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ABSTRACT

It is well known that in primitive recursive arithmetic with
a single successor the number of parameters in a definition by
recursion may be successively reduced. In this thesis I examine
the possibility of effecting a similar reduction in the number
of parameters in a definition by recursion in a multi-successor
arithmetic.

The reduction process involves the discovery in multi-successor
arithmetic of analogues of pairing functions and of functions which
select the elements of an ordered pair. One of the difficulties
in finding such functions is the construction within multi-successor
arithmetic of suitable product and square foot functions and
establishing the properties of these functions, and the pairing
functions, within a formalisation of multi-successor arithmetic.
The reduction process involves of course an examination of what
functions, if any, need to be adjoined to the initial functions to

secure the generality of the reduction.
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CHAPTER I

INTRODUCTION
The subject of multiple successor arithmetic was first introduced
in a paper by Vladeta Vulkovié in Mathematica Scandinavica in 1959 [5].
In single successor arithmetic every numeral has only one immediate
successor. However in the paper mentioned above Vubkovié considered
the possibility that every numeral has 'n' immediate successors.
The successor of x in single successor arithmetic is written 8Sx, and
for the successors in multiple successor arithmetic we shall write §X
where u will range from 1 to n. In Vubkovié's paper the suffixes
ranged from O to n-1, though in this thesis we have found it more
convenient for the suffixes to range from 1 to ne. Rather than make
an analysis of single successor arithmetic, we shall suppose that the
reader has a working knowledge of this theory. For references see
(11, [2] ana [3].
Both singlé and multiple successor arithmetics are based on the
theory of Recursive Functions, that is functions defined by a schema,
which defines the function at a starting value and then at the successor
of X 1in terms of the value of that function at X. In the arithmetics
that are considered in this thesis the starting value will be O, By
substitution the function is then defined successively for all values of X,
From hereon in this thesis lower case letters will be used for variables
and function symbols in single successor arithmetic, and higher case letters
for variables and function symbols in multiple successor arithmetic.
It is worth noting that we are in fact considering an infinite though
countable set of arithmetics, that is for all values of n2 1. The

theory that we shall consider is the commutative theory.



The numerals of single successor arithmetic are as follows:
0, 50, SSO, S350, S5S50, SSSSS0,ee4..+ and clearly these form a complete
ordering. The condition that x_2> y 1is given by the condition y = x = O,
This is a total ordering since for all x and y either x -y =0 or
y —x =0, and if both are equal to zero then x = y. Now in multiple
successor arithmetic the numerals are as follows:
0, S;0, 530,¢.¢e80, 5:5;0, 5:;5:0, «+¢eeSpSn0, S5;5:5105¢¢.eS57SnSn0y0cccsee

These numerals have a partial ordering which can be illustrated in '2'

successor arithmetic with the aid of a lattice diagram.,

In commutative successor arithmetic the diagram becomes:

N0 815:8:0 N\ 4,8,8,0 S255550
AN
N .
N /
\\\ /‘/ \\ » .
\<. 5,5,0 /L { 8,8,0
>‘(\ Sl 0



The theory of single successor arithmetic is built up from three
initial functions, namely the Identity, Zero and Successor functions given
by

*( ) writt
' IR X3 9Xg,ee0yXk) written xi
Z(x) written 0
S(x) written Sx .
However in multiple successor arithmetic we obviously require the Identity

and Zero functions though, in order to obtain 'n' successors for X we

toat

require ‘n' successor functions amongst the initial functions. The

initial set of functions is therefore as follows:

I¥(Xy,Xa,...,Xg) written Xy
Z(X) written O

su(x) written S X for u=1,...,n .

In order to define further functions in single successor arithmetic
use is made of a defining schema called 'Definition by Primitive Recursion':-
£(x,y) 1is said to be defined by primitive recursion from
g(y),n(x,y,2) if
£(0,y) = g(y)

f(sx,Y) = h(x’st(x,Y))

where g(..) and h(....) are initial functions or previously defined
functions. Primitive recursive functions can also be defined by
substitution from functions which have been previously defined by primitive
recursion.

The above schema obviously defines f(x,y) for all values of the
varigble x. That is, the function is defined at a starting value,
namely O. Then from the second equation subsequent values of the
function can be found by substituting x = 0, SO0, SSO, SSSO, SSSSO,eeses

in turn. In other words in multiple successor arithmetic with 'n'



successors, the basic defining schema for a primitive recursive function
would need to define the function at a starting value, namely O, and
then have n further equations to evaluate the function for each different
successor of X. Hence this schema will consist of 'n+ 1' equations
as follows:—

A function F(X,Y) is defined by primitive recursion in multiple
successor arithmetic by

F(0,Y) = A(Y)

F(SuX,Y) = Bu(X,Y,F(X,Y)) Uz 1,e..,0

where the functions A(..) and Bu(""‘) are initial functions or have
been previously defined., A primitive recursivé function can be defined
by substitution as in single successor arithmetic.

In this thesis the successars of our arithmetic are commutative.
Clearly this condition is not implicit in the equations for the definition
of primitive recursion. It is therefore necessary to impose a restriction
on the functions Bu(....)'u= 1540050 1in order that the commutativity of
the successors is maintained. We require that F(SuSvX,Y) = F(SvSuX,Y)

for all wu,ve. Since

F(SuSvX,Y) = Bu(SvX,Y,F(SvX,Y))
= B,(8.%,Y,B (X,Y,F(X,Y)))
and F(svsux,y) = Bv(SuX,Y,F(SuX,Y))

B,(8,X,Y,B (X,Y,F(X,Y)))
the condition is therefore that

Bu(SvX,Y,Bv(X,Y,Z)) = Bv(SuX,Y,Bu(X,Y,Z)) for all u,v.

For an illustration of this consider in '2' successor arithmetic

the function defined by



F(0,T) = Y
F(5,X,Y) = F(X,Y)
F(53X,Y) = SgF(X,Y)

F(X,Y) is a primitive recursive function in commutative multiple

successor arithmetlic; since

By (S:X,Y, B (X,Y,2)) = By (8aX,Y,522)
= 83%
and B;(S,X,Y,B,(X,Y,Z)) = B(5;:X,Y,2)
= 832
= B, (S2X,Y,B; (X,Y,2))

the commutativity condition is satisfied.

Now consider the function defined by

F(0,Y) = Y
F(S,X,Y) = S,F(X,Y)
F(SzX,Y) = 0

F(X,Y) is not a primitive recursive function in commutative recursive

successor arithmetic since

B,(S:X,Y,0)
S,0

Ba (5, X,Y,5,2)
=0

£ 5,0

B, (S3X,Y,B;(X,Y,2))

B (s, X%,Y,B, (X,Y,2))

the commutativity condition is not satisfied,

The uniqueness rule of inference for a primitive recursive function

in single successor arithmetic is given by



£(0) = g(0)
£(8x) = h(x,f(x))
g(sx) = h(x,g(x))
£(x) = g(x)

That is if two functions have the same defining equations in the

definition by primitive recursion, then these two functions are identical,
maintaining the uniqueness of definition by primitive recursion. Clearly
!

in 'n' successor arithmetic we require the uniqueness rule of inference

to be as follows:

F(0) = ¢(0)
F(sux) = B, (X,F(x)) U=1,...,0
G(SuX) = Bu(X,G(X)) U= 1,000,n
F(X) = &(X)

Parameters have been omitted from the above statements though these
are implicit in the rules.
Iet Mp be the set of numerals in 'n' successor arithmetic, then
M; = 0, S0, SSO, SSSO, SSSS80,¢e0cee
Hence for any primitive recursive function the domain of the arguments
cover all numerals that can be generated by repeated application of the

successor functions to the zero function. That is letting D(X) represent

the domain of X, for a function F(X) we have

D(F(X)) = Mp in 'n' successor arithmetic,
and letting R(X) represent the range of X, for a function F(X) we

have

R(F(X)) < Mp in 'n' successor arithmetic.

For an example of this consider the identity function I(X), in

this instance,



p(1(x))
R(1(x))

Mn

"

Mp

and for the function 2.X (supposing a function such that F(X) =X+ X
exists in our arithmetic)
D(2.X) = My

R(2.X) C My ('C' meaning 'is a proper subset of')

and in single successor arithmetic we would have

R(2.X) = 0, S50, SSSSO, SSSSSS0, SSSSSSSS0,eccscccas
Also consider the functions SuX u=1,...,n . For this we have

D(SuX) = Mp

R(sux) C My since there is no X such that §X =0 .

Equality in M, 1is defined by means of an axiom due to Professor
R. L. Goodstein, which is designed to avoid irregular models, given by

Sasbsc'-..-..osqo = Sa"%lsc,o.;..o ..Sq.o

with a<b< e veeeeeeeS g and a'<D'Ce'C veeeeeee < ¢’
if and only if

a = a, b=b', c=°',oooooooo, q = q_' .

However it has been shown by M. T. Partis in [4] that this axiom can
be replaced by the condition S,0 £ S;0.
We shall introduce several basic primitive recursive functions in
n' successor arithmetic, and consider the properties of these functions.
First we shall define the function Yo _X, v=0,...,n-1 (the case
v=n will be considered as the case v= 0)., as defined in Vulkovid's
original paper.

The defining schema is

"
]

Y crvo

Yo 58X Suw(Y"v X) U=1,cc0,n .



The suffix u+v is maintained within the range [1,n] by taking the

excess over 'n', The commutativity condition for this function is
given by
B,(8,.X,Y,B,(X,Y,2)) = B (8 X,Y,8_ 2)
= Su+vsw+vz
= S vSue?
= Bw(SuX,Y,Su+vZ)

Bw(SuX,Y,Bu(X,Y,Z)) .

In order to prove the properties of this function we require the

uniqueness rule

F(0) = &(0)
F(sux) = Bu(X,F(X)) Uz=1,ec00,n
G(sux) = Bu(X,G(X)) U =1,e0.,0
F(X) = G(X)

A complete formal development of the arithmetic will be left to
a later chapter; here we shall just prove simply certain properties of
several linear functions in the aritlmetic.

First we consider Vutkovid's function Y o‘VX v=0,...,0~1,

LEMMA (qu) o X = Su(Y crvx) Uz 1,000,
Prodaf Denoting the right-hand side of the equation by R(X) and

the left-hand side by L(X) we have that

r(o) z(qu) o 0

= SuY Defn
R(0) = 5,(Y 0,0)
=SY Defn

u



L( swx) =(qu) o 8, X

= w+v(SuY) oy X Defn
=8 +vL(X)
R(sX) = 8 (Y 0,8 X)
= 8, ww(Y o x) Defn
= S (Yo X) Condition of commutativity
w+v u

on successors

S _'_VR(X) .

Hence by the Uniqueness rule

L(X) = R(X)

End of proof,

In general X o‘v(Y o‘vZ) £ (X ch) S

A simple counter-example serves to illustrate this; consider

Y = S]_O, Z = Sgo
Then Xo (Y cvz) =X cyv(slo c530)
= X 0,8,,,(500,0) Defn
=X cv82+v810 Defn
= 2+v+v(x o slo) Defn
= 82+v+v 1+v( o 0) Defn
=8 S. X Defn
24+V+V 14V
(x cvy) o2 = (x cvslo) o520
=8 W((x crvs,o) crvO) Pefn
=85 w(x cvslo) Defn
= o o) Defn
2+V 14V
=8 B X Defn

34V L4V



Also we find that in general
XO'VY;éYo—.vx ,
In order to prove this consider the particular instance where
Xo0# 00X,

If X = S0 then

n

Xo 0=5000

n

Sa (0 O'VO) Previous Lemma

S,0

n

and 6] crvx

0 0'ng0

]

Sz+v(o O_‘vo)

= Sz+v0

and Sz+v0 is only equal to S30 when v =0

Defn

Defn

Defn

10

Now we consider if this function is distributive over itself, that is if

Xo (Yo,2) = (XoY) o (Xo2)
This condition is never true; put Y = 5,0, Z = S;0

X o‘v(Y o‘uZ)

]

X O’V(S,_O cus,o)

i}

X0 88, 0

Sl +vsﬁ +u+vX

(x crvY) au(x O‘VZ) (x ovslo) agr(x o S 0)

(S1+vx) o-u(szwx)

SI+VSQ+V+U.(X o_'LIX)

(x £ 0)

Defn

Defn

Defn

Defn



1

and x#qux for any value of u (x £ 0).

Therefore we have proved that Vuékovié's function Y O’VX is neither
assoclative, nor commutative, except possibly in the case v = 0; this
particular case is that of addition, that is the function Y+ X defined

by the usual schema

Y+0=Y
Y+SuX=Su(Y+X) u=1,...,n
PROPOSITI ON Y O‘OX =Y + X
Proof L(0) = Y LY
=Y Defn
R(O) =Y+ 0
=Y Defn
L(SuX) = Yo 8%
= Su+0(Y cox) Defn
= Su(Y O'OX) Normal arithmetical rules
of addition
= SuL(X) u=1’.oo,n
R(SX) =Y+ 8X
u u
= Su(Y + X) Def'n
=SuR(X) u=1’ooo,n

Hence by the uniqueness rule of infeerence

L(X) = R(X) as required .

It will be shown that addition is commutative and associative by

a series of lemmas.



g
8

0+X=X
L(0) =0+ 0
=0
R(0) = 0
L(8,X) = 0 + X
= su(o + X)
= SuL(X)
R(SuX) = 8,X
= SuR(X)

Hence by the uniqueness rule of inf'erence

L(X) = R(X) as required.

S, + X = Su(Y + X)

L(0)

r(0)

L(SVX)

R( svx)

]

il

SY+ O

u

s, Y

Su(Y + 0)
5, Y

S, + S.X
sv(qu + X)

va(x)

Su(Y + svx)

SuSv(Y + X)

SvSu(Y + X)

SVR(X)

Commutativity of successor

Defn

Defn

Defn

Defn

Defn

Defn

12
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Hence by the uniqueness rule of inf'erence

L(X) = R(X) as required
PROPOSITION Y+X=X+Y Commutativity

Y+ 0

Proof 1(0)

it

Y Defn

1

R(O) =0 + Y
=Y Previous lemma

i( sux)

(]

Y + SuX

su('r + X) Defn

SuL(X)

R( sux)

SuX+ Y

0

Su(Y + X) Previous Lemma

1]

SuR(X)
Hence by the unlqueness rule of inference

L(X) = R(X) as required .

PROPOSITION X+Y)+2=X+ (Y + 2) Associativity
Proof (0) = (0+7Y) +2
=Y + 2 Previous Lemma
R(0) =0 + (Y + 2)
=Y + 2 Previous Lemma
L(SuX) = (sux +Y)+2
= su(x +Y) +2 Previous Lemma
= Su((X +Y) +2) ‘ Previous Iemma

SuL(X)
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R(sux) = S X + (Y + 2)
=Su(X + (Y + Z)) Previous Lemma
= SuR(X)
Hence by the uniqueness rule of inference
L(x) = rR(X) .
Having considered addition functions in our arithmetic, we shall
now proceed to consider difference functions.
The basic functions for the addition functions are the successor

functions. For the difference functions the basic functionw are the

predecessor functions va v=1,+..,n, defined by the schema
PVO =0

SPyXs u v

the commutativity condition is

Bu(SWX,Y,BW(X,Y,Z)) = {swx u=
Squ(X,Y,Z) ufv
= S X u=v
w
SuX wtv & w=v
8,5,2 utv & wiv
= 'SuX u=v & w=v
5% u=v & wiv
s,X wgv & w=v
SwSuZ wtv & wév Commutativity of successors
= {sux W=V
5,X wiv & u=v

5,8,2 wAv & ufv
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"

SuX w=v

{stu(x,Y,z) wiv

]

B v;sux,Y,Bu(x,Y,z)) as required

We are now able to introduce the difference function Y = X, defined
by the schema.

Y>20=Y

Y - SuX

L]

Pu(YLX) u=1,.-.’n

In order to prove the commutativity condition for this function we first need
to prove the following Lemma:
IEMMA PPX = PP uX

Proof L(0) =P PO

uv

il

PuO Defn

=0 Defn

r(0) PPO

on Defn
=0 Defn

L( swx)

PPSX
uvw
= |{PX V=W Defn

PSP X viw Defn

= P X V=W
PX viw & u=w Defn

SwPquX véw & ufw Defn

= {PX V=W
PX véw & u=w

SWL(X) véw & utw




Now letting

then

Hence by the uniqueness rule of inference

R( swx)

Bw(x,Y,z)

L( swx)

R( swx)

L(x) = R(X)

The commutativity

Bu(SvX,Y,Bv(X,Y,Z))

H]

condition fao Y = X follows by

i

L]

1]

PVPuSwX

P X

vaw PuX

P X

PX
gu
SWPquX
P X
R

va

SvaPuX
P X
u

[P X

1l SWR(X)

{p X
P X

%sz
w

B (X,Y,L(X))

BW(X,Y,R(X)) .

Pqu(X,Y,Z)

PquZ

PR

PvBu(X,Y,Z)

Bv(SuX,Y,Bu(X,Y,Z)) as required

u=w
ufw

u=w
ufw & v=w

ufw & véw

v=w
viw & u=w

véw & utw

V=W
viw & u=w

viw & uiw

w=v
w=u

wiv & whu

as required

Previous Iemma

Defn

Defn

Defn

Defn

16
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Corresponding to the Vubkovid's functions o, for addition functions,

for difference functions, we define functions Ty by the sehema

Y

Yr v0

Y rvSuX

Pu+V(Y TVX) v:O, 0o ,n—1 s

again taking the excess over n for u+v. The case of v=n is’

considered as v=0.

For the commutativity condition we have

1}

Bu(SwX,Y,Bw(X,Y,Z)) P+vB(X,Y,Z)

u

]

Pu+VPW+VZ

=P P 2 Previous Lemma
W+V U4V

waBu(x,Y,z)

Bw(SuX,Y,Bu(X,Y,Z)) as required

As for Vubkovié's functions o,s the particular case v=0 being

addition, so for Ty with v=0 we have the normal difference function

Y > X.
PROPOS ITION YroX=Y <X
Proof L(0) = Y 750
=Y Defn
R(O) =Y 20
=Y Defn
L(SuX) = Y 705X
i
= Pu+0(Y ToX) Defn

]
z"U
e
—~
e
~
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R(S ux)

Y—SuX

P u(¥‘ X Defn

L]

PuR(X)

Hence by the uniqueness rule of inference
L(X) = Rr(X)

The common properties of the addition function and the difference

function in single successor arithmetic are

y-x=8y=5Sx
(y+x)2x=y
x+(y2x)=y+ x>y

For the first two of these we shall prove in multiple successor

arithmetic, that is

SY:SX V=1,...,n

¥ v v

X

(r+X)2Xx=%Y

The third equation X + (¥ 2 X) =Y + (X = Y), known as the Key
Equation, will not be proved in this thesis. The proof in primitive
recursive multiple successor arithmetic is due to Professor R.L.Goodstein,

and can be found in [9].

PROPOSI TION Y>X=38 o¥ < 5, X
Proof L(0) =Y =0
=Y Defn
R(0) = S, Y =80
=P (s Y = 0) Defn
= PvSvY Defn

=Y Defn
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It

L(SuX) Y -5 X

]

Pu(I = X) Defn

PuL(X)

R( sux) s,Y = 88X

s,Y = 5,5,% Commutativity of successors

pu(svy 2 svx) Defn

PuR(X)

Hence by the uniqueness rule of inference

(L(X) = R(X) as reqired

PROPOS ITION (Y+Xx)2x=%
Prodf L(0) =(Y +0) 0
=Y+ 0 Defn
=Y Defn
R(O) = Y Defn
L(s,X) = (Y + sux) = 5,X
=8,(Y+X) 28X Defn
=(Y+X)=-X Previous Proposition
= L(X)
R(SX) = Y
= R(X)

Hence by the uniqueness rule of inference

L(X) = R(X) as required.



20

Iet us now consider the following three equations, relating oy

and Tv.

1. YrX=8Yr 85X
2. (Y o’vX) TX=Y

3. Xo (Y 7.X)=Y o, (X 7.¥)

It would surely be remarkable if all three equations were true,
especially 3., which would be a generalisation of the Key Equation,
but unfortunately this equation is not true. Equation 1. needs a slight

adjustment, and equation 2. is true. Equation 1. we adjust to

Y 'rvX = Su+vY T vSu)(
PROPOSITION Yr X=58, Y7.8X
Proof L(0) = Y 7,0
=Y Defn
r(0) = Savy TS0
= Pu+v(Su+vY rvo) Defn
=P S Y Defn
U+v u+v
=Y Defn
L(SWX) =Y 78X
= Pw+v(Y 'rvX) Defn
=P _L(X)

wW+V
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R(swx) = 8,,oF 785X
= Su+vY TvSwSuX Commutativity Qf'A successors
= wa(suw‘z rvsux) Defn
= Pw+vR(X)

Hence by the uniqueness rule of inference

L(X) = R(X) as required

PROPOSITION (Y avx) TX=1
Proof L(o) = (Y crvo) 7,0
=Y o-vo Defn
=Y Defn
r(0) =Y
L(SuX) = (Y crvSuX) 7,8,%
= Su+v(Y cvx) 75, X Defn
=(Y O’vX) T X Previous Proposition
= L(X)
R(sux) =Y
= R(X)

Hence by the uniqueness rule of inference
L(x) = r(X)
Further, the equation Z = (Y + X) = (2 = Y) =X 4is provable in

both single and multiple successor arithmetic; using the o, and T,

functions we are able to make the following generalisation of this equation:



ZT (YO"X)

i}

]

(z Y) LI

S,0 o3P, (830 7,0)
5;003P5;0
S;O 0'10

8,0

PROPOSI TION zr (Yo X)=(27 Y) T,
Proof L(0) = 2 Tu(Y cvo)
=2 Tux
r(0) = (2 qu) T ey
=2 TuY
L(SWX) =2 'ru(Y avswx)
=2 Tusw+v(Y O'VX)
= w+v+u(Z T (Y.G'X))
= Pw+u+vL(x)
R(SWX) =(z7 Y) L
= w+m+v((Z T Y) T )
= Pw+u+vR(X)
Hence by the uniqueness rule of inference
L(x) = r(X)
PROPOSITION Y av(x T Y) £X O'V(Y 'rvX)
Proof A simple counter—example will serve to illustrate
Put Y =50, X=28S30,. v=1
L(X) = 8;0 ¢3(8;,0 7,8,0)

Defn

Defn

Defn

Defn

Defn

this

Defn

Defn

Defn

Defn

result.

22
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R(X) = 820 0,(8,0 7,8,0)

S30 o3 P3(5,0 7,0)

Sa0 0y P35S, 0

520 0,5,0

Sa2(820 07, 0)

"

S2520
# LX)

The multiplication functions in this arithmetic will be left until
a later chapter.

A function particular to multiple successor arithmetic, which we
have not yet considered, is the component function. This is a most
valuable function which allows us to apply and utilise many of the results
and principles of single successor arithmetic, The component function
CvX is def'ined by the schema

CV0=0

CS5X

i
o
b4
&

5 C X u=v

the commutativity condition is

]

Bu(SwX,Y,Bw(X,Y,Z)) BW(X,Y,Z) utv

Squ(X,Y,Z) u=v

= {2 utv & wiv
8,2 uiw & w=v
(8,2 u=v & wiv
5.8 2 u=v & w=v
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= {z WAV & ufv
8% WAV & u=v
8,2 w=v & ufv
SWSuZ w=v & u=v  Commutativity of
‘ successors
= Bu(X,Y,Z) W;év

zstu(x,Y,z) W=V

Bw(SuX,Y,Bu(X,Y,Z)) as required

Clearly CvX only allows use of the successors Sv in X, and
thus reduces X to one type of successor, The reason the word component
is used for this function is due to M.T.Partis in [4], where it is proved
that variables in multiple successor arithmetic can be regarded as 'n'tuples
with only one successor. The function C X reduces X to only the 'v'th
component, that is if

X (Xlgxz,oo--o-oopxn)

c_X
v

(0’0, O.Q’O’XV,O’OOO;O)
Further properties of the component function will be considered in

the formal development of the arithmetic in chapter IIT.

PROBIEMS ATTEMPTED

The problems that have been attempted in this thesis are:
1. Reduction of the number of parameters in definition by primitive
recursion.
An '‘m¢'ary function F(X,Y;,Yas....¥n) is said to be defined by
primitive recursion from A and B if

F(O,Y1 ’Yz"",'YTB)

1)

A(Y1 ,Yz e Q’Ym)

F(SuX,Y1 ,Yg e .’Ym)

]

Bu(X:Y]. :Yz s °;Ym’F(X’Y1 :Yz ’ "’)Ym))

11-"-‘1,...,11
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where A(Y,,Y3,...,Y¥m) and Bu(X,Yl Yaseee,¥my2) u=l,...,n are initial
functions or previously defined functions,and further, in order to preserve

commutativity of the successors

B (S XsYa5Ya5 00 ¥ 5B (KoY, Ya 5000 ¥, 52)) = B (8 Ko ¥a s Va0 ey ¥ s B (X3 Ya 5 Yay s X5 2))

for all u,v.
The problem is to reduce this definition to the defining schemata, .

(i) Define F(X,Y) by the.schema, called R,

]

F(0,Y) = A(Y)

F(SuX,Y)

Bu(X,Y,F(X’Y)) 11=1 g e ,n

[t}

where Bu(SvX,Y,Bv(X,Y,Z)) Bv(SuX,Y,Bu(X,Y,Z)) far all u,v.

(ii) Define F(X,Y) by the schema, called R,*

F(0,Y) = A(Y)
F(SuX,Y) = Bu(X’F(X,Y)) u=1,co-,n
where Bu(SvX,Bv(X,Z) = Bv(SuX,Bu(X,Z)) for all u,v.

(1ii) Define F(X,Y) by the schema, called R,**

F(0,Y) = A(Y)
F(SuX,Y) = Bu(Y,F(X,Y)) =1, e00,n
where Bu(Y,Bv(Y,Z)) = Bv(Y,Bu(Y,Z)) for all u,v.

(iv) Define F(X,Y) by the schema called R,***

F(0,Y) = A(Y)

]

F(S,X,Y) Bu(F(X,Y)) U=1,.c05n

where Bu( BV(Z ))

]

Bv(Bu(Z)) for all u,v.
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We consider further what functions, if any, are required to be added
to the initial set of functions in order to produce the set of all primitive
recursive functions, from each of these definitions.

In single successor arithmetic, the reduction of parameters in the

definition of primitive recursion is to be found in [1] and [3].

2. A complete analysis of X.

In single successor arithmetic a numeral x can be compared relatively
simply to any other numeral with the ald of the difference function y -~ x.
Using both y = x and x -~y a complete comparison is made between
x and y. In multiple successor arithmetic, however, X is not so
easily analysed. The questions which we seek to answer are the following,

in order to obtain a complete analysis of X.

(1) How many successor symbols in X?
(i1) How many different successor symbols ?
(iii) What these different successor symbols are.

(iv) How many of each successor symbol ?

With these four questions answered the analysis of X is obviously

complete and a comparison between X and Y can be effected.
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CHAPTER II-

REDUCTION OF PARAMETERS IN THE DEFINITION BY PRIMITIVE RECURSION

In this chapter we will consider the problem of the reduction of
parameters in the definition of primitive recursion in Commutative
Multiple Successor Arithmetics.

The first task will be to consider the reduction, given that we
have already in our arithmetic a set of functions with special properties.
Different functions will then be considered for this set. In chapter
ITI the arithmetic will be formalised and a proof of these properties
will be given.

In single successor arithmetic the reduction is solved with the aid

of three functions L(x), K(x) and J(u,v), such that

L(I(u,v))

K(J(u’v))

u

v

We shall suppose first of all that in commutative multiple successor
arithmetic we have three functions L(X), K(X) & J(U,V) with the above
properties. With these functions we are able to reduce the number of

parameters in the definition of primitive recursion.

Consider therefare the definition of primitive recursion with 'm'
parameters (m finite); this schema we will call Rpi—

A function F(X,Y;,Yasecss¥n) 1is said to be defined by primitive
recursion from A and 'B if

F(O:Y]. s¥2 500 -’Ym) = A(Yl sizsee -,Ym)

1]

F(S,X>Y15¥z25++,¥n) Bu(X,Yl,Yz, eoesYmsF(X,Y3,Y250005¥n)) u=1,...,n

where B, (SX,Y1,¥z,.e;Ym,By(X,¥3,Ya,-005¥n)) = By (8,X, Y2, %500 0 ¥ms B, (X%, % 5o Y)

all u,v

and A(....) and Bu(....) u=1,...,n are previously defined functions.
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Now let W= J(Y;,Ya)

and let G‘(X,W,Ya,Y4, L) ,Ym) F(X, L(W) ’K(W) ,Ys,Y‘, LI ’Ym)

]

F(X;Y15Ya5e005¥m) -
Then G(X,W,Ys,Y4sec.s¥m) is defined by

G(0,W,Y3,Y4seees¥m) = A(L(W),K(W),Y35e0.,Ym)

]

A' (W’Ya’Yu [ ”Ym)

G’( SuX,W,Ya,Y4, soe :Ym) Bu(X: L(W) ,K(W) 9Y3: s )Ym)G(X:W:YS’ oo me) )

1.1:1,...,11

H

B! (X,W,¥s, 000, TmsG(X,W,Y 5,00 5Yn))
u= 1 9o ,n

and the commutativity condition reduces to

B, (8 X, L(W),K(W),Ya, - +,Yn, B (X,L(W),K(W),Ys,...,Yn)) =

B, (8,X, L(W) ,K(W),Ys,...,¥m, B (X,L(W),K(W),¥5,...,Ym,Z))
all wu,v

and therefore

B! (S, X,W,Yaye0 ¥ Bl (X, W, Y5500, ¥m,2)) = B (5 X, W,Ys5ee e, Y, BY (X, W, Y5500, Ym,2) ]

all u,v.

Hence the definition by primitive recursion is now reduced to a schema
Rp-, containing m-1 parameters, that is, F(X,¥3,¥3,¢ees¥m-y) is
def'ined by
F(O’Yl s¥25000,¥p-y ) = A(Yl 3 CPRRR ’Ym-l)
F(SuX,Y 1,Y2 F AN ,Ym—]_ )= Bu(x,Yl e e ,Ym-l ,F(X’Yl F X ,Ym-l )) u= 1 g ,n
where
By(8,XsYaseees¥na 5B (X, Yo 500 o5 ¥men52)) = Bi(S Koo see ey 5B, (XsYas50 005 Y 52)

all u,v.




By repeated use of this method we can reduce the definition to
a definition with only one parameter R, that is, PF(X,Y) is defined

from A and B by!

F(0,Y) = A(Y)
F(SuX,Y) = Bu(X,Y,F(X,Y)) Uz1,e0.,n
where Bu(SvX,Y,Bv(X,Y,Z)) = Bv(SuX,Y,Bu(X,Y,Z)) all u,v .

The prod” just given reduces Rp to R; 1in m-1 steps.

A similar technique can be used to complete the proof in a single step.

We proceed as follows:
et W= J(Yy,3(Y2,3(Yss00+5,3(Yna 5¥n))) «oo)
et K*(W) = K(X(W)), and X"(W) =m(w))....)

We therefore have that

L(W) =1,
L(K(W)) = Ya
L(K*(W)) = Y3
L(K'"'”iW)) = Yn-y
K™ (W) = Y
and let e(x,W) = F(X,L(W),LEK(W) )5 e o, LLK™2(W) ) , K™ 2 (W)).

We therefore define G(X,W) by

G(0,W) = A(L(W),L(K(W)), ..., LK™ 2(W)),K™2(W))

A'(W), say.

29



6(s,X,W) = B (X,L(W),L(K(W)),...,L(K""2(W)),K"* (W),

F(X,L(W) , L(K(W) ), . . .L(K™2 (W) ,K™"2(W)))

u=1,oo.,n

i}

B! (X,W,6(X,W)), say u=1,..,n

and the commutativity condition reduces to

B, (8%, L(W), L(K(W)), .. ., L(K"~2 (W) ) ,K™"* (W), B (X, (W), L(K(W)), ...,

ee s K" R (W),K™2(W))) =
B, (8, L(W), L(K(W)), « « o, L(K™2 (W) ) ,K""* (W) , B (X, L(W), L(K(W)) , o . «
e e e, LK™ (W), K™ (W)))
7. By (8 X,W,B.(X,W,2)) = B(SX,W,B!(X,W,2)) all u,v.
Thus Rp is reduced to B, .

We now require:

(i) to reduce R; to Ry;* where F(X,Y) is defined by the schema
1 1 2

F(0,Y) = A(Y)

F(SuX,Y) Bu(X,F(X,Y)) Uu=1,...,n

i

where Bu(SvX,Bv(X,Z)) Bv(SuX,Bu(X,Z)) all u,v

(ii) to reduce R; to R, ** where F(X,Y) is defined by the schema

F(0,Y) = A(Y)

i}

n

F(SuX,Y) Bu(Y,F(X,Y)) U= 1,0ee,n

where Bu(Y,Bv(Y,Z)) Bv(Y,Bu(Y,Z)) all u,v.

(i1i) to reduce R, to R,*** where F(X,Y) is defined by the schema

F(0,Y) = A(Y)

i}

F(SuX’Y) Bu(F(X’Y)) u=1,..0,n

where Bu(B v(z))

n

Bv(Bu(z)) all u,v.
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Reduction of R; to Ry*:

et G(X,Y) = J(Y,F(X,Y)).

Then G(X,Y) is defined by the schema

6(0,Y) = J(Y,A(Y))
= A’(Y), say

G(SuX,Y) = J(Y,F(SuX,Y))

I(¥,B,(X,Y,F(X,Y)))

3(1(6(x,Y)),B, (X, L(6(x,Y) ) ,K(6(X,Y))))

n

B\;(X’G(X’Y))’ Say u=1’ooo,n
and for the commutativity condition we let

z' = J(v,2) .

Now B!(S X,B}(X,2')) = B!(s X,3(L(2'),B(X,1(2'),k(2"))))

B! (5%, 3(Y,B (X,Y,2)))

a(u(a(y,B (x,Y,2))),B, (s X, 1(I(Y,B (X,Y,2))),

i

k(J(¥,B,(X,Y,2)))))

J(¥,B,(5 X,Y,B (X,Y,2)))

fl

3(v,B (s X,¥,B,(X,Y,2)))

1}

3(L(a(x,B,(X,Y,2))),B (8 X, L(3(¥,B,(X,Y,2))),
K(3(¥,B,(x,7,2)))))

B!(S,X,J(Y,B (X,Y,2)))

]

By (5,X,3(1(2'),B (X, L(2') ,k(2'))))
= B;r(sux,Bl'l(x,z' )) all u,v,

which is the required commutativity condition.

Thus F(X,Y) = K(6(X,Y)).

3



Reduction of R; to R,**:

et &(%,Y) = J(X,F(X,Y)) .

Then G(X,Y) 4is defined by the schema

¢(0,Y) = J(0,A(Y))
= A'(Y), say
G(SuX,Y) = J( SuX,F(SuX,Y)) Uz=1,ee.,n

I(s X,B (X,Y,F(X,Y)))

1]

3(s,1(6(x,Y)),B, (L(&(X,Y)),¥,K(6(X,Y))))

B&(Y,G‘(X,Y)), Say' U= 1 ,oon,n

and for the commutativity condition we let
z' = J(x,z2) .

Thus

1}

B! (¥,B)(Y,2')) = By (3(s,L(2'}B (L(2'),¥,K(2"))))
= B!(Y,3(s X,B (X,Y,2)))
= J(s,L(3(s X,B_(X,Y,2))),B, (L(3(5 X,B (X,Y,2))),

¥,K(3(8 X,B (X,Y,2)))))

[}

J(SuSvX,Bu(SvX,Y,Bv(X,Y,Z)))

J(SvSuX,Bv(SuX,Y,Bu(X,Y,Z) )) (commutativity condition
for R; and commutativity
of successors)

3(s, 1(3(5 X,B,(X,Y,2))),B (L(3(s X,B (X,Y,2))),

"

¥,X(J(s X, B,(X,Y,2)))))
= B (Y,3(8,X,B,(X,Y,2)))
= B!(3(s,(2'),B,1(2"),Y,K(2"))))
= B"T(Y,B&(Y,Z')) all u,v ,

which is the required commutativity condition.
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Thus F(X,Y) = K(c(X,Y)).

Reduction of R; to R, *%*:

the reduction of R to R¥** can be achieved in three ways, that is

(1) R, to BRy* then Ry™ to Ry***
(2) Ry to Ry** then R;** to R,™**

(3) R, direct to Ry*** ,

Both the reductions R;* to Ry*** and R;** to Ry*** are similar

to the reductions Ry to Ry** and B to Ry* respectively.
We shnll consider the reductions R;* to R;*** and R; to
Reduction R;* to Ry*¥%;

R;* 1s the schema

F(0,Y) = A(Y)

1]

F(Sux,Y) Bu(X,F(X,Y)) U= 1,...,2‘1

]

where Bu(SvX,Bv(X,Z)) BV(SuX,Bu(X,Z)) all wu,v.

First let G(X,Y)= J(X,F(X,Y).

Then G(X,Y) is defined by the schema

¢(0,Y) = 3(0,A(Y))
= A' (Y), say
G(SuX,Y) = J(SuX,F(SuX,Y))

J(Sux’Bu(X, E(X’Y))) U= 1,...,1’1

1]

3(s,1(6(X,7)),B,((6(x,7)) ,K(&(X,Y))))

B&(G(X,Y)), say, u=1,e¢..,n.

R1 Lol
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and for the commutativity condition we let

Z' = J(X,Z) .

Then

B1(B(2"))

By (3(s,L(2z"),B (1(2'),k(2'))))

= B! (3(s X,B (x,2)))

= 3(5,L(3(s X,B,(X,2))), B (L(3(8,X,B (X,2)) ) ,K(I(5 X, B (X,2)))))
= J(s8 X,B (5 X,B (X,2)))

= J(S.S X,B (8 X,B (X,2))) (commutativity condition of R,*
vou vt s
and commutativity of successors)

= J(s,KJI(sX,B (X,2))),B (L(3(s X,B,(X,2))),k(3(s X,B, (X,2)))))
= B (J(8,X,B (X,2))) |
= B' (3(8,1(2'),B,(1(2'),k(2'))))
= B'V(Bl'l(z')) all u,v,
which is the required commutativity condition.

Thus F(X,Y) = k(6(X,Y)) .

Reduction of R, to R,*%%:
R, 1is the schema

F(0,Y) = A(Y)

u

F(SuX,Y) Bu(X,Y,F(X,Y)) Uz=1,...,n

where Bu(SvX,Y,Bv(X,Y,Z)) Bv(SuX,Y,Bu(X,Y,Z)) all u,v.

First let G(X,Y) = J(X,J(Y,F(X,Y))).

Then G(X,Y) is defined by the schema

¢(0,Y) = J(0,3(Y,F(0,Y)))

n

J(0,3(¥,A(Y)))

A'(Y), say
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G(SuX,Y) = J(sux,J(F(sux,Y))) Uz=1,e0.,n
= J(8,X,3(¥,B (X,Y,F(X,Y))))

= J(8,L(6(x,¥)), 3(L(k(c(X,Y))),B (1(6e(X,Y)), L(K(6(X,Y)) ),
K(x(&(X,¥))))))

= B&(G‘(X,Y)), Say u=1,.o.,n

and for the commutativity condition we let

z' = 3(X,3(Y,2)).

Then

B (B1(2')) = BI(3(s K(z"),3(L(K(2")),B,(1(z"), K (2")) K(K(2'))))))

= B! (3(s X,3(Y,B (X,Y,2))))

Put W
v

1]

J(SVX,J(Y,BV(X,Y,Z))) for suffix v or u

L(w,) = 8%, L&(W)) =7, x(x(W)) = B (X,Y,2)

I(s, LW, ), 3(L(r(W,)),B (LW ), L(k(W_)),K(K(W_)))))

1!

J(SuSvX,J(Y(Bu(SvX,Y,BV(X,Y,Z))))

"

J{s.s x,J(¥,B (58 X,Y,B (X,Y,2)))) (commutativity condition
vou vu u .
of R, and commutativity
of successors)

]

(s, LW, ), 3(L(K(W_)),B_(L(W ), L{K(W)),K(K(W)))))

B! (3(8 X,3(Y,B,(X,Y,2))))

By (3(s,L(%"),3(L(k(2")),B,(L(2"), L((2")) ,K(K(2'))))))

B;(BI'I(Z' )) ald u,v
which is the required commutativity condition.

Thus F(X,Y) = K(K(6(X,Y))).
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In the previous sections the problem of reduction of parameters
in the definition of primitive recursion with 'm' parameters has
been successfully achieved with the aid of the set of functions IL(X),
k(x) & J(u,v). Now we must consider what functions have the required

properties

1
(o]

L(3(u,v))

k(3(u,v))

]
<

In order to discover these functions, we first examine the functions
used in the reduction in single successor arithmetic. To do this we

need to define the following.

Defn. y+x Addition
y + 0= y
v+ Sx = 8(y + x)

Defn. Px Predecessor
PO=0
PSx = x

Defn. y - x Dif ference
yto=y

y -Sx=P(y = x)

Defn. Feox Multiplication

y.O =0

YeSX=YeX+ ¥
Defn. x.x = x® HNotational definition (explicit)
Defn. Rx Square root

RO=0

RSx = Bx + (S0 = ((5Rx)? 2 sx)))



Clearly, from the definition, Rx 1is the integer part of the
square root of x, or the square root of the greatest perfect square
in x.

Now with the aid of these functions we can define L(x), K(x) &

J(u,v) as follows:

J(u,v) = (u+ v)? +u
L(x) =x = (rx)®
K(x) = Rx = L(X)

Obviously, informally,

L(3(u,v)) = ((u+v)® + u) = (R((u + v)? + u))?
= ((u+v)? +u) > (u+v)?
=u

K(3(u,v)) = (w+v) 2u

v as required.

1}

In multiple successor arithmetic however the corresponding functions

are not quite so straightforward.
As can be clearly seen the functions L(x), K(x) & J(u,v) are based
on the relations |
R(u®)

and R((d + v)% + u)

th

u

u+v

In other words, we seek to define a suitable multiplication function
with a suitable square root function.
Iet us consider the functions we have for multiplication, their

properties, and possible square roots.
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1.  Vu&kovid's multiplication function defined by

Y*0 = 0

1}

Y*Sux Y*X O'uY u=1 g0ece ,n

The commutativity condition requires the equality of

]

Bu(SvX,Y,Bv(X,Y,Z)) (z cva) o ¥

Bv(SuX,Y,Bu(X,Y,Z)) (2 auY) o ¥ .

We shall prove these equal by the following lemma.

IEMMA (Y va)cux = (Y o, X) o X
Proof 1(0,Y) = (YO’VO) o0
= (Y crvO) Defn
=Y - Defn
r(0,Y) = (¥ cruo) o 0
= (Y O'uO) Defn
=Y Defn

L(SWX,Y) = (Y O'VSWX) o, S, X

= Sw+u(Y cvswx) o X Defn
= sw+usw+v(Y crvx) o X Defn
R(s X,Y) =(f 0,8 X) 0. 8 X
= sww(Y auswx) o X Defn
= sw+vsw+u(y cux) o X Defn
= sw+usw+v(y o, X) o X (commutativity of

successors)

38
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L(X,Y) = rR(X,Y)

Bu(SvX,Y,Bv(X,Y,Z)) = Bv(SuX,Y,Bu(X,Y,Z))

The properties of this function include commutativity, associativity,
and distribution over % functions for all wu; the case of u=0
is addition.

Commutativity is proved by the following lemmas:

LEMMA 0*X = 0
Prodf L(0) = 0*0
=0 Defn
R(0) = 0
- *
L(SuX) = 0%5 X
= 0*X o’uO Defn
= 0*X Defn
= L(X)
R(SuX) =0
= R(X)
o L(X) = R(X) by uniqueness
LEMMA (z crvY) o X = (2 cux) o ¥
Proof’ (0,Y,z) = (2 ch) o0
= (2 o’vY) Defn

r(0,Y,2) = (2 cuo) o ¥

]

Z O'VY Defn



LEMMA

Proof

L(SWX,Y,Z)

R(SWX,Y,Z)

L(Xx,Y,2)

SuY*X

(o,Y)

r(0,Y)

L(svx,y)

R(SVX,Y)

i

i}

1]

]

"

"

1l

n

(z O'VY) 0, 5%

S
w+u

S
W+U

(2 crvY) o X

L(X,Y,Z)

(z cruSwX) o ¥

(Sw+u
SW+u

S
W+u

(z o‘uX)) oY
(z o‘uX) o, ¥

(r(%,Y,2))

r(X,Y,2)

Y*X o X
u

S _Y*
u

0

0

Y¥0 0. O
u

Y*0
0

#”
SuY

va

S Y*Xo S Y
u vu

S
u+v

S
u+v

]
(qu X) o ¥

(L(x,Y)) o, ¥

Y*S X o S X
v ouv

(Y*x O'VY) o, 5. X

S

v+u

S
u+v

S
u+v

*»

(Y*x crvY) o X
]

(¥*x cﬁx) o, ¥

(r(x,Y)) oY
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Defn

Defn

Previ ous ILemma

by uniqueness

Defn

Defn

Defn

Defn

Defn

Defn
Defn

Previous lemma



L(X,Y) = R(X,Y)
PROPOS ITION Y*X = X*Y
Proof 1(0,Y) = Y*0
=0
R(0,Y) = O*Y
=0
L(s,X,Y) = Y*5 X
= Y*X cqu
= L(X,Y) o ¥
R(SuX,Y) = 5 X*Y
= X*Y O’uY
= R(X,Y) o, ¥
L(X,Y) = R(X,Y)

1

by uniqueness

Bommutativity

Defn

Previous Lemma

Defn

Defn

by uniqueness

For the distributive property we need the following Lemmas:

LEMMA Z O'u(Y crvx)

(Zo uY) LA

u

Proof 1(0,Y,2) = Z O'u(Y o‘vO)

ZoY
u

r(0,Y,2)

=ZO'uY

L(SWX,Y,Z)

Zo. S

u w+v

S 2
W+V+Q

(z O'uY) Ty

u

Z o‘u(Y O‘VSWX)

(Y orvx)

cru(Y crvx)

Defn

Defn

Defn

Defn



PROPOSITION

R(swx,Y,z)

n(x,Y,2)
W
zx(Y O'uX)

1(0,Y,2)

r(0,Y,2)

L(svx,Y,z)

R(va,Y,z)

L(X,Y,2)

]

1]

1}

1}

n

fl

"

1

i

Sw+v-;-ull'(x" b8 Z)

(2 cqu) cwuswx
swwm(z O'uY) S Defn

Sw+v+uR(X’Y ,2)

r(X,Y,2) by uniqueness
VAL | O"uZ*X Distributive

*

z*(Y cruo)

VAD'S Defn
* *

Z*Y o, Z*0

Z*Y o, 0 Defn

Z*Y Defn
*

z*(Y O’uSvX)

z*s (Y o X) Defn

v+ u
z* (Yo X))o 2 Defn
u v+u

L(X,Y,Z) cv+uz

Z*Y o Z*S X
u v
* *
2%y ou(z X cvz) Defn

(2*y O‘uZ*X) S/ Previous lemma

R(X,Y,Z) T

rR(X,Y,Z) by uniqueness



PROPOS ITION (z*y)*xX =
Proof L(o,Y,2) =
r(0,Y,2) =

L(SuX,Y,Z) =

R(SuX,Y,Z) =

J. L(X,Y,2) =

Z*(Y*X)

(z*Y)*0

z*(Y*0)

Z%0

(Z"‘Y)*SuX
(z*¥)*X o (2*Y)
(x,Y,2) o, (2*Y)
z*(Y*s X)
Z"‘(Y*X;o‘u‘{)
z*(Y*X) o Z¥Y
rR(X,Y,2) cru(z*Y)

r(x,Y,2)

In general however Z*(Y'rux) £ Z*Y T2 .

Consider the counter-—example

u=0 ’

S258, 0%(5,0 T0S:0)

X=S,0, ¥=S,0, 2=5,5,0

1]

U

1}

1]

S25,0%P; (5,0 75 0)
S35, 0%P, S, 0
S25,0%S,0
S25,0%0 03 8,85,0
0 03 S35,0

S3550

Assoclative

Defn

Def'n

Defn

Defn

Defn

Previous Proposition

by uniqueness

Defn
Defn
Defn
Defn

Defn

L3



S35, 0*810 To 82310*320

Thus in general

it

1}

il

(Sgs 0*0 o3 32310) To (82310*0 Oy 83310) Defn
1

33520 To S4S 30

P4P3535;0

S20

2. We shall now consider

Yo
Y5 X

it

* * £
Z (Y-rux) £ Z%Y T .

Defn

Def'n

Defn

the multiplicative function defined by

0

Yxx+Y u=1,.oo’n

and the commutativity condition

Bu(SvX,Y,Bv(X,Y,Z))

1}

]

BV(X,Y,29 +Y
(z+Y)+7Y
Bh(X,Y,Z) + Y

Bv(SuX,Y,Bu(X,Y,Z)) .

Clearly the function does not distinguish between successors, but

unf'ortunately when n > 1

the function is not commutative.

prove this by a simple counter-example.

Put

Y= 5,0,

X= S50
YX = §,0%8,0

= 5,070 + 5,0
=0+ 5,0

il

5,0

We shall

Defn

Defn

Defn
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XY = S,078,0
b4
= 5300 + S;0 Defn
= 0 + 530 Defn
= 530 Previous Lemma

PROPOSITION 25+ %) = 25 + 2% Distributive over addition
Proof £(0,Y,2) = Z°(Y + 0)
=2y Defn
r(0,Y,2) = Z°Y + 20
= ZxY + 0 Defn
= ZxY Defn

X
L(SuX,Y,Z) = 2°(Y + sux)
= ZxSu(Y + X) Defn
X
=Z2(Y+X)+2 Defn

= I(X,Y,2) + Z

R(SX,Y,2) = 7Y + zxsux
=25 + (2% + 2) Defn
= 2% + 7% + Z Associative rule for addition
= R(X,Y,Z) + 2
g L(x,Y,z) = R(X,Y,Z) by uniqueness
PROPOSITION (z59)% = 2°(7%) Associative
Proof 1(0,7,2) = (%)%

=0 Defn



r(0,Y,2) = Z5(¥"0)
=20 Defn
=0 Defn
L(s X,Y,2) = (27)"s X
= (2% + (Z5Y) Defn

(X,Y,2) + (2Y)
R(S_X,Y,2) = Zx(YxSuX)

250 + 1) Defn

It

(%) + 2% Previous Lemma

R(X,Y,2) + (2%Y)

i

Je u(x,Y,2) = R(X,Y,Z) by uniqueness

However, although this function is distributive over addition,
it is not distributive over the o‘u functions.
That is  2°(Y o X) # 2y cruZxX

X X
8207(8;,0 cuszo) = 830 (s2 s 0 auo) Defn
X
= S30 Sz+u310 Defn
= 5,0°5,0 + S50 Defn
>.q
= S300 + S30 + 830 Defn
= SQSQO

S50%S,0 cruszoxsao (5,00 + S,0) o, (52 00 + S,0)  Defn

= Szo O'uSQO Def'n
=8 SO0 Defn
2+ 2

and Sﬂ_uSaO is only equal to S3S30 when u = 0.
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Also we find that in general

z5(y T X) £ YT X

Put u = 0, Z = 810, Y = Sgslo, X = 81810

510" (855,0 7 815,0) = 5,0°P;P15:5,0 Defn
= §,0°8,0 Defn
= 50 Defn

S,075;85,0 rusloxslslo (8,0%5,04+ 8,0) ru(slo"slm S,0) Defn

(5,070+ 5,04 5,0) Tu(810x0+ S,0+5,0)  Defn

=5 310 TuS]_ 810 Defn
= PPy 5, 5,0 Defn
=0 Defn

e For the last multiplication function we consider the function

defined by

i}
(o]

Y.0

Y.SuX

Y.X+CuY u=1,---,n

Bu(SvX,Y,BV(X,Y,Z))

l and the commutativity condition is
% Bv(X,Y,Z) + C Y

(Z + ch) +CY

(z + ch) +CY Associative rule of addition

L}

Bu(X,Y,Z) +CY

Bv(SuX,Y,Bu(X,Y,Z)) .

This function is commutative, proved by the following Lemmas.



Proof L(0) = 0.0
=0 Defn
R(0) = 0
L(SuX) = 0.5 X
= 0.X + C,0 Defn
=0.X+ 0 Defn
= 0.X _ Defn
= L(X)
R(SuX) =0
= R(X)
J. L(X) = r(X) by uniqueness
LEMMA §,Y-X = Y.X + C X
Proof 1(0,Y) = 8,Y.0
=0 Defn

R(0,Y) = Y.0 + c,0

=0+ 0 Defn
=0 Defn
L(SVX,Y) = 5, Y.5 X
=S YX+CSY Defn
u vyvu
%s YX+SCY u=v Defn
_fu vV

gqu.X + CY ugv Defn



PROPOST TION

Proof

R(SVX,Y)

L(X,Y)

L(0,Y)

r(0,Y)

L(SuX,Y)

R( SuX,Y)

il

]

n

S(SY.X+CY
L(XY)+CY

L(XY)+CY

i
{
{
%SV(L(X ,Y) + C Y)
{
{

Y.S X+ C3S X
v uv
Y.X +CY + CuSvX

1Y.X + CeY + SvCuX

YX+CY+CX
y v u

.(Y.X + cux) +CY

gSv(R(X,Y) + ch)

iR(X,Y) +CY

R(X,Y)

Y.X + CuY
L(X,Y) + c Y

SuX,Y

X.Y + CuY

ufv
u=v

wév

u=v

ufv

Sv((Y.X + cux) + ch) u=v

wév
u=v

ufv

49

Defn

Defn

Defn
Defn

Defn & Associative
law of addition

Associative law
of addition

by uniqueness.

Commutative

Defn

Previous Lemma

Defn

Previous Lemma
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R(X,Y) + c Y

.. L(X,Y) = r(X,Y) by uniqueness

Consider the distributive property .of this function over addition.

PROPOSITION ZJ(Y +X)=2.Y+2X Distribution over addition
Proof’ 1(0,Y,2) = Z.(Y + 0)

r(0,Y,2) = 2.Y + 2.0

=2Z2Y+ 0 Defn

= Z2.Y Defn
L(SuX,Y,Z) = Z.(Y + sux)

= 2.5 (Y + X) Defn

=2Z2.(Y + X) + CuZ Defn

= L(X,Y,2) + c,2
R(SuX,Y,Z) = Z2.Y + 2.5.X
=2Z2.Y + Z.X + CuZ Defn & Associative law
. of addition

= R(X,Y,z) + C,Z

S L(X,Y,2) = R(X,Y,2) by uniqueness.

To prove associativity we require to prove the following Lemmas.

LEMMA C,C,X = C CX

Proof’ _ (0) = ¢,C,0
= Cuo Defn
=0 Defn



r(0)

L(SWX)

R(S,X)

L(X)

i

1]

n

cC 0

véw

v=w

viw

v=w & ufw

u=v=w

viw or ufw
u=v=w

viw or ufw

u=v=w

u=w & véw
u=v=w
ufw or viw
u=v=w

ufw or véw

u=v=w

Defn

Defn

Defn

Defn

Defn

Defn

Defn

Defn

Defn

Defn

by uniqueness.

51



T e R EEE————

IEMMA Cu(Y + X) = .Y + CX
Proof 1(0,Y) = Cu(Y + 0)
=CY
u

r(0,Y) = C,Y + G0

fl

CuY + 0

CY
u

I
Q
—~
<

+
(3}
e

e

L(svx,Y) =

|
«Q
(o2}
~
s
+
>
~

i}

R(SVX,Y) =

t
«Q
=
+
Q
ﬁm
tal

s L(X,Y)

"
o
Py
34
<
j —

LEMMA (ch).x =

I
(@]
[+

—~
)
-
tal]
p

u=v
uév
u=v

ufv

u=v
uév

u=v

ufv

u=v

ufv

Defn

Defn

Def'n

Defn

Defn

Defn

Defn

Defn

Defn

by uniqueness.

52



Proof 1(0,¥) = (c,¥).0
=0 Defn
R(0,Y) = Cu(Y.O)
= CuO Defn
=0 ~ Defn
L(s,X,Y) = (C ¥).5 X
= (ch).x + cv(ch) Defn
= L(X,Y) + c,C.Y
R(SVX,Y) = Cu(Y.SvX)
= C,(YoX + C_¥) Defn
= Cu(Y.X) +CCY Defn
= R(X,Y) + €, Y Previous Ieﬁma
oo L(X,Y) = R(X,Y) by uniqueness

and therefore by the commutativity property we can say (CuY).X = X.(CuY).

PROPOSITION z.(Y.X) = (2.Y).X Associative
Proof 1(0,Y,2) = Z2.(Y.0)
= Z.0 Defn
=0 Defn
r(0,Y,z) = (2.Y).0
=0 Defn
L(8,X,Y,2) = Z.(Y.5,X)
= Z.(Y.X + C ¥) Defn

Z.(Y.X) + z.(ch) Previous Lemma



KX,Y,2) + C (2,Y)

R(SuX,Y,Z) = (z.Y).sux

(Z.Y).X + Cu(Z.Y) Defn

r(X,Y,2) + cu(z,Y)

]

S, n(x,Y,2) = R(X,Y,Z)

This function is not, however, distributive over %y functions, nor
the Ta functions, for all u. Though the distributive property is true
in both cases with u=0, the first we have proved, the second we shall

state, and leave the complete proof uhtil chapter III.
Z.(Y *X)=2.Y 22X Distributive over difference

Having established the properties of these three multiplication
functions, we are now able to consider their squares, and possible square
roots.

1.  Vubkovidé's multiplication function.

Y*0

]
o

T*S X = Y*X o ¥ U=1,¢..,n (on =00 )

In 4 successor arithmetic the squares of numerals will be as follows.

Numeral Square Numeral Square
0 0 5:8,0 528253520
5,0 S20 518,0 S25352a5,0
S20 S40 51550 52545450
S30 S20 518,40 S25;5; 8,40
S40 S40 82850 8454550

S2530 S45;5,5,0
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From the above table it can be seen that obviously there cannot
be a useful square root function for this multiplication function, as

both S;0 and S30 have the same square.

2. The function defined by
Yxo =0
Y'5,X

1]

ﬁ"‘Y u=1,nco,n

In 4 successor arithmetic the squares of numerals will be as follows.

Numeral Square Numeral Square
0 0 S, 85,0 518:5,8,0
S:0 5,0 5;820 515825, 5,0
S30 S20 S2S 30 S35353530
530 S30 S;:540 515451540
S40 540 5152840 51535451 53545; 53540

This function does give a unique square, and further if a square
root function could be found then a unique answer would be obtained for
square roots of 'perfect squares' under this multiplication rule. It
can be seen that the square of a numeral is that numeral repeated the
same number of times as there are successor symbols in that numeral.
Therefore in order to obtain the sguare root of a numeral we would first
have to analyse the number of successor symbols in that numeral, take the
square root of that number, then further either analyse the particular
successor symbols or 'divide' the numeral by the square root of the number
of successor symbols. The questions of the number of successor symbols in
a numeral, and the particular successor symbols which make up that numeral

have been fully amalysed in chapter IV.
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It can be seen from the above that a square root function of this
multiplication function would not be a 'convenient' function and therefore
we shall leave this function and consider the third multiplication function.

3. The function defined by

Y.0

I\
o

Y.SuX

{]

Y.X+ CuY u=1,ooo’n

Consider the squares of numerals in 4 successor arithmetic.

Numeral Square Numeral Square
0 0 5:5;0 51520
5,0 5,0 S28 20 52530
S20 520 525, 0 52528;5,0
S30 S0 515,540 5:5,5:8:5,40
S40 540 5454540 S45454545454545,5,40

This appears to have a very reasonable square, which is the numeral
split into components, and each component squared. To obtain the square
root therefore we would first have to take components and then take the
square root as in single successor arithmetic. Thus we would have

functions Rtu(X) defined by:-

0

1]

Rt (0)

]

Rtu(SvX) {qu(cux) + cu(svoz-((sztu(cux)?-=évcux)) u=v

%Rtu(CuX) ufv

That is Rtu(X) is the square root of the 'S ' successor symbols
in X, the complete square root of X would then be given by Rt(X)
defined by

Rt(X) = Rt,(X) + Rta(X) + «oo + Rta(X) .
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However we can avoid the Rtu(X) functions by the definition

Rt(0)

0

Rt(SuX)

Rt(X) + (suo 2 ((SuRt(X))3 2 sux)) Uz=1y eeeyn

The components are taken by the property that
(5,0 =4) = (s0=4).
For this function to be the one required the following properties
need to be satisfied:

Rt(X.X) = X

X

Rt(X.X + X)

Rt((Y +X)2 +X)=Y+X ((Y+XP=(Y+X).(x+Xx) )

Further if Y > X that is X = Y = 0, then Rt(Y) > Rt(X),
that is Rt(X) = Rt(Y) = 0.

All these properties will be proved formally in chapter III.

Further, we need to prove the properties

L(JU,v)) = U

[0}

K(J(u,v)) = Vv .
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CHAPTER II1

FORMAL DEVE LOPMENT OF COMMUTATIVE MULTIPLE SUCCESSOR ARITHMETIC

In this chapter .we will develop the arithmetic formally and prove
the properties of some of the functions already introduced in previous
chapters, The notation used will be to number all axioms, rules of
inference, definitions, lemmas, propositions, and theorems. The steps
in a proof will then by illustrated by a number corresponding to the
statement used on the right-hand side of the page. For the
substitution rule of inference and equality rules numbering will not
be used.

The functional notation I(...) and R(...) will be used to denote
the left- and right-hand sides of equations. Where a letter is quoted
in the parenthesis of L(...) or R(...) and does not appear on the
corresponding side of the equation, then the zero function Z(...) of
that letter is supposed to have been taken.

R R(X) = 0 should be taken as R(X) = Z(X), which will not
affect the proof,.

A proof will conclude with the statement IL(...) = R(...).

Statements 1 to 6 give the axiomatic statement of the arithmetic.

1. Initial functions

Z(X) written O

Su(X) m‘itten SuX u=1 g0 ,n

11;(){1 sXa5+005Xk) Written X;

2. Commutative condition

Susvx = Svsux u,v: 1 ,oo.,n
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Definition of functions by explicit and primitive recursive

definitions, the latter given by:-

If A(Yl,YQ’ooo,Ym) a.nd Bu(X’Yl’YB""st’Z) u=1,...,n, are
designated functions (initial functions or previously defined) then

F(X,Y;,Y25e005Yn) is designated if

F(0,Y;,¥25e-05Y¥m) = A(Yy,¥250045¥m)

F(5,X,Y1,Y250445¥m)

fn

Bu(X,Yl Y200 :Ym:F(X,Yl s¥z 900 :Ym)) u=1,...,n

and
Bu(SvX:Yl :Yz 3o :Ym,Bv.(x:Yl s 13 sece :mez)) =

Bv(SuX’Yl ’eroo-:Ym:Bu(X:Yl ’st---:Ym:Z)) all u,v,

in order to preserve the commutativity of the successors.

3. PRule of inference (equality rule)

A=23B This statement reads: 'If A 1is equal to B and A is
A=¢C equal to C then B is equal to C'.
B=2C

L. Rule of inference (substitution)

F(Y) = a(Y)

i

F(a) = &(a)

5. Rule of inference (substitution)
A=23B

F(a) = F(B)

6. Rule of inference (uniqueness rule)

F(0) = ¢(0)

F(SuX) = Hu(X,F(X))

6(sX) =H (X,6(X)) wu=1,...,n
F(X) = 6(X)
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7. Definition of Y + X

Y+ 0=Y%
Y+ 85X =Su(Y+X) u=1,...,0
8. Proposition A=A
Proof Y+0=Y Te
Y+0=Y 7.
Y=Y 3
A=A 4.
9. Rule of inference
= B
B=A
Proof A=238 Premises
A=A 8,
B= A 3.
10. Rule of inference
A=B
B=2C¢C
A=¢C
Proof A=23B Premises
B = A 9.
B=2C Premises



1l. Rule of inference

Proof

12.

Proof

13.

Proaof

61

B=A
C=A
B=2C
B= A Premises
A = B 9.
C=A Premises
A = C 9.
B = C 3.
Rule of inference
A=23B
A=C
B=D
C=D
A=2B Premises
A=2¢C Premises
B = C 3.
B=D Premises
C = D 3.
Proposition
0+X=X
L(0) =0+ 0
=0 7.
rR(0) =0
L(sux) =0+ 85X
= su(o + X) 7.



1

R( sux)

L(x)

"

14. Proposition

Proof

15.

Proaf

I

SuY + X

L(0,Y)

r(0,Y)

L(SVX,Y)

R(SVX,Y)

L(x,Y)

Proposition

X+Y

1(0,Y)
r(0,Y)

L(SuX,Y)

S. X
SuR(X)

R(X)

Su(Y + X)

1]

SuY + 0

S Y

]

Su(Y +0)

i

5. Y

1)

1

SY+ 585X
u v

Sv(SuY + X)

1}

va(x,Y)

Su(Y + svx)

SuSv(Y + X)

svsu(Y + X)

sz(x,Y)

= R(X,Y)

Y+ X

O+7Y

"
<

=Y+ 0

i}
<

SuX + X

Su(X +Y)

1}

"

SuL(X,Y)

6

7o

Te

2e

6.

13.

Te

14.

62



Y + SuX

Su(Y + X)
SuR(X,Y)

R(X,Y)

(A+B)+C=A4+ (B+C)

R(SuX,Y) =

L(X’Y) =
16. Proposition
Proof L(0,B, C)

r(0,B,

I( 5,458

R( S AsBs

c)

c)

c)

=(0+B)+C
=B+ G
=0+ (B+C)
= B+ C

(SuA+ B) + C

Su(A+ B) + C

[}

Su((A + B) + C)

1]

SuL(A, B,C)

SA + (B+¢C)

su(A + (B+¢C))

SuR(A »B,C)

L(A,B,C) = R(4,B,C)

17. Definition of PuX

18 L ]

PuO =0
PuSvX = X u=v
{svpux utv
Definition of Y -~ X
Y hdl 0=Y
Y2sX=P(Y=X)

Te

6e

13.

13.

4.

14,

.

6.

63



19. Proposition

0~-X=0
Proaf 1(0) =0 =0
=0
Rr(0) = 0
L(SuX) = 05X
= Pu(O 2 x)
= PuL(X)
R(sux) =0
= PuR(X)
L(X) = R(X)
20. Proposition
(C2B)~A=C=(B+4)
Proof L(0,B,6) = (C = B) =0
=C~B
R(0,B,C) = ¢ = (B + 0)
=C<B
L(SuA,B,C) = (C =~B) = S A
= Pu((C - B) - A)
= PuL(A,B,C)
R(SuA,B,C) =C=(B+ SuA)
=C =5,(B+4)
= Pu(C = (B+ 4))
- PuR(A,B,C)
L(A,B,C) = Rr(4,B,C)

18,

18.

174

18.

18.

Te

18‘

6o
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21. Proposition

S,B~SA=B=<4A
Proof L(0,B) = 5,B = 5,0
= Pu(SuB 2 0) 18.
= P,S B 18.
= B 17.
R(0,B) =B >0
=B 18,
L(SVA,B) =5,B*55A
= 5,B = 8,S,A 2.
=P, (5B = SuA) 18.
= PVL(A,B)
R(SvA,B) =B-=8A
=P (B = 4) 18,
= P R(4,B)
L(a,B) = R(A,B) 6o
22, AZA=0
Proof L(0) =00
=0 18.
r(0) = 0
L(sA) = 5.4 = s ,A
=A=A 21.
= L(A)
R(5,4) = 0
= R(4)
L(a) = r(a) 6.



23.

Proaof

24,

Proof

25-

Proof

(B+A)2A=3B

L(0,B)

r(0,B)

L(SuA,B)

R( S A B)

L(A,B)
(B+4)=(C+4)

L(0,B,C)

r(0,B,C)

L(SuA,B,C)

R(SuA,B,C)

L(A,B,C)

B=(B+4)

1(0,B)

1]

1]

1]

i

1]

i

]

]

il

]

(B+0) =0
B+ O

B

B
(B+sA)=sA
SAB+4) =54

(B+4)=A
L(A,B)

B

R(4,B)

R(A,B)
B=¢C

(B+0) 2 (Cc+ 0)

B-C

=B~C

i

]

i

]

1]

(B+sA)=(C+ SuA)
Su(B + A) = su(c + A)

(B+4) =(C+ 4)
L(4,B,C)

B=C

R(A,B,C)

R(4,B,C)

B-=(B+ 0)

B-B

18.

21.

6o

Te

T

21.

6.

Te

22.

66



R(0,B) = 0
L(SuA,B) =B2(B+ SuA)
=B Su(B + 4)
=g§B:(B+An
= PuL(A,B)
R(SuA,B) =0
= P,0
L(4,B) = R(4,B)
26. Rule of inference
F(0) = &(0)
F(SuX) = G-(SuX) n=1 ,2,...,1"

F(SuX) = Hu(X,F(X)) u=r+l, ..o, n

fi

G(SuX) Hu(X,G(X)) U=r+1,.c00,n

F(X) = &(X)

]

Proof Def'ine Mﬁ(X,Y) by

MU.(X’Y) = F(SuX) u=1,2,...,r
Hu(X’Y) u=r+1 geceyll
Now F(SuX) = G(SuX) U=1,2, ¢00,r
Hence Mu(X,Y) = {G(SuX) u=1,2,.00,0
{Hu(X,Y) u=r+1 geeceynl
We now have F(o) = c(0)
F(8,X) = Mu(X,Y) u=1,...,0
G(SuX) = Mu(X,Y) u=1,oc¢,n
Hence F(X) = 6(X)

Te

18.

17.

6e

6o



27. Definition Cux
CO0=0
u
C S, = {S,CX
[C X
(C A
u
Proof L(0) = €,C,0
= C0
=0
r(0) = 0
L(SWA) = 0,C,S.A
={. S CaA
uwvyv
CCA
uv
= gswcuch
{ic o
%c C A
uv
= {swL(A)
L(a)
R(SWA) = {0
C S, A
0
= {S CA
wu
(C A
U
8,Cut
0
{
{C. A

u=v

ufv

ufv

u=v

V=W

viw

u=v=w
v=w & ufw
viw

u=v=w

ufw or viw

utv

u=v

ufv
u=v=w

u=v & ufw

u=v=w

} ufw or véw
u=v

27.

27-

27.

27.

27.

27.
27.
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29.

Proaf

30.

Proof

Cu(B + A)

L(0,B)

r(0,B)

L(SVA,B)

R(st,B)

]

n

i

]

§ SWR(A) u=v=w

r(4) ufw o

10 u;fv

C. A u=v
u

{0 ufv

{ CVA u=v

CB+CO
u u
CB+ 0

u

C. B

u

cu(13+ st)
CuSv(B+A)

SvCu(B +4A) u=v

Cu(B + A) ufv

SVL(A,B) u=v
L(A,B) uév
CuB + CuS VA

{cuB +8 0 A usv

C B+ C,A utv

r véw

6.

27.

27.

27-

Te

27.

27«

27.

27.

27,



3.

Proaf

1{A,B)

CPA

L(0)

r(0)

L(swA)

R(SWA)

= SVR(A,B)

(R(4,B)

R(A,B)

= { PV’CU.A

C A
u

n

Cquo

C0
u

1}
e <:rU
(]
]
o

H
Sn
“
]

=

i
“
b

[

P vCuswA

CuS WA

]

= Sv(CuB + CuA)

(C B+ CA
u u

u=v
uév

u=v

ufév

u=v

utv

u=v

u=v

ufv

VW

V=W

viw & u=w
véw & uéw
—

Viw & u=w
viw & utw

v=w

u=v

U.;{V

17.

27.

27.

27.

17.
17.

27.
27.

17.
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320

Proof

L(a)
Cu(B ZA)

L(0,B)

r(0,B)

!}

i

1]

il

{P,8,C.A

- Co0
u

le
o

u=v & u=w
u=v & u;éw
wév & u=w

utv & utw

u=v & u=w
u=v & U.%W
ufv & u=w

whv & utw

u=v & v=w & u=w
u=v & hw & ufw
wv & v=w & ufw
utv & viw & uéw
utv & viw & u=w
viw & u=w

viw & wtw & u=v
viw & ugw & wAv
o 4

véw & u=w (ufv)
viw & utw

V=w

27.
27.
27.

27.

17.

26.

18.

27.

18.
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33.

Proof

L(sv.A.,B) = Cu(B 2 st)

1]

R(SVA,B): C,B= C,SA

L(4,B)

"

ClA + CQA + eoee

L(0)

r(0)

L(SuA)

R(SuA)

L(a)

"

Cqu(B 24)
Pvcu(B = A) u=v
{Cu(B 2 A) ufv
PVL(A,B) u=v
{1(4,B) ufv
;c B2S CA u=v
u vy u
icuB - CA utv
Pv(CuB ~ CuA) u=v
(C,B = C A ufv
PVR(A, B) u=v
{Rr(4,B) ufv
R(4,B)
ee + CnA - A

010 + Cgo-‘- cesese

0+0+ o® s 00 +0

0

0

C]_SuA + CgSuA + cecee + CnSuA
CIA+ CQA"’ LI

Su(ClA + Cah + coeen + CA)

SuL(A)

S A
u

SuR(A)

r(4)

o+Cn0

18.

.
3.

27

27«

18.

27.
Te

« T SCA+ ¢eceo + CA
uu n

27.

7.
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Proof

SB=CA

L(0,B)

r(0,B)

L( 5.4 B)

R(SWA,B)

L(A,B)

1

1]

[t}

Sv(B 2 CuA) utv

S,B < G0
SB=o

v

S B

v

SV(B 2 cuo)
SV(B 2 0)
s,B

5,B = C,S A

SBLSCA u=w
v wu
SVB_CuA ufgw

ipw(sz z CuA) u=w

¢

8B = C A utw
PWL(A,B) u=w
L(a,B) uiw

sv(B = CuSWA)

Sv(B 2 SwCuA) u=w
isv(B 2 CuA) ugw
stw(B 2 CuA) u=w
Sv(B 2 cuA) wtw
Pwsv(B 2 CuA) u=w

isv(B = CuA) uéw

PWR(A,B) u=w
r(4,B) uéw

R(4,B)

(ufv and ..

27.

18.

27.

18,

27.
27.

18,

27.
27,

18.

véw)  17.

6e
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35.

Proof

PvB + CuA

L(0,B)

R(o,is)

L( S A B)

R( S, As B)

L(A,B)

H

]

fl

Pv(B + CuA)

P,B + C0
PvB + 0

P,B

P (B + C0)
PV(B + 0)

P B
PB+CSA
[PB+ 5.CA
[PVB + CuA

|5, (P B + C,A)

PvB + CuA
iswL(A,B)
{L(4,B)

P v(B + cuswA)
{PV(B + SwCuA)
{PV(B ; CuA)
%PVSW(B + CuA)
{PV(B + CuA)

S Pv(B + CuA)

=

<

sz(A, B)

{
{P (B + CuA)
|
{

r(4,B)

R(A,B)

uév

u;{w
u=w
uéw

u=w

uféw

u=w
utw

u=w

ufw

u=w (ufv and .. véw)

ufw

u=w

ufw

27.

Te

27.

Te

27«

27.

7e

27.
27.

7e

6.

17.

h



75

3. (B + CuA) = CA = (B = ch) + CA ufv
Proof L(0,B) = (B + c,0)= C_0
=(B+0)~ 0 27.
=B 2b.
r(0,B) = (B =~ cvo) + €0
=(B~0)+0 27.
= B 70 180
L(SWA,B) = (B + CuSwA) = C,S,A

= {(B + CuSWA) 2 SO V=W 27.
(B + CuSWA) 2 c A viw 27.

=§{(B + C A = 5,C,A v=w (ufv and . uw) 27.
(B + SwCuA) = CvA viw & u=w 27.
(B + CuA) *CA viw & utw 27.

= [Pw((B + CuA) 2 ch) V=W 18.
Sw(B + CuA) - C A viw & u=w 7o
(B + CuA) ~ CyA véw & uiw

= %PW((B + CuA) 2 ch) v=w
Sw((B + CuA) 2 ch) véw & u=w 3.,
(B + CuA) = CA viéw & ufw

= PWL(A,B) v=w
S L(A,B) viw & u=w
i w
{L(A,B) viw & ufw

R(S,A,B) = (B = CVSWA) + C,S A



37.

Proof

= {(B=~ swch) + G S A v=w

{(B = ch) + C 5 A

= {(B = SvaA) +C A
(B = ch) + 8. C A
(B = ch) + C A

¢

(B = ch) + CA

k|

(B = ch) + CA
= iPwR(A,B)
gSwR(A,B)
{R(4,B)

L(4,B) = R(A,B)

]

CuB - CvA CuB

L(0,B) = C B = c,0

u
=CB=0
u
= C,B
R(O,B):CuB
L(S. A,B) = CB=CS A
w u vw
={CB~SCA
¢ 1 wYV
(C.B2C.A
u v

= {p(CB=CA)

CuB - CvA

= {
%s ((B = ch) * C

viw

27.

27.

v=w (ufv and .. uéw)

viw & u=w

véw & ufw

= {p(B=CA)+ CA v=w

SW((B Zc vA) + CuA) viw & u=w

viw & uéw

P ((B= CA) + CuA) v=w(ufv and

A) véw & u=w

viw & utw

V=W
véw & u=w
viw & ufw

PAY

27.

27.

18.

S eufdw)

27 .

18.

27,

27.

18.

270

35.

76



38.

Proof

R(swA,B)

L(A,B) =

PP A

L(0)

r(0)

L(swA)

= {pr(A,Bj

{L(4,B)

C B

=LCB+0
u

"
o
b
~
«Q
c
o
+
o
~

1]

)
3

o
N
&

w
S

" |
B K
~~
v =
-
b to
g

"
o
o)
o

"n
o
(o]

LI}

)
o)
o

PuP v SWA

V=w

V=W

viw

v=w

V=w

v=w

V=W

Véw

17.

(uwfv end J.ufw)

17.

17.

17.

17.

77
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39.

Proof

R(swA)

L(4,B)

Pu(B 2 4)

L(0,B)

g
g

§{S_L(A,B)
PP SA
{P_A

P S P A
P A

PA

{ S, Put

[PA
ST

P A

SWR(A,B)

r(4,B)

PB-A

Pu(B 2 0)

P B
u

V=W

viw

V=W

viw & u=w
véiw & ufw
V=W

u=w

viw & ufw
v=w Or u=w
viw & ufw
u=w

ufw

u=w

ufw & v=w
ubw & viw

u=w or v=w
utw & viéw

u=w or v=w

utw & véw

17.
17.

17.
17.

17.
17.

17,
17.

26,

18,

78



40,

Proof

r(0,B)

L(SVA,B)

R(SVA,B)

L(A,B)

P CA

L(0)

r(0)

L(SWA)

i}

n

i}

CPA u=v

C.A ufév

{ C,P,0 u=v
{c.o ufv
{ c,0 u=v
% 0 ufv
|
{

0 u=v

PvCuSwA
{P S CA u=w
vwu

inCuA uféw

18.

18.

384

18.

27.

17.

17.
27.

27,

27.

27.
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4.

R( SWA)

L(a)

CB-A
u

]

i}

[t}

u=w & v=w
u=w & viw

uiw |
u=v=w

u=w & viw
ufw ’

u=v

uév

u=v=w

u=v & vw

ufv & u=w

uAv & utw
u=v=w

u=v & véw (ufw)
ubv & u=w

ufv & ufw
u=v=w

u=w & véw (u#v)
uiw & u=v

utw & uiv
u=v=w

u=w & véw

whw

17.
17.

17.
17.
27.

27

26,

80



Proof

Proof

L(0,B)

r(0,B)

L(st,B)

R(st,B)

1(4,B)
5,0 < A

€SO

i

1

i

]

CB=0

u

C,B
u

CB=C0O
u u

CB=0
u

CuB

u

Pv(CuB

C.B>S A
v

-'-A)

PV( CU.B - A) u=v

thcuB = A utv
P (CB=4) u=v
C,B =4 it
{P,L(4,B) u=v
{L(4,B) ufv
CB=2CSA

u uv

C,B =8 CA u=v
C,B = CA ufv

Pv(CuB = CuA) u=v

fc,B =
PvR(A,
{R(4,B)

R(A,B)

SuOfCA

S . CO

S 0

QuA uhv

B) u=v

ufv

u

18.

27.

18.

18.

39.

27.
27.

18.

27.

27.
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L3.

Proof

45.

Proof

S0 A=CS0=4
= C,5,0 = CA
=50<CA

Definition of Y.X
Y.0=0
¥.5X = Y.X + CY
0X=0
L(0) = 0.0
£0
R(0) = 0
L(SuX) = 0.5 X
= 0.X + C0
=0.X+ 0
= 0.X
= L(X)
R(sux) =0
= R(X)
L(X) = R(X)
SY-X = Y.X + CX
L(0,Y) = 8,Y.0
=0

R(0,Y) = Y.0 + C 0

=0+ 0

u=1,...,n

27.

1.

L3.

L3.

27.

70

6o

43,

27,

82



46,

Procof

L(SVX,Y)

R(SVX,Y)

L(X,Y)
X.Y

1(0,Y)

r(0,Y) =

SuY . va

S YX+CSY
u vu
= _SuY.X + SquY u=v

S,Y-X + C ¥ ugv

]

S (S.Y.X) + CY u=v
¢ U u v

iqu.x +#CY ufv

1l

Sv(L(X,Y) + CVY) u=v

{L(X,Y) + c,Y ufv

L]

Y.5 X + C,S X
={Y.X + Cc,Y + S CX u=v
Y.X + C Y + CX utv

= {8,(Y.X +C Y+ CX) wusv

Y.X + CY+CX ufv

= SV(Y.X + CX + ch) u=

{Y.X + cX+C¥Y ufv

SV(R(X,Y) + ch) u=v

{R(X,Y) + c,Y wfv

r(X,Y)

]

Y.X

il
(o]
L]
<

I
o
o

83

27.

27 .

7o

43, 27.
43.27.

7e

15.

6.

43.



47

Proof

L(SuX,Y)

R(s,X,Y)

n(x,Y)

Cu(B.A)

r(0,B)

r(0,B)

L(st,B)

R(st,B)

3}

it

L]

1]

n

S XOY
u
X.Y + CuY
L(X,Y) + c,Y
Y.S X

u
Y.X + CuY
R(X,Y) + C,Y

R(X,Y)

€, B.C A
Cu(B.O)

CuO

CuB'CuO
C,_B.O

u

0
cu(B.st)

c.(B.A) + CCB
u uyv
{c

Cu(B.A) +0

u(B.A) +C B

}L(A,B) +C,B

{L(A,B)
CuB‘CuSvA
C B.S C A
u v u
CuB.CuA

CuB.CuA + CvCuB

CuB' CuA

u=v
ufv

u=v

ufv

u=v
ugv

u=v

ugv

45,

L3.

L3.

27

27.

43.

30943

28.

28.

Te

27.

27.

43,



Proof

L(4,B)

C _B.A
u

1(0,B)

r(0,B)

L( S A B)

R( st,B)

1]

n

1

i}

n

{ C,BeC,A + C B
C,B-C A

R(4,B) + c,B

{R(a,B)

R(4,B)
CuB . CuA

CuB.O

C B.C O
uu

C,.B.0
u

C.B.S A
uv
C B.A+CCB
u vu
CuB.A+CuB

{CuB.A +0

{1(A,B) + c,B

L(A,B)
C,B-C S A
C,B+5,C A

{ C,B-C A

gc yBe Gt + C.C.B

{C,B-C A

u
%CuB.CuA +CB

{C,B-C A

u=v
ufv

u=v

u=v
ugv

u=v

ufv

u=v
utv
u=v
u;év

u=v

utv

85

28.

6.

L3,

27.

L3.

43.

28.

28.

27.

27.

L3.

28.



L9.

Proaf

50.

Proaof

L(4,B)
C A.B
u

C A.B

C.(B+ A)

1(0,B,C)

r(0,B,C)

L( S 8285 c)

R(SuA,B,C)

L(A,B,C)

L]

n

4

"

{r(4,B) + C,B u=v

R(A,B) ufv

R(A,B)
A.CuB

CA.CB
uu
C_.B.C A
u u
CuB.A

A.CuB

C.B + C.A

c.(B+ 0)

C.B

C.B + C.0
C.B+ O

C.B

c.(B + SuA)
C.Su(B + A)
C.(B+ A)+CC
L(A,B,C) + C,,C
C.B+ C.5.4
CeB + C.A + CuC
R(4,B,0) + C,C

r(A,B,C)

6.

7o

43.

7o

7o

L3,

L3.

6o



51.

Proof

52.

Proof

(c.B).A

1(0,B,C)

r(0,B,C)

L(SuA,B,C)

R(SuA,B,C)

L(4,B,C)

B .PuA

L(0,B)

r(0,B)

il

1]

1]

C.(B.4)

(c.B).0

0

c.(B.0)

c.0

0

(C.B).SuA

(C.B).A + Cu(C.B)
1(4,B,¢) + ¢ (C.B)
c.(B.5 4)

C.(B.A + CuB)
C.(B.A) + C.C B
C.(B.A) + Cu(C»B)
R(4,B,C) + Cu(C.B)

r(4,B,C)

B.A -~ C B
u

B.PuO
B.O

0

43.

L3.

43.

L3,

L3.

50.

474849,

17.

43.

L3.

19.

87



L(SVA,B)

R( 5. A B)

=
P
>
-
w
o’

1

Proof 1(0,B,C)

i

r(0,B,C)

L(SuA,,B, ¢)= C.(B

1}

B.P, S A
{B.A
{ B.S P A
{B.A

B.PA + C B

{B.A

{L(4,B) + C_B

B.S A = C,B

(B.A + ch) = ¢c,B
§(B.A + CuB) =~ C,B
{(B.A = CuB) + C_B
{B.A

{R(A,B) + c,B

= R(A,B)

C.B=C.A

aQ
.

[w o)
je
aQ
.

o

le
o

C.B

C.B

fe

SuA)
C.Pu(B 2 4)
cC.(B=24) = c,C

L(a,B,C) = c,C

u=v
wfv
u=v
uév

u=v

ufv

u=v
ufv

u=v

ufv

17.
17.

L3,

L3,

36.

23.

26.

18.

43

18

18.

52.
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R(SuA,B,C)

1(4,B,C)

Sk Definition of |A,Bl

|a, 8]

55. Rule of inference

= C.B = C.5 A
= C.B 2 (CoA + cuc)

f

(c.B=¢C.a) = C,,C

r(4,B,C) = c,C

R(4,B,C)

L]

f

(A2B)+ (B=a4)

A+B=20
A=0
B=20
Proof A+B=20
A=(A+B)*B
=0~B
=0
B=(A+B)=A
=0-=A
=0
56. Rule of inference
A=B
A=~B=0
B=-~A=0

L3.

20.

Premises

23.

Premises

19.

23. 15.

Premises

89



Proof A=38B Premises

AZB=B-=-B 5e
=0 22.
B-2A=B>B Premises. 5.
=0 22.
57. Rule of inference
F(sX) = F(X)
F(X) = F(0)
Proof L(o) = 7(0)
R(0) = F(0)
1(sux) = F(SuX)
= F(X) Premises
= L(X)
Rr(s X) = F(0)
= R(X)
L(x) = rR(X) e
58. Rule of inference
F(0,Y) = 0
F(X,0) = 0

F(CuSuX’CuSuY)= E(cux,ch) for one value of u.

]

F(CuX,CuY) 0 for that value of u.

Proof

Consider first

(e)  F(c8,X,C.Y) = F(CX,C (Y = 5,0))

Proof L(X,0) = F(cusux,cuo)



Now consider

(b)

r(x%,0)

L(x,va)

R(x,va)

L(X,Y)

F(cux,ch)

it

F(cusux,o)
0

F(CuX,Cu(O 2 suo))

F(CuX,CuO)

F(CuX,O)

0

F(cusux,cusvy)
F(cusux,cuqu) U=v
{F(cusux,cuy) utv
[F(C, X,C,Y) u=v
L(X,Y) uév

F(cux,cu(va = 8,0)
{F(cux,cu(qu = suo)) u=v
F(cux,cuva = cusuo) WAV
;F(cux,cu(Y Z0)) u=v

,F(cux,ch = cusuo) ufv

F(cux,ch) u=v

F(CuX,Cu(Y = suo)) uiv

F(cux,ch) u=v

R(X,Y) ufv

R(X,Y) for (a)

F(cu(x 2 suo),cu(Y - suo))

N

27.

Premises

19.

27

Premises

27.

27.

Premises

32.
21.

27.

32.

26.



Proof

Now let

L(0,Y) = F(cux,cuo)
= F(CuX,O) 27,
=0 Premises
r(0,Y) = F(Cu(X 2 suo),cu(o 2 suo))
= F(Cu(X = suo),cuo) 19.
= F(Cu(X = suo),o) 27.
=0 Premises
L(SVX,Y) = F(cusvx,cuy)
= F(cusux,ch) u=v 27.
,F(cux,cuy) ufv 27«
= F(CuX,Cu(Y = SuO)) u=v (a)
L(%,Y) wAv
R(svx,Y) = F(Cu(SvX = SuO),Cu(Y = suo))
= F(Cu(SuX 2 suo);cu(Y 2 suo)) u=v
{F(CuSvX = cusuo,cu(y = suo)) utv 32,
= F(Cu(X = O),Gu(Y = suo)) u=v 21.
iF(cux 2 ¢,5,0,C,(Y250) uwk 27
= F(CuX,Cu(Y = suo)) u=v 18.
F(c,(x = suoLcu(Y 2 5,0)) wiv  32.
= F(CuX,Cu(Y - suo) u=v
iR(X’Y) u;.(v
L(X,Y) = R(X,Y) for (b) 26.

G(N) = F(cu(x = N),Cu(Y = N))
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Hence

G(st)

a(N)

]

]

F(c (X=1),c (Y=N))=

59.

Proof

F(cux 2 st),cu(Y = st))

F(Cqu(X = N),Cqu(Y ZN))

18'

:F(cu((x = N) = suo),cu((y 2 N) = suo) u=v 17.18.

F(Cu(X N),Cu(Y 2 N))

F(Cu(X . N),Cu(Y ZN))

F(C,(x = M),0,(Y = M))
()

c(0)

0))

F(Cu(X = 0),Cu(Y

F(cux,ch)

In the particular instance where N = X we have:-—

F(cux,ch)

cv(suo 2 4)

cv(suo ZA)

]

F(Cu(X z x),cu(Y ~c))
F(CuO,Cu(Y = X))

F(O,Cu(Y 2 X))

0

%Suo = A u=v
{0 ufv
5,0~ CA

%suo < C A u=v
{0 = A ufv
;suo 2 A u=v
0 wbv

u%v 14-0 .

u=v (b)

wfv

57.

18.

22.
27.

Premises

27.

27.

L2,
19.

93



60. A.SO=CA
u u
=0+ CU.A 14—3-
= CuA 13,
61. 5,0 =5 = {suo = A utv
%O u=v
Proof 5,0 *SA=50=CSA
= {80=CA utv 27.
{suo = 5,C.A u=v 27.
= %suo A ufv L2.
{0 = C A u=v 21.
= %suo S A ufv
{o u=v 19.
62, A.(suo SA)=0
Proof L(0) = o.(suo 2 0)
=0 Ldyo
R(0) = 0
L(st) = st.(suo 2 st)
= {SVA.O u=v 61.
{SVA.(SuO ZA utv 61.
= {0 u=v L3,
%A.(SuO ZA) + cv(suo ZA) ugv L3,

= %0 u=v
{L(a) + 0 wtv 59
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=30 u=v
{L(A) ufv 7.
R(S,A) = O
= {0 u=v
io ufv
= %o u=v
{R(4) utv
L(A) = R(A) 26
63. Rule of inference
F(0) =0

(suo 2 F(X)).F(svx) =0

F(X) =0

Proof
Consider first

(a) (s,0 = F(x)).(suo = F(SVX)) = 8,0 = F(X)

Proof
(8,0 F(X)) 5,0 F(s X)) = (5,02 F(x)).s 0% (5,0 F(x)).F(s X) 53.
= (5,0-F(x)).5,0%0 Premises
= (5,0 F(x)).5,0 18.
= ¢, (5,0 = F(x)) 60.
= 8,0 = F(X) for (a) 59.

Now define G(X) by

c(0) = 8,0

G(SVX) = G(x).(suo = r(x))



Let

H(X) = G(SVX)
H(0) = G(SVO)
= G(O).(SuO = 7(0))
= G(O).(SuO 20)
= §,0.50
= 5,0
= 5,0
= 6(0)
H(S,X) = &(s 5 X)
= ¢(s,X).(s,0 = F(5 X))
= G(X).(SuO s F(X)).(SuO 2 F(SWX))
= &(X).(s,0 = F(x))
= G(SWX)
H(X) = ()
G(SVX) = G(X)
¢(x) = &(0)
= 5,0
8,0 = suo.(suo =~ F(x))
= cu(suo =~ F(x))
= 5,0 = F(X)
F(X).SuO = F(X).(SuO 2 F(X))

ch(x) =0

Defn.
Premises
18,

60.

27 .

Defne.

Defne
Defn.
(a)

Defn.

57
Defn.
Defn.

60.

59

62.

96
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As no specification has been made on u we can therefore say

F(X)=0 by 53.

64. Definition (explicit)

(X)? = X® = XX

65. Definition of Rt(X)
Rt(0) = 0

Rt(SuX) = Rt(X) + (suo L ((suRt(x))2 2 sux)) =1, 00,0
66. (suo 2 ((Su(A + (svo 2 B)))?2 = susvc)) = (suo 2 ((SuA 22 suc)) uiv
Proof

(5,02 ((s, (A+ (s 02B))? 25,5 ¢C )= (s,0=c, ((s,(a+ (s 0=B))*=5.5C ) e
(suoz (Cu(Su(A+ (svof p) 2= C,5,5,C ) 32.

(s,0=((cs,(a+ (5,0-B)) == 5.0CSC ) L4727,

= (suoi ((su(cu.n.+ cu(svo Y sucuc)) 30427,

il

= (s,0* ((Su(GuA+ ) ¢,S,C) 59.27.
= (8,0% ((sucuA)zzcusuc)) 7.
= (suo-'-((cusuA)’-‘-cusuc)) 27.
= (8,0 = (¢, (s,4)* = C.5.C)) L7.
= (8,0 = ¢, ((s,4)% = 5.)) 32.
= (8,0 = ((s,4)* = 5,0)) k2.

67. The commutativity condition for R(X)

If ufv then




Bu(SvX,Bv(X,Z)) =2+ (svo 2 ((svz)2 2 svx)) +

98

(suo s ((su(z + (svo = ((svz)a b svx))))22-susvx» Defn.

=2 + (svo 2 ((sv(z + (suo = ((suz)2 = sux))))zi-svsux» + 66.

(8,0 = ((5,2)® = 5.%))

=2+ (5,0 * ((5,2)* < 8%)) +

(svo 2 ((Sv(Z+ (suo 2 ((suz 2=-sux))) 2-=.svsux))

= B (8,X,B8,(Y,2)) for uév

If u=v then
B,(8,%,B,(X,2)) = B (S5, X,B,(X,2)  u=v
Hence

Bu(SvX,Bv(X,Z)) = Bv(SuX,Bu(X,Z)) all u,v.

68. (suo = A).(SuO 2 (suo ZA)=0

Proof (o) = (8,0 = o).(suo 2 (suo 20))
= suo.(suo = suo) 18.
= §,0.0 22,
=0 43.
R(0) =0

L(st) = (suo = st).(suo 2 (suo s st))
= {02 A).(SuO 2 (0 2 4)) u=v 61

{(suo = A).(SuO 2 (suo 24)) ui 61

= %o.(suo = 0) u=v 19,
{L(a) utv
= {0 u=v L.

{
fr(a) ufv

66.

15

Defn.



R(s 4) = 0
= {0 u=v
0 uév
= {0 u=v
R(A) ufv
L(4) = B(A) 26.

69. (suo 2 (SuA = B)).(SuO ~(B24)=0

Proof L(A,0) = (suo = (SuA = o)).(suo = (0 = 4))
= (suo 2 SuA).(SuO 20) 18.19.
= 0.50 61.
=0 Lo
L(0,B) = (5,0 = (5,0 = B)).(SuO = (B=0)
= (suo = (suo = B)).(SuO 2 B) 18.
=0 68.
1(C,S,4,C 5,B) = (5,0 = (s,C,8,4C uSuB)). (suo& (c,s,B= CuSuA))
) = (8,0 < (8,5,0,4%5,0,B)). (89= (s,C B> S,Cy2)) 27.
= (suo 2 (SuCuA-ﬂ- cuB)).(suo: (cuB& CuA)) 22,
= L(C,A,C B)
1(cA,C,B) = 0 58.
(s,0=(5,42B).(5,0=(B24) = (5,0%C (5.4-B).(5.0%C (B=4A) b2,
= (5,0~ (C5A = CuB)).(SuO 2 (CuB = CuA)) 32,
= (suo 2 (SuCuA = CuB)).(SuO = (CuB z CuA)) : 27,
= L(CuA,CuB)

=0 From above.
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70. Rule of inference

A.B = A.C
A.lB,c] =0
Proof A.lB,cl =A.((B=¢) + (c =B)) 5ke
=A.(B=C) + A.(C =B) 50.
= (A.B = 4A.C) + (A.C =~ A.B) 53.
=0+0 Premises. 56.
=0 7.

It is now necessary to quote the Key Equation. fThis 1is proved
formally using primitive recursion under the same set of axioms in [4].

Thus

71. Key Equation

A+ (B+4A)=B+(A=B)

72. (suo = X).F(Cu(X +Y)) = (suo 2 X).F(()uY)

Proof 1(0,Y) = (5,0 = 0).F(Cu(0 +Y))
= suo.F(ch) 18.13.
= cur(ch) 60.
r(0,Y) = (suo = 0).F(ch)
= suo.F(ch) 18,
= ¢ F(C Y) 60,
L(s,X,Y) = (5,0 = 5 X).F(C (S X + Y))

{O.F(Cu(SvX +Y) u=v 61.

t(s,0 = x).F(c s (Xx+Y)) wh 61,
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= {0 u=v Llll-o

%(suo %) .F(cu(x +Y)) ufv

= {0 u=v
%L(X,Y) ugv
R(S X,Y) = (5,0 = 5 X).F(C_¥)

= %o.F(ch) u=v 61.
{(suo 2 x).F(ch) wtr 61.
= {0 u=v L.

R(X,Y) ufv
L(X,Y) = R(X,Y) 26.

In fact the equation

(suo 2 X).F(CuX +Y) = (suo = X).F(Y)

is proved by the above schema, though the equation proved is sufficient

for subsequent proofs.

73. Rule of inference

lA,BI =0
A=23B
Proof |A,B| =0 Premises.
(A=~B)+(B>4)=0 5k
A -.' B = 0 ecseeo @ 55.
B : A = 0 s e @ 55-
A=A+0 T
=A+ (B=4) From sbove (D)
=B+ (A= B) Key Equation
=B+ 0 From above@

=B 7-
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74 Rule of inference

F(0,Y) = 6(0,Y)
F(x,0) = ¢(x,0)
-F(CuSuX,CuSuY) = F(CuX,CuY) for one value of u
G(cusux,cusuy) = G(CuX,CuY) for the same value of u.
F(CuX,CuY) = G(CuX,CuY) for that value of u.
Proof
Let H(X,Y) = |F(X,Y),6(X,1)|
Then  H(0,Y) = |F(0,Y),6(0,Y)|
=0 Premises 56. 7e
H(X,0) = | F(x,0},6(x,0)|
=0 Premises 56. 7.
H(C,S X,C S ¥) = |F(cusvx,cusvy),G(ousvx,cuva)I
= |F( cux,ch),G(cux,ch)l u=v  Premises
IF(cux,ch),G(cux,ch)l ufv  27.
= H(cux,ch)
H(cux,ch) =0 58.
F(cux,ch) = G(cux,ch) 73.
75. I %,8,1l = |%,1]
Procf Isux,quI = (sux = 5Y) + (qu 2 sux) 5.
=(X=Y)+ (¥ 2x) 21,

1%l 5.



76.

Proof

7.

Proof

78.

Proof

79.

Proof

lc x,c ] = ¢ lx,Y]
Icux,chI = (cx=c¥)+(cy= C,X)
= cu(x 2Y) + Cu(Y = X)
=C ((Xx=7) + (¥ =X))
= C,l %,
|%,¥l = 11,4

X, Y] = (x=+7v)+ (¥ 2x)
=(r2X)+ (X=27)

= IY’XI
lo,Y| = |Y,0] = ¥

'O:YI = IY:OI

(¥Y=0)+«(0=7)

4]

Y+ 0

]

=Y
(5,0 = Ix,¥])fs 0 = (x 2 71)) = (5,0 * |%,%])

1(0,Y) = (8,0 = lO,YI).(SuO 2 (02y))
= (5,0 = ¥).(5,0 = 0)

(suo i Y).suo

c.(58.0=7Y)

utu

[

(suo ZY)

103
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32

30.

54.

540

15.

7.

18.19.

81.19.

18,

60.

59.
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R(0,¥) = (5,0 = [0,¥])
= (SuO = Y) 78.

L(X,0) = (5,0 = Ix,ol).(suo 2 (x20))

= (suo 2 x).(suo = X) 78.18.
= suo.(suo =x) = x.(suo 2 X) 53446
=c, (5,0 = X) =0 60.62.
= cu(suo = X) 18.
= (suo 2 X) 5.
R(X,0) = (5,0 = |x,0])

= (suo = X) 78,

L(cusux,cusuy) = (5,0 = Icusux,cusuyl).(suo = (cusux = cuqu))
= (5,0 = Isucux,suchl).(sup = (8,6,% = 8,6,Y)) 27.
= (s,0 = [cx,c¥l).(s,0= (cx=cy¥)) 75.21.
= L(C X,C_¥)

R(C,S,X,C,S,Y) = (5,0 Icusux,cusuyl)
= (5,0 = | sucux,sucuyl) 27.
= (5,0 = |c x,c 1) 75.
= R(CX,C,Y)

L(cux,ch) = R(cux,ch) 7h.
Hence

(s,0 = Icux,chI).(slf>- (cux 2 ch)) = (suo = |cux,chl)
(5,0 = culx,Yl).(suo e (x=7)) =(s0= culx,YI) 76.32

(s,0 = | X,Yl).(SuO 2 (x21))=(sp0* |X,¥| ) as required. 42.
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80. (5,0 = IX,YI).(SuO 2 F(CuX)).F(CuY) =0

Proof (s,0 = x).F(cu(x + 1)) = (5,0 = X).F(C Y¥) 72,
Put X = Y for X, and we have
(8,0 = (x = 1)),F(c ((x = ¥) + 1)) = (5,0 = (x ~7¥)).F(C Y).
Multiply both sides of the equation by (SuO = IX,YI) and therefore
(8,0 = |%,¥]).F(c ((x 2 ¥) + 1)) = (5,0 = |%,¥]).F(c ¥) 70.79.
Similarly one can prove the equation
(8,0 = 11,x).F(c ((¥ = %) + X)) = (5,0 2 |v,x]|).F(CX)

Hence from the above two equations, the Key Equation and 77., we have

(5,0 IX,YI).F(CuY) = (s,0 = |X,Y|).F(Cux) .

Multiply both sides of the equation by (suo = F(CuX)); the right-~hand

side then becomes zero by 62. and therefore we have

(5,0 =ix,1).(s,0 = F(c X)).F(C¥) = O as required.

81. (5,0 = (5,0 =4)) + (50 = 4) =50
Proof 1(0) = (s,0 = (8,0 = 0)) + (suo Z0)
= (5,0 =5,0) + 5.0 18.
=0+ 50 22,
= §,0 13.
r(0) = 5,0
L(st) = (suo 2 (suo = st)) + (suo = st)



61. .

={(50=0)+0 u=v 61.
{(s:o = (suo ZA)) + (suo 2 4) ufv 61.
= %suo +0 u=v 18.
{L(a) wév
= %suo u=v 7e
{1(a) utv
R(S,A) = 5.0
= {Suo u=v
%suo ufv
= {5,0 u=v
iR(A) ufv
L(4) = R(4) 26.
82. (8,0 = (s,A=B))+ (50=]a,8)=(s,0=(a2B))
Proof L(4,0) = (5,0 : (s A 20)) + (5,0 ]4,0])
= (suo 2 SuA) + (suo = 4) 18.78.
=0+ (suo = A)
=5,0%4 13.
r(4,0) = (suo 2 (az0))
=504 18.
L(0,B) = (5,0 = (5,0 = B) + (5,0 = |0,B|)
= (suo 2 (suo ZB)) + (suo 2 B) 61.
= 5,0 81.
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r(0,B) = (suo 2 (0 2B))

= (suo = 0) 19.
= 8,0 18.

L(CuSuA,CuSuB) = (8,0 2 (5,C 5,4~ CuSuB)) + (s 0= ICuSuA,CuSuBl)
= (8,0 = (s,8,0,A = 8,0,B) + (8,0 = | §,0,455,,C uBI) 27.
= (8,0 (s5CA-= c,B)) + (5,0 = CuA,CuBI) 21575,
= L(CuA,CuB)

R(CuSuA,CuSuB) = (suo 2 (CuSuA = CuSuB))
= (suo 2 (SuCuA = SuCuB)) 27.
= (suo = (CuA = CuB)) 21.
= R(CuA,CuB)

L(CuA,CuB) = R(CuA,CuB) Tk
Hence

le
le

(5,0~ (s,CA=CB))+ (802 |CuA,CuB|) = (s,0 = (CA = CB))

(8,0 = (c,8A=¢C.B)) + (5,0=c| ABl ) = (s,0 = ¢ (& =B)) 27.76.32.

(s,0 *c (sA=B))+ (s0= cul A,Bl) = (s,0 = ¢ (4=B)) 32.
(5,0 (s,A2B)) + (5,02 |4, ) = (s,0 = (4= B)) 42.
83. Rule of inference
(suo 2 (SuA 2 B)).C=0
(s,0 = la,B).c =0
(s0=-(a=B)).c =0
Proof (5,0 (A =8)).c=((s,0=(542B))+(5,0= |4,8])).c 82.

i

(s,0 = (sA = B)).C + (8,0 = |A,Bl).Cc  50.46.

0+0 Premises
0 Te

i



8L A+ (suo 2 4) = 5,0+PA
Proof L(0) = 0 + (suo 20)
= Suo 13.180
r(0) = 5,0 + PO
=50 +0 17
= Suo 7.
L(s vA) = 5,4 + (suo = st)
= SuA + 0 u=v 61.
S A + (s 20 - 4) u£v 61.
= SuA u=v 7.
sv( A+ (suo 24)) uév 14,
= %SuA u=v
[s,L(4) ufv
R(sv.n.) =5.0+PSA
= SuO + A u=v 17.
1suo +8 P A utv 17.
= {8,(0 + &) u=v 14.
sv(suo + PuA) utv 7.
= SuA u=v
,sz(A) utv
L(a) = r(4)
85+ Rule of inference
CuB‘A = O

(suo ZA).C=0

CuB.C

1
(o]
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Proof 0= (suo 2 4).C Premises

= (5,0 = CuA).C L2,

= (s,0 = CuA).C.B Lk 73,

= SuOQCoB - CuA~C-B 5301{-6'

= Cu(C.B) = C.C_A.B 60.46.51.

= C.CuB - CoCuB-A l‘-?ol+80Ll-9.

= CuB.C = C.0 L6 .Premises.

= C,B.C = 0 27.

= C BoCo 180

u

86. Rule of inference

(A =B).C=0
(a4 = SuB).C =0
Proof (A = SuB).C = (A= (B+ suo)).c_ 7.
= ((4=>B)= suo).c 20.
= (A = B).C= 8,0+C 53.46.
=0~ §,0-C Premises
=0 19.
87. (5,0 = A)4éuo A)=85024
Proof (suo 2 A).(suo 2 4) = (suo 2 A).SuO 2 (suo 2 A).A 53.46.
= cu(suo Z4A)20 62.63.
= cu(suo 2 4) 18.

SuO - A 59.



88. Rt(CuX) = CuRt(X)

Proof L(0) = Rt(CuO)
= Rt(0) 27.
=0 65.

r(0) = CuRt(O)

:Co 65.

L( svx) = Rt(CuSvX)

= Rt(SuCuX) u=v 274
th(cux) utv 27+
= {Rt(CuX) + (suo 2 ((SuRt(CuX))‘ > sucux)) u=v
. %-L(X) whv
= %L(X) + (suo 2 Cu((SuRt(CuX))z :cusux)) u=v
{L(x) ufv
= {L(X) + (suo 2 (cu(suat(cux))2 =c.C usux)) u=v
{L(X) wiv
= {L(X) + (suo 2 (Cu(SuRt(CuX))’ *c,8 ux)) u=v
{L(x) utv
= {L(X) + (suo 2 c;u((suRt(c;ux))2 :sux)) u=v
() ubv
2 %L(X) + (suo 2 ((suL(x))2 2 sux)) | u=v
{1(x) udv

110
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32.



111

R(SVX) = CuRt(SvX)
= Cu(Rt(X) + (svo s ((szt(x))2 2 svx)) 65.
= CuRt(X) + cu(svo = ((szt(x))2 2 svx)) 30,
= {R(X) + (suo 2 cu((suRt(x))B A sux)) u=v 59.42.
{R(X) + 0 ufv 59
= {R(x) + (5,0 = (c (5 ,Rt(X))® = cusux)) u=v 32.
(R(X) utv
= {R(X) + (suo = ( cucu(sum;(x))2 2 cusux)) u=v 28.
| R(X) ufv
= {R(X) + (sﬁo = cu((cus.ukt(x))2 = sux)) u=v 32.47.6k.
R(X) ubv
= {R(X) + (suo = ((sucuRt(x)P = sux)) u=v 2742,
}R(X) uév
= %R(X) + (suo = ((suR(x))"‘ 2 sux)) u=v
{R(X) uhv
L(X) = R(X) 6
89. CuRt(SvX) = CuRt(X) wév
Proof cuRt(svx) = Rt(CuSvX) 88.
= Rt(C_X) wév 27.
= C Rt(X) 88.

90. (suo 2 |a,B])

(5,0 =(4=3B)) = (B=4A)

Proof (S0 = |a,B|) = (8,0 = ((a=B)+ (8B=4))) S

= (suo 2(A2B)) 2 (B22a) 20,
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91. Rule of inference

A.CD =0
(B2a).Cc =0
B.C.D=0
Proof 0=(B=A4A).C Premises
= (B = A).C.D 7044,
= B.C.D. = A.C.D 53.46.
= B.C.D =~ 0 Premises
= B.C.D. 18.

92. Rule of inference

CuA-:O u=1,o.o,n
A=0
Proof A=0CA+ CzA +e0000 + Cp A 33.
=0 4+ 04 coeee + 0 Premises
=0 7‘
93. Rule of inference
AOB = 0
A.(S5,0 % B) =0 all u OR if one value u then CA =0
A=20
Proof 0= A.(SuO = B) Premises
= A.SuO - A.B 53.
= CuA 20 Premises
= CuA for that value of u. 18.

A=0 if for all u. 92.
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9%.. Cu(B 2 A).(SuA ZB)=0
Proof L(4,0) = ¢ (0 = A).(SuA > 0)
= C0-5,4 19.18.
s 0.5 A 27.
=0 Ly,
1(0,B) = Cu(B - o).(suo < B)
= CuB.(SuO < B) 18,
= C,0 62.
=0 27.
L(CuSuA,CuSuB) = Cu(CuSuB = CuSuA).(SuCuSuA = CuSuB)
= Cu(suCuB = SuCuA).(SuSuCuA = SuCuB) 27.
= Cu(CuB 2 CuA).(SuCuA = CuB) 21.
= L(CuA,CuB)
L(CuA,CuB) =0 58.
Cu(B = A).(SuA 2 B) = CuCu(B = A).(SuA 2 B) 8.
= ¢ (C B~ CuA).(CuSuA = CuB) 47.32.
= Cu(CuB = CuA).(SuCuA = CuB) 27.
= L(CuA,CuB)
=0

We nos have sufficient results to prove the two conditions

1
o

8% = (suRt(x))2 =

!
o

(Rt(x))2=x
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which will lead ta the result

Rt(X?) = X .

From here on Rt(X) will be referred to as RX.
. 2 _
95. 5% = (squ) =0

Proof In this proof we shall dispense with the notation for small
steps and only use the notation for major formulae. A labelling method
with the number in parenthesis will be used for statements for use later

in the proof,

Definition of RX

RO =0
RS X = RX + (suo = ((squ 22 sux)) U=1,e0.,n
(5,0 = (5,5,X = ( 5,RX)?)).ES X = (5,0 = (5,5,X = (5,RX)?)).RX +
(5,0 = (5,8, = (5,Rx)?)).(s,0 = ((squ)z:f%x»)

the last term being equal to zero from €9. with A = S X, B= (SuRX)g.
(suo 2 (susux 2 (squ)z)).Rsux = (suo 2 (susux = (squ)B)).Rx.
By 70. we have
(8,0 = (5,8,% = (SuRX)z)).IRSuX,RXI =0 U=1,e0050 (1)
Now by 72. we have
(s,0 = le,Rsuxl).(suo = (s, 8% (suRcux)a)).(susux 2 (s RS CX)?) =0

u uu

and obviously

(5,0 = IRX,RSuXI).(SuO 2 (s,5,X = (squ)z)).(susux 2 (suRsux)a) =0 (2)
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Multiplying (1) by (susux = (suRsux)’) and using 93. we find
: 2 2 > 2y _
(suo = (susux (squ) )).(susux (SuRSuX) ) =0 (3)

Multiply the defining equation for RS X by (SuO = |(SuRX)2,SuX|) and using

71. we find

(s,0= l(squ)a,suxl).Rsux = (5,0 = I(squ)ﬂ,suxl).Rx + (s,0= |(SuRX)3,SuX|)
Hence

(5,0 = I (s,Rx)?,8,%l).Rs X = (8,0 * | (8,R%)?,8 X|).5 RX

and so

(5,0 = I(squ)Q,suxl).IRsux,squl =0 (%)
by 72.

(s,0 = IRsux,squl).(suo 2 (squ)z,suxl).|(Rsux)9,sux| =0 (5)
and so, multiplying (4) by |(RSuX)2,SuXI, adding (5), taking the canmon
factor out, then using 93. we have

(8,0 = |(squ)z,suxl).I(Rsux)z,suxl =0 (6)

It follows therefore by 55. that

(s,0 = I(squ)ﬂ,suxl).(sux = (RSX)?) = 0

Hence

le

M 2 3
(5,0 I(Squ) ,suxl).(susux s,(RS X)?) = 0

2 3 s 2) o 3 2 s'x])(
(5,0 = | (s,80)%,8.%] ).(s,8,% = 5,(R5,X)?) = (5,0 = I(5,Rx)?,5,%])(6 RS X +
CRSX)=0
u u
2 3 - 2 =
(8,0 I(squ) ,suxl).(susux (Su(RSuX) + C RS X + CuRSuX)) =0
hd 2 d 2
(s,0 = l(squ) ,suxl).(susux = (s RS X)?) = 0 (7)



From (3) and (7) we have by 82.

(suo 2 (sux L3 (squ)z)).(susux (suRsux)ﬂ) =0

Now

(5,0 = (s,Xx = (squ)Q)).(susvx 2 (SuRSvX)°) ufv
= (suo = (sux 2 (squ)“)).cu(susvx = (suRsvx)B)
= (suo = (sux = (squ)B)).(gususvx = cu(suRsvx)ﬂ)
= (suo = (sux 2 (squ)Q)).(cusux = cu(squ)a)
= (8,0 = (s, X = (s,;Rx)?)).c (5 x = (s RX)?)

=0

We can therefore say
> ) 2 2 3) -
(8,0 = (s,X = (5,RX) )).(s,8.X (SuRSvX) ) =0 fa all u,v,

I 2 _
and 5,0 (SuRO) = 0.

Hence by rule of inference 63.

: 2 ‘
5, X (SuRX) 0 as required.

96. (&x)2 2 x=0
Proof From (4) in 95. we have

2 2 =
(8,0 < | (8,Rx) ,suxl).IRsux,squl =0

and from the defining equation for RSuX

((squ)9 = sux).Rsux = ((squ)2 2 SuX).RX
2 . _

((squ) 2 sux). RSuX,RXI =0

by 72.

(s,0 = le,Rsuxb).(suo 2 ((rx)? = x)).((rRS X)* 2 %) =0
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by virtue of the fact that

F(CuX) = ch(x) for F(X) = (RX)® = X

Hence by 93.

((sumc)2 2 sux).(suo 2 ((rx)2 = X)).((RSuX)Q 2X)=0
and therefore by 86.

((squ)2 2 sux).(suo 2 ((rx)? & x)).((msux)2 - sux) =0 (2)

From (1) and (2), by 91., splitting (1), using 90. and 55.,in 91. substitute
A= ((squ)2 2 sux)
B=80 < (sux = (5,8X)?)
c =(1-’¢sux)2 = 5 X
D = 5,0 = ((Rx)® *Xx)
(5,0 = (sux 2 (squ)S)).(suo = ((rx)2 = x)).((Rsux)2 = sux) =0
by 95.

(5,0 = ((BX)* = X)).((RS X)* = 5.X) = 0 (3)
Now
(5,0 = ((RX)* = x)).(((BS,X)? = 5.X) = (5,0 = ((R%)* * X)).C (RS X)* =5 X)
ufv
= (8,0 = ((Bx)*= x)).(c (BS X)* = cC 5 X)
= (suo = ((rRx)? = X)).(Cu(RX)2 = cux)
= (5,0 = ((&x)* = x)).((rX)* = X)

=0



We can therefore say,

- 2 2 L =
(suo ((rx) X)).((RSVX) 8, X=0
and (rO)2 ~0=0.
Hence by rule of inference 63.

(RX)? =X =0
97. Rule of inference
A 2 B=20
B-~A=0
A=23B
Proof A+ (B-A)=B+ (4=B)
A+0=B+0
A=3B
98. Rule of inference
A® 2 B2 =0
A=-B =0
Proof Consider first the result

(a) (suo S EXinx).(x2y)=0
- Now obviously
(suo TEx-nX).x2y1)Xx=0

and further,

for all u,v,

Key equation

Premises

T
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(suoz(xly).x).(xLY).(svo-‘- x)n = (suo: (XLY).x).((svoix).x-’-(svo:x).Y) 53

= (suo-‘-(xiy).x).(o:(svoix).Y) 62,
= (suol(le).x).o 19,
=0 43,
Hence by rule of inference 93.
(50 (X=-1)X)(x=7Y) =0 for (a)
Put X=A4+B
Y=B+B

(suo S ((A+B)-(B+B).(A+B).((A+B)=(B+B)) =0

(3,0~ (A=B).(A+B)).(A2B)=0 2k,
(suo = (a+B).(A = B)).(A=>B) =0 L6,
(suo = ((A%? + B.A) 2 (A.B+B?)).(A=B)=0 53.
(suo ~ (A2 2 B?*)).(a>B)=0 L46.24.
Hence
(SuO ~0).(axB)=0 Premises

SuO.(A ZB) =0 18,

Cu(A ~B)=0 for u=1,...,n 60.

A-B=0 as required 92,

99. Rule of inference

2 s p2 _
SA B* =0

Cu(SuA 2B)=0

Proof Cu(B = A).(SuA =B)=0 from 9.
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Hence,
Cu(B +4).(B = A).(SuA 2B)=0 5elidie
cu(B2 2 Az).(SuA ZB) =0 for all u. 53.46.24.
Now
(suo = (B® = Az)).(SuO = (suA2 2B)) =0 forall u, 69.
and therefore
. 2 ] 2 L] -
(8,0 = (5,4* = ¥*)).Cc (5,A=B)=0 49.93.
(suo = O).(SuA ~B)=0 49.59.Premises
suo.(suA ZB)=0 18.
cu(suA 2 B) =0 for us1,...,n 60,

100. RA% = A

From 95.96., we have

iy 2 _
5 X (squ) =0

(BX)? ~x=0

u
.
»

Put X

(RA®)® 2 A% =0
. 2
Cu(SuA < 5,RA ) =0 99,
RA22A=0 98.
A 2 RA2 -_ O 21 0920

Hence RA® = A 97.
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Having proved the basic property of the square root function, we

now have to prove the properties
X>Y = R{> RY
R(X® + X + X) = R(X?)

and RU(X+Y)? +X) =X+7Y

101. Rt(X) = Rt(X + ¥) = 0 (equivalent to X > Y = RX > RY)

Proof L(X,0) = Rt(X) 2 Rt(X + 0)
= Rt(X) = Rt(X) Te
=0 22.
R(X,0) =0
L(x,qu) = Rt(X) = Rt(X + qu)

Rt(x) = Rt(Su(X +Y)) 7.

]

i

Rt(X) = (Rt(X + Y) + (suo = ((SuR(X+ Y)P = SS.X"' Y)))) 65.

(Rt(X) = Rt(X+7Y) = (s,0 :((suRt(X+ Y)P = Su(X+ Y)) 20.

t

L(X,Y) =~ (suo -'-((SuRt(X+ )P = Su(X+ Y)))

R(x,qu) =0
=02 (suo 2 ((SuRt(X+ Y))? 2 Su(X+ Y))) 19.
= R(X,Y) = (5,0 *((s,Rt(X+Y))? = 5 (X+7)))
L(X,Y) = R(X,Y) 6.
102. Rt(A® + A + A) = A

o 2 _
Proof 5, X (SuRt(X)) =0
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Put X = cu(A2 + A+ A)
sucu(AQ + A+ A)S (suRt(cu(A2 +A+4)))2 =0
(SuCuA)2 2 (SuCuRt(Az-i-A +4A))2 =0 30447,
S.CA = SuCuRt(Az +A + A) =0 98.
C,A = cum;(A2 + A +4) =0 1) 21,
(rRt(x))2=-x=0
Su(Rt(X))2 = sX =0 21.
su(m-.(cu(A2 + A+ A)))2 = sucu(A2 +A+4)=0
S,(C,Rt(A% + A + 4))2 = (su.CuA)’ =0 3047,
C,(5,C,Rt(A% + A + &) 25 CA) =0 99.
C,RE(A* + A+ A) ~CA =0 (2) 21.32.
Therefore from 97 we have
CRBt(A® + A +4) =CA
Hence we can say Rt(A® + A+ A) = A 92.
103. Rule of inference
A=-B=0
B=C=0
A=C=0
Proof B+ (A=B)=A+ (B=4) Key equation
B =A+ (B=4) Premises, 7.
B=(B2A)=(@+(B=4)) ~(B=>4) 5
= A 23.
c+(B=cC)=B+(C=B) Key equation
C=B+ (C=B) Premises, 7.



Hence by substitution

A>c=(B2(B24)>(B+(C=2B))

n

B2 ((B24) +B+ (c=B))

0=2((B=4)+ (c=>B8))

0 as required.

104. RE((U+ V)2 + U) =U + V

Proof Rt((U+ V)2 +U) Rt + V)2 +U+V+U+V)=0

Re(U+V)?2 + U+ V+U+V)2(U+7V)=0
Rt((U+ V)2 +U) = (U+V) =0

Rt((U + V)?) = Re((U+V)24+U) =0

(U+ V) ~Rt((U + V)?2+U) =0

The results (1) and (2) together using 97. give

Re((U+ V)2 4+U) =U+7V

105. L(3(u,v)) = U

Proof

L(IU,v) = ((U+ V)2 +U) = (Re((U + V)% + U))?
=((U+V)2+0)2(Uu+v)?

=U
106. k(3(u,v)) = v

Proof
K(3(u,v)) = rt((U + v)? + U) = L(3(u,V))

(T+v)-=U

4]

v

1]

from above

(1)

(2)
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103.
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104.

23.

105.

23,
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We have therefore proved that a set of functions with the required
properties to achieve the reduction in parameters in the definition of

primitive recursion exists in commutative multiple successor arithmetic.
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CHAPTER IV

INITIAL FUNCTIONS REQUIRED FOR THE REDUCED DEFINITIONS
BY PRIMITIVE RECURSIONS

In this chapter we will consider the four defining schema which
were derived in Chapter II, and examine these to see if we need to adjoin
further functions to the initial set of all primitive recursive functions.

The functions used to reduce the parameters in the definitions of

primitive recursive functions were X(X), L(X), & J(U,V), defined as

follaws:
JU,v) = (U+V)2 4+ U
L(x) = X= (®x)?
K(X) = RX = LX)

In order therefore to define all primitive recursive functions in
the reduced defining schemas, we may need to adjoin further functions
to the set of initial functions in order that the functions XK(X), L(X)
& J(U,V) can be defined.

Now X(X), L(X) & J(U,V) are explicitly comprised of the functions
Y + X, Y =X, X.X, RX.

If we are able to define these functions in each of the schemas
Ry Ry *,Ry** and R; ***, then there would be no need to adjoin further
functions to the initial functions.  However we shall find that in the

case of Ry*** we require to adjoin a function to the initial functions,

Q(X), which will be defined later.

Ry This is the defining schema given by

F(0,Y) = A(Y)

[t

F(SuX,Y) Bu(X’Y,F(X,Y)) u=1,ooo’n



Y + X 1is defined by

F(O,Y) = Y

F(SuX,Y)

SuF(X,Y)

For Y = X we first define P X by

F(0) =0
F(SVX) = {X u=v
ist(x) utv

Then Y = X is defined by

F(0,Y) = ¥
F(5,X,Y) = P F(X,Y)
CuX is defined by
F(0) = 0
F(SVX) = SVF(X) u=v
F(X) uiv

and therefore X.X 1is defined by

n
o

F(0)

F(SuX) SuF(X) +C X+ CX

RX 1is defined by

il

F(0)

0

F(SuX)

F(X) + (suo = ((SuF(X) L sux))

Thus the initial functions and the defining schema R,

sufficient to define all primitive recursive functions,

alone are

126
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Ry * This is the defining schema given by
F(0,Y) = A(Y)
F(sux,Y) = Bu(X,F(X’Y)> u=1,..c,n

Defining the functions Y + X, Y >X, X.X =and RX as above
in R; in fact defines all these functions under the reduced schema
R;*¥. Hence we can say that 'The initial functions and the defining

schema R;* alone are sufficient to define all primitive recursive

functions'.
R, ** This is the defining schema given by
F(0,Y) = A(Y)
F(SuX,Y) = Bu(Y,F(X,Y)) U=1,e00yn
Y + X is defined by
F(0,Y) = Y
F(SuX,Y) = 8 F(X,Y)

Now for Y = X we have to define P X, and to achieve this we

proceed as follaws.

C uX is defined by

F(0) =0
F(SVX) = {st(x) u=v
{FP(x) ufv
X.Y is defined by
F(0,Y) = 0
F(SuX,Y) = F(X,Y) + c ¥
and X.X = F(X,X).
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8,0 2 X is defined by

F(0) = 8,0
F(SVX) = {0 u=v
F(X) u;év

Define Dk»X by

F(0)

F(SuX)

0

{80 = F(X) u=

F(X) utk

This takes the value § 0 if 'S, ' appears an odd number of times

k
in X.
We can therefore define TkX by
F(0) = 0
F(sux) = %skF(x).(sko 2 F(X)) + F(X).SkF(X).(SkO z (sko:-F(x»)
{ u=k
{FP(X) utk

This function is such that when X contains only one of ’Sk'
successors then T X contains an odd number of 'Sk' successors, otherwise
T, X contains an even number of 'Sk' successors. Hence the function
defined by

SkO - DkaX

takes the value O if X contains only one 'Sk' successors, and

%{0 otherwise.

Define RM (X,2) by

RMk(X,Z) = D, X
and RM _(X,3) by
F(0) = 0
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F(th) = {5,0 = F(X)) + skskp.(sko = (s0- DT, (F(x)))) u=k

F(X) ufk

This function is the remainder of the number of ’Sk' successors

in X when that number is divided by 3, e.g.

Rl (5,5,0,3) = 5,80
th(slslsgsksksksko,3) S, 0

k

i

Consider now the function NkX defined by

F(0) = 0
F(5,X) = E(F(X) + §,0).(8,0 = R (F(X),3)) +
E(F(x) +5,.80).(s,0 = (0 2 ru (F(X),3))) u=k
{r(x) uék
In other words
F(0) =0

F(sux)

{]

%F(X) + 80 if RMk(F(X),B) =0, %
i poouk
iF(X) + 8,80 if B (F(X),3) # 0
F(X) uék

Clearly NX = Nk(ckx); that is we are only considering the 'S’
successors in X to define NkX, if we consider that 1 = SkO,
2 = SkSkO,...., etc. and consider X as CkX which would then be

a number: then in normal arithmetical terms

NX = 3.X/2 if X is even

{(3.x - 1)/2 if X is odd

'inNX-

as there are no successor symbols other than 'Sk »



This result we shall prove by induction on X;

is true for X, then

suppose the above

Nk(X +1) = {3.(X +1)/2 if X+ 1 is even
§(3.(x + 1) - 1)/2 of X + 1 is odd

Nk(X +1) = {(3.Xx + 3)/2 if X is odd

{(3.Xx + 2)/2 if X is even

= {(3.X - 1)/2 + 2 if X is odd

g3-x/2 + 1 if X is even

= %3.)(/2 + 1 if X is even

{(3.X = 1)/2 + 2 if X is odd

This is equivalent to

Nk(X+1)=NkX+1 if X
NX + 2 if X

by hypothesis.

is even

is odd

Now if X is even NXE = 3.X/2 and therefore divisible by 3,

if X is odd then NX = (3.X - 1)/2 apd therefore not divisible by 3.

Hence

Nk(X +1) = %ka + 1 if RM(NkX,B) =0

{ka + 2 otherwise
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The hypothesis is true for X = 0; hence N X is the function stated.

K
Define now Mk(X,Y) by

F(O,Y) = Y

]

F(SuX,Y)

{F(X,Y)

N ( F(X,9).(5,0 = RM (F(X,¥),2))  u=

ufk



In order to prove the properties of this function we need first to

define the function (Yx)k by

F(0,Y) = 5,0
F(SuX,Y) = {Y.F(X,Y) u=k
{F(X,Y) utk

In the notation defined (YX)k is the function YX in normal
arithmetical notation for the 'Sk' component of both X and Y, e.ge.

S8, 80
(8.8,85,0727%k k),

SkSkSkSkO

which with the previous notation sko =1, SkSkO =2, etc. ... Iignoring

all other successors, then

S 5.0

k°k )k 22 (normal exponent)

(s, skskosz
= 4

= SkSkSkSkO
We analyse the function Mk(X,Y) as follows.

Let CkY be non-zero, and let 2t be the highest power of 2 that

divides it exactly; then Mk(X,Y) is such that

if t< X then Mk(X,Y) =0

t-

if t2 X then M (X,Y) is non—zero, and 2" is the highest

power of 2 that divides it exactly.

Proof Tge proof is by induction on X. The case X = 0 gives

Mk(X,Y) Mk(O,Y)

ayY
t
=2 .4 (A Z£0)
- 2% 0. (as t 2 X)

The result is therefore true for X = 0. Let us assume the result for

0 X< m, and consider the case m+ 1.
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Suppose t < m. Then by the hypothesis Mk(m,Y) = 0, and from

the definition we have

1

Mk(m+1 ,Y)

N, (M, (m,¥)). (8,0 = R, (1 (,Y),2)) s 1 =50
N (4, (m,Y)).5,0

Nk(O).SkO
0.8,0

=0

It is worth noting here that as we are only using the 'k'th components

then A.SkO = A, and CkA = A, as we shall only consider the answer in

terms of 'Sk' successors.
Now suppose t=m. Then by the hypothesis Mk(m,Y) is non-zero,
and 2t—m = ZQ is the highest power of 2 that divides it exactly, that

is Mk(m,Y) is odd. Hence

le

M (m+1),Y) = N (4 (m,7)).(5,0 = RE (M, (m,Y),2))

As Mk(m,Y) is odd then RMk(Mk(m,Y),Z)

1

SkO and so

Mk(m+1 ),Y)

Nk(Mk(m,Y)).(SkO = sko)

- N, (3,Y)).0

0 as required as t< m+ 1

Finally, suppose t > m. Then by the hypothesis Mk(m,Y) is non-zero
and 2t—m is the highest power of 2 that divides it exactly. Hence

Mk(m,Y) is even. Therefore

W (st 5 Y) = N (¥ (m,¥)).(5,0 = R (¥, (m,Y),2))

Nk(Mk(m,Y)).(SkO 2 0)

0]

Nk(Mk(m,Y)).SkO

Nk(Mk(m:Y) )

3.Mk(m,Y)/2 as Mk(m,Y) is even.
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We therefore have

Mk(m+1‘”Y) = 3.Mk(m,Y)/2

Hence if 2t—m is the highest power of 2 that divides Mk(m,Y) exactly,

(t-m3-1

then 2 is the highest power of 2 +that divides Mk(m+1 ,Y) exactly,

that 15 281 4o the highest power of 2 that divides M, (m+1,Y) exactly.

Hence the result.

From this result we can say that the function

B (550 ),

is non-zero in 'Sk' components, if and only if 2X divides 2Y exactly

(in the previous notation), that is if and only if X< Y, in 'Sk' components.

Hence
50 * Mk(x,(skskoY)k) = %o if G (X27Y)=0

{s %0 otherwise

Define now the function I.k(X,Y) by

u

F(O,Y) = Y

(F(X,¥) + 5,0).(5,0 = Mk(Y,(skskoF(X’Y))k)) u=k

SuF(X,Y) u/k

F(SuX,Y)

which is such that

F(5,X,Y) = {0 if F(X,Y) 2 Y (in 's, ' components)

SkF(X,Y) otherwise
The function Ik(X,X) is therefore defined by

F(0) = 0

1]

F(SuX) 0 irP(X)2 X } (in 'S, components)

{ SuF(X,) otherwise } u=k
{SuF(X) utk
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P, X 1is defined by

k
F(0) =0
F(SuX) = {X u=k
{SdF(X) utk

which is the same as

F(O) = 0
F(S,X) = %o if RX) > X E;irllc Sk components)
%skr(x) otherwise }
{5,F(X) uhk

Hence by uniqueness P X = Lk(X,X), and Ikﬂx,x) is defined in R, **
by substituting X far Y in the function Ik(X,Y) which is defined
under the schema R;**. Foar the proof of this in single successor
arithmetic see [8].

However we can obtain the result in the following manner.

DX or RM(X,2) is defined by

F(0) =0
F(sux) = 5,0 = F(X)
TX is defined by
F(0) = 0
F(SuX) = suF(x).(suo-'- F(X)) + F(X) .suF(x).(suoi (suo: F(X))

RM(X,3) is defined by
F(0)

F(SuX) = (suol F(X)) + SuSuO.(SuO-'-D(T(F(X)))))

0

n

These functions are such that

DX

DIX + DQX + LI + an
RM(X,2) = RM;(X,2) + BMa(X,2) + evvee + RMn(X,Z)

X

T1X + TQX + eeees + Tnx

RM(X,3)

RMy (X,3) + RMa(X,3) + oeeno + RM (X,3)



125

NX is defined by

0

F(0)
s, F(X).(s,0 = RI(F(X),3)) +

5,5,F(¥) (5,0 = (5,0 = rM(F(X),3)))

il

F(qu)

arld NX=N1X+N2X+ 000.0+Nnx

M(X,Y) is defined by

F(0,Y) =Y
F(SuX,Y) = N(F(X,Y)).(Suo = rRM(F(X,Y),2))
and M(X,Y) = CuMy (X,Y) + CaMp (X,Y) + wuves + chn(x,Y)

—

QYX) is defined as before.
k

L(X,Y) is defined by

F(O,Y) = Y
F(S X,Y) = 8 F(X,¥).(5,0 * M(Y,(SuSuOF(X’Y))u))
and L(X,Y) = G Ly (X,Y) + CoIp(X,Y) + eeeee + ann(x,Y)

Define EkX by

F(0) =0
F(sux) = {F(X) u=k
}SuF(X) utk
EkX is therefore all the components of X except the 'k'th component;
hence
CX+ (X=X
From this PX = CkL(X,X) + Ekx .
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It is interesting to note that in multiple successor arithmetic,
if it were necessary to adjoin the functions PuX u=1,...,0 to the initial
functions, it would have been sufficient to adjoin the function PX defined
by
F(0)
F(sux)

n
(o]

n
P4

as clearly P.X = CPX + CkX, and PX = L(X,X).

We now proceed to define QkX, which is the function

QX =50~ (x= (rx)?)

RX standing for Rt(X) as defined in Chapter III, Lemma 65.
Define Y = X by

F(0,Y) = Y

1]

F(SuX,Y) PuF(X,Y)

Consider now the function T(X,Y) by

0

F(0,Y)

F(SuX,Y) SuF(X,Y) + (suo = ((F(X,Y)2 2 Y) + (¥ = F(X,Y)2))).

This function is such that T(SuX,Y) is obtained from T(X,Y) by adding
5,0 unless (T(X,Y))? = Y, in which case we add 5,8,0° This can

happen only if X2 = Y, It is clear therefare that

T(X,Y) = {X if ¥¥<Y

X+Qr if ®>yY
Where QX=Q1X+Q2X+ .....+an.

Hence

QX = T(SuX,X) - 85X
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From QuX we obtain RX as follows:

RM(X,3) was defined by

F(0) =0

i

F(s,X) = (s,0 = F(x)) + 5,8,0.(s,0 =~ (8,0 op(F(x)))))
where DX and TX are defined as previous.

We now define UX by

0

F(0)

F(s,X) = 8, F(X) + R (F(X),3)

Clearly.

UX = X + Div(X,2)

where Div(X,2) is the function defined by

F(0) = 0

F(SuX)

F(X) + RMuéx,z)

We therefore obtain Div(X,2) in R,** by the explicit definition

Div(X,2) = UX = X.
Consider the function
VkX =X + SkSkO.RX .

This can be defined by the schema

F(0)

I
o

F(SuX) {skF(x) + sksko.Qk(skx) u=k

5, F(X) ufk
Now the following are equivalent, S, X is square (that is (RS X)® = S.X),
X is of the form N° 4 CN + C N, Hence from the definition of VX

we can say that ViX 1is of the form N4 C, N+ C, N+ C N+ C, N, and therefore

VkX + Sksksksko is square.
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Our definition of VkX now becomes

F(0) = 0

F(SuX) {skF(x) + SkSkO.Qk(F(X) + sksksksko) u=k

SuF(X) utk

ek
and is therefore defined by schema R; °

From this

RX

Div(%iX 2 X,2) + Div(VaX = X,2) + +o0 + Div(VhX 2 X,2)

as SkSkO.RX SkSko.QkRX

However we can define VX by

F(0) =0
F(SuX) = SuF(X) + SuSuO.Qu(F(X) + susususuo)
and
RX = Div(VX = X,2).

For the proof of this result in single successor arithmetic see [7].

However, having defined Y = X in R,** we can define the function

w(X,Y) by
F(0,Y) = O
F(SuX,Y) = F(X,Y) + (suo = ((suF(x,Y))2 2Y))
and
RX = W(X,X)

We have now defined the functions

Y + X, Y = X, X‘X’ RX!

in R;** without introducing any further functions to the set of initial
functions, We can therefore say 'The initial functions and the defining
schema R;** alone are sufficient to define all primitive recursive

functions'.



R, %*x* This is the

F(0,Y)

i}

F(SuX,Y)

Y + X 1is defined by

r(0,Y)

F(SuX,Y)

In this schema we now

defining schema given by
A(Y)

Bu(F(X,Y)) u=1,.e.,n

Y

Su?(X,Y)

suppose that the function QX 1is adjoined to the

initial set of functionse.

CkX is defined by
F(0) =
F(SuX) =

0
{skF(x) u=k
{P(x) utk

and therefore QkX is obtained by

Qkx =
Next define SkO X

F(0)

[t}

F(SuX)

and therefore Y.(SkO

F(0,Y)

F(SuX,Y)

Before we can proceed

C, %X

by

8,0

{0 u=k
%F(x) O wk

- X) is defined by

Y
{0 u=k

F(X,Y) utk

it is necessary to prove the following Lemma.

139
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Lemma (svo LX) = (svo A (svo z gsvo 2 x)))
Proof L(0) = 5,0 20
=850 I1I.18.
v
R(0) = (8,0 = (8,0 = (5,0 = 0)))
- (svo 2 (svo 2 svo)) III.18.
=5 020 III.22.
v
= S 0 III . 1 8 .
v
L(sux) = 508X
={0 u=v III.61.
Esvo =X wtv III.61.
=10 u=v
L(x) ufv
R(sux) = (svo = (svo 2 (sve 2 sux)))
= {(svo = (svo = 0)) u=v I1I.61.
(svo = (svo = (svo 2X))) ufv III.61.
={S.0~80 u=v III.18.
v v
R(X) uftv
= % 0 u=v III.22.
{R(X) uhv
L(X) = rR(X) III.26.

Now in the function Y.(Sko 2 X) substitute SkO = X for Y and define DxX by

F(0) = 0

F(SuX) §s.0 = P(x) u=k

k
F(X) ufk
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Now in the function Y.(SkO 2 X) substitute DX for Y and §0 = QX

for X; therefore as QX = §0 = (X < (RX)?) we have the function
DkX.(SkO (X2 (rRx)?)) = D X.Q X
and clearly from III.96, which proves that (RX)%2 = X = 0, we have that

QX = (5,0 = |, (rx)?])

and therefore

QX = {50 if X = (RX)® in 'S, ' successors
%0 otherwise
= {SkO if X is square in 'Sk' successors
%0 otherwise
Hence
DkX.QkX = {SkO if X is an odd square in 'Sk' successors
%O otherwise
Define therefore the function EkX by

E X = skskx.(sko = DkX.QkX)
which is obtained in R, *** by substitution in Y.(SkO = X).
We can then say that

BX =10 if X is an odd square in 'Sk' successors

{CkX + §8,8,0 otherwise

Before we can proceed now we will have to define the function X.X in Ry***,

We are able to define VkX as before by

F(0) = 0
F(Su}() = %SkF(X) + g{sko.qk(F(x) + sksksksko) u=k
{s F(x) utk
and
VX = X+ 58 0.RX
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From this clearly X.X is defined by

F(0) = 0

]

F(SuX) SuVu(F(X))

Having now defined X.X in R,*** consider the function Hk(X,Y),

defined by
F(0,T) = Y.Y + C,Y + 5.0
F(5,X,¥) = {B (F(X,Y)) u=k
F(X,Y) utk
Clearly
H(X,X) = BA(XX + CX + §,0)
where ENY is defined by
F(O,Y) = Y
F(SuX,Y) = {Ek(F(x,Y)) u=k
{F(X,Y) ufk

EﬁY is therefore C X operations of 'Ek' on Y.

Iet X contain an even number of 'Sk' successors, then clearly, for Hk(X,X),
after 3X (normal arithmetical expression) operations of 'Ek', as the

argument is never an odd square in 'Sk' successors, arnd every operation of

'Ek' adds §,8,0 to the argument

,
=X
Hk(X,X) = Ei (XX + C X+ CX+ sko)

At this time the argument is now an odd square in 'Sk' successors and thus,

B (5,%) = E255(0)

|

= X = 5,85,0
Defiine EkX by
F(0) = 0
F(s,X) = {F(X) u=k

iSuF(X) ufk



143

This function is all components of X except the 'k'th component,

that is the inverse of the function CkX

CkX + CkX =X

From Hk(X,X) we obtain G P X by

C P X = (5,0 = (sko-x».(sko-nx).skﬂk(x,x)+-Dx.Hk(skx,skx)
which is obtained by repeated substitution into the function

Y.(SkO = X) (from the definition this is obviously the
same as (SkO 2 X).Y)

and Y + X.

From this

and now we can define Y = X by

F(0,Y) = Y
F(SuX,Y) = PuF(X,Y)
TX is defined by
F(0) = 0
F(SuX) = SuF(X) .(suof-F(x))+F(x).suF(x).(suo-‘- ( suozF(x)))

RM(X,3) is defined by

F(0) =0

F(SuX)

(5,0 = F(X)) + susuo.(suo = (8,0 = p(2(F(x)))))

UX is defined by

F(0) = 0
F(sX) = s.F(X) + R (F(x),3)
and UX = X + Div(X,2)



We therefore have Div(X,2) in Ry *** by

Div(X,2) = UX = X
VX is defined by
F(0) = 0

F(SuX) = SuF(X) + SuSuO.Qu(F(X) + susususuo)
VX = X + 5,5;:525; .....SnSnO.RX explicitly,
and RX = Div(VX = X,2)

Hence by adjoining the function QX to the initial functions we have

defined the functions

Y <+ X, Y - X, XOX’ RX,

with the schema R;¥**¥*,

We can therefore say that 'The initial functions with the function QX
and the defining schema R,*** are sufficient to define all primi%tive
recursive functions'. We have not proved, though, that it is necessary
to adjoin the function QX +to the initié.l functions.

For the proof of the above result in single successor arithmetic

see [7].

In the normal definition of the initial functions we have the 'n'
successor functions Su(X) u=1,.s.,n. This set of n functions can
in fact be reduced to 2 functions, that is S;0 and a function to
generate further successor functions; for this we could use 0oy X.
Then

SgO:OO"lSlO etCQ ssceee

In the next section in this chapter we analyse the successor symbols

in X, as mentioned in Ghapter I.

Uy
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ANALYSIS OF 'X'

In single successor arithmetic, the successors in X are all the
same and thus require no distinction. Further, the number of successor
symbols in X can be compared with those in Y simply by use of the
functions X =Y and Y = X, which indicate out of X and Y which
has the most successor symbols and by how many. In fact, in single
successor arithmetic X by itself informs us how many successor symbols
it contains.

The problem of how many and which successor symbols‘ X contains
is not so easily answered. A question that immediately arises is how
does one count the successor symbols. There are 'n' different counting
systems; that is one for each successor, but no common counting system.

To achieve a homogeneous counting system, we consider the property

S].SgooooSnOOX = Xo 3133 ....Sno = X
and further

SlSlSQSQ....SnSnOQX = X.S]_SlsgS;; .....Snsno = X + x

ete..
This property seems to suggest that we consider

Sl Sg.....sno as 1
a-nd 81 Sl Sz Sg ® oo osnsno as 2
etc.

We shall therefore use a dummy successor 'S' +to count as follows:

S0 to represent Slsg.....SnO
SS0 to represent 31318282.....Sn8n0

etc.

In order to analyse X in multiple successor arithmetic we wish to

answer the following questions:-
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(1) How many successor symbols are there in X?

(ii) How many different successor symbols?

(iii) What are these different suceessor symbols?

(iv) How many are there of each different successor symbol?:

(i) How many successor symbols in X?

The answer to this question would obviously partition the set Mn
of all numerals in multiple successor arithmetic into the sets

Q 1 2 Ir
Un, Un, Un,oto,Un,ooo-- WheI‘e

1l

v = {0}

U = {50 v=1,...,0]

]

v isusvo : u,v=1,...,0, & v 2 ul

etc.
The number of successor symbols in X 1is determined quite simply

by the function ¢(X) defined by

[t}

$(0) = 0

¢ (8 X)

Slsg,--..anS(X) u=1,...,n
or in the counting notation

¢(0) =0

¢(5,X) = 8¢ (X)

We can therefore say

X €U if and only if [rg(X)| = o.
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(ii) How many different successor symbols in X?
The answer to this question obviously gives the sets

(o] r
D, D, D?°,.....D ,e.... where
n n n n

o
Dn = {O}
—L
D;} = iSuSu.....Suo H u=1,o--,n, & p=1,2,000"}

P 9
D;= {Susu--.-.susvsv.....svo H u,V=1,...,n, & u#v&p,q=1’2,00000}

etc.

We first define the function introduced in Chapter I:

Yo
s X

u

0

Yxx +Y u=1’...,n.

1]

This function is obviously not commutative, as notice is taken -of
the successor symbols in Y but not those in X, and this particular
property makes this function extremely useful.

Now define the function ¢(X) by

¢(0) =0

#(5,X) = 5 (X (5,0 2 p(X)) + (X (5,0 = (5,0 2¢(X))) uw=t,euusm,

this function is such that

¢:(qu) = {suga(x) if ¢(X) does not contain 's,’
fo (%) if ¢(X) contains 'Su'
The impartant property of the function Y"X which is used in this
definition is

Y = YxSuO for all u

and so ¢ (W (X)) gives the number of different successors in X. We

can therefore say

X e Di if and only if |z, (X))| = 0



and v(X) € Uz if and only if X e D; .
(ii1) What are these different successor symbols in X?

For this we need to distinguish between one successor symbol and

another, so we define X (X) by

0

i

Z(o)

Z(SuX) u + (%) U=1,.00,n.

1}

This definition is possible as n is finite.

Z(X) is the sum of the suffixes of the successor symbols in X.

Hence 5;0 can be distinguished from S;0 by

Z(8;0) = 2(5,0) = 80
Z(5,0) 2 Z(5,0) =0
and from S30 by
% (830) =Z(S,0) = 880
2(50) = Z(s50) =0

We can now define I}(X) and HY(X) the lowest (suffix) and
highest (suffix) of successor symbols of X, by
I*(0) = 0

(s X) = 1(x).(1 = @(r*(x)) = 2(5,0))) +

suo.(1 = (12 @Ex) —'-Z(suo)))) U=1,ee0 0,

H* (0)

Hl(sux)

0

B (x).(1 = @(s,0) = Z(B(X)))) +

suo.(1 (1= (Z(suo) S Z2(B*(X))))) u=1,...,n.
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That is I}(X) 4is defined by

*(0) =

t
o

Ll(sux) = {L*(X) if the suffix o suo> the

{suo if the suffix of §.0< the

and H(X) is defined by

H*(0)

1}
(@]

H( sux)

"
o,
N
e
p —

if the suffix of suog the

{s 0 if the suffix of 50> the

suffix of

suffix of

suffix of

suffix of

Thus 2 (L*(X)) gives the suffix of the lowest successor symbol and

Z(H (X)) gives the suffix of the highest successor symbol.

14.9

L (x)

L*(X)

H (X)

1 (X)

Now L3(X), the second lowest successor symbol, is obviously given by

I*(x) = 1M(X = *X) 4 (X))

that is

X = IMX)ep(X)

gives X without any of its lowest successor symbols, and therefore the

lowest successor symbol of this is the second lowest successor symbol of X.

Hence L3(X) is given by

L3(X) = L2(X = 1} (X).¢(X))

etce oee
The highest successor symbol is therefore given by

H(X) = {1*(x) if ¢(X) =1
%L"’("’(X))(x)

otherwise

Similarly we have

H(X) = B (X = H (X) (X))

and



I*(x) = {H(X) if ¢(X) =1
%}P(V‘(X))(x) otherwise

Thus
BT (K)s Z(IA),eeren (P ¥ E)(xy)
and

S (1)) 2GR (X)), e en e (@@ ) (xy)

enumerate the suffixes of all the diffeerent successor symbols in X,
the first . series from lowest to highest and the second series from

highest to lowest.

(iv) How many are there of each different successor symbol?

We could answer this question by
= € numoer o sSuccessor sympols 1n
ckx) th b £'s,’ ymbols in X

though we count the particular successor symbols that are in X by the

use of the function defined by
. . -k x
¢ (x = (1= L7(x))7e(x))

which gives the number of the 'k'th lowest successor symbols in X.
This is obtained by subtracting ¢(X) of all the other successor symbols
in X from X and counting the remainder, as there obviously cannot be

more than ¢(X) of any successor symbol in X. Similarly we could have
. . x
B2 (12 H(X)) 9(x))

which gives the number of the 'k'th highest successor symbols in X.
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