to the hinge axis.
c) Fosterion flange. The position and degree of development of this feature is the most useful in separating the three species. As the sequence dilobotes - Iituola - dilatata is traced stratigraphically upwards, the posterior flange moves posteroventrally and widens, so that in typical forms of G. dilobotes, the flange is placed high on the posterior margin
and forms a well-differentiated, relatively small, triangular feature; the posterior radial sulcus rarely reaches more than \(\frac{2}{3}\) of the way to the ventral margin. G. lituola is characteristically not as markedly bilobate, although strongly bilobed individuals do occur, the posterior radial sulcus reaching almost to the ventral margin, and marking off a poorlydifferentiated posterior flange which is not well-separated from the body of the shell, but is still roughly triangular in form. Finally, in G. dilatata, the posterior radial sulcus usually extends all the way to the ventral margin, the posterior flange is not well-difCerentiated from the body of the shell, and tends to be subrectangular or subovate in outline.
d) Iigament. In the loosely coiled G. dilobotes, the ligament area on the left valve tends to be low and poorlydeveloped, even in very large ( \(I 80 \mathrm{~mm}\) ) specimens. The tighter coiling seen in G. Iituola necessitates continuous growth of the ligament area in a diroction perpendicular to the hinge axis, giving a very high ligament, even in suall specimens. The same is true of G. dilatata, although the reason seems to be slightly difforent; after the attainment of the 'adult' stage (at a height of about 115 mm ) growth proceeds mainly by accretion of shell at the ventral margin, and so in order to maintain equilibrium in the substrate, and allow the valves to open, the liganent attachments must also move ventrally, and so a very high, often parallel-sided ligament area is formed. Elongation of the ligament is more marked in G. dilatata than in G. Iituola, and is accompanied by the development of a very wide
commissural platform. (New tem introduced here for the areas postero- and anterodorsally where the growth squamae of the valve margins form a flattened area outside the mantle-covered area).

The problem of homoeomorphy in oysters is relevant here, as although it is simple to separate the three species above when large populations are examined, the occurrence of some specimens of G. Iituola which are narkedly bilobate could lead to difficulties in the interpretation of very small samples. The recognition of these three distinct species with certainty, requires the possession of populations of at least 10 specimens, to make allowances for intra-specific variation, which in Gryphaea is great.

Range and occurrence Abundant in the Kellaways Beds
(Calloviense Zone) and basal Oxford Clay (Medea Subzone, Jason Zone) of Fingland, and at equivalent levels, sometimes ranging a little higher when the lithology is favourable, in France, Germany and Poland.
2. Gryphaea (Bilobissa) lituola Lamarck. PI. 16, figs. 6-7, 9, Pl. 17, figs. 1-4,9.

1819 Gryphaea Iituola sp. nov.; Lanarck, p. 199.
1822 G. dilatata J. Sowerby; Young \& Bird, p. 239, pl. 10, fig. 4.
1860 G. dilatata J. Sowerby; Damon, pl. 3, fig. 7.
1910 G. Iituola Lamarck; Cossmann, no. 201.
1932 G. Iituola Lanarck; Arkell, p. 170, pl. 19, figs. 2, 3.

Type specimen Holotype of Gryphaea Iituola Lamarck, 1819, p. 199, figured by Cossmann, 1910, as no. 201 in the Palaeontologia Universalis, from the Middle Oxford Clay of France (Calvados?) preserved in the Lamarck collection at the Institute Paléontologique du Musée National d'Histoire Naturèlle in Paris.

Diagnosis Large species (up to 115 mm H), rather variable in fom, but usually subtrigonal to subelliptical in outline, although a few specimens are bilobate; posterior radial sulcus not usually proninent, reaching about \(80-90 \%\) of the way to the central margin, posterior flange generally small and not well-differentiated fron the body of the shell ( a 20-46 , \(\bar{x} 27.7^{\circ}\) ), and not wing-like as in G. dilobotes; posterior radial sulcus and flange better developed in wider specimens, which tend also to be less incurved than narrower ones. Umbones strongly incurved, much more so than in G. dilobotes or G. dilatata, causing great increase in the height of the ligament area (H.lig. \(14.7-26.5 \%\), "- \(21.7 \%\) ). Yeight variable, but always greater then length ( \(11102.9-128.4 \%, \bar{x} 116.3 \%\) ), inflation high, always greater than half the length (I 54.4-77.3 \%, \(\bar{x} 66.3 \%\), variability of other characters shown in the table of measurements.

The differences between G. lituola and the other two species of Oxford Clay Gryphaea have been discussed above, so it only needs to be noted that G. Iituola is narrower and nore inflated than G. dilatata, with the posterior radial sulcus reaching only \(80-90 \%\) of the way to the ventral margin, and less markedly bilobate than

D
\[
\begin{aligned}
& \mathrm{N} \\
& \stackrel{y}{2} \\
& \mathrm{C} \\
& \mathrm{H}
\end{aligned}
\]
\[
\begin{array}{lll}
\omega & \infty & 0 \\
-1 & \infty & \mathrm{~m}
\end{array}
\]
\[
\begin{aligned}
& \text { n } \\
& +10 \\
& +10
\end{aligned}
\]
\[
\stackrel{H}{\boldsymbol{H}} \stackrel{M}{\boldsymbol{H}}
\]
\[
\begin{array}{lll}
\because & H & H \\
0 & \dot{H} & M \\
- & \omega & \underset{H}{r}
\end{array}
\]
\[
\text { 总 }+
\]
\[
\begin{array}{ll}
\frac{0}{3} & N \\
\square
\end{array}
\]
\[
8^{\bullet}+7
\]

See Appendix 3.
\[
\begin{aligned}
& A L \\
& 10
\end{aligned}
\]
\[
H \quad \begin{array}{ll}
\mathrm{H}
\end{array}
\]
\[
\begin{array}{lll}
M & \pm & 0 \\
& \dot{\sim} & \stackrel{N}{L}
\end{array}
\]
江 M
\%
\[
\begin{array}{lll} 
\pm & 0 & \dot{0} \\
\infty & \dot{1} & \dot{0} \\
\sim & 0 & \hat{H} \\
H & H &
\end{array}
\]
目
\[
H \quad ल
\]
\[
\begin{aligned}
& 9 \\
& 0 \\
& 0
\end{aligned}
\]
\[
\stackrel{N}{N}
\]
\[
\stackrel{4}{2}
\]
\[
\begin{aligned}
& \sim \\
& N \\
& m
\end{aligned}
\]

沗 品 品
    品

OR
OR
OR
\[
\begin{array}{r}
N \\
\underset{-1}{2}
\end{array}
\]
出 동
\[
\begin{aligned}
& M \\
& 6 \\
& 0
\end{aligned}
\]
芝芸胃
\[
\begin{gathered}
2 \\
57.1 \% 101.5 \%
\end{gathered}
\]
\[
63.0 \quad 107.3
\]
\[
51.1 \quad 95.6
\]
\[
\frac{\mathrm{c}}{\mathrm{c}}
\]
\[
1 x 1 x / x
\]
古古古
\[
\begin{aligned}
& \text { ba } \\
& ?
\end{aligned}
\]
\[
\begin{aligned}
& \text { I.lig (all) } \\
& \text { L.add.scar } \\
& \text { H.add.scar }
\end{aligned}
\]
\[
2
\]
\[
9 \%
\]
\[
47.5
\]
\[
\begin{array}{r}
46.3 \\
1.2
\end{array}
\]
\[
\begin{aligned}
& \text { L.lig (all) } \\
& \text { L.add.scar } \\
& \text { H.add.scar }
\end{aligned}
\]
\[
1
\]

288.
G. dilobotes, with the posterior flange less clearly
differentiated from the body of the shell, and placed lower on the posterior margin.

Description Large species (up to 115 mm high), of rather variable form, subtrigonal to subovate in outline (H1 102.9\(128.4 \%, \bar{x} 116.3 \%\) ), occasionally markedly rostrate (var. oblique Arkell), with a variably developed posterior radial sulcus and flange. Height always greater than length, often very much so, giving high, subtrigonal shells which are slightly wider than in G. . dilobotes \(\left(\theta 88-118^{\circ}\right.\), \(\left.\overline{\mathrm{x}} 102.7^{\circ}\right)\). Very inequivalve, left valve strongly convex ( I 54.3-77.3 \%, \(\bar{x} 66.3 \%\) ), and often mackedly incurved in the unbonal region, right valve flat or slightly concave, suborbicular to subovate in outline, seldom very bilobate. Umbones prominent, rounded, inflated (Hi \(\bar{x}\) \(23 \%\) less than overall height), slightly opisthogyrate, often strongly incurved and generally teminated by an attachment area of variable size, reflected xenomorphically on the right valve. Anterior margin slightly concave to slightly convex, depending on the proninence of the unbones, curving smoothly into the evenlyrounded ventral margin with no angulation; posterior margin variably produced into a posterior flange, usually weakly developed, not clearly separated from the body of the shell by the generally faint posterior radial sulcus \(\left(\begin{array}{cc}\alpha & 20-46^{\circ}\end{array}\right.\), \(\bar{x}\) \(27.7^{\circ}\) ); posterior flange does not stand out from the body of the shell in a wing-like fashion, and usually extends further down towards the ventral margin than in G. dilobotes; occasional forms (var. oblique Arkell) with the posterior flange drawn out
into a long rostrate feature are found, but these are rare. Surface of left valve omamonted by irregular concentric growth squanae, not as coarse as in G. dilatata, radial elements rare; right valve ornament sinilar, but the radial striae are betterdeveloped, especially in the umbonal region.

Adductor muscle scar posterior to mid-axis, placed subcentrally between dorsel and ventral margins, or slightly closer to the ventral margin (IMS \(45.3-58.1 \%\), \(\bar{x} 53.2 \%\) in LV. \(51.1-63.0 \%\), x \(57.1 \%\) in RV), suborbicular to subovate in outline (I adductor scar 14.7-21.5 \% , \(\times 17.9 \%\) in the left valve, \(16.8-17.6 \%, \bar{x} 17.2 \%\) in the right valve; \(H\) adductor scar 16.1-24.2 \%, 주 \(19.8 \%\) in left valve, \(14.0-17.6 \%, \bar{x} 15.8 \%\) in the right valve), its ventral margin often slightly elevated above the general inner surface of the shell, ornamented by subconcentric growth lines. Quenstedt muscle scar rerely seen, very small, located imsediately beneath the posterior bourrelet in the only left valve in which it is visible; located beneath the posterior bourrelet in the right valve, but not obscured by it. Commissural shelf narrow, developed only in the dorsal regions, and more strongly developed on the posterior side; commissural platform well-developed, becoming flattened in very large specimens, but usually sloping towards the shell interior. Ligament area of the left valve tending to become elongated perpendicular to the hinge-axis, with the distinction between the resilifer and bourrolets becoming faint (overall L.lig. \(26.7-31.2 \%, \bar{x} 28.5 \%\) H. 1 ig. \(14.7-26.5 \%\), \(\bar{x} 21.7 \%\), often assuming a slight twist towards the posterior; ornamented by
concentric growth-lines. Ligament area of right valve flattened, clearly triangular in outline, with little differentiation of resilifer and bourrelets (overall L.lig. \(28.7-32.5 \%\), \(\bar{x} 30.6 \%\); H. 1 ig. \(15.0-21.5 \%\), \(\bar{x} 18.3 \%\) ); ventral margin produced into the shell interior as a ligamentary buttress; sometimes with a slight posterior twist.

Remarks This Middle Oxford Clay species has been referred to \(G\). dilatata on several occasions in the nineteenth century, Lanarck's name being overlooked, but there can be no doubt that it is specifically distinct from both C . dilobotes and G. dilatata. Arkell (1932, p. 170) clacified the nomenclatorial position, and resurrected the name litucla for these Miadle Oxford Clay forms. He also made the unusual error of placing Damon's 1860 figure (pl. 3, fig. 7) of 'G. dilatata' in the synonomy of both C. diletata ( \(\mathrm{p}, 160\) ) and \(\mathrm{G}_{\mathrm{a}}\) Iituola (p. 170). Danan's figure shows a relatively high, narrow form, viewed from the right, which could represent a narrow form of G. dilatata or a 'normal' form of G. Iituola. In the absence of the specimen (it has not been traced in the BM (NH)), no definite conclusion on its identify may be made.
G. dilatata Young \& Bird (1822, p. 239, pl. 10, fig. 4) is recorded from the "hard sandstone at the foot of Scarborough castle", presumably a reference to the Kellaways or Hacioness Rock, and so is likely to be a spscimen of either G. dilobotes or G. lituola. Their figure is of a faintly sulcate form resembling G. Iituola, but in the absence of the specimen, its identity is uncertain.

As with G. dilobotes, there is a good deal of variation in G. lituola, some forms closely resembling' 'typical' forms of G. dilobotes, but when the population as a whole is considered, this U. Callovian species may be seen to be distinct from G. dilobotes on account of its less strongly flanged nature, greater degree of incurvature and narrower outline. A characteristic of G. Iituola, and often G. dilatata too, is the frequent occurrence of an encrusting epifauna of serpulids, foraninifera, bryozoa and oysters, attached to the exterior of the left and right valves, and occasionally on the inner surfaces of the valves. It is probable that at least some of these epizoic elements, notably the foraminifera, bryozoa and oysters lived at the same time as the oysters, but this will be discussed elsewhere. In view of the lack of these epizoic elements in the more organic-rich shales and clays of the L. Oxford Clay and Kellaways Beds, it is likely that their distribution is related to environmental conditions rather than to host specificity.

Range and occurrence Middle Oxford Clay, Athleta to Lamberti Zones of England, known from Woodham, Stewartby, Wolvercote (Oxford), and the Argile de Dives, Calvados (France) of similar age. Probably Hackness Rock also, and maybe Corallian (Arkell, 1932, D. 171). More work needs to be done on the stratigraphical and geographical distribution of this species.

Subfanily EXOGYRINAE Vyalov, 1936

Genus NaNOGYRA Beurlen, 1958 ( p . 206)

Synonymy: Palaeogyra Mirkamalov, 1963

Type species Originally designated by Beurlen, 1958, p. 206, Gryphaea nana J. Sowerby, 1822, p. 114, p1. 383, from the Kimneridge Clay of Oxfordshire.

Diagnosis Snall, inequivalve, very variable in shape and form; left valve globular to moderately convex, suborbicular or subtrigonal in outline, or elliptical to ovate; all specimens spirally twisted, but degree of spiralling variable. Left valve bilobate in some specinens, spiral groove dividing it into two unequal lobes; spiral groove reaches valve margin dorsal of branchitellum. Right valve flat, gently concave or gently convex, suborbicular to subovate in outline, comma-shaped, auriform or lingulate at branchitellum; left valve covered with fine radial ribs or rough concentric growth squamae, often with growth halts; right valve with few marginal growth squamae, except along anterior margin, which has many crowded upturned growth squamae. Spiral umbones of left valve coil tightly over the ligament area, largely obscuring it; ligamental area variably spiralled, anterior and posterior bourrelets of approximately equal length, the posterior one not narrower than the anterior.
293.

Remarks
Beurlen (1958) separated the Jurassic and
Cretaceous Exogyrinae into two distinct genera, Nanogyra and Exogyra, believing the former to be the most primitive member of the Exogyrinae, transitional between Liostrea and Exogyra. The spiral groove on the left valve of some specimens of Nanogyra was thought to be homologous to that of Gryphaea, suggesting that the Exogyrinae had their origins in the Gryphaeinae. Nanogyra may be distinguished from Exogyra by virtue of its small size, low degree of spirality of the left valve, lack of comaissural shelf covered with vermiculate chomata, and equality of size of the boumrelets. The overall taxonomic position of Nanopyra and other members of the Exogyrinae are discussed by Stenzel (1971, p. N1115) and Pugaczewska (1971, p. 220), the latter being nore comprehensive, although the overall conclusions are similar.

Nanogyra nana (J. Sowerby). P1. 17, figs. 5-8.
v* 1822 Gryphaea nana sp. nov.; J. Sowerby, p. 114, pl. 383.
- 1829 G. mima sp . nov, ; Prillips, pl. 4, fig. 6.
v. 1853 Exogyra auriformis (Goldfuss); Morris \& Lycett, p. 5, pI. 1, fig. 7. (non Goldfuss).
v. 1932 E. nana (J. Sowerby); Arkell, p. 175, pl. 17, figs. 2-21; pl. 18, figs. 3-11; pl. 19, figs. 4, 4a.
- 1948 E. nana (J. Sowerby); Cox \& Arkell, p. 20.
- 1952 E. nana (J. Sowerby); Cox, p. 92, pl. 10, figs. 2-4.
. 1965 E. nana (J. Sowerby); Cox, p. 73, pl. 11, figs. 5, 6a, 6b.
- 1971 Nanogyra nana (J. Sowerby); Pugaczewska, p. 281, pl. 1, figs. 3-5, 7; pl. 2, figs. 1-4; pl. 24, figs. 1-6; pl. 25, figs. 1-7; pl. 26, figs. 1-6; pl. 27, figs. 1-6.

Thpe specinen Lectotype (designated by Arkell 1932, p. 180), the left hand figure of J. Sowerby's plate 383 (1822), from the Kimmeridge Clay of Shotover Hill, near Oxford. Freserved in the Sowerby collection at the BM (NH), no. 43340.

\section*{Measurements}

Specimen from Calvert, bed 9AC. A right valve.
\begin{tabular}{lcclcl} 
I & 11.2 mm & HMS & 11.9 mn & \((106.3 \%)\) \\
IH & 18.7 & \((167.9 \%)\) & I.1ig. & 1.3 & \((1.0)\) \\
I & 2.5 & \((22.3)\) & H.1ig. & 0.9 & \((0.8)\) \\
AL & 11.2 & \((100.0)\) & & &
\end{tabular}

Description The single specimen known from the Lower Oxford Clay is a small right valve 11.2 mm long. Outline elliptical, tapering ventrally, with height considerably greater than length (if \(167.9 \%\) ); dorsal margin evenly and convexly curved into an approximately semicircular shape, passing smoothly into the straight to very gently convex anterior margin; ventral margin sharply rounded, narrower than the dorsal margin, but without postero- or anteroventral angles; anterior margin straight to gently sinuate; umbones small, very strongly spirally coiled in an opisthogyrate direction, terminal on the posterior margin (AL 100.0\%). Shell flattened, very thin (I \(2.5 \mathrm{~mm}, 22.3 \%\) ), the anterior margin thickened, with a series of steeply-stepped growth squamae sweeping round from the umbo
to the midpart of the anterior margin; posterior margin thin, tapered. External omanent consisting of faint subconcentric growth squamae, with no marked growth halts. No xenomorphic imprint of the attachment area is seen.

Ligament area very short (I.lig. \(1.0 \%\) ), height slightly less than length (0.lig. \(0.8 \%\) ), anterior and posterior bourrelets very short, approxinately equal in leneth, but not measurable; ligament area ornamented by concentric growth lines; unbonal tip overhangs the apex of the ligament area. Adductor muscle scar slightly crescentic, concave towards the dorsal margin, placed considerably nearer to the hinge than to the ventral margin (FMS \(106.3 \%\) ), its ventral margin slightly elevated above the body of the shell interior; muscle scar located about halfway between the anterior and posterior margins. Slight cormissural shelf along the anterior margin. Quenstedt muscle scar not visible.

Remarks The single specimen found in the Lower Oxford Clay (Grossouvrei Subzone of Calvert) agrees exactly with many specimens from the Corallian and Kimmeridge Clay of Britain, and must be united with then. Its occurrence in a Grammatodon shell bed suegests that during a pause in sedimentation, spat spawned elsewhere was able to settle in an area outside its usual habitat, although development of a new population did not occur. The range of variation, geographical and stratigraphical distribution in Britain, and the taxonomic relationships of IV. nana were fully discussed by Arkell (1932, p. 175), and nothing need be added here. More recently, Pugaczewska (1971,
p. 281) in an important work on the Jurassic Ostreidae of Poland, has described a collection of over 500 individuals of this species, with emphasis on their variation, and for further information on this point, her paper should be consulted. Cox's (1952, 1965) records of \(\mathbb{N}\). nana from India and East Africa show how geographically widespread this species must have been, as it is also known from all over Europe and parts of Russia (Pugaczewska 1971, p. 285).

Range and occurrence Bathonian - Portlandian of Great Britain, most of western Europe and parts of Russia, India, Asia and Africa. The specimen recorded here is from the Grossouvrei Subzone (Middle Callovian) of the English Midlands.

Subclass PATAEOHETERODONMA Newell, 1965
Order TRIGONIOIDA Dall, 1889
Superfamily TRIGONIACEA Lamarck, 1819
Family TrIGONIIDAE Lanarck, 1819

Genus MYOPiHORELLA Bayle, 1878 (expl. p1. 120)
```

Type species
Subsequently designated by Crickmay, 1932,
p. 458, Myophorella nodulose Bayle, 1878, pl. 120, figs. 1, 2, 6
(= Trigonia nodulosa Lamarck, 1801, p. 117), from the Oxfordian
of France.
Diagnosis Trigonally ovate to oblong in outline,
strongly inequilateral, anterior margin fully and evenly curved,

```
297.
posterior margin rostrate to a varying extent; posterior area clearly separated from the body of the shell, with a completely different ornament pattem; marginal carina obtuse, not separated from the ormamented part of the valve by a smooth band; escutcheon shallow; area divided by a variably developed median carina; ornamented usually by concentric striae; flanks of shell bearing rows of tubercles on tuberculate costae, usually oblique, but occasionally subconcentric.

\section*{Subgenus MYOPHOREILA s.s.}

Synonyry: Haidaia Crickmay, 1930
Scaphotrigonia, Crickmay, 1930
Scaphitrigon Crickmay, 1930
Clavotrigonia Lebküchner, 1932
Clavitrigonia Leanza, 1942
Promyophorella Kobayashi \& Tamura, 1955

Diagnosis Area transversely ridged or smooth, never with radial ormanent; escutcheon smooth; costae on flanks may be unintermupted throughout growth in some species, or discontinuous and broken up anteriorly in later growth stages in others.

Remarks Cricknay (1932) designated Bayle's figure of Myophorella nodulosa as the type species of Myophorella, believing that the species figured by Bayle was not the same as Trigonia nodulosa Larnarck, but Tavre (1876), in refiguring

Lamarck's holotype, showed it to belong to the same soecies as that figured by Bayle in his plate 120, figs. 1, 2, 6. There has been a good deal of confusion concerning the type species of several genera of trigoniids, and for some time, T. nodulosa was accepted as type of Trigonia s.s., until an ICZN ruling (Opin. 327) confirmed Venus sulcata Hermann as the type of that genus. Cox (1952) gives a clear summary of the problem of trigoniid nomenclature.
1. Myophorella (Myophovella) irregularis (Seebach) P1. 18, figs. 8-13, P1. 19, figs. 1-4.

1860 Trigonia clavellata J. Sowerby; Damon, pl. 2, fig. 3. (non J. Sowerby).

1864 T. irregularis nom. nov.; Seebach, p. 117 (nom. nov. pro T. clavellata Damon non J. Sowerby).

1872 T. irregularis Seebach; Iycett, p. 39, pl. 5, figs. la, 1b, 2; pl. 7, fig. 6.
non 1877 T. irregularis Seebach; Iycett, p. 39, pl. 39, fig. 3.
1879 T. irregularis Seebach; Mansell-Pleydell, p. 117, pl. 2, fig. 3.

1911 T. irregularis Seebach; March, p. 8, text-figs. 7a, 7b.
non 1925 T. irregularis Seebach; Cox in Cunnington, p. 197. ( \(=\) M. scarburgensis) .
non 1932 . irregularis Seebach; Arkell, p. 45. (= M. scarburgensis).

Type specimen The holotype, figured by Damon (1860, pl. 2, fig. 3) is not preserved in the Damon collection at the BM (NIH), and must be considered lost. Accordingly, the topotype figured by Iycett (1872, pl. 5, figs. Ia, Ib) is here designated neotype. It is preserved in the GSM (no. 11423 ), and cones from the Oxford Clay (horizon unknown) of Weymouth, Dorset.

Diagnosis Large species (up to 88 mm L ), elongate, markedly rostrate, the postcrodorsal margin very concave and the posterior part of the ventral margin often reflexed; 10-16 tubercle rows, varying in regularity, the tubercles rising straight from the flanks of the shell, not elevated on subconcentric ribs; tubercles sometimes crowded anteriorly, but never coalescing, not crowded posteriorly; carinae strongly tuberculate, tubercles often persisting to the posteroventral angle; narrow, but proninent, smooth band runs posteroventrally between the marginal carina and the posterior end of the tubercle rows. H 64.7-78.9 \%, 社 \(71.1 \%\); I \(33.8-52.5 \%\), \(\vec{x} 41.5 \%\); AL 17.4-33.9 \%, X \(23.6 \%\); LE 46.4-61.5 \%, x \(55.1 \%\); LA 81.4-95.8 \%, " X \(85.9 \%\) EW 15.0-25.4 \%, 즈 \(20.1 \%\); TR 9-16, " \(\bar{x} 12.9\).

Measurements See Appendix 3, and fig. 2. 35 for measurements used.
\begin{tabular}{llllllllc} 
& LI & H & I & AL & LE & LA & EW & \begin{tabular}{c} 
Number of \\
tubercle rows
\end{tabular} \\
N & 30 & 30 & 30 & 29 & 28 & 29 & 30 & 29 \\
\(\overline{\mathrm{X}}\) & 61.1 mm & \(71.1 \%\) & \(41.5 \%\) & \(23.6 \%\) & \(55.1 \%\) & \(85.9 \%\) & \(20.1 \%\) & 12.9 \\
\(\operatorname{Max}\) & 88.0 & 78.9 & 52.5 & 33.9 & 61.5 & 95.8 & 25.4 & 16 \\
\(\operatorname{Min}\) & 26.5 & 64.7 & 33.8 & 17.4 & 46.4 & 81.4 & 15.0 & 9 \\
OR & 61.5 & 14.2 & 18.7 & 16.5 & 15.1 & 14.4 & 10.4 & 7
\end{tabular}

Description Large sized, elongate-oval to subtrapezoidal in outline ( \(\mathbb{H} \overline{\mathrm{x}} 71.2 \%\) ), rostrate, well inflated ( I \(\overline{\mathrm{x}} 41.8 \%\) ), equivalve, inequilateral, the unbones situated within the anterior third of the shell (AL \(\bar{x} 23.6 \%\) ); umbones prominent, small, pointed, opisthogyrate, contiguous, only slightly salient to the hinge pargin. Anterior margin gently convex, anteroventral angle varying from a sharply rounded right angle to an even curve into the ventral margin; ventral margin evenly and gently convex, often sinuate posteriorly; posteroventral ancle sharp, about a right angle, the posterior margin biconvex, the median carina forming an obtuise angle of about \(135^{\circ}\) where it meets the posterior margin; posterodorsal angle sharp, obtuse, about \(125^{\circ}\), marking the posterior limit of the gently to markedly concave posterodorsal margin; the central part of the escutcheon, along the dorsal margin, usually protrudes slightly above the outline of the posterodorsal margin to form a slight convexity in the outline. On the extreme anterior part of the valves, perpendicular to the plane of the conmissure, is a narrow smooth band, up to about 5 mm wide, separating the anterior ends of the tubercle rows from the comissure; a more prominent smooth band, up to 10 wide, extends from the umbones to the posteroventral angle, anterior to the marginal carina, separating the posterior ends of the tubercle rows from the marginal carina. The flanks of the shell are ornamented by \(9-16\) rows of clavellate tubercles, varying in regularity, with young forms (up to about 55 mm L ) often showing no irregularity in tubercle arrangement, and having only subconcentric tubercle rows, meeting the marginal carina at

\section*{301.}
about \(90^{\circ}\); larger specimens often show great irregularity of tubercle arrangement, the tubercle rows being sinuous or indistinct, with intercalatory half-rows in the anterior region; some large specimens, however, show a more regular arrangement of the tubercle rows, similar to that seen in younger specimens. The tubercles thenselves increase in size with age, and usually number about 8-9 per row; they also tend to rise straight from the flanks of the shell, and are not usually placed on distinct, elevated tubercle rows. Marginal carina strong, concave in outline, taking the form of a ridge, topped at regular intervals by varices elongated along growth lines; median carina and escutcheon carina similarly omamented, the varices being strongest on the escutcheon carina; there is very little tendency for the varices to get weaker posteroventrally; median sulcus shallow; area usually flat, oblique, ornamented by strong concentric ribs in the 10 mm nearest the umbones, these ribs then fading rapidly, leaving the remainder of the area covered in irregularly-spaced concentric growth lincs, giving a slightly imbricate appearance; these prowth lines continue onto the flanks of the shell, and affect even the tubercles. Escutcheon elongate, lanceolate, wide (EM \(\vec{x} 20.1 \%\) ), deeply biconcave to almost flat, but always with the median part, along the comnissure, elevated; proximally there is a prominent, lanceolate external liganent, with strong nymphs. Dentition normal for Trigoniacea, dental formula

with 2 large, bifid, \(4 b\) and \(5 a\) short, lamellax, and \(3 a, 3 b\), and \(4 a\)
long and ridgelike, all the cardinal teeth bearing clearlymarked vertical crenulations. Adductor muscle scars sulequal, the posterior scar subovate and slightly larger than the subelliptical anterior scar, the posterior scar more deeply impressed, especially along its anterior margin; posterior scar placed posteroventrally of the end of the hinge plate, separated from it by the small, suborbicular posterior pedal retractor scar; anterior adductor scars placed immediately anterodorsal to the anterior end of 3 a , and below the end of 4 a (Fig. 2.35).

Three short ridges on the inner surface of the rostrum mark the positions of the escutcheon, median and marginal carinae on the exterior, and serve to divide the rostrum into two areas, probably corresponding to the siphon positions. Pallial line entire.

Remarks The exact horizon of the type specimen, and the numerous specimens labelled 'Oxford Clay, Weymouth' is unknown, as no examples have been collected in the area for nearly a century due to obliteration of the exposures, notably that at Radipole Backwater. In view of the fact that all the Zones of the Oxford Clay above the Lamberti Zone are still well-exposed in the cliffs of Weymouth Bay and the Fleet Backwater, and do not yield any specimens of \(M_{0}\) irregularis, it seems probable that the specimens came from the Callovian Oxford Clay, coupled with the evidence from the \(1^{\prime \prime}\) Geological Map (Sheet 342), which shows that most of Radipole Backwater is situated on the lower part of the Oxford Clay. The Athleta, Coronatum and part of the Jason Zones are exposed in the brickyard at Crook Mill, Chickerell, and again have not yielded any specimens of M. irregularis. In fact, the
only record of M. irregularis from this area in recent times is that of Arkell (1947, p. 27) from the Koenigi Zone of Putton Lane Brickyard, Chickerell, and this is a juvenile (SM J47645). Hence it is still not possible to locate the horizon from which the numerous topotypes of M. irregularis came, although the weight of evidence suggests to the author that they are likely to have come from the lower parts of the Oxford Clay, or perhaps even from the Kellaways Beds.

The records of M. irregularis given by Cox (in Cunnington, 1925, p. 197) and Arkell (1932a, p. 45) refer to specimens found in the beach of the West Fleet shore, about I mile west of Langton Herring, Dorset, supposedly with other fossils of Callovian age. However, Arkell later (1940, p. 44) showed that the fauna was in fact of Fuller's Earth (Bathonian) age, and that the trigoniids belonged to M. scarburgensis (Iycett).

March (1911) studied the ornament of some clavellate Upper Jurassic trigoniids from the viewpoint of development of the ormament pattern, and concluded ( \(p\). 9) that the ornament of M. irregularis was ecologically controlled, and that the species should be considered as a variety of \(M\). clavellata. In view of the many obvious morphological distinctions between these two species, and their clearly separated stratigraphic levels, this opinion is open to question.

The specimen figured by Lycett (1879) from the Kimmeridge Clay of Wootton Bassett bears some superficial resemblance to M. irregularis, but the tuberole rows are too regular and there are too many tubercles per row for it to belone here. No specimens of M. irregularis have been seen from the Kimmeridge Clay.
M. irregularis, like other trigoniids, is notable for the variation in form which may be found within a population of topotypes or other specimens; this is most obviously seen in the ornament pattern, but may also be noted in the shape of the shells. Most adult shells (over about 55 mm L) show the distinctive rostrum at the posterior end, with the variably reflexed posteroventral margin, but in younger specimens, this feature is not nearly as well seen, although some specimens are clearly rostrate. Tracings of the growth lines of large specimens (Tig. 2.35) reveal that the rostrum becomes better developed as growth proceeds. The lack of a prominent rostrum makes it difficult to identify juvenile specimens of M. irregularis in the absence of a large population, the only distinction being that the ribbing on juveniles of this species tends to be a little more regular than in species such as H. scarburgensis.

The major change in ormamentation style seems to take place at about the same time as rostruan development ( \(L \simeq 55 \mathrm{~mm}\) ), when there is a change from regular subconcentric rows of tubercles, to irregular rows with sinuous autlines and intercalatory halfrows. Occasional specimens of large size are found with simple tubercle rows, but these are not frequent, although many specimens show only a slight sinuosity near the anterior margin. At the other extreme are forms such as that figured by Damon (1860, pl. 2, fig. 3) where the tubercles have attained a very large size, and the subconcentric basic pattern has been almost totally obliterated.

In the description above, the teeth have been numbered according to the Bernard convention, on the assumption that all
the teeth are cardinals. However, Ohdner (1918) suggested that the teeth of Trigoniacea may in fact represent the cardinals and laterals, and introduced a modified system of notation, whereby the dental formula would be


As yet, there is no conclusive evidence either way, and \(\operatorname{Cox}\) ( 1969 b , p. N471) refrained from using dental fomulae for Trigoniacea in the 'Treatise on Invertebrate Paleontology' for this reason. Both formulae have been given above to avoid confusion, although the former is the one which has been used more frequently in the past. D. W. Boyd (1973, pers. comm.) suggests that in order to avoid all this confusion caused by homologics of teeth, it would be better to use a modified Steinmann notation, and advocates using capital letters to indicate major dental elements, and small letters to indicate minor but persistent elements. A small \(n\) would represent the ligament nymph. Thus Boyd's hinge formula would be

Posterior Anterior
RV nololo
LV nioor
This very distinctive species may easily be distinguished from its close stratigraphic neighbours II. Scarburgensis (Iycett) and M. rupellensis (Iycett) [non d'Orbigny] on the basis of its rostrate form, and the way in which the tubercles rise straight from the flanks of the shell. There are apparently no certain records of it from the continent although Trigonia aff. irregularis has been recorded from the Callovian (Wohlegemuth, 1883) and

Oxfordian (Klüpfel, 1919) of France, without having been figured.

Range and occurrence The type material came from the 'Oxford Clay of Weymouth', horizon unknown, but probably Callovian; Also from the Kellaways Beds (Koenigi Zone) of Putton Lane brickpit, Chickerell, Neymouth (SM J47645), Oxford Clay (horizon unknown) of Loudon, Wilts. (Fudleston collection, GSM Y2078-2080), Oxford Clay (horizon unknown) of Trowbridge, Wilts. (GSM Y2O14), Oxford Clay (horizon unknown) of Chippenham, Wilts. (GSM Y2027), L. Oxford Clay, Jason Zone Medea Subzone (Bed 5), Stewartby, Beds.; Coronatum Zone, Obductum subzone (Bed 7), Narston Moretaine, Beds.; Coronatum Zone, Grossouvrei Subzone (Bed 9AA), Calvert, Bucks.; Coronatum Zone, Obductum subzone (Bed 10C), Marston Moretaine, Beds.
2. Myophoreila (Myophorella) caytonensis nom. nov. Pl. 19, figs. 5ami, Pl. 20, figs. 1-3.
** 1872 Trigonia Rupellensis a'Orbigny; Lycett, p. 28, pl. 8, fig. 4. (non d'Orbigny).
v. 1877 T. Rupellensis d'Orbigny; Lycett, p. 199, pl. 36, figs. 1, 2, 3, 4. (non d'Orbigny).
.non 1915 T. rupellensis d'Orbigny; Krenkel, p. 312, pl. 27, fig. 16. (non d'Orbigny).
.non 1929 T. Rupellensis d'Orbigny; Cottreau, p. 85, pl. 54, fig.l.
.? 1934 T. clavellata J. Sowerby; Stoll, p. 10, pl. 1, fig. 18. (non J. Sowerby).
v. 1972 Myophorella rupellensis (d'Orbigny); Walker, p. 124, pl. 8, fig. 20. (non d'Orbigny).

Type specimen Holotype of \(T\). rupellensis Lycett (non d'Orbigny), from the Kellaways Rock of Cayton Bay, Scarborough, (Iycett, 1872, p. 28, fig. 4) is preserved in the SM, no. Jll377, and is here made the holotype of \(M\). caytonensis nom. nov.

Diagnosis Large (up to 88 mm L ), clavellate, trigoniform, not rostrate, ovately trigonal to elongate-oval in outline (H \(70.0-86.4 \%, \vec{x} 79.6 \%\) ), inflation extrenely variable (I \(36.5-66.7 \%\), \(\bar{x} 46.4 \%\) ); umbones usually placed about a third of the shell-length behind the anterior margin (AL 19.2-45.2 \%, " \(31.2 \%\) ); ornament of flanks irregular, the first 6 tubercle rows subconcentric, subsequent tubercle rows usually sinuate, often forming a \(V\) pointing towards the posteroventral angle; there are often intercalatory half-rows anteriorly; the tubercles never become coalesced into a rib anteriorly, and at their posterior extremities, the tubercle rows bend abruptly upwards to the marginal carina, meeting it at a very obtuse angle. IE \(51.0-75.5 \%\), 㸚 \(59.2 \%\); IA \(79.2-96.7 \%\), \(\bar{x} 87.2 \%\); EW 9.1- \(23.3 \%\), \(\overline{\mathrm{x}} 18.4 ;\) TR 10-17, \(\overline{\mathrm{x}} 13.9\).

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lllllllll} 
& L & H & I & AI & IE & IA & EW & TR \\
IN & 18 & 18 & 17 & 18 & 16 & 17 & 14 & 17 \\
\(\bar{x}\) & 64.5 mm & \(79.6 \%\) & \(46.4 \%\) & \(31.2 \%\) & \(59.2 \%\) & \(87.2 \%\) & \(18.4 \%\) & 13.9 ribs \\
Max & 88.0 & 86.4 & 66.7 & 45.2 & 75.5 & 96.7 & 23.3 & 17 \\
Min & 29.5 & 70.0 & 36.5 & 19.2 & 51.0 & 79.2 & 9.1 & 10 \\
OR & 58.5 & 10.1 & 30.2 & 26.0 & 24.5 & 17.5 & 14.2 & 7
\end{tabular}

Description Large species, equivalve, inequilateral, with umbones usually placed within the anterior third of the shell (AL \(\bar{x} 31.2 \%\) ); subtrigonal to elongate oval in outline, but not rostrate. Umbones prominent, small, pointed, contiguous, of opisthogyrate, salient about 2 mm to the hinge margin. Posterodorsal margin straight to gently concave, markedly concave anteriorly, where the umbones protrude above it, and sometimes with a small convexity where the central part of the escutcheon stands out along the commissure; posterodorsal angle obtusely rounded, about \(150^{\circ}\), passing into the sently convex and oblique posterior margin; posteroventral angle rounded, obtuse, about \(120^{\circ}\). passing into the evenly convex ventral margin; there is no posterior sinuosity in the ventral margin; anterior margin very gently convex, meeting the ventral margin in either an evenly rounded curve, or a rounded angle of about \(90^{\circ}\). Marginal carina long, concave in outline, taking the form of an elongate ridee with occasional well-marked subconcentric verices on some specimens; median carina faint, with very poorly developed varices, median sulcus obscure; escutcheon carina strong, ridgelike, with well-developed tuberculate varices. Area long (IA \(\overline{\mathrm{x}} 87.2 \%\) ), flat to cently convex in outiine, sometimes becoming slightly concave in the proximal regions, oblique to the flanks of the shell at an anele of about \(135^{\circ}\). Escutcheon elongate (I, E \(\bar{x} 59.2 \%\) ), narrow (EW \(\stackrel{\rightharpoonup}{x} 18.4 \%\) ), lanceolate, biconcave in section, rising to a high point along the commissure, the greatest elevation being just posterior to the end of the ligament nymphs; ligament up to 15 min lons, narrow, lanceolate, opisthodetic, nymphs strong; both the area and the escutcheon
are ornamented with concentric growth striae, of ten coarsened on the area to give an imbricate ampearance; the proximal 10 mm of the area is ornamented with strong concentric ribs, which fade distally.

Flanks of the shell ornamented by 10-17 ( \(\bar{x} 13.9\) ) rows of rounded tubercles, each row with about 12 tubercles, the rows tending to be raised on elevated ribs, rather than rising straight from the flanks of the shell; approximately the first 6 tubercle rows are simple and subconcentric in form, but thereafter the tubercle rows become sinuate and very irregulax, often assuming a falcate form, the anterior part of each row being relatively straight, the row then swinging posteroventrally before it curves back towards the marginal carina; the posterior part of each tubercle row is abruptly reflected towaxds the marginal carina, mocting it at an angle of about \(130^{\circ}\); in the anterior regions, intercalatory half-rows of tubercles between the major rows are often present; the anterior parts of the tubercle rows do not coalesce into ribs. Where the ribs meet the anterior margin, they are not paired, but interdigitate.

Internal features not seen, but probably normal for Trigonacea.

Remarks
The figuring by Cottreau (1929, pl. 54, fig. 1) of the holotype of T. rupellensis d'Orbigny revealed that Lycett's conception of the species differed from that of d'Orbigny. Thus Iycett's species is in need of renaming, M. caytonensis being introduced herein. D'Orbigny's species came from the 'Corallien' (actually the Cymodoce Zone of the I. Kinmeridge Clay) of La Rochelle, Calvados, Prance, and is a densely ribbed form with a
wide, smooth band between the marginal carina, and the posterior end of the tubexcle rows, more correctly placed in the genus Laevitrikonia Lebk"hohner. Lycett's figures show the great variation in form and omamentation present in this species, as do the measurements (see above), which reveal that many characters (I, AL, LJ) have a ranze of over \(20 \%\). In form, there is gradation from subtrigonal foms, such as the holotype, through more elongate forms, to a markedly elongate form such as that figured by Lyrett in his pl. 36, fig. 4 (GSM 11439); this form variation is independent of overall size. In ornament, there is a. gradation from relatively regularly-tuberoulate forms, with subparaliel tuborcie rows (i.e. the holotype) to forms with very irregular ribbing, such as Iycett's pl. 36, fig. 2 (GSN 11437) and fig. 3 (GSM 11438), where the subparallel nature of the tubercle rows is lost, and where there are several intercalatory half-rows of tubercles.

The specimen fisured by Krenkel (1915, pl. 27, fig. 16)
as \(T\). rupellonsis is cortrinly a Myophorella, not a Laevitrigonia, but is probably to bo placed in M. scarbureensis rather than M. caytonensis, as the tubercles are coelescent over much of the anterior part of the shell, and the tubercle rows do not reflect upwards to the marginal carina. Krenkel's figure agrees closcly with Iycett's figure (1863, p. 48, pl. 37, fig. 1) of the holotype of I. Scarburgensis (GSM 10610). Krenkel (op. cit. p. 313) believed that scarburgensis and T. Mupellensis Lycett (non d' Orbigny) were one and the same, but study of populations of topotypes of each species reveals that this is not so, T. scarburgensis having the anterior tubercles in each row joined
together into a rib, lacking the posterior reflection of the ribs towards the marginal carina, and tendine to have different ornanent patterns on each valve. There is also a stratigraphic discrepancy, M. scarburgensis ranging from the Cornbrash (the type locality) down to the Fuller's Earth, while M. caytonensis appears to be restricted to the Yorkshire Kellaways Rock.
T. clavellata Stoll (non J. Sowerby), from the M. Callovian of Pomerania (Stoll, 1934, pl. 1, fig. 18) is poorly figured and not described, but bears several resemblances to M. caytonensis, in which it is tentatively placed. The specimers figured by Walker (1972, p1. 8, fig. 20) as M. rupellensis, from the Kellaways Rock of Souch Cave, Yorkshire, agree elosely with the Cayton Bay specimens of \(\mathbb{M}\). caytonensis, and are placed in that species. Walker's statement (op. cit., p. 125) that typical specimens from the South Cavo area are indistinguishable from Krenkel's figure of \(T\). rupellensis is misleading, as almost certainly Krenkel figured a specimen of M. scarburgensis, and Walker's specimens certainiy do not belong to that species.
M. caytonensis seems to be restricted to the Kellaways Beds (Calloviense Zone) of Yorkshire, abundant material being available at Cayton Bay, and less well-preserved material in the South Cave area. Presumably this may represent an ecological effect, M. caytonensis only beine found in more arenaceous lithologies, its place in the more argillaceous Kellaways Beds to the south possibly being taken by M. irregularis.

Range and occurrence Calloviense Zone (L. Callovian), Kellaways Rock, Cayton Bay, Scarborough (the type locality); also the Calloviense Zone Kellaways Rock of South Cave Station Quarry and

South Newbald Quarry, South Cave, Yorkshire. Perhaps also the M. Callovian of N. Germany (Stoll, 1934).

\author{
Subclass IHPEFODONPA Neumayr, 1884 \\ Order Vinneroida 1 .Adans \& A.Adams, 1858 \\ Superfamily LUCINACEA Fleming, 1828 \\ Fanily LUCINIDAE Fleming, 1828 \\ Subfamily MYRTEINAE Chavan, 1969
}

Genus DISCOMILIHA Chavan, 1952 ( D .95 )

Type species Originally designated by Chavan, 1952, p.95, Discomitha oehlerti Bigot Ms in Chavan, 1952, p. 95, pl. 4, figs. 38-40, from the Sables Astartiens (U. Oxfordian) of Cordebugle, Calvados, France.
Diagnosis Moderately large, suborbicular, flattened,
of low inflation; sculpture of well-spaced feeble, concentric
ribs and finer striae; posterior area well-marked; lunule very
asymetrical, narrow, long, larger in the left valve than the
right; ligament projecting, inframarginal; hinge teeth
comprising only two weak cardinals, partly obscured by lunular
expansion; shell interior punctate and grooved; anterior
aductor muscle scars elongate, narrow, distant from the pallial
line; shell margin smooth internally.

Remarks Chavan, in the Treatise on Invertebrate Paleontology (1969, p. N492) divided the Iucinidae into three subfamilies, the Lucininse, Myrteinae and Milthinae, on the basis of shell thickness and outline, and length of the anterior
adductor muscle scars. The Myrteince are charactorised by thin, more or less quadrangular or transverse shells, of moderate inflation, and with medium-sized anterior adauctor scars, usually divergent from, and within, the pallial line.

The good preservation of several specimens of Lucina lirata Phillips from the Grossouvrei Subzone (Coronatum Zone) of Calvert, Jucks., allows study of the internal features of the valves, and it is immediatcly apparent that this species belones in Discomiltha, by virtue of its external form and ornament, the length of the narrow anterior adductor scar, and the pustulose nature of the shell interior. Particularly characteristic is the obliquely truncate posterior marein of Discomiltha, with a variably developed indentation in the posteroventral margin markine the position of the posterior radisl sulcus.

Superficially, Discomilthe resembles Saxolucina Stewart, a member of the Milthinae, but although there are close similarities in ornament, outline, and details of the musculature, Saxolucina has more clearly developed teeth ( 2 and \(3 b\) often being bifid), together with traces of antorior laterals; the asymmetry of the lunule is reversed in Saxolucina, the right valve bearing the larger part. Several other genera of Lucinidae, such as Monitilora Iredale, Plastomiltha Stewart and Gardnerella Chavan are also internally pustulose, but may be distinguished from Discomiltha by their shorter anterior adductor scars and differences in the dentition. The presence of intemal pustules on the shell is of uncertain significance, but is of ereat taxonomic value at generic level, as very few genera possess these features, and those which do are confined to the Myrteinae and

Milthinae; no Lucininae with pustules are known.

Discomiltha lirata (Phillips). P1. 17, figs. 10-11, Pl. 18, figs. 1-7.
* 1829 Lucina Iivata sp. nov.; Phillips, p. 140, pl. 6, fig.ll.
.non 1830 L. lirata Phillips; Zieten, p. 84, pl. 63, fig. 1. (non Phillips; = L. zietoni nom. nov. d'Orbigny).
.non 1843 L. lyrata Phillips var. transvorsa nov.; d'Archiac, pl. 26, figs. 3a, 3b. (non L. lirata Phillips; non L. transversa Brom, 1831; = I. bellona nom. nov. d'Orbigny).
v. 1934 I. lirata Finillips; Arkell, p. 278, pl. 41, figs. 1-3,7.

Type specimen Neotype, designated herein, the specimen
figured by ArkeIl (1934, p. 278, p1. 41, fig. 7) from the Hackness Rock of Scarborough, Yorkshire, preserved in the BM (NII), number EM LII0077.

Diagnosis Large species, up to about 50 mm long, suborbicular to subrectangular in outline (H 80.1-98.4 \%, \(\bar{x}\) \(90.9 \%\) ), compressed ( \(\mathbf{I} 35.1-45.4 \%, \widetilde{x} 39.8 \%\) ); posterior region of shell slightly flattened, marked off from the body of the shell by a variably developed, but usually faint, radial sulcus extending to the posteroventral angle; posterior margin straight, obliquely truncate; anterior part of shell not markedly produced, umbones submedian (AL 46.3-58.1 \%, \(\bar{x} 51.3 \%\) ); ornamented by irregularly spaced concentric lamellae, often about 1.5 mm apart, with fine concentric growth lines in the interspaces; shell interior pustulose; anterior adductor scar long, narrow.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{llllc} 
& L & H & \(I\) & AL \\
N & 18 & 18 & 7 & 9 \\
\(\bar{x}\) & 34.2 min & \(90.9 \%\) & \(39.8 \%\) & \(51.3 \%\) \\
Max & 47.0 & 98.4 & 45.4 & 58.1 \\
Min & 21.6 & 80.1 & 35.1 & 46.3 \\
OR & 25.4 & 18.3 & 10.3 & 11.8
\end{tabular}

Description Large species, equivalve, inequilateral, suborbicular to subrectangular in outline, with umbones submedian (AL \(\overline{\mathrm{x}} 51.3 \%\) ), small, fairly prominent, pointed, prosogyrate, salient about 2 mm above the dorsal margin. Anterodorsal margin gently concave, variably produced, passine eithor evenly, or via a rounded anterodorsal angle, into the evenly convex anterior margin; occasionally, the anterior margin is rather less convex, and more nearly straight, in which case the anterodorsal angle is more marked; the fully rounded anterior margin passes smoothly into the more gently convex ventral margin, with no perceptible anteroventral engle; at its postorior end, the ventral margin becomes sliphtly more convex, and meets the rounded, but prominent, posteroventral angle, the latter often being marked by a clear indentation caused by the posterior radial sulcus meeting the posterior margin; in some specimens, the sulcus is very weak, and the posteroventral angle very illdefined, the ventral and posterior margins then curving more smoothly into one another; posterior margin straight to gently convex, occasionally very slightly concave, obliquely truncate, meeting the posterodorsal margin in a rounded obtuso angle;
posterodorsal margin straight to gently convex. A posterior area, bounded by the variably developed posterior radial sulcus, is usually clearly cleveloped, and takes the form of an obliquely flattened region betweon the unbo and the posteroventral angle; often the omament becomes slightly coarsened on the posterior area, the concentric lanellae being strengthened and slightly elevated. The remainder of the shell exterior is omemented with irregularly developed narrow concentric lamellae, spaced about 1.5 mm apart, separated by wider interspaces containing concentric growth striae; in the Lower Oxford Clay specimens, the lamellae are not well-developed, and are only slightly coarser than the growth lines, criving a more even pattorn of ornamentation; no radial elements are present on the shell exterior.

Dorsal areas well-differentiated, prominent. Lunule small, elongate, narrow, sharply bounded by two carinae, asymmetric, the part of the lunule on the left valve being wider than that on the right. Escutcheon absent, being obscured by the external ligament, which occupied the whole of the posterodorsal margin between the umbo and the posterodorsal angle, and is deeply inset into the dorsal margin.

Dentition unknow. Anterior adductor muscle scar elongate, narrow, arcuate, parallel-sided, reaching about two-thirds of the way to the ventral margin, and placed within the pallial line, from which it diverges markedly; posterior adductor muscle scar subovate, elongated dorsoventrally, located mostly within the posterior area, sometimes crossing the posterior sulcus, and reaching into the body of the shell; pallial line entire, lacking a pallial sinus, although there is often a slight
reflection where the pallial line crosses the posterior radial sulcus. The shell interior within the pallial line is strongly pustulose, and a faint radiating pattern may be made out within this pustulose area. Inner shell margin smooth, lacking marginal denticulations.

Remarks The holotype of Iucina Iirata Fhillips is said by Etheridge (in Phillips, 1875, p. 326) to be in the author's collection, but search of the Phillips collections at the Yorkshire Musoum and the Oxford University Museum has not revealed this specimen; neither is it present in the British Museum (Netural History), Sedgwick Museum, Canbridgo or the Geological Survey Museum, London, and must be considered lost. The topotype fisured by Arkell (1934, p1. 41, fig. 7; EM LLI0077) is here designated neotype.

Phillips figure (1829, pl. 6, fig. 11) is rathor stylized, and shows a specimen with a much more oblique posterodorsal margin than is normal, but there are many topotypes available from the Hackness Rock which show the true nature of the species, and which reveal that Phillips exaggerated the truncation of the posterior margin. The most variable faature of this species is the elongation, and degree of prominence of the anterior part of the shell, which are often, but not always related. Frequently, the most elongate specimens have rather inflated and produced anterior regions, the more suborbicular specimens being not nearly so anteriorly produced, although a few elongate, but not anteriorly-inflated examples occur. Inflation is not as variable as height, and appears to be unrclated to degree of elongation; it is also the most difficult parameter to measure, as most of
the specimens occur as disarticulated valves, and accurate measurement of the inflation is not possible. Maximum inflation always occurs in the middle regions of the shell, never on the produced anterior regions.

The modes of preservation found in D. Iirata make study of the dentition and clorsal regions very difficult, and as yet, no specimens showing the teeth have been seen, although it is honed that further collecting from the Lowcr Oxford Clay shellbeds will yield suitable examples. Lacking the dentition, it is very difficult to place this species with cortainty, but the prosence of the pustules, and the elongation of the anterior adductor scar make it almost certain that it belongs in Discomiltha. Comparison with Chavan's original figures (1952, pl. 4, figs. 38-40) of the type species shows that D. oehlerti is very close to Lucina Iirata, and that until evidence to the contrary is found, the latter species is best placed in Discomiltha. Thu topotypes of I. Irrata are all steinkems, occasionally with a few remnants of shell remaining, and none of them are well enough preserved in the umbonal regions to allow study of the dentition. However, the examples which occur in the shell beds of the Lower Oxford Clay are single valves, of great fragility, but showing internal structures, and it can only be a matter of time before a specimen showing the teeth comes to light.

Arkell (1934, p. 278) has shown that the Bathonian species Lucina bellona d'Orbigny ( \(=\) L. Iyrata d'Archiac non Phillips) is closely related to D. Iirata, but differs in boing more elongate, less protuberant at the anterior part of the ventral margin, and
having shorter and wider anterior adductor scars. The Callovian - Oxfordian species I. rotundata (Roener), common in the arenaceous facies of the Callovian at Brora, and throughout the Corallian of Britain and north-west Europe, differs from D. lirata in its greater inflation (I 50-63 \%), its rounded posterior margin without a posterior sulcus, and its ornament style, lacking the concentric lamellae; in general outline, it is much more rounded and globose than D. Iirata.

Range and occurrence D. lirata occurs throughout the L. Oxford Clay of central and southern England, although it is never abundent, except locally in some of the condensed shell beds; Calloviense - Athleta Zones. Also from the Hackness Rock of Scarborough, Yorkshire (the type locality), and abundant throughout the British Corallian (see Arkell, 1934, p. 278).

Superfamily CRASSATELLACEA Ferussac, 1822
Pamily ASTARTIDAE d'Orbigny, 1844
Subfamily ASTARTINAE d'Orbigny, 1844

Genus NEOCRASSINA Fischer, 1886 (p. 1016)
(nom. subst. pro Crassinella Bayle, 1878 (non Guppy, 1874)

Synonymy; Puschia Rouillier \& Vossynski, 1847
Oreadia Rouillier \& Vossynski, 1847
Fruvostiella Agrawal, 1955

Type species Subsequently designated by Dall, 1903, p. 1487, Astarte oblique Deshayes, 1830, p. 80 (= Cypricardia obliqua Lamarck, 1819, p. 29), from the Bajocian of western France.

Diamosis Ovate to subtrapezoidal in outline, inequilateral, often with umbones pointed and slightly produced; concentric ribs developed in umbonal regions, fading in adults, leaving merely strong growth lines. Hinge formula:

with trigonal cariincls and strong posterior laterals; ligament nymph broad and flattened. Marginal denticulation present or absent.

Subgenus NEOCRASSIIVA s.s.

Diagnosis Shape and ornament as in Moocrassina s.l.; \(P_{\text {II }}\) placed well bchind the ligament nymph, elongate, laminar; lunule oniy slightly depressed; oscutcheon narrow, oxternal.

Remarks Neocrassina was introduced by Fischer (1886) to accommodate the Jurassic to L. Cretaceous astartids with two trigonal cerdinals and a strone posterior lateral tooth in each valve, and was a substitute name for Crassinella Bayle (1878), Guppy havine introduced Grassinnella four years earlier as a genus of Recent Crassatellidac. The shell of Neocrassina is often thick and heavy with a wide hingeplate, as in N. (N.) ungulata, but in other species, such as N. (N.) calvertensis, it
is thinner-shelled with a narrow hingeplate.
Neocrassina s.s. is distinguished from \(\mathbb{N}\). (Coelastarte)
by having a more posteriorly placed posterior lateral tooth ( \(P_{\text {II }}\) ), together with a less well-excavated lunule and less penetrating escutcheon. The hinges of several Russian Upper Jurassic species of Noocrassina s.s. have been well-figured by Zakharov (1970, pl. 12, figs. 4, 5), and show the wide cardinal plate with elongate cardinal teeth.
1. Neocrassina (Neocrassina) ungulata (Iycett). Pl. 20, figs. 4-12.

1829 Astarte lurida sp. nov.; Phillips, pl. 5, fig. 2. (non J. Sowerby, U. Lias species).

1863 A. ungulata nom. nov.; Lycett, p. 72, p1. 35, fig. 20. (nom. nov. pro A. Iuride Phillips non J. Sowerby).

1934 A. ungulata Lycett; Arkell, p. 244.
1948 A. ungulata Iycett; Cox \& Arkell, p. 26.

Type specimen The holotype of Astarte ungulata Lycett (1863, p. 72, p1. 35, fig. 20), from the Cornbrash of Yorkshire, is preserved in the Leckenby collection at the Sedswick Museum, Cambridge (SM Blo715). The specimen figured by Phillips (1829, pl. 5, fig. 2) as Astarte lurida sp. nov. (non J. Sowerby), from the Oxford Clay of Scarborough, is preserved in the Yorkshire Museum (YM 873), together with two syntypes (YM 874, 875).

Diagnosis Medium sized species (up to 21.2 mm L) of low inflation ( I 32.9-44.4 \%, \(\bar{x} 40.3 \%\) ), very variable in outline from suborbicular to subquadrate (H 85.6-110.1 \%, \(\bar{x} 95.3 \%\) );
umbones sharp, prosogyrate, of varying prominence, rather produced in subquadrate forms, hardly salient above the hinge margin in suborbicular forms; ornament consisting of strong concentric ribs in the umbonal regions, fading to mere concentric growth lines at about 8 rum from the umbo. Hinge plate wide, with 3b, 2, 4b elongate; dental formula normal for genus. Margin denticulate.

Measurements
See Appendix 3.
\begin{tabular}{lcccc} 
& L & H & I & AL \\
N & 10 & 10 & 3 & 8 \\
\(\overline{\mathrm{x}}\) & 16.7 mm & \(95.3 \%\) & \(40.3 \%\) & \(37.9 \%\) \\
Max & 21.2 & 110.1 & 44.4 & 42.3 \\
Min & 13.8 & 85.6 & 32.9 & 32.0 \\
OR & 7.4 & 25.5 & 11.9 & 10.3
\end{tabular}

Description Medium-sized species (up to 21.2 mm I), inequilateral, umbones small, prosogyrate, pointed, variably produced, placed \(32.0-42.3 \%\) ( \(\times 37.9 \%\) ) behind the anterior margin; outline suborbicular, with length approximately equal to height, and umbones not prominent, to subquadrate, with length about \(10-15 \%\) greater then height, and umbones rather produced; anterior margin almost straight to slightly concave, curving smoothly into the continuously rounded anterior and ventral margins; posterodorsal margin gently convex, posterodorsal angle obtusely rounded; posterior margin subtruncate and gently convex in subquadrate individuals, passing into the ventral margin via a prominent rounded posteroventral angle, or evenly rounded, and
passing into the ventrul margin without a posteroventral angle in suborbicular forms. Inflation variable (32.9-44.4 \%, \(\bar{x}\) \(40.3 \%\) ) but low, most of it usually being due to the thickness of the valves rather than enlargement of the shell cavity. Ornament consists of a variable number, up to 13 , of strong concentric ribs, separated by sulci approximately equal in width to the ribs; the ribs fade out at a distance of about 7 mm from the umbones, and only faint, irregularly spaced concentric growth lines remain; very occasionally coarser growth lines develop in the ventral regions to form one or two ribs. Iunule elongate, extending almost to the enterodorsal angle, narrow, lanceolate in outline, obliquely flattened and only slightly depressed. Escutcheon elongate, lanceolate, reaching almost to the posterodorsal anele, obliquely flattened and external.

Cardinal plate heavy and wide, the cardinal teeth being elongate and subparallel to one another (Fig. 2.38). Dental formula:

with \(A_{I I}\) and \(P_{I}\) formine the dorsal margin; \(3 b, 2,4 b\) elongate, trigonal, narrow, 2 and \(4 b\) subparallel; \(3 e\) shorter and more oblique; laterals laminar, \(P_{I}\) and \(P_{\text {II }}\) placed well behind the nymph. Nymph broad and flattened, ligament suture placed along the dorsal maxgin.

Adductor muscle scars placed imnediately beneath the ends of the cardinal plate, subequal, the posterior being slightly larger and subrectangular, the anterior subelliptical; anterior pedal retractor muscle scar vory small, subovate, placed on the
ventral slope of the cardinal plate, just posterior of the anterior adductor; posterior pedal retractor scar subovate, placed on the ventral slope of the cardinal plate immediately beneath cardinal tooth 2. Pallial line entire. Margin denticulate.

Remarks The relationships of the Upper Jurassic species of Neocrassina are rather complex, in view of the great amount of variation which ray be present in each species, and it is advisable to work with populations rathor than with individuals. N. (N.) unfulata shows the normal wide range of variation in outline, but all specimens are characterised by the wide cardinal plate, with elongate cardinal tecth (Fig. 2.38), which serves to distinguish them from \(\mathbb{N}\). (IV.) calvertensis. It is perhaps possible that variation in development of the cardinal plate is merely an intraspecific feature, but the two hinge types ore never found together, and so in the lack of an overlap of the two types of cardinal plate, it is necessary to separate then at the specific level. The discovery of further material may clarify this point.

The holotype of \(\mathbb{N}\). ungulata is from the Cornbrash of Yorkshire (SM Blo715) and is suborbiculer in outline, but topotypes reveal that this is merely ono morphotype, and that more subquadrate forms, similar to those figured by Phillips (1829, p1. 5, fig. 2) from the Mariae Zone Oxford Glay of Scarborough, also occur (i.e. GSM 113012). Syntypes of A. Iurida Fhillips (non J. Sowerby) preserved in the Yorkshire Museum (nos. YM 873-875) show that a similar range of variation occurs in the Yorkshire Oxford Clay. The specimens which occur in the

Yorkshire Oxford Cley axe preservod as composite clay steinkerns, with details of the extorior and interior superimposed; specimens such as these show the nature of the dentition quite clearly, revealing the presenco of a wide cardinal plate and elonfate cardinals (SM J26767-68 show this particularly well). The dentition is best seen in a specimen (BCM 3324) from the oxford Clay of Trowbridge, Wiltshire, which agrees particularly well in outline with Iycett's holotype. Sone small specimens of the closely-related \(\mathbb{N}\). striato-costata (Münster in Goldfuss) from the Callovian of Irkow, Poland, presented to the author by Dr. A. Radwansici of Warsaw University, are extremely well-preserved, and show the nature of the musculature particularly woll (pig. 2.39). It is from these specimens that the details of the pedal musculature have been detemined. N. striato-costata, with which should be grouped N. trembiazensis (de Loriol, 1901) is very near \(\mathbb{N}\). ungulata, as Makowski's (1952, p. 10) fiewres show. This continental spocies may, however, be distinguished from N. ungulata by virtue of its consistently smaller size (up to 13.5 mm L), and more pointed and prominent umbones, which give a marked concavity to the posterior part of the lunular area. The length-height relationshipe are also different, the height of N. striato-costata slightly exceeding the length.
A. philea d'Orbigny and A. pelops d'Orbigny (figured in Cottreau, 1927, p1. 46, figs. 1, 2, and 3, 4 respectively) closely resenble \(\mathbb{N}\). ungulata in their suborbicular outline and low inflation, but are placed by Arkell (1934, p. 241) in the synonymy of Astarte numuus Sauvage. All three names apply to Corallian species, which mey be distinguished from N. ungulata
by their tendency to have ribbing over the whole shell surface.

Range and occurrence Combrash of Yorkshire (the type horizon); "Kelloway Rock" (= Hackness Rock) of Scarborough, and widespread in parts of the Oxford Clay, specimens being known from the Oxford Clay of Trowbridge and Chippenhan (BCM 3324/1-5), Fairford, Gloucestershire (BU 14708), and the Mariae Zone of Scarborough, Yorkshire (numerous specimens). Also found in the ? Lamberti Zone of Lukow, Poland.
2. Neocrassina (Noocrassina) calvertensis sp. nov. Pl. 21, figs. 1 -7.

Type specimen Holotype, from the L. Oxford Clay (Bed 2C), Jason Subzone, Jason Zone of Calvert, Bucks., preserved in the BII (NH), number LL 27730.

Diamosis Small to medium sized species (up to 20.7 mm L) of low inflation (I \(19.3-37.3 \%\), X \(28.0 \%\) ), suborbicular to subovate in outline (H \(88.3-96.9 \%\), \(\vec{x} 90.7 \%\) ), usually slightly elongate; unbones small, pointed, not very prominent, prosogyrate; ornament consisting of concentric ribs in the umbonal region, fading into growth lines at a distance of about 5 mm from the umbo; dentition normal for genus, but cardinal plate narrow and slight, with cardinal teeth short and peglike; margin denticulate.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lcccc} 
& L & H & I & AI \\
\(\mathbb{N}\) & 7 & 7 & 4 & 6 \\
\(\overline{\mathrm{x}}\) & 16.7 mm & \(90.7 \%\) & \(28.0 \%\) & \(36.0 \%\) \\
Max & 20.7 & 96.9 & 37.3 & 43.5 \\
Min & 13.8 & 88.3 & 19.3 & 26.8 \\
OR & 6.9 & 8.6 & 18.0 & 16.7
\end{tabular}

Description Small to medium-sized species (I up to 20.7 mun) of variable outline, but usually suborbicular, with small, prosogyrete, pointer, slightly salient wabones, or subovate with slightly more prominent umbones (H \(88.3-96.9 \%, \vec{x} 90.7 \%\) ); the most comon forms tend to be subovate, slightly drawn out anteroposteriorly, with a more concave anterodorsal margin; anterodorsal margin straight to gently concave, the concavity being greatest in more clongate forms; anterodorsal angle rounded, obtuse, passing evenly into the continuously rounded entorior and ventral margins; ventral margin almost straight to evenly convex in outline, dependent upon elongation; posterodorsal margin gently convex, passing into the truncate or gently convex posterior margin via an obtuse postorodorsal angle which is very cleacly developed in elongate forms; posteroventral angle obsolete. Umbones small, pointed, hardly protruding above the general level of the shell outline, situated about one-third of the length behind the anterior margin (AL 26.8-43.5 \%, - \(\bar{x} 36.0 \%\) ). Inflation low ( I 19.3-37.3 \%, 社 \(28.0 \%\) ), most of this usually being due to the thickness of the valves rather than inflation of the shell cavity. Ornament consisting of \(8-10\) concentric ribs
in the umbonal region, fading into mere concentric growth lines at a distance of about 5 mm from the umbones; the rest of the shell is ornamented only with these growth lines. Iunule and escutcheon elongate, lenceolate, shallow, only slightly depressed, reaching to the anterodorsal and posterodorsal angles respectively.

Cardinal plate narrow and slight, the cardinal teeth short and peglike; dental formula:

with \(3 a+3 b\), and \(2+4 b\) short and divergent; \(A_{I}, P_{I}, A_{I I}, P_{I I}\) lominar. AII and \(P_{\text {II }}\) placed alone the dorsal nargin, allowing overlap of the opposite valve margin, \(P_{I}\) and \(P_{\text {II }}\) placed well behind the nymph (Fig. 2.40). Nymph relatively wide (but not as wide as in N1. ungulata) and flattened, ligament suture located along the dorsal margin. Musculature as in N. unsulata, pallial line entire. Margin denticulate.

Remarks Many individuals of this species occur in bed 5 (Enodaturn Subzone) at Stewartby and bed 2C (Medea Subzone) at Calvert, all possessing a narrow hinge plate with short, peglike cardinal teeth ( Pig .2 .40 ). Comparison with \(\mathbb{N}\). ungulata reveals that the latter species also differs in having a higher number of concentric ribs in the urbonal region, the fading into growth lines not occurring until 8 mrn from the umbo, as compared with 5 mm in N. calvertensis. As noted in the discussion of \(N\). ungulata, there is no overlap of characters of these two species, and it is necessary at the present time to separate them. The species appears to be restricted to the

Kellaways Rock - Lower Oxford Clay boundary, not having been found elsewhere.

Two comparable species of Neocrassina have been described from the Callovian - Oxfordian of the continent, N. Striatocostata (Mllnster in Goldfuss) and N. trembiazensis (de Loriol), but both of these species (which are probably synonymous) differ in possessing a wide cardinal plate, and are more closely related to \(\mathbb{N}\). ungulata. No comparable forms of Noocrassina with a narrow hinge plate are known.

Range and occurrence Enodatum Subzone, Stewartby (bed 5), Medea Subzone of C-lvert (bod 2C) and Bletchley (bed 6). Not common.

\author{
Genus TraUlScholdia Cox \& Arke11, 1948 (p. 27) emend Iruff herein
}

Type species Originally designated by Cox \& Arkell, 1948, p. 27, Astarte cordata Trautschold, 1860, p. 347 (nom. nov. pro Astarte cordiformis Rouillier, 1846, pl. D, figs. 15a-g, non Deshayes), from the Uppor Jurassic of Galiowa, Russia.

Diagnosis Small, subtrigonel to suborbicular in outline, very inflated, globose, unbones high, inflated, often produced to give a cordate appearance; ornament of regular concentric ribs, often with concentric growth lines superimposed on them and the intervening sulci; inner margin usually crenulate; lunule cordiform, escutcheon lanceolate, both broad and well-defined; hinge formula:
\(\frac{A_{I} \quad{ }^{A_{I I I}} \quad 3 \mathrm{a} \quad 3 \mathrm{~b}}{2} \frac{5 \mathrm{~b}}{A_{I I}} \frac{\mathrm{P}_{\text {III }}}{\mathrm{P}_{\text {II }}} \quad{ }_{P_{\text {IV }}}\)
with laninar laterals and short stout cardinals.

Remarks Cox \& Arkell (1948, p. 27) introduced the subgenus Trautscholdia, to be placed in Astarte s.s., giving an adequate diagnosis except for the nature of the dentition, which was stated to be "of normal astartid type". However, the type species of Astarte, A. sulcata da Costa (a Recent species) lacks the cardinal tooth \(3 a\), and as \(3 a\) is well-developed in Trautscholdia, the dentition does not conform to the normal astartid type. Chavan (1969, p. N567), having been misled by Cox \& Arkell's description of the dentition, places Trautscholdia as a subgenus of Micaniella Chavan (1945, p. 43), a genus which also lacks 3 a . The ultimato cause of the confusion appears to be Rouillier's 1846 figure (pl. D, fig. 15a) of the dentition of the type species A. cordata, which is unfortunately a figure of a left valve. The socket in the left valve to receive 3 a is never very clear, and is easily overlooked; there is, however, a suggestion of a socket in the appropriate place in Rouillier's figure. Trautschold (1860, p. 347) in his description of A. cordata does not mention the dentition. Study of topotypes of A. cordata (BM (NHI) L66752-66760) reveals that 3 a is present, and so Trautscholdia does not bolong with Nicaniella. Accordingly, the diagnosis has been emended, and Trautscholdia elevated to full genoric rank.
1. Trautscholdia carinata (Phillips). P1. 21, figs. 8-14,17. V* 1829 Astarte carinata sp. nov., Phillips, pl. 5, fig. 3. non 1850 A. carinata Phillips; Morris, p. 317, p1. 30, figs. \(2-2 e\). ( \(=\). phillis Cottreau ex d'Orbieny).
non 1860 A. carinata Phillips; Damon, pl. 2, fig. 1. (= T. phillis).

Type specimen Holotype of Phillips figure of 1829 (p1. 5, fig. 3), from the Mariae Zone Upper Oxford Clay of Scarborough, is preserved in the Yorkshire Museum (YM 876), together with one syntype (YM 877). Phillips original figure is reversed.

Diagnosis Small, inflated species of Trautscholaia (up to \(9.1 \mathrm{n} \pi \mathrm{L}\) ), with \(8-12\) regularly spaced concentric ribs; suborbicular to subtriconal in outline, height only slightly less than length (H \(88.1-96.3 \%\), \(\bar{x} 93.2 \%\) ), inflation about \(85 \%\) unbonos of variable prominence, but occasionally rather produced to five a strongly trigonal outline; posterior flank of the shell often marked by a variably-developed carina running from the umbones to the ventral margin.
T. phillis may be readily distinguished from T. carinata by its greater number of more tightly packed ribs (12-21), and its more elongate outline (H 69.9-96.2 \%, "̄ \(81.7 \%\) ).

Measurements See Appendix 3.
\begin{tabular}{llcccc} 
& L & \(H\) & \(I\) & AL & Ribs \\
N & 5 & 5 & \(I\) & 3 & 9 \\
\(\overline{\mathrm{X}}\) & 5.0 mm & \(93.2 \%\) & \(87.8 \%\) & \(41.6 \%\) & 9.4 \\
Max & 9.1 & 96.3 & 87.8 & 43.9 & 12 \\
Min & 6.6 & 88.1 & 87.8 & 38.1 & 8 \\
OR & 2.5 & 8.2 & 0 & 5.8 & 4
\end{tabular} prominent (oceasionally very prominent), slightly prosogyrate, salient above the hingeline to a variable extent, submesial (AL 38.1-43.9 \%; \(\bar{x} 41.6 \%\) ), inflated. Anterodorsal and posterodorsal margins straight to slightly conceve, anteroventral and posteroventral angles clearly defined; ventral margin evenly rounded, often semicircular in outline, crenulate over its entine length. Dorsal areas not well-seen, but both the lunule and the escutcheon seem to be well-developed; ligament not seen. Ornament consists of \(8-12\) regulorly spaced sharp concentric ribs, most commonly \(8-10\) in number, with fine concentrio striae between the ribs. A variably devoloped umbonal carina runs from the umbones to the ventral margin, meeting the margin just anterior of the posteroventral angle. Dentition and musculature not known.

Remarks The availablo material of \(T\). carinata is poorly preserved, consisting only of clay steinkerns from the Upper Oxford Clay of Scarborough and Oxford, so it is not possible to make out any details of the dentition, liganent or musculature. Consequently, the generic assignment of this species is based solely on extormal shape, and its close resemblance to T. phillis.

The variation in form is large, although not as much material is available as for T . phillis, but it is nevertheless possible to distinguish the latter species by the greater number of ribs and more elongate form of the populationas a whole. In T. carinata the umbones are often slightly produced, as in the
holotype, although never as much as in T. cordata and T. mosae (d'Orbigny). The relationships of tho Upper Jurassic species of Trautscholdia with produced umbones arc uncertain, and more material, from a wide geographical and stratigraphical range, is needed before definite conclusions mey be drawn. It seems likely, however, that I. Mosac (d'Orbigny) is synonymous with T. cordata (Trautschola), although they come from slightly different horizons, the former from the \(U\). Callovian of France, and the letter from the I. Oxfordian (Cordatum Zone) of Russia.

The exact status of this species is, as yet, still uncertain, as although the Scarborough population may be readily distinguished from T. phillis, elsewhere tho distinction does not scen to be so Ereat, and T. carinata hes not been recognised with certainty at any locality other than Scerborough. This raises the possibility thet the Scarborough nopulation is perhaps a local race of T. phillis which has become very well-diffcrentiated from the rest of the populations. In such a ease, it would perhaps be more correct to consider I. carinata as a variety of T. phillis, but at the present tine, this is pure supposition.

Range and occurrence Comon in the U. Oxford Clay (Mariae Zone) of Scarborough, also occurrins in the M. - U. Oxford Clay (Lamberti - Mariae Zones) of St. Edmund Hall, Oxford. Also the Oxford Clay (horizon unknown) of Radipole Backwater, Weymouth (BM L20715).
2. Trautscholdia phillis (Cottreau ex d'Orbigny). P1. 21, figs. 15-16, 18-32, P1. 22, figs. 1-3.

1850 Astarte carinata Phillips; Morris, p. 317, pl. 30, figs. 2-2e. (non Phillips).

1850 Astarte phillis sp. nov.; d'Orbieny, p. 363, no. 253. 1860 A. Carinata Phillips; Damon, pl. 2, fig. 4. (non Phillips).
? 1875 A. sauvarei sp. nov.; de Loriol \& Pellat, p. 96, pl. 15, figs. \(33,34\).
? 1911 A. Sauvagei de Loriol; Boden, p. 64, pl. 6, figs. 18-18b, 19.

1915 Gouldia cordata (Trautschold); Krenkel, p. 320, p1. 26, figs. 16-18. (non Trautschold).

1919 G. cordata (Trautschold); Couffon, p. 90, pl. 6, figs.8-8e. 8-8e. (non Trautschold).
v* 1927 A. phillis d'Orbieny; Cottreau, p. 49, pl. 46, figs. 6,7. 1952 A. cordata Trautschold; Makowski, p. 10, pl. 5, fig. 6. 1972 A. multiformis Roeder; Walker, p. 127, p1. 8, figs. 11-17.

Type specimen The holotype of Astarte phillis d'Orbigny (1850, p. 363, no. 253), refigured by Cottreau (1927, pl. 46, figs. 6,7 ), from the calcaire-blenc (Coral Rag, Corallian) of Neuvizy, France, preserved in the d'Orbigny collection (no. 3669) at the Museun Nationalo dHistoire Naturelle in Paris.

Diarnosis Medium-sized species (up to 12.4 mm long), inflated (I 56.6-100.0 \% , \(\bar{x} 77.2 \%\) ) Trautscholdia with umbones slightly anterior of median (AL 26.9-43.2 \%, "x \(34.1 \%\) ); ornament consisting of \(12-21\) regularly spaced concentric ribs, with the mode at about 15; outline subtrigonal to suborbicular, with height significantly less than length (H \(69.9-96.2 \%, \bar{x}\)
85.4 \%), giving an elongate rather than a suborbiculsr outline, although occasional suborbicular varieties occur.

The distinctions between this species and 1 carinata have been discussed above.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lcllll} 
& I & H & I & ML & Ribs \\
\(\mathbb{N}\) & 84 & 84 & 73 & 15 & 68 \\
\(\overline{\mathrm{X}}\) & 8.7 man & \(85.4 \%\) & \(77.2 \%\) & \(34.1 \%\) & 14.8 \\
Max & 12.4 & 96.2 & 100.0 & 43.2 & 21 \\
Min & 4.8 & 69.9 & 56.6 & 26.9 & 10 \\
OR & 6.3 & 26.3 & 43.4 & 16.3 & 11
\end{tabular}

Description Mediun-sized species, infleted, equivalve, inequilateral, wribones placed slightly anterior of median (AL \(\bar{x} 34.1 \%\) ); outline dominantly subtrigonal, with length considerably greater than height, but suborbicular forms, with length only just exceoding height, are also found; urbones prominent, inflated, prosogyrate, saliont up to 2 mm above the hingelinc, rounded in lateral profilc. Anterodorsal margin slightly concave, posterodorsal maxgin slightly concave to slightly convex; anterodorsal angle sharply rounded, passing into the evenly convex ventral margin; posterodorsal angle variably developed, a rounded obtuse anglo passing evenly into the ventral margin in suborbicular forms, or a more sharply angular posterodorsal ansle, passing into a short truncate posterior margin, which passos into the ventral
margin via a rounded posteroventral angle in elongate forms; in the elongat forms there is a tendency for a weak umbonal ridge to develep between the umbones and the posteroventral angle. Iiganent nymph short but well-defined, located inmediately above cardinal tooth 56 in the right valve, and above and behind \(4 b\) in the left velve. Iunule stronglydeveloped, cordiforti, deeply concave, its anterior extremity reaching virtually to the anterodorsal angle; escutcheon lanceolate, bounded by a sharp escutcheon carina, extending to the posterodorsal angle; both limule and escutcheon ormbented by fine concentric growth striae. Omament of flanks of valve consists of 12-21 regularly spaced concentric ribs, with faint concentric intercostal striae; the ribs are somewhat moro tightly-packed than in T. carinata, wut the exact number of ribs varies between populations; the spaces between the ribs are usually about 3 times as wide as the ribs themselves. Margin denticulate in its entirety, denticulations extending to the ends of the lateral teeth.

Dental formula:

with paired laminar laterals posteriorly in the left valve and anteriorly on the right valve; 2 and \(4 b\) prominent, rounded, peglike; \(3 a\) and 3 b strongly developed, with \(3 b\) almost median and a strong 3 a reaching anteriorly from its dorsal margin, and \(5 b\) poorly developed, parallel to, and often fused with, the shell margin ( \(\mathrm{Fig}, 2,41\) ). Transposed dentition occurs

\section*{337.}
occasionally, with transposition of either the anterior laterals or the cardinels (Tig. 2.42). Adductor muscle scars subequal, the posterior scar slightly larger, subquadrate, the anterior scar eloneate-elliptical and slightly smaller; pallial line entire.

Remarks
The variation within this species (Fig. 2.43)
is very great, as may be deduced from the study of large populations such as that collected from bed 2C at Calvert. Although the dominant form in that population is markedly elongate, suborbicular forms are fairly common, together with all intermediate stages, showing variation to be continuous; the variation in number of ribs is also well shown in this population, the overall range being 13-19. Other populations of comparable age, but from different localities, show a similar range of variation, although they occupy different positions within the range. For example, the small population from the Oxford Clay of Chippenham (GSM Y2066-Y2070, GSM 113419113427) are of a similar shape to the Calvert population, but have fewer ribs, ranging from 12-15, with one specimen having 17 ribs. Variation may best be apprecieted from a study of the plates, and Pig. 2.43. In all populations of this species, the dominant shape is subtrigonal, with length considerably greater than height, and it is this feature, together with the consistently high rib density, that separates it from T. carinata. Regression lines for different populations of I. phillis (Fig. 2.44) show the similarity between all populations when their \(L / H\) and \(L / I\) ratios are considered.
T. phillis is a common Kellaways Rock - I. Oxford Clay species in England, although its upper range is as yet uncertain, and it seems to occur at higher levels in the Callovian and Oxfordian on the continent. It was first described from the L. Callovian by Morris (1850), who erroneously assigned it to Astarte carinate, being followed by Danon (1860). Also in 1850, d'Orbigny introduced the name A. phillis for an Oxfordian species found in the Corallian of Neuvizy (France), the type being fisured by Cottreau in 1927, showing that the French species was indistinguishable from the British Lower Callovian one, in spite of the age difference. The fact that the holotype of \(r\). Hhillis comes from the Corallian creates uncertainty about the placenent of the Callovian forms, but the figure given by Cottreau is of a shell indistinguishable from the typical Callovian form, although there is a possibility that the French specinen is not a typical nember of the population from which it came. In the absence of a population of topotypes, there is no reason to doubt the identity of the English and French species. Arkell (1934, p. 247) united A. phillis with A. Contejeani de Loriol (1875, p. 92), and figured two specimens of the latter species fron the Corallian of Weymouth; however, the specimens figured by Arkell do not match the figures given by Cottreau. Astarte robusta Lycett is probably also referable to Trautscholdia, and is superficially very similar to A. phillis, having 16-18 ribs, but differs in its nore suborbicular outline, with leneth and height beine approximately equal. The
holotype cane from the Combrash of Scarborough, and is preserved in the Sedewick Museum, Cambridge (SM J5682)

Astarte cordata Trautschold has been misidentified several times (Trenkel, 1915; Couffon, 1919; Makowski, 1952), the figures showing specinens identifiable as T. phillis. T. cordata is clearly distinct (Rouillier, 1846, p1. D, figs. \(15 \mathrm{a}-15 \mathrm{~g}\) ), having very pronounced umbones.

Roeder (1882) discussed variation in T. multiformis. (Roeder), and showed it to be an extremely polymorphic species in both form and ornamentation. It closely parallels the situation seen in T. phillis, to which it must be closely related, but consistently differs from that species by being much more orbicular, with length about equal to height. Arkell (1934, p. 239) suggested that this species might be synonymous with A. extensa Phillips.

Hinge transposition is fairly common in the Astartidae (Cox, 1969, p. 57), Popenoe \& Findlay (1933) noting that one specimen in 130 showed this phenomenon. There appears to be variation in the part of the hinge affected by transposition, Popenoe \& Findlay (op. cit.) and Newell (1939) reportine that the cardinals and anterior laterals were transposed separately from the posterior laterals, supporting Bemard's observation that the anterior laterals and the cardinals develop from one lamella, and the posterior laterals from another, while Eggleton \& Davies (1962) showed that in a population of the Recent freshwater genus Sphaerium, \(18.5 \%\) of the population showed transposition of the complete hinge. The specimens of T. phillis
showing transposition of the dentition lend support to the observations of Newell and Popence \& Findlay, a right valve from the Oxford Clay of Chippenhem (GSM 113425) showing transposition of the cardinals and anterior laterals (Fig. 2.42a), while a right valve from bed 2C at Calvert merely shows transposition of the posterior laterals (Fig. 2.42b), with the result that the former has no laminar laterals on the right valve, whilst the latter has paired laminar laterals anteriorly and posteriorly.

Range and occurrence Widespread in the Kellaways Rock of Southern England, and in the transition beds between the Kelleways Rock and the Oxford Clay, occurrine in the Jason Subzone at Calvert, the Medea Subzone at Bletchley and Stewertby, and in the Medea and Jason Subzones at Norman Cross. It also occurs rarely in the clay facies (Obductum Subzone of Calvert, Stewartby and Norman Cross).
T. phillis is known from various horizons in the Callovian and Oxfordian of Prance, Germany, Poland and Russia.

Superfamily CARDIACEA Lamarck, 1809
Family CARDIIDAE Lamarck, 1809
Subfanily CARDIINAE Keen, 1951

Genus PRotocardia von Beyrich, 1845 (p. 17)

Synonym: Hassbergia Krumbeck, 1939

Type species Subsequently designated by fierrmannsen, I847, p. 336 , Cardium hillanum J. Sowerby, 1813 , p. 41 p1. 14, upper fig. , from the Upper Cretaceous of England.

Diagnosis Subquadrate to subovate, umbones subcentral; posterior slope with radial ribs, not usually spinose, remainder of shell ornamented by concentric ribs; hinge long and slightly arched, left valve with \(\mathrm{AI}, 2,4 \mathrm{~b}, \mathrm{P}_{\mathrm{I}}\), right valve with \(A_{I I}\), \(A_{I V}, 3 a, 3 b, P_{I I}\), with 2 and \(3 b\) peglike; pallial line mostly entire, sometimes a small sinus near the posterior adductor scar.

\section*{Subgenus PROTOCARDIA s.s.}

Diamosis Posterior slope clearly marked off from the rest of the shell by its well-develoned radial riblets; remainder of shell with concentric growth lines only.
1. Protocardia (Protocardia) striatulum (J. de C. Sowerby). P1. 22, figs. 6-11.
* 1829 Cardium striatulum sp. nov.; J. de C. Sowerby, p. 101, pl. 553 , fig. 1.
v. 1859 Cardium Crawfordii sp. nov.; Leckenby, p. 14, pl. 3, figs. 9a, 9b.
v. 1859 C. cognatum Phillips; Leckenby, p. 14, pl. 3, figs. 8a, 8b. (non Phillips).
v. 1860 C. Striatulum Sowerby; Damon, pl. 3, fis. 3. 1934 C. orawfordii Leckenby; Arkell, p. 305.
v. 1955 Protocardia citrinoidea (Phillips); Calloman, p. 221. (non Phillips).
v. 1972 P. crawfordii Leckenby; Walker, p. 128, pl. 7, fig. 7.

Type specimen Holotype of J. de C. Sowerby's plate 553, fig. I, from the Root'bed of the Brora Coal (Kellaways Beds, Calloviense Zone) of Brora, Sutherlandshire, is preserved in the Sowerby collection at the BM (NH), number 43154.

Diagnosis Medium sized Protocardia (up to 24.1 mm I ), subquadrate to suborbicular in outline ( \(\overline{\mathrm{x}} \overline{\mathrm{x}} 91.9 \%\) ), with umbones just anterior of median (AL \(\bar{x} 44.7 \%\) ); inflation high (I \(\bar{x} 70.4 \%\) ), but more marked in smaller specimens than in large ones; antcrior margin slightly shorter than posterior margin; ornament of fine concentric striae on the shell flanks, with no concentric ribs; posterior area with radial striae clearly differentiated.

Measurements
See Appendix 3.
\begin{tabular}{lccll} 
& I & H & \(I\) & AL \\
\(\mathbb{N}\) & 15 & 15 & 13 & 14 \\
\(\bar{x}\) & 13.1 mm & \(91.9 \%\) & \(70.4 \%\) & \(44.7 \%\) \\
Max & 24.1 & 101.4 & 85.5 & 54.8 \\
Min & 7.3 & 81.4 & 59.0 & 32.8 \\
OR & 16.8 & 20.0 & 26.5 & 22.0
\end{tabular}

\section*{343.}

Description
Equivalve, inequilateral, umbones placed just anterior of median (AL 32. \(3-54.8 \%\), \(\bar{x} 44.7 \%\) ); mediumsized species (up to 24.1 mm L), subrectangular to subquadrate in outline (\# 81.4-101.4 \%, 位 \(91.9 \%\) ), the regularity of outline broken by the prominent umbones. Hinge margin slightly reflexed, almost straight, the anterior and posterior parts meeting in a very obtuse angle immediately beneath the umbones; posterior margin obliquely truncate to gently convex, meeting the posterodorsal margin at a rounded obtuse angulation; anterodorsal margin curving smoothly into the slightly produced, rather rounded anterior margin; anterodorsal angle weakly angulax, but sometimes prominent; ventral margin smoothly and convexly curved, passing evenly into the anterior and posterior margins, withnut angulation. There is no clearly-dcveloped umbonal carina, the posterior axes being delimited sololy by the ormament pattem, not by a change in slope of the shell flanks. Unhones large, prominent, just anterior of median ( \(A L \bar{x} 44.7 \%\) ), slightly prosogyrate, their anterior and posterior borders gently rounded, salient up to 4 mm above the hingeline, almost contiguous at their extremities. Ligament extemal, parivincular, very short, rather deeply impressed; no lunule or escutcheon. Ormament consists of up to 20 fine radial riblets on the posterior part of the shell, occupying the area between the posterior margin and the posterior part of the umbo; the posterior area is not delimited from the flanks of the shell by an umbonal carina; the radial riblets are coarsest in the central part of the area,
becoming finer anteriorly and posteriorly; the remainder of the shell is ormamented solely by fine concentric growth lines. Inflation high ( I \(59.0-85.5 \%\), 㸚 \(70.4 \%\) ), more marked in small specimens.

Dentition heterodont, with a pair of triangular cardinal teeth in each valve, arranged in a \(\Lambda\)-shaped pattern immediately beneath the umbones; left valve with an elongate anterior and posterior lateral tooth, right valve with two elongate anterior laterals and one posterior lateral (Fig. 2.45). Margin entire, crenulate along the margin of the area, where the radial riblets reach the shell margin. Musculature not seen.

Remarks As may be seen from the synonymy, the nomenclature of British Upper Jurassic Protocardia is confused, and in need of clarification. In common with several other species which were described from the Brora Roof Bed (= Kellaways Beds) of Sutherlandshire by J. de C. Sowerby in 1829, Cardium striatulum was largely overlooked by subsequent workers, who had presumably been misled by its being referred to in the Index to the Mineral Conchology (1829) as occurring in the "Inferior Onlite?" The only worker to recognise Sowerby's species was Damon (1860), who correctly identified this species from the Oxford Clay of Weymouth. Study of a large collection of \(P\). striatulum from the type locality (comprised of specimens in the authors collection, specimens in the Oxford University Museum and specimens in the EM (NH))
shows a marked size variation in this species, from small subquadrate specimens to medium-sized suborbicular ones. Were it not for the existence of specimens gradational in form and size between the large and small specimen, it is likely that they would be thought of as distinct species, as the two forms are not obviously identical. The small specimens agree perfectly with the ones described from the 'Kelloways Rock' of Scarborough by Leckenby (1859) as Cardium Crawfordii sp. nov., and also occurring in the Kellaways Rock of Wiltshire (Arkell, 1934) and Yorkshire (Walker, 1972). These tend to be much smaller, more subquadrate, with subparallel anterior and posterior margins, and more inflated (making them much more globose) than the larger, flatter, more suborbicular forms from the Brora Roof Bed (referred to P. striatulum), in which the anterior and posterior margins are evenly curved. The holotype of C. crawfordii, from the 'Kelloway Rock' of Scarborough, is preserved in the Sedgwick Museum Cambridge (SM J6010).

Cardium cognatum Phillips (holotype in the Yorkshire Museum, Tsp. 117) from the Grey Limestone (Bathonian) to 'Kelloways Rock' of Yorkshire has been referred to the genus Protocardia by several authors (Cox \& Arke11, 1948; Walker, 1972), but examination of the holotype reveals the absence of any radial ornamentation on the posterior area, thus precluding it from placement in Protocardia. In a note found with the holotype in the Yorkshire Museum (in Arkell's handwriting), it is suggested that there are faint traces of radial striae on
the extreme posterior of the shell, but they are not obvious on the specimen, and must be discounted. The specimen figured by Leckenby (1859) as C. cognatum, is a large Protocardia agreeing perfectly with specimens of \(P\). striatulum from the Brora Roof Bea, and clearly does not belong with Phillips conception of his species. Likewise, the specimen mentioned by Callomon (1955, p. 221) as belongins to Protocardia citrinoidea (Phillips), from the Lower Oxford Clay of Kidlington (OuM J9719), cannot be reconciled with Phillips original figure (1829, pl. 7, fig. 7) of that species, which shows a specimen with regular concentric ribs, and no evidence of radial striae. The holotype of C. citrinoidea is missing from the Yorkshire Museum, but several topotypes from the Upper Combrash of Scarborough agree well with Phillips figure, and clearly do not belong to Protocardia. Callomon's specimen agrees perfectly with the many small specimens of \(P\). striatulum.
```

Arkell (1934, p. 304) described P. dyonisea (Buvignier)

```
from the Corallian of Ingland, and compared it with P. crawfordii, with which it agrees well in size. As Arkell noted, P. crawfordii is less elongate, and the anterior and posterior margins are more truncate and less rounded; the umbones are also more acute, and the anterior part of the shell more inflated. P. intexta (Munster), also from the British Corallian (Arkell, 1935, p. 372), more closely resembles the large form of P. Striatulum, but is more perfectly orbicular, much less inflated, and has the umbones much less prominent than in P. striatulum.

Range and occurrence Iocally abundant in the Kellaways Rock (Calloviense Zone) of Dorset, Wiltshire, the Midlands, Yorkshire and Scotland; this species also occurs sporadically in the Lower Oxford Clay (Jason Zone) of the Midlands, the Hackness Rock (Athleta - Lamberti Zones) of Yorkshire, and the Upper Oxford Clay of Huntingdonshire.
2. Protocardia (Protocardia) sp. P1. 22, figs. 4-5.

Description Large (up to 32.5 mm L) Protocardia of low inflation and suborbicular to subtrigonal outline, omamented by a scries of fine radial ribs on the posterior area, and regular fine conoentric ribs on the remainder of the shell. In the only measurements available, height is measured at \(92.6 \%\) and anterior length at \(33.7 \%\). The umbones appear to be rather more rounded, and considerably less prominent than in P. Striatulum; it is likely that they are more nearly median in position than the AL indicates, as there seems to be some distortion caused by crushing. The radial ribs on the posterior area are strongest in the middle part of the area, and diminish in strength anteriorly and posteriorly; concentric ribs are strongest near the anterior margin and in the wmonal region, but never very highly elevated. Ligament, dentition and musculature not seen.

\section*{Measurements}
\begin{tabular}{lll}
L & H & AL \\
32.5 mm & \(30.1 \mathrm{~mm}(92.6 \%)\) & \\
30.6 & & \(10.3 \mathrm{~mm}(33.7 \%)\)
\end{tabular}

Remarks This species is represented by six disarticulated, pyritised valves from the Obductum Subzone (bed 7) of Marston Moretaine and Stewartby. Unfortunately, because of their relatively large size and fragility, burial and compaction in a shell bed has led to considerable distortion and breakage of the valves, and a full description is impossible. There can, however, be no doubt that they are Protocardia, as they clearly show the differentiated radially ribbed posterior area, and the concentrically ribbed flanks. The strength of the ribbing over the flanks of the shell serves to separate this species froin P. striatulum, which has only very faint growth lines. The ornament style resembles that seen in P. stricklandi (Morris \& Lycett), from the Great Dolite (Bathonian), and it is possible that the Lower Oxford Clay species may belong with it. However, in view of the poor preservation of the Callovian specimens, specific identification is impossible until betterpreserved material becomes available. Until then, all that can be done is to record the species, and record similar species from other horizons.

Range and occurrence Lower Oxford Clay (Obductum Subzone, Bed 7), Marston Moretaine, and Stewartby, Bedfordshire.

\author{
Superfamily ARCTICACEA Newton, 1891 \\ Family ARCTICIDAE Newton, 1891
}

Synonyms: Rollieria Cossmann 1923 (non Rollieria Rollieria Cossmann 1924 Cossmann 1920 [Fuculanacea] )

Type species Originally designated by Cossmann, 1924, p. 48, Isocardia laubei Rollier, 1913, p. 209 , nom. nov. pro Isocardia cordata Lauje, 1867, p. 41 , p1. 4, fig. I (non J. Buckman, 1845); from the Brown Jura of Balin, Germany.

Diagnosis Subtrigonal to orbicular, gibbose, inflated; umbones prominent, produced, strongly prosogyrate and enrolled; lunule well-merked, escutcheon absent; surface smooth or with radial threads; hinge formula:
\(\frac{A_{I} \quad 3 a}{A_{I I}} \frac{1}{2 a} \frac{3 b}{2 b} \frac{P_{I}}{4 b} P_{I I}\)
with 1 arcuate and projecting, \(3 a-3 b\) a continuous angulate structure, \(3 b\) bifid; \(2 a\) short and curved, \(2 b\) massive and peglike, 4a elongate and arcuate; pallial line entire.

Remarks The gonus was discussed, and the dentition described (Fig. 2.46), by Cox (1947), who mentioned that several specimens from the Bathonian of Noyen and Langrune (France), referred by Douville (1921, p. 121, figs. 13, 14) to 'Eotrapezium' (mistake for Pseudotrapezium) tenerum (J. Sowerby), are present in the BM (NH). These are not true Anisocardia tenera, however, and the species, now noeding a new name, is not known to occur in Britain. The present record is thus the first authenticated British record of the genus.

Externally, there are strong resemblances to
Anisocardia, to which A. minima has been traditionally referred, in that the umbones are rather pronounced and twisted, and generic separation is based on dental characters. Rollierella may be distinguished from Anisocardia by virtue of its strong, continuous, angulated \(3 \mathrm{a}-3 \mathrm{~b}\), the same teeth barely meeting at an acute angle in Anisocardia; \(2 b\) is also very distinctive, being large and peglike in Rollierella, and markedly bifid in Anisocardia.

Rollierella minima (J. Sowerby). Pl. 22, figs. 12-22, 25-26.

1821 Isocardia minime sp. nov. J. Sowerby, p. 171, pl. 295, fig. 1.

1829 I. tumida sp. nov.; Phillips, pl. 4, fig. 25. (non Pygrocardia tumida dyst).
? 1829 I. minime J. Kowerby; Phillips, pl. 7, fig. 6.
1850 I. campaniensis sp. nov.; d'Orbigny, p. 338, no. 168.
? 1850 I. villersensis sp. nov.; d'Orbigny, p. 338, no. 169.
1853 I. tenera J. Sowerby; Morris \& Lycett, p. 66, pl. 7, figs. I, la. (non J. Sowerby).
non 1860 I. minima J. Sowerby; Damon, pl. 4, fig. 7. (= Anisocardia anisocardiodes Blake \& Hudleston).

1863 I. tenera J. Sowerby; Lycett, p. 57, pl. 38, figs. 5-5b. (non J. Sowerby).
non 1863 I. minima J. Sowerby; Iycett, p. 56, pl. 36, figs. I, la. (=Anisocardia globosa (Roemer)).

1913 Anisocardia oclithica sp. nov.; Rollier, p. 198 (nom. nov . pro I. tenera Morris \& lycett non J. Sowerby). 1913 A. Iycetti sp. nov.; Rollier, p. 210 (nom. nov. pro I. tenera Lycett non J. Sowerby).

1915 I. campaniensis d'Orbigny var. dassei nov.; Cossmann, p. 6, pl. I, figs. 3, 4; pl. 3, fig. 17.

1925 I. campaniensis d'Orbigny; Cottreau, p. 18, pl. 39, figs. \(13,14\).
? 1925 I. Villersensis d'Orbigny; Cottreau, p. 19, pl. 39, figs. 15, 16.

1934 A. minima (J. Sowerby); Arkell, p. 275, pl. 36,figs.8-11.
1947 A. minima (J. Sowerby); Cox, p. 170, text-figs. 43a, 43b.
1948 A. minima (J. Sowerby) : Cox \& Arkell, p. 31.
1952 A. tenera (J. Sowerby); Makowski, p. 12, pl. 5, fig. 7. (non J. Sowerby).

1965 A. minima (J. Sowerby); Cox, p. 112, pl. 18, fig. 8.

Type specimen Holotype of J. Sowerby's pl. 295, fig. I, Isocardia minima, from the ?Cornbrash of Wiltshire, preserved in the Sowerby collection at the \(\mathbb{B N}\) (Ni), number 43164. Holotype refigured by Arkell (1934, pl. 36, fig. 8).

Diagnosis Medium-sized species (up to 24 mm L ) with very prominent, enrolled, not contiguous, strongly prosogyrate umbones; ormanent consists of reguler fine radial riblets all over the shell, except on the lunule, which has only concentric growth lines; anterodorsal angle very well-marked, prominent and acute, posterior margin evenly rounded; inflation high
( \(\bar{x} 88.1 \%\) ); pseudolunule wide and bowl-shaped.
Differs from the closely-related Anisocardia tenera in being more inflated (I 76-98 \% in R. minima, \(52-70 \%\) in A. tenera), in the possession of a much sharper and more prominent anterodorsal angle, in having more inflated and enrolled umbones, and in lacking the slightly rostrate posterior maxgin of A. tenera. R. minima may easily be distinguished from the two other species figured by Arkell (1934) from the Corallian, A. anisocardioides (Blake \(\dot{\alpha}\) Hudleston) and A. globosa (Roemer) in external shape and inflation. A. anisocardioides has a much more rounded anterodorsal angle, and the umbones are not as strongly produced or enrolled. A. Elobosa is more inflated, again has a more rounded anterodorsal angle, and a well-marked posterior carina delimiting the anterior margin of a distinct posterior flange.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{llllll} 
& L & H & \(I\) & AL & PW \\
NI & 33 & 33 & 31 & 32 & 4 \\
\(\bar{x}\) & 17.5 man & \(93.1 \%\) & \(88.0 \%\) & \(31.0 \%\) & \(55.3 \%\) \\
Max & 24.0 & 99.4 & 98.7 & 42.3 & 59.9 \\
Min & 7.0 & 84.3 & 76.4 & 24.2 & 46.0 \\
OR & 17.0 & 15.1 & 22.3 & 17.1 & 13.9
\end{tabular}

Description Medium-sized shells (up to 24 mm L ), subtrigonal in outline, inequilateral, equivalve, with margins entire; umbones prominent, inflated, salient up to 4 mm above
the hingeline, not contiguous, up to 5 mm apart at unjonal extremities, strongly prosogyrate and enrolled; dorsal margin arched at an obtuse angle of about \(120^{\circ}\), the anterior part slightly concave, the posterior part slightly convex; enterodorsal angle very prominent and produced, rounded at its extremity, posterodorsal angle much more evenly curved; ventral margin smoothly curved between the antero- and posterodorsal angles; height \(84.3-99.4 \%\), \(\bar{x} 93.1 \%\), inflation high, 76.4\(98.7 \%, \bar{x} 88.0 \%\); unbones placed in about the anterior third of the shell, AL \(24.2-34.3 \%\), \(\bar{x} 31.0 \%\). Valves sculptured with closely-spaced fine radial riblets, crossed by densely packed fine radial riblets to give a fine cancellate pattern over the whole shell surface, except for the pseudolunule, where radial riblets are absent; pseudolunule large, wide, PV \(46.0-59.9 \%\), \(\bar{x} 55.3 \%\), its edge marked by an impressed line parallel to the radial riblets and extending from the umbones almost to the anteroventral angle, enclosing an area ornamented solely by growth lines (Fig. 2.48). Iunule small, arcuate, flattened, marked off from the pseudolunule by a deeply impressed line, forming an obtuse angle with the pseudolunule; escutcheon absent. Ligament external, opisthodetic, nymph situated imnediately behind and beneath the umbonal terninations; ventral margin finely crenulate. Hinge heterodont, dental formula:
\begin{tabular}{lllll}
\(A_{I} \quad 3 a\) & 1 & \(3 b\) & \(P_{I}\) \\
\hline\(A_{I I}\) & \(2 a\) & \(2 b\) & \(4 b\) & \(P_{\text {II }}\)
\end{tabular}
with the caxdinal teeth of the left valve anterior to those of the right valve; in the right valve, \(A_{I}\) is short and peglike, and situated imnediately beneath the anterior end of 1 , which itself is arcuate, concave ventrally and strongly developed; 3a small, continuous with 3b, closely applied to the upper surface of 1 ; \(3 b\) elongate and bifid, forming a continuous angulated tooth with \(3 \mathrm{a} ; \mathrm{P}_{\mathrm{I}}\) long and well-developed. In the left valve, AII is short, and situated immediately below the anterior end of \(2 \mathrm{a} ; 2 \mathrm{a}\) short and curved, attached posteriorly to the massive, peglike \(2 \mathrm{~b} ; 4 \mathrm{~b}\) elongate and gently concave ventrally; PII elongate and well-developed (Fig. 2.47). Fallial line entire; anterior adductor scar elongate and arcuate, located immediately dorsal of the anteroventral angle and reaching almost to the cardinal plate; posterior adductor scar subquadrate, located just ventral to the posterior end of the posterolateral teeth.

Remarks
In four exceptionally well-preserved specimens of R. minima from the Upper Callovian of Lukow, Poland, donated to the author by Dr. A. Radwanski of the University of Warsaw, it has been possible to develop the hinge for the first time, thus enabling correct generic placement of the species. The use of normal development techniques, supplemented by serial sectioning, has shown the dentition to be of Rollierella type, with \(3 a+33\) a continuous, angulate, welldeveloped tooth, rather than two separate elements, as occurs in Anisocardia. Fig. 2.49 shows a comparison of the dentition of these genera. I is strongly developed and arcuate in form.

Thus the suspicions of Cox (1947), that the BIobose Anisocardialike forms may belone to Rollierella, are seen to be correct. It is possible that the same is true of Anisocardia tenera, but the dentition has never been seen in this species, and with the lack of evidence to the contrary, it is better to leave it in Anisocardia.

Of all the proportions, inflation is seen to be the most variable, whilst the ranges of height and anterior length are smaller and approximately equal. There does not seem to be any positive correlation between size and proportions, and the most likely explanation is that variation in shell proportions is normally distributed.

The term pseudolunule (Fis. 2.48) is used for the large area anterior to the umbones, and marked off from the body of the shell by a finc impressed radial line which extends from the umbo to the dorsal margin, reaching almost to the anterodorsal angle. The pseudolunular area incluctes the lunule, which is itself marked off fron the body of the pseudolunule by a more deeply impressed line radiating from the umbones. There is a marked angular discordance between the surface of the lunule and the pseudolunule, the two areas also being distinguished by an important difference in ornamentation, the latter area lacking radial sculpture.

The synonymy and general remarks about this species are considered at length by Arkell (1934, p. 275).

Range and occurrence This long-ranging species is known from the Bathonian - Oxfordian of Britain (Cox \& Arkell, 1948, p. 31), and is particularly abundant in the Combrash and Kellaways Rock; although it occurs in the top Kellaways Fock of the Midlands, and in the transition beds to the Oxford Clay, it has not been found in the clay fecies. Arkell (1934, p. 276) listed the foreign Callovian records of specimens referable to R. minima, the species being known from France, Germany, Poland and Sast Africa.

Gerus ANISOCAIDIA Munier-Chelmas, 1863 (p. 288)

Synonymy: Apocardia Dollfus, 1863
Cardiodonta Laube, 1867

Type species By inonotypy, Anisocardia elegans Munier-
Chalmas, 1863. p. 288, p1. 11 , figs. 5-8 , from the Kimmeridgian of Le Havre, France.

Diagnosis Ovate to subtrigonal or trapeziform, sometimes slightly truncate posteriorly; lunule superficial, escutcheon absent; surface smooth or with radial threads; hinge formula:

with 1 projecting, \(3 a\) laminar and elongate, \(3 b\) bifid, \(2 b\) chevronshaped, 2a laminar, not well differentiated from AII, PI strong, elongate, PII confluent with margin of hinge plate; pallial
line markedly truncate posteriorly, but not sinuate.

Subgenus ANISOCARDIA s.s.
Diasnosis Subtrigonal, posterior margin usually
truncate or rostrate; unbones very prominent, strongly
prosogyrate, often very markedly salient above the dorsal
nargin; ornamented by radial threads and concentric growth
lines; hingeline strongly arched, anterior laterals very
reduced; ventral margin finely crenulated.

Remarks The status of Anisocardia has been discussed at some length by Casey (1952) and Cox (1947), with emphasis on the dentition. There is some doubt concerning the generic placement of species such as Anisocardia minima, A. tenera and A. gibbosa (Münster), which have been referred to Anisocardia since the work of Zittel (1881). The external features of the shell, if studied in isolation, would suggest that these gibbose species belong to Rollierella, which differs from Anisocardia only in details of the hinge, as discussed above. Development of the hinge of ' \(A\) ' . minima has shown that it does in fact belong in Rollierella, and this increases the possibility that 'A'. tenera and 'A'. gibbosa also belong to this genus, but it has not been possible to examine the hinges of these species, so it seems better to leave them in Anisocardia until they can be proved to belong elsewhere.

Anisocardia is unusual in that in the right valve, 1 is usually placed anterior of 3 a, thus posing problems of tooth
numeration. The lamina \(3 a-3 b\) is, however, seen to be of normal Arcticacean type, and it is possible that 1 merely represents a rather unusual development of \(\mathrm{A}_{\mathrm{I}}\), and that 1 itself is obsolete. It is in cases such as this that the Dernard system of numbering teeth runs into difficulties. In the lack of ontosenetic series, the problem cannot yet be rosolved. The sane is true to some extent in Rollierella, although 3 a is often placed dorsal, rather than posterior to, 1.

Anisocardia (Anisocardia) tenera (J. Sowerby). PI.22, figs. 23-24, 27-29.

1821 Isocordia tener sp. nov.; J. Sowerby, p. 171, p1. 295, fig. 2.

1829 I. tenera norn. nov. ; J. de C. Sowerby, p. 48
non 1853 I. tenera J. Sowerby; Morris \& Lycett, p. 66, pl. 7. figs. 1, la. ( \(=\) R. minima \()\).
non 1863 I. tenera J. Sowerby; Lycett, p. 57, p1. 38, figs. 5-5b. ( \(=\) R. minima \()\).
? 1904 Anisocardia tenera (J. Sowerby); Ilovaisky, p. 258, pl. 9, fig. 10.
? 1915 A. tonera (J. Sowerby); Krenkel, p. 325, pl. 26, fig. 37.
non 1919 A. tenera (J. Sowerby); Couffon, p. 92, pl. 4, figs. 14-14b.

1934 A. tenera (J. Sowerby); Stoll, p. 13, pl. 1, fig. 39.
non 1952 A. tenera (J. Sowerby); Liakowski, p. 12, pl. 5, figs. 7-7a. ( \(=\) f. minina \()\).
? 1972 A. tenere (J. Sowerby); Walker, p. 130, pl. 8, figs.8,9. preserved in the BM (NH), number 43165.

Diamosis Large species (up to 25 mm L ), with prominent prosogyrate umbones, which are not enrolled; ornament as in P . minima, with very fine radial riblets all over the shell, except on the lunule; anterodorsal angle prominent, but more rounded than in R. minima; posterior margin slightly truncate and rostrate, more angular than in R. minime; inflation considerably lower than in R. minima \((52-71 \%, \bar{x} 60.3 \%)\). The differences between this species and R. minima have been discussed in the diagnosis of the latter species. Other British Middle - Upper Jurassic Anisocardia have been well diagnosed and described by Cox (1947), and it is not necessary to consider them here.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lllll} 
& L & H & I & AL \\
N & 14 & 14 & 14 & 14 \\
\(\bar{x}\) & 20.5 mn & \(89.9 \%\) & \(60.3 \%\) & \(33.6 \%\) \\
Max & 25.2 & 98.3 & 70.5 & 39.0 \\
Min & 12.7 & 83.0 & 52.6 & 27.3 \\
OR & 12.5 & 15.3 & 17.9 & 11.7
\end{tabular}

Description Large shells (up to 25.2 mm L ), subrectangular to subtrigonal in outline (H 83.0-98.3 \%,
" \(89.9 \%\) ), inequilateral, equivalve; umbones prominent, prosogyrate, but not strongly enrolled, placed within the anterior third of the shell (AL \(27.3-39.0 \%, \bar{x} 33.6 \%\) ), only slightly salient (up to 2 mm ) above the hingeline; dorsal margin arched at \(100-110^{\circ}\), the anterior part gently concave, becoming convex anteriorly, the posterior part gently convex, becoming more strongly convex into the posteroventral margin; anterodorsal angle prominent and rounded, posterodorsal angle rounded, passing into the obliquely truncate posterior margin, which is slightly rostrate; anterior margin rounded, passing evenly into the gently convex ventral margin; posteroventral angle rounded; an umbonal carina runs from the umbones to the posteroventral angle, delimiting a small, flattened posterior area. Inflation not great, \(52.6-70.5 \%\), \(\bar{x} 60.3 \%\). Sculpture consisting of densely packed fine radial riblets, crossed by closely spaced concentric growth lines, to give a finely cancellate pattern to all of the shell surface except the pseudolunule, which lacks radial ornament; pseudolunule width \(22.7 \%\), marked off from the body of the shell by a slightly impressed radial line; lunule not visible, escutcheon absent; ligament external, opisthodetic, placed as in R. minima. Dentition not seen. Pallial line entire, anterior adductor scar elongate and arcuate, placed near the anterodorsal angle; posterior adductor scar not seen. Ventral margin finely crenulate.

Remarks As noted above, the dentition of this species has not been seen in British specimens, but, however, figures of the dentition of closely related species do exist. Boden (1911) figured some specimens identified as Anisocardia Choffati de Loriol, althouch study of de Loriol's original descriptions (1904, p. 162, pl. 20, figs. 6-8) reveals that Boden's assignation is incorrect. Comparison with British material leads to the conclusion that at least part of Boden's series of specimens (his pl. 6, figs. 6-8, and possibly fig. 9) may belong to \(A\). tenera. Unfortunately, it is his fig. 9 which shows the dentition, and as it is not certain that this figure belongs to A. tenera, the nature of the dentition of this species remains uncertain. However, Boden's figure is reproduced here (Fig. 2.50), and the dental formula of the right valve is given thus:
\[
\begin{array}{lllll}
A_{I} \quad 1 & 3 a & 3 b & (5 b) & P_{I}
\end{array}
\]

As mentioned in the subgeneric remarks, Anisocardia is unusual in having 1 placed anterior to 3 a , as a clear continuation of the laminar AI; 3 a is small, elongate and closely pressed against the hinge margin, while \(3 b\) is stout and oblique. Boden's figure suggests also the presence of a fairly welldeveloped 5b. Cox's figure (1947) of the hinge of the type species of Anisocardia is reproduced above in Fig. 2.49.

Statistically, the differences between A. tenera and R. minima are most obvious in the \(L / I\) regression lines (Fig. 2.5la), the \(L / H\) and \(L / A L\) regressions for the two species being rather similar (Figs. 2.51b, 2.51c); in view of the measurements

\section*{362.}
of the two species (Appendix 3), this is not unexpected. It should be remembered that the regressions show here are simple arithmetic plots, which assume constant growth rates; this assumption has not been proved conclusively to be either true or false.

There is a long history of confusion in the literature over the identity of A. tenera and R. minima, caused in the most part by the scantiness of Sowerby's descriptions, and the apparent similarity of his two figures. Examination of the holotypes, or even collections of topotypes, reveals that the differences between the two are clear cut. However, study of the synonymies shows that the two species have often been confused, notably by Morris \& Lycett (1853) and Iycett (1863) in the British literature, and by several continental authors such as Goldfuss (1837), Couffon (1919) and Makowski (1952). Anisocardia clarissima (Leckenby, 1859), from the Hackness Rock of Scarborough, is closely related to A. tenera, but specific identity is unlikely. The holotype (SM J6006) and several paratypes (SM J12456-12460) are more elongate than A. tenera (H \(\overline{\mathrm{x}} 83.0 \%\), compared with \(89.9 \%\) in A. tenera), and also more inflated ( I \(\bar{x} 68.0 \%\), compared with \(60.3 \%\) ). Both these values for 1 . clarissima lie further from the mean of \(A\). tenera than one standard deviation, and are thus considered to be significantly different. A. clarissime is also much more markedly rostrate than A. tenera.
363.

Range and occurrence In Britain, this species is apparently restricted to the Kelleways Rock, being found in Wiltshire and Yorkshire, as well as being cited from the Kellaways Rock in several Geological Survey memoirs. Four specimens from the Hudleston collection (GSM Y2071-2074), labelled "Oxford Clay, Loudon" also seem to belong to this species, but the preservation is poor, and the horizon unknown.

On a wider geographical scale, Stoll (1934) records this species from the U. Bathonian (Oppelia aspidoides Zone) and M. Callovian of Pomnerania (N. Germany), whilst Boden (1911) records it from the "Unteren Oxford" (probably Cordatum Zone) of Popilany, Lithuania. Ilovaisky (1904) figured a specimen identified as A. tenera, from the Cordatum Zone of the Moscow region, but this is probably more closely related to A. anisocardioides (Blake \& Hudleston) from the Corallian. A. tenera Krenkel (1915), from the Athleta and Lamberti Zones ("Oberes Kelloway") of Popilany, is probably correctly identified. However, as these foreign specimens have not been examined, and their ranges are rather different to that of British specimens, it cannot be certain that they are conspecific, and so they are merely recorded here.

Genus ISOCYPRINA Roeder, 1882 (p. 90)
```

Type species Subsequently designated by Cossmann, 1921, p. 23, Cardium cyreniformis Buvignier, 1852, p. 15, p1. 13, figs. 23-27, from the Upper Oxford Clay (Oxfordian) of the Ardennes.

```

Diagnosis
Suborbicular to ovate, evenly inflated or with a weak umbonal carina; lunule faint, mostly bounded by an impressed line, escutcheon absent; ornamented by faint concentric lines, or smooth; hinge formula:
\[
A_{I}\left(A_{I I I}\right)(I)(3 a) P_{I} / A_{I I}(2 a) 2 b \quad 4 b \quad\left(P_{I I}\right) \text {; }
\]
lamina AII \((+2 a)\) joined to 2 b by vinculum, PII merged into margin; \(P_{I}\) strong, elongate.

Subgenus ISOCYPRINA s.s.

Diagnosis
Hirge with \(2 a\) differentiated from AII;
laterals smooth; other characters as in the generic diagnosis.

Remarks
Arkell (1934, p. 263) suggested that there is a possibility that the distinction between forms with and without cardinal tooth \(3 a\) may be of generic or subgeneric significance. However, Casey (1952, p. 136) has concluded, after studying many species of Jurassic and Cretaceous Isocyprina including the type species I. cyreniformis, that no taxonomic significance should be ascribed to these variations in dentition. He believed that in I. cyreniformis, \(3 a\) is present, although extremely reduced, and is represented by a minute sliver of shell pressed against the valve margins (Fig. 2.52). Chavan (1945, p. 80) followed Arkell in noting that the species described by Roeder (1882) as I. cyreniformis was not identical with that originally described by Buvignier (1852), on the basis of the dentition, there being no \(3 a\) in Buvignier's species,
although he recornised that other Jurassic and Cretaceous species possessed 3a. This led Chavan to conclude that all the Mesozoic specias of Isocyprina bearing 3a should be placed in the subgenus Eotrapezium Douville, and that Isocyprina (Eotrapeziun) roederi should be chosen as the 'typical form'. However, Keen \& Casey (1969, N648) restricted Eotrapeziun to Upper Trias - Lower Jurassic forms with 1 scarcely differentiated from \(A I\), no \(2 a\), and lamina AIII - 3 a usually suppressed, with the effect that the Jurassic and Cretaceous forms must be replaced in Isocyprina s.s.

Isocyprina (Isocyprina) roederi Arkell. P1. 23, figs. 1-8. 1882 Cyprina (Isocyprina) cyreniformis Buvigmier; Roeder,
p. 91, pl. 2, figs. 52,56 ; p1. 4, figs. 11a, 12 . (non I. cyreniformis Buvignier).

1934 Isocyprina roederi nom. nov.; Arkcll, p. 263, 1. 35, fig. 21.

1945 I. (Eotrapezium) roederi Arkel1; Chavan, 1. 81.

Type specimen Holotype, the specimen figured by Roeder (1882, pl. 2, fig. 5b) as Cyprina (Isocyprina) cyreniformis, from the Oxfordian of Pfirt, Gernany. Present location of the type series is unknown.

Diagnosis Medium sized Isocyprina (up to 20 mm L ), orbicular, with very small, but slightly salient umbones; very compressed, with low inflation (I \(\bar{x} 35.3 \%\) ); uribonal
carina extremely faint, lunule very small; pallial sinus small. Differs from the closely related species I. simplex Arkell in possessing a clearly developed \(3 a\) on the right valve. It may be distinguished from other Jurassic Isocyprina by virtue of its very orbicular outline and low inflation.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{llll} 
& L & H & I \\
N & 14 & 14 & 3 \\
\(\overline{\mathrm{x}}\) & 15.5 mm & \(90.1 \%\) & \(35.3 \%\) \\
Max & 20.0 & 96.3 & 42.2 \\
Min & 6.5 & 83.3 & 30.9 \\
OR & 13.5 & 13.3 & 11.3
\end{tabular}

Description Equivalve, subequilateral (umbones more or
less median), mediun-sized species (up to 20 mm L ), suborbicular to subovate in outline (H 83.3-96.3 \%, 到 90.1 \%); anterodorsal and posterodorsal margins gently convex, except for a slight concavity just anterior of the umbones which indicates the position of the very small lunule; anterior, ventral and posterior margins continuously and evenly curved to give a semicircular outline to the remainder of the shell margin. Inflation low ( \(I\) 30.9-42.2 \%, " \(\bar{x} 35.3 \%\) ). Urabones small, submedian, prosogyrate, not prominent, only very slightly salient to the hinge margin, not contiguous. Shell exterior smooth, with irregularly-spaced faint concentric growth lines; no radial elements.

\section*{367.}

Hinge formula as for subgenus:

except that 2 a is not clearly differentiated from AII; laterals strong, laninar, smooth, AI usually colaminar with, and not differentiated from, cardinal l; 3a thin, closely pressed aseinst the valve margin, 3b strongly triangular, more or less bifid; \(2 b\) stoutly triangular, its anterior limb aligned with AII and joined to it by a vinculum; \(4 b\) long, slender. Margin entire, without denticulations. Adductor muscle scars unequal, the posterior scar being higher and more elongate than the anterior scar, both scars elongated dorsoventrally; very small pallial sinus in many specimens (Fig. 2.53).

Remarks As noted above, in the subgeneric discussion, the species figured by Roeder (1882) as I. cyreniformis Buvignier differs from Buvignier's species in the possession of tooth \(3 a\), and the first available name is I. roederi Arkell. This rather distinctive species is, unfortunately, rarely well enough preserved to allow examination of the hinge, although one pyritised right valve from Marston Moretaine shows almost all of the cardinal plate (Fig. 2.54). 3a is clearly recognisable, and so the species may be separated from I. simplex Arkell. These two species are undoubtedly very closely related, as a study of external form reveals, and were it not for the dentition, they could be united. However, as Arkell (1934, p. 269) noted, no right valves of I. simplex
showing the dentition properly have been seen, and it is uncertain how strongly 3 a is developed. Arkell (op. cit.) notes that the hinge is "as I. cyreniformis", and so it is necessary to assume, in the absence of evidence to the contrary, that \(3 a\) is very weak or absent. The discovery of betterpreserved material of I simplex would clarify the position, but in the light of available evidence, it seens best to separate the two species at the moment.

> Arkell (op. cit., p. 261) recognised five species of Isocyprina (excluding I. roederi) in the British Corallian, and Wes responsible for the clarification of the position of several of d'Orbigny's (1850) nomina nuda species. As in several of his species, d'Orbigny seems to have united individuals belonging to more than one species, notably in the case of his Cyprina dimorpha, which was figured by Cottreau in 1927 (pl. 46, figs. 15-17). Arkell (p. 265) accepted Cottreau's fig. 17 as being synonymous with I. cyreniformis, but questioned the placenent of figs. 15 and 16 , suggesting that they may belong with I. simplex. This seems probable, as the age is equivalent, and there are great similarities of form; the absence of a view of the cardinal plate precludes placement in I. roederi.
I. depressiuscula Morris \& Iycett (1853) from the Bathonian (holotype GSM 9703), is another smooth species of low inflation, but is clearly distinct from I. roederi in that it possesses a much more produced anterior angle, breaking the regular suborbicular outline and exaggerating the prominence of the umbones. I. politula Bean (1839) from the Cornbrash of
the Yorkshire coast also has two prominent umbones, which are slightly hooked, and is imnediately distinguishable.

Range and occurrence Oxford Clay (Coronatum - Athleta Zones) of central and southern England; Inverbrora Shale (Calloviense to Jason Zones) of Brora, Sutherlandshire; Oxford Clay (Cordatum Zone) of EigE, Inverness-shire; Oxfordian of Germany (type material).

\author{
Order MYOIDA Stoliczka, 1870 \\ Suborder MYINA Stoliczka, 1870 \\ Superfamily MYACEA Lanarck, 1809 \\ Family CORBUIIDAE Lamarck, 1818 \\ Subfanily CORBULINAE Gray, 1823
}

Genus CorisulovitM Vokes, 1945 (p. 10)

Type species Originally designated by Vokes, 1945, p. 10, Corbulomime nuciformis sp. nov., p. 10, pl. 2, figs. 5-8, from the Aptian (L. Cretaceous) of Lebanon.

Diagnosis
Moderately inflated, smooth, very slightly rostrate, lacking special structures for the reception of the resilifer in both valves; single large triangular cardinal tooth in the right valve, received in a socket in the left valve.

Remarks Chavan (1952, p. 121, 122) has described two corbulids referable to Corbulomima from the Sable Astartiens (U. Oxfordian) of Calvados, France, C. glosensis (Zittel \&

Goubert) and C. Suprajurensis (d'Orbigny). Figures of the hinge (Chavan, pl. 4, figs. 73, 74, 77, 79) show the typical cardinal arrangement as defined by Tokes (1945), and there can be no doubt as to the correct placement of these two species.
1. Corbulomima macneillii (Morris). Pl. 23, figs. 9-18, Pl. 24, figs. l-8.

1850 Corbula ?macneillii sp. nov.; Morris, p. 318, pl. 30, fig. 4.

1899 Corbula Greppini sp. nov.; de Loriol, p. 146 , pl. 10, fig. 1.

Type specimen Neotype, designated herein, GSII 113999, from the Kellaways Rock of Trowbridge, Wiltshire. The Morris collection is believed to have been sold (Cox \& Arkell, 1948, p. xxii), elthough a few Bathonian types are still preserved in the BM ( NH ), London; however, the holotype of C. macneillii is not among these, and in order to clarify the differences betweon this specios and C. obscura (J. de C. Sowerby), it has been necessary to designate a neotype.

\section*{Diagnosis}

Small (up to 6.8 mm I ), smooth, suborbicular, inflated Corbulomima, with a prominent rounded posterior margin and a quadrate posterior margin, a small posterior area being delimited by an umbonal carina. The species differs from C. obscura ( \(J\). de C. Sowerby) in being more inflated (I \(\bar{x} 72.0 \%\) compared with \(61.1 \%\) ), less elongate (甘 \(\overline{\mathrm{x}} 83.3 \%\) compared with \(70.5 \%\) ) and having a markedly less rostrate posterior margin.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lrccc} 
& L & II & I & AL \\
N & 132 & 132 & 119 & 132 \\
\(\bar{x}\) & 5.0 mm & \(83.3 \%\) & \(72.0 \%\) & \(37.0 \%\) \\
Max & 6.8 & 100.0 & 90.0 & 48.5 \\
Min & 3.4 & 67.2 & 56.5 & 29.5 \\
OR & 3.4 & 32.8 & 33.5 & 19.0
\end{tabular}

Description Inequivalve, right valve slightly larger than the left valve, and overhanging it along the ventral margin; inequilateral, umbones placed clearly anterior of median (AL 29.5-48.5 \%, 晞 \(37.0 \%\) ); small species (up to 6.8 mu L), suborbicular to subtrigonal in outline (H 67.2-100.0 \%, \(\overline{\mathrm{x}} 83.3 \%\) ), globose ( \(\mathrm{I} 56.5-90.0 \%\), \(\bar{x} 72.0 \%\) ), with maximum inflation in the region of the hingeline. Dorsal margin reflexed, forming an obtuse angle diverging from below the umbones, posterior part straight to gently convex, dependent upon the development of the posterior area, anterior part concave; no lunule; anterior margin rounded, rather produced into a semicircular shape, passing smoothly into the gently convex ventral margin; postorior margin obliquely truncate, meeting the posterodorsal margin at an angle of about \(125^{\circ}\); posteroventral angle acute, well-developed, located at the point at which the umbonal carina reaches the ventral maxgin; carina rounded, gently convex towards the posterior, the posterior area sloping very steeply down from it towards the posterior margin. Umbones small, submedian, inflated,
prosogyrate, rathir salient, not contiguous. Escutcheon absent. Ligament internal, extcrnal nymph not present. Shell very thin, with an internal nacreous layer, ornamented solely by very faint concentric growth lines. Dentition appearing to consist of a single large triangular tooth on the right valve, with no chondrophore; dentition of left valve unknown. Margins entire, ventral margin of the right valve overlapping that of the left. Musculature not seen.

Remarks The basis of this description is a large collection of recrystallised calcite steinkerns from the Lower Oxford Clay cementatones of Wiltshire, preserved in the Oxford University Museum (OUM J28229-28231 collective), which show the various featurcs much more clearly than the cloy steinkerns of the Nidiands Lower Oxford Clay. In one of the specimens from Wiltshire (0UM J28231), it was possible to prepare the hinge of the right valve, revealing the presence of a single large triangular cardinal tooth (Fig. 2.55), which confirmed the placement of this species within Corbulomina. No special structures (such as a chondrophore) for the attachment of the internal ligament were seen, Vokes (1945, p. 10) believing that the ligament was attached to the posterior part of the socket in the left valve in this genus, the socket being too elongate to accept only the cardinal tooth. No interior views of any left valves of C . macneillii heve been seen, but the internal view of a left valve of the closely related Corbula oxfordiensis d'Orbigny given by Cottreau ( \(1926, \mathrm{pl} .45\), fig. 16) suggests that the dentition is normal for a Corbulomima.

Corbulomima obscure (J. de C. Sowerby), from the Roof Bed ( \(=\) Kellaways Rock) of Brora, Sutherlendshire, is very close to C. nacneillii in both age and form, but differs in being less inflated, more elongete, and having a more reflexed posterior margin, eiving a slightly rostrate appearance. The range of veriation in form of these two species is shown in Fig. 2.56. Plotted on a simple length/height scatter diagran (Fig. 2.57), C. obscura and C. macneillii can be seen to follow the same general trend of growth, although at any given length, the height measurement is slightly less in C. obscura. This trend is made even more apparent when the data is replotted to give regression lines (Fig. 2.58), the line for C. obscura having a markedly steeper slope than those of four populations of C. macneillii from different parts of England. In view of the consistent differences in both form and growth rates of these two geographically sepranted species, the balance of evidence favours their taxononic separation, and it seens possible that in Corbulonima, speciation may be allopatric.

Morris (1850, D. 318) stated that Corbula cucullaeaeformis Koch \& Iranker (1837, p. 31, p1. 2, figs. 6a-6c) is "extremely close" to C. macneillii. However, study of Koch \& Dranker's original plate shows that their species is a much more rostrate species, with orthogyrate umbones, and cannot be considered synonymous. Corbula Greppini de Loriol (1899), from the Lower Oxfordian of the Bernese Jura agrees well with the English Lower Oxford Clay specimens, and is probably synonymous with
C. macneillii. Corbula oxfordiensis d'Orbigny (see Cottreau,

1926, p. 47, pl. 45, figs. 16-18) fror the Upper Oxford Clay of Normandy differs from both C. macneillii and C. obscura in having regular concentric ornament, a feature shared by Corbula mosae d'Orbigny (1850).

Range and occurrence Kellaways Rock (Calloviense Zone) of Wiltshire, the type area; Lower Oxford Clay (Jason - Aithleta Zones) of central and southern England; Hackness Fock (Jithleta Lamberti Zones) of Yorkshire; Upper Oxford Clay (Praecordatum Zone) of southern England. Upper Oxford Clay of the Bernese Jura.
2. Corbulomima obscura (J. de C. Sowerby). Pl. 24, figs. 9-13.

1827 Corbula sp. nov.; J. de C. Sowerby in Murchison, p. 320.
1827 Corbula obscura sp. nov.; J. de C. Sowerby, p. 140, pl. 572, fig. 5.

Type specinen Holotype of J. de C. Sowerby's plate 572, fic5. 5, from the "?Inferior Oolite" (= Kellaways Rock) of Brora, Sutherlandshire, is preserved in the Sowerby collection at the BM (NII), number 43044.

Diagnosis Sinall (up to 5.2 mul I), smooth, subrectanguiar Corbulomina with umbones rather less salient than in C. macneillii, and a more pronounced, slightly refilexed rostrun; both height ( \(\bar{x} 70.5 \%\) ) and inflation ( \(\bar{x} 61.1 \%\) ) are considerably less then in C. macneillii; umbonal carine tending to be concave in outline towards the posterior, unlike c. macneillii in which it is convex.

Measurements
See Appendix 3.
\begin{tabular}{llcc} 
& L & \(H\) & \(I\) \\
N & 7 & 7 & 2 \\
\(\overline{\mathrm{x}}\) & 4.3 mm & \(70.5 \%\) & \(61.1 \%\) \\
Max & 5.2 & 73.8 & 62.2 \\
Min & 4.0 & 67.5 & 60.0 \\
OR & 1.2 & 6.3 & 2.2
\end{tabular}

Description Inequivalve, right valve slightly overlapping the left along the ventral margin, inequilateral, umbones just anterior of median; small species (up to 5.2 man L), subrectangular to subtrigonel in outline ( H 67.5-73.8 \%, \(\bar{x}\) \(70.5 \%\) ), gently inflated (I 60.0-62.2 \%, x \(61.1 \%\) ). Dorsal maxgin reflexed, the angle more obtuse than in C. macneillii, with gently conceve to straight anterodorsal and posterodorsal outlines; anterior mergin rounded, slightly produced, passing smoothly into the gently concave ventral margin; posterior margin gently convex to oblique, meetine the posterodorsal margin at an angle of \(120-125^{\circ}\); posteroventral angle acute, marking the point where the umbonal carina reaches the ventral margin; umbonal carina rounded, less sherp than in C. macneillii, the posterior area being slichtly wider and flatter than in C. macneillii, as the carina is concave towards the posterior; a slight reflection of the posterior part of the ventral margin is characteristic, giving a slightly rostrate appearance. Umbones small, submedion, just anterior to the mid-axis, prosogyrate, only slightly salient to the hingeline, not markedly
inflated. No lunule or escutcheon, ligament internal. Shell surface smooth, with very faint concentric erowth lines, no radial elements. Dentition and musculature unknown.

Remarks Corbulomima obscura is another of Sowerby's species which has largely been overlooked in the literature, at least as regards Upper Jurassic records. This is due to the fact that in the index to volume 6 of the 'Mineral Conchology', the species was said to have come from the "Inferior Oolite?", elthough in the description of the species (op. cit., p. 140), its horizon is recorded as the Brora Roof Bed. However, at the time of writing (1827), the Scottish Middle - Upper Jurassic succession was very poorly understood, and it is probable that Sowerby believed the Roof Bed to be of Inferior Dolite age. Whatever the cause, the effect was that subsequent authors have regarded it as a Middle Jurassic form, and ignored it when considering Upper Jurassic corbulids. As mentioned in the discussion of the preceding species, the differences between C. maoneillii and C. obscura are fairly small, but nevertheless constent, and are deserving of specific separation. These are the only two European Callovian - I. Oxfordian corbulids known which are smooth and Iack prominent concentric ribbing, and thus form a closely related species pair. \(\Lambda l l\) other contemporaneous European corbulids are also markedly more rostrate, and have a greater valve overlap along the ventral margin. It is possible that these strongly ribbed species should be referred to a genus other than Corbulomima. C. cucullaeaeformis Koch \& Dunker, mentioned above belongs to
this latter group, and need not be further considered here. The only exception to this observation is Corbulomima suprajurensis (d'Orbigay), figurea by Chavan (1952, p. 122, pl. 4, figs. 72-75) from the Upper Oxfordian of Nomandy. This species seeris to have characters comon to both the groups of Upper Jurassic corbulids, as the small, subrectanguler form with only faint concentric ornanent is typical of the macneillii obscura group, while the strong posterior reflection of the ventral margin is more characteristic of the carinata group. The evidence of the hinge mechanisn, well seen in figures 73 and 74 of Chrevan's plate 4, places this species undoubtedly in Corbulomima, but it cannot be considered synonymous with either of the two British species.

Range and occurrence Roof Bed (Calloviense Zone), lrora, Sutherlandshire, the type locality and horizon. At this locality, the Roof Bed is divided into two lithologically distinct units, which Sykes (1973, pers. comm.) believes represent the Koenigi (lower part) and Calloviense (upper part) Subzones; C. obscura is found only in the Calloviense Subzone.

Subclass ANOMALODESMATA Dall, 1889
Order PIOLADOMYOIDA Newell, 1965
Superfamily PHOLADOMYACEA Gray, 1823
Family PLEUROMYIDAE Dall, 1900

Genus PLEUROMYA Agassiz, 1842 (p. 439)
```

 Synonymy: Myacites Schlotheim, auctt.
 Amphidesma Phillips, }1829\mathrm{ (non Lemarck)
 ingopsis Ayassiz, 1840 (pars)
 Anaplomya Kraus, 1843
 Hapalorya Foeder, 1882
 Gapalomia Roeder, 1882
 ? Foriella Krumbeck, 1913
    ```
Type species Subsequently designated by Ilermannsen,
1847, p. 297, My. ibbose J. de C. Sowerby, 1823, p. I9, pl. 419,
from the Upper Oxford Clay near Weymouth, Dorset. (= Donacites
M1duini Broneniart, 1821, p. 571, pl. 7, figs. 6s, 6b).
Diagnosis Subequivalve, rioht valve slightly larger
than the left, oval, oblong or trapoziform, moderately to
strongly infleted; umbones placed within the anterior half, and
generally close to the mterior margin, inflated, not prominent;
Iunule and escutcheon sosent; no true hinge teeth. Main part
of ligament external, opisthodetic, with short nymphs; below and anterior to the umbones of each valve is a short rounded protuberance; deep pallial sinus, well-developed posterior gape; surface with or without concentric ribbing.
1. Pleuromya alduini (Brongniart). Pl. 24, figs. 14-24, Pl. 25, figs. 1, 7 .

1821 Donacites MIduini sp. nov.; Brongniart, p. 571, pl. 7, figs. 6a, 6b.

1823 Mya gibbosa sp. nov.; J. de C. Sowerby, p. 19, pl. 419.
(non Mactra (Iutraria) ibbosa J. Sowerby, 1812, Inferior 0olite species).

1829 Panopaea oblata nom. nov.; J. de C. Sowerby, p. 4
(nom. nov. pro M. pibbosa J. de C. Sowerby). [1840].
1829 Arphidesma recurvum sp. nov.; Phillips, pl. 5, fig. 25.
1851 Potamonya ? sowerbyii sp. nov.; Forbes, p. 112, pl. 5, figs. \(2 \mathrm{a}, 2 \mathrm{~b}\).

1860 Homonya oblata (J. de C. Sowerby); Damon, p1. 3, fig. 4.
1863 Myacites recurvum (Phillips); Iycett, p. 81, p1. 36, figs. 4, 4a.

1871 M. recurvus (Phillips); Phillips, pl. 13, fig. 28.
1910 Donacites (Pleuromya) alduini Brongniart; Cossmann, no. 230.
1915 Pleuromya agassizi Chapuis; Krenkel, p. 331, pl. 27, fig. 6.
1934 P. alduini (Brongniart); Arkell, p. 321, pl. 44, figs. 1-9.
1934 P. recurva (Phillips); Stoll, p. 14, pl. 1, fis. 44.
1948 P. alduini (Brongniart); Cox \& Arke11, p. 40.

Type specimen IIolotype of Brongniart's (1821) pl. 7, figs. 6a, 6b, from "Writhenterton, Bngland" (probably Winterton, Tincolnshire, from Boulder Clay - Arkell, 1934, p. 323), refigured by Cossmann (1910) as number 230 in the Palaeontologia Universalis. Holotype preserved in the Institute Paléontologique du Musée National d'Histoire Naturelle, Paris.
Diagnosis Large sized (up to 66 mm I), subquadrate to subtrigonal species, ornamented with conspicuous well-developed concentric ribs; height 53.8-87.4 \% ( \(\bar{x} 69.2 \%\) ), inflation 37.1-67.4 \% ( \(\bar{x} 49.8 \%\) ), anterior leneth \(20.7-35.7 \%\) ( \(\bar{x} 27.9 \%\) ),

\section*{380.}
the first two characters being very variable; anterior margin short, gently concave to gently convex, truncate, with rounded anteroventral angle of about \(90^{\circ}\); posterior margin produced into a rounded angle; ventral margin strongly convex; posterodorsal margin subparallel to ventral margin.

Differs from P. uniformis ( \(J\). Sowerby) in possessing strong regular concentric ribs, and in being relatively higher (H \(\overline{\times} 58 \%\) in \(P\). uniformis) and more inflated ( \(\overline{\times} \times 40.2 \%\) in P. uniformis). The latter species is smooth except for some low irregular growth rugae. Both these species are notable for their great range of variation. P. Calceiformis (Phillips) is much more elongate (H \(\bar{x} 43 \%\) ) than P. alduini, and is also smooth-shelled.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lllll} 
& I & H & I & AL \\
N & 70 & 70 & 48 & 67 \\
\(\bar{x}\) & 39.4 mm & \(69.2 \%\) & \(49.8 \%\) & \(27.9 \%\) \\
Max & 65.9 & 87.4 & 67.4 & 35.7 \\
Min & 18.5 & 53.8 & 37.1 & 20.7 \\
OR & 47.4 & 33.2 & 30.3 & 15.0
\end{tabular}

Description Large species (up to 66 mm L ), inequilateral, subequivalve, the right valve overlapping the left valve along the dorsal margin; subrectangular to elongate - subtrigonal in form, with the posterior margin often produced into a rounded angle; height \(\bar{x} 69.2 \%\), inflation \(49.8 \%\), anterior length
\(27.9 \%\), limits of variation given above; umbones situated close to the anterior margin, prosogyrate, often contiguous, not very prominent, elevated up to 6 mm above the dorsal margin; anterodorsal margin merged into anterior margin, gently concave to gently convex, truncate, forming about a right angle with the posterodorsal margin at the umbo; posterodorsal marein straight to gently concave, often subparallel to the ventral margin; posteroventral angle produced and acutely rounded, passing evenly into the strongly convex ventral margin; anteroventral angle rounded, forming an angle of about \(90^{\circ}\) with the ventral margin; the anterior part of the ventral margin and the anterior part of the posterodorsal margin are often parallel, then swing round posterodorsally towards the posterior angle; lunule and escutcheon absent, but the area on the dorsal margin immediately anterior to the umbones is often deeply excavated; liganent external, opisthodetic, inserted upon short prominent nymphs; ornament consists of prominent, regularly spaced concentric ribs, becoming wider away from the umbones; superimposed upon the pattern of concentric ribs are very fine concentric growth striae, well seen in specimens from the Lower Calcereous Grit which retain the shell; radial elements absent; in a few specimens, a faint shallow sulcus muns from the umbones to the ventral margin, reaching the margin just behind the anteroventral angle and causing a slight sinuosity in the anterior part of the ventral maxgin.

No true hinge teeth present, there being only a small rounded protuberance of the dorsal margin below and slightly
anterior of the umbo of each valve, the protuberance being hollowed out above, with a small niche behind; protuberance of right valve fits above that of left valve (Fig. 2.59), a small internal ligament possibly occupying the space between them (Cox, 1969, p. N842). Anterior adductor muscle scar subrectangular, elongated dorsoventrally, about 6 mm high, posterior scar suborbiculex, 6 mm long by 5 mm high; pallial sinus well-developed, lower limb not confluent with the pallial Iine (Fig. 2.60). Prominent posterior gape in most specimens, slight anterior gape in a few.

Remarks The synonomy of P. alduini is fully listed and discussed by Arkell (1934, p. 321), and little need be added about this Iong-ranging species of wide geographical extent. Study of large populations reveals the extreme nature of variation in this species, both height and inflation havines a range of over \(30 \%\). There is, however, no consistent pattern of variation at different stratigraphical levels, and the evidence indicates the prescnce of a single species, ranging from the Bathonian to the Kimmeridgian. As noted by lrkell (1934, p. 323), P. alduini appears to have had a preference for clay environments, being particularly common st some levels in the Oxford and Kimmeridge Clays. The small specimens found so commonly at the top of the Grossouvrei Subzone at Peterborough are typical of the species in all respects, although crushing has affected the inflation, which it is not possible to measure. Uncrushed specimens from septarian concretions in the Lower Oxford Clay of Wiltshire (OUM J28241-42) show the form present
in the Lower Oxford Clay to be exactly comparable with those from the Red Nodule Deds of Weymouth, and elsewhere in the Oxford Clay.

Range and occurrence Fullers Barth Rock (Bathonian) of Dorset and Somerset (irkelI, 1239, p. 170); Belemite Sands (Bathonian) of Staffin Bay, Skye; Cornbrash, Kellaways Beds, Oxford Clay, Corallian and Lower Kimeridge Clay, widespread. On the continent \(P_{\text {. alduini }}\) has been recorded from beds of Callovian to Kimmeridgian age, in France, Germany and Russia.
2. Pleuromya uniformis (J. Soworby). PI. 24, figs. 25-27, P1. 25, figs. 2-4, PI. 26, figs. 11-16.

1813 Unio uniformis sp. nov.; J. Sowerby, p. 83, pl. 33, fig. 4.
1821 Iutraria? Jurassi sp. nov.; Brongniart, p. 555, 570, pl. 7, firs. 4-4b.

1829 Imphidesma decurtatun sp. nov.; Phillips, pl. 7, fie. 11.
1836 Iutraria teruistriata sp. nov.: Mïnster in Goldfuss, p. 257, p1. 153, figs. 22-20.

1836 I. elongata sp. nov. ; Münster in Goldfuss, p. 258, pl. 153, figs. 4a, 4b.

1840 Amphidesma ? ovale sp. nov. J. de C. Sowerby, pl. 21, fig. 11.

1840 A. ? hians sp. nov.; J. de C. Sowerby, pl. 2l, fig. 12.
1851 Potanomya ? Sedgwickii sp. nov.; Forbes, p. 113, pl. 5, figs. 3ぇ, 3b.

1855 Myacites Terquemea (Buvimmior); Morris \& Iycett, p. 115, pl. 12, figs. 6, 6a. (non Juvigmier).

1855 M. Securiformis (Phillips); Morris \& Lycett, p. 136, pl. 13, fig. 15. (non Phillips).

1855 M. decurtatus (Phillips); Morris \& Lycett, p. 137, p1. 15, figs. 10a, 10 b .

1860 M. decurtatus (Phillips); Damon, pl. 4, fig. 6.
1888 M. jurassi (Brongniart) var. portlandica nov.; Damon, pl. 19, fig. 9.

1910 Lutraria (Pleuromya) Jurassi Brongniart; Cossmann, no. 231. 1915 Pleurorya tellina Agassiz; Krenkel, p. 329, pl. 27, fig. 7.

1915 p. polonica sp. nov.; Krenkel, p. 330, pl. 27, fig. 5.
1932 P. decurtata (Phillips); Spath, p. 117, pl. 6, fig. 5;
pi. 7, fig. 6.
1934 P. jurassi (Brongniart); Stoll, p. 14, pl. 1, fig. 47.
1935 P. uniformis (J. Sowerby); Cox, p. 15, pl. 2, figs. 9, 10.
1935 P. uniformis (J. Sowerby); Arkell, p. 325, pl. 45, figs.1-13.
1936 P. tellina Agassiz; Spath, p. 128, pl. 45, figs. 4a, 4b;
pl. 50 , figs. \(1 \mathrm{a}, 1 \mathrm{~b}\).
1948 P. uniformis (J. Sowerby); Cox \& Arkell, p. 40.
1955 P. uniformis (J. Sowerby); Callomon, p. 221.
1965 P. uniformis (J. Sowerby); Cox, p. 131, pl. 20, fig. 6.
1972 P. uniformis (J. Sowerby); Walker, p. 134.

Type spocimen Holotype of J. Sowerby's plate 33, fig. 4,
from the Combrash of Fcimersham, Bedfordshire, refigured by Arkell (1935, pl. 45, figs. 4, 4a), preserved in the Sowerby collection at the IM (NH), number 43224.

Diagnosis Large sized species (up to 71.2 mm L ), elongate elliptical in form, with height 49.8-74.1 \%, 部 \(58.4 \%\), inflation \(33.1-45.5 \%, \bar{x} 10.2 \%\), and anterior length 29.3\(41.9 \%\), \(\bar{x} 34.3 \%\). Ornanent consists of irregularly-spaced concentric growth rugae of uneven development. Posterior part of the shell tapers into a rounded angle; a sulcus running from the umbones to the anterior part of the ventral margin causes a slight sinuosity in the ventral margin; sulcus of variable strength, but almost always present; umbones low, not markedly prominent.

Diffors from \(P\). alduini in lackine the coarse regular concentric ribs, and in being more elongate and less inflated; the umbones are also much less prominent, P. calceiformis shares the lack of regular concentric ribs, but is much more elongate ( \(\overline{\mathrm{x}} \mathbf{~} 43.0 \%\) ) and has the posterior drawn out into a long round-ended 'rostrum'.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lllll} 
& I & H & I & AL \\
N & 29 & 29 & 18 & 29 \\
\(\bar{X}\) & 39.3 man & \(58.4 \%\) & \(40.2 \%\) & \(34.3 \%\) \\
Max & 71.2 & 74.1 & 45.5 & 41.9 \\
Min & 27.1 & 49.8 & 33.1 & 29.3 \\
OR & 44.1 & 24.3 & 12.4 & 12.6
\end{tabular}

Description Large sized species, elongate-elliptical to subrectaneular in outline, inequilateral, subequivalve, with
the right valve slightly overlapping the left valve along the dorsal margin; height \(\bar{x} 58.4 \%\), inflation \(40.2 \%\); umbones placed sbout one-third of the shell length behind the anterior margin (AL \(29.3-41.9 \%\), " \(34.3 \%\) ), prosogyrate, contiguous, not prominent or inflated, elevated up to about 4 mm above the dorsal margin; anierodorsal margin short, gently concave, with no lunule passing smoothly into the evonly rounded anterior margin; anteroventral angle variable, usually rounded and not angular, but becoming almost a right angle in forms with a very strong anterior sulcus; ventral margin long and very gently convex, with 2 variably-developed sinuosity near the anterior extremity marking the position of the anterior sulcus; the convexity of the ventral margin becomes stronger posteriorly, where it passes smoothly into the posterior margin; clearly defined posteroventral and posterodorsal angles lacking, the posterior margin passing evenly into the dorsal and ventral marsins; escutcheon absent; ligament external, opisthodetic, nymp short but clearly defined.

Ornament comsists of fine concentric growth lines, with irregularly spaced growth rugae being developed to variable extents in most specimens; occasionally almost smooth. Very well-preserred specimens show the whole of the shell surface to be covered with minute radial striac. Posterior adductor muscle scar suborbicular, placed very close to the dorsal margin at the point where the posterior margin begins to diverge from the dorsal margin; anterior adductor scar unknown; pallial line with large pallial sinus, reaching halfway to the anterior margin,
the lower limb of the pallial sinus not confluent with the pallial linc; dentition unknown, but probably of nomal pleuromyid type; margins closed, with no anterior or posterior gapes.

Remarks The synonymy of P. uniformis has been discussed fully by Arkell (1935, p. 327), and Cox \& Arkell ( \(1948, \mathrm{p} .40\) ), and nothing need be added to their conclusions. The species has been given many names by continental authors, the most common being P. jurassi (Brongniart), P. tellina Agassiz, P. Noltzii Agassiz and P. elea (d'Orbigny). Arkell (op. cit.) has shown that all these names refer to the same species, the earliest available name being P. uniformis (J. Sowerby), a name overlooked until 1935 when \(\operatorname{Cox}\) (1935, p. 15) used it for specimens from the 'Argovian' of India. Sowerby's name appears to have been ovemooked because it was assigned to Unio, a freshwater genus.

The range of variation in this species, as in P. alduini, is very great, but attempts to separate stratigraphically distinct populations into discrete species or varieties have not been successful, an overlapping range of variation occurring at all levels from the Inferior Oolite to the Portland Beds (Arkell, 1935, p. 327; Lewinski, 1923, p. 80). Specimens studied in the course of this work lend support to this conclusion. P. uniformis seems to occur most commonly in sandy and calcareous deposits, bcing rather raxe in shales and clays, and thus there appears to be ecolosical separation between it and Po alduini. of Great Britain, being especially comon in the Fullers Earth Rock, Cornbrash, Kellaways Rock, Corallian, Kimmeridge Clay and Portland Beds. It occurs sporadically at all intermediate Ievels, but rarely in great abundance. Although it is knowr from the Upper Oxford Clay of Dorset, it has not been found in the Lower Oxford Clay.

On the continent, P. uniformis has been recorded from the Bathonian - Portlandian of France, Germany, Switzerland, Russia and Poland. It is also known from the Upper Jurassic of Greenland and India.
```

Genus TYRACIA J. de C. Sowerby, 1844 (p. 41)
Synonymy: Osteodesma de Blainville, 1825
Odoncineta Costa, 1829
Odontocineta Agassiz, 1843
Cinetodonta \Lambdagassiz, 1843
Corymya Agassiz, 1843
Throna Carpenter, }185
Corimya Fischer, 1887
Coromya Fischer, 1887
Homoeodesmata Fischer, 1887
Eximiothracia Iredale, }192
Cetothrax Iredale, 1949

```

Type species Subsequently designated by Anton, 1839, p. 2, Thracia pubescens Lemarck, 1819, p. 83 (= Mya pubescens Fulteney, 1799, p. 27, pl. 4, fig. 6), Recent, Iitlantic Ocean.

Diagnosis Subequilateral, inequivalve, right valve
larger than the left valve, which it overlaps; umbones opisthogyrate, prominent; adductor scars small, pallial line with sinus; posterior margin truncate, with a gape; faint umbonal ridge runs to the posteroventral margin.

Subgenus THRACIA s.s.

Diagnosis She11 with concentric ornament, surface granulate; umbones contiguous and perforate; ligament external; cardinal plate with fissure occupied by lithodesma; chondrophore moderately long.

Remarks
Some authors (Agassiz, 1843; Stoliczka, 1871) have used the genus Corimya Agassiz for the Jurassic species referred to Thracia, but as Terquem (1855, p. 93) and Arkell (1936, p. 354) pointed out, there is no satisfactory evidence for separating Mesozoic from Tertiary and Recent species, and so Thracia is retained. Jurassic forms occur only as steinkerns, often crushed, with some thin remnent shell, thus details of the dentition are not seen, although the position of the external ligament nymphs is clear.
390.

Thracia (Thracia) depressa (J. de C. Sowerby). Pl. 25,
figs. 5-6, 8-10, 14-15.

1823 Mya depressa sp. nov.; J. de C. Sowerby, p. 19, p1. 418.
1836 Mya or Panopaea depressa J. de C. Sowcrby; J. de C.
Sowerby in Fitton, p. 347, pl. 23, fig. 9.
1836 Tellina incexta ap. nov.; Thurmam in Roemer, p. 121, pl. 8, figs. 7n, 7b.

1888 Thracia depressa (J. de C. Sowerby); Damon, pl. 19, fig. I4.
1892 T. depressa (J. de C. Sowerby); Fox-Straneways, p. 378, p1. 21, fig. f.

1911 T. incerta (Thurmann); Boden, p. 55, pl. 5. figs. 21, 22. 1929 T. depressa (J. de C. Sowerby); Cox, p. I72, pl. 5, fig. 3.

1934 I. undulata (Schlippe); Stoll, p. 16, pl. 2, fie. 2.
1936 T. depressa (J. de C. Sowerby) ; inkell, p. 354, pl. 50, figs. 7-10.

1948 I. depresse ( 7 . de C. Sowerby); Cox \& Arkell, p. 46.

Type specimen The specimens figured by J. de C. Sowerby (1823) are not preserved with the Sowerby collection at the BM (NH), and mast be considered lost. Accordingly, the specimen figured by Damon (1888, p1. 19, fig. 14) from the Oxford Clay of Weynouth (a topotype) is here designated neotype. It is preserved in the BM (NII), number L 6797.

Diagnosis Large sized shells (up to 65.1 ma I), very variable in form, with height considerably less than length (H \(63.7-92.3 \%, \bar{x} 74.1 \%\) ), low to medium inflation (I 29.9\(60.8 \%, \bar{x} 41.7 \%\), and umbones placed just posterior of median
(AL 51.2-69.4 \%, " \(\quad 60.5 \%\) ).
Differs from the superficially similar \(T\). incerta Cox (non Thurmann) from the Portlandian, which is markedly more elongate (H \(66.3 \%\) in Cox's figure) and has the umbones situated more anteriorly (AL \(45.3 \%\) ).

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lllll} 
& I & H & I & AL \\
N & 36 & 36 & 14 & 36 \\
\(\bar{x}\) & 46.4 mm & \(74.1 \%\) & \(41.7 \%\) & \(60.5 \%\) \\
Max & 65.1 & 92.3 & 60.8 & 69.4 \\
Min & 19.9 & 63.7 & 29.9 & 51.2 \\
OR & 45.2 & 28.6 & 30.9 & 18.2
\end{tabular}

Description Large shells (up to 65.1 mm L ), inequilateral, inequivalve, with right valve larger than the left valve; subtrigonal, subrectangular to elongate elliptical in form, very variable; umbones prominent, opisthogyrate, contiguous, placed posterior to median ( \(\Lambda \tau \bar{x} 60.5 \%\) ) , bounded posteriorly by strongly-developed ligament nymphs. Anterodorsal margin gently convex, steepness of slope to the anterior margin dependent upon the height of the shell; posterodorsal margin stiongly to gently concave, the area immediately posterior to the umbones being occupied by the short, but prominent, ligament nymphs. Anterior margin evenly rounded, passing smoothly into the gently convex ventral margin; posterior margin slightly rostrate, with a variably developed umbonal carina marking off the posterior
area, truncate or rounded in outline, with a strong posterior gape. Inflation very variable ( \(129.9-60.8 \%, \bar{x} 41.7 \%\) ), point of maximum inflation located about \(30 \%\) of the height below the dorsal extremity of the umbones; lunule absent, but the area anterior to the wabones is marked by a deep channel; ligament opisthodetic, nymphs producing a bisulcate feature on the dorsal margin immediately posterior to the umbones; escutcheon absent. Soulpture consists of irregularly spaced growth lines, occasionally coarsened into growth rugae, crossed by very fine radial striae which are not always visible. Dentition unknown. Pallial line with lerge pallial sinus, the lower limb of the sinus nearly confluent with the pallial line.

Remarks The great variability of this species may be seen in large collections of uncrushed specimens, where all intermediates between relatively short, high, subtrigonal forms and more eloncate, lower elongate-clliptical forms may usually be found; the variation which occurs in the Upper Oxford Clay, Corallian, Kimmeridge Clay and Portlandian examples of the species has been discussed by Arkell (1936, p. 355). The same range of variation is to be found in the Lower and Middle Oxford Clay specimens which are, unfortunately, always crushed. There is a tendency for the Lower Oxford Clay forms to be slightly more elongate than forms from high in the Oxfordian, as may be seen from the measurements in Table 2.4, but such is the variation range, that forms agreeing exactly in shape with

Upper Oxfordian exmples are often found, and there is no justification for considering them to be a different species. Regression lines for the two stratigraphically separated groups are shown in Pig. 2.61, and although having slightly different intercepts on the \(y\) axis, have similer slopes, and are not significantly different. It is likely that shell proportions have been slightly distorted by crushing in the Lower Oxford Clay, but it is improbable that the differences in form are due to this effect.

The synonymy of this species has been well covered by Arkell, but one point needs to be added here. Thracia incerta (Thurmann in Roemer) has been accepted as a distinct species occurring in the Kimmeridgian and Portlandian by many authors (Goldfuss, 1836; Agassiz, 1843; Leymerie, 1846; Thumann \& TEtallon, 1861-1864; de Loriol, 1868, 1872, 1875; Lewinski, 1923 and Cox, 1929), supposedly differing from T. depressa by way of its being more elongate, and having anteriorly-placed umbones. Thurmann's figure in Roemer (1836, p. 121, pl. 8, figs. 7a, 7b) shows a form indistinguishable from typical British Oxfordian forms, and the author sees no reason to retain it as a distinct species, as the range overlaps with that of
T. depressa. There are, however, very elongate forms with anterior umbones in the English Portland Beds, which Cox (1929, p. 173, pl. 5, fig. 6) has referred to T. incerta, and which may indeed represent a separate species; study of large collections should reveal whether or not the two 'species' grade into one another.

\section*{394.}

Range and occurrence In Britain, T. depressa occurs in the Fullers Earth (Bathonian) of Somerset and Dorset (Arkell, 1939a, p. 171), throughout the Oxford Clay, and at various horizons in the Corallian, Kimmeridge Clay and Portland Beds.

It has also been recorded from the Upper Jurassic (Callovian - Portlandian) of France, Germany, Switzerland and Russia.

\section*{INCERTTAE SEDIS}

The two species described below are too small and poorlypreserved to allow generic or even familial placement, although it seems probable that they belong to the subclass Anomalodesmata.

Anomalodesmatan sp. A. P1. 25, fiss. 11-13, P1. 26, fies. 1,6,9.

Description Small species, up to 14.0 mm long, equivalve, inequilateral, subrectangular to subovate in outline (II \(60.2-80.2 \%, \vec{x} 69.3 \%\) ). Umbones small, rounded, contiguous, prosogyrate, placed about one-third of the shell length behind the anterior margin (AL 30.0-38.7 \%, \(\bar{x} 35.2 \%\) ), only very slightly salient to the hinge margin. Posterodorsal margin passing smoothly into the evenly-rounded posterior margin, without a clearly marked posterodorsal angle, the posteroventral angle often more apparent, forming a rounded right angle, or occasionally, a more even curve; ventral margin straight to gently convex, subparallel to the posterodorsal maxgin;
anterodorsal margin gently concave, passing into the short, sharply-curved anterior mergin; anteroventral angle sharply rounded; in some specimens, the anterior part of the ventral margin is straight, and oblique to the posterodorsal margin, giving the anterior part of the shell a slightly rostrate appearance. Inflation low.

Ornament consists of low concentric growth striae and rugae, placed rather irregularly, and of variable strength; no radial elements. Shell of friable aragonite.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lcll} 
& L & H & AL \\
N & 26 & 26 & 19 \\
\(\overline{\mathrm{X}}\) & 9.4 mm & \(69.3 \%\) & \(35.2 \%\) \\
Max & 14.0 & 80.2 & 38.7 \\
Min & 5.5 & 60.2 & 30.0 \\
OR & 8.5 & 20.0 & 8.7
\end{tabular}

Remariks This small species is widespread in all lithologies of the Lower Oxford Clay of southern England, but is always poorly preserved, and its taxonomic position uncertain. It is usually preserved as clay steinkerns, often of articulated, wide-open shells, with a very thin layer of aragonitic shell material on the outer surface; because of this, nothing is known of the ligament, cardinal area or musculature, there being no sign of muscle scars on either the steinkerns or the shell material. For the same reason, the orientation of the shells
is unknown, the urnbones being described as prosogyrate merely to facilitate description; there is no means of telling whether they are in fact prosogyrate or opisthogyrate.

In external form, this species is unlike any other known from the Lower Oxford Clay, although the ornament is sometimes reminiscent of Pleuromya, and it is just possible that these specimens may be juvenile Pleuronya. However, the early growth stages of both Pleuromya alduini and P. uniformis, as seen from larger specimens, do not fit the outline of anomalodesmatan sp . A., and this possibility seems unlikely. The larger specimens are markedly inequilateral, the posterior region being much more expanded than the rather narrow anterior region, and again, the outline does not agree with small specimens of E. alduini or P. uniformis; there is also no indication of any shell gapes. The only other Lower Oxford Clay specios which is in any way comparable is Thracia depressa, which occasionally shows forms similar in shape to this species, and which generally occurs in the sane beds, although nore rarely. However, in general, the shape of the early growth lines of \(T\). depressa does not fit with the species described here. Some Recent species of Thracia, such as the type species T. pubescens (Pulteney), resemble this species in that they have one end (the anterior) very fully expanded, whilst the other is more rostrate, but it is not clear whether or not anomalodesmatan sp. A. is equivalve; if it is, it cannot be a thraciid. There seems more chance of this species being a juvenile Thracia than a juvenile Pleuromya, but the author
believes both possibilities to be unlikely.

Range and occurrence Lower Oxford Clay (Calloviense Athleta Zones) of central and southem Englend; very common.

Anomalodesmatan sp. 1. Fl. 26, figs. 2-5, 7-8, 10.

Description Snall species, up to 9.6 mm lone, equivalve, subequilateral, subovate in outline (H 61.7-70.5 \%, \(\bar{x} 66.7 \%\) ), with umbones slightly anterior of median (AL 37.9\(50.0 \%, \bar{x} 44.2 \%\); umbones small, rounded, hardly salient above the hingeline, prosogyrate. Anterodorsal margin gently conceve to gently convex, forming a continuous even curve with the anterior margin; ventral margin gently convex, not as curved as the anterior and posterior aargins, and passing smoothly into them without angulations; posterior margin evenly convex, curved smoothly with the posterodorsel margin. The most usual forn found is rather elongate, with an almost straight ventral margin, but smallex forms tend to be shorter and pore perfectly ovate, with a kicher I/T1 ratio. Inflation low.

Omament very faint, consisting of very fine, irregularly spaced concentric growth lines, occasionally with faint growth rugæe; no radial elements. The ornanent pattern is nuch finer than that of the preceding species, and the two species are further distinguished by virtue of their differences in outline. Shell material consisting of very thin, friable aragonite.

\section*{Measurements}

See Appendix 3.
\begin{tabular}{lllc} 
& L & H & AL \\
N & 12 & 12 & 7 \\
\(\bar{x}\) & 7.8 mm & \(66.7 \%\) & \(44.2 \%\) \\
Max & 9.6 & 70.5 & 50.0 \\
Min & 5.6 & 61.7 & 37.9 \\
OR & 4.0 & 8.8 & 12.1
\end{tabular}

Remarks
Preservation is similar to that of the preceding species, and again, nothing may be seen of the ligament, cardinal plate or musculature, making taxonomic placement impossible. The shell seems to be thinner than in sp. A., and is rarely preserved, except in patches along the dorsal margin; removal of the shell in that area does not help in the elucidation of the structure of the cardinal plate, as the shell has not been deeply enough impressed into the rock, and the resulting steinkern shows no detail of the dental region or musculature.

In external outline, \(s p\). B. has no really distinctive features, and parallels the shape of many bivalve genera, making generic placement impossible. This species is much rarer than sp. A., although it occurs sporadically throughout the Lower Oxford Clay of southern England, and does not seem to be associated with any other species of which it could possibly be a juvenile stage.

Range and occurrence Lower Oxford Clay (Jason - Athleta Zones) of central and southern England, widespread, but nowhere abundant.

\section*{CHAPIER 3}

PALAEOECOLOGY OF A BITUMINOUS SHALE: THE LOWER OXFORD CLAY OF CENTRAL EVGGLAND

Palaeoecological studies on Mesozoic clay sequences are of great importance in building up an understanding of environmental conditions, and until the last 10 years, had been largely ignored. Most thick clay sequences appear at first Elance to be homogeneous masses of rock, but close inspection reveals many lithological and faunal variations, which when interpreted, show many interesting features. This is especially true of bituminous shale sequences, which until the work of Hallam (1960), were usually thought of as being homogeneous deposits. Hallam (op. cit.) showed that in the Blue Lias, several lithologies, ench with a characteristic fauna, could be recognised, only some of them showing the lack of benthonic fossils thought so typicel of bituminous shales. Since then, many other studies have been made on this type of rock sequence, to which the Lower Oxford Clay belongs, and it is the purpose of this paper to show the high variability, in both lithology and faunal content, that exists within the Lower Oxford Clay.

\section*{STRATIGRAPHY}

The Callovian deposits of England represent a transgressive marine phase after the lagoonal and estuarine conditions of the Bathonian, the base of the transgression being marked by the

Upper Cornbrash, which passes upwards into the Kellaways Clay and Kellaways Rock. After the deposition of the Kellaways Rock, conditions appear to have stabilised, with deposition of a thick argillaceous sequence of bituminous shales, shaly clays and more calcareous clays. The Yorkshire succession (Text - Fig. 1) differs in that it is developed in a more marginal facies, and has been well described by Wright (1968). In this paper, only the clay facies will be considered in detail. The Lower Oxford Clay has been definod by Callomon (1968), and occupies the whole of the Midale Callovian, together with the topnost subzone of the Lower Callovian and the lowermost part of the Upper Callovian (Pext - Fig. 2). It consists of about \(16-25 \mathrm{~m}\) of grey bituninous shaly clays with other minor lithologies developed within them (Text - Fig. 3). The stratigraphy is discussed elsewhere (Dheff, in prep., and Chapter 2). Economically, the Lower Oxford Clay is of great importance for brickmaking, and is extensively quarried between Peterborough and Aylesbury. Higher parts of the Oxford Clay are more plastic, less bituminous, and not so easily used for brickmaking; consequently, exposures are rarer.

The zonal divisions (Text - Fig. 2) have been considered at length by Callomon on several occasions (1955, 1964, 1968), and are now widely accepted by most Jurassic stratigraphers. Previous workers on the Oxford Clay have concerned themselves mainly with the general stratigraphy of the formation, and paid scant attention to the Lower Oxford Clay itself (Woodward, 1895; Morley Davies, 1916; Neaverson, 1925; Arkell, 1933), although

Brinkmann (1929, 1929a) and Callomon (1955, 1968) have dealt with that part of the formation in considerable detail. Palaeoecological studies have been few, and are limited to those of Futten (1956) and Hutson \& Palframan (1969).

\section*{NATURE OF THE FAUNA}

The composition of the Lower Oxfor Clay fauna is considered in detail elsewhere (Duff, in prep., and Chapter 2), molluscs being overwhelringly dominant, and mostly represented by eephalopods and bivalves. Other characteristic members of the macrofauna include gastropods, scaphopods, brachiopods, crustacea, annelids and occasional echinoderms; a diverse and well preserved vertebrate fauna has been described by several authors (Iruff, op. cit.). A full faunal list of the macroinvertebrates, showing their distribution, is given in Table 1. The microfauna is considerably more restricted than that of the Piiddle and Upper Oxford Clays, the foraminifera having been studied by Cordey (1962, 1963, 1963a) and Barnard (1952, 1953), the ostracodes by Whatley (1966, 1970), and the coccoliths by Rood, Hay \& Barnard (1971) and Rood \& Barnard (1972). Apparently, the darker, more organic rich shaly clays of the Middle Callovian were less conducive to the development of a diverse benthonic microfauna than were the more calcareous clays of the Upper Callovian - Lower Oxfordian.

This paper is based on detailed quantitative studies made on the Lower Oxford Clay in 1970-1971 at 4 brickpits in
central England (Text-Fig. 4), collecting being carried out on beds of Calloviense - Coronatur Zone age. The beds are well exposed in continuously accessible profiles, and are clearly marked off at the base by the sandy Kellaways Rock, and at the top by a concretionary Iimestone bed, the Acutistriatum Band (Text-Fig. 3); this marker horizon was shown by Callomon (1968) to be the basal bed of the Athleta Zone. The ecological analysis is based on quantitative data, the palaeoautecology of the benthos having been described elsewhere (Duff, in prep., and Chapter 2), and surmarized in Tables 2 and 3. The methods of analysis used here ase e combination of those introduced by workers on both Recent and fossil faunas, and have not previously been applied to Mesozoic clay deposits. This creates the drawback of there being a lack of comparative data, and in order to compare the Lower Oxford Clay with other Mesozoic sedinents, especially clays, it has been necessary to use rather more quelitative data.

Preservation The Lower Oxford Clay is notable for the preservation of original shell aragonite in the shales, especially in the bituminous shales. This is a feature known from many argillaceous sequences, and seems to be caused by the impervious nature of the sediment. Aragonite preservation in the Oxford Clay has been discussed by Hudson \& Palframan (1969) and Duff (in prep., and Chapter 2). However, the fine grainsize of the sediment has also meant that there was little resistance to post-depositional compaction, and many of the
fossils are crushed, especially those in which voids unfilled by sediment remained; because of this, most of the ammonites, gastropods, crustacea and articulated bivalve shells have been crushed, often more or less flat.

In some of the more porous lithologies, notably the shell beds, there has been replacement of the original aragonite by secondary calcite, precipitated from calcareous fluids moving through the rock, or by recrystallization of shell material in situ. A more notable post-depositional preservational change has been the growth of pyrite in many of the shell beds, and in local pockets within the shales. It appears that the porous shell beds have acted as "aquifers" along which sulphide-rich fluids moved, and that when the pyrite was precipitated, it became concentrated in tho central parts of the shell beds. This is particularly noticeable in many of the Nuculacean shell beds, where the central part of the shell bed is strongly pyritised, with pyritisation decreasing towards the margins. Study of pyritised shells reveals that many of then have hed the shell material replaced by pyrite, rather than having had pyrite grow outward from the shell surface.

Within the bituminous shales, many shells have developed pyrite overgrowths to a varying extent. The pyrite is usually rather patchily developed on shells found in the bulk of the bituminous shales, and often seems to be concentrated on aragonitic shells such as Thracia, Pinna and Palaeonucula, where it occurs as small patches on the surfaces of the shells. Hudson \& Palframan (1969, p. 404) describe a somewhat similar

\section*{404.}
situation in the Middle and Upper Oxford Clay of Woodhan, Bucks., where pyrite is patchily developed on the surfaces of bivalves preserved as clay moulds. They attribute the pyrite formation to local sulphate reduction by bacteria acting on the organic matrix of the dissolving shell. It is possible that the patchy pyrite developed on aragonitic shells in the Lower Oxford Clay formed in a similar manner, although the aragonite has not totally diseppeared.

Another characteristic feature of the Lower Oxford Clay is the prescnce of concretionary limestones at certain levels (Text - Pig. 3). Iudson (1974, pers, conm.) has demonstrated the existence of two phases of concretion developsent, one preand the other post-compaction, each with distinctive carbon and oxygen isotopic comositions. The early pre-compaction concretions are septarian, and are the ones found within the various Lower Oxford Clay bituninous shales and shell beds (Text - Fig. 3); they contain uncrushed fossils preserved in partially dissolved aragonite or secondary calcite. The Inter, post-compaction concretions occur as lenticular limestones within the Acutistriatum Band (Text - Fig. 3), and contain crushed fossils, usually preserved in secondary calcite. Both limestones are clearly of diagenetic origin, and contain the same fauna as the enveloping shales.

Methods of analysis At the four pits studied (Text Fig. 4), the Lower Oxford Cley is up to 18 m thick, and worked in large opencast pits by means of "walking draglines", giving
sloping faces which may be collected fron with ease, and on which a continuous profile may be measured. As the sections were measured, detailed counts were made of all the fossils found in each bed, collection continuing until no new species appeared in the sample. In the case of beds over 50 cm thick, each bed was arbitrarily divided into 50 cm units, each of which was then considered as a separate sample; this gave a method for evaluating the faunal similarity of different parts of the thicker units. In addition to these field counts (usually conducted on up to 2000 specimens), blocks from each sampled bed were taken back to the laboratory and broken up under more controlled conditions to check the accuracy of the field counts. While this sometimes revealed the presence of one or two additional species (in small quantities), in most cases it merely confirmed the picture supplied by the field counts, so the analysis presented here is based on the data collected in the field.

Measures of the physical properties of the beds were gained from analyses of the organic carbon and insoluble residue percentages, which are shown in Table 4 and Text-Fig. 5 respectively. The organic carbon content gives a measure of the anount of the detrital organic matter available for collection by feeding organisms, while the insoluble residue determinations give a neasure of the amount of lime present in the sediment, either as cement or as original particles of shell or other carbonate. Organic carbon contents of over \(3 \%\) in fecent mud deposits have been shown by Bader (1954) to cause a

\begin{abstract}
406.
diminution in bivalve diversity, with infaunal deposit-feeding protobranchs becoming dominant. The organic carbon contents of many of the Lower Oxford Clay samples (Table 4) show that they belong to this type of lithology, with an impoverished benthonic fauna. The degree of correlation between the organic carbon contents of Recent muds and fossil shales is uncertain, and it is not possible to tell whether or not the values obtained from compacted rocks are true reflections of the primary organic carbon content. Comparison of Bader's (op. cit.) values with those from the Lower Oxford Clay suggests that in some cases, thuy are.

In order to extract the maxinum information on bottom conditions from the collected data, nost analysis was carried out on the benthonic fauna only, with the nektonic elements (such as the cephalopods) renoved fror consideration. However, before the nektonic elements were removed, the relative percentages of nektonic predators and scavengers were caiculated, showing that in the bituminous shales they constitute 10-15 \% of the fauna. Having removed the nektonic elements, the data for the remaining benthos were recalculated to give percentages of epifaunal suspension, infaunal suspension and deposit-feeders only. The bivalves were also treated in this way, these last two groups forming the basis of this work. The reasons for using feeding groups were discussed by Rhoads et al. (1972), who suggested that it is sedimentary and hydrographic conditions which most closely control the distribution of bivalves, with sediment grain-size and texture, botton turbidity and food
\end{abstract}
availability all being of importance in determining the spatial distribution of suspension and deposit-feeding bivalves. The status and mode of life of bivalve feeding groups in general have been exhaustively studied by Stanley (1970). The ecological positions of the various bivalve genera are shown in Table 2.

The data for the bivalves was then further subdivided, because of the high proportion of epifaunel suspension-feeders such as Bositra, Oxytoma, Moleagrinella, Darainocerarus, and Pteroperna in some beds. As discussed by Duff (in prep., and Chapter 2), it seems very likely that these genera were not strictly benthonic, but lived byssally attached to organic matter at some distance above the seafloor, as there appears to be a lack of suitable benthonic attachment areas, and the genera show a marked tendency to occur in clusters. There is also the possibility that Bositra wes pseudoplanktonic (Jefferies \& Minton, 1965). This group of eenera is grouped together as "pendent" epifaunal suspension-feeders, and as they tend to be rather abundant in the bituminous shales, thereby obscuring the relative importance of the more strictly benthonic elenents, the bivalve percentages were recalculated to omit them. Consideration of the wholc bivalve assemblage then shows the overall faunal composition of a bed, the relative abundance of the strictly benthonic species being seen after the removal of the pendent species.

Biofacies analysis In an earlier work, Duff (in prep., and Chapter 2) recognised ten biofacies within the Lower Oxford Clay of the Midlands, the major lithofacies groupings being subdivided by faunal content; the data are sumarized in Table 5, while Text - Fig. 6 shows the distribution of each of these facies at the major pits. The deta were then analysed in five ways to give a synthesis of the palaeoecology, the plots used being
a) triangular plots
b) rarefaction curves
c) trophic nuolei
d) trophic group composition
e) diversity index

The triangular diagrans are based on bivalve feeding groups, the corners of the trianeles reprosenting \(100 \%\) enifaunal suspension-feeders (ES), \(100 \%\) infaunal suspension-feeders (IS) and \(100 \%\) infaunal deposit-feeders (ID). Each sample has both the total bivalve fauna and the overall benthonic founa (excluding pendent genera) divided into these three groups, and may then be ropresented on the diagram by a single point. It can be seen from Text - Figs. 7 and 8 that each biofacies yields a group of points, all falling within a certain field of the triangle, with varying degrees of overlap.

The rarefaction curve method was conceived by Sanders (1968) as a means of comparing the diversities of different samples of benthonic organisms. He showed that most diversity measurements were affected by sample size, as individuals are
added to a population at an arithmetic rate, while species are added at a decreasing logerithric rate. The rarefaction method depends on the shape of the species abundance curve rather than the absolute number of specimens in a samp?e, and has the advantage that each sample generates a curve. The method of calculating and plotting rarefaction curves is discussed fully by Sanders (op. cit., p. 245), and will not be repeated here. Each aquatic environment was shown by Sanders to have its own characteristic rate of species increment, with its rarefaction curves lying in a particular field (Text - Fig. 9). It is interesting to note that the curves generated by the various Lower Oxford Clay biofacies (Text - Fig. 10) agree closely with those generater by Recent boreal shallow water samples, as Hallam (1969) placed the British area in his Boreal Province during Callovian tines. It should, however, be remembered that the Boreal Province of the Jurassic is not necessarily equivalent to the Recent boreal area.

The trophic nucleus of an assemblage or commity is defined as the numerically dominant species which make up \(80 \%\) of the fauna (Neyman, 1967). Analysis of the composition of the trophic nucleus greatly assists in the understanding of the rolationships between the various members of the assemblage, notably in the relative abundance of the species, and the importance of deposit-feeders. The trophic nucleus of most communities consists of up to five species, although in some tropical marine environments, high specific diversity greatly increases its size. Two tables showing the composition of the
trophic nuclei are shown here, one (Table 6) showing the overall nucleus of the whole benthonic fauna, whilst the other (Table 7) shows the nucleus after pendent bivalves have been removed. Colunns 7-9 of each table show the percentage of the various kinds of deposit-feeders within each biofacies.

As well as determining the size of the trophic nucleus, it is useful to examine the trophic group composition of each biofacies, a technique introduced by Turpaeva (1948), and later refined by the same author in 1949 and 1957. This nethod of determining the trophic relationships of all the benthonic invertebrates in an assemblage was considered in depth by Walker (1972), who showed it to be a useful method of ecological analysis. Turpaeva's work on the Recent faunas of the Barents Sea revealed several generalisations which apply to most Recent commuities, while Walker (op. cit.) showed that they could also be applied to many Lowor Palaeozoic commuities; the evidence from the Lower Oxford Cley suggests that they are also applicable to Mesozoic assemblages. Turpaeva (op. cit.) showed that
a) each community is dominated by a single trophic group.
b) each of the dominant species in the trophic nucleus belongs to a different trophic group.
c) one species dominates each trophic group in the community. These generalisations led her to the conclusion that feeding competition is thus minimised. In most cases these
generalisations appear to be valid, although Phoads et al. (1972) showed the existence of heterogeneous trophic nuclei, in which habitat partitionine allows maxinum use to be made of available food resources. In Text - Figs. 11-21, the trophic groups introduced by Turpreva are used, as they represent the simplest and most clearly understood means of presenting the data. "Swallowers" are infaunal deposit-feeders (Palaeonucula, Mesosaccetis, Dicroloma), which feed by ingesting large quantities of sediment as they move through it; "oollectors" utilise organic detritus from the sediment surface, the category including erifaunal deposit-feeders (Procerithium), scavengers (Mecocheirus, ophiuroids, cephalopods) and browsing herbivores (Pleurotomaria). "Low-filterers" are low level suspensionfceders, filtering food from the water immediately above the seafloor, and comprise Lingula, rhynchonellids, all infeunel suspension feeding bivalves and some epifaunal bivalves (Plicatula, Gryphace, Modiolus), together with Genicularia and serpulid worms. "High-filterers" are high level suspensionfeeders, collecting food from some distance above the seafloor, and are represented by the pendent bivalves, together with Pinna and Chlamys.

Diversity index is a parameter introduced by Ziegler et a. . (1968), and is defined as
\[
\frac{\text { number of species }}{\text { log. number of individuals }}
\]
giving a relationship between the number of species present in an assemblage and the number of individuals counted; the
parameter is strongly semple-size controlled, but gives a value which can be directly compared with values for Silurian comunities given by Zieglor et al. (op. cit.). Diversity index values are incorporated in Tables 6 and 7.

Palaeoecological assumntions In common with most other palaeoecological analyses, this one is concerned solely with the skoletonised invertobrates, no account beine taken of the softbodied fauna, which has left evidence of its existence only in the form of trace fossils. This is a factor well-recognised by palaeoecologists, Johnson (1964, p. 119) showing that about \(70 \%\) of the animals in a Recent community are soft-bodied. Occasionally, exceptional preservation allows recognition of some of the soft-bodied animals usually lost (Whittington, 1971). Walker (1972) suggestod that by study of the abundance and nature of the trace fossils, it should be possible to obtain an estimate of the abundance of the soft--bodied fauna, but this is not a viable proposition in the Lower Oxford Clay, where trace fossils are very rare.

The status of the terms commity, assemblage and association has been much discussed in palaeoecological literature, especially by Johnson \((1964,1971)\), and need not be considered here. The authon is of the opinion that it is not justified to use the tern comunity in paleooecology, and that recurrent quantitative groupings of fossils should be referred to as assemblages. Local assemblages not recurrent over wider areas will be referred to as associations.

Recent quantitative ecological studies are based on the concept of biomass, which is defined as "the weight of organisms per unit area samplea", usually expressed as \(g / m^{2}\) (Rhoads et al., 1972). As this measurement is based on the overall wieght of both soft parts and skeletal material, it is not applicable to palaeoecolofical work, and Walker (1972) suggested the use of biovolume as a substitute. This method, however, also has difficulties, especially where there has been crushing of the fossils, and it is not readily applicable to the Oxford Clay assemblages. Simple numerical abundance has been used here, and as long as large enough samples are used, proves convenient. It must be remenbered, however, that this method takes no account of biovolure or biomass, and so the bioenergetic relationships between the various species are not accurately represented. The problem is partially overcome by presenting the data as relative size histograns (Text - Figs. 11-21). As is discussed below, palaeoecological analysis is carried out at the generic level.

It has been assumed, at least for the shale facies (and most notably the bituminous shales), that the benthos is more or less indigenous, and that there has been virtuaily no transport of shells in from elsewhere. The assumption is justified because articulated shells are common, although rarely in life position; there axe roughly equivalent numbers of left and right valves in most samples; most bivalve species have rather fragile shells, but few show signs of physically induced breakage; complete articulated skeletons of ophiuroids,
crustacea and vertebrates are not uncommon (Schäfer, 1972, p. 99) shows that the arms of ophiuroids begin to disintegrate within 15 hours of death, while crustacea are also rapidly disarticulated). Tho final point is that there is very little evidence of current activity preserved in the sediment itself, as intercalations of coerser particles are extremely rare, and occur only as very thin filns of sediment, whose thickness may be measured in fractions of a millimetre. There is also no conspicuous orientation of skeletal remains, and no sign of shell concentrates (except the shell beds). However, in contrast, the shells of meny infaunal species, especially Thracia depressa, Pinna mitis and Discomiltha lirata, rest flat on bedding planes, and so there must have been at least slight winnowing to exhume these shelle fror their life positions. Schäfer (op. cit., p. 474) points out that such occurrences indicate the presence of discontinuities, showing there to have been numerous short sedinentary pauses within the Lower Oxford Clay, a feature not immediately appaxent on examination of the rocks. Rhoads \& Young (1970) showed thet in many Recent shallow shelf mud areas, the nature of the mud-water interface is substantially controlled by the activity of deposit feeders, giving an uncompacted fluid surface consisting mainly of faecal pellets ("seston"), which is very unstable in the presence of weak bottom currents. However, as Rhoads (1973) later pointed out, it is only the uppermost 2-3 cri which becomes resuspended, and it seems unlikely that this zone of disturbance would be great enough to exhume such deep burrowers as Thracia and Discomiltha; clearly a
mechanism more powerful than this is required to lay bare the shells of such deep burrowers.

\section*{LOWER OXFORD CLAY ENVIRONMENTS}

The Lower Oxford Clay is dominantiy a series of dark bituminous shales, the fauna being characterised by an abundance of infaunal deposit-feeders (Palaeonucula and Iesosaccella) and pendent epifaunal suspension-feeders (Bositra, Meleagrinella, Oxytoma, Parainoceramus and Pteroperna). Although other epifaunal and infaunal suspension-feeders ocur throughout, they are rarely of numerical importance. In comion with other bituinous shales, such as parts of the Lias, the Lower Oxford Clay fauna is very well-preserved, with non-solution of original aragonitic shells, and it seems probable that most of the skeletonised invertcbrate fauna has been preserved. Thore are, however, differences between the bituminous shales of the Lias and the Oxford Clay, benthonic fossils being fairly common in the Oxford Clay, in direct contrast to the Lias, where the only common fossils in such lithologies are cephalopods and fish fragments (tallan, 1960). This indicates that the bottom conditions during Lower Oxford Clay times were not anaerobic, and so the depositional environment must have been rather different to that prevoiling during the deposition of the Lias bituminous shales described by Hollam. The moin characteristic of the laminated bituminous shales described by Hallam is the presence of uniform altermations, on a microscopic scale, of
carbonaceous and calcitic-clay laninae, which have remained undisturbed by burrowing organisms. Thin sections of the Lower Oxford Clay do not show these laninations, and muny benthonic burrowers are present in the sediment, so it is clear that bottom conditions in the Middle Callovian were less anaerobic than those prevailing in the bituminous shales of the L. Lias. Insofar as it has a founa dorinated by depositfeeders and pendent bivalves, the Oxford Clay holds an almost unique position anong British shale facies, as the Lower and Middle Lias fauna (Hallam, 1960, 1967; Palmer, 1971) has a much higher proportion of suspension-feeders, and relatively few deposit-feeders, as do the Kimeridge Cley and the Gault (Price, 1879). The only comparable Formation is part of the Upper Lias (Melville, 1956). In many ways, the bituminous shales are most closely related to parts of the "dark-gray shale lithofacies" recognised by Scott (1971) in the Lower Cretaceous of the United States, in particular his Nuculana-association. These similarities will be discussed later. The monotony of the shale sequence within the Lower Oxford Clay is broken most obviously by the various shell beds which occur at certain levels, most comnonly at the base of a subzone. Four types of shell bed have been recognised, the fine distinctions between them bein considered below. The most notable feature of all the types of shell bed is the fact that they contain the same specios as the shales in which the shell bed occurs, only in much greater abundance; thus Nuculacean shell beds occur within the deposit-feeder bituminous shales,
while Grammatodon shell beds occur in the Gramnatodon-rich bituminous shales. In the case of all the shell beds occurring within the clay facies, it seens most likely that they formed by concentration of shelIs in situ, Gue to slow deposition of sediment rather than by accumulation of shells transported in from elsewhere. The most telling pieces of evidence supporting this interpretation are the facts that there is no reason to suspect marked shallowing of the sea (no oyster concentrations), the relative proportions of the species are sinilar to those of the shales, and the studies of Brinkmann (1929) on the ammonite fauna. He shored that whilst there was continuous evolution of shell features during shale deposition, there was a marked discontinuity produced by the shell beds (Text - Fig. 22), indicating that a long period of time was represented by the thin she 11 beds. This interpretation is supported by the fact that most of the more importent shell beds occur at subzonal boundaries (Text - Fig. 3). Schäfer (1972) has show that in the North Sea, shells are winnowed out of their life position by weak currents, which may or mey not also move them laterally, and that if current activity at the depositional site is too small to move the shells, but too great to allow the settlement of suspended sediment, a bed consisting almost entirely of shells and shell fragments, with very little interstitial matrix is formed. This appears to have been the case in the Lower Oxford Clay.

Despite the general homogeneity of the Lower Oxford Clay, several different facies may be recognised, characterised by
differences in lithological and faunal associations, as evidenced by the various ecological paraneters; these are grouped as biofacies associations. In this consideration of the palaeoecology, analysis was carried out at the generic level, as most of the Lower Oxford Clay genera are represented by only one species, and even where there is more than one species per genus, ecological differences are very snall; where two species belonging to the same genus occur together, niche partitioning between them is discussed at the relevant point. A full list of the snecies present in the Lower Oxford Clay is given in Table 1. The tarious biofacies will now be considered.

Silts and silty clays This alternation of silts and silty clays occurs within the transition beds from the Kellaways Rock to the Oxford Clay, and is charactorised by a high content of infriunal and epiffunal suspension-feeders ( \(82 \%\) by number of the overall benthonic fauna), infaunal and epifaunal species being of ebout equal importance (Text - Figs. 7a, 7b). Deposit feeders are of minor importance, epifaunal and infaunal species being present in about equal quantities (Table 6). The high diversity of the trophic nucleus (Table 6) is also reflected in the position of the rarefaction curve for this facies (Text Fig. 10), and in conjunction with the data of the trophic group composition ( Text - Fig. 11), shows the domination of this facies by niche-separated filter-feeders. Removal of the pendent bivalves from consideration does little to change the appearance of the faunal characteristics of the facies, as they
are of minor importance. The high aeration of the water, and presumably rich food supply, allowed the establishment of a diverse fauna, dominated by infaunal and epifaunal suspensionfeeders, unlike any other seen in the Lower Oxford Clay. The low orgenic carbon content ( \(1 \%\) ) and abundent fauna of trace fossils (Phizocornllium and indeterninate burrows, plus a high level of bioturbation) is further evidence of the high aeration and stronger current activity, and together with the small scale cross-bedding, suggests deposition in shallow water, relatively near shore, a situation postulated by Farrow (1966) for Phizocoralliun-rich beds in the Bajocian of Yorkshire.

Bituninous shales This facies is represented by well-laminated shaly clays with a high organic carbon content \((3.0-4.7 \%)\) and a high insoluble residue content ( \(90 \%\) ), and comprises the bulk of the Lower Oxford Clay of central England. Three biofacies may be recognised, deposit-feeder biturinous shales, Gramnetodon-rich biturinous shales and foran-rich bituminous shales, the first two being mutually exclusive, while the latter is a foram-rich varient of either of the first two. The trophic nuclei of the three biofacies may be compared from Tables 6 and 7, the trophic group composition from Text - Figs. 13-16 and the various diversity measurements from Tables 6 and 7. Rarefaction curves (Text - Fig. 10) show how similer the diversity of each biofacies is, whilst the triengular plots (Text - Figs. 7c-8a) present the most convincing diagrammatic arguments for separating the biofacies.

The deposit-feeder bituninous shales occupy the largest part of the Lower Oxford Clay, and can be seen from Text Fig. 13 to be dominated by pendent bivalves (Bositre and Meleagrinella), the truly benthonic fauna being dominated by deposit-feeders such as Procerithiur, Mesosaccolla, Dioroloma and Nuculoma, and 2 few of the more tolerant infaunal suspensionfeeders (Corbulomima and Iingula). There is also a wide diversity in numbers of species of infeunal and epifaunal suspension-feeders ( 23 species, each comprising less than \(1 \%\) of the fauna), although they are not abundant. Essentially, this biofacies seems to have been the least well-aerated of the bituminous shales, with an impoverished benthonic fauna of tolerant deposit-feeders. The quiet nature of sedinentation, largely undisturbed by the activity of scevengers, is further evidenced by the presence of articulated crustacea and ophiuroids. Niche partitioning is not clearly developed in this biofacies (Text - Fig. 13), with two high level suspensionfeeders in positions 1 and 2, and three swallowers in positions 4, 5 and 7. This may be explained by postulating a superabundance of food, which will be dealt with below.

One of the most interesting features of the deposit-
feeder bituminous shales is the trophic group composition (Text Fig. 13), which shows the facies to be dominated by two species of pendent bivalves, Bositra buchii and Meleagrinella braamburiensis. Four of the next five positions in the assemblage are occupied by deposit-feeding bivalves and gastropods, and it is necessery to explain how such a fauna,
utilising essentially the sane food source, could survive. The abundance of pendent bivalves occupying the first two trophic positions may be explained by there being a superabundance of suspended food material, which allows two species, of the sane trophic group, to coexist without deleterious effects on either. As Rhoads (1973) has demonstrated, suspension-feeders are frequently excluded from assemblages in and on a mud bottom, as the substrate is too unstable, and creates problens of mantle-clogging. If, however, suspension-feeders are placed in racks above the seafloor, but within the zone of greatest turbidity (up to 3 ni alove the bottom), Rhoads (op. cit.) showed that they would thrive. It is probable that a sinilar situation prevoiled during the deposition of the deposit-feeder bituminous shales, the pendent bivalves being attached to organic material within the zone of maxiraum turbidity (not necessarily 3 thick in M. Callovian times), allowine use to be made of the superabundent food source. As regards the truly benthonic feuna of this biofacios, it appears to closely resemble the phenomenon of trophic group anensalism described by Rhoads \& Young (1970), in which one trophic group is excluded from a deposit either by nature of the substrate or activity of other nembers of the fauna. Clearly, the seafloor during deposit-feeder bituminous shale phases of deposition was not suitable for colonisation by byssally attached suspensionfeeders, and was dominated insteed by deposit-feeders, showing fairly well-developed niche partitioning. Procerithium is thought to have browsed more or less at the surface, on a
probable algal film, while Mesosaccella, Dicroloma and Palaeonucula burrowed through the sediment, ingesting it as they went. The coexistence of these three species again suggests a superabundance of deposited food material, perhaps combined with a vertical separation of the three species within the sediment. Although Rhoads (1973) showed that in Recent sediments of Buzzards Bay, only 0.5-2.0\% of the annual sedinent supply of organic detritus on a soft mud botton was actually deposited permanently, the high organic carbon contents of the depositfeeder biturinous shales suggests that it is quite possible that transient amounts of organic material were much greater in Middle Callovian times.

Examination of the relevant trianguler plots (Text Figs. 7c-7f) shows that the Granmatodon-rich bituminous shales lie in a different field to the deposit-feeder bituminous shales, and have a considerably lower content of pendent bivalves. The dominant species of this biofacies are depositfeeders (Procerithium and Mesosaccilla, which constitute \(57.2 \%\) of the fauna), with pendent bivalves being relatively unimportant (Bositra and Melearrinella only \(15.8 \%\) ). The inost characteristic elements of the faune are infaunal suspension feeding bivalves (Grammatodon, Corbulomima, Thracia, Isocyprina and ? anomalodesmatan sp . A.), which together make up \(16.6 \%\) of the fauna. Unlike the situation in the deposit-feeder bituminous shale, there is strong evidence for niche partitioning amongst the dominant species (Text - Fig. 15), but as in the depositfeeder shales, there is a fairly diverse fauna of rare
suspension feedors, 13 species each constituting less than \(1 \%\) of the fauna.

The foram-rich bituninous shales are a rather unusual biofacies typified by the abundance of foraminifers (Brotzenia) in a normal bituminous shale type sediment. As is apparent from the trophic group composition (Text - Fig. 16), they are usually more closely related to the deposit-feeder bituninous shales, being dominated by pendent bivalves, with deposit-feeders in the next dominance positions. However, they do sometimes fall within the Gramatodon-rich bituminous shales, and form a wide spread on the triansular plot (Text - Fis. Ba). The only way in which they can be distinguished is by the presence of large numbers of forminifers, which presumably had a rather locelised distribution, as they are not confined to any particular stratigraphical level. Hence the foran-rich bituminous shales do not roally ropresent more than a local variation on the main twofold division of the bituminous shales, although they have a slight effoct on the nacrofauna in that wherever forams occur, scaphopods become very much more common, and it has been shown that mary scaphopods feed selectively upon foraminifers (Dinamani, 1963).

Shell beds
Four types of shell bed have been recognised in the Lower Oxford Clay, distinguished by their faunas. The relative diversities of specios may be seen from the rarefaction curves (Text - Fig. 10), which shows the Iow diversity of the Nuculacean shell beds as compared to the rolatively higher diversities in the Gryphaea and Gramatodon shell beds. Comparison of the trophic nuclei (Tables 6 and 7), trophic group
composition data (Text - Figs, 12, 17-19) and the triangular plots (Text-Figs. 8b-8d), graphically shows the differences in composition of the various shell beds. Meleagrinella shell beds are not shown on the triangular plots because of the difficulty of collecting accurate quantitative data, the beds containing Meleagrinella in such grest abundance.

The Nuculacean shell beds show the lowest dominance diversity (Sanders, 1968) of the shell bed biofacies, having \(75 \%\) of the fauna consisting of infaunal deposit-feeding Nuculaceans. The next most abundant genera are Meleagrinella and Procerithium ( \(18.2 \%\) ), leaving the remsining \(7 \%\) of the fauna distributed between 15 species of infaunal and epifaunal suspension-feeders. The faunal composition (Text - Fig. 17) is grossly similar to that of the deposit-feedor bituminous shales, and there seens little doubt that these shell beds represent pauses in deposition of normal deposit-feeder bituminous shale. It is this type of shell bod which is often found at subzonal boundaries, and frequently contains quartities of wood and bone fragments, suggesting that it represents a significant pause in deposition.

Grammatodon shell beds occur within the Gramatodon-rich bituminous shales, and have a very similar trophic group composition to them (Text - Fig. 18), with deposit-feeders dominating, pendent species being very subor inate, and infaunal suspension-feeders such as Grammatodon, Corbulomime, Trautscholdia and Thracia being particularly characteristic. The triangular plots (Text - Figs. 8c, 8d) show the relationship between this and the preceding biofacies, indicating that there
is some degree of overlap. However, the two biofacies are easily distinguished by both their faunal content, and the lithology in which they occur. Again, this biofacies is thought to be a product of a reduced rate of sedimentation, coused by a slight increase in current activity.

Gxyphaea shell beds, like the two preceding types, are restricted to a particular lithology, the transition beds between the Kellaways Rock and the Oxford Clay. They too have a. Iow dominance diversity, with Gryphaea constituting \(62.2 \%\) of the fauna (Text - Fig. 12), the remaining \(37.8 \%\) being fairly evenly distributed between 12 species of suspension-feeder \((28.7 \%)\) and 3 species of deposit-feeder ( \(8.5 \%\) ). Arongst the dominant species, there is clear evidence of niche separation, although in general, the biofacies is characterised by suspension-feeders. The high oyster content places the field of this biofacies close to the epifaunal suspension-feeder comer of the triangle (Text - Figs. 8c, 8d). Again, the fauna is similar to that of the beds in which the shell beds occur, and the sediment seems to be another shell concentrate formed more or less in situ. There is, however, some evidence to suggest that the fossils found in this biofacies may have been transported to some extent, as bivalves occur as disarticulated shells rather than articulated shells, many of the valves are fragmented, and there are disproportionate amounts of laft and right valves. Added to this the fact that broken cephalopod fragments, reptile bones and fish teeth are fairly comnon, it seems likely that the Gryphaea shell beds represent a transported
fossil assemblage (Fagerstrom, 1964). Fracies associations (their occurrence in the silts and silty clays), and consideration of the mode of life of the various faunal elements, particularly the oysters (Stenzel, 1971), suggest that these were deposited in shallower water than the bulk of the Lower Oxford Clay, subject to wave-scouring at times.

Meleagrinella shell beds are largely confined to the upper part of the Grossouvrei Subzone, where they are interbedded with calcareous clays, and consist overwhelmingly of a concentration of broken and unbroken specimens of Meleagrinella braemburiensis. Accurate quantitative counts are very difficult to make, and consequently the data used in Text - Fig. 19 is rather less accurate than that of other biofacies. Over \(70 \%\) of the fauna is Meleagrinella, the remainder of the fauna consisting of well niche-partitioned species occupying several habitats. An important feature associated with these shell beds is the fact that most of them are bounded above or below by burrowed surfaces, where fragments of the overlying bed are piped down into the bed beneath. Burrowed horizons are very rare elsewhere in the Lower Oxford Clay (except in the silts), and it seems probable that they represent phases of very slow or non-deposition, with increased current activity. The overwhelming abundance of Meleagrinella almost certainly represents an original feature, as the shells are too fragile to have withstood much postmortem transport, and if it did represent a current-concentrated shell bed, one would expect a much larger content of larger, heavier shells. To explain the high

Meleagrinella content of these beds and bearing in mind the inferred pendent mode of life of the genus, it seems necessary to invoke the presence of a large amount of floating organic matter to which Meleasrinella may have been attached; the resulting environmental reconstruction presumably bears sone resemblance to the Recent Sargassum-dominated environments (Friedrich, 1965). However, this deduction is tentative, as most of the epifruna of Sargassurn is soft-bodied, and would leave no traces, and there is no direct evidence for large amounts of floating organic material in the Lower Oxford Clay. The existence of such material, as noted above, is deduced from the presence of abundant thin-shelled byssally-attached Pteriacea and Pectinacea in sediments such as bituminous shales, where the substrate would have been too soft to allow such animals to live on the seafloor.

Blocky claystone. This unique lithology, known only from the Jason Subzone (Bed 3B) of Calvert, and discussed in detail elsewhere (Duff, in prep., and Chapter 2) has a number of interesting faunal and sedimentological properties. As with the deposit-feeder bituminous shales (within which it occurs), the first two dominance positions are occupied by pendent bivalves \((58.4 \%)\), whilst the remainder of the fauna is dominated by an alternation of infaunal-deposit and suspension-feeders, Lingula and Solemya being the characteristic nembers of the latter group (Text - Fig. 20). The total number of species found is small (only 11), but there is a relatively high dominance
diversity, with only two of the species being represented by less than \(1 \%\) of the fauna. Lithologically, this is a very distinctive rock type consisting of very light grey, rather plastic non-fissile clay, with a good deal of black organic fragments spread throughout it. Many of the Lingula are preserved upright in life position, a condition not known elsewhere in the Oxford Clay, and suggesting that there was no deep scouring of the senfloor. The overall trophic nucleus (Table 6) is similar in composition to the normal bituminous sheles, due mainly to the large content of pendent species, and it is not until these are removed (Table 7) that the unusual nature of the fauna becomes apparent.

Calcareous clays This facies is restricted to the upper part of the Grossouvrei Subzone, where it forms a regular alternation with the Meleagrinella shell beds, the junctions between the two invariably being burrowed. The main characteristic of the calcareous clays is their high dominance diversity, with 5 species each comprising more than \(10 \%\) of the fauna (Text - Fig. 21), and a relatively large trophic nucleus (Table 6). The most abundant species is an infaunal depositfeeder (Mesosaccella), the next two species being pendent bivalves (Byssentolium and Meleaprinella), which together make up \(60.8 \%\) of the fauna. Byssentolium is the most characteristic faunal element of this facies, being known only rarely from other facies; the polychat worm Genicularia is also typical. Further analysis of the fauna reveals that there is an
approximately equal distribution of deposit and suspensionfeeders (Table 6), with most of the suspension-feeders being pendent; infaunal suspension-feeders are not numerically abundant (Text - Fig. 21), and it seems probable that the degree of aeration within the sediment was not great, a situation also apparently characteristic of the nore calcareous Middle and Upper Oxford Clays. The low content of infaunal suspensionfeeders is also very apparent from the triangular plots (Text Figs. Be-8f). The calcareous clays are rather rich in carbonate, and consequently have a low insoluble residue content \((74 \%)\), together with \(a\) low organic carbon content ( \(1.1 \%\) ).

Relations between the biofacies The overall succession in the Lower Oxford Clay at the major pits examined in the Midlands (Text - Fig. 6) is generally very similar, al though there are local variations, especially at Stewartby and Calvert. Superimposed on these local variations in the details of the succession is a marked southward increase in thickness, the Enodatum - Grossouvrei Subzone succession being 12 m thick at Peterborough, and gradually increasing through 14 m at Stewartby, 17 m at Bletchley, to 18 m at Calvert. These thickness changes are likely to be associated with greater distance from the shoreline or a submarine swell, with consequent decrease in the number and thickness of shell beds. This is particularly noticeable in the case of the shell bed which occurs at or just above the base of the Obductum Subzone at Peterborough and Stewartby, the shell bed having disappeared from the Bletchley
section. Study of Text - Fig. 6 also reveals that most of the thickness variation occurs within the Jason and Calloviense Zones, which thicken from 0.5 m at Peterborough to over 3 m at Calvert, suggesting that during the deposition of the initial subzones of the Oxford Clay, conditions were rather more variable, and very much controlled by local configurations of the seafloor. By the time of the Coronatum Zone, conditions appear to have stabilised over the whole of the Midland area, giving a much more uniform thickness of Lower Oxford Clay. The transition beds between the Kellaways Rock and the Oxford Clay are best developed, and best seen, at Peterborough and Bletchley, where they consist of an alternation of silts and silty clays, Gryphaea shell beds and deposit-feeder bituminous shales. At Peterborough, the transition beds occupy the whole of the Enodatum and Medea Subzones ( 0.5 ma ), but at Bletchley are restricted to the Medea Subzone ( 2.0 m ), Kellaways Rock deposition having continued until the top of the Enodatum Subzone. At Stewartby, the transition beds appear to be absent, a bipartite shell bed, the upper part a Granmatodon shell bed and the lower part a Gryphaea shell bed, resting directly on the silts of the Kellaways Rock, which are dated as Fnodatum Subzone; deposit-feeder bituminous shales of the Medea Subzone follow directly on from these shell beds. It thus appears that Kellaways Rock deposition ended earlier in the northern parts of the Midlands, Oxford Clay not reaching the south Midlands until the end of Enodatum Subzone times, suggesting that the shoreline lay to the scuth during this time.

At that time, there then appears to have been rather variable current activity, phases of shallowing and increased current activity giving Gryphaea shell beds, whilst in the intermittent quiet phases, silts or bituminous shales were laid down. The presence of the bituminous shales indicates that the influence of the offshore clay facies was becoming more strongly felt at that time, and that distance from shore, together probably with water depth, was gradually increasing. The transition beds are not exposed at Calvert, the pit ending in the Jason Subzone, although Callomon ( 1968, 2. 287) records 10 feet of combined Medea and Finodatum Subzones in a borehole there.

Gradual recession of the shoreline throughout the period of deposition of the transition beds eventually allowed the establishment of quiet water conditions in which bituminous shales were laid down. At Peterborough, Bletchley and Calvert, this phase seems to have begun more or less at the start of Jason Subzone times, while at Stewartby, similar conditions became established slightly earlier. At all the pits, the lowermost few on of the shales are markedly fossiliferous, and contain the same species as the underlying shell beds, indicating the gradual dying out of the fauna of the preceding bed. There then followed a thick sequence of dominantly deposit-feeder bituminous shales, which occupy the whole of Jason and Obductum Subzone time at Peterborough, Bletchley and Calvert, with the exception of the 1 m band of blocky claystone near the base at Calvert. During this time, bottom conditions were very quiet, and water circulation was rather poor, producing an impoverished
benthonic fauna dominated by deposit-feeding bivalves and gastropods, with benthonic suspension-feeders being rare. Living above the bottom, attached to postulated organic material, Were large numbers of pendent epifaunal suspensionfeeding bivalves, dominated by Bositra, Melearrinella and Oxytoma. The suspension-feeder dominated nature of the fauna is unusual, and almost certainly caused by a superabundance of the suspended food source, as discussed above.

The general sequence seen in the Lower Oxford Clay of the Midlands, Kellaways Rock through transition beds to bituminous shales and then to more fossiliferous shales, adds substance to the suggestion of Hallan (1967a) that bituminous shales are often laid down in relatively shallow water. Hallam suggested that near the base of transgressive sequences, widespread bituminous shale deposition was characteristic, and that it was followed by more fossiliferous, deeper-water clays and shales, laid down as water circulation improved, and sediment oxygenation increased. The Kellaways Beds - Upper Oxford Clay sequence agrees well with this model, the bulk of the Lower Oxford Clay representing the bituminous shale part of the cycle. The presence of the 1 m band of blocky claystone near the base of the Jason Subzone at Calvert indicates that environmental conditions were slightly different in that area during much of the Jason Subzone times, as the Lingula-rich nature of the blocky claystone fauna continues for much of the remainder of the subzone. Both Lingula and Solemya have been considered by previous authors to be genera tolerant of poorly-aerated water
conditions, and this, together with the low organic carbon content, the increased thickness, and reduced benthonic fauna, suggests that in the south Midlands area, this part of the sequence was laid down more rapidly than the deposit-feeder bituminous shales, possibly in slightly deeper water.

At Stewartby, the Obductum Subzone sequence is completely different to that seen at any of the other pits, a thin development of deposit-feeder bituminous shale, containing two very well-developed Nuculacean shell beds, being followed by a very thick Meleagrinella shell bed and a development of foramrich bituminous shale. The combination of the two Nuculacean shell beds, being followed by a very thick Meleagrinella shell bed, suggests that current activity in this area must have been greatly increased at this time, probably on a local swell. The foram-rich bituminous shale above the Meleagrinella shell bed shows a return to quieter, deeper-water conditions, with welldeveloped niche partitioning within the benthonic fauna.

Throughout the Midlands, the end of the Obductum Subzone is marked by a widespread phase of slow deposition, marked by Nuculacean or Gramrnatodon shell beds. Brinkmann (1929) showed that at Peterborough, the shell bed at the top of the Obductum Subzone represents a significant pause in sedimentation (Text Fig. 22), and it seems likely that a similar situation prevailed over much of the Midlands. This phase of condensed deposition is followed at all the pits by a similar succession in the Grossouvrei Subzone, and so it will be considered in rather general terms. The well-aerated conditions existing during the
deposition of the Nuculacean and Granmatodon shell beds persisted into the next phase of bituninous shale deposition, giving a sequence of Grammatodon-rich bituminous shales, rich in infaunal suspension-feeders such as Grammatodon, Isocyprina and Thracia. There appears to have been some stratigraphical control operating at this time, as the start of the Grossouvrei Subzone sees the first appearance in the Oxford Clay of Grammatodon minima, and also marks the arrival of abundant Isocyprina. This event can be recognised at the same level in Dorset, and is extremely useful for defining the base of the Grossouvrei Subzone. Phazes of inareased current activity during this time are marked by Gramnatodon shell beds. As subsidence continued, and oxygenation of the water gradually decreased, the Gramnatodonrich bituminous shales were replaced by foram-rich bituminous shales, in which deposit-feeders pecame more abundant at the expense of infaunal suspension-feeders, although conäitions such as those prevailing in the deposit-feeder bituminous shales never became re-established.

Later in Grossouvrei Subzone times, there was a renewed phase of shellowing, producing the very characteristic alternation of calcareous clays and Meleaprinella shell beds, which bring the Middle Callovian to a close in southern England. As suggested above, this sequence must have been characterised by periodic explosions in colonisation by organic matter, allowing dense Meleagrinella shell beds to accumulate, and producing many small non-sequences. Aeration in the calcareous clays must have been relatively good, as they supported a
diverse fauna of suspension-feeders, and there is a sudden increase in the abundance of tube building annelid worms. Grossouvrei Subzone deposition was concluded over the whole area by a thick Nuculacean shell bed - the Comptoni Bed - which again represents a phase of greatly increased current activity, and a long pause in sedimentation (Text - Fig. 22). This part of the sequence is usually capped by a concretionaxy diagenetic limestone, the Acutistriatum Band, which is developed within a band of very bituminous foram-rich shaly clay, and which represents the basal bed of the Athleta Zone.

Thus within a relatively thin sequence of Lower Oxford Clay \((12-18 \mathrm{~m})\), occupying just over two ammonite zones, there are two cycles of environmental conditions. Firstly there is the deepening sequence from the Kellaways Rock through the transition beds into the deposit-feeder bituminous shales of the Jason Obductum Subzones, with indications of shallowing towards the top, and then the more balanced cycle of the Grossouvrei Subzone, which shows distinct deepening and shallowing phases, ending with a pronounced non-sequence.

COIPAARISONS WITH OTHER FACIES

In view of the lack of comparable quantitative data from other similar environments, comparisons must be limited to rather more qualitative observations, largely gleaned from the literature. In particular, the work of Melville (1956), Hallam (1960, 1967), Palmer (1966, 1966a, 1973) and Sellwood (1972) on

\section*{436.}
the Lias, Hudson \& Palframan (1969) on the Middle and Upper Oxford Clay, Price (1879) on the Gault, and Scott (1970) on the Lower Cretaceous of the United States, has been used for comparison of cley faunas, and shows the Lower Oxford Clay to be unusual because of its very high content of pendent epifaunal suspension-feeders and infaunal deposit-feeders. With the exception of the work of Scott (op. cit.), no quantitative data was given, fossils merely being recorded, or being said to be rare, common or occur, and thus comparison is sometimes difficult.

There is also the problem of the relative importance of evolutionary and environmental considerations when the palaeoecology of rocks of different ages is being compared. However, in the rocks under consideration here, which are mostly of Jurassic age, the importance of evolutionary changes appears to be minor, as there is very little change in the overall compasition of the fauna, although there is much variation in the relative importance of different species within it. It is well-known that protobranch bivalves are a notably slowlyevolving group, so evolutionary effects in this protobranchdominated assemblage are likely to have been negligible. In general terms, it appears to be environmental conditions which have exercised the greater control over benthonic assemblages during Jurassic and Lower Cretaceous times. The importance of evolutionary changes will be considered in the next section.

The shales of the Oxford Clay have most frequently been compared with those of the Lias, but stuay of the published data on Lius feunas tends to emphasise differences between the
two deposits. Hallam (1960) described the bituminous shales of the Blue Lias of Dorset and Glamorgan, and showed then to have a very high organic cerbon content (3.9-8.0 \%), and a fauna consisting almost entirely of amonites, fish scales and bivalve spat, indicating that bottom conditions must have been anaerobic, allowing no benthonic fauna to become established. Most of the fossils are preserved in the marls and limestone bands, which Hallam (op. cit.) showed to be essentially of primary origin, although he later (1964) amended his views, but similarities with the Lower Oxford Clay are negligible, as in the Lias limestones there is a rich and varied fauna of normal infaunal and epifaunal suspension-feeders, while deposit-feeders and pendent bivalves are rare. It thus seems very likely that the limestone part of the Blue Lias rhythm was considerably better-aerated than the Lower Oxford Clay, as it contains a much more varied fauna, including gastropods, brachiopods and echinoderms.

The work of Sellwood (1972) on the Sinemurian-Pliensbachian Lias of England gives similar results to those of Hallam (1960) insofar as the fauna is dominated by infaunal and epifaunal suspension-feeders, with few deposit-feeders. Rocks of this age over most of Britain are clearly less bituminous and more well-aerated than the bituminous shales of the Blue Lias, and contain many genera which are also characteristic of the Lower Oxford Clay, but again there is a lack of abundant pendent bivalves and deposit-feeders. The same is true of the liddle and Lower Lias described by Melville (1956) from the Stowell

Park borehole in Gloucestershire, pendent bivalves and depositfeeders again not being abundant, the fauna being dominated by infaunal and epifaural suspension-feeders. Palmer's (1973) work on the upper parts of the Lower Lias in Gloucestershire shows a faunal list rather similar to that of the Lower Oxford Clay, but yet again, pendent bivalves and deposit-feeders are neither abundant nor widespread. Work on parts of the Middle Lias (Palmer, 1966, 1966a; Hallan, 1967) shows similax conditions to have prevailed during deposition of the more sandy shales being laid down at that time.

The Upper Lias (Melville, 1956; Hallam, 1967) of Britain is probably the nost sinilar deposit to the Lower Oxford Clay, consisting of dark shales and shaly clays with a sparse benthonic bivalve fauna, dominated by deposit-feeding Nuculaceans such as Mruculana and "Nucula" , often with a pendent bivalve fauna of Bositra radiata and Inoceranus dubius. These shales, which are also particularly rich in cephalopods and Procerithium, often contain local concentrations of cominuted fish debris, insect remains and crustacea, emphasising the similarity with the bituminous shales of the Lower Oxford Clay. Quantitative work on the fauna of the Upper Lias shales would be of great interest for the making of detailed comparisons with the Oxford Clay.

Hudson \& Palframan (1969) have described the palaeoecology of part of the Middle-Upper Oxford Clay of the Midlands, and shown that there are clear differences between the fauna of this part of the Oxford Clay, and the Lower Oxford Clay. The dark grey, well-laminated bituminous shales have been
replaced by light grey, rather calcareous clays, often rich in fossils preserved as pyritic internal moulds, with no preserved aragonite. The Spinosum Clays (Athleta - Lamberti Zones) have a sparse benthonic fauna, dominated by shellow infaunal species (mostly deposit-feeders), with the epifauna characteristically rich in Chlanys and Gryphaes; other Pectinacea are locally common. Near the top, Gryphaea beds appear, alternating with the normal clay facies, and having, in addition to the abundant Gryphaea lituola, suspension-feeders dominating over depositfeeders. However, these Gryphaea beds are not equivalent to those of the Lower Oxford Clay, as they merely consist of a concentration of oysters (estimated at 4 per square foot) in slightly harder and more calcareous clay, and do not represent phases of non-deposition, although there must have been some slowing of sedimentation. The rest of the Spinosum Clays make up a sequence of quiet water muds, similar to, but not equivalent to the bituminous shales of the Lower Oxford Clay. The faunal density is also by no means as great as in the Lower Oxford Clay, and there are none of the abundant Bositra, Meleagrinella or Oxytoma so typical of the Iliddle Callovian. The abundance of Astarte s.1. in the Spinosum Clays suggests that the bottom sediments must have been fairly well-aerated.

The Tlariae Clays (Mariae Zone) are derker and more organic-rich than the Spinosum Clays, and have a different faunal composition. The benthonic fauna is much reduced in variety, and is almost entirely infaunal, with Dicroloma, Procerithium and Nuculacea being abundant, and Pinna being the
only common suspension-feeder. This part of the Upper Oxford Clay is much more similer to the Lower Oxford Clay in faunal content, although the presence of pyritic anmonites is a notable difference, and the shales are not well-laminated. It seems likely, however, that during at least part of the Mariae Zone, conditions were somewhat similar to those of the Lower Oxford Clay.

The fauna of the Gault Clay (Cretaceous, Albian) has been sumnarised by Casey (1966), but a more comprehensive faunal list was given by Price (1879), who charted the distribution of the bivalve fauna, Price recognised 86 bivalve species in the Thglish Gault, 14 of which are deposit-feeders, alnost all being species of "Nucula". In spite of this apparently high diversity of deposit-feeding protobranchs, they are not as abundant as they are in the Lower Oxford Clay, nor are there so many siphonate forms. There are, however, large swarms of Inoceramus throughout the Gault, and so in this respect, there are close similarities with the L. Oxford Clay. The main difference is in the much greater diversity of infaunal and epifaunal suspension-feeders, especielly deep burrowers. The Gault has long been divided into two lithological parts, the Upper Gault consisting of light coloured rather calcareous clay, while the Lower Gault is much darker, less calcareous, and is generally more similar to the Lower Oxford Clay, although it is not bituminous. Casey (1966) records Inoceranus and Nuculacea (Nucula spp., Acila and Mesosaccella) as the most abundant bivalves of the I. Gault, with infaunal suspension-feeders
becoming more abundant in the Upper Gault. Most of the molluscs preserved in the Lower Goult retain the original unaltered aragonite of their shells, although the cephalopods in particular, as well as some of the bivalves and gastropods, are usually pyritised. As in the Lower Oxford Clay, preservation of aragonite is related to the very impervious nature of the sediment.

Scott (1970) has clescribed the palaeontology and palaeoecology of the Kiowa Formation (L. Cretaceous, Aptian Cenomanian) of Kansas, and recognised six lithofacies groupings, of which one, the aark gray shale lithofacies, is comparable with the Lower Oxford Clay. It is a dark grey, fissile, welllaminated shale, with a general lack of small-scale sedimentary structures, and Scott believes the fossil assemblages to represent "disturbed neighbourhood" and mixed fossil assemblages. This lithofacies is cheracterised by the Nuculana association, dominated by Nuculana, Yoldia, Nucula, (nuculaceans), Breviarca (Arcacea), Pholadomya, Turritella, Drepanocheilus and Lingula, which constitute \(18-84 \%\) of the fauna; most of the remainder of the fauna is composed of a corbulid. The other comparable lithofacies recognised by Scott is his shell conglomerate facies, which corresponds closely to the Gryphaea shell beds of the Lower Oxford Clay. Points of similarity are many, and include the high content of Gryphaea \((51-100 \%)\), the comon occurrence of calcitic shells, and the laterally discontinuous nature of the shell beds. There are, however, some sedimentary structures present which suggest that
the Kiowa shell conglomerates were deposited in very shallow water, possibly by stom-generated currents, and there is no direct evidence that this is the case for the Lower Oxford Clay Gryphaea shell beds.

Evolutionary chanpes - comparison with Palaeozoic and Recent assemblages Deposit-feeder dominated assemblages are known from many argillaceous deposits, from the Ordovician to the present day. In general trophic composition, the assemblages are clearly similar, but marked evolutionary changes have altered the structure of the younger ones, showing the importance of evolutionary changes over a long period of time. The main changes are in the composition of the suspensionfeeding part of the fauna since the Lower Palaeozoic, bivalves having taken the place of the articulate brachiopods, as a result of the development of mantle fusion and siphon formation (Stanley, 1958). The suspension-feeder groups present in the Lower Palaeozoio have also been replaced by more highly-evolved superfamilies, leaving only the slowly-evolving deposit-feeding Nuculoida as a conservative stock. Most Recent deposit-feeder dominated mud assenblages are characterised by a high content of soft-bodied polychaets, but as noted above, the importance of such animals in fossil assembloges is virtually impossible to assess.

The most similar assemblages to those of the Lower Oxford Clay are the various Lingula "communities" described from the British and Anerican Palaeozoic (Bretsky, 1970; Ziegler et al.,

1968; Craig, 1955). The data for these communities have been replotted by Walker (1972) to show the trophic structure of the assemblages, and it is clearly apparent that both the Ordovician and the Lower Cerboniferous Lingula assemblages (described by Bretsky and Craig respectively), are dominated by deposit-feeders, and show well-developed niche partitioning. As in parts of the deposit-feeder bituminous shale biofacies, Lingula is an important constituent of the fauna, and occupies second place in the assemblage; the dominant species in both these Lower Palaeozoic assemblages is an infaunal nuculoid. In the Ordovician Iinguie community described by Bretsky (op. cit.), 3 rd and 5 th places are occupied by archaeogastropods, which functioned as epifaunal browsing herbivores. These elements are absent from the equivalent Mesozoic assemblages. Similar archaeogastropod-rich assemblages are known from the Devonian of New York (the Bellerophon community of Bowen et al., 1974), with bellerophontid gastropods occupying niche 1 , and two infaunal deposit-feeding nuculoids in positions 2 and 3. Other minor elements of the fauna are shallow infaunal and epifaunal suspension-feeding bivalves, and articulate brachiopods.

Ziegler et al. (1968) have described soveral "communities" from the Silurian of the Welsh borderlands, the Lingula conmunity being particularly relevant here. The commonest species is an epifaunal suspension-feeding brachiopod (Camarotoechia), with Lingula and Palaeoneilo (a nuculanid) occupying the next two positions; the epifaunal pterioid Fteronitella is also characteristic. This assemblage has a low diversity (Diversity

Index 6.2), but shows a wide range of feeding types, although it differs from the other Palseozoic Lingula associations in having a high content of filter-feeders; Walker (1972) has suggested that perhaps this is not a true example of the Lingula assemblage, which he recognises as existing, more or less unchanged, from the Ordovician to the Pemian. This particular Lingula community is usually developed in a more marginal facies, consisting mainly of sandstones, and so epifaunal suspension-feeders, such as Camarotoechia, are most abundant. The main point here is that Iinerula commities may be of varying type, and developed in several lithologies; only shale occurrences are of relevance here. The Diversity Index value for Ziegler's Lingula commuity (6.2) agrees well with the values from the Lower Oxford Clay (5.9-6.7 in the bituminous shales), although the other brachiopod-dominated Silurian commuities have much higher diversities (DI 7.8-11.8), due to their low dominance diversity.

In general terms, there are close similarities between Palaeozoic and Mesozoic deposit-feeder dominated assemblages, most notably in the abundance of infaunal deposit-feeding bivalves and infaunal suspension-feeding Iingula. Insofar as the Nuculoida have not evolved markedly since the Lower Palaeozoic, there are close parallels at the superfamily or even family level between Palaeozoic and Mesozoic assemblages, the greatest differences being in the composition of the suspension-feeding part of the fauna. In the Mesozoic, many of the niches originally occupied by the brachopods have been largely taken
over by the bivalves, meny of the new superfamilies still being extant. One of the major differences between the Lower Oxford Clay and the Palaeozoic assemblages just discussed, is the lack of a rich fauna of pendent epifaunal suspensionfeeding bivalves, although they occur sporadically in some of the assemblages (i.e. the Pusidonia band of Craie, 1955).

Recent offshore soft mud commities have been described by many authors, and are broadly comparable with the Lower Oxford Clay assemblages, although there are several conspicuous differences. The silt-clay facies occupying the central axis of Buzzards Bay (Massachusetts) has been studied by Sanders (1960), Rhoads \& Young (1970) and Rhoads (1973), and shown to be dominated by deposit-feeders, both infaunal and epifaunal. Sanders (op. cit.) identified the fauna as belonging to the Nucula proxima - Nephthys incisa community, with these two species (the latter a polychaet) making up \(76 \%\) by number of the specimens collected. Five other species are represented by over \(1 \%\) of the fauna (2 polychaets, a crustacean, an opisthobranch gastropod and a suspension-feeding bivalve) and \(95 \%\) of the fauna is accounted for by only 11 species; there is a very varied accessory fauna, with 68 species making up the last \(5 \%\) of the fauna. The trophic nucleus consists of 3 deposit-feeders, Nucula proxima being the most abundant, and suspension-feeders are of very minor importance; no pendent epifaunal suspension-feeding bivalves are known. The same is true of other offshore mud communities (Jones, 1950, 1951), which are usually dominated by deposit-feeding protobranchs and
polychaets, usually with a conspicuous associated fauna of infaunal suspension-feeding bivalves. In this respect, the similarities with the various Lower Oxford Clay biofacies are many when the strictly benthonic fauna alone is considered, but again, there is a noticeable lack of pendent suspensionfeeders. The only known Recent assemblage with a high content of pendent epifaunal species is that found on Sargassurn weed (Friedrich, 1965), but molluscs are not of great importance, only 5 species having been described from this habitat. Stanley (1970) has recorded the fact that many Recent species of Pteria attach preferentially to alcyonarian sea-whips, a method of obtaining stable fixation in a very agitated environment. Recent parallels for the mode of life postulated for the Oxford Clay pendent bivalves are not known, and this may be accounted for by evolutionary effects. Alcyonarians did not appear until the Jurassic, and gorgonaceans until the Cretaceous (Stanley, 1972), so it is possible that the lack of abundant rooted organic material during the Jurassic led to the colonisation of floating or rooted organic material (including algae) by species that needed to live above, rather than on, a soft mud substrate. In this context it is easy to see that the Lower Oxford Clay bituminous shale assemblages were both differently structured, and occupied slightly different environments, to Palaeozoic and Recent offshore mud assemblages, a consequence of evolutionary, rather than environmental changes.

\section*{447 •}

CONCLUSIONS

Hallan (1967a) suggested that bituminous shales were relatively shallow-water deposits laid down in quiet, but not invariably stagnant water, below wave base, in contrast to the deep-water "barred basin" nodel postulated by many earlier authors. The evidence supplied by the Oxford Clay appears to support this hypothesis, as it clearly represents a deepening sequence, from the sands and silts of the Kellaways Rock, through the laminated bituminous shales of the Lower Oxford Clay into the more mascive calcareous clays of the Middle - Upper Oxford Clay; the meny small scale alternations of lithology within the Lower Oxford Clay are indicative of relatively shallow-water deposition, where a slight change in water depth could have a marked effect on hydrographic conditions.

Faunally, bituminous shale sequences show variability through time, with Palaeozoic black shales being either completely lacking in benthonic elements (the graptoloitic shales), or with a benthonic fauna dominated by deposit-feeding nuculoids and suspension-feeding linguloids. At various times, pendent or benthonic byssally-attached bivalves were fairly comnon, but were never as important as in the Mesozoic. In the European Jurassic, bituminous shales are particularly important in the L. Hettangian, L. Toarcian and the M. Callovian, and all tend to show a fauna consisting mainly of nuculoids and pendent bivalves. Recent organic-rich mud communities appear to have rather more infaunal suspension-feeders, and no pendent bivalves, but again,

\section*{448.}
nuculoids are numerically dominant. The role of the infaunal deposit-feeding protobranchs seems to have persisted more or less unchanged since the Lower Palaeozoic, their mode of life (inhabiting quiet water muds in areas of environmental stability) meaning that there has been little need of adaptive change. The replacement of brachiopods by bivalves as the dominant members of the epifauna after the Palaeozoic is a function of mantle fusion and siphon formation in the Eivalvia, and marks the main change in the composition of the faunas of organic-rich shales since the Palaeozoic.

\section*{RETERENCES}

ARKIbLL, W.J. 1933. The Jurassic System in Great Britain. Clarendon Press, Oxford.

BADER, R.G. 1954. The role of organic matter in determining the distribution of pelecypods in marine sediments. J. mar. Res. 13, 32-47.

BARNARD, T. 1952. Foraminifera froll the Upper Oxford Clay of Warboys. Proc. Geol. Ass. 63, 336-350. 1953. Foraninifera from the Upper Oxford Clay (Jurassic) of Redcliff Point, near Weymouth, England. Ibid, 64, 183-197.

BOWEN, Z.P., D.C. RHOADS \& A.L. McALESTER, 1974. Marine benthic communities in the Upper Devonian of New York. Lethaia, I, 93-120.

BRETSKY, P.V. 1970. Upper Ordovician ecology of the central Appalachians. Bull. Peabody Mus. nat. Hist. 34, 150 pp., 44 pls.

BRINKMANN, R. 1929. Statistisch-Biostratigraphische Untersuchungen an Mitteljurassischen Amnoniten über Artbegriff und Starmesentwicklung. Abh. Akad. Wiss. Göttingen Math. Phys. K1. I.F. 13 (3), 1-249, pls. 1-5.
--- 1929a. Monographie der Gattung Kosmoceras. Ibid, 13 (4), 1-124, p1. 1. CALLOMON, J.H. 1955. The armonite succession in the Lower Oxford Clay and Kellaways Beds at Kidlington, Oxfordshire, and the zones of the Callovian stage. Phil. Trans. R. Soc. B. 232, 215-264, pls. 2, 3.
1964. Notes on the Callovian and Oxfordian stages. C.r. Mem. Coll. Jurassique, Iuxembourg, 1962, 269-291.
1968. The Kellaways Beds and the Oxford Clay. In SYLVESTER-BRADIEY, P.C. \& T.D. FORD (eds.), The Geolory of the East Midlands, Leicester, 264-290. CASEY, R. 1966. Palaeontology of the Gault. In SMART, J.G.O., G. BISSON \& B.C. WORSSAIf, Geology of the country around Canterbuxy and Folkestone. Mem. geol. Surv. G. B., 102-113. CORDEY, W.G. 1962. Foraminifera from the Oxford Clay at Loch Staffin, Isle of Skye, Scotland. Senckenberg. leth. 43, 375-409, pls. 46-48.
1963. Oxford Clay foraminifera from Figland (Dorset - Northamptonshire) and Scotland. Unpubl. Ph.D. thesis, Univ. Iondon.

CORDEY, W.G. 1963a. The genera Brotzenia and Voorthuysenia (Foraminifera) and Hofkers classification of the Epistomariidae. Palaeontology, 6, 653-657, pl. 93. CRAIG, G.Y. 1955. The palaeoecology of the Top Hosie shale (Lower Carboniferous) at a locality near Kilsyth. Q. J. geol. Soc. Lond. 110, 103-119.

DINAMANI, P. 1964. Feeding in Dentalium conspicuum. Proc. malac. Soc. Lond. 36, 1-5.

DAVIES, A.M. 1916. The zones of the Oxford and Ampthill Clays in Buckingharishire and Bedfordshire. Geol. Mag. 53, 395-400.

FARROW, G. 1966. Bathymetric zonation of Jurassic trace fossils from the coast of Yorkshire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2, 103-151. FRIEDRICi, H. 1965. Marine Biology. Sidgwick \& Jackson, London. HALLAMA, A. 1960. A sedimentary and faunal study of the Blue Lias of Dorset and Glamorgan. Phil. Trans. R. Soc. B. 243, 1-44, pls. 1, 2.
1961. Cyclothems, transgressions and faunal change in the Lias of North-West Europe. Trans. Edinb. geol. Soc. 18, 124-174.
--.- 1964. Origin of the limestone-shale rhythrs in the Blue Lias of England: a composite theory. J. Geol. 72, 157-
-- 1967. An environmental study of the Upper Domerian and Lower Toarcian in Great Britain. Phil. Trans. R. Soc. B, 252, 393-445, pl. 20.

HALIAM, A. 1967a. The depth significance of shales with bituminous laminae. Mar. geol. 2, 481-493.
.... 1969. Faunal realms and facies in the Jurassic. Palaeontology, 12, 1-18.

HUDSON, J.D. \& D.F.B. PALFFAMAN, 1969. The ecology and preservation of the Oxford Clay fauna at Woodham, Buckinghamshire. Q. J1. geol. Soc. Iond. 124, 387-418, pls. 19, 20.

JEFFERIES, R.P.S. \& P. MITTON, I965. The mode of life of two Jurassic species of 'Posidonia'. Palaeontology, ㅂ, 156185, p1. 19.

JOHINSON, R.G. 1964. The community approach to palaeoecology. In IMBRIE, J. \& N.D. NEWEIL (eds.), Approaches to Paleoecology, Wiley, New York, 107-134.
1971. A quantitative approach to faunal province analysis. Am. J. Sci. 270, 257-280.

JONES, N.S. 1950. Marine botton communitie Biol. Rev. 25, 283-313.
_-- 1951. The bottom fauna off the south of the Isle of Man. J. Animal Ecol. 20, 132-144.

MELVILLE, R.T. 1956. The stratigraphical palaeontology, ammonites excluded, of the Stowell Park borehole. Bull. geol. Surv. G. B. 11, 67-139, pls. 2-8.

NEAVERSON, E. 1925. The zones of the Oxford Clay near Peterborough. Proc. Geol. Ass. 36, 27-37.

NEYMAN, A.A. 1967. Limits to the application of the trophic group concept in benthic studies. Oceanology, Acad. Sci. USSR, I, 149-155.

PALMER, C.P. 1966. Note on the fauna of the Margaritatus Clay (Blue Band) in the Domerian of the Dorset coast. Proc. Dorset nat. Hist. archaeol. Soc. 87, 67-68. 1966a. The fauna of Day's shell bed in the Midale Lias of the Dorset coast. Ibid, 87, 69-80, pls. 1-3. 1971. The stratigraphy of the Stonehouse and Tuffley clay pits in Gloucestershire. Proc. Bristol Nat. Soc. 22, 59-68. 1973. The palaeontology of the Liassic (Lower (Jurassic) clay pits at Stonehouse and Tuffley in Gloucestershire. Geol. Mag. 110, 249-263, pl. 1. PRICE, F.G.H. 1879. The Gault. Taylor \& Francis, London. RHOADS, D.C. 1973. The influence of bottom-feeding benthos on water turbidity and nutrient recycling. An. J. Sci. 273, 1-22, pls. 1, 2.

RHOADS, D.C., I.G. SPEDEN \& K.M. WAAGE, 1972. Trophic group analysis of Jpper Cretaceous (Maestrichtian) bivalve assemblages from South Dakota. Bull. Am. Ass. Petrol. Geol. 56, 1100-1113.

RHOADS, D.C. \& D.K. YOUNG, 1970. The influence of depositfeeding organisms on bottom-sediment stability and community trophic structure. J. mar. Res, 28, 150-178.

ROOD, A.P. \& T. BARITARD, 1972. On Jurassic coccoliths:
Stephanolithion, Diadozygus and related genera. Eclog. geol. Helv. 65, 327-342, pls. 1, 2.

ROOD, A.P., W.W. HAY \& T. BARNARD, 1971. Electron microscope studies of Oxford Clay coccoliths. Ibid, 64, 245-271, pls. 1-5.
RUTTMEN, M.G. 1956. Depositional environment of Oxford Clay at Woodham clay pit. Geologie Mijnb. N.S. 18, 344-346. SARDMRS, H.L., 1960. Benthic studies in Buzzards Bay. III. The structure of the soft-bottom commity. Lirmol. Oceanoger. 2, 136-153.
-.-- 1968. Marine benthic diversity; a comparative study. Am. Nat. 102, 243-282.

SCHARFER, W. 1972. Ecolopy and Palaeoecology of liarine Environnents. Ed. G.Y. CRAIG ITranslated from the german by I. OERTEEIT. Oliver \& Boyd, Edinburgh.

SCOTT, R.W. 1970. Paleoecology and paleontology of the Lower Cretaceous Kiowa Formation, Kansas. Paleont. Contr. Univ. Kansas, Art. 52, 94 pp., 7 pls.
SELLWOOD, B.W. 1972. Regional environmental changes across a Lower Jurassic stage-boundary in Britain. Palaeontology, 15, 125-157, pls. 28, 29.

STANLEY, S.M. 1968. Post-Paleozoic adaptive radiation of infaunal bivalve molluscs - a consequence of mantle fusion and siphon formation. J. Paleont. 42, 214-229.
-_- 1970. Relation of shell-form to life habits in the Bivalvia (Mollusca). Mem, geol. Soc. Am. 125.

STANLEY, S.M. 1972. Functional morphology and evolution of byssally attached bivalve mollusks. J. Paleont. 46, 165-212.

STENZEL, H.B. 1971. Oysters. In MOORE, R.C. (ed.), Treatise on Invertebrate Paleontology, Part N, Mollusca 6, Bivalvia. Boulder.

TURPAEVA, E.P. 1948. The feeding of some benthic invertebrates of the Barents Sea, Zool. Zh. Ukr. 27. 1949. Significance of food interrelationships in the structure of marine benthic biocoenoses. Dokl. Akad. Nauk SSSR, 15. 1953. Feeding and food groupings of marine benthic invertebrates. Trudy. Inst. Okeanologia, 6, 259-299. 1957. Food interrelationships in marine benthic biocoenoses. In Marine Biology, Am. Inst. Biol. Sci. 20, 137-148.

WALKER, K.R. 1972. Trophic analysis: a method for studying the function of ancient communities. J. Paleont. 46, 82-93. WHATLEY, R.C. 1966. Callovian and Oxfordian Ostracoda from England and Scotland. Unpubl. Ph.D. thesis, Univ. Hull. ---- 1970. Scottish Callovian and Oxfordian Ostracoda. Bull. Br. Mus. nat. Hist. Geol. 12, 297-358, pls. 1-15. WHITTINGTON, H.B. 1971. The Burgess Shale: history of research and preservation of fossils. In North Amer. Paleont. Conv. Chicago, 1969, Proc. I, 1170-1201.

WOODVARD, H.B. 1895. The Jurassic rocks of Britain. V. The Middle and Upper Oolitic rocks of England. Mem. geol. Surv. G. B.

Wrighr, J.K. 1968. The stratigraphy of the Callovian rocks between Newtondale and the Scarborough coast, Yorkshire. Proc. geol. Ass. 72, 363-399, pls. 10,11.

ZIEGIER, A.M., L.R.M. COCKS \& R.K. BAMBACK, 1968. The composition and structure of Lower Silurian marine communties. Lethaia, I, 1-27.

\section*{CHAPIER 4}

\section*{SUMIARY OF CONCLUSIONS}

From the dettiled work on the bivalve taxonomy and palaeoecology of the Lower Oxford Clay of southerm England, the following conclusions mey be drawn.
1) The detailed stratirraphy of the Lower Oxford Clay, as described by Callomon (1968) has been confirmed, as broadly speaking, the divisions recognised by Callomon have been identified and described by the author (Fig. 2.3 and Appendix 1). The litholopical details given by Callomon (op. cit.) are mostly confined to elucidation of the subzonsl stratigraphy, and recording the ranges of most of the ammonite species. Exhaustive collecting oy the author at the four I.B.C. quamies has added to this basic store of information by giving the range and occumence of all the bivalve species, togetner with all the other invertebrate spocies collected. In only one case, that of the Obductum - Grossouverei subzonal boundary at Stewartby, has it been necessaxy to amend Callomon's zonal scheme, with the placing of the boundary at the level of Callomon's bed 9. This conclusion is based on the first appearance of abundant Grammatodon minima, 7 chacacter proved at the other pits to be diagnostic of the base of the Grossouvrei Subzone; Callomon was unable to wilit the Coronatum Zone by using ammonites.
2) Ten different biofacies types, broadly based on a combinsiuion of bivelves and lithology have been recognised at the four major quarries, and their faunal content, lithological
characters and distribution considered in sections 2.3.3, 2.3.4 and Chapter 3.
3) The palaeoautecology of each of the 33 bivalve genera described from the Lower Oxford Clay has been considered in detail, together with general remarks on the feeding group classification so widely used in modern palaeoecological work. The nature and inferred palaeoautecology of the non-bivalve part of the fauna has been described in section 2.4.4, the first exhaustive treatment of the ecology of the whole of the Lower Oxford Clay fauna. The nature of the fauna has also been considered in Chapter 3 .
4) Two new morphological terms, to be applied to various bivalve groups, have been introduced: pseudolunule (in Rollierella minima) and commissural platform (in Gryphaea dilobotes). These terms axe defined in the description and remarks sections of the systematic descriptions. Several measurement parameters, such as length of the straight hinge line (Lh), degree of obliquity (angle \(\theta\) ), oblique length (OL), escutcheon length (IF), length of the area (IA), escutcheon width (EN) and number of tubercle rows (TR) are defined in section 2.5, and widely used in the description of the various bivalve species. An arbitrary decision as to the meaning of the terms small, medium and large-sized, as applicable to Lower Oxford Clay bivalves, has been made as follows: small, up to 10 mm long; medium, \(11-30 \mathrm{~mm}\); large, over 31 mm .

Several simple statistical terms are used in Appendix 3
to characterise the degree of variation within each species;
these are shown and defined in section \(2 \cdot 5 \cdot 3\).
5) Four main preservation types have been recognised in the Lower Oxford Clay (section 2.6), the preservation type often determining how much detail may be seon on any particular shell. The major types are: a) preservation as primary shell material, cither celcite or aragonite; b) preservation as primary shell with pyrite overgrowths, usually only on shells with nacreous aragonite; c) primary shell with calcite overgrowths, on shells which were either calcite or aragonite; and d) complete replacement of the she?1 material by pyrite. There are occasional examples of originally aragonitic shell material (the shell of the ammonite Brymnoceras) which has been completely replaced by sparry calcites this type is, however, rare. As mentioned in section 2.6 , the degree of crushing is dependent on whether the specimen in question is preserved as an artioulated shell, or as a disarticulated valve.
6) In the systematic descriptions of the bivalve fauna (Chapter 2), 48 species, 7 of which are new, are described monographically, and one new genus, Byssentolium, with its type species B. hudsoni sp. nov., is erected; it is distinguished from Entolium s.s. by the presence of a persistent byssal notch throughout its Iife. One subgenus, Mrautscholdia Cox \& Arkell, has been elevated to full generic rank, on the basis of dental characters. Two well-known Upper Jurassic bivalve species are placed in different genera, a decision based on study of their internal characters; Lucina lirata Phillips is placed in Discomiltha, and Anisocardia minima (J. Sowerby) in Rollierella.

The well-known oyster species Gryphaea bilobata J. de C. Sowerby, selected by Stenzel (1971) as the type species of his new subgenus Bilobissa, has had the nomenclatorial problems surrounding it elucidated, and it is proven that the holotype of G. bilobata come from the Inferior Oolite, not the Kellaways Rock, and is a different species to the Callovian one; hence it has proved necessary to introduce a new name for the Callovian Gryphaea, Gryphaea (Bilobissa) dilobotes nom. nov.
7) Five parameters aiding the understanding of the palaeosynecology of the Lower Oxford Clay are defined in Chapter 3: trianguiar plots, rarefaction curves, trophic nuclei, trophic group composition and diversity index. After definition, the advantages and disadvantages of each method are discussed, and the ten biofacies previously defined in Chapter 2 are then considered using these five parameters. It may be seen from the relevant figures (Table 5; Figs. 7a-8f; Fig. 10; Tables 5, 6; Figs. 11-21) that each biofacies has characteristics of its own which enable it to be easily recognised using these parameters, which are thereby proved to be valid indicators of palaeosynecology in this case.
8) Using these parameters, together with lithological and faunal characteristics, the environmental history of the Middle Callovian stage in central England has been elucidated. The whole sequence seems to agree with Hallam's (1967a) hypothesis of bituminous shales being typical of deepening water in the early stages of a major marine transgression, as the Lower Oxford Clay bituminous shales follow shallow-water silts
and sandstones, and are followed by more massive, plastic clays, with very poor lamination. Throughout central Ingland, the Jason Zone and Obductum Subzone sequences show a general thickening when traced southwards, showing that deposition was more continuous in the south, with fewer phases of reduced sedimentation; this evidence is strengthened by the presence of marginal deposits of M. Callovian age in Yorkshire (Wright, 1968), indicating that the shoreline during this time lay to the north. The sequence up as far as the top of the obductum Subzone shows what appears to be a deepening-water phase, from the silts and sands of the Kellavrays Rock beneath, through into laminated bituminous shales; there scems also to have been a slight shallowing phase towards the end of the Obducturn Subzone, as the subzone is capped by a well-developed Nuculacean or Gramatodon-rich shell bed at all the quarries, formed during a period of increased current activity and winnowing, almost certainly in fairly shallow water. Within the four quarries studied there are minor variations in both lithology and biofacies, showing there to have been local variation in environmental conditions, although the overall conditions seem to have been relatively stable.

The onset of the Grossouvrei Subzone heralded a greater uniformity of environmental conditions over the whole of central Prgland, as the same sequence of biofacies may be recognised at all the quarries. Suspension-feeder bituminous shales start the sequenco, and are followed by laminated foram-rich bituminous shales, and an alternation of calcareous clays and Meleagrinella
shell beds, the subzone being concluded by another well-developed Nuculacean shell bed. This sequence is interpreted as showing an initial deepening phase, from Gramatodon-rich shell beds, through suspension-feeder bituminous shales, into foram-rich bituminous shales, being followed by a shallowing phase, with the altemation of calcareous cleys and Meleagrinella shell beds, and the capping Nuculgcean shell bed.

Thus within the 18 m of Lower Oxford Clay present in the Midlands, two cycles of environmental conditions may be recognised, each one showing deepening and then shallowing of the water.
9) Comparison with other British Jurassic Clay Formations reveals that the Lower Oxford Clay is an unusual deposit, with a fauna dominated by epifaunal 'pendent' suspensionfeeders and infeunal deposit-feeding Muculaceans. The only truly comparable sequence is the Upper Iias described by Melville (1956) from the Stowell Park borenole in Gloucestershire, where dark bituminous shales have a fauna dominated by Nuculacea and the 'pendent' suspension feeders Bositra radiata and Inoceramus dubius, together with Frocerithium; this particular fauna seems to be characteristic of much of the Upper Lias of Britain, and also of Turope, as the Toarcian stage marked another major marine transgression (Hallam, 1967a). Other parts of the Lias, the Middle and Upper Oxford Clay, the Gault, and parts of the Lower Cretaceous of the U.S.A., in which there are thick clay or shale sequences, do not show faunas of this kind, and so cannot be considered as ecologically equivalent to the Lower Oxford Clay.
10) The composition of assemblages dominated by muddwelling deposit-feeders from the Lower Palacozoic to the Recent has been considered, and it is clearly apparent that although the same ecolocical niches ney he recognised, they are occupied by different groups of animals. Study of Recent offshore soft mud cormunities has shown that these cormunities are usually dominated by infaunal and opifaunal deposit-feeders, with polychaet worns beine of great importence (ofter constituting \(75 \%\) of the fauna); as noted in the early part of Chapter 3, the abundance of soft-bodied invertebrates in fossil sediments is virtually inpossible to assess.

In the Pslaeozoic, the suspension-feeder part of the assemblace was dominated by brachiovods, but with the development of mantle fusion and siphon formation in the bivalves at the end of the Palnoozoic, the brachiopods were rapidly replaced by suspension-feeding bivalves, which have occupied these niches right up to the Recent. Only the slowly-evolving depositfeeding Nuculoide have xemined in the same niche since the Lower Palaeozoic, showing how they have become well-adapted to their particulum niche.

\section*{REFTBRENCES}

CAILIOMON, J.F. 1968
HALLAN', A. 1967 a
MELVILIIE, R.V. 1956
STREMZEL, H. B, 1971
WRIGAT, J.J. 1968

See p. 72
See D. 451
See p. 451
See p. 91
See p. 95

\title{
K.L.DUFF, Ph.D. THESIS 1974.
}
i.

ABSTRACT

The Lower Oxford Clay (Middle Callovian, Upper Jurassic) of southem Ingland has been studied in detail, in order to elucidate the stratigraphy, bivalve taxonomy and palaeoecology of the formation.

Examination of four quarries in the Midlands, between Peterborough and Calvert (Bucks.), has allowed a detailed stratigraphy to be established, based upon that of Callomon (1968), and to which it has been possible to relate the range and occurrence of all the invertebrate species collected. The position of the Obductum - Grossouvrei Subzonal boundary at Stewartby (Bedford), which was not located by Callomon, has been established, on the basis of recurrent bivalve populations.

The taxonomy of the bivalve fauna has been treated monographically, 48 species, 7 of which are new, having been described. One new genus, Bvssentolium gen. nov. is introduced, with B. hudsoni sp. nov, as its type species. The subgenus Trautscholdia Cox \& Arkell is elevated to full generic rank, and the generic assignations of several of the most well-known Upper Jurassic bivalve species are amended. The remainder of the Iower Oxford Clay invertebrate fauna has been considered in general terms, and its palaeoautecology inferred; the palaeoautecology of the bivalvo fauna has been dealt with in detail.

By using the mass of detailed information collected at the four major quarries, a palaeoecological reconstruction of the environmental conditions established during the deposition

\section*{ii.}
of the Lower Oxford Clay has been made. Ten biofacies types have been defined and recognised at all the major quarries, and are characterised by 5 ecologically defined parameters. The benthonic fauna of several other Jurassic and Cretaceous Clay Formations has been compared with that of the Lower Oxford Clay, showing that only the Upper Lias of England is closely comparable.

Consideration of the composition of deposit-feeder dominated communities since the Lower Palaeozoic has shown the major difference to be the replacement of the suspension-feeding brachiopods by suspension-feeding bivalves, a consequence of mantle fusion and siphon formation.

A thesis submitted for the degree of Doctor of Philosophy in the Faculty of Science of the University of Leicester.
by

Keith Leslie Duff B.Sc. (University College, Cardiff)

Volume II, Figures, Plates and Appendices


HoS 5
474271
2370

Chapter 2. A monograph of the Lower Oxford Clay Bivalvia of southern England.

Figure 2.1 The outcrop of the Oxford Clay in England, and the location of the main sections studies. \(B=\) Bletchley; \(C=\) Calvert \(; \quad N C=\) Norman Cross; \(\quad S T=\) Stewartby.
2.2 A comparison of the basal part of the Upper Jurassic of north-east Yorkshire with central and southern England.
2.3 Lithological sections at the four pits examined in central England.
2.4 Soluble fractions of the various beds at each of the four pits examined.
2.5 The measurements used in the description of Lower Oxford Clay bivalves.
2.6 Location of the major outcrops examined.
2.7 Schematic views of the anterior and posterior regions of Nuculoma pollux (Raspail).
2. 8 Schematic dorsal view of an internal mould of Palaeonucula triangularis sp. nov.
2.9 Sketch-pictograph showing the main lines of variation in P. triangularis sp. nov.
2.10 Schematic dorsal view of an internal mould of Mesosaccella morrisi (Deshayes).
2.11 Schematic views of the interior of two left valves of Solemya s.l., comparing the musculature of fossil and Recent species.
2.12 Regression lines showing relative growth rates inSolemya woodwardiana Leckenby.
2.13 Schematic view of the dorsal region of an internalmould of a right valve of S. woodwardiana Leckenby.
2.14 Schematic internal view of the hinge of a left valveof a specimen of Grammatodon minima (Leckenby).
2.15 Comparison of the regression lines for variousrelative growth rates in G. concinna (Phillips) andG. montaneyensis (de Loriol).
2. 16 Comparison of the outline and ornamentation of Pinnalanceolata J. Sowerby and P. mitis Phillips.
2. 17 Schematic view of the exterior of a left valve ofPteroperna pygmaea (Dunker), showing the measurementsused in the description of this species.
2. 18 Schematic view of the interior of a left valve of aspecimen of P. pygmaea (Dunker).
2. 19 Schematic view of the exterior of a right valve of aspecimen of Parainoceramus subtilis (Lahusen),showing the measurements used in the description.
2.20 Schematic internal view of a right valve ofP. subtilis, showing the dentition.
2.21 Schematic internal view of a left valve of Bositrabuchii (Roemer), showing the cardinal area.
2.22 Schematic external views of plaster models of B.buchii (Roemer), showing the anterior and posteriorgapes.
2.23 Schematic internal view of a left valve of Oxytoma inequivalvis (J. Sowerby), showing the musculature and the cardinal area.
2.24 Schematic internal view of a right valve of \(\underline{0}\). inequivalvis (J. Sowerby).
2.25 Sketch-pictograph showing the main lines of variation in 0 . inequivalvis ( J . Sowerby).
2.26a Schematic internal view of a left valve of Meleagrinella braamburiensis (Phillips).
2.26b Schematic internal view of a right valve of M . braamburiensis (Phillips).
2.27 The main types of ornamentation developed in M . braamburiensis (Phillips).
2.28 Schematic internal view of a left valve of Entolium corneolum (Young \& Bird).
2.29 Internal view of a right valve of Byssentolium hudsoni gen, et sp . nov.
2.30 Internal view of a right valve of Camptonectes auritus (Schlotheim).
2.31 Schematic internal view of a right valve of Chlamys (Chlamys) bedfordi sp . nov.
2.32 Internal view of a right valve of Chlamys (Radulopecten) fibrosa (J. Sowerby).
2.33 Schematic internal view of a left valve of Gryphaea dilobotes nom. nov., showing the measurements used in the description of gryphaeate oysters.
2.33a Scheratic views of the ligamental area of G . dilobotes nom. nov., showing the main features present and the characters measured.
2.34 Sketch-pictograph showing the main lines of variation present in G. dilobotes nom. nov.
2.35 Schematic external view of a right valve of Myophorella irregularis (Seebach), showing the measurements used in the description of trigoniids.
2.36 Internal views of the left and right valves of Myophorella.
2.37 Growth line traces of a large specimen of Myophorella irresularis (Seebach).
2.38 Schematic internal views of the hinge axeas of left and right valves of Neocrassina ungulata (Iycett).
2.39 Internal view of a right valve of N. striatocostata (Milnster), from the Oxford Clay of Lukow, Poland, to show the musculature and internal features of a typical species of Neocrassina.
2.40 Schematic internal views of right and left valves of \(N\). calvertensis sp . nov.
2.41 Schematic internal views of right and left valves of Trautscholdia phillis (Cottreau).
2.42 Schematic internal views of two right valves of \(\mathbb{T}\). phillis (Cottreau) showing hinge transposition.
2.43 Sketch-pictograph showing the main lines of variation present in P. phillis (Cottreau).
2.44 Comparison of the regression lines for various pairs of parameters in three populations of T. phillis (Cottreau).
2.45 Internal views of right and left valves of Protocardia hillanum (J. Sowerby).
2.46 Internal view of both valves of Rollierella sp. from the Bathonian of Noyen, Sarthe, showing the characteristic dentition for the genus.
2.47 Schematic internal view of a right valve of \(R\). minima (J. Sowerby).
2.48 Schematic view of the anterior of a specimen of \(R\). minima (J. Sowerby), showing differentiation of the lunule and the pseudolunule.
2.49 Schematic comparative views of the dentition of Anisocardia and Rollierella.
2.50 Schematic intemal view of a right valve of Anisocardia choffati Boden, showing the dentition typical of the genus.
2.51 Comparison of regression lines for parameter pairs in Anisocardia tenera (J. de C. Sowerby) and R. minima (J. Sowerby).
2.52 Schematic views of the hinge of Isocyprina.
2. 53 Schematic internal view of a left valve of I. roederi Arkell, showing the musculature.
2. 54 Schematic internal view of a pyritised right valve of I. roederi Arkell, showing details of the hinge.
2.55 Schematic internal view of a right valve of Corbulomima macneillii (Morris).
2.56 Sketch-pictograph showing the main lines of variation in a population of C. macneillii (Morris).
2.56a Schematic views of the outlines of seven specimens of C. obscura ( \(J\). de C. Sowerby), to show the variation in form present in the species.
2. 57 Scatter diagram showing the length-height ratio of C. obscura (J. de C. Sowerby) and C. macneillii (Morris).
2.58 Length-height regression lines for the preceding diagram.
2.59 Schematic diagram of the hinge area of Pleuromya marginata Agassiz, showing the relationship between the protuberances on the hinge margin of each valve.
2.60 Schematic intemal view of an internal cast of \(\underset{P}{P}\). alduini (Brongniart), showing the musculature and the very large pallial sinus.
2.61 Comparison of the \(L / H\) and \(L / A L\) regression lines for populations of Thracia depressa (J. de C. Sowerby) from the Lower and Upper Oxford Clay.

Table 2.1 The Zones of the Callovian and Lower Oxfordian.
2.2 Zonal schemes applied to the Oxford Clay between 1895 and 1968.
2. 3 Life habits of the bivalve genera represented in the Lower Oxford Clay.

> 2. 4 Comparison of the measurements and variation
> statistics for populations of Thracia depressa ( J . de C. Sowerby) from the Lower and Upper Oxford Clay.

Plate 2.1 Nuculoma pollux (Raspail)
N. kathryni sp. nov.

Palaeonucula triangularis sp. nov.
2.2 P. triangularis sp. nov.
P. cottaldi (de Loriol)
2.3 Mesosaccella morrisi (Deshayes)

Solemya woodwardiana Leckenby
2.4 Grammatodon minima (Leckenby)
G. concinna (Phillips)
G. montaneyensis (de Loriol)
G. clathrata (Leckenby)
2.5 G. clathrata (Leckenby)

Modiolus bipartitus J. Sowerby
Pteroperna ? pygmaea (Dunker)
2.6 P. ? pygmaea (Dunker)

Pinna mitis Phillips
P. Ianceolata J. Sowerby
2.7 Parainoceramus subtilis (Lahusen)

Bositra buchii (Roemer)
Oxytoma inequivalvis (J. Sowerby)
2.8 Oxytoma inequivalvis (J. Sowerby)

Meleagrinella braamburiensis (Phillips)
2.9 M. braamburiensis (Phillips)

Entolium corneolum (Young \& Bird)

Byssentolium hudsoni gen. et sp . nov.
2.10 B. hudsoni gen. et sp. nov.

Camptonectes auritus (Schlotheim)
Chlamys (Chlamys) bedfordi sp. nov.
C. (Radulopecten) scarburgensis (Young \& Bird)
2.11 C. (R.) scarburgensis (Young \& Bird)
C. (R.) fibrosa (J. Sowerby)

Plicatula cf. fistulosa Morris \& Lycett
C. (R.) drewtonensis Neale
P. fistulosa Morris \& Lycett
2.12 P. Weymouthiana Damon
P. cf. fistulosa Morris \& Lycett

Gryphaea dilobotes nom. nov.
2.13 G. dilobotes nom nov.
2.14 G. dilobotes nom. nov.
2.15 G. dilobotes nom. nov.
2.16 G. dilobotes nom. nov.
G. Iituola Lamarck
2.17 G. Iituola Lamarck

Hanogyra nana (J. Sowerby)
Discomiltha lirata (Phillips)
2.18 D. Lirata (Phillips)

Myophorella irregularis (Seebach)
2.19 M. irregularis (Seebach)
M. caytonensis nom. nov.
2.20 M. caytonensis nom. nov.

Neocrassina ungulata (Lycett)
2.21 N. calvertensis sp. nov.

Trautscholdia carinata (Phillips)
T. phillis (Cottreau)
2.22 T. phillis (Cottreau)

Protocardia sp .
P. striatulum (J. de C. Sowerby)

Rollierella minima ( J . Sowerby)
Anisocardia tenera (J. Sowerby)
2.23 Isocyprina roederi Arkell

Corbulomima macneillii (Morris)
2.24 C. macneilliz (Morris)
C. obscura (J. de C. Sowerby)

Pleuronya alduini (Brongniart)
P. uniformis ( \(J\). Sowerby)
2.25 P. alduini (Brongniart)
P. uniformis ( \(J\). Sowerby)

Thracia depressa (J. Sowerby)
Anomalodesmatan \(\mathrm{sp} . \mathrm{A}\).
2.26 Anomalodesmatan sp. A.

Anomalodesmatan sp . B.
Pleuromya uniformis ( \(J\). Sowerby)

Chapter 3. Palaeoecology of a bituminous shale; the Lower Oxford Clay of central England.

Text-Tig. 1 A comparison of the basal part of the Upper Jurassic of north-east Yorkshire with central and southern England.
2. The Zones of the Callovian and Lower Oxfordian.
3. Lithological sections measured at the four quarries examined in central England.
4. The outcrop of the Oxford Clay in Britain, showing the location of the major sections examined.
5. The soluble fraction of the Lower Oxford Clay of the Midlands.
6. Distribution of the 10 biofacies at each of the four Midlands quarries.
7. Triangular plots of bivalve feeding groups.
8. Triangular plots of bivalve feeding groups.
9. Rarefaction curves for a range of aquatic environments.
10. Rarefaction curves for the Lower Oxford Clay biofacies.
11. Trophic group composition of the silts and silty clay biofacies. All benthos.
12. Trophic group composition of the Gryphaea shell bed biofacies. All benthos.
13. Trophic group composition of the Deposit-feeder bituminous shale biofacies. All benthos.
14. Trophic group composition of the Deposit-feeder bituminous shale biofacies. Pendent bivalves removed.
15. Trophic group composition of the Grammatodon-rich bituminous shale biofacies. All benthos.
16. Trophic group composition of the Foram-rich bituminous shale biofacies. All benthos.
17. Trophic group composition of the Nuculacean shell bed biofacies. All benthos.
18. Trophic group composition of the Grammatodon shell bed biofacies. All benthos.
19. Trophic group composition of the Meleagrinella shell bed biofacies. All benthos.
20. Trophic group composition of the blocky claystone biofacies. All benthos.
21. Trophic group composition of the calcareous clay biofacies. All benthos.
22. Regression lines plotted for the rib-bundling ratio of Spinikosmoceras in the shales above and below the Coronatum-Athleta Zone boundary at Peterborough.
1. Faunal list of the macroinvertebrates found in the Lower Oxford Clay.
2. Life habits of the bivalve genera recognised in the Lower Oxford Clay of southern England.
3. Life habits of the benthonic invertebrates other than bivalves which occur in the Lower Oxford Clay.
4. Organic carbon contents measured in the various Lower Oxford Clay biofacies.
5. A summary of the main faunal and lithological characteristics of the 10 Lower Oxford Clay biofacies.
6. Trophic nuclei of the Lower Oxford Clay biofacies, all benthos included.
7. Trophic nuclei of the Lower Oxford Clay biofacies, pendent bivalves removed.

Appendices
1. Detailed descriptions of the stratigraphical sections seen at the four major pits examined.
2. Soluble fractions of each bed at the four major pits examined.
3. Measurements and measurement statistics for the specimens examined during the course of the monographic work.

In pocket at end of Volume II.
4a-d. Number of specimens of each species found in each bed at each pit.

\section*{CHAPTER 2}

A monograph of the Lower Oxford Clay bivalvia of southern England

Figs. 2.1-2.61
Tables 2.1-2.4
Plates 2.1-2.26


Fig. 2.1. The outcrop of the Oxford Clay in England, and the location of the main sections studied. \(B=\) Bletchley, C = Ealvert, NC = Norman Cross, ST = Stewartby.


Fig. 2.2. A comparison of the basal part of the Upper Jurassic of northeast Yorkshire with that of central and southern England.

FIG. 2.3
Lithological sections measured at the four pits
examined in central England.


FIG. 2.4

Soluble fractions determined for the various beds at each of the four pits examined.


a) Astartacea, Cardiacea, Myácea,

Arcticacea, Solemyacea, Pholedomyacea,
Lucinacoa, Pandoracea, Nuculacea,
Nuculanacea.

b) Arcacea, Pteriacea, Pectinacea, Mytilacea.

c) Trigonacea,

d) Pinnace.

Fig. 2.5. Schematic view of representatives of each of the four major bivalve outlines present in the Lower oxford clay, showing the measurement parameters used in the descriptions of the species.


Fig. 2.6. Location of the major outcrops examined.


Fig. 2.7. Schematic views of the posterior (a) and anterior (b) regions of a specimen of Nuculoma pollux (Raspail) from the Oxford Clay of Wiltshire (YM KD 1974/1). x 6. The form of the escutcheon region, with its elevated pout, is well seen in fig. a.
\(\mathrm{Ca}=\) Concave area; \(\mathrm{Ep}=\) Escutcheon pout; Fs = Fine striae; \(L c=\) Lateral carina; Ra \(=\) Raised area; Sra \(=\) Slighily raised area.


Fig. 2.8. Schematic dorsal view of an internal mould of Palaeonucula triangularis sp. nov., from the Lower Oxford Clay (Obductum Subzone, Coronatum Zone) of Stewartby, Beds. (LU 68611), showing the disposition of the various muscie scars. x 6 .
\(A a=\) Anterior adductor scar; Apr \(=\) Anterior pedal retractor scar; Pa \(=\) Posterior adductor scax; \(\mathrm{Ppr}=\) Posterior pedal retractor scar; \(\mathrm{Vm}=\) Visceral muscle scars.

FIG. 2.9

Sketch-pictograph showing the main lines of variation
in Palaeonucula triangularis sp. nov.


Fig. 2.9.


Fig. 2.10. Schematic dorsal view of an internal mould of Mesosaccella morrisi (Deshayes), from the Lower Oxford Clay (Obductum Subzone, Coronatum Zone) of Stewartby, Beds. (LU 68623), showing the disposition of the various muscle scars. x 6 . Aa \(=\) Anterior adductor scax; Apr = Anterior pedal retractor scar; \(\mathrm{Pa}=\) Posterior adductor scar; Ppr \(=\) Posterior pedal retractor scar; Vmi \(=\) Visceral mass integument scar.

b)

Fig. 2.11. \(\mathrm{a}, \mathrm{b}\). Schematic views of the interior of two left valves of Solemya s.i., comparing the musculature of fossil and Recent species. Fig. a) Solemya woodwardiana (Leckenby), from the Lower Oxford Clay, Obductum Subzone, Calvert. ( \(x 6\) ). b) Solemya (Solemya) togata (Poli), Recent, x2. Figure after Cox (1969, Fig Bl,3.). Aa = Anterior adductor scar; \(\mathrm{pa}=\) Posterior adductor scar; Vmi \(=\) Visceral mass integument scar; \(\mathrm{Pl}=\) Pallial line; \(\mathrm{Rr}=\) Radial rib; Ch \(=\) Chondrophore; \(I I=\) Intexnal ligament .

H

Fig. 2.12. Regression lines showing relative growth rates in Solemya woodwardiana Leckenby. a). Length-Height regressions for the populations from the Hackness Rock (1), the Brora Oxford Clay (3), and the English Lower Oxford Clay (4); Line' 2 shows the overall plot for all three populations. b) Length-Anterior Length regression
for the same populations, numbered in the sane way. Scales in min.


Fig. 2.13. Schematic view of the dorsal region of an internal mould of a right valve of Solemya woodwardiana Leckenby, showing the position of the posterior adductor scar, and a short deep groove just posterior of the umbo which may represent the chondrophore groove. Specimen from the Lowex oxford clay of Wiltshire (LU 69932), x 6 .
\(\mathrm{Cg}=\) Chondrophore groove; \(\mathrm{Gr}=\) Groove; \(\mathrm{Pa}=\) Posterior adductor scar; \(U=\) umbo.


Fig. 2.14. Schematic internal view of the hinge of a left valve of a specimen of Grammatodon minima (Leckenby), from the Lower Oxford Clay (Grossouvxei Subzone; Coronatum Zone) of Stewartby, Beds. (LU 68627), showing the relationship of the oblique anterior pseudolateral teeth to the subhorizontal posterior pseudolaterals. x 6 .

Aa \(=\) Anterior adductor scar; Ap = Anterior pseudolaterals; \(\mathrm{Pp}=\) Posterior pseudolaterals.
 parameters for G. montaneyensis. Note the close similarity between regressions for the same pairs of characters in each of Fig. 2.15. Comparison of the regression lines for various relative growth rates in Grammatodon concinna (phillips) and the species. As noted in the discussion of \(G\). montaneyensis, the main points of difference are in subtleties of ornament and position of the postero-dorsal angle. Scales in mm.


Fig. 2.16. A comparison of the outline and ornamentation of Pimna lanceolata and \(P\). mitis. a) The outline of a specimen of P . lanceolata J. Sowerby from the Lower Calcareous Grit (Corallian) of Scarborough, Yorks, seen from the right side, showing the convex ventral margin, and low rib density.
b) The outline of a specimen of P. mitis Phillips, from the Lower Oxford Clay of Peterborough, seen from the left sjide, showing the concavo-convex ventral margin, and much higher, rib density. Both x 1.5 .
\(\mathrm{Vm}=\) Ventral margin.


Fig. 2.17. Schematic view of the exterior of a left valve of Pteroperna pygmaea (Dunker), showing the measurements used in the description of this species. \(L_{1}=\) Length; Lh \(=\) Length of the hingeline; Laa \(=\) Length of the anterior auxicle; Lpa \(=\) Length of the posterior auricle; \(H=\) Height; \(O L=\) Oblique length; \(\theta=\) angle of obliquity.


Fig. 2.18. Schematic view of the interior of the left valve of a specimen of Pteroperna pygmaea (Dunker) from the Lower Oxford Clay of Wiltshire ( BCM Cb 4777), showing details of the cardinal area. \(x 6\).

De \(=\) slight depression; Ls \(=\) find longitudinal striae; Ppl \(=\) Posterior pseudolateral tooth; \(P r=\) rounded protuberance; \(R e=\) Resilifer pit.


Fig. 2.19. Schematic view of the exterior of a right valve of a specimen of parainoceramus subtilis (Lahusen), showing the measurements used in the description. Lh \(=\) Length of the straight part of the hinge line; \(H=H e i g h t\), measured perpendicular to Lh; \(L=\) Length, measured parallel to Lh.


Fig. 2.20. Schematic internal view of a right valve of Parainoceramus subtilis (Lahusen), from the Lower oxford Clay (Obductum Subzone, Coronatum Zone) of Stewartby, Beds. (IU 69942), showing the two small divergent hingeteeth, placed immediately beneath the umbones, and the multiple ligament pits along the posterodorsal margin. \(x 6\). Dht \(=\) Divergent hingeteeth; Mlp \(=\) Multiple ligament pits.


Fig. 2.21. Schematic internal view of a left valve of Bositra buchii (Rocmer), from the Lower oxford Clay (Jason Zone) of Elstow, Beds. (BM LL 17400), showing details of the cardinal area. Note the elongate external ligament attachment area bounding the smaller internal ligament pit. From Jefferies \& Minton (1965), Text-Fig. i. x 15.


Fig. 2.22. Schematic external views of plaster models of Bositra buchii (Roemer), made from specinens from the Lower Oxford Clay (Jason Zone) of Elstow, Beds. (BM LIL17402a; BM L84735; BM L84734c), showing the anterior and posterior gapes. From Jefferies \& Minton (1965), Text-Fig. 3. x 2.75.


Fig. 2.23. Schematic internal view of a left valve of oxytoma inequivalvis (J. Sowerby), from the Middle Oxford Clay of Woodham, Bucks. (LU 52673), showing details of the musculature and the cardinal area. Note the elongate depression anteroventral of the umbo for articulation with the pointed anterior auricle of the right valve. \(\times 6\).
As \(=\) Auricular sulcus; \(D P 1=\) Disjunct pallial line; \(E d-\) Elongate depression; La \(=\) Ligament area; \(\mathrm{Pa}=\) Posterior adductor scar; \(\mathrm{Re}=\) Resilifer.


Fig. 2.24. Schematic internal view of a right valve of Oxytoma inequivalvis (J. Sowerby), from the Middle Oxford clay of Woodham, Bucks. (LU 52675), showing details of the musculature and the cardinal plate. Note the small anterior adductor scar beneath the resilifer. x 6 . Aa \(=\) Anterior auricle; Aas = Anterior adductor scar; \(B n=\) Byssal notch; Dpl \(=\) Disjunct pallial line; La \(=\) Ligamental area; Pas \(=\) Posterior adductor scar; Re \(=\) Resilifer.



Fig. 2.26a. Schematic internal view of a left valve of Meleagrinella braamburiensis (Phillips) from the Oxford Clay of Wiltshire (GSM Y2038), showing details of the cardinal area and musculature. Note the prominent rounded toothlike protuberance anterior of the resilifer. \(\times 6\).
\(L a=\) Ligament area; \(P a=\) Posterior adductor scar; Re \(=\) Resilifer; Rtp \(=\) Rounded toothlike protuberance; \(S p l=\) Simple pallial ine.


Eig: 2.26b. Schematic internal view of a right valve of Meleagrinella braamburiensis (Phillips), from the Oxford Clay of Wiltshire (GSM Y2090), showing details of the musculature and the cardinal plate. Note the narrow resilifer placed on the broad cardinal platform with a deep byssal notch beneath the broken right anterior auricle. x 6 .
\(\mathrm{Bn}=\) Byssal notch; \(\mathrm{Cp}=\) Cardinal platform; Pa \(=\) Posterior adductor \(\operatorname{scar} ; \operatorname{Re}=\) Resilifer; Spl \(=\) Simple pallial line.


Fig. 2.27. Variation in ornament style in Meleagrinella braamburiensis.
a) Simple radial primaries with intercalated secondaries.
b) Simple radial primaries with intercalated secondaries and some faint concentric elements, especially well-developed at the anterior and posterior.
c) Radial primaries and secondaries, with concentric growth lines strengthened, and becoming spinose on the posterior flanks.
d) Radial primaries and secondaries, together with strong concentric growth lines, strongly spinose on the posterior flanks.


Fig. 2.28. Schematic internal view of a left valve of Entolium corneolum (Young \& Bird), from the Oxford Clay of Brora, Sutherlandshire, in the authors collection, showing the crura on the cardinal plate. \(\times 6\). \(A C=\) Auricular crus; \(C c=\) Cardinal crura; Glt \(=\) Growth-line trace.


Fig. 2.29. Internal view of a right valve of Byssentolium hudsoni sp.nov., showing details of the cardinal plate. \(x\) 12. Note the small, but prominent byssal notch, and the clearly-developed cardinal and curicular crura.

Aa \(=\) Anterior auricle; \(\mathrm{Ac}=\) Auricular crus; \(\mathrm{Bn}=\) Byssal notch; \(\mathrm{Cc}=\) Cardinal crura; \(\mathrm{Pa}=\) Posterior auricle.


Fig. 2.30. Internal view of a right valve of Camptonectes auritus (Schlothcim), from the Corallian of England (BM LL2445), showing details of the cardinal plate. The specimen was originally figured by Speden (1967) pl.4, figs. 1, 3, 6. x 1 . Bf = Byssal fasciole; \(C c=\) Cardinal crura; \(C t=\) Ctenolium; La \(=\) Ligamental area; \(V a c=\) Vestigial auricular crus:


Fig. 2.31. Schematic internal view of a right valve of Chlamys (Chlamys) bedfordi sp. nov., from the Lower Oxford Clay (Grossouvrei Subzone, Coronatum Zone) of Peterborough (BM LIT27727), showing detail of the cardinal plate. Note the well-developed cardinal crura, and the vestigial auricular crus; central part of the hinge plate broken. \(\times 6\). \(\mathrm{Bn}=\) Byssal notch; \(\mathrm{Cc}=\) Cardinal crura; Vas \(=\) Vestigial auricular crus.


Fig. 2.32. Internal view of a right valve of Chlamys (Radulopecten) fibrosa (J. Sowerby) from the oxford Clay of Chippenham, Wiitshire (GSM 113408), showing details of the cardinal plate. x 6 . \(A C=\) Auricular crus; \(B f=\) Byssal fasciole; \(B n=\) Byssal notch; \(C c=\) Cardinal crus; \(R e=\) Resilifer; Rgs \(=\) Ridge and groove system to aid articulation, and to prevent; lateral shearing of the hinge plates.


Fig. 2.33. Schematic internal view of a left valve of Gryphaea dilobotes nom. nov. from the Lower oxford Clay, showing the measurements used in the description of gryphaeate oysters. Many details of shell ornament omitted for clarity. x 1.
\(A L=\) Anterior length; \(H=\) Height; \(H i=\) Internal height, measured from the top of the umbo to the ventral margin; HMs = Height of the base of the muscle scar beneath the hinge axis; Angle a measures the angle between the lines radiating from the tip of the resilifer to the posterior margin and the branchitellum; Angle \(\theta\) measures the angle between the lines radiating from the tip of the resilifer to the anterior and posterior margins.


Fig. 2.33a. Schematic views of the ligamental area of a left valve of Gryphaea (Bilobissa) dilobotes nom. nov., showing the main features present and the characters measured. x 1.5. \(\mathrm{Ab}=\) Anterior bourrelet; \(\mathrm{CP}=\) Commissural platform; H.lig. = Overall height of the ligament \(; L a b=\) Length of the anterior bourrelet; Lpb \(=\) Length of the posterior bourrelet; L.lig. \(=\) Overall length of the ligament (resilifer + bourrelets); \(\mathrm{Pb}=\) Posterior bourrelet; Qm = Quenstedt muscle scar; Re = Resilifer.

\section*{FIG. 2.34}

Sketch pictograph showing the main lines of variation present in collections of Gryphaea (Bilobissa)
dilobotes nom. nov. from the Kellaways Rock and Lower Oxford Clay of England. All specimens \(x 0.3\).


Fig. 2.34


Fig. 2.35. Schematic external view of a right valve of Myophorella irregularis (Seebach), from the oxford Clay of Weymouth, Dorset (YM KD \(1974 / 40\) ), showing the measurements used in the description of trigoniids. Tubercle rows shown diagranuatically.
\(A L=\) Anterior length; \(H=\) Height; \(L=\) Length;
\(\mathrm{L}_{\mathrm{A}}=\) Length of the area; \(\mathrm{LE}=\) Length of the escutcheon.


Fig. 2.36. Internal views of the left and right valves of Myophorella, showing details of the musculature and the cardinal plate. After Cox (1952, p.47) . \(\times 1\).
\(\mathrm{Aa}=\) Anterior adductor scar; \(\mathrm{Mb}=\) Myophoric buttress (fused with 3 a in the right valve); \(\mathrm{Pa}=\) Posterior adductor scar; Ppr \(=\) Posterior pedal retractor scar.


Fig. 2.37. Growth line traces of a large specimen of Myophorella irregularis (Seebach), from the Oxford Clay of Weymouth, Dorset (YM KD 1974/40), showing the development of a rostrate form through growth. x .

b)

Fig. 2.38. Schematic views of the hinge areas of left (a) and right (b) valves of Neocrassina ungulata (Lycett), from the Kellaways Rock of Trowbridge, Wiltshire (BCM 3324), showing the broad hinge plate with elongate caxdinal teeth. x 12. \(\mathrm{E}=\) Escutcheon; \(\mathrm{Lig}=\) Ligament; Lu \(=\) Lunule; \(\mathrm{N}=\) Nymph.


Fig. 2.39. Internal view of a right valve of Neocrassina striato-costata (Münster), from the Oxford Clay of Lukow, poland, to show the musculature and internal features of a typical species of Neocrassina. Specimen courtesy of: Dr. A. Radwanski. x 12.
Aa \(=\) Anterior adductor scar; Apr \(=\) Anterior pedal retractor Scar; \(\mathrm{E}=\) Escutcheon; Lig \(=\) Ligament; Lu \(=\) Lunule; Md = Marginal denticulations; \(N=\) Nymph; Pa \(=\) Posterior adductor scar; Pl = Pallial line; Ppr = Posierior pedal retractor scar.


Fig. 2.40. Schematic internal views of the right (a) and left (b) valves of Neocrassina calvertensis sp. nov., from the Jason Subzone (Jason Zone) of Calvert (Bucks.), showing details of the cardinal plate. Note the narrower, thinnex hinge plate, with shorter, more peglike cardinal teeth than in N. ungulata (Lycett). x 12 . \(\mathrm{E}=\) Escutcheon \(;\) Lig \(=\) Ligament \(; \mathrm{Lu}=\) Lunule \(; \mathrm{N}=\) Nymph .


Fig. 2.41. Schematic internal views of the right (a) and left (b) valves of Trautscholdia phillis (Cottreau), from the Lower Oxford Clay of Wiltshire (GSM Zn 2544) and the Kellaways Rock of WiItshire (GSM 113422) respectively, showing the normal dentition for the species, with 3 .. cardinals in the right valve and 2 in the left valve. \(\times 12\). \(\mathrm{E}=\mathrm{Esc}\) Etcheon; Lig \(=\) Ligament; Lu \(=\) Lunule.


Fig. 2.42. \(\mathrm{a}, \mathrm{b}\). Schematic internal views of two right valves of Txautscholdia phillis (Cottreau) from the Kellaways Rock of Wiltshire (GSM 113425) and the Lower Oxford Clay (Jason Subzone, Jason Zone) or Calvert, Bucks. (LU 69943) respectively, showing two types of hinge transposition. a) Transposition of the carainal. and anterior lateral teeth, with "2" and "4b" replacing the normal \(3 a\) and \(3 b\), and " \(A_{I I}\) " replacing the normal \(A_{I}\) and \(\mathrm{A}_{\text {III }}\). b) Transposition of the posterior lateral teeth, with "P II" and "P IV" replacing the normal \(P_{\text {III }}\). x 12 . \(\mathrm{E}=\) Escutcheon; Lig \(=\) Ligament; Lu \(=\) Lunule.


Fig. 2.43. Sketch-pictograph showing the main lines of variation in shape and ornament in Trautscholdia phillis (Cottreau) from the Lower Oxford Clay (Calloviense - Jason Zones) of southern England. \(\times 2\).


Fig. 2.44. Comparison of the regression lines for various pairs of parameters in three populations of Trautscholdia phillis (Cottreau). Dashed lines represent L/J regression lines, and unbroken ones \(L / H\) regressions. Population 1 comes from the Lower Oxford Clay of Calvert (Bucks.), population 2 from the Kellaways Rock of Wiltshire (specimens in the GSM and SM), and population 3 also from the Kellaways Rock of Wiltshire (specimens in the BCM). Note the close correspondence of the lines for each of these populations, and also the close grouping of \(L / I\) and \(L / H\) lines, showing the similar growth rates for these two characters. Scale in mm .


Eig. 2.45. Internal views of the right (fig. a) and the left (fig. b) valves of the type species of Protocardia, P. hillanum (J. Sowerby), from the Upper Cretaceous of England, showing details of the cardinal plate. Figure after Woods (1908). 'x 3.


Fig. 2.46. Internal view of both valves of Rollierella sp. from the Bathonian of Noyen, Sarthe (after Douvillé), showing the characteristic dentition of the genus. Figure reproduced from Cox (1947, p. J.45, figs. 3a, 3b).


Fig. 2.47. Schematic internal view of a right valve of Rollierella minima (J. Sowerby), from the oxford Clay of Lukow, Poland, showing details of the hinge plate. Drawing from a positive latex mould made from a limestone internal mould. The teeth \(3 a\) and \(3 b\) are formed into a continuous lamina, with \(3 b\) bifid, and 3 a closely applied to the dorsal surface of the arcuate \(i\). \(A_{I}\) is short and peglike, and piaced just ventral of the anterior end of 1 . Specimen in the authors collection. \(\times 6\).


Fig. 2.48. Schematic view of the anterior of a specimen of Rollierella minima (J. Sowerby) from the Oxford Clay of Lukow, Poland, showing the differentiation of the lunule and the pseudolunule. The lunule is flattened, and separated from the obliquely-sloped pseudolunule by an impressed line, making an obtuse angle hetween the two areas. The two zones of ornamentation on the body of the shell are shown diagrammatically, a narrow zone of radial ornament adjacent to the pseudolunule being replaced on the flanks of the shell by finely cancellate ornamentation. \(x\). Il \(=\) Impressed line; Lu = Iunule; \(P=\) Pscudolunule; Zco = Zone of cancellate ornament; Zro \(=\) Zone of radial ornament.


Fig. 2.49. Schematic views of the dentition of Anisocardia and Rollierella. a) The dentition of Rollierella sp. from the Bathonian of Noyen, Sarthe (after Douvillé), from Cox, 1947, p. 145. b) The dentition of Anisocardia elegans Munier-Chalmas, from the Kimmeridgian of France (after Cox, 1947, p. 145). Both x l. The major difference is in the dentition of the right valves, \(3 a\) and \(3 b\) being united into a broad, continuous lamina in Rollierella, with 3a lying more or less directly above 1 . In the left valve, 2 b in Rollierella is much stouter, and more peglike, than its counterpart in Anisocardia.


Fig. 2.50. Schematic internal view of a right valve of Anisocardia choffati Boden (non de Loriol), from the Upper Jurassic of Germany (after Boden, 1904, p.61, pl.6, fig.9), showing the dentition typical of Anisocardia, with a large 3 b , laminar 3 a , vestigial \(5 b\), and \(1+P_{I}\) as a continuous lamina; 1 again is anterior to \(3 a\), and \(3 a\) is not applied to the dorsal surface of \(1 . \times 1\).

O v
Fig. 2.51. Comparison of the L/I, L/H and L/AL regression lines for Anisocardia tenera ( \(J\). de C. Sowerby) and Rollierella minima
(J. Sowerby). Fig. a) shows the average I/I regressions for several populations of the two species; note the obvious difference
in growth rates, with R. minima being much more inflated. Fig. b) shows the L/H regressions, and Fig. c) the L/AL regressions; se pairs of parameters, the growth rates for the two species are similar. Scale in mm.
At \(=\underline{\text { Anisocardi.a tenera; } \quad R m=\text { Rollierella minima. }}\)


Fig. 2.52. Schematic views of the hinges of Isocyprina;
a) Internal views of the left and right valves of Isocyprina cyreniformis (Euvignier), from the Oxfordian of France. Note the vestigial 3 a in the right valve. After Cox (1947, p. 145) , x 3. b) Internal views of the hinge of I. sharpi Cox, from the Bathonian of Oxfordshire; again, 3a is. vestigial. After Casey (1952, p. 135), x 1.


Fig. 2.53. Schematic internal view of a left valve of Isocyprina roederi Arkell, from the Lower Oxford Clay (Grossouvrei Subzone, Coronatum Zone) of Stewartby, Beds. (LU 69832), showing the musculature. Note that the posterior adductor scar is considerably larger than the anterior, both lying mainly outside the pallial line; note also the lack of a pallial sinus in this specimen. \(\times 6\).
\(\mathrm{Aa}=\) Anterior adductor scar; \(\mathrm{Pa}=\) Posterior adductor scar; \(\mathrm{Pl}=\) Pallial line.


Fig. 2.54. a) Schematic internal view of a pyritised right valve of Isocyprina roederi Arkell, from the Grossouvrei Subzone (Coronatumzone) of Marston Moretaine, Beds. (LU 69941), showing details of the hinge. The anteroventral part of the cardinal plate is broken, so it is not possible to determine whether or not \(A_{I}\) and 1 are united. \(\times 12\).
b) Low power sketch of the hinge of the same specimen, showing a probable reconstruction of the complete hinge; \(A_{I}\) and \(l\) are thought to be united. \(x 4\). \(N=N y m p h\).


Fig. 2.55. Schematic internal view of a right valve of Corbulomima macneillii (Morris), from the Lower Oxford Clay of wiltshire (OUM J28230 collective), showing the presence of a single large cardinal tooth immediately beneath the umbo. x 12 .

Fig. 2.56. Outline sketch pictograph showing the main lines of variation in the population of Corbulomima macneillii (Morris), from the Lower Oxford Clay of Wiltshire. (OUM 28230-28231 collective)

\(\sim\)



Fig. 2.56a. Schematic views of the outlines of seven specimens of Corbulomima obscura (J. de C. Sowerby), to show the variation in form present within the species. All specimens from the Brora Roof Bed, Brora. Comparison with the outlines of C. macneillii (Fig. 2.56) shows C. obscura to be more elongate and to possess a slightly reflexed postero-ventral angle. All \(\times 6\).


Fig. 2.57. Scatter diagram showing the length-height ratio of Corbulomima obscura (J. de C. Sowerby) and C. macneillii (Morris). Note that the points for C. obscura indicate a lower value for \(H\) than do those of \(C\). macneillii. Scale in mo.


Fig. 2.58. Length-height regression lines for the scatter diagram above. The relationship between the \(L / H\) ratio of the two species now becomes more apparent. Scale in mm.


Fig. 2.59. Schematic diagram of the hinge area of pleuromya marginata Agassiz, from the Bathonian of France, showing the relationship between the protuberances on the hinge margin of each valve; left valve to the left, view from dorsal. (After Douvillé, 1907). Enlarged.


Fig. 2.60. Schematic view of an internal cast of a specimen of pleuromya alduini (Brongniart), from the Kellaways Rock of Kington Langley, Wilts. (GSM Ka609), showing the musculature and the very large pallial sinus. Note that the posterior adductor scar is about twice the size of the anterior, and that the lower limb of the pallial sinus is not confluent with the pallial. line. Seen from the right; ribs not shown. \(x\) l. Aa \(=\) Anterior adductor scar; \(\mathrm{Pa}=\) Posterior adductor scar; Pl = Pallial line; Ps = Pallial sinus.


Fi.g. 2.61. Comparison of the \(L / H\) and \(L / A L\) regression lines for populations of Thracia depressa (J. de C. Sowerby) from the Lower (dashed lines) and Upper (unbroken lines) Oxford Clay of England. The L/AL, regressions for the two horizons compare closely, but those of \(L / H\) vary considerably, with the Upper Oxford Clay forms being higher and less elongate. Scale in mm .
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Stages} & Zones & Subzones & Divisions \\
\hline \multirow[b]{5}{*}{\[
\begin{aligned}
& i \\
& i \\
& 0 \\
& i \\
& i \\
& 0
\end{aligned}
\]} & \multirow{5}{*}{\[
\begin{aligned}
& \widetilde{\sim} \\
& \text { u } \\
& 0 \\
& 0
\end{aligned}
\]} & \multirow{3}{*}{Cardioceras cordatum} & C. cordatum & \multirow{5}{*}{\begin{tabular}{l}
UPPER \\
OXFORD \\
CLAY
\end{tabular}} \\
\hline & & & C. costicardia & \\
\hline & & & C. bukowskii & \\
\hline & & \multirow[t]{2}{*}{Quenstedtoceras mariae} & C. praecordatum & \\
\hline & & & C. scarburgense & \\
\hline \multirow{11}{*}{\[
\begin{aligned}
& \frac{2}{3} \\
& \frac{1}{3} \\
& \frac{1}{3}
\end{aligned}
\]} & \multirow[b]{2}{*}{r
u
0
0
\(\square\)} & \multicolumn{2}{|l|}{Quenstedtoceras lamberti} & \multirow[t]{2}{*}{MIDDLE OXFORD CLAY} \\
\hline & & Peltoceras athleta & \begin{tabular}{l}
Upper \\
Middle \\
Lower
\end{tabular} & \\
\hline & \multirow{4}{*}{\[
\begin{aligned}
& \text { 山 } \\
& \stackrel{\rightharpoonup}{\Sigma} \\
& \hline
\end{aligned}
\]} & \multirow[b]{2}{*}{Erymnoceras coronatum} & K. (Zugokosmoceras) girossouvrei & \multirow{4}{*}{LOWER OXFORD CLAY} \\
\hline & & & K. (Zugokosmoceras) obductum & \\
\hline & & \multirow[b]{2}{*}{Kosmoceras jason} & K. (Gulielmites) jason & \\
\hline & & & K. (Gulielmites) medea & \\
\hline & \multirow{5}{*}{~} & \multirow{3}{*}{Sigaloceras calloviense} & S. (Catasigaloceras) enodatum & , \\
\hline & & & Sigaloceras calloviense & \multirow{2}{*}{\[
\begin{aligned}
& \text { KELLAWAYS } \\
& \text { ROCK }
\end{aligned}
\]} \\
\hline & & & Proplanulites koenigi & \\
\hline & & \multirow[t]{2}{*}{Macrocephalites macrocephalus} & M. (Kamptokephalites) kamptus & KELIAWAYS CLAY \\
\hline & & & M. (Macrocephalites) macrocephalus & UPPER CORNBRASH \\
\hline
\end{tabular}

Table 2.1. The Zones of the Callovian and Lower Oxfordian.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline WOODWARD 1895 & \begin{tabular}{l}
BUCKMAN \\
1913
\end{tabular} & MORLEY DAVIES 1916 & NEAVERSON 1925 & BRINKMANN 1929 & ARKELL
\[
\uparrow 933
\] & CALLOMON 1968 & DIVISIONS \\
\hline \multirow[t]{4}{*}{Ornatus} & Lamberti & Renggeri & Lamberti & Lamberti & Lamberti & Lamberti & \multirow[t]{2}{*}{Middle Oxford Clay} \\
\hline & Athleta Ornatum & \begin{tabular}{l}
Athleta \\
U. Ornatum
\end{tabular} & Athleta/ Duncani & Spinosum & Athleta & Athleta & \\
\hline & Coronatum & Coronatum & \multirow[t]{2}{*}{\begin{tabular}{l}
Castor \\
Coronatum Elizabethae Conlaxatum
\end{tabular}} & Castor/Pollux & Reginaldi & Coronatum & \multirow[t]{2}{*}{Lower Oxford Clay} \\
\hline & Anceps & L. Ornatum & & Jason & Jason & Jason & \\
\hline \multirow[t]{2}{*}{Calloviensis} & Calloviense & & & \multirow[t]{2}{*}{Macrocephalus} & Calloviense & Calloviense & Kellaways Rock \\
\hline & Koenigi & & & & Koenigi & Macrocephalus & Kellaways Clay \\
\hline
\end{tabular}
TABLE 2.2. Zonal schemes applied to the Lower Oxford Clay between 1895 and 1968.


Table 2. 3. Life habits of the bivalve genera represented in the Lower Oxford Clay.

TABLE 2.4. Comparison of the measurements and variation statistics for populations of Thracia depressa (J. de C. Sowerby) from the Lower and Upper Oxford Clay of England.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{LOVER OXFORD CLAY} & UPPER OXFCRD CLAY \\
\hline & H & AL & H & I AL \\
\hline N & 20 & 20 & 16 & \(14 \quad 16\) \\
\hline \(\ddot{x}\) & 70.5\% & 61. \(3 \%\) & \(78.6 \%\) & 41.7\% \(59.4 \%\) \\
\hline Max & 77.1 & 66.9 & 92.3 & 60.8 69.4 \\
\hline Min & 63.7 & 54.3 & 71.5 & 29.9 51.2 \\
\hline OR & 13.4 & 12.6 & 20.8 & 30.918 .2 \\
\hline s & 3.84 & 3.21 & 5.84 & \(7.89 \quad 6.34\) \\
\hline \(s^{2}\) & 1.4 .77 & 10.30 & 34.10 & 62.30 40.19 \\
\hline V & 5.45 & 5.23 & 7.43 & \(12.67 \quad 10.67\) \\
\hline & 0.86 & 0.72 & 1.46 & 2.13 .1 .59 \\
\hline
\end{tabular}
views. Lower Oxford Clay, Coronatum Zone, Stewartby, Bedrordshire, x I.6. BM LIL27713.

8a-8b. Paratype. External view of left valve and dorsal view. Same horizon and locality as above, \(x\) 1.6. BM LL27714.
9. Paratype. Intemal view of right valve.

Same horizon and locality as above, x 1.6. BM LI27715.

10a-l0d. Paratype. External view of left valve, right valte, posterodorsal and dorsal views. Same horizon and locality as above, \(x\) 1.6. BM LI27716.
11.

Paratype. Internal view of left valve. Same horizon and locality as above, x 1.6. BM LL27717.

Nuculoma pollux (Raspail)
```

Fig.
la-ld. External view of left valve, right valve,
dorsal view and detail of the ornament.
Oxford Clay, Wiltshire, x 2.2 (Figs.
la-1c), x 3.3 (Fig. 1d). YM KD1974/1.
Nuculoma kathryni sp. nov.
2a-2c. Holotype. External view of left valve,
anterodorsal view and posterior view.
Oxford Clay, Wilts., x 1.9. GSM 114030.
3a-3b. Paratype. Internal and external views of
right valve. Same horizon and locality
as above, x l.9. GSM 114035.
4. Paratype. External view of right valve.
Same horizon and locality as above, x
1.9. GSM 114032.
5. Paratype. External view of right valve.
Same horizon and locality as above,
x 1.9. GSM 114033.
6. Paratype. Extemal view of left valve.
Same horizon and locality as above, x
1.9. GSM 114031.
Palaeonucula triangularis sp . nov.
7a-7d. Holotype. External views of left valve,
right valve, posterodorsal and dorsal

```

PLATE 1

17. External view of right valve, internal mould. Upper Oxford Clay, Cordatum Zone, Warboys, Hunts., x 1.2. GSM Dr2526.
18. External view of left valve, internal mould. Same horizon and locality as above, \(x\) 1.2. GSM \(\operatorname{Dr} 2508\).
19. Dorsal view of internal mould. Oxford Clay, Lukow, Poland, x 1.5. KD Lukow 9.
8. Paratype. External view of right valve.

Lower Oxford Clay, Jason Zone, same
locality as above, x 1.9. LU 68607.
9. Paratype. Extermal view of left valve,

Coronatum Zone, same locality as
above, x 1.9. LU 68608.
10. Paratype. External view of right valve,
same horizon and locality as above,
\(x\) 1.9. LJ 68609.
11.

Paratype. External view of left valve,
internal mould. Coronatum Zone,
Stewartby, Beds., x 1.5. LU 68610.
Paratype. Dorsal view of internal mould.
Same locality and horizon as above,
\(x\) 1.7. LU 68611.

Palaeonucula cottaldi (de Loriol)
13. Intemal view of right valve. Oxford Clay,

Wiltshire, x 0.8. GSM Y2082.
14a-b. Dorsal view and external view of left valve.
Same horizon and locality as above,
x 1.1. GSM Y2083.
15. External view of left valve. Oxford Clay,
"Near Osmington", Dorset, x I.I. GSM Y2049.
16. Extemal view of left valve. Upper Oxford

Clay, Mariae Zone, Scarborough,
Yorkshire, x 1.3. YM KD1974/59.

Palaeonucula trianpularis sp. nov.
Fig.
la-lc. Paratype. External view of left valve, right valve and dorsel view. Lower Oxford Clay, Coronatum Zone, Stewartby, Bedfordshire, x 1.6. BM LL27718.

2a-2b. Paratype. External view of right valve and dorsal view. Same horizon and locality as above, x l.7. BM LL27719.
3. Paratype. External view of left valve.

Same horizon and locality as above, \(x\) 1.6. BM LI27720.
4. Paratype. Intemal view of left valve. Same horizon and locality as above, \(x\) 1.6. BM LL27721.
5. Paratype. External view of left valve.

Lower Oxford Clay, Coronatum Zone, Calvert, Buckinghamshire, x 2.0 . LU 68604.
6. Paratype. Extemal view of right valve.

Lower Oxford Clay, Jason Zone, Stewartby, Beds., x 1.9. LU 68605.
7. Paratype. External view of left valve.

Lower Oxford Clay, Coronatum Zone, Norman Cross, Huntingdonshire, x 1.9. LU 68606.

\section*{PLATE 2}

25. External view of left valve. Same horizon
and locality as above, x 1.1. LU 69755.
26. External view of both valves. Same horizon
and locality as above, x 1.8. LU 69754.
27. External view of right valve. Lower Oxford

Clay, Grossouvrei Subzone, Norman
Cross, Huntingdonshire, \(x\) l. 1.
LU 69750.
28. External view of right valve. Lower Oxford Clay, Grossouvrei Subzone, Calvert, Bucks., x 1.1. LU 59758.

29a-b. Internal view of left valve, magnified and natural size. Same horizon and locality as above, x 1.2 (12a), x 2.9 (12b). LU 69756.
30. External view of left valve. Lower Oxford Clay, Jason Subzone, Calvert, Bucks., x 1.5. LU 69749.
31. External view of left valve. "Kelloway Rock", Castle Rock, Scarborough, Yorkshire, x 1.3. Leckenby Collection, SM J12569.
17. External view of left valve, internal mould. Same horizon and locality as above, \(x\) 1.9. LU 68622.

18a, 18b. External view of left valve and dorsal view, internal mould. Same horizon and locality as above, x 1.9. LU 68623.
19. Dorsal view. Oxford Clay, Kempston, Beds., x 1.9. GSM 75702.

Solemya woodwardiana Leckenby
20. Holotype. External view of left valve. "Kelloway Rock", Castle Rock, Scarborough, Yorkshire, x 1.3. Leckenby Collection. SM J6008. Figured by Leckenby, 1859, pl. 3, fig. 7 .
21. Paratype. External view of left valve. Same horizon and locality as above, x 1.3. Leckenby Collection, SM J12570.

External view of right valve. Lower Oxford Clay, Brora, Sutherlandshire, x 1.0. LU 69744.
23. Extermal view of left valve. Same horizon and locality as above, x 0.9. LU 69743.
24. External view of right valve. Lower Oxford Clay, Grossouvrei Subzone, Calvert, Buckinghamshire, x 1.5. LU 69752.
8. External view of right valve. Same horizon and locality as above, x I.9. GSM 75698.
9.
10.
11.

12a, 12b. External view of left valve and dorsal
view. Same horizon and locality as above, x 2.0. LU 68616.
16.

External view of left valve. Lower Oxford Clay, Obductum Subzone, Stewartby, Bedfordshire, x 2.0. LU 68613.

External view of left valve. Same horizon and locality as above, x 2.0. LU 68614.

Extermal view of right valve. Same horizon and locality as above, x 2.0 . LU 68615.

External view of right valve. Grossouvrei Subzone, Stewartby, Beds., x 2.0 . LU 68617.

External view of right valve. Same horizon and locality as above, x 1.9. LU 68618.

Internal view of left valve. Grossouvrei Subzone, Marston Moretaine, Beds., \(x\) 1.9. LU 68619.

Dorsal view. Obductum Subzone, Stewartby, Beds., x 1.9. LU 68621.

\section*{PLATE 3.}

\section*{Mesosaccella morrisi (Deshayes)}

Fig.
1. Neotype. Internal view of right valve.

Lower Oxford Clay, Christian Malford, Wiltshire, x \(1 \frac{1}{2}\). BM L67154.
2. Neoparatype. External view of right
valve. Same horizon and locality as
above, \(x\) 1.7. BIM L67155.
3. External view of left valve, internal mould.

Upper Oxford Clay, Scarborough,
Yorkshire, x 1.3. YM Tsp.188.
Holotype of Nucula nuda Phillips, 1829,
pl. 5, fig. 5.
External view of right valve, internal mould.
Same horizon and locality as above,
x 1.3. YM 881.
Internal view of left valve. Lower Oxford
Clay, Obductum Subzone, Stewartby, Bedfordshire, x I.7. Authors collection, KD 500.
6. External view of right valve. Same horizon and locality as above, x 2.0. LU 68612.
7. External view of right valve. Oxford Clay,

Kempston, Bedfordshire, x 1.9.
GSM 75700 .

\section*{PLATE 3}


24a-b. External view of left valve and dorsal view. Oxford Clay, Chippenham, Wilts., x 1.4. GSM 52300.

Grammatodon (Grammatodon) clathrata (Leckenby)
25.
26.

Holotype. External view of left valve.
Hackness Rock, Scarborough, Yorkshire, x l.1. Leckenby Collection, SM J6005.

8.

External view of left valve, 'Silcoset' cast. Same horizon and locality as above, x 2.4. LU 69761.
9.

External view of left valve, 'Silcoset' cast. Same horizon and locality as above, x 3.3. LU 69762.

External view of left valve. Lower Oxford Clay, Grossouvrei Subzone, Stewartby, Beds., x l.8. LU 69765.

Internal view of right valve. Same horizon and locality as above, x 1.6. IU 68627.

Grammatodon (Grammatodon) concinna (Phillips) Holotype. External view of left valve, internal mould. Upper Oxford Clay, Mariae Zone, Scarborough, Yorkshire, x 1.7. Phillips Collection, YM Tsp 135. Figured by Phillips, 1829, pl. 5, fig. 9. External view of left valve. Lower Oxford Clay, Jason Subzone, Norman Cross, Hunts., x 1.4. LU 68624.

External view of right valve. Lower Oxford Clay, Jason Subzone, Calvert, Bucks., \(x\) 1.2. LU 68644.

External view of left valve. Same horizon and locality as above, x 1.2.

LU 68645.

PLATE 4.
Grammatodon (Grammatodon) minima (Leckenby)
Fig.
1.
2.
3.
5.
6.
7.

Holotype. External view of left valve.
Hackness Pock, Scarborough, Yorkshire, x 2.1. Leckenby Collection, SM J6007a.

Paratype. External view of right valve.
Same horizon and locality as above,
x 1.5. Leckenby Collection, SM J6007b.
External view of left valve, 'Silcoset' cast.
Lower Oxford Clay, Grossouvrei Subzone,
Chickerell, Dorset, x 1.4. LU 69759.
External view of right valve, 'Silcoset'
cast. Same horizon and locality as
above, x 2.6. LU 69764.
Extemal view of left valve, 'Silcoset'
cast. Lower Oxford Clay, Grossouvrei
Subzone, Stewartby, Beds., x 1.7.
LU 69790.
External view of left valve. Same horizon
and locality as above, \(x\) 1.7.
LU 68626.
External view of left valve, 'Silcoset' cast.
Lower Oxford Clay, Grossouvrei
Subzone, Calvert, Jucks., x 2.7 .
LU 69763.

PLATE 4


Holotype. External view of right valve. Upper Oxford Clay, Cordatum Zone ("Red Nudule Beds"), Weymouth, Dorset, \(x\) I. Sowerby Collection, BM 43251.
9. External view of left valve, Same horizon and locality as above, \(x 1\). YM KD1974/13.

10a-10b. External view of left valve and posterodorsal view. Same horizon and locality as above, \(x\) 1. YM KD1974/11.
11. External view of left valve. Lower Oxford Clay, Coronatum Zone, Calvert, Buckinghamshire, x I. LU 70015.
12. External view of left valve. Oxford Clay, Lukow, Poland, x 1. KD Lukow 4.

Pteroperna ? pygmaea (Dunker)
13. External view of left valve. Lower Oxford Clay, Wiltshire, x 2. BCM Cb4778.
14. External view of left valve. Same horizon and locality as above, x 2. BCM Cb4780.
15. External view of left valve. Same horizon and locality as above, x 2. BCM Cb4781.
16. External view of left valve. Same horizon and locality as above, x 2. BCM Cb4779.
17. Internal view of left valve, 'Silcoset' cast. Same horizon and locality as above, \(x\) 2. BCM Cb4777.

PLATE 5.
Gramnatodon (Grammatodon) clathrata (Leckenby)
Fig.
la-lb. External view of right valve and dorsal
view. Cornbrash, Scarborough,
Yorkshire, x I. YM KDI974/10.
2. Extermal view of left valve. Oxford Clay, Chippenham, Wiltshixe, x I. GSM 113414.
3. External view of left valve. Lower Oxford

Clay, Jason Zone, Stewartby,
Bedforashire, x 1. LU 68656.
4a-4c. External, intemal and dorsal views of left
valve. Same locality and horizon as
above, \(x\) l. LU 68658.

Modiolus bipartitus J. Sowerby
5. External view of left valve. Midale Oxford

Clay, Lamberti Zone, Woodham,
Buckinghanshire, x I. LU 69943.
6. Posterodorsal view. Lower Oxford Clay,

Calloviense Zone, Stewartby, Beds.,
\(x\) 1. LU 69944.
7a-7c. Extemal view of right valve, posterodorsal
and anterodorsal views. Lower
Calcareous Grit (Oxfordian),
Scarborough, Yorks., x 1. YM KD1974/14.

PLATE 5

8. External view of right valve. Lower Oxford Clay, Wiltshire, x l.l. BM L9728.
9.
10.
11.
12.
13.
14.

External view of left valve. Same horizon and locality as above, x l.l. BM 3.4469.

Extermal view of right valve. Upper Oxford Clay, Mariae Zone, Scarborough, Yorkshire, x 1.3. YM KDI974/18.

Pinna lanceolata J. Sowerby
External view of left valve. Coralline Oolite (Oxfordian), Malton, Yorkshire, \(x\) 1. YM KD1974/22.

External view of left valve. Lower
Calcareous Grit (Oxfordian),
Scarborough, Yorkshire, x 0.7.
YM KD1974/26.
External view of left valve. Coralline
Oolite (Oxfordian), Malton, Yorkshire, x 1. BMM 66884.

External view of left valve. Lower Calcareous Grit (Oxfordian), Scarborough, Yorkshire, x 1 . YM KDI974/20.

PLATE 6.
Pteroperna ? pygmaea (Dunker)
Fig.
1. Lower Oxford Clay, Wiltshire, x 5.4. BCM Cb4777.

Pinna mitis Phillips
2.

External view of left valve. Kellaways Rock, Chippenham, Wiltshire, x 1 . SM J12887.

External view of left valve, 'Silcoset' cast. Lower Oxford Clay, Jason Zone, Bletchley, Buckinghamshire, x 1. LU 69945.

External view of left valve, 'Silcoset' cast. Lower Oxford Clay, Jason Zone, Stewartby, Bedfordshire, x I. LU 68660.
5. Holotype. External view of right valve.

Upper Oxford Clay, Mariae Zone, Scarborough, Yorkshire, x 1.0. Phillips Collection, YM Tsp219.
6.
7.

Extemal view of left valve. Same horizon and locality as above, x 1. Leckenby Collection, SM J26740.

Dorsal view. Upper Oxford Clay, Mariae Zone, Woodham, Bucks., x 0.9. OUM J30186.

\section*{PLATE 6}


17. External view of right valve. Jason Zone, Stewartby, Beds., x 1.8. LU 68705.
18. External view of left valve. Same horizon and locality as above, x 1.8. LU 68706.

Oxytoma inequivalvis (J. Sowerby) External view of right valve. Lower 0xford Clay, Jason Zone, Stewartby, Beds., \(x 2.0\). LU 68752 . External view of left valve, 'Silcoset' cast. Lower Oxford Clay, Coronatum Zone, Calvert, Buckinghamshire, x 1.6. LU 69949 .

External view of left valve. Kellaways Clay, Putton Lane, Chickerell, Dorset, x 1.4. Arkell Collection, SM J47646a.

External view of left valve. Same horizon and locality as above, \(x\) 1.3. Arkell Collection, SM J47646b.

External view of left valve. Same horizon and locality as above, \(x\) 1.2. Arkell Collection, OUM J8612.
9. External view of right valve. Lower Oxford Clay, Jason Zone, Stewartby, Beds., \(x\) 3.3. LU 68676.

\section*{Bositra buchii (Roemer)}

10a-b. External view of both valves. Lower Oxford Clay, Coronatum Zone, Stewartby, Beds., x 2.4 (10a), x 1.8 (10b). LU 68701.

External view of right valve. Lower Oxford Clay, Jason Zone, Stewartby, Beds., \(x\) 1. LU 6869.
12. External view of right valve. Lower Oxford Clay, Coronatum Zone, Stewartby, Beds., x 1.8. LU 68702.
13. External view of left valve. Lower Oxford Clay, Jason Zone, Stewartby, Beds., \(x\) 1.9. LU 68703.
14. External view of right valve, 'Silcoset' cast. Same horizon and locality as above, x 1.5. LU 68698.
15. Externel view of left vaive, 'Silcoset' cast. Same horizon and locality as above, \(x\) I. 4. LU 68697.
16. External view of many specimens. Jason Zone, Crook Hill, Chickerell, Dorset, x 1.6. LU 68704.

\section*{PLATE 7.}

Parainoceramus subtilis (Lahusen)

\section*{Fig.}
1. External view of right valve. Iower Oxford Clay, wiltshire, \(x\) I. BCM Cb4774.
2.
3.

External view of left valve. Lower Oxford Clay, Coronatum Zone, Stewartby, Beds., x 3.4. LU 68685.
4.
5.

Inxternal viev of left valve. Lower Oxford Clay, Coronatum Zone, Stewartby, Beds., \(x\) 1.8. LU 68687.
6.

External view of left valve. Same horizon and locality as above, x 1.5 . LU 69947.

External view of left valve. Same horizon and locality as above, x 1.7. LU 68695.

Internal view of right valve. Same horizon and locality as above, x 3.3. LU 69948.

\section*{PLATE 7}

16. Neotype. Extemal view of left valve, internal mould. Haclness Rock, Scarborough, Yoxkshire, x 1.2. YM 872.
17. Neotype. External view of left valve, intermal mould. Same horizon and locality as above, \(x\) 1. YM 872, KD1974/32.

18a-c. External, internal and magnified internal views of left valve. Oxford Clay, Trowbridg2, Wiltshire, x 1 (18a-b), x 3.3 (18c). GSM Y2088.
19. External view of right valve. Lower Oxford

Clay, Coronatum Zone, Norman Cross, Huntingdonshire, x I. LU 69953.
21.

Intermal view of left valve. Oxford Clay, Trowbridge, Wilts., x 3.3. GSM Y2087.

8a-8b. Internal and external views of right valve. Same horizon and locality, \(8 a \times 2.3\), \(8 b \times\) 1.7. LU 52676.
9. Lectotype. Extemal view of left valve. Miadle Lias, Irursley, Gloucestershire, \(x\) 1. Sowerby Collection. BM L43259a.
10. Syntyoe. Fxtemal view of left valve. Same horizon and locality as above, \(x I\). BM L43259b.
11. External view of left valve. Kellaways Rock, Iytherton Iucas, Wiltshire, \(x\) 1. BIJ 11435.
13. External view of left valve. Iower Oxford
12.
14.
15.

External view of right valve. Lower Oxford
Clay, Jason Zone, Calvert, Bucks., \(x\) 3.5. LU 69951.

Clay, Calloviense Zone, Stewartby, Beds., x 2.9. LU 69952.

Meleagrinella braamburiensis (Phillips)
Extemal view of left valve. Oxford Clay, Chippenham, Wiltshire, x 1.6. BCM 3324 a.

Jxternal view of left valve. Same horizon
and locality as above, x 1.1.
GSM 113410.

\section*{PLATE 8.}

\section*{Oxytoma inequivalvis (J. Sowerby)}

Fig.
1. External view of left valve, 'Silcoset' cast.

Lower Oxford Clay, Jason Zone, Stewartby, Bedfordshire, x 3.3. LU 68749.
2. Extemal view of left valve, 'Silcoset' cast. Same horizon and locality, x l.8. LU 68748.
3. External view of left valve. Kellaways Rock, Puiton Lane, Chickerell, Dorset, x 1.4. OUM J28250.

External view of left valve. Lower Oxford Clay, Coronatum Zone, Stewartby, Beds., x l.8. LU 69950.

External view of left valve. Hackness Rock, Scarborough, Yorkshire, x 1. YM KD1974/31.
6.

External view of left valve, 'Silcoset'
cast. Lower Oxford Clay, Jason Zone, Stewartby, Beds., x 2.3. IU 68747.

7a-7c. Internal view, external view and dorsal view of left valve. Middle Oxford Clay, Lamberti Zone, Woodham, Buckinghamshire, \(7 \mathrm{a}, 7 \mathrm{c} \times 1.4,7 \mathrm{~b} \times 1.0\) LU 52673.


Byssentolium hudsoni gen. et sp. nov.
17. Paratype. Internal view of right valve.

Lower Oxford Clay, Coronatum Zone,
Norman Cross, Hunts., x 4.6 .
BM LLL27722.
18. Holotype. Internal view of right valve.

Same horizon and locality as above, x 4.6. BMI LL27723.
19. Paratype. Internal view of right valve.

Same horizon and locality as above, \(x\) 4.2. BII LL27750.
20.

Paratype. Internal view of right valve.
Same horizon and locality as above, \(x\) 5.6. BM LLL27751.
9.
10.
12.
11.
21.

External view of left valve, 'Silcoset'
cast. Same horizon and locality as above, x 2.5. LU 68761. Extemal view of right valve, 'Silcoset' cast. Same horizon and locality as above, x 2.5. LU 69957 . External view of right valve. Oxford Clay, Trowbridge, Wilts., x I. GSM Y2090. Entolium corneolum (Young \& Bird) External view of left valve. Hackness

Rock, Scarborough, Yorkshire, x 1 . MM Tsp 119. Holotype of Pecten demissus Phillips, 1829, pl. 6, fig. 5. External view of left valve. Kellaways Rock, Scarborough, Yorkshire, x I. Leckenby Collection, SM J12397.

External view of left valve. Same horizon and locality as above, x 1. Leckenby Collection, SM J12396.

External view of left valve. Same horizon and locality as above, x l. BMI 47443. Internal view of right valve. Lower Oxford Clay, Brora, Sutherlandshire, x 1.8. LU 69958.

External view of right valve. Same horizon and locality as above, x 1.9. LU 69959.

PLATE 9.
Meleagrinella braamburiensis (Phillips)
Tig.
la-lc. External, posterior and internal views of left valve. Oxford Clay, Trowbridge, Wiltshire, x I.4. GSM Y2087.
2. External view of left valve. Lower Oxford

Clay, Coronatum Zone, Calvert, Buckinghamshire, x 1.8. LU 68756.
3.

External view of left valve, 'Silcoset'
cast. Lower Oxford Clay, Coronatum Zone, Stewartby, Bedfordshire, x 1.8 . LU 69955.
4. Internal view of right valve. Oxford Clay, Trowbridge, Wilts., x 3.0. GSM Y2090.
5.

External view of right valve. Iower Oxford
Clay, Coronatum Zone, Stewartby, Beds., x 2.9. LU 68771.
6. Extemal view of left valve. Lower Oxford Clay, Coronatum Zone, Norman Cross, Huntingdonshire, x I.9. LU 69956.

View from right side of both valves. Lower Oxford Clay, Coronatum Zone, Stewartby, Beds., x 1.2. LU 68758.
8.

External view of left valve. Lower Oxford Clay, Coronatum Zone, Calvert, Bucks., x 1.8. LU 68753.

14.

External view of right valve. Same horizon
and locality as above, x 1.
BM L8958a.
15. Neotype. External view of left valve.

Hackness Rock, Scarborough, Yorkshire,
x 1. Leckenby Collection, SM J12398.

Chlamys (Chlamys) bedfordi sp. nov.
7. Paratype. Intemal view of left valve.

Lower Oxford Clay, Coronatum Zone,
Calvert, Bucks., x 3.1. BM LL27728.
8. Paratype. Fxtemal view of right valve.

Lower Oxford Clay, Coronatum Zone,
Stewartby, Beds., x 3.0. BM LI27725.
9. Paratype. Internal view of right valve.

Lower Oxford Clay, Coronatum Zone,
Norman Cross, Huntingdonshire, x 3.1. BM LL27727.
10. Paratype. External view of left valve,
'Silcoset' cast. Lower Oxford Clay,
Coronatum Zone, Calvert, Bucks., x 2.8.
BM LI27726.
lla-b. Holotype. External view of right valve, and
details of omament. Seme horizon and
locality as above, x 3.3 (11a), x 6.6
(11b). BM LL27724.

Chlamys (Radulopecten) scarburgensis (Young \& Bird)
12.
13. External view of left valve. Upper Oxford

Intemal view of left valve. Upper Oxford
Clay, Mariae Zone, Warboys, Hunts.,
x 1. Peterborough Museum 299/G。

Clay, Oxfordshire, x 1.3. BM L8958c.

Byssentolium hudsoni gen. et sp. nov.
Fig.
1. Paratype. Internal view of right valve.

Lower Oxford Clay, Coronatum Zone, Calvert, Buckinghamshire, x 4.3.

BM LI27748.
2. Paratype. External view of right valve.

Same horizon and locality as above,
x 4.2. LU 69960 .
4.

Paratype. Extemal view of right valve.
Lower Oxford Clay, Coronatum Zone,
Stewartby, Bedfordshire, x 4.6.
LU 69937.

Cemptonectes auritus (Schlotheim)
3. Internal view of right valve. Kellaways

Rock, Stewartby, Beds., x 3.3.
LU 70016.
5a-5b. External and internal views of right valve.
Coralline 0olite (Oxfordian),
Malton, Yorkshire, x 1. BM LL2445.
6. External viev of left valve. Berkshire

Oolite Series (Oxfordian), Headington,
Oxfordshire, x 1. BM L80525.
Syntype of Pecten lens J. Sowerby,
1818, pl. 205, fig. 2.

17.

Holotype of Plicatula fistulosa Morris \&
Lycett. Extermal view of left valve. Great Oolite (Bathonian), Minchinhampton, Gloucestershire, x l. ITorris \& Iycett Collection, GSM 9166. Figured by Morris \& Lycett, 1853, pl. 2, fig. 5 .

Chlamys (Radulopecten) drewtonensis Neale
15.

Paratype. External view of left valve.
Kellaways Rock, South Cave, Yorkshire, x 1.2. BHi L88738. Figured by Neale, 1956, pl. 28, fig. 1.

Holotype. External view of right valve, plaster cast. Same horizon and locality as above, x l. BM L88737. Figured by Neale, 1956, pl. 28, fig. 3.

\section*{Chlamys (Radulopecten) fibrosa (J. Sowerby)}
7.

Lectotype. Extemal view of right valve. Cornbrash (?), Chatley, Wiltshire, \(x\) 1. Sowerby Collection, BM 43305. Figured by J. Sowerby, 1816, pl. 136, left hand figure, as one of the two syntypes of Pecten fibrosus.

9a-b. Internal view of right valve, nagnified and naturel cize. Oxford Clay, Chippenham, Viltshire, x 1.8 (9a), \(x 1\) (9b). GSM 113408. External view of both valves, 'Silcoset' cast. Lower Oxford Clay, Jason Zone, Norman Cross, Huntinedonshire, x 1.5 . LU 69962.
11. External view of left valve. Kellaways Rock, Scarborough, Yorks., x 1.9. SM J12610.
12. External view of right valve. Lower Calcareous Grit (Oxfordian), Scarborough, Yorkshire, x 1.9. YM KD1974/59.
16. External view of left valve. Lower Oxford Clay, Coronatum Zone, Stewartby, Beds., x 2.2. LU 69963.

Plicatula (Plicatula) cf. fistulosa Morris \& Lycett
13. External view of left valve. Oakley Beds (Oxfordian), Ampthill, Beds., x 1. BM L91702.

PLATE 11.
Chlamys (Radulopecten) scarburgensis (Young \& Bird)
Fig.
1. Neoparatype. Extemal view of left valve.

Hackness Rock, Scarborough, Yorkshire,
x 1. Leckenby Collection, SMI J12400.
2. Neoparatype. External view of right valve.

Same horizon and locality as above,
x I. Leckenby Collection, SM Jl2401.
3.

Neoparatype. Extemal view of right valve.
Same horizon and locality as above,
x 1. Leckenby Collection, SM J12399.
4. External view of right valve. Same horizon
and locality as above, \(x\) 1. GSM 54616.
5a-b. External view of right valve and left valve.
Upper Oxford Clay, Oxfordshire, x 1.
BM L8958.
6. External view of left valve, detail of
ormament. Lower Oxford Clay, Jason
Zone, Stewartby, Bedfordshire, x l.7.
LU 69961.
8. Dorsal view. Upper Oxford Clay, Oxford

Oxfordshire, x 1. OUM J14548.

7. Extemal view of left valve. Lower Oxford Clay, Calloviense Zone, Stewartby, Beds., x I. BM LL27752.

8a-b. Internal and extemal views of left valve. Same horizon and locality as above, \(x\) 1. BM LIL27753.

9a-c. Extemal, intemal and posterior views of left valve. Lower Oxford Clay, Jason Zone, Stewartby, Beds., x I. BM LI27754.
10. Extemal view of left valve. Lower Oxford Clay, Calloviense Zone, Norman Cross, Hunts., x I. IU 69965.
11. External view of left valve. Lower Oxford Clay, Coronatum Zone, Norman Cross, Hunts., \(x\) 1. BM LL27755.
12. Extemal view of left valve. Lower Oxford Clay, Coronatum Zone, Stewartby, Beds., x I. LU 69966.

13a-b. Internal and extemal views of left valve. Lower Oxford Clay, Jason Zone, Calvert, Buckinghamshire, x l. BM LI27756.
14.
15. Internal view of right valve. Lower Oxford Clay, Jason Zone, Calvert, Bucks., x I. LU 69968.

PLATE 12.
Plicatula (Plicatula) weymouthiana Damon
Fig.
la-b. Holotype. External views of right and left
valves. Corallian, Weymouth, Dorset, x 1. Damon Collection, BM L6786. Figured by Damon, 1860, pl. 9, fig. 7. Plicatula (Plicatula) ef. fistulosa Morris \& Lycett
2.

Fxtemal view of right valve. Lower Oxford
Clay, Jason Zone, Peterborough, Huntingdonshire, x 1. BM L87302.

3a-b. Extemal views of left and right valves.
Lower Oxford Clay, Coronatum Zone,
Bletchley, Buckinghamshire, x 1 .
LU 68775.
4. External view of right valve. Iower Oxford

Clay, Jason Zone, Norman Cross,
Hunts., x 1. LU 68778.

Gryphaea (Bilobissa) dilobotes nom. nov.
5a-5d. External and intemal views of left and
right valves. Lower Cxford Clay,
Calloviense Zone, Stewartby, Beds., \(x\) 1. LU 69964.
6. External view of lef't valve. Lower Oxford

Clay, Jason Zone, Stewartby, Beds.,
\(x\) 1. BM JL27751.


\section*{PLATE 13.}

Gryphaea (Bilobissa) dilobotes nom. nov.
Fig.
1. Holotype. External view of left valve.

Lower Oxford Clay, Calloviense Zone, Stewartby, Bedfordshire, x l. BM LIL27729.

2a-b. External views of left and right valves. Lower Oxford Clay, Calloviense Zone, Norman Cross, Huntingảonshire, x 1. LU 69569.
3. External view of left valve. Lower Oxford Clay, Calloviense Zone, Stewartby, Beds., x l. LU 69970.
4. External view of left valve. Same horizon
and locality as above, x 1. LU 69971.
5. External view of left valve. Lower Oxford

Clay, Jason Zone, Stewartby, Beds., \(x\) 1. LU 69972.

6a-b. External views of left and right valves. Lower Oxiord Clay, Calloviense Zone, Stewartby, Beds., x l. LU 69973.


\section*{PLATE \(14 \cdot\)}

Gryphaea (Bilobissa) dilobotes nom. nov. Fig.
la-c. External and intemal views of left valve and external view of right valve. Lower Oxford Clay, Calloviense Zone, Stewartby, Bedfordshire, x . LU 69974.
2. Extemal view of left valve. Same horizon and locality as above, x 1. IU 69975.

3a-b. External views of left and right valves. Lower Oxford Clay, Jason Zone, Stewartby, Beds., x 1. LU 69976.
4. External view of left valve. Same horizon and locality as above, x 1. LU 69977.
5.

External view of left valve. Iower Oxford Clay, Calloviense Zone, Stewartby, Beds., X I. LU 69978.


\section*{PLATE 15.}

Gryphaea (Bilobissa) dilobotes nom. nov. Fig.
1. External view of left valve. Lower Oxford

Clay, Jason Zone, Stewartby, Beds., x 1. LU 69979.

2a-b. External and internal views of left valve.
Lower Oxford Clay, Calloviense Zone, Stewartby, Beds., x 1. LU 69980.

3a-b. External and posterior views of left valve.
Same horizon, Norman Cross,
Huntingdonshire, x 1. LCM 5231961 29a.
4a-b. External views of left and right valves.
Kellaways Rock, Drewton, North Cave, Yorkshire, x I. YM KDI974/60.
5.

External view of left valve. Lower Oxford
Clay, Calloviense Zone, Stewartby,
Beds., x 1. LU 69981.
6a-b. External views of left and right valves.
Lower Oxford Clay, Jason Zone,
Stewartby, Beds., x 1. LU 69982.
7. External view of left valve. Lower Oxford

Clay, Calloviense Zone, Norman Cross,
Hunts., x 1. LU 69983.


9a-c. External and posterior views of left valve
and external view of right valve.
Same horizon and locality as above,
\(\therefore\) 1. LU 68775。

PLATE 16.
Gryphaea (Bilobissa) dilobotes nom. nov.
Fig.
1. Extermal view of left valve. Lower Oxford

Clay, Calloviense Zone, Norman Cross, Huntingdonshire, x 1. LU 69984.

2a-b. External views of right and left valves.

Lower Oxford Clay, Jason Zone, Stewartby, Bedfordshire, x l. LU 69985.
3. External view of left valve. Same horizon
and localıty as above, x 1. LU 69986.
4.

External view of left valve. Lower Oxford

Clay, Calloviense Zone, Norman Cross, Hunts., x 1. LU 69987.
5. Extemal view of left valve. Lower Oxford

Clay, Calloviense Zone, Stewartby, Beds., x 1. LU 69988.
8. Extermal view of right valve. Same horizon and locality as above, x 1. LU 69991.

Gryphaea (Bilobissa) Iituola Lamarck
6.

External view of left valve. Niddle Oxford
Clay, Athleta Zone, Stewartby, Beds.,
\(x\) 1. LU 68777.
7a-b. External and intemal views of right valve. Same horizon and locality as above, \(x\) 1. LU 68783.

7. Syntype. External view of left valve.

Kimmeridge Clay, Shotover Hill, Oxfordshire, x l. BM 43340a.

8a-b. Syntype. External view of right valve and anterior view. Same horizon and locality as above, x l. BM 43340 b.

Discomiltha lirata (Phillips)
10. Neotype. External view of left valve.

Hackness Rock, Scarborough, Yorkshire, \(x\) 1. BM LLLOOT7. Figured by Arkell, 1934, pl. 41, fig. 7 as Lucine Iirata Phillips.
11. External view of right valve. Same horizon and locality as above, x 1 . YM KD1974/47。

Gryphaea (Bilobissa) Iituola Lamarck
Fig.
la-b. External views of left and right valves. Middle Oxford Clay, Athleta Zone, Stewartby, Bedfordshire, x 1. LU 68782.
2. External view of left valve. Same horizon and locality as above, x 1. LU 68778.
3. External view of left valve. Same horizon and locality as above, x 1. IU 69989.
4. External view or left valve. Same horizon and locality as above, x 1. LU 68776.
9. External view of left valve. Same horizon and locality as above, x l. Lu 68773.

Nanogyra nana (J. Sowerby)
5a-b. Lectotype. External and internal views of
left valve. Kimmeridge Clay, Shotover Hill, Oxfordshire, 5a x l, \(5 b \times\) 1.2. Sowerby Collection, BM 43340c. Figured by J. Sowerby 1822, pl. 383, left hand figure, as Gryphaea nana.

6a-b. Internal and external views of right valve. Lower Oxford Clay, Coronatum Zone, Calvert, Buckinghamshire, x 1. LU 68784.

PLATE 17

8. External view of right valve. Oxford Clay, Weymouth, Dorset, x 1. YM KD1974/40.
9. External view of left valve. Same horizon and locality as above, x 1. Reed Collection, YM KD1974/37.
l0a-b. External view of right valve and dorsal view. Same horizon and locality as above, x 1. GSM 43053.
lla-b. Internal and external views of right valve. Iower Oxford Clay, Jason Zone, Stewartby, Beds., x l. IU 54481.

External view of left valve. Same horizon and locality as above, x l.l. LU 68785.
13. External view of right valve. Kellaways Rock, Putton Lane, Chickerell, Dorset, x I. Arkell Collection, SM J47645.

PLATE 18.
Discomiltha lirata (Phillips)
Fig.
1.

External view of left valve. Lower Oxford Clay, Coronatum Zone, Marston Moretaine, Bedfordshire, x l.l. LU 68789.
2. Extemal view of right valve. Same horizon and locality as above, x 1.5. LU 68787.
3. Intemal view of right valve. Same horizon and locality as above, x l.l. LU 69990.

4a-b. External view of right valve and dorsal
view. Coralline Oolite (Oxfordian), Hildenley, Yorkshire, x 1. YM Tsp 170.

Fixternal view of right valve. Lower Oxford Clay, Coronatum Zone, Marston Moretaine, Beds., x 1. LU 68786.

External view of right valve, internal mould. Hackness Rock, Scarborough, Yorkshire, x 1. YM KD1974/44.
7. External view of left valve. Lower Oxford Clay, Jason Subzone, Calvert, Buckinghamshire, x l.4. LU 69992.

PLATE 18


Myophorella (Myophorella) irregularis (Seebach)
Fig.
la-c. Extemal, intemal and oblique intemal views of left valve. Oxford Clay, Weymouth, Dorset, x 1. YM KD1974/39.
2. External view of left valve. Oxford Clay, Trowbridge, Wiltshire, x 1.5 . GSM Y2080.

3a-b. External views of right and left valves. Oxford Clay, Weymouth, Dorset, x 1. YM KD1974/61.

4a-c. External view of right valve, dorsal view and external view of left valve. Same horizon and locality as above, \(x\) 1. YM KDI974/41。

Myophorella (Myophorella) caytonensis nom. nov.
5a-b. External views of left and right valves. Cornbrash, Scarborough, Yorkshire, x 1. Iycett Collection, GSM 112893.

PLATE 19

7. External view of right valve, composite internal mould. Upper Oxford Clay, Mariae Zone, Scarborough, Yorkshire, x 1.5. SM J26767.
8.

External view of right valve, composite intemal mould. Same horizon and locality as above, x l.5. YM 873, holotype of Astarte Iurida Phillips, 1829, pl. 5, fig. 2 (non A. Iurida J. Sowerby).

External view of both valves, composite internal mould. Same horizon and locality as above, x 1.5. SM J26766.
10. External view of right valve, composite internal mould. Same horizon and 1• ality as above, X 1.5. YM KD1974/48.

1la-b. External view of left valve and posterodorsal view. Oxford Clay, Fairford, Wiltshire, x 1.4. BU 14708.

12a-b. Dorsal view and extemal view of left valve. Oxford Clay, Trowbridge, Wilts., x 2.0. BCM 3324a.

PLATE 20.
Myophorella (Myophorella) caytonensis nom. nov.
Fig.
la-d. Holotype. Extemal views of right and left valves, dorsal and anterior views. Kellaways Rock, Scarborough, Yorkshire, \(x\) 1. SM J11377.
2.

External view of left valve. Same horizon and locality as above, \(x\) 1. GSM 11436. Figured by Iycett, 1877, pl. 36, fig. 1 as Irigonia Rupellensis d'Orbigny.
3. External view of left valve. Same horizon and locality as above, \(x\). GSM 11438. Figured by Lycett, 1877, pl. 36, fig. 3 as Trigonia Rupellensis d'Orbigny.

Neocrassina (Neocrassina) ungulata (Lycett)
4. Internal view of right valve. Oxford Clay, Trowbridge, Wiltshire, x l.9. BCM 3324d.

5a-b. External views of left and right valves. Same horizon and locality as above, x 1.9. BCM 3324c.

6a-b. Oblique internal and internal views of left valve. Same horizon and locality as above, \(x\) 1.9. BCM 3324b.

23. Internal view of right valve, showing
transposed dentition. Same horizon and locality as above, x 2.7. LU 69943.
24. External view of right valve. Lower Oxford Clay, Jason Zone, Stewartby, Beds., \(x\) 2.7. LU 69998.
25.
26.
27.
32.
28. Dorsal view. Lower Oxford Clay, Jason Zone, Stewartby, Beds., x 2.7. LU 69998.
External view of left valve. Lower Oxford Clay, Jason Zone, Calvert, Bucks., \(x\) 2.7. LU 69812.

External view of left valve. Same horizon and locality as above, x 2.7. LU 68795.

Dorsal view. Same horizon and locality as above, x 2.7. LU 68793.

External view of right valve. Same horizon and locality as above, x 2.7. LU 69999.

External view of right valve. Lower Oxford
Clay, Jason Zone, Calvert, Bucks., \(x\) 2.7. LU 68792.

Internal view of left valve. Same horizon and locality as above, x 2.7. LU 68798.

External view of right valve. Same horizon and locality as above, x 2.7. LU 68799.
17. External view of left valve. Same horizon and locality as above, x 1.5. YM KD1974/50. Mrautscholdia phillis (Cottreau)
15. External view of right valve. Lower Oxford Clay, Jason Zone, Cailvert, Bucks., \(x 2.7\). LU 69805.
16. External view of left valve. Same horizon and locality as above, x 2.7. LU 69802.

External view of right valve. Seme horizon and locality as above, x 2.7. LU 69996.

19a-b. External and internal views of left valve. Same horizon and locality as above, \(x\) 2.7. LU 69800.

20a-b. Internal and extemal views of right valve. Lower Oxford Clay, Coronatum Zone, Marston Moretaine, Beds., x 2.7. LU 69814.

Internal view of right valve. Lower Oxford Clay, Jason Zone, Calvert, Bucks., \(x\) 2.7. LU 69997.

22a-b. External view of left valve and dorsal view. Same horizon and locality as above, \(x\) 2.7. LU 69801.
7. Paratype. Internal view of right valve. Lower Oxford Clay, Jason Zone, Calvert, Bucks., x 1.6. LU 69995 .

Trautscholdia carinata (Phillips)
8.
9.
10.
14.

External view of right valve. Same horizon and locality as above, x 1.6.

SM J26747.
External view of right valve. Same horizon
and locality as above, x 1.6.
YM KD1974/62.
External view of right valve. Same horizon
and locality as above, x 1.5.
SM J26745.
External view of left valve. Same horizon
and locality as above, x 1.1.
YM KD1974/49.
External view of left valve. Same horizon
and locality as above, x 1.6.
YM KD1974/51.
External view of right valve. Same horizon
and locality as above, x 1.6.
SM J26746.

\section*{Neocrassina (Neocrassina) celvertensis sp. nov.}

Fig.
la-b. Holotype. Fxtemal and internal views of right valve. Lower Oxford Clay, Jason Zone, Calvert, Buckinghamshire, x 2.5. BM LI27730.
2. Paratype. External view of left valve. Lower Oxford Clay, Jason Zone, Stewartby, Bedfordshire, x 1.5. LU 68790.

3a-b. Paratype. Internal and external views of
left valve. Lower Oxford Clay, Jason Zone, Calvert, Bucks., x 1.6. LU 69993.

4a-c. Paratype. External views of right and left valves and dorsal view. Same horizon and locality as above, x 1.5 . BM LL27732.
5. Paratype. External view of right valve. Saine horizon and locality as above, \(x\) 1.6. BM LI27733.

6a-b. Paratype. Internal and extermal views of left valve. Lower Oxford Clay, Jason Zone, Stewartby, Beds., x 1.5 . LU 69994.

25.

Holotype. External view of left valve.
Cornbrash, Wiltshire, x l.I. Sowerby Collection, BM 43164. Figured by J. Sowerby, 1821, p1. 295, fig. 1. as

Isocardia minima.
26.

External view of left valve. Kellaways
Rock, Chippenhan, Wilts., x 1 .
GSM 42919.

Anisocardia (Anisocardia) tenera (J. de C. Sowerby)
23a-b. Holotype. External view of right valve and
anterior view. Kellaways Rock,
Viltshire, x 1.3. Sowerby Collection, BM 43165. Figured by J. Sowerby, 1821, pl. 295, fig. 2. as Isocardia tener.
24. External view of right valve. Kellaways

Rock, Chippenham, Wilts., x 1 .
GSM 114041.
27. External view of left valve. Sane horizon
and locality as above, x 1.
GSM 114043.
28a-b. External view of left valve and anterior view.
Kellaways Rock, Loudon, Wilts., x l.
Hudleston Collection, GSM Y2072.
29a-b. Anterior view and extermal view of right valve. Kellaways Rock, Chippenham, Wilts., x 1. GSM 114040 .
14. Internal view of right valve, 'Silcoset'
cast. Same horizon and locality as above, \(\times 2\). KD Lukow 8 .
7.5. External view of left valve. Kellaways

Rock, Kelleways, Wiltshire, x I.4.
Chaning Pearce Collection, BCM Cb 4770.
16a-b. Anterior view and extemal view of left
valve. Kellaways Rock, Chippenham,
Wilts., x l. GSM 42916.
17. Anterior view. Same horizon and locality
as above, \(x\) I. GSM 42917.
18. External view of right valve. Kellaways

Rock, Kellaways, Wiltshire, x l.4.
Chaning Pearce Collection, BCM Cb 4771.
19. External view of right valve. Kellaways

Rock, Calloviense Zone, Stewartby,
Beds., x 1. LU 70001.
20a-b. Extemal view of right valve and posterior
view. Lower Calcareous Grit
(Oxfordian), Scaxborough, Yorkshire, x 1. YM KD1974/54.
21. External view of right valve. Kellaways Rock, Calloviense Zone, Stewartby, Beds., x 1. LU 70002.
22.

External view of right valve. Kellaways
Rock, Chippenham, Wiltshire, x 1.
GSM 42917 •
8.

Clay, Jason Zone, Kidlington,
Oxfordshire, x 1. oum J9719.
9a-b. Holotype. Dorsal view and external view of
right valve. Kellaways Rock, Brora
Roof Bed, Brora, Sutherlandshire, \(x\)
1.1. Sowerby Collection, BM 43154.

Figured by J. de C. Sowerby, 1829, pl. 553, fig. 1, as Cardium striatulum.
10. External view of left valve. Lower Oxford

Clay, Wiltshire,
\(x\) 1. OUM J28240.
lla-c. External views of left valve and right valve and dorsal view. Kellaways Rock, Scarborough, Yorkshire, x 1 .

Leckenby Collection, SM J6010,
holotype of Cardium crawfordii
Leckenby, 1859, p1. 3, figs. 9a, 9b.

Rollierella minima (J. Sowerby)
12. Intemal view of right valve, 'Silcoset'
cast. Oxford Clay, Lukow, Poland,
x 2. KD Iukow 6 .
13. Internal view of right valve, 'Silcoset'
cast. Same horizon and locality as
above, x 2. KD Iukow 5 .

PLATE 22.
Trautscholdia phillis (Cottreau)
Fig.
1. External view of right valve. Lower Oxford Clay, Jason Zone, Calvert, Buckinghamshire, x 2.7. LU 69824.
2.
3.
4.
5.

Protocardia (Protocardia) striatulum (J. de C. Sowerby)
6. External view of left valve. Kellaways Rock, Brora Roof Bed, Brora, Sutherlandshire, x 1.5. LU 69832.
7.

External view of right valve, internal mould. Same horizon and locality as above, x 1. LU 69833.

\section*{PLATE 22}


16a-b. External view of right valve, normal size and magnified. Lower Oxford Clay, Jason Zone, Stewartby, Beds., x I (16a), x 5.4 (16b). LU 69852.

17a-b. External views of left and right valve. Lower Oxford Clay, Jason Zone, Wiltshire, x 5.4. OUM J28230.

18a-b. External view of right valve and dorsal view. Lower Oxford Clay, Dauntsey, Wiltshire, x 5.4. LU 70018.
c. Internal view of right valve. Lower Oxford Clay, Coronatum Zone, Marston Moretaine, Beds., x 1.4. IU 69846. Corbulomima macneillii (Morris)

9a-c. External views of right and left valve and dorsal view. Kellaways Rock, Trowbridge, Wiltshire, x 5.8. GSM 113985.

10a-c. Neotype. External views of right and left valves and dorsal view. Same horizon and locality as above, x 5.1. GSM 113999.
11. External view of left valve. Kellaways

Rock, Chippenham, Wilts., \(\times 4.3\). BCM 3324 .

12a-c. External views of right and left valves and dorsal view. Same horizon and locality as above, \(x\) 5.6. BCM 3324 c .
13. External view of left valve. Kellaways Rock, Trowbridge, Wilts., x 5.9. GSM 114017 •

14a-c. External views of right and left valves and dorsal view. Lower Oxford Clay, Dauntsey, Wilts., x 5.9. LU 70017.
15. External view of right valve. Kellaways Rock, Chippenham, Wiltshire, x 4.3. BCM 3324 a.

\section*{PLATE 23.}

Isocyprina (Isocyprina) roederi Arkell
Fig.
1.
mould. Lower Oxford Clay, Coronatum Zone, Stewartby, Bedfordshire, x l. LU 69833.
2.

External view of right valve. Same horizon and locality as above, x 1.4.

LU 69839.
3. External view of ieft valve, internal mould.

Lower Oxford Clay, Coronatum Zone, Crook Hill, Chickerell, Dorset, x l.4. LU 70007.
4. External view of right valve. Lower Oxford

Clay, Coronatum Zone, Stewartby, Beds., x 1.4. LU 69837.
5.

Internal view of left valve. Same horizon
and locality as above, x 1.5. LU 70003.
6.

External view of left valve. Same horizon
and locality as above, x 1.5 .
LU 69845.

7
Internal view of left valve. Same horizon
and locality as above, x 1.4. LU 70008.


14c \(\quad 15\)


26a,b. Dorsal view and external view of left valve. Kellaways Rock, Stewartby, Beds., x 1. LU 70010 .
27. External view of right valve. Belemnite Sands (L. Callovian), Staffin Bay, Isle of Skye, x l. LU 70011.
16.
17.
18.
25.

External view of right valve. Lower 0xford
Clay, Jason Zone, Calvert, Buckinghamshire, x 1. LU 69881. External view of right valve. Lower Oxford Clay, Jason Zone, Wilts., x 1 . OUM J28242.

External view of left valve. Same horizon and locality as above, x 1 . OUMI J28241.

External view of left valve. Lower Oxford Clay, Coronarum Zone, Norman Cross, Hunts., x 1. LU 69879.

External view of right valve. Same horizon and locality as above, x 1. LU 70100 . External view of left valve. Same horizon and locality as above, x l. LU 69880. External view of right valve. Same horizon and locality as above, x 1. LU 69883. External view of left valve. Same horizon and locality as above, \(x\) 1. LU 69884. External view of right valve. Same horizon and locality as above, x 1. LU 69882. Pleuromya uniformis (J. Sowerby) External view of right valve. Belemnite sands (I. Callovian), Staffin Bay, Isle of Skye, x l. LU 70009.
\begin{tabular}{|c|c|}
\hline & Corbulomima obscura (J. de C. Sowerby) \\
\hline 9. & Holotype. External view of right valve. Kellaways Rock, Brora Roof Bed, Brora, Sutherlandshire, x 4.7. Sowerby Collection, BM 43044. Figured by J. de C. Sowerby, 1827, pl. 572 , fig. 5 as Corbula obscura. \\
\hline 10a-c. & External. views of right valve and left valve and dorsal view. Same horizon and locality as above, x 4.7. LU \(698 / 0\). \\
\hline 11. & External view of left valve. Saine horizon and locality as above, x 4.7. LU 69868. \\
\hline 12. & External view of left valve. Same horizon and locality as above, x 4.7. LU 69871. \\
\hline 13. & External view of left valve. Same horizon and locality as above, x 4.7. LU 69872. \\
\hline & Pleuromya alduini (Brongniart) \\
\hline 14. & External view of left valve. Lower Oxford Clay, Coronatum Zone, Norman Cross, Hunts., x I. IU 69875. \\
\hline 15. & External view of left valve. Same horizon and locality as above, x l. LU 69877. \\
\hline
\end{tabular}

Corbulomima macneillii (Morris)
Fig.
la-b. External view of right valve and dorsal view. Lower Oxford Clay, Jason Zone, Wiltshire, x 5.4. OUM J28230.
2. External view of left valve. Lower Oxford Clay, Jason Zone, Dauntsey, Wilts., x 5.4. LU 70019.
3. External view of left valve. Kellaways Rock, Chippenham, Wilts., x 5.4. BCM 3324d.

4a-b. External view of right valve, normal size and magnified. Lower Oxford Clay, Jason Zone, Stewartby, Beds., x I (4a), x 4.7 (4b). LU 69859.
5. External view of right valve. Kellaways Rock, Chippenham, Wilts., x 5.4. BCM 3324e.

External view of left valve. Same horizon and locality as above, \(\times 4.2\). LU 69853.
8. External view of right valve. Same horizon and locality as above, \(x\) 4.6. LU 69855.

\[
4 \mathbf{a}^{\text {e }}
\]

12.

External view of ? left valve. Lower
Oxford Clay, Coronatum Zone, Stewartby, Beds., x 1.7. BM LI27736.
13. External view of both valves. Same horizon and locality as above, x 2.2. LU 70040 .
6. External view of left valve. Lower Oxford

Clay, Coronatum Zone, Calvert, Buckinghamshire, x 1. LU 69888.
8. Neotype. External view of left valve.

Upper Oxford Clay, Cordatum Zone (Red
Nodule Beds), Weymouth, Dorset, x 1 .
Damon Collection, BM L6979. Figured
by Damon, 1888, p1. 19, fig. 14 as
Thracia depressa.
External view of left valve. Lower 0xford
Clay, Corcnatum Zone, Stewartby,
Beds., x 1. LU 69901.
10.

External view of left valve. Upper Oxford
Clay, Mariae Zone, Scarborough,
Yorkshire, x 1. YM KD1974/58.
14a-b. External view of left valve and anterior
view. Upper Oxford Clay, Cordatum
Zone (Red Nodule Beds), Weymouth, Dorset, x 1. GSM GSa 3649. External view of left valve. Same horizon
and locality as above, x 1 .
GSM GSa 3648.

Anomalodesmatan \(\mathrm{sp} . \mathrm{A}\).
11.

External view of ? left valve. Lower
Oxford Clay, Coronatum Zone, Crook
Hill, Chickerell, Dorset, x 1.6.
BM LL27735.

\section*{PLATE 25.}

Pleuromya alduini (Brongniart)
Fig.
1.
7.
5.

External view of right valve. Kellaways Rock, Kington Langley, Wiltshire, \(x\) 1. GSM Ka 608.

External view of left valve. Lower Oxford Clay, Calloviense Zone, Stewartby, Bedfordshire, x 1. LU 70014.

Pleuromya uniformis (J. Sowerby) External view of left valve. Belemnite Sands (I. Callovian), Staffin Bay, Isle of Skye, x I. LU 70012.

Holotype. External view of left valve. Cormbrash, Felmersham, Beds., x 1. Sowerby Collection, BM 43224. Figured by J. Sowerby, 1813, pl. 33, fig. 4 as Unio uniformis. External view of right valve. Belemnite Sands (I. Callovian), Staifin Bay, Isle of Skye, x 1. LU 70013.

Thracia (Thracia) depressa (J. de C. Sowerby) External view of left valve. Lower Oxford Clay, Calloviense Zone, Stewartby, Beds., x 1. LU 69889.

PLATE 25

7. Extemal view of both valves. Lower Oxford Clay, Coronatum Zone, Calvert, Buckinghamshire, x 2.2. LU 70031. External view of ? right valve. Same horizon and locality as above, \(x\) 2.2. LU 70032.
10. External view of ? left valve. Lower Oxford Clay, Coronatum Zone, Stewartby, Beds., x 1.6. LU 70033. Pleuromya uniformis (J. Sowerby)
lla-b. External view of right valve and dorsal view. Belemnite Sands (L. Callovian), Staffin Bay, Isle of Skye, x 1 . LU 70034.
12. External view of right valve. Same horizon and locality as above, \(x\) 1. LU 70035.
13. External view of left valve. Same horizon and locality as above, x 1. LU 70036.

14a,b. External view of left valve and dorsal view. Same horizon and locality as above, x 1. LU 70037 •

15a, b. External views of right and left valves. Same horizon and locality as above, \(x\) 1. LTj 70038.

16a,b. External view of left valve and dorsal view. Same horizon and locality as above, x 1. LU 70039 .

\section*{Anomalodesuatan sp. A.}

Fig.
1. External view of both valves. Lower Oxford Clay, Coronatum Zone, Stewartby, Bedfordshire, x 2.2. LU 70021.
6. External view of ? left valve. Lower Oxford Clay, Jason Zone, Stewartby, Beds., x l.6. LU 70025.
9. External view of ? left valve. Lower Oxfora Clay, Coronatum Zone, Stewartby, Beds., x 1.6. LU 70026. Anomalodesinatan sp . B.

External view of both valves. Same horizon and locality as above, x 2.2. LU 70027.

3a-b. External view of both valves, magnified and normal size. Lower Oxford Clay, Jason Zone, Stewartby, Beds., x 2.2 (3a), x I (3b). LU 70028.

4a-b. External view of both valves, magnified and normal size. Same horizon and locality as above, x 2.2 (4a), x I (4b). LU 70029.
5. External view of both valves. Same horizon and locality as above, \(x\) 2.2. IU 70030 .

PLATE 26


CHAPTER 3

Palaeoecology of a bituminous shale:
the Lower Oxford Clay of central England
```

Text-Figs. 1 - 22
Tables l - 7

```
\begin{tabular}{|c|c|c|c|c|}
\hline North-east Yorks. & ZONE & \begin{tabular}{c} 
Central \begin{tabular}{c} 
\& Southern \\
England
\end{tabular} \\
\hline \begin{tabular}{c} 
Yorkshire \\
Oxford \\
Clay
\end{tabular} \\
\hline
\end{tabular} & Mariae & \\
\hline
\end{tabular}

Text-Fig.1. Comparison of the lower part of the Upper Jurassic of Yorkshire and southern England, showing the development of a marginal facies in Yorkshire during Callovian times. After Wright (1968). All Zones drawn to equal thickness, therefore the lithological sections are not to scale.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Stages} & Zones & Subzones & Divisions \\
\hline \multirow[b]{5}{*}{\[
\begin{aligned}
& \frac{2}{3} \\
& \frac{1}{2} \\
& \frac{1}{8} \\
& \frac{1}{3}
\end{aligned}
\]} & \multirow{5}{*}{足} & \multirow{3}{*}{Cardioceras cordatum} & C. cordatum & \multirow{5}{*}{\begin{tabular}{l}
UPPER \\
OXFORD \\
CLAY
\end{tabular}} \\
\hline & & & C. costicardia & \\
\hline & & & C bukowskii & \\
\hline & & \multirow[t]{2}{*}{Quenstedtoceras mariae} & C. praecordatum & \\
\hline & & & C. scarburgense & \\
\hline \multirow{11}{*}{\[
\begin{aligned}
& Z \\
& \vdots \\
& \vdots \\
& \vdots \\
& \vdots
\end{aligned}
\]} & \multirow[b]{2}{*}{} & \multicolumn{2}{|l|}{Quenstedtoceras lamberti} & \multirow[t]{2}{*}{\begin{tabular}{l}
MIDDLE \\
OXFORD CLAY
\end{tabular}} \\
\hline & & Peltoceras athleta & Upper Middle Lower & \\
\hline & \multirow{4}{*}{\[
\begin{aligned}
& \stackrel{\rightharpoonup}{1} \\
& \stackrel{\rightharpoonup}{\Sigma}
\end{aligned}
\]} & \multirow[b]{2}{*}{Erymnoceras coronatum} & K. (Zugokosmoceras) grossouvrei & \multirow{5}{*}{LOWER OXFORD CLAY} \\
\hline & & & K. (Zugokosmoceras) obductum & \\
\hline & & \multirow[b]{2}{*}{Kosmoceras jason} & K. (Gulielmites) jason & \\
\hline & & & K. (Gulielmites) medea & \\
\hline & \multirow{5}{*}{管} & \multirow{3}{*}{Sigaloceras calloviense} & S. (Catasigaloceras) enodatum & \\
\hline & & & Sigaloceras calloviense & \multirow{2}{*}{KELLAWAYS ROCK} \\
\hline & & & Proplanulites koenigi & \\
\hline & & \multirow[t]{2}{*}{Macrocephalites macrocephalus} & M. (Kamptokephalites) kamptus & KELLAWAYS CL.AY \\
\hline & & & M. (Macrocephalites) macrocephalus & UPPER CORNBRASH \\
\hline
\end{tabular}

Text-Fig. 2. The Zones of the Callovian and Lower Oxfordian. After Callomon (1968).

\section*{TEXT-FIG. 3.}

Lithological sections measured at the four quarries examined in central England.



Text-Fig. 4. The outcrop of the Oxford Clay in England, showing the location of the major sections examined.

\section*{TEXT-FIG. 5.}

The soluble fraction of the Lower Oxford Clay of the Midlands, related to lithology and biofacies.


\section*{TEXXP-RIG. 6.}

Distribution of the ten biofacies at each of the four Midlands quarries.


\section*{TEXT-FIG. 7.}

Triangular plots of bivalve feeding groups for three of the Lower Oxford Clay biofacies. a. Silts and silty clays, all bivalves; b. Silts and silty clays, pendent bivalves removed; c. Deposit-feeder bituminous shales, pendent bivalves, removed; e. Grammatodon-rich bituminous shales, all bivalves; f. Grammatodon-rich bituninous shales, pendent bivalves removed.


\section*{TEXT-FIG. 8.}
```

Triangular plots of bivalve feeding groups for the
remaining biofacies. a. Foram-rich bituminous shales,
all bivalves; b. Meleagrinella shell bed, all
bivalves (A); Blocky claystone, all bivalves (B);
c. Shell beds, all bivalves; Gryphaea shell beds (A),
Nuculacean shell beds (B), Grammatodon shell beds (C);
d. Shell beds, pendent bivalves removed; Gryphaea
shell beds (A), Nuculacean shell beds (B), Grammatodon
shell beds (C); e. Calcareous clays, all bivalves;
f. Calcareous clays, pendent bivalves removed.

```


\section*{TEXT-FIG. 10.}

Raxefaction curves for the Lower Oxford Clay biofacies.
a. Silts and silty clays; b. Deposit-feeder
bituminous snales; c. Grammatodon-rich bituminous
shales; d. Foram-rich bituminous shales;
e. Nuculacean shell beds; f. Grammatodon shell beds;
g. Gryphaea shell beds; h. Blocky claystone;
j. Calcareous clays.



Text-Fig. 11. Trophic group composition of the silts and silty clays biofacies. All benthos included.


Text-Fig. 12. Trophic group composition of the Gryphaea shell bed biofacies. All benthos included.


Text-Fig. 13. Trophic group composition of the Deposit-feeder bituminous shale biofacies. All benthos included.


Text-Fig. 14. Trophic group composition of.the Deposit-feeder bituminous shale biofacies. Pendent bivalves removed.


Text-Fig. 15. Trophic group composition of the Grammatodon-rich bituminous shales. All benthos included.


Text-Fig. 16. Trophic group eomposition of the Foram-rich bituminous shale biofacies. All benthos included.


Text-Fig. 17. Trophic group composition of the Nuculacean shell bed biofacies. All benthos included.

\(v_{1}\)
Text-Fig. 18. Trophic group composition of the , Grammatodon shell bed biofacies. All benthos included.


Text-Fig. 19. Trophic group composition of the Meleagrinella shell bed biofacies. All benthos included.


Text-Fig. 20. Trophic group composition of the Blocky Claystone biofacies. All benthos included.


Text-Fig. 21. Trophic group composition of the Calcareous Clays biofacies. All benthos included.


Text-Fig. 22. Regression lines plotted for the rib bundling ratio of Spinikosmoceras in the shales above and below the Coronatum - Athleta Zone boundary at Peterborough. The marked break in the regression line at 1093.5 cm above the zero level in Fig. a. is represented in Fig. b. by a long sedimentary pause. This assumes a constant rate of sedimentation and evolution. After Brinkmann (1929).

TABLE 1. Faunal list of the macroinvertebrates found in the Lower Oxford Clay. POLYCHAETA

Genicularie vertebralis (J. de C. Sowerby)
Serpula sp.

CEPHALOPODA
'Binatisphinctes' comptoni (Pratt)
'B.' fluctuosus (Pratt)
'B.' spp .
Choffatia spp .
Frymnoceras spp.
Hecticoceras spp.
Kosmoceras (Gulielmiceras) gulielmi (J. Sowerby)
K. (K.) baylei Tintant
K. (K.) grossouvrei Douville
K. (K.) nodosum Callomon
K. (Spinikosmoceras) aculeatum (Eichwald)
K. (Sp.) acutistriatum Buckman
K. (Sp.) castor (Reinecke)
K. (Sp.) pollux (Reinecke)
K. (Zugokosmoceras) enodatum (Nikitin)
K. (Z.) jason (Reinecke)
K. (Z.) medea Callomon
K. (Z.) obductum (Buckman)
K. (Z.) zugium (Buckman)

Pseudocadoceras spp.

Reineckeia spp.
Sigaloceras calloviense (J. Sowerby)
Belemnopsis sulcata (Miller)
Belemnoteuthis antiquus Pearce
Cylindroteuthis puzosianus (d'Orbigny)

BIVALVIA
Anisocardia (Anisocardia) tenera (J. de C. Sowerby)
Bositra buchii (Roemer)
Byssentolium hudsoni Duff
Camptonectes (Camptonectes) auritus (Schlotheim)
Chlamys (Chlamys) bedfordi Duff
C. (Radulopecten) fibrosa (J. Sowerby)
C. (R.) scarburgensis (Young \& Bird)

Corbulomima macneillei (Morris)
Discomiltha lirata (Phillips)
Entolium (Entolium) corneolum (Young \& Bird)
Grarmatodon (Grammatodon) clathrata (Leckenby)
G. (G.) concinna (Phillips)
G. (G.) minima (Leckenby)
G. (G.) montaneyensis (de Loriol)

Gryphaea (Bilobissa) dilobotes Duff
Isocyprina (Isocyprina) roederi Arkell
Meleagrinella braamburiensis (Phillips)
Mesosaccella morrisi (Deshayes)
Modiolus (Modiolus) bipartitus J. Sowerby
Myophorella (Myophorella) irregularis (Seebach)
Nanogyra nana (J. Sowerby)
```

Neocrassina (Neocrassina) calvertensis Duff
\mathbb{N}. (N.) ungulata (Iycett)
Nuculoma kathryni Duff
N. pollux (Raspail ex d'Orbigny)
Oxytoma (Oxytoma) inequivalvis (J. Sowerby)
Palaeonucula cottaldi (de Loriol)
P. triangularis Duff
Parainoceramus subtilis (Lahusen)
Pinna (Pinna) mitis Phillips
Plicatula (Plicatula) cf. fistulosa Morris \& Lycett
Pleuromya alduini (Brongniart)
P. uniformis (J. Sowerby)
Protocardia (Protocardia) striatulum (J. de C. Sowerby)
Protocardia sp.
Pteroperma ? pygmaea (Dunker)
Rollierella minima (J. Sowerby)
Solemya woodwardiana Leckenby
Thracia (Thracia) depressa (J. de C. Sowerby)
Trautscholdia phillis (Cottreau ex d'Orbigny)
GASTROPODA
Dicroloma bispinosa (Phillips)
D. trifida (Phillips)
Pleurotomaria reticulata (J. Sowerby)
'Procerithium' damonis (Iycett)
Spinigera spinosa d'Orbigny

```

SCAPHOPODA
Prodentalium calvertensis Palmer

BRACHIOPODA
Lingula craneae Davidson
'Orbiculoidea' sp.
'Rhynchonella' sp.

CRUSTACEA
Mecocheirus pearcei McCoy

ECHINODERMATA
Unidentified ophiuroids
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{4}{|c|}{EPipaunal} & \multicolumn{6}{|c|}{Infaunai．} & \\
\hline \begin{tabular}{l}
GENERA \\
AND \\
FEEDING GROUPS
\end{tabular} &  & \[
\begin{gathered}
0 \\
\text { 参 } \\
\text { 言 } \\
\end{gathered}
\] &  &  &  &  & \[
\begin{aligned}
& 00 \\
& 0 \\
& 0 . \\
& 0 . \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
\] &  &  &  & 稆 & \begin{tabular}{l}
TAXONOMIC \\
POSITIUN
\end{tabular} \\
\hline DEPOSIT－FEEDERS & & & & & & & & & & & & SUPERFMMIL \\
\hline Pailaeonucula & 18.4 & & & & & & & & & & x & NUCULACEA \\
\hline MESOSACCELLA & 17.6 & & & & & & & & & & X & NUCUL AINACEA \\
\hline SUSPENSION－FEEDERS & & & & & & & & & & & & \\
\hline SOLEMYA & 38.0 & & & & & & & \(x\) & & & & SOLEMYACBA \\
\hline GRA MMATODON & 28.0 & & & & & X & & & & & x & ARCACEA \\
\hline MODIOLUS & 70.0 & & & x & & & & & & & & MYTILACEA \\
\hline PINNA． & 82.4 & & & X & & & & & & & & PINNACEA \\
\hline PTEROFERNA & 15.3 & & & & \(x\) & & & & & & & P＇TERTACEA \\
\hline parainoceramus & 72.5 & & & & x & & & & & & & PTERIACEA \\
\hline BOSITRA & 15.0 & & & & X & & & & & & & PECTINACEAS \\
\hline OXYTOMA & 39.8 & & & & X & & & & & & & PECTINACEA \\
\hline MELEAGRINELLA & 33.7 & & & & x & & & & & & & PECTINACEA \\
\hline Enfolium & 31.0 & X & & & & & & & & & & PECTINACE／ \\
\hline BYSSENTOLIUM & 12.3 & & & x & & & & & & & & PECTINACEA \\
\hline CAMPTONECTES & 58.0 & & & x & & & & & & & & PECTINACEA \\
\hline CHLAMYS & 9.7 & & & x & & & & & & & & PECTINACEA． \\
\hline Radulopecten & 76.0 & & & x & & & & & & & & PECTINACEA \\
\hline PLicatula & 26.8 & & x & & & & & & & & & PECTINACEA \\
\hline GRYPHAEA & 80.0 & & x & & & & & & & & & ostreacea \\
\hline NANOGYPA & 11.2 & & x & & & & & & & & & OStreacea \\
\hline MYOPHORELLA & 88.0 & & & & & x & & & & & X & TRIGONACEA \\
\hline DISCOMILITHA & 47.0 & & & & & & & X & x & & & LUCINACRA． \\
\hline NEOCRASSIMA & 21.2 & & & & & x & & & & & x & ASTARTACEA \\
\hline TRAUTSCHOLDIA & 12.5 & & & & & x & & & & & \(x\) & ASTARTACEA． \\
\hline Protucardia & 30.3 & & & & & & \(x\) & & & & x & CARDIACEA \\
\hline Anisocardia & 25.0 & & & & & & x & & & & x & ARCTICACEA \\
\hline ISOCYPRINA & 20.0 & & & & & & \(x\) & & & & x & ARCTICACEA \\
\hline ROLLIERELIAA & 24.0 & & & & & & \(x\) & & & & X & ARCTICACFA \\
\hline corbutiomima & 6.8 & & & & & & x & & & x & & MYACEA \\
\hline PJ．EUROMVA & 71.0 & & & & & & & x & & & & PHOLADOMYACFA \\
\hline thracia & 55.0 & & & & & & & X & X & & & PAIDORACEA \\
\hline
\end{tabular}

Table 2．Life habits of the bivalve genera recognised from the Lower Oxford Clay of England．

TABLE 3. Iife habits of the benthonic invertebrates other than bivalves which occur in the Lower Oxford Clay.

\section*{Suspension-feeders}

Genicularia vertebralis
Serpula sp .
'Orbiculoidea' sp.
'Rhynchonella' sp.
Lingula craneae

\section*{Deposit-feeders}

Procerithium damonis
Dicroloma bispinosa
Dicroloma trifida
Spinigera spinosa
Prodentalium calvertensis

Epifaunal
"
"
"

Infaunal

Epifaunal
Infaunal
"
"
"

\section*{Scavengers}

Mecocheirus pearcei
ophiuroids

Browsing herbivores
Pleurotomaria reticulata

TABLE 4. Organic carbon contents measured in the various Lower Oxford Clay biofacies. \(N\) m number of samples, Max \(=\) maximum observad value, \(\operatorname{Min}=\) minimum observed value.
\begin{tabular}{lcccc}
\multicolumn{1}{c}{ Biofacies } & N & Max & Min & Mean \\
Silts \& silty clays & 1 & 1.0 & 1.0 & 1.0 \\
Deposit-feeder bituminous shales & 10 & 3.5 & 2.1 & 2.9 \\
Grammatodon-rich bituminous shales & 2 & 6.1 & 3.4 & 4.8 \\
Foram-rich bituminous shales & 3 & 4.9 & 3.5 & 4.1 \\
Nuculacean shell beds & 1 & 1.8 & 1.8 & 1.8 \\
Gryphaea shell beds & 1 & 1.7 & 1.7 & 1.7 \\
Meleagrinella shell beds & 4 & 3.8 & 2.3 & 2.9 \\
Calcareous clays & 1 & 1.1 & 1.1 & 1.1
\end{tabular}
TABLE 5. Table showing the main feunal and lithological chargcteristios of the ten Lower oxford clay blofacies.
\begin{tabular}{|c|c|c|c|c|}
\hline Siofactes & Lithology & Dominant founal elements & \[
\begin{aligned}
& \text { Orgenic } \\
& \text { cerbon }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Inaoluble } \\
& \text { pesteur }
\end{aligned}
\] \\
\hline S11ts and silty clays & Silts and silty clays & \begin{tabular}{l}
Cenhalopods, Pingin. Protocardia, Trmatscholdia, Corbilonims, \\
Kolonerinel_lo.
\(\qquad\)
\end{tabular} & 1\% & 935 \\
\hline Deposit-feeđer bituminous shaies & \begin{tabular}{l}
Dark ollve-green shaly \\
clays
\end{tabular} & Pendent epifaursl suspensionfeeders (Gositna, Weleagninella and Oxytome), together with Fnleeonucula and Yesosaccella. & 2.9\% & 90\% \\
\hline \[
\frac{\text { Groumatodon-rich bituminous }}{\text { shales }}
\] & \begin{tabular}{l}
Dark olive-green ghely \\
clays
\end{tabular} & Bonttan, Uxytorn, Kolengertne21n, Palreonucule, Mesozaccells, tocether with irfaural suspensionfeeders such as Gremmentodon, Thrucia and Isocypring. & 4.8\% & 90\% \\
\hline Poram-rich bituminous shales & Light green, rather fissile, shaly clays. & \begin{tabular}{l}
Bositur, Iarainogemamas, \\
Mesonnocelle, Corbulomime, \\
Prodentalium, foraminifers \\
(Brotzenis).
\end{tabular} & 4.1\% & \(87 \%\) \\
\hline Nuculacern shell beds & Shell concentrate & PalsooninuIs, Mesosaccelia. & 1.8\% & \(79 \%\) \\
\hline \[
\frac{\text { Grammatodon-rich shell }}{\text { beds }}
\] & Shell concentrate in clay matrix & Gyammatoinn, tsocypring, oysters, Cxytoms, Diccomiltha, Protocgardis, Trautscholdin, Neocrossina, Z2onhore114. & -- & 80\% \\
\hline Gryphaea shell beds & Shell concentrate & Oryphaeate oysters, bone fragments. cephalopods. & 1.7\% & 82\% \\
\hline Yeleagninella shell beds & Shell concentrate & Meleagrinelia. & 2.9\% & 6\% \\
\hline B20cky elcystone & Light grey plasj1c clay with dark streaks. & \begin{tabular}{l}
Bositra, Nelengninelia, \\
Palaeonucula, Kesoseccelia, \\
Procerithium, Lingula, Solemy.
\end{tabular} & - & 96\% \\
\hline Calcareous clays & Light grey or greygreen, rather plastic. clay. & \begin{tabular}{l}
Pnleeonucula, Yesosacceila, \\
Discomiltha, Isocinnina, \\
Myophovel2 B , Byssentolium, \\
Geniculania, oysters.
\end{tabular} & 1.2\% & 74, \\
\hline
\end{tabular}

\section*{TABLE 6}

Trophic nuclei of the Lower Oxford Clay biofacies, all benthos included.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|l|}{TRORHIC NUCLEUS DOMUNANCE POSITICNS} & \multirow[t]{2}{*}{Ed} & \multirow[t]{2}{*}{Id} & \multirow[t]{2}{*}{F70} & \multirow[t]{2}{*}{2iv.} & \multirow[t]{2}{*}{DI} & \multirow[t]{2}{*}{\% 17.} \\
\hline bropaciss & 1. & 2. & 3. & 4. & 5. & & & & & & \\
\hline 3ILTS * SILEY CLAYS & \[
\begin{gathered}
\text { BCSITRA } \\
23.3
\end{gathered}
\] & \[
\begin{gathered}
\text { CORBULOMIMA } \\
19.4
\end{gathered}
\] & \[
\begin{gathered}
\text { GRYPHABA } \\
27.6
\end{gathered}
\] & \[
\begin{gathered}
\text { Procerithium } \\
9.2
\end{gathered}
\] & PNLAEONUCLLA & 9.2 & 8.8 & 28.0 & 6 & 7.1 & 21 \\
\hline \begin{tabular}{l}
DEPOS:T-FEEDEP \\
batuminuus spales
\end{tabular} & \[
\begin{gathered}
\text { BOSITRA } \\
34.9
\end{gathered}
\] & \begin{tabular}{l}
veleagrinella \\
24.0
\end{tabular} & \[
\begin{gathered}
\text { Procerithium } \\
10.1
\end{gathered}
\] & NESOSACCELLA
7.4 & \[
\begin{gathered}
\text { DICROLOMA } \\
\text { 5.2 } \\
\text { CORBULOMIMA } \\
5 . ?
\end{gathered}
\] & 10.1 & 17.2 & 27.2 & 6 & 6.7 & 31 \\
\hline \begin{tabular}{l}
SManyROLON-RICH \\
1stikurnous seates
\end{tabular} & \[
\begin{gathered}
\text { PROCERITHIUM } \\
30.5
\end{gathered}
\] & UESOSACCELLA
26.7 & \[
\begin{gathered}
\text { BOSIPRA } \\
12.9 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { Palabonucula } \\
8.0 \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { ORAMZARCDON } \\
\text { MINIVA } \\
\hline 6.9 \\
\hline
\end{gathered}
\] & 50.5 & 34.6 & 65.3 & 5 & \(5 \cdot\) & 24 \\
\hline Yorsx-8tch BIMUKINOUS SMALEE & neteagrinelia
\[
35 \cdot 7
\] & \[
\begin{gathered}
\text { Bositra } \\
19.6
\end{gathered}
\] & \[
\begin{gathered}
\text { MESOSACCBLLA } \\
29.1
\end{gathered}
\] & corbutomma
6.0 & & 5.2 & 23.9 & 29.1 & 4 & 6.7 & 24 \\
\hline \begin{tabular}{l}
sucutacean \\
sumbil beds
\end{tabular} & \[
\begin{gathered}
\text { vesosaccelia } \\
47.0
\end{gathered}
\] & PaLaEONuctla
28.2 & Meleagrinelia
10.4 & & & 7.3 & 75.4 & 83.2 & 3 & 5.2 & 19 \\
\hline \begin{tabular}{l}
G:G:NATODON-RICH \\
SKELL ERDS
\end{tabular} & vesosaccelia
30.1 & Painabonucula
23.6 & \[
\begin{gathered}
\text { PROCERITHIUM } \\
13.5
\end{gathered}
\] & \[
\begin{gathered}
\text { BOSITRA } \\
9.9
\end{gathered}
\] & GRADLATODON
MINIMA
8.1
MELEAGRINELIA.
7.4 & 13.5 & 4. 0 & 57.5 & 6 & 6.1 & 24 \\
\hline grymain sheil mens & GRYPHAEA
62.2 & neleagrinelia
9.8 & PROCERITHIUM
4.1 & CORBULOMIMA 3.4 & \[
\begin{gathered}
\text { GRANEATODON } \\
\text { CONCIMIAA } \\
3.2
\end{gathered}
\] & 4.1 & 4.4 & 8.5 & 5 & 5.6 & 16 \\
\hline vEEAORINELLA SYELE REDS & msLEAGRINELLA
71.4 & MESOSACCELLA
10.2 & & & & 3.0 & 11.6 & 14.6 & 2 & 1.5 & 16 \\
\hline \[
\begin{aligned}
& \text { BLOCKY } \\
& \text { CLAYSTONE }
\end{aligned}
\] & \(\underset{34.2}{\substack{\text { NELEAGINELLA }}}\) & \[
\begin{gathered}
\text { BCSITRA } \\
24.2
\end{gathered}
\] & \[
\begin{gathered}
\text { LINGuLA } \\
11.1
\end{gathered}
\] & \begin{tabular}{l}
patazonucuia \\
11.1
\end{tabular} & & 1.7 & 20.5 & 22.3 & 4 & \(\cdots 3\) & 11 \\
\hline Calcarsous clays & \[
\begin{gathered}
\text { KESOSACCELLA } \\
32.4
\end{gathered}
\] & \[
\begin{gathered}
\text { BySSENTOLIUM } \\
24.4
\end{gathered}
\] & YELEAGRINELIA
\(2 L .0\) & \[
\begin{gathered}
\text { PROCZSITMIUK } \\
12.4
\end{gathered}
\] & \[
\begin{gathered}
\text { BOSITRA } \\
20.4
\end{gathered}
\] & 12.4 & 41.3 & 53.7 & 5 & 5.8 & 22 \\
\hline
\end{tabular}

Trophic nuclei of the Lower Oxford Clay biofacies, pendent bivalves removed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{BIORACLES} & \multicolumn{5}{|l|}{TROPHIC NUCLEUS DOKINANCE POSITIONS} & \multirow[t]{2}{*}{Ed} & \multirow[t]{2}{*}{Id} & \multirow[t]{2}{*}{\% D} & \multirow[t]{2}{*}{Div} & \multirow[t]{2}{*}{DI} & \multirow[t]{2}{*}{210.
392} \\
\hline & 2. & 2. & 3. & 4. & 5. & & & & & & \\
\hline SILTS \& SILTY CLAYS & \[
\begin{gathered}
\text { CORBULOMIMA } \\
28.5
\end{gathered}
\] & GRYPHAEA 26.0 & \[
\begin{gathered}
\text { PROCERITHIUX } \\
13.5
\end{gathered}
\] & PALAEONUCULA
\[
11.0
\] & & 13.5 & 13.0 & 26.5 & 4 & 5.2 & 17 \\
\hline DEFOSIT-FESDER gitukinous syales & \[
\begin{aligned}
& \text { PROCERITHIUN } \\
& 25.2
\end{aligned}
\] & \[
\begin{gathered}
\text { VESOSACCELLLA } \\
19.1
\end{gathered}
\] & \[
\begin{gathered}
\text { DICROLOMA } \\
13.5
\end{gathered}
\] & \[
\begin{gathered}
\text { CORIULOMIMA } \\
13.4
\end{gathered}
\] & PALAEONUCULA
\[
11.5
\] & 25.2 & 4.2 & 69.6 & 5 & 6.2 & 26 \\
\hline \begin{tabular}{l}
GRANLATCDON-RIC: \\
3ITUMINOUS SHALES
\end{tabular} & \[
\begin{gathered}
\text { PROCERITAIUN } \\
36.9
\end{gathered}
\] & \[
\begin{gathered}
\text { NESOSACCELILA } \\
32.4
\end{gathered}
\] & PALAEONUCULA
\[
9.6
\] & \[
\begin{gathered}
\text { GRAMMIIODON } \\
\text { MINIMA } \\
9.4
\end{gathered}
\] & & 36.9 & +2.1 & 79.0 & 4 & 5.0 & 20 \\
\hline \begin{tabular}{l}
FORAK-RICH \\
BITUXINOUS S.LALES
\end{tabular} & \begin{tabular}{l}
NESCSACCELLA \\
44.5
\end{tabular} & \[
\begin{gathered}
\text { CORBULOMIMA } \\
13.8
\end{gathered}
\] & \[
\begin{gathered}
\text { PROCERITAIUM } \\
12.1
\end{gathered}
\] & \[
\begin{gathered}
\text { PALAEONUCULA } \\
10.5
\end{gathered}
\] & & 12.1 & 55.7 & 67.8 & 4 & 5.4 & 14 \\
\hline NUCULACEAN SGELL BEDS & \[
\begin{gathered}
\text { XESOSACCELLA } \\
53.5
\end{gathered}
\] & PaLAEONUCULA
\[
32 \cdot 1
\] & & & & 8.8 & 85.8 & 94.6 & 2 & 8.9 & 12 \\
\hline 3RAYM:OODO: -RICH SHELL BEDS & \[
\begin{gathered}
\text { NESCSACCELLA } \\
37.4
\end{gathered}
\] & \[
\begin{gathered}
\text { PALAEONUCULA } \\
16.9
\end{gathered}
\] & \[
\begin{gathered}
\text { PROCERITHIUM } \\
16.8
\end{gathered}
\] & \[
\begin{gathered}
\text { GRANMATODON } \\
\text { VINILAA } \\
10.0
\end{gathered}
\] & & 16.8 & 54.7 & 72.5 & 4 & 5.0 & 19 \\
\hline GRYPHAEA SEELL BEDS & \[
\begin{gathered}
\text { GRYPHAEA } \\
71.4
\end{gathered}
\] & \[
\begin{gathered}
\text { PROCERITHIUK } \\
4.7
\end{gathered}
\] & \[
\begin{gathered}
\text { CORBULOMIXA } \\
3.8
\end{gathered}
\] & & & 4.7 & 5.0 & 9.7 & 3 & 1.7 & 13 \\
\hline vELEAGRINELLA SMEIJ BEDS & MESOSACCELLAA 45.3 & CORBULOMIMA
\[
25.6
\] & \[
\begin{gathered}
\text { PRCCERITHIUM } \\
13.5
\end{gathered}
\] & & & 13.5 & 51.7 & 65.2 & 3 & 4.5 & 23 \\
\hline \begin{tabular}{l}
BLOCKY \\
CLAYSTONE
\end{tabular} & \[
\begin{gathered}
\text { PALABONUCULA } \\
28.2
\end{gathered}
\] & \[
\begin{gathered}
\text { LINGULA } \\
28.2
\end{gathered}
\] & SOLEMYA
\[
13.4
\] & MESOSACCELLLA
\[
13.4
\] & & 4.2 & 52.2 & 56.4 & 4 & 3.7 & 8 \\
\hline CALCAREOUS CLAYS & NESOSACCELTA
\[
43.2
\] & \[
\begin{gathered}
\text { BYSSENTOLIUM } \\
19.2
\end{gathered}
\] & \[
\begin{gathered}
\text { PROCERITEIUM } \\
16.5
\end{gathered}
\] & EALAEONUCULA
\[
11.7
\] & & 26.5 & 55.0 & 71.5 & 4 & 4.9 & 17 \\
\hline
\end{tabular}

\section*{APPENDIX 1}

\begin{abstract}
Detailed descriptions of the stratigraphical sections seen at the four major pits examined. Bed numbers are those used by the author, and broadly speaking, do not correlate with those used by Callomon (1968). The Zonal and Subzonal boundaries are, however, broadly those placed by Callomon (op. cit.).

These descriptions should be consulted in conjunction with Fig. 2.3, Text - Fig. 6 in Chapter 3, and Appendix 4, which give more detailed or more graphic descriptions of the various aspects of the beds.
\end{abstract}

\section*{2.}

CALVERT (SP 695232)

ATHLETA ZONE
Bed 1232 cm. Green-brown very fissile shaly clay with a background of very small indeterminate shell fragments. Macrofauna not very diverse or abundant, being dominated by crushed lappeted ammonites, Corbulomima, Bositra, Parainoceramus and Mesosaccella, together with a few specimens of several other bivalve genera. Locally, there occur massive lenticles of concretionary limestone, with radial and concentric calcite veins, which often force the bedding apart above and below. "The Acutistriatum Band".

\section*{CORONATUM ZONE, GROSSOUVREI SUBZONE}

1125 cm . Nuculacean shell bed, partially pyritic, with a strongly pyritised part in the top 5 cm , in which kosmoceratids and pseudoperisphinctids are abundant. In addition to the abundant ammonites and Nuculacea, Procerithium, Meleagrinella and a diverse, but sparse, fauna of bivalves occur. "The Comptoni Band".
loK 12 cm . Meleagrinella shell bed, with abundant Meleagrinella valves and fragments covered in secondary calcite. Other characteristic genera are Mesosaccella, Parainoceramus, Bositra,

Corbulomima, Isocyprina and Palaeonucula. Base burrowed.

10J 19 cm . Green-grey massive, rather calcareous clay, with a rich fauna dominated by Mesosaccella, Hecticoceras, Discomiltha, Byssentolium and Genicularia. Some local growth of pyrite on Palaeonucula valves. Accessory fauna both diverse and abundant, with Isocyprina, Dicroloma, Procerithium, Thracia, Protocardia and Corbulomima being particularly important. Base burrowed.

10H 15 cm . Meleagrinella shell bed of the normal type, with kosmoceratids and Mesosaccella as the dominant accessory elements of the fauna. Other characteristic genera are Bositra, Parainoceranus, Palaeonucula and Corbulomima. Base burrowed. 10G 10 cm . Green sticky calcareous clay, very fossiliferous. Most of the fossils preserved in primary aragonite, with some local pyritisation on Thracia and Palaeonucula. Fauna dominated by kosmoceratids, Nuculacea, Discomiltha, Byssentolium, Procerithium, Genicularia and Meleagrinella. Base burrowed.

10F 18 cm . Meleagrinella shell bed of normal type, with very little other than Meleagrinella covered with secondary calcite. Kosmoceratids and Mesosaccella
```

 4.
 dominate the accessory fauna. Base burrowed.

```

10E 20 cm . Greenish sticky calcareous clay, again very fossiliferous, with a high diversity. Ammonites, Mesosaccella, Meleaprinella, Bositra, Procerithium, Isocyprina and Corbulomima dominate.

10D 1.43 m . Green-brown very fissile bituminous shale with an extremely dense fauna of foraminifera. Preservation mainly as primary aragonite, with variable developments of secondary calcite, and variable amounts of foram and broken shell background. Fauna both diverse and abundant, with abundant Meleagrinella, Mesosaccella, Bositra, kosmoceratids, Isocyprina, Procerithium, and Palaeonucula, with accessory Parainoceramus, flat oysters, Corbulomima, Grammatodon minima, Discomiltha, Solemya, Lingula, Pinna and Dicroloma.

10C 1.09 m . Olive-green fissile shaly clay with a fairly abundant fauna spread throughout the clay, with local shell concentrations. Preservation as primary aragonite, with some local pyritisation affecting Procerithium, Thracia, Palaeonucula and kosmoceratids. Fauna dominated by Mesosaccella, Procerithium, Parainoceramus, Palaeonucula, Isocyprina, Grammatodon minima, Corbulomima and


Corbulomima, Bositra and kosmoceratids. Accessory fauna of sparse bivalves and Lingula.

\section*{CORONATUM ZONE, OBDUCTUM SUBZONE}
\(7 \quad 9 \mathrm{~cm}\). Pyritic shell bed, rich in Mesosaccella and Palaeonucula preserved in unstable pyrite. Other characteristic faunal elements are kosmoceratids, Erymoceras, Cylindroteuthis and sharks teeth. Top and base transitional, with lenses of bed 7 incorporated into the top of bed 6 and the base of bed 8 .
\(614 \mathrm{~cm} . \quad\) Green-brown very fissile bituminous shale, with a
good background of broken shell fragments and
foraminifera. Well-preserved kosmoceratids are
characteristic, as are scaphopods (Prodentalium

calvertensis Palmer Ms). Other fauna consists of



Corbundant Mesosaccella, Palaeonucula, Meleagrinella, and Lingula, with accessory Thracia and Mecocheirus. Alipsoidal septarian concretions occur within this bed, the septarian cracks filled with calcite, although there are also some vugs filled with celestite or barytocelestite.

58 cm . Pyritic shell bed, of the Nuculacean type, with abundant Mesosaccella and Palaeonucula preserved in very unstable pyrite. Other more abundant
elements are kosmoceratids, lignite, reptile bones and Meleagrinella, with accessory belemnites, oysters and bivalves.
44.28 m . Olive-green shaly clay with a diverse benthonic fauna, with Meleagrinella becoming commoner towards the top. There are many local variations in faunal density and composition, but in general the fauna is dominated by Nuculacea, Meleagrinella, Bositra, Procerithium, Dicroloma and kosmoceratids, with a diverse and often abundant accessory fauna of Thracia, Corbulomima, Lingula, Anomalodesmatan sp. A., serpulids, Modiolus, Protocardia and Oxytoma.

Light background throughout, usually composed mainly of indeterminate shell fragments, but locally including forams. Preservation mainly as primary aragonite, with a little solution of the shell, and without the development of secondary calcite.

\section*{JASON ZONE, JASON SUBZONE}
\(3 C \quad 4.60 \mathrm{~m}\). Olive-green shaly clay with a diverse benthonic fauna, preserved mainly as primary aragonite. There is a general increase in both diversity and abundance upwards, the basal part being fairly sparse in fossils, although Lingula is common, especially in the bottom metre, where it is

\begin{abstract}
8.
sometimes the single most abundant form. Locally, there is a rich background of forams, but in general, they are not very abundant. The same is true of the development of secondary calcite, which affects Bositra and Meleagrinella most frequently. Diverse fauna dominated by kosmoceratids, Lingula, Dicroloma, Bositra, Solemya, Procerithium, Meleagrinella, with accessory Mesosaccella, Palaeonucula, Corbulomima, Discomiltha, Oxytoma, Anomalodesmatan sp. A. and sp. B., Parainoceramus, "Rhynchonella", Protocardia, Isocyprina and Thracia.

3B 1.05 m . Light grey, massive clay, rather plastic, and not at all fissile, with many small dark carbonaceous particles throughout. It dries to a very light grey colour, and becomes extremely tough, and is a unique lithology, not seen at any of the other pits. (The blocky claystone facies). Fossils are sparse, the ones that do occur often being clustered together, especially Bositra, Meleagrinella and Solemya.

Preservation as primary aragonite, no secondary calcite, and a characteristic feature is the occurrence of uncrushed body chambers of a macroconch kosmoceratid known as Kosmoceras effulgens Buckman, but actually belonging in K. jason (Reinecke).
\end{abstract}

Fauna is relatively diverse, but rather sparse, the most common genera being Palaeonucula, Lingula, Meleagrinella, Solemya and Bositra, with accessory kosmoceratids, Mesosaccella, Cylindroteuthis, Procerithium, Dicroloma, Discomiltha and Oxytoma.

3A 15 cm . Olive-green shaly clay with a rich background of shell fragments and forams. This appears to be a transition between the shell bed beneath and the blocky claystone above. Preservation mainly as primary aragonite, with slight development of secondary calcite on Oxytoma, Bositra and worm tubes. Fairly high diversity fauna, dominated by kosmoceratids, Bositra, Protocardia, flat oysters, Dicroloma and Mesosaccella, with a diverse accessory fauna including Oxytoma, Parainoceramus, Procerithium, Trautscholdia, Meleagrinella and Palaeonucula.

2C 8 cm . Pyritic shell bed packed with well-preserved shells and valves of Trautscholdia, Neocrassina, Grammatodon concinna, Discomiltha, Palaeonucula and ammonites. The pyrite is stable, and does not rot. There are also concentrations of belemnites and oysters together with reptile bone fragments.

Locally, large ellipsoidal cementstone concretions are developed within this bed, and contain the same fauna as the pyritic shell bed.

ATHLEPA ZONE
Bed 1820 cm . Greenish brown, very well-laminated bituminous shales with a sparse macro-fauna, dominated by well-preserved crushed kosmoceratids. Corbulomima and Mesosaccella are the commont bivalves. "The Acutistriatum Band". Lenticles of earthy concretionary limestone occur at this level.

\section*{CORONATUM ZONE, GROSSOUVREI SUBZONE}

17K 24 cm . Nuculacean shell bed with abundant Palaeonucula, Mesosaccella, Procerithium and Corbulomima; pseudoperisphinctids are also characteristic, and there is a diverse accessory bivalve fauna. Some low-grade pyritisation, and a little development of secondary calcite. "The Comptoni Band".

17 J 15 cm . Greenish laminated bituminous shale, with a rich background of small indeteminate shell fragments. Pauna of low diversity, dominated by kosmoceratids, Mesosaccella, Corbulomima, Meleagrinella and Bositra.
\(17 \mathrm{H} 18 \mathrm{~cm} . \quad\) Greenish-grey calcareous clay with abundant
Nuculacea and Procerithium in a matrix of clay
with abundant shell fragments. Meleagrinella,

\(\frac{\text { Corbulomima, Procerithium }}{}\) and Byssentolium also

17G 14 cm . Fissile green shaly clay, similar to that of 17 J , with a good background of shell and Bositra fragments. Macrofauna dominated by kosmoceratids, often lappeted, together with Nuculacea, Bositra, Meleagrinella, Corbulomima and Parainoceramus. Accessory fauna includes Mecocheimus, Pteroperna and Pleuromya alduini. Top burrowed.

17F 14 cm . Meleagrinella shell bed, with abundant valves and shell fragments of Meleagrinella covered in secondary calcite. Accessory fauna dominated by Mesosaccella, Corbulomima and Palaeonucula.

17E 14 cm . Greyish rather calcareous clay with a diverse fauna of bivalves, dominated by Mesosaccella, Byssentolium, Procerithium, Corbulomima and Palaeonucula. No secondary calcite, but some lowgrade pyritisation.

17D 18 cm . Meleagrinella shell bed of normal type, although secondary calcite seems to be largely restricted to the pectinacea. Dominant accessory fauna of Mesosaccella, Palaeonucula, Procerithium and kosmoceratids.

17C 12 cm . Grey-green rather calcareous clay with a very rich fauna, including one gryphaeate oyster. Rich fauna includes abundant Nuculacea, Procerithium and Meleagrinella, with Byssentolium, Thracia,

Discomiltha and arcids as characteristic accessory genera. Base burrowed.

17B 11 cm .
Meleagrinella shell bed of normal type, with very little macrofauna other then Meleagrinella, even ammonites being rare. Bositra, Procerithium, Mesosaccella and Parainoceramus were the only genera seen, and only comprise about \(3 \%\) of the overall fauna. A thin band of pyritisation occurs 4 cm above the base of the bed. Burrowed base.

17A 12 cm . Greenish slightly shaly clay very rich in shell fragments. Very diverse benthonic fauna, dominated by Mesosaccella, Meleagrinella and Procerithium, with a rich accessory fauna of Thracia, Byssentolium, Corbulomima, Palaeonucula and kosmoceratids.

1688 cm . Very fissile green shaly clay with a rich fauna of foraminifera and a variable amount of thin secondary calcite, which affects most species. Meleagrinella, Mesosaccella, Procerithium, Isocyprina, Thracia, Corbulomima, Palaeonucula, Bositra and Grammatodon minima are the most common of the accessory elements of the fauna.
152.30 m . Olive-green bituminous shale with a fairly sparse, but well-preserved fauna, preserved mainly as primary aragonite, although secondary calcite becomes common in the top 20 cm . The typical Grossouvrei Subzone fauna of G. minima, Isocyprina
and Mesosaccella in abundance appears at this level, together with abundant Palaeonucula, Procerithium, Corbulomima, Thracia and Anomalodesmatan sp . A., with a diverse, but sparse accessory fauna of bivalves and kosmoceratids.

\section*{CORONATUM ZONE, OBDUCTUM SUBZONE}

1420 cm . Nuculacean shell bed, with a pyritic fauna of Nuculacea, kosmoceratids and Brymnoceras, and a good deal of lignite and belemnites. Occasional cementstone concretions, with a rich fauna, occur within the shell bed. Accessory fauna partly obscured by the abundance of Nuculacea, but includes Plicatula, Discomiltha, Procerithium, flat oysters, Thracia, Pleuromya alduini and Meleagrinella.
136.30 m . Greenish shaly bituminous clay with a diverse fauna, largely dominated by deposit-feeders, or species able to tolerate less well-oxygenated conditions. Fauna dominated by kosmoceratids, Nuculacea, Bositra, Procerithium, Corbulomima, Lingula and Dicroloma, with an accessory fauna of Thracia, Meleagrinella, Oxytoma, Mecocheirus, Parainoceramus and Pinna; Meleagrinella becomes more abundant towards the top of the bed. Secondary calcite variably developed, being abundant at certain levels, and absent at others. At about 2.80 m above the base, there is a band of
ellipsoidal cementstone septarian concretions, spread throughout about 1.00 m of shaly clay. Septarian cracks are well-developed in these concretions, and are often lined by pyrite; fossils are sparse in them.

\section*{JASON ZONE, JASON SUBZONE}
123.90 m .

Light green shaly clay, more massive towards the base, with a fairly sparse, but relatively diverse, fauna. Much of the fauna either consists of "pendent" suspension-feeders or very tolerant deposit-feeders, especially in the bottom 2.00 m ; above this, the fauna becomes more diverse and more abundant. Dominant fauna of kosmoceratids, Bositra, Meleagrinella, Mesosaccella, Dicroloma, Corbulomima, Lingula and Palaeonucula, with accessory Oxytoma, Mecocheirus, Thracia, Anomalodesmatan sp. A., and sp . B., Pinna, Discomiltha and Parainoceramus. Preservation mostly as crushed valves which have suffered a high degree of aragonite solution, making the shells very fragile. Locally there is some secondary calcite, but it is not widespread. A 10 cm Meleaprinella shell bed occurs 1.25 m above the base, and there are occasional Meleagrinella plasters towards the top of the bed.

113 cm . Meleagrinella shell bed of normal type, with few other species except kosmoceratids, Mesosaccella and Corbulomima.

103 cm . Pyritic shell bed containing mainly kosmoceratids and Cylindroteuthis, together with bone fragments and fish teeth. The whole bed is very rich in comminuted indeterminate shells. Oysters transitional between the ostreate and the gryphaeate form are fairly abundant, together with occasional specimens of Belemnopsis sulcata.

\section*{JASON ZONE, MEDEA SUBZONE}

930 cm .
Olive-green well-laminated shaly clay with a fauna dominated by kosmoceratids, Corbulomima, Procerithium and Bositra; there is also a diverse fauna of rare accessory genera, such as Thracia, Meleagrinella, Entolium, Pinna, Parainoceramus, Mesosaccella, Palaeonucula and terebratulids. Near the top is an 8 cm band of darker shale rich in Bositra and Pinna, often preserved in secondary calcite, and with ammonite plasters.

82 cm .
Gryphaea shell bed, with abundant Gryphaea and Cylindroteuthis, as well as a fairly diverse accessory faina of Discomiltha, Palaeonucula, Procerithium, Thracia, Bositra and Corbulomima.

73 cm .

5A 3 cm . Gryphaea shell bed, rich in oysters, belemnites and ammonites, together with a diverse benthonic fauna of sparse bivalves and gastropods such as Discomiltha, Oxytoma and Thracia.

4E 70 cm .
Green shaly clay with a diverse fauna, and indeterminate worm burrows. Preservation as both primary aragonite, and with secondary calcite. Fauna dominated by ammonites, oysters and Meleagrinella, with accessory Procerithium, Bositra, Corbulomima and rhynchonellids. Cylindrotheuthis, together with kosmoceratids, Meleagrinella and a diverse, but sparse, accessory fauna of bivalves and cephalopods.

5B 10 cm . Shaly, rather silty clay, grading downwards into a shell bed ( \(5 A\) ), with a rich fauna of small bivalves such as Protocardia and Corbulomima. Kosmoceratids, oysters, Bositra, Procerithium, Meleagrinella, Intolium, Oxytoma, G. 2lathrata, Thracia, Lingula and rhynchonellids are also characteristic. Trace fossils (indeterminate) are fairly abundant.

Green shaly clay, with a 10 cm silt band with a basal shell plaster in the centre. The shaly clay has a diverse fauna, dominated by kosmoceratids, Palaeonucula, Procerithium, Corbulomima and Bositra,
together with many other species of bivalve, gastropod, brachiopod and cephalopod. The silt band is rather strongly bioturbated and contains a diverse molluscan fauna similar to that of the shales; the basal shell plaster is rich in kosmoceratids, oysters, belemmites, Thracia and Meleagrinella.

4D 12 cm . Intensely bioturbated silt and clayey silt, with very little else other than trace fossils. Fauna dominated by kosmoceratids and Cylindroteuthis, but there is also a diverse and sparse bivalve fauna, including Modiolus, Thracia and Protocardia.
\(4 C 8 \mathrm{~cm}\). Greenish shaly clay, rather well-laminated, with a very rich molluscan fauna, dominated by kosmoceratids, Palaeonucula, Meleagrinella, Prautscholdia, Grammatodon concinna, Protocardia, Corbulomima and Bositra. There is also a rich accossory bivalve fauna.
\(4 B \quad 10 \mathrm{~cm}\). Bioturbated silty clay rich in trace fossils, with a not very diverse fauna, dominated by kosmoceratids, Trautscholdia, Meleagrinella and oysters.

4A 32 cm . Olive-green fissile shaly clay, locally with a background of foraminifera, and with lenses of shells throughout, together with some plasters of

\section*{18.}
either anmonites or oysters plus Pinna. These three, together with Trautscholdia, Bositra and Corbulomima, are the dominant genera, but there is also a diverse accessory fauna.

\section*{CALLOVIENSE ZONE, FNODATUM SUBZONE}

3B 25 cm seen. Very sticky silty clay, with a fauna consisting almost entirely of kosmoceratids and gryphaeate oysters.

STIEVARTBY (BEDFORD) SPO17412
SUBZONES MODIFIED BY DUFF.

\section*{ATHLETA ZONE}

Bed 1920 cm . Very shelly grey-green clay, packed with Nuculacea, Procerithium and Perisphinctids. "The Comptoni Band" shell bed. Basal layer of the bed contains pyritic ammonites.

1835 cm . Greenish bituminous shale, rather shelly in the basal 7 cm . Fauna dominated by Nuculacea, Meleagsinella and Bositra.
\(1737 \mathrm{~cm} . \quad\) Dark grey-black, well-laminated bituminous shales, rich in crushed ammonites, many with lappets, Nuculacea, Inoceramus and Meleagrinella. Lenses of concretionary limestone occur within this band, and make a clear marker band about halfway up the face. "The Acutistriatum Band".

CORONATUM ZONE \({ }_{2}\) GROSSOUVREI SUBZONE
1520 cm . Nuculacean shell bed. Very shelly clay with abundant Mucula and Mesosaccella. Procerithium and Meleagrinella also very common.
\(14 I \quad 12 \mathrm{~cm} . \quad\) Light grey-green, rather calcareous clay, with quite a lot of broken shell debris. Normal fauna of Nuculaceans, Meleagrinella, kosmoceratids and Hecticoceratids. Inoceramus.

14H 11 cm . Meleagrinella shell bed, consisting mainly of valves of Meleagrinella covered with honey-brown coloured secondary calcite in a clayey matrix.

14G 17 cm. Light grey-green, calcaceous clay, with a good background of shell hash. Nuculacea abundant, Meleagrinella, Inoceramus, Kosmoceras common.

14F 20 cm . Meleagrinella shell bed with shells covered by \(2^{\circ}\) calcite. Nuculacea of subsidiary importance.

14E 23 cm . Light grey-green clay with many black Meleagrinella shell fragments. Dominant fauna is again Nuculacea, with subsidiary Procerithium, Thracia, Genicularia and Kosmoceratids.
\(14 D \quad 17 \mathrm{~cm} . \quad\) Meleagrinella shell bed as normal. Junction with 14C below burrowed, as are most of the junctions within bed 14. Nuculacea are dominant subsidiary fauna.

14C
16 cm .
Grey-green clay, not verer well-laminated. Nuculacea and Procerithium dominate, Bositra quite common too.

14B 12 cm . Meleagrinella shell bed, with burrowed base and top. Usual high content of Meleagrinella with \(2^{\circ}\) calcite.

\section*{21.}

14 A 13 cm . Grey-green calcareous clay, very shelly at the base, and rich in bivalves throughout. Thracia, Inoceramus, oysters and Procerithium common, together with abundant liuculacea.
\(13 \quad 3 \mathrm{~cm}\). Pyritic shell plaster, the pyrite being rather unstable, and occurring often as irregular black nodules within a finely pyritic clay, often ironstained. Pauna difficult to see because of pyrite-rot, but contains ammonites and Nuculacea.

12
1.05 cm . clay, with a rich and obvious fauna of Foraminifera. Rich fauna dominated by Bositra, Meleagrinella, Procerithium and Nuculacea, but also with a diverse fauna of accessory bivalves. A rich shelly band occurs between \(85-90 \mathrm{~cm}\) above the base, in which the same species occur as in the clays, but much more abundantly.

113 cm . Pyritic shell bed, mainly pyritic Meleagrinella in a Foram-rich clay. Oysters, ammonites and Nuculacea also characteristic.

10D 15 cm . Olive-green, rather fissile shaly clay, with a very abundant fauna of Foraminifera, and also with very common Meleagrinella. Bositra and Mesosaccella characteristic.
\(10 C 3.23 \mathrm{~m}\). Blocky greenish shaly clay, not as fissile as 10D, and lacking the rich fauna of foraminifera. Very rich and diverse bivalve fauna, dominated by Nuculacea, but characterised by a varied fauna of infaunal suspension-feeders, in which Grammatodon, Isocyprina and Thracia are dominant. Many other bivalves too.

10B 2 cm . Thin Grarmatodon shell bed, dominated by Nuculacea, Grammatodon, Procerithium and Kosmoceratids. Other bivalves diverse, but not numerically abundant.
\(10 \mathrm{~A} \quad 6 \mathrm{~cm}\). Very shelly greenish clay, as in loc.

96 cm . Pyritic shell bed, passing upwards into a nonpyritised shell bed. Very rich in bivalves and ammonites, especially Nuculacea, oysters, Grarmatodon, Lucina and Procerithium. This is the first appearance of Gramnatodon minima, and is taken as the base of the Grossouvrei Subzone. "20 foot shell bed"of Callomon

\section*{CORONATUM ZONE, OBDUCTUM SUBZONE}

8B 45 cm . Green shaly clay with a rich fauna of Foraminifera. Nuculacea, Bositra, Corbula and ammonites are the characteristic members of the macrofauna.

8A 70 cm . Mainly a thick Meleagrinella shell bed, with large numbers of Meleagrinella shells with \(2^{\circ}\) calcite. Parts of the bed do, however, consist of lenses of more shaly clay similar to that of 8B above. Fauna dominated by Meleagrinella, with Mesosaccella, Corbula and Procerithium as characteristically abundant members of the fauna. Within this bed, there occur lensoid septarian concretions up to 25 cm thick, of a wheel-like shape. These axe post-depositional, and form a useful marker band.

710 cm . Strongly pyritic shell bed, the most obvious and stable shell bed in the whole section. A rich mass of Nuculacea and ammonites, with Kosmoceras dominating, but the most characteristic are the large specimens of Erymnoceras which occur. Many other bivalves and snails. "16' shell bed".

6E 28 cm . Grey-green shaly clay, with a background of some shell hash, and a fauna consisting mainly of Nuculacea, Meleagrinella, Procerithium, Dicroloma and Corbula.

6D 10 cm . Shell bed, consisting of a Meleagrinella shell bed with \(2^{\circ}\) calcite in the lowermost 7 cm , with occasional seams of fibrous calcite ("beef") up to 1 cm thick. Upper 3 cm is a pyritic shell bed, of unstable pyrite. Nuculacea and Meleagrinella
common in upper part.
\begin{tabular}{rl} 
6c \(90 \mathrm{~cm} . \quad\) Olive-green blocky shaly clay, with a clear \\
background of shell hash. Fauna dominated by \\
Bositra, Meleagrinella, Dicroloma, Procerithium, \\
& Corbula and Nuculacea. Base taken at a very thin \\
& seam of pyrite-shot clay, apparently filling \\
& burrows. Base of Coronatum Zone.
\end{tabular}

\section*{JASON ZONE, JASON SUBZONE}

6B 2.95 m . Olive-green blocky shaly clay, as in 6C above. Very abundant fauna of Bositra, with Corbula, Nuculacea, Frocerithium, Dicroloma and Kosmoceras common. Lingula and crustacea locally fairly abundant also. Meleagrinella of subsidiary importance.

\section*{JASON ZONE, MEDEA SUBZONE}

6A 69 cm . 0live-green rather well-laminated shaly clay, rather similar to that of \(6 B\) and \(6 C\). Fauna again dominated by Bositra, with Meleagrinella much more common than in 6B above. Procerithium and Kosmoceras also characteristic, together with Dicroloma and Pinna.

5B 1 cm . Crushed pyritic ammonites, together with a shell bed (pyritic) containing abundant Nuculacea, Grammatodon concinna, Trigonia, Astarte, together with reptile bones and wood fragments.

5 A 5 cm . Oyster bed consisting of numerous specimens of Gryphaea dilobotes in a matrix of silt and silty clay. Other bivalves which preferred a soft substrate for burrowing are also more common Pleuromya, Anisocardia, Astarte. 5A separated from 5B by a thin band of silt, as in 5A, but without the abundant oysters.

CALLOVIENSIS ZONE, ENODATUM SUBZONE
\(420 \mathrm{~cm} .+\quad\) Green silt, with lenses of silty clay, and locally grey silt. Markedly bioturbated in places, and with abundant trace fossils. Several thin shell beds containing Gryphaea and belemnites occur within bed 4 .

\section*{ATHLETA ZONE}

Bed 3820 cm . Brown, well-laminated bituminous shale rich in crushed ammonites, mainly kosmoceratids, with Corbulomima, Mesosaccella and Pleuromya alduini also being characteristic. "The Acutistriatum Band".

\section*{CORONATUM ZONE, GROSSOUVREI SUBZONE}
\(3717 \mathrm{~cm} . \quad\) Greenish shaly clay, pseudoperisphinctids continuing on from the underlying bed, with kosmoceratids and hecticoceratids also being characteristic. Corbulomima, Procerithium and Mesosaccella are the most abundant benthonic molluscs. Trace fossil burrows common in the uppermost 2 cm .

365 cm . Nuculacean shell bed in a greenish shaly clay matrix; pseudoperisphinctids abundant. Many of the shells are broken, and there seems to have been winnowing. Same dominant fauna as in bed 37. "The Comptoni Band".

3525 cm . Greenish shaly clay with a rich background of small Bositra fragments. Benthonic fauna not very diverse, but fairly abundant, with Mesosaccella, Palaeonucula, Corbulomima and Meleagrinella being the most characteristic.

\section*{27.}

3416 cm . Meleagrinella shell bed. Abundant valves of Meleagrinella, with Nuculacea, Corbulomima and Byssentolium, all often covered with secondary calcite. Top and base burrowed.
\(3310 \mathrm{~cm} . \quad\) Light grey-green, rather plastic, calcareous clay, with a good background of broken black Meleagrinella shell fragments. Virtual absence of secondary calcite. Base burrowed. Nuculacea abundant, together with Byssentolium and Corbulomima.

3212 cm . Greenish shaly clay, with a light background of broken Bositra fragments. A little secondary calcite. Benthonic fauna dominated by Nuculacea, Pleuromya alduini, Corbulomima, Meleagrinella and Parainocerams. Top burrowed.

316 cm . Meleagrinella shell bed. Abundant valves and broken fragments of Meleagrinella and Bositra covered in secondary calcite. Mesosaccella and Corbulomima dominate the remainder of the fauna. Base burrowed.
\(30 \quad 18 \mathrm{~cm}\).
Greenish shaly clay, with a background of Bositra fragments becoming commoner towards the top. Benthonic fauna dominated by Nuculacea, Procerithium, Byssentolium, Meleagrinella and Corbulomina.
\(299 \mathrm{~cm} . \quad G r e y-g r e e n\), rather plastic calcareous clay, with a good background of black Meleagrinella fragments. No secondary calcite. Benthonic fauna dominated by Mesosaccella and Byssentolium, with Meleagrinella and Palaeonucula also being characteristic.
\(28 \quad 18 \mathrm{~cm}\).

2717 cm .

2615 cn.

253 cm .

Meleagrinella shell bed. Abundant valves and shell fragments of Meleagrinella and Bositra, covered in secondary calcite; few valves are unbroken. Mesosaccella, Procerithium and Corbulomima also characteristic. Burrowed base.

7 cm . Grey-green, rather plastic clay, transitional into 28 above. Shells spread uniformly throughout the bed, with local lenses of shell fragments. Some secondary calcite on Bositra, Mesosaccella and kosmoceratids. Ammonite plaster at the base. Fauna dominated by Bositra and Meleagrinella, with a. rich accessory fauna of Corbulomima, Procerithium and Byssentolium.

Meleagrinella shell bea, of normal type. Secondary calcite virtually restricted to Meleagrinella. Accessory fauna dominated by Nuculacea and Procerithium. Burrowed top and base.
shell bed, rich in Bositra and Meleagrinella, with Nuculacea, Procerithium and Byssentolium also being characteristic.

2427 cm . Well-laninated green shaly clay, with secondary calcification affecting most members of the fauna. Rich fauna of foraminifera. Abundant and rather varied benthonic fauna, characterised by Melearinella, Bositra, Nuculacea, Procerithium, Anomalodesmatan sp. A. and Thracia.

Meleagrinella shell bed. Abundant Bositra and Meleagrinella fragments covered by secondary calcite. Top and base strongly burrowed. Large, well-preserved macroconch kosmoceratids occur frequently. Accessory fauna diverse, but not very abundant - Mesosaccella, Parainoceramus, Procerithium, Anomalodesmatan sp. A.

2285 cm . Greenish well-laminated shaly clay, with a rich background of forams. A little secondary calcite on some shells; also, there are occasional crushed articulated shells of Palaeonucula preserved in secondary pink calcite. Macrofauna dominated by Bositra and Meleagrinella, with Nuculacea, Procerithium, Anomalodesmatan sp. A. and kosmoceratids; several other bivalve genera are also characteristic.

21 A cm. Ammonite pluster, rich in macroconch kosmoceratids, together with Nuculacea and Procerithium.

2038 cm . Greenish well-laminated shaly clay, rich in forams. Secondary calcite developed on most species, and some pink calcitic Palaeonucula shells occur. Fauna dominated by Bositra and Meleagrinella, with Nuculacea, Anomalodesmatan sp. A., and kosmoceratids as the most abundant species, but also with Thracia, Dicroloma, "Ostrea", Procerithium and Corbulomima.
\(1910 \mathrm{~cm} . \quad\) Shell bed, dominated by Bositra and Meleagrinella, the latter often attaining a large size ( \(\mathrm{H}>30 \mathrm{~mm}\) ), and having a thick coating of secondary calcite. Remainder of the fauna dominated by Mesosaccella and Procerithium.

1875 cm . Olive-green shaly clay, rich in forams, and with many horizontal worm burrows, filled with fine shell fragments. Pink calcitic palaeonucula shells common. Secondary calcite affects every species, but not all the specimens. Fauna dominated by Nuculacea and Procerithium, with accessory Thracia, Grammatodon minima, Bositra, Parainoceramus, and several other species more rarely.

1710 cm . Partially pyritic shell bed, pyritisation fading towards the edges. Fauna dominated by Nuculacea and G. minima, with kosmoceratids and flat oysters.

\section*{31.}
161.35 m . Greenish, very fissile shaly clay, with a light background of broken shell fragments. Fauna fairly diverse, but not particularly abundant, dominated by Bositra, Nuculacea, G. minima, Procerithium, Oxytoma, Parainocerams, Thracia, Corbulomima and Anomalodesmatan sp. A. Some secondary calcite, mainly on Mesosaccella, but never abundant.

\section*{CORONATUM ZONE, OBDUCTUM SUBZONE}

155 cm . Pyritic shell bed, dominated by Mesosaccella and Palaconucula, and also rich in lignite and disarticulated reptile bones. Also, there's quite a lot of secondary calcite. Accessory fauna of kosmoceratids, lignite, flat oysters, Cylindroteuthis and Erymnoceras. A good example of a winnowed shell bed.
\(144.55 \mathrm{~m} . \quad\) Olive-green blocky shaly clay, with an abundant pendent bivalve fauna of Bositra and Meleagrinella, and a rather impoverished benthonic fauna dominated by ITuculacea. Thero is also a rather diverse fauna of other species, which aro not usually very comon, including Dicroloma, Mecocheirus, Lingula, Belemnoteuthis, and several othor species which occur rarely. Occasional Meleagrinella plasters occur, especially towards the top. Secondary calcite is developed on most species, but varies in its inportance throughout the bed.

135 cm . Shell bed consisting dominantly of shell fragments in a dark sticky clay matrix; some woak pyritisation of shells towards the top, and secondary calcite is characteristic throughout. Kosmoceratids abundant, together with Meleagrinella, Palaeonucula, G. concinna and flat oysters. A diverse, but not abundant accessory fauna of bivalves and gastropods is also present.

1262 cm . Olive-green blocky shaly clay, with a patchy distribution of fossils, sone horizons being apparently unfossiliferous. An unusual feature of this bed is that Protocardia appears to have replaced Palaeonucula. Dicroloma dominates over Procerithium. A little development of secondary calcite on some species. Bositra abundant, with a rich accessory fauna dominated by Protocardia, Grammatodon concinna, Oxytome, and kosmoceratids. Other rather rarer elements include Mesosaccella, Meleagrinclla, Parainocoramus, Lingula, Procerithiun and flat oysters.

115 cm . Grammatodon-rich shell bed, with an ammonite plaster at the base, although ammonites are not particularly abundant within the rest of the bed. Fauna dominated by G. concinna, Trautscholdia, Protocardia, Dicroloma and flat oysters. Bositra and Meleagrinella rare.

15 cm . Dark, very well-laminated bituminous shales, with a rich fauna of crushed macroconch kosmoceratids, and many horizontal trace-fossil burrows, often up to 2 on wide. Diverse benthonic fauna, dominated by G. concinna, Parainoceramus and Dicroloma, with accessory Pinna, Oxytoma, Trautscholdia, Meleagrinella, Chlanys and Bositra. Fish fragments - scales, teeth and centra are also characteristic. Contained within these shales is a band of wheel-shaped septarian concretions, up to 19 cm thick, with macroconch and microconch kosmocoratids preserved in sparry calcite in the septarion cracks.

\section*{JASON ZONE, MEDEA SUBZONE}

97 cr.
Dark olive-green clay with many shells, slightly pyritic at the base, and not particularly fissile. Fauna dominated by G. concinna, Gryphaea, Trautscholdia, Bositra and Belennopsis sulcata.

88 cm .
Fairly massive, slightly silty clay, very fossiliforous towards the top, with a fauna similar to that of bed 9. Towards the base, oysters become larger and more abundent. Fauna dominated by kosnoceratids, Gryphaea, G. concinna and Meleagrinella.

73 cm . Non-pyritic shell bed, rich in Gryphaea and Cylindroteuthis. Remainder of the fauna rather impoverished, and containing the same species as in bed 8.
\begin{tabular}{ll}
69 cm. & Slightly shaly clay with a rather sparse fauna, \\
not rich in ammonites. Palaeonucula absent, \\
& Mesosaccella rare. Dominant benthos is G. concinna, \\
& Gryphaca, Bositra, Oxytoma and Procerithium. \\
5.10 cm. & Very shelly clay, containing abundant Gryphaea \\
and Cylindroteuthis, together with crushed \\
& kosmoceratids, in a matrix of broken shells and \\
& blackish-green clay. Sparse accessory fauna as in \\
bed 6.
\end{tabular}

\section*{CALLOVIENSE ZONE, CALLOVIENSE SUBZONE}

320 cm . Massive micro-crosslaminated silts, with no parallel, horizontal bedding obvious; some
bioturbation. Fauna very sparse, and not diverse, with Meleagrinella, Trautscholdia, Thracia, Protocardia and Gryphaea.

26 cm . Olive-green shaly clay with a characteristic fauna of small bivalves. Fauna not very diverse, but slightly more abundent than in bed 3. Dominated by Trautscholdia, Protocardia, Meleagrinella and Bositra.
35.

170 cm . seen. Massive yellow-green sandy silts, micro-cross laminated. Founa dominantly Gryphaea and Cylindroteuthis, with some kosmoceratids. Large concretionary doggers of calcareous sandstone occur within this bed. Trace fossils such as Rhizocorallium are locally abundant.

\section*{36.}

\section*{APPENDIX 2}

Soluble fractions of each bed at the four major quarries examined.

Measurements made by treating samples with \(10 \% \mathrm{HCl}\), and calculating the weight loss as a percentage of the original weight. The measurements given are averaged from analysis of three samples per bed.

The bulk of the soluble fraction is thought to be \(\mathrm{CaCO}_{3}\), but also includes unknown percentages of other carbonates, sulphates and other acid-soluble selts.
37.

38.

BLETCHLEY
\begin{tabular}{|c|c|c|c|}
\hline Bed & Soluble fraction & Bed & Soluble fraction \\
\hline & (limestone) \(75.01 \%\) & 13E & \(11.74 \%\) \\
\hline & (clay) 25.96 & 13D & 4.87 \\
\hline 17K & 37.28 & 130 & 5.42 \\
\hline 17 J & 30.11 & 13B & 5.20 \\
\hline 17G & 28.63 & 13A & 10.07 \\
\hline 17F & 31.45 & 12J & 11.23 \\
\hline 17E & 35.43 & 121 & 7.24 \\
\hline 17D & 42.43 & 12H & 6.03 \\
\hline 17C & 31.03 & 12G & 8.22 \\
\hline 17B & 34.00 & 12F & 8.66 \\
\hline 17A & 13.94 & 12D & 8.28 \\
\hline 16C & 10.34 & 12C & 6.77 \\
\hline 16 B & 11.14 & 12B & 8.20 \\
\hline 16A & 17.87 & 12A & 12.07 \\
\hline 15E & 32.67 & 11 & 22.38 \\
\hline 15D & 8.04 & 10 & 33.30 \\
\hline 15 C & 7.70 & 9 B & 13.16 \\
\hline 15B & 7.81 & 9A & 5.62 \\
\hline 15A & 8.52 & 8 & 8.40 \\
\hline 14 & 24.15 & 7 & 7.96 \\
\hline 13 M & 18.17 & 5B & 4.51 \\
\hline 13 J & 10.77 & 5A & 26.04 \\
\hline 131 & 7.75 & 4EA & 4.23 \\
\hline 13H & 6.01 & 4 D & 4.07 \\
\hline 13G & 8.58 & 4C & 5.54 \\
\hline 13 FA & A 29.99 & 4B & 5.30 \\
\hline 13F & 11.26 & 4A & 4.69 \\
\hline
\end{tabular}

STEWARTBY

40.
\begin{tabular}{|c|c|c|c|}
\hline Bed & Soluble fraction & Bed & Soluble fraction \\
\hline 38 & 19.61\% & 17 & 47.36 \% \\
\hline 37 & 29.10 & 16A & 6.93 \\
\hline 36 & 29.04 & 16 & 8.57 \\
\hline 35 & 29.42 & 15 & 18.37 \\
\hline 34 & 38.13 & 14G & 11.14 \\
\hline 33 & 37.43 & 14F & 14.97 \\
\hline 32 & 29.31 & 14E & 19.96 \\
\hline 31 & 30.09 & 14 D & 12.33 \\
\hline 30 & 24.77 & 14C & 9.93 \\
\hline 29 & 40.90 & 14 B & 11.08 \\
\hline 28 & 44.61 & 14 A & 8.54 \\
\hline 27 & 23.24 & 12 & 7.20 \\
\hline 26 & 22.81 & 11 & 12.92 \\
\hline 25 & 14.94 & 10 & 14.21 \\
\hline 24 & 13.27 & 9 & 27.18 \\
\hline 23 & 19.33 & 8 & 8.99 \\
\hline 22 & 12.47 & 7 & 17.72 \\
\hline 21 & 17.43 & 5 & 11.94 \\
\hline 20 & 20.74 & 4 & 5.46 \\
\hline 19 & 28.75 & 3 & 9.77 \\
\hline 18A & 11.24 & 2 & 5.90 \\
\hline 18 & 13.01 & 1 & 10.51 \\
\hline
\end{tabular}

\section*{APPENDIX 3}

Measurements and variation statistics of the specimens examined in the course of the monographic work.

The measurements and statistical parameters are defined in sections 2.5.1. and 2.5.3. respectively.

Basic measurements are in mm, with the percentage of each measurement parameter compared with \(I\) showr in brackets. Angular measurements are given in degrees.

Nuculoma pollux (Raspail)

43.

Nuculoma kathryni sp. nov.
\begin{tabular}{rrccc} 
spec. no. & \multicolumn{1}{c}{ I } & II & I & AL \\
GSM 114030 & 10.8 & \(8.3(76.9)\) & \(7.9(73.1)\) & \(8.9(82.4)\) \\
114031 & 9.8 & \(7.5(76.5)\) & \(7.1(72.4)\) & \(7.5(76.5)\) \\
114032 & 9.0 & \(7.0(77.8)\) & \(6.7(74.4)\) & \(7.3(81.1)\) \\
114033 & 10.1 & \(8.7(86.1)\) & & \(8.4(83.2)\) \\
114034 & 10.5 & \(8.8(83.8)\) & \(6.5(61.9)\) & \(9.0(85.7)\) \\
114035 & 8.5 & \(7.2(84.7)\) & \(6.2(72.9)\) & \(6.6(77.6)\)
\end{tabular}
\begin{tabular}{lcccc}
N & 6 & 6 & 5 & 6 \\
\(\bar{x}\) & 9.8 mm & \(81.0 \%\) & \(70.9 \%\) & \(81.1 \%\) \\
Max & 10.8 & 84.7 & 74.4 & 85.7 \\
Min & 8.5 & 76.5 & 61.9 & 76.5 \\
OR & 2.3 & 7.8 & 12.5 & 9.2 \\
& & & & \\
s & 0.88 & 4.36 & 5.11 & 3.48 \\
\(s^{2}\) & 0.78 & 18.97 & 26.08 & 12.13 \\
V & 9.04 & 5.38 & 7.20 & 4.30 \\
\(\sigma \frac{1.78}{x}\) & 0.36 & 1.78 & 2.28 & 1.42
\end{tabular}

Palaeonucula triangularis sp. nov.
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL \\
\hline (HT) BM LL27713 & 16.1 & 12.6 (78.3) & 10.8 (67.1) & 10.4 (64.6) \\
\hline 27714 & 13.2 & 10.6 (80.3) & 8.6 (65.2) & 9.5 (72.0) \\
\hline 27715 & 16.6 & 14.0 (84.3) & 12.3 (74.1) & 10.5 (63.3) \\
\hline 27716 & 14.8 & 12.4 (83.8) & 10.7 (72.3) & 10.2 (68.9) \\
\hline 27717 & 14.3 & 11.8 (82.5) & 9.4 (65.7) & 9.0 (62.9) \\
\hline 27718 & 13.8 & 10.6 (76.8) & 8.2 (59.4) & 8.5 (61.6) \\
\hline 27719 & 14.5 & 12.0 (82.8) & 10.3 (71.0) & 9.3 (64.1) \\
\hline 27720 & 17.4 & 13.0 (74.7) & 11.0 (63.2) & 11.7 (67.2) \\
\hline 27721 & 14.5 & 11.3 (77.9) & 9.2 (63.4) & 10.5 (72.4) \\
\hline LU 69500 & 15.7 & 12.0 (76.4) & 9.9 (63.1) & 9.9 (63.1) \\
\hline 69501 & 13.4 & 10.4 (77.6) & 8.8 (65.7) & 8.7 (64.9) \\
\hline 69502 & 17.8 & 15.4 (86.5) & 11.7 (65.7) & 10.7 (60.1) \\
\hline 69503 & 16.3 & 13.2 (81.0) & 10.4 (63.8) & 10.5 (64.4) \\
\hline 69504 & 15.7 & 12.0 (76.4) & 11.1 (70.7) & 10.3 (65.6) \\
\hline 69505 & 15.5 & 11.7 (75.5) & 9.8 (63.2) & 10.0 (64.5) \\
\hline 69506 & 16.4 & 13.1 (79.9) & 11.0 (67.1) & 10.6 (64.6) \\
\hline 69507 & 15.8 & 12.5 (79.1) & 11.0 (69.6) & 10.5 (66.5) \\
\hline 69508 & 12.6 & 10.0 (79.4) & 7.9 (62.7) & 8.6 (68.3) \\
\hline 69509 & 13.2 & 10.2 (77.3) & 8.5 (64.4) & 8.2 (62.1) \\
\hline 69510 & 16.6 & 14.2 (85.5) & 12.0 (72.3) & 13.0 (78.3) \\
\hline 69511 & 16.3 & 13.9 (85.3) & 12.5 (76.7) & 12.7 (77.9) \\
\hline 69512 & 13.1 & 10.7 (81.7) & 9.0 (68.7) & 9.1 (69.5) \\
\hline 69513 & 12.7 & 9.9 (78.0) & 8.7 (68.5) & 9.3 (73.2) \\
\hline 69514 & 13.2 & 11.3 (85.6) & 9.3 (70.5) & 9.2 (69.7) \\
\hline 69515 & 14.6 & 11.6 (79.5) & 9.4 (64.4) & 10.1 (69.2) \\
\hline 69516 & 14.5 & 10.9 (75.2) & 9.2 (63.4) & 9.4 (64.8) \\
\hline 69517 & 14.2 & 12.0 (84.5) & 11.2 (78.9) & 9.7 (68.3) \\
\hline 69518 & 15.5 & 12.7 (81.9) & 9.9 (63.9) & 9.3 (60.0) \\
\hline 69519 & 15.2 & 12.4 (81.6) & 11.5 (75.7) & 10.8 (71.1) \\
\hline 69520 & 14.9 & 12.3 (82.6) & 10.7 (71.8) & 11.0 (73.8) \\
\hline 69521 & 14.9 & 11.8 (79.2) & 9.3 (62.4) & 10.7 (71.8) \\
\hline 69522 & 15.1 & 11.7 (77.5) & 9.5 (62.9) & 10.2 (67.5) \\
\hline 69523 & 14.0 & 11.0 (78.6) & 10.0 (71.4) & 11.2 (80.0) \\
\hline
\end{tabular}

Palaeonucula triansularis (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL \\
\hline LU 69524 & 14.6 & 12.0 (82.2) & 8.5 (58.2) & 10.6 (72.6) \\
\hline 69525 & 13.2 & 10.8 (81.8) & 9.7 (73.5) & 9.1 (68.9) \\
\hline 69526 & 13.5 & 10.5 (77.8) & 8.5 (63.0) & 9.8 (72.6) \\
\hline 69527 & 14.2 & 10.8 (76.1) & 10.4 (73.2) & 10.0 (70.4) \\
\hline 69528 & 11.4 & 9.6 (84.2) & 8.1 (71.1) & 8.4 (73.7) \\
\hline 69529 & 12.6 & 10.0 (79.4) & 8.0 (63.5) & 8.9 (70.6) \\
\hline 69530 & 11.5 & 9.8 (85.2) & 7.3 (63.5) & 8.5 (73.9) \\
\hline 69531 & 16.3 & 13.1 (80.4) & 9.9 (60.7) & 11.6 (71.2) \\
\hline 69532 & 13.0 & 10.0 (76.9) & 8.1 (62.3) & 8.8 (67.7) \\
\hline 69533 & 11.9 & 9.5 (79.8) & 7.9 (66.4) & 8.2 (68.9) \\
\hline 69534 & 14.1 & 10.9 (77.3) & 8.0 (56.7) & 10.5 (74.5) \\
\hline 69535 & 14.7 & 12.0 (81.6) & 10.4 (70.7) & 10.5 (71.4) \\
\hline 69536 & 16.5 & 13.0 (78.8) & 11.5 (69.7) & 11.3 (68.5) \\
\hline 69537 & 17.2 & 12.6 (73.3) & 10.3 (59.9) & 10.5 (61.0) \\
\hline 69538 & 15.0 & 12.3 (82.0) & 10.6 (70.7) & 10.9 (72.7) \\
\hline 69539 & 16.8 & 12.9 (76.8) & 10.7 (63.7) & 11.9 (70.8) \\
\hline 69540 & 14.1 & 11.9 (84.4) & 10.0 (70.9) & 10.6 (75.2) \\
\hline 69541 & 14.7 & 11.9 (81.0) & 10.9 (74.1) & 10.5 (71.4) \\
\hline 69542 & 15.2 & 12.3 (80.9) & 11.4 (75.0) & 10.7 (70.4) \\
\hline 69543 & 15.4 & 11.8 (76.6) & 9.6 (62.3) & 11.6 (75.3) \\
\hline 69544 & 12.5 & 10.2 (81.6) & 7.9 (63.2) & 9.2 (73.6) \\
\hline 69545 & 15.8 & 12.2 (77.2) & 10.7 (67.7) & 10.9 (69.0) \\
\hline 69546 & 15.9 & 12.0 (75.5) & 9.6 (60.4) & 11.2 (70.4) \\
\hline 69547 & 16.8 & 13.1 (78.0) & 11.3 (67.3) & 11.6 (69.0) \\
\hline 69548 & 15.5 & 12.7 (81.9) & 11.0 (71.0) & 11.5 (74.2) \\
\hline 69549 & 14.8 & 12.7 (85.8) & 9.5 (64.2) & 10.7 (72.3) \\
\hline 69550 & 15.4 & 12.6 (81.8) & 12.0 (77.9) & 12.0 (77.9) \\
\hline 69551 & 14.6 & 10.9 (74.7) & 9.2 (63.0) & 10.1 (69.2) \\
\hline 69552 & 13.5 & 10.5 (77.8) & 8.6 (63.7) & 9.3 (68.9) \\
\hline 69553 & 14.7 & 11.6 (78.9) & 10.0 (68.0) & 11.0 (74.8) \\
\hline 69554 & 14.2 & 11.2 (78.9) & 9.2 (64.8) & 9.9 (69.7) \\
\hline 69555 & 14.1 & 11.4 (80.9) & 9.6 (68.1) & 9.1 (64.5) \\
\hline
\end{tabular}
46.

Palaeonucula triangularis (cont.)
\begin{tabular}{rrrrrr} 
spec. no. & \multicolumn{1}{c}{ L } & \multicolumn{1}{c}{ H } & \multicolumn{1}{c}{ I } & \multicolumn{1}{c}{ AL } \\
LUU 69556 & 18.4 & \(14.0(76.1)\) & \(14.0(76.1)\) & \(13.8(75.0)\) \\
69557 & 13.8 & \(10.5(76.1)\) & \(9.2(66.7)\) & \(10.1(73.2)\) \\
69558 & 12.3 & \(9.5(77.2)\) & \(7.2(58.5)\) & \(8.7(70.7)\) \\
69559 & 15.8 & \(12.6(79.7)\) & \(11.0(69.6)\) & \(11.1(70.3)\) \\
69560 & 14.7 & \(11.9(81.0)\) & \(9.3(63.3)\) & \(10.9(74.1)\) \\
69561 & 16.9 & \(14.2(84.0)\) & \(12.0(71.0)\) & \(10.7(63.3)\) \\
69562 & 12.3 & \(10.2(82.9)\) & \(8.4(68.3)\) & \(8.3(67.5)\) \\
69563 & 15.5 & \(12.9(83.2)\) & \(10.0(64.5)\) & \(10.6(68.4)\) \\
69564 & 16.4 & \(13.1(79.9)\) & \(10.2(62.2)\) & \(12.4(75.6)\) \\
69565 & 13.4 & \(10.9(81.3)\) & \(8.0(59.7)\) & \(9.6(71.6)\) \\
69566 & 15.1 & \(12.1(80.1)\) & \(9.9(65.6)\) & \(11.7(77.5)\) \\
69567 & 16.9 & \(13.4(79.3)\) & \(12.2(72.2)\) & \(11.7(69.2)\) \\
69568 & 13.1 & \(10.0(76.3)\) & \(8.3(63.4)\) & \(8.6(65.6)\) \\
69569 & 15.9 & \(12.4(78.0)\) & \(10.0(62.9)\) & \(10.5(66.0)\) \\
69570 & 15.9 & \(11.6(73.0)\) & \(10.9(68.6)\) & \(11.0(69.2)\) \\
69571 & 13.1 & \(10.3(78.6)\) & \(8.5(64.9)\) & \(9.2(70.2)\) \\
69572 & 16.4 & \(12.3(75.0)\) & \(11.1(67.7)\) & \(11.3(68.9)\) \\
69573 & 13.0 & \(9.8(75.4)\) & \(8.0(61.5)\) & \(9.3(70.8)\) \\
69574 & 16.9 & \(13.0(76.9)\) & \(12.3(72.8)\) & \(11.1(65.7)\) \\
69575 & 13.0 & \(10.9(83.8)\) & \(8.9(68.5)\) & \(8.4(64.6)\) \\
69576 & 14.0 & \(11.3(80.7)\) & \(9.6(68.6)\) & \(10.2(72.9)\) \\
69577 & 15.5 & \(12.0(77.4)\) & \(10.3(66.5)\) & \(11.2(72.3)\) \\
69578 & 16.0 & \(12.8(80.0)\) & \(11.2(70.0)\) & \(11.4(71.3)\) \\
69579 & 16.2 & \(12.9(79.6)\) & \(11.3(69.8)\) & \(11.0(67.9)\) \\
69580 & 16.1 & \(12.2(75.8)\) & \(10.4(64.6)\) & \(11.1(68.9)\) \\
69581 & 18.4 & \(14.4(78.3)\) & \(12.4(67.4)\) & \(14.2(77.2)\) \\
69582 & 14.1 & \(11.6(82.3)\) & \(9.9(70.2)\) & \(10.2(72.3)\) \\
69583 & 13.4 & \(10.8(80.6)\) & \(9.0(67.2)\) & \(9.0(67.2)\) \\
69584 & 12.1 & \(10.3(85.1)\) & \(8.1(66.9)\) & \(8.2(67.8)\) \\
69585 & 14.9 & \(12.4(83.2)\) & \(10.8(72.5)\) & \(10.3(69.1)\) \\
69586 & 16.0 & \(12.8(80.0)\) & \(10.4(65.0)\) & \(11.4(71.3)\) \\
69587 & 12.9 & \(10.2(79.1)\) & \(8.5(65.9)\) & \(9.0(69.8)\) \\
65
\end{tabular}
47.

Palaeonucula triangularis (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL \\
\hline LU 69588 & 15.3 & 11.7 (76.5) & 10.0 (65.4) & 10.6 (69.3) \\
\hline 69589 & 12.1 & 8.9 (73.6) & 7.4 (61.2) & 8.6 (71.1) \\
\hline 69590 & 15.6 & 11.9 (76.3) & 11.3 (72.4) & 12.1 (77.6) \\
\hline 69591 & 16.5 & 14.3 (86.7) & 10.1 (61.2) & 11.7 (70.9) \\
\hline 69592 & 15.7 & 12.7 (80.9) & 10.5 (66.9) & 11.1 (70.7) \\
\hline 69593 & 17.0 & 12.8 (75.3) & 10.3 (60.6) & 12.0 (70.6) \\
\hline 69594 & 15.9 & 12.2 (76.7) & 11.3 (71.1) & 11.2 (70.4) \\
\hline 69595 & 15.8 & 12.6 (79.7) & 10.7 (67.7) & 11.4 (72.2) \\
\hline 69596 & 14.5 & 11.8 (81.4) & 10.8 (74.5) & 11.2 (77.2) \\
\hline 69597 & 15.6 & 12.1 (77.6) & 10.8 (69.2) & 11.0 (70.5) \\
\hline 69598 & 15.3 & 12.0 (78.4) & 10.4 (68.0) & 10.7 (69.9) \\
\hline 69599 & 16.4 & 12.1 (73.8) & 11.1 (67.7) & 10.9 (66.5) \\
\hline 69600 & 16.3 & 12.8 (78.5) & 10.9 (66.9) & 11.2 (68.7) \\
\hline 69601 & 16.2 & 13.5 (83.3) & 11.2 (69.1) & 10.2 (63.0) \\
\hline 69602 & 15.0 & 12.1 (80.7) & 9.9 (66.0) & 10.3 (68.7) \\
\hline 69603 & 13.9 & 10.9 (78.4) & 9.9 (71.2) & 10.1 (72.7) \\
\hline 69604 & 13.2 & 10.6 (80.3) & 8.3 (62.9) & 9.4 (71.2) \\
\hline 69605 & 17.5 & 15.0 (85.7) & 11.2 (64.0) & 12.0 (68.6) \\
\hline 69606 & 13.5 & 11.1 (82.2) & 9.6 (71.1) & 10.0 (74.1) \\
\hline 69607 & 13.7 & 10.6 (77.4) & 8.6 (62.8) & 9.5 (69.3) \\
\hline 69608 & 11.0 & 8.7 (79.1) & 7.0 (63.6) & 7.6 (69.1) \\
\hline 69609 & 15.4 & 11.8 (76.6) & 9.7 (63.0) & 10.4 (67.5) \\
\hline 69610 & 14.3 & 11.7 (81.8) & 10.3 (72.0) & 10.1 (70.6) \\
\hline 69611 & 12.4 & 9.6 (77.4) & 8.1 (65.3) & 8.6 (69.4) \\
\hline 69612 & 14.3 & 11.6 (81.1) & 9.8 (68.5) & 10.3 (72.0) \\
\hline 69613 & 12.3 & 9.6 (78.0) & 6.9 (56.1) & 7.5 (61.0) \\
\hline 69614 & 16.3 & 13.6 (83.4) & 11.4 (69.9) & 9.1 (55.8) \\
\hline 69615 & 17.0 & 12.6 (74.1) & 9.9 (58.2) & 10.4 (61.2) \\
\hline 69616 & 15.0 & 12.2 (81.3) & 10.1 (67.3) & 10.3 (68.7) \\
\hline 69617 & 14.1 & 11.9 (84.4) & 8.7 (61.7) & 11.1 (78.7) \\
\hline 69618 & 16.0 & 12.6 (78.8) & 11.2 (70.0) & 12.0 (75.0) \\
\hline 69619 & 14.3 & 11.7 (81.8) & 10.2 (71.3) & 9.7 (67.8) \\
\hline
\end{tabular}

Palaeonucula triangularis (cont.)
\begin{tabular}{crrrrr} 
spec. no. & \multicolumn{1}{c}{ I } & \multicolumn{1}{c}{ H } & \multicolumn{1}{c}{ I } & \multicolumn{1}{c}{ AL } \\
LU 69620 & 14.7 & \(11.8(80.3)\) & \(9.8(66.7)\) & \(10.5(71.4)\) \\
69621 & 15.2 & \(12.9(84.9)\) & \(10.6(69.7)\) & \(11.2(73.7)\) \\
69622 & 11.9 & \(9.3(78.2)\) & \(7.2(60.5)\) & \(8.0(67.2)\) \\
69623 & 13.4 & \(11.1(82.8)\) & \(8.6(64.2)\) & \(9.4(70.1)\) \\
69624 & 17.9 & \(13.8(77.1)\) & \(13.6(76.0)\) & \(12.4(69.3)\) \\
69625 & 14.3 & \(11.4(79.7)\) & \(9.6(67.1)\) & \(10.9(76.2)\) \\
69626 & 13.3 & \(11.1(83.5)\) & \(10.9(82.0)\) & \(9.9(74.4)\) \\
69627 & 13.4 & \(10.3(76.9)\) & \(9.4(70.1)\) & \(10.0(74.6)\) \\
69628 & 13.6 & \(11.0(80.9)\) & \(9.7(71.3)\) & \(10.3(75.7)\) \\
69629 & 13.5 & \(10.4(77.0)\) & \(8.0(59.3)\) & \(9.5(70.4)\) \\
69630 & 15.0 & \(12.2(81.3)\) & \(10.2(68.0)\) & \(9.9(66.0)\) \\
69631 & 15.6 & \(11.9(76.3)\) & \(10.6(67.9)\) & \(10.9(69.9)\) \\
69632 & 15.6 & \(12.8(82.1)\) & \(10.7(68.6)\) & \(11.2(71.8)\) \\
69633 & 12.7 & \(10.1(79.5)\) & \(8.6(67.7)\) & \(9.3(73.2)\) \\
69634 & 14.6 & \(11.9(81.5)\) & \(10.2(69.9)\) & \(10.9(74.7)\) \\
69635 & 10.7 & \(8.3(77.6)\) & \(6.2(57.9)\) & \(8.2(76.6)\) \\
69636 & 12.8 & \(9.8(76.6)\) & \(8.3(64.8)\) & \(9.3(72.7)\) \\
69637 & 14.4 & \(11.2(77.8)\) & \(9.4(65.3)\) & \(9.1(63.2)\) \\
69638 & 13.0 & \(10.2(78.5)\) & \(8.4(64.6)\) & \(9.2(70.8)\) \\
69639 & 15.1 & \(13.3(88.1)\) & \(12.2(80.8)\) & \(10.8(71.5)\) \\
69640 & 12.1 & \(9.2(76.0)\) & \(6.9(57.0)\) & \(9.1(75.2)\) \\
69641 & 11.3 & \(8.8(77.9)\) & \(8.0(70.8)\) & \(7.8(69.0)\) \\
69642 & 13.0 & \(10.9(83.8)\) & \(8.6(66.2)\) & \(9.0(69.2)\) \\
69643 & 16.3 & \(12.4(76.1)\) & \(10.5(64.4)\) & \(10.5(64.4)\) \\
69644 & 13.8 & \(11.6(84.1)\) & \(10.0(72.5)\) & \(10.0(72.5)\) \\
69645 & 14.3 & \(11.3(79.0)\) & \(10.3(72.0)\) & \(10.7(74.8)\) \\
69646 & 13.3 & \(10.3(77.4)\) & \(8.7(65.4)\) & \(9.8(73.7)\) \\
69647 & 12.5 & \(9.2(73.6)\) & \(7.4(59.2)\) & \(9.5(76.0)\) \\
69648 & 13.4 & \(10.2(76.1)\) & \(7.9(59.0)\) & \(9.4(70.1)\) \\
69649 & 17.0 & \(12.3(72.4)\) & & \(11.4(67.1)\) \\
69650 & 15.1 & \(11.9(78.8)\) & & \(11.1(73.5)\) \\
69651 & 13.5 & \(10.8(80.0)\) & \(8.5(63.0)\) & \(8.8(65.2)\) \\
690
\end{tabular}
49.

Palaeonucula triangularis (cont.)


\section*{50.}

Palaeonucula cottaldi (de Loriol)
\begin{tabular}{lccccc} 
spec. no. & L & H & I & AL \\
(HP) de Loriol pl.17 fig.11 & 16.5 & \(12.2(73.9)\) & \(10.3(62.4)\) & \(13.4(81.2)\) \\
(ST) de Loriol pl.17 & fig.14 & 15.3 & \(11.3(73.9)\) & \(9.6(62.7)\) & \(12.4(81.0)\) \\
KD Lukow 1 & 14.4 & \(10.4(72.2)\) & \(8.9(61.8)\) & \(11.3(78.5)\) \\
KD Lukow 2 & 16.7 & \(13.4(80.2)\) & \(12.3(73.7)\) & \(13.9(83.2)\) \\
KD Lukow 3 & 14.7 & \(11.5(78.2)\) & \(11.0(74.8)\) & \(12.4(84.4)\) \\
GSM Y2049 & 20.1 & \(13.9(69.2)\) & \(12.6(62.7)\) & \(16.2(80.6)\) \\
GSM Dr 2508 & 17.8 & \(12.4(69.7)\) & \(14.8(83.1)\) & \\
GSM Dr 2526 & 15.4 & \(12.4(80.5)\) & \(12.4(80.5)\) & \\
GSM \(\operatorname{Dr} 2538\) & 18.4 & \(13.7(74.5)\) & \(11.7(63.6)\) & \(13.6(73.9)\)
\end{tabular}
\begin{tabular}{lcccc} 
N & 9 & 9 & 9 & 7 \\
\(\overline{\mathrm{x}}\) & 16.6 mm & \(74.7 \%\) & \(69.5 \%\) & \(80.4 \%\) \\
Max & 20.1 & 80.5 & 83.1 & 84.4 \\
Min & 14.4 & 69.2 & 61.8 & 73.9 \\
OR & 5.7 & 11.3 & 21.3 & 10.5 \\
& & & & \\
s & 1.89 & 4.17 & 8.58 & 3.43 \\
\(\mathrm{~s}^{2}\) & 3.57 & 17.39 & 73.62 & 11.76 \\
V & 11.39 & 5.58 & 12.35 & 4.27 \\
\(\sigma \overline{\mathrm{x}}\) & 0.63 & 1.39 & 2.86 & 1.30
\end{tabular}
51.

Mesosaccella morrisi (Deshayes)
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL & 6 \\
\hline (IT) BM 48830 & 12.6 & 7.5 (59.5) & & 4.9 (38.9) & \(146^{\circ}\) \\
\hline BM L67155 & 14.2 & 8.8 (62.0) & & 5.6 (39.4) & 149 \\
\hline BM L67148 & 13.5 & 8.3 (61.5) & & 5.2 (38.5) & 131 \\
\hline GSM 44/16-1 & 13.1 & 7.3 (55.7) & & & \\
\hline GSII 44/16-2 & 11.6 & 6.5 (56.0) & & & \\
\hline GSM 44/16-3 & 11.2 & & 5.5 (49.1) & & \\
\hline GSM 43041 & 15.1 & 9.1 (60.3) & 8.8 (58.3) & 5.5 (36.4) & \\
\hline GSM Lowe-1 & 15.5 & 9.0 (58.1) & & 5.9 (38.1) & \\
\hline GSM Lowe-2 & 14.4 & 8.6 (59.7) & & 5.8 (40.3) & \\
\hline GSM 75695 & 11.9 & 7.0 (58.8) & & 4.8 (40.3) & 141 \\
\hline 75697 & 17.0 & 70.0 (58.8) & & 7.2 (42.4) & 147 \\
\hline 75698 & 13.8 & 8.1 (58.7) & 6.9 (50.0) & 5.1 (37.0) & 142 \\
\hline 75700 & 13.6 & \(8.0(58.8)\) & 7.3 (53.7) & 5.5 (40.4) & 139 \\
\hline 75701 & 14.5 & 7.9 (54.5) & 8.0 (55.2) & 5.7 (39.3) & 144 \\
\hline 75702 & 12.3 & 7.5 (61.0) & 6.6 (53.7) & 5.4 (43.9) & 145 \\
\hline 75703 & 8.4 & 5.4 (64.3) & 4.0 (47.6) & 3.3 (39.3) & 144 \\
\hline KD 500 & 12.9 & 7.5 (58.1) & 7.0 (54.3) & 4.4 (33.3) & \\
\hline LU 68612 & 10.4 & 6.3 (60.6) & & 4.0 (38.5) & \\
\hline 68613 & 13.2 & 7.3 (55.3) & 7.2 (54.5) & 5.4 (40.9) & 139 \\
\hline 68614 & 13.1 & 6.5 (49.5) & 7.0 (53.4) & 5.3 (40.4) & 138 \\
\hline 68615 & 13.0 & 7.8 (60.0) & 6.2 (47.7) & 5.1 (39.2) & 139 \\
\hline 58616 & 8.9 & 5.8 (65.2) & 3.8 (42.7) & 3.4 (38.2) & 145 \\
\hline 68617 & 10.3 & 6.8 (66.0) & & 4.3 (41.7) & 148 \\
\hline 68618 & 11.0 & 6.5 (59.1) & & 4.5 (40.9) & 147 \\
\hline 68619 & 11.0 & 7.2 (65.5) & & 5.1 (46.4) & \\
\hline 68621 & 13.7 & 8.1 (59.1) & 7.2 (52.6) & 5.5 (40.1) & 139 \\
\hline 68622 & 10.7 & 6.7 (62.6) & 4.8 (44.9) & 4.4 (41.1) & 138 \\
\hline 68623 & 10.3 & 6.3 (61.2) & 4.8 (46.6) & 4.0 (38.8) & 143 \\
\hline 69654 & 14.8 & 7.4 (50.0) & 6.8 (45.9) & 6.3 (42.6) & 142 \\
\hline 69655 & 12.9 & 7.3 (56.6) & 6.9 (53.5) & 5.3 (41.1) & 144 \\
\hline 69656 & 13.7 & 7.7 (56.2) & 7.3 (53.3) & 5.3 (38.7) & 140 \\
\hline 69657 & 14.6 & 8.6 (58.9) & 7.1 (48.6) & 6.1 (41.8) & 139 \\
\hline
\end{tabular}

Mesosaccella morrisi (cont.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL & \(\sigma\) \\
\hline LU 69658 & 12.2 & 7.2 (59.0) & 6.6 (54.1) & 5.3 (43.4) & \(148^{\circ}\) \\
\hline 69659 & 13.0 & 7.7 (59.2) & 6.8 (52.3) & 5.4 (41.5) & 139 \\
\hline 69660 & 13.9 & 8.2 (59.0) & 7.8 (56.1) & 5.5 (39.6) & 142 \\
\hline 69661 & 13.7 & 8.0 (58.4) & 6.4 (46.7) & 5.4 (39.4) & 139 \\
\hline 69662 & 15.0 & 8.3 (55.3) & & 5.7 (38.0) & 140 \\
\hline 69663 & 13.3 & 8.3 (62.4) & & 5.5 (41.4) & 142 \\
\hline 69664 & 12.5 & 7.5 (60.0) & 6.2 (49.6) & 5.1 (40.8) & 144 \\
\hline 69665 & 11.1 & 6.6 (59.5) & 4.6 (41.4) & 4.7 (42.3) & 141 \\
\hline 69666 & 12.0 & 6.8 (56.7) & 5.9 (49.2) & 4.9 (40.8) & 140 \\
\hline 69667 & 12.2 & 7.8 (63.9) & 5.5 (45.1) & 5.6 (45.9) & 138 \\
\hline 69668 & 12.5 & 7.4 (59.2) & 7.0 (56.0) & 5.0 (40.0) & 139 \\
\hline 69669 & 11.3 & 6.9 (61.1) & 5.9 (52.2) & 4.8 (42.5) & 146 \\
\hline 69670 & 8.3 & 5.9 (71.1) & & 3.6 (43.4) & 160 \\
\hline 69671 & 6.2 & 3.9 (62.9) & & 2.9 (46.8) & 160 \\
\hline 69672 & 4.8 & 3.3 (68.8) & & 2.3 (47.9) & 139 \\
\hline 69673 & 9.2 & 6.0 (65.2) & & 3.9 (42.4) & 142 \\
\hline 69674 & 9.6 & 5.6 (58.3) & & 4.0 (41.7) & 138 \\
\hline 69675 & 8.3 & 5.3 (63.9) & & 3.3 (39.8) & 145 \\
\hline 69676 & 8.4 & 5.6 (66.7) & & 4.0 (47.6) & 146 \\
\hline 69677 & 8.1 & 5.3 (65.4) & & 3.6 (44.4) & 145 \\
\hline 69678 & 9.7 & 5.8 (59.8) & & 3.9 (40.2) & 137 \\
\hline 69679 & 9.5 & 6.4 (67.4) & & 4.2 (44.2) & 140 \\
\hline 69680 & 11.5 & 6.8 (59.1) & & 4.9 (42.6) & 142 \\
\hline 69681 & 14.3 & 8.3 (58.0) & & 5.4 (37.8) & 141 \\
\hline 69682 & 13.3 & 7.6 (57.1) & & 5.2 (39.1) & 139 \\
\hline 69683 & 14.1 & 7.9 (56.0) & & 5.7 (40.4) & 141 \\
\hline 69684 & 10.3 & 6.4 (62.1) & & 4.9 (47.6) & 143 \\
\hline 69685 & 11.2 & 6.4 (57.1) & & 4.4 (39.3) & 148 \\
\hline 69686 & 9.4 & 4.9 (52.1) & & 4.2 (44.7) & 142 \\
\hline 69687 & 12.2 & 6.5 (53.3) & & 4.9 (40.2) & 139 \\
\hline 69688 & 11.4 & 6.2 (54.4) & & 4.6 (40.4) & 139 \\
\hline 69689 & 8.7 & 5.8 (66.7) & & 3.5 (40.2) & 150 \\
\hline
\end{tabular}

Mesosaccella morrisi (cont.)
\begin{tabular}{|c|c|c|}
\hline spec. no. & L & H \\
\hline LU 69690 & 13.8 & 8.4 (60.9) \\
\hline 69691 & 10.2 & 6.4 (62.7) \\
\hline 69692 & 11.2 & 6.2 (55.4) \\
\hline 69693 & 8.1 & 5.0 (61.7) \\
\hline 69694 & 9.1 & 5.8 (63.7) \\
\hline 69695 & 12.7 & 6.6 (52.0) \\
\hline 69696 & 10.7 & 5.8 (54.2) \\
\hline 69697 & 9.6 & 6.3 (65.6) \\
\hline 69698 & 7.2 & \(4.8(66.7)\) \\
\hline 69699 & 9.1 & \(5.7(62.6)\) \\
\hline 69700 & 11.2 & 6.4 (57.1) \\
\hline 69701 & 11.3 & 6.2 (54.9) \\
\hline 69702 & 13.3 & \(8.1(60.9)\) \\
\hline 69703 & 11.3 & 6.3 (55.8) \\
\hline 69704 & 9.9 & \(5.7(57.6)\) \\
\hline 69705 & 15.0 & 7.6 (50.7) \\
\hline 69706 & 10.2 & 5.6 (54.9) \\
\hline 69707 & 9.6 & 6.1 (63.5) \\
\hline 69708 & 9.5 & 5.3 (55.8) \\
\hline 69709 & 16.8 & \(8.2(48.8)\) \\
\hline 69710 & 6.4 & \(4.5(70.3)\) \\
\hline 69711 & 7.8 & 5.0 (64.1) \\
\hline 69712 & 12.3 & 6.6 (53.7) \\
\hline 69713 & 8.6 & \(5.4(62.8)\) \\
\hline 69714 & 10.7 & \(6.5(60.7)\) \\
\hline 69715 & 10.8 & \(6.4(59.3)\) \\
\hline 69716 & 9.3 & 5.4 (58.1) \\
\hline 69717 & 9.6 & 5.5 (57.3) \\
\hline 69718 & 5.9 & 3.9 (66.1) \\
\hline 69719 & 9.4 & 6.3 (67.0) \\
\hline 69720 & 8.8 & \(6.1(69.3)\) \\
\hline 69721 & 8.0 & 5.0 (62.5) \\
\hline
\end{tabular}

I

AL
\[
6.0(43.5) \quad 140^{\circ}
\]
\[
4.7(46.1) \quad 142
\]
\[
5.2(46.4) \quad 142
\]
\[
3.8(46.9) \quad 147
\]
\[
3.7(40.7) \quad 138
\]
\[
4.8(37.8) \quad 139
\]
\[
4.6(43.0) \quad 143
\]
\[
4.1(42.7) \quad 137
\]
\[
2.9(40.3) \quad 148
\]
\[
3.6(39.6) \quad 138
\]
\[
4.6(41.1) \quad 141
\]
\[
4.4(38.9) \quad 133
\]
\[
5.0(37.6) \quad 139
\]
\[
4.7(41.6) \quad 136
\]
\[
4.3(43.4) \quad 144
\]
\[
5.9(39.3) \quad 140
\]
\[
4.0(39.2) \quad 146
\]
\[
4.5(46.9) \quad 137
\]
\[
4.0(42.1) \quad 141
\]
\[
6.3(37.5) \quad 136
\]
\[
2.9(45.3) \quad 133
\]
\[
3.7(47.4) \quad 135
\]
\[
4.7(38.2) \quad 132
\]
\[
3.8(44.2) \quad 138
\]
\[
4.6(43.0) \quad 140
\]
\[
4.7(43.5)
\]
\[
3.9(41.9)
\]
\[
5.0(52.1)
\]
\[
2.5(42.4)
\]
\[
4.4(46.8) \quad 137
\]
\[
4.6(52.3) \quad 143
\]
\[
3.1(38.8) \quad 135
\]

Mesosaccella morrisi (cont.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL & \(\triangle\) \\
\hline LU 69722 & 8.9 & 5.6 (62.9) & & 3.6 (40.4) & \(144^{\circ}\) \\
\hline 69723 & 9.0 & 5.9 (65.6) & & 3.2 (35.6) & 153 \\
\hline 69724 & 7.0 & 4.6 (65.7) & & 3.0 (42.9) & 142 \\
\hline 69725 & 14.0 & 7.8 (55.7) & & 5.5 (39.3) & 143 \\
\hline 69726 & 9.7 & 6.3 (64.9) & & 4.6 (47.4) & 138 \\
\hline 69727 & 10.7 & 6.0 (56.1) & & 4.4 (41.1) & 137 \\
\hline 69728 & 17.6 & 9.6 (54.5) & & 7.2 (40.9) & 145 \\
\hline 69729 & 14.7 & 7.9 (53.7) & & 6.2 (42.2) & 142 \\
\hline 69730 & 12.7 & 7.7 (60.6) & & 5.3 (41.7) & 144 \\
\hline 69731 & 11.8 & 7.0 (59.3) & & 4.9 (41.5) & 143 \\
\hline 69732 & 12.8 & 7.4 (57.8) & & 4.9 (38.3) & 141 \\
\hline 69733 & 6.8 & 4.6 (67.6) & & 2.8 (41.2) & 144 \\
\hline 69734 & 7.7 & 5.2 (67.5) & & 3.6 (46.8) & 140 \\
\hline 69735 & 8.0 & 5.9 (73.8) & & 3.2 (40.0) & 148 \\
\hline 69736 & 15.7 & 9.1 (58.0) & & 5.7 (36.3) & 133 \\
\hline 69737 & 17.1 & 10.3 (60.2) & & 5.9 (34.5) & 133 \\
\hline 69738 & 13.9 & 9.2 (66.2) & & 5.5 (39.6) & 138 \\
\hline 69739 & 8.3 & 5.7 (68.7) & & 3.6 (43.4) & \\
\hline 69740 & 14.2 & 8.3 (58.5) & & 5.4 (38.0) & 138 \\
\hline 69741 & 13.5 & \(7.8(57.8)\) & & 5.2 (38.5) & 134 \\
\hline 69742 & 17.3 & 9.2 (53.2) & & 6.3 (36.4) & 145 \\
\hline LU 40608 & 11.8 & 8.0 (67.8) & 6.7 (56.8) & 4.7 (39.8) & 139 \\
\hline 40599 & 13.3 & 7.6 (57.1) & 7.3 (54.9) & 5.8 (43.6) & 139 \\
\hline 40506 & 12.2 & 6.9 (56.6) & 6.6 (54.1) & 5.2 (42.6) & 144 \\
\hline 40593 & 10.9 & 7.2 (66.1) & 5.3 (48.6) & 4.7 (43.1) & 148 \\
\hline 40591 & 12.1 & 7.2 (59.5) & 6.4 (52.9) & 4.9 (40.5) & 143 \\
\hline 40598 & 12.5 & 8.3 (66.4) & 6.6 (52.8) & 5.3 (42.4) & 136 \\
\hline 40596 & 12.3 & 7.3 (59.3) & & 5.0 (40.7) & 139 \\
\hline 40594 & 10.9 & 7.5 (68.8) & & 4.5 (41.3) & 139 \\
\hline 40604 & 10.3 & 7.0 (68.0) & 5.7 (55.3) & 4.4 (42.7) & 140 \\
\hline
\end{tabular}

Mesosaccella morrisi (cont.)
\begin{tabular}{lrrlcc}
N & 125 & 124 & 35 & 122 & 111 \\
\(\overline{\mathrm{x}}\) & 11.4 mm & \(60.4 \%\) & \(51.1 \%\) & \(41.5 \%\) & \(141.2^{\circ}\) \\
Max & 17.6 & 73.8 & 56.8 & 52.3 & 160 \\
Min & 4.8 & 48.8 & 41.4 & 34.5 & 131 \\
OR & 12.8 & 25.0 & 15.4 & 17.8 & 29 \\
& & & & & \\
& & & & & \\
s & 2.61 & 4.95 & 4.22 & 4.89 & 4.52 \\
\(\mathrm{~s}^{2}\) & 6.79 & 24.47 & 17.80 & 23.95 & 20.43 \\
V & 22.77 & 8.19 & 8.25 & 11.89 & 3.20 \\
\(\sigma \frac{\mathrm{x}}{\mathrm{x}}\) & 0.23 & 0.44 & 0.71 & 0.44 & 0.43
\end{tabular}

\section*{56.}

Solemya woodwardiana Leckenby
\begin{tabular}{|c|c|c|c|c|}
\hline spec. & no. & I & H & AL \\
\hline (HT) & SM J6008 & 23.3 & 9.1 (39.1) & 18.4 (79.0) \\
\hline (PT) & SM J12568 & 24.5 & 9.7 (39.6) & 18.6 (75.9) \\
\hline (PT) & SM J12569 & 24.3 & 9.6 (39.5) & 18.4 (75.7) \\
\hline (PT) & SMI J12570 & 24.1 & 9.8 (40.7) & 18.8 (78.0) \\
\hline & LU 69743 & 38.0 & 18.0 (47.4) & 28.0 (73.7) \\
\hline & 69744 & 38.0 & 18.0 (47.4) & 30.0 (78.9) \\
\hline & 69745 & 34.0 & 16.0 (47.1) & 26.0 (76.5) \\
\hline & 69746 & 12.0 & 5.5 (45.8) & 10.0 (83.3) \\
\hline & 69747 & 13.0 & 6.5 (50.0) & 11.0 (84.6) \\
\hline & 69748 & 11.0 & 5.0 (45.5) & 9.0 (81.8) \\
\hline & 69749 & 11.0 & 5.0 (45.5) & 8.0 (72.7) \\
\hline & 69750 & 17.0 & 8.0 (47.1) & 13.0 (76.5) \\
\hline & 69751 & 11.0 & 5.0 (45.5) & 8.5 (77.3) \\
\hline & 69752 & 14.5 & 7.0 (48.3) & 11.0 (75.9) \\
\hline & 69753 & 15.0 & 7.0 (46.7) & 11.5 (76.7) \\
\hline & 69754 & 16.0 & 7.5 (46.9) & 13.5 (84.4) \\
\hline & 69755 & 16.5 & 8.0 (48.5) & 13.5 (81.8) \\
\hline & 69756 & 14.0 & 7.0 (50.0) & 11.0 (78.6) \\
\hline & 69757 & 13.0 & 6.0 (46.2) & 10.5 (80.8) \\
\hline & N & 19. & 19 & 19 \\
\hline & - & 19.5 mm & 45.6\% & 78.5 \% \\
\hline & Max & 38.0 & 50.0 & 84.6 \\
\hline & Min & 11.0 & 39.1 & 72.7 \\
\hline & OR & 2.7 .0 & 10.9 & 11.9 \\
\hline & s & 8.94 & 3.40 & 3.44 \\
\hline & \(s^{2}\) & 79.92 & 11.56 & 11.83 \\
\hline & V & 45.85 & 7.46 & 4.38 \\
\hline & \(\sigma \overline{\mathrm{x}}\) & 2.05 & 0.78 & 0.79 \\
\hline
\end{tabular}

\section*{Grammatodon minima (Leckenby)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spec. no & 1 & H & I & AL & Ih & \(\checkmark\) \\
\hline SM J6007a & 9.0 & 7.0 (77.8) & 5.9 (65.6) & 3.8 (42.2) & 7.1 (78.9) & \(106^{\circ}\) \\
\hline SM J5007b & 11.0 & 7.8 (70.9) & 6.2 (57.4) & 4.8 (43.6) & 8.2 (74.5) & 111 \\
\hline SM J12359 & 14.0 & 11.8 (84.3) & 10.0 (71.4) & 5.0 (35.7) & & \\
\hline LU 69759 & 11.6 & 8.3 (71.6) & 5.8 (50.0) & 4.6 (39.7) & . 5 (73.3) & 115 \\
\hline 69760 & 10.4 & 8.0 (76.9) & 3.8 (36.5) & 4.0 (38.5) & 7.0 (67.3) & 115 \\
\hline 69761 & 12.1 & 9.0 (74.4) & 5.9 (48.8) & 4.3 (35.5) & 8.5 (70.2) & 113 \\
\hline 69762 & 9.9 & 7.6 (76.8) & & 4.0 (40.4) & 7.6 (76.8) & 102 \\
\hline 69763 & 10.8 & 7.7 (71.3) & 4.1 (38.0) & 4.0 (37.0) & 7.7 (71.3) & 110 \\
\hline 69764 & 8.1 & 7 (70.4) & 3.9 (48.1) & 3.1 (38.3) & 5.8 (71.6) & 104 \\
\hline 69765 & 13.3 & 8.3 (62.4) & 6.7 (50.4) & 4.9 (36.8) & 10.3 (77.4) & 117 \\
\hline 69766 & 10.3 & 7.5 (72.8) & 8 (46.6) & 4.1 (39.8) & 7.1 (68.9) & 108 \\
\hline 69767 & 12.5 & 9.6 (76.8) & 7.3 (58.4) & 4.4 (35.2) & 8.3 (66.4) & 105 \\
\hline 69768 & 7.8 & 5.8 (74.4) & 3.3 (42.3) & 3.7 (47.4) & 5.9 (75.6) & 99 \\
\hline 69769 & 11.5 & 8.7 (75.7) & 6.8 (59.1) & 4.4 (38.3) & 7.8 (67.8) & 114 \\
\hline 69770 & 10.9 & 7.8 (71.6) & 6.0 (55.0) & 4.8 (44.0) & 7.9 (72.5) & 114 \\
\hline 69771 & 6.8 & 4.8 (70.6) & 3.2 (47.1) & 2.6 (38.2) & 4.6 (67.6) & 107 \\
\hline 69772 & 11.4 & 8.4 (73.7) & 8.0 (70.2) & 4.2 (36.8) & 8.4 (73.7) & 106 \\
\hline 69773 & 11.2 & 8.4 (75.0) & 7.6 (67.9) & 4.6 (41.1) & 8.2 (73.2) & 112 \\
\hline 69774 & 7.0 & 4.9 (70.0) & 3.8 (54.3) & 2.3 (32.9) & 4.9 (70.0) & 113 \\
\hline 69775 & 14.0 & 9.6 (68.6) & 10.4 (74.3) & 5.9 (42.1) & 10.8 (77.1) & 118 \\
\hline 69776 & 7.5 & 5.6 (74.7) & & 3.2 (42.7) & 5.7 (76.0) & 111 \\
\hline 69777 & 9.3 & 6.5 (69.9) & 4.3 (46.2) & 4.3 (46.2) & 6.6 (71.0) & 110 \\
\hline 69778 & 7.2 & 5.0 (69.4) & 4.8 (66.7) & 2.9 (40.3) & 5.7 (79.2) & 104 \\
\hline 69779 & 10.0 & 7.3 (73.0) & & 4.8 (48.0) & 7.5 (75.0) & 107 \\
\hline 69780 & 12.1 & 9.2 (76.0) & & 5.0 (41.3) & 9.3 (76.9) & 108 \\
\hline 69781 & 11.5 & 8.6 (74.8) & & 4.8 (41.7) & 8.2 (71.3) & 116 \\
\hline 69782 & 14.5 & 10.4 (71.7) & 9.3 (64.1) & 4.5 (31.0) & 11.9 (82.1) & 106 \\
\hline 69783 & 11.2 & 8.7 (77.7) & & 4.6 (41.1) & 7.8 (69.6) & 114 \\
\hline 69784 & 11.5 & 8.0 (69.6) & 6.8 (59.1) & 4.9 (42.6) & 8.4 (73.0) & 112 \\
\hline 69785 & 10.6 & 8.3 (78.3) & & 4.5 (42.5) & 8.0 (75.5) & 115 \\
\hline 69786 & 10.5 & 7.6 (72.4) & & 4.6 (43.8) & 7.2 (68.6) & 115 \\
\hline 69787 & 10.2 & 6.8 (66.7) & & 4.5 (44.1) & \(7.2(70.6)\) & 118 \\
\hline
\end{tabular}
58.

Grammatodon minima (cont.)
\begin{tabular}{rrrccccc} 
spec. no. & \multicolumn{1}{c}{ I } & H & I & AL & Ih & \multicolumn{1}{c}{ L } \\
LU 69788 & 11.6 & \(8.4(72.4)\) & \(4.4(37.9)\) & \(3.9(33.6)\) & \(8.5(73.3)\) & \(118^{\circ}\) \\
69789 & 8.8 & \(6.1(69.3)\) & & \(4.0(45.5)\) & \(6.8(77.3)\) & 114 \\
69790 & 11.4 & \(7.3(64.0)\) & \(4.7(41.2)\) & \(4.8(42.1)\) & \(8.7(76.3)\) & 112 \\
69791 & 9.5 & \(6.8(71.6)\) & & \(4.3(45.3)\) & \(6.8(71.6)\) & 110 \\
69792 & 11.0 & \(8.3(75.5)\) & & \(4.7(42.7)\) & \(7.8(70.9)\) & 108 \\
69793 & 13.0 & \(9.2(70.8)\) & & \(5.9(45.4)\) & \(9.7(74.6)\) & 106 \\
69794 & 10.4 & \(7.7(74.0)\) & & \(4.3(41.3)\) & \(7.7(74.0)\) & 111 \\
69795 & 9.6 & \(6.8(70.8)\) & & \(4.3(44.8)\) & \(7.1(74.0)\) & 116 \\
69796 & 9.8 & \(7.5(76.5)\) & & \(4.8(49.0)\) & \(7.4(75.5)\) & 110 \\
69797 & 6.2 & \(4.2(67.7)\) & & \(2.3(37.1)\) & \(4.3(69.4)\) & 112 \\
69798 & 6.0 & \(4.1(68.3)\) & & \(2.7(45.0)\) & \(4.1(68.3)\) & 109 \\
69799 & 10.0 & \(7.8(78.0)\) & & \(4.9(49.0)\) & \(7.4(74.0)\) & 110 \\
68625 & 9.1 & \(6.5(71.4)\) & & \(4.6(50.5)\) & \(7.2(79.1)\) & 113 \\
68626 & 13.8 & \(9.6(69.6)\) & \(10.5(76.1)\) & \(5.7(41.3)\) & \(10.7(77.5)\) & 115 \\
68627 & 12.5 & \(9.0(72.0)\) & \(6.9(55.2)\) & \(5.6(44.8)\) & \(9.6(76.8)\) & 112
\end{tabular}
\begin{tabular}{lrccccc}
N & 47 & 47 & 27 & 47 & 46 & 46 \\
\(\overline{\mathrm{x}}\) & 10.5 mm & \(72.6 \%\) & \(55.1 \%\) & \(41.4 \%\) & \(73.4 \%\) & \(110.9^{\circ}\) \\
Max & 14.5 & 81.3 & 76.1 & 50.5 & 82.1 & 118 \\
Min & 6.0 & 62.1 & 36.5 & 31.0 & 66.4 & 99 \\
OR & 8.5 & 21.9 & 39.6 & 19.5 & 15.7 & 19 \\
& & & & & & \\
s & 2.06 & 3.97 & 11.58 & 4.40 & 3.69 & 4.45 \\
\(\mathrm{~s}^{2}\) & 4.24 & 15.76 & 134.1 & 19.35 & 13.63 & 19.83 \\
V & 19.62 & 5.47 & 21.01 & 10.62 & 5.03 & 4.02 \\
\(\sigma \overline{\mathrm{x}}\) & 0.30 & 0.58 & 2.23 & 0.64 & 0.54 & 0.66
\end{tabular}

Grammatodon concinna (Phillips)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL & Lh & < \\
\hline ( HT ) YNT Spl 35 & 24.0 & 14.0 (61.5) & & 8.0 (39.3) & 20.4 (85.0) & \(110^{\circ}\) \\
\hline YM KD1974/3 & 20.0 & 11.5 (57.5) & & 7.6 (38.1) & 14.5 (72.4) & 117 \\
\hline 1974/4 & 18.0 & 11.2 (62.4) & 11.6 (64.4) & 8.2 (45.5) & 12.5 (69.4) & 120 \\
\hline 1974/5 & 18.5 & 11.7 (63.2) & & 6.8 (36.8) & 16.4 (88.6) & 110 \\
\hline 1974/6 & 22.0 & 14.7 (66.9) & & 9.3 (42.3) & 18.8 (85.5) & 115 \\
\hline 1974/7 & 22.0 & 12.5 (56.6) & & 8.7 (39.3) & 17.9 (81.4) & 110 \\
\hline LU 68624 & 23.0 & 12.0 (52.2) & & 7.5 (32.6) & 18.5 (80.4) & 126 \\
\hline 68644 & 17.0 & 11.0 (64.7) & 11.0 (54.7) & 7.0 (41.2) & 15.0 (88.2) & 102 \\
\hline 68645 & 19.0 & 11.5 (60.5) & 11.0 (57.8) & 8.0 (42.1) & 15.0 (78.9) & 102 \\
\hline 68646 & 16.0 & 11.0 (68.8) & & 6.0 (37.5) & 14.0 (87.5) & 98 \\
\hline 68647 & 17.0 & 12.5 (73.5) & 10.0 (58.8) & 7.0 (41.2) & 13.0 (76.5) & 104 \\
\hline 68648 & 15.0 & 9.0 (52.6) & & 5.5 (36.7) & 13.5 (90.0) & 103 \\
\hline 68649 & 17.0 & 11.0 (60.0) & & 6.5 (38.2) & 13.0 (76.5) & 105 \\
\hline 68650 & 16.5 & 11.0 (52.2) & & 6.0 (36.4) & 15.0 (90.9) & 102 \\
\hline 68628 & 14.0 & 9.0 (64.3) & & 5.5 (39.3) & 12.0 (85.7) & 102 \\
\hline 68629 & 9.5 & 6.0 (63.2) & & 4.0 (42.1) & 8.5 (89.5) & 92 \\
\hline 68630 & 17.0 & 10.5 (61.8) & 9.0 (53.0) & 6.0 (35.3) & 15.0 (88.2) & 95 \\
\hline 68631 & 16.0 & 10.5 (65.6) & 8.0 (50.0) & 6.0 (37.5) & & 107 \\
\hline 68632 & 15.5 & 10.0 (64.5) & 10.0 (64.6) & 5.5 (35.5) & 14.5 (93.5) & 100 \\
\hline 68633 & 17.5 & 11.0 (62.9) & 7.0 (40.0) & 8.0 (45.7) & 14.0 (80.0) & 102 \\
\hline 68634 & 18.0 & 11.0 (61.1) & & 7.0 (38.9) & 15.0 (83.3) & 105 \\
\hline 68635 & 17.0 & 10.0 (58.8) & & 7.5 (44.1) & 13.5 (79.4) & 108 \\
\hline 68636 & 14.0 & 9.5 (67.9) & & 5.5 (39.3) & 11.5 (82.1) & 103 \\
\hline 68637 & 17.0 & 10.5 (61.8) & & 6.5 (38.2) & 15.0 (88.2) & 104 \\
\hline 68638 & 20.0 & 12.5 (62.5) & & 3.5 (42.5) & 16.5 (82.5) & 104 \\
\hline 68639 & 17.5 & 11.0 (62.9) & & 7.0 (40.0) & & \\
\hline 68640 & 17.0 & 10.5 (61.8) & 10.0 (58.8) & 7.0 (41.1) & 13.5 (79.4) & 102 \\
\hline 68641 & 20.0 & 12.5 (62.5) & & 7.0 (35.0) & 15.0 (75.0) & 103 \\
\hline 68642 & 15.5 & 10.0 (64.5) & & 6.0 (38.7) & 15.0 (96.8) & 108 \\
\hline 68643 & 16.0 & 10.0 (62.5) & & 6.5 (40.6) & 12.5 (7.1) & 118 \\
\hline 68651 & 19.0 & 10.0 (52.6) & & 8.0 (42.1) & 15.0 (78.9) & 104 \\
\hline 68652 & 14.0 & 9.0 (64.3) & & 5.0 (35.7) & 11.5 (82.1) & 109 \\
\hline
\end{tabular}

Grammatodon concinna (cont.)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline spec. no. & I & H & I & & & AL & Lh & \(\checkmark\) \\
\hline LU 68653 & 20.0 & 13.0 (65.0) & & & & (35.0) & 16.5 (82.5) & \(110^{\circ}\) \\
\hline 68654 & 19.0 & 11.0 (57.9) & & & 7.0 & (36.8) & 17.0 (89.5) & 102 \\
\hline 68655 & 20.0 & 13.0 (65.0) & 11.0 & (55.0) 7 & & (35.0) & 17.0 (85.0) & 99 \\
\hline GSM Zr 1699 & 20.0 & 12.5 (62.5) & 12.0 & (60.0) 8 & & (40.0) & 17.0 (85.0) & 101 \\
\hline d'Orbigny 3359 & 20.0 & 11.5 (57.5) & 9.0 & (45.0) 7 & & (37.5) & 15.5 (77.5) & 115 \\
\hline N & 37 & 37 & 12 & 37 & & 35 & 36 & \\
\hline \(\bar{x}\) & 17.3 mm & 62.1\% & 56.0\% & \(39.0 \%\) & & 83.2 \% & \(106^{\circ}\) & \\
\hline Max & 24.0 & 73.5 & 64.8 & 45.7 & & 96.8 & 126 & \\
\hline Min & 14.0 & 52.2 & 40.0 & 32.6 & & 69.4 & 92 & \\
\hline OR & 10.0 & 21.3 & 24.8 & 13.1 & & 27.4 & 34 & \\
\hline s & 2.82 & 4.40 & 3.93 & 3.09 & & 6.02 & 7.08 & \\
\hline \(s^{2}\) & 7.95 & 19.33 & 15.45 & 9.55 & & 36.21 & 50.09 & \\
\hline V & 16.30 & 7.09 & 14.04 & 7.92 & & 7.23 & 6.68 & \\
\hline \({ }^{\sigma} \frac{}{x}\) & 0.46 & 0.72 & 1.13 & 0.51 & & 1.02 & 1.18 & \\
\hline
\end{tabular}
61.

Grammatodon montaneyensis (de Loriol)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & & AL & Lh & \(\measuredangle\) \\
\hline \[
\begin{array}{r}
\text { HT de Loriol } \\
\text { p1. } 5 \text { fig. } 12
\end{array}
\] & \(25.5 \quad 15.0\) & (58.8) & 16.0 (62.8) & 9.0 & (35.3) & 21.0 (82.4) & \(116^{\circ}\) \\
\hline \begin{tabular}{l}
ST de Loriol \\
pl. 5 fig. 14
\end{tabular} & \(27.5 \quad 16.5\) & \((60.0)\) & & 10.0 & (36.4) & 22.0 (80.0) & 116 \\
\hline \[
\begin{aligned}
& \text { d'Orbigny } \\
& 3711
\end{aligned}
\] & \(28.0 \quad 18.0\) & (64.3) & 16.0 (57.2) & 12.0 & (42.9) & 25.5 (91.1) & 105 \\
\hline GSM Zr 1700 & \(21.0 \quad 14.0\) & (66.7) & 12.0 (57.0) & 9.0 & (42.9) & 19.0 (90.5) & 108 \\
\hline GSM 52300 & \(20.6 \quad 12.9\) & (62.6) & 12.4 (60.2) & 7.4 & (35.9) & & 115 \\
\hline N & 5 & 5 & 4 & 5 & 5 & 5 & \\
\hline \(\overline{\mathrm{x}}\) & 24.5 mm & 63.0 \% & 58.0\% & 38.5\% & 85.8\% & \% \(108.8^{\circ}\) & \\
\hline Max & 28.0 & 66.7 & 62.8 & 42.9 & 91.1 & 116 & \\
\hline Min & 21.0 & 58.8 & 55.0 & 35.3 & 80.0 & 99 & \\
\hline OR & 7.0 & 7.9 & 7.8 & 8.6 & 11.1 & 17 & \\
\hline s & 3.52 & 3.39 & 3.34 & 4.05 & 4.90 & 7.33 & \\
\hline \(s^{2}\) & 12.39 & 11.51 & 11.16 & 16.41 & 24.01 & 53.70 & \\
\hline V & 14.37 & 5.38 & 5.78 & 10.52 & 5.71 & 6.74 & \\
\hline \(\sigma^{\circ} \bar{x}\) & 1.58 & 1.52 & 0.84 & 1.81 & 2.19 & 3.28 & \\
\hline
\end{tabular}
62.

Gramnatodon clathrata (Leckenby)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL & In & \(\measuredangle\) \\
\hline HTP STHU6005 & 39.6 & 23.7 (59.8) & 19.4 (49.0) & 14.5 (36.6) & 28.1 (71.0) & \(140^{\circ}\) \\
\hline SM J12358 & 50.7 & 29.1 (57.4) & 27.4 (54.0) & 20.4 (40.2) & & 134 \\
\hline YM KD1974/8 & 30.0 & 20.0 (66.7) & 14.0 (46.6) & 10.0 (33.3) & 22.0 (73.3) & 140 \\
\hline 1974/9 & 38.0 & 20.5 (53.9) & 19.0 (50.0) & 14.0 (36.8) & 26.0 (68.4) & 136 \\
\hline 1974/10 & 37.0 & 22.0 (59.5) & 21.0 (56.8) & 14.0 (37.8) & 28.0 (75.7) & \\
\hline GSM 113414 & 23.5 & 15.0 (63.8) & 10.0 (42.6) & 8.5 (36.2) & 18.0 (76.6) & 126 \\
\hline LU 68656 & 25.5 & 15.0 (58.8) & 11.0 (43.2) & & 18.0 (70.6) & 134 \\
\hline 68657 & 30.0 & 18.5 (61.7) & 12.0 (40.0) & 10.5 (35.0) & & 136 \\
\hline 68658 & 25.5 & 17.0 (66.7) & 14.0 (55.0) & 7.0 (27.5) & 17.5 (68.6) & 138 \\
\hline
\end{tabular}
\begin{tabular}{llccccc} 
N & 9 & 9 & 9 & 8 & 7 & 8 \\
\(\overline{\mathrm{x}}\) & 33.3 mm & \(60.9 \%\) & \(48.6 \%\) & \(35.4 \%\) & \(72.0 \%\) & \(135.5^{\circ}\) \\
Max & 50.7 & 56.7 & 56.8 & 40.2 & 76.6 & 140 \\
Min & 23.5 & 53.9 & 40.0 & 27.5 & 68.4 & 126 \\
OR & 27.2 & 12.8 & 16.8 & 12.7 & 8.2 & 14
\end{tabular}
\begin{tabular}{lrrrrrr}
s & 8.79 & 4.26 & 5.94 & 3.78 & 3.27 & 4.50 \\
\(\mathrm{~s}^{2}\) & 77.21 & 18.14 & 35.32 & 14.26 & 10.67 & 20.29 \\
V & 26.38 & 6.99 & 12.23 & 10.66 & 4.53 & 3.32 \\
\(\sigma \overline{\mathrm{x}}\) & 2.93 & 1.42 & 1.98 & 1.33 & 1.23 & 1.59
\end{tabular}

\section*{Modiolus bipartitus J. Sowerby}
\begin{tabular}{|c|c|c|c|c|}
\hline & L & H & I & Ih \\
\hline (HTP) BM 43231 & 70.6 & 52.1 (73.8) & 30.5 (43.2) & \(34.8(49.3)\) \\
\hline Arkell pl. 2 fig. 1 & 54.0 & \(36.7(68.0)\) & 27.0 (50.0) & 24.1 (44.6) \\
\hline pl. 2 fig. 2 & 51.9 & 39.3 (75.7) & & 23.1 (44.5) \\
\hline pl. \(2 \mathrm{fig}\). & 41.9 & \(32.2(76.8)\) & & 20.8 (49.6) \\
\hline pl. 2 fig. 4 & 35.4 & 31.2 (88.1) & 18.0 (50.8) & 16.9 (47.7) \\
\hline GSIM 42865 & 52.0 & 47.1 (90.6) & 22.4 (43.1) & 23.0 (44.2) \\
\hline GSM 42866 & 47.0 & \(31.4(66.8)\) & 20.4 (43.4) & 24.9 (53.0) \\
\hline GSM 42864 & 41.5 & 35.9 (86.5) & 22.6 (54.5) & 19.2 (46.3) \\
\hline GSM Zr 1702 & 38.6 & 33.4 (86.5) & & 22.4 (58.0) \\
\hline GSM Y2148 & 51.8 & 34.6 (66.8) & 25.6 (49.4) & 22.2 (42.9) \\
\hline GSM Fr 26 & 35.5 & < 7.3 (70.9) & & 20.5 (53.2) \\
\hline GSM 52282 & 43.7 & 35.8 (81.9) & 19.9 (45.5) & 17.9 (41.0) \\
\hline GSM KA 537 & 48.6 & \(34.2(70.4)\) & 23.5 (48.4) & 21.7 (44.7) \\
\hline GSM 43027 & 46.6 & 32.5 (69.7) & 20.7 (44.4) & 26.4 (56.7) \\
\hline GSM 25-23 & 53.3 & 47.6 (89.3) & 28.9 (54.2) & \\
\hline GSM GSa 3634 & 52.9 & 34.9 (66.0) & 23.4 (44.2) & \\
\hline 3636 & 48.0 & 34.2 (71.3) & 20.6 (42.9) & \\
\hline GSNI KD1974-1 & 36.5 & 26.1 (71.5) & 16.3 (44.7) & 16.9 (46.3) \\
\hline GSM 3100 & 56.6 & 38.0 (67.1) & \(25.8(45.6)\) & 29.9 (52.8) \\
\hline GSM 3099 & 50.3 & 45.2 (89.9) & 21.8 (43.3) & 18.5 (36.8) \\
\hline GSF 57520 & 53.8 & \(42.2(78.4)\) & 28.3 (52.6) & 23.8 (44.2) \\
\hline GSM 57521 & 37.9 & 31.0 (81.8) & 16.0 (42.2) & 17.8 (47.0) \\
\hline GSM GSa 3635 & 45.2 & 36.7 (81.2) & 21.3 (47.1) & 19.7 (43.6) \\
\hline SM J12394 & 56.9 & 44.4 (78.0) & 23.8 (41.8) & 26.6 (46.7) \\
\hline KD Iukow 4 & 46.2 & 38.8 (84.0) & 19.5 (42.2) & 18.1 (39.2) \\
\hline YM KD 1974/11 & 55.9 & 38.5 (68.9) & 24.1 (43.1) & 24.2 (43.3) \\
\hline 1974/12 & 53.9 & 40.0 (74.2) & 22.3 (41.4) & 23.3 (43.2) \\
\hline 1974/13 & 67.2 & \(45.2(67.3)\) & 26.9 (40.0) & 25.6 (38.1) \\
\hline 1974/14 & 57.4 & 47.3 (82.4) & 22.4 (39.0) & 21.7 (37.8) \\
\hline
\end{tabular}
64.

Modiolus bipartitus (cont.)
\begin{tabular}{lcccc} 
& I & H & I & Ih \\
IF & 29 & 29 & 25 & 26 \\
\(\overline{\mathrm{x}}\) & 50.1 mm & \(77.6 \%\) & \(45.8 \%\) & \(45.4 \%\) \\
Max & 70.0 & 100.2 & 54.5 & 58.0 \\
Min & 36.5 & 66.0 & 39.0 & 35.7 \\
OR & 33.5 & 34.2 & 15.5 & 22.3 \\
& & & & \\
s & 9.49 & 9.17 & 4.39 & 5.83 \\
\(\mathrm{~s}^{2}\) & 90.13 & 84.09 & 19.27 & 33.96 \\
V & 18.94 & 11.82 & 9.59 & 12.83 \\
\(\sigma \overline{\mathrm{x}}\) & 1.75 & 1.70 & 0.88 & 1.14
\end{tabular}

Pinna mitis Phillips
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & I & H & Dr & Vr \\
\hline YM Tsp 219 (HT) & 43.8 & & & \(8+\) \\
\hline YM KD1974/15 & 42.2 & & 15 & 6 \\
\hline 1974/16 & 52.5 & 26.7 (50.9) & 15 & \(10+\) \\
\hline 1974/17 & 74.5 & & & \\
\hline 1974/18 & 50.9 & 23.8 (46.8) & 14 & 8 \\
\hline 1974/19 & 41.4 & 15.3 (37.0) & & \\
\hline OUM J30186 & 68.0 & & 22 & \(9+\) \\
\hline SM J26739 & 36.6 & 17.3 (47.3) & 17 & 13 \\
\hline 26740 & 49.4 & 22.0 (44.5) & 15+ & 8+ \\
\hline LCM G1955/257a & 82.4 & 29.5 (35.8) & 18 & 13 \\
\hline LCM G1955/257b & 58.0 & & 14 & 9 \\
\hline LU 68659 & 78.9 & 32.9 (41.7) & 17 & 12 \\
\hline 68660 & 49.3 & 24.1 (48.9) & 18 & 12 \\
\hline 68661 & 54.9 & 23.6 (43.0) & 14 & 14 \\
\hline 68662 & 32.4 & & 14+ & \\
\hline 68663 & 39.8 & 16.0 (40.2) & 13 & 10 \\
\hline 68664 & 38.3 & & 14 & 7 \\
\hline 68665 & & & 16 & \\
\hline 68666 & 27.9 & 14.0 (50.2) & 8+ & \(4+\) \\
\hline 68667 & & & 13 & 8 \\
\hline 68668 & 25.0 & & & 6 \\
\hline 68669 & 40.1 & 16.2 (40.4) & & \\
\hline 68670 & 36.2 & & 14 & \\
\hline 68671 & 50.0 & 25.0 (50.0) & 17 & 11 \\
\hline 68672 & 25.9 & 9.1 (35.1) & 9 & 6 \\
\hline
\end{tabular}

\section*{66.}

Pinna mitis (cont.)
\begin{tabular}{lcccc} 
& I & H & Dr & Vr \\
N & 23 & 14 & 20 & 19 \\
\(\overline{\mathrm{x}}\) & 47.8 mm & \(44.2 \%\) & 14.7 & 9.2 \\
Max & 82.4 & 50.9 & 22 & 14 \\
Min & 25.0 & 35.1 & 8 & 6 \\
OR & 57.4 & 15.8 & 14 & 8 \\
& & & & \\
s & 16.06 & 5.84 & 3.07 & 2.79 \\
\(\mathrm{~s}^{2}\) & 257.9 & 34.13 & 9.42 & 7.78 \\
V & 33.60 & 13.22 & 20.88 & 30.33 \\
\(\sigma \overline{\mathrm{x}}\) & 3.35 & 1.69 & 0.69 & 0.64
\end{tabular}

Pinna lanceolata J. Sowerby
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spec. no. & L & H & & & Dr & Vr \\
\hline BM 47399 & 49.7 & 18.4 (37.0) & 13.1 & (26.4) & & \\
\hline BM 66884 & 43.2 & 16.8 (38.9) & & & & \\
\hline SM J26725 & 147.5 & 66.8 (45.3) & 43.0 & (29.2) & 9 & 6 \\
\hline 26726 & 116.9 & 51.0 (43.6) & 31.1 & (26.6) & 9 & \\
\hline YM KD1974/20 & 170.0 & 66.2 (38.9) & 34.6 & (20.4) & 7 & 5 \\
\hline 1974/21 & 52.7 & 16.2 (31.5) & 5.8 & (11.0) & 8 & 5 \\
\hline 1974/22 & 50.2 & 17.0 (33.9) & 7.2 & (14.3) & 7 & 4 \\
\hline 1974/23 & 37.6 & 13.2 (35.1) & 4.4 & (11.7) & 7 & \\
\hline 1974/24 & 84.0 & 28.8 (34.3) & & & 6 & 3 \\
\hline 1974/25 & 67.9 & 20.1 (29.6) & 18.0 & (26.5) & 8 & \\
\hline 1974/26 & 168.0 & 65.0 (38.7) & 31.4 & (18.7) & 8 & 4 \\
\hline N & 11 & 11 & 9 & 9 & 6 & \\
\hline \(\cdots\) & 89.8 mm & 36.9\% & 20.5 \% & 7.67 & 4.50 & \\
\hline Max & 170.0 & 45.3 & 29.2 & 9 & 6 & \\
\hline Min & 37.6 & 29.6 & 11.0 & 6 & 3 & \\
\hline OR & 132.4 & 15.7 & 18.2 & 3 & 3 & \\
\hline s & 51.54 & 4.78 & 7.01 & 1.00 & 1.05 & \\
\hline \(s^{2}\) & 26.56 & 22.85 & 49.14 & 1.00 & 1.10 & \\
\hline V & 57.39 & 12.95 & 34.20 & 13.04 & 23.3 & \\
\hline \(\sigma \overline{\mathrm{x}}\) & 15.54 & 1.44 & 2.34 & 0.33 & 0.43 & \\
\hline
\end{tabular}

\section*{Pteroperna ? pygmaea (Dunker)}
 H
\(7.6(66.7)\)
\(5.5(57.3)\)
\(14.4(60.0)\)
\(10.2(66.7)\)
\(8.3(64.8)\)
\(6.1(58.1)\)
\(8.1(73.0)\)
\(6.2(60.2)\)
\(6.5(62.5)\)
\(4.0(64.5)\)
\(3.0(58.8)\)



委
©.








自
spec. no.
Dunker pl. 3 fig. Ga( II)
pl. 3 fig. 6 c
Krenkel pl. 25 fig. 43
SM J12446
BCM Cb 4778
4779
4777
4780
4781
LU 68673
68674

Parainoceramus subtilis (Lahusen)
\begin{tabular}{crrr} 
spec. no. & \multicolumn{1}{c}{ L } & \multicolumn{1}{c}{ H } & \multicolumn{1}{c}{ Lh } \\
GSM 42987 & 31.9 & \(37.5(117.6)\) & \(18.8(58.9)\) \\
GSM 25-15 & 72.5 & \(80.0(110.3)\) & \(31.7(43.7)\) \\
BCM Cb 4774 & 46.8 & \(62.0(132.5)\) & \(23.8(50.9)\) \\
4775 & 39.8 & \(46.0(115.6)\) & \(16.9(42.5)\) \\
LU 68675 & 20.9 & \(28.0(134.0)\) & \(11.9(56.9)\) \\
68676 & 4.5 & \(6.1(135.6)\) & \(2.6(57.8)\) \\
68677 & 9.0 & \(11.7(130.0)\) & \(4.8(53.3)\) \\
68678 & 3.3 & \(4.3(130.3)\) & \(2.1(63.6)\) \\
68679 & 5.8 & \(6.7(115.5)\) & \(3.9(67.2)\) \\
68680 & 24.2 & \(31.3(129.3)\) & \(9.9(40.9)\) \\
68681 & 7.8 & \(8.6(110.3)\) & \(4.2(53.8)\) \\
68682 & 8.6 & \(12.3(143.0)\) & \(4.9(57.0)\) \\
68683 & 6.3 & \(8.0(127.0)\) & \(3.6(57.1)\) \\
68684 & 7.6 & \(9.2(121.1)\) & \(3.6(47.4)\) \\
68685 & 7.3 & \(8.5(116.4)\) & \(4.6(63.0)\) \\
68686 & 9.5 & \(12.9(135.8)\) & \(5.1(53.7)\) \\
68687 & 15.6 & \(17.9(114.7)\) & \(8.1(51.9)\) \\
68688 & 61.3 & \(71.0(115.8)\) & \(27.7(45.2)\) \\
68689 & 29.3 & \(32.1(110.6)\) & \(14.6(49.8)\) \\
68690 & 14.4 & \(17.7(122.9)\) & \(7.8(54.2)\) \\
68691 & 8.6 & \(11.8(137.2)\) & \(4.7(54.7)\) \\
68692 & 24.0 & \(30.2(125.8)\) & \(12.8(53.3)\) \\
68693 & 18.1 & \(22.1(122.1)\) & \(8.9(49.2)\) \\
68694 & 28.5 & \(31.8(111.6)\) & \(12.6(44.2)\) \\
68695 & 16.2 & \(23.1(142.6)\) & \(8.7(53.7)\)
\end{tabular}
70.

Parainoceramus subtilis (cont.)
\begin{tabular}{lccc} 
& L & H & Ih \\
N & 25 & 25 & 25 \\
\(\overline{\mathrm{X}}\) & 20.9 mm & \(124.3 \%\) & \(53.0 \%\) \\
Max & 72.5 & 143.0 & 67.2 \\
Min & 3.3 & 110.3 & 40.9 \\
OR & 69.2 & 32.7 & 26.3 \\
& & & \\
S & 18.05 & 10.32 & 6.67 \\
\(\mathrm{~s}^{2}\) & 325.85 & 106.59 & 44.54 \\
V & 86.49 & 8.31 & 12.60 \\
\(\sigma \overline{\mathrm{x}}\) & 3.61 & 2.06 & 1.33
\end{tabular}
71.

Bositra buchii (Roemer)
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & H & Ih & AL & Ribs \\
\hline LU 68696 & 15.0 & 12.6 (84.0) & 6.5 (43.3) & 5.3 (35.3) & 23 \\
\hline 68697 & 10.0 & 8.6 (86.0) & 5.0 (50.0) & 4.5 (45.0) & 20 \\
\hline 68698 & 10.8 & 9.1 (84.3) & 5.3 (49.1) & 4.6 (42.6) & 24 \\
\hline 68699 & 10.7 & 7.7 (72.0) & 5.2 (48.6) & 3.3 (30.8) & 29 \\
\hline 68700 & 4.3 & 3.7 (86.0) & 2.1 (48.8) & 1.3 (30.2) & 18 \\
\hline 68701 & 7.8 & 6.3 (80.8) & 4.4 (56.4) & 2.7 (34.6) & 20 \\
\hline 68702 & 12.6 & 11.6 (92.1) & 6.0 (47.6) & 4.8 (38.1) & 23 \\
\hline 68703 & 11.4 & 8.9 (78.1) & 5.0 (43.9) & 4.5 (39.5) & 31 \\
\hline 68704 & 8.0 & 6.6 (82.5) & 3.6 (45.0) & 2.3 (28.8) & 19 \\
\hline 68705 & 4.9 & 3.6 (73.5) & 2.4 (49.0) & 1.5 (30.6) & 21 \\
\hline 68706 & 4.9 & 3.9 (79.6) & 2.7 (55.1) & 1.7 (34.7) & 18 \\
\hline 68707 & 8.4 & 6.7 (79.8) & 4.0 (47.6) & 3.3 (39.3) & 27 \\
\hline 68708 & 6.8 & 6.0 (88.2) & 3.2 (47.1) & 2.4 (35.3) & 23 \\
\hline 68709 & 7.5 & 6.2 (82.7) & 3.2 (42.7) & 2.7 (36.0) & 28 \\
\hline 68710 & 7.0 & 5.8 (82.9) & 2.8 (40.0) & 2.3 (28.8) & 37 \\
\hline 68711 & 6.7 & 5.7 (85.1) & 3.8 (56.7) & 1.5 (22.4) & 28 \\
\hline 68712 & 5.7 & 4.9 (86.0) & 3.1 (54.4) & 2.0 (35.1) & 17 \\
\hline 68713 & 5.0 & 4.1 (82.0) & 2.9 (58.0) & 2.1 (42.0) & 24 \\
\hline 68714 & 5.3 & 4.6 (86.8) & 2.4 (45.3) & 1.8 (34.0) & 19 \\
\hline 68715 & 12.3 & 10.7 (87.0) & 6.4 (52.0) & 5.1 (41.5) & \\
\hline 68716 & 8.2 & 7.1 (86.6) & 3.8 (46.3) & 3.1 (37.8) & 17 \\
\hline 68717 & 4.4 & 4.3 (97.7) & 2.1 (47.7) & 1.6 (36.4) & 26 \\
\hline 68718 & 3.2 & 3.0 (93.8) & 1.5 (46.9) & 1.2 (37.5) & 19 \\
\hline 68719 & 10.2 & 9.0 (88.2) & 4.5 (44.1) & 3.7 (36.3) & 17 \\
\hline 68720 & 7.9 & 6.5 (82.3) & 3.9 (49.4) & 3.3 (41.8) & 26 \\
\hline 68721 & 9.3 & 6.3 (67.7) & 4.2 (45.2) & 3.2 (34.4) & 28 \\
\hline 68722 & 8.1 & 7.3 (86.9) & 4.9 (58.3) & 2.8 (33.3) & 22 \\
\hline 68723 & 8.1 & 6.5 (80.2) & 4.0 (49.4) & 3.2 (39.5) & 24 \\
\hline 68724 & 9.5 & 7.7 (81.1) & 4.4 (46.3) & 3.3 (34.7) & 30 \\
\hline 68725 & 7.2 & 6.1 (84.7) & 3.0 (41.7) & 2.3 (31.9) & 33 \\
\hline 68726 & 6.3 & 5.1 (81.0) & 2.9 (46.0) & 2.3 (36.5) & 33 \\
\hline 68727 & 8.4 & 7.7 (91.7) & 3.9 (46.4) & 2.9 (34.5) & 21 \\
\hline
\end{tabular}

Bositra buchii (cont.)
\begin{tabular}{rrrcccc} 
spec. no. & \multicolumn{1}{c}{ L } & H & Ih & AL & Ribs \\
LU 68728 & 12.5 & \(10.6(84.8)\) & \(5.5(44.0)\) & \(4.6(36.8)\) & 26 \\
68729 & 5.6 & \(5.1(91.1)\) & \(2.6(46.4)\) & \(2.2(39.3)\) & 18 \\
68730 & 6.2 & \(5.5(88.7)\) & \(3.4(54.8)\) & \(2.7(43.5)\) & 52 \\
68731 & 6.8 & \(5.9(86.8)\) & \(3.3(48.5)\) & \(1.7(25.0)\) & 46 \\
68732 & 6.8 & \(5.3(77.9)\) & \(3.6(52.9)\) & \(2.3(33.8)\) & 36 \\
68733 & 7.0 & \(6.0(85.7)\) & \(3.5(50.0)\) & \(2.6(37.1)\) & 38 \\
68734 & 8.2 & \(7.1(86.6)\) & \(3.4(41.5)\) & \(2.4(29.3)\) & 35 \\
68735 & 7.3 & \(7.0(95.9)\) & \(3.8(52.1)\) & \(2.4(32.9)\) & 43 \\
68736 & 6.9 & \(5.3(76.8)\) & \(3.1(44.9)\) & \(2.8(40.6)\) & 34 \\
68737 & 6.5 & \(5.5(84.6)\) & \(3.1(47.7)\) & \(1.9(29.2)\) & 29 \\
68738 & 7.1 & \(5.8(81.7)\) & \(3.6(50.7)\) & \(2.1(29.6)\) & 32 \\
68739 & 5.1 & \(4.5(88.2)\) & \(2.6(51.0)\) & \(1.9(37.3)\) & 26 \\
68740 & 5.8 & \(5.1(87.9)\) & \(3.6(62.1)\) & \(2.5(43.1)\) & 21 \\
68741 & 7.9 & \(6.4(81.0)\) & \(3.5(44.3)\) & \(2.7(34.2)\) & 36 \\
68742 & 6.3 & \(4.8(76.2)\) & \(3.2(50.8)\) & \(1.9(30.2)\) & 39 \\
68743 & 6.6 & \(5.5(83.3)\) & \(3.4(51.5)\) & \(1.6(24.2)\) & 35 \\
68744 & 5.5 & \(4.3(78.2)\) & \(2.7(49.1)\) & \(1.9(34.5)\) & 29 \\
68745 & 5.7 & \(4.5(78.9)\) & \(2.8(49.1)\) & \(2.0(35.1)\) & 32
\end{tabular}
\begin{tabular}{lcllll} 
N & 50 & 50 & 50 & 50 & 49 \\
\(\overline{\mathrm{x}}\) & 7.6 mm & \(83.9 \%\) & \(48.8 \%\) & \(35.1 \%\) & 27.6 Ribs \\
Max & 15.0 & 97.7 & 62.1 & 45.0 & 52 \\
Min & 3.2 & 67.7 & 40.0 & 22.4 & 17 \\
OR & 11.8 & 30.0 & 22.1 & 22.6 & 35
\end{tabular}
\begin{tabular}{lrrrrc}
s & 2.42 & 5.68 & 4.81 & 4.94 & 8.08 \\
\(\mathrm{~s}^{2}\) & 5.86 & 32.24 & 23.13 & 24.37 & 65.29 \\
V & 31.84 & 6.77 & 9.86 & 14.07 & 29.3 \\
\(\sigma \overline{\mathrm{x}}\) & 0.34 & 0.80 & 0.68 & 0.70 & 1.15
\end{tabular}

Oxytoma inequivalvis (J. Sowerby)
Left valves


Oxytoma inequivalvis (cont.)


Right valves

\section*{Oxytoma inequivalvis (cont.)}

Meleagrinella braamburiensis (Phillips)
Left valves
spec. no. L H I AL Ih
YM 872 (NT) 18.7 20.3(108.6)
YM KD1974/32 \(17.0 \quad 17.6\) (103.5)
1974/33 \(18.8 \quad 19.5\) (103.7)
GSM KI329 \(21.3 \quad 22.0\) (103.3) 5.5 (25.8)
K1340 \(15.5 \quad 15.7\) (101.3)
\(\begin{array}{lll}\mathrm{K} 228 & 13.6 \quad 13.9 \text { (102.2) } 4.2(30.9)\end{array}\)
K1426 \(26.9 \quad 28.2\) (104.8) 7.7 (28.6)
\(\begin{array}{lll}K & 332 & 23.9 \\ 23.6 & (112.9) & 5.4 \text { (25.8) }\end{array}\)
K—333 17.5 20.0 (114.3)
Kl433a 27.6 27.0 (97.8)
K1433b \(25.0 \quad 25.0\) (100.0)
K1433c 20.9 21.6 (103.3)
K1433 28.828 .5 (99.0)
K209 \(14.8 \quad 15.1\) (102.0)
K1331 23.8 24.2 (101.7)
K1336 \(20.3 \quad 20.6\) (101.5)
K1420 \(29.3 \quad 29.1\) (99.3)
K1323 \(12.0 \quad 13.2(110.0)\)
K1322 \(19.0 \quad 19.0\) (100.0)
K1328 18.4 19.1)(103.8)
K1325 18.4 18.9 (102.7) 5.9 (32.1)
K1344 \(23.5 \quad 22.6\) (96.2)
K198 \(17.7 \quad 19.3\) (109.0)
\(\begin{array}{lll}\text { K1324 } & 19.3 \quad 19.3(100.0)\end{array}\)
K1339 20.4 20.1 (98.5)
K1429 29.1 29.4 (101.0)
K1418 \(19.2 \quad 19.2(100.0)\)
\(\mathrm{K} 212 \quad 16.5 \quad 16.6(100.6)\)
K196 \(20.0 \quad 19.8(99.0)\)
\(\begin{array}{lll}\text { K239 } & 18.0 \quad 19.3 \text { (107.2) }\end{array}\)
\(\begin{array}{lll}\text { Kl425 } 29.2 \quad 29.3(100.3) & 8.9 \text { (30.5) }\end{array}\)

Meleagrinella braamburiensis (cont.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL & Ih \\
\hline GSM K1334 & 25.7 & 25.5 (99.2) & & & \\
\hline K197 & 16.7 & 15.8 (94.6) & & & \\
\hline SM J12407 & 28.9 & 31.6 (109.3) & 9.6 (33.2) & & \\
\hline J12444 & 16.8 & 18.3 (108.9) & & & \\
\hline J12445 & 13.5 & 16.5 (122.2) & & & \\
\hline GSM 42971 & 14.5 & 15.5 (106.9) & & 6.7 (46.2) & \\
\hline 42972 & 16.6 & 13.1 (78.9) & & 7.0 (42.2) & \\
\hline 42961 & 13.8 & 13.8 (100.0) & 4.8 (34.8) & 5.9 (42.8) & \\
\hline 42962 & 15.4 & 15.4 (100.0) & 4.3 (27.9) & 6.5 (42.2) & \\
\hline LU 68753 & 19.1 & 18.5 (96.9) & & & \\
\hline 68754 & 26.0 & 27.2 (104.6) & & & \\
\hline 68755 & 12.3 & 12.8 (104.1) & & & \\
\hline 68756 & 15.4 & 16.1 (104.5) & & & \\
\hline 68757 & 8.0 & 8.6 (107.5) & & & \\
\hline 68758 & 33.7 & 30.9 (91.7) & & & \\
\hline 68759 & 24.3 & 23.5 (96.7) & & & \\
\hline 68760 & 24.2 & 25.0 (103.3) & & & \\
\hline 68761 & 15.3 & 16.8 (109.8) & & & \\
\hline 68762 & 16.7 & 17.6 (105.4) & & & \\
\hline 68763 & 16.0 & 16.7 (104.4) & & & \\
\hline 68764 & 28.1 & 29.0 (103.2) & & & \\
\hline GSM Y2087 & 21.8 & 22.5 (103.2) & 8.1 (37.2) & 10.0 (45.9) & 11.3 (51.8) \\
\hline Y2088 & 20.4 & 22.6 (110.8) & 9.1 (44.6) & 9.4 (46.1) & 7.8 (38.2) \\
\hline Y2089 & 15.7 & 15.9 (101.3) & 5.8 (36.9) & 7.3 (46.5) & 7.5 (47.8) \\
\hline 113409 & 13.3 & 14.0 (105.3) & & & \\
\hline 113410 & 16.3 & 17.2 (105.5) & 6.0 (36.8) & 7.4 (45.4) & 8.1 (49.7) \\
\hline BCM 3324a & 12.2 & 12.9 (105.7) & 4.4 (36.1) & & \\
\hline 3324 b & 13.4 & 14.2 (106.0) & & & \\
\hline
\end{tabular}
79.

Meleagrinella braamburiensis (cont.)
\begin{tabular}{lccccc} 
IN & 59 & 58 & 14 & 8 & 4 \\
\(\overline{\mathrm{x}}\) & 19.6 mm & \(103.4 \%\) & \(32.9 \%\) & \(44.7 \%\) & \(46.9 \%\) \\
Max & 33.7 & 122.2 & 44.6 & 46.5 & 51.8 \\
Min & 8.0 & 91.7 & 20.8 & 42.2 & 38.2 \\
OR & 25.7 & 30.5 & 23.8 & 4.3 & 13.6 \\
& & & & & \\
S & 5.46 & 5.12 & 5.23 & 1.91 & 6.01 \\
\(\mathrm{~s}^{2}\) & 29.84 & 26.19 & 27.32 & 3.64 & 36.12 \\
V & 27.87 & 4.95 & 15.87 & 4.27 & 12.82 \\
\(\sigma \overline{\mathrm{x}}\) & 0.71 & 0.67 & 1.40 & 0.67 & 3.00
\end{tabular}

Right valves
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL & Ih \\
\hline GSM KI341 & 8.6 & 8.4 (97.7) & & & \\
\hline K195 & 14.7 & 14.7 (100.0) & & & \\
\hline K工326 & 14.3 & 13.4 (93.7) & & & \\
\hline Kı 427 & 21.1 & 17.6 (83.4) & & & \\
\hline K197 & 13.8 & 12.9 (93.5) & & & \\
\hline GSM 42966 & 17.4 & 17.1 (98.3) & 3.2 (18.4) & 8.7 (50.0) & \\
\hline 42968 & 12.9 & 12.4 (96.1) & 2.6 (20.2) & 6.7 (51.9) & \\
\hline 42969 & 10.1 & 9.8 (97.0) & 3.0 (29.7) & 5.1 (50.5) & \\
\hline 42970 & 7.0 & 6.9 (98.6) & 1.9 (27.1) & 3.1 (44.3) & \\
\hline GSM Y2090 & 14.4 & 14.5 (100.7) & 3.0 (20.8) & 7.3 (50.7) & 7.0 (48.6) \\
\hline LU 68765 & 20.8 & 18.8 (90.4) & & & \\
\hline 68766 & 18.3 & 16.2 (88.5) & & & \\
\hline 68767 & 26.5 & 24.4 (92.1) & & & \\
\hline 68768 & 16.8 & 14.5 (86.3) & & & \\
\hline 68769 & 7.2 & 6.8 (94.4) & & & \\
\hline 63770 & 22.5 & 20.8 (92.4) & & & \\
\hline 68771 & 9.8 & 9.1 (92.9) & & & \\
\hline 68772 & 9.8 & 9.0 (91.8) & & & \\
\hline
\end{tabular}
80.

Meleagrinella braamburiensis (cont.)


Fintolium corneolum (Young \& Bird)
\begin{tabular}{|c|c|c|c|}
\hline spec. no. & H & L & \(<\) \\
\hline YM Tsp. 119 & 30.7 & 25.7 (83.7) & \(100^{\circ}\) \\
\hline YM KD1974/34 & 11.1 & 9.9 (89.2) & \\
\hline 1974/35 & 29.6 & 28.2 (95.3) & \\
\hline 1974/36 & 15.3 & 13.4 (87.6) & \\
\hline SIA J12396 & 30.4 & 27.9 (91.8) & 108 \\
\hline J12397 & 33.7 & 31.0 (92.0) & 109 \\
\hline J60363 & 18.7 & 15.0 (80.2) & 95 \\
\hline J60364 & 13.2 & 12.2 (92.4) & 96 \\
\hline J60365 & 14.1 & 11.5 (81.6) & 99 \\
\hline J60366 & 13.1 & 11.8 (90.1) & 98 \\
\hline BM L66462 & 15.3 & 12.2 (79.7) & \\
\hline 47433 & 35.9 & 32.3 (80.0) & \\
\hline \[
\begin{aligned}
& \text { Arkell } 1930 \\
& \mathrm{p} .91 \mathrm{a}
\end{aligned}
\] & 72.0 & 66.0 (92.0) & \\
\hline b & 43.0 & 37.5 (87.0) & \\
\hline c & 47.0 & 41.0 (87.0) & \\
\hline d & 47.0 & 42.0 (89.0) & \\
\hline e & 27.0 & 24.0 (89.0) & \\
\hline N & 17 & 17 & 7 \\
\hline \(\bar{x}\) & 29.2 mm & 87.5 \% & \(100.7^{\circ}\) \\
\hline Max & 72.0 & 95.3 & 109 \\
\hline Min & 11.1 & 79.7 & 95 \\
\hline OR & 60.9 & 15.6 & 14 \\
\hline s & 16.39 & 4.86 & 5.59 \\
\hline \(s^{2}\) & 268.6 & 23.62 & 31.25 \\
\hline V & 56.1 & 5.55 & 5.55 \\
\hline \(\sigma \bar{x}\) & 3.97 & 1.18 & 2.11 \\
\hline
\end{tabular}

Byssentolium hudsoni sp . nov.
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & H & L & \(<\) & \\
\hline BM LL27722 & 5.9 & 5.2 (88.1) & \(101{ }^{\circ}\) & \\
\hline LL27723(HI) & \(7 \cdot 3\) & 6.3 (86.3) & 102 & \\
\hline 27746 & 5.9 & 5.3 (89.8) & 93 & \\
\hline 27747 & 7.3 & 6.2 (84.9) & 104 & \\
\hline 27748 & 12.3 & 10.9 (88.6) & 100 & \\
\hline 27749 & 8.0 & 7.3 (91.3) & 102 & \\
\hline 27750 & 6.0 & 5.4 (90.0) & 103 & \\
\hline 27751 & 4.3 & 3.5 (81.4) & 98 & \\
\hline LU 69934 & 8.1 & 6.5 (80.2) & & \\
\hline 69935 & 8.2 & 6.9 (84.1) & 98 & \\
\hline 69936 & 5.5 & 5.0 (90.9) & 105 & \\
\hline 69937 & 6.1 & 5.3 (86.9) & & \\
\hline 69938 & 4.8 & 4.5 (93.8) & & \\
\hline 69939 & 12.2 & 11.1 (91.0) & 104 & \\
\hline 69940 & 7.9 & 6.5 (82.3) & & \\
\hline & N & 15 & 15 & 11 \\
\hline & \(\overline{\mathrm{x}}\) & 7.3 mm & 87.3\% & \(100.9^{\circ}\) \\
\hline & Max & 12.3 & 93.8 & 105 \\
\hline & Min & 4.3 & 80.2 & 93 \\
\hline & OR & 8.0 & 13.6 & 12 \\
\hline & & 2.34 & & 3.51 \\
\hline & \(s^{2}\) & 5.49 & 16.30 & 12.32 \\
\hline & V & 32.01 & 4.62 & 3.48 \\
\hline & \(\sigma \bar{x}\) & 0.60 & 1.04 & 1.06 \\
\hline
\end{tabular}
83.

Camptonectes auritus (Schlotheim)


Chlamys (Chlamys) bedfordi sp • nov.
\begin{tabular}{rcccccl} 
spec. no. & L & H & Ih & AL & \multicolumn{1}{c}{ valve } \\
BM LL27724 & 9.7 & \(9.8(101.0)\) & & & \(111^{\circ}\) & RV \\
27725 & 9.4 & \(9.4(100.0)\) & & \(5.0(53.2)\) & 113 & RV \\
27726 & 6.6 & \(6.8(103.0)\) & & \(2.8(42.4)\) & 107 & LV \\
27727 & 9.4 & \(9.5(101.0)\) & \(5.7(60.6)\) & \(5.0(53.2)\) & 109 & RV \\
27728 & 7.7 & \(7.9(102.6)\) & \(5.5(71.4)\) & \(3.6(46.8)\) & 108 & LV
\end{tabular}

Left valve
\begin{tabular}{lccccc}
N & 2 & 2 & 1 & 2 & 2 \\
\(\overline{\mathrm{x}}\) & 7.2 mm & \(102.8 \%\) & \(71.4 \%\) & \(44.6 \%\) & \(107.5^{\circ}\) \\
Max & 7.7 & 103.0 & 71.4 & 46.8 & 108 \\
Min & 6.6 & 102.6 & 71.4 & 42.4 & 107 \\
OR & 1.1 & 0.4 & 0 & 4.4 & 1 \\
& & & & & \\
s & 0.78 & 0.28 & & 3.11 & 0.70 \\
\(\mathrm{~s}^{2}\) & 0.61 & 0.08 & & 9.68 & 0.49 \\
V & 10.88 & 0.28 & & 6.98 & 0.65 \\
\(\sigma \overline{\mathrm{x}}\) & 0.55 & 0.20 & & 2.20 & 0.50
\end{tabular}

Right valve
\begin{tabular}{llclcc}
N & 3 & 3 & 1 & 2 & 3 \\
\(\overline{\mathrm{x}}\) & 9.5 mm & \(100.7 \%\) & \(60.6 \%\) & \(53.2 \%\) & \(111.0^{\circ}\) \\
\(\operatorname{Max}\) & 9.7 & 101.0 & 60.6 & 53.2 & 113 \\
\(\operatorname{Min}\) & 9.4 & 100.0 & 60.6 & 53.2 & 109 \\
OR & 0.3 & 1.0 & 0 & 0 & 4
\end{tabular}
\begin{tabular}{llll}
s & 0.17 & 0.58 & 2.52 \\
\(\mathrm{~s}^{2}\) & 0.03 & 0.33 & 6.35 \\
V & 1.82 & 0.57 & 2.27 \\
\(\sigma \overline{\mathrm{x}}\) & 0.10 & 0.33 & 1.45
\end{tabular}

\section*{85.}

Chlamys (Radulopecten) scarburgensis (Young \& Bird)
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & L & H & \(\measuredangle\) & no. ribs \\
\hline SM J12398 (NT) & 41.5 & 42.9 (103.4) & ) \(108^{\circ}\) & 10 \\
\hline J12399 & 29.9 & 32.1 (107.4) & & 10 \\
\hline J12400 & 41.2 & 41.6 (101.0) & & 10 \\
\hline J12401 & 30.0 & 32.5 (108.3) & & 10 \\
\hline J47648 & 20.8 & 22.5 (108.2) & & 10 \\
\hline GSM 42847 & 32.6 & 35.4 (108.6) & ) 101 & 10 \\
\hline 42985 & 26.8 & 28.4 (106.0) & ) 105 & 10 \\
\hline BM L8958a & 34.4 & 37.7 (109.6) & & \\
\hline L8958b & 37.8 & 36.0 (95.2) & & \\
\hline L8958c & 22.6 & 24.3 (107.5) & & \\
\hline N & 10 & 10 & 3 & 7 \\
\hline \(\overline{\mathrm{x}}\) & 31.8 mm & \(105.5 \% \quad 10\) & \(104.7^{\circ}\) & 10 ribs \\
\hline Max & 41.5 & 109.610 & 108 & 10 \\
\hline Min & 20.8 & 95.210 & 101 & 10 \\
\hline OR & 20.7 & 14.4 & 7 & 0 \\
\hline s & 7.18 & 4.47 & 3.51 & \\
\hline \(s^{2}\) & 51.55 & 19.98 1 & 12.32 & \\
\hline V & 22.58 & 4.24 & 3.35 & \\
\hline \(\sigma \frac{}{x}\) & 2.27 & 1.41 & 2.03 & \\
\hline
\end{tabular}

Chlamys (Radulopecten) fibrosa (J. Sowerby)
spec. no.
L
H
BM 43305 (ST) \(34.8 \quad 39.5\) (113.5)
43305 (ST) 22.2 24.3(109.5)
\begin{tabular}{lcr}
\(N\) & 2 & 2 \\
\(\overline{\mathrm{~N}}\) & 28.5 mm & 111.5 \\
Max & 34.8 & 113.5 \\
Min & 22.2 & 109.5 \\
OR & 12.6 & 4.0 \\
& & \\
s & 8.91 & 2.83 \\
\(\mathrm{~s}^{2}\) & 79.39 & 8.00 \\
V & 31.26 & 2.54 \\
\(\sigma \overline{\mathrm{x}}\) & 6.30 & 2.00
\end{tabular}
87.

Chlamys (Radulopecten) drewtonensis Neale
\begin{tabular}{|c|c|c|c|}
\hline spec. no. & H & L & \(\triangle\) \\
\hline BM L88737 (HP) & 40.3 & 38.5 (104.7) & \(100^{\circ}\) \\
\hline L88738 & 41.3 & 38.1 (108.4) & 100 \\
\hline N & 2 & 2 & 2 \\
\hline \(\stackrel{\square}{x}\) & 40.8 mm & 106.6 \% & \(100^{\circ}\) \\
\hline Max & 41.3 & 108.4 & 100 \\
\hline Min & 40.3 & 104.7 & 100 \\
\hline OR & 1.0 & 3.7 & 0 \\
\hline
\end{tabular}
88.

Plicatula of. fistulosa Morris \& Lycett
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & & AL \\
\hline LU 68775 & 26.8 & \(26.8(100.0)\) & 8.4 & & 15.0 (56.0) \\
\hline 68776 & 31.1 & & & & \\
\hline 68777 & & 24.6 & & & \\
\hline 68778 & & 26.3 & & & \\
\hline BM L87302 & 31.8 & 39.9 (125.5) & & & \\
\hline N & 3 & 2 & 1 & 1 & \\
\hline \(\overline{\mathrm{x}}\) & 29.9 mm & 112.8 \% & 31.3 \% & 56.0\% & \\
\hline Max & 31.8 & 125.5 & 31.3 & 56.0 & \\
\hline Min & 26.8 & 100.0 & 31.3 & 56.0 & \\
\hline OR & 5.0 & 25.5 & 0 & 0 & \\
\hline s & 2.71 & 18.03 & & & \\
\hline \(s^{2}\) & 7.34 & 325.0 & & & \\
\hline V & 9.06 & 15.98 & & & \\
\hline \(\sigma \overline{\mathrm{x}}\) & 1.56 & 12.75 & & & \\
\hline
\end{tabular}
89.

Gryphaea dilobotes nom. nov.
BM LL 27729 (HT)
LV

LU 69972
LV
L
H
I
L. lig.
59.3 mm
66.9
75.9
62.0 ( \(104.6 \%\) )
72.4 (108.2)
84.8 (111.7)
\(25.7(43.3)\)
32.2 (48.1)
40.7 (53.6)
11.2 (14.8)
H. lig.
\(4.5(7.6)\)
7.8 (11.7)
L.a.b.
\(2.0(3.4)\)
I. p.b.
\(2.8(4.7)\)
HMS
\(33.3(56.2)\)
\(58.6(98.8)\)
67.9 (101.5)
\(3.8(5.0)\)
4.4 (5.8)
\(44.0(58.0)\)
Hi
AL
24.6 (41.5)
\(35.3(52.8)\)
\(71.9(94.7)\)
\(\theta\)
\(\alpha\)

LU 70041
RV
68.3
70.1 (102.6)

92
33.1 (43.6)

26
98
26

I
H
I
L. lig.
\(24.4(35.7)\)
LU 70042
LV
57.9

LU 70043
LV
H. lig.
L.a.b.
69.1 (119.9)
50.8
64.7 (127.4)
\(37.2(64.2) \quad 33.1(65.2)\)
\(8.5(14.7)\)
7.3 (12.6)
\(3.7(6.4)\)
L.p.b.

HMS
\(41.3(60.5)\)
\(2.3(4.0)\)

Hi
70.4 (103.1)

AL \(\quad 30.5(44.7)\)
24.6 (42.5)
\(22.3(43.9)\)
\(\theta \quad 106\)
106
31
92
24

Gryphaea dilobotes (cont.)
\begin{tabular}{lcccc} 
& LU 69969 & LU 70044 & LU 69974 & LU 69974 \\
& LV & LV & LV & RV \\
L & 53.7 & 42.6 & 80.0 & 73.4 \\
H & \(64.9(120.9)\) & \(55.1(129.3)\) & \(90.7(113.4)\) & \(67.4(108.9)\) \\
I & \(33.4(62.2)\) & \(35.8(84.0)\) & \(39.8(49.8)\) & \\
L.lig. & & & \(10.5(13.1)\) & \(7.5(10.2)\) \\
H.lig. & & & \(10.4(13.0)\) & \(12.2(16.6)\) \\
L.a.b. & & & \(3.2(4.0)\) & \(4.5(6.1)\) \\
L.p.b. & & & \(4.6(5.8)\) & \(3.9(5.3)\) \\
HMS & & & \(44.0(55.0)\) & \\
Hi & \(50.8(100.0)\) & \(36.8(86.4)\) & \(76.8(96.0)\) & \\
AL & \(27.9(52.0)\) & \(17.7(41.5)\) & \(36.8(46.0)\) & \(28.0(38.1)\) \\
\(\theta\) & 97 & & 126 & 103 \\
\(\alpha\) & 39 & 38 & 29 & 102
\end{tabular}
\begin{tabular}{lcccc} 
& LU 69979 & LU 69970 & LU 70045 & LU 69988 \\
& LV & LV & LV & LV \\
I & 68.0 & 70.0 & 68.4 & 58.8 \\
H & \(75.0(110.3)\) & \(66.9(95.6)\) & \(67.5(98.7)\) & \(63.2(107.5)\) \\
I & \(40.6(59.7)\) & \(31.7(45.3)\) & \(28.8(42.1)\) & \(30.8(52.4)\) \\
L.lig. & & \(6.0(8.6)\) & & \(7.6(12.9)\) \\
H.lig. & & & & \(7.0(11.9)\) \\
L.a.b. & & \(3.2(4.6)\) & & \(3.0(5.1)\) \\
L.p.b. & & \(2.5(3.6)\) & & \(5.0(8.5)\) \\
HMS & & \(31.8(45.4)\) & \(36.7(53.7)\) & \\
Hi & \(62.4(91.8)\) & \(57.0(81.4)\) & \(61.5(89.9)\) & \(49.8(84.7)\) \\
AL & \(32.2(47.4)\) & \(29.7(42.4)\) & \(26.6(38.9)\) & \(25.4(43.2)\) \\
\(\theta\) & 113 & 117 & 113 & 115
\end{tabular}
91.

Gryphaea dilobotes (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline & LU 70046 & LU 70047 & LU 70048 & LU 69980 \\
\hline & IV & LV & LV & LV \\
\hline L & 46.8 & 61.6 & 61.1 & 42.7 \\
\hline H & 48.0 (102.6) & 61.3 (99.5) & 68.8 (112.6) & 44.3 (103.7) \\
\hline I & 24.7 (52.8) & 23.2 (37.7) & 34.3 (56.1) & 23.4 (54.8) \\
\hline L.lig. & 3.9 (8.3) & & & 5.5 (12.9) \\
\hline H.lig. & 5.0 (10.7) & & & 7.5 (17.6) \\
\hline L.a.b. & 3.1 (6.6) & & & 3.3 (7.7) \\
\hline L.p.b. & 2.5 (5.3) & & & 4.4 (10.3) \\
\hline HMS & \(25.9(55.3)\) & & & 23.9 (56.0) \\
\hline Hi & 43.1 (92.1) & \(57.7(93.7)\) & \(58.9(96.4)\) & 39.2 (91.8) \\
\hline \(A L\) & 19.0 (40.6) & 26.0 (12.2) & 30.1 (49.3) & 24.5 (57.4) \\
\hline \(\theta\) & 101 & 100 & 117 & 90 \\
\hline \(\alpha\) & 38 & 26 & 34 & 31 \\
\hline & LU 70049 & LU 69981 & LU 70050 & LU 70051 \\
\hline & LV & LV & LV & LV \\
\hline L & 55.5 & 54.0 & 34.5 & 66.6 \\
\hline H & 65.5 (118.0) & \(60.8(112.6)\) & 36.7 (106.4) & 68.1 (102.3) \\
\hline I & 34.7 (62.5) & 28.0 (51.9) & 19.8 (57.4) & 25.5 (38.3) \\
\hline L. 1 ig. & & 5.5 (10.2) & 4.1 (11.9) & 7.6 (11.4) \\
\hline H.lig. & & 3.4 (6.3) & 3.7 (10.7) & 7.6 (11.4) \\
\hline L.a.b. & & & & \(4.4(6.6)\) \\
\hline L.p.b. & & & & 4.7 (7.1) \\
\hline HMS & & 35.4 (65.6) & 21.2 (61.4) & \\
\hline Hi & 54.9 (98.9) & 54.6 (101.1) & 33.9 (98.3) & 67.3 (101.1) \\
\hline AL & 24.1 (43.4) & 20.9 (38.7) & 16.4 (47.5) & 22.4 (33.6) \\
\hline \(\theta\) & 110 & 101 & 94 & 113 \\
\hline \(\alpha\) & 20 & 31 & 30 & 29 \\
\hline
\end{tabular}

Gryphaea dilobotes (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline & LU 70052 & LU 70053 & LU 70054 & LU 70055 \\
\hline & LV & RV & LV & LV \\
\hline L & 29.9 & 12.6 & 67.3 & 50.7 \\
\hline H & 32.9 (110.0) & 49.8 (116.9) & 79.2 (117.7) & 51.0 (100.6) \\
\hline I & 14.7 (49.2) & 12.6 (29.6) & 38.0 (56.5) & 26.5 (52.3) \\
\hline I.lig. & & & 12.0 (17.8) & \\
\hline H.lig. & & & 8.8 (13.1) & 6.7 (13.2) \\
\hline L.a.b. & & & 1.4 (2.1) & \\
\hline L.p.b. & & & 3.2 (4.8) & \\
\hline HMS & & 34.3 (80.5) & 38.2 (56.8) & \\
\hline Hi & 30.9 (103.3) & 49.8 (116.9) & 68.9 (102.4) & 49.1 (96.8) \\
\hline AL & 13.7 (45.8) & & & 22.4 (44.2) \\
\hline \(\theta\) & & 97 & 106 & 107 \\
\hline \(\alpha\) & & 24 & 35 & 35 \\
\hline & BM LL27753 & LU 69976 & LU 70056 & LU 70057 \\
\hline & LV & LV & IV & LV \\
\hline L & 33.9 & 34.0 & 24.0 & 21.0 \\
\hline H & 49.1 (144.8) & 39.6 (116.5) & 29.4 (122.5) & 25.8 (122.9) \\
\hline I & 25.6 (75.5) & 19.9 (58.5) & 13.2 (55.0) & 17.4 (82.9) \\
\hline L.lig. & 5.7 (16.8) & 3.5 (10.3) & & \\
\hline H.lig. & 7.3 (21.5) & 3.2 (9.4) & & 2.8 (13.3) \\
\hline L.a.b. & 2.3 (6.8) & 2.0 (5.9) & & \\
\hline I.p.b. & 2.5 (7.4) & 1.5 (4.4) & & \\
\hline HMS & 34.6 (102.1) & 17.9 (52.6) & & \\
\hline Hi & 46.9 (138.3) & 35.5 (104.4) & 29.4 (122.5) & 23.7 (122.9) \\
\hline AL & 17.0 (50.1) & 17.4 (51.2) & & 8.4 (40.0) \\
\hline \(\theta\) & 66 & 107 & 87 & 81 \\
\hline \(\alpha\) & 11 & 24 & & 20 \\
\hline
\end{tabular}

Gryphaea dilobotes (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline & LU 70058 & LU 70059 & LU 70060 & LU 70061 \\
\hline & LN & LV & LV & RV \\
\hline L & 32.4 & 32.1 & 18.1 & 18.0 \\
\hline H & 38.6 (119.1) & 35.0 (109.0) & 21.4 (118.2) & 21.7 (120.6) \\
\hline I & 20.9 (64.5) & 17.6 (54.8) & 11.4 (63.0) & 6.1 (33.9) \\
\hline L.lig. & 5.6 (17.3) & & & \\
\hline H.lig. & 5.2 (16.0) & & & 3.6 (20.0) \\
\hline L.a.b. & 2.6 (8.0) & & & \\
\hline L.p.b. & 1.9 (5.9) & & & \\
\hline HMTS & 22.6 (69.8) & & & 18.0 (100.0) \\
\hline Hi & 35.9 (110.8) & 30.6 (95.3) & 21.4 (118.2) & 21.7 (120.6) \\
\hline AL & 17.5 (54.0) & 15.0 (46.7) & & \\
\hline \(\theta\) & 98 & 107 & 78 & 75 \\
\hline \(\alpha\) & 22 & 26 & & \\
\hline
\end{tabular}
\begin{tabular}{lcccc} 
& LU 70062 & LU 70063 & LU 70064 & LU 70065 \\
& RV & RV & LV & LV \\
L & I4.5 & 39.9 & 21.3 & 23.4 \\
H & \(15.0(103.4)\) & \(42.1(105.5)\) & \(21.7(116.0)\) & \(23.3(99.6)\) \\
I & \(3.4(23.4)\) & & \(15.2(71.4)\) & \(13.4(57.3)\) \\
L.lig. & & \(4.0(10.0)\) & \(3.1(14.6)\) & \\
H.lig. & \(2.0(13.8)\) & \(3.9(9.8)\) & \(2.9(13.6)\) & \\
L.a.b. & & \(2.4(6.0)\) & \(1.5(7.0)\) & \\
L.D.b. & & \(2.2(5.5)\) & \(1.2(5.6)\) & \\
HMS & \(9.4(64.8)\) & \(23.0(57.6)\) & & \\
Hi & \(15.0(103.4)\) & \(42.1(105.5)\) & \(24.6(115.5)\) & \(23.3(99.6)\) \\
AL & 4.8 & \(20.0(50.1)\) & \(10.3(48.4)\) & \(9.8(41.9)\) \\
\(\theta\) & 80 & 105 & 82 & 98 \\
\(\alpha\) & & 26 & &
\end{tabular}

Gryphaea dilobotes (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline & LU 70066 & LU 70067 & LU 70058 & LU 70069 \\
\hline & LV & LV & LV & RV \\
\hline L & 16.0 & 35.9 & 64.4 & 58.4 \\
\hline H & 19.2 (120.0) & 44.2 (123.1) & 66.9 (103.9) & 58.5 (100.2) \\
\hline I & 12.0 (75.0) & 28.9 (80.5) & 28.4 (44.1) & \\
\hline L. 1 l g. & & & 7.3 (11.3) & \\
\hline H.lig. & & & 4.8 (7.5) & \\
\hline L.a.b. & & & 5.1 (7.9) & \\
\hline L.p.b. & & & 3.9 (6.1) & \\
\hline HMS & 12.1 (75.6) & & & 36.0 (61.6) \\
\hline Hi & 16.6 (103.8) & & 65.2 (101.2) & 58.5 (100.2) \\
\hline AL & 7.2 (45.0) & 19.9 (55.4) & 31.1 (48.3) & 28.1 (48.1) \\
\hline \(\theta\) & 81 & 88 & 105 & 96 \\
\hline \(\alpha\) & & 23 & 33 & 27 \\
\hline & LU 70070 & LU 70071 & LU 70072 & LU 70073 \\
\hline & LV & LV & RV & RV \\
\hline L & 46.4 & 56.0 & 45.4 & 26.8 \\
\hline H & 49.5 (106.2) & 67.4 (120.4) & 42.2 (93.0) & 28.1 (104.9) \\
\hline I & 27.9 (59.9) & 28.9 (51.6) & 14.1 (31.1) & 5.3 (19.8) \\
\hline L. lig . & & & & 3.3 (12.3) \\
\hline H.Iig. & 5.2 (11.2) & & 3.4 (7.5) & 5.0 (18.7) \\
\hline L.a.b. & & & & 1.8 (6.7) \\
\hline L.p.b. & & & & 1.2 (4.5) \\
\hline HMS & 28.8 (61.8) & 37.3 (66.6) & 24.8 (54.6) & 17.3 (64.6) \\
\hline Hi & 45.0 (96.6) & 61.9 (110.5) & 42.2 (93.0) & 28.1 (104.9) \\
\hline AL & 18.7 (40.1) & 28.7 (51.3) & 19.8 (43.6) & 13.6 (50.7) \\
\hline \(\theta\) & 98 & 92 & 101 & 96 \\
\hline \(\alpha\) & 23 & 20 & 33 & \\
\hline
\end{tabular}

Gryphaea dilobotes (cont.)
\begin{tabular}{lcclc} 
& LU 70074 & LU 70075 & LU 70076 & LU 70077 \\
& RV & RV & LV & LV \\
L & 24.6 & 18.0 & 53.5 & 65.3 \\
H & \(24.4(99.2)\) & \(21.4(118.9)\) & \(63.3(118.3)\) & \(65.0(99.5)\) \\
I & \(4.3(17.5)\) & \(2.7(15.0)\) & \(30.7(57.4)\) & \(31.0(47.5)\) \\
I.lig. & \(3.9(15.9)\) & & & \(9.0(13.8)\) \\
H.lig. & \(4.2(17.1)\) & & \(5.6(10.5)\) & \(7.8(11.9)\) \\
L.a.b. & \(1.9(7.7)\) & & & \(2.4(3.7)\) \\
L.p.b. & \(1.7(6.9)\) & & & \(2.2(3.4)\) \\
HMS & \(16.6(67.5)\) & & \(53.5(100.0)\) & \(56.0(85.8)\) \\
Hi & \(24.4(99.2)\) & \(21.4(118.9)\) & \(26.8(50.1)\) & \(31.9(48.9)\) \\
AL & \(12.8(52.0)\) & \(9.1(50.6)\) & 91 & 116
\end{tabular}
\begin{tabular}{cccc} 
LU 70078 & BM & LL2 27754 & LU 70079
\end{tabular}\(\quad\) LU 70080
\begin{tabular}{lll} 
I & 62.6 \\
H & \(76.0(121.4)\) \\
I & \(41.2(65.8)\) \\
L.lig. & \(7.9(12.6)\) \\
H.Lig. & \(9.7(15.5)\) \\
L.a.b. & \(5.7(9.1)\) \\
L.p.b. & \(4.8(7.7)\) \\
HMS & \(36.9(58.9)\) \\
Hi & \(60.3(96.3)\) \\
AL & \(31.6(50.5)\) \\
\(\theta\) & 98 \\
\(\alpha\) & 28
\end{tabular}
34.6
49.8
37.4
39.5 (114.2)
48.0 (96.4)
41.3 (110.4)

I
L. 1 ig.
24.5 (70.8)
23.2 (46.6)
22.9 (61.2)
H.Lig.
5.3 (15.3)
7.4 (14.9)
L.a.b.
5.4 (15.6)
4.9 (9.8)
3.9 (10.4)
L.p.b.

HMS
2.3 (6.6)
2.9 (5.8)
\begin{tabular}{lllll} 
Hi & \(60.3(96.3)\) & \(36.2(104.6)\) & \(43.6(87.6)\) & \(35.5(94.9)\) \\
AL & \(31.6(50.5)\) & \(16.2(46.8)\) & \(24.8(49.8)\) & \(19.6(52.4)\) \\
\(\theta\) & 98 & 86 & 128 & 108 \\
\(\alpha\) & 28 & 25 & 40 & 23
\end{tabular}

Gryphaea dilobotes (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline & LU 70081 & BM LL27752 & LU 70082 & LU 70083 \\
\hline & LV & LV & RV & RV \\
\hline L & 26.8 & 30.8 & 27.4 & 28.3 \\
\hline H & 32.0 (119.4) & 40.5 (131.5) & 35.6 (129.9) & 30.2 (106.7) \\
\hline I & 18.6 (69.4) & 18.0 (58.4) & 7.8 (28.5) & 6.8 (24.0) \\
\hline L. lig . & 3.5 (13.1) & & & \\
\hline H. lig . & 2.4 (9.0) & 3.5 (11.4) & 2.3 (8.4) & 4.2 (14.8) \\
\hline I.a.b. & 1.6 (6.0) & & & \\
\hline \multicolumn{5}{|l|}{L.p.b.} \\
\hline HMS & & 18.0 (58.4) & 21.1 (77.0) & 18.8 (66.4) \\
\hline Hi & 29.0 (108.2) & 34.0 (110.4) & 35.6 (129.9) & 30.2 (106.7) \\
\hline AL & 12.3 (45.9) & 15.1 (49.0) & 15.0 & 13.4 (47.3) \\
\hline \(\theta\) & 81 & 84. & 70 & 94 \\
\hline \multirow[t]{3}{*}{\(\alpha\)} & 20 & 25 & & 29 \\
\hline & LU 70084 & LiJ 70085 & LU 70086 & LU 70087 \\
\hline & RV & RV & RV & LV \\
\hline I & 21.8 & 16.2 & 52.4 & 44.8 \\
\hline H & 26.0 (119.3) & 21.1 (130.2) & 53.6 (102.3) & 40.0 (89.3) \\
\hline I & 5.2 (23.9) & 4.8 (29.6) & 16.1 (30.7) & 15.1 (33.7) \\
\hline \multicolumn{5}{|l|}{L. 1 İ.} \\
\hline H.lis. & 2.7 (12.4) & 3.0 (18.5) & 6.3 (12.0) & 3.0 (6.7) \\
\hline \multicolumn{5}{|l|}{L.a.b.} \\
\hline \multicolumn{5}{|l|}{I.p.b.} \\
\hline HMS & 17.0 (78.0) & 14.3 (88.3) & 32.7 (62.4) & \\
\hline Hi & 26.0 (119.3) & 21.1 (130.2) & 53.6 (102.3) & 34.4 (76.8) \\
\hline AL & 11.2 (51.4) & 9.4 (58.0) & 26.5 (50.6) & 22.9 (51.1) \\
\hline \(\theta\) & 83 & 76 & 110 & 128 \\
\hline \(\alpha\) & & & & 30 \\
\hline
\end{tabular}

Gryphaea dilobotes (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline & LU 70088 & LU 70089 & LU 70090 & LU 70091 \\
\hline & RV & LV & LV & LV \\
\hline L & 49.3 & 29.3 & 62.0 & 58.9 \\
\hline H & 46.8 (94.9) & 29.8 (101.7) & 74.6 (120.3) & \(61.0(103.6)\) \\
\hline I & 13.2 (26.8) & 14.3 (48.8) & 27.3 (44.0) & 19.6 (33.3) \\
\hline \multicolumn{5}{|l|}{L.lig.} \\
\hline H.lig. & & 2.5 (8.5) & & \\
\hline \multicolumn{5}{|l|}{I.a.b.} \\
\hline \multicolumn{5}{|l|}{I.p.b.} \\
\hline HMS & & & & 36.6 (62.1) \\
\hline Hi & 46.8 (94.9) & \(29.4(100.3)\) & 69.1 (111.5) & 59.0 (100.2) \\
\hline AL & 26.7 (54.2) & 11.5 (39.2) & 28.9 (46.6) & 33.3 (56.5) \\
\hline \(\theta\) & 108 & 113 & 99 & 106 \\
\hline \(\alpha\) & & 28 & 25 & 37 \\
\hline
\end{tabular}
\begin{tabular}{lcccc} 
& LU 70092 & LU 70093 & LU 70093 & LU 70094 \\
& LV & LV & RV & RV \\
I & 51.1 & 76.0 & 69.8 & 40.2 \\
H & \(62.8(122.9)\) & \(70.0(92.1)\) & \(58.6(84.0)\) & \(44.6(110.9)\) \\
I & \(30.0(58.7)\) & \(21.8(28.7)\) & & \(12.3(30.6)\) \\
L.lig. & \(5.5(10.8)\) & \(6.3(8.3)\) & \(7.2(10.3)\) & \(5.2(12.9)\) \\
H.lig. & \(6.7(13.1)\) & \(4.9(6.4)\) & \(4.3(6.2)\) & \(5.0(12.4)\) \\
L.a.b. & \(3.7(7.2)\) & \(4.4(5.8)\) & \(4.2(6.0)\) & \(2.3(5.7)\) \\
L.p.b. & \(3.3(6.5)\) & \(4.9(6.4)\) & & \(2.0(5.0)\) \\
HMS & \(41.1(80.4)\) & & \(39.9(57.2)\) & \(22.5(56.0)\) \\
Hi & \(55.6(108.8)\) & \(67.5(88.8)\) & \(58.6(84.0)\) & \(44.6(110.9)\) \\
AL & \(27.3(53.4)\) & \(38.4(50.5)\) & \(41.3(59.2)\) & \(19.4(48.3)\) \\
\(\theta\) & 87 & 94 & 102 & 80
\end{tabular}

Gryphaea dilobotes (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline & LU 69978 & LU 70095 & LU 70096 & LU 70097 \\
\hline & LV & LV & LV & LV \\
\hline I & 26.5 & 20.5 & 13.1 & 14.5 \\
\hline H & 37.8 (142.6) & 26.9 (131.2) & 16.1 (122.9) & 16.5 (113.8) \\
\hline I & 20.7 (78.1) & 11.5 (56.1) & 6.8 (51.9) & 8.9 (61.4) \\
\hline L.lig. & 4.5 (17.0) & & & \\
\hline H. lig . & 4.1 (15.5) & & 1.4 (10.7) & 2.1 (14.5) \\
\hline L.a.b. & 2.3 (8.7) & & & \\
\hline L.p.b. & 1.9 (7.2) & & & \\
\hline HMS & 21.2 (80.0) & & 10.8 (82.4) & 9.0 (62.1) \\
\hline Hi & 31.3 (118.1) & 24.8 (121.0) & 14.7 (112.2) & 16.5 (113.8) \\
\hline AL & 13.9 (52.5) & 7.4 (36.1) & 4.9 (37.4) & 6.5 (44.8) \\
\hline \(\theta\) & 75 & 74 & 84 & 89 \\
\hline \(\alpha\) & 23 & & & \\
\hline
\end{tabular}
\begin{tabular}{lcccc} 
& LU 70098 & LU 70099 & LU 70100 & LU 70101 \\
& LV & LV & LV & LV \\
L & 68.7 & 74.9 & 42.1 & 35.3 \\
H & \(80.4(117.0)\) & \(72.6(96.9)\) & \(45.4(107.8)\) & \(44.8(126.9)\) \\
I & \(38.6(55.2)\) & \(41.6(55.5)\) & \(19.3(45.8)\) & \(22.5(63.7)\) \\
L.lig. & & & \(6.8(16.2)\) & \\
H.lig. & & & \(5.9(14.0)\) & \\
L.a.b. & & & \(3.0(7.1)\) & \\
L.p.b. & & & \(2.3(5.5)\) & \\
HMS & & & & \\
Hi & \(73.1(106.4)\) & \(65.6(87.6)\) & \(42.0(99.8)\) & \(39.5(111.9)\) \\
AL & \(31.4(45.7)\) & \(32.5(43.4)\) & \(22.2(52.7)\) & \(16.1(45.6)\) \\
\(\theta\) & 90 & 108 & 101 & 84 \\
\(\alpha\) & 26 & 33 & 22 & 18
\end{tabular}

Gryphaea dilobotes (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline & LU 70102 & BM LLL27751 & LU 70103 & LU 70104 \\
\hline & LV & LV & LV & RV \\
\hline L & 42.3 & 35.7 & 34.3 & 36.0 \\
\hline H & 55.7 (132.7) & 43.0 (120.4) & 48.2 (140.5) & 37.7 (104.7) \\
\hline I & 21.0 (49.6) & 22.8 (63.9) & 23.7 (69.1) & 11.8 (32.8) \\
\hline I. lig. & & 3.6 (10.1) & & \\
\hline H.lig. & 4.9 (11.6) & 4.9 (13.7) & 5.9 (17.2) & 5.7 (15.8) \\
\hline L.a.b. & & 1.8 (5.0) & & \\
\hline L.p.b. & & 1.9 (5.3) & & \\
\hline HMS & 28.9 (68.3) & 25.3 (70.9) & 26.5 (77.3) & 23.5 (65.3) \\
\hline Hi & 53.9 (127.4) & 38.6 (108.1) & 42.2 (123.0) & 37.7 (104.7) \\
\hline AL & 12.1 (28.6) & 13.0 (36.4) & 14.3 (41.7) & 21.0 (58.3) \\
\hline \(\theta\) & 95 & 79 & 86 & 96 \\
\hline \(\alpha\) & 18 & 24 & 19 & \\
\hline & LU 70105 & LU 70106 & LU 70107 & \\
\hline & LV & LV & LV & \\
\hline L & 24.7 & 20.4 & 55.5 & \\
\hline H & 35.1 (142.1) & 29.5 (144.6) & 60.9 (109.7) & \\
\hline I & 21.7 (87.9) & 17.8 (87.3) & 34.1 (61.4) & \\
\hline \multicolumn{5}{|l|}{L.lig.} \\
\hline H.lig. & 2.1 (8.5) & 4.5 (22.1) & & \\
\hline \multicolumn{5}{|l|}{L.a.b.} \\
\hline \multicolumn{5}{|l|}{L.p.b.} \\
\hline HMS & 17.0 (68.8) & 17.2 (84.3) & & \\
\hline Hi & 21.7 (87.9) & 23.1 (113.2) & 52.2 (94.1) & \\
\hline AL & 13.7 (55.5) & 9.9 (48.5) & 24.4 (44.0) & \\
\hline \(\theta\) & 83 & 75 & 106 & \\
\hline \(\alpha\) & 15 & & 29 & \\
\hline
\end{tabular}


















Gryphaea dilobotes




Gryphaea lituola Lamarck
\begin{tabular}{|c|c|c|c|c|}
\hline & HOLOTYPE & LU 52695 & LU 52694 & LU 52690 \\
\hline & LV & LV & LV & LV \\
\hline I & 67.4 & 75.7 & 57.8 & 58.3 \\
\hline H & 96.5 (143.2) & 92.7 (122.5) & 70.1 (121.3) & 60.0 (102.9) \\
\hline I & 50.0 (74.2) & 51.0 (67.4) & 35.5 (61.4) & 36.3 (62.3) \\
\hline L. 1 ig . & & & & \\
\hline H.lig. & & & & \\
\hline L.a.b. & & & & \\
\hline L.p.b. & & & & \\
\hline HMS & & & & \\
\hline Hi & 72.6 (107.7) & 70.0 (92.5) & \(57.9(100.2)\) & 51.8 (88.9) \\
\hline AL & 37.1 (55.0) & 42.7 (56.4) & 26.0 (45.0) & \\
\hline \(\theta\) & 95 & 107 & 107 & 102 \\
\hline \(\alpha\) & 22 & 22 & 23 & \\
\hline & LU 52692 & LU 68775 & LU 68776 & LU 68777 \\
\hline & LV & LV & LV & LV \\
\hline L & 43.6 & 47.0 & 58.8 & 43.5 \\
\hline H & 56.0 (128.4) & 56.2 (119.6) & 60.5 (102.9) & 51.2 (117.7) \\
\hline I & 33.7 (77.3) & \(31.8(67.7)\) & 32.0 (54.4) & 28.6 (65.7) \\
\hline L. 1 ig . & & & & \\
\hline H.lig. & & & & \\
\hline L.a.b. & & & & \\
\hline L.p.b. & & & & \\
\hline HMS & & & & \\
\hline Hi & 43.3 (99.3) & 43.6 (92.8) & 52.6 (89.5) & 42.9 (98.6) \\
\hline AL & & & 30.3 (51.5) & 23.1 (53.1) \\
\hline \(\theta\) & 99 & 103 & 95 & 88 \\
\hline \(\alpha\) & 38 & 21 & 21 & 25 \\
\hline
\end{tabular}

Gryphaea Iituola (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline & LU 68778 & LU 68779 & LU 68780 & LU 68781 \\
\hline & LV & LV & IV & LV \\
\hline L & 58.9 & 62.5 & 56.7 & 55.1 \\
\hline H & 69.4 (117.8) & 73.4 (117.4) & 69.1 (121.9) & 65.0 (118.0) \\
\hline I & 39.8 (67.6) & 40.9 (65.4) & 41.9 (73.9) & 41.7 (75.7) \\
\hline \multicolumn{5}{|l|}{I. Iig.} \\
\hline H.lig. & & & 15.0 (26.5) & 14.1 (25.6) \\
\hline \multicolumn{5}{|l|}{L.a.b.} \\
\hline \multicolumn{5}{|l|}{L.p.b.} \\
\hline HMS & & & 30.9 (54.5) & 32.0 (58.1) \\
\hline Hi & 57.2 (97.1) & 59.5 (95.2) & 51.0 (89.9) & 48.0 (87.1) \\
\hline AL & 28.0 (47.5) & 32.2 (51.5) & 28.6 (50.4) & 23.5 (42.6) \\
\hline \(\theta\) & 104 & 118 & 107 & 99 \\
\hline \multirow[t]{3}{*}{\(\infty\)} & 29 & 46 & 38 & 20 \\
\hline & LU 68782 & LU 68782 & LU 68783 & LU 68783 \\
\hline & LV & RV & LV & RV \\
\hline L & 64.3 & 52.2 & 57.0 & 49.9 \\
\hline H & 71.5 (111.2) & 56.0 (107.3) & 63.2 (110.9) & 47.7 (95.6) \\
\hline I & 39.8 (61.9) & & 35.1 (61.6) & \\
\hline L.lig. & 9.8 (15.2) & \(8.5(16.3)\) & 5.9 (10.4) & \\
\hline H.lig. & 12.7 (19.8) & 11.2 (21.5) & \(8.4(14.7)\) & \(7.5(15.0)\) \\
\hline L.a.b. & \(4.2(6.5)\) & 4.4 (8.4) & 4.4 (7.7) & \\
\hline L.p.b. & \(4.2(6.5)\) & 4.3 (8.2) & 4.9 (8.6) & \\
\hline HMS & 35.2 (54.7) & 32.9 (63.0) & 25.8 (45.3) & 25.5 (51.1) \\
\hline Hi & 59.4 (92.4) & 56.0 (107.3) & 50.6 (88.8) & 47.7 (95.6) \\
\hline AL & 30.1 (46.8) & 24.8 (47.5) & 27.8 (48.8) & 23.1 (46.3) \\
\hline \(\theta\) & 96 & 93 & 110 & 98 \\
\hline \(\propto\) & 21 & & 28 & \\
\hline
\end{tabular}
\[
\begin{aligned}
& \Rightarrow \underset{m}{\underset{m}{\infty}} \stackrel{\stackrel{n}{\sim}}{\underset{\sim}{\sim}} \quad \stackrel{m}{\underset{j}{j}} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty}
\end{aligned}
\]
    L.lig.
\(0.9(0.8)\)


    불














\(\begin{array}{rccc}\text { Myophorella irreqularis (Seebach) } \\ \text { spec. no. } & \text { L } & \text { II } \\ \text { GSM GSa } 3640 & 75.5 & 53.5(70.9) \\ 3628 & 74.0 & 54.0(73.0) \\ 3629 & 64.0 & 46.0(71.9) \\ 3630 & 73.0 & 53.0(72.6) \\ \text { GSM T33-1 } & 69.0 & 46.0(66.7) \\ \text { T33-2 } & 67.5 & 48.5(71.9) \\ \text { T33-3 } & 51.0 & 33.0(64.7) \\ \text { T33-4 } & 52.5 & 39.0(74.3) \\ \text { GSM } 25 / 36-1 & 71.0 & 47.0(66.2) \\ 25 / 36-2 & 75.0 & 48.5(64.7) \\ 25 / 36-3 & 73.5 & 52.5(71.4) \\ 25 / 36-4 & 73.5 & 50.0(68.0) \\ \text { GSM } 43051 & 77.0 & 52.0(67.5) \\ 43053 & 68.0 & 46.0(67.6) \\ 51647 & 65.0 & 46.0(70.8) \\ \text { GSM } 25 / 37 & 88.0 & 60.0(68.2) \\ \text { GSM Y2014 } & 61.0 & 44.0(72.1) \\ \text { Y2079 } & 28.0 & 20.0(71.4) \\ \text { Y2078 } & 35.0 & 25.5(72.9) \\ \text { Y2027 } & 29.5 & 23.0(78.0) \\ \text { Y2080 } & 26.5 & 20.2(76.2)\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(\otimes\) ® \(5 ¢ 0\) & \(05^{\circ} 0\) & \(\angle 9^{\circ} 0\) & OLO & \(89^{\circ} 0\) & \(86^{\circ} 0\) & \(\varepsilon L \cdot 0\) & \(\varepsilon \cdot \bullet\) ¢ & \(\underline{x}\) \\
\hline － \(59^{\circ}\) サー & \(L \cdot \varepsilon \cdot\) & 61＊＊ & SL＇9 & \(S S^{\circ} \cdot G L\) & \(16^{\circ} \mathrm{Z}\) & \(59^{\circ} \mathrm{G}\) & 01•82 & \(\Lambda\) \\
\hline ¢¢＊¢ & ¢ \(9^{\circ} \mathrm{L}\) & \(76 \cdot\) 2 & 08＊¢ \(\downarrow\) & \(15 \cdot \varepsilon r\) & \(L L \cdot 82\) & Lト・9 & L8＊ 762 & s \\
\hline 88． & \(9 L \cdot\) 己 & \(09^{\circ}\) ¢ & \(以 \cdot \varepsilon\) & \(89^{\circ}\) ¢ & \(9 ¢ \cdot G\) & 20＊\(\dagger\) & L－L & s \\
\hline \(L\) & \(7 \times 1\) & がサと & \(1 \cdot ¢ b\) & \(5 \cdot 91\) & L－8 & でサレ & ¢．19 & צ0 \\
\hline 6 & \(0 \cdot 51\) & ＋－18 & が9カ &  & \(8 \cdot\) ¢ \(¢\) & L－79 & \(5 \cdot 92\) & UTM \\
\hline 91 & ＋G己 & 8－¢6 & \(5 \cdot 19\) & \(6 \cdot \varepsilon \varepsilon\) & S．て¢ & 6．8L & \(0 \cdot 88\) & xent \\
\hline sqȚu 6 －2 & \％＋002 & \％ \(6 \cdot 98\) & \％ \(6 \cdot 95\) & \％ \(9 \cdot \varepsilon\) ¢ & \％¢ しや & \(\%\) L．以 um & unu \(1 \cdot\) เ9 & x \\
\hline 62 & O\＆ & 62 & 82 & 62 & \(0 \varepsilon\) & O\＆ & \(0 \mathcal{L}\) & N \\
\hline \(\varepsilon \downarrow\) &  & （ザて8）O＊てカ & （8＊09）C．1 L & （サ＊8て）5・カレ & \((1 \cdot ¢ \square) 0^{\circ}\) ¢ & （G＊9L） \(0 \cdot 6 \varepsilon\) & 0．15 & 18THS \(\cap 1\) \\
\hline ！ & （＋゙ら乙） \(0 \cdot 6\) & \((8 \cdot \varsigma 6) 0^{*}+\boldsymbol{\square}\) & （で65） \(0 \cdot 12\) & （L．6V） \(0 \cdot L\) & （L．OG）0．8L & \((6 \cdot 8 L) 0 \cdot 8 乙\) & ¢．¢¢ & ¢8L89 กT \\
\hline \(\varepsilon \downarrow\) & （0．Gr）S．OL & （ \(1 \cdot \angle 8\) ） \(0 \cdot 19\) & \((6 \cdot 2 \zeta) ~ C . L \varepsilon ~\) & （0．02） \(0 \times\) サr & （ \(1 \cdot\llcorner\varepsilon\) ） \(0 \cdot 92\) & \((9 \cdot 89) 0^{*} 8^{+}\) & \(0 \cdot 0 \mathrm{~L}\) &  \\
\hline 91 & （ \(9 \cdot L\) ） \(0 \cdot \varepsilon \vdash\) & \((\varsigma \cdot 88) ¢ \cdot \varsigma 9\) &  & （ ¢・カて） \(0 \cdot 8 \downarrow\) &  & \(\left(0^{\circ} \mathrm{LL}\right.\) ） \(0^{\circ}+7 \mathrm{~L}\) & \(0 \cdot \mathrm{HL}\) & 0ヶ／ガく6 \\
\hline \＃r & （＊＊OZ）O・ル & （6＊88） \(0 \cdot 87\) & （ \(\nabla^{\circ}\) LG） \(0 \cdot 1 \varepsilon\) & （ \(9 \cdot \stackrel{\text { V）}}{ } 5^{*} 6\) & （ \(6 \cdot 8 \varepsilon) 0^{\circ}\) 上 & （L．99） \(0 \cdot 9 \varepsilon\) & \(0 \cdot 75\) & 6ع／ヶLL6 \\
\hline H & （L．9ト） \(0 \cdot\) い & （＊＊98） \(0 \cdot L 5\) & （ \(1 \cdot 9\) ） \(0 \cdot L \varepsilon\) & （L．己己） \(0 \cdot G \downarrow\) & （＊＊9を） \(0^{\circ}\) カて & （で以） \(0 \cdot\) くウ & \(0 \cdot 99\) & 8\＆／7L6L \\
\hline Hレ & （6．9r） \(0 \cdot \varepsilon \downarrow\) & \((\varepsilon \cdot 06) ¢ \cdot 69\) & （＊＊8ら） \(0 \cdot 5 \rightarrow\) & （ \(¢ \cdot 61) 0 . G \downarrow\) & （8＊¢ ） \(0 \cdot 9 乙\) & （で99） \(0 \cdot\) LG & \(0 \cdot L L\) & LE／TL 6 LCA MX \\
\hline \(\varepsilon \vdash\) & （8＊L） \(0^{*}\) ¢ \(\downarrow\) & （ \(9 \cdot \varsigma_{8}\) ） \(0 \cdot 19\) & （ぐ8ら）ら・で & \((\varepsilon \cdot \varepsilon 己) ~ O * L b ~\) &  & \(\left(9^{\circ} \mathrm{ZL}\right) 0^{\circ}\) ¢ \(¢\) & \(0 \cdot \varepsilon L\) & SLO8L nT \\
\hline い & （8＊LL）\(\underbrace{\circ} 9\) & \(\left(6^{*} 06\right)\)－ 25 & （¢．「9）く．にて & （ \(0^{\circ} \cdot 12\) ）\(+^{\circ} \mathrm{L}\) & （L•8カ）でじ & （8＊8L） \(8^{\circ} \mathrm{LZ}\) & \(\mathcal{E}\)－¢ &  \\
\hline पน & ME & VIT & ल1 & IV & I & H & I & －ou－oods \\
\hline & & & & & & \multicolumn{3}{|l|}{} \\
\hline
\end{tabular}

\[
\left.\begin{array}{lll}
\sim & \dot{\sim} \sim \sim & \sim \\
\sim & \sim \sim \\
\sim & \sim \\
\sim
\end{array}\right) \stackrel{\sim}{\sim}
\]

Discomiltta lirata (Phillips)
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL \\
\hline BM LLI0077 (NT) & 38.6 & 35.9 (93.0) & & \\
\hline SM J12469 & 27.0 & 24.5 (90.7) & & 15.7 (58.1) \\
\hline J12470 & 38.9 & 38.2 (98.2) & & 20.6 (53.0) \\
\hline J12471 & 42.6 & 40.6 (95.3) & 15.0 (35.2) & 19.8 (46.5) \\
\hline J12472 & 38.7 & 37.3 (96.4) & 17.4 (45.0) & 21.5 (55.6) \\
\hline J12486 & 47.0 & 41.1 (87.4) & & 25.4 (54.0) \\
\hline YM Tsp. 169 & 32.5 & 31.1 (95.7) & 13.7 (42.2) & \\
\hline 170 & 37.4 & 34.3 (91.7) & 14.5 (38.8) & \\
\hline YM KD1974/42 & 37.2 & 36.6 (98.4) & 16.9 (45.4) & \\
\hline 1974/43 & 40.0 & 35.3 (88.3) & 14.8 (37.0) & \\
\hline 1974/44 & 26.3 & 25.7 (97.7) & & \\
\hline 1974/45 & 23.9 & 21.0 (87.9) & & \\
\hline 1974/46 & 33.3 & 31.4 (94.3) & 11.7 (35.1) & \\
\hline 1974/47 & 43.1 & 37.8 (87.7) & & \\
\hline LU 68786 & 29.5 & 25.7 (87.1) & & 13.8 (46.8) \\
\hline 68787 & 21.6 & 17.3 (80.1) & & 10.0 (46.3) \\
\hline 68788 & 30.1 & 26.9 (89.4) & & 15.9 (52.8) \\
\hline 68789 & 33.9 & 27.3 (80.5) & & 16.6 (49.0) \\
\hline N & 18 & \(18 \quad 7\) & 9 & \\
\hline \(\bar{x}\) & 34.2 mm & 90.9\% 39.8\% & 51.3\% & \\
\hline Max & 47.0 & 98.4 45.4 & 58.1 & \\
\hline Min & 21.6 & 80.135 .1 & 46.3 & \\
\hline OR & 25.4 & 18.3 10.3 & 11.8 & \\
\hline s & 7.00 & 5.54 4.40 & 4.34 & \\
\hline \(s^{2}\) & 49.03 & \(30.64 \quad 19.37\) & 18.84 & \\
\hline V & 20.48 & 6.0911 .06 & 8.45 & \\
\hline \(\sigma \overline{\mathrm{x}}\) & 1.65 & 1.301 .66 & 1.45 & \\
\hline
\end{tabular}

Neocrassina ungulata (Iycett)
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL \\
\hline YM 873 & 19.7 & 17.9 (90.9) & & \\
\hline YM KD1974/48 & 21.2 & 20.3 (95.8) & & \\
\hline SMI J26767 & 17.4 & 14.9 (85.6) & & 6.1 (35.1) \\
\hline J26768 & 17.8 & 17.8 (100.0) & & 5.7 (32.0) \\
\hline J26766 & 19.0 & 17.3 (91.1) & & 6.9 (36.3) \\
\hline BCM 3324a & 14.4 & 13.5 (93.8) & 6.4 (44.4) & 5.4 (40.0) \\
\hline 3324 b & 14.0 & 13.2 (94.3) & 4.6 (32.9) & 5.7 (40.7) \\
\hline 3324 c & 14.0 & 13.1 (93.6) & & 4.9 (35.0) \\
\hline GSM 113011 & 15.6 & 15.3 (98.1) & & 6.6 (42.3) \\
\hline 113012 & 13.8 & 15.2 (110.1) & 6.0 (43.5) & 5.8 (42.0) \\
\hline N & 10 & 10 & 38 & \\
\hline \(\bar{x}\) & 16.7 mm & 95.3\% & 40.3\% \(37.9 \%\) & \\
\hline Max & 21.2 & 110.1 & 44.4 42.3 & \\
\hline Min & 13.8 & 85.6 & 32.932 .0 & \\
\hline OR & 7.4 & 25.5 & 11.510 .3 & \\
\hline s & 2.70 & 6.55 & \(6.40 \quad 3.82\) & \\
\hline \(s^{2}\) & 7.30 & 42.94 & \(40.90 \quad 14.58\) & \\
\hline V & 16.19 & 6.87 & \(15.88 \quad 10.07\) & \\
\hline \(\sigma \bar{x}\) & 0.85 & 2.07 & 3.691 .35 & \\
\hline
\end{tabular}
113.

Neocrassina calvertensis sp. nov.
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & I & H & I & AL \\
\hline BM LL27730 & 14.2 & 12.8 (90.1) & 5.3 (37.3) & 3.8 (26.8) \\
\hline 27731 & 18.4 & 16.5 (89.7) & 4.8 (26.1) & 7.4 (40.2) \\
\hline 27732 & 14.7 & 13.2 (89.8) & 4.3 (29.3) & 6.4 (43.5) \\
\hline 27733 & 15.4 & 13.6 (88.3) & & 4.3 (27.9) \\
\hline 27734 & 13.8 & 12.4 (89.9) & & 5.8 (42.0) \\
\hline LU 68790 & 20.7 & 18.7 (90.3) & 4.0 (19.3) & 7.3 (35.3) \\
\hline 68791 & 19.5 & 18.9 (90.9) & & \\
\hline N & 7 & 7 & 4 & 6 \\
\hline \(\overline{\mathrm{x}}\) & 36.7 mr & \(m \quad 90.7 \%\) & 28.0\% & 36.0\% \\
\hline Max & 20.7 & 96.9 & 37.3 & 43.5 \\
\hline Min & 13.8 & 88.3 & 19.3 & 26.8 \\
\hline OR & 6.9 & 8.6 & 18.0 & 16.7 \\
\hline s & 2.80 & 2.80 & 7.47 & 7.22 \\
\hline \(s^{2}\) & 7.85 & 7.86 & 55.83 & 52.12 \\
\hline V & 16.80 & 3.09 & 26.68 & 20.08 \\
\hline \(\sigma \overline{\mathrm{x}}\) & 1.06 & 1.06 & 3.73 & 2.95 \\
\hline
\end{tabular}
114.

Trautscholdia carinata (Phillips)
\begin{tabular}{cccccc} 
spec. no. & L & H & I & AL & Ribs \\
YM 876 (FMP) & 9.1 & \(8.7(95.6)\) & & \(3.9(42.9)\) & 12 \\
YM KD1974/49 & 8.2 & \(7.9(96.3)\) & \(7.2(87.8)\) & & 12 \\
\(1974 / 50\) & 6.6 & \(6.1(92.4)\) & & \(2.9(43.9)\) & 8 \\
\(1974 / 51\) & 8.4 & \(7.4(88.1)\) & & \(3.2(38.1)\) & 10 \\
OUM J29089 & 7.7 & \(7.2(93.5)\) & & & 11
\end{tabular}
\begin{tabular}{llcccc}
N & 5 & 5 & 1 & 3 & 5 \\
\(\overline{\mathrm{x}}\) & 8.0 mm & \(93.2 \%\) & \(87.8 \%\) & \(41.6 \%\) & 10.6 ribs \\
Max & 9.1 & 96.3 & 87.8 & 43.9 & 12 \\
Min & 6.6 & 88.1 & 87.8 & 38.1 & 8 \\
OR & 2.5 & 8.2 & 0 & 5.8 & 4 \\
& & & & & \\
S & 0.93 & 3.24 & & 3.10 & 1.67 \\
\(\mathrm{~s}^{2}\) & 0.86 & 10.50 & & 9.61 & 2.79 \\
V & 11.63 & 3.48 & & 7.45 & 15.75 \\
\(\sigma \overline{\mathrm{x}}\) & 0.42 & 1.45 & & 1.79 & 0.75
\end{tabular}

Trautscholdia phillis (Cottreau)
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & I & H & I & AL Ribs \\
\hline LU 68792 & 9.2 & 8.5 (92.4) & 6.6 (71.7) & 18 \\
\hline 68793 & 6.2 & 6.0 (96.8) & 5.2 (83.9) & 15 \\
\hline 68794 & 8.4 & 8.1 (96.4) & 6.7 (79.3) & 17 \\
\hline 68795 & 8.3 & 7.7 (92.8) & 6.8 (81.9) & 16 \\
\hline 68796 & 8.0 & 7.7 (96.3) & 6.3 (78.8) & 17 \\
\hline 68797 & 7.3 & 6.2 (84.9) & 5.2 (71.2) & 14 \\
\hline 68798 & 8.5 & 7.6 (89.4) & 7.2 (84.7) & 17 \\
\hline 68799 & 8.0 & 7.0 (87.5) & 6.0 (75.0) & 15 \\
\hline 68800 & 8.6 & 7.3 (84.9) & 7.2 (83.7) & 14 \\
\hline 68801 & 7.6 & 6.3 (82.9) & 4.9 (64.5) & 16 \\
\hline 68802 & 7.8 & 6.5 (83.3) & 6.2 (79.5) & 13 \\
\hline 68803 & 8.1 & 7.1 (87.7) & 6.3 (77.8) & 15 \\
\hline 69800 & 7.8 & 6.6 (84.6) & 6.4 (82.1) & 16 \\
\hline 69801 & 9.1 & 7.4 (81.3) & 6.4 (70.3) & 16 \\
\hline 69802 & 9.0 & 7.4 (82.2) & 7.2 (80.0) & 13 \\
\hline 69803 & 9.2 & 7.0 (76.1) & 6.4 (69.6) & 15 \\
\hline 69804 & 8.5 & 6.9 (81.2) & & 14 \\
\hline 69805 & 8.9 & 7.4 (83.1) & 7.0 (78.7) & 14 \\
\hline 69806 & 9.0 & 7.2 (80.0) & 6.8 (75.6) & 17 \\
\hline 69807 & 8.7 & 7.1 (81.6) & 6.1 (70.1) & 16 \\
\hline 69808 & 9.0 & 7.2 (80.0) & & 13 \\
\hline 69809 & 9.9 & 7.1 (71.7) & 7.4 (74.7) & 14 \\
\hline 69810 & 8.2 & 7.9 (96.3) & 6.2 (82.9) & 15 \\
\hline 69811 & 8.5 & 6.9 (81.2) & 6.5 (76.5) & 13 \\
\hline 69812 & 9.1 & 7.3 (80.2) & 5.8 (63.7) & 15 \\
\hline 69813 & 8.1 & 7.1 (87.7) & 7.0 (86.4) & 16 \\
\hline 69814 & 10.8 & 8.8 (81.5) & 8.4 (77.8) & 21 \\
\hline 69815 & 9.9 & 8.3 (83.8) & 8.4 (84.8) & 16 \\
\hline 69816 & 8.4 & 8.0 (95.2) & 7.4 (88.1) & 17 \\
\hline 69817 & 9.9 & 8.3 (83.8) & 7.0 (70.7) & 15 \\
\hline 69818 & 10.2 & 8.1 (79.4) & & 16 \\
\hline 69819 & 9.2 & 8.3 (90.2) & 6.5 (70.7) & \\
\hline 69820 & 10.5 & 8.6 (81.1) & & \\
\hline
\end{tabular}
116.

Trautscholdia phillis (cont.)
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL & Ribs \\
\hline LU 69821 & 11.2 & 9.2 (82.1) & & & 17 \\
\hline 69822 & 10.2 & 9.1 (89.2) & & & 18 \\
\hline 69823 & 9.7 & 8.1 (83.5) & 6.3 (64.9) & & 14 \\
\hline 69824 & 8.9 & 7.9 (88.8) & 7.3 (82.0) & & \\
\hline 69825 & 7.6 & 6.2 (81.6) & 6.2 (81.6) & & \\
\hline 69826 & 9.3 & 6.5 (69.9) & 6.4 (68.8) & & \\
\hline 69827 & 7.2 & 6.0 (83.3) & 6.0 (83.3) & & \\
\hline 69828 & 10.0 & 7.8 (78.0) & 6.3 (63.0) & & \\
\hline 69829 & 8.4 & 6.8 (81.0) & 4.1 (48.8) & & \\
\hline GSM 31506 & 6.3 & 5.7 (90.5) & 5.2 (82.5) & & 10 \\
\hline 31507 & 7.6 & 6.5 (85.5) & 6.0 (78.9) & & 11 \\
\hline GSMZn2544 & 7.1 & 6.3 (88.7) & 6.4 (90.1) & & 14 \\
\hline Y2070 & 6.8 & 5.8 (85.3) & 5.0 (73.5) & & 11 \\
\hline Y2069 & 7.2 & 5.9 (81.9) & 5.8 (80.6) & & \\
\hline Y2068 & 8.8 & 7.2 (81.8) & 6.4 (72.7) & & 14 \\
\hline Y2066 & 8.3 & 7.0 (84.3) & 7.8 (93.9) & & 12 \\
\hline Y2067 & 8.7 & 7.1 (81.6) & 7.0 (80.4) & & 12 \\
\hline 31513 & 10.4 & 8.8 (84.6) & 8.4 (80.8) & & 18 \\
\hline 31511a & 9.2 & 8.0 (87.0) & & & 15 \\
\hline 31511 b & 8.6 & 7.9 (91.9) & & & \\
\hline 31515a & 4.8 & 4.2 (87.5) & 3.6 (75.0) & & 17 \\
\hline 32.515 b & 5.2 & 5.0 (96.2) & & & 19 \\
\hline 31514 & 4.8 & 5.1 (106.3) & 3.2 (66.7) & & 17 \\
\hline 113419 & 6.7 & 5.7 (85.1) & 5.2 (77.6) & & 11 \\
\hline 113420 & 6.9 & 6.1 (88.4) & 5.8 (84.0) & & 11 \\
\hline 113421 & 10.6 & 9.4 (88.7) & 8.8 (83.0) & & 17 \\
\hline 113422 & 8.3 & 6.6 (79.5) & 6.2 (74.7) & & 13 \\
\hline 113423 & 8.0 & 6.8 (85.0) & 5.6 (70.0) & & 12 \\
\hline 113424 & 7.4 & 6.0 (81.1) & 5.6 (75.7) & & 12 \\
\hline 113425 & 7.4 & 6.1 (82.4) & 6.4 (86.5) & & 12 \\
\hline 113426 & 7.7 & 6.3 (81.8) & 6.2 (80.5) & & 12 \\
\hline 113427 & 9.0 & 7.3 (81.1) & 6.6 (73.3) & & 13 \\
\hline Y2051 & 8.8 & 8.0 (90.9) & 7.0 (79.5) & 3.8 (43.2) & 11 \\
\hline
\end{tabular}
117.

Trautscholdia phillis (cont.)
\begin{tabular}{rrrllll} 
spec. no. & \multicolumn{1}{c}{ I } & H & I & AL & Ribs \\
43054 & 11.1 & \(9.8(88.3)\) & & \(4.2(37.8)\) & 13 \\
43056 & 6.1 & \(5.4(88.5)\) & & & 8 \\
31516 & 11.7 & \(9.6(82.1)\) & \(8.5(72.6)\) & \(4.8(41.0)\) & \\
31517 & 12.4 & \(10.3(83.1)\) & \(9.6(77.4)\) & \(4.8(38.7)\) & \\
31518 & 10.9 & \(9.3(85.3)\) & \(7.3(67.0)\) & & \\
31519 & 10.5 & \(8.7(82.9)\) & \(8.2(78.1)\) & \(3.8(36.2)\) & \\
31520 & 10.6 & \(7.2(67.9)\) & \(6.0(56.6)\) & \(3.9(36.8)\) & \\
31521 & 6.3 & \(5.4(85.7)\) & \(4.8(76.2)\) & \(2.2(34.9)\) & \\
SM J28877 & 7.1 & \(6.4(90.1)\) & \(4.2(59.2)\) & & 11 \\
BCM 3324 a & 10.4 & \(8.9(85.6)\) & \(7.9(76.0)\) & \(3.0(28.8)\) & 16 \\
3324 b & 10.1 & \(9.0(89.1)\) & \(7.8(77.2)\) & \(2.9(28.7)\) & 17 \\
3324 c & 9.2 & \(8.4(91.3)\) & \(7.9(85.9)\) & \(2.9(31.5)\) & 16 \\
3324 d & 10.4 & \(9.6(92.3)\) & \(9.3(89.4)\) & \(2.8(26.9)\) & 21 \\
3324 e & 9.4 & \(8.4(89.4)\) & \(7.7(81.9)\) & \(2.8(29.8)\) & 16 \\
3324 f & 10.0 & \(7.2(72.0)\) & \(8.4(84.0)\) & \(3.1(31.0)\) & 18 \\
3324 g & 8.8 & \(7.7(87.5)\) & \(7.8(88.6)\) & \(3.0(34.1)\) & 13 \\
3324 h & 9.6 & \(8.6(89.6)\) & \(9.6(100.0)\) & \(3.0(31.7)\) & 15 \\
Morris pl. & & \(11.6(89.8)\) & \(9.3(78.8)\) & & 17 \\
30 fig.2 11.8 & \(12.6(89\)
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & L & H & I & AL & Ribs \\
\hline N & 84 & 84 & 73 & 15 & 68 \\
\hline \(\stackrel{\rightharpoonup}{x}\) & 8.7 mm & 85.4\% & 77.2 \% & 34.1 \% & 14.8 \\
\hline Max & 12.4 & 96.2 & 100.0 & 43.2 & 21 \\
\hline Min & 4.8 & 69.9 & 56.6 & 26.9 & 10 \\
\hline s & 1.54 & 6.18 & 8.52 & 4.84 & 2.56 \\
\hline \(s^{2}\) & 2.38 & 38.21 & 72.54 & 23.38 & 6.55 \\
\hline V & 17.72 & 7.24 & 11.03 & 14.19 & 17.35 \\
\hline \(\sigma \overline{\mathrm{x}}\) & 0.17 & 0.67 & 1.00 & 1.25 & 0.31 \\
\hline
\end{tabular}

Protocardia striatulum (J. de C. Sowerby)
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & I & H & & I & AL \\
\hline BM 43154 (HT) & 22.3 & 21.1 (94.6) & 13.9 & (62.3) & \\
\hline STI J12509 & 10.5 & 9.4 (89.5) & 7.4 & (70.5) & 4.0 (38.1) \\
\hline J12510 & 7.6 & 7.0 (92.1) & 5.5 & (72.4) & 3.4 (44.7) \\
\hline J6010 & 10.6 & 9.8 (92.5) & 8.0 & (75.5) & 4.6 (43.4) \\
\hline YM KD1974/52 & 14.0 & 13.3 (95.0) & 10.1 & (72.1) & 6.5 (46.4) \\
\hline 1974/53 & 14.4 & 12.0 (83.3) & 9.8 & (68.1) & \\
\hline OUM J9719 & 14.5 & 14.1 (97.2) & 9.6 & (66.2) & 6.4 (44.1) \\
\hline OUM J28233 & 7.3 & 7.4 (101.4) & 4.5 & (61.6) & 4.0 (54.8) \\
\hline J28234 & 8.8 & 8.1 (92.0) & 6.2 & (70.5) & 4.0 (45.5) \\
\hline J28235 & 8.6 & 7.9 (91.9) & 6.1 & (70.9) & 4.5 (52.3) \\
\hline J28240 & 15.6 & 12.7 (81.4) & 9.2 & (59.0) & 6.7 (42.9) \\
\hline LU 69830 & 13.1 & 12.1 (92.4) & 11.2 & (85.5) & 6.0 (45.8) \\
\hline LU 69831 & 14.9 & 13.3 (89.3) & 11.8 & (79.2) & 6.0 (40.3) \\
\hline LU 69832 & 20.0 & 18.3 (91.5) & & & 8.6 (43.0) \\
\hline LU 69833 & 24.1 & 22.6 (93.7) & & & 12.4 (51.5) \\
\hline N & 15 & 15 & 13 & 14 & \\
\hline \(\overline{\mathrm{x}}\) & 13.1 mm & 91.9\% & 70.4\% & 44.7 & \\
\hline Max & 24.1 & 101.4 & 85.5 & 54.8 & \\
\hline Min & 7.3 & 81.4 & 59.0 & 32.8 & \\
\hline OR & 16.8 & 20.0 & 26.5 & 22.0 & \\
\hline s & 5.19 & 4.90 & 7.24 & 4.77 & \\
\hline \(s^{2}\) & 26.94 & 24.01 & 52.42 & 22.75 & \\
\hline V & 39.62 & 5.33 & 10.28 & 10.67 & \\
\hline \(\sigma \bar{x}\) & 1.34 & 1.26 & 2.01 & 1.32 & \\
\hline
\end{tabular}
119.

Rollierella minima (J. Sowerby)
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL & LW \\
\hline BM 431.64(HT) & 31.1 & 31.0 (99.7) & 27.6 (88.8) & & \\
\hline GSM 42906 & 22.8 & 21.3 (93.4) & 20.3 (89.0) & 5.8 (25.4) & \\
\hline 42907 & 21.0 & 18.2 (86.7) & 19.0 (90.5) & 5.6 (26.7) & \\
\hline 42908 & 23.0 & 20.5 (89.1) & 20.5 (89.1) & 6.6 (28.7) & \\
\hline 42909 & 19.5 & 16.7 (85.6) & 17.5 (89.7) & 5.9 (30.3) & \\
\hline 42910 & 21.7 & 18.3 (84.3) & 17.4 (80.2) & 6.1 (28.1) & \\
\hline 42911 & 18.6 & 16.9 (90.9) & 15.9 (85.5) & 5.6 (30.1) & \\
\hline 42912 & 16.4 & 15.7 (95.7) & 14.1 (86.0) & 4.7 (28.7) & \\
\hline 42913 & 14.8 & 13.6 (91.9) & 12.4 (83.8) & 4.9 (33.1) & \\
\hline 42914 & 12.6 & 11.0 (87.3) & 10.7 (84.9) & 4.3 (34.1) & \\
\hline 42915 & 10.4 & 9.6 (92.3) & 8.6 (82.7) & 4.4 (42.3) & \\
\hline 42916 & 20.6 & 19.8 (96.1) & 19.2 (93.2) & 8.2 (39.8) & \\
\hline 42918 & 16.0 & 15.8 (98.8) & 14.2 (88.8) & 5.6 (35.5) & \\
\hline 42919 & 18.5 & 16.7 (90.3) & 15.2 (82.2) & 5.7 (30.8) & \\
\hline 42921 & 15.9 & 14.7 (92.5) & 14.0 (88.1) & 5.5 (34.6) & \\
\hline 42922 & 13.8 & 11.7 (84.8) & 12.2 (88.4) & 5.8 (42.0) & \\
\hline 42923 & 10.6 & 9.7 (91.5) & 8.1 (76.4) & 2.7 (25.5) & \\
\hline 42924 & 10.8 & 9.6 (88.9) & 9.3 (86.1) & & \\
\hline 42925 & 7.0 & 6.4 (91.4) & 5.6 (80.0) & 2.3 (32.9) & \\
\hline KD Lukow 5 & 21.7 & 21.3 (98.2) & 19.9 (91.7) & 5.6 (25.8) & 12.4 (57.1) \\
\hline Lukow 6 & 20.7 & 20.2 (97.6) & 19.2 (92.8) & 5.0 (24.2) & 12.4 (59.9) \\
\hline Iukow 7 & 15.0 & 14.6 (97.3) & 12.8 (85.3) & 3.8 (25.3) & 6.9 (46.0) \\
\hline Lukow 8 & 24.0 & 23.2 (96.7) & 22.7 (94.6) & 5.9 (24.6) & 14.0 (58.3) \\
\hline SM J12461 & 21.2 & 20.7 (97.6) & 20.5 (96.7) & 5.6 (31.1) & \\
\hline MM KD1974/54 & 27.5 & 27.3 (99.3) & 13.3 (96.8) & 10.8 (39.3) & \\
\hline 1974/55 & 27.0 & 26.7 (98.9) & 11.8 (97.4) & 9.8 (36.3) & \\
\hline LU 70001 & 15.5 & 15.4 (99.4) & 15.3 (98.7) & 4.5 (29.0) & \\
\hline LU 70002 & 15.8 & 14.7 (93.0) & & 5.2 (32.9) & \\
\hline BCM Cb 4767 & 16.2 & 15.6 (96.3) & 14.9 (92.0) & 5.6 (34.6) & \\
\hline 4768 & 16.0 & 14.7 (91.9) & 13.9 (86.9) & 4.5 (28.1) & \\
\hline 4769 & 16.8 & 15.3 (91.1) & 15.0 (89.3) & 4.8 (28.6) & \\
\hline 4770 & 16.2 & 14.7 (90.7) & 13.6 (84.0) & 4.4 (27.2) & \\
\hline
\end{tabular}

\section*{120.}

Rollierella minima (cont.)
spec. no. I
H
I
AL
LW
BCM Cb 4771 16.2 15.1 (93.2) 14.2 ( 87.7 ) 4.5 (27.8) \(4772 \quad 14.1 \quad 13.9(95.7) \quad 12.5(88.7) \quad 4.4(31.2)\)
\begin{tabular}{lrrrrr}
N & 34 & 34 & 33 & 32 & 4 \\
\(\overline{\mathrm{x}}\) & 17.9 mm & \(93.2 \%\) & \(88.4 \%\) & \(31.1 \%\) & \(55.3 \%\) \\
Max & 31.1 & 99.7 & 98.7 & 42.3 & 59.9 \\
Min & 7.0 & 84.3 & 76.4 & 24.2 & 46.0 \\
OR & 24.1 & 15.4 & 22.3 & 18.1 & 13.9 \\
& & & & & \\
s & 5.20 & 4.47 & 5.23 & 5.02 & 6.32 \\
\(\mathrm{~s}^{2}\) & 27.04 & 19.98 & 27.35 & 25.20 & 39.94 \\
V & 29.05 & 4.80 & 5.92 & 16.14 & 11.43 \\
\(\sigma-\mathrm{x}\) & 0.89 & 0.77 & 0.91 & 0.89 & 3.16
\end{tabular}

Anisocardia tenera (J. Sowerby)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline spec. no. & L & H & I & & AL & PLW \\
\hline BM 43165 (HT) & 23.2 & 20.6 (88.8) & 17.0 (73.3) & ) 6.8 & (28.0) & \\
\hline GSM 24/53-1 & 19.9 & 16.7 (83.9) & 13.0 (65.3) & ) 6.9 & (34.7) & \\
\hline 24/53-2 & 21.7 & 20.5 (94.5) & 14.2 (65.4) & ) 6.6 & (30.4) & \(7.2(22.7)\) \\
\hline 24/53-3 & 18.3 & 16.7 (91.3) & 11.3 (61.7) & ) 5.0 & (27.3) & \\
\hline 24/53-4 & 17.6 & 17.3 (98.3) & 12.4 (70.5) & ) 5.8 & (33.0) & \\
\hline 24/53-5 & 12.7 & 11.7 (92.1) & 8.7 (68.5) & ) 4.6 & (36.2) & \\
\hline 25/45-1 & 25.2 & 22.4 (88.9) & 14.9 (59.1) & ) 7.6 & (30.2) & \\
\hline 25/45-2 & 21.6 & 18.2 (84.3) & 12.5 (57.9) & ) 7.3 & (33.8) & \\
\hline 25/45-3 & 21.9 & 20.2 (92.2) & 12.7 (58.0) & ) 7.8 & (35.6) & \\
\hline 25/45-4 & 16.6 & 15.5 (93.4) & 10.5 (63.3) & ) 6.2 & (37.3) & \\
\hline 25/45-5 & 18.2 & 15.1 (83.0) & 10.2 (56.0) & ) 7.1 & (39.0) & \\
\hline Y2071 & 22.8 & 21.6 (94.7) & 12.0 (52.6) & ) 6.6 & (28.9) & \\
\hline Y2072 & 23.1 & 21.3 (92.2) & 12.5 (54.1) & ) 9.0 & (39.0) & \\
\hline Y2073 & 22.5 & 19.0 (84.4) & 12.2 (54.2) & ) 8.2 & (36.4) & \\
\hline N\% & 14 & 14 & 14 & 14 & 1 & \\
\hline \(\overline{\mathrm{x}}\) & 20.5 mm & - 89.9 \% & \(60.3 \% \quad 3\) & 33.6 \% & 22.7 \% & \\
\hline Max & 25.2 & 98.3 & 73.3 3 & 39.0 & 22.7 & \\
\hline Min & 12.7 & 83.0 & 52.6 & 27.3 & 22.7 & \\
\hline OR & 12.5 & 15.3 & 20.7 I & 11.7 & 0 & \\
\hline s & 3.34 & 4.88 & 5.59 & 3.99 & & \\
\hline \(s^{2}\) & 11.16 & 23.78 & 31.271 & 15.93 & & \\
\hline V & 16.29 & 5.42 & 9.27 I & 11.90 & & \\
\hline \(\sigma \frac{}{x}\) & 0.89 & 1.30 & 1.49 & 1.07 & & \\
\hline
\end{tabular}

Isocyprina roederi Arkell
\begin{tabular}{cccc} 
spec. no. & L & H & I \\
LU 70003 & 13.5 & \(13.0(96.2)\) & \\
70004 & 18.0 & \(16.5(91.6)\) & \(7.6(42.2)\) \\
69834 & 18.0 & \(16.0(88.8)\) & \\
69835 & 14.0 & \(12.0(85.7)\) & \\
69836 & 16.5 & \(15.2(92.1)\) & \\
69837 & 16.0 & \(14.6(91.2)\) & \\
69838 & 6.5 & \(6.0(92.3)\) & \\
69839 & 15.2 & \(14.3(94.1)\) & \(5.0(32.9)\) \\
69840 & 17.5 & \(15.0(85.7)\) & \(5.2(30.9)\) \\
69841 & 19.2 & \(18.5(96.3)\) & \\
69842 & 15.5 & \(13.2(85.1)\) & \\
69843 & 14.4 & \(13.0(89.6)\) & \\
69844 & 12.0 & \(10.0(83.3)\) & \\
69845 & 20.0 & \(18.0(90.0)\) & \\
69846 & & 20.5 & \\
& & & 3.0 \\
N & 14 & 14 & 3
\end{tabular}

Corbulomima macneillii (Morris)
\begin{tabular}{|c|c|c|c|c|c|}
\hline spec. no. & L & & H & I & AL \\
\hline LU 69847 & 5.4 & 4.9 & (90.7) & 4.3 (79.6) & 2.1 (38.9) \\
\hline 69848 & 5.0 & 4.6 & (92.0) & 3.8 (76.0) & 2.0 (40.0) \\
\hline 69849 & 5.3 & & (81.1) & 4.1 (77.4) & 2.4 (45.3) \\
\hline 69850 & 5.3 & 4.9 & (92.5) & 4.0 (75.5) & 2.0 (37.7) \\
\hline 69851 & 5.6 & & (85.7) & 4.0 (71.4) & 2.7 (48.2) \\
\hline OUM J28230-1 & 5.6 & 5.0 & (89.3) & 4.5 (80.4) & 2.2 (39.3) \\
\hline J28230-2 & 5.8 & 5.0 & (86.2) & 4.3 (74.1) & 2.1 (36.2) \\
\hline J28230-3 & 5.3 & 4.5 & (84.9) & 3.9 (73.6) & 2.2 (41.5) \\
\hline J28230-4 & 4.5 & 4.0 & (88.9) & 3.2 (71.1) & 1.8 (40.0) \\
\hline J28230-5 & 5.6 & 4.8 & (85.7) & 4.4 (78.6) & 1.8 (32.1) \\
\hline J28230-6 & 5.8 & 5.4 & (93.1) & 4.8 (82.8) & 2.1 (36.2) \\
\hline J28230-7 & 6.5 & 5. & (84.6) & 4.2 (64.6) & 2.1 (32.3) \\
\hline J28230-8 & 5.5 & 4.8 & (87.3) & 4.0 (72.7) & 2.0 (36.4) \\
\hline J28230-9 & 5.2 & & (84.6) & 3.8 (73.1) & 1.7 (32.7) \\
\hline J28230-10 & 5.4 & 5.0 & (92.6) & 4.0 (74.1) & 1.8 (33.3) \\
\hline J28230-11 & 5.8 & 4.9 & (81.5) & 4.1 (70.7) & 2.0 (34.5) \\
\hline J28230-12 & 5.2 & 4.6 & (88.5) & 4.2 (80.8) & 2.0 (38.5) \\
\hline J28230-13 & 4.5 & 3.9 & (86.7) & 3.0 (66.7) & 1.8 (40.0) \\
\hline J28230-14 & 4.3 & 3.7 & (86.0) & 3.2 (74.4) & 1.6 (37.2) \\
\hline J28230-15 & 3.7 & 3.6 & (97.3) & 2.8 (75.7) & 1.5 (40.5) \\
\hline J28230-16 & 6.3 & & (88.9) & 5.0 (79.4) & 2.2 (34.9) \\
\hline OUM J28231-1 & 5.0 & & (88.0) & 3.4 (78.0) & 1.8 (36.0) \\
\hline J28231-2 & 5.0 & 4.3 & (86.0) & 3.6 (72.0) & 1.8 (36.0) \\
\hline J28231-3 & 5.4 & & (87.0) & 3.7 (68.5) & 2.1 (38.9) \\
\hline J28231-4 & 4.6 & & (87.0) & 3.0 (65.0) & 1.9 (41.3) \\
\hline J28231-5 & 5.5 & & (81.8) & 3.5 (63.6) & 2.0 (36.4) \\
\hline J28231-6 & 5.4 & & (77.8) & 3.2 (59.3) & 2.0 (37.0) \\
\hline J28231-7 & 5.4 & & (88.9) & 3.8 (70.4) & 2.3 (42.6) \\
\hline J28231-8 & 4.8 & & (93.8) & 3.6 (75.0) & 1.9 (39.6) \\
\hline J28231-9 & 4.4 & & (84.1) & 3.2 (72.7) & 1.4 (31.8) \\
\hline J28231-10 & 5.0 & & (82.0) & 3.2 (64.0) & 1.8 (36.0) \\
\hline J28231-11 & 4.7 & & (85.1) & 3.2 (68.1) & 1.9 (40.4) \\
\hline J28231-12 & 5.4 & 4.9 & (90.7) & 3.9 (72.2) & 2.0 (37.0) \\
\hline
\end{tabular}

Corbulomima macneillii
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL \\
\hline OUM J28231-13 & 4.6 & 3.5 (76.1) & 2.9 (63.0) & 1.4 (30.4) \\
\hline J28231-14 & 4.2 & 3.3 (78.6) & 2.8 (66.7) & 1.4 (33.3) \\
\hline J28231-15 & 4.4 & 4.3 (97.7) & 3.1 (70.5) & 1.3 (29.5) \\
\hline J28231-16 & 4.9 & 4.5 (91.8) & 3.2 (65.3) & 1.6 (32.7) \\
\hline J2823I-17 & 4.5 & 4.2 (93.3) & 3.0 (66.7) & 1.5 (33.3) \\
\hline J28231-18 & 4.5 & 3.7 (82.2) & 2.8 (62.2) & 1.5 (33.3) \\
\hline J28231-19 & 4.3 & 3.3 (76.7) & 2.8 (65.1) & 1.5 (34.9) \\
\hline J28231-20 & 4.8 & 4.1 (85.4) & 3.0 (62.5) & 1.8 (37.5) \\
\hline J28231-21 & 4.8 & 4.2 (87.5) & 3.1 (64.6) & 1.7 (35.4) \\
\hline J28231-22 & 4.3 & 3.8 (88.4) & 2.8 (65.1) & 1.6 (37.2) \\
\hline J28231-23 & 3.8 & 3.1 (81.6) & 2.6 (68.4) & 1.7 (44.7) \\
\hline GSM 113966 & 5.4 & 4.6 (85.2) & 3.7 (68.5) & 2.1 (38.9) \\
\hline 113967 & 4.3 & 3.4 (79.1) & 3.0 (69.8) & 1.8 (41.9) \\
\hline 113968 & 4.3 & 3.7 (86.0) & 3.1 (72.1) & 1.5 (34.9) \\
\hline 113969 & 4.2 & 3.3 (78.6) & 3.0 (71.4) & 1.5 (35.7) \\
\hline 113970 & 5.1 & 4.4 (86.3) & 3.8 (74.5) & 1.9 (37.3) \\
\hline 113971 & 4.0 & 3.3 (82.5) & 2.9 (72.5) & 1.4 (35.0) \\
\hline 113972 & 5.5 & 4.6 (83.6) & 4.3 (78.2) & 2.3 (41.8) \\
\hline 113973 & 5.5 & 4.7 (85.5) & 3.6 (65.5) & 1.9 (34.5) \\
\hline 113974 & 4.6 & 3.3 (71.7) & 2.6 (56.5) & 1.6 (34.8) \\
\hline 113975 & 5.8 & 4.7 (81.0) & 4.1 (70.7) & 1.9 (32.8) \\
\hline 113976 & 5.2 & 4.3 (82.7) & 3.8 (73.1) & 1.8 (41.9) \\
\hline 113977 & 4.6 & 4.0 (87.0) & 3.4 (73.9) & 1.4 (30.4) \\
\hline 113978 & 6.7 & 5.6 (83.6) & 5.2 (77.6) & 2.3 (34.3) \\
\hline 113979 & 4.2 & 3.4 (81.0) & 2.9 (69.0) & 1.5 (35.7) \\
\hline 113980 & 5.4 & 4.3 (79.6) & 3.7 (68.5) & 2.2 (40.7) \\
\hline 113981 & 5.3 & 4.5 (84.9) & 4.0 (75.5) & 2.1 (39.6) \\
\hline 113982 & 4.5 & 3.7 (82.2) & 3.6 (80.0) & 1.7 (37.8) \\
\hline 113983 & 5.5 & 4.6 (83.6) & 3.6 (65.5) & 1.9 (34.5) \\
\hline 113984 & 4.4 & 3.7 (84.1) & 3.3 (75.0) & 1.6 (36.4) \\
\hline 113985 & 4.2 & 3.1 (73.8) & 2.8 (66.7) & 1.6 (38.1) \\
\hline 113986 & 4.4 & 3.9 (88.6) & 3.3 (75.0) & 1.7 (38.6) \\
\hline 113988 & 4.1 & 3.2 (78.0) & 3.0 (73.2) & 1.5 (36.6) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL \\
\hline GSM 113989 & 4.9 & 4.0 (81.6) & 3.8 (77.6) & 2.0 (40.8) \\
\hline 113991 & 4.6 & 3.8 (82.6) & 3.4 (73.9) & 1.7 (37.0) \\
\hline 113992 & 4.8 & 3.7 (77.1) & 3.6 (75.0) & 1.7 (35.4) \\
\hline 113993 & 5.2 & 4.9 (94.2) & 4.2 (80.8) & 1.8 (34.6) \\
\hline 113995 & 5.3 & 4.4 (83.0) & 3.7 (69.8) & 1.9 (35.8) \\
\hline 113996 & 5.6 & 4.7 (83.9) & 4.1 (73.2) & 2.0 (35.7) \\
\hline 113997 & 4.0 & 4.0 (100.0) & 3.5 (87.5) & 1.4 (35.0) \\
\hline 113998 & 5.5 & 4.8 (87.3) & 4.2 (76.4) & 2.0 (36.4) \\
\hline 113999 (NT) & 5.0 & 4.3 (86.0) & 4.2 (84.0) & 2.0 (40.0) \\
\hline 114000 & 4.0 & 4.0 (100.0) & 3.6 (90.0) & 1.6 (40.0) \\
\hline 114001 & 4.8 & 4.0 (83.3) & 3.4 (70.8) & 1.8 (37.5) \\
\hline 114002 & 4.1 & 3.3 (80.5) & 3.0 (73.2) & 1.5 (36.6) \\
\hline 114004 & 4.3 & 3.4 (79.1) & 3.1 (72.1) & 1.4 (32.6) \\
\hline 114005 & 4.9 & 4.0 (81.6) & 3.8 (77.6) & 1.8 (36.7) \\
\hline 114006 & 4.8 & 4.0 (83.3) & 3.6 (75.0) & 1.9 (39.5) \\
\hline 114007 & 4.6 & 4.0 (87.0) & 3.0 (65.2) & 1.7 (37.0) \\
\hline 114008 & 4.0 & 3.2 (80.0) & 3.0 (75.0) & 1.5 (37.5) \\
\hline 114009 & 3.8 & 3.3 (86.8) & 2.6 (68.4) & 1.3 (34.2) \\
\hline 114010 & 4.1 & 3.3 (80.5) & 3.3 (80.5) & 1.6 (39.0) \\
\hline 114011 & 5.8 & 5.0 (86.2) & 4.7 (81.0) & 1.9 (32.8) \\
\hline 114012 & 4.0 & 3.6 (90.0) & 3.2 (80.0) & 1.6 (40.0) \\
\hline 114013 & 3.4 & 3.0 (88.2) & 2.3 (67.6) & 1.1 (32.4) \\
\hline 114014 & 5.7 & 4.3 (75.4) & 4.0 (70.2) & 2.4 (42.1) \\
\hline 114015 & 5.2 & 4.4 (84.6) & 3.6 (69.2) & 2.0 (38.5) \\
\hline 114016 & 5.8 & 4.6 (79.3) & 3.7 (63.8) & 2.0 (34.5) \\
\hline 114017 & 4.8 & 3.9 (81.3) & 3.6 (75.0) & 1.6 (33.3) \\
\hline 114018 & 4.9 & 4.0 (81.6) & 4.0 (81.6) & 1.9 (38.8) \\
\hline 114019 & 6.1 & 5.3 (86.9) & 4.4 (72.1) & 2.3 (37.7) \\
\hline 114021 & 5.5 & 4.2 (76.4) & 3.9 (70.9) & 2.1 (38.2) \\
\hline 114022 & 5.5 & 4.3 (78.2) & 3.9 (70.9) & 2.0 (36.4) \\
\hline 114023 & 5.4 & 4.5 (83.3) & 3.8 (70.4) & 1.8 (33.3) \\
\hline 114024 & 6.1 & 5.0 (82.0) & 4.9 (80.3) & 2.6 (42.6) \\
\hline 114025 & 5.5 & 5.1 (92.7) & 3.4 (61.8) & 2.0 (36.4) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & c. no. & I & H & I & AL \\
\hline GSM & 114026 & 4.5 & 3.8 (84.4) & 3.3 (73.3) & 1.6 (35.6) \\
\hline & 113994 & 6.6 & 5.1 (77.3) & 4.0 (60.6) & 3.2 (48.5) \\
\hline BCM & 3324-1 & 6.3 & 5.2 (82.5) & 4.9 (77.8) & 2.3 (42.9) \\
\hline & 3324-2 & 5.6 & 4.4 (78.6) & 4.2 (75.0) & 2.0 (35.7) \\
\hline & 3324-3 & 5.0 & 4.1 (82.0) & 4.0 (80.0) & 1.8 (36.0) \\
\hline & 3324-4 & 6.8 & 5.2 (76.5) & 4.3 (63.2) & 2.6 (38.2) \\
\hline & 3324-5 & 5.3 & 4.5 (84.9) & 4.0 (75.5) & 2.0 (37.7) \\
\hline & 3324-6 & 4.0 & 2.9 (72.5) & 2.6 (65.0) & 1.5 (37.5) \\
\hline & 3324-7 & 5.5 & 4.4 (80.0) & 3.7 (67.3) & 2.1 (38.2) \\
\hline & 3324-8 & 5.7 & 4.5 (78.9) & 3.7 (64.9) & 2.1 (36.8) \\
\hline & 3324-9 & 5.7 & 5.0 (87.7) & 4.3 (75.4) & 1.9 (33.3) \\
\hline & 3324-10 & 5.0 & 4.0 (80.0) & 3.7 (74.0) & 1.7 (34.0) \\
\hline & 3324-11 & 5.1 & 4.3 (84.3) & 3.6 (70.6) & 2.2 (43.1) \\
\hline & 3324-12 & 5.2 & 4.7 (90.4) & 3.8 (73.1) & 2.1 (40.4) \\
\hline & 3324-13 & 5.8 & 4.9 (84.5) & 3.8 (65.5) & 2.0 (34.5) \\
\hline & 3324-14 & 5.3 & 4.5 (84.9) & 4.1 (77.4) & 2.0 (37.7) \\
\hline & 3324-15 & 4.8 & 3.9 (81.3) & 3.5 (72.9) & 1.6 (33.3) \\
\hline LU & 69852 & 5.4 & 4.7 (87.0) & 3.6 (66.7) & 1.9 (35.2) \\
\hline & 69853 & 4.1 & 3.1 (75.6) & & 1.3 (31.7) \\
\hline & 69854 & 3.9 & 3.0 (76.9) & & 1.4 (35.9) \\
\hline & 69855 & 5.2 & 4.1 (78.8) & & 2.0 (38.5) \\
\hline & 69856 & 6.1 & 5.4 (88.5) & 3.8 (62.3) & 2.1 (34.4) \\
\hline & 69857 & 6.1 & 4.1 (67.2) & & 2.0 (32.8) \\
\hline & 69858 & 5.0 & 3.8 (76.0) & & 2.0 (40.0) \\
\hline & 69859 & 4.6 & 4.1 (89.1) & & 1.8 (39.1) \\
\hline & 69860 & 3.1 & 2.6 (76.5) & & 1.3 (38.2) \\
\hline & 69861 & 3.7 & 2.8 (75.7) & & 1.4 (37.8) \\
\hline & 69862 & 5.6 & 4.6 (82.1) & 4.2 (75.0) & 1.8 (32.1) \\
\hline & 69863 & 4.6 & 3.4 (73.9) & & 1.5 (32.6) \\
\hline & 69864 & 5.4 & 4.2 (77.8) & & 1.8 (33.3) \\
\hline & 69865 & 5.9 & 4.9 (83.1) & & 2.3 (39.0) \\
\hline & 69866 & 4.5 & 3.3 (73.3) & & 1.6 (35.6) \\
\hline & 69867 & 4.8 & 4.5 (93.8) & & 1.9 (39.6) \\
\hline
\end{tabular}

Corbulomima macneillii (cont.)
\begin{tabular}{lcccc}
N & 132 & 132 & 119 & 132 \\
\(\overline{\mathrm{x}}\) & 5.0 mm & \(83.3 \%\) & \(72.0 \%\) & \(37.0 \%\) \\
\(\operatorname{Max}\) & 6.8 & 100.0 & 90.0 & 48.5 \\
Min & 3.4 & 67.2 & 56.5 & 29.5 \\
OR & 3.4 & 32.8 & 33.5 & 19.0 \\
& & & & \\
S & 0.71 & 5.84 & 6.09 & 3.42 \\
\(\mathrm{~s}^{2}\) & 0.50 & 34.09 & 37.05 & 11.66 \\
V & 14.2 & 7.01 & 8.45 & 9.23 \\
\(\sigma \overline{\mathrm{x}}\) & 0.06 & 0.51 & 0.56 & 0.30
\end{tabular}

Corbulomima obscura (J. Sowerby)
\begin{tabular}{cccc} 
spec. no. & I & H & I \\
LU 69868 & 4.5 & \(3.3(73.3)\) & \(2.8(62.2)\) \\
69869 & 4.0 & \(2.8(70.0)\) & \\
69870 & 5.2 & \(3.6(69.2)\) & \\
69871 & 4.2 & \(3.0(71.4)\) & \\
69872 & 4.2 & \(3.1(73.8)\) & \\
69873 & 4.1 & \(2.8(68.3)\) & \\
69874 & 4.0 & \(2.7(67.5)\) & \(2.4(60.0)\) \\
& & & 2 \\
N & 7 & 7 & \(61.1 \%\) \\
\(\bar{x}\) & 4.3 mm & \(70.5 \%\) & 62.2 \\
Max & 5.2 & 73.8 & 60.0 \\
Min & 4.0 & 67.5 & 2.2 \\
OR & 1.2 & 6.3 & 1.56 \\
& & & 2.42 \\
s & 0.43 & 2.43 & 2.55 \\
\(\mathrm{~s}^{2}\) & 0.18 & 5.89 & 1.71
\end{tabular}

Pleuromya alduini (Brongniart)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & . no. & L & H & I & AL \\
\hline GSM & 24/58-1 & 45.1 & 29.2 (64.7) & 21.0 (46.6) & 12.1 (26.8) \\
\hline & 24/58-2 & 38.0 & 26.9 (70.8) & 21.3 (56.1) & 9.6 (25.3) \\
\hline GSM & KA 590 & 35.8 & 23.9 (66.8) & & 10.4 (29.1) \\
\hline & KA 542 & 37.4 & 25.8 (69.0) & 17.6 (77.1) & 10.1 (27.0) \\
\hline & KA 603 & 41.1 & 26.7 (65.0) & 21.8 (53.0) & 10.6 (25.8) \\
\hline & KA 609 & 39.3 & 27.4 (69.7) & 18.3 (46.6) & 11.9 (30.3) \\
\hline GSM & 42946 & 38.1 & 28.1 (73.8) & 21.6 (56.7) & 8.4 (22.0) \\
\hline & 42945 & 46.7 & 28.4 (50.8) & 20.8 (44.5) & 12.6 (27.0) \\
\hline & 42936 & 39.0 & 27.5 (70.5) & 18.8 (48.2) & 10.5 (26.9) \\
\hline & 42937 & 42.8 & 27.3 (63.8) & 19.3 (45.1) & 12.2 (28.5) \\
\hline & 42938 & 36.7 & 26.9 (73.3) & 17.6 (48.0) & 11.1 (30.2) \\
\hline & 42939 & 29.2 & 17.8 (61.0) & 13.1 (44.9) & 8.2 (28.1) \\
\hline & Y2020 & 30.2 & 20.8 (68.9) & 13.0 (43.0) & 10.6 (35.1) \\
\hline & 42947 & 47.8 & 32.7 (68.4) & 26.5 (55.4) & 12.7 (26.6) \\
\hline & 42940 & 47.3 & 32.7 (69.1) & 26.4 (55.8) & 14.3 (30.2) \\
\hline GSM & GSa 3759 & 35.9 & 23.9 (66.6) & 15.7 (43.7) & 9.0 (25.1) \\
\hline & 3760 & 34.3 & 23.7 (69.1) & 17.3 (50.4) & 10.7 (31.2) \\
\hline & 3761 & 33.7 & 23.6 (70.0) & 15.7 (46.6) & 9.7 (28.8) \\
\hline GSM & 42941 & 35.5 & 23.7 (60.8) & 16.2 (45.6) & 11.8 (33.2) \\
\hline & 42942 & 38.4 & 25.6 (66.7) & 18.0 (46.9) & 11.4 (29.7) \\
\hline & 42943 & 32.4 & 21.1 (65.1) & 12.8 (39.5) & 11.1 (34.3) \\
\hline & 42944 & 29.2 & 18.1 (62.0) & 12.8 (43.8) & 10.3 (35.3) \\
\hline GSM & Zr 1704 & 38.8 & 26.7 (68.8) & 16.6 (42.8) & 11.4 (29.4) \\
\hline GSM & GSa. 3762 & 38.3 & 22.5 (58.7) & 14.2 (37.1) & 11.9 (31.1) \\
\hline & 3763 & 49.4 & 26.6 (53.8) & 22.1 (44.7) & 13.4 (27.1) \\
\hline & 3764 & 46.7 & 27.9 (59.7) & 23.6 (50.5) & 13.3 (28.5) \\
\hline & 3644 & 43.0 & 33.3 (77.4) & 25.4 (59.1) & 9.4 (21.9) \\
\hline & 3645 & 42.7 & 34.5 (80.8) & 24.4 (57.1) & 10.2 (23.9) \\
\hline & 3646 & 42.7 & 30.9 (70.7) & 23.8 (54.5) & 11.2 (25.6) \\
\hline & 3647 & 46.5 & 35.8 (77.0) & 25.8 (55.5) & 11.1 (23.9) \\
\hline GSM & 25/47-1 & 65.9 & 49.5 (75.1) & 39.2 (59.5) & 15.6 (23.7) \\
\hline & 43060 & 41.3 & 28.8 (69.7) & 18.9 (45.8) & 11.9 (28.8) \\
\hline & 43061 & 30.5 & 22.1 (72.5) & 14.3 (46.9) & 9.2 (30.2) \\
\hline
\end{tabular}

Pleuromya alduini (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & L & H & I & AL \\
\hline GSM 43059 & 53.7 & 35.8 (66.7) & 23.8 (44.3) & 13.4 (25.0) \\
\hline Y2075 & 34.0 & 22.0 (64.7) & 14.3 (42.1) & 10.0 (29.4) \\
\hline 52295 & 39.8 & 31.5 (79.1) & 26.0 (65.3) & 8.8 (22.1) \\
\hline 52296 & 37.1 & 30.7 (82.7) & 21.0 (56.6) & 10.5 (28.3) \\
\hline 52298 & 30.5 & 24.1 (79.0) & 16.1 (52.8) & 8.7 (28.5) \\
\hline SM J12531 & 54.9 & 38.5 (70.1) & 25.5 (46.4) & 17.1 (31.1) \\
\hline J12532 & 44.8 & 33.8 (75.4) & 24.5 (54.7) & 12.8 (28.6) \\
\hline J12533 & 44.8 & 31.9 (77.9) & & 11.2 (25.0) \\
\hline J12534 & 38.0 & 33.2 (87.4) & 25.6 (67.4) & 10.2 (26.8) \\
\hline J12535 & 45.0 & 33.1 (73.6) & 26.7 (59.3) & 11.1 (24.7) \\
\hline J12536 & 35.5 & 23.7 (66.8) & 17.2 (48.5) & 8.3 (23.4) \\
\hline J26843 & 43.1 & 31.5 (73.1) & 22.6 (52.4) & 15.4 (35.7) \\
\hline J26844 & 44.3 & 29.6 (66.8) & 21.1 (47.6) & 12.9 (29.1) \\
\hline J26845 & 38.5 & 26.3 (68.3) & 19.8 (51.4) & 12.1 (31.1) \\
\hline J26846 & 34.3 & 24.6 (71.7) & 16.5 (48.1) & 11.2 (32.7) \\
\hline LU 69875 & 27.1 & 18.2 (67.2) & & 6.8 (25.1) \\
\hline 69876 & 26.1 & 16.7 (64.0) & & 6.3 (24.1) \\
\hline 69877 & 24.1 & 16.2 (67.2) & & 6.6 (27.4) \\
\hline 69878 & 18.5 & 11.4 (61.6) & & \\
\hline 69879 & 24.9 & 16.1 (64.7) & & 5.8 (23.3) \\
\hline 69880 & 21.3 & 13.6 (63.8) & & 7.6 (35.7) \\
\hline 69881 & 20.7 & 12.2 (58.9) & & 6.6 (31.9) \\
\hline 69882 & 27.4 & 17.0 (62.0) & & \\
\hline 69883 & 24.1 & 15.7 (65.1) & & \\
\hline 69884 & 25.4 & 18.9 (74.4) & & 8.7 (34.3) \\
\hline OuM J28242 & 28.5 & 17.4 (61.1) & & 7.4 (26.0) \\
\hline YM KD1974/56 & 33.8 & 21.8 (64.5) & & 9.0 (26.6) \\
\hline 1974/57 & 49.1 & 36.2 (73.7) & 23.8 (48.5) & 11.9 (24.2) \\
\hline \[
\begin{array}{r}
\text { Arkell pl. } 44 \\
\text { fig. }
\end{array}
\] & 39.8 & 29.4 (73.9) & 18.1 (45.5) & 11.1 (27.9) \\
\hline fig. 2 & 45.0 & 31.2 (69.3) & & 9.3 (20.7) \\
\hline fig. 3 & 46.6 & 35.2 (75.5) & & 10.7 (23.0) \\
\hline fig. 4 & 48.0 & 34.5 (71.9) & & 13.3 (27.7) \\
\hline
\end{tabular}
131.

Pleurorna alduini (cont.)
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & I & H & I & AL \\
\hline \[
\begin{array}{r}
\text { Arkell pl. } 44 \\
\text { fig. } 5
\end{array}
\] & \(46.0 \quad 34.4\) & (74.8) & & 11.4 (24.8) \\
\hline fig. 6 & 50.3 37.3 & (74.2) & & 13.7 (27.2) \\
\hline fig. 7 & 61.239 .7 & (64.9) & & 19.5 (37.9) \\
\hline fig. 8 & 50.235 .3 & (70.3) & & 13.1 (26.1) \\
\hline fig. 9 & 51.335 .6 & (69.4) & & 15.7 (30.6) \\
\hline N & 70 & 70 & 48 & 67 \\
\hline \(\bar{x}\) & 39.4 mm & 69.2 \% & 49.8\% & 27.9 \% \\
\hline Max & 65.9 & 87.4 & 67.4 & 35.7 \\
\hline Min & 18.5 & 53.8 & 37.1 & 20.7 \\
\hline OR & 47.4 & 33.2 & 30.3 & 15.0 \\
\hline s & 8.26 & 6.12 & 6.43 & 3.62 \\
\hline \(s^{2}\) & 68.30 & 37.42 & 41.36 & 13.10 \\
\hline V & 20.96 & 8.84 & 12.91 & 12.96 \\
\hline \(\sigma \bar{x}\) & 0.99 & 0.73 & 0.93 & 0.44 \\
\hline
\end{tabular}

Pleuromya uniformis ( \(J\). Sowerby)
\begin{tabular}{|c|c|c|c|c|}
\hline spec. no. & I & H & I & AL \\
\hline SM J12526 & 31.4 & 27.7 (56.4) & 11.7 (37.3) & 11.1 (35.4) \\
\hline J12527 & 38.9 & 22.2 (57.1) & 15.4 (39.6) & 12.8 (32.9) \\
\hline J12528 & 32.9 & 19.3 (58.7) & 11.8 (35.9) & 11.4 (34.7) \\
\hline J12529 & 40.1 & 20.2 (50.4) & 16.7 (41.6) & 11.8 (29.4) \\
\hline J12530 & 43.2 & 24.3 (56.3) & 19.5 (45.1) & 12.9 (29.9) \\
\hline J12537 & 29.2 & 15.4 (52.7) & & 11.9 (40.8) \\
\hline J12538 & 36.5 & 18.7 (51.2) & & 12.7 (34.8) \\
\hline J12539 & 36.7 & 18.8 (51.2) & & 14.9 (40.6) \\
\hline GSM 24/57-1 & 54.9 & 31.3 (57.0) & 20.3 (37.0) & 18.4 (33.5) \\
\hline 24/57-2 & 34.7 & 18.0 (51.9) & 12.1 (34.9) & 11.0 (31.7) \\
\hline 24/57-3 & 29.3 & 17.7 (60.4) & 11.9 (40.6) & 10.1 (34.5) \\
\hline 24/57-4 & 28.0 & 16.2 (57.9) & 12.2 (43.6) & 8.9 (31.8) \\
\hline SM J49979 & 47.6 & 27.0 (56.7) & 19.6 (41.2) & 14.8 (31.1) \\
\hline J49980 & 71.2 & 39.0 (54.8) & 23.6 (33.1) & 29.8 (41.9) \\
\hline J49981 & 27.1 & 16.1 (59.4) & 10.5 (38.7) & 9.2 (33.9) \\
\hline J49982 & 32.2 & 19.7 (61.2) & 13.4 (41.6) & 9.8 (30.4) \\
\hline \[
\underset{\text { Arkell pl. }}{\text { fig. }} 45
\] & 40.0 & 26.8 (67.0) & 17.1 (42.8) & 13.7 (34.3) \\
\hline fig. 2 & 40.5 & 23.4 (57.8) & 18.3 (45.2) & 15.7 (38.8) \\
\hline fig. 3 & 47.8 & 28.8 (60.3) & 19.7 (41.2) & 17.0 (35.6) \\
\hline fig. 4 & 35.0 & 22.0 (62.9) & 14.2 (40.6) & 10.7 (30.6) \\
\hline fig. 5 & 44.4 & 25.8 (58.1) & 19.0 (42.8) & 15.9 (35.8) \\
\hline fig. 6 & 39.8 & 21.7 (54.5) & & 12.3 (30.9) \\
\hline fig. 7 & 46.1 & 26.5 (57.5) & & 17.0 (36.9) \\
\hline fig. 8 & 39.7 & 29.4 (74 1) & & 14.6 (36.8) \\
\hline fig. 9 & 37.5 & 25.0 (66.7) & & 14.3 (38.1) \\
\hline fig. 10 & 37.2 & 26.2 (70.4) & & 13.1 (35.2) \\
\hline fig. 11 & 33.4 & 20.2 (60.5) & & 10.8 (32.3) \\
\hline fig. 12 & 30.7 & 19.0 (61.9) & & 10.4 (33.9) \\
\hline fig. 13 & 53.6 & 26.7 (49.8) & & 15.7 (29.3) \\
\hline
\end{tabular}
133.

Pleuromya uniformis (cont.)
\begin{tabular}{lcccc} 
& L & H & \(I\) & AL \\
N & 29 & 29 & 18 & 29 \\
\(\overline{\mathrm{x}}\) & 39.3 mm & \(58.4 \%\) & \(40.2 \%\) & \(34.3 \%\) \\
Max & 71.2 & 74.1 & 45.5 & 41.9 \\
Min & 27.1 & 49.8 & 33.1 & 29.3 \\
OR & 44.1 & 24.3 & 12.4 & 12.6 \\
& & & & \\
S & 9.45 & 3.82 & 3.42 & 3.45 \\
S & 89.29 & 3.85 & 11.68 & 11.89 \\
V & 24.05 & 9.96 & 8.51 & 10.04 \\
\(\sigma \frac{1.08}{\mathrm{x}}\) & 1.75 & 0.81 & 0.64
\end{tabular}

Thracia depressa (J. de C. Sowerby)
\begin{tabular}{ccccc} 
spec. no. & I & H & I & AL \\
BM L6979 (NTT) & 53.9 & \(40.8(75.7)\) & \(20.7(38.4)\) & \(34.6(58.1)\) \\
GSM 25/52 & 52.5 & \(38.9(74.1)\) & \(24.0(45.7)\) & \(29.6(56.4)\) \\
\(25 / 50\) & 59.4 & \(47.2(79.5)\) & \(24.5(41.2)\) & \(31.4(52.9)\) \\
43067 & 56.8 & \(52.4(92.3)\) & \(25.6(45.1)\) & \(30.7(54.0)\) \\
43068 & 52.3 & \(45.9(87.8)\) & \(31.8(60.8)\) & \(26.8(51.2)\) \\
43058 & 29.4 & \(23.4(79.6)\) & \(13.4(45.6)\) & \(18.4(62.6)\) \\
43064 & 53.9 & \(40.8(75.7)\) & & \(37.4(69.4)\) \\
57522 & 47.9 & \(36.4(76.0)\) & \(21.4(44.7)\) & \(31.6(66.0)\) \\
SM 26894 & 57.2 & \(46.5(81.3)\) & \(27.6(48.3)\) & \(30.6(53.5)\) \\
26895 & 46.6 & \(34.4(73.8)\) & \(17.4(37.3)\) & \(27.4(58.8)\) \\
26896 & 61.2 & \(44.6(72.9)\) & \(24.0(39.2)\) & \(32.0(52.3)\) \\
26897 & 44.6 & \(31.9(71.5)\) & & \(23.6(52.9)\) \\
26898 & 46.2 & \(34.5(74.7)\) & \(13.8(29.9)\) & \(30.2(65.4)\) \\
GSM GSa 3648 & 55.8 & \(42.0(75.3)\) & \(20.0(35.8)\) & \(35.1(62.9)\) \\
3649 & 58.5 & \(49.1(83.9)\) & \(25.3(43.2)\) & \(39.9(68.2)\) \\
LU 69885 & 58.6 & \(48.9(83.4)\) & \(18.9(32.3)\) & \(38.8(66.2)\)
\end{tabular}
\begin{tabular}{lllll}
N & 16 & 16 & 14 & 16 \\
\(\overline{\mathrm{x}}\) & 51.8 mm & \(78.6 \%\) & \(41.7 \%\) & \(59.4 \%\) \\
Max & 59.4 & 92.3 & 60.8 & 69.4 \\
Min & 29.4 & 71.5 & 29.9 & 51.2 \\
OR & 30.0 & 20.8 & 30.9 & 18.2 \\
& & & & \\
s & 7.98 & 5.84 & 7.89 & 6.34 \\
\(\mathrm{~s}^{2}\) & 63.61 & 34.10 & 62.30 & 40.19 \\
V & 15.40 & 7.43 & 12.67 & 10.67 \\
\(\sigma \overline{\mathrm{x}}\) & 1.99 & 1.46 & 2.11 & 1.59
\end{tabular}

Thracia depressa (cont.)
Lower Oxford Clay specimens
\begin{tabular}{cccc} 
spec. no. & L & H & AL \\
YM KD1974/58 & 39.0 & \(27.3(70.0)\) & \(23.7(60.8)\) \\
LU 69886 & 49.5 & \(33.4(67.5)\) & \(33.1(66.9)\) \\
69887 & 52.1 & \(35.3(67.8)\) & \(31.6(60.7)\) \\
69888 & 59.1 & \(41.5(70.2)\) & \(36.2(61.3)\) \\
69889 & 52.9 & \(35.6(67.3)\) & \(32.3(61.1)\) \\
69890 & 63.9 & \(42.8(67.0)\) & \(38.8(60.7)\) \\
69891 & 29.7 & \(20.6(69.4)\) & \(19.5(65.7)\) \\
69892 & 28.9 & \(18.4(63.7)\) & \(17.5(60.6)\) \\
69893 & 65.1 & \(48.9(75.1)\) & \(36.7(56.4)\) \\
69894 & 37.8 & \(28.7(75.9)\) & \(24.3(64.3)\) \\
69895 & 26.8 & \(18.1(67.5)\) & \(17.2(64.2)\) \\
69896 & 22.2 & \(17.0(76.6)\) & \(13.7(61.7)\) \\
69897 & 37.5 & \(28.9(77.1)\) & \(22.1(58.9)\) \\
69898 & 38.4 & \(28.2(73.4)\) & \(22.8(59.4)\) \\
69899 & 45.1 & \(33.3(73.8)\) & \(27.6(61.2)\) \\
69900 & 57.6 & \(42.4(73.6)\) & \(31.3(54.3)\) \\
69901 & 42.4 & \(29.7(70.0)\) & \(25.4(59.9)\) \\
69902 & 27.7 & \(18.8(67.9)\) & \(16.1(58.1)\) \\
69903 & 19.9 & \(13.9(69.8)\) & \(12.7(63.8)\) \\
69904 & 44.2 & \(29.3(66.3)\) & \(29.3(66.3)\)
\end{tabular}
\begin{tabular}{llll}
\(\mathbb{N}\) & 20 & 20 & 20 \\
\(\overline{\mathrm{x}}\) & 42.0 mm & \(70.5 \%\) & \(61.3 \%\) \\
Max & 65.1 & 77.1 & 66.9 \\
Min & 19.9 & 63.7 & 54.3 \\
OR & 45.2 & 13.4 & 12.6
\end{tabular}
\[
136 .
\]

Thracia depressa (cont.)
\begin{tabular}{lrrr} 
& \multicolumn{1}{c}{ L } & \multicolumn{1}{c}{ H } & \multicolumn{1}{c}{ AL } \\
& & & \multicolumn{1}{c}{} \\
s & 13.65 & 3.84 & 3.21 \\
\(\mathrm{~s}^{2}\) & 186.28 & 14.77 & 10.30 \\
V & 32.50 & 5.45 & 5.23 \\
\(\sigma-\overline{\mathrm{x}}\) & 3.05 & 0.86 & 0.72
\end{tabular}

Overall
\begin{tabular}{lllll} 
& L & H & I & AL \\
N & 36 & 36 & 14 & 36 \\
\(\overline{\mathrm{X}}\) & 45.4 mm & \(74.1 \%\) & \(41.7 \%\) & \(60.5 \%\) \\
Max & 65.1 & 92.3 & 60.8 & 69.4 \\
Min & 19.9 & 63.7 & 29.9 & 51.2 \\
OR & 45.2 & 28.6 & 30.9 & 18.2 \\
& & & & \\
s & 12.36 & 6.26 & 7.89 & 4.87 \\
s \(^{2}\) & 152.86 & 39.17 & 62.30 & 23.72 \\
V & 26.67 & 8.45 & 12.67 & 8.05 \\
\(\sigma \overline{\mathrm{x}}\) & 2.06 & 1.04 & 2.11 & 0.81
\end{tabular}
137.

Anomalodesmatan SD. A.
\begin{tabular}{|c|c|c|c|}
\hline spec. no. & L & H & AL \\
\hline BM LL27735 & 11.1 & 8.1 (73.0) & 4.3 (38.7) \\
\hline 27736 & 9.3 & 7.0 (75.3) & 2.9 (31.2) \\
\hline 27737 & 13.6 & 10.5 (77.2) & 4.9 (36.0) \\
\hline 27738 & 7.8 & 4.9 (62.8) & 2.8 (35.9) \\
\hline 27739 & 12.5 & 8.3 (66.4) & \\
\hline 27740 & 9.0 & 6.4 (71.2) & 3.4 (37.8) \\
\hline LU 69905 & 9.8 & 6.3 (64.3) & 3.4 (34.7) \\
\hline 69906 & 7.3 & 5.0 (68.5) & 2.7 (37.0) \\
\hline 69907 & 13.7 & 9.6 (70.1) & 5.3 (38.7) \\
\hline 69908 & 10.8 & 7.4 (68.5) & 3.8 (35.2) \\
\hline 69909 & 6.7 & 5.0 (74.6) & \\
\hline 69910 & 8.6 & 6.9 (80.2) & 2.6 (30.2) \\
\hline 69911 & 14.0 & 10.8 (77.1) & 4.8 (34.3) \\
\hline 69912 & 6.8 & 4.2 (61.8) & \\
\hline 69913 & 8.3 & 5.7 (68.7) & \\
\hline 69914 & 8.7 & 6.1 (70.1) & 3.2 (36.8) \\
\hline 69915 & 8.5 & 6.0 (70.6) & 3.2 (37.6) \\
\hline 69916 & 8.8 & 5.3 (60.2) & 2.7 (30.7) \\
\hline 69917 & 10.6 & 6.9 (65.1) & 3.9 (36.8) \\
\hline 69918 & 9.3 & 6.5 (69.9) & 3.2 (34.2) \\
\hline 69919 & 5.5 & 3.5 (63.6) & \\
\hline 69920 & 12.0 & 8.3 (69.2) & 3.6 (30.0) \\
\hline 69921 & 6.0 & 4.2 (70.0) & \\
\hline 69922 & 7.6 & 5.0 (65.8) & \\
\hline 69923 & 10.0 & 7.1 (71.0) & 3.8 (38.0) \\
\hline 69924 & 7.6 & 5.1 (67.1) & 2.7 (35.5) \\
\hline
\end{tabular}
138.

Anomalodesmatan SD. A. (cont.)
\begin{tabular}{lccc} 
& L & H & AL \\
NI & 26 & 26 & 19 \\
\(\overline{\mathrm{X}}\) & 9.4 mm & \(69.3 \%\) & \(35.2 \%\) \\
Max & 14.0 & 80.2 & 38.7 \\
Min & 5.5 & 60.2 & 30.0 \\
OR & 8.5 & 20.0 & 8.7 \\
& & & \\
s & 2.35 & 4.95 & 2.83 \\
\(\mathrm{~s}^{2}\) & 5.54 & 24.54 & 8.02 \\
V & 25.08 & 7.15 & 8.04 \\
\(\sigma \overline{\mathrm{x}}\) & 0.46 & 0.97 & 0.65
\end{tabular}
139.

Anomalodesmatan sp. B.
\begin{tabular}{|c|c|c|c|}
\hline spec. no. & L & H & AL \\
\hline BM LL2774I & 8.9 & 5.7 (64.0) & 4.1 (46.1) \\
\hline 27742 & 9.2 & 6.1 (66.3) & 4.6 (50.0) \\
\hline 27743 & 9.0 & 6.0 (66.7) & 4.4 (48.9) \\
\hline 27744 & 9.6 & 6.4 (66.7) & 4.2 (43.8) \\
\hline 27755 & 7.1 & 4.6 (64.8) & 2.7 (38.0) \\
\hline LU 69925 & 7.9 & 5.5 (69.6) & \\
\hline 69926 & 6.6 & 4.5 (68.2) & 2.5 (37.9) \\
\hline 69927 & 8.1 & 5.0 (61.7) & \\
\hline 69928 & 5.6 & 3.8 (67.9) & \\
\hline 69929 & 6.1 & 4.3 (70.5) & \\
\hline 69930 & 7.3 & 4.7 (64.4) & \\
\hline 69931 & 8.1 & 5.6 (69.1) & 3.6 (44.4) \\
\hline N & 12 & 12 & 7 \\
\hline \(\bar{x}\) & 7.8 mm & 66.7 \% & \(44.2 \%\) \\
\hline Max & 9.6 & 70.5 & 50.0 \\
\hline Min & 5.6 & 61.7 & 37.9 \\
\hline OR & 4.0 & 8.8 & 12.1 \\
\hline s & 1.28 & 2.59 & 4.79 \\
\hline \(s^{2}\) & 1.63 & 6.69 & 22.94 \\
\hline V & 16.39 & 3.88 & 10.85 \\
\hline \(\sigma \frac{}{x}\) & 0.37 & 0.75 & 1.81 \\
\hline
\end{tabular}

\section*{APPFINDIX 4}
(In pocket inside back cover)

Percentage faunal composition of each bed at each pit.
\begin{tabular}{ll} 
4A & Calvert \\
\(4 B\) & Bletchley \\
\(4 C\) & Stewartby \\
\(4 D\) & Norman Cross
\end{tabular}
\(\mathrm{AZ}=\) Athleta Zone
\(C Z=\) Calloviense Zone
CSZ \(=\) Calloviense Subzone
ESZ \(=\) Enodatum Subzone
\(A=\) Abundant
\(\checkmark=\) Present```

