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1 INTRODUCTION

In this study we shall be concerned with the small oscillations of a 

canal-like body of water under the influence of a periodic disturbance in 

the gravitational field - such as is produced by the action of the moon.

The purpose of the work is to explore the significance of the different 

parts of the Coriolis force in determining the nature of the solution, and 

to contrast the findings with those derived from Laplace ' s equations . We shall 

therefore find it appropriate to begin this discussion with a review of the 

assumptions underlying Laplace’s equations, and of the subsequent comments 

which led to the formulation of the present problem.

Laplace considered the tidal oscillations of an ocean of comparatively 

small depth covering a rotating globe. The motion of this fluid is mainly 

horizontal, which led him to propose that the vertical acceleration of the 

fluid particles be ignored. Under these circumstances the corresponding 

equation of motion is reduced to the hydrostatic pressure law. Consequently, 

the dynamic pressure may be replaced throughout the equations by the eleva

tion of the free surface ^, multiplied by a suitable constant.

In the continuity equation it then follows that the vertical velocity 

is linearly related to the height above the ocean bottom, with the velo

city at the free surface, determining the constant of proportionality.

Elsewhere, the small vertical component of velocity and all non-linear 

terms could be regarded as negligible.

By this process, Laplace was led to formulate a set of three linear 

differential equations in three unknowns; namely the two horizontal velocity 

components and Ç. These he took as the governing equations for the flow.



Their subsequent application has been widespread to the many particular 

fluid domains of interest to workers on the dynamical theory of the tides

However, Laplace’s equations were not without criticism. Firstly, 

the neglect of vertical acceleration will depend on whether significant 

variations in this direction can occur over a distance shorter than or 

equal to the depth of the ocean. Such is the case when the motion takes 

the form of ’’cellular oscillations", ie periodic changes in the velocity 

components with increasing depth, including associated reversals of 

sign. [ 2 ] established that such motions are permissible for a tidal 

constituent of period 2ir/a such that

2 , 2
a < 4w

where w is the angular speed of the earth’s rotation. The main force of
this criticism referred to the diurnal constituents for which is 

2near w .

Furthermore, both [ 3 ] and [ 4 ] , on retaining vertical acceleration

in the particular examples which they studied, found that the nature of
2 2the motion depended in a fundamental way on the.sign of 1 - 4w /o . This 

led [ 3 ] to propose that solutions differing greatly from those obtained 

via Laplace’s equations would result when a* < . Also [ 4 ] pointed out

that for the semi-diurnal constituent, in which = Um* , Laplace’s 

equations did not appear to he valid in the case of a flat circular basin 

of uniform depth.



These various criticisms were taken up hy Proudman [5 ] , Using

Solherg’s equations [3 ] or a simplified form of them in cylindrical 

co-ordinates, he examined the solution for a number of fluid domains. His 

findings for the different tidal constituents were then contrasted with 

solutions derived from Laplace's equations. The results of this work 

indicated that for two particular fluid domains Laplace’s equations were 

not always valid, but that elsewhere the necessary correction would only 

be slight. The two domains in question were the circular sea of uniform 

depth near the North Pole and a broad channel of uniform depth near the 

equator. In the former of these, Proudman found that the case of failure 

was that of the semi-diurnal constituent as, indeed, had [4 ] . In the

latter it was the long-period constituent, where cellular oscillations 

were found to occur.

These same two regions are the subject of the present study, with the 

emphasis on solutions where the necessary correction should only be small. 
Thus, among other things, Proudman’s work has indicated that high accuracy 

is obtained from Laplace’s equations for the semi-diurnal constituent in a 

broad equatorial canal. A similar statement would hold for a canal near 

the North Pole when considering the long-period constituent. However, in 

these two regions, Proudman’s remarks were based on simplified equations 

such that the description of vertical acceleration neglects the vertical 

part of the Coriolis force. Similarly, the vertical velocity term was 
also absent from the horizontal part of the Coriolis force. In the 

present study these two terms are retained, as they were by Solberg, and 

spherical polar co-ordinates are used throughout. A detailed examination 

is then made of the long-period constituent near the North Pole and the



semi-diurnal constituent near the equator. The findings from these more 

general equations are then examined to see if Proudman’s conclusions can 

be verified or not.

The conclusions of the present work are distributed at the ends of 
the relevant sections.



2. THE GOVERNING EQUATIONS
2.1 The Tide-Generating Force

In this section we shall develop an expression for the variations 

in gravitational potential, at an arbitrary fixed point on the earth's 

surface, associated with the apparent motions of a neighbouring body 
such as the moon.

EARTH MOON

Figure 2.1

Thus, with reference to Fig 2.1, let 0 and C be the centres of the earth 

and moon respectively. Let the distance 00 be denoted by D and let 

the radius of the earth be denoted by r. Now the potential at P due 

to the moon's attraction is given by -YM/CP where M denotes the moon's 

mass and y is the gravitational constant. We may rewrite this potential

as

 (1)
(D̂  - 2rD cos 6 +

However, part of the gravitational force field acts to accelerate the 

whole mass of the earth parallel to 00. The value of the acceleration 

is yM/D^ s o , evidently, a uniform force field of intensity yU/D^ is the 
essential part devoted to this motion. The associated potential at P

5



of this force field is

— ^  r cos 6   (2)
D

As our concern is only with motions relative to the earth's surface, 

we must subtract this component from (l) whence we obtain an expression 

for the potential of the relative attraction at P which we shall denote 

by 0, ie

= — --------— ------ —  + ̂  r cos 6
(D - 2rD cos 6 + r D

-YM l-i . r  , 1 r* . 3 r* 2,—  [1 + g cos S - 2 ̂  + 2 ^  cos « -

+ —  r cos S
d"

-YM K  1 r* . 3 r* 2^1 — —    + —    COS o —

Writing = fi + YM/D which is such that zero potential is at the earth's 

centre, we obtain

^  YM “ cos^ô}   (3)



Now, for the fixed point P on the earth's surface, the angle 6 varies 
with time due to the motions of the earth and the moon. The principal 
source of variation is, of course, the earth's rotation. However, 
variations in 6 are more precisely related to the moon's hour angle 
measured from some fixed meridian.

MOON

Figure 2.2

To analyse the character of this relationship, let 0 he the co-latitude 

and (p the longitude of the point P (where longitude is measured eastward 
from some fixed meridian). Let A be the north-polar distance of the 
moon (see Fig 2.2) and let a be the hour angle of the moon measured west 

of the same fixed meridian. Then, in Fig 2.2.



NOG = A 

HOG = a + (J)

NOP = 0

PÔC = 6

Let PE be an arc of the great circle which intersects the longitude 
arc NC at right angles at E. By this construction we obtain two 
right spherical triangles PNE and PCE. Call

POE = X

NOE = y

We now make use of some standard results in spherical trigonometry 
which can be summarized as follows

0 r

Figure 2.3

In Fig 2.3, ABC is a right spherical triangle on a sphere of arbitrary 
radius. By considering the right angled triangles EFG, EFO, EGO, GFO, 

the following results are easily obtained:



sin b = sin c sin B

cos c = cos a cos b

cos 3 = tan a cot c

sin a = tan b cot 3

(U)

Thus, consider the right spherical triangle NPE in Fig 2.2. Using the 

second of the formulae (4) we have

cos 0 = cos X cos y (5)

and using the fourth formula in (4) we have

sin y = tan x cot (a + 4>) (6)

Consider, furthermore, the right spherical triangle CPE. Again, 
from the second of formulae (4) we obtain

cos 6 = cos X cos (A - y)

= cos X (cos A cos y + sin A sin y)

= cos A cos X cos y + sin A sin y cos x (7)

Then, eliminating cos x in the first of the terms of equation (7) by 

using (5) we obtain

cos 6 = cos A cos 0 + sin A sin y cos x (8)



Now eliminating sin y from the second of the terms of equation (8) by 

using (6) we obtain

cos 6 = cos A cos 0 + sin A tan x cot (a + <|)) cos x

= cos A cos 0 + sin A sin x cot (a + ({>)   (9)

However, going back to the right spherical triangle NPE and using the 

first of formulae (4), we have

sin X = sin 0 sin (a + (|)) ....  (lO)

Hence, eliminating sin x from the second of the terms of equation (9) 
by using (lO), we obtain

cos 6 = cos A cos 0 + sin A sin 0 cos (a + ()>)   (ll)

Thus 6 is expressed in terms of the hour angle a, the north-polar
distance A, the co-latitude 0 and the longitude <J), If we substitute 

from expression (ll) for cos Ô into our expression (3) for0 we obtain

3 r' ^Y  - [cos A cos 0 + sin A sin 0 cos (a + <J))]̂ ^

= ^  yM ^  f Y  " cos^A cos^0 - ^  sin 2A sin 20 cos (a + #) -

. 2 . . 2 .- Sin A sin 0 cos* (a + <p)̂

YM ——  f ̂  — cos A cos 0 — “  sin 2A sin 20 cos (a + ^)

. 2 . .- Sin A sinin'8 ^co8 2 ij \

10



= YM Y  ” cos A cos^0 - ̂  sin 2A sin 20 cos (a + (j>) -

1 . 2  . 2- sin A sin 0 cos 2 (a + #) -

1 2 2 \ - —  (l - COS A)(1 - cos 0) j

^  YM Y  - cos^A cos^0 - ̂  ^  cos^ 0 + ^  cos^A -

1 2 2 1 .- —  COS A COS 0 - —  sin 2A sin 20 cos (a + (J>)

1 . 2  , 2- ^  sin A sin 0 cos 2 (a +

Hence, if we let 

3 /H = - I  YM   (12)

we obtain

o — ^  H ̂  cos A - ^cos 0 —

+ ^  H sin 2A sin 20 cos (a + ((>) +  (l3)

+ ^  H sin^A sin^0 cos 2 (a + 4>)

Each of the terms of (13) may be regarded as representing a partial 

tide, and the results superposed.

11



For any given point P, both 0 and <P will have specific values 

in the above expression. However, taking into account the detailed 

motions of the earth and the moon, A and a will vary with time in a 

rather complicated way. Without entering into this complexity, it 

may be noted that the variations of A and a will be of long period, 

in which case it is clear that the expansion of (13) into a series 

of simple harmonic functions of time will give rise to terms of 

three distinct types.

First, we have the tides of long period, for which

= K' ^cos^0 - cos (at + e)  (l4)

where is a constant. Laplace has called these tides the 
’Oscillations of the First Species’, the most important being the 

’lunar fortnightly' where, in degrees per mean solar hour, 
a = 1°.098/hr and the 'solar annual' where a = 0° .082/hr.

Secondly, we have the diurnal tides, for which

fi = K^sin 0 cos 0 cos (at+(j> + e) ...... (15)o

where K'' is a constant and where a differs but little from the angular

velocity of the earth's rotation. Laplace called these tides the

"Oscillations of the Second Species" and they include the "lunar 

diurnal" where a = 13**.943/hr and the "solar diurnal" where 

a = l4®.959/hr.

12



Finally, we have the semi-diurnaü. tides, for which

= k ' " sin^0 cos (at + 2(j) + e)   (l6)

where k ' "  i s  a constant and where a takes values close to twice the 

earth's angular velocity. Laplace called these tides the 

"Oscillations of the Third Species" and they include the 'lunar semi

diurnal' where a = 28°.984/hr the 'solar semi-diurnal' a = 30°/hr

and the 'luni-solar semi-diurnal ' where a is exactly equal to twice the 
earth's angular velocity, ie a = 30°.082/hr.

13



2.2 The Governing Equations

In association with an arbitrary point P on or above the earth's 
surface, let (8*, 4»*, R*) be co-ordinates representings its co
latitude, longitude and radial distance measured outward from the 
earth's centre. This then defines a system of spherical polar 
co-ordinates rotating steadily with the earth's angular velocity 
about the polar axis.

R*

Figure 2.h

I k



Thus, in Fig 2.4, ON is the north polar axis and (o denotes the earth's 

Eingular velocity which has magnitude equal to w and direction ON.

The meridian NGS is the reference meridian from which longitude is 

measured eastward.

In this co-ordinate system, the equations governing the motion 

of an incompressible viscous fluid are those stating the conservation 

of mass and momentum, ie

V . ^* = 0   (1)

g
■ 3 ^  q* + q* . Vq* + 2w x q* + w x x £*)

= - —  VP* + F - vV X (v X q*)P —

(2)

where q* is the particle velocity and r^, t*, P*, p, v, F̂  represent 

respectively the position vector, time, pressure, density, kinematic 

viscosity and body force per unit mass. The body force will be 

assumed to be conservative, taking the form

F = -vn^ - V(R*g)   (3)

where 0̂  is the driving potential of one of the partial tides 

described earlier.

15



It is convenient to introduce in these equations a modified 

pressure function p defined as follows

p = P* + p(n^ + R*g) - p((4i X r*) . (o) X r*)   (4)

which allows equation (2) to he written in the form

q* + q* . Vq* + 2w x q*

= _ 1  Vp - vV X (v X q*)   (5)

The system of equations (l), (3), (4) and (5) then defines the vector 
form of the governing equations.

Turning to the component form, let us suppose

q* = u*0 + v*^ + w*R   (6)

where 0, R are the unit vectors in the directions of increasing 
0*, (J)*, R* respectively. The component form of equation (5) is then

^  u* ^   V»  + cot 0* -3t* R* 38* R* sin 0* 3** 3R* R* R*

2a.v»oos0* = + V’u* + ^ | f ^
 (7 )

u* _
R*^ sin^ 0*

2 cos 9* 9v*
R**sin^e*

l6



9v* . u* 3v* . V* 9v*  ̂ „ 9v* w*v* u*v*
at* R* 30* R* sin 0* 3** * 3R* * R* R* ®

+ 2(1) u* cos 0* + 2(1) w* sin 0* = — — ^  +...................(8)pR* sin 0* 3(j>*

+ V I V"v* ^ ^ ^  Q ^
R*^sin^0* R*^sin 0* R*^sin^0*

3w* u* 3w* V* 3w* 3w* (u*^ + v*^ )
at* R* 30* R* sin 0* 3(|)* ^ 3R* " R*

20.V» sin e* = - + V ( v" W» - ÿ  W» -

  (9)

u* cot 0* -
R*^

2 3v*
R*^ sin 0*

where

V = ----—----T%ir I sin 0* » 1 +  — ------- I ——  I +
R*^ sin

 ̂   (10)

(■•®)

Furthermore, the continuity equation is given by

^  ̂ (u* sin 0*) + ^ — T— ^  TTÏ +R* sin 0* 30* ' ' R* sin 0* 3**

 ( U )

+ (R** W*) = 0
R**

IT



We now proceed to simplify these equations as follows. First, 

let the radius of the earth be denoted by r and the mean height of the 

ocean be h. Let U and W denote, respectively, the typical horizontal 

and vertical speeds of flow measured relative to the surface of the 

earth. We may then introduce a non-dimensional scheme of variables 

defined by

R* = r + hR

0 * =  0

(J)* =

t* = t/ü)

u* = Uu

V* = Uv

W* = Ww

p = pwUr p

(12)

which allows equations (7)> (8), (9) and (ll) to be reduced to the
dimensionless form

at 1 + BE V, 90 sin 0 9(f) 1 9R

+ awu - V cot 0 I - 2v cos 0)-

r r s B  ie + G I +
2X. 9w u

(1 + BE)' (1 + BE)' sin'e

(13)

23 cos 0 9v
(l + 3R)*sin^0

I t ’̂ i TMBB + w | ^ + a w v  + uvcot e) +

18



+ 2u cos 9 + 2aw sin 9 = - (l + 3R) sin 9 3(()

+ E(     —  +
(l + 3R)^ sin^9

2X

(l + 3R) sin 9
9w

2 . 9(&

(14)

23 cos 9 9u 
(l + 3R)^sin^9

“ w  + ' ' I f - ’" ) -

- 2v sin 9 = -
2X

(1 + 3R)‘
w -

23^ 9u 23^ u cot 9
(1 + 3R)^ (1 + 3R)^

23 9v
(l + 3R)^ sin 9

(16)

where

a  7ïk;r7^
1 l_

2 9R(1 + 3R)
9

( IT )

19



and where a, 3, , e, E are dimensionless quantities defined as
follows

OL - —

e =

Wr
Uh

wr

3 = r

Wh
Ur̂

(18)

(19)

E =
wh

(20)

We may regard these as six non-dimensional parameters whose magnitudes 
indicate the relative importance of the different terms.

The parameter e = U/wr is known as the Rossby number for the 
flow and multiplies all non-linear terms. To assess its magnitude we 
note that U will be typically of order 1 fps whilst, at the earth's 

surface, the basic rotation speed is of the order 1,000 fps. Hence e 

is typically of order 10 ie we can assume that

e «  1 (21)

Non-linear terms in the governing equations may be neglected as a 

consequence, the motion being one of almost rigid rotation.

To estimate the magnitude of the Ekman number, E, we note that v 

is of the order 10~* ft*/sec and wh* is of the order 10* ft*/uc.
Hence E must be of the order 10 * approximately. However, E multiplies

20



the most highly differentiated terms in the governing equations and, 
to assess their importance, it is necessary to understand the 
behaviour within the boundary layers.

N

r sin
dt

Figure 2.5

Thus, let us consider the Ekman layer at the ocean bottom where the 
tangential velocity U is brought to its proper boundary value by 
viscosity. A fluid particle rotating with the boundary layer at P 
(Fig 2.5 ) will be thrown outwards along PP ' owing to the existence of 
centrifugal forces. In the process, angular momentum is gained 
which, ultimately, becomes imparted to the ocean body. This acts 
to counterbalance angular momentum taken from the ocean by tidal 
forces and imparted to the orbital motion of the moon.

The Ekman layer therefore acts as a source of angular momentum 
extracted from the rotating earth. Knowing the rate at which the 
earth is slowing down we may then estimate the vertical speed of fluid

21



particles leaving the layer. Thus, let denote the depth of the 

layer. We shall consider a ring of fluid through P centre C of 

width rd0 and depth5̂ . As the ring moves to P ' in time dt, its gain 

in angular momentum is 27rwp8̂ Û  r̂  sin 0 sin 20 d0 dt. Hence, for 

the entire layer, the total rate of change of angular momentum is

IT
sin 0 sin 29 d6 = y  M^wrU^   (22)

where ^  = 4npr^

Now, dw/dt denotes the rate of change of the earth’s angular velocity, 
so its rate of loss of angular momentum is given by

= I  ^   (23)
where is the mass of the earth. Equating the expressions (22) and 
(23) we obtain

~    (2 k )

Now, ^  is approximately 10 lbs and we may calculate the vaLLue of 

Uirpr* to be approximately 10^^ lbs/ft. From observations of the 

earth’s rotation, the rate of change of angular velocity adds 1/1000 sec 

to the day every 100 years. Hence dw/dt is approximately 10"**rads/sec 

and therefore 1/100 5^ fps. Conservation of mass then requires an

22



—Qaverage vertical velocity of 10 fps from the layer. If we assume 

that local variations are not too great, this clearly has a negligible 

effect on the interior flow.

At the edges of the continents, sidewall boundary layers will 

exist where the flow patterns can be quite complicated. However, with

out entering into this complexity, we shall assume that these also have 

a negligible effect on the interior flow so that terms involving E may 

be dropped from further consideration.^

With the typical dimensions met on earth, an outstanding feature 

of the flow system is the smallness of h compared with r. In such a 

system we can expect that a fluid particle will rise through the height 

h during the time that it takes to travel horizontally through the 

distance r. Consequently W must be small compared with U and we can 

write approximately

ÏÏ ~ 7    (25)

With h = 10̂  ft and r = 2 x 10^ ft this gives a = W/U ~ 10~*̂  which 

suggests that vertical motion may be neglected. However, this ignores 

the effect of the coriolis term w sin G which, near the equator, takes 

on importance as the u cos 0 term (equation (l4)) diminishes. 

Accordingly, we shall examine the three-dimensional nature of the motion 

and will assume the flow conditions are such that these terms may be 

of significance when

g  ̂ lO"*   (26)

1. However, tiiis assumption is subject to further review in 5 L.2 
owing to the nature of the solutions obtained tdiere.

23



for the present purposes.

The simplified equations are therefore as follows

1^ - 2v cos 0 = - 1 + BR B    (27)

+ 2u cos 0 + 2aw sin 0 = - ^  + gg, @   (28)

2̂ -  2v sin 0 =   (29)

& ( "  - “ «)  " I ? "

  (30)

Finally, we need to consider the boundary conditions for the flow.

The ocean bottom will be assumed to be the rigid spherical surface 

R = 0. Hence we must have

W = 0 on R = 0 ....  (31)

From angular momentum considerations we must also have

V -► 0 as 0 -► 0, IT............................... .(32A)

2k



Furthermore, we shall assume that the ocean is contained hy axially- 
symmetric wall's of the type G(0, R) = d where d is a constant and 
G(0, R) is a given function of 0 and R. The requirement that the 

normal velocity vanishes on the surface then gives

rrV  If H ' 0 . G(e, R) = d .... (32B)

At the free surface we shall assume that the pressure is uniform so 
that P* is a constant. Hence

p - 0 - X(l + 3R) + y(l + 0R)^ sin*0 " \  > say (33)

defines the equation of the free surface, R = E(0, ip, t), where the

dimens ionless parameters A, y are given by

y = wr
2U

(3h)

and where fi is the dimens ionless driving potential given by

wUr (35)

As this surface must always consist of the same fluid particles, the 

general surface condition dP*/dt* = 0 holds. Hence we may write

3P»
at* - p gw* = 0

25



ignoring small terms. In the dimensionless form, this last condition 

becomes

=  0
R=R(8,#,t)

(36)

where k is the dimensionless parameter given by

k = 20) Ur
(37)

In the next chapter we shall examine the solution of these 

equations for the case of the semi-diurnal tide.

26



3 . THE THREE-DIMENSIONAL TIDAL EQUATIONS IN THE 

CASE OF THE SEMI-DIURNAL TIDE

3.1 The Perturbation Equations

In this chapter we shall examine the solution of equations 2.2 

(27)-(30) when the driving potential has a period of approximately 
12 hours. Certain features of these equations make the approach a 

little easier if the period is exactly twice the earth's angular 

velocity [l] . Such is the case with the luni-solar semi-diurnal tide. 

However we may regard the period of other "Oscillations of the Third 

Species" as small departures from this veilue. Then, formally expanding 
each of the dependent variables as a perturbation series in the small 

term, we obtain a sequence of problems where the approach of [l] may 
be utilized. We present here the analysis of the zeroth-order and 

first-order equations.

It is convenient to introduce the change of variables

w = aw

3z = 1 + 3R

z  = f p

(1)

so that the governing equations become

~  - 2v cos 0 1
z d(j) (2)

3v
at + 2u cos 0 + 2w sin 0 = - 1 92

z sin 0 a<j) (3)

27



1^  - 2w sin e = - Il   (U)

X ( , 3 i n e )  = 0   (5)

We consider a disturbing potential which is of the form

ÇI = 2F(9, z ) exp {-2it + iet + 2i^}   (6)

where F(9, z) is a known function and e is a small quantity. The 

problem is to determine the response of the ocean to this external 

driving potential.

We shall look for a solution of equations (2)-(5) of the form 

(u,v,w,P) = ^u(e, z), v(0, z), w(0, z), P(9, z) ̂  X

  (T)
X exp {-2it + iet + 2i<J)}

Substituting these expressions for u,v,w,2 into the above equations 

we obtain

1 AP(-2i + ie)u - 2v cos  ̂ " F  ae"   (8)

(-2i + ie)v + 2u cos 0 + 2w sin 0 = ---- ^ — - P ..... (9)z sin 0

(-2i + ie)w - 2v sin 0 = — ~  ....  (10)
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(u sin 0) + 2iv +  ̂—  (ẑ  w) = 0   (ll)

In equations (8), (9), (lO), (ll) we shall now try to obtain 
solutions for (u,v,w,P) in the form

u = u + eu + e^u + ....   (12)o 1 2

V = + ev̂  + e^v^ + ....   (13)

w = ŵ  + eŵ  + e^w^ + ....   (lU)

P = P + eP, + e^P^ + ....   (15)o 1 2

Hence, substituting these expressions into (8), (9)» (lO), (ll) and 

equating corresponding powers of e we obtain.

1iu + cos 0 =   (16)

iP
iv - u cos 0 - w sin 0 =  •   (17)o o o z sin 0

9P
iw + V sin 0 = ^    (l8)o o c. dZ

(u sin 0) + 2iv + — ^  (z^w ) = 0   (19)30 o o Z dZ o

for the zeroth-order coefficients.
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Now, the determinant of the coefficients of , w^ in (l6),
(it), (18) vanishes which we may exploit in the following way. 
Solving (16) and (I8) for and ŵ  respectively and substituting 

in (it) we obtain

cos 0 1
27 I T  - ® + V + o

+ sin 0 z Sin 0

Hence P satisfieso

9P _ 9P
sin 0 ® "

2P
9z z 90 z sin 0 (20)

the integral surfaces of which are generated by the integral curves 

of the equations:

dz
sin 0 = z d0

cos 0
z sin 0 dP
_________________0

2P (21)

Thus, the first equation of this set may be written as

dz
z

sin 0 
cos 0 d0

which integrates to give

z cos 0 = constant (22)
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The second equation of the set can he written as

d0 dP
sin 0 cos 0 2P

sec 0 d0 dP
tan 0 2P

which integrates to give

P cot 0 = constant (23)

From (22), this last relationship may be rewritten as

(z sin 0 )'
= constant

Hence we may write the general solution of equation (20) as

P̂  = 2(z sin 0) f(z cos 0) (2U)

where f(x) is an arbitrary function of x .

To obtain an expression for v̂  we now substitute for û  and ŵ  

from (l6) and (l8) in (19) to give

3v 9vo . 2 ̂  oSin 0 cos 0 -TT- + z sin 0 — —  + 3v do dZ o

I  &  ® i f ) ' "  i f )
(25)
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Substituting for P from (24) we then obtain

3v̂  2
sin 0 cos 0 + z sin 0 + 3vdo dZ o

= 4z sin 0 f(z cos 0) + ẑ  sin^ 0 f"(z cos 0)

which has integral surfaces given by the equations

d0 dz
sin 0 cos 0 . 2.z sin 0

dvo
-3v + 4z sin 0 f(z cos 0) + z^sin^0 f (z cos 0)

Hence, from the first of these equations

dz sin 0 d0
z cos 0

z cos 0 = Cj   (26)

where ĉ  is a constant. The second of the equations then gives

dv 3v 4c f(c ) c  ̂sin^ 0 f"(c )O O 1 1 , 1  1+ — — :---- r =- :---  +d0 Bin 0 cos 0 cos*0
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[ 3 d 6
Js i n0 c OS 0 _An integrating factor for this equation is = tan^0 so that

^ ( v  tan’ e) = Uc,
COS 0 cos 0

ie tan^0 = c^f(c^) tan^0 + ^   ̂f''(ĉ  ) + ĉ    (27)

where ĉ  is a constant. From (26) we may rewrite equation (27) as

V = z sin 0 f(c, ) + %  (z sin 0)̂  f ”(c ) +
 ̂ (z sin 0 )'

Hence, on substituting for ĉ  from (26) we obtain the general 
solution for v as followso

= z sin 0 f(z cos 0) + ^  (z sin 0)^ f"(z cos 0) +

+   (28)
(z sin 0)

where q(a:) is an arbitrary function of x .

To obtain an expression for ŵ  we now use equations (10), (24) 

and (28) which give
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iŵ  = z sin^ 0 f (z cos 0 ) + ẑ  sin^ 0 cos 0 x

X f'(z COS 0) - ^  ẑ  sin^ 0 f"(z cos 0)

_ l(-Z_ÇOS_9j_   (29)
z(z sin 0)̂

For this to satisfy the boundary condition 2.2 (31) we must have

( I  COS 0)  + ^ ̂ = ~  sin 0 f I cos 0 ) + sin^ 0 cos 0 x
sin 0

Hence writing n = ^  cos 6 so that —  sin^ 0 = - n^, it follows that
 ̂ 3' 3'

q(n) E f(n) + n | | f'(n) -

- ) f"(n)   (30)

Accordingly, we can write equation (29) in the form

iw^ = z sin^0 f(z cos 0) + z^sin^0 cos 0 x

X f'(z cos 0) - ^  ẑ  sin^0 f ”(z cos 0)
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3 . 2.Z Sin 0
1 2 2 I—  Z cos 0 I f(z COS 0) +
3  I

+ Z COS 0 (  Z^COS^0 I f'(z COS 0 ) (31)

If 2 2
6 .2 - z COS 0 I f"(z COS 0 )

which contains one arbitrary function, f(x).

We now consider the conditions on the free surface. From the 
equations (2), (3) and (4) we note that the pressure is undefined to 

the extent of an arbitrary constant. Thus,

2  = C+P(0, z) exp {-2it + iet + 2i<j>} (32)

where C is a constant. From 2.2 (33), the equation of the free 
surface is therefore

3C + (3P(0, z) - 2F(0, z)} exp (-2it + ist + 2i<J>) - X0z +

(33)
+ u3 z sin 0 = ÏÏ

Now, at 0 =0, the mean height of this pressure surface is

z = —  (l + 3), hencep

3C - X(1 + 3) = ir (34)
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Thus, the equation of the free surface is

z = j ( l + 3 ) + ^  z^sin^e + -^ {3P(0, z) - 2F(0, z )}

exp (-2it + iet + 2i(f>)

The mean position of this surface will he given by

z = y  ( 1 + 3 ) + ^  z^sin^0P A

and this can be written with sufficient accuracy in the form

z = ^  (l + 3) + (1 + 3)̂  sin^0

or

z = ^  (l + 3) 1̂ 1 + e^sin^0

e = -f (1 + 3) = 0(10 )o A

(35)

(36)

We shall now consider the kinematic condition 2.2 (36). As the last 

term of (35) is only 0(l0 )̂ we may take this condition to be satis
fied on the mean surface (36). Hence we may write

2{3P^(0, z) - 2F(0, z)} - kiw^ = 0 ,

  (37)
z = j  (l + 3)^1 + sin^ 0^
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Substituting for and from (24) and (31) respectively, we 

obtain

^  {23(z sin 9)̂  f(z cos 0) - 2F(0, z)} - z sin^0 f(z cos 0)

- z^sin^0 cos 9 f'(z cos 0) + ^  ẑ’sin'̂ 0 f"(z cos 0) +1 3 . 4

2 . 2 -z Sin 0
- z^cos^0 I f(z cos 0) + z cos 0 X (38)

X I —  Z^COS^0 I f'(z COS 0) -
3^  I

^  [ -y Z^COS^0| f"(z COS 0 ) = 0

with z = ^  (l + 3)^1 + e^sin^0^. Accordingly, when this value of z

is inserted in (38) we have a linear second order differential 

equation for the determination of the function f. The function 

F(0, z ) has been discussed in 2.1 and it is clear that we have to 

study the case of

F(0, z) = K sin^0 (39)
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Thus the differential equation for f(n) is

I 2 2 .(z - n ) - 2

X (f(n) + nf'(n)) + ^ f 2 2 >(z - n ) 1 2 
—  -  n f"(n) (40)

4 k . 2 2/

where

= i  (1 + G) ( i + e sin 0o ) •
n

cos 8

We may now consider the remaining boundary conditions . Now, the 
nature of the function implies that condition 2.2 (32A) cannot be 

satisfied for all z on 0 = 0, ir. Hence our attention will be 

restricted to canal-like regions between two surfaces of the form

3z cos 0 = d (41)

where d is a given constant.

Figure follows
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N

z cos

w

Figure 3.1

Physically, these surfaces are planes parallel to the equatorial 

plane and distance d from it. It follows from the geometry that

ik2)

lu = zo

Now, from (l6), (2U), (28) and (30) we have

sin 9 cos 0 f(z cos 8) - sin 0 (z sin 0)̂  f'(z cos 0) -

1 n / • n \ ̂ **f n \ COS 0- COS 0 (z Sin 0) f (z COS 0) - 3 . 3z Sin

 Z^COS^0)^ f(z COS 0) + Z COS 0 X (Us)
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X I - <L COS^ 0 I f'(z COS 0 ) - ^  I  COS^ 0 f Z COS 0 )

Hence, applying 2.2 (32B) we obtain

w COS 0 - u sin 0 = 0 , 3z cos 0 = do o

which, from (31) and (Ul) leads to the condition

, f ' ( | )  = 0 ....

consequently two such surface conditions fully determine the function 

f .

The case where the two values of d are given hy

d = ±6 , 6 small

is of particular interest. Under these circumstances we may treat 

the sidewalls as vertical and the physical domain becomes the 

"equatorial canal" of width 25/3. The foregoing analysis describes 

the tidal theory in the canal when there is an appreciable vertical 

velocity.

The first order coefficients in (8), (9), (10) and (ll) yield 

the equations
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1 'h iiu, + V, cos 8 =   (45)

iv - u cos 0 - w sin 0 = ---r— - P +-^ v ....  (U6)1 1  1 z sin 0 1 2 o

1iw + V sin 0 = -  ^  V   (U?)1 1  2 dZ 2 o

^  (UjSin e)+2iVj = 0   (U8)

As with the zeroth-order equations we find that the determinant of the 
coefficients of u^, v^, ŵ  in (U5)* (U6), (hj) vanishes. Thus, from 

equation (U5)

and, using (l6), we then obtain

. a ?  / . a?̂
"i ° - à  W   ̂ " 2  A")#- -   (49)

Also, from (Uj)

i ^̂ 1 1
’'i = - 2 - â r  + ® + 2

1(1



which, using (l8), becomes

. 3P 1 / •1 ! . .  . I l l  o . .
\  = - 2 ^ - "  ® - 2 U T T '  ® (50)

Now substituting for û  and ŵ  in equation (U6) using the expressions 

(U9) and (50) we obtain

cos 0 i 9Pj 1 / i
^■ir " ® ■" 2 è ’if ■ ®

+ iVj + sin 0
, ap , /  . ap1 1 . . - . I l l  o . . _
2 T T ” ® + 2 2 I T  - ®

 T  P + —  Vz sin 0 1 2 o

ie putting p = h  + 2  p. (51)

we obtain

 + 1 2vz sin 0 \ Q z sin 0 (52)

Using (2U), (28) and (30) we may express this in terms of the 

function f(z cos 0) as follows

— ^  + 4  (z sin 0)* f"(z cos 0) +z sin 0 j
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(z sin 8)' 3
^—  z^cos^9 1 f (z cos 0) + z cos 0 X

(53)

X I - Z^COS^0 1 f'(z cos 0) -

1 1  2 2 
6 .2 - Z cos 0 1 f "( z cos 0 )

Now it may be observed that a particular integral of the equation

si„ 9 + £os_i iz.____a __3H R 30 R sin 6 = a(R sin 0)* G(R cos 0)

in which a, m and s are constant with s #  m - 1 is

.3 + 1_ a(R sin 0) G(R cos 0) 
^ s + 1 - m

Hence a particular integral of (53) is

Pj = ^  (z sin 0 )̂* f"(z cos 0) -
4(z sin 0 )'

3
Z^COS^0 ] f(z COS 0) + Z COS 0 * ^ 2 2 \Z COS 0 I X

(54)

X f'(z COS 0) -  Z^COS^0 I f"(z COS 0)
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To this must he added the complementary function which is of the same 

form as for the zeroth-order analysis. Hence

p = 2(z sin 0)̂  g(z cos 0) + p̂ (55)

where g(r) is an arbitrary function of x . Using the relationships 

(24) and (51) ve obtain

= 2(z sin 0)̂  g(z cos 0) + ^  (z sin 0 )̂  f"(z cos 0) -

(z sin 0)̂  f(z cos 0)    — X
2(z sin 0)

— —  z^cos^0 1 f(z cos 0) + z cos 0 X

X 1 —  z^cos^0 1 f'(z cos 0) -

(5 6 )

 ̂I  Z ^ C OS^0 I f"(z CO S 0 )

The solution of may now be obtained by substituting for û  and 

Wj from (49)  and (50) in equation ( 4 8 ) .  Thus we have

9Vi  ̂ 3v̂  ^
sin 8 cos e -jg- + z sin 0 ^  + 3v, = j

It It



3Psin

3P 9Psinsin 3z

3v 9v
sin cos sin — V9z

or, writing (57)

the above becomes

9v ^  + 3v+ z sinsin cos sin77 <

Sin
9z 9z

ie, on dividing throughout by z sin

9v 9vcossin sin2z sinz sin

sin

z sin



In equation (58) we note that if h(z cos 0) is any function of

z cos 0 then

^■^j^sin 8 {(z sin 0)’ h(z cos 0)}^+ —sin 0_ ^

X 1̂  ̂ -^{(zsinB)* h(z cos 0 ) }J

{(z sin 0)* h(z cos 0)} +Z da

+ _à__ {(2 sin 0)* h(z cos 0)} +
 ̂ 30

+ 2 sin 0 {( z sin 0)* h(z cos 0 )} +

2 ^
+ z sin 0 — — {(z sin 0)* h(z cos 0 )} 

92

_ cos 0/ 3 . 8 - 1 -  .  ̂ . \ / . _\» + l= — -— I sz Sin 0 cos 0 h(z cos 0) - ( z sin 0) x

X h'(z cos 0)) + — X / z

X ^s(s - l) z* sin* ^0 cos 0 h(z cos 0) -
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- sz* sin* 0 h(z cos 0) - sz***sin*0 cos 0 h'(z cos 0) -

- (s + l)z*** sin* 0 cos 0 h'(z cos 0) + (z sin 0)*^^h"(z cos 0) j

+ 2 sin 0 ^sz* *sin^0 h(z cos 0) + cos 0 (z sin 0)*h'(z cos 0)^ +

+ z sin 0 ^s(s - l)z* ^sin*0 h(z cos 0) + sz* * sin* 0 cos 0 %

h'(z cos 0) + sz*  ̂sin’0 cos 0 h'(z cos 0) +

+ cos 0 (z sin 0)’ h"(z cos 0)

2 s — 1 . 9 — 1 ̂   ̂\ S + 1 , s  + l w/ Vs z Sin 0 h(z cos 0} + z sin 0 h (z cos 0)

Using the above result, we find that on substituting in the RHS of 

(58) for p and v we obtain
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 ̂ 3v . cos 0 3v . 3vsin 0 —  + —— -—  —  +9z z 30 z sin

1
2z sin 0 8(z sin 0) g(z cos 0) + 2(z sin 0) x

X g z cos 0) + — (z sin 0)̂  f "( z cos 0) +

+ ^ (z sin 0)̂  f"" (z cos 0 )

q. '( z cos 0 )
2 (z sin 0)

z sin (z sin 0) f(z cos 0) + ^ (z sin 0)̂  x

X f"(z cos 0 ) I

We have already observed that a particular integral is of the form 

a(z sin 0 )* * G(z cos 0) for each term and so we may write down the 

solution for v as

V = (z sin 0) g(z cos 0) + ^ (z sin 0 g"(z cos 0) +

+ ^ (z sin 0)̂  f ”(z cos 0) + ^  (z sin 0)̂  f ( z cos 0 )

48



+ (z sin 0) f "( z COS 0) + -  ̂̂
(z sin 0 )̂

(59)

where Q(z cos 0) is an arbitrary function of z cos 0. Hence from 

equation (57)

Vj = ( z sin 0) g(z cos 0) + ^ (z sin 0)̂  g "( z cos 0) +

+ |- (z sin 0)̂  f "( z cos 0 ) + ^  (z sin 0)̂  f"" (z cos 0 ) -

1. q'̂ (z cos 0)
z sin (z sin 0) f(z cos 0) +

  (60)
+ (z sin 0) f "(z cos 0) + 9P-̂.8)

(z sin 0)

- ^ (z sin 0) f(z cos 0) -

- (z sin 0)̂  f"(z cos 0 ) -----------■
2(z sin 0)

We may now obtain the solution for ŵ  by using equations (47), (56) 

and (60) together with equation (30). Thus

49



IW

+ \ z^sin*8f"(z cos 0) f ( z cos 0 ) -z sin cos12

- z sin z sin cos

q'(z cos 0)q(z cos 0 ) 
2ẑ  sin̂  0

cos
kz sin

z sin

q"(z cos 0)z sin

f ( z cos 0) -z sin z sin

f(z cosz sin
z sin

q(z cos 0)
^ 3 . 2 ̂2z sin 0

f (z cosz sin12

f(z cosz sin z sin cos

z sin



q(z cos 9 )
3 . 22z sin 0

ie we have

iŵ  = z sin^0 g(z cos 0) + z^sin^0 cos 0 g'(z cos 0 )

T z^sin*0 g"(z cos 0) - \
z sin 0

- ^ z sin̂  0 f(z cos 0) - ^  z^sin^0 cos 0 %

f'(z cos 0) + ^ ẑ  sin'* 0 f " { z cos 0) +

+ ^  z^sin*0 cos 0 f ( z cos 0) -

1 5 . 6qr z sin 0 f "" (z cos 0) +
z'sin 0

(61)

cos 0 q'(z cos 0 ) q"(z cos 0 ) 
4z Sin 0

+ ^ z sin^0 f(z cos 0) + ^  z^sin^0 cos 0 x
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X f'(z COS 0 ) - sink's f"(z cos 0) - ^
2ẑ  sin^ 0

We can now deal with the boundary conditions. From condition 2.2 
(31) we must have

Q (- cos 0 ] .
I — ^ 5 ^  sin 0 g ̂  cos 0 + ^  sin 0 cos 0 X

sin'0  ̂ ^ 3

' / 1  n \ sin"^ 0 ///IX g cos 0j - - ^ g  | - c o s  0j -

- sin^ 0 f ̂  ̂  cos 0 j  ^  sin^ 0 x
23

X cos 0 f ' COS 0^ + —^  sin 0 x   (62)2_ • 4
393

f " I ̂  cos 0 j + — -—  sin'* 0 cos 0 x
 ̂̂  123*

f ' "  cos 0)  sin^0 X
/ 963

X
3̂  q ( J  cos 0^ 

sin 0
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COS q — cos
cos

Hence, writing n = % cos 0 so that thesin

relationship (62) can he written as

Q(h) g(n) +

f(n)( n )

f"(n) +

(63)

f'" (n)

Accordingly, we may write (6l) in the form

z sin cosiw



g"(z COS 0) f(z COSz sin z sin z sin

z sinX cos z sin12

f'"' (z cos 8)(z COS 8)X cos z sin

(z cos 8 )z cos z cos z cos
g(z cos

z sin z sin

f(z coscos 8 ) z cosz cos

i+z sin6z sin

f ' (z cos 8 )z cos z cos

2z sin

cos 8 )z cos

9z sin

f"' (z cos 8)Z COSZ COS

12 z sin

COS 8)Z COS
q(z cos 8)

3 . 2 .z Sin 8z Sin



z COS 6 q'(z cos 6 ) 2 -  z^cos^ 9 |q"(z cos 6)

kz^ sin̂  0 8ẑ  sin^ 0
^ q(z cos e)

3 . 2z Sin

_ cos 9 q'(z COS 9) ^ q''(s cos 9) ^ 1  ̂ sirfe f(, ,^3 e) + 
Uz^in^e ® 2

+ ̂  z^sin^G cos 0 f'(z cos 6) - ^  z'̂ sin'̂0 f"(z cos 0) -1 3 . 4

q(z cos 9) 
2ẑ  sin̂  0

which contains one arbitrary function g{x) .

We may rewrite this equation as follows

i^w^ ~^^o) ~ jg(z cos 9) + z cos 0 g'(z cos 0) -

I 2 . 2  n / _\■7- z Sin 0 g (z cos 0)

. 2z sin 6
1 2 2—  - z cos

3 , 2z sin

3 1f(z cos 0) + — z cos 0 f'(z cos 0) -
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z COS
z sin z sin12 z sin

&  f "(z cos 0) + z cos 0 )cos z sin

z cos
z sin

z sin

g"(z cos 0)z cos

6z sin

f "( z cos 0 )z cos

12z sin

f'"'(z cos 8)z cos

q"(z cos 0)

8z sin

At the free surface we require the kinematic condition 2.2 (36) 

to be satisfied. Now from (l), (j) and (15) we have

= 6(-2i + ie ) (P̂  (0 , z)+eP^(0, z ) ) exp {-2it + iet + 2i^}



to first order in e. Hence substituting (6), (lU) and (65) into
2.2 (36) and equating corresponding powers of e we obtain

23P (e, z) - kiW| = 3P^(0, z) - 2F(0, z)   (66)

for the first-order coefficients. Equations (37) and (66) may be 
combined to give the equation

23P|(0, z) - ki ^W| - ^ w^j = 2(gP^(8, z) - 2F(8, z))   (6?)

where = ^(1 + B)(1+£ sin̂  8)

Substituting for P̂  (0, z), i ŵ̂  - ^ w^^ and P̂  ( 0, z) we obtain

^  (z sin 0 )̂  g(z cos 0) - g(z cos 0) + z cos0 g'(zcos0) -

1 2 . 2 „ U, ^ \- z sin 0 g (z cos 0 ; ̂ X

. 2z sin

1 2 2— —  z cos

3 . 2z sin

2 2z cos ~  I g"(z COS 8)

X 3 . 2.6z sin f

B ( z sin 0)̂ f(z cos 0) - F(0, z)
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^  (z sin 8 )'* f"(z cos 0) + ^  (z sin 0)^ f(z cos 0) +

k(z sin 0)
1  2 2
— Z COS 0 1 f(z COS 0) + Z COS 0 X

X I - Z^COS^0 I f X z  C O S  0) -

1 1  2 2 
6 2 - Z COS 0 1 f "( Z C O S  0 )

^ f(z COS 0) + ^ z COS 0 f'(z COS 0) ~ ^  z^sin^0 x

X f̂ '(z C O S  0 ) . 2z sin

1 2 2
—  - Z C OS

3 . 2z sin

^  f "( Z COS 0) + ~  Z COS 0 f (z COS 8 )

1 2 .2 f/ir / »^  z sin 8 f (z COS 0) 3 . 4z sin

1 2 2 Z COS
6̂ _________

3 . 2z sin 0

—  Z^COS^0 I ^ ̂  - Ẑ  1 f"" (z COS 0 )

96ẑ  sin̂  0

58



1 2 2
—  Z COS f  (z C O S  0) I q"(z cos 0)

12ẑ  sin̂  0 8ẑ  sin^ 0

with z = ^ (l + 3)^1 + E^sin^0 ^

Accordingly, when this value of z is inserted into the above we 

obtain a linear second order ordinary differential equation for 

the determination of the function g. Thus, with (39), the differen

tial equation for g(n) is

43 , 2 2.2 , .—  z(z - n ) g(n) - (z' - n')' 1 2 —  - n

X |g(n) + ng'(n)j +| (%' - n')' g" ( h )

(Z= - n'): + z(z= - q:): f(n) - (68)

J ^ z ( z :  - n=) f "(n) + ^ ^ z ( z =  - f(n) +

3z
I f(n) + n( 1 f '(n) -
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f"(n) f  f(n) + ^ n f ' ( n )

f"(n) + nf'" (n)

n') f'"'(n)

12

q"(n)

cos

At the surfaces gz cos 9 = ±d the boundary condition 2.2 (32B)

requires that



COS 9 - u. sin 9 = 0 , 6z cos 9 = ±d

Hence, from (45) and (4-7) we must have

. ap 3P
 - cos 9 = 0 , gz cos 9 = ±d   (69)

Now, using (56) and (30)

ap
89 = 4(z sin 9) z cos 9 g(z cos 9) - 2(z sin 9)̂  zsin9g'(z cos 9) +

+ ^ (z sin 9 z cos 9 f "( z cos 9 ) -

^ ( z sin 9)*̂ z sin 9 f ( z cos 9 )

- 2(z sin 9) z cos 9 f(z cos 9) +

+ (z sin 9)̂  z sin 9 f'(z cos 9) +

+ (z sin 9)  ̂z cos 9 q(z cos 9) +
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+ ^  (z sin 0)  ̂z sin 0 q/(z cos 8)

and

3P 2
= 4(z sin 6) sin 0 g(z cos 0) + 2(z sin 0) cos 8 g'(z cos 6) +

+ ^ (z sin 0 )̂ sin 0 f"(z cos 0) + ^ (z sin 0)"̂ cos 0 x

X f ( z cos 0) - 2(z sin 0) sin 0 f(z cos 0) -

- ( z sin 0 )̂  cos 0 f'(z cos 0) + (z sin 0) sin

q(z cos 0) - ^ (z sin 0)  ̂cos 0 q'(z cos 8)

Hence (69) gives

2(z sin 0)̂  g'(z cos 0) + ^ (z sin 0)"̂ f '" ( z cos 0) -

- (z sin 0 )̂  f'(z cos 0) - ^ (z sin 0)  ̂ q' ( z cos 0) = 0

on gz cos 0 = ±d. Thus, eliminating

6 2



and

• I I - ’ - t ' '"

■ 'y) ‘■'fe)' &( " :r i

= 0

' ( - f )  ■

(70)

Now, for the case of the equatorial canal we may take

z = ^ 1  + g)(l + e ) = constant (71

neglecting terms of the second order in small quantities. In this 

case (70) and (71) give two boundary conditions which, in conjunc

tion with equation (65), fully determine g(n)-

As d increases, (71) becomes less accurate, eventually, for 

values of d >> 0.05 the error becomes of the first order in e .O
The value of z is then no longer a constant but, to first order in ,

is dependent on n• However, g(n) itself is the first order term in 

the perturbation series and, as such, the net contribution of the 

error is of order ee . Thus, if e and e are of comparable magnitude
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the net error is still of the second order. Accordingly, we shall 

take (70) and (71) to apply throughout the range of values of d.

64



3.2 The Differential Equations

It has been shown that the problem of determining the 

functions (û  , û  , , ŵ  , ŵ  , , P̂  } reduces to one of solving

the differential equations 3.1.40 and 3.1.68. We now turn to this 

aspect of the problem, beginning the analysis by re-stating 3.1.40 

together with its boundary conditions. Thus, we have

^  z(ẑ  - f(n) -

(2= - n')'

/ 2 2 .2 / 1  2 (z - n ) -1 —  - n f̂(n) + nf'(n)^ +

(1)

where z = ^ (l + 3)fl + e sin^e + 0 ^ n
cos 0 (2)

Equation (l) holds throughout the region -d ^ gp ^ d, where d is a 

constant satisfying the inequality 0 < d  ̂1. At the boundaries we 

have

f'(d/g) = 0

f'(-d/g) = 0

(3)
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Now, from (2)

E COS

and

cos

Thus

2e

"T (1 + G)

^  (1 +

ie, to sufficient accuracy, we have



(5)

Now using (4) and (5) we may eliminate z in (l) and obtain

f (n) (1 + 6)

- t 2

ie multiplying through by

and bringing together corresponding powers of n, we obtain



f(n) -

2e
2 + lie



- e 9 -
(1 + B)'

(l + 6 ) 6 ;--  n f"(n)

(1 + kE ) n' +

+ (l + 4e ) no

The coefficient multiplying f"(n) has no zeros in the interval 

- “  ̂n  ̂~ as shown in Fig 3.12. Furthermore, in this interval,p p

all of the coefficients of the equation are finite, one-valued 

and continuous. Accordingly, we look for a solution of the form

, \ 2 rfin; = a + a n + a n  + ...+an + ...o 1 2 r (T)

Expression (T) is substituted into (6) and the corresponding powers 

of n are equated. The remaining arbitrariness is then resolved from 

(3). However, in this process it is clear that we will find

=  0 (8)
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For the even power terms we obtain

1 + 5 e   -- ----------
° (1 +B)* (1 + 6)

(1 + B)' 1 + Te -
(1 +B)* (1 + 6)'

(1 + (9)

2e
2 + lie -

(1 + (1 + (1 + 3)̂
(1 + g)

- a
3e

3 +22e -
(1 + g)' (1 + g)* (1 + g)

(1 + g)'

(10)

1 + 5e
° (1 + g)"

(1 + g )

(1 + g)'

TO



+ 2a. 1 + Te -
° (1 + g)* (1 + g)*

(1 + g)'

k o 2

6 -

(1 + 6)'
(1 + g)

+ a 3 + 24e -
3e 3e

(1 + g)̂  (1 + g)'" (1 + g)̂
(1 + g)‘

^  (2 + li+e ) + 3k o „4 2 + lie -
(1 + g)

2e

(1 + g)̂  (1 + s f

(1 + g)'

(11)

- a. 3 + 2 2 e - - - - ^- -- - - - - - — -
° (1 + g)* (1 + g ) *

3e

(1 + g)'

(1 + g)'

T1



+ 5 1 + 5e 1
(1 + 6 )  (1 + g)'

(1 + g)' + 5a. 1 + T e   —  -------- j-
(1 + g)' (1 + B)

(1 + g)'

and then, for the subsequent even powered terms

-8e -  a - a« k 2(r-3) 2(r-2) I (2r - U)(2r - 5) 9 -
(1 +  6 ) '

+ (2r - 3) 6 -

(1 + B)'
(1 + B)

+ a
2 (  r - 1 )

^ (2r - 2)(2r - 3) 3 + 2l+e -
3e

(1 + 3)" (1 + 3)̂

3e

(1 + 3)‘
(1 +  6)'
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^  (2+lAe ) - + (2r - l)K o 4̂ 2 + lie - o (1 + 3)" (1 +

2e

(1 + g)'
(1 + g)'

- a2r I 2r(2r - l) 3 + 22e -
(1 + g)'* (1 + g)̂

3e

(1 + 3)'
(12)

+ (2r + 1) 11 + 5e - . .
° (1 +3) (1 +3)

(1 + 3)'

+ 2X 2r + 1) 1 + Te -
(1 + 3)

a  + 3)
(1 + 3) = 0

From equations (9)-(l2) we may determine all of the coefficients in 

terms of a . Furthermore, for sufficiently large N, (12) gives:

73



a 2a aN-2 N  ̂ N+2 ^N-4 3aN-2 V .1
3 5 7 “ £o B 3 „5 7_ 3 3 3 _ 3 3 6 _

= 0

approximately. Thus, as N -> °°, —  ----3̂
% l - 2

(13)

From (3) and (T) we obtain

d̂  d"̂2a + 4a —  + 6a — - + . . . = 02 4 2 6 .4 (14)

which resolves a .O

The complete set of equations (9)~(l3) have been processed on 

the computer and the results are shown in Fig 3.2 (a)-(h) and 

Fig 3.3 (a)-(e). These two figures correspond to the two canal 

depths given by 3 = 0.0001 ( 22,000 ft ) and 3 = 0.001 (40,000 ft) 

respectively. Various values of the canal semi-width, d, were taken 

as shown on the figures. The value of the constant k is given from 

2.2.37 in which the value of W/U was estimated as the value of 3- 

This gave k = 0.03 for the 3 = 0.0001 case (Fig 3.2) and k = 0.3 for 

the 3 = 0.001 case (Fig 3.3). The constant '< was estimated from 

2.1.12, 2.1.13 and 2.2.35. This constant, and hence the results, was 

scaled by the value 2y x 10̂  (which, from 2.2.34, is approximately 

1.4584 X 10^) for display pui’poses.
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To obtain an understanding of the shape of the curves we may 

observe, from (l), that the complementary function is approximately 

given by

(COEFF) X f "(n) + = 0

where the value of COEFF can be obtained from Fig 3.12. Thus, for 

the case B = 0.0001 and a canal semi-width ^ we have

6b 36

f"(n) = -13.64b f(n)

The wavelength of these waves is 2tt/ Æ 3.64B. Thus, the number of
^ 0.2 .cycles in a distance of - is

0.2 _ cycles
B X WAVELENGTH 27t6

and this result may be compared with Fig 3.2(h) which shows the 

computed value for the same distance.
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similarly, for the case 3 = 0.001 and the same value of d we

have

f"(n) + f(n) = 0

f"(n) = 7.3**B f(n)

The wavelength is now 2tt//f.343. Thus, the number of cycles in a

distance of is

and this result may be compared with Fig 3.3(c).

The above gives us a simple check on the results obtained. It also 

shows us that the wavelength is associated with the value with 

the longer waves corresponding to the deeper canal.

For the values of d considered. Fig 3.12 shows us that the 

wavelength is approximately independent of d. The apparent change in 

wavelength in the successive curves of Fig 3.2 or 3.3 is due to the 

way the results are displayed. In fact the horizontal axis distance 

scale is increasing so that the length of the axis always represents 

the distance from the equator to the canal edge. Bearing this in
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mind, an examination of the curves of Fig 3.2 or 3.3 shows us that, 

indeed, the wavelength is approximately constant for a given value 

of 3.

A similar analysis has been made of the second differential 

equation 3-1.68. The results are displayed in Fig 3.4(a)-(e) and 

Fig 3.5(a)-(f). As the complementary function is given by the same 

equation the above comments will again apply. Thus Fig 3-5 (f) shows 

the case for d = 0.2, 3 = 0.001 and, again, the number of cycles is 

approximately 2.5.

The phenomenon of resonance is displayed and for this reason, it 

was not possible to compute g(n) for the larger values of d.

With the computed values of f(n) and g(n) it becomes possible to 

determine the velocity components u, v, w for both the zeroth-order 

and first-order terms of the perturbation series. The results are 

displayed in Figs 3.6-3.11. Each of these components must be multi

plied by a time-dependent term, namely cos (2wt + ewt + 2({> ) for the 

V component and sin (2wt +cwt +2^) for the u and w components. For 

display purposes, all of the components are multiplied by the constant 

10  ̂.

It is of interest of compare the solutions obtained here with 

that of [ 6 ]. In the latter the moon is assumed to describe an

orbit in the plane of the equator and the motion of any particular 

fluid particle is assumed to be confined to a plane parallel to the 

equatorial plane. The elevation of the free surface above the
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undisturbed state is then found to be given by

E = ^ - 2' 2̂ 2 2(nt + (f) + e)   (I5)
c - n a

where n is the angular velocity of the moon relative to a fixed

meridian, c = where h is the undisturbed height, a is the radius of 
3 2 3the earth and H = — YMa /gD where D is the distance between the 

centres of the earth and moon, M is the moon’s mass and y is the 

gravitational constant. From (l5), the velocity component v can be 

found to be given by

= - - 2 ^2' 2 2(nt + (f) + c)   (16)
c - n a

Thus V is independent of the vertical co-ordinate. Turning to 

Figlares 3.7 and 3.10 it can be seen that the variations in v are 
indeed small in the vertical direction, with the most significant 

changes occurring near the free surface. The amplitude of expression 

(16) is 2 X 10  ̂ft/sec which is comparable to the values for v shown 

in Figures 3.7 and 3.10 namely

V ~ 30 X 10  ̂ = 3 X 10  ̂ ft/sec
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From (16) and the continuity equation, an expression may he derived 
for w, namely

w = 3R  ̂ -- sin 2(nt + (j) + e)   (IT)
c - n a

where R is a vertical co-ordinate which is such that R = 0 at the 

canal bottom and R = 1 on the spherical surface of radius a + h.

Thus w is proportional to the height above the bottom. Referring 

to Figures 3.8 and 3.11 we see that this is indeed the case throughout 

the domain. The amplitude of (17) is 23R x (amplitude of (16)).
Again this agrees well with the findings presented in Figures 3.8 

and 3.11 where the amplitude at eg 20,000 ft when 3 = 0.001 is 
approximately 6 x 10 ft/sec (from Figures 3.11) which is 23 % 1 % v.

Turning to the elevation of the tide we see from 3.1.35 that the 

amplitude of the periodic disturbance is given by

(3P - 2F) X 3aAp

ie (3z^f - k ) sin^0 x gag3

Thus, taking the case of Figure 3.3(a) and taking z = j (l +3) x

(1 + E sin^0) the maximum value of the above expression is
1.0 X 10  ̂ft compared with one of 2.5 * 10 ft in expression (15)
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In both theories the time of minimum elevation occurs when the 

moon is overhead, ie the tide is inverted. To see if this remains the 

case as 3 increases, the progression of Figures 3.2(a) and 3.3(a) may 

be followed by putting f ', f " =  0 in equation (l). Ignoring terms 

in n and above we then obtain

a formula which, incidentally, provides a means of checking the magnitudes 

of the computed values of f shown in the figures.

The value of k varies with 3. From equation 2.2(37) k = 3003 
approximately, so the value of the expression on the LHS is zero when 

the critical point 3 0.06 is reached. Above this point the sign of
f changes and the tides become direct. This compares with the critical 
point 3 0.003 in [6]. Of course at the critical point the approxima
tion f ', f" = 0 in equation (l) no longer holds. The form of 

equation (l) predicts no singularity at this point. However further 

investigation would be necessary in order to find a solution which 

satisfies the boundary conditions.

Thus, to summarize, the description of the tidal elevation is 

qualitatively the same as that of [6] but differs in quantitative terms. 

However in other respects the two theories agree fairly precisely.

As [6] is in accordance with Laplace’s assumptions this finding supports 

Proudman’s work.
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k , THE THREE-DIMENSIONAL TIDAL EQUATIONS IN THE

CASE OF FORCED OSCILLATIONS WITH VERY LONG PERIOD

k .1 The Perturbation Equations

In this section we examine Laplace's "tidal oscillations of the 
first species" where the disturbing potential has the form

0 = K ̂ cos^ 0 - ̂ ^cos at

in which 0 represents colatitude and o takes values close to zero. 

Where a = 0, simplifications in the governing equations would once 

again allow the approach of [l] to be adopted. This suggests that, 

for small a, we express the solution as a perturbation series in the 
small term and then utilize [l] in each member of the problem sequence 

Following this approach we present below the development of the solu

tions for the zeroth-order and first-order terms.

The linearised form of the governing equations may be written as 
follows

- 2v o o s e  = - i f    (1)

f  COS e + 2w  sin 6 = f    (2)

f  - 2t  sin 9 = - f   (3)

l48



9 / . .\ . 9v . sin 8 9 / 2 \—  (u sin 9) + 3* + - 1 — (z «) = 0 ih)

where

3z = 1 + 3R

w = aw P = — p
(5)

We consider a disturbing potential of the form

fi = 2F(0, z ) exp(iet) (6)

where F(0, z) is a known function and c is a small quantity. The 

problem, once again, is to determine the response of the ocean to this 
external driving potential.

We look for a solution to equations (l), (2), (3) and (U) of the

form

(u, V, w, P) = {u(0, z), v(0, z), w(0, z), P(0, z)}

exp(ist)
(7)

Hence, substituting these expressions for u, v, w, P into the above 

equations we obtain

ieu - 2v cos 0--------1 ^  
z 90 .. (8)

ll)9



iev + 2u cos 9 + 2w sin 0 = 0   (9)

3Piew - 2v sin 0 = - —  ..... (lO)

(u sin 0) + {z  m ) = 0    (ll)do Z dZ

In equations (8), (9), (10) and (ll) we shall now express the 

solutions for (u, v, w, P) in the form

u = u + eu +e^u + ...   (12)o 1 2

V = V +ev, +e^v + ...   (13)o 1 2

w = w +ew +e^w + ...   (lA)o 1 2

P = P + eP + E^P^ + ...   (15)o 1 2

Substituting these expressions into the above equations and equating 

corresponding powers of e we obtain

9P
\  ® = i T l f  '   (16 )

u COS 0 + w sin 0 = 0   (IT)o o

1 9P
V sin 0 = ^    (18)o 2 9z

1 5 0



f  (u sine) = 0   (19)

for the zeroth-order coefficients. As in the previous section we 

find that the determinant of the coefficients of u , v , w in (l6),o o ■ o

(17) and (18) vanishes. Thus, from equations (16) and (18) we may
eliminate v and obtaino

3P - 9Po 1 o
z COS 0 90 sin 0 9z (20)

This has the general solution

P = 2f (z sin 0)   (21)o

where f(x) is an arbitrary function of x 

From (18) we therefore find that

v̂  = f'(z sin 0)   (22)

Turning to the solution for ŵ  we see that, from equations (17) 
and (19)

sin 0 9 / 2  \ 9 / sin 0\
— i i r  " ) ■ M  r. = °
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3w . 2 9wo Sin 0 o . ^ .: sin 8 -g^ + 2 sin 8 V  -

- w I 2 sin 8 +  ̂ sin 8 I = 0
cos'8

3v 3v . 2
ia z cos 6 ^  - sin 8 - f  - f S f  = 0 . (23)

The integral surfaces of this equation are generated by the integral 
curves of the equations

dz de
z COS 0 -sin 0 .2sin 0 wo

(2h)

The first equation of this set can be written as

z sin 0

which integrates to give

z sin 0 = Cj   (25)

1 5 2



where is a constant. The second equation of (24) can he written 

as

dw . o= _ sin_8 ag
W COS 0o

which integrates to give

= c.   (26)cos 0 2

where ĉ  is a second constant. Hence the general solution of (23) 

is

w = cos 0 q(z sin 0 )   (27)

where q(z sin 0) is an arbitrary function of z sin 0.

We may now turn to the boundary conditions. From 2.2 (31) we 

require that w = 0 at z = Hence we obtainO K

(e ®) = 0 for all

so that

w E 0   (28)O



Furthermore, from (17)

U E O    (29)o

We consider now the condition on the free-surface. Once again, 

from equations (l), (2) and (3) we note that the pressure is undefined 

to the extent of an arbitrary constant. Hence we may write

P = C + p(e, z) exp(iet)   (30)

where C is a constant. Hence, from 2.2 (33) we obtain

30 + {3P(6, z) - 2F(0, z)} exp(iet) - X3z +

  (31)
+ y3 z sin 0 =

At 0 = 0 the mean height of the ocean is z = ^(l + 3) • Hence

30 - X(1 + 3) = TT   (32)O

Thus the equation of the free-surface is

  (33)

- 2F(0, z ).} exp(iet)
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and its mean position will be given by

z = ^ ( 1  + 3 ) + - ^  ẑ  sin^

This can be written with sufficient accuracy in the form

ie z = ^  (1 + B)(l + e sin'9) ,

= Y  (1 + 9) = 0 )   (34)

We next consider the kinematic condition 2.2 (36). Thus, at the 

free surface, we obtain from (l4), (15) and 2.2 (36)

3e(P^ + eP̂  + E^Pg + ...) - 2eF(0, z ) + ik(w^ + ew  ̂ +

+ E w^ + ... )

= 0

Equating corresponding powers of e we then get

w = 0    (35)o
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and 3P̂  - 2F(6, z) + ikw^ = 0    (36)

The zeroth-order condition is satisfied by virtue of (28). We will 

return to the second condition after we have developed appropriate 

expressions for the first-order variables of the solution.

From equations (8)-(l5) we have

0 = + ••••• (37)

u COS 0 + w sin 0 + ^  V = 0   (38)1 1 c. o

, 9P
® = 2 l^T + 2   (39)

_9 
90 '"1(u^sin 0) (z' = 0 (ItO)

for the first-order coefficients. Once again, the determinant of 

the coefficients of û  , v^, ŵ  in equations (37), (38) and (39) 

vanishes. Also û  and ŵ  are identically zero by virtue of (28) and 

(29). Thus, eliminating v̂  between (37) and (39) ve obtain

1 ^ - 1 - 5 .    (Ui)
z COS 0 90 sin 0 9z

1 5 6



which has the general solution

= 2g(z sin e)   (42)

where g is an arbitrary function.

Hence from (37) ve obtain

Yj = g'(z sin 0) ..... (43)

Furthermore, to obtain an expression for ŵ  , we see that, from 

equations (38) and (4o)

sin 0

LA. I sin 0 \
2 90 \5) cos 0 /

. 3*1 . . 3*1 sin:0le z cos 0 —  - sin 0 —  - \

i 3V, i
+ — r2 90 2 sin 0 cos 0

Using (22), this last equation then becomes
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9w 9w .2
z cos 0 —  sin 0 — —   ̂w = z cos 0 f"(z sin 0) +9z 9V cos V 1 ^

  (44)
^ if'(z sin 0)
2 sin 0 cos 0

In this case, the auxiliary equations are

dz d0 *̂1

  (45)

The first equation of this set is similar to that of equations (24) and 
gives us

z sin 0 = ĉ    (46)

where ĉ  is a constant. The second equation of (45) may be written as

5 .  =  f s i n ' e  , i c . c o s  6 f"(c, ) ^
d0 I cos 0 *1 ^ 2 sin 0

2 sin 0 cos 0 / sin 0
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. sine io,f "(choose if'(c, )
"  - — 7 - 7 ^— n i T T T i r r  ....

An integrating factor for this equation is e*̂ =  ̂ so that

d / \ ^ ic^f"(c, ) 2if'(cJ
d e U o s e J  - - 2 sin'8 " sin' 28

which integrates to give

W  1C
%—T = —T— f"(c, ) cot 6 + if'(c ) cot 20 + c .... (48)cos 0 2 1

where ĉ  is a second constant. Thus, on substituting for ĉ  from 

(46), we obtain the general solution of (44) as follows

w, = i z cos'6 f"(z sin 6) + " f  +

  (49)
+ COS 0 Q(z sin 0)

where Q(z sin 0) is an arbitrary function of z sin 0.

The boundary condition 2.2 (31) then gives us the following 

identity in 0.
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sin - —  cos

and thus, if we write n and note thatsin

— -  -  2 n

cot 20cos

it follows that

(50)

- 2n

2n j— — n

Accordingly, we can write (49) in the form

z cos 2 sin

1 cos f (z sin

i 6 o



- 2z^ sin^ 0 ^

• n / I  2 . 2  z Sin 0 / — —  z sin 7
f'(z sin 0)   (51)

which contains one arbitrary function, f(z sin 0).

We now consider condition (36) at the free-surface. From (21), 

(51) we obtain

^ {gf(z sin 0) - F(0, z)} - z cos^0 f"(z sin 0) -

+ cos 8 /-y - s'sin'8 f"(z sin 6) +

1 _ 2 . 2 ̂
—  2z sin 0

(52)

• Û /I 2 . 2z Sin 0 —  - z sin

X f'(z sin 0) = 0

with z = ^ (l +3)^1 + E^sin^oj. Thus, when this value of z is 

inserted into equation (52) we have a linear second-order ordinary 
differential equation for the determination of the function f. As 

indicated in the introduction, F(0, z ) takes the form.

F(0, z ) = K^cos^0 ~ » < constant (53)
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Hence the differential equation for f(n) is

4gf(n) _ (z^ - n^)f"(n) _ (ẑ  - 2r\ ) f'(n) ^ 
k z zn

+ Y  y  f "(n) + \ J  ẑ  - x . (54)

where z = % (l + 3)|1 + e sin^e ) = —  3 \ o / s i
n
in 0

Turning to the remaining boundary conditions, the nature of the 

solutions suggests that we consider axially symmetric boundary 

surfaces of the form

3z sin 0 = d   (55)

where d is a constant satisfying -1 ^ d ^ 1 .

Figure follows

162



z sin

S

z sin 0 = d.

Fiprure U.l

These surfaces are the right circular cylinders of radius p
Condition 2.2 (33B) then gives

u cos 6 + w sin 0 = 0 , 3z sin 0 = d

for the vanishing of the normal velocity. Using (l2) and (l^) this 

becomes

(u + eu +...) cos 0 + (w +o 1 o ) sin 0 = 0 (56)

on Bz sin 0 = d.
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In (56), the zeroth-order terms vanish hy virtue of equation (lT)« 

Furthermore, from (38), the first-order terms amount to the condition:

V = 0 , Bz sin 0 = do

which, from (22), yields

■(I) = » (5T)

Two such conditions then fully determine the function f

Of particular interest is the case

f ' l  4 -1 = 0

(58)

where 6̂  and 6̂  are both small and are both of the same sign. This 

describes a canal-like region around an ice-cap. Furthermore, by 

virtue of the smallness of 6̂  and 6^, its sidewalls may be considered 

to be approximately vertical.

The expressions for v̂  and p̂  involve the function g(z sin 0) 

which, at the moment, remains arbitrary. In order to resolve this 

further we must examine equations (8)-(l5) for the second-order 

coefficients. Thus we have
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1 ^^2 i
0 =    <59)

u COS 0 + w sin 0 + %  V = 0   (6o)2 2 2 1

1v,sin 0 = 2 i;- + :2'\   (Gl)

^  (u^sin e) +  ( z ’ w ^ )  =  0    (62)

Now, from equations (6o) and (62) we obtain

si5_8.JL/%: w  ̂ _ JL sinllN ^ Î  J_ sin_0.\ 
z 9z \ 2/ 90 \ 2 COS 0 / 2 90 \ 1 cos 0 /

le

„ '̂̂2 Sin^e iz cos 9 —  - sin 0 = 2 I T  ̂ 2  sin e" cos 8   <^3)

Hence, using (43), we obtain

9w 9w . 2_ 2 . - 2 sin 0 1 m "/ " ,z cos 0 —  sin 0 — ------- - ŵ  = —  z cos 0 g ( z sin 0 ) +9z 90 cos 0 2 2 ^

+ ip: (z sin 0) 
2 sin 0 cos 6

(64)
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which is identical in form to equation (44). Hence we may write down 

the solution to (64) as follows

V, = i  z cos'e g"(z sin 6) + ^  ops 2^

^  COS 8 I sin^ 6 g"(z sin 0) +   (65)

—  2z^sin^0
g'(z sin 0)

Û / 1  2 . 2z sin 0 — —  z sin

where we have satisfied condition 2.2 (31). The above expression only 
contains the one arbitrary function g(z sin 0).

Returning, once again, to the kinematic condition 2.2 (36) at 
the free-surface, the second-order condition yields

BPj + ikw^ = 0

on z

  (66)

= j  (1 + 3)^1 + e ^ s i n

Thus, from (42) and (66) we obtain

~  g(z sin 0) - z cos^ 0 g"(z sin 0) - g'(z sin 8) +

1 6 6



+ COS z sin

  2z sin

z sin

with z = Again, when this value of z is

inserted into (6?) we have a linear second order ordinary differential
equation for the determination of the function g . The differential

equation for g(n) can he written in the form

zn

(68)

- 2n

where z = —

On a surface gz sin d we must have
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u COS 6 + w sin 0 = 0  2 2

Hence, from (6o), this implies

= 0  , 3z sin = d

which, from (U3), yields

■ ( f )  ■ » (69)

The function g is then fully determined by two conditions of this 

type. Clearly, the solution is

g = 0 (TO)

From (42) and (43) we therefore have

(71)
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k .2 The Differential Equation

It has been shown that the functions {u^, } vanish

and that the problem of determining the remaining functions reduces 

to one of solving the differential equation 4.1.54. In order to 

proceed further, we shall begin by restating the differential equation 

together with its boundary conditions. Thus, we have

^  f(n) - ~ ) f"(n)k z zn

(ẑ  - ) 1 2 — - - n
f (n) + /

2 2 z - n
zn

f'(n) = - — —  (2z^ - 3n^ )
3k z

where z = | (l + g) (l + e„sin^e) = gn (2

Equation (l) holds throughout the region 6̂  3 3n 3 5̂  where 6  ̂ and 6  ̂
are two constants of the same sign satisfying the inequalities.

0 ^ |6j «  1

0  ̂ |6j  «  1
(3)
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At the boundaries we have

f'l -̂1 = 0

f'( 1 = 0

(h)

Now, from (2)

sin 0 = ( T ^  ))

z = -  (1 + 6) 2 21 + e 3 n +O --------
(1 + 6)

+ 0

(5)

Also

[(
/ 2 2.2 (z - n } 1 +

/ 2 2 . (z - n ) 1 +

2 2 z - n

1 2

2(z= - n')
+ 0(3^)

(6 )
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and

2 2 Z - _ 1 _
2Z

.2

- n 1 + 2 ..2 - n

= 1 +
z -

+ 0(3 ) (7)

Hence, using (6) and ( j )  the differential equation becomes

- i

23 zril — —  n f'(n) - 2z f"(n)

(8)

^ ( 2z=
3kz

3n")

where z is given by expression (5). Thus, multiplying (8) throughout

by 2z“ n I ~ w e  obtain

^  z^nf “  ~ ) f(n) — 1-( z^ - |f'(n) -
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zn

On substituting for z from (5) and bringing together corresponding

powers of n we then have

2e(1 + B)-T (1 + 6) f(n) -

3(1+6)
6(1 + 6)

f'(n) (9)
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- e 3(1 + 6) _ 1
6 3(1 + 3) f"(n)

8k
3k (l + 3) n - 2 ( 1  +  3)^ _  3

2 „2
o I 3n +

+ (3 - )n'

The coefficient multiplying f"(n) has a zero at n =0. Thus 

considering, for the moment,,the complementary function let us look 

for a solution of the form

CF = a + a n + a n +o 1 2 ... ) (10)

The indieial equation then gives us

[ c ( c - l ) + c ] a  = 0

le c = 0 (11)

Thus the indieial equation for c has a repeated root. Furthermore, 

it is clear that, on substituting (10) into (9):
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=  a ^  “  5̂ “  ' * * = 0

^ . c + 1 c+3 .For terms in n , n , ... we obtain

kg
- 1 ^ (1 + 6) (1 + 6) a^ = 0 (12)

kg [(1 + g) - 2c a +o
8(1 + 3)' (c + 2) E X

k3 32 o

"3(1 +3) 1
3 3(1 + 3)

+ (c + 2)(c + 1)

(13)

(1 + 3) (1 + 3)

3, ( Ü l i  +
o 3

a
3 (1 + 3)

17^



and for subsequent terms

l6e
2( r -2)

3(1 + 3)
6(1 + 6)

2 ( r - 1 )

(c + 2r)e 3(1 + 6)
6(1 + 6 )

- 3e

2r
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(c + 2r + 2)' (1 + g)'
. e’

(1 + B)
= °

where r = 2, 3, U, ....

Equations (l2)-(l4) represent a solution of c = 0. A second 

solution may be obtained by differentiating (lO) with respect to c 

and putting c = 0. Moverover, a particular solution to equation (9) 

may be obtained by replacing the RHS of equations (l2)-(lU) by the 

coefficients of the RHS of (9). Thus, the general solution of f(n) 
may be generated.

For sufficiently large N, (lU) gives

fsCl + B) _ 1 1 I _ _1_ \
L b  B(1 + B)J I 2(N-1) g2 ^2N I

(1 + B) (1 + 6) a — —  a2 N 2 2 ( N+ 1 ) =  0

approximately. Thus, as N ^ (15)

The complete set of equations (l2)-(l^) together with the 

boundary conditions (4) have been processed on the computer and 

the results are shown in Figures k ,2 and U.S. These figures show f
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for various values of the boundary parameters 6  ̂ and 6̂  and for
1two values of the depth parameter 3•

In order to check the results it may be observed that equation 

(l) is approximately

Anf - Bf' - Bnf” = an + bn^ (16)

where A, B, a, h are constant given.by

a = !k I 2(1 + 3)‘
3k

^ ^ 6(1 + B)'
kg'

b = -

B =

2(1 + 3)
3k̂

3 3

(1 + 3)'
3̂  \ 3

(1 + 3)
3

(17)

For a particular solution, try

PS 2c^n

1 The horizontal axis covers the distance from the north canal edge 
to the south edge. The northerly and southerly bounds are the 
corresponding bounds of 3n
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fps = 2c,

3 3
ACj n + Ac  ̂n -  2Bc  ̂n -  2Bc  ̂n = an + bn

Ac -  UBc = a 
1 2

and Ac^ = b

a . UbB
Â  + T T

(18)

For the complementary function, try

c c + 2
f ,^  -  a n  + a n  + . . .c F o 1

c F
c— 1 / \ c + 1

ca n + (c + 2)a n + . . .

c F c(c -  l ) a  n̂   ̂ + (c + 2) ( c  + l ) a ,  n̂  +

The indicia! equation then gives
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=  0   (19)

and, on equating corresponding terms in the higher powers, we obtain

Aa — B(c+2)a - B ( c + 2 ) ( c + l ) a  = 0O 1 1

Aa - B(c + 2)^a = 0    (20)o 1

Aâ  - B(c + U)a^ - B(c + U)(c + 3)a^ = 0

Aa^ - B(c + U)^a^ = 0    (2l)

etc

Because of the repeated root in equation (19) 5 a second function 
may be obtained by differentiating the first with respect to c and 

putting c = 0. Thus

  (22)
g(c + 2Ÿ
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3c
2A

(c + 2)' (c + It)' (c + 2Ÿ (c + It)'
(23)

etc

Bringing together these results we obtain the general solution for 

(l6) namely

f = c + c n  + a  
1 2

2 2 41 + A  X ^  ^ _ n _  ^
2' b' 2'it'

2 2 41 + A n_ + a ,  _ n _
® 2' s' 2'U' log n - (2lt)

- 26 (1) x l - . A L . L i l i l l ,
2' b' 2'lt'

. . .

le

f = ĉ  + c,r|: + oc ij /I X n

where I and K are Modified Bessel functions. The relatively simpleO O
form of this solution makes it a convenient means of checking the 

results obtained in Figure U.2 and U .3 and results compared favourably
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Furthermore, the solution (2U) shows the presence of a logarithmic 

singularity in the function f, which is located at the pole.

Figures U.U, U.5 and U .6 show the computed velocity components 
u, V, w.^ The component v must he multiplied by cos (ecot) and u and 

why e sin (emt). All three components are scaled by the factor 500 

for display purposes. From Figures U.5 it can be seen that v is 

independent of depth (cf § 3.2) but not of the canal width. The 

symmetrical pattern exhibited in the narrow canals gives way to 

one with large velocity changes near the southern canal boundary. 
Indeed, the latter point is a feature of u as well, and there are 

also large changes in w at the southern boundary for the wider 

canals. These are all associated with a similar large variation 
in P, as demonstrated in Figures U.3 and U.2 (g), (h), (j), (k) .
In practice, however, these solutions will be modified by non

linear and viscous forces operating in this region next to the 
southern edge.

From Figures k . 6 it can be seen that the vertical velocity is 

proportional to the height above the canal bottom (cf § 3.2).
However, the ratio ofw/evis, at maximum, much bigger than 3 and 

remains roughly in the proportion 1 :U.

Turning to the elevation of the tide we see from U.1.33 that the- 

amplitude of the periodic disturbance is given by

. (6P - 2F) X 6a

1. The quantity NEP shown in the figures is the distance between 
the canal’s north edge to the pole, measured along a meridian.
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le (3F - K sin^e) X 3agp

Thus for the case shown in Figure 4.2(a) we have an amplitude of 

1:1 ft. The time of maximum elevation occurs when the moon is 

overhead ie the tide is direct (cf § 3.2). This result compares 

favourably with Laplace's theory for the long-period constituent 
[ 6 ] .

As for the other features of the motion, they may be contrasted 

with Proudman's solution for a flat circular sea of uniform depth at 

the North Pole [ 5 ] . Using cylindrical polar co-ordinates z, x, (J), 

where z is in the direction of the axis of the earth, he found

—  - J (Kx) c o s  XKz c o s  e tgA o

— r - —^ —  J (Kx) cos XKz sin et eA 2 oe

~  '(Kx) cos XKz cos et
e

_ J sin XKz sin eteA 2 oe

(25)

where X = 2 - 1 I and is Bessel's function of zero

order. Also, from the conditions at the free surface
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JL = _/ sin XKh + cos XKh | J (Kx) cos etgA V ^2 ) o

and the condition for u = 0 on the circular boundary x = c gives 

J^'(Kc) = 0   (26)

Thus K is inversely related to the length c.

It can he seen that, depending on the choice of root in (26), XK 

may be either small or large. In the latter case cellular oscilla

tions will occur. However this arbitrariness is absent in the 

solutions we have obtained owing to the non-cyclical nature of the 
functions lo and Ko.

When XKh is small it follows from (25) that

= -2(1) J (Kx) cos et
A '

where

Thus for h = 2 x ft and c = 10^ ft, v is approximately 3 % 10  ̂

ft/sec which is similar to the value 1/500 ft/sec shown in Fig 4.5(b ) 

for approximately the same width.

The components u and w in (25) are both of the first order in e, 

as they are in the solution we have obtained. But the magnitude of 

the components is much larger in Proudman's case. Also, no large
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gradients are present in any of the solutions (25) so that viscous 
and non-linear terms would he negligible there.

Thus we conclude that significant differences in the nature of 

the solutions u, v, w are obtained when all parts of the Coriolis 

force are present, as compared to the solutions (25) derived by 
Proudman using the simplifications discussed in Section 1.
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LONG PERIOD AND SEMI-DIURNAL 
TIDAL OSCILLATIONS

by

J L Adams

Abstract

A brief review is made of Laplace's equations governing tidal oscillations 
and of the subsequent claims and counter-claims on their validity. The 
purpose of this study is to investigate these claims further, with regard 
to long period and semi-diurnal oscillations.
As the underlying assumptions are of importance, these are considered 
first in some depth. A set of equations is thereby formulated which 
differ from Laplace's equations in that extra terms of the Coriolis force 
are retained. These equations are taken as the basis from which a 
comparison is made with the previous findings.
Taking the semi-diurnal constituent first, a solution is derived in the 
Equatorial Canal. Graphs are produced showing the velocity components as 
functions of canal depth and width. These compare favourably with Laplace's 
theory. However, whilst the description of the tidal elevation is qualita
tively the same as before, there are significant quantitative differences.
In particular tides become direct only in a much deeper ocesui than previously 
predicted.
Using a similar approach a solution is derived for the long period 
constituent in a canal-like region near the North Pole. Whereas Laplace's 
theory for this region gives a solution involving Bessel functions, these 
become Modified Bessel functions in the derived solution. Arising from this, 
some different effects are noted in the velocity components.


