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disturbance and its k step ahead prediction 
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1.
CHAPTER I 

SURVEY

1.1. Introduction

This chapter presents a survey of recent literature in the area 

of system parameter estimation techniques applicable to single input, single 

output, linear discrete dynamic systems. Its main objective is to examine the 

structure of the assumptions made about the unknown disturbances, since the 

crucial factor in every identification experiment is whether these assumptions 

are satisfied by the unknown disturbances. j

1.2. System description

A causal deterministic system can be described as [1]

/t = J't-2* ••• ' /o' V r  “t-2* •••* V  (1-2-1)
where u^ and y^ represent input and output respectively. It is assumed that 

all initial conditions necessary to compute y^ are known.

For stochastic systems where it is not possible to determine y^ 

exactly by previous inputs and outputs as in (1.2.1), it is appropriate to 

consider the probabilistic description of ŷ . If the uncertainty of a 

stochastic system is represented by a disturbance term then a stochastic 

system can be described as

= ECXtl y t - l - y t - 2 -  ■ ■ ■ >  /o' Vl' V2» V  * (1-2-2)
where E(y^|.) is the conditional expectation given all past inputs and outputs.

It is assumed that the information is available at time t = 1 about the previous

behaviour of the system.

For practical reasons (1.2.2) is often expressed in a recursive way
»

such as linear difference or state space equations. In this thesis

the former representation will be used throughout, since it is more suitable for 

the single input, single output systems. Hence (1.2.2) will be written as

y^ = A(z“^)y^ + B(z“^)u^ + (1.2.3)
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-1 ^ -i -1 ^ -i -1where A(z~ ) = E z” , B(z" ) = Z z , z~ being a delay operator,

i=l i=l
-1such that z y^ = y^

The advantage of this representation is that only a few past.values of 

y^ and u^ are needed at each step to determine y^ and also most of the control 

design techniques require such a description.

1.5. Problem of identification and parameter estimation

Identification is defined by Zadeh [2] as ’the determination on the 

basis of input and output, of a system within-a specified class of systems, to 

which the system under test is equivalent.’ Using this formulation, it is 

assumed that 'the system under test’ is described by the linear difference 

equation (1.2.3). Naturally, in practice this assumption is rather restrictive, 

since it implies that the system can be modelled exactly. Nevertheless in a 

majority of engineering problems a certain amount of a priori knowledge is 

available which may be used to represent tjie system in the form (1.2.3) [3].

The above assumption obviously reduces 'a specified class of systems’ 

to a following model

y^ = A(z"^)y^ + ê(z”^)u^ + (1.3.1)

- -1 ^ . _i . _i n ^where A(z ) = Z a.z , B(z ) = Z b.z , e as an estimated value of the
i=l  ̂ i=l  ̂ ^

disturbance Since there is now no uncertainty about the structure, the

identification problem is reduced to that of estimation of unknown parameters 

(a_,b^,n) on the basis of input output measurements such that the model and the 

system are equivalent.

Several different ways have been developed to define the equivalence 

[4],[5]. For purposes of discussion these will be broadly classified as

(i) minimization of prediction error,

(ii) minimization of output error,

(iii) minimization of estimation error.
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The prediction of output is an essential part of the modern control

theory. In, e.g., the minimum variance control theory, the optimum input u^
2must be designed so that the output variance is minimum [6]. Therefore

it is natural to estimate the model parameters which give the best prediction of

output. In class (i) techniques this is achieved by minimizing some function of

the prediction error

(1-3-3)

where y^|^  ̂denotes a first step ahead prediction of given past values of

inputs and outputs up to and including time t - 1. It is known that [6] the 

minimum mean square prediction  ̂ is' given by

h\t-l  " ---’ >̂ 0’ V l ’ ---’V  d-3-l')

if is a zero-mean uncorrelated process then from (1.2.2) ànd (1.2.3) it 

follows that

^t|t-l  ̂A(z"^)y^ + B(z"l)u^ (1.3.5)

On substitution of (1.3.5) into (1.3.3), the prediction error takes the form

= y% - A(z"^)y^ - B(z”^)u^ (1.3.6)

and the parameters (â ,b̂ pi) are estimated by minimizing a weighted sum of 

squares of ê .

It is well known that the prediction error criterion is intimately

connected with the maximum likelihood estimates if is also assumed to be

normally distributed [1].

The main idea of class (ii) techniques is to estimate a model so that

its output approximates the output of the unknown system as closely as possible.

Writing the system (1.2.3) in the form
-1 -1y^ = B(z" ) [1-A(z“ )] u^ + (1.3.7)

where is assumed as the total effect of all disturbances acting on the system

output then comparing the system output y and the corresponding model output
— 1

Xt = B(z-b[l-ÂCz‘ b ]  (1.3.8)
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an output error is defined as
-1

6% = - Xt = Xt - B(z" )[1-A(z“ )] u^ (1.3.9)

then the model parameters are estimated by minimizing e^ in a weighted mean-square 

sense. The use of non-linear model as (1.3.8) requires a degree of sophistication 

in the minimization technique employed. If however, the model is chosen as linear 

in the parameters such as an impulse response model

= P(z'bu^ (1.3.10)

where P(z )̂ = Z P.z then the minimization can be done by a simple least
i=0 ^

squares algorithm.

The philosophy of class (iii) techniques can be explained as follows. 

Denote all the parameters to be estimated as
T0 — (a^,a2, • • •,3-̂ ,bĵ ,b2, •..,b̂ ) (1.3.11)

and the corresponding estimates as 8. Assuming that the order n is known, then 

0 is determined such that the following scalar loss function

V = E[f(0-0)] (1.3.12)

is minimum. Such a formulation makes it possible to use the tools of basic 

estimation theory. In particular, if it is assumed that 0 is a random variable 

and the joint probability distribution of (0,y^,... ,ŷ ,u.j.... ,û ) is available 

then the minimization of (1.3.12) for a wide range of reasonable loss functions 

yields the minimum variance estimate 0 of 0 [7]. In cases where 0 is unknown 

but not random or the probability distribution of 0 is not available then the 

minimization of (1.3.12) leads to the maximum likelihood principle where 8 is 

obtained such that

p(yt,Xt_i....,yo|8)

is maximum.

The question of how to define the equivalence between the system and its 

corresponding model has not been completely answered yet. Often the choice is 

a compromise between the purpose of identification and the ease of computation 

of estimates. If, for example, the purpose is to design minimum variance
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control strategies then the prediction error criterion may be convenient to 

employ. If on the other hand, all probabilistic properties of the disturbance 

are known, in particular, if the distribution is Gaussian then the use of 

criterion (iii) makes it possible to assign accuracies to parameter estimates 

and to test various statistical hypotheses [7]. For the criterion given in 

terms of the output error (1.3.9), estimation is simply a deterministic optimisation 

problem. However, under some suitable assumptions on the disturbance it may be 

possible to find a probabilistic interpretation and hence the accuracy of 

estimation can be estimated.

Parameter estimation methods can also be classified according to the 

experimental conditions, i.e.

a) data obtained from the open loop system with a pre-selected input

signal,

b) input, output measurements from the closed loop system with or 

without an additional input perturbation.

It is one of the main assumptions of estimation that the disturbance 

must be independent of the input to the system. This assumption is in general 

violated if the system is operating under feedback control. This therefore 

requires that estimation be carried out on an uncontrolled system with a pre

selected input signal u^ - a condition that may well prove unrealistic for real 

life problems, nevertheless class (a) methods have the following advantages due to 

the pre-designed input signal.

- Significant simplifications in computation can be achieved by choosing 

an input signal of a special type such as a pseudo random binary sequence.

- Input signal can be designed persistently exciting [8] to satisfy 

identifiability conditions.

- In some cases it is also possible to reduce the estimation errors by a 

proper choice of input signal [9],[10],[11].

In practice, it is generally desirable and sometimes even necessary to 

estimate the system parameters while the system is operating under feedback 

control. Reasons for this can be summarized as follows [12]:
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- The disturbance may contain some form of drift which usually causes 

large output fluctuations if the system is operated in open loop.

- Often a linear model of the process, valid around certain operating 

conditions, is estimated therefore a suitable controller must keep the system 

near these conditions.

Class(b) methods claim to use of input, output measurements from closed 

loop systems with or without an additional input perturbation. A detailed survey 

of these methods will be given in Chapter 3 and 4. It will only be noted here 

that estimation of such systems causes extra difficulties. In cases where an 

additional extra input perturbation is allowed, it is in general possible first 

to identify the closed loop system and hence infer the dynamics of the system if 

the controller is known. If. it is not possible to use an additional perturbation 

signal then the identifiability cannot always be guaranteed [12].

In the following sections of this chapter a survey of recent parameter 

estimation techniques applicable to single input output systems operating in 

open loop will be given. The fundamental point of interest will be the assumed 

a priori knowledge of disturbances, since most estimation methods rely on the 

assumptions made about unknown disturbances which in turn completely determine 

the quality of solution. The non-satisfied assumptions always lead to incorrect 

estimates. As it was stated by Astrom and Eykhoff [13], this is probably the main 

reason why ’Most methods seem to work well on simulated data but not always that 

well on actual industrial data.'

In order to make a comparison of parallel estimation techniques first 

a brief summary of regression analysis will be made.

1.4. Regression analysis

Let y be a scalar continuous variable as a function of known continuous 

variables x^,X2 >...,x^ and various unknown factors whose effect on y are represen

ted by one continuous variable e. In the absence of evidence to the contrary, 

the relationship between these variables can be assumed a linear one as



y=8 X + 8_ x_ + ... + 6 X + E

7.

(1.4.1)

thIf a series of N experiments are performed, t experiment can be described by

/t = ®1 *l,t * ®2 %2.t * ••• + ®m V t  " (1-4-2)

using a vector-matrix formulation, the total set of N equations can be conveniently, 

written as

y = X 0 + e  (1.4.3)

Twhere y = ..., ŷ )̂ , X = {x̂   ̂; i = 1, ..., m;t =1, ..., N} is an
T * TNxm matrix and 0 = (0̂ , 02> ...» 0̂ ) , e = (ĉ , £2 » •••> ê ) and N > m.

The estimation problem is now to ascertain 0 from the given data X,y.

In principle this problem is insoluble, since the number of unknowns in 0 and e 

is greater than that of equations, N. Consequently it follows that 0 and e

can only be estimated if additional m equations can be found to complement (1.4.3)

to (N+m) equations. It will be assumed that these m equations are linear in 

the form

E(M^e) = Y (1.4.4)

where M is an Nxm matrix and y is an m vector. The assumptions (1.4.4) will be

taken as m exact constraints on the estimate e as

= Y (1.4.5)

Denoting 0 as an estimate of 0 in (1.4.3) and collecting (1.4.3) with (1.4.5) it

is found that estimates are obtained as the solution of following (N+m) equations

(1.4.6)

th Twhere Î  is a unity matrix of N order. Assuming that the mxm matrix (MX) is

X J.x__
Ly ■M̂ 1(0) . .0.

non-singular then 0 and c are obtained as 

0 = (M^X)"^ M'̂ y - (m '̂ X)"̂ y

c = [Î  - X(m '̂ X)“  ̂M'̂ Jy + X(m'^X)"\

(1.4.7)

(1.4.8)

In regression analysis the assumptions (1.4.4) take the following form 

E(x’̂e) = x'̂ Ee = 0 (1.4.9)



The justification of this choice is that the elements of X matrix are completely 

known then it can be assumed that the effects of unknown elements, c, are 

physically independent of those of the known, X. This physical independence can 

also be assumed to imply probabilistic independence and hence the first equality 

in (1.4.9) follows. It is also found convenient to assume that e is a zero mean 

vector. However, if there is a known constant level this can easily be incor

porated by considering (e - Ee) instead of (Ee) in (1.4.9).

In terms of ê (1.4.9) takes the form

X^E = 0 ' (1.4.10)

thus substituting M = X, y = £  into (1.4.7) and (1.4.8), the well-known estimation 

equations are obtained as

ê = X^y (1.4.11)

ê = [Iĵ - X(x’’’x)‘  ̂X^]y (1.4.12)

TFor the existence of estimates the requirement is that (X X) must be non-singular, 

that is, X must be of rank m.

The above derivation of estimates §,e has an intuitive appeal as far 

as the assumptions are concerned but it is not possible to say in what sense the 

estimates are optimal. It can however be shown that (1.4.11) and (1.4.12) are 

identical to the least squares estimates where 0 is estimated such that the 

following error criterion

V = ê'̂ e (1.4.13)

is minimum. The elements of e in least squares estimation are referred to as 

the residuals.

Comparison of the two different derivations of 0,2 shows that the least 

squares criterion implicitly dictates what assumptions are made about the unknown 

disturbance e. It would however be more desirable to use a criterion which 

minimizes the inevitable assumption errors. The reason for this is that the 

least squares criterion gives rise to models which best fit. the experimental 

data, whereas in general the function of such models is used to make predictions 

about the future behaviour of the system. It is precisely in such situations 

that the models obtained by the consideration of assumption errors may be more
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realistic. This point is particularly important for the dynamic systems 

if the final goal of identification is to design minimum variance control 

strategies.

1.5. Parameter estimation in linear dynamic systems 

The system is described by an n^^ order linear difference 

equation as

y^ = ACz“^)y^ + B(z"^)u^ + (1.5.1)

where the polynomials A(z )̂ and B(z )̂ are defined as before. There is no 

loss of generality to assume that A (z ^),“ B(z )̂ have the same order since 

if this is not the case the later coefficients can be replaced by zeros in 

either polynomial. It is also assumed that the system is stable, i.e.

1 - A(z"l) = 0

has all roots inside the unit circle of the z-plane.

To evaluate {ŷ ; t = 1,2, ...,N} it is required that all initial

conditions (y ,...,y\ ,u ,,...,u. ) be known. These values can beo i—n — i i—n
regarded as unknowns or simply assigned"an arbitrary value, say zero. In 

the former case the unknown initial conditions are included in the estimated 

parameters [14]. But often these values cannot be estimated consistently [1] 

For the latter case, if the data length is sufficiently long then as far as 

the large sample properties are concerned the assumption of zero initial 

conditions has little effect on the estimates. As it will also be seen in 

the following that by ignoring initial conditions it is possible to simplify 

notations considerably.

Now assuming that u^ = 0 for t < 0 and y^ = 0 for t 3 0, the 

total set of N equations of (1.5.1) can be written as

y = Ya + Ub + e (1.5.2)
T T Twhere a = (a^,a2 »...,aj , b = (b^,b2 >...,b̂ ) , e = (e^,C2 ,...,ê ) ,

Ty = (yj,y2 > • • • >Xjyj) > u and Y are Nxn matrices whose elements are the past 

values of input and output respectively. Since all initial values are
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assumed null then U and Y matrices can be represented in a form using the 

NxN shift matrix [9]

S =
0

^N-ll -

(1.5.3)

-1whose effect is a vector equivalent of the delay operator z , for 

example, Sy = (0,y^,y2,...,y^ ^). In terms of S, U and Y can be written 

as U = (u,Su,...,S^ û) and Y = (Sy,Sy,... ,Sy) where u = (u^,u^,... ,û  ̂ )̂̂ \ 

In the following it is also found convenient to write (1.5.2) as 

y = Xe + e (1.5.4)

is an 2n vectorwhere X = (YjU) is an Nx2n matrix of data and 0 = 

of unknown parameters. Correspondingly the model will be written as

y = X0 + G (1.5.5)

and it will be assumed that the order n is known. The problem is now to 

estimate 0 and e given data X and y. First the least squares solution 

will be discussed.

1.6. Least squares estimation 

The error criterion to be minimised is 

V = 2^2 = (y-X0)^(y-X0)

and the minimum value is obtained for 

0 = (x'̂ X)"̂  Xy

(1.6 . 1)

(1.6.2)

As it has been discussed in section 1.4,the least squares estimate is 

based on the assumptions

E(X e) = E = 0 (1.6.3)

which can be rewritten as 
T„iE E S u = 0 i = 0,1,..., n - 1

E E^S^y = 0  j = 1,2,..., n

(1.6.4)

(1.6.5)
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The assumptions (1.6.4) can be justified on the grounds that the input 

signal u can be designed a priori and is completely known then it can be 

argued that the effect of unknown factors, e, is independent of those of 

the known, u, and if it is also assumed that E(e) = £ then(1.6.4) follows 

To discuss the assumptions (1.6.5) it is found convenient to 

write the vector (Ya) of (1.5.2) as 

r n
Ya = E a.S^ 

1=1 1
y = Ay (1.6.6)

n
where A = Z a.S is an NxN lower triangular matrix with zero 

i=l ^

elements on the major diagonal. Now writing (1.5.2) as

y = Ay + Ub + e or (1.6.7)

y = (I-A)"l(Ub + e) (1.6.8)

then assumptions (1.6.5) take the following form

Ec^s^y = Ee^S^(I-A)"^G + Ee^S^(I-A)"^Ub = 0

i = 1,2,...,n (1.6.9)

Consider now the second term of (1.6.9) which can be written as

Ee'^S^(I-A)"^Ub = Ec^S^ (I-A)"^Bu = Ee^S^Pu = Ee'^S^(U,U)p

i = 1j2,...,n (1.6.10)

^ i 1where B = Z b.S and P is the impulse response matrix defined by 
i=l ^

-1 • thP = (I-A) B = Z p.S^ where p. is the j coefficient of the impulse
j=0 ] )

Tresponse assumed of r sample intervals duration and p = (p^,p^,...,p^ )̂

and ^ = (S^u,...,S^ ^u)^. Previously in (1.6.4) it has been assumed 
T ithat Ee S u = 0; i=0,l,..., n-1 , following the argument about the 

justification of this assumption, it may also be asserted that this 

condition will hold for i=n, n+1,..., n+r-1 and thus it follows from 

(1.6.10) that

EeV(I-A)“^Ub = 0 i=l,2,...,n (1.6.11)
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hence the assumptions (1.6.5) now become

Ee^S^y = Ee'̂ Ŝ  (I-A)  ̂e = 0 i=l,2,...,n (1.6.12)

The definition of impulse response matrix P states that (I-A) 

when expanded by the binomial theorem, is a convergent polynomial in S and 

whose coefficients after the first (r-n) are considered negligible. Let

-1 k(I-A) = Z d, S then (1.6.12) can be written
k=l ^

T i T i+kEe S y = E Z d e S e = 0  i = 1,2,...,n (1.6.13)
k=l

TThus a set of sufficient conditions for E(X e) = £  are

E E^S^u = 0 i=0,l,..., n+r-1 (1.1.14)

E e'̂ Ŝ e = 0 j = l,2,..., r (1.6.15)

The above equations state the well-known assumptions that the disturbance 

should be uncorrelated with itself and with the input. They are also 

more specific in the sense that they give some idea of the range of shifts 

for which lack of correlation is required. It is well known that if the 

above assumptions are made stronger as

a) {e^} is a stationary zero mean sequence with bounded fourth 

order moments, such that e^ and ê  are independent for t  ̂s,

b) The input sequence {u^} is independent of

c) . The input sequence is persistently exciting of order n, 

then 6 converges to 0 with probability one as N -+ «» and the covariance 

matrix of 0 is given by

Cov 0 = E(0-8)(0-0)T = o2(X^X)%l (1.6.16)

where o^ = Ee^ [15], [16].

The assumption that the disturbance is an uncorrelated sequence is 

so unrealistic in real life problems that the straightforward application 

of the method can lead to wrong conclusions. The inapplicability of 

least squares estimation in the case of correlated disturbances has given
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rise to several other techniques which assume that appropriate pre

filtering of the data with some specified filter can convert the problem 

into a least squares framework.

1.7. Box and Jenkins technique

The system representation chosen by Box and Jenkins [17] is 

y = Ay + Bu + e (1.7.1)

where A and B matrices are as defined before and e is assumed to be an 

auto-regressive moving-average process as

e = CI-Q)'^(I+C)C (1.7.2)

m . m Twhere C = Z c.S^, Q = Z q.S^ and Ç = (C,,C^,..., C^)‘ is an 
i=l i=l 1 ^  N

N vector of zero mean independent random variables For stationarity it

is assumed that the polynomial [l - Q(z )̂] has all roots inside the

unit circle of the z-plane. Since is now correlated the least

squares estimates are not consistent. However, pre-filtering of the
_ 2

data u,y by the filter (I-Q)(I+C)" will leave a transformed disturbance 

Ç which is uncorrelated. The difficulty is of course that the filter 

(I-Q)(I+C)  ̂is unknown and an iterative technique is required to 

generate successively improved estimates of Q and C. Details of the Box 

and Jenkins iterative procedure are as follows.

(1) Obtain least squares estimates A, B for some given 

and from the model

(I-Â)ÿ^ = Bu^ + e (1.7.3)

where = (I-Qu)(I+C^)"^u and = (I-Qu)(I+C^)"y are the filtered
thinput and output data of the i iteration. Initially Q̂ , can be 

taken null.

(2) Using residuals c attempt to generate a new noise model as 

 ̂° (1.7.4)
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(3) Revert to step (1) with re-application of the least 

squares routine.

The procedure terminates when e is insignificantly different

from Ç.

1.8. Generalized least squares technique

The contribution of Clarke with the generalized least squares 

[18] is that by representing the noise e as a pure auto-regressive 

process

E = • (1.8.1)

the iterative procedure of the Box and Jenkins technique is considerably 

simplified. This follows from the fact that the estimation of the 

auto-regressive parameters in step (2) can be easily done by a simple 

least squares procedure. Three different versions of the generalized 

least squares method are available. In Clarke's original proposal the 

filtered data of the i^^ iteration are obtained as

a. = (i-QL) ÿ = (i-Qi)ÿi.i

where u^ = u, y^ = y, whereas the second version [19] obtains its 

filtered data from the original data as '

ûi = (I-Q^)u

They correspond to different ways of estimating the correlation of 

the disturbance. The third version of the generalized least squares 

[20] is based on the following representation

y = (I-A)“  ̂Bu + n (1.8.2)

where now n denotes the total effect of all disturbances acting on the 

system output y and is represented by an auto-regressive moving- 

average process

n = (I-Q)'l (I+C)c (1.8.3)
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Writing (1.8.2) as

(I-A)y = Bu + (I-A)(I-Q)(I+C)Ç (1.8.4)

It follows that if a filter (I-F) can be found as

I-F = (I-A)'^(I-Q)(I+C)’  ̂ (1.8.5)

then filtering of the data y and u by (I-F) in (1.8.4) leaves an uncorrelated 

disturbance term ç. To find this filter, the procedure uses output error 

computed from the current estimates and B^ as

= y - (I-Â/)  ̂B^u (1.8.6)

and fits an auto-regressive model to n^.at the i^^ iteration as

h  °  (1.8.7)

Comparison of (1.8.3) with (1.8.7) shows that (I-G) is an approximation to

(I-Q)(I+C) then the required filter at the (i+T)*^ iteration is obtained

as

(I-Fi^l) = (I-Â.)-2(I-G.) 0-8.8)

The advantage of this version in comparison with the previous ones is that 

if the polynomial 1-A(z ) has a root near unity, a high order auto-regressive

model may be needed if the filter (I-F) is estimated by fitting an auto

regressive model to the residual

^i (I-Ai)y - (1.8.9)

A similar technique to the third version was previously proposed

by Steiglitz and McBride [21], where it was assumed that n = C, i.e. white 

noise disturbance at the system output. An extension to the correlated 

output noise was also reported in [22]. However, it was assumed that the 

noise characteristics are known.

The convergence of generalised least squares technique was first 

discussed by Phillipson [23] and it was shown that the first version is 

convergent in the sense that the sum of squares of residuals (ê e) 

decreases at each step. Later in [19], asymptotic properties of the 

estimates obtained from the second version were analyzed and it was
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proved that the method may give wrong estimates if the signal to noise 

ratio is low enough.

1.9. Extended matrix method

This scheme [24] estimates the system and the disturbance

parameters in one single procedure instead of separate algorithms as

applied in the generalized least squares method. The disturbance is

described as an auto-regressive moving-average process

e = (I-Q)'l (I+C); (1.9.1)

combining (1.9.1) with the system representation

y = Ya + Ub + e (1.9.2)

(1.9.2) can be written as

y = Ya + Ub + Qe + Cç + Ç

y = Ya + Ub + Oq + Tc + %
“a 1 (1.9.3)

y = (Y ; U i « j r) b + Ç
q
c

where 0 = (Se,...,s\), q = (q^,... ,q̂ )"̂ , F = (Sç,... ,s"'ç),

Tc = * since ç is a vector of independent zero mean sequence

then

E(Y| Ujfijr)*̂ ? = 0 (1.9.4)

and hence the application of the least squares technique to (1.9.3) gives 

consistent estimates of (a,b,q,c). As the elements of Ü and T are unknown, 

these are replaced by their estimates 0 and T whose elements are obtained

from estimates (a,b,q,c) of the i^^ iteration as

= Xt ■ \(z'bxt ■ (1.9.5)

St = S; - Qi(z"i)Bt - cL(z'i)Et (1.9.6)

This technique is first discussed by Young [25] for the moving- 
average disturbance case.
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One common feature of the estimation techniques discussed so 

far is that either by a suitable filtering of the data or by representing 

the system conveniently,the estimation problem is formulated such that the 

transformed disturbances are uncorrelated and hence satisfy the assumptions 

of the least squares technique. There are a number of other techniques 

whose basic philosophy is not to cast the problem into a least squares 

framework but to exploit the lack of correlation between input and dis

turbance to obtain consistent estimates. Three techniques which fall into 

this category will now be discussed.

1.10. Tally principle

The tally principle was first formulated by Peterka and Smuk 

[26]. Following Gustavson [27], the technique can be described as 

follows. Let the system be represented as

y = Ya + Ub + e = X8 + e (1.10.1)

where it is only assumed that and u^ are uncorrelated for all t,s. If

an Nxr matrix is defined as U^= (u,-Su,... ,S^ û) then this assumption 

can be written as

E(e|Uj.) = E e + * (1.10.2)

subject to the condition that all r elements (J>. of the vector
T  ^

(f) = (4^,02*'''»#?) are identical to zero. For convenience here, it will

be assumed that Ee = jO. Let a,b denote arbitrary parameter vectors

spanning the same space with the vectors a and b, since in general

a  ̂a, b  ̂b then

E(Ê|up = Up $ + 0   , (1.10.3)

where ê is the residual vector corresponding to a and 5, i.e.

e = y - Ya - Ub (1.10.4)

Using (1.10.3) e can be written as

e = U^ Î + ê (1.10.5)
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where the N vector ê satisfies E(e|up = £. From (1.10.4) and (1.10.5)

e = y - Y a - U b  - Û<() = y - X8 - Û(J) (1.10.6)

The estimate 0 is obtained in the following two steps:

a) obtain } given 6 by minimising ê ê,

b) find 0 which minimizes

The resulting estimate 0 can be written as

ê = [x\(U^up‘^U^X]'^ x\cujup'^ujy (1.10.7)

The choice of number of vectors r in U has been discussed and it has beenr
shown that r should be greater than the impulse response duration. The

technique has also been used to estimate the system and the disturbance 

parameters in the Astrom*s representation [28]

y = Ya + Ub + (I+C)ç (1.10.8 )

1.11. Two stage least squares

The two stage least squares technique, proposed by Theil [29] 

for the solution of linear simultaneous equations model in econometrics, 

has later been applied for the estimation of system and disturbance 

parameters in the Astrom's model by Pandya and Pagurek [30]. The technique 

consists of the following stages.

Stage 1: Write (1.10.8) in the impulse response representation

as y = (I-A) ^Bu + n = Pu + n = U^p + n (1.11.1)

where P = (I-A)“ B̂, n = (I-A)"^(I+C)ç, U^ = (u,Su,... ,s’̂ "̂ u) ,

P = (PqjPj*• • • )̂ and r is the duration of impulse response. Since 
TE(U^n) = £  that is,input and disturbance are uncorrelated then the least 

squares estimate p of p obtained as

P = (1.11.2)

is consistent.
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Stage 2; Using p in (1.11.2), obtain the estimated or fitted

y as

y = UpP = u^(uju^)'^u^ = P(u^)y (i.ii.s)

where P(U^) = is a projection matrix [31]. Since
2 n ^Y = (Sy,Sy,...,S y) then correspondingly Y is

Ÿ = P(U^Y (1.11.4)

Using Ÿ, (1.11.1) can be written as

y = Ÿa + Ub + (Y-Y)a + (I+C);

= P(upYa + P(UpUb + (Y-Y)a + (I+C)ç

-C- + (Y-Y)a + (I+C)C= P(U^)(YjU)

= P(up X0 + (Y-Y)a + (I+C)c (1.11.5)

where in the second equality the use is made of P(U^)U = U which follows 

from the fact that U lies in the range space of Û . If 0 is estimated 

from (1.11.5) by minimising c^c where

G = y - P(Up) X0 (1.11.6)

then the resulting least squares estimates 0 can be written as 

6 = [xTpCUyjX]"! x'̂ P(Up)y or

= (x'̂  UyX]-! x\(u^up'^ U^y (1.11.7)

where the term {(Y-Y)a>has no effect on the solution, since from (1.11.4) 

and[P(Up) . P(Û )] = P(U^) it follows that x"̂ P(Û ) (Y-Y)a = £. The disturbance 

model (I+C) is estimated by re-applying the technique to the residuals 

G = (I+C)c.

Before proceeding further, it is to be noted here that since both 

the tally principle and the two-stage least squares technique exploit the 

same assumptions, namely the lack of correlation between input and distur

bance, their resulting estimates (1.10.7) and (1.11.7) are quite similar.

In fact for an uncorrelated input sequence, i.e. for

¥  ( " X )  “ I r

they are equivalent.
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Another technique in the same vein is the instrumental 

variable method.

1.12. Instrumental variable method

For the system represented by

y = Ya + Ub + e = X8 + c (1.12.1)

an instrumental variable estimate of 0 has the following general form

0 =(Z^x)"l z V  (1.12.2)

where Z is an (N x 2n) matrix of instrumental variables such that the 

following two limits exist.

= .2 » ^  is non-singular (1.12.3)

By an application of the Slutzky theorem [32], it immediately follows that 

if the above limits exist then 0 converges to 0 as N -► «> either in

probability or with probability one depending on the specifications of

stochastic limits in (1.12.3).

The idea of instrumental variables is very old in econometrics 

[33], in control engineering it was first introduced by Wong and Polak [34] 

and later used by Young [35] where the instrumental matrix Z is formed as 

Z = (WjU) where W = (w,Sw,...,S^*^w) and w is generated from input only by 

use of a model

w = Wa + Ub (1.12.4)

where a and b are the parameter vectors of the assumed model. In [34],

[35] these are chosen as estimates of the true parameter vectors a,b and these 

estimates are obtained from the recursive computation of (1.12.2). Later it 

has been shown by Finigan and Rowe[36] and by Soderstrom [37] that if u^ is

white noise and under some mild conditions on the system (1.12.1), and its

noise free model (1.12.4), then for all choices of a,b the resulting Z is 

an instrumental matrix,that is, the limits in (1.12.3) are satisfied.
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Writing (1.12.4) in the form

w = (I-Â)  ̂Bu = Pu = (1.12.5)

T ^  ̂ i 4where Â = Z a.S and B = Z b.S " , the first stochastic limit of
i=l  ̂ i=l ^

(1.12.3) can be written as

= 0 i = 0,1,..., r+n-2 (1.12.6)

which implies

Ec^S^u = 0  i = 0,1,..., r+n-2 (1.12.7)

hence the choice of assumptions here is again the lack of correlation 

between input and disturbance.

The identification methods discussed so far in this chapter 

have one feature in common - in all methods no assumptions are made about 

the distribution of the disturbances. If there are grounds for specifying 

this distribution, it is in general possible to obtain more efficient 

estimates than those of the previous techniques. For example, the maximum 

likelihood method of Astrom and Bohlin [8] assume that the elements of 

Ç of the following model

y = Ya + Ub + (I+C)ç (1.12.8)

are normally distributed and the parameters are estimated by maximizing the

joint probability density function of observations over the parameter space 

(a,5,c^,...,c^). Astrom and Bohlin have used a version of the generalized 

Newton-Raphson procedure for this maximization. There are also other . 

available procedures, for example, the second version of the generalized 

least squares technique can be interpreted as the maximization of the 

density function by a relaxation method [19]. Various computational 

problems still remain to be solved; e.g. due to the multi-peak likelihood 

function,a chosen procedure may only converge to a local maximum point 

[38], [39]. It is well known that [8] if the algorithm converges to a 

global maximum then the resulting maximum likelihood estimates are 

consistent and efficient in the sense that the covariance of estimates
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equals to the Cramer-Rao lower bound [40].

1.15. Conclusions

Will all these identification techniques work in real life 

problems? It is almost impossible to say, since the crucial factor in 

every identification experiment is whether the assumptions are met by 

the unknown disturbances. There have been successful industrial applications 

of these techniques, but it does not follow that disturbances will always 

fit the assumed pattern.

For an open loop identification experiment, the assumption that 

input and disturbance are independent is a natural one and can be justified 

from the physical considerations, but also assuming that the disturbance 

is an independent process is so unrealistic in practice that the least 

squares method must be discounted as a serious technique. The general

ization of the disturbance model to an auto-regressive moving-average type 

in which the generating process is independent has given rise to several 

generalized least squares techniques where the implicit assumption is 

that the disturbance has a rational spectra [6] which may not be true in 

connection with real life processes [41]. The maximum likelihood method 

where the disturbance is assumed normally distributed has nice 

asymptotic properties, however the resulting estimates are, in general, 

not robust for a mild deviation of disturbance from the assumed pattern 

[41],[42],

So far the main concern has been with the validity of assumptions, 

but an equally important point is the sensitivity of estimates to the 

inevitable assumption errors. In the next chapter a new estimation 

method will be proposed which takes into account the violation of 

assumptions when deriving its estimates.



23.

CHAPTER II 

THE MODIFIED LEAST SQUARES ALGORITHM

2.1. Introduction

This chapter presents a new approach to system parameter 

estimation. It is assumed that the only reliable feature of disturbance 

is its independence of input. This yields a set of assuptions in excess 

of the minimal requirements and an endeavour has been made to exploit 

this excess to minimize the parameter estimation errors. The resulting 

estimates are equivalent to those of the two stage least squares method. 

However it is believed that the way of thinking about the estimation problem 

is original.

2.2. Modified least squares algorithm

As it has been surveyed in Chapter I, there are a number of 

techniques which derive their estimates Iby exploiting the assumptions 

that input and disturbance are statistically independent and hence 

uncorrelated. These assumptions will be represented by the following set 

of r equations

Up e = jO (2.2.1)

where U^ = (u,Su,...,S^ û) is an Nxr matrix. The assumptions (2.2.1) -

effectively require that the component of e lying in the range space of U^

is small. There also exists a matrix L which consists of normalized
Tcolumn vectors such that L L = 1^ and whose range space coincides with 

that of Û . The equations (2.2.1) are effectively unchanged by substituting

L for U ,̂ i.e.

L^c = 0 (2.2.2)

Although the calculation of L matrix introduces the problem of computing
V 1an ortonormal set of vectors spanning the space (u,Su,...,S u), this
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can be done efficiently by Grahm-Schmidt orthonormalization procedure [43].

Following the vector-matrix representation of previous chapter, 

the N equations of the system

y^ = A(z“^)y^ + B(z“^)u^ + t = 1,2,...,N (2.2.3)

will be represented as

y = Y a + U b + c = X 8 + e  (2.2.4)

-1 ^ -iwhere it is assumed that the order n of the polynomials A(z ) = Z a. z
i=l ^

-1 "and B(z ) = Z b. z is known or at least an upper bound can be given. 
i=l ^

As it has been discussed in section 1.4, the estimation of 0 and e requires 

2n additional assumptions to complement (2.2.4) to (N + 2n) equations. It 

is then necessary to reduce the r assumptions (2.2.2) to the 2n required 

for estimation. Denote the latter by

= 0 (2.2.5)

where M is an Nx2n matrix. It will be assumed that each of these 2n 

assumptions (2.2.5) will consist of some arbitrarily weighted sum of the 

original r assumptions and this will be expressed in terms of an arbitrary 

rx2n matrix F such that

M = LF (2.2.6)

thus using the estimation equation (1.4.7) for y = 0̂  the estimates are 

given by

0 = (F^L^X)"! F V y  ' (2.2.7)

For the existence of estimates it is required that the matrices F and L 
T T -1are such that (F L X) exists. This is the identifiability condition 

with respect to 2n assumptions. On substitution of y from (2.2.4),

(2.2.7) can be written as

0 - 0 = (fV x)“  ̂fV c (2.2.8)
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Since in general the assumptions (2.2.2) will not be completely met, some 

allowance must be given to the inevitable assumption errors. To do this

e can be decomposed into a component c which exactly satisfies the assumptions
T_ * T Ti.e. L e = £ and a component Lv which violates them, i.e. L e = L L v ^ £

T -1 Twhere the unknown r vector v is defined by v = (L L) L c. Under this

decomposition the estimation errors are given by

8 - 8 = (fV x)“  ̂fW v = (F^lTx)"! F*̂ v (2.2.9)

and the sum of squares of estimation errors by

||§ _ 0||2 = v'^F(x'^LF)“^(f\'^X)"^f '̂v = v^Yv (2.2.10)

where Y = F(X^LF) ^(F^L^X) ^F^ is an rxr symmetrix matrix. The objective 

is to select F such that the estimation error ||8 - 6||̂  is in some sense 

minimum taking into consideration that v is unknown. There is still an 

ambiguity in F since the effect of post-multiplying F by any non-singular 

matrix leaves the corresponding Y unchanged. This ambiguity is to be 

eliminated without loss of generality by imposing the constraints

x\ f = Ign - (2.2.11)

Twhich ensures the required non-singularity of (X LF). The constraints 

(2.2.11) are satisfied by

F = l'̂ X(x\ l'̂ X)"̂  + K (2.2.12)

Twhere K is an arbitrary rx2n matrix subject to X LK = (0). Substitution

from (2.2.11) into (2.2.10) the sum of squares of estimation errors becomes

I|e - e||2 = v^FF^v (2.2.13)

which is a positive semi-definite quadratic form of which the vector v 

is unknown. One criterion appropriate for minimization of (2.2.13) is

tr Y = tr FF*̂  = tr F*̂ F = tr(X^LL^X)"^ + tr A   ̂tr(x\L'^X)"^

(2.2.14)
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where the equality holds if and only if K is null. On this criterion 

therefore the best choice is

F = (2.2.15)

On substitution from (2.2.15) into (2.2.7) the estimation equations are 

obtained as

0 = (x\ l’̂X)"^ X̂ Lb'̂ y (2.2.16)

The minimization of (tr Y) is a valid criterion since it is related to the 

magnitude of the quadratic form which is the sum of squares of estimation 

errors. It is also to be noted however that one reasoii for its choice is 

the fact that it gives rise to a comparatively simple estimation algorithm. 

Another possible choice of criterion is the minimization of the largest 

eigenvalue of Y. This choice follows from the relation that

v^Yv  ̂ v^v (2.2.17)

where denotes the largest eignevalue of Y. It would then be appropriate

to choose F such that X^ is minimized. This criterion is highly favourable

from an engineering point of view since it seeks to alleviate estimation

errors in the worst possible situation, namely when v lies entirely in

the range space of F, however for the less extreme cases it may increase

the estimation errors. Furthermore choice of F to minimize X is a problemm
which has not an easy answer. However it will be shown below that the

choice of F which minimizes (trY) is one solution to this problem, i.e. it

also minimizes X .m
TFrom Y = FF , it can be seen from an induction proof that the 

following identity holds

Ŷ  = F(F^F)^"1 F^ (2.2.18)

Let the largest eigenvalue X^ occur with multiplicity p then it follows 

that



27.

Urn (Y -  ’■
i -  “  It  ,

min-
lim F(F'f)

i= P = i tr

'p% ‘
Am

(2.2.19)

Tthe latter limit is p if and only if F F has a largest eigenvalue ? A^ with 

multiplicity p, then

v^F^Fv  ̂A^v^v (2.2.20)

but using (2.2.12)

vV fv = v^[(X^LL^X)"^ + K^K]v (2.2.21)

thus from (2.2.20),(2.2.21) it follows that

Am  ̂ (v'̂ v)”  ̂ [v'̂ (X̂ Ll'̂ X)”  ̂v + vVkv] (2.2.22)

hence A^ is minimized with respect to K by Kv = £  which includes K = (0), 

that is, the choice of F with K = (0) is one solution to the minimization 

of the largest eigenvalue Â .

Comments

1) The modified least squares algorithm (2.2.16) has an 

interesting interpretation from the generalized least squares point of 

view. It can be shown that the estimation equation is based on minimisation 

of the criterion

V = (2.2.23)

T T — 1 Twhere the weighting matrix R = LL = L(L L) L is a projection matrix of

rank r into the range space of L. Hence what is sought is that c which has

the smallest amplitude component in the r dimensional sub-space which is 

the range space of L. It will also be noted that in the extreme case 

where the number of assumptions r equals to the number of observations N, 

the modified least squares estimates are identical to that of the least 

squares, since if L is full rank then L  ̂exists and hence R = Î .
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2) The modified least squares algorithm is identical to 

that of two stage least squares (1.9.16). This follows from the fact 

that since the column vectors of L matrix are linear combinations of 

the column vectors of [43] then it is possible to write L = 

where 0 is an rxr non-singular matrix. On substitution of L =

into R gives R = U^(U^U^)  ̂ hence the modified least squares 

algorithm can also be written as

ê = [x'^Up(uV)‘  ̂UpX]'l xTUp(UpUp)-l Up/ C2.2.24)

which is identical to the two stage least squares estimates (1.11.7).

3) An important point in connection with identification is 

the choice of input. Because of the desirable properties, it has been 

common practice to use uncorrelated sequences such as pseudo-random 

binary sequences. There is a strong incentive to use such sequences for 

the modified least squares algorithm, since then the column vectors of 

will be orthogonal and consequently there will be no need to employ

time consuming orthogonalization procedure to generate L. More explicitly 

the required conditions are

^ U ^ U p = K l p  (2.2.25)

where k is a constant depending on the signal amplitude. In this event

the estimates are given by

ê = (x’̂UpUpX)"^ x'^UpU^ (2.2.26)

One of the unresolved difficulties associated with the 

modified least squares algorithm is the choice of r, the number of 

assumptions. In the next section one possible way to estimate r will be 

presented.

2.3. The choice of number of assumptions

This problem will only be discussed for an uncorrelated input 

sequence and hence the algorithm (2.2.26) will be used throughout the
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discussion. It will be shown that if r is chosen greater than the impulse 

response duration plus the order of system then approximately no significant ' 

change will occur in the resulting estimates,that is, if the impulse 

response duration is denoted by J then

0^ - 0^  ̂ for r > J + n (2.3.1)

where the suffix r of Ô indicates that the estimates are based on r

assumptions.

By partitioning as = (U^^^ 1 ^u), (X^U^U^X)  ̂can be
written as

(x'^UpU^X)'^ = [(x’̂Up_jU^_jX) + x’’‘'s’̂ -^u (s’̂ '^u)’̂X]*^ (2.3.2)

by applying the well-known matrix inversion lemma [44], (2.3.2) takes 

the form

= '’r-l (2-3.3)

where  ̂is the matrix given in square brackets. Using the same

partitioning again
,T„ „T „T„ „T „T^r-l ,^r-l ,TX UpU^y = X‘Up_j U'^y + X‘S‘ u (S u) y (2.3.4)

substituting from (2.3.3) and (2.3.4) into (2.2.26), 6 can be written as 

®r = '’r-1 ®r-l ' ^r-1 ( ^ V l  x'̂ s’̂ -^u(s’̂ -lu)V
(2.3.5)

Now it will be shown that for r > J + n, F _ = I_ and the second term ofr-1 2n
(2.3.5) is approximately zero.

From the system representation (2.2.4) it is possible to write 

y = (I-A)"l Bu + (I-A)” £̂ = Pu + (I-A)’^e = Uj p + (I-A)“ ê (2.3.6)
J-1where the matrices A,B,P are as defined in Chapter I and Uj = (u,Su,...,S u).

r-1 TNow consider the term (S u) y of (2.3.5) which can be written as

(Ŝ '̂ u)'̂ y = (S’̂ '^u)^ Ujp + (S’̂ '^u)^ (I-A)"^e (2.3.7)
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Assuming that the disturbance e fits the required assumptions (2.2.1) 

for all r then the second term of (2.3.7) is approximately zero and hence

(S^^^u)^y - (Ŝ "̂ u)'̂  UjP = [(S^ ^u)^u,..., (S^ ^u)^ S'̂ "̂ u]p

(2.3.8)

it then follows that for an uncorrelated input sequence

(S^^lu)Ty = 0 for r > J (2.3.9)

and hence the second term of (2.3.5) is approximately zero. Consider 
r-1 Tnow the term (S u) X in  ̂which can be written by using the

partitioning X = (Yj U) as

(S’̂ '^U)'^X = [(S^‘^u)'^Sy,..., V y ,  (s’̂ ’^u)’'u,....

(2.3.10)

the first n elements of this row vector are (S^ ^u)^ Sy; i = 1,__ , n.

Using y from (2.3.6) these can be written as

(S^"lu)^Sy = (s’̂“ û)'̂ Ŝ Û p + (S^"lu)T (I-A)“ ê

= Z p.(S^^lu)T si+^u + (s’̂'̂ u)'̂  S^(I-A)"^e ; i=l,2,...,n
j=0 J

(2.3.11)

Following the same argument above, it can be seen that

(S^ ^u)^ Sy - 0 i=l,...,n for r > J + n.

From orthogonality of input it also follows that for r > J + n the later 
r-1 Tn elements of (S u) X are also zero and hence

(S^^lu)^X = 0 for r > J + n (2.3.12)

which implies approximately

r 1 = I_ for r > J + n (2.3.13)r-1 2n

Incorporating (2.3.9) and (2.3.13) with(2.3.5) it follows that (2.3.1) 

holds, that is, the choice of r greater than the impulse response duration 

plus the order of system leaves the modified least squares estimates

approximately unchanged. This conclusion is in fact in agreement with the

choice of number of assumption in parallel estimation techniques such as 

tally principle [26] and two stage least squares technique [30] where in
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the latter r is explicitly chosen as the duration of impulse response.

In cases where the impulse response duration is not known a

priori a different approach is required to determine r. This can be based

on the following reasoning. An increase in r permits a greater degree of

arbitrariness in matrix F which can be exploited to reduce the (trY)

criterion; but at the same time this is counteracted by the additional

elements added to vector v. The inequality (2.2.17)with the choice

of largest eigenvalue illustrates this dilemma. In this situation,

a reasonable way to proceed is to assert that the similarity of assumptions
Tsuggest that they will be violated to the same degree and v v will be, very

roughly, proportional to r. This suggests that the choice of r can be

based on a criterion (r.trY).

The minimum possible value of r can be determined by considering

the non-singularity of (X^U^U^X) in (2.2.26). If r <2n then is of rank
T Tless than 2n and hence (X U^U^X) is of rank less than 2n and consequently

is singular. Therefore r should be chosen at least greater than twice

the system order. "

The next section will consider the asymptotic properties of 

the modified least squares estimates. ___

2.4. Asymptotic properties of estimates 

It will be shown in this section that under some mild 

conditions on the disturbance, the modified least squares estimates 

converge to their true values when N -> «>. In order to prove this 

property following lemmas will be needed.

Lemma 1: If the covariance function of a zero-mean stochastic

process x^ satisfies

lEXpXjl S y ^ *     ( 2 . 4 . 1 )

1 + |t-s|®

with 0  ̂2a < 3 < 1 and y > 0 then
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n ' ! » ¥  V t  = ° (2.4.2)t=l

with probability one and in mean square. Proof is given in [45]. - 

Lemma 2: If

i) {u^} is a bounded sequence, |û |  ̂ say,

ii) is a zero-mean stationary stochastic process independent 

of u.̂ and whose covariance function satisfies

^ for r % 1, 0 < 6 < 1 (2.4.3)

then for all finite i,j << N

“ Ü » ¥ (S's)^ S^u = 0 (2.4.4)

with probability one and in mean square.

Proof:

1 i T i 1 N-1
¥  (® = ¥ /  ,. =t-i+l V j  (2'4'S)t=max(i,jJ

Let us define x. = e. . _ u^ . then x_ is a zero-mean stochastic t t-i+1 t-j t
process whose covariance function satisfies, from assumptions (i) and (ii)

lEXfXsl = |E Eg.i+i “t-j "s-jl  ̂*̂1 l^^t-i+1 ^s-i+ll

S Kj Kglt-sl"^ (2.4.6)

2It will now be shown that for a = 0, 3 = 6  and y = K̂ . max 2 ' *'2

(2.4.6) implies (2.4.1) and hence (2.4.4) holds with probability one and in 

mean square. Taking a = 0, 3 = 6  and t = s in (2.4.1)

r i j E x ^  (2.4.7)

substituting x. = e. .  ̂ u. . into (2.4.7) and using EeJ • i=EeJ, Eu? .  ̂ ,L L-l+i t-J t—1+1 L L—J 1
it follows that

2 G=tY S K‘ ^  (2.4.8)
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Once again using (2.4.1) for a = 0, 3 = 6, t  ̂s and y = ^

|Ex^x^_J  ̂ ^  (2.4.9)
1 + T

where t = t - s. But from (2.4.6) for s = t - t

|EXp Xp_J s r2k2 \  (2.4.10)

comparison of (2.4.9) with (2.4.10) and noting that for t  ̂ 1 and 0 < 6 < 1

&  < — ^  (2.4.11)
T 1 + T

hence (2.4.10) implies (2.4.9) then it follows that for a = 0, 3 = 6  and

2•y = max ; (2.4.6) implies (2.4.1) and consequently (2.4.4). 2 ' -2j
holds with probability one and in mean square.

From a practical viewpoint, convergence with probability one 

is very attractive, since it states that (2.4.4) holds for almost all 

sequences of the disturbance ê . However, it also requires that a rather 

restrictive assumption (2.4.3) must be satisfied by the covariance function 

of £̂ . By relaxing (2.4.3), the convergence in probability will be given 

in the next lemma.

Lemma 3: If

i) |û | 3 and

ii) is a zero-mean stationary stochastic process independent

of u^ and whose covariance function tends to zero at a rate faster than
1— as N -+ «> , i.e.

N t̂l = 0 (2.4.12)

then

in probability. Proof is given by Wong and Polak [34].

The consistency of the modified least squares estimates will 

now be proved in the following theorem.

Theorem 1: Consider the stable system

= A(z"l)y^ + B(z ^)u^ + (2.4.13)
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and assume that

i) the polynomials [1-A(z~^)] and B(z have no 

common factors,

ii) is a zero mean stationary stochastic process, inde

pendent of and its covariance function satisfies (2.4.3),

iii) the input sequence u = (Ug,u^,...,UQ )̂ is chosen such

that

“ ! « ¥  (S û) V u  = 0; i H

and without loss of generality that j
n'! - ¥  (si")Tsiu = 1 ; i = j

A Tthen the modified least squares estimates 8 = (a^,a2 ,...,a^,b^,...,b^) 

converge to their true value 0 with probability one and also in mean square, 

Proof: From (2.2.4) and (2.2.26), the estimation errors can

be written as

0 -  0 = —  x^u uTx
n 2

-1
x'̂ Û Û E (2.4.14)

Now,if it can be shown that

and

00 ^  (X^U^U^X) is positive-definite and hence its

inverse is non-singular, then

§ = e (2.4.15)

with probability one and in mean square.

Proof of (I): By partitioning X as X = (y!u_), where the------------  , n
subscript n of denotes the number of column vectors of U, i.e.

= (u,Su,...,S^ ^u), it is then possible to write
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I T T  —  X^U U e= 
2  r rN

  'T 'p
n 2 ^

i-' U^U U^E n2  n r r

(2.4.16)

writing U as U = U ^ n n r
In
(0)

, the last n rows of (2.4.16) become

—  U^U U^E n2  n r r

and

[ I  I (0)  ]n I ¥

I

since from (2.4.4) of lemma 2 for i = 0 and j = 0,1,...,r-1 it follows 

that It® ¥  “rt = 2> then

(2.4.17)

that is,the last n rows of (2.4.16) become zero. Now consider the first 

n rows of (2.4.16). Writing a set of N equations of (2.4.13) as in 

(2.3.6)

y = Ya + Ub + E = (I-A)  ̂Bu + (I-A) ê

-1 (2.4.18)
= Pu + (I-A) E = UjP + n 

then the matrix Y can be written as
,n

Y =  (Sy,S‘ y , . . . , S “ y) = (S U jP , . . . ,s"UjP) + ( S n , . . . , S " n )

= D + W say (2.4.19)

,n

thus

— y '̂ U U^e = —  D^U U^E + —  W^U U^E
N% r r n2 ^ n2 ^ ^

(2.4.20)

Consider the first term of (2.4.20), and assume for convenience that r is 

chosen as the duration of impulse response, i.e. r = J, then defining an

N vector p^ = , the column vectors of D matrix can be written as
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(2.4.21)D = (SU^,...,S“U^) = (SU^p^,...,S"U^p^)

Using the commutation properties of shift matrices, it is now possible to 

write the first term of (2.4.20) as

&N
^  (Sp^,... ,s"p/u;jupU^c

N-r

T

= H. ¥

¥ °S-r "r

(2.4.22)

where = (Sp̂ ,. ,S^p^) and = (S^u,...,S^”^u), then from

h  = 0 and the finiteness of matrices ^ u"̂ U and -N - > < » N r  - N - + « » N r r

N^“ ~ ¥ K - t "r'it follows that

(2.4.23)

Consider now the second term of (2.4.20) which is

7  “V Î *  ■ 7
(û Sn)'̂  u^c

(uVn)'^ u?c

(2.4.24)

by expanding (I-A)  ̂as a polynomial in S, n will be written as

, r-n , 
n = (I-A) c = Z d, S e 

k=l
(2.4.25)

substituting (2.4.25) into (2.4.24)
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k=l

r
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(2.4.26)

then by the application of the Slutzky theorem [32] and from lemma 2

— w'̂ U u'̂ e = 0 ‘ (2.4.27)N - + « > . , 2 r r  —N

Combining (2.4.17), (2.4.23), (2.4.27) in (2.4.16) it then follows that

^ X \ u ^ e  = 0

with probability one and also in mean square. OED(I).

Proof of (II): Partitioning X as before

(2.4.28)

I T T  1
?  ' W  ■

I y\u^U^

uM y 1 uj;u^uX

(2.4.29)

and considering the limit values of matrices in (2.4.29), the following 

results are obtained in a similar way as in the previous proof

= In

n
CO)

(2.4.30)

lim

¥ " X

¥ °N-n "n

N -)■ 00 11
(2.4.31)
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where is an nxn partitioned matrix of i.e.

«1 =
H11
H12

(2.4.32)

and

N ^ T TW^U^uHv) (2.4.33)

starting from the first term of (2.4.33) and using the commutation 

properties of shift matrices

7 ° V r °  = «IN
r
(0)

[If 1(0)] (2.4.34)

on partitioning as 

H
«1 =

13
H14

(2.4.35)

(2.4.34) takes the form

(2.4.36)

where are rxn and (N-r)xn matrices respectively. It can be

shown by the application of lemma 2 that all the other terms of (2.4.33) 

tend to zero with probability one. Now (2.4.30), (2.4.31), (2.4.36) 

reduce (2.4.29) to

&  x W x  =
N

" L  «13
H11

H11

n
(2.4.37)

Following the results given in [46], (2.4.37) is positive-definite 

if and only if

(Ĥ 3  H^^) is positive definite. (2.4.38)
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It will now be shown that if the polynomials [1-A(z )̂] and 

B(z"^) contain no common factors then (2.4.38) holds. To show this, 

consider the matrix the partitioned form as

H13

0 0 ... 0

Po 0 0

Pi Po 0

Pn-2 Pn-3 0

Pn-1 Pn-2 Po

Pr-2 Pr-3 Pr.r-n-1*

H

H

11

15
(2.4.39)

where is an (r-n)xn matrix. It then follows from this partitioning 

that

^13 ^13 ’ ^11 ^11 ^15 ^15 (2.4.40)

To prove the positiye-definiteness of H^g it is sufficient to show 

that the column vectors of H^g are linearly independent. From the 

expansion of the pulse transfer function in partial fractions and 

assuming that poles are distinct, P(z )̂ can be written as

-1\ n . -1
P(z‘I) = ■ ) = Z z'l)

1-A(z" ) i=l
(2.4.41)

where (1-y^ z )̂ ; i=l,2,. ..,n are the n factors of [1-A(z )̂] and gl̂ s

are a set of unique constants all differing from zero if B(z )̂ has no 

factors (1-Y^ z )̂. In terms of shift matrices S, (2.4.41) takes the form

P = (I-A)”-" B = Z g (I-y.S)-^ 
i=l  ̂ ^

n
= Z 
i=l

g. (I+Y.S+Y2s2+...+y:'l s«‘I)

,J-1

(2.4.42)

Since P = Pg+p^S+...+Pj  ̂S then equating the coefficients of 

corresponding powers of S in (2.4.42),pJs can be written as



n
P; = % g» Yp i=0,l,...» J-1
 ̂ &=1 * *

Defining the following n-vector as,
T

r-i 2 n-1^
Xji = (l'Yr y l ’  ■■■■ y  a )

40.

(2.4.43)

it can be seen from (2.4.39) and (2.4.43) that the first n rows of 

can be written as

n-1

n

n-2

n-1

2n-2 ^2n-l n-1

^ n-1 ^ n-2 n
 ̂%  A=1

(2.4.44)
But

• 1 1 ... 1 SlY-

n i
yi ^2 yn 8 2 ^ 2 . 8 2 ^ 2

J6=l
V n

= V

V n

(2.4.45)

where V is the Vandermonde matrix [47] then from substitution of (2.4.45) 

into (2.4.44), the determinant of (2.4.44) becomes

Pn- 1 Pn- 2  ••• Po ,

n- 1glYi 8 l^ l’ ^ • • • gj

Pn Pn- 1  ••• Pi
= |v|

n - 1

2 2 ^ 2 8 2 ^2 '^ * * * ^ 2

P 2 n - 2 P 2 n-1 " ‘ Pn- 1

n- 1

^n^n
n - 2

g2 ? 2 ••• 8 n

-- - -- n -
n (y --y .) 

l^j<i^n J
n

l$i<i3n
(y.-yJ  n g 

 ̂ A=1 (2.4.46)

where the first term on the right hand side of the second equality is the 

Vandermonde determinant which is different from zero when y . 4 Y>* The1 ' J

second term is the determinant of the matrix
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n - 1glYi ...

‘ n - 1

^n^n ‘ ’ &n

which can be easily obtained by noting that the rows of this matrix are

in fact the columns of the Vandermonde matrix multiplied by one of the g|s,
n

hence the determinant is given by |v| multiplied by II g.. It then can
Jl=l

be concluded that if

' i  = 1 ,2 ,...,n (2.4.47)

T T Tthen the matrix H^g is of rank n and consequently (Ĥ g H^^)

or equivalently

X*̂ U U^X is positive-definite. GEO (II).N CO ^2 r r ^

Corollary: By the application of lemma 3 instead of lemma 2

in the proof of theorem 1 , it can be shown in a completely similar manner 

that the convergence of the modified least squares estimates holds only 

in probability if the covariance function of the disturbance satisfies

(2.4.12).

One practical difficulty associated with the modified least 

squares algorithm is that although its estimates are strongly consistent, 

the algorithm, in parallel with other techniques in its class, does not 

provide the accuracy of estimates, nor the possibility to use a statistical 

hypothesis test to estimate the model order. Writing the covariance 

matrix of the modified algorithm estimates from (2.2.4) and (2.2.26) as

Cov (8) = E(8-8)(6-8)T = E [(x’̂U^uJx) "̂ x'̂ Û Û ec'̂ Û Û X(x'̂ Û Û X) (2.4.48)

it can be seen that unless the covariance matrix of the disturbance is 

known there is no possibility to estimate the accuracy of estimated 

parameters. One conclusion that might be conjectured from the covariance 

matrix is that if the disturbances are independent with common variance
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â , i.e. Eee'̂  = a^L, then (2.4.48) can be reduced to E e N

Cov (0) = a2[x'^U^(U^U^)'^ U^X]'^ (2.4.49)

or equivalently in terms of orthonormal matrix L to

Cov (0) = o^(X^LA) (2.4.50)

If this result is compared with the covariance matrix of the least 

squares estimates

Cov (8 ) = j2(X X) (2.4.51)

T T 1  T Xsince tr(X LL X)  ̂tr(X X) , it can be concluded that in a situation

where the data is ideally suitable for the application of the least

squares, the modified algorithm in general produces estimates with

higher variance than that of the least squares technique.

2.5. Examples

This section presents a series of results to demonstrate the 

properties of the modified least squares estimates. Mainly two aspects 

of the proposed algorithm are illustrated.

I) How much improvement can be obtained by the application 

of the modified least squares algorithm instead of the least squares if 

the disturbances are correlated?

II) How efficient is the modified least squares algorithm in a 

situation where the disturbances are uncorrelated and hence the data is 

ideally suitable for the application of the least squares technique?

To make these comparisons following error criteria were used.

i) Mean-squared parameter estimation errors of the modified 

least squares (MLS) algorithm related to that of the least squares (LS)

0, =

ii) Mean-squared impulse response estimation errors related to 

the mean-squared true impulse response
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5 H Ê i eI L  
' IIpII

The criterion 6  ̂is an overall measure of the performance of 

the (MLS) algorithm with respect to the (LS) technique. The impulse 

response error 6  ̂is particularly relevant if the final goal of 

identification is to design minimum variance control strategies.

As test cases for comparison three simulated linear time 

invariant processes were chosen.

PI: Second order process
l-A(z'l) = l-1.5z"l+0.7z"2 ' B(z"l) = z"l+0.5z"2

P2: Second order non-minimum phase process

1-A(z"l) ^ i_i.425z"l+0.496z"2 B(z“ )̂ = - 0.102z"^ + 0.173z"^

P3: Third order process

l-A(z'l) = l-1.5z"l + 0.705z‘  ̂- O.lz"^ B(z"^) = 0.06Sz“  ̂+ 0.048z'^-0.OOSz""^

Processes P2 and P3 have been proposed by Isermann [48] as test cases for 

a comparison of different identification methods. They have been derived 

from continuous processes with a zero-order hold. Process PI seems to 

be a common example used by different authors, e.g. [16],[19],[27], [28],

[49], [50].

The disturbance models used in the examples were in the 

following forms

e. = ° ^  S. , e = (l+0.9z‘b1-0.9z  ̂ ^

where the uncorrelated sequence {ç̂ .} was generated by using a standard 

random number generator from the Harwell subroutine library of ELLIOT 4130. 

This generator first creates equally distributed random numbers and then, 

based on these, gives Gaussian distributed numbers with zero mean and unity 

variance. The sequence was tested for randomness by calculating the

auto-correlation function; it was observed from the sample mean values 

of the auto-correlation coefficients for 50 different samples of that

the sequence could be considered to be uncorrelated with 95% confidence
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level for samples greater than about 2 0 0 .

The input sequence {u^} was chosen to be a pseudo-random binary 

sequence (PRBS) of magnitude ±1. The sequence was generated by a suitable 

combination of 8 -register (PRBS) generator such that the period was 255.

This choice had the advantage that the column vectors of = (u,Su,...,S^ û] 

were approximately orthogonal and hence there was no need to employ time 

consuming orthogonalization procedures to generate L matrix of (2.2.16). 

Therefore the modified least squares algorithm was in the form

0 . (x\uTx)'^ x \ u ^ y

where the number of assumptions, r, was chosen as the impulse response 

duration of the process considered in each example.

To obtain better comparison, 50 runs with different noise data 

sets of length N = 255 were made. Then the sample mean values 6 ,̂ 6 2  

of errors 6  ̂and 6 2  were calculated as,for example

-  1 50
= 5ÏÏ .5̂  *l.i

Tables (2.5.1), (2.5.2) and'(2.5.3) compare the modified least 

squares estimates with that of the least squares in the case of correlated 

disturbances for three different signal to noise ratios as

"nX = —  = 0.1, 1.0, 10.0

where and a? denote the variance of input u.̂ and uncorrelated noise u Ç ^ t
respectively. It can be seen that as far as the parameter estimation 

error 6  ̂is concerned, in general,the modified least squares method produced 

more reliable results except in the case of low signal to noise ratio 

X = 0.1 where there was no considerable improvement. To assess this 

comparison quantitatively six different values of 6  ̂for each X, obtained 

from three examples are averaged and tabulated overleaf.
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Average value of 6̂

0.1 0.99

1 . 0  0.80 

10.0 0.67

It is apparent from the averaged values of 6  ̂that the modified least 

squares performed on the average better than the least squares particularly 

in the case of high signal to noise ratios.

The comparison based on the impulse response error measure 6 2  

showed no clear improvement in favour of the modified least squares 

algorithm. In a total of 18 different cases considered in three examples, 

in only 9 cases the impulse response error of the modified least squares

estimates were smaller than that of the least squares. It was also found

that in most of these 9 cases the difference was not large enough to suggest 

any significant improvement.

To test the modified least squares algorithm under conditions 

ideal for the least squares technique, the same processes were simulated 

by 50 different uncorrelated sequences {c^=C^}. Tables (2.5.4), (2.5.5) 

and (2.5.6) represent the error measures together with sample variances of 

the estimated parameters for X •= 1.0. Comparison of 6̂  and 6 2  showed that 

in all cases the least squares technique produced more reliable results.

Of particular interest in the examples was the comparison of sample variances 

of the estimated parameters. The modified least squares algorithm gave 

estimates with higher variances than that of the least squares. Especially 

for processes P2 and P3 the variances of estimates were greater by a

factor of 10 or so in the modified least squares algorithm.

In all examples represented above it was assumed that the process 

impulse response duration was known and consequently the number of assumptions, 

r,was chosen as the impulse response duration of the corresponding process.

In cases where this information is lacking, r can be chosen by minimizing 

an approximate criterion r trY = r tr(X^U^U^X)  ̂as described in section 2.3. 

Simulation studies showed that the algorithm with r determined from the
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above criterion produced equally good estimates of the parameters in 

comparison with the choice of r based on the impulse response duration.

A representative example of the results is given in table (2.5.7) where the 

disturbance was of an auto-regressive type and X = 1.0. The error measures 

6^ and dg were again based on 50 different samples. It was found that the 

value of r minimizing [r tr(X^U^U^X) was about 8 in comparison with the 

impulse response duration of about 33 sample intervals. This and other 

examples suggest that the choice of r is not too critical as long as r is 

greater than twice the actual process order.

In summary, simulation studies have shown that the modified 

least squares algorithm can produce better estimates than that of the 

least squares when the disturbances are correlated. Under conditions ideal 

for the least squares technique the modified algorithm does not perform 

well in the sense that the sum of squares of estimation errors and variances 

of estimates are larger than that of the least squares technique.

2.6. Conclusions

This chapter has presented an approach for the linear dynamic 

system parameters estimation. Although the derived algorithm is identical 

to that of the two stage least squares technique nevertheless it is believed 

that an attempt has been made to discover an appropriate way of thinking 

about the estimation problem. The essence of the solution is that, the 

assumptions must be made about the unknown disturbances and here reliance 

has been placed on its most plausible feature, namely its independence of 

the input. This yields a set of assumptions in excess of the minimal 

requirements and an endeavour has been made to exploit this excess to 

reduce the sum of squares of estimation errors.

The choice of the number of . assumptions, r, has been

discussed and it has been shown that if the process impulse response duration 

is known then the choice of r greater than the impulse response duration 

plus the system order do not produce any significant improvement
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in the resulting estimates.

Under some mild assumptions for the disturbance and for an 

orthogonal input sequence it has been proved that the modified least 

squares estimates are strongly consistent.

Finally, the algorithm has been subjected to test by computer 

simulation and it has been shown that the technique can produce better 

results than that of the least squares when the disturbances are 

correlated.
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Nature of 
Disturbance

Signal to 
Noise 
Ratio, X

Parameter 
Estimation 
Error, 6^

Impulse Response Error

MLS
(6,)

LS

0.1 1.003 2.806 2.530

1.0 0.504 0.495 1.248

^ l-0.9z"l
10.0 0.770 0.039 0.077

e^=(l+0.9z'bÇç

0.1 1.038 1.179 0.976

1.0 0.657 0.227 0.318

10.0 0.958 0.022 0.023

Table 2.5.1. Estimation errors for PI: z”^+0.5z~^
-1 -2 1-1.5z ^+0.7z

Nature of 
Disturbance

Signal to 
Noise 
Ratio, X

Parameter 
Estimation 
Error, 6^

Impulse Response Error

MLS LS

 ̂ 1-0.9z‘^

0.1 1.001 57.451 65.114

1.0 0.943 8.201 9.057

10.0 0.461■ 2.665 5.114

e^=(l+0.9z 1);^

0.1 0.998 18.695 18.322

1.0 1.011 1.861 1.683

10.0 0.479 0.472 0.579

Table 2.5.2. Estimation errors for P2: -0.102z~^> 0.175 z"^ 
1-1.425 z‘  ̂+ 0.496 z"^
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Nature of 
Disturbance

Signal to 
Noise 
Ratio, A

Parameter 
Estimation 
Error, 6̂

Impulse Response Error

(̂ 2)
MLS

Câ,)
LS

t̂
 ̂ l-0.9z"l

0.1 0.924 71.544 56.524

1.0 0.821 6.893 5.254

10.0 0.820 0.940 0.545

£^=(1+0.9z

0.1 0.992 21.016 18.621

1.0 0.875 1.877 1.525

10.0 0.643 0.328 0.328

Table 2.5.3. Estimation errors for P3: 0.065z~^+0.048z~^-0.008z~'^
l-1.5z“^+0.705z“^-0.100z”^
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Parameter Estimation 
Error = 1.128

Impulse Response 
Error 6 2

Sample Variance of Estimates

^  ^ 2  ' ’ 1  ' ’ 2

LS 0.104 0 . 0 0 1 0 . 0 0 1 0.004 0.005

MLS 0.125........ 0 . 0 0 2 0 . 0 0 2 0.004 0.005

Table 2.*5.4. Comparison in the case of uncorrelated disturbances for

PI; + 0.5 z"^
-1 -2 1-1.5 z + 0.7 z

Parameter Estimation 
Error 6̂  = 2.244

Impulse Response 
Error 6 2

Sample Variance of Estimates
£ 1  £ 2  £ 2

LS 0.700 0.003 0.003 0.004 0.005

MLS 0.924 0.021 0.021 0.004 0.005

Table 2.5.5. Comparison in the case of uncorrelated disturbances for

P2: -0.102z~^ + 0.175 z~^ 
1-1.425 z“  ̂+ 0.496 z“^

Parameter Estimation 
Error 6̂  = 2.168

Impulse Res
ponse Error 6 2

Sample Variance of Estimates 
 ̂ X ;ail &2 a, b^ b2 by

LS 0.819 0.004 0.013 0.006 0.005 0.004 0.003

MLS 1.142 0.042 0.132 0.059 0.005 0.005 0.003

Table 2.5.6. Comparison in the case of uncorrelated disturbances for

P3: 0.065 z~^ + 0.048 z"^ - 0.008 z"^ 
1-1.5 z“  ̂+ 0.705 z"^ - 0.100 z”^
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Parameter
Estimation
Error

Impulse
Response
Error

MLS

r obtained 
by
minimizing
r.trY

0.496 0.593

r = Impulse 
response 
duration

0.563 . 0.521

Table 2.5.7. Estimation errors for two different 

choices of number assumptions for

PI: z“  ̂+ 0.5 z"^
-1 -2 1-1.5 z + 0.7 z
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CHAPTER III

IDENTIFICATION AND SELF-ADAPTIVE CONTROL WITH THE BOX AND JENKINS

CONTROL SYSTEM

5.1. Introduction

The parameter estimation techniques discussed in the previous 

chapters have one feature in common - the collection of a set of data 

from the process operated in open loop. However, in practice it is often 

desirable and even necessary to perform the experiments in closed loop 

for the following reasons [12]:

i) The process may be unstable without any control.

ii) Risks of loss of production or reduced efficiency may 

prevent open loop experiments.

iii) Most often the chosen model is linear and valid around 

certain operating conditions only, hence the process must be kept around 

these operating conditions by a suitable controller.

If the objective of the identification is to obtain a model that 

can be used to design control laws, it is sufficient to estimate the transfer 

functions describing the process and the noise characteristics. These 

transfer functions can be consistently estimated if either of the following 

conditions hold.

a) Two different linear controllers are used during the

identification experiment [12], [52].

b) The controller is non-linear [12].

c) An additional persistently exciting signal can be applied 

to the process [12], [38].

d) There is an added disturbance to the feedback path [12], [51].
«

For the most common situation of time invariant linear controller, 

identification in closed loop is not always possible. It has been shown 

in [12] that the conditions which guarantee identifiability can only be
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given in terms of process, model and controller structures.

Identifiability problems for closed loop processes also exist 

in many adaptive control situations where the controller parameters are 

determined by the current estimates of the process and the disturbance 

parameters by enforcing the certainty equivalence principle [52], [53],

[54], [55]. Since the structure of the closed loop system is very complex 

in these cases, it is in general difficult to establish identifiability 

except in the case of independent disturbance [55].

In this chapter the identifiability problem is investigated for 

a feedback control system of Box and Jenkins type. Previous results have 

shown that the impulse response of the process can be consistently 

estimated if the process time delay is greater than the number of parameters 

of the assumed auto-regressive disturbance model [52], [56]. This chapter 

will present a new result that if the above condition is not satisfied 

then the identifiability is governed by the part of the disturbance model 

which cannot be estimated and hence the identifiability cannot always be 

guaranteed. However, further analysis has shown that the estimation 

procedure may be self-adaptive in the sense that if repeated applications 

of the procedure converge to a stationary solution then the resulting 

control system is optimum as far as the disturbances are concerned. 

Convergence is controlled by the unknown part of the disturbance which 

effectively limits the application of the method to a certain class of 

disturbance, namely those that are describable by auto-regressive models 

with a restricted number of coefficients.

3.2. The Box and Jenkins Control System

This section discusses the design of a control system for a 

linear time invariant sampled data process represented by its impulse 

response function z ^P(z as

y^ = z“̂ P(z“^)u + x^ (3.2.1)
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where P(z = Z p. z  ̂ , k is an integer denoting the time delay of 
i=0 ^

k sample intervals and represents the disturbances added to the process 

output. The approach considered in this section is applicable to minimum 

phase, stable processes. The objective of the control system is to maintain 

the output of the process y^ at some desired set-point y^ which is 

assumed to change infrequently from one constant value to another constant

value. Furthermore, the control system must minimize the effects of the

unknown disturbances on the process output. Following the work of 

Phillipson [57] and assuming that the process dynamics are known, the 

control system can be designed by considering the above aspects of the 

control objective separately as

i) control to the desired set-point,

ii) control to the effects of the disturbances.

In the absence of disturbances, a feedforward controller of
-1 -1impulse response function M (z ) can maintain the process output

at the desired set-point value if the controller is such that 
-1 -1M(z ) = P(z ). In this event it can be seen from Fig. (3.2.1) that

y^ = y^ i.e. y^ follows y^ exactly with a delay of k sample

intervals and hence the first part of the control objective is realized.

The effects of the unknown disturbances can be minimized by 

using a k step ahead prediction x^^^ of x^^^ at time t as 

shown in Fig. (3.2.2). In this case the process output becomes

/t = 4 - k  *  W  - (3.2.2)

hence for constant desired set-point, the effects of the disturbances 

can be eliminated by use of a best possible k step ahead prediction 

x^^^ of x^^^ at time t. The prediction x^^^ can be generated
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by using a Box and Jenkins type control system as shown in Fig. (3.2.3) 

which contains a model (equal to process) in parallel with the process 

to generate and a predictor operating on the past and current

values of x^ to generate x^^^. The process output from Fig. (3.2.3) 

is given by eqn. (3.2.2) and hence the control system meets the two 

aspects of the control objective.

The above derivation of the control system has an intuitive 

appeal as far as the control objective is concerned. However, it does 

not say in what sense the control system is optimum, since as it can 

be seen from (3.2.2) , the control system errors are entirely due to 

the prediction errors and hence the optimality can only be defined in 

terms of the type of predictor used. It will now be shown that if the 

disturbance x^ is a zero mean stationary process and the chosen 

predictor is linear minimum variance predictor then the control system 

of Fig. (3.2.3) is optimum in the sense that its control signal

“t = — 4î- (Xt - *t+k) (3-2-3)M(z ) -

minimizes the mean squared output error

L = E(y^+% - yd)2 (3.2.4)

To prove this, it will be assumed that the disturbance x^ is 

represented by an infinite order moving average process as

= [1 + S(z‘ b ] (3.2.5)

where S(z” )̂ = Z s. z”  ̂ and ç is an independent, zero mean 
i=0 1 ^

random variable such that E(ç^) = 0, E(ç^ç^) = 0  t  ̂s, and

Eç^ = ô . It should however be noted here that the assumption of 

moving average disturbance model does not introduce any loss of generality 

here, since other forms of disturbance models can be converted to an
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infinite order moving average form [14].

From the fundamental lemma of stochastic control theory [6], 

it is known that the minimization of (3.2.4) with respect to u^ is 

equivalent to that of

L = E[(ŷ ĵ -̂ŷ ) | y^,y^_^^,... ... ,y^,y^_^,...]

(3.2.6)

i.e. the conditional output error variance given all past information 

up to and including time t. It will be assumed that y^ is known 

for all values of t. Substituting from (3.2.1) and (3.2.5) into (3.2.6) 

and denoting

I /t  ̂ (/t+k-yt)^ ^
(3.2.7)

(3.2.6) can be written as

L = <  ̂  ̂= < {P(z"l)Ut+[l+S(z"^gc^+^-yd}2 >

(3.2.8)

The term [1+S(z"^)]c^^^ of (3.2.8) is to be partitioned as

[l+S(z-l)]c^+% = [1+S(z-1) - ST(z-l)]Ct+k + ST(z-l)C;+%

(3.2.9)

where S,p(z^)= Z s. z  ̂ , i.e. the subscript T denotes k^^
i=k 1

order front-end truncation. From the properties of

<[1+S(z'b - ST(z-l)];^+% > = 0 (3.2.10)

and since the values of {ç ç , ...} are available at time t thent t-1
from (3.2.9) and (3.2.10)

<[l+S(z-l)]C;+% > = S.p(z‘bc^^^ = zkSy(z-l)(^ (3.2.11)
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and

<{[l+S(Z-l]Ct+k)^> = (l+sf+...+Sk.l)0; + [z\(z'bc^]^
(3.2.12)

thus completing the square in (3.2.8) and using (3.2.10),(3.2.11) 

and (3.2.12) the criterion (3.2.8) can be written as

L = (l+s2+...+s2_pa2 + [z'̂ S.j.d'b + PCi'bu^-y^]^ (3.2.13)

and the minimum value of L is obtained for

"t---- n- [y. - zVcz'bîJ (3.2.14)P(z )̂ Ï * t

Defining

H*(z‘b  = S_(z"l)[l+S(z"l)]"l (3.2.15)

and using (3.2.5), the optimum control law (3.2.14) can be rewritten 

as

u^ = -- [ŷ  - z^H*(z"^)x ] (3.2.16)
P(z ) ^ ^

It is shown in section 3.5 that ẑ H*(-z ^)x^ is the minimum variance

k step ahead linear prediction of x^^^ at time t and hence

comparison of (3.2.3) with (3.2.16) shows that the control law

(3.2.3) which is obtained by an heuristic argument is optimum in the

sense that it minimizes the mean squared output error if x^^^ is

the minimum variance prediction of x^^^. Finally, from (3.2.1),

(3.2.15) and (3.2.16), the optimum control error is

= [l-H*(z-l)]x^+k = [1+S(z‘ b - S.j,(z-b]ç^^k (3.2.17)

from which the minimum control error variance becomes

. (3.2.18)
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Comments

1) From (3.2.16) and (3.2.17) it follows that an optimum 

control requires known process dynamics and an optimum predictor and 

given these the control system errors are entirely due to the prediction 

errors for the disturbance.

2) It is known that [58] the optimum control law (3.2.16) also 

minimizes the criterion

n N 2
i  E (/t+k - Xt)t=l

for any arbitrary N.

3) The block diagram of Fig. (3.2.3) is not the only way of 

implementation of the control system. Writing the control law (3.2.16) 

by use of (3.2.1), in the form

U =  p-^---- T—  [ŷ  - z V ( z ‘h y J  (3.2.19)
P(z l)[l-H*(z 1)] ^

a conventional servo-mechanism of Fig. (̂3.2.4) with forward path 

compensator ----;—  ------=—  and a feedback path compensator
P(z"-^)[1-H*(z )] 

z^H*(z )̂ can be obtained.

4) The use of an inverse process model in the forward path 

compensator has first been suggested in the Guillemin’s cancellation 

procedure [59] where the process is preceded by a compensation network 

cancelling the undesirable dynamic modes of the process. The same 

feature also appears in the Smith controller where a good approximation 

to the inverse process model has been used to control the processes with 

time delays [60]. And finally, the control system of Fig. (3.2.3)

is an interpretation of the control system proposed by Box and Jenkins 

[61].[62].
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Adverse Comments

1) In the case of non-minimum phase processes the minimum 

variance control law (3.2.19) is extremely sensitive to variations in 

the model parameters [6], since the forward path compensator of

Fig. (3.2.4) attempts to cancel directly the poles and zeros of 

the system transfer function corresponding to P(z )̂ by introducing 

equivalent poles and zeros. This results in an unstable mode if the 

cancellation is not exact.

2) The inverse process model as a controller will in 

general be a high pass filter so that the control will change rapidly 

and could be unacceptably large in amplitude as far as the saturation 

problem is concerned.

3) The minimum variance control law has no facility to 

adjust the controller if the closed loop performance becomes un

satisfactory after the implementation of the control law.

Following the work of Clarke and Hasting-James [63], these 

difficulties can be overcome at the expense of some deterioration in 

the control quality by suitable modifications in the criterion (3.2.4) as

h  = E[(/t+k - (3.2.20)

y  = E[(yt+k - yg):* x(u, - (3.2.21)

where A is an arbitrary positive constant. It has been shown in [63] 

that the sub-optimum control law based on the criterion avoids 

instability problems associated with the non-minimum phase processes 

by an appropriate choice of A. The criterion L2  has the advantage 

that the variance of changes in control signal is weighted by an 

adjustable parameter A which can be used to avoid saturation problems. 

Therefore use of modified criteria can give some degree of adjustment 

if the control system performance becomes unsatisfactory.
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Analogous calculations show that the criterion L2  is 

minimized for the following sub-optimum control law

Ü =  T— ^ ----- r [/f - ] (3.2.22)
^ P(z 1) 4. i  (1-z-l) 

o

and the corresponding result for the criterion is obtained by-

replacing (1-z in (3.2.22) by unity.

So far it has been assumed that the dynamics of the process

and the disturbance are accurately known. In practice however, the

exact knowledge of P(z’ )̂, H*(z )̂ and k is seldom known.

Let M(z )̂, H(z )̂ and i  be estimates of P(z"^), H*(z’ )̂ 

and k respectively. Then the practical implementation of the Box 

and Jenkins control system of Fig. (3.2.3) will be as in Fig. (3.2.5), where 

the signal

X; = X; - z‘Vz'^)Ut (3.2.23)

now represents an estimate of the disturbance x^, since if 

M(z )̂ = P(z )̂ and & = k then = x^. Substituting

estimated parameters into (3.2.16), the practical implementation of the 

optimum control law is

Ut = \  [ŷ  - z*'H(z"^)Xj (3.2.24)
M(z'l)

3.3. Stability of the Box and Jenkins control system 

Since it is not realistic in practice to assume a perfect 

knowledge of the process impulse response function or the disturbance 

model, it is therefore of practical importance to analyse the 

stability of the control system where allowance is made for estimation 

errors.

An empirical solution to the stability problem has been given 

by Phillipson [57]. It has been shown that if an exponential smoothing
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filter is used as a predictor, i.e.

z^H(z"^) = (1-3) Z 3̂  (3.3.1)
i=o

where 3 as the variable parameter to be set on-line between values 

one and zero, then provided that the process and its model are stable 

and minimum phase and the steady state gains of process and model are 

of the same sign, it is always possible to stabilize the closed loop 

system by reducing the bandwidth of the exponential smoother used as a 

predictor.

It will now be shown that an alternative way to stabilize 

the Box and Jenkins control system is to use the adjustment parameter X 

of the sub-optimum control law given by (3.2.22). It will be assumed 

that the process, model and predictor are stable and minimum phase 

and the predictor has a unity steady state gain, i.e.

H(z'b Iz.i = 1 (3.3.2)

-1 -1Denoting M(z ), H(z ) and £ as the estimates of 

P(z )̂, H*(z )̂ and k, the sub-optimum control law (3.2.22) can 

be written in terms of estimates as

 ----------- i- l y t  -  z*' H(z-l)X ] (3.3.3)
 ̂ M(z-l) + A  (1-z-l) * ^

o

The closed loop response of the Box and Jenkins control system of 

Fig. (3.2.5) corresponding to the sub-optimum control law is given by

. {M(:-l) [l-H(z-l)]  ̂g^d-z'^) )X̂  + z~'^P(z-^)yg 3̂ 3 ,3

M(z"^) [l-H(z"^)]+z^"^P(z“^)H(z‘ )̂ + -  (l-z"l)
"*o

and therefore the characteristic equation of the closed loop system is

M(z"l)[l-H(z"l)] + H(z'l) + A  (l_z-l) = 0 (3.3.5)
o
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It will now be assumed that P(z ^), M(z and H(z can be

written as conventional pulse transfer functions, i.e. as a ratio of 

two polynomials in z of equal degree v with a multi

plicative constant as

1 1  , H (z)
M̂ TzT ' ) = Po P̂ TzT . ) = V

(3.3.6)

then using (3.3.6) and clearing denominator terms, the characteristic 

equation becomes

m^ z P2 (z) M^(z)[z*H2 (z) - h^H^(z)] + p^m^h^z^“ '̂̂  ̂P^(z)H^(z)M2 (z)

+ Az^(z-l) P2 (z) M 2 (z) H2 (z) = 0 (3.3.7)

The stability of the system requires that all roots of (3.3.7)

must lie in the unit circle of the z-plane. Consider the root loci 

of (3.3.7) for X over the interval (0,»). The poles are given by

7 9 P-V-i-lFj(z) = m^zP2 (z) M^(z)[z H 2 (z) - ĥ Ĥ (z-)] + p^h^m^z (z)H^(z)M2 (z) = 0

(3.3.8)

Inspection of the degrees of polynomials in (3.3.8) shows that the 

number of poles is (3v + £ + 1). There is an equal number of zeros 

given by their defining equation

?2 (z) = z*(z-l) P2 (z) M2 (z) H2 (z) = 0 (3.3.9)

If all zeros lay in the interior of the unit circle of the

z-plane then there would exist a sufficiently large value of X such

that portions of the loci and consequently the closed loop poles would

lie entirely within the unit circle. Since it has been assumed that

process, model and predictor are all stable, this situation occurs with

but one exception, namely the zero at (1,0). The locus terminating

on this zero must lie on the unit circle, since all coefficients of
real axis
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the characteristic equation are real and hence the root locus diagram 

is symmetrical about the real axis. If this branch approaches (1,0) 

from the left then the closed loop system can be made stable for 

sufficiently large values of X .

If this branch approaches (1,0) from the right then there 

will be a closed loop pole exterior to the unit circle and the closed 

loop system will be unstable for all X . But this situation arises 

if there is an odd number of real poles to the right of (1,0) , since 

there is no zero at (’»,0) . Thus a test has to be carried out on

(3.3.8) to find whether there exist an even number of real poles in 

the range (I,*) . From the properties of algebraic equations [64], 

this test can be reduced to the requirement that

Sign[F^(D] = Sign[li™ „ F^(z)] (3.3.10)

Since the degree of the first term of F^(z) is always higher than 

that of the second for k > 0 , it follows that ^ F^(z) = «» ,

and this requires that

Fj(l) = m^P2(l)MjCl)[H2(l) - hJH^(l)] + p^m^h^P^CDH^CDM^CD (3.3.11)

should be positive. But from (3.3.2)

H (1)
"(1) = '̂o ÏÇÔT = 1  

H2(1) - h^ H^(l) = 0 (3.3.12)

then using (3.3.12), F^(l) becomes

F^(l) = p^m^h^ P^(1)H^(1)M2(1) (3.3.13)

Since all roots of P^(z), P2 (z), M^(z), ^^(z), H^(z), H 2 (z) are 

required to be within the unit circle of the z-plane , it follows from
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the Descartes rule of signs that [64] all the above polynomials are

positive for and hence

Sign[F^(l)] = Sign(p^m^h^) (3.3.14)

Then F^(l) > 0 implies

p m h > 0  (3.3.15)^0 0 0

Following [57], (3.3.15) can be equivalently written in terms of the 

steady-state gains of process and model as 

2  pp. (D/Pod)

Therefore the conclusion is that if the steady state gains of process 

and model are of the same sign then the Box and Jenkins control system 

can always be made stable by increasing X provided that the first 

coefficient of the unity steady gain predictor is positive.

Comments

1) The predictor with a steady state gain of unity is often 

desirable in practice. Since, as it will be shown in Section 3.6,

if the disturbance has an unknown constant component, then unbiased 

prediction of the constant component requires that the predictor must 

have a unity steady state gain, i.e. H(z )̂ = 1 .

2) If the unity steady state gain predictor is chosen as an 

exponential smoothing filter as in [57], i.e.

0 j B < 1 (3.3.17)
1-Bz"

then since h^ = 1-3 >. 0 and hence (3.3.16) now states that the Box 

and Jenkins control system can always be stabilized by increasing X 

provided that the steady state gains of process and model are of the 

same sign.
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In conclusion, it has been shown in this section that it is

always possible to set up a stable Box and Jenkins control system if

the steady state gains of process and model are of the same sign.

The following sections will represent some methods of estimation of

disturbance models and the design of linear minimum variance predictors 

which will be used in the identification and self-adaptive control 

techniques developed in the later sections of this chapter.

5.4. Estimation of auto-regressive model parameters 

Consider an auto-regressive, zero mean stationary random 

process as

n
X = Z r. X . + Ç (3.4.1)
 ̂ i=i  ̂ *

where is an independent zero mean process, such that E(C^) = 0,
2

E(CtCs) = 0 t f s, E(G^Cg) = Oç t = s . The problem is to estimate 

unknown parameters {r\,n} given a set of observations

{X̂ ; t=l,2,...,N} . Mann and Wald [15] have shown that the least 

squares estimates of the unknown parameters {r\} are consistent and 

asymptotically Gaussian distributed if the order n is known. Using

the vector-matrix representation of previous chapters, the least squares

estimates {r\} can be written as

r = (Z^Z)"! z'̂ X (3.4.2)

where r = (r^,r2 ,...,r̂ )*̂ , Z = (SX,S^X,...,S X̂) and X = (X^,X2 ,...,X^)^.

The asymptotic properties of estimates can now be stated as

i) ^ r = r with probability one (3.4.3)



66.

ii) Æ "  (r̂  - r̂ ) ; i = l,2,...,n have a limiting Gaussian

distribution with means zero and covariances given by the elements

where W is defined as2 -1of the matrix W

W = E t-1

t-n+1

••• V l

Yn-1 V 2  • • • 0̂

and where i=0,l,...,n-l are the auto-covariances of ,

i.e. y . = EX.X. . ..1 t t-i
In a practical situation of the auto-regressive model fitting, 

the order of the model is not generally known. In fact as it will 

be the case in Section 3.8, the order may not be finite and in 

this case the chosen model order will only be an artificial variable 

giving rise to models which only approximate the true model.

One possible way to estimate "the correct order n is to use 

the property (ii) in testing the following null hypothesis

H : r^ = 0 against alternative r^  ̂0 .

Since (r  ̂- r̂ ) ' has a limiting normal distribution with mean zero

and variance (NW)^^^ , where the subscript n denotes the (n,n)^^

element of (NW)  ̂ , then if the hypothesis is true, the test statistic

a defined below n

n
*n (3.4.4)
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has a normal distribution with zero mean and unity variance. Further-
2 —  1more under the hypothesis it is also known that o\ (W) = 1 ,. C n,n

[65], and hence the test statistic a is simplified as

(3.4.5)

Then employing the two-sided e-significance points t(e) of the 

normal distribution, the null hypothesis is rejected with (l-e)% 

confidence if > t(e) . Based on this result, a procedure to

estimate the model order can now be given in the following steps.

1) Fit auto-regressive models of successive orders

to {X } by the least squares method. Let r ; i=l,2,...,n
^ n.i

th ^denote an estimate of the i parameter of a model of order n.

2) Test the hypothesis r = 0 as described above.
n,n

3) Repeat steps (1) and (2) until the hypothesis is accepted.

The computational burden of step (1) can be avoided if the least

squares estimates are approximated by-those that given by the Yule-Walker

equations. The Yule-Walker estimates are obtained by approximating
T Tthe elements of the matrices Z Z and Z X with the estimates

of auto-covariance coefficients as

TZ Z = N

^0 ... Y
n-l

, Z^x = N
^1

y .n-l To n—

(3.4.6)

Defining autp-correlation coefficients as p. = x— i=0,l,...,n
^o

and using (3.4.6) in (3.4.2), the Yule-Walker estimates are given 

as the solution of
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1 p. r- , p.1 n-l n,l 1
: 1 : :

• • •y\p p ... 1 r P.
_n-l. n-2 _ __n,^ _ n

(3.4.7)

Durbin [66] has shown that eqn. (3.4.7) can be solved

by the following recursive relations
n-l

r* * = n,n
fR.l,! Pn-i 1=1 _______

n-l
1 - Z rv . p.

i=l n-l,i "i

(3.4.8)

r^ . = r̂  n,3 n-l.j - h - 1 .  n-j h . n  ■
(3.4.9)

However the resulting estimates may become sensitive if 1-R(z )̂ = 0 

has a root near unity [14].

The procedure explained above assumes that there is a true 

order n and tests a null hypothesis about n . The idea that the 

order n is only an artificial variable for the purpose of approximating 

an infinite order auto-regressive process and as such is a parameter 

to be estimated was suggested by Akaike [67]. His procedure chooses 

the model order by minimizing 'the final prediction error' which is 

the mean squared one step ahead prediction error when the set of fitted 

coefficients {r\} is applied to another independent realization 

of the process . It was shown that the final prediction error

(FPE) can be estimated as

FPE (n) = N+n
N-n

(3.4.10)
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By scanning n successively from zero to some upper limit, the model 

order is estimated as the value of n which minimizes FPE(n).

The advantage of this approach is that no subjective element exists 

in the procedure as compared with the test of statistical hypothesis 

which requires the specification of the significance level. However, 

for a finite order auto-regressive model,the final prediction error 

test is not consistent without further modification in (3.4.10),[67].

3.5. The design of optimum linear predictor

In the derivation of the Box and Jenkins control system it 

has been shown that the prediction of the disturbance x^ plays a 

vital role as far as the disturbance rejection problem is concerned. 

This section will, in consequence, be concerned with the design of 

optimum linear predictor for a zero mean stationary disturbance x^ , 

represented by an auto-regressive process

X. = ---------------------------------------------- (3.5.1)
1-Q(z )

-1. ? -i , 2where Q(z ) = . Z q. z and E(ç^) = a
i=l ^

are assumed to be known.

The optimality is in the sense that the predictor minimizes the mean 

square prediction error.

Now consider first the one step ahead prediction.

Let ^t+1 denote the prediction of given all past information

up to and including time t , i.e. given = (x^,x^_^,...). From ,

definition, minimizes  ̂ from

(3.5.1) as
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m
%t+l = =t+l-i * Ct+l ' + Gt+11 = 1

(3.5.2)
= <%t+l> + St+l

where < > denotes E(.|x^), since E(<x^^^> C^^^) = 0 then it 

follows that

E(%t+1 - * “C (3-5-3)

and the minimum value is obtained for

%t+l = <%t+l> = ^ ( V l ' ^ P  (5-5-4)

the minimum mean square prediction error is then

min E(x^+^ - x^+^)^ = o^ (3.5.5)

For the two step ahead prediction, first writing from (3.5.1)

m
<%t+2> = :(Xt+2lz.t) = + .^2 ‘’i *t-i+2 (5-5-6)

then it can be shown as in (3.5.2) that

*t+2 = qi(*t+l - <*t+l>) " <=t+2> + St+2

= 4t+l + <*t+2> + St+2 (5-5-7)

x^ ^ 2  is now obtained by minimizing

E(Xt+2 - \ * 2 > ^  = E(<Xt+2> - %t+2 + ?t*l * ^t+2)^

(3.5.8)

= E(<*t+2> - %t+2)^ + (1 + 1l)

for which the minimum is obtained for

%t+2 = <*t+2> ' ^(*t*2lüt) (5-5-9)

with the corresponding mean square error
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min E(x^+2 “ \+ 2̂  ̂̂  \  (3.5.10)

From (3.5.6), ^^+2 also be written in terms of ^ t + l

m
*t+2 = ^1 *t+l qi %t-i+2 (3.5.11)1=2

Proceeding this way the well known result of Kalman [68] on prediction 

is obtained as

V k  = <*t+k> = E(Xt+k|Xt) (3.5.12)

and it can be shown that for the auto-regressive process (3.5.1), k^^ 

step ahead prediction can be expressed in a recursive way as [14]

k-1 m
*t+k = . \  ^t.k-i * .5 \ . k - i  k 6 m1=1 i=k

m
*t+k " .̂  ^i *t+k-i for k > m1=1

> (3.5.13)

In the context of the Box and Jenkins control system it is 

convenient to express x^^^ only in terms of the past values of 

x^ , i.e. x̂ . This can be achieved by first representing the 

auto-regressive process (3.5.1) as an infinite order moving average 

process as

h  1X. = ----^  = [1 + S(z-i)] Ç. (3.5.14)
1-Q(z )

where S(z ^)= ? s.z  ̂ . Then from (3.5.12)
i=l

*t+k = G(*t+klZ.t) = ®k (t * St-1 +

= ( V ’’‘ * Sk+1 * •••) Gt+k

- S.p(z ) ® z S.p(z ) (3.5.15)
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On substitution of from (3.5.14), be written as

x^+k = Sy(z"l) [1 + SCz'^)]

= H*(z"l) x^ (3.5.16)

where H*(z ) is defined as

H*(z"l) = S.j,(z"b [1 + S(z'l)] (3.5.17)

or equivalently in terms of the auto-regressive model, as

H*(z"h = {[1 - QCz'b] } [1 - Q(z'h] (3.5.18)
T

Using (3.5.14) and (3.5.16) the optimum prediction error is obtained 

as a moving average process of order k - 1 ,  i.e.

= [l+S(z-l)-ST(z-l)]S;+^ (3.5.19)

and hence the minimum prediction error variance is

2 2 2 min E(x^+^-x^^^) = a (1 + Z ŝ ) (3.5.20)
 ̂ i=l

Optimum predictors designed from auto-regressive models

have the following useful practical properties.
k -11), The predictor z H*(z ) for a stationary auto

regressive process is a moving average filter and therefore always 

stable.

2) For an auto-regressive process of order m, H*(z” )̂ is a 

finite memory filter with only m non-zero coefficients [52].

3) Let z^Hf(z )̂ denote i^^ step ahead prediction

of x^ , that is ^t+i ~ z^HŸ(z ^)x^ . By substituting of x^^^

into (3.5.13) it can be shown that a k^^ step ahead predictor can 

be calculated recursively as
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k-1 • . m
H*(z” ) = Z q. .(z“ )z” + Z q. z" for k  ̂m

i=l  ̂ i=k ^

-I 1 •
H*(z" ) = Z q. H* .(z" )z" for k > mk • 1 1 k-11=1

 ̂ (3.5.21)

where HJ(z‘h  = Q(z'l).

3.6. Predictors with unity steady state gain 

In the previous section it was assumed that. is a zero

mean random disturbance. In the case of constant but unknown mean 

level, z^H*(z )̂ is no longer an optimum predictor. To see this, 

let the stationary non-zero mean disturbance be represented as

x^ = x^ + X (3.6.1)

where x = Ex? is unknown. If x' is determined from t t+k
then(3.5.16) as x^+% = H*(z ")x[+%

E(=l+k - if+k) = (1 - (5.6.2)1=0

E(x;+k - 2l+k)'= ECt+k - + (1 -1=0 1=0
(3.6.3)

Therefore it follows that the prediction is biased and the mean square

prediction error is increased by an amount which is proportional

to (1- Z h?)x . Hence the only way to eliminate the bias and the
i=0 ^

increased variance is to modify the predictor so that it has a unity 

steady state gain, i.e.

"'(= )lz=l = hf = 1 (3.6.4)
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Consider now a situation where the auto-regressive polynomial 

[1-Q(z )̂] can be factored as

1 i d  . f .
1-Q(z ) = (1- 4  Z z‘^) [1-Q'(z"i)] (3.6.5)

* i=l

where d and f are positive integers. Then writing [1-H*(z )̂] from

(3.5.17) and (3.6.5) as

1 1 1 i d  . f 1
1  Z z'l) [1-Q'(z }]
“ i=l

(3.6.6)

it can be seen that H*(z “ 1 » i.e. the optimum predictor

based on the auto-regressive model (3.6.5) has a unity steady state 

gain. The form (3.6.5) for d=l has been used extensively by Box

and Jenkins [14]. This corresponds to a non-stationary disturbance

of accumulated type, since [1-Q(z ̂ )] has roots on the unit circle.

The case f=0 in (3.6.5) corresponds to the modification suggested 

by Turtle [52] where d was suitably chosen such that the mean 

squared error of the modified predictor is close to that of the optimum 

predictor. However, since z=l is a factor of (3.6.5), this form 

also corresponds to a non-stationary disturbance model. Therefore 

the conclusion is that neither of the above form can be used if the 

disturbance is stationary.

One way to modify the predictor in the stationary case is 

to assume a linear prediction in the form [65]

%t+k = .5A  X;_. (3.6.7)
1=0

and to determine {hu} parameters so that the mean square 

prediction error

W ^ Vi w w
E(x

(3.6.8)



w
is minimized subject to the constraint Z h. = 1  ,

i= 0  ^
where = Ex^ x^  ̂ . Introducing a Lagrange multiplier

problem becomes the minimization of

w ^  VJ
L = E(x. Z h X + v( Z h. - 1)

i= 0   ̂ ^ i= 0  ^
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V, the

(3.6.9)

Straightforward calculations show that (3.6.9) is minimized for

h =

w

(3.6.10)

where W =

w

w

is an (w+l)x(w+l) matrix and non-singular 

for all w [65],

y = (ŷ , y^^^, ..., ŷ ^̂ ,) and J is an (w+1) column vector with 

unity elements.

The choice of the number of predictor parameters can be 

based on the following reasoning. Since the disturbance is assumed 

to be stationary then, in practice, its infinite order moving average 

representation can be truncated after a certain number of terms, 

say w , i.e.

w
1 + S(z"^) = 1 + Z s.z'i 

i=l 1

(3.6.11)

then corresponding to this model, auto-covariance coefficients y^ can 

be written as



2Y. = G Z s. . s i=0,l,...,w 
 ̂  ̂j= 0   ̂J J

y. = 0 i > w 1
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(3.6.12)

where s =1 .. It then follows that the choice of w as k+w>w o
adds only zero elements to y . In consequence, a reasonable choice 

for the number of predictor parameters is that

w > w - k (3.6.13)

The main disadvantage of this technique is that the number of 

parameters in the moving average representation (3.6.11) is in general 

large and hence the computation of h|s may prove to be time consuming, 

The next section will represent a new technique for the 

design of unity steady state gain predictors.

3.7. The modified predictor

Consider the prediction error (3.5.19) corresponding to the 

optimum predictor, i.e.

k- 1

%t+k - =t+k = (1 + .5 )Ct+k (3.7.1)1=1

and suppose that the modified predictor z^H(z )̂ is designed such 

that the resulting prediction error is

*t+k - *t+k =

k- 1  . k+y- 1

= (1 + I Si:'")Ct+k + h^'hGt.k1=1 i=k

k - 1  . k+y- 1  _
= (1 + I s.z" + E 6 .z‘ )[1-Q(z“ )]x .

i=l  ̂ i=k  ̂ t+k
(3.7.2)
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where the modified k step ahead prediction and the

arbitrary coefficients {4^, 4^+ 2 * — , ^k+y-1^ are chosen such that 

the prediction error variance is minimized subject to the constraint

, k-1 k+y-1 m
l-HCz'-̂ )| = (1 + Z s. + E *,) (1 - I q.) = 0 ,

t-1 1  i=k t i=i
(3.7.3)

m
Since the disturbance is stationary then E q.  ̂1 and hence

i=l "-

(3.7.3) is satisfied if and only if 

k-1 k+y-1
1 + Z s .  + Z (j). = 0 (3.7.4)

i=l i=k ^

Introducing a Lagrange multiplier v , <()js are determined such that

2  k-1 k+y-1
L = E(x . - X , ) + v(l + Z s. + Z 4) ) (3.7.5)t+K t+K i=i 1  i=k ^

is minimum. Using (3.7,2) and taking expectation, (3.7.5) becomes

k-1 . k+y-1 2  9  k - 1  k+y- 1

L = (1 + Z s7 + Z <f>.)cK + v(l + Z s. + Z (j).)
i=l  ̂ i=k  ̂  ̂ i=l ̂ i=k ^

(3.7.6)

which is minimized for
k- 1  

1 + Z s. 
i = l J<J>̂ = - *------  = 4) say ; i = k, k + 1 , ..., k + y - 1

(3.7.7)

and the minimum value is

k - 1  k - 1

. (1 (5.7.8)

Since the first term of (3.7.8) is the optimum prediction error then 

it follows that the introduction of additional {4^} parameters

increases the optimum prediction error by
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2 k - 1  

1 + Z s. 
i=l ^

(3.7.9)

On substitution of (j)̂ from (3.7.7) into (3.7.2) and 

_ 2  k+y- 1

defining $(z ) = # Z z , the modified prediction x , can
i=k

be written as

= z’'[-4(z‘6+S,p(z‘^)] [1+S(z‘^)] x^

= z’'[-»(z'h+S.j,(zA][l-Q(z'h]x^

where

= z*' HCz'hx^ (3.7.10)

H(z"l) = [-$(z-l)+S_(z-l)][l-Q(z'l)] (3.7.11)

-  -1 -1Comparison of H(z ) with H*(z ) given by (3.5.17) shows that

the modified predictor is similar in structure to the optimum predictor 

z^H*(z ^). The difference is that in (3.7.11) the first y parameters 

of S,p(z )̂ are modified to satisfy the constraint (3.7.3).

One main problem associated with the modified predictor is 

the choice of y , for which at the moment a theoretical answer 

is lacking. However since the disturbance characteristics are assumed 

to be known then a reasonable choice of y is such that the increase 

in the optimum prediction error variance (3.7.9) is as small as possible.

Comments

1) the modified predictor z^H(z )̂ is a finite memory

filter with only (m+y) parameters. This can be shown by

writing H(z )̂ as
_ k+y- 1

H(z" ) = [ Z (s.-<j))z" ] [1-Q(z” )] + (Z s. z“ )̂ [1-Q(z" )] 
i=k i=k+p

(3.7.12)
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where it was proved in [52] that the second term has only m non-zero

coefficients which correspond to the powers of

w+1, y+m-1} (3.7.13)

whereas the first term has (y+m) parameters corresponding to the 

powers of

{z j=0, 1, ..., y-1, y, y+1, ..., y+m-1} (3.7.14)

then noting that the set given by (3.7.14) contains that of (3.7.13), 

it follows that only (m+y) parameters of the modified predictor 

are different from zero.

2) The modified predictor has been obtained by considering 

only the unconditional expectation of the criterion (3.7.5). In 

consequence, the derived predictor does not take into account the fact that

at time (t+k), past information up to and including time t is

available. Consider now the conditional version of the criterion (3.7.5), 

i.e.
2  k-1 k+y-1

Ec = E[(*t+k-*t+k) + v ( l  + z s. + z *.)1=1 i=k

(3.7.15)

Using (3.7.2) and defining

1= (*k'*k+l'''''*k+y-l) (Gf̂t-l'-'-'Ct-y + l) (St̂t-l'''"'Gt_y+l)
it can be shown that can be written as

9 k-1 ^  rp k-1 y
L = a (1 + Z sT) + * W * + v(l + Z s. + J) (3.7.16) 
c G i=l 1 ----------  i = A

where J is an y dimensional column vector with unity elements. 

Straightforward calculations give that is minimized for

A = - (jT W“  ̂J)‘  ̂ (1 + Z s.) J (3.7.17)
i=l
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But since |w| = 0 for all y > 1 then the modified predictor 

based on the criterion (3.7.15) is ill-defined. However, one 

particular feature of this approach is that if ^ is chosen as

^ = K (3.7.18)

where k is an arbitrary constant and w is an eigenvector of W

corresponding to the zero eigenvalue, then is reduced to

2 2 TL = o (1 + Z s.) + v(l + Z s. + K w J) (3.7.19)
 ̂ i=l  ̂ i=l 1

hence the choice of constant k is such that ______

k-1
1 +  Z s. + K w J = 0 (3.7.20)

i=l ^

or equivalently ^
Z w.

< = - kTi -  (3-7.21)
1 + Z S. 

i=l ^

reduces to the mean squared prediction error corresponding

to the optimum predictor, i.e.

2 k-1 2
L = (1 + Z s7) (3.7.22)
c G 1

It should however be admitted that since the eigenvector w is time 

variable then ^  given by (3.7.18) is not a practical solution for 

the design of unity steady state gain predictors.

So far some results have been presented from linear estimation 

and prediction theory. In the following sections these will be used 

to identify the unknown process and disturbance dynamics while the 

process is operating under the Box and Jenkins control system.
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5.8. Updating the Box and-Jenkins control system

It has been shown by Turtle and Phillipson [56] that under 

certain conditions on the auto-regressive disturbance model, it is 

possible to obtain the consistent estimates of the process and dis

turbance dynamics while the process is operating under feedback control 

of Box and Jenkins type. Since the main result of this chapter is 

based on the estimation procedure given in [56], a brief summary 

here is called for as an easy reference.

Consider the estimated disturbance signal of the Box

and Jenkins control system of Fig. (3.2.5) and assume that the control 

system is stable and is designed to implement the optimum control law, 

i.e. X = 0 . Then using (3.2.1), (3.2.23) and (3.2.24) it can be 

shown that

' i.vcz-b'ncz-h " T + v ( z % ( i - h

where the polynomial V(z )̂ represents the differences between 

the process and its model and is defined as

V(z‘ h = - 1 C3.8.2)
M(z

It is assumed that

i) The disturbance is represented by an auto-regressive 

process 6f order m , i.e.

1 -1 ^ -iX. =  Ï- , Q(Z )̂ = Z q. z (3.8.3)
l-Q(z'i) G i=i ^

ii) The set point is constant.

then (3.8.1) can be written as

(3.8.4)
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X, = -------- i--------------- c, +  y"
[l-Q(z'^)][l+VCz‘hH(z‘h] 1+V(1) H(l)

(3.8.5)

Since the second term of (3.8.5) is constant, there is no loss of 

generality in the following if this is considered to be zero. Then 

defining ' - ~

l-R(z'l) = [l-Q(z"l)][l+V(z"l)H(z"l)]=l - “ r z'l
i=l

(3.8.6)

can be written as an infinite order auto-regressive process as

It was shown in [56] that if P(z )̂, M ^(z )̂ and H(z )̂ are

all input output stable filters, i.e. if for instance Z |p.| < «>
i=0 1

then R(z )̂ can be truncated after a certain number of terms, 

say n , i.e.
n .

R(z"^) = Z r. z"̂  (3.8.8)
i=l ^

Now if the process is operated under the Box and Jenkins 

feedback control system over the interval 1 < t $ N, a set of 

data {X^ ; t=l,2,...,N} can be recorded. Then if an auto-regressive 

model of order n is fitted to {X^} by the least squares 

technique as described in section 3.4, the resulting estimated

-1 ^ -ipolynomial R(z" ) = Z r.z” satisfies
i=l 1

X+ =  5. (3.8.9)
 ̂ l-&(z-l) G
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where denotes the residual sequence. Assuming that n is

estimated such that n  ̂n then R(z is a consistent estimate of

R(z and hence for a moderately large N , approximately

l-&(z"l) = 1-R(z"l) = 1-Q(z“ )̂ + [1-Q(z"^)] V(z“^)H(z"^) (3.8.10)

-k  ̂ -1
Let Q(z” )̂ , V(z )̂ =  ̂ denote estimates of Q(z )̂

z"^ M(z"^)

and V(z )̂ respectively so that they satisfy

l-R(z'l) =[1-Q(z"^)]+ [1-Q(z"l)] V(z"l) H(z"b (3.8.11)

Now in eq.(3.8.11) R(z )̂ , H(z” )̂ are known and Q(z )̂, V(z )̂ are

unknown and to be determined. It is in general not possible to solve

(3.8.11) for both Q(z )̂ and V(z ^). If however Q(z )̂ was known

or its estimate was obtained previously, then it would be possible to 
-1determine V(z ) from (3.8.11). This effectively corresponds to the 

technique given by Florentin et al [69].
A  ̂1

In the case of unknown Q(z ), it is possible to solve 

for Q(z )̂ and V(z )̂ if the lowest power of z  ̂ in the second 

term of (3.8.10) is greater than the number of parameters of the auto

regressive disturbance model, i.e. if

m = min(k,&) > m (3.8.12)

In this event the two polynomials on the right hand side of (3.8.10)

have no common powers of z then correspondingly (3.8.11) can be

separated into two equations as

m-1  ̂ . iii-1
1 - I  nz" = 1 - I q.z'i (3.8.13)

i=l i=l

- L(z‘ )̂ = - Z_f.z"i = [1-Q(z"h] 0(z"l) H(z'l) (3.8.14)
i=in ■ —
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where [+]y is now t%e' m-th order truncation operator. The 

disturbance model parameters can be estimated from (3.8.13) as

= r^ i= l,2,...,m-l

or equivalently

 ̂ • I  ̂ mm I  ̂ IQ(z )̂ = R(z )̂ - Ry(z 1) (3.8.15)

Substituting of Q(z )̂ ipto (3.8.14) and solving for z ^ p(z )̂ , 

the estimate of the process dynamics are given as

z'k P(z"^) = z"^ M(z-l) 1 -

[l-R(z"l)+Ry(z"l)]H(z-l)

(3.8.16)

The Box and Jenkins control system can now be updated by calculating a 

new controller from the inverse of the process model P(z ) and 

a new predictor from the estimated disturbance model [1-Q(z )] as

described previously. In [56] this procedure was referred to as 'updating 

the Box and Jenkins control system by the separation technique analysis 

(STA)'.

The process and the disturbance parameters resulting from 

the (STA) are consistent provided that R(z” )̂ is consistently estimated. 

The estimates {q.} are unbiased and their variances can be obtained 

from the main diagonal terms of the covariance matrix for the estimates 

{r\}. As far as the process parameters estimates are concerned, it is 

in general difficult to assess their statistical properties, since the 

estimation error equation derived by using (3.8.16), viz

zA(z'b-z'^p(z‘h  = i ’-V(z‘A)
H(z‘ h

Rj,(z'h RpCz'b

i-Q(z'h i-QCz'h
(3.8.17)

is non-linear in q^ = ; i=l,2,... ,in-l.



* It should he noted that since the right hand side of

(5,8.16) is a rational function then the new process model 

) is effectively defined in a transfer function form.

The implication of this is that since the initial process model 

) is given in its impulse response form then there is 

is a change in nature of the model. It is assumed that this 

change can he circumvented hy expansion of the right hand 

side and truncation of the series to give a P(z*"̂  ) in an 

impulse response form.
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From its derivation it is clear that the only identifiability

condition for the (STA) is the inequality given by (3.8.12). This

effectively limits the application of the procedure to a certain class of

disturbance, namely those that are describable by an auto-regressive model

with a certain number of parameters. It is therefore of interest to analyse

the properties of the procedure in the case where its identifiability

condition is not satisfied.
^ See. ôo-tno-te.

3.9. Errors in separation technique analysis 

As in the (STA), suppose that for the N observed 

values of {X^} , an auto-regressive model

X L  (3.9.1)
1-R(z 4)

is fitted by the least squares technique. From the system representation 

(3.8.1), the observed sequence {X̂ .̂ ; t=l,2,...,N} is related to the 

disturbance occuring specifically over the same data gathering interval 

1 $ t  ̂N as

X =  k . ^  (3.9.2)
1+V(z" )H(z"l) G

thus (3.9.2) defines the disturbance over the interval 1  ̂t  ̂N

as

E [1+V(z"l) H(z'h]X^ (3.9.3)

Since X^ is given by (3.9.1) then defining

l-G(z'l) = [l+V(z"l)H(z'l)] [l-R(z'l)]

m' .
= 1 - 2  g.z'i (3.9.4)

1=1 ^
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can now be written as

Comparing (3.9.5) with the disturbance representation of the (STA), i.e,

X -  r-Gr (3.9.6)

it can be stated that the difference between these two representations is 

that in (3.9.5) the polynomial [1-G(z )̂] is a function of the 

data {X̂ }' occuring specifically over the measurement interval and not 

some hypothetical model of a stationary random process as in (3.9.6). 

Rewriting (3.9.4) as

l-R(z'l) = [1-G(z'^)] + [1-G(z"^)] V(z"l) H(z"l) (3.9.7)

with the corresponding 'updating equation' (3.8.11) of [56], i.e.

l-R(z'l) = [1-Q(z‘ ^)] + [1-Q(z"^)] V(z‘ h H(z‘ h (3.9.8)

it can be seen that new 'updating equation' (3.9.7) replaces an estimate

of the hypothetical auto-regressive model [1-Q(z"^)] by the poly

nomial [1-G(z )̂] which is a function of the data obtained over the 

interval 1 3 t 3 N. Now assuming that the process time delay k is 

known and the model time delay £ is chosen equal to k , then an 

application of m = k^^ order truncation operator to (3.9.7) gives

- Rj,(z"̂ ) = I_ r^z"! = - G.j,(z‘h  + [l-G(z'l)] V(z‘^H(z‘ )̂ (3.9.9)
i=m

-1 m'
where Gy(z ) = Z g^z  ̂ . Substracting (3.9.9) from (3.9.7), viz

i=m

R(z“ )̂ - R_(z"^) = G(z"l) - G-(z"l) ------  _ (3.9.10)
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and noting from (3.8.15) that the left hand side of (3.9.10) is Q(z )̂ .

then

G(z‘ S - Or(z‘ )̂ = q(z"l) (3.9.11)

This equation in connection with (3.9.10) states that if the process 

time delay is known then only Q(z"^) part of the actual disturbance 

model G(z~^) can be estimated by fitting an auto-regressive model

to {X^}.
_ 1

On substitution of G(z ) from (3.9.11), (3.9.9) can be

written in terms of Q(z” )̂ as ,

- = - GrCz"^) + [1-Q(z‘b] V(z‘b  H(z'l) - Oj.(z'b V(z‘b  H(z‘ )̂
(3.9.12)

rewriting the corresponding equation (3.8.14) of the (STA)

- Rj.(z‘b  = [1-Q(z‘b] V(z'l) H(z"l) (3.9.13)

-1and equating the right hand sides of (3.9.12) and (3.9.13), V(z ) can 

be found in terms of V(z )̂ as

V(z'^)=-H Vz'‘)Gj.(z‘^)[l-Q(z*^)] +V(z'^)-aj.(z‘^)[l-Q(z‘ )̂] V(z'l)

(3.9.14)
-1  ̂ _1

Substituting V(z"^)= — - 1 and V(z )̂ = - 1
M(z"^) M(z"i)

into (3.9.14) and rearranging the terms, (3.9.14) can be written as

P(z-l).P(z"l) = [P(z"l) - M(z"l)] G^(z‘b[l«Q(z“^)] ^

+ M(z"l) H-l(z-l) Oj.(z“ )̂ [1-Q(z"^)l (3.9.15)

Since [P(z )̂ - M(z )̂] is the process-model error of the initial 

Box and Jenkins control system whereas [P(z~^) - P(z"^)] is the 

estimation error corresponding to the updated control system then (3.9.15) 

describes the estimation error as a function of previous (initial) 

estimation error and a term dependent on the previous process model and the
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predictor inverse. Reduction, or otherwise, of the estimation error is 

entirely dependent on the disturbance parameters in G,j,(z and

Since is unknown and cannot be estimated then it is

impossible to assert the estimation error of the (STA) except in the case

G.j.(z‘ )̂ = 0 (3.9.16)

which gives one step convergence to the true solution and effectively 

corresponds to the (STA) proposed by Turtle and Phillipson [56].

One feature of this new error equation (3.9.15) is that it was 

derived by the consideration of only one data sequence {X̂ ; t=l,2,...,N} 

and hence the statements made above are somewhat deterministic in the sense 

that they are true for only that particular realization of the data 

{X^}. However, by analyzing the large sample properties of the error 

equation (3.9.15), it is possible to obtain parallel results in a 

probabilistic framework. In particular it is shown in Appendix I that if

(3.9.16) is true, i.e. if the disturbance arises from an auto-regressive

process G(z )̂ = Q(z )̂ and if Qfz” )̂ is a consistent estimate

of Q(z’ )̂ then

. E[P(z-l)|Q(z'l)] = P(z'l) (3.9.17)

i.e. given Q(z ^), the process estimate P(z )̂ is asymptotically

unbiased.

3.10. Dynamics of error equation

Suppose now that the (STA) is repeatedly applied and during these 

applications the parameters of Q(z**̂ ) and G^^z"^) were time 

invariant. This restriction which is necessary for the elementary study 

of dynamic behaviour can be lifted for large N . Now, replacing 

M(z ) by P\_^(z )̂, and P(z )̂ by P\(z-^) and noting that
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H(z"l) = {[l-Q(z'l)] }.j, [1-Q(z'^)] (3.10.1)

also remains constant then the error equation corresponding to the i^^ 

iteration can be written as
-1

P(z"l) - P^(z'b = [P(z'l) - Pi.iCz'^)] G.j.(z’ b [l-Q (z 'b ]

— 1
+ Gj.(z‘^[l-Q(z‘V] H'l(z'l) Pi_i(z"l) (3.10.2)

rearranging the terms and defining

AF\(z"l) = P(z"l) - P.(z'l)

a(z’b  = Gy(z-l)[l-Q(z-l)] [l-H'l(z'l)]

B(z"^) = G_(z'l)[l-Q(z"l)] H'l(z'l) P(z"l)

(3.10.2) can be conveniently written as

AP^(z'l) = a(z"l) AFL_i(z"l) + S(z‘ )̂ (3.10.3)

If it is assumed that the repeated applications of the (STA) converges 

to a stationary solution P^(z” )̂ , then from (3.10.3)

AP (z"l) = P(z"l) - P .(z“b  = AP. ,(z"l) = AP.(z'l) = ■ I-
^ ^ 1 - 1 1  i_a(z"^)

(3.10.4)

combining (3.10.4) with (3.10.3), the error equation can now be expressed 

in terms of the stationary solution as

AP.(z'^) - AF^(z'l) = a(z'l) [AP._^(z'^ - APj(z‘ )̂] (3.10.5)

which shows that the convergence occurs if

„ o](z-l) = „ G^(z'^)[l-Q(z'^)] ^[l-H'l(z-l)]^ = 0 (3.10.6)

This equation states the convergence condition as a function of the 

unknown disturbance dynamics Gp(z”’̂ ) and the terms which are 

assumed to be known. Due to its unknown nature, little or nothing can
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in general be said about convergence under repeated applications of 

separation technique analysis. Neither could this lead to a resulting 

state of zero estimation errors as inspection of the stationary solution

p. = ------ :--------r - n  r- P(z"^) (3.10.7)
* ItC^Cz"!)[1 -Q(z'l)]h'l(z'l)

will show.

3.11. Properties of the stationary solution 

The stationary solution yields an incorrect estimate of 

the process impulse response; nevertheless it will be shown that the
I

resulting control system is optimum as'far. as the disturbances are 

concerned.

Let V^(z"^) denote the process-process model dis

crepancies corresponding to the stationary solution, i.e.

V (z-l) = - 1 (3.11.1)
Ps(:' )

Substituting of P̂ (z**̂ ) from (3.10.7), V^(z“ )̂ becomes

-1
Vg(z-l) = G^(z“ )̂ [1-G(z"l)] H-l(z"l) (3.11.2)

Consider now the Box and Jenkins control system under stationary 

solution conditions as shown in Fig. (3.11.1). The output 

component due to the disturbance can be written as

y . ________________ L-H(.cb___________ e
l+H(z"l)V,(z'l) ^ [l+H(z’^)V fz‘^)][l-G(z*b] *s

or by the use of (3.11.2)

y. ,  = L  = [ l - H ( z - l ) ] [ l + S ( z - l ) ] ( ,  (3.11.3)
1-Q(Z ) '̂ ^
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where 1 + S(z ) = [1-Q(z )] and for which the corresponding

optimum predictor is given by (3.5.17), i.e.

H(z‘ h  = SyCz'l) [1+Ê(z'l)]  ̂ (3.11.4)

Hence substitution from (3.11.4), the output corresponding to the 

stationary solution becomes

^t.s " [l*S(z‘ h - S.j.(z'h] 8̂  (3.11.5)

On the other hand, it has been shown in Section 3.2 that the optimum 

component of output due to the disturbance is .

= [1+S(z‘ h  - &r(z"l)] (3.11.6)

where

1 + S(z"l)= i
l-G(z'l)

But
1 1 -1 1 -j “1

l+S(z'^) = [1-G(z"^)] =[1-Q(z" )-Gr(z"i)]

 ̂ _-i “i -1
“ [l“Q(z )] {1-Gq.(z ) [l“Q(z )] }

. , -1 
= [1+S(z“ )] [l-6.p(z~ )] say .

, , .. “1 
= [1+S(z"^)] + 6.j,[l+S(z’-̂ )][l-0.j.(z''̂ )] (3.11.7)

and application m = order front-end truncation gives

S_(z'^) = S_(z"l) + 6„ [l+S(z"l)][l-6_(z'l)] (3.11.8)

Then from (3.11.7) and (3.11.8)

1 + S(z"l) - S^(z‘ )̂ = 1 + S(z"l)- ê.p(z"̂ ) (3.11.9)

which implies that (3.11.5) and (3.11.6) are identical equations. This 

demonstrates the optimum nature of the stationary solution.



The stationary solution (3.10.7) and its optimum property 

(Section 3,11) are obtained on the assumption that no expansion 

and truncation are carried out in calculations of updated process 

models P(z"^ ) . This assumption effectively means that p(z’"̂ ), 

used in the error equation (3 .9 .1 5 ), is obtained from (3.8.16) 

without expansion and truncation.
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In conclusion, it has been shown that if the repeated applications 

of the separation technique analysis converge to a stationary solution 

then the resulting Box and Jenkins control system output is equivalent 

to that of the optimum control system which could be obtained if the 

minimum variance control law was used in the case of known process

dynamics.
The case where repeated applications use the modified 

predictor of Section 3.7 is discussed in Appendix II. It is shown

that the Box and Jenkins control system corresponding to the

stationary solution is also optimum in the sense that its output is 

equivalent to that of the control system operating with the modified

predictor in the case of known process dynamics.
See £ootnote

3.12. Convergence of the procedure

The main question for the successful application of such 

a self-adaptive procedure is of course: Will the repeated applications

converge to the stationary solution? A formal answer to this 

question can be given by summarizing the assumptions of the above 

analysis that if

i) the control system remains stable and

ii) the disturbance model [1-G(z )̂] remains constant and 

« iii) (3.10.6) is satisfied, i.e.

G^cz'hu-Q(z‘h]   ̂ [1-H’h z ‘h]^ = o

then the repeated applications of the separation technique analysis 

converge, to its stationary solution. Unfortunately the convergence, 

or otherwise, is governed by the completely unknown part of the 

disturbance model G£(z )̂ and in consequence a satisfactory 

practical answer to the convergence problem is lacking at the moment.
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In parallel with the other self-adjusting techniques 

[54],[55] an important problem associated with the proposed procedure 

is the closed loop stability under repeated applications. A number 

of simulation studies have shown that if the coefficients of Ĝ ẑ. 

are comparatively small in magnitude then the control system is 

insensitive to estimation errors as long as the process is stable 

and minimum phase. However for a significant G^^z ), the 

resulting large errors in the estimated process parameters can cause 

instability, in particular, it was found in most cases that estimated 

process models were non-minimum phase and gave rise to unstable 

controllers.
_ 2

The assumption that the disturbance model [1-G(z )]

remains constant can only be justified if the number of data tends

to infinity. For a moderate amount of data, [1-G(z )̂] is bound

to change from one iteration to the other due to the sampling variabilities
-1of estimated parameters in R(z ).

Perhaps the most important limiting factor to the 

application of this procedure arises from the complex condition given 

in assumption (iii). Due to its unknown nature, it is not trivial to 

analyze the properties of (3.10.6). However it is of interest to 

note that if the coefficients of G^(z )̂ are negligible, whether 

by accidpnt or design, then the procedure may converge to the 

stationary solution. However, it is not practically possible to 

analyze what negligible exactly means.

These doubts concerning convergence added to the rather 

restrictive assumption that the process time delay k is known, 

do not recommend the procedure as a reliable method of system optimization.



TABLE 5.13.1. SEPARATION TECHNIQUE ANALYSIS I

Disturbance: = (1-0.8z"^+0.06z"^-0.07z"^- -4O.llz -0.09Z“^+0.25z

2

= 1.19, m=k=2=2 , m=6 , N=300

Process Model Predictor

z'kp(z-l) z-^MCz-l) z‘̂H(z'̂ )

z 2 -2z 0.8
(l-0.5z"l)(l-0.3z'■b l-0.7z"l 1-0.2Z-1

Estimated process models P(z‘b

Po Pi P 2  P3 P4 P5 P6
PjCz'h 0.96 0.68 0.17 -0.17 0.12 0.18 0.20

P2(z'b 0.95 0.61 0.01 -0.42 0.03 0.34 0.43

0.94 0.75 0.36 0.01 0.42 0.61 0.28

P4(z‘b 1.25 0.99 0.69 0.47 0.44 0.39 0.33

PsCz'b 0.96 0.64 0.08 -0.37 0.04 0.30 0.38

pgc^'b 0.99 0.68 0.11 -0.35 0.05 0.31 0.40

PyCz'b 0.98 0.67 0.10 -0.36 0.04 0.30 0.40

PgC^’b 0.98 0.67 0.10 -0.36 0.04 0.30 0.40

Computed values of Var {y^}

Iteration 1 2 3 4 5 6 7 8

Var { y ^ } 2.63 2.00 3.19 25.4 2.42 1.98 1.97 1.9:

-1

Optimum output variance : 1.95
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5.13. Examples

This section presents two successful examples of the 

repeated application of the separation technique analysis. It should 

however be noted that these are not typical examples of this self-adaptive 

procedure. In fact, it was observed in many simulation studies that 

the control system did not always converge to its optimum, and in most 

cases where the coefficients of G^(z were significant, the

procedure gave rise to unstable control systems. Therefore the purpose 

of this section is tq demonstrate only the optimum nature rather than 

the effectiveness of the procedure. ^

As the first example consider the case shown in Table (3.13.1). 
-k -1The simulated process z P(z ) was taken to be a second order

pulse transfer function with the process model z~^ M(z )̂ , a first

order approximation; in particular, k was a delay of two sample
k -1intervals. The predictor z H(z ) was chosen to be a first order 

low-pass filter with a unity steady state gain and the controller was 

taken to be the exact inverse of the process model.

The simulated process was operated by the initial control system 

for 300 sample intervals with N = 300 numbers from the auto-regressive 

process {x^} shown at the top of Table (3.13.1). This yielded a 

record of (X̂ ; t=l,2,...,300} and following Section 3.4, an auto

regressive model [1-R(z )̂] was fitted by the least squares

algorithm of eqn.(3.4.2). The order of the fitted model was estimated, 

by minimizing the final prediction error criterion of eqn.(3.4.10).

To illustrate the calculations involved, the results of the first 

iteration are given in Table (3.13.2). Now,since k=&=2 and 

hence m = min(k,&) = 2, then from updating equations (3.8.15),

(3.8.16) of the separation technique analysis and using the parameters



TABLE 3.13.2 DETAILS OF THE FIRST ITERATION

True auto-regressive
- 1.model for {X^} : R(z )

1̂ 0.80

^2 -0.06

^3 -0.01

^4 0.21

5̂ 0.12

^6 -0.24

^7 0.00

^8 0.00

?9 -0.02

^10 -0.02

Estimated part of the

Coefficients of R(z"^) 
with 95% confidence 
intervals

Final prediction error 
criterion (FPE)

- 1.

n FPE(n)

1̂ 0.78± 0.11 1 1.48

^2 0.03± 0.14 2 1.49

^3 -0.03± 0.13 3 1.49

^4 .
0.24± 0.13 4 1.49

^5 0.10± 0.14 5 1.44

?6 -0.36± 0.10 6 1.28

7 1.29

8 1.30 .

9 1.30

10 1.31

Predictor based on
0.78z-1 "-1 Q(z z^HCz‘ )̂ = 0.62

Process P(z"l) Updated process model

Po 1.00 Po 0.96

Pi 0.80 Pi 0.68

P2 0.49
h

0.18

P3
0.27 P3

-0.17

P 4
0.14 P4

0.12

P 5
0.07 P 5

0.18

P6 0.04 P6 0.20

- 1.
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of the initial control system, the disturbance and process parameters 

estimates are obtained as

qi = ?!

z-2p(z-h = —
- 2

1-0.7z-1 1 -

Z r.z 
ii=2 ^

-1 (1-0.2z"^)

(l-r^z'l) 0.8 z‘^

—  1 —  1The estimates Q(z ), and P(z ) obtained in the first iteration

are also shown in Table (3.13.2). As a comparison of P(z )̂ with P(z )̂ will
-1show, the process estimate P(z ) is biased since the identifiability 

condition (3.8.12) of the separation technique analysis is not 

satisfied.

Based on the estimates of disturbance and process parameters,

the initial control system was updated by calculating an optimum predictor 
-1from Q(z ) as in eqn. (3.5.18), and a controller from the inverse

-1of the process estimate P(z ). Each time a record of 300 samples 

of {X^} became available, this updating procedure was repeated.

To guarantee that the disturbance model [1-G(z )] remained constant,

the same disturbance sequence {x^} was used in all iterations.

Estimated process parameters and sample variance of output {y^} 

resulted from each iteration are shown in Table (3.13.1). It can be 

seen, from the values of Var {y^}, that the control system converged 

towards the optimum and in particular, that convergence was established 

by the 7^^ iteration. Therefore a total of about 2100 data was 

needed to optimize the control system.

The second simulation study shown in Table (3.13.3) illustrates 

the behaviour of the procedure when the disturbance set was changed from 

one iteration to the other by choosing the set corresponding to the i^^ 

iteration as {x^ ; t=(i-l)N+l,...,iN}. An inspection of Var {y^}, 

plotted in Fig. (3.13.4), shows that the control system remained around 

optimum after about 10 iterations. However since N=600 appeared to be



TABLE 5.15.5 SEPARATION TECHNIQUE ANALYSIS II

Disturbance; = (1-0.8z”^-0.2z”^+0.2z”^-0.2z”^+0.

2cTç = 1.0 , m=k=ĵ =2, m^S , N=600

Process Model Predictor

z’*’M(z‘h  z'^HCz'b
_2

—   Y z”^(0.5+0.4z“ )̂ 0.85+0.10z“^+0.05z"^
1-0.5z"^



r ro

in
C\J

o“ CN

_ ID

O

- LO

- O
O  OÎ Cp CD LO

(N CN V— V— T—  T—  T—
LO -<f Cp CN
CN CN CN CN

(bi

O>
G
DE

3
CL
I-
3
O
LU
X
h-
LL
O
LU
O

cr
LU
CL

<CO

LU3
CL
X<
X
LU

CO

CO

II

G
Q)

•4-f(0
X(0

c
oo

0)
jC

(0
ucoCL
0)CD(_L_oo
o

CL
O



It will be noted that the examples differ from the 

theoretical procedure because of the expansion and truncation
A

carried out in calculations of P(z ). In both examples, the 

updated process models are obtained by expanding the right 

hand side of (3.8.16) and truncating the series after the 

impulse response durations of the true process models, For 

example, P(z"*̂  ) of the first example has 7 significant 

coefficients and consequently it is assumed that the updated 

process models have impulse response durations of 7 sample 

intervals. It should however be noted that the truncation 

based on the true impulse response duration may introduce 

a second type of error if G^(z“ )̂ is not negligible,since 

in this case P(z“ )̂ may differ considerably from P(z*"̂ ) 

and hence the above truncation procedure may not represent 

the true impulse response duration of P(z*”̂ ), A better 

representation of the theoretical algorithm would be 
obtained if the estimated impulse responses were extended 

up to thî ir last significant coefficients.
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a minimum data length, a total of about 6000 data was needed to obtain 

an approximate optimum control system. Also as is apparent from 

Fig. (3.13.4), the convergence was not monotonie and Var {y^} showed

considerable fluctuations above the optimum variance. Furthermore the 

behaviour of the estimated process parameters, shown in Fig. (3.13.5), 

did not suggest clearly that the convergence occurred after about 

1 0  iterations.

In conclusion, it has been shown in these examples that if the 

underlying assumptions of the proposed procedure are satisfied, whether 

by accident or design, then the control system converges towards the 

optimum. However due to the limitations imposed by the assumptions, 

to the relatively long time required for optimization and to the 

undesirable feature of the convergence as in the second example, it 

appears that the procedure cannot be recommended as a practical method

of optimization.
See foolncte

3.14. Conclusions

This chapter has presented some new results on the identification 

and control of linear time invariant processes operating under the Box 

and Jenkins feedback control system.

Firstly it has been shown that it is always possible to design 

a stable control system by using a sub-optimum control law, provided 

that the steady state gains of process and model are of the same sign 

and the first coefficient of the unity steady state gain predictor is 

positive. The design of unity gain predictors for stationary

auto-regressive processes has been discussed and a new predictor has 

been designed by modifying the optimum prediction error such that the 

resulting predictor has a unity steady state gain.

Secondly and more importantly, the identifiability problem of 

the separation technique analysis has been discussed in detail. A new 

error analysis has shown explicitly that if the unknown part of
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-1the disturbance model, G^(z ) , is negligible, whether by accident 

or design, then the errors of the estimated process parameters are 

negligible. Since G^^z reflects the unknown property of

the disturbance, the identifiability cannot always be guaranteed.

However further investigations showed that if the repeated applications 

of the separation technique analysis converge to a stationary solution 

then the resulting control system is optimum as far as the disturbances 

are concerned.

Convergence is governed by the unknown part of the disturbance 

model Gp(z and at the moment a theoretical analysis to express

the convergence conditions in terms of some known or estimated 

parameters is lacking. In. consequence, it is believed that due to 

the difficulties of establishing the validity of assumptions, and to 

the problem of closed loop stability under repeated applications, the 

procedure cannot be considered as a reliable method of optimum control.
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CHAPTER IV

PREDICTOR UPDATING COMBINED WITH CORRELATION

ANALYSIS

4.1. Introduction

The method of repeated application of separation technique 

analysis developed so far suffers from a restriction on the type of 

disturbance to which it can be applied. In particular, it has been 

assumed that the disturbance is of an auto-regressive type in which the 

number of significant parameters is less than the process time delay 

which is also assumed a priori known. These restrictions and the doubts 

concerning convergence do not recommend the procedure as a practically 

viable method of optimization.

This chapter will present a different approach to optimize the 

Box and Jenkins control system. The fundamental principle of this 

technique can be explained as follows. If the process is operated under 

the Box and Jenkins control system with an added perturbation signal 

on set-point, then by cross correlating this signal either with the 

process output y^ or with the signal , the process parameters

including the time delay can be consistently estimated. Based on these 

estimates the control system can be updated by calculating a controller 

from the inverse of the process model and a predictor from the disturbance 

model. At this stage, due to the unknown sampling variabilities of 

estimates for a moderate amount of data, it cannot be claimed that the 

resulting control system is optimum. However, further improvement can 

be achieved by the application of repeated predictor updating procedure 

of [52]. This procedure consists of estimating an auto-regressive 

model for a set of data {X̂ ; t=(i-l)N+l,...,iN} at the i^^ iteration 

and updating the predictor at every (iN)^^ sample using the fitted 

auto-regressive model of the i^^ iteration. It has been proved in [52] 

that this updating procedure converges to an optimum control system if
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the differences between the process and its model are small. The 

contribution of the proposed correlation analysis of this chapter is to 

increase the probability of convergence of the predictor updating 

procedure by providing a fairly good initial process model.

4.2. Correlation analysis as a means of identification 

in closed loop systems

The identifiability of linear time invariant feedback 

control systems by correlation analysis has been treated in several 

papers. Consider the conventional closed loop system shown in Fig. (4.2.1) 

The purpose of correlation analysis is to estimate the input-output 

relation between u^ and v^ from the observed series {u^} and 

{ŷ }. This is accomplished by correlating u^ and y^ with a

signal c^ which is independent of the disturbance x̂ . As is

evident from its definition, the signal c^ plays the role of

instrumental variable. In [70], the reference signal y^ has been

considered as c^ and the correlation analysis has been performed 

as follows. The system output from Fig.(4.2.1) is

J
y» = X, +  ̂ Pi “t i (4.2.1)

1=0

assuming that is a zero mean process then it follows from

independence that multiplication of both sides of (4.2.1) by 

c^_^ = y ^ T  = 0 ,1 ,...,J and taking expectations results in

J
E(Ct-T PiE(Ct-T "t-i) (4-2-2)1=0

assuming further that c^ is stationarily correlated with u^ and 

y^ then the process parameters {pu} can be consistently estimated 

by substituting cross covariance estimates into (4.2.2).

An alternative, choice of c^ has been proposed in [71] and - 

it has been shown that if y^ is independent of x^ then under

some mild conditions on x^, the signal c.̂ = u^ u^^^ can also be
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used instead of for a properly selected value of a. This

paper also examines the case c^ = u^ in the context of cross spectral 

analysis and shows that if u^ contains an additive noise which is 

independent of x^ then spectral analysis results in the weighted

average of the controller and process dynamics where the weights are

determined by the unknown properties of disturbance x̂ . Similar results 

for the correlation analysis are also given in [72]. The case where

= u^ and u^ contains no noise is well known [13]. In this event 

the correlation analysis estimates {pu} are the parameters of the inverse 

of the controller transfer function, i.e. W"^(z .

4.5. Application of correlation analysis to the Box

and Jenkins control system

It will be shown in this section that parallel to the 

conventional feedback control systems, correlation analysis can also be 

applied to the Box and Jenkins control system if the use of an extra 

perturbation input signal c^ is allowed.

Consider the signal of the Box and Jenkins control

system of Fig. (4.3.1), it can be shown that

where V(z"^) = ^ - 1 , H(z"^) = E h.z‘^"^ and
z“ M(z' ) i=0 1

z ^P(z )̂ , z ^M(z )̂ represent process and model impulse response 

functions as in the previous chapter. It will be assumed that

i) the reference set-point y^ is constant, y^ say,

ii) c^ and x^ are zero mean, mutually independent 

stationary random processes, -

iii) the process model and the predictor are chosen in such 

a way that the resulting control system is stable and hence is a
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stationary process,

iv) the system time delay k is a priori known and 

hence &=k.

Then defining.

and

1 1 (4.3.2)

1 . . . -1 -
= E w.z"i=[l+H(z"^)V(z"^)] V(z"^) (4.3.3)
i= 0   ̂.

(4.3.1) can be written as

+ .2 “i V k - i  (4.3.4)1=0

where the term associated with y^ has been dropped since it is known

from section 3.4. that if y^ is constant then there is no loss of
dgenerality in assuming y =0. Since c and x are assumed toI t t

be mutually orthogonal then multiplication of (4.3.4) by 

c^_^;t=k,k+l,...,k+n and taking expectations results in

where Y^^(«) and y^^(') denote cross and auto-covariance coefficients,

i.e. Yv^Cj)=E(X c .) , Y^^(j)=E(c c. .). If the estimates of covarianceAC L L"J CC L J
coefficients are substituted into (4.3.5) then {wu} can now be estimated 

as the solution of the following linear simultaneous equations

Yxc(^)^^oYcc(^"^)*w^Ycc(k+l-T) + '''+WnYcc(^^"^T^ * *r=k,k+l,... ,k+n (4.3.6)

where

Yxc(i) ” N 2. \ % - j  ’ Ycc(j) = N 2, (4.3.7)t = ] + l ■' t=J+l

Although any stationary sequence {c^} can be used in connection with

(4.3.6), considerable simplifications in the solution of (4.3.6) occur 

if {c^} is chosen as an orthogonal sequence, i.e.
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= 0  j + 0

= j = 0

then w^'s are simply obtained as

(4.3.8)

= T 2 ^xc(k+i) i=0 ,1 ,...,n (4.3.9)

In practice,^ an orthogonal sequence {c^} can be closely approximated 

by a pseudo-random binary sequence of sufficiently large period N̂ . 

Denoting N=iN^ as the total number of data where i is a positive 

integer, and using the following properties of the pseudo-random binary 

sequence {c^ = ± a}

(4.3.10)

then it can be seen that for a sufficiently large can be solved

from (4.3.6) as

= "Y Yxc(k+i) i=0 ,l,...,n (4.3.11)

Given {uu}, estimation of process parameters {pu} proceeds

as follows. Define analagously to fi(z” )̂

) = [l+H(z"“̂)V(z"-̂ )] V(z“-̂) = E w.z"^
i=l 1

(4.3.12)

where
- 1.

V(z )̂ = - - 1 , solving P(z” )̂ from (4.3.12) as
M(z-l)

P(z"l)=M(z"l) [ 1  +
-1

0 (z )
i-H(z"2 )n(z'2 )

(4.3.13)

then pjs are obtained by manipulation of (4.3.13) or by equating 

coefficients in the expression

( Z p.z"^)[l-( Z h.z"k"i)( Z w.z"^)] = ( Z m. z"i)[l+( Z i.z“^)(l- Z h.z"^'^., 
i= 0   ̂ i= 0   ̂ i= 0   ̂ i= 0   ̂ i= 0   ̂ i= 0  ^

(4.3.14)
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where it should be noted that since only * (n+1 ) coefficients w. are
1

available it is only possible to estimate the first (n+1 ) coefficients

of P(z"l).

To find a model for the disturbance x^, it will now be

assumed in addition to the assumption (ii) that x^ can be adequately

described by an auto-regressive process

Since the sequence {x^} can be estimated from (4.3.2) as

Xt = [l+V(z‘bH(z‘h]n^

where from (4.3.4)

(4.3.16)

it is then possible to estimate an auto-regressive model for x^ in the 

form (4.3.15).

The control system can now be updated by replacing M(z )̂
-1with P(z ) and forming a new predictor based on the auto-regressive
A - 1model [1-Q{z )] by the method described in section 3.5. However as

it will be shown in the next section, although the estimates {pul are 

consistent, they are in general biased for a moderate amount of data and 

furthermore the variance of estimates cannot be estimated in terms of 

known quantities and consequently the resulting updated control system is 

not, in general, optimum. Nevertheless if a fairly good process model 

can be found by correlation analysis, it will be shown in section 4.6 that 

it is possible to optimize the control system by the predictor updating 

procedure of [52].

Before proceeding to the error analysis it should be noted 

here that although the above correlation analysis is based on the use of 

signal X^, it is equally possible to employ the system output y^
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instead of X̂ . As it can be seen from output equation

l+V(z‘^)H(z-1, *
1 +V(z"l) (4.3.17)

multiplying (4.3.17) with t=k,k+l,

results in

and taking expectations

Yyc(T) = E
1 +V(z"l)

l+V(z'^)H(z“ )̂ t-T ; T=k,k+1 ,...

(4.3.18)

from which V(z )̂ and hence P(z” )̂ can be estimated as before. 

Development using is followed here to parallel the procedure of

section 4.6.

4.4. Error Analysis

The first part of this section discusses the statistical 

properties of estimates {uu}. It has been found that these properties 

can be conveniently expressed by using a vector-matrix notation and 

putting the correlation analysis into a least squares framework. To 

avoid notational complexity, it will be assumed that a single long pseudo

random binary sequence is used instead of several short codes and hence 

N=N^. Now, for t=l,2,...,N equations (4.3.4) can be collectively 

written as

X = n + Cw (4.4.1)

T T Twhere X — (X^, » • • • > * h — (n̂  > 2̂ > • • • *n̂ )̂ * ^ — ((̂ »̂■» * • • »

Ic lc+1 Ic+TlC = (S c,S c,...,S c), c = (c^,C2 ...,c^) and S is an NxN shift

matrix as defined in Chapter I. Consider the least squares estimate of

w which can be written as

-1
(4.4.2)
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from the properties of pseudo-random binary sequences given by (4.3.10), 

approximately

for N >>k+n (4.4.3)

on the other hand, apart from the effect of initial and final terms ,

elements of 

between X. and

are equivalent to cross covariance estimates

ĉ . I.e.

i T
Yŷ .(k+n) (4.4.4)

then (4.4.3) and (4.4.4) in connection with (4.4.2) state that for large

N, the correlation analysis (4.3.11) and the least squares estimates (4.4.2) 
of {wu} are equivalent. It now follows from (4.4.1) and (4.4.2) that the 
correlation analysis estimates can be written as

w = C^X = 
a N a^

1 T W + -y- C n
a N

1 T = w + c n
a N

(4.4.5)

Since c^ and are mutually independent zero mean stationary

random processes then analogously to section 2.4, it can be shown that if

for K>0, 1>6>0, r%l

then

0 0 = £ with probability one

and hence w is a consistent estimate of w, i.e.

(4.4.6)

(4.4.7)

^ w = w with probability one (4.4.8)

If the condition on the auto-covariance function of given by (4.4.6)

is relaxed as 

lim
 ̂ lEVt+xl = ° (4.4.9)
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then it follows from section 2.4 that w is consistent only in 

probability.

It can also be seen from (4.4.5) that for a given input 

sequence, w is unbiased since

Eo) = 0) + —^  C^En = w (4.4.10)
a N.

and the covariance matrix is given by

E(w-w)(w-w)T = -rV- c’’'(Enn'̂ )C (4.4.11)
a N

Since no a priori information is available for the covariance matrix of 

n, it is, in general, not possible to make statements about the variance 

of estimates.

Having obtained the statistical properties of {wu}, a similar

analysis will now be repeated for that of process model parameters {p^} .
 ̂ _ 1   ̂ — 1However as eqn.(4.3.13) shows, P(z. ) is non-linear in 0(z ). It

will be seen, as in the case of separation technique analysis, that this

non-linearity will severely limit the Information about the errors in

estimated parameters. Consistency of {pu} immediately follows from

substitution of asymptotic and hence true values of {wu} into (4.3.13).

To find expectations of {pu}, the unbiasedness property of will

be used as

EO(z"l) = n(z"l) (4.4.12)

writing 0(z )̂ and fi(z )̂ in terms of V(z )̂ and V(z )̂ from •

their defining equations (4.3.3) and (4.3.12), (4.4.12) becomes

V(z'^)
l+V(z'l)H(z"l)

which can be rewritten as

V(z'^)
l+V(z"l)H(z"l)

(4.4.13)
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EV(z"^) + Z (-l)^H^(z"^) E = V(z"^) + Z (-1 ) V (z"^)(z'^)
i=l i=l

(4.4.14)
-1Partitioning V(z ) as

'̂ - 1  ^  ̂ z' -i 0 0 /\ _i ^  ̂ A _i * _iV(z )̂ = Z v.z + Z v.z 1 = Z v.z 1 + V„(z )
i= 0   ̂ i=k  ̂ i= 0  ^

and similarly V(z )̂ and noting that the minimum power of z  ̂ of

the summed polynomials in (4.4.14) is z it follows that (4.4.14) can

be separated into the following two equations

k - 1  . k- 1

Z E V. z"i = Z V. z"^ (4.4.15)
i= 0   ̂ i= 0  ^

EV (z’ )̂ + Z (-l)iHi(z"l)Evi+l(z"l)=V-(z"l) + Z (-1)V(z"^)V^'"^(z‘ )̂ 
i=l i=l

(4.4.16)

then from (4.4.15)

Ev^ = ; i=0,l,...,k-l (4.4.17)

which implies ^

Epi = p^ ; i=0,l,...,k-l (4.4.18)

“ 1that is, the first k coefficients of P(z ) are unbiased. This

is, in general,the only conclusion with respect to the statistical 

properties of {pu} , since it can be seen by writing the bias 

of estimation from (4.3.3) and (4.3.12) as

EP(z"l)-P(z"l)=M(z"l)[E0(z"l)-0(z"l)] + M(z"l) Z (z‘ )̂ (z"̂ )-îl̂ ‘̂  ̂(z"̂ ) ]
i=l

(4.4.19)

that (Epu-p^) ; i=k,k+l,... are all associated with the second and

higher order moments of {wu} which are unknown. It will also be

noted that the same difficulty occurs in the determination of mean
2squared estimation errors E(p^-p^) for i % 0 .
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4.5. Estimation of the process time delay

It has been assumed in the previous sections that the process 

time delay k is known. This section will show that this is not a 

restrictive assumption since by a suitable modification to the proposed 

estimation procedure, the time delay can be consistently estimated. The 

main aspect of the following technique is to avoid explicit represen

tation of the delay and exploit the effect of this on the polynomial 

[z *0 (z ^)]. For this purpose, the system representation is to be 

modified as

P(z"^) = ? p.z'i = z'*T(z"l) (4.5.1)
i= 0  1

where p^=0 ; i=0,l,...,k-l. From (4.3.1), (4.3.2) and (4.3.3)

+ z-*0(z-l)Ct (4.5.2)

where now 0(z"^) = ------------- ^  and V(z "^)=z*'P(z'^)M"^(z"^)-1.
l+V(z'^)H(z" )

Defining

B(z"l) = Z g.z'i = [l+V(z'l)H(z'l)] (4.5.3)
i= 0  ^

and

a(z"l) = E a.z'i = P(z’^)M‘^(z‘^)B(z"^) (4.5.4)
i= 0

-i -1then [z Jl(z )] of (4.5.2) can be written as

z"*n(z"l) = o(z~l) - z"*B(z"l) (4.5.5)

Consider now the following cases

i) & > k- 1

-1Arranging the powers of z , (4.5.5) will be written as

z"*n(z"l) = E a.z“  ̂+ Z a.z"^-z“^3(z"^) (4.5.6)
i= 0   ̂ i=k ^

since p^=0 ; i=0,1,...,k-l and hence, from (4.5.4), a^=0; i=0,l,...,k-

then it follows that the first k coefficients of [zT*0 (z"^)] are null.
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ii) i  ^ k- 1  

Writing

a . - Z g.z’'^'^ Z a.z'^
° i=l  ̂ i=l  ̂ ' i=k-&  ̂ i=k ^

(4.5.7)

and considering the first three polynomials and noting that 0 ^ = 0

and 3^ is independent of the coefficients of V(z )̂ , H(z )̂

and is equal to unity, then it can be seen that the first coefficient

of the polynomial given in the parentheses of (4.5.7) is null and

the (&+l)^^ coefficient equals -1 .

These observations suggest that if correlation analysis is

performed by multiplying (4.5.2) by c^___ t=0,1,__ and if resulting

0 ) ^ = 0  and w^=-l then it can be concluded that £,̂ k-l. Increasing

a and checking until w^ ^ - 1  gives an estimate of the time delay k
-1as the number of first zero coefficients of 0 (z ).

The problem of deciding whether certain values of {wu} can

be assumed insignificantly different from zero does not have a clear 

answer. An approximate check can be based on a formula given by 

Bartlett [14] which states that when two normal processes are not 

correlated and one is white noise then the variance of estimated cross 

correlation coefficient

= -■ (4.5.8)

is approximately proportional to Using this result in the

comparison of p» (i) with their approximate standard deviation ^

the number of insignificant parameters of {wu} or equivalently

the time delay can be estimated.
*

So far it has been shown that if an additional perturbation 

signal is allowed then the process parameters and time delay can be 

consistently estimated while the process is operated under the Box and
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Jenkins control system. The next section will discuss how the 

correlation analysis can be used in connection with the predictor 

updating procedure of [52] to optimize the control system.

4.6. Predictor updating

Consider the Box and Jenkins control system of Fig. (4.3.1)

without a perturbation signal, i.e. c^=0. It was proved in [52] that

if an auto-regressive model is fitted to a set of data

{X^;t=(i-l)N+l,...,iN} at the i^^ iteration, then successive
th ~updating of the predictor at every (iN) sample based on this fitted 

auto-regressive model may result in an optimum control system. Since 

the detailed proof of this property has been given in [52], only a 

brief discussion will be sufficient here as an easy reference.

Consider the i^^ iteration where an auto-regressive 

model is fitted to X^ as

From (4.3.1) and taking c^=y^=0 , X^ can also be written as

X = ------ ----------------- r r -  Ç. (4.6.2)
[1+V(z l)Hi_i(z l)][l-Q(z 1)] t

where the subscript (i-1) of H(z” )̂ denotes the predictor operating 

over the interval t=(i-l)N+l,...,iN. It is assumed that the auto

regressive parameters of {q^} of the disturbance

X = ------ r  (4.6.3)
i-QCz'b ^

remain constant for all intervals. Then from (4.6.1) and (4.6.2), 

approximately

1-R.(z‘b  = [l+V(z"^)HL_i(z'l)][l-Q(z'l)] (4.6.4)
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where the predictor ^(z is calculated from the previous

auto-regressive model [1 -R^ ^(z )̂] by the optimum predictor

of eqn. (3.5.18), i.e.

= {[1-R._j(z‘ b ] (4.6.5)

where T denotes order front-end truncation operator, then

by substituting of ^(z"^) from (4.6.5) into (4.6.4) and defining

1 , ” 1  

1 + C.(z"^) = [1-R. (z"-")] (4.6.6)

it can be shown that V(z )̂ of (4.6.4) can be written as

[1 . 0  ,(z-l)] (l-[l-Q(z-l)][l+0 ,(z-l)]}
v(z'i) = — --------------1— :----------^ --------- (4.6.7)

[l+v.(z-")] [1 -Q(Z-")] Vi_i,T(z-l)

Now, if it is assumed that the repeated updatings of predictor converge
-1to a stationary solution, then denoting v^(z ) as the polynomial 

v(z )̂ corresponding to the stationary solution, it can be seen that

(4.6.7) becomes

1-[1-Q(z"^)] [1+v (z“^)]
V(z-i) = --------- ;------  i—  (4.6.8)

[1-Q(z“-̂ )] V; ^(z-l)

From output eqn. (4.3.17) and taking c^=0 and H(z"^)=Hg(z )̂ , 

the system output in the stationary case can be written as

l-H (z-l)
(4.6.9)

[l+V(z-l)H^(z-l)][l-Q(z'l)] ^

-1then substitution of V(z ) from (4.6.8) and using (4.6.5) for the 

stationary case, y^  ̂ becomes

^t,s [1+Vg(z"^) - v^^^(z"^)] (4.6.10)

But from (3.2.17) the optimum output of the Box and Jenkins control 

system corresponding to the disturbance (4.6.3) is
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= [l+SCz'b - SyCz'l)] (4.6.11)

-1 _1 -1where 1+S(z ) = [1-Q(z )] . With a completely.similar

argument to that of section 3.11, it can be shown that

1 + Cg(z-l) - Og ^(z'l) = 1 + S(z"b - S.p(z‘ b (4.6.12)

then (4.6.12) in connection with (4.6.10) and (4.6.11) proves that if

the predictor updating procedure converges to a stationary solution

then the resulting Box and Jenkins control system is approximately

optimum as far as the disturbances are concerned.

It is also shown in Appendix III that if the modified predictor

of eqn. (3.7.11) is used in successive updatings instead of the optimum
I

predictor (3.5.18) then the stationary solution is also optimum in the

sense that the stationary output y is equivalent to the predictiont, s
error corresponding to the unity steady state gain predictor.

4.7. Convergence of the procedure

A necessary condition for convergence of the predictor up

dating procedure has been derived in [52] by considering the behaviour of

AH^(z'^) = Hi(z'l) - Hg(z'l) (4.7.1)

From (4.6.4) and (4.6.5) it is possible to write AHU(z ̂ ) in the form

AH.(z‘ b  = [H*(z‘ b-1] V(z"b AH._ (̂z‘ b  (4.7.2)

where H*(z )̂ = Sj(z )̂ [1-Q(z”^)]. Denoting H^(z"’̂ ) as the 

initial predictor, (4.7.2) can also be written as

AH.(z‘b  = [H*(z"l)-l]i Vi(z'l) AH^(z*^) (4.7.3)

then it follows that the procedure converges if

[H*(z‘Vl]^V^(z'b = 0 (4.7.4)
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a necessary condition for (4.7.4) to hold has been given in [52] as

Po0 < —  < 2 (4.7.5)
^ 0

Now, consider a situation where prior to the application of 

the predictor updating procedure, process parameters are estimated by 

the correlation analysis of section 4.3. The error analysis has shown 

that

^Po = Po
and

0 0 Pq ” Po with probability one (4.7.6)

These properties suggest that if the predictor updating procedure is

started with a process model M(z” )̂ where m^ is chosen to

satisfy the inequality 

p
0 < —  < 2 (4.7.7)

%

then it may be stated that for this choice of m^ the necessary

condition of convergence (4.7.5) will be satisfied with a high 

probability. However although the above choice of M(z )̂ with (4.7.7) 

can provide a solution to the convergence problem, there is a strong 

incentive here to use P(z ), resulting from correlation analysis,

as the initial process model M(z )̂ of predictor updating procedure.

This follows from the fact that since P(z )̂ is a consistent

estimate then for a sufficiently large number of data V(z )̂ of

(4.7.4) ])ecomes approximately null and hence

V^Cz'b = 0 (4.7.8)

which in turn satisfies the convergence condition (4.7.4). It should 

however be noted that in practice convergence of the procedure will also 

be strongly dependent on the behaviour of the first term of (4.7.4), i.e.



TABLE 4.8.1 TIME DELAY ESTIMATION

-1Disturbance: = (1-0.4z ) Perturbation signal: c^ = ±1 PRBS

Oç = 1.0 , N = 255

Process Model Predictor

P(z"l) M(z"l) z*H(z"l)

 ̂ l-0.4z"l 0.3
l-0.5z"l

Estimated cross-covariance coefficients

Case 1: &=3,k=5 i 0 1 2 3 4 5

Yxc(i) -0.05 -0.24 -0.12 -1.09 0.04 0.98

Case 2: £=3,k=4 Yy (i) 0.01 -0.12 0.04 .-0.96 1.10 0.97a C

Case 3: &=4,k=3 Yy^Ci) 0.09 -0.09 0.03 0.93 0.06 0.57

|Pxc(i)l 0.05 0.05 0.02 0.52 0.03 0.32
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Il™ „ „ (-l)i[l+S(z'l)-ST(z-l)]i[l-Q(z-l)]i
(4.7.9)

which, in general, tends to infinity unless some restrictive assumptions 

are satisfied by the disturbance model. Hence it follows that an 

additional requirement for the convergence is that (4.7.9) must tend 

to infinity slower than V^(z )̂ tends to zero. It is not known 

how severe this restriction will be in practice. Furthermore, since the 

convergence criterion (4.7.4) can only be expressed in terms of unknown 

parameters, the nature of convergence, i.e. monotonie or otherwise, 

will probably remain an unresolved problem.

In the next section a series of computer simulation results 

will be presented in order to substantiate the theory given in this chapter.

4.8. Examples

The first part of this section is concerned with the estimation 

of process time delay as a prelude to the second part which deals with 

optimizing the Box and Jenkins control system by first applying correlation 

analysis and then adjusting the resulting control system by the predictor 

updating procedure.

An example of the system time delay estimation is shown in 

Table (4.8.1). The Box and Jenkins control system of Fig. (4.3.1) was 

simulated with an auto-regressive signal as the disturbance x^, where 

the white noise was normally distributed with unity variance.

The perturbation signal c^ was obtained by an eight register pseudo

random binary sequence generator and the period of the sequence was N=255.

The process P(z )̂ was taken to be a first order pulse transfer

function with the process model as a first order approximation and the 

the controller was the exact inverse of the process model M(z ^).



TABLE 4.8.2 PREDICTOR UPDATING WITH CORRELATION ANALYSIS I

-1 -1
Disturbance: = (1-0.9z ) Perturbation signal: c^ = ±1 PRBS

1 . 0 1 k= 2 N = 255

Process Model Predictor

z-^MCz-l)

z- 2  

1 -0 .Sz"^
• z- 2 0.36

- 1Correlation analysis estimate P(z )

i 0 1 2 3 4 5

Pi 1 . 0 0 0.50 0.25 0 . 1 2  0.06 0.03

Pi 0.84 0.30 0.17 0.08 0.09 -0.04

Var { y ^ } resulted from correlation analysis updating: 2.67

Predictors for

h
0 ^ 2 S ^4

« 1
0 . 8 6 -0 . 2 0 0.04 0.14 —0.05

« 2
0.77 -0.27 0.17 0.19 -0 . 1 1

«3 0.80 -0 . 2 1 0 . 1 0 0.14 -0.09

«4 0.79 -0.24 0.13 0.17 -0.09

"5 0.80 . -0.23 0 . 1 2 0.15 -0.09 •

« 6
0.80 -0.24 0 . 1 2 0.16 -0.09

Computed values of Var {y^}

Iteration 1 2 3 4 5 6

Var {y^} 1.96 1.87 1.89 1.87 1.88 1.87

Optimum output variance : 1.83
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The simulated control system was operated for 255 sample 

intervals for three different combinations of process and model time 

delays k and Z . This resulted in a record of {X^,c^; t=l,2,...,255} 

from which cross covariance coefficients Yy^(i) are estimated by

- . 1  255.
255 2  1 -0 ,1 ,... 

t = l+l

whose 6  values are shown in Table (4.8.1). Following the argument of

section 4.5 and noting that in the first two cases Z < k-1 and

Z = k-1 respectively, then it should be expected that is

an estimate of the coefficient -1. Inspection of Yy^(3) in the

cases 1 and 2 verifies that Yy^(3) = -1. Increasing the model time

delay Z such that Yŷ .(̂ ) f -1 corresponds to & > k-1 and

in this case the first k parameters of Yy^(i) should be equal

to zero. Case 3 is an example of this situation where k=3, £=4 and

consequently it was found that y (4)  ̂-1. Comparing cross correlationxc
coefficients p^^(i) of the case 3^with their approximate standard 

deviation — = 0.06, it was observed that the first 3 coefficients 

of Yy^(i) can be assumed insignificantly different from zero, that 

is, the process time delay is k=3.

An example of updating the predictor every N=255 samples 

is shown in Table (4.8.2). The initial model and controller parameters 

of the control system were first updated by applying the correlation 

analysis of section 4.3. The estimated process parameters are shown 

at the top of Table (4.8.2). The updated controller was the exact 

inverse of the estimated process model P^z~^). The updated process- 

model and controller parameters were chosen as the initial design 

parameters prior to the predictor updating procedure. It can be seen, 

from the resulting output variance,that at this stage the control system 

was not yet optimum. After the correlation analysis, the perturbation 

signal c^ was taken as null and each time a record of 255 samples



TABLE 4.8.3. PREDICTOR UPDATING WITH CORRELATION ANALYSIS II

-1
Disturbance: = (I-0.6z‘  ̂+ 0.4z”  ̂- 0:2z"^)

Perturbation signal: c^ = ±1 PRBS

Oç = 1.00 k=l N=510

Process Model Predictor
z"kp(z-l) z"^M( z^H(z”

(1 -0 .5z'
z- 1

^)(l-0 .3z'b
zTl(l+0.5z"l) 0.85+0.10z"l+0.05z"2

Correlation analysis estimate P(z’ )̂

i 0 1  2 3 4 5

Pi 1 . 0 0 0.80 0.49 0.28 0.15 0.07

Pi 0.96 0.68 0.39 0.28 0.17 0.13

Predictors for Output Variance

Iteration h
0

h 2 ^3 Var {y^}

1 0.54 -0.35 0.17 0.18 .»*0 . 1 0 1 . 0 1

2 0.51 -0.38 0.19 - - 0.96

3 0.55 -0.38 0.19 - - 1 . 0 2

4 0.60 -0.47 0.31 - - 1.13

5 0.62 — 0.38 0.32 0.05 -0 . 0 2 1 . 2 1

6 0.55 -0.48 0.19 -0 . 0 2 -0.06 1.03

7 0.60 -0.47 0.27 0.03 -0 . 1 0 1 . 0 0

8 0.57 -0.44 0.29 - - 1.04

9 0.59 — 0.38 0.18 0 . 1 2 -0 . 1 0 1 . 0 2

1 0 0.60 -0.43 0.28 - - 0.94

1 1 0.59 -0.43 0 . 2 2 -0 . 0 2 -0 . 0 2 0.97

Optimum output variance: 1 .0 0
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of {X^} became available, an auto-regressive model was fitted by 

the least squares algorithm of eqn. (3.4.2). The predictor then was 

updated by calculating a new optimum predictor from the fitted auto

regressive model as in eqn. (3.5.18). To satisfy the assumption that 

the disturbance model remained constant, all iterations used the same 

disturbance sequence {x̂ }. Updated predictor parameters and the 

sample variance of output are shown at the foot of Table (4.8.2). It 

can be seen, from the values of Var {y^}, that the system converged 

towards the optimum and in particular that convergence was established 

by the 5^^ iteration.

One particular feature of the above example was that the 

disturbance sequence {x^} was taken to be the same for all iterations 

of the predictor updating procedure. It was observed in many examples 

that considerable imagination may be needed to spot a possible con

vergence if the sequence {x^} changes between updates. This 

undesirable characteristic of the convergence can be partially explained 

as follows. In the derivation of optimality of the predictor updating 

procedure it has been assumed that the disturbance model [1-Q(z )̂] 

remains constant for all iterations. However for a moderate amount of 

data, different disturbance sequences {x^; t=l,2 ,...N} will, in 

general, correspond to different auto-regressive models. To illustrate 

this point, consider the following auto-regressive model fits to 

{x^; t=(i-l)N+l,...,iN} for i=l,2,...

\  = [1 -Qi(z"^)]

it is known from section 3.4 that Q^(z ) remains constant for 

all i if and only if N ->» «>.

A typical example of the results of updating the predictor 

for different disturbance sequences is shown in Table (4.8.3). Although 

there was a considerable improvement in the output variance, the 

convergence of the procedure was found to be difficult to detect. In 

comparison with the previous example, variations of the estimated



TABLE 4.8.5. PREDICTOR UPDATING WITH CORRELATION ANALYSIS III

Disturbance:
_ 1

= (1-0.6z"^ + 0.4z"2 _ o.2z"^)

Perturbation signal: c^ = ±1 PRBS

0 ^ = 1.00 , k=l , N=127

Process Model Predictor

z-kp(z-l) z‘^M(z'b z^H(z-^]

z"^ - 1  . _ . - 1  . ... - 2

l-0.5z"l
z 0.7-0.42Z +0.24Z

Correlation analysis estimate P(z” )̂

i 0 1 , 2  3 4 5

1.00 0.50 0.25 0.12 0.06 0.03

Pi 0.93 0.52 0.23 0.11 0.03 0.02

Var {y^} resulted from correlation analysis updating : 0.99 

Optimum output variance : 1.00
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predictor parameters were rather large despite the fact that the 

data length was twice as much as in example I. Nevertheless as it 

can be seen from Fig. (4.8.4), the control system became approximately 

optimum after about the 5^^ iteration. However since N=510, a total 

of about 3000 samples was needed to optimize the system - a figure 

which can be quite unacceptable in practice. Also as is noticeable 

in this example, the convergence was not found to be monotonie. In 

fact it was observed that in many cases, where convergence seemed to 

be established further updatings resulted in large variations of the 

output variance. An example given in Table (4.8.5) is a typical 

representation of this situation where the predictor was chosen very 

close to the optimum predictor and consequently the correlation analysis 

resulted in a control system which was almost optimum for a data of 

length N=127. The behaviour of output variance and estimated predictor 

parameters for the consequent predictor updating procedure are shown in 

Fig. (4.8.6) and (4.8.7). It can be seen from Fig. (4.8.6) that the 

procedure could not maintain the control system around optimum after 

about the 13^^ iteration because of the large fluctuations in the 

estimated predictor parameters as shown in Fig. (4.8.7).

In conclusion, the predictor updating procedure combined with

the correlation analysis was found to produce optimum control systems if

the disturbance model remains almost constant for all iterations. In 
^  -1cases where [1-Q(z )] varied the method proved not entirely

satisfactory. A further difficulty was to spot a possible convergence 

particularly when the sample length was not sufficient. In this case 

estimated coefficients were subject to rather large errors so that 

considerable imagination had to be exerted to determine convergence.

This difficulty can be partially alleviated if the number of data is 

increased but this effectively discounts the procedure as a practically 

viable method of optimization. For example it can be demonstrated that
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with a total of about 3000 data which was needed to optimize the control 

system of example II, a simple correlation analysis with only one step 

predictor updating results in the same optimum control system.

4.9. Conclusions

This chapter has presented an attempt to facilitate the

convergence of the predictor updating procedure of [52] by proposing a

correlation analysis prior to the updating procedure. It has been shown

that the process parameters including the time delay can be consistently

estimated by correlating an additional perturbation signal with the

signal of the Box and Jenkins control system. Since the only

first k coefficients of the impulse response are unbiased then, in

general, the correlation analysis does not lead to an optimum control

system. However, based on the results of convergence analysis of the

predictor updating procedure given in [52], it was thought that further
-1improvement can be achieved if P(z ), resulting from the correlation 

analysis, is used to design an initial Box and Jenkins control system 

for the consequent updating procedure. Theoretical analysis has shown 

that it is possible to satisfy the necessary condition for convergence 

if the data is plentiful enough. However several computer simulation 

results have indicated that the proposed combined algorithm does not 

always perform satisfactorily. In particular, the convergence was not 

found to be monotonie and in fact in some cases where convergence seemed 

to be established consequent updatings gave rise to deteriorated 

performance. This problem was more apparent when the data length was 

not large enough where it was also difficult to spot convergence due to 

large errors in the estimated parameters.
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CHAPTER V 

CONCLUSIONS

This thesis has discussed the problem of identification and 

self-adaptive control of linear time invariant processes subject to 

random disturbances.

Chapter I emphasizes the fact that unless assumptions are made 

about the unknown disturbances the identification problem is from a 

rigorous viewpoint insoluble. Therefore the main concern of this chapter 

has been with validity of assumptions and an attempt has been made 

to classify some current identification techniques from this point of 

view. Since the disturbance and the test input are at least physically 

indepedendent, the most plausible assumption is one of statistical 

independence.

The modified least squares algorithm of Chapter II exploits 

the statistical independence by assuming that the disturbance and input are 

linearly independent. This yields a set of assumptions in excess of the 

minimal requirements for identification, and an attempt has been made to 

exploit this excess to minimize the estimation errors due to the inevitable 

violation of assumptions. The resulting algorithm is identical to that 

of the two stage least squares [30]. Nevertheless it is believed that the 

effect of assumptions on identification has been shown explicitly.

There are two main problems associated with the modified least 

squares algorithm. The choice of number of assumptions constitutes the 

first one and for this a partial answer is available if the process order 

and the impulse response duration are assumed to be known. The second 

problem is concerned with the choice of criterion for minimizing the 

estimation errors. The (tr Y  ) criterion has led to a neat and simple 

algorithm. Another possible choice is the minimization of the largest 

eigenvalue of Y . This choice has no easy general answer but
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nevertheless it has been shown that the chosen algorithm is also one 

solution to the eigenvalue problem.

There are still unsolved theoretical problems in all phases of 

identification. Most important among this is estimating the open-loop 

characteristics of a process without disturbing or breaking the feedback 

path. In engineering applications this problem arises when a process is 

open-loop unstable or susceptible to drift. In Chapter III the identifia- 

bility problem for a closed loop control system of the Box and Jenkins 

type has been re-examined to extend the previous investigation of Turtle 

[52]. A new estimation error equation has shown explicitly that it is 

possible to estimate the process and disturbance dynamics provided that 

the disturbance can be described by an auto-regressive model with a re

stricted number of coefficients. If this identifiability condition is 

not satisfied then some coefficients of the disturbance model cannot be 

estimated and hence the resulting process parameter estimates are biased. 

Nevertheless if repeated applications of the estimation procedure converge 

to a stationary solution then the resulting control system is optimum as 

far as the disturbances are concerned.

There are many difficulties associated with this self-adaptive 

procedure. Firstly, convergence is impossible to demonstrate in terms 

of practically available quantities. Secondly, and more importantly, apart 

from the first iteration, the closed loop stability cannot be guaranteed. 

These doubts added to the restrictive assumptions that the process time 

delay is known and the disturbance model remains constant, do not recommend 

the procedure as a practically viable method of optimization.

Chapter IV investigates the situation where an external test 

signal is applied while the process is operating under the Box and Jenkins 

control system. It has been shown that if the test signal is independent 

of the disturbance then a simple correlation analysis can produce 

consistent estimates of the process parameters. However for a limited 

amount of data these estimates are, in general, biased and hence do not
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lead to an optimum control system. But since a reasonably accurate model 

of the process is available then the self-adaptive predictor updating 

procedure of [52] can be applied to improve the control system resulting 

from the correlation analysis.

The simulation studies have indicated that due to a good 

initial process model, instability problems are unlikely to arise under 

repeated applications of predictor updating. However these examples 

have also shown that parameter estimate variations due to finite sample 

length can cause the control system to fluctuate around the optimum 

without actually converging to it. These fluctuations can be reduced 

by increasing the number of data used in each iteration. However in 

this situation it is questionable whether to apply the predictor updating 

procedure since a simple correlation analysis followed by a one step 

predictor updating may work equally well for a sufficiently large 

number of data.

The self-adaptive procedures of this thesis are as yet just 

proposals. Due to doubts about convergence and stability, they are not, 

at the moment, sufficiently well-developed to be applicable to real-life 

problems. It appears that difficulties concerning the stability are 

inherent in the method of solution rather than the problem itself, since 

there exist self-tuning regulators [55] which can stabilize any system 

provided that the time delay is known and the model structure satisfies 

certain assumptions. However, in parallel to the self-adaptive procedures 

of this thesis, the convergence of these self-tuning regulators cannot 

always be guaranteed.



122.

APPENDIX I

ASYMPTOTIC PROPERTIES OF THE ERROR EQUATION

Consider the error eqn. (3.9.15) of the separation technique 

analysis and assume that

i) the disturbance arises from an auto-regressive

process of order (in-l), and

ii) (iii-l) coefficients of R(z“ )̂. are consistently

estimated.

Then

„ E[P(z'b I Q(z'l)] = PCz'b

A 1 i 2i.e. given Q(z” ) = E qz” , the process model P(z" ) is
i=l *

(A.1.1)

asymptotically unbiased.

Proof; Using vector-matrix notation of Chapter I, the set 

of N equations of (3.9.1) and (3.9.3) can be written as

X = , (A.1.2)

X = (I+VH)X (A.1.3)

n .
where R = E r. S^, V = PM" -I = 

i=l ^
r I jE p.Ŝ  
i=0 ^

E m.gJ
U=o ^

-1 I
-I, H=.Eqh.Sk+i

and X,x,ç are N-vectors, for example, X=(X^,X2 ,...,X^)

On substitution of X from (A.1.2), x becomes 

X = (I+VH)(I-R)"^ç (A.1.4)

m'
from which I-G=I - X g.S^ will be defined analogously to

i=l

[l-G(z'l)] of (3.9.4) as

I-G=(I+VH)"1 (I-R) (A.1.5)
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Writing (A.1.5) explicitly as

1 1
-gl 1

(0)
-^11 (0)

0

= (I+VH)"^ -^n
0

0 ' " 0 -gĵ i • • • -gl 2 0 ... 0 -r ...__ n ■^1 L

(A.1.6)

it can be seen that the first column vectors of the above matrices contain 

all the parameters of interest. It is then convenient to consider only 

these vectors and to write from (A.1.6)

g = gm' = (I+VH) -1

1

-r.

-rn (A.1.7)

Since from (3.9.11)

gi = i=l,2,...,m-l (A.1.8) 

T
then defining q=(l,-q^,...,-q_ )_ , g^=(-g_,...,-g ,0,...,0) ,

iii-l mxl m m' (N-m)xl

r=(l,-r^,...,-r ,0,...0)̂  ̂ and F=(I+VH)  ̂ , it can be seen that (A.1.7) 
^ Nxl

can be written as 

g = .9.
gx = Fr (A.1.9)

which shows that g and r are linearly dependent. Since r is 

asymptotically normally distributed [15], it follows from this linear

relation that g is also asymptotically normally distributed. Let
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and Vj denote the mean and the covariance of r respectively then 

using (A.1.9), corresponding statistics of g are obtained as

(A.1.10)

q-U;
2T-“g.

Cq-Wq)

Vqq 1 '^qgj

V - V
g-p̂ 1 g>pg»p

= FV- F r (A.1.11)

From the properties of the normally distributed random vectors, the 

conditional expectation of given q can now be written as [7]

cigfj» gr̂q qqE(gy|q) = (q-y-) (A.1.12)

To use this result in the error eqn. (3.9.15), it is convenient to 

represent (3.9.15) in a vector-matrix form as

P - P = CP-M)(I-Q)"^ &J, + &J. = PGj, say (A.1.13)

Considering the first column vectors of (A.1.13) and defining
TP = (Pq >Pi>• • • analogously p, it is possible to'Nxl

write

0
mxl

p - p = r
?T.
0

(A.1.14)

N-m'-l
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where taking conditional expectation and using (A,1.12)
““ 0 ~

E[(p-p)|q] = r
0

(A.1.15)

From this relation it now follows that if

a) y = 0 (A.1.16)

and '

b) q = y- (A.1.17)

then given q , the separation technique analysis estimates are 

asymptotically unbiased, i.e.

E[(p-p)|q] = 0 

or equivalently

E[P(z"l)|Q(z"l)] = P(z'l) (A.I.18)

The condition (A.1.16) is asymptotically satisfied if the
disturbance x^ arises from an auto-regressive process of order

(iii-l), since in this case g^ = 0 and hence

y = 0 (A.1.19)g-p

On the other hand, under the assumption that (m-1) coefficients
-1of R(z ) are consistent

= n '! -  1=1.2..... m-1 (A.I.20)

But from definition

and hence

q^ = r^ i=l,2,...,m-l

lim _ lim 
N -► 00 N -► i

(A.1.21)



126.

or equivalently

q = (A.1.22)

thus the second condition (A.1.17) is also satisfied asymptotically.

Hence (A.1.19) and (A.1.22) in connection with (A.1.15) demonstrate that 

if the disturbance arises from an auto-regressive process of order 

(m-1) then the separation technique analysis gives asymptotically 

unbiased estimates provided that (m-1) coefficients of R(z” )̂ 

are consistent.
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APPENDIX II

PROPERTY OF THE STATIONARY SOLUTION CORRESPONDING TO THE MODIFIED PREDICTOR

In the case of the modified predictor H(z ^), the stationary

output equation (3.11.3) becomes

where, corresponding to the auto-regressive model [1-Q(z )̂], the 

modified predictor is given by (3.7.11) as

H(z‘l) = [-$(z'l) +âq.(z‘l)][l-Q(z'b] (A.2.2)

where

and

1  + S(z'l) = [1 -Q(z‘l)]

. , [l+S(z-l)-S_(z-l)]| _ k+u-1
»(z )   —  z*̂  (A. 2.3)

Substituting of H(z )̂ into (A.2.1), the output in the stationary case is

^t,s ° [1+S(z‘l)-Sq,(z'l) + $(z"l)] (A.2.4)

Suppose now that the process dynamics were known and the modified

predictor was used. In this situation the output of the Box and Jenkins

control system would be, from (3.2.17)

y, = [1-H*(z‘l)] (A.2.S)

where, for the disturbance model

 ̂ 1-G(z"^) (A.2.6)
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The corresponding modified predictor is

= [-4>(z'l)+Sq,(z'l)][l-G(z‘l)] (A.2.7)

where

1+S(z" ) = [1-G(z“-̂)]

and
-1.  ̂V -1.

$(z )  ------------ ----------- .E, z " (A.2.8)U 1=K

Thus using (A.2.6) and (A.2.7)

= [l+S(z"l)-Sq,(z‘l)+4Cz‘l)] ^  (A.2.9)

But it is known from (3.11.9) that

1+S(z"^)-S.p(z“ )̂ = 1+S(z"l) - S.p(z"̂ ) (A.2.10)

which implies, from (A.2.3) and (A.2.8), that

*(z"l) = *(z"l) (A.2.11)

Consequently (A.2.10) and (A.2.11) show that (A.2.4) and (A.2.9) are 

identical equations. This demonstrates the optimum nature of the 

stationary solution corresponding to the modified predictor.



129,

APPENDIX III 

UPDATING THE MODIFIED PREDICTOR

Corresponding to the auto-regressive model [1-R_(z of

the i^^ iteration, the modified predictor H(z of eqn. (3.7.11)

takes the form

T(z-l)][l-R.(z-l)] (A.3.1)

where

l+v^(z ) = [1-R^(z )]

and , ,
i ' - " i / . '  " U - i  ,-i „ , 3,„
 ̂ y i=k

-  -1 -1 Substitution of H^(z ) into (4.6.4) and solving for V(z ) gives

[1+v. .(z"l)]{l-[l-Q(z"l)][1+v.(z"^)]>
V(z"l) = --- ^ ----------------------   (A.3.3)

[l+v^(z“ )̂] [l-Q(z"̂ .)J 

and in the stationary case (A.3.3) becomes

l-[l-Q(z-l)][l+C (z-1)]
V(z"^) = ---------------    (A.3.4)

[l-Q(z"l)][-*g(z"l)+Vg^^^z"l)]

Under the stationary solution conditions the output can now be written 

from (4.3.17) as
1 . H^(z-l)

y =   X (A. 3.5)
1 + V(z )̂ Hg(z )̂

where

HgCz'l) = [-$g(z-l)+Og T(z-l)][l+Cg(z-l)] (A.3.6)
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and V(z“ )̂ is given by (A.3.4). Substituting (A.3.4) and (A.3.6) 

into (A.3.5) and using the disturbance representation

X = -----   Ç. (A. 3.7)
1 l-Q(z-l) 1

it can be shown that y becomest, s

^t,s " (A.3.8)

Consider now the output corresponding to the modified predictor
I _ 2

in the case of known process dynamics. Taking V(z )=0 in (4.3.17) 

and using (A.3.7), this can be written as

y = Î-Î. (A.3.9)
l-Q(z'l)

where

where

and

H*(z‘l) = [-t(z*l)+S„(z‘l)][l-Q(z‘l)] , (A.3.10)

1+S(z‘l) = [l-Q(z'l)]

T 

-1

[l+S(z-l)-S_(z-l)]| _ k+p-1
t(z'l)  --------------   —  Z CA.3.11)

y i=k

Substituting of H (z” )̂ from (A.3.10), the output equation (A.3.9)

becomes

y^ = [US(z‘l)-Sq,(z’b+t(z‘l)] (A.3.12)

But from (4.6.4), in the stationary case
-1 •

[1+Vg(z-1)] =l-R^(z‘l) = [l-Q(z"l)][l+H^(z'l)V(z'l)]

N or

l+Vj(z‘l) = [l+S(z‘l)][l+H^(z‘b  V(z'l)] (A.3.13)

thwhere applying k order front-end truncation and subtracting the 

result from (A.3.13) it can be shown that
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1+Cj(z‘l)-C^ (z‘l) = l+S(z'l)-Sq,Cz"l) (A.3.14)

which, from (A.3.2) and (A.3.11), implies

îjCz'l) = 4(z‘l) (A.3.IS)

Consequently (A.3.14) and (A.3.15) show that (A.3.8) and (A.3.12) are

approximately identical equations. This demonstrates that if the modified

predictor is used in successive updatings of the predictor updating

procedure then the- stationary solution is approximately optimum in the

sense that the stationary output y is equivalent to the predictiont, s
error corresponding to the modified predictor.
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(i)

ABSTRACT

Identification requires assumptions about the unknown 

disturbance. For an open loop identification experiment, the dis

turbance and the input are physically independent. Therefore the 

most reasonable assumption is one of statistical independence.

The estimation technique presented in the first part of 

the thesis exploits the statistical independence to reduce parameter 

estimation errors. The resulting algorithm is identical to that of 

the two stage least squares method [30]. Nevertheless it is believed 

that the original aspect of the approach is the treatment of the 

disturbance.

In practice it is often desirable to avoid open loop 

experimentations due to economic and safety restrictions. In the second 

part of the thesis, the identifiability problem for the Box and Jenkins 

feedback control system is re-examined to extend the previous work of 

Turtle [52]. Based on a new estimation error equation, a self-adaptive

optimization procedure is proposed. However due to doubts concerning 

stability and convergence, the procedure is not, at the moment, sufficiently 

well-developed for practical applications.

The final part of the thesis investigates the possibility 

of estimating the process and disturbance dynamics by use of an 

external perturbation signal while the process is operating under the Box 

and Jenkins control system. It is shown that a correlation analysis can 

produce consistent estimates. However for a limited amount of data 

these estimates are, in general, biased and hence do not always produce 

an optimum control system. Nevertheless further improvement can be 

achieved by applying the predictor updating procedure of Turtle [52] 

after the correlation analysis.


