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ABSTRACT

PART I

In a recent paper Wu, T.Y. & Whitney, A.K., the authors studied
optimum shape problems in hydrodynamics. These problems are stated
in the form of a singular integral equation depending on the unknown shape
and an unknown singularity distribution; the shape is then to be deter-
mined so that some given performance criterion has to be (2?:;3%::3 .
In the dptimum problem to be studied in this part we continue to assume
that the state equation is a linear integral equation but we generalize the
Wu & Whitney theory in two different ways.

This method is applied to functional' of quadratic form and a

necessary condition for the extremum to be a minimum is derived.
PART II

The purpose of this part is to evaluate the optimum shape of a two-

dimensional hydrofoil of given length and prescribed mean curvature

which produces Fnax1mum llft}

The problem is discussed in three cases
m1n1mum drag

when there is a (partlal) cavity flow past1jw hydrofoil.
zero

The liquid flow is assumed to be two-dimensional steady, irrotational
and incompressible and a linearized theory is assumed.

Two-dimensional vortex and source distributions are used to simulate
full
the two dimensional (partial) cavity flow past a thin hydrofoil. This method
zero
leads to a system of integral equations and these are solved exactly using

the Carleman-Muskhelishvili technique. This method is similar to that
used by Davies, T.V.

We use variational calculus techniques to obtain the optimum shape

of the hydrofoil in order to (E?ﬁi:izz\ éi:;) coefficient subject to

constraints on curvature and given length.



The mathematical problem is that of extremizing a functional

depending on (Yvortex strength

1 source strength} and z (the hydrofoil slope); these

three functions are related by singular integral equations.

The analytical solution for the unknown shape 2z and the unknown
singularity distribution y has branch-type singularities at the two
ends of the hydrofoil. Analytical solution by singular integral
equations is discussed and the approximate solution by the Rayleigh-
Ritz method is derived.

A sufficient condition for the extremum to be a minimum is derived

from consideration of the second variation.

PART III

The purpose of this work is to evaluate the optimum shape of a two-
dimensional hydrofoil of'given length "and prescribed mean curvature
which produces minimum drag. . A thin hydrofoil of arbitrary shape is in
steady, rectilinear, horizontal motion at a depth h beneath the free
;urface of a liquid.

The usual assumptions in problems of this kind are taken as a basis,
namely, the liquid is non-viscous and moving two-dimensionally, steadily
and without vorticity, the only force acting on it is gravity.

With these assumptions together with a linearization assumption we
determine the forces, due to the hydrofoil beneath a free sﬁrface of the
liquid.

We use variational calculus techniques similar to those used in
Part II to obtain the optimum shape so that the drag is minimized.

A sufficient condition for the extremum to be a minimum is derived
from consideration of the second variation.

In this part some general expressions are established concerning the
forces acting on a submerged vortex and source element beneath a free

7
surface using Blasius theorem.
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PART I

VARIATIONAL PROBLEMS DEVELOPING THE

THEORY DUE TO WU AND WHITNEY




l.a. INTRODUCTION

In a recent paper Wu, T.Y. and Whitney, A.K. (70) the authors
studied optimum shape problem in hydrodynamics.

These problems are stated in the form of a singular integral
equation depending on the unknown shape and on an unknown singularity

distribution, the shape is then to be determined so that some given

maximized

performance criterion has to be ( .. . -
minimized-

Wu assumes that the problem is stated as follows:
Find the function u(x) (assumed Holder continuous) defined in

-1<x<1 when

+1
u(t)dt
t-x

v(x) =.!‘_ J

- (-1<x<1) , [1.a.1]
-1

(It may be noted that [l.a.l] is an integral equation with a Cauchy

singularity), so that the functional

+1 :
J = J fo[u(x),v(x],x]dx s [1.2.2]
-1
is minimized subject to the isoperimetric constraints
+1

I £ [u(x),v(x),x]dx
-1

CS s=1,2,...,r, [1.a.3]

const.

being satisfied.

In addition particular Holder conditions are satisfied by u(x)
near the end points x=%1 .

Using a variational method, Wu shows that the necessary condition

for minimization are

+1 (af[U(t%GV(t)LEl)dt

8f[u(x),v(x),x] _ 1
u =T § Tox s [1.a.4]
-1
2f[u(),v(x),x] , 2f[u(),v(x),x] 4 [1.2.5]

du< ove

Number in brackets refer to the references at the end of this thesis.




The first condition [1.a.4] is a singular integral equation,
where
T
Flu(x),v(x),9 = £ u0x),v(x),x] - | A[E@0,v(x),x - 5C] , [1.2.6]
S=1
and Aj,Az,...A  are T Lagrange multipliers and this s
represents a departure from the classical Euler variational problem.

For the extremal solution [l1.a.4] is to be solved together with
[l.a.1l], as a pair‘ofsingularintegral equations for u(x) >énd v(x) .
" The extremal solutions? u(x;kl,kz,...,kr) and v(x;ApAry,... ,Ar)
when determined in this manner will involve 1r multipliers constants
X1,22,000, lr, which can be determined{ by substituting the extremal
solutions u(x;ll,kz,...,kr) and v(x;kl,lz,...lr) in the isoperi-
metric constraints [l.a.3].

In the optimum probleﬁ to.be studied in this section we continue
to aésume that thg_state equation is a linear integral equation but we
generalize [l.a.l] in two different ways.

It will be shown that the analysis of the first variation of the
functional yields a set of dual, nonlinear, integral equations.

A necessary condition for the extremum to be a minimum is derived
from consideration of the second variation.

This method is then applied to a function f[u(x),v(x),x] of

quadratic form.



1.b. VARIATIONAL PROBLEMS DEVELOPING THE THEORY DUE TO WU AND WHITNEY

STATEMENT OF THE PROBLEM.

The problem considered here may be stated as follows:
To find the real, extremal function u(x) of a real variable x ,
required to be Holder continuous * in the region a<x<b , satisfying

one of the following three singular integral equations:

Case I ‘
b 3
v(x) = A ){ H(—tt_—)fi =D [u(t)] (a) ,
a
Case II
b
v(x) = E(x) + vu(x) +%§ BB p )] @) , F (a<xb);  [1.b.1]
a
Case III
' b
Ve = } {t}x : act,x)}u(t)dt = D [u(t)] (o) ,

a

where the integral with symbol C signifies its Cauchy principal value,
and in [1.b.1.c] the function a(t,x) 1is a continuous function of x,t,

this will be discussed later; v.2nd A are constants.

We wish to determ}ne u(x) ana v(x) so as to minimize the
functional
b
J = J fo[u(x),v(x),x]dx y [1.b.2]
a

where fo[u(x),v(x),x] is a given funétion of u(x),v(x) and x ;

subject to the r isoperimetric constraints.

A function u(x) is said to satisfy the H61d¢r§( (u) - condition on
path L(a<x<b) if, for any two points xj, xz of L, |u(x2)—u(x1)|.§
Alxl—leu , where A and y are positive constants.

A is called the Holder constant and u the H8lder index.



) b .
Js[u(x),v(x),x] = J fs[u(x),v(X),x]di = Cs (s=1,2,...,1) ;

; [1.b.3]

Qhere Cs is constant and fs[u(x),v(x),x] is a given function of
u{x),v(x) and x .
The unknown functions wu(x) and v(x) are also to satisfy the
conditions near the end points (a,b) ,
ak+iﬁk -
u(x) = u*(x)/(x—Ck) s Osak<1 (k=1,2) , [1.b.4]
where

Ci=a , Cp=b and i=/-1 [1.b.5]

o and Bk are real constants and u,(x) satisfies the 7%?condition
near and at Ck .

If u(x) is required to vanish at (a,b) , the end condition
u(a) =0 and/or u(b) = 0 ’ [1.b.6]

is a special case of [1.b.4] when [1.b.6]is satisfied and u,(x)
satisfies the }{(u<ak) - condition.

‘The function fo[u(x),v(x),x] and the constraint functions |
fs[u(x),v(x),x] (s=1,2,...,r) are assumed to be at least twice contin-
uvously differentiable with respect to their unknown functions wu(x) and
v(x) and continuous in x .

The notation Dx[ﬁ(t)] fof the finite §ingu1ar integral transfor-
mation of u(x) , as defined in [1.b.1] , will be used throughout and
will be called.generalized Hilbert transformation.

It may be remarked here that the solution of a maximum problem can
be deduced from this minimum one by changing the sign of the function in
[1.b.3] .

In the spirit of the classical calculus of variations, we minimize

the new functional




. b .
Ifu] = I £lu(x),v(x),x;x1,22,. 0052 Jdx [1.b.7]
a

with

T : C
f[u(x),v(x),x;kl,lz,.,.,Ar]=f6[u(x),V(x),X]' ) ks[fs(u(x),v(x),x)—&;%ﬂ]
| s=1 [1.b.8]

where u(x),v(x) are related by [1.b.1] ,Aand Al,kz,...,lr are

‘Lagrange multipliers.

We define an admissible function that function u(x) which
satisfies the Holder condition M (u<1l) , the isoperimetric constraints
[1.b.3] , the prescribed end conditions [1.b.4]; minimizing the function

Ifu(x)] .
THE NECESSARY CONDITION OF OPTIMALITY

Let u(x) denote the required optimal function.
A function E&(x) will be called an admissible variation if, for

any sufficiently small positive constant €,
up(x) = u(x) + €£(x) , ' [1.b.9]

is an admissible function.
The variation n(x) in v(x) which corresponds to the admissible

variation §&(x) , such that
vi(x) = v(x) + ()  [1.b.10]
is found from [1.b.1] to be -
n(x) = D [E(t)] , - [1.8.11]

where Dx[g(t)] is defined by



In Case I
b \
n(x) = A } Eﬂflft =D, [E(®)]  (a)
a
In Case II
b | _
n(x) = vE(x) + %% Eﬁct_)xdt =D [()] () p (a<x<b).  [1.b.12]
a
In Case III
b
n(x) = } {tfx + ot('c,x)}«s(t)dt= b le()] ()
a J

If &(x) is an admissible variation, then Ifu(x) + €g£(x)] 1is a
function of € which has an extreme value when ¢=0 .
The variation AI of the function I due to the variations

E(x) and n(x) 1is defined by
. ; b
Al = j flu(x)+eg(x),v(x)+en(x),x]dx - I flu(x),v(x),x]dx . [1.b.13]
a a

For sufficiently small € , expansioh of the above integral by

Taylor's series yields

2 3 '
AT = €31 + -2—, 821 + %,— 831 + ..... , [1.b.14]

where the first variation &I and the second variation &2I are

b ) o
81 = J (£, ((x),v(x),x).£(x)+£ (u(x),v(x),x).n(x)]dx , [1.b.15]
a
b
821 = f [fuu(u(X),VCXJ,X).EZ(X)+2fw(u(><),V(X),X)E_(x).n(,x)+
a

+£,, W(x),v(x),x)n? (x) Jdx , [1.b.16]

in which the sub-indices denote partial differentiations, and n(x)

is given by [1.b.12] .



The variations B3I, 82I, ... depend on £(x) and u(x) since
n(x) and v(x) can be replaced in [1.b.15] and [1.b.16] using [1.b.1]
and [1.b.12].

For I[u(x),&(x)] to be minimum, we must have for all admissible

variations §£(x),

$I[u(x),g(x)] =0 , [1.b.17]
and '
§2ITu(x),E(x)] 3 0 . [1.b.18]
Equations [1.b.17] and [1.b.18] assure that I takes a minimum.
As E(t) and n(x) are related by [1.b,12], substituting
[1.b.12] in [1.b.17] we obtain ‘
In Case I
b v W
81 = I ‘{fu(u(X),V(X),X)E(X)+fV(U(X),VCX),X)-
a ) b
g(t)dt -
A % —m——} dx = 0 (a)
a
In Case II
b .
81 =J {fu(u(X),V(X),X) E(x)+£ (u(x),v(x},x).
a b ? [1.b.19]
[\)E (x) + —TIT-J —E-%t_)xﬁ:l} dx = 0 (®)
a
In Case III
b
81 = I {fu(u(X),V(X),X)E(X)+fv[uCXJ,V(X),X].
b
U (f-l-x + a(t,x)]&(t)dt]} dx = 0 « (c)

a -t
It is permissible to interchange the order of integration in the

double integral in [1.b.19] [see, e.g., Hardy, G.H. (35)] and after

interchanging the variable t,x we obtain



In Case I

b £, lu(®),ve),e] )

b
§1 = f {fu[u(x),v(x),x]—A }

t-x
a a
s£(x)dx = 0 , (a)
In Case II
b
81 = J <{fu[u(x),v(x),x]+va[U(X),V(X):X]‘
= P ) v, tldty
_ ;] — }g(x)dx =0, (b
| a
In Case III

81 = I <{fu[u(x),v(x),x]-I fv[u(t),v(t),t]-

a .
[._1_ _a(x,t)}dt}g(x)dx=0 . (o)

t-x

> [1.b.20]

- Since £&(x) 1s arbitrary, the factor in brackets of the integrand

in [1.b.20] must vanish identically for all x in (a,b), and thus we

derive the following singular integral equations.

In Case 1
| P £ [u(t),v(t),t]dt
fu[u(X),v(X),X]=A3( e — =
a
= D [f, (u(t),v(t),t)] (a)
In Case II

£,[u(x),v(x),x]=-vE [u(),v(x),x] +

b
1 f [u(t),v(t),t]ldt
. _.§ v (b)
T t-x
a
In Case III

b
£ [u(x),v(x),x] =§ fv[u(t),v(t),t][al_;— - a(x,t)]dt ©)

a

> [1.b.21]




This integral equation is analogous to the Euler differential
equation in the classical theory of calculus variations.

Equations [lfb.21] is generally nonlinear in u(x) and v(x)
unless flu(x),v(x),x] is a polynomial of secona degree in u(x)
and v(x).

The extremal solution is determined by solving the pair of
coupled singular integral equations, [1.b.1] and [1.b.21] subject to
conditions [1.b.§] and [1.b.4].

We now suppése that [1.b.1] and [i.b.21] can be solved for an
extremal function u(X;C1,Q2,---;Cr) which involve the constant of
constraints Gl,Cz,,....,Cr as parameters.

We now enquire under what condition does this extremal solution
satisfy the inequality [1.b.18], so that it actually provides a
minimum ?A

| In order to answer this question, we examine the second variation
821,
Consider the case in which £  [u(x),v(x),x] , fuv[u(x),VCx),x] ,

fvv[u(x),v(x),x] and &(x) are the Holder continuous on (a,b)

The second term on the right-hand side of equation [1.b.16] is as

follows: . ~
b
I, =2 J £ (80, v(x), x]E(x)n(x) dx : [1.b.22]
a
Substituting from [1.b.12] in [1.b.22] we obtain

In Case I
b

b
2 I £ [ux),v(x),x]E(x)dx.A } E(t)dt _
: a

Lo
N
1}

f

bb
2A f % fuv[u(x),v(x),x]g(r)ﬁ(x) f%f dtdx . [1.b.23]
aa




10

It is permissible to interchange the order of integral [1.b.23]
[see, e.g.,Hardy, G.H.(35)] and interchange the variable t,x and

when we do so we obtain

£ [u(t),v(t),t]
I, = - 2A f £ (x) dx } — £(t)dt =
a
bb |
= - 2A J } £y [8(0), (), ¢ E%;ﬁ(t)s(x)dtdx : [1.b.24]
a a

We take the mean of two preceding equations [1.b.23] and [1.b.24]

we obtain

t-Xx JE(I)E(X) dtdx

N jb§b [fﬁv[u(x),v(x),x]-fuv[u(t):v(t)’t]]
R [1.b.25]

In Case II

By similar operations in Case I, substituting from [1.b.12.b] in

[1.b.22] we can write

. b | )
I, = 2 [ £, [0, v(x),x1E(x) dx[v £ (x) +%£ g(tt-)xdt]
: | a
b b )
: ZV‘I fuv[ucﬂ’vcﬂ’ﬂgz(x)dx+%I £ [u(x),v(x),x]E (x)dx } EOUE  11.1.26]
a ) a . | 1

It is permissible to interchange the order of integral [1.b.26] and
after interchanging the variable x,t we obtain

o Ly £ [u(e),v(8) , t]E()de
I, = 2V { fuv[u(x),v(x),x]iz(x)dx-E-! E(x)dx { o

a a a [1.b.27]

We take the mean of two preceding equations [1.b,26] and [1.b.27]
and we obtain

° ) L B v e K-8, [u(.t),v(t),t)]
= 2v I £, [u(x),v(x),x]E (x)dx-+;-j % o .

a

E(t)E(x)dtdx [1.b.28]



11

In Case III

By similar operations in Case I and Case II, substituting from

[1.b.12.c] in [1.b.22] we obtain
b b

I, = 2 [ £, [u(0),v0),x]E () dx } [El—; + a(t,x)]g(t)dt : [1.b.29]

a a
It is permissible to interchange the order of integral [1.b.29] and

after interchanging the variables x,t and when we do so we obtain

I, =-2 j g£(x)dx % fuv[u(t),v(t),t][t%; - a(x,t)]g(t)dt . [1.b.30]
) a a

We take the mean of two preceding equations [1.b.29] and [1.b.30]

we obtain

b b
f (u(x),v(x),x)-f (u(t),v(t),t)
I = H ol T () E(x)dtdx +
aa .
' bb -
+.2 J j fuv[u(x)?v(x),x]a(t,x)a(t)s(x)dtdx . ’ {1.b.31]
aa ' '

The third term on the right-hand side of equation [1.b.16] is as

follows:

b
I3 = J fvv[u(x),v(x),x].nz(x)dx . {1.b.32]
a _
Substituting from [1.b.12] in [1.b.32] we obtain




12

In Case I

I; = J £, [u(x),v(x),x]b [£(t)]dx.A } Egilft .

a a

[1.b.33]

It is permissible to interchange the order of integral [1.b.33]

and after interchanging the variables x,t and when we do so we obtain
b
- A J E(x)dx }

a a
b b
a

bfvv[u(t),vct),t]

I t-x

D [E(s)] dt

\AY

’ [i.b.34]

i

s-t

£ [ult)v(t)tldt 1)g(s)ds
S

- AZJ E(x)dx

a a

Using the Poincaré-Bertrand formula [see, e.g.,Muskhelishviii, N.I.(45)]
b b b b

% ;?; § ¢(t;f1ds = - w2¢(x,x) + J ds §(%é§§%%%%§ , [1.b.35]

a a . a a

hence

2 [ 2 V b‘ {bfvv[U(t),V(t),t]dt— .
Ig=- A ji(x)dx [‘n fvv(u(x) ,v(x) ,x)g(x)i-[E(s)_ds ? T J [1.b.36]

a a

a

Using partial fractions and [1.b.21.a] we can write
b

I3 = A2q2 J fvv[u(x),v(x),x]iz(x)dxv+
a ‘ :
b b
D_[f (u(s),v(s),s)]-D_[f . (u(s),v(s),s]
+ A J } x v — £(x)E (t)dtdx
aa [1.b.37]
In Case II .
b . P
Iy = J fW[U(x),V(x),X]DX[ECS)]dX[‘JE('x) L e ]
a ' a
b
=V [ £ [u(x),v(x),x]D, [E(s)] . g(x)dx +
a
b b
+-11?J fvv[u(_x),v(x),x].DX[ELS]]dx } 5({:t.).xdt [1.b.38]

a a
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It is permissible to interchange the order of integral [1.b.38]

and after interchanging the variables x,t and when we do so we obtain
b

I3 =w { £y [u(x),v(x),x]D [E(s) ].E(x)dx -

a
f, (u(t),v(t),t)D _[g(s)]dt
;I;J scx)dxf LA :
a
b

t-x
a
b

- £, [900, v (), XE GV G + L £0)

E a

b b .

[u(t),v(t),tldt

..;l,‘ E(x)dx}é vv oo [S}.g(t) . ;Tl_% E(ss_)tds:l
2 a

vV
b .
f [U(X),‘V(X),X]-f [U(,t),V(t),t]
Vv vV vV
t - €(\)dx§ o g(t)dt -
‘ a
b b b
[u(t),v(t),t]ldt
-4 J g(x)dx)[, w = % tis)ds ' [1.b.39]
a

a a

By using the P01ncare Bertrand formulae, [1.b. 35] in the flnal 1ntegra1

of [1.b. 39] we obtain
b

I3 = vzvav[u(x),v(x),x]ﬁz(x)dx +

a
b b .
[U(X),VLX),X]—f [U(t),V(t),t] .
v \'% vv
- { €(x)dx§ u —= g(t)dt -
a a . ‘
o P £ [ule),v(t),t)dt
;2[ E(x)dx[ £ ((x),v(x),x)E(x) +J€(S)dsj£ (t=x) (5-0) :] ’
a a a

[1.b.40]

Using partial fractions and [1.b.21.b] we can write
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- b .
f
= (14 | £, [0, v(),x]E2 () dx -
a
f [u(t)’v(_t):t]_f [U(X),V(X),X]
J E(x)dx§ vv vV

t-x

2’_
™

g(t)dt ~

a

g(t)dt [1.b.41]

a
b %b D, [£,, (u(skv(s),5)1-D J£, (u(s)¥(s),5)]

1
- F'j & (x)dx t-x
a

a

In Case III

Substituting from [1.b.12.¢] in [l:b.SZ] we obtain
b

I3'= f fvv[u(x),v(x),X]Dx[E(S) Jdx [El§'+ a(t, X)li(t)dt
a
b
I £ v[u(x),v(x),x]D, [E(S)]dx
a

[
§z

b - b

+ I fvv[u(x),v(x),x]Dx[g(s)]dx J a(t,x)E(t)dt P [1.b.42]

a , a
It is permissible to interchange the order of integral [1.b.42] and

after interchanging the variables x,t we will have

1 Jb [u(t),v(2), 1D [£()Jae
\ = -

E(x)dx § v < +
a a
b b
+ f g(x)dx J fvv[u(t),v(t),t]a(x;t)Dt[g(s)]dt . [1.b.43]
a a

Using [1.b.12] we obtain

b f [u(f) v(t),t]dt ,b
Iy = - j E;(x)dx§ jgecs)ds _

[u(t) v(t),t]dt
a(s, t)g(s)ds +

—tr—

E(x)dx ¢

m‘-—-0-

ap

+ €CX)dx [ £, Su(),v(t), tla(x,t)dt %
% % ' b

+| E(x)dx f _ (u(t),v(t),t)a(x,t)dt J

vv
a a a

o

{
o

a(s,t)E(s)ds - [1.b.44]
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We now use the Poincaré-Bertrand formula [1.b.35] in the first integral
of [1.b.44], in addition we interchange the order of the second, third and

fourth integrals in [1.b.44] and we obtain

, b2 b b bfvv[u(t),v(t),t]dt
= fa (O£ Tu(x) ,v(x),x]dx-JHx)dXJE(s)de{ (t-%) (s-1)
a. a a a
b [u(t), v(t) ,t]a(s,t)dt
ja(x)dxf (s)ds§ vV .-
a a
b f [u(t) v(t) ,tla(x,t)dt
+ J&(x)dxf (s)ds% Vv +
a a a
b b b
+ Js(x)dx g£(s)ds fvv[u(t),v(t),t]a(x,t)a(s,t)dt . [1.b.45]
a a a

Using partial fractions in the second term and interchanging the variables

s,x in fourth term we obtain

° ° Z(S)ds §b[fvv[u(t)’v(t)’t] _

13=w2[52f [uc-x),vcx),x]dx-fa(x)dx§ — ~
a a a
00 ), t]J P Pe ) ,v),tlacs, dt
b

dt - 2 £(x)deE(s)ds% - +

' a a

b

+ [i(x)deg(s)dsjfvv[u(t),v(t),t]a(x,t)a(s,t)dt , [1.b.46]
a - a a

and this may be written in the form

b bb
I3=‘n2J§2(x)fvv[u(x),v(x),x]dx - I % —izl—iﬁzl'i(t)i(x)dtdx -

t-X
a aa
-2 f [w(x,s)ECX)g(s)dsdx + [ Iy(x,s)g(x)g(s)dsdx , [1.b.47]
aa aa
b
where f_[u(s),v(s),slds
$(x) = J Y , )
a
f [u(t),v(t),t]ux(s,t)dt
¥(x,s) = J LA — , S [1.b.48]
a
b
y(x,s) = I fvv[u(t),v(t) tla(x,t)a(s,t)dt .
a N
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Using the above results, [1.b.16] can be written in the following form:

GZI'Jg(X)EZ(x)dx %H hCD)h0 g e (ydra |
aa
b

b in case I and case II ; [1.b.49]
621 = fgcx)zzcx)dx %” [h“) b, Bct,x)} E(t)E(x) dtdx
aa in case III , [1.b.50]
where
B(t,x) = 2¢(x,t) - v(x,t) -2fuv[u(x),v(x),x]' a(t,x) , [1.b.51]

Azwzf [u(x),v(x),x] , in case I ;

+

(fuu[u(x),V(X),X]

£ [0 ,v(x),x] + 2vE [u(x) ,v(x),x] + (10D, £, [u(),v(x) ,x] ,
g(x) = >
in case II ;

+

+

fuu[u(x),v(x),x] wzfvv[u(x),v(x),x] , in case III ;

[1.b.52]

_f{A.fuv[u(t),v(t),ﬂ-A[%vav(u(s),v(s),s)]}/w ,in case I

h(D) = < fuv[u(t),v(t),t]-Dt[fvv(u(s),v(s),s)]+2ﬁfvv[u(t),v(t),t], g
’ S in case II

{ {fuv[u(t),v(t),t] -o(t) H/m in case III . J
[1.b.53]

In [1.b.49] and [1.5.50] g(x),h(x),£, [u(0),v(x) ,x],£ [u(x),v(x) ,x]

and fvv[u(x),v(x),x] are assumed to be Holder continuous in (a,b); this

implies for the functions g(x),h(x) that for any two points x;,x2 in

the open interval (a,b) ,

U]
lg(x2)-g(x1) | € Aylxo-x1] , (osui<l,Ap>0) ; _
[1.b.54]

|h(x2)-h(x1) | ¢ Az|xp- X1| > (ogu2<1,A2>0)

Following Wu § Whitney we now consider the special choice of £&(x) ,

X=X |
E(x) = B.U(B) , 0 = — s [1.b.55]
where U(8) is Holder continuous
o<U(8)<1 (|8]<1, [x-x0|<e)

u(e)=o (Je|>1, lx'xo|>5) }' , [1.b.56]

]
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and x, is any fixed point in the open interval (a,b) and e is

arbitrarily small so that
a<xoia<b . [1.b.57]

In [1.b.55] B , the upper bound of £(x) , is either positive or negative,
and is chosen so small that 631 , 6&%I, etc. can be neglected in
comparison with 621

With this choice of &(x) , [1.b.49] and [1.b.50] can be written,

by adding and subtracting a term, in the form

b bb
621 = Ig(xo)€2(x)dx + [[g(X)-g(xo)]Ez(x)dx-;lr—” (t)- h(X)E(t)‘s(x)dtdf
a a aa

X +¢
0

=‘g(xo)32 J U2(6)de + R
° ‘

=g(xo)BzeI U?(8)de +R ,

where -1
x *e ‘X _+€
=j {[g(x)-g(xoﬂa(x) -%[ }—lgt—l—:z-(i)s(t)dt} g(x)dx , )
X7 Xo™€ in case I and case II [1.b.58]
and 1
821 = g(xo)Bze qu(e)de + R,
where -1 :
X _+€ x +€
f {[g(x)-gcxo)]a(x) f b -h(0 +m(t,x)]g(t>at}a(x>dx.
X _-€ X -e
o o
in case III [1.b.59]

With this choice of the value of £(x), assuming that the upper bound
of B(t,x) is A3 and using the inequalities [1.b.54], we can write the

upper bound of R as follows: 1 +1

o 2 2 1+up b2~
|R|SA182€1+UIJ lo] U*(e)de +Az8%e l¢-6]  U(BIU($)deds
-14 .
-1
2 2 .
< G%Eﬁ%q e, (ﬁf%ﬁ%z;ﬁ@af+u2 in case I and case II , [1.b.60]
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and

+1 u +1 +1 -
1 2-

IRIsAleZe“‘”[IeI Uz(e)de+A282e““2“|¢-el U(e)U(¢)deds +
-1 -1 -1
+1 +1

+ AgB2%e? J[ U(8)U(¢)dede
B |
2 : 2
2A18%y 1+, " 2A08 1+us 2.2 .
< (14-u1)€ * (u2(1+u2 @) + 2hgh%e in case III . [1.b.61]

We then obtain
1im

cro IRl =0 , | [1.b.62]

hence from [1.b.58] and [1.b.59] a necessary condition for minimizing,
[1.b.18], reduces to

gx,) > o, [1.b.63]
for every X € (a,b) , this implies from [1.b.52] that
( 2.2
£ [0, v, x] + A%rf | u(x),v(x),x] > o,
in case I ;
£, v ,x] + f [ulx),v(x),x] +

g(x] = 9 -&(1+v2)fvv[uCX),V(X),XJ >0,

in case II ;

£ U, v(x),x] + n? £ [u(x),v(x),x] > o,

in case III ,

[1.b.64]
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This condition is analogous to the Legendre condition in the classical
theory of the variational calculus.

Equation [1.b.64] is a necessary condition to be satisfied by a

minimizing function. It may also be noted, by analogy with other
classical variational problems [see, e.g.,Courant, R. and Hilbert, D.
(9), Chapter IV], that the strict inequality [1.b.§4'] is not a

sufficient condition for a minimum.

To find a sufficient condition we expand I[uC¥)+e£(i)] by Taylor's

'

theorem with a remainder after two terms.

Thus,
IuCx)+e£ (x)]=I[u(x)]+e81[u(x),5(x)] + 5762 [u(x)+e¢& (x),£(x)]
(0<¢<1). [1.b.65]
If u(x) is an extremal function, i.e.,

SI[u(x),&(x)] =0 , [1.b.66]
then
: 5 _
Ifu(x)+eg(x)]-T[u(x)] =§—!- 821 [u(x)+e¢pE(x),E(X)] (0 < ¢ < 1) [1.b.67]

Now suppose that inequality [1.b.18] holds not just for the extremal u(x),

but for all admissible functions.

Then we may set

e =1 ' [1.b.68]
in the above equation, [1.b.67] to give the condition
Tu()+Ex)1-Tu0)] = 5 821[u(x)+E(x),E(x)] > 0 (0 < ¢ < 1) [1.b.69]

which is sufficient to show that the extremal u(x) actually minimize I .
Based on the forégoing argument [see, e.g.,Wu,T.Y and Whitney, A.K.
(70)7, a sufficient condition for a minimum is that the quadratic form,

in g(x) and n(x) in the integral representation [1.b.16] of 6§21 be
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positive definite for all admissible wu(x) and &(x) [and hence all

admissible v and n by ([1.b.1] and [1.b.12]], that is

fuu[u(x),v(x),x] >0 (a<x<b) s [1.b.78]

and

fuu[u(X),V(x),X]-fW[u(x),V(X),XJ>(fuv[u(XJ,V(X),X])2 (a<x<b), [1.b.71]

for all admissible u(x) and v(x) .

This simple but rough sufficient criterion is a more restrictive

inequality than [1.b.64].

1.c. INTEGRANDS f£_[u(x),v(x),x],5=0,1;...,T ARE SECOND DEGREE IN

u, AND v ; THE FREDHOLM INTEGRAL EQUATION.

We now solve the problem of the previous section namely
b

v(x) = E(x)+vu(x) +-};§ BB | p [u(r)] ,  a<x<h ; [1.c.1]

a

when I[u(x),v(x),x] in [1.b.7] is a function of second degree, or
when [1.b.8] 1is of second degree in u(x) and v(x)

In this case the integral [1.b.21.b] is linear in u(x) and v(x)

It is instructive to investigate this case first, since the system
of singular integral equations [l.c.1] and [1.b.21.b] can then be
reduced to a single éredholm integral equation of the second kind, or,
in certain special cases, the method of singular integral equations can
be employed to obtain an analytical solution in a closed form.

. Following Wu, T.Y. and Whitney, A.K. (70), let the functions

fb[u(x),v(x),x] and fs[u(x),v(x),x] in [1.b.8] be given by

fo[u(x);v(x),x] Aou2(x)+230u(x)v(x)+COV2(x)+2P0u(x)+2Qov(x) y [1.c.2]

and

fs[u(x),v(x),x] Asuz(x)+2Bsu(x)v(x)+Csv2(x)+2Psu(x)+2QSv(x)

(s=1,2,...,7); [1.c.3]




) %_§ B(u(t)dt %_§ c(t)de [E(t)+vu(t)
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the coefficients Ao’ BO, Co”"’Qr are known functions of x ,

assumed to be Holder continuous [with index u,0<u<1] on (é,b).

Then the function f[u(x),v(x),x] in [1.b.8] becomes CW“H*5 the
conskant kerm un [1-b 3]

£flu(x),v(x),x] = Au?(x)+2Bu(x)v(x)+Cv2(x)+2Pu(x)+2Qv(x), [1.c.4]

where

T
Ax) = Ao(x) - SXIASAS(X) , etc. [1.c.5]

The integral equation [1.b.21.b] now reads

[A(x)+vB(x) Ju(x)+[B(x)+vC(x) Jv(x)+[P(x)+vQ(x)] =

b
_ l’f BE)U()+C(IV(E)HQM) 4¢ (aexch) : [1.c.6]

k] t-x
a

The necessary condition [1.b.64.b] for minimizing, obtained from

consideration of the second variation, becomes
A(x)+2vB(x)+(1+v2)C(x) > O [1.c.7]

which can be checked only when X, ,Az,...,lr in [1.c.5] are determined.
The coupled integral equations [1.b.6] and [l1.c.6] can be reduced, under
certain assumptions, to a Fredholm integral equation of the second kind,
with a regular symmetric kernel.

The required assumptions are that the coefficients A,B,...,Q as
well as solution u(x),v(x), are HBldeE continuous on (a,b).

In fact, eliminating v between [l.c.6] and [l.c.l] yields
b

} u(t)dt- + [P(x)+vQ(x)] =

ERE

[A (x) +vBG (B (x) +vC () 1[E (x) +vu () +

b ' b b

upay], L[ Qe
j( ] 3 E8E nes
a

=1|r—-

t-x t-x

a
We interchange the order .of . integration in the second term on

the right-hand side of [1.c.8] and then we obtain
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o |
[AGO+2vB(x) +v2C(x) Ju(t) + & % BOY+vCLI I-[BCEICE)] y(tyae + [B(x) +vC(xIECO-
a
b b b
P maeo] -1 f EBEENE 6 ciouce .}# u(y)dy } T
a a a

(a<x<b), [1.c.9]

| where, use has been made of the Poincaré-Bertrand formula [1.b.35] [see,e.g.,
Muskhelishvili,N.I. (45)].

Thus, [1.c.§] reduces to

b .
a(x)ux) + j K(t,x)u(t)dt = ¢(x) s a<x<b , [1.c.10]
a ‘ ‘
where
i a(x) = A(x)+2vB(x)+(1+v2)C(x) , [1.c.11]
K(t,x) = ﬁ%;(’i , : [1.c.12] .
with
b .
B(6,%) = [BI+CE - [BNCD] +§ [y_l? - ;}—x] cdy , [1.c.13]
a
o |
¢(X)==- E(x)[B(x)+vC(x)]'[P(x)+vQ(x)]-+§ E(t)C£Ei+Q(t) dt . [1.c.14)]
_ T

This is a Fredholm integral equation of the second kind, with a regular
symmetric kernel, for which a well developed theory is available:; and
C(x) and u(x) are Holder continuous on (a,b).

The function B(t,x) vanish at t=x
5 B(t,t) = O , [1.c.15]

and a(x), B(t,x) and y¢(x) will, in general contain unknown Lagrange
multipliers.
Ideally, the integral equation can be solved first for arbitrary values

of X1, kz,...,lr which can then be determined by the r constraints
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[1.b.3]. Finally, condition [l.c.7] should be checked.
ANALYTICAL SOLUTION BY THE METHOD OF SINGULAR INTEGRAL EQUATIONS

In the general case when the coefficients A,B, and C are arbitrary
function of x , the solution of the system of singular integral
equations [l.c.1], [1.c.6] cannot be found in closed form (for a general
discussion, see Muskhelishvili, part IV, (45) for further discussion
of special cases, see Peters, A.S. (50) and Gakhov, F.D. (23)).

However, when the coefficients, A,B,C satisfy certain conditions,
the system of equations [l.c.l] and [l.c.6] can be reduced in succession
to a single integral equation of the Carleman type, which can be solved in
turn by known methods, yielding the final solution in closed form.

These analytical solutions are of great interest, since in their
construction there are definite degrees of freedom for choosing the
strength of the singularity of the solution u(x) at the end points
x=a and x=b .

With these possibilities, the singular behaviour of u(x) and v(x)
near x=a and x=b can be explicitly analysed.

The following are several cases of fairly general interest.
Case I  A,B,C constants

Multiplying [1.c.1] by n and adding it to [l.c.6], we obtain

b . b
_1 { (B+n)u(t)+Cv(t) 1 1 Q(t)dt _
[A+vB-nv]u(x)+[B+vC+n]v(x)--1r § Tox dt+1T S x
a a
- [P(x)+vQ(x) ]+nE (x) (a<x<b) . [1.c.16]
We now choose n so that
A+vB¥név B+vC+nS
T c = ks (s=1,2) [1.c.17]
s
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and let ns(s=1,2) be the two solutions of the quadratic

hence
ny = - (B+vC)+vY2BuC+v?C%+AC (a)
[1.c.18]
ny, = - (B+vC)-v2BvC+v?C4+AC (b)
~ We define kS(s=1,2) as follows
B+vC+n 1 T~7 .
k_ = ~—-—C—-S‘v=i el vv4C%+2vCB+AC (s=1,2) ’ fl.c.19]
heﬁce
k= - kg = -(13 /NZCZ42uCB+AC . | [1.c.20]
Using [1.c.17] we can write [l.c.16] in the form
b b
(B+n Ju(t)+Cv(t)
=1 s 1] a(t)de _
ks{(B+nS)u(x)+Cv(x)}--TT } x dt-«-Tr ; Py
a a
-[P(x)+vQ(x)]+nsE(x) (s=1,2) . [1.c.21]
Substituting [1.c.18] and [l.c;20] in [1.c.21] we obtain
b
YVv4C%+2vCB+AC ¢1(x)==%-} 2;%§%§E_+ 8y (x) (a)
a b ’ (1.c.22]
C t)dt
VWZCZ42VCB¥AC 42 (x) = - = % ¢—2t(—_3(— + 0(x) (b)),
a
where
b
a0 =S¢ W cprmml-amBnor )
+ CE (x) Y2BvC+v4C4+AC (a)
b > - [1.c.23]
260 =~ & QDL c1p Q0 14CE GO (BrvC) +
a
+ CE(x) Y2BvC+v2C%+AC (®) ;5 |

énd



o1(x) = [-vC+/2BvC+v‘C‘+AC]u(x)va(x) (a)
$o (x) = [-vC-¥2BVC+Vv2C%+AC]u(x)+Cv(x) (b)

Now, equations in [1.c.22} are a singular integral equation of the

Carleman type, the general solutions of which can be found.

With ¢s(x) (s=1,2) so determined, u(x) and v(x)

Case II A=0, B = const. and C = const.

[1.c.24]

can be solved.

This is special limit of Case I , and the general solution can be

derived by putting A=0 in Case I.
Case III A = const. , B = const. and C=0

This is another special limit of Case I.

The corresponding solution can be derived from [1.c.16] in the form

b
U(X) = Z:;—\)-g{'B’E(X)'[P(X)"'\)Q(X)J +§ Q-LE—Z—?(E-}
. a

Case IV A,B,C functions of x .

We solve equation [l.c.6] byaspecial choice of B(x)

B,(x) = [A(x).C(x)]° (a) }
By(x) = - [A().C(O ]2 (b)

Substituting [1,c.26] in [l.c.6] we obtain

b
k] . 2
A% (0) G (3016 () =l§ € ®or(e)de | 40y
T t-x
a
‘ 1 1 b %
Wt (01e00 = - 1§ S0 o1
a
where b
060 = 1 { D pigaquo)
and a
$1(x) = AZ()u(x)+C? (X)v(x) (a)
1 1
0, (x) = A% (x)u(x)-C?(x)v(x) (b)

(a)

(b)

} .

[1.

[1.

[1.

1.

[1.

c.25]

c.26]

c.27]

c.28]
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Now, [1.c.27] is a singular integral equation of the Carleman
type, the general solution of which can be found.
Witﬁ ¢S(x) (s=1, 2) so determined, wu(x) can be solved in

succession by substituting [l.c.i] in [1.c.29], giving

., b
i 2 h
et lue + S f B Ly Ecio ()
1 5 [1.c.30]
1 1. 2 ’ !
e e - S Oy, L pacdeo o)
a

which is'again a singular integral equation of the Carleman type, and the

general solution is known.
Case V "A=0, B and C functions‘df X .

This is special 1limit of Case IV, and the general solution we can

derive is by putting A = 0 in Case IV ,
Case VI A function of x ,.B = const. and C = 0

This is another special limit of Case 1IV.

The corresponding solution can be deduced from [1.c.10] in the form

b
u(x) = KT;j%};ﬁ"{-BE(X)-[P(X)+VQ(X)] + % Q%;%?E_}, J [1.c.31]

a



PART I1I

THE OPTIMUM SHAPE OF CAVITATING

AND NON - CAVITATING HYDROFOIL
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INTRODUCTION

There is an extensive literative connected with cavity type flow
[see, e.g.,Davies,T.V.(13),(14), Geurst,J.A.(24),(25),(26), Gilberg,G.
(27),(28),(29), Parkin,B.R. (46),(47),(48),(49), Tulin,M.P.(62), (63),
Wu,T.Y.(76),(78)] but two papers which are most relevant to the present
Part II are those to Davies,T.V.(13) and Wu,T.Y. & Whitney, A.K.(70).

The purpose of this work is to evaluate the optimum shape of a two-
dimensional hydrofoil of given length and prescfibed mean curvature
which produces (maximum lift).

minimum drag full }

The problem is discussed in three cases when there isai(partial
zero -

cavity flow past a thin hydrofoil.

The liquid flow is assumed to be two-dimensional steady, irrota-
tional, incompressible and a lineafizgd theory is assumed.

A two-dimensional vortex and source distributions are used to simu-

-late the two-dimensional {égiéial) cavity flow past hydrofoil.

This method leads to a system of integral equations and these are
solved exactly using the Carléman-Muskhelishvili technique.

This method is similar to that used by Davies,T.V.(13),(14).

A singular integral equation formulation of the boundary value problem
is obtained and can be solved to yield expressionsfor thevlift and drag as
functiors of vortex~and source strength,and hydrofoil slope.

Weuse avariational calculus technique to obtain the optimum shape of

aximizeJ the [llft

. s s ) coefficient subject to
minimize drag

the hydrofoil in ordei to

constraints on curvature and given length, The mathematical problem is

Y vortex strength)

z
H source strength- and

that of extremizing a functional depending on
(the hydrofoil slope) when these two functions are related by a singular
integral equation. It will be shown that the first variation of the

functional yield a set of dual, non-linear, singular integral equations.
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The analytical solution for ‘the unknown shape z and the unknown

- singularity distributionll) has branch-type singularities at the two ends

of the hydrofoil.
(X;A],:AZ)
u(x;Ay,2z)

will involve two Lagrange multipliers constants A;,X, which can be deter-

(x3X1,X2)
mined by substituting the extremal solution u(X,A1,X2)] and z(x;Xj,Xn)

The extremal solutions, } and z(x;X1,A7) when determined

in the constraints.
Analytical solution by singular integral equations is discussed, and
Rayleigthitz methods are discussed.
A sufficient condition for the extremum to be a minimum is derived

from consideration of the second variation.



IT. THE OPTIMUM SHAPE OF HYDROFOIL WITH NO CAVITATION
INTRODUCTION

The purpose of this problem is to evaluate the optimum shape of a
two-dimensional hydrofoil of given length and prescribed mean curvature
which produces mihimum drag.

The hydrofoil as in the accompanying diagram (Fig.l) is placed in a
uniform flow of an incompressible non-viscous liquid filling an infinite
space. The liquid flow is taken to be two-dimensional irrotational,
steady, and a linearized theory is assumed.

A two-dimensional vortex distribution over the hydrofoil is used to
simulate the two-dimensional zero cavity flow past the hydrofoil.

This method leads to a system of integral equations and these are
solved exactly using the Carleman-Muskhelishvili technique.

AThis method is similar to that uéed by Davies,T.V. (13);(14).

We use variational calculus techniques to obtain the optimum shape
of the hydrofoil in order to minimize the drag éoefficient subject to
constraints on curvature and given length. The mathematical problem
is that of extremizing a functional depending on YA(the vortex strength)
and z (the hydrofoil slope) when these two functions are related by a
singularintegral equation.

The analytical solution for the uﬁknown shape z and the unknown
singularity distribution § has branch-type singularities at the two

ends of the hydrofoil.

The extremal solutions y(x;A;,X2) and z(x;A;,A2) when determined

‘will involve two Lagrange multipliers constants \;,Az which can be
determined, by substituting the extremal solutions y(x;X;,X) and
z(X3A1,20) in'the constraints.

Analytical solution by.a singular integral equation and Rayleigh-

Ritz _method are discussed.
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A sufficient condition for the extremum to be a minimum is derived

from consideration of the second variation.

ITa EXPRESSION OF THE PROBLEM IN INTEGRAL EQUATIONS FORM

y |
[ A
—e— »{x)
U ————— ~
0 (x,0) x=a X

FIG.1,

OA in the Figure represents a hydrofoil of arbitrary shape.

| The problem will be solved on the basis of linearized theory and
for this purpose we distribute:  vortices of strength vy(x) per unit
length in o< x<a (y>0 clockwise) along the x-axis to replace the above
physical configuration, and vy(x) being an unknown distribution.
The velocity potential dué to the distribution of vortices in

O<x<a 1is given by

a
1
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${x,y) = - z_wj Y(S)tan'ltx—i';) ds (0<x<a) , [2.a2.1]

(o]

and the corresponding velocity in y-direction will be

a
V=-%=§%J1§2—S§%§—s | [2.2.2]
o)
As y»+0+ we have, for all x
] a
)}:&v = ’jl?f Y—(;(%d—s (0<x<a) . [2.a.3]
0

The boundary condition on the hydrofoil is




2(x) = —— , (2(X)=y’ (X))

U+u

where u,v are the components of liquid velocity along x,y axes
respectively, U is uniform stream at infinity, parallel to x-axis and
y“(x) is the gradient of the hydrofoil at position x .

The equation [2.a.4] is approximated in the usual way to

v=Uz(x)

hence

a
-—zl—l—Jl—(s—s—)_):E-= Uz (x)
™

(o)

The linearized form of Bernoulli's equation will be

P:P“-!-pUd)x'_

where P is the pressure, P the pressure at infinity and p is

constant density of the liquid.

From [2.a.1] we can write

a

3¢ _ 1 | y(s).yds

9xX 27 (x-s)2+y2
o

the limiting value of gﬁ- as y»>0+ is

lim (39

1
y»0t Gx) T t 7y

IIb DETERMINATING THE GENERAL FORMULA FOR THE LIFT AND DRAG

(0<x<a) ,

31-

[2.a.4]

[2.

(2.

[2.

[2.

Let the x- and y- components of the hydrodynamic forces acting

on the hydrofoil be denoted by drag D and 1lift L , then the complex

forces acting on a hydrofoil calculated within the linearized theory are

given by
a

D+iL = J

(o]

{p| -P
ly=o-"Fly

=o+}idz

a.6]

a.7]

[2.b.1]

Using the results in [2.a.7] and [2.a.9 ] as y»0+ through positive
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value we obtain

_ lim
+—Pw+pU )

1 o,

y=0
=pm+ %. pUy (x) s (0.<x<a) [2.b.2]

Using the results in [2.a.7] and [2.a.9] as y»0- through negative

value we have

B lim
0_—Pm+pU ¢

P|
y+o- "X

y=
gpw_ %—pUY(x) s (© <x<a) [2.b.3]

It follows that we can write from [2.H.1], [2.b.2] and [2.b.3] the

hydrodynamic forces acting on the hydrofoil

a .
L= J {P[y=o_-P|y=0+}dx
° a
= - pU J Y(x)dx (o<x<a) P [2.b.4]
o
and
a
D= - I {P|y=o_-P|y=o+}dy

(o]
a

= PUI y(x)y”(x)dx (0<x<a) [2.b.5]
(o]

II¢ THE OPTIMUM SHAPE USING VARIATIONAL CALCULUS TECHNIQUES SO THAT
THE DRAG IS A MINIMUM
We pose the problem of minimizing the drag coefficient
*
p = 2 , [2.c.1]
pU?

subject to a constraint on curvature of the form

a .
K = I z2°2 (x)dx , [2.c.2]

)
where K 1is prescribed, together with a constraint on the length of the

hydrofoil of the form
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a

L = I V1+z2(x)dx s [2.c.3]
0

where 2 1is prescribed and z(x)=y”(x) 1is the gradient of the hydrofoil
at position x .

The expression for the drag D is given by
a
D = pU I y{x).z(x)dx . . [2.c.4]
)

-~

STATEMENT OF THE PROBLEM

The general optimum problem considered here may be stated as follows:
To find the real, extremal function v(x) of a real variable,
required to be Holder continuous [see, e.g., Tricomi,F.G.(61] in the region

O<x<a together with

- L j Y(s)ds _ ;5 (o<x<a) ,  [2.c.5]

so that y(x) and z(x) minimize the new functional
a .
*
Ily(x),z(x),z7(x),x]=D +1;2+1,K= f Fly(x),z(x),z7(x),x;21,A2]dx , [2.c.6]
o

with the function Fly(x),z(x),z°(x),x] given by
FlY(0,2(x),2 (0, x0,0) = § 200 () + /T2 002 2, [2.c.7]

where y(x),z(x)are related by [2.c.5] and A;,), are undetermined Lagrange
multipliers. | We define an admissible function as any function vy(x)
which satisfies the Holder condition A (u<1) , the constraints [2.c.2]
and [2.c.3], and we define the optimal function as an admissible function

which minimize the function I[y,z,z",x] .

THE NECESSARY CONDITION OF OPTIMALITY

Let v(x),z(x) denote the required optimal vortex distribution

function and optimal hydrofoil slope function respectively.
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A function £(x) will be called admissible variation if, for all

sufficiently small positive constant e

v1(x)=y(x)+e&(x) , . [2.c.8]

is an admissible function.
The variation in z(x) which corresponds to an admissible variaticn

n(x), such that

z1 (x)=z (x)+en(x) , | [2.c.9]
is found from [2.c.5]
a
n(x) = _ erU I g(ss_)xds , (o<x<a) . [2.c.10]
o -

If £€(x) 4is an admissible variation, then I[y+e£] 1is a function cf
e which has an extreme value when e=0 .
- The variation of the function I due to the variation £(x) and

n(x) is

AI==J F[y#eg,z+en,z’+en’,x]dx-j Fly,z,z”,x]dx . [2.c.11]
o o

Fer sufficiently small e, expansion of the above integrand in Taylor's

series yields

e?

AT = edI + A

§2I + ... s [2.c.12]

where the first variation &I 1is defined by
a - .
81[v,&] =J [ZFY(y,z,z’,x)+an(y,z,z‘,x)+n’FZ,('y,z,z’ , X)]dx [2.c.13]
0

in which the sub-indices denote partial differentiations, n 1is given by
[2.c.10] . The variations 61,621, ... depend on £&(x) as well as

y(x) .

We integrate by parts the equation [2.c.13] and it becomes
a :
- ” d rd '
51=J [ECIF (voz, 27, x)4n(x) (F (v,2,27,%) - g F, . (v, 2,27,x)) Jdx +
o

¢ MF . (,z,27,0] | [2.c.164]
h (o]
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Substituting from [2.c.10] in [2.c.14] we obtain

a . a
sx=[{a(x)FY(v,z,z',x)+cr:zcv,z,z',x) -2 sz(v,z,z',x)),(- s f “j_’x‘“]}dx
(o] (o}
o a
+ [n(x).F .(v,2,27,x)] - [2.c.15]
M

It is permissible to interchange the order of the repeated integral [2.c.15]

[see, e.g., Hardy,G.H.(35)} and then we obtain

2 )J 1 2 FZ(Y,Z:Z‘,S)"ad;FZ,(Y,Z,Z’,S) |
§I = [ E(x \FY(Y’Z’Z ,x)-rzﬂu [ e ds}>dx +
) )
a
+ [n(x).F,.(y,2,27,x)] . [2.c.16]
o

For I[y,£] to be a minimum, we must have for all admissible function

E(x) ,

§I[y,€] = 0 . [2.c.17]

Now the stationary condition [2.c.17] must hold for all admissible
g€(x) ; there are a number of different cases to be considered depending on

the end conditions are as follows:

n(0)=0 , n(a)=0 )

n(0)=0 i n(a)#0 ;

S [2.c.18]
n(0)#0 s n(a)=0 ;
n(0)#0 , n(a)#0 . J

In all cases it is necessary that

a . i -
1 f FZ[Y:Z;Z ,S]-dSF I‘[Y,z’z ,S]

'z
21U
o

FY[Y’Z)Z’,X] =- ds

s-X

(o<x<a) , [2.c.19]

and if n(x) does not vanish at an end point then it is necessary that

%g;, should vanish at that point; since

=, = 2Xx,2”"(x) (o<x<a) , [2.¢c.20]
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it then follows that we must have
n(0)z“(0) = 0 , n(a)z“(a) = 0 . [2.c.21]

The boundary conditions for z(x) are called natural boundary
conditions [see, e.g., Arthurs,A.M.(3)].
We can write from [2.c¢.7] the first partial derivatives of the function

F(Y,Z,Z‘,X;ll,kz)

FY[Y,z,Z’,X] = %-Z(X) , [2.c.22]
- A1z (x) 1
F ['Y,'Z,Z ,X] = _1—_—"' _Y(x) ’ [2.C.23]
‘ T2 U |

and g%,is defined by [2.c.20] .

Substituting from [2.c¢.20],[2.c¢.22] and [2.c¢.23] in [2.c.19] we

obtain

Y1+z2(s)

. [2.¢.24]

a [_512£§1.+ %—Y(s)—lez’Ts)]ds
z(x)=~-2—1“-[

Ss-X
o}

" This equation which is a necessary condition for the existence of an
extremal I[y] , combines wiéh the integral equation, [2.c.5] to give a
pair of singular integral equations, which are to be solved for v,z
subject to appropriate conditions and the constraiﬁts, [2.c.2] and [2.c.3].

The term z(x) on the left-hand side of [2.c.24] cancels with the
second term on the right-hand side of [2.c.24], from [2.c.5] and [2.c.24]
we obtain

Y1+22(s)

S-X

-0 (0<x<a) . [2.c.25]

Ia [ llELEl_._ ZAZZ‘Ts)}ds

(o]

The general solution of [2.c¢.25] is

)LIZ(X) - C

— (o<x<a) , [2.c.26]
V1+22 (x) Yx(a-x)

2x2271x) -

where C 1is an arbitrary constant.

It can easily be shown that A, cannot be zero.




37

Equation [2.c¢.26] is a nonlinear differential eauation for z(x)

We consider the solution of [2.c¢.26] for the slope z(x) only in

the case of small slope, and we approximate to [2.c.26] as follows:

C

Yx (a-x)

2xpz27(x) -1z (x) = (0<x<a) [2.c.27]

this is consistent with the linearized assumption on which we base the

whole theory.

IId A SUFFICIENT CONDITION FOR THE EXTREMUM TO BE A MINIMUM

A sufficient condition for the extremum of I to be a minimum is
derived from consideration of the second variation of I

Since

81[y,z,z",x]=0 , : [2.4.1]

the condition for I to be a minimum requires

821[y,z,z",x]1 >0 , [2.d.2]

for all admissible variations £&(x) and n(x) consistent with {2.c.10].

The solution of [2.c.10] satisfying the Kutta condition £(a)=o is

a
E(x) = %?- a;x I/ afs ngil?s . [2.d.3]

o
Since z has been prescribed at x=o and x=a in [2.c.51 it follows that

the variation n will satisfy the conditions
n(0) =0 , n(a) =0 . [2.4.4]

Then, using Taylor's thcorem with remainder, we write the increment of the

functional I[y,z,z”,x] as
' a

Ify+eg,z+en,z”+en”,x]-1I]y,z,27,x] = EJ {ECX)FY(Y,z,Z',X)+n(X)[Fz(Y,z,Z‘,X) -
' 0

- ad; F .(v,z,27,%) ]}» dx +