
A MULTIPROCESSOR FOR THE FINITE DIFFERENCE SOLUTION 
OF FIELD EQUATIONS

by

JOHN HOLME

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

OF THE UNIVERSITY OF LEICESTER

SEPTEMBER 1987



UMI Number: U005166

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disscrrlation Publishing

UMI U005166
Published by ProQuest LLC 2015. Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against 

unauthorized copying under Title 17, United States Code.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346



A MULTIPROCESSOR FOR THE 
FINITE DIFFERENCE SOLUTION 

OF FIELD EQUATIONS

JOHN HOLME

SEPTEMBER 1987





FOR OUR DAVE



ACKNOWLEDGEMENTS

Professor MacLellan, Head of the Department of Engineering at 
Leicester University, for allowing my research to take place.
Dr. A.C. Baxter ray supervisor for his help during the project 
and the constructive critisism he has offered in the
production of this thesis.
My family, to vhom mere words cannot express the debt I owe 
them, and the thanks that they are due for the support and 
help they offered when I needed it the most.
Dr. E.M. Warrington a friend who has sacrificed much of his 
own time to help me on many occassions during this work.
Mr. Philip Brown and Dr. Dimitrious Papadakos for providing me
with the graphics routines vdiich enable my results to be
displayed.
Dr. E.C. Thomas both for advise and the many useful
discussions on the basic principals of my work and help in the 
preparation of the programs on microfiche.
Mr. Stephen Rowlinson in the University library for his help 
in locating articles and information.
Messrs A. Brown, C. Cleg and T. Manchester the always helpful 
technicians of R-Block.

A special mention for Miss Harumi Takahashi, now Mrs Holme, 
for making my life complete and providing spiritual 
contentment.



CHAPTER 1 Introducfc/ori

CONTENTS

page no

1.0 BACKGROUND .................................................  1
2.0 A PARALLEL SYSTEM ..........................................  2
3.0 THE PARALLEL WORLD .........................................  3
4.0 ARCHITECTURE TYPES .........................................  5

4.1 SIMD ARCHITECTURES ..................................... 7
4.2 MIMD ARCHITECTURES ..................................... 8

5.0 METHODS OF INTERCONNECTION .................................  11
6.0 ADVANTAGES OF A MULTIPROCESSOR SYSTEM .......................  12

6.1 Performance/cost ratio ................................. 12
6.2 Reliability and fault tolerance .......................  13

6.2.1 Fault tolerant machines ..........................  13
6.2.2 'Graceful degradation' ...........................  14

6.3 Modular nature and ease of expansion ..................  14
7.0 DISADVANTAGES OF MULTIPROCESSOR SYSTEMS ....................  14
CHAPTER 2 Objectives
1.0 A DESCRIPTION OF A FIELD EQUATION ..........................  16
2.0 A PARALLEL SOLUTION OF FIELD EQUATIONS BY

FINITE DIFFERENCE TECHNIQUES................................  17
3.0 OBJECTIVES .................................................  18
4.0 THE CHOICE OF ARCHITECTURE ................................. 19
5.0 THE POTENTIAL SPEEDUP OF THE SYSTEM ........................ 22

5.1 The way data are stored ................................ 22
5.2 The number of nodes and the number

of neighbours of a processing element ..................  23
5.3 Global communication ................................... 24
5.4 Potential speedup ...................................... 25

6.0 THE EXPECTED PERFORMANCE ................................... 26
7.0 SUMMARY ....................................................  26
CHAPTER 3 H o r d w o r e

1.0 INTRODUCTION ...............................................  28
2.0 THE PROCESSING ELEMENT ARRAY................................  28

2.1 Processor and clock....................................  31
2.2 Local memory ...........................................  31
2.3 Decoding ...............................................  32
2.4 Interrupt mechanism ....................................  32
2.5 Shared memory ..........................................  33
2.6 Contention circuitry ...................................  33

2.6.1 Access of shared memory not in use
by, but owned by, another processor ..............  35

2.6.2 Access of shared memory by a processing 
element while it is already being
accessed by another processing element ............  36

2.6.3 Simultaneous access of the shared
memory by two processing elements ................  36

2.7 Self monitor function ..................................  36
3.0 THE INTERFACE BOARD ........................................  37

3.1 Realisation and implementation of the functions
of the interface board .................................  38

4.0 THE STATUS MONITOR BOARD ...................................  40



CHAPTER 4 Sofbware
1.0 INTRODUCTION ...............................................  41
2.0 THE PROGRAMMING LANGUAGE (PL9) .............................  41
3.0 BENCH MARK SOFTWARE FOR SPEEDUP FIGURES AND COMPARISON

WITH OTHER MACHINES ........................................  42
3.1 Laplace's equation .....................................  42
3.2 Implementation of a Laplace solver on a multiprocessor .. 44
3.3 Programming points .....................................  47
3.4 Laplace programs used on the multiprocessor system ......  48

4.0 THE SYSTEM SOFTWARE ........................................  48
4.1 Packet switching within the multiprocessor system .......  48
4.2 The mapping of data packets in pigeon holes

in shared memory .......................................  52
4.3 The synchronize instruction  ........................  53
4.4 THE MULTIPROCESSOR OPERATING SYSTEM ....................  54

4.4.1 The interrupt procedure... ........................  54
4.4.2 Functions of the multiprocessor operating system .. 55

4.5 THE OVERSEER ...........................................  57
4.5.1 Introduction .....................................  57
4.5.2 Available options on the overseer ................  59

CHAPTER 5 Results

1.0 INTRODUCTION ...............................................  64
2.0 PROCESSING ARRAY DATA TESTS ................................  64

2.1 Initial results ........................................  65
2.2 Validation of the method used to obtain speedup figures . 71
2.3 Optimized results ......................................  72
2.4 Comparison with independent computer based on the

same processor .........................................  74
3.0 PROBLEM CONVERGENCE TESTS ..................................  76

3.1 Speedups based on problem solution times with reference 
to a component processing element of the multiprocessor 
array ..................................................  77

3.2 Problem convergence of the multiprocessor system
compared with an independent system ....................  80

4.0 RELATIVE PERFORMANCE OF THE MULTIPROCESSOR ARRAY ...........  81
CHAPTER 6 D'scuss/on

1.0 BACKGROUND .................................................  84
2.0 THE PROCESSING ARRAY TESTS .................................  85

2.1 Initial results ........................................  85
2.2 Final results ..........................................  91

3.0 SYSTEM MODEL ...............................................  92
4.0 THE CONVERGENCE TESTS ......................................  95
5.0 COMPARISON WITH OTHER SYSTEMS .      ..........................  98

5.1 Performance on the bench mark problem ..................  98
5.2 Performance/costs of the systems .......................  99
5.3 Possible competition to a multiprocessor system .......  100

6.0 A MORE GENERAL SYSTEM .....................................  101
6.1 Alternative architectures offered by the

processing elements of the multiprocessor.. ...........  101
7.0 FUTURE WORK

7.1 Further optimization of the 16 PE array...............  101
7.2 A 2MHz version ........................................  102
7.3 System redesign     ...................................  102
7.4 More powerful processors ..............................  103



CHAPTER 7
CONCLUSIONS 105

APPENDICES
APPENDIX A 
APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E
APPENDIX F
APPENDIX G 
APPENDIX H 
APPENDIX I 
APPENDIX J 
APPENDIX K

SHARED MEMORY CONNECTORS OF A PROCESSING ELEMENT 
THE PROCESSING ELEMENT:

CIRCUIT DIAGRAMS 
COMPONENT LISTING 
COMPONENT POSITIONS.

THE INTERFACE BOARD:
(a) CIRCUIT DIAGRAMS 

CONNECTORS 
COMPONENT LISTING 
COMPONENT POSITIONS.

THE STATUS MONITOR BOARD:
(a) CIRCUIT DIAGRAMS 

CONNECTOR 
COMPONENT LISTING 
COMPONENT POSITIONS.

VERIFICATION OF THE TIME TO SOLUTION
FOR THE 16 PROCESSING ELEMENT CASE
PROCESSING TESTS ON THE MULTIPROCESSOR
RUNNING THE OPTIMIZED PROGRAM
PROCESSING TESTS ON THE INDEPENDENT SYSTEM
PROBLEM CONVERGENCE TESTS ON THE MULTIPROCESSOR
PROBLEM CONVERGENCE TESTS FOR THE INDEPENDENT SYSTEM
OLIVETTI M24 PERFORMANCE
TABULATED SPEEDUPS OF THE SYSTEM SPEEDUP MODEL

(a)
(b)
(c)

(b)(c)(d)

(b)
(c)
(d)

REFERENCES

PROGRAM LISTINGS
PROGRAM LISTING 1: 
PROGRAM LISTING 2: 
PROGRAM LISTING 3: 
PROGRAM LISTING 4: 
PROGRAM LISTING 5:

LAPLACE ON AN OLIVETTI M24 
LAPLACE ON THE MICROBOX II 
LAPLACE ON THE MULTIPROCESSOR 
OPTIMISED 'GETADDRESS' PROCEDURE 
LAPLACE FOR THE CONVERGENCE TESTS

MICROFICHE LISTINGS
(Contained in the envelope in the binding of the thesis)
LISTING 1: 
LISTING 2: 
LISTING 3:

"PROBABILITY MODEL" 
"LAPLACE"
"SYSTEM MODEL"



CHAPTER I



CHAPTER 1 

INTRODUCTION

1.0 BACKGROUND

The solution of problems governed by field equations is one of the more 
important areas of scientific computation that is currently limited by the 
performance of present day computers. Examples of this type of problem 
include the prediction of the weather, analysis of stress fields in large 
structures and propagation of electromagnetic radiation. Even the 
performance of the most powerful computers of the present day, the so 
called supercomputers, are heavily taxed by the many computational tasks 
involved in the solution of field equations (Fagan [36] and Fortune [39]). 
These include the Cray XMP and Cray-2, manufactured by Cray Research Inc., 
the Cyber 205, manufactured by Control Data Corporation, the Fuj:^u VP, 
manufactured by Fuj^u Ltd., the Hitachi SA-810/20, manufactured by 
Hitachi, and the NEC SX, manufactured by NEC Inc.^.

Until recently the state of the art in the computing world has been 
dominated by the architecture and performance of supercomputers, which are 
constantly being improved (Perrenod [65]). The supercomputers of the 
1960's, like the CDC 6600, were prototypes of what are now called RISC 
(Reduced Instruction Set Computing) machines, which operate with a much 
simplified instruction set enabling operationsto be speeded up. Present day 
examples of machines architectured in this way may be found by reference to

 ̂ Further information on the use, performance and architectures of these 
machines may be found by reference to Russel [71], Watanabe [87], 
Carruthers [20] and Mendez [62].

page 1



Circhanowski [22], Furber and Wilson [42], Hennessy [45] and Brain [17]. 
RISC machines are becoming popular now with the class of so-called 
mini-supercomputers, machines that perform and cost an order of magnitude 
less than the bigger computers. In the future it is possible that recently 
developed parallel systems may dictate the state of the art machines.

2.0 A PARALLEL FUTURE

In recent years there has been a continuous and rapid development in 
semiconductor technology in the field of large scale integrated circuits 
(see Barron [9]). In this respect the processing power of microprocessors 
has been consistently increased to the point of equalling, and even 
exceeding, that of much more expensive traditional minicomputers. Placing 
these processors in some type of parallel architecture could make 
supercomputer performance levels available, at a cost potentially much less 
than that of a conventional system.

The technology is now available to form powerful parallel processing 
building blocks. New VLSI chip making techniques such as triple diffusion 
fabrication (the so called 3D chips), coupled with computer-aided design, 
offer the possibility of placing multiple processing elements on a single 
chip. The MA717 produced by GEC Hirst Research Centre, which introduces 
parallelism at the bit level, is based on a gated array of ful 1-adders for 
a number of important arithmetic and signal processing functions (other 
examples may be seen in Ahmed [3], Dew [32], Kung [53] and Mead and Conway 
[61]).

Devices such as the Inmos "Transputer" based on VLSI are capable of very 
high speed calculation, concurrency and the ability to communicate with

page 2



other transputers. The Inmos transputer is an example of a specialized VLSI 
RISC chip, designed with the aim of being linked with other units of the 
isame kind to facilitate parallel processing. The Transputer and its 
associated programming language OCCAM have been the subject of many articles 
in recent time , all of which indicate that the Transputer will fulfil the 
essential requirements of a parallel processing element. With a purpose 
built architecture for an application it is possible that VLSI parallel 
devices will have a great impact in the multiprocessing world and possibly 
lead to the predicted "desk top CRAY".

Recent work in the field of superconducting chips (a summary of which can 
be found in Fagan [36]) is expected to yield a chip which will superconduct 
at room temperature. The potential increase in the processing power of 
conventional architectures incorporating these chips is vast, but the 
potential of a parallel machine comprised of such chips is unimaginable.

3.0 THE PARALLEL WORLD

In 1981 Japan announced her programme of research into parallel processing, 
dubbed the "fifth generation" of computers, although other countries were 
engaged in similar research. Parallel systems are currently an active 
research topic, recent work includes that of Bhuyan and Algrawal [14], 
Bowra and Torng [16], Colon et. al. [24], Dettmer [29], Dew [31], Dew [32],

2 Transputer hardware and applications may be referenced through Brain 
[17], Brain [18], Coles [23], Jessope [50], Petre [6], Mattos [60] and 
Taylor [84].

Reference to OCCAM may be found in Curry [26], Dettmer [30], Fay [37] and 
Hoare [48].

page 3



Fuller et. al. [40], Hillis [46], Purcell [67], Ostland et .al. [64], 
Leiserson [57], Searle and Freberg [73], Snyder [80], Speitz [81] and 
Taylor [84] which are not referenced elsewhere; other examples may be found 
in the text to follow.

Networked computer systems are common place and the practise of attaching a 
second processor in most home microcmputers is increasing in popularity. 
Several other types of parallel systems, referenced above, have reached the 
prototype stage or beyond, these include the Carnegie multimicroprocessor 
(Wulf and Bell [96]), the Minerva Multiprocessor (Widdows [91]) and the 
Heidleburg POLYP (Manner [59]). In the supercomputer league, a multiple 
ransputer system is commercially available with ransputer elements in the 

form of plug in modules, while Christ and Terrano [21] are claiming 
supercomputer performance using standard (but powerful) processors in an 
MIMD architecture (described later).

In Britain the Science and Engineering Research Council (SERC) funded a 
special research programme on Distributed Computing Systems (DCS), which 
ended in December 1984. During period of the SERC DCS programme (further 
details of which may be found in SERC [77] and SERC [78]) a great deal of 

was given to the problem of programming parallel machines and parallel 
algorithms. Work in Britain focused mainly on "associative programming"(see 
Lauer and Hemishere [56]), where problems reduced to arithmetic expressions 
form the basis of a programming language (Abramsky [1] and Abu-Surfad [2]).

A team at Manchester has built a prototype (MIMD) ring-structured data-flow 
machine vdiich may have a much wider range of applications than vector or 
array processors. Imperial College is developing a parallel computer based 
on applicative languages in an attempt to match the architecture to the 
needs of the data. Fault tolerant systems are being investigated in broad

page 4



programs of research into the design of distributed systems at Newcastle
University which can operate satisfactorily despite suffering from
problems. Barlow and Evans [7] also produced multiprocessor hardware anda
Grimsdale et. al. [43] proposed^multiprocessor architecture for real-time 
applications.

The same period saw the introduction of specialized parallel processing 
programming languages such as ADA and OCCAM. ADA was introduced as a
concurrent language designed for the writing of operating systems, vbereas
OCCAM is by design the optimum programming language of the Inmos
Transputer.

4.0 ARCHITECTURE TYPES

In 1972 Flynn [38] categorised the various types of parallel architecture 
in an attempt to obtain a macroscopic viewpoint of available computer 
structures. Flynn's stratification uses the concept of a stream which can 
simply be defined as being a continuum of data or instructions depending on 
the context in ^ich 'stream' is being used. These categories have since 
been used in numerous surveys of computer architectures, the most prolific 
being Baer [5], Barlow and Evans [6], Bolognin et. al. [15], Haynes et. al. 
[44], Kuck [52], Reyling [69], Seigel et. al. [72], Seitz [74], Stone [83] 
and Weissberger [89]. Flynn's main categories of parallel machine are:

page 5



(1) Single-Instruction Stream Single-Data stream (SISD)
This is the Von Neuman architecture employed by the 
majority of computers in use today, the architecture of 
which can be seen in figure 1.1;

(2) Single-Instruction Stream Multiple-Data stream (SIMD)
This section may be further sub-divided and are 
described later.

(3) Multiple-Instruction Stream Single Data stream (MISD)
A Structure which has a very restricted and specialised 
use, where actions within an instruction cycle may be 
overlapped with different actions of consecutive cycles 
to achieve a higher rate of instruction execution (an 
example of which is a CYBER 205).

(4) Multiple-Instruction Stream Multiple-Data stream (MIMD)
Various types of MIMD architectures exist in this 
category, these are described later.

Of these types of architecture, it is the SIMD and MIMD type of systems 
which are showing the most promise in the parallel processing world. These 
classes of machine, and the subcategories into which they may be split, are 
now described further^.

 ̂Diagrams taken from Bolognin [15] whose work synthesises that of others,

page 6



INPUT

ARITHMETIC LOGIC 
UNIT

CONTROL

I I
MEMORY

OUTPUT

control
unit

processing
element

memory

processing
element

memory

FIGURE 1. 1 
VON NEUMAN ARCHITECTURE FIGURE 1.2 ARRAY PROCESSOR

associative
register

associative
register

processing
element

processing
element

FIGURE 1.4

GENERAL STRUCTURE OF AN 
ASSOCIATIVE PROCESSOR

d a ta  and instructions to I/O  
devices

register

m em ory i

control
unit

memory 2

arithm etical 
processor 1

mem ory 1

arithm etical 
processor 2

control
processor

arithmetical 
processor i

FIGURE 1.3 
GENERAL STRUCTURE OF SIMD 
PROCESSORS

PU

PU

PU

PU

processing
unit

PU

processing
unit

PU
PU

FIGURE 1.5 RING STRUCTURE FIGURE 1.6

COMPLETELY INTERCONNECTED 
STRUCTURE



4.1 SIMD ARCHITECTURES

The SIMD architecture has also been called a "parallel processor" because 
the same instruction is carried out simultaneously by a vector of 
processors on a vector of data. Yau [97] provides a comprehensive and 
detailed look at the architectures of this section, which may be 
sub-divided as follows :

Array processors Are currently the most efficient form of SIMD
architectures from the point of view of 

performance/cost ratio. The array processor ' shown in figure 1.2 is 
essentially a two-dimensional array processor. Such add on units are 
available for standard machines such as Digital Equipment Corporation VAX 
computer systems to increase performance. Vector processors also exist, 
capable of dealing with an n x n vector of data simultaneously. The ILLIAC 
IV was an early exanple of a vector processor, further details of which may 
be found in Barnes et. al. [8]. The I CL Distributed Array Processor (DAP) 
discussed in the work of Ducksbery [34] and the CLIP machine proposed by 
University College London (Shaw et. al. [82]) are finding applications in 
the world of image processing, where the bit level processing of the system 
ideally suits the digitized image. A large array consisting of 65536 
processors in this type of architecture, has been built, and is described 
in Hillis [46].

Pipeline processors May be considered as a tenporal-mulitplexej
version of an array processor. Figure 1.3 shows 

a general SIMD architecture. A certain number of executive functional units 
are arranged in an assembly line. Each unit accepts new data every &t, thus 
if there are n units the execution of a process takes ndt units of time. 
However, there are n processes active at any time, each one residing in one

page 7



of n stages through which the evolution of the process passes, hence 
(n+k-l)5t units of time are required to complete k processes ( serial 
execution for comparison would take nk&t units of time). The technique is

afundamental to the operation of^systolic array processor (described in Kung 
[54] and Kung [55]), and is also displayed in interleaved memory systems 
(Burnett and Coffman [19]). It can be seen that pipelining is a very useful 
tool in the parallel processing trade and is employed as a fundamental 
aspect of supercomputer operation which incorporate mulitiple pipelines - 
along with other techniques.

Associative processors Are a type of array processor in which the
data elements are not directly addressed.

Figure 1.4 shows a typical (but simplified) associative architecture.
Processors are activated v4ien a certain relationship, between the contents
of a register which is loaded by the control unit and the data contained in
the associative registers is satisfied. In general, an associative
processor is categorised by the possibility of accessing data through part
of it's contents, making it an ideal choice for database application. Other

m
examples of this type of architecture are the Parallel Ensile Processing 
Engine (PEPE) and STARAN. The PEPE architecture is described in Yau [97], 
while the architecture and use of STARAN can be found in Batcher [11], 
Batcher [12], Rudolf [70] and Davis [27].

4.2 MIMD ARCHITECTURES

In this type of system, parallelism of functions is achieved through the 
execution of independent tasks simultaneously. Efficiency of the system may 
depend mainly on synchronization between processes and distribution of 
tasks to the processors. Speitz [81] used communication between processors 
to measure how loosely or* closely coupled a system may be. In general

page 8



further classification of MIMD architectures may be achieved by analysis of 
the ease of which communication between processors takes place. Speitz's 
classification was based on the coupling between processors, the more 
closely coupled a system the more it resembles a multiprocessor network in 
which each processor is in communication with all others in the network. 
Examples of MIMD systems follow:

Ring structures These normally exhibit unidirectional flow of messages 
and low fault tolerance, figure 1.5 shows the ring 

structure. The Distributed Computing System (DCS) at the University of 
California uses switches as well as multimessage sends to increase fault 
tolerance. One of the best known ring structures in this country is the 
Cambridge ring of linked computers, a second example would include the IBM 
attached processsor localized support system where up to four Systen%/360 or 
/370 computers may be linked by Input/Output channel couplers.

Conç)letely interconnected structures These need a communication system
of some kind which normally consists 

of serial links between processors. Serial links are used in preference to 
bus connections to reduce the number of wires and hence reduce the apparent 
system complexity, an example may be seen in figure 1.6.

Shared Memory Structure This is a common technique in which
communication between processors is achieved by 

links through a common storage medium (see figure 1.7). Here the common 
storage is used merely a communication mechanism, rather than fulfilling 
its usual role as data memory. Performance in such systems increases more 
slowly with added processors, although there are no obvious bottlenecks in 
the communication mechanism.

page 9



bus

processor

m em ory

processor

FIGURE 1.7 
SHARED MEMORY STRUCTURE

FIGURE 1.8 
GLOBAL BUS STRUCTURE

FIGURE 1.S STAR STRUCTURE

switchswitch

processor processor

FIGURE 1.10 
RING STRUCTURE WITH SWITCH

switch

processor

FIGURE 1.11 
BUS STRUCTURE WITH SWITCH

switch
and

processor

swi tch
and 

processor

switch
and

processor

switch
and

processor

switch 
and 

processor

switch 
and 

processor

switch 
and 

processor

FIGURE 1.12 
REGULAR NETWORK STRUCTURE



Global bus structures These are shared bus networks, an exaitple may be
seen in figure 1.8, these were widely used in the 

aerospace industry (1977), see Enslow [35]. With only one bus between n 
processors, if large amounts of communication need to take place, the bus 
becomes even more of a potential bottleneck than in a typical SISD Von 
Neuman architecture.

Indirectly connected structures There exists a structure for
communication of messages known as a 

'switch' which makes a processor independent of the physical architecture, 
one of the best interpretations of a switch may be obtained from Haynes et 
al. [44]. A switch is also able to protect processing elements from 
possible harmful external effects and reroute communications if faults are 
detected. This section can again be divided:

Star Structure - This has a switch in the mid point of all 
communication paths. An example of this is the VAX cluster 
hardware, of figure 1.9, installed at Leicester University in 1985.
Here the switch is a hardware connection linking the two VAX 
computers and intelligent memory controllers. IBM's Network/440 is 
also closely linked to this type of structure, having all 
communication lines passing to a central controller.

Ring with Switch - This structure can be seen in figure 1.10, all 
messages pass through the switch and are correctly addressed. The 
switch however is prone to jamming if a large amount of 
communication takes place. An exaiqple of this might be SPIDER, a 
data communication system used in the Bell laboratories in use in 
1975.

page 10



Bus with Switch - This type of architecture is not widely used. 
Systems of this type (figure 1.11) have been constructed for the US 
Mavy, see Enslow [35] and another similar network called ALOHA 
using a radio bus and based on an IBM 360/65 was also built.

Regular networks - Ring structures can be considered a special case 
of regular networks, pictured in figure 1.12. They exhibit good 
fault tolerance. To increase processing power a certain number of 
processors must be added.

Irregular networks - These are specialised and tend to be problem 
oriented, a diagram is therefore of no real value here. An example 
of a tree architecture of this type can be seen in Despain and 
Patterson [28].

5.0 METHODS OF INTERCONNECTION

A  shared bus This is the simplest method of connecting processing units, 
and the least expensive. It has a disadvantage in that a 

shared bus could become a bottleneck if large numbers of processors are 
used.

A  serial/parallel link A communication link may be constructed between
processing units, which may be serial or parallel. 

These communication links are optionally fed into switches as seen in the 
previous section.

A  multi-port system This method of interconection uses memory, which can be
shared between a number of processors, as a 

communication medium.

page 11



6.0 ADVANTAGES OF THE MULTIPROCESSOR SYSTEM

The advantages of the multiprocessor system are:

6.1 High performance/cost ratio;
6.2 Excellent reliability and ability to 

function in a degraded manner in case of 
technical trouble;

6.3 Modular nature and ease of expansion.

These advantages become more or less important according to the type of 
architecture being considered; they also exist for conventional computer 
networks but are intensified in microprocessors due to their low cost. The 
following section looks at these advantages in more detail.

6.1 Performance/cost ratio:

Figure 1.13 shows the performance/cost of various systems as a function of
cost itself. The line U displays the average performance/cost ratio for
single processor systems within the data. The line IM shows the ideal
relationship of the performa^e/cost ratio with cost in multiprocessorA
systems, with every increase in cost being paralleled with a corresponding 
increase in performance. The actual relationship of multiprocessor systems 
can be seen as the line RM, where it is claimed that the increased cost of 
connections and problems of synchronization mean the performance rises more 
slowly, resulting in a degradation from the ideal.

page 12



510

A
10

3 RM10■D

• e
2

10

63 A 7

FIGURE 1.13 PERFORMANCE/COST AGAINST COST



6.2 Reliability and fault tolerance

Fault tolerance is an important consideration in a tiuti-processor system 
where the Achilles' heel may turn out to be a small fraction of the 
processing or communication hardware. In order to present statistics on the 
reliability of the architectures discussed certain data is usually quoted 
(further details of which may be found in the literature):

a. Mean Time To Failure (MTTF).
b. Mission time. This is the time to reach a certain 

degraded performance.
c. Probability of fault avoidance.
d. Maximum number of failures.

6.2.1 Fault Tolerant Machines

Due to the increased complexity normally associated with a multiprocessor 
system, the probability of failure in the system is usually high. In order 
to increase reliability within a system various proposals have been 
suggested and/or inplemented, these include hardware redundancy techniques 
which enploy multiple copies of system elements, these copies being 
switched in once a fault is detected. Examples of fault tolerant systems, 
the techniques of which are discussed in Siewiorek [75] and [76], include :

(1) Triple Modular Redundancy;
(2) 'n' Modular Redundancy;
(3) Adapting Voter Networks;
(4) Threshold Voter A^etworks.

There are many examples of» fault tolerant systems: The Sperry Rand UNIVAC

page 13



110 which allows on-line maintenance, CDC's CYBER with dual central 
processing units, the US army's PEPE used in conjunction with ballistic 
missile monitoring and STARAN - further details of which may be found in 
Enslow [35] and Fung [41]. Fault tolerance is also discussed in respect of 
communication Seigel [72] and the iAPX processor hardware in Cox et al. 
[25] and Witten [95].

6.2.2 'Graceful Degradation'

Graceful Degradation is an important concept in fault tolerant systems. If 
a fault occurs rather that the entire system being rendered useless, the 
idea is to keep the entire system running with the faulty unit but in a 
degraded manner. If this can be done the system is then said to have been 
gracefully degraded.

6.3 Modular nature and ease of expansion

A multiprocessor system is by definition modular, since it is comprised of 
component processors. The benefits of a multiprocessor system are evident: 
The modular nature of a multiprocessor system means that the system offers 
ease of expansion and a system built for one function can be upgraded 
easily by the addition of similar component modules. It is also possible 
that a multiprocessor system can be reconfigured either by adjusting 
hardware or through software. Examples of this can be seen in Dove [33] and 
Jessop [51].

7.0 DISADVANTAGES OF MULTIPROCESSOR SYSTEMS

In parallel systems the ideal performance is degraded by difficulties which 
cause problems in system * realization. In brief these problems are as

page 14



follows, and further details of these can be found in the literature;

a. Synch ronization and Communication between processors, 
discussed by Seigel [72], Baskett and Smith [10], 
Barlow and Evans [7] and Anderson and Jenson [4];

b. The partitioning of problems which have inherently 
serial sections, see Haynes et al. [44] and Kuck [52];

c. Efficient use of hardware resources (Shoja [79]);

d. Branching problems in relation to performance, see 
Flynn [38];

e. General lack of operating systems and overseeing of 
the functions of the component processors;

/. Choice of topology of connection.

page 15



CHAPTER 2



CHAPTER 2

OBJECTIVES

1 .0  A  DESCRIPTIO N OF A  F IE L D  EQUATION

Mathematically field equations are those equations relating to a field of 
interest which may be characterized by a certain mathematical equation 
called Laplace's equation. This can be seen here, in rectangular 
coordinates, for a conservative field:

A  - A  . 0

In a non-conservative field, the potential function becomes Poisson's 
equation (further details of which can be found in most of the relevant 
literature). Depending on the physical properties of the field, the 
equation vdiich describes the field may become very complex. The Navier 
Stokes equation of fluid flow (even when simplified by the assumption of 
constant viscosity) is an example of this and can be seen as follows:

DV 
 ̂Dt pg -  Vp +

the derivation of which can be found in White [90] and further details of 
which may be found in the literature. Solution of the Navier-Stokes 
equation of fluid flow yields solutions of pressure and velocity at points 
within the fluid, vital in such applications as weather forecasting and the 
aerodynamic design of high lift aerofoils or turbine blades. The solution 
of the Navier-Stokes equation by finite difference techniques is an example 
of one of the greatest demands made of computers.

page 16



The solution of field equations may be found by three methods: A direct 
mathematical solution; a Finite Element method or a Finite Difference 
method. A direct mathematical solution of complex field equations is not 
possible with present day mathematics. Finite element methods are now 
emerging as a means for the solution of field equations but this work 
concentrates on the finite difference method of solution, as this method 
promises a greater potential benefit in a parallel computer architecture.

2.0 A  PARALLEL SOLUTION OF FIELD EQUATIONS BY FINITE DIFERENCE TECHINQUES

The solution of field equations by finite differences involves covering the 
field of interest with a hypothetical mesh and reducing the field equation, 
which is difficult to solve, to a set of finite difference approximations 
at the nodes of the mesh, which may be solved using data at local nodes 
only. Solution begins by imposing a set of boundary conditions on 
appropriate nodes of the mesh. The classic solution using conventional 
general purpose machines consists of iterative passes of the whole
mesh, a node at a time, until the solution advances to a point where a 
steady state condition is reached. If the problem is dynamic, as in weather 
forecasting, the same procedure must be repeated for different time 
increments. Clearly the sheer number of calculations that have to be made, 
due to the iterative nature of the calculations along with the need to keep 
the finite difference field equations stable, means that the time taken to 
reach a solution on even the largest .supercomputers is appreciable. Trivial 
problems have execution times which can be measured in hours on a typical 
minicomputer.

The process is essentially a series of operations on the whole mesh, 
although each node can be «processed in parallel. The method of solution,

page 17



^ich involves repeated iteration involving updating of various parameters 
at the nodes of a mesh, lends itself to a parallel solution. The inherent 
parallelism of these algorithms coupled with the high performance/cost 
ratio of present processors indicates that a multiprocessor machine built 
specifically to perform these algorithms is feasible. Such a machine has 
the potential of providing a cheap high power field equation solver, but 
because the algorithm is only similar and not identical at each node or 
iteration, a special architecture may provide the best performance.

3 .0  OBJECTIVES

In brief the aim of this workWrts to propose a design for a high performance 
field equation solving parallel conçniter. To gain the experience needed to 
put forward such a design the proposal is to build a prototype system, 
based on current microprocessors, which will perform the task at much lower 
cost than a mainframe conputer. The architecture of such a parallel machine 
should be matched as closely as possible to the method by which algorithms 
solve the field equations. The hardware of the prototype machine should 
ensure that the system does not degrade the potential performance of the 
algorithms. In order to demonstrate the efficiency of the prototype, within 
a limited time span, one set of the many sets of field equations (see 
chapter 4) which could be chosen, will be inplemented on the processing 
element array being proposed. Since the solution of field equations by 
finite differences uses the same basic technique, a purpose built 
multiprocessor for field equations will be able to implement the solution 
of any field equations set.

page 18



4.0 THE CHOICE OF ARCHITECTURE

Using finite differences the updating of the various parameters at each 
node can be achieved by using the values of these various parameters held 
at that node and neighbouring nodes only. Thus, if the field of interest is 
subdivided with each subdivision allocated to its own processing element 
(PE) to perform the updates on the nodes of that subsection of the field, 
the time taken to reach an overall solution will be greatly reduced by 
virtue of the fact that many nodes can be updated in parallel. The 
stability of the finite difference equations being solved may be increased 
by a parallel solution, due to reduced propagation of errors.

An MISD type of architecture was disregarded as an option for the machine 
as it would not offer the required parallel access to the data that is 
required. Of the SIMD types only the array processors would be able to meet 
the requirements. It is this type of architecture that currently dominate 
the area of field equation solution. The inherent synchronous operation of 
this architecture is incompatible with the need for a different method of 
calculating values at the boundary nodes of a problem. This architecture 
would also impose restrictions and a degree of inflexibility in the choice 
and use of the grid on which solutions will be found. SIMD architectures 
are based round a single processor, the performance of the system thus 
tends to be dominated by the power of this processor. Any iitprovement in 
the performance of the system can only be achieved by using a more powerful 
processor and building a larger system. The performance of a MIMD system on 
the other hand can be iiiproved simply by adding extra processing modules. 
An MIMD architecture offers the flexibility required for more general 
solutions but would have to be carefully chosen so as to avoid the many 
degradations that can befall such systems. The degradations reported by 
many workers in MIMD architectures can be attributable to factors of

page 19



communication and shared resources, each of v^ich becomes more or less 
iiïçortant depending on the type of MIMD architecture under consideration.

Of the many types of MIMD architectures available a 4 x 4 array of PEs of 
the MIMD type was chosen for the parallel solution of fields equations. In 
many respects the architecture chosen to implement the parallel execution 
of field equations bears a close resemblance to the architecture suggested 
for the parallel solution of the Navier-Stokes equation in 1977 (see RAND 
[68]). The report contains suggestions for a cell based architecture 
capable of direct parallel confutation of the Navier-Stokes equations; A 
similar machine is suggested by Weiman and Grosch [88] later in the same 
year. In the light of the technological change within the semiconductor 
industry specifically in the area of VLSI, the architecture being proposed 
here, where a PE deals with more than one node (and the data associated 
with it), promises to be an improvement over the system proposed by RAND 
[68]. The architecture chosen is also similar to that of Christ and Terrano 
[21], but the reduced conplexity of both the processing element and the 
connection network being proposed here, are expected to keep any 
degradations in the system to a minimum.

A 4 X 4 array size is large enough to demonstrate the potential of a larger 
array and yet still be cheap enough to build on a limited budget. The array 
is to communicate via Shared Memory blocks with nearest neighbours. Using 
shared memory means that the nodes on the boundary of a PE can be accessed 
with the minimum of overhead, v^ich can occur in some systems which eiifloy 
'test and set' means of access to shared resources. Shared memory also has 
the advantage that the data being accessed is as up to date as possible, 
since the nodes in shared memory are part of the problem mesh within the 
PE. This architecture will not only closely match the algorithms used in 
the solution but also promises to exhibit the least degradation in the

page 20



maximum possible performance of such a system. Adopting this architecture 
also means that:

(i) Data are easily updated and always 
available in the most up to date values by 
a requesting PE;

(ii) The system can be easily expanded.

To provide the necessary input and output for the array a Master Processor 
(MP) is interfaced to one edge of the array. Because of the unsteady nature 
of the finite difference equations the MP will also serve as an overseer as 
calculations progress for the more conflex forms of field equation. 
Addition of the MP gives rise to two distinct types of communication which 
may be seen in the system: Global and Local communication. These are 
defined as follows :

Global Communication - data passing through SM whose
destination or origin is the MP;

Local Communication - cross border nodal data accesses
passing between PE.

The proposed MIMD system can be seen in figure 2.1 which shows the PE array 
and the Master Processor. Ideally the MP would be able to communicate 
directly with each of the PEs, however the increased cost and the extra 
complexity this would cause in the basic PE board, coupled with the fact 
that global communication will be minimized, lead to the adoption of the 
architecture of figure 2.1. The adopted architecture does mean that the PEs 
nearer the MP have a greater commitment to global communication since they

page 21



MP

SCHEMATIC DIAGRAM OF THE 
MULTIPROCESSOR

Processing elements labelled 1— 16 
Master processor labelled MP

FIGURE 2. 1 PROPOSED MIMD ARCHITECTURE



have to act as the link to the MP for all the PEs more remotely connected 
from the MP than itself, and it is for this reason global communication 
will be minimized. The effect of excessive amounts of global communication 
can be seen later in this chapter. The choice of an asynchronous system 
means that all PEs are as active as possible, and none are halted due to 
contentions taking place elsewhere in the PE array.

5.0 THE POTENTIAL SPEEDUP OF THE SYSTEM

Following the work of Baxter and Holme [13] the potential speedup of the 
multiprocessor may be found by consideration of the probabilities of 
contentions and consequent lockouts in the system. If the speedup is 
defined as the increase in processing power over that of a single 
processor, then the effects of local and global communication on the 
potential speedup of the system can seen to be dependent on three factors:

a. The way data are stored;
b. The number of nodes each PE handles and the 

number of neighbours surrounding an element;
c. The amount of global communication.

These factors are now analysed such that a model can be developed and from 
this the potential speedup of the multiprocessor can be estimated, and 
it s performance compared with other systems.

5.1 Die way data are stored

Consider an array of n x n PEs each of which may be referenced by an I and 
J coirçKDnent of a hypothetical grid covering the array (figure 2.1) and let

page 22



the number of grid points of a symmetrical 2-dimensional field problem that 
each PE is dealing with be p x p.

A general PE has 4 neighbours (N,E,S and W) each of which must have access
to the nodes on the boundary of that processing element. Access to these
points is provided by storage in the shared memory (SM) blocks, where 
boundary nodes to the East and South of a PE are held in SM blocks on the 
same printed circuit board as that PE, and the boundary points to the North 
and West are held in the SM blocks of the PE in that respective direction.

The way in which the problem mesh is partitioned and allocated to each PE 
means that the corner nodes of a PEs local mesh become a special case, 
because for an update to be performed the node needs to be accessed by 
three PEs and not at the most two as in the case of all of the other nodes. 
This special case can be seen in figure 2.2, which shows (schematically) 
the intersection of the local meshes of four PEs and the points usually 
required for an update to be performed. The ability to share memory between 
two PEs is relatively sinple but expanding this to cope with three PE, which
would be needed for the corner points of the p x p array of points would
not be justified on the basis of a cost/usage factor. Instead the corner 
nodes are stored in local memory and copied to the appropriate areas of the 
shared memory block for access by a neighbouring PE. This can be seen in 
figure 2.3, and results in a maximum of two PE requiring access to any one 
node.

5.2 The number of nodes and the number of neighbours of a PE

Given that the data are stored as above and that each PE deals with p x p 
points then the probability of a PE operating in a specific SM block, given 
that it is not globally communicating, is sinply the ratio of SM data

page 23



w M O
a  c  o
lo O  CO

Q  Q  PQ

CO
o

0
CT*
0)

(Ü

GO U
o  <

W W W  
(Ü CD (Ü ^  ^

^  Ë.cr*
CD CD

^ u u
Q  O  PQ

tiO tuo tio
a  a

♦ fH *1—4 *1—4+;-+-) 4-)
d  cd
T) ij

P h P h P h
A A A

§
Q
IZi
D
O
PQ

H
Ph

GO

£aa

ill
i i

| 8|
O U J K

siL
° q K
§ 0

CJ -J U j U j U j

f s

•-I Uj
. 1̂1

D
g g

i |
§  O

I I
0: lu ̂

8  m  Lu 
(N

I

U)



A/c
SHARED
MEMORY

A/B
SHARED
MEMORY

PROCESSING ELEMENTPROCESSING ELEMENT
Asi Csi

LOCAL MEMORYLOCAL MEMORY

CS2

DUPLICATE STORAGE

C/D
SHARED
MEMORY

CS3

PROCESSING ELEMENTPROCESSING ELEMENT

LOCAL MEMORYLOCAL MEMORY

B/D
SHARED
MEMORY

PROCESSING ELEMENT 
BOUNDARY

THE INTERSECTION OF FOUR PROCESSING ELEMENTS SHOWING 
THE DUPLICATE ST ORAGE OF CORNER NODES SUCH THAT EACH 
NODE IS ONLY ACCESSED BY A MAXIMUM OF TWO PROCESSING 
ELEMENTS. THE HOST AND ONE NEIGHBOURING PROCESSING 
ELEMENT,

FIGURE 2.3 STORAGE OF CORNER NODES TO 
ENSURE ACCESS BY TWO 
PROCESSING ELEMENTS ONLY



points/total data points. This ratio is also dependent on the number of 
adjacent PE since this alters the amount of SM a PE will need to use. These 
probabilities can be seen in table 2.1.

1 No. of neighbours p(in a SM block given the PE | 
is not globally active) j

1 2 P/(P*P+1) 1
1 3 p/(p*p4-2) 1
1 4 p/(p*p+4) 1

TABLE 2.1 Probabilities

Let PS(N) denote p(in a SM block due to calculation) if the processor has N
neighbours then, from the following the need to look at the amount of

pglobal communication is parent:

p(in an SM block 
due to calculation)

p(in an SM block 
given the PE is 
not globally 
active)

X p(not globally active)

5.3 Global communication

Let Cp be the fraction of the time spent processing by the most remotely
connected PE from the MP along one row of the PE array and let Cc be the
fraction of time spent in global communication vdiere Cp+Cc=l. If PC(I,J,K)

theis defined to be the probability of ̂processor at reference node I, J using 
the SM block in direction N,E,S and W,(K=1 for North, K=2 for East, K=3 for 
South etc) due to global communication, since global data is always 
transferred E-W this will always be zero in the case of SM blocks N and S 
hence:

Needs a correction for p=l.

page 24



PC(I,J,2) = PC(I,J,4) = J*Cc*0.5 (EAST and WEST)
PC(I,J,1) = PC(I,J,3) = 0 (NORTH and SOUTH)

If NEIG(I,J) is then defined as being the number of neighbours of a PE at 
the grid reference I,J it can be seen that:

p(processor I,J p(in SM block p(in SM block
is in a particular = due to calculations) + due to global 2 
SM block ) communication)

= Cp*PS( NEIG(IfJ) ) + PC (I,J,K)

= (l-Cc)*PS( NEIG(I,J) ) + PC (I,J,K)
5.4 Potential speedup

The ability to calculate the probability of being in any SM block means 
that it is possible to calculate the probability of a contention in a
SM block, by finding the likelihood of two PEs requesting use of the same 
block of SM at a given time. If this data is summed for all possible 
contentions over the architecture it is then possible to calculate the 
number of lockouts there are likely to be at a given time. A lockout is the 
consequence of a contention over a shared resource since only one PE may 
access the shared resource at a time, the PE which is made to wait until 
the other PE is finished is said to be locked out. Lockout data gives a 
measure of the efficiency of the system, since this is the only cause of 
degradation in the hypothetical system, from which a speedup figure can be 
found. A program (microfiche listing 1) based on this model using 
probabilities was developed to enable speedup data to be found. Speedup 
data was found for a range of global Communication factors and for a range 
of architecture sizes. The results may be seen in figure 2.4, where if

2 Again a correction factor is needed for PEs which only communicate 
globally to the East.

page 25



LOCAL BAND

CL «

JS s> 3B3» m «s i« 19 »

No. of processors
ESTIMATED BAND OF OPERATION (a) WITH A GLOBAL COMMUNICATION 
FACTOR OF 0 k

LOCAL BAND

QLULUCLen

90 99 «04ft99 4039 9019 309 100

(b)

No. of processors
ESTIMATED BAND DF DPERATION 
MITH A GLOBAL COMMUNICATION 
FACTDR OF 5 H

FIGURE 2.4 THE EFFECT OF GLOBAL AND 
LOCAL COMMUNICATION



ÛL «
a  »

l o c a l  b a n d

ï » so B se0 I# IS a B «
No. of processors
ESTIMATED BAND OF OPERATION 

(c) WITH A GLOBAL COMMUNICATION 
FACTOR OF 10 %

CL « ID O  »

(d)

l o c a l  b a n d

a  B  B  «0 *s so

No. of processors
ESTIMATED BAND OF OPERATION 
WITH A GLOBAL COMMUNICATION 
FACTOR OF 15 "4



global communication is minimized the expected speedup factor for a 16PE 
system is 15. Figure 2.4 displays the dramatic effect of different levels 
of global communication in degrading potential speedup of the system. It is 
clear that global communication must be kept to a minimum if significant 
speedups are to be obtained. The effect of local communication is displayed 
as a band, in which the system will operate at that level of global 
communication.

6 .0  TEÎE EXPECTED PERFORMANCE

The level of global communication which will be needed to properly oversee 
the system is dependent on the problem being run, but is not expected to be 
above the level vtiere Cc=10%. Performance figures based where possible on 
bench marks, and where not on similar criterion, were calculated for six 
commercially available machines ranging from microcomputers to 
minicomputers. The expected performance of the multiprocessor based on the 
estimate of Cc=10% was also calculated. Figure 2.5 shows these performance 
figures where it can be see that the machine is expected to operate out of 
the main band (shown in light shading) of commercially available machines 
with a performance better than that of a minicomputer and at a fraction of 
the cost.

7 .0  SUMMARY

Calculations of the effects of inter-processor communication and process 
control have shown that the degradation of performance reported by many 
workers can be avoided by careful design. An array of asynchronous parallel 
PEs of the Multiple Instruction-stream Multiple Data-stream (MIMD) type, 
dedicated to the solution of field equations, with communication limited to 
nearest neighbours, would not only closely match the algorithms but also

page 26



luœ3
0
c
m
u

1oc
2
QC
ÿ

0

9
8
7
6
5
4
5 
2 

1

. €>PE 3VSITEM
•

-X yxx; l l /7 8 0

•

X OL.r
m  ■
ÆTTJ f124

- a #
c=- X IBI
CTRUM:-

I  PC

lo' lo' lo’ 10‘ lo' lo' lo' lo'
COST (Log scale) £

FIGURE 2.5 THE EXPECTED PERFORMANCE 
OF THE MULTIPROCESSOR



exhibit very little degradation in the maximum possible performance of the 
array. The results from the prototype system should therefore display 
linear speedup for increasing numbers of processors, and thus pave the way 
for a more powerful array to be constructed.

Performance tests are expected to show that microprocessors in parallel can 
achieve the same processing power as that of a powerful minicomputer, at a 
fraction of the cost. More powerful processors than those employed are 
available (eg. the Inmos Transputer) and are expected to yield a field 
equation solving machine many times more powerful than the supercomputers 
in use today, at a price that could be afforded by any company involved in 
the area.

page 27



CHAPTER 3



CHAPTER 3

HARDWARE

1.0 INTRODUCTION

The hardware implementation of a multiprocessor for field equations 
involved the construction of a 4 x 4 array of PEs, along one edge of which 
was interfaced a Master Processor for overseeing purposes. This can be seen 
schematically in figure 3.1 (reproduced from figure 2.1 of the previous 
chapter). Interfacing the Master Processor to the processing element array 
necessitated the construction of an interface board. A status monitor board 
was constructed to enable the status of the PEs within the array to be 
viewed dynamically. The hardware relating to a PE board, the Master 
Processor interface board and the status monitor board is described in this 
chapter.

2.0 THE PROCESSING ELEMENT ARRAY

The method proposed in the previous chapter^ for the optimum solution of 
field equations by finite differences^ involves equal portions of the 
problems being allocated to each PE of the multiprocessor, with the nodes 
at PE boundaries held in shared memory boundaries. To implement this a 
4 x 4  array of PEs was chosen as it contains enough PEs to be 
representative of a larger system and still be constructed with acceptable 
costs. A general PE needs to be able to access the boundary nodes of a
problem held in shared memory to the North, East, South and West of itself. 
Each PE resides on its own printed circuit board (pcb)^with shared memory 
to the East and South being'located on the PE board, Wiile shared memory to

page 28



the North and West are held on the respective neighbouring PEs. Two ideas
for the physical construction of the multiprocessor array were considered,
one involved construction of a mother board into which all the PEs would be
plugged and the second in which all the connections would be made using
ribbon cable. Due to both the complexity and cost of a mother board system,
a system using ribbon cable was adopted. The 4 x 4  array of PEs can be seen
schematically in figure 3.1. Figure 3.1 also shows the numbering scheme for
each of the PEs, this unique identification is held in the Read Only Memory 

2of a PE and is used in the packet switching of messages between the Master 
Processor and the array. The orientation of the array elements with
respect to the Master Processor is also shown. The physical PE array can be 
seen in figure 3.2, where the slots for the boards can be seen to be offset 
from each other in the same row to minimize the connection distance between 
PE.

The PE pcb thus has four ports to the North, East, South and West. The 
connector chosen was a 34-way I DC type, which gave the required number of 
connections for shared memory accesses, control signals for shared memory 
access and interrupt signals to pass between PEs. The position of these 
ports can be seen schematically in figure 3.3, their actual position can be 
seen in figure 3.4 (which shows the position of the I.C.s) and in figure
3.5 which shows a populated board. The pin connections for ports where 
shared memory is resident on the board and off the board can be seen in 
appendix A.

The ratio of shared memory to the local memory (designated for data usage) 
within a PE was chosen to make the solution of non trivial sized problems

 ̂The pcb was designed on the Racal-Redac REDBCARD system.
2The unique identifier is a*byte quantity, stored at $FFF4.

page 29



V

u

14
MP

SCHEMATIC DIAGRAM OF THE 
MULTIPROCESSOR

Processing elements labelled 1— 16 
Master processor labelled MP

FIGURE 3.1 THE PROPOSED SYSTEM



FIGURE 3.2 THE PHYSICAL MULTIPROCESSOR



H OT K  W g
UJ
§

i
n
ri

I

(/]



U2S U43U36 UlS

U54U52U16 TëâU83

l£3 LOS U40USD IMS

US5 U51IMS

L02̂ LM7 UM

USU12

UlSU3SU26 U13

U17LCDSPII

uei U18U39U33l U31SP3

ENGINEERING DEPT. LEICESTER

COMPONENTS PREFIXED WITH AN'LED' ARE LIGHT EMITTING DIODES 
COMPONENTS PREFIXED WITH A 'U' ARE INTEGRATED CIRCUITS 

RES IS THE POSITION OF A POSSIBLE RESET SWITCH
COMPONENTS PREFIXED WITH A P' ARE CONNECTORS
COMPONENTS PREFIXED WITH A C' ARE CAPACITORS
COMPONENTS PREFIXED WITH A R' ARE RESISTORS

SP1-SP3 ARE SPARE OIL POSITIONS

FIGURE 3.4 POSITION OF COMPONENTS ON 
A PROCESSING ELEMENT



FIGURE 3.5 AN ACTUAL PROCESSING 
ELEMENT



possible, avoiding the size of the problem being dictated by either the 
amount of local memory or the amount of shared memory. The amount of shared 
memory in the system was increased from the minimum necessary to ensure 
that it is also capable of acting as the message passing mechanism, 
described in chapter 4.

The circuit diagrams which make up the circuitry of a PE can be seen in 
appendix B. The memory map of the PE is as follows:

$F000 ROM (containing the multiprocessor 
operating system) 4K

$D000 PROGRAM RAM 2 
$5000 PROGRAM RAM 1 
$A000 INTERRUPT MECHANISM 8 bytes
$9000 SHARED MEMORY (WEST)
$8000 SHARED MEMORY (SOUTH)
$7000 SHARED MEMORY (EAST)
$6000 SHARED MEMORY (NORTH)
$4000 DATA RAM 3 
$2000 DATA RAM 2 
$0000 DATA RAM 1

j 2x8K

4x 4K

3x8K

The identifiable functions of each PE necessary for the implementation of 
the memory map and the functions provided at these memory mapped locations 
are described in the following sections. The functional blocks of the PE 
are listed here and described more fully below:

2.1 Processor and clock;
2.2 Local memory;
2.3 Decoding (chip select);
2.4 Interrupt mechanism;
2.5 Shared memory;
2.6 Contention unit;
2.7 Self monitoring function.

page 30



2 .1  P ro c e s s o r  and  c lo c k

The processor chosen for the multiprocessor system was the Motorola 
WASMC6809E. This arguably the most powerful eight bit microprocessor on the 

market at the time of the system design/ it provided all the functions 
necessary for the application to which it would be put and at a reasonable 
cost. Each PE generates its own clock, making the 16 PE array an 
asynchronous MIMD architecture. The processor requires two quadrature 
clocks to be fed to it, in the MC6809E these are termed the E and Q clocks. 
The E and Q clocks in the PE are derived from dividing down a high 
frequency clock in a counter. This counter (seen in appendix B) may be 
loaded with preset data, this provides the ability to freeze the clocks to 
the processor for short periods of time (Hitachi [47]). This is the means 
by which the contention units (for shared memory arbitration) provide the 
function for which they are designed (see section 2.6).

2 .2  L o c a l memory

There are two types of local memory resident on a PE pcb vdiich can only be 
accessed by that CPU: Random Access Memory (RAM) and Read Only Memory 
(ROM). 4K bytes of local ROM are provided (from $FOOO-$FFFF) in which the 
multiprocessor operating system is held. 40K bytes of local RAM is 
provided, which is allocated to enable 24K bytes of data and 16K bytes of 
program. Data and program RAM are physically separated in this system to 
facilitate the sharing of data with other PE. Providing a definite area in 
which programs to be run can be loaded, makes it possible to share code 
with the multiprocessor operating system relatively easily. All the RAM in 
the system is static RAM: This reduces the number of microchips on the PE 
pcb since no refresh circuitry (for dynamic RAM) is needed; the static RAM 
is easier to use in a shared memory application; The operation of dynamic

page 31



RAM may have been affected by constant halting of clocks (due to the 
contention circuitry) and static RAM for the system was available 
relatively cheaply. The use of static RAM is not a feature of the method 
for sharing memory but in this particular design any possible causes of 
problems were eliminated if they were not fundamental to the design.

2 .3  D e c o d in g

Since the memory map is decoded into 4K byte segments the chip selects
necessary to decode the memory map of the PE are provided by a four to
sixteen line decoder, which may be seen in appendix B. The shared memory
chip select signals are obtained by further decoding these signals with
simple logic gates and an additional address line from the processor. This arc
further decoding ^  necessary since the 4K bytes contained in each shared 
memory block is split into two 2K byte memories.

2 .4  I n t e r r u p t  m echanism

An essential feature of the architecture is the ability of the PEs to pass 
information of various kinds around the system efficiently. This is 
performed by packet switching which is described in chapter 4. The 
interrupt mechanism is an integral part of the message passing ability, 
hence interrupts to PE to the North, South, East and West of the PE are 
provided. The area of the PE memory map in which interrupts are located is 
further decoded as follows:

$A000 RESET INTERRUPT FROM NORTH 
$A001 RESET INTERRUPT FROM EAST 
$A002 RESET INTERRUPT FROM SOUTH 
$A003 RESET INTERRUPT FROM WEST 
$A004 INTERRUPT PE TO NORTH 
$A005 INTERRUPT PE TO EAST 
$A006 INTERRUPT PE TO SOUTH 
$A007 INTERRUPT PE TO WEST

page 32



To interrupt a PE in a given direction a read or write is performed to 
address $A004 for North, $A005 for South etc.. This is decoded, and causes 
the output of a latch to be held in the low state. This low state is seen 
by the interrupt (IRQ) line of the PE in the required direction, causing an 
interrupt request. The IRQ line is reset to the normal high state when the 
interrupted PE reads or writes in a similar fashion to memory location 
$A000 for North, $A001 for South etc., in the direction of origin of the 
interrupt request.

2.5 Shared memory

The shared memory blocks are buffered to enable access by two PEs. Address 
buffers need only be uni-directional (ie providing access from one 
processor to the memory) while data buffers need to be bi-directional (ie 
providing access to/from the memory by a processor in order for a correct 
R/W to occur), this arrangement can be seen in appendix B. To ensure access 
by only one PE at a time the buffers to the memory are enabled using the 
outputs of an SR latch. The positive latch output enables one set of 
buffers and the negative output the others, this ensures that one enable 
signal is always the opposite of the other and thus access by one PE only. 
It is this latch, one for each of the shared memory blocks to the East and 
South of a PE, which defines the ownership of the memory as belonging to 
the PE whose address buffers are enabled.

2.6 Contention circuitry

The need for a contention circuit is evident, it provides the arbitration 
needed for the use of the memory since a shared resource such as shared 
memory may only be used by one processor at a time, if the data being

page 33



written or read to or from the memory is to remain uncorrupt^The function 
of the contention circuit is to resolve the critical problem of two 
processors simultaneously requesting the use of a shared resource and the 
problem of one PE requesting the memory vdiile it is in use by another PE.

Several prototypes of contention circuit were considered, including one by
Thomas [85] incorporating monostables. This was dropped in favour of a more
efficient circuit in terms of the time taken to switch the memory, that of
the contention circuitry of Warrington and Thomas [86]. In this design each
processor which requires access to a particular shared memory has a
Contention Unit (CU) associated with that resource. A general PE can then
be seen to have four such units: North, South, East and West one of which
can be seen in figure 3.6. The contention circuitry ensures ownership of
the memory for a double byte read/write and even read/modify/write cycles,

Cso that 16 bit integers can be passed without problems. The i^IRE signals 
from two CUs of the PEs requiring access to a particular piece of shared 
memory are fed into a simple SR latch. The output of this latch defines 
ownership of the shared memory. Only a PE which owns the memory may have 
access to it. If shared memory is owned by the processor which makes a 
subsequent access it must be emphasised that the contention circuitry is 
almost transparent to the request.

Using signals fed back from the memory ownership latch, the contention 
circuitry is able to deal with the following problems ar ising from the use 
of shared memory, discussed in more detail below:

a. Access of shared memory not in use by, 
but owned by, another PE;

b. Access of shared memory by a PE Wiile it 
is already being accessed by another PE

page 34



CO

g

GO

O)
CO

O

CO

CO

-JUl
m

3O

o

I

!i
if
CO
n

I



c. Simultaneous access of the shared memory 
by two PES.

2 . 6 . 1  A cc es s  o f  s h a re d  memory n o t  i n  u s e  b y ,  b u t  owned b y ,  a n o th e r  PE;

In the case where a PE requests the use of shared memory which it does not
own it is made to wait, using the CONTENTION_EXTEND line which halts the
processor, until the latch dictating memory ownership is switched for use

Cby the requesting PE. The i^UIRE signal^which switches the memory ownership 
latchy is sent only when the PE which owns the memory at the time of the 
request is in the correct part of its clock cycle to release the memory, 
effectively synchronizing the two PEs v^en a memory switch occurs. In an 
asynchronous system^ such as the 16 PE array^ the synchronization between 
processors using the CU proposed by Warrington and Thomas fails because the 
CU allows synchronization to take place too near to the rising edge of the 
E clock of the PE which owns the memory when the memory is being requested 
by another PE. This leads to the memory being lost and regained within one 
processor cycle, and consequently at best a loss of data occurring and at 
worst an oscillation of CONTENTION_EXTEND signals between PEs leading to a 
crash of one or both of these PEs. The problem can be solved by the 
modification proposed by Holme and Warrington [49], which siitply shifts the 
point at which synchronization takes place away from the rising edge of E. 
The PE pcb was designed using the CU proposed by Warrington and Thomas, 
with the modification proposed by Holme and Warrington implemented on the 
PE pcb as can be seen in the circuit diagrams of appendix B.

Figure 3.7 shows the effect of the contention unit in this case, Wiere 
memory access is delayed while memory ownership switches^. The time taken 
for the switching can be seen as a glitch on the CONTENTION_EXTEND signal

page 35



BBSf
top trace : ŒWTENTION_EXTEND signal 
bottom trace: Q clock

oscilloscope settings: 2 V/division (both traces)
2 ^s/division (time base)

FIGURE 3.7 SHARED MEMORY SWITCHING

top trace : OONTENTI(XJ_EXTEND signal 
bottom trace: Q clock

oscilloscope settings: 2 V/division (both traces)
1 ^s/division (time base)

FIGURE 3.8 SHARED MEMORY CONTENTION



which extends the clock cycle (only the Q clock is shown) by the switching 
time.

2 . 6 . 2  A c c e s s  o f  s h a re d  memory b y  a  PE v A ii le  i t  i s  a l r e a d y  b e in g  a c c e s s e d  b y  

a n o th e r  PE

In this case the CU halts the PE trying to use the memory while it is used 
by another PE by taking CONTENTION_EXTEND low until the memory is 
relinquished by the PE which owns the memory and switching, as described 
above, can then take place. This can be seen in figure 3.8, where the 
CŒTTENTIŒJ_EXTEND line can be seen to hold the clock for two normal clock 
cycles corresponding to an integer write by the neighbouring PE with access 
to the shared memory. The PE clocks are halted for the duration of the 
CONTENTION_EXTEND signal and the subsequent switching time of the memory, 
the Q clock of which can be seen in the figure.

2 . 6 . 3  S im u lta n e o u s  a c c e s s  o f  th e  s h a re d  memory b y  tw o  PE

In the case of a simultaneous access the CU resolves the situation by
granting access to the PE which currently owns the memory.

2 . 7  S e l f  m o n ito r  f u n c t io n

Each PE board has circuitry which decodes the fetch of an interrupt vector 
and the reset of an interrupt, v^ich can be seen in appendix B. Four
signals are provided and fed to the small edge connector between shared 
memory ports. The fetch of an interrupt vector corresponds to global

 ̂ The photograph was obtained by running a program in each of the PEs 
having access to a shared memory as fast as possible.

page 36



communication of some kind taking place. In the early stages it was hoped 
that these signals could be fed directly into a digital voltmeter so that 
readings of the percentage of time spent in global communication could be 
dynamically obtained. This was shown to be possible in an early 2 PE 
system, but due to the reset of an interrupt signal in a PE of the 
multiprocessor having to be performed as quickly as possible, so that other 
interrupts are not missed, would mean that the signals resulting from the 
status monitor circuitry would not be representative of the communication 
within the PE. For this reason these signals are effectively redundant and 
are not used in the 16 PE prototype system.

3.0 THE INTERFACE BOARD

Figure 3.1 shows the Master Processor (MP), which^ as has been stated, is
interfaced to one edge of the two-dimensional array of PEs, using the
shared memory connections already present on the board in the East
direction (with respect to a PE). The MP provides the interface from the PE
array to the outside world. It provides an environment where programs for
the array can be developed, a means to run them on the array, and then to
retrieve any results (vdiich may be stored on disk for post processing if
necessary). Other possible connections of the MP to the PE array were
possible but this method was viewed as the best compromise Wien considering
the complexity of the connections and the ability to oversee the functions
of the PE array. The MICROBOX II was chosen as the MP for the
multiprocessor array as it is based on the 6809E microprocessor, which
would make it easy to interface to the 16 PE array, and was relatively
cheap. For the Master Processor to communicate with the required amount ofthe
shared memory in each o f P E s to which it would communicate, using the 
interrupt driven message passing mechanism described in the following 
chapter, the interface board needed to provide the following functions:

page 37



(a) access to 16K bytes of shared memory (4K in each of 
the PEsto which it was connected

(b) an interrupt mechanism, enabling interrupts to pass 
in either direction between the master processor and 
the PEs to which it would communicate.

3.1 Realisation and implementation of the functions of the interface board

The MICROBOX II manual (Reference [63]) shows that the user expansion port 
of the MICROBOX II has two signals 101 and 102, decoded as follows:

$FF20-$FF3F (inc.) 101 
$FF40-$FF5F (inc.) 102 .

Each shared memory port of the PE has 4K Bytes of memory associated with 
it. The MP is interfaced to 4 PES along one side of the PE array and 
therefore needs to be able to access 16K Bytes of memory. The MICROBOX II 
provides 5 address lines at the user expansion port, this, coupled with the 
decoded signals 101 and 102,would allow access to only 64 Bytes of RAM. The 
interface board was then constructed to enable the MP to access the 
required amount of memory. The circuit diagrams for this can be seen in 
appendix C, which also lists the components, the components position on the 
board and the pin outs of the connectors.

The 16K bytes of shared memory which the interface board makes available to 
the MICROBOX II (4K in each of the PEs to which it is interfaced) is 
accessed through a 32 byte wide window. To access the 16K bytes of 
contiguous memory requires address lines A0-A13 (inc.). Address lines All,

page 38



A12 and A13 are used (as indicated in figure 3.9) to identify the 2K byte 
block of shared memory block in Wiich a request will be made. The shared 
memory has the address lines A5-A10 (inc.) provided by latches at $FF28, 
into which the base address of the 32 byte window can be written (using the 
101 decode) from the software of the MP. Locations within the 32 byt' 
window are accessed through locations $FF40-$FF5F (inc.), which provide 
address lines A0-A4 (inc.), using the 102 decode. In the multiprocessor 
software the integer variable SM_POINTER is defined in memory to be at 
$FF28, which makes the setting of the latches a relatively easy task.

Again an interrupt mechanism is needed for packet switching
to take place. The sending and resetting of interrupts from the MP is 
achieved by using the decoded signal 101 to activate a 3-to-8 line decoder 
the outputs of which are fed into SR latches, as can be seen in appendix C. 
The signal is decoded as follows which enables any of the four PESto which 
the MICROBOX II is interfaced to be interrupted, or an interrupt from any 
of them to be reset;

$FF20 ....
$FF21 ....
$FF22 ....
$FF23 ....
$FF24 ....
$FF25 ....
$FF26 ....
$FF27 ....
$FF28

II SMPOINTER
$FF29
$FF40

II 32 bytes of SM poin
II by SM_POINTER

$FF5F

page 39



SHARED
MEMORY
BLOCK
ID

4K BYTES ACCESS

1 r

A15 A14 A13 A12 All AID A9 A8 A7 A6 A5 A4 A3 A2 A1 AO
X X

J L
SM_POINTER 
AT $FF28

32 BYTE WINDCW 
$FF40-$FF5F

X = value can be set to anything

FIGURE 3.9 ADDRESSING THE LATCHES OF THE 
INTERFACE BOARD



4.0 TEIE STATUS MONITOR BOARD

The status monitor board consists of a number of I.C.s and a 4 x 4 array of 
tri colour Light Emmitting Diodes (LEDs), and has proved invaluable in the 
debugging and maintenance of the 16 PE array. Each LED corresponds to a PE 
within the array, the colour of the LED reflecting the status of the PE 
(seen in table 3.1).

j colour status of PE 1

I yellow normal running j

1 red in a synchronize state j
or CRASHED 1

I green servicing an interrupt |
(ie active in global |
communication) |

TABLE 3.1 LED status indicator

The signals which make the decode of the PE status possible are the Bus 
Available (BA) and Bus Strobe (BS) pins of the MC6809E. The way in which 
the processor status may be derived from these signals can be seen in the 
Hitachi microprocessor data book [47]. In order that the signals arising 
from global communication can be made visible on the LEDs they are 
stretched by monostables on the board to approximately 0.5s duration. The 
circuit diagrams for the status monitor board can be found in appendix D, 
which also lists the components, the position of the components on the 
board and connector details.

page 40



CHAPTER 4



CHAPTER 4

THE SOFTWARE

1 .0  INTRODUCTION

The 16PE machine has been designed and built for the purpose of solving 
field equations, as described in chapters 2 and 3. The chapter first
describes the programming language (PL/9) in which all of the 
multiprocessor software is written. The choice of the bench mark algorithm
for the tests necessary to display the speedup of the system and the means
by which this algorithm is coded for use on the multiprocessor is then 
described. Knowledge of how the bench mark software implements the solution 
algorithm of the problem, should then help in the understanding of the 
system software, which implements the input, output and running of a
problem on the multiprocessor hardware. The system software consists of the 
multiprocessor operating system which runs in each of the PES of the 
multiprocessor, and an overseer program running on the Master Processor, 
both of which are detailed at the end of the chapter.

2 .0  THE PROGRAMMING LANGUAGE ( P L /9 )

PL/9 has been specifically designed for 'low level' control applications 
using the Motorola MC6809 microprocessor and as a result it takes full 
advantage of the architecture of this powerful processor; as no trade offs 
have been made to make the 'core' of PL/9 programs compatible with other 
processors. Library routines of all required functions such as 
input/output, floating point arithmetic and number conversion routines, are 
available and can be INCLUDED in a PL/9 program at any time.

page 41



PL/9 is a procedural language which makes use of BYTE, INTEGER and REAL 
Variables, each of which may be defined globally (visible to all 
procedures) or locally (visible only within a procedure) as required by a 
program. Variables can also be defined to be AT a specific memory location, 
making writing to memory mapped peripherals relatively easy. Memory 
locations may also be defined as 'read only', enabling constants to be used 
anywhere in the program and accessed by a meaningful variable name. More 
detailed information about all aspects of the language may be found in 
Wind rush [92], Windrush [93] and Wind rush [94].

The interactive development system offered by the co-resident PL/9
editor/compiler/tracer runs under the FLEX disc operating system which
offers a solid base for developing programs. The development system (a
MICROBOX II, a MC6809E based microcomputer) has all the facilities needed wKiKI* Hie
to A PL/9 the language which is ideally suited to the programming of the 
multiprocessor system.

3 .0  BENCH MARK SOFTWARE FOR SPEEDUP FIGURES AND COMPARISON WITH OTHER 
MACHINES

3 .1  Laplace'S equation

One of the simplest field equations is Laplace's equation:

+ A  . 0

where <|> is some property of a field in a two-dimensional xy plane. For a 
field of interest (or mesh) consisting of p x p nodes, the solution of

page 42



Laplace's equation by finite differences involves placing known boundary 
conditions in the appropriate nodes of the mesh (usually at the mesh 
boundaries) to define the area of interest. If finite difference
approximations to the above equation are then made for the field property <f> 
at the nodes of the mesh, the nodes of which may be referenced by an i and 
j vector^then Laplace's equation becomes:

~  - 2+i,i + _  0

Ax Ay ;

if Zbc = Ay = a constant throughout the mesh, then the property <f> at 
reference node (i,j) can be expressed such that:

*i,i “ 0-25 ^ * +i+l,j * > •

With the boundary values of the mesh already prescribed, Laplace's equation 
can thus be solved by repeated passes over the mesh continually updating 
the nodes within that mesh with the average value of the nodes around it, 
where the new value of <!>, that of is given by:

♦i,j = 0-25 + Clj + ) .

This iterative method of solution can continue until the error at each node 
reaches an acceptable value. Faster methods of obtaining convergence do 
exist, but for the purposes of a bench mark this method is adequate. The 
bench mark Laplace problem consists of a square mesh problem with
prescribed boundary conditions (as can be seen in figure 4.1). The physical
problem may be viewed as two dimensional heat conduction where the field 
quantity <|> can be viewed as the teirperature across a square metal sheet, 
whose initial teuperature is 1.1° C which then has a constant heat source

page 43



B B B B B B B B B B B B B B B B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B A A A A A A A A A A A A A A B
B B B B B B B B B B B B B B B B

A TYPICAL SQUARE MESH PROBLEM.
IN THE CASE OF THE BENCH MARK PROBLEM THE 
BOUNDARY NODES (B) OF THE PROBLEM ARE 
INITIALISED TO THE VALUE 9, AND THE MID 
POINT NODES (A) ARE INITIALISED TO THE 
VALUE 1.1 .

FIGURE 4.1 THE SQUARE MESH PROBLEM



of 9° C placed at its boundaries. Thus in the bench mark problem all the 
boundaries of the problem are set to the value 9 and the internal nodes to 
1.1. The solution of the Laplace problem will thus result in the value 9 in 
all nodes of the problem mesh. This seemingly trivial problem is 
nevertheless representative of the way field equations are solved by finite 
differences, and it is for this reason the problem has been chosen as the 
bench mark for the tests on the PE array. The choice of the value to Wiich 
the internal nodes are initialized is arbitrary, but here it is chosen to 
give appreciable run times for the multiprocessor system and is 
consistently set to this value in all the programs of this chapter, to 
enable comparisons between the performance of different systems to be made.

The Laplace solving algorithm can be seencoded in FORTRAN for PRIME and VAX 
systems in program "LAPLACE" (microfiche listing 2); in FORTRAN for an 
OLIVETTI M24 in program listing 1 and in PL/9 for a MICROBOX II in listing 
2. Where possible the coding of the problem makes use of the intrinsic 
ability of the host machine to handle two-dimensional arrays, with all data 
storage taken care of by the compiler. PL/9 does not support 
multi-dimensional arrays, these are in^lemented on the MICROBOX II using 
the method suggested in WINDRUSH [92], [93] and [94].

3.3 Inqplementation of a Laplace solver on the multiprocessor

The solution of the Laplace problem on the multiprocessor requires a 
two-dimensional array to be stored in different and non-contiguous areas of 
memory. Most nodes within a problem mesh are stored in local memory, but 
because each processing element (PE) shares the nodes at a PE boundary with 
a nearest neighbour, such nodes must be stored in shared memory. As was 
discussed in chapter 2 a special case of storage exists Wiere a "corner 
node" needs to be stored in three different areas of memory, any

page 44



inplementation of a Laplace solving algorithm on the multiprocessor must 
take this into account.

If the number of nodes in a problem was always constant then it would be 
possible to construct an architecture in which the hardware would map the 
two-dimensional array directly onto the appropriate piece of memory. Since 
the architecture of this multiprocessor system has been designed to solve a 
range of problem sizes, some other means of mapping the two-dimensional 
data onto the correct piece of memory must be found.

In the present case a procedure, called the 'get_address' procedure^ was 
written. Before any access of data from the problem mesh, the i and j 
vectors of the node are fed to the 'get_address' procedure which returns 
the address at which the data corresponding to these vectors can be found. 
The procedure has been written for a general case and will accept a k 
conponent for three dimensional problems, for two-dimensional operation k 
should be zero. The Laplace program itself may be expanded to 
three-dimensions quite easily, since worries about the storage areas of the 
data have been dealt with. This method of mapping an abstract data type 
(such as the problem mesh) onto physical memory does involve a significant 
(but necessary) software overhead, the effects of which may be seen in the 
results of the speedup tests performed by the multiprocessor.

Earlier it was stated that shared memory was the optimum architecture for 
the solution of field equations, since data was made available in the most 
up to date form to a requesting PE, in the shortest possible time. The use 
of a get_address procedure does introduce an overhead in the fetch of 
addresses, but this fetch would be necessary in all the systems vdiich were 
considered for the inplementation of field equation solutions due to the 
constraints of the PL/9 language and the many different problem mesh sizes

page 45



the PE array can deal with. The provision of up to date data could not be 
guaranteed in any of the other systems which did not use shared memory, 
which were considered at the design stage. One such system included DMA 
techniques and the use of 'local' memory only within a PE. Suggestions for 
reducing the overhead of the get_address procedure, and thus improving the 
performance of the system in relation to competition from other 
architectures and systems, are made in the discussion chapter of this 
thesis.

The resulting Laplace program for use on the multiprocessor can be seen in 
program listing 3. The program is general in that, even though the Laplace 
problem may be required to run in 1, 4, 9 or 16 PEs, in each of the PEs 
required for the problem it is the same program which runs. This is made 
possible by information sent at run time by the master processor (in a 
fashion described in a later section), to initialize the problem within 
each PE. The information relates the PE to the relative position of the PE 
within the solution mesh, the size of the mesh problem and the value to 
Wiich boundary nodes should be initialized. This data is transferred from 
shared memory to local variables during initialization of the array, to 
avoid corruption of the values which would occur during the solution of the 
Laplace problem since this data and that of some shared nodes of the 
problem would share the same memory. The actual program sequence run on any 
PE will thus be different, although the total program is identical on all 
of the PEs. Other than these sections of code, and the use of a get_address 
procedure, the function of the program is much the same as for the other 
Laplace solvers detailed so far. The one notable exception is the inclusion 
of a 'copy' procedure, which is used to copy the "corner node" data held in 
local memory to the two areas appropriate areas of shared memory, after a 
corner node has been updated to enable nearest neighbour access of the 
corner nodes to take place.

page 46



3.4 Programming points

In an asynchronous multiprocessor system such as this it is important to 
avoid the use of uninitialised data. This can occur when running a program 
in a number PEs which effectively initialises values in shared memory for 
subsequent access by a neighbouring PE; there must be two phases of the 
solution, firstly the boundary value initialization and secondly the 
repeated iteration until some criterion is met. If one PE completes its 
initialisation phase and then proceeds to the iteration phase, it is 
possible that invalid data can be read if a neighbouring PE has not yet
finished its initialisation. To avoid this problem each PE must b€
synchronized by some means with its neighbours. In the case of the bench 
mark Laplace solver, after each of the PEs has finished its initialisation 
it is made to enter a "synchronize" state which halts the execution of the 
program. Only after all the PEs have entered this state can they be told to 
continue, a function provided by the overseer program.

Field equation solving programs to be run on the multiprocessor, including 
the Laplace program, should be written so that program execution starts at
location $B000 in a PEs memory. This location corresponds to the start of
program memory in a PE and is the default start location of a field 
equation solving program used by the multiprocessor operating system. The 
getaddress procedure should begin at $C000, to ensure the same procedure 
can be used by the multiprocessor operating system to extract the solution 
from the mesh.

page 47



3 .5  L a p la c e  p ro g ram s u s e d  on  th e  m u lt ip r o c e s s o r  sys te m

The bench mark software outlined above was used with some variations to 
obtain the results of the tests in chapter 5. The Laplace program of 
listing 3 is used in the initial processing array tests, thereafter a 
faster version of the get_address procedure is used (this is listed as 
program 4). The problem convergence tests of chapter 5 are carried out by 
the program listed as program 5; the INCLUDED files are also listed 
immediately following the main program.

4 .0  THE SYSTEM SOFTWARE

The system software consists of two major parts; the multiprocessor
operating system and the master processor overseer program. The means of

or#
operation and the functions provided by this software reliant on the 
packet switching technique vhich the system uses to pass messages between 
the PEs. A description of the packet switching technique is given in 
section 4.1 and the means by which it is implemented successfully is 
described in section 4.2, before the system software is described.

4 .1  P a c k e t  s w itc h in g  w i t h i n  t h e  m u lt ip r o c e s s o r  sys te m

Packet switching is a technique whereby information in the form of packets
is 'switched' through a system. These packets comprise not only of a also
message but^ data associated with the message^ giving the source and 
destination of the message within the packet, enabling it to be switched 
either by hardware or software through the system to the correct 
destination.

page 48



Packet switching in the multiprocessor is used in the global transfer of 
information, each packet is switched through the system by means of pigeon 
holes in shared memory and the use of interrupts. All global communication 
passes along East-West rows through the PE array, to or from the master 
processor. The pigeon holes in shared memory^ which make up a packet of 
information contain the source of information, destination of the 
information^ and a message. If the packet has data associated with it other 
pigeon holes will indicate how much data there is, and where it is located. 
Because the packets are switched using software by means of interrupts, it 
is also necessary to include a software INTERRUPT IDentifier flag for the 
reason made clear below. The pigeon hole locations are reserved at the top 
of the associated shared memory block (East and West), such that any 
locations that a field solving program may use will not be corrupted.

In order to switch packets of information through the multiprocessor by 
means of interrupts, the packets are first loaded into the appropriate 
shared memory pigeon holes. An interrupt request is then sent to the 
nearest neighbour in the direction of the destination PE. The interrupted 
PE then checks the pigeon holes in the East and West shared memories for a 
TRUE software INTERRUPT IDentifier flag, since the hardware interrupt could 
have originated from either direction^. The packet of information is then 
read, a reset of the hardware interrupt is performed and the software 
INTERRUPT IDentifier flag is then reset to FALSE. If the packet was not 
destined for the PE which has just processed the packet, the packet (and 
any associated data) is copied to the appropriate shared memory locations

 ̂ The MC6809E does not support multiple vectored interrupts ^ich, if 
available^ could simplify this function.

page 49



and passed, in a similar fashion, further down the same row of the 
processing array until the correct destination is reached.

A packet of data has associated with it the following pigeon hole 
locations :

(a) An INTERHUPT_ID byte;
(b) A message FROM identifier;
(c) A message TO identifier;
(d) The MESSAGE byte;
(e) A DATA_POINTER to associated data memory;
(f) A DATA_SIZE pointer.

Each of these is discussed briefly in the following:

(a) The INTEEIRUPT_ID byte contains either TRUE OR FALSE 
to enable a PE to identify from the software of the 
multiprocessor operating system the direction 
from which the interrupt driven packet has 
originated.

(b) The FROM byte contains the unique number of the PE 
(held in the ROM containing the multiprocessor 
operating system within the sending PE) identifying 
the source from which the message has originated.

(c) The TO byte contains the unique number of the PE to 
v^ich the message is destined.

page 50



(d) The MESSAGE byte contains one of the following codes, 
describing the type of packet:

message corresponding
MASTER $00
PROGRAM TO LOAD $01
PROGRAM LOADED OK $02
RUN PROGRAM $03
PROGRAM RUNNING OK $04
STOP PROGRAM $05
PROGRAM STOPPED OK $06
GOT SECTION OF PROGRAM OK $07
PROGRAM LOAD ERROR $08
UNEXPECTED INTERRUPT $09
TRANSMISSION ERROR E2W $0A
TRANSMISSION ERROR W2E $0B
DUMP DATA $0C
DUMPING $0D
HALT PROCESSOR $0E
PROCESSOR HALTED $0F
CONTINUED RUN $10
CARRY ON $11
RUN LAPLACE $12
WRONG READ $14
NULL $00

It is these message bytes which are picked up by the 
interrupt routine (described in section 4.3.1) which 
initiate all the action taken by the multiprocessor.

(e) The DATA^POINTER (a word which) contains a pointer to 
v^ere in memory any associated data is to be found.

(f) The SIZE_OF_DAIA (a word \diich) contains the number 
of BYTEs of data which can be found at location 
pointed to by the contents of DATA POINTER.

page 51



4 . 2  The m apping  o f  d a ta  p a c k e ts  i n  p ig e o n  h o le s  i n  s h a re d  memory

In order to achieve bi-directional data transmission along a given 
East-West row of the PE array, without the destruction of information 
taking place as messages pass through a PE, a different set of pigeon holes 
is used for each direction of data transfer. To uniquely identify the 
pigeon holes for each direction of data transfer in each of the shared 
memory blocks, the pigeon hole locations are annotated with the direction 
in which the data will travel, or has travelled, to or from the PE. The 
annotated pigeon holes in the directions West and East are thus as follows;

WEST SM BLOCK
$9FFF byte INTERRUPT_ID_TO_WEST
$9FFE l ^ e  FROM_TO_WEST
$9FFD h ^ e  TO_TO_WEST
$9FFC b ^ e  MESSAGE_TO_WEST
$9FFA integer DATA_POINTER_TO_WEST 
$9FF8 integer SIZE_OF_DATA_TO_WEST 
$9FF7 byte INTERRUPT_ID_FROM_WEST 
$9FF6 h ^ e  FROM_FROM_WEST
$9FF5 byte TO_FROM_WEST
$9FF4 h ^ e  MESSAGE_FROM_WEST
$9FF2 integer DATA_POINTER_FROM_WEST 
$9FF0 integer SIZE_OF_DATA_FROM_WEST
EAST SM BLOCK
$7FFF byte INTERRUPT_ID_FROM_EAST 
$7FFE byte FROM_FROM_EAST
$7FFD byte TO_FROM_EAST
$7FFC byte MESSAGE_FROM_EAST
$7FFA integer DATA_POINTER_FROM_EAST 
$7FF8 integer SIZE_OF_DATA__FROM_EAST 
$7FF7 byte INTERRUPT_ID_TO_EAST
$7FF6 h ^ e  FROM_TO_EAST
$7FF5 l:^e ' TO_TO_EAST
$7FF4 t ^ e  MESSAGE_TO_EAST
$7FF2 integer DATA_POINTER_TO_EAST 
$7FF0 integer SIZE_OF_DATA_TO_EAST

It can be seen that output to the West of one PE is the input from the East 
of another PE. When programming the system care must be taken to get the

page 52



direction of information packets correct, or the data will be lost in the 
system.

4 .3  The s y n c h ro n iz e  i n s t r u c t i o n

Within the multiprocessor system all messages which are packet switched
through the system are acknowledged. The protocol of message passing in the
multiprocessor system is simplified by restricting global communication in

fehe
the PE array to one PE at a time, not only to siitplify^message protocol but 
to ensure the integrity of messages being sent and received in the 
multiprocessor system. Global communication is restricted to one PE at a 
time by means of the synchronize instruction of the MC6809E microprocessor.

The state of interrupts (enabled or disabled) determines the action taken 
by the processor when the synchronize instruction is terminated by an 
interrupt signal. Regardless of the state of interrupts when the 
synchronize instruction is executed, the processor is halted until an 
interrupt occurs - unless an interrupt request is already present. On 
receipt of an interrupt, with interrupts enabled, the interrupt request is 
serviced, thereafter terminating the halted state and continuing program 
execution. If the interrupt occurs with interrupts disabled then the 
interrupt is not serviced, but the halted state of the processor is 
terminated and program execution is continued. In the system software, 
listings of which are referenced later, two applications of the synchronize 
instruction can be seen, both with previously disabled interrupts:

In the first application, the synchronize instruction is immediately 
followed by an enabling of interrupts. This enables an acknowledge packet 
of a previously sent message to be serviced without hanging any of the PES

page 53



in the system. It can be seen that if the interrupt associated with the 
acknowledging packet was allowed to be serviced before the execution of the 
synchronize instruction (designed to wait for this acknowledging 
interrupt), communication with the PE would hang, causing the system to 
crash.

In the other application of the synchronize instruction, the incoming 
interrupt is used purely as a synchronizing signal to restart the execution 
of the program, and has no message implication. The interrupt request is 
not serviced and thus not reset by the interrupt service routine^ a 
consquence of which it is reset immediately after the synchronize 
instruction, to enable future such events to occur.

4 .4  The m u lt ip r o c e s s o r  o p e r a t in g  sys te m

The functions of the multiprocessor operating system are initiated by the 
receipt of interrupt driven packets of information, originating in the 
master processor. This section describes the interrupt procedure around 
Wiich the functions of the PE array are based, and then describes the 
functions offered by the operating system. The program listing of the 
multiprocessor operating system can be seen as program listing 6.

4 . 4 . 1  The i n t e r r u p t  p ro c e d u re

All processing within the multiprocessor array is interrupt driven from 
packets of information originating in the master processor, and relayed 
through the system by component PEs. The interrupt procedure of the 
multiprocessor operating system is the point from which the functions 
provided by the system are initiated.

page 54



The interrupt procedure of the multiprocessor operating system is
structured as a hierarchical tree, constructed using conditional
statements. The procedure can be seen as part of the multiprocessor
operating system, listed as program 6. On receipt of an interrupt the

rpigeon holes of the shared memory blocks are interogated to find theA
direction from which the packet came, the ultimate destination of the
packet and, if necessary^ the message the packet contains. Knowing the
direction from which the packet came enables a hardware reset of the latch
causing the interrupt to take place, and a reset in the pigeon holes of the 
INTERRUPT_ID flag to indicate that direction is no longer interrupting the 
PE. If the destination of the packet does not match the PEs unique 
identification number the packet can be passed on, in the direction of the 
destination PE, with any associated data. If the destination of the packet 
has been reached then the message is decoded and one of the four basic 
functions of the multiprocessor operating system are performed; these are;

(a) To LOAD a program;
(b) To RUN a program;
(c) To HALT program execution in the PE array;
(d) To DUMP the results of a problem.

4.4.2 Functions of the multiprocessor operating system

(a) Load a program

Programs in Motorola hex format (see Windrush [92]) are passed as blocks of 
information, each of which is passed as the data associated with a message 
packet, through the PEs in the lower bytes of the shared memory. At the 
destination PE the information is decoded and loaded, a block at a time 
from shared memory^to the address within the PE indicated by the incoming 
coded program. This process continues until an end of transmission block is

page 55



detected, at vdiich point the PE waits for the next interrupt driven packet. 
All packets of data entering the PE are acknowledged, with any errors being 
reported to the master processor.

( b )  Run a  p ro g ram

The message packet initiating the running of a program can be one of two 
types (detailed in the overseer program a description of which follows), it 
can either execute a field equation instruction or simply run a program. In 
the case of a field equation run the information in the lower bytes of 
shared memory is the initial data required by the field equation solver 
(i.e. the size of the problem mesh and the boundary conditions). The 
program start location is assumed to be the location $B000 (the base 
location of the PEs program memory). In the case of a siirple run it is the 
program start location which is passed through the shared memory, this 
enables a program to be run anywhere in PE memory.

( c )  HcLLt a  p ro g ram

This message causes a global_halt_flag to be set to logical TRUE. At the
end of the interrupt procedure this flag is tested and, if true, a
synchronize instruction is executed. This stops the program returning to
the main program and continuing execution of the problem, until an
interrupt message is received which will reset the global_halt_flag. The
instruction which resumes program execution is the continue option issued

the
in the master processor. The halt instruction causes the state of ̂solution 
to be frozen, enabling the duiip instruction to extract the solution at that 
time.

page 56



(d) Dunp the results of a program

This instruction causes the PE (already in the halted state) to dunp the 
state of the solution as it stands to the master processor. Data from the 
mesh is sent in blocks, each being the data associated with a message 
packet to the master processor. The number of blocks which are sent depends 
on the size of the problem mesh. The continue instruction issued in the 
master processor.enables program execution to be continued in the PEs from 
the halted state.

Dumping of the data is made possible by the multiprocessor operating system 
having access to the get_address procedure of the solution program. The 
multiprocessor operating system has access to the size of the problem mesh 
by means of a global variable, set during the initialization^which takes 
place when a field equation is run. It is therefore possible for the 
multiprocessor operating system to provide a correct i and j vector for a 
call to the get_address procedure within the PE, and for the data to be 
extracted from the mesh. To enable the multiprocessor operating system to 
access the solution programs get_address procedure, the operating system is 
compiled with a ghost get_address procedure at the same location as the 
get_address procedure of the field equation solving program (in this case 
$C000).

4 .5  TEE OVERSEER

4 . 5 . 1  In t r o d u c t io n

The overseer program is a user-driven controller for the functions that the 
multiprocessor operating system can provide, and can be seen as program

page 57



listing 7. The overseer program provides the utilities needed to load, run 
and retrieve both results and status messages from the array of processing 
elements. The user currently has to issue these commands, from a position 
where proceedings within the array can be monitored. It is envisaged that 
any further updates of this program will have less interaction with the 
user as a result of greater overseer program control.

The user port of the MICROBOX II allows access to 32 bytes of memory. The 
addition of the interface board enables the MICROBOX II to access 16K bytes 
of memory, 4K bytes in each of the four PEs to which it is connected. The 
means by which this is achieved has been described in the previous chapter, 
with the shared memory of the PE array accessed by the MICROBOX II by 
setting a 32 byte window over the available 16K bytes of memory. The window 
in the shared memory is set by writing the base address of the required 
piece of memory to the variable SM_POINTER at $FF28, this enables 32 bytes 
to be accessed in the area $FF40-$FF5F. In the overseer program these 
offsets are made available through the use of a pointer variable ( .sm ). 
Details of the use and opreration of such variables can be found by 
reference to Windrush [92], [93] and [94].

The overseer program displays paged options vdiich will load:

(a) A field equation solving program to a user requested 
number of PEs (1,4,9 or 16);

(b) A field equation solving program to a user specified, 
PE;

(c) Any program to any PE.

page 58



In order to run a program it is possible to choose options which will:

(a) Execute a field solving program, whose start location 
for execution is $8000, on the default architecture 
set by the load option 'L' described in detail below.

(b) Run a program in any PE with any start location.

Only one option for extracting the solution from the mesh exists, that of 
the DUMP instruction (detailed below). This extracts all the data from the 
local mesh of a PE and passes it to the master processor in blocks.

The screen of the master processor V.D.U. is split into two sections v^en 
the overseer program is run. The bottom of the screen provides paged menus 
from which the various options may be selected. The top of the screen is 
sectioned such that a one line status indication message can be displayed 
for each of the component PEs of the 16PE array. In all options which cause 
action to be taken in the PE array the relevant status message is displayed 
on the V.D.U. of the master processor, unless this option itself has been 
switched off. Similarly all incoming messages, be they data, acknowledge or 
error message packets, are displayed for the appropriate action of the 
user.

4 . 5 . 2  A v a i la b le  o p t io n s  o f  th e  o v e r s e e r

TEST (option T)

This option sends a quick test signal to all I6PE5which is acknowledged. 
The signal which is sent is the same as the last two bytesof a program load

page 59



message and tests the ability of the PE to talk with the Master Processor 
using the software packet switching.

LORD (option L)

This command proirpts the user for a name of an already coirpiled program the 
user wishes to run on one of the architecture types (IPE, 4PE, 9PE or 16PE) 
the system currently offers. Input is required as to the number of PES on 
vdiich the program will run. The appropriate (compiled) file is then 
converted into Motorola hex format and transferred a line at a time through 
the system with each line occupying the memory locations at the base of the 
appropriate shared memory. Transferring a line of Motorola hex coded 
program, which consists of a maximum of 32 bytes, can be achieved without 
alteration of the shared memory pointer latches.

EXECUTE LAPLACE (option E)

The user is shown a small square grid of size nxn points with named 
boundaries. The user is prompted for the values of the boundaries and of 
'n'. The overseer then sends this data through the lower bytes of East-West 
shared memory, to the default number of processors (set when using the L 
option).

HALT (option H)

Issuing a halt instruction causes a halt in the execution of the program 
executing on the default number of PE (set using the 'L' option). This 
enables a snapshot of the results at a given time to be obtained, when the 
dump option ( 'D' ) is issued. The halt state is maintained by a variable

page 60



called the global_halt_flag, which is set on receipt of the halt message. 
In the halt state all interrupt requests are still dealt with, but as long 
as the global_halt_flag remains set calculations are frozen.

DUMP (option D)

On issuing a dump request the (already halted) array elements have the data 
at the nodes of the processing mesh extracted using the get_address 
procedure of the Laplace program, from within the multiprocessor operating 
system. The array results extracted are sent to the master processor as 
blocks of data (the number of blocks depending on the size of the mesh) 
vdiich are then displayed on the screen; an option also exists to store the 
results on a floppy disk. Further modifications of the program may enable 
communication to be established with a mainframe computer enabling results 
to be post processed and graphical output obtained.

CONTINUE (option C)

The continue instruction instructs all PEs previously loaded with the 'L' 
option, and currently in the halt state, to continue.

OPEN OUTPUT FILE (option V)

This option opens a file on disc ( called R.PL9 ) to Wiich any duirç>ed 
results will be output, as well as echoed to the screen. The disc must not 
already contain this file as the overseer will not overwrite an existing 
file.

page 61



CLOSE OUTPUT FILE (option Z)

This option should be issued after the results have all been duirped to the 
results file, to ensure the correct closure of the file.

SINGLE LOAD (option W)

This instruction is a load to a specific PE. It is similar to the LOAD 
option (L) except that the user is prompted not for the number of PEs to be 
loaded, but the unique number of the PE to be loaded.

RUN (option R)

This option will run a previously loaded program, whose execution may start 
at any valid start location within a PEs RAM. The user is first pronpted 
for the number of PES on which a program is to be run. The user is then 
prompted for the start address within that processing element at which 
execution will begin.

SINGLE RUN (option S)

This option allows the execution of a program in a single PE, ^ere the 
start address for execution is assumed to be $B000. The user is prompted 
for the number (in hex) of the processing element on which the user wishes 
to run a program.

page 62



INDIVIDUAL CONTINUE (option B)

This allows a single PE to be told to continue from a halted state. The 
user is pronpted for the unique number of the processor in which the option 
is to be effected.

COMPASS (option P)

A small procedure showing the directions North, East, South and West 
orientations of the PEs of the array, as they relate to the master 
processor.

QUIT (option J)

This option juitps out of the overseer program and back to the point where 
the MICROBOX II had just loaded FLEX.

REFRESH (option F)

This option clears the screen of any messages or information which are no 
longer needed.

SILENT RUNNING (option Q)

This option speeds up the time taken to load large programs or v^en the 
results of a large field problem are being dumped. This is achieved by 
turning off the status messages displayed on the V.D.U., the same option 
can also turn back on the status message display.

page 63



CHAPTER 5



CHAPTERS

RESULTS

1 . 0  INTRCaXJCTICN

The results of this chapter appear under the following headings:

2.0 Processing array data tests
3.0 Problem convergence tests

: '14.0 Relative performance of the multiprocessor array.

Each section describes the results it contains, and the salient features of 
the results are identified. Section 2.0 is designed to show the speedup of 
the 16PE system over a single processor system with respect to the number 
of calculations that can be performed within a given time. Section 3.0 is 
designed to show the speedup of the 16PE system with respect to the rate at 
which problem solution occurs. Finally, section 4.0 compares the 
performance of the 16PE system to that of some commercially available 
machines.

The method by which speedup figures are calculated are detailed for the 
initial set of results, this method is then followed in subsequent sections 
Wiere stated.

2 . 0  PROCESSING ARRAY DATA TESTS

The aim of this section is to display the speedup of the

page 64



multiprocessor system, with regard to its potential processing power over a 
single PE, by analysis of its ability to perform a set number of iterative 
passes over the data of a given problem.

This section is sub-divided as follows :

2.1 Displays the initial results for speedups;
2.2 Validation of the method used to obtain speedup figures;
2.3 Displays the speedups obtained from an optimized program;
2.4 Displays the optimized results compared to those of an independent 

system (still based on the same microprocessor).

Speedup has been defined to be the increase in processing power of a number 
of processors over that of a single processor. In terms of the data of this 
chapter this can be interpreted as the benefit gained by a multiprocessor 
system over that of a single PE; or siitply the ratio of the time taken to 
obtain a solution (or to arrive at a predefined state of solution) on the 
multiprocessor system to the time taken on one PE.

2 .1  I n i t i a l  r e s u l t s

The program of listing 4 was used to obtain the times for five passes of 
the solution algorithm over various problem sizes, enabling a speedup 
figure based on the ratio of time taken (as defined above) to be 
calculated. The times for five passes over various problem sizes can be 
seen in table 5.1.

page 65



1 data size 1 1 PE 1 1 4 PE 1 1 9 PE 1 1 1 16PE 1
1 12x12 1 3.55 1 1.37 1 1 

1 1.13 1 0.74 1
1 24x24 1 15.8 1 5.65 1 3.77 1 2.28 1
1 36x36 1 37.36 1 13.15 1 8.25 1 4.82 1
1 48x48 1 68.3 1 23.9 1 14.5 1 8.5 1
I 60x60 1 114.1 1 37.1 1 21.2 1 12.2 1
1 72x72 1 167.0 1 55.1 1 32.2 1 18.2 1
I 84x84 1 1 75.7 1 43.7 1 24.7 1
1 96x96 1 1 99.1 1 56.8 1 32.3 1
I 108x108 1 1 126.6 1 71.1 1 40.8 1
1 120x120 1 1 156.0 1 88.9 1 50.2 1
1 132x132 1 1 190.5 1 107.4 1 60.6 1
I 144x144 1 1 228.0 1 127.7 1 72.0 1
1 156x156 1 1 1 149.7 1 84.5 1
1 168x168 1 1 1 173.0 1 96.3 1
I 180x180 1 1 1 200.0 1 112.3 1
1 192x192 1 1 1 226.5 1 128.3 1
1 204x204 1 1 1 256.0 1 144.1 1
1 216x216 1 1 1 287.0 1 161.6 1
1 228x228 1 1 1 1 180.2 1
1 240x240 1 1 1 1 199.0 1
I 252x252 1 1 1 1 220.4 I
1 264x264 1 1 1 1 241.4 1
1 276x276 1 1 1 1 263.4 1
1 288x288 1

1
1
1

1 1 
1 1

286.4 1

TABLE 5.1 Five pass time (s) of initial program

Rather than use these results directly it is useful to create a figure 
which can be used for coirçarison purposes between different sets of 
results. The average time for one pass of the data is therefore taken. 
Table 5.2 shows the average pass times corresponding to the data of table 
5.1.

page 66



1 array size | 1 PE 4 PE 1 1 9 PE 1 16PE 1
1 12x12 1 0.71 0.27 1 0.23 1 0.15 1
1 24x24 1 3.16 1.13 1 0.75 1 0.46 1
1 36x36 1 7.47 2.63 1 1.65 1 0.96 1
1 48x48 I 12.1 4.8 1 2.9 1 1.7 1
1 60x60 I 22.8 7.42 I 4.2 1 2.4 1
1 72x72 1 33.3 11.0 1 6.4 I 3.6 1
1 84x84 I 15.1 1 8.7 1 4.9 1
1 96x96 1 19.8 1 11.3 1 6.5 1
I 108x108 I 25.2 1 14.2 I 8.1 1
1 120x120 1 31.2 1 17.8 1 10.0 1
1 132x132 1 38.1 1 21.4 1 12.1 1
I 144x144 I 45.6 1 25.4 1 14.4 1
1 156x156 1 29.8 1 16.8 1
1 168x168 1 1 34.6 1 19.2 1
1 180x180 1 1 40.0 1 22.4 1
1 192x192 1 1 45.3 1 25.6 1
1 204x204 1 1 51.2 1 28.8 1
1 216x216 1 1 57.4 1 32.2 1
I 228x228 I 1 1 36.0 1
1 240x240 1 1 1 39.8 1
I 252x252 1 1 1 44.1 1
1 264x264 1 1 1 48.3 1
1 276x276 1 1 1 52.7 1
1 288x288 1 11 11

57.3 1

TABLE 5.2 Average pass time (s)

Because the 16PE system has sixteen times the amount of memory as one of 
the conponent PE, it is not always possible to obtain speedup figures 
directly for large problem sizes - using the ratio of the time taken for a 
solution on a number of PEgto the time taken on iPE. Memory restrictions 
preclude the solution of large problems on a relatively small number of 
PEs, these restrictions can be clearly seen as gaps in the results 
displayed in table 5.1. In order for speedup figures (based on the above 
ratio) to be calculated, some means of extrapolating the results for the 
memory restricted cases above must be used.

page 67



Logarithmic plots of the average pass time against problem size for a given 
architecture, show a high degree of correlation. Figures 5.1, 5.2 and 5.3 
display this relationship for iPE, 4PEs and 9PEs respectively. The 
equations relating the average pass time (t) to the number of points (p), 
along one edge of the problem mesh, derived from these relationships are 
found to be:

IPE t = p^^^
-295:12

4PE t = p^°^
- 512:35

9 PE t = p^°°
-512:83

The high degree of correlation between t and p justifies the use of the
above equations in the extrapolation of the values for t, for which the
available memory within the architecture prevents solution.

The logarithmic relationship of t against p for the data of the 16PE case 
in table 5.2 can be seen in appendix E. This verifies that the linearity 
observed also occurs in the 16PE system and reinforces the justification of 
the above equations for use in the extrapolation of data.

Table 5.3 shows the average pass time for the range of architectures and
problem sizes (with extrapolated values indicated).

page 68



RELATIONSHIP OF PASS TIME TO NO. OF POINTS
5

Î

2

o'
9
8
7
6
5

3
2

O'

9
8
76
5

3

2

»10'‘
10 5020 60 70 80 90 10030

NUMBER OF PC]NTS

FIGURE E. <
FOR 1PE



RELATIONSHIP OF PASS TIME TO NO. OF POINTS

o
5

3

2

J.IO'
1
0
a
7

5

3

2

0°

9a

>10'‘
30 SO10 20 70 80 90 10060

NUMBER OF POINTS

FIGURE 5.2 AVERAGE PASS TIME AGAINST 
THE NUMBER OF MESH POINTS 
FOR 4PES



RELATIONSHIP OF PASS TIME TO NO. OF POINTS
6
s

3

2

to'
I
9
B
76
5

4

3

2

xlO*

9
a
76
5

4

3

2

to-'
5 73 4 8 9 I2 6 2

xIO' xIO’

NUMBER OF POINTS

FIGURE 5.3 AVERAGE PASS TIME AGAINST 
THE NUMBER OF MESH POINTS 
FOR SPES



array size 1 PE 4 PE 9 PE 16PE
12x12 0.71 0.27 0.23 0.15
24x24 3.16 1.13 0.75 0.46
36x36 7.47 2.63 1.65 0.96
48x48 13.6 4.8 2.9 1.7
60x60 22.8 7.42 4.2 2.4
72x72 33.3 11.0 6.4 3.6
84x84 46.4 15.1 8.7 4.9
96x96 61.9 19.8 11.3 6.5
108x108 79.7 25.2 14.2 8.1
120x120 100.0 31.2 17.8 10.0
132x132 122.8 38.1 21.4 12.1
144x144 148.1 45.6 25.4 14.4
156x156 175.8 53.8 29.8 16.8
168x168 206.3 62.7 34.6 19.2
180x180 392.2 72.2 40.0 22.4
192x192 274.8 82.5 45.3 25.6
204x204 313.1 93.5 51.2 28.8
216x216 354.1 105.2 57.4 32.2
228x228 397.7 117.6 63.9 36.0
240x240 444.0 130.7 70.9 39.8
252x252 493.2 144.5 78.1 44.1
264x264 545.0 159 85.7 48.3
276x276 599 174.3 93.7 52.7
288x288 657 

e X t 1
190.3

: a p o 1 
a r e a

102.0 
a t e d

57.3

TABLE 5.3 Average pass time (s)

From the data of Table 5.3, Table 5.4 shows the corresponding speedup 
figures based on the time taken for the same problem size by one PE.

page 69



1 array size | 1 PE 4 PE 9 PE 16PE 1
1 12x12 1 1 2.63 3.08 4.73 1
1 24x24 1 1 2.79 4.21 6.87 1
1 36x36 1 1 2.84 4.53 7.78 1
1 48x48 1 1 2.83 4.68 8.0 1
1 60x60 1 1 3.07 5.43 9.5 1
1 72x72 1 1 3.03 5.2 9.25 1
1 84x84 1 1 3.07 5.33 9.46 1
1 96x96 1 1 3.13 5.47 9.52 1
1 108x108 1 1 3.16 5.61 9.83 1
1 120x120 1 1 3.2 5.62 10.0 1
1 132x132 1 1 3.22 5.74 10.15 1
1 144x144 1 1 3.25 5.83 10.3 1
1 156x156 1 1 3.26 5.89 10.46 1
1 168x168 1 1 3.29 5.96 10.74 1
1 180x180 1 1 3.31 5.98 10.7 1
1 192x192 1 1 3.33 6.06 10.73 1
1 204x204 1 1 3.35 6.11 10.87 1
1 216x216 1 1 3.36 6.17 11.0 1
1 228x228 1 1 3.38 6.22 11.04 1
1 240x240 1 1 3.39 6.27 11.15 1
1 252x252 1 1 3.41 6.31 11.18 1
1 264x264 1 1 3.42 6.36 11.2 1
1 276x276 1 1 3.43 6.39 11.4 1
1 288x288 1 1 3.45 6.44 11.46 1

TABLE 5.4 Speedups (relative to performance of IPE)

This data is displayed three-dimensionally in figure 5.4, which shows
speedup as a function of architecture size and the size of the problem. The
speedup figures can be seen to fall of dramatically, as expected, for
problem sizes where contentions are more frequent (i.e. in the region where 
2p <20000). The speedup can be seen to be an almost linear function of the

2number of PE for values of p out of the severely degraded zone.

The data may also be viewed in relation to the ideal, in figure 5.5. The 
relationship of speedup with the number of PEs can again be seen to be 
linear (for p^>20000).

The best performance of the 16PE system is 28% less than the ideal and 24% 
less than the value predicted in chapter 2. The reason for this

page 70



FiGURe 5.4 fFBEOUP A<! j,



SPEEDUPS RELATIVE TO IPE FOR A RANGE OF PROBLEMS

16

14

p=288

10

0

6

p=34

2

G

0 2 4 8 12106 16

O*
S’•H(0(00)U
c•H

NUMBER OF PROCESSORS

FIGURE 5.5 SPEEDUP AS A FUNCTION OF THE
NUMBER OF PES. FOR A RANGE OF
PROBLEM SIZES



unexpectedly severe degradation in performance and the method by which an 
inprovement was made is discussed in chapter 6. Improved results were 
obtained using an optimized program the results of which may be seen in 
section 2.3.

2 . 2  V a l i d a t i o n  o f  th e  m ethod u se d  t o  o b t a in  speedup f ig u r e s

It could be argued that taking the time for 5 passes over the data may not 
be truly representative of the shared memory switching, which occurs d̂ien 
running programs with run times of several hours. In order to check that 
taking the times for 5 passes of the data is truly representative of the 
shared memory switching which takes place for longer run times, a further 
experiment was undertaken.

The time taken to pass 16 times over the data for a problem mesh size where 
p=60 was taken. This data and the corresponding results of the 5 pass time 
case can be seen in table 5.5, where the average pass time can be seen 
enclosed in parenthesis.

1 grid size | 
1 60x60 1 1 1

16 pass time (s) 5 pass time (s) |

1 1 
1 1 1 IPE 1 353.6 114.1 I
1 1 (22.1) (22.8) 1
1 4PE 1 123.4 37.1 1
1 1 (7.77)^ (7.42) 1
1 9PE 1 69.9 21.2 1
1 1 (4.37) (4.24) 1
1 16PE 1 39.7 12.2 1
1 1 
1 1

(2.48) (2.44) 1

TABLE 5.5 16 and 5 Pass times

page 71



Figure 5.6 displays the average pass times of the data for the 5 and 16 
pass case. The average pass times of the 5 pass case are all within 4% of 
the corresponding time for the 16 pass case. The error in obtaining the 
pass time data is estimated at 2%, since readings were obtained from a hand 
operated stop watch activated by changes in processors status, as indicated 
on the status monitor board. Within the 2% tolerance the pass times of the 
5 and 16 pass data agree with each other, which implies that any error is 
zero or negligible. Since any error should be consistent in all cases and 
as speedup is calculated as a ratio of two average pass times, any errors 
in the average pass times that do exist should be cancelled out during the 
calculation of the speedup. The method of obtaining speedup figures can 
therefore be said to be valid.

2.3 Optimized results

The speedup figures of section 2.1 were less than had been predicted in 
chapter 2. The larger than expected degradation in the speedup figures was 
due to the get_address procedure (described in chapter 4), the details of 
Wiy this was the case are discussed in chapter 6. A more efficient version 
of this procedure was written, the details of which are again left until 
chapter 6, and the tests of section 2.1 re-run.

j^pendix F contains the results of the re-run using the optimized program, 
following the method of section 2.1 to enable a table of average pass times 
to be found, from which the speedup figures of table 5.6 are calculated.

page 72



:OMPARISON OF AVERAGE PASS TIME

25. 0 +

22. 5 --

in
a

o

5 PASS

16 PASS

8 10 12 140 2 4 6 16
NUMBER O.p PEs

FIGURE 5.6 COMPARISON OF AVERAGE PASS TIMES 
FOR 1G AND 5 PASSES OVER THE DATA



1 size 1 1 1 IPE 4PE 1 1 9PE 16PE 1
1 12x12 1 1 2.76 1 4.24 5.54 1
1 24x24 1 1 3.18 1 5.50 10.58 1
1 36x36 1 1 3.26 1 6.61 11.30 1
1 48x48 1 1 3.29 1 6.65 11.90 1
1 60x60 1 1 3.27 1 6.95 12.30 1
1 72x72 1 1 3.28 1 7.03 12.42 1
1 84x84 1 1 3.31 1 7.10 12.69 1
1 96x96 1 1 3.33 1 7.24 12.68 1
1 108x108 1 1 3.34 1 7.33 13.03 1
I 120x120 1 1 3.36 1 7.40 13.11 1
1 132x132 1 1 3.38 1 7.46 13.20 1
1 144x144 1 1 3.39 1 7.50 13.30 1
1 156x156 1 1 3.41 1 7.56 13.43 1
1 168x168 1 1 3.41 1 7.62 13.50 1
1 180x180 I 1 3.42 1 7.65 13.60 1
1 192x192 1 1 3.41 1 7.69 13.68 1
1 204x204 1 1 3.43 1 7.73 13.74 1
1 216x216 1 1 3.44 1 7.75 13.78 1
1 228x228 1 1 3.45 1 7.79 13.87 1
1 240x240 I 1 3.45 1 7.77 13.93 1
1 252x252 1 1 3.46 1 7.85 13.98 1
I 264x264 1 1 3.47 1 8.02 14.04 1
1 276x276 1 1 3.47 1 7.91 14.09 1
1 288x288 1 
1 1

1 3.47 1 
1

7.95 14.10 1

Table 5.6 Speedup figures (optimized program)

This data can be viewed three-dimensionally in figure 5.7, which shows
speedup as a function of architecture (i.e. the number of processing

2elements) and problem size (p ). Degradation can be seen in the region 
2vdiere p <10000, again due to the increased number of contentions which are 

seen at PE boundaries. The actual shape of the surface is similar to that 
of figure 5.4, but the magnitudes of the speedups are much inproved (seen 
more clearly in figure 5.8).

page 73



BOOOO
70000

60000

50000

40000

30000

20000
10000

FIGURE 5.7 SPEEDUP AS A FUNCTION OF THE
NUMBER OF PES AND THE SIZE OF
THE PROBLEM MESH



SPEEDUPS RELATIVE TO IPE FOR A RANGE OF PROBLEMS

16

p=288
14

12

10

-H

8
-H

6

P=3
4

2

0
0 2 4 10 126 8 16

NUMBER OF PROCESSORS

FIGURE 5.B SPEEDUP AS A FUNCTION OF THE
NUMBER OF PES. FOR A RANGE OF
PROBLEM SIZES



Figure 5.8 shows the speedup for selected problem sizes, with the ideal 
speedup shown for reference. The performance of the array can be seen to be 
linear, for values of p which take the multiprocessor out of the area of 
severe degradation. This linear trend displays no sign of falling off as 
the number of PEs increases, and achieves a speedup 88% that of the ideal, 
and 94% of the value predicted in chapter 2.

2.4 Comparison with independent computer based on the same processor

In order that the performance of the multiprocessor system can be judged 
with reference to an independent computer (still based on the same 
processor) and not just to a component PE of the machine, the same tasks 
performed by the multiprocessor were performed by a MICROBOX II (a MC6809E 
based microcomputer).

The storage of data within the MICROBOX II does not need a 'get_address? 
procedure, since there is no shared memory and data does not need to pass 
to any other system. The tasks of the previous section were performed on 
the MICROBOX II with the data held in a two-dimensional array constructed 
as suggested by WINDRUSH [94]. Without the overhead of a 'get_address' 
procedure the results for the MICROBOX II are expected to be faster than 
those of a component PE of the multiprocessor, as a result of which the 
speedup figures of the multiprocessor are expected to be lower.

Appendix G contains the results of running the same problems on the 
MICROBOX II, and the processing of these results needed to produce a table 
of average pass times (extrapolated v4iere necessary). The speedup figures 
are calculated, as before, as the ratio of the average pass time of a 
single PE to that of the multiprocessor. The average pass times of the

page 74



multiprocessor are those of the previous section (using the optimized 
program), the single PE in this case is taken to be the MICROBOX II (whose 
average pass times are those in appendix G), from which the speedup figures 
of table 5.7 are obtained.

1 size iPE 4PE 9PE 16PE 1
1 12x12 0.78 2.16 3.31 4.32 1
1 24x24 0.81 2.59 4.52 8.61 1
1 .36x36 0.82 2.66 5.4 9.29 1
1 48x48 0.81 2.69 5.44 9.79 1
1 60x60 0.82 2.71 5.7 10.13 1
1 72x72 0.83 2.72 5.81 10.26 1
1 84x84 0.82 2.75 5.94 10.46 1
1 96x96 0.82 2.76 5.98 10.47 11 108x108 0.83 2.79 6.07 10.78 1
1 120x120 0.82 2.81 6.13 10.86 1
1 132x132 0.83 2.82 6.19 10.96 1
1 144x144 0.83 2.83 6.23 11.09 1
1 156x156 0.83 2.84 6.29 11.17 11 168x168 0.83 2.85 6.34 11.25 11 180x180 0.83 2.84 6.37 11.35 1
1 192x192 0.83 2.87 6.4 11.42 1
1 204x204 0.83 2.87 6.45 11.47 11 216x216 0.84 2.89 6.48 11.53 11 228x228 0.84 2.89 6.51 11.61 1
1 240x240 0.84 2.90 6.5 11.66 1
1 252x252 0.84 2.90 6.59 11.73 1
1 264x264 0.84 2.91 6.61 11.77 1
1 276x276 0.84 2.92 6.64 11.82 11 288x288 0.84 2.92 6.67 11.83 1

extrapolated area
Table 5.7 Speedup of the multiprocessor 

based on the performance of an 
independent microcomputer

This data may be viewed three-dimensionally in figure 5.9, which shows
speedup as a function of architecture (the number of processing elements)

2 2 and problem size (p ). Again for values of p >10000 linearity of speedup
2with the number of PEs is observed, and severe degradation for p <10000 as 

in the previous section.

The effect of the MICROBOX II not having the overhead of a 'get address'

page 75



s

FIGURE 5.9 SPEEDUP AS A FUNCTION OF THE
NUMBER OF PES AND THE SIZE OF 
THE PROBLEM MESH



procedure can be seen in table 5.7, where iPE is an average of 17% slower 
than the MICROBOX. This is also reflected in figure 5.10 v^ere the maximum 
speedup is degraded to 74% of the ideal (conpared to the 88% figure when 
based on a conponent PE). However, the linear speedup with the number of PE 
(for large p) can be seen clearly, and as in all cases to date shows no
sign of falling off with an increased number of PE.

3.0 PROBLEM CONVERGENCE TESTS

Chapter 6 discusses the possibility of a multiprocessor increasing the 
stability of a field equation solving algorithm, and links this with the
rate at which values propagate across a problem mesh and the time taken to
reach a solution. Program 5 is designed to test the multiprocessors ability 
to speedup the time to a solution. The program is described in chapter 4 
and runs the same Laplace problem as before, but the times taken in this 
case are those of the multiprocessor reaching a predefined state of 
solution (in this case when all nodal data points are above 22.2% of the 
prescribed boundary value).

The speedup figures of this section therefore reflect the speedup of the 
multiprocessor system based on problem solution time, rather than in the 
previous section v4iere speedup was that of the increase in pure processing 
power.

This section is further divided into two sections:

3.1 Examines the speedup based on problem solution 
times of the multiprocessor, v4ien compared to the 
performance of a conponent PE.

page 76



SPEEDUPS RELATIVE TO IPE FOR A RANGE OF PROBLEMS

16

14

p=288
12

10

8

6

4 P=3

2

0
0 42 86 10 12 14 16

NUMBER OF PROCESSORS

FIGURE 5.10 SPEEDUP AS A FUNCTION OF THE
NUMBER OF PES. FOR A RANGE OF
PROBLEM SIZES



3.2 Examines the speedup based on problem solution 
times of the multiprocessor, Wien compared to the 
performance of an independent microcomputer - the 
MICROBOX II.

3.1 Speeduqps based on problem solution times with reference to a 
component PE of the multiprocessor array

The data of this section is obtained when running program 5 (described in
chapter 4) on the multiprocessor array. The times are obtained* in
different architectures for varying problem sizes, to reach a state of 
solution where all nodes have reached an arbitrary value (in this case 
22.2% of the boundary value). These times will be representative of the 
actual time taken to completely solve the problem. Appendix H contains the 
results and the subsequent processing of the results using the method of
section 2.1 (extrapolating where necessary) for the times taken to reach
this state of solution on the multiprocessor. This enables the speedup 
figures of table 5.8 to be calculated.

Once the extrapolating equations are found they are checked by using them 
to predict solution times for problem sizes, which are then validated by 
running the program. In the case of the 16PE system validation of the 
equation was achieved in the prediction of a run time of 50 hours and 32 
minutes with an accuracy of 0.7%.

page 77



1 size 1 1 1 IPE 4PE 1 1 9PE 16PE 1
1 1 1 24x24 1 1 3.29 1 6.75 11.41 1
1 36x36 1 1 3.27 1 7.15 12.32 1
1 48x48 1 1 3.30 1 7.21 12.74 1
1 72x72 1 1 3.31 1 7.42 13.24 1
1 144x144 1 1 3.33 1 7.88 14.54 1
1 216x216 1 1 3.33 1 8.16 15.36 1
1 288x288 1 1 3.34 1 8.36 15.97 1
Table 5.8 Problem convergence speedups 

based on the performance of a 
component PE

This data can be seen in figure 5.11, where speedup can be seen as a 
function of the number of processing elements and the size of the problem 
mesh. Degradation can again be seen in the region where where the value of 
p is small, but the speedup figures obtained (for larger numbers of PE and 
large p) are almost that of the ideal linear speedup (where the ideal is 
that of the increase in pure processing power). In the case Wiere p=288 the 
speedup obtained for 9PE is within 7.2% of this ideal and for 16PE within 
0.2%.

A more important result becomes apparent, when analysing the shape of the 
relationship seen between speedup and the number of PEs. It can be seen 
that the speedup is not linear but appears such that;

for large p Wiere c is an unknown constant>l
S is the speedup 
N is the number of PEs.

There is no sign of the relationship of speedup to the number of PEs 
falling off for larger values of PE. In fact if this equation holds true it 
is conceivable that speedups greater than that expected by the increase in 
pure processing power alone may be achieved, in respect of the time taken

page 78



SPEEDUPS RELATIVE TO IPE FOR A RANGE OF PROBLEMS

16

14

10

P=288

/ /

A é
y

W

y

W . f 1

a
en
C
•H
Ü3fO<UUO
C
•H

10 12 14 16

NUMBER OF PROCESSORS

FIGURE 5.11 SPEEDUP AS A FUNCTION OF THE
NUMBER OF PES. FOR A RANGE OF
PROBLEM SIZES



to solve a problem. This can be shown if the actual time for the 16PE 
system running the p=288 problem is used, rather than the result obtained 
from the line of best fit. In this case a speedup figure of 16.08 was 
achieved (see appendix H), which is slightly above this 'ideal'. At this 
stage the accuracy of the extrapolation for the time taken by iPE may be 
questioned (not the 16PE case as this has been verified), but there is no 
evidence of these relationships breaking down in the work which has been 
conducted, and even if a slight error did exist the shape of the 
relationships would still be similar.

The above relationship of the slope of the curve inplies that the more PEs 
there are, the greater the benefit of the multiprocessor system. The 
relationship quoted is only true vdien the system is out of the area of 
performance where severe degradation takes place, which would indicate that 
for a set size of problem an optimum size of architecture could be found to 
speed up the solution.

The processing power of such a multiprocessor architecture with speedup not
falling off with the number of PEs is, in theory, infinite! On the basis of
problem solution time, an ideal relationship for speedup (where the ideal 
is based on the increase in pure processing power of the system) is the 
minimum speedup obtainable for problems where p is large. With such an 
architecture a system aiming for infinite performance would not be shelved 
for the usual reason of diminishing returns, as every extra £ buys at least
the same performance as the last.

page 79



3 .2  P ro b le m  c o n v erg e n ce  o f  th e  m u lt ip ro c e s s o r  s ys te m  com pared w ith  an  

in d e p e n d e n t sys tem

In order to compare the performance of the multiprocessor with an 
independent system, the times were taken for the MICROBOX II v^en running 
a PL9 suggested construct of the previous task, for similar problem sizes. 
These can be seen in appendix I, along with the processing of results 
necessary to obtain a table of solution times (extrapolated where 
necessary) for the problem sizes of the previous section.

The multiprocessor solution times are obtained in section 3.1. Table 5.9 
shows the speedup figures of the multiprocessor array based on the 
performance of the MICROBOX II (from appendix I).

array size IPE 11 4PE 9PE 16PE
24x24 0.84 1 2.78 5.71 9.64
36x36 0.85 1 2.79 6.08 10.49
48x48 0.87 1 2.87 6.23 11.08
72x72 0.87 1 2.88 6.52 11.84
144x144 0.91 1 3.01 7.24 13.76
216x216 0.92 1 3.06 7.63 14.90
288x288 0.93 1 

1
3.10 7.93 15.70

extrapolated area
Table 5.9 Speedups of the multiprocessor 

array based on the performance 
of the MICROBOX II

Plotting the data as before, figure 5.12 shows the speedup of the array 
relative to the MICROBOX II, for a range of problem sizes and 
architectures. The same characteristics as figure 5.11 can be seen. At high 
values of p the performance of the 16PE array is only slightly degraded 
from the values of the previous section, even though the speedups are based 
on the performance of the MICROBOX II (running without the overhead of a 
'get__address' procedure). Speedup appears to be more dependent on the

page 80



SPEEDUPS RELATIVE TO IPE FOR A RANGE OF PROBLEMS

p=28816

14

O'
12

10

P=3
8

6

4

2

0
G 2 4 10 12 146 8 16

NUMBER OF PROCESSORS

FIGURE 5.12 SPEEDUP AS A FUNCTION OF THE
NUMBER OF PES. FOR A RANGE OF
PROBLEM SIZES



number of PE^and less on performance of the base system. This, and the fact
A

that the shape of the relationship between speedup and the number of PEs is 
similar to the results of the previous section, would seem to support the 
hypothesis that:

H “
(symbols previously defined)

4.0 RELATIVE PEEIPORMANCE OF THE MULTIPROCESSOR ARRAY

This section is designed to display the performance of the multiprocessor 
system in relation to commercially available machines, with regards to 
performance criterion. Two criterion are investigated; firstly a straight 
forward comparison of performance and secondly a comparison is made on the 
cost of that performance. The bench mark being run on all machines in this 
section is the Laplace solver, with a problem size of 288x288 nodes (or an 
estimate, where indicated, of the performance at this size of problem), 
since the best performance of the multiprocessor array occurred for this 
problem size.

Programs were developed in the FORTRAN language as specified in chapter 4, 
all using the same algorithm for the solution of the field equation^. The 
solution times on these systems can be seen in table 5.10.

^ Where possible compilation was carried out without any optimization to 
compensate for the deficiencies of the one pass PL9 compiler.

page 81



MACHINE TIME TO SOLUTION

MICROBOX 2720982 s
^OLIVETTI M2 4 276307 s

16PE 183143 s
PRIME 27720 s

** VAX 780 10470 s
VAX 785 5983 s
VAX 8600 2356 s

Table 5.10 Time to solution

* estimated from the data in appendix J.
** estimated from a Digital Equipment Corporation (DEC) 

bench mark.

The corresponding performance of the above systems relative to the 16PE 
system, and the cost of the machine, can be seen in table 5.11.

MACHINE PERFORMANCE 
RELATIVE TO THE 
16PE MACHINE

COST (1000 £) PERFORMANCE/ 
COST 

(xO.OOl £)

* BBC (B+) 0.025 0.3 0.0833
MICROBOX II 0.0625 0.35 0.1785

** OLIVETTI M24 0.6628 2.5 0.265
16PE SYSTEM 1.0000 1.95 0.5128
PRIME 6.61 70.00 0.0944
VAX 780 17.6 100.00 0.1760
VAX 785 30.9 150.00 0.206
VAX 8600 77.2 250.00 0.308

Table 5.11 Performance of commercially available 
machines compared to that of the 
multiprocessor

* an estimated performance based on comparisons made at 
low values of p using interpreted BASIC (not compiled) 
code.

page 82



** estimate based on the work in appendix J, which 
follows a similar method to that used throughout the 
chapter to estimate the time taken for the OLIVETTI 
M24.

Performance data may be seen as a function of cost in figure 5.13, where 
the performance bandwith of commercially available machines is indicated by 
hatching. The performance of the multiprocessor lies outside this band at a 
level where the graph indicates that a more expensive machine would 
normally be needed to achieve this performance. Chapter 6 discusses the 
possibility of using more powerful processors, creating a new area of 
performance in which multiprocessor systems would operate at levels higher 
than would usually be available for this price.

The performance/cost as a function of cost can be seen graphically in 
figure 5.14, which indicates the benefits that a correctly chosen 
architecture can have for a multiprocessor system. The multiprocessor 
system offers a much higher performance per unit cost (more than 1.5 times 
that of its nearest rival) than the other systems displayed. Chapter 6 
discusses how the performance/cost ratio is affected by increasing the 
power of the PEs and the possible competition from relatively cheap 
Restricted Instruction Set Computers (RISCs).

page 83



.10’
PERFORMANCE AGAINST COST (RELATIVE TO 16PE SYSTEM)

/
/ /

z

16PE SYSTEM /

T

Z : cP

7
/

7/

7

.1 0’

2 3 * 5 6 7 8 9 1  2 3 6 5 6 7 8 9 1  2 3 * 5 6 7 8 9 1  2 3 * 5.10’ .10’ .10* ,10’
COST 1̂1

FIGURE 5.13 PERFORMANCE AGAINST COST



PERFORMANCE/COST AGAINST COST

0. 00055

16PE SYSTEM
0. 00050 -------

0. 00035

0. 0003!

0. 00025 -

0. 00020

commercial machines \

0 .0 0 01 5

0 .0 0 01 0

0 .0 0 00 5

0.00000

2 3 4 5 6 7091 2 3 4 5 6 7 3 9 1 2 3 4 5 678 9 1 2 3 4 5

xlCf <10’ xlO' COST (-I xlCf

FIGURE 5.14 PERFORMANCE/COST AGAINST COST



CHAPTER 6



CHAPTER 6 

DISCUSSION

1.0 BACKGROUND

The reason for constructing the multiprocessor system was to demonstrate 
that the possibility of obtaining a linear relationship between speedup and 
the number of processors in the system, predicted in chapter 2, is in fact 
obtainable in practise.

In order to verify this prediction a suitable bench mark had to be chosen. 
As the machine had been purposely built for field equations it was logical 
to use a field equation to test it with.

A Laplace solver was chosen as the bench mark, this would solve a square 
mesh problem which although seemingly trivial is nevertheless 
representative of other field equation types. The solution involves 
boundary values being defined on the edges of this square mesh and the 
values at nodes within the mesh being found by means of repeated iteration 
(as described in chapter 4) until Laplace's equation is satisfied. Various 
algorithms exist for the solution of Laplace's equation, some of which show 
more rapid convergence on a solution than the method which has been coded. 
In this case it is the relationship between speedup and the number of 
processors which is important, and not particularly the performance of the

isactual algorithm, in this respect the chosen algorithm more than adequate.

page 84



The discussion of this chapter is sectioned as follows:

2.0 The processing array tests
3.0 The possibility of a system model
4.0 The Convergence tests
5.0 A comparison with the other machines
6.0 Alternative architectures offered by a PE of the 

multiprocessor
7.0 Possible future work.

Each of these sections will be discussed separately.

2.0 THE PROCESSING ARRAY TESTS

2.1 Initial results

The investigation of chapter 2 made clear that to avoid the multiprocessor 
system being severely degraded, it should be operated using the largest 
size of problem mesh possible. This would reduce the percentage of nodes at 
the boundary of a PE in relation to the total number of nodes within the PE 
and in so doing reduce the degradation caused by shared memory accesses, 
since these boundary nodes are stored in shared memory. The tests performed 
include problem sizes vdiere the effects of such degradation can be seen 
clearly, in the initial tests for a problem mesh of 12x12 nodal points the 
16PE array can be seen to be degraded a level of performance achievable 
with less than SPEs (a 70% degradation). This degradation seen in figure
5.2 of the previous chapter is reproduced in figure 6.1, with this specific 
case of degradation highlighted.

This area of operation of the system in which degradations occur, can be 
seen in the three-dimensional plots of the results in chapter 5. For a

page 85



SPEEDUPS RELATIVE TO 1PE FOR A RANGE OF PROBLEMS

16

14

p=28812

10

8

6

4 P=3

2

C

100 2 8 124 14 166

CU
S'•H(0
«3OUu
C•H

NUMBER OF PROCESSORS

FIGURE e .1 HIGHLIGHTED DEGRADATION



2total problem size of p nodes, this region of degradation can be seen to
2lie in the region where p < 20000 (for 16 PEs). The severe degradations

2occur in the region Wiere p < 5000. In general this area of severe
degradation can be avoided by ensuring that the number points on one edge
of a PE boundary (p^) is less than 6% of the total number of nodes which

2that PE contains. For a problem containing a total of p points, then for a 
number of PEs (n):

-p- < 6% ; since p^=p/(n^) .

Thus, a criterion has been found which should help in deciding the number 
of PEs on which a problem will be run for the greatest benefit (i.e. 
choosing the number of PEs such that the region of severe degradation is 
avioded).

The area of degradation occurs in all the tests of the previous chapter, 
but is not itself discussed again as more important findings are presented.

Out of the region vtiere severe degradation takes place the initial results 
for speedup show that the predicted linear speedup can indeed be achieved. 
However, the initial slope of the line of the speedup did not match that 
predicted in chapter 2, where for example in the case of 16PE a speedup 
figure of 15 was predicted, and a figure of 11.45 was being achieved (this 
can be seen in figure 6.2 which zooms in on figure 2.4(a) of chapter 2, in 
relation to the ideal and expected speedup figures). The cause of the 
degradation responsible for reducing the speedup figure to 72% of the ideal 
and 76% of the expected speeedup could only have been due to one or more of 
the following factors:

page 86



C O M P A R I S O N  OF IDEAL, EXPECTED AND ACTUAL RESULTS

16
IDEAL

ESTIMATED14

12

actual
10

8

6

4

2

0
2 120 4 8 10 14 166

NUMBER OF PROCESSORS

FIGURE 6.2 IDEAL, ESTIMATED AND ACTUAL
PERFDRHAHCE OF THE 16PE ARRAY



(a) More contention effects than expected, possibly due 
to the extra overhead of synchronization before a 
memory switch occurs;

(b) The way a problem is partitioned onto the array;
(c) Hidden overhead in the software being run;
(d) The initial prediction being wrong.

Each of these factors was assessed as to the likelihood of it being a major 
contribution to the degradation.

(a) Synchronization and contention problems

In order to check vdiether synchronization and contention effects were the 
(or a major) cause of the degradation witnessed, the worst case of 
synchronization and contention effects was considered for a given problem; 
When running a 288x288 mesh problem on the 16PE array each PE deals with a 
72x72 array of nodes. Analysis of the algorithm reveals that, for such a 
problem size, a PE in the middle of the 4x4 array of PEs would make 1148 
shared memory accesses in each pass of the mesh. If the maximum amount of 
contention possible occurred for every shared memory access (in this case 
4xl0”^s), then for five passes of the data 0.023s (4xl0”^xll48x5) would be 
lost due to contention. Since the 5 pass time over the nodes of a mesh this 
size is of the order of 286s, iirplying that the time lost due to contention 
and synchronization would be 0.008% of the time for 5 passes it was 
unlikely that synchronization and contention effects were the cause the 
problem.

To confirm the hypothesis that contention and synchronization effects were 
not the cause of the degradation witnessed, a 288x288 mesh of a Laplace

page 87



problem was mapped onto the 16PE array (72x72 nodes in each PE). A PE in 
the middle of the 16PE array took 4 min 45.95 seconds to do 5 passes of the 
data without any contentions at its boundary (the ability to run a program 
on one PE alone is a special function of the overseer program [described in 
chapter 4]), while the same problem took 4 min 46.69 seconds with active 
neighbours. The difference of 0.74s between the five pass times with and 
without contention and synchronization effects implies that the degradation 
seen in the system should be 0.26% (0.74/286.69), much less than the 28% 
witnessed in the results taken. The discrepancy (0.74s compared with 
0.023s) between the theoretical (maximum) and the actual effects of 
contention is almost certainly due to inaccuracies in timing, being about
0.25% of the run time measured. Thus, these contention and synchronization 
effects are not seen to be a major cause of the degradation seen.

(b) Mapping of the problem onto the array

An ideal mapping of a problem mesh onto an array of PE would result in each 
PE taking the same time to process the nodes it had been allocated, this 
would imply that each PE was doing the same amount of processing work. 
Partitioning of the problem between PEs is achieved by allocating sections 
of the mesh (each with an equal number of nodes), to a PE v^ose position in 
the PE array is analogous to the position of the section of the problem 
mesh with respect to the Wiole problem mesh. The processing time of the 
nodes within each PE depends on the PEs position within the PE array, since 
PEs at the boundary of the PE array contain a percentage of the problem 
boundary nodes which do not need processing. The time taken to process the 
other (active) nodes it contains is faster than for PEs which do not 
contain any (or as many) boundary nodes of the problem. It can be seen 
therefore that mid placed PEs take longer to pass over their respective 
data mesh than the outermost PEs.

page 88



The speedup figures recorded are based on the average pass times of a given 
size of problem on IPE compared with that of the same problem run on a 
number of PEs. However, because all the timings are based on "the last PE 
to finish" the time recorded for a problem size v^ere a PE in the centre of 
the PE array was dealing with 72x72 nodes, would effectively be that of a 
problem with a total of 82944 (72x72x16) active nodes i.e. a total problem 
size of 290x290 nodes, and not the 280x280 problem from which 72x72 active 
nodes are mapped onto such a PE. The severe degradation witnessed in the 
initial results may not actually exist, but may be a consequence of the way 
the problem is mapped onto the PE array and the way speedup figures are 
calculated. If this was the case then the average pass times for a 74x74 
mesh problem running on iPE should be conç>arable with that of a 288x288 
mesh problem running on 16PEs, since the iPE system and one component PE of 
the 16PE array have the same number (72x72) of 'active' nodes.

The average pass time for the iPE case (with a 74x74 node mesh) is 35.4s 
(extrapolated from the equation given in chapter 5) and 57.3s in the 16PE 
case. These times are so different they eliminate mapping as the main cause 
of the witnessed degradation, while indicating that overheads in the 
software may be responsible for the degradation.

(c) Hidden overheads in the software

The average pass times conpared in the previous section for two different 
cases, each of which ran the same software, showed a great discrepancy in 
times v4iere in theory none should exist. The software being run has a 
procedure (called the 'get_address' procedure) used to determine the 
correct place in memory for the data to be accessed. The get address 
procedure (seen in program 4) is frequently accessed (each time data from

page 89



the problem mesh is required), so any problem vdiich exists here would be
significant. The differences in the times seen in the previous section must
have been the result of different times taken to execute the PE dependent 
sections of this procedure. In order for the degradation to be avoided the 
code had to be inproved such that the time taken to run problems with the 
same number of active nodes, was made similar for each number of PEs the 
program may run on, making sure that the time taken to execute the program
on a given architecture was not reduced. The updating of the get address
procedure involved :

1. Byte sizing of variables as they enter the procedure 
to cut down the time taken for any comparisons;

2. Inproved structuring the procedure, so as to minimize
the time taken for an address calculation for the
majority case of a node located within a PEs local 
memory;

3. Optimizing the source code such that the one pass PL9 
compiler will produce efficient object code.

The result of these modifications was the get_address procedure listed as 
program 4, and led to the execution time for a 288x288 problem mesh on 
16PE being reduced from 57.3s to 41.6s (approximately a 25% reduction in 
run time), and to the difference between the pass times of iPE dealing
with a 74x74 mesh and a component PE of the 16PE array dealing with a
72x72 mesh (i.e. the same number of active - non boundary - nodes) being 
reduced from 62% to 17%.

This was obviously the cause of the degradation from the predicted value. 
The test pin-pointed the cause of the problem enabling very significant 
inprovements to be made.

page 90



(d) Initial prediction being wrong

Although the cause of the degradation has been established it is useful to 
note that the prediction of the speedup was based on contention effects, 
the amount of global communication and the amount of time spent in, or 
preparing to use, shared memory. The results of the prediction are the 
results of a simple probability model , but are thought nevertheless to be 
correct, and have been shown to be close to the actual performance of the 
multiprocessor with the faster get_address procedure.

2.2 Final results

The inprovement provided by the faster get_address procedure are 
substantial. Linear speedups are still obtained but with a gradient 
against the number of processors approaching that of the ideal. With the 
16PE system tackling a 288x288 problem mesh the system runs at 88% of the 
theoretical maximum (compared with 71% in the initial case and basing 
speedups on one PE of the array). If the speedup figures are based on 
those of an independent processor (the MICROBOX II) the system performs at 
73.9% (11.83/16x100) of the theoretical maximum. This performance is still 
not ideal and could possibly be inproved by further optimization of the 
code of the get_address procedure, which may involve writing the routine 
in assembler.

The fact that linear speedup has been achieved is enough to justify a
multiprocessor system, the cost effectiveness of which is discussed later.

shows
The linearity of speedup with the number of PEs displays.no sign at all of^ the
falling of with an increased number of PEs, as many of^multiprocessor 
architectures seen in chapter 1 would. With ever increasing performance

page 91



for increasing numbers of PEs there is no limit to the performance that 
multiprocessor systems can offer with the correctly chosen architecture 
for the problem.

3 .0  SYSTEM MODEL

A system model capable of predicting the speedup figures for a given
number of processors handling a given problem would be a very useful 
design tool, in that predictions of speedups could be made for numbers of 
processor larger than in the 16PE system here and thus help to determine 
the feasibility of a potential systems.

Since such a model is based on a particular type of architecture, as long 
as this architecture is adhered to, the speedup figure predicted would 
apply to a similar system based on any processor. If the speedup being 
predicted, for a given size of problem on a given number of PEs, could be 
made relative to a base machine, a relative performance model could then 
be created. It would then be possible for a given performance requirement 
and fixed number of PEs to find an appropriate processor for use as the 
heart of a PE for that requirement or alternatively, for a fixed
performance requirement and processor (on which the system is based) for 
the number of PEs required to achieve that requirement to be found.

It is useful to investigate vtiether it is possible to construct a system
model that would enable speedup to be calculated, knowing the number of
processors in the system and the size of the problem mesh. In the previous 
chapter for each type of the allowable number of PEs upon which a problem 
may be run a unique equation capable of predicting this time, based on the 
size of the problem mesh has been found. The general form of these 
equations is:

page 92



t =

vdiere t = time taken
p = number of points on one side of problem mesh 
a = constant for a given architecture 
b = constant for a given architecture

To obtain a system model the values of 'a' and 'b' must become functions of 
the number of processors in the system. Collating the data available (from 
the initial results of chapter 5) gives:

number of PE a b

1 2.08 296.4
4 2.05 658.8
9 2.00 1123.6
16 1.97 1763.3

TABLE 6.1 Constants for prediction

Following the success of the method by vdiich the equations used in the 
extrapolation where found (through chapter 5) the method is repeated and, 
the data of table 6.1 can be seen plotted logarithmically in figures 6.3 
and 6.4. The speedup (SU) figures within a system model can now be 
expressed as:

SU = pPO'̂ c
"constant

Wiere power = no of processing elements
0.38

-0.02

and constant = no of processing elements®'^x229.21

page 93



change In power

2

9 I 2 3 * 75 a 9 I6

no of pe

FIGURE 6.3

LOGARITHMIC RELATIONSHIP OF 
THE POWER (A) TO THE NUMBER 
OF PES



c h a n g e  In c o n s t a n t

2

1

9

8

7
6
5

t

3

2

1

2 S1 3 4 76 8 9 I 2I.10* xlO'

no of pe

figure 6.4

LOGARITHMIC RELATIONSHIP OF 
THE CONSTANT (B) TO THE 
NUMBER OF PES



The tabulated output for speedups, and the values of 'a' and 'b' being used 
for this set of equations can be seen as the output of the program "pred" 
(microfiche listing 3). The three-dimensional graph of speedup as a 
function of the number of processors and problem size predicted by the 
system model can be seen in figure 6.5 to have a shape similar to that of 
the actual system. When comparing the actual speedups of the initial 
results in chapter 5 with those predicted in appendix K, the magnitude of 
the speedup figures being predicted can be seen for small problem sizes to 
be up to 64% in error (in the case where p=12 on 16PE). For larger problem 
sizes the error is reduced to -5%, making it possible for the present 
system model to be used to estimate a lower bound of speedup for any given 
system, but with questionable accuracy.

The error is due to the inaccuracy of the assumed linear relationship 
between the value of 'a' and the number of processors, this can clearly be 
seen in figure 6.3 to be non linear, but in the absence of a better 
relationship a linear approximation had to be made. If a better 
relationship could be found then it would be possible to enhance the 
predictive nature of the system model to that of the relative performance 
model suggested previously, \diere in the ideal case;

RP = PPE X NPE 
PBS

Wiere RP = The relative performance of the system to 
that of the base system 

PPE = The performance of a processing element 
relative to a reference system 

PBS = The performance of the base system relative 
to the reference system 

NPE = The number of processing elements.

For the results obtained in chapter 5 for problems with a relatively large 
number of nodes (p) in the problem mesh, the results were near enough to

page 94



10

00000
70000

60000

50000

40000

30000

20000
10000

FIGURE 6.5 PREDICTION BY THE SYSTEM MODEL 
SHOWING SPEEDUP AS A FUNCTION 
OF PROBLEM SIZE AN NUMBER OF PES



the ideal for the above relationship to be used in predictions for other
for

systems. It was stated that, ŷ the machine to operate without severe 
degradation the problem sizes should be kept as large as possible. For
small mesh problems a system model more accurate than the one presented 
here must be found; this would enable the number of PES (NPE) in the above 
relative performance model to be adjusted accordingly, to the degradation 
which can result from this. This is, however, not likely to be of much 
interest; in practise the machines are only designed for problems with 
large numbers of processing elements and the solution of large problems.

4.0 THE CONVERGENCE TESTS

One of the objectives of the investigation was to examine the effects a 
multiprocessor solution of a problem would have on the stability of the 
equations being solved. Stability is a problem in more complex field 
equations such as the Navier-Stokes equations of fluid flow, and if it 
could be improved it would inevitably lead to faster solution times for a 
given problem or more accurate results. The stability of field equations to 
a great extent governs the rate at which (the correct) values appear at the 
nodes of the particular problem mesh in question.

The speedup figures obtained in chapter 5 for the convergence tests were 
much iirproved over those of the set operations test. In the case of 
speedups based on the performance of a conponent PE of the multiprocessor, 
speedups within 0.1% of the ideal are achieved (in the case where p=288 on 
16PEs) - where the ideal is that of the increase in the potential 
processing power of the system over that of a component PE. This is only 
slightly degraded (to within 2% of the ideal) vdien conparing with the 
performance of an independent 6809E system (the MICROBOX II) for the reason 
given in chapter 5 and highlighted again below.

page 95



The results of the problem convergence tests of chapter 5 suggest strongly 
that a speedup greater than that of the 'ideal' value can be achieved for
large problem sizes, when basing the ideal on the increase in pure
processing power over a conponent PE. Figure 6.6 reproduces figures 5.11 
and 5.12 from chapter 5 highlighting this trend. Errors in results are not 
considered to be responsible for the findings since run times of up to 50 
hours and 20 minutes duration were, where possible, used to verify the 

^/  extrapolating equations (see appendix H). In an atteirpt to explain how 
results better than the ideal could conceivably occur consider the
following:

In theory the time taken to pass over the two-dimensional data, of the
bench mark Laplace solver, should vary linearly with the number of points 

2(p ). This has been seen to be true, in the logarithmic plots of the
processing array tests of chapter 5, with small deviations due to the

2processing using the boundary nodes. If p refers to the number of points
in a problem on a single PE, then if the same problem is run on 16PE the

2time taken to pass over all the points on one PE would vary with (p/4) ,
giving a theoretical maximum speedup figure for the 16PE system of 16 
2 2(p/(p/4) ). Similar thinking to the above v^en calculating the speedup 

vdien considering problem convergence would suggest that the rate at which 
values are propagated across the two-dimensional mesh in one PE, should 
vary not only with the number of points but also the time taken to pass 
over them i.e. to vary with p^. Thé variation with p^ can be seen in the 
logarithmic plots of the problem convergence tests of the previous chapter, 
again with slight deviations being caused by boundary node eccentricities. 
The calculation of the maximum theoretical speedup is not as sinple as the 
above calculation since values propagating across the inner PEs must first 
have propagated through the outer PEs.

page 96



SPEEDUPS RELATIVE TO IPE FOR A RANGE OF PROBLEMS

16

14

12

10

8

6

2

0

a
S'

•HinITS(Uuuc

10 12 14 16

NUMBER O F  PROCESSORS

(A)

SPEEDUPS R E L A T IV E  TO IP E  FOR A RANGE OF PROBLEMS

16

12

10

8

6

2

0
0 2 4 86 10 12 14 16

a
CP

n u m be r  o f  p r o c e s s o r s

(B)

FIGURE 6.6 THE TRENDS IN SPEEDUP OF THE 
MULTIPROCESSOR



The maximum theoretical speedup in the processing power has been found
above. When looking at the way in which the PE array performs the field
calculations as opposed to the number of calculations it can perform in a
given time, a new maximum emerges. The maximum speedup in the processing
power must be increased to take into consideration the fact that the
multiprocessor system provides a two-dimensional pipeline. The pipeline

2effectively consists of n/2 stages (vrtiere n is the number of PE in the 
system) through which values propagate towards a focus at the center of the 
problem mesh (at the centre of the PE array). The following relationship 
for speedup (S) should then hold (for large p):

3S a

3 2(where n /% = n x n/2).
The hypothesis in chapter 5 that:

i » ,
(where c is a constant) is born out by the above since:

3S 2
ta “ "

which would fully describe the trends indicated in figure 6.6. The value of
'c' should not be taken directly from this relationship since boundary
value eccentricities have not been taken into consideration.

Operation of the PE array indicates the existance of the trends seen in 
figure 6.6, but currently the system is unable to perform in the region 
vdiich may be viewed as better than the 'ideal'. If the degradation in the 
array can be reduced (for exaiiple by further inprovements in the 
get address procedure) or the PE array extended to form a 5x5 array, then 
proof that performances better than the 'ideal' would almost certainly be

page 97



obtained. If this relationship can be proven, then such multiprocessor 
systems offer the remarkable prospect of providing a greater benefit than 
the architecture of the machine would at first suggest.

5.0 COMPARISON WITH OTHER SYSTEMS

5.1 Performance on the bench mark program

The bench mark Laplace algorithm was iirplemented on several systems, each 
of which was given the problem which gave the best performance in the 16PE 
array (that of the 288x288 mesh). Where it was not possible to iirplement 
the mesh directly an approximation (as indicated) was used. Systems other 
than the 16PE array did not need the get_address procedure and therefore 
did not have the associated overhead of this code. Where possible programs 
were compiled with a "no-optimize" switch (this applies to the PRIME and 
VAX systems) to compensate for the use of a one pass compiler in PL9 coded 
systems.

Running the bench mark in a range of machines (program 5 [for 6809E 
systems], program 2 for the MICROBOX II, program "Laplace" (on microfiche) 
[for VAX and PRIME systems] and program 1 [for the OLIVETTI]), the best 
inprovement over the 16PE array was found to be the VAX 8600 which was a 
factor of 77.2 faster.

The relative performance figure for the VAX 780 was 17.6 times that of the 
16PE system. A preliminary estimate of the performance of the 16PE array 
included in chapter 2 put this figure at 0.6. This discrepancy between the 
estimated figure and the actual figure shows the danger of accepting 
manufacturers bench marks for small microconputers, and mixing them with 
vdiat appear to be similar bench marks for mainframe systems. Consequently

page 98



rather than the 16PE system operating with a performance in excess of that 
of a VAX 780 and much higher than the band in which commercial machines can 
be seen (in chapter 2) to lie for the same price, the machine operates just 
above this band and with a performance 17.6 times less than that of a VAX 
780 (figure 5.13 in chapter 5). Nevertheless it has been shown that a 
multiprocessor system can be made to operate outside the normal band of 
operation of commercially available machines in an area which should be of 
commercial interest.

5.2 Performance/costs of the above systems

It is only when comparing the performance of each machine with respect to 
its cost that the true worth of the 16PE multiprocessor system emerges. In 
terms of the performance/cost ratio the 16PE array, which can be seen in 
figure 5.14 in chapter 5, the multiprocessor is 2.5 times better than the 
VAX 8600, and 3 times better than the MICROBOX II.

The consequence of an architecture \diich displays (at worst) a constant 
performance/cost ratio is discussed below. In general, all systems which 
show increasing performance for increasing numbers of PEs can in theory 
achieve any desired performance simply by incorporating enough PEs. In 
practise however it is the rate of speedup (S) with the number of PE (n) 
which renders a system impractical if:

4  < « .dTl

since this implies that the increase in performance gained by the addition 
of another PE is not as much as for the previous PE, which for large 
numbers of PE renders the system uneconomical. Due to the (at worst)

page 99



linear relationship between SU and n displayed throughout the previous 
chapter where it can be seen that for large problem sizes:

4  > 0 .9n^

every added PE delivers (at least) the same increase in performance, in 
such a system the performance is not limited by diminishing returns.

The performance envelope of the MC6809E based system with cost can be seen 
in figure 6.7 where the bandwidth of performance for commercially available 
machines (shown by hatching). Figure 6.7 also shows the performance 
envelopes of similarly architectured machines based on more powerful PEs, 
which can achieve the same performance levels as the MC6809E based system 
but with far fewer PEs.

5.3 Possible competition to a multiprocessor system

Systems Wiich display high performance for their cost such as the APOLLO 
and SUN workstations, the micro VAX systems (Malone [58]) all at around 
$30,000 and the promise of the ACORN Restricted Instruction Set Coitputer, 
may in the short term offer competition to multiprocessor systems 
coitprising of few PES.However, if a faster and possibly cheaper processor 
does appear there is no reason v^y these processors cannot become the heart 
of a multiprocessor system, similar in architecture to the one which has 
shown so much success for this particular application, and thus out perform 
the systems in which the processor was first launched. It should also be 
remembered that a multiprocessor system is modular and therefore its power 
can be increased by addition of more units (PEs), and since its performance 
is linear with the number of PE&its performance is in theory unlimited.

page 100



PERFORMANCE AGAINST COST
«10*

68000 ARRAY

TRANSPUTER ARRAY

2MHz SYSTEM
.10-'

1MHz SYSTEM

2 3 * 5 6 7 8 91I 2 2 3 4 5 6 7 8 91 3 4 52lO*
COST (jp

FIGURE 6.7 PERFORMANCE ENVELOPES OF 
MULTIPROCESSOR MACHINES



6.0 A  MORE GENERAL SYSTEM

Although the architecture of the 16PE multiprocessor array has been 
specifically designed to optimize the solution of field equations, it is 
possible that other uses for the system may be found.

6.1 Alternative architectures offered by a PE of the multiprocessor

Although the PEs have been arranged as a 4x4 array there is no reason v^y 
nob

they should^be arranged differently, since this can be achieved sinply 
within the same rack which presently holds the system by altering the 
connections between PEs. New topologies may not involve all the connections 
a PE can offer, or even all the PEs, enabling architectures to be tailored 
to a specific problem. For exairç)le, in the case of a field equation problem 
vAiere a rectangular mesh (rather than a square mesh) would be more useful^a 
PE array of 3x5, 2x8 or even 1x16 PEs could conceivably be formed.

7.0 FUTURE WORK

7.1 Further optimization of the 16PE array

Further optimization of the 16PE array routines may be carried out, as 
suggested earlier in this chapter, to bring the system nearer to the ideal 
performance than has been achieved to date. If this can be performed, proof 
of the hypothesis,that the can system perform better than would be expected 
by the increased processing power of the system, may be found, Wiile 
inproving the performance in general of the system with respect to other 
machines.

page 101



7.2 A 2MHZ version

A 2MHz version of the 16PE multiprocessor is directly available on the 
current system by sinply updating the processor in the system to the 
MC68B09E and the XTAL package to 32MHz. The performance of this system can 
be seen in relation to those of chapter 5 and the 16PE (iMHz) version in 
figure 6.7. This, shows that a 2MHz version would be out of the main stream 
of available machines (shown by hatching) with a performance twice that of 
the iMHz system and not usually attainable at this cost. In practise 
however noise problems could cause difficulties and a 2MHz system may have 
to implement the changes of the following section, if noise free operation 
is to be guaranteed.

7.3 System redesign

The need for discrete components in the contention circuitry is no longer 
necessary since debugging of the 16PE system has been completed. Placing 
the contention circuitry and the interrupt mechanism {vihere possible) into 
fast Programmable Read Only Memory (PROM), would considerably reduce the 
number of conponents in a PE. The use of PROMs and multi-layer printed 
circuit board technology would reduce the size of a 16PE system to desk top 
proportions. The present method of inter-board connections would have to be 
dropped in favour of a mother board, which may also serve as the master 
processor for the system. The benefit of such a system would be seen to be 
high processing power, compactness, while offering noise suppression, ease 
of expansion and the possibility of commercial production.

page 102



7-4 More powerful processors

Retaining the same architecture a system with a more powerful PE would 
enable a given performance level to be achieved with fewer PEs. It is 
envisaged that a more powerful system would adopt the system redesign 
suggested above, to reduce the unit cost of a PE for a system with a large 
number of PEs; two examples of systems based on more powerful processors 
can be seen in the sections below.

(a) A Molorola 68000

This would need the least redesign of the system currently in operation due 
to the similarities between the processors. A 16PE machine based on the 
MC68000 processor, would show an expected speedup factor of 5 over the 16PE 
(MC6809E). With a floating point coprocessor this figure would be expected 
to increase to about 6.75 (based on the performance of a comparable 8086 
system - the Olivetti M24). The extra cost of the processors, faster 
memory, redesigned components and the new printed circuit boards put the 
price of a PE in this array at around £700. The expected performance 
envelope of a system based on this processor can be seen in figure 6.7 to 
be almost that of the iMHz 6809E system, but it must be remembered that the 
same performance levels are being achieved with less PEs. Using the formula 
of section 3.0 a 5x5 array of MC68000 based PEs would provide a performance 
similar to that of a VAX 780 (PPE=0.6628, PBS=17.6 and NPE=25) for a price 
only one third that of the VAX system.

(b) A Transputer (the T800)

The Transputer architecture which would ideally suit the field equation 
problem would be that of an n x n array, with local communication in shared

page 103



memory and global communication by means of transputer links. The INMOS 
transputer (the IMS T800) has floating point capability built into the 
chip. The expected improvement of a Transputer PE over a PE based on the 
MC6809E microprocessor (based on INMOS figures) is estimated to be be 675 
times better. With an expected cost per PE of £2500 the range of operation 
of this system can be seen in figure 6.7, where the high performance and 
relatively low cost of the potential PE put the performance of the 
transputer array in an area of great potential commercial interest.

Again there is no reason why the Transputer system would not follow the 
model suggested in section 3.0. This would imply that one PE based on a 
Transputer would out perform the VAX 780 by a factor of 2.39 (PPE=675/16, 
PBS=17.6, NPE=1) on the given problem (it must however be remembered that 
the VAX is a more general machine). A 2x2 array of transputers would out 
perform a VAX 8600 by a factor of 2.18 (PPE=675/16, PBS=77.2, NPE=4) for a 
cost only 4% that of the VAX system. An array of 13x13 transputer based 
processing elements, arranged with an architecture similar to the prototype 
in this work, is expected to outperform the CRAY II and to do so at a cost 
of only 8̂ % that of the CRAY system̂ .

1 Estimated from figures obtained from Perrenod [65] and this work,

page 104



CHAPTER 7



CHAPTER?

TEE CONCLUSIONS

A probability model of a multiprocessor architecture for the solution of 
field equations revealed that if communication between processing elements 
within the architecture was restricted to nearest neighbour, then linear 
speedup of processing power with the number of processing elements would be 
seen. Specifically for an architecture comprising of 16 such processing 
elements a performance 15 times greater than that of a single processing 
element is predicted.

Linear speedup is a major achievement in a parallel processing system, as 
it iirplies the degradations usually seen in such a system have been 
overcome. Performance has been seen to vary linearly with the number of 
processing elements in a multiprocessor when running the field problems for 
which the architecture had been designed. The gradient of this obtained 
linearity was increased in the course of the work by 23% to a value 74% of 
the ideal Wien compared to an independent system. This corresponds to a 
performance 14.1 times greater than that of a component processing element 
(i.e. 94% of the value predicted). Suggestions for improving the linearity 
further are made in the discussion section of this thesis.

Analysing the performance of the multiprocessor architecture leads to the 
hypothesis that benefits greater than those expected from the increase in 
pure processing power of the multiprocessor are to be gained due to the 
pipelining effect which the architecture produces. Clear indications of the 
validity of this hypothesis can be seen in the results, the implications of

page 105



which are discussed in this thesis. It is expected that proof of the 
hypothesis would be found if the architecture was extended to form a 5x5 
array of processing elements or the degradation from the ideal gradient of 
linear speedup inproved, as suggested.

The success of the architecture in fulfilling the objectives of this work 
lead to the formation of relative performance model. From this model the 
performances of .similarly architectured machines were found for varying 
numbers of processing elements based on different processors. This model is 
used to predict that an array of 13 x 13 processing elements based on the 
INMOS transputer, would out perform a CRAY II supercomputer and do so at a 
cost only 8^% that of the CRAY system.

page 106



APPENDICES



APPENDIX A
PIN CONNECTIONS FOR THE SHAEED 

MEMORY PORTS OF 
A PROCESSING ELEMENT



SHARED MEMORY CONNECTORS

SHARED MEMORY ON THE PCB

A l Î  g  AO
A3 i  g  A2
A5 g  g  A4
A7 g  g  A6
A9 g  g  A8
DO g  g  AlO
D2 g  g  Dl
D4 g  g  D3
D6 g  g  D5

REQ g  g  D7
REQHI g  g  REQLO

SEL g  g  GRAB_IN
OK_TO_GRAB_OUT g  g  SEL

OE g  g  OK_TO_GRAB_IN 

R/W g  g  WE
RES_IN g  g  IRQ_OUT
IRQ IN  g  g  RES OUT

EAST AND SOUTH



SHARED MEMORY OFF THE PCB

A1 i  i  AO
A3 i  i  A2
A5 i  i  A4
A7 i  i  A6
A9 g g A8
DO g g AlO
D2 g g  Dl
D4 g g D3
D6 g g D5

REQ g g D7
REQHI g g REQLO

SEL g g GRAB_OUT
OK_TO_GRAB_IN g g SEL

OE g g OK_TO_GRAB_OUT
R/W g g WE

RES_OUT g g IRQ_IN
IRQ OUT g g RES IN

NORTH ANO WEST



APPENDIX B
THE PROCESSING ELEMENT BOAEUD



CIRCUIT DIAGRAMS



tiu UJ

r* ■* n ■* < < < < 5 2

\à

as
30

33

1V1SA&IH3 ZHW9T



All

v9vcc
2 4 CS RAMI

Y2
2 3
22

CS RAM2
\  (A13) B Y3

Y4
CS RAM3

Y5

REQ 1Y7VMA
G2

REQ 2
YIO
YU

REQ 1Y15 Y12
Y14 Y13

REQ 2

REQ 1

REQ 2

REQ 1

REQ 2

CS IRQ

CS PROGRAM RAM/ROM 1

CS PROGRAM RAM/ROM 2

CS PROGRAM ROM

 ̂ NORTH

SOUTH

EAST

WEST

DECODING



GNI

10 11
9 IE
8 13
7 15
6 16
5 17
4 18
3 19
S3 MD
?4 OJ
21 kO 20
23 22
2

1
26

14 28
27

r h

CS RAMI

CND

10 11
9 12
8 13
7 15
6 16
5 17
4 18
3 19
23 kD
24 OJ
21 SO
23 22
2

1
26

14 28
27

r f i

CEI

NC
CES
VCC

CS RAM2

/Câï

/  AIS

GNJ)

m

10 11
9 IE
8 13
7 15
6 16
5 17
4 18
3 Tf- 19
23 kD
24 (U
21 KÛ 20
23 22
2

1
26

14 28
27

DO01

CEI

NC
CES
VCC

CSRAH3

AO
/ Z K
/ZM.
/ C ü/ZEL
/ Z ^
/ Z K
/Zæ/ C M
XÂÏÔ
/^Âïî

GND

10 11
9 IE
8 13
7 15
6 16
5 17
4 18
3 19
23 vD
24 OJ
21 kO 20
23 22
2

1
26

14 28
27

m

CEI

NC
CES
VCC

CS PA06RAM 
RAH I

Z z

A6

GND

10 11
9 IE
8 13
7 15
6 16
5 17
4 18
3 T j- 19
23 KÛ
24 OJ
21 KÛ 20
23 22
2

1
26

14 28
27

CS PKO&RÂM 
r a m i

AO

r t j
MEMORY

/ZÂ3
yZZ±
/ Z ^
y Z M
/Iæ/CEE
/  AlO
>oir

GND

/77

10
9
8
7
6
5
4
3
53
54
SI
S3
2

14

KÛ
N
CO

11
IS
13
15
16
17
18 
19

SO22
1

S6
28
27

DO

D6
D71
CEI
" K —

NC~
CES 
VCC

CS PROGRAM  «ÔBÎ



Q
U3

E 11 CLK 9

AVMA 12 D 10
r—

+SV X <5

LATCH CLK

J -

LATCH CLOCK



m

cror or on

il8*
Mo



to «o

orCM



w CO

to

00A
VA

o

a 3

LÛ F
8  8
«O



Ce

M

m

S

oror or or\ II)

5

o  R
g
MO



U)

ro
I!
sI

_1w

q:

I

I

s



SELCc A S  I ) (FA-iT)sn.

f •- •— r o f O ^ r o t J ^ t n ^ ' J ®

116 in 4

OJ 14 Î cmi: !3i a ic j |a lo lC 3 ic j | t» |o S  <  HI SI

VCC

C M tn i* .  u i r o ' •-“

15 
OJ 14 

13
14 OJ 6

EAST SHNRBD MEMORY BLOCK



AO

eu Ag
A3
A4

DIRm

A3
A4

GND

lOA3

DIR
VCCVCC

mm
AS
Afe
A7
A8
A9

AlO

AS
A6
A7
AS
A9

AlO

AS
A6
A7
AB
A9
AlO

\  AS 
\  A6 
\  A7 
\  AS

DIR

'Û fO U
6116

\n
OJ14OJ 14

GNjl
VCC

GND
VCC 202019

/7 7m
6116

pg
D3
D4
D5

D2\ pg 
D3 

\  D4 
\  D5 
\  D6 
\  D7 

DIR

D2 
D3 , 
D4 
D5 . 
D6 
D7 , 
GND

inin < | S D4 X  
D5 /  
D6 /D7 yDIR

OJ 6

D7
GND

rfi b r VCCVC C 20

rtim

SOUTH SHARED MEMORY BLOCK



g;o\ui(D4kwn)^
74LS138

üj

'O



W  UJ 

3 %

Iif
8

IS8

CD O)

(O
O) aCM

CMCD0» CM
LxJ

P:̂  
O
E-4
:z;o
GO 
E—'C
H
GO



COMPONENT LISTINGS



COMPONENTS OF A PROCESSING ELEMENT

1 IC no. 1 DEVICE 1
1 1 1 XTAL 1
1 2 1 74LS161 1
1 3 1 74LS74 1
1 4 1 74LS02 1
1 5 1 74LS00 1
1 6 1 74LS04 1
1 7 1 MC6809E 1
1 8 1 74LS154 1
1 9 1 74LS08 1
1 10 1 74LS21 1
1 11 1 74LS32 1
1 12 1 74LS32 1
1 13 1 74LS138 1
1 14 1 74LS279 1
1 15 1 74LS279 1
1 16 1 74LS09 1
1 17 1 2764 1
1 18 1 6264 1
1 19 1 6264 1
1 20 1 6264 1
1 21 1 6264 1
1 22 1 6264 1
1 23 1 74LS08 1
1 24 1 74LS21 1
1 25 1 74LS21 1
1 26 1 74LS273 1
1 27 1 74LS00 11 28 1 74LS04 1
1 29 I 74LS04 1
1 30 1 74LS01 1
continued ...



continued ...
1 IC no. 1 DEVICE 1

1 31 1 74LS01 1
1 32 1 74LS10 1
1 33 1 74LS10 1
1 34 1 74LS273 1
1 35 1 74LS133 1
1 36 1 74LS279 1
1 37 1 74LS09 1
1 38 1 74LS20 1
1 39 1 74LS245 1
1 40 1 74LS245 1
1 41 1 74LS245 1
1 42 1 74LS245 1
1 43 1 74LS245 1
1 44 1 74LS245 1
1 45 1 74LS245 1
1 46 1 74LS245 1
1 47 1 74LS245 1
1 48 1 74LS245 1
1 49 1 74LS245 1
1 50 1 74LS245 1
1 51 1 74LS32 1
1 52 1 6116 1
1 53 1 6116 1
1 54 1 6116 1
1 55 1 6116 1



APPENDIX C
THE INTERFACE BCARD



CIRCUIT DIAGRAMS



°il@iiili cc

x 3

M
cÿwQC

(n
syy'

O

|â
lëI

NO
r A

C4 IT C\
VI H

îrT

in n OJ o cr>
eeisntz

^ojn^œinvoiS
v4c OJ

<t
oz13
15 v-4

w
CJ
o>

N K1 octo
wo



t .CO yCD

<J>O VIu u

CO

A  (D

>or»w3 Q

?3Û
V  0<

u m m cs <

»
§A 
«0

s?

(CS
«

ÿjel»

A
IQ

« t > V

_H



u m -
DO 10
D1 3
D2 17
D3 4
D4 14
D5 7
D6 13
D7 8

cs LO BYTE

DO 18
D1 3
D2 17
D3 4
D4 14
D5 7
D6 13
D7 8

w a s

19 NO
2 NC
16 NC
5 NC
15 NC
6 A5
12 A6
9 A7

CS HI BYTE

19 A8
2 A9
16 AlO
5 All
15 A12
6 A13
12 NC
9 NC

TO SM CONNECTORS

DIRECTION SELECT

LATCHES FOR SETTING THE 
32 BYTE HINDOU

LATCH CLKCV2
AVMA

U 6



□
s

m

m

t-t

□
H-



<NJm

CO□ a

13

M



n

w(/)u
V

Ov

K)

t-



co

n

□

□



m

m

a

LU

II



COMPONENT LISTINGS



THE OOMPONEMTS OF THE MASTER INTERFACE BOARD

1 IC no. 1 DEVICE 1
1 1 1 74LS10 1
1 2 1 74LS04 1
1 3 1 74LS138 1
1 4 1 74LS08 1
1 5 1 74LS00 1
1 6 1 74LS273 1
1 7 1 74LS273 1
1 8 1 74LS21 1
1 9 1 74LS00 1
1 10 1 74LS279 1
1 11 1 74LS10 1
1 12 1 74LS01 1
1 13 1 74LS01 1
1 14 1 74LS00 1
1 15 1 74LS279 1
1 16 1 74LS21 1
1 17 1 74LS32 1
1 18 1 74LS04 1
1 19 1 74LS20 1
1 20 1 74LS04 1
1 21 1 74LS138 1
1 22 1 74LS09 1
1 23 1 74LS373 1
1 24 1 74LS373 1



COMPONENT POSITIONS



ETOI931

05

TT3I 9T3I2T3ITOI SOI

SIOIEOI

9T0I T20IOTOIto i 901

co
C\2 601

C\2



CONNECTORS



Expansion bus
Pin No Inner row Outer row

1. 2 + 5v + 5v
3. ^ Gnd Gnd
5. 6 BAG . IC19 pin 6
7. 8 *BRTS BAl
9. 10 BDl BDO

11, 12 BD3 BD2
13.1^ BD5 ’ Boa
15,16 BD7 BD6
17,18 BA2 BR/W
19 . 20 BAa BA3
21, ?2 lôMhz BE
23. 2a ♦WDS Q
25. 26 RTC .LPEN
27. 28 *1/02 *RDS
29. 30 *1/01 *I/OBUFF
31. 32 *NMI RST
33. 3a *FIRQ *IRQ
35. 36 *TTLVID VSYNC
37. 38 Gnd Gnd
3 9 . ao -12v + 12v



CONNECTOR TO PE

i  i  AO
A3 i  g  A2
A5 g  g  A4
A7 g  g  A6
A9 g  g  A8
DO g  g  AlO
02 g  g  01
04 g  g  03
06 g  g  05

REQl g  g  07
REQIHI g  g  REQILO

SELl g  g  GRAB1_0UT
0K_T0_GRAB1_IN g  g  SELl

OE g  g  0K_T0_GRAB1_0UT
R/W g  g  WE

RES1_0UT g  g  IRQ1_IN
IRQl OUT g  i  RESl IN



CONNECTOR TO PE 2

A1 Î  g  AO
A3 i  g  A2
A5 g i  A4
A7 g g  A6
A9 g  g  A8
DO g g  AlO
D2 g  g  D1
D4 g  i  03
06 g  i  05

REQ2 g  g  07
REQ2HI g  g  REQ2L0

SEL2 g  g  GRAB2_0UT
0K_T0_GRAB2_IN g  g  SEL2

OE g  g  0K_T0_GRAB2_0UT
R/W g g  WE

RES2_0UT g g  IRQ2_IN
IRQ2 OUT i  i  RES2 IN



CONNECTOR TO PE 3

Al g  g  AO
A3 g  g  A2
A5 g g  A4
A7 g i  A6
A9 g i  A8
DO g  g  AlO
02 g  g  01
04 g  g  03
06 g  i  05

REQ3 g g  07
REQ3HI g  g  REQ3L0

SEL3 g g  GRAB3_0UT
0K_T0_GRAB3_IN g g  SEL3

OE g g  0K_T0_GRAB3_0UT
R/W g  g  WE

RES3_0UT g  g  IRQ3_IN
IRQ3 OUT i  i  RES3 IN



CONNECTOR TO PE 4

Al i  i  AO
A3 i  i  A2
A5 i  I  A4
A7 i  I  A6
A9 i  i  A8
DO i  i  AlO
D2 g  g  Dl
04 g  g 03
06 g  g  05

REQ4 g  g  07
REQ4HI g  g  REQ4L0

SEL4 g g  GRAB4_0UT
0K_T0_GRAB4_IN g  g  SEL4

OE g  g 0K_T0_GRAB4_0UT 
R/W g  g  WE

RES4_0UT g g  IRQ4_IN
IRQ4 OUT g  g  RES4 IN



APPENDIX D
THE STATUS MONITOR BOARD



CIRCUIT DIAGRAMS



» :•

ro s

1»
*•

m

♦ —
ei

i

»

i l
|U»
I •

in r*
w

• m

Î

(A

CSl

•V

&

I In

A is

Ov

i»o

« N

m

lAAm

2



11010
f--
» pi I

I N|

I
On
W

r

m

r--

s

i iQ  (0
ÏÏ UJ*-4 QQ
5  z
a s

M

@Sm

r * :



BA

65

REDG REEN

S I G N A L
b a J b s

R E S U L T A N T  L E D  
C O L O U R

0 0 
0 1 
1 0

Y E L L O W
G R E E N
R E D

DETAILED VIEW OF AN LED



COMPONENT LISTINGS



COMPONENTS OF THE STATUS MONITOR BOARD

1 IC No. 1 Device |
1 1 1 74LS221 1
1 2 1 74LS221 1
1 3 1 74LS221 1
1 4 1 74LS221 1
1 5 1 74LS221 1
1 6 1 74LS221 1
1 7 1 74LS221 1
1 8 1 74LS221 1
1 9 1 74LS244 1
1 10 1 74LS244
1 11 1 74LS244
1 12 1 74LS244 1
1 13 1 1500 OIL 1

14 1 1500 OIL 1
1 15 1 1500 OIL 1
1 16 1 1500 OIL 1

ALL TIMING RESISTORS 47 kS2 
ALL TIMING CAPACITORS 470 /vF



THE CONNECTOR



STATUS MONITOR BOARD CONNECTOR

BS16 g  g  BA16
BS15 g  g  BA15
BS14 g  g  BAI 4
BS13 g g  BA13
BS12 g  g  BA12
BSll g  g  BAll
BSIO g g  BAIO
BS9 g g  BA9
BS8 g g  BA8
BS7 g  g  BA7
BS6 g  g  BA6
BS5 g  g  BAS
BS4 g  g  BA4
BS3 g  g  BA3
BS2 g  g  BA2
BSl 1  1  BAl

(SOLDER SIDE)



COMPONENT POSITIONS



* «1, “ * !•
a « # *» # *o •
a* a • a* ® e
a« a* a* 2®

I Qta I I BKM I I »Ta I I era |

0 0 0 0 0 0 0 0
H0131NM03

Q

?
§
K
0

1
0
s
CO

1
E-
CO

%o
§o
B
mo
PU

H
%

§o
o



APPENDIX E
VERIFICATION OF THE TIME 

TO SOLUTION FOR THE 16PE CASE



APPENDIX E Relationship between time to solution (t) and number of points 
2(p ) for the 16PE case to verify linearity

.10'

.10"

. 10-'

RELATIONSHIP OF PASS TIME TO NO. OF POINTS

7 8 9 1 .10"
NUMBER OF POINTS

LOGARITHMIC RELATIONSHIP OF THE
AVERAGE PASS TIME TO THE SIZE OF
THE PROBLEM MESH



APPENDIX F

PROCESSING TESTS ON THE MULTIPROCESSOR 
RUNNING THE OPTIMIZED PROGRAM



APPENDIX F Optimized results

Table F.l shows the time for 5 passes of program 4, with an optimized 
'get_address' procedure, for various sizes of architecture and problem.

1 size 1 IPE 1 1 1 4PE 9PE 11 16PE 1
1 12x12 1 1 1 3.62 1 1.28 0.85 1 0.64 1
1 24x24 1 16.38 1 5.14 2.98 I 1.53 1
1 36x36 1 38.63 1 11.85 5.87 1 3.41 1
\ 48x48 1 70.57 1 21.43 11.85 I 5.90 1
1 60x60 1 111.3 1 34.03 15.97 1 9.07 1
1 72x72 1 162.1 1 49.38 23.03 1 10.03 1
1 84x84 1 1 67.88 31.58 1 17.71 1
1 96x96 1 1 89.08 40.94 1 23.04 1
1 108x108 1 1 113.4 51.71 1 29.11 1
1 120x120 1 1 140.4 63.84 1 36.09 1
1 132x132 1 1 170.5 77.25 I 43.63 1
1 144x144 1 1 203.3 92.05 1 51.73 1
1 156x156 1 1 107.9 1 60.78 1
1 168x168 1 1 125.1 1 70.47 1
1 180x180 1 1 143.9 1 80.80 1
1 192x192 1 1 163.6 1 92.00 1
1 204x204 1 1 184.8 1 104.0 1
1 216x216 1 1 207.6 1 116.7 1
1 228x228 1 1 1 129.8 1
1 240x240 1 1 1 143.9 1
1 252x252 1 1 1 158.7 1
1 264x264 1 1 1 174.2 1
1 276x276 1 1 1 190.5 I
1 288x288 1 1 1 208.0 1

TABLE F.l 5 Pass time (s)



Table F.2 shows the average pass time of the data in table F.l
1 size iPE 4PE 9PE 16PE 1
1 12x12 0.72 0.26 0.17 0.13 1
1 24x24 3.28 1.03 0.59 0.31 1
1 36x36 7.73 2.37 1.17 0.68 1
1 48x48 14.11 4.28 2.12 1.18 1
1 60x60 22.27 6.81 3.20 1.81 1
1 72x72 32.42 9.88 4.61 2.61 1
1 84x84 13.57 6.32 3.54 1
1 96x96 17.82 8.19 4.68 1
1 108x108 22.67 10.34 5.82 1
1 120x120 28.07 12.77 7.21 1
1 132x132 34.10 15.45 8.73 1
1 144x144 40.67 18.41 10.35 1
1 156x156 21.58 12.16 1
1 168x168 25.02 14.10 1
1 180x180 28.78 16.16 1
1 192x192 32.73 18.40 1
1 204x204 36.96 20.80 1
1 216x216 41.52 23.33 1
1 228x228 25.97 1
1 240x240 28.79 1
1 252x252 31.75 1
1 264x264 34.83 1
1 276x276 38.09 1
1 288x288 41.60 1

Table F.2 Average pass times (s)

The logarithmic plots in figures F.l, F.2 and F.3 of the data in table F.2 
yeald the following equations for the extrapolated data vdiich cannot be 
obtained experimentally due to memory restrictions:

IPE t = .2.0853

4PE t = p2.0516

6587828



RELATIONSHIP OF PASS TIME TO NO. OF POINTS iPE
5

Î

2

o'

d
7

5

Î
2

1

a
7

5

3

10 5020 30 40 60 70

NUMBER OF POINTS

FIGURE F.1 LOGARITHMIC RELATIONSHIP OF
THE AVERAGE PASS TIME TO
PROBLEM SIZE FOR IPE



RELATIONSHIP OF PASS TIME TO NO. OF POINTS APE

<
CL

§
n

10 20 30 50 60 70 80 90 100

NUMBER OF POINTS

FIGURE F.2 LOGARITHMIC RELATIONSHIP OF
THE AVERAGE PASS TIME TO
PROBLEM SIZE FOR 4PE



RELATIONSHIP OF PASS TIME TO NO. OF POINTS 9PE

/
/z.

y

>//
//

¥

¥

«13'

. 10'

.10"

.10' 6 7 8 9 1 .10’
NUMBER OF POINTS

FIGURE F.3 LOGARITHMIC RELATIONSHIP OF
THE AVERAGE PASS TIME TO
PROBLEM SIZE FOR SPE



9PE t =
1123.699

where t = average pass time
p = number of points along one edge of the problem mesh

Table F.3 shows the conpleted table of average pass times, with values 
extrapolated where indicated (using the above equations).

1 size IPE 4PE 9PE 16PE 1
1 12x12 0.72 0.26 0.17 0.13 1
1 24x24 3.28 1.03 0.59 0.31 1
1 36x36 7.73 2.37 1.17 0.68 1
1 48x48 14.11 4.28 2.12 1.18 1
1 60x60 22.27 6.81 3.20 1.81 1
1 72x72 32.42 9.88 4.61 2.61 1
1 84x84 44.92 13.57 6.32 3.54 1
1 96x96 59.36 17.82 8.19 4.68 1
1 108x108 75.86 22.67 10.34 5.82 1
1 120x120 94.51 28.07 12.77 7.21 1
1 132x132 115.3 34.10 15.45 8.73 1
1 144x144 138.2 . 40.67 18.41 10.35 1
1 156x156 163.3 47.93 21.58 12.16 1
1 168x168 190.6 55.80 25.02 14.10 1
1 180x180 220.1 64.28 28.78 16.16 1
1 192x192 251.8 73.83 32.73 18.40 1
1 204x204 285.8 83.10 36.96 20.80 1
1 216x216 321.7 93.44 41.52 23.33 1
1 228x228 360.4 104.4 46.26 25.97 1
1 240x240 401.1 116.0 51.69 28.79 1
1 252x252 444.0 128.2 56.51 31.75 1
1 264x264 189.2 141.0 62.02 34.83 1
1 276x276 536.8 154.5 67.79 38.09 1
1 288x288 586.6 168.6 73.81 41.60 1

e X t r a p o 1 a t e d
a r e a

Table F.3 Average pass times (s)



APPENDIX G
PROCESSING TESTS ON THE INDEPENDENT 

SYSTEM



APPENDIX G Comparison with independent computer based on the same 
processor

In order that the performance of the multiprocessor system could be judged 
not only with regards too one of the component PE of the machine, the same 
tasks as performed by the multiprocessor (in chapter 5, section 5.2.3) were 
performed by an independent microconputer (the MICROBOX II based on the 
MC6809E microprocessor).

The times for 5 passes over various sizes of problem mesh were taken, the 
corresponding average pass times of which can be seen in table G.l.

1 mesh size average pass time |
1 12x12 0.562 1
1 24x24 2.668 1
1 36x36 6.318 1
1 48x48 11.544 1
1 60x60 18.346 1
1 72x72 26.794 1

Table G.l Average pass times (s) 
of an independent 
system

Plotting this logarithmically (figure G.l) yields the following equation:

t = P
296

2.1

vdiere t = average pass time
p = number of points along one edge of the problem mesh 

This equation is used to extrapolate for the times which would be seen if 
sufficient memory was available to run the problem. The average pass times 
for the MICROBOX II can be seen in table G.2, with the extrapolated values 
as indicated.



PASS TIME IN AN INDEPENDENT 6809E SYSTEM
5

Î

2

x lO '

1«
8
7

6
5

3
2

I
9676
5

4

Î

2

10-’
10 20 30 40 50 70 80 90 10060

NUMBER OF POINTS

FIGURE C.1 LOGARITHMIC RELATIONSHIP OF 
THE AVERAGE PASS TIME TO 
PROBLEM SIZE FOR THE 
MICROBOX II



I grid size | average pass time
1 12x12 1 0.562
1 24x24 1 2.668
1 36x36 1 6.318
1 48x48 1 11.544
1 60x60 1 18.346
1 72x72 1 26.794
1 84x84 1 37.033
1 96x96 1 49.019
1 108x108 1 62.773
1 120x120 1 78.316
1 132x132 1  ̂95.667
1 144x144 1 114.840
1 156x156 1 135.865
1 168x168 1 158.740
1 180x180 1 183.49
1 192x192 1 210.11
1 204x204 1 238.63
1 216x216 1 269.07
1 228x228 1 301.42
1 240x240 1 335.67
1 252x252 1 372.48
1 264x264 1 410.07
1 276x276 1 450.19
1 288x288 1 
1 1

492.27

extrapolated
area

Table G.2 Average pass times (s)



APPENDIX H
PROBLEM CONVERGENCE TESTS FOR 

THE MULTIPROCESSOR



APPENDIX H The time for a certain state of problem solution to be reached

Table H.l shows the time taken for program 4 to reach the state where all 
the nodes within the problem have reached a certain condition (arbitrary 
but in this case 2/9th of the boundary value).

1 size IPE 4PE 9PE 16PE 1
1 12x12 5.06 1 1 1 invalid data I
1 *15x15 *11.86
1 *20x20 *42.56
1 24x24 93.61 28.43 13.85 8.2 1
1 36x36 511.2 156.0 71.5 41.5 1
1 48x48 1679 508.3 232.9 131.7 1
1 *60x60 *4252 • • • • • • 1
1 *96x96 *2188 1
1*120x120 *5547 1
1*144x144 • • • *19359 * # * 1
1*288x288 ... ... *1819431

extrapolation area
TABLE H.l The time (s) taken to a solution

The logarithmic plots (seen in figures H.l, H.2 and H.3) of the data in 
table H.l yeald the following equations from which the time to solution (t) 
can be found as a function of the problem size (p, where p is the number of 
points along one edge of the problem mesh):

* Indicates extra values used to verify the equations, 
derived from logarithmic plots of this data, and used to 
extraplolate for run times of other problem sizes. In 
the case of the 16PE system the run time estimated using 
the extrapolation equation and the actual time for p=288 
seen in table H.l differed by 0.7% (which corresponds to 
20 minutes over the total run time).



I ME TO REACH A MINIMUM PERCENTAGE OF BOUNDARY VALUE (IPE)

2-
.10’

--(

.10

10 20 30 50 60 70 80

NUMBER OF POINTS

FIGURE H.1 LOGARITHMIC RELATIONSHIP OF
THE AVERAGE PASS TIME TO
PROBLEM SIZE FOR 1PE



TIME TO REACH A MINIMUM PERCENTAGE OF BOUNDARY VALUE (4PE)
6
5

Î

2

I
9a
?
6

5

Î

2

O'

I
987
65

3
2

10 20 30 SO40 60

NUMBER OF POINTS

FIGURE H.2 LOGARITHMIC RELATIONSHIP OF
THE AVERAGE PASS TIME TO
PROBLEM SIZE FOR 4PE



TIME TO REACH PERCENTAGE OF BOUNDARY VALUE (9PE)

.10*

.10’
I

I

.10'
1

I

2 Î s 7 8 9  I4 6 2
.10' xIO’

NUMBER OF POINTS

FIGURE H.3 LOGARITHMIC RELATIONSHIP OF
THE AVERAGE PASS TIME TO
PROBLEM SIZE FOR 9PE



IPE .4.165

4PE t =
18518.47

9PE t = .4.079

30823.18
These equations enable predictions of the run times to be made for the 
memory restricted architectures within the 16PE system, which may be seen 
in Table H.2.

size IPE 1 1 4PE 9PE 16PE
12x12 5.06 1 i n V a 1 i d d a t a
24x24 93.61 1 28.43 13.85 8.2
36x36 511.2 1 156.0 71.5 41.5
48x48 1679. 1 508.3 232.9 131.7
72x72 9087 1 2743 1224 686.4
144x144 163029 1 49021 20695 11212
216x216 882523 1 264729 108172 57495
288x288 2924987 | 875922 349767 183143

extrapolated area
Table H.2 Time (s) to a set state of solution



APPENDIX I
PROBLEM CONVERGENCE TESTS FOR 

THE INDEPENDENT SYSTEM



APPENDIX I The times for an independent system to achieve solutions

The times taken for an independent 6809E system (the MICROBOX II) running a 
PL9 suggested construct of the solution algorithm, for problem sizes 
similar to those of run on the multiprocessor in appendix H, can be seen in 
Table I.l.

1 array size time taken |
1 12x12 4.30 1
1 24x24 79.05 1
1 36x36 435.4 1
1 48x48 1453.3 1

Table I.1 Time (s) to solution 
of an independent 
system

Figure I.l shows these results logarithmically, from which the following 
equation relating the time taken to mesh size can be found to be:

MICROBOX t = .4.2

7989.32
Wiere t = time to problem solution

p = number of points along one edge of the problem mesh

This equation provides extrapolated results for other problem sizes, vdiich 
may be seen in Table 1.2.



TIME TO REACH A MINIMUM PERCENTAGE OF BOUNDARY VALUE (MBOX)

1
9
87
6

Î
2

.10'
a
7i
5

Î
2

.10'

8
?
6

54
5

2

10 3020 40 SO

NUMBER OF POINTS

FIGURE 1.1 LOGARITHMIC RELATIONSHIP OF 
THE AVERAGE PASS TIME TO 
PROBLEM SIZE FOR THE 
MICROBOX II



1 array size | time taken
1 12x12 1 4.30
1 24x24 1 79.05
1 36x36 1 435.4
1 48X48 1 1 1 1459.9
1 72x72 1 7912.0
1 144x144 1 147722.5
1 216x216 1 812058.8
1 288x288 1 
1 1

2720982.6

Table 1.2 Times (s) to solution



APPENDIX J
OLIVETTI M24 PERFORMANCE



APPENDIX J OLIVETTI M24 PEKEDRMANCE

1 grid size time taken (s) |
1 24x24 14 1
1 36x36 70 1
1 48x48 215 1
I 60x60 537 1

This data has been plotted logarithmically in figure J.l. The logarithmic 
plot yealds the following relationship:

t = p3980l
22246.886'



TIME TO REACH A MINIMUM PERCENTAGE OF BOUNDARY VALUE (M24)

/
/

//
/ 1

/
//

/

./

---------I11

.10’

40 50 60 70

NUMBER OF POINTS

FIGURE J .1 LOGARITHMIC RELATIONSHIP OF 
THE AVERAGE PASS TIME TO 
PROBLEM SIZE FOR AN OLIVETTI M24



APPENDIX K
TABULATED SPEEDUPS OF THE 

SYSTEM SPEEDUP MODEL



appendix k tabulated SPEEDUPS OBTAINED FROM THE 
SYSTEM MODEL.

R P Ü U E R
C U N 5 T

2 . 0 8 5 0 7 1
2 2 3 . 2 1 0 0

faaSE_P0WE5 
b̂ St CO' iST

2 . 0 8 5 0 7 1  
22:.2100

N o .  o t  PE p o i n t s  o n  t  Ms  
d g ?  oT t h e  g r i d

=1 c ’  n d u D

u 0 . 0 0 0 0 0 0
1 2 1 . 0 0 0 0  0 c
2 4 1 .  0 0 Ü 0 0 0
3 6 1 . 0 0 0 2  0 0

4 S 1 . G O O  3 0 0

6 0 1 . 0 0  0 0 0 8
7 2 1 .  0 i n n ; 2

?- . l . U O O l 0 1
i 6 1 . 0 0 0 n 0 0

1 0  3 1 . OOo OO 8

I 2 u 1 . u 0 0 0 0 8

1 3 2 1 . 0 0  0 0 :•
1 4 * . 1 . 0 8 0 8 0 ■ •
1 5  6 i . o i y i ^ i

1 6 3 1 .  V 0 0 ■' V :
1 8  V 1 . 0 ) 0 0 0 0

1 9 . 1 . U 0 0 8 0 0
2 0  4 1 . 0 1  u 8 0 n
2 1 t 1 . 0 8 0  2 0 -
2 2  0 1 . 0 0 0 0 1 :
2 4 L' 1 . 0 0 0 0 0 0

2 5 2 1 . 0 0 0 0 0 1

2 6 - 1 . 0 0 0 0  0 0

2 7 6 1 . 0 0 0 0 0
2 8 8 1 . 0 0 0 0 0 0

R P O w E R  2 . 0 3 0 8 6 ?  
C O N S T  5 5 9 . 0 0 3 * +

2:S=_PCw5< 
E A S E  C O N S T

2.08 5071 2 2 9.2100
No. OT PE p o i n t s  o n t h e 5 D s a U 0

s a g ?  oT  t h e g r  1 a
H u 0 . 0 0 0 0 0 0
4 1 2 2 . 7  9 0 4 8  5
4 2 4 2 . 8 9 7 2 2 0
** 3 6 2 . 9 6 1 7 0 0
4 4 d 3 . 0 0 8 2 4  5
4 6 U 3 . 0 4 4 5  5 0
4 7 2 3 . 0 7 5 0 9 0
4 3 . 1 0 0 = 9 1
4 9 6 3 . 1 2 3 4 1 6
4 1 C 8 3 . 1 4 3 4 2  1
4 1 2 0 3 .  1 6 1 4 2 4
4 1 3 2 3 . 1 7 7 7 9 “

1 4 4 3 . 1 9 2 8 2  1
4 l 5 o 3 . 2 0 6 7 0 ?
4 1 6 5 3 . 2 1 9 * 1 0
4 1 5  0 3 . 2 3 1 6 7 3
4 1 5 2 3 . 2 4 2 9 9 3
4 ^ J 4 3 . 2 5 3 6 7 2
4 2 1 6 3 . 2 6 3 7 6 ?
4 2 2  8 3 . 2 7 3 3 4 7
4 2 4 0 3 . 2 8 2 4 6 0

2 5 2 3 . 2 = 1 1 5 2
4 2 6  4 3 . 2 = 5 4 4  2
4 2 7 o 3 . 3 0 7 4 2 1
4 2 3  8 3 . 3 1 5  0 6 =



R p c W E R 
C O N S T

1 . 9 9 9 3 1 7
? 4 l . 6 s 7 d

•A S E _ P C A' :  P 
A S :  C O N S T

2.===071

N o .  3 T P £ p 1 n t  s ■) n t  r  ? 
l O g ?  o f  f n s  g r i G

i .1 0 . 0 8 u 0 0 '

9 1 2 : . U 7 7 = 2 =

9 2 H 0 . 3  3 6 = 2  9

9 3 -- 5 .  0 7 6 4 0 p

9 ** 3 = . 7 1 4 = 6 6

9 0 . =  2 4 6 2 5

5 7 2 5 .  9 1 5 - 6 3

9 n - 3 . 9 = 4 1 2 =

9 9 3 6 . 0 6 2 7 0 “

9 1 0 ? 6 . 1 2 3 = 4  1

9 1 2 } 6 . 1 7 9 1 9 7

0 1 3 : 6 .  2 2 9 6 1  1

9 1 4 4 6 . 2 7 3 = 9 :

i 1 5 n 0 . 3  1 = 9 6 =
: 1 6  4 0 . 3 : 9 0 1 =

9 1 : V 6 . 3 9 6  3 1
9 1 9  2 6 . 4 3 1 = 2 3

9 2'J 4 6 . - 0 0 1 3 =

2 1 o
9 2 2  : 6 . 5 2 6 7 4 =

9 2 4 J 6 . 5 5 3 ? : =
9 2 0 2 4 . 5 9 2 6 7 7
9 : 6 - 6 . 6 0 3 = 3  6
9 2 7 4 6 . 6 3 2 = 2 =
9 2 d 0 6 . 6 5 3 8 . 3

R P Q WE R  1 . 9 7 a 0 7 4  
C O r i S T  1 3 o 3 . 5 3 7

d ASE.PCWER 
D A S r . _ C U N S T

2 . 8 3  5 0 7  1 
22=.2100

N o . o f  PE p o i n t s  o n  
e d g ?  o f  t h e

t r s
g r i G

16 0 0.000 con
1 6 1 2 7 . 7 : 9 5 3 7
16 2 4 3 . 3 5 6 = 5 3
16 3o 3.7 3745 7
1 0 4 a 9 . u '8 0 ;
1 6 6Ü 9.21777?
16 7c 9 . 0 “ ===2
1 6 9 4 =.5=5-77
l o 9 3 -.6=31=4
1 = 1 C- : 9.:1-114
l o 13u 9.93 7 - 0 ?
1 a 1 3 2 10 . 0 2 9 1 : 7
1 3 1 4 4 1 0 . 1 3 2 = : 5
1 6 1 5 6 10.2 10:3 .3
1 6 16 0 10.: 91 31 2
16 1 = 0 1 0 . 3 6 7 :  ̂=
1 3 1 92 1 3 . 4 f ; i j 9
16 20 4 1 0 . 5 0 7 3 - 2
16 216 1 V . 5 7 1 7 9 '=
16 2 2  b 10.6 3313 5
1 3 0 4 ij 1 0 . 6 = 1 6 5  1
16 2 5 2 1 0 . 7 4 7 * 1 2
16 2 6 4 1 C . 9 0 1 2 - 1
16 2 7 3 1 0 . 8  5 2 7 9 7
1 o 2 d : 1 0 . 9 0 2  3 6 =



REFERENCES



REFERENCES
[1] Abramsky S.: "SECD-M a virtual machine for applicative
multiprogramming", Computer Systems Laboratory, Queen Mary College, London.
[2] Abu-Surfad W. and Kwok A.Y.: "Performance prediction tools for CEDAR: A 
multiprocessor supercomputer", 12th International Conf. on Computer 
Architectures, June 1985, pp406-413: ICPR 1086.745 Vol. 13, No. 3, 1985.
[3] Ahmed H.M. et. al.: "Highly concurrent computing structures for matrix 
arithmetic and signal processing", [I.E.E.E.] Computer, Vol. 15, 1982,ppW-78.
[4] Anderson G.A. and Jenson E.D.: "Computer Interconnection Structures: 
Taxonomy, Characteristics, and Examples", Computing Surveys, 1975, Vol. 7, 
pp 197-213.
[5] Baer J.L.: "A Survey of Some Theoretical Aspects of Multiprocessing",
Computing Surveys, 1973, Vol. 5, pp 31-80.
[6] Barlow R.H., Evans D.J. and Sharehchi J. : "Comparative Study of the
Exploitation of Different Levels of Parallelism on Different Parallel 
Architectures", Proceedings of the 1982 International Conf. on Parallel 
Processing, IEEE Computer Society Press, pp3*f-^fO.
[7] Barlow R.H. and Evans D.J.: "Analysis of the performance of a
dual-minicomputer parallel computer system". Proceedings Eurocomp, 1978, On 
Line Conference Uxbridge, pp W9-Z76.
[8] Barnes G.H. et. al.: "The ILLIAC IV Computer", IEEE Transactions on 
Computers, Vol. C-47, No. 8, Aug. 1968, pp 746-757.
[9] Barron I.M.: "The future of the Microprocessor", Microelectronics, June 
1978, Vol. 8, Pt. No, 4, pp32-36.
[10] Baskett F. and Smith A.J.: "Interference in Multiprocessor Computer 
Systems with Interleaved Memory", Communications of the ACM, June 1976, Vol. 
19, No. 6, pp3Z7-33»v.
[11] Batcher K.E.: "Flexible parallel processing and STARAN", 1972 VESTCON 
Tech. Papers, Session 1-Parallel processing systems, Sept. 1972,. pp^OS"
[12] Batcher K.E.: "STARAN parallel processing system hardware", in Proc. 
AFIPS 1974 National Comp. Conf., Vol. 43, AFIPS Press, Montvale, N.J., 1974, 
pp405-410.
[13] Baxter A.C. and Holme J,: "A multiprocessor for Field Equations", Proc. 
10th Annual Microcomputer Applications Workshop, Strathclyde University, 
10-12 Sept. 1986.
[14] Bhuyan L.N. and Agrawal D.P.: "Applications of SIMD computers in signal 
processing". National Comp. Conf., 1982, pp [35-I*f2.
[15] Bolognin A., Giulu D., Pelagotti F., Pirri F and Pogni F. : 
"Multiprocessor structures for microprocessors". Software and microsystems. 
Vol. 1, No. 7, Dec. 1982, ppl75"l?#.
[16] Bowra J.W. and Torng H.C.: "The modeling and design of multiple
function unit processors", I.E.E.E. transactions on computers, March 1976,
pp210-221.

00 References 1 oo



[17] Brain S.: "The transputer - exploiting the opportunity of VLSI",
Electronic Product Design, Dec. 1983, pp41-44.
[18] Brain S.: "Applying the transputer". Electronic Product Design, Jan.
1984, pp43-48.
[19] Burnett G. and Coffman E.G, Jn. : "A study of interleaved memory
systems", AFIPS Conf. Proceedings Spring Joint Computer Conference, 1970, 
Vol. 36, pp 467-474.
[20] Carruthers J.R.: "Supercomputer design". Computer Systems, May 1979, 
pp33-37.
[21] Christ N.H. and Terrano A.E.: "A Micro-based Supercomputer", Byte, 
April 1986, ppl45-160.
[22] Cichanowski G.W.: "Is there a RISC in SEC's future", INSPEC Journal
paper 86C18194: DEC Prof. U.S.A, Dec. 1985, Vol. 4, Pt. 12, pp58-69.
[23] Coles R.W.: "The transputer, a component for the fifth generation".
Practical Electronics, April 1984, pp26-31.
[24] Colon F.C, Clorioso R.M., Kohler W.H. and Dominic W.L.: "Coupling small 
computers for performance enhancement". Proceedings of the National Computer 
Conference, 1976, pp 755-764.
[25] Cox G.W. et.al.: "Interprocessor communication and process ispatching 
in the Intel 432", ACM trans. Comput. Systems, 1983, Vol. 1, pp45-63.
[26] Curry B.J.: "Language based architecture eases system design". Computer 
Design, Jan. 1984, ppl27-136.
[27] Davis E.W.: "STARAN parallel processing system software", in Proc. 
AFIPS 1974 National Comp. Conf., Vol. 43, AFIPS Press, Montvale, N.J., 1974, 
pp405-410.
[28] Despain A.M. and Patterson: "X-Tree: A tree structured multiprocessor 
computer architecture", Proc. of the 5th annual symp. on comp, 
architectures. lEEE/ACM, 1978, ppl44-151.
[29] Dettmer R. : "Chip architectures for parallel processing". Electronics 
and Power, March 1985, Vol. 31, No. 3, pp227-231.
[30] Dettmer R. : "Occam and the transputer". Electronics and Power, April
1985, Vol. 31, No. 4, pp283-287.
[31] Dew P.M.: "VLSI architectures for problems in numerical computation", 
taken from:- Paddon D.J. (ed.): "Super Computers and Parallel Computation", 
Instit. of Maths and I.T. Applications conf. series, No 1, Clarendon Press, 
Oxford, 1981,ppi-a*.
[32] Dew P.M. et. al.: "Application of VLSI Devices to Computational 
Problems in the Gas industry". Report 163, University of Leeds.
[33] Love H.H.: "Reconfigurable parallel array systems, in designing and 
programming modern computers". Vol. 1, L.S.I Modular Comp. Systems (S. 
Kartashev et. al.), Prentice Hall ̂ *9$%̂  pp 33
[34] Ducksbury P.G.: "The implementation of Price's (CRS) Algorithm on an 
ICL DAP", Numerical Optimization Centre, Technical Report 127.

oo References 2 oo



[35] Enslow P.H.: "Multiprocessors and parallel processing", Computer, July 
1977, pp64-70.
[36] Fagan M. : "Goodbye to the Silicon chip". Practical Computing, August 
1987, Vol. 10, Issue 8^ pp7*h-76.
[37] Fay D.: "Working with OCCAM", Microprocessors and Microsystems, 
Jan./Feb. 1984, Vol. 8, Pt. No. 1, pp3-15.
[38] Flynn M.J.; "Some Computer Organizations and Their Effectiveness", IEEE 
Transactions on Computers, Vol. C-21, No. 9, pp 948-960.
[39] Fortune : "Reinventing the Computer", Fortune, March, 1984,pp 62"70'
[40] Fuller S., Ousterhout J., Raskin L., Rubinfield P. and Swan R. : 
"Multimicroprocessor, an overview and working example", Proc. I.E.E.E. 1978,
Vol 66, pp216-228.
[41] Fung C.K.: "Cashe system design in the tightly coupled microprocessor 
system", Proc. National Computer Conf., 1976, pp81-87.
[42] Furber S.B. and Wilson A.R.: "The Acorn RISC machine - an architectural 
view", I.E.E. Electronics and Power, June 1987, Vol. 33, No 6, pp402-405.
[43] Grimsdale et. al.: "POLYPROC II - The university of Sussex Multiple 
Microprocessor System", Proc. 2nd International Conf. on Distributed 
Systems, Paris, April 1981, pp95"lO*f“,
[44] Haynes L.S. et. al.: "A survey of highly parallel computing", 
[I.E.E.E.] Computer, Vol 15, Jan. 1982, pp9-35.
[45] Hennessy J. : "VLSI RISC Processors", VLSI Design, U.S.A., Vol. 6, No.
10, pp22-32: INSPEC Journal Paper 86 B21726.
[46] Hillis W.D.: "The Connection Machine", Scientific American,May 198%pp86"P3
[47] Hitachi: "Semiconductor data book 8/16-bit microcomputer", Hitachi 
electronic components.
[48] Hoare C.A.: "OCCAM programming manual", published by Oxford University 
Press, 1984.
[49] Holme J. and Warrington E.M: "Switched memory in the MC6809E: A
correction". Submitted for publication in Microcomputers and microsystems.

h[50] Jes^ppe C.R.: "A Reconfigurable Processor Array for VLSI", from "Super 
Computers and Parallel Computation", Paddon D.J. (ed.): Instit. of Maths and 
I.T. Applications conf. series. No 1, Clarendon Press, Oxford, 1984,pp35~40.

h[51] Jes^ppe C.R.: "Optimal methods of applying transputers in large 
systems". Dept, of Electronics and Information Engineering, The University, 
Southampton, S09 5NH.
[52] Kuck: "Parallel Processing Architectures", Proc. of the Singapore Conf. 
on Parallel Processing, 1975, ppl5-39.
[53] Kung H.T.: "Advanced Course on VLSI Architecture", held at the
University of Bristol, Treveaen ed..

00 References 3 oo



[54] Kung H.T.: "Why Systolic Architectures", [I.E.E.E.] Computer, Jan. 
1982, Vol 15, pp37-46.
[55] Kung S.Y. et. al.: "Wavefront Array Processor: Architecture Language 
and Application", Proc. of M.I.T. Conf. on Advanced Research in VLSI, (P. 
Penfield Jn. editor), Artech House, 1982, pp4-19.
[56] Lauer P.E. and Hemshere B.C.: "Project on a computer based enviroment 
for the design and analysis of highly parallel and distributed computing 
systems". Intrim progress report, ASM/112, June 1983.
[57] Leiserson C.E. and Saxe J.B.: "Optimizing synchronous systems", Proc. 
22nd Symp. on Foundations of Computer Science, I.E.E.E. Computer Society, 
1981, pp23-36.
[58] Malone S.: "DEC MICROVAX 2000, The mini mini". Practical Computing, 
June 1987, Vol. 10, Issue 6, pp42-43.
[59] Manner R. et. al.: "Design and realization of the large-scale 
multimicroprocessor system 'Heidelberg POLYP'", INSPEC Conf. Paper 85C15047, 
First International Conf. on Computers and Applications, Beijing, China, 
20-22 June 1984, pp264-270.
[60] Mattos P.: "Applying the transputer", I.E.E. Electronics and Power,
June 1987, Vol. 33, No 6, pp402-405.
[61] Mead C. and Conway L.: "Introduction to VLSI systems", Addison-Wesley.
[62] Mendez R. H. : "The Scalar Performance of Three Suptercomputers CRAY'S 
X-MP/2, FUJITSU'S VP-200 and NEC's SX-2", Lecture Notes in 
Engineering,Supercomputers and Fluid Dynamics, Proceedings of the First 
Nobeyama Workshop, Sept. 3-6, 1985, Springer Verlag, pp l5B,
[63] Microbox II reference Manual, Microconcepts, 2 St. Stephens Road, 
Cheltenam, Glos..
[64] Ostlwnd N.S., Hibbard P.G. and Whiteside R.A.: "A Case Study in the 
Application of a Tightly Coupled Multiprocessor to Scientific Computations", 
in Parallel Computations, edited by G. Rodrigue, Academic Press,#982.
[65] Perrenod S.C.: "The CRAY-2: The New Standard In Supercomputing",
Lecture Notes in Engineering,Supercomputers and Fluid Dynamics, Proceedings 
of the First Nobeyama Workshop, Sept. 3-6, 1985, Springer Verlag,pp#7/^-#03.
[66] Petre P.: "A Computer Chip", Fortune, 14 May 1984, Vol. 109, Pt. No. 
10, p74.
[67] Purcell C.J.: "An Introduction to the ETA", Lecture Notes in 
Engineering,Supercomputers and Fluid Dynamics, Proceedings of the First 
Nobeyama Workshop, Sept. 3-6, 1985, Springer V e r l a g ,  pp IBf*-200.
[68] RAND: "The feasibility of a special-purpose computer to solve the of 
the Navier-Stokes equations", E.C. Gritton, W.S. King, I.E. Sutherland, R. 
Gains, C. Gazley Jn., C.E. Grosch, M.L. Juncosa and H.E. Peterson, Rand 
Corporation report R-2183-RC, June 1977.
[69] Reyling G. : "Performance and Control of Multiple Microprocessor 
Systems", Computer Design, March 1974, pp 81-86.

00 References 4 oo



[70] Rudolf J.A.: "A production implementation of an associative array 
processor: STARAN", in Proc. AFIPS 1972 Fall Jt. Computer Conf., Vol. 41, 
Pt. 1, AFIPS Press, Montvale, N.J., 1972, pp229-241.
[71] Russell R.M.: "The CRAY-1 Computer System", Communications of the
A.C.M., 1978, Vol. 21, Pt. 1, pp63-72.
[72] Seigel H.J. et. al.: "A survey of interconnecting methods", Proc. of 
the Nat. Comp. Conf., 1979, pp529-542.
[73] Searle B.C. and Freberg D.E.: "Microprocessor applications in multiple 
processor systems", Proc. of the National Computer Conf., 1976, pp749-753.
[74] Seitz C.L.: "Ensemble Architectures for VLSI: A Survey and Taxonomy", 
Proc. M.I.T. conf. on advanced research in V.L.S.I., (P. Penfield Jn. 
editor), Artech house, ppl30-135.
[75] Siewiorek D. and Swarz R.S.: "The theory and practise of reliable 
system design", published by Digital Press, 1982.
[76] Siewiorek D. et. al.: "C.vmp: the architecture an implementation of a 
fault tolerant multiprocessor", INSPEC Conf. Paper 77C26907, 7th Annual 
Conf. on Fault-Tolerant Computing, U.S.A. 28-30 June 1977, pp37-43.
[77] S.E.R.C.: "Coordinated Program of Reasearch Distributed systems",
S.E.R.C. Annual Report, Sept. 1982-1983.
[78] S.E.R.C.: "Coordinated Program of Reasearch Distributed systems
1977-1984", S.E.R.C. Final Report 1984.
[79] Shoja G.C. et. al.: "Some experiences of implementing the Ada 
concurrency facilities on a distributed multiprocessor computer system". 
Software and Microsystems, Vol. 1, No. 6, Oct. 1982^ ppIM*1 152.
[80] Snyder L.: "Introduction to the configurable highly parallel computer", 
I.E.E.E. Computer Society, 1982, Vol. 15, pp47-56.
[81] Speitz W.L.: "Microprocessor Networks", Computer, July 1977, pp64-70.
[82] Shaw et. al.: "The CLIP4 System", INSPEC journal paper issue 
8741 87123409. Pattern Recognition Lett, (netherlands), Vol. 5, No. 1, 
pp71-79.
[83] Stone: "Parallel Computers", Introduction to Computer Architectures, 
SRA 1975, pp318-374.
[84] Taylor R.: "Survey of transputer applications". Inter-departmental 
Communication (Computer Studies-Engineering), University of Leicester, Oct. 
1986.
[85] Thomas E.C.: "ITOS", Unpublished work. Dept, of Physics, University of 
Leicester.
[86] Warrington E.M. and Thomas E.C: "Switched memory for multi-processor
MC6809E systems". Microprocessors and Microsystems, Vol. 9, No. 10, Dec. 
1985, pp475- *80.
[87] Watanabe T.: "NEC Supercomputer SX System", Lecture Notes in 
Engineering,Supercomputers and Fluid Dynamics, Proceedings of the First 
Nobeyama Workshop, Sept. 3-6, 1985, Springer Verlag, ppl59~l6^.

00 References 5 oo



[88] Weiman F.R. and Grosch G.E.: "Parallel Processing Research in Computer 
Science: Relèvent to the design of a Navier-Stokes computer", Proc. of the 
1977 International Conf. on Parallel Processing, Detroit, 23-26 Aug. 1977, 
ppl75-182; INSPEC conf. paper 78C12487.
[89] Weissberger A.J: "Analysis of multiple-microprocessor system 
architectures". Computer Design, June 1977, pp 151-163.
[90] White P.M.: "Viscous fluid flow". Published by McGraw-Hill, 1974: 
ISBN 0-07-069710-8.
[91] Widdows L.C. Jn.: "The Minerva Multi-processor", 3rd Annual Symp. on 
Computer Architectures, Jan. 1976, pp34-39.
[92] WINDRUSH Micro Systems Ltd.: "PL/9 Reference Manual", Worstead 
Laboratories, North Walsham, Norfolk, NR28 9SA.
[93] WINDRUSH Micro Systems Ltd.: "PL/9 Programmers Reference", Worstead
Laboratories, North Walsham, Norfolk, NR28 9SA.
[94] WINDRUSH Micro Systems Ltd.: "PL/9 User Guide", Worstead Laboratories, 
North Walsham, Norfolk, NR28 9SA.
[95] Witten I.H. and Cleary J.G.: "An introduction to the architecture of 
the lAPX 432", Software and Microsystems, 1983, No. 2, pp29-34.
[96] Wulf W.A. and Bell C.G.: "C.mmp-A multi-mini-processor". Proceedings 
Fall Joint Computer Conference, Dec. 1972, pp 765-777.
[97] Yau S.S. and Fung H.S.: "Associative Processor Architecture - A 
survey". Computing Surveys, Vol. 9, No. 1, March 1977, pp3-27.

00 References 6 oo



PROGRAM LISTINGS



PROGRAM LISTING  1 

LAPLACE FOR AN 
OLIVETTI M24



p r o g r a m  l a p  
d i m e n s i o n  a ( 6 1 , 6 1 )  
m a x = 6 0
d o  1 1 = 1 , max

d o  2  j  =  1 , m a x  
a ( i , j ) = l . l  

c o n t i n u e  
c o n t i n u e

d o  3  1 = 1 , m a x  
a  (■ 1 ,  1 ) = 9  
a< 1 , m a x  > = 9  
a <1 , i  1 =9  
a  c m a  . , 1 > = 9  

c 0  r, 1 1 n  u e

i i r i t *  , ’ g o  ’
1 e a d • . * ) g

c Cl 1 1 1'l 1.1 e

a 1  ̂ = ;
d o  3  1 = 3 , m a x - ]  

d o  r  i = 3 . n i a ; . - l
a  c .  , j  ) =  (■ a  V i  -  1 , j  )  + a  '■ i + 1 , j  ) + a  i  , j  +  1 
1 r  I a< 1 , j  . 1 1 . 2 ' ;  a  1 1 = 0  

c o n t i n u e  
c o n  r  1 11u e

p r i n t » , a  < m a  / 3  , m a  x 2 > 
i f  ( a  1 1 . e g - 0  ■/ g o t o  4

print»,’
s t o p  
e n d

s u b r o u t i n e  o u p i a >  
d i m e n 5 i o n  a  C S V , 5 0 )  
m a x = » 0

d o  1 1 = 1 , ma x
d o  2 1 = 1 , m a x  
w r i t e : » , 9 9 )  a (  1 , j  ■>2 conti nue

9 ' » t o r m a t i l 2 f 7 . 3 )1 continue
r e  t u r n  
e n d



PROGRAM LISTING  2 

LAPLACE FOR THE 
MICROBOX II



oi;>o 1 OC'02 
' ) 0 0 3

0 0 0 5  
o o o o
O.K. , 7  
OOOCI  
' jO' :r?  oo 1 O 

1 1  
00 1 2 
0 0  I 3
0 0  1 4 
O'.) 1 5  0016
0 0 1  7
001 a  
OO 1 ■? 
0020  
O ' >21 
'.'022 
' . ' 02 . 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2  7 
> . ' 0 28  
O'.) 2 ' /  
0<j 3 ' . '  
0 0 3 1  
' lO 3 2
0 0 3 3
0 0 3 4
0 0 3 5
0 0 3 6
0 0 3 7
0 0 3 8  
0 0 3 ?  
' j ' : ' 4' : i  
' . " . ' 41  
O' . ' 4  2
0 0 4 3
0 0 4 4
0 0 4 5
0 0 4 6
0 0 4 7
0 0 4 8
0 0 4 9
0 0 5 0
0 0 5 1
0 0 5 2
0 0 5 3
0 0 5 4
0 0 5 5
0 0 5 6
0 0 5 7
0 0 5 8
0 0 5 9  '7'j6'4
006 1 
0 ' : ' 6 2  
' 3 0 6 3

0 0 6 5
O'i‘66
0 0 6 /
0 0 6 8
0 0 6 9

G L U B O l  O L w L  A I 4  A ,  ( 6 4 0 1  ' :
I M C l . U l ' t  O .  r i vUI  O L S E .  ül r lF :
I  r JfJl. I U ' f  ' . ' .  ] C l S U8 5 .  L I  L' ;
I M C L D D i :  O .  n o i - i c o o .  L I B :

F R C L E D U I - L  L A I  L A C E  : i r i l  L O L L '  1 . J  , M h X . I 1 f 4 I I O N :
C M :
V I  , 0 2 , 0 3 . 0 4  , O O U I U I A I :

B 7  I I .
L L A t

/  " I. h e  i n i t i a l i s e  b i t  ' ,
| - 1 A X = 1 2 :
r e p e a l ,

B U U M D h L  . ' = 9 :1 = 1 ;
E L I  L A I  

• I - I :

L E I  E A T
A R E A ,  < I  i J M l l A x  ) = 0 ;
J~J '■ 1 ;

LU 11 n..  J = I I A , 3 :
I - 1 ' I :

L U I I I L  [=11,  :
' ' '  t h e  h o u ' " . l r » i ' ' /  I . ' i t  * /

1 = 1 ;
L E I  L A  I :

A L R n  , 1 1 H-1WX ) =BU( . r |  J D o R  , ; 
a r r a y '  ( M A X  f  I « M A X  ) = BUUI I L>1 , R , :
A l - h n r  ( I  « I I A X » M m X ) - - I .KJUIJO, i h > :
A h R A i  ( I I I  « M A X ) -  B i l l  I N D n L ,  :

I - I • I ;
U W r i L  I = M A X t - l :  

p r  i  n  t  i  n  t  ( m a x ) :  p r i n t ( "  " ) :

p r i n t ' "  c l i ^ q s t c h a r  :  c r  1 ( :

/ ' «  i t e r a t i o n s  » /

I r E R A T I G M = 0 ;
R E H E A T1=2;

R E P E A T  
J  =  2 :
R E I  L A  I

V I  = - AR RA ,' ( I  I ( J  » 1 ) « M A X > :
V 2 = A E ; R a V ( 1 4- H  j  » I ' I AX)  ;
0 3 = H R R A Y < I  Y ( J - 1 )  « M A X ) :
V 4 = A R R M y '  ( I  - 1  + J  i Ht AX I  :
A R R A Y  ( I  t  J  «I  l AX ) =  ( 0 1 + 0 2  « 0 3 + 0 4 )  /  4 ;  
J = . J  + 1 ;

U M I I L  J = M A X ;
1 = 1 + 1 ;

I J I M I L  1 = M A X ;
I T E R A T I O N = I T E R A  r i Q N + 1 ;

U N T I L  ' I T E R A T  1 0 N = 5 ;
F U T C H A R ( 7 )  ;

1 = 1 ;
R E F E A I  

1 ;
R E P E A T

I R N U M ( F I X '  A R R A Y ( H  J  *  M A X ) )  ) ;  P R I N T  ( "  
J = J  « 1 ;

U N T I L  J = I 1 A X + 1 ;
C R L F ;
1= 1+ 1 ;

U N T I L  I = r i A X  + l ;
C R L F ;
M A X = M A X I  1 2 :  
u n t i l  m a x = 3 4  :
C A L L  t'+ ooS :
/  E O F



PROGRAM LISTING 3 
LAPLACE FOR THE 
MULTIPROCESSOR



O U V  I 
(.1(11)2 
V " 0 3
4 (4 14 >.|UO'.l'j
<:>ooé(
0 0 0 7
O OOG
0 0 0 9
001 o
' 4 0 1  1oi.-i 1 ;• 0013 
O o  J 4
0 0  1 3
O' .11.6
0 0 1  7  
0 0 1 3  
OO 1 9  
0020 
0021 
0022
0 0 2  3
0 0 2 4
0 0 2 5
0 0 2 6  
0 0 2 7  
0 0 2 3
0 0 2 9
0 0 3 0
0 0 3 1
0 0 3 2
0 0 3 3  
0<;i34
0 0 3 5
0 0 3 6
0 0 3 7  
0 0  3 3  
0 0  3 9
0 0 4 0
0 0 4 1  
0<;>42 
0 0  4 3  
0 ' : ' 4 4
0 0 4 5
0 0 4 6  
0 0 4  ;  
0 0 4 3
0 0 4 9
0 0 5 0
0 0 5 1
0 0 5 2
0 0 5 3
0 0 5 4
0 0 5 5
0 0 5 6
0 0 5 7  
0 0 5 3
0 0 5 9
0 0 6 0  
0 0 6 1  
0062
0 0 6 3
0 0 6 4
0 0 6 5
0 0 6 6
0 0 6  7 
0 0 6 3  
0 0 6 9  
0 ' 4 7 0  
0 0 7 1  
0 0  7 2
0 0 7  3
0 0 7 4
0 0 7 5
0 0 7 6
0 0 7 7  
0<:> 7 8  
0 0 / 9  
0 0 3 0

I i.i I 4)1 I I Iu n i I II

D A T E  ___  6 L h  M a r c h  ' 3 7

codsLciil f :A i i  j . - A s r ;  
N O M  H 
E A 5  T SUÜ111 
WE S T

10'." )0 . 
4 ,
1 7 ' " i O .  
4 8 0 O O ,  
- T 9 0 0 O :

H : t  1 2  : r .L' ".L t r l 4 . h r  h . M h . l  I h :
I N I  EOE. f \  N A X :  RE A i L  . ar  ( a v :

h f l E  o l  ohrY 1 l i â  1 t  _ f  1 a q  :
Ü (' 11- d a  t  a. _ t  .  p c  . I  o c  a l  _ i d . p e _ t a g :

1 0 0 0  7 :  TO 
I l  f f 4-4: to

l E  1 1 4 : 0 :  lE II):
i  ne 1ndfe O . t r  u T a l s e . de  f :
' « s e t  or l o i n  1 or g e t  addr e  = s =o t i r â t  I d r  c a n  u s e  as  w e l l  */ 
O R 1 3  N I  4 3 0 0 0 ;

p r o c d c J u r  e  g e t _ â d d r  e s c  ( i n t e g e r  i . j  ) 
.  a d d )  e s s = h A N _ E i A 3 E  +  i « 4 +  .( «TI AX « 4  ;

I F  r E _ T A G = J  I M E N  
B E G I N

IF  LUCAL..ID
C A G E  4 t h e n  /  «   TI N  T E
b e g  1 n

J =-l . a n d  
i  = M A X - 1  
1=1 l AX 1 .

r e a l  . a d d r e s s :

*/
i  = I 1 A X - 1  t h e n  . a d d r  e s s = 3 U ( J  1 H  + i  * 4  + _i *  I l AX « 4  ;
. a n d  j . = l  t h e n  . a d d r  e s s = E A S  1 + (  i  -  ( N A X - 1 ) ) )«riAX * 4  +  4  *  ( j  - 1  ) 

r i d  j = i  t h e n  . a d d r  f s s =  . b r  h  :

i : =  I . a  I i d i 
.1 . =  1 . a n d  i

i = l  . a n d  j = l

■ 1 1 h e n  . a d ' l i  a r = - U [ . G  I + i  " N A X  > 4 i 4  ■) ( i -  1 > ;
= l  t h e n  . a d d r e s s = 3 0 U V H + 4 * ( i - 1 ) + j » N A X * 4 ;  
t Ticrn . a d d )  £ 5 5 = .  b l  1) :

. . . . . .  BEI I TE . . . . . . . . . .  *4

i  f 
1 f  
1 1

( sn d  :
LAST:  1 t l i e n  /  « ..........................  1 F H  T E .......................... * /

i  1 
i  1 
i  T 

e n d  :
C A G E  3  t h e n  / *

' i f  j . = N A X - 1  
i f  i > = M A X - l  
i f  i = M A X - l  . 

e n d  ;
E L S E  / *  ..............
b e g  i  n  

1 f  
i  f
i f  i  =  1 . a n d

e n d  ;
E N D ;
I F  F E _ T A G = 2  T H E N  
B E G I N

i f  I o c a l _ i  d  
C A S E  1 t h e n  
b e g i  n
i f  i  = 1  . a n d  j /  =  1 t h e n  . a d d r e s s = W E S T  + i * 4 * W A X + ( j - 1 ) * 4  :
i f  j . :  =  l  . a n d  i  > = 1  . a n d  i  = M A  X t h e n  .  a d d r  e s s - = S O L I  TH  «4  * (  i - 1  ) + j  * M A X * 4  ;

i . | = f l A X  . a n d  j : : = l  t t i e n  . a d d r  e s s  =  E A S  T+ 4 *  ( i - N A X  ) * N A X + 4  *  ( j  - 1  ) ;
1 =  1 .  a n d  .1 =  1 t h e n  . a d d r e s s = .  b 1 h ;
i = N A X  . a n d  1 =  1 t T i e n  .  a d d r e s s = .  b r h ;  

e n d  ;
C A S E  2  t h e n  
b e g  i n
i f  1 = 1  . a n d  i  : ' =  1 t h e n  . a d d r e s  =  = S U U T N ' 4  * ( i - 1 ) + i « 4 « M A X ; 
i f  j : : iz : MAX . a n d  i  > = 1  t h e n  . a d d r  e s  s = N O R  T H + 4  *  ( i  -  1 )  + 4  *  ( j - N A X  ) * M A X  ;
i t  i  :, =  1 . a n d  1 = 1  .  a n d  1 = M A X  t h e n  . a d d r  e s s = W E S  f + 4  » i  *  M A X + 4 *  < j  - 1  ) ;
i f  i  =  1 .  a n d  1 = 1  t h e n  . a d d r e s s = . b  J l i  :

. a n d  1 M A X t h e n  . a d d r e s s = . 1 1 11 ;

. a n d  i < = M A X - l  t h e n  . a d d r e s s = N O R T M  + i * 4 + ( j - ( M A X - 1 ) ) * M A X * 4  ; 
. a n d  j < = M A X - l  t h e n  . a d d r e s s = E A S T + 4 * < i - ( M A X - 1 ) ) * M A X + 4 * j ; 
a n d  1 =  M A X - 1  t h e n  . a d d r e s s = . t r f i :

. .  . . B R N  P E  ..........................  * /

=  1 . a n d  j  = N A X  -  1 t l ) e n  . a d d r  e s s = W E S  I + i  * M A X  * 4  + j  *  4  ;
= M A X - 1  . a n d  i > = l  t h e n  . a d d r e s s = N 0 R T H + 4 * ( i - 1 ) + 4 * ( j - ( M A X - 1 ) ) * M A X ; 

1 =  M A X - 1 t h e n  . a d d r  e s s  =  . 1 1 h ;

1 f 
i  f  
1 f

if 1 =  1 
e n d  : 
LA B E  3 t h e n



0 0 8 1  i  f  
0 0 0 2  i f
0 0 8 3  i f  
) * M A X ;
0 0 8 4  i f
0 0 8 5  i f  i =
0 0 8 6  e n d ;
0 0 8 7  E L S E
0 0 8 8  b e g i n

i < = l  . a n d  i > > M A X - l  t h e n  . a d d t  e s s  =  W L S T  « 4  * i  « M A X  « i » 4 :
i  > = M A X  . a n d  j < = M A X - l  t h e n  .  a d d r  e s s =  E A S T  + 4  *  ( i - M A X  ) ■» M AX  « 4  » j  ;
i > = 1  .  a n d  i  ( = M A X  . a n d  J . , = M A X - 1  t h e n  . a d d r  e s = .  =  N O L ' T M « 4  « ( j  -  1 ) + 4  « ( j  -  ( M A X  -  1 )

i = l  . a n d  j = M A X - l  t h e n  . a d d r e s s = . 1 1 h  ; 
i = M A X  . a n d  j = M A X - l  t h e n  . a d d r e s = = . t r h ;

0 0 8 9
0 0 9 0
0 0 9 1  
j - n  i
0 0 9 2
0 0 9 3
0 0 9 4
0 0 9 5
0 0 9 6
0 0 9 7
0 0 9 8
0 0 9 9
0 10 0  
0 1 0 1 
0 10 2
0 1 0 3
0 104
0 1 0 5  
0  1 0 6  
0 1 0 7  
0 10 3
0 1 0 9
0110 
01 1 1 
0 1 1 2
0  1 1 30114
0 1 1 50116 
0 1 1 7  0 1 1 801 1 7 0120 
0 1 2 1  0122 
0 1 2  3
0 1 2 4
0 1 2 5  
0 1  2 6  
0 1 2 7  
0 1  2 3  
0 1 2 9  
0 1 30 
0 1 3  l
0 1 3 2
0 1 3 3
0 1 3 4
0 1 3 5
0 1 3 6
0 1 3 7
0 1 3 8
0 1 3 9
0 1 4 0
0 1 4 1
0 1 4 2
0 1 4 3  
0 1  4 4
0 1 4 5
0 1 4 6
0 1 4 7  
0 1 4 3  
0 1 4 7  
0 1 5 0
0  1 5  1
0 1  5 2
0 1 5 3
0 1 5 4
0 1 5 5
0 1 5 6
0 1 5 7
0 1 5 8
0 1  5 9  
0 1 6 0

i  f  
i  f  
i f

j (  =  1 . a n d  i  <
j > = M A X  . a n d

=  M A X - 1  t h e n  . a d d r  e s s  =  S Ü t M  H + 4  » i + 4  « j  » TIAX : 
i  < = M A X - 1 t h e n  .  a d d r  e s 3 = I  JÜIV [ H  + 4  « i  + 4 *  ( ,i -  M AX  ) « r i A  < ;

i  > = M A X - 1  . a n d  j < = M A X  . a n d  j > = l  t h e n  . a d d r  e s s = f c  A S  f + 4  « ( i  -  ( M A X - 1 ) ) « M A X + 4  «-(

i  f  
i  f  
e n d  
E N D ;  
I I -  r-E 
B E G I N  
i  f

i = M A X - l
i = M A X - l

a n d  j  =  l  t h e n  . a d d r  e s s =  . t<r h  :
. a n d  , i = M A X  t h e n  .  a d d r e s s  =  . t i  h  :

T A G = 3  T H E N

= 1  . a n d  i : = M A X  . a n d  t ; = M A X  t h e n
. a d d i  e 3 s  =  N U K I H  +  4 » ( i l )  i 4 *  ( i - M A X ' « M A X : 

i f  i J  =  l  . a n d  i  = M A X  . a n d  j  ; =  1 L f i e r ,
. a d d r  e  =  3 = S U U  f H « 4  » ( i  - 1  ) + 4 * 1  «l ' IAX : 

i f  i  ) = M A X  . a n d  j . ; =MAX . a n d  , i .  = l  t h e n
. a d d r e s 5 - - E A 3 T + 4 *  ( i  - M A X )  « M A X « 4  + ( i -  1 ) ; 

i f  i  : =  1 . a n d  j , = l  . a n d  j  =1 l AX t l i e n  
. a d d r e s s  =  W E S  T +  4 « M A X  « i  « 4  » (  i - t ) :  

i f  i  =  l  . a n d  j  =  l  t h e n  . a d d r  p s s  = . h  I  l i  : 
i f  i = M A X  . a n d  j - 1  t t i e n  . a d d r  e s s = . b r h  ; 
i f  i  =  l  . a n d  j = M A X  t h e n  . a d d r  e s 5 = . 1 1 h  : 
i f  i = M A X  . a n d  j = M A X  t h e n  . a d d r e s s = . t r h ; 
E N D ;
e n d p r o c  . a d d r e s s  :

/  « b a r  I t u  n o r m a l  
U N I  G I N  T B I O O ;

f  y p e  c'r- i n  i n e  »

p r  c i c e d o r e  c o p v  ( i  n t e g e i  a d r l r e ? e  ) 
i f  a . d d r  e s s = . b r  h  t h e n  /» t l h  
b e a  i  ri

.  S + - S U U T H +  ( M A X - 1  ) « 4 + M A X + 4  ; 
s - =b r  h  ;
. e = E A S T :  
e = L i  h  : 

c r i d  ;
i f  a d d r  e s e  =  . b l  fi  t f , e n  /  « t r h  
b e u  i  n

. n - H L f l f  + l 1 f i X » 4 :
1 h  ;

. s  =  S 0 L n H i 4 » M A X ;  
ç  - - b  1 I I  :

r II' I :
1 f  a d d i  e s  s  = .  t r h  i h r r i  /» b l h  
b e g  i  n

. n = M ( j R T H i  ( M A X - 1 )  * 4 ;  
n  =  t r  h  ;
. e  = Ë A S l  + ( M A X - 1 > *  4  ; 
e = t r h ; 

e n d  ;
i f  a d d r e s s = . t l h  t h e n  /* b r h  
b e g  i  n

. w = W E S T + M A X « 4 + 4 » ( N a X - 1 ) :  
n  =  t 1 h  ;
. n  = N U f ( T H ;  
n =  t 1 h  ; 

e n d  ; 
e n d p r o c :

p i  o c e i l i  II I 1 n  I I ai  t a \

F ü 3 = I  E . J  A G  
r v f E = L U C A L

E L E M E N T  
E L E I I L N I  
P E  _ TAh  
C A S E  1 I T I L N  

B E G I N
i f  l o c a l

i r, ( f- n i ’ i- i . j 
I ' j a l  . a d d :

f P N M  S U N T ' l  E F R O C E S S O R  
l ü  f R Ü i l  S O U P L E  P R O C E S S O R

I a r t  . i  _ f  i  n i  e f , . i s t a r  t . i _ f  i  n i  s  h  :

i d = l  . o r  l o c a l  i  d = 2  t t i e n  i

1 f  l o c a l  i d = 4  . o r  l o c a l  i d = 3  t h e n  i

s t a r t = 1 
e l s e  i _ s t a r t = 0 ;  

f i n i s h = M A X  
e l s e  i  f i n i  s h = M A X + 1 ;



0161
0162
0163
0164  
O 165 01660 16 701 68 
0169  
01 70 0 1 71
0 l 72
01 73
0 1 74
01 75
0 176
01 7 /  Ol 78 Ol 7?
0 1 Oo 
0 131
0 1 02
0 1 0 3
0104
0 105 
0186  
01 07  
0 133 
0187
01 9o 
0 1 91
01 72
0173  
0194

1 75
01 96
0197
0 1 93  
017 9 
020O  
020 1 
0202  
020  3 
020  4
02 05
0206
020  7 
02C'8 
0209
021 O 
021 1 
0 21 2 
021 3 
021 4
02 1 5 
02 16  
021 7 
02 18  
02 1 902200221
0224

0226

0223

0230
0231
0232
0233
0234
02 35
0236
0237  
0233  
02 39 
02 40

i f  l ü c . a l _ i d  =  4  . o r  1 o c I  i d = l  t h e n  j  s t a r  t = l
e l s e  j _ s t a r t = 0 ;  

i f  l o c a l _ i d  =  4  . o r  l o c a l _ i d = l  t h e n  i _ f  i  n  i s h = M A X + 1
e l s e  j _ f i n i s h = M A X :

E N D ;
C A G E  2  4 H L N  

B E G I N
i f  1 or :  a  1 _  i  d

C A S E  4  t h e n  
h  e u  i  n

i _ = t a i t = 0 ;  
i  f  ) n  1 = h  =  t l AX :
1 =1 a t  t = l  : 
i _  f m i  sf )  =  N A  X I 1 :

e n d  :
C A S E  3 t h e n  

b e u  i  n  
1 _ 3 t a r t = l ;

i  _ f  1 n i  s h = f  l AX t 1 :
, i _ s t a r  t = 0 ;  

i _ f  i  n  i s h = T i A X  ; 
e n d  :

E L S E

i  _ s  t  a t  t =  1 ; 
i  _ f  i n i s h = M A X  +1 :
1 _ s t a r t = l ;
J _  f i  n  i  s h = N A  X +  1 : 

e n d  :
E M U ;

C A S E  3  T H L N  
r + E E I N

1 _ s t a r  t  =  1 ; 
i n f i n i  B f l = M A X  + 1 : 
j _ s t a r  t = l : 
j _ f  i  n i  ? h = M A X  + 1 :

E N D :
E L S E

B E G I N
1 _ s  t  a r t  =  1 : 
i  _ f  i n i  = h =  Mi + X+ 1 : 
i _ s  t a r  t  =  1 : 
i _ f  i  n i  e1i  =  M a X  f 1 ;

E N L  : 
i  = i  _ = t a r  t  : 
r e p e a t

i =  i  _ s t  a  r  t  : 
i - e p e a t

. a d d - n e  t  a d d r  n o s  ( i . i ) :
A D U - - 1  . 1 :
i f  . a d d =  . t r h  . o r  . a d i t - - . h r h  . e t  . a d  1 = .  h  1 1, . o r  . a d d = . 1 1 h  t h e n  c o p y  ( . a d d  ) ;

J =  i + 1 : 
u n  t  i  I  j =  j _ f  i  n  1 s.h ; 
i = i + 1  ; 

o n t  i l  i  -  i  f i  n i  a h  : 
e n d p i  (Jt. ;

p r o c e d u r e  u p d a  t e ( r e a l  a . b , c , d  ) :  r e a l  a v e r a g e :  
a  v e r  a g €+ =  ( a + b  I c  1 d  ) 7 4  : 

e r i d p r  o c  r e a l  a v e i  a g e :

( i r o c e d u i  e  i i n t .  v a i s :  i r a  1 . r n e  , . t < .| ■ _ v n  I n . - . . t h r  w  I n - ' .  . t. c f .  a  1 n e  ,
. I h s _ v  a  I u n  ,  1 u'_ a  I _ t n p  . 1 u . ; a  1 . b o t  ,  1 o c a  l _ 1  h s  ,  l  o c  a  1 r h s  : 

i n t e g e r  i ,  . I n t  a  I : b v t e  . 1 o c  _ t a g  . . l o c _ l o c _ i d ;
. 1 o c a l _ m a x = E A S f ;
. 1  o c _ t a g  =  E A S T  I 2 ;
. 1 o c _ l o c _ i d = E A S T  + 3 ;
. t o p _ v a l u e = E A S T + 4 :
. r h s _ v a l u e = E A S T  + 0 :
. b o t  . . v a l  u e  - E A S T  1 1 2 :
.  1 t i s _  V a l  i j . e = E A 3  F + 1 6 ;  
r l A X  =  l  o c a l  _ m a x  ; 
p e _ t a q = l o c _ t a g :
1 o c a l  _ i  d  =1 o c _ l  o c  _ i  d  :
1 o c a l  _ t o p  =  t o p . . v  a l  u e  ;
1 o c a l  _ r  h s = r  h s _ v a l  u e :  
l o c a l _ b o t = b o t _ v a l u e ;
1 o c a l  _  I h a  -1 i i s  v a  1 u n  :
i  n  i  t  a r t a v ;  / »  d o i n u  i t  i i e r  e  e t o p / s  d e s t r u c t i o n  o f  i n i  t  d a t a  */



0 2 9  1
0 2 9 2
0 2 9 3
0 2 9 4
0 2 9 5
0 2 9 6
0 2 9  7
0 2 9 8
0 2 9 9
0 3 0 0
0 3 0 1
0 3 0 2
0 3 0  3
0 3 0 4
0 3 0 5
0 3 0 6
0 3 0 7
0 3 0 8
0 3 0 9
0 3 1 0
0 3 1  1 
0 3 1  2  
0 3 1  3
0 3 1 4
0 3 1 5
0 3 1 6
0 3 1 7
0 3 1 8
0 3 1 9
0 3 2 0

I F  P E  T m G = 1  t h e n  
B E U I N

i f  i o c a l _ i d  =  4  t f i e n  /  «   T L H  P E
b e y  1 n  

i  = 0 : -  
r e p e a t

.  r e s = a e t _ a d d (  e s s  ( 0 ,  i  i l l  e a c r  ' i  i l l ) :  
t e = ; - - l  o c a  I  _ 1  h s  ;
. t e s = y e t _ a d d t  e s s ( 1 . M A X ) :
I e s  =  l o c a l _ t o p  :
1 = 1 + 1 ;  

u n t i l  i = T I A X :  
e n d  ;
i f  l o c a l  _ i d = 3  t h e n  /* ............................  B L H  f  E
b e y  1 ri 

i  = o :
I e p e a t

. I e s  = i K - t _ a d d i  e s s  (O. i  I : ■
I e  s  =■-1 o c  a  1 _  1 h  3 :
. r- 0  3  =  u e  t  _ a d d (  e s s  i  . 1' ' : 
r = 3  =  1 o c a l  b u t  :
1 = i  + 1 : 

u n t i l  i = I T n X ;  
e n d  ;
i f  l o c a l  _ i d = l  t h e n  /* .......................... T P H  P E
b e a i  n  

i = l  : 
r e p e a t

. r e s = q e t _ a d d r e s s ( i , M A X ) ;  
r  e s = l o c a  1 _ t o p ;
- r e s = g e t _ a d d r e s s ( M A X . i ) ; 
r e s = I o c a l _ r h s :
1 = i  + 1  ; 

u n t i l  i = M A X + l ;  
c n d  ;
i f  1 o c a l  _ i  d  =  2  t l i e n  / «    B P H  P E

1 =  1 :  
r e p e a t

. r e s = p e t _ a d d r e s s ( i  , 0 )  ; 
r  e  = =  l o c a l _ h o t ;
. r e s  = a e t _ a d d r e s s ( MA X . i  ) : 
r e s = l o c a l _ r h s :
1 = 1 + 1 :  

o n  t i l  i  *1 If+X + 1  ; 
e n d  :

E N D :
I F  P t _ I A G = - 4  T H E M  
B E G  1 N 

i = l :  
r e p e a t

. r e s = a e t _ a d d r  e s s ( i  , 1 )  : 
r s  =  1 o c a  I _ b o t  : 
. r e 5 = a e t _ a d d r o s s ( H A X . i )  ; 
r e s  =  l  o c a l  . . r h s  ;
. r e s = y e t  _ a d d r e s s ( i  , M A X ) ; 
r e s = l o c a  I _ t o p ;
.  r e s = o e t  _ , a d d r e s s  ( 1 , i  ) ; 
r e s  = 1 o c a l  1 h s : 
i  = i  + 1 :

L i n t  i  1 i  = M n X  +1 ;
E N D :
I F  P E _ T A G = 2  T H E N  
B E G I N
i  f 1 o c a l  i d

C A S E  r  t t i e n  / »  t o p  « /

1 = 1 ;
r e p e a t

. r e s = a e t  a d d r  e s s ( i  , M A X ) ;  
r  e s = l o c a l _ t o p : 
i  =  i  + 1 : 

u n  t  i  1 i  =Mr-iX I 1 : 
e n d  :

C A G E  2  t t i e n  /* r h s  * /  

i  =  l
r e p o a t

. r e s = u e t _ a d d r e s s ( M A X , i ) ;  
r P E = l o c a l  1 h = :



0 3 2 1  i = i + l ;
0  3 2 2  u n t i l  i - t l n X i l ;
0 3 2 3  e n d ;
0 3 2 4  C A S E  3  t h e n  / •  b o t t o m  « /
0 3 2 5  b t a i n
0  3 2 6  1 =  1 :
0 3 2 7  r e p e a t
0 3 2 0  .  r e s  =  n s t  a d d r e s s j  . ' o  ;
0 3 2 ?  r 0 5 = 1 o c a l _ b o t :
0 3 3 0  1 = 1 1 1 :
0 3 3 1  u n t i l  i = M A < + l :
0 3 3 2  e n d ;
0  3 3 3  E L S E  /  ■> I h s  » .
0 3 3 4  b e n i n
0 3 3 5  1 = 1 :
0 3 3 c  r e p e a t
0 3 3 7  - t  >.?:- =  u e t  a d d r e s s  O' . ,  i  ) ;
0 3 3 8  • r e s  =  l  o r a l  1 ti  = ;
0 3 3 9  1 = 1 + 1 :
0 3 4 0  u n i  i 1 i =| - IA> + I :
0 3 4  1 e n d  :
0 3 4 2  E N D :
0 3 4  3  e n d p r o r :
0 3 4 4
0 3 4 5  pt  o c e d u t  e  i t e r a t e :  r e a l  . e l  1 . . r 1 2 . . e l  3 . . e l  4 . . r e s  : i n t e g e r  i . j ,
0 3 4 6  i s t a r t . i  _ 1 i n i s h . ) . s t a r  t  , j _  f i  n i s h :
O 3 4  7 / ► a  b i t  o f  t h o u g h  I  a n d  t h i s  i s  m v  n e w  a t t e m p t  * /
0  3  4 3  I F  F E _ 1 A S = 1  I M E N
0  3 4 7  B E G I N
0 3 5 0  i _ s t a r t = l :
0 3 5 1  i  _ f  i  n  i  s h = l  l AX :
0 3 5 2  j _ s t a r t = l :
0  3 5 3  j  _ f  i  n  i  s l i = M A X  :
0 3 5 4  E N D  :
0 3 5 5  I F  P E _ T A G = 4  T H E N
0 3 5 6  B E G I N
0 3 5 7  i _ s t a r t = 2 :
0 3 5 3  i  _ t  1 n  1 s t i -HO  X ;
0 3 5 9  j _ s t a r t = 2 ;
0  3 6 0  .1 _ f  i n i  s h = N A x  :
0 3 6 1  E N D :
0 3 6 2  I F  F t :  TOÜ- - -2  N i l  N
0 3 6 3  B E G I N
0 3 6 4  i f  l o c a l  i d '  4 . o r  1 o c a  1 i d = 2  t t i e n
0 3 6 5  b e a i  n
0 3 6 6  i  s t a r  t  =  l :
0 3 6 7  i .  f i  n  i  s t ) = M A X  :
0  3 6 3  i 5  L a t  t  =  1 :
0 3 6 7  i I i n i s h  = M o X  t I  ;
0 3 7 0  e n d :
0 3 7 1  e l s e
0 3 7 2  b e n  i  r,
0 3 7 3  1 . . . s t a r  t  =  l :
0 3 7 4  I . t i n i s h = M o X + 1  :
0 3 7 5  ,i . _ s t  a r t =  1 :
0 3 7 6  J f  1 r, i s h  -  I TnX :
0  3 7 7  e n d :
0 3 7 0  E N D :
0 3 7 9  I F  F E . . I A G = 3  T H E N
0 3 3 0  B E G I N
0 3 8  1 i _ s t - » f  t  =  l :
0 3 8 2  i  f 1 I É1 s I r  MA X + I :
0 3 8 3  .1 s t a r  t  '  I :
0 3 8 4  j _ f  i  n i  s t , = M A ;  + I :
0 3 8 5  E N D :
0 3 8 6  i  =  i  _st - - - . r  t :
0 3 8  7 r e p e a t
0 3 8 8  ) I . s t a r  t  :
0 3 0 7  r e p e a t
I . j + V u  . e l l  = U L  t  a d r i r  f LjS l l  . l  l d . e o e .  M i l ) '
0 3 9  I  . e l  2 = g e t  . a d d ,  p z s  ( i n t e n e ,  '  l  ' 1 . r -
0 3 ' r ' 2  . e l  3 = g e t  _ a d d r  e s s  ( i  . i n t e g e r  ( j - 1  ) )
0 3 7  3 . e l  4 = n e t  _ a d d r  e  =  a i i n  t e u e r  < i - 1 i .  i )
, 1 3 7 4  . r e s -  ' l o t  _ a d ' l r  e s s  ( i  . i i :
0  3 7 5  r e s = u p d a  t e ( e 1 1 . e I  2 , e 1 3 . e l  4  > :
0 3 9 6  i f  . r e = = . t r h  . o r  . r e s = . t d h  . o r  . r e s = . t 1 h  . o r  . r e s = . b r h
0 3 7 7  t h e n  c o p v  ( . r e s ) :
0 3 9 8  / «
o 3 9  7 . e l  l = a e t _ a d d r  e s s  ( i  . M A X + 1 ) ;
0 4 0 0  . e l 2 = a e t  a d d r e s s ( M A X + 1 .  i ) ;



0 4 0 1 . e l 3  =  u e t  a d d r  e s s ( i  . 0 )  ;
0 4 0 2 . e l  4 = g e t _ a d d r  P'!i S  ( 0 , , 1 )  :

0 4 0 3 i  t e l l  ' 9  I  h e n g e n 4 1 3 :
0 4 0 4 i f e l  2 0 9  t h e n g e n 1 1 3 :

0 4 '  13 i  1 e l  3  ■? t h e n g e n t 1 3 :
0 4 0 6 i  f e l  4  9  t h e n g e n T1 3 ;
0 4 0 7 «V
0 4 0 3 j  =  j  +1  ;
o 4 o 9 u n t i l  r = i _  t  i n i  s h  ;
0 4  1 0 1 = 1  +1  ;
U 4  1 1 
0 4  1 2  
0 4  1 3  
0 4  1 4  
0 4 1 3  
0 4  1 6  
0 4  1 7 
0 4  1 8

u n t i l  i ' = i _ f  I r t i s h ;  
e n d p t u c :

i n t e p p r  d u m r n v :p r  o c e d u f  e  t e r  n o  n a t e  p r  oar a m :  

g e n  f l 3 :  

r e p e a t

dommv=domm V ; 
f o r e . e r  :

0 4 1 9  e n d p r o c :

0 4 2 0
0 4 2 1  , *  i J L l O l f l  O l  l . i ' ) 0 0  I I JR I ' A G f  G l f i L ' l  L O L A  1 I I I I I  * /  

U R I U I I I  I B o O ' : ' :0 4  2 2
0 4 2 3  p r  o c e d u r  e  rr ,ai  n  : 1 111 [ - O EI  ' I U U M 1 :
0 4  2  4  C n i l l l l  o :

0 4 2 3  c (  t = c c i  a n d  l e t
0 4 2 6  i n i t _ v a l s ;
0 4  2 7  R E F E A T
0 4 2 8  I l E R A T E :
0 4 2 7  C O U u r  =  C U U I i r r  1 :
0 4  3 0  F O R E V E R :
0 4 3 1  t e r  m i n a t e  pr  o a r  a m :
0432  /EUF

I e o p s  p e c o r j  I n s i  n g  i r r; v » •



PROGRAM LISTING 4 
OPTIMISED 'GET_ADDRESS' 

PROCEDURE



THE INCLUDED FILE: GET ADDD.PL9
0 0 0 1  p r o c e d u r e  g e t  _ a d d r e s s  < i n t e g e r  i . j , l  ) :  i n t e u e r  a d d r e s s :  b y t e  l a . I b . l n i , T l
T 2 , 1  m m ;
0 0 0 2  1 a = b v t e ( i  > :
0 0 0 3  1 b = b v t e ( i ) ;
0 0 0 4  1 m = b y t e ( M A X ) :
0 0 0 5  l m i n = l m - l  ;
0 0 0 6  a d d r e s s = 4 0 0 0 0 :
0 0 0 7  I F  P E _ T A Ü = 1  T H E N
0 0 0 8  B E G I N
0 0 0 9  I F  L O C A L _ I D
0 0 1 0  C A S E  4  t h e n  / *  ............................  T L H  F E .. .........................  * /
0 0 1 1  b e g i n
0 0 1 2  i t  i b < = l  . a n d  l a . = l m m  t h e n
0 0 1 3  a d d r e s s  =  S O U T  H  + s h  i f  t ( i , 2  ) :
0 0 1 4  i f  l b = l  . a n d  1 a  : =  I  mm t h e n
0 0 1 5  a d d r e s s = a d d r e s s + s h i f t ( M A X . 2 ) :
0 0 1 6  i f  a d d r e s s = 4 O O O O  t h e n
0 0 1 7  b e g i n
0 0 1 8  i f  I  a )  =  1 mm . a n d  I b  = 1  t h e n
0 0 1 9  a d d r e s s = £ A S T +  s h i f t  ( ( j - 1 > . 2  ) :
0 0 2 0  i f  l a = l m  . a n d  l b > = l  t h e n
0 0 2 1  a d d r e s s = a d d r e s s + s h i f t ( M A X , 2 ) ;
0 0 2 2  e n d  :
0 0 2 3  i f  I a  =  l m m  . a n d  1 b =  1 t l i e n  a d d r  e s s = . b r  ti :
0 0 2 4  e n d  :
0 0 2 5  C A S E  1 t h e n  / *  ............................  I K I I  P E .. .........................  * /
0 < ) 2 6  b e g i n
0 0 2 7  i f  1 a  = 1  . a n d  l b  = 1  t h e n
0 0 2 8  a d d r e s s = W E S T + s h i f t  ( ( j - 1 ) . 2  ) :
0 0 2 9  i f  I a = l  . a n d  1 b  = 1  t h e n
0 0 3 0  a d d r e s s = a d d r e s s +  s h i f t !  M A X , 2  ) :
0 0 3 1  i f  a d d r e s s = 4 0 0 0 0  t h e n
0 0 3 2  b e g i n
0 0 3 3  i f  I b < = l  . a n d  l a ' = l  t h e n
0 0 3 4  a d d r e s s = S O U T H +  s h i f t !  ( i - l ) , 2  ) :
0 0 3 5  i f  l b = l  . a n d  1 a  : =  1 t h e n
0 0 3 6  a d d r e s s = a d d r e s s +  s h i f t !  M A X , 2  ) :
0 0 3 7  e n d  :
0 0 3 8  i f  1 a = 1 . a n d  l b = l  t h e n  a d d r e s s = . b l h :
0 0 3 9  e n d  :
0 0 4 0  C A S E  3  t h e n  / *  ..........................  B L H  P E  .........................  * /
0 0 4 1  b e g i n
0 0 4 2  i f  1 b  > = 1 m m  . a n d  I  a . =  1 mm t h e n
0 0 4 3  a d d r e s s = N O R T H +  s h i f t !  i , 2  ) ;
0 0 4 4  i f  I b  =  l m  . a n d  I  a  = 1  mm t h e n
0 0 4 5  a d d r e s s = a d d r e s s +  s h i f t !  M A X . 2  ) :
0 0 4 6  i f  a d d r e s s = 4 0 0 0 0  t h e n  
0 0 4  7 b e g i n
0 0 4 8  i f  I a > = l m m  . a n d  1 b  : =  1 mm t h e n
0 0 4 9  a d d r e s s = E A S T +  s h i f t !  i . 2  ) ;
0 0 5 0  i f  I a = l m  . a n d  I b < = l m m  t h e n
0 0 5 1  a d d r e s s = a d d r e s s +  s h i f t !  M A X , 2  ) ;
0 0 5 2  e n d ;
0 0 5 3  i f  I a = I m m  . a n d  1 b = I m m  t h e n  a d d r b s s = . t r h ;
0 0 5 4  e n d  ;
0 0 5 5  E L S E  / *    B R H  P E  .........................  * /
0 0 5 6  b e g i n
0 0 5 7  i f  I  a < =  1 . a n d  1 b < =  1 mm t h e n
0 0 5 8  a d d r e s s = W E S T +  s h i f t !  j , 2  ) :
0 0 5 9  i f  I a = l  . a n d  I b : = I m m  t h e n
0 0 6 0  a d d r e s s = a d d r e s s +  s h i f t !  M A X , 2  ) ;
0 0 6 1  i f  a d d r e s s = $ O o O O  t h e n
0 0 6 2  b e g i n
0 0 6 3  i f  I b ' =  1 mm , a n d  I a > = l  t h e n
0 0 6 4  a d d r e s s = N O R T H +  s h i f t !  ( i - 1 ) , 2  ) ;
0 0 6 5  i f  I b  =  l m  , a n d  1 a  - =  1 t h e n
0 0 6 6  a d d r e s s = a d d r e s s +  s h i f t !  M A X , 2  ) ;
0 0 6 7  e n d  ;
0 0 6 8  i f  I a = l  , a n d  I b = l m m  t h e n  a d d r e s s = . t l h ;
0 0 6 9  e n d  ;
0 0 7 0  E N D ;
0 0 7 1  I F  P E _ T A G = 2  T H E N
0 0 7 2  B E G I N
0 0 7 3  i f  l o c a l _ i d
0 0 7 4  C A S E  1 t h e n
0 0 7 5  b e g i n
0 0 7 6
0 0 7 7  i f  1 b ) = 1  t h e n
0 0 7 8  b e g i n
0 0  7 9  i f  1 a  : = 1  t h e n
0 0 8 0  a d d r e s s = W E S T  +  s h i f t !  ( i - l ) , 2  ) ;



0 0 8 1  i f  1 a = 1 t h e n
0 0 8 2  a d d r  e s s = a d d r e s 5 + s h i  f t ( M A X , 2 )  ;
0 0 8 3  i f  1 a ' =  1 m t h e n
0 0 8 4  a d d r e s s = E A S T  +  s h i f t !  ( j - 1 ) , 2  ) :
0 0 8 5  i f  l a  =  l m + l  t f i e n
0 0 8 6  a d d r e s s = a d d r  e s s  + s f i  i  f t  ( M A X ,  2 )  ;
0 0 8 /  e n d ;
0 0 8 8
0 0 8 9  i f  l a . -  =  l  . a n d  l a <  =  l m  t h e n
0 0 9 0  b e g i n
0 0 9 1  i f  l b ' .  =  l  t h e n
0 0 9 2  a d d r e s s = S U U T H  +  s h i f t !  ! i - 1 ) , 2  ) :
0 0 9 3  i f  1 b = 1 t h e n
0 0 9 4  a d d r e s s = a d d r e s s + s h i  f  t ( M A X , 2 ) ;
0 0 9 5  e n d ;
0 0 9 6
0097  i f  l a = l  , a n d  l b = l  t h e n  a r l d r  e s 5 = . h  I  h  ;
0 0 9 8  i f  1 a  =  1 m , a n d  U i = l  t h e n  a d d r  e s s = . b r  h :
0 0 9 9  e n d ;
0 1 0 0  C A S E  2  t h e n
0 1 0 1  b e a m
0 1 0 2
0 1 0 3  i f  1 a  = 1  t h e n
0 1 0 4  b e g i n
0 1 0 5  i f  1 b . = 1  t h e n
0 1 ' j 6  a d d r e s s = S O U I H  +  s h i f t !  ! i  - 1  ) , 2  ) :
0 1 0 7  i f  l b = l  t h e n
0 1 0 8  a d d r e s s = a d d r e s s  +  s h  i  f  t ! M A X . 2 ) :
0 1 ': ' 9 i f  l b  =  1 m t h e n
O l i o  a d d r e s s = N t ) f <  r H  +  s h i f t !  ! i  - 1  ) . 2  ) :
O l  1 1 i f  l b  =  l m + l  t h e n
0 1 1 2  a d d r e s s = a d d r e s s + s h i  f t ( M A X , 2 ) ;
0 1 1 3  e n d  ;
0 1  1 4
0 1 1 5  i f  l b  : =  1 , a n d  1 b  = 1 m t h e n
0 1 1 6  b e g i n
0 1 1 7  i f  1 a < = 1  t h e n
0 1 1 8  a d d r e s s = W E S T  +  s h i f t !  ( j - 1 ) , 2  ) ;
0 1  1 9  i f  1 a =  1 t f i e n
0 1 2 0  a d d r e s s = a d d r e s s + s h i f t ( M A a , 2 ) ;
0 1 2 1  e n d ;
0 1 2 2
0 1 2 3  i f  l a = l  . a n d  1 b =  l  t h e r ,  a d d r  e s s = .  b l h ;
0 1 2 4  i f  l a = l  , a n d  1 b = l m  t h e n  a d d r e s s = . t l h ;
0 1 2 5  e n d  :
0 1 2 6  C A S E  3  t h e n
0 1 2 7  b e g i n
0 1 2 8
0 1 2 9  i f  1 b < =  1 mm t h e n
0 1 3 0  b e g i n
0 1 3 1  i f  1 a < = 1 t h e n
0 1 3 2  a d d r e s s = W E S T  +  s h i f t !  j , 2  ) ;
0 1 3 3  i f  1 a = l  t h e n
0 1 3 4  a d d r e s s = a d d r e s s + s h i  f  t ( M A X , 2 ) ;
0 1 3 5  i f  1 a > = l m  t h e n
0 1 3 6  a d d r e s s = E A S r  +  s h i f t !  j , 2  ) :
0 1 3 7  i f  l a = l m + l  t h e n
0 1 3 8  a d d r e s s = a d d r e s s  +  s h i  f  t ( M A X , 2 ) ;
0 1 3 9  e n d  ;
0 1 4 0
0 1 4 1  i f  l a > = l  , a n d  1 a . =  1 m t h e n
0 1 4 2  b e g i n
0 1 4 3  i f  l b > = l n i m  t h e n
0 1  4 4  a d d r e s s = N O K ' T H +  s h i f t !  ! i  - 1  ) , 2  ) :
0 1 4 5  i f  l b = l m  t h e n
0 1 4 6  a d d r e s s = a d d r e s s + s h i f t ( M A X , 2 ) ;
0 1 4 7  e n d  ;
0 1 4 8
0 1 4 9  i f  l a = l  . a n d  l b = l m m  t h e n  a d d r e s s = . t l h ;
0 1 5 0  i f  l a = l m  , a n d  l b  =  l mi p  t h e n  a d d r  e s s = , t r h  ;
0 1 5 1  e n d ;
0 1 5 2  E L S E
0 1 5 3  b e g i n
0 1 5 4
0 1 5 5  i f  1 a  = 1  mm t h e n
0 1 5 6  b e g i n
0 1 5 7  i f  1 b  = 1  t h e n
0 1 5 8  a d d r e s s = S U U T H  +  s h i f t !  i , 2  ) :
0 1 5 9  i f  l b = l  t h e n
0 1 6 0  a d d r e s s = a d d r e s s  + S h i  f t ( M A X , 2 ) ;



0 1 6 1 i  f 1 b  = 1 m t h e n
0 1 6 2 a d d r  e s s = N O F l H  + s h i f t !  i . 2  ) :
0 1 6 3 i  f 1 b  =  1 >1 + 1 t h e n
0 1 6 4 a d d r e s s = a d d r e s s + s h 1 f t ( M A X . 2 ) ;
0 1 6 5 e n d  ;
0 1 6 6
0 1 6 7 i t  l b = l m  . a n d  l b = l  t h e n
0 1 6 8 b e g i  n
0 1 6 9 1 f 1 a  = 1  mm t h e n
0 1  7 0 a d d r e s s = E A S T  +  s h i f t ( ( j - D . 2  1 :
0 1 7 1 i  f I a = I m  t h e n
0 1 7 2 a d d r e s s = a d d r e s s + s h i f t ( M A X , 2 ) ;
0 1 7 3 e n d  ;
0 1 7 4
0 1  7 5 i  f 1 a = l m m  . a n d  I b = l  t h e n  a d d r e s s ^ .
0 1 7 6 1 f I a = I m m  . a n d  l b = l m  t h e n  a d d r e s s '
0 1 7 7 e n d
0 1 7 8 E N D :
0 1 7 9 I F  F E . , T A G = 3  T H E N
0 1 8 0 B E G I N
0 1 8 1
0 1 8 2 i t  1 a  ; =  1 . a n d  1 a  1 =  1 m t h i e n
0 1  S 3 b e g i  n
0 1 8 4 1 f l b ' = 1 m t h e n
0 1 8 5 a d d r e s s = W O R T H  +  s h i f t !  , i - 1 ) . 2
0 1 8 6 1 f 1 b  =  l m  t 1 t h e n
0 1 8 7 a d d r  e s s = a d d r e s s  i - s h i  f  t  ( M A X  . 2 )  ;
0 1 8 8
0 1 8 9 1 f 1 b : = 1  t h e n
0 1 9 0 a d d r b s s = S O U T H  + s h i f t !  ! i - 1 ) . 2
0 1 9 1 i  f l b = l  t h e n
0 1 9 2 a d d r e s s = a d d r e s s  + s l i i  f t ( M A X  , 2) ;
0 1  9 3 e r i d  ;
0 1 9 4
0 1 9 5 i f  l b ; =  1 . a n d  I  b <  =  ] n, t h e n
0  1 9 6 b e g i  n
0 1 9 7 i  f l a  = l m  t h e n
0 1 9 8 a d d r e s s = E A 8 T  +  s h i f t !  ! .i - 1 ) .2 :
0 1 9 9 i  f 1 a = I m + 1 t h e n
0 2 0 0 a d d r e s s = a d d r e s s  +  s l i i f t  ( M A X  . 2) :
0 2 0 1
0 2 0 2 1 f I  a  = 1  t h e n
0 2 0 3 a d d r e s s = W E S T  + s h i f t !  ! . i - l ) , 2  :
0 2 0 4 i  f 1 a = 1 t h e n
0 2 0 5 a d d r e s s = a d d r e s s + s h i f t ( M A X . 2 ) :
0 2 0 6 e n d  ;
0 2 0 7
0 2 0 8 i f  a d d r e s s  , . - f f ' O O O  t h e n
0 2 0 9 b e g  i  n
0 2 1 0 i f  I a = 1 t h e n
0 2 1  1 b e g i n
0 2 1  2 i  f l b = 1 t h e n  a d d r  e s s = . b l h ;
0 2 1 3 i  f I b = l m  t h e n  a d d r e s s = . t l h ;
0 2 1 4 e n d ;
0 2 1 5 i f  l a = 1 m t h e n
0 2 1 6 b e a  i  n
0 2 1 7 i f 1 b = 1 t h e n  a d d r e s s = . b r h ;
0 2 1 8 i f I b = I m  t h e n  a d d r e s s = . t r h ;
0 2 1 9 e n d  ;
0 2 2 0 e n d  ;
0 2 2 1 E N D ;
0 2 2 2 i f  a d d r e s s  = $00i;0 t h e n  a d d r  e s s = M A X  * s h  i f t
0 2 2 3 e n d p r o c a d d r e s s ;
0 2 2 4 /EOF



PROGRAM LISTING 5 
LAPLACE FOR THE MULTIPROCESSOR 

CONVERGENCE TESTS



o w  1 

" >2 
V O U  3 
OO'.i'l 
00>.»5  
V U 0 6  

000 / 
OOOW  
0 0 " 9  
o o  I O
0 0  I I
0 0 1 2  
o o  1 3  

O':'  1 4 
'.I':» 15  
'.>',1 1 61 • '.'o I y 
'.".I i S' 
0" 2' ' 
'.".I- I 
0'.i2.: 
' . ' 0 2 3  
' : ' o2  4 
" o  ; •* I 
o o 2o  
0'.'2 / 
' . ' 0 2 8  
'.io2 V 
0 0 3 ' . '  
0 0 3 1  
' : ' 0 3 2
0 0 3  3  

" 4
' . " . ' 35  
OO 3 6  
'.'0 37 

OO 3 8  
' : ' 0 3 9
O' . ' 4' . '  
o ' : ' 4 1
0 0 4  2 
O' . ' 4  3 
0 ' . ' 4  4  
" 0 4  5  
'.".'46 '.".'47 
0 0  4 8  
0 0 4 - V  
0 ' : ' 5 0  
0 ' : ' 5 1 
0 ' : ' 5 2  
'.".'53
0 0 5 4
0 0 5 5  
' : ' 052 .
0 0 5  7 
0 ' : ' 5 0  
0 0 5 9  
o o 6 ' : '  
'.".'6 1 
0':'6 2 
0 0 6 3  
':":<6 4 

0 0 6 5  '.":'6 3
0 0 6  7 
' : " : ' 68  
' : ' 0 6 9  
0 0  7 0  
0 0 7 1  
CO 7 2

7 3 
0 ' : ' 7 4  
0 0  7 5  
0 0 7 6  
0 " 7  7 i.":'78 
0 0  7 9  
' : " : ' 80

1.01 L.".I L  r i v f i M l . i l

1 11! I .14481 
N U K i n  
1 A 8  I
S '.iu  11 r 
wt- 8  r

11. " . ' ' . "  ' .  

4 6 ' . " . " . ' .  1 .
48'.":".'. 1 :

A I . lEf  r 2 :  f' .L' -' l .  t ,  h . b ,  r ' . U l l ' . l l h :  B , 1 E t j l c . b a l  . l , a l  I  M  a q :
I I I  I tr L'lif-: M A X :  R E h L  . a r r a v :  F' l  I E  ida L a  t  v p e  . 1 o c  a  I  i d  . p e . t  a q  :
L' l  I E pr  o l . i  oi i i  t. v p e . l  1 a c j :  i t i L e t . i e r  s i u i  v e c t o r  :

/  » V ar  l a b l f B  i . i sfcd p u r  e l  v  b y  t h i  s p i  o n t  c i .  »•
A l  ( E t : " " :  1 n  t  p q e r  i  s i  a r  t  i  t e r  a  t  r ' : ' i , . r <=0:.>i i  _  i  t e r ' a  L \ i .

1 I I 111 ' i l  1 1 I ' I a  L 1 1.11 . I I I I O 'sb i  l  '  r u I 1 (..‘I I  :

i  n  c  1 u ' J e  ' . ' .  t  ' I a  1 1  e . d  f I  : 
m a t h  3 =  4 'J 1 :

/ *  s e t  or  l y i r i  ( o r  q e l  . a d ' l r  u s s  s>o t h a t  1 d i  c a n  u s e  a s  i v a j  l » 7
Ü R I i 3 1 M  41: ' :".": ' ;  •

I M L L U l ' t  J . l . L f  y i i . l ' c l . f L V :  
p r - O ' . S ' J u r  e  s w i  r o l i n :  
e n d p r  o c  ;

o r  i >3 1 r. 11■ ) ' :

p r o c e d ' i i e  c o i - .  '  i 111 c. n e  a d d i c - s s ' :  r e a l  . n .  . e  . . s .  . w :
I l  ai J I r  e s c  . b i  h  ( h >> n  ,* 1 1 l i  »
b e n  i n

. =  =  3 M J i l l  I s h i f t !  MAX . 3  > -  4 :
=  : I '1 h  :
.  "  =  t  A ' . .  I : 
e  =l.)i 11 : 

eni . l  :
i t  âd'_l i  e :  s - - .  t ' I  h  t h e n  ■ t r h  r .
t i e n  i 11

. w =Wt  8  I I = h ]  I I. I I l " X  , 2  ' :
w = b 1 h  :
. s = S D Ü  I I I :  s i "  1 1 !  I l "  y . 2  i -,
3 = b l h :

e n d  ;
i l  a r kJ r  «: • -F - - . 1 1 I) t h e n  •'+ h l i i  » /
b e q  i  n

. 1 1 : 0  I I  .4: M i l  s h i f t !  ( I I A X - l ) . : '  .) ; 
n  =  t r  ti :
.  e = E A 5 1 I s h i f t !  ü l . i X  11 .2  1 : 
e = t r h : 

e r cd  :
i f  a d d r  e s : ; - - - . L 1 I I t h . - n  /  « t "  h  «
b e . q i  n

. w = H t 2 3 T  + s h i l t !  MA X  . 3  ) 4 ;
w = l .  1 h :
. n-MCrlv-  I I I :  
n  =  t 1 h  : 

e n d  : 
e n d p r - ' j c  :

p i  o c e d u i  e  1 n i "  a r  i a  . : i n t ' c i - r  i . t . i  '  t a i  t . i . . f  i n  i = t i . i _ =  t a r  L .  j  _ f  i r, i  s h  :
I t  a l . ad' I :

I M C L U L ' E  1 .1.1 ."l '.hn . . r L'i:
I  rv I CLUUE 1 . L r  _ I  1 E R .  r L 9  : 

i  = i . s t a r  t ; 
r e o e a l .

1= 1 . s t a r l : 
r - e p e a  t

.  add =  o n  L a i l d i  e s c  ! i  .  i  .  " )  :



A U D = 1 . 1 ; 
i  f  . a d d : . a d d  . b l  11t i - t (

.i = 1 I 1 ; 
l i n t  1 1 j : i I J It I s l i ;  1=111; 

u n  1 1 1  i  = 1  _ f  i  n  i  s l i  : 
e n d p r o c ;

p f u c e c l L i t  t  u p d a : . c  < r t a l  
a  V e r  a u e - :  ( a  + b  + c  r d  ' , 4 1 

e n d p r  o c  i = a I  a v e r  a p e ;

a . b . c , d  ) :  t e a l  a . e i a q e :

p r  u c e d u r  e  i  n i  L _ _ v a  1 s :  r  e a l  .  t  e s  .  .  t o p . v  a l  u e  ,  .  r l - . s _ v ' a l  u e  .  .  b o t  _ v a l  u e  .

. 1 h s v a l u e . l o c a l _ t o p . l o c a l _ b o t . l o c a l _ l h s . l o c a l _ r h s :  

i n t e u e r  i .  .  1 o c a l  n i a r :  :  b v h c  . l o c  . b a g ,  .  1 o c . l o c  i  d :

.  1 o c a  1 " t a x  = E A 8  1 ;

.  1 o c  t  a n = f . A G  1 i 2 ;

.  1 UL.  I O C  i d  : L i 4 u  I I 3 :
.  t . C ' p  / a l  u e  : [ . A u  r  1 4  :

. r  I I S  _ v a  1 u e  =  E A S  r + - 8 :

■ l u ' t  a  1 1 i e  =  l . H ' J  I + 1 2 :

.  I I t s  v a  I  t . i t ; - ( ; > i s  r  t 1 6 :

I l A' / .  =  1 o c a  I . m a x  : 

p e  l : a a  =  l  o c  L a w  :

I I <1 a  I I I I  I I i r  I o c  I 11 

1 I . 1 I I t i| 1 I I l |  I V U  I I I I  ■

1 o c a l  _ r  I I S  -  I I l a  v a  1 u o  

l o c a l  b o L  = b o t .  v  a  1 u+3  

l o c a l _ 1 h  5  = I h s  _  V a  1 u e  

1 n  1 L _ a i  r  a  /  :  /  *  d o i  n q

I N C t . U L ' E  l . L F _ V A L S . P L 9 :  

g e n  4 1 3 :  

e n d p r o c :

p r o c e d u i  e  i t e r  a t e :  r e a l
b v t e  

f 1 a g = - t r  u e  ; 
i  I . e i  a  t  i  o n  ;

. e l  1 . . c l :  
a l  1 a l i o v .

: . . e 1 3 , . e 1 4 . . r  e s  : 
r_t 1 a g :

(.1081 
0 O 0 2  
b o a  3
0084
0 0 8 5
0 0 8 6
0 0 8  7 
0088
0 0 8 9
0 0 9 0  
0 0 7 1  
' . ' 0 9 2
0 0 9  3  
' . "394  
0 0 ' ? 5  
0 0 9 6  
0 0 9  7
0098
0099
0  1 i.'O
0 1 O 1 
0 1  0 2  
o  1 '.' 3 
0 104 
O l ' : ' 5  
•I I ( '6
"  1 I '
O 1 (. '8 
0 1 0 90 1 1 O 
0111
01 12 
01 13

1 1 4
0115
'3116 
0 1  1 7
01 18 
0 1 1 9  
0 1 2'.'
0 1  2  1 
O 1 2 2
0 1 2 3
0 1 2 4  
0 125 
0  1 2 6
0 1 2 /
0 1 2 8  
0 1 2 9
0 1  3':'
0 1 3 1
0 1 3 2
0 1 3 3
0  1 3 4
0 1  3 5  
I.' 1 3 6  
0 1 3 /
0 1 38 
0  1 3 9
01400141
0 1 4 2
0 1 4 3
0 1 4 4
0 1 4 5
0 1 4 6  / «  OK I I . I l l  t-i l  8' . ":". '  T O R  LOI . i t '  8  I , ' ,R1 L O T  A l I U I I  + ■ 
0 1 4  7 OR  1 8 111 I b ' . ' O O :  '
0 1 4 3  p r o c é d u r e  tit a  i  n  : 111 I E W E R  L OUI  1 1 :
c ' l  4 9  s w i  _  V H c  t u t  = .  s u r  _  l o i  i n :
0 1 5 "  C 0 U I 1 I = 0 :
0 1 5 1  CCI  = c c r  a n d  Î e f
0 1 5 2  i  n 1 t  va 1 - :
0153 REI L A I
0 1 5 4  I I E f i A l E :
0 1 5 5  C U U I l l  : L O U I I I  I 1 :
0  1 5 6  t o r  e v e r  :
0 1 5 7  t e r m i n a t e  pr  cjcji a m :
0 1 5 8  / E OE

a d i l - ' . b l t i  . o r  . a d d  =  . t i l t  t t r e n  c o p  v ( . a d d  )

i t  h e r o  s t o p s  d e s t r u c t i o n  o l  i n i t  d a t a  ♦ /

1 n t e q e r  l . j :

a l l  _ a h u  _

1 = 1  _ H t a i  t _  

r e p e a t

.1 =  . i _ s L a r t  _ i  1 e r  a t i  o r ,  : 

r e p e a l

. e l l = o e t  _ a d d r  e s s ( i  . i n t  e g c r  ( j i  1 )  
.  e l  2 = d e l .  a d d r  e s s  < i  n t e g e r  ( i  » 1 ' . i  

.  e l  3 = g e t  a d d r  e s s  ( i  .  i  n t e g e i  ( j -  1 )

. 0 ) 

.0)

. O ) ;
( r • 1 ' . 1.0)

i f  r e s < 2

. e  1 4 = u c  L a d t l i  e s s  ( i n  I  e o e i  
. I v s -  a o i  . a d d t  e s  s r i  . i . ' "  : 
r e s = u p d a  h e  ( e  1 1 . e l  2 , e  1 3 . »?1 4 '  :  

t t i e n  a l  1 a b o v e _ f  1 a g =  I a l  s c  : 
i f  . r e s = . t r h  . o r  . r e s = . b l h  . o r  
LI t e n  c o p v  ( .  r e s )  :
1= i + 1 :

u n  I  i 1 i =  i _ f  i  n i  s t i  _ i  I  o r  a t  i  or  t : 
i  =  i  +  1 :

u n  1 1 1  i  = i  I i n i  s t t i  L e t  a  t  i  o n  :
a l l  a b o v e  I 1 a ' . i = t r  u e  t  I t e n  p e n  4 3 1 :

. r e s = . t l h . r e s = . b r h

if
e i t d p i  o c  :

pr  o c e d u r  e  t e i  iiti  n a l  e  p i  o g i  a m :  
g e n  1 1 3 ;Iepeat

duiitiii V luiiiiit V :
f o r  e v e i  : 

e n d p r  o c ;

i  n t  e o c ’i d i  i i t .m.  ;

I c ' i p 3 p  + r o r . o p i  n s i  n n  i  r p :



THE INCLUDED FILE: LP ITER.PL9

0 0 0 1  I T  f h  _ r r ',b  1 I I Hr I I
0 0 0 2  B E G  I I  I
O'  > 0 3  1 _ =  t  a i  L i t e r a t i  c r  i ■ 1 :
O'JO  4 i  _ l  111 j s t i_  i  L e r-f- ' 1 1 o r e  TIh a  :
01.105 j . s t û t  L _ i  L e t  ü L i  a n : - l  ;
O' .xj to j _ . f i n i  i l l  I  t e r  a  I: i o n = M O X  :
'.>00 7 LND;
0'.»03 I I  T L . I mIJ - I  1111:11
0009  DLGIIJ
I.'O 1 (.1 i  _ s  1 1 r L i Li.  r Ù L ] " f i  r .  :
O o  I  i  I  t  1 n  i  = 1 1 _  1 t  o r  a  I 1 >.>t i  i  ' :

' . > 01?  1 s t a r  t I t i . i  a t i o n  2 :
OO 1 3 .1 t i n i  e l t  i  L e i  a t  i  o n  I tO' :  :
'.'014 CilJL':
0 0  1 5  I I  r  L  f r 4 . ; = 2  I I If.11
0 0 1 6  B E G I  I I
I .'O 1 /  I  I I o c û I  i l T  1 - o r  J o'_ a I j  d  Ô.' I G -
0 0 1 3  b' . ’ c i i n
I.'O 1 S' 1 s  L a i L_  1 tr ;- !  a t i ' . • n - r l  :
' :". '2' . i  i  I 1 n  i  5 h _ i  L e i  a L i o i e i l o X :
Oi : ' 2 1 j star L _ i  t e r  a t i  o n =  1 :
i : ": ' 22 i _  f i n  i  s h  _ i  t o i  a  I: i o i  ,= I l o ' I :
' . ' 0 2 3  e n d ;
0 0 2 4  e l s e
0 0 2 5  b e g i n
0 0 2 6  i . s t a r t _ i  t e r  a  t  i  o n  = 1  :
0 0 2 7  i f i n i  s h  i  t e i  a L i o n  + T I A;  +1 ;
0 ' : ' 2 8  j  _ s t  a i -  t _ i  t e r  a  t  J i j n  = 1 :
0 0 2 9  j  _ f  1 n  i  s h  i  t e r  a t i  o n = T l A X  ;
i : " : ' 30 e n d :
0031 END:
0 0 3 2  I F  T L _  I aG-=3 1 1 l EI I
0033  fc.’EG lll
0 0 3 4  i  s L a r  L _ i  L e i  a  L i  oi  i =  1 :
OOZ'5 i _  f i n i  s h i  t o r  a  I i  o n  - f l i i i  r 1 :
0 ' . ' 3 6  j  _ E  L a r  t  _ i  t  e r  a  t  i  o n  =  1 :
I:":' 3  7 . i _ f  i n i  s h i  t e r  a t i  Q n =  I 1A <+  1 :
0 0 3 U  E N D :
0039 /EOF #



THE INCLUDED FILE: LP ARRAY.PL9

UOOt / * ELF;lll: lll IUb -IL_ rAl-i t hiUI SOI ild:F M-(M.L8r>(iR >/
( . 1 1 ) 0 2  /  « U M I U J I  I Yl  I .  I . l j l  A l .  _ I I )  f  ( . i . l l - l  ' :i .11 H . L T  t | , ' i  li  I • I ' i i  i | .- ,

O O 0  3 I f  C L . .  l o U
V O o  I  C A G l .  1 11 II 11

0 0 0 5  | ; | l . .  I l l
0 0 0 6  I  I l o c a l  j i J : l  . u i  l o c a l  i d "  * h e  c, j  r l - . - i l M

‘ • "■' ' ■O’  e l s e  i  .:  1 a i

' ■ " " ■ ' 8  1 I 1 o c  a l  i  d = 4  .  o i  1 o c a l  _ i  cl  = 3  L h o o  i  _ •( i  o i  s l i - d - l o >:

e l s e  i _ f i m

'■'' ' 1 '■' i f  l o c a l  i r M 4  . o r  l o c . a l  i d  j I h = n  j  _ s  I: a i  1 =  1
‘-"■'11 e l s e  .1 _ s  I. a ,
‘■"■’ 1 2  1 f 1 oc.  a  1 i d  =  ' l  . o r  l o o n l  1 d - I  I h o ,  i f i n i  o h  " I  l,̂ ', Y i |
‘-"■' 1 -• e  J u e  i 1 1 r 1 i
0 0  1 4  Ed I D:
O o  1 5  C h :3E 2  11 II I I
O o  1 6  BE . Ü 1 I I
O o  1 / i l l  o,T ,j I I , I
OO 1 8  ' I ( U . L  I I  h r  I,
0 "  1 9  h> ,11 11
0 ' . ' 2 0  1 _i ;  I. , . i  t o  :
o o . - 1  1 I i  O '  - - h  I ! ( , i  :

O O. . . j  I s  I ,11 1 I ;
' 7 0 -  3  ) I I  o  I s h  r I, I ■ I I :

0 0 2 4  c o d :

0 0 2 5  C m . I .  Lhc . i i
O0.-6 be U I I I
d o 2  ■" I  _ s  h a i  ■ I  =  I  :

' 7 0 4 r J  1 _ I i  o  I 5 1 , - - I  l o  X '  1 :

' ■ ' o 2 9  i s l a t  1 - 1 : 1 ;

' . " . ' 3 ' . '  I I 1 1 , 1 ' . I , =  I l n > '  :

' 70  31  e n d ;
0 0 3 2  b L D L
' . " 7  3 3  b e , ]  I 11

*7'73 4 i - ; l  r.i 1 = 1 :
0 0  3 5  X f  1 n i  s l i d  I O Ï  I I :

' . " 7  . :6  I -atcsr 1 = 1 :
0 ' . '  3  7  I I  i  n i  - s h  -  I I d  /  , I  :

. X l  < r , d :

I . I . D :

0 0 4 0  L A C E  3 m i l l
' " 7 4  I b h C i l l l
' . " . ' 42  I s i  , i  I t :
' : " 7 4 3  I  I 1 H i  i  I r - l  l i ,  ■ ' I J ;

<7 ' . ' 4  4  I s t a r  M l :'7':'45 .1 l i n e  s h - ” I I A X  '■ i :
0 0 4  6  n i l  I ;
0 0 4 /  EL SE .
0 0 4  3  D i  l i  I N
0 0 4 V  X _.'■=!a ,  1 =  1 :
< 7 ' 7 L ' 7 i  1 I  n  1 s h  -  1 1,7 X c 1 ;0051 i _ _ 5 l a ,  1 - 1 :
0 0 5 1 ’ i .  f i n i  r h  =  I I A X  i I :0053 END ;0054 /EUE

1=0:
s h = r i A X  + l  : 

1=0 : 

sh . = r i AX  :

THE INCLUDED FILE: LP VALS.PL9

0001 IF PE_TAG=1 THEN
0002 BEGIN
0'703 i f I ocal i d = 4 then /* ...........  TLH PE
Oi7<74 begin
0005 'i =0 :
OOOé) repeat
0007 .res=qet_address(O ,x nteqer < i + 1) ,0)
0<7<78 res=local_Ihs:
0O<79 . res=qet_addr ess ( i , MAX .0) :
0'7H.7 res=l ocal _top :
0 0 11 i=i+l;
0012 until i=MAX;
<7'713 end ;
0014 if local_id=3 then /«   BLH IE
0'71 5 begin
1.7016 i =0;
0'717 repeat
0018 .res=get_address <0,i,0);
01719 res=I ocal _1 hs :
0020 .res=qet_address(i ,0,0);



res=local_bot; 
i=i +1 ! 

until i=MAX; 
end;
if 1 ocal _i d= 1 then /* ........... TRH PE
begi n 

i = 1  ; 
repeat

.res=qet address(i ,MAX ,0); 
res=local .top ;
.res=qet address!MAX,i ,0); 
res=local_rhs; 
i=i+l; 

until i=MAX+l; 
end ;
if local_id=2 then /* ........... BRH PE
begin 

i = 1 ; 
repeat

.res=get_address!i ,0,0); 
res=local_bot;
.res=qet_address!MAX,i ,0); 
res=local_rhs; 
i =i +1 ; 

unti1 i =MAX + 1; 
end ;

0021 
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040  
004 1
0042
0043
0044
0045
0046
0047 END;
0048 IF  PE_TAG=4 THEN
00 49  BEGIN
00 50  i  = 1 ;
U 0 5 1  r e o e a t

' . " . ' 5 2  .1 E .. u ,  t  a i J i . l i

O O t < Z  i » s  =  l o c a l  h o t

0 ' . ' 5 4  .  t  e g :  0  =  1 a d d '

' . ' " 5 5  r e s =  1 o c  a  I  .1 h s

' . " . ' 5 cj . r  e s - a c L  n d d i

' . " 7 5  7  r  e s =  I o c  a  1 I. o p

' . " . ' I i 8 . ' o s - O ' .  I a d d '
' . " . ' 5 /  I o p  l o o  a. I I  h s

'.".'6 '.' 1 -  1 I 1 ;

' . "7 o  1 u n  f  I 1 i  II (A ' t :
' . " . ' 62  E N D :
' . " . ' 63  I E  E L  I " 0 - 2  I I I L I I  
0 " 6 4  B E G J  N 
' . " . ' 65  i f  l o c a l  i ' J
' . " . ' 6 o  

i 7 ' 7 6  7  

O'.'oB
'.".'69

s  s  ( 1 1 "  X . i  .  ' . '  '  

= s ' J . I Li X . '7 ) 

Çs < 1 . 1 :

<7'7 7i.'
0071
0072  
00 73 
00 74 
'."7 75 
'."776 
'."7 7 7 
O'.'78 
'.'"79  
i."78'.'
0081 
" " 8/_
'."78 5 
0'.'U4 
'.".'35

'86 
'.".'8 7 
<7"88
'."789
'7090 
0'791 
0092  
009 3 
'7094 
0095  
0<796 
0(79 7 
•7(798 
0099  
' . 11

<7 1 '.' 1
0 ) 0 2  END; 
0 103 7EUI #

L A G E  I LI 1 =  11 , it I . o n  • ,
b e a  1 n  j = l; 

t  p p e a I

. I e s  = g e t  _ â d i ( i  f - ; . s  ( i  .  I U'i> . '7.i 
i  es-==l  o c a  1 _ t o p  ;1=1 + 1 ; 

o n  t i l  1 =1 lA X I- I  ; 
e n d  :

C A F E  2  ' . h e n  , ’ ■+ i h s  " ,
b e u i  n  

1 =1
r  E r p e a l

. r e s  p e t  a d d i  p s s  ( ll i ' i  ( . i 
r e s  =  l o c a  1 1 h s :1 = ( I 1 :

" I ' L l  1 1 = I I " X  I ) :
' . Î I  i d  :

L A G E  3  t l i e n  /  « L I I  ni i i  x /
b e a  1 n 

1 - 1 : 
r  e u e  a  '.

• I > . s = a ( - L  a d d i  5  s ! 1 
r e . i  =  ) o c a l  l i o L :  

i  =  I  '  1 : 

u n  1 1 1  i  - 1 I h X  I 1 :

e t  I ' d ;

E L S E  /  « l h a  » ,
L ' o u i  n 

i  =  1 :
I e i ' e a  L

. r e s :  a < ? t  P ' d d i  e s s  !'7 .  i  . <7 > :
I e s =  I n c a i  1 l , s :1 = 1 ' 1 :

I ' l l  I. ) 1 i  =1 l AX I 1 : 
e n d  :



PROGRAM LISTING 6 
THE MULTIPROCESSOR OPERATING 

SYSTEM



0001
0002
0 0 0 3
0 0 0 4
0 0 0 5
0 0 0 6
0 0 0 7
0 0 0 8
0 0 0 90010 001 1 0012 
0 0 1  3  
0 0 1  4
0 0 1 50016
0 0 1 7
0 0 1 80019
0020 
0021 
0022
0 0 2 3
0 0 2 4
0 0 2 5  
0 ( 7 2 6  
0 0 2 7  
0 0 2 3
0 0 2 9
0 0 3 0
0 0 3 1
0 0 3 2  
( 7 0 3 3  
0 0 3 4  
0 ( 7 3 5  
0 ( 7 3 6
0 0 3 7
0 0 3 8
0 0 3 9  
0 0 4 ( 7  
0 0 4  1
0 0 4 2
0 0 4 3
0 0 4 4
0 0 4 5
0 0 4 6
0 0 4 7
0 0 4 8
0 0 4 9
0 0 5 0
0 0 5 1
0 0 5 2
0 0 5 3
0 0 5 4
0 0 5 5
0 0 5 6
0 0 5 7
0 0 5 8
0 0 5 9
0 0 6 0  
0 0 6 1  
0 0 6 2
0 0 6 3
0 0 6 4
0 0 6 5
0 0 6 6
0 0 6 7
0 0 6 8
0 0 6 9
0 0 7 0
0 0 7 1
0 0 7 2
0 0 7 3
0 0 7 4
0 0 7 5
0 0 7 6
0 0 7 7
0 0 7 8
0 0 7 9
0 0 8 0  
0 0 8 1  
0 0 8 2
0 0 8 3
0 0 8 4
0 0 8 5
0 0 8 6
0 0 8 7
0 0 8 8  
0 0 8 9  
0 0 9 ( 7

/ *  P A R A L L E L  L O A D E R  * /

/ *  R OM  V E R S I O N  * /

/* l o a d e r  v e r s i o n  7  A P R  8 7  * /

C O N S T A N T  R A M _ B A S E  
N O R T H  
E A S T  
S O U T H  
W E S T

4 0 0 ( 7 ( 7 ,  
4 6 0 0 0 ,  
4 7 ( 7 0 0 ,  
4 8 ( 7 0 0 ,  
4 9 0 0 ( 7  ;

AT 4EF00: INTEGER JP.Wl:
BYT E CKSUM,ECHO.TEST 1,TES 72.

VALUE4 , VALUES , 1., R , . RAt I. . SM:
INTEGER INTERRUPT_VECTOR: REAL tr h , br Ti . b 1 h , 11 h :

BYTE qlobal_halt_f1ag:
INTEGER MAX; REAL .arrav: BYTE DA IA_TYPE,1oca1_id,pe_tag :
BYTE prob1em_type_f1ag:
INTEGER SWI_VECTOR;

AT 420(70: BYTE TESTER;
/* WEST BLOCK PIGEON HOLES */
AT 49FF0: IN TEGER SI ZE_OT-_DA I A_FRUM _WESI . DA I A_PO 1N TER _FR0M_WE3T :

BYTE MESSAGE_FROI-l_WEST ,
TO_FROM_WEST,
PROM_FROn_WESr,
INTERRUPT_IU_FRUM_WEST:

INTEGER SlZE_Of- _DATA .TO.WEBT,
DAIA J  O INTER _T 0_WEST:

BYTE MESSAGE_TO_WESI,
TO_TO .WEST,
FROM..fo_WEST,
INTERRUPT_ID_T0_WES1;

/* EAST BLOCK PIGEON HOLES */
AT 47FF0: INTEGER S 1ZE_OF_DATA_T0_EASI,

DATA_POINTER_TO_EAST:
BYTE MESSAGE_TO_EAST,

TO_TO_EAST,
FROM_TO_EAST,
INTERRUPT_1D_T0_EAST:

INTEGER SIZE_OF_DATA_PROM_EASI,
DATA_POINTER_FROM_EAST:

BYTE MESSAGE_FROM_EAST,
TO_FROM_EAST,
FROM_FROM_EAST.
INTERRUPT_1D_FROM_EAS I;

AT 4AÛÜ0: BYTE RES_N, RES_E, RES_S, RES_W,
IRQ_N, IRQ_E, IRQ_S, IRQ_W;

AT 4FPF4: BYTE ID;
INCLUDE 1.TRUFALSE.DEF;
include 1.status6.def;
/* the position of get address to be loaded *■/
ORIGIN 4C000;
/* ghost procedure to give correct junips and call values */
procedure get_address( integer i,j,L ): real .address;

/* dummy */
/ *  »/
/* «/

endproc .address;
origin 4 f 3(70;
PROCEDURE send_irq_east;

IRQ_E=4FF;
ENDPROC;
PROCEDURE send_i r q_(west ;

IRQ_W=4FF;
ENDPROC;
PROCEDURE enable_interrupts;

CCR = CCR AND 4EF;
ENDPROC;
PROCEDURE disab 1e_interrupts;

CCR = CCR OR 410;
ENDPROC;
PROCEDURE synchronize;

GEN 413;
ENDPROC;
PROCEDURE initialise;

/* processor has an identitv ID »/



0 0 9 1
0 0 9 2
0 0 9 3
0 0 9 4
0 0 9 5
0 0 9 6
0 0 9 7
0 0 9 8
0 0 9 9
0 10 0
0  I o  1 
0 1 0 2
0 1 0 3
0 1 0 4
0 1 05  0106
0107
0 1 0 8  
0 1 0 9  
01 10 01 1 1 
0 1 1 2 
0 1  1.3 
0 1  1 4  
0 1 1 5
0 t l vO
0 1  1 7 
0 1  1 8  
" 1 1 9  01 20 0121 
" I  2 2

I 2 3
0 1 2 4

0125  
' . ' 1 2 6

0 1 2 7
0 1 2 8
0 1 2 9
0 1 3 0  
01 31
0 1 3 2
0 1 3 3
0134
0 1 3 5
0 1 3 6
0 1 3 7
0 1 3 8
0 1 3 9
0 1 4 0
0 1 4 1
0 1 4 2
0 1 4 3
0 1 4 4
0 1 4 5
0 1 4 6
0 1 4 7
0 1 4 8
0 1 4 9
0 1 5 0
0 1 5 1
0 1 5 2
0 1 5 3
0 1 5 4
0 1 5 5
0 1 5 6
0157
0 158
0 1 5 9
0 1 6 0  
0 161 
0 1 6 2
0 1 6 3
0 1 6 4
0165
0 1 6 6  
0 1 6 7
0  1 6 8  
0 1 6 9
0 1 7 0  
0 1 7 1  
01 72 
0 1 7 3  
01 74 
'.'175 
0 1 76 
(.'17 7
0  l 7 8
0 1  7 9  
0 1  8 0

7* remember 1 a in am name nul. a numbei ' »,
/* enable interrupts */ 
gl obal _bal t f 1 ag=f ALSL: 
enable_interrupts;

ENDPROC;
PROCEDURE reset_it q_fi um_east:

RES_E=0;
ENDPRUC;
PRÜCEI'IJIvt r f.-se L _i r ( J  _i r I'll' m.'ul:

RES_W=(.';
ENDPROC:
PRÜCEULUvE r esf't_othf.-i _irc)T-:

REB_N=0;
RES_G=0;
RES_E=0;
RES_W=0;

ENDPRUC:

P P i  I C E D U R C  pass _pr' c |: e L _f 2w : 
/* copv commencinn now: 
I N r E R R U P T _ I D _ T 0 _ W E 3 T  =  

F R U N _ r u _ W E S r  

10 J O  . Wl  S  I 
l l t S S A U E . i n  . W t S I  

D A  l A  J  U I N  L R .  I O  . W E O I  

S I Z E  U P  D H l A 2 l U _ W E S T  

E N l ' P R U C :

P R O C E P U l l G  pass p a d  el. w2e:
/ « C"|.'V L u m m w i  I': I n o  n o w  : 
I N I t . l  I ' U I  I _ I L ' _ I U . . E A S r  =  FROI-1., IO_EASr TO_rO_EAST MESSAGE_rO_.EAST DATAJOINI ER_10_EAST = SI ZE_OF_C'A r A_TO_EABT = ENDPROC;

II I •II N:

I N N  R R U F  I l l ) _ l  I . U l l  F  A S  I : 

I- R O I  i _ r P : i j l l .  E .,31 :

1 0  !  I I I I I  I "  : I :

I l b D u n I  :l.. I I O l  i I , , N  :

D A  I A  I U  I 11 i I !• I I I "  I I I : T;  

S I Z E  01 DA  I I I  M U J I I  b i F ' . l

Nil III 01 I 1 P I  I III 1.01 .' I : 
PROO_FRI.IN_WI.SI : 
ll.l_l I.UII .En. I : 
tlESSF.OE I l-.l.'l I WE J I ;
DA I A. I I N N  ILL .1 R U N  .WES 1; 
S I Z E  Ul D a I a  'f ROI i W E S  1

PROC E DURE r e s e t _p ac 1. e t _e a s t :
INrERRUPT_ID_FRUM_EASr = FALSE : 
I eset_i rq_Prom_east:

ENDPRUC;
PROCEDURE reset_pad:et_weat:

INTERRUPI_ID_FROri_WEST = Pf.LSE: 
reset_i rq_f r o m w e s t ;

ENDPROC;
PROCEDURE pass_pacl et east ;

7* pass pad:et w2e *7 
pass_pacb et _w2e;
7* r eset original p a d  et */

/* send irq east with messa.qe ' 
send _i rq_eas t :

ENDPRUC;
PROCEDURE INCH: BYTE TES 12: 

TEST2=SM;
.SM=.SN+1;

ENDPROC BYTE IEST2:
PROCEDURE packet_east ( B Y TE  MESSAGE _TU..yH ID : IN IE G L I .  DA 1 f i  _ P 0 1N lE R  .

DA1h _S IZE  )
r O _ E A 3 r  = H.i.iF:

= ID;
= MAS 1ER;

MESSAGE_rO_&EMD;
D A fA _ P 0 IN 1 E R ;
D A T A _ S IZ E ;

1NIERRUPT_ID 
FR0M_10_EA31 
TU_rO_EAST 
MESSAGE_rO_EAST 
Dh TA_,P0IN7ER_T0_EAST 
SI ZE_OF_DAT A..TO_EASI 

ENDPROC:
PROCEDURE pad.et_west( BYTE MESSAGE_I0_SEN1): I IN EOT R DnlAJ OINILR.

DAlA_SIZE )
TRUE;
MASlER:
ID;
MESSAGE_TU,.SEND:
DATA_POINrËR:
DArA_SIZE:

INIERRLIP T_ID_.TO_WEST 
P R O M _ T O _ W E S T ~  
T 0 _ T 0 _ W E 3 T  
M E S S A G E , I 0 _ W E S T  
D A T A _ P O r M I E R _ T O _ W E S I  
S I Z E J J F _ D A I A _ T O _ W E S T  

EN D P R U C ;

p r o c e d u r e  d ( . i m p  :  i n t e g e r  c o n i p a c t  ( ( : ' )  :  b v t e  e l  e m e n t  _ p o s  .  e l  f e i n e n t  _ t  v p e :

r e a l  .  1 o c ' _ o P _ d a t  a  p a c k e t  _ p o s  :

i  n t e g e r  i  _ s t a r t ,  i  f  i n i  s h  ,  j  s t a r t  ,  J  _ . f  i n i  s t i ,  i  ,  ) ,  i  n i  t  1 u r .  .  d a  t  a  _ s )  z  e  :

i n t e g e r  b 1 o d  _ c o u n t , k , k  s t a r t , k _ f  i n i  s h ;  ,



i j  1 8 1  e l ( - ( i M - i i t  a g  ;

0 1 8 ^  631 ep i t i e r i  L _ _ t  y  p e - 1 o c a  I  _ i  d  ;

0 1 8 3  i ( . i  t  _ l o .  - 1 - l ! i .  .1:

V i a 4  / »  f - i  I . I U . M I  j  U J - 4  f. f  r a m

0 1 8 3  / *  E L U  11. 111

0 1 8 6  I I  E L L I I L I J I

V 1 8 7  E A S E  1 i l l l i M

J i l l I I . u :  r E o c E S s u R  * /  

I il- E>LUl.AL_ID FKUn SÜURLE 1 RUCE880R » /
r ua

V 1 8 8 DLL.  I  N
0 1 8 9 i  ( a ]  6 , i ,er,  L _ t  - p e = l . o r e l e n i 6 = n t _ t v p 6 3 = 2 t h e n i _ s t a r t = 1
0 1 9 0  , e l  s e i  _ s t 6 3 r  t = 0 :
V 1 9  1 1 f e l  , ' i i ier,  t _. t  y p e  =  4 . o r e  1 e n , e n  t  _ t  v p e = 3 t h o n I _ f 1 n i  s h - N A X
V I  9 2 e  I sr? 1 _ <  i n i  5 l i = N A X  + 1
V 1 9 3 1 1 e  I 6' i i ien t _ t  y f . e = 4 L' l  e i i i t  n  t _ t  / p e  =  t t h e n i _ s t a r  t = l
0 1 9 4 e l  563 j _ s t a r t = v :
0 1 9 5 i I e  1 > i i i en 1 _ t  V p E  .' =  4 e 1 6. ti .ei  1L _ t  y p e =  1 t t i e i  1 i _ f 1 n i s h = H A X  + 1
0  1 9 6 e l  s e _ i _ f  i  n i  s h = N A X  ;
O l  7/ -  f . l l O :
0 1  ?a L A 3 E  2  I H E N  
V l ' v 9  OL I N N
V20 ' . >  i f  e  1 e , nwr ,L  Ly  n e
0 2 0 1  1., 3 . L  4 t h e n
L ' l ' . ' Z  b « f i  1 n
' . i2' . i 3 1 s t a r  L - O :
L ' 2 ' . ' 4  1 _ (  i  111 s h  =116-11 ;

O l ' . i j  ) _ 5 t a r t = l ;
0 2 v 6  i _ f  i  I I I  a h - - |  1AX <• 1 :

’  , 1 1 , 1 :

' U '  ' 8  0 0 . 4  3  I I I ,  11

O- ' . i ' i ’ b e g i n
0 2  1 V  i  _ s  1; a r  t  =  1 ;
0 2 1  1 i  U n i  s l , = H A <  U  ;
0 2  1 2  . i _ s t a i  t  “ 0 ;
0 2 1 3  j _ f  i n i s h T - M A X ;
< . ' 2 14  e n d  ;
0 2 1 5  E L S E
0 2 1 6  b e g i n
0 2 1  ’  I  e t a r  t - 1 ;
0 2 1 8  i  _ f  i  n i  s h = l  l AX t -1 ;
0 2 1 7  ) _ s t a r t = l ;
0 2 2 0  j _ f i n i s h = H A X f l ;
0 2 2 1  e n d :
0 2 2 2  END;
0 2 2 3  C A S E  3  H i r . H
0 2 2 4  B E G I N
0 2 2 5  i  s t a r  t  =  l :
0 2 2 6  i__ 1 i n  I s h = N A  < 1 1 :
0 2 2 7  i _ s t a r t = l :
0 2 2 8  1 1 i n i  si  1=173X i 1 :
0 2 2 ?  E N D : ”
0 2 3 0  E L S E
0 2 3 1  D I U N I
0 2 3 2  i _ s L a t t = l ;
0 2 3 3  1 _1  i n i  s l ,  =  173X +  l  :
L ' 2 3 4  t _ s h a i ' t  =  l :
0 2 3 5  j  i n i  s l i = N A X i  1 :
0 2 3 6  E N D :
0 2 3 7  i t  p r o b l  e i n _ t  v‘ p6 ’ _ f  1 a q  =  l  t h e n
0 2 3 8  b e g i n
0 2 3 9  /* N a a i e r _ S t o l  e =  » /
0 2 4 0  k _ s t a r t = 0 ;
0 2 4 1  k _ f i n i  s h = 2 :
0 2 4 2  e n d ;
0 2 4 3  e l s e
0 2 4 4  b e g i n
0 2 4 5  /* d e f a u l t  L a p l a c e  */
0 2 4 6  k _ s t a r t = i . i ;
0 2 4 7  k _  f  i i i i s t i = l  ;
0 2 4 8  e n d  ;
0 2 4 ?  ccr-dcr ai 4 1 r i :
0 2 5 v  l..= k „ s l a i  t :
0 2 5 1  r e p e a t
0 2 5 2  b l o c  1 _ c o u i i t = 0 :
0 2 5 3  .  p a c k e t  _ p c ) S  =  i  n i  t  1 o c  :
0 2 5 4  i = i _ s L a i  t  :
0 2 5 5  r e p e a t
0 2 5 6  s t a r t :
0 2 5 7  r e p i  a t
0 2 5 8  . 1 O'. _ v l  d,:i t  a = u ‘ L _.actdi  < a r - ■'1 . 1 , I , :
0 2 5 9  p a , . I e  I j j o j  U o c  cV . . . d a l  -i :
0 2 6 V  .  p a r :  1.6: t _ | . ' o s  -  . p a c k e t  . j ' v s  * 4  ;

0 2 6 1  b l o c !  _ c c j i i n t = b l , - > , i l .  i i c ' i . i n t  I 1 ;
0 2 6 2  i f  b l  u c - k _ c c u n t  =  4 ' . i ‘,> . o i  i r , =  ( i f i n  i s t i  U  r ( ,i _ f  i n i  = h  -  1 ) t h e n
0 2 6  3 b e g i n
0 2 6 4  p a c k ,  t  e a s t  ( b U N t  I N N  , 4 t i 8 0 ' . i , c o n i p a c  t  ) ;
0 2 6 5  s e i i d _ i  r  q _ e a s t  ;
0 2 6 6  g e n  4 1 3 ;  / »  w a i t  f o r  i r g  a c k n o w l e d g e
0 2 6 7  i  n  t e r  f Lip t  _ i  d _ f  r o i n _ e a s t  =  f  a  1 s e  ; / »  r e s e t  c a u s e  » /
0 2 6 0  I e s e t  _ i  r g „ (  f a i n _ e a s t  : / »  r e s e t  c a u s e  r /
0 2 6 9  b  1 o c k  _ c o u n  t = 0 ; / , ♦  r  e _ i  n  i  t  i  a  1 i  s e  c o u n t  f o r  n e x t  b l o c k ;  i f  a n ,
0 2  7 0  . p a c  l e t  _ p o B = i  n  i  t  _ 1  cji; ; 7 »  r e _ i  n  i t  i  a l  i  s e  t h i s  a l s o



0 2 7 1  e n d ;
0 2 7 2
0 2  7 3  u n t i l  j  =  j _ f i n i s h ;
0 2 7 4  1 - 1  t -1;
0 2  7 5  u n t i l  i = i _ , t i n i s h !
0 2 / 6  1 = 1  t -1;
0 2 7 7  u n t i l  1 = 1._ I i n  i  5 h  ;
0 2 7 8  c r r = c i : i  a n d  l e t :
0 2  7 9  e n d p i o c ;
0 2 8 0
0 . 1 3 1  
0 2 8 2  
0 2 3  3
0 2 8 4  r i c ü C r i D I J I  ï .  s t o p :  i n t e a e i  t e s c t :
0 2 8 3  r e s e t  -= I t  o o " :
t j l i . l . s  p j i ' t p  I e - K t :
0  2 8 /  E N I j f - ' K O L ;
0 2 8 0
0 2 8 9  K R U L . E D H K L  p „  a s . 1 o a d  _ we e ,  t : b y t e  - S i l J . .  . 5 l l . . l ' l ;
0 2 9 0  /* c o p y  t h e  p t o o r a n i  a c t  o s s  f i r s t  * 7
0 2 9 1  . S t i  E = 1  7 ' : ' " 0 :
0 2 9 2  . 5 1 1_ W: :4 9 0 0 0 :
0 2 9  3  R E f  Ê «  f
0  2 9 4  ' 8 i  I . . W = 3 t l _ E :
0 2 3  5  . S i i  _ E = . SI  I J :  t 1 ;
0 2 9 . ' 3  . 3 t l _ W = .  8 t  i _ U  U  ;
0 2 9 7  U t J I l L  . G H . _ t - l  7 0 3 0 ;
0 2 9 8  /  tt c c j p v  t t i e  p a c k  e t  n o w
0 2 9 7  p a  = = _ p a c l  B t _ e 2 w :
0 3 0 t <  /* r e s e t  t h e  o t  i a i n a l  p a c k e t  *■,'

t ' 3 0  1 t e s e t  p . a c  1 e l  _ e a s t  ;
3 0 2  / *  s e n d  i r c) w e s t  w i t h  m e s s a g e  » /

0 3 0 3  s e n d  _ i  I c ) _ w € - s t :
0 3 0 4  E N U R R U L ;
0 3 0 5
0 3 t > 6  F R O b l l b l  I I . I  p c - ' - s  t e c  I n  I w e d :  
o 3 o 7  / * p a s  1 t h e  I u i  I p a c l  f .4 » /
0  3 o U  p i , 5 S_ ( . i - .  c  1 e L _ f e ' 2 w :
U 3 o 9  / >  r e s r - t  t h t f  o r  i g i n a t  p a c k e t  «
O 3 1 r  e y , e t  l  a c  I e  I. _ e a s  t :
«.>311 /  « s e n d  I I  q  w e s t  w i  t t i  m e s s a g e  * /
0 3 1 2  s e n d  i r q  w e s t :
0  3 1 3  E N b l R i J f :
O 3 1 4
0 3 1  5  R R f  I C E lyl.it,E p a s s  s t o p  _ p r  o q r , - n i _ w e s t  ;
0 3 1 6  / * -  ......................................................................................  T U E E  k i f V i r t E I I  « /
0 3 1 7  E N b R K U L ;
0 3 1 8
0 3 1 9  p r  o c e d u i  e  h a l t :
0 3 2 0  / *  s e t  t h e  g l o b a l  i n t e i r u p t  -t 1 a q , s o  t t i a t  i f  i r q  e d  a g a i n  * /
0 3 2 1  / *  i f  i t  i s  n o t  t h e  c o n t i n u e  r u n  t h e n  i t  w i l l  r e m a i n  h a l t e d  » /
0 3 2 2  g l o b a l  _ h a l  t _ t  l a a = I R t i E ;
0 3 2 3  / «  s e n d  i m s s s a g e  t o  I It- t o  s a y  i t s  h a l t e d  * /
0 3 2 4  p a d  « J t _ e a s t  ( I K O C E S S U R  _ H A L  T E D  , N U L L  ,  l - I U L L )  ;
0 3 2 5  s e n d _ i r q _ e a s t ;
0 3 2 6  e n d p r o c :
0 3 2  7
0 3 2 8
0 3 2 9  p r o c e d u r e  r e s u m e ;
0 3 3 0  / »  s e t  t h e  u l o h a l  h a l t  f l a n  s o  t t i a t  o x  e c u  t  i  o n  c a n  c u n t  i  n u e  * /
0 3 3 1  /  r- a f t e r  t t i e  i n t e r r  i .ip t  h a s  b e e n  s e r v i c e d ,  < b v  t h i s  r o u t i n e ) * /
0 3 3 2  g l o b a l  _ t , a l  t .  f l a g = l  A L S E :
0 3 3 3  / *  s e n d  t h e  I If- a  m e s s a g e  t o  s a  v  s t a r t i n g  a g a i n  <■,'
0 3 3 4  p a c k e t _ t a s t  0 : 0 1 1 1  I N l  l E U R U N  , N U L L  , I I L I LL  ) :
0 3 3 5  S ' = n d _ i  r  g  e a s t  :
0 3  3 6  e n d p r u c :
0 3 3 7
0 3 3 8  
0 3  3 9
0 3 4 0  p r o c e d u r e  p a s s _ d u i r . p _ d a t a _ E a s t :  r e a l  . I  o c _ C ' ^  _ d a t a  , . d r  s t _ o f _ d a t a :
0 3 4 1  i n t e g e r  i , i _ e n d ;
0 3 4 2  . 1 C'C _ u t  r . t r t a  =  ( 7 8 0 0 ;
0 3 4 3  . d e s t _ a f _ d a t a - d  7 8 0 0 :  '
0 3 4 4  i - 1  :
1. 1345 i _ e n d - 4 r ' l ;
0 3 4 6  r e ;  ' t a  I
0 3 4 /  d e s  t  _ i j  i '_ l i a  L a  =  1 n c  _o f _c. la l a  :
0 3 4 8  .  1 o r : _ o  f  _ d a t a  = .  1 o c _ o  t _ d a  L a  r 1 ;
0  3 4 ?  . d e s  L o  f d a t a - ,  i l e s t  _ o  I r i d  a  '  4  :

0  3 5 0  i = i r | ;
0 3 5 1  u n t i l  1 = 1  _ e i  i d  :
0 3 5 2  p a s s _ p a c t  e t  _ e a s t :
0 3 5 3  e n d p r u c :
0 3 5 4

0 3 5 6
0 3 5 7  P R U L E b U f t L  1141 IE A :  LU I t  V A t  I IE 1 , 1 L o G  :
o  3 5 8  E L A U = 0 :
0 3 5 9  V A L U E l  =  l N t  11;
0 3 6 0  / *  V n l . l b  H E X ?  » /



o 36 1 
0  3 6 2  
0 3 6 3  
0  3 6 4  
0  3 6 5  
0 3 6 6  
0  3 6 /  
0 3 6 3  
0  3 6 7  
0 3 7 0  
0 3  71  
0 3  7 2  
0 3 7 3  
0  3 / 4  
0 3 7 5  
0  3 7 6  
0  3 7  7 
0  3 7 3
0 3  7 9  
O 3 3 0  
0  3 8  l  

0 3 8 2  
0 3 3 3 .
0 3 8 4
0 3 8 5  

0  3 3 6  

O  3 8  7  

0  3 8 8  

' . ' 3 3 ?  

0 3 9 o  

0  3 9 1  0 392
0 3 9 3
0 3 9 4
0 3 9 5
0 3 9 60397
0 3 9 8  
0  3 9 9

04,, 1 
0 4 0 2
0  4 "  3  

o 4 " 4  

' . ' 4 ‘ >5

0 4 0 6

0 4 0 7  
0 4 o B
04 09 
0 4 1 0  
0 4 1  1 
0 4  1 2  
0 4  1 3  
0 4  1 4  
0 4 1 5  
, . i4 1 6  
0  4 I 7 
>.>4 1 8
0 4 1 9
0 4 2 0
0 4 2 1

0 4 2 2
0 4 2 3
0 4 2 4
0 4 2 5
0 4 2 6  
0 4  2 7  
0 4 2 8  
0 4  2 9
0 4 3 0
0 4 3 1

0 4 3 2
0 4 3 3  
0 4  3 4
0 4 3 5
0 4 3 6  
0 4  3 /  
0 4  3 8  
0 4  3 9  
0 4  4 0
0 4 4 1
0 4 4 2  
0 4  4 3
0 4 4 4
0 4 4 5
0 4 4 6  
0 4  4 /  
0 4 4 8
0 4 4  ?
0450

I F  V A L U E  1 O . U R  V A L U E  1 : F I M L I l  I L A G = 1  ;
1 F V A L U E  1 9  . A M D  V A L  U E  1 A  I H E U  1 L A l i =  1 ;
U  / A l . U E l  . ' V  I I I L U  V A L U E  l = V A L U t  1 - 4 - 0  7 :
I F I L A G - = I  r U E M

l . F C l U
I A L I  I I . . L m 8 I  ( I  L-:ü U R . . I I  J  U AD . . L  f l - . L i R . i l U L L O l U L L )  :
= r g e a s t  ;

F H D ;
V A L U E l = V A L U E l ~ r 3 0 ;

E N U F R U L  l o  I L  V V . L U E I ;

F R U C E l ' U R E  1/1 I L :  1.0 l E  V A L U L 2  . V A L U E  3 , C F I _ H L  A ;
V A L U E  2 =  I l  II l E X ;
V h L U E 2 =  5 1 11F I ( V A L U E 2 ,  4 ) A M D  4 F 0 :
VAL. UI : . : . = [ I I I I E i ;
L H _ I I E /  =  V A I H E ,  + V A L U L  3 :
C F : S U I I = C L  GUI  A L H  . H E X  ;

E N D I  R U i :  FO l E  L H J I L X ;

F R U E E  D U R E  D m DDR' :  I N I E U L R  WOR D ( O )  : D r l E  U U R D H 1 , W U R Ü L U  :
W U R L ' I H = B 1  H  ;
W U R D L U = L : j  I L :

E H D F R O L :  I N I  E U R  R W O R D ;

F R U L E  D U R !  L o o l / :  D r  I L F I f 11 5 H l  D . ( U H H  1 . D U U M  V :
. SI  1=1 7,. ". 'O:

L . EF I  > H
U N I  I L  b = l H L l l ;
J F 611= 9  I I  I L I I  
D E i U l H

f 1 I H 6 H L D - O R U L ;
( A L I  E 1 _ . E A S I  ( R R U ü R A I l . _ L U > - . ü E D _ Û I  . M U L E . M U L E )  :

E N D :
E L S E  
D E U  I M

I F  S U  . 1 H I L t J  L L l A D :
. Sl  l ' . S H +  1 ;
C E 5 I  H l - ' j ;
L U U N I - D  n  E : 
r u u H I - = L U U U r  
. R o l l ^ B A D D R :
R E I  E A  r

( U I J I 4 I  L U U H I  1 :
I l  r C I M U E  i.i u n . H
D E l i l H

R AI  I = D 1  l E ;
. R A H =  . R A 11+ 1 :

E H D :  
u n i  I L  L Ü U H 1 = 0 ;
D UHI H- - - - E1  I F :
C l  5 U F E E L . S U M  *■ 1 ;
I F  L I . 8 U I E 0  H  I L H  
D E U I N

l MCI  E I _ E A S  I ( Ù U  r _ E U D E J j l  , H U L L . H U L L )  :
E H D ;
E L 8 L
D E U I H

F a LI  E T . E A U l  ( I  R O U R A H J  C A D  . . E F : RÜR . H U L L , M U L L  ) :
E H D :

E N D :
S L - . H D _ 1 R 0 . _ E A 8  I :

E N D F R U L :

F R U L E D U F . E  r u n :  I H I L U L R  . 3  I A R  T _ A D D R E 3 S  :
. 3 1  A R T  . . A D D R E S S  =  4  7 F F  A ;
/ *

y e s  i  L r i ' j w  t l i i s  i s  U e  f i  r , e d  a s  b e i n g  t l i e  a d d r e s s  
o f  t h e  d a t a ,  b u t  i n  t ) i f ? r u n  p r o c e d u r e  i t  c o n t a i n s  
t h e  a d d r e s s  f r o m  w h i c h  t h e  p r  o g r  a m  s t i o u l d  b e  r u n*/

p a c l : e t _ . e a s t  ( F R U o R f  iH _ R U H H  I H U . . U I  . H U L L , H U L L  ) ; 
r e s e t  i  r g _ 1 1 o m . e a s t ;
S CI  i d _ i  I g _ e a s t  ;
J U I  IF' S  I h R  r _ A D D R E S G ;

E H f / R R U C :

pr ocedui e i t g 2 :
I f  I H  I E F . T H F  T _ I D _ F  R U H _ E A S  I =  T R U E  t h e n  

b e u 1 11
r e s e t  _ i  t , ; . . f  r o m _ e a s L  ;
1 I 1 |: , 1 ) 1  RUI  I .  E A S  I t h e n  
b o o  i n

i  I I I I : 8 R A H L  .  r RUI  I _ E A S  T = L U A D  . R R U U I 4 4  I 
t h e n  l o a d :  

e l  s e
i f  H L S D r f U L  . F  f iUI  I J  A S  I = R U H _ f  I U L 4 ù 4  I t h e n  r u n :  
e l  ' se
i f  I I L S  S A G E  F R U t I  E A S  I = R U H  L a F L A C E  t h e n



0 4 5 1
0 4 5 2
0 4 5 3
0 4 5 4
0 4 5 5  
0 4 5 o
0 4 5  7 
0 4 5 0
0 4 5 9
0 4 6 0
0 4 6  I 
0 4 6 2  
0  4 6 3
0 4 6 4
0 4 6 5  04 66 
0 4 6 /
0468
0 4 6 9
0 4 7 0  
0 4  7 1 
0 4  7 2  
0 4  7 3  
0 4  7 4  
0  4 7 5
0  4 7 6  
0 4  7 7  
0 4  7 8  
0 4  7 9  
0 4 3 0
0481
0 4 8 2  
0 4 3  3
0 4 8 4
0 4 8 5
0 4 8 6
0 4 8  7 
0 4 8 0
0 4 8 9

1 '19 1 
04 ,2
0 4 9  3 
0 4 9  4 
0 4 9 5
0 4  9 6  
0 4 9  7
0 4 9 0
0 4 9 9
0 5 0 0
0 5 0 1
0 5 0 2  
0 5 ' : ' 3
0 5 0 4
0 5 0 5
0 5 0 6
0 5 0 7
0 5 0 8
0 5 0 9
0 5 1 0  
0 5 1  1 
0 5 1 205 13
0 5 1 4
0 5 1 5
0 5 1 6
0 5 1  7
0 5 1 8
0 5 1 9
0 5 2 0
0 5 2 1
0 5 2 2
0 5 2  3
0 5 2 4
0 5 2 5
0 5 2 6

0 5 2 8
0 5 2 9
0 5 3 0
0 5 3 1
0 5 3 2
0 5 3 3  
0 5  3 4  
0 5  3 5  
0 5 3 6  
0 5  3 7

t  . p e l  1 a g  =  0 ;

, OR  
. O R

beg I n
p*r ob 1 em 
r un ; 

end ; 
el so
1 f llb5bMÜE_rf'(jll_f. A5l:4:IJM jas LI,e n  
begi n

p, obJ eiii_kvpe_( 1 a']=l : 
r  u n  ; 

en'4 ; 
el so
If flFGSnôL ROri J  051=1 R08RAI1_S7Uf rED_Df 
t h e n  ' S t o p :  
el 50
If t If. _F RUI I J-:05 f =DUI If _ DA f A
then dump; 
else
1 f I ILSBObt _r RUt l_ro5 1 =1 IhLT _r RUt,essor
then ha 1t : 
el se

1 I H E S 6 0 8 E J - R U I I ,  E A 5 t = ( . 6 l , h ,  _I 1| I  
then resLi'Tie: 
u  I s e  
beg I n

p  — L I  e t  e / ' s t  ( I I l.if l' .OI 1 1  Lu ' b  f  R R t " -  
s e n ' l _  1 r g  e a s t  : 

eni) :
end : 

el su 
beg 1 n
if Ill.SSMt'f.J RUi I E05l=L(l7iD._f RLlGROII 

|-IE83AUElf RUI LEOS I =RUU _LAPLACE 
riE&8HÜL_f F UII.EAS l=RUM_NS 

then pass 1oad_west: 
e l s e
I f tlE53oGL_F-RLifl _E«S I-RUU_PROGRAfl .OR 

I IE8SA8E_FR0M,.EASI =S rOP.PRUGRAM . OR 
I IESSAGE_FRUM_EAS I =DUI1P_D01 A . OR 
(•IESSAUE_PR'UM_ E m S F =f IAL F _PRUEE3SOR . OR 
I IF SSAUF F ROI I _EA,81 =LORR V f iH 

then p.iss p a d  et west ; 
el -̂ u

paist et _east ( IF Al 15111 S3 I 011 ERROR _E2W. I FULL . I lULL ) : 
send _i r q_east; 

e, id : 
end :
I eset jiacl et east ; 
end : 
el se
If 111 I EFlRUI I __II'_r RUtlJJES I = IPUC
then
beui n
r eget_i, q_I i cm.wust:
i r IIES5AGE__FFUill_WL3l=GUI..CUi.'F._OI .OF

MESSAGE _FRUI I_WES r=fdiOGf- ' ,1 l_LO' iDED_OI 
I IESSa GE _FR0I llwES I =r ROOF of I 5 I 01 F ED_OI 
I IESSa 0E...FR0I-I_WE3 I =PRO,jI-:m I I_RUUI11UU%UI 
HEBSAOE_F RUI I..UES f =F RUCES'JOR J  IAL FED 
MESSAGE_F=RUt1_UlESF =00111 II IUED_RUN 

ttien pass piacket east : 
el se
i f . III SGAOf.J RUI I. WL3 I = l)iH IF I UG 
t h e n  p a s .3_(  1 u , ' i p _ i j a . t a . . e a 3 1 : 
el se 
beg I n
p a d  et_east ( I RAIIC4 I ISSIOflJ FLOR_ W2E . riULL . IIUL L ) 
send_.i rq_ eas t ; 

end : 
en' I :

el 5-a
tieain '
f est t of I 'f t _ I ( qs ;
pat: k e I. _ea s tl UI IE X PEL I ED_ 11111. Li III I . I lULL . I IFlLi. ) ; 
send_i I q_east ; 

end ;
I I ali'l'-il I " 11 L _( I an--I Rl II. tln'n s ., 11; cn i ;• t. ;

endprne:
ot i oi n 111 i.i'.i; 
pr ocedui e it g  :

call IfllERFUl r_VELIOR; 
e n d p r o c :

proceiJur e swj :
call SOI_VEL FOR; 

e n d p i  o c :

, OR
. OF

. U R

. OR



0 5 3 8
O Ü 3 9  U f v l b l H  l I u O o :
0 5 4 0  S I A C k =  U 4  I I :
0 5 4 1  F R U C t l > U f : L .  H A I M :  b v t e  . L esL ei
0 3 4 2  i n i 1 1 a l 1 s e :
0 5 4 3  . t e s t e ,  2 o o v :
0 5 4  4 111 I t . Ff - :LIP I ...Vl-.t, I U f v - .  i  r , | 2 ;
0 5 4 5  K E l  L A  I
0546  L o a t e ,  -  1 5 5 :
0 5  17 F U R l  V P R ;
, : - 5 4 S  P N I j F R U C :
' . ' 5 4  Y  / EFj F

O O O l  / »  L O U S  I A N  15  F O R  S I  A l  115 R E Ü I S l E f - ;  I N  S N A R E D  t i r i l i i f . ' r  ».

I:'003 GUI IS 1 AN 1 HAS 1ER 1 ,
0':".'4 LOa D_PROURAM = 4'Il .
0005 1 rüi:-:raii_lüaded_üi = 1"-.
001.16 RUN_F ROijRAM - J ' 3 ,
i.iO'.»7 F(.ÜURAN_RUI IN lNi ;_UI 4 04 .
0':'0u SNJF _F RÜÜRa N = 4"5.
l/OOY PR OOF AI l_5l ÜPF EDJJI = 4 0.6.
OO 1 GÜI_CÜDE_ÜI. = ro7.
OO I 1 f RUGI. » 'N _L U AD _ERRUI lo'.i.
00 12 UMEXPECÎ ED_lN1ERRUI 1 = 4 ' ,
I.I'.I 1 3 1 RANSI11 S31 UN ERROIV E2W .1 OA .
OO I I 1 F ill l'.:l 11 S3 l 011 F RROR_ U . l " D ,
'.".115 DONF__l'rilA z. 4 '.II. .
00 1 6 DUl lF INlî - 1"D.
001 ; UAL. 1 _PROLESSi'R - r-.'E ,
00 13 PRÜCESSÜRJIALI ED =: 4  o r  .
0 0 1 9 EON 1 INUr.DJVUN = :  1 ;i,
0*.i20 XARRr_UN = 4 1 1 .
0021 r u n _l a r l a e e 4 1 2 .
0022 RUN_NS - 41 4  ,
0023 NULL = 4001"



THE MULTIPROCESSOR OPERATING SYSTEM

THE FOLLOWING GIVES A BRIEF DESCRIPTION OF THE FUNCTION OF THE MAIN 
PROCEDURES OF THE MULTIPROCESSOR OPERATING SYSTEM:

PROCEDURE INPUTS ACTION

send irq east sends an irq request to the 
east

send irq west sends an irq request to the 
west

enable interrupts enables interrupts

disable interrupts disable interrupts

synchronize onCof two things:
(a) if interrupts are enabled 
executing this instruction 
waits for an interrupt to 
arrive and then services that 
interrupt and then continues 
with execution of the next 
instruction
(b) if interrupts are 
disabled executing this 
instruction waits for an 
interrupt to arrive and then



continues with execution of 
the next instruction

initialise enables interrupts

reset irq from east resets an irq from the east

reset irq from west resets an irq from the west

reset other irqs is an interrupt occurs from 
an unexpected direction the 
unexpected irq is reset by 
this call

pass packet e2w copies a packet at the top of 
memory in a direction east to 
west

pass packet w2e copies a packet at the top of 
memory in a direction west to 
east

reset packet east resets the irq flag and the 
irq from the direction east

reset packet west resets the irq flag and the 
irq from the direction west

INCH obtains a character from a sm 
location



passpacketeast sends packet received from 
west to the east, with 
associated interrupt
handshakes

packet east message,dp,^places a packet 
of information in east sm 
block pigeon holes. the 
message to pass is message, 
dp and ds are data pointer 
and data size pointers (null 
if not needed)

pass load west copies motorola format packet 
of program at the base of 
east block sm to a 
corresponding section of west 
sm, and sends it on with 
associated interrupt
handshakes

pass run program west pass the message to run from 
east sm to west sm with 
associated interrupt
handshakes

INHEX checks for a valid hex 
character after call to INCH, 
reporting any error to



master, then converts it to 
numeric form

BITE performs two calls to INHEX 
and outputs a hex byte

BADDR performs two calls to BITE to 
obtain a valid hex address

LOAD

run

loads from sm a packet of 
program in motorola format, 
reporting correct input, 
correct termination of load 
and any errors to master

reads a start address from sm 
and jumps to it

irq checks source of interrupt, 
either: loads a program; runs 
a program or passes on global 
communication as a result of 
getting an interrupt

main initialises and synchronizes



PROGRAM LISTING 7 
THE OVERSEER



DÛV 1

U0O.3
00i.)4
<;>uo5

U007oi.i<:»8
I.I'.IÛY
00 lu
o u  1 1
Ou  1 2 
U U  1 3

0 0 1  4  

U' . '  1 
U U  1 b  

U O  1 7  

«;<u 18
U 0 1 9  
U Û 2 0  
O u  2 1  
0022
0023
0024
0 0 2 5  
0 o 2 d >
0 0 2  7 
0 0 2 8
0029
0030
0031
0032
0033
0034
0035
0036
0037
0 0 3 8  
O u 3 7  
O u  40 
Ou 4  1 
0 0 4 2  
0 0 4  3  
Ou  4 4
0045
0 0 4 6
0 0 4 7
0 0 4 8
0049  
005U
0 0 5 1
0052
0053
0054
0055
0056
0057
0 0 5 8
0059
0060  
006 1 
0062
0063
0064
0 0 6 5
0066  
006 7 
0068  
0069  
00 70 
OU 7 1 
00 72
0073
0074
0075  
00 76 
00 77 
00/8 
0079  
008u  
O u 8 1 
0082
0083
0084
0 0 8 5  
O'ÔBa
0 0 8 7
0088
0089
0090

A r 4GC14: ioLpuer Ip;

u s _ a . p 1 9 :  
s  L a  t  o  s  /  . d  e  f : 
f ( u I  a l  s u . d o i :
1 o s o b  s . i  1 h  : 
l i e  i  o .  1 i  b  ;
■f 1 e;; 2 .  1 i b  ; 
rii une ( >11. J i t i :

U . r  ‘?. î  I c o u  . 1 i  h  : 
t c a l  1 0 . 1  i l.i :

1 . a  = _.b . p l  9 ;

( i I « I n t t  : b v t  e s I ( 1 5 1 :
1 : s t  ( 1 > =  ' . : s t  ( 2 )  = f-' : '
l. : s t  ( 6 )  =  9 ;

i n c 1 o d e  

1 n c 1 u d e  

i  n c 1 u d e  

1 n c 1 u d c  

i  n c 1 u d e  

i  n e  1 u d e  

i r i c  1 I i d e  

i n c 1 u d e  

i n c l u d e  

i n c l u d e  1

p r o c e d u r  e

3 t .  ( O  l =  1 : s t ( l >  =  ' . :  s t ( 2 ) =  f-' : s l  ( 3 1 =  ' .
= t ( 5 i =

1 p = . s t :
n e t  f i l  e n a . n e  ( . f c  b l ;  

o p e n  _f o r  yii i t e ( .  f  c  b ) :
S t . T _ 8 1 f l A R r  ( . F C B )  ; 
f i l  e _ d u i i i p  o p t  i  o n =  k r  u e  : 

e n d p r  o c  :

p r o c e d u r e  wr i t e  r e a l  i i  e a l  i n p t d . i :  r e a l  f i  e d  U. O : b v  t e  a . b . c . d ;
f r  o d  =  ] n o u t  ; 
wi  i I FM . ( c b  . ;
wi  i  t e ( .  f c b . b i  : 
w r  i  t  e  ( .  f  c  b  . L ) ; 
w r  i  t e ( . f c b , d ) ; 

e n d p r o c :/ *          * •'
p r o c e d u r "  e  s e  t _ s n i _ f . i o i n  t e r  _ t o _ d a  t  a _ ‘S t  a c  t  : i n t e o e r  w a ( 0 ) : b v t e  i n . l o ;

w o = 0 ;

1 o = p e _ n o ;

w o = s f t i  f  t  ( ( ( w o - l >  a n d  4 ô i . ' 0 3  ) .  1 2 )  ;

w o = w o  o r  4 o 8 0 0 :  

p o i n t e r "  _ v a l u e = w o :  

s i n _ D o i  l i t e r  = w o ;  

e n d p r  o c  :

/  ir ---------------------------------------------------------------- ---
i n c l u d e  1 . o s _ c . p l 9 :

pr  o c e d u r  e  p> i n en i  i 3  : L'v l  r-- t . . : 
r: =  3 5 ;  
v = 1 5 :
c l  e a r  _ m e n u ( O  ' ;
m o  v e  c u r  sr., | - u :  . y ) ; p r  i  n  t  ( " l l b t I U  
m o v e _ c u r  s o i  . v H  ' : p r i n t  ( "x =  x - 4  ;

mo  v e  _.c u r  Ei j i  ‘.a 7 . y i 3 1 ; 
m o v e _ c u r  s o r -  ( -  4  . y  * 5  .» ; 
r i i o v e  c u r  s o r -  ( x - 4 . y i - 6 )  ; 
m o v e _ c u r  s o r  (:•: - 4  , y  +  7 ) : 
m o v e  c u r  s u r  ( 7 0  . y  i 8  ) ; 

e n d p r o c ;

p l  i  n  t  i " f  u r  t h e r  p o s  
p r  i  n t  ( " f - o s i  1 1 o n  s 
pr  i  n t  ( " J u m p  t o  i c e t a r  t 
p r  i  n t ( " R e f r  e s b  s c r e e n

i  b 1 e  o p  
( t  y
( t  
( t  .

1 1 u n s  
p e  I ) ' 
f j e  J  ) ' 
p e  f  > '

pr  o c e d u r e  p _ m e n u 2 :  b y t e
X = 3 5 ;  
y = 1 5 :

c l e a r  n i e i i u  1 5 )  :
m o v e _ c u r  sor"  ( x  . y i ; pr  t  n i  ( " I  II M U "  ) :
m o v e _ c u r - 5 o r  ( x  - 1  , v  +  1 ) ; p r i n t  ( " * » . *

m o v e  c n r  s o r  ( x 7  . y i  3 )  
m o v e  c u r  s o r -  ( x - 4  . y  r - 5 )  
m o v e  c u r e  or  ( x - 4  . y + 6  ) 
r n o v e _ c u r s o r  i x - 4  . v + 7 )  
m o y e _ c u r  s o r  ( x  ""4 . y  i 8 )

» e x t r - a  c o m m a n d s  h e r  e  * /  
m o v e  c L i r  s o r  < 7 0  . y /  8 )  : 

e n d p r  o c  :
i n c l u d e  1 . o s _ d . p l 9 ;

/*   »/
i n c l u d e  1 . 1 o a d e r _ a . p 1 9 ;  

i n c l u d e  1 . o t _ f . p l 9 :

p r o c e d u r e  r e l r  e i  v e _ d a t a i b y t e  i r q o i  i g i  n )  : i n t s u e r  . d a t a _ p o s i t i o n , . s m , 1 1 ;

y :

p r  i  111  ( " I u i  t h e r  o p L i o r i S  

p r i n t  ( " H a l t  p r  ' o c e s s o r s  

p r  i  t i  t  ( " E x e c u t e  L a p l a c e  
p r i n t  ( " L o n  1 1 n ' . i e  r u n  

p r i n t  ( " b u m p  r  e s i . i l t s

: " ) ;
( t y p e  H ) " ) ;  
( t y p e  E ) " ) ;  
( t y p e  C) ; 
( t y p e  D ) " ) ;

real i iii r e a l  : b y t e  c f i  , .  s s m :
i  n  t  e g e r  i  . , i  _ p o s  , j  _ p o s  . t e m p  ,  b l  a c l : _ c o u n t  ;

p u t c h a r  ( 1 ) :
p r  i n t  ( " b A f  A  FR' Ml l  D I f v L L I l Ü I J  =  " ) ;
p u t _ h e x _ b ' v  t e  ( i  r g _ o r  i  ci i  n  ) ; 
c r  1 f  : 
c r - l f  ;
p e _ n o - = i  r q _ o r  i q i n ;
s e t _ s i i i _ p o i  l i t e r  _ t o _ d , o  a  s t a r  t  :
. s n i _ r  e a  1 = 4  f I 4 0 ;  
b l o c k  c ' j ' . i n t = 0 ;



009  I 
0092  
009  
0094  
00 /5 
0 0 9 6  
Oo9 /  
O'  I ' / n
I I I  >7 /
0  1 O'.'
0 1 o 1
0 1 02
01 '.'3 
V 104 
0 1 0 5  ■:> 106 
0 1 0 /  
0 108
0 109
0 1 1 0
0 1 1 1  
0 1 12'

1 1  3
0 1 1 4
0 1 1 5
0 1 1 6  
<:i 11  7 
0  1 1 801 19
0 1  .cO 
' . ' 1 2 1  
o 1 2_ 
0 123 

1 24 
O 1 25 
o 1 26 
0127
0 I 28 
0129
0 1 3 'j 
0 1 3 1

01330 134
0 1 3 6
0137  
'.' 138 
0139
01 4'.'
0 1 4 1
0142  
0 14 3
0144
01 45
0146

0147
0148
0149
01 50
0151
01 52
01 53  
0 1 54
0155
0156
0157
0158
0159
0160  
0161 
0162
0163
0164
0165  
0 1  66 
0167  
01 63  
0 1 6 9  
01 70 
'.11 7  1 
01 72

1 7 3 
O l  74 
O l  75 
01 76 
0 1  7 7  
01 78 
O 1 /9
o  1 8' : '

I ep( ri I

/  K ( I -■ p  I. d  i  s  k
priiiiiii I ' l l ' :  (Silt t 

I ' ill lllil I I i| I I I l.ll I - : I I LI/' 
. Ill I I'll . Ill I ' I

' I r e a l  l i f e  t i e r  e  
'c< I ) ) ' ; pr- i 111 ( "
I I I'.’i I wr i t /  I I ’ ti 1 I. ' 

i |  I I ;
b  1 o ' . t  _c u u i  I l .=4i  1 o c  t c o i n  i t  I 1 :
i t  b 1 n c  I: c u i m  t  =4/11. '  . o r  i  '  i =  i nia-:  -  1 ' < ' i im , - 1 ) t l i o o
b f n i i  n

c r  I  t :
p.r 1 n t  ( " E N D  Ot  DL U C K " ) : 
c r  1 + ;
p e _ n o = i  r p  o r  i  g i  11 :
p a c k  e  t  _ t o _ i n e m  ( t r u e  . m a s t e r - . p e _  n o  . c a r r  y _ o n  , n u l  1 . n u l  1 ) ; 
1 n  t e r r u p t  ( d  i  r e c  1 1 o n  _ o - f  _ p e _ n o  i p  e  _ n o  ) ) ;
i f  i  *  .1 . ( m a x  — 1 ) »• ( ma; :  -  1 ) t t i e n
g e o  4  1 3 :
/ *  r e s e t  | - i / w  s / w  i  r iq * /
/* w t i e r e v e r  i t  c a m e  f r o m  r e s e t  i  t  ' > /
r e s i r q ( l ) :  r e s i r q ( 2 ) ;  r  e  s i r  q ( 3 /  : r e t i r q ( 4 ) :
S t  I sni  p o i n t  e i  _ t o p :
. ss i i i  =  4 f 1 5 7  :
B = ni=-1 a l  s e ;  
b  1 o c  I . _ c o u n  t  :
s e t  s m p o i  n  t e r  _ t  o  _d a  t  a  _ s  t  a r  t  :
. s m r  e a l  = 1  f  f  4 ' j ;  

e i i d :  ■ 
e l  3 0
1 I . Siii r e a l  - t i'I 6' . '  t l i e n  
b e g  r n

. s m r e a i  =  l t t  4 ' j :
p r j  i n  t e r  _ v a l  u e = p o i  n  t e r -  v a l  u e +  1 ' . ' / i 2 ' . ' :  
s m p e u  11 t e r - = p o i  n  t e r '  _ / a l  u e ;  

e n d  ;
1 -  1 '  1 : 

u r d i i l  _ i = ma x  : 
c r  1 f  : 
i  =  i  + 1 :

L i r i t  i  1 1 = m a x  ;
c r  1 f ;
CKL F :
p r  i n t  ( " E N D  UF  
c r  1 t  ;

H \ U E E 8 8 Ü t ' S  b O l i i " )

1 f pe_Lo_load- 1 l lien e 1 ose _ I i 1 ' - . f cb ) :
p e _ t o _  1 o a d ' - - 4  . a n d  i r  q _  <ar i g  i  n  =  4  t h e n  c  1 o s e _ t  i  1 e  i . t c l :  ' ;
p e _ t o _ l u a d = - 7 . a n r j  i  r q _ o r  i  g  i  n - 9  t t i e n  c  1 o s e _ f  i  1 e '. . r c t., / :
p e _ t o  _ 1 o a d =  1 6  .  a n d  i  r q _ o r  i  n  i  i i =  1 6  t i T a n  c  l  o s e _  f  i  1 e  ( . f  c b  i ;

c c r = c c r  a n d  
e n d p r -  o c  ;/*--------
p r - o c e d u r  e  i r q : b v t e  1 (i  , p e _ n o _ s a v e  , . s s i i i :  b  y t  e  i  r q o r  i q i n :  i n t e g e r  . w r o n g  v a l

p e _ n c j _ s a  v e =q  . i e _ r i o :  
p e _ n o = l ;
. s s m = 4 t I 5 / :
/  *  s e t  s m p o i n t  e i  
s e t _ s m _ p o j  n t e r  _ t c p :
1 + s s i n = t r u e  t t i e n  i  d =  1 
e l  s e  
b e o i  n

p e _ n o = . i . :
s e t _ s m  _pi . i i  n  t e r _ t i - i p  : 
i f  s s m =  t r  u e  t t i e n  i d = 2  
e l  s e  
b e g i  n

p e _ r i o - = 3 :
s e t _ s n i _ p o i  n t e r  _ t o p  : 
i f  s s i i i = t r u e  t f i e n  i d= - - 3  
e l s e  '
b e g  1 11

p e _  1 , 0 = 4 ;
s e t _ B m _ p o j  I i t e i  _ t o p  ;
1 d = 4 :  

e n d  ; 
e r t d  ; 

e n d  :
/ *  i d  ncmr c t i n t a i n s  t h e  d i r i - c t i o n  f r o m  w f i i c h  t h e  i r q

c a m t î .  a n d  t t i e  d  i r " c  t  : 'on w l i i c l i  i t  m u s t  b e  r e s i s t  * /  
r e s i  r q  1 i  d  t ; 
d e l  a - ,  ( t ' . ' O l i . ' )  :
. s e m = f  f f  5 7 ;  s s m =  f a l  s e :  / »  a  s w  r e s e t  o t  i n t e r r u p t i n g  p e
/ *  f i n d  t l i i ?  o r  i a i n  o f  t t i e  m e s s a a e  » /
. s s m = = f  f  f  5 6  ;
i r  q  o r i g i n - ' s s m ;
/  *  l e t  t l i e  m e s s a g e  b e  i n  s s m  »/
.s s m = t  f  f  5 4  ;



0 1 B 1 
0 1 8 2  
0 1 8 
V )  8 4  
I.) 1 8 5  
0 1 8 6  
0 1 8 /  
0 1 8 8
0 1 8 9
0 1 9 0
0 1 9 1 
0 1 7  ,01 93 
0 1 9 4
0  1 9 5
0 1 9 6
0 1 9 7
0 1 9 301 99
0200
0201 
0 2 o 2  
0 2 0  3 
0 2 0 4  
0 2 ’. ' 5  
0 2 0 6
0 2 0  7 
0 2 0 8  
0 2 0 9021 ij 
0 2 1 1 
0 2 1 2  

0 2 1  5

0 2  1 4  
0 2  1 5  021 6 021 / 
0 2 1 8
0 2 1 9
0220 
0 2 2 1

0 2 2 3
0 2 2 4

0 2 2 5  
0 2 2 9  
0 2 3 ' : '  
02 31 
0 2 3 2

0 2 3 4
0 2 3 5
0 2 3 6  
0 2 3 /
0 2 3 8
0 2 3 9
0 2 4 0
0 2 4 1
0 2 4 2
0 2 4 3
0 2 4 4
0 2 4 5
0 2 4 6
0 2 4 7
0 2 4 8
0 2 4 9  
02 5 ' : »
0 2 5 1
0 2 5 2
0 2 5 3
0 2 5 4
0 2 5 5
0 2 5 6
0 2 5 7
0 2 5 8

0 2 6 ' . '
0 2 6 1
02o2
0 2 6 3
0 2 6 4  
0 2 ù 5  
0 2 6 6
0 2 6 7
0 2 6 8
0 2 6 9
0 2 7 0

s t a t u s  _ h o x  _ u p f j a  t e  ( i  r c i _ o r  i  u i  u  , s s m  . 7' )  :
1 f  s i  l e i i t  r u i i n i  n o = F A L 5 E  t t i e n  pi . i l  ( . l i a i  ( 7 > :
i f  ?s( n=r l i i ( i i ( i  i n r i  t l i e r i  
b e u  l i t

r e t i  e i  v  e  d  a  t a  < i i q _ o i  i  u  i n i  ; 
e n d  ;
1 f  ss i i i  wi  011(1 t e  r ' IJ t l u  II 
b e u  i  n

. wr o i K j  y M I i i i  ’-v-t I r 4 '  ' ;  
s i d . _ ' - i n  n  n i  o i  l . t i  i l a  t a  s  t a i  t  ;
s i  .( I I iç | .( 1 ■ 11| ■( I. i l  ( M  i I ( I < 'I i u  I n  . ■ ( I l . ( Il CI  II I 11

r . ' nd;
d e l  a  y ( 1 i . i ' . ' l  u  ' : 
r e s 1 = 0 ;  
r e s 2 = ' : ' ;  
r e s  3 = 0 :  
r e s 4  =  ':';
r e s e t _ s i i i _ p o i  ri t e i  : 
p c ? _ r t i j = p e  _ n o _ s a  V e  : 

e n d p r -  o c  ;

i n c l u d e  1 . o s  e . p l 9 : 

i n c l u d e  l . l i j a d f i  t j . p l ' ? ;

. ,  V . a n s w e r -  ;
d i s p l a y  a  s t a t u s  t y p e  m e s s a g e

i n c l u d e  l . m u l  l d r 2 . p r

p r  o c e i - l u r  e  d i . i m/ i :  b v L p  i .
/ •  c l e a r  s c r  t i e n  a n d  
c  1 e a r  _i i i e i  l u  ( ' . ' )  :
X =  1 ;
y = 1 6 :
m o y  e _ c u r  S O I - l  .  y ) ; p r  i  n  t  ( " UOI  U DA T A "  i :
i ni /y e  c u r  s o r  i x - l  . y i 1 )  : p r i n t  ( " ---------------------------" i ;
/ *  c t i e c t  i t s  t t i e  i n s t r u c t i o n  r e q u i  r e d  */
i i t o y e _ c u r  s o r  ( x  , v  +  4  ) ; pr  i  n t  l " A R E  i  OU  S U R E  ( Y ' N  ) ?  " ) ;
a n s w e r  =  p e t c l i a r  :
i f  a n s w e r =  .  .<ai -  a n s w e r  =  Y t l i e n
b e g  i  r,
/ »  c4 l e t s  u e I .  u n  w i t h  i l  t t i e n  » 

i  = 1  :
.  p u  I p o i c t c t  l  I I  I or  (l ia L 1 o n  o n t o  = c r  n e r  i » 

p a t  e t _ i n i t :
p a t  e  L _  f  i  1 1 i f a  1 s e  , i n a s t e r  . ' . ' .  d u i i i p _ d a t  a  . nt.i 1 1 . n u  1 1 ) :
/* 1 O O P  u n t i l  a i l  h a v e  d u m p e d  » •' 

p u  I c h a l  ( 1 2 )  :
r e p e a t

d i  s a b l  t  _ i  n  L c r  r  u p  t  s : 
p a t  e l  i  n  i t  ; 
p e _ i i o - p ç  i l ' :
p a l e t  _ t  i  1 1 ( I l  u c? . m a s l r  i . p e  i i ) . d u m p  _d.--1 a  . n u  I I . ri'.i 1 I > : 
p a c  I e  L _  t  o  moin ( t r u e  . m a s  t e r -  , p e  ( i  ) . d u m p  J a  t a  . m i l  1 . m  i J l 
i  I I t e r  r n p  L ( d  i r  f ' (. t  i  o n _ o  f _ p e - _ n o  ( p e  ( i ; ' i : 
s y n c l i :
e n a b  1 e _ i  n  t  e r r - u p  t  s ;  
i  = i  + 1  : 

u n t i l  i = p e _ t o _ l o a d r 1 : 
e n d  ; 

e n d p r o c ;

. niiswei :
a  s t a t i . 1 5  t y p e  i n e a s a a e  */

p r o c e d u r e  s e i  i d t i a  11. : t i y t e  i . x . v
/ *  c l e a r  s c r e e n  a n d  d i s p l a v  
c l e a r _ m e n u ( O ) ;
X =  1 C' : 
y = 1 6 ;
m o y e _ c u i  s o i  i x . y ) :  p r  i  n t  ( "Ur - iL t A L L  F R U E E : 5 5  1 1 l U E L E t l E t J T S "  ) ;
m o v e _ c u r  s o r  ( x  -  1 .  v + 1  ) ; p r i n t  ( "  " » ;
/ *  c h e c k  i t s  t h e  i n s t r u c t i u n  r e q u i r e d  * /  
m o v e _ c u r s o r  ( x  ,  y r-4 ) ; p r  i  n t  ( " A R E  VÜI J St l F i E  ( Y / ' f J )  ?  " ) :
a n s w e r  = g e t c h a r  :
i f  a n s w e r ^  V - o r  a n s w e r =  i  t h e n  
b e g i  n
/  r o l :  l e t s  U P  t  o n  w l l t i  i t  t t i e n  > /  

i  •••= 1 ;
/* p u t  p a c l . e L  i  n  I o r  m a t  i  o n  o r . t r j  - c r  e m i  *■,
/  y l o o p  u n t i l  aJ  I t i a . e  d u m p e d  • /  
r e p e a l

d i  s a b l  e _  i n t e r r u f i t s :  
p e _ n o = - p e  ( i  ) ;
p a c k e t ,  t o  m e m  ( t r  u e  . m a s t  e r  , p e  ( i  ) , h a l  t _ p r  o c e s s o r  . n u l l  . n u l l )  
i  n  t e r - r u p  t  ( d i  r - e c  1 1 o i i _ o  t _ p e _ r i o  ( p e  I i  ) ) ) :
S v n c t i  ;
e n a b  1 e . _ i  n  t e r  r u p  t  s  ; 
i = i  I 1 ;



0 2 7 1  
0  2 7 2
0 2 7  5
0 2 7 4
0 2 7 5  
0  2 / 6
0 2  7 /  
0 2 7 8  
02/V 
0 28 ' '
0 2 8  1 
0 2 8 2  
0 2 8  3
0 2 8 4
0 2 8 5
0 2 8 6
0 2 8  7 
0 2 8 3

0 2 9 0
0 2 9 1
0 2 9 2
0 2 9  3
0 2 9 4
0 2 9 5  
02/6
0 2 9  7 
0 2 9 8  
0  2 9 9  
0 3 0 0  
O 3 0 1  
0  3 0 2  
' . ' 3 0  3  
0  3 0 4  
0 3 0 5  
0  3 0 6
0 3 0  7 

3' . ' 8
O 3' .>9 
0 3 1 0
0 3  1 J 
' . ' 3 1 2 
'.' 3 1 3  
0  3 1 4  
" 3 1 5  
O 3 1 6  
0 3  I 7 
0 3  1 8
0 3 1  /  
O 3 2 0  
0  3 2  1
0 3 2 2
0 3 2 3
0 3 2 4
0 3 2 5
0 3 2 6
0 3 2 7
0 3 2 8
0 3 2 9
0 3 3 0
0 3 3 1

0 3 3 3

0 3 3 5  
-  " ) :
0 3 3 6
0 3 3 7  
0 3 3 3  
0 3 3 9  
0 3 4 ' 0  
0 3 4  1
0 3 4 2  
0 3 4  3
0 3 4 4
0 3 4 5
0 3 4 6  
0  3 4 7
0 3 4 3
0 3 4 9
0 3 5 0  
val J ;
0 3 5 1
0 3 5 2  
val ) ;
0 3 5 3  
0  3 5 4  
v a l  ) ; 
0  3 5 5
0 3 5 6  
v a l  ) ;

0 3 5 8
0 3 5 9  
' . ' 36' . '

u n t i l  i = - pe_  t o  1 o a d  I 1 :
" " ( I  : 

e i  " I f "  o<- ;

p r o i & c J u t  ü  e x e  r u r ,  : i r i t e u e r  L t l
I l V  l e  
b v t e  
i I I  t . en i :  i 

S CI  f. t i i  a i u J  id i n p  J , i v

t / i f i  . a l  . b o t .  _ / a  I .1  t i s  v a l  , l l i 5 _ v a l  .  n ( ' . ' )  
11 I u  , n_  1 "  , t i u  ( 1 1 'I ( 2 " )  , .
V . a i  i s o e i  :
. -Ill I nteoe I : i e '1 . ç,ii
a F t. l" , t v p c  lIlfSEatlf'

. s i i i _ b v t e , t t  , i  , X 

r eal :

' E V E R

t t i e n

' N ) ■) ;

' l > . ' I  iiir I II l ( 1 ' I :
X -  1 ' . '  ;

V =  1 5  :
i i i o v e  c u i  s o r t , , ,  V . ) ;  p r  i  n i  i " t l U L l  I I  l . L  t' . 'JN " ' :
i i i ' / v e  c u t  SOI  ( x - l . v + l i :  pi  i n t  ( " ...........   " ) ;
/ *  c t i ec . 1  I  t . s  t t i e  i i i s l r  u c t i o n  r e q u j  t ecl  * /  
m o v e _ c u i ' s o r  ( X ,  v  +  4 1 ; p r i n t  ( " A R E  Y O U  S U R E  ( Y / N )  
a i i s w e t  - = g e t c l i a r  :
i f  a n s w e r  =  v . o r  a n s w e r  =  ' Y t t i e n  
b e q  i  n

c l  e a r  _ i i i e n u  ( O )  ;
» c t i e c I  a i l s  o l  » /

m o v  e _ C L i r  s o r  ( X , y + y  ) ; p r  i  n  t  ( " E' v ' ER i I I  11 N 8  0  1 (
a n s w e r = g e t c h a r  ; 
i f  a r i s w e r  =  ' V . o r  a n s w e r  =  Y 
b e o  i  n

/  • (.4 l e t s  g e t  u n  w i  t t i  i l  l l i t - n  
1 = 1 :
/* p u t  p a c k e t  1 n  ( o r  I l ia L 1 o n  o n  l u  
p a l  e t  _i n i  t  :
p a k e  l _ . f  i l l  ( f a l s e ,  n i a s  t e r  . "  . i ui  i _1 a p  1 a c e  . f  R
/.«- l o o p  u n t i l  a l l  h a v e  d u i i i p e t l  * /
r e p e a I

/ ♦  p u l  1 111 L i  a l  1 s e  d a t a  i n t o  b a s e  o l  s m *  /  
p e _ n o =  p e  ( i  ) : 
d  i  s a b  1 e  _ 1 n t e r  r  L i p t  5  :
p a  I e t  _ . f  i  1 1 ( t r u e  . m a s t e r  . p e  ( i  ) . r u n _ l  a p  1 a c e  . I E " . " . " . ' , n u  1 1 ) ; 
p a c  I e t  _ t o _ n i e i i i  ( t i  u e  , f i ias t e r  . p e  ( i  ) . r  u n _  1 a p  J a c e  , 4B ' j O ' Y  , n u l  1 ) 
1 n  1 e r  r u p  t  ( d  i r e c  1 1 o n _ o  f _ p e _ n o  ( p e  ( i  ) ) ) :
S v i i c t i  ;
e n a b 1 e _ i n t e r  r u p t s :  
i  = i  +  1 ; 

u n t i l  i  = p e  _ t o  _ 1 o a d  I - 1 : 
e n d  : 

e i  i d  : 
e i i / l p r  o c  ;

I . n u 1 1 ) ;

p r o c e d u r e  e  : e _  1 a p  1 a c e J n I s  PCI
t ' v  t  e  
b V t  e  
i n t e g e r

/ *  c l e a r  s c r e e n  a n d  d i s p l a .  
c  1 e a r  m e n u  ( i :
X = 1 '.I : 
y  = 1 5 ;
m o v e  o u r  s o r  ( x  . y ) ; pr  i  n t  (
m o  V e _ c u r s o r  ( x - l , v i - l ) ;  p r i n t  ( 
/ *  d i e d :  i t s  t t i e  i n s t r u c t i o n

t 11 .1.011 . f  1 .be t .a t  .1 I
i i  ti 1 . n _  I o  . b u  t t e r  i 2' . '  » . . 
V . a i  i s w c  r :
. s m _  1 n  t e ' i e r  : r e a l  . s.n
a  s t a t u s  t y p e  i r i e s s a o e

is _ v a l  , 1 h s _ v  
sin b v t e . t t .

a  1 .  n  ( ' j  ) : 
i  . X :

m o v e _ c u r s o r ( x , v + 4 ) ;  
a n s w e r  = g e t c t i a r  ;
i  t  a n s w e r  =  v  . o r  a n s w e r  =  Y t t i e n  
b e o  i  n

c  1 e a r  _ me i  ' iu ( 0/ ;
m o v e  c u r s o r  ( ; . / ' :  p i -  i n i  ( "Ni Y
m o y e  c u r s o r ( x - 1  . y  +  1 ) ;  p r i n t  (

■RUN L w l L A C E " ) :

r e q u i  i c d  » /  
p r i n t ( " A R E  V U U  S U R E  ( i / M )

I UI  IN 1 1lU I , L A I  L A L E  f ( E . ' BLE I  I N A S  1ER: " )

m o v e  CUI  s u r  ( x . y"  1 ) ; c r  1 I :
p r  i n t  ( "  t u p _ v a l u e " ) ;  c r l t ;
p r  1 I I  ( ( "    —  " ) ; cr  I f ;
p r 1 n t ( "  I : " ) :  c r I f ;
p r  i n t  I ■' 1 1 i s _ v a l  u e  : n  x n  ! r h =  v a l u e " ) :  c r  I f :
p r  i  n t  ( " I ! " ) ; c r  1 f :
pr 1111 ( " -------- ---- --------- ■' ) : cr 1 f :
p r i n t ! "  b u t _ v  a l u e " )  ;
/  *• a e t  t t i e  i n i t i a l  v a l u e s  >. /

m o v e _ c u r  s o r  ( X .  y t - 2 )  ; p r  i  n t  ( " v ' n L U E  R OR  n  7  " ) ;
n = g e l n u m  ( i n p u t  ( .  b ' . i f  f  e r ' ,  2 ' . ' )  ) ; 
i i i a : ; = n _ l  a :
i i i o v e _ c u r  s o r  ( , v < 3 )  : p r  l  n t  ( " ' v ' ALUE ROR.  t o p  _ v a I  u e  *' " ) :
t o p _ v a  I = g e t n u m  ( 1 n p u t  ( .  b u  f  f  e r  , 2 k ' ) ) ; p r i n t  ( "  " ) ;  p u t _ h e x _ a d d r e s s  ( t o p _

mo  v e _ C ' . i r  S O I ' ( X , V r 4  ) ; pr  i  n  L ( ’" ,  Y l l . U L  ( U R  r t i s  _ / a l  u e  
r - h s  _ v a  1 = g e t n u m  ( 1 n p u t  ( .  b u  I f e r  , 2 ' . ' )  ) : p i r i n t i "  " ) !

„ ) .
p u t _ h e x _ a d d r e s s ( r h s

m o v e _ c u r s o t  ( X  , y r 5 )  : pr  i  n  t  ( " V A L U f .  R Uf< b o t _ v a l u e  7  " ) ;
b o t _ y  a  1 = g e t n u m  ( 1 np' - t  t  ( . b u f  f  e r - , 2'Y ) ) ; p r i n t  ( " p u  t _ h e x  _ a d d r  e s s  ( b o t .

m o  . e c u  I s o r  ( x . v  + 6 ) :  p i  i n t  ( " V A L U E  f  OR: 1 h s _ v  a l  u e  ?  " ) ;
1 h s _  v a  1 = g e t n u m  ( i  n p u t  ( . b ' i f  f  e r  , 2'Y ) ) ; p r  i n t  ( " " ) ;  p u t _ t i e x  _ a d d r e s s  ( 1 h s .

. *  d i e d  a l l s  u t  » /
i i io . e  c' . ' i  s u r  ' . . . + 8 )  : pr  i  n t  ( " E ' / L R y  T H 1 f IG 0  I 
a n s w e r  ^ ' l e t c t i a r  :
I t  a n s w €  r ••= v . o r '  a n s w e r  =  r t h e n

') ;



'J Sod 
ij-SbS 
A 3 6 4  0 365 
0 3 6 6  
0  3 6  7 
0 3 6 8  
O 3 o  /  
03/0
0 3 7  1 
0 3 7 2  
0 3  7 3  
0 3 / 4  
0 3 / 5  
0 3 / 6  
0 3  7 7
0 3  7 8  
0 3 7 9  
0  38<;« 
0  3 8 1  
0 3 8 2
0 3 8  3  
0 3 3 4  
O 3 8 5  
0 3 8 6  
0  3 3 /  
0 3 8 8  
0  3 8 9  
0 3 9 "  
0  5 9  1 
0  3 9  2  
0  3 ?  3
0 3 9 4
0 3 9 5  
O 3 9 6
0 3 9 7
0 3 9 8  
" 3 9 9
0400
0 4 0 1
0 4 0 2
0 4 0  3 
<;>4o4
0 4  0 5  
0  4 0 6  
0 4 0 /
0 4 0 8
0 4 0 9
0 4 1 0  
0 4 1 1
041 2 
0 4  1 3  
0 4  1 4  
0 4  1 5  
0 4  1 6  
0 4 1  7 
0 4  1 8  
0 4 1 9  
0 4  2 0
0 4 2 1
0 4 2 2
0 4 2 3  
0 4  2 4
0 4 2 5
0 4 2 6
0 4 2 7
0 4 2 8
0 4 2 9
0 4 3 0
0 4 3 1
0 4 3 2  
0 4  3 3
0 4 3 4
0 4 3 5
0 4 3 6
0 4 3 7
0 4 3 8  
0 4  3 9  
0  4 l o  
0 4 4 1  
0 4 4  2  
0 4  4 3  
0 4 4 4  
0 4  4 5  
0 4  4 6  
0 4  4 7  
0 4  4 8  
0 4  4 9  
o 4 5 o

l u t s  a t ' L  o n  w i t h  i t  I  h e n  * ,

I l l i c i t  Hint  11,11 c j n l c i  s c i  c m i

. sin r e a l  = .  s m r e a  1 * 4  : 
. s m _ r  e a  1 = .  s m _ r  e a  1 9 4 ;  
.  ÇIII r e a l  = .  s m r e a l + 4 ;

t i e  a  I 11
/ * o l  
1 = 1 ;
1 » c m  I p a d  e t  
p a l  e l  i n i t ;
p a l  e t _ +  i 1 ]  V f  a l s e , m a s t e r , o , r u n  1 a p l a c e . f B o O o . n u l  1 ) :
■ » I o n p  l i n t  i I a  I I h a v e  d i  i nipcn I » /

1 r ( l i l t  I 11 i I I . 11 I ni  ■ I h i  I ,1 i n t o  h , 11 '  I , ; L.m » ■' 
p c _ n n = ( ) c  ( i l ;  
s e t _ s m _ p o i n t e r  h o t  ;
. s m  i n  t e g e r  =  41 F 4 o ;  
s m _ i  n t e g e r  =  i i :

. s m b v l  e  =  4 F F 4 3 ' ;
s m _ b y  t e  - p o _ t a c j B  ( p e  ( 1 > > ; . s n i _ b  v t e = . s m _ b y  t e t  1 ;
s m _ b  V t e  =  l u c a l _ i d s ( p e ( i ) ) :

.  s m . _ r e a l  = 1 1 1 4 4 ;  
s m _ r e a 1 = f 1 o a t ( t o p _ v a l ) 
s m _  r  e a l  =  11 o a t  ( f l i s  . v a l  ) : 
s m  r n a 1 = 1 1  o a t ( b o t  _ v a 1 >
= i i i _ r e a l  =  f 1 c<at  ( 1 h s _ v a l  ) ; 
d 1 s a b  I e _ i n t e r r  u p t s :
p a l  e t  _ f  i 1 I ( I t  u e  . m a s l , e t  , p e  ( i ) . r u n  ] a p  1 a _ e  . 4 U o O O  . n u l l ) ;  
(Tiac l e t  t o  me m ( t r u e  . m a s t e r  . p e  ( i  ) , r  u n  1 a p  1 a c e  , 4 BO OO  , n u l  1 ) 
i n i  e r  r u p  L ( d i t  e c  1 1 o i  i _ u  ! p e  _ n u  ( p e  ( i  ) ) ;
s .  I i c h  :
e n a b l e  i n t e r  r u p t s ;
1 = 1 + 1 :  

u n t i l  i  = p e  t o  1 u a d ' 1  ; 
e n d  ; ■ 

e n d  : 
e n d p r  o c ;

p r o c e d u r e  i _r e  =  ui!n-: : b v t e  i  . ; . . / .  a r i s w e r  ;
/ '  c l e a r  s c r e e n  a n d  d i s p l a v  a  s t a t u s  t y p e  m e s s a o e  « ■ 

c  1 e a r  _i i iei  lU o n  ;

y =  i 6  ;
m o v e _ c u i s o r  ( x . v ) ;  p r i n t  ( " LLi l  11 ] h ' UE E X E C U 1 I  UI  I ' ) ;
m o  y c u r  s o r  ( ;: 1 , v * 1 ) : p r  i  n  t  ( " -------- ------------------------------- -------" ) :
, + c h t d  i t s  M i o  1 i i s t i  Lie L 1 o n  r e g u i i e d  + /
m o y e c u r  s o r  ( x .  y + 4  ) ; p r i n t  ( " A R E  r OU  B U R E  ( r , t J )  " ) ;
a n s w e r  = u e l c h a r  ;
i t  a n s w e r  =  v  . o r  a n s w e i  = i' t h e n

/ +  o l  l e t s  g u t  c m w I 111 i t  I h r  n  »,  
d  i  s a b  1 e  i  n  t " i  r u|v L f :
n i c i . e c u r  s " r  ( ' : . y i - 4 ) :  p,t i n  l. ( " ECU 11 1 N U L  I N  WH 1 LI  I F t . ?
p e  r i o = o e t  ) i e ;  _ b v t e ;
p a d  e t  _ t u _ i ! i ( m  ( t  r i .m . m a s t e r  . p l - _ n o  . c a r  r  y o n  . n u l l  . n u l l  ) ; 
i  n  t e r  r u p  t  ( d i  r e c  1 1 o n _ o l  j s e  r i o  ( p e _ n o  ) i ; 
e  . I i c h  ;
e n a b 1 e _ 1 n t e r r  u p  t s ; 
e n d :  

e n d p i r o c  ;

1 . .  y  . a n s w e r  :
d i s p l a y  a  s t a t u s  t y p e  m e s s a g e

p r o c f e d ’.ir e  r e s u i i i e :  b v l e
/  <1 c l e a r  s c r e e n  a n d  
c l  e a r  _ m e n u ( O )  ;
X = 1 ;
y=16;
m o v e _ c u r  = o r  ( . ;  , y  ) ; p i  i  n  t  ( " C U N  I 1 N U E  E X E L L N  I O N " )  ;
m o v e _ c u r  s o r  ( x - l . v + l ) ;  p r  i  n  t  ( " ----------------------------------------------- " ) ;
, « c h e d  i t s  t h e  i n s t r u c t i o n  r e q u i r e d  * /
m o v  e _ c u r ' s o r  ( X , y + 4  ) ; p r i n t  ( " A R E  ï ü U  S U R E  ( Y /  N  ) 7  " ) ;
a n s w e r  = q e t  c h a r  ;
i f  a n s w e r  =  v . o r -  a n s w e r  =  Y t h e n  
b e u  1 n
/  + o l  l e t s  g e t  o n  w i t h  i t  t h e n  * 

i  = 1  ;
/ *  p u t  p a c k e t  i n t  or  m a  t  i  o n  o n t o  s c r e e n  *  /
/ *  l o o p  u n t i l  a l l  h a v e  d u m p e d  * /
r e p e a t

d i s a b l e _ i n t e r  r u p t s ;  
p e _ n o = p e ( i ) ;
p a d ; e t _ _ t o  ni em ( t r - i ' e  . m a s t e r  . p e  ( i  ) . c a r  r y  . . o n  . n u  1 1 . n u l  1 )
i  n  t e r  r u p  t  < d  i r e c  t  i  o n  o f  p e  n o  ( p e  ( ) ) ) ) ;
s  / n c h :
I f  I t a b  1 e _ i  11 t e i  I U ( i  L  3  :

1 = 1  I 1 : 
u n t i l  i  = ( ) «  t o  l o a d i l ;  

e n d  : 
e n d p i o c ;

*/
procedure p is t  _l rby t e x.v.cFE 

c l e a r _ m e n u i o i ;
X =  1 o ; y = 1 6 ;



0 4 5 1  U'I52 
0 4 5 3  
0 4  5 4  
0 4  5 5  
O 4  5 o  
0 4 5 7  
«. I45B 
0 4  5 ?  
0 4  6 0  
0 4  6 1
0 4 6 2
0 4 6 3

0 4 6 4

0 4 6 5  04 66 04o.-- 
o  t o O  
0  4 6 9  
o 4  - O 
0  4  /  I 
0 4  7 2  
0 4  7 3  
0 4  7 4  
O 4 ; 5  
O 4 ' 6  
0 4 ,  7 
0 4  7 8  
0 4  7 9
0 4 8 0
0 4 8 1

m o v e  f.-oi S O I  ( ; . v ) ;  fii i n i  ( " L I  l o b  I I  8  1 I I I  A  I l-l II ,1,011 " > :
mo  > I ‘ ( UI  '..’ Ol  ( , V I 1 I ; p i  i  n  L ( ' ...........  — ------------- ----------- --
p a l  ( ? t _ i  n i t ;
p a l  e l  _+ 1 1 1 ( f  a l  S B  , m a s t e r  ,  0 ,  1 o a d _ p t  o g r -  a m , n u  1 1 ,  n u l  1 ) ;

=  1 o  ; v =  1 9  ; 
m u v  B _ c u t  s u r  ( : : ,  y ) : ( . . r i n l ( "
m r j v e _ c u r s o r -  ( , y  ) ; p r  i n t  ( " Wh  i  r . h  p r  o p r  a m "  ) ;

p i  i n I ,  (

p r  i  n t ( '  
p r i  n t ( '  
pr  i n t  ( '

D e s t i n a t i o n  F E  n o .  
7 " ) ;

i i i O ' / o  n r  s o r  ( ,  y  i 1 ) ;
/ * ca I 1 t i l  Biiaiiif? » 
t i l e ;
niC 'VB cur s o i  , y  + 3 )  
m o v B _ c u r s o r -  <;: , v  +  3 )  
n i o v B _ c u r  B a r  ( x . y + 4 >
, *  g o t  d e s t  * /  
p e . , n o = g e t  _ h e ; :  _ D y t e ;
p a l  ot _ l  J 1 1 ( tr U B  , m a s t  or . pe_nu . 1 oad proqram , nul 1 , nul 1 > ;
movo cursor- I x . v + 3) ; pr i n t  ( "

V I 4  I ; pl  i n t  ( "
v + 3 ) : p r i n t ( " R E A D ,  1 0  S E N D  ( Y , N > " i :

i i i u  . t ?  i n i  SOI  , 

iii'.Tvi? f ^ u r s c j i  (;
c l i . : - - t i o l c l i a i  :
1 i  c l i / p :  V . o r  c l i 2 =  

b o u  r 11
c l  o a r  i i i o n u  ( 4 0 )  ; 

m o  V O  C U I  y  o r  ( 4 t > ,  1 7 )  : 

b o x  c l u m p  ;

1 I >..i I Ol  LI i o n  r e p o r  cluse_fi Ie c. Icb);
B l  i d  r e c o r  d  : 

e n ' j  ;  

e n d p r  o c :

") ; 
") :

t h e n

p r i n t  ( " T R n N S I I l  T T I N G  

t  _ e r  r  Ol ( . f  c b  > ;

0 4 8 2 p r  o c e d u r  e  l u s t  r ; b  Y t  c X .  y  .  c l i 2  : i n i . c u o r  a d d r e s s :

0 4 3 3 c l  ' ? a i  i i i e n u  ( • . > )

0 4 8 4 y  =  1 6 ;

0 4 6 5 i i i o v e  c U I  s o r  ( , ; •  y ) ! p r  i  n t  ( " R U N  I R U L l - . n l l  I N  A  R E " ) ;

0 4 3 6 m o v e  c u r ' s o r  ( x .  V  + 1  ) :

0 4 8 / p a l  e t  _ i  I I  1 t  ;

0 4 8 8 p a t  e t  _  1 i l l  1 t  cl l  s e  ,  m a s  t e r  ,  O .  r u i i p r - p u i  a m  . n u l l  ,  n u l  1 ) ;

• Y 4 8 9 ; :  =  1 ' Y ;  v  =  1 8  :

0 4 9 0 m o v B _ c u r  s o r  i  x • V ) ; p l  1 n  t  { ' ■  "  ) :

0 4  9  1 n i o v  e  c u r  S O I  t X .  y  ) : p r  1 n i .  ( " l - ; u n  p i  r j o r  a m  i n  w h i c h  f  f  ;

0 4 9 2 m o v B  _ c . u i  S O I  ( ■; . y 1 J ) ; p i  1 n  l  ' )  ;

0 4  9 3 p e  n a = ' ] e t _ h e X b  V t e :

0 4  9  1 m ' J v P  1 U i s ' I ' . p l  l u t ,  "  I :

o 4  U ' i i i o v , . '  c n r  I I I  1 . .  ,  1 )  J : p i  i  n  t  1 "  "  1 :

0  4  9 6 < n u  9 L7 C- I.U -- O l  ' . .  - 1 1 ; t ' i  1 I I  t  ( " S l a '  l  c i i . l ' J i  c - s  5  "  ) :

0 4  9 , m o v C r o r  • . .  V r  4  1 ; p r  i n t  1 "  7 "  ) :

0 4 9 8 a d d r  e s  s  - n e  L J e  x . a d d i  e s s  ;

0 4  9 9 p a t  e  t _ (  i l l  ( t r u e  . m a  E, t e r  .  p e _ n a  .  r  u i  i _ p i  o u i  a m  . a d d i  s s s  .  n u l  1 >

0 5 0 0 m o v e  ( - U I  s u r  c . y 1 3 1 ; p r  i  l i t  V "  "  ) :

0 5 0 1 m o v e _ c u r s o r i ; , V  +  ; p r  1 n  t  ( "  ' ) :

0 5 0 2 m o  v e _ c u r  s u r  i . : . V i  3 )  ; p r  i n t  ( " R E A I ' i  t U  3  El  I I )  ( Y . I l )  ' ' " ) :
0 5 o 3 c h 2 = g e t c h a r -  ;

0 5 0 4 i f  c l i 2 - - -  1 . o r r _ h 2 =  • y  t h e n

0 5 ' Y 5
0 5 D 6
0 5 0  7 
0 5 0 8  
0 5 ' : ' 9  
0 5 1 0
0 5 1  1 
0 5 1 2  
0 5  1 3 
0 5 1 4  
0 5 1  5  
0 5 1 6  
0 3 1  7 
0 5  1 8  
0 5  1 9
0 5 2 0
0 5 2 1
0 5 2 2
0 5 2 3
0 5 2 4
0 5 2 5
0 5 2 6
0 5 2 7
0 5 2 8
0 5 2 9  
0 5  3 0  
0 5  31
0 5 3 2
0 5 3 3
0 5 3 4
0 5 3 5
0 5 3 6  
0 5  5 7  
0 5  3 8  
0 5  3 9  
0 5  4 0

b e g i n
d i s a b  1 s _ i n t e r  r  u p t s ;
p a c  t e t  _ t o _ m e m  ( t r u e  , m a s t e r  ,  p o . _ r i o  . r u n  p r o q i  a m , a d d r e s s  , n u l  1 ) 
i n t e r - r - u p t  ( d  i  r  e c  t  i  o n _ o  f _ p e _ n o  ( p e _ n o  ) ) ;
s  V n c h ;
e n a b 1 e _ i n t e r  r u p t s ;  
d i  s a b  1 e  i n  t e r  r  u p  t  s ; 

e n d  ;
e n a b  1 e _ i  n  t f t i  r u i p t s ;  

e n d p r  o c ;

t'  V t  e
i >  = 5 ;

i  , . s m , 5 ( 5 ) :  
s ( 3 ) = 9 :  3 l 4 ) = 1 0 d ;

p r  o c e d u i  e  c| t  :
3  ( 1 > ■= 1 ; s  i 
i = l  ; 
r f.’ p e a t

p e _ n u = i :
d 1 s a b  1 e  i n  t e r r u p t  s ; 
s e  t  si i ,_ p c j i  n t e r  D o t  ;
. s m = l i - E  4o:
S ni= ' 5 :
.  s i n = .  sm r I ; 
s m =  ' 9 ;
pac 1 e  t  _ l  c> jn«---m , t r  u e  . master . i  . 1  o a d  pr  o a r  a m  , nul 1 . nul 1 ) : 
i  II ter r u p  t  ( ' i l  r ec t i  o n _ o  f _ p e _ n o  (pe. nu  r ) ; 
s v n c h ;
e n a b  1 e  i  n t e r  r u ( i t s ;  
i  = 1  -I 1 ;

L i n t  i l  i  =  1 7  : 
e n d p r  o c  ;

pr  o c e d u r  e  s i l e n t :  
c  1 l aar  _ i i i e n u .  ( 'Y ) ;
m o v e c u r  s o r  ( 1 0 . 1 6 ) ;  p r i n l  ( " s o u n d  o n  =  1 ' ) :  
m o v e _ c u r  s u r  ( l 'Y . 1 7  ) ; p r  i  n  t  ( " s u u n d  off-  2 " ) ;



m o v e  cLi r  s u r  < 1 5 ,  1 9 )  ;
i f  a e t c h a r = ' 2  t h e n  s i  1 e n t _  r u n n  i  n g =  1 F-.’U E  

e l  s e  S I  1 e n  t  . t u n n  i r i u = f  A L S E  :
e n r l p i  r i c ;

0 5 4  1 
0 5 4 2  
0 5 4  3  
" 5 4  4 
0 5 4 ' . '
0 5 4 6  pr  o c e d u i  e e s u l t s  t o  f i l e :  b v  t o  c h :
I ' 5 4  7 c l ' i ' a t  i i i e n u  ( ' . ' )  ;
o 5 4 8  I I I ' . 'VO i - i i r  S O I  ' 1 ' . ' .  1 5 )
' : ' 5 4 Y  pr  m l .  ( " D U  i U U  W I S H
' ' 5 5 '  ' II" ' . I - I I I I  II ' 1 7 , 1 , ’ )
o 5 5 1  i i i ovi . ' .  L OI  SOI  ( 1 2 , 2 0 ) ;
" 5 5 2  pi  I I I I  ( " 1 1  Ivf 5 U l  1 5  I H E  E X 1 5  I '
0 5 5 3  I f  c 11 =  V . o r  c h =  i  1 l i e n  f i l e
0 5 5 4  i i i o v e _ c i i i  s o r  ( 2 0 . 2 2 )  ;
0 5 5 5  p i  i n f .  ( " 0 1  ? " ) :  c h o g e t c h a r  :

eiidpi Ol. ;

l U  DUMI "  R E C U L  r s  f U  F I L E
I 11 111 ■( I h.  ir :

I ' L l  I. 
i  11 i  I. ;

0 5 5 6  
0 5 5  7
0 5 5 0  p r o c e c l i u o  l e s  _ o p  t  i  Ci ns
0 5 5 9
0 5 6 0
0 5 6 1
0 5 6 2
0 5 6 3
0 5 6 4
0 5 6 5
0 5 6 6
0 5 6 7  0560
0 5 6 9
0 5 7 0  
o 5  / 1 
'.'■3 7 2  
0 5 7  3
0 5 7 4
0 5 7 5
0 5 7 6  
0 5  7 7 
0 5 / 8  
0 5  7 7  
0 5 8 0  
L ' 5 3  1 
0 3 8 2  
0 5 0 3  
0 5 8 4  
0 5 0 5  
0 5 3 6  
0 5 8 7  
0 5 8 0  
0 5 8 9  
0 5  9  O'
0 5 9 1
0 5 9 2  
0 5 9 : 3  
0 3 9 4
0 5 9 5
0 5 9 6  
0 5 9  7
0 5 9 8
0 5 9 9
0 6 0 0  
0 6 0 1  
0 6 0 2
0 6 0 3
0 6 0 4
0 6 0 5
0 6 0 6  
" 6 0  7 
0 6 0 8
0 6 0 90610 
0 6 1  1 
0 6 1 2  
0 6 1  3
0 6 1 4
0 6 1 5  
0 6 1  6  
0 6 1 7

ijrder = 
or  d u r  =  
o r  d e r  -= 
Ol d e r  =  
or  d e l  ■=

o r d e r  =  
or  d e r  =  
or  d e r  =

or  d e r  = 
or  d e r  =
or  d e r  = 
o r  d e r  = 
o r  d i - r  ■' 
Ol d e r  =  

1 I CM d e r  =  

e i  i d p r  Ol .  ;

1 I 
1 f  

1 f  

1 t 
1 f

1 I 
1 f 
1 f 
1 f  

1 f
1 f  
i  f  

1 f

I f 
i  f

. o r  
, o r  
. o r

o r  d e r =  J  
or  d e r  =  1 
o r d e r  - ' r 
o r d e r = ' S  
or  d e l  =  F 
Ol d e r  =  ■ H  
o r  d e l  =  ' E 
or  d e r  =  ' C  
or  d e r -  =

o r  d 's r  =
Ol i Jer  =  
o r  d o i  =  
o r d e r  =  
o r  dfc?r =  
o r  dr .  I =
Ol d e l  =  
o r d e r  =-

or  d ' ? r  ) ; 
t f i e n  I ' l a r m s :
L f t o n  l _ m c - n u ;  
t h e n  r _ m e n u : 
t h e n  s t o p ;  
t f i e n  coii i (. i ' . i  = = ; 
t h e n  s e n d  . f i a l  t  : 
t h e n  e ; ; e _ l  a p  1 a c e  ; 
t t i e n  I e s L i i n e :  
t h e n  r '? f I e s h  d  i  s p  I 
t h e n  d u m p  ; 
t t i e n  g t ;  
t h e n  s i  1 e n t  
t h r ? n  i u s t  1 
t t i e n  l u s l . t  
t h e n  ( ? ; ; e . i  ' . i n;  
t t i c i i  r es ' . i  I t  s  .  t  o  . 1  1 1 n ;  
t h ' d i  c  1 o s e .  f i  1 o  ( . f  c l )  r 
t  t i c  11 i r e c  I l ine ;

I l ia I n  : b v f e  rji d o r  : i n  L e o e i  r e s t a r t ;pr  e C  o d u  
m i t ;
f 1 I e _ d u i i i p _ o ( . t  1 on=- 1 a l  ? e  : 
r e ' S t a r  t  =  i  u L ' L ' 3 :

111 ...L. 1 o  1 n  t o r  r u p  t  r  :
L 1

L 3 :

L 4 ;

p i i i ' e n u :
or d e r  = g e  t c h a r  :
i  t CM d r - r  t u a  . a n d  or  d e r  f '' d t h r - i i
b e g i  n

l e s  _ O D  t  i o n  s  ( or  d e r  i  : 
g . o t o  L  1 : 

e n d  ;

p . i i K  i u7 : ;
o r d e r  = g e t c h a r ;
i f  o r d e r s  : f  O a  . a r i d  o r  d r = r  . . 1 t ' d  t l i p i i  
b e t i i n

1 e e . o p t 1 o n s ( o r d e r ) :  
g o t o  L 2 :  

e i  i d  :

P . i i u . - i i u  7 ;
CII d e r  = ' . i s t i . h a r  ;
i f  o r d e r  . I d a  . a n d  ' i r  i M i  ' i t ' d  t t i e n  
b e g  i  n

1 e y _ o p t i o r i 5  ( o r  dc- r -> ; 
g o t o  L 3 :  

e n d  ;

p _ n i c n u 4  ; 
o r d e r  = a e  t c h a r ;
i t  CM d e r  r i ' Y a  .  a n d  o r  d e r  . ,  f  i . 'd t h e n  
b e g i  n

1 e s _ o p i  1 1 o n s  ( o r d e r  ) ; 
g o t o  L 4 ; 

e n d  ;
g o t o  L I  :

/ E U F



THE INCLUDED FILE: OS A.PL9

* * * * * * * * * * * * * * * *
*  T H E  O V E R S E E R  *  
* * * * * * * * * * * * * * * *

/ *  l a s t  m o d  1 0  o c t  8 6  * /  
/ *  o s l  * /

0001 / *
0 0 0 2
0 0 0 3
0 0 0 4
0 0 0 5
0 0 0 6
0 0 0 7  * /
0 0 0 8
0 0 0 9
0 0 1 0
0 0 1 1  c o n s t a n t  e n d _ o f _ f  i 1 e = 8 :
0 0 1 2
0 0 1 3  a t  $ c 8 4 0 :  b v t e  f c b , e r r o r ( 3 1 9 ) ;
0 0 1 4  a t  f c c 0 9 : b y t e  t t y s e t _ p a u s e ;
0 0 1 5  a t  $ 7 f f  f : b y t e  s t a t u s ;
0 0 1 6  a t  f f  f 2 0 :  b y t e  r e s  1 , r e s 2 , r e s 3 . r e s 4 ,
0 0 1 7  i r q 1 , i r q 2 , i r q 3 , i r q 4 :
0 0 1 8  i n t e g e r  s m . p o i n t e r ;
0 0 1 9  a t  ^ d f S 4 :  i n t e g e r  i  r q _ v e c t o r ;
0 0 2 0  a t  i a 5 0 0 :  i n t e g e r  p o i n t e r _ v a l u e :  b y t e  p e _ n o , m a x  : i n t e g e r  . a r r a y , q e f i
0 0 2 1
0 0 2 2  g l o b a l  b y t e  c h e c k s u m , 1 o a d 1 n q :

i n t e g e r  c c o p y , 1 e n g t h , a d d r e s s ( 0 ) :  
b y t e  a d d r e s s _ h i g h , a d d r e s s _ l o w :  
b y t e  t t y s e t _ p a u s e _ s a v e :  
b y t e  s t r  i  n g i  ( 2 0 ) :
b y t e  b u f f e r ( 2 5 5 )  , e r f  1 a g , k e y  c h a r .
. s m ,  c h ,  s i  1 e n t _ r u n n i n q , p e _ t o _ l o a d ,  p e ( 1 7 )  , 
l o c a l _ i d s ( 1 7 ) , p e _ t a g s ( 1 7 ) :  
b y t e  f i 1 e _ d u m p _ o p t i o n  ;

0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 3 0
0 0 3 1
0 0 3 2  / E O F  

# n

THE INCLUDED FILE: STATUS?.DEF

0 0 0 1 / *  C O N S T A N T S  F O R  S T A T U S  R E G I S T E R  :I N  S H A R E D  M E M O R Y  * /
0 0 0 2
0 0 0 3 C O N S T A N T  M A S T E R = $ 0 0 .
0 0 0 4 L O A D _ F R O G R A M = $ 0 1  ,

0 0 0 5 P R O G R A M _ L O A D E D _ O K = $ 0 2 ,
0 0 0 6 R U N _ F R O G R A M = $ 0 3 ,
0 0 0 7 P R O G R A M _ R U N N 1 N G OK = $ 0 4  ,
0 0 0 8 S T O F _ P R O G R A M = $ 0 5 ,
0 0 0 9 P R O G R A M _ S T O P P E D _ O K = $ 0 6  ,
0 0 1 0 G O T _ C O D E _ O K = $ 0 7  ,
0 0 1  1 P R 0 6 R A M _ L 0 A D _ E R R 0 R = $ 0 8  ,
0 0 1 2 U N E X P E C T E D _ I N T E R R U P T = $ 0 9  ,
0 0 1 3 T R A N S M 1 S S I 0 N _ E R R 0 R _ E 2 W = $ O A ,
0 0 1 4 T R A N S M I S S I 0 N _ E R R 0 R _ W 2 E = $ 0 B  ,
0 0 1 5 D U M P _ D A T A = $ 0 C .
0 0 1 6 D U M P 1 N G = $ 0 D ,
0 0 1 7 H A L T _ P R O C E S S O R = $ 0 E  ,
0 0 1 8 P R O C E S S O R _ H A L T E D = $ 0 F ,

0 0 1 9 C O N T I N U E D _ R U N = $ 1 0 ,
0 0 2 0 C A R R Y _ O N = $ 1 1 .
0 0 2 1 R U N _ L A P L A C E = $ 1 2 ,
0 0 2 2 w r o n g _ r e a d = $ 1 4 ,
0 0 2 3 N U L L = $ 0 0 0 0 ;
0 0 2 4
0 0 2 5 B Y T E  m t  " M A S T E R
0 0 2 6 " L O A D I N G  A P R O G R A M  " , .
0 0 2 7 " P R O G R A M  L O A D E D  O K " ,
0 0 2 8 " I N S T R U C T E D  T O  R U N
0 0 2 9 " R U N N I N G  A  P R O G R A M
0 0 3 0 " I N S T R U C T E D  T O  S T O P " ,
0 0 3 1 " S T O P P E D  O K  " ,
0 0 3 2 " G O T  S E C T I O N  OK
0 0 3 3 " P R O G R A M  L O A D  E R R O R " ,
0 0 3 4 " U N E X P E C T E D  I  R  Q
0 0 3 5 " T R A N S  E R R  E - W
0 0 3 6 " T R A N S  E R R  W - E  " ,
0 0 3 7 " I N S T R U C T E D  T O  D U M P " ,
0 0 3 8 " D U M P I N G  D A T A
0 0 3 9 " I N S T R U C T E D  T O  H A L T " ,
0 0 4 0 " P R O C E S S O R  H A L T E D  " ,
0 0 4 1 " C O N T I N U E D  R U N  " ,
0 0 4 2 " I N S T R U C T E D  T O  C O N T " ,
0 0 4 3 " R U N _ L A P L A C E
0 0 4 4 " "  ;
0 0 4 5 / E O F



THE INCLUDED FILE: OS B.PL9

0001 
0002
0 0 0 3
0 0 0 4
0 0 0 5
0 0 0 6
0 0 0 7
0 0 0 8
0 0 0 90010 001 1 0012 
0 0 1 3
00 14

0 0 1 5
0 0 1 6  
0 0 1 7  
00 18
0 0 1  9  
0020 
0021 
0022
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 3 0
0 0 3 1
0 0 3 2
0 0 3 3
0 0 3 4
0 0 3 5
0 0 3 6
0 0 3 7
0 0 3 8
0 0 3 9
0 0 4 0
0 0 4 1
0 0 4 2
0 0 4 3
0 0 4 4
0 0 4 5
0 0 4 6
0 0 4 7
0 0 4 8
0 0 4 9
0 0 5 0
0 0 5 1
0 0 5 2
0 0 5 3
0 0 5 4

a t  $ c c 1 4  : i n t e g e r  t h e . f  i 1 e ;
p r o c e d u r e  d e l  a y ( i n t e g e r  i ) :  i n t e g e r  c ;

c = 0 ;  
r e p e a t  

c = c + l ; 
u n t i l  c = i ; 

e n d p r o c ;

p r o c e d u r e  d i  r e c t  i  o n o f  _ p e _ n o ( b y t e  n o  ) 
e n d p r o c  ( ( ( n o —1 )  a n d  $ 0 3  ) + 1  ) ;

p r o c e d u r e  i n t e r r u p t  ( b y t e  d i r e c t i o n ) ;  
i f  d i r e c t i o n = l  t h e n  i r q l = $ f f i  
i f  d i r e c t i o n = 2  t h e n  i r q 2 = $ f f  
i f  d i r e c t i  o n = 3  t h e n  i r q 3 = $ f f  
i f  d i r e c t i o n = 4  t h e n  i  r q 4 = $ f  f i  

e n d p r o c ;

p r o c e d u r e  r e s i  r q ( b y t e  n o ) ;  
i f  n o = 1 t h e n  r e s  1 = 0 ;
1 f  n o = 2  t h e n  r e s 2 = 0 ;  
i f  n o = 3  t h e n  r e s 3 = 0 ;  
i f  n o = 4  t h e n  r e s 4 = 0 ;  

e n d p r o c ;

p r o c e d u r e  e n a b l e _ i  n t e r r u p t s ;
C C R  =  C C R  A N D  $ E F ;  

e n d p r o c ;

p r o c e d u r e  d i s a b  1 e _ i n t e r r u p t s ;
C C R  =  C C R  O R  $ 1 0 ;  

e n d p r o c ;

p r o c e d u r e  s e t _ s m _ p o i n t e r _ t o p : 
i n t e g e r  w o  ( ( ) )  : b y t e  h i  , 1 o : 
w o = 0 ;  / *  t o p  t w o  d c  b i t s  a r e  z e r o  * /
1 o = p e _ n o ;
/ »  r e  p o i n t e r  n e e d s  t o  b e  x x N N  1 1 1 1  1 1 1 0  OOO' Y * /  
w o  =  s h i f t ( (  ( w o - 1 )  a n d  $ 0 0 0 3  ) , 1 2  ) ; 
w o = w o  o r  $ 0 F E 0 ;  
s m _ p o i  n t e r = w o ;  

e n d p r o c ;

p r o c e d u r e  s e t _ s m _ p o i n t e r _ b o t  : 
i n t e g e r  w o ( ( Y ) :  b y t e  h i  , 1 o ;
w o = 0 ;
1 o = p e _ n o  ;
w o =  s h i f t ( ( ( w o - 1 )  a n d  $ 0 0 0 3  ) , 1 2  ) ;
w o = w o ;
p o i  n t e r _ v a l u e = w o ;  
s i n _ p o i  n t e r  = w o ;  

e n d p r o c ;
/ E O F

THE INCLUDED FILE: OS C.PL9
0001
0002
0 0 0 3
0 0 0 4
0 0 0 5
0 0 0 6
0 0 0 7
0 0 0 8
0 0 0 90010 0011 0012
0 0 1 3
0 0 1 4
0 0 1 5
0 0 1 6
0 0 1 7
0 0 1 8
0 0 1 9
0020 
0021 
0022
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 3 0

p r o c e d u r e  r e s e t _ s m . p o i n t e r :  
s m _ p o i  n t e r = p o i  n t e r _ v a l u e ;  

e n d p r o c ;

p r o c e d u r e  m o v e . c u r s o r ( b y t e  x , y ) ;  
p u t c h a r ( $ 0 e ) ; 
p u t c h a r ( y + $ 2 0 > ; 
p u t c h a r ( x + $ 2 0 ) ; 

e n d p r o c ;

p r o c e d u r e  o v e r s e e r _ t  i  1 1 e ;  
m o v e _ c u r s o r ( 1 1 , 0 ) ;  
p r i n t ! " _________________ _ o o U 0  M E R  O O o o
C R L F ;  m o v e _ c u r s o r ( 1 1 , 1 ) ;  
p r i  n t ( " V  V

e n d p r o c ;

p r o c e d u r e  s t a t u s _ b o x _ i n i t ( b y t e  n o ) : b y t e  x , y ;  
x = ( ( n o - 1 ) a n d  $ 0 3  ) * 2 0 + 2 ;  
i f  n o < 1 7  t h e n  y = l l ;  
i f  n o < 1 3  t h e n  y = 8 ;  
i f  n o < 9  t h e n  y = 5 ;  
i f  n o < 5  t h e n  y = 2 ;  
m o v e _ c u r s o r ( x , y ) ;  
p r i n t ( " P R O C E S S O R  N o .  " ) ;  
m o v e _ c u r s o r ( x + 1 4 , y ) ; 
p u t _ h e x _ b y t e ( n o ) ; 
m o v e _ c u r  s o r ( x , y + 1 ) ;  
p r i  n t ( " s t a t u s " ) ;  

e n d p r o c ;

V");



THE INCLUDED FILE: OS D.PL9
0001
0002
0 0 0 3
0 0 0 4
0 0 0 5
0 0 0 6
0 0 0 7
0 0 0 8
0 0 0 90010 
001 1 00120013
0 0 1 4
0 0 1 50016
0 0 1 7
0 0 1 8
0 0 1 90020 0021 0022
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8  
0 0 2 9

p r o c e d u r e  p a k e t _ i n i t : b y t e  x , y ;  
x = 4 0 ;  
y = 1 4 ;
c l  e a r _ m e n u ( x ) ;  
m o v e _ c u r s o r ( x , y + 2 )  
m o v e . c u r s o r ( x , y + 3 )  
m o v e . c u r s o r ( x , y + 4 )

p r i n t  ( " l N T E f < f < U P T _ l l )
p r  i  n t ( " F R O M ....................
p r i n t l ' T O  . . . . . . . . . .

m o v e . c u r s o r ( x , y + 5 ) ; p r i n t ( " M E S S A G E  ...........
m o v e . c u r  s o r ( x , y  +  6 ) ;  p r i n t ( " D A  IA _ P 0 1 N T E R  
m o v e . c u r s o r ( x , y + 7 ) ;  p r i n t ( " D A I A _ S 1 7 E  . . .  

e n d p r o c ;

p r o c e d u r e  p a k e t . f  i 1 1  ( b y t e  i r q . i  d . f r o m , t o . m e s s a g e : i n t e g e r  d p . d s ) :  b y t e  x , y ;
x = 5 7 ;  y = 1 6 ;
m o v e . c i  r s o r  ( x  , y  ) ; p u t . h e x  _ b y  t e  ( i  r  q _ i  d  ) ;
m o v e . c u r s o r ( x , y + 1 ) 
m o v e  _ C L i r  s o r  ( x  , y + 2 ) ; 
m o v e . c u r s o r ( x , y + 3 )  
m o v e . C L i r s o r  ( x  , y  +  4 >  ; 
m o v e . c u r s o r ( x , y + 5 )  

e n d p r o c ;

p u t _ h e x _ b y t e ( f r o m ) : 
p u t _ h e x _ b y t e ( t o ) : 
p u t . h e x . b y t e ( m e s s a g e ) ; 
p u t _ t i e x . a d d r  e s s  ( d p )  ; 
p u t . h e x ’. a d d r e s s  ( d s )  ;

p r o c e d u r e  r e a l  m a t h s :  r e a l  . a . r e a l : 
a . r e a l = 1 0 . 3 ;  
a . r e a l = a . r e a l * 2 . 4 ;  

e n d p r o c ;

/ E O F

THE INCLUDED FILE: 0S_F.PL9

O O O l p r o c e d u r e  p a c k e t  t o  m e m ( b v t e  i r q
p  1 , t m p 2 , w o r ( 0 ) :  b y t e  h i . l o ;
0 0 0 2 t m p l = p o i  n t e r . v a l u e ;
0 0 0 3 t m p 2 = . s m ;
0 0 0 4 s t a t u s . b o x . u p d a t e ( t o , m e s s , 0 )  ;
0 0 0 5 s e t . s m _ p o i  n t e r . t o p  ;
0 0 0 6 . s m = $ F F 5 8 ;
0 0 0 7 w o r = d s ;
0 0 0 8 s m = h  i ; . s m = . s m + 1 ; s m = l o ;  . s m =
0 0 0 9 w o r = d p ;
O O l O s m = h i ; . s m = . s m + 1 ; s m = l o ;  . s m = ,
0 0 1  1 s m = m e s s ;  . s m = . s m + 1 ;
0 0 1 2 s m = t o ;  . s m = . s m + 1 ;
0 0 1 3 S m = f r o m ;  . s m = . s m + 1 ;
0 0 1 4 s m = i  r q . i  d ;
0 0 1 5 . s m = t m p 2 ;
0 0 1 6 p o i  n t e r . v a l u e = t m p 1 ;
0 0 1 7 s m . p o i  n t e r = p o i  n t e r . v a l u e ;
0 0 1 8 / *
0 0 1 9 p u t . m e m ;
0 0 2 0 * /
0 0 2 1 e n d p r o c ;
0 0 2 2 / E O F

THE INCLUDED FILE: OS E.PL9

0 0 0 1  p r o c e d u r e  i n i t :  b y t e  i ;
0 0 0 2  p u t c h a r ( 1 2 ) :
0 0 0 3  i  r q . v e c t o r  =  . i r q :
0 0 0 4  . a r r a y = $ a 5 1 O ;
0 0 0 5  c c o p y = $ 8 0 0 0 :
0 0 0 6  o v e r s e e r . t  i  1 1 e ;
0 0 0 7  i  =  1 ;
0 0 0 8  r e p e a t
0 0 0 9  s t a t u s . b o x . i  h i t ( i )
0 0 1 0  i = i + l ;
0 0 1 1  u n t i l  i = 1 7 ;
0 0 1 2  d i s a b l e . i n t e r r u p t s ;
0 0 1 3  s i l e n t . r u n n i n g = F A L S E ;
0 0 1 4  g e f = $ 0 0 0 0 ;
0 0 1 5  e n d p r o c ;
0 0 1 6
0 0 1 7
0 0 1 8  p r o c e d u r e  s y n c h ;
0 0 1 9  g e n  $ 1 3 ;
0 0 2 0  e n d p r o c ;
0 0 2 1  / E O F



THE INCLUDED FILE: LOADER A.PL9
0 0 0 1  p r o c e d u r e  p u t . c h a r ( b v t e  c h a r ) ;
0 0 0 2  i f  c h a r  =  l f  t h e n  r e t u r n  ;
0 0 0 3  i f  s i  1 e n t . r u n n i n g = f a l s e  t h e n
0 0 0 4  b e g i n
0 0 0 5  i f  c h a r = c r  t h e n  c a l l  $ c d 2 4  / *  F L E X  P C R L E  * /
0 0 0 6  e 1 s e
0 0 0 7  b e g i n
0 0 0 8  / *
0 0 0 9  mo  V e  _ c  u  r  s  o r ( 5  4 , 1 7 ) :
0 0 1 0  p u t c h a r ( c h a r ) ;0011 */
0 0 1 2  e n d ;
0 0 1 3  e n d ;
0 0 1 4  i f  c h a r = c r  t h e n
0 0 1 5  b e g i n
0 0 1 6  s e t . s m _ p o i n t e r _ b o t  ;
0 0 1 7  . s m = $ f f 4 0 ;
0 0 1 8  e n d :
0 0 1 9  e l s e
0 0 2 0  b e g i n
0 0 2 1  c c o p y = c c o p y + l  ;
0 0 2 2  r e p e a t
0 0 2 3  s m = c h a r ;
0 0 2 4  7 *
0 0 2 5  m o v e . c u r s o r  ( 4 0  , 1 9 ) ;  p u t _ h e : ;  . a d d r e s s  ( . s m ) ; p r  i  n t  ( " " ) ; p u t . h e x  . a d d r  e s s  ( p o i
n t e r . v a l u e ) ;
0 0 2 6  m o v e . C L i r s o r  ( 5 2  ,  1 9 )  ; p u t . h e - . b y  t e  ( s m )  ; p r  1 n t  ( " " ) ;  p u t  . h e x  . a d d r  e s s  ( c c o p y  )!
0 0 2 7  ♦ /
0 0 2 8  u n t i l  c h a r = s m ;
0 0 2 9  i f  - s m  a n d  $ 0 0 I F  =  $ 0 0 I F  t h e n
0 0 3 0  b e a i n
0 0 3 1  p o i  n t e r  _ v a l  u e = p o i  n t e r . v a l  u e i  $i . ' "Y2o;
0 0 3 2  s m _ p o i  n  t e r = p o i  n t e r . v a l u e ;
0 0 3 3  . s m = $ F F 4 0 ;
0 0 3 4  e n d  ;
0 0 3 5  e l s e  . s m = . s m + l :
0 0 3 6  e n d  ;
0 0 3 7  e n d p r o c ;
0 0 3 8
0 0 3 9  p r o c e d u r e  p u t  c r 1 f ;
0 0 4 0  p u t . c h a r ( c r ) ;
0 0 4 1  p u t . c h a r ( I f ) ;
0 0 4 2  e n d p r o c ;
0 0 4 3
0 0 4 4  p r o c e d u r e  p u t . h e x ( b y t e  d i g i t ) ;
0 0 4 5  d i g i t = ( d i g i t  a n d  $ f ) +  ' 0 ;
0 0 4 6  i f  d i g i t > ' 9  t h e n  d i g i t = d i g i t + 7 ;
0 0 4 7  p u t . c h a r ( d i g i t ) ;
0 0 4 8  e n d p r o c ;
0 0 4 9
0 0 5 0  p r o c e d u r e  p u t . b y t e ( b y t e  i t e m ) ;
0 0 5 1  p u t . h e x ( s h i f t ( i t e m , - 4 ) ) ;
0 0 5 2  p u t . h e x ( i  t e m ) ;
0 0 5 3  c h e c k s u m = c h e c k s u m + i  t e m ;
0 0 5 4  e n d p r o c ;
0 0 5 5
0 0 5 6  p r o c e d u r e  p u t . a d d r e s s ( i n t e g e r  i t e m ) ;
0 0 5 7  p u t . b y t e ( s w a p ( i t e m ) ) ;
0 0 5 8  p u t . b y t e ( i t e m )  ;
0 0 5 9  e n d p r o c ;
0 0 6 0  / E O F

THE INCLUDED FILE: LCADER_B.PL9
0 0 0 1  p r o c e d u r e  p u t . r e c o r d :  b y t e  b b :
0 0 0 2  b y t e  c o u n t :
0 0 0 3  i n t e g e r  p o s i  t i  o n . m a r k e r  ;
0 0 0 4  p o s i  t  i  o n = 0 ;
0 0 0 5  d i s a b  1 e . i n t e r r u p t s  ;
0 0 0 6  r e p e a t
0 0 0 7  p a c k e t . t o . m e m ( t r u e , m a s t e r , p e _ n o , l o a d _ p r o g r a m , n u l 1 , n u l 1 )  ;
0 0 0 8  s e t . s m _ j D o i  n t e r . b o t  ;
0 0 0 9  . S M = $ F F 4 0 ;
0 0 1 0  i f  1 e n g t h - p o s i t i o n > = 1 6  t h e n  c o u n t  = 1 6
0 0 1 1  e l s e  c j u n t = l e n g t h - p o s i t i o n  ;
0 0 1 2  m a r k e r = p o s i  t  i  o n + c o u n t ;
0 0 1 3  p u t . c h a r ( ' S ) ;
0 0 1 4  p u t . c h a r ( ' 1 ) ;
0 0 1 5  c h e c k s u m = 0 ;
0 0 1 6  p u t . b y t e ( c o u n t + 3 )  ;
0 0 1 7  p u t . a d d r e s s ( a d d r e s s ) ;
0 0 1 8  r e p e a t
0 0 1 9  p u t . b y t e ( b u f  f  e r ( p o s i  t  i  o n ) )  ;
0 0 2 0  p o s i  t i o n = p o s i  t i  o n + 1 ;



0021
0022
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 3 0
0 0 3 1
0 0 3 2
0 0 3 3
0 0 3 4
0 0 3 5
0 0 3 6
0 0 3 7
0 0 3 8
0 0 3 9
0 0 4 0  
0 0 4  1
0 0 4 2
0 0 4 3
0 0 4 4
0 0 4 5
0 0 4 6  
0 0 4  7
0 0 4 8
0 0 4 9
0 0 5 0
0 0 5 1
0 0 5 2
0 0 5 3
0 0 5 4
0 0 5 5
0 0 5 6
0 0 5 7
0 0 5 8
0 0 5 9
0 0 6 0  
0 0 6 1  
0 0 6 2
0 0 6 3
0 0 6 4
0 0 6 5
0 0 6 6
0 0 6 7
0 0 6 8
0 0 6 9
0 0 7 0
0 0 7 1
0 0 7 2
0 0 7 3  
0 0  7 4
0 0 7 5
0 0 7 6
0 0 7 7
0 0 7 8
0 0 7 9
0 0 8 0  
0 0 8 1  
0 0 8 2
0 0 8 3
0 0 8 4
0 0 8 5
0 0 8 6
0 0 8 7
0 0 8 8
0 0 8 9
0 0 9 0
0 0 9 1
0 0 9 2
0 0 9 3
0 0 9 4
0 0 9 5
0 0 9 6
0 0 9 7
0 0 9 8
0 0 9 90100 0101 0102
0 1 0 3
0 1 0 4
0 1 0 5
0 1 0 6
0 1 0 7
0 1 0 8  
0 1 0 9

until posi t i o n = m a r  k e r ; 
p u t . b y t e ( n o t ( c h e c k s u m ) ); 
a d d r e s s = a d d r e s 5 + c o u n t ;
i n t e r r u p t  (di recti o n . o t j i e . n o  (pe.no) ) ; 
s y n c h  ;
e n a b l e . i n t e r r u p t s ;  
di s a b l e . i  n t e r r u p t s ;  

until p o s i t i o n = l e n g t h ;  
e n d p r o c ;

p r o c e d u r e  e n d . r e c o r d  ;
p a c k e t . t o . m e m (t r u e ,m a s t e r , p e . n o , 1 o a d  j r o g r a m ,nul 1 ,nul 1); 
di sab 1e.i n t e r r u p t s ;
.s m = $ f f 4 0 ;  
s e t . s m  j ) o i n t e r . b o t ; 
p u t . c h a r ( S ) ; 
p u t . c h a r ('9);
i n t e r r u p t  (direct i o n . o f  j e . n o  (pe.no) ) ; 
s y n c h  ;
en a b l e . i  n t e r r u p t s ;  
di s a b l e . i n t e r r u p t s ;  

en d p r o c ;

p r o c e d u r e  g e t . r e c o r d : b y t e  c h a r : i n t e g e r  i; 
r e p e a t

d i s a b l e . i  n t e r r u p t s ;  
c h a r = r e a d (.f c b ):
if e r r o r  t h e n  b e g i n  d i s a b  1e . i n t e r r u p t s ;  r e t u r n ;  end: 

if c h a r = $ 1 6  the n  
b e g  i n

r e a d ( . f c b ) :  if e r r o r  t h e n  b e g i n  di sable.i n t e r r u p t s ; return: e nd ; 
r e a d (.f c b ); if e r r o r  t h e n  b e g i n  di s a b l e . i n t e r r u p t s ;  retu r n ;  e nd ; 

e n d  ;
until c h a r = $ 0 2 ;  
a d d r e s s . h i g h = r e a d (.f c b ) ; 
if e r r o r  the n  r e t u r n  ; 
a d d r e s s . 1o w = r e a d (.f c b ) ; 
if e r r o r  the n  r e t u r n  ;
1 e n g t h  = i n t e g e r ( r e a d ( . f c b ) ); 
if e r r o r  t h e n  r e t u r n ;  
i =0; 
r e p e a t

buf f e r (i )= r e a d (.f c b ); 
if e r r o r  t h e n  r e t u r n  ; 
i =i +1 :

Lint 1 1 i =1 e n g t h  ; 
e n d p r  o c ;

p r o c e d u r e  h e x d u m p  ; 
t h e . f i l e = . s t r i n g i ;

get .f i 1 eriame ( . f cb ) ; 
if e r r o r  the n  r e t u r n ;  
set ex tensi on  (. f cb , k>) ; 
o p e n . f o r . r e a d (.f c b ); 
if e r r o r  t h e n  r e t u r n ;  
s e t . b i n a r y (.f c b ) ; 
r e p e a t

g e t . r e c o r d  ;
if e r r o r = e n d . o f . f i l e  the n  
begi n

e r r o r  = f a l se; 
retu r n ;  

end ;
if e r r o r  the n  retu r n ;  
p u t . r e c o r d ;

■forever  ; 
e n d p r o c ;

p r o c e d u r e  f i l e : b y t e  1 e t t e r : i n t e g e r  i  
i  =0 ;
s t r  i  n g i  ( i ) =  ' 1 ; i  = i  + 1  ; '
s t r i n g i ( i ) = ■ . ;  i = i + l ;  
r e p e a t

l e t t e r = g e t c h a r ; 
i f  1 e t t e r <  >$0d t h e n  
b e g i n

s t r i n g i  ( i ) = 1 e t t e r ; i = i  + 1  ; 
e n d  ;

u n t i l  1 e t  t e r  =  $ O d ;
s t r i n g i  ( i ) =  ' . ;  i  = i  + 1  ;
s t r i n g i  ( i ) =  c ;  i = i  + 1  ; 
s t r i n g i ( i ) =  m;  i = i + l ;  
s t r i n g i  ( i ) =  ' d : i  = i  + 1  ; 
s t r i n g i  ( i ) = $ 0 4 ;  
i  =  1 ; t h e . f  i l e = . s t r i n g i ;  

e n d p r o c ;

/ E O F



THE INCLUDED FILE: MUL LDR2.PL9
0001
0002
0 0 0 3
0 0 0 4
0 0 0 5
0 0 0 6
0 0 0 7
0 0 0 8
0 0 0 90010 
O O  1 1 00120013
0 0 1 4
0 0 1 5
0 0 1 6
0 0 1 7
0 0 1 8
0 0 1 90020 0021 0022
0 0 2 3
0 0 2 4
0 0 2 5
0 0 2 6
0 0 2 7
0 0 2 8
0 0 2 9
0 0 3 0
0 0 3 1
0 0 3 2
0 0 3 3
0 0 3 4
0 0 3 5
0 0 3 6
0 0 3 7
0 0 3 8
0 0 3 9
0 0 4 0  
0 0 4  1
0 0 4 2
0 0 4 3
0 0 4 4
0 0 4 5
0 0 4 6  
0 0 4  7
0 0 4 8
0 0 4 9
0 0 5 0
0 0 5 1
0 0 5 2
0 0 5 3
0 0 5 4
0 0 5 5
0 0 5 6
0 0 5 7
0 0 5 8
0 0 5 9
0 0 6 0  
0 0 6 1  
0 0 6 2
0 0 6 3
0 0 6 4
0 0 6 5
0 0 6 6
0 0 6 7
0 0 6 8
0 0 6 9
0 0 7 0
0 0 7 1
0 0 7 2
0 0 7 3
0 0 7 4
0 0 7 5
0 0 7 6
0 0 7 7
0 0 7 8
0 0 7 9
0 0 8 0  
0 0 8 1  
0 0 8 2
0 0 8 3
0 0 8 4
0 0 8 5

p r o c e d u r e  p u t  _ n i e m:  i  n t e g e r  t m p  1 ,  t m p 2 : 
m o v e c u r s o r ( 0 , 0 ) ;

t m p 1 = p o i  n t e r . v a l u e ;  
t m p 2 = . s m ;
s e t  . s m  j o i n  t e r . t o p ;
. s m = $ F F 5 F ;  
r e p e a t

p u t . h e x . a d d r e s s ( . s m ) ;  
p  r  i  n  t  ( " "  ) ; 
p u t . h e x . b y t e ( s m ) ; 
c r l f  ;
. s m = . s m - 1 ; 

u n t i l  . s m = f F F 5 0 ;  
s m _ _ p o i n t e r = t m p l  
p o i  n t e r . v a l u e = t m p 1 ;
. s m = t m p 2 ;  

p u t c h a r ( q e t c h a r ) ; 
e n d p r o c ;

p r o c e d u r e  p u t a ( b y t e  i : i n t e g e r  i i ) ;  
p u t . h e x . a d d r e s s ( i  i ) ; 
p r  i  n t ( "  " ) ;  
p u t . h e x . b y t e  ( i  ) ; 
c r l f ;  

e n d p r o c ;

p r o c e d u r e  s e t . u p . w h i  c h  j e s . t o . l  o a d  ( b / t e  f l a g ,  . p e  ) :
. p e = . p e + 1 ; / *  s e t  t o  f i r s t  e l e m e n c  -  0 t h  u n u s e d  * /
I f  f l a g

C A S E  1 t h e n  b e g i n  p e = l :  p e . t a g s ( p e ) = 4  ; 1 o c a 1 _ i d s ( p e ) =  1 ; e n d  ;
C A S E  4  t h e n  

begin
p e = 5 :  p e . t a q s ( p e )  =  1 ; 
p e = 6 ;  p e . t a g s ( p e ) a ;
p e = l ;  p e . t a g s ( p e )  =  1 ; 
p e = 2 ;  p e . t a g s ( p e ) = 1  ;

1 o c a l  i  d s ( p e ) : 
1 o c a  1 . i  d s ( p e ) ' 
1 o c a  1 . i  d s ( p e ) :  
1 o c a  1 . i  d s ( p e ) :

. p e = p e + 1  ; 
, p e + l ;  
p e + 1  ;

e n d  ;
C A S E  9  t h e n

E L S E

p e = 9 ;  p e . t  a g s ( p e ) = 1  ; 
p e = 1 0 ;  p e . t a g s ( p e ) = 2 ;  
p e = l l ;  p e . t a g s ( p e )  =  1 ; 
p e = 5 ;  p e . t a g s ( p e ) = 2 ;  
p e = 6 ;  p e . t a g s ( p e ) = 3 :  
p e = 7 ;  p e . t a g s ( p e ) = 2 ;  
p e = l ;  p e . t a g s ( p e ) = 1  ; 
p e = 2 ;  p e . t a g s ( p e ) = 2 ;  
p e = 3 ;  p e . t a g s ( p e )  =  1 ;

e n d  ;

b e g i  n
p e = 1 3 ;  p e . t a g s ( p e ) = 1  ; 
p e = 1 4 ;  p e . t a g s ( p e ) = 2 ;  
p e = 1 5 ;  p e . t a g s ( p e ) = 2 :  
p e = 1 6 ;  p e . t a g s ( p e ) = 1  ; 
p e = 9 ;  p e . t a g s ( p e ) = 2 ;  
p e = 1 0 ;  p e . t a g s ( p e ) = 3  
p e = l l ;  p e . t a g s ( p e ) = 3  
p e = 1 2 ;  p e . t a g s ( p e ) = 2  
p e = 5  ; p e . t a q s ( p e ) = 2  
p e = 6  ; p e . t a g s ( p e ) = 3  
p e = 7 ;  p e . t a g s ( p e ) = 3  
p e = 8 ;  p e . t a g s ( p e ) = 2  
p e = l ;  p e . t a g s ( p e ) = 1  
p e = 2 ;  p e . t a g s ( p e ) = 2  
p e = 3 ;  p e . t a g s ( p e ) = 2  
p e = 4 ;  p e . t a g s ( p e ) = 1

e n d  ;

1 o c a l . i  d s ( p e )  = 
1 o c a l . i  d s ( p e )  
1 o c a  1 . 1 d s ( p e )

1 o c a  1 . i  d s ( p e ) =  
1 o r a l _ i  d s ( p e )  =  
1 o c a l . i  d s ( p e )  =  
1 o c a l . 1 d s ( p e ) =  
1 o c a l . i  d s ( p e )  =  
l o c a l . i d s ( p e )  =

4 :
=  4 ;

1 ocal 
1 ocal 
1 ocal 
1 ocal 1ocal_ 
1 ocal 
1 ocal 
1 ocal 
1 ocal 1 ocal 1o c a l . 1o c a l _ 1o c a l _ 1o c a l . 1o c a l . 1 ocal

. i d s ( p e )  

. i d s ( p e )  

. i d s ( p e )  

. i  d s ( p e )  
i d s ( p e ) =  
_ i  d s ( p e )  
. i d s ( p e )  
. 1  d s ( p e )  
. i  d s ( p e )  
. i d s ( p e )  
i d s  ( p e ) =  
i  d s ( p e )  =  
i  d s ( p e )  =  
i d s ( p e ) =  
i d s ( p e ) =  
i  d s ( p e )  =

=  4 ;  
= 4 ;  
= 4 ;  
= 3 ;  
1 ; 
=0;

= 1 :
=0:

p e  = 
. p e• pe' . pe
• p e '
• p e  
• p e '
• p e

. p e =
• pe=
• pe=  
■ p e '  
• p e =
• p e '• pe:
• p e '
• pe=
• p e '
• p e :
• p e '
• p e :  
• p e '
• p e :

p e + 1 ;
= • p e + 1  ; 
= • p e + 1  ; 
= • p e  +  1 ; 
= . p e + 1  ; 
= • p e + 1  ;

p e + 1  ; 
' • p e + 1  ;

• p e + 1 ; 
' • p e + 1  ; 
' • p e + 1  ; 
' • p e + 1 ;  
• p e + 1 ; 

: . p e + l  ; 
• p e + 1 ; 

' • p e + 1  ;
p e + 1  ; 

' • p e + 1  ; 
' • p e + 1 ;  
' . p e + 1  ; 
• p e + 1 ; 

' • p e + 1  ; 
' • p e + 1  ;

e n d p r o c ;

p r o c e d u r e  1 . m e n u : b y t e  x , y , c h 2 , i  i ;
p e ( 1 ) = 5 ;  p e ( 2 ) = 6 ;  p e ( 3 ) = 1  ; p e ( 4 ) = 2 ;  
c l  e a r _ m e n u ( O ) ; 
x = 1 0 ;  y = 1 6 ;
m o v e . c u r s o r ( X , y ) ;  p r i n t ( " L O A D  P E  W I T H  A  P R O G R A M " ) ;
m o v e . c u r s o r  ( x  , y + 1  ) ; p r i n t  ( " ----------------------------------------------------" ) ;
p a k e t . i n i t ;
p a k e t . f  i l l  ( f  a l  s e  , m a s t e r  ,  0 , 1  o a d  j r  o g r  a m , n u l  1 ,  n u l  1 ) ;
X =  1 0 ; y = 1 9  ;
m o v e . c u r s o r  ( x  , y )  ; p r i n t  ( "  " ) ;
m o v e . c u r s o r  ( x  , y )  ; p r i n t ( " W h i c h  p r o g r a m " ) ;  
m o v e . c u r s o r ( x , y + 1  ) ;  p r i n t ( " ?  " ) ;
/ *  c a l l  f i l e n a m e  * /  
f i l e ;



0 0 8 6
0 0 8 7
0 0 8 8
0 0 8 9
0 0 9 0
0 0 9 1
0 0 9 2
0 0 9 3
0 0 9 4
0 0 9 5
0 0 9 6
0 0 9 7
0 0 9 8
0 0 9 90100 0101 
0 1 0 2
0 1 0 3
0 1 0 4
0 1 0 5
0 1 0 6
0 1 0 7
0 1 0 8
0 1 0 90110 0111 0112 
0 1  1 3
0 1 1 4
0 1 1 5
0 1 1 6
0 1 1 7
0 1 1 8
0 1 1 90120 0121 0122
0 1 2 3
0 1 2 4
0 1 2 5
0 1 2 6
0 1 2 7
0 1 2 8
0 1 2 9
0 1 3 0
0 1 3 1
0 1 3 2
0 1 3 3  
0 1  3 4
0 1 3 5
0 1 3 6
0 1 3 7
0 1 3 8
0 1 3 9
0 1 4 0
0 1 4 1
0 1 4 2
0 1 4 3
0 1 4 4
0 1 4 5
0 1 4 6
0 1 4 7
0 1 4 8
0 1 4 9
0 1 5 0
0 1 5 1
0 1 5 2
0 1 5 3
0 1 5 4
0 1 5 5
0 1 5 6
0 1 5 7  
0 1 5 3
0 1 5 9
0 1 6 0  
0 1 6 1  
0 1 6 2
0 1 6 3
0 1 6 4
0 1 6 5
0 1 6 6  
0 1 6  7 
0 1 6 8
0 1 6 9
0 1 7 0
0 1 7 1
0 1 7 2

m o v e . c u r s o r ( x , y + 3 ) ; p r i  n t ( "  " ) :
m o v e . c u r s o r ( x , y + 3 ) ; p r  i  n t ( " H o w  m a n y  P E s  " ) ;

m o v e . c u r s o r ( x , y + 4 ) ; p r i n t ( " ( 2  d i g i t  H E X )  ?  " ) ;
/ «  g e t  d e s t  * /
p e . t o . l o a d = g e t . h e x . b y t e  :
s e t . u p . w h i  c l i  j e s . t o . l  o a d  ( p e  _ t o _  1 o a d  , . p e ) ;
/ » c h e c k  i t s  o k  */
m o v e . c u r s o r  ( X  , y  + 3 )  ; p r i n t C  " ) ;
m o v e . c u r s o r ( x , y + 4 ) ; p r i n t  ( "  “ ) :
m o v e . c u r s o r ( x , y + 3 ) ; p r  i  n t ( " o k  t o  s e n d  ( y / n ) " ) ;
c h 2 = g e t c h a r ;
i f  c h 2 = ' y  . o r  c h 2 = ' Y  t h e n  
b e g i  n  

i  i  =  l  ; 
r e p e a t
p e . n o = p e ( i  i  ) ;

p a l  e t . f i l l  ( t r u e , m a s t e r , p e ( 1 I  > , 1 o a d ^ p r o g r a m . n u l  1 . n u l  1 ) :  
p a c k e t . t o . m e m ( t r u e . m a s t e r , p e ( i i ) , 1 o a d  j r o g r a m . n u l  1 , n u l  1 ) ;  
m o v e . c u r s o r ( x , y + 3 ) ; p r i n t  ( "  " ) ;
m o v e . c u r s o r ( x , y + 4 ) ; p r i n t ( "  " )

. m o v e . c u r s o r ( x , y + 3 ) ; p r i n t ( " R E A D Y  T O  S E N D  ( Y / N ) " ) ;
c h 2 = ' y  :
i f  c h 2 =  V - o r  c h 2 = ' V  t h e n  
b e g  i  n

c 1 e a r . m e n u ( 4 0 ) :
m o v e . c u r s o r ( 4 0 , 1 7 )  ; p r i n t ( " 1 R A N S M 1 T T I N G  " ) ;  
h e x d u m p  :
i f  e r r o r  t h e n  r e p o r t . e r r  o r ( . f c b ) ;  
c l o s e . f i 1 e ( . f c b ) ;  
e n d . r e c o r d ; 

e n d ;
i  i  = i  i  +  1 ; /
u n t i l  i i = p e . t o _ 1 o a d + 1 ;

e n d  ; / *  e n d  o f  o k  t o  s e n d  * /
e n d p r o c ;

p r o c e d u r e  r e f r e s h . d i s p l a y :  b y t e  i ; 
di sable.i n t e r r u p t s ; 
p u t c h a r (12); 
o v e r s e e r . t  i 1 1e; 
i = 1 ; 
r e p e a t

s t a t u s . b o x . i n i t (i ) ; 
i =1+1 ; 

until 1=17; 
e n a b l e . i  n t e r r u p t s ;  

e n d p r o c ;

p r o c e d u r e  stop;
/*   ..............
e n d p r o c ;

T O  B E  W R I T T E N  * /

') :

p r o c e d u r e  r . m e n u ;  b y t e  x , y , c h 2 :  i n t e g e r  a d d r e s s ;
c l  e a r . m e n u ( O ) ;
X =  1 0 ; y = 1 6 ;
m o v e . c u r s o r ( x , y ) ; p r i n t ( " R U N  P R O G R A M  I N  A  P E " ) ;
m o v e . c u r  s o r  ( x  ,  y + 1 ) ; p r  i  n t  ( " --------------------------------------------- " ) ;
p a k e t . i  n i  t  ;
p a k e t  . f i l l  ( f  a l  s e  , m a s t e r  , O , r u n  j r  o g r  a m  , n u  1 1 , n u l  1 ) ;
X =  1 0 ;  y = 1 8 ;
m o v e . c u r s o r ( x , y  ) ;  p r i n t  ( "
m o v e . c u r s o r ( x , y  ) ;  p r i n t ( " R u n  p r o g r a m  i n  w h i c h  P E " ) :  
m o v e . c u r s o r ( X , y + 1 ) ;  p r i n t ( " ?  " ) ;  
p e . n o = g e t . h e x . b y t e ;
m o v e . c u r s o r ( X , y + 3 ) ; p r i n t ( "  " ) ;
m o v e . c u r s o r ( x , y + 4 ) ; p r i n t  ( "  " )
m o v e . c u r s o r ( x , y + 3 ) ; p r i n t ( " S t a r t  a d d r e s s " ) ;  
m o v e . c u r s o r ( x , y + 4 ) ;  p r i n t ( " ?  " ) ;  
a d d r e s s = g e t . h e x . a d d r e s s ;
p a k e t . f  i l l  ( t r u e  ,  m a s t e r  ,  p e . n o  , r u n  j r  o g r  a m , a d d r e s s , n u l l  
m o v e . c u r s o r ( x , y + 3 ) ; p r i n t ( "  " ) ;
m o v e . c u r s o r ( x , y  +  4 )  ; p r i n t  ( "  ■ " ) :
m o v e . c u r s o r ( x , y + 3 ) ; p r i n t ( " R E A D Y  T O  S E N D  ( Y / N )  ? " ) ;  
c h 2 = g e t c h a r ;
i f  c h 2 = ' Y  . o r  c h 2 = ' y  t h e n  
b e g i  n

d i  s a b l e . i  n t e r r u p t s :
p a c k e t . t o . m e m  ( t r u e  , m a s t e r  , p e . n o  , r - u n  j r o g r  a m , a d d r e s s  , n u l  1 ) ; 
i n t e r r u p t  ( d i r e c t  i o n . o f  j e . n o  ( p e . n o )  ) ; 
s y r i c h  ;
e n a b l e . i  n t e r r u p t s ;  
d i  s a b  1 e . i  n t e r r u p t s ; 

e n d  ;
e n a b l e . i n t e r r u p t s ;  

e n d p r o c ;

) :



0 1 7 3  p r o c e d u r e  c o m p a s s  : b y t e  y , > : , c h ;
0 1 7 4  p u t c h a r ( 1 2 ) ;
0 1 7 5  p r i n t ( " C O M P A S S  D I R E C T I O N S  O P  P E s " )
0 1 7 6  c r l f ;
0 1 7 7  p r i n t  ( "  " ) :
0 1 7 8  y = 5 ;
0 1 7 9  x = 4 0 ;
0 1 8 0  r e p e a t
0 1 8 1  m o v e . c u r s o r ( x , y )  ; p r i n t  ( " ! " ) ;
0 1 8 2  y = y + l ;
0 1 8 3  u n t i l  y = 1 2 ;
0 1 8 4  y = 8 ;
0 1 8 5  x = 2 0 ;
0 1 8 6  r e p e a t
0 1 8 7  m o v e . c u r s o r ( X , y ) ; p r i n t ( ” - ” ) ;
0 1 8 8  x = x  +  1 ;
0 1 8 9  u n t i l  x = 5 0 ;
0 1 9 0  m o v e . c u r s o r ( 4 0 , 3 ) ;  p r i n t ( " E " ) ;
0 1 9 1  m o v e . c u r s o r ( 4 0 , 1 3 ) ;  p r i n t ( " W " ) ;
0 1 9 2  m o v e . c u r s o r ( 1 8 . 8 ) ;  p r i n t ( " N " ) ;
0 1 9 3  m o v e . c u r s o r ( 5 2 , 8 ) ;  p r i n t ( " S " ) :
0 1 9 4  e n d p r o c ;
0 1 9 5  / E O F  

#



THE OVERSEER

THE FOLLOWING GIVES A BRIEF DESCRIPTION OF THE FUNCTION OF THE MAIN 
PROCEDURES OF THE MULTIPROCESSOR OPERATING SYSTEM;

PROCEDURE INPUTS ACTION

direction of pe no pe number outputs a value which
corresponds to the direction 
in which a message needs to 
be passed (either 1,2,3 or 4)

EXIT no alt

interrupt direction sends interrupt in direction
of 'direction' variable 
(1,2,3 or 4)

EXIT no alt

resirq direction sends a reset interrupt
signal in the direction of 
the 'direction' variable

EXIT no alt

set sm pointer top pe no sm pointer is set to 
appropriate chunk of sm to 
enable communication with pe



pe no

EXIT sm pointer alt

set sm pointer bot pe no sm pointer and its RAM 
counterpart pointer value are 
set to the appropriate value 
to enable communication with 
pe pe no

reset sm pointer

EXIT sm_pointer alt
pointer value alt

after a set_sm_pointer_top
the pointer can be reset by 
C%exuating it to its RAM A

counterpart

EXIT sm pointer alt
(to original value 
before call to set 
sm pointer top)

move cursor x,y moves cursor to x,y on screen

EXIT no alt

overseer title prints program title

EXIT no alt



status box init pe no sets up area on screen in 
which the status of pe pe no 
is displayed

EXIT no alt

status box update pe no,mess - updates information in status 
box peno with the message 
corresponding to mess

EXIT no alt

clear memu clears menu from screen

EXIT no alt

p menu prints main menu on screen

EXIT no alt

packet init displays on screen the packet 
headings of a message

EXIT no alt

paket fill irq id,from puts the information received 
message,dp,ds into a packet displayed on 

the screen



irq

EXIT no alt

deals with interrupts 
fSrising from global
communication to/from other 
PE and takes the appropriate 
action

EXIT no alt

r menu displays the run menu, 
enables a program to be run 
in an arbitrary pe starting 
at an arbitary location

EXIT no alt

hexdump pe no reads in a file and sends 
down appropriate direction 
with full handshaking

EXIT no alt

file inputs a filename with binary 
defaults

EXIT no alt

put mem displays the top 16 bytes of 
a sm block previously defined



EXIT no alt

puta add, byte displays a byte held in
address add

EXIT no alt

packet_to_mem irq id,from places packet into memory
to,mess,dp,ds

EXIT no alt

main - scans keyboard for inputs,
while being enabled for any
interrupts


